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Preface

THESE LECTURES were given during a seven-week course at the Tata
Institute of Fundamental Research. The aim was to provide anintro-
duction to modern sieve methods, i.e. to various forms of both the large
sieve (part I) and the small sieve (part II), as well as their interconnec-
tions and applications. Being a were of the fact that such a goal cannot
be reached in such a short time. I have tried to compromise between an
introduction and a survey. The difficult task of deciding what to omit
I have tried to overcome in most cases by presenting the simplest ap-
proach in details and a sketch of the more sophisticated results if their
proof would have required too much time. Nevertheless I havedecided
to include a chapter an the history of the large sieve upto Bombieri’s
first paper, because I believe that a student coming to a new branch of
mathematics can learn much more from the historical development in
that then is generally expected. The final chapter contains aproof of
Chen’s Theorem, because I consider it the most beautiful example of
the interaction between various sieve methods and other powerful tools
of analytic number theory.

I am indebted to my colleagues at the Tata Institute for theirgener-
ous hospitality, particularly to K.G. Ramanathan and to K. Ramachandra
for many interesting discussions.

The notes have been prepared by S.Srinivasan. His critical ability
has been of great value to me, and I wish to thank him his meticulous
handling of the manuscript.

H.-E. Richert
Bombay, April 1976

v





Introduction

SIEVE METHODS, beyond that of Eratosthenes and of Legendre,can
be considered to have started with the works Brun (small sieve) and of
Linnik (large sieve). In first part of these lectures we confine ourselves to
an introduction to the large sieve and a survey of its applications. Under
Chapter 0 we give a historical introduction to the theory of the large
sieve pertaining to the works, upto the first paper of Bombieri (1965),
covering a period of twenty-five years.

Regarding the relative powers of elementary sieve methods and the
analytical methods one usually considers that the latter should be more
powerful. Further it has generally held that large sieve is than the small
sieve (also that Selberg’s sieve always supersedes Brun’s sieve). But
history has shown that such views are not totally correct.

As for the first point we elucidate the connection between theele-
mentary large sieve method and the analytical methods in number theory
by recalling briefly some of those basic methods used in number theory.

1) In multiplicative number theory one has the important problem of
finding asymptotic formulae for the sums

∑
n≤x

an asx→ ∞, whereans

are values of some number-theoretic functions. Introducing the func-

tion F(s) =
∞∑

n=1
ann−s.s ∈ C, the connection with analytical methods

is brought about through the following formula, due to Dirichlet:
∑

n∈x
an =

1
2πi

∫

Re s=c

F(s)
xs

s
ds(x > 1, non-integral ).

wherec is a real number exceeding the abscissa of convergence (fi-
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viii 0. Introduction

nite in practice) ofF(s). (Hence and in what follows integration
along straight lines are always in the direction of non-decreasing
real and imaginary parts.) To clarify the use of this formulalet us
takeF(s) = ζ2(s), which corresponds to the problems of finding the
asymptotic formula (with error term) for

∑
n≤x

d(n). In this case one

can take forc above any value greater than 1. One can show now
that the major contribution to the above integral comes fromthe part
| Im s| ≤ T, providedT is suitably large in relation tox (we also
choosec sufficiently close to 1). Next shifting the line of integration
to the left one has that the remaining (major) part is, by Cauchy’s
theorem.

= 2πiR+ (
∫

Re s=s
| Im s|≤ T

+

∫

s ≤ Re s≥ c
Im s=T

−
∫

s≤ Re s≥c
Im s=T

)ζ2(s)
xs

s
ds,

where (0,)ζ < 1 andR denotes the sum of residues of the integer
and at its poles within the rectangle bounded by the lines| Im s| =
T,Re s= ζ andRe s= c. It turns out that the estimate for the first
integral above dominates those of the other two and is itself‘negli-
gible’ providedT is not too large in relation tox; in otherwords, if
T is appropriately chosen, thenR is the main term of the asymptotic
formula for

∑
n≤x

d(n), x → ∞. Thus, in this case, we are led to the

following
∑

n∈x
d(n) = x log x+ c0x+ 0(xθ), x→ ∞,

with some constantsco andθ, 0 < θ < 1. (Clearly, the restriction that
x is not an integer can easily be dropped here.)

2) As to additive number theory we again consider a simple case only.
Let γ be an (infinite) set of non-negative integers and letan be the
characteristic function ofγ; i.e.,

an =


1 if n ∈ γ,
0 if n < γ.



ix

Introducing the function

f (z) =
∞∑

n=0

anzn

(so that the power-series has radius of convergence= 1) the formula

∑

n1∈γ,n2∈γ
n1+n2=N

1 =
1

2πi

∫

|z|=r<1

f 2(z)z−N−1dz,N ∈ N

provides the analytical connection with the problem of finding (the
asymptotic formula for ) the number of representations ofNas a sum
of two numbers ofγ. For instance, whenγ is the set of primes this
corresponds to the well-known Goldbach problem. Then it turns out
that the major contribution to the above (integral) comes out of the
pointsz with arguments ‘close’ to fractions with ‘small’ denomina-
tors, whiler approaches 1 asN → ∞, and the set of such pointsz
constitute the ‘major arcs’ and the remaining parts are termed ‘minor
arcs’. Thus again we see that to get information about our problem
one has to move close to the singularities (on the unit circle) of our
function.

The functions introduced in 1) and 2) above are particular instances
of general Dirichlet series

G(s) =
∞∑

n=0

ane−λns an ∈ C, s∈ C,

whereλ1 < λ2 < λ3 < · · · → ∞. Still the above problems have this
essential difference: Under 1) we encountered isolated singularities
and on the other hand, regarding 2) one knows from gap theorems
that, for examples, for the function

∑
p

zp the unit circle is the natu-

ral boundary. However, both the cases illustrate the principle of the
analytical methods in that the singularities of the associated function
are the sources of arithmetical information regarding the concerned
problem, in the sense that heavier the singularity more is its contri-
bution to the main term.



x 0. Introduction

The idea of the second of the methods sketched above, the ’Hardy
- Littlewood method’, goes back to Hardy and Ramanujan. It has
been later developed in a series of papers by Hardy and Littlewood.
(A variant of this method, introduce by I.M Vinogradov, which uses
finite sums instead of series, allows integration over the unit circle.)
I this method, the aforementioned principle is reflected in that the
contribution, of the major arcs (i.e., neighbourhoods of heavier sin-
gularities), the so-called ’singular series’ of the problem, determines
the main term.

We are now in a position to indicate as to how the ’elementary’
large sieve method can be regarded as being analogous to the corre-
sponding analytical approach In its basic form the large sieve relates
the mean-square contribution from the mid-points of the major arcs
(the sources of arithmetical information) of the size of theassoci-
ated function with the mean-square integral, similar to thesingular
series (above) being related to the integral over the unit circle. Thus
the method links up an arithmetical information with the gross mean-
square (= number of elements inγ, if an is the characteristic function
of γ). This is to suggest that this elementary’ sieve method can be
considered analogous to analytical methods.



Notation

In general all the notation employed in these lecture are either standard
or are given explicitly at the place of their first occurrence. So we limit
our seives here to a description of the former type followed by the ones
of the other kind (along with the place of their first occurrence in paren-
thesis, for the convenience of reference). A reference (A.B) to a part in
these lectures stands for “’formulaB′of ’chapterA′”.

The letter p (with or without affixes) denotes invariably a prime
number. An ’almost prime’Pr (cf. (12.8)), for a given integerr ≤ 1,
is a natural number with not more thanr prime factors (counted with
multiplicity). The greatest common divisor of two integersm andn is
denoted by (m, n). For an integern, the divisor functiond(n) (c f.p.ii )
denotes the number of (positive) divisors ofn. We also use von Man-
goldt’s function∧(n) (c f.(1.75)) defined as logp or 0 according asn is
a power of (some prime)p or not. As usual, for a realx, [x] denotes
the greatest integer not exceedingx. Euler’s constantγ (cf. (8.33)) is
(limx→∞(

∑
1≤n≤x

n−1 − log x)).

The order notationO, o ≪,≫ have their customary meaning and
the dependence of the implied constant on some auxiliary parameter (s)
is (when essential) given explicitly. (The notation≍ , meaning≫≪,
occurs only once in connection with ((0.51).)

The symbolsN,Z,R,C denote respectively the sets of natural num-
bers, integers, real numbers, complex numbers endowed withtheir nat-
ural (basic) structures. Regarding intervals (of reals or integers ) the
convention of using the brackets ), (to indicate the excluded end-point
(s) and ], [ to indicated the included end point (s) is adopted. Also we
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xii 0. Notation

|A| to denote the cardinality of a finite set (or sequence)A).
Finally, the notation explicitly introduced in the lectures: We have

||x|| (c f.(2.10)), e(u)(c f.(0.52)). The number-theoretic functionsν(n)
(c f.(1.9)). µ(n)(c f.(1.8)).q(n)(c f.(1.19)), cq(n)(c f.(1.29)), ϕ(n)
(c f.(1.33)) andr(n)(c f.(6.71)) occur more than once. Also for the sum-

mation conventions (
q∑
ℓ=1
,
∑

ℓmodq
) and

∗∑
χmodq

see respectively (1.29) and

(3.6). The following conditions are of repeated use in the second part of
these lectures:

(Ω1)(c f.(9.16a) or (9.16b)); (Ω2(k.L))(c f.(11.3)); (Ω2(k))(c f.(11.4));

(R)(c f.(11.9)); (Ω◦)(c f.(11.11)); (Q)(c f.(11.23)); (R(1, α))(c f.(11.62)).
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Chapter 0

History of the Large Sieve

LET γ BE a set of|γ| integers contained in an interval of lengthN: 1

γ ⊂ (M,M + N),M ∈ Z,N ∈ N,S := |γ|. (0.1)

Setting
S(q, ℓ) :=

∑

n∈γ
n≡ℓmodq

1, (0.2)

we have
q∑

ℓ=1

S(q, ℓ) = S, (0.3)

or that
q∑

ℓ=1

(S(q, ℓ) − S
q

) = 0. (0.4)

Confining, for the moment, our attention to primesq = p only,
(0.4) tells us that the quantity

D(p) :=
p∑

ℓ=1

(S(p, ℓ) − S
p

)2 (0.5)

measures how uniformly the setγ is distributed among the residue
classes modp. Such an information. is of great importance in various
problems.

1



2 0. History of the Large Sieve

A uniform and non-trivial bound of the form

(D)
∑

p≤Q

pD(p) ≤ K(N,Q,S) (0.6)

by uniform we mean here that whileK may depend onN,Q andS, it
should be independent of the particular structure of the setγ-makes it
possible to draw the following general conclusions. (Note that actually
the suppositionM = 0 here involves no loss of generality.)2

(A) Let N, Q andS be given. If every setγ (cf. (0.1)) is so uniformly
distributed over the residue classes modp as expressed by (D),
then for most of thep’s D(p) must be small. This remark tells
us sinceD(p) is bound to be large if many residue classes modp
do not contain any element ofγ, the statement thatS(p, ℓ) = 0
for ‘many’ ℓ’s modp can be true for only ‘few’ (‘exceptional’)
primesp ≤ Q.

We can express this remark in a quantitative form. Letω(p) be an
(integer-valued) function satisfying

0 < ω(p) < p, (0.7)

and now we ask for the number ofp′s ≤ Q, for which at least
ω(p) residue classes modp do not contain any element of our set
γ. Let us denote the set of these ‘exceptional’ primes byp, and
set

min
p∈p

ω(p)
p
= δ = δ(p). (0.8)

One has then for eachp ∈ p

pD(p) ≥ pω(p)
S2

p2
≥ δS2, (0.9)

and so ∑

p∈p
pD(p) ≥ δS2|p|. (0.10)
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Trivially ∑

p∈p
pD(p) ≤

∑

p≤Q

pD(p), (0.11)

and therefore (0.6) and (0.10) give

(A) |p| ≤ K(N,Q,S)

δS2
(0.12)

For the remaining primesp i.e., p < p andp ≤ Q, less thanω(p) 3

residue classes modp are devoid of numbers ofγ. Consequently,
for these primesp each of at leastp−ω(p) residue classes modp
contains atleast one element ofγ

(B) The preceding result may also be considered as a sieve problem.
In order to see this. let us start (cf. (0.1)) with the set of numbers

M + 1, . . . ,M + N, M ∈ Z,N ∈ N. (0.13)

Now for certain primesp ≤ Q, p ∈ p say, strike out of numbers
(0.13) all those numbers which are situated in any of certainω(p),
whereω(p) satisfies (0.7), of thep residue classes modp. Let the
remaining set of numbers be our setγ. We obtain (0.12) again
under the present situation, since we have used for its proofonly
that at leastω(p) residue classes modp (for eachp ∈ p) contain
no element ofγ. Next resolving (0.12) with respect toS- as shall
be seen later to be possible we get an upper bound for|γ| with
respect to our setγ above. It is the type

(B) (|γ| =)S ≤ K1(N,Q, |p|, δ). (0.14)

(C) Our remark at the beginning ofA had been that a non-trivial es-
timate of the type (D) implies D(p) is small for most of thep′s
under consideration. If we view this as the statement that ‘most

often’
S
p

is a good approximation toS(p, ℓ) then its quantitative

version leads to a more precise formulation than that underA and
consequently than that underB.. In fact, we obtain a result of the
type ofČebysěv’s inequality.



4 0. History of the Large Sieve

To this end we introduce a functionc(p) satisfying

c(p) ≥ 1 (0.15)

and put
max
p≤Q

c(p) = c = cQ. (0.16)

4

Now we ask for the existence of the inequality

|S(p, ℓ) − S
P
| < S

pc(p)
(0.17)

More precisely, we ask for the number of primesp ≤ Q for which
the inequality (0.17) does not hold for at leastω(p) (cf. (0.7)) residue
classesℓmodp. Let us denote again byp the set of such exceptional
primes. Then, in the notation of (0.8),

pD(p) ≥ ω(p)
S2

p2c2(p)
≥ δ

c2
S2, ∀p ∈ p. (0.18)

Consequently, in view of (0.11). (0.6) gives for the number of ex-
ceptional primesp the upper bound

(C) |p| ≤ c2

δS2
K(N,Q,S). (0.19)

This result may be phrased as follows: (0.6) implies that forevery
setγ (of (0.1)) one has for allp ≤ Q. save for atmost

c2

δS2
K(N,Q,S)

primes, and for all residue classesℓmodp with the exception of less
thenω(p) of them

S(p, ℓ) =
S
P
+ θ

S
pc(p)

, where |θ| < 1. (0.20)

Choosingc(p) = 1, we see that each exceptional prime ofA, is
also an exceptional prime ofC. and conversely. ThereforeC. is a
generalization ofA. and hence also ofB.
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Although the uniformity of (0.6) with respect toγ may be consid-
ered a defect (because it includes all ‘bad’ sets) it has the advantage of5

drawing all the conclusions (of which we have given three general ex-
amples inA, B. andC.) valid for all sets , including those which are
otherwise not readily accessible. The quality of theK′sknown for (0.6)
allows us to obtain results which are not available by the useof other
methods.

(0.6) is of interest forQ ≤ N only. A trivial estimate is obtained in
the following way. By (0.5) and (0.3) we have

D(p) =
p∑

ℓ=1

S2(p, ℓ) − S2

p
, (0.21)

and trivially

S(p, ℓ) ≤
∑

M<n≤M+N
n≡ℓmodp

1 ≤ N
p
+ 1 ≤ 2

N
p

(p ≤ N). (0.22)

Using this and (0.3) again in (0.21) we find that

pD(p) ≤ 2N
p∑

ℓ=1

S(p, ℓ) = 2NS, (0.23)

and so

(D0)
∑

p≤Q

pD(p) ≤ 2NQS (Q ≤ N). (0.24)

As we have seen above (A),(B) and (C) are more or less different
versions of general types of results based on (D). Linnik [1]was the first
to consider such problems. With respect toB. he made the remark that
when striking out an (absolutely)boundednumber of residue classes
mod p the sieve method of Brun (or of Selberg) is applicable. However,
this is no longer true if, as is permissible underB.,ω(p) is, for example,
an increasing function ofp. For this very reason, Linnik named his
method of treating A. and B.
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“The Large Sieve”.
Linnik [1] proved that 6

(A1) |p| ≤ 20π
N

δ2S
for Q =

√
N, (0.25)

and consequently

(B1) S ≤ 20π
N

δ2|p|
, for Q =

√
N (0.26)

As an example he takesγ to be the set of primes≤ N, i.e., M = 0
andS = π(N), andω(p) = p3/4. Thenδ ≥ N−1/8 and (A1) yields the
non-trivial estimate:

|p| ≤ 20π
N

N−1/4π(N)
≤ 80N1/4 log N, for N ≥ N0 (0.27)

Although the large sieve first occurred in the forms (A1) and (B1), I
would prefer, in particular, in view of later developments,to call (D) the
large sieve and rather consider results of type (A), (B),(C)and others as
applications of the theory of the large sieve.

Following Linnik it was Rényi’s ([1], [2]) merit to generalize the
large sieve method in several respects. Simultaneously he noticed the
fundamental importance of (D), and also treated the more precise ver-
sion (C) for the first time.

Generalizing (0.2), for arbitrary complex numbersan we set

S̃(q, ℓ) :=
∑

M<n≤M+N
n≡ℓmodq

an (0.28)

and
S̃ := S̃(1, 1) =

∑

M<n≤M+N

an. (0.29)

(By taking foran the characteristic function ofγ in (0.28) we get (0.2).)
Let p be an arbitrary set of primesp ≤ Q. Rényi’s paper [2] has7

implicitly the following (explicit) generalization of (D)(with Q <
√

N):

(D̃1)



∑
p∈ f

pq
pq∑
ℓ=1
|S̃(pq, ℓ) − S̃(q,ℓ)

P |
2 ≤ 1

2ε

∑
M<n≤M+N

a2
n

+4π2∈2N4m2

3 |p| for Q <
√

N
q ,

(0.30)



7

wherea′nsare≥ 0, m= max
M<n≤M+N

an, q is a squarefree number not divis-

ible by anyp ∈ p, and 0< ǫ <
1

2N
.

The use of a setp of primes here is particularly suitable for appli-
cations of the type (A), (B) and (C), becausep can serve as the of ex-
ceptional primes, and the factor|p| instead ofQ improves the estimate.
From this generalization to composite moduli and arbitrarycoefficients
he derived ([1], (Lemma 1)) a (C)-type result about

|S̃(pq, ℓ) − S̃(q, ℓ)
p
| < S̃

pqc(pq)
. (0.31)

From here he succeeded ([1], (Lemma 2)) in making the large sieve
applicable also in the estimation of certain averages of character sums,
i.e., sums of the form ∑

M<n≤M+N

χ(n)an. (0.32)

Turning back to the caseq = 1, an =


1 for n ∈ γ,
0 for n < γ,

i,e. to (0.17),

then Rényi’sC-result corresponding to (0.19) is

(C1) |p| ≤ 3πN2c3

2δ3/2S2
for Q <

√
N. (0.33)

By using a different method of proof, Rényi ([7], (18)) next proved

(D1)
∑

p<(N/12)1/3

pD(p) ≤ 2NS (0.34)

and then applied this to C. and A. obtaining ([7], (Theorem 3)) 8

(C2) |p| ≤ 2Nc2

δS
for Q < (

N
12

)1/3 (0.35)

and ([7], (Corollary 1))

(A2) |p| ≤ 2N
δS

for Q < (
N
12

)1/3. (0.36)
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Finally Rényi improved his method and considered the largesieve
in its (D)-version as a special statistical statement ([4],[8], [10], [12])
and he showed ([4])

(D2)
∑

p≤ 1
2 N1/3

pD(p) ≤ 9NS (0.37)

and from this ([4], (Theorem 3))

(C3) |p| ≤ 9Nc2

δS
for Q <

1
2

N1/3 (0.38)

The last results above, though stronger than Linnik’s, are still valid
only for a smaller range for the primes, i,e., for smaller values ofQ. In
[9] (cf. Halberstam and Roth [1] (Ch. IV, Theorem 6′)) he prepared the
ground for the extension

(D3)
∑

p≤Q

pD(p) < (N + Q3)S for Q <
√

N. (0.39)

Barban has been the first to prove a (D)-result by using Linnik’s
original method. He showed ([8], (Theorem 1))

(D4)
∑

p≤Q

pD(p) ≤ 2π
NQ
K0

S +
K2

o

Q
S2 for 1 < K0 < min(Q,

N
Q

),

(0.40)
and for (D̃1) in the caseq = 1 ([10], (1.3); forq > 1 cf. [10], (Theorem
3.1))

(D̃2)



∑
p∈p p

∑p
ℓ=1 |S̃(p, ℓ) − S̃

p |
2 ≤ 1

ε

∑
M<n≤M+N

a2
n+

+4π2∈2N2S̃2

3 |p| for Q < N,
(0.41)

subject to the conditions 0< ǫ < min(
1

2πN
,

1

2Q2
), aN ≥ 0. The partic-9

ular casean =


1 for n ∈ γ,
0 for n < γ,

(i.e., S̃ = S) of this result contains (D4)

and from it Barban ([10]. (Theorem 1.1)) derived forA.

(A3) |p| ≤ 20
N

δ3/2S
for Q =

√
N. (0.42)
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The importance of (D4) lies in the fact that there is no longer any
restriction onQ, apart from the natural one, namelyQ < N, implied by
theK0-condition.

There is another generalization to a weighted form of (D) due to
Halberstam and Roth [1] (Ch. IV, Theorem 5). They proved thatfor
arbitrary weightsδp, satisfying

0 < δp <
1

2pQ
(0.43)

one has

(D∗)
∑

p≤Q

pδpD(p) ≪ S + N4
∑

p≤Q

δ3
p. (0.44)

A very important progress was made by Roth [2], who succeededin
proving

(D5)
∑

p∈p
pD(p) ≪ (N + Q2 log K0)S + S2|p|K−2

0 for K0 ≥ 2.

(0.45)
where againp denotes an arbitrary set of primesp ≤ Q, and there is no
restriction onQ. This result includes in particular ([2], (9))

(D6)
∑

p≤
√

N
logN

pD(p) < NS, (0.46)

as well as ([2], (Corollary 1)) 10

(D7)
∑

p≤Q

pD(p) ≪ S Q2 log Q for Q ≥

√
N

logN
. (0.47)

With respect to (C) Roth ([2], (Corollary 2)) derived, also noticing
that it is more appropriate - as can be seen from (0.18) to introduce

β :=
1
4

min
p≤Q

ω(p)

pc2(p)
(0.48)
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instead ofδ andc separately, from (D5)

(C4) |p| ≪
N + Q2 log 1

β

βS
for Q < N. (0.49)

It is not too simple a matter to make a comparison of the various
basic (D)-results of the large sieve. However, the main features are the
following ones.The very effective estimate (forK(N,Q,S) of (0.6))

≪ NS (0.50)

which was known by Renyi forQ upto N1/3 (cf. (0.34), (0.37), (0.39))

has been extended by Roth (cf. (0.46)) uptoQ =
√

N
logN. For values of

Q beyond
√

N, (0.40) and (0.47) still yield non-trivial estimates (com-
pare (0.24)) upto the vicinity ofN. Apart from the factor logQ and
the≪-constant, (0.47) is in most cases the better estimate. Onlyfor
Q ≍ N2S)1/5 does (0.40) yield

≪ Q2S (0.51)

which is (0.47) without the factor logQ. On the other hand, the same
result is implied by (0.45) if moreoverS≪ Q log Q.

As far as the methods of proof for the large sieve are concerned there11

are different ways of approach.
Recalling our notation introduced in the beginning of this chapter

(i.e., considering, for simplicity, the casean =


1 for n ∈ γ,
0 for n < γ,

only) the

first method, used in the aforementioned basic papers of Linnik [1] and
of Rényi [2]. is based on a treatment of the exponential sum

T(x) :
∑

n∈γ
e(nx) · x ∈ R, e(u) := e2πiu (0.52)

Here the essential use is made of the Farey dissection from the
method of Hardy and Littlewood and of Parseval’s formula. Infact,
the close connection withT(x) stems from the identity (cf. (7.1))

p−1∑

ℓ=1

|T(
ℓ

p
)|2 = p

p∑

ℓ=1

(S(p, ℓ) − S
P

)2 = pD(p), (0.53)
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the second equality being (0.5). For the proof of the first equality we
need only note that the left-hand side expression

= −S2 +

p∑

ℓ=1

|T(
ℓ

p
)|2 = −S2 +

p∑

ℓ=1

∑

n1∈γ

∑

n2∈γ
e(
ℓ

p
(n1 − n2))

= −S2 +
∑

n1∈γ

∑

n2∈γ
(

p∑

ℓ

e(
ℓ

p
(n1 − n2)))

and further, by (1.22). the inner sum in the last expression= p or = 0
according as (n1 − n2) is ≡ 0 or. 0 modp, so that our expression

= −S2 +

p∑

ℓ=1

S2(p, ℓ) = p(
p∑

ℓ=1

(S(p, ℓ) − S
P

)2)

by (0.3). Hence the form (D), which we have considered so far to be the
basis of the large sieve, amounts to asking for an upper boundfor

∑

p≤Q

p−1∑

ℓ=1

|T(
ℓ

p
)|2. (0.54)

Another method of proof that should be mentioned here takes amore 12

general point of view and may serve to simplify the understanding of the
large sieve method. It relates the problems with certain results in an in-
ner product space. This has been already developed by Rényiin his
early papers ([4], [7]), where he refers to Boas [1] and also to Bellman
[1] for their extensions of classical results to ‘quasi-orthogonal’ func-
tions. Roth’s work [2] has used king of combination of both methods.

Further methods and details of proofs with respect to the theory
of the large sieve will not be given here, but rather would be men-
tioned in appropriate chapters, in part icular under chapter 2. However,
since we will not have the opportunity to use the second method men-
tioned above, we shall present here a basic result due to A. Selberg (cf.
Bombieri [4]). The proof is very elegant and the result seemsto me to
be most suitable for giving an idea of this method, which consists then
in choosing appropriate functions in an application of (0.55).
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Theorem 0.1. Let f, ϕ1, . . . , ϕR be elements of an inner product space
overC. Then

R∑

r=1

|( f , ϕr )|2∑R
s=1 |(ϕr , ϕS)|

≤ || f ||2. (0.55)

Proof. For any complex numberscr , 1 ≤ r ≤ R, we have by the Bessel’s
inequality argument,



|| f ||2 − 2Re
R∑

r=1
cr ( f , ϕr ) +

R∑
r,s=1

crcS(ϕr , ϕS) =

= || f −
R∑

r=1
crϕr ||2 ≥ 0.

(0.56)

Using here


R∑
r,s=1

crcS(ϕr , ϕs) ≤
R∑

r,s=1
(1

2 |cr |2 + 1
2 |cS|2)|(ϕr , ϕS)| =

=
R∑

r=1
|cr |2

R∑
s=1
|(ϕr , ϕs)|

(0.57)

and then choosing13

cr =
( f , ϕr )

R∑
s=1
|(ϕr , ϕs)|

(0.58)

the proof is completed. �

From Theorem 0.1 or variants of it the main tools for this (second)
method can be derived (cf. Montgomery [5] (pp. 4-8) and Huxley [7]
(pp. 29-30)). A simple example is that as an immediate consequence of
(0.55) we obtain, under the same assumptions. ‘Bellman’s inequality’
(Bombieri [3])

R∑

r=1

|( f , ϕr )|2 ≤ || f ||2 max
1≤r≤R

R∑

s=1

|(ϕr , ϕs)|. (0.59)

(0.55) as well as (0.59) generalize Bessel’s inequality, or(for R = 1)
Schwarz’s inequality, in an inner product space to which they reduce
when{ϕr} happen to be orthonormal.
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The importance of this method for the modern development of the
large sieve has been noticed by Bombieri, Gallagher andA. Selberg (cf.
Bombieri [3], [4]).

The further development in the theory of the large sieve has shown
that with the work of Roth one had already come close to best possible
results. The next decisive step in this direction was made inan im-
portant paper by Bombieri [1] (also independently in a paperby A.I.
Vinogradov [1]. Apart from the important deductions he madefrom
his result and other details (not to mention here), the main features of
this progress in theoretical respect were (i) the extensionof his ((D)-
type) result from an estimate of (0.54) to an estimate (of thelarger gum)
where the summation is extended over all natural numbersq ≤ Q in- 14

stead of over only primesp ≤ Q (cf. (2.3)). (ii) keeping thereby not
only the quality of Roth’s result but even removing a log-factor, and (iii)
obtaining an explicit≪-constant. which is of considerable importance
in certain applications.

After having recalled some arithmetical results in Chapter1 we shall
take up this modern version of the large sieve in Chapter 2. Applications
to character sums are possible, as has been already mentioned in (0.32).
and will be treated in Chapter 3. Important further applications of the
large sieve, not mentioned so far, to Dirichlet series whichwere first
noticed by Davenport (cf. Montgomery [2]) are dealt with in Chapter
4. This theme is continued in Chapter 5 where certain ‘hybrid’ forms
of the large sieve for applications to Dirichlet series alsooccur. Chapter
6 is devoted to a survey on special applications of the large sieve to
Dirichlet series and also to some problems of number theory:In Chapter
7 we shall turn to the large sieve in its arithmetical form (B). Lastly, in
Chapter 8 we give an application of the large sieve to a special problem,
Viz. Brun-Titchmarsh theorem. of number theory.

So far very little has been said about the applications of thelarge
sieve. As can be seen from the description of the contents of the follow-
ing chapters given above there is a great variety of applications. Many
of these are of a ‘statistical’ nature, in the sense that theyare concern-
ing certain averages. Many results of number theory are known to be
consequences of certain unproved hypotheses. However, in many cases
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we are able to apply the aforementioned statistical statements to obtain,
strikingly, the same results as those which one gets by assuming certain
still unproved hypotheses.

Apart from a first application in the construction of a non-basic es-
sential component (Linnik [2]). Linnik [3] showed the powerof his new
method, via (A), in a result about the least quadratic non-residue modp.15

Rényi’s first application of the large sieve yielded a surprising result in
the direction of Goldbach’s conjecture. In fact, Rényi hasbeen the first
to prove that every sufficiently large even number can be written as a
sum of a prime and a number consisting of aboundednumber of prime
factors.

We shall not mention other applications in this historical introduc-
tion but rather defer them to later (appropriate) chapters.However, in
keeping with the title of this chapter, following the Notes for this chap-
ter we add a list of references to works, upto the first paper ofBombieri,
in chronological order. This list also includes papers, upto this point,
which deal only with the applications of the large sieve.

There are also generalizations of the large sieve in variousdirec-
tions. Some of these papers are given in a second list of references
following the above one.

NOTES

In order not to make this purely historical introduction toolong, we
have selected only some significant results that seem to be illuminat-
ing for our way of presenting the subject. For further information the
reader is referred to the surveys in Barban [10], Halberstamand Roth
[1]. Davenport [1], Roth [4] Montgomery [5]. Huxley [7] and Bombieri
[5], [6].

(0.25), (0.26): By using|eix − 1| ≤ |x| instead of Linnik’s estimate
|eix − 1| ≤ e|x| the constant 20 can be replaced by 4.

(0.33): Rényi’s paper ([2], (Lemma 1)) contains only the special
caseω(p) = p8/9, c = p1/9. However, as he has pointed out ([7], (Theo-
rem 2)) his method also applies to the general case.

(0.39): Note that by (D0), (0.39) holds also forQ ≥
√

N.16
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(0.40): His method gives actually a factor
1
3

for the second term,

and also the condition onK0 may be slightly relaxed.
(0.39), (0.40): In general (D3) yields the better result forQ in the

vicinity of N1/3 whereas (D4) becomes superior whenQ tends to
√

N.
Also (D4) has been the first result to yield non-trivial estimates upto the
vicinity of N.

(0.42): Actually, the more appropriate choice ofǫ =

√
s

2πN
yields the

factor 3π instead of 20, and a simple refinement of the proof gives even
3
2
π. A consequence of this remark is, when applied toC.,

(C5) |p| ≤ 3
2
πNc3

δ3/2S
for Q =

√
N, (0.60)

a result which is always better than Rényi’es ((Ci)).
(0.44): Following Barban’s method of proof for (D4) one notices

that in (D∗) the factorN4 can be replaced byN2S2.
(0.56): Here we have used that


|| f ||2 = ( f , f ), ( f , g+ h) = ( f , g) + ( f , h),

(c f, g) = c( f , g), (g, f ) = ( f , g)
(0.61)

and (hence also)
( f , cg) = c̄( f , g). (0.62)

For an application of Theorem 0.1 see the notes following Chapter 2.

History of the large sieve. References in
chronological order.

Linnik [1], Boas [1], Linnik [2], [3], Bellman [1], Rényi [1], [2],
[3], [4], [5], [6], [7], [8], Bateman, Chowla and Erdös [1],Kubiliyus
[1], Rényi [9], Wang [1], Rényi [10], [11], Stepanov [1], Hua [1], Rényi 17

[12], Barban [1], Linnik [4], Barban [2], Erdös [1], Barban[3], Gel-
fond and Linnik [1], Pan [1], Erdös [2], Pan [2], Wang [2], Levin [1],
Barban [4], [5], [6], Pan [3], Rieger [3], Pan [4], Barban [7], Roth [1],
Levin [2], Barban [8], [9], M. and S. Uchiyama [1], Barban [10], Wang,
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Hsieh and Yu [1], Halberstam and Roth [1], Roth [2], Buchstab[1], A.I.
Vinogradov [1], Bombieri [1],

Extensions of the large sieve

Andruhaev [1], Fogels [1], Goldfeld [3], Hlawka [1], [2], Huxley
[1], [3], [4], Johnsen [1], Rieger [1], [2], Samandarov [1],Schaal [1],
Wilson [1].



Chapter 1

Arithmetical Aids

IN THIS chapter we shall collect for the reader’s convenience some of 18

the results, which are use in later chapters, from elementary number
theory.

1 Multiplicative functions

By
m (1.1)

we denote the set of functions (defined onN)

f . 0 (1.2)

that satisfy
f (nq) = f (n) f (q) ∀n, q ∈ N (1.3)

whenever
(n, q) = 1. (1.4)

Since we have excluded the trivialf by (1.2), there is aq such that
f (q) , 0 and so (1.3) implies forn = 1

f ∈ m =⇒ f (1) = 1. (1.5)

17
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Obviously
f (n) = nz ∈ m for every z ∈ C, (1.6)

so, in particular, forz= 0

f (n) = 1 ∈ m, (1.7)

and for these functions the restriction (1.4) is not even necessary. A
non-trivial example is provided by the Mobius function, defined by

µ(n)


0 if n is not squarefree, i.e., there is a primep : p|2n,

(−1)ν(n) if n is squarefree
(1.8)

where, as usual.19

ν(n) =
∑

p|n
1 (ν(1) = 0). (1.9)

For ν, (1.3) is easily checked, because, if atleast one of the numbers
n andq is not squarefree we have zero on both sides, and if bothn and
q are squarefree we get (1.3) subject to (1.4) by using

ν(nq) = ν(n) + ν(q) for (n, q) = 1; (1.10)

hence
µ ∈ m (1.11)

A simple way of obtaining new functions is by multiplying together
(1.3) for any two such functions, so that

f1, f2 ∈ m⇒ f1 f2 ∈ m. (1.12)

A less trivial result is

f1, f2 ∈ m⇒ g(n) :=
∑

d|n
f1(d) f2(

n
d

) ∈ m. (1.13)

For a proof we first note that ifd|nq there is, in view of (1.4), a
unique factorizationd = th with t|n, h|q. Therefore, by considering
(1.3), for both functions, under the condition (1.4), we obtain



g(nq) =
∑
t|n

∑
h|q

f1(th) f2(n
t

q
h) =

=
∑
t|n

f1(t) f2(n
t )
∑
h|q

f1(h) f2(q
h) = g(n)g(q).

(1.14)
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For a f ∈ m it follows by repeated application of (1.3), subject to20

(1.4), that

f ∈ m⇒ f (n) =
∏

p|n
f (pap) where n =

∏

p|n
pap. (1.15)

so that these functions need only be known at prime-powers. In particu-
lar, for squarefree number one has

f ∈ m⇒ f (q) =
∏

p|q
f (p) if µ(q) , 0. (1.16)

A good illustration of this property of functions inm is given as
follows. Suppose thatf1, f2 ∈ m, and letq be a squarefree number.
Theng ∈ m, whereg is defined by (1.13) abd from (1.16) we get



g(q) =
∏
p|q

g(p) =
∏
p|q

(
∑
d|p

f1(d) f2( p
d ))

=
∏
p|q

( f1(p) f2(1)+ f1(1) f2(p)) for µ(q) , 0.
(1.17)

Therefore, in view of (1.5), we have proved that


f1, f2 ∈ m⇒
∑
d|q

f1(d) + f2(q
d) =

=
∏
p|q

( f1(p) f2(p)). if µ(q) , 0.
(1.18)

For an application we note that by (1.11) and (1.7) one can take µ
and 1 for f1 and f2 respectively. Then, denoting byq(n), the ‘kernel’ of
n, i.e., the largest squarefree divisor ofn, (1.18) yields

∑

d|n
µ(d) =

∑

d|q(n)

µ(d) =
∏

p|n
(µ(p) + 1), (1.19)

which gives the well-known formula

∑

d|n
µ(d) =


1 for n = 1

0 for n > 1.
(1.20)
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2 Ramanujan’s function
21

Recalling our notation (cf. (0.52))

e(u) := e2πiu (1.21)

we see, on considering the partial sums of geometric series,that

q∑

ℓ=1

e(n
ℓ

q
) =



q for q/n,

∀q ∈ N, n ∈ Z.
0 for q ∤ n

(1.22)

The continuous analogue of (1.22) is

1∫

0

e(nx)dx =


1 for n = 0,

1 for n , 0,
n ∈ Z. (1.23)

Sincee(
m
q

) has periodq, (1.22) may also be written as

∑

ℓmodq

e(n
ℓ

q
) =


q for q|n,
0 for q ∤ n,

∀q ∈ N, n ∈ Z. (1.24)

whereℓ runs through a complete system of residues moduloq. The
corresponding result for (1.23) is

α+1∫

α

e(nx)dx =


1 for n = 0,

0 for n , 0,
∀n ∈ Z, α ∈ R. (1.25)

For anya′
ℓ
s∈ C

q∑

n=1

∣∣∣∣
q∑

ℓ=1

aℓe(
nℓ
q

)
∣∣∣∣
2
=

q∑

ℓ1,ℓ2=1

al1al2

q∑

n=1

e((ℓ1 − ℓ2)
n
q

), (1.26)

and because of|ℓ1 − ℓ2| < q in the innermost sum, (1.22) gives

1
q

q∑

ℓ=1

|
q∑

ℓ=1

aℓe(
nℓ
q

)
∣∣∣∣
2
=

q∑

ℓ=1

|aℓ |s, ∀aℓ ∈ C. (1.27)
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Similarly, by (1.23), assuming that
∑

n |an|2 < ∞ (so, in particular,
for any finite range form), we have

1∫

0

|
∑

n

e(nx)|2dx=
∑

n1,n2

an1an2

1∫

0

e((n1 − n2)x)dx=
∑

n

|an|2. (1.28)

In view of (1.25), it is obvious that (1.28) remains true if the integral 22

is extend over any interval of length 1.
Ramanujan’s sum is defined by



cq(n) :
q∑
ℓ=1

e(nℓq) =
′∑

ℓmodq
e(nℓq), ∀q ∈ N, n ∈ Z

and where
′q∑
ℓ=1

:
q∑
ℓ=1

(ℓ,q)=1

(1.29)

and
′∑

ℓmodq
means summation asℓ runs through a reduced system of

residues moduloq. In order to computecq(n) we use (1.20). Noting
that always ∑

d|q
f (d) =

∑

d|q
f (

q
d

) (1.30)

and writingℓ = ℓ1.
q
d

in the last step below we find. by (1.20),



cq(n) =
q∑
ℓ=1

e(nℓq)
∑
d|q
d|ℓ

µ(d) =
∑
d|q
µ(d)

ℓ∑
ℓ=1

ℓ≡0 modd

e(nℓq) =

=
∑
d|q
µ(q

d)
q∑
ℓ=1

ℓ=0 modq
d

e(nℓq) =
∑
d|p
µ(q

d)
d∑

ℓ1=1
e(nℓ1

d ),
(1.31)

so that, by (1.22), we have

cq(n) =
∑

d|q
d|n

µ(
q
d

)d ∀q ∈ N, n ∈ Z (1.32)
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We note the following two special cases. Forn = 0, we see from
(1.29) that Ramanujan’s sum becomes Euler’s functionϕ(q), and (1.32)
leads via (1.30) to the well-known formulae



ϕ(q) :=
q∑
ℓ=1

1 = cq(0) =
∑
d|q
µ(q

d)d =
∑
d|q
µ(d)q

d =

= q
∑

d|q(q)

µ(d)
d = q

∏
p|q(q)

(− 1
p + 1) = q

∏
p|q

(1− 1
P),

(1.33)

where we have used also (1.11), (1.12), (1.6) forz = 0 andz = 0 and23

z = −1, and (1.18). Next, for (n, q) = 1, the right-hand side of (1.32)
reduces toµ(q), so that via (1.29) we also obtain

µ(q) = cq(n) =
q∑
′

ℓ=1

e(n
ℓ

q
) if (n, q) = 1, q ∈ N, n ∈ Z. (1.34)

3 Dirichlet’s characters and Gaussian Sums

For eachq ∈ N we define the arithmetic functions, names ‘characters
moduloq’,

χ(m)(∈ C), ∀m ∈ Z. (1.35)

For an elementary introduction of these functions one requires fol-
lowing four properties (1.36) through (1.39):

χ(1) = 1 (1.36)

χ(mn) = χ(m)χ(n) ∀m, n ∈ Z, (1.37)

i.e.,χ ∈ m without the restriction (m, n) = 1,

χ(n) = χ(ℓ) for n = ℓmodq (1.38)

and
χ(n) = 0 for (n, q) > 1. (1.39)

The relations (1.38) and (1.36) imply

χ(m) = 1 for m≡ 1 modq. (1.40)
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By (1.39) any character vanishes for alln which are not coprime
to q. On the other hand, for (n, q) = 1, we have by Euler’s theorem
nϕ(q) ≡ 1 modq, so that (1.37) and (1.40) give

(χ(n))ϕ(q) = 1 for (n, q) = 1, (1.41)

i,e., for (n, q) = 1,χ(n) is aϕ(q)-th root of unity; in particular.

|χ(n)| = 1 for (n, q) = 1. (1.42)

24

It is obvious that the function

χ0(n) =


1 if (n, q) = 1,

0 if (n, q) > 1,
(1.43)

is a character moduloq; it is called theprincipal character modq. A
simple formula is

q∑

ℓ=1

χ(ℓ) =
q∑
′

ℓ=1

χ(ℓ) =


ϕ(q) for χ = χ0,

o for χ , χ0
(1.44)

The first statement is immediate from (1.39), and forχ = χ0 the
second statement follows by (1.43). Next forχ = χ0 there must be a
numbermsuch that

(m, q) = 1, χ(m) , 1. (1.45)

So whenℓ runs through a reduced residue system modq then the
same doesmℓ too. Hence, in view of (1.38) and (1.37), we have

χ(m)
′∑

ℓmodq

χ(ℓ) =
′∑

ℓmodq

χ(ℓm) =
′∑

ℓmodq

χ(ℓ), (1.46)

which implies the second statement of (1.44) forχ , χ0 because of
χ(m) , 1.

It can be shown that for any givenq ∈ N there are exactlyϕ(p) dis-
tinct functions fulfilling (1.36) through (1.39), i.e., there areϕ(q) char-
acters modq, a fact that can be stated in the form

∑

χmodq

1 = ϕ(q). (1.47)
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It is easily checked that withχ(n) also χ̄(n) is a character modq.
Also, with χ1, χ2 the functionχ1, χ2 is a character modq. The sec-
ond remark leads us to the following statement. If for certain characters
χ′, χ′′, χ1 modq, χ′(n)χ1(n) = χ′′(n)χ1(n) holds for alln, then in view
of (1.42) and (1.39) one hasχ′ = χ′′. Hence, ifχ1 is a fixed charac-25

ter modq andχ runs through all characters modq, thenχ1χ also runs
through all characters modq, a fact which can be expressed through

χ1(m)
∑

χmodq

χ(m) =
∑

χmodq

(χ1χ)(m)
∑

χmodq

χ(m), ∀m ∈ Z. (1.48)

This leads us to the following counterpart of (1.44):

∑

χmodq

χ(m) =


ϕ(q) for m≡ 1 modq,

0 for m. 1 modq.
(1.49)

For, whenm≡ 1 modq this assertion follows from (1.40) and (1.47)
and for (m, q) > 1 it is trivially true in view of (1.39). In this remaining
case

m, 1 modq, (m, q) = 1, (1.50)

we need the result that, for anym subject to (1.50), there is a character
χ1 modq such thatχ1(m) , 1, and then the result follows from (1.48).

Next we note the following equivalence:

χ̄(n)χ1(n) = χ0(n),∀n⇔ χ1(n) = χ(n). ∀n. (1.51)

This is clear for (n, q) > 1. For (n, q) = 1 we multiply on the left by
χ(n) and use (1.42) and (1.43) (the latter implies always thatχχ0 = χ),
and this step can be reversed becauseχ(n) , 0. Sinceχχ1 is a character,
it may be used in (1.44), and because of (1.37) and (1.51) we obtain

q∑
′

ℓ=1

χ̄(ℓ)χ1(ℓ) =


ϕ(q) for χ = χ1,

0 for χ , χ1.
(1.52)

Finally we prove that

∑

χmodq

χ̄(ℓ)χ(n) =


ϕ(q) for n ≡ ℓmodq,

0 for n . ℓmodq
if (ℓ, q) = 1. (1.53)



3. Dirichlet’s characters and Gaussian Sums 25

In view of (1.39) we may assume that (n, q) = 1. Since (ℓ, q) = 1,26

we can determineℓ′ such that

(ℓ′, q) = 1, ℓℓ′ ≡ 1 modq, (1.54)

and hence by (1.40) and (1.37) one hasχ(ℓ)χ(ℓ′) = 1, which yields after
multiplication by (χ̄(ℓ)), in view of (1.42), that ¯χ(ℓ) = χ(ℓ′), so that, by
using (1.37) again follows

∑

χmodq

χ̄(ℓ)χ(n) =
′∑

χmodq

χ(ℓ′n). (1.55)

On the otherhand, by the definition ofℓ′, we have

ℓ′n ≡ 1 modq⇔ n ≡ ℓmodq. (1.56)

Hence (1.53) follows from (1.49) withm = ℓ′n, using (1.55) and
(1.56).

From (1.53) we now derive the following analogue of (1.27):

1
ϕ(q)

∑

χmodq

|
q∑

ℓ=1

χ̄(ℓ)uℓ |2 =
q∑
′

ℓ=1

|uℓ |2, ∀uℓ ∈ C. (1.57)

Keeping (1.39) in mind, we see that the left-hand side equals

1
ϕ(q)

∑

χmodq

′q∑

ℓ,n=1

χ̄(ℓ)χ(n)uℓūn =

′q∑

ℓ,n=1

uℓūn(
1
ϕ(q)

∑

χmodq

χ̄(ℓ)χ(n)).

(1.58)
so that (1.57) follows form (1.53).

If d|q andχ1 is a character modd, then

χ(m) :=


χ1(m) for (m, q) = 1,

0 for (m, q) > 1,
(1.59)

is a character modq, and we say thatχ1 modd induces the character
χmodq. If χmodq is not induced by any characterχ1 modd for any
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d < q, χ is then called aprimitive character modq. The smallestf , f |q,
such that aχ∗mod f inducesχmodq is calledconductorof χ. 27

For any characterχmodq the ‘Gaussian sum’ is defined by

τ(χ) :=
q∑

ℓ=1

χ(ℓ)e(
ℓ

q
) =
∑

ℓmodq

χ(ℓ)e(
ℓ

q
), (1.60)

since bothχ(ℓ) and e(
ℓ

q
) are of periodq. By (1.39), ℓ runs actually

through a reduced system of residues modq, and so doesnℓ also if
(n, q) = 1. Therefore it follows, by using (1.60) for ¯χ, (1.37) and (1.42),
that


τ(χ̄)χ(n) = χ(n)
∑

ℓmodq
χ̄(nℓ)e(nℓq) =

=
∑

ℓmodq

¯chi(ℓ)e(nℓq), for anyχmodq and (n, q) = 1.

(1.61)
It requires a little more effort to prove that for primitive charactersχ

(1.61) holds even without the restriction (n, q) = 1, i.e,,

τ ¯(χ)χ(n) =
∑

ℓmodq

χ̄(ℓ)e(n
ℓ

q
), for primitive χmodq, n ∈ Z. (1.62)

If we takeaℓ = χ̄(ℓ) in (1.27), it follows from (1.62) that for any
primitive characterχmodq

1
q

q∑

n=1

|τ(χ̄)χ(n)|2 = ϕ(q) (1.63)

or
|τ(χ)2| = q for primitive χmodq. (1.64)

If χ is not a primitive character, let it be induced by

χ∗mod f , q = r f , (1.65)

where f is the conductor ofχ. It can be shown that

τ(χ) = 0 if (r, f ) > 1 (1.66)
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and that

|τ(χ)|2 = µ2(r)|τ(χ∗)|2 = µ2(r) f , if ( r, f ) = 1, (1.67)

by (1.64), sinceχ∗ is a primitive character modf . Collecting together 28

the results (1.64), (1.66) and (1.67). we have, for the Gaussian sums, the
following

Lemma 1.1. If f is the conductor ofχmod q, then

q = r f (1.68)

and

|τ(χ)2| =

µ2(r) f for (r, f ) = 1,

0 otherwise.
(1.69)

We close this chapter with another application which demonstrates
the usefulness of our characters.

Lemma 1.2. For any a′ns inC and any for characterχmod q put

S(x; q, ℓ) :=
∑

n≤x
n≡ℓmod q

an,S(x, χ) :=
∑

n≤x

anχ(n). (1.70)

Then

q∑
′

ℓ=1

|S(x; q, ℓ) − S(x, χ0)
ϕ(q)

|2 = 1
ϕ(q)

∑

χ,χ0

|S(x, χ̄)|2 (1.71)

Proof. First we note that, by (1.53) (withχ being replaced byχ1 fol-
lowed by taking the complex conjugate) and (1.52), we have



q∑
ℓ=1

x̄(ℓ)S(x; q.ℓ) =
q∑
ℓ=1

x̄(ℓ)
∑

n≤x
an

1
ϕ(q)

∑
x1 modq

X1(ℓ)x̄1(n) =

=
∑
n≤x

an
∑

x1 modq
x̄1(n) 1

ϕ(q)

q∑
ℓ=1

′ x̄(ℓ)x1(ℓ) =

= S(x, x̄).

(1.72)

�
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Next, takinguℓ = S(x; q, ℓ) − S(x, χ0)
ϕ(q)

in (1.57), it follows that

q∑

ℓ=1

′
∣∣∣∣∣S(x; q.ℓ) − S(x, χ0)

ϕ(q)

∣∣∣∣∣
2

=
1
ϕ(q)

∑

χmodq

∣∣∣∣∣
q∑

ℓ=1

χ̄(ℓ)(S(x; q, ℓ) − S(x, χ0)
ϕ(q)

)
∣∣∣∣∣
2

.

(1.73)

According to (1.72) and (1.44). we have29

q∑

ℓ=1

χ̄(ℓ)(S(x; q, ℓ) − S(x, χ0)
ϕ(q)

) =


0 for χ = χ0,

S(x, χ̄) for χ , χ0,
(1.74)

and using this in (1.73) we obtain (1.71).
For the theory of prime numbers the important special case

ψ(x; q, ℓ) :=
∑

n=x
n≡ℓmodq

Λ(n), ψ(x, χ) :
∑

n≤x

Λ(n)χ(n) (1.75)

yields, on nothing thatΛ(n) is a real-valued function, the identity
q∑
′

ℓ

(ψ(x; q, ℓ) − ψ(x, χ0)
ϕ(q)

)2 =
1

ϕ(q)

∑

χ,χ0

|ψ(x, χ)|2. (1.76)

This formula was the starting point in the proof of the mean-value
theorem of Davenport and Halberstam [2] (cf. (6.34)).

NOTES

(1.27): As another example, take in (1.27)

aℓ =


1 for (ℓ, q) = 1,

0 for (ℓ, q) > 1.

Then, in view of (1.29),
q∑

n=1

c2
q(n) = qϕ(q). (1.77)

3: For the proofs omitted in this section we refer, for instance, to
Davenport [1] (Chapter 9) and Huxley [7] (Chapter 3).



Chapter 2

The Large Sieve

WE START by recalling the notation introduction in Chapter 0(cf. (0.1) 30

and (0.52)). Letγ be a set consisting ofS integers from an interval of
lengthN:

γ ⊂ (M,M + N],M ∈ Z,N ∈ N,S := |γ|. (2.1)

and let
T(x) :=

∑

n∈γ
e(nx). (2.2)

Then, as has been indicated in Chapter 0, the large sieve in its basic
form is concerned with the estimation, of the expression

∑

q≤Q

q∑
′

ℓ=1

∣∣∣∣∣T(
ℓ

q
)
∣∣∣∣∣
2

(2.3)

in terms ofN, Q andS, of the form

∑

q≤Q

q∑
′

ℓ=1

∣∣∣∣∣T(
ℓ

q

∣∣∣∣∣
2

≤ C(N,Q)S. (2.4)

The simplest approach to a bound of the type in (2.4) is now dueto
Gallagher [1]. Gallagher’s starting point is the followinglemma which
occurs in the earlier work of Hardy and Littlewood, and of Sobolev (for
several variables):

29
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Lemma 2.1. Let u andδ(> 0) be real numbers, and let f(x) (complex-

valued) be continuous on
[
u− δ

2
, u+

δ

2

]
with a continuous derivative in

(u− δ
2
, u+

δ

2
). Then

| f (u)|2 ≤
u+ δ2∫

u− δ2

| f (x) f ′(x)|dx+ δ−1

u+ δ2∫

u− δ2

| f (x)|2dx. (2.5)

Proof. Put
F(x) = f 2(x). (2.6)

Then, by partial integration, we find the identity



F(u) = δ−1
u∫

u− δ2

(x(u− δ
2))F′(x)dx+ δ−1

u+ δ2∫

u
(x− (u+ δ

2))F′(x)dx+

+δ−1
u+ δ2∫

u− δ2

F(x)dx.

(2.7)
31

Hence

|F(u)| ≤ 1
2

u+ δ2∫

u− δ2

|F′(x)|dx+ δ−1

u+ δ2∫

u− δ2

|F(x)|dx, (2.8)

which gives (2.5) on using (2.6).
Gallagher’s use of the above lemma enables one to obtain a bound of

the type in (2.4) when the expression on the left there is extended in two
directions; namely, when the terms of the sum in (2.2) have weights (ar-

bitrary complex numbers)an and the set of (fractional) points
ℓ

q
in (2.4)

are replaced by a finite set of real numbers which are distinctmodulo
1. �
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Theorem 2.1. For any complex numbers an, M < n ≤ M + N, set

U(x) :=
∑

M<n≤M+N

ane(nx). (2.9)

Let x1, . . . , xR be real numbers which are distinct mod 1 and put

δ := min
r,s
r,s

||xr−xs||, if R≥ 2, ||x|| := min
k∈Z
|x−k|; δ := ∞, if R= 1. (2.10)

Then
R∑

r=1

|U(xr )|2 ≤ (πN + δ−1)
∑

M<n≤M+N

|an|2. (2.11)

We shall present the proof of this theorem in all its detail. For some
proofs of large sieve inequalities, in particular, for the proof of Theorem
2.1 which is based on Lemma 2.1 (cf. also the proof of (2.95)),it is
a advantageous (cf. (2.30)) to consider a shifted interval (usually, an 32

interval symmetric about the point zero) instead of the interval (M +
M+N]. Then the general case is easily derived by reversing the shifting
procedure. The idea of the last step is contained in the following

Lemma 2.2. Let N ∈ N, let x1, . . . , xR(R ≥ 2) be real numbers which
are district mod1 and put

δ := min
r,s
r,s

||xr − xs||. (2.12)

Set
V(x) :=

∑

−N
2 <m≤N

2

bme(mx), bm ∈ C. (2.13)

Then the inequality

R∑

r=1

|V(xr )|2 ≤ ∆(N, δ)
∑

−N
2 <m≤N

2

|bm|2, ∀bm ∈ C (2.14)

with some (positive) function∆(N, δ) depending only onN andδ implies
that for anyM ∈ Z,

R∑

r=1

|U(xr)|2 ≤ ∆(N, δ)
∑

M<n≤M+N

|an|2 ∀an ∈ C (2.15)
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where
U(x) :=

∑

M<n≤M+N

ane(nx). (2.16)

Proof of lemma 2.2. If U(x) is defined by (2.16), let us consider



V(x) : = e(−(M +
[

N+1
2

]
)x)U(x) =

∑
M<n≤M+N

ane((n− M −
[

N+1
2

]
)x) =

=
∑

−[ N+1
2 ]<m≤−[ N+1

2 ]+N
bme(mx) =

∑
− N

2 <m≤ N
2

bme(mx),

(2.17)
where33

bm = am+M+
[

N+1
2

],−N
2
< m≤ N

2
. (2.18)

Now |U(x)| = |V(x)| for all real x from which we easily see that
(2.15) is an immediate consequence of (2.14).

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. To start with we dispose off the caseR = 1.
This is easily done in view of (2.10) and Cauchy’s inequality:

|U(x1)|2 ≤ N
∑

M<n≤M+N

|an|2. (2.19)

So we assume that
R≥ 2 (2.20)

and further, because of Lemma 2.2, we shall considerV instead ofU.
SinceV(x) is of period 1 we can also suppose that

0 ≤ x1 < x2 < . . . < xR < 1. (2.21)

By the pigeon-hole principle follows easily that

δ ≤ 1
R
. (2.22)

Now, from Lemma 2.1 withf = V andu = xr , one has

|V(xr)|2 ≤
∫

Ir

|V(x)V′(x)|dx+ δ−1
∫

Ir

|V(x)|2dx, (2.23)
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where

Ir := [xr −
δ

2
, xr +

δ

2
]. (2.24)

By (2.12), we have forr , s

δ ≤ ||xr − xs|| ≤ |xr − xs|, (2.25)

so that our intervalsIr do not overlap and their total length, i.e., length34

of
R⋃

r=1

Ir , (2.26)

equals
δR≤ 1, (2.27)

on recalling (2.22). Summing now overr in (2.23) (and using that both
V(x) andV′(x) have period 1) we can replace the integration on the right

over (2.26) by
1∫

0

. Thus we get, by employing Schwarz’s inequality.

R∑

r=1

|V(xr)|2 ≤ (

1∫

0

|V(x)|2dx)1/2(

1∫

0

|V′(x)|2dx)
1
2 + δ−1

1∫

0

|V(x)|2dx.

(2.28)
Now, it follows from (1.28) that

1∫

0

|V(x)|2dx=
∑

−N
2 <m≤N

2

|bm|2 (2.29)

and also

1∫

0

|V′(x)|2dx=
∑

−N
2 <m≤N

2

|2bmπm|2 ≤ N2π2
∑

−N
2 <m≤N

2

|bm|2. (2.30)

Hence (2.28) yields

R∑

r=1

|V(xr)|2 ≤ (πN + δ−1)
∑

−N
2 <m≤N

2

|bm|2. (2.31)
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This is (2.14) with

∆(N, δ) = πN + δ−1. (2.32)

Therefore, by lemma 2.2, (2.15) with (2.32) gives (2.11) thereby
completing the proof of Theorem 2.1.

Now we discuss the result of Theorem 2.1. Due to the presence of
the factorδ−1 the efficiency of (2.11), as of other large sieve inequali-35

ties that we shall consider, depends on the information as tohow ‘well-
spaced’ (in the sense of (2.10) the pointsxr are.

The simplest case is, for any (2≤)R ∈ N. with

xr =
r
R
, 1 ≤ r ≤ R (2.33)

so that

δ =
1
R
. (2.34)

Now Theorem 2.1 gives

R∑

r=1

∣∣∣∣∣U(
r
R

)
∣∣∣∣∣
2

≤ (πN + R)
∑

M<n≤M+N

|an|2 (2.35)

In the more interesting case

xr =
ℓ

q
, 1 ≤ ℓ ≤ q ≤ Q, (ℓ, q) = 1, (2.36)

the set of Farey fractions of ordérQ, the points are not quite so well-
spaced. We find, on assuming thatQ ≥ 2, for any two distinct Farey
fractions in (2.36)

|| ℓ
q
− ℓ
′

q′
|| =
∣∣∣∣∣
∣∣∣∣∣
ℓq′ − qℓ′

qq′

∣∣∣∣∣
∣∣∣∣∣ ≥

1
qq′
≥ 1

Q2
, (2.37)

i.e.

δ ≥ 1

Q2
. (2.38)

Hence we get from Theorem 2.1 and (2.19) the following
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Theorem 2.2. Let M ∈ Z, N ∈ N and let an(M < n ≤ M + N) be
arbitrary complex numbers. Then

∑

q≤Q

q∑

ℓ=1

′|U(
ℓ

q
)|2 ≤ (πN + Q2)

∑

M<n≤M+N

|an|2 ∀Q ∈ N, (2.39)

where U(x) is defined through(2.9).

Regarding the quality of the preceding results we make the follow- 36

ing remarks. Under the assumptions of Theorem 2.1, recall the estima-
tion (2.15):

R∑

r=1

|U(xr )|2 ≤ ∆(N, δ)
∑

M<n≤M+N

|an|2. (2.40)

In some application the bound in (2.11) is quite satisfactory. How-
ever, if we are inserted in better estimates we need apply more effective
tools in the proof.

In order to see some necessary conditions for having a general result
of the form (2.40) first note that ifx1 = 0 andan = 1 for M < n ≤ M+N
then the left hand side is at least|U(x1)|2 = N2, so that

∆(N, δ) ≥ N. (2.41)

Next, sinceδ is invariant under a translation of the setx1, . . . , xR by
any givenx ∈ R, (2.40) would also simply that

R∑

r=1

|U(xr + x)|2 ≤ ∆(N, δ)
∑

M<n≤M+N

|an|2 for every x ∈ R. (2.42)

Integrating this with respect tox over an interval of length 1 and
using (1.28), we see that

R
∑

M<n≤M+N

|an|2 =
R∑

r=1

1∫

0

|U(xr + x)|2dx≤ ∆(N, δ)
∑

M<n≤M+N

|an|2.

(2.43)
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Therefore from our example (2.33) of equally-spaced pointsfollows
that

∆(N, δ) ≥ δ−1. (2.44)

Furthermore, Bombieri and Davenport [3] have given examples from
which one gets

∆(N, δ) ≥ N + δ−1 − 1. (2.45)

These remarks can be considered as negative ones.
In the positive direction the following result, due to Montgomery

and Vaughan [2], leaves only a small gap when compared with (2.45).
SinceN is usually large in applications this difference in minor.37

Theorem 2.3. Under the hypotheses of Theorem 2.1, we have

R∑

r=1

|U(xr )|2 ≤ (N + δ−1)
∑

M<n≤M+N

|an|2. (2.46)

(In what follows we assume thatR≥ 2 (cf. (2.20)).)
Their proof uses the principle of duality due to Hellinger-Toeplitz,

namely that for anR×N matrix (crn) with complex entries and a constant
A

N∑

n=1

|
R∑

r=1

crnvr |2 ≤ A
R∑

r=1

|vr |2, ∀vr ∈ C (2.47)

implies that (and is implied by)

R∑

r=1

|
N∑

n=1

crnwn|2 ≤ A
N∑

n=1

|wr |2,∀wn ∈ C (2.48)

and the following extension of Schur’s result regarding Hilbert’s in-
equality (Montgomery and Vaughan [1]):

Lemma 2.3. Under the hypotheses of Theorem 2.1, we have

|
R∑

r=1

R∑

s=1
s,r

ur ūscosec(π(xr − xs))| ≤ δ−1
R∑

r=1

|ur |2,∀ur ∈ C. (2.49)
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Proof of Lemma 2.3. First we can impose the normalization condition

R∑

r=1

|ur |2 = 1. (2.50)

Also we can assume, since the double-sum in (2.49) is a skew-
hermitian form, that the (u) which makes the left-hand side there maxi-
mum satisfies

∑

r=1
r,s

ur cosec (π(xr − xs)) = iλus, 1 ≤ s≤ R (2.51)

with some (real)λ. Thus it suffices to show (under (2.50) and (2.51))
that

|λ| ≤ δ−1 (2.52)

38

Further, we can assume that all thexr ’s lie in the interval (0,1] (with-
out any loss of generality).

We have, by (2.15) and (2.50),


|λ|2 =
R∑

s=1
|

R∑
r=1
r,s

ur cosec (π(xr − xs))|2 =

=
R∑

s=1

R∑
r=1
r,s

R∑
t=1
t,s

ur ūt cosec (πr − xs)) cosec (x(xt − xs)) =

=
∑

1+
∑

2,

(2.53)

where


∑
1 =

R∑
s=1
|

R∑
r=1
r,s

|ur |2 cosec2(π(xr − xs))

and
∑

2 =
R∑

r=1
r,t

R∑
t=1

ur ūt

R∑
s=1
s,r
s,t

cosec (π(xr − xs)) cosec (π(xt − xs)).

(2.54)
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Using the identity (ifR≥ 3-for R= 2 the inequality (2.63) below is
trivial, because, then

∑
2 = 0)


cosecθ1 cosecθ2 = cosec(θ1 − θ2)(cotθ2 − cotθ1), i f θ1θ2(θ1 − θ2) , 0.

−π < θ1, θ2, θ1 − θ2 < π,

we see that ∑

2

=
∑

3

−
∑

4

, (2.55)

where


∑
3 =

R∑
r=1
r,t

R∑
t=1

ur ūt cosec(π(xr − xt))
R∑

s=1
s,r,s,t

cot(π(xt − xs))

and
∑

4 =
R∑

r=1
r,t

R∑
t=1

ur ūt cosec(π(xr − xt))
R∑

s=1
s,r,s,t

cot(π(xt − xs)).

(2.56)

Denoting39

br :=
R∑

s=1
s,r

cot(π(xr − xs)), 1 ≤ r ≤ R, (2.57)

we will have

∑

3

=

R∑

r=1
r,t

R∑

t=1

ur ūt cosec(π(xr − xt))bt −
∑

31

(2.58)

with

∑

31

R∑

r=1
r,t

R∑

t=1

ur ūt cosec(π(xr − xt)) cot(π(xt − xr)) = Re
∑

31

. (2.59)

Now, from (2.58) and (2.15), we obtain

∑

3

+
∑

31

=

R∑

r=1

ūtbtiλut = iλ
R∑

t=1

bt |ut |2. (2.60)
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Treating
∑

4 of (2.56) similarly, we also get
∑

3

+
∑

31

=
∑

4

+
∑

41

,
∑

41

= −
∑

31

, (2.61)

so that, from (2.55) and (2.59). follows
∑

2

= −2 Re
∑

31

. (2.62)

Hence

|
∑

2

| ≤ 2|
∑

31

| ≤
R∑

r=1
r,t

R∑

t=1

(|ur |2|+ |ut |2)| cosec2(π(xr − xt)) cos)π(xr − xt))|,

(2.63)
which yields in view of symmetry, by (2.53) and (2.54),

|λ|2 ≤
R∑

r=1
r,t

R∑

t=1

(|Ur |2 cosec2(π(xr − xt))(1+ 2| cos(π(xr − xt))|). (2.64)

Observing here that sin2(πθ) = sin2(π||θ||) and | cos(πθ)| =
| cos(π||θ||)| (for any realθ) and employing the inequality

cosec2 θ(1+ 2 cosθ) ≤ 3θ−2 for 0 < θ ≤ π

2
, (2.65)

we obtain further 40

|λ|2 ≤ 3π−2
R∑

r=1

|ur |2
R∑

t=1
t,r

||xr − xt ||−2. (2.66)

Since the value of the inner sum here is unaltered whenx’s are trans-
lated by integers, we can arrange, for any givenxr . translates of allxt’s

(t , r) to lie in the interval (xr −
1
2
, xr +

1
2

). Then the inner sum in (2.66)

is easily majorized, because of (2.10), by 2
∞∑
j=1

(δ j)−2. So (on recalling

(2.50)) holds

|λ|2 ≤ 6π−2δ−2
∞∑

j=1

j−2 = δ−2. (2.67)
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This is (2.52) and thereby Lemma 2.3 is completely proved.
Now we are in a position to deduce Theorem 2.3 from (2.47) to

(2.49).

Proof of Theorem 2.3. Taking

crn = e((M + n)xr ), wn = an, (2.68)

it suffices for a proof of (2.46), in view of (2.47) and (2.48), to show
that

N∑

n=1

|
R∑

r=1

crnvr |2(N + δ−1)
R∑

r=1

|vr |2, ∀vr ∈ C. (2.69)

Expanding the left-hand side here we obtain from the diagonal terms
the contribution

N
R∑

r=1

|vr |2. (2.70)

The remaining part amounts to

R∑

r=1
r,s

R∑

s=1

vr v̄S

∑

M<n≤M+N

e(n(xr − xS)), (2.71)

and the inner sum here is

1
2

i{e((M+
1
2

)(xr−xS))−e((M+N+
1
2

)(xr−xS))} cosec(π(xr−xS)). (2.72)

41

We apply (2.49) twice with the choices

ur = vre((M +
1
2

)xr ) andur = Vre((M + N +
1
2

)xr ). (2.73)

Then, because of the factor
1
2

in (2.72), we obtain that the contribu-

tion (2.71) is

≤ δ−1
R∑

r=1

|vr |2. (2.74)
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and this in combination with (2.70) yields (2.69).
Montgomery and Vaughan [2] have also obtained a more sophis-

ticated form of the large sieve, which has turned out to be extremely
powerful in arithmetical applications. The weights attached here enable
one to take care of the irregular spacing of Farey fraction (cf. Theorems
2.5 and 2.6 below).

Theorem 2.4. Under the assumption of Theorem 2.1, put

δr := min
s

s,r

||xr − xs||. (2.75)

Then
R∑

r=1

(N +
3
2
δ−1

r )−1|U(xr )|2 ≤
∑

M<n≤M+N

|an|2. (2.76)

The proof is very similar to that of Theorem 2.3. The essential
change is the following version, involvingδ′r s, of Lemma 2.3 (Mont-
gomery and Vaughan [1]):

Lemma 2.4. Under the hypothesis and notation of Theorem 2.4, there
holds

|
R∑

r=1
r,s

R∑

s=1

ur ūS cosec(π(xr − xS))| ≤ 3
2

R∑

r=1

|ur |2δ−1
r , ∀ur ∈ C. (2.77)

Here we shall only conclude Theorem 2.4 using (2.47), (2.48)and
(2.77).

Proof of Theorem 2.4. Now we put, instead of (2.68), 42

crn = (N +
3
2
δ−1

r )−
1
2 e((M + n)xr ),wn = an. (2.78)

Then the diagonal terms, from the expression on the left of (2.47),
contribute

N
R∑

r=1

(N +
3
2
δ−1

r )−1|vr |2, (2.79)
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and the remaining part is

R∑

r=1

R∑

s=1
r,s

vr (N +
3
2
δ−1

r )−
1
2 v̄s(N +

3
2
δ−1

s )−
1
2

∑

M<n≤M+N

e(n(xr − xs)). (2.80)

Again the inner sum is given by (2.72). Now we apply (2.77) twice
with the choices

ur = vr (N +
3
2
δ−1

r )−
1
2 e((M +

1
2

)xr ) andur = vr (N +
3
2
δ−1

r )−
1
2 e((M + N +

1
2

)xr ).

(2.81)

Then, because of the factor
1
2

in (2.72), we obtain that the contribu-

tion (2.80) is

≤ 3
2

R∑

r=1

|vr |2(N +
3
2
δ−1

r )−1δ−1
r . (2.82)

Now, this together with (2.79) proves (2.47) withA = 1 for our
choice (2.78) ofcrn. Therefore (2.48) with the above choice (2.78) of
wn yields (2.76), thereby proving Theorem 2.4.

Let us now specialize again, We assume thatQ ≥ 2, because the
theorems that follow are trivially true forQ = 1 as before (cf. (2.19)).
Take

xr =
ℓ

q
, 1 ≤ ℓ ≤ q ≤ Q, (ℓ, q) = 1, (2.83)

so that we have (cf. (2.37)), for any two distinct Farey fractions of
(2.83). ∣∣∣∣∣

∣∣∣∣∣
ℓ

q
− ℓ
′

q′

∣∣∣∣∣
∣∣∣∣∣ ≥

1
qq′
≥ 1

qQ
≥ 1

Q2
(2.84)

which shows that in Theorem 2.3 and Theorem 2.4 the quantities Q−2

and q−1Q−2 are permissible lower bounds forδ and δr , respectively.43

Therefore we obtain from these theorems

Theorem 2.5. For any complex number an, put

U(x) :=
∑

M<n≤M+N

ane(nx). (2.85)
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Then
∑

q≤Q

q∑
′

ℓ=1

∣∣∣∣∣U(
ℓ

q
)
∣∣∣∣∣
2

≤ (N + Q2)
∑

M<n≤M+N

|an|2 (2.86)

and
∑

q≤Q

(N +
3
2

qQ)−1
q∑
′

ℓ=1

|U(
ℓ

q
)|2 ≤

∑

M<n≤M+N

|an|2. (2.87)

Finally, returning to the beginning of the this chapter, i.e.,

an =


1 if n ∈ γ,
0 if n < γ,

(2.88)

whereU(x) ≡ T(x), we note that Theorem 2.5 contains, with respect to
(2.4), the following

Theorem 2.6. Letγ be a set of S integers from an interval(M,M + N]
and put

T(x) :=
∑

n∈γ
e(nx). (2.89)

Then
∑

q≤Q

q∑
′

l=1

∣∣∣∣∣T(
ℓ

q
)
∣∣∣∣∣
2

≤ (N + Q2)S (2.90)

and
∑

q≤Q

(N +
3
2

qQ)−1
q∑
′

ℓ=1

∣∣∣∣∣T(
ℓ

q
)
∣∣∣∣∣
2

≤ S. (2.91)

NOTES

The (explicit) qualitative version of (2.39) occurs for thefirst time
in Bombieri [1] with the factor 7 max(N,Q2). His method may be con-
sidered to be a refinement of Linnik’s, 44

An improvement of Bombieri’s factor as well as the extensionfrom
Farey fractions to well-spaced points, i.e., (2.40), is dueto Davenport
and Halberstam [1]. Their substantial improvement of the method is



44 2. The Large Sieve

based on a convolution ofU(x) with a suitable auxiliary function, an
idea introduced by Roth [2]. Subsequent developments and discussions
along these lines were given by Bombieri and Davenport [2], [3] (and by
Liu [1]). The paper of Bombieri and Davenport [3] contains also various
investigations under different assumptions about the relative orders ofN
andδ. In particular, they have proved the only result that still supersedes,
under certain conditions, the Theorem 2.3; namely

∆(N, δ) ≤ δ−1 + 270N3δ2 if Nδ ≤ 1
4
, (2.92)

which is superior to (2.46) if (Nδ)2 < 1
270.

The best general result known to date, Theorem 2.3, is due to Mont-
gomery and Vaughan [2]. They have pointed out (cf. Montgomery and
Vaughan [1]) that it is possible to replace the factorδ−1 in (2.49), and so
also in (2.46), byδ−1−c for somec > 0. Indeed, from the remarks subse-
quent to (2.66) we see that the inner sum in (2.66) can be more precisely
estimated as follows: LetJ1 andJ2 denote the number of translates of

x′t s which lie in the intervals (xr −
1
2
, xr) and (xr , xr +

1
2

] respectively,

so thatJ1 + J2 = R− 1. Then the above-mentioned inner sum is at most
(cf. (2.10))



δ(
J1∑
j=1

1
j2
+

J2∑
j=1

1
J2 ) ≤ δ−2(π

−2

3 −
∫ ∞

J1+1
du
U2 −

∞∫

J2+1

du
u2 ) =

= δ−2(π
2

3 −
(R+1)

(J1+1)(J2+1)) ≤ δ
−2(π

2

3 −
4

R+1) ≤ π2

3 δ
−2 − 8

3δ
−1

(2.93)

on usingR ≥ 2, which implies in view of (2.22) that (R+ 1) ≤ 3
2
δ−1.45

Now, on combining (2.66), (2.93) and (2.50) we obtain

|λ|2 ≤ δ−2 − 8

π2
δ−1 ≤ (δ−1 − 4

π2
). (2.94)

Thus one can take, for instance,c =
4

π2
in the above remark. How-

ever, according to (2.45), it is not possible to obtain thesegeneral esti-
mates with anyc > 1. The essential tools for the proofs of the Theorem
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2.3 and 2.4 were developed in Montgomery and Vaughan [1] (cf.Mont-
gomery [6]). Earlier similar approaches had been discussedin the work
of Elliott [7], Mathews [1], [2], [3], and Kobayashi [1].

An intermediate result of Bombieri ([4] and p. 17 of [6], namely

∆(N, δ−1) ≤ N + 2δ−1, (2.95)

is based on Theorem 0.1. Under the assumption of Theorem 2.1,con-
sidering the sum

∑N
−N ane(nx) (cf. Lemma 2.2) instead ofU(x), he takes

the Hilbert spaceℓ2 of sequencesα = {αn} with (α, β) :=
∑∞
−∞ αnβn,

||α||2 = ∑∞−∞ |αn|2. Choosing

L ∈ N, f =



an if |n| ≤ N,

0 if |n| > N, ϕr =



e(−nxr) if |n| ≤ N

( N+L−|n|
L )1/2e(−nxr) if N < |n| ≤ N + L.

0 if |n| > N + L,
(2.96)

one gets

|| f ||2 =
N∑

−N

|an|2, ( f , ϕr ) =
N∑

−N

ane(nxr ), r = 1, . . . ,R. (2.97)

Bombieri proves that for eachr, 1 ≤ r ≤ R

R∑

S=1

|(ϕr , ϕs)| ≤ 2N + L +
π2

12
.

1
Lδ2

, (2.98)

Now (2.95) follows from Theorem 0.1 or from (0.59), by taking 46

L =

[
1
δ

]
. (2.99)

(2.10) : or||X|| := |x− [x+
1
2

]|.

(2.41), (2.44) : cf. Montgomery and Vaughan [2].

(2.47), (2.48) : cf. Hardy, Littlewood and Polya,CambridgeTheorem
288.
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(2.51) : cf. Mirsky, L., An Introduction to Linear Algebra(Oxford),
p. 388 Theorem 12.6.5.

(2.65) : We rewrite (2.65) in the more convenient form:

3 sin2 θ ≥ θ2(1+ 2 cosθ) for 0 ≤ θ ≤ π

2
(2.100)

Now, from the series expansion of sinθ and cosθ, we have

sinθ ≥ θ − 1
6
θ3, cosθ ≤ 1− 1

2
θ2 +

1
24
θ4 for 0 ≤ θ ≤ π

2
, (2.101)

since (m!)−1θm ≥ ((m+ 2)!)−1θm+2, if m ≥ 1 andθ2 ≤ 6. This gives
(2.100) on verifying

3(1− θ
2

6
)2 = 1+ 2(1− θ

2

2
+
θ4

24
). (2.102)

(2.76): In connection with this very effective form of the large sieve
we have in Montgomery and Vaughan [2] the remark that it may bethat

the constant
3
2

in (2.77), and consequently also in (2.76), can be re-

placed by 1. Actually, their work contains the constant

√
12+

√
78

π
(=

1.45282· · · ) (and some slight improvements) instead of the aforemen-

tioned constant
3
2

(cf. notes of Chapter 8 under (8.36)). For a previous

result of this type, see Montgomery [5] (Therefore 4.1). A first weighted
form of this sieve occurs in Davenport and Halberstam [1] (cf. also Dav-
enport [1] Liu [1] and Montgomery [5]. (Theorem 2.4).

By comparing the results of this chapter with those of the previous47

forms (0.54) gives in Chapter 0, it is natural to ask the following question
(Erdös [3]) Consider (in the notation of Ch. 0)

∑

p≤Q

p−1∑

l=1

|T(
l
p

)|2 ≤ C1(N,Q)S, (2.103)

where now only a ‘negligible’ proposition of terms remain onthe left-
hand side. Then are there better results forC1(N,Q) than those for
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C(N,Q), (cf. (2.4)) or, more specifically, can one expect a gain of a
factor logQ here? Erdös [3] (cf. Erdös and Rényi [1]) proved that if
Q ≤

√
N this is true foralmost allsetsγ. Wolke [2] (cf. Wolke [1])

has proved a slightly weaker estimate which holds also for (more gen-
eral)U(x), (cf. (2.9)), and forall setsγ, but under the severe condition
N ≤ Q(log Q)δ for someδ > 0. On the other hand Erdös [3] (cf. Erdös
and Rényi [1]) has shown thatC1(N,Q) is of the same order of magni-
tude asC(N,Q), if Q is of a higher order than

√
N logN. For further

literature in this connection, see Elliott [5], [7]. The result is generally
speaking, that (except under special circumstances) we cannot have a
better estimate in (2.103) than that for (2.4).

Another attempt, at sharpening the large sieve, is due to Burgess
([1]). He proved that for any setQ ∪ N

∑

q≤Q
q∈Q

q∑
′

ℓ=1

|U(
ℓ

q
)| ≪ (Q|Q|)(N + (Q|Q|))(

∑

M<n≤M+N

|an|2), (2.104)

from which saving is made whenQ is a sparse set. (Note also that here
U occurs to the first power on the left-hand side.)

In the other direction one may ask for general lower bounds, for
instance in (2.103). In view of (0.53) such results would mean that
‘general sequences cannot be too well-distributed in almost all arith-
metic progressions’. The first result in this context is given by Roth [1], 48

For further literature concerning this question, we refer to Roth [3], [5],
Choi [1], Montgomery [5] (Chapter 5) and Huxley [5]. Wolke [10] (cf.
Wolke [9]) has stated the explicit lower bound (in the notation (1.29))

∑

q≤Q
q∈Q

q∑
′

ℓ=1

|U(
ℓ

q
)|2 ≥

∑

q≤Q
q∈Q

1
ϕ(q)

∣∣∣∣∣
∑

M<n≤M+N

ancq(n)
∣∣∣∣∣
2

for any setQ ⊂ N.

(2.105)
However, (2.105) should rather be considered as a reductionof the

expression on the right-hand side to the large sieve (cf. (3.28)).





Chapter 3

The Large Sieve for
Character Sums

THERE IS another version of the large sieve which concerns with the 49

averaging of character sums (cf. (3.2) below). In this chapter we give
three such results which are readily obtained from Theorem 2.5. We
prove first

Theorem 3.1. Let Q∈ N. For any characterχmod q and for any com-
plex numbers an, satisfying

an = 0, unless(n, q) = 1∀q ≤ Q, (3.1)

write
X(χ) :=

∑

M<n≤M+N

anχ(n). (3.2)

Then, we have

∑

q≤Q

1
ϕ(q)

∑

χmodq

|τ(χ)|2|X(χ)|2 ≤ (N + Q2)
∑

M<n≤M+N

|an|2, (3.3)

∑

q≤Q

(N +
3
2

qQ)−1 1
ϕ(q)

∑

χmodq

|τ(χ)|2|X(χ)|2 ≤
∑

M<n≤M+N

|an|2, (3.4)

49
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and
∑

q≤Q

log
Q
q

∗∑

χmodq

|X(χ)|2 ≤ (N + Q2)
∑

M<n≤M+N

|an|2, (3.5)

whereτ(χ) is defined by (1.60) and

∗∑

χmodq

:=
∑

χmodq
χ primitive

(3.6)

Remark . The condition (3.1) is not usually a severe restriction, since
in applications either this fulfilled or the extra terms arising in the other
case are separately estimated to be small.

Proof. First of all, for (n, q) = 1, it follows from (1.61)

ϕ(χ̄)anχ(n) =
q∑

ℓ=1

χ̄(ℓ)ane(n
ℓ

q
), (3.7)

which holds, by (3.1), also for (n, q) > 1. Now (3.7) gives50

τ(χ̄)X(χ) =
q∑

ℓ=1

χ̄(ℓ)U(
ℓ

q
), (3.8)

whereU(x) is defined through (2.9). Multiplying each side of (3.8) by
its complex conjugate, summing over all characterχmodq and using

(1.57) withuℓ = (
ℓ

q
). we get the identity

1
ϕ(q)

∑

χmodq

|τ(χ)|2|X(χ)|2 =
q∑
′

ℓ=1

|U(
ℓ

q
)|2, (3.9)

(cf. Bombieri and Davenport [2]) and further use of this in Theorem 2.5
yields (3.3) and (3.4).

Next, for a characterχmodq let f be its conductor, and letχ be
induced byχ∗mod f . Then by the assumption (3.1) (cf. (1.59)),

X(χ) = X(χ∗), (3.10)
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and using Lemma 1.1 as well as

f
ϕ( f )

(
∑

r≤x
(r, f )=1

)
µ2(r)
ϕ(r)

) > log x for x > 0, (3.11)

we obtain, in our notation (3.6),



∑
q≤Q

1
ϕ(q)

∑
χmodq |τ(χ)|2|X(χ)|2 = ∑ f≤Q

f
ϕ( f )

∑
r≤Q/ f
(r, f )=1

µ2(r)
ϕ(r)

∑∗
χmod f

|X(χ)|2 ≥ ∑ f≤Q log Q
f

∑∗
χmod f |X(χ)|2.

(3.12)
Thus (3.5) is a consequence of (3.3).
Regarding the quality of the results in Theorem 3.1 we note that,

in view of the identity (3.9), the estimates (3.3) and (3.4) are capable
of improvements only along with sharpening of Theorem 2.5. On the
other hand, the statement (3.5) leaves a gap (even through the inequality
(3.11) is capable of an asymptotic formulation. �

In the case when only primitive characters occur in both (3.3) and 51

(3.4) our condition (3.1) can be removed to prove the next

Theorem 3.2. For any characterχmod f , r∈ N and for arbitrary com-
plex numbers an, set

Xr(χ) :=
∑

M<N≤M+N

anχ(n)cr (n) (3.13)

where cr (n) is given by(1.29). Then, we have

∑

r f ≤Q
(r, f )=1

f
ϕr f

∗∑

χmod f

|Xr (χ)|2 ≤ (N + Q2)
∑

M<n≤M+N

|an|2, (3.14)

and

∑

r f ≤Q
(r, f )=1

(
N
f
+

3
2

rQ)−1 1
ϕ(r f )

∗∑

χmod f

|Xr (χ)|2 ≤
∑

M<n≤M+N

|an|2. (3.15)
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Remark. Observe that, under the condition (3.1), we havecr (n) appear-
ing in the non-zero terms of (3.13) asµ(r) and so, (3.14) also leads to
(3.5) in view of (3.12).

Proof. We have for anyq ∈ N, by (1.57),

1
ϕ(q)

∑

χmodq

∣∣∣∣∣
q∑

ℓ=1

χ(ℓ)U(
ℓ

q
)
∣∣∣∣∣
2
=

q∑
′

ℓ=1

|U(
ℓ

q
)|2. (3.16)

Now if χmodq is induced byχ∗mod f ( f conductor ofχ). we have,
on using (1.68) and (1.59),

q = r f , χ(ℓ) = χ∗(ℓ) for (ℓ, q) = 1. (3.17)

Therefore, summing (3.16) overq ≤ Q gives

∑

q≤Q

q∑
′

ℓ=1

|U(
ℓ

q
)|2 ≥

∑

r f ≤Q
(r, f )=1

1
ϕ(r f )

∗∑

χmod f

|
q∑
′

ℓ=1

χ(ℓ)U(
ℓ

q
)|2. (3.18)

For any primitive characterχmod f , q = r f , (r, f ) = 1 and anyℓ,
(ℓ, q) = 1, on writing

ℓ = λr + µ f , (λ, f ) = 1, (µ, r) = 1, (3.19)

we will have52



q∑ ′
ℓ=1

χ̄(ℓ)U( ℓq) =
∑

M<n≤M+N
an

f∑ ′
λ=1

χ(λr)
r∑ ′

µ=1
e(n( λf +

µ

r )) =

= χ̄(r)
∑

M<n≤M+N
an

f∑ ′
λ=1

χ̄(λ)e(nλf )
f∑ ′

µ=1
e(nµr ) = χ̄(r)τ(χ̄)Xr (χ),

(3.20)
because of (1.62) and (1.29). Since (r, f ) = 1, we have (by (1.42)) that
|χ̄(r)| = 1 and further by Lemma 1.1 that|τ(χ̄)|2 = f . Thus (3.20) and
(3.18), on using (2.86), prove the part (3.14). The proof of (3.15) is the
same in the before summing overq in (3.16) we need multiply by the

factor (N +
3
2

qQ)−1 and at the and employ (2.87) instead of (2.86).
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Since obviously
c1(n) = 1, (3.21)

we obtain, by retaining only the parts withr = 1 in the expressions
occurring on the left-hand sides of Theorem 3.2, as a particular case �

Theorem 3.3. For any characterχmod q and for any complex numbers
an, define

X(χ) :=
∑

M<n≤M+N

anχ(n). (3.22)

Then, we have

∑

q≤Q

q
ϕ(q)

∗∑

xmodq

|X(χ)|2 ≤ (N + Q2)
∑

M<n≤M+N

|an|2 (3.23)

and

∑

q≤Q

(
N
q
+

3
2

Q)−1 1
ϕ

(q)
∗∑

χmodq

|X(χ)|2 ≤
∑

M<n≤M+N

|an|2. (3.24)

NOTES 53

The version of the large sieve discussed in this chapter occurs for
the first time in Bombieri [1] (see, however, Rényi [2]; cf (0.32)). Sim-
plifications of the proof and improvement of the quality of the result
were made by Davenport and Halberstam [1], who also obtainedthere
the first weighted form. However, as has been mentioned earlier and can
also be seen from (3.9) and (3.18), the results of this chapter are more
or less direct consequences of those in Chapter 2.

A first result with conditions (3.1) was given by Bombieri andDav-
enport [2] (and for (3.5), see Bombieri [6] (Théorème 8)) where they
also prove a generalization of (3.3) which, via Theorem 2.5 under the
assumptions of Theorem 3.1, becomes
∑

q≤Q
(q,k)=1

1
ϕ(q)

∑

χmodq

|τ(χ)|2|
∑

M<n≤M+N
n≡ℓ( modk)

anχ(n)|2 ≤ (
N
k
+1+Q2)

∑

M<n≤M+N

|an|2

(3.25)
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wherek ∈ N and (ℓ, k) = 1.
(3.11): By Chapter 1,1. We have that, forx > 0,



f
ϕ( f )

∑
r≤x

(r, f )=1

µ2(r)
ϕ(r) =

∏
p| f (1− 1

p)−1∑
r≤x

(r, f )=1

µ2(r)
r

∏
p|r (1− 1

p)−1 =

=
∏

p| f (1+
∑∞
ν=1 p−ν)

∑
r≤x

(r, f )=1

µ2(r)
r

∏
p|r (1+

∑∞
ν=1 p−ν) ≥ ∑n≤x

1
n > log x,

(3.26)
on using, forx ≥ 1, if N ≤ x < N + 1,

∑

n≤x

1
n
≥
∑

n≤N

n+1∫

n

dt
t
= log(N + 1) > log x (3.27)

(cf. van Lint and Richert [1]).
Clearly, analogous to the derivation of (3.5) from (3.3) onecan ob-54

tain a corresponding result from (3.4). In the special casean = Λ(n),
this has been done by Montgomery and Vaughan [2] (cf. (6.29)).

The extension to sums involving Ramanujan’s sumcr (n), namely,
Theorem 3.2 which contains Theorem 3.3, is due to A. Selberg ([6], cf.
Bombieri [6] (Théorème 7A)).

We obtained (3.23) from (3.14) by keeping only the part withr = 1.
On the otherhand, by taking the part corresponding tof = 1, we get

∑

q≤Q

1
ϕ(q)
|
∑

M<n≤M+N

ancq(n)|2 ≤
∑

q≤Q

q∑
′

ℓ−1

|U(
ℓ

q
)|2 (3.28)

which should be compared with Wolke’s result ((2.105)).
The main importance of Selberg’s generalization (3.14) is due to

its application in proving density theorems for Dirichlet’s L-functions
(cf. Chapter 6, 2.). There the strongest known results (cf. Montgomery
[8], Motohashi [11] and Jutila [12] are based on the following strinking
identity again due to A. Selberg:


L(s, χ)M(s, χ, ψr ) =

∑∞
n=1

χ(n)
ns ψr (n)

∑
d|n ξd, (χ := χmod f )

for any set ofξd ∈ C, ξd = 0(1).
(3.29)



55

where

M(s, χ, ψr) :=
∞∑

n=1

χ(n)ξnψr (n)
ns

∏

p| r
(r,n)

(1− χ(p)
ps−1

), (3.30)

ψr (n) := µ((r, n))ϕ((r, n)), (3.31)

and
µ(r) , 0. (3.32)

Actually, (3.14) is employed in the weaker from

∑

r f ≤Q
(r, f )=1

µ2(r) f
ϕ(r f )

∗∑

χmod f

∣∣∣∣
∑

M<n≤M+N

anχ(n)ψr (n)
∣∣∣∣
2
≤ (N + Q2)

∑

M<n≤M+N

∣∣∣∣an

∣∣∣∣
2
.

(3.33)
55

In fact, the expression on the left-hand side of (3.33) is thepart of
the sum in (3.14) corresponding to squarefreer ’s, since (under (3.32))
one has one has readily, by (1.32),

cr (n) =
∑

d|(r,n)

µ(
r

(r, n)
(r, n)

d
)d = µ(

r
(r, n)

)ϕ((r, n)) = µ(r)ψr (n) (µ(r) , 0).

(3.34)
Motohashi [14] has in turn shown that (3.33) can be generalized to

give the following estimate: Letχ j mod f j, f j ≤ F( j = 1, . . . , J), be
distinct primitive characters. Then

∑

r≤R

∑

j≤J
( f j ,r)=1

µ2(r) f j

ϕ(r f j)
|
∑

M<n≤M+N

anχ j (n)ψr(n)|2 ≤ (N +O(JFR2 log(FR)))
∑

M<n≤M+n

|an|2

(3.35)

which, for sufficiently smallJ, improves upon (3.33).
Slightly more general forms than those of Theorem 3.1 and 3.3

(namely, without the restriction (3.1) or removing the limitation to sum-
ming over only primitive characters) are possible but at theexpense of
the quality of the estimates (cf. Bombieri [1] and Davenportand Hal-
berstam [1]).

For an estimate of averages involving real characters only,see jutila
[6].
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Finally, there are result concerning averages of characters sums,
which are useful when combined with large sieve estimates insome
applications. They can be obtained without employing results of Chap-
ter 2 (cf. Montgomery [5] (Theorems 6.2 and 6.3)). We mention, as an
example, (Montgomery [5] (Theorem 6.2)):

∑

χmodq

|X(χ)|2 ≤ ϕ(q)(1+

[
N − 1

q

]
)
∑

M<n≤M+N
(n,q)=1

|an|2. (3.36)

For a proof, splitX(χ) into 1+

[
N − 1

q

]
parts of lengthq (introducing56

additionsan’s = 0, if necessary). For each partX1(χ), say, it results from
(1.57), with obvious appropriate choices foruℓ, that

∑

χmodq

|Xi(χ)|2 = ϕ(q)
∑

n∈Ii
(n,q)=1

|an|2, (3.37)

whereIi denotes the range ofn in Xi(χ). Now (3.36) following on us-
ing Minkowski’s and Cauchy’s inequalities. Likewise, but with a more
complicated yet still elementary, reasoning (Montgomery [5] (Theorem
6.3)) one obtains

∑

χmodq

|X(χ∗)|2 ≤ q(1+

[
N − 1

q

]
)
∑

M<n≤M+N
(n,q)=1

|an|2 (3.38)

where for eachχmodq, χ∗ denotes the primitive character which in-
ducesχ.



Chapter 4

The Large Sieve for Dirichlet
Polynomials and Dirichlet
Series

STILL ANOTHER from of the large sieve,as has been noted Davenport, 57

can be obtained with respect to Dirichlet polynomials

N∑

n=1

ann−s, s= σ + it (σ, t reals ), an ∈ C, (4.1)

as an application of Lemma 2.1.

Theorem 4.1. Let T0, T(> 0) and tr be real numbers satisfying

T0 = t0 < t1 < · · · < tR < tR+1 = T0 + T, (4.2)

and put
δ := min

0≤r≤R
tr+1 − tr (4.3)

Then, we have

R∑

r=1

∣∣∣∣∣
N∑

n=1

ann−itr

∣∣∣∣∣
2

≤ (T+4N logN)(log N+δ−1)
N∑

n=1

|an|2,∀an ∈ C. (4.4)

57
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Proof. By (4.2) and (4.3), we have (R+ 1)δ ≤ T and so we can suppose

thatN ≥ 2. Also, by (4.3), the intervals
[
tr −

δ

2
, tr +

δ

2
,

]
, 1 ≤ r ≤ R, do

not overlap. Therefore, taking in Lemma 2.1

f (u) =
N∑

n=1

ann−iu, u = tr (1 ≤ r ≤ R) (4.5)

and proceeding as in (2.28), we obtain

R∑

r=1

| f (tr )|2 ≤ (

T0+T∫

T0

| f (t)|2dt)
1
2

T0+T∫

T0

| f ′(t)|2dt)
1
2 +δ−1

T0+T∫

T0

| f (t)|2dt. (4.6)

Now

T0+T∫

T0

| f (t)|2dt = T
N∑

N=1

|an|2 +
∑

m,n=1
m,n

amān

T0+T∫

T0

(
n
m

)itdt. (4.7)

58

The second sum, on noting that
∣∣∣∣∣ log

n
m

∣∣∣∣∣ ≥
|n−m|

max(n,m)
(4.8)

and using the arithmetic-geometric inequality, may be estimated by

2
N∑

m,n=1
m,n

|am
a

n|
| log n

m|
≤ N

N∑

m,n=1
m,n

1
|n−m|(|am|2 + |an|2). (4.9)

Due to symmetry inm andn (of these expressions), it is enough to
consider the factor of|an|2 on the right-hand side. This equals
∑

1≤m<n

1
n−m

+
∑

n<m≤N

1
n−m

=
∑

1≤k<n

1
k
+
∑

1≤k≤N−n

1
k
≤ 2 logN. (4.10)

Therefore, the expression (4.9) can further be estimated by

4N logN
N∑

n=1

|an|2. (4.11)
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Using this in (4.7), we get

T0+T∫

T0

| f (t)|2dt ≤ (T + 4N logN)
N∑

n=1

|an|2. (4.12)

Clearly, for f ′ instead off (4.12) holds with an extra factor of log2 N
on the right-hand side; in otherwords, we have

T0+T∫

T0

| f (t)|2dt ≤ (T + 4N logN)
N∑

n=1

|an|2. (4.13)

�

Now (4.4) follows from (4.6), (4.12) and (4.13).
For applications in the direction of the classical mean-value theo-

rems for the Dirichlet series, the powerful tools of Montgomery and
Vaughan [1], namely (2.49) and (2.77), can be remodelled to the follow-
ing Lemma.

Lemma 4.1. Letλ1, . . . , λR be distinct real number and set 59

∆ : min
r,s
|λr − λs| (4.14)

and
∆r : min

s
s,r

|λr − λs|. (4.15)

Then ∣∣∣∣∣
R∑

r=1

R∑

s=1
r,s

ur ūs

λr − λs

∣∣∣∣∣ ≤ π∆
−1

R∑

r=1

|ur |2,∀ur ∈ C. (4.16)

and ∣∣∣∣∣
R∑

r=1

R∑

s=1
r,s

ur ūs

λr − λs

∣∣∣∣∣ ≤
3
2
π

R∑

r=1

|ur |2,∆−1
r , ∀ur ∈ C. (4.17)



60 4. The Large Sieve for Dirichlet Polynomials...

Proof. Let ǫ > 0 denote a small number to be suitably restricted below.
Put

xr = ǫλr (1 ≤ r ≤ R). (4.18)

Then, we have in the notation of (2.10) and (4.14), for all sufficiently
smallǫ,

δ = min
r,s
||ǫ(λr − λs)|| = ǫ min

r,s
|ǫ(λr − λs)| = ǫ∆, (4.19)

and, similarly in the notation of (2.75) and (4.15).

δr = ǫ∆r (1 ≤ r ≤ R). (4.20)

Multiplying both sides of (2.49) and (2.77) byπǫ and further using
(4.18), (4.19) and (4.20), we obtain Lemma 4.1 as a consequence of

lim
ǫ→+0

πǫ

sin(π(xr − xs))
=

1
(λr − λs)

. (4.21)

�

We obtain almost immediately from Lemma 4.1 the following

Theorem 4.2. Under the assumptions and notation of Lemma 4.1, we
have

T∫

−T

∣∣∣∣
R∑

r=1

are
iλr t
∣∣∣∣
2
dt = 2(T + θ1π∆

−1)
R∑

r=1

|ar |2, ∀ar ∈ C, (4.22)

and60

T∫

−T

∣∣∣∣
R∑

r=1

are
iλr t
∣∣∣∣
2
dt =

R∑

r=1

|ar |2 (2T + 3θ2π∆
−1
r ), ∀ar ∈ C, (4.23)

where
|θ j | ≤ 1, j = 1, 2. (4.24)
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Proof. The integral of the theorem is

R∑

r,s=1

ar ās

T∫

−T

ei(λr−λs)t
dt=2T

R∑

r=1

|ar |2 +
r∑

r=1

R∑

s=1
r,s

ar ās
ei(λrλs)T − e−i(λr−λs)T

i(λr − λs)
.

(4.25)
Now application of (4.16) and (4.17) with the choices

ur = are
±iλr T (4.26)

to the double sum in (4.25) yield (4.22) and (4.23) respectively.
The most interesting use of Theorem 4.2 is when applied, in its from

(4.23), to Dirichlet series via Dirichlet polynomials. Taking

λr = − log r, (4.27)

we find, by (4.8),
∆−1

r ≤ r + 1, (4.28)

and so get, by (4.23),

T∫

−T

∣∣∣∣∣
R∑

r=1

ar r
−it
∣∣∣∣∣
2

dt =
R∑

r=1

|ar |2(2T + 303π(r + 1)), |θ3| ≤ 1, ∀R ∈ N.

(4.29)
Further, if we impose the condition

∞∑

r=1

r |ar |2 < ∞, (4.30)

we can conclude from (4.29) that the Dirichlet polynomials

R∑

r=1

ar r
−it (4.31)

converge in the mean to the Dirichlet series 61

∞∑

r=1

ar r
−it ∈ L2(−T,T). (4.32)

�
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Thus we derive from (4.23) the following important result.

Theorem 4.3. For an ∈ C, suppose that

∞∑

r=1

n|an|2 < ∞. (4.33)

Then

T∫

−T

∣∣∣∣∣
∞∑

n=1

ann−it
∣∣∣∣∣
2

dt =
∞∑

n=1

|an|2 (2T + 3θπ(n+ 1)), (4.34)

where
|θ| ≤ 1. (4.35)

NOTES

Theorem 4.1, due to Davenport, was published by Montgomery [2].
Lemma 4.1, Theorems 4.2 and 4.3 are due to Montgomery and

Vaughan [1] (Theorem 2 and Corollaries 2 and 3).
(4.1): Clearly, it is no restriction to have the result of this chapter

with σ = 0. Theorems 4.2 and 4.3: Obviously, it is possible to obtain
with the help of Gallagher’s Lemma 2.1 (cf. (4.6)) results, correspond-
ing to Theorems 4.2 and 4.3, in with the integral is replaced by a sum
over a set of well-spaced points.

(4.32): For the reasoning leading to (4.32), cf, Titchmarsh, E.C.,
The Theory of Functions(Oxford), pp. 386–387.

For a discussion ofρ(N,T) in the general inequality

T∫

−T

|
N∑

n=1

ann−it |2 dt ≤ ρ(N,T)
N∑

n=1

| an |2, (4.36)

see Elliott [7].



Chapter 5

The Hybrid Sieve

FOR SOME very important applications to number theory, via Dirichlet 62

series, estimations of averages of the type

∑

q≤Q

(· · · )
∗∑

X modq

T∫

−T

, (5.1)

which is a combined version of the forms of the large sieve considered
in Chapters 3 and 4, are of much use. Prior to the innovation ofan
ingenious method of Halász [1] there was no method of dealing with
this question without carrying out at least one of the operations

∑∗ or∫
in a trivial fashion. Methods, for the purpose of this hybridsieve,

were developed independently by Montgomery [2], combiningideas of
Halász with the large sieve, and by Jutila [1], who used a method of
Rodosskij with large sieve. Subsequently, a common basis for both of
these was provided by Gallagher [4] through the introduction of new
technical devices (see Lemmas 5.1 and 5.2 below).

We start with

Lemma 5.1. Let
D(t) :

∑

ν

c(ν)e(νt), (5.2)

whereν runs through a countable set of real numbers and the coefficients

63
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c(ν)(∈ C) are subjected to the condition
∑

ν

| c(ν) |< ∞. (5.3)

Let δ andT be positive real numbers satisfying

δT ≤ 1
2π
. (5.4)

Then, for some absolute constantc0, holds

T∫

−T

|D(t)|2dt ≤ c0

∞∫

−∞

|Cδ(y)|2dy, (5.5)

where63

Cδ(y) : δ−1
∑

|y−ν|< δ
2

c(ν). (5.6)

Proof. For a proof of (5.5) we use two results from the theory of Fourier
transforms. Introduce

Fδ(y) :


δ−1 i f | y |< δ/2,
0 otherwise,

(y ∈ R) (5.7)

so that
Cδ(y) =

∑

ν

c(ν)Fδ(y− ν). (5.8)

In view of (5.3),Cδ(y) is a bounded integrable function and hence
it belongs toL2(−∞,∞). Therefore, by Plancherel’s theorem,Cδ has a
Fourier transformĈδ and further, by Parseval’s formula, we have

∞∫

−∞

| Cδ(y) |2 dy=

∞∫

−∞

| Ĉδ(t) |2 dt. (5.9)

Now one has


Ĉδ(t) =

∞∫

−∞
Cδ(y)e(yt)dy =

∑
ν c(ν)

∞∫

−∞
Fδ(y− ν)e(yt)dy =

=
∑
γ c(ν)e(νt)

∞∫

−∞
Fδ(x)e(xt)dx = D(t)F̂δ(t)

(5.10)
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say, on using (5.8) and (5.2). Also, by (5.7),

F̂δ(t) = δ
−1

δ/2∫

−δ/2

e(xt)dx=
sin(πδt)
πδt

. (5.11)

Thus (5.9) yields

∞∫

−∞

| Cδ(y) |2 dy=

∞∫

−∞

| D(t)F̂δ(t) |2 dt ≤
T∫

−T

| D(t)F̂δ(t) |2 dt. (5.12)

because of (5.10). For|t| ≤ T, we use (5.11) to note (cf. (5.4)) 64

|F̂δ(t)| ≥
sin(πδT)
πδT

≥ 1
√

c0
, (5.13)

say, so that (5.5) follows from (5.12). �

Following Gallagher we use Lemma 5.1 to prove (Gallagher [4],
Theorem 1).

Lemma 5.2. For an ∈ C, let

∞∑

n=1

|an < ∞. (5.14)

Then, forT ≥ 1,

T∫

−T

∣∣∣∣
∞∑

n=1

ann−it
∣∣∣∣
2
dt ≤ c1T2

∞∫

0

∣∣∣∣
∑

x<n<xe1/T

an

∣∣∣∣
2dx

x
(5.15)

holds with some absolute constantc1.

Proof. In Lemma 5.1 we choose

ν = − 1
2π

log n, c(ν) = an, n ∈ N (5.16)
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and note that (5.3) is satisfied because of (5.14). Further, we put

δ =
1

2πT
, y =

1
2π

(log x+
1

2T
) (x > 0), (5.17)

so that (5.4) is fulfilled and the condition of summation in (5.6) reads

−δ
2
< y− ν < δ

2
⇔ log x < logn <

1
T
+ log x. (5.18)

Therefore (5.5) yields (with the above choice)

T∫

−T

∣∣∣∣
∞∑

n=1

ann−it
∣∣∣∣
2
dt ≤ c0

∞∫

0

2πT2
∣∣∣∣
∑

x<n<xe1/T

an

∣∣∣∣
2dx

x
. (5.19)

This completes the proof of the lemma. �

Now we shall give two applications of Lemma 5.2 for the averages
of the type (5.1).

Theorem 5.1. For an ∈ C, let65

∞∑

n=1

|an| < ∞. (5.20)

Then, forT ≥ 1,

∑

q≤Q

q
ϕ(q)

∗∑

χmod q

T∫

−T

∣∣∣∣
∞∑

n=1

anχ(n)n−it
∣∣∣∣
2
dt ≤ 2c1

∞∑

n=1

(TQ2 + n)|an|2∀Q ∈ N

(5.21)
holds with the constantc1 of Lemma 5.2.

Proof. We use Lemma 5.2 withanχ(n) instead ofan and then apply

∑

q≤Q

q
ϕ(q)

∗∑

χmodq

(5.22)
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to (the resulting) (5.15). Then, we have for the squared expression on
the righthand side of (5.15), in the notation of Theorem 3.3,M = [x]
andN ≤ x(e1/T − 1)+ 1 so that using (3.23) it follows that

∑

q≤Q

q
ϕ(q)

∗∑

χmodq

T∫

−T

∣∣∣∣
∞∑

n=1

anχ(n)n−it
∣∣∣∣
2
dt

≤ c1T2

∞∫

0

(Q2 + 1+ x(e
1
T − 1)x(

∑

x<n<xe1/T

|an|2)
dx
x
. (5.23)

Herein, the factor of|a− n|2 is

{
c1T2(Q2 + 1)

n∫

ne−1/T

dx
x
+ c1T2(e

1
T − 1)

n∫

ne−1/T

dx

= c1T(Q2 + 1)+ c1T2(e
1
T − 1)(1− e−

1
T )n ≤ 2c1(TQ2 + n), (5.24)

where we have employed the estimate

T2(e1/T − 1)(1− e−1/T ) ≤ 2 for T ≥ 1. (5.25)

�

Now, putting together (5.23) and (5.24) we obtain (5.21).

Theorem 5.2. Let Q∈ N. For an ∈ C, let
∞∑

n=1

|an| < ∞. (5.26)

and suppose that

an = 0 unless (n, q) = 1 for all q ≤ Q. (5.27)

Then, forT ≥ 1, 66

∑

q≤Q

log
Q
q

∗∑

χ modq

T∫

−T

|
∞∑

n=1

anx(n)n−it |2dt ≤ 2c1

∞∑

n=1

(TQ2 + n)|an|2 (5.28)

holds with the constantc1 of Lemma 5.2.
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Proof. We proceed as in the proof of Theorem 5.1 but applying

∑

q≤Q

log
Q
q

∗∑

modq

(5.29)

instead of (5.22). Now the condition (5.27) permits us to use(3.5) of
Theorem 3.1 to obtain the same bound as in (5.23) for the left-hand side
of (5.28). So the proof is again completed by (5.24). �

NOTES

It is possible to put Halász’s method in an abstract form (cf. Mont-
gomery [5] (Lemma 1.7) and Huxley [7] (p. 115)). Gallagher and Bom-
bieri ([3]) have observed that Bellman’s inequality (0.59)contains both
the large sieve and the idea of Halász.

All the results of this chapter are due to Gallagher [4]. Clearly, es-
timates corresponding to the other results of Chapter 3 can be derived
in the same way. For general results conforming to the theme of this
chapter and also for more sophisticated forms of the hybrid sieve, see
Montgomery [5]. Huxley [7], Gallagher [4], Forti and Viola [1] (cf.
Bombieri [5] and [6] (§5)), Huxley [9], [11], Jutila [6] and Huxley [12].

(5.4): This condition can be relaxed toδT ≤ 1− ǫ for anyǫ > 0 and
then the constantc0 of (5.5) depends, as can be seen from the proof (cf.
(5.13)), onǫ.

(5.5): Since there is not need in applications we do not aim atob-
taining the best possible values (for instance, by a different choice ofδ)
for the constantsc0 andc1 in this chapter. However, just for a complete67

form of the proof we obtain some permissible values for theseconstants.
From (5.13) and (5.4) we see that one can take

c0 = (2 sin
1
2

)−2 < 1.1. (5.30)

Lemma 5.3. As Gallagher [4] has stated, if the an’s are irregular,
Lemma 5.2 is more precise than Theorem 5.1, since in Lemma 5.2the
coefficients are first smoothed and then squared.
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(5.14): The condition (occurring in Theorems 5.1 and 5.2)

∞∑

n=1

|an| < ∞ (5.31)

of this chapter stems from Lemma 5.1. Further, our conditionof Theo-
rem 4.3, namely

∞∑

n=1

n|an|2∞, (5.32)

need also be satisfied; for, otherwise, the theorems of this chapter hold
trivially true. Also, it may be noted from the examples

an =
1

n log(n+ 1)
and an =


1

m2 if n = 2m,m ∈ N,
0 otherwise,

(5.33)

that the conditions (5.31) and (5.32) are independent.
(5.15): From (5.19) and (5.30) we see that

c1 = 2πc0 < 7. (5.34)

(5.25): For a proof of (5.25) if suffices to verify, by differentiation

and the use ofc1/x > 1 +
1
x

(x > 0), that the functionx(1 − e−1/x) is

decreasing inx > 0 so that we have

x2(e1/x−1)(1−e−1/x) = (x(1−e−1/x))2e1/x ≤ (e−1)(1−e−1) for x ≥ 1,
(5.35)

which gives the upper bound in (5.25) because

(e− 1)2 < 2e. (5.36)





Chapter 6

Applications of the Large
Sieve

THE SIGNIFICANCE of the large sieve is due to its usefulness towards 68

the solution of important problems of number theory. For this purpose
the large sieve is employed in two ways; namely, in proving results
which have number-theoretic consequences of depth and on the other
side, for direct applications to number theory. We shall defer the dis-
cussion of the (latter) arithmetical version of the large sieve to the next
chapter and confine ourselves here to a brief survey of the (aforemen-
tioned) indirect applications.

1. Moments of the Dirichlet’s L-series

In this section we mention the applications to the moments ofthe
Dirichlet’s L-series. For the historical introduction to this topic we refer
to Montgomery [5] (Chapter 10).

Gallagher [1] has shown that the large sieve (in its version of Chapter
3) can be used to prove

∑

q≤Q

∗∑

χmodq

|L(
1
2
+ it, χ)|4 ≪ Q2T2 log4(QT).|t| ≤ T,T ≥ 2. (6.1)

Montgomery ([5] (Lemma 10.5)) reduced the problem of estimating
the mean fourth power ofL(s, χ∗), using the work of Lavrik on approx-

71
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imate functional equations for the Dirichlet’sL-series, to an application
of the result (3.36) and (3.37), and obtained ([5] (Theorem 10.1))

∗∑

χmodq

T∫

−T

|L(σ + it, χ|4dt≪ ϕ(q)T log4(qT) for |σ − 1
2
| ≪ log−1(qT),T ≥ 2,

(6.2)
which may be considered as the average-version of the generalized Lin-
delof hypothesis:

L(
1
2
+ it, χ) ≪

ε
(q|t|)ε, |t| ≥ 1. (6.3)

Then he proceeds to derive easily ([5] (Corollary 10.2))69

∗∑

χmodq

T∫

−T

|L(
1
2
+ it, χ)L′(

1
2
+ it, χ)|2dt≪ ϕ(q)T log6(qT),T ≥ 2. (6.4)

2. Density theorems.

The next important applications of the large sieve (employed in its
hybrid version of Chapter 5 along with many other ingenious ideas) con-
cern to the ‘statistical density theorems’ for the zeros of the Dirichlet’s
L-series and, in particular, of the Riemann zeta function. For the history
of this subject, see Montgomery [5] (Chapter 12).

We recall the following standard notation required for the descrip-
tion of the results of this section. As usual,

N(σ,T, χ) (σ ≤ 1) (6.5)

denotes the number of zeros

ρ = β + iγ (6.6)

of the function
L(S, χ) (6.7)

in the rectangle
σ ≤ β ≤ 1, |γ| ≤ T. (6.8)
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Particularly for the Riemann zeta function, i.e.,q = 1, we use

N(σ,T) (6.9)

instead of (6.5).
Regarding the average overχ of (6.5), for a fixedq, the best known

results at present are the following. We have

∑

χmodq

N(σ,T, χ)≪



(qT)
3

2−σ (1−σ log9(qT), 1
2 ≤ σ ≤

3
4

( Montgomery [5]( Theorem 12.1)),

(qT)
3

3σ−1 (1−σ)+ε, 3
4 ≤ σ ≤

4
5( Huxley [12]), (ε > 0).

(qT)(2+ε)(1−σ), 4
5 ≤ σ ≤ 1( Jutila [12])

(6.10)
(Here and in what follows, the≪ - constant is understood to depend on70

ǫ whenever the bound containsǫ.) It is easily deduced from (6.10) that

∑

χmodq

N(σ,T, χ) ≪ (qT)( 12
5 +ε)(1−σ),

1
2
≤ σ ≤ 1, (ε > 0), (6.11)

holds uniformly inσ, q ≥ 1 andT ≥ 2. And, for the average overq we
have

∑

q≤Q

∗∑

χ modq

N(σ,T, χ) ≪



(Q3T)
3

2−σ (1−σ) log9(qT), 1
2 ≤ σ ≤

3
4

( Montgomery [5](Theorem 12.2))

(Q2T)
3

3σ−1 (1−σ)+ε, 3
4 ≤ σ ≤

4
5( Huxley [12]), (ε > 0).

(Q2T)2+ε)(1−σ), 4
5 ≤ σ ≤ 1( Jutila [12]),

(6.12)

from which one gets the estimate analogous to (6.11)

∑

q≤Q

∗∑

χ modq

N(σ,T, χ) ≪ (Q2T)( 12
5 +ε)(1−σ),

1
2
≤ σ ≤ 1, (ε > 0) (6.13)

valid uniformly inσ, Q ≥ 1 andT ≥ 2.
The functionN(σ,T) has been investigated more extensively. Esti-

mates of the form

N(σ,T) ≪ T2(1−σ)+ǫ (ǫ > 0). (6.14)
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valid in σ > α (for someα) uniformly, are called ‘density hypothesis’.
It is known that the Lindelöf hypothesis:

ζ(
1
2
+ it) ≪ (1+ |t|)ǫ (ǫ > 0) (6.15)

implies (6.14), withα =
1
2

. For some applications proved under the

assumption of (6.15) it suffices instead to have a result of the type (6.14).71

Now the density hypothesis is known for

σ ≥ 11
14
= 0.78571. . . (6.16)

and this result is due to Jutila [9], [10] (cf. [12]). Inσ ≥ 61
74 still better

estimates are available; namely,

N(σ,T) ≤ Tλ(σ)(1−σ)+ǫ (ǫ > 0) (6.17)

with

λ(σ) =



48
37(2σ−1 ,

61
74 ≤ σ ≤

37
42( Huxley [11]),

3
2σ ,

37
42 ≤ σ ≤

37+
√

73
48 ( Huxley [11]),

4(3σ−2)
3(4σ−3)(2σ−1) ,

37+
√

73
48 ≤ σ ≤ 1

(Montgomery [5]( Corollary 12.4)).

(6.18)

Close to the lineσ = 1, we have (Halász and Turán [1]) even

N(σ,T) ≪
δ

T(1−σ)3/2
log3(

1
1− σ ), σ ≥ 1− δ (δ > 0) (6.19)

and (Montgomery [5] (Corollary 12.5))

N(σ,T) ≪ T167(1−σ)3/2
log17 T, σ ≥ 1

2
,T ≥ 2. (6.20)

On the other side, in the vicinity ofσ = 1
2 and for (12 ≤)σ ≤ 3

4 still
the best known density estimates are due to A. Selberg and Ingham (cf.
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Montgomery [5] (Chapter 12)). Forσ between
3
4

and Jutila’s bound

(6.16), the best known estimate (6.17) with

λ(σ) = 3(min
k∈N

max
1

(3σ − 1)+ 2
k (1− σ)

,
1

2k(4σ − 3)+ 3(1− σ)
),

3
4
< σ ≤ 11

14
(6.21)

is also due to Jutila [10].
The connection between the order ofζ(s) and the density estimates

has already been indicated (cf. (6.14) and (6.15)). Indeed,some of the
aforementioned bounds forN(σ,T) can be improved slightly by using72

better estimates forζ(s). For general results in this context we refer to
Bombieri [3] (and forL(s, χ) to Forti and Viola [1]).

3. Mean-value Theorems of the Bombieri type.

In this section and the next we mention the applications, involv-
ing number-theoretic functions, which have important consequences in
(proper) number theory. As regards the notation almost all are standard
and so we repeat only one of these, namely, the Hurwitz’s zetafunc-
tion,defined through

ζ(s,w) =
∞∑

n=0

(n+ w)−s, s= σ + it (σ > 1), 0 < w ≤ 1, (6.22)

and analytic continuation.
Now, one of the most important applications of the large sieve has

been to what we shall call as Bombieri’s prime number theorem
(Bombieri [1]): For any given numberU(> 0) there exists a value
C = C(U) such that

∑

q≤x
1
2 log−Cx

max
2≤y≤x

max
(ℓ,q)=1

∣∣∣∣χ(y; q, ℓ) − li y
ϕ(q)

∣∣∣∣≪U
x

(log x)U
, (6.23)

or equivalently

∑

q≤x
1
2 log−Cx

max
2≤y≤x

max
(ℓ,q)=1

|ψ(y; q, ℓ) − y
ϕ
| ≪U

x

(log x)U
. (6.24)
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A result of this kind can be derived, either via estimates of the type
(6.12) or directly, from the large sieve. Bombieri proved (6.24) (via
(6.12)-type result) with the valueC = 3U + 23, and the best known
result now is with

C = U +
7
2
, (6.25)

due to Vaughan [6], who obtained this by a refinement of Gallagher’s [2]
method (-a direct application of the large sieve-) for a proof of (6.24).
Jutila [1] has proved a corresponding result for short intervals which73

states that

∑

q≤xβ

max
z≤xθ

max
(ℓ,q)=1

|ψ(x+z; q, ℓ)−ψ(x; q, ℓ)− z
ϕ(q)
| ≪

U,ε

xθ

(log x)U
, 0 < θ < 1.

(6.26)
where

β = β(θ, ǫ) =
4cθ + 2θ − 1− 4c

6+ 4c
− ǫ (6.27)

in which c denotes a constant satisfying, for the functionl in (6.22),

ζ(
1
2
+ it,w) ≪δ (1+ |t|)c+δ for everyδ > 0. (6.28)

For the various (more or less equivalent) forms of (6.23) and(6.24)
we refer the reader to Elliott and Halberstam [2] and Montgomery [5]
(Chapter 15). As an example, we mention an interesting remark of
Montgomery and Vaughan [2] in connection with the followingresult
derived from (3.4)

∑

q≤N
1
2

200

log(
N

1
2

q
)

∗∑

χmodq

|ψ(N, χ)|2 < N2 logN, N > N0, (6.29)

where (cf. (1.75))
ψ(N, χ) :=

∑

n≤N

Λ(n)χ(n). (6.30)

Now the term corresponding toq = 1 in (6.29) contributes already
1
2

N2 log N + o(N2) to the sum. Further, ifL(s, χ1) has a Siegel - zero,
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q1 = Nδ, then|ψ(N, χ1)| > (1 − δ)N and consequently the contribution
from the term forχ1 in (6.29) is atleast (12 − 2δ)N2 log N so that

∑

Nδ<q≤
N 1

2
200

∗∑

χmodq

|ψ(N, χ)|2 ≪ δN2 logN, (6.31)

which seems rather unlikely to be true for sufficiently smallδ.
There are results, analogous to (6.23), concerning the average order

of remainder terms with respect to other number-theoretic functions.
From these results also one has been able to obtain results which could 74

only be proved earlier either by the use of the complicated Linnik’s dis-
persion method or only under the assumption of the generalized Rie-
mann hypothesis.

Such analogues are now available for the functionsdk(n) (A.I. Vino-
gradov [1], Motohashi [1], [7]),r(n) (Motohashi [2], Siebert and Wolke
[1]) and for certain powers of these functions. Certain other special
functions have also been investigated (Siebert and Wolke [1], see (6.33)
below, and Wolke [7]) and interestingly we have now general results
of the type (6.23), based on the large sieve, due to Wolke (cf.Wolke
[5], [6], Siebert and Wolke [1]): Under certain conditions (stemming
from the work of Wirsing) for a multiplicative number-theoretic func-
tion f (n), one has

∑

q≤x
1
2 log−Cx

max
y≤x

max
(ℓ,q)=1
|
∑

n≤y
n≡ℓmodq

f (n) − 1
ϕ(n)

∑

n≤y
(n,q)=1

f (n)| ≪
U

x
(log x)U

,U > 0,C = C(U).

(6.32)

As an example, we mention the following consequence of (6.32)
(Siebert and Wolke [1]):

∑

q≤x
1
2 log−Cx

max
y≤x

max
ℓ

∣∣∣∣
∑

n≤y
n≡ℓ modq

µ(n)
∣∣∣∣ℓU

x
(log x)U

,U > 0,C = C(U).

(6.33)
Orr [1] (cf. [2]) has derived such a result for the number of square-

free integers (i.e.,µ2(n)) in an arithmetic progression in an elementary
way. For another elementary derivation of such results froma different
type of mean-value theorems we refer to the next section.
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4. Mean-value Theorems of the Barban-Danport-Halberstam type.

There is another type of mean-value theorem corresponding to (6.24)
which deals with the mean-square instead and has a considerably much
wider range of validity (forq):75

∑

q≤x log

−(U+1)x

q∑
′

ℓ=1

(ψ(x; q, ℓ)− x
ϕ(q)

)2 ≪
U

x2

(log x)U
for U > 0. (6.34)

Such a result was found (in a slightly weaker form) first by Barban
([6] (Theorem 1), cf. [10] (Theorem 3.2)) and was later rediscovered
by Davenport and Halberstam [2]. The improved form (6.34) isdue to
Gallagher [1]. The proof is based on the Siegel-Walfisz theorem and the
identity (Davenport and Halberstam [2]) (1.76),

q∑
′

ℓ=1

(ψ(x; q, ℓ) − x
ϕ(q)

)2 =
1
ϕ(q)

∑

χ,χ0

|ψ(x, χ)|2, (6.35)

and an application of the large sieve in its form of Chapter 3.
Montgomery ([4], cf. [5] (Chapter 17)) discovered a proof of(6.34)

independent of the large sieve and also succeeded in obtaining the
asymptotic formulae:

∑

q≤Q

q∑
′

ℓ=1

(ψ(x; q, ℓ) − x
ϕ(q)

)2 =



QxlogQ+ o(Qx+ x2 log−U x),

for Q ≤ x, ( for any fixedU ≤ 0)

Qxlog x− ζ(2)ζ(3)
ζ(6) x2 log Q

x−
Qx+ Ax2 + o(Qxlog−U x),

for Q > x.
(6.36)

The partQ ≤ x of (6.36) is an improved version of Montgomery’s
first result (Croft [1]).

Montgomery’s method of proof of (6.36) is based on a deep theo-
rem of Lavrik [1], [2], about the average order of the error-term in the
generalized twin-prime problem, which may be stated as
∑

q< x
2

(
∑

2q<n≤x

Λ(n)Λ(n− 2q) − 2(x− 2q)
∏

p>2

(1− 1
(p− 1)2

)
∏

2<p|q

p− 1
p− 2

)2 ≤U
x3

logU
x

(6.37)
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and which in turn depends on the method of I.M. Vinogradov forthe
estimation of exponential sums.

Regarding the first part (Q ≤ x) of (6.36), Hooley [5] has shown that76

one can replace the error term by

AQx+O(Q5/4x3/4 + x2 log−U x) (6.38)

as an application of the (simpler) large sieve method only.
Hooley [8] has also proved, on the basis of the large sieve method

(of Chapter 3), the general result of the Barban-Davenport-Halberstam
type: Letγ be a set of positive integers and suppose that there holds, for
all U > 0 and all integersq, ℓ, (for some functiong(q, b))

S(x; q, l) :=
∑

n∈γ
n≤x

n≡ℓmodq

1 = g(q, (l, q))x +OU(x log−U x) as x→ ∞.

(6.39)
Then

∑

q≤Q

q∑

l=1

(S(x; q, l)) − g(q, (l, q)x)2 = O(Qx) +O(x2 log−U x)

for 1 ≤ Q ≤ x (for any fixed U). (6.40)

Combining this with the method of his paper [5] he derived that

∑

q≤Q

q∑

l=1

(
∑

n≤x
n=l modq

)µ(n))2 =
6
π2

Qx+O(x2 log−U x) for 1 ≤ x, ( for any fixedU).

(6.41)
An interesting connection between the mean-value theoremsof the

squared expression and those of the preceding section was noted by Bar-
ban [6]. He observed that from a mean-value theorem of the type (6.40)
it is possible to derive in an elementary manner a Bombieri-type result
for a related function (depending on the parameterx). Here we shall
present a proof in the simplest case: Let us put

ψ2(x; q, l) :=
∑

n1≤x

∑

n2≤x
n1n2≡ℓmodq

Λ(n1)Λ(n2), (6.42)
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E2(x; q, l) := ψ2(x; q, l) − x
φ(q)

, (6.43)

E1(x; q, l) := φ(x; q, l) − x
φ(q)

, (6.44)

and assume that77

(ℓ, q) = 1. (6.45)

We have

ψ2(x; q, l) =
q∑
′

h=1

∑

n1≤
√

x
n1≡hmodq

Λ(n1)
∑

n2≤
√

x
n1≡h−1l modq

Λ(n2)

=

q∑
′

h=1

ψ(
√

x; q, h)ψ(
√

x; q, h−1l) (6.46)

(hereh−1 represent the residue class modq for which hh−1 ≡ 1 modq)
and

∣∣∣∣
q∑
′

b=1

(ψ(
√

x; q, b) −
√

x
φ(q)

∣∣∣∣ ≤
∣∣∣∣ψ(
√

x) −
√

x| + log q. (6.47)

Subtracting
x

φ(q)
from both the the sides of (6.46) and using (6.47) we

obtain, by Cauchy’s inequality,



E2(x; q, l) ≤
q∑ ′

h=1
E1(
√

x, q, h)E1(
√

x, q, h−1l)

+2
√

x
φ(q)

{
|ψ(
√

x) −
√

x| + logq
}
≤

≤
q∑ ′

b=1
E2

1(
√

x; q, b) + 2
√

x
φ(q)

{
|ψ(
√

x) −
√

x| + log q
}

(6.48)
uniformly in ℓ subject to (6.45). Now summation overq and the use
of (6.34) along with an application of the prime number theorem in the
form

(ψ(
√

x) −
√

x) <<

√
x

(log x)U+1
, (6.49)



81

give

∑

q≤
√

x log−(U+1) x

max
(l,q)=1

∣∣∣∣
∑

n1≤
√

x
n1n2≡

∑

n2≤
√

x
l modq

Λ(n1)Λ(n2) − x
φ(q)

∣∣∣∣≪U
x

(log x)U
.

(6.50)
Thus we have shown that this Bombieri-type result is an elementary

consequences of (6.34).

5. Some number-theoretic applications.

In this last section we merely record a few applications of the pre-
ceding result to pure number theory.

First of all we have the important consequences about the difference 78

between consecutive primes that

pn+1 − pn < pδ+ξn for n ≥ n0(ǫ), ǫ > 0, (6.51)

with

δ = 1− 1
λ

(6.52)

whenever there is a result (6.17) with uniformλ valid in
1
2
≤ σ ≤

1 (cf., for the history of this question, Montgomery [5] (Chapter 14)).

Therefore the density hypothesis (6.14) withα =
1
2

would give (6.51)

with δ =
1
2

. Montgomery [3] proved (6.51) withδ = 3/5 and Huxley

[8] (cf. [7] (p. 119)) succeeded in getting the best known value

δ =
7
12
. (6.53)

(Now, in view of our initial statement, we can get (6.53) fromeither of
(6.11) or (6.13) also.)

An analogous application of (6.10) is known with respect to the least
prime p1(q, ℓ) in the arithmetic progression{ℓ, ℓ+ q, ℓ+ 2q, . . .}, (ℓ, q) =
1, 0≤ ℓ < q. This stated (Iwaniec [4])

p1(q, ℓ) ≪ǫ,q(q) qλ+ǫ , ǫ > 0, (6.54)
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so that one has from Jutila’s result (6.11) that

P1(q, l) ≪ǫ,q(q) q
12
5 +ǫ , ǫ > 0. (6.55)

(However, observe that the≪-constant depend on the kernel ofq (cf.
(1.19)). Here, with respect to Linnik’s famous theorem, thebest known
exponent in (6.54) with≪-constant independent ofq(q) is 550 proved
unconditionally by Jutila.)

Regarding the analogues, for other arithmetical functions, of the79

Bombieri theorem as well as of Barban-Davenport-Halberstam theorem
mentioned earlier, we have their applications in the proof of various del-
icate asymptotic formulae, involving such function as the divisor func-
tion dk(n), r(n), µ(n) etc., as also general function fulfilling certain con-
ditions, their powers and some mixed forms of these functions, and fur-
ther, with the argument running through certain polynomialsequences.
For these problems we refer to Barban [6], [10], Elliot and Halbertam
[1], Hooley [1], [6], Huxley and Iwaniec [1]. Indlekofer [1], [2], Iwaniec
[2], [5], Katai [1], Linnik [4], Motohashi [1], [2], [4], [7], Orr [1], [2],
Proter [2]. [3], Rodriquez [1], Siebert and Wolke [1], Vaughan [4], [5],
A.I. Vinograndov [1], and Wolke [3], [5], [6].

NOTES

1.: Montgomery and Vaugham [1] have shown that the proof of the clas-
sical formula

T∫

0

|ζ(1
2
+ it)|2dt = T logT +O(T) (6.56)

can be greatly simplified by an application of Theorem 4.3. Ra-
machandra [6], [7] has extended this to various other moments with
reports toζ(s) andL-functions. Such results are important for the re-
sults mentioned in the second section of this chapter (as hasalready
been indicated in the context of (6.15)).

(6.1), (6.2): For similar results involving|L(
1
2
+ it, χ)|2 see Gallagher

[8]. More general forms, with an averaging over certain well-spaced
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t-sets of points, can be obtained by an additional use of (6.2)(see
Montgomery [5]) (Theorem 10.3 and Corollary 10.4), and Huxley 80

[7] (pp. 97,108)). Such results can be found in Ramachandra [3] for

ζ(s) in
1
2
≤ σ < 1, for L(s, χ) in Ramachandra [7] and Jutila [10],

and withχmodp for L(s, χ) in Elliott [9].

(6.2): A simple proof of (6.2) has been given by Ramachandra [7].
For a result of this type with real characters only see Jutila[7].

(6.4): For a mean-value theorem for|L′(1
2
+ it, χ)|2 which can be

derived in the same way, see Vaughan [6].

2.: (6.5): Gallagher [8] has proved that one has

N(σ,T, χ) ≪ T3(1−σ) logC T, for q ≤ T (6.57)

and

∑

χmodq

(N(σ,T + 1, χ) − N(σ,T, χ)) ≪ q3(1−σ) logC T, for T ≤ q

(6.58)
with some constantC.

For results about the size ofL(1, χ), χmodp, we refer to the papers
of Bareman, Chowla and Erdös [1], Barban [8], [10]. Elliott[1].
Joshi [1] and for anyL(s, χ) to Elliott [8].

(6.10), (6.12): For estimates of these averages, under certain re-
strictions onq andQ, respectively, see Ramachandra [4]. For earlier
results, in particular, regarding the ‘generalized density hypothesis’
(namely, the estimates (6.10), (6.12) with the exponent 2(1− σ) + ǫ
instead), see Balasubramanian and Ramachandra [1], Huxley[9],
Huxley and Jutila [1], and Jutila [5], [9], [10], [11].

(6.12): For a result, with the summation restriction to realcharac-
ters only, which has better estimates in some cases, see Jutila [4],
[6]. A. Selberg [6], cf. Montgomery [8]) had proved (using his 81
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results (3.14) and (3.33)) that

∑

q≤Q

∗∑

Xmodq

N(σ,T,X) ≪ǫ (Q5T3)(1+ǫ)(1−σ),
1
2
≤ σ ≤ 1(ǫ > 0).

(6.59)

In this connection we have also the following deep result dueto
Bombieri ([6] (Théorèm 14)): If there is a ‘Siegel-zero’β1 (relative
to T ≥ 2 and a certain constantc0 > 0) then holds

∑

q≤T

∗∑

χmodq

N(σ,Tχ) ≪ ((1− β1) logT)Tc(1−σ) (6.60)

with some absolute and effectivec and≪-constants, where on the
left-hand side the exceptional zeros are not included. As anapplica-
tion of this Bombieri [6] derives the well-known theorem of Siegel:
One has

1− β1 ≥ c(ǫ)T−ǫ ,T ≥ 2(ǫ > o), (6.61)

with (as in all other known proofs) an ineffective c(ǫ) > o. We
briefly sketch this deduction. Introducingθ as the supremum of the
real parts of the zeros of all the Dirichlet’sL-functions, we see easily
that one can suppose (for the purpose of (6.61))θ = 1. Now, taking
T to satisfy

T ≥ max(q0, |γ0|, exp(
c0

1− β0
)), β0 > 1− ǫ. (6.62)

whereq0 is the (least) modules of theL-function which has a zero
ρ◦ = β◦ + iγ◦ (with β◦ > 1− ǫ), we see thatρ◦ is not an exceptional
zero (relative toT andc0) and also that the left-left-hand side (6.60)
with σ = 1− ǫ is ≥ 1. Hence we have

(1− β1)≫ ((logT)Tcǫ )−1 (6.63)

which gives (6.61) forT subject to (6.62) and so for allT ≥ 2.

(6.64): Halász and Turán [1] have shown that (6.15) gives (even)

N(σ,T) ≪
ξδ

Tǫ , for σ ≥ 3
4
+ δ, ( with ǫ > o). (6.64)
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Also they have proved in [2] that the generalized Lindel of hypoth-
esis,

L(s, χ) ≪
ǫ T

qǫ , uniformly forσ ≥ 1
2
, |t| ≤ T, (6.65)

implies the uniformly estimates, for (6.12).

≪
ǫ T

Q4(1−σ)+ǫ for
1
2
≤ σ ≤ 1 and≪

ǫ T,δ
Qǫ for σ ≥ 3

4
+ δ(ǫ > o, δ > o).

(6.66)
82

(6.16): In this connection, for earlier results, see Montgomery [3],
Huxley [6], Ramachandra [8], Forti and Viola [2], Huxley [9], [11],
[12], and Jutila [8].

(6.17): Ramachandra [9] has proved forσ ≥ 1
2

that

N(σ,T + T5/12) − N(σ,T) ≪
ǫ

T
5

9−6σ (1−σ+ǫ), (ǫ > 0) (6.67)

and more generally, Balasubramanian [1] has shown that, uniformly

in σ ≥ 1
2

N(σ,T + H) − N(σ,T) ≪ H
4

3−2σ (1−σ) log100H for T
27
82 ≥ H ≥ T.

(6.68)

(6.21): This type of exponents in (6.10) and (6.12) occurs also in
Ramachandra [8], and Balasubramanian and Ramachandran [1].

3.: (6.23), (6.24): The first result of this type is due to Rényi [2]. Re-
placing the sum on the left by

∑

q≤xα
. (6.69)

Barban [2] improved Rényi’s result (i,e., with a certain small α > 0)

to α =
1
6
− ǫ (for everyǫ > 0) and succeeded then ([4], [5], [6]) in

extending it to allα < 3/8. Since the value of the result increases
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considerably withα, Bombieri’s theorem has led to most important
applications. A.I. Vinogradov [1] proved the same theorem (through

in a slightly weaker form, namely, withα =
1
2
− ǫ for every ǫ >

0) simultaneously. A result of this type withα >
1
2

would have

important consequences (cf. Buchstad [2], Helberstam, Jurkat and
Richert [1]) and it has been conjectured by Elliott and Halberstam
[2] (cf. Elliott [6]) that every value ofα < 1 is admissible.

(6.25): Gallagher [2] uses in his proof of (6.24) the decomposition
L′

L
= (1 − LG)2 L′

L
+ 2L′G − LL′G2 whereG is a partial sum of83

the Dirichlet’s series for
1
L

, instead of which Vaughan [6], to obtain

(6.25), uses the more efficient splitting
L′

L
= (

L′

L
+ F)(1 − LG) +

(L′ + LF)G− F with F being the partial sum corresponding to
L′

L
.

(6.26): For a different proof of (a slightly weaker form of) (6.26)
see Motohashi [5]; more recent results which in certain ranges (for
θ) improves (6.26) are due to Huxley and Iwaniec [1] (according
to Motgomery (oral communication), S. Ricci, a student of his, has
obtained a similar result).

(6.28): The best exponents known here,

c ≤ 173
1067

<
1
6
, (6.70)

is due to Kolesnik [1].

(6.29): For similar results, see Bombieri and Davenport [2], Mont-
gomery [5] (Chapter 15), and Vaughan [6].

(6.32): In this context, we mentioned that the functionr(n) which
appears in this and the last section of this Chapter and for which also
(6.32) holds, denotes the general

r(n) :=
∑

d|n
χ(d), χmodq, n ∈ N : (6.71)
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in particular, whenχ is the non-principle character to the modulus
4, r(n) denotes the number of representation ofn as a sum of two
squares (apart from a factor of 4).

4.: (6.36): For stronger and more general results, and also for those
which can be obtained on the assumption of the generalized Rie-
mann hypothesis, see Hooley [5], [7], [9]. The corresponding prob-
lem for ∑

n≥x
n≡l modq

µ2(n) (6.72)

has been investigated extensively, both with the help of thelarge 84

sieve as well as by elementary methods only (Orr [1] (cf. Orr [2]).
Warlimont [1], [2], and Croft [1]). Motohashi [6] has used the idea
of Montgomery’s proof, namely without using the large sieve, to
obtain an asymptotic formula with respect to

∑

n≤x
n≡l modq

d(n) (6.73)

(6.50): Barban ([10] (Theorem 3.3)) has extended his resultalso to
the more general sums ∑

pi≤x
i=1,...,k

p1...pk≡l modq

(6.74)

where

0 < α1 ≤ . . . ≤ αk, α1 + · · · + αk = 1, k ≥ 2, (6.75)

of which (6.50) corresponds to the case

k = 2;α1 = α2 =
1
2
. (6.76)

Orr [1], [2] has obtained results, with sums of the type (6.74), where
primes are replaced by squarefree numbers, and also with mixed
products instead.

For results of others types concerning short interval we merely men-
tion two recent papers: Gallagher [5], and Ramachandra [10].
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5.: (6.51): The history of the more general question of the number of
primes in short interval85

[x, x+ xδ]

starts with Hohesisel, who was the first to prove a result withaδ < 1,
actually with anyδ > 1 − (33000)−1. Another famous question,
concerning small differences of primes, is to find an estimate of the
form

lim
n→∞

pn+1 − pn

log pn
≤ θ, (pn : nth prime). (6.77)

It is conjectured that this limis zero, an obvious consequences of the
twin-prime conjecture and it has been known that, under the assump-
tion of the generalized Riemann hypothesis, one would have (6.77) with

θ =
1
2

. However, Bombieri and Debenport [1] obtained (6.77) uncondi-

tionally with aθ <
1
2

, in fact, withθ =
1
8

(2+
√

3) = 0.46650. . ., where

they used among other ideas the large sieve. Now we have (6.77), due
to Huxley [10], with

θ =
4+ π
16
= 0.44634. . . (6.78)

For earlier results generalizations and allied questions see, for in-
stance, Huxley [2], Uchiyama [1], Moreno [1], and Wolke [11].

(6.54): Forq = pr , see Gallagher [5]: for previous result and further
references see Jutila [5].

(6.55): The corresponding problem for general sequences, in par-
ticular for squarefree numbers, was dealt with by Wolke [1],[2] as an
application of (2.103) (see also Warlimont [2]).

We have more application for the result of Section 2., as also of those
in the notes to that section. First of all there is the question of the least
character non-residues for which we refer to Montgomery [5](Chapter
13). and Elliott [4]. For estimations of character sums, seeMontgomery
[5] (Chapter 13), Gallagher [4] [8], and Jutila [6] (as also Jutila [2]).86

Regarding primitive roots and Artin’s conjecture we mention the papers
of Gallagher [1]. Burgess and Elliott [1], Goldfeld [1], Elliott [1], [2],
Vaughan [1], and for some related questions, Gallagher [1],[3], and
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Goldfeld [2]. Finally, for the applications to the problem of the largest
prime factor of numbers we refer to the papers of Goldfeld [2], Hooley
[2], [4], Jutila [3], Motohashi [3], [11], and Ramachandra [1], [2].





Chapter 7

The ‘Sieve Form’ of the
Large Sieve

AS HAS been mentioned in the beginning of the preceding chapter, we 87

consider now the (direct) general application of the large sieve in its
arithmetical form, in the sense ofB. of Chapter 0. Let us recall the
situation described there. Consider the set of integers in an interval
(M,M + N]. For each primep (be-longing to a certain setp) we drop
from our set all such numbers as which fall in any one of certain ω(p)
of the residue classes modp, and denote the set of remaining integers
by γ. Our object is to obtain an upper bound forS := |γ|.

If ω(p) is (absolutely) bounded the sieve methods of Brun and Sel-
berg yield satisfactory result. On the other hand, these method fail if,
for instance,ω(p) is an increasing function ofp. This was the reason,
as has already been started in our remark preceding (0.26), that Linnik
called his method the large sieve. In this context one might ask whether
it is not possible to have a version of the large sieve which shall include
the Selberg sieve, say whenω(p) is bounded.

This problem has not yet been solved. However as we shall see,it
is possible to adapt the large sieve for this purpose provided we confine
ourselves to the ‘linear sieve’ and aim merely for the simplest Selberg
upper bound.

In connection with his problem, we recall that in the original form

91
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(of Linnik’s method) there was the defect, of having the summation re-
stricted to primes only (cf. (0.54)), which existed upto thefirst paper
of Gallagher [1]. Bombieri was the first to notice (cf, Bombieri and
Davenport [2]) that one can solve this problem if the dimension k (cf.
(11.3)) of the sieve problem in question equals one (i.e.,ω(p) = 1 on
the average). In the general case. Montgomery [1] obtained this result88

first, by discovering the identity (in our notation of Chapter 0)

q
q∑

h=1

∣∣∣∣
∑

d|q

µ(d)
d

S(
q
d
, h)
∣∣∣∣
2
=

q∑
′

l=1

∣∣∣∣T(
l
q

)
∣∣∣∣
2
∀q ∈ N, (7.1)

and thereby extending (0.53) to composite numbers.
However, there is a simpler way of dealing with this problem which

does not make use of (7.1) but starts instead with the well-known for-
mula (1.34). This was first found forκ = 1 only (cf. Richert [2]).
Later Huxley [5] (see also Montgomery [5] (Chapter 3), and Huxley [7]
(Chapter 8) succeeded in extending this method to the general case (cf.
(7.24)). In both the cases the question is reduced to an application of the
large sieve in its version of Chapter 2. Therefore, the best known solu-
tion so far, for our sieve problem, is due to Montgomery and Vaughan
[2] (regarding (7.6), see also Gallagher [6]), who derived this from their
strong result given in Chapter 2.

Before stating the main result of this chapter we sketch now the
aforementioned simpler approach in the caseκ = 1: Let Q denote the
set of all natural numbers composed of only primesp in our setp and let
us drop (as in Selberg sieve) from the set of integers in (M,M+N] those
divisible by somep ∈ p to obtain ourγ(ω(p) = 1). (All other notation
are as usual.) By (1.34). we have (since (n, q) = 1)

µ(q) =
q∑
′

ℓ=1

e(n
ℓ

q
) ∀n ∈ γ, ∀q ∈ Q. (7.2)

Summing this over alln ∈ γ and interchanging summation we obtain
(on squaring both sides)

µ2(q)S2 = |
q∑
′

l=1

T(
l
q

)|2, (7.3)
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which gives, by Cauchy’s inequality and summing (after a division bu
ϕ(q)) overallq ∈ Q, q ≤ Q, 89

(
∑

q≤Q
q∈Q

µ2(q)
ϕ(q)

)S2 ≤
∑

q≤Q
q∈Q

q∑
′

ℓ=1

|T(
ℓ

q
)|2. (7.4)

Now an application of (2.90) gives an upper bound of the desired
from for S:

S ≤ N + Q2

(
∑

q≤Q
q∈Q

µ2(q)
ϕ(q) )

. (7.5)

Now we come to the main result of this chapter. We state it as

Theorem 7.1.Letγ ⊂ (M,M+N] be a set of S integers. For each prime
p let us denote byω(p) the number of residue classes which do not have
any number fromγ. Then, for any z> 0, we have

S ≤ N + z2

L(z)
, (7.6)

where

L(z) =
∑

q≤z

µ2(q)
∏

p|q

ω(p)
p− ω(p)

, (7.7)

and also

S ≤ 1
L∗(z)

, (7.8)

with

L∗(z) =
∑

q≤z

(N +
3
2

qz)−1µ2(q)
∏

p|q

ω(p)
p− ω(p)

. (7.9)

Remarks.Observe here that the inequalities (7.6), (7.8), and also those
of Theorem 7.2, do not deteriorate ifz is replaced by its integral part
(with an obvious interpretation if 0< z < 1. Therefore, we set Q=[z]
and it suffices now to prove our results forQ ≥ 1. Further, these results
remain true ifω(p) = p for prime p (since thenS = 0). Hence we
assume throughout that 90
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ω(p) < p for all p (7.10)

holds.

Proof. Our first objective is to prove (7.24), an inequality which trivially
if ω(p) = 0 for somep|q or if µ(q) = 0 and also forq = 1. So we can
impose the conditions that

1 < q(≤ Q) is a squarefree number, (7.11)

as well as (cf. (7.10))

0 < ω(p) < p ∀p|q. (7.12)

Now, for eachp|q we have (for certainh = h(p))

n . hi modp, i = 1, . . . , ω(p), ∀n ∈ γ, (7.13)

which restrictions are equivalent to, by Chinese remaindertheorem and
(7.11), (with certainf = f (q))

(n− f j , q) = 1, j = 1, . . . , ω(q),∀n ∈ γ (7.14)

with
ω(q) =

∏

p|q
ω(p), (7.15)

so thatω(p) become a multiplicative function (. 0, because of (7.12))
on setting

ω(1) = 1; (7.16)

i.e., we also have
ω ∈ m. (7.17)

Next, in view of (7.14), we have, by (1.34),

µ(q) =
q∑
′

l=1

e((n− f j)
ℓ

q
) ∀n ∈ γ and j = 1, . . . ω(q). (7.18)

Here summing over alln ∈ γ and also over allj followed by squaring
both the sides results in, by Cauchy’s inequality,91
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S2µ2(q)ω2(q) = (
q∑ ′
ℓ=1

∑
n∈γ

e(nℓq)
ω(q)∑
j=1

e(− f j
ℓ
q))2 ≤

≤ (
q∑ ′
ℓ=1
|T( ℓq)|2)(

q∑ ′
ℓ=1

ω(q)∑
j, j′=1

e(( f j ,− f j) ℓq)),
(7.19)

where we have employed as before (cf. (7.3)) our usual definition (cf.
(2.89))

T(x) :=
∑

n∈γ
e(nx). (7.20)

Denoting the second factor in the last expression of (7.19) by
∑
◦(q)

and taking the summation inside, we see that one has on using (1.29)
and (1.32)



∑
◦(q) =

ω(q)∑
j, j′=1

cq( f j′ − f j) =
ω(q)∑
j, j′=1

∑
d|q

d| f j′− f j

dµ(q
d) =

=
∑
d|q

dµ(q
d)

d∑
b=1

(
ω(q)∑
j=1

f j≡bmodd

1)2.
(7.21)

Note that here theb′s for which the corresponding inner sum is not
empty are precisely thoseω(d) forbidden residue classes modd, be-
cause of (7.14). Further, for each suchb the inner sum counts the same
number off j ’s, namelyω(q/d). Hence, from (7.21).

∑

◦
(q) =

∑

d|q
dµ(

q
d

)ω(d)ω2(
q
d

). (7.22)

Now taking f1(n) = nω(n), f2(n) = µ(n)ω2(n) in (1.18) it follows,
because of (7.17), (1.11) and (1.12), that

∑

◦
(q) =

∏

p|q
(pω(p) − ω2(p)) =

∏

p|q
{ω(p)(p− ω(p))}. (7.23)

Using (7.23) in (7.19) and noting (7.15) we obtain

S2µ2(q)
∏

p|q

ω(p)
p− ω(p)

≤
q∑
′

l=1

|T(
l
q

)|2. (7.24)
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This is the basic inequality providing the connection between our 92

sieve problem forγ and large sieve method. In view of the remarks at
the beginning of the proof, (7.24) is valid for allqǫN.

Finally, summing (7.24) over allq ≤ Q it follows, by (7.7) and
(2.90). that

S2L(Q) ≤
∑

q≤Q

q∑
′

ℓ=1

∣∣∣∣T(
l
q

)
∣∣∣∣
2
≤ (N + Q2)

∑

n=∈γ
1 = (N + Q2)S. (7.25)

This proves (7.6). on recalling our earlier remark preceding (7.10).
Further, (7.8) is proved in the same manner by multiplying (7.24) by

(N +
3
2

qQ)−1 before summation and then using (2.91). Thus Theorem

7.1 is completely proved. �

The following seemingly more general result is easily derived from
Theorem 7.1:

Theorem 7.2. Under the assumptions of Theorem 7.1, let an be arbi-
trary complex numbers satisfying

an = 0 ∀n < γ. (7.26)

Then, for anyz> 0, we have

∣∣∣∣
∑

M<n≤M+N

an

∣∣∣∣
2
≤ N + z2

L(z)

∑

M<n≤M+N

|an|2 (7.27)

and ∣∣∣∣
∑

M<n≤M+N

an

∣∣∣∣
2
≤ 1

L∗(z)

∑

M<n≤M+N

|an|2. (7.28)

Proof. It follows from (7.26), that by Cauchy’s inequality the left-hand
side of (7.27) (and so also of (7.28)) is

≤ (
∑

n∈γ
1)(

∑

M<n≤M+N

|an|2) = S
∑

M<n≤M+N

|an|2, (7.29)

from which our results are readily obtained from Theorem 7.1. �
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Remark . One might like to consider Theorem 7.2 as a weighted from93

of Theorem 7.1; but the restriction (7.26) and the relation (7.29) show
that Theorem 7.1 is never weaker than Theorem 7.2.

NOTES

(7.1): Montgomery’s [1] proof of (7.1) proceeds in the following
way: Set

T̃(q, h) :=
q∑

ℓ=1

T(
ℓ

q
)e(−h

ℓ

q
) (7.30)

so that, by (1.27), one has

q∑

h=1

|T̃(q, h)|2 = q
q∑
′

ℓ=1

|T(
ℓ

q
)|2. (7.31)

Now, using (1.29), (1.32) and (0.2),

T̃(q, h) =
∑

nǫγ

q∑

h=1

e((n− h)
ℓ

q
) =
∑

nǫγ

∑

d|q
d|n−h

dµ(
q
d

) =
∑

d|q
dµ(

q
d

)S(d, h),

(7.32)
from which (7.1) is derived by means of (1.30) and (7.31).

For identities of this type see (1.27), Montgomery [1], Huxley [7]
(Chapter 18), and Sokolovskij [1].

Theorem 7.1: This result contains the (B)-version of the large sieve,
as well as, in the cases mentioned in the introduction of thischapter,
the ‘small’ sieves. On the other hand, as per an observation made by
Kobayashi [1], one can also derive Theorem 7.1, and consequently also
Theorem 7.2 and Theorem 8.1, in these cases from the Selberg sieve
with the additional tool of Theorem 2.6 (see Halberstam and Richert [1]
(pp. 125–126)).

In the case ofω(p) being close top (at least on the average). the
‘larger sieve’ of Gallagher [3] is more effective. This sieve also includes
prime-power moduli.
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(7.6): Johnsen [1] has generalized Montgomery’s [1] first result of 94

this kind to include non-squarefree numbers also by reducing the ques-
tion to an inequality of the type of (7.24), so that the improved version
(2.90) leads to the following:

‘For each p remove all butg(p) residue classes modp. In each
of the remaining classes, remove all butg(p2) different residue classes
modp2. and so on. Then the number ofn ≤ N which remain is at most
(N + z2)/L̃(z), for everyz> 0, where

L̃(z) :=
∑

q≤z

∏

pν‖q
(

pν

h(pν)
− pν−1

h(pν−1)
) (7.33)

with h(pν) = g(p)g(p2) . . . g(pν) being the number of residue classes
modpν remaining at theνth stage’.

A simpler proof of this result has been given by Gallagher [7](cf.
Gallagher [6]).

(7.22): For the remark that precedes (7.22) note that otherwise, by
(7.15) and (7.11), there will be one forbiddenbmodd with more than
ω(q)
ω(d)

= ω(
q
d

) of distinct f ′j s ≡ bmodd and hence for anyn(∈ γ) and

one suchf j we would have (n− f j′
q
d

) > 1 contrary to (7.14).

(7.24): For a variant of the proof of (7.24) see Montgomery [5]
(Chapter 3), and Bombieri [6] (p. 21).



Chapter 8

The Brun-Titchmarsh
Theorem

IN THIS chapter we deal with an important application, of thearithmeti- 95

cal sieve result of the previous chapter, in prime number theory. One of
the prominent problems of number theory is the study of distribution of
primes in arithmetic progressions; i.e., to investigate

π(x; k, ℓ) :=
∑

p≤x
p≡ℓmodk

1, (8.1)

in particular, to obtain estimates valid uniformly in (ranges of)k (relative
to x).

In this direction there is the famous Siegel-Walfisz theoremthat, for
anyC > 0 andU > 0,

π(x; k, ℓ) =
li x
ϕ(k)

+OU,C(x log−U x) uniformly in k ≤ logC x (8.2)

(with an ineffectiveO-constant due to the possible existence of a Siegel-
zero), which was one of the main tools in I.M. Vinogradov’s proof of
the solubility of the famous equation

2N + 1 = p1 + p2 + p3 for N ≥ N0. (8.3)

99
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Titchmarsh used the generalized Riemann hypothesis to tackle the
divisor problem (since then named after him)

∑

p≤x

d(p− 1) ∼ cx as x→ ∞ (certain c > 0) (8.4)

where he also employed (cf. (8.21)) the estimate

π(x; k, ℓ) ≪α

x
α(k) log x

for k ≤ xα (fixed α, 0 < α < 1), (8.5)

which he obtained by Brun’sieve.
This problem provides a good example to illustrate our earlier re-96

mark that Bombieri’s prime number theorem can replace the general-

ized Riemann hypothesis on average, since (6.23) states that
li x
ϕ(k)

is the

leading term for almost allk ≤ x
1
2

logC x
.

Now we are in a position to outline theunconditionalproof of (8.4)
employing (6.23) and (8.5). To start with have
∑

p≤x

d(p− 1) =
∑

p≤x

∑

d|p−1

1 =
∑

d≤x

∑

p≤x
p≡1 modd

1 =
∑

d≤x

π(x; d, 1) (8.6)

(in the notation of (8.1)). LetU > 0 denote a number to be suitably
restricted and letC = C(U)(> 1) be a value for which (6.23) holds.
Then splitting the range ofd in the last sum of (8.6) into three parts

d ≤ x
1
2 log−C x, x

1
2 log−C x < d ≤ x

1
2 logC x, x

1
2 logC x < d ≤ x (8.7)

and denoting the corresponding partial sums there by
∑

1

,
∑

2

,
∑

3

(8.8)

we see that, in view of (8.5), one has

∑

2

≪ x
log x

′′∑ 1
ϕ(d)

≪ x log logx
log x

, (8.9)
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where′′ denote the restriction ofd to the second range in (8.7). Here we
have used the fact (cf. Estermann [1]) that

∑

d≤y

1
ϕ(d)

= c logy+ o(1) as y→ ∞, c =
∏

p

(1+
1

p(p− 1)
). (8.10)

Next consider (in a notation similar to the one above)

∑

3

=

”∑ ∑

p≤x
p≡1 modd

1 =
∑

p≤x

′′′∑

d|p−1

1. (8.11)

Treating
∑

1 similarly we see that (after a simple rearrangement)
sinceC > 1,
∑

1

−
∑

3

≪
∑

p≤x

∑
′′

d|p−1

1+
∑

p≤x log−2C x

d(p− 1) ≤
∑

2

+x log−1 x (8.12)

from which one obtains, with the help of (8.9) and (8.6), 97

∑

p≤x

d(p− 1) = 2
∑

1

+O(
x log logx

log x
). (8.13)

Now, by our choice ofC and (6.23), we have

∑

1

=

′∑
(π(x; d, 1)− li x

ϕ(d)
)+ li x

′∑ 1
ϕ(d)

+ li x
′∑ 1
ϕ(d)

+0(x log−U x).

(8.14)
Using here (8.10) again we get, in view of (8.13).

∑

p≤x

d(p− 1) = 2 li x(c log(x
1
2 log−C x)) +O(

x log logx
log x

) (8.15)

on takingU = 2 say. Thus, after inserting the value ofc from (8.10), we
have the asymptotic formula (8.4) in a more precise form:

∑

p≤x

d(p− 1) = x
∏

p

(1+
1

p(p− 1)
+O(

x log logx
log x

). (8.16)
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For number-theoretic purposes the ‘Brun-Titchmarsh Theorem’
(8.5) is very valuable being the only known result valid in such a wide
range fork.

In the direction of (8.5) we shall prove the following resultof Mont-
gomery and Vaughan [2] as an application of Theorem 7.1 ((7.8)):

Theorem 8.1. For any positive real numbers x and y, and for anyℓ, k
fromN with

(ℓ, k) = 1, (8.17)

there is an absolute constant c0 such that

π(x+ y; k, ℓ) − π(x; k, ℓ) <
2y

ϕ(k)(log(y
k) + 13

15)
, (8.18)

provided
y
k
> c0. (8.19)

Remark. Under the assumptions of Theorem 8.1 we have, in particular,98

the estimate (8.18) without the term
13
15

. In this context, by adding some

numerical computation, Montgomery and Vaughan have also shown that
c0 can be taken equal to 1, i.e,. we have the neat result

π(x+ y; k, ℓ)− π(x; k, ℓ) <
2y

ϕ(k) log(y
k)
, 1 ≤ ℓ ≤ k < y, (ℓ, k) = 1,∀x > 0;

(8.20)
so, in particular, choosingx = 0 (and replacingy by x)

π(x; k.ℓ) <
2y

ϕ(k) log(y
k)
, 1 ≤ l ≤ k < x, (ℓ, k) = 1. (8.21)

Proof. Let z > 0 denote a number to be suitably chosen later. Consider
the set

γ := {m : x < mk+ ℓ ≤ x+ y, ((mk+ ℓ),
∞∏

p≤z
p∤k

p) = 1}. (8.22)

�
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In the notation of Theorem 7.1 we have

M
[ x− l

k

]
,N =

[ x+ y− ℓ
k

]
−
[ x− l

k

]
, (8.23)

and so
y
k
− 1 < N <

y
k
+ 1. (8.24)

Note thatγ contains all those prime numbers counted inπ(x + y;
k, ℓ) − π(x; k, ℓ) which are> z, and also

ω(p) ≥ ∀p ≤ z, p ∤ k. (8.25)

Hence, by (7.8),

π(x+ y; k, ℓ) − π(x; k, ℓ) ≤ S + z≤ 1
L∗(z)

+ ≤ N
Mk(z)

+ z, (8.26)

where, by (8.25),

Mk(z) :
∑

q≤z
(q,k)=1

(1+
3
2

q
z
N

)−1µ
2(q)
ϕ(q)

. (8.27)

We now choose 99

z= (
2
3

N)
1
2 (8.28)

so that
2
3

z
N
= z−1 (8.29)

which makes

Mk(z) =
∑

q≤z
(q,k)=1

(1+ qz−1)−1µ
2(q)
ϕ(q)

. (8.30)

The equality part of (3.26) and the observation that (1+ qz−1)−1

decreases asq increases, enable us to uphold

Mk(z) ≥
ϕ(k)

k

∑

q≤z

(1+ qz−1)−1µ
2(q)
ϕ(q)

=
ϕ(k)

k
M1(z). (8.31)
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Now we need, instead of the estimate in (3.26) which yielded only
the leading term, the more precise formula due to D.R. Ward [1], namely
that ∑

q≤w

µ2(q)
ϕ(q)

logw+ c1 + o(1) as w→∞, (8.32)

where

c1 = γ +
∑

p

log p
p(p− 1)

= lim
u→∞

(logu−
∑

p≤u

log p
p

) = 1.33258· · · (8.33)

(cf. Rosser and Schoenfeld [1]). Using (8.32) for partial summation we
get asN → ∞

M1(z) = logz+ c1− log 2+ ◦(1) =
1
2

log N+ c1− log 2− 1
2

log
3
2
+ ◦(1)

(8.34)
because of (8.28), and consequently

N − 1
N

M1(z) =
1
2

log(N + 1)+ c2 + o(1) asN → ∞ (8.35)

with, in view of (8.33),

c2 = c1 − log 2− 1
2

log
3
2
= c1 −

1
2

log 6>
13
30
. (8.36)

100

We obtain, on using (8.32), (8.35) and (8.28),

N − 1
N

Mk(z) ≥
ϕ(k)
2k

(log(N + 1)+ 2c2 + o(1)), z≤ (N − 1)
1
2 as N→ ∞.

(8.37)
Thus, on choosing a sufficiently largec0, it follows from an use of

(8.37) in (8.26)

π(x+ y; k, l) − π(x; k, l) ≤ 2k(N − 1)
ϕ(k)(log(N + 1)+ 2c2 + ◦(1))

+ (N − 1)
1
2

<
2y

ϕ(k)(log(y
k) + 13

15)
(8.38)

because of (8.24) and (8.19). This completes the proof of thetheorem.
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NOTES

For the history of Brun-Titchmarsh theorem we refer to Halberstam
and Richert [1] (Chapter 3).

(8.12): The estimations of (8.12) are obtained as follows. We have

∑

1

−
∑

3

=
∑

p≤x


′∑

d|p−1

1−
′′′∑

d|p−1

1

 . (8.39)

For any fixedp ≤ x, the difference of the sums inside is precisely the

number ofd′s(≤ x
1
2 log−C x) dividing p-1 and with

p− 1
d
≤ x

1
2 logC x.

Now splitting such d’s into parts according as
p− 1

d
≤ x

1
2 log−C x or not

and noting further further that the second part is empty ifp > log−2C x
we obtain the first majorization. The remaining part employsonly the
simple

∑
m≤y

d(m) = O(y logy).

(8.16): This unconditional result is due to Rodriquez [1] and Hal-
berstam [1] (cf. Halberstam and Richert [1] (Theorem 3.9). More gen-
eral results of this type have already been mentioned in the notes of
Chapter 6.

Theorem 8.1: The estimate (8.20) demonstrates the power of the
weighted sieve of Montgomery and Vaughan (cf. under Theorem7.1
in the notes for Chapter 7. However, an estimate of the type (8.18) can
also be derived without the use of obayashi’s results: cf. Halberstam 101

and Richert [1] (pp. 124-125)). On the other hand, it is easily checked
that if we use, at the beginning of the proof, the estimate (7.6) instead
of (7.8) we cannot obtain (8.20), even subject to the condition (8.19),
without an extra term on the right-hand side.

(8.21): A further improvement of the factor 2 in (8.21) to a constant
c < 2 would have important consequences concerning the Siegel-zeros
of Dirichlet’s L-functions, as has been first pointed out by Rodosskij (cf.
for example, Bombieri and Davenport [2]).

(8.36): It is easily checked to have, instead of (8.36), that

c2 > 1, (8.40)
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so that one has neater (8.18) with 1 in place of
13
15

, it would be sufficient

to improve the constant
3
2

(at least in (2.91)) (cf. notes for Chapter 2,

under (2.76)) to a constant∆ satisfying

∆
1
4

e2c1−1 = 1.32163· · · (8.41)

On the other hand (see the above remark) we point out that Selberg’s
sieve permits one to replace 13/15 in (8.18) by any constantC (with a
c0 = c0(C) in (8.19)).

Recently, starting from the works of Hooley and Motohashi (Hoo-
ley [2], [6], and Motohashi [8], [9], [11]) there has been a remarkable
progress with respect to the Brun-Titchmarsh theorem. Someof these
results are concerning averages and certain others are valid only for
some ranges ofk. As an example, we mention one of the most recent
results of the latter type (Goldfeld [4]): For every (sufficiently small)
ǫ > 0 holds, with a certainc > 0,

π(x; k, l) ≤ (1+ ǫ)
x

ϕ(k) log( x√
k3

).i f x
2
5−cǫ ≤ k ≤ x

1
2 (8.42)



Chapter 9

Selberg’s Sieve

NOW WE turn to the small sieves. The most elegant version of a small 102

sieve is due to Selberg. In this chapter we present its simplest version
with a view to clarifying the main ideas involved. Also, later in the next
chapter we importance in the proof of the remarkable theoremof Chen.

This sieve method can be considered as concerning the question of
finding bounding for

S(A , f, z). (9.1)

the number of elements in a (finite) sequence, depending on several pa-
rameters,

A := {a : · · · }, a ∈ Z. (9.2)

of (not necessarily distinct and not necessarily positive)integers, which
are not divisible by any prime number< z,

z≥ (z ∈ R), (9.3)

belonging to a set of primes

f := {p : . . .}. (9.4)

Introducing
P(z) :=

∏

p<z
p∈p

p, (9.5)

107



108 9. Selberg’s Sieve

we can restate this question as that of estimating

S(A , p, z) = |{a : a ∈ A , (a,P(z)) = 1}| (9.6)

The required estimates would be naturally dependent on the various103

parameters describingA , p, and also onz. However, we would be in-
terested in bounds, for (9.6), which do not involve the special features
of these defining arguments (A andp). To make this remark clearer, we
introduce the following notation.

Let
Ad := {a : a ∈ A , a ≡ 0 modd} f or d ∈ N. (9.7)

First we choose a convenient approximationX to |A |, requiring

X > 1. (9.8)

we write for the remainder

R1 := |A | − X. (9.9)

Next, for each primep ∈ p, we chooseω(p)(∈ R) so that
ω(p)

p
X is

close to|Ap|, and set

Rp : |Ap| −
ω(p)

p
X,∀p ∈ p. (9.10)

Further, denoting by
p (9.11)

the complement ofp with respect to the set of all primes, we also put

ω(p) = ∀p ∈ p. (9.12)

(This is consistent with our interest being only with regardto the distri-
bution of numbers ofA in the residue class 0 modulo primes fromp.)
If we now define

ω(d) :=
∏

p|d
ω(p) ∀d ∈ N with µ(d) , 0, ω(1) := 1 (9.13)
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(andω(d) = 0 if µ(d) = 0), we see that

ω ∈M (9.14)

and also that the definition104

Rd := |A | − ω(d)
d

X ∀d ∈ N with µ(d) , 0, (9.15)

is consistent with (9.9) and (9.10). (Note thatω may depend on bothA
andp. Now we can elaborate a little on our remarks made subsequent
to (9.6). The estimates for (9.6) are allowed to depend onX, ω (and
consequently onR), but not on the particular structures ofA and p
(apart from those which yields information towards the mostappropriate
choices forX andω as introduced above).

For the purposes of the method we also require to fulfill the condi-
tion

(Ω1) 0 ≤ ω(p)
p
≤ 1− 1

A1
with some constantA1 ≥ 1 (9.16a)

or equivalently

(Ω1) 1 ≤ 1

1− ω(p)
p

≤ A1 with some constantA1 ≥ 1.

(9.16b)
We introduce further

g(d) :=
∏

p|d

ω(p)
p− ω(p)

∀d ∈ N with µ(d) , 0, (9.17)

which is well-defined (because of (Ω1)). The productg(d) reminds us
of the function occurring in Theorem 7.1, but the advantage here is that
ω(p) need no longer be integer-valued. On the other hand, when com-
pared with Theorem 7.2, the condition (Ω1) already prevents us from
dealing with ‘too large a sieve’

By (9.12) we see that

g(d) = 0 if (d, p̄) , 1. (9.18)
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and also (from (9.13)) that

g(d) = 0⇐⇒ ω(d) = 0. (9.19)

(Here and in what follows (d, p̄) = 1 means that nop ∈ p̄ dividesd.)
Finally, we put105

W(z) :=
∏

p<z

(1− ω(p)
p

). (9.20)

G(z) :=
∑

d<z

µ2(d)g(d). (9.21)

and more generally

Gk(x) :=
∑

d<x
(d,k)=1

µ2(d)g(d), 0 < x ∈ R, k ∈ N. (9.22)

In view of (9.6) we could start with the identity (cf. (1.20))

S(A , p, z) =
∑

a∈A

∑

d|(a,P(z))

µ(d); (9.23)

in fact, this is the sieve formula of Eratosthenes-Legendre. Selberg’s
sieve, for obtaining an upper bound forS(A , p, z), consists in the intro-
duction of arbitrary real numbersλd with the only condition

λ1 = 1. (9.24)

which already implies that

S(A , p, z) ≤
∑

a∈A
(
∑

d|x
d|P(z)

λd)2 =
∑

dν |P(z)x
ν=1,2

λd1λd2

∑

a∈A
a=0 mod [d1,d2]

(9.25)

Hence, by (9.7) and (9.15),

S(A , p, z) ≤ X

∑
dν |P(z)
ν=1,2

λd1λd2

ω([d1,d2])
[d1,d2] +

∑
dν |P(z)

ν=1,2[d1,d2]

|λd1λd2R[d1,d2] | = X
∑
1
+
∑
2

(9.26)
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say. With a view to keep
∑

2 small one takes in this method

λd = 0 for d ≥ z (9.27)

and then the remainingλ′ds(2 ≤ d < zd|P(z)) are chosen so as to mini-
mize

∑
1

This leads to the choice 106

λd = µ(d)
∏

p|d

p
p− ω(p)

Gd( z
d)

G(z)
. (9.28)

Note here that (9.28) includes both (9.24) and (9.27). Next,it can
be shown by the argument of (3.26) that

|λd| ≤ 1. (9.29)

Now, with the choice (9.28), one obtains
∑

1

=
1

G(z)
(9.30)

and further (9.27) and (9.29) give
∑

2

≤
∑

dν<z
dν |P(z)
ν=1,2

|R[d1,d2] |. (9.31)

Here the numbersd = [d1, d2] are< z2 and divideP(z). Sinced is
square free, the number of terms with the samed is atmost

|{d1, d2 : [d1, d2] = d} = 3ν(d) (9.32)

From (9.26), (9.30) and (9.31) we now obtain (in view of (9.32))

Theorem 9.1. (Ω1)1: We have, in the above notation1.


S(A , p, z) ≤ X
G(z) +

∑
dνz

dν |P(z)
ν=1,2

|R[d1,d2] | ≤ X
G(z)

+
∑

d<z2

d|P(z)

3ν(d)|Rd| ≤ X
G(z) +

∑
d<z2

(d,,p̄)=1

µ2(d)3ν(d) |Rd|.
(9.33)

1By this notation, which is also employed in a similar way later, we mean that the
subsequent statement is valid subject to the conditions in parentheses.
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Now we give two important special cases of Theorem 9.1.107

Theorem 9.2. Suppose that

ω(d) = 1 and |Rd| ≤ 1, if µ(d) , 0 and (d, p̄) = 1. (9.34)

Then

S(A , p, z) ≤ X

(
∏
p<z
p∈p

(1− 1
p)) logz

+ z2. (9.35)

Proof. From our assumption onω in (9.34) it follows that the condition
(Ω1) is fulfilled and further

G(z) =
∑

d<z
(d,k)=1

µ2(d)
ϕ(d)

, (9.36)

where
k =
∏

p<z
p<p

p. (9.37)

Therefore, by (3.26), we have

G(z) ≥ ϕ(k)
k

logz=
∏

p<z
p<p

(1− 1
p

) logz, (9.38)

so that first inequality of (9.33) yields (9.35) (since|Rd| ≤ 1 by (9.34)).
Let us set

pK = {p : p ∤ K}, K ∈ Z (9.39)

�

Theorem 9.3. Let K(, 0) be an even integer and suppose that

ω(p) =
p

p− 1
for p ∈ pK. (9.40)

Then, we have

S(A , pK, z) ≤ S(K)
X

logz
(1+O(

1
logz

)) +
∏

p<z2

(d,K)=1

µ2(d)3νd|Rd|, (9.41)
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where

S(K) = 2
∏

p>2

(1− 1

(p− 1)2
)
∏

2<p|K

p− 1
p− 2

(9.42)

Proof. We use the last bound given in (9.33). Clearly, we need only
show that

1
G(z)

≤ 2
∏

p>2

(1− 1

(p− 1)2
)
∏

2<p|K

p− 1
p− 2

1
logz

(1+ 0(
1

logz
)), (9.43)

since (Ω1) is satisfied withA1 = 2 in view of 2|K. we note that 108

g(p) =
1

p− 2
=

1
p− 1

(1+
1

p− 2
) =

1
ϕ(p)

(1+ g(p)) for p ∤ K, (9.44)

and so (cf. (9.17))

g(d) =
1

ϕ(p)

∑

l|d
µ2(l)g(l) if (d,K) = 1. (9.45)

Then, by (3.26).

G(z) =
∑

ℓ<z
(ℓ,K)=1

µ2(l)g(l)
ϕ(ℓ)

∑

m< z
ℓ

(m,lK )=1

µ2(m)
ϕ(m)

≥
∏

p|K
(1− 1

p
)
∞∏

ℓ=1
(ℓ,K)=1

µ2(ℓ)g(ℓ)
(l)

log(
z
ℓ
)

(9.46)

on observing that forℓ > z the lower bound log (
z
l
), for the (empty)

inner sum, is negative, Further, by (9.44) and (1.18).

∞∑

l=1
(l,K)=1

µ2(ℓ)g(ℓ)
(ℓ)

=
∏

p∤K

(1+
1

p(p− 2)
) (9.47)

and


∞∏
ℓ=1

(ℓ,K)=1

µ2(l)g(l)
(ℓ) log ℓ =

∞∏
ℓ=1

(ℓ,K)=1

µ2(l)g(ℓ)
(=ℓ)

∑
p|ℓ log p

=
∑

p∤K
log p

p(p−2)
1

1+(p(p−2))−1

∏
p′∤K

(1+ 1
p′(p′−2)).

(9.48)
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Using (9.47) and (9.48) in (9.46) we obtain

G(z) ≥
∏

p|K
(1− 1

p
)
∏

p∤K

(1+
1

p(p− 2)
){logz−

∑

p

log p

(p− 1)2
}, (9.49)

which upholds (9.43). Thus the theorem is completely proved. �

NOTES

Selberg’s sieve occurs for the first time in Selberg [1] (cf. Selberg
[3], [4], [5], [6]).

For the content of this chapter we refer the reader to Halberstam and
Richert [1] (Chapter 3).109

(9.29): The details leading to (9.29) are the following. In view of
(9.28) consider (for only squarefreed’s)



∏
p|d

p
p−ω(p)Gd( z

d) = (
∏

p|d(1+ g(p))(
∑

d1<z/d
(d1,d)=1

µ2(d1)g(d1))

= (
∑

d2|d
µ2(d2)g(d2))((

∑
d1<z/d

(d1,d)=1

µ2(d1)g(d1)).
(9.50)

Now multiplying out the last expression and comparing withG(z)
we obtain (9.29)

9.1: cf. Halberstam and Richert [1] (Theorem 3.2)
The observation due to Kobayashi, which we have mentioned earlier

(cf. notes for Chapters 7 and 8), consists in noticing



G(z)
∑

d|F(n)
d|P(z)

λd =
∑
q<z

q∑ ′
l=1

bq,le(−n l
q)

bq,l =
1
q

∏
p|q

(1− ρ(p)
p )−1

q∑
h=1

(F(h),q)=1

e( lh
q ).

(9.51)

and

µ2(q)g(q) =
q∑
′

l=1

|bq,l |2. (9.52)
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and using the duality principle (cf. (2.47)–(2.48)). HereF denotes an
integer-valued polynomial andρ(p) is the number of solutions ofF(n) ≡
0 modp. Actually, Kobayashi [1] proves the following dual form of the
large sieve (in our notation)

∑

M<n≤M+N

|
R∑

r=1

are(−nxr )|2 = (N +O(δ−1))|
R∑

r=1

ar |2,∀ar ∈ C, (9.53)

using the upper bound form of the large sieve as well as a smoothing
technique. of Bombieri [4], for a lower bound. (TheO-constant in
(9.53) is absolute.) From this he derives Selberg’s sieve (cf. Mathews 110

[3]), from which on using (2.90) one obtains, instead of (9.33),

S(A , p, z) ≤ X + z2

G(z)
. (9.54)

(cf. Halberstam and Richert [1] (pp. 125-126)) a result thatshould be
compared with (7.6). It is also possible similarly to get thestronger
form (7.8) by definingλd’s in Selberg’s sieve in a different way (cf.
Halberstam and Richert [1] (p. 126)).

(9.33): For the second inequality in (9.33) we have used thatfrom
dν|P(z), ν = 1, 2, one hasd := [d1, d2]|P(z) and also for each suchd

|{d1, d2 : dν < dν|P(z), [d1, d2] = d}| ≤ |{d1, d2 : [d1, d2] = d} = 3ν(d)

(9.55)
9.2: cf. Halberstam and Richert [1] (Theorem 3.3)
9.3: cf. Halberstam and Richert [1] (Theorem 3.10)





Chapter 10

Some Applications of the
Small Sieve in the Case
ω(p) =

p
p− 1

AS ALREADY mentioned at the beginning of Chapter 9 we present111

here some applications of the results obtained there in the chapter for
our purposes. Theorem 9.3, which is not contained in the arithmetical
form of the large sieve (cf. the remark made subsequent to (9.17)), is of
particular interest.

We have the following two interesting (cf. Notes) applications,
which we shall quote without any details of proof.

Theorem 10.1.We have, as N→ ∞,

|{p : p ≤ N, p+ h = p′} ≤ 4S(h)
N

log2 N
{1+O(

log logN
logN

)},

∀h ∈ Z, h , 0, h ≡ 0mod2. (10.1)

uniformly in h, and also

|{p : p ≤ N,N − p = p′} ≤ 4S(h)
N

log2 N
{1+O(

log logN
log N

)},

117
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for N ≡ 0mod2. (10.2)

whereS is defined through(9.42).

More generally one also has

Theorem 10.2.Let A> 0 and let a, b, k, ℓ be integers satisfying

ab, 0, (a, b) = 1, ab≡ 0mod2. (10.3)

and
(k, ℓ) = 1, 1 ≤ k ≤ logA x(R ∋ x ≥ x0). (10.4)

Then we have, uniformly ina, b, k andℓ, asx→ ∞

|{p : p ≤ x, p ≡ ℓmodk, ap+b = p′}| ≤ 4S(abk)
x

ϕ(k) log2 x
{1+OA(

log logx
log x

)}.

(10.5)
A much more delicate application is the next theorem which shall be

used in Chapter 13. Though some of the majorizations in the proof of112

Theorem 10.3 are crude, many others involve rather delicateconsidera-
tions. Before coming to the formulation of this theorem we shall obtain
some useful auxiliary results.

Lemma 10.1. We have

∑

q≤x

µ2(q)
q

hν(q) ≤h ( log x+ 1)h for x ≥ 1, h ∈ N. (10.6)

Proof. Consider

∑

a≤x

µ2(q)
q

hν(q) ≤
∏

p≤x

(1+
h
p

) ≤
∏

p≤x

(1+
1
p

)h. (10.7)

Now (10.6) is apparent in view of the well-known formula due to
Mertens, ∏

p≤x

(1− 1
p

) =
e−γ

log x
(1+ 0(

1
log x

)). (10.8)

on noting that (1+
1
p

) ≤ (1− 1
q

)−1. �
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Lemma 10.2. Let A> 0 and let h, k∈ N. Let K ≤ logA x for sufficiently
large x. Set

E(x, d) := max
(ℓ,d)=1

|π(x; d, ℓ) − li x
ϕ(d)
|. (10.9)

Then for anyU1(> 0) there exists a valueC1 = C1(U1, h,A) such
that

∑

d<
√

x

k logC1 x

µ2(d)hν(d)E(x, dk) ≪U1,h,A
x

ϕ(k) logU1 x
. (10.10)

Proof. By the rough estimate (cf. (10.9))

E(x, d1) ≪ x
d1

for d1 ≤ x (10.11)

and an application of the Cauchy’s inequality followed by extensions of
ranges for variables in the resulting summations, we see that the expres-
sion on the left-hand side in (10.10) is

≪ (
x
k

)
1
2 (
∑

d≤x

µ2(d)h2ν(d)

d
)

1
2 (
∑

d<
√

x

logC1 x

E(x, d))
1
2 . (10.12)

113

In view of the bound given by (10.6) for the first sum here, we make
the choice ofC1, for givenU1, by means of (6.23) such that the second
sum is bounded byx(log x)−(2U1+h2+A). Then, continuing the estimation
in (10.12). we obtain further

≪
U1,h,A

(
x
k

)
1
2 (log x)

1
2h2

(x(log x)(2U1+h2+A)
1
2 ≪

U1,h,A
x(log x)U1− 1

2 A(ϕ(k))−
1
2 .

(10.13)
which proves (10.10) becauseϕ(k) ≤ k ≤ (log x)A. �

Now we are in a position to prove the main theorem of this chapter.

Theorem 10.3.Let v be a real number satisfying

v > 3. (10.14)
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Leth(, 0) satisfy, being determined with respect to sufficiently large
x.

h ∈ Z, h ≡ 0 mod 2, and either h = [x] or 0 < |h| ≤ x1/3.

(10.15)
Then, asx→ ∞, holds


Cv(x, h) := |{|h− p1p2p3| : |h− p1p2p3| = p, x1/v

≤ p1 < x1/3 ≤ p2 < p3, p1p2p3 ≤ x}| ≤
≤ 4c(v)G(h) x

log2 x

{
1+Ov(

log logx
log x )

}
.

(10.16)

whereG is defined by (9.42) and

c(v) :=

1/3∫

1.v

log(2− 3α)
α(1− α)

dα (10.17)

(Note that theO-constant in (10.16) depends at most onv.)

Proof. Let us consider (the finite sequence)

B := {b : b = pd, d ∈ D , p ≤ x
d
}. (10.18)

where114

D :=
{
d : d = p1p2, x

1/v ≤ p1 < x1/3 ≤ p2 ≤
√

x
p1

}
. (10.19)

We note that eachd ∈ D (has a unique representation asp1p2 and)
satisfies

x
1
3 < x

1
3+

1
v ≤ d = p1p2 <

√
p1x < x

2
3 . (10.20)

and so
|D | < x

3
2 . (10.21)

With a view to determine a suitable approximation to|B|, we use

the formula (takingρ =
1
v

andρ =
1
3

)

∑

xρ≤p<y

1
p
= log(

logy
ρ log x

) +O(
1

ρ log x
) for y ≥ xρ, (10.22)
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for Stieltjes integration to obtain (withρ =
1
3

)

∑

x
1
3≤p2<

√
x

p1

1

p2 log x/p1
p2

=

x/p1∫

√
x1/3

dη

η logη log x/p1
η

+ ◦( 1

log2 x
). (10.23)

Further multiplying (10.23) by
1
p1

and summing overx1/v ≤ p1 <

x1/3 we get, by use of (10.22) (withρ = 1/v),



∑
d∈D

1
d log x

d
=

x1/3∫

x1/v

dξ
ξ logξ

( x
ξ
)1/2
∫

x1/3

dη
η logη log( x

ξη
) +Ov( 1

log2 x
) =

= 1
log x

1/3∫

1/v

dα
α

(1−α)/2∫

1/3

dβ
β(1−α−β) +Oν( 1

log2 x
) =

= 1
log x

1
3∫

1
v

log(2−3α)
α(1−α) dα +Ov( 1

log2 x
) = c(v)

log x +Ov( 1
log2 x

),

(10.24)

where we have put
ξ = xα, η = xβ. (10.25)

and have also used the notation (10.17). Thus since everyd ∈ D is
< x2/3 (cf. (10.20)), by (10.18) and the prime-number theorem (in a115

weak from) one has

|B| =
∑

d∈D

∑

p≤ x
d

1 =
∑

d∈D

x
d log(x

d)
(1+O(

1
log x

)) =
c(v)x
log x

(1+Ov(
1

log x
)),

(10.26)
on using (10.24). (Note that the formula (10.26) counts the numbers in
B according to the multiplicity of their occurrence.) �

Towards the estimate (10.17), we naturally consider

S(A , ph, z), (10.27)
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where

A :=
{
|h− p1p2p3| : x1/v ≤ p1 < x1/3 ≤ p2 < p3, p1, p2, p3 ≤ x

}
,

(10.28)
ph := {p : p ∤ h}, (10.29)

and (we make the choice)

z2 = x
1
2ℓ−18 (10.30)

with the abbreviation
ℓ : L = log x. (10.31)

Instead ofA it is more convenient (cf. (10.60)) to work with

A
∗ := {|h− p1p2p3| : x1/v ≤ p1 < x1/3 ≤ p2 <

√
x
p1
, p1p2p3 ≤ x}.

(10.32)
Now the primespi(i = 1, 2, 3) occurring inA satisfy p1p2

2 ≤ x

and sop2 <

√
x
p1

, which shows thatA is contained inA ∗ (even with

regard to multiplicity of numbers in it). Therefore

S(A , ph, z) ≤ S(A ∗, ph, z). (10.33)

Note also that all the elements ofA ∗ have the same type of repre-
sentation from among116

h− p1p2p3, p1p2p3 − h or |h| + p1p2p3 (10.34)

according ash = [x], |h| ≤ x1/3 with h > 0 or h < 0 respectively (cf.
(10.15)) and hence, in particular, that the multiplicity ofa number inA ∗

is exactly the multiplicity of the correspondingp1p2p3 in B.
Next, we prepare for an application of Theorem 9.3 with respect A ∗,

ph andz. Comparing the definitions ofA ∗ andB (throughD) we see
that, for (q, h) = 1 with µ(q) , 0, by (1.53) (in the notation of Chapter
9) one has



|A ∗
q | =

∑
b∈B

b≡hmodq

1 = 1
ϕ(q)

∑
χmodq

χ̄(h)
∑

b∈B
χ(b) =

= 1
ϕ(q)

∑
b∈B

χ0(b) + 1
ϕ(q)

∑
χmodq
χ,χ0

χ̄(h)
∑
b∈ϕ

χ(b),
(10.35)
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in view of the remark involving (10.34). From here we get

|Rq| = ||A∗q
∣∣∣∣ −

1
ϕ(q)
|B|
∣∣∣∣ ≤

1
ϕ(q)

∑

χmodq
χ,χ0

|
∑

b∈B
χ(b)| + 1

ϕ(q)

∑

b∈B
(b.q)>1

1 =: R∗q,

(10.36)
say. In particular

|A ∗| = |A ∗
1 | = |B|, (10.37)

which is clear otherwise also. Therefore we make the choices

ω(p) =
p

p− 1
forp ∈ ph (10.38)

and, by (10.26),

X = |B| = c(v)
x

log x
(1+Ov(

1
log x

)). (10.39)

Now, S(A , ph, z) counts all numbers of (the set in) (10.16) which
exceedz and so (because of (10.33)) applying Theorem 9.3 withK = h
for A ∗ it follows, by (9.41), (10.39) and (10.30). 117

Cv(x, h) ≤ 4c(v)B(h)
x

log2 x
{1+Ov(

log logx
log x

)} +
∑

◦
, (10.40)

where (cf. (10.36))
∑

◦
:= z+

∑

q<z2

(q,h)=1

µ2(q)3ν(q)|Rq|. (10.41)

The rest of the proof concerns with an estimation of
∑

0 which shows
this contribution to (10.40) as being of the nature of an error-term. The
sum in (10.41) is, by Cauchy’s inequality and (10.36),

≤ (
∑

q<z2

(q,h)=1

µ2(q)9ν(q) |Rq|)
1
2 (
∑

q<z2

(q,h)=1

µ2(q)R∗q)
1
2 . (10.42)
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Now trivially, from (10.35), (10.26), we have (cf. (10.15),cf. also
(10.11))

|Rq| ≪v (
x+ x1/3

q
+

x
ϕ(q) log x

) ≪v
x
q

(10.43)

so that the first sum in (10.42) is, by Lemma 10.1,

= Ov(x log9 x). (10.44)

(Observe that the first term of the middle expression in (10.43) is ob-
tained by using the fact that the multiplicity of any member of A∗ is
absolutely bounded (cf. (10.34)).) Next we deal with the simpler part,
of the second sum in (10.42), arising from the second term defining R∗q.
We have forq < x with q squarefree,



∑
b∈B

(b,q)>1

1 ≤ ∑
d∈D
p|q

1+
∑

x1/v≤p1,p2<x
1
2

p1|q

∑
p< x

p1p2

1 ≤ ν(q)(|D | + x1− 1
v
∑

x1/v≤p2<x
1
2

1
p2

)

≪v x1−1/v log x,
(10.45)

on using (10.21), (10.22), (10.15) and the trivial estimate

ν(q) ≤ logq
log 2

∀q ∈ N. (10.46)

118

Hence (10.45) leads to the estimate, for the part of the sum in(10.42)
which in under consideration via (8.32)

≪v x1− 1
v log x

∑

d<z2

µ2(q)
ϕ(q)

≪v x1− 1
v log2 x. (10.47)

Now collecting together the bounds (10.42), (10.44) and (10.47) we
see that because of the choice (10.30).

2∑

0

≪v z2 + x log9 x(x1− 1
v log2 x+

∑

1

) ≪v x2− 1
v log11 x+ x log9 x.

∑

1

,

(10.48)



125

where (cf. (10.36))

∑

i

:=
∑

q<z2

µ2(q)
ϕ(q)

∑

χmodq
χ,χ0

|
∑

b∈B
χ(b)|. (10.49)

Observe thath has no longer a part to play in the sequel.
Transition to primitive characters in (10.49) yields (cf. (1.59)), on

writing q = r f ( f : conductorχmodq)


∑
1 =
∑

r<z2

µ2(r)
ϕ(r)

∑

f< z2
r

(r, f )=1

µ2( f )
ϕ( f )

∗∑
χmod f
χ,χ0

| ∑
b∈B

(b,r)=1

χ(b)| ≤

∑
r<z2

µ2(r)
ϕ(r)

∑
f<z2

µ2( f )
ϕ( f )

∗∑
χmod f
χ,χ0

| ∑
b∈B

(b,r)=1

χ(b)| = ∑
r<z2

µ2(r)
ϕ(r)

∑
2(r),

(10.50)

where (on replacingf by q)

∑

2

(r) :=
∑

q<z2

µ2(q)
ϕ(q)

∑

χmodq
χ,χ0

|
∑

b∈B
(b,r)=1

χ(b)|. (10.51)

(In the remaining part we also use the abbreviation (10.31) wherever
convenient.)

By the Siegel-Walfisz theorem (cf. (8.2)) we have for any character
χ , χ0 modq, in view of (1.44) and (10.46), 119

∣∣∣
∑

p<y
p∤r

χ(p)
∣∣∣ ≤ log r

log 2
+
∣∣∣

q∑

ℓ=1

χ(ℓ)π(y; q, ℓ)
∣∣∣ ≪ log r

log 2
+ y.ϕ(q)ℓ−3g

uniformly for q≪ logg y asy→ ∞, (10.52)

so that (withg = 17)



∑
q≤ℓ17

µ2(q)
ϕ(q)

∑
χmodq
χ,χ0

∣∣∣∣∣
∑

b∈B
(b,r)=1

χ(b)
∣∣∣∣∣ =
∑

q≤ℓ17

µ2(q)
ϕ(q)

∗∑
χmodq
χ,χ0

∣∣∣∣∣
∑

d∈D
(d,r)=1

χ(d)
∑

p≤x/d
p∤r d

χ(p)| ≤

≪ ∑
q≤ℓ17

∑
d∈D

x
dϕ(q)ℓ−51≪v xℓ−16.

(10.53)



126 10. Some Applications of the Small Sieve.....

Hence ∑

2

(r) ≪v

∑

3

(r) + xℓ−16, (10.54)

where
∑

3

(r) :=
∑

ℓ17<q<z2

µ2(q)
ϕ(q)

∗∑

χmodq

∣∣∣∣∣
∑

b∈B
(b,r)=1

χ(b)
∣∣∣∣∣. (10.55)

For an estimation of (10.55) we use contour integration and the hy-
brid sieve. To this and we put

T = x3, (10.56)

as well as
a = 1+ ℓ−1. (10.57)

Further let
ℓ17 < w ≤ z2 (10.58)

and also note that thesupposition

x = [x] +
1
2

(10.59)

involves no loss of generality. We also introduce the Dirichlet series

P = Pr(s, χ) :=
∑

p≤w2

p∤r

χ(p)
ps ,Q = Qr (s, χ) :=

∑

p>w2

p∤r

χ(p)
ps ,

D = Dr(s, χ) :=
∑

d∈D
(d,r)=1

χ(d)
ds (Res> 1). (10.60)

120

Now, by (10.19) and a well-known formula (using (10.59))

∑

b∈B
(b,r)=1

χ(d) =
1

2πi

a+iT∫

a−iT

(P+ Q)D(s)
xs

s
ds+O(

x log x
T

). (10.61)
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Splitting the integral here into two parts, corresponding to (PD)(s)
and (QD)(s) respectively, and shifting the line of integration of the for-

mer only toσ =
1
2

we obtain, on using (10.57).



∑
b∈B

(b,r)=1

χ(b)≪ x
1
2

T∫

−T

|(PD)( 1
2 + it, χ)| dt

1+|t| +
x
T

1/2∫

a

|(PD)(σ ± iT, χ)|dσ+

+x
T∫

−T

|(QD)(a+ it, χ)| dt
1+|t| +

x log x
T .

(10.62)

For the second term on the right-hand side the crude estimate

|(PD)(σ ± it, χ)| ≤
∑

p≤w2

∑

d∈D
1 ≤ w2|D | ≤ x2for

1
2
≤ σ ≤ a, (10.63)

obtained from (10.61), (10.59), (10.31) and (10.22), suffices.
Towards an estimation of the remaining terms we introduce a nota-

tion (for convenience of description). For an arbitrary function f (s, χ),
s= σ + it we set (with respect tor, w, T andz as before)

M(σ, f ) :=
∑

q<w
(q,r)=1

q
ϕ(q)

∗∑

χmodq

T∫

−T

| f (σ + it, χ)| dt
1+ |t| , (10.64)

and observe that, by Cauchy-Schwarz inequality, for any twoo(such)
functionsI1 and f2 one has

M(σ, f1 f2) ≤ (M(σ, f 2
1 ))

1
2 (M(σ, f 2

2 ))−
1
2 . (10.65)

We would also need the estimate (valid with an absolute≪-constant)

M(σ, f 2)≪
∞∑

n=1

(w2 log x+ n)|an|2n−2σ, for f = f (s, χ) =
∞∑

n=1

an

ns
χ(n) if

∞∑

n=1

|an|
nσ

< ∞,

(10.66)

which is obtained by partial integration in Theorem 5.1 and using 121

(10.56).
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By (10.62), (10.64), (10.55) and (10.56) there holds

∑

ℓ17<q<w

q
ϕ(q)

∗∑

χmodq

|
∑

b∈B
(b,r)=1

χ(b)| ≪ (xM(
1
2
,P2)M(

1
2
,D2))

1
2

+x(M(a,Q2)M(a,D2))
1
2 + w2. (10.67)

Now we apply (10.66) to the fourM’s occurring in (10.67) to obtain
in succession (with absolute≪-constants)

M(
1
2
,P2) ≪

∑

p≤w2

(w2 log x+ p)p−1 ≪ w2 log2 x, (10.68)

because of (10.60), (10.58) and (10.30)),

M(
1
2
,D2) ≪

∑

d∈D
(w2 log x+ d)d−1 ≪ w2 log2 x+ x

2
3 , (10.69)

using in addition (10.21) further (cf. (10.57))

M(a,Q2) ≪
∑

p>w2

(w2 log x+ p)p−2a log x, (10.70)

and lastly

M(a,D2) ≪
∑

d∈D
(w2 log x+ d)d−2a ≪ w2(log2 x)x−

1
3 + log x. (10.71)

Using the four estimates (10.68)–(10.71) in (10.67) we arrive (cf.
(10.58), (10.30))



∑
ℓ17<q<w

q
ϕ(q)

∗∑
χmodq

| ∑
b∈B

(b,r)=1

χ(b)| ≪ (xw2 log2 x(w2 log2 x+ x
2
3 ))

1
2

+x(log2 x(w2x−
1
3 ))

1
2 + w2 ≪ x

1
2 w log x(w log+x+ x

1
3 )

+x log x(wx−
1
6 + 1)+ w2 ≪ x log x+ wx56 logx+ w2x

1
2 log2 x,

(10.72)
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valid uniformly in r. This gives, by partial summation and (10.30),

∑

ℓ17<q<z2

1
ϕ(q)

∗∑

χmodq

|
∑

b∈B
(b,r)=1

χ(b)| ≪ xℓ−16+ x
5
6 ℓ2 ≪ xℓ−16 (10.73)

uniformly in r.122

Note that the left-hand side expression in (10.73) majorizes
∑

3(r) of
(10.55). Therefore, it follows from (10.54) that

∑

2

(r) ≪v xℓ−16, (10.74)

which when used in (10.50) yields (by means of (8.32)) the estimate
∑

1

≪v xℓ−15. (10.75)

Thus we obtain, on using (10.75) in (10.48),
∑

0

≪v x(log x)−3, (10.76)

from which in view of (10.40), follows the estimate in (10.16). This
completes the proof if Theorem 10.3.

NOTES

10.1: The results of this theorem were proved first under the as-
sumption of the generalized Riemann hypothesis by Wang [2],and the
unconditional proof of these results (with an application to have (6.77)

with a θ <
1
2

) is due to Bombieri and Davenport [1]. The main terms of

(10.1) and (10.2) are 4 times the conjectured asymptotic formulae (with-
out error terms), for the respective problems, of Hardy and Littlehood.
In this context it is significant to mention that Montgomery has pointed
out (in correspondence) that a decrease of the factor 4 here any constant
c < 4 would have the same consequences regarding the Siegel-zeros as
has been remarked in connection with the Brun-Titchmarsh theorem (cf.
Notes of Chapter 8, under (8.21)).
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Theorem 10.2: See Klimov [1], [2], and Halberstam and Richert [1] 123

(Theorem 3.12).
(10.8): The formula (10.8) though not needed in this full force for

Lemma 10.1, is of much use in later chapters.
Lemma 10.2: cf. Halberstam and Richert [1] (Lemma 3.5)
Theorem 10.3: This result is the most essential part of Chen’s proof

of his famous theorem with respect to Goldach’s conjecture.Forv = 10
it occurs in Chen [1], Halberstam and Richert [1] (Chapter 11, with
some simplifications due to P.M. Ross) (with the weights∧(n)), and in
Ross [1]. We shall use Theorem 10.3 withv = 8 in Chapter 13 and
thereby obtaining the advantage of dealing with elementaryfunctions
in connection with the lower bound estimation via Selberg’ssieve. (cf.
Notes of Chapter 13, preceding (13.27).)

(10.17): For later use we obtain an estimate forc(v). First, note
that the functionf (x) = x2 − 2x log x is increasing forx ≥ 1 (since the
derivative f ′(x) = 2(x − 1 − log x) ≥ 0 for x ≥ 1). So f (x) ≥ f (1), for
x ≥ 1, which means thatx2 − 2x log x ≥ 1; i.e.,

log x ≤ (x− 1)(x+ 1)
2x

for x ≥ 1. (10.77)

(However, observe also that (10.77) follows from

b∫

a

F(y)dy ≤ (b− a)
2

(F(b) + F(a)) for any convex functionF, b ≥ a,

(10.77)′

on takingF(y) = y−1 and a = 1, b = x(≥ 1).) Hence (10.77), with
x = 2− 3α, gives

log(2− 3α)
α(1− α)

≤ 1− 3α
2

3
α(2− 3α)

=
3
4

(
1
α
− 3

2− 3α
) for 0 < α ≤ 1

3
,

(10.78)
from which, we obtain

c(v) =

1
3∫

1
V

log(2− 3α)
α(1− α)

dα ≤ 3
4

log(α(2− 3α))|α=
1
3

α= 1
V

=
3
4

log(
v2

3(2v− 3)
).

(10.79)
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(10.61): Titchmarsh,E.C. The theory of the Riemann zeta function124

(Oxford),
Lemma 3.12.
The effective way of treating the remainder terms by an explicit use

of analytical methods. as done here subsequent to (10.61). is of recent
origin. It occurs in the papers Barban and Vehow [1] (see Motohashi
[10]) Hooley [2], [5]. Huxley [5], Chen [1]. Motohashi [8]. Halber-
stam and Richert [1]. Goldfeld [4], and Ross [1]. Excepting the first of
these paper all the others employ this method for the purposeof some
applications only. In that paper Barban and Vehov [1] sketcha proof (- a
rigorous proof was given by Motohashi [10]-) of the following surpris-
ingly uniform result:

If x > z, logz≫ logz1, z1 ≥ zand

λd :=



µ(d) i f d ≤ z

µ(d)
log(

Zi
d )

log(
Zi
d )

i f z < d ≤ z1.
(10.80)

then we have ∑

1≤n≤x

(
∑

d|n
d≥z1

λd)2 x

log(z1
z )
. (10.81)





Chapter 11

A Generalized form of
Selberg’s Sieve

IN CHAPTER 9 we discussed a simple version of Selberg’s sievealong 125

with two particular cases, corresponding to the choices

ω(p) = 1 andω(p) =
P

p− 1
(forp ∈ p), (11.1)

and applied the latter, in the next chapter, to obtain the important Theo-
rem 10.3 for the purposes of Chapter 13. In this chapter we continue the
theme of the small sieve of Selberg with a view to enunciatingit in its
best form (in a certain sense), with is useful also in the proofs of the re-
sults of Chapter 13. However, our account of this aspect of the Selberg’s
sieve here will be sketchy (with relevant references being included in the
Notes).

At the out we recall that Selberg’s Theorem 9.1 was proved subject
to only the condition (Ω1) (cf. ((9.16a)) a) which restriction can also
stated in the form

0 ≤ ω(p) ≤ δp for some δ < 1. (11.2)

(Though (11.2) does not make Selberg’s sieve ‘too large a sieve’, nev-
ertheless it leaves the sieve a ‘large’ one still.) However,to effectively
deal with the functionG(z) and the remainder terms of Theorem 9.1 one

133
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needs information concerning the average order of magnitude ofω (and
also ofRd’s). In this connection the condition

(Ω2(k, L))−L ≤
∑

w≤p<z

ω(p) log p
p

−k log(
z
w

) ≤ A2for2 ≤ w ≤ z, (11.3)

which tells us thatω is ‘on the average’ equal toκ is useful (whenRd’s
are ‘small’ atleast on the average) for obtaining both the upper and lower
estimates forS(A , p, z). Then theO-constants in these estimates are126

allowed to depend onA1(fromΩ1)) andk (and hence, comparing with
(11.2). the sieve is ‘small’)A2 (from (Ω2(k, L))), (and some constants
implicit in the restrictions onRd’s (cf. (11.62))) but not on any other pa-
rameter involved (in particular, independent ofL, which is of the nature
of an error term, in practice thereby requiring a separate consideration).

The constantκ in (11.3) is called the ‘dimension’ of the sieve prob-
lem.

As we shall see later the equation of obtaining lower bounds for
our sifting functionS(A , p, z) can be linked up, in a significant way
with the problem of finding good upper estimates for it. Accordingly,
we now deal with the latter problem. First, we mention that when one
combines for this purpose, Theorem 9.1 withΩ2(κ, L), or instead even
with the one - sided restriction

(Ω2(κ))
∑

w≤p<z

ω(p) log p
p

≤ κ log(
z
w

) + A2 if 2 ≤ w ≤ z, (11.4)

the results obtained are quite satisfactory. In fact, an elementary reason-
ing gives, under the condition (Ω2(k)) (in addition to (Ω1)), the estimate

1
G(z)

≪W(z) (11.5)

for the functionG(z) of Theorem 9.1 in terms ifW(z) defined by (9.20),
and with a little more effort, on using (Ω2(κ, L)) in place ofΩ2(κ) here,
one obtains

1
G(z)

=W(z)eγκΓ(κ + 1)
{
1+O(

L
logz

)
}
. (11.6)

Thus we get, by means of (the last inequality of) Theorem 9.1 the
following two theorems (respectively):
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Theorem 11.1. (Ω1), (Ω2(κ)) :

S(A , p, z)≪ XW(z) +
∑

d≤z2

(d,p)=1

µ2(d)3ν(d) |Rd| (11.7)

and 127

Theorem 11.2. (Ω1), (Ω2(κ, L)) :

S(A , p, z) ≤ XW(z)eγκΓ(k+ 1)
{
1+O(

L
logz

)
}
+
∑

d<z2

(d,p̄)=1

µ2(d)3ν(d) |Rd|.

(11.8)

Here, again, we point out theO-constants in these two theorems
depend atmost onA1, A2 andκ inherent in (Ω1) andΩ(κ, L) (orΩ2(κ)).

Next, in accordance with the remark involving (11.3), we consider
the question of the magnitude ofRd’s There are many cases in which
one has the following information

(R) |Rd| ≤ ω(d) if µ(d) , 0 and (d.p̄) = 1. (11.9)

In such a situation one readily obtains, from (the second inequality
of) Theorem 9.1 and (11.5).

Theorem 11.3. (Ω1), (Ω2(κ)), (R): For any A> 0

S(A , p, z) ≪ X
∏

p<z

(1− ω(p)
p

) if z ≤ XA, (11.10)

where the≪-constant depends almost on A, A1, A2 andκ.

In the literature, usually, the phrase ‘by Brun’s sieve. . . ’ refers to
the statement (11.10). Here notice that Theorem 11.3 is a available the
more convenient condition, instead of (Ω2(κ)),

(Ω0) ω(p) ≤ A0 (11.11)

(since (Ω0)) implies (Ω2(κ))). Similar to Theorem 11.3, on using (11.6)
with Theorem 9.1 (cf. (10.8)), one has the explicit
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Theorem 11.4. (Ω1), (Ω2(κ, L)), (R):

S(A , p, z) ≤ Γ(κ + 1)
∏

p

{(1− ω(p)
p

)(1− 1
p

)−k} X

logkz

{1+O(
log log 3z+ L

logz
)} if z ≤ X

1
2
, (11.12)

where the infinite product converges and the O-constant depends atmost128

on A1, A2 andκ.

On the other hand, in absence of the information (R), as happens
with more delicate problems, one has to seek atleast an average result
aboutRd’s (cf. the remark containing (11.3)). It is at this stage that the
Bombieri-type results (cf. Chapter 6,3) are effective. It is easily seen
from the last sums in Theorem 11.1 and 11.2 that the size ofz2 (which
is about √

X

logC X
(11.13)

usually) is very important, since a smaller choice ofz increases the lead-
ing term view of the factorW(z). For making this remark a little more
explicit notice that under (R) one couldz2 ≤ X (cf. (11.12)), whereas
the use of Bombieri’s theorem allows us, for example, upto the bound
(11.13), so that

z2 ≤
√

X

logC X
(11.14)

which worsens the leading term in (11.8) by a factor of 2κ (in view of the
fact thatW(z) behaves likec(κ) log−κz underΩ2(κ, L)). However, if we ask
for a bound to the primes represented by an (irreducible) integer-valued
polynomial F then we can sieve the sequence{F(p)}. Then (leaving
minor details apart) the dimension of the problem would be 1 and one
has to use Bombieri’s theorem instead of (R), thereby (apparently) lose
a factor 2. Instead one can also sieve (as was necessary before the avail-
ability of Bombieri’s theorem) the sequence{nF(n)}. In that event, the
dimension becomes 2 and consequently one loses a factor 4 instead of 2.
This example provides an instance of how Bombieri’s theorempermits
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linearizing a problem (-i.e., reduce the dimension by one-)and thus save
a factor of 2 in the upper estimate.

Now returning to our problem of obtaining good upper estimates, 129

with a view to achieve lower bounds (which are far more important),
for S(A , p, z) we find that it is helpful (cf. (11.32)) to generalize the
method of Chapter 9 by the introduction of a new parameter (which is
possible because of the dual role ofz there expressed throughd|P(z) and
d < z) in the following way.

Again we start with (9.26) which holds true under the single condi-
tion (9.24),

λ1 = 1, (11.15)

and then require (9.27) with respect to some arbitrary

ξ > 1, (11.16)

instead of thez inherent inS(A , p, z), i.e.,

λd = 0 for d ≥ ξ. (11.17)

(Note that (11.17) is consistent with (11.15) because of (11.16).) Pro-
ceeding as in Chapter 9 one is now led to the choices

λd := µ(d)
∏

p|d

p
p− ω(p)

.
Gd( ξd , z)

G(ξ, z)
, (11.18)

where

Gk(x, z) :=
∑

d<x
d|P(z)

(d,k)=1

g(d), G(x, z) := G1(x, z) for 0 < x ∈ R (11.19)

are generalizations of the functions in (9.22) (and (9.21)). Also note here
that (11.18) includes both (11.15) and (11.17). Now again, as before,
one has

|λd| ≤ 1. (11.20)
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Further, with the choice (11.18), we get (9.26) with

∑

1

=
1

G(ξ, z)
(11.21)

and also, corresponding to (9.31), 130
∑

2

≤
∑

dνξ
dν |P(z)
ν=1,2

∣∣∣Rd1,d2

∣∣∣ ≤
∑

d<ξ2

d|P(z)

3ν(d)
|Rd|, (11.22)

because of (11.20), (11.17) and (9.32). Now we see thatξ has, so to
speak, taken over fromzthe role of controlling the order of magnitude of
the remainder sum (cf. the remark preceding the statement of(11.15)).

Also we would formulate (cf. again (11.32)) Theorem 9.1 general-
ized further so as include allAq’s for q′s restricted by

(Q) µ(q) , 0, (q,P(z)) = 1, (q, p) = 1. (11.23)

Here we stress thatAq’s are related toA through the approxima-
tions required by (9.15) (and (9.9)) and consequently this step is not
merely a change of notation. The condition (Q) ensures, for this step,
that the only changes required in the previous generalization of Theorem
9.1 are the replacements of

∑

1

by
ω(q)

q

∑

1

(11.24)

and of
R′ds by R′qds. (11.25)

Thus from (9.26), (11.21), (11.24), (11.22) and (11.25), inview
(11.16), the required generalization of Theorem 9.1 follows; namely,
one has

Theorem 11.5. (Ω1), (Q): For any real numberξ > 1,

S(Aq, p, z) ≤
ω(q)

q
X

G(ξ, z)
+
∑

d<ξ2

d|P(z)

3ν(d)|Rqu|. (11.26)
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Actually, for q= 1 and ξ = z, (11.26) is the second inequality of
Theorem 9.1 since

A1 = A (11.27)

and 131

G(z, z) = G(z). (11.28)

Here, by imposing the condition (Ω2(κ)) alone we cannot expect to
get very useful results. However,as a starting point for themethod of
obtaining a lower bound for our sifting function, we use (Ω2(κ)) only

to derive a simple estimate for
1

G(ξ, z)
so that it follows from Theorem

11.5.

Theorem 11.6. (Ω1), (Ω2(κ)), (Q): For

τ :=
logξ2

logz
≥ 2, (11.29)

there holds

S(Aq, p, z) ≤
ω(q)

q
XW(z){1+O(exp{−τ

2
(log

τ

2
+ 2)})} +

∑

d<ξ2

d|P(z)

3ν(d)|Rqd|.

(11.30)

Now we are in a position to point out how by means of a certain very
effective combinatorial argument (in the from of identities concerning
our functionS(Aq, p, z) and W(z)), which is really a result about ar-
rangements from mathematical logic,one can obtain some lower bounds
and also improved estimates for our sifting functions from the estimates
of Theorem 11.6.

Buchstab was the first to notice the fruitful utility of this combina-
torial result for the purposes of sieve methods. We state this result as

Lemma 11.1. (Q): If
2 ≤ z1 ≤ z, (11.31)

then we have

S(Aq, p, z) = S(Aq, p, z1) −
∑

z1≤p<z
p∈p

S(Aqp, p, p) (11.32)
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as well as

W(z) =W(z1) −
∑

z1≤p<z

ω(p)
p

W(p) (11.33)

132

Proof. Let p1, p2 . . . be all the primes belonging ofp, written in their
natural order, which are greater than or equal toz1. If z ≤ p1 we have,
by (9.15) and (9.12)

P(z) = P(z1) and ω(p) = 0 for z1 ≤ p < z. (11.34)

This gives, by (9.6) and (9.20),

S(Aq, p, z) = S(Aq, p, z1) andW(z) =W(z1), if z≤ p1. (11.35)

Thus Lemma 11.1 is trivially true in this case (z1 ≤ z≤ p1).
Now suppose thatp1 < z, so that defining the integerN by pN < z≤

pN+1 we haveN ≥ 1. Then, for each integerν = 1, . . . ,N, (9.6) yields



S(Aq, pν+1) − S(Aq, pν) =

= |{a : a ∈ Aq, a ≡ 0 modpν, (a,P(pγ)) = 1}| =
= −S(Aqpγ , p, pν),

(11.36)

and, by (9.20), we have

W(pν+1) −W(pν) = −
ω(pν)

pν
W(pν). (11.37)

Summing up the identities (11.36) and (11.37) overν = 1, . . . ,N
and observing thatS(Aq, p, z) = S(Aq, pN+1) andW(z) = W(pN+1) we
obtain (11.32) and (11.33). This completes the proof of the lemma.

To see as to how (11.32) links up the problem of obtaining a lower
bound for sifting functions to that of having good upper estimates, sup-
pose that one has a lower bound for (the larger)S(Aq, p, z1). Then up-
per bounds forS(Aqp, p, p)’s enable us to obtain a lower bound for (the
smaller)S(Aq, p, z). (We also have a similar remark the problem of ob-133

taining upper bounds by means of (11.32).) However, the significant
part of (11.32) is its iterative aspect consisting of using (11.32) to (some
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of) the S-functions with (the respective)p’s in place ofz, thereby ob-
taining more terms of both signs which in turn (after ‘many’ iterations)
would provide a more effective scheme for the above procedure. Actu-
ally , it is again this iterative process because of which (11.32) is stated
with a (general)q (rather than withq = 1).

Since, to start with, we do not have general lower bound forS(Aq,

p, z1) one can only make the choice

z1 = 2 (11.38)

so that, by (9.15),

S(Aq, p, z1) = |Aq| =
ω(q)

q
X + Rq. (11.39)

Then, on multiplying (11.33) by
ω(q)

q
X and subtracting the result

from (11.32) we are led to deal with the remaindersRqd’s only. Now, in
order not to accumulate too many terms from the upper estimate for the
sum in (11.32), we use Theorem 11.5 forS(Aqp, p, p) with ξ2 replaced
ξ2

0/p (and also withp instead ofz, which ensures (Q) for qp in place
of q). Thus we arrive at a first step lower bound corresponding to the
upper bound of Theorem 11.6, and so we state this result in theof an
asymptotic equality: �

Theorem 11.7. (Ω1), (Ω2(κ)), (Q): For

τ :=
logξ2

logz
≥ 2. (11.40)

there holds

S(Aq, p, z) =
ω(q)

q
XW(z){1+O(exp{−τ

2
(log

τ

2
+2)})}+θ

∑

d<ξ2

d|P(z)

3ν(d)|Rqd| · |θ| ≤ 1.

(11.41)

It should be mentioned here that, withq = 1 and a suitable choice
for ξ.

One easily obtains from Theorem 11.7, under the condition (R), the 134

so-called ‘Fundamental Lemma’ (cf. Kubiliyus [2], Lemma 1.4)
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Theorem 11.8. (Ω1), (Ω2(k)), (R): For

u :=
logX
logz

≥ 1. (11.42)

there hold

S(A , p, z) = XW(z){1+O(e−
1
2u logu) +O(e−

√
log X)} (11.43)

and
S(A , p, z) = XW(z){1+O(e−

1
2u}. (11.44)

Observe that the preceding results (i.e., Theorem 11.6, 11.7 and
11.8) are significant only ifu (or τ) is large (which means thatz should
be small in comparison withX (or ξ)). The reason for this limitation
is, apart from the weak condition (Ω2(κ)), mainly due to the fact that
Lemma 11.1 has been used with a ‘trivial’ choice forz1 in deriving the
lower estimate. However, using the strongerΩ2(κ, L)) instead of (Ω2(κ))
we obtain a more precise information aboutG(ξ, z). And still more im-
portant is that Theorem 11.7 enables us to employ Lemma 11.1 with a
‘non trivial’ choice forz1 (cf. (11.52)).

From this point onwards we shall confine ourselves to the caseof
dimension

κ = 1, (11.45)

and we owe some explanation for doing so. First of all, the upper esti-
mates forG(ξ, z) under (Ω(κ, L)) in the case of general dimensionκ (and
then so all forS(A , p, z) via Theorem 11.5) become quite complicated
and further, they do not further, they do not yield satisfactory results

(apart from the particular cases ofκ = 1 andκ =
1
2

), when applied for

obtaining lower bounds by means of Lemma 11.1. Also, when oneis
interested solely in finding upper estimates (in the most interesting ques-
tions) the generalized Theorem 11.5 has no advantage over (the simple)135

Theorem 9.1. Finally, we have that most of the prominent problems in
prime number theory which can be attacked by Selberg’s sievemethod
are dimension 1.

Now on imposing (Ω2(1, L)) one obtains
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Lemma 11.2. (Ω1), (Ω2(1, L)): Let

τ :=
logξ2

logz
> 0. (11.46)

Then holds

1
G(ξ, z)

=W(z){F0(τ) +O(
L

logz
(τ3 + τ−2))}, (11.47)

whereF0(τ) is defined by

F0(τ) =
2eγ

τ
for o < τ ≤ 2, (11.48)

and by the differential-difference equation

(
1

τF0(τ)
)′ = − 1

τ2F0(τ − 2)
for τ > 2. (11.49)

If we apply lemma 11.2 in Theorem 11.5 we obtain, corresponding
to Theorem 11.6, the following

Theorem 11.9. (Ω1), (Ω2(1, L)), (Q): For any real numberξ > 1 and

τ :=
logξ2

logz
(> 0), (11.50)

there holds

S(Aq, p, z) ≤
ω(q)

q
XW(z){F0(τ) +O(

L
logz

(τ3 + τ−2))} +
∑

d<ξ2

d|P(z)

3ν(d)|Rqd|,

(11.51)
where F0(τ) is defined by(11.48)and (11.49).

We can now repeat that above Buchstab-procedure (cf. description
preceding Theorem 11.7) to obtain a general non-trivial lower bound for 136

our sifting functions. To this end we choose in (11.32)

z1 = exp{ logξ
log logξ

} (11.52)
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(and also assumeξ to be sufficiently large; indeed, we can even suppose
that ξ ≥ z since the result below (Theorem 11.10) is otherwise trivial
because of (11.59)). This choice enables us to employ Theorem 11.7
for a lower estimate ofS(Aq, p, z1) and for the remaining part of the
right-hand side in (11.32) we can use now Theorem 11.9 instead, but
again with

ξ2 replaced by
ξ2

p
and z replaced byp (11.53)

for the same reasons as before. However, here we encounter anaddi-

tional difficulty due to the presence of factorsF0(
log(ξ2/p)

p
) (instead of

1 in the previous case) stemming from our use of Theorem 11.9 with
(11.53). This difficulty is overcome by deriving from (11.33) the fol-
lowing

Lemma 11.3. (Ω1), (Ω2)1, L)) : Suppose that

2 ≤ z1 ≤ z≤ ξ, (11.54)

and letψ(t) be a non-negative, monotonic and continuous function for
t ≥ 1. Further, define

M : max
z1w≤<z

ψ(
log(ξ2/w)

logw
), (11.55)

Then holds

∑

z1≤p<z

ω(p)
p

W(p)ψ(
log(ξ2/p)

log p
)

=W(z)
logz

logξp

logξ2

logz1∫

logξ2

logz

ψ(t − 1)dt +O(
LMW(z) logz

log2 z1
). (11.56)

Thus using Lemma 11.3 (instead of (11.33)) along with (11.32) one
obtain, by the above procedure, without any more difficulty the required
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Theorem 11.10.(Ω1), (Ω2(1, L)), (Q): For any real numberξ > 1 and137

τ :=
log logξ2

logz
(> 0). (11.57)

there holds

S)Aq.p, z) ≥
ω(q)

q
XW(z)

{
f0(τ) +O(

L(log log 3ξ)5

logξ
)
}
−
∑

d<ξ2

d|P(z)

3ν(d)|Rqd|,

(11.58)
where f0(u) is defined by

f0(τ) = 0 for 0 < τ ≤ ν0 = 2.06· · · , (11.59)

and by, with the function F0 of Lemma 11.2,

(τ f0(τ))′ = F0(τ − 1) for τ ≥ ν0. (11.60)

Now, before starting the iteration of the Buchstab-procedure (cf. the
remarks made subsequent to the proof to Lemma 11.1), we make the
result of Theorem 11.10 explicit (forq = 1) by imposing the following
condition (aboutRd’s):

Suppose that there are constants

0 < α 6 1, A3(> 1), A4(> 1) (11.61)

such that

(R(1, α))
∑

d< Xα

logA3 X
(d,p)=1

µ2(d)3ν(d) |Rd| 6 A4
X

log2 X
for X > 2. (11.62)

Then one gets from Theorem 11.10 in the caseq = 1, on making the
choice

ξ2 =
Xα

logA3 X
(11.63)

and noting thatd|P(z) implies thatµ(d) , 0 and (d, p̄) = 1,
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Theorem 11.11.(Ω1), (Ω2(1, L)), (R(1, α)):

S(A , p, z) > XW(z)
{

f0(α
log X
logz

) +O(
L(log log 3X)5

logX
)
}
, (11.64)

where f0(τ) is defined by(11.59)and (11.60). 138

Returning now to the remarkable iterative aspect of the Buchstab-
procedure we see that on using Theorem 11.9, with an appropriate
choice ofz1, one has an upper bound for the first term on the right- hand
side in (11.32) and also that using Theorem (11.10), with thereplace-
ments mentioned in (11.53). in combination with Lemma 11.3 (for f0
in place ofψ) there follows a lower bound for the sum in (11.32). Thus
we arrive at another form of Theorem 11.9, whereF0(τ is replaced by
some other (similar) functionF1(τ) and this in turn also yields another
form of Theorem 11.10, wheref0(τ) is replaced by anf1(τ) (related to
F1(τ)).

Continuing this procedure we are led to results of the type Theorem
11.9 and 11.10, with (at theτ th step) the following pair of functions
(instead ofF0(τ) f0(τ) respectively)

Fµ(τ), fµ(τ), µ = 0, 1, 2, · · · , (11.65)

where (analogous to the first step as indicated in (11.88))

fµ(τ) :=



f0(τ) = 0 for τ ≤ νµ,

1− 1
τ

∞∫

τ

(Fµ(t − 1) dt for τ ≥ νµ,
(11.66)

with the numberνµ defined by

1
νµ

∫ ∞

νµ

(Fµ(t − 1)− 1)dt = 1 (11.67)

(cf. the remark following (11.88)) and similarly

Fµ+1(τ) :=


F0(τ) for τ ≤ ν′µ,

1− 1
τ

∫ ∞
τ

( fµ(t − 1)− 1) dt for τ ≥ ν′µ
(11.68)
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with suitably chosen numbersν′µ for µ = 0, 1, 2, . . .139

The power of this procedure is demonstrated by the surprising fact
that, at each step, the quality of the respective forms of theTheorems
11.9 and 11.10 improves. Further, the sequence of numbers{νµ} con-
verges to 2 from above, as also does{ν′µ}, and the pair of functions
{Fµ, fµ} converges to a pair of limit functions{F, f } converges to a pair
of limit functions {F, f }, asµ→ ∞ :

lim
µ→∞

νµ = 2 = lim
µ→∞

ν′µ, lim
µ→∞

Fµ(τ),= F(τ), lim
µ→∞

fµ = f (τ). (11.69)

Now, from (11.69), (11.66), (11.48) and (11.59), we find that

F(τ) =
2eγ

τ
, f (τ) = 0 for 0< τ ≤ 2 (11.70)

and

(τF(τ))′ = f (τ − 1) and (τ f (τ))′ = F(τ − 1), for τ ≥ 2, (11.71)

which gives on integrating from 2 tou

uF(u) − 2eγ =
∫ u−1

1
f (t)dt andu f(u) =

∫ u−1

1
F(t)dt, for u ≥ 2.

(11.72)
Then we obtain from (11.72), in particular, (cf. (11.70))

F(u) =
2ǫγ

u
for 0 < u ≤ 3 (11.73)

and (so) further

f (u) =
2eγ

u
log(u− 1) for 2≤ u ≤ 4. (11.74)

Also, we have

F(u) ≥ 0, f (u) ≥ 0, F(u) ↓, f (u) ↑ (for u > 0)

and lim
u→∞

F(u) = 1 = lim
u→∞

f (u) (11.75)
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and

0 < F(u1) − F(u2) ≤ F(δ)
u2 − u1

u1
,

0 ≤ f (u2) − f (u1) ≤ 2eγ
u2 − u1

u1
, for 0 < δ ≤ u1 < u2. (11.76)

Actually, when one knows these results (aboutF, f ) there is no need140

to consider the sequence of pairs of functions{Fµ, fµ} (and so also the
numbersνµ, ν′µ). One can instead iterate (11.32) as well as Lemma 11.3
(with ψ = F andψ = f ) and apply the Buchstab-procedure (as was done,
for instance, to obtain Theorem 11.10) only once. More precisely, in the
iterated version of (11.32) among the various functionsS occurring with
different signs, one can apply Theorem 11.7 for those which are within
its domain (of applicability). For those of the remainingS′s which are
to be estimated from above one can use Theorem 11.9 while the trivial
lower estimateS ≥ 0 in used for the rest. It remains only to prove that
this process converges. However, this can be done if the dimension κ
satisfies

κ < κ0, (11.77)

whereκ0 is some constant greater than 1. Therefore we can succeed in
our case (11.45).

Now we can state the final result of the Buchstab-procedure obtained
in the manner mentioned in our previous remark.

Theorem 11.12.(Ω1), (Ω2(1, L)), (Q): For

ξ ≥ z, (11.78)

there hold

S(Aq, p, z) ≤
ω(q)

q
XW(z)

{
F(

logξ2

logz
) +O(

I ,

(logξ)1/14
)
}
+
∑

d<ξ2

d|P(z)

3ν(d)|Rqd|,

(11.79)
and

S(Aq, p, z) ≥
ω(q)

q
XW(z)

{
f (

logξ2

logz
) +O(

I ,

(logξ)1/14
)
}
+
∑

d<ξ2

d|P(z)

3ν(d)|Rqd|,

(11.80)
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where the functions F, f are defined by(11.70)and (11.71), and the
O-constants depend atmost on A1 and A2. 141

This theorem is also true if

1 < ξ < zbut ≪ ξλ (11.81)

with a positive constantλ, in which case theO-constant in (11.79) de-
pends also onλ.

Similar to Theorem 11.11 we can obtain, in the caseq = 1, with the
same choice as (11.63) the following final result from Theorem 11.12.

Theorem 11.13.(Ω1), (Ω2(1, L)), (R(1, α)): For

z≤ X, (11.82)

we have

S(A , p, z) ≤ XW(z)
{
F(α

log X
logz

) +O(
L

(log X)1/14
)
}
, (11.83)

and

S(A , p, z) ≥ XW(z)
{

f (α
log X
logz

) +O(
L

(logX)1/14
)
}
, (11.84)

where the functions F, f are defined by(11.70)and (11.71), and the
O-constants depend atmost on Ai, i = 1, 2, 3, 4, andα.

Although the functionsF, f are invariant under the Buchstab - pro-
cedure, in view of the fact that

f (u) < F(u) ∀u > 0 (11.85)

and the procedure described preceding (11.77) it is naturalto have some
doubt as to whether the qualities of our final results (viz. Theorems
11.12 and 11.13) cannot further be improved. However, it canbe shown
that, for the sets

A = Bν :=
{
n : |1 ≤ n ≤ x,Ω(n) ≡ |νmod 2

}
, ν = 1, 2 andp = p1

(11.86)
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(cf. (9.39)). the relations (11.83) and (11.84) hold with equality signs
(upto the leading term) forν = 1 andν = 2 respectively and for all 142

values ofu :
logX
logz

> 0 in both cases); (Actually, here we takeX =
x
2

,

ω(p) = 1 and slightly modifyR(1, α), with α = 1, via Theorem 11.12).
It is in this sense that the final form, as stated in Theorem 11.13, of the
(proper Selberg sieve is best possible.

NOTES

They survey of the Selberg’s sieve given in this chapter follows the
approach of Halberstam and Richert [1] and we refer to (Chapters 4,
5, 6, 7, 8, of) this book for the content of this chapter as wellas for
the applications of these results. So all the references below (unless
otherwise explicitly stated) are referred to by ‘l,c.’.

(11.5): cf. Lemma 4.1

(11.6): cf. Lemma 5.4

Theorem 11.1: cf. l.c Theorem 4.1.
Theorem 11.2: cf. l.c. Theorem 5.2 (see also under (11.12) below.)
Theorem 11.3: cf. l.c. Theorem 2.2. Actually, Theorem 11.3 holds

for z≥ XA also when the restriction in the product,p < z, is replaced by
p < X.

Theorem 11.4; cf. l.c. Theorem 5.1.
(11.12): Actually, in theO-term of (11.12) (and also of Theorem

11.2L can be replaced by min (L, logz) so that the Theorem 11.4 (and
respectively Theorem 11.2) would include Theorem 11.3 (andrespec-
tively Theorem 11.1). This is, however, not surprising because of the
fact that the condition (Ω2(κ, L)) includes (Ω2(κ)).

(11.13): For more details concerning the description here,in con-
nection with

(11.13): see l.c Chapter 5,5.
Theorem 11.5: cf. l.c. Theorem 6.1.
Theorem 11.6: cf. l.c. Theorem 6.2.143

Lemma 11.1: cf. l.c. Lemma 7.1.
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Theorem 11.7: cf. l.c Theorem 7.1.
Theorem 11.8: cf. l.c. Theorem 7.2. Also cf. l.c. Theorem 2.5for a

slightly stronger result derived from Brun’s sieve.
Lemma 11.2: cf. l.c. Lemma 6.1 and also l.c. (4.18) on p. 201.
(11.48), (11.49): For the functionF0 defined here, it can be proved

that

F0(τ) ≥ 0, F0(τ) ↓ ( for τ > 0) and lim
τ→∞

F0(τ) = 1. (11.87)

For more details aboutF0(τ), cf. l.c. Chapter 6,3 (where this func-

tion occurs as
1

σ1(τ)
).

Theorem 11.9: cf. l.c. Theorem 6.3.
Lemma 11.3: cf. l.c. Theorem 7.2.
Theorem (11.10): cf. l.c. Theorem 7.3.
(11.59), (11.60): To form an idea of the introduction of thisfunction

f0(τ) it is useful to observe that, by the procedure leading to Theorem
11.10 here, the contributions to the leading term (apart from the factor
ω(q)

q
XW(z)) are, in view of Lemma 11.3 here (withψ(t) = F0(t)) and

Theorem 11.9 here,

1− 1
τ

∫ ∞

τ

(F0(t − 1)− 1) dt =: f0(τ). (11.88)

This gives (11.60) and the choice of (11.59) made sincef0(τ) is
negative ifτ ≤ ν0 (by (11.88)), whereν0 is defined by

1
ν0

∫ ∞

ν0

(F0(t − 1)− 1)dt = 1, (11.89)

while one has always, on the other hand, the trivialS(Aq, p, z) ≥ 0, Now
(11.89) yields

ν0 = 2.06.

Further, one can show, corresponding to (11.87) above 144

f0(τ) ≥ 0, f0(τ) ↑ ( for τ > 0) and lim
τ→∞

f0(τ) = 1. (11.90)
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(11.62): Clearly, this condition has been modelled such that Bombi-
eri-type theorems are directly applicable.

Theorem 11.11. cf. l.c. Theorem 7.4.
(11.70),...(11.76): Jurkat and Richert [1] (cf. l.c. (Chapter 8,2)).
Theorem 11.12: cf. l.c. Theorem 8.3.
Theorem 11.13: Jurkat and Richert [1], Halberstam, Jurkat and

Richert [1] (cf. l.c. (Theorem 8.4)). Selberg [5] has pointed out that
(according to an unpublished paper of J.B. Rosser) this result can also
be derived from Brun’s sieve. This has been proved, even witha bet-

ter error term (namely, with
1
14

replaced by 1) by Iwaniec [1]. Iwaniec

[1] has also applied this improved version of Theorem 11.13 to sharpen
the bounds for the Legendre-Jacobsthal functionC0(r), the maximum
length a block of consecutive integers each of which is divisible by at
least one of the firstr primes. His result is

C0(r) ≪ r2 log2 r,

whereas (our) Theorem 11.13 leads only to the estimate

C0(r) ≪ r2 exp
{
(log r)13/14}.

In the opposite direction we have, by Rankin [1].

C0(r) > eγ−ǫ
r log2 r log log logr

(log logr)2

(cf. l.c. (p. 239)). (For the caseκ =
1
2

see Iwaniec [2], [6], and

for κ <
1
2

see Iwaniec [7]. However, forκ exceeding some constant

κ1(> 1) Selberg’s sieve seems to be always superior than Brun’s sieve
(for instance, in sifting values of reducible polynomials).

(11.86): This fact (about (11.86) was established by Selberg [3] (for145

0 < u ≤ 2), and he added the remark that the sieve method “cannot
distinguish between numbers with an odd or an even number of prime
factors”.



Chapter 12

Weighted Sieves

AS ALREADY mentioned in the previous chapter our object is touse 146

the ‘final’ results there for the proofs of the results of nextchapter.
For this purpose we need further improve to the quality of these re-
sults,inspite of the concluding remarks of Chapter 11, and this is achie-
ved by considering a weighted sieve, which actually consists of a combi-
nation of various sifting functions (so that the counter-examples (11.86)
collapse).

Before commencing the introduction of weighted sieves for the pur-
pose mentioned above, we briefly point out as to how the final result of
Chapter 11, in particular (11.84), already yields a result in the direction
of Theorem 13.2. For this, let us consider

A :=
{
p+ 2 : p ≤ x

}
, p := p2 (12.1)

(cf. (9.39)). Here we can take

X = li x, ω(p) =
p

p− 1
for p ∈ p(i.e., for p ≥ 2) (12.2)

and then the conditions (Ω1), (Ω2(1, L)) are verified easily for some fixed
constants A1, A2 and L(≥ 1). Further, Bombieri’s theorem (Lemma
10.2) enables us to fulfill (R(1, α)) with

α =
1
2

(12.3)

153
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(for some suitably chosen absolute constantsA3 andA4). Also we find,
by (10.8),



W(z) =
∏

2<p<z
(1− 1

p−1) = 2
∏
p<z

(1− 1
p)Π2<p<z(

p(p−2)
(p−1)2) ) =

= 2e−γ
∏
p>2

(1− 1
(p−1)2 ) 1

logz(1+O( 1
logz)).

(12.4)
Therefore, taking147

z= x
1
u , u > 4;u = 4.2 (12.5)

say, we obtain from (11.84) and (11.74) that, for some positive constant
c0,

S(A , p, z) ≥ cO
x

log2 x
for x ≥ xO. (12.6)

Now, note that the numbers counted on the left-hand side herehave
no prime divisor< zand so for each of these numbers we have

x+ 2 ≥ p+ 2 = p1 · · · pr ≥ xr/u (12.7)

which shows tht necessarilyr ≤ u or by (12.5) thatr ≤ 4. Thus, letting
x→∞, we have that for infinitely many primesp holds

p+ 2 = P4 (12.8)

At this point it is worthwhile to notice that Theorem 11.11 (instead
of (11.84)) would have also led to (12.6), though with a smaller value
for c0, and so also to (12.8). We can express this remark by saying
that (12.8) follows from Selberg’s upper bound sieve combined with
the (one-step) Buchstab-procedure on using Bombieri’s Prime number
theorem (cf. also the remark involving (13.21), with respect to Theorem
12.2 below).

Now we turn to the weighted sieves. The first weighted sieve, suit-
able for our purpose also, was introduced by Kuhn (in connection with
Brun’s sieve). Since then there have been other more sophisticated
sieves invented. However, we shall need only a special form of the
simplest of these, namely Kuhn’s sieve (cf. Theorem 12.1).
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Theorem 12.1. (R(1, α)) : Let h be an even integer (determined with
respect to x) satisfying

0 < |h| ≤ x (12.9)

and suppose that (associated with a sequenceA ) we have 148

X = li x, ω(p) =
p

p− 1
for p ∈ ph. (12.10)

Let u and v be two real numbers (independent of x) such that

1
α
< u < v. (12.11)

Define

W(A ; ph, v, u, λ) :=
∑

a∈A
(a,P(x1/V))=1

{1− 1
λ

∑

x
1
v ≤p<x

1
u

p|a
p∈ph

1, (12.12)

2 ≤ λ ∈ R. (12.13)

Then

W(A : ph, v, u, λ) ≥ e−γC(h)
x

log2 x
v

{
f (αv) − 1

λ

∫ v

u
)F(v(α − 1

t
))

dt
t
+O(

1

(log x)1/15
)
}

(12.14)

whereC is defined by (9.42) and theO-constant depends atmost on
u, v,A3,A4 andα.

Proof. We may assume that

x ≥ X0(u, v,A3,A4, α). (12.15)

Let us set
z := x

1
v , y := x1/u. (12.16)

Then, by (12.12),

W(A : ph, v, u, λ) = S(A , ph, z)
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−1
λ

∑

z≤p<y
p∈ph

S(Ap, ph, z) = S(A , ph, z) −
1
λ

∑

1

, (12.17)

say. Since 2|h, by (12.10), the condition (Ω1) is satisfied with anabso-
luteconstantA1. Also (Ω2(1, L)) is fulfilled with someabsoluteconstant149

A2 and, by (12.9) with

L ≤ O(1)+
∑

p|h

log p
p− 1

≪ log 3|h| ≪ log logx. (12.18)

Hence we get, by (11.84) (sincev > 1 by (12.11)),

S(A , ph,Z) ≥ XW(z){ f (αv(
log li x
log x

)) +O(
1

(log x)1/15
)}. (12.19)

We apply Theorem 11.12 for the estimation of
∑

1, and for this we
define (in terms of the constants from (R(1, α)))

ξ2 =
xα

logA3+α X
. (12.20)

Note that for eachp in the range of
∑

1 we have

ξ2

p
≥ xα−

1
u

logA3+α X
(12.21)

Therefore applying (11.79), for each term in
∑

1, with ξ2/p in place
of ξ2, p = ph (andq = p so that (Q) is satisfied because ofp ≥ z and
p ∈ ph) we obtain
∑

1

≤
∑

z≤p<Y

ω(P)
P

XW(z)

{
F(

log(ξ2/p)
logz

) +O(
1

log1/15
)

}
+
∑

d<ξ2

(d,p)=1

µ2(d)3γ(d)|Rd|.

(12.22)
in view of (12.21), (12.11), (11.81) and (12.18). Estimating the last sum
in (12.22) by means of (R(1, α)) (cf. (11.62)), (12.20) and (12.10) one
gets

∑

1

≤ XW(z)



∑

z≤p<Y

1
p

F(
log(ξ2/p)

logz
) +O(

1

(log x)1/15
)


+O(

x

log3 x
).

(12.23)
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after some simple considerations involving (12.10), (11.73), (11.75),
(11.75), (12.16) and (10.22).

Now, from (12.10), (10.8) and (12.16), it follows that (cf, (12.4))

W(z) =
∏

2<p<z
pχh

(1− 1
p− 1

) =
e−γ

logz
S(h) +O(

log logx

log2 x
) (12.24)

whereS is defined by (9.42) and (so) satisfies, (cf. (12.9)), 150

S(h) = O(log log 3|h|) = O(log logx). (12.25)

Using (12.24) in both (12.19) and (12.23) we are led to (by (12.17)
and (12.13))

W(A : ph, v, u, λ) ≥ x

log2 x
e−γC(h)v


f (αv) − 1

λ

∑

Z≤p<Y

1
p

F(
log(xα/P)

log x
v) +O(

1

(log x)
1
15

)


(12.26)

by means of (11.76) and (12.20). It remains only to deal with the sum
in (12.26) and for this we proceed as in (10.24) obtaining thereby

∑

z≤p<y

1
p

F(v(
log(xα

p )

log x
) =

y∫

z

F(v
log(xα

w )

log x
)

dw
w logw

+O(
1

logz
)

=

∫ v

u
F(v(α − 1

t
))

dt
t
+O(

1
log x

). (12.27)

Using this in (12.26) yields (12.14) and so the proof is completed.
�

Regarding the terms containing the functionf andF it turns out that
for a suitable range ofv one can have instead an expression involving
only elementary functions (cf. (11.73)) and (11.74)). Moreprecisely,
we have
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Lemma 12.1. Let

1
α
< u < v,

2
α
≤ v ≤ 4

α
( for 0 < α ≤ 1). (12.28)

Then (for2 ≤ λ ∈ R)

f (αv) − 1
λ

∫ v

u
F(v(α − 1

t
))

dt
t
=

2e−γ

αv

log(αv− 1)− 1
λ

log
v− 1

α

u− 1
α

 .

(12.29)

Proof. Note that the arguments of the functionsf andF in (12.29) sat-
isfy, by (12.28),

2 ≤ αv ≤ 4 and 0< v(α − 1
u

) ≤ v(α − 1
v

) = αv− 1 ≤ 3. (12.30)

Hence, by (11.73) and (11.74) one has that the left-hand sideof
(12.29) equals

2eγ

αv


log(αv− 1)− 1

λ

v∫

u

dt

(t − 1
α
)


. (12.31)

151

This proves (12.29). �

For our use in the next chapter it suffices to have the specialization
of Theorem 12.1 to the sequences

A := {|p+ h| : p ≤ x}, 2|h, 0 < |h| ≤ x, (12.32)

whereh is determined with respect to sufficiently largex, and withu
andv restricted by (12.28). Here note that forA one has (12.10) and
Rd = O(E(x, d)) so that lemma 10.2 (withk = 1) fulfills (R(1, α)) for

α =
1
2

(12.33)

Hence we have, by Theorem 12.1 and Lemma 12.1 the required
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Theorem 12.2. Let h denote an even integer (determined with respect
to x) satisfying

0 < |h| ≤ x. (12.34)

Let u andv be two real numbers (independent ofx) subject to

2 < u < v, 4 ≤ v ≤ 8 (12.35)

and let
2 ≤ λ ∈ R. (12.36)

Then we have

∑

p≤x
(p+h,

∏
p′)=1

p′<x1/v

p′∤h

{
1− 1

λ

∑

x1/v≤p<x1/u

p′|p+h
p′∤h

}
≥ 4x

log2 x
S (h)

log(
v
2
− 1)− 1

λ
log

v− 2
u− 2

+ 0(
1

(log x)
1
15

)

 . (12.37)

whereS is defined by (9.42) and theO-constant depends atmost onu
andv.

NOTES 152

(12.3): Here and in the sequel one recognizes the effect of Bombi-
eri’s theorem (and possible improvements, for instance, like the Elliott
and Halberstam [2] conjecture mentioned in the notes of Chapter 6,3)
when used along with Selberg’s sieve.

Among the various weighted sieves introduced successfully(for ap-
plications) we mention first Kuhn [1], [2], [3]. Here the basic idea
consists in forming theW-function ((12.12)). Next we have Selberg’s
weights of the form

∑

a∈A

{
1− 1

λ
D(a)
}
(
∑

d|a
λd)2 (12.38)
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(with λd’s given by (9.28)). By takingA = {n(n+ 2) : n ≤ x, 2 ∤ n} and
D(a) = d(n) + d(n+ 2) here, Selberg [2] (cf. Selberg [4], [5]) succeeded
in proving that

n(n+ 2) = P5 (12.39)

holds for infinitely many integersn. This method, in the case where
D(a) has (apart from a term to take care of the ‘small’ prime divisors of
a) the form of the inner sum in Kuhn’sW (cf. (12.12)) has been pub-
lished by Miech [1], [2], and Porter [1], Next, Ankeny and Onishi [1]

have replaced Kuhn’s constant weight
1
λ

, attached to the inner sum in

(12.12), by a logarithmic weight which is more effective and also has a
smoothing effect on the prime divisors in that sum and this weight has
been generalized by Richert [1]. Both the Kuhn weight and thelogarith-
mic weight can also be used simultaneously in (12.38) (cf. Halberstam
and Richert [1] (Theorem 10.8)). In the first case, a generalization and
refinement of Selberg’s second method (mentioned above in connection
with (12.39)) can be found in Bombieri [6] (§ 8). Bombieri [6] (§ 9)
(cf. [8]) has used this method, which is both elegant and comparatively
simple (through some what weaker than the other methods described
above), for the problemp+2 = P4. (For a more general result which can153

be obtained by this method, are Halberstam and Richart [1] (Theorem
10.9).) Buchstab [2] has generalised Kuhn’s idea of constant weights
by splitting up the inner sum in (12.12) into many parts and attaching
different constant weights to each part. This method is highly effective
but is, on the other hand, very complicated. Roughly speaking, it may
be described as splitting the inner sum into two parts and forone portion
attaching constant weights which approximate to the logarithmic weight
(thereby achieving a smoothing) while in the other portion the attached
weights approximate to a smoothing in the opposite direction.

Chen’s ingenious idea, for which we refer to Chapter 13, leading to
an improvement in respect of some very prominent problems inaddi-
tive prime number theory does not need any of the more sophisticated
weighted sieves described above, but just the very special Kuhn’s sieve
(in the form stated in Theorem 12.2).

However, contrary to the other sieves methods mentioned above, this
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method cannot be applied to a great variety of sieves problems. It can
be directly applied to the problems of the type

N = p+ P2.p+ h = P2, ap+ b = P2 (12.40)

(cf. Theorem 13.1, 13.2; the last one (cf. Theorem 10.2) according
to Halberstam (oral communication)). The problem of attacking other
related problems by this method has not yet been tackled (cf.Notes of
Chapter 13), and in this context the logarithmic weight procedure still
gives the best results known to date. In case of dimensionκ = 1 we
mention (Richert [1]):

Let F(n) be an irreducible polynomial of degreeg(≥ 1) with integer
coefficients. Letρ(p) denote the number of solutions of the congruence

F(m) ≡ 0 modp. (12.41)

and suppose that 154

ρ(p) < p for all p. (12.42)

Then, we have

|{n : 1 ≤ n ≤ x, F(n) = Pg+1}| ≥
2
3

∏

p

(1− ζ(p)
p )

(1− 1
P)

x
log x

for x ≥ x◦(F)

(12.43)
and if further

ρ(p) < p− 1 for p ∤ F(0) andp ≤ g+ 1, (12.44)

then (excluding the caseF(n) = ±n) we also have

|{p : p ≤ x, F(p) = P2g+1}| ≥
4
3

∏

p∤F(0)

(1− ρ(p)
p−1)

(1− 1
p)

∏

p|F(0)

(1− ρ(p)−1)
p−1

(1− 1
p)

x

log2 x
for x ≥ x0(F). (12.45)
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Hence, in particular (if lim
x→∞

x0(F)
x
= 0), there are infinitely many

natural numbersn such that

F(n) = Pg+1. (12.46)

and also infinitely many primesp such that

F(p) = P2g+1. (12.47)

(Note that for (12.47) there is no need to exclude the caseF(n) = ±n as
was done for (12.45).)

The corresponding problems for polynomials in two variables
F(m, n) canceled more successfully. In this connection we refer, for
instance, to the papers of Greaves [1], [2], Iwaniec [2], [3], [5], [6], and
Huxley and Iwaniec [1].

Regarding the question of almost primes in arithmetic progressions,
i.e.,

Pr ≡ l modk, (l, k) = 1, (12.48)

155

Motohashi has proved, by averaging the logarithmic weightsof Ric-
hert [1], that there is a

P2 ≤ k1.1, (12.49)

and that there is a
P3 ≤ k log70 k (12.50)

for almost allk and also the corresponding results valid for almost all
ℓmodk(k → ∞) (Motohashi [12], [13], [15]). Without any exceptions
we have only the existence of

P2 ≪ k2.2. (12.51)

P3 ≪ k11/7 (12.52)

and

Pr ≪ k
1+ 1

r− 9
7 for r > 2. (12.53)

in (12.48). (Actually, here the exponents can be replaced byslightly
smaller ones.) (Richert [1]. cf. Halberstam and Richert [1](Theorem
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9.6)). These results be compared with the corresponding ones for primes
(cf. the remark following (6.55)).

For more details and various other applications of weightedsieves
we refer to Halberstam and Richert [1] (Chapter 9 and 10).

As to the literature pertaining to the small sieves in general we refer
to the extensive list of references given in Halberstam and Richert [1].
We take this opportunity to add the following list of papers,which are
neither included there nor are mentioned in these lectures so far:

Bombieri [7], Buchstab [3], Elliott [3], Hall [1], Hooley [3], [10]. 156

Meijer [1], [2], Ramachandra [5], Scourfield [1], Wolke [4],[8].
Lastly, we take up now again (cf. Notes of Chapters 7, 8 and 9) the

question of comparison of the large sieves and the small sieves. The
importance of the large sieves for applications in analyticnumber the-
ory should be clear from the exposition in the Chapters 2 through 6,
and it can hardly be overestimated. Also in arithmetical questions the
large sieves turns out to be powerful when applied, in an auxiliary ca-
pacity, along with ‘small’ sieves, not only via the Bombieri-type re-
sults of Chapter 6,3 (cf. our condition (R(1, α)), (11.62)), and under
(12.3) in these notes above) but also in a wider sense as is reflected in
the proof of Chen’s theorem (cf. Theorem 10.3 and the beginning of
notes for Chapter 13). It is only in its arithmetical version(cf.Chapter
7) that the large sieve, even in its most powerful form (namely, the
weighted Montgomery-Vaughan sieve) suffers from some deficiencies
when compared with Selberg’s sieve (in particular, when compared with
the weighted form of the latter). Without repeating our remarks, made
in the Notes of Chapter 7, 8 and 9, we mention only the following facts:
The large sieve (for example, Theorem 7.1) can be used (as it is) to
obtain only upper bounds, while Buchstab’s method (cf. Lemma 11.1)
provides (at least in principle)a corresponding lower bound, however,

for
logN
logz

> 2. Theorem 11.13 (forX = N) gives a better estimate than

does Theorem 7.1. Therefore, a suitably iterated form of (7.9) should
be investigated. With respect to the functionω(p) the large sieve has the
decisive advantage over the Selberg’s sieve in that Theorem7.1 imposes
no restriction on the order of magnitude ofω(p), so in particularω(p)
need not be bounded on the ‘average’ as required by our condition (Ω2) 157
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of the small sieve. However, the large sieve cannot deal withthe very

important caseω(p) =
p

p− 1
, for example with the problem

F(p) = Pr . (12.54)

Here, the defect steams from the fact that the large sieves basically
requires thatn has to run through a sequence ofconsecutiveintegers.
Thus the large sieve, while applicable to the problem

F(n) = Pr . (12.55)

(leading to a trivial estimate when applied directly to sieve the sequence
{F(p)} requires that one has to sieve the sequence{nF(n)} for the prob-
lem (12.54), but then (cf. our remarks following (11.14)) the constant in
the upper estimate is worsened by a factor 2.



Chapter 13

On Goldbach’s Conjecture
and Prime-Twins

NOW WE have prepared the ground for providing the main results of 158

(the second part of) these lectures. These results represent the best ap-
proximation (in case sense) to the two most prominent problems in the
additive theory of prime numbers (namely, those mentioned in the title
of this chapter). The first proof of these results is due to Chen [1] (for
simplifications see Ross [1]. cf. Malberstan and Richert [1](Chapter
11)). Here we shall give a proof with further simplifications, in respect
of (numerical) calculations and more specifically, involving only ele-
mentary functions. Actually this is accomplished at the expense of the
quality of the constants (c◦) occurring in these results, which do not
however affect the qualitative statement of these results. For the proof
we use the special form (as given in Theorem 12.2) of Kuhn’s sieve and,
instead of the earlier practices of translating this theorem into the lan-
guage of additive number theory, follow the idea of Chen by subtracting
an additional term. Then, as one would expect, reformulate the problem
for an application of Theorem 10.3, thereby completing the proof.

165
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We start with (cf. (12.37), (10.16))

G(N) :=
∑

p<N−1
(N−p,

∏
p′<N1/8

p′)=1

µ(N−p),0

{
1− 1

2

∑

N1/8≤p′<N1/3

p′ |N−p

−1
2

∑

p1p2p3≤N
N1/8≤p1<N1/3≤p2p3

N−p=p1p2p3

. (13.1)

As we shall see later,G(N) > 0 implies (in the direction of Gold-
bach’s conjecture) that

N = p+ P2 (13.2)

is soluble. One can even obtain a lower bound forG(N) (whenN is even159

and large) in terms ofN, by means of Theorems 12.2 and 10.3. Indeed,
with suitable choices for the parameters in these theorems,namely

X = N, 2|N ∈ N, v = 8 (13.3)

in both of them and further

h = −N, u = 3, λ = 2, (13.4)

in Theorem 12.2, while in Theorem 10.3

h = N, (13.5)

one obtains an estimate for an expression similar toG(N). Actually,
then one would have


∑
p≤N

(N−p,
∏

p′<N1/8

p′∤N
N

p′)=1

{
1− 1

2

∑
N1/8≤p′<N1/3

p′|N−p
p′∤N

1− 1
2

∑
p1p2p3≤N

N1/8≤p1<N1/3≤p2<p3
N−p=p1p2p3

≥

≥ 4S(N) N
log2 N

{log 3− 1
2 log 6− 1

2c(8)+ 0(logN)−
1
15}.

(13.6)
Now a comparison of the left-hand side here withG(N) shows that

we need the estimate

1+
∑

p′ |N
1+

∑

N1/8≤p′≤N
1
2

∑

p≤N
N−p=0 modp′2

1≪ log N +
∑

N1/8≤p

N

p′2
≪ N7/8.

(13.7)
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which provides a bound for the (difference in) contributions to these
expressions arising from (the possiblep = N − 1,) the numbersN − p
satisfying either of the conditions

(N − p,N) > 1 and µ(N − p) = 0 (13.8)

Hence we haveG(N) also the same lower estimate given by the160

right-hand side of (13.6). Since, by (10.79) withv = 8,

4
{

log 3− 1
2

log 6− 1
2

c(8)
}
= 2 log

3
2
− 2c(8) ≥ 2 log

3
2
− 3

2
log

64
39

(>
1
2

log
37

2.103
=; c0) > 0, (13.9)

we see that one has (for instance) the lower bound

G(N) ≥ c0S(N)
N

log2 N
for N ≥ N0, (13.10)

whereN0 is some absolute constant.
Next, we elaborate on the remark above pertaining to (13.12). To

being with observe thatG(N) does not exceed the part, (G∗(N) say,of
its defining sum comprising only of all thepositive (i,e., > 0) terms.
And also note that any term of (13.1) with its second inner sumat least
1 makes the first sum, accompanying it,≥ 1 so that such a term is≤
0. Thus we see that the terms occurring inG∗(N) have their second
inner sum empty and the first one is atmost 1. In otherwords, one (since
µ(N − p) , 0)



G(N) ≤ G∗(N) ≤ 1
2 |{p ≤ N : N − p = p′,

N
1
8 ≤ p′ < N

1
3 } ∪ {p ≤ N : N − p = p′p2,

N1/8 ≤ p′ < N
1
3 ≤ p2} + |{p ≤ N : N − p = p1,

p1 ≥ N
1
3 } ∪ {p ≤ N : N − p = p1p2,N

1
3 ≤ p1 < p2}|

(13.11)

and also
G(N) ≤ |{p ≤ N : N − p = P2}|. (13.12)

From (13.10), (13.12) we obtain the desired
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Theorem 13.1.There is an absolute constant N0 such that for all even
numbers N≥ N0, we have

|{p ≤ N : N − p = P2} ≤ c0C(N)
N

log2 N
, (c0 > 0), (13.13)

where c0 may be taken constant defined in(13.9); in particular, there is
always a solution of the equation161

N = p+ P2 if 2|N and N≥ N0.

The proof of the corresponding result regarding the generalized
prime-twins proceeds analogously. Now we choose again (cf.(13.3))

x, 2|h, 0 < |h| ≤ x
1
3 , v = 8 (13.14)

in both the Theorems 12.2, 10.3 and further

u = 3, v = 8, λ = 2 (13.15)

in Theorem 12.2. Also we note that the sum
∑
p≤x

on the left-hand side

of (12.37) can be replaced by
∑

p+h≤x
(cf. (13.14)) apart from a negligible

error of the orderO(x
1
3 ). Lastly, by (13.14), we observe that thep’s

counted in (10.16) satisfy (irrespective of the sign ofh) p + h ≤ x and
alsop+ h = p1p2p3.

Now, by the choices (13.14), (13.15) for the parameters, it follows
from Theorems 12.2 and 10.3 (corresponding to (13.6))



∑
p+h≤x

(p+h,
∏

p′<x1/8

p′∤h

p′)
=1

{
1− 1

2

∑
x1/8≤p′<x1/3

p′ |p+h
p′∤h

1− 1
2

∑
p1p2p3≤x

x1/8≤p1<x1/3≤p2<p3
p+h=p1p2p3

1
}

≥ 4S(h) x
log2 x

{
1
2 log 3

2 −
1
2c(8)+O((log x)−

1
15

}
.

(13.16)

From here, on using the argument of (13.7) and (13.9), one obtains
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(for the analogue ofG(N) the lower bound


Th(x) =
∑

p+h≤x
(p+h,

∏

p′<x1/8

µ(p+h),0

p′)
=1

{
1− 1

2

∑
x1/8≤p′<x1/3

p′ |p+h

1− 1
2

∑
p1p2p3≤x

x1/8≤p1<x1/3≤p2<p3
p+h=p1p2p3

1
}

≥ c0S(h) x
log2 x

for x ≥ x0.

(13.17)
Again the reasoning leading to (13.11), and so also to (13.12), is 162

applicable withp+ h in place ofN − p. Thus one arrives at the final

Theorem 13.2.There is an absolute constant x0 such that for any even
number h (determined with respect to x) satisfying

0 < |h| ≤ x
1
3 , (13.18)

we have

|{p+ h ≤ x : p+ h = P2}|c0S(h)
x

log2 x
forx ≥ x0, (c0 > 0). (13.19)

where c0 (again) may be taken as the constant defined in(13.9); is par-
ticular, for any non-zero even number h, there are infinitelymany primes
p such that

p+ h = p2. (13.20)

NOTES

Chen’s theorem affords a beautiful instance of the effective use of
various powerful tools of numbers theorey. As an inspectionof its proof
(and those of Theorems 12.2 and 10.3) discloses we have employed
Kuhn’s sieve, Selberg’s sieve (several times), Bombieri’sprime number
theorem, Siegel-Walfisz theorem, contour integration, thehybrid form
of the large sieve and Chen’s new idea described below.

Chen’s idea, which has already been briefly indicated at the begin-
ning of this Chapter, can be described as follows. (We shall confine our-
selves, for this purpose, to Theorem 13.1) One first sifts thesequence
N − p so that the remaining numbers satisfy.

N − p = P3 (13.21)
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(and then the numbers of these remaining ones is estimated from below.
cf. Theorem 12.2). Now to remove from the rest those which areof the
form p1p2p3, one subtracts (from the preceding lower bound) another163

sieve estimate (from above) for the numbers of solutions of

N − p1p2p3 = p (13.22)

(cf. Theorem 10.3). If, as has been shown to be the case for theproblems
under consideration, the lower bound exceeds the upper estimate (for
(13.22)), it follows then that (since the surviving membersof {N − p}
are all nowP′2s) there must be solutions of the equation

N = p+ P2. (13.23)

This procedure of inverting the equation (13.21) to (13.22)has
turned out to be much more fruitful than any further known improve-
ment of the sieve method one has started with. Other successful appli-
cations of this last step have been given by Indlekofer [2], Huxley and
Iwaniec [1].

In this context we recall the remarks preceding (12.40). To briefly
expand on that statement, we mention that to attempt an improvement
upon (12.46) (or (12.47)) by Chen’s method one would require(cf.
(13.21) and (13.22)), limiting ourselves now to the simplest case, for

n2 + 1 = P2 (13.24)

a satisfactory upper bound for the number of solutions of

p1p2p3 − 1 = n2 (13.25)

with pi ’s restricted by some conditions (like those in Theorem 10.3).
Surprisingly we do not any method of obtaining a satisfactory estimate
for the number of square in a sequence under appropriate conditions,
and specifically not even in this case. An explanation would clearly be
that the sequence of squares, even though more regularly distributed,164

is much thinner than the sequence of primes. This also indicated that
the corresponding problem with respect to (12.46) (or (12.47) is much
complicated.
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Theorems 13.1 and 13.2: It is possible to state Theorem 13.1 in
more precise form with respect to the prime factors ofP2, as can be seen
from a combination of (13.10) and (13.11). A similar remarksapplies
to Theorem 13.2 also.

Regarding the constantc0 (cf. (13.13), (13.19)) in these theorems
we note that our value of

c0 ≥ 0.0446 (13.26)

(cf. (13.9)) is rather small. One of the reasons for this is the choice
v = 8, which was made to enable us to deal (cf. (11.73), (11.74)) with
elementary functions only (and also to simplify numerical calculations),
as has been mentioned in the introductions to this chapter, aconvenience
not available under the better choice (of all earlier proofs) of v = 10. Of
course, we can replace (13.26) by (cf. (13.9))

c0 ≥ 2 log
3
2
− 3

2
log

64
39
≥ 0.0679, (13.27)

but a better constant can be obtained by takingv = 10. With this later
choice, Chen [1] obtained

c0 ≥ 0.3354 (13.28)

and any numerical integration one can even get

c0 ≥ 0.3445 (13.29)

(see Halberstam and Richert [1] (p. 338)). It returns out that v = 11 is
close to the optimal choice, by considering the non-elementary functions
F, f in a wider range, and then one is led to

c0 ≥ 0.3716. (13.30)

165

In all these casesu is kept fixed to be 3, a value convenient in the
arithmetical interpretation of the estimates of the weighted sieve. The
constantc0 can further be slightly improved by takingu > 3 but then
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Chen’s procedure becomes more complicated. As to the constant c0

under consideration it is worthwhile to compare it with 1, inview of the
conjecture of Hardy and Littlewood mentioned (under Theorem 10.1)
in the Notes for Chapter 10. This suggests that our present constantc0

should be capable of much further improvement. In this context, we add
that one has theorems (corresponding to Theorems 13.1 and 13.2) with
P2’s in (13.13) and (13.19) replaced byP3 for a better (corresponding)
constant

c0 ≥
13
6

(13.31)

(cf. Helberstam and Richert [1] (Theorem 9.2)). Comparing the meth-
ods of proof it is considered to be likely that the constantc0 in Chen’s
theorem can be further improved by using the logarithmic weights in-
stead of Kuhn’s weights.

Continuing on with related questions we mention now a few results
concerning Goldbach numbers (namely, those even numbersN which
can be written as sums of two primes)

N = p+ p′ (2|N). (13.32)

Ramachandra [4] has derived from an estimate of (6.11)-type, actu-
ally from (the uniform)

∑

χ

N(σ,T, χ) ≪ (q2T)g(1−σ) log14(qT) for
1
2
≤ σ ≤ 1, (13.33)

that the numbers of Goldbach numbers in the interval

x ≤ N ≤ x+ xλ (13.34)

has the asymptotic formula166

1
2

xλ +Oλ,A(xλ log−A x) as x→ ∞, if (1 ≥)λ > 1− 1
g
, (13.35)

and has also deduced from (13.35), by combining with a resultof Mont-
gomery [3], that (forx ≥ x0) there is always a primep in the interval
(13.34) such that bothp+ 1 andp− 1 are Goldbach numbers.
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Many results have been proved (in various forms) in order to show
that ‘almost all’ (with respect to the error-term corresponding to that of
(13.15) even numbers are Goldbach numbers. The best result known
here, upto this time, is due to Montgomery an Vaughan [3] and states
that the number of even integersN ≤ x, which are not Goldbach num-
bers is

≪ x1−δ, for someδ > 0. (13.36)

(For a previous result, see Vaughan [2].)
Further, turning to problems allied to Theorem 13.2, we have(cf.

(12.40)) the observation of Vaughan [3] which yields, when combined
with Chen’s method the following result: Either the equation

2p+ 1 = p′ (13.37)

has infinitely many solutions or

2p+ 1 = p1p2 (13.38)

has infinitely many solutions, in which extend event one , in particular,
infinitely many solutions of the equation

d(n+ 1) = d(n). (13.39)

This statement concerning (13.39) is a conjecture of Erdösand
Mirsky [1] (cf. Helberstam and Richert [1] (p. 338)). 167

Lastly we mention an application, due to Jutila [1], to a question al-
lied to Theorem 13.2. He deduced from his result (6.26), by combining
it with a theorem of Levin [2] (reference to Richert [1] wouldpermit
to replace ‘8’ by ‘7’ in the following statement), thatfor every integer
r ≥ 8 there exists a numbersθ(r) satisfying (withc an in (6.28))

(c∗ :=
1+ 4c
2+ 4c

≤) θ(r) < 1 (13.40)

(andθ(r) decreasing toC∗ for increasingr), such that

x < p < x+ xθ(r), p+ 2 = Pr , for all x ≥ x0, (13.41)
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is soluble. Also he started that a similar result can be derived for (an
almost-) Goldbach problems, which may be interpreted as that the equa-
tion

N = p+ Pr ,N ≥ N0, 2|N, r ≥ 8, (13.42)

has a solution in two ‘almost equal’ (-in a sense which is stronger for
largerr-) numbersp, Pr .
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Mat. Eys. 74 (1949), 167-175 (1950). MR12, p. 590.

6. Probability methods in number theory. Publ. Math. Collectae
Budapest1 (1949), no. 21, 9 pp. MR12, p. 161.

7. On the large sieve of Yu. V. Linnik.Compositio Math. 8
(1951), 68-75. MR11 (1950). p. 581.
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1. Über einige Analoga zum Bombierischen Primazahlsatz.
Math. Z. 122(1971), 327-341.



198 BIBLIOGRAPHY

[86] SOKOLOVSKIJ, A.V. 185

1. On the large sieve. (Russian)Acta Arith. 25(1974), 301-306.

[87] STEPANOV, B.V.

1. On the mean value of thekth power of the number of classes
for an imaginary quadratic field. (Russain)Dokl. Akad. Nauk
SSSR124(1959). 984-986. MR21, 4948.

[88] TURÁN, P.
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