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Chapter 1

Differential Calculus in
Normed Linear Spaces

We shall recall in this chapter the notions oftdrentiability in the sense1
of Gateaux and Frechet for mappings between normed lineaes@and
some of the properties of derivatives in relation to conyeand weak
lower semi-continuity of functionals on normed linear sgmcWe shall
use these concepts throughout our discussions.

In the following all the vector spaces considered will beroie
field of real numbersR.

If V is a nhormed (vector) space we shall denotg| by, the norm
in V, by V’ its (strong) dual with| - [l\» as the norm and by:, -\xv
the duality pairing betweelW andV’. If V is a Hilbert space then
(-, -)v will denote the inner product iN. If V andH are two normed
spaces thetZ(V, H) denotes the vector space of all continuous linear
mappings fromV into H provided with the normA — |[|All¢H) =
supllAvIH/IMlv, veV}.

1 Gateaux Derivatives

Let V, H be normed spaces aid: U c V — H be a mapping of an
open subset) of V into H. We shall often call a vectapeV, ¢ # 0 a
direction inV.
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Definition 1.1. The mappingA is said to be dterentiable in the sense
of Gateaux or simplys-differentiable at a poirtieU in the directiony
if the difference quotient

(AU + 6p) — A(W))/6

has a limitA’(u, ¢) in H asf® — 0 in R. The (unique) limitA’(u, ¢) is
called the Gateaux derivative #fatu in the directiony.

A is said to beG-differentiable in a directiop in a subset obJ if it
is G-differentiable at every point of the subset in the direction

We shall simply callA’(u, ¢) the G-derivative of A at u since the
dependence oa is clear from the notation.

Remark 1.1.The operato¥ > ¢ — A'(U, ¢)eH is homogeneous:
A (U, a, @) = aA' (U, ¢) for a > 0.
In fact,
AU a, @)= éi_)rrg)(A(u+aO¢)—A(u)) /0 = a/IIiLnO(A(u+/lgo)) /A =aA (U, Q).

However, this operator is not, in general, linear as can ba sa-
mediatly from Exampl&Z1]12 below.
We shall often denote a functional &hby J.

Remark 1.2.Every lineary functionalL : V — R is G-differentiable
everywhere irV in all directions and it&-derivative is

L'(u,¢) = L(¢)

since ((u + 0p) — L(u))/0 = L(¢). Itis a constant functional (i.e. inde-
pendent ofu in V).

Ifa(uv) :VxV — Ris a bilinear functional otv then the func-
tional J : V > v J(V) = a(v,V)eR is G-differentiable everywhere in
all direction and

J(u, ) = a(u, ¢) + a(e, u).
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If further a(u, v) is symmetric (i.e.a(u,v) = a(v, u) for all u, veV)
thenJ (u, ¢) = 2a(u, ¢). This follows immediately from bilinearity :

a(u + 6, u+ 6y) = a(u, u) + 6@(u, ¢) + ale, u)) + 62a(ep, ¢)
so that
J(u,¢) = gigg)(J(u +6p) — J(U))/6 = a(u, ¢) + a(e, u).

The following example will be a model case of linear problams
many of our discussions in the following chapters.

Example 1.1.Let (u,v) — a(u,v) be a symmetric bi-linear form on a
Hilbert spaceV andv — L(v)alinear form onV. Define the functional
J:V—>Rby

JV) = :—2La(v, V) — L(v).

It follows from the above Remark thdtis G-differentiable every-
where inV in all directionsy and

J'(u ) = a(u, ¢) - L(p).
In many of the questions we shall assume:

(i) a(.,.)is (bi-) continuous: there exists a constdht> 0 such that

a(u,v) < Mjjullv|ivilv for all u, veV;

(i) a(-,-) isV-coercive; There exists a constant- 0 such that
a(v,v) > a|V|2 for all veV
and
(iii) L is continuous: there exists a constaht- 0 such that

L(v) < NJ vy for all veV.



4 1. Differential Calculus in Normed Linear Spaces

Example 1.2.The functionf : R? — R defined by

(o0 if (x,y) = (0,0)
f(X’ y) - {XS/((X — y)2 + )(4) |f (X, Y) * (O’ O)

is G-differentiable everywhere and in all directions. In factuif=
(0, 0)eR? then given a directiop = (X, Y)eR%(¢ # 0) we have

(f(6X,6Y) — £(0,0))/0 = 6°X>/((X - Y)? + X4
which has a limit a® — 0 and we have

0 ifX=z#Y

f'(u. ¢) = 1'((0,0). (X, Y)) = {x X =y

One can also check easily thats G-differentiable ifR?.

The following will be the general abstract form of functitsan
amy of the non-linear problems that we shall consider.

Example 1.3.Let Q be an open set iR" andV = LP(Q2), p > 1. Sup-
poseg : R! 5 t — g(t)eR? be aC-function such that

(i) lg®l <CtPand i) 1g'(t) < CltP*
for some constant > 0. Then

u— J(u) = L g(u(x))dx

defines a functional on LP(Q?) = V which is G-differentiable every-
where in all directions and we have

Y(uy) = fg ¢ (UR)e(9dx

(The right hand side here exists for amypel P(Q)).
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In fact, sinceuelP(Q2) and sinceg satisfies (i) we have

() < f gWldx < C f UPdX < o0
Q Q

which means] is well defined onLP(Q2). On the other hand, for any
ueLP(Q) sinceg’ satisfies (ii),g’ (u)eL” (Q) wherep™ + p'~1 = 1. For,
we have

f|g’(u)|p'dxs Cf|u|(p‘l)p’dx:cf|u|pdx< +00,
w Q Q

Hence, for any, oL P(Q), we have by Holder’s inequality

f g’(u)sodx{ < 19’ Wlir@yllelie@) < CIUIPP l@llpgy < +oo.
To computel’'(u, ¢), if 8eR we defineh : [0, 1] — R by setting
h(t) = g(u + t6y).
ThenheC1(0, 1) and
1 1
h(1) - h(0) = f b’ (t)dt = 6p(X) f g'(u + thg)dt
0 0
(t =t(x), [t(X)| < 1 so that
1
(3(u+ ) — I(W)/6 = fg o(%) fo o/ (U(X) + B (x))dltdx

One can easily check as above that the function

(% 1) = o(X)g' (U(X) + the(X))

belongs ta_1(Q x [0, 1]) and hence by Fubini’s theorem

1
(I(u + bp) - I(W)/6 = j; dt fg @(X)g' (U(x) + top(X))dx
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Here the continuity ofy implies that
g’ (u +tdp) — g'(u) asd — 0 (and hence a¥ — 0)

uniformly for te[0, 1]. Morever, the condition (ii) together with triangle
inequality implies that, for G 6 < 1.

()9’ (U(X) + to(X))| < Cle(IU] + (NP

and the right side is integrable by Holder’s inequality. ey domi-
nated convergence theorem we conclude that

Y(uy) = fg o (Uedx

Definition 1.2. An operatorA : U c V — H (U being an open set in
V) is said to be twice dierentiable in the sense of Gateaux at a point
ueV in the directionsy, y (e, yeV,¢ # 0,y # 0 given) if the operator
um- A'(y,¢); U c V — H is onceG-differentiable ati in the direction

. TheG-derivative ofu — A'(u, ¢) is called the secon@-derivative of

A and is denoted by’ (u, ¢, ¥)eH.

i.e. AU, ¥) = m (A'(u+ 6y, ) — A'(u,))/6.

Remark 1.3.Derivatives of higher orders in the sense of Gateaux can
be defined in the same way. As we shall not use derivativesgbiehi
orders in the following we shall not consider their propesti

Now letJ : U c V — R be a functional on an open set of a hormed
linear spaceV which is onceG-differentiable at a pointieU. If the
functional¢ — J'(u,¢) is continuous linear oW then there exists a
(unique) elemenB(u)eV’ such that

J'(u,¢) = (G(U), p)v v for all geV.

Similarly, if J is twice G-differentiable at a pointieU and if the
form (¢, y) — J”(u : ¢,y) is a bilinear (bi-)continuous form o x V
then there exists a (unique) elemet{u)e.Z (V, V') such that

J7(U; 0, 9) = (HU)@, Y)vixv-
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Definition 1.3. G(u)eV’ is called the gradient of at u and H(u)e.Z
(V,V’) is called the Hessian af atu.

2 Taylor's Formula

We shall next deduce the mean value theorem and Taylor'sularif
second order for a mappigy: U c V — H (U open subset of a normed
linear space V) in terms of th@-derivatives ofA. We shall begin case
of functionals on a hormed linear spaée

Let J be a functional defined on an open &kin a normed linear
spaceV andu, eV, ¢ # 0 be given. Throughout this section we as-
sume that the sdti + 0y; 0¢[0, 1]} is contained irJ. It is convenient to
introduce the functiorf : [0, 1] — R by setting

0 — () = J(u + 6y).

We observe that ifl’ (u + ¢, ) exists thenf is once diferentiable
in]0, 1] and, as one can check immediately

f/(6) = J'(u+ 0y, ).

8
Similarly if J7(u+ 8¢, ¢, ¢) exists thenf is twice diferentiable and

f7(0) = I (u+ 0¢; @, @).

Proposition 2.1. Let J be a functional on an open set U of a nhormed
space V and &J, eV be given. Ifu + 0¢; 6¢[0, 1]}eU and J is once
G-differentiable on this set in the directignthen there exists éye]0, 1]
such that

(2.1) Ju+ ) = J(U) + I (u+ by, @)

Proof. This follows immediately from the classical mean value teeo
applied to the functiorf on [0, 1] : thete exists #pe]0, 1[ such that

f(1) = f(0)+ 1 - f'(do)

which is noting nut[(ZI1). O



8 1. Differential Calculus in Normed Linear Spaces

Proposition 2.2. Let U be as in Propositioh2.1. If J is twice G - dif-
ferentiable on the sdu + ¢; 0¢[0, 1]} in the directionsy, ¢ then there
exists afpe]0, 1[ such that

(2.2) Ju+ ) =J) + I (u,ep) + %J”(u + 6og; @, ).

This again follows from the classical Taylor's formula apglto the
function f on [0, 1].

Remark 2.1.1f L : V — R is a linear functional oty then by Remark
L1 isG-differentiable everywhere in all directions and we find that the
formula [Z1) reads

L(u+¢) = L(u) + L(p)
which is noting but additivity ot..

Similarly, if a(-, -) is a bi-linear form orV then the functional(v) =
a(v,v) onV is twice G-differentiable in all pairs directiong () and

J'(u,¢) = au,¢) + alp, u), I"(U, @, ¥) = aly, @) + ale, ¥).
Then the Taylor's formuld{212) in this case reads
a(u+ ¢, U+ ) = a(u,u) + au, ¢) + ale, u) + ale, ¢)

which is noting but the bilinearity .
These two facts together imply that the functional

J(V) = %a(v, V) — L(V)
of Exampld_LIL admits a Taylor expansion of the form (PrdpmosZ.2)
1
Ju+¢) =) +a(u¢) - Lg) + 5alp.¢)-
We shall now pass to the case of general operators betwearedor

spaces. We remark first of all that the Taylor’s formula infibven (Z1)
is not in general valid in this case. However, we have
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Proposition 2.3. Let V, H be two normed spaces, U an open subset of
V and letpeV be given. If the sdu + 0y; 0¢[0,1]} c U and A: U c

V — H is a mapping which is G-gferentiable everywhere on the set
{u + O¢; 6€[0, 1]} in the directione then, for any gH’, there exists a
0qel0, 1[ such that

(2.3) (9, AU+ @)HxH = (G A(UDHxH + (9, A" (U + Ogp, ©))HxH
Proof. We define a functiorf : [0, 1] — R by setting

0 £(6) = (9, AU+ 00)) 1/ xH-

Thenf’(6) exists in ]Q 1] and
f/(6) = (9, A'(U + ¢, ) )< for B€]0, 1]

Now (Z.3) follows immediatly on applying the classical meatue
theorem to the functiot.

Proposition 2.4. Let | H,u,¢ and U be as in Proposition2.4. If A

U c V — H is G-diferentiable in the seflu + 6¢; 0¢[0, 1]} in the direc-
tion ¢ then there exists éye]0, 1[ such that

(2.4) AU+ ¢) = AU < [|A(U+ bop, @)lIH-

The proof of this proposition uses the following Lemma whigka
corollary to Hahn-Banach theorem.

Lemma 2.1. If H is normed space then for any & H there exists a
geH’ such that

(2.5) llgllhy = 1 and|Mlln = (. VYHxH-

For a proof seell34].
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Proof of Proposition 2.4'he element = A(u + ¢) — A(u) belongs taH
and letgeH’ be an element given by the Leminal2.1 satisfylngl (2.5) i.e.

lgllk = LIIAU + @) — AUl =< g, A(U+ ¢) = AU) >HxH -

Since A satisfies the assumptions of Proposifiah 2.3 it fedlohat
there exists @p = 64¢]0, 1[ such that

IAU + ¢) = AU)IIH =< g, A(U + ¢) — A(U) >H'xH
=<0, A’(U + 90(,0, (,0) >H/xH
< [Iglln 1A (U + Bop, P)lIn = [IA (U + Bog, P)IIH-

proving [Z3%).

Proposition 2.5. Suppose a functional JV — R has a gradient @u)
for all ueV which is bounded i.e. there exists a constant M such that
IG(u)|l < M for all ueV, then we have

(2.6) [J(u) — I(V)] < Mlju—Vily for all u, veV.

Proof. If u,v, €V then takingy = v — uin Propositio 2l we can write,
with somefye]0, 1],

J(v) — J(u) = J'(u+ Gp(v—u),v—u)
=< G(U+ Gp(V— W),V — U >yxy

and hence

19(V) = JWI < NIG(u + bo(v — W)livIIlv = Ully < Mllv = Ully.

3 Convexity and Gateaux Dfferentiability

A subsetJ of a vector spac¥ is convex if wheneveun, veU the segment
{(1 - 0)u + v, 6€[0, 1]} joining u andv lies in U.
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Definition 3.1. A functional J : U c V — R on a convex sety of a
vector space is said to be convex if

(3.1) I(L-0)u+6v) < (1-6)I(u) +6J(v) for all u, veU andoe[0, 1].

Jis said to be strictly convex if strict inequality holds fdr &, veV with
u # vandée]o, 1].

We can write the inequality_(3.1) in the above definition ie &guiv-
alent form

(3.1 J(u+6(v—u)) < I(u)+06(I(v)— J(w) for all u, veU andoe[0, 1].

12
The following propositions relate the convexity of functads with
the properties of theiG-differentiability

Proposition 3.1. If a function J: U c V — R on an open convex set is
G-differentiable everywhere in U in all directions then

(1) Jis convex if and only if

J(v) > J(u) + J'(u, v —u) for all u, veU.

(2) Jis strictly convex if and only if

J(v) > J(u) + J'(u,v — u)for all u, veU with u# v.

Proof. (1) If Jis convex then we can write
J(v) — J(u) = (J(u+ (v — u)) — J(u))/6 for all 6¢[0, 1].

Now sinceJ’(u, v — u) exists the right side tends t#(u,v — u) as
0 — 0. Thus taking limits a® — 0 in this inequality the required
inequality is obtained.

The proof of the converse assertion follows the usual prodhée
case of functions. Lat, veV andfe[0, 1]. We have

J(U) = J(u+6(v—u))+ I (u+6(v—u)),u(u+6(v-u))
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=Ju+6(v-u))—-6J(u+6(v-u),v-u)
by the homogeneity of the mappigg— J'(w, ¢) and

JV) > Ju+6(v-u)+Ju+6-u),v-(u+o(-u))
=Ju+6(v-u)+@1Q-6)JI(u+6(-u),v-u).

Multiplying the two inequalities respectively by (.6) andd, and
adding we obtain

(1 -06)I(u) +6I(V) = I(u+ 6(v—u)),

thus proving the convexity af.
(2) If Jis strictly convex we can, first of all, write

J(V) = J(W) > 07 I(u + 6(v — u)) — J(u)].

(Here we have used the inequalfty.{B)). On the other hand, using
part (1) of the proposition we have

Ju+6(v—u) —J(u) = J(u,6(v-u).

Since, by RemarkZll 1 of Chapférdjs homogeneous in its second
argument: i.e.
J(u,0(v—u) =03 (u,v-u).

O

This together with the first inequality implies (2). The cerse im-
plication is proved exactly in the same way as in the first.part

Proposition 3.2. If a functional J: U c V — R on an open convex set
of anormed space V is twice Gfdirentiable everywhere in U and in all
directions and if the fornfp, ¥) — J”(u; ¢, ¢) is positive semi-definite
t.e.if

J’(u: ¢,¢) > 0forall ueU andgpeV withp # 0

then J is convex.



3. Convexity and Gateaux Bérentiability 13

If the form (p, ¥) — J7(uU: ¢, ¥) is positive definite i.e. if
J’(U; ¢, ¢) > 0 for all ueU andypeV with ¢ # 0

thenJ is strictly convex.

Proof. SinceU is convex the sgiu+ 6(v—u), 8¢[0, 1]} is contained irlJ
wheneven, veU. Then by Taylor's formula (Propositidn2.2) we have,
with ¢ = v —u.

J(V) = J(u) + ' (u,v—u) + %J”(u + 6p(V—U),V—Uu,Vv—u)
for somefpe]0, 1[. Then the positive semi-definitensessléfimplies
J(v) > J(u) + J'(u,v—u)
from which convexity ofJ follows from (1) of Propositioh3]1. Sim-14

ilarly the strict convexity ofJ from positive definiteness af”’ follows
on application of (2) Propositidn_3.1. O

Now consider the functiod : V - R :
1
JV) = Ea(v.v) - L)

of ExampleLll. We have seen thhtwice G-differentiable and’’ (u :
@.¢) = alp, ¢). Applying Proposition-3]2 we get the

Corollary 3.1. Under the assumptions of Examplgl1.1 J is convex (resp.
strictly convex) if a(e, ¢) is positive semi-definite (resp. positive defi-
nite). i.e.

J is convex ifa(p, ¢) > 0 for all peV (resp. J is strictly convex if
a(y, ¢) > 0 for all eV with ¢ # 0).
In particular, ifa(-, -) is V-coercive then] is strictly convex.
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4 Gateaux Dfferentiability and Weak Lower Semi-
Continuity

LetV be a normed vector space. We use the standard notation ‘U”
to denote weak convergence of a sequenci V to u. i.e. For any
geV’ we have

< 0, Vh >vixv—< g, U >vixy,

Definition 4.1. A functional J : V — R is said to be weakly lower
semi-continuous if for every sequenge.uin V we have

IiLn inf J(vn) > J(u).

Remark 4.1.The notion of weak lower semi-continuity is a local prop-
erty. The Definitio’41l and the propositions below can beedtéor
functionalsJ defined on an open subgétof V with minor changes. We
shall leave these to the reader.

Proposition 4.1. If a functional J: V — R is convex and admits
a gradient Qu)eV’ at every point @V then J is weakly lower semi-
continuous.

Proof. Let v, be a sequence iN such thaty, — uin V. Then<
G(U), Vh — U >vxv— 0. On the other hand, sinckis convex we have,
by Propositiori-311,

J(vp) = J(W+ < G(U),vh —u >
from which on taking limits we obtain
IiT_iL\Of . J(Vn) = J(u).
i

Proposition 4.2. If a functional J: V — R is twice G-djferentiable
everywhere in V in all directions and satisfies

() J has a gradient @i)eV’ at all points wV.
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@ii) (@, ¥) — J'(u; @, y) is positive semi-definite, i.e’Qu; ¢, ¢) > 0
for all u, peV withg # 0,

then J is weakly lower semi-continuous.

Proof. By Proposition[ 3P the condition (ii) implies thdtis convex.
Then the assertion follows from Propositionl4.1. O

We now apply Propositiof4.2 to the functional
1
Vi JV) = Ea(v, V) — L(V)
of ExampldLIl. We know that it has a gradient

G(U) : ¢ =< G(U), ¢ >= au, 9) — L(¢)

andJ’(u; ¢, ¢) = ay, ¢) for all u, geV. 16
If further we assume thad(-, ) is V-coercive, i.e. there exists an
« > 0 such that

(I (U 0, ¢) =)alp, ¢) = allglly (= 0) for all peV

then by Propositiof4l2 we conclude thkis weakly lower semi - con-
tinuous.

5 Commutation of Derivations

We shall admit without proof the following useful result oonemuta-
tivity of the order of derivations.

Theorem 5.1. Let U be an open set in a normed vector space V and
J:U cV - R be afunctional on U. If

() J”(u; o, ¥) exists everywhere in U in all directions yeV, and

(ii) for every pairp, yeV the form u— J”(u, ¢, ¥) is continuous
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then we have

J'(u, 0, ¢) = I (u; ¥, @) for all ¢, weV.
For a proof we refer tol[12].
As a consequence we deduce the

Corollary 5.1. If a functional J: U c V — R on an open set of a
normed vector space V admits a HessiauHe Z(V,V’) at every
points ue U and if the mapping W u — H(u) € .Z(V,V’) is continu-
ous then Hu) is self adjoint.

i.e. < HWe, ¥ >vixv=< HUY, ¢ >v«yv forall ¢,y € V.

6 Frechet Derivatives

LetV andH be two normed vector spaces.

Definition 6.1. A mappingA : U c V — H from an open set) in V
to H is said to be Frechet fierentiable (or simply-differentiable) at a
pointu € U if there exists a continuous linear mappiAu) : V — H,
i.e. A'(u) € Z(V, H) such that

(6.1) S(!i_f]g)IIA(U +¢) — A(U) - A'(Uell/llgll = 0.

Clearly, A’(u), if it exists, is unique and is called the Fréchet deriva-
tive (F-derivative) ofA at u.

We can, equivalently, sat that a mappiAg: U c V — H is
F-differentiable at a pointi € U if there exists an elemem’(u) €
Z(V; H) such that

AU+ ¢) = Alu) + A'(U)¢ + |lellv € (u, ) where € (U, ¢) € H and

(6.2)
€(up) > 0inHasp - 0inV.
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Example 6.1.If f is a function defined in an open sét c R?, i.e.
f : U — R, then it isF-differentiable if it is once dierentiable in the
usual sense and

£/(u) = grad f(u) = (9 /9x1(U), 9 /d%(U)) € L(R2R).

Example 6.2.In the case of the functional
1
Vi J(V) = Ea(v, V) — L(v)

Of ExamplelZLlL where (i) and (iii) are satisfied on a HilberacpV
we easily check thalfl is F-differentiable everywhere i and itsF-
derivative isgiven by

¢~ J(U)e = au,¢) - L(g).
In fact, by (i) and (iii) of Exampl€_T11’(u) € V’ sincep — a(u,¢) 18
andy — L(¢) are continuous linear and we have
Ju+¢) - I(U) - [a(u, @) — L(e)] = ale, ) = liglv € (U, ¢)
wheree (U, ¢) = ll¢lly ae, ¢) and

0 <€ (u,¢) < Mll¢llv

so thate (u,¢) » 0asep —» 0inV.
We observe that in this case thederivative ofJ is the same as the
gradient ofJ.

Remark 6.1.1f an operatoA : U c V — H is F-differentiable then it is
alsoG-differentiable and it&-derivative coincides with itE-derivative.
In fact, let A beF-differentiable withA’(u) as itsF-derivative. Then, for
ueU,peV,p#0,writtingy = pp we havey — 0inV asp — 0 and

P AU+ pg) - AU) - A (U)p)
= p AU+ ¢) — A(u) — A'(u)y) sinceA’(u) is linear
= o Yl € (u,¥) = ligll € (U,¥) > 0inHasy — 0inHi.e. ap — O.
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Remark 6.2.However, in general, the converse is not true. Example 1.2
shows that the functiof has a5-derivative but noF-differentiable. We
also note that th&-derivative need not be a linear map\dinto H (as

in Exampld_LR) while th&-derivative is necessarily linear by definition
and belongs taZ'(V, H).

Remark 6.3.The notions ofF-differentiability of higher orders and
the corresponding--derivatives can be defined in an obvious manner.
Since, whenever we have-differentiability we also hav& - differ-
entiability the Taylor's formula and hence all its consemes remain
valid under the assumption &fdifferentiability. We shall not therefore
mention these facts again.

7 Model Problem

We shall collect here all the results we have obtained foc#se of the
functional

1
Vi JV) = Ea(v, V) — L(V)
on a Hilbert spac&/ satisfying conditions (i), (ii) and (iii) of Example
[LJ. This contains, as the abstract formulation, most ofitiear elliptic

problems that we shall consider except for the case of nomvmtric
elliptic operators.

(1) J is twice Fréchet dferentiable (in factF-differentiable of all
orders) and hence is also Gateauffatientiable.

J'(u,¢) = au,¢) — L(p) andJ”(u; ¢, ¥) = ale, ¥).
J has a gradient and a Hessian at every poiatv
G(u) = (grad)(u) : ¢ = au, ¢) - L(y).

Moreover, H(u) is self-adjoint sincea(e, y) = a(y, ¢) for all ¢,
Yy eV,
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(2) Taylor’s formula for Jif u,v, € V then
J) = 3(0) + (@ v — 1) ~ L~ W)} + alv—u,v-u)

(3) Since the mapping — a(u, V) for anyu € V is continuous linear
andL € V’, by the theorem of Fréchet-Riesz on Hilbert spaces

there exist (unique elemenfsy, f € V such that
a(u,v) = (Au,v)y andL(v) = (f,v)y forallve V
ClearlyA:V — Vs a continuous linear map. Moreever we haze

IAlLzvv) < M by (i),

(Av,V)y > a|MZ for all v e V by (i) and
Ifllv < N.

(4) The functionall is strictly convex inV.

(5) Jis weakly lower semi-continuous M.






Chapter 2

Minimisation of Functionals
- Theory

In this chapter we shall discuss the local and global miniffuac- 21
tionals on Banach spaces and give som@igant conditions for their
existence, relate them to conditions on th8iderivatives (when they
exist) and convexity properties. Then we shall show thaptioblem of
minimisation applied to suitable functionals on Soboleacqs lead to
and equivalent to some of the standard examples of lineanamdinear
elliptic boundary value problems.

1 Minimisation Without Convexity

Let U be a subset of a normed vector spacendJ : 4/ cV — Rbe a
functional.

Definition 1.1. A funvtional J : U4 c V — R is said to have a local
minimum at a pointe?{ if there exists a neighbourhoati(u) of uin V
such that

J(u) < J(v) for all veld N ¥ (u)

Definition 1.2. A functional J on U is said to have a global minimum

21
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(or an absolute minimum) i/ if there exist aueU such that
J(u) < J(v) for all vell.
We have the following existence result.

Theorem 1.1. Suppose M/ and J : U — R satisfy the following
hypothesis :

(H1) V is areflexive Banach space,

(H2) U is weakly closed.

(H3) U is bounded and

(H4) J: U cV — Ris weakly lower semi-continuous.
Then J has a global minimum #.

Proof. Let ¢ denote i(?lf\](v). If vy IS @ minimising sequence fa, i.e.
\/3
= i% J(V) = r!im J(vn), then by the boundednessdf (i.e. by H3)v,
Ve — 00

is a bounded sequenceVhi.e. there exists a consta@t> 0 such that
Ivnll < C for all n. By the reflexivity ofV(H1) this bounded sequence is
weakly relatively compact. So there is a subsequencef v, such that
Vy — uin V. U being weakly closedH2) ueU. Finally, sincevy — u
andJ is weakly lower semi-continuous

J(u) < Iir]n inf J(viy)
which implies that
J(u) < r!im J(Viy) = € < J(v) for all veld.
i

Theorem 1.2.If V, U and J satisfy the Hypothes{$i1), (H2), (H4)
and J satisfies

(H3Y im  J(V) = +co

[Mly —+c0

then J admits a global minimum f#.
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Proof. We shall reduce the problem to the previous casew, etl{ be
arbitrary fixed. Consider the subs#t of U :

Up = {v; veU such thatd(v) < J(w)}.
m|

Itis immediatly seen that the existence of a minimuridgis equiv-
alent to that in{. We claim thatl{y is bounded and weakly closed in
V. i.e. hypothesisH12) and H3) hold for Uy. In fact, supposedy is
not bounded then we can find a sequence Up with ||Vy|ly — +oo. 23
The, by H3), J(v,) — +oo which is impossible since, € Uy im-
plies thatJ(v,) < J(w). Henceldy is bounded. To prove that/y is
weakly closed, let, € Uy be a sequence that, — uin V. Since
is weakly closedu € U. On the other end, sincé is weakly lower
semi-continuousl, — uin V implies that

J(u) < liminf J(up) < J(W)

proving thatu € Uy. Now Uy and J satisfy all the hypothesis of Theo-
remL] and hencé has a global minimum ifi{y and hence ifA.

Next we give a necessary condition for the existence of d loga
imum in items of the firsG-derivative (when it exists) of the functional
J. For this we need the following concept of admissible (osiiele)
directions at a pointa for a domian{ in V. It u,v € V u # v then the
nonzero vectov — u can be consider as a direction\in

Definition 1.3. (1) A directionv—uin V is said to be a strongly admissi-
ble direction at the points for the domian/{ if there exists a sequence
& > 0 such that

en — 0 asn — oo andu + ey(v — u) € U for eachn.

(2) Adirectionv—uin V is said to be weakly admissible at the poiats
for the domiani/ if there exist sequencg > 0 andw;,, € V such that

e — 0andw, — 0inV, U, + en(V — U) + enWpn € U for eachn.



24

25

24 2. Minimisation of Functionals - Theory

We shall mainly use the notion of strongly admissible dimettBut
some results on minimisation of functionals are known whike use
of the notion of weakly admissible directions.

We have the following necessary condition for the existeoica
local minimum.

Theorem 1.3. Suppose a functional JU c V — R has a local mini-
mum at a point . U and is G-djferentiable at u in all directions then
J'(u,v —u) > 0 for every ve V such that v+ u is a strongly admissible
direction.

Furtheremore, ifl{ is an open set then

J'(u,) =0forall p e V.

Proof. If u € U is local minimum forJ then there exists a neighbour-
hood ¥ (u) of uin V such that

J(u) < J(w) for all w e U N 7 (u).
i

If ve V andv-uis a strongly admissible direction then, for n large
enough,
U+e(v—u) e Un ¥ (U)

so that
J(u) < J(u + en(v—U)).

Hence

J(uv-u) = IiTO(J(u + en(viu)) — J(u)) /e, = 0.

Finally, if U is an open set iV then/ contains an open ball i¥
of centreu and hence every direction is strongly admissible &ir 2.
Takingv = u + ¢, ¢ € V it follows from the first part that

J'(u, +¢) > 0 or equivalentlyd’(u, ) = 0 for all ¢ € V.

In particualr, ifY is open and) has a gradienB(u) € V' atu e U
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and ifuis a local minimum then
J(u,0) =< G(u), p >vwy=0forallp e V; i.,e.G(u) =0€ V.

This result is thus in conformity with the classical case ifffiedlen-
tiable functions.

Remark 1.1.The converse of Theoreln 1.3 requires convexity assump-
tions as we shall see in the following section.

2 Minimistion with Convexity conditions

We shall show that under convexity assumptions on the dofiiamd
the functionalJ the notions of local and global minima coincide. We
also give another sficient condition for the existence of minima.

Lemma 2.1. If U is a convex subset of a normed vector space V and
J: U cV — Ris aconvex functional then any local minimum is also
a global minimum.

Proof. Supposeu € U is a local minimum of]. Then there is a neigh-
bourhood? (u) of uin V such that

Ju) < J(v)forallve ¥(u)ynU.

On the other hand, ¥ € U thenu + 6(v — u) € U for all 6 € [0, 1]
by convexity ofi{. O

Moreover, ifg is small enough, say € 6 < 6, thenu+ (v —u) €
¥ (u). Hence

Ju) < Ju+6(v—u))forall0< o <6,
< J(u) + 6(JI(v) — I(u)) by convexity of J, for all 0< 6 < 4,

which implies that
J(u) < J(v) forallve U.

26
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Whenever the assumptions of Lemma 2.1 are satisfied we siflall ¢
a minimum without reference to local or global. Next lemmaazrns
the unigueness of such a minimum.

Lemma 2.2. If U is a convex subset of a normed vector space and
J: U c V — Ris strictly convex then there exixts a uniqgue minimum
ue U for J.

Proof. The existence is proved in Lemial2.1. To prove the uniqueness
if up # up are two minima ford in U then

J(up) = I(up) < J(v) forallve U
and, in particular, this holds far= 2u; + 2u, which belongs td/ since
U is convex. On the other hand, singés strictly convex

J(%ul + %uz) < %J(ul) + %J(uz) = J(up < J(V)

which is impossible if we take = %(u1+u2). This proves the uniqueness
of the minimum. m]

We shall now pass to a §icient condition for the existence of min-
ima of functionals which is the exact analogue of the casevimfet dif-
ferentiable functions.

Theorem 2.1. Let J: V — R be a functional on VI/ a subset of V
satisfying the following hypothesis :

(H1) V is arelexive Banach space;
(H2) J has a gradient Q) € V' everywhere iri{;

(H3) Jis twice G-dfferentiable in all directionsp, ¢ € V and satisfies
the condition

J7(U; 0, ¢) 2 liglvx(ligliv) for all ¢ €V,
27 where t— x(t) is afunction ont € R;t > 0} such that

x(®) 2 0and fim x(t) = +oo;
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(H4) U is a closed convex set.
Then there exists at least one minimurma % of J. Furthermore,
ifin (H3)

(H5)
x(t) >0fort>0

is satisfied by then there exists a unique minimu of Jiif

Remark 2.1.We note that a convex s&f is weakly if and only if it
is strongly closed and thus itH@) above?f may be assumed weakly
closed.

Proof of Theorem 2.1.First of all by H3), J”(u; ¢, ¢) = 0 and hence

is convex by PropositiofllI.3.2. Similarh46) implies that] is strictly
convex again by Propositidd L_B.2. Then, by Proposifiof.2. (42)
and H3) together imply that] is weakly lower semi-continuous. We
next show that] satisfies conditionH3) of Theorem[IR: namely
J(V) » +o0 as|Vlly — +co. For this letw € U be arbitrarily fixed.
Then, because oH2) and H3) we can apply Taylor's formula to get,
forve V.

1
J(V) = IW)+ < G(W),V — W >\ryy +§J"(W+ Oo(V— W),V —wW; VvV —Ww)

for somedy €]0, 1[. Using H3) and estimating the second and third
terms on the right side we have

| < G(W),V—W >yy | < IGW)IIvIIV— Wik,
J7(W+ Gp(V—W),v—w,v—w) > |v-wly x (lv-wl]y) and hence
1
J(V) = I(w) +[Iv - WIlv[§ X (v = wilv) = IG(W)llv]-
Here, sincav € U is fixed, ag|Vily — +oo 28

IV—Wlv — +oo,
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J(w) and||G(w)||y- are constants and
X(IV=Wlly) = +co by (H3)

which implies thatJ(v) — +o as|V|ly — +c. The theorem then
follows on application of Theorefn1.2.

Theorem 2.2. Supposel{ is a convex subset of a Banach space and J
U c V — Ris a G-djferentiable (in all directions) convex functional.
Then
ue U is aminimum for J (i.e. ) < J(v) for all v € V) if and only
if
ue U and J(u,v—u) >0forallveU.

Proof. Letu € U be a minimum ford. Then, sincel{ is convexy—uis
a strongly admissible direction atfor 2/ for anyv. Then, by Theorem
L3, J(u,v—u) > 0 for anyveld. Conversely, sincd is convex and
G-differentiable, by part (1) of Propositi@h[1.13.1, we find that

J(v) > J(u) + J'(u, Vv — u) for anyveld.
i

Then using the assumption th#{u; v—u) > 0 it follows thatJ(u) <
J(v) i.e. uis a minimum forJ in U.

Our next result concerns minima of convex functionals inrtbe-
differentaible case.

Theorem 2.3. LetU be a convex subset of a Banach space V. Suppose

J: U cV — Ris a functional of the form ¥ J; + J, where J, J,
are convex functionals ang & G-djferentiable in?{ in all directions.
Then U is a minimum for J if and only if

ued, Ji(v) — J1(u) + J5(u,v—u) > 0 for all veld
Proof. Supposealel is a minimum ofJ then

J(u) = J1(u) + Jo(u) < J1(u+ B(v—U)) + Jo(u + (v — W)
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sinceu + 6(v — u)eU. Here, by convexity ofl;, we have
Ji(u+ (v — ) < Ja(u) + 6(In(v) — o (u))

so that
Jo(u) < 6(31(V) — Ja(u)) + Jo(u + O(v — u)).

That is
J1(V) = Ja(u) + (J2(u + 6(v - u)) — J2(u))/6 > 0.
O

Taking limits as§ — 0 we get the required assertion. Conversely,
since J, is convex and isG-differentiable we have, from part (1) of
Propositior L3311,

Jo(V) — Jo(u) = J5(u, v —u) for all u, ved.
Now we can write, for anyel{,

J(V) = I() = I (V) = Ja(u) + Jo(V) — Jy
> Ji(v) — Ja(u) + J5(u,v—u) >0

by assumption which proves tha¢?{ is a minimum forJ.

3 Applications to the Model Problem and Reduc-
tion to variational Inequality

We shall apply the results pf Sectibh 2 to the functiodalf Example 30
. [I on a Hilbert space. More precisely, \ebe a Hilbert space and
J:V — R be the functional

Vi JV) = %a(v, V) — L(V)

wherea(:, ) is a symmetric bilinear, bicontinuous, coercive form\dn
andLeV’. Further, letK be a closed convex subsetVdf Consider the
following
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Problem 3.1.To find
ueK; J(u) < J(v) for all veK.

i.e. to find aueK which minimizesJ on K. We have seen in Chapfar 1
(Sectiorl¥) thatl is twice F-(and hence alsG-) differentiable and that

I (U, @) =< G(U), ¢ >vrxv=a(u,¢) - L(y)

‘]H(U; @, l//) =< H(U)SD’ U >y = a(QD’ 17[’)
Moreover, the coercivity (-, -) implies that

I'(U; 0, ¢) = alp, ¢) = aligliz.

If we choosey(t) = at then all the assumptions of Theor€ml2.1 are
satisfied by, J andK so that the Problefni3.1 has a unigue solution.
Also, by Theoreni 212, the probldmB.1 is equivalent to

Problem 3.2.To find
ueK; a(u,v —u) > L(v—u) for all veK.
We can summarise these facts as

Theorem 3.1. (1) There exists a unique solutioaKi of the Probleni 311
and
(2) ProblenZ311 is equivalent to probldmi3.2.

The probleni=312 is called a variational inequality assdctte the
closed convex seK and the bilinear forma(:,-). As we shall see in
the following section the variational inequalify (B.2)s&$ as general-
izations of elliptic boundary value problems for suitabliipéc oper-
ators. It turns out that in many of the problems solving (nticadly)
the minimisation problerfiz3.1 is much easier and faster thanng the
equivalent variational inequality(3.2).

In the particular case whet€ = V the Probimd=3]1 is nothing but
the Problem

(3.3) to findueV; J(u) < J(v) for all veV
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which is equivalent to the Problem

(3.4) to findueV;a(u,¢) = L(p) for a peV. As we have seen in
ChaptefdL, (3.4) is equivalent 10 (B.2) €V we takev = U+ geK = V
in 32) to get (3.4) and the converse is trivial.

The following result is a generalization of Theoréml] 3.1 ta-no
symmetric case and is due @ Stampacchia. This generalizes and in-
cludes the classical Lax-Milgram theorem. (See [43]).

Theorem 3.2. (Stampacchia). Let K be a closed convex subset of a
Hilbert space V and @, -) be a bilinear bicontinuous coercive form on
V. Then for any givendV’ the variational inequalityl(3]2) has a unigue
solution wK.

Proof. Since, for anyu,v — a(u, v) is continuous linear o andLeV’
there exist unique elemental, feV by Fréchet-Riesz theorem such that

a(u,v) = (Au, v)y andL(v) = (f,V)y.
o 32

MoreoverAe.Z(V, V') with [|All vy < M and|[flly < N where
M > 0, N > 0 are constants such that

la(u, V)| < MllullvIVllv for all u, veV,
IL(V)| < N|vllv for all veV.

Let o > 0 be the constant of-coercivity ofa(-, -) i.e.
a(v,v) > a|vif2 for all veV.

SinceK is a closed convex set there exists a projection mapping
P:V — Kwith [Pl #wv) < 1. Lety > 0 be a constant which we shall
choose suitably later on. Consider the mapping

Vavis v—y(Av-f) =T, (V)eV.

For y suficiently smallT, is a contraction mapping. In fact, if
V1, Vo€V then
Tyvi—Tyve = (I = yA)(v1 — Vo).
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Settingw = v; — Vo we have

(1= yAWIG = (W — yAw, w — yAW)y
= WIS = YI(W, AWy + (Aw, W)y] + ¥ lIAWG
< WG = 2yelwilg + y*M2Iwilg
= (1- 2y +y*M?)WG

by V-coercivity and continuity of the operatét. It is easy to see that
if 0 <y < 22/M? then 1- 2ya + y?M? < 1 and hencd’, becomes
a contraction mapping. Then the mappiRd,|k : K — K is a con-
traction mapping and hence has a unique fixed paiktby contraction
mapping theorem i.e.

ueK andu = P(u— y(Au- f)).

This is the required solution of the variational inequafZ) as can
easily be checked.

4 Some Functional Spaces

We shall briefly recall some important Sobolev spaces ofidigtons
on an open set iiR" and some of their properties. These spaces play
an important role in the weak (or variational) formulatiofadliptic
problems which we shall consider in the following. All ounfttionals
in the examples will be defined on these spaces. For detailefeeto
the book of Lions and Magenes [32].

LetQ be a bounded open subseRifiandl” denote its boundary. We
shall assume to be stficiently “regular” which we shall make precise
whenever necessary.

Sobolev spacesWe introduce the Sobolev spaeg(Q):
(4.1) HY(Q) = {ViveL?(Q), dxjeL?(Q),j = 1,--- ,n}
whereDjv = gv/dx; are taken in the sense of distributions

i.e. <Djv,¢>=-<V,Djp > forall peZ7(Q)
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Here 2(Q) denotes the space of al* -functions with compact
support inQ and< -,- > denotes the duality betweeni(Q2) and the
space of distributiong?’(Q) on Q. H(Q) is provided with the inner-
product

(4.2) (U)W V)2 + ) (Dit D)2
j=1

:fg{uv+ i(Dju)(Djv)}dx

j=1

for which becomes a Hilbert space. The following inclusians obvi- 34
ous (and are continuoug)(Q) c C{(Q) c H(Q).
We also introduce the space

(4.3) H3(Q) = the closure of2(Q) in HY(Q).

We ahve the following well-known results.

(4.4) Theorem of Density: If T"is “regular” (for instancel” is aCl (or
C)-mainfold of dimensiom - 1) thenC}(Q) (resp.C®(Q)) is dense in
Hi(Q).

(4.5) Theorem of Trace. If T is “regular” then the linear mapping+—
v/T of C}(Q) — CY(I') (resp pfC™(Q) — C>(I')) extends to a continu-
ous linear map oH(Q) into L%(I") denoted byy and for anyveH(Q)
yvis called the trace of v ofi. Moreover,H}(Q) = {veH}(w)yv = O}.
We shall more often use this characterizatiorh-lé(Q). The trace map is
not surjective. For a characterization of the imagéléfw) by y (which
is proper subspace, denoted H)% (") we refer to the book of Lions
and Magenes [32]. We can also define spd¢@) andH{Y(Q) in the
same way for anyn > 1.

Remark 4.1.The Theorem of trace is slightly more precise than our
statement above. For this and also for a proof we refer to tiod bof
Lions and Magene$ [32].

For some non-linear problems we shall also need spaces fufrthe

(4.6) V = H(Q) N LP(Q) wherep > 2.
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The spacé/ is provided with the norm

Ve [Mlv = IMInygq) + [IVILe@)

for which it becomes a Banach space. If2p < +oo thenV is a
reflexive Banach space.

In order to given an interpretation of the solutions of weatkfula-
tions of the problems as solutions of certaiffeliential equations with
boundary conditions we shall need an extension of the clasSireen’s
formula which we recall here.

(4.8) Green’s formula for Sobolev spacesLet Q be a bounded open
set with suficiently “regular” boundaryl’. Then there exists a unique
outer normal vecton(x) at each point x o". Let (n,(x),---,Nn,(X))
denote the direction cosines fx). We define the operator of exterior
normal derivation formally as

(4.9) d/on = Zn: nj(x)D;.
j=1

J

Now if u, veC(Q) then by the classical Green’s formula we have

f(Dju)vdx:—fu(Djv)dx+fuvnjdo-
Q Q r

wheredo is the area element dn This formual remains valid also if

u, veH(Q) in view of the trace theorem and density theorem as can be

seen using convergence theorems.
Next if u, veC3(Q), then applying the above formulaByu, Djvand
summing overj = 1,--- .nwe get

n n
Z(Dju, DjV) 20 = —Zf(Djzu)vdx+fau/ag.vdo-
=1 =1V g

n
(4.10) i.e. Z(Dju, DiV)i2q) :—f(Au)VdX+f6u/6D.Vd0'.
=1 Q T
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Once again this formula remains valid if ; for instanceHZ(Q),
veH(Q) using the density and trace theorems. In faet}?(Q) implies
that AueL2(Q2) and sinceD jueH(Q), y(Dju) exists and belong th?()
so thatdu/on = 37_; njy(Dju)eL(D).

5 Examples

In this section we shall apply results of the previous sestito some 36
concrete example of functionals on Sobolev spaces and wgiete
the corresponding variational inequalities as boundatyevaroblems
for differential operators.

Throughout this sectio® will be a bounded open set with fu
ciently “regular” boundary’. We shall not make precise the exact regu-
larity conditions orl” except to say that it is such that the trace, density
and Green’s formula are valid.

We begin with the following abstract linear problem.

Example 5.1.LetT = I'; U T, wherel'; are open subsets bfsuch that
I't T, = ¢ Consider the space

(5.1) V = {(VveH1(Q); yv = 0 onT'y}.

V is clearly a closed subspace df(Q) and is provided with the
inner product induced from that lH(Q) and hence it is a Hilbert space.
Moreover,

(5.2) H3(Q) c V c HY(Q)

and the inclusions are continuous linear. fHL%(Q2) we consider the
functional

53) I = 5(@W) - (1))

i.e. a(u,v) = ((uv) andL(v) = (f,V) 2. Thena(,-) is bilinear,
bicontinuous and/-coercive :

[a(u, V)l < llullvivilv = [lully1 eIV (o) for u, veV,
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2
HL(Q)

and|L(V)| < [IfllzolVilLz) < IfllLz(q)IVIlHq) for VeV.

a(v,v) = |Vl for veV

Then the problems (3.3) and (3.4) respectively become

(5.4) to find ueV, J(u) < J(v) for all veV and
(5.5) to find ueV, ((u, ¢)) = (f, 9) 2(q) for all peV.

From what we have seen in Sectdn 3 these two equivalentgrsbl
have unique solutions.

The Problem[(&]5) is the weak (or variational) formulatiohtoe
Dirichlet problem (ifT'> = ¢), Neumann problem iF; = ¢ and the
mixed boundery value problem in the general case.

We now interprete the solutions of Problesk5.2) when thegaf-
ficiently regular as solutions of the classical Dirichleggp. Neumann
of mixed) problems.

Suppose we assumeC2(Q) NV andveC1(Q) N V. We can write
using the Green'’s formul&{4.110)

a(u,v):((u,v)):f(—Au+u)vdx+fau/ag.vdo-:f fvdx
Q r Q
(5.6) ie. f(—AU+U— f)vdx+f8u/ag.vdo-:0.

Q r

We note that this formula remains valideuéH?(Q) N V for any
VeV.

First we choos®e2(Q2) c V (enough to takeeCcl)(Q)(Q) c V) then
the boundary integral vanishes so that we get

f(—Au +u - flvdx= 0 VYveZ(Q).
Q

Since 2(Q) is dense inL?(Q) this implies that (ifueH3(Q)) uis a
solution of the diferential equation

(5.7) —AU+U- f =0in Q (in the sense of%(Q)).
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More generally, without the strong regularity assumptierabove,
uis a solution of the dferential equation

(5.8) —-AU+U- f =0inthe sense of distributions .

Next we chooseeV arbitrary. Sinceu satisfies the equatiof (5.8) in
Q we find from [5.6) that

(5.9) ou/onvdo = 0 VeV,
Iz

whcih means thaiu/dn = 0 onI" in some generalized sense. In fact, by
trace theoren‘yVEH%(F) and hencéu/on = 0in H‘%(F) (see Lions and
Magenese[32]). Thus, if the Problem(5.2) has a regulatisolihen

it is the solution of the classical problem

-Au+u =finQ
(5.10) u =0onl;
ou/on =0onI»

The Problem[[5.0) is the classical Dirichlet (resp. Neumar
mixed) problem for the elliptic dierential operatorau+ uif I', = ¢
(resp.I'y = ¢ or general’1,I').

Remark 5.1.The variational formualtion[{5l5) of the probleln{5.5) is
very much used in the Finite elements method.

Exampld&ll is a special case of the following more genedddlpm.

Example 5.7. LetQ,I' =T UT2 and V be as in Examp[e®.1. Suppose
given an integro-dferentail bilinear form ;

(5.11) a(u,v):fgZaij(x)(Diu)(Djv)dx+Lao(x)uvdx

i,j=1

where the coficients satisfy the following conditions: 39
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(5.12)
aijeL™(Q), a.eL™(Q);
condition of ellipticity there exists a constamt- 0 such that
—— -2 - — - .
Zijaij(&g; = a & foré = (£, €p)eRMae inQ;
a(X)>a>0.

It follows by a simple application of Cauchy-Schwarz indgydhat
the bi-linear form is well defined and bi-continuous\nfor all u, veV,

la(u, V)l < max(laij llL=(a), llasllL=@)lullv[IVilv

a(-, -) is also coercive ; by the ellipticity and the last conditimma,
av,v) > a f (Z IDiVi? + [V?)dx = a|VIZ, VeV.
Q5
Suppose giveriel.?(Q) andgeL?(I",). Then the linear functional

(5.13) Vi L(V) = f fvdx+ fgvfcr
Q r
onV is continuous and we have again by Cauchy-Schwarz inegualit

ILV)I < IFllL2)IVlILz () + 192 IVIILz(r
< (IIflliz) + llgllzy)lVilv by trace theorem.

We introduce the functional
v J(V) = a(v,v) — L(v).
For the Problem{5l4) of minimising onV we further assume
aj =a;,1<i,<n

If & ; are smooth functions i® andu is a smooth solution of the
Problem [5b) we can interpreteas a solution of a classical problem
40  using the Green’s formula as we did in the earlier case. Weishaate
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only the essential facts. We introduce the formul@edential operator
n
(5.14) Au:-Z Dj(aijDiu) + a,U.
ij=1

If & are smooth (for instanceyjeC1(Q)) then A is a diferential
operator in the usual sense. By Green’s formula we find that
(5.15)

a(u,v):—;LDj(a;jDiu)+£;aj(Diu)nj(x)vw+L%uvdx

where 1(X), - - - , np(X)) are the direction cosines of the exterior normal
toT at x. The operator
(5.16) > & (Diun;(x) = du/ana

N
is called the co-normal derivatives ofrespect to the forma(-,-). Thus
we can write[[5.15) as

(5.15) a(u,v) = j;z (Auvdx+ j; ou/dnavdo

and hence the Problefi{b.2) becomes

f(Au— fvdx+ f(au/anA —Qg)vdo = 0.
Q r

Proceeding exactly as in the previous case we can conclatliéhth
Problem[[5b) is equivalent to the classical problem.

Au=f in Q
(5.17) u=0 onl’;
ou/ona =g onls

Example 5.2.Let V = H}Q) = {viveH'(Q),yv = 0}, andJ be the
functional onV:

1
v I = SIMR = (F V)L
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where felL?(Q) is a given function. Suppose 41
(5.19) K = {vlveV,v(x) > 0 a. e. inQ}

It is clear thatK is convex and it is easily checked thitis also
closed inV.

In fact, if veeK andv, — vin V then, for anype2(Q) such that
¢ > 0inQ we have

vaodx: lim fvngadXZO
Q n—oo Q

(the first equality is an immediate consequence of Cauclyw&iz in-
equality sincev, peL2(Q)). This immediately implies that> 0 a. e. in
Q and henceveK.

We know from Sectiofll3 that the minimising problem.
(5.20) ueK; J(u) < J(v), YveK
is equivalent to the variational inequality:

(5.21) ueK;a(u,v—u) > L(v—u) = (f,v—U)2q), YveK

and both have unique solutions. In order to interprete #tiel problem
we find on applying the Green’s formula.

(5.22) L(—AU +u- f)(v—udx+ frau/an(u —V)do > 0, YveK.
SinceveK c V = H(Q) the boundary integral vanishes and so
(5.23) L(—AU +u-— f)(v—udx> 0, YveK.
If peK, takingv = u + peK we get

f(—Au+ u-— fedx> 0, peK
Q

42 from which we conclude thatau+u— f > 0 a.e. inQ. For, if w is an
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open sub-set a2 where—aAu+u— f > 0 we take apeZ(Q) with ¢ > 0
and suppp C w. Such ap clearly belongs t& and we would arrive at a
contradiction. In particular, this argument also shows timethe subset
of Q whereu > 0 is satisfies the equatiorau + u = f.

Next if we chooser = 2ueK in (E2Z3) we find

f(—Au +u- fludx>0
Q

and if we choose = 3ueK we find

f(—Au +u- fludx< 0.
Q

These two together imply that
(5.24) Cau+u-flu=0

Thus the solution of the variational inequality can be ipteted
(when it is sidficiently smooth) as the (unique) solution of the problem :

(au+u—-flu =0inQ

—-AU+U-f >0a. e.inQ
(5.25) )

u >0a. e inQ

u =0onrI.

Remark 5.2. The equivalent minimisation problem can be solved nu-
merically (for example, by Gauss-Seidel method). (See @&nh&b$
)R

Exercise 5.2 et Q be a bounded open seti? with smooth boundary
I. LetV = HY(Q) andK be the subset

(5.26) K = {viveH(Q);yv > 0 a. e. o}

43
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Once agairK is a closed convex set. To see that it is closed,dK
is a sequence such that — vin V then sincey : HY(Q) = V — LI
is continuous lineayv, — yvin L%("). Now, if peL?(I) is such that
¢ > 0a. e. ol then

f(yv)god(f = r!im f(yvn)god > 0 sincevheK.
r = Jr

from which we deduce as in Examplels.1 that> 0.
Let feL?(Q) be given
The problem of minimising the functional

(5.27) Vi I = SO - (V)

on the closed convex sKtis equivalent to the variational inequality

(5.28)  ueK :a(u,v-u) = ((u,v-u)y = (f,v—U) 2q), YVeK,
Assumig the solutioms (which exists and is unique from sectigh 3)

is suficiently regular we can interpreteas follows. By Green’s formula
we have

(5.29) fg(—Au - f)(u-v)dx+ fr%(v— uydo > 0, YveK.

If pe2(Q2) the boundary intergal vanishes for= u + ¢ which be-
longs toK and

f(—Au - f)pdx=10
Q

which implies that-Au = f in Q.
Next sincev = 2u andv = 1u also belong t we find that

ou
ﬁa—DUdO' =0

which implies that%u =0a.e. od.
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Thus the variational inequality {5.28) is equivalent to thikowing
Problem:

-au =finQ
ou/on u=0onl
ou/on >0onI’
u>0 onlI

(5.30)

One can also deduce frofn {51 30) that on the subsetdfereu > 0,
u satisfies the homogeneous Neumann condition

ou
a—D_O

Example 5.3.Let Q be a bounded open seti® with smooth boundary
I'and 1< p < +o0. We introduce the space

(5.31) V = {ViveL?(Q); DjveL?P(Q), j = 1,--- ,n}
provided with its natural norm
n
(5.32) Vs M = Mz + ) IDMizsge)-
j=1

ThenV becomes a reflexive Banach space. Consider the functional
J:V-oR:

1< 1
5.34) Vi JWV) = — f|D-v|2pdx+—f|v|2dx—f fvdx
(5.34) v) zp; 1D 5 ). i

. 1 .
wherefel?(Q) is given. If we setg;(t) = Z)|t|2p we get aC! -function

gj : Rt — R* and we havey)(t) = t?P-2t for all j = 1,---,n. Then
from Exerices |. 1.1, the functional

1
VHZng(V)dXIZ—pZL|DjV|2de
] ]
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is onceG-differentiable in all directions and iG-derivative in any di- 45
rectiongy is given by

Z f gj(UW)pdx VeeV.

i (3

Hence we obtain, in our case,
(5.35) J’(u,ga):Zf|Dju|2p‘2(Dju)(ngo)dx+f u<,odx—f fodx
] Q Q Q

Then the minimisation problem
(5.36) ueV; J(u) < J(v), YveV,
is equivalent by Theoref3.1 to the problem
(5.37) ueV; J'(u, p) = 0, YyeV.

We can verify thatl is strictly convex; for instance, we can compute
J”(u; ¢, ) for anypeV and find

1
(5.38) J"(Uig.¢)=(2p-1) ) f (ID;uPP YDl + S¢)dx > 0
i Q

for any geV with ¢ # 0. Then Propositiofll1[3.2 implies the strict
convexity ofJ.
We claim that

J(V) — +o0 as|Vlly — +oo.

In fact, first of all by Cauchy-Schwarz inequality we have

fQ fvoq < Ifll 2y Mi2(y

and hence

1[0, 1
; fg vi2dx fg fudx Ml MLz - M)
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(V)— 2 EJ || ] ”2p 2”V||L2(Q)(||V||L2(Q) ||L (Q))

46 which tends totoo as||Vily — +oo.
Then by Theorei 112 the minimisation probldm (5.36) has queni
solution.
Finally, if we takepeZ(Q) c V in the equation[{5.35) we get

L(Z ID;ul?P~2(Dju)(Djy) + Up — fe)dx = 0.
i
On integration by parts this becomes
f(z —Dj(|Dju|2p‘2Dju) +u-— f)edx=0,
2]
Thus the solution of the minimising probleln{3.36) fbin V can

interpreted as the solution of the non-linear problem

(5.39) ueV, - > Dj(ID;u?P?Dju) + u = fin Q.
j

We have used the fack(Q) is dense irL” (Q) wherel + i, =1.

The problem[[5.39) is a generalized Neumann problem for ¢ime n
linear (Laplacian) operator

(5.40) ~ > Dj(IDju?*?D;u) + u.
j

Example 5.4.Let Q andI be as in the previous example and
(5.41) V = HY(Q) n LA(@).

We have seen in Secti@h 4 thétis a reflexive Banach space for its
natural norm

(5.42) Ve [MIgyq) + ML) = [IVIIv-
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Consider the functional onV given by
15 1 4 ;
(543) Vi ‘J(V) - E”VHHl(Q) + Z”V”|_4(Q) - ( vV)LZ(Q)a

wherefel?(Q) is given. It is easily verified that is twiceG - differen-
tiable and

T = (WD + [ (= Do V. eV

(Henced has a gradient)

V() = (@ )y + 3 fg Pugdx, VU, ¢, weV,

Thus J”’(u; ¢, ) > 0 for ueV, peV with ¢ # 0 which implies that
J is strictly convex by Propositioll .3.2. As in the previouxsmple
we can show using Cauchy-Schwarz inequatliy (for the tefim)(z2(q)),
that

J(V) = +o0 as||Vlly — +oo.

Then by Theoreri 112 the minimisation problem fbon V has a
unique solution. An application of Green’s formula showattthis
unique solution (when it is regular) is the solution of thendimear
problem :

—AU+U+WE=f inQ
(5.44)
u=0 onll’

Remark 5.3.1t is, ingeneral, diicult to solve the non-linear problem
(&-43) numerically and it is easier to solve the equivaleintimisation
problem forJ given by [5.44).

Remark 5.4.All the functionals considered in the examples discussed
in this section are strictly convex and they give rise torggip monotone
operators. We recall the following
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Definition 5.1. An operatorA : U c V — V’ on a subset) of a normed
vector space into its dual is called monotone if

< Au— Av,U—V >y 0 for all u, veU.

A is said to be strictly monotone ¥ Au— Av,U — V >yw> 0 for any
pair of distinct elements, veV (i.e. if u # v). (See, for instancel,_[44]).






Chapter 3

Minimisation Without
Constraints - Algorithms

We have considered in the previous chapter results of thieak@ature 49
on the existence and unigueness of solutions to minimisgtioblems
and the solutions were characterized with the aid of the exityw and
differ entiability properties of the given functional. Here wal$ be
concerned with the constructive aspects of the minimisgpimblem,
namely the description of algorithms for the constructiérseguences
approximating the solution. We give in this chapter someritigms
for the minimisation problem in the absence of constraintsae shall
discuss the convergence of the sequences thus constructed.

The algorithms (i.e. the methods for constructing the migiing
sequences) described below will make use of thEedintial calculus
of functionals on Banach spaces developed in Chépter 1. \Aleksh
mainly concerned with the following classes of algorithms:

(1) the method of descent and

(2) generalized Newton’s method.

We shall mention the conjugate gradient method only bri€flye
first class of methods mainly make use of the calculus of firdeio
derivatives while the generalized Newton’s method reliesily on the
calculus involving second order derivatives in Banach epac

49
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SupposeV is a Banach space anH: V — R is a functional on
it. The algorithms consist in giving an interative procezdto solve the
minimisation problem:

to find uev, J(u) = inf J(v).
Ve

Supposel has unique global minimumin V. We are interested in
constructing a sequenag, starting from an arbitrary,eV, such that
under suitable hypothesis on the functiodalu, converges tai in V.
First of all, sinceu is the unique global minimum the sequenXey) is
bounded below by(u). It is therefore natural to construgt such that

() J(uk) is monotone decreasing

This will imply that J(ux) converge tal(u). Further, ifJ admits a
gradientG then we necessarily ha@u) = 0 so much so that the
sequencal, constructed should satisfy also the natural require-
ment that

(i) G(u) » 0inV ask - o

Our method can roughly be described as follows: If, for séene
Uy is already known then the next iteratg,; is determined by
choosing suitably a parametgx > 0 and a directionwi(WieV,
wi # 0) and then taking

Uk+1 = Uk — pkWk.

We shall describe, in the sequel, certain choicesc@ndwy which
will imply (i), (i) which in turn to convergence ofi to u. We shall call
such choices gy, wx convergent choices.

To simplify our discussion we shall restrict ourselves ®dhse of a
Hilbert spaceV. However, all our considerations of this chapter remain
valid for any reflexive Banach space with very minor changes \ae
shall not go into the details of this. As there will be no pb#iy of
confusion we shall write-(-) and|| - || for the inner product-(-)y and
I - llv respectively.
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1 Method of Descent

This method includes a class of algorithms for the constraatf min-

imising sequences,. We shall begin with the following generalities in

order to motivate and explain the principle involved in thsthod.
LetJ:V — R be a functional on a Hilbert spate

1.1 Generalities

Starting from an initial valuel,eV we construcuy iteratively with the
properties described in the introduction. Suppasis constructed then
to constructu,; we make two choices:

(1) adirectionwy in V called the “direction of descent”

(2) areal parametes = py, and setug,1 = Uk — pxWk SO that the
sequence thus constructed has the required propertiesnaine
idea in the choices ofik andpk can be motivated as follows:

Choice of w. We findweV with [wg|| = 1 such that the restriction
of J to the line inV passing throughuy and parallel to the direction
W is decreasing in a neighbourhood wf i.e. the functionR > p —
J(uk + pWi)eR is decreasing fojp| suficiently small. 52

If Jis G-differentiable then we have by Taylor’'s formula

J(uk + pwi) = I(uk) + I (U, pWi) + . ...
= J(u) + pJ (U, W) + . ...

(by homogeneity op — J'(u, ¢)). For|p| small since the dominant term
in this expansion iJ’(ux, W) and since we wani(ux + owy) < J(Uk)
the best choice ofi (at least locally) should be such that

pJ (U, Wy) < 0 and is largest in magnitude.

If J has a gradien® then

pJ (U, Wk) = p(G(uk), Wx) < 0
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and our requirement will be satisfied if is chosen proportional to
G(ux) and opposite in direction. We note that, this may not be #wt b
choice ofwy from global point of view. We shall therefore write

J(ux — pwi) with p > 0

so thatJ(ux — pwk) Y\, askincreases fop > 0 small enough.

Choice of p(= pk). Once the direction of descew is chosen then the
iterative procedure can be done with a consfant 0. It is however
more suitable to do this with a variabte We shall therefore choose
o = pk > 0in a small interval with the property(ux — okWk) < J(Ug)
and set

Uk+1 = Uk — okWk.

We do this in several steps. Since,
j =inf J(v) < I(Ui+1) < (W)
veV
we have

J(U) = I(u+1) = 0and lim (I(uk) = I(Us1)) = 0

becausel(uy) is decreasing and bounded below. Jlifs differentiable
then Taylor’s formula implies that

J(uy) — J(uk:+1) behaves liked’ (Uk, U1 — Uk) = ok (U, Wk)
so that it is natural to require that
Pk > O,ka'(Uk, Wk) — 0 ask — +oo.

Roughly speaking, we shall say that the choiceofs a “conver-
gent choice” if this condition implied’(ux, wy) — 0 ask — +oo. If,
moreover,J has a gradien® then choice of the direction of descemt
is a “convergent choice” ifl’ (u,, wx) = (G(uk),wx) — 0 implies that
IG(uw)l] — 0 ask — +oo.

The above considerations lead us to the following defirstivhich
we shall use in all our algorithms and all our proofs of cogeeice.
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Definition 1.1. The choice opy is said to be convergent if the conditions

Pk > 0, U1 = Uk — prWi
J(uk) = I(Uks1) > 0, 1My reo(I(Uk) — I(Uks1)) = O

imply that
kIim J'(ug, wy) = 0.
—+00

Suppose] has a gradienB in V.

Definition 1.2. The choice of the directiony is said to be convergent if
the conditions

WgeV, J’(Uk, Wk) > 0. klim J'(Uk, Wk) =0
—+00

imply that 54
kiryw IG(u)ll = 0.

1.2 Convergent choice of the direction of descemty

This section is devoted to some algorithms for convergeaicels ofw.
In each case we show that the choicengfdescribed is convergent in
the sense of Definition1l.2

w-Algorithm 1.We assume thal has a gradien® in V. Let a real
numbera be given with O< @ < 1. We chooseweV such that

1.1) { (GG W) > a > 0.

[l = 1.
Proposition 1.1. w-Algorithm 1 gives a convergent choice af w
Proof. We can write
I (U, W) = (G(Uk), W)

so that by[T11)
J' (U, W) = allG(ull > 0



54 3. Minimisation Without Constraints - Algorithms

and hence
J'(ug, wx) — 0 implies that|G(uk)|| — 0 ask — +oo.
m|

We note that[{T]1) means that the angle betwsgandG(uy) lies
in] —n/2, /2] and the cosine of this angle is bounded away from 0 by
.

w-Algorithm 2 - Auxiliary operatoe method.

This algorithm is a particular case of w-algorithm 1 but verych
more used in practice.

Assume thatl has a gradien& in V.

Let, for eachk, Bye.Z(V, V) be an such that

By are uniformly bounded: there exists a constant0
such that [IBull < yllyll : yeV.

Bk are uniformlyV-coercive: there exists a constant- O
such thaat By, v) > alyl?, weV.

(1.2)

Let us choose
(1.3) Wk = BkG(uk)/IIBkG(uk)
Proposition 1.2. The choicel{T]13) of wis convergent.
Proof. As before we calculate
I (i, W) = (G(Uk), Wie) = (G(ue), BikG(ui)/lIBkG (i)}
which, by uniform coercivity oB, is

> a|G(uK)II*/IIBG (Ul
> ay~1G(u) by uniform boundedness .
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This immediatly implies that
J'(ug, wi) > 0 and if J’'(ux, wg) — 0 then||G(uy)l| — O

and hence the choice wof; is convergent.
Moreover, again by[{113), we get

(G U/ IGUI, W) = (G(u)/IG(UKIl, BG(ui)/I1BG(u)ll) > ay™ > 0,
which means that this algorithm is a particular caser@Igorithm 1.

Remark 1.1.In certain (for example, wheBy are symmetric operatorssé
satisfying [[L.R)) this method is equivalent to making a ¢waof vari-
ables and taking as the direction of descent the directicheofjradient
of Jin the new variables and then choosingas the inverse image of
this direction in the original coordinates.

Consider the functional : V = R2 — R of our model problem of
ChaptefIL §{7:

R?3 v J(V) = :—2La(v, V) = L(v) = :—ZL(AV, V)p2 — (f, V)p2€R.

Since a(-,-) is a positive definite quadratic formyeR?, J(v) =
constant represents an ellips®y can be chosen such that the change
of variable dfected byBy transforms such an ellipse into a circle where
the gradient direction is well-known i.e. the direction loé radial vector
throughuy (in the new coordinates).

w-Algorithm 3 - Conjugate gradient method

There are several algorithms known in the literature untename
of conjugate gradient method. We shall, however, descrite ane of
the algorithms which generalizes the conjugate gradienhodein the
finite dimensional spaces. (S€el[20]I[22] and [24]).

Suppose the functiondladmits a gradien®(u) and a Hessiahi (u)
everywhere irV. Letu,€V be arbitrary. We choosag, = G(u,)/[|G(u,)]|
(We observe that we may assuiB€é,) # 0 unlessu, itself happens to
be the required minimum). Ilfx_1,wWy_1 are already known then we
choosepk_1 > 0 to be a points of minimum of the real valued function

Ry 3 p = I(Uk-1 — pWi-1)eR
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i.e. pk-1 > 0 andJ(Ux-1 — pk-1Wk-1) = IiQEJ(Uk—l — PWi_1).

SincelJ is G-differentiable this real valued function pfs differen-
tiable everywhere iR, and

d
$J(Uk_1 — PWk-1)|p=p_s = 0,

which means that, if we set
(L4) Uk = Uk-1 — Pk-1Wk-1
then we have
(1.5) G(u), wi-1) = 0.
Now we define a vectdrikeV by
Wi = G(Uk) + AWi-1
whereAgeR is chosen such that
(H (U)W, Wg-1) = 0
Hencew is given by

(H(u)G(uk), Wk-1)

(1.4), A= — (H (U )Wic_1, Wi_1)

We remark that in applications we usually assume ith@) (for any
ueV) defines a positive operator and hence the denominator.4j](1
abovei non-zero (see Remalk.2 below). Then the vector

(14); Wic = Wi/ |[Widl|

defines the direction of descent at th#h stage of the algorithm.
This algorithm is called conjugate gradient method becafishe
following remark.
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Remark 1.2.Two directionsy andy are said to be conjugate with re-
spect to a positive definite quadratic foag, ) on V if a(e,¥) = 0. In
this sense, iH(ux) defines positive definite quadratic form (i.E.(uy)

is a symmetric positive operator &f) two consecutive choices of di-
rections of descenty_1, Wk are conjugate with respect to the quadric
(H(udw,w) = 1. We recall that in the planB? such a quadric rep-
resents an ellipse and two directiopsy in the plane are said to be
conjugate with respect to such an ellipseHf(Qx)e, ) = 0.

Now we have the following

Proposition 1.3. Suppose that the functional H admits a gradieru)G
and a Hessian Itl) everywhere in V and suppose further that there exist
two constants €> 0,C; > 0 such that

(i) (H(u)g, ) = C.llell? for all u, eV and
(i) I(HWe, ¥)I < Callgllliyll for all u, ¢, yeV.
Then the w-Algorithm 3 defines a convergent choice of the w

Proof. It is enough to verify thatv, satisfies the conditiori.(1.1). First
of all, in view of the definition ofai and [I.H) we have

(G(u), W) = [IG(UII?

so that
(Gu)/IG (U, Wie) = (IG (U)W~

O

We shall show that this is bounded below by a conséantO (inde-
pendent ok).
For this, we get, again using the definitionvaf, [L4);] and [I.5)

I = IG(UI? + Al Iwic-1]I?.
Here, in view of the assumptions (i) and (ii) we find that

_ (H(u)G (U, wi-1)?
(H (U)Wi-1, Wk-1)?

2
I

2 2
Al Wil [IWic—1
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< (C5rC1IG(WI)?

so that 59
Wil < IG(UI(L + C;2C3).

Hence, taking the constaat> 0 to be (1+ ngcf)—% we get
IG(UQIIW[ ™ > @ >0

which proves the assertion.

1.3 Convergent Choices 0pk

We shall describe in this section some algorithms for thecghof the
parametepy and we shall prove that these choices are convergent in the
sense of our Definitionl. 1.
Given the idrectiorw, of descent at th&!" stage we are interested
in points of the type
Uk — oWk, p > O,

and therefore all out discussions of this section are as ifiswe func-
tions of a single real variable defined inR,.
We shall use the following notation throughout this and tlegtn
sections in order to simplify our writing:
Notation
J(uk — W) = JE forp > 0,
J(uk) = J5,

I(u) — I(ue - pwi) = I = JK = 2k p > 0.

I (uk — pwi, wi) = 'K for p > 0.
J’(Uk, Wk) = J’Ig.
Smilarly, whenJ has gradientz(u) and a hessiami(u) at every
pointsuin V, we write

G(ux — pw) = Gk for p > 0.
G(uk) = GX
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and
H(ug — owy) = ng forp > 0,
H(uk) HK

We shall make the following two hypothesis throughout tiistion.
Hypothesis (1) : | I”im J(V) = +o0.
V||[—

Hypothesis [H2) : J has a gradien®(u) everywhere iV and satis-
fies a (uniform) Lipschitz condition on every bounded sulodat: for
every bounded sé of V there exists a constaMg > 0 such that

IG(U) — G(V)|| < Mk|lu — V| for all u, veK.

In particular, ifJ has a Hessiahl (u) everywhere irV and if H(u) is
bounded on bounded sets\othen an application of Tayler’s formula to
the mapping/ > u — G(u)eV’ = V shows that] satisfies the hypothesis
(H2). In fact, ifu, veV then

IG(U) — G(V)II = supl(G(u) — G(V), ©)I/llll
14

= sup|(H(u + 6(u - v))(u - v), ¥)I/ll¢ll < constiju - v,
@

sinceu, veK and¢]0, 1] imply thatv + 8(u — v) is also bounded and
henceH (v + 6(u — v)) is bounded uniformly for alde]0, 1][.

Now suppose given &€V at the beginning of the algorithm. Start-
ing from u, we shall construct a sequengesuch thatJ(uy) is decreas-
ing and so we havé(uy) < J(u,). We are interested in points of the type
U — pWi such thatd(ug — pwi) < J(u).

We shall now deduce some immediate consequences of thehhypot
esis H1 and H2, which will be constantly used to prove the eayence
of the choice opy given by the algorithms of this section.

Let us denote by the subset o¥/:

U = {vveV; J(V) < J(u,)}.

The setU is bounded inV. In fact, if U is not bounded then we
can find a sequenogeU such thatlvj|| — +co. ThenJ(vj) — +co by 61
Hupothesis H1 and this is impossible singeU.
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We are thus interested in constructing a sequeRceeich that
uxeU andJ(uk) N\, -

Also since by requiremeni(ux — pwi) < J(u) it follows thatuy —
pwieU and therp will be bounded by diam U; for, we find using triangle
inequality:

0 < p = llowill = [luk — (ux — pwy)l| < diamU

Let us denote the constahty > 0 given by Hypothesis H2 for the
bounded set) by M.

Now the pointau, — oWk, Uk — uwi belongs tdJ if p, u > 0 are chosen
suficiently small. Then

IGK — GKII = G (uk — pwic) — G(ui — i)
< Mlp — ul[lwyll = Mlp — ul;

i.e. we have,

(L.6) IGK—GKIl < Mo —ul
IGk-GXI < Mp

SinceJ’E = J' (U — pWie, Wi) = (G(Uk — pWi), W) = (GX, wi) we also

find from (I.8) that

wn {U'z ~ 35 < Mlp-pl

K- K < Mp.

We shall suppress the ind&when there is no possibility of confu-
sion and simply writéS,,, J,, ', etc. respectively foBk, J¥, J'K etc.
By Taylor’s expansion we can write

J, = J(u—-pw) = J(u) — pJ'(u-pw,w)
for somep such that O< p < p. i.e. we can write

(1.8) 3 =3 -pJs
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We can rewrite[(T18) also as
Jp=Jdo—pJo+p(Jo - 7).
which together with[[117) gives
Jy < Jo —pJs + Mpp,

that is, since & p < p
(1.9) J, <o —pdo+ Mp%

We shall use[{T18) an@{1.9) in the following form
(1.8) A, =pd',
(1.9 pd o — Mp? < AaJ,.

We are now in a position to describe the algorithms for caywetr
choices of the parametgg.
- Algorithm 1.Consider the two functions @f > 0 given by

Jp = I(uk — pwi) andT(p) = J, — pJ's + Mp?.

ThenJ, = T(0) and [I.) says thak, < T(p) for all p > 0. Geomet-
rically the curvey = J, lies below the parabolg = T(p) for p > 0'in
the {,y) -plane. Leto™> 0 be the points at which the functidi(p) has

aminimum. Thend—|,,=,; = 0 implies-J', + 2Mp = 0 so that we have
0

(1.10) = 3/2M.T() = inf T(o).
p>

Let C be a real number such that
(1.11) 0<C<1l

We choose = pk in the interval Cp, (2 - C)p], i.e.
1.12) C<p/p<(2-C).

Then we have the

63
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Proposition 1.4. Under the hypothesi@H1), (H2) the choice[(T.112) of
p© = pk IS a convergent choice.

Proof. SinceT has its minimum at the poinjs = p we have by[[111)
Cp < p < (2-C)p. MoreoverT (p) decreases in the interval,|§ while

it increases in the intervab[(2 — C)p] as can easily be checked. Hence,
if p satisfies[[T.12) then we have two cases:

T,<TgifCo<p<pand
Tp<Tecpifp<p<(2-Chp.

O

SinceTc; = J, — CYo/2M.Y + M(CJY./2M)? = J, - (2 - C)
C(J,)%/4M,)

Te-cp = Jo—(2-C)J'./2MJT .+ M((2-C)J'./2M)? = J, - (2-C)C(J'.)?/4M

using the value op given by [I.ID) and sincé, < T, for all p > 0 we
find that (in either of the above cases)

J <T, <3, - (2-C)C(I?)/4M.
This immediately implies that
(1.13) C(2-C)(J.)%/4M < al,

In order to show that the choicEZ(1112) is convergent we sak th
(II3) is nothing but

C(2 - C)/AM(J’ (U, Wi))? < J(uk) — I(uk — pwi) < I(U) — I(Ucr1)
since J(Uk+1) = J(Uk — pkWk) = inf 0 J(Uk — pWi) i.€. J(Uks1) < Jﬁ‘f.
Hence ifJ(ux) — J(uk;1) — 0 thenJ’'(ux, wx) — 0 ask — +oo, which
proves that the choice gf such that

C < pkdy* < 2 - C wheregy = J' (Uk, Wy)/2M

is a convergent choice.
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p-Algorithm 2.The constaniM in the p-Alogorithm 1 is not in gen-
eral known a priori. This fact may causdfuiulties in the sense that if
we start with an arbitrarily larg® > 0 then by [TIRpx will be very
small and so the scheme may not convergéideantly fast. We can
get over this dficulty as described in the following algorithm, which
does not directly involve the constalt and which can be considered
as a special case pfAlgorithm 1. But for this algorithm we need the
additional assumption thdtis convex.

Hypothesis H3The functionald is convex.

We suppose that, for some fixad> 0, we have

(1.14) { J>Ih>bh>Inh> > Imh

Jmh < Jm+1)h, for some integem > 2.

SinceJ is convex and has its minimum jm > 0 such anm > 2
always exists.

Proposition 1.5. If J satisfies the hypothesis H1, H2, H3 then any choice
of p(= pk) such that

(1.15) fm—1)h<p<mh
is a convergent choice. 65

Proof. Letp > 0 be a point wherd, attains its minimum. Thed'; =
0,J; < J, for all p > 0 and by [T.T¥) we should have

(1.16) Mm-1)h<p<(m+1)h
Then [I.F) will imply
0<J.=05-J<M

and thus we find

2.17) »=J,/M<p
and
(1.18) »/(m+1)<h.
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This, together with the fact that > 2, will in turn imply
20/3 < (m-1)h.
As J, decreasesd in 8 p < mhwe get
Adm-1h = Jo = Jm-1)h = Jo — Jz5/3 = AJ25/3).

If we now apply thep-Algorithm 1 withC = 2/3 in (I.I2) and in
([T 13) then we obtain, from the above inequality,

(1.19) Adm-ph = 2/IM(J',)2,

which proves thap = (m - 1)h is a convergent choice. Similarly, if
pe[(m—1)h,mH (i.e. (I.I%)) then the same argument shows that

(1.20) Ady > Admeph = 2/9M(J'.)?,

and hence anyy = p satisfying [1.Ib) is again a convergent choice.

Some Generalizations op-Algorithm 2.

In the above algorithm a suitable initial choiceltof> 0 has to be
made. But such ah can be either too large or too small and if for
exampleh is too small then the procedure may become very long to use
numerically. In order to over come suchfdculties we can generalize
p-Algorithm 2 as follows.

If the initial value ofh > 0 is too small we can repeat our arguments
above with[[T.TK) replaced by
(114 { 3o > Jpn > Jygn > I >+ > Jpmn

Jpmh < Jpmep, for some integem > 2

and if the initial value oh is too large we can computkat the points
h h h

p 2 p3
new algorithm for a convergent choice@f = p.
p-Algorithm 3.We have the following

--- wherepis an integer> 2. Every such procedure gives a
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Proposition 1.6. Assume that J satisfies the hypothesis H1 - H3. If
h > 0is such that

(1.21) { Adn/h> (1-C)J,,

Adon/2h < (L-C)J,

with some constant ) < C < 1then(ox =)p = his a convergent
choice.

Proof. From the inequality[((BY] and the second inequality iBE{1121)
we get
2hJ, — (2h)>M < adon < (L= C)2hJ,
and hence
Cp=CJ,/2M <h.

Now the first inequality in[[L.21) implies
(1.22) AJh>h(1=C)J, > C(1-C)(J.)%/2M,

which proves thap = his a convergent choice sineel, = J(uk) —
J(ux — hwi) — 0 implies thatd’, = J'(uk, wx) — 0 ask — oo.

We shall now show that there exists lar 0 satisfying [T.2I1). We
consider the real valued function

Y(p) = 2dp/p - (1-C)s
of p onR, and observe the following two facts:

(1) ¥(p) > 0 for p > O suficiently small. In fact, sincenJ,/p —
Y. >0we havgald,/p—-J| < CJ, for p > 0 suficiently small,
which, in particular, implies the assertion.

(2) ¥(p) < 0 forp > 0O suficiently large. For this, sinceg, wi are
already determined (at th& ¢ 1)th stage of the algorithm) we
see thafjowi|]| — +co and hencédlux — pwk|| — +oo. Then, by
hypothesis 1),

J(ug — pWk) — +oo asp — +oo
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so much so that
A, <0<p(1l-C)J.forp>0
suficiently large, which implies the assertion.

Thus the sign ofy changes from positive to negative, say at some
p =h, > 0. Then, for instancey = 3h, /4 will satifsy our requirement
@23).

More precisely, we can find satisfying [I.2IL) in the following iter-
ative manner. Assume that<OC < 1 is given.

First of all we shall choose aarbitrarily (>~ 0) and we compute the
difference quotiennJ./r. This is possible since all the quantities are
known. Then there are two possible cases that can arise yaitber

€)] Ad/t>(1-C)J,
or(b) A/t < (1-C)T..

Suppose (a) holds. Then we computd,,». and we will have to

consider again two possibilities:
either@); Adpe2r < (1-C)J,
or(a) Adpr2r 2 (1-C)J .

If we have the first possibilityd); then we are through we can
chooseh = 7 itself. If on the order handa), holds then we repeat
this argument withr replaced by 2.

Next suppose (b) holds. We can consider two possible cases:

either), Adrpalt/2 > (1-C)T o,
or(b)> Adrpolt/2 < (1-C)J ..
Once again, in casé); holds we are through and we can choose

h = 7/2. In caself), holds we repeat this argument withreplaced by
T/2.

Remark 1.2.1t was proposed by Goldstein (s€e][21]) that the initial
value ofr can be taken to be taken to be- J',.
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p-Algorithm 4. We have the following

Proposition 1.7. If there is ap such that

o >0,
(1.23) B <3, pe0.7]
J; =0

P
thenp = p is a convergent choice.

Proof. We have, by the last condition iBE{1]23) together with thé- est

mate [(LY).
Jo=135-Jol<Mp

and hence < 26 = J,/M < p using the value ap given by [1T.ID).
The condition [T23) thal; is a minimum in [Qp] implies J; < J; and
therefore

2 =3 -d <3 -J=13.

On the other hand, taking = 1 in (T.22) we find that
(1.24) J2/2M < a3 < 035

which proves thap = p is a convergent choice.

We shall conclude the discussion of convergent choices &fr o 69
by observing that other algorithms for convergent choides can be
obtained making use of the following remarks.

Remark 1.3.We recall that inp-Algorithm 1 we obtained convergent
choices op to be close tp {i.e. C < p/p < 2—-C) wherep'is the points
of minimum of the curvey = T(p), which is a polynomial of degree 2.
This method can be generalised to get other algorithms Esvial

Starting fromug if we have foundu, and the direction of descewnk
thenJ, = J(w), Jo = I (u,W) = (G(uk), wi) are known. Now if we
are given two more points (sdyand 2) we know the values of at
these points also. Thus we know values at 3 points and thal isibpe
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(i.e. J,). By interpolation we can find a polynomial of degree 3 from
these. To get an algorithm for a convergent choicp afe can choose

p to be close to the point where such a polynomial has a minimum.
Similar method works also polynomial of higher degress ifare@given
more number of points by using interpolation.

Remark 1.4.1n all our proofs for convergent choices pfve obtained
an estimate of the type:
y(J'o)? < nd,

wherey is a constant- 0. For instance = 2/9M in (L.20).

1.4 Convergence of Algorithms

In the previous we have given some algorithms to construcinamis-
ing sequence for the solution of the minimisation problem:

Problem P. to find ueV, J(u) < J(v), YVveV.

In this section we shall prove that under some reasonabiemgss
tions on the functional any combination ofv-algorithms ang - al-
gorithms yield a convergent algorithm for the constructidrthe min-
imising sequencey and such a sequence converges to a solution of the
problemP.

Let J: V — R be a functional on a Banach spa¢eThe following
will be the assumptions that we shall makedbn

(HO) Jis bounded below: there exists a real numpeuch that-co <
j < J(v),YveV.

(H1) J(v) — +oo as|V|| — +oo.

(H2) J has a gradienG(u) everywhere inv andG(u) is bounded on
every bounded subset bf if K is a bounded set i then there
exists a constari¥lk > 0 such that|G(u)|| < M for all ueK.

(H3) Jis convex.

(H4) V is a reflexive Banach space
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(H5) Jis strictly convex

(H6) J admits a hessiahl(u) everywhere inV which is V-coercive:
there exists a constaat> 0 such that

<HUp, ¢ >vixv= allplid, YueV andVpeV.

As in the previous sections we shall restrict ourselvesaactse of
a Hilbert spaceV and all our arguments remain valid with almost no
changes. We have the following result.

Theorem 1.1. (1) If the hypothesis HO, H1, H2 are satisfied andif u
isa sequence constructed using any of the algorithms:

w — Algorithm i,i = 1,2
p —Algorithm j j=1,3,4

then
IG(u)l — 0as k— +co.

(2) If the hypothesis HO - H4 hold and if @are constructed using71
the algorithm i= 1,2, j = 1,2, 3,4 then all algorithm have the
following property:

(a) the sequenceglhas a weak cluster point;
(b) any weak cluster point is a solution of the problem P.

(3) If the hypothesis HO - H5 are satisfied then

(&) the Problem P has a unique solutioa\,

(b) If uk is constructed using any of the algorithms i, 2, j =
1,2, 3,4 then
U — U as k— +oo.

(4) Under the hypothesis HO - H6 we have

(a) the Problem P has a unique solutiorely/,
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(b) if the sequencels constructed using any of the algorithms
i=123 j=1234then

ux — u and moreovelju — Ul < 2/a||G(u)|| VK.

Proof. (1) Since by HO), J(uy) is a decreasing sequence bounded
below: j < J(uk+1) < J(uk) < J(u.), YK it follows that

Jm (I = I(uern)) = 0.

Since by thep-Algorithms j(j = 1, 3,4) the choice ofp = pk in
Uks1 = Ux — oW iS @ convergent choice we see that

J'(Uk, W) — 0, ask — +oo,

Now since the choine (i is convergenti(= 1, 2) this implies
that
IG(uK)l| — 0 ask — +oo.

(2) As we have seen in the previous section,#V then the set =
{viveV, J(v) < J(u,)} is bounded byKl1) and since

J(Uks1) < I(U) < -++ < J(Uo) VK

all the ukeU and thusuy is a bounded sequence. Thé#d) im-
plies thatuy has a weak cluster points which proves (a) ida
subsequencey such thatuy — uin V ask’ — +co. Now by
(H3) and by Propositiofl 3.1 on convex functionals

(1.25) J(V) = I(uk) + J'(uk,V — ug) for anyveV and any'.

Then, by H2), J'(uk, V- Ug) = (G(uk), V— Uk ). But herev — uy

is a bounded sequence and since all the assumptions of Plart 1 o
the theorem are satisfi@&(uy )|l — 0 i.e. G(ux) — O strongly in

V. Hence

[(G(uk), vV — up)| < const]|G(ug)|| — 0 ask’ — +oo
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3)

(4)

and so we find from{1.25) that
J(V) > liminf J(uy)
k' —+co0

or what is the same as sayidgv) > J(u) YveV. Thusuis a
solution of the Problen® which proves (b).

The strong convexity o implies the convexity ofl (i.e. H5 im-
plies H3) and hence by (b) of Part 2 of the theorem the Prolflem
has a solutionueV. Moreover, by Propositiofl 3.1 this solution
is unique sincel is strictly convex.

Again by (2)(a) of the theoremy is bounded sequence and has
a weak cluster points which is unique and hencgx — u as
K — +o00.

Since coercivity ofH(u) implies thatJ is strictly convex (a) is
just the same as (3)(a). To prove (b) we expdg by Taylor's
formula: there is & in 0 < < 1 such that

1
J(u) = I(uk) + I (ug, u—uy) + EJH(U" 4+ 6(U — Ug); U — Uy, U— Uy)

= 3(00 + (G(U. U~ ) + 5(H(U + (U~ U — U U~ Uo)

73

Here
[(G(uk), u = t)l < IG(uilllIu — uill Yk

and

(H(u + 6(u — ) (U — W), U — Uy) > allu — gl Yk.

These two together with the fact thais a solution of the Problem
P imply that

J(U) > J(u) = IG(ullllu — ugll + @/ 2llu — ul Yk

which gives
lu—ul < 2/al|G(u) VK.
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But, by Part 1 of the theorem the right hand side hered as
k — 0 and this proves thak — uask — +oo.
i

2 Generalized Newton's Method

In this section we give another algorithm for the constarcof approx-
imating sequences for the minimisation problem for funwis J on a
Banach spac¥ using first and second ord€derivatives of]. This al-
gorithm generalizes the method of Newton-Rophson whiclsistsin
giving approximations to determine points\@fwhere a given operator
vanishes. The method we describe is a refinement of a meth&®l by
FageslI5H4].

We can describe our approach to the algorithm as followsp&8sg
J : V — Ris a very regular functional on a Banach spatefor in-
stanceJ has a gradienB(u) and a Hessiaf (u) everywhere irV. Let
ueV be a point wheré attains its minimum i.eJ(u) < J(v) YveV. We
have seen in Chaptél Z] 1 (TheorEm[Z] 1.3) tAat) = 0 is a nec-
essary condition and we have also discussed the questiohaf this
condition is also sfiicient in Chaptef12§2. Thus finding a minimis-
ing sequence fod atu is reduced to the equivalent problem of finding
an algorithm to construct a sequengeapproximating a solution of the
equation:

(%) ueV,G(u) = 0.

In this sense this is an extension of the classical Newtohoaefot
the determination of zeros of a real valued function on tia¢lnee.

As in the previous section we shall restrict ourselves tactse of a
Hilbert spacev.

Starting from an initial pointi,eV suppose we have constructed
If ug is suficiently near the solution of the equatiorG(u) = 0 then by
expandingG(u) using Taylor’'s formula we find:

0 = (G(u). ¢) = (G(uK)) + H(uk + 6(u — U))(U - k), ).
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The Newton-Raphson method consists in takipg as a solution
of the equation

G(uk) + H(u)(ugs1 — Uk) = 0 fork > 0.

Roughly speaking, if the operatdét(u\)eZ(V,V") = Z(V,V) is
invertible and ifH(u)te.Z(V, V) then the equation is equivalent to

Uit = U — H(u) " G(w).

Then one can show that under suitable assumption& amd H
that this is a convergent algorithm provided that the ihjiaints u, is
suficiently close to the required solutiarof the problem £). However,
in practice,u and then a good neighbourhoodwihereu, is to be taken 75
is not known a priori and diicult to find.

The algorithm we give in the following avoids such dhdulty for
the choice of the initial point, in the algorithm.

Let V be a Hilbert space and : V — R be a functional orV.
Throughout this section we make the following hypothesisgon

(H1) J(v) — +oo as|V|| = +oo.

(H2) Jis regular: J is twice G-differentiable and has a gradiga{u)
and a hessiahl(u) everywhere irV.

(H3) H is uniformly V-coercive on bounded sets &f for every
bounded seK of V there exists a constaak > 0 such that

(H(V)e, ) > axllell?, YveK andVeV.

(H4) H satisfies a uniform Lipschitz condition on bounded set¥ of
for every bounded subsét of V there exists a constagik > 0
such that

IH(U) = HW)II < Bkllu— V|, Yu, veK.

We are interested in finding an algorithm starting frorn.aV
to find uk iteratively. Suppose we have determingdfor some
k > 0. In order to determingy,; we introduce a bi-linear bicon-
tinuous formby : V xV 3 (¢, ) — by(p, ¥)eR satisfying either
one of the following two hypothesis:
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(H5) There exist two constants, > 0,u, > 0 independent ok, A,
large enough (se€{2]112)), such that

b(e, ) = A.(G(W), ¢)?, Vg €V,

and
bk, Y)I < pollG(Ulllllivll, Yo, v € V.

(H6) There exist two constant > 0, u; > 0 independent df, 11 large
enough sed(Z14), such that

bi(p, ) > G Ellel%, Vo € V

and
Ibk(e, ¥)I < M1IIG(Uk)IIl+€II90IIII¢II,Vso, yEeV,

wheree > 0.

It is easy to see that there does always exist such a bilioear ds
can be seen from the following example.

Example 2.1.by(p, ) = (G, ©)(Gi, ¥),0 < Ao < AK < g < +00, A,
large enough.

Example 2.2.by(p,¥) = ANIGKIR(e,¥),0 < 2, < AK < py < +o0.
Cauchy-Schwarz inequality shows thHitY) is satisfied by this andH®6)
is satisfied withe= 1.

Example 2.3.Let A, > 0 be a number in a fixed interval®1; < A¥ <
u1 < +oo then the bi-linear form

b, ¥) = ANIG (U (e, ¥)
satisfies [6).

We are now in a position to describe our algorithm.
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Algorithm. Suppose we choose an initial pointin the algorithm ar-
bitrarily and that we have determineg for somek > 0. Consider the
linear problem:
(2.1)

to find AgeV satisfying the linear equation

(H(u) 2k, ¢) + bi(2k: ) = =(G(Wk), ¢) = =(G(Uk), ¢), VeV

Here sinceH(uy) is V-coercive andy is positive semi-definite on
V:
e, (HUe. ¢) = allel, YoeV  (by (H3))

(with @ = a(uy) > 0, a constant) and 77

bk(¢.¢) 20 (by (H5) or (H6))

the linear problem{2]1) has a unique solutigeV.
Now we set
Uk+1 = Uk + Ak

whereA is the unique solution of the probleln{R.1). Clearly, ourmalg
rithm depends on the choice of the bilinear fobpiy, ¥). We also see
that if by = 0 our algorithm is nothing but the classical Newton method
as we have described in the introduction to this section.

We have now the main result of this section.

Theorem 2.1. Suppose J satisfies the hypothdsid) - (H4) and
satisfy either the hypothes({#15) or (H6) for each k> 0. Then we
have:

(1) The minimization problem:
to find wV, J(u) < J(v), YveV has a unique solution.

(2) The sequencelis well defined by the algorithm.

(3) The sequenceclconverges to the solution u of the minimization
problem:|jukx — U]l — 0 as k— +oo.

(4) There exist constantg > 0, vy, > 0 such that

Yalluker — Ukl < llug = Ul < yallukss — ugll, VK.



78

76 3. Minimisation Without Constraints - Algorithms

(5) The convergence of o u is quadratic: there exists a constant
v3 > 0 such that

2
[lUke1 — Ul < yallug — ull, Vk.

In the course of the proof we shall use the notation introducehe
previous section:Jy, Gk, Hk, AJk, - - - respectively denotd(uk), G(uy),
H(u), I(u) — I(Uk+1), - - -

Proof. We shall carry out the proof in several steps.

Step 1.LetU be the subset of:
U = {vveV; J(V) < J(u,)}.

If there exists a solution of the minimization problem then nec-
essarily belongs to this skt (irrespective of the choice af,). The set
U is bounded inV. In fact, if it is not bounded then there exists a se-
quenceu; such thatu;jeU, |luj|| — +oo and hence byH2) and {H3) J
has a Hessian which is positive definite everywhere. Hdrisestrictly
COnvex.

The setU is also weakly closed. In fact, ifjeU andv; — vin V
then (strict) convexity ofl implies by Proposition[{[[.3 1) that we have

J(Uo) = J(vj) = I(V) + (G(V), V) — V)

and hence passing to the limit (sinGév) is bounded for alj) it follows
that J(v) < J(u,) proving thatveU, i.e. U is closed (and hence also
weakly).

Now J and U satisfy all the hypothesis of Theordth £12.1 with
x(t) = ayt and hence it follows that there exists a uniqu®) solution
of the minimizing problem forJ. We have already remarked thais
unique inV. This proves assertion (1) of the statement.

We have also remarked before the statement of the theordrhéha
linear problem[{Z]1) has a unique solutiepwhich implies that,; is
well defined and hence we have the assertion (2) of the stateme
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Step 2.J(v), G(v) andH(v) are bounded on any bounded subsetdf V:
There exists a constamg > 0 such that

IV + IGW)I+ IHW)II < vk, YveK.

In fact letdy = diamK and letweK be any fixed point. ByKi4) we
have
H(V) < [[H(V) = H(U)Il + [[H(u)Il < Bkdk + [[H(U)l]

which proves thaH is bounded oK. Then by Taylor’'s formula applies
to G gives

IG(v) = G(u)ll < [IH(u + 6(v = w)llliv - ull.

for some O< 6 < 1. Now if u, veK thenu+ 8(v—u) is also in a bounded

setKy = {wweV, d(w, K) < 2dk} (for, if w = u+ 6(v — u) andueK then

lw—al| = lu—a+8(v—u)| < |lu—al|+|lv—ul| £ 2dk). SinceH is bounded

on Ky it follows that G is uniformly Lipschitz onK and as abové& is

also bounded oK. A similar argument proved is also bounded oK.
For the sake of simplicity we shall write

@ =ay,yY =7YU.

Step 3.SupposaieU for somek > 0. (This is trivial fork = 0 by the
definition of the setJ). Thenuy, 1 is also bounded.
For this, takingp = Ak in (1) we get

(2.3) Hrak, Ak) + bi(ak, k) = —(Gi, Ak).

By using the coercivity oHx = H(uk) (hypothesis [13)) and the fact
thatby(Ak, Ak) > 0 we get

(2.4) allakll? < —(Gk, k).

Then the Cauchy-Schwarz inequality applied to the rightdhside of

E&3) gives
Suppose & ¢ < +oco be such that syp; IG(u)l|/a < ¢ (for example 80

we can take’ = y/a) and supposé; is the set

(2.5) U1 = {viveV; AweU such thatlv — w|| < ¢}.
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ThenU; is bounded andi,;; = ux + AgeUq.
(2.6) Ukr1€U1.
We shall in fact show later thai, €U itself.

Step 4.Estimate fora Jk from below. By Taylor's formula we have

Jirr = I+ (G, &) + 3(Hak, AK),
2.7) where
Hy = H(uk + 0y) for somefin 0 < 6 < 1.

Replacing Gk, Ak) in (Z4) by [Z.B) we have
1
Jer1 = Ik = (Hdo 21 = b(2k 41 + 5 (Hak, Ak)
1 1 —

= Jk = 5 (Htko 1) = bk, 2 + 5 (Hi = Hid Ak, 24)-
Now usingV-coercivity of Hy (hypothesis 13)) and the Lipschitz con-
tinuity (hypothesis 14)) of H on the bounded sdti; we find (since
Uk + OakeUy):

2 1 3
i1 < Ik — @/ 2)| Akl = by(ak, Ak) + SBullal™

Thus setting

(2.8) B =Bu,

we obtain

(2.9  a/2lakP + be(ak, 4K) - %,3||Ak||3 < AJ(= = Jern).
In particular, sincdy is positive (semi -) definite,

(2.10) a/2|akP(L = Blalladl) < ad

In the methos of Newton-Rophson we have oIy {R.10).
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Step 5.4 Jk is bounded below by a positive number: ikOC < 1 is any
number then we have
(2.11) aC/2akl? < adk.
To prove this we consider two cases:
() Nlaxll is suficiently small, i.e]|lakl < (1 - C)a/B, and
(i) llakll large, i.e.lakll > (1 - C)a/B.

If (i) holds then [ZT11) is immediate frori(2]10). Supposat (i) holds.
By hypothesis 15) and by [Zb):

bi(2k, 2K) > A6(Gk, 2% = Aoa?l|2ll*
Then from [Z.D) we can get

@/2)|aklP + 2a? okl - B/2ladP < ad

ie. a/2ladlP + PlladlP(llakl - B/(21:)0?) < adk.
If we take
(2.12) Ao > /(2231 - C))
then we find thaliawl| > (1 — C)a/B > B/(21.a?) and hence

(2.13) a/2l|a? < A

Since 0< C < 1 we again geffZ11) froni{Z113). Suppose on the other

hand (ii) holds andy satisfies HH6) with a1, to be determined. Again
from (Z9), [Z5) and hypothesisif) we have

/2|8l + AlIGUM llawl® = B/ el alPIGK] < A
e, a/2adl® + AlIGllakP(IGUI - B/(2a)) < A
Using (ii) together with[(Z]5) we get
a“(1-C) 5

————~a° < af||akll€ < Gkl

ﬂé
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so that ifa?¢(1 — C)¢/B¢ > B/2a.A1 then we can conclude that
a/2l|auP < Adk.
This is possible if1; is large enough: i.e. if
(2.14) A1 = pH€/22M%€ (1 - C)°.
As before since & C < 1 we find the estimaté{Z1L.1) also in this case.

Step 6.Jk = J(u) is decreasinguy,1eU and||al| — 0 ask — +co.
The estimate[{Z11) shows that

Jk =1 =2 >0,

which implies thatJy is decreasing. On the other hand, sinces the
solution of the minimization problem we have

which shows thati,1eU since J(uk1) < J(u) < J(u,) sinceugeU.
Thus Ji is a decreasing sequence bounded belowJ(oy) and hence
converges ak — +co.

In particular

Ak = Jk — Jks1 = 0andaJy — 0 ask — +co.

Then, by [Z11)

(2.15) [|akl] = 0 ask — +oo

Step 7.The sequencey converges (strongly) to u, the solution of the
minimization problem. In fact, we can write by applying Tay$ for-
mula to G, ¢), for peV,

(G ) = (G(U), ¢) + (Hi(Uk — U), ¢)
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where

Hk = H(u + 6(ux — u)) for somef, in0< 6 < 1.

But hereG(u) = 0. Now replacing Gy, ¢) by using [Z11) definingx we
obtain

(2.16) Hidk, @) + bi(Bk, ¢) = —(Hil(U — U), ), YpeV.

We takep = ux — uin (ZI8). SinceU is convex and since, ukeU it
follows thatu+ 6(ux —u)eU. By the uniformV-coercivity of H we know
that

(Hi(u — u), ug — u) > ellug — ull?, @ = au.

Applying Cauchy-Schwarz inequality to the teraiHkAk, Ux — U) and
using the fact thakly is bounded we get

I(Hkak, Uk — W)l < yullakllliug — ull.
Then [ZI56) will give
allu = ull® < yllakllliue — ull + oAk, U = U)]-

On the other hand|G(uk)|| is bounded sincekeU. Letd = max(u,
G2, 1allG(u)*€) < +oo. The hypothesisH5) or (H6) together
with the last inequality imply

allug — ul® < (y + d)llakllllug — ull,
i.e.
(2.17) lluk — ull < (y + d)/allakll

Sincel||akll — 0 ask — +oo0 by (ZI5) we conclude fronf{Z117) thag4
U — Uask — +oco. Next if we takep = Ag in (Z18) we get

(HikAk, Ak) + bi(ak, 2k) = —(Hi(uk = U), Ak).

Once again using the facts thatis positive semi-definite byH5) or
(H6) and thatHy is V-coercive by H3) we see that

2
allal < llug — ullllAk]
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sinceHy is bounded because+ 6(ug — u)eU for anydin0< o < 1i.e.
we have

(2.18) a/yllakll < fluc = ull-

11 and[[ZB) together give the inequalities in therdisse(4) of the
statement withy; = a/y,y2 = (y + d)/a.

Step 8.Finally we prove that the convergenag — u is quadratic. If
we setdx = U — uthenay = 6xy1 — 0k and [Z.IB) can now be written as

(HkSks1, @) + bk 1, 9) = (Hkdks 9) + bk(0k» ) — (Hkdiks 9)
= ((Hk — Fi)dk, ¢) + bi(Sk, ¢).

Here we takep = dk.1. Applying V-coercivity of Hy (hypothesis H3),

using positive semi-definiteness bf on the left side and applying
Cauchy-Schwarz inequality to the two terms on the right sidgther

with the hypothesisH4) to estimate|{H, — Hy|| we obtain

(2.19) allSks1ll? < [IHk — Hidlllloke 11l + bk (ks Sks1)|
< BlISKIP N6k 11l + 10k (Sk» ksl

But, by (H5).

(2.20) 10(Sks S )] < 1o lIGKIIPISKI G2 -

On the other hand, by mean-value property appBede have
IGk — G(U)ll < ylluk — ull

since for anyweU, ||U(W)|| < y. As G(u) = 0 this implies that

(2.21) IGKIl < ylluk — ull = yllokll.

Substituting this in the above inequalify (2.19)

all6ke1ll? < Blolloke 21l + oY II0KIPlIOks 21-
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Now dividing by||6k.1/| and using the fact thaity|| = ||ukx — ul| < diamU
we get

6k 1ll < @ (B + po¥2lISkIlIoK!I?
< o H(B + poy*diamU)| |6y I

which is the required assertion (5) of the statement with= o 1(8 +
usy?diamu).

If we had used hypothesi$ig) instead of H5) to estimatgby (o,
dks+1)| we would get

(2.20y bk (Sk» Sks1)| < ealIGil <16kl Skl

in place of [Z2ZD). Now by[{Z19) together wifh{2.21) givegdctly by
the same arguments as in the earlier case)

I8k all < @ (B + pay™*<(diamU)* )6l
In this case, we can takg = o 1(8 + u1y'*¢(diamU)e).
This completely proves the theorem. O

We shall conclude this section with remarks. 86

Remark 2.1.1n the course of our proof all the hypothesis1) - (H5)

or (H6) except H4) have been used only for elements the bigger
bounded set while the hypothesisH4) has been used also for ele-
ments in the bigger bounded 4.

Remark 2.2.As we have mentioned earlier the proof of Theolem 2.1
given above includes the proof of the classical Newton-Rophmethod

if we make the additional hypothesis thatis close enough ta such
thatVYveU we have

1 a
SlIGI < Ed’
d given in ]Q 1[. Then using[(Z15)[{Z2.10) becomes

a
1- d)§||Ak||2 <Ak
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Remark 2.3.

Example 2.4.LetV = R". ThenGke(R") = R". If we represent an
elemenipeR" as a column matrix

®n
trhenge! (with matrix multiplication) is a square matrix of order m |
particulaerG}( is an f1x n) square matrix. Moreover under the hypoth-
esis we have maddy + /leG}( is a positive definite matrix fon > 0.

This corresponds tby(¢,¢) = AGLp,Giy) = A(GkGje, ) and our
linear problem[(ZI1) is nothing but the systermdfnear equations

(Hk + AGkG}) Ak = —Gy
in n-unknownsA.
Example 2.5.Simiarly we can takéy(p, ¥) = AIG|*(¢, ¥), and we get
(Hk + AIGKI1) 2k = ~Gx.
Example 2.6.We can takédy (e, ) = A||Gkl*¢(¢, ¥) and we get
(H + AIGKM 1) Ak = -Gy

as the corresponding system of linear equations.

Remark 2.4.The other algorithms given in this chapter do make use
only of the calculation of the firds-derivative ofJ while the Newton
method uses the calculation of the second order derivafiessian)

of J. Hence Newton’s method is longer, more expensive econdmica
than the methods based on algorithms given earlier.
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3 Other Methods

The following are some of the other interesting methods knowthe
literature to construct algorithms to approximate sohgiof the mini-
mization problems. We shall only mention these.

(a) Conjugate gradient methodOne of the algorithms in the class
of these methods is known as Devidon-Fletcher-Powell nietho
Here we need to compute tli&derivatives of first order of the
functional to be minimized. This is a very good and very much
used method for any problems. (Seel[11] &nd [15]).

(b) Relaxation methodin this method it is not necessary to compute
the derivatives of the functionals. Later on in the next ¢hawe
shall give relaxation method also when there are constrajSee
Chapte §4.3).

(c) Rosenbrock method. (See, for instantCel [30]).

(d) Hooke and Jeeves method. (See for instance [30])

Also for these two methods we need not compute the derigatif/&inc-
tionals. They use suitable local variations.






Chapter 4

Minimization with
Constraints - Algorithms

We have discussded the existence and uniqueness resudtslitions 8s
of the minimization problems for convex functionals on eldsonvex
subsets of a Hilbert space. This chapter will be devoted e gigo-
rithm for the construction of minimizing sequences for iolus of this
problem. We shall describe only a few methods in this dioectind we
prove that such an algorithm is convergent.

1 Linearization Method

The problem of minimization of a functional on a convex setliso
some-times referred as the problem of (non-linear) prograng. If the
functional is convex the programming problem is call congexgram-
ming.

The main idea of the method we shall describe in this section c
sists in reducing at each stage of iteration the problem oflimear
convex programming to one of linear programming in one mané- v
able i.e. to a problem of minimizing a linear functional onaneex
set defined by linear constraints. However, when we redutiig@ase
we may not have coercivity. However, if we know that the conset
defined this way by linear constraints is bounded then we baega in

87
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ChaptefR that the linear programming problem has a solitich is
not necessarily unique).

Then the solution of such a linear programming problem isluse
obtain convergent choices afandp.

LetV be a Hilbert space and a closed subset &f. We shall pre-
scribe some of the constraints of the problem by giving adinitmber
of convex functionals

J:Vave JWeR,i=1,--- Kk
and we define a subsetof K by
U={vveK,J(V) <0,i=1,---,}

ThenU is again a convex set M. If v,V'eU thenv,VeK and (1-
OV + 0V eK for any 0< 6 < 1 sinceK is convex. NowJi(i = 1,--- ,K)
being convex we have

J(@A-Ov+6oV) < (1-0)IH(V) +63(V)<0i=1-- k.

We note that in practice, the convex $etcontains (i.e. is defined
by) all the constraints which need not be linearized and tmestraints
to be linearized asre thi(i = 1, - - , k).

Suppose now

Jo:vaV = J,(VeR

is a convex functional ol. We consider the minimization problem:
Problem 1.1.To find ueU, J,(u) < J.(V), YveU. We assume that,, Ji,

..., Jk satisfy the following hypothesis:
Hypothesis on J: (HJ)..

Q) Jo(v) — +oo as|V|| = +oo

(2) J, is regular:J, is twice diterentiable everywhere

in V and has a gradier®, and a hessiatl, everywhere inv
which are bounded on bounded subsets: for every boundéd set
of V there exists a constaMy, > 0 such that

G-Il + IHo (Il < My, YveUs.
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(3), H, is uniformly V-coercive on bounded subsets\¢f for every
bounded subséi, of V there exists a constaat;, > 0 such that

(Ho(V)e, @) = au, llgl? YoeV andVveU;.

90
Hypothesis onJ;.(HJ);:

(1) Jiisregular :J; is twice G-differentiable everywhere M and has
a gradienG; and a hessiahl; bounded on bounded sets\éf for
every bounded seéfl; of V there exists a constaMy, > 0 such
that

IGWIl + IHIWIl < My,  VveUy,i=1,--- k.

(2) Hi(v) is positive semi-definite:

(HiV)g, ) =20 VeV (¥YveUr).

Hypothesis onK.(HK): There exists and elementK such that);(Z) <
Oforalli=1,---,k
The hypothesisHK) in particular implies thatl # ¢.

In order to describe the algorithm leteU be the initial point (ar-
bitrarily fixed) of the algorithm. In view of the hypothesid J).(1) we
may, without loss of generality, assume thhis bounded since other-
wise we can restrict ourselves to the set

{veU; Jo (V) < Jo(uU)}

which is bounded byHJ)i(1). So in the rest of our discussion we as-
sumeU to be bounded.

Next, by hypothesisHJ)i(1), the bounded convex sét is also
closed. In fact, ifvaeU andv,, — v then sinceK is closedyveK. More-
over, by the mean value properly applieddtG = 1, - - - , k) we have

19i (V) = Ji(W)I < [IGilllva — V|

so thatJ;(v,) — Ji(v) and hencei(v) < Ofori=1,--- ,ki.e.veU.
Let ¥ be a bounded closed convex subseVaivhich satisfies the 91
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condition: there exist two numbers> 0 andd > 0, ehich will be
chosen suitably later on, such that

B(0,r) c ¥ c B(0,d)

whereB(0,t) denotes the ballveV|||Vi| < t} in V(t = r,d). Consider the
set
U1 = {vjveV; weU such thatlv — w|| < d}.

SinceU is bounded the séi; is also bounded and; > U. In the
hypothesis1J), and HJ); we shall use only the bounded &ét.

We shall use the following notationJ;(um), Hi(umn) will be respec-
tively denoted byd™, G, H" fori =0,1,--- ,kand allm> 0.

Now suppose that starting fromeU we have constructed,,. We
wish to give an algorithm to obtaia.,.1. For this purpose we consider
a linear programming problem.

A linear programming problemLet U, denote subset dj x R defined
as the set of allZ o)eU x R satisfying

Z_Umé-/y,
(GM,z—um) + 0 <0, and
J"+(G"z-un)+0o <0 fori=1---,k

It is easy to see thdll,, is a nonempty closed convex bounded set:
In fact, Z o) = (Un, 0)eUr, so thatUy, # ¢. If (z 0)eUn, then since
Z—UnmeV, which is a bounded set it follows that z is bounded. Thengusin
the other two inequalities il.(1.1) it follows thatis also bounded. If
(zj,0j)eUm and g, o) — (z o) in U x R then sincel is closedzeU
and henceZ o0)eU x R. Again since? is closed £ — uy)e?". By the
continuity of the (&ine) functions

(zo) "+ (G z—uUm) + &
(z0o) = (G,Z—Um) + 0

we find that

J"+ (G z-—Um)+0 <0,(G),z— Up) + o < 0.
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Finally to prove the convexity, lez(o), (Z, 0”")eUn. Then, for any,
0<6<1,

1-6)z+6Z —un=(1-6)(z—um) +6(Z —upn)e?
since? is convex. Moreover, we also have

(GM™(1-6)z+6Z —uy) + (1 - 6)o + 60’
= (1-0)G, 2~ Um) + o] +6[(GJ, Z — Uum) + 0] < 0

and similarly
J"+ (G, (-0)z+ 6Z —um) + (1 - O)o + 6’ < 0.

Next we consider the functiongl: VxR — R given byg(z, o) = o
and the linear programming problem :

(Pm) :tofind (zm, om)eUm such thag(zm, om) = 9(z o), ¥Y(z 0)eUn,.
i.e.
Problem P,: To find (zm, o m)eUm such that
1.2) o < omforall (z 0)eUn,.

By the results of Chaptdd 2 we know that the ProblBmhas a
solution (not necessarily unique).

We are now in a position to formulate our algorithm for the con
struction ofumy1.

Algorithm. Suppose we have determinag starting fromu,. Then we 93
take a solutiony, o) of the linear programming Problen{). We
set

(1.3) Wm = (Zn — Um)/l|Zm — Unl
and
(1.4) Pl = max{peR, Un + pWimeU ).

We shall prove later on thaty, is a direction of descent. We can
define the notions of convergent choicesngf andp in the same way
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as in Chaptell3, Sectidn 1 for the functiodal We shall therefore not
repeat these definitions here.

Let o5, be a convergent choice pffor the construction of the mini-
mizing sequence fod, without constraints. We define

(1.5) pm = Min(p5, ph)
and we set
(1.6) Un+1 = Um + pmWm.

The following is the main result of this section.

Theorem 1.1. Suppose that convex set K and the functionalsl:)
..., J satisfy the hypothesi@giK) and (HJ);,i = 0,1,--- ,k. Suppose
(1) the Problem[{T]1) has a unique solution and ()& u as m— +co.

Then the algorithm described above to determipg; from up, is
convergent.

i.e. If ueU is the unique solution of the Proble{[l.1) andjfis a
sequence given by the above algorithm tléw,) — J(u) asm — +co.

For this it will be necessary to prove that, is a direction of descent
andwpm, pm are convergent choices.

The following two lemmas are crucial for our proof of the Them
1.
Let ueU be the unigue solution of the Probléml1.1

Lemma 1.1. Let the hypothesis of Theor€ml1.1 be satisfied. If, for some

m > Owe have J(U) < J.(un) then there exists an elemdt, en) € Um
such thatgy, > 0.

Proof. Let uy € U be such thatl,(u) < J.(uy). We first consider the
case wher& # u, Z being the point oK given in hypothesisHK). We
introduce two real numbe#,, £;,, such that

Jo(U) < €y < €m < Jo(Um) andéy, < Jo(2).
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Letl = I(u, Z) denote the segment M joining u andZ, i.e.
I = {wweV;w=(1-0u+6Z0<0<1}

Sinceu, Z belong to the convex s&t we havel c U.
On the other hand, ieR is any constant then the set

Joc = {VeU; Jo(V) < ¢}
is convex and closed. For, ¥V eJ.c then forany, < 1 < 1,
J(A-ADv+AV)< (21 -2DI (V) + (V) <cC

by the convexity of), and (1- A)v + AV €U sinceU is convex. To see
that it is closed, lev; € J.c be a sequence such thgt— vin V. Since
U is closedv € U. Moreover, by mean value property fay

1Jo(vj) = Jo(W)| < Myllvj = Vil < My,llvj — VI

by Hypothesis K1J).(2) so thatJ,(v;) — J.(v) asj — +co. Hence
J.(V) <ci.e.ve Jo.

Now by the choice of]m, uel N J.r,, and hencd, = 1 N Jopr # ¢. 95
It is clearly closed and boundedi, being a closed bounded subset of a
compact set is itself compact.

Now the functiong : |, — R defined byg = J,/I, is continuous: In
fact, if w, w'el, then by the mean value property applieslii@ives

lg(W) — gW)I = 1Jo(W) — Jo(W)| < My, [Ilw — W]

by hypothesis K1J).(2). Moreover, by the very definition of the set
lo C Jo.¢;, We have
lgW)I < Gy
Hence g attains its maximum iR i.e. There exists a poiniyel,
such thag(ym) = Jo(Ym) = ¢/,,- i.e. there exists 6y, 0 < 6 < 1 such that

Ym = (1 = 0m)u + OmZ, Jo(Ym) = £,

Since J,(u) < ¢, we see thayy, # u and thereforgy, # 0. i.e.
0<6m<l.



96

94 4. Minimization with Constraints - Algorithms

Next we show thafli(ym) < O foralli = 1,--- ,k. In fact, sinceJ; is
convex and has a gradie@t we know from Propositiof-3l1 of Chapter
[ that

Ji(Ym) = I™ + (G, Ym — Um)
and we also have
Ji(Ym) < (1 = 6m)Ji(u) +6mJi(2) <O

since 0< 6 < 1 andJ;(Z2) < O.
Similarly, by convexity ofJ, we get

ln = Jo(Ym) = I + (GT\, Ym — Um) = €m + (GZ, Ym — Um)
i.e. G, Ym — Um) < €, — {m < 0 by the choice ofy, ¢/,

We can now take
€m= Min{fm — {1, —I1(Ym), - - - » —=Ik(Ym)} > 0.

Then it follows immediately thatyf,, em) € Uy andey > O.
We now consider the case= Z. Then we can takg, = Z = uand
hencelJ;(ym) = Ji(u) = Ji(Z) < 0. Itis enough to take

Em= min{\]o(um) - Jo(u)9 _‘Jt(z)’ T —Jk(Z)} > 0.

If we now taker > 0 suficiently large theryy, — un € 7. This is
possible since both, anduy, are in bounded sets:

[Iymll < (L = m)llull + OmllZIl < llull + [1Z]]

so that
IYm = Umll < [IYmll + lUmll < [JUll + [IZ]] + [[Uml|-

It is enough to take > ||ul| + ||Z|| + |Juml| > 0. Thus ¢m,Cm) € 7.

Corollary 1.1. Under the assumptions of Lemmall.1 there exists a
strongly admissible direction of descent gt fbr the domain U.
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Proof. By LemmalL]l there exists an elemewt,(en) € Unm such that
€m > 0. On the other hand, let, o) be a solution ifJy, of the Linear
programming problemR,). Then necessarily, > e, > 0 and we can
write
Zm — UmeY’, ZmeU
.7 I+ (G, Zn — Uy) + em < I+ (G, Zy — Um) + om < 0
GMzn—Um) +em < (GMZn—Un) +om <0

Thus we have

(1.8) GC,Zm — Um) < —em <0,

and hence 97
(1.9) Wmn = (Zm = Um)/|Zm — Unll

is a direction of descent. It is strongly admissible sibices convex and
we can take any sequence of numhbgrs 0, ¢; — 0. o

Lemma 1.2. Let the hypothesis of Theordm]l1.1 hold and, for some
m > 0, Jo(U) < Jo(Um). If (Zm, om)eUn is a solution of the linear pro-
gramming problem(P,,) then there exists a numbgy, > 0 depending
only oney, of LemmdZLll such that

(1.10) Um + p(Zm — Um)eU for all 0 < p < um.

Furthermore,
(G2 Zm — ) < 0.

Proof. We have alredy shown the last assertion in the Cordllafy Adl a
therefore we have to prove the existenceugfsuch that[[1.70) holds.
For this purpose, ip > 0, we get on applying Taylor's formula to each
J@i=1---,Kk:

(1.11)

1. —
3(Um + p(zn = U)) = I+ (G 2 = Ue) + 50°(FI (2m = Urm). Zm = i)
where

Hi" = H™(Un + 0’ (2 — Um)) for some 0< p’ < p.



98

96 4. Minimization with Constraints - Algorithms

Here, sinc&mn—Ume?’, ||Zm—Umll < d and_genceum+p’(zm—um), (0<
p’ < p) belongs tdJ; if we assume < 1. ||H; || is bounded byMy, and
so we get

1
(1.12)  Ji(un+p(@m = Um) < J"+ p(GT", Zm — m) + 5Mp*d”.

Thus if we find aun, > 0 such that O< p < um, implies the right
hand side of this last inequality s O forall i = 1,--- ,k thenup, +

P(Zm — Um)eU.
Using the first inequality[{T17) to replace the ter@{"{ zy, — um) in

T12) we get
(1.13) Ji(Um + 0(Zm — Um)) < I+ p(=I" — €m) + %pszz.

The second degree polynomial on the right sidd_of {1.13)sves
for

1.14)  p=p"=[(I"+ &) + (I + em)? — 2Md2IM2]/Md2.

Moreover the right side of {1.13) is smaller than
m m 1 2 2

sinceem > 0, p > 0 and this last expression decreases a0 decreases
as—J" = —Ji(uy) < 0. Then it follows that, if O< p < pI", we have

Ji(Um + p(Zm — Um)) < 0.
We can now tak@m = min(of’, - - -, pi") also that we will have
Ji(Um+p(zn—Um)) <O0forall0<p <umandi=1,--- Kk

But each of the" gives by [I.TH) depend adf" and hence o,
In order to get & > 0 independent ofi, and dependent only af, we
can proceed as follows. If we set

(L.15)  @(y) = [(Y + em) + {(Y + m)® — 2Md?y}2] /M
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fory < 0 then, sinceg/ = Ji(uy) = J™ < 0, we can write
o = e(J).

It is easily checked that the functign:] — «, 0] — R is continuous,
o(y) >0forally<O0 andy lim ¢(y) = 1. Hence irgf,a(y) = n(em) exists
——00 y<i

andn(eyn) > 0. 99
We choosgqum = n(em). Then, if 0< p < um < p" for eachi =
1,--- ,k given by [T.I#%) and consequently, for any sych- O, uy, +
P(Xm — Um)eU.
We are niw in a position to prove Theoréml1.1

Proof of Theorem 1.1We recall that £, om)eUn, is a solution of the
linear programming problenPg,) and

Wi = (Zm = Um)/lIzm — Umll,
H 4
Pm = mm(pm’prcn)’
Un+1 = Um + pmWm.

ThenJ,(uy) is a decreasing sequence. In factpif = pf, then by
definition of p&, we haveJ,(Um+1) < Jo(Um). Supposem = pf, < S,
If Jo(Um + p5Wm) < Jo(Um + p5Wm) there is nothing to prove. So we
assumel™ > ™. Consider the convex functigm— J(Um + pWp,) in
[0, pS)- It attains its minimum ap = pmin€l0, p5[. Then 0< pm < Pmin.
In fact, if pmin < pm < P&, then sincel,, being convey, is increasing in
Lomin, P5,] we haveJﬁ’?” < mec contradicting our assumption. Once again
sinceJ, is convexJ, is decreasing in [®min]. Henced™ = J.(uy) >
X™ = J,(ums1). Since we know that there exists a (unique) solution
of the minimizing probleni_T]1 we haw& (uy,) > J.(u),Ym > 0. Thus
J.(Um), being a decreasing sequence bounded below, is convetgent
{= mll)rgc><> Js(um). Clearly¢ > J.(u). Then there are two possible cases:

(1) ¢ = J.(u) and

) ¢> Jo(u).
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Case (1) Supposel,(um) — € = J.(u). Then, for anym > 0, we

have by Taylor's formula :

Jo(Um) = Jo(U) + (Go(U), Um — U) + %(ﬁm(um — U), U — U).

where _
Hm = Ho(U+ 6(un — u)) forsome 0< 6 < 1

Sinceu,uy, € U (which is convex),u + 8(un, — u) € U ofr any

0 < 0 < 1 and hence by hypothesidl §),(3)

(Hm(Um — U), U — U) > allum — ul®,a = ay, > 0.
Moreover, sincel, is convex, we have by TheordmP.2 of Chajler 2
(Go(w), um —u) > 0.
Thus we find that

1
waoz¢+§mwm—w2

e llum = ull? < 2/a(Jo(Um) — Jo(U)).

Since J,(Um) — Jo(U) asm — +oo it then follows thatu, — u as
m — +oo.

Case(2). We shall prove that this case cannot occur. Suppose, if
possible, letl,(u) < ¢ < J,(Um),Ym > 0. We shall show that the
choices ofwy, andpn, are convergent for the problem of minimization
of J, without constraints. i.e. the sequengg constructed using our
algorithm tends to an absolute minimum &f in V which will be a
contradiction to our assumption.

W, is a convergent choicd-or this we introduce, as in the proof of

Lemma Ll another real numb&rsuch that
Jo(U) <€ <€ < Io(Um), Ym > 0.

Then the proof of LemmiaTl.1 gives the existenceyof) € U, with
em =€> 0¥m > 0. On the other handz{, om) € Um, being a solution of
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the linear programming problen®{) we haveo, >e> 0. Hence from

@32) we get

J"+ (G, Zn— Um) + € < 0.

From the first inequality here together with the Cauchy-Satavin-
equality gives

—IGIZm — Umll < (GJ, Zm — Um) < —€

i.e. € < [IGllIzm = Umll < Ml|zm = Unll, M = My,
using hypothesisHJ).(2). So we have

1.17) 1z — Unll > €/M > 0.
By LemmdL.R there existsia= n(e) > 0 such that
(1.10) Um + 0(Zm — Um) € U if 0 < p < n(e).

If we denote byp, p = pll(zn — Um)l| then this is equivalent to saying
that
Um + pWm € U if 0 < p < n(€)llzm — Unll-

Then, in view of [L1I7), & p < en(c)/M implies 0< p < n(C)||zn —
Umll and hence

Um + pWrn € U for all 0 < pen(e)/M,

which means that
Pin = en(©)/M.
Once again fron{1.16) we have

(G, Win) < —€/lI1Zm — Unll < —€/d

because,, — uym € ¥ by (1) meancs thdiz,, — uy|| < d. Since||GM|| <
M we obtain

(GG, W) < —€/dIGTI(< —e/Md).
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102

Taking e > 0 small enough we conclude that

(G™/IIGM|,wm) < -C;1 < 0,1 > C; > 0 being a constant. This
is nothig but saying that the choice of, is convergent for the mini-
mization problem without constraints ly-Algorithm 1 of Sectiori.”TI2
of Chapte(B.

Pmis a convergent choiceSincepm = min(oef, o) we consider two
possible cases

(@) If pm = p§, then there is nothing to prove.

(b) Supposem = pf,. We shall that this choice gfy, is also a con-
vergent choice. For this leb be a constant such that©c, <

Pm = P < Pl
Then 0< pm/p5, < 1 and we can write
U1 = Um + pmWm = (1 = pm/pm)Um + pm/Pm(Um + pmWim).
The convexity of], then implies that
Jo(Um+1) < (1 = pm/pm)I(Um) + Pm/Pmds(Um + prWim).
Hence we obtain

A\]gm = Jo(Um) - Jo(Um +mem) = Jo(Um) - Jo(Um+1)
> ,Om/Pﬁw(Jo (Um) = Jo(um + P%Wm))

i.e.
(1.18) A" > prlpSa XN

We note thapf;, is necessarily bounded above for amy> 0. For
otherwise since, we find from triangle ineuality that

[1Um + oWl = oWl = [1Umll = o, = llumll.

103 Um + pmWm Would be unbounded. Then by Hypothedisi()(1)J, (Um +
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OmWm) would also be unbounded. This is not possible by the dedimiti
of convergent choice gf5,
Let C3 be a constant such that© p5, < Cs for all m > 0. Then

@18) will give
(1.19) AX™ > Cp/Can

Hence ifaX™ — 0 thenaJ®™ — 0 by {II9). By the definition of
o5, (as a convergent choice pf we have

(Gm, Wm) — 0 asm — +co

which means that, is also a convergent choice of

Finally, since the choices pf,, Wy, are both convergent for the min-
imization problem without constraints fdr we conclude using the re-
sults of Chaptef]3 thai,, — U wherel is the global minimum foiJ,
(which exists and is unique by results of Chaiier 2, Thedrélino?
Sectior 2 ). Thus we have

Jo(U) < Jo(u) < € < Io(Um)

andJ,(uy) — J.(U)

which is impossible and hence the case (2) cannot therefona.o
This proves the theorem completely.
We shall conclude this section with some remarks.

Remark 1.1.A special case of our algorithm was given a long time ago
by Franck and Wolfe[[17] in the absence of the constraiptghich we
have linearized. More precisely they considered the faligwproblem:

Let J, be a convex quadratic functional on a Hilbert spscandK
be a closed convex subset with non-empty interior. Then tblel@m is 104
to give an algorithm for finding a minimizing sequenggfor

ueK, Jo(u) = in}lz Jo (V).
Ve
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The corresponding linear programming problem in this cafidow
the following:

Un=Kn={(zc)eK xR(G™ z— uy) + o < 0},
To find (Zm, om)eKm such thatry = maxze)ek,, -

SinceK itself can be assumed bounded using hypothd$i} (1)
there is no need to introduce the boundedsétVhenz = z,, we have

G zn—Un) +0 < (G, Zn—Un) +om <0 VYoeR

i.e. mnG, zy— Uy) +0 < 0.

The algorithm given by Franck and Wolfe was the first convex pr
gramming algorithm in the literature.

Remark 1.2.0ur algorithm is a special case of a more general method
known as Feasible direction method found by Zoutendjik [52]

Remark 1.3.We can repeat our method to give a slightlyfelient al-
gorithm in the choice of,, as follows. We modify the sdt,, used in
the linear programming problen®) by introducing certain parameters
Yo, Y1, » ¥k With o-. More precisely, we replacE{l.1) by

Z— Une?
(1Y (G, z—um) + y.0 <0, and
Jim+(Gim,Z—um)+yi0'§Of0ri =1,---,k

wherey,,v1,- - , Yk are certain suitably chosen parameters. This modi-
fied algorithm is useful when the curvature of thedes small.

Remark 1.4.Suppose, in pur probleii—1.1, some contralnts such
that Ji(uym) = J™ is “sufficiently negative” at some stage of the iteration
(i.e. for somem > 0). SinceJ; is regular thenJi(v) < 0 in a sufficiently
small” ball with centre atiy,. This can be seen explicitely using Taylor’s
formula. Thus we can ignore the constraintn the formulation of our
problem i.e. in the definition of the set.
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Remark 1.5.The algorithm described in this section is not often used
for minimizing problems arising from partial fiierential equation be-
cause the linear programming problem to be solved at eagh stifl be
very large in this case. Hence our method will be expensivadmeri-

cal calculations for problems in partialftéerential equation.

2 Centre Method

In this section we shall briefly sketch another algorithm ¢mstruct
minimizing sequences for the minimizing problem for confiexction-
als on a finite dimensional space under constraints defineal finjite
number of concave functionals. However we shall not proeectinver-
gence of this algorithm. The main idea here is that at eaghdftéhe
iteration we reduce the problem with constraints to one abr&linear
programming without contraints. An advantage with thisimeitis that
we do not use any regularity properties (i.e. existence ofakives) of
the functionals involved.
LetV =R" and let

J:R ->R,i=1--k

be continuous concave functionals (i-€]; are convex functionals). We
define a set by

U = {MveR', Ji(v) >0foralli=1,--- k.

106
Since-J; are convex as in the previous section we see immediatly
thatU is a convex set.
Suppose given a functiond} : R" — R satisfying:

(1) J. is continuous,

(2) J, is strictly convex and

(3) Jo(v) = +oo as||V|| — +oo.
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We consider the following

Problem 2.1.To find ueU such that
Jo(u) < J,(v) for all veU.

As usual, in view of the hypothesis (3) dg, we may without loss
of generality assume thét is bounded. We can describe the algorithm
as follows.

Let u,eU be an initial point, arbitrarily fixed itJ.

We shall find in our algorithm a sequence of triplets,, U, m)
where for eachm > 0, um, Ur,eU and?y, is a sequence of real numbers
such thatm > ¢mi1 Ym andém > Jo(ury).

We take at the beginning of the algorithm the triple, (., £,) where
W = U, o = Jo(Us)

Suppose we have determinagh(ur,, {m). To determine the next
triplet (Umq1, U7, ;, fmi1) We proceed in the following manner.

Consider the subsét, of U given by

2.1) Um = (MVeU, Jo(V) < m).

SinceJ, is convex and continuous it follows immediately thaf is
a bounded convex closed setih. HenceU, is a compact convex set
inR".

We define a functioy, : R — R by setting.

k
(2.2) V) = (lm— J) [ | 3.
i=1
The continuity of the functionals,, Ji, - - - , Jx immediatly imply

thaton is also a continuous function. Moreover, has the properties
of distance from the boundary bk i.e.

() ¢m(v) = 0 for veUp,.

(i) ¢m(v) = 0if v belongs to the boundary &fy,. i.e. For any on
any one of theK + 1) -level surfaces defined by the equations
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Jo(V) = lm, (V) =0,--- , (V) =0
we have
¢m(V) = 0.
Now sinceUy, is a compact convex set IR" anden, is continuous
it attains a maximum . J, being strictly convex this maximum is

unique as can easily be checked.
We takeun,,1 as the solution of the maximizing problem:

Problem 2.2y, Umn:1eUm such thatom(Ums1) > ¢m(V), YveUn.

Now supposer,eUnn so thatd, (uy,) < {m. This is true by assumption
at the beginning of the algorithm (i.e. when= 0). Hencepn(uy,) > 0.
We take a pointr , such that

(2.3) U €UmandJo (U, 1) < Jo(Umea)-

It is clear that such a point exists since we can take, = Um,1.
However we shall choosg,,; as follows: Consider the lin&(uy,, Um.1)
joining up, andum, 1. We take forur . ; the point inUp, such that

andJo (U, ;) < Jo(Umy1).
108
Now we have onlyu to choosg,,;. For this, letr,, be a sequence
of real numbers such that

(2.5) O<a <rm <1, wherea > 0 is a fixed constant.

We fix such a sequence arbitrarily in the beginning of theréigm.
We definelin, 1 by

(2.6) Cmi1 = b = Tm(m = Jo (U, 1))-

Itis clear thatlm,1 < {m and thatfm1 > Jo(ur,,,). Thus we can
state our algotrithm as follows:

Algorithm. Let u,eU be an arbitrarily fixed initial point. We deter-
mine a sequence of tripletsif, ur,, {m) starting from (., U,, J.(u,)) as

follows: Let (Um, Up, £m) be given. Thanum,1, Uy, ;. fm+1) is given by
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() Umy1€Un is the unigue solution of the Probldm.2
(b) ur.,,eUnis given by [ZH).
(€) £my1 is determined by[{216).
Once again we can prove the convergence of this algorithm.

Remark 2.1.The maximization problefZ.2at each step of the itera-
tion is a non-linear programming problem without constisirf-or the
soultion of such a problem we can use any of the algorithmerites
in ChaptefB.

Remark 2.2. Since the functiop, which is maximized at each step has
the properties of a distance function from the boundary efdomian

Umandis> 0inUm, ¢m > 0in Uy anden = 0 onUp, the maximum is

attained in the interidtoJ m Of Up. This is the reason for the nomenclature
of the algorithm as the Centre method. (See alsb [45]).

Remark 2.3.The algorithm of the centre method was first given by
Huard [25] and it was improved later on, in particular, bemdlieres
[45].

Remark 2.4.This method is once again not usded for functionals
arising from problems for partial fierential equations.

3 Method of Gradient and Prohection

We shall describe here a fairly simple type of algorithm toe min-
imization probelm for a regular convex functional on a cthsenvex
subset of a Hilbert space. In this method we suppose thatasy to
find numerically projections onto closed convex subsetseath step
to construct the next iterate first we use a gradient methodeeeloped
in ChapteEB, for the minimization problem without consttaiand then
we project on to the given convex set. “In the dual problemickiwe
shall study in Chaptdil 5 it is numerically easy to computggutins
onto closed convex subsets and hence this method will be theee
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for a probelm for which the convex set is defined by certairstraimts
which we shall call dual constraints.

LetK be a closed convex subset of a Hilbert spdandJ : V - R
be a functional ofv. We make the following hypothesis ¢handJ.

(H1) K is a bounded closed convex seMn

(H2) JisregularinV: Jis twice G-differentiable everywhere ¥ and
has a gradienB(u) and hessiaf (u) everywhere in/. Moreover,
there exists a constaM > 0 such that

IH(U)|| < M, VueK.

(H3) H is uniformly coercive orK: there exists a constant> 0 such
that
(H(up, ¢) > aligll®, VeV anduekK.

110

We note that the hypothesis of bounededneskl it) €an be replaced
by

(H1y J(V) = +oo as||Vj| — +oo.

Then we can fix al,eK arbitrarily and restict our attention to the
bounded closed convex set

K N {vveV; (V) < J(u,)}.

The hypothesisH 3) implies that] is strongly convex. The hypothe-
sis H2) implies that the gradie@(u) is uniformly Lipschitz continuous
onK and we have

(3.1 IG(u) — G(V)|| < M|lu— V]|, Yu, veK.
We now consider the problem :

Problem 3.1.To find ueK such thatl(u) < J(v), YveK.
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Algorithm. Letu, € K be an arbitrarily fixed initial point of the algo-
rithm and letP : V — K be the projection of/ onto the bounded closed
convex seK.

Supposelr, is determined in the algorithm. The we define,dos 0,

(3.2) Umi1 = P(Um — oG(Um)).
Then we have the following

Theorem 3.1. Under the hypothesigH1) — (H3) the Problem[(311) has
a unique solution u andy— U as m— +co.

This follows by a simple application of contraction mappthgo-
rem.

Proof. Consider the mapping &€ into itself defined by

(3.3) T, : K3 ur Pu-pG(u)eK,p > 0.

Suppose this mapping, has a fixed poinw. i.e.
weK and satisfiesv = P(w — pG(w)).

Then we have seen that suctv@ characterized as a solution of the
variational inequality :

(3.4) weK; (W — (W — pG(W)), v —w) > 0, YveK.
Then [33) is nothing but saying that
(3.4)Y weK; (G(w),v —w) > 0, YveK.
Then by Theoreriz212 of Secti@h 2, Chajifiew % a solution of the

minimization Probleniz3]1 and conversely. In other wordepRm[31
is equivalent to the following



3. Method of Gradient and Prohection 109

Problem 3.7. To find a fixed points of the mapping TK — K. i.e.
To find we K such that w= P(w — pG(w)).

We shall now show that this Proble[{]3.tias a unigue solution for
p > 0 syficiently small. For this we show that,Ts a strict contraction
for p > 0 syficiently small: there exists a constajtO < y < 1 such
that, forp > 0 small enough,

IP(u - pG(U)) — P(v — pG(W))Il < ¥llu — V|, Yu, veK.
In fact, if p > 0 is any number then we have
IP(U = pG(U)) = P(v = pGW))II* < II(u—pG(W)) = (V- pGW)II?
since||P|| < 1. The right hand side here is equal to

llu=v—p(G(u) = GV))II* = lu=VII* = 20(G(u) — G(v), u— V) + p?IG(u) — G(V)|?

Here we can write by Taylor’s formula
(G(u) - G(v),u-V) = (Hu-v),u-v)

whereH = H(v + 6(u — Vv)) for some 0< 6 < 1. SinceK is convex, 112
u, veK, v+ 6(u — v)eK and then by uniform coercivity dfl onK (i.e by
H3)

(H(u—v),u—V) > olu - v|[*Yu, veK.

This together with the Lipschitz continuitfz{8.1) Gfgives

IP(u — pG(U)) — P(V — pG(V))II? < |lu—ViI? = 2pa|lu — VII> + M%p?||lu - V|2
= [lu—=VI*(1 - 20a + M?p?).

Now if we choose such that
(3.5) 0< p < 2a/M?

it follows that (1— 2pa + M%p?) = y? < 1.
Then by contraction mapping theorem appliedTip proves that
there is a unique solution of the Problem{3.1)
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Finally to show thatu,, - uasm — +oo, we take sucha > 0
suficiently small i.e. p > 0 satisfying [3b). Now ifuy,; is defined
iteratively by the algorithm[{3l2) and is the unique solution of the
Probleni31L (or equivalently of the Problen{3)xhen,

lums1 = uUll = [IP(Um — pG(Um)) — P(u - pG(U))||
=< Y|lum — ul|

so that we get
lUmy1 = ull < y™Mlus = ull.

Since 0< y < 1 it follows immediatly from this thati, — u as
m — +o0.

This proves the theorem completely.

Now the convergence of the algorithm can be proved usingdhe r
sults of Chaptell3. (See Rosénl[39].1[40]).

We also remark that ¥/ = K and hypothesisH1), (H2) and {3)
are satisfied for bounded sets\ofthen we get the gradirnt method of
ChapteiB.

4 Minimization in Product Spaces

In this section we shall be concerned with the probelm ofrojath-
tion with or without constraints by Gauss-Seidel or moreagalty, by
relaxation methods. The classical Gauss-Seidel methosk for so-
lutions of linear equations in finite dimensional spacese tain idea
of optimization described here is to reduce by an iteratioe@dure the
problem of minimizing a functional on a product space (withadth-
out constraints) to a sequence of minimization problemsénfactor
spaces. Thus the methods of earlier sections can be usedbio ap-
proximations to the solution of the problem on the produeicsp

The method described here follows that of the paper of Céla an
Glowinski [9], and generalizes earlier methods due to veriauthors.

We shall given algorithms for the construction of approxima se-
quences and prove that they converge to the solution of ttieiaation
problem. One important feature is that we do not necessastyime
that the functionals to be minimized aBedifferentiable.
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4.1 Statement of the problem

The optimization problem in a product space can be formdlasefol-
lows: Let

M Vi(i=1,---,N) be vector spaces ov@&rand let

N
V= ]—[vi
i=1

(dim V; are arbitrary). 114

(i) K be a convex subset &f of the formK = ], K; where each
Ki is a (non-empty) convex subsetdf(i = 1,--- ,N). Suppose
given a functionall : V — R. Consider the optimization prob-
lem:

(4.1)

To find ueK such that
J(u) < J(v) for all veK.

For this problem we describe two algorithms which reduceptie-
lem to a sequence of N problems at each step, each of which is-a m
imization problem successively ii(i = 1,---,N). Let us denote a
pointveV by its coordinates as

V=(Vy,- - ,VN), VieVi.

Algorithm 4.1. (Gauss-Seidel method with constraints).
(1) Letu = (ug,---,uy) be an arbitrary point if.

(2) SupposaleK is already determined. Then we shall determine
u™?! in N steps by successively computing its componefits
(i=1),---,N.

Assumeu’j”leKj is determined for allj < i. Then we determine
uM*?! as the solution of the minimization problem:

uMleK; such that
n+1 n+l N+l |n n
(4.2) JUT, U Ut Ut e Uy)
-+, up) for all vieK;

n+1 n+1 v (0.
S ‘J(ul o U Vis Uiy,
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In order to simplify the writing it is convenient to introdeiche fol-
lowing notation.

Notation. Denote byKi”+1(i =1,---,N) the subset oK:

n+1 n+1 n+1 n n
(43) K| = {VEK|V: (ul s " 9ui_1 9Vi’ui+l"“ ’uN)’ V|6}<|}
and
» U—g+1 =u"
(4.4) ol = (un+1 ST L T a2 ST LI un)
i I S o B A I B I e \\P

With this notation we can writé (4.2) as follows:

@2y { To find U !eK™? such that

J@@M1) < J(v) for all vek™2.
Algorithm (4.2) (Relaxation method by blocks). We introduce numbers
wiwithO<w; <2(i=12,---,N).

(1) Letu’eK be arbitrarily chosen.

(2) AssumeueK is known. Theru™!eK is determined in N succes-
sive steps as follows: Suppos’lé‘leKj is determined for alj < i.

Thenuin+l is determined in two substeps:

1
Tofindu 2eV; such that

1
4.5 Lo ol g™z L
(4.5) I Ul U U UR)
n+1 n+1l v, (N ... n - A\/.
< J(Ul, - U v ul L - uR) forall vieV.

Then we define

1
(4.6) uMt = Pi(ul + w (uin+2 -u")

where

(4.7) P; :V; > K is the projection ontd<; with respect to a suitable
inner product which we shall specify later.
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Remark 4.1.The numbersn;e(0, 2) are called parameteres of relax-
ation. In the classical relaxation method eagh= w, a fixed number
€(0,2) andV, = K;. Hence for the classical relaxation method

1
(4.8) UMt = 0 w(u 2 - ).

116

4.2 Minimization with Constraints of Convex Functionals on
Products of Reflexive Banach Spaces

Here we shall introduce all the necessary hypothesis orutieibnal J
to be minimized. We considerto consist of a dterentiable pard, and
a non-diferentiable parf; and we make separate hypothesislpiand
J1.

Let V(i = 1,---,N) be reflexive Banach spaces avid= Hi’i 1 Vi
The duality pairing { -)v-xv Will simply be denoted by-(-), then norm
in V by || - || and the dual norm iV’ by || - ||.. Let K; be nonempty
closed convex subsets ¥f andK = ]‘[i’\i 1 Ki. Then clearlyK is also a
noneempty closed convex subseMof

Let J, : V — R be a functional satisfying the following hypothesis:

(H1) J, is G-differentiable and admits a gradidag.

(H2) J. is convex in the following sense: If, for ay > 0, By, denotes
the ball{veV; ||v|| < M}, then there exists a mapping

Tm :BuxBuy — R

such that[[419) and{4.110) hold:
Jo(V) = Jo(u) + (Go(u),v—u) + Tm(u, V),
4.9 Tm(u,v) > 0 for all u, veBy,

Tm(u,v) > 0 for all u, veBy with u # v.

If (un, Vn)n is @ sequence iBy x By such that
(4.10) Tm(Un, Va) = 0 @asn — +oo ther

[luh — Vnll = 0 asn — +oo.
117
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Remark 4.2.1f J, is twice G-diffferentiable then we have
1
Tm(u,v) = EJg’(u +6(v—u),v—u,v-u)forsome 0< g < 1

Then the hypothesi§(4.9) ard(4.10) can be restated in tefms
J”. In particular, ifJ, admits a Hessiahl and if for everyM > 0
there exists a constaat, > 0 such that

(H(u)e, ) > awmllgl? for all eV andueBy
then the two condition§{4.9) and (4110) are satisfied.

(H3) Continuity of the gradient Gof J..

If (un, Vn)n is @ sequence iBy x By such that
(4.12) lUn = Vnl| = asn — +co then
IG(un) — G(Vp)ll« — 0 asn — +co.

Next we consider the non4tiérentiable parf, of J. LetJ; : V —
R be a functional of the form

N
(4.12) ) = > Jiw),v = (vi, -+ Vi)eV
i=1

where the functionals
Jii:Vi-oR({i=1---,N)
satisfy the hypothesis:
(H4) Jy; is a weakly lower semi-continuous convex functional\gn
118 We define
(4.13) J=J + J1.
Finally we assume thal satisfies the hypothesis:

(H5) J(v) —» +o0 as ||| = +co. We now consider the minimization
problem:

To find ueK such that
(4.14)

J(u) < J(v) for all veK.
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4.3 Main Results

The main theorem of this section can now be stated as:

Theorem 4.1. Under the hypothesigH1),--- , (H5) we have the fol-
lowing:

(1) The problem[{44) has a unique solutioeKuand the unique
soultion is characterized by

ueK such that

(4.15) {
Go(u), v —U) + Ji(v) — J1(u) > Ofor all veK.

(2) The sequence"udetermined by the algorithni{4.1) converges
strongly touin V.

Proof. We shall divide the proof into several steps.

Step 1. (Proof of (1)). The first part of the theorem is an immediate
consequence of the Theoreln{1.1) andl(2.3) of Chapter 2.ctnKais

a closed non-empty convex subset of a reflexive Banach spadky
Hypothesis [H2), J is strictly convex since, for any, ueV, we have

Jo(V) = Jo(u) + (Go(U), v —U) + Tm(v, u)
> Jo(U) + (G, (U), v —u) if v£u,

and hence strictly convex, whill (v) is convex so that for any, voeV 119
andée[0, 1] we have

J(OVv1 + (L= 0)v2) = Jo(Ov1 + (1 = O)V2) + J1(Bvy + (1 - 6)v2)
< 03,(v1) + (1= 0)Jo(Vo) + 033(v1) + (1 — )1 (Vo)
= 03(v1) + (1— 6)J(v2).

Next J is weakly lower semi-continuous M: In fact, sinceJ, has
a gradients, the mapping

@ J(U, @) = (Go(u), @)
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is continuous linear and hence, by Proposifiod 4.1 of Chdtd, is
weakly lower semi-continuous. On the other hand, ) J; is weakly
lower semi-continuous which proves the assertion. Therorigme [1.1)
of ChaptefR implies that states thais characterized by (Z4.15).

We have therefore onlu to prove (2) of the statement. We phaie
the convergence of the algorithm in the following sequerfcaaps.

Step 2.At each stage of the algorithm the subproblem of determining
! has a solution. In fadk™?! is againd a non-empty closed convex
subset olV. Moreover, again as in Stép 1 satisfies all the hypothesis
of Theorem [[T11) of Chaptdd 2 and_{R.3) of Chafiier 2. Henceesthe
exists a unique solution of the problemi{4.14) and this maﬁ]‘*l is
characterized by

ik,

(4.16) { ((IBO(U}“”),V =T + Jgi(vi) — @) > 0

since

N
3(W) = @) = > (3 j(v)) = In @) = Iniw) - ().
i=1

Step 3.J(u") is decresing. We know thafii™'eK™! fori = 1,--- ,N
and on taking/ = U"! in[42)] we get

J@h) < a@rh).
using this successively we find that
Jamh < @™y < - < 3@ = )

and similarly
J(Un+l) — J(ﬂﬂN+l) <... < J(l]?+l).
These two togrther imply that

Ju™) < JwMofralln=0,1,2,---
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which proves that the sequend@") is decreasing. In particular it is
bounded above:
Ju") < JWw) ofralln> 1.

SinceueK is the unigue absolute minimum fdrgiven by Step[{l)
we have
J(u) < JW") < JWw) foralln> 1.

On the other hand, by Hypothesld%) we see thatu"||, |ﬁ]{‘+1|| form
bounded sequences. Thus there exists a conktanD such that

(4.17) U+ @Y+ jlul < Mforalln>1andall 1<i < N.

Since
J(u) < Ju™h) < JuM)
it also follows that 121
(4.18) JuM) = JU™?) - 0 asn — +co.

Step 4.We shall thatu" — u™! — 0 asn — +co. For this, by the-
convexity hypothe3|sl-(2) of J, applied tou = Tﬁ‘*l andv = ““*1 we
get

J, (~T1 )> J. (-ﬂ+1) + (G (~ﬂ+1)’~ln+1l ~n+1)+-|- (~ﬂ+1’~ln+ll
whereM > 0 is determined by{4.17) in Steld (3). From this we find

IO = I@Y + [(Go@ ), T ~ T + @) - Ji @)

+1 ~n+1
+TM , | 1

Here by the characterization {21 16)if 1eK"** as the solution sub-
problem we see that the terms in the brackets|[> 0 and hence

A > I@Y) + Tu@L T foralli = 1,- -, N.
Adding there inequalities far=1,--- , N we obtain

J(~ﬂ+1) _ J(un) > J(vr’lrl)_'_z-l— (“n+1’~ln+ll
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= I + ) T @ LT,
i

that is,
I = I = ) T @ T,
i
Here the left side tends to 0 as— oo and each term in the sum on
the right side is non-negative by (#.9) of Hypothe$i®] so that
Tw@™, T —» 0asn — +ooforalli =1,--- ,N.
In view of (Z2.I0) of HypothesisH?2) it follows that

ot -l — 0asn— +eoforalli=1,---,Nand
U™t —u" — 0asn — +oo

(4.19) {

which proves the required assertion.

Step 5. Convergence of the algorithmUsing the convexity Hypothe-
sis H2) of J, with u andv interchanged we get

Jo(V) > Jo(u) + (Go(U),v—u) + Tm(u, V)
Jo(U) > Jo(V) + (Go(V), v —U) + Tm(v, u)
which on adding give
(Go(V) — Go(u),v—U) > Ry(v,u)
(4.20) where
Rw (v, U) = Tpm(u, v) + Tpm(V, u).

Taking foru the unique solution of the problefi{4l14) ang u™?!
we obtain

(Go(U™h) - Go(u), U™ — u) = Ru(u, u™?)
from which we get

(Go(un+1)’ un+1 _ U) + Jl(un+1) _ Jl(u)
(4.21) > [(Go(u), u™* = u) + Iy (U™1) — J1(U)] + Ru(u, u™?)
> Ru(u, u™?)
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sinceu is characterized by (4.115). Introducting the notation

W =T+ (0, ,0,u - U™t 0,- -, 0)

we have
(4.22) WL = (U U e U )eK M
Zi(W{Hl _a'in+l) — (U _ un+l)‘
Now we use the fact thal (v) = }}; J1i(vi) to get 123

Ji(u™h) - J(u) = Z(Jl,i(uirm) = Jui(w)),

which is the same as

(423) R - %) = P (3@ - A

Substituting[[£.22) and{4.P3) ih{4]121) we have

Sil(Ge(uM™h), T — W) + (@) — (W)
> Ry (u, u™?).

This can be rewritten as
Z(Go(uml) _ Go(u?+l)’ﬁin+1 _ Wli”|+1)
i
DG @, W - T + I = B TH] + Ru(u, u™?).
i
But again by the characterizatidn{4.16) of the solufiptt ek of

the sub-probleni{4.14) the terms in the square brackets emgkttheir
sum is non negative (to see this we take w*1eK™?1). Thus

(424) Z(Go(urHl) _ GO(UF+1),GP+1 _ Vv=1+l) > RM (U, un+l).

Here we have

1 1 1 1
[T =Wy = [lu = ™y, < flull+ (T < M.
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By Cauchy-Schwarz inequality we have

(Go (U™ — Go @), T — Wb < MG, (™) - Go @)1,

I
Now since
N
1 1 1 1 1 1
U™ - T = I - T < ) - T
j=i+1

which tends to 0 by[{4.]19) and sinG satisfies the continuity hypoth-
esis [4.111) of [3) it follows that

Rw(u,u™?!) — 0 asn — .
This by the definition oRy (u, v) implies that
Tm(u,u™) - 0 asn - .

Finally, by the property[{4.10) td\(u, v) in Hypothesis H2) we
conclude that
lu—u™| - 0asn — co.

This completes the proof of the theorem. m|

Remark 4.3.1f the convex seK is bounded then the Hypothesidg)
is superfluous since the existence of the condihnt 0 in (Z1T) is then
automatically assured sinceu”,ﬁ?”eK foraln>1andi=1,---,N.

4.4 Some Applications : Dfferentiable and Non-Dfferatiable
Functionals in Finite Dimensions

We shall conclude this section with a few examples as apjuita of
our main result (Theorerfiz4.1) without going into the detaisthe
proofs. To begin with have the following:

Theorem 4.2. (Case of dfferentaible functionals on the finite dimen-
sional spaces).
Let 1 : V = RP — R be a functional satisfying the Hypothesis:
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(K1) J.eCY(RP,R)

(K2) J, is strictly convex

(K3) Jo(V) > +o0 as|V|| = +oo.

Then the assertion of the Theordm14.1) hold with J..

It is immediate that the Hypothesi$il) and {H3) are satisfied.
SinceJ; = 0, (H4) and {5) are also satisfied. There remains only
to prove that the Hypothesi$i@) of the convexity ofJ, holds. For a 125
proof of this we refer to the paper of Céa and Glowinski [Heé also
Glowinski [18&], [19]).

N
Remark 4.4.Supposep = 3 p; be a partition of p. Then in the above
|

N
theorem we can také¢, = RP so thatV = [] Vi. We also have the
i=1

Theorem 4.3. (Case of non-gierentiable functions on finite dimen-
sional spaces - Cea and Glowinski). Let¥ RFi(i = 1,---,N) and

N
V =RP(p = X pi). Suppose .J: V — R satisfies the hypothesis (K1),
i=1
(K2) and (K3) pf Theoreni{4.2) above and:V — R be another func-
N
tional of the form J(v) = > J1i(vi) where the functionals;d : V; - R
i=1

satisfy the Hypothesis below:
(K4)Jq; is a non-negative, convex and continuous functional on
RP =Vi(i=1---,N).

Then the functional
J=J 4+

satisfies all the Hypothesis of Theorel]4.1) and hence tharitim
@) is (strongly) convergent M = RP.

We shall now give a few examples of functionhl which satisfy
(K4).

Example 4.1.We takeJs (Vi) = «il¢i(vi)| where
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(i) a; = 0 are fixed numbers

(i) ¢ : Vi = RP — R is a continuous linear functional for each

i=1---,N.
In particular, ifp; = 1(i = 1,--- ,N) and hencep = N we can take
Jii(vi) = ailvil,
and
N
W) = ) aiil.
i=1
126 This case was treated earlier by Auslander [53] who provatittte
algorithm foru" converges to the solution of the minimization problem
in this case.

Example 4.2.We take
J1i(vi) = ailti(v)"]
where
() @; > 0 are fixed numbers,

(i) ¢ : Vi — R are continuous linear forms @, and we have used
the standard notation:

4 (V')+ _ gi(Vi) when¢; (Vi) >0
T 0 whenfi(vi) < 0.

Example 4.3.We take

J1i(v) = @illvillre

where .
2

Pi

2

Mllzs = | " M,
=1
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4.5 Minimization of Quadratic Functionals on Hilbert
Spaces-Relaxation Method by Blocks

Here we shall be concerned with the problem of minimizatibquadra-
tic funcitonals on convex subsets of a product of Hilbertcgiga This
is one of the most used methods for problems associated waitralp
differential equations. We shall describe an algorithm andepthe
convergence of the approximations (obtained by this atgm) to the
solution of the minimization problem under consideration.

Statement of the problenbet Vi(i = 1,2,---N) be Hilbert spaces,
the inner products and the norms are respectively denoté@)hyand
I-]li. On the product space we define the natural inner product@ma n127

by
N
(V) = igl((ui V)i
(429 lul = (ingUiHiz)é :
U= (Ug, - ,Un),V=(V1, - ,Vn)eV,

for which V becomes a Hilbert space. Liétbe a closed convex subset
of V of the form

K = [T}, Ki where

Ki is a closed convex nonempty subsedVdfl < i < N).

(4.26) {

LetJ: V — R be a functional of the form
(4.27) J(v) = %a(v, V) — L(v)

wherea(:, -) is a bilinear, symmetric, bicontinuoug-coercive form on
V:
There exist constant®l > 0 ande > 0 such that

[a(u, v)| < Mllullviivilv for all u, veV,
(4.28) a(u,u) > ofulZ,  for all ueV, and
a(u,v) = a(v, u)
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Moreover,L : V — R is a continuous linear functional on. Con-
sider the optimization problem :

(4.29)

To find ueK such that
J(u) < J(v) for all veK.

Then we know by Theoren 3.1 of Chapfér 2 that under the assump-
tions made oV, K andJ the optimization problenf{4.29) has a unique
solution whihc is characterized by the variational inegyal

(4.30) { ueK.

a(u,v—u) — L(v—u) > 0 for all veK.

4.6 Algorithm (4.2) of the Relaxation Method - Details

In order to give an algorithm for the solution of the probldfi?d) we
obtain the following in view of the product Hilbert spaceustiure ofV.
First of all, we observe that the bilinear foraf, -) give rise to bilinear
forms
(4.31) aj:VixVj >R
such that N
a(u,v) = Z aj (Vi Vj).
i,j=1

In fact, fo_r anyvieV; if we set\_/i to be the element of having
componentsy); = 0 for j # 1 and ¢); = vi, we define
(4.33) aj(vi,vj) = a(V, V).

It is the clear that the properties {4128) aff.-) immediately imply
the following properties o (-, -):
ajj is bicontinuous|a;; (vi, vj)| < M|VillilIvjll;.
aij (Vi, vj) = aji (vj, i)

aji is Vi — coercive :ai(vi, vi) = a(V, V') > oIV = @IV,

(4.34)

for all vi € Vi, vjeV,
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Using the bicontinuity of the bilinear forma;j(-,-) together with

Riesz-representation theorem, we can find

AijeZ(V;, V) suich that
(4.35) aij (Vi, Vi) = (AijVi, Vivixy,

where ¢, -)vj'xvj denotes the duality pairinig betweaf) and its dual 129
Vi (which is canonically isomorphic t¥;). The properties[{4.34) can
equivalently be stated in the following form:

IA;ILzvv) < M,
(4.34Y Ajj = Ai*j , A are self adjoint
(Ai Vi Vi)vyxv; = allvill? for all vieVi.
By lax-Milgram lemmaA;; are invertible and\ifle.,i”(vi,vi).
In a similar way, we find the forms L defines continuous linesrck
tionalsL; : Vi — R such that

Li(v}) = L(V) for all vieV;
L(v) = 2N, Li(w) for all veV.

Again by Riesz-representation theorem there dxie¥; such that
Li(vi) = ((Fi,w))i for all vieV;

so that we can write
N

(4.36) L) = > (Fi, W)
i—1

As an immediate consequence of the properties of the bilfoeas
g (-, ) onV; we can introduce a new inner product\grby

(4.37) Wi, vilv, = ai (Ui, vi).

which defines an equivalent norm which we shall denoté| byl (we
can use Lax-Milgram lemma) ovt.
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We shall denote by;Rhe projection of Vonto the closed convex
subset Kwith respect to the inner produgt -];.

We are now in a position to describe the algorithm for thexaian 130
method with projection. (See also]19]).

Algorithm 4.2. - Relaxation with Projection by Blocks.
Letwi(i = 1,---,N) be a fixed set of real numbers such that0
w; < 2.

(1) Letuw = (ug,---,ux)eK be arbitrary.

(2) Supposel"eK is already determined. We determiu®&eK in N
successive steps as follows: Suppoﬁé,leK are already found
for j <.

Then we take
U = Piu? - wiA (X AU+ 3 AU - FD)
j<i j2i

(4.38) {
i=1,---,N.
Remark 4.5.In applications, the boundary value problems associated
with elliptic partial diferential operators will be set in appropriate
Sobolev spacesi™(Q) on some (bounded) open stin Euclidean
space. After discretization (say, by suitable finite elemymproxima-
tions) we are led to problems in finite dimensional subspat&t™(Q)
which increase tdH™(Q). In such a discretizatiosy; and Ajj will be
matrices with the properti¢s.@#Y] described above.

4.7 Convergence of the Algorithm

As usual we shall prove that the algorithm converges to thdisn of
the minimization probleni{Z.29) in a sequence of steps ifidth@wing.
We shall begin with

Step 1.J(U") is a decreasing sequencé-or this we write

(4.39) Ju) - Ity = Ia@rt) - It
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N
= > (@ - 3@Y)
i=1

and show that each term in tha last sum is non-negqtive. Werabs131
here that

T+l o+l L. n+1 n  n .. n
(4.40) { ui—l1 = (U L ’ui—ll’ Y ’;Ji+1’ ,UN)

T+l n+ N+ N+ n n

U = (U U, UL U e UR).

Setting, for eaci=1,--- , N,
gi :_lZAi.ur_1+1+lZAi.ur_l+f.
(4.41) | = S
ji(v) = 3(Aivi,vi) — (9, i)
we immediately see that
(4.42) I@ - ITHY = i) - .

Hence it is enough to show that the right hand sidé_of {4.48prs
negative. In fact, we shall prove the following

Proposition 4.1. Foreach il <i < N, we have
. . 2-W
(4.43) iU = iU = 1l = uH).
|
The proof will be based on some simple lemmas:

Step 2. Two lemmas.Let H be a Hilbert space and be a non-empty
closed convex subset f. Consider a quadratic functiongal: H - R
of the form

(4.44) i) = 5bV) - @V
where

b(-,-) is a symmetric, bicontinuousj-coercive
bilinear form onH andgeH.

(4.45) {
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Then we know by Theorein-3.1 of Chapligr 2 that the minimization
problem

(4.46) { To find ueC such that

j(u) < j(v) for all veC

has a unique solution. On the other hand, the hypothedi$- ohimply
that we can write

b(u, v) = v(Bv) for all u, veH
and
Be.Z(H, H), B = B* exists and belongs tdd( H)

Moreover,
(4.48) [u,v] = b(u,v) = (u, BV)
defines an inner product dth such that
(4.49) umu=[u, u]%
is an equivalent norm ifl. Then we have the

Lemma 4.1. If ueC is the unique solution of the problein {4.46) and
if P : H — C denotes the projection onto C with respect to the inner
product[-, -] then

(4.50) u = P(Bg).

Proof. We also know that the solution of the probleim(4.46) is charac
terized by the variational inequality

(4.51) UeC,
b(u,v—u) > (g,v — u) for all veC.
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Since we can write
(4.52) @.v-u) = (BB lgv-u) =b(Blgv-u)
this variational inequality can be rewritten in the form

ueC,

(4.51Y
[u—B™g,v—u] = b(u- Bg,v—u) > 0 for all veC.

133
But it is a well known fact that this new variational ineqialichar-
acterizes the projectioR(B1g) with respect to the inner product {
(For a proof, see for instance Stampacchia [44]).

Lemma 4.2. Let u,eC. If uy is defined by
(4.53) up = P(u, + w(B™1g — u,)), w > 0.
where P is the projection H» C with respect tq-, -] then

2—-wW

(4.54) j(Uo) — j(ug) > lllus — ugll[?.

Proof. If v, voeH then we have
i)~ 1) = 51D, - b, )} = (@ 1) - (@)
= 101, v0) ~ b{vz, o)) — (BB g, w1 - v2)
= 51041, v2) ~ b(vz, o)) ~ (B g i ~ )
= %{b(Vl - B'g,vi - B~'g) - b(v2 - B g, v, - B™'g))

1 _ _
= 5(v - B 9112 = llva — Bgll1?).

Since we can write

Ui — B_lg = (uo - B_lg) + (ul - UO)
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we find
(4.55) [llu,—BgllI? = [llus — B gllI> — lllug — U/ +[us — B~1g, up — o]

But on the other hand, by definition of as the projection it follows
that

[us + W(B™1g — Ug) — Uz, Us — ] <0

and hence
lllus — Wl < Wu, — B™1g, u, — uy].

Substituting this in the above identify {4155) we get
llluo — B™*gllI? = llluy — Bl > (2 - w)[u, — B g, u, — uy]

2—-W
>

2
lIlUo — ualll,

which is precisely the required estimaie (4.54).
Step 3. Proof of the Propaosition (4.1)It is enough to take

H=V;,C=Kb(,) = ai(,),P =P =Proj{Vi - Kij}

and
U = U, U™ =y
in Lemmd4.R.
Corollary 4.1. We have, for each n 0,
Ni2—w
(4.56) I - Iy = Y o Lt — a2,
i=1

Proposition 4.2. If 0 <w; < 2foralli =1,---,N then

4.57) { J@u") > J(u™?) for all n and

u" — u™! — Ostrongly in V as n— co.
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Proof. The fact thatl(u") is a decreasing sequence follows immediately
from the Corollary[[Z11). Moreoved(u") > J(u). for all n, whereu is
the (unique) absolute minimum dfin K. Hence,

J" - JW™t) > 0 asn — co.
O

Once again using the Corollafy_(#.1) and the fact thaw2 > O for
eachi it follows that

IIuf*t — Ul — 0 asn — co.

135
Sincel|| - ||l and|| - ||i are equivalent norms ow we find that

Jul — U™ —» 0 asn — oo

and therefore

Nl

" = ™= (O I = u ) > 0

which proves the assertion.

Step 4. Convergence of". We hve the following result.

Theorem4.4.1f0<w; < 2foralli = 1,--- ,N and if U'is the sequence
defined by the Algotihni{4.2) then

(4.58) u" — u strongly in V

Proof. By V-coercivity of the bilinear forna(-, -) we have

a”un+1 _ U||2 < a(un+1 —u, un+1 _ U)

— a(Un+1, un+l _ U) _ (f, un+1 _ U)

—{a(u, u™?t —u) — (f,u™ - u)}.
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Hereu™! — ueK andu is characterized by the variational inequality

#30) so that

a(uu™t —u) - (f,u™ -u >0

and we obtain
(4.59) au™?t — ul? < a@u™t u™t —u) - (f,u™! - ),

We can also wirte[{4.59) in terms of the operatdysas

(459 alu™ —ul? < (] AU~ it - w)
P

136 Consider the minimization problem

U 1eK; such that

(4.60) ji@™Y) < ji(w) for all vieK; where
jivi) = L, oum vl e ul).

We notice that the definition of the functional— ji(v;) coincides
with the definition [4211). The unique solution of the probl¢Z.60)
(which exists by Theorein 3.1 of Chapkér 2) is characterimediéw of
the Lemmal(4l1)) by

(4.61) T = Pi(AT'g) = PIA (T - D AUl - ) AGUD)

j<i >1

or equivalent by the variational inequality:

7] i

{ (AT - gi,vi — T > 0 for all vieK;
—n+1
ek

This is, we have
(4.62)

{ (AT + _ZlAiju’j”l + % AU - fi,vi =T > 0 for all viek;
i< j>i

Uin+16Ki.
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We can now write the right hand side[of%8Y]as a sum
(4.59)(’ |1+|2+|2+|4

where
(4.63)

I = ;((An Ut - T, Ut - w));,

o = Z((JELA” (UTH' - U?), Uin+l - ui))i,

l3=3((X2 AijU'j1+1 + AT Y Ajuj - fi, urt — o hy);,
({4 &

ij<i

la= Z((Z AU + AT+ Y AUl - £, 0 — w)).

i j<i j>i

First of all, (by[4.62))4 < 0 and hence
(4.64) allu™ —uP <13+ 1+ 13,

We shall estimate each one bf I, I3 as follows: SinceAjje.
(Vi, Vj) we set

4.65 M1 = ma i -V
(4.65) 1 1Si’jg)§\|||Alj”_2”(V,,VJ)

We also know thafiu|l, [Tl and henceéju”||, |[0"|| are bounded se-
quences. For otherwisg(u") and j;(G") would tend to+co asn — co.
But we know that they are bounded abovelfy©). So let

(4.66) Mz = max(supl|u'll, supl[Tfl).
1<isN™ n
The, by Cauchy-Schwarz inequality, we get
1 — 1
2l < O I = Gl 2O 1A vy U = TP)2
i i
= My(Mz + [lulf)lu™? — T

and similarly we have

1 —=n+l
2] < My(M2 + [lu (U™ = T™ |

137
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13l < Ma(Mz + [[FDIu™™ —T™ ).
These estimates together wilh{4.64) give
(4.67) o™ — ull? < 3M1(Mg + [lul] + [ F[IIu™ - T
and hence it is enough to prove that
(4.68) u™t - ™Y - 0 ash — .
For this purpose, since; > 0 we can multiply the variational in-

equality [£.6R) byw; and then we can rewrite it as
(4.62)

((AiiUiml _ {AiiUin+1 _WI(Z Aijuerl + A L—]in+l 4 Z Aiju? — )LV — —n+1)) > 0.

j<i j>i

Once again using the fact that this variational inequalitsracter-
izes the projectiorP; : V; — K; we see that

(4.69) T = Pi{(L-w)T™ - AT AUl + ) AU~ ).
j<i j>i
By @38) we also have
Ut = R - woul — AT AU+ Y AU - ),

j<1 >1

Substracting one from the other and using the fact that thieqtion
are contractions we obtain

—n+1 —n+1 —n+1
(4.70) I — U < 11— willgT™ = il < G = ull

since O< w; < 2 ifand only if 0 < |1 — wi|] < 1. Now by triangle
inequality we have
[P — a2 > o =T - et - ar)
> (1 -1 —wiliE™t — ulll

> (1— 11— wiE™t — a3y
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But here, by[[437), we know that
Ul = Uil — 0 asn — co.
and since 1 |1 — w;| > 0 it follwos that
T — u* i — 0
which is the required assertion.

Remark 4.6. The Theorem{4]4) above on convergence of the relaxation
method generalizes a result of CryEr][10] and of a classisult of
Varge [50] in finite dimensional case but withour constraint

Remark 4.7.1n this section we have introduced the parametersf 139
relaxation. The algorithm described is said to be of ovexxation type
(resp. relaxation, or under relaxation) with projectionemty; > 1
(resp.wi=1lorO<w<1)foralli=1,---,N.

4.8 Some Examples - Relaxation Method in Finite
Dimensional Spaces

LetVi =R(i =1,--- ,N)andV = [T, Vi = RN. Let A be a symmetric,
positive definite i x n) -matrix such that there is a constant- 0 with

(4.71) AV, V)zn > a|VI12y for all veRN.

Consider the quadratic functiondl: RN — R of the form
1 N
(4.72) J(v) = E(AV’ V)N — (f,V)pn, TeR™.

We consider the optimization probel far

Example 4.4.(Optimization without constraints).

4.73) { To find ueRN such that

J(u) < J(v) for all veRN
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If we write the matrixA asA = (&) then

N N
1 N
(4.74) J(V) = > ijzzllajVjVi - .zll fivi,v=(ve,---,Vn)eR".

We find then that the components of grpdre

N
(grad V) = (Av- )i = (D &y = f)i=1,--- N,
j=1

If ueRN is the (unique) solution of f4¥3) then grd¢l) = 0. That
is,
u= (Ul ’un)
ZE\I:laijUj =fi,i=1---,N.

To describe the algorithm (if we takg = 1 foralli = 1,--- ,N) to
construct<*! from u* we findul** as the solution of the equation

Z aijulj(+l + anu!‘” + Z aiju'j‘ = f;.
j<1 j>1
Sincea; > @ > 0 we have
@75) U= - ) A - ) U]
j<i j>i

and thus we obtain the algorithm of the classical Gaussebaidthods
in finite dimensional spaces.

More generally, introducting a paramete(i0 < w < 2) of relaxation
we obtain the following algorithm:

k+3 _
U2 = et X AUkt - 3 aul]
(4.76) i<i J>i
Ul = Uk - W(u:(+7 —uk)

Example 4.5.(Optimization with constraints in finite dimensional
spaces).
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Let Vi,V andJ be as in Exampl[{414). We take for the convexIset
the following set: Let,, |1 be a partition of the sdt.,2,--- ,N}. That
is

lonly=¢and{l,2,--- ,N} =1, Ul.

Define
(4.77) Ki = {weR;vi > 0} for all iel. and
Ki = R for all iely
and hence

(4.78) K = {veRN;v = (va, - - -, vy) such that; > O foriel,}

As in the previous case, suppogeare known, Assume thau.‘j<+l
are found for allj < i. We find u!‘*l in there substeps as follows: Wa41
defineu*/? as the unique solution of the linear equation obtained by

requiring the gradient to vanish at the minimum : more pedgjs

(4.79) U = gt - )t - )y,

j<i j>i
The we set

Ut = py(U?3)
whereP; is the projection o¥; ontoK; with respect to the inner product
[ui, vi] = & (Ui, vi) = v —i.

Sincea; > 0 andK; are defined by[{Z.T4p; coincides with the
projection ofV; ontoK; with respect to the standard inner productfon
Hence we have

0if u“*?® < 0 andiel
4.81 Pi(Uk23) = - o
( ) 1CHNY u:(+2/3 in all other cases



138 4. Minimization with Constraints - Algorithms

Example 4.6.LetV = RN = R'xRN-1 K = Ky x K, with K; = Rt and
Ko = (veRN"1; g(v) < 0},

whereg : RNt — R is a given smooth functional oRN-1. Let

J : V — R be a functional of the forrT{4.¥4). We can use again an
algorithm of the above type. In order to give an algorithmtfee con-
struction of the projectiof®, of V = RN~ onto K, we can use any one
of the standard methods described in earlier section ag)dtance, the
method of descent.

4.9 Example in Infinite Dimensional Hilbert Spaces - Opti-

mization with Constraints in Sobolev Spaces
142
We shall only mention briefly a few examples, without goingpiany

details, of optimization problems in the typical saces difite dimen-
sions which are of interest to linear partiaffdrential equation, namely
the Sobolev spacd4$(Q), H1(Q) which occur naturally in various vari-
ational elliptic problems of second order.

Example 4.7.Let Q be a bounded open setif with smoth boundary
I.
Consider the closed convex subBgtin H1(Q) given by

(4.82) Ko = {V; veH(Q), y.v> 0 a. e. o},

and the quadratic functiond), : HY(Q) — R defined by

1
(4.83) 3o(V) = 5IMFys oy = (F- Lz

Then we have the optimization problem

(4.84) { To find ueK, such that

Jo(U) < Jo(v) for all veK,

Usually we use the method of over relaxation for this problem
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Example 4.8.Let Q be a simply connected bounded open set in the
planeR?.
Consider

(4.85) Ki = {veH(Q); |gradv(x)| < 1 a. e. inQ} and

(4.86)

J(v) = 3 [, lgrady?dx - C [, vdx
whereC is a constant- 0.

The existence and uniqueness of the solution to the mintmaiza
problem:

(4.87) { To find ueK; such that

J(u) < J(v) for all veK1

is classical and its properties have been studied in therpedfgrezis 143
and Stampacchial[4] and some others. It was also shown bysBred
Sibony [2] that the solution oE{4.87) is also the solutiortteé problem

To fing ueKs such that

J(u) < J(v) for all veK,, where

Ko = {veH1(Q); M(X)| < d(x,T) a.e. inQ},

d(x,T') being the distance of € Q to the boundary of Q.

(4.88)

The method of relaxation described earlier has been useolie the
problem [4:8B) numerically by Céa and GlowingKi [[8, 9]. Wsoare-
mark that the probleni{4B7) is a problem of elasto-patstisihereQ

denotes the cross section of a cylindrical bar whose boyriddr and
which is made of an elastic material which is perfectly pasfor de-
tails of the numerical analysis of this probel we refer thaeder to the
paper of Cea and Glowinski quoted above.






Chapter 5

Duality and Its Applications

We shall introduce in this chapter another method to solgeptioblem 144
of minimization with constraints of functional on a Hilbert spac¥’.

This method in turn permits us to construct new algorithmfifeding
minimizing sequences to the solution of our problem. In thiapter we
shall refer to the minimization problem:

(P) To find ue, J.(u) = inf 3.(v)
Ve

where the constraints are imposed by thd sas the “Primal problem”.
In the previous chaptdd was defined by means of a finite number of
functionalsJq,--- ,JconV :

U={vveV;JWV) <0i=1---,k.

The main idea of the method used in this chapter can be dedcrib
as follows: We shall describe the condition that an elemdmgiongs to
the constraint sty by means of an inequality condition for a suitable
functional of two arguments. For this purpose, we introdaceone
A in a suitable topological vector space and a functignain V x A
in such a way thap(v,4) < 0 is equivalent to the fact thatbelongs
to U. Of course, the choices of and ¢ are not unique. Then the
primal problem P) will be transformed to a mini-max problem for the
functional £ (v, i) = J(V) + ¢(V, ) onV x A. The new functional? is
called a Lagrangain associated to the problé&n (

141
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We shall show that the primal problem is equivalent the maim
problem for the Lagrangain (which is a functional in two argnts
€V x A). The interest of this method is that under suitable hysithe
if (u, 2) is a minimax point for the Lagrangian therwill be a solution
of the primal problem whilel will be a solution of the so called “dual
max-mini problem” which is defined in a natural way by the Laaggian
in this method. Thus under certain hypothesis a minimaxtpriarac-
terizes a solution of the primal problem.

Results on the existence of minimax points are known in tiee-li
ature. We shall show that wheéhis of finite dimension, under certain
assumptions, the existence of a minimax point follows frobendlassical
Hahn-Banach theorem. In the infinite dimensional case wk iba-
trate our method which makes use of aresulKgfFan [29] and Sion
[41]], [42]. However our arguments are very general and ektasily
to the general problem.

1 Preliminaries

We shall begin by recalling the above mentioned two resnltheé form
we shall use in this chapter.

Theorem 1.1. (Hahn-Banach). Let V be a topological vector space.
Suppose M and N are two convex sets in V such that M has atleast
one interior point and N does not have any interior point of M.(
IntM # ¢, N N IntM = ¢). Then there exist andv’, F # 0 and anaeR

such that

(1.2) <F,m>yyw=F(mM) < a < F(n), YmeM, YneN.

In order to state the next result it is necessary to introdlaeaotion
of minimax point or sometimes also called saddle point.
LetV andE be two sets and

L' VXE—->R

be a functional o1V x E.
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Definition. A point (u, ) eV x E is said to be a minimax point or saddle
point of & if

(12) LU < LU)< L0, V(v,ueV xE.

In other words, , 1)eV x E is a saddle point afZ if the pointuis 146
a minimum for the functionalZ(:,2) : V 3 v Z(v, 1)eR, and if the
point A is a maximum for the functional

ZU,):Eau LU, u)eR.

ie. supZ(u,u) = 2, ) =inf Z(v, Q).
,ueE veV

Theorem 1.2. (Ky Fan and Sion). Let V and E be two Hausgidopo-
logical vector spaces, U be a convex compact subset of VAabd a
convex compact subset of E. Suppose

L UxA->R.

be a functional such that

(i) For every U the functional.Z(v,:) : A > u » Z(v,u)eR is
upper-semi continuous and concave,

(ii) for every ueA the functional.Z(-,u) : U > v > Z(V,u)eR is
lower-semi continuous and convex. Then there exists a saddl
point (u, 1)eU x A for .Z.

Lagrangian and Lagrange Multipliers

First of all we need a method of describing a set of conssdigt
means of a functional.

SupposeV is a Hilbert space and be a given subset of. In all
our applicationgJ will be the set of constraints.

Let E be a vector space. We recall that a cone with vertex atf in
is a subsei\ of E which is left invariant by the action &, , the set of
non-negative real numbers: i.e. #A and if «eR with @ > 0 thenaAd
also belogs ta\.
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We assume that there exists a vector sfgacea coneA with vertex
at 0 inE and a mapping 147

Od:VXxA—->R
such that

() the mappingA > u — ®(v, u)eR is homogeneous of degree one

i.e. O(v, pp) = p®(V, ), Vp = 0,

(i) a pointveV belongs tdJ if and only if

D(v,u) <0, YueA.

The choice of the cona and the mapping with the two properties
above is not unique in general.

The vector spack often is a topological vector space.

We illustrate the choice ok and® with the following example.

Example 1.1.SupposéJ is a subset oR" defined by

U = {VlveR",
g(v) = (91(Vv), - - - ,Im(V))eR™ such thati(v) <O Vi =1,--- ,m},

i.e. gis a mapping oR" — R™andg;(v) < 0 Vi. We take
A = {peRMu = (u1, -, um) With g > 0}
Clearly A is a (convex) cone with vertex atR™. Then we define

O:R"XA >R

by  D(v.p) = (1, gW)en = D piGi(Y).
i=1
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One can immediatly check thét has the properties (i) and (ii) and
U = {veR™ O(V, 1) = (1, g(V))rm < O}.

More generally ifU is defined by a mapping : R" — H whereH
is any vector space in which we have a notion of positivitynthwe can
take

A = {plueH, u > 0}
148 and
OV, 1) =< 1, 9(V) >HrxH -

Example 1.2.LetU be a convex closed subset of a Banach spaddle
define a functioh : V/ — R by

h(u) = sup< w1,V >{
veU
Then clearlyh > 0.
We take for the cona:

A = {ulueV’, h(u) < +oo}
and defineb : V x A — R by

DV, 1) =< u, v > —h(w).

It is clear from the very definition that ifeV and®(v, z) < 0 then
veU. In fact,ifv ¢ U then, sincdJ is a closed convex set M, by Hahn-
Banach theorem there exists an elemeit’ such thaju(u) = 0 YueU
andu(v) = 1. Then for thisu, h(u) = 0 so thatu € A and®(v, u) =<
u, v >= 1 which contradicts the fact théi(v, u) < 0. HenceveU.

The arguments of Exercise 1.1 can be used to formulate treraen
problem of non-linear programming considered in ChapleiGiven
(k + 1) functionalsJ,, J, - - - , Jx on a Hilbert spac® to find

ueU = {vveV; Ji(v) <Ofori=1,---,K},
Jo(u) = inf J,(V).
veU
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We note that/ — (J1(v), - - - , J(v)) defines a mapping of into RX.
We take a< the spaceK*)’ = R and

A= {,u|yeRk,yi >0,i=1,---,k
k

D(v, 1) = Z 1i Ji (V).
i=1

149 Itis immediately seen thab satisfies (i) and (ii), and that an element
VeV belongs tdJ if and onlu if ®(v, u) < 0, YueA. So our problem can
be reformulated equivalenty as follows:

To find ueV such that sup, ®(u,x) < 0 and
J.(U) = inf J. (V).
( ) {D(v,1)<0, YueA} ( )
These considerations are very general and we have the foow
simple proposition.

Proposition 1.1. Let V be a normed space and U be a subset of V such
that we can find a cona with vertex at O (in a suitable vector space)
and a functiond : V x A — R satisfying (i) and (ii). Then the following
two problems are equivalent: Let:V — R be a given functional

Primal problem:To find wU such that Ju) = infy.y J(V).

Minimax problem:To find a point(u, 1)eV x A such that

(1.3) J(U) + DU, ) = inf SULI(V) + DV, ).
VeV ueA

Proof. First of all we show that

Supg(v, u) =

HeA +ooif v U.

{ 0if veU
O

In fact, if ueU then by (ii)@(v,u) <0 VYueA. Since @A we get by
homogeneityif; @(v,0) = 0 and hence

supd(v, u) = 0.
HeEN
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Suppose now ¢ U. Then there exists an elememA such that
®(v, u) > 0. But for anyp > 0, pueA and by homogeneity

O(v, pp) = p@(V, p) > 0
so that®(v, pu) — +oo asp — +oo. This means that 150

sup®@(v, u) = +oo if v¢ U.
HeA

Next we can write
sug(J(v) + @(v, ) = I(V) + supd(v, i)
HeA HeN

3 J(v) if veU
| +ooifveU

and we therefore find

inf sug(J(V) + O(v, 1)) = inf J(V).
veV MEA veU

This proves the equivalence of the two problems.

Suppose given a functiondl: V — R on a Hilbert spac¥ andU a
subsetV for which there exists a cont and a functiond : Vx A - R
satisfying the conditons (i) and (ii).

Definition 1.1. The Lagrangain associated to the primal problemJfor
(with constraints defined by the dd) is the functional? : VxA - R
defined by

(1.4) LV, 1) = I(V) + O(v, ).
ueA is called a Lagrange multiplier.

The relation between the minimax problem and the saddle fmin
the Lagrangian is expressed by the following propositionis proposi-
tion is true for any functionalZ onV x A.
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Proposition 1.2. If (u, 1) is a saddle point forZ then we have

(1.5) supnf LWV,u) =2, = mfsup.,iﬂ(v ).

e V€ ,ueA
Proof. First of all for any functionalZ onV x A we have the inequality

suplnf LV, u) < |nf supZ (v, u).

ueh VeV V e

In fact, for any pointV, u)eV x A, we have

|nf L\, 1) < 2LV, 1) <supZ(v, ).

HeA

But, there the first term mf,’(v w) is only a function ofu while

SUR,ea £ (v, ) is @ function only ofv. Hence we get the required in-
equality.
Next, if (u, 1) is a saddle point for then by definition

inf supZ (v, u) < supZ(u,u) = Z(u, )
veV ueA ueA

|nf LV, u) < suplnf LV, ).

pel V€

The two inequalities together given the equalities in theeg®n of
the proposition.

Definition. The problem of findingw, )eV x A such that

(1.6) Lw, ) = suplnf LV, u)

HelA veV

is called the “dual problem” associated to the primal proble
ie.

(L6Y (w, DeV x A such that
' J(W) + D(W, 1) = sup,, infuev (I(V) + DV, ).
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Remark. Since the choice of the coneand the functiomd : VXA — R
are not unique there are may ways of defining the dual probtena f
given minimization problem.

In the following example we shall determine the dual problema
linear programming problem.

Suppose given a linear functiondl: R" — R of the form J(v) =
(c, V)rn whereceR" is a fixed vector, a linear mapping: R" — R™and
a vectorbeR™. LetU be the set irR".

U = {veR™ Av—b = ((Av—b);,--- , (AV— b))eR™

.7 such thatAv-b); <Oforalli=1,--- ,m}.
Consider the linear programming problem: 152
(1.8) To findueU such that)(u) = ianJ J(v).
Ve

i.e. To findueR" such that

(1.8)
Au-b < 0and ¢ u)gn < (c,V)rn for all veR" satisfyingAv—b < 0.

We consider another linear programming problem defined las fo

lows.
Let J* : R™ — R be the functional*(u) = (b, u)zm andU* be the
subset oR™ given by
(1.9)
U* = {(wiweR™, A"w + ceR" such that A'w + ¢); > O forall j = 1,--- , n}.

whereA* : R™ — R" is the adjoint of A.
(1.10) To findueu® such thal*(u) = inJ J*(w)
welU*

ie. To findueR™ such that
(1.10y
A +c > 0and b, u)rm < (b, W)rm for all weR™ such thatA*w + ¢ > 0.

Proposition 1.3. The linear programming problernfflI0Y) is the dual
of the linear programming problenfI8)).
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Proof. We haveV = R", E = R™. Take the cone iR™ defined by
A = {ulue@®™ =R™ u = (u, -+ ,um)Withgj >0 foralli=1,--- ,m}

and the function
(D(V’ ﬂ) = (AV_ b, ﬂ)Rm'
O

By the very definitions we havd = {veR"|®(v,u) < 0}. The La-
grangian? (v, u) is given by

g(v’ ﬂ) = (C’ V)R°< + (AV_ b, :u)Rm-

153
Hence by Definition[({)) the dual problem is the following: To
find (w, 1)eR" x A such that

LW, 1) =sup inf L(v,u)
[16/\ veV=R"

= supinf ((c, V)rn + (Av— b, t)gm).
[16/\ VeR"

We can write
LV, 1) = (A'u+¢),V)rn — (b, )gm
and hence
inf Z(v,u) = inf (A"u + ¢), V)rn — (b, u)gm.
VeRN VeR"N
If A*+ u + ¢ # 0then by Cauchy-Schwarz inequality we have
—[Vlrnl|A*1 + Cllrn < (A" + C, V)gn
and so

(A" +€), V)rn — —co0 @S|M| — +oo

inf (A"u + ¢, V)gn = —o0 if A"+ c #0.
VeR"
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But if A'u + ¢ = 0 then infgn(A*u + ¢, V)gn = 0. Thus our dual
problem becomes

supinf Z(v, u) = sup—(b, p)zm = —inf (b, u)gm.
ueA VeR" ueA peA

In other words the dual problem is nothing Hut.{{d))
We conclude this section with the following

Proposition 1.4. If (u, eV x A is a saddle point for the Lagrangian as-
sociated to the primal problem then u is a solution of the pfiproblem
and is a solution of the dual problem.

Proof. (u, ) is a saddle point for the Lagrangia#’ is equivalent to
saying that

(2.12) J(u) + @(u, 1) < J(U) + D(u, 2) < J(V) + D(v, 1), Y(V, eV X A.
m]
154
Form the first inequality we have

(1.12) ®(u, u) < d(u, 2), YueA.

Takingu = 0 in this inequality we getb(u,0) < ®(u, 1) which
means by homogenei(u, 1) > 0. Similarly takingu = 21 and using
homogeneity we get

20(u, 1) = O(u, 22) < d(u, )
ie. d(u, 1) < 0.

Hence we find tha®(u, 2) = 0. Then it follows from[[L.IR) that
@(u, ) < 0, YueA
and thereforeleU by definition of A and®. Thus we have

U, 1eA, ®(u, 1) = 0 and
(1.13) { ueU, e (u, 2)

J(u) + O(u, 1) < J(V) + D(V, 1) YveV
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Conversely, it is immediate to see thRi(1.13) impllesTL.1t is
enough to observe thdi(u, ) < 0 = ®(u, 1) YueA sinceueU so that
we have the inequality

J(U) + O(u, ) < I(u) + D(u, 2).

Now in (I.T3) we takereU so thatd(v, 1) < 0, YueA and [1TIB) will
imply
(1.14) { ueU, 1eA, @(u, 1) = 0 and

J(u) < J(v) VYveU.

which proves thatl is a solution of the primal problem. We have al-
ready seen in Propositi@n_l.1 the implication thati$ a solution of the
problem then
Z(u, ) = inf supZ(v, u).
VeV ueA
155

On the other hand, if we use propositionl1.2 it follows thais a

solution of the dual problem.

2 Duality in Finite Dimensional Spaces Via
Hahn - Banach Theorem

In this section we describe a duality method based on theickdd1ahn-
Banach theorem for convex programming problem in finite disienal
spaces i.e. our primal problem is that of minimizing a corfumctional
on a finite dimensional vector space subject to constraiefmed by
convex functionals.

We introduce a condition on the constraints which is of fundatal
importance called the Qualifying hypothesis. Under thipdtiiesis we
prove that if the primal problem has a solution then therstexd saddle
point for the Lagrangian associated to it. We shall also gif&cient
conditions in order that the Qualifying hypothesis on thestints are
satisfied.
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LetJ :R"—> R(i=0,1,---,K) be k+ 1) convex functionals oR"
andK be the set defined by

K = {viveR"; Ji(v) <O fori=1,--- k.
Our primal problem then is

Problem 2.1.To find ueK such thatl,(u) = infyk Jo (V).
Itis clear thatK is a convex set.
Let

2.1) j = inf 3.()

We introduce the Lagrangian associated to the problem é2.te-
scribed in the previous section. More precisely, let

A = {ul = (ua, -+  p)eR¥ such thags > 0)
which is clearly a cone with vertex as Oliff and let 156
O:R"XA—>R
be defined by

k
O(v.pg) = ) 1id(v).
i=1

Then the Lagrangian associated to the problem (2.1) is

k
LW = JM) + ) i d().
i=1

Suppose that the proble{R.1) has a solution. Then we wihdo
conditions on the constrainth in order that there exists a saddle point
for .Z. For this purpose we proceed as follows:

SupposeS andT are two subsets d&k*! defines in the following
way:
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S is the set of all points

(Jo(V) = |+ S0, J1(V) + 51, -+, (V) + SR,
whereveR" and
s= (s, 81, , )eR¥! such thats, > 0 Vi.

T is the set of all points

(~to, —ti, - -, —t)eR! wheret; > 0 Vi.

It is obvious thafT is convex. In facfl is nothing but the negative
cone inR¥*1, On the other hand, sincg, Ji,-- - , J are convex and
s > 0 Vi it follows thatS is also convex. Itis also clear that [t ¢.
In fact any point £to, —tg, - - - , —t)eR¥! with t; > 0 Vi is an interior
point.

Next we claim thaS N (IntT) = ¢. In fact, if SN (IntT) # ¢ then
there exist

someteR< ! with t = (to, tg, - , t), t > O Vi,

157

someveR", and anseR¥*! with s = (S,S1,+ » %), S > 0Vi
such that
Jo(V) = j+ S =15, 01(V) + 51 = ~tg,- -+, (V) + & =~k
Now we have form this
Ji(v) =-ti—5 <0sinces >0forany =1,--- ,k
This means thateK. On the other hand,
Jo(v) = ~to = s+ < j = inf Jo(w)

which is impossible sinceeK.
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We can now apply Hahn-Banach theorem to the SeasdT in the
form we have recalled in Secti@h 1. There existrafR 1) = (R¥+1)
and anveR such thafF # 0, F(X) > @ > F(y) wherexeS andyeT. More
precisely we can write this as follows:

k
AF = (o, @1, -+ , ar)eR<"! such thatz |i| > 0 andJaeR
i=0

such that
@o(Jo(V) = j + 8) + XK ai(d(v) +5) = @ = - T ait,
(2.2) YVeV, s = (S, S1, -+ » ) With § > 0 Vi
andt = (t,,t1,--- , ) with t; > O Vi

We next show from[{Z]2) that we have

k
(2.3) a=0,a;>0Vi andZai > 0.
i=0
In fact, if we taket; = --- = tx = 0 then we get, from the second
inequality in Z2).

a > —aot, = (—ao)t, Vi, > 0.

158
If @, < 0then Ea,)t, —» +oo ast, — +oo and therefore we neces-
sarily havea, > 0. Similarly we can show that; > 0Vi =0,1,--- ,k.

Then
k k
Zlcm = Zai > 0 sinceF # 0.
i=0 i=0
If we taket, = t; = --- = tx = 0 we also find, from the second
inequalities in[(ZR) that > 0.
We have therefore only to show that< 0. For this, takings, =
.-+ = § = 0 in the first inequality ofl(Z]2) we get

k
(2.4) ooV = )+ D aidi(v) 2 e
i=1
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Suppose/™ is a minimizing sequence for the probleln{2.1)

e  V'eKandJ, (V") — j = in}z Jo(V).
Ve

This means thaf;(v") < Ofori = 1,--- ,kandJ,(V") — j. Hence
&3) will imply, sinceq; > 0

k
(V") - ) 2 (I (V) - )+ D @i di() =
i=1

Now taking limits aan — +oo it follows thata < 0. Thus we have

2.5) @i >0, fori=0,1,---,kand 3¥, e >0,
' ao(Jo(V) = J) + Z!‘Zl @i Ji(v) > 0, YveR"

We now make the fundamental hypothesis that
(2.6) a, > 0.

Under the hypothesi§(2.6) if we writg = aj/a, then [Zb) can be
written in the form

2.7) { A >0fori=1,--- ,kand

J < Jo(v) + Z:;l AiJi(v).¥veR"

i.e. leA and.Z(v, A1) > j YveR".
The condition [[Z16) is well known in the literature on opteaiion.
We introduce the following definition.

Definition 2.1. Any hypothesis on the constrainiswhich implies [Z.5)
is called a Qualifying hypothesis.

We shall see a little later some examples of Qualifying higpsis.
(Seel26],12¥],1128]).
We have thus proved the
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Theorem 2.1. If all the functionals i = 0,1, --- , k) are convex and if
the Qualifying hypothesis is satisfied then there exists/a such that
Z(v, ) > ] YveR".

i.e. there exists. &= (11, - - - , 4 )eRX with A; > 0 Vi such that

k
3o (V) + Y AJ(V) 2}, VveR".
i=1
We can also deduce frofa{R.7) the following result.

Theorem 2.2. Suppose all the functionals,J, - - - , Jkx are convex and
the Qualifying hypothesis holds. If the probldmi2.1) haslat®n, i.e.

(2.8) there exists a &K such that J(u) = j = in}lz Jo (V)
Ve

then the lagrangianZ has a saddle point.

Proof. We can write[[ZI7) as

A >0fori=1,--- ,kand

k
(2.9) Jo(U) < (W) + )" HiK(V) = LV, 2), YVeR",
i=1

Choosingv = uin Z9) we find that

k
Z AiJi(u) = 0.
i=1
But hered; > 0 andJj(u) < 0 sinceueK so thatd;J;(u) < O for all 160
i=1---,kand hence»:!‘zl AiJi(u) < 0. Thus we necessarily have
k
Z A4JWw=0
i=1

and, further more, it follows immediately from this that

g =0fori=1,---,k
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Thus we can rewritd (2.9) once again as :

4>0i=1--- k

uek, YK, 43i(u) = 0 and

LU, 2) = Jo(U) + T A HU) < Jo(V) + T (V)
= .Z(Vv, 1) YveR".

(2.10)

But, sinceueK, Ji(u) < 0 and we also have
(2.11)
LU p) = Jo(U) + XK, i (U0 < Jo(u) = Jo(u) + XK, 41 3i(u)
=.2(u, 1)
VueRK with = (u1, -+, ), i = O.

(Z10) asnd{Z11) together means that
Lu,p) < 2, ) < 2V, 1), YeR" andVueA.

This proves the theorem.

Some examples of Qualifying hypothesis.We recall that if all the
functionalsJ,, Ji, - - - , Jx are convex then we always ha¥e {2¥&kR".

If supposex, = 0 in (Z8) then we get

k
aj >0fori=1,--- ,k,_Z aj > 0and
(2.12) =1

k
> ajJi(v) = 0, YveR"
i=1

In all the examples we give below we state the Qualifying hiypo
161 esis in the following form. The given hypothesis togethethvihe fact
thata, = 0 will imply that it is impossible thaf{2]5) holds. i.e. Thg-h
pothesis will imply that[[Z12) cannot hold. Hencelif {2.5psld hold

we necessarily have, > 0, i.e. [Z6) holds.

Qualifying hypothesis (1)There exists a vectdeR" such that);(2) <

Ofori=1,---,k
This condition is due to Slater (See for instaride [6]).
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159
Suppose the Qualifying hypothesis (1) is satisfied. de&t be such

thatJ(Z2) < c < Oforalli = 1,--- ,k. Obviously such a constant c
exists since we can take= ma

X Ji(Z). Nowifa; 2031 =1,---,K)
1<i<k

k

are such thap’ «; > 0 then

i=1

k k
ZaiJi(Z) < CZ aj < 0.
i=1 i=1

This means thaf{Z12) does not hold for the ve@eR". Hence
@, > 0 necessarily so thdf(2.5) holdseR" and in particular for Z.

Qualifying hypothesis (2)There do not exist real numbers

k

aj(i=1,--- ,Kwitha; > 0and ¥ «; > 0 such that
(2.13) ‘ =1

> a@idi(v) = 0, YveK.
i=1

Suppose this hypothesis holds and= 0. Then we havd{Z12) for
all veR".

In particulas, we have

k
Z @;Ji(v) > 0, VveK.
i=1

~ M=

But veK anda; > 0 imply thata;Ji(v) < Ofori = 1,--- ,kand so

k
i=1
a, > 0.

a;jJi(v) < 0. The two inequalities together imply thak; > 0 with
> a; > 0 such that}, «;Ji(v) = 0, contrary to the hypothesis. Hence
= i=1

Quialifying hypothesis (3).Supposel;i(i = 1, - - - , k) further have gradi- 162
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entsGij(i=1,--- ,K).

There do not exist real numberswith

k
a;>0,i=1---,k > @ > 0 such that
(2.14) i &

k
> aiGi(V) = 0, YveK.
i=1

The condition[[Z14) seems to be due to to Kuhn and Tuékér [28]
It is enough to show that Qualifying hypothesis (3) impliesal?
ifying hypothesis (2). Suppose there exigt> 0,i = 1,--- ,k, with
k

> a;Ji(v) = 0 YveK. Then taking derivatives it will imply the existence
i=1

ofaj > 0( = 1,---,K) with Z aj > 0 such thatz aiGj(V) = 0 YveK.

This contradicts the given hypothe3|s Hem;e> 0

Finally we remark that the existence of a saddle point cam lads
proved using the minimax theorem of Ky Fan and Sion. We reder f
this to the book of Ceal6].

3 Duality in Infinite Dimensional Spaces Via
Ky Fan - Sion Theorem

This section will be concerned with the duality theory foe tminimi-

sation problem with constraints for functionals on infindienensional
Hilbert spaces. We confine ourselves to illustrate the ntettithe spe-
cial example of a quadratic form (see the model problem densd
in ChapterdL, Sectiofll 7) in which case we have proved theesxist
of a unigue solution for our probelm (see Secfibn 2 of ChdfjerAs

we have already mentioned this example includes a largs ofagri-

ational inequalities associated to second order elligfieigkntial oper-
ators and conversely. Our main tool in this will be the theo Ky

Fan and Sion. However we remark that our method is very gearch
is applicable but for some minor details to the case of gemenravex

programming problems in infinite dimesional spaces.
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3.1 Duality in the Case of a Quadratic Form
163

We take for the Hilbert spacé the Sobolev spackl(Q) whereQ is
a bounded open set with smooth bound&ryn R". Let a(-,-) be a
continuous quadratic form oy (i.e. it is a symmetric bilinear bicon-
tinuous mappingV x V — R) andL(:) be a continuous linear func-
tional onV (i.e. LeV’). We assume thai(-, -) is H}(Q) - coercive. Let
J: HY(Q) — R be the (strictly) convex continuous functional HR(Q)
defined by

3.1 J(V) = %a(v, V) — L(v).

We denote byj| - || the norm|| - [|41() @and by]| - || the norm|} - || 2(q)-
Let us consider the set

(3.2) K {viveH(Q), |IvI| < 1}.

We check immediately thdf is a closed convex set iH1(Q). We
are interested in the following minimisation problem :

Problem 3.1.To find ueK such thatl(u) < J(v), YveK.

SinceJ is H(Q) -coercive (hence strictly convex) and sinthas a
gradient and a hessian everywheré/ive know from Theoreril42.1
that the probleri 311 has unique solution.

In order to illustrate our method we shall consider a simpkecand
take

(3.3) A = {plpeR, u > 0}
and
(3.4) OV, 1) = %u(uvnz — 1) VveV = HY(Q) andpeA.

ThusK is nothing but the sefviveV, ®(v,u) < 0}. We define the
associated Lagrangian by

LV, 1) = (V) + OV, )
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i.e. 164
(3.5) 2(up) = 530) - L) + u(MI - 1)

We observe that

(i) the mappingu — Z(v, 1) is continuous linear and hence, in par-
ticular, it is concave and upper-semi-continuous and

(iiy the mappingv — Z(v, 1) is continuous and convex and hence in
particualr, it is convex and lower semi-continuous.

We are now in a position to prove the first result of this sectising
the theorem of Ky Fan and Sion. This can be stated as follows:

Theorem 3.1. Suppose the functional J on¥H1(Q) is given by[311)
and the closed convex set K of V is given[byl (3.2). Then theahg@n
(@3) associated to the primal probldm13.1 has a saddle pdiaireover,

if (u, ) is a saddle point ofZ then u is a solution of the generalized
Neumann problem

+Au+udu= finQ
(3.6) 0/onau=0onT

We note that here u antlare subjected to the constraints
(3.7) A >0, < 1 butA(ul> — 1) = 0.

Here the formal (dterential) operatoA is defined in the following
manner. For any fixedeV = H1(Q) the linear mapping — a(v, ¢) is
a continuous linear function@vi.e. AveV’. Moreoverv — Avbelongs
to .Z(V,V’) and we have

(Av, @)y = a(V, ¢), YpeH (Q) = V.

Similarly feL?(Q) is defined byl (¢) = (f. ©)12(q)> YepeV. Further
ou/dn, is the co-normal derivative af associated té\ and is defined
by the Green’s formula:

a(u, ) = (Au, @)y + f oudnapdo, VeV,
r



165

3. Duality in Infinite Dimensional Spaces Via... 163

as in Sectiof4 of ChaptEl 2.
In particular, if we take(v, v) = |||v|||>, thenA = —a and the problem
is nothing but the classical Neumann problem

(3.6

—-AU+U+Au=finQ,
ou/on=0onTI"

Of course, we again have(B.7).

Proof of Theorem 3.1.Let ¢ > 0 be any real number. We consider the
subsetK, andA, of H(Q2) andA respectively defined by

Ke = (viveH (Q), IVl < ¢}
A¢ = {ulueR,0 < u < €}

It is immediately verified thaK, and A, are convex sets, and that
A, is a compact set iR. SinceK, is a closed bounded set in the Hilbert
spaceH(Q), K, is weakly compact. We considét!(Q) with its weak
topoligy.

Now H(Q) = V with the weak topology is a Hausdbtopological
vector space. All the hypothesis of the theorem of Ky Fan dod 8re
satisfied byK,, A, and.Z in view of (i) and (ii). Hence? : K;xA; —» R
has a saddle pointyg, ;). i.e.

There exist (i, 17)eK; x A, such that

I(ug) + Fu(liull® = 1) < I(ug) + Fac(llluell® - 1)
< J(v) + (V2 - 1).

Y(v, w)eKe X Ag.

(3.8)

We shall show that if we chooge> 0 suficiently large then such a
saddle point can be obtained independent aifd this would prove the
first part of the assertion. For this we shall first prove thaf and A,
are bounded by constants independent. of

If we takeu = OeA, in (Z8) we get

(3.9) 3w < I + %/lg(HVHZ _1).weKk,
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and, in particular, we also get 166
(3.10) J(up) < J(v),¥v e KNK,.

Takingv = 0 € K n Ky in 310) we see thal(u,) < J(0)(= 0). On
the other hand, sinca&(u,, uy) > 0 and sincey, € K,

L(ue) < LI llluelll < €Ll

we see that 1
J(w) = Ea(ut’, Ug) — L(ug) > —£lIL

which proves thad(u,) is also bounded below. Thus we have
(3.12) L < I(ue) < J(0).

Now by coercivity ofa(-, -) and [311L) we find

allluell® < a(ug, u) = 2(3(ur) + L(Up)) < 2(3(0) + IILIv- llluell)-

with a constantr > 0 (independent of). Here we use the trivial in-
equality

ILINvNluelll < elllulll® + 1/€l|LIg, . for anye > O.
with € = /4 > 0 and we obtain
lluell* < 4/2(3(0) + 4/alILIIG,)
This proves that there exists a constent- 0 such that
(3.12) llluglll < e, VeE.

To prove thati, is also bounded by a constamt > 0 independent
of ¢, we observe that sincé satisfies all the assumptions of Theorem
167 I3 of Chaptel2, (Sectidh 3) there exists a unique glolxahmum in
V = HY(Q)i.e.

(3.13) There exists uniquetgH(Q) such thatl(T) < J(v), VveV.
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Hence we have
J(U) + A,/2 < I(up) + /2.
But, if we takev = 0eK; in the second inequality ifi.{3.9) we get
J(ur) + 2¢/2 < J(0).
These two inequalities together imply that
A¢/2 < J(0) - J(U).
ie.
(3.14) 0< 2, <2(3(0) - J(U) =2
which proves thaifl, is also bounded.
(3.15) We choosé > max(cy, 2¢,) > 0.

Next we show tha{{318) holds for amgA. For this, we use the first
inequality in [338) in the form

u(lluel? = 1) < (lugll?ll - 2).

This implies (i) takingu = 0, A¢(||lu¢|l> — 1) > 0 and
(ii) taking u = 21, < 2¢5 < ¢, ¢, A¢(||lug]l? = 1) < 0. Thus we have

Ac(lluell? = 1) = 0 andu(llucl® — 1) < 0, YeA,.
In particular,u = teA, and sof(||u¢||> — 1) < 0. Thus we have
Ae(luell® - 1) = 0 andu(llucl® - 1) < 0, VyeA,
In particular,u = feA, and sof(||luc||?> — 1) < 0 which means that
llugll® = 1 < 0.

Hence we also have

u(llugl®> = 1) < 0 for anyu > 0.
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and therefore 168
(3.16) L(up, ) < ZL(ug, A7) < 2LV, ), Yu = 0 andveK,

wheref > max(cy, 2¢y).

We have now only to show that we halZ€(3.16) for ael1(Q) = V.
For this we note thalju.||| < ¢; < £ and hence we can find an> 0 such
that the ball

B(U, 1) = {MveH*(Q); IV - uelll < 1)
is contained in the balB(0, ) = {viveH(Q), |IMIl < ¢}. In fact, it is
enough to take O< r < (¢ — c1)/2. Now the functionalZ(:, ;) :
Vs LV, A) = JV) + A/2(IMI? - 1) has a local minimum iB(u, r).
But since this functional is convex such a minimum is also @bal
minimum. This means that

inf L, 4) = inf LV, 40).
Ve

veR(ucr)
On the other hand, sind&u,,r) c K, we see from[(3.16) that

LU, ) < ZL(Ue, A¢) < ian 2LV, ) < )-iﬂ(V, Ag) = in\1; 2LV, ).
VeK, Vel Ve

inf
B(ug,r
In other words, we have

L(up, 1) < ZL(ug, Ap) < LV, A¢),YveV andVu > 0

which means that? has a saddle point.

Finally we prove thaty, 1) = (ug, 4/)(€ > max(y, 2¢;)) satisfies
@38). First of all the functional — £ (v, 1) is G-differentiable and has
a gradient everywhere M. In fact, we have

(3.17) (@radZ)(v), )v = a(v, ) — L(¢) + AV, 9)v.

We know by TheorerllZ 1.3 (Chapfér 2, Secfibn 1) that at thet poi
uwherev — Z(v, 1) has a minimum we should have

(3.18) (gradZ’ (-, Y)u, p)v = 0.
Now, if we usel(3117) [(318) and the definitionAd, f anddu/dna
we obtain [3.B).

This proves the theorem completely.
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Remark 3.1. The above argument using the theorem of Ky Fan and Sion
can be carried out for the functiondlgiven again by{{3]1) but the con-
vex setK of (32) replaced by any one of the following sets

K1 = {VveH}(Q),v > 0 a. e. inQ},
Ko = (VveH}(Q), y.v> 0 a. e. o} and
Ks = {viveH(Q), 1 — grad?u(x) > 0 a. e. inQ}.

SinceveH(Q), yoveH (I, 1 — gracku(X)eL1(Q) and since
(HYQ)Y = HY(Q), (HZ([)) = HZ(), (L HQ)) = L™(Q)

we will have to choose the corferespectively in these spaces.

We recall that ifE is a vector space in which we have a notion of
positivity then we can define in a natural way a notion of pasjtin
its dual spaceée’ by requiring an elemenieE’ is positive (i.e.u > 0
in E) if and only if < u,¢ >p«xe> 0, YeeE with ¢ > 0. For the
above examples we can take ®rthe space$il(Q), H%(F) andL(Q)
respectively and we have notions of positivity for their dgaces.

We can now take

A1 = {ueH ™ H(Q)u = 0in <Yy,
Ao = {,u|yeH_%(F),y >0onI}and
A3z = {uluelL™(Q),u = 0in Q}.
and correspondingly the Lagrangians 170

LV, p) = IV)+ < 1,V >pugyuH@)

L) = IV <pyeV> 3 g AN

L3V, 1) = IV)+ < 1V > s(@)xLi(@) -

We leave other details of the proof to the reader except tarkethat
Aj being cones in infinite dimensional Banach spaces the/se(s =
1, 2, 3) for any¢ > 0 will only be convex sets which are compact in the
weak topologies oH™1(Q) and H‘%(F) fori = 1,2 and in the weak
topology ofL*(Q) fori = 3.
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3.2 Dual Problem

We once again restrict ourselves to the problem considef@dii.e.J
is a quadratic form oW = H™1(Q) given by [Z11) and the closed convex
setK is given by [3R). We shall study the dual problem in this c&¥e
takeA and® as before.

We recall that the dual problem is the following:

To find (u, eV x A such that

£(u, 2) = supinf Z(v, 1)
u>0 VeV

1 1., .,
= igglvg\f/{za(v, V) = L) + Su(MI” = D).

We fix au > 0.
First of all we consider the minimization problem withounhestrains
for the functional

L(p) Vi SN - L) + Zu(MP - 1)

on the spac® = H(Q). We know from Chaptdd 2 (Theordth[Z.1) that
it has a uniqgue minimura,eV since.Z (-, 1) has a gradient and a hessian
(which is coercive) everywhere. MoreovegradZ (-, u))(u,) = O i.e.
we have

(3.19) a(uy, ¢) — L(p) + 1(Uy, ) =0, VeV
We can write using Fréchet-Riesz theorem
a(u, ¢) = (AU ¢)), L(p) = ((F, 9)), (U, @) = ((Bu ¢))

where ((, -)) denotes the inner product H(Q) andAu, F, BueH(Q).
Then [3ID) can be rewritten as

(3.20) Au, - F +uBuy, = 0.

Hence the unique solutiam,eV of the minimizing problem without
constrainer fortZ (-, u) is given by

(3.21) u, = (A+uB)'F.

We can now formulate our next result as follows.
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Theorem 3.2. Under the assumptions of Theor€ml 3.1 the dual of the
primal ProblenT31L is the following:
To findAeA such that J(A) = inf ey I* (1), where

(3.22) () = ((F.uy) + . ie.

Dual Problem (3.2).To find 2 > 0 such thatl*(2) = inf ;50 J*(u).

Proof. Consider

L (ot) = 3(A,U) ~ (F ) + (1P - 1)
= 3(AY4) - (F.4) + 5u((BY,.u) - 1)

S(A+ 1B ) — (Fu) ~ /2
o 172

Now using [3:2D) we can write

Lot = ~5(F ) - 12 = ~5((F ) + 0

Thus we see that

. 1
supinf Z(v, 1) = sup(—5{((F, u,)) + u}
u>0 veV >0 2

1.
=207 W
which proves the assertion.
We wish to construct an algorithm for the solution of the dualb-
lem {32). We observe that in this case the constraink sef{u|ueR, u >
0} is a cone with vertex ateR and that numerically it is easy to compute
the projection on a cone. In face, in our special case we have

PA(#):{y if u>0

0 otherwise
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Hence we can use the algorithm given by the method of gradient
with projection. This we shall discuss a little later. We lshaed, for
this method, to calculate the gradient of the cost funcfiofor the dual
problem.

Form [322) we have

I () = ((F.u) +p.
Taking G-derivatives on both sides we get
(3.23) (gradd)(u) = J*(u) = ((F.u)) +1

whereu, is the derivative ol), with respect tq.. In order to compute
u, we differentiate with equatioi {3.20) with respecytto get.

Au, +uBY, + By, =0
173 and so
(3.24) U, = —(A+ uB)'Bu,.
Substituting[[324) iN(3.23) we see that
J* () = —((F, (A+uB)'By,)) + 1.

Sincea(-, ) is symmetric A is self adjoint and since -} is symmet-
ric B is also self adjoint. ThenX+ uB)™! is also self adjoint. This fact
together with[[3:21) will imply

J*(u) = —(A+uB)™*F,By,) + 1 = —(u,, Bu,) + 1
This nothing but saying
(3.25) J () = 1 lu,li?

Remark 3.2.1n our discussion above the functionials defined byl(314)
and we found the gradient of the dual cost function is givefBIZB.
More generally, ifd(v, 1) = (g(Vv), 1) then the gradient of the dual cost
function can be shown to b&(u) = —-g(u,). We leave the straight
forward verification of this fact to the reader.
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3.3 Method of Uzawa

The method of Uzawa that we shall study in this section givealgo-
rithm to construct a minimizing sequence for the dual probéad also
an algorithm for the primal problem itself (seé [6]. [49])h&important
idea used is that since the dual problem is one of miniminaticer a
cone in a suitable space it is easy to compute the projectiarerically
onto such a cone. The algorithm we give is nothing but the ateti 174
gradient with projection for the dual problem (see Sediiai @hapter
). We shall show that this method provides a strong converyef the
minimizing sequence obtained for the primal problem while mave
only a very weak result on the convergence of the algorithnthfe dual
problem.

In general the algorithm for the dual problem may not coneerg
The interest of the method is mainly the convergence of thremizing
sequence for the primal problem.

We shall once again restrict ourselves only to the situatmmsid-
ered earlieri.eJ K, A, ® and.Z are defined by[(311) E{3.5) respectively.

Algorithm. Let A, be an arbitrarily fixed point and suppasg is deter-
mined.
We definetm,1 by

(3.26) Ami1 = Pa(Am — pJ" (Am))-

whereP, denotes the projection on to the cakendp > 0.
In our special case we get, usig(3.25).

(3.26) Ame1 = Pa(dm = p(L = lluml?))
whereun, = u,,, is the unique solution of the problem
(3.20y AUn + AnmBuy, = F.

ie.

(3.21) Un = (A+ AmB)~1F.
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We remark thatl{3:21) is equivalent to solving a Neumann|prab
In the special case wheggv, V) = |||v|||> we have to solve the Neumann
problem

(3.20)" {Aum + 1+ Anunm =FinQ,

OUm/On =0onrI’

i.e. At each stage of the iteration we need to solve a Neumgotrigm
in order to determine the next iteratg,1.
We shall prove the following main result of this section.

Theorem 3.3. Suppose the hypothesis of Theolen 3.1 are satisfied.
Then we have the following assertions.

(a) The sequence= u,  determined b§f3:20Y] converges strongly
to the (unique) solution of the primal Problémi3.1.

(b) Any cluster point of the sequengg determined b{{3.26)] is a
solution of the dual Problem 3.2.

The proof of the theorem is in several steps. For this we slegitl a
Taylor’s formula for the dual cost functiaii (i.e. the functionall{3:22))
and an inequality which is a consequence of Taylor’'s formula

Taylor’s formula for J. Let A, ueA and we consider the problem

(3.27) @+ AB)u=Fand A+uB)v=F

where we have written, = vandu, = u. We can also write the first
equation as

(A+AB)v=F — (u—2)Bv=(A+ AB)u— (u — 1)Bv

(A+aB)(v—u) = —(u — 2)Bv.

Similarly we have

(A+uB)(v—u) = —(u - 2)Bu.
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which implies that
(3.28) U, — Uy =V—u=—(u—A)(A+uB) By
Then [32PR) together witli {3P8) gives

Fw) = I+ (Fu, —up) + (- 2)
= J() = (u— A((F. (A+uB) o) + 1 — 4
=J@) - (- DA+ uB)'F,Bu)) +u -1

since A + uB)™! is self adjoint becausa(-, -) is symmetric and-(-) is 176
symmetric. Once again using the second equationnl(3.2Qetve

I () = I(2) = (1 = (U, Buy)) + (u = 1)
= J() = (= D(Up, W) + (= Q) = (= (Ux = Uy, Wy)

where we have used-(B-)) = (-, /). i.e. We have
(329)  J(u) = I(A) + (u = DL~ uallP] = ( = (U = U, Uy).

We shall now get an estimate for the last ternof (1B.29). FiBZ)
we can write

((A+uV)(v—u),v—u)) = —(u - )((Buv-u)
which is nothing but
av-uv-u)+uv-uv-u)=—(u—-2U,v-—u.

Using coercivity ofa(,-),u(v — u,v — u) > 0 on the left side and
Cauchy-Schwarz inequality on the side we get

2
al[lV = ulll” < fu = Allfjullliilv = ull

(3.30) IV —ulll < lu = Al/alllull
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On the other hand, sinaeis a solution of[(3.20), we also have
a(u,u) + A(u,u) = L(u)
from which we get again using coercivity on the left
alllulll®> < [ILIIvlllulll < NJjjulll, for some constari¥l > 0.

i.e. 177
llulll < N/a.

On substituting this iIN{3.30) we get the estimate
v —ulll < Nju = A1/a?
which is the same thing as
(3.31) llu, = ualll < Nju = Al/e?.
Finally (3.29) together with this estimafe (3 31) implies

(3.32) F () < I () + (= D~ luallP?) + N3 — a2/,

Proof of Theorem 3.3.

Step 6.J*(1m) is a decreasing sequence and is bounded below if the
parametep > 0 is suficiently small. We recall thaty,.1 is bounded as

A1 = Pa(dm — p(L = lluml®).

We know that in the Hilbert spadthe projection P onto the closed
convex sefA is characterized by the variational inequality

(Am = (1 = luml®) = Ame1, = Ame1)r < O, VueA.

i.e. we have

(3.33) @m = (L = luml®) = Ams1)( — Ame1) < O, VueA.
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Puttingu = Ay in this variational inequality we find
(3.34) A = Ameal” < p(L = Ull) (Am = A1)

On the other hand{3B2) wifla = Ami1, 4 = Am, Uy = Um(= Uy,),
becomes

J (Amr1) < I (Am) + (Ame1 — Am)(1 - ||Um||2) + M|y - /1m|2

whereM is the constanh?/a® > 0. If we use[[3:34) on the right side of
this inequality we get

J*(/lm+1) < J*(/lm) - 1/plAmi1 — /1m|2 + M|Ami1 — /1m|2
i.e.
(3.35) I (Amr1) + 1/ = M) Amer = Aml® < I*(Am).

Here, 1/p — M would be> 0 if we take 0< p < 1/M = o®/N?,
a fixed constant independent &f We therefore takee]0, 1/M[ in the
definition of 4n;1 SO that we have

I (Ame1) < I (Am),

which proves that the sequendg 1) is decreasing for & p < 1/M.
To prove that it is bounded below we use the definitionJgft) and
Cauchy-Schwarz inequality: Frofa{3122)

J(D) = (F,up) + A = —[lIFlllualll = =N/ellIF Il

since ||lu;lll € N/a. This proves thatl*(4y) is bounded below by
—N/«a|||F|l|, a known constant.

Step 7.By step 1 it follows thatl*(4y,) converges to a limit as — +co.
Moreover, [3:3b) will then imply that

(3.36) IAmi1 — Aml? — 0 asm — +co.
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Step 8.The sequenceé, has a cluster point iR. For this, sincel* (1)
is decreasing we haw# (Am.1) < J*(1,) i.e. we have

((F,ums1)) + Ame1 < ((F Wo)) + Ao

and the right hand side is a constant independem. @o, by Cauchy- 179
Schwarz inequality,

Ami1 < ((F Us = Umy1)) + 4o < ((FUo)) + Ao + [[[UmeallIHITFII-
But |||lun:1]ll is bounded by a constant (N/«) and hence
0 < Ami1 < ((F W) + 4o + NJlIFll/c.

i.e. The sequencg, is bounded. We can then extract a subsequence
which converges.

Similarly, sinceun, is a bounded sequence kt(Q) there exists a
sub-sequence which converges weakiHiH(Q). Let {m'} be a subse-
quence of the positive integers such that

Ay — A" inR anduy = Uy, — u*in HY(Q).

Step 9.Any cluster point1* of the sequencen, is a solution of the dual
problemZP.

Let Ay be a subsequence which convergegd*toWe may assume,
if necessary by extracting a subsequence that— u* in H(Q). By
Rellich’s lemma the inclusion dfi}(Q) in L2(Q) is compact (sinc€ is
bounded) and henagy — u* in L?(Q). Thenu* satisfies the equation

(3.37) u*eH(Q), AU* + 1*Bu" = F.
To see this, sincayy is a solution of [[(30}) we have

(At ¢)) + A (B, ) = ((F. 9)), YoeH (Q).
e ((Atw, ¢)) + A (Unr. @) = ((F.9)), YpeH Q).

Taking limits asm’ — +oc0 we have

(AU, 9)) + 2 (0", ¢) = ((F. ¢)), VpeH (Q)



3. Duality in Infinite Dimensional Spaces Via... 177

180  which is the same thing ag{3137).
On the other hand[{3:B3) for the subsequence becomes

1/p(Ant = Amr+2) (@ = Any+1) < (1= U IP) (e = Amy42), YieA.

Here on the left side: — Ay, 1 is bounded indepedent off and
Ay — Aws1 — 0 asm — +oo by (336). On the right side again by
B38),u— A1 — p— A" and (I- [[uy[?) = (1 [Ju*[?) asm’ — +co.
Thus we get on passing to the limits

(3.38) e, (1 — ') (u — 2%) > 0, VueA.
Sinceu* is a solution of[[3:37), we know on using(3l25), that
(gradJ)(2*) = J*(2%) = (1 = "I
Then [3:3B) is the same thing as
AeN, I (A7).(u — A7) > 0, VueA.

By the results of Chaptdd 2 (Theordih EZ12.2) this last vameti
inequality characterizes a solution of the dual Problem®)(3[husi* is
a solution of the dual problem.

Step 10.The sequencei, converges weakly itH1(Q) to the unique
solutionu of the primal problem.

As in the earlier steps since the sequengds bounded inH(Q)
and Ay is bounded iR we can find a subsequeno@ of integers such

that
Uy — u*in HY(Q) and Ay — 2" inR.

We shall prove thatu, 1*) is a saddle point for the Lagrangian. It
is easily verified that 181
(grad, Z (-, ")) (u") = a(u’, u’) + A" (u”, u’) - L(U").

But the right hand side vanishes becausds the solution of the

eqguation
AU +A'BU = F
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as can be proved exactly as in Step 4. Morea#df, 1*) is convex
(strongly convex). Hence by Theordni 212.2.

(3.39) LU, %) < ZL(v, 1), YveH Q).

Next we see similarly that

(grad, (", D) = 50U - 1)

and_Z(u*, ) is concave. One again usirlg(3.38) and the Thedlém] 2.2.2
we conclude that

(3.40) LU 1) < LU, A7), Vae.

The two inequalitied (3:39) and(3140) together mean tlfati() is
a saddle point forZ. Henceu* is a solution of the Primal problem and
A* is a solution of the dual problem. But sindes strictly convex it has
unigue minimum inH(Q). Henceu = u* andu is the unique weak-
cluster point of the sequencg, in H(Q). This implies that the entire
sequencel, converges weakly tain H1(Q).

Step 11.The sequence, converges strongly itd1(Q) to the unique
solution of the primal problem.
We can write using the definition of the functional

J(u) = I(Um) + a(Um, U — Unm) — L(U—um) + %a(u — U, U — Um).

By the coercivity ofa(-, -) applied to the last terms on the right side

I(um) + @/2l|Ju = umll? < I(U) - {a(Um, U — Um) — L(U - um)}
= J(U) + ((Aum - F, U - un))
= J(u) + Am((BUm, U — um))

182  sinceun, satisfies the equatiop (€DY). i.e. we have

J(Um) + @/2lu = Ul < I(U) + Am(Um, U= Up).
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On the left hand side we know thdfu,) — J(u) and on the right
hand side we know thaf,| anduy, are bounded while by Step &,—
Um — 0 (weakly)inH(Q).

Hence taking limits asn — +oo we see that

[[lu = Umll| = 0 asm — +oo.

This completely proves the theorem.
In conclusion we make some remarks on the method of Uzawa.

Remark 3.3.In the example we have considered to describe the method
of UzawaA is a cone irR. But, in general, the cong will be a subset of

an infinite dimensional (Banach) space. We can still use muraent

of Step 3 of the proof to show that, has a weak cluster point and that
of Step 4 to show that a weak cluster point gives a solutiomefdual
problem.

Remark 3.4.We can also use the method of Frank and Wolfe since also
in this case the dual problem is one of minimization on a canerlaich
it is easy to compute projections numerically.

Remark 3.5.While the method of Uzawa gives strong convergence re-
sults for the algorithm to the primal the result the dual peabis very
weak.

Remark 3.7.Suppose we consider a more general type of the primal
problem for the same functiondldefined by[(311) of the form:

to find ueK, J(u) = inf J(v)
Ve

whereK is a closed convex by set v = HY(Q) is defined by 183
K = {viveH}(Q), g(v) < 0}.

with g a mapping oH(Q) into a suitable topological vector spaggin
fact a Banach space) in which we have a notion of positivityemwe
take a coneA in E as in Remark=312 and(v, 1) =< u,g(V) >pxe- In
order to carry over the same kind of algorithm as we have gamave
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in the special case we proceed as follows: Suppogés determined
starting from al.eA. We firstsolve the minimization problem

to find upy, such thatZ (Um, Am) = ir\1/f LV, Am)
gradJ (Am) = —9(Um)

Then we can use RemdIKB.2 to determipg; :
Ami1 = PA(Am = pJ"(Am)) = Pa(Am + pg(Wa)).

We can now check that the rest of our argument goes througlly eas
in this case also except that we keep in view our earlier rksnalbout
taking weak topologies ift’. For instance, we can use this procedure in
the cases of convex sdfs, K, K3 of Remark31l. We leave the details
of these to the reader.

4 Minimization of Non-Di fferentiable Functionals
Using Duality

In this section we apply the duality method using Ky Fan arahSihe-
orem to the case of a minimization problem for a functionalolhis
not G-differentiable. The main idea is to transform the minimization
problem into one of determining a saddle point for a suitéinhetional
on the product of the given space with a suitable cone. Thistional
of two variables behaves very much like the Lagrangian (daned in
SectiorB) for the regular part of the given functional. latfae choose
the coneA and the functiond in such a way that the nonfiitrentiable
part of the given functional can be written asup,., ®(v,x). It turns
out that in this case the dual cost function will Beregular and hence
we can apply, for instance, the method of gradient with mtae. This
in its turn enables us to give an algorithm to determine a mizing
sequence for the original minimization problem. The probtanver-
gence is on lines similar to the one we have given for the qgevee
of the algorithm in the method of Uzawa.
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We shall however begin our discussion assuming that we aen gi
the coneA and the functionb in a special form and thus we start in fact
with a saddle point problem.

LetV andE be two Hilbert spaces and 18§ : V — R be afunctional
onV of the form

1
4.1 Vaove J(V) = Ea(v, V) — L(V)eR
where as usual we assume:

(Ha(:,-) is a bilinear bicontinuous coercive form dhand
(4.2) ii)LeV’

Suppose we also have

(iii) a closed convex bounded gein E with OeA, and
(4.3) (iv) and operatoBe.Z (V, E).

We set
(4.4) Ju(v) = iJAF(—(BV, H)E)
and 185
(4.5) J(V) = o (V) + J1(V).

Consider now the minimization problem:
Primal Problem (4.6). To find ueV such thatJ(u) = inf,o, J(V). We
introduce the functional” onV x A by
(4.7) 2V, 1) = Jo(V) — (BY, p)e.

It is clear that if we defin@®(v, u) = —(Bv, u)e then.#Z can be con-
sidered a Lagrangian associated to the functidgand the cone gen-
erated byA. SinceveV the condition thatb(v, z) < 0 impliesveV is
automatically satisfied and more over, we also have

O(v, pp) = —(BV, pr)e = —p(BV, ) = p®@(V, 1), Vp > 0.
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On the other hand we see that the minimax problem for the func-
tional . is nothing but our primal problem. In fact, we have

(4.8) inf supZ (v, u) = inf(J(v) + sup—(BV, u)e))
VeV HEA VeV ued
= inf 300

We are thus led to the problem of finding a saddle point&ar

Remark 4.1.In practice, we are gived;, the non-G-differentiable
part of the functionald to be minimized and hence it will be neces-
sary to choose the hilbert spaEea closed convex bounded sein F
(with OeA) and an operatdBe.Z’(V, E) suitably so thad (V) = sup,., —
(BVnu)E == inf,ueA(BVaﬂ)E-

We shall now examine a few examples of the functiordaland the
corresponcE, A, and the operator B. In all the following examples we
take

V =R" E =R™andBe.Z(V, E) an (nx n) — matrix.

186
We also use the following satandard norms in the Euclideanesp
R™ If 1 < p < +c0 then we define the norms:

m
llp = O ilP)MP
i=1

and
lulo = SUP |uil.

1<i<m

Example 4.1.Let Ay = {ueR™ : |ul» < 1}. Then

J1(v) = sup(—(BV, u)g) = [BM2.
HeEN
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Example 4.2.Let Ay = {ueR™ : |ul1 < 1}. ThenJy(v) = |BVw. If we
denote the elements of the matrix B by thenlb; = (biy,--- ,bin) is a
vector inR" andBv = ((BV)1, - - , (BV)m):

(BV) = (bi.v)en = ) byjy;.

i=1
Hence
n
Ji(v) = max|(Bv)i| = m_aX|ZbijVj|-
1<i<m 1<i<m i

Example 4.3.If we take As = {ueR™; |ulo < 1} then we will find
J1(v) = |BM1 and hence

m n
Ji(v) = Z | Z bijvjl
i-1 j=1
Example 4.4.1f we takeAs = {ueR™; |ule < 1, u > 0} then we find

(Bv)i when Bv); > 0

J(v) = |(BV)+|1 where (BV)+)i = { 0 when @v); < 0

Hence

Ju(v) = Z | Z(bljvj Z Z(bIJVJ

i=1 j=1
187

Proposition 4.1. Under the assumptions made on A and B there
exists a saddle point fo’ in V x A.

Proof. The mappingv — Z(v,u) of V — R is convex (in fact strictly
convex sincea(-, -) is coercive) and continuous and in particular lower
semi-continuous. The mappig> u — (v, u) is concave and continu-
ous and hence is upper semi-continuous. A.et0 be a constant which
we shall choose suitably later on and let us consider the set

U = {VIveV, [Mlv < ¢}
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The setU, is a closed convex bounded seMrand hence is weakly
compact. SimilarlyA is also weakly irE. Thus taking weak topologies
onV andE we have two Hausdéitopological vector spaces. We can
now apply the theorem dfy Fan and Sion to setd, andA. We see
that there exists a saddle point,(1,)eU, x A for .Z. i.e. We have
(4.9)

(Ug, Ap)eUy x A, L (Ug, p) < L(Ug, A7) < LV, Ag), Y(V, w)eUp X A.

Choosingu = 0in the first inequality ofl{419) we get® —(Bu,, A¢)e
i.e. Bu, A7)e <0and

Jo(Up) < Jo(ug) — (Bug, Ap)e < Jo(V) — (BY, A¢)E.
Next, if we takev = 0eU, we get
(4.10) Jo(Ur) < Jo(V)(= 0).
From this we can show thity ||y is bounded. In fact, the inequality

@10) is nothing but

1
Ea(u[, U{) - L(U[) <0.

Using the coercivity of(:, -) (with the constant of coercivity > 0)

alluglld < a(ug, ug) < 2L(ug) < 2lILINluglly

(4.11) Leludllv < 2L /a.

In other words)|u|lv is bounded by a constant= 2||L|ly//a inde-
pendent of.

Now we takef > ¢. Then we can find a baB(ug, r) = {veV|||lv —
ullv < r} contained in the balB(0, ). It is enough to takee]0, 5E].
The functionall, attains a local minimum in such a ball. Naly being
(strictly) convex it is the unique global minimum. Thus wevégroved
that if we choosé > ¢ > 0 wherec = 2||L||\+/a there exists
(4.12)

(u, eV x A such thatZ(u, ) < Z(u, 1) < LV, )YV(V, n)eV X A
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which means that( 2) is a saddle point faiZ in V x A.

Dual problem. By definition the dual problem is characterized by con-
sidering the problem:

(4.13) { to find (U, 2)eU x A such that

SUR,ep infuev Z(V, 1) = £ (u, ).

We write .Z(v, 1) in the following form: Since the mapping —
a(u, v) is continuous linear there exists an eleman¢V such that

a(u,v) = (Au, V)y, YVeV.

Moreover,Ae.Z(V, V). Also by Frechet-Riesz theorem there exists
anFeV such that
L(V) = (F,v)y, VeV

Thus we have 189
L0 = S(AVYy - (F 3y - (BYe
= %(Av, Vv — (v, F + B*'u)v.
For anyueA fixed we consider the minimization problem

(4.14) to findu,eA such that? (uy, 1) = in\lj LV, u).
Ve

Once agairv — Z(v, u) is twiceG-differentiable and has a gradient
and a hessian everywhere\ih In fact,

(4.15) @rad,Z (-, )(¥) = (Av, o)v — (F, ©)v — (B*u, ¢)

and
(HessZ(, 1))(e. ¢) = (AY, p)v.

Hence, the coercivity od(-, -) implies that

(AV,V)y = a(v,V) > a|MfZ, VveV



190

186 5. Duality and Its Applications

which then implies that — Z(v, u) is strictly convex. Then by Theo-
rem2[ZP there exists a unique solutignof the problem[(4.74) and,
satisfies the equation

[grad,.Z (-, )]v-y, = O.
i.e. There exists a uniqugeV such that

LY p) = inf LV 1)

and moreoveu, satisfies the equation

(4.16) Au, o)v — (B'u, @)v — (F,@)v = 0, VypeV.
i.e.
(4.16) Au, = F + B

Thus we have
(4.17) u, = AY(F + B*p)
and takingy = u, in (@.I8) we also find that
(4.18) Au,, u)v = (F + B, u,)y.
using [41¥) and{4.18) we can write
L) = 31AG U~ 2(F Uy — 281 )
= -S(E v + B4
= SR A + B + (B A + B
= -S(BA B W + 2BAF e + (FAF)e)
since A is symmetric implieA ! is also self adjoint. Thus we see that

supinf .Z'(v, ) = sup-Z (U, 1)

el V€ HeA
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1 1o _ _
= sup-S{(BA'B'y, p)e + 2(BA™F, p)e + (F, A F)e).
HeA

If we set
(4.19) o/ = BA1B*and.Z = -BAlF

then«/e.#(E.E) and.# ¢E and moreover

(4.20) supnf £(v.p) = 3 nf ((/p0 e - 207 e + (F A F)e).
ue

yeA Ve

Here the functional
1
(4.21) U 5(@7/1,#)E - (Z, e

is quadratic on the convex st It is twice G-differentiale with respect191
tou in all directions in L and has a gradie@t (1) and a Hessiah*(u)
every where in\. In fact, we can easily see that

(4.22) G'(w) = Au—-%.
Thus we have provd the following

Proposition 4.2. Under the assumptions made on A and B the dual
of the primal problem (4.6) is the following problem:
Dual Problem.

(4.23) To findAeA such that J(A) = in/f\ J* (),
HE.
where
J* =1 _
(4.24) (1) 2( w e — (F, 1we,
4 = BA'1B*,.# = -BA'F.

Remark 4.2.In view of the Remarki{3]2) and the fact thg{t) = —Bv
in our case we know that the gradientBfis given byG*(u) = +Bu,.
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We see easily that this is also the case in pur present proldlefact,

by £.23)
G'u=au-.7 =BABu+BAF = BAY(Bu+F).
On the other hand, by {21 %), = A"}(B*u + F) so that
Bu, = BAY(B'u + F) = G*(u).

Algorithm. To determine a minimizing sequence for our primal
proble we can use the same algorithm as in the method of Uzawa.

Supposel, is an arbitrarily fixed point irA. We determinal, by
solving the equation

(4.25) U.eV, AU, = F + B A,.

192
If we have determined,, (andum,_1) iteratively we determine, as
the unique solution of the functional (Ekrential in most of the applica-
tions) equation

(4.26) UmeY, Ay = F + B* Ay

i.e. Un is the solution of the equation

(4.26)  a(um,¢) = (F + B'Am, p)v = (F, @)v + (Am, Bp)e, YpeV.
Then we define

(4.27) Ami1 = Pa(Am — pBum)

whereP, is the projection oE onto the closed convex satandp > 0
is a suficiently small parameter.

The convergence of the algorithm to a solution of the miningz
problem for the (non-dierentiable) functionall, J = J, + J1, can be
proved exactly as in the proof of convergence in the methddzafva.
However, we shall omit the details of this proof.
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Remark 4.3.If we choose the Hilbert spadg, the convex sei in E
and the operatdBe.Z (V, E) properly this method provides a good algo-
rithm to solve the minimization problem for many of the knowon-
differentiable functionals.

Remark 4.4.In the above algorithm{4.26) is a linear systenVifis
finite dimensional, and i¥ is an infinite dimensional (Hilbert) space
then [4.2B) can be interpreted as a Neumann type problem.

Remark 4.5.We can also give an algorithm using the method of Franck
and Wolfe to solve the dual problem instead of the method adlignt
with projection. Here we can takke> 0 to be a fixed constant which is
suficiently small.






Chapter 6

Elements of the Theory of
Control and Elements of
Optimal Design

This chapter will be concerned with two problem which canreated 193
can be using the technigues developed in the previous asaptmely,

(1) the optimal control problem,
(2) the problem of optimal design.

These two problems are somewhat similar. We shall reduce the
problems to suitable minimization problems so that we canthe al-
gorithms discussed in earlier chapters to obtain apprdioms to the
solution of the two problems considered here.

1 Optimal Control Theory

We shall give an abstract formulation of the problem of opficontrol
and this can be considered as a problem of optimization fonetional

on a convex set of functions. By using the duality method f@meple

via the theorem oKy Fan and Sion we reduce our control problem to a
system consisting of the state equation, the adjoint statatmn, and a

191
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variational inequality for the solution of the original fslem. The vari-
ational inequality can be considered as Pontrjagin maxirptntiple
well known in control theory. Inorder to obtain an algorithme elimi-
nate at least formally the state and obtain a pure minintimgtroblem
for which we can use the appropriate algorithms describe€aitier
chapters:

The theory of optimal control can roughly be described istaufrom
the following data. We are given

194 (i) A control u, which belogs to a given convex g¢tof functionskK
is called the set of controls.

(i) The state (of the system to be controlgd)) = vy, is, for a given
ueK, a solution of a functional equation. This equation is chlle
the state equation governing the problem of control.

(iii) A functional J(y, u) - called the cost function - defined by means
of certain non-negative functionals ofindy.

If we set
J(u) = J(yu, u)
then the problem of optimal control consists in finding a 8oluof the
minimization problem:

ueK such that
j(v) = infyek j(V).

Usually the state equations governing the system to bealedtare
ordinary or partial dierential equation.

The main object of the theory is to find necessary (anticent)
conditions for the existence and uniqueness of the solatitine above
problem and to obtain algorithm for determining approxiona to the
solutions of the problem. We shall restrict ourselves todigmal con-
trol problem governed by partial fierential equaiton of elliptic type,
more precisely, by linear homogeneous variational eflifgoundary
value problems. One can also consider, in a similar way, tbbl@ms
governed by partial dierential equation of evolution type. (See, for
instance, the book of Lion5131].)
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1.1 Formulation of the Problem of Optimal Control

Let Q be a bounded open set in the Euclidean spg@tevith smooth 195
boundaryI’. We shall denote the inner product and the corresponding
norm in the Hilbert spac&?(Q) by (-,-) and|| - | while those in the
Sobolev spac¥ = HL(Q) by ((, -)) and]|| - ||| respectively.

We suppose given the following:

Set of controls. A nonempty closed convex subgétof L%(Q), called
the set of controls, and we denote the elements by u, which we call
controls.

State equation. A continuous, bilinear, coercive form(-,-) onV i.e.
there exists contants, > 0 andM, > 0 such that

alp,¥) < M for all ¢, eV
L.1) {| (. ¥) < Malllglllig 0. y€

ale, ¢) > aalllell? for all geV.

Let feL2(Q) be given.
For anyueK a solution of the functional equation

(1.2) { YueV,
alyu, ) = (f,¢) + (u,) for all eV

is said to define a state. The system to be governed is saidjm/eened
by the state equatio {1.2). We know, by the results of Chnghtehat
for any ueK(c L?(Q) c V) there exists a unique solutign of (T2).
Thus for a givenf and a given contralieK there exists a unique statg
governing the system.

Cost function. Let b(, -) be a symmetric, continuous and positive
semidefinite form orV. i.e. There exists a constall, > 0 such that

b(e, ) = by, @) for all g.yeV
(1.3) Ib(e, ¥)I < Molllellllliglll - for all ¢, yeV
B(p, ¢) = 0.

196
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Further letCe.Z(L%(Q), L?(Q)) be an operator the following condi-
tions: there exist positive constantgs > 0 andM¢ > 0 such that

(1.4) { (CWY) > aclVP. for all vel 2(Q)

ICIl < Mc

Let ygeV be given. We now define the functional
1 1
(1.5) Iy, u) = by - gy = ¥o) + 5(CuU)

Proof of control. This consists in finding a solution of the minimization
problem:

(L.6) {UeK such that

J(Yu, U) = infyex I(W, V)

We shall show in the next section that the problEml (1.6) hascue
solution. However, we remark that one can also prove thahai@o of
(@8) u exists and is unique directly using theffdrential calculus of
Chaptefdl and the results of Chagdikr 2 on the existence agdaméss
of minima of convex functionals.

Definition 1.1. The unique solutiomeK of the problem[(TJ6) is called
the optimale control.

Remark 1.1.If the control seK is a convex set described by a set of
functions defined over the whole 6f and the constraint conditions are
imposed on the whole a then the problen{1l6) is said to be one of
distributed control. This is the case we have consideree. hdowever,

we can also consider in a similar way the problem wHKeconsists of
functions defined over the boundaryof Q and satisfying constraint
conditions orT". In this case the problem is said to be one of boundary
control - For example, we can consider

o fu,odo-
r

defined on a suiteble class of functionsnT'.
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Remark 1.2.If we set
jU) = I(yu, W)

then the problem of control is a minimization problem for thectional
ue j(u)onk.

Remark 1.3.Usually the state equation governing the system to be con-
troled are ordinary dierential equations or partialfirential equation
or linear equations. (See the book of LionsI[31]).

Remark 1.4.We have restricted ourselevs to systems governed by a lin-
ear homogeneous boundary problem of Neumann type withaistd
control. One can treat in a similar way the systems goverryeakter
homogeneous orinhomogeneous boundery calue problenissfance,
problems of Dirichlet type, mixed case we necessarily haliernoge-
neous problems.

Remark 1.5.In practice, the operatd® is of the formal wherea > 0
is a small number.

1.2 Duality and Existence

We shall show that there exists a unique of the optimal comptrab-
lem (I.B). We make use the existence of saddle point via tharé¢m
of Ky Fan and Sion (Theoref1.2 of Chagiér 5) for this purpose. Tiig
also enables us to characterize the solution of the optioratal prob-
lem {I®). As in the earlier chapters we also obtain the duablpm
govergned by the adjoint state equation.

We consider the optimal control problem as a minimizatiarbpgm
for this purpose and we duality in the vaialyleeepingu fixed in K.

We take for the cond the space/ = H(Q) it self define the func-
tional

(1.7) ®:VXA—>R
by setting

(17), (D(y’ u, q) = a(y’ q) - (f + U, q)
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It is clear that® is homogeneous of degreedn
d(y,u = Aq) = AD(y, u[q) for all 2 > 0.

Next @(y,u;q) < O for all geA if and only if u € K andy, u are
related by the state equatidn{1.2). In fact, the state aquanplies
that®(y, u; q) = 0. Conversely®(y, u; q) < 0 implies thatueK andy, u
are related by the state equation. For, we have

a(y,q) — (f +u,qg) < for all geA

and since, for angeA, —geA also we have

a(y,—-q) - (f +u,-q) <0.
The two inequalities together imply that
a(y,q) = (f +u,1) forallgeA = V = HY(A),

which means thay = y, = u(u). We introduce the Lagrangia’
associated to the minimization problem by setting

(1.8) Z(zv;q) = Iz V) +D(zV; Q).

More explicitly we have
1.8y
Z(zv;q) = 3b(Z-Yg.2— Yg) + 3(c22) + &z q) - (f +V,q)
for zeV, veK andgeA = V.

We shall now prove the following theorem:

Theorem 1.1. There exists a saddle point fof(z v;q) in Vx K x V.
In other words,
(2.9)
Theorem existéy, u; p)eV x K x V such that

ZW,u;q) < Z(y,u;p) < Z(@zv;p) forall (zv;g)eV xK x V.
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Proof. The proof will be carried out in several steps.
Step 1. (Application of the theorem of Ky Fan and Sidr&t £ > 0
be a constant which we shall choose suitably later. Con#igervo sets

A¢ = Uy = {ZzeV = HY(Q); 12l < ¢} and

(1.10) {
Ke = {ViveK : |IVI| < ¢}.

It is clear thatA, = U, is a closed convex and bounded sedin
SinceK is closed and convei, is also a closed convex subset.3{Q).
Hence, for the weak topologids and L%(Q) are HausddfF topological
vector spaces in whicbl,, (respectivelyK,) is compact.

On the other hand, since, for evemy\{)eU, x K, the functional 200

Usag Z(zv: geR

is linear and strongly (and hence also for the weak topolagy )ocon-
tinuous it is concave and upper semi-continuous (for thekviggology
onV). The mapping

UsxKea (V) = Z(zv;Q)eR

is strongly continuous and hence, in particular, (weakbyydr semi-
continuous for every fixedeA; = K,. Since the bilinear forma(, -),
b(-,-) onV and C-,-) on L%(Q) are positive semi-definite and— (v, g)
is linear it follows from the results of Chapf@$f3 that the mapping

(zv) = Z(,v;0)

is convex.

Thus all the hypothesis of the theorem of Ky Fan and Sion (Theo
rem[I.2 of Chaptef]5) are satisfied. Hence there exists aesaoitht
(Ve, Ug; pr)eUy x Ky x U, This is the same as saying

there existsy;, Us; pr)eU, x K, x A, such that

I(Ye, Ur) + @(Ye, Ug; 0) < I(Ye, Ue) + D(Ye, Ue; Pr)
<JIzV)+O(zV: pr)

for all (zv; q)eU, x Ky X Ag.

(1.11y
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Choosing¢ > 0 suficiently large we shall show, in the following
steps thay,, u,, p, are bounded independent of the choice of such an
Step 2. wis bounded. In fact, the second inequality if (Y]

means that the functional

(zZV) = Z(ZV; pe)

201 onU;x K, attains a local minimum a/{, u,). But since this functional
is convex, by LammB2.1 of Chapfdr 2, it is also a global mimmue.
We have

ZLYe, U, Ue) < ZL(Ye, U Pe) < ZL(ZV; Pr)
for all zeV, veK andgeA, = U,.

(1.12) {

Now we fix aveK arbitrarily and takegy = 0,z =y, in and
we obtain

J(Ye, Ue) < I(Ye, Ug) + D(Yr, Ugs Pr) < I(W, V) = j(V).
It follows from this that, for any fixedeK, we have
(1.13) D(Ye, Ur, Pe) = 0 andJ(ye, U) < (V).
But by (I.3), [I.H1) the latter inequality iR{T]13) implidsat
1 ) .
Eacllufll < JI(Ye, Ug) < j().
which means that, is bounded:
(1.14) lull < c1, G5 = 20t j(V).

Step 3. yis bounded. As before we fix aveK and takez = vy,

q = iyl teU, = Ay in[TII)] (We may assume that # O, for
otherwise there is nothing to prove). We get

I(Yes Ug) + Yl (e, Ug, Ye) < j(V)

because of the homogeneity®in the last argument. HetXy,, u,) > 0
because of{113)[(1.4) and{lL.5) so that we get

Ayl o(ye, ug ye) < j (V).
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ie. Ayl alye ve) — (F + g, ye)b < j(v)

202
By the coercivity [TIL) ofa(-, -) onV we have

aalllyelll? < alye, ye)
and by the Cauchy-Schwarz inequality we have
I(F + ue, yo)l < 11T+ uellityell < (FIF+ HuelDIyelll-
Hence using(1.14)

Caalllyelll < j(v) + Yl (F + g, ye)
< J(V) + AN+ Nuell)
< j(v) + £(Ifll + Ca)

so that, first by dividing by, we see that if > 1 then

(1.15) el < az*(j(v) +1Ifll + C1) = Co.

Step 4. pis bounded.For this we recall that, as has already been

observed, ¥, Uy) is a global minimum for the convex functional
g:(zVv) = Z(ZV; p)

onV x K. Hence, by Theoreid Z1.3, the G-derivative of gyat )
should vanish:

g’ (Yz, Ug; @, v) = 0 for all (g, V)eV x K.

This on calculation of the derivative gives

b(yf - ygv 90) + (CU[,V) + a(‘pa pf) - (f + U, 90) =0
for all (¢, vV)eV x K.

Takingy = p, andv = u, we get

(Cup, up) + a(pe, pe) = (f + g, pr) — b(ye =Yg, Pe)-

203
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Using the coercivity of the terms on the left side and Cauchy -
Schwarz inequality for the first term on the right side togethith the
continuity ofb(-, -) we find that

aalllpell® < acllull? + aalllpell® < 11 + uellllpell + Molllyz — ygllllpell
< (I + Nl + Molilye — yglillllpell
(Il + c1 + MyC2 + MplllygliNlIipell

which implies that there exists a constagt- 0 such that
(1.16) lllPelll < Ca.

Step 5.We now choose& > max(cy, Cp, 2¢3, 1) and use the setd,
andK, for the application of the theorem of Ky Fan and Sion.

Step 6. To show thaty=y,, (i.e. y is the solution of the state
equation corresponding to the contrgkK.) For this purpose we have
to show that

.17 D(y,,Up; ) = 0forallgeA = V

We already know from[{1.13) thab(y,, us;; pr) > 0. Sinceq =
2pceA =V satisfies

lllalll = 2l[pelll < 2c5 < €
we can takey = 2p; in the first inequality of (ILT)]and get
20(y, Ue; Pe) < (Y, Ue, Pe)-
so that we also have
(1.18) D(yr, Ug; pr) <0

204
Then it follows once again from the first inequality[ofT1}] that

(1.19) (Y, Up; q) < 0 forallgeAs = Uy
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If g ¢ U, then|||glll~*geU, which on substituting in[{1.19) gives
@I2).

Finally, combining the fact§{1.112) arld (11 17) togethehwtfite def-
inition of .Z(z v; g) we conclude the there exists a saddle pojmt;(p)
inV x K x V. This completes the proof of the theorem.

The theoem[{Tl1) implies thay,() is the solution of the primal
problem andp is the solution of the dual problem. The equatibn{L.17)
is nothing but the fact thatis the solutiony, of the state equation.

From the above theorem we obtain the main result on existamce
unigueness) of the solution to the optimal control problerd also a
characterization of this solution. For this purpose, if weasev = u
in the second inequality of (1.9) we find that is the minimum of the
convex functional

h:V>ze £Z(zu; p)eR.
Hence taking th&-derivative of h we should have
h(u,¥) = by — yg. ¥) + a(y, p) = 0 for all yeV.
Thus we see that p satisfies the equation

(1.20) a(y, p) = —b(y - yg, ¢) for all yeV.

The equation[{I.20) is thus the adjoint state equation irptheent
problem. Again, in view of the hypothes[sT{L.1) abd]1.3pltdws (by
the Lax-Milgram lemma) that, for any giverV, there exists a unique
solution peV of the wquation[[1.20). 205
Now consider the functional

k:Kave Z(y,V, p)eR.

The secone inequality ifi{1.9) with= y implies that this functional
kis minimum atv = u. Again taking G-derivatives we have

K'(v,w) = (Cv,w) — (w, p) for all weK.



202 6. Elements of the Theory of Control and...

The solution of the minimization problem f&ronK is, by theorem
22 of Chaptell2, characterized by

ueK such that
K'(u,v —u) > 0 for all veK,
which is the same as the variational inequality

ueK such that

(1.22) {
(Cu,v—u) - (p,v—u) > 0 for all veK.

The above facts can now be summarized as follows:

Theorem 1.2. Suppose given the set K of controls, the state equation
([3) and the cost function J defined by11.5) such that thethgsgis
@1), [I3) and[[1}4) are satisfied. Then we have the foligwi

(i) The optimal control problen{{1.6) has a unique solutiaKu

(i) The unique solution u of the optimal control problem is&Ac-
terized by the coupled system consisting of the pair of éopust
([32) and [1.2D) defining the state y and the adjoint state\p go
erning the system together with the variational inequafiyZl).

(iii) A solution(y, u; p) to (T.2), [1.2D) and{1.21) exists (and is unique)
and is the unique saddle point of the Lagrangi&h defined by

206 (@3).

Remark 1.6.The variational inequalityl{T.21) is nothing but the well
known maximum principle of Pontrjagin in the classical thyeof con-
trols.

1.3 Elimination of State

In order to obtain algorithm for the construction of approations to
the solution of the optimal control problefn{lL.6) we use tharacteri-
zation given by Theoreni (1.2) (ii) to obtain a pure minimiaatprob-
lem with constraints. This is achieved by eliminating theesy, which
occurs explicitly in the above characterization.
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We can rewrite the problem of contr@[{lL.6) in terms of therapm's
defined onV by the bilinear formsa(,-) and b(-,-) and the operator
defined by the inclusion mapping ¥f= H(Q) in L?(Q).

In fact, for any fixedyeV, the linear form

@ = ay, )

is continuous linear oV by (I.1) and hence by Riesz-representation
theorem there exists a unique elemAgtV such that

(1.22) afy, ¢) = ((Ay, ¢)) for all peV.

Once again from{I]1) the mappiryg— Ay is a continuous linear
operator orV. Similarly, by [I.B) there exists a continuous linear oper-
atorB onV such that

(1.23) b(y, ¢) = ((By, ¢)) for all peV.

Finally since the inclusion mapping of in L?(Q) is continuous
linear it follows that for anyelL?(Q) the linear mapping — (u,v) onV 207
is a continuous linear functional. Hence there exists aioats linear
operatoD : L%(Q) — V such that

(1.24) U, v) = ((Du,V)) for all ueL2(Q), veV.
The state equation can now be written as
((Ay, ¢)) = ((Df + Du, ¢)) for all peV.
which is the same as the operational equatio¥:in
(1.25) Ay=Df + Du.

In view of the well known result of Lax and Miligram we have

Theorem 1.3. Under the hypothesi§ (1.1) the state equationl (1.2) (or
equilvalently [I.25)) has a unique solutiogey for any given bL2(Q)
and there exists constantc0 such that

(1.26) IVl < c(IIDFIIT + HDull).
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This is equivalent to saying that the operafois invertible, A™1 is
a continuous linear operator dhand [1.26) gives an estimate for the
norm of A~1. Hence we can write

(1.27) yu = AY(Df + Du)

as the solution of the state equation.

Next we shall reduce the optimal control probldm(1.6) to aimi
mization problem as follows. We substitugg given by [I.2V) in the
cost function [[I) and thus we eliminate the state from timetional
to minimize. Using[[1.23) together with {1]27) we can write
b(Yu =Yg, Yu = Yg) = ((B(Yu — ¥g). Yu — Yg))

= ((B[A™(Df + Du) - yg], A" }(Df + Du) - yg))
= (BA'Du,A'Du)) + 2((B(A DT - yg), A1 Du))
+((B(A'Df —yg), A'Df - y))
= (A*BA'Du, Du)) + 2(A " B(A™'Df - ),
Du) + G(. o)

208 whereA™* is the adjoint of the operatokx~* andG(f, yg) denoted the
functional

G(f,yg) = (BA'Df - Byy, A'Df —yg))
which is independent af. Once again usindg (1.P4) we can write
b(Yu—Yg Yu—Yg) = (A"7*BA™Du, u)+ (A B(A™'Df -yg), u)+G(f, yg)
and hence the cost function can be written in the form
j(u) = %(A‘l* BA'Du, u)+(A " B(AIDf-yy), u)+G(f,yg)+%(Cu, u).
Setting

o = A"*BAID + C and
(1.28) { i

F = ABAIDF - yy)

We have the following
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Proposition 1.1. The optimal control probleni.(1l.6) is equivalent to the
minimization problem:

to find kK such that
(2.29) j(u) = infyek j(v) where

We observe that, since the last term in the expression fayubdra- 209
tic functional j(v) is a constant (independent bf ueK is a solution of
[29) if and only ifuis a solution of the minimization problem:

to find ueK such that
(1.30) k(u) = infy.k k(v) where
k(v) = 3(«V,V) — (Z, V).

We know by the results of Chapfd§& (Theoreni311) that the prob-
lem {LT30) has a unique solution and it is characterized éytmdition

K'(u,v—u) > 0 for all veK,

wherek(-, ¢) denotes thés-derivative ofk(-). This is nothing but the
variational inequality

(1.31) { To find ueK such that

(/u— Z,v—u) >0 for all veK.

This variational inequalityl(1.31) together with the statpiation is
an equivalent formulation of the characterization of thérogl control
problem given by Theoreni.{1.2) (ii). More precisely, we héwve fol-
lowing

Theorem 1.4. The solution of the optimal control problem{[.6) is char-
acterized by the variational inequality:

(1.32)

To find wK such that
(Cu- py,v—u) > 0forall veK
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wherep, is the adjoint state.

Proof. We have by the definition§{TI1I28) of and.% 210
du-F = ABA DU+ ATIDf - yg) + Cu
which on using the state equatidn{1.25) becomes

(1.33) du—F =ATB(y, - yg) + Cl.

If we now definep, by setting
(1.34) ~Pu = A" B(yu — Yo)
then we see that, satisfies the functional equation
((A"pu, ¥)) = —((B(yu — Yg). ¥)) for all yeV.

We notice that this is nothing but the adjoint state equation

a(y, pu) = —b(yu — yg, ¢) for all yeV.

Thus if, for a given controlieK, y,, is the solution of the state equa-
tion thenp, defined by[[1:34) is the solution of the adjoint state equatio
Moreover, we have

(1.33Yy du—% =Cu- py.

Substitutind (133Y]in the variational inequalityf {I-B1) we obtain the
assertion of the theorem.

We are thus reduced to a pure minimization probler{ iior which
we have known algorithms.
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1.4 Approximation

The formulation of the optimal control problem as a pure miaa-
tion problem given above in Section{lL.3) together with tlypathms
described in earlier chapters for the minimization problithimme-
diately lead to algorithm to determine approximations #gblution of
the optimal control problen{1.6). Hence we shall only mamtihis
briefly in the following.

We observe first of all that the operator is L?(Q)-coercive and
bounded. In fact, in view of{1.24) and_(1123) we can write

(A"YBA1Du, u) = (A"**BA1Du, Du))
= (BA'Du, A"1Du) = b(A~*Du, A"*Du) > 0.

Since we also haveC,u) > ac|lull? we find that.e is L2(Q)-
coercive and

(1.35) (@7u,u) = (A" ¥*BalDu6Cu, u) > ac||ull?, ueV.
To prove that is bounded we note th#&t! is the operator
L2(Q) 3 f + u > yuel?(Q)
defining the solution of the state equation:

{yuev such that
ayu ) = (Ayu, ¢)) = ((D(f + u), ¢)) for all peV.

Here takingy = Yy, and using the coercivity of the bilinear form
a(-, -) we see that

@alllyulll> < 1D + Dulllllyull
and hence
liiyulll < IA(Df + Du)|ll < @z IDf + Dul|l.
which implies thatA~! is bounded and in fact, we have

(1.36) IA 2oy < az™
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Now since all the operators involved in the definitionagfare linear
and bounded it follows that7 is also bounded. Moreover, we also have
17| 21 2().2(@)) = A BATD + Cll 2120, L20)

< A~y IBlLzuw) DI 2wy + ICH 2120, L2)

and hence (sinckD|| #( 2@q).v) = 1)
(1.37) 1 | L2y 209 < ¥a>Mb + Mc.

We are now in a position to describe the algorithms.

Method of contraction. We recall the the solution of the optimal con-
trol problem is equivalent to the solution of the minimizattiproblem
[29) and that the solution of this is characterized by thgational

inequality [T.311):

ueK such that
(/u— Z,v—-u) >0 for all veK.

We can now use the method of contraction mapping (as is sténda
in the proof of existence of solutions of variational inelifya see, for
instance, Lions and Stampacchia [ ] ) to describe an algoritir the
solution of the variational inequality_{T131).

Algorithm. Suppose we know an algorithm to calculate numerically
the projectionP of L2(Q) onto K. Let p be a constant (which we fix)
such that

(1.38) 0< p < 2act/(@z°Mp + Mc) = 203/ac(Mp + @2Mc).

Let u,eK be arbitrarily chosen. Supposg, - - - , Uy are determined
starting fromu,. We defineun,1 by setting

(1.39) Umi1 = PO(Um)
where

(1.39) O(Um) = Un — p U + p°.F
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We can expres®(un) in terms of the operatord, B, C and the data

f andygy as follows:

(1.40) ®(Um) = Um—p(A"*BA™ DU + Cu) + p?A 2 B(AIDf —yy).
The choicel(T.38) o implies that the mapping

(1.41) T:K>w POW)eK

is a contraction, so that has a fixed pointiin K to which the sequence213
Um, Cconverges.

Method of gradient with projection. We consider the minimization
problem for the quadratic functional

(1.42) Vi 4(V) = :—ZL(@%V, V) — (Z,V)

onK. Since« is coercive, we can use the method of Chajgter 4, Section
B and we can show that we can choose as convergent choiges-for
a constant and for the direction of descent

(1.43) Wm = grad? (um)/llgrad? (um)Il.
Thus starting from an arbitrany,eK, we define
(1.44) Umi1 = Pk (Um — pgrad? (um)/llgrad? (um)l()

wherePy is the projection of.2(Q) ontoK.

This method, however, requires the computatior#@fi,,) and its
gradient at each step. For this purpose, knowineK we have to solve
the state equation:

VYmeV such that
a(ym, ¢) = (f + um, ¢) for all peV

to obtainy,, and the adjoint state equation:

pmeV such that
a(e, Pm) = —b(Ym — Yg. ¢) for all peV
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to obtain the adjoint statp,,. We can then calculate gr&d(uy) by 214
using

(1.45) grad?(um) = Cun — Pm.

We shall not go into details of the algorithm which we shadiMe to
the reader.

Remark 1.7.This method is rather long as it involves several steps for
each of which we have sub-algorithms for computations. Hehis
procedure may not be very economical.

1.46

As an illustration of the methods described in this secti@enoansider
the following two-dimensional optimal control problem: tL@ be a
bounded open set iR? with smooth boundary’. We consider the fol-
lowing optimal control problem

—AYy+YW=f+uinQ

State equations:
oyu/on=0onT

wheren denotes the exterior normal vector fieldlto

Controal set: K = {ueL?(Q)|0 < u(x) < 1 a.e. or}

Cost function:  J(y,u) = [,(Iyu — Ygl* + lul?)dx.

We shall leave the description of the algorithm to this peaflon
the lines suggested in this section as an exercise to therread

2 Theory of Optimal Design

In this section we shall be concerned with the problem ofpalkidesign.
We shall show that certain free boundary problems can bddemesl as
special cases of this type of optimal design problem. Wd sbakider
a special case of one-dimensional problem and explain agemgral
method to obtain a solution to the problem, which also ersaldo give
algorithms to obtain approximations for the solution. Timsthod can
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be seen to be readily applicable to the higher dimensiomdilems also
except for some technical details. Though there is a cesiaiilarity

with the problem of optimal control we cannot use the duatitythod
earlier used in the case as we shall see later.

2.0 Optimal Design

In this section we shall give a general formulation of thelybem of
optimal design. Once again this problem will be consider®d aini-
mization problem for a suitable class of functionals. Ashia tase of
optimal control problem these functionals are defined thihoa family
of state equations. We shall consider here the states gogeire sys-
tem to be determined by variational elliptic boundary vahneblems.
Though there is some analogy with the optimal control probétudied
in the previous section there is an importarftetience because of the
fact in the present case the convexlséin our case the sé will be the
whole of an Hilbert space), on which the given functionabi$é mini-
mized, itself is in some sense to be determined, as it is & fabctions
on the optimal domian to be determined by the problem. Tbesehis
problem cannot be treated as an optimal control problem agdines
somewhat dferent techniques than the ones used before.

Roughly speaking the problem of optimal design can be desdri
as follows: Suppose given

(1) A family of possible domian$ (bounded open sets in the Eu-
clidean space) having certain minimum regularity propstti

(2) Afamily of elliptic boundary value problems describiting states,
one each on & of the family in (1).

(3) A cost functionj (described in terms of the state determined by
(2) considered as a functional of the domfarn the family).

Then the problem consists in finding a domhin the given family 216
for which j(Q*) is @ minimum.

We shall describe a fairly general theory to obtain a saotut@the
optimal design problem. In order to simplify the details vhal§ how-
ever, describe our general method in the special case ofiorendion.



212 6. Elements of the Theory of Control and...

Thus the states governing the problem is described by eokitif a two
point boundary value problem for a linear second order arginliffer-
ential equation. We shall first describe the main formalsteyolved in
the reduction of the problem to one of minimization in a fixedrdan.
We shall then make the necessary hypothesis and show thdiothial
procedure is justified.

2.1 Formulation of the Problem of Optimal Design

Let 7 be a family of bounded open seisin R" and letl” denote the
boundary of2, Qeo7. We assume that evefye/ satisfies some regu-
larity properties. For instance, eveR¢o/ satisfies a cone condition or
everyQeof has a locally Lipschitz boundary etc.

We suppose the following data:

(1) For eacies/ we are given a bilinear form

VXV (Y, p) ~ aQ;y,p)eR
onV = Vg = HY(Q) such that
() itis continuous ; i.e. there exists a constafiy > 0 such that

(2.1) a(Q; ¢, ¥) < Mallglivilylly for all g, yeV = HY(Q), Qesr .

(i) itis HY(Q) -coercive : there exists a constal > 0 such that

(2.2)  aQ;p,¢) > cgugonﬁl(g), for all QeH(Q), Qe .

217 Example 2.1.Let Qe and

: _ _ A oY
a0, ¥) = (. V) = L[ZJ: ax; 9%; + wllf]dx

(2) For eaches? we are given a continuous linear functiogal>
L(Q; ¢) on HY(Q), Qeor.
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Example 2.2.Let FeL?(R") and f = F|q = restriction ofF to Q.
L(Q; ¢) = f fodx for all peH(Q), Qe .
Q

Consider the variational elliptic boundary value problem:

i = 1
(2.3) { To findy = yoeH(Q) such that

a(Q;y, ¢) = L(Q; ¢), (for all peH ().
We know by Lax-Milgram lemma that under the assumptions (1)
and (2) there exists a unique solutipgeH(Q) for this problem [Z1).

We observe that sinckis given as-|q this solutiony, depends only on
the geometry of), Qe .

(3) Cost function. For eachQe«” we are given a functional on
H(Q):

(2.4) HY(Q) 3z J(Q; 2)eR
Example 2.3.

J(Q;2) = [ 1z- gP’do, where
gey.G = G[I', GeH(Q), Qe .

Example 2.4.

;) = [,1z— gPdx where
GelL2(R") andg = G|Q, Qe .

2.5 Example of a family.e# of domains.

SupposeB and w are two fixed open subsets Bf' such thatw c B.
Let A be the family of open setQ in R" such thatw ¢ Q c BandQ
satisfies some regularity property (say, for instareesatisfies a cone 218
condition).

Define

(2.5) 1(Q) = J(Q; yo), Qe
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whereyyg, is the (unique) solution of the homogeneous boundary value

problem [Z.B).

The problem of optimal design consists in minimizij{) over.<:

2.6) { To find Q*e” such that

(") = infae J(Q).

Optimal design and free boundary proble@ertain free boundary
problems can be considered as a problem of optimal designibisst
trated by the following example in two dimensions.

Let I, be a smooth curve in the plai defined by an equation of

the form
(2.7) Zx) = x1 — ¢(x2) =0,
whereg : | = [0,1] 3 x — ¢(X)eR, is a smooth function. LeQ

denote the (open) strip iR :

(2.8) Q = {x= (X1, X2)eR?|x1 > 0,0 < Xp < 1}.
Consider the open séX given by

(29) Q={xeQAX) <0} = {X= (X1, X2)eQIx1 < p(X2)}.

The boundary” of Q decomposes into a unignul', with 3.° NI’ =

@.
There exists a one-one correspondence betweand the function
z, Thus the family< is determined by the family of smooth functions

z:Q—- R

219 Let us consider the optimal design problem:
(2.10)

a(Q; ¥, ¢) = (¥, P)nye), fory, peHH(Q);
L(Q; @) = (f,¢) 210, Tor peH (Q) wheref = F|Q, FeL?(R?)
J(Q;2) = [ [2(x)?dor, wheredo is the line element of,.
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Theny = yq is the unique solution of the Neumann problem:

(2.11) { YoeH(Q)
Yo, P)niq) = (f.¢)12(q) for all peHY(Q)
and
(2.12) 1) = 3Qiye) = [ a(9Pde:
T,

The optimal design problem then becomes
(2.13)
To find Q* such thatj(Q*) < j() for all Qe In other words,

(2.13Y { To fin yo-eH(Q*) such that

I Iya: (¥)[°do is minimum
Suppose now that igf., j(Q) = j(Q*) = 0. The it follows that
(2.14) Vo =0a.e. ol

In this case, the optimal design problem reduces to thevialip so
called “free boundary problem” :

To find a domiam2*e.«/ whose boundary is of the forii = >, UI;
where}, is a fixed curve whild™ is a curve determined by the solution
of the homogeneous boundary value problem

—Ay+y=finQ*
(2.13y’ dy/on=0o0n Y,
oy/on=0,y =0onI7;.
220
This equivalent formulation is obtained in the standard mearfrom
the state equatiofi{2.3) using the Green’s formula togetitarthe con-

dition (ZI3). Free boundary problems occur naturally imyneontexts
- for example in theorey of gas dynamics.
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2.2 A Simple Example

We shall illustrate our general method to obtain approxiomstto the
solution of the optimal design problem for the following odignen-
sional problem.

Let .7 denote the family of open intervals

(2.15) Qa=(0,a),a=>1

on the real line.
State equation Assume that arfeL?(R1) is given. The state gov-
erning the system is a solution of the following problem:

To findyq,eH(Q4) = HY(0, @) such that

a dyg dgo
8(a: Yoo ¢) = (—a—
a of dx dx

a
= f fodx = L(Qa; ¢), for all peHY(Q,).
0

On integration by parts (or more generally, using the Greéor-
mula) we see that this is nothing but the variational forriofaof the
two pointy boundary value problem (of Neumann type boundatye
problem):

To find yo,eH(Q4) satisfying

d? .
(2.16) dfga Yo, = finQa
dyga A dyga
Ix (0)=0= W(a)

Cost function. Suppose given gel?(0, 1). Define
: 1t
(217) i@ = [ o, - oPx

Problem of optimal design.

Tofinda" > 1(i.e. to findQ* = Q4-) such that
j@)<j@forallax>1.

(2.18) {
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Remark 2.1.It appears natural to considaas the control variable and
use the duality argument as we did in the case of the optimatao

problem. However, since the spa¢e= HY(Q,) varies with a the duality
method may not be useful to device algorithms.

In what follows, we shall adopt the following notation to gilifly
the writing:

Yo.(X) = y(a X)
(2.19) dy/ox(a, x) =y'(a,x)
dy/da(a, X) = Ya(a, X)

2.3 Computation of the Derivative ofj.

We shall use the method of gradient to obtain algorithms hstact ap-
proximations converging to the required solution of thelyiem (2.18).
In order to be able to apply the gradient method we make thadbr222
computation of the gradient gf(in the present case, the derivativejpf
with respect taa in this section. We justify the various steps involved
under suitable hypothesis in the next section.

Settinf for peH(Qa)

(2.20)  F(ax) =Y(ax¢'(a x) + y(@ Xe(@ x) - f(a, x)e(@ x)

we can write the state equatidn (4.16) as

(2.21) K(a) = j;aF(a, xdx = 0

Here since we have a Neumann type boundary value problem for a
second order ordinary fierential operator the test functigrbelongs to
H1(Q,) and soyp is defined in a variable domiad, = (0, a). This may
cause certain inconveniences, which however can easilydyeame be
overcome as follows:

(1) We can takep to be the restriction ta2, of a function yeH?
(0, +o0) and write the state equation as

fo 1y (@ X9’ (9 + y(@ Xu(x) - f(@ (X)) = 0, for yeH*(0, +o).
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Such a choice for the test functiopsH*(Q,) would sufice when

the state is described by a Neumann type problem (as we have in
the present case.) But if the boundary conditions are otblet

type this choice is not suitable since the restrictions otfions

in H(0, +o0) to Q, do not necessarily give functions in the space
of test functionsH1(Q,). We can use another method in which
such a problem do not arise and we shall use this method.

(2) SupposereH™(Q1), Q1(0,1) andm > 2. Then the functiorx
¢(a, X) defined by

(2.22) ¢(a X) = y(x/a)

is well defined inQ, and belongs ttH™M(Q) — HY(Q,). (This
inclusion, we note is a dense inclusion.) We also note thdhis
case, ifPeHM(Q1) thenpeH™(Q,) and conversely.

Thus we set
(2.20Y F(a,x) =y (a, x)y(x/a)+ (y(a x) - f(x))y(x/a) for yeH™(Qy)

and we can write the state equation with tRias

(2.21) K(a) = foa F(a, x)dx=0

We shall make use of the following classical result to caltaithe
derivativedK/da
Let A denote the closed subset of thed)-plane:

(2.23) A = {(x,a)eR%a>1and 0< x < a}.

Supposé : A — R be a function satisfying:
Hypothesis (1)For everya > 1, the real valued function

x F(a X)

is continuous in X x < a.
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Hypothesis (2)For everyxe[0, a], the function
a- F(a X

is differentiable andF/da : A — R is continuous. Then the integral
a
K(a) = f F(a, X)dx
0
exists,a — K(a) belongs taCl(1 < a < +o) and we have
dK a
(2.24) E(a) = f oF/0a(a, X)dx+ F(a, a)
0
224

Remark 2.2.We observe that this classical result has a complete ana-
logue also in higher dimensions and we have a similar iderftit
gradyK (with respect ta) in place ofdK/da.

Now differentiating the equatidn @0Y]with respect taa and using
the above result we get

dK/da(a) = foaaF/aa(a, X)dx + F(a, a)

~ [ 1@ 0 (2 + ata R0y +
+{Y' (& X' (X/@))a + Y(a, X) (@ (X/a))a — F(X)(W(x/a))al]dX
+[y' (@ X9 (x/@) + y(@ Xy (x/a) — f(X)y(X/@)]x=a = 0.
We observe that, ifn > 2 thenx — (4(x/a))acH(0, a). In fact,
W(x/a)a = (=x/2°) (x/2)eL*(Qa),
(W(x/a)y = (—1/a%)W (x/a) + (-x/a)y"" (x/@)eL*(Qa).

wherey’ andy”’ are (strong)L? -derivatives ofy, which exist since
weH?(0, 1).
Hence by the state equatidn{d.16) we find that

fo Y (@ X’ (x/8))a + Y(a X)(¥(x/a))a — F()(¥(x/a))aldX
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= a(Qa; Yo,) (W (X/@)a — L(Qa; (W(x/@))a) = 0
Thus we conclude that
fo (Ya(a. X)W’ (x/2) + ya(a, X)u/(x/) X
(2.25) = —[y'(a Xy’ (x/a) + y(a, Xy (x/a) — F(X)y(X/a)]x=as
for all yeH™(0, 1) withm > 2.

Remark 2.3.1t is obvious that the above argument easily carries over to
dimensions> 2 of rhte computation ofrad,K(a).

Finally, we calculate the derivative of the cost functiomith respect
to aand we have

. 1 L
dj/da= Ed/daf0 ly(a, X) — g(x)Idx

1
(2.26) - fo (v(a %) — g(¥)ya(a Ydx

In (Z26) we eliminate the derivativg, of the statey,, using the
adjoint state equation. The adjoint st@kg, = p(a, X) is the solution of
the equation:

(2.27)

FRie' (P (8 %) + e(Xp(@ ¥idx = [ (v@. X) - g)e(x)dx
for all peH(0, a).

If we know thaty(a, X) is suficiently regular, for instance sayaeH*
(Q4) then takingy = ya(a, X) in the adjoint state equatiof {2127) above
we obtain

1
dj/da= fo V& x) - ga@x)  bf (2.26)

- [ W@ 9p @R +vala wp@NIdx b (227)
This together with (2.25) foy = p gives
(2.28) dj/da=-[y'(ax)p'(aX) +y@ x)p@ x) - F(X)p@ X)x=a
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2.4 Hypothesis and Results

In the calculation of the derivatives of the cost functiiga) in the pre-
vious section we have made use of the regularity properfidsecstate
Yo, = Y(& X) as well as that of the adjoint stafig,, = p(a, X) with re-
spect to both the variablesanda. This in turn implies the regularity 226
of the functionF(a, x) define by[ (220}] which is required for the va-
lidity of the theorem on dferentiation of the integraK(a) of F(a, X).
The regularity ofy(a, X). The regularity ofy(a, X) and p(a, X) are again
necessary in order that the expression on the right sideZd)2or the
derivative value problmes for (ordinary)fféirential equation, the regu-
larity of y and p as a consequence of suitable hypothesis on the fdata
andg.

We begin with the following assumptions on the data:

Hypothesis (3)For alla> 1,t — f(at)eH(0, 1).

Hypothesis (4). ¢H%(0, 1).

Then we have the following

Proposition 2.1. (Existence of the derivativeg, andy,). Under the
hypothesis (3) on f, if(g, X) is the solution of the state equatidn{2.16)
then

(i) x - y(a x)eH3(0, a)
(ii) yaexists and %= ya(a, X)eH?(0, a) and as a consequence we have
(i) x — y(a X)eC?([0, a]) and
X > Ya(a, X)eC*([0, a]).
Proof. By a change of variable of the form
(2.29) X = at, xe(0, a) andte(0, 1)

we can transform the state equatibn (2.16) to a two point dayrnvalue
problem in the fixed domai®; = (0,1). Under the transformation
Z29) we have the one-one corresponding betwesamdu given by

(2.30) y(a at) = u(a t), u(a, x/a) = y(a, x)
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and form > 1 we have:

(2.31) x y(a X)eH™(0,a) if and only ift — u(a, t)eH™(0, 1)

Similarly if oeH™(0, 1) then
(2.32) X = y(a X) = ¢(x/a) = ¢(t)eH™(0,a)

and conversely. Moreover, we also have

y'(a x) = atou/ot(a, x/a) = atu(a, x/a)

2.33
(239 {w'(a,x)=a-1¢t<x/a),

so that the state equation can now be written as
(2.34)

J5 18 2u(a, x/a)ei(x/a) + u(a, x/a)p(x/a) — f(X)e(x/a)}dx =0
for all peH™(0, 1).

By the transfomatior {Z.29) this becomes

Jrar?ua he® - (U@t + f@an)p(t)dt = 0

(234 { for all peH™(0, 1).

Sinceh™(0, 1) is dense irH(0, 1) (for anym > 1) it follows that
[2:34))is valid also for anypeH(0, 1). This means thdt— u(a,t) is a
solution of the two point boundary value problem

u=u(at)
(2.34) d?u/dt? + u = f(at)
u(a 0)=0=w(a 1)

Sincet — f(at)eH(0, 1) by Hypothesis (3) we know, form the reg-
ularity theorey for (ordinary) diierentail equation, that

t — u(a t)eH3(0,1)
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which proves (i). Then by Sobolev’s lemma- u(a, t)eC?([0, 1]). It
follows then that

(2.35) X - y(a, X) = u(a, x/a)eC?([0, 1]).

which proves the second part of (iii).

In order to prove thay, exists and is regular it is enough to prove
the same fou,. For this purpose, we shall show thgsatisfies a second
order (elliptic) variational boundary value problem.

We note that, by the theorem of dependence on parametersp-the
lution of [(Z34)"] as a functiona of the variable a isfi#irentiable since
the Hypothesis (3) implies that

(2.36) df/da)@at) = tf(at)el?(0, 1).

Now if we differentiatd (B4Y] with respect ta we get

FHar2ua(a, DD + ua(a D)t
(2.37) = 2372 [ (@ Yer)dt + [ f(adte(t)dt
for all peH™(0, 1).

Here on the right side the first term exists sinee u(a, t)eL?(0, 1)
while the second term exists sinte— fi(at)eL?(0, 1) by Hypothesis
(3). Nowt — u(a, t)eH3(0, 1) implies thatu;eH(0,1) c L?(0,1) and
S0 on integrating by parts we find that

1 1
f (& edt = - f ee(a Dp(t)dt + [Ue(a He®]=L.
0 0

Sinceu(a,t) = ay(a, x) the boundary conditions ony 229
imply that

[u(a De(®)]i5 = [aY (@ X)e(x/a)}Z5 = 0.

Hence the right side of{Z.B7) can be written as

1
(2.38) fo {(—2a 3w (a, t) + th(at)}e(t)dt.
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Since—2a3uy(a, t) + tfy(a, t)eL?(0, 1) we conclude thaty(a, t) sat-
isfies a variational second order (elliptic) boundary vadrablem [Z317)
with the right hand sidd{Z88) data irf(0, 1). Then by the regularity
theory of solutions of (ordinary) ffierential equation it follows that

(2.39) t > Uy(a t)eH?(0, 1)
Then
(2.39y Ya(@ X) = Ua(a, x/a) + (-x/a)u(a, x/a)eH?(0, )

which proves the assertion (ii). Again, applying Soboldesima to
Va, the second part of (iii) is also proved. This proved the psijon
completely.

We also have the following regularity property for the adjatate
p(a, x).

Proposition 2.2. If satisfies the Hypothesis (3) and g the Hypothesis (4)
then the adjoint state x> p(a, x) belongs to H(0, a) and consequently
x = p(a, X)eC?([0, a).

Proof. The adjoint state equatiof{2]27) is transformedy {2.29pk

lows:
p(a, at) = q(a, t) andy(a, X) = ¢(x/a)
{ J5 18 2au(ax/a)er(x/a) + a(a, x/a)e(x/a)}dx
= Jo /(@ x/3) — g(x/a)p(x/a)dx, for all peH(0,a)
230 That is, we have
(2.40)

Jotar2a@ e + g Het)dt = [ (u(@ 1) - gb)e
for all peH(0, 1).
O

Since on the right hand side— u(a, t) — g(t)eH*(0, 1) by Propo-
sition (Z.1) above it follows, again by the regularity thefor ordinary
differential equations, that

(2.41) t — g(a t)eH3(0, 1)
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This is equivalent to saying that
(2.41Y X - p(a x)eH3(0, ).

By Sobolev’s lemma it follows thak — p(a, x)eC2([0, 1]), com-
pleting the proof of the proposition.

Next we verify thatF defined by (2Z20)] satisfies the required Hy-
pothesis (1) and (2) for the validity of the calculationddf da.

If we assume thapeH3(0, 1) thenx — ¢(x/a)eH3(0,a) and then
by Sobolev’s lemmax — ¢(x/a)eC?([0, 1]) and ¢’ (x/a)eH?(0,a) c
CY([0, 1]). Hence we find, on using Propositidi{2.1) (i) and (iijat

(2.42) x> F(x.a) = Y (a, )¢’ (x/a)+(¥(a X)— f(X)e(x/2)eC° ([0, a])

since we know thatfeH1(0,a) c C°([0,a]) by Hypothesis (3) and
Sobolev’s lemma. Moreover, fliérentiating the expression fér with
respect to a using Propositidn{R.1) (ii) and (iii) we sed tha

X Ya(@, X)¢’(x/@) + ya(a, X)p(x/a) +Y'(a, X) (¢ (X/@))a
(2.43) + (¥(a X) - f(X))(¢(x/a))acC([0, al)

which proves thaF : A — R satisfies the Hypothesis (1) and (2).Thizs1
the expression on the right hand side[of {P.28) has a meaimog s

(2.44) y(ax)p'(a X + (y(a x) - f(x))p(a. x)eC*([0, a])

and we obtain

(2.28) dj/da=-[y(aa)p'(a a) + (y(a a) - f(a)p(a ).
Thus we have proved the following main result of this section

Theorem 2.1. Under the Hypothesis (3) and (4) on the data f and g the
cost function a— j(a) is differentiable and djfda is given by{(Z2.28Y]
where ¥a, X) and fa, X) represent the direct and adjoint state respec-
tively governing the problem of optimal design (2.18).
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Remark 2.4.The genral method described in this section is not, in gen-
eral, used for one-dimensional problems since it is not ecdical to
computed j/da which in turn involves computations of and p, and
their derivativex (segE (28] In the case of one dimensional problems
other more #icient and simper methods are known in literature. The
importance of our method consists in its usefulness in miglhmen-
sions to device algorithms using, for instance, the gradiegthod.
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