
Lectures on

Optimization – Theory and Algorithms

By

Jean Cea

Tata Institute of Fundamental Research, Bombay
1978



Lectures on
Optimization – Theory and Algorithms

By

John Cea

Notes by

M. K. V. Murthy

Published for the

Tata Institute of Fundamental Research, Bombay
1978



c© Tata Institute of Fundamental Research, 1978

ISBN 3-540-08850-4 Springer-Verlag Berlin, Heidelberg. New York
ISBN 0-387-08850-4 Springer-Verlag New York, Heidelberg,Berlin

No part of this book may be reproduced in any
form by print, microfilm or any other means with-
out written permission from the Tata Institute of
Fundamental Research, Colaba, Bombay 400 005

Printed by K. P. Puthran at the Tata Press Limited,
414 Veer Savarkar Marg, Bombay 400 025 and published by H. Goetze,

Springer-Verlag, Heidelberg, West Germany

PRINTED IN INDIA





Contents

1 Differential Calculus in Normed Linear Spaces 1
1 Gateaux Derivatives . . . . . . . . . . . . . . . . . . . . 1
2 Taylor’s Formula . . . . . . . . . . . . . . . . . . . . . 7
3 Convexity and Gateaux Differentiability . . . . . . . . . 10
4 Gateaux Differentiability and Weak Lower... . . . . . . . 14
5 Commutation of Derivations . . . . . . . . . . . . . . . 15
6 Frechet Derivatives . . . . . . . . . . . . . . . . . . . . 16
7 Model Problem . . . . . . . . . . . . . . . . . . . . . . 18

2 Minimisation of Functionals - Theory 21
1 Minimisation Without Convexity . . . . . . . . . . . . . 21
2 Minimistion with Convexity conditions . . . . . . . . . 25
3 Applications to the Model Problem and... . . . . . . . . 29
4 Some Functional Spaces . . . . . . . . . . . . . . . . . 32
5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Minimisation Without Constraints - Algorithms 49
1 Method of Descent . . . . . . . . . . . . . . . . . . . . 51
2 Generalized Newton’s Method . . . . . . . . . . . . . . 72
3 Other Methods . . . . . . . . . . . . . . . . . . . . . . 85

4 Minimization with Constraints - Algorithms 87
1 Linearization Method . . . . . . . . . . . . . . . . . . . 87
2 Centre Method . . . . . . . . . . . . . . . . . . . . . . 103
3 Method of Gradient and Prohection . . . . . . . . . . . 106

v



vi Contents

4 Minimization in Product Spaces . . . . . . . . . . . . . 110

5 Duality and Its Applications 141
1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 142
2 Duality in Finite Dimensional Spaces Via . . . . . . . . 152
3 Duality in Infinite Dimensional Spaces Via... . . . . . . . 160
4 Minimization of Non-Differentiable Functionals... . . . . 180

6 Elements of the Theory of Control and... 191
1 Optimal Control Theory . . . . . . . . . . . . . . . . . 191
2 Theory of Optimal Design . . . . . . . . . . . . . . . . 210



Chapter 1

Differential Calculus in
Normed Linear Spaces

We shall recall in this chapter the notions of differentiability in the sense1

of Gateaux and Frechet for mappings between normed linear spaces and
some of the properties of derivatives in relation to convexity and weak
lower semi-continuity of functionals on normed linear spaces. We shall
use these concepts throughout our discussions.

In the following all the vector spaces considered will be over the
field of real numbersR.

If V is a normed (vector) space we shall denote by|| · ||V the norm
in V, by V′ its (strong) dual with|| · ||V′ as the norm and by〈·, ·〉V′×V

the duality pairing betweenV and V′. If V is a Hilbert space then
(·, ·)V will denote the inner product inV. If V andH are two normed
spaces thenL (V,H) denotes the vector space of all continuous linear
mappings fromV into H provided with the normA → ||A||L (V,H) =

sup{||Av||H/||v||V, vǫV}.

1 Gateaux Derivatives

Let V, H be normed spaces andA : U ⊂ V → H be a mapping of an
open subsetU of V into H. We shall often call a vectorϕǫV, ϕ , 0 a
direction inV.

1



2 1. Differential Calculus in Normed Linear Spaces

Definition 1.1. The mappingA is said to be differentiable in the sense
of Gateaux or simplyG-differentiable at a pointuǫU in the directionϕ
if the difference quotient

(A(u+ θϕ) − A(u))/θ

has a limitA′(u, ϕ) in H asθ → 0 in R. The (unique) limitA′(u, ϕ) is2

called the Gateaux derivative ofA atu in the directionϕ.

A is said to beG-differentiable in a directionϕ in a subset ofU if it
is G-differentiable at every point of the subset in the directionϕ.

We shall simply callA′(u, ϕ) the G-derivative ofA at u since the
dependence onϕ is clear from the notation.

Remark 1.1.The operatorV ∋ ϕ 7→ A′(u, ϕ)ǫH is homogeneous:

A′(u, α, ϕ) = αA′(u, ϕ) for α > 0.

In fact,

A′(u, α, ϕ) = lim
θ→0

(A(u+αθϕ)−A(u))/θ = α lim
λ→0

(A(u+λϕ))/λ = αA′(u, ϕ).

However, this operator is not, in general, linear as can be seen im-
mediatly from Example 1.2 below.

We shall often denote a functional onU by J.

Remark 1.2.Every lineary functionalL : V → R is G-differentiable
everywhere inV in all directions and itsG-derivative is

L′(u, ϕ) = L(ϕ)

since (L(u+ θϕ) − L(u))/θ = L(ϕ). It is a constant functional (i.e. inde-
pendent ofu in V).

If a (u, v) : V × V → R is a bilinear functional onV then the func-
tional J : V ∋ v 7→ J(v) = a(v, v)ǫR is G-differentiable everywhere in
all direction and

J′(u, ϕ) = a(u, ϕ) + a(ϕ, u).



1. Gateaux Derivatives 3

If further a(u, v) is symmetric (i.e.a(u, v) = a(v, u) for all u, vǫV)3

thenJ′(u, ϕ) = 2a(u, ϕ). This follows immediately from bilinearity :

a(u+ θ, u+ θϕ) = a(u, u) + θ(a(u, ϕ) + a(ϕ, u)) + θ2a(ϕ, ϕ)

so that

J′(u, ϕ) = lim
θ→0

(J(u+ θϕ) − J(u))/θ = a(u, ϕ) + a(ϕ, u).

The following example will be a model case of linear problemsin
many of our discussions in the following chapters.

Example 1.1.Let (u, v) 7→ a(u, v) be a symmetric bi-linear form on a
Hilbert spaceV andv 7→ L(v)a linear form onV. Define the functional
J : V → R by

J(v) =
1
2

a(v, v) − L(v).

It follows from the above Remark thatJ is G-differentiable every-
where inV in all directionsϕ and

J′(u, ϕ) = a(u, ϕ) − L(ϕ).

In many of the questions we shall assume:

(i) a(., .) is (bi−) continuous: there exists a constantM > 0 such that

a(u, v) ≤ M||u||V ||v||V for all u, vǫV;

(ii) a(·, ·) is V-coercive; There exists a constantα > 0 such that

a(v, v) ≥ α||v||2V for all vǫV

and

(iii) L is continuous: there exists a constantN > 0 such that

L(v) ≤ N||v||V for all vǫV.

4



4 1. Differential Calculus in Normed Linear Spaces

Example 1.2.The function f : R2→ R defined by

f (x, y) =


0 if (x, y) = (0, 0)

x5/((x− y)2
+ x4) if ( x, y) , (0, 0)

is G-differentiable everywhere and in all directions. In fact, ifu =
(0, 0)ǫR2 then given a directionϕ = (X,Y)ǫR2(ϕ , 0) we have

( f (θX, θY) − f (0, 0))/θ = θ2X5/((X − Y)2
+ θ2X4)

which has a limit asθ→ 0 and we have

f ′(u, ϕ) = f ′((0, 0), (X,Y)) =


0 if X , Y

X if X = Y

One can also check easily thatf is G-differentiable inR2.

The following will be the general abstract form of functionals in
amy of the non-linear problems that we shall consider.

Example 1.3.Let Ω be an open set inRn andV = Lp(Ω), p > 1. Sup-
poseg : R1 ∋ t 7→ g(t)ǫR1 be aC1-function such that

(i) |g(t)| ≤ C|t|p and (ii ) |g′(t)| ≤ C|t|p−1

for some constantC > 0. Then

u 7→ J(u) =
∫

Ω

g(u(x))dx

defines a functionalJ on Lp(Ω) = V which is G-differentiable every-
where in all directions and we have

J′(u, ϕ) =
∫

Ω

g′(u(x))ϕ(x)dx.

5

(The right hand side here exists for anyu, ϕǫLp(Ω)).



1. Gateaux Derivatives 5

In fact, sinceuǫLp(Ω) and sinceg satisfies (i) we have

|J(u)| ≤
∫

Ω

|g(u)|dx ≤ C
∫

Ω

|u|pdx< +∞

which meansJ is well defined onLp(Ω). On the other hand, for any
uǫLp(Ω) sinceg′ satisfies (ii),g′(u)ǫLp′ (Ω) wherep−1

+ p′−1
= 1. For,

we have
∫

ω

|g′(u)|p
′

dx≤ C
∫

Ω

|u|(p−1)p′dx= C
∫

Ω

|u|pdx< +∞.

Hence, for anyu, ϕǫLp(Ω), we have by Hölder’s inequality
∣∣∣∣∣
∫

ω

g′(u)ϕdx
∣∣∣∣∣ ≤ ||g

′(u)||Lp(Ω)||ϕ||Lp(Ω) ≤ C||u||p/p′

Lp ||ϕ||Lp(Ω) < +∞.

To computeJ′(u, ϕ), if θǫR we defineh : [0, 1] 7→ R by setting

h(t) = g(u+ tθϕ).

ThenhǫC1(0, 1) and

h(1)− h(0) =
∫ 1

0
h′(t)dt = θϕ(x)

∫ 1

0
g′(u+ tθϕ)dt

(t = t(x)), |t(x)| ≤ 1 so that

(J(u+ θϕ) − J(u))/θ =
∫

Ω

ϕ(x)
∫ 1

0
g′(u(x) + tθϕ(x))dtdx.

One can easily check as above that the function

(x, t) 7→ ϕ(x)g′(u(x) + tθϕ(x))

belongs toL1(Ω × [0, 1]) and hence by Fubini’s theorem

(J(u+ θϕ) − J(u))/θ =
∫ 1

0
dt

∫

Ω

ϕ(x)g′(u(x) + tθϕ(x))dx.

6



6 1. Differential Calculus in Normed Linear Spaces

Here the continuity ofg′ implies that

g′(u+ tθϕ)→ g′(u) asθ → 0 (and hence astθ → 0)

uniformly for tǫ[0, 1]. Morever, the condition (ii) together with triangle
inequality implies that, for 0< θ ≤ 1.

|ϕ(x)g′(u(x) + tθϕ(x))| ≤ C|ϕ(x)|(|u(x)| + |ϕ(x)|)p−1

and the right side is integrable by Hölder’s inequality. Then by domi-
nated convergence theorem we conclude that

J′(u, ϕ) =
∫

Ω

g′(u)ϕdx.

Definition 1.2. An operatorA : U ⊂ V → H (U being an open set in
V) is said to be twice differentiable in the sense of Gateaux at a point
uǫV in the directionsϕ, ψ(ϕ, ψǫV, ϕ , 0, ψ , 0 given) if the operator
u 7→ A′(u, ϕ); U ⊂ V → H is onceG-differentiable atu in the direction
ψ. TheG-derivative ofu 7→ A′(u, ϕ) is called the secondG-derivative of
A and is denoted byA′′(u, ϕ, ψ)ǫH.

i.e. A′′(u;ϕ, ψ) = lim
θ→0

(A′(u+ θψ, ϕ) − A′(u, ϕ))/θ.

Remark 1.3.Derivatives of higher orders in the sense of Gateaux can
be defined in the same way. As we shall not use derivatives of higher
orders in the following we shall not consider their properties.

Now let J : U ⊂ V → R be a functional on an open set of a normed
linear spaceV which is onceG-differentiable at a pointuǫU. If the
functionalϕ 7→ J′(u, ϕ) is continuous linear onV then there exists a7

(unique) elementG(u)ǫV′ such that

J′(u, ϕ) = 〈G(u), ϕ〉V′×V for all ϕǫV.

Similarly, if J is twice G-differentiable at a pointuǫU and if the
form (ϕ, ψ) 7→ J′′(u : ϕ, ψ) is a bilinear (bi-)continuous form onV × V
then there exists a (unique) elementH(u)ǫL (V,V′) such that

J′′(u;ϕ, ψ) = 〈H(u)ϕ, ψ〉V′×V.



2. Taylor’s Formula 7

Definition 1.3.G(u)ǫV′ is called the gradient ofJ at u and H(u)ǫL
(V,V′) is called the Hessian ofJ atu.

2 Taylor’s Formula

We shall next deduce the mean value theorem and Taylor’s formula of
second order for a mappingA : U ⊂ V → H (U open subset of a normed
linear space V) in terms of theG-derivatives ofA. We shall begin case
of functionals on a normed linear spaceV.

Let J be a functional defined on an open setU in a normed linear
spaceV and u, ϕǫV, ϕ , 0 be given. Throughout this section we as-
sume that the set{u+ θϕ; θǫ[0, 1]} is contained inU. It is convenient to
introduce the functionf : [0, 1] → R by setting

θ→ f (θ) = J(u+ θϕ).

We observe that ifJ′(u + θϕ, ϕ) exists thenf is once differentiable
in ]0, 1[ and, as one can check immediately

f ′(θ) = J′(u+ θϕ, ϕ).

8

Similarly if J′′(u+ θϕ, ϕ, ϕ) exists thenf is twice differentiable and

f ′′(θ) = J′′(u+ θϕ;ϕ, ϕ).

Proposition 2.1. Let J be a functional on an open set U of a normed
space V and uǫU, ϕǫV be given. If{u + θϕ; θǫ[0, 1]}ǫU and J is once
G-differentiable on this set in the directionϕ then there exists aθ0ǫ]0, 1[
such that

(2.1) J(u+ ϕ) = J(u) + J′(u+ θ0ϕ, ϕ)

Proof. This follows immediately from the classical mean value theorem
applied to the functionf on [0, 1] : thete exists aθ0ǫ]0, 1[ such that

f (1) = f (0)+ 1− f ′(θ0)

which is noting nut (2.1). �
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Proposition 2.2. Let U be as in Proposition 2.1. If J is twice G - dif-
ferentiable on the set{u + θϕ; θǫ[0, 1]} in the directionsϕ, ϕ then there
exists aθ0ǫ]0, 1[ such that

(2.2) J(u+ ϕ) = J(u) + J′(u, ϕ) +
1
2

J′′(u+ θ0ϕ;ϕ, ϕ).

This again follows from the classical Taylor’s formula applied to the
function f on [0, 1].

Remark 2.1. If L : V → R is a linear functional onV then by Remark
1.1 isG-differentiable everywhere in all directions and we find that the
formula (2.1) reads

L(u+ ϕ) = L(u) + L(ϕ)

which is noting but additivity ofL.9

Similarly, if a(·, ·) is a bi-linear form onV then the functionalJ(v) =
a(v, v) on V is twiceG-differentiable in all pairs directions (ϕ, ψ) and

J′(u, ϕ) = a(u, ϕ) + a(ϕ, u), J′′(u, ϕ, ψ) = a(ψ, ϕ) + a(ϕ, ψ).

Then the Taylor’s formula (2.2) in this case reads

a(u+ ϕ, u+ ϕ) = a(u, u) + a(u, ϕ) + a(ϕ, u) + a(ϕ, ϕ)

which is noting but the bilinearity ofa.
These two facts together imply that the functional

J(v) =
1
2

a(v, v) − L(v)

of Example 1.1 admits a Taylor expansion of the form (Proposition 2.2)

J(u+ ϕ) = J(u) + a(u, ϕ) − L(ϕ) +
1
2

a(ϕ, ϕ).

We shall now pass to the case of general operators between normed
spaces. We remark first of all that the Taylor’s formula in theform (2.1)
is not in general valid in this case. However, we have
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Proposition 2.3. Let V, H be two normed spaces, U an open subset of
V and letϕǫV be given. If the set{u + θϕ; θǫ[0, 1]} ⊂ U and A : U ⊂
V → H is a mapping which is G-differentiable everywhere on the set
{u + θϕ; θǫ[0, 1]} in the directionϕ then, for any gǫH′, there exists a
θgǫ]0, 1[ such that

(2.3) 〈g,A(u+ ϕ)〉H′×H = 〈g,A(u)〉H′×H + 〈g,A
′(u+ θgϕ, ϕ)〉H′×H

Proof. We define a functionf : [0, 1] → R by setting

θ′ 7→ f (θ) = 〈g,A(u+ θϕ)〉H′×H .

� 10

Then f ′(θ) exists in ]0, 1[ and

f ′(θ) = 〈g,A′(u+ θϕ, ϕ)〉H′×H for θǫ]0, 1[

Now (2.3) follows immediatly on applying the classical meanvalue
theorem to the functionf .

Proposition 2.4. Let V,H, u, ϕ and U be as in Proposition 2.4. If A:
U ⊂ V → H is G-differentiable in the set{u+ θϕ; θǫ[0, 1]} in the direc-
tion ϕ then there exists aθ0ǫ]0, 1[ such that

(2.4) ||A(u+ ϕ) − A(u)||H ≤ ||A
′(u+ θ0ϕ, ϕ)||H .

The proof of this proposition uses the following Lemma whichis a
corollary to Hahn-Banach theorem.

Lemma 2.1. If H is normed space then for any v∈ H there exists a
gǫH′ such that

(2.5) ||g||H′ = 1 and ||v||H = 〈g, v〉H×H .

For a proof see [34].
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Proof of Proposition 2.4The elementv = A(u+ ϕ) − A(u) belongs toH
and letgǫH′ be an element given by the Lemma 2.1 satisfying (2.5) i.e.

||g||H′ = 1, ||A(u+ ϕ) − A(u)||H =< g,A(u+ ϕ) − A(u) >H′×H .

Since A satisfies the assumptions of Proposition 2.3 it follows that
there exists aθ0 = θgǫ]0, 1[ such that

||A(u+ ϕ) − A(u)||H =< g,A(u+ ϕ) − A(u) >H′×H

=< g,A′(u+ θ0ϕ, ϕ) >H′×H

≤ ||g||H′ ||A
′(u+ θ0ϕ, ϕ)||H = ||A

′(u+ θ0ϕ, ϕ)||H.

proving (2.4).11

Proposition 2.5. Suppose a functional J: V → R has a gradient G(u)
for all uǫV which is bounded i.e. there exists a constant M> 0 such that
||G(u)|| ≤ M for all uǫV, then we have

(2.6) |J(u) − J(v)| ≤ M||u− v||V for all u, vǫV.

Proof. If u, v, ǫV then takingϕ = v− u in Proposition 2.1 we can write,
with someθ0ǫ]0, 1[,

J(v) − J(u) = J′(u+ θ0(v− u), v− u)

=< G(u+ θ0(v− u)), v− u >V′×V

and hence

|J(v) − J(u)| ≤ ||G(u+ θ0(v− u))||V′ ||v− u||V ≤ M||v− u||V.

�

3 Convexity and Gateaux Differentiability

A subsetU of a vector spaceV is convex if wheneveru, vǫU the segment
{(1− θ)u+ θv, θǫ[0, 1]} joining u andv lies in U.
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Definition 3.1. A functional J : U ⊂ V → R on a convex setU of a
vector spaceV is said to be convex if

(3.1) J((1− θ)u+ θv) ≤ (1− θ)J(u) + θJ(v) for all u, vǫU andθǫ[0, 1].

J is said to be strictly convex if strict inequality holds for all u, vǫV with
u , v andθǫ]0, 1[.

We can write the inequality (3.1) in the above definition in the equiv-
alent form

(3.1)′ J(u+θ(v−u)) ≤ J(u)+θ(J(v)− J(u)) for all u, vǫU andθǫ[0, 1].

12

The following propositions relate the convexity of functionals with
the properties of theirG-differentiability

Proposition 3.1. If a function J: U ⊂ V → R on an open convex set is
G-differentiable everywhere in U in all directions then

(1) J is convex if and only if

J(v) ≥ J(u) + J′(u, v− u) for all u, vǫU.

(2) J is strictly convex if and only if

J(v) > J(u) + J′(u, v− u)for all u, vǫU with u, v.

Proof. (1) If J is convex then we can write

J(v) − J(u) ≥ (J(u+ θ(v− u)) − J(u))/θ for all θǫ[0, 1].

Now sinceJ′(u, v − u) exists the right side tends toJ′(u, v − u) as
θ → 0. Thus taking limits asθ → 0 in this inequality the required
inequality is obtained.

The proof of the converse assertion follows the usual proof in the
case of functions. Letu, vǫV andθǫ[0, 1]. We have

J(u) ≥ J(u+ θ(v− u)) + J′(u+ θ(v− u)), u(u+ θ(v− u))
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= J(u+ θ(v− u)) − θJ′(u+ θ(v− u), v− u)

by the homogeneity of the mappingϕ 7→ J′(w, ϕ) and

J(v) ≥ J(u+ θ(v− u)) + J′(u+ θ(v− u), v− (u+ θ(v− u)))

= J(u+ θ(v− u)) + (1− θ)J′(u+ θ(v− u), v− u).

Multiplying the two inequalities respectively by (1− θ) andθ, and
adding we obtain

(1− θ)J(u) + θJ(v) ≥ J(u+ θ(v− u)),

thus proving the convexity ofJ.13

(2) If J is strictly convex we can, first of all, write

J(v) − J(u) > θ−1[J(u+ θ(v− u)) − J(u)].

(Here we have used the inequality ((3.1)′)). On the other hand, using
part (1) of the proposition we have

J(u+ θ(v− u)) − J(u) = J′(u, θ(v− u)).

Since, by Remark 1.1 of Chapter 1,J is homogeneous in its second
argument: i.e.

J′(u, θ(v− u)) = θJ′(u, v− u).

�

This together with the first inequality implies (2). The converse im-
plication is proved exactly in the same way as in the first part.

Proposition 3.2. If a functional J: U ⊂ V → R on an open convex set
of a normed space V is twice G-differentiable everywhere in U and in all
directions and if the form(ϕ, ψ) 7→ J′′(u;ϕ, ψ) is positive semi-definite
t. e. if

J′′(u : ϕ, ϕ) ≥ 0 for all uǫU andϕǫV withϕ , 0

then J is convex.
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If the form (ϕ, ψ) 7→ J′′(u : ϕ, ψ) is positive definite i.e. if

J′′(u;ϕ, ϕ) > 0 for all uǫU andϕǫV with ϕ , 0

thenJ is strictly convex.

Proof. SinceU is convex the set{u+ θ(v−u), θǫ[0, 1]} is contained inU
wheneveru, vǫU. Then by Taylor’s formula (Proposition 2.2) we have,
with ϕ = v− u.

J(v) = J(u) + J′(u, v− u) +
1
2

J′′(u+ θ0(v− u), v− u, v− u)

for someθ0ǫ]0, 1[. Then the positive semi-definitensess ofJ′′ implies

J(v) ≥ J(u) + J′(u, v− u)

from which convexity ofJ follows from (1) of Proposition 3.1. Sim-14

ilarly the strict convexity ofJ from positive definiteness ofJ′′ follows
on application of (2) Proposition 3.1. �

Now consider the functionJ : V → R :

J(v) =
1
2

a(v.v) − L(v)

of Example 1.1. We have seen thatJ twice G-differentiable andJ′′(u :
ϕ.ϕ) = a(ϕ, ϕ). Applying Proposition 3.2 we get the

Corollary 3.1. Under the assumptions of Example 1.1 J is convex (resp.
strictly convex) if a(ϕ, ψ) is positive semi-definite (resp. positive defi-
nite). i.e.

J is convex ifa(ϕ, ϕ) ≥ 0 for all ϕǫV (resp. J is strictly convex if
a(ϕ, ϕ) > 0 for all ϕǫV with ϕ , 0).

In particular, ifa(·, ·) is V-coercive thenJ is strictly convex.
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4 Gateaux Differentiability and Weak Lower Semi-
Continuity

Let V be a normed vector space. We use the standard notation “vn ⇀ u′′

to denote weak convergence of a sequencevn in V to u. i.e. For any
gǫV′ we have

< g, vn >V′×V→< g, u >V′×V.

Definition 4.1. A functional J : V → R is said to be weakly lower
semi-continuous if for every sequencevn⇀u in V we have

lim inf
n→∞

J(vn) ≥ J(u).

Remark 4.1.The notion of weak lower semi-continuity is a local prop-
erty. The Definition 4.1 and the propositions below can be stated for
functionalsJ defined on an open subsetU of V with minor changes. We15

shall leave these to the reader.

Proposition 4.1. If a functional J : V → R is convex and admits
a gradient G(u)ǫV′ at every point uǫV then J is weakly lower semi-
continuous.

Proof. Let vn be a sequence inV such thatvn ⇀ u in V. Then<
G(u), vn − u >V′×V→ 0. On the other hand, sinceJ is convex we have,
by Proposition 3.1,

J(vn) ≥ J(u)+ < G(u), vn − u >

from which on taking limits we obtain

lim inf .
n→∞

J(vn) ≥ J(u).

�

Proposition 4.2. If a functional J : V → R is twice G-differentiable
everywhere in V in all directions and satisfies

(i) J has a gradient G(u)ǫV′ at all points uǫV.
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(ii) (ϕ, ψ) 7→ J′′(u;ϕ, ψ) is positive semi-definite, i.e. J′′(u;ϕ, ϕ) ≥ 0
for all u, ϕǫV withϕ , 0,

then J is weakly lower semi-continuous.

Proof. By Proposition 3.2 the condition (ii) implies thatJ is convex.
Then the assertion follows from Proposition 4.1. �

We now apply Proposition 4.2 to the functional

v 7→ J(v) =
1
2

a(v, v) − L(v)

of Example 1.1. We know that it has a gradient

G(u) : ϕ 7→< G(u), ϕ >= a(u, ϕ) − L(ϕ)

andJ′′(u;ϕ, ϕ) = a(ϕ, ϕ) for all u, ϕǫV. 16

If further we assume thata(·, ·) is V-coercive, i.e. there exists an
α > 0 such that

(J′′(u;ϕ, ϕ) =)a(ϕ, ϕ) ≥ α||ϕ||2V(≥ 0) for all ϕǫV

then by Proposition 4.2 we conclude thatJ is weakly lower semi - con-
tinuous.

5 Commutation of Derivations

We shall admit without proof the following useful result on commuta-
tivity of the order of derivations.

Theorem 5.1. Let U be an open set in a normed vector space V and
J : U ⊂ V → R be a functional on U. If

(i) J′′(u;ϕ, ψ) exists everywhere in U in all directionsϕ, ψǫV, and

(ii) for every pairϕ, ψǫV the form u7→ J′′(u, ϕ, ψ) is continuous
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then we have

J′′(u, ϕ, ψ) = J′′(u;ψ, ϕ) for all ϕ, ψǫV.

For a proof we refer to [12].

As a consequence we deduce the

Corollary 5.1. If a functional J : U ⊂ V → R on an open set of a
normed vector space V admits a Hessian H(u) ∈ L (V,V′) at every
points u∈ U and if the mapping U∋ u 7→ H(u) ∈ L (V,V′) is continu-
ous then H(u) is self adjoint.

i.e. < H(u)ϕ, ψ >V′×V=< H(u)ψ, ϕ >V′×V for all ϕ, ψ ∈ V.

6 Frechet Derivatives

Let V andH be two normed vector spaces.

Definition 6.1. A mappingA : U ⊂ V → H from an open setU in V
to H is said to be Fŕechet differentiable (or simplyF-differentiable) at a
point u ∈ U if there exists a continuous linear mappingA′(u) : V → H,
i.e. A′(u) ∈ L (V,H) such that

(6.1) lim
ϕ→0
||A(u+ ϕ) − A(u) − A′(u)ϕ||/||ϕ|| = 0.

17
Clearly,A′(u), if it exists, is unique and is called the Fréchet deriva-

tive (F-derivative) ofA at u.
We can, equivalently, sat that a mappingA : U ⊂ V → H is

F-differentiable at a pointu ∈ U if there exists an elementA′(u) ∈
L (V; H) such that

A(u+ ϕ) = A(u) + A′(u)ϕ + ||ϕ||V ∈ (u, ϕ) where ∈ (u, ϕ) ∈ H and

∈ (u, ϕ)→ 0 in H asϕ→ 0 in V.
(6.2)
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Example 6.1.If f is a function defined in an open setU ⊂ R2, i.e.
f : U → R, then it isF-differentiable if it is once differentiable in the
usual sense and

f ′(u) = grad f(u) = (∂ f /∂x1(u), ∂ f /∂x2(u)) ∈ L (R2,R).

Example 6.2.In the case of the functional

v 7→ J(v) =
1
2

a(v, v) − L(v)

Of Example 1.1 where (i) and (iii) are satisfied on a Hilbert spaceV
we easily check thatJ is F-differentiable everywhere inV and itsF-
derivative isgiven by

ϕ 7→ J′(u)ϕ = a(u, ϕ) − L(ϕ).

In fact, by (i) and (iii) of Example 1.1J′(u) ∈ V′ sinceϕ 7→ a(u, ϕ) 18

andϕ 7→ L(ϕ) are continuous linear and we have

J(u+ ϕ) − J(u) − [a(u, ϕ) − L(ϕ)] = a(ϕ, ϕ) = ||ϕ||V ∈ (u, ϕ)

where∈ (u, ϕ) = ||ϕ||−1
V a(ϕ, ϕ) and

0 ≤∈ (u, ϕ) ≤ M||ϕ||V

so that∈ (u, ϕ)→ 0 asϕ→ 0 in V.
We observe that in this case theF-derivative ofJ is the same as the

gradient ofJ.

Remark 6.1. If an operatorA : U ⊂ V → H is F-differentiable then it is
alsoG-differentiable and itsG-derivative coincides with itsF-derivative.
In fact, let A beF-differentiable withA′(u) as itsF-derivative. Then, for
u ∈ U, ϕ ∈ V, ϕ , 0, writtingψ = ρϕ we haveψ→ 0 in V asρ→ 0 and

ρ−1(A(u+ ρϕ) − A(u) − A′(u)ϕ)

= ρ−1(A(u+ ψ) − A(u) − A′(u)ψ) sinceA′(u) is linear

= ρ−1||ψ|| ∈ (u, ψ) = ||ϕ|| ∈ (u, ψ)→ 0 in H asψ→ 0 in H i.e. asρ→ 0.
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Remark 6.2.However, in general, the converse is not true. Example 1.2
shows that the functionf has aG-derivative but notF-differentiable. We
also note that theG-derivative need not be a linear map ofV into H (as
in Example 1.2) while theF-derivative is necessarily linear by definition
and belongs toL (V,H).

Remark 6.3.The notions ofF-differentiability of higher orders and
the correspondingF-derivatives can be defined in an obvious manner.
Since, whenever we haveF-differentiability we also haveG - differ-
entiability the Taylor’s formula and hence all its consequences remain19

valid under the assumption ofF-differentiability. We shall not therefore
mention these facts again.

7 Model Problem

We shall collect here all the results we have obtained for thecase of the
functional

v 7→ J(v) =
1
2

a(v, v) − L(v)

on a Hilbert spaceV satisfying conditions (i), (ii) and (iii) of Example
1.1. This contains, as the abstract formulation, most of thelinear elliptic
problems that we shall consider except for the case of non-symmetric
elliptic operators.

(1) J is twice Fréchet differentiable (in fact,F-differentiable of all
orders) and hence is also Gateaux differentiable.

J′(u, ϕ) = a(u, ϕ) − L(ϕ) andJ′′(u;ϕ, ψ) = a(ϕ, ψ).

J has a gradient and a Hessian at every pointu ∈ V

G(u) = (gradJ)(u) : ϕ 7→ a(u, ϕ) − L(ϕ).

Moreover,H(u) is self-adjoint sincea(ϕ, ψ) = a(ψ, ϕ) for all ϕ,
ψ ∈ V.
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(2) Taylor’s formula for JIf u, v, ∈ V then

J(v) = J(u) + {a(u, v− u) − L(v− u)} +
1
2

a(v− u, v− u)

(3) Since the mappingv 7→ a(u, v) for anyu ∈ V is continuous linear
and L ∈ V′, by the theorem of Fréchet-Riesz on Hilbert spaces
there exist (unique elementsAu, f ∈ V such that

a(u, v) = (Au, v)V andL(v) = ( f , v)V for all v ∈ V

ClearlyA : V → V is a continuous linear map. Moreever we have20

||A||L (V,V) ≤ M by (i),

(Av, v)V ≥ α||v||
2
V for all v ∈ V by (ii) and

|| f ||V ≤ N.

(4) The functionalJ is strictly convex inV.

(5) J is weakly lower semi-continuous inV.





Chapter 2

Minimisation of Functionals
- Theory

In this chapter we shall discuss the local and global minima of func- 21

tionals on Banach spaces and give some sufficient conditions for their
existence, relate them to conditions on theirG-derivatives (when they
exist) and convexity properties. Then we shall show that theproblem of
minimisation applied to suitable functionals on Sobolev spaces lead to
and equivalent to some of the standard examples of linear andnon-linear
elliptic boundary value problems.

1 Minimisation Without Convexity

LetU be a subset of a normed vector spaceV andJ : U ⊂ V → R be a
functional.

Definition 1.1. A funvtional J : U ⊂ V → R is said to have a local
minimum at a pointuǫU if there exists a neighbourhoodV (u) of u in V
such that

J(u) ≤ J(v) for all vǫU ∩ V (u)

Definition 1.2. A functional J onU is said to have a global minimum

21
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(or an absolute minimum) inU if there exist auǫU such that

J(u) ≤ J(v) for all vǫU.

We have the following existence result.

Theorem 1.1. Suppose V,U and J : U → R satisfy the following
hypothesis :

(H1) V is a reflexive Banach space,

(H2) U is weakly closed.

(H3) U is bounded and22

(H4) J : U ⊂ V → R is weakly lower semi-continuous.

Then J has a global minimum inU.

Proof. Let ℓ denote inf
vǫU

J(v). If vn is a minimising sequence forJ, i.e.

ℓ = inf
vǫU

J(v) = lim
n→∞

J(vn), then by the boundedness ofU (i.e. by H3)vn

is a bounded sequence inV i.e. there exists a constantC > 0 such that
||vn|| ≤ C for all n. By the reflexivity ofV(H1) this bounded sequence is
weakly relatively compact. So there is a subsequencevn′ of vn such that
vn′ ⇀ u in V. U being weakly closed (H2) uǫU. Finally, sincevn′ ⇀ u
andJ is weakly lower semi-continuous

J(u) ≤ lim inf
n→∞

J(vn′ )

which implies that

J(u) ≤ lim
n→∞

J(vn′ ) = ℓ ≤ J(v) for all vǫU.

�

Theorem 1.2. If V,U and J satisfy the Hypothesis(H1), (H2), (H4)
and J satisfies

(H3)′ lim
||v||V→+∞

J(v) = +∞

then J admits a global minimum inU.
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Proof. We shall reduce the problem to the previous case. Letw ∈ U be
arbitrary fixed. Consider the subsetU0 ofU :

U0 = {v; vǫU such thatJ(v) ≤ J(w)}.

�

It is immediatly seen that the existence of a minimum inU0 is equiv-
alent to that inU. We claim thatU0 is bounded and weakly closed in
V. i.e. hypothesis (H2) and (H3) hold forU0. In fact, supposeU0 is
not bounded then we can find a sequencevn ∈ U0 with ||vn||V → +∞. 23

The, by (H3)′, J(vn) → +∞ which is impossible sincevn ∈ U0 im-
plies thatJ(vn) ≤ J(w). HenceU0 is bounded. To prove thatU0 is
weakly closed, letun ∈ U0 be a sequence thatun ⇀ u in V. Since
is weakly closedu ∈ U. On the other end, sinceJ is weakly lower
semi-continuousun ⇀ u in V implies that

J(u) ≤ lim inf J(un) ≤ J(w)

proving thatu ∈ U0. NowU0 andJ satisfy all the hypothesis of Theo-
rem 1.1 and henceJ has a global minimum inU0 and hence inU.

Next we give a necessary condition for the existence of a local min-
imum in items of the firstG-derivative (when it exists) of the functional
J. For this we need the following concept of admissible (or feasible)
directions at a pointsu for a domianU in V. It u, v ∈ V u , v then the
nonzero vectorv− u can be consider as a direction inV.

Definition 1.3. (1) A directionv−u in V is said to be a strongly admissi-
ble direction at the pointsu for the domianU if there exists a sequence
ǫn > 0 such that

ǫn→ 0 asn→ ∞ andu+ ǫn(v− u) ∈ U for eachn.

(2) A directionv− u in V is said to be weakly admissible at the pointsu
for the domianU if there exist sequenceǫn > 0 andwn ∈ V such that

ǫn→ 0 andwn→ 0 in V, un + ǫn(v− u) + ǫnwn ∈ U for eachn.
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We shall mainly use the notion of strongly admissible direction. But
some results on minimisation of functionals are known whichmake use
of the notion of weakly admissible directions.

We have the following necessary condition for the existenceof a24

local minimum.

Theorem 1.3. Suppose a functional J: U ⊂ V → R has a local mini-
mum at a point u∈ U and is G-differentiable at u in all directions then
J′(u, v− u) ≥ 0 for every v∈ V such that v− u is a strongly admissible
direction.

Furtheremore, ifU is an open set then

J′(u, ϕ) = 0 for all ϕ ∈ V.

Proof. If u ∈ U is local minimum forJ then there exists a neighbour-
hoodV (u) of u in V such that

J(u) ≤ J(w) for all w ∈ U ∩ V (u).

�

If v ∈ V andv− u is a strongly admissible direction then, for n large
enough,

u+ ǫn(v− u) ∈ U ∩ V (u)

so that
J(u) ≤ J(u+ ǫn(v− u)).

Hence

J′(u, v− u) = lim
ǫn→0

(J(u+ ǫn(viu)) − J(u))/ǫn ≥ 0.

Finally, if U is an open set inV thenU contains an open ball inV
of centreu and hence every direction is strongly admissible atu for U.
Takingv = u± ϕ, ϕ ∈ V it follows from the first part that

J′(u,±ϕ) ≥ 0 or equivalentlyJ′(u, ϕ) = 0 for all ϕ ∈ V.

In particualr, ifU is open andJ has a gradientG(u) ∈ V′ at u ∈ U25
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and ifu is a local minimum then

J′(u, ϕ) =< G(u), ϕ >V′×V= 0 for all ϕ ∈ V; i.e. G(u) = 0 ∈ V′.

This result is thus in conformity with the classical case of differen-
tiable functions.

Remark 1.1.The converse of Theorem 1.3 requires convexity assump-
tions as we shall see in the following section.

2 Minimistion with Convexity conditions

We shall show that under convexity assumptions on the domianU and
the functionalJ the notions of local and global minima coincide. We
also give another sufficient condition for the existence of minima.

Lemma 2.1. If U is a convex subset of a normed vector space V and
J : U ⊂ V → R is a convex functional then any local minimum is also
a global minimum.

Proof. Supposeu ∈ U is a local minimum ofJ. Then there is a neigh-
bourhoodV (u) of u in V such that

J(u) ≤ J(v) for all v ∈ V (u) ∩U.

On the other hand, ifv ∈ U thenu+ θ(v − u) ∈ U for all θ ∈ [0, 1]
by convexity ofU. �

Moreover, ifθ is small enough, say 0≤ θ ≤ θv thenu + θ(v − u) ∈
V (u). Hence

J(u) ≤ J(u+ θ(v− u)) for all 0 ≤ θ ≤ θv

≤ J(u) + θ(J(v) − J(u)) by convexity of J, for all 0≤ θ ≤ θv,

which implies that

J(u) ≤ J(v) for all v ∈ U.

26
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Whenever the assumptions of Lemma 2.1 are satisfied we shall call
a minimum without reference to local or global. Next lemma concerns
the uniqueness of such a minimum.

Lemma 2.2. If U is a convex subset of a normed vector space and
J : U ⊂ V → R is strictly convex then there exixts a unique minimum
u ∈ U for J.

Proof. The existence is proved in Lemma 2.1. To prove the uniqueness,
if u1 , u2 are two minima forJ inU then

J(u1) = J(u2) ≤ J(v) for all v ∈ U

and, in particular, this holds forv = 1
2u1+

1
2u2 which belongs toU since

U is convex. On the other hand, sinceJ is strictly convex

J(
1
2

u1 +
1
2

u2) <
1
2

J(u1) +
1
2

J(u2) = J(u1 ≤ J(v))

which is impossible if we takev = 1
2(u1+u2). This proves the uniqueness

of the minimum. �

We shall now pass to a sufficient condition for the existence of min-
ima of functionals which is the exact analogue of the case of twice dif-
ferentiable functions.

Theorem 2.1. Let J : V → R be a functional on V,U a subset of V
satisfying the following hypothesis :

(H1) V is a relexive Banach space;

(H2) J has a gradient G(u) ∈ V′ everywhere inU;

(H3) J is twice G-differentiable in all directionsϕ, ψ ∈ V and satisfies
the condition

J′′(u;ϕ, ϕ) ≥ ||ϕ||Vχ(||ϕ||V) for all ϕ ∈ V,

where t 7→ χ(t) is afunction on{t ∈ R; t ≥ 0} such that27

χ(t) ≥ 0 and lim
t→+∞

χ(t) = +∞;
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(H4) U is a closed convex set.

Then there exists at least one minimum u∈ U of J. Furthermore,
if in (H3)

(H5)
χ(t) > 0 for t > 0

is satisfied byχ then there exists a unique minimu of J inU.

Remark 2.1.We note that a convex setU is weakly if and only if it
is strongly closed and thus in (H4) aboveU may be assumed weakly
closed.

Proof of Theorem 2.1.First of all by (H3), J′′(u;ϕ, ϕ) ≥ 0 and henceJ
is convex by Proposition 1.3.2. Similarly (H5) implies thatJ is strictly
convex again by Proposition 1. 3.2. Then, by Proposition 1. 4.2 (H2)
and (H3) together imply thatJ is weakly lower semi-continuous. We
next show thatJ satisfies condition (H3)′ of Theorem 1.2: namely
J(v) → +∞ as ||v||V → +∞. For this letw ∈ U be arbitrarily fixed.
Then, because of (H2) and (H3) we can apply Taylor’s formula to get,
for v ∈ V.

J(v) = J(w)+ < G(w), v− w >V′×V +
1
2

J′′(w+ θ0(v− w), v− w; v− w)

for someθ0 ∈]0, 1[. Using (H3) and estimating the second and third
terms on the right side we have

| < G(w), v− w >V′×V | ≤ ||G(w)||V′ ||v− w||′V

J′′(w+ θ0(v− w), v− w, v− w) ≥ ||v− w||V × (||v− w||V) and hence

J(v) ≥ J(w) + ||v− w||V[
1
2
× (||v− w||V) − ||G(w)||V′ ].

Here, sincew ∈ U is fixed, as||v||V → +∞ 28

||v− w||V → +∞,
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J(w) and||G(w)||V′ are constants and

χ(||v− w||V)→ +∞ by (H3)

which implies thatJ(v) → +∞ as ||v||V → +∞. The theorem then
follows on application of Theorem 1.2.

Theorem 2.2. SupposeU is a convex subset of a Banach space and J:
U ⊂ V → R is a G-differentiable (in all directions) convex functional.
Then

u ∈ U is a minimum for J (i.e. J(u) ≤ J(v) for all v ∈ V) if and only
if

u ∈ U and J′(u, v− u) ≥ 0 for all v ∈ U.

Proof. Let u ∈ U be a minimum forJ. Then, sinceU is convex,v−u is
a strongly admissible direction atu for U for anyv. Then, by Theorem
1.3, J′(u, v − u) ≥ 0 for anyvǫU. Conversely, sinceJ is convex and
G-differentiable, by part (1) of Proposition 1. 3.1, we find that

J(v) ≥ J(u) + J′(u, v− u) for anyvǫU.

�

Then using the assumption thatJ′(u; v−u) ≥ 0 it follows thatJ(u) ≤
J(v) i.e. u is a minimum forJ inU.

Our next result concerns minima of convex functionals in thenon-
differentaible case.

Theorem 2.3. LetU be a convex subset of a Banach space V. Suppose
J : U ⊂ V → R is a functional of the form J= J1 + J2 where J1, J2

are convex functionals and J2 is G-differentiable inU in all directions.29

Then uǫU is a minimum for J if and only if

uǫU, J1(v) − J1(u) + J′2(u, v− u) ≥ 0 for all vǫU

Proof. SupposeuǫU is a minimum ofJ then

J(u) = J1(u) + J2(u) ≤ J1(u+ θ(v− u)) + J2(u+ θ(v− u))
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sinceu+ θ(v− u)ǫU. Here, by convexity ofJ1, we have

J1(u+ θ(v− u)) ≤ J1(u) + θ(J1(v) − J1(u))

so that
J2(u) ≤ θ(J1(v) − J1(u)) + J2(u+ θ(v− u)).

That is

J1(v) − J1(u) + (J2(u+ θ(v− u)) − J2(u))/θ ≥ 0.

�

Taking limits asθ → 0 we get the required assertion. Conversely,
since J2 is convex and isG-differentiable we have, from part (1) of
Proposition 1. 3.1,

J2(v) − J2(u) ≥ J′2(u, v− u) for all u, vǫU.

Now we can write, for anyvǫU,

J(v) − J(u) = J1(v) − J1(u) + J2(v) − Ju

≥ J1(v) − J1(u) + J′2(u, v− u) ≥ 0

by assumption which proves thatuǫU is a minimum forJ.

3 Applications to the Model Problem and Reduc-
tion to variational Inequality

We shall apply the results pf Section 2 to the functionalJ of Example 30

1. 1.1 on a Hilbert space. More precisely, letV be a Hilbert space and
J : V → R be the functional

v 7→ J(v) =
1
2

a(v, v) − L(v)

wherea(·, ·) is a symmetric bilinear, bicontinuous, coercive form onV
andLǫV′. Further, letK be a closed convex subset ofV. Consider the
following
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Problem 3.1.To find

uǫK; J(u) ≤ J(v) for all vǫK.

i.e. to find auǫK which minimizesJ on K. We have seen in Chapter 1
(Section 7) thatJ is twiceF-(and hence alsoG-) differentiable and that

J′(u, ϕ) =< G(u), ϕ >V′×V= a(u, ϕ) − L(ϕ)

J′′(u;ϕ, ψ) =< H(u)ϕ, ψ >V′×V= a(ϕ, ψ)

Moreover, the coercivity ofa(·, ·) implies that

J′′(u;ϕ, ϕ) = a(ϕ, ϕ) ≥ α||ϕ||2V.

If we chooseχ(t) = αt then all the assumptions of Theorem 2.1 are
satisfied byV, J andK so that the Problem 3.1 has a unique solution.
Also, by Theorem 2.2, the problem 3.1 is equivalent to

Problem 3.2.To find

uǫK; a(u, v − u) ≥ L(v− u) for all vǫK.

We can summarise these facts as

Theorem 3.1. (1) There exists a unique solution uǫK of the Problem 3.131

and
(2) Problem 3.1 is equivalent to problem 3.2.

The problem 3.2 is called a variational inequality associted to the
closed convex setK and the bilinear forma(·, ·). As we shall see in
the following section the variational inequality (3.2) arises as general-
izations of elliptic boundary value problems for suitable elliptic oper-
ators. It turns out that in many of the problems solving (numerically)
the minimisation problem 3.1 is much easier and faster than solving the
equivalent variational inequality (3.2).

In the particular case whereK = V the Problme 3.1 is nothing but
the Problem

(3.3) to finduǫV; J(u) ≤ J(v) for all vǫV



3. Applications to the Model Problem and... 31

which is equivalent to the Problem
(3.4) to finduǫV; a(u, ϕ) = L(ϕ) for a ϕǫV. As we have seen in

Chapter 1, (3.4) is equivalent to (3.2) : ifϕǫV we takev = u± ϕǫK = V
in (3.2) to get (3.4) and the converse is trivial.

The following result is a generalization of Theorem 3.1 to non-
symmetric case and is due toG-Stampacchia. This generalizes and in-
cludes the classical Lax-Milgram theorem. (See [43]).

Theorem 3.2. (Stampacchia). Let K be a closed convex subset of a
Hilbert space V and a(·, ·) be a bilinear bicontinuous coercive form on
V. Then for any given LǫV′ the variational inequality (3.2) has a unique
solution uǫK.

Proof. Since, for anyu, v 7→ a(u, v) is continuous linear onV andLǫV′

there exist unique elementsAu, f ǫV by Fréchet-Riesz theorem such that

a(u, v) = (Au, v)V andL(v) = ( f , v)V.

� 32

MoreoverAǫL (V,V′) with ||A||L (V,V′) ≤ M and || f ||V ≤ N where
M > 0, N > 0 are constants such that

|a(u, v)| ≤ M||u||V ||v||V for all u, vǫV,

|L(v)| ≤ N||v||V for all vǫV.

Let α > 0 be the constant ofV-coercivity ofa(·, ·) i.e.

a(v, v) ≥ α||v||2V for all vǫV.

SinceK is a closed convex set there exists a projection mapping
P : V → K with ||P||L (V,V) ≤ 1. Letγ > 0 be a constant which we shall
choose suitably later on. Consider the mapping

V ∋ v 7→ v− γ(Av− f ) = Tγ(v)ǫV.

For γ sufficiently smallTγ is a contraction mapping. In fact, if
v1, v2ǫV then

Tγv1 − Tγv2 − (I − γA)(v1 − v2).
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Settingw = v1 − v2 we have

||(I − γA)w||2V = (w− γAw,w− γAw)V

= ||w||2V − γ[(w,Aw)V + (Aw,w)V] + γ2||Aw||2V
≤ ||w||2V − 2γα||w||2V + γ

2M2||w||2V
= (1− 2γα + γ2M2)||w||2V

by V-coercivity and continuity of the operatorA. It is easy to see that
if 0 < γ < 2α/M2 then 1− 2γα + γ2M2 < 1 and henceTγ becomes
a contraction mapping. Then the mappingPTγ|K : K → K is a con-33

traction mapping and hence has a unique fixed pointuǫK by contraction
mapping theorem i.e.

uǫK andu = P(u− γ(Au− f )).

This is the required solution of the variational inequality(3.2) as can
easily be checked.

4 Some Functional Spaces

We shall briefly recall some important Sobolev spaces of distributions
on an open set inRn and some of their properties. These spaces play
an important role in the weak (or variational) formulation of elliptic
problems which we shall consider in the following. All our functionals
in the examples will be defined on these spaces. For details werefer to
the book of Lions and Magenes [32].

LetΩ be a bounded open subset inRn andΓ denote its boundary. We
shall assumeΓ to be sufficiently “regular” which we shall make precise
whenever necessary.

Sobolev spaces.We introduce the Sobolev spaceH1(Ω):

(4.1) H1(Ω) = {v|vǫL2(Ω), ∂x jǫL
2(Ω), j = 1, · · · , n}

whereD jv = ∂v/∂x j are taken in the sense of distributions

i.e. < D jv, ϕ >= − < v,D jϕ > for all ϕǫD(Ω)
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Here D(Ω) denotes the space of allC∞ -functions with compact
support inΩ and< ·, · > denotes the duality betweenD(Ω) and the
space of distributionsD ′(Ω) onΩ. H1(Ω) is provided with the inner-
product

((u, v))(u, v)L2(Ω) +

n∑

j=1

(D ju,D jv)L2(Ω)(4.2)

=

∫

Ω

{uv+
n∑

j=1

(D ju)(D jv)}dx

for which becomes a Hilbert space. The following inclusionsare obvi- 34

ous (and are continuous)D(Ω) ⊂ C1(Ω) ⊂ H1(Ω).
We also introduce the space

(4.3) H1
0(Ω) = the closure ofD(Ω) in H1(Ω).

We ahve the following well-known results.

(4.4)Theorem of Density: If Γ is “regular” (for instance,Γ is aC1 (or
C∞)-mainfold of dimensionn−1) thenC1(Ω) (resp.C∞(Ω)) is dense in
H1(Ω).

(4.5)Theorem of Trace. If Γ is “regular” then the linear mappingv 7→
v/Γ of C1(Ω)→ C1(Γ) (resp pfC∞(Ω)→ C∞(Γ)) extends to a continu-
ous linear map ofH1(Ω) into L2(Γ) denoted byγ and for anyvǫH1(Ω)
γv is called the trace of v onΓ. Moreover,H1

0(Ω) = {vǫH1(ω)γv = 0}.
We shall more often use this characterization ofH1

0(Ω). The trace map is
not surjective. For a characterization of the image ofH1(ω) by γ (which
is proper subspace, denoted byH

1
2 (Γ)) we refer to the book of Lions

and Magenes [32]. We can also define spacesHm(Ω) andHm
0 (Ω) in the

same way for anym> 1.

Remark 4.1.The Theorem of trace is slightly more precise than our
statement above. For this and also for a proof we refer to the book of
Lions and Magenes [32].

For some non-linear problems we shall also need spaces of theform

(4.6) V = H1
0(Ω) ∩ Lp(Ω) wherep ≥ 2.
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The spaceV is provided with the norm

v 7→ ||v||V = ||v||H1(Ω) + ||v||Lp(Ω)

for which it becomes a Banach space. If 2≤ p < +∞ then V is a
reflexive Banach space.35

In order to given an interpretation of the solutions of weak formula-
tions of the problems as solutions of certain differential equations with
boundary conditions we shall need an extension of the classical Green’s
formula which we recall here.

(4.8) Green’s formula for Sobolev spaces.Let Ω be a bounded open
set with sufficiently “regular” boundaryΓ. Then there exists a unique
outer normal vectorn(x) at each point x onΓ. Let (n1(x), · · · , nn(x))
denote the direction cosines ofn(x). We define the operator of exterior
normal derivation formally as

(4.9) ∂/∂n =
n∑

j=1

n j(x)D j .

Now if u, vǫC1(Ω) then by the classical Green’s formula we have
∫

Ω

(D ju)vdx= −
∫

Ω

u(D jv)dx+
∫

Γ

uvnjdσ

wheredσ is the area element onΓ. This formual remains valid also if
u, vǫH1(Ω) in view of the trace theorem and density theorem as can be
seen using convergence theorems.

Next if u, vǫC2(Ω), then applying the above formula toD ju,D jv and
summing overj = 1, · · · .n we get

n∑

j=1

(D ju,D jv)L2(Ω) = −

n∑

j=1

∫

Ω

(D2
j u)vdx+

∫

Γ

∂u/∂n.vdσ

i.e.
n∑

j=1

(D ju,D jv)L2(Ω) = −

∫

Ω

(△u)vdx+
∫

Γ

∂u/∂n.vdσ.(4.10)
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Once again this formula remains valid if ; for instance,uǫH2(Ω),
vǫH1(Ω) using the density and trace theorems. In fact,uǫH2(Ω) implies
that△uǫL2(Ω) and sinceD juǫH1(Ω), γ(D ju) exists and belong toL2(Γ)
so that∂u/∂n =

∑n
j=1 n jγ(D ju)ǫL2(Γ).

5 Examples

In this section we shall apply results of the previous sections to some 36

concrete example of functionals on Sobolev spaces and we interprete
the corresponding variational inequalities as boundary value problems
for differential operators.

Throughout this sectionΩ will be a bounded open set with suffi-
ciently “regular” boundaryΓ. We shall not make precise the exact regu-
larity conditions onΓ except to say that it is such that the trace, density
and Green’s formula are valid.

We begin with the following abstract linear problem.

Example 5.1.Let Γ = Γ1 ∪ Γ2 whereΓ j are open subsets ofΓ such that
Γ1 ∩ Γ2 = φ Consider the space

(5.1) V = {v|vǫH1(Ω); γv = 0 onΓ1}.

V is clearly a closed subspace ofH1(Ω) and is provided with the
inner product induced from that inH1(Ω) and hence it is a Hilbert space.
Moreover,

(5.2) H1
0(Ω) ⊂ V ⊂ H1(Ω)

and the inclusions are continuous linear. Iff ǫL2(Ω) we consider the
functional

(5.3) J(v) =
1
2

((u, v)) − ( f , v)L2(Ω)

i.e. a(u, v) = ((u, v)) and L(v) = ( f , v)L2(Ω). Then a(·, ·) is bilinear,
bicontinuous andV-coercive :

|a(u, v)| ≤ ||u||V ||v||V = ||u||H1(Ω)||v||H1(Ω) for u, vǫV,
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a(v, v) = ||v||2H1(Ω) for vǫV

and|L(v)| ≤ || f ||L2(Ω)||v||L2(Ω) ≤ || f ||L2(Ω)||v||H1(Ω) for vǫV.

37

Then the problems (3.3) and (3.4) respectively become

to finduǫV, J(u) ≤ J(v) for all vǫV and(5.4)

to finduǫV, ((u, ϕ)) = ( f , ϕ)L2(Ω) for all ϕǫV.(5.5)

From what we have seen in Section 3 these two equivalent problems
have unique solutions.

The Problem (5.5) is the weak (or variational) formulation of the
Dirichlet problem (ifΓ2 = φ), Neumann problem ifΓ1 = φ and the
mixed boundery value problem in the general case.

We now interprete the solutions of Problems (5.2) when they are suf-
ficiently regular as solutions of the classical Dirichlet (resp. Neumann
of mixed) problems.

Suppose we assumeuǫC2(Ω) ∩ V andvǫC1(Ω) ∩ V. We can write
using the Green’s formula (4.10)

a(u, v) = ((u, v)) =
∫

Ω

(−△u+ u)vdx+
∫

Γ

∂u/∂n.vdσ =
∫

Ω

f vdx

i.e.
∫

Ω

(−△u+ u− f )vdx+
∫

Γ

∂u/∂n.vdσ = 0.(5.6)

We note that this formula remains valide ifuǫH2(Ω) ∩ V for any
vǫV.

First we choosevǫD(Ω) ⊂ V (enough to takevǫC1
0(Ω)(Ω) ⊂ V) then

the boundary integral vanishes so that we get
∫

Ω

(−△u+ u− f )vdx= 0 ∀vǫD(Ω).

SinceD(Ω) is dense inL2(Ω) this implies that (ifuǫH2(Ω)) u is a
solution of the differential equation

(5.7) −△u+ u− f = o in Ω (in the sense ofL2(Ω)).
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38

More generally, without the strong regularity assumption as above,
u is a solution of the differential equation

(5.8) −△u+ u− f = 0 in the sense of distributions inΩ.

Next we choosevǫV arbitrary. Sinceu satisfies the equation (5.8) in
Ω we find from (5.6) that

(5.9)
∫

Γ2

∂u/∂nvdσ = 0 ∀vǫV,

whcih means that∂u/∂n = 0 onΓ in some generalized sense. In fact, by

trace theoremγvǫH
1
2 (Γ) and hence∂u/∂n = 0 in H−

1
2 (Γ) (see Lions and

Magenese [32]). Thus, if the Problem (5.2) has a regular solution then
it is the solution of the classical problem

(5.10)



−△u+ u = f in Ω

u = 0 onΓ1

∂u/∂n = 0 onΓ2

The Problem (5.10) is the classical Dirichlet (resp. Neumann, or
mixed) problem for the elliptic differential operator−△u + u if Γ2 = φ

(resp.Γ1 = φ or generalΓ1, Γ2).

Remark 5.1.The variational formualtion (5.5) of the problem (5.5) is
very much used in the Finite elements method.

Example 5.1 is a special case of the following more general problem.

Example 5.1′. LetΩ, Γ = Γ1∪Γ2 and V be as in Example 5.1. Suppose
given an integro-differentail bilinear form ;

(5.11) a(u, v) =
∫

Ω

n∑

i, j=1

ai j (x)(Diu)(D jv)dx+
∫

Ω

a0(x)uvdx,

where the coefficients satisfy the following conditions: 39
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(5.12)

ai j ǫL∞(Ω), a◦ǫL∞(Ω);

condition of ellipticity there exists a constantα > 0 such that
∑

i, j ai j (x)ξiξ j ≥ α
∑

i ξ
2
i for ξ = (ξ1, · · · , ξn)ǫRna.e. in Ω;

a◦(x) ≥ α > 0.

It follows by a simple application of Cauchy-Schwarz inequality that
the bi-linear form is well defined and bi-continuous onV: for all u, vǫV,

|a(u, v)| ≤ max(||ai j ||L∞(Ω), ||a◦||L∞(Ω))||u||V ||v||V

a(·, ·) is also coercive ; by the ellipticity and the last conditionon a◦

a(v, v) ≥ α
∫

Ω

(
∑

i

|Div|
2
+ |v|2)dx= α||v||2V, vǫV.

Suppose givenf ǫL2(Ω) andgǫL2(Γ2). Then the linear functional

(5.13) v 7→ L(v) =
∫

Ω

f vdx+
∫

Γ

gv fσ

on V is continuous and we have again by Cauchy-Schwarz inequality

|L(v)| ≤ || f ||L2(Ω)||v||L2(Ω) + ||g||L2(Ω)||v||L2(Γ)

≤ (|| f ||L2(Ω) + ||g||L2(Γ))||v||V by trace theorem.

We introduce the functional

v 7→ J(v) = a(v, v) − L(v).

For the Problem (5.4) of minimisingH onV we further assume

ai j = a ji , 1 ≤ i,≤ n.

If ai, j are smooth functions inΩ andu is a smooth solution of the
Problem (5.5) we can interpreteu as a solution of a classical problem
using the Green’s formula as we did in the earlier case. We shall indicate40
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only the essential facts. We introduce the formula differential operator

(5.14) Au= −
n∑

i, j=1

D j(ai j Diu) + a◦u.

If ai j are smooth (for instance,ai j ǫC1(Ω)) then A is a differential
operator in the usual sense. By Green’s formula we find that
(5.15)

a(u, v) = −
∑

i, j

∫

Ω

D j(ai j Diu) +
∫

Γ

∑

i, j

ai j (Diu)n j (x)vdσ +
∫

Ω

a◦uvdx

where (n1(x), · · · , nn(x)) are the direction cosines of the exterior normal
to Γ at x. The operator

(5.16)
∑

i, j

ai j (Diu)n j (x) = ∂u/∂nA

is called the co-normal derivatives ofu respect to the forma(·, ·). Thus
we can write (5.15) as

(5.15)′ a(u, v) =
∫

Ω

(Au)vdx+
∫

Γ

∂u/∂nAvdσ

and hence the Problem (5.2) becomes
∫

Ω

(Au− f )vdx+
∫

Γ

(∂u/∂nA − g)vdσ = 0.

Proceeding exactly as in the previous case we can conclude that the
Problem (5.5) is equivalent to the classical problem.

(5.17)



Au= f in Ω

u = 0 onΓ1

∂u/∂nA = g onΓ2

Example 5.2.Let V = H1
◦(Ω) = {v|vǫH1(Ω), γv = 0}, and J be the

functional onV:

v 7→ J(v) =
1
2
||v||2V − ( f , v)L2(Ω)
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where f ǫL2(Ω) is a given function. Suppose 41

(5.19) K = {v|vǫV, v(x) ≥ 0 a. e. inΩ}

It is clear thatK is convex and it is easily checked thatK is also
closed inV.

In fact, if vnǫK andvn → v in V then, for anyϕǫD(Ω) such that
ϕ > 0 inΩ we have

∫

Ω

vϕdx= lim
n→∞

∫

Ω

vnϕdx≥ 0

(the first equality is an immediate consequence of Cauchy-Schwarz in-
equality sincev, ϕǫL2(Ω)). This immediately implies thatv ≥ 0 a. e. in
Ω and hencevǫK.

We know from Section 3 that the minimising problem.

(5.20) uǫK; J(u) ≤ J(v), ∀vǫK

is equivalent to the variational inequality:

(5.21) uǫK; a(u, v − u) ≥ L(v− u) = ( f , v− u)L2(Ω),∀vǫK

and both have unique solutions. In order to interprete this latter problem
we find on applying the Green’s formula.

(5.22)
∫

Ω

(−△u+ u− f )(v− u)dx+
∫

Γ

∂u/∂n(u− v)dσ ≥ 0,∀vǫK.

SincevǫK ⊂ V = H1
◦(Ω) the boundary integral vanishes and so

(5.23)
∫

Ω

(−△u+ u− f )(v− u)dx≥ 0,∀vǫK.

If ϕǫK, takingv = u+ ϕǫK we get
∫

Ω

(−△u+ u− f )ϕdx≥ 0, ϕǫK

from which we conclude that−△u+ u− f ≥ 0 a.e. inΩ. For, ifω is an42
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open sub-set ofΩ where−△u+ u− f > 0 we take aϕǫD(Ω) with ϕ ≥ 0
and suppϕ ⊂ ω. Such aϕ clearly belongs toK and we would arrive at a
contradiction. In particular, this argument also shows that on the subset
of Ω whereu > 0 is satisfies the equation−△u+ u = f .

Next if we choosev = 2uǫK in (5.23) we find

∫

Ω

(−△u+ u− f )udx≥ 0

and if we choosev = 1
2uǫK we find

∫

Ω

(−△u+ u− f )udx≤ 0.

These two together imply that

(5.24) (−△u+ u− f )u = 0

Thus the solution of the variational inequality can be interpreted
(when it is sufficiently smooth) as the (unique) solution of the problem :

(5.25)



(−△u+ u− f )u = 0 inΩ

−△u+ u− f ≥ 0 a. e. inΩ

u ≥ 0 a. e. inΩ

u = 0 onΓ.

Remark 5.2.The equivalent minimisation problem can be solved nu-
merically (for example, by Gauss-Seidel method). (See Chapter 4 §
4.1).

Exercise 5.2.LetΩ be a bounded open set inRn with smooth boundary
Γ. Let V = H1(Ω) andK be the subset

(5.26) K = {v|vǫH1(Ω); γv ≥ 0 a. e. onΓ}

43
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Once againK is a closed convex set. To see that it is closed, ifvnǫK
is a sequence such thatvn → v in V then sinceγ : H1(Ω) = V → L2(Γ)
is continuous linearγvn → γv in L2(Γ). Now, if ϕǫL2(Γ) is such that
ϕ > 0 a. e. onΓ then

∫

Γ

(γv)ϕdσ = lim
n→∞

∫

Γ

(γvn)ϕd ≥ 0 sincevnǫK.

from which we deduce as in Example 5.1 thatγv ≥ 0.
Let f ǫL2(Ω) be given
The problem of minimising the functional

(5.27) v 7→ J(v) =
1
2

((v, v))V − ( f , v)L2(Ω)

on the closed convex setK is equivalent to the variational inequality

(5.28) uǫK : a(u, v− u) ≡ ((u, v− u))V ≥ ( f , v− u)L2(Ω),∀vǫK.

Assumig the solutionu (which exists and is unique from section 3)
is sufficiently regular we can interpreteuas follows. By Green’s formula
we have

(5.29)
∫

Ω

(−△u− f )(u− v)dx+
∫

Γ

∂u
∂n

(v− u)dσ ≥ 0,∀vǫK.

If ϕǫD(Ω) the boundary intergal vanishes forv = u ± ϕ which be-
longs toK and ∫

Ω

(−△u− f )ϕdx= 0

which implies that−△u = f in Ω.
Next sincev = 2u andv = 1

2u also belong toK we find that

∫

Γ

∂u
∂n

udσ = 0

which implies that
∂u
∂n

u = 0 a.e. onΓ.44
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Thus the variational inequality (5.28) is equivalent to thefollowing
Problem:

(5.30)



−△u = f in Ω

∂u/∂n u = 0 onΓ

∂u/∂n ≥ 0 onΓ

u ≥ 0 onΓ

One can also deduce from (5.30) that on the subset ofΓwhereu > 0,
u satisfies the homogeneous Neumann condition

∂u
∂n
= 0.

Example 5.3.LetΩ be a bounded open set inRn with smooth boundary
Γ and 1≤ p < +∞. We introduce the space

(5.31) V = {v|vǫL2(Ω); D jvǫL
2p(Ω), j = 1, · · · , n}

provided with its natural norm

(5.32) v 7→ ||v||V = ||v||L2(Ω) +

n∑

j=1

||D jv||L2p(Ω).

ThenV becomes a reflexive Banach space. Consider the functional
J : V → R:

(5.34) v 7→ J(v) =
1

2p

n∑

j=1

∫

Ω

|D jv|
2pdx+

1
2

∫

Ω

|v|2dx−
∫

Ω

f vdx

where f ǫL2(Ω) is given. If we set,g j(t) =
1

2p
|t|2p we get aC1 -function

g j : R1 → R1 and we haveg′j(t) = |t|
2p−2t for all j = 1, · · · , n. Then

from Exerices I. 1.1, the functional

v 7→
∑

j

∫

Ω

g j(v)dx=
1

2p

∑

j

∫

Ω

|D jv|
2pdx
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is onceG-differentiable in all directions and itsG-derivative in any di- 45

rectionϕ is given by

∑

j

∫

ϕ

g′j(u)ϕdx, ∀ϕǫV.

Hence we obtain, in our case,

(5.35) J′(u, ϕ) =
∑

j

∫

Ω

|D ju|
2p−2(D ju)(D jϕ)dx+

∫

Ω

uϕdx−
∫

Ω

fϕdx.

Then the minimisation problem

(5.36) uǫV; J(u) ≤ J(v),∀vǫV,

is equivalent by Theorem 3.1 to the problem

(5.37) uǫV; J′(u, ϕ) = 0,∀ϕǫV.

We can verify thatJ is strictly convex; for instance, we can compute
J′′(u;ϕ, ϕ) for anyϕǫV and find

(5.38) J′′(u;ϕ, ϕ) = (2p− 1)
∑

j

∫

Ω

(|D ju|
2(p−1)|D jϕ|

2
+

1
2
ϕ2)dx> 0

for any ϕǫV with ϕ , 0. Then Proposition 1. 3.2 implies the strict
convexity ofJ.

We claim that

J(v) → +∞ as||v||V → +∞.

In fact, first of all by Cauchy-Schwarz inequality we have
∣∣∣∣∣
∫

Ω

f vdx
∣∣∣∣∣ ≤ || f ||L2(Ω)||v||L2(Ω)

and hence

1
2

∫

Ω

|v|2dx−
∫

Ω

f vdx≥
1
2
||v||L2(Ω)(||v||L2(Ω) − 2||v||L2(Ω))
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so that

J(v) ≥
1

2p

∑

j

||D jV||
2p
2p +

1
2
||v||L2(Ω)(||v||L2(Ω) − f ||L2(Ω))

which tends to+∞ as||v||V → +∞.46

Then by Theorem 1.2 the minimisation problem (5.36) has a unique
solution.

Finally, if we takeϕǫD(Ω) ⊂ V in the equation (5.35) we get
∫

Ω

(
∑

j

|D ju|
2p−2(D ju)(D jϕ) + uϕ − fϕ)dx= 0.

On integration by parts this becomes
∫

Ω

(
∑

j

−D j(|D ju|
2p−2D ju) + u− f )ϕdx= 0,

Thus the solution of the minimising problem (5.36) forJ in V can
interpreted as the solution of the non-linear problem

(5.39) uǫV,−
∑

j

D j(|D ju|
2p−2D ju) + u = f in Ω.

We have used the factD(Ω) is dense inLp′(Ω) where
1
p
+

1
p′
= 1.

The problem (5.39) is a generalized Neumann problem for the non-
linear (Laplacian) operator

(5.40) −
∑

j

D j(|D ju|
2p−2D ju) + u.

Example 5.4.LetΩ andΓ be as in the previous example and

(5.41) V = H1
◦(Ω) ∩ L4(Ω).

We have seen in Section 4 thatV is a reflexive Banach space for its
natural norm

(5.42) v 7→ ||v||H1(Ω) + ||v||L4(Ω) = ||v||V.
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Consider the functionalJ on V given by

(5.43) v 7→ J(v) =
1
2
||v||2H1(Ω) +

1
4
||v||4L4(Ω) − ( f , v)L2(Ω),

where f ǫL2(Ω) is given. It is easily verified thatJ is twiceG - differen-47

tiable and

J′(u, ϕ) = ((u, ϕ))H1(Ω) +

∫

Ω

(u3 − f )ϕdx, ∀ϕ, uǫV.

(HenceJ has a gradient)

J′′(u;ϕ, ψ) = ((ψ, ϕ))H1(Ω) + 3
∫

Ω

u2ψϕdx, ∀u, ϕ, ψǫV.

Thus J′′(u;ϕ, ϕ) > 0 for uǫV, ϕǫV with ϕ , 0 which implies that
J is strictly convex by Proposition 1. 3.2. As in the previous example
we can show using Cauchy-Schwarz inequatliy (for the term (f , v)L2(Ω)),
that

J(v) → +∞ as||v||V → +∞.

Then by Theorem 1.2 the minimisation problem forJ on V has a
unique solution. An application of Green’s formula shows that this
unique solution (when it is regular) is the solution of the non-linear
problem :

(5.44)


−△u+ u+ u3

= f in Ω

u = 0 onΓ

Remark 5.3. It is, ingeneral, difficult to solve the non-linear problem
(5.43) numerically and it is easier to solve the equivalent minimisation
problem forJ given by (5.44).

Remark 5.4.All the functionals considered in the examples discussed
in this section are strictly convex and they give rise to strongly monotone
operators. We recall the following
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Definition 5.1. An operatorA : U ⊂ V → V′ on a subsetU of a normed48

vector space into its dual is called monotone if

< Au− Av, u− v >V′×V≥ 0 for all u, vǫU.

A is said to be strictly monotone if< Au− Av, u − v >V′×V> 0 for any
pair of distinct elementsu, vǫV (i.e. if u , v). (See, for instance, [44]).





Chapter 3

Minimisation Without
Constraints - Algorithms

We have considered in the previous chapter results of theoretical nature 49

on the existence and uniqueness of solutions to minimisation problems
and the solutions were characterized with the aid of the convexity and
differ entiability properties of the given functional. Here we shall be
concerned with the constructive aspects of the minimisation problem,
namely the description of algorithms for the construction of sequences
approximating the solution. We give in this chapter some algorithms
for the minimisation problem in the absence of constraints and we shall
discuss the convergence of the sequences thus constructed.

The algorithms (i.e. the methods for constructing the minimizing
sequences) described below will make use of the differential calculus
of functionals on Banach spaces developed in Chapter 1. We shall be
mainly concerned with the following classes of algorithms:

(1) the method of descent and

(2) generalized Newton’s method.

We shall mention the conjugate gradient method only briefly.The
first class of methods mainly make use of the calculus of first order
derivatives while the generalized Newton’s method relies heavily on the
calculus involving second order derivatives in Banach spaces.

49
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SupposeV is a Banach space andJ : V → R is a functional on
it. The algorithms consist in giving an interative procedure to solve the
minimisation problem:

to finduǫV, J(u) = inf
vǫV

J(v).

50

SupposeJ has unique global minimumu in V. We are interested in
constructing a sequenceuk, starting from an arbitraryu◦ǫV, such that
under suitable hypothesis on the functionalJ, uk converges tou in V.
First of all, sinceu is the unique global minimum the sequenceJ(uk) is
bounded below byJ(u). It is therefore natural to constructuk such that

(i) J(uk) is monotone decreasing

This will imply that J(uk) converge toJ(u). Further, ifJ admits a
gradientG then we necessarily haveG(u) = 0 so much so that the
sequenceuk constructed should satisfy also the natural require-
ment that

(ii) G(uk)→ 0 in V ask→ ∞

Our method can roughly be described as follows: If, for somek,
uk is already known then the next iterateuk+1 is determined by
choosing suitably a parameterρk > 0 and a directionwk(wkǫV,
wk , 0) and then taking

uk+1 = uk − ρkwk.

We shall describe, in the sequel, certain choices ofρk andwk which
will imply (i), (ii) which in turn to convergence ofuk to u. We shall call
such choices ofρk,wk convergent choices.

To simplify our discussion we shall restrict ourselves to the case of a
Hilbert spaceV. However, all our considerations of this chapter remain
valid for any reflexive Banach space with very minor changes and we51

shall not go into the details of this. As there will be no possibility of
confusion we shall write (·, ·) and || · || for the inner product (·, ·)V and
|| · ||V respectively.
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1 Method of Descent

This method includes a class of algorithms for the construction of min-
imising sequencesuk. We shall begin with the following generalities in
order to motivate and explain the principle involved in thismethod.

Let J : V → R be a functional on a Hilbert spaceV.

1.1 Generalities

Starting from an initial valueu◦ǫV we constructuk iteratively with the
properties described in the introduction. Supposeuk is constructed then
to constructuk+1 we make two choices:

(1) a directionwk in V called the “direction of descent”

(2) a real parameterρ = ρk, and setuk+1 = uk − ρkwk so that the
sequence thus constructed has the required properties. Themain
idea in the choices ofwk andρk can be motivated as follows:

Choice of wk. We findwkǫV with ||wk|| = 1 such that the restriction
of J to the line inV passing throughuk and parallel to the direction
wk is decreasing in a neighbourhood ofuk: i.e. the functionR ∋ ρ →
J(uk + ρwk)ǫR is decreasing for|ρ| sufficiently small. 52

If J is G-differentiable then we have by Taylor’s formula

J(uk + ρwk) = J(uk) + J′(uk, ρwk) + . . .

= J(uk) + ρJ′(uk,wk) + . . .

(by homogeneity ofϕ 7→ J′(u, ϕ)). For |ρ| small since the dominant term
in this expansion isρJ′(uk,wk) and since we wantJ(uk + ρwk) ≤ J(uk)
the best choice ofwk (at least locally) should be such that

ρJ′(uk,wk) ≤ 0 and is largest in magnitude.

If J has a gradientG then

ρJ′(uk,wk) = ρ(G(uk),wk) ≤ 0
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and our requirement will be satisfied ifwk is chosen proportional to
G(uk) and opposite in direction. We note that, this may not be the best
choice ofwk from global point of view. We shall therefore write

J(uk − ρwk) with ρ > 0

so thatJ(uk − ρwk)ց ask increases forρ > 0 small enough.

Choice ofρ(= ρk). Once the direction of descentwk is chosen then the
iterative procedure can be done with a constantρ > 0. It is however
more suitable to do this with a variableρ. We shall therefore choose
ρ = ρk > 0 in a small interval with the propertyJ(uk − ρkwk) < J(uk)
and set

uk+1 = uk − ρkwk.

We do this in several steps. Since,

j = inf
v∈V

J(v) ≤ J(uk+1) ≤ J(uk)

we have53

J(uk) − J(uk+1) ≥ 0 and lim
k→+∞

(J(uk) − J(uk+1)) = 0

becauseJ(uk) is decreasing and bounded below. IfJ is differentiable
then Taylor’s formula implies that

J(uk) − J(uk+1) behaves likeJ′(uk, uk+1 − uk) = ρkJ′(uk,wk)

so that it is natural to require that

ρk > 0, ρkJ′(uk,wk)→ 0 ask→ +∞.

Roughly speaking, we shall say that the choice ofρk is a “conver-
gent choice” if this condition impliesJ′(uk,wk) → 0 ask → +∞. If,
moreover,J has a gradientG then choice of the direction of descentwk

is a “convergent choice” ifJ′(uk,wk) = (G(uk),wk) → 0 implies that
||G(uk)|| → 0 ask→ +∞.

The above considerations lead us to the following definitions which
we shall use in all our algorithms and all our proofs of convergence.
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Definition 1.1. The choice ofρk is said to be convergent if the conditions


ρk > 0, uk+1 = uk − ρkwk

J(uk) − J(uk+1) > 0, limk→+∞(J(uk) − J(uk+1)) = 0

imply that
lim

k→+∞
J′(uk,wk) = 0.

SupposeJ has a gradientG in V.

Definition 1.2. The choice of the directionwk is said to be convergent if
the conditions

wkǫV, J
′(uk,wk) > 0. lim

k→+∞
J′(uk,wk) = 0

imply that 54

lim
k→+∞

||G(uk)|| = 0.

1.2 Convergent choice of the direction of descentwk

This section is devoted to some algorithms for convergent choices ofwk.
In each case we show that the choice ofwk described is convergent in
the sense of Definition 1.2

w-Algorithm 1.We assume thatJ has a gradientG in V. Let a real
numberα be given with 0< α ≤ 1. We choosewkǫV such that

(1.1)


(G(uk)/||G(uk)||,wk) ≥ α > 0.

||wk|| = 1.

Proposition 1.1. w-Algorithm 1 gives a convergent choice of wk.

Proof. We can write

J′(uk,wk) = (G(uk),wk)

so that by (1.1)
J′(uk,wk) ≥ α||G(uk)|| > 0
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and hence

J′(uk,wk)→ 0 implies that||G(uk)|| → 0 ask→ +∞.

�

We note that (1.1) means that the angle betweenwk andG(uk) lies
in ] − π/2, π/2[ and the cosine of this angle is bounded away from 0 by
α.

w-Algorithm 2 - Auxiliary operatoe method.
This algorithm is a particular case of w-algorithm 1 but verymuch

more used in practice.
Assume thatJ has a gradientG in V.55

Let, for eachk, BkǫL (V,V) be an such that

(1.2)



Bk are uniformly bounded: there exists a constantγ > 0

such that ||Bkψ|| ≤ γ||ψ|| : ψǫV.

Bk are uniformlyV-coercive: there exists a constantα > 0

such thaat (Bkψ, ψ) ≥ α||ψ||2, ψǫV.

Let us choose

(1.3) wk = BkG(uk)/||BkG(uk)

Proposition 1.2. The choice (1.3) of wk is convergent.

Proof. As before we calculate

J′(uk,wk) = (G(uk),wk) = (G(uk), BkG(uk)/||BkG(uk)||)

which, by uniform coercivity ofBk, is

≥ α||G(uk)||
2/||BkG(uk)||

≥ αγ−1G(uk) by uniform boundedness ofBk.

�
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This immediatly implies that

J′(uk,wk) > 0 and ifJ′(uk,wk)→ 0 then||G(uk)|| → 0

and hence the choice ofwk is convergent.
Moreover, again by (1.3), we get

(G(uk)/||G(uk)||,wk) = (G(uk)/||G(uk)||, BkG(uk)/||BkG(uk)||) ≥ αγ−1 > 0,

which means that this algorithm is a particular case ofw-Algorithm 1.

Remark 1.1. In certain (for example, whenBk are symmetric operators56

satisfying (1.2)) this method is equivalent to making a change of vari-
ables and taking as the direction of descent the direction ofthe gradient
of J in the new variables and then choosingwk as the inverse image of
this direction in the original coordinates.

Consider the functionalJ : V = R2 → R of our model problem of
Chapter 1,§7:

R
2 ∋ v 7→ J(v) =

1
2

a(v, v) − L(v) =
1
2

(Av, v)R2 − ( f , v)R2ǫR.

Since a(·, ·) is a positive definite quadratic form,{vǫR2, J(v) =
constant} represents an ellipse.Bk can be chosen such that the change
of variable effected byBk transforms such an ellipse into a circle where
the gradient direction is well-known i.e. the direction of the radial vector
throughuk (in the new coordinates).

w-Algorithm 3 - Conjugate gradient method
There are several algorithms known in the literature under the name

of conjugate gradient method. We shall, however, describe only one of
the algorithms which generalizes the conjugate gradient method in the
finite dimensional spaces. (See [20] [22] and [24]).

Suppose the functionalJ admits a gradientG(u) and a HessianH(u)
everywhere inV. Letu◦ǫV be arbitrary. We choosew◦ = G(u◦)/||G(u◦)||
(We observe that we may assumeG(u◦) , 0 unlessu◦ itself happens to
be the required minimum). Ifuk−1,wk−1 are already known then we
chooseρk−1 > 0 to be a points of minimum of the real valued function

R+ ∋ ρ 7→ J(uk−1 − ρwk−1)ǫR
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i.e. ρk−1 > 0 andJ(uk−1 − ρk−1wk−1) = inf
ρ>0

J(uk−1 − ρwk−1).

SinceJ is G-differentiable this real valued function ofρ is differen-57

tiable everywhere inR+ and

d
dρ

J(uk−1 − ρwk−1)|ρ=ρk−1 = 0,

which means that, if we set

(1.4)1 uk = uk−1 − ρk−1wk−1

then we have

(1.5) (G(uk),wk−1) = 0.

Now we define a vector̃wkǫV by

w̃k = G(uk) + λkwk−1

whereλkǫR is chosen such that

(H(uk)w̃k,wk−1) = 0

Hencewk is given by

(1.4)2 λk = −
(H(uk)G(uk),wk−1)
(H(uk)wk−1,wk−1)

.

We remark that in applications we usually assume thatH(u) (for any
uǫV) defines a positive operator and hence the denominator in (1.4)2
abovei non-zero (see Remark 1.2 below). Then the vector

(1.4)3 wk = w̃k/||w̃k||

defines the direction of descent at thek-th stage of the algorithm.
This algorithm is called conjugate gradient method becauseof the

following remark.
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Remark 1.2.Two directionsϕ andψ are said to be conjugate with re-58

spect to a positive definite quadratic forma(·, ·) on V if a(ϕ, ψ) = 0. In
this sense, ifH(uk) defines positive definite quadratic form (i.e.H(uk)
is a symmetric positive operator onV) two consecutive choices of di-
rections of descentwk−1,wk are conjugate with respect to the quadric
(H(uk)w,w) = 1. We recall that in the planeR2 such a quadric rep-
resents an ellipse and two directionsϕ, ψ in the plane are said to be
conjugate with respect to such an ellipse if (H(uk)ϕ, ψ) = 0.

Now we have the following

Proposition 1.3. Suppose that the functional H admits a gradient G(u)
and a Hessian H(u) everywhere in V and suppose further that there exist
two constants C◦ > 0,C1 > 0 such that

(i) (H(u)ϕ, ϕ) ≥ C◦||ϕ||2 for all u, ϕǫV and

(ii) |(H(u)ϕ, ψ)| ≤ C1||ϕ||||ψ|| for all u, ϕ, ψǫV.

Then the w-Algorithm 3 defines a convergent choice of the wk.

Proof. It is enough to verify thatwk satisfies the condition (1.1). First
of all, in view of the definition of̃wk and (1.5) we have

(G(u), w̃k) = ||G(uk)||
2

so that
(G(uk)/||G(uk)||,wk) = ||G(uk)||||w̃k||

−1.

�

We shall show that this is bounded below by a constantα > 0 (inde-
pendent ofk).

For this, we get, again using the definition ofw̃k, (1.4)2 and (1.5)

||w̃k||
2
= ||G(uk)||

2
+ λ2

k||wk−1||
2.

Here, in view of the assumptions (i) and (ii) we find that

λ2
k||wk−1||

2
=

(H(uk)G(uk),wk−1)2

(H(uk)wk−1,wk−1)2
||wk−1||

2
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≤ (C−1
◦ C1||G(uk)||)

2

so that 59

||w̃k||
2 ≤ ||G(uk)||

2(1+C−2
◦ C2

1).

Hence, taking the constantα > 0 to be (1+C−2
◦ C2

1)−
1
2 we get

||G(uk)||||w̃k||
−1 > α > 0

which proves the assertion.

1.3 Convergent Choices ofρk

We shall describe in this section some algorithms for the choice of the
parameterρk and we shall prove that these choices are convergent in the
sense of our Definition 1.1.

Given the idrectionwk of descent at thekth stage we are interested
in points of the type

uk − ρwk, ρ > 0,

and therefore all out discussions of this section are as if wehave func-
tions of a single real variableρ defined inR+.

We shall use the following notation throughout this and the next
sections in order to simplify our writing:

Notation 
J(uk − ρwk) = Jk

ρ for ρ > 0,

J(uk) = Jk
◦,

J(uk) − J(uk − ρwk) = Jk
◦ − Jk

ρ = △Jk
ρ, ρ > 0.


J′(uk − ρwk,wk) = J′kρ for ρ > 0.

J′(uk,wk) = J′k◦.

Smilarly, whenJ has gradientG(u) and a hessianH(u) at every
pointsu in V, we write


G(uk − ρwk) = Gk

ρ for ρ > 0.

G(uk) = Gk
◦
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and60 
H(uk − ρwk) = Hk

ρ for ρ > 0,

H(uk) Hk
◦

We shall make the following two hypothesis throughout this section.
Hypothesis (H1) : lim

||v||→∞
J(v) = +∞.

Hypothesis (H2) : J has a gradientG(u) everywhere inV and satis-
fies a (uniform) Lipschitz condition on every bounded subsetof V: for
every bounded setK of V there exists a constantMK > 0 such that

||G(u) −G(v)|| ≤ MK ||u− v|| for all u, vǫK.

In particular, ifJ has a HessianH(u) everywhere inV and if H(u) is
bounded on bounded sets ofV then an application of Tayler’s formula to
the mappingV ∋ u 7→ G(u)ǫV′ = V shows thatJ satisfies the hypothesis
(H2). In fact, ifu, vǫV then

||G(u) −G(v)|| = sup
ϕ
|(G(u) −G(v), ϕ)|/||ϕ||

= sup
ϕ

|(H(u+ θ(u− v))(u− v), ϕ)|/||ϕ|| ≤ const.||u− v||,

sinceu, vǫK and θǫ]0, 1[ imply that v + θ(u − v) is also bounded and
henceH(v+ θ(u− v)) is bounded uniformly for allθǫ]0, 1[.

Now suppose given au◦ǫV at the beginning of the algorithm. Start-
ing from u◦ we shall construct a sequenceuk such thatJ(uk) is decreas-
ing and so we haveJ(uk) ≤ J(u◦). We are interested in points of the type
uk − ρwk such thatJ(uk − ρwk) ≤ J(uk).

We shall now deduce some immediate consequences of the hypoth-
esis H1 and H2, which will be constantly used to prove the convergence
of the choice ofρk given by the algorithms of this section.

Let us denote byU the subset ofV:

U = {v|vǫV; J(v) ≤ J(u◦)}.

The setU is bounded inV. In fact, if U is not bounded then we
can find a sequencev jǫU such that||v j || → +∞. ThenJ(v j) → +∞ by 61

Hupothesis H1 and this is impossible sincev jǫU.
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We are thus interested in constructing a sequenceuk such that

ukǫU andJ(uk)ց .

Also since by requirementJ(uk − ρwk) ≤ J(uk) it follows thatuk −

ρwkǫU and thenρwill be bounded by diam U; for, we find using triangle
inequality:

0 < ρ = ||ρwk|| = ||uk − (uk − ρwk)|| ≤ diamU.

Let us denote the constantMU > 0 given by Hypothesis H2 for the
bounded setU by M.

Now the pointsuk−ρwk, uk−µwk belongs toU if ρ, µ ≥ 0 are chosen
sufficiently small. Then

||Gk
ρ −Gk

µ|| = ||G(uk − ρwk) −G(uk − µwk)||

≤ M|ρ − u|||wk|| = M|ρ − µ|;

i.e. we have,

(1.6)


||Gk

ρ −Gk
µ|| ≤ M|ρ − µ|

||Gk
ρ −Gk

◦|| ≤ Mρ

SinceJ′kρ = J′(uk− ρwk,wk) = (G(uk− ρwk),wk) = (Gk
ρ,wk) we also

find from (1.6) that

(1.7)


|J′kρ − J′kµ| ≤ M|ρ − µ|

|J′kρ − J′k◦| ≤ Mρ.

We shall suppress the indexK when there is no possibility of confu-
sion and simply writeGρ, Jρ, J′ρ etc. respectively forGk

ρ, J
k
ρ, J
′k
ρ etc.

By Taylor’s expansion we can write62

Jρ = J(u− ρw) = J(u) − ρJ′(u− ρw,w)

for someρ such that 0< ρ < ρ. i.e. we can write

(1.8) Jρ = J◦ − ρJ′ρ.
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We can rewrite (1.8) also as

Jρ = J◦ − ρJ′◦ + ρ(J′◦ − J′ρ),

which together with (1.7) gives

Jρ ≤ J◦ − ρJ′◦ + Mρρ,

that is, since 0< ρ < ρ

(1.9) Jρ ≤ J◦ − ρJ′◦ + Mρ2.

We shall use (1.8) and (1.9) in the following form

△Jρ = ρJ′ρ,(1.8)′

ρJ′◦ − Mρ2 ≤ △Jρ.(1.9)′

We are now in a position to describe the algorithms for convergent
choices of the parameterρk.

ρ- Algorithm 1.Consider the two functions ofρ > 0 given by

Jρ = J(uk − ρwk) andT(ρ) = J◦ − ρJ′◦ + Mρ2.

ThenJ◦ = T(0) and (1.9) says thatJρ ≤ T(ρ) for all ρ > 0. Geomet-
rically the curvey = Jρ lies below the parabolay = T(ρ) for ρ > 0 in
the (ρ, y) -plane. Let ˆρ > 0 be the points at which the functionT(ρ) has

a minimum. Then
dT
dρ
|ρ=ρ̂ = 0 implies−J′◦ + 2Mρ̂ = 0 so that we have

(1.10) ρ̂ = J′◦/2M,T(ρ̂) = inf
ρ>0

T(ρ).

63

Let C be a real number such that

(1.11) 0< C ≤ 1.

We chooseρ = ρk in the interval [Cρ̂, (2−C)ρ̂], i.e.

(1.12) C ≤ ρ/ρ̂ ≤ (2−C).

Then we have the
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Proposition 1.4. Under the hypothesis(H1), (H2) the choice (1.12) of
ρ = ρk is a convergent choice.

Proof. SinceT has its minimum at the pointsρ = ρ̂ we have by (1.11)
Cρ̂ ≤ ρ̂ ≤ (2−C)ρ̂. MoreoverT(ρ) decreases in the interval [0, ρ̂] while
it increases in the interval [ ˆρ, (2−C)ρ̂] as can easily be checked. Hence,
if ρ satisfies (1.12) then we have two cases:


Tρ ≤ TCρ̂ if Cρ̂ ≤ ρ ≤ ρ̂ and

Tρ ≤ T(2−C)ρ̂ if ρ̂ ≤ ρ ≤ (2−C)ρ̂.

�

SinceTCρ̂ = J◦ − CJ′◦/2M.J′◦ + M(CJ′◦/2M)2
= J◦ − (2 − C)

C(J′◦)2/4M, )

T(2−C)ρ̂ = J◦−(2−C)J′◦/2MJ′◦+M((2−C)J′◦/2M)2
= J◦−(2−C)C(J′◦)2/4M

using the value of ˆρ given by (1.10) and sinceJp ≤ Tp for all ρ > 0 we
find that (in either of the above cases)

Jρ ≤ Tρ ≤ J◦ − (2−C)C(J′2◦)/4M.

This immediately implies that

(1.13) C(2−C)(J′◦)
2/4M ≤ △Jρ.

In order to show that the choice (1.12) is convergent we see that64

(1.13) is nothing but

C(2−C)/4M(J′(uk,wk))
2 ≤ J(uk) − J(uk − ρwk) ≤ J(uk) − J(uk+1)

sinceJ(uk+1) = J(uk − ρkwk) = infρ>0 J(uk − ρwk) i.e. J(uk+1) ≤ Jk
ρ.

Hence ifJ(uk) − J(uk+1) → 0 thenJ′(uk,wk) → 0 ask → +∞, which
proves that the choice ofρk such that

C ≤ ρkρ̂
−1
k ≤ 2−C whereρ̂k = J′(uk,wk)/2M

is a convergent choice.
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ρ-Algorithm 2.The constantM in theρ-Alogorithm 1 is not in gen-
eral known a priori. This fact may cause difficulties in the sense that if
we start with an arbitrarily largeM > 0 then by (1.12)ρk will be very
small and so the scheme may not converge sufficiently fast. We can
get over this difficulty as described in the following algorithm, which
does not directly involve the constantM and which can be considered
as a special case ofρ-Algorithm 1. But for this algorithm we need the
additional assumption thatJ is convex.

Hypothesis H3. The functionalJ is convex.
We suppose that, for some fixedh > 0, we have

(1.14)


J◦ > Jh > J2h > J2h > · · · > Jmh,

Jmh < J(m+1)h, for some integerm≥ 2.

SinceJ is convex and has its minimum inρ > 0 such anm ≥ 2
always exists.

Proposition 1.5. If J satisfies the hypothesis H1, H2, H3 then any choice
of ρ(= ρk) such that

(1.15) (m− 1)h ≤ ρ ≤ mh

is a convergent choice. 65

Proof. Let ρ̃ > 0 be a point whereJρ attains its minimum. ThenJ′ρ̃ =
0, J̃ρ ≤ Jρ for all ρ > 0 and by (1.14) we should have

(1.16) (m− 1)h ≤ ρ̃ ≤ (m+ 1)h.

Then (1.7) will imply

0 < J′◦ = |J
′
ρ̃ − J′◦| ≤ M

and thus we find

(1.17) 2ρ̂ = J′◦/M ≤ ρ̃

and

(1.18) 2ρ̂/(m+ 1) ≤ h.

�
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This, together with the fact thatm≥ 2, will in turn imply

2ρ̂/3 ≤ (m− 1)h.

As Jρ decreasesd in 0≤ ρ < mhwe get

△J(m−1)h = J◦ − J(m−1)h ≥ J◦ − J2ρ̂/3 = △J(2ρ̂/3).

If we now apply theρ-Algorithm 1 with C = 2/3 in (1.12) and in
(1.13) then we obtain, from the above inequality,

(1.19) △J(m−1)h ≥ 2/9M(J′◦)
2,

which proves thatρ = (m− 1)h is a convergent choice. Similarly, if
ρǫ[(m− 1)h,mh] (i.e. (1.15)) then the same argument shows that

(1.20) △Jρ ≥ △J(m−1)h ≥ 2/9M(J′◦)
2,

and hence anyρk = ρ satisfying (1.15) is again a convergent choice.66

Some Generalizations ofρ-Algorithm 2.
In the above algorithm a suitable initial choice ofh > 0 has to be

made. But such anh can be either too large or too small and if for
exampleh is too small then the procedure may become very long to use
numerically. In order to over come such diffeculties we can generalize
ρ-Algorithm 2 as follows.

If the initial value ofh > 0 is too small we can repeat our arguments
above with (1.14) replaced by

(1.14)′


J◦ > Jph > Jp2h > Jp3h > · · · > Jpmh,

Jpmh < Jp(m+1)h, for some integerm≥ 2

and if the initial value ofh is too large we can computeJ at the points
h
ρ
,

h

ρ2
,

h

ρ3
, · · · wherep is an integer≥ 2. Every such procedure gives a

new algorithm for a convergent choice ofρk = ρ.
ρ-Algorithm 3.We have the following
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Proposition 1.6. Assume that J satisfies the hypothesis H1 - H3. If
h > 0 is such that

(1.21)


△Jh/h ≥ (1−C)J′◦,

△J2h/2h < (1−C)J′◦

with some constant C,0 < C < 1 then (ρk =)ρ = h is a convergent
choice.

Proof. From the inequality ((1.9)′ and the second inequality in (1.21)
we get

2hJ′◦ − (2h)2M ≤ △J2h < (1−C)2hJ′◦

and hence
Cρ̂ = CJ′◦/2M ≤ h.

� 67

Now the first inequality in (1.21) implies

(1.22) △Jh ≥ h(1−C)J′◦ ≥ C(1−C)(J′◦)
2/2M,

which proves thatρ = h is a convergent choice since△Jh = J(uk) −
J(uk − hwk)→ 0 implies thatJ′◦ = J′(uk,wk)→ 0 ask→ ∞.

We shall now show that there exists anh > 0 satisfying (1.21). We
consider the real valued function

ψ(ρ) = △Jρ/ρ − (1−C)J′◦

of ρ onR+ and observe the following two facts:

(1) ψ(ρ) ≥ 0 for ρ > 0 sufficiently small. In fact, since△Jρ/ρ →
J′◦ > 0 we have|△Jρ/ρ− J′◦| < CJ′◦ for ρ > 0 sufficiently small,
which, in particular, implies the assertion.

(2) ψ(ρ) < 0 for ρ > 0 sufficiently large. For this, sinceuk,wk are
already determined (at the (k + 1)th stage of the algorithm) we
see that||ρwk|| → +∞ and hence||uk − ρwk|| → +∞. Then, by
hypothesis (H1),

J(uk − ρwk)→ +∞ asρ→ +∞
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so much so that

△Jρ ≤ 0 < ρ(1−C)J′◦ for ρ > 0

sufficiently large, which implies the assertion.

Thus the sign ofψ changes from positive to negative, say at some
ρ = h◦ > 0. Then, for instance,h = 3h◦/4 will satifsy our requirement
(1.21).

More precisely, we can findh satisfying (1.21) in the following iter-
ative manner. Assume that 0< C < 1 is given.

First of all we shall choose aτ arbitrarily (> 0) and we compute the
difference quotient△Jτ/τ. This is possible since all the quantities are
known. Then there are two possible cases that can arise namely, either

(a) △Jτ/τ ≥ (1−C)J′◦

or(b) △Jτ/τ < (1−C)J′◦.

Suppose (a) holds. Then we compute△J2τ/2τ and we will have to68

consider again two possibilities:

either(a)1 △J2τ/2τ < (1−C)J′◦,

or(a)2 △J2τ/2τ ≥ (1−C)J′◦.

If we have the first possibility (a)1 then we are through we can
chooseh = τ itself. If on the order hand (a)2 holds then we repeat
this argument withτ replaced by 2τ.

Next suppose (b) holds. We can consider two possible cases:

either(b)1 △Jτ/2|τ/2 ≥ (1−C)J′◦,

or(b)2 △Jτ/2|τ/2 < (1−C)J′◦.

Once again, in case (b)1 holds we are through and we can choose
h = τ/2. In case (b)2 holds we repeat this argument withτ replaced by
τ/2.

Remark 1.2. It was proposed by Goldstein (see [21]) that the initial
value ofτ can be taken to be taken to beτ = J′◦.
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ρ-Algorithm 4. We have the following

Proposition 1.7. If there is aρ̃ such that

(1.23)



ρ̃ > 0,

Jρ̃ ≤ Jρ ρǫ[0, ρ̃]

J′ρ̃ = 0

thenρ = ρ̃ is a convergent choice.

Proof. We have, by the last condition in (1.23) together with the esti-
mate (1.7).

J′◦ = |J
′
ρ̃ − J′◦| ≤ Mρ̃

and hence ˆρ ≤ 2ρ̂ = J′◦/M ≤ ρ̃ using the value of ˆρ given by (1.10).
The condition (1.23) thatJ̃ρ is a minimum in [0, ρ̃] implies J̃ρ ≤ Jρ̂ and
therefore

△Jρ̂ = J◦ − Jρ̂ ≤ J◦ − J̃ρ = △J̃ρ.

�

On the other hand, takingC = 1 in (1.22) we find that

(1.24) J′2◦/2M ≤ △Jρ̂ ≤ △J̃ρ

which proves thatρ = ρ̃ is a convergent choice.
We shall conclude the discussion of convergent choices ofρk for ρ 69

by observing that other algorithms for convergent choices of ρ can be
obtained making use of the following remarks.

Remark 1.3.We recall that inρ-Algorithm 1 we obtained convergent
choices ofρ to be close to ˆρ (i.e. C ≤ ρ/ρ̂ ≤ 2−C) whereρ̂ is the points
of minimum of the curvey = T(ρ), which is a polynomial of degree 2.
This method can be generalised to get other algorithms as follows:

Starting fromu0 if we have founduk and the direction of descentwk

then J◦ = J(uk), J′◦ = J′(uk,wk) = (G(uk),wk) are known. Now if we
are given two more points (sayh and 2h) we know the values ofJ at
these points also. Thus we know values at 3 points and the initial slope
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(i.e. J′◦). By interpolation we can find a polynomial of degree 3 from
these. To get an algorithm for a convergent choice ofρ we can choose
ρ to be close to the point where such a polynomial has a minimum.
Similar method works also polynomial of higher degress if weare given
more number of points by using interpolation.

Remark 1.4. In all our proofs for convergent choices ofρ we obtained
an estimate of the type:

γ(J′◦)
2 ≤ △Jρ

whereγ is a constant> 0. For instanceγ = 2/9M in (1.20).

1.4 Convergence of Algorithms

In the previous we have given some algorithms to construct a minimis-
ing sequence for the solution of the minimisation problem:

Problem P. to finduǫV, J(u) ≤ J(v), ∀vǫV.
In this section we shall prove that under some reasonable assump-

tions on the functionalJ any combination ofw-algorithms andρ - al-
gorithms yield a convergent algorithm for the constructionof the min-70

imising sequenceuk and such a sequence converges to a solution of the
problemP.

Let J : V → R be a functional on a Banach spaceV. The following
will be the assumptions that we shall make onJ:

(H0) J is bounded below: there exists a real numberj such that−∞ <

j ≤ J(v),∀vǫV.

(H1) J(v) → +∞ as||v|| → +∞.

(H2) J has a gradientG(u) everywhere inV andG(u) is bounded on
every bounded subset ofV: if K is a bounded set inV then there
exists a constantMK > 0 such that||G(u)|| ≤ MK for all uǫK.

(H3) J is convex.

(H4) V is a reflexive Banach space
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(H5) J is strictly convex

(H6) J admits a hessianH(u) everywhere inV which is V-coercive:
there exists a constantα > 0 such that

< H(u)ϕ, ϕ >V′×V≥ α||ϕ||
2
V,∀uǫV and∀ϕǫV.

As in the previous sections we shall restrict ourselves to the case of
a Hilbert spaceV and all our arguments remain valid with almost no
changes. We have the following result.

Theorem 1.1. (1) If the hypothesis H0, H1, H2 are satisfied and if uk

isa sequence constructed using any of the algorithms:

w− Algorithm i, i = 1, 2

ρ − Algorithm j, j = 1, 3, 4

then
||G(uk)| → 0 as k→ +∞.

(2) If the hypothesis H0 - H4 hold and if uk are constructed using71

the algorithm i= 1, 2, j = 1, 2, 3, 4 then all algorithm have the
following property:

(a) the sequence uk has a weak cluster point;

(b) any weak cluster point is a solution of the problem P.

(3) If the hypothesis H0 - H5 are satisfied then

(a) the Problem P has a unique solution uǫV,

(b) If uk is constructed using any of the algorithms i= 1, 2, j =
1, 2, 3, 4 then

uk ⇀ u as k→ +∞.

(4) Under the hypothesis H0 - H6 we have

(a) the Problem P has a unique solution u∈ V,
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(b) if the sequence uk is constructed using any of the algorithms
i = 1, 2, 3, j = 1, 2, 3, 4 then

uk → u and moreover||uk − u|| ≤ 2/α||G(uk)|| ∀k.

Proof. (1) Since by (H0), J(uk) is a decreasing sequence bounded
below: j ≤ J(uk+1) ≤ J(uk) ≤ J(u◦),∀k it follows that

lim
k→+∞

(J(uk) − J(uk+1)) = 0.

Since by theρ-Algorithms j( j = 1, 3, 4) the choice ofρ = ρk in
uk+1 = uk − ρwk is a convergent choice we see that

J′(uk,wk)→ 0, ask→ +∞.

Now since the choine (i)wk is convergent (i = 1, 2) this implies
that

||G(uk)|| → 0 ask→ +∞.

(2) As we have seen in the previous section, ifu◦ǫV then the setU =
{v|vǫV, J(v) ≤ J(u◦)} is bounded by (H1) and since

J(uk+1) ≤ J(uk) ≤ · · · ≤ J(u◦) ∀k

all the ukǫU and thusuk is a bounded sequence. Then (H4) im-72

plies thatuk has a weak cluster points which proves (a) i.e.∃a
subsequenceuk′ such thatuk′ → u in V ask′ → +∞. Now by
(H3) and by Proposition 1. 3.1 on convex functionals

(1.25) J(v) ≥ J(uk′ ) + J′(uk′ , v− uk′) for anyvǫV and anyk′.

Then, by (H2), J′(uk′ , v− uk′ ) = (G(uk′), v− uk′ ). But herev− uk′

is a bounded sequence and since all the assumptions of Part 1 of
the theorem are satisfies||G(uk′ )|| → 0 i.e.G(uk′)→ 0 strongly in
V. Hence

|(G(uk′ ), v− uk′)| ≤ const.||G(uk′ )|| → 0 ask′ → +∞
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and so we find from (1.25) that

J(v) ≥ lim inf
k′→+∞

J(uk′ )

or what is the same as sayingJ(v) ≥ J(u) ∀vǫV. Thusu is a
solution of the ProblemP which proves (b).

(3) The strong convexity ofJ implies the convexity ofJ (i.e. H5 im-
plies H3) and hence by (b) of Part 2 of the theorem the ProblemP
has a solutionuǫV. Moreover, by Proposition 1. 3.1 this solution
is unique sinceJ is strictly convex.

Again by (2)(a) of the theoremuk is bounded sequence and has
a weak cluster pointsu which is unique and henceuk ⇀ u as
k→ +∞.

(4) Since coercivity ofH(u) implies thatJ is strictly convex (a) is
just the same as (3)(a). To prove (b) we expandJ(u) by Taylor’s
formula: there is aθ in 0 < θ < 1 such that

J(u) = J(uk) + J′(uk, u− uk) +
1
2

J′′(uk + θ(u− uk); u− uk, u− uk)

= J(uk) + (G(uk), u− uk) +
1
2

(H(uk + θ(u− uk))(u− uk), u− uk).

73

Here
|(G(uk), u− uk)| ≤ ||G(uk)||||u− uk|| ∀k

and

(H(uk + θ(u− uk))(u− uk), u− uk) ≥ α||u− uk||
2 ∀k.

These two together with the fact thatu is a solution of the Problem
P imply that

J(u) ≥ J(u) − ||G(uk)||||u− uk|| + α/2||u− uk|| ∀k

which gives
||u− uk|| ≤ 2/α||G(uk)|| ∀k.
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But, by Part 1 of the theorem the right hand side here→ 0 as
k→ 0 and this proves thatuk → u ask→ +∞.

�

2 Generalized Newton’s Method

In this section we give another algorithm for the construction of approx-
imating sequences for the minimisation problem for functionals J on a
Banach spaceV using first and second orderG-derivatives ofJ. This al-
gorithm generalizes the method of Newton-Rophson which consists in
giving approximations to determine points ofV where a given operator
vanishes. The method we describe is a refinement of a method byR.
Fages [54].

We can describe our approach to the algorithm as follows: Suppose
J : V → R is a very regular functional on a Banach spaceV; for in-
stance,J has a gradientG(u) and a HessianH(u) everywhere inV. Let
uǫV be a point whereJ attains its minimum i.e.J(u) ≤ J(v) ∀vǫV. We74

have seen in Chapter 2. 1 (Theorem 2. 1.3) thatG(u) = 0 is a nec-
essary condition and we have also discussed the question of when this
condition is also sufficient in Chapter 2,§2. Thus finding a minimis-
ing sequence forJ at u is reduced to the equivalent problem of finding
an algorithm to construct a sequenceuk approximating a solution of the
equation:

(∗) uǫV,G(u) = 0.

In this sense this is an extension of the classical Newton method fot
the determination of zeros of a real valued function on the real line.

As in the previous section we shall restrict ourselves to thecase of a
Hilbert spaceV.

Starting from an initial pointu◦ǫV suppose we have constructeduk,
If uk is sufficiently near the solutionu of the equationG(u) = 0 then by
expandingG(u) using Taylor’s formula we find:

0 = (G(u), ϕ) = (G(uk)) + H(uk + θ(u− uk))(u− uk), ϕ).
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The Newton-Raphson method consists in takinguk+1 as a solution
of the equation

G(uk) + H(uk)(uk+1 − uk) = 0 for k ≥ 0.

Roughly speaking, if the operatorH(uk)ǫL (V,V′) ≡ L (V,V) is
invertible and ifH(uk)−1ǫL (V,V) then the equation is equivalent to

uk+1 = uk − H(uk)
−1G(uk).

Then one can show that under suitable assumptions onG and H
that this is a convergent algorithm provided that the initial points u◦ is
sufficiently close to the required solutionu of the problem (∗). However,
in practice,uand then a good neighbourhood ofu whereu◦ is to be taken 75

is not known a priori and difficult to find.
The algorithm we give in the following avoids such a difficulty for

the choice of the initial pointu◦ in the algorithm.
Let V be a Hilbert space andJ : V → R be a functional onV.

Throughout this section we make the following hypothesis onJ:

(H1) J(v)→ +∞ as||v|| → +∞.

(H2) J is regular: J is twiceG-differentiable and has a gradientG(u)
and a hessianH(u) everywhere inV.

(H3) H is uniformly V-coercive on bounded sets ofF: for every
bounded setK of V there exists a constantαK > 0 such that

(H(v)ϕ, ϕ) ≥ αk||ϕ||
2,∀vǫK and∀ϕǫV.

(H4) H satisfies a uniform Lipschitz condition on bounded sets ofV:
for every bounded subsetK of V there exists a constantβK > 0
such that

||H(u) − H(v)|| ≤ βK ||u− v||,∀u, vǫK.

We are interested in finding an algorithm starting from au◦ǫV
to find uk iteratively. Suppose we have determineduk for some
k ≥ 0. In order to determineuk+1 we introduce a bi-linear bicon-
tinuous formbk : V × V ∋ (ϕ, ψ) 7→ bk(ϕ, ψ)ǫR satisfying either
one of the following two hypothesis:
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(H5) There exist two constantsλ◦ > 0, µ◦ > 0 independent ofk, λ◦
large enough (see (2.12)), such that

bk(ϕ, ϕ) ≥ λ◦(G(uk), ϕ)2, ∀ϕ ∈ V,

and

|bk(ϕ, ψ)| ≤ µ◦||G(uk)||||ϕ||||ψ||, ∀ϕ, ψ ∈ V.

76

(H6) There exist two constantλ1 > 0, µ1 > 0 independent ofk, λ1 large
enough see (2.14), such that

bk(ϕ, ϕ) ≥ λ1||G(uk)||
1+∈||ϕ||2,∀ϕ ∈ V

and
|bk(ϕ, ψ)| ≤ µ1||G(uk)||

1+∈||ϕ||||ψ||,∀ϕ, ψ ∈ V,

whereǫ ≥ 0.

It is easy to see that there does always exist such a bilinear form as
can be seen from the following example.

Example 2.1.bk(ϕ, ψ) = λk(Gk, ϕ)(Gk, ψ), 0 < λ◦ ≤ λ
k ≤ µ0 < +∞, λ◦

large enough.

Example 2.2.bk(ϕ, ψ) = λk||Gk||
2(ϕ, ψ), 0 < λ◦ ≤ λk ≤ µ◦ < +∞.

Cauchy-Schwarz inequality shows that (H5) is satisfied by this and (H6)
is satisfied with∈= 1.

Example 2.3.Let λk > 0 be a number in a fixed interval 0< λ1 ≤ λ
k ≤

µ1 < +∞ then the bi-linear form

bk(ϕ, ψ) = λk||G(uk)||
1+c(ϕ, ψ)

satisfies (H6).

We are now in a position to describe our algorithm.
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Algorithm. Suppose we choose an initial pointu◦ in the algorithm ar-
bitrarily and that we have determineduk for somek ≥ 0. Consider the
linear problem:
(2.1)

to find△kǫV satisfying the linear equation

(H(uk)△k, ϕ) + bk(△k, ϕ) = −(G(uk), ϕ) = −(G(uk), ϕ),∀ϕǫV

Here sinceH(uk) is V-coercive andbk is positive semi-definite on
V:

i.e. (H(uk)ϕ, ϕ) ≥ α||ϕ||2,∀ϕǫV (by (H3))

(with α = α(uk) > 0, a constant) and 77

bk(ϕ, ϕ) ≥ 0 (by (H5) or (H6))

the linear problem (2.1) has a unique solution△kǫV.
Now we set

uk+1 = uk + △k

where△k is the unique solution of the problem (2.1). Clearly, our algo-
rithm depends on the choice of the bilinear formbk(ϕ, ψ). We also see
that if bk ≡ 0 our algorithm is nothing but the classical Newton method
as we have described in the introduction to this section.

We have now the main result of this section.

Theorem 2.1. Suppose J satisfies the hypothesis(H1) - (H4) and bk

satisfy either the hypothesis(H5) or (H6) for each k≥ 0. Then we
have:

(1) The minimization problem:

to find uǫV, J(u) ≤ J(v),∀vǫV has a unique solution.

(2) The sequence uk is well defined by the algorithm.

(3) The sequence uk converges to the solution u of the minimization
problem: ||uk − u|| → 0 as k→ +∞.

(4) There exist constantsγ1 > 0, γ2 > 0 such that

γ1||uk+1 − uk|| ≤ ||uk − u|| ≤ γ2||uk+1 − uk||,∀k.
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(5) The convergence of uk to u is quadratic: there exists a constant
γ3 > 0 such that

||uk+1 − u|| ≤ γ3||uk − u||2,∀k.

In the course of the proof we shall use the notation introduced in the78

previous section:Jk,Gk,Hk,△Jk, · · · respectively denoteJ(uk),G(uk),
H(uk), J(uk) − J(uk+1), · · ·

Proof. We shall carry out the proof in several steps.

Step 1.Let U be the subset ofV:

U = {v|vǫV; J(v) ≤ J(u◦)}.

If there exists a solutionu of the minimization problem thenu nec-
essarily belongs to this setU (irrespective of the choice ofu◦). The set
U is bounded inV. In fact, if it is not bounded then there exists a se-
quenceu j such thatu jǫU, ||u j || → +∞ and hence by (H2) and (H3) J
has a Hessian which is positive definite everywhere. HenceJ is strictly
convex.

The setU is also weakly closed. In fact, ifv jǫU andv j → v in V
then (strict) convexity ofJ implies by Proposition (1.3.1) that we have

J(u◦) ≥ J(v j) ≥ J(v) + (G(v), v j − v)

and hence passing to the limit (sinceG(v) is bounded for allj) it follows
that J(v) ≤ J(u◦) proving thatvǫU, i.e. U is closed (and hence also
weakly).

Now J and U satisfy all the hypothesis of Theorem 2. 2.1 with
χ(t) = αU t and hence it follows that there exists a uniqueuǫU solution
of the minimizing problem forJ. We have already remarked thatu is
unique inV. This proves assertion (1) of the statement.

We have also remarked before the statement of the theorem that the
linear problem (2.1) has a unique solution△k which implies thatuk+1 is
well defined and hence we have the assertion (2) of the statement.
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Step 2.J(v),G(v) andH(v) are bounded on any bounded subsetK of V:
There exists a constantγk > 0 such that79

|J(v)| + ||G(v)|| + ||H(v)|| ≤ γK ,∀vǫK.

In fact letdk = diamK and letwǫK be any fixed point. By (H4) we
have

H(v) ≤ ||H(v) − H(u)|| + ||H(u)|| ≤ βKdK + ||H(u)||

which proves thatH is bounded onK. Then by Taylor’s formula applies
to G gives

||G(v) −G(u)|| ≤ ||H(u+ θ(v− u))||||v− u||.

for some 0< θ < 1. Now if u, vǫK thenu+ θ(v− u) is also in a bounded
setK1 = {w|wǫV, d(w,K) ≤ 2dK} (for, if w = u+ θ(v− u) anduǫK then
||w−a|| = ||u−a+θ(v−u)|| ≤ ||u−a||+ ||v−u|| ≤ 2dK). SinceH is bounded
on K1 it follows thatG is uniformly Lipschitz onK and as aboveG is
also bounded onK. A similar argument provesJ is also bounded onK.

For the sake of simplicity we shall write

α = αU , γ = γU .

Step 3.SupposeukǫU for somek ≥ 0. (This is trivial fork = 0 by the
definition of the setU). Thenuk+1 is also bounded.

For this, takingϕ = △k in (2.1) we get

(2.3) (Hk△k,△k) + bk(△k,△k) = −(Gk,△k).

By using the coercivity ofHk = H(uk) (hypothesis (H3)) and the fact
thatbk(△k,△k) ≥ 0 we get

(2.4) α||△k||
2 ≤ −(Gk,△k).

Then the Cauchy-Schwarz inequality applied to the right hand side of
(2.4) gives

Suppose 0< ℓ < +∞ be such that supuǫU ||G(u)||/α ≤ ℓ (for example 80

we can takeℓ = γ/α) and supposeU1 is the set

(2.5) U1 = {v|vǫV;∃wǫU such that||v− w|| ≤ ℓ}.
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ThenU1 is bounded anduk+1 = uk + △kǫU1.

(2.6) uk+1ǫU1.

We shall in fact show later thatuk+1ǫU itself.

Step 4.Estimate for△Jk from below. By Taylor’s formula we have

(2.7)



Jk+1 = Jk + (Gk,△k) + 1
2(H△k,△k),

where

Hk = H(uk + θ△k) for someθ in 0 < θ < 1.

Replacing (Gk,△k) in (2.7) by (2.3) we have

Jk+1 = Jk − (Hk△k,△k) − bk(△k,△k) +
1
2

(H△k,△k)

= Jk −
1
2

(Hk△k,△k) − bk(△k,△k) +
1
2

((Hk − Hk)△k,△k).

Now usingV-coercivity ofHk (hypothesis (H3)) and the Lipschitz con-
tinuity (hypothesis (H4)) of H on the bounded setU1 we find (since
uk + θ△kǫU1):

Jk+1 ≤ Jk − α/2||△k||
2 − bk(△k,△k) +

1
2
βU1||△k||

3.

Thus setting

(2.8) β = βU1

we obtain

(2.9) α/2||△k||
2
+ bk(△k,△k) −

1
2
β||△k||

3 ≤ △Jk(= Jk − Jk+1).

In particular, sincebk is positive (semi -) definite,

(2.10) α/2||△k||
2(1− β/α||△k||) ≤ △Jk

In the methos of Newton-Rophson we have only (2.10).81
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Step 5.△Jk is bounded below by a positive number: if 0< C < 1 is any
number then we have

(2.11) αC/2||△k||
2 ≤ △Jk.

To prove this we consider two cases:

(i) ||△k|| is sufficiently small, i.e.||△k|| ≤ (1−C)α/β, and

(ii) ||△k|| large, i.e.||△k|| > (1−C)α/β.

If (i) holds then (2.11) is immediate from (2.10). Suppose that (ii) holds.
By hypothesis (H5) and by (2.5):

bk(△k,△k) ≥ λ◦(Gk,△k)
2 ≥ λ◦α

2||△k||
4

Then from (2.9) we can get

α/2||△k||
2
+ λ◦α

2||△k||
4 − β/2||△k||

3 ≤ △Jk

i.e. α/2||△k||
2
+ λ◦α

2||△k||
3(||△k|| − β/(2λ◦)α

2) ≤ △Jk.

If we take

(2.12) λ◦ ≥ β
2/(2α3(1−C))

then we find that||△k|| > (1−C)α/β > β/(2λ◦α2) and hence

(2.13) α/2||△k||
2 ≤ △Jk.

Since 0< C < 1 we again get (2.11) from (2.13). Suppose on the other
hand (ii) holds andbk satisfies (H6) with aλ1 to be determined. Again
from (2.9), (2.5) and hypothesis (H6) we have

α/2||△k||
2
+ λ1||Gk||

1+ǫ ||△k||
2 − β/(2α)||△k||

2||Gk|| ≤ △Jk

i.e. α/2||△k||
2
+ λ1||Gk||||△k||

2(||Gk||
ǫ − β/(2αλ)) ≤ △Jk

Using (ii) together with (2.5) we get 82

α∈(1−C)ǫ

βǫ
α3 ≤ αǫ ||△k||

ǫ ≤ ||Gk||
ǫ



80 3. Minimisation Without Constraints - Algorithms

so that ifα2ǫ(1−C)ǫ/βǫ > β/2αλ1 then we can conclude that

α/2||△k||
2 ≤ △Jk.

This is possible ifλ1 is large enough: i.e. if

(2.14) λ1 = β
1+ǫ/2α1+2ǫ (1−C)ǫ .

As before since 0< C < 1 we find the estimate (2.11) also in this case.

Step 6.Jk = J(uk) is decreasing,uk+1ǫU and ||△k|| → 0 ask → +∞.
The estimate (2.11) shows that

Jk − Jk+1 = △Jk ≥ 0,

which implies thatJk is decreasing. On the other hand, sinceu is the
solution of the minimization problem we have

J(u) ≤ Jk+1 ≤ Jk,

which shows thatuk+1ǫU since J(uk+1) ≤ J(uk) ≤ J(u◦) sinceukǫU.
Thus Jk is a decreasing sequence bounded below (byJ(u)) and hence
converges ask→ +∞.

In particular

△Jk = Jk − Jk+1 ≥ 0 and△Jk→ 0 ask→ +∞.

Then, by (2.11)

(2.15) ||△k|| → 0 ask→ +∞

83

Step 7.The sequenceuk converges (strongly) to u, the solution of the
minimization problem. In fact, we can write by applying Taylor’s for-
mula to (G, ϕ), for ϕǫV,

(Gk, ϕ) = (G(u), ϕ) + (Ĥk(uk − u), ϕ)
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where
Hk = H(u+ θ(uk − u)) for someθϕ in 0 < θ < 1.

But hereG(u) = 0. Now replacing (Gk, ϕ) by using (2.1) defining△k we
obtain

(2.16) (Hk△k, ϕ) + bk(△k, ϕ) = −(Ĥk(uk − u), ϕ), ∀ϕǫV.

We takeϕ = uk − u in (2.16). SinceU is convex and sinceu, ukǫU it
follows thatu+θ(uk−u)ǫU. By the uniformV-coercivity ofH we know
that

(Ĥk(uk − u), uk − u) ≥ α||uk − u||2, α = αu.

Applying Cauchy-Schwarz inequality to the term−(Hk△k, uk − u) and
using the fact thatHk is bounded we get

|(Hk△k, uk − u)| ≤ γu||△k||||uk − u||.

Then (2.16) will give

α||uk − u||2 ≤ γ||△k||||uk − u|| + |bk(△k, uk − u)|.

On the other hand,||G(uk)|| is bounded sinceukǫU. Let d = max(µ◦
||G(uk)||2, µ1||G(uk)||1+ǫ ) < +∞. The hypothesis (H5) or (H6) together
with the last inequality imply

α||uk − u||2 ≤ (γ + d)||△k||||uk − u||,

i.e.

(2.17) ||uk − u|| ≤ (γ + d)/α||△k||

Since||△k|| → 0 ask → +∞ by (2.15) we conclude from (2.17) that84

uk → u ask→ +∞. Next if we takeϕ = △k in (2.16) we get

(Hk△k,△k) + bk(△k,△k) = −(Ĥk(uk − u),△k).

Once again using the facts thatbk is positive semi-definite by (H5) or
(H6) and thatHk is V-coercive by (H3) we see that

α||△k||
2 ≤ ||uk − u||||△k||
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sinceĤk is bounded becauseu+ θ(uk − u)ǫU for anyθ in 0 < θ < 1 i.e.
we have

(2.18) α/γ||△k|| ≤ ||uk − u||.

(2.17) and (2.18) together give the inequalities in the assertion (4) of the
statement withγ1 = α/γ, γ2 = (γ + d)/α.

Step 8.Finally we prove that the convergenceuk → u is quadratic. If
we setδk = uk − u then△k = δk+1 − δk and (2.16) can now be written as

(Hkδk+1, ϕ) + bk(δk+1, ϕ) = (Hkδk, ϕ) + bk(δk, ϕ) − (Ĥkδk, ϕ)

= ((Hk − Ĥk)δk, ϕ) + bk(δk, ϕ).

Here we takeϕ = δk+1. Applying V-coercivity of Hk (hypothesis H3),
using positive semi-definiteness ofbk on the left side and applying
Cauchy-Schwarz inequality to the two terms on the right sidetogether
with the hypothesis (H4) to estimate||Hk − Ĥk|| we obtain

α||δk+1||
2 ≤ ||Hk − Hk||||δk+1|| + |bk(δk, δk+1)|(2.19)

≤ β||δk||
2||δk+1|| + |bk(δk, δk+1)|.

But, by (H5).85

(2.20) |bk(δk, δk+1)| ≤ µ◦||Gk||
2||δk||||δk+1||.

On the other hand, by mean-value property appliedG we have

||Gk −G(u)|| ≤ γ||uk − u||

since for anywǫU, ||U(w)|| ≤ γ. As G(u) = 0 this implies that

(2.21) ||Gk|| ≤ γ||uk − u|| = γ||δk||.

Substituting this in the above inequality (2.19)

α||δk+1||
2 ≤ β||δk||||δk+1|| + µ◦γ

2||δk||
3||δk+1||.
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Now dividing by ||δk+1|| and using the fact that||δk|| = ||uk−u|| ≤ diamU
we get

||δk+1|| ≤ α
−1(β + µ◦γ

2||δk||)||δk||
2

≤ α−1(β + µ◦γ
2diamU)||δk||

2

which is the required assertion (5) of the statement withγ3 = α
−1(β +

µ◦γ
2diamU).
If we had used hypothesis (H6) instead of (H5) to estimate|bk(δk,

δk+1)| we would get

(2.20)′ |bk(δk, δk+1)| ≤ µ1||Gk||
1+ǫ ||δk||||δk+1||

in place of (2.20). Now by (2.19) together with (2.21) gives (exactly by
the same arguments as in the earlier case)

||δk+1|| ≤ α
−1(β + µ1γ

1+ǫ (diamU)ǫ )||δk||
2.

In this case, we can takeγ3 = α
−1(β + µ1γ

1+ǫ (diamU)ǫ ).

This completely proves the theorem. �

We shall conclude this section with remarks. 86

Remark 2.1. In the course of our proof all the hypothesis (H1) - (H5)
or (H6) except (H4) have been used only for elementsv in the bigger
bounded setU while the hypothesis (H4) has been used also for ele-
ments in the bigger bounded setU1.

Remark 2.2.As we have mentioned earlier the proof of Theorem 2.1
given above includes the proof of the classical Newton-Rophson method
if we make the additional hypothesis thatu◦ is close enough tou such
that∀vǫU we have

1
α
||G(u)|| ≤

α

β
d,

d given in ]0, 1[. Then using (2.5), (2.10) becomes

(1− d)
α

3
||△k||

2 ≤ △Jk.
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Remark 2.3.

Example 2.4.Let V = Rn. ThenGkǫ(Rn)′ = Rn. If we represent an
elementϕǫRn as a column matrix

ϕ =



ϕ1
...

ϕn


ǫRn

trhenϕϕt (with matrix multiplication) is a square matrix of order n. In
particularGkGt

k is an (n×n) square matrix. Moreover under the hypoth-
esis we have madeHk + λGkGt

k is a positive definite matrix forλ > 0.
This corresponds tobk(ϕ, ψ) = λ(Gt

kϕ,G
t
kψ)′ = λ(GkGt

kϕ, ψ) and our
linear problem (2.1) is nothing but the system ofn-linear equations

(Hk + λGkG
t
k)△k = −Gk

in n-unknowns△k.

Example 2.5.Simiarly we can takebk(ϕ, ψ) = λ||Gk||
2(ϕ, ψ), and we get

(Hk + λ||Gk||
2I )△k = −Gk.

Example 2.6.We can takebk(ϕ, ψ) = λ||Gk||
1+ǫ (ϕ, ψ) and we get

(Hk + λ||Gk||
1+ǫ I )△k = −Gk

as the corresponding system of linear equations.
87

Remark 2.4.The other algorithms given in this chapter do make use
only of the calculation of the firstG-derivative ofJ while the Newton
method uses the calculation of the second order derivatives(Hessian)
of J. Hence Newton’s method is longer, more expensive economically
than the methods based on algorithms given earlier.
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3 Other Methods

The following are some of the other interesting methods known in the
literature to construct algorithms to approximate solutions of the mini-
mization problems. We shall only mention these.

(a) Conjugate gradient method:One of the algorithms in the class
of these methods is known as Devidon-Fletcher-Powell method.
Here we need to compute theG-derivatives of first order of the
functional to be minimized. This is a very good and very much
used method for any problems. (See [11] and [15]).

(b) Relaxation method:In this method it is not necessary to compute
the derivatives of the functionals. Later on in the next chapter we
shall give relaxation method also when there are constraints. (See
Chapter 4.§4.5).

(c) Rosenbrock method. (See, for instantce, [30]).

(d) Hooke and Jeeves method. (See for instance [30])

Also for these two methods we need not compute the derivatives of func-
tionals. They use suitable local variations.





Chapter 4

Minimization with
Constraints - Algorithms

We have discussded the existence and uniqueness results forsolutions 88

of the minimization problems for convex functionals on closed convex
subsets of a Hilbert space. This chapter will be devoted to give algo-
rithm for the construction of minimizing sequences for solutions of this
problem. We shall describe only a few methods in this direction and we
prove that such an algorithm is convergent.

1 Linearization Method

The problem of minimization of a functional on a convex set isalso
some-times referred as the problem of (non-linear) programming. If the
functional is convex the programming problem is call convexprogram-
ming.

The main idea of the method we shall describe in this section con-
sists in reducing at each stage of iteration the problem of non-linear
convex programming to one of linear programming in one more vari-
able i.e. to a problem of minimizing a linear functional on a convex
set defined by linear constraints. However, when we reduce tothis case
we may not have coercivity. However, if we know that the convex set
defined this way by linear constraints is bounded then we haveseen in

87
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Chapter 2 that the linear programming problem has a solution(which is
not necessarily unique).

Then the solution of such a linear programming problem is used to
obtain convergent choices ofw andρ.

Let V be a Hilbert space andK a closed subset ofV. We shall pre-
scribe some of the constraints of the problem by giving a finite number
of convex functionals

Ji : V ∋ v 7→ Ji(v)ǫR, i = 1, · · · , k,

and we define a subsetU of K by89

U = {v|vǫK, Ji (v) ≤ 0, i = 1, · · · , }

ThenU is again a convex set inV. If v, v′ǫU thenv, v′ǫK and (1−
θ)v + θv′ǫK for any 0≤ θ ≤ 1 sinceK is convex. NowJi(i = 1, · · · , k)
being convex we have

Ji((1− θ)v+ θv
′) ≤ (1− θ)Ji(v) + θJi(v

′) ≤ 0, i = 1, · · · , k.

We note that in practice, the convex setK contains (i.e. is defined
by) all the constraints which need not be linearized and the constraints
to be linearized asre theJi(i = 1, · · · , k).

Suppose now
J◦ : v ∋ V → J◦(v)ǫR

is a convex functional onV. We consider the minimization problem:

Problem 1.1.To find uǫU, J◦(u) ≤ J◦(v),∀vǫU. We assume thatJ◦, J1,

. . . , Jk satisfy the following hypothesis:
Hypothesis on J◦ : (HJ)◦.

(1) J◦(v) → +∞ as||v|| → +∞

(2) J◦ is regular:J◦ is twice differentiable everywhere

in V and has a gradientG◦ and a hessianH◦ everywhere inV
which are bounded on bounded subsets: for every bounded setU1

of V there exists a constantMU1 > 0 such that

||G◦(v)|| + ||H◦(v)|| ≤ MU1∀vǫU1.
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(3)◦ H◦ is uniformly V-coercive on bounded subsets ofV: for every
bounded subsetU1 of V there exists a constantαU1 > 0 such that

(H◦(v)ϕ, ϕ) ≥ αU1||ϕ||
2 ∀ϕǫV and∀vǫU1.

90
Hypothesis onJi .(HJ)i :

(1)i Ji is regular :Ji is twiceG-differentiable everywhere inV and has
a gradientGi and a hessianHi bounded on bounded sets ofV: for
every bounded setU1 of V there exists a constantMU1 > 0 such
that

||Gi(v)|| + ||Hi(v)|| ≤ MU1 ∀vǫU1, i = 1, · · · , k.

(2)i Hi(v) is positive semi-definite:

(Hi(v)ϕ, ϕ) ≥ 0 ∀ϕǫV(∀vǫU1).

Hypothesis onK.(HK): There exists and elementZǫK such thatJi(Z) <
0 for all i = 1, · · · , k.

The hypothesis (HK) in particular implies thatU , φ.

In order to describe the algorithm letu◦ǫU be the initial point (ar-
bitrarily fixed) of the algorithm. In view of the hypothesis (HJ)◦(1) we
may, without loss of generality, assume thatU is bounded since other-
wise we can restrict ourselves to the set

{vǫU; J◦(v) ≤ J◦(u)}

which is bounded by (HJ)i(1). So in the rest of our discussion we as-
sumeU to be bounded.

Next, by hypothesis (HJ)i(1), the bounded convex setU is also
closed. In fact, ifvnǫU andvn → v then sinceK is closed,vǫK. More-
over, by the mean value properly applied toJi(i = 1, · · · , k) we have

|Ji(vn) − Ji(v)| ≤ ||Gi ||||vn − v||

so thatJi(vn)→ Ji(v) and henceJi(v) ≤ 0 for i = 1, · · · , k i.e. vǫU.
Let V be a bounded closed convex subset ofV which satisfies the 91
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condition: there exist two numbersr > 0 andd > 0, ehich will be
chosen suitably later on, such that

B(0, r) ⊂ V ⊂ B(0, d)

whereB(0, t) denotes the ball{vǫV|||v|| < t} in V(t = r, d). Consider the
set

U1 = {v|vǫV;∃wǫU such that||v− w|| ≤ d}.

SinceU is bounded the setU1 is also bounded andU1 ⊃ U. In the
hypothesis (HJ)◦ and (HJ)i we shall use only the bounded setU1.

We shall use the following notation :Ji(um),Hi(um) will be respec-
tively denoted byJm

i ,G
m
i ,H

m
i for i = 0, 1, · · · , k and allm≥ 0.

Now suppose that starting fromu◦ǫU we have constructedum. We
wish to give an algorithm to obtainum+1. For this purpose we consider
a linear programming problem.

A linear programming problem: Let Um denote subset ofU ×R defined
as the set of all (z, σ)ǫU × R satisfying



z− umǫV ,

(Gm
◦ , z− um) + σ ≤ 0, and

Jm
i + (Gm

i , z− um) + σ ≤ 0 for i = 1, · · · , k.

It is easy to see thatUm is a nonempty closed convex bounded set:
In fact, (z, σ) = (um, 0)ǫUm so thatUm , φ. If (z, σ)ǫUm then since
z−umǫV, which is a bounded set it follows that z is bounded. Then using
the other two inequalities in (1.1) it follows thatσ is also bounded. If
(zj , σ j)ǫUm and (zj , σ j) → (z, σ) in U × R then sinceU is closedzǫU
and hence (z, σ)ǫU × R. Again sinceV is closed (z− um)ǫV . By the
continuity of the (affine) functions

(z, σ) 7→ Jm
i + (Gm

i , z− um) + σ

(z, σ) 7→ (Gm
◦ , z− um) + σ

we find that92

Jm
i + (Gm

i , z− um) + σ ≤ 0, (Gm
◦ , z− um) + σ ≤ 0.
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Finally to prove the convexity, let (z, σ), (z′, σ′)ǫUm. Then, for any,
0 ≤ θ ≤ 1,

(1− θ)z+ θz′ − um = (1− θ)(z− um) + θ(z′ − um)ǫV

sinceV is convex. Moreover, we also have

(Gm
◦ , (1− θ)z+ θz

′ − um) + (1− θ)σ + θσ′

= (1− θ)[(Gm
◦ , z− um) + σ] + θ[(Gm

◦ , z
′ − um) + σ′] ≤ 0

and similarly

Jm
i + (Gm

i , (−θ)z+ θz
′ − um) + (1− θ)σ + θσ′ ≤ 0.

Next we consider the functionalg : V×R→ R given byg(z, σ) = σ
and the linear programming problem :

(Pm) : to find (zm, σm)ǫUm such thatg(zm, σm) ≥ g(z, σ),∀(z, σ)ǫUm.
i.e.

Problem Pm: To find (zm, σm)ǫUm such that

(1.2) σ ≤ σm for all (z, σ)ǫUm.

By the results of Chapter 2 we know that the ProblemPm has a
solution (not necessarily unique).

We are now in a position to formulate our algorithm for the con-
struction ofum+1.

Algorithm. Suppose we have determinedum starting fromu◦. Then we 93

take a solution (zm, σm) of the linear programming Problem (Pm). We
set

(1.3) wm = (zm − um)/||zm − um||

and

(1.4) ρℓm = max{ρǫR, um + ρwmǫU}.

We shall prove later on thatwm is a direction of descent. We can
define the notions of convergent choices ofwm andρ in the same way
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as in Chapter 3, Section 1 for the functionalJ◦. We shall therefore not
repeat these definitions here.

Let ρc
m be a convergent choice ofρ for the construction of the mini-

mizing sequence forJ◦ without constraints. We define

(1.5) ρm = min(ρc
m, ρ

ℓ
m)

and we set

(1.6) um+1 = um + ρmwm.

The following is the main result of this section.

Theorem 1.1. Suppose that convex set K and the functionals J◦, J1,

. . . , Jk satisfy the hypothesis(HK) and (HJ)i , i = 0, 1, · · · , k. Suppose
(1) the Problem (1.1) has a unique solution and (2) um→ u as m→ +∞.

Then the algorithm described above to determineum+1 from um is
convergent.

i.e. If uǫU is the unique solution of the Problem (1.1) and ifum is a
sequence given by the above algorithm thenJ(um)→ J(u) asm→ +∞.

For this it will be necessary to prove thatwm is a direction of descent
andwm, ρm are convergent choices.

The following two lemmas are crucial for our proof of the Theorem94

1.1.
Let uǫU be the unique solution of the Problem 1.1

Lemma 1.1. Let the hypothesis of Theorem 1.1 be satisfied. If, for some
m≥ 0we have J◦(u) < J◦(um) then there exists an element(ym, ǫm) ∈ Um

such thatǫm > 0.

Proof. Let um ∈ U be such thatJ◦(u) < J◦(um). We first consider the
case whereZ , u,Z being the point ofK given in hypothesis (HK). We
introduce two real numbersℓm, ℓ

′
m such that

J◦(u) < ℓ′m < ℓm ≤ J◦(um) andℓ′m < J◦(Z).

�
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Let I ≡ I (u,Z) denote the segment inV joining u andZ, i.e.

I = {w|wǫV; w = (1− θ)u+ θZ, 0 ≤ θ ≤ 1}

Sinceu, Z belong to the convex setU we haveI ⊂ U.
On the other hand, ifcǫR is any constant then the set

J◦c = {vǫU; J◦(v) ≤ c}

is convex and closed. For, ifv, v′ǫJ◦c then for any, 0≤ λ ≤ 1,

J◦((1− λ)v+ λv′) ≤ (1− λ)J◦(v) + λJ◦(v
′) ≤ c

by the convexity ofJ◦ and (1− λ)v + λv′ǫU sinceU is convex. To see
that it is closed, letv j ∈ J◦c be a sequence such thatv j → v in V. Since
U is closedv ∈ U. Moreover, by mean value property forJ◦

|J◦(v j) − J◦(v)| ≤ MU ||v j − v|| ≤ MU1||v j − v||

by Hypothesis (HJ)◦(2) so thatJ◦(v j) → J◦(v) as j → +∞. Hence
J◦(v) ≤ c i.e. v ∈ J◦c.

Now by the choice ofℓ]m, uǫI ∩ J◦ℓ′m and henceI◦ ≡ I ∩ J◦ℓ′m , φ. 95

It is clearly closed and bounded.I◦ being a closed bounded subset of a
compact setI is itself compact.

Now the functiong : I◦ → R defined byg = J◦/I◦ is continuous: In
fact, if w,w′ǫI◦ then by the mean value property applies toJ◦ gives

|g(w) − g(w′)| = |J◦(w) − J◦(w
′)| ≤ MU1||w− w′||

by hypothesis (HJ)◦(2). Moreover, by the very definition of the set
I◦ ⊂ J◦,ℓ′m we have

|g(w)| ≤ ℓ′m.

Hence g attains its maximum inI◦ i.e. There exists a pointymǫI◦
such thatg(ym) = J◦(ym) = ℓ′m. i.e. there exists aθm, 0 ≤ θ < 1 such that

ym = (1− θm)u+ θmZ, J◦(ym) = ℓ′m.

SinceJ◦(u) < ℓ′m we see thatym , u and thereforeθm , 0. i.e.
0 < θm < 1.
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Next we show thatJi(ym) < 0 for all i = 1, · · · , k. In fact, sinceJi is
convex and has a gradientGi we know from Proposition 3.1 of Chapter
1 that

Ji(ym) ≥ Jm
i + (Gm

i , ym − um)

and we also have

Ji(ym) ≤ (1− θm)Ji(u) + θmJi(Z) < 0

since 0< θm < 1 andJi(Z) < 0.
Similarly, by convexity ofJ◦ we get

ℓ′m = J◦(ym) ≥ Jm
◦ + (Gm

◦ , ym − um) ≥ ℓm+ (Gm
◦ , ym − um)

i.e. (Gm
◦ , ym − um) ≤ ℓ′m− ℓm < 0 by the choice ofℓm, ℓ

′
m

We can now take96

∈m= min{ℓm− ℓ
′
m,−J1(ym), · · · ,−Jk(ym)} > 0.

Then it follows immediately that (ym, ǫm) ∈ Um andǫm > 0.
We now consider the caseu = Z. Then we can takeym = Z = u and

henceJi(ym) = Ji(u) = Ji(Z) < 0. It is enough to take

∈m= min{J◦(um) − J◦(u),−Jt(Z), · · · ,−Jk(Z)} > 0.

If we now taker > 0 sufficiently large thenym − um ∈ V . This is
possible since bothym andum are in bounded sets:

||ym|| ≤ (1− θm)||u|| + θm||Z|| ≤ ||u|| + ||Z||

so that
||ym − um|| ≤ ||ym|| + ||um|| ≤ ||u|| + ||Z|| + ||um||.

It is enough to taker > ||u|| + ||Z|| + ||um|| > 0. Thus (ym, cm) ∈ V .

Corollary 1.1. Under the assumptions of Lemma 1.1 there exists a
strongly admissible direction of descent at Um for the domain U.
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Proof. By Lemma 1.1 there exists an element (ym, ǫm) ∈ Um such that
ǫm > 0. On the other hand, let (zm, σm) be a solution inUm of the Linear
programming problem (Pm). Then necessarilyσm ≥ ǫm > 0 and we can
write

(1.7)



zm − umǫV , zmǫU

Jm
i + (Gm

i , zm − um) + ǫm ≤ Jm
i + (Gm

i , zm − um) + σm ≤ 0

(Gm
◦ , zm − um) + ǫm ≤ (Gm

◦ , zm − um) + σm ≤ 0

Thus we have

(1.8) (Gm
◦ , zm − um) ≤ −ǫm < 0,

and hence 97

(1.9) wm = (zm − um)/||zm − um||

is a direction of descent. It is strongly admissible sinceU is convex and
we can take any sequence of numbersǫ j > 0, ǫ j → 0. �

Lemma 1.2. Let the hypothesis of Theorem 1.1 hold and, for some
m ≥ 0, J◦(u) < J◦(um). If (zm, σm)ǫUm is a solution of the linear pro-
gramming problem(Pm) then there exists a numberµm > 0 depending
only onǫm of Lemma 1.1 such that

(1.10) um+ ρ(zm − um)ǫU for all 0 ≤ ρ ≤ µm.

Furthermore,
(Gm
◦ , zm− um) < 0.

Proof. We have alredy shown the last assertion in the Corollary 1.1 and
therefore we have to prove the existence ofµm such that (1.10) holds.
For this purpose, ifρ > 0, we get on applying Taylor’s formula to each
Ji(i = 1, · · · , k):
(1.11)

Ji(um+ ρ(zm− um)) = Jm
i + ρ(Gm

i , zm− um)+
1
2
ρ2(H

m
i (zm− um), zm− um)

where

H
m
i = Hm

i (um + ρ
′(zm − um)) for some 0< ρ′ < ρ.

�
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Here, sincezm−umǫV , ||zm−um|| < d and henceum+ρ
′(zm−um), (0 <

ρ′ < ρ) belongs toU1 if we assumeρ ≤ 1. ||H
m
i || is bounded byMU1 and

so we get

(1.12) Ji(um + ρ(zm − um)) ≤ Jm
i + ρ(Gm

i , zm− um) +
1
2

Mρ2d2.

Thus if we find aµm > 0 such that 0< ρ < µm implies the right
hand side of this last inequality is≤ 0 forall i = 1, · · · , k then um +98

ρ(zm − um)ǫU.
Using the first inequality (1.7) to replace the term (Gm

i , zm − um) in
(1.12) we get

(1.13) Ji(um + ρ(zm − um)) ≤ Jm
i + ρ(−Jm

i − ǫm) +
1
2
ρ2Md2.

The second degree polynomial on the right side of (1.13) vanishes
for

(1.14) ρ = ρm
i = [(Jm

i + ǫm) + {(Jm
i + ǫm)2 − 2Md2Jm

i }
1
2 ]/Md2.

Moreover the right side of (1.13) is smaller than

Jm
i + ρ(−Jm

i ) +
1
2
ρ2Md2

sinceǫm > 0,ρ > 0 and this last expression decreases asρ > 0 decreases
as−Jm

i = −Ji(um) ≤ 0. Then it follows that, if 0< ρ ≤ ρm
i , we have

Ji(um + ρ(zm − um)) ≤ 0.

We can now takeµm = min(ρm
1 , · · · , ρ

m
k ) also that we will have

Ji(um + ρ(zm − um)) ≤ 0 for all 0< ρ ≤ µm andi = 1, · · · , k

But each of theρm
i gives by (1.14) depend onJm

i and hence onum.
In order to get aµ > 0 independent ofum and dependent only onǫm we
can proceed as follows. If we set

(1.15) ϕ(y) = [(y+ ǫm) + {(y+ ǫm)2 − 2Md2y}
1
2 ]/Md2
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for y ≤ 0 then, sincey = Ji(um) = Jm
i ≤ 0, we can write

ρm
i = ϕ(Jm

i ).

It is easily checked that the functionϕ :] −∞, 0] → R is continuous,
ϕ(y) > 0 for all y ≤ 0 and lim

y→−∞
ϕ(y) = 1. Hence inf

y≤0
ϕ(y) = η(ǫm) exists

andη(ǫm) > 0. 99

We chooseµm = η(ǫm). Then, if 0 < ρ ≤ µm ≤ ρm
i for eachi =

1, · · · , k given by (1.14) and consequently, for any suchρ > 0, um +

ρ(xm− um)ǫU.
We are niw in a position to prove Theorem 1.1

Proof of Theorem 1.1.We recall that (zm, σm)ǫUm is a solution of the
linear programming problem (Pm) and

wm = (zm − um)/||zm − um||,

ρm = min(ρℓm, ρ
c
m),

um+1 = um + ρmwm.

ThenJ◦(um) is a decreasing sequence. In fact, ifρm = ρc
m then by

definition ofρc
m we haveJ◦(um+1) ≤ J◦(um). Supposeρm = ρℓm < ρc

m.
If J◦(um + ρ

c
mwm) ≤ J◦(um + ρ

c
mwm) there is nothing to prove. So we

assumeJρm
◦ > Jρm

◦ . Consider the convex functionρ 7→ J(um + ρwm) in
[0, ρc

m]. It attains its minimum atρ = ρminǫ]0, ρc
m[. Then 0≤ ρm ≤ ρmin.

In fact, if ρmin < ρm < ρc
m then sinceJ◦, being convex, is increasing in

[ρmin, ρ
c
m] we haveJρ

c
m
◦ ≤ Jρ

c

m contradicting our assumption. Once again
sinceJ◦ is convexJ◦ is decreasing in [0, ρmin]. HenceJm

◦ = J◦(um) ≥
Jρm
◦ = J◦(um+1). Since we know that there exists a (unique) solutionu

of the minimizing problem 1.1 we haveJ◦(um) ≥ J◦(u),∀m ≥ 0. Thus
J◦(um), being a decreasing sequence bounded below, is convergent. Let
ℓ = lim

m→+∞
J◦(um). Clearlyℓ ≥ J◦(u). Then there are two possible cases:

(1) ℓ = J◦(u) and

(2) ℓ > J◦(u).
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Case (1). SupposeJ◦(um) → ℓ = J◦(u). Then, for anym ≥ 0, we
have by Taylor’s formula :

J◦(um) = J◦(u) + (G◦(u), um − u) +
1
2

(Hm(um − u), um − u).

where100

Hm = H◦(u+ θ(um − u)) for some 0< θ < 1

Sinceu, um ∈ U (which is convex),u + θ(um − u) ∈ U ofr any
0 < θ < 1 and hence by hypothesis (HJ)◦(3)

(Hm(um − u), um − u) ≥ α||um − u||2, α = αU1 > 0.

Moreover, sinceJ◦ is convex, we have by Theorem 2.2 of Chapter 2

(G◦(u), um − u) ≥ 0.

Thus we find that

J◦(um) ≥ J◦ +
1
2
α||um − u||2

i.e. ||um − u||2 ≤ 2/α(J◦(um) − J◦(u)).

SinceJ◦(um) → J◦(u) asm→ +∞ it then follows thatum → u as
m→ +∞.

Case(2). We shall prove that this case cannot occur. Suppose, if
possible, letJ◦(u) < ℓ ≤ J◦(um),∀m ≥ 0. We shall show that the
choices ofwm andρm are convergent for the problem of minimization
of J◦ without constraints. i.e. the sequenceum constructed using our
algorithm tends to an absolute minimum ofJ◦ in V which will be a
contradiction to our assumption.

wm is a convergent choice. For this we introduce, as in the proof of
Lemma 1.1 another real numberℓ′ such that

J◦(u) < ℓ′ < ℓ ≤ J◦(um),∀m≥ 0.

Then the proof of Lemma 1.1 gives the existence of (y, ǫ) ∈ Um with
ǫm =∈> 0∀m≥ 0. On the other hand, (zm, σm) ∈ Um being a solution of101
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the linear programming problem (Pm) we haveσm ≥∈> 0. Hence from
(1.7) we get

(1.16)


(Gm
◦ , zm − um) + ǫ ≤ 0,

Jm
i + (Gm

i , zm− um) + ǫ ≤ 0.

From the first inequality here together with the Cauchy-Schwarz in-
equality gives

−||Gm
◦ ||||zm − um|| ≤ (Gm

◦ , zm− um) ≤ −ǫ

i.e. ǫ ≤ ||Gm
◦ ||||zm − um|| ≤ M||zm− um||,M = MU1,

using hypothesis (HJ)◦(2). So we have

(1.17) ||zm − um|| ≥ ǫ/M > 0.

By Lemma 1.2 there exists aµ = η(ǫ) > 0 such that

(1.10) um + ρ(zm − um) ∈ U if 0 ≤ ρ < η(ǫ).

If we denote byρ, ρ = ρ||(zm − um)|| then this is equivalent to saying
that

um + ρwm ∈ U if 0 ≤ ρ < η(ǫ)||zm − um||.

Then, in view of (1.17), 0≤ ρ < ǫη(c)/M implies 0≤ ρ < η(c)||zm−

um|| and hence

um + ρwm ∈ U for all 0 ≤ ρǫη(ǫ)/M,

which means that
ρℓm ≥ ǫη(c)/M.

Once again from (1.16) we have

(Gm
◦ ,wm) ≤ −ǫ/||zm − um|| ≤ −ǫ/d

becausezm− um ∈ V by (1.1) meancs that||zm− um|| ≤ d. Since||Gm
◦ || ≤

M we obtain

(Gm
◦ /||G

m
◦ ||,wm) ≤ −ǫ/d||Gm

◦ ||(≤ −ǫ/Md).
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102

Takingǫ > 0 small enough we conclude that
(Gm
◦ /||G

m
◦ ||,wm) ≤ −C1 < 0, 1 ≥ C1 > 0 being a constant. This

is nothig but saying that the choice ofwm is convergent for the mini-
mization problem without constraints byw-Algorithm 1 of Section 1.2
of Chapter 3.

ρm is a convergent choice. Sinceρm = min(ρℓm, ρ
c
m) we consider two

possible cases

(a) If ρm = ρ
c
m then there is nothing to prove.

(b) Supposeρm = ρ
ℓ
m. We shall that this choice ofρm is also a con-

vergent choice. For this letc2 be a constant such that 0< c2 ≤

ρm = ρ
ℓ
m ≤ ρ

c
m.

Then 0< ρm/ρ
c
m ≤ 1 and we can write

um+1 = um + ρmwm = (1− ρm/ρ
c
m)um + ρm/ρ

c
m(um + ρ

c
mwm).

The convexity ofJ◦ then implies that

J◦(um+1) ≤ (1− ρm/ρ
c
m)J(um) + ρm/ρ

c
mJ◦(um + ρ

c
mwm).

Hence we obtain

△Jρm
◦ = J◦(um) − J◦(um + ρmwm) = J◦(um) − J◦(um+1)

≥ ρm/ρ
c
m(J◦(um) − J◦(um + ρ

c
mwm))

i.e.

(1.18) △Jρm
◦ ≥ ρm/ρ

c
m△Jρ

c
m
◦

We note thatρc
m is necessarily bounded above for anym ≥ 0. For

otherwise since, we find from triangle ineuality that

||um + ρ
c
mwm|| ≥ ρ

c
m||wm|| − ||um|| = ρ

c
m− ||um||.

um+ ρ
c
mwm would be unbounded. Then by Hypothesis (HJ◦)(1)J◦(um+103
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ρc
mwm) would also be unbounded. This is not possible by the definition

of convergent choice ofρc
m.

Let C3 be a constant such that 0< ρc
m ≤ C3 for all m ≥ 0. Then

(1.18) will give

(1.19) △Jρm
◦ ≥ C2/C3△Jρ

c
m
◦

Hence if△Jρm
◦ → 0 then△Jρ

c
m
◦ → 0 by (1.19). By the definition of

ρc
m (as a convergent choice ofρ) we have

(Gm,wm)→ 0 asm→ +∞

which means thatρm is also a convergent choice ofρ.
Finally, since the choices ofρm,wm are both convergent for the min-

imization problem without constraints forJ◦ we conclude using the re-
sults of Chapter 3 thatum → ũ whereũ is the global minimum forJ◦
(which exists and is unique by results of Chapter 2, Theorem 2.1 of
Section 2 ). Thus we have

J◦(̃u) ≤ J◦(u) < ℓ ≤ J◦(um)

andJ◦(um)→ J◦(̃u)

which is impossible and hence the case (2) cannot therefore occur.
This proves the theorem completely.
We shall conclude this section with some remarks.

Remark 1.1.A special case of our algorithm was given a long time ago
by Franck and Wolfe [17] in the absence of the constraintsJi which we
have linearized. More precisely they considered the following problem:

Let J◦ be a convex quadratic functional on a Hilbert spaceV andK
be a closed convex subset with non-empty interior. Then the problem is 104

to give an algorithm for finding a minimizing sequenceum for

uǫK, J◦(u) = inf
vǫK

J◦(v).
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The corresponding linear programming problem in this case will be
the following:


Um = Km = {(z, σ)ǫK × R(Gm

◦ , z− um) + σ ≤ 0},

To find (zm, σm)ǫKm such thatσm = max(z,σ)ǫKm σ.

SinceK itself can be assumed bounded using hypothesis (HJ)◦(1)
there is no need to introduce the bounded setV. Whenz= zm we have

(Gm
◦ , zm − um) + σ ≤ (Gm

◦ , zm− um) + σm ≤ 0 ∀σǫR

i.e. min(Gm
◦ , zm− um) + σ < 0.

The algorithm given by Franck and Wolfe was the first convex pro-
gramming algorithm in the literature.

Remark 1.2.Our algorithm is a special case of a more general method
known as Feasible direction method found by Zoutendjik [52].

Remark 1.3.We can repeat our method to give a slightly different al-
gorithm in the choice ofzm as follows. We modify the setUm used in
the linear programming problem (Pm) by introducing certain parameters
γ◦, γ1, · · · , γk with σ. More precisely, we replace (1.1) by

(1.1)′



z− umǫV

(Gm
◦ , z− um) + γ◦σ ≤ 0, and

Jm
i + (Gm

i , z− um) + γiσ ≤ 0 for i = 1, · · · , k,

whereγ◦, γ1, · · · , γk are certain suitably chosen parameters. This modi-
fied algorithm is useful when the curvature of the setU is small.105

Remark 1.4.Suppose, in pur problem 1.1, some contraintJi is such
that Ji(um) = Jm

i is “sufficiently negative” at some stage of the iteration
(i.e. for somem≥ 0). SinceJi is regular thenJi(v) ≤ 0 in a sufficiently
small” ball with centre atum. This can be seen explicitely using Taylor’s
formula. Thus we can ignore the constraintJi in the formulation of our
problem i.e. in the definition of the setU.
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Remark 1.5.The algorithm described in this section is not often used
for minimizing problems arising from partial differential equation be-
cause the linear programming problem to be solved at each stage will be
very large in this case. Hence our method will be expensive for numeri-
cal calculations for problems in partial diffeerential equation.

2 Centre Method

In this section we shall briefly sketch another algorithm to construct
minimizing sequences for the minimizing problem for convexfunction-
als on a finite dimensional space under constraints defined bya finite
number of concave functionals. However we shall not prove the conver-
gence of this algorithm. The main idea here is that at each step of the
iteration we reduce the problem with constraints to one of a non-linear
programming without contraints. An advantage with this method is that
we do not use any regularity properties (i.e. existence of derivatives) of
the functionals involved.

Let V = Rr and let

Ji : Rr → R, i = 1, · · · , k,

be continuous concave functionals (i.e.−Ji are convex functionals). We
define a setU by

U = {v|vǫRr , Ji(v) ≥ 0 for all i = 1, · · · , k}.

106

Since−Ji are convex as in the previous section we see immediatly
thatU is a convex set.

Suppose given a functionalJ◦ : Rr → R satisfying:

(1) J◦ is continuous,

(2) J◦ is strictly convex and

(3) J◦(v)→ +∞ as||v|| → +∞.
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We consider the following

Problem 2.1.To finduǫU such that

J◦(u) ≤ J◦(v) for all vǫU.

As usual, in view of the hypothesis (3) onJ◦, we may without loss
of generality assume thatU is bounded. We can describe the algorithm
as follows.

Let u◦ǫU be an initial point, arbitrarily fixed inU.
We shall find in our algorithm a sequence of triplets (um, u′m, ℓm)

where for eachm ≥ 0, um, u′mǫU andℓm is a sequence of real numbers
such thatℓm ≥ ℓm+1 ∀m andℓm ≥ J◦(u′m).

We take at the beginning of the algorithm the triple (u◦, u′◦, ℓ◦) where
u′◦ = u◦, ℓ◦ = J◦(u◦)

Suppose we have determined (um, u′m, ℓm). To determine the next
triplet (um+1, u′m+1, ℓm+1) we proceed in the following manner.

Consider the subsetUm of U given by

(2.1) Um = {v|VǫU, J◦(v) ≤ ℓm}.

SinceJ◦ is convex and continuous it follows immediately thatUm is
a bounded convex closed set inRr . HenceUm is a compact convex set
in Rr .

We define a functionϕm : Rr → R by setting.107

(2.2) ϕm(v) = (ℓm− J◦(v))
k∏

i=1

Ji(v).

The continuity of the functionalsJ◦, J1, · · · , Jk immediatly imply
thatϕm is also a continuous function. Moreover,ϕm has the properties
of distance from the boundary ofUm. i.e.

(i) ϕm(v) ≥ 0 for vǫUm.

(ii) ϕm(v) = 0 if v belongs to the boundary ofUm. i.e. For anyv on
any one of the (k + 1) -level surfaces defined by the equations
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J◦(v) = ℓm, J1(v) = 0, · · · , Jk(v) = 0

we have
ϕm(v) = 0.

Now sinceUm is a compact convex set inRr andϕm is continuous
it attains a maximum inUm. J◦ being strictly convex this maximum is
unique as can easily be checked.

We takeum+1 as the solution of the maximizing problem:

Problem 2.2m. um+1ǫUm such thatϕm(um+1) ≥ ϕm(v),∀vǫUm.
Now supposeu′mǫUm so thatJ◦(u′m) ≤ ℓm. This is true by assumption

at the beginning of the algorithm (i.e. whenm= 0). Henceϕm(u′m) ≥ 0.
We take a pointu′m+1 such that

(2.3) u′m+1ǫUm andJ◦(u
′
m+1) ≤ J◦(um+1).

It is clear that such a point exists since we can takeu′m+1 = um+1.
However we shall chooseum+1 as follows: Consider the lineΛ(u′m, um+1)
joining u′m andum+1. We take foru′m+1 the point inUm such that

(2.4)


u′m+1ǫλ(u′m.um+1) ∩ ∂Um,

andJ◦(u′m+1) ≤ J◦(um+1).
108

Now we have onlyu to chooseℓm+1. For this, letrm be a sequence
of real numbers such that

(2.5) 0< α ≤ rm ≤ 1, whereα > 0 is a fixed constant.

We fix such a sequence arbitrarily in the beginning of the algorithm.
We defineℓm+1 by

(2.6) ℓm+1 = ℓm − rm(ℓm − J◦(u
′
m+1)).

It is clear thatℓm+1 ≤ ℓm and thatℓm+1 ≥ J◦(u′m+1). Thus we can
state our algotrithm as follows:

Algorithm. Let u◦ǫU be an arbitrarily fixed initial point. We deter-
mine a sequence of triplets (um, u′m, ℓm) starting from (u◦, u◦, J◦(u◦)) as
follows: Let (um, u′m, ℓm) be given. Than (um+1, u′m+1, ℓm+1) is given by
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(a) um+1ǫUm is the unique solution of the Problem 2.2m.

(b) u′m+1ǫUm is given by (2.4).

(c) ℓm+1 is determined by (2.6).

Once again we can prove the convergence of this algorithm.

Remark 2.1.The maximization problem 2.2m at each step of the itera-
tion is a non-linear programming problem without constraints. For the
soultion of such a problem we can use any of the algorithms described
in Chapter 3.

Remark 2.2.Since the functionϕm which is maximized at each step has
the properties of a distance function from the boundary of the domian

Um and is≥ 0 in Um, ϕm > 0 in
◦

Um andϕm = 0 onUm the maximum is

attained in the interior
◦

Um of Um. This is the reason for the nomenclature109

of the algorithm as the Centre method. (See also [45]).

Remark 2.3.The algorithm of the centre method was first given by
Huard [25] and it was improved later on, in particular, by Tr´emoliéres
[45].

Remark 2.4.This method is once again not usded for functionalsJ◦
arising from problems for partial differential equations.

3 Method of Gradient and Prohection

We shall describe here a fairly simple type of algorithm for the min-
imization probelm for a regular convex functional on a closed convex
subset of a Hilbert space. In this method we suppose that it iseasy to
find numerically projections onto closed convex subsets. Ateach step
to construct the next iterate first we use a gradient method, as developed
in Chapter 3, for the minimization problem without constraints and then
we project on to the given convex set. “In the dual problem” which we
shall study in Chapter 5 it is numerically easy to compute projections
onto closed convex subsets and hence this method will be usedthere
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for a probelm for which the convex set is defined by certain constraints
which we shall call dual constraints.

Let K be a closed convex subset of a Hilbert spaceV andJ : V → R
be a functional onV. We make the following hypothesis onK andJ.

(H1) K is a bounded closed convex set inV.

(H2) J is regular inV: J is twiceG-differentiable everywhere inV and
has a gradientG(u) and hessianH(u) everywhere inV. Moreover,
there exists a constantM > 0 such that

||H(u)|| ≤ M,∀uǫK.

(H3) H is uniformly coercive onK: there exists a constantα > 0 such
that

(H(u)ϕ, ϕ) ≥ α||ϕ||2,∀ϕǫV anduǫK.

110

We note that the hypothesis of bounededness in (H1) can be replaced
by

(H1)′ J(v)→ +∞ as||v|| → +∞.

Then we can fix au◦ǫK arbitrarily and restict our attention to the
bounded closed convex set

K ∩ {v|vǫV; J(v) ≤ J(u◦)}.

The hypothesis (H3) implies thatJ is strongly convex. The hypothe-
sis (H2) implies that the gradientG(u) is uniformly Lipschitz continuous
on K and we have

(3.1) ||G(u) −G(v)|| ≤ M||u− v||,∀u, vǫK.

We now consider the problem :

Problem 3.1.To finduǫK such thatJ(u) ≤ J(v), ∀vǫK.
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Algorithm. Let u◦ ∈ K be an arbitrarily fixed initial point of the algo-
rithm and letP : V → K be the projection ofV onto the bounded closed
convex setK.

Supposeum is determined in the algorithm. The we define, forρ > 0,

(3.2) um+1 = P(um− ρG(um)).

Then we have the following

Theorem 3.1. Under the hypothesis(H1)− (H3) the Problem (3.1) has
a unique solution u and um→ u as m→ +∞.

This follows by a simple application of contraction mappingtheo-
rem.

Proof. Consider the mapping ofK into itself defined by

(3.3) Tρ : K ∋ u 7→ P(u− ρG(u)ǫK, ρ > 0.

�

Suppose this mappingTρ has a fixed pointw. i.e.111

wǫK and satisfiesw = P(w− ρG(w)).

Then we have seen that such aw is characterized as a solution of the
variational inequality :

(3.4) wǫK; (w− (w− ρG(w)), v− w) ≥ 0,∀vǫK.

Then (3.4) is nothing but saying that

(3.4)′ wǫK; (G(w), v− w) ≥ 0,∀vǫK.

Then by Theorem 2.2 of Section 2, Chapter 2w is a solution of the
minimization Problem 3.1 and conversely. In other words, Problem 3.1
is equivalent to the following



3. Method of Gradient and Prohection 109

Problem 3.1′. To find a fixed points of the mapping Tρ : K → K. i.e.
To find w∈ K such that w= P(w− ρG(w)).

We shall now show that this Problem (3.1)′ has a unique solution for
ρ > 0 sufficiently small. For this we show that Tρ is a strict contraction
for ρ > 0 sufficiently small: there exists a constantγ, 0 < γ < 1 such
that, forρ > 0 small enough,

||P(u− ρG(u)) − P(v− ρG(u))|| ≤ γ||u− v||,∀u, vǫK.

In fact, if ρ > 0 is any number then we have

||P(u− ρG(u)) − P(v− ρG(v))||2 ≤ ||(u− ρG(u)) − (v− ρG(v))||2

since||P|| ≤ 1. The right hand side here is equal to

||u−v−ρ(G(u)−G(v))||2 = ||u−v||2−2ρ(G(u)−G(v), u−v)+ρ2||G(u)−G(v)||2

Here we can write by Taylor’s formula

(G(u) −G(v), u− v) = (H(u− v), u− v)

whereH = H(v + θ(u − v)) for some 0< θ < 1. SinceK is convex, 112

u, vǫK, v+ θ(u− v)ǫK and then by uniform coercivity ofH on K (i.e by
H3)

(H(u− v), u− v) ≥ α||u− v||2∀u, vǫK.

This together with the Lipschitz continuity (3.1) ofG gives

||P(u− ρG(u)) − P(v− ρG(v))||2 ≤ ||u− v||2 − 2ρα||u− v||2 + M2ρ2||u− v||2.

= ||u− v||2(1− 2ρα + M2ρ2).

Now if we chooseρ such that

(3.5) 0< ρ < 2α/M2

it follows that (1− 2ρα + M2ρ2) = γ2 < 1.
Then by contraction mapping theorem applied toTρ proves that

there is a unique solution of the Problem (3.1)′.
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Finally to show thatum → u asm → +∞, we take such aρ > 0
sufficiently small i.e. ρ > 0 satisfying (3.5). Now ifum+1 is defined
iteratively by the algorithm (3.2) andu is the unique solution of the
Problem 3.1 (or equivalently of the Problem (3.1)′) then,

||um+1 − u|| = ||P(um − ρG(um)) − P(u− ρG(u))||

=≤ γ||um − u||

so that we get
||um+1 − u|| ≤ γm||u◦ − u||.

Since 0< γ < 1 it follows immediatly from this thatum → u as
m→ +∞.

This proves the theorem completely.
Now the convergence of the algorithm can be proved using the re-113

sults of Chapter 3. (See Rosen [39], [40]).
We also remark that ifV = K and hypothesis (H1)′, (H2) and (H3)

are satisfied for bounded sets ofV then we get the gradirnt method of
Chapter 3.

4 Minimization in Product Spaces

In this section we shall be concerned with the probelm of optimiza-
tion with or without constraints by Gauss-Seidel or more generally, by
relaxation methods. The classical Gauss-Seidel method is used for so-
lutions of linear equations in finite dimensional spaces. The main idea
of optimization described here is to reduce by an iterative procedure the
problem of minimizing a functional on a product space (with or with-
out constraints) to a sequence of minimization problems in the factor
spaces. Thus the methods of earlier sections can be used to obtain ap-
proximations to the solution of the problem on the product space.

The method described here follows that of the paper of Céa and
Glowinski [9], and generalizes earlier methods due to various authors.

We shall given algorithms for the construction of approximating se-
quences and prove that they converge to the solution of the optimization
problem. One important feature is that we do not necessarilyassume
that the functionals to be minimized areG-differentiable.
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4.1 Statement of the problem

The optimization problem in a product space can be formulated as fol-
lows: Let

(i) Vi(i = 1, · · · ,N) be vector spaces overR and let

V =
N∏

i=1

Vi

(dim Vi are arbitrary). 114

(ii) K be a convex subset ofV of the formK =
∏N

i=1 Ki where each
Ki is a (non-empty) convex subset ofVi(i = 1, · · · ,N). Suppose
given a functionalJ : V → R. Consider the optimization prob-
lem:

(4.1)


To find uǫK such that

J(u) ≤ J(v) for all vǫK.

For this problem we describe two algorithms which reduce theprob-
lem to a sequence of N problems at each step, each of which is a min-
imization problem successively inKi(i = 1, · · · ,N). Let us denote a
point vǫV by its coordinates as

v = (v1, · · · , vN), viǫVi .

Algorithm 4.1. (Gauss-Seidel method with constraints).

(1) Letu◦ = (u◦1, · · · , u
◦
N) be an arbitrary point inK.

(2) SupposeunǫK is already determined. Then we shall determine
un+1 in N steps by successively computing its componentsun+1

i
(i = 1), · · · ,N.

Assumeun+1
j ǫK j is determined for allj < i. Then we determine

un+1
i as the solution of the minimization problem:

(4.2)



un+1
i ǫKi such that

J(un+1
1 , · · · , un+1

i−1 , u
n+1
i , un

i+1, · · · , u
n
N)

≤ J(un+1
1 , · · · , un+1

i−1 , vi , un
i+1, · · · , u

n
N) for all viǫKi
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In order to simplify the writing it is convenient to introduce the fol-
lowing notation.

Notation. Denote byKn+1
i (i = 1, · · · ,N) the subset ofK:115

(4.3) Kn+1
i = {vǫK|v = (un+1

1 , · · · , un+1
i−1 , vi , u

n
i+1, · · · , u

n
N), viǫKi}.

and

(4.4)


ũn+1

o = un

ũn+1
i = (un+1

1 , · · · , un+1
i−1 , u

n+1
i , un

i+1, · · · , u
n
N).

With this notation we can write (4.2) as follows:

(4.2)′


To find ũn+1
i ǫKn+1

i such that

J(̃un+1
i ) ≤ J(v) for all vǫKn+1

i .

Algorithm (4.2) (Relaxation method by blocks). We introduce numbers
wi with 0 < wi < 2(i = 1, 2, · · · ,N).

(1) Letu◦ǫK be arbitrarily chosen.

(2) AssumeunǫK is known. Thenun+1ǫK is determined in N succes-
sive steps as follows: Supposeun+1

j ǫK j is determined for allj < i.

Thenun+1
i is determined in two substeps:

(4.5)



To findu
n+ 1

2
i ǫVi such that

J(un+1
1 , · · · , un+1

i−1 , u
n+ 1

2
i , un

i+1, · · · , u
n
N)

≤ J(un+1
1 , · · · , un+1

i−1 , vi , un
i+1, · · · , u

n
N) for all viǫVi .

Then we define

(4.6) un+1
i = Pi(u

n
i + wi(u

n+ 1
2

i − un
i ))

where

(4.7) Pi : Vi → Ki is the projection ontoKi with respect to a suitable
inner product which we shall specify later.
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Remark 4.1.The numberswiǫ(0, 2) are called parameteres of relax-
ation. In the classical relaxation method eachwi = w, a fixed number
ǫ(0, 2) andVi = Ki . Hence for the classical relaxation method

(4.8) un+1
i = un

i + w(u
n+ 1

2
i − un

i ).
116

4.2 Minimization with Constraints of Convex Functionals on
Products of Reflexive Banach Spaces

Here we shall introduce all the necessary hypothesis on the functionalJ
to be minimized. We considerJ to consist of a differentiable partJ◦ and
a non-differentiable partJ1 and we make separate hypothesis onJ◦ and
J1.

Let Vi(i = 1, · · · ,N) be reflexive Banach spaces andV =
∏N

i=1 Vi.
The duality pairing (·, ·)V′×V will simply be denoted by (·, ·), then norm
in V by || · || and the dual norm inV′ by || · ||∗. Let Ki be nonempty
closed convex subsets ofVi andK =

∏N
i=1 Ki . Then clearlyK is also a

noneempty closed convex subset ofV.
Let J◦ : V → R be a functional satisfying the following hypothesis:

(H1) J◦ is G-differentiable and admits a gradientG◦.

(H2) J◦ is convex in the following sense: If, for anyM > 0, BM denotes
the ball{vǫV; ||v|| ≤ M}, then there exists a mapping

TM : BM × BM → R

such that (4.9) and (4.10) hold:

(4.9)



J◦(v) ≥ J◦(u) + (G◦(u), v− u) + TM(u, v),

TM(u, v) ≥ 0 for all u, vǫBM ,

TM(u, v) > 0 for all u, vǫBM with u , v.

(4.10)



If (un, vn)n is a sequence inBM × BM such that

TM(un, vn)→ 0 asn→ +∞ ther

||un − vn|| → 0 asn→ +∞.
117
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Remark 4.2. If J◦ is twiceG-diffferentiable then we have

TM(u, v) =
1
2

J′′◦ (u+ θ(v− u), v− u, v− u) for some 0< θ < 1.

Then the hypothesis (4.9) and (4.10) can be restated in termsof
J′′◦ . In particular, ifJ◦ admits a HessianH and if for everyM > 0
there exists a constantαM > 0 such that

(H(u)ϕ, ϕ) ≥ αM ||ϕ||
2 for all ϕǫV anduǫBM

then the two conditions (4.9) and (4.10) are satisfied.

(H3) Continuity of the gradient G◦ of J◦.

(4.11)



If (un, vn)n is a sequence inBM × BM such that

||un − vn|| → asn→ +∞ then

||G(un) −G(vn)||∗ → 0 asn→ +∞.

Next we consider the non-differentiable partJ1 of J. Let J1 : V →
R be a functional of the form

(4.12) J1(v) =
N∑

i=1

J1,i(vi), v = (v1, · · · , vn)ǫV

where the functionals

J1,i : Vi → R(i = 1, · · · ,N)

satisfy the hypothesis:

(H4) J1,i is a weakly lower semi-continuous convex functional onVi.

We define118

(4.13) J = J◦ + J1.

Finally we assume thatJ satisfies the hypothesis:

(H5) J(v) → +∞ as ||v|| → +∞. We now consider the minimization
problem:

(4.14)


To finduǫK such that

J(u) ≤ J(v) for all vǫK.
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4.3 Main Results

The main theorem of this section can now be stated as:

Theorem 4.1. Under the hypothesis(H1), · · · , (H5) we have the fol-
lowing:

(1) The problem (4.14) has a unique solution uǫK and the unique
soultion is characterized by

(4.15)


uǫK such that

G◦(u), v− u) + J1(v) − J1(u) ≥ 0 for all vǫK.

(2) The sequence un determined by the algorithm (4.1) converges
strongly to u in V.

Proof. We shall divide the proof into several steps.

Step 1. (Proof of (1)). The first part of the theorem is an immediate
consequence of the Theorem (1.1) and (2.3) of Chapter 2. In fact, K is
a closed non-empty convex subset of a reflexive Banach spaceV. By
Hypothesis (H2), J is strictly convex since, for anyv, uǫV, we have

J◦(v) ≥ J◦(u) + (G◦(u), v− u) + TM(v, u)

> J◦(u) + (G◦(u), v− u) if v , u,

and hence strictly convex, whileJ1(v) is convex so that for anyv1, v2ǫV 119

andθǫ[0, 1] we have

J(θv1 + (1− θ)v2) = J◦(θv1 + (1− θ)v2) + J1(θv1 + (1− θ)v2)

< θJ◦(v1) + (1− θ)J◦(v2) + θJ1(v1) + (1− θ)J1(v2)

= θJ(v1) + (1− θ)J(v2).

Next J is weakly lower semi-continuous inV: In fact, sinceJ◦ has
a gradientG◦ the mapping

ϕ 7→ J′◦(u, ϕ) = (G◦(u), ϕ)
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is continuous linear and hence, by Proposition 4.1 of Chapter 1, J◦ is
weakly lower semi-continuous. On the other hand, by (H4) J1 is weakly
lower semi-continuous which proves the assertion. Then Theorem (1.1)
of Chapter 2 implies that states thatu is characterized by (4.15).

We have therefore onlu to prove (2) of the statement. We shallprove
the convergence of the algorithm in the following sequence of steps.

Step 2.At each stage of the algorithm the subproblem of determining
ũn+1

i has a solution. In factKn+1
i is againd a non-empty closed convex

subset ofV. Moreover, again as in Step 1,J satisfies all the hypothesis
of Theorem (1.1) of Chapter 2 and (2.3) of Chapter 2. Hence there
exists a unique solution of the problem (4.14) and this soution ũn+1

i is
characterized by


ũn+1

i ǫK,

(G◦(̃un+1
i ), v− ũn+1

i ) + J1,i(vi) − J1,i (̃un+1
i ) ≥ 0

(4.16)

since

J1(v) − J1(̃un+1
i ) =

N∑

j=1

(J1, j(v j) − J1, j (̃u
n+1
i, j )) = J1,i(vi ) − J1,i(u

n+1
i ).

120

Step 3.J(un) is decresing. We know that̃un+1
i−1 ǫK

n+1
i for i = 1, · · · ,N

and on takingv = ũn+1
i−1 in (4.2)′ we get

J(̃un+1
i ) ≤ J(̃un+1

i−1 ).

using this successively we find that

J(̃un+1
i ) ≤ J(̃un+1

i−1 ) ≤ · · · ≤ J(̃un+1
◦ ) = J(un)

and similarly
J(un+1) = J(̃un+1

N ) ≤ · · · ≤ J(̃un+1
i ).

These two togrther imply that

J(un+1) ≤ J(un) ofr all n = 0, 1, 2, · · ·
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which proves that the sequenceJ(un) is decreasing. In particular it is
bounded above:

J(un) ≤ J(u◦) ofr all n ≥ 1.

SinceuǫK is the unique absolute minimum forJ given by Step (1)
we have

J(u) ≤ J(un) ≤ J(u◦) for all n ≥ 1.

On the other hand, by Hypothesis (H5) we see that||un||, ||̃un+1
i || form

bounded sequences. Thus there exists a constantM > 0 such that

(4.17) ||un|| + ||̃un+1
i || + ||u|| ≤ M for all n ≥ 1 and all 1≤ i ≤ N.

Since
J(u) ≤ J(un+1) ≤ J(un)

it also follows that 121

(4.18) J(un) − J(un+1)→ 0 asn→ +∞.

Step 4.We shall thatun − un+1 → 0 asn → +∞. For this, by the-
convexity hypothesis (H2) of J◦ applied tou = ũn+1

i andv = ũn+1
i−1 we

get

J◦(̃u
n+1
i−1 ) ≥ J◦(̃u

n+1
i ) + (G◦(̃u

n+1
i ), ũn+1

i−1 − ũn+1
i ) + TM (̃un+1

i , ũn+1
i−1 )

whereM > 0 is determined by (4.17) in Step (3). From this we find

J(̃un+1
i−1 ) ≥ J(̃un+1

i ) + [(G◦ (̃u
n+1
i ), ũn+1

i−1 − ũn+1
i ) + J1(̃un+1

i−1 ) − J1(̃un+1
i )]

+ TM (̃un+1
i , ũn+1

i−1 ).

Here by the characterization (4.16) ofũn+1
i ǫKn+1

i as the solution sub-
problem we see that the terms in the brackets [· · · ] ≥ 0 and hence

J(̃un+1
i−1 ) ≥ J(̃un+1

i ) + TM (̃un+1
i , ũn+1

i−1 ) for all i = 1, · · · ,N.

Adding there inequalities fori = 1, · · · ,N we obtain

J(̃un+1
◦ ) = J(un) ≥ J(̃un+1

N ) +
∑

i

TM (̃un+1
i , ũn+1

i−1 )
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= J(un+1) +
∑

i

TM (̃un+1
i , ũn+1

i−1 ),

that is,
J(un) − J(un+1) ≥

∑

i

TM (̃un+1
i , ũn+1

i−1 ).

Here the left side tends to 0 asn→ ∞ and each term in the sum on
the right side is non-negative by (4.9) of Hypothesis (H2) so that

TM (̃un+1
i , ũn+1

i−1 )→ 0 asn→ +∞ for all i = 1, · · · ,N.

In view of (4.10) of Hypothesis (H2) it follows that

(4.19)


||̃un+1

i − ũn+1
i−1 || → 0 asn→ +∞ for all i = 1, · · · ,N and

||un+1 − un| → 0 asn→ +∞

which proves the required assertion.122

Step 5. Convergence of the algorithm.Using the convexity Hypothe-
sis (H2) of J◦ with u andv interchanged we get

J◦(v) ≥ J◦(u) + (G◦(u), v− u) + TM(u, v)

J◦(u) ≥ J◦(v) + (G◦(v), v− u) + TM(v, u)

which on adding give

(4.20)



(G◦(v) −G◦(u), v− u) ≥ RM(v, u)

where

RM(v, u) = TM(u, v) + TM(v, u).

Taking foru the unique solution of the problem (4.14) andv = un+1

we obtain

(G◦(u
n+1) −G◦(u), un+1 − u) ≥ RM(u, un+1)

from which we get

(4.21)



(G◦(un+1), un+1 − u) + J1(un+1) − J1(u)

≥ [(G◦(u), un+1 − u) + J1(un+1) − J1(u)] + RM(u, un+1)

≥ RM(u, un+1)
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sinceu is characterized by (4.15). Introducting the notation

wn+1
i = ũn+1

i + (0, · · · , 0, ui − un+1
i , 0, · · · , 0)

we have

(4.22)


wn+1

i = (un+1
1 , · · · , un+1

i−1 , ui , un
i+1, · · · , u

n
N)ǫKn+1

i∑
i(w

n+1
i − ũn+1

i ) = (u− un+1).

Now we use the fact thatJ1(v) =
∑

i J1,i(vi) to get 123

J1(un+1) − J1(u) =
∑

i

(J1,i(u
n+1
i ) − J1,i(ui)),

which is the same as

(4.23) J1(un+1) − J1(u) =
∑

i

(J1(̃un+1
i ) − J1(wn++1

i )).

Substituting (4.22) and (4.23) in (4.21) we have


∑
i[(G◦(u

n+1), ũn+1
i − wn+1

i ) + J1(̃un+1
i ) − J1(wn+1

i )]

≥ RM(u, un+1).

This can be rewritten as
∑

i

(G◦(u
n+1) −G◦(̃u

n+1
i ), ũn+1

i − wn+1
i )

∑

i

[(G◦ (̃u
n+1
i ),wn+1

i − ũn+1
i ) + J1(wn+1

i ) − J1(̃un+1
i )] + RM(u, un+1).

But again by the characterization (4.16) of the solutionũn+1
i ǫKn+1

i of
the sub-problem (4.14) the terms in the square brackets and hence their
sum is non negative (to see this we takev = wn+1

i ǫKn+1
i ). Thus

(4.24)
∑

i

(G◦(u
n+1) −G◦(̃u

n+1
i ), ũn+1

i − wn+1
i ) ≥ RM(u, un+1).

Here we have

||̃un+1
i − wn+1

i ||V = ||ui − un+1
i ||Vi ≤ ||u|| + ||̃u

n+1
i || ≤ M.
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By Cauchy-Schwarz inequality we have

|(G◦(u
n+1) −G◦(̃u

n+1
i ), ũn+1

i − wn+1
i )| ≤ M||G◦(u

n+1) −G◦(̃u
n+1
i )||∗.

Now since

||un+1 − ũn+1
i || = ||̃u

n+1
N − ũn+1

i || ≤

N∑

j=i+1

||̃un+1
j − ũn+1

j−1 ||

which tends to 0 by (4.19) and sinceG◦ satisfies the continuity hypoth-124

esis (4.11) of (H3) it follows that

RM(u, un+1)→ 0 asn→ ∞.

This by the definition ofRM(u, v) implies that

TM(u, un+1)→ 0 asn→ ∞.

Finally, by the property (4.10) toTM(u, v) in Hypothesis (H2) we
conclude that

||u− un+1|| → 0 asn→ ∞.

This completes the proof of the theorem. �

Remark 4.3. If the convex setK is bounded then the Hypothesis (H5)
is superfluous since the existence of the constantM > 0 in (4.17) is then
automatically assured sinceu, un, ũn+1

i ǫK for all n ≥ 1 andi = 1, · · · ,N.

4.4 Some Applications : Differentiable and Non-Differatiable
Functionals in Finite Dimensions

We shall conclude this section with a few examples as applications of
our main result (Theorem 4.1) without going into the detailsof the
proofs. To begin with have the following:

Theorem 4.2. (Case of differentaible functionals on the finite dimen-
sional spaces).

Let J◦ : V = Rp→ R be a functional satisfying the Hypothesis:
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(K1) J◦ǫC1(Rp,R)

(K2) J◦ is strictly convex

(K3) J◦(v)→ +∞ as ||v|| → +∞.

Then the assertion of the Theorem (4.1) hold with J= J◦.

It is immediate that the Hypothesis (H1) and (H3) are satisfied.
Since J1 ≡ 0, (H4) and (H5) are also satisfied. There remains only
to prove that the Hypothesis (H2) of the convexity ofJ◦ holds. For a 125

proof of this we refer to the paper of Céa and Glowinski [9]. (See also
Glowinski [18], [19]).

Remark 4.4.Supposep =
N∑
i

pi be a partition of p. Then in the above

theorem we can takeVi = R
pi so thatV =

N∏
i=1

Vi. We also have the

Theorem 4.3. (Case of non-differentiable functions on finite dimen-
sional spaces - Cea and Glowinski). Let Vi = R

pi (i = 1, · · · ,N) and

V = Rp(p =
N∑

i=1
pi). Suppose J◦ : V → R satisfies the hypothesis (K1),

(K2) and (K3) pf Theorem (4.2) above and J1 : V → R be another func-

tional of the form J1(v) =
N∑

i=1
J1,i(vi ) where the functionals J1,i : Vi → R

satisfy the Hypothesis below:
(K4)J1,i is a non-negative, convex and continuous functional on

R
pi = Vi(i = 1, · · · ,N).

Then the functional
J = J◦ + J1

satisfies all the Hypothesis of Theorem (4.1) and hence the algorithm
(4.1) is (strongly) convergent inV = Rp.

We shall now give a few examples of functionalJ1 which satisfy
(K4).

Example 4.1.We takeJ1,i(vi) = αi |ℓi(vi)| where
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(i) αi ≥ 0 are fixed numbers

(ii) ℓi : Vi = R
pi → R is a continuous linear functional for each

i = 1, · · · ,N.

In particular, ifpi = 1(i = 1, · · · ,N) and hencep = N we can take

J1,i(vi) = αi |vi |,

and

J1(v) =
N∑

i=1

αi |vi |.

This case was treated earlier by Auslander [53] who proved that the126

algorithm forun converges to the solution of the minimization problem
in this case.

Example 4.2.We take

J1,i(vi ) = αi [ℓi(vi)
+]

where

(i) αi ≥ 0 are fixed numbers,

(ii) ℓi : Vi → R are continuous linear forms onRpi , and we have used
the standard notation:

ℓi(vi)
+
=


ℓi(vi ) whenℓi(vi) ≥ 0

0 whenℓi(vi) < 0.

Example 4.3.We take

J1,i(vi ) = αi ||vi ||Rpi

where

||vi ||Rpi =


pi∑

j=1

|vi, j |
2



1
2

.
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4.5 Minimization of Quadratic Functionals on Hilbert
Spaces-Relaxation Method by Blocks

Here we shall be concerned with the problem of minimization of quadra-
tic funcitonals on convex subsets of a product of Hilbert spaces. This
is one of the most used methods for problems associated with partial
differential equations. We shall describe an algorithm and prove the
convergence of the approximations (obtained by this algorithm) to the
solution of the minimization problem under consideration.

Statement of the problem.Let Vi(i = 1, 2, · · ·N) be Hilbert spaces,
the inner products and the norms are respectively denoted by((·))i and
|| · ||i. On the product space we define the natural inner product and norm 127

by

(4.25)



((u, v)) =
N∑

i=1
((ui , vi))i ,

||u|| =

(
N∑

i=1
||ui ||

2
i

) 1
2

,

u = (u1, · · · , un), v = (v1, · · · , vn)ǫV,

for which V becomes a Hilbert space. LetK be a closed convex subset
of V of the form

(4.26)


K =

∏N
i=1 Ki where

Ki is a closed convex nonempty subset ofVi(1 ≤ i ≤ N).

Let J : V → R be a functional of the form

(4.27) J(v) =
1
2

a(v, v) − L(v)

wherea(·, ·) is a bilinear, symmetric, bicontinuous,V-coercive form on
V:

There exist constantsM > 0 andα > 0 such that

(4.28)



|a(u, v)| ≤ M||u||V ||v||V for all u, vǫV,

a(u, u) ≥ α||u||2V for all uǫV, and

a(u, v) = a(v, u)
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Moreover,L : V → R is a continuous linear functional onV. Con-
sider the optimization problem :

(4.29)


To finduǫK such that

J(u) ≤ J(v) for all vǫK.

Then we know by Theorem 3.1 of Chapter 2 that under the assump-
tions made onV, K andJ the optimization problem (4.29) has a unique
solution whihc is characterized by the variational inequality

(4.30)


uǫK.

a(u, v− u) − L(v− u) ≥ 0 for all vǫK.
128

4.6 Algorithm (4.2) of the Relaxation Method - Details

In order to give an algorithm for the solution of the problem (4.29) we
obtain the following in view of the product Hilbert space structure ofV.
First of all, we observe that the bilinear forma(·, ·) give rise to bilinear
forms

(4.31) ai j : Vi × V j → R

such that

a(u, v) =
N∑

i, j=1

ai j (vi , v j).

In fact, for anyviǫVi if we set vi to be the element ofV having
components (vi) j = 0 for j , 1 and (vi)i = vi , we define

(4.33) ai j (vi , v j) = a(vi , v j).

It is the clear that the properties (4.28) ofa(·.·) immediately imply
the following properties ofai j (·, ·):

(4.34)



ai j is bicontinuous :|ai j (vi , v j)| ≤ M||vi ||i ||v j || j .

ai j (vi , v j) = a ji (v j , vi)

aii is Vi − coercive :aii (vi , vi) = a(vi , vi) ≥ α||vi ||2 = α||v2
i||i

for all vi ∈ Vi , v jǫV j
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Using the bicontinuity of the bilinear formsai j (·, ·) together with
Riesz-representation theorem, we can find

Ai j ǫL (Vi ,V j) suich that

ai j (vi , v j) = (Ai j vi , v j)V′j×V j(4.35)

where (·, ·)V′j×V j denotes the duality pairinig betweenV j and its dual 129

V′j (which is canonically isomorphic toV j). The properties (4.34) can
equivalently be stated in the following form:

(4.34)′



||Ai j ||L (Vi ,V j ) ≤ M,

Ai j = A∗i j ,Aii are self adjoint

(Aii vi , vi)V′i ×Vi ≥ α||vi ||
2
i for all viǫVi .

By lax-Milgram lemmaAii are invertible andA−1
ii ǫL (Vi ,Vi).

In a similar way, we find the forms L defines continuous linear func-
tionalsLi : Vi → R such that


Li(vi) = L(vi ) for all viǫVi

L(v) =
∑N

i=1 Li(vi) for all vǫV.

Again by Riesz-representation theorem there existFiǫVi such that

Li(vi ) = ((Fi , vi))i for all viǫVi

so that we can write

(4.36) L(v) =
N∑

i=1

((Fi , vi))i .

As an immediate consequence of the properties of the bilinear forms
aii (·, ·) onVi we can introduce a new inner product onVi by

(4.37) [ui , vi]Vi = aii (ui , vi).

which defines an equivalent norm which we shall denote by||| · |||i (we
can use Lax-Milgram lemma) onVi.
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We shall denote by Pi the projection of Vi onto the closed convex
subset Ki with respect to the inner product[·, ·] i .

We are now in a position to describe the algorithm for the relaxation 130

method with projection. (See also [19]).

Algorithm 4.2. - Relaxation with Projection by Blocks.
Let wi(i = 1, · · · ,N) be a fixed set of real numbers such that 0<

wi < 2.

(1) Letu◦ = (u◦1, · · · , u
◦
N)ǫK be arbitrary.

(2) SupposeunǫK is already determined. We determineun+1ǫK in N
successive steps as follows: Suppose,un+1

j ǫK are already found
for j < i.

Then we take

(4.38)



un+1
i = Pi(un

i − wiAi
ii (

∑
j<i

Ai j un+1
j +

∑
j≥i

Ai j un
j − Fi))

i = 1, · · · ,N.

Remark 4.5. In applications, the boundary value problems associated
with elliptic partial differential operators will be set in appropriate
Sobolev spacesHm(Ω) on some (bounded) open setΩ in Euclidean
space. After discretization (say, by suitable finite elemntapproxima-
tions) we are led to problems in finite dimensional subspacesof Hm(Ω)
which increase toHm(Ω). In such a discretizationAii and Ai j will be
matrices with the properties (4.34)′ described above.

4.7 Convergence of the Algorithm

As usual we shall prove that the algorithm converges to the solution of
the minimization problem (4.29) in a sequence of steps in thefollowing.
We shall begin with

Step 1.J(un) is a decreasing sequence.For this we write

J(un) − J(un+1) = J(̃un+1
◦ ) − J(̃un+1

N )(4.39)
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=

N∑

i=1

(J(̃un+1
i−1 ) − J(̃un+1

i ))

and show that each term in tha last sum is non-negqtive. We observe 131

here that

(4.40)


ũn+1

i−1 = (un+1
1 , · · · , un+1

i−1 , u
n
i , u

n
i+1, · · · , u

n
N)

ũn+1
i = (un+1

1 , · · · , un+1
i−1 , u

n+1
i , un

i+1, · · · , u
n
N).

Setting, for eachi = 1, · · · ,N,

(4.41)


gi = −1

2

∑
j<i

Ai j un+1
j +

1
2

∑
j>i

Ai j un
j + fi

j i(vi) =
1
2(Aii vi , vi) − (gi , vi)

we immediately see that

(4.42) J(̃un+1
i−1 ) − J(̃un+1

i ) = j i(u
n
i ) − j i(u

n+1
i ).

Hence it is enough to show that the right hand side of (4.42) isnon-
negative. In fact, we shall prove the following

Proposition 4.1. For each i, 1 ≤ i ≤ N, we have

(4.43) j i(u
n
i ) − j i(u

n+1
i ) ≥

2− wi

2wi
|||un

i − un+1
i |||.

The proof will be based on some simple lemmas:

Step 2. Two lemmas.Let H be a Hilbert space andC be a non-empty
closed convex subset ofH. Consider a quadratic functionalj : H → R
of the form

(4.44) j(v) =
1
2

b(v, v) − (g, v)

where

(4.45)


b(·, ·) is a symmetric, bicontinuous,H-coercive

bilinear form onH andgǫH.
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Then we know by Theorem 3.1 of Chapter 2 that the minimization
problem

(4.46)


To find uǫC such that

j(u) ≤ j(v) for all vǫC

has a unique solution. On the other hand, the hypothesis onb(·, ·) imply132

that we can write



b(u, v) = v(Bv) for all u, vǫH

and

BǫL (H,H), B = B∗ exists and belongs to (H,H)

Moreover,

(4.48) [u, v] = b(u, v) = (u, Bv)

defines an inner product onH such that

(4.49) u 7→ u = [u, u]
1
2

is an equivalent norm inH. Then we have the

Lemma 4.1. If uǫC is the unique solution of the problem (4.46) and
if P : H → C denotes the projection onto C with respect to the inner
product[·, ·] then

(4.50) u = P(B−1g).

Proof. We also know that the solution of the problem (4.46) is charac-
terized by the variational inequality

(4.51)


uǫC,

b(u, v− u) ≥ (g, v− u) for all vǫC.

�
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Since we can write

(4.52) (g, v− u) = (BB−1g.v− u) = b(B−1g, v− u)

this variational inequality can be rewritten in the form

(4.51)′


uǫC,

[u− B−1g, v− u] = b(u− B−1g, v− u) ≥ 0 for all vǫC.
133

But it is a well known fact that this new variational inequality char-
acterizes the projectionP(B−1g) with respect to the inner product [·, ·]
(For a proof, see for instance Stampacchia [44]).

Lemma 4.2. Let u◦ǫC. If u1 is defined by

(4.53) u1 = P(u◦ + w(B−1g− u◦)),w > 0.

where P is the projection H→ C with respect to[·, ·] then

(4.54) j(u◦) − j(u1) ≥
2− w
2w
|||u◦ − u1|||

2.

Proof. If v1, v2ǫH then we have

j(v1) − j(v2) =
1
2
{b(v1, v1) − b(v2, v2)} − {(g, v1) − (g, v2)}

=
1
2
{b(v1, v1) − b(v2, v2)} − (BB−1g, v1 − v2)

=
1
2
{b(v1, v1) − b(v2, v2)} − b(B−1g, v1 − v2)

=
1
2
{b(v1 − B−1g, v1 − B−1g) − b(v2 − B−1g, v2 − B−1g)}

=
1
2

(|||v1 − B−1g|||2 − |||v2 − B−1g|||2).

�

Since we can write

u1 − B−1g = (u◦ − B−1g) + (u1 − u◦)
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we find

(4.55) |||u◦−B−1g|||2 = |||u1−B−1g|||2−|||u1−u◦|||
2
+ [u◦−B−1g, u1−u0]

But on the other hand, by definition ofu1 as the projection it follows
that

[u◦ + w(B−1g− u0) − u1, u◦ − u1] ≤ 0

and hence
|||u◦ − u1|||

2 ≤ w[u◦ − B−1g, u◦ − u1].

134

Substituting this in the above identity (4.55) we get

|||u◦ − B−1g|||2 − |||u1 − B−1g|||2 ≥ (2− w)[u◦ − B−1g, u◦ − u1]

≥
2− w
2w
|||u◦ − u1|||

2,

which is precisely the required estimate (4.54).

Step 3. Proof of the Proposition (4.1).It is enough to take

H = Vi ,C = Ki , b(·, ·) = aii (·, ·),P = Pi = Pro j{Vi → Ki}

and
un

i = u◦, u
n+1
i = u1

in Lemma 4.2.

Corollary 4.1. We have, for each n≥ 0,

(4.56) J(un) − J(un+1) ≥
N∑

i=1

2− wi

2wi
|||un+1

i − un
i |||

2
i .

Proposition 4.2. If 0 < wi < 2 for all i = 1, · · · ,N then

(4.57)


J(un) ≥ J(un+1) for all n and

un − un+1→ 0 strongly in V as n→ ∞.
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Proof. The fact thatJ(un) is a decreasing sequence follows immediately
from the Corollary (4.1). Moreover,J(un) ≥ J(u). for all n, whereu is
the (unique) absolute minimum ofJ in K. Hence,

J(un) − J(un+1)→ 0 asn→ ∞.

�

Once again using the Corollary (4.1) and the fact that 2−wi > 0 for
eachi it follows that

|||un+1
i − un

i |||i → 0 asn→∞.

135

Since||| · |||i and|| · ||i are equivalent norms onVi we find that

||un
i − un+1

i ||i → 0 asn→ ∞

and therefore

||un − un+1|| =
(∑
||un

i − un+1
i ||

2
i

) 1
2
→ 0

which proves the assertion.

Step 4. Convergence ofun. We hve the following result.

Theorem 4.4. If 0 < wi < 2 for all i = 1, · · · ,N and if un is the sequence
defined by the Algotihm (4.2) then

(4.58) un→ u strongly in V.

Proof. By V-coercivity of the bilinear forma(·, ·) we have

α||un+1 − u||2 ≤ a(un+1 − u, un+1 − u)

= a(un+1, un+1 − u) − ( f , un+1 − u)

− {a(u, un+1 − u) − ( f , un+1 − u)}.

�
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Hereun+1 − uǫK andu is characterized by the variational inequality
(4.30) so that

a(u, un+1 − u) − ( f , un+1 − u) ≥ 0

and we obtain

(4.59) α||un+1 − u||2 ≤ a(un+1, un+1 − u) − ( f , un+1 − u),

We can also wirte (4.59) in terms of the operatorsAi j as

(4.59)′ α||un+1 − u||2 ≤
∑

i

((
∑

j

Ai j u
n+1
j − fi , u

n+1
i − ui))i .

Consider the minimization problem136

(4.60)



un+1
i ǫKi such that

j i(u
n+1
i ) ≤ j i(vi ) for all viǫKi where

j i(vi) = J(un+1
1 , · · · , un+1

i−1 , vi , un
i+1, · · · , u

n
N).

We notice that the definition of the functionalvi 7→ j i(vi) coincides
with the definition (4.41). The unique solution of the problem (4.60)
(which exists by Theorem 3.1 of Chapter 2) is characterized (in view of
the Lemma (4.1)) by

(4.61) un+1
i = Pi(A

−1
ii gi) = Pi(A

−1
ii ( fi −

∑

j<i

Ai j u
n+1
j −

∑

j>1

Ai j u
n
j ))

or equivalent by the variational inequality:


(Aii u

n+1
i − gi , vi − un+1

i ) ≥ 0 for all viǫKi

un+1
i ǫKi .

This is, we have
(4.62)

(Aii u
n+1
i +

∑
j<1

Ai j un+1
j +

∑
j>i

Ai j un
j − fi , vi − un+1

i ) ≥ 0 for all viǫKi

un+1
i ǫKi .
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We can now write the right hand side of (4.59)′ as a sum

(4.59)′′ I1 + I2 + I2 + I4

where
(4.63)

I1 =
∑
i
((Aii (un+1

i − un+1
i ), un+1

i − ui))i ,

I2 =
∑
i
((

∑
j>1

Ai j (un+1
j − un

j ), u
n+1
i − ui))i ,

I3 =
∑
i
((
∑
j<i

Ai j un+1
j + Aii u

n+1
i +

∑
j>1

Ai j un
j − fi , un+1

i − un+1
i ))i ,

I4 =
∑
i
((
∑
j<i

Ai j un+1
j + Aii u

n+1
i +

∑
j>i

Ai j un
j − fi , u

n+1
i − ui))i .

First of all, (by 4.62),I4 ≤ 0 and hence 137

(4.64) α||un+1 − u||2 ≤ I1 + I2 + I3.

We shall estimate each one ofI1, I2, I3 as follows: SinceAi j ǫL

(Vi ,V j) we set

(4.65) M1 = max
1≤i, j≤N

||Ai j ||L (Vi ,V j )

We also know that||un
i ||, ||u

n
i || and hence||un||, ||un

|| are bounded se-
quences. For otherwise,j i(un

i ) and j i(u
n
i ) would tend to+∞ asn→ ∞.

But we know that they are bounded above byJ(u◦). So let

(4.66) M2 = max
1≤i≤N

(sup
n
||un

i ||, sup
n
||un

i ||).

The, by Cauchy-Schwarz inequality, we get

|I1| ≤ (
∑

i

||un+1
i − ui ||

2
i )

1
2 (
∑

i

||Aii ||
2
L (Vi ,Vi)

||un+1
i − un+1

i ||
2)

1
2

= M1(M2 + ||u||)||u
n+1 − un+1

||

and similarly we have

|I2| ≤ M1(M2 + ||u||)||u
n+1 − un+1

||
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|I3| ≤ M1(M2 + || f ||)||u
n+1 − un+1

||.

These estimates together with (4.64) give

(4.67) α||un+1 − u||2 ≤ 3M1(M2 + ||u|| + || f ||)||u
n+1 − un+1

||

and hence it is enough to prove that

(4.68) ||un+1 − un+1
|| → 0 asn→ ∞.

For this purpose, sincewi > 0 we can multiply the variational in-
equality (4.62) bywi and then we can rewrite it as
(4.62)′

((Aii u
n+1
i − {Aii u

n+1
i −wi(

∑

j<i

Ai j u
n+1
j + Aii ū

n+1
i +

∑

j>i

Ai j u
n
j − fi)}, vi − un+1

i )) ≥ 0.
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Once again using the fact that this variational inequality character-
izes the projectionPi : Vi → Ki we see that

(4.69) un+1
i = Pi{(1− wi)u

n+1
i − A−1

ii (
∑

j<i

Ai j u
n+1
j +

∑

j>i

Ai j u
n
j − fi)}.

By (4.38) we also have

un+1
i = Pi{(1− wi)u

n
i − A−1

ii (
∑

j<1

Ai j u
n+1
j +

∑

j>1

Ai j u
n
j − fi)}.

Substracting one from the other and using the fact that the projection
are contractions we obtain

(4.70) |||un+1
i − un+1

i |||i ≤ |1− wi ||||u
n+1
i − un

i ||| ≤ |||u
n+1
i − un

i |||i

since 0< wi < 2 if and only if 0 < |1 − wi | < 1. Now by triangle
inequality we have

|||un
i − un+1

i ||| ≥ |||u
n
i − un+1

i |||i − |||u
n+1
i − un+1

i |||i

≥ (1− |1− wi |)|||u
n+1
i − un

i |||i

≥ (1− |1− wi |)|||u
n+1
i − un+1

i |||i .
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But here, by (4.57), we know that

|||un
i − un+1

i |||i → 0 asn→∞.

and since 1− |1− wi | > 0 it follwos that

|||un+1
i − un+1

i |||i → 0

which is the required assertion.

Remark 4.6.The Theorem (4.4) above on convergence of the relaxation
method generalizes a result of Cryer [10] and of a classical result of
Varge [50] in finite dimensional case but withour constraints.

Remark 4.7. In this section we have introduced the parameterswi of 139

relaxation. The algorithm described is said to be of over relaxation type
(resp. relaxation, or under relaxation) with projection when wi > 1
(resp.wi = 1 or 0< wi < 1) for all i = 1, · · · ,N.

4.8 Some Examples - Relaxation Method in Finite
Dimensional Spaces

Let Vi = R(i = 1, · · · ,N) andV =
∏N

i=1 Vi = R
N. Let A be a symmetric,

positive definite (n× n) -matrix such that there is a constantα > 0 with

(4.71) (Av, v)RN ≥ α||v||2
RN for all vǫRN.

Consider the quadratic functionalJ : RN → R of the form

(4.72) J(v) =
1
2

(Av, v)RN − ( f , v)RN , f ǫRN.

We consider the optimization probel forJ.

Example 4.4.(Optimization without constraints).

(4.73)


To finduǫRN such that

J(u) ≤ J(v) for all vǫRN
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If we write the matrixA asA = (ai j ) then

(4.74) J(v) =
1
2

N∑

i, j=1

ai j v jvi −

N∑

i=1

fivi , v = (v1, · · · , vN)ǫRN.

We find then that the components of gradj are

(gradJ(v))i = (Av− f )i = (
N∑

j=1

ai j v j − fi), i = 1, · · · ,N.

If uǫRN is the (unique) solution of (4.73) then gradJ(u) = 0. That
is, 

u = (u1 · · · , un)
∑N

j=1 ai j u j = fi , i = 1, · · · ,N.

To describe the algorithm (if we takewi = 1 for all i = 1, · · · ,N) to140

constructuk+1 from uk we finduk+1
i as the solution of the equation

∑

j<1

ai j u
k+1
j + aii u

k+1
i +

∑

j>1

ai j u
k
j = fi .

Sinceaii > α > 0 we have

(4.75) uk+1
i = a−1

ii [ fi −
∑

j<i

ai j u
k+1
j −

∑

j>i

ai j u
k
j ],

and thus we obtain the algorithm of the classical Gauss-Seidel methods
in finite dimensional spaces.

More generally, introducting a parameterw(0 < w < 2) of relaxation
we obtain the following algorithm:

(4.76)



u
k+ 1

2
i = a−1

ii [ fi −
∑
j<i

ai j uk+1
j −

∑
j>i

ai j uk
j ]

uk+1
i = uk

i − w(u
k+ 1

2
i − uk

i )

Example 4.5.(Optimization with constraints in finite dimensional
spaces).



4. Minimization in Product Spaces 137

Let Vi ,V andJ be as in Exampl (4.4). We take for the convex setK
the following set: LetI◦, I1 be a partition of the set{1, 2, · · · ,N}. That
is

I◦ ∩ I1 = φ and{1, 2, · · · ,N} = I◦ ∪ I1.

Define

(4.77)


Ki = {viǫR; vi ≥ 0} for all iǫI◦ and

Ki = R for all iǫI1

and hence

(4.78) K = {vǫRN; v = (v1, · · · , vN) such thatvi ≥ 0 for iǫI◦}

As in the previous case, supposeuk are known, Assume thatuk+1
j

are found for all j < i. We finduk+1
i in there substeps as follows: We141

defineuK+1/3
i as the unique solution of the linear equation obtained by

requiring the gradient to vanish at the minimum : more precisely,

(4.79) uk+1/3
i = a−1

ii [ fi −
∑

j<i

ai j u
k+1
j −

∑

j>i

ai j u
k
j ].

The we set

(4.80)


uk+2/3

i = uk
i − w(uk+1/3

i − uk
i )

uk+1
i = Pi(u

k+2/3
i )

wherePi is the projection ofVi ontoKi with respect to the inner product

[ui , vi] = aii (ui , vi) = aii uiv− i.

Sinceaii > 0 andKi are defined by (4.74)Pi coincides with the
projection ofVi ontoKi with respect to the standard inner product onR.
Hence we have

(4.81) Pi(u
k+2/3
i ) =


0 if uk+2/3

i ≤ 0 andiǫI◦
uk+2/3

i in all other cases.
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Example 4.6.Let V = RN
= R

1×RN−1,K = K1×K2 with K1 = R
1 and

K2 = {vǫR
N−1; g(v) ≤ 0},

where g : RN−1 → R is a given smooth functional onRN−1. Let
J : V → R be a functional of the form (4.74). We can use again an
algorithm of the above type. In order to give an algorithm forthe con-
struction of the projectionP2 of V = RN−1 ontoK2 we can use any one
of the standard methods described in earlier section as, forinstance, the
method of descent.

4.9 Example in Infinite Dimensional Hilbert Spaces - Opti-
mization with Constraints in Sobolev Spaces

142
We shall only mention briefly a few examples, without going into any
details, of optimization problems in the typical saces of infinite dimen-
sions which are of interest to linear partial differential equation, namely
the Sobolev spacesH1(Ω),H1

◦(Ω) which occur naturally in various vari-
ational elliptic problems of second order.

Example 4.7.LetΩ be a bounded open set inRn with smoth boundary
Γ.

Consider the closed convex subsetK◦ in H1(Ω) given by

(4.82) K◦ = {v; vǫH1(Ω), γ◦v ≥ 0 a. e. onΓ},

and the quadratic functionalJ◦ : H1(Ω)→ R defined by

(4.83) J◦(v) =
1
2
||v||2H1(Ω) − ( f , v)L2(Ω).

Then we have the optimization problem

(4.84)


To finduǫK◦ such that

J◦(u) ≤ J◦(v) for all vǫK◦

Usually we use the method of over relaxation for this problem.
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Example 4.8.Let Ω be a simply connected bounded open set in the
planeR2.

Consider

(4.85) K1 = {vǫH
1
◦(Ω); |gradv(x)| ≤ 1 a. e. inΩ} and

(4.86)


J(v) = 1

2

∫
Ω
|gradv|2dx−C

∫
Ω

vdx

whereC is a constant> 0.

The existence and uniqueness of the solution to the minimization
problem:

(4.87)


To find uǫK1 such that

J(u) ≤ J(v) for all vǫK1

is classical and its properties have been studied in the paper of Brezis 143

and Stampacchia [4] and some others. It was also shown by Brezis and
Sibony [2] that the solution of (4.87) is also the solution ofthe problem

(4.88)



To fing uǫK2 such that

J(u) ≤ J(v) for all vǫK2, where

K2 = {vǫH1
◦(Ω); |v(x)| ≤ d(x, Γ) a.e. inΩ},

d(x, Γ) being the distance ofx ∈ Ω to the boundaryΓ of Ω.

The method of relaxation described earlier has been used to solve the
problem (4.88) numerically by Céa and Glowinski [8, 9]. We also re-
mark that the problem (4.87) is a problem of elasto-palsticity whereΩ
denotes the cross section of a cylindrical bar whose boundary is Γ and
which is made of an elastic material which is perfectly plastic. For de-
tails of the numerical analysis of this probel we refer the reader to the
paper of Cea and Glowinski quoted above.





Chapter 5

Duality and Its Applications

We shall introduce in this chapter another method to solve the problem 144

of minimization with constraints of functionalsJ◦ on a Hilbert spaceV.
This method in turn permits us to construct new algorithm forfinding
minimizing sequences to the solution of our problem. In thischapter we
shall refer to the minimization problem:

(P) To finduǫU, J◦(u) = inf
vǫU

J◦(v)

where the constraints are imposed by the setU as the “Primal problem”.
In the previous chapterU was defined by means of a finite number of
functionalsJ1, · · · , Jk onV :

U = {v|vǫV; Ji (v) ≤ 0, i = 1, · · · , k}.

The main idea of the method used in this chapter can be described
as follows: We shall describe the condition that an elementv belongs to
the constraint setU by means of an inequality condition for a suitable
functional of two arguments. For this purpose, we introducea cone
A in a suitable topological vector space and a functionalϕ on V × Λ
in such a way thatϕ(v, µ) ≤ 0 is equivalent to the fact thatv belongs
to U. Of course, the choices ofΛ and ϕ are not unique. Then the
primal problem (P) will be transformed to a mini-max problem for the
functionalL (v, µ) = J(v) + ϕ(v, µ) on V × Λ. The new functionalL is
called a Lagrangain associated to the problem (P).

141
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We shall show that the primal problem is equivalent the minimax
problem for the Lagrangain (which is a functional in two arguments
ǫV × Λ). The interest of this method is that under suitable hypothesis,
if (u, λ) is a minimax point for the Lagrangian thenu will be a solution
of the primal problem whileλ will be a solution of the so called “dual145

max-mini problem” which is defined in a natural way by the Lagrangian
in this method. Thus under certain hypothesis a minimax point charac-
terizes a solution of the primal problem.

Results on the existence of minimax points are known in the liter-
ature. We shall show that whenV is of finite dimension, under certain
assumptions, the existence of a minimax point follows from the classical
Hahn-Banach theorem. In the infinite dimensional case we shall illus-
trate our method which makes use of aresult ofKy Fan [29] and Sion
[41], [42]. However our arguments are very general and extend easily
to the general problem.

1 Preliminaries

We shall begin by recalling the above mentioned two results in the form
we shall use in this chapter.

Theorem 1.1. (Hahn-Banach). Let V be a topological vector space.
Suppose M and N are two convex sets in V such that M has atleast
one interior point and N does not have any interior point of M (i.e.
IntM , φ,N ∩ IntM = φ). Then there exist an FǫV′, F , 0 and anαǫR
such that

(1.1) < F,m>V′×V= F(m) ≤ α ≤ F(n),∀mǫM,∀nǫN.

In order to state the next result it is necessary to introducethe notion
of minimax point or sometimes also called saddle point.

Let V andE be two sets and

L : V × E→ R

be a functional onV × E.
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Definition. A point (u, λ)ǫV ×E is said to be a minimax point or saddle
point ofL if

(1.2) L (u, µ) ≤ L (u, λ) ≤ L (v, λ), ∀(v, µ)ǫV × E.

In other words, (u, λ)ǫV × E is a saddle point ofL if the pointu is 146

a minimum for the functionalL (·, λ) : V ∋ v 7→ L (v, λ)ǫR, and if the
pointλ is a maximum for the functional

L (u, ·) : E ∋ µ 7→ L (u, µ)ǫR.

i.e. sup
µǫE

L (u, µ) = L (u, λ) = inf
vǫV

L (v, λ).

Theorem 1.2. (Ky Fan and Sion). Let V and E be two Hausdorff topo-
logical vector spaces, U be a convex compact subset of V andΛ be a
convex compact subset of E. Suppose

L : U × Λ→ R.

be a functional such that

(i) For every vǫU the functionalL (v, ·) : Λ ∋ µ 7→ L (v, µ)ǫR is
upper-semi continuous and concave,

(ii) for every µǫΛ the functionalL (·, µ) : U ∋ v 7→ L (v, µ)ǫR is
lower-semi continuous and convex. Then there exists a saddle
point (u, λ)ǫU × Λ for L .

Lagrangian and Lagrange Multipliers
First of all we need a method of describing a set of constraints by

means of a functional.
SupposeV is a Hilbert space andU be a given subset ofV. In all

our applicationsU will be the set of constraints.
Let E be a vector space. We recall that a cone with vertex at 0 inE

is a subsetΛ of E which is left invariant by the action ofR+, the set of
non-negative real numbers: i.e. IfλǫΛ and if αǫR with α ≥ 0 thenαλ
also belogs toΛ.
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We assume that there exists a vector spaceE, a coneΛ with vertex
at 0 inE and a mapping 147

Φ : V × Λ→ R

such that

(i) the mappingΛ ∋ µ 7→ Φ(v, µ)ǫR is homogeneous of degree one

i.e. Φ(v, ρµ) = ρΦ(v, µ),∀ρ ≥ 0,

(ii) a point vǫV belongs toU if and only if

Φ(v, µ) ≤ 0, ∀µǫΛ.

The choice of the coneΛ and the mappingΦwith the two properties
above is not unique in general.

The vector spaceE often is a topological vector space.
We illustrate the choice ofΛ andΦ with the following example.

Example 1.1.SupposeU is a subset ofRn defined by

U = {v|vǫRn,

g(v) = (g1(v), · · · , gm(v))ǫRm such thatgi(v) ≤ 0 ∀i = 1, · · · ,m},

i.e. g is a mapping ofRn→ Rm andgi(v) ≤ 0 ∀i. We take

λ = {µǫRm|µ = (µ1, · · · , µm) with µi ≥ 0}

ClearlyΛ is a (convex) cone with vertex at 0ǫRm. Then we define

Φ : Rn × Λ→ R

by Φ(v, µ) = (µ, g(v))Rm =

m∑

i=1

µigi(v).
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One can immediatly check thatΦ has the properties (i) and (ii) and
U = {vǫRn;Φ(v, µ) = (µ, g(v))Rm ≤ 0}.

More generally ifU is defined by a mappingg : Rn → H whereH
is any vector space in which we have a notion of positivity then we can
take

Λ = {µ|µǫH, µ ≥ 0}

and148

Φ(v, µ) =< µ, g(v) >H′×H .

Example 1.2.Let U be a convex closed subset of a Banach spaceV. We
define a functionh : V′ → R by

h(µ) = sup
vǫU

< µ, v >′V′×V

Then clearlyh ≥ 0.
We take for the coneΛ:

Λ = {µ|µǫV′, h(µ) < +∞}

and defineΦ : V × Λ→ R by

Φ(v, µ) =< µ, v > −h(µ).

It is clear from the very definition that ifvǫV andΦ(v, µ) ≤ 0 then
vǫU. In fact,if v < U then, sinceU is a closed convex set inV, by Hahn-
Banach theorem there exists an elementµǫV′ such thatµ(u) = 0 ∀uǫU
andµ(v) = 1. Then for thisµ, h(µ) = 0 so thatµ ∈ Λ andΦ(v, µ) =<
µ, v >= 1 which contradicts the fact thatΦ(v, µ) ≤ 0. HencevǫU.

The arguments of Exercise 1.1 can be used to formulate the general
problem of non-linear programming considered in Chapter 4:Given
(k+ 1) functionalsJ◦, J1, · · · , Jk on a Hilbert spaceV to find

uǫU = {v|vǫV; Ji (v) ≤ 0 for i = 1, · · · ,K},

J◦(u) = inf
vǫU

J◦(v).
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We note thatv 7→ (J1(v), · · · , Jk(v)) defines a mapping ofV intoRk.
We take asE the space (Rk)′ = Rk and

λ = {µ|µǫRk, µi ≥ 0, i = 1, · · · , k}

Φ(v, µ) =
k∑

i=1

µi Ji(v).

It is immediately seen thatΦ satisfies (i) and (ii), and that an element149

vǫV belongs toU if and onlu ifΦ(v, µ) ≤ 0,∀µǫΛ. So our problem can
be reformulated equivalenty as follows:

To finduǫV such that supµǫΛΦ(u, µ) ≤ 0 and

J◦(u) = inf
{Φ(v,µ)≤0, ∀µǫΛ}

J◦(v).

These considerations are very general and we have the following
simple proposition.

Proposition 1.1. Let V be a normed space and U be a subset of V such
that we can find a coneΛ with vertex at 0 (in a suitable vector space)
and a functionΦ : V ×Λ→ R satisfying (i) and (ii). Then the following
two problems are equivalent: Let J: V → R be a given functional

Primal problem:To find uǫU such that J(u) = inf vǫU J(v).
Minimax problem:To find a point(u, λ)ǫV × Λ such that

(1.3) J(u) + Φ(u, µ) = inf
vǫV

sup
µǫΛ

(J(v) + Φ(v, µ)).

Proof. First of all we show that

sup
µǫΛ

φ(v, µ) =


0 if vǫU

+∞ if v < U.

�

In fact, if uǫU then by (ii)Φ(v, µ) ≤ 0 ∀µǫΛ. Since 0ǫΛ we get by
homogeneity (i);Φ(v, 0) = 0 and hence

sup
µǫΛ

Φ(v, µ) = 0.
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Suppose nowv < U. Then there exists an elementµǫΛ such that
Φ(v, µ) > 0. But for anyρ > 0, ρµǫΛ and by homogeneity

Φ(v, ρµ) = ρΦ(v, µ) > 0

so thatΦ(v, ρµ) → +∞ asρ→ +∞. This means that 150

sup
µǫΛ

Φ(v, µ) = +∞ if v < U.

Next we can write

sup
µǫΛ

(J(v) + Φ(v, µ)) = J(v) + sup
µǫΛ

Φ(v, µ)

=


J(v) if vǫU

+∞ if v < U

and we therefore find

inf
vǫV

sup
µǫΛ

(J(v) + Φ(v, µ)) = inf
vǫU

J(v).

This proves the equivalence of the two problems.
Suppose given a functionalJ : V → R on a Hilbert spaceV andU a

subsetV for which there exists a coneΛ and a functionΦ : V × Λ→ R
satisfying the conditons (i) and (ii).

Definition 1.1. The Lagrangain associated to the primal problem forJ
(with constraints defined by the setU) is the functionalL : V×Λ→ R
defined by

(1.4) L (v, µ) = J(v) + Φ(v, µ).

µǫΛ is called a Lagrange multiplier.

The relation between the minimax problem and the saddle point for
the Lagrangian is expressed by the following proposition. This proposi-
tion is true for any functionalL onV × Λ.
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Proposition 1.2. If (u, λ) is a saddle point forL then we have

(1.5) sup
µǫΛ

inf
vǫV

L (v, µ) = L (u, λ) = inf
vǫV

sup
µǫΛ

L (v, µ).

Proof. First of all for any functionalL onV×Λ we have the inequality

sup
µǫΛ

inf
vǫV

L (v, µ) ≤ inf
vǫV

sup
µǫΛ

L (v, µ).

�

In fact, for any point (v, µ)ǫV × Λ, we have151

inf
vǫV

L (v, µ) ≤ L (v, µ) ≤ sup
µǫΛ

L (v, µ).

But, there the first term inf
vǫV

L (v, µ) is only a function ofµ while

supµǫΛL (v, µ) is a function only ofv. Hence we get the required in-
equality.

Next, if (u, λ) is a saddle point forL then by definition

inf
vǫV

sup
µǫΛ

L (v, µ) ≤ sup
µǫΛ

L (u, µ) = L (u, λ)

= inf
vǫV

L (v, µ) ≤ sup
µǫΛ

inf
vǫV

L (v, µ).

The two inequalities together given the equalities in the assertion of
the proposition.

Definition. The problem of finding (w, λ)ǫV × Λ such that

(1.6) L (w, λ) = sup
µǫΛ

inf
vǫV

L (v, µ)

is called the “dual problem” associated to the primal problem.
i.e.

(1.6)′


(w, λ)ǫV × Λ such that

J(w) + Φ(w, λ) = supµǫΛ inf vǫV(J(v) + Φ(v, µ)).
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Remark. Since the choice of the coneλ and the functionΦ : V×Λ → R
are not unique there are may ways of defining the dual problem for a
given minimization problem.

In the following example we shall determine the dual problemof a
linear programming problem.

Suppose given a linear functionalJ : Rn → R of the form J(v) =
(c, v)Rn wherecǫRn is a fixed vector, a linear mappingA : Rn→ Rm and
a vectorbǫRm. Let U be the set inRn.

U = {vǫRn; Av− b = ((Av− b) j , · · · , (Av− b)m)ǫRm

such that (Av− b)i ≤ 0 for all i = 1, · · · ,m}.(1.7)

Consider the linear programming problem: 152

(1.8) To finduǫU such thatJ(u) = inf
vǫU

J(v).

i.e. To finduǫRn such that

(1.8)
Au− b ≤ 0 and (c, u)Rn ≤ (c, v)Rn for all vǫRn satisfyingAv− b ≤ 0.

We consider another linear programming problem defined as fol-
lows.

Let J∗ : Rm → R be the functionalJ∗(µ) = (b, µ)Rm andU∗ be the
subset ofRm given by
(1.9)

U∗ = {w|wǫRm,A∗w+ cǫRn such that (A∗w+ c) j ≥ 0 for all j = 1, · · · , n}.

whereA∗ : Rm→ Rn is the adjoint of A.

(1.10) To findµǫu∗ such thatJ∗(µ) = inf
wǫU∗

J∗(w)

i.e. To findµǫRm such that
(1.10)′

A∗µ+ c ≥ 0 and (b, µ)Rm ≤ (b,w)Rm for all wǫRm such thatA∗w+ c ≥ 0.

Proposition 1.3. The linear programming problem ((1.10)′) is the dual
of the linear programming problem ((1.8)).
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Proof. We haveV = Rn,E = Rm. Take the cone inRm defined by

Λ = {µ|µǫ(Rm)′ = Rm, µ = (µ1, · · · , µm) with µi ≥ 0 for all i = 1, · · · ,m}

and the function
Φ(v, µ) = (Av− b, µ)Rm.

�

By the very definitions we haveU = {vǫRn|Φ(v, µ) ≤ 0}. The La-
grangianL (v, µ) is given by

L (v, µ) = (c, v)R⋉ + (Av− b, µ)Rm.
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Hence by Definition ((1.6)′) the dual problem is the following: To
find (w, λ)ǫRn × Λ such that

L (w, λ) = sup
µǫΛ

inf
vǫV=Rn

L (v, µ)

= sup
µǫΛ

inf
vǫRn

((c, v)Rn + (Av− b, µ)Rm).

We can write

L (v, µ) = ((A∗µ + c), v)Rn − (b, µ)Rm

and hence

inf
vǫRn

L (v, µ) = inf
vǫRn

((A∗µ + c), v)Rn − (b, µ)Rm.

If A∗ + µ + c , 0 then by Cauchy-Schwarz inequality we have

−||v||Rn ||A∗µ + c||Rn ≤ (A∗µ + c, v)Rn

and so
((A∗µ + c), v)Rn → −∞ as||v|| → +∞

i.e.
inf
vǫRn

(A∗µ + c, v)Rn = −∞ if A∗µ + c , 0.
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But if A∗µ + c = 0 then infvǫRn(A∗µ + c, v)Rn = 0. Thus our dual
problem becomes

sup
µǫΛ

inf
vǫRn

L (v, µ) = sup
µǫΛ

−(b, µ)Rm = − inf
µǫΛ

(b, µ)Rm.

In other words the dual problem is nothing but ((1.10)′)
We conclude this section with the following

Proposition 1.4. If (u, λ)ǫV×Λ is a saddle point for the Lagrangian as-
sociated to the primal problem then u is a solution of the primal problem
andλ is a solution of the dual problem.

Proof. (u, λ) is a saddle point for the LagrangianL is equivalent to
saying that

(1.11) J(u) +Φ(u, µ) ≤ J(u) +Φ(u, λ) ≤ J(v) +Φ(v, λ),∀(v, µ)ǫV ×Λ.

�
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Form the first inequality we have

(1.12) Φ(u, µ) ≤ Φ(u, λ),∀µǫΛ.

Taking µ = 0 in this inequality we getΦ(u, 0) ≤ Φ(u, λ) which
means by homogeneityΦ(u, λ) ≥ 0. Similarly takingu = 2λ and using
homogeneity we get

2Φ(u, λ) = Φ(u, 2λ) ≤ Φ(u, λ)

i.e. Φ(u, λ) ≤ 0.

Hence we find thatΦ(u, λ) = 0. Then it follows from (1.12) that

Φ(u, µ) ≤ 0,∀µǫΛ

and thereforeuǫU by definition ofΛ andΦ. Thus we have

(1.13)


uǫU, λǫΛ,Φ(u, λ) = 0 and

J(u) + Φ(u, λ) ≤ J(v) + Φ(v, λ) ∀vǫV
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Conversely, it is immediate to see that (1.13) implies (1.11). It is
enough to observe thatΦ(u, µ) ≤ 0 = Φ(u, λ) ∀µǫΛ sinceuǫU so that
we have the inequality

J(u) + Φ(u, µ) ≤ J(u) + Φ(u, λ).

Now in (1.13) we takevǫU so thatΦ(v, µ) ≤ 0,∀µǫΛ and (1.13) will
imply

(1.14)


uǫU, λǫΛ,Φ(u, λ) = 0 and

J(u) ≤ J(v) ∀vǫU.

which proves thatu is a solution of the primal problem. We have al-
ready seen in Proposition 1.1 the implication that ifu is a solution of the
problem then

L (u, λ) = inf
vǫV

sup
µǫΛ

L (v, µ).

155

On the other hand, if we use proposition 1.2 it follows thatΛ is a
solution of the dual problem.

2 Duality in Finite Dimensional Spaces Via
Hahn - Banach Theorem

In this section we describe a duality method based on the classical Hahn-
Banach theorem for convex programming problem in finite dimensional
spaces i.e. our primal problem is that of minimizing a convexfunctional
on a finite dimensional vector space subject to constraints defined by
convex functionals.

We introduce a condition on the constraints which is of fundamental
importance called the Qualifying hypothesis. Under this hypothesis we
prove that if the primal problem has a solution then there exists a saddle
point for the Lagrangian associated to it. We shall also givesufficient
conditions in order that the Qualifying hypothesis on the constraints are
satisfied.



2. Duality in Finite Dimensional Spaces Via 153

Let Ji : Rn→ R(i = 0, 1, · · · , k) be (k+ 1) convex functionals onRn

andK be the set defined by

K = {v|vǫRn; Ji(v) ≤ 0 for i = 1, · · · , k}.

Our primal problem then is

Problem 2.1.To finduǫK such thatJ◦(u) = infvǫK J◦(v).
It is clear thatK is a convex set.
Let

(2.1) j = inf
vǫK

J◦(v)

We introduce the Lagrangian associated to the problem (2.1)as de-
scribed in the previous section. More precisely, let

Λ = {µ|µ = (µ1, · · · , µk)ǫR
k such thatµi ≥ 0}

which is clearly a cone with vertex as 0 inRk and let 156

Φ : Rn × Λ→ R

be defined by

Φ(v, µ) =
k∑

i=1

µi Ji(v).

Then the Lagrangian associated to the problem (2.1) is

L (v, µ) = J◦(v) +
k∑

i=1

µi Ji(v).

Suppose that the problem (2.1) has a solution. Then we wish tofind
conditions on the constraintsJi in order that there exists a saddle point
for L . For this purpose we proceed as follows:

SupposeS andT are two subsets ofRk+1 defines in the following
way:
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S is the set of all points



(J◦(v) − j + s◦, J1(v) + s1, · · · , Jk(v) + sk)ǫRk+1,

wherevǫRn and

s= (s◦, s1, · · · , sk)ǫRk+1 such thatsi ≥ 0 ∀i.

T is the set of all points

(−t◦,−ti , · · · ,−tk)ǫR
k+1 whereti ≥ 0 ∀i.

It is obvious thatT is convex. In factT is nothing but the negative
cone inRk+1. On the other hand, sinceJ◦, J1, · · · , Jk are convex and
si ≥ 0 ∀i it follows thatS is also convex. It is also clear that IntT , φ.
In fact any point (−t◦,−t1, · · · ,−tk)ǫRk+1 with ti > 0 ∀i is an interior
point.

Next we claim thatS ∩ (Int T) = φ. In fact, if S ∩ (Int T) , φ then
there exist

sometǫRk+1 with t = (t◦, t1, · · · , tk), ti > 0 ∀i,
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somevǫRn, and ansǫRk+1 with s= (s◦, s1, · · · , sk), si > 0 ∀i

such that

J◦(v) − j + s◦ = −t◦, J1(v) + s1 = −t1, · · · , Jk(v) + sk = −tk

Now we have form this

Ji(v) = −ti − si < 0 sincesi ≥ 0 for anyi = 1, · · · , k

This means thatvǫK. On the other hand,

J◦(v) = −t◦ − s◦ + j < j = inf
wǫK

J◦(w)

which is impossible sincevǫK.
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We can now apply Hahn-Banach theorem to the setsS andT in the
form we have recalled in Section 1. There exist anFǫ(Rk+1)′ = (Rk+1)
and anαǫR such thatF , 0, F(x) ≥ α ≥ F(y) wherexǫS andyǫT. More
precisely we can write this as follows:

∃F = (α◦, α1, · · · , αk)ǫR
k+1 such that

k∑

i=0

|αi | > 0 and∃αǫR

such that

(2.2)



α◦(J◦(v) − j + s◦) +
∑k

i=1 αi(Ji(v) + si) ≥ α ≥ −
∑k

i=0αi ti ,

∀vǫV, s= (s◦, s1, · · · , sk) with si ≥ 0 ∀i

andt = (t◦, t1, · · · , tk) with ti ≥ 0 ∀i

We next show from (2.2) that we have

(2.3) α = 0, αi ≥ 0 ∀i and
k∑

i=0

αi > 0.

In fact, if we taket1 = · · · = tk = 0 then we get, from the second
inequality in (2.2).

α ≥ −α◦t◦ = (−α◦)t◦ ∀t◦ ≥ 0.
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If α◦ < 0 then (−α◦)t◦ → +∞ ast◦ → +∞ and therefore we neces-
sarily haveα◦ ≥ 0. Similarly we can show thatαi ≥ 0 ∀i = 0, 1, · · · , k.
Then

k∑

i=0

|αi | =

k∑

i=0

αi > 0 sinceF , 0.

If we take t◦ = t1 = · · · = tk = 0 we also find, from the second
inequalities in (2.2) thatα ≥ 0.

We have therefore only to show thatα ≤ 0. For this, takings◦ =
· · · = sk = 0 in the first inequality of (2.2) we get

(2.4) α◦(J◦(v) − j) +
k∑

i=1

αi Ji(v) ≥ α.
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Supposevm is a minimizing sequence for the problem (2.1)

i.e vmǫK andJ◦(v
m)→ j = inf

vǫK
J◦(v).

This means thatJi(vm) ≤ 0 for i = 1, · · · , k andJ◦(vm) → j. Hence
(2.4) will imply, sinceαi ≥ 0

α◦(J◦(v
m) − j) ≥ α◦(J◦(v

m) − j) +
k∑

i=1

αi Ji(v) ≥ α.

Now taking limits asm→ +∞ it follows thatα ≤ 0. Thus we have

(2.5)


αi ≥ 0, for i = 0, 1, · · · , k and

∑k
i=0αi > 0,

α◦(J◦(v) − j) +
∑k

i=1 αi Ji(v) ≥ 0,∀vǫRn

We now make the fundamental hypothesis that

(2.6) α◦ > 0.

Under the hypothesis (2.6) if we writeλi = αi/α◦ then (2.5) can be
written in the form

(2.7)


λi ≥ 0 for i = 1, · · · , k and

j ≤ j◦(v) +
∑k

i=1 λi Ji(v).∀vǫRn

i.e. λǫΛ andL (v, λ) ≥ j ∀vǫRn.159

The condition (2.6) is well known in the literature on optimization.
We introduce the following definition.

Definition 2.1. Any hypothesis on the constraintsJi which implies (2.6)
is called a Qualifying hypothesis.

We shall see a little later some examples of Qualifying hypothesis.
(See [26], [27], [28]).

We have thus proved the
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Theorem 2.1. If all the functionals Ji(i = 0, 1, · · · , k) are convex and if
the Qualifying hypothesis is satisfied then there exists aλǫΛ such that
L (v, λ) ≥ j ∀vǫRn.

i.e. there exists aλ = (λ1, · · · , λk)ǫRk with λi ≥ 0 ∀i such that

J◦(v) +
k∑

i=1

λi Ji(v) ≥ j,∀vǫRn.

We can also deduce from (2.7) the following result.

Theorem 2.2. Suppose all the functionals J◦, J1, · · · , Jk are convex and
the Qualifying hypothesis holds. If the problem (2.1) has a solution, i.e.

(2.8) there exists a uǫK such that J◦(u) = j = inf
vǫK

J◦(v)

then the lagrangianL has a saddle point.

Proof. We can write (2.7) as

λi ≥ 0 for i = 1, · · · , k and

J◦(u) ≤ J◦(v) +
k∑

i=1

λi Ji(v) = L (v, λ),∀vǫRn.(2.9)

Choosingv = u in (2.9) we find that

k∑

i=1

λi Ji(u) ≥ 0.

But hereλi ≥ 0 andJi(u) ≤ 0 sinceuǫK so thatλi Ji(u) ≤ 0 for all 160

i = 1, · · · , k and hence
∑k

i=1 λi Ji(u) ≤ 0. Thus we necessarily have

k∑

i=1

λi Ji(u) = 0

and, further more, it follows immediately from this that

λi Ji(u) = 0 for i = 1, · · · , k.
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Thus we can rewrite (2.9) once again as :

(2.10)



λi ≥ 0, i = 1, · · · , k.

uǫK,
∑k

i=1 λi Ji(u) = 0 and

L (u, λ) = J◦(u) +
∑k

i=1 λi Ji(u) ≤ J◦(v) +
∑k

i=1 λi Ji(v)

= L (v, λ) ∀vǫRn.

But, sinceuǫK, Ji(u) ≤ 0 and we also have
(2.11)

L (u, µ) = J◦(u) +
∑k

i=1 µi Ji(u0 ≤ J◦(u) = J◦(u) +
∑k

i=1 λi Ji(u)

= L (u, λ)

∀µǫRk with µ = (µ1, · · · , µk), µi ≥ 0.

(2.10) asnd (2.11) together means that

L (u, µ) ≤ L (u, λ) ≤ L (v, λ),∀vǫRn and∀µǫΛ.

This proves the theorem. �

Some examples of Qualifying hypothesis.We recall that if all the
functionalsJ◦, J1, · · · , Jk are convex then we always have (2.5)∀vǫRn.
If supposeα◦ = 0 in (2.5) then we get

(2.12)



αi ≥ 0 for i = 1, · · · , k,
k∑

i=1
αi > 0 and

k∑
i=1
αi Ji(v) ≥ 0,∀vǫRn

In all the examples we give below we state the Qualifying hypoth-
esis in the following form. The given hypothesis together with the fact161

thatα◦ = 0 will imply that it is impossible that (2.5) holds. i.e. The hy-
pothesis will imply that (2.12) cannot hold. Hence if (2.5) should hold
we necessarily haveα◦ > 0, i.e. (2.6) holds.

Qualifying hypothesis (1).There exists a vectorZǫRn such thatJi(Z) <
0 for i = 1, · · · , k.

This condition is due to Slater (See for instance [6]).
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Suppose the Qualifying hypothesis (1) is satisfied. LetcǫR be such
that Ji(Z) ≤ c < 0 for all i = 1, · · · , k. Obviously such a constant c
exists since we can takec = max

1≤i≤k
Ji(Z). Now if αi ≥ 0(i = 1, · · · , k)

are such that
k∑

i=1
αi > 0 then

k∑

i=1

αi Ji(Z) ≤ c
k∑

i=1

αi < 0.

This means that (2.12) does not hold for the vectorZǫRn. Hence
α◦ > 0 necessarily so that (2.5) holds∀vǫRn and in particular for Z.

Qualifying hypothesis (2).There do not exist real numbers

(2.13)



αi(i = 1, · · · , k) with αi ≥ 0 and
k∑

i=1
αi > 0 such that

k∑
i=1
αi Ji(v) = 0,∀vǫK.

Suppose this hypothesis holds andα◦ = 0. Then we have (2.12) for
all vǫRn.

In particulas, we have

k∑

i=1

αi Ji(v) ≥ 0,∀vǫK.

But vǫK andαi ≥ 0 imply thatαi Ji(v) ≤ 0 for i = 1, · · · , k and so
k∑

i=1
αi Ji(v) ≤ 0. The two inequalities together imply that∃αi ≥ 0 with

k∑
i=1
αi > 0 such that

k∑
i=1
αi Ji(v) = 0, contrary to the hypothesis. Hence

α◦ > 0.

Qualifying hypothesis (3).SupposeJi(i = 1, · · · , k) further have gradi- 162
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entsGi(i = 1, · · · , k).

(2.14)



There do not exist real numbersαi with

αi ≥ 0, i = 1, · · · , k,
k∑

i=1
αi > 0 such that

k∑
i=1
αiGi(v) = 0,∀vǫK.

The condition (2.14) seems to be due to to Kuhn and Tucker [28]
It is enough to show that Qualifying hypothesis (3) implies Qual-

ifying hypothesis (2). Suppose there existαi ≥ 0, i = 1, · · · , k, with
k∑

i=1
αi Ji(v) = 0 ∀vǫK. Then taking derivatives it will imply the existence

of αi ≥ 0(i = 1, · · · , k) with
k∑

i=1
αi > 0 such that

k∑
i=1
αiGi(v) = 0 ∀vǫK.

This contradicts the given hypothesis. Henceα◦ > 0.
Finally we remark that the existence of a saddle point can also be

proved using the minimax theorem of Ky Fan and Sion. We refer for
this to the book of Cea [6].

3 Duality in Infinite Dimensional Spaces Via
Ky Fan - Sion Theorem

This section will be concerned with the duality theory for the minimi-
sation problem with constraints for functionals on infinitedimensional
Hilbert spaces. We confine ourselves to illustrate the method in the spe-
cial example of a quadratic form (see the model problem considered
in Chapter 1, Section 7) in which case we have proved the existence
of a unique solution for our probelm (see Section 2 of Chapter2). As
we have already mentioned this example includes a large class of vari-
ational inequalities associated to second order elliptic differential oper-
ators and conversely. Our main tool in this will be the theorem of Ky
Fan and Sion. However we remark that our method is very general and
is applicable but for some minor details to the case of general convex
programming problems in infinite dimesional spaces.
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3.1 Duality in the Case of a Quadratic Form
163

We take for the Hilbert spaceV the Sobolev spaceH1(Ω) whereΩ is
a bounded open set with smooth boundaryΓ in Rn. Let a(·, ·) be a
continuous quadratic form onV (i.e. it is a symmetric bilinear bicon-
tinuous mapping:V × V → R) and L(·) be a continuous linear func-
tional onV (i.e. LǫV′). We assume thata(·, ·) is H1(Ω) - coercive. Let
J : H1(Ω)→ R be the (strictly) convex continuous functional onH1(Ω)
defined by

(3.1) J(v) =
1
2

a(v, v) − L(v).

We denote by||| · ||| the norm|| · ||H1(Ω) and by|| · || the norm|| · ||L2(Ω).
Let us consider the set

(3.2) K{v|vǫH1(Ω), ||v|| ≤ 1}.

We check immediately thatK is a closed convex set inH1(Ω). We
are interested in the following minimisation problem :

Problem 3.1.To finduǫK such thatJ(u) ≤ J(v),∀vǫK.
SinceJ is H1(Ω) -coercive (hence strictly convex) and sinceJ has a

gradient and a hessian everywhere inV we know from Theorem 2. 2.1
that the problem 3.1 has unique solution.

In order to illustrate our method we shall consider a simple case and
take

(3.3) Λ = {µ|µǫR, µ ≥ 0}

and

(3.4) Φ(v, µ) =
1
2
µ(||v||2 − 1) ∀vǫV = H1(Ω) andµǫΛ.

Thus K is nothing but the set{v|vǫV,Φ(v, µ) ≤ 0}. We define the
associated Lagrangian by

L (v, µ) = J(v) + Φ(v, µ)
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i.e. 164

(3.5) L (v, µ) =
1
2

a(v, v) − L(v) +
1
2
µ(||v|| − 1).

We observe that

(i) the mappingµ 7→ L (v, µ) is continuous linear and hence, in par-
ticular, it is concave and upper-semi-continuous and

(ii) the mappingv 7→ L (v, µ) is continuous and convex and hence in
particualr, it is convex and lower semi-continuous.

We are now in a position to prove the first result of this section using
the theorem of Ky Fan and Sion. This can be stated as follows:

Theorem 3.1. Suppose the functional J on V= H1(Ω) is given by (3.1)
and the closed convex set K of V is given by (3.2). Then the Lagrangian
(3.5) associated to the primal problem 3.1 has a saddle point. Moreover,
if (u, λ) is a saddle point ofL then u is a solution of the generalized
Neumann problem

+Au+ uλu = f in Ω

∂/∂nAu = 0 onΓ(3.6)

We note that here u andλ are subjected to the constraints

(3.7) λ ≥ 0, ||u|| ≤ 1 butλ(||u||2 − 1) = 0.

Here the formal (differential) operatorA is defined in the following
manner. For any fixedvǫV = H1(Ω) the linear mappingϕ 7→ a(v, ϕ) is
a continuous linear functionalAv i.e. AvǫV′. Moreoverv 7→ Avbelongs
to L (V,V′) and we have

(Av, ϕ)V = a(v, ϕ),∀ϕǫH1(Ω) = V.

Similarly f ǫL2(Ω) is defined byL(ϕ) = ( f , ϕ)L2(Ω),∀ϕǫV. Further
∂u/∂nA is the co-normal derivative ofu associated toA and is defined
by the Green’s formula:

a(u, ϕ) = (Au, ϕ)V +

∫

Γ

∂u∂nAϕdσ,∀ϕǫV,
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as in Section 4 of Chapter 2.
In particular, if we takea(v, v) = |||v|||2, thenA = −△ and the problem165

is nothing but the classical Neumann problem

(3.6)′

−△u+ u+ λu = f in Ω,

∂u/∂n = 0 onΓ

Of course, we again have (3.7).

Proof of Theorem 3.1.Let ℓ > 0 be any real number. We consider the
subsetsKℓ andΛℓ of H(Ω) andΛ respectively defined by

Kℓ = {v|vǫH
1(Ω), |||v||| ≤ ℓ}

Λℓ = {µ|µǫR, 0 ≤ µ ≤ ℓ}

It is immediately verified thatKℓ andΛℓ are convex sets, and that
Λℓ is a compact set inR. SinceKℓ is a closed bounded set in the Hilbert
spaceH1(Ω), Kℓ is weakly compact. We considerH1(Ω) with its weak
topoligy.

Now H1(Ω) = V with the weak topology is a Hausdorff topological
vector space. All the hypothesis of the theorem of Ky Fan and Sion are
satisfied byKℓ,Λℓ andL in view of (i) and (ii). HenceL : Kℓ×Λℓ → R

has a saddle point (uℓ, λℓ). i.e.

(3.8)



There exist (uℓ, λℓ)ǫKℓ × Λℓ such that

J(uℓ) + 1
2µ(|||uℓ|||2 − 1) ≤ J(uℓ) + 1

2λℓ(|||uℓ |||
2 − 1)

≤ J(v) + 1
2λℓ(|||v|||

2 − 1).

∀(v, µ)ǫKℓ × Λℓ.

We shall show that if we chooseℓ > 0 sufficiently large then such a
saddle point can be obtained independent ofℓ and this would prove the
first part of the assertion. For this we shall first prove that||uℓ || andλℓ
are bounded by constants independent ofℓ.

If we takeµ = 0ǫΛℓ in (3.8) we get

(3.9) J(uℓ) ≤ J(v) +
1
2
λℓ(||v||

2 − 1),∀v ∈ Kℓ
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and, in particular, we also get 166

(3.10) J(uℓ) ≤ J(v),∀v ∈ K ∩ Kℓ.

Takingv = 0 ∈ K ∩ Kℓ in (3.10) we see thatJ(uℓ) ≤ J(0)(= 0). On
the other hand, sincea(uℓ, uℓ) ≥ 0 and sinceuℓ ∈ Kℓ

L(uℓ) ≤ ||L||V′ |||uℓ ||| ≤ ℓ||L||V′

we see that

J(uℓ) =
1
2

a(uℓ, uℓ) − L(uℓ) ≥ −ℓ||L||V′

which proves thatJ(uℓ) is also bounded below. Thus we have

(3.11) ℓ||L||V′ ≤ J(uℓ) ≤ J(0).

Now by coercivity ofa(·, ·) and (3.11) we find

α|||uℓ |||
2 ≤ a(uℓ, uℓ) = 2(J(uℓ) + L(uℓ)) ≤ 2(J(0)+ ||L||V′ |||uℓ |||).

with a constantα > 0 (independent ofℓ). Here we use the trivial in-
equality

||L||V′ |||uℓ ||| ≤ ǫ|||uℓ |||
2
+ 1/ǫ||L||2V′ . for anyǫ > 0.

with ǫ = α/4 > 0 and we obtain

|||uℓ |||
2 ≤ 4/α(J(0)+ 4/α||L||2V′ )

This proves that there exists a constantc1 > 0 such that

(3.12) |||uℓ ||| ≤ c1,∀ℓ.

To prove thatλℓ is also bounded by a constantc2 > 0 independent
of ℓ, we observe that sinceJ satisfies all the assumptions of Theorem
2.3.1 of Chapter 2, (Section 3) there exists a unique global minimum in167

V = H1(Ω) i.e.

(3.13) There exists unique ãuǫH1(Ω) such thatJ(̃u) ≤ J(v),∀vǫV.
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Hence we have

J(̃u) + λℓ/2 ≤ J(uℓ) + λℓ/2.

But, if we takev = 0ǫKℓ in the second inequality in (3.9) we get

J(uℓ) + λℓ/2 ≤ J(0).

These two inequalities together imply that

λℓ/2 ≤ J(0)− J(̃u).

i.e.

(3.14) 0≤ λℓ ≤ 2(J(0)− J(̃u)) = c2

which proves thatλℓ is also bounded.

(3.15) We chooseℓ > max(c1, 2c2) > 0.

Next we show that (3.8) holds for anyµǫΛ. For this, we use the first
inequality in (3.8) in the form

µ(||uℓ||
2 − 1) ≤ λℓ(||uℓ ||

2|| − 1).

This implies (i) takingµ = 0, λℓ(||uℓ ||2 − 1) ≥ 0 and
(ii) taking µ = 2λℓ ≤ 2c2 < ℓ, λℓ, λℓ(||uℓ ||2 − 1) ≤ 0. Thus we have

λℓ(||uℓ ||
2 − 1) = 0 andµ(||uℓ ||

2 − 1) ≤ 0,∀µǫΛℓ.

In particular,µ = ℓǫΛℓ and soℓ(||uℓ ||2 − 1) ≤ 0. Thus we have

λℓ(||uℓ ||
2 − 1) = 0 andµ(||uℓ||

2 − 1) ≤ 0,∀µǫΛℓ

In particular,µ = ℓǫΛℓ and soℓ(||uℓ ||2 − 1) ≤ 0 which means that
||uℓ||2 − 1 ≤ 0.

Hence we also have

µ(||uℓ||
2 − 1) ≤ 0 for anyµ ≥ 0.
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and therefore 168

(3.16) L (uℓ, µ) ≤ L (uℓ, λℓ) ≤ L (v, λℓ),∀µ ≥ 0 andvǫKℓ

whereℓ ≥ max(c1, 2c2).
We have now only to show that we have (3.16) for anyvǫH1(Ω) = V.

For this we note that|||uℓ ||| ≤ c1 < ℓ and hence we can find anr > 0 such
that the ball

B(uℓ, r) = {v|vǫH
1(Ω); |||v− uℓ||| < r}

is contained in the ballB(0, ℓ) = {v|vǫH1(Ω), |||v||| < ℓ}. In fact, it is
enough to take 0< r < (ℓ − c1)/2. Now the functionalL (·, λℓ) :
v 7→ L (v, λℓ) = J(v) + λℓ/2(||v||2 − 1) has a local minimum inB(uℓ, r).
But since this functional is convex such a minimum is also a global
minimum. This means that

inf
vǫR(uℓr)

L (v, λℓ) = inf
vǫV

L (v, λℓ).

On the other hand, sinceB(uℓ, r) ⊂ Kℓ we see from (3.16) that

L (uℓ, µ) ≤ L (uℓ, λℓ) ≤ inf
vǫKℓ

L (v, λℓ) ≤ inf
vǫB(uℓ,r)

L (v, λℓ) = inf
vǫV

L (v, λℓ).

In other words, we have

L (uℓ, µ) ≤ L (uℓ, λℓ) ≤ L (v, λℓ),∀vǫV and∀µ ≥ 0

which means thatL has a saddle point.
Finally we prove that (u, λ) = (uℓ, λℓ)(ℓ > max(c1, 2c2)) satisfies

(3.6). First of all the functionalv 7→ L (v, λ) is G-differentiable and has
a gradient everywhere inV. In fact, we have

(3.17) ((gradL )(v), ϕ)V = a(v, ϕ) − L(ϕ) + λ(v, ϕ)V.

We know by Theorem 2.1.3 (Chapter 2, Section 1) that at the point169

u wherev 7→ L (v, λ) has a minimum we should have

(3.18) ((gradL (·, λ))u, ϕ)V = 0.

Now, if we use (3.17), (3.18) and the definition ofAu, f and∂u/∂nA

we obtain (3.6).
This proves the theorem completely.
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Remark 3.1.The above argument using the theorem of Ky Fan and Sion
can be carried out for the functionalJ given again by (3.1) but the con-
vex setK of (3.2) replaced by any one of the following sets

K1 = {v|vǫH
1
◦ (Ω), v ≥ 0 a. e. inΩ},

K2 = {v|vǫH
1(Ω), γ◦v ≥ 0 a. e. onΓ} and

K3 = {v|vǫH
1(Ω), 1− grad2u(x) ≥ 0 a. e. inΩ}.

SincevǫH1(Ω), γ◦vǫH
1
2 (Γ), 1− grad2u(x)ǫL1(Ω) and since

(H1
◦(Ω))′ = H−1(Ω), (H

1
2 (Γ))′ = H−

1
2 (Γ), (L−1(Ω))′ = L∞(Ω)

we will have to choose the coneΛ respectively in these spaces.
We recall that ifE is a vector space in which we have a notion of

positivity then we can define in a natural way a notion of positivity in
its dual spaceE′ by requiring an elementµǫE′ is positive (i.e.µ ≥ 0
in E′) if and only if < µ, ϕ >E′×E≥ 0, ∀ϕǫE with ϕ ≥ 0. For the
above examples we can take forE the spacesH1

◦(Ω),H
1
2 (Γ) andL1(Ω)

respectively and we have notions of positivity for their dual spaces.
We can now take

Λ1 = {µǫH
−1(Ω)|µ ≥ 0 inΩ},

Λ2 = {µ|µǫH
− 1

2 (Γ), µ ≥ 0 onΓ} and

Λ3 = {µ|µǫL
∞(Ω), µ ≥ 0 inΩ}.

and correspondingly the Lagrangians 170

L1(v, µ) = J(v)+ < µ, v >H1(Ω)×H1
◦ (Ω),

L2(v, µ) = J(v)+ < µ, γ◦v >
H−

1
2 (Γ)×H

1
2 (Γ)

and

L3(v, µ) = J(v)+ < µ, v >L∞(Ω)×L1(Ω) .

We leave other details of the proof to the reader except to remark that
Λi being cones in infinite dimensional Banach spaces the setsΛi,ℓ(i =
1, 2, 3) for anyℓ > 0 will only be convex sets which are compact in the
weak topologies ofH−1(Ω) andH−

1
2 (Γ) for i = 1, 2 and in the weak∗

topology ofL∞(Ω) for i = 3.
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3.2 Dual Problem

We once again restrict ourselves to the problem considerer in 3.1 i.e.J
is a quadratic form onV = H−1(Ω) given by (3.1) and the closed convex
setK is given by (3.2). We shall study the dual problem in this case. We
takeΛ andΦ as before.

We recall that the dual problem is the following:
To find (u, λ)ǫV × Λ such that

L (u, λ) = sup
µ≥0

inf
vǫV

L (v, µ)

= sup
µ≥0

inf
vǫV
{
1
2

a(v, v) − L(v) +
1
2
µ(||v||2 − 1)}.

We fix aµ ≥ 0.
First of all we consider the minimization problem without constrains

for the functional

L (·, µ) : v 7→
1
2

a(v, v) − L(v) +
1
2
µ(||v||2 − 1)

on the spaceV = H1(Ω). We know from Chapter 2 (Theorem 2. 2.1) that171

it has a unique minimumuµǫV sinceL (·, µ) has a gradient and a hessian
(which is coercive) everywhere. Moreover, (gradL (·, µ))(uµ) = 0 i.e.
we have

(3.19) a(uµ, ϕ) − L(ϕ) + µ(uµ, ϕ) = 0, ∀ϕǫV.

We can write using Fréchet-Riesz theorem

a(u, ϕ) = ((Au, ϕ)), L(ϕ) = ((F, ϕ)), (u, ϕ) = ((Bu, ϕ))

where ((·, ·)) denotes the inner product inH1(Ω) andAu, F, BuǫH1(Ω).
Then (3.19) can be rewritten as

(3.20) Auµ − F + µBuµ = 0.

Hence the unique solutionuµǫV of the minimizing problem without
constrainer forL (·, µ) is given by

(3.21) uµ = (A+ µB)−1F.

We can now formulate our next result as follows.
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Theorem 3.2. Under the assumptions of Theorem 3.1 the dual of the
primal Problem 3.1 is the following:

To findλǫΛ such that J∗(Λ) = inf µǫλ J∗(µ), where

(3.22) J∗(µ) = ((F, uµ)) + µ. i.e.

Dual Problem (3.2).To findλ ≥ 0 such thatJ∗(λ) = inf µ≥0 J∗(µ).

Proof. Consider

L (uµ, µ) =
1
2

((Auµ, uµ)) − ((F, uµ)) +
1
2
µ(||uµ ||

2 − 1)

=
1
2

((Auµ, uµ)) − ((F, uµ)) +
1
2
µ(((Buµ, uµ)) − 1)

1
2

(((A+ µB)uµ, uµ) − (F, uµ)) − µ/2.

� 172

Now using (3.20) we can write

L (uµ, µ) = −
1
2

((F, uµ)) − µ/2 = −
1
2
{((F, uµ)) + µ}

Thus we see that

sup
µ≥0

inf
vǫV

L (v, µ) = sup
µ≥0

(−
1
2

){((F, uµ)) + µ}

= −
1
2

inf
µ≥0

J∗(µ)

which proves the assertion.
We wish to construct an algorithm for the solution of the dualprob-

lem (3.2). We observe that in this case the constraint setΛ = {µ|µǫR, µ ≥

0} is a cone with vertex at 0ǫR and that numerically it is easy to compute
the projection on a cone. In face, in our special case we have

PΛ(µ) =


µ if µ ≥ 0

0 otherwise.
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Hence we can use the algorithm given by the method of gradient
with projection. This we shall discuss a little later. We shall need, for
this method, to calculate the gradient of the cost functionJ∗ for the dual
problem.

Form (3.22) we have

J∗(µ) = ((F, uµ)) + µ.

TakingG-derivatives on both sides we get

(3.23) (gradJ∗)(µ) = J∗(µ) = ((F, u′µ)) + 1

whereu′µ is the derivative ofuµ with respect toµ. In order to compute
u′µ we differentiate with equation (3.20) with respect toµ to get.

Au′µ + µBu′µ + Buµ = 0

and so173

(3.24) u′µ = −(A+ µB)−1Buµ.

Substituting (3.24) in (3.23) we see that

J∗(µ) = −((F, (A+ µB)−1Buµ)) + 1.

Sincea(·, ·) is symmetric A is self adjoint and since (·, ·) is symmet-
ric B is also self adjoint. Then (A+ µB)−1 is also self adjoint. This fact
together with (3.21) will imply

J∗(µ) = −((A+ µB)−1F, Buµ) + 1 = −(uµ, Buµ) + 1

This nothing but saying

(3.25) J∗(µ) = 1− ||uµ||
2

Remark 3.2. In our discussion above the functionalΦ is defined by (3.4)
and we found the gradient of the dual cost function is given by3.25.
More generally, ifΦ(v, µ) = (g(v), µ) then the gradient of the dual cost
function can be shown to beJ∗(µ) = −g(uµ). We leave the straight
forward verification of this fact to the reader.
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3.3 Method of Uzawa

The method of Uzawa that we shall study in this section gives an algo-
rithm to construct a minimizing sequence for the dual problem and also
an algorithm for the primal problem itself (see [6], [49]). The important
idea used is that since the dual problem is one of minimization over a
cone in a suitable space it is easy to compute the projection numerically
onto such a cone. The algorithm we give is nothing but the method of 174

gradient with projection for the dual problem (see Section 3of Chapter
2). We shall show that this method provides a strong convergence of the
minimizing sequence obtained for the primal problem while we have
only a very weak result on the convergence of the algorithm for the dual
problem.

In general the algorithm for the dual problem may not converge.
The interest of the method is mainly the convergence of the minimizing
sequence for the primal problem.

We shall once again restrict ourselves only to the situationconsid-
ered earlier i.e.J,K,Λ,Φ andL are defined by (3.1) - (3.5) respectively.

Algorithm. Let λ◦ be an arbitrarily fixed point and supposeλm is deter-
mined.

We defineλm+1 by

(3.26) λm+1 = PΛ(λm − ρJ∗(λm)).

wherePΛ denotes the projection on to the coneΛ andρ > 0.
In our special case we get, using (3.25).

(3.26)′ λm+1 = PΛ(λm − ρ(1− ||um||
2))

whereum = uλm is the unique solution of the problem

(3.20)′ Aum + λmBum = F.

i.e.

(3.21)′ um = (A+ λmB)−1F.



172 5. Duality and Its Applications

We remark that (3.21) is equivalent to solving a Neumann problem.
In the special case wherea(v, v) = |||v|||2 we have to solve the Neumann
problem

(3.20)′′

△um+ (1+ λm)um = F in Ω,

∂um/∂n = 0 onΓ

i.e. At each stage of the iteration we need to solve a Neumann problem
in order to determine the next iterateλm+1.175

We shall prove the following main result of this section.

Theorem 3.3. Suppose the hypothesis of Theorem 3.1 are satisfied.
Then we have the following assertions.

(a) The sequence um = uλm determined by(3.20)′ converges strongly
to the (unique) solution of the primal Problem 3.1.

(b) Any cluster point of the sequenceλm determined by(3.26)′ is a
solution of the dual Problem 3.2.

The proof of the theorem is in several steps. For this we shallneed a
Taylor’s formula for the dual cost functionJ∗ (i.e. the functional (3.22))
and an inequality which is a consequence of Taylor’s formula.

Taylor’s formula for J∗. Let λ, µǫΛ and we consider the problem

(3.27) (A+ λB)u = F and (A+ µB)v = F

where we have writtenuµ = v anduλ = u. We can also write the first
equation as

(A+ λB)v = F − (µ − λ)Bv= (A+ λB)u− (µ − λ)Bv

i.e.
(A+ λB)(v− u) = −(µ − λ)Bv.

Similarly we have

(A+ µB)(v− u) = −(µ − λ)Bu.



3. Duality in Infinite Dimensional Spaces Via... 173

which implies that

(3.28) uµ − uλ = v− u = −(µ − λ)(A+ µB)−1Buλ

Then (3.22) together with (3.28) gives

J∗(µ) = J∗(λ) + ((F, uµ − uλ) + (µ − λ))

= J∗(λ) − (µ − λ)((F, (A+ µB)−1buλ)) + µ − λ

= J∗(λ) − (µ − λ)(((A+ µB)−1F, Buλ)) + µ − λ

since (A + µB)−1 is self adjoint becausea(·, ·) is symmetric and (·, ·) is 176

symmetric. Once again using the second equation in (3.27) weget

J∗(µ) = J∗(λ) − (µ − λ)((uµ, Buλ)) + (µ − λ)

= J∗(λ) − (µ − λ)(uλ, uλ) + (µ − λ) − (µ − λ)(uλ − uµ, uλ)

where we have used ((·, B·)) = (·, ·). i.e. We have

(3.29) J∗(µ) = J∗(λ) + (µ − λ)[1 − ||uλ||
2] − (µ − λ)(uλ − uµ, uλ).

We shall now get an estimate for the last term of (3.29). From (3.28)
we can write

(((A+ µV)(v− u), v− u)) = −(µ − λ)((Bu, v− u))

which is nothing but

a(v− u, v− u) + µ(v− u, v− u) = −(µ − λ)(u, v− u).

Using coercivity ofa(·, ·), µ(v − u, v − u) ≥ 0 on the left side and
Cauchy-Schwarz inequality on the side we get

α|||v− u|||2 ≤ |µ − λ||||u||||||v − u|||

i.e.

(3.30) |||v− u||| ≤ |µ − λ|/α|||u|||
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On the other hand, sinceu is a solution of (3.20), we also have

a(u, u) + λ(u, u) = L(u)

from which we get again using coercivity on the left

α|||u|||2 ≤ ||L||V′ |||u||| ≤ N|||u|||, for some constantN > 0.

i.e. 177

|||u||| ≤ N/α.

On substituting this in (3.30) we get the estimate

|||v− u||| ≤ N|µ − λ|/α2

which is the same thing as

(3.31) |||uµ − uλ||| ≤ N|µ − λ|/α2.

Finally (3.29) together with this estimate (3.31) implies

(3.32) J∗(µ) ≤ J∗(λ) + (µ − λ)(1− ||uλ||
2) + N2|µ − λ|2/α3.

Proof of Theorem 3.3.

Step 6.J∗(λm) is a decreasing sequence and is bounded below if the
parameterρ > 0 is sufficiently small. We recall thatλm+1 is bounded as

λm+1 = PΛ(λm − ρ(1− ||um||
2)).

We know that in the Hilbert spaceR the projection P onto the closed
convex setΛ is characterized by the variational inequality

(λm − ρ(1− ||um||
2) − λm+1, µ − λm+1)R ≤ 0,∀µǫΛ.

i.e. we have

(3.33) (λm− ρ(1− ||um||
2) − λm+1)(µ − λm+1) ≤ 0,∀µǫΛ.
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Puttingµ = λm in this variational inequality we find

(3.34) |λm − λm+1|
2 ≤ ρ(1− ||um||

2)(λm − λm+1)

On the other hand (3.32) withµ = λm+1, λ = λm, uλ = um(= uλm),178

becomes

J∗(λm+1) ≤ J∗(λm) + (λm+1 − λm)(1− ||um||
2) + M|λm+1 − λm|

2

whereM is the constantN2/α3 > 0. If we use (3.34) on the right side of
this inequality we get

J∗(λm+1) ≤ J∗(λm) − 1/ρ|λm+1 − λm|
2
+ M|λm+1 − λm|

2

i.e.

(3.35) J∗(λm+1) + (1/ρ − M)|λm+1 − λm|
2 ≤ J∗(λm).

Here, 1/ρ − M would be> 0 if we take 0< ρ < 1/M = α3/N2,
a fixed constant independent ofλ. We therefore takeρǫ]0, 1/M[ in the
definition ofλm+1 so that we have

J∗(λm+1) ≤ J∗(λm),

which proves that the sequenceJ∗(λm) is decreasing for 0< ρ < 1/M.
To prove that it is bounded below we use the definition ofJ∗(λ) and
Cauchy-Schwarz inequality: From (3.22)

J∗(λ) = ((F, uλ)) + λ ≥ −|||F ||||||uλ ||| ≥ −N/α|||F |||

since |||uλ||| ≤ N/α. This proves thatJ∗(λm) is bounded below by
−N/α|||F |||, a known constant.

Step 7.By step 1 it follows thatJ∗(λm) converges to a limit asm→ +∞.
Moreover, (3.35) will then imply that

(3.36) |λm+1 − λm|
2→ 0 asm→ +∞.
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Step 8.The sequenceλm has a cluster point inR. For this, sinceJ∗(λm)
is decreasing we haveJ∗(λm+1) ≤ J∗(λ◦) i.e. we have

((F, um+1)) + λm+1 ≤ ((F, u◦)) + λ◦

and the right hand side is a constant independent ofm. So, by Cauchy- 179

Schwarz inequality,

λm+1 ≤ ((F, u◦ − um+1)) + λ◦ ≤ ((F, u◦)) + λ◦ + |||um+1||||||F |||.

But |||um+1||| is bounded by a constant (= N/α) and hence

0 ≤ λm+1 ≤ ((F, u◦)) + λ◦ + N|||F |||/α.

i.e. The sequenceλm is bounded. We can then extract a subsequence
which converges.

Similarly, sinceum is a bounded sequence inH1(Ω) there exists a
sub-sequence which converges weakly inH1(Ω). Let {m′} be a subse-
quence of the positive integers such that

λ′m→ λ∗ in R andum′ = uλm′
⇀ u∗ in H1(Ω).

Step 9.Any cluster pointλ∗ of the sequenceλm is a solution of the dual
problem 3.2.

Let λm′ be a subsequence which converges toλ∗. We may assume,
if necessary by extracting a subsequence thatum′ ⇀ u∗ in H1(Ω). By
Rellich’s lemma the inclusion ofH1(Ω) in L2(Ω) is compact (sinceΩ is
bounded) and henceum′ → u∗ in L2(Ω). Thenu∗ satisfies the equation

(3.37) u∗ǫH1(Ω),Au∗ + λ∗Bu∗ = F.

To see this, sinceum′ is a solution of ((3.20)′) we have

((Aum′ , ϕ)) + λm′((Bum′ , ϕ)) = ((F, ϕ)),∀ϕǫH1(Ω).

i.e. ((Aum′ , ϕ)) + λm′(um′ , ϕ) = ((F, ϕ)),∀ϕǫH1(Ω).

Taking limits asm′ → +∞ we have

((Au∗, ϕ)) + λ∗(u∗, ϕ) = ((F, ϕ)),∀ϕǫH1(Ω)
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which is the same thing as (3.37).180

On the other hand, (3.33) for the subsequence becomes

1/ρ(λm′ − λm′+1)(µ − λm′+1) ≤ (1− ||um′ ||
2)(µ − λm′+1),∀µǫΛ.

Here on the left sideµ − λm′+1 is bounded indepedent ofm′ and
λm′ − λm′+1 → 0 asm′ → +∞ by (3.36). On the right side again by
(3.36),µ− λm′+1→ µ− λ∗ and (1− ||um′ ||

2)→ (1− ||u∗ ||2) asm′ → +∞.
Thus we get on passing to the limits

(3.38) λ∗ǫΛ, (1− ||u∗ ||2)(µ − λ∗) ≥ 0,∀µǫΛ.

Sinceu∗ is a solution of (3.37), we know on using (3.25), that

(gradJ∗)(λ∗) = J∗(λ∗) = (1− ||u∗ ||2).

Then (3.38) is the same thing as

λ∗ǫΛ, J∗(λ∗).(µ − λ∗) ≥ 0,∀µǫΛ.

By the results of Chapter 2 (Theorem 2. 2.2) this last variational
inequality characterizes a solution of the dual Problem (3.2). Thusλ∗ is
a solution of the dual problem.

Step 10.The sequenceum converges weakly inH1(Ω) to the unique
solutionu of the primal problem.

As in the earlier steps since the sequenceum is bounded inH1(Ω)
andλm is bounded inR we can find a subsequencem′ of integers such
that

um′ ⇀ u∗ in H1(Ω) andλm′ → λ∗ in R.

We shall prove that (u∗, λ∗) is a saddle point for the Lagrangian. It
is easily verified that 181

(gradvL (·, λ∗))(u∗) = a(u∗, u∗) + λ∗(u∗, u∗) − L(u∗).

But the right hand side vanishes becauseu∗ is the solution of the
equation

Au∗ + λ∗Bu∗ = F
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as can be proved exactly as in Step 4. MoreoverL (·, λ∗) is convex
(strongly convex). Hence by Theorem 2.2.2.

(3.39) L (u∗, λ∗) ≤ L (v, λ∗),∀vǫH1(Ω).

Next we see similarly that

(gradµL (u∗, ·))(λ∗) =
1
2

(||u||2 − 1)

andL (u∗, ·) is concave. One again using (3.38) and the Theorem 2.2.2
we conclude that

(3.40) L (u∗, µ) ≤ L (u∗, λ∗),∀µǫΛ.

The two inequalities (3.39) and (3.40) together mean that (u∗, λ∗) is
a saddle point forL . Henceu∗ is a solution of the Primal problem and
λ∗ is a solution of the dual problem. But sinceJ is strictly convex it has
unique minimum inH1(Ω). Henceu = u∗ andu is the unique weak-
cluster point of the sequenceum in H1(Ω). This implies that the entire
sequenceum converges weakly tou in H1(Ω).

Step 11.The sequenceum converges strongly inH1(Ω) to the unique
solution of the primal problem.

We can write using the definition of the functionalJ:

J(u) = J(um) + a(um, u− um) − L(u− um) +
1
2

a(u− um, u− um).

By the coercivity ofa(·, ·) applied to the last terms on the right side

J(um) + α/2|||u− um|||
2 ≤ J(u) − {a(um, u− um) − L(u− um)}

= J(u) + ((Aum − F, u− um))

= J(u) + λm((Bum, u− um))

sinceum satisfies the equation ((3.20)′). i.e. we have182

J(um) + α/2|||u− um|||
2 ≤ J(u) + λm(um, u− um).
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On the left hand side we know thatJ(um) → J(u) and on the right
hand side we know that|λm| andum are bounded while by Step 5,u −
um ⇀ 0 (weakly)inH1(Ω).

Hence taking limits asm→ +∞ we see that

|||u− um||| → 0 asm→ +∞.

This completely proves the theorem.
In conclusion we make some remarks on the method of Uzawa.

Remark 3.3. In the example we have considered to describe the method
of UzawaΛ is a cone inR. But, in general, the coneΛwill be a subset of
an infinite dimensional (Banach) space. We can still use our argument
of Step 3 of the proof to show thatλm has a weak cluster point and that
of Step 4 to show that a weak cluster point gives a solution of the dual
problem.

Remark 3.4.We can also use the method of Frank and Wolfe since also
in this case the dual problem is one of minimization on a cone on which
it is easy to compute projections numerically.

Remark 3.5.While the method of Uzawa gives strong convergence re-
sults for the algorithm to the primal the result the dual problem is very
weak.

Remark 3.7.Suppose we consider a more general type of the primal
problem for the same functionalJ defined by (3.1) of the form:

to find uǫK, J(u) = inf
vǫK

J(v)

whereK is a closed convex by set inV = H1(Ω) is defined by 183

K = {v|vǫH1(Ω), g(v) ≤ 0}.

with g a mapping ofH1(Ω) into a suitable topological vector spaceE (in
fact a Banach space) in which we have a notion of positivity. Then we
take a coneΛ in E as in Remark 3.2 andΦ(v, µ) =< µ, g(v) >E′×E. In
order to carry over the same kind of algorithm as we have givenabove
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in the special case we proceed as follows: SupposeΛm is determined
starting from aλ◦ǫΛ. We firstsolve the minimization problem

to findum such thatL (um, λm) = inf
v

L (v, λm)

gradJ∗(λm) = −g(um)

Then we can use Remark 3.2 to determineλm+1 :

λm+1 = PΛ(λm− ρJ∗(λm)) = PΛ(λm + ρg(uλ)).

We can now check that the rest of our argument goes through easily
in this case also except that we keep in view our earlier remarks about
taking weak topologies inE′. For instance, we can use this procedure in
the cases of convex setsK1,K2,K3 of Remark 3.1. We leave the details
of these to the reader.

4 Minimization of Non-Differentiable Functionals
Using Duality

In this section we apply the duality method using Ky Fan and Sion The-
orem to the case of a minimization problem for a functional which is
not G-differentiable. The main idea is to transform the minimization
problem into one of determining a saddle point for a suitablefunctional
on the product of the given space with a suitable cone. This functional184

of two variables behaves very much like the Lagrangian (considered in
Section 3) for the regular part of the given functional. In fact we choose
the coneΛ and the functionΦ in such a way that the non-differentiable
part of the given functional can be written as− supµǫΛΦ(v, µ). It turns
out that in this case the dual cost function will beG-regular and hence
we can apply, for instance, the method of gradient with projection. This
in its turn enables us to give an algorithm to determine a minimizing
sequence for the original minimization problem. The proof of conver-
gence is on lines similar to the one we have given for the convergence
of the algorithm in the method of Uzawa.
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We shall however begin our discussion assuming that we are given
the coneΛ and the functionΦ in a special form and thus we start in fact
with a saddle point problem.

LetV andE be two Hilbert spaces and letJ◦ : V → R be a functional
onV of the form

(4.1) V ∋ v 7→ J(v) =
1
2

a(v, v) − L(v)ǫR

where as usual we assume:

(i)a(·, ·) is a bilinear bicontinuous coercive form onV and

ii )LǫV′(4.2)

Suppose we also have

(iii ) a closed convex bounded setΛ in E with 0ǫΛ, and

(iv) and operatorBǫL (V,E).(4.3)

We set

(4.4) J1(v) = sup
µǫΛ

(−(Bv, µ)E)

and 185

(4.5) J(v) = J◦(v) + J1(v).

Consider now the minimization problem:

Primal Problem (4.6). To find uǫV such thatJ(u) = infvǫV J(v). We
introduce the functionalL onV × Λ by

(4.7) L (v, µ) = J◦(v) − (Bv, µ)E.

It is clear that if we defineΦ(v, µ) = −(Bv, µ)E thenL can be con-
sidered a Lagrangian associated to the functionalJ◦ and the cone gen-
erated byΛ. SincevǫV the condition thatΦ(v, µ) ≤ 0 impliesvǫV is
automatically satisfied and more over, we also have

Φ(v, ρµ) = −(Bv, ρµ)E = −ρ(Bv, µ)E = ρΦ(v, µ),∀ρ > 0.
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On the other hand we see that the minimax problem for the func-
tional L is nothing but our primal problem. In fact, we have

inf
vǫV

sup
µǫΛ

L (v, µ) = inf
vǫV

(J◦(v) + sup
µǫλ

(−(Bv, µ)E))(4.8)

= inf
vǫV

J(v).

We are thus led to the problem of finding a saddle point forL .

Remark 4.1. In practice, we are givenJ1, the non-G-differentiable
part of the functionalJ to be minimized and hence it will be neces-
sary to choose the hilbert spaceE, a closed convex bounded setλ in F
(with 0ǫΛ) and an operatorBǫL (V,E) suitably so thatJ1(v) = supµǫΛ −
(Bv, µ)E = − inf µǫΛ(Bv, µ)E.

We shall now examine a few examples of the functionalsJ1 and the
correspondE,Λ, and the operator B. In all the following examples we
take

V = Rn,E = Rm andBǫL (V,E) an (m× n) − matrix .

186

We also use the following satandard norms in the Euclidean space
R

m. If 1 ≤ p < +∞ then we define the norms:

|µ|p = (
m∑

i=1

|µi |
p)1/p

and

|µ|∞ = sup
1≤i≤m

|µi |.

Example 4.1.LetΛ1 = {µǫR
m : |µ|2 ≤ 1}. Then

J1(v) = sup
µǫΛ

(−(Bv, µ)E) = |Bv|2.
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Example 4.2.Let Λ2 = {µǫR
m : |µ|1 ≤ 1}. ThenJ1(v) = |Bv|∞. If we

denote the elements of the matrix B bybi j thenbi = (bi1, · · · , bin) is a
vector inRn andBv= ((Bv)1, · · · , (Bv)m):

(Bv)i = (bi , v)Rn =

n∑

j=1

bi j v j .

Hence

J1(v) = max
1≤i≤m

|(Bv)i | = max
1≤i≤m

|

n∑

j=1

bi j v j |.

Example 4.3.If we takeΛ3 = {µǫR
m; |µ|∞ ≤ 1} then we will find

J1(v) = |Bv|1 and hence

J1(v) =
m∑

i=1

|

n∑

j=1

bi j v j |

Example 4.4.If we takeΛ4 = {µǫR
m; |µ|∞ ≤ 1, µ ≥ 0} then we find

J1(v) = |(Bv)+|1 where ((Bv)+)i =


(Bv)i when (Bv)i ≥ 0

0 when (Bv)i < 0.

Hence

J1(v) =
m∑

i=1

|

n∑

j=1

(bi j v j)
+| =

m∑

i=1

n∑

j=1

(bi j v j)
+.

187

Proposition 4.1. Under the assumptions made on J◦,Λ and B there
exists a saddle point forL in V × Λ.

Proof. The mappingv 7→ L (v, µ) of V → R is convex (in fact strictly
convex sincea(·, ·) is coercive) and continuous and in particular lower
semi-continuous. The mappingΛ ∋ µ 7→ (v, µ) is concave and continu-
ous and hence is upper semi-continuous. Letℓ > 0 be a constant which
we shall choose suitably later on and let us consider the set

Uℓ = {v|vǫV, ||v||V ≤ ℓ}.

�
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The setUℓ is a closed convex bounded set inV and hence is weakly
compact. SimilarlyΛ is also weakly inE. Thus taking weak topologies
on V andE we have two Hausdorff topological vector spaces. We can
now apply the theorem ofKy Fan and Sion to setsUℓ andΛ. We see
that there exists a saddle point (uℓ, λℓ)ǫUℓ × Λ for L . i.e. We have
(4.9)

(uℓ, λℓ)ǫUℓ × λ,L (uℓ, µ) ≤ L (uℓ, λℓ) ≤ L (v, λℓ), ∀(v, µ)ǫUℓ × Λ.

Choosingµ = 0 in the first inequality of (4.9) we get 0≤ −(Buℓ, λℓ)E

i.e. (Buℓ, λℓ)E ≤ 0 and

J◦(uℓ) ≤ J◦(uℓ) − (Buℓ, λℓ)E ≤ J◦(v) − (Bv, λℓ)E.

Next, if we takev = 0ǫUℓ we get

(4.10) J◦(uℓ) ≤ J◦(v)(= 0).

From this we can show that||uℓ ||V is bounded. In fact, the inequality
(4.10) is nothing but

1
2

a(uℓ , uℓ) − L(uℓ) ≤ 0.

188

Using the coercivity ofa(·, ·) (with the constant of coercivityα > 0)

α||uℓ||
2
V ≤ a(uℓ, uℓ) ≤ 2L(uℓ) ≤ 2||L||V′ ||uℓ ||V

(4.11) i.e.||uℓ ||V ≤ 2||L||V′/α.

In other words,||uℓ ||V is bounded by a constantc = 2||L||V′/α inde-
pendent ofℓ.

Now we takeℓ > c. Then we can find a ballB(uℓ, r) = {vǫV|||v −
uℓ||V < r} contained in the ballB(0, ℓ). It is enough to takerǫ]0, ℓ−c

2 [.
The functionalJ◦ attains a local minimum in such a ball. NowJ◦ being
(strictly) convex it is the unique global minimum. Thus we have proved
that if we chooseℓ > c > 0 wherec = 2||L||V′/α there exists
(4.12)

(u, λ)ǫV × Λ such thatL (u, µ) ≤ L (u, λ) ≤ L (v, λ)∀(v, µ)ǫV × Λ
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which means that (u, λ) is a saddle point forL in V × Λ.

Dual problem. By definition the dual problem is characterized by con-
sidering the problem:

(4.13)


to find (u, λ)ǫU × Λ such that

supµǫΛ infvǫV L (v, µ) = L (u, λ).

We write L (v, µ) in the following form: Since the mappingv 7→
a(u, v) is continuous linear there exists an elementAuǫV such that

a(u, v) = (Au, v)V,∀vǫV.

Moreover,AǫL (V,V). Also by Frechet-Riesz theorem there exists
anFǫV such that

L(v) = (F, v)V, ∀ǫV.

Thus we have 189

L (v, µ) =
1
2

(Av, v)V − (F, v)V − (Bv, µ)E

=
1
2

(Av, v)V − (v, F + B∗µ)V.

For anyµǫΛ fixed we consider the minimization problem

(4.14) to finduµǫλ such thatL (uµ, µ) = inf
vǫV

L (v, µ).

Once againv 7→ L (v, µ) is twiceG-differentiable and has a gradient
and a hessian everywhere inV. In fact,

(4.15) (gradvL (·, µ))(ϕ) = (Av, ϕ)V − (F, ϕ)V − (B∗µ, ϕ)

and
(HessvL (·, µ))(ϕ, ψ) = (Aψ, ϕ)V.

Hence, the coercivity ofa(·, ·) implies that

(Av, v)V = a(v, v) ≥ α||v||2V,∀vǫV
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which then implies thatv 7→ L (v, µ) is strictly convex. Then by Theo-
rem 2.2.2 there exists a unique solutionuµ of the problem (4.14) anduµ
satisfies the equation

[gradvL (·, µ)]v=uµ = 0.

i.e. There exists a uniqueuµǫV such that

L (uµ, µ) = inf
vǫV

L (v, µ)

and moreoveruµ satisfies the equation

(4.16) (Auµ, ϕ)V − (B∗µ, ϕ)V − (F, ϕ)V = 0,∀ϕǫV.

i.e.

(4.16) Auµ = F + B∗µ.

Thus we have190

(4.17) uµ = A−1(F + B∗µ)

and takingϕ = uµ in (4.16) we also find that

(4.18) (Auµ, uµ)V = (F + B∗µ, uµ)V.

using (4.17) and (4.18) we can write

L (uµ, µ) =
1
2
{(Auµ, uµ)V − 2(F, uµ)V − 2(B∗µ, uµ)V}

= −
1
2
{(F, uµ)V + (B∗µ, uµ)V}

= −
1
2
{(F,A−1(F + B∗µ))V + (B∗µ,A−1(F + B∗µ))V}

= −
1
2
{(BA−1B∗µ, µ)E + 2(BA−1F, µ)E + (F,A−1F)E}

since A is symmetric impliesA−1 is also self adjoint. Thus we see that

sup
µǫΛ

inf
vǫV

L (v, µ) = sup
µǫΛ

L (uµ, µ)
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= sup
µǫΛ

−
1
2
{(BA−1B∗µ, µ)E + 2(BA−1F, µ)E + (F,A−1F)E}.

If we set

(4.19) A = BA−1B∗ andF = −BA−1F

thenA ǫL (E.E) andF ǫE and moreover

(4.20) sup
µǫΛ

inf
vǫV

L (v, µ) = −
1
2

inf
µǫΛ
{(A µ, µ)E − 2(F , µ)E + (F,A−1F)E}.

Here the functional

(4.21) µ 7→
1
2

(A µ, µ)E − (F , µ)E

is quadratic on the convex setλ. It is twiceG-differentiale with respect191

to µ in all directions in L and has a gradientG∗(µ) and a HessianH∗(µ)
every where inΛ. In fact, we can easily see that

(4.22) G∗(µ) = A µ −F .

Thus we have provd the following

Proposition 4.2. Under the assumptions made on J◦,Λ and B the dual
of the primal problem (4.6) is the following problem:

Dual Problem.

(4.23) To findλǫΛ such that J∗(Λ) = inf
µǫΛ

J∗(µ),

where

(4.24)


J∗(µ) =

1
2(A µ, µ)E − (F , µ)E,

A = BA−1B∗,F = −BA−1F.

Remark 4.2. In view of the Remark (3.2) and the fact thatg(v) = −Bv
in our case we know that the gradient ofJ∗ is given byG∗(µ) = +Buµ.
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We see easily that this is also the case in pur present problem. In fact,
by (4.24)

G∗µ = A µ −F = BA−1B∗µ + BA−1F = BA−1(B∗µ + F).

On the other hand, by (4.17)uµ = A−1(B∗µ + F) so that

Buµ = BA−1(B∗µ + F) = G∗(µ).

Algorithm. To determine a minimizing sequence for our primal
proble we can use the same algorithm as in the method of Uzawa.

Supposeλ◦ is an arbitrarily fixed point inΛ. We determineu◦ by
solving the equation

(4.25) u◦ǫV,Au◦ = F + B∗λ◦.

192

If we have determinedλm (andum−1) iteratively we determineum as
the unique solution of the functional (differential in most of the applica-
tions) equation

(4.26) umǫV,Aum = F + B∗λm

i.e. um is the solution of the equation

(4.26)′ a(um, ϕ) = (F + B∗λm, ϕ)V = (F, ϕ)V + (λm, Bϕ)E,∀ϕǫV.

Then we define

(4.27) λm+1 = PΛ(λm − ρBum)

wherePΛ is the projection ofE onto the closed convex setΛ andρ > 0
is a sufficiently small parameter.

The convergence of the algorithm to a solution of the minimizing
problem for the (non-differentiable) functionalJ, J = J◦ + J1, can be
proved exactly as in the proof of convergence in the method ofUzawa.
However, we shall omit the details of this proof.
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Remark 4.3. If we choose the Hilbert spaceE, the convex setΛ in E
and the operatorBǫL (V,E) properly this method provides a good algo-
rithm to solve the minimization problem for many of the knownnon-
differentiable functionals.

Remark 4.4. In the above algorithm (4.26) is a linear system ifV is
finite dimensional, and ifV is an infinite dimensional (Hilbert) space
then (4.26) can be interpreted as a Neumann type problem.

Remark 4.5.We can also give an algorithm using the method of Franck
and Wolfe to solve the dual problem instead of the method of gradient
with projection. Here we can takeρ > 0 to be a fixed constant which is
sufficiently small.





Chapter 6

Elements of the Theory of
Control and Elements of
Optimal Design

This chapter will be concerned with two problem which can be treated 193

can be using the techniques developed in the previous chapters, namely,

(1) the optimal control problem,

(2) the problem of optimal design.

These two problems are somewhat similar. We shall reduce the
problems to suitable minimization problems so that we can use the al-
gorithms discussed in earlier chapters to obtain approximations to the
solution of the two problems considered here.

1 Optimal Control Theory

We shall give an abstract formulation of the problem of optimal control
and this can be considered as a problem of optimization for a functional
on a convex set of functions. By using the duality method for example
via the theorem ofKy Fan and Sion we reduce our control problem to a
system consisting of the state equation, the adjoint state equation, and a

191
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variational inequality for the solution of the original problem. The vari-
ational inequality can be considered as Pontrjagin maximumprinciple
well known in control theory. Inorder to obtain an algorithmwe elimi-
nate at least formally the state and obtain a pure minimization problem
for which we can use the appropriate algorithms described inearlier
chapters:

The theory of optimal control can roughly be described starting from
the following data. We are given

(i) A control u, which belogs to a given convex setK of functionsK194

is called the set of controls.

(ii) The state (of the system to be controled)y(u) ≡ yu is, for a given
uǫK, a solution of a functional equation. This equation is called
the state equation governing the problem of control.

(iii) A functional J(y, u) - called the cost function - defined by means
of certain non-negative functionals ofu andy.

If we set
j(u) = J(yu, u)

then the problem of optimal control consists in finding a solution of the
minimization problem:


uǫK such that

j(v) = infvǫK j(v).

Usually the state equations governing the system to be controled are
ordinary or partial differential equation.

The main object of the theory is to find necessary (and sufficient)
conditions for the existence and uniqueness of the solutionof the above
problem and to obtain algorithm for determining approximations to the
solutions of the problem. We shall restrict ourselves to theoptimal con-
trol problem governed by partial differential equaiton of elliptic type,
more precisely, by linear homogeneous variational elliptic boundary
value problems. One can also consider, in a similar way, the problems
governed by partial differential equation of evolution type. (See, for
instance, the book of Lions [31].)
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1.1 Formulation of the Problem of Optimal Control

Let Ω be a bounded open set in the Euclidean spaceRn with smooth 195

boundaryΓ. We shall denote the inner product and the corresponding
norm in the Hilbert spaceL2(Ω) by (·, ·) and || · || while those in the
Sobolev spaceV = H1(Ω) by ((·, ·)) and||| · ||| respectively.

We suppose given the following:

Set of controls. A nonempty closed convex subsetK of L2(Ω), called
the set of controls, and we denote the elements ofK by u, which we call
controls.

State equation. A continuous, bilinear, coercive forma(·, ·) on V i.e.
there exists contantsαa > 0 andMa > 0 such that

(1.1)


|a(ϕ, ψ)| ≤ Ma|||ϕ||||||ψ||| for all ϕ, ψǫV

a(ϕ, ϕ) ≥ αa|||ϕ|||
2 for all ϕǫV.

Let f ǫL2(Ω) be given.
For anyuǫK a solution of the functional equation

(1.2)


yuǫV,

a(yu, ϕ) = ( f , ϕ) + (u, ϕ) for all ϕǫV

is said to define a state. The system to be governed is said to begoverned
by the state equation (1.2). We know, by the results of Chapter 2, that
for any uǫK(⊂ L2(Ω) ⊂ V′) there exists a unique solutionyu of (1.2).
Thus for a givenf and a given controluǫK there exists a unique stateyu

governing the system.
Cost function. Let b(·, ·) be a symmetric, continuous and positive

semidefinite form onV. i.e. There exists a constantMb > 0 such that

(1.3)



b(ϕ, ψ) = b(ψ, ϕ) for all ϕ.ψǫV

|b(ϕ, ψ)| ≤ Mb|||ϕ||||||ψ||| for all ϕ, ψǫV

B(ϕ, ϕ) ≥ 0.

196
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Further letCǫL (L2(Ω), L2(Ω)) be an operator the following condi-
tions: there exist positive constantsαC ≥ 0 andMC > 0 such that

(1.4)


(Cv, v) ≥ αC||v||2, for all vǫL2(Ω)

||C|| ≤ MC

Let ygǫV be given. We now define the functional

(1.5) J(y, u) =
1
2

b(y− yg, y− yg) +
1
2

(Cu, u)

Proof of control.This consists in finding a solution of the minimization
problem:

(1.6)


uǫK such that

J(yu, u) = infvǫK J(yv, v)

We shall show in the next section that the problem (1.6) has a unique
solution. However, we remark that one can also prove that a solution of
(1.6) u exists and is unique directly using the differential calculus of
Chapter 1 and the results of Chapter 2 on the existence and uniqueness
of minima of convex functionals.

Definition 1.1. The unique solutionuǫK of the problem (1.6) is called
the optimale control.

Remark 1.1. If the control setK is a convex set described by a set of
functions defined over the whole ofΩ and the constraint conditions are
imposed on the whole ofΩ then the problem (1.6) is said to be one of
distributed control. This is the case we have considered here. However,
we can also consider in a similar way the problem whenK consists of
functions defined over the boundaryΓ of Ω and satisfying constraint197

conditions onΓ. In this case the problem is said to be one of boundary
control - For example, we can consider

ϕ 7→

∫

Γ

uϕdσ

defined on a suiteble class of functionsϕ onΓ.
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Remark 1.2. If we set
j(u) = J(yu, u)

then the problem of control is a minimization problem for thefunctional
u 7→ j(u) on K.

Remark 1.3.Usually the state equation governing the system to be con-
troled are ordinary differential equations or partial differential equation
or linear equations. (See the book of Lions [31]).

Remark 1.4.We have restricted ourselevs to systems governed by a lin-
ear homogeneous boundary problem of Neumann type with distributed
control. One can treat in a similar way the systems governed by other
homogeneous or inhomogeneous boundery calue problems; forinstance,
problems of Dirichlet type, mixed case we necessarily have inhomoge-
neous problems.

Remark 1.5. In practice, the operatorC is of the formαI whereα > 0
is a small number.

1.2 Duality and Existence

We shall show that there exists a unique of the optimal control prob-
lem (1.6). We make use the existence of saddle point via the theorem
of Ky Fan and Sion (Theorem 1.2 of Chapter 5) for this purpose. This198

also enables us to characterize the solution of the optimal control prob-
lem (1.6). As in the earlier chapters we also obtain the dual problem
govergned by the adjoint state equation.

We consider the optimal control problem as a minimization problem
for this purpose and we duality in the vaiabley keepingu fixed in K.

We take for the coneΛ the spaceV = H1(Ω) it self define the func-
tional

(1.7) Φ : V × Λ→ R

by setting

(1.7)′ Φ(y, u, q) = a(y, q) − ( f + u, q).
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It is clear thatΦ is homogeneous of degree inq:

Φ(y, u = λq) = λΦ(y, u[q) for all λ > 0.

Next Φ(y, u; q) ≤ 0 for all qǫΛ if and only if u ∈ K andy, u are
related by the state equation (1.2). In fact, the state equation implies
thatΦ(y, u; q) = 0. Conversely,Φ(y, u; q) ≤ 0 implies thatuǫK andy, u
are related by the state equation. For, we have

a(y, q) − ( f + u, q) ≤ for all qǫΛ

and since, for anyqǫΛ, −qǫΛ also we have

a(y,−q) − ( f + u,−q) ≤ 0.

The two inequalities together imply that

a(y, q) = ( f + u, 1) for all qǫΛ = V = H1(Λ),

which means thaty = yu = u(u). We introduce the LagrangianL199

associated to the minimization problem by setting

(1.8) L (z, v; q) = J(z, v) + Φ(z, v; q).

More explicitly we have
(1.8)′

L (z, v; q) = 1
2b(z− yg, z− yg) + 1

2(cz, z) + a(z, q) − ( f + v, q)

for zǫV, vǫK andqǫΛ = V.

We shall now prove the following theorem:

Theorem 1.1. There exists a saddle point forL (z, v; q) in V × K × V.
In other words,

(1.9)
Theorem exists(y, u; p)ǫV × K × V such that

L (y, u; q) ≤ L (y, u; p) ≤ L (z, v; p) for all (z, v; q)ǫV × K × V.
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Proof. The proof will be carried out in several steps.
Step 1. (Application of the theorem of Ky Fan and Sion).Let ℓ > 0

be a constant which we shall choose suitably later. Considerthe two sets

(1.10)


Λℓ = Uℓ = {z|zǫV = H1(Ω); |||z||| ≤ ℓ} and

Kℓ = {v|vǫK : ||v|| ≤ ℓ}.

It is clear thatΛℓ = Uℓ is a closed convex and bounded set inV.
SinceK is closed and convexKℓ is also a closed convex subset ofL2(Ω).
Hence, for the weak topologiesV andL2(Ω) are Hausdorff topological
vector spaces in whichUℓ, (respectivelyKℓ) is compact.

On the other hand, since, for every (z, v)ǫUℓ × Kℓ, the functional 200

Uℓ ∋ q 7→ L (z, v : q)ǫR

is linear and strongly (and hence also for the weak topology on V) con-
tinuous it is concave and upper semi-continuous (for the weak topology
onV). The mapping

Uℓ × Kℓ ∋ (z, v) 7→ L (z, v; q)ǫR

is strongly continuous and hence, in particular, (weakly) lower semi-
continuous for every fixedqǫΛℓ = Kℓ. Since the bilinear formsa(·, ·),
b(·, ·) onV and (C·, ·) on L2(Ω) are positive semi-definite andv 7→ (v, q)
is linear it follows from the results of Chapter 1§ 3 that the mapping

(z, v) 7→ L (, v; q)

is convex.
Thus all the hypothesis of the theorem of Ky Fan and Sion (Theo-

rem 1.2 of Chapter 5) are satisfied. Hence there exists a saddle point
(yℓ, uℓ; pℓ)ǫUℓ × Kℓ × Uℓ This is the same as saying

(1.11)′



there exists (yℓ, uℓ; pℓ)ǫUℓ × Kℓ × Λℓ such that

J(yℓ, uℓ) + Φ(yℓ, uℓ; q) ≤ J(yℓ, uℓ) + Φ(yℓ, uℓ; pℓ)

≤ J(z, v) + Φ(z, v : pℓ)

for all (z, v; q)ǫUℓ × Kℓ × Λℓ.
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Choosingℓ > 0 sufficiently large we shall show, in the following
steps thatyℓ, uℓ, pℓ are bounded independent of the choice of such anℓ.

Step 2. uℓ is bounded. In fact, the second inequality in ((1.11)′)
means that the functional

(z, v) 7→ L (z, v; pℓ)

onUℓ ×Kℓ attains a local minimum at (yℓ, uℓ). But since this functional201

is convex, by Lamma 2.1 of Chapter 2, it is also a global minimum. i.e.
We have

(1.12)


L (yℓ, uℓ, qℓ) ≤ L (yℓ, uℓ; pℓ) ≤ L (z, v; pℓ)

for all zǫV, vǫK andqǫΛℓ = Uℓ.

Now we fix avǫK arbitrarily and takeq = 0, z = yv in (1.11)′ and
we obtain

J(yℓ, uℓ) ≤ J(yℓ, uℓ) + Φ(yℓ, uℓ; pℓ) ≤ J(yv, v) ≡ j(v).

It follows from this that, for any fixedvǫK, we have

(1.13) Φ(yℓ, uℓ, pℓ) ≥ 0 andJ(yℓ, uℓ) ≤ J(v).

But by (1.3), (1.4) the latter inequality in (1.13) implies that

1
2
αC||uℓ||

2 ≤ J(yℓ, uℓ) ≤ j(v).

which means thatuℓ is bounded:

(1.14) ||uℓ || ≤ c1, c
2
1 = 2α−1

C j(v).

Step 3. yℓ is bounded. As before we fix avǫK and takez = yv,
q = ℓ|||yℓ |||−1ǫUℓ = Λℓ in (1.11)′. (We may assume thatyℓ , 0, for
otherwise there is nothing to prove). We get

J(yℓ, uℓ) + ℓ|||yℓ |||
−1
Φ(yℓ, uℓ, yℓ) ≤ j(v)

because of the homogeneity ofΦ in the last argument. HereJ(yℓ, uℓ) ≥ 0
because of (1.3), (1.4) and (1.5) so that we get

ℓ|||yℓ |||
−1
Φ(yℓ, uℓ; yℓ) ≤ j(v).
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i.e. ℓ|||yℓ |||
−1{a(yℓ, yℓ) − ( f + uℓ, yℓ)} ≤ j(v).

202

By the coercivity (1.1) ofa(·, ·) onV we have

αa|||yℓ |||
2 ≤ a(yℓ, yℓ)

and by the Cauchy-Schwarz inequality we have

|( f + uℓ, yℓ)| ≤ || f + uℓ ||||yℓ || ≤ (|| f || + ||uℓ||)|||yℓ |||.

Hence using (1.14)

ℓαa|||yℓ||| ≤ j(v) + ℓ|||yℓ |||
−1( f + uℓ, yℓ)

≤ j(v) + ℓ(|| f || + ||uℓ ||)

≤ j(v) + ℓ(|| f || +C1)

so that, first by dividing byℓ, we see that ifℓ > 1 then

(1.15) |||yℓ ||| ≤ α
−1
a ( j(v) + || f || +C1) ≡ C2.

Step 4. pℓ is bounded.For this we recall that, as has already been
observed, (yℓ, uℓ) is a global minimum for the convex functional

g : (z, v) 7→ L (z, v; pℓ)

on V × K. Hence, by Theorem 2. 1.3, the G-derivative of g at (yℓ, uℓ)
should vanish:

g′(yℓ, uℓ;ϕ, v) = 0 for all (ϕ, v)ǫV × K.

This on calculation of the derivative gives


b(yℓ − yg, ϕ) + (Cuℓ, v) + a(ϕ, pℓ) − ( f + uℓ, ϕ) = 0

for all (ϕ, v)ǫV × K.

Takingϕ = pℓ andv = uℓ we get 203

(Cuℓ, uℓ) + a(pℓ, pℓ) = ( f + uℓ, pℓ) − b(yℓ − yg, pℓ).
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Using the coercivity of the terms on the left side and Cauchy -
Schwarz inequality for the first term on the right side together with the
continuity ofb(·, ·) we find that

αa|||pℓ |||
2 ≤ αC||uℓ ||

2
+ αa|||pℓ |||

2 ≤ || f + uℓ||||pℓ || + Mb|||yℓ − yg||||||pℓ |||

≤ (|| f || + ||uℓ|| + Mb|||yℓ − yg|||)|||pℓ |||

(|| f || + c1 + Mbc2 + Mb|||yg|||)|||pℓ |||

which implies that there exists a constantc3 > 0 such that

(1.16) |||pℓ ||| ≤ c3.

Step 5.We now chooseℓ > max(c1, c2, 2c3, 1) and use the setsUℓ

andKℓ for the application of the theorem of Ky Fan and Sion.
Step 6. To show that yℓ = yuℓ (i.e. yℓ is the solution of the state

equation corresponding to the controluℓǫK.) For this purpose we have
to show that

(1.17) Φ(yℓ, uℓ; q) = 0 for all qǫΛ = V

We already know from (1.13) thatΦ(yℓ, uℓ; pℓ) ≥ 0. Sinceq =
2pℓǫΛ = V satisfies

|||q||| = 2|||pℓ ||| ≤ 2c3 < ℓ

we can takeq = 2pℓ in the first inequality of (1.11)′ and get

2Φ(yℓ , uℓ; pℓ) ≤ Φ(yℓ, uℓ, pℓ).

so that we also have

(1.18) Φ(yℓ, uℓ; pℓ) ≤ 0

204

Then it follows once again from the first inequality of (1.11)′ that

(1.19) Φ(yℓ, uℓ; q) ≤ 0 for all qǫΛℓ = Uℓ
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If q < Uℓ then ℓ|||q|||−1qǫUℓ which on substituting in (1.19) gives
(1.17).

Finally, combining the facts (1.12) and (1.17) together with the def-
inition of L (z, v; q) we conclude the there exists a saddle point (y, u; p)
in V × K × V. This completes the proof of the theorem.

The theoem (1.1) implies that (y, u) is the solution of the primal
problem andp is the solution of the dual problem. The equation (1.17)
is nothing but the fact thaty is the solutionyu of the state equation.

From the above theorem we obtain the main result on existence(and
uniqueness) of the solution to the optimal control problem and also a
characterization of this solution. For this purpose, if we choosev = u
in the second inequality of (1.9) we find thatyǫV is the minimum of the
convex functional

h : V ∋ z 7→ L (z, u; p)ǫR.

Hence taking theG-derivative of h we should have

h′(u, ψ) = b(y− yg, ψ) + a(ψ, p) = 0 for all ψǫV.

Thus we see that p satisfies the equation

(1.20) a(ψ, p) = −b(y− yg, ψ) for all ψǫV.

The equation (1.20) is thus the adjoint state equation in thepresent
problem. Again, in view of the hypothesis (1.1) and (1.3) it follows (by
the Lax-Milgram lemma) that, for any givenyǫV, there exists a unique
solutionpǫV of the wquation (1.20). 205

Now consider the functional

k : K ∋ v 7→ L (y, v; p)ǫR.

The secone inequality in (1.9) withz= y implies that this functional
k is minimum atv = u. Again taking G-derivatives we have

k′(v,w) = (Cv,w) − (w, p) for all wǫK.
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The solution of the minimization problem fork on K is, by theorem
2.2 of Chapter 2, characterized by


uǫK such that

k′(u, v− u) ≥ 0 for all vǫK,

which is the same as the variational inequality

(1.21)


uǫK such that

(Cu, v− u) − (p, v− u) ≥ 0 for all vǫK.

�

The above facts can now be summarized as follows:

Theorem 1.2. Suppose given the set K of controls, the state equation
(1.2) and the cost function J defined by (1.5) such that the hypothesis
(1.1), (1.3) and (1.4) are satisfied. Then we have the following:

(i) The optimal control problem (1.6) has a unique solution uǫK.

(ii) The unique solution u of the optimal control problem us charac-
terized by the coupled system consisting of the pair of equations
(1.2) and (1.20) defining the state y and the adjoint state p gov-
erning the system together with the variational inequality(1.21).

(iii) A solution (y, u; p) to (1.2), (1.20) and (1.21) exists (and is unique)
and is the unique saddle point of the LagrangianL defined by
(1.8).206

Remark 1.6.The variational inequality (1.21) is nothing but the well
known maximum principle of Pontrjagin in the classical theory of con-
trols.

1.3 Elimination of State

In order to obtain algorithm for the construction of approximations to
the solution of the optimal control problem (1.6) we use the characteri-
zation given by Theorem (1.2) (ii) to obtain a pure minimization prob-
lem with constraints. This is achieved by eliminating the stateyu which
occurs explicitly in the above characterization.
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We can rewrite the problem of control (1.6) in terms of the operators
defined onV by the bilinear formsa(·, ·) and b(·, ·) and the operator
defined by the inclusion mapping ofV = H1(Ω) in L2(Ω).

In fact, for any fixedyǫV, the linear form

ϕ 7→ a(y, ϕ)

is continuous linear onV by (1.1) and hence by Riesz-representation
theorem there exists a unique elementAyǫV such that

(1.22) a(y, ϕ) = ((Ay, ϕ)) for all ϕǫV.

Once again from (1.1) the mappingy 7→ Ay is a continuous linear
operator onV. Similarly, by (1.3) there exists a continuous linear oper-
atorB on V such that

(1.23) b(y, ϕ) = ((By, ϕ)) for all ϕǫV.

Finally since the inclusion mapping ofV in L2(Ω) is continuous
linear it follows that for anyuǫL2(Ω) the linear mappingv 7→ (u, v) onV 207

is a continuous linear functional. Hence there exists a continuous linear
operatorD : L2(Ω)→ V such that

(1.24) (u, v) = ((Du, v)) for all uǫL2(Ω), vǫV.

The state equation can now be written as

((Ay, ϕ)) = ((D f + Du, ϕ)) for all ϕǫV.

which is the same as the operational equation inV:

(1.25) Ay= D f + Du.

In view of the well known result of Lax and Miligram we have

Theorem 1.3. Under the hypothesis (1.1) the state equation (1.2) (or
equilvalently (1.25)) has a unique solution yuǫV for any given uǫL2(Ω)
and there exists constant c> 0 such that

(1.26) |||y||| ≤ c(|||D f ||| + |||Du|||).
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This is equivalent to saying that the operatorA is invertible,A−1 is
a continuous linear operator onV and (1.26) gives an estimate for the
norm ofA−1. Hence we can write

(1.27) yu = A−1(D f + Du)

as the solution of the state equation.
Next we shall reduce the optimal control problem (1.6) to a mini-

mization problem as follows. We substituteyu given by (1.27) in the
cost function (1.5) and thus we eliminate the state from the functional
to minimize. Using (1.23) together with (1.27) we can write

b(yu − yg, yu − yg) = ((B(yu − yg), yu − yg))

= ((B[A−1(D f + Du) − yg],A−1(D f + Du) − yg))

= ((BA−1Du,A−1Du)) + 2((B(A−1D f − yg),A−1Du))

+ ((B(A−1D f − yg),A−1D f − yg))

= ((A−1∗BA−1Du,Du)) + 2((A−1∗B(A−1D f − yg),

Du)) +G( f , yg)

whereA−1∗ is the adjoint of the operatorA−1 andG( f , yg) denoted the208

functional

G( f , yg) = ((BA−1D f − Byg,A
−1D f − yg))

which is independent ofu. Once again using (1.24) we can write

b(yu−yg, yu−yg) = (A−1∗BA−1Du, u)+(A−1∗B(A−1D f −yg), u)+G( f , yg)

and hence the cost function can be written in the form

j(u) =
1
2

(A−1∗BA−1Du, u)+(A−1∗B(A−1D f−yg), u)+G( f , yg)+
1
2

(Cu, u).

Setting

(1.28)


A = A−1∗BA−1D +C and

F = A−1∗B(A−1D f − yg)

We have the following
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Proposition 1.1. The optimal control problem (1.6) is equivalent to the
minimization problem:

(1.29)



to find uǫK such that

j(u) = inf vǫK j(v) where

j(v) = 1
2(A v, v) − (F , v) +G( f , yg).

We observe that, since the last term in the expression for thequadra- 209

tic functional j(v) is a constant (independent ofv), uǫK is a solution of
(1.29) if and only ifu is a solution of the minimization problem:

(1.30)



to finduǫK such that

k(u) = inf vǫK k(v) where

k(v) = 1
2(A v, v) − (F , v).

We know by the results of Chapter 2§ 3 (Theorem 3.1) that the prob-
lem (1.30) has a unique solution and it is characterized by the condition

k′(u, v− u) ≥ 0 for all vǫK,

wherek(·, ϕ) denotes theG-derivative ofk(·). This is nothing but the
variational inequality

(1.31)


To finduǫK such that

(A u−F , v− u) ≥ 0 for all vǫK.

This variational inequality (1.31) together with the stateequation is
an equivalent formulation of the characterization of the optimal control
problem given by Theorem (1.2) (ii). More precisely, we havethe fol-
lowing

Theorem 1.4. The solution of the optimal control problem (1.6) is char-
acterized by the variational inequality:

(1.32)


To find uǫK such that

(Cu− pu, v− u) ≥ 0 for all vǫK
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wherepu is the adjoint state.

Proof. We have by the definitions (1.28) ofA andF 210

A u−F = A−1∗B(A−1Du+ A−1D f − yg) +Cu

which on using the state equation (1.25) becomes

(1.33) A u−F = A−1∗B(yu − yg) +Cu.

�

If we now definepu by setting

(1.34) −pu = A−1∗B(yu − yg)

then we see thatpu satisfies the functional equation

((A∗pu, ψ)) = −((B(yu − yg), ψ)) for all ψǫV.

We notice that this is nothing but the adjoint state equation:

a(ψ, pu) = −b(yu − yg, ψ) for all ψǫV.

Thus if, for a given controluǫK, yu is the solution of the state equa-
tion thenpu defined by (1.34) is the solution of the adjoint state equation.
Moreover, we have

(1.33)′ A u−F = Cu− pu.

Substituting (1.33)′ in the variational inequality (1.31) we obtain the
assertion of the theorem.

We are thus reduced to a pure minimization problem inK for which
we have known algorithms.
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1.4 Approximation

The formulation of the optimal control problem as a pure minimiza-
tion problem given above in Section (1.3) together with the algorithms
described in earlier chapters for the minimization problemwill imme-211

diately lead to algorithm to determine approximations to the solution of
the optimal control problem (1.6). Hence we shall only mention this
briefly in the following.

We observe first of all that the operatorA is L2(Ω)-coercive and
bounded. In fact, in view of (1.24) and (1.23) we can write

(A−1∗BA−1Du, u) = ((A−1∗BA−1Du,Du))

= (BA−1Du,A−1Du) = b(A−1Du,A−1Du) ≥ 0.

Since we also have (Cu, u) ≥ αC||u||2 we find thatA is L2(Ω)-
coercive and

(1.35) (A u, u) = (A−1∗Ba−1Du6Cu, u) ≥ αC||u||
2, uǫV.

To prove that is bounded we note thatA−1 is the operator

L2(Ω) ∋ f + u 7→ yuǫL
2(Ω)

defining the solution of the state equation:

yuǫV such that

a(yu, ϕ) = ((Ayu, ϕ)) = ((D( f + u), ϕ)) for all ϕǫV.

Here takingϕ = yu and using the coercivity of the bilinear form
a(·, ·) we see that

αa|||yu|||
2 ≤ |||D f + Du||||||yu|||

and hence

|||yu||| ≤ |||A
−1(D f + Du)||| ≤ α−1

a |||D f + Du|||.

which implies thatA−1 is bounded and in fact, we have

(1.36) ||A−1||L (V,V) ≤ α
−1
a .
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Now since all the operators involved in the definition ofA are linear
and bounded it follows thatA is also bounded. Moreover, we also have

||A ||L (L2(Ω),L2(Ω)) = ||A
−1∗BA−1D +C||L (L2(Ω),L2(Ω))

≤ ||A−1||2
L (V,V)||B||L (V,V)||||D||L (L2(Ω),V) + ||C||L (L2||(Ω),L2(Ω))

and hence (since||D||L (L2(Ω),V) = 1)

(1.37) ||A ||L (L2(Ω),L2(Ω)) ≤ α
−2
a Mb + Mc.

We are now in a position to describe the algorithms.212

Method of contraction. We recall the the solution of the optimal con-
trol problem is equivalent to the solution of the minimization problem
(1.29) and that the solution of this is characterized by the variational
inequality (1.31):


uǫK such that

(A u−F , v− u) ≥ 0 for all vǫK.

We can now use the method of contraction mapping (as is standard
in the proof of existence of solutions of variational inequality - see, for
instance, Lions and Stampacchia [ ] ) to describe an algorithm for the
solution of the variational inequality (1.31).

Algorithm.Suppose we know an algorithm to calculate numerically
the projectionP of L2(Ω) onto K. Let ρ be a constant (which we fix)
such that

(1.38) 0< ρ < 2α−1
C /(α−2

a Mb + MC) = 2α2
a/αC(Mb + α

2
aMC).

Let u◦ǫK be arbitrarily chosen. Supposeu◦, · · · , um are determined
starting fromu◦. We defineum+1 by setting

(1.39) um+1 = PΦ(um)

where

(1.39)′ Φ(um) = um − ρA um + ρ
2
F
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We can expressΦ(um) in terms of the operatorsA, B, C and the data
f andyg as follows:

(1.40) Φ(um) = um−ρ(A−1∗BA−1Dum+Cum)+ρ2A−1∗B(A−1D f −yg).

The choice (1.38) ofρ implies that the mapping

(1.41) T : K ∋ w 7→ PΦ(w)ǫK

is a contraction, so thatT has a fixed pointu in K to which the sequence213

um converges.

Method of gradient with projection. We consider the minimization
problem for the quadratic functional

(1.42) v 7→ G (v) =
1
2

(A v, v) − (F , v)

onK. SinceA is coercive, we can use the method of Chapter 4, Section
3 and we can show that we can choose as convergent choices forρ > 0
a constant and for the direction of descent

(1.43) wm = gradG (um)/||gradG (um)||.

Thus starting from an arbitraryu◦ǫK, we define

(1.44) um+1 = PK(um − ρgradG (um)/||gradG (um)||)

wherePK is the projection ofL2(Ω) ontoK.
This method, however, requires the computation ofG (um) and its

gradient at each step. For this purpose, knowingumǫK we have to solve
the state equation:


ymǫV such that

a(ym, ϕ) = ( f + um, ϕ) for all ϕǫV

to obtainym and the adjoint state equation:


pmǫV such that

a(ϕ, pm) = −b(ym − yg, ϕ) for all ϕǫV
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to obtain the adjoint statepm. We can then calculate gradG (um) by 214

using

(1.45) gradG (um) = Cum− pm.

We shall not go into details of the algorithm which we shall leave to
the reader.

Remark 1.7.This method is rather long as it involves several steps for
each of which we have sub-algorithms for computations. Hence this
procedure may not be very economical.

1.46

As an illustration of the methods described in this section we consider
the following two-dimensional optimal control problem: Let Ω be a
bounded open set inR2 with smooth boundaryΓ. We consider the fol-
lowing optimal control problem

State equation :


−△yu + yu = f + u in Ω

∂yu/∂n = 0 onΓ

wheren denotes the exterior normal vector field toΓ
Controal set : K = {uǫL2(Ω)|0 ≤ u(x) ≤ 1 a.e. onΩ}
Cost function : J(y, u) =

∫
Ω

(|yu − yg|
2
+ |u|2)dx.

We shall leave the description of the algorithm to this problem on
the lines suggested in this section as an exercise to the reader.

2 Theory of Optimal Design

In this section we shall be concerned with the problem of optimal design.
We shall show that certain free boundary problems can be considered as
special cases of this type of optimal design problem. We shall consider
a special case of one-dimensional problem and explain a verygeneral
method to obtain a solution to the problem, which also enables us to give
algorithms to obtain approximations for the solution. Thismethod can
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be seen to be readily applicable to the higher dimensional problems also
except for some technical details. Though there is a certainsimilarity215

with the problem of optimal control we cannot use the dualitymethod
earlier used in the case as we shall see later.

2.0 Optimal Design

In this section we shall give a general formulation of the problem of
optimal design. Once again this problem will be considered as a mini-
mization problem for a suitable class of functionals. As in the case of
optimal control problem these functionals are defined through a family
of state equations. We shall consider here the states governing the sys-
tem to be determined by variational elliptic boundary valueproblems.
Though there is some analogy with the optimal control problem studied
in the previous section there is an important difference because of the
fact in the present case the convex setL (in our case the setK will be the
whole of an Hilbert space), on which the given functional is to be mini-
mized, itself is in some sense to be determined, as it is a set of functions
on the optimal domian to be determined by the problem. Therefore this
problem cannot be treated as an optimal control problem and requires
somewhat different techniques than the ones used before.

Roughly speaking the problem of optimal design can be described
as follows: Suppose given

(1) A family of possible domiansΩ (bounded open sets in the Eu-
clidean space) having certain minimum regularity properties.

(2) A family of elliptic boundary value problems describingthe states,
one each on aΩ of the family in (1).

(3) A cost function j (described in terms of the state determined by
(2) considered as a functional of the domianΩ in the family).

Then the problem consists in finding a domianΩ∗ in the given family 216

for which j(Ω∗) is a minimum.
We shall describe a fairly general theory to obtain a solution to the

optimal design problem. In order to simplify the details we shall, how-
ever, describe our general method in the special case of one dimension.
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Thus the states governing the problem is described by solutions of a two
point boundary value problem for a linear second order ordinary differ-
ential equation. We shall first describe the main formal steps involved in
the reduction of the problem to one of minimization in a fixed domian.
We shall then make the necessary hypothesis and show that this formal
procedure is justified.

2.1 Formulation of the Problem of Optimal Design

Let A be a family of bounded open setsΩ in Rn and letΓ denote the
boundary ofΩ,ΩǫA . We assume that everyΩǫA satisfies some regu-
larity properties. For instance, everyΩǫA satisfies a cone condition or
everyΩǫA has a locally Lipschitz boundary etc.

We suppose the following data:
(1) For eachΩǫA we are given a bilinear form

V × V ∋ (y, ϕ) 7→ a(Ω; y, ϕ)ǫR

on V = VΩ = H1(Ω) such that

(i) it is continuous ; i.e. there exists a constantMΩ > 0 such that

(2.1) a(Ω;ϕ, ψ) ≤ MΩ||ϕ||V ||ψ||V for all ϕ, ψǫV = H1(Ω),ΩǫA .

(ii) it is H1(Ω) -coercive : there exists a constantCΩ > 0 such that

(2.2) a(Ω;ϕ, ϕ) ≥ CΩ||ϕ||
2
H1(Ω), for all ΩǫH1(Ω),ΩǫA .

Example 2.1.LetΩǫA and217

a(Ω;ϕ, ψ) = (ϕ, ψ)H1(Ω) =

∫

Ω


∑

j

∂ϕ

∂x j

∂ψ

∂x j
+ ϕψ

dx.

(2) For eachΩǫA we are given a continuous linear functionalϕ 7→

L(Ω;ϕ) on H1(Ω),ΩǫA .



2. Theory of Optimal Design 213

Example 2.2.Let FǫL2(Rn) and f = F |Ω = restriction ofF toΩ.

L(Ω;ϕ) =
∫

Ω

fϕdx. for all ϕǫH1(Ω),ΩǫA .

Consider the variational elliptic boundary value problem:

(2.3)


To findy = yΩǫH1(Ω) such that

a(Ω; y, ϕ) = L(Ω;ϕ), ( for all ϕǫH1(Ω)).

We know by Lax-Milgram lemma that under the assumptions (1)
and (2) there exists a unique solutionyΩǫH1(Ω) for this problem (2.3).
We observe that sincef is given asF |Ω this solutionyΩ depends only on
the geometry ofΩ,ΩǫA .

(3) Cost function. For eachΩǫA we are given a functional on
H1(Ω) :

(2.4) H1(Ω) ∋ z 7→ J(Ω; z)ǫR

Example 2.3.


J(Ω; z) =
∫
Γ
|z− g|2dσ, where

gǫγ◦G = G|Γ,GǫH1(Ω),ΩǫA .

Example 2.4.


J(Ω; ) =
∫
Ω
|z− g|2dx, where

GǫL2(Rn) andg = G|Ω,ΩǫA .

2.5 Example of a familyA of domains.

SupposeB andω are two fixed open subsets ofRn such thatω ⊂ B.
Let A be the family of open setsΩ in Rn such thatω ⊂ Ω ⊂ B andΩ
satisfies some regularity property (say, for instance,Ω satisfies a cone218

condition).
Define

(2.5) j(Ω) = J(Ω; yΩ),ΩǫA
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whereyΩ is the (unique) solution of the homogeneous boundary value
problem (2.3).

The problem of optimal design consists in minimizingj(Ω) overA :

(2.6)


To findΩ∗ǫA such that

j(ω∗) = infΩǫA j(Ω).

Optimal design and free boundary problem.Certain free boundary
problems can be considered as a problem of optimal design as is illus-
trated by the following example in two dimensions.

Let Γ◦ be a smooth curve in the planeR2 defined by an equation of
the form

(2.7) z(x) = x1 − ϕ(x2) = 0,

whereϕ : I = [0, 1] ∋ x2 7→ ϕ(x2)ǫR+ is a smooth function. LetQ
denote the (open) strip inR2 :

(2.8) Q = {x = (x1, x2)ǫR2|x1 > 0, 0 < x2 < 1}.

Consider the open setΩ given by

(2.9) Ω = {xǫQ|z(x) < 0} ≡ {x = (x1, x2)ǫQ|x1 < ϕ(x2)}.

The boundaryΓ ofΩ decomposes into a union
∑
∪Γ◦ with

∑◦ ∩Γ◦◦ =
φ.

There exists a one-one correspondence betweenΩ and the function
z, Thus the familyA is determined by the family of smooth functions

z : Q→ R.

Let us consider the optimal design problem:219

(2.10)

a(Ω; y, ϕ) = (y, ϕ)H1(Ω), for y, ϕǫH1(Ω);

L(Ω;ϕ) = ( f , ϕ)L2(Ω), for ϕǫH1(Ω) where f = F |Ω, FǫL2(R2)

J(Ω; z) =
∫
Γ◦
|z(x)|2dσ, wheredσ is the line element onΓ◦.
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Theny = yΩ is the unique solution of the Neumann problem:

(2.11)


yΩǫH1(Ω)

(yΩ, ϕ)H1(Ω) = ( f , ϕ)L2(Ω) for all ϕǫH1(Ω)

and

(2.12) j(Ω) = J(Ω; yΩ) =
∫

Γ◦

|yΩ(x)|2dσ.

The optimal design problem then becomes
(2.13)

To findΩ∗ such thatj(Ω∗) ≤ j(Ω) for all ΩǫA In other words,

(2.13)′


To fin yΩ∗ǫH1(Ω∗) such that∫
Γ∗
|yΩ∗(x)|2dσ is minimum

Suppose now that infΩǫA j(Ω) = j(Ω∗) = 0. The it follows that

(2.14) yΩ∗ = 0 a.e. onΓ∗◦

In this case, the optimal design problem reduces to the following so
called “free boundary problem” :

To find a domianΩ∗ǫA whose boundary is of the formΓ∗ =
∑
∪Γ∗◦

where
∑

is a fixed curve whileΓ∗◦ is a curve determined by the solution
of the homogeneous boundary value problem

(2.13)′′



−△y+ y = f in Ω∗

∂y/∂n = 0 on
∑

∂y/∂n = 0, y = 0 onΓ∗◦.

220

This equivalent formulation is obtained in the standard manner from
the state equation (2.3) using the Green’s formula togetherwith the con-
dition (2.14). Free boundary problems occur naturally in many contexts
- for example in theorey of gas dynamics.
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2.2 A Simple Example

We shall illustrate our general method to obtain approximations to the
solution of the optimal design problem for the following onedimen-
sional problem.

Let A denote the family of open intervals

(2.15) Ωa = (0, a), a ≥ 1

on the real line.
State equation.Assume that anf ǫL2(R1) is given. The state gov-

erning the system is a solution of the following problem:

(2.16)



To findyΩaǫH
1(Ωa) ≡ H1(0, a) such that

a(Ωa; yΩa , ϕ) ≡
a∫

0

(
dyΩa

dx
dϕ
dx
+ yΩaϕ

)
dx

=

a∫

0

fϕdx≡ L(Ωa;ϕ), for all ϕǫH1(Ωa).

On integration by parts (or more generally, using the Green’s for-
mula) we see that this is nothing but the variational formulation of the
two pointy boundary value problem (of Neumann type boundaryvalue
problem):

(2.16)′



To findyΩaǫH
1(Ωa) satisfying

d2yΩa

dx2
+ yΩa = f in Ωa

dyΩa

dx
(0) = 0 =

dyΩa

dx
(a)

221

Cost function. Suppose given agǫL2(0, 1). Define

(2.17) j(a) =
1
2

∫ 1

0
|yΩa − g|2dx.

Problem of optimal design.

(2.18)


To find a∗ ≥ 1( i.e. to findΩ∗ = Ωa∗) such that

j(a∗) ≤ j(a) for all a ≥ 1.
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Remark 2.1. It appears natural to considera as the control variable and
use the duality argument as we did in the case of the optimal control
problem. However, since the spaceV = H1(Ωa) varies with a the duality
method may not be useful to device algorithms.

In what follows, we shall adopt the following notation to simplify
the writing:

(2.19)



yΩa(x) = y(a, x)

∂y/∂x(a, x) = y′(a, x)

∂y/∂a(a, x) = ya(a, x)

2.3 Computation of the Derivative of j.

We shall use the method of gradient to obtain algorithms to construct ap-
proximations converging to the required solution of the problem (2.18).
In order to be able to apply the gradient method we make the formal 222

computation of the gradient ofj (in the present case, the derivative ofj)
with respect toa in this section. We justify the various steps involved
under suitable hypothesis in the next section.

Settinf forϕǫH1(Ωa)

(2.20) F(a, x) = y′(a, x)ϕ′(a, x) + y(a, x)ϕ(a, x) − f (a, x)ϕ(a, x)

we can write the state equation (2.16) as

(2.21) K(a) =
∫ a

0
F(a, x)dx = 0

Here since we have a Neumann type boundary value problem for a
second order ordinary differential operator the test functionϕ belongs to
H1(Ωa) and soϕ is defined in a variable domianΩa = (0, a). This may
cause certain inconveniences, which however can easily be overcome be
overcome as follows:

(1) We can takeϕ to be the restriction toΩa of a functionψǫH1

(0,+∞) and write the state equation as
∫ a

0
{y′(a, x)ψ′(x) + y(a, x)ψ(x) − f (a, x)ψ(x)} = 0, for ψǫH1(0,+∞).
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Such a choice for the test functionsϕǫH1(Ωa) would suffice when
the state is described by a Neumann type problem (as we have in
the present case.) But if the boundary conditions are of Dirichlet
type this choice is not suitable since the restrictions of functions
in H1(0,+∞) toΩa do not necessarily give functions in the space
of test functionsH1

◦(Ωa). We can use another method in which
such a problem do not arise and we shall use this method.

(2) SupposeψǫHm(Ω1),Ω1(0, 1) andm ≥ 2. Then the functionx 7→
ϕ(a, x) defined by

(2.22) ϕ(a, x) = ψ(x/a)

is well defined inΩa and belongs toHm(Ωa) ֒→ H1(Ωa). (This223

inclusion, we note is a dense inclusion.) We also note that, in this
case, ifΨǫHm

◦ (Ω1) thenϕǫHm
◦ (Ωa) and conversely.

Thus we set

(2.20)′ F(a, x) = y′(a, x)ψ(x/a)+ (y(a, x)− f (x))ψ(x/a) for ψǫHm(Ω1)

and we can write the state equation with thisF as

(2.21) K(a) =
∫ a

0
F(a, x)dx= 0

We shall make use of the following classical result to calculate the
derivativedK/da.

LetΛ denote the closed subset of the (x, a)-plane:

(2.23) Λ = {(x, a)ǫR2; a ≥ 1 and 0≤ x ≤ a}.

SupposeF : Λ→ R be a function satisfying:
Hypothesis (1).For everya ≥ 1, the real valued function

x 7→ F(a, x)

is continuous in 0≤ x ≤ a.
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Hypothesis (2).For everyxǫ[0, a], the function

a 7→ F(a, x)

is differentiable and∂F/∂a : Λ→ R is continuous. Then the integral

K(a) =
∫ a

0
F(a, x)dx

exists,a 7→ K(a) belongs toC1(1 ≤ a < +∞) and we have

(2.24)
dK
da

(a) =
∫ a

0
∂F/∂a(a, x)dx+ F(a, a)

224

Remark 2.2.We observe that this classical result has a complete ana-
logue also in higher dimensions and we have a similar identity for
gradaK (with respect toa) in place ofdK/da.

Now differentiating the equation (2.20)′ with respect toa and using
the above result we get

dK/da(a) =
∫ a

0
∂F/∂a(a, x)dx+ F(a, a)

=

∫ a

0
[{y′a(a, x)ψ′(x/a) + ya(a, x)ψ(x/a)}+

+ {y′(a, x)(ψ′(x/a))a + y(a, x)(ψ(x/a))a − f (x)(ψ(x/a))a}]dx

+ [y′(a, x)Ψ′(x/a) + y(a, x)ψ(x/a) − f (x)ψ(x/a)]x=a = 0.

We observe that, ifm≥ 2 thenx 7→ (ψ(x/a))aǫH1(0, a). In fact,

(ψ(x/a))a = (−x/a2)ψ′(x/a)ǫL2(Ωa),

(ψ(x/a))′a = (−1/a2)ψ′(x/a) + (−x/a3)ψ′′(x/a)ǫL2(Ωa).

whereψ′ andψ′′ are (strong)L2 -derivatives ofψ, which exist since
ψǫH2(0, 1).

Hence by the state equation (2.16) we find that
∫ a

0
{y′(a, x)(ψ′(x/a))a + y(a, x)(ψ(x/a))a − f (x)(ψ(x/a))a}dx
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= a(Ωa; yΩa)(ψ(x/a))a − L(Ωa; (ψ(x/a))a) = 0

Thus we conclude that
∫ a

0
{y′a(a, x)Ψ′(x/a) + ya(a, x)ψ(x/a)}dx

= −[y′(a, x)ψ′(x/a) + y(a, x)ψ(x/a) − f (x)ψ(x/a)]x=a,(2.25)

for all ψǫHm(0, 1) with m≥ 2.

Remark 2.3. It is obvious that the above argument easily carries over to225

dimensions≥ 2 of rhte computation ofgradaK(a).
Finally, we calculate the derivative of the cost functionj with respect

to a and we have

d j/da=
1
2

d/da
∫ 1

0
|y(a, x) − g(x)|2dx

=

∫ 1

0
(y(a, x) − g(x))ya(a, x)dx.(2.26)

In (2.26) we eliminate the derivativeya of the stateyΩa using the
adjoint state equation. The adjoint statepΩa = p(a, x) is the solution of
the equation:
(2.27)

∫ a

0
{ϕ′(x)p′(a, x) + ϕ(x)p(a, x)}dx =

∫ 1

0
(y(a, x) − g(x))ϕ(x)dx,

for all ϕǫH1(0, a).

If we know thaty(a, x) is sufficiently regular, for instance say,yaǫH1

(Ωa) then takingϕ = ya(a, x) in the adjoint state equation (2.27) above
we obtain

d j/da=
∫ 1

0
(y(a, x) − g(x))ya(a, x) bf (2.26)

=

∫ a

0
{y′a(a, x)p′(a, x) + ya(a, x)p(a, x)}dx bf (2.27)

This together with (2.25) forψ = p gives

(2.28) d j/da= −[y′(a, x)p′(a, x) + y(a, x)p(a, x) − f (x)p(a, x)]x=a
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2.4 Hypothesis and Results

In the calculation of the derivatives of the cost functionj(a) in the pre-
vious section we have made use of the regularity properties of the state
yΩa = y(a, x) as well as that of the adjoint statepΩa = p(a, x) with re-
spect to both the variablesx anda. This in turn implies the regularity 226

of the functionF(a, x) define by (2.20)′ which is required for the va-
lidity of the theorem on differentiation of the integralK(a) of F(a, x).
The regularity ofy(a, x). The regularity ofy(a, x) and p(a, x) are again
necessary in order that the expression on the right side of (2.28) for the
derivative value problmes for (ordinary) differential equation, the regu-
larity of y and p as a consequence of suitable hypothesis on the dataf
andg.

We begin with the following assumptions on the data:
Hypothesis (3).For all a ≥ 1, t 7→ f (at)ǫH1(0, 1).
Hypothesis (4). gǫH1(0, 1).
Then we have the following

Proposition 2.1. (Existence of the derivativesya and y′a). Under the
hypothesis (3) on f, if y(a, x) is the solution of the state equation (2.16)
then

(i) x 7→ y(a, x)ǫH3(0, a)

(ii) ya exists and x7→ ya(a, x)ǫH2(0, a) and as a consequence we have

(iii) x 7→ y(a, x)ǫC2([0, a]) and

x 7→ ya(a, x)ǫC1([0, a]).

Proof. By a change of variable of the form

(2.29) x = at, xǫ(0, a) andtǫ(0, 1)

we can transform the state equation (2.16) to a two point boundary value
problem in the fixed domainΩ1 = (0, 1). Under the transformation
(2.29) we have the one-one corresponding betweeny andu given by

(2.30) y(a, at) = u(a, t), u(a, x/a) = y(a, x)
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and form≥ 1 we have:

(2.31) x 7→ y(a, x)ǫHm(0, a) if and only if t 7→ u(a, t)ǫHm(0, 1)

227

Similarly if ϕǫHm(0, 1) then

(2.32) x 7→ ψ(a, x) = ϕ(x/a) = ϕ(t)ǫHm(0, a)

and conversely. Moreover, we also have

(2.33)


y′(a, x) = a−1∂u/∂t(a, x/a) = a−1ut(a, x/a)

ψ′(a, x) = a−1ϕt(x/a),

so that the state equation can now be written as
(2.34)

∫ a

0 {a
−2ut(a, x/a)ϕt(x/a) + u(a, x/a)ϕ(x/a) − f (x)ϕ(x/a)}dx = 0

for all ϕǫHm(0, 1).

�

By the transfomation (2.29) this becomes

(2.34)′


∫ 1

0
{a−2ut(a, t)ϕt(t) − (u(a, t) + f (at))ϕ(t)}dt = 0

for all ϕǫHm(0, 1).

Sincehm(0, 1) is dense inH1(0, 1) (for anym ≥ 1) it follows that
(2.34)′ is valid also for anyϕǫH1(0, 1). This means thatt 7→ u(a, t) is a
solution of the two point boundary value problem

(2.34)′′



u = u(a, t)

d2u/dt2 + u = f (at)

ut(a, 0) = 0 = ut(a, 1)

Sincet 7→ f (at)ǫH1(0, 1) by Hypothesis (3) we know, form the reg-
ularity theorey for (ordinary) differentail equation, that

t 7→ u(a, t)ǫH3(0, 1)
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which proves (i). Then by Sobolev’s lemmat 7→ u(a, t)ǫC2([0, 1]). It228

follows then that

(2.35) x 7→ y(a, x) = u(a, x/a)ǫC2([0, 1]).

which proves the second part of (iii).
In order to prove thatya exists and is regular it is enough to prove

the same forua. For this purpose, we shall show theua satisfies a second
order (elliptic) variational boundary value problem.

We note that, by the theorem of dependence on parameters, theso-
lution of (2.34)′′ as a functiona of the variable a is differentiable since
the Hypothesis (3) implies that

(2.36) (d f/da)(at) = t ft(at)ǫL2(0, 1).

Now if we differentiate (2.34)′ with respect toa we get

(2.37)



∫ 1
0 {a

−2ut,a(a, t)ϕt(t) + ua(a, t)ϕ(t)}dt

= 2a−3
∫ 1
0 ut(a, t)ϕt(t)dt +

∫ 1
0 ft(at)tϕ(t)dt.

for all ϕǫHm(0, 1).

Here on the right side the first term exists sincet 7→ ut(a, t)ǫL2(0, 1)
while the second term exists sincet 7→ ft(at)ǫL2(0, 1) by Hypothesis
(3). Now t 7→ u(a, t)ǫH3(0, 1) implies thatut,tǫH1(0, 1) ⊂ L2(0, 1) and
so on integrating by parts we find that

∫ 1

0
ut(a, t)ϕtdt = −

∫ 1

0
ut,t(a, t)ϕ(t)dt + [ut(a, t)ϕ(t)]t=1

t=0.

Sinceut(a, t) = ay′(a, x) the boundary conditions in (2.34)′′ on y 229

imply that

[ut(a, t)ϕ(t)]t=1
t=0 = [ay′(a, x)ϕ(x/a)]x=a

x=0 = 0.

Hence the right side of (2.37) can be written as

(2.38)
∫ 1

0
{−2a−3ut,t(a, t) + t ft(at)}ϕ(t)dt.
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Since−2a−3ut,t(a, t)+ t ft(a, t)ǫL2(0, 1) we conclude thatua(a, t) sat-
isfies a variational second order (elliptic) boundary valueproblem (2.37)
with the right hand side (2.38) data inL2(0, 1). Then by the regularity
theory of solutions of (ordinary) differential equation it follows that

(2.39) t 7→ ua(a, t)ǫH2(0, 1)

Then

(2.39)′ ya(a, x) = ua(a, x/a) + (−x/a2)ut(a, x/a)ǫH2(0, a)

which proves the assertion (ii). Again, applying Sobolev’slemma to
ya, the second part of (iii) is also proved. This proved the proposition
completely.

We also have the following regularity property for the adjoint state
p(a, x).

Proposition 2.2. If satisfies the Hypothesis (3) and g the Hypothesis (4)
then the adjoint state x7→ p(a, x) belongs to H3(0, a) and consequently
x 7→ p(a, x)ǫC2([0, a]).

Proof. The adjoint state equation (2.27) is transformed by (2.29) as fol-
lows:

p(a, at) = q(a, t) andψ(a, x) = ϕ(x/a)


∫ a

0
{a−2qt(a.x/a)ϕt(x/a) + a(a, x/a)ϕ(x/a)}dx

=

∫ a

0 (y(a, x/a) − g(x/a))ϕ(x/a)dx, for all ϕǫH1(0, a)

That is, we have230

(2.40)

∫ 1

0
{a−2qt(a, t)ϕt(t) + q(a, t)ϕ(t)}dt =

∫ 1

0
(u(a, t) − g(t))ϕ(t)dt.

for all ϕǫH1(0, 1).

�

Since on the right hand sidet 7→ u(a, t) − g(t)ǫH1(0, 1) by Propo-
sition (2.1) above it follows, again by the regularity theory for ordinary
differential equations, that

(2.41) t 7→ q(a, t)ǫH3(0, 1)
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This is equivalent to saying that

(2.41)′ x 7→ p(a, x)ǫH3(0, a).

By Sobolev’s lemma it follows thatx 7→ p(a, x)ǫC2([0, 1]), com-
pleting the proof of the proposition.

Next we verify thatF defined by (2.20)′ satisfies the required Hy-
pothesis (1) and (2) for the validity of the calculation ofd j/da.

If we assume thatϕǫH3(0, 1) then x 7→ ϕ(x/a)ǫH3(0, a) and then
by Sobolev’s lemma,x 7→ ϕ(x/a)ǫC2([0, 1]) andϕ′(x/a)ǫH2(0, a) ⊂
C1([0, 1]). Hence we find, on using Proposition (2.1) (i) and (iii), that

(2.42) x 7→ F(x, a) = y′(a, x)ϕ′(x/a)+(y(a, x)− f (x))ϕ(x/a)ǫC◦ ([0, a])

since we know thatf ǫH1(0, a) ⊂ C◦([0, a]) by Hypothesis (3) and
Sobolev’s lemma. Moreover, differentiating the expression forF with
respect to a using Proposition (2.1) (ii) and (iii) we see that

x 7→ y′a(a, x)ϕ′(x/a) + ya(a, x)ϕ(x/a) + y′(a, x)(ϕ′(x/a))a

+ (y(a, x) − f (x))(ϕ(x/a))aǫC
◦([0, a])(2.43)

which proves thatF : Λ → R satisfies the Hypothesis (1) and (2).This231

the expression on the right hand side of (2.28) has a meaning since

(2.44) y′(a, x)p′(a, x) + (y(a, x) − f (x))p(a, x)ǫC◦([0, a])

and we obtain

(2.28)′ d j/da= −[y′(a, a)p′(a, a) + (y(a, a) − f (a))p(a, a)].

Thus we have proved the following main result of this section:

Theorem 2.1. Under the Hypothesis (3) and (4) on the data f and g the
cost function a7→ j(a) is differentiable and d j/da is given by(2.28)′

where y(a, x) and p(a, x) represent the direct and adjoint state respec-
tively governing the problem of optimal design (2.18).
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Remark 2.4.The genral method described in this section is not, in gen-
eral, used for one-dimensional problems since it is not economical to
computed j/da which in turn involves computations ofy and p, and
their derivativex (see (2.28)′. In the case of one dimensional problems
other more efficient and simper methods are known in literature. The
importance of our method consists in its usefulness in higher dimen-
sions to device algorithms using, for instance, the gradient method.
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[18] Glowinski, R., La méthode de relaxation, Rendiconti di Matemat-
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[53] Céa, J. On the problem of optimal design.

[54] Fages, R. A generalized Newton method (to appear).
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