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Preface

THESE LECTURES were given during a seven-week course atatee T
Institute of Fundamental Research. The aim was to providmtao:
duction to modern sieve methods, i.e. to various forms df to¢ large
sieve (part 1) and the small sieve (part I1), as well as thatericonnec-
tions and applications. Being a were of the fact that sucheh ¢gnnot
be reached in such a short time. | have tried to compromisedagt an
introduction and a survey. Thefficult task of deciding what to omit
| have tried to overcome in most cases by presenting the eghpb-
proach in details and a sketch of the more sophisticatedtsagtheir
proof would have required too much time. Nevertheless | liladed
to include a chapter an the history of the large sieve upto [Beri's
first paper, because | believe that a student coming to a namcbrof
mathematics can learn much more from the historical devedoy in
that then is generally expected. The final chapter contaimoaf of
Chen’s Theorem, because | consider it the most beautifuhple of
the interaction between various sieve methods and otheerfoltools
of analytic number theory.

| am indebted to my colleagues at the Tata Institute for theirer-
ous hospitality, particularly to K.G. Ramanathan and to KiRachandra
for many interesting discussions.

The notes have been prepared by S.Srinivasan. His critigtya
has been of great value to me, and | wish to thank him his nletisu
handling of the manuscript.

H.-E. Richert
Bombay, April 1976






Introduction

SIEVE METHODS, beyond that of Eratosthenes and of Legeruine,
be considered to have started with the works Brun (smalk¥iand of
Linnik (large sieve). In first part of these lectures we coafiarselves to
an introduction to the large sieve and a survey of its apfidina. Under
Chapter 0 we give a historical introduction to the theory h#f targe
sieve pertaining to the works, upto the first paper of BomigE965),

covering a period of twenty-five years.

Regarding the relative powers of elementary sieve methodste
analytical methods one usually considers that the latteuldibe more
powerful. Further it has generally held that large sievé@ntthe small
sieve (also that Selberg’s sieve always supersedes Briavs)s But
history has shown that such views are not totally correct.

As for the first point we elucidate the connection betweeneliee
mentary large sieve method and the analytical methods irbrutheory
by recalling briefly some of those basic methods used in nathieery.

1) In multiplicative number theory one has the importantbpem of
finding asymptotic formulae for the sun}$ a, asx — co, wherea,s

are values of some number-theoretic fasr;(ctions. Introdytiie func-
tion F(s) = § a,n*.s € C, the connection with analytical methods
is brought ;B%m through the following formula, due to Dhifist:
Zan = i f F(s)X—sds(x > 1, non-integral )
e 2ni S

Re s=c

wherec is a real number exceeding the abscissa of convergence (fi-
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viii 0. Introduction

nite in practice) ofF(s). (Hence and in what follows integration
along straight lines are always in the direction of non-dasing
real and imaginary parts.) To clarify the use of this formiefaus
take F(s) = £?(s), which corresponds to the problems of finding the

asymptotic formula (with error term) fop, d(n). In this case one
n<x
can take forc above any value greater than 1. One can show now

that the major contribution to the above integral comes ftioepart

| Im g < T, providedT is suitably large in relation tx (we also
choosec suficiently close to 1). Next shifting the line of integration
to the left one has that the remaining (major) part is, by Ggisc
theorem.

—2mR+(f f f){(S) ds

T SEeET SN
where (0#)¢ < 1 andR denotes the sum of residues of the integer
and at its poles within the rectangle bounded by the lifes § =
T,Re s= ¢ andRe s= c. It turns out that the estimate for the first
integral above dominates those of the other two and is itsetfli-
gible’ providedT is not too large in relation ta; in otherwords, if
T is appropriately chosen, théhis the main term of the asymptotic

formula for Y, d(n),x — oo. Thus, in this case, we are led to the
n<x
following

Zd(n) = X 10g X+ CoX + 0(x), X — oo,

nex

with some constants, andé, 0 < 8 < 1. (Clearly, the restriction that
X is not an integer can easily be dropped here.)

2) As to additive number theory we again consider a simple casy.
Let y be an (infinite) set of non-negative integers andalebe the
characteristic function of; i.e.,

_Jlifney,
“|oifngy.



Introducing the function
1@ =) a7
n=0
(so that the power-series has radius of convergentgthe formula

1
1=— f2(2zN1dzN e N
i f (@z" "dzN e

niey,mey |Z=r<1

ny+nx=N
provides the analytical connection with the problem of fingd{the
asymptotic formula for ) the number of representationslas a sum
of two numbers ofy. For instance, whef is the set of primes this
corresponds to the well-known Goldbach problem. Then itdwut
that the major contribution to the above (integral) cometsafuhe
pointsz with arguments ‘close’ to fractions with ‘small’ denomina-
tors, whiler approaches 1 ad — oo, and the set of such poinis
constitute the ‘major arcs’ and the remaining parts areeeriminor
arcs’. Thus again we see that to get information about ousleno
one has to move close to the singularities (on the unit Jifl@ur
function.

The functions introduced in 1) and 2) above are particulstaimces
of general Dirichlet series

G(s) = Z ane S a,eC,seC,
n=0

whered; < A < A3 < -+ — oo, Still the above problems have this
essential dference: Under 1) we encountered isolated singularities
and on the other hand, regarding 2) one knows from gap theorem
that, for examples, for the functiofl z° the unit circle is the natu-

ral boundary. However, both the c%ses illustrate the plaaf the
analytical methods in that the singularities of the assediéunction
are the sources of arithmetical information regarding tecerned
problem, in the sense that heavier the singularity moresisahtri-
bution to the main term.



0. Introduction

The idea of the second of the methods sketched above, thdyHar
- Littlewood method’, goes back to Hardy and Ramanujan. # ha
been later developed in a series of papers by Hardy andvittid.

(A variant of this method, introduce by I.M Vinogradov, whiases
finite sums instead of series, allows integration over theairtle.)

| this method, the aforementioned principle is reflectedhiat the
contribution, of the major arcs (i.e., neighbourhoods afer sin-
gularities), the so-called 'singular series’ of the prob)eetermines
the main term.

We are now in a position to indicate as to how the ’elementary
large sieve method can be regarded as being analogous tortee c
sponding analytical approach In its basic form the largeesielates
the mean-square contribution from the mid-points of theomajcs
(the sources of arithmetical information) of the size of #ssoci-
ated function with the mean-square integral, similar togimgular
series (above) being related to the integral over the uriteci Thus
the method links up an arithmetical information with theggaean-
square £ number of elements i, if a, is the characteristic function
of y). This is to suggest that this elementary’ sieve method @n b
considered analogous to analytical methods.



Notation

In general all the notation employed in these lecture atee#itandard
or are given explicitly at the place of their first occurren&® we limit
our seives here to a description of the former type followgdhe ones
of the other kind (along with the place of their first occuerin paren-
thesis, for the convenience of reference). A refererdcB)(to a part in
these lectures stands for “’formuB{of 'chapterA’”.

The letter p (with or without dhixes) denotes invariably a prime
number. An 'almost primeP, (cf. (128)), for a given integer < 1,
is a natural number with not more tharprime factors (counted with
multiplicity). The greatest common divisor of two integensandn is
denoted by 1, n). For an integen, the divisor functiond(n) (cf.p.ii)
denotes the number of (positive) divisorsrof We also use von Man-
goldt’s functionA(n) (cf.(1.75)) defined as log or 0 according as is
a power of (some primep or not. As usual, for a reat, [X] denotes
the greatest integer not exceedingEuler's constany (cf. (8.33)) is

(liMyse( Y Nt —logx)).

1<n<x

The order notatiorD,0 <, > have their customary meaning and
the dependence of the implied constant on some auxiliagnpeter §)
is (when essential) given explicitly. (The notatien, meaning><,
occurs only once in connection with (§1).)

The symbolsN, Z, R, C denote respectively the sets of natural num-
bers, integers, real numbers, complex numbers endowedhethnat-
ural (basic) structures. Regarding intervals (of realsntegers ) the
convention of using the brackets ), (to indicate the exalueled-point
(s) and ], [ to indicated the included end poirg) (s adopted. Also we

Xi



Xii 0. Notation

|Al to denote the cardinality of a finite set (or sequerte)

Finally, the notation explicitly introduced in the lectsréWe have
[IX| (cf.(2.10)), eu)(cf.(0.52)). The number-theoretic functiongn)
(cf.(1.9)). u(n)(cf.(1.8)).q(n)(cf.(1.19)), ¢ (n)(cf.(1.29)), ¢(n)
(cf.(1.33)) andr(n)(cf.(6.71)) occur more than once. Also for the sum-

q *
mation conventions X, >, )and Y see respectively (29) and
¢=1 ¢modq x modqg

(3.6). The following conditions are of repeated use in the séquant of
these lectures:

(Q1)(cf.(9.16,) or (9.16)); (Q2(k.L))(cf.(113)); (Q22(K))(cf.(114));
(R(cf.(119)); (Q)(cf.(1111)); (Q)(cf.(1123)); R(L a))(cf.(1162)).
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Chapter O

History of the Large Sieve

LET v BE a set ofy| integers contained in an interval of lendth

yc(M,M+N),MeZ NeN,S:=y. (0.2)
Setting
S@0H:= > 1, (0.2)
ney
n=¢ modq
we have ;
Z S(g.6) =S, (0.3)
(=1
or that
! S
D S@o-=)=0. (0.4)
(=1 q

Confining, for the moment, our attention to primgs= p only,
@[@32) tells us that the quantity

p

D(P) = ) (S(p.0) - 2" ©.5)

=1

measures how uniformly the setis distributed among the residue
classes mog@. Such an information. is of great importance in various

problems.



2 0. History of the Large Sieve

A uniform and non-trivial bound of the form

(D) > pD(p) < K(N,Q.S) (0.6)
p<Q

by uniform we mean here that whike may depend oM, Q andS, it
should be independent of the particular structure of the/gatkes it
possible to draw the following general conclusions. (Nb actually
the suppositiorM = 0 here involves no loss of generality.)

(A) LetN, QandS be given. If every sey (cf. (@1)) is so uniformly
distributed over the residue classes npoak expressed byDj,
then for most of thep’s D(p) must be small. This remark tells
us sinceD(p) is bound to be large if many residue classes mod
do not contain any element ¢f the statement th&(p,¢) = 0
for ‘many’ ¢’s modp can be true for only ‘few’ (‘exceptional’)
primesp < Q.

We can express this remark in a quantitative form. d.@d) be an
(integer-valued) function satisfying

0<w(p) <p, 0.7)

and now we ask for the number pfs < Q, for which at least
w(p) residue classes magudo not contain any element of our set
v. Let us denote the set of these ‘exceptional’ primes bgnd
set

min ——= = § = §(p). (0.8)

pep

w(p)
p
One has then for eaghe p

SZ
pD(p) > pw(p); > 6S2, (0.9)

and so
> pD(p) 2 652y, (0.10)

pep



(B)

(®)

Trivially
> pD(p) < > pD(p). (0.11)
pep p<Q
and therefore[{016) anf{0]10) give
KN, Q,S)
(A) bl < ——5— (0.12)

For the remaining primepi.e.,p ¢ p andp < Q, less thanw(p) 3
residue classes mquare devoid of numbers gf. Consequently,
for these primegp each of at leasb — w(p) residue classes mad
contains atleast one element)of

The preceding result may also be considered as a sieve proble
In order to see this. let us start (dE_{0.1)) with the set ahbers

M+1....M+N, MeZ NeN. (0.13)

Now for certain prime9 < Q, p € p say, strike out of numbers
([@13) all those numbers which are situated in any of ceriép),
wherew(p) satisfies[[Ql7), of the residue classes maal Let the
remaining set of numbers be our set We obtain [0.112) again
under the present situation, since we have used for its rayf
that at leastu(p) residue classes mod (for eachp € p) contain
no element ofy. Next resolving[[0.12) with respect & as shall
be seen later to be possible we get an upper boundyfavith
respect to our set above. It is the type

(B) (vl =)S < K1(N, Q, [pl, 6). (0.14)

Our remark at the beginning & had been that a non-trivial es-
timate of the type D) implies D(p) is small for most of they’s
under consideration. If we view this as the statement thaistm

often’ B is a good approximation t8(p, ¢) then its quantitative
version leads to a more precise formulation than that uAderd

consequently than that undBr. In fact, we obtain a result of the
type of Cebysév’s inequality.



4 0. History of the Large Sieve

To this end we introduce a functiap) satisfying
cp=>1 (0.15)
and put
m%xc(p) =C=Cq. (0.16)
p<

Now we ask for the existence of the inequality

S(p.0 - 31 < ©17)

S
pa(p)
More precisely, we ask for the number of primgs Q for which
the inequality [0.17) does not hold for at leagtp) (cf. [@.1)) residue
classe¥ modp. Let us denote again by the set of such exceptional

primes. Then, in the notation di(0.8),

g2

PR 2 WP s = 5% YPen.  (0.18)

Consequently, in view of{0.11)[{0.6) gives for the numbkex
ceptional primes the upper bound

2
—K(N, A
sK(N.Q.S). (0.19)

This result may be phrased as followg:_]0.6) implies thatefary
sety (of {@1)) one has for alp < Q. save for atmost

2

652

primes, and for all residue classémodp with the exception of less
thenw(p) of them

© Ip| <

K(N,Q,S)

S(p,{) = = +9 c( 5’ where 0] < 1. (0.20)

Choosingc(p) = 1, we see that each exceptional primeAgfis

also an exceptional prime @&. and conversely. Thereforl@. is a
generalization ofA. and hence also @.



Although the uniformity of [0J6) with respect to may be consid-
ered a defect (because it includes all ‘bad’ sets) it has divardage of
drawing all the conclusions (of which we have given threeegahex-
amples inA, B. andC.) valid for all sets , including those which are
otherwise not readily accessible. The quality of kis known for [0.6)
allows us to obtain results which are not available by theafssgther
methods.

@@.8) is of interest foQ < N only. A trivial estimate is obtained in
the following way. By [0.b) and{0.3) we have

D(p) = ) S’ (p.O - = (0.21)
=1 p
and trivially
N N
S(p.O< >, 1<—+1<2— (p<N) (0.22)
M<n<M+N P P
n=¢ modp

Using this and[{0]3) again il (0J21) we find that

P
pD(p) < 2N > S(p,¢) = 2NS (0.23)
=1
and so
(Do) > pD(p) <2NQS (Q<N). (0.24)
p<Q

As we have seen above (A),(B) and (C) are more or leSsrdnt
versions of general types of results based on (D). Lirinikja$ the first
to consider such problems. With respecBtohe made the remark that
when striking out an (absolutelyjoundednumber of residue classes
mod p the sieve method of Brun (or of Selberg) is applicable. Ha@uev
this is no longer true if, as is permissible un@erw(p) is, for example,
an increasing function op. For this very reason, Linnik named his
method of treating A. and B.



6 0. History of the Large Sieve

“The Large Sieve”.
Linnik [I] proved that

N
(A1) bl < 20r—= for Q= WN, (0.25)
and consequently
N
&2pl’
As an example he takesto be the set of primes N, i.e.,M =0

andS = 7(N), andw(p) = p¥*. Thens > N1/ and (1) yields the
non-trivial estimate:

(By) S < 20r for Q= VN (0.26)

_ N 1/4
Ipl < ZOer_l/4ﬂ(N) < 80N“*logN, for N> N (0.27)

Although the large sieve first occurred in the formag)(and B,), |
would prefer, in particular, in view of later developmeritscall (D) the
large sieve and rather consider results of type (A), (B)d&) others as
applications of the theory of the large sieve.

Following Linnik it was Rényi’'s ([1], [2]) merit to genernak the
large sieve method in several respects. Simultaneouslytieed the
fundamental importance of (D), and also treated the moreigweser-
sion (C) for the first time.

Generalizing[[QIR), for arbitrary complex numbarswve set

S@H= ), a (0.28)
M<n<M+N
n=¢£ modq
and o
§:=511n= > a (0.29)
M<n<M+N

(By taking fora, the characteristic function ofin {@2Z8) we getl(0]2).)
Let p be an arbitrary set of primegs < Q. Rényi’'s paper[]2] has
implicitly the following (explicit) generalization of (Djwith Q < VN):
Pa . ~
) % pax IS(pg o) - B <L ¥ &
(Dl) pef =1 M<n<M+N (0_30)

42 2N4n12 N
+%|D| forQ < kL



wherea;sare> 0, m= " ma'}/lx Nan, g is a squarefree number not divis-
<n<M+

ible by anyp € p, and O< € < %

The use of a set of primes here is particularly suitable for appli-
cations of the type (A), (B) and (C), becausean serve as the of ex-
ceptional primes, and the fact instead ofQ improves the estimate.
From this generalization to composite moduli and arbit@gficients
he derived ([1], (Lemma 1)) a (C)-type result about

P~ é(qv f) é
1S(pg, €) - | < :
(P30 = =571< Sadpa
From here he succeedefl([1], (Lemma 2)) in making the lamyesi
applicable also in the estimation of certain averages ofacter sums,
i.e., sums of the form

(0.31)

D, x(man (0.32)
M<n<M+N
. lforney, .
Turning back to the casg= 1, a, = i,e. to [OI7),
Oforné¢vy,
then Rényi'sC-result corresponding t@ (019) is
3rN2c3
(C1) Pl < S=a7 for Q< VN. (0.33)

By using a diferent method of proof, Rényi{[7], (18)) next proved

(D1) > pD(p) <2NS (0.34)
p<(N/12)4/3
and then applied this to C. and A. obtaining ([7], (Theorein 3) 8
2N N 1/3
(C2) s =5 for Q< (p) (0.35)

and ([{1], (Corollary 1))

2N N
(A2) |p|$5_8 for Q<(1—2)1/3. (0.36)



8 0. History of the Large Sieve

Finally Rényi improved his method and considered the |sigee
in its (D)-version as a special statistical statemerit (&, [LO], [12])
and he showed({[4])

(D2) > pD(p) < NS (0.37)
p<INL3
and from this ([4], (Theorem 3))
ONC? 1
(Ca) bl < =5~ for Q< =NY3 (0.38)

The last results above, though stronger than Linnik’s, tiltevalid
only for a smaller range for the primes, i,e., for smalleueal ofQ. In
[9] (cf. Halberstam and Rotl][1] (Ch. IV, Theorer)¥he prepared the
ground for the extension

(D3) > pD(p) <(N+Q%)S for Q< VN. (0.39)
p<Q
Barban has been the first to prove a (D)-result by using Lianik
original method. He showed {[8], (Theorem 1))
Q

2
(D4) Z pD(p) < 277 %SZ for 1< Ko < min(Q, g),

p<Q
(0.40)

and for ©,) in the casey = 1 (J10], (1.3); forq > 1 cf. [10], (Theorem
3.1))

. S l § < 1 2
(Dy) {Zp P2 S(p-0) - pl = M<n§M+N et
<

(0.41)
4+ 4r7eTN7S E23N252|p| for Q<N,

1
subject to the conditions @ min an > 0. The partic-
ubj iti €< I(ZnN 2Qz) N parti
lforney,

Oforngvy,
and from it Barban [[10]. (Theorem 1.1)) derived for

ular casen, = (i.e.,S = S) of this result containsi¥s)

for Q= VN. (0.42)

N
(A3) [p| < 2053/—28



The importance of[@,) lies in the fact that there is no longer any
restriction onQ, apart from the natural one, namé}y< N, implied by
the Kg-condition.

There is another generalization to a weighted formf due to
Halberstam and Roth][1] (Ch. IV, Theorem 5). They proved fbat
arbitrary weightsj,, satisfying

0<dp< (0.43)

1
2pR
one has

(D) D popD(p) < S+ N* > 53 (0.44)

p<Q p<Q

A very important progress was made by Rath [2], who succeeded
proving

(Ds) Z pD(p) < (N + Q?logKg)S + S2plK;2 for Ko > 2.

pep

(0.45)
where agairp denotes an arbitrary set of primps< Q, and there is no
restriction onQ. This result includes in particulai{[2], (9))

(De) > pD(p) <NS (0.46)
p< [
as well as ([2], (Corollary 1)) 10
(D7) p% pD(p) < SFlogQ for Q> %. (0.47)

With respect to (C) Rothl(]2], (Corollary 2)) derived, alsoticing
that it is more appropriate - as can be seen fiom10.18) todote

. w(p)
520 p(p)

1
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10 0. History of the Large Sieve

instead of andc separately, from[}s)

N+ Q*log 3
(Cs) ) <« ———— for Q<N. (0.49)
BS
It is not too simple a matter to make a comparison of the variou
basic (D)-results of the large sieve. However, the mairufestare the

following ones.The veryféective estimate (fokK(N, Q, S) of (@.8))
< NS (0.50)

which was known by Renyi fo® upto N3 (cf. (@33), [0.3F),[0.39))

has been extended by Roth (df_{0.46)) ufte- J%. For values of

Q beyond VN, ([@20) and[[0.47) still yield non-trivial estimates (com-
pare [0.2K)) upto the vicinity oN. Apart from the factor lo@ and
the <-constant, [[0.47) is in most cases the better estimate. fnly
Q = N?S)¥5 does[0.2D) yield

< QS (0.51)

which is [0.4Y¥) without the factor 10§Q. On the other hand, the same
result is implied by[{0.45) if moreoved < Qlog Q.
As far as the methods of proof for the large sieve are condaheze
are diferent ways of approach.
Recalling our notation introduced in the beginning of thisgter
lforney,

Oforne¢vy,
first method, used in the aforementioned basic papers ofk [hhand
of Rényi [2]. is based on a treatment of the exponential sum

T(X: > enX)-xeR, &)= e (0.52)

ney

(i.e., considering, for simplicity, the casg = only) the

Here the essential use is made of the Farey dissection frem th
method of Hardy and Littlewood and of Parseval’s formula. fdat,
the close connection withi(x) stems from the identity (cf[{4.1))
p-1

p
TGP =pY (.0~ 2P =pD(E. (059
=1 P =1
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the second equality beinf{D.5). For the proof of the firstadiuwe
need only note that the left-hand side expression

p p
P NUCEECESIPIPILCUELS
=1

=1 N €y ey

p
S ADIPYGICITELS)

Mmey ey ¢

and further, by[[1.22). the inner sum in the last expressigmor = 0
according asr; — np) is = 0 or 0 modp, so that our expression

p P
=52+ 3" S%p.0 = B (S(0.0 - 2))
(=1 =1

by [@.3). Hence the form (D), which we have considered saofletthe
basis of the large sieve, amounts to asking for an upper bfmund

o
INUGIE (0.54)

p<Q =1

Another method of proof that should be mentioned here takesra
general point of view and may serve to simplify the undeditam of the
large sieve method. It relates the problems with certainlt®f an in-
ner product space. This has been already developed by Rehis
early papers [(14],[17]), where he refers to Boals [1] and atsBellman
[1] for their extensions of classical results to ‘quasikogonal’ func-
tions. Roth’s workl[2] has used king of combination of boththoels.

Further methods and details of proofs with respect to therthe

of the large sieve will not be given here, but rather would benm
tioned in appropriate chapters, in part icular under chigtélowever,

since we will not have the opportunity to use the second neethen-

tioned above, we shall present here a basic result due tolBerggcf.

Bombieri [4]). The proof is very elegant and the result seémmse to

be most suitable for giving an idea of this method, which @iaghen

in choosing appropriate functions in an application[of §).5

12



12 0. History of the Large Sieve

Theorem 0.1. Let f,¢1,...,¢r be elements of an inner product space

overC. Then .

|(f’ Sor)|2 < 2
= - <Ifl~ 0.55
rZ::‘f Z:E=1 (¢r, @s) ( )

Proof. For any complex numbers, 1 < r < R, we have by the Bessel's
inequality argument,

R - R
|2 - 2Re Y, C(f,or) + X cCsler,¢s) =
r=1 rs=1

R , (0.56)
=|If - X Gerll® > 0.
r=1
Using here
R o= R Lin 22 L2
ZlchS(Sor,Sos) < 21(§|Cr| + 51Cs[9)(er, ps)l =
r,s= r,s=
R R (0.57)
= Y el 2 1(er, @s)l
r=1 s=1
and then choosing
f
= R(’—‘”r) (0.58)
Z |(90ra 905)|
s=1
the proof is completed. m|

From TheoreniQl1 or variants of it the main tools for this (set)
method can be derived (cf. Montgomely [5] (pp. 4-8) and HyXi€
(pp. 29-30)). A simple example is that as an immediate caressze of
({@558) we obtain, under the same assumptions. ‘Bellmaeguality’
(Bombieri [3])

R R
2 2
z; (. @) < [1£]] paé; [CRAL (0.59)

[@558) as well as[{0.59) generalize Bessel's inequality(ffar R = 1)
Schwarz’s inequality, in an inner product space to whicly ttegluce
when{e;} happen to be orthonormal.
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The importance of this method for the modern developmenhef t
large sieve has been noticed by Bombieri, GallagherAariselberg (cf.
Bombieri [3], [4]).

The further development in the theory of the large sieve haws
that with the work of Roth one had already come close to besdiple
results. The next decisive step in this direction was madaninm-
portant paper by Bombieri 1] (also independently in a pame/A.l.
Vinogradov [1]. Apart from the important deductions he mdiaam
his result and other details (not to mention here), the medtufes of
this progress in theoretical respect were (i) the extensiohis ((D)-
type) result from an estimate ¢f{0154) to an estimate (ofdtger gum)
where the summation is extended over all natural numfetsQ in- 14
stead of over only primep < Q (cf. (Z3)). (i) keeping thereby not
only the quality of Roth’s result but even removing a logtfacand (iii)
obtaining an explicitc-constant. which is of considerable importance
in certain applications.

After having recalled some arithmetical results in Chdfitere shalll
take up this modern version of the large sieve in Chdpter pliéations
to character sums are possible, as has been already mehitioig32).
and will be treated in Chapt&l 3. Important further applaa of the
large sieve, not mentioned so far, to Dirichlet series whire first
noticed by Davenport (cf. Montgomeryl[2]) are dealt with ihapter
M. This theme is continued in Chapfér 5 where certain ‘hyliadns
of the large sieve for applications to Dirichlet series asour. Chapter
is devoted to a survey on special applications of the lamgeego
Dirichlet series and also to some problems of number thdor@€hapter
[4 we shall turn to the large sieve in its arithmetical form.(Bjstly, in
ChaptefB we give an application of the large sieve to a spemalem,
Viz. Brun-Titchmarsh theorem. of number theory.

So far very little has been said about the applications ofldhge
sieve. As can be seen from the description of the contentsedbtlow-
ing chapters given above there is a great variety of appicat Many
of these are of a ‘statistical’ nature, in the sense that #reyconcern-
ing certain averages. Many results of number theory are krntowbe
consequences of certain unproved hypotheses. Howevegng nases
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we are able to apply the aforementioned statistical statesrie obtain,
strikingly, the same results as those which one gets by dsguartain
still unproved hypotheses.

Apart from a first application in the construction of a norsibaes-
sential component (Linnik[2]). Linnik13] showed the powadrhis new

15 method, via (A), in a result about the least quadratic nadtee modp.
Rényi’'s first application of the large sieve yielded a sisipg result in
the direction of Goldbach’s conjecture. In fact, Rényi basn the first
to prove that every dhciently large even number can be written as a
sum of a prime and a number consisting dfaindednumber of prime
factors.

We shall not mention other applications in this historicdtaduc-
tion but rather defer them to later (appropriate) chaptétswever, in
keeping with the title of this chapter, following the Notes this chap-
ter we add a list of references to works, upto the first pap&oofbieri,
in chronological order. This list also includes papers.oupis point,
which deal only with the applications of the large sieve.

There are also generalizations of the large sieve in varines-
tions. Some of these papers are given in a second list oferefes
following the above one.

NOTES

In order not to make this purely historical introduction tong, we
have selected only some significant results that seem tduseirilat-
ing for our way of presenting the subject. For further infation the
reader is referred to the surveys in Barban [10], Halbersaach Roth
[1]. Davenportl[l], Roth[l4] Montgomery [5]. Huxle¥][7] anddBnbieri
5], [6l.

@@29), [0Z6): By usinge™ — 1| < |x| instead of Linnik's estimate
|€¥ — 1| < elx| the constant 20 can be replaced by 4.

@33): Rényi's paper [(J2], (Lemma 1)) contains only thecpl
casew(p) = p¥?, c = p¥°. However, as he has pointed ouf ([7], (Theo-
rem 2)) his method also applies to the general case.

16 (@39): Note that by[g), (0-39) holds also fof > VN.
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. . 1
@@40): His method gives actually a factgrfor the second term,

and also the condition d§y may be slightly relaxed.

@39), [C.4D): In generall) yields the better result foR in the
vicinity of N/3 whereas [D4) becomes superior whe@ tends to VN.

Also (D4) has been the first result to yield non-trivial estimate®upée
vicinity of N.
. . S .
(@.22): Actually, the more appropriate choiceeof 27r_\/; yields the
factor 3r instead of 20, and a simple refinement of the proof gives even

gn. A consequence of this remark is, when applie€tp

37aNS
26928
a result which is always better than Rényi'eS;{j.

({@23): Following Barban’s method of proof fobDg) one notices

that in (D*) the factorN* can be replaced by{?S?.
@@58): Here we have used that

Cs)  Inl< for Q= VN, (0.60)

{Ilfll2 = (f.1).(f.g+h) = (f,g) + (. h), (0.61)
(cf.g)=c(f.9).(g ) = (f.9)
and (hence also)

(f,cg) = c(f.9). (0.62)

For an application of Theorem 0.1 see the notes followingoZhER.

History of the large sieve. References in
chronological order.

Linnik [I], Boas [1], Linnik [2], [3], Bellman [1], Rényilll, [2],
[3], [4, [Bl, [&], [, [8], Bateman, Chowla and ErdosI[1Kubiliyus
[, Rényi [@], Wang[1], Rényill[10],[111], Stepanovi[1],ua [1], Rényi 17
[12], Barban [1], Linnik [4], Barban(]2], Erdos 1], BarbdB], Gel-
fond and Linnik [1], Pan(l1], Erdo<]2], Pahl[2], Wand [2], \ie [I]],
Barban [4], [5], [6], Pan[]3], Riege( ]3], Pani[4], Barbdn [Roth 1],
Levin [2], Barbanl[8],[9], M. and S. Uchiyamil[1], Barbédn [1Wang,
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Hsieh and Yul[ll], Halberstam and Rofh [1], Rdth [2], BuchgbA.I.
Vinogradov [1], Bombieril[l],

Extensions of the large sieve

Andruhaev [[1], Fogeld]1], Goldfeld ]3], Hlawkal[1].][2], btiey
[0, 381, [&], Johnsenl]l], Riegel 1]/12], Samandarav [Hchaal [1],
Wilson [1].



Chapter 1

Arithmetical Aids

IN THIS chapter we shall collect for the reader’s convenéeesome of 18
the results, which are use in later chapters, from elemgmamber
theory.

1 Multiplicative functions

By
m (1.2)

we denote the set of functions (definedidh

fz0 (1.2)
that satisfy
f(ng) = f(N)f(g) Vn, e N (1.3)
whenever
(n,g =1 (1.4)

Since we have excluded the trivialby (I.2), there is @ such that
f(g) # 0 and so[[113) implies fan = 1

fem= f(1)=1 (1.5)

17
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Obviously
f(n) = n* € m forevery ze C, (1.6)

S0, in particular, foz =0
f(n)=1em, a.7)

and for these functions the restrictidn{1.4) is not everessary. A
non-trivial example is provided by the Mobius function, defil by

() {0 if nis not squarefree, i.e., there is a prinpe p|2n,
(-1)'™ if nis squarefree
(1.8)
where, as usual.
v =>1 ((1)=0) (1.9)
pin

Forv, (I3) is easily checked, because, if atleast one of the rtenb

n andq is not squarefree we have zero on both sides, and if batid

g are squarefree we gé&f{ll.3) subjectfal(1.4) by using
v(ng =v(n) +v(q) for (n,q) =1; (1.10)

hence
L EM (1.12)

A simple way of obtaining new functions is by multiplying tether
(@3) for any two such functions, so that

fi, bem= fifpem (1.12)
A less trivial result is
fi, foem=gn) = Z f1(d) fz(n) € m. (1.13)
din d

For a proof we first note that ifijng there is, in view of [T}K), a
unique factorizatiord = th with tjn, hlg. Therefore, by considering
(@3, for both functions, under the conditidn{|1.4), weaoint

g(ng) = 3 ¥, fa(th) f(37) =
tn hig (1.14)
= tlZn f1(t) f2(}) % f1(h) f2(2) = 9(n)g(a).
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For af € m it follows by repeated application of{1.3), subject teo
@3), that

fem= f(n)=][f(p*) where n=]]p* (1.15)
pin pin

so that these functions need only be known at prime-powensadticu-
lar, for squarefree number one has

fem= f(@)=][f(p) if ua)=0. (1.16)
plg

A good illustration of this property of functions im is given as
follows. Suppose thaf;, f, € m, and letg be a squarefree number.
Theng € m, whereg is defined by[[1.113) abd frori {1116) we get

o(a) = TTa(p) = TT(E fa(d) f2(5))
plg plg dip (117)
= })qu(fl(p) fo(1) + f1(1)f2(p)) for u(a) # O.

Therefore, in view of[[1]5), we have proved that

fi, hem= Y fi(d) + f2(3) =
diq

: (1.18)
= gg(fl(p) f2(p)). if p(a) # 0.

For an application we note that Hy {1111) ahd(1.7) one casak
and 1 forf; and f, respectively. Then, denoting la¢n), the ‘kernel’ of
n, i.e., the largest squarefree divisormf{L.IB) yields

Dou@ = ) u(d) = [ [ + 1), (1.19)

din diq(n) pin

which gives the well-known formula

Zﬂ(d) _ {1 forn=1 (1.20)

0 for n> 1.
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2 Ramanujan’s function
Recalling our notation (cf[{0.52))

e(u) = ™ (1.21)
we see, on considering the partial sums of geometric séhiats,

., qfor g/n,
Z en-) = VgeN,neZ. (1.22)
=1 Oforgtn

The continuous analogue ¢f({1122) is

1
1forn=0
fe(nx)dx: on=" ez (1.23)
J 1forn+0,

Sincee(E) has periody, (I.22) may also be written as
> gni) =19 for ain, VgeN,neZ. (1.24)
O0forqgtn,

where ¢ runs through a complete system of residues moduldrhe
corresponding result fof {LP3) is

a+l

1forn=0,

f e(nX)dx = VYneZ,aeR. (1.25)
0 forn#0,

’
Foranya;se C

IR EPILES)

d n
&((¢1 - £2)-), (1.26)
51,5221 n=1 q

and because df; — 5| < gin the innermost sum[_{T.R2) gives

q q q
S age(”f)|2 = > lal®, Ya e C. (1.27)
=1

q (=1 (=1

21
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Similarly, by [IT.ZB), assuming th&, |an> < o (so, in particular,
for any finite range fom), we have

1

1
f | D, enPdx= ) anan, f &((n — n2)Xdx = ) [anl”. (1.28)
n 0 n

ng,N:
0 1,112

In view of (I.ZB), it is obvious thaE{1.28) remains true iétimtegral 22
is extend over any interval of length 1.
Ramanujan’s sum is defined by

cq(n) : % e(nt) = i e(nt), YvgeN,neZ
=1 Y ¢modg 9

9 q (2.29)
and where ), : 3,
=1 =1
(t.a)=1

and ) ~means summation asruns through a reduced system of

¢modq
residues modula@. In order to computey(n) we use [.20). Noting
that always
_ q
RICEDY f(3) (1.30)
dig dig

and writing¢ = {1. g in the last step below we find. by {1120),

q 14
Ca(n) = Y enf) S u(d) = Yu(d) X end)=
AR W
‘. Tod (1.31)
=>u@ X end)=2u X end)
diq =1 dip 01=1
£=0modf
so that, by[[T.22), we have
=Y ,u(g)d VqeN, neZ (1.32)

diq
dn
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We note the following two special cases. Foe 0, we see from
([29) that Ramanujan’s sum becomes Euler’s functi@), and [T.3R)
leads via[(1.30) to the well-known formulae

N S _ 9 = q_
e(q) := Ell =¢q(0) = %M(d)d %#(d)d

=q 3 “P=q ] (-5+D=qllL-p)
dig(a) pla(a) plg

(1.33)

where we have used aldo (11.11),(1.1P)1(1.6)zZfer 0 andz = 0 and
z = -1, and [T.IB). Next, forn(q) = 1, the right-hand side of (1.B2)
reduces tq(q), so that vial[[T.29) we also obtain

q
u(q) = cq(n) = Z ' e(ng) if (nq)=19geN,neZ (1.34)

=1

3 Dirichlet’s characters and Gaussian Sums

For eachg € N we define the arithmetic functions, names ‘characters

moduloq’,
x(M)(eC), VYmeZ. (1.35)

For an elementary introduction of these functions one regubl-
lowing four properties[{1.36) through{1]139):

y()=1 (1.36)
x(mn = y(m(n) YmneZ, (2.37)

i.e.,y € mwithout the restrictionrf, n) = 1,
x(N) = x(¢) for n=¢modq (1.38)

and
x(n) =0 for (n,q) > 1. (1.39)

The relations[[1.38) an@{1136) imply

x(m =1 for m=1modq. (1.40)
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By (.39) any character vanishes for alwhich are not coprime
to g. On the other hand, fon(qg) = 1, we have by Euler’s theorem

n“@ = 1 modg, so that[1:37) and{L.40) give
((M)?@ =1 for (nq) =1, (1.41)
i,e., for (0, q) = 1, v(n) is ap(qg)-th root of unity; in particular.
k(=1 for (n,q) =1 (1.42)
24
It is obvious that the function

xo(n) = {l T(n.a)=1. (1.43)

0if(n,qg) > 1,
is a character modulg; it is called theprincipal character mod. A
simple formula is

q q
' @(a) for x = xo.
Dx =" x(0) ={ (1.44)
~ ) ofory # xo
The first statement is immediate frofn_(1.39), and foe yq the
second statement follows bly (1143). Next for= yo there must be a
numberm such that
(mq) =21, x(m) # 1 (1.45)
So when¢ runs through a reduced residue system pditen the
same doesV too. Hence, in view of[{1.38) anf(1137), we have
Xm0 = ) xem= > xo), (1.46)
¢£modq ¢modq ¢£modq
which implies the second statement Bf (1.44) foet yo because of
x(m) # 1.
It can be shown that for any givene N there are exactly(p) dis-
tinct functions fulfilling [1.36) throughl{1.39), i.e., tteeareyp(q) char-
acters modj, a fact that can be stated in the form

D, 1= (1.47)

x modqg
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It is easily checked that witly(n) also y(n) is a character moql
Also, with y1, y2 the functiony, y» is a character mogl The sec-
ond remark leads us to the following statement. If for certdiaracters
XY, X", xamodq, ¥’ (Nx1(n) = x” (N)x1(n) holds for alln, then in view
of (I.42) and[(1.39) one has = y”’. Hence, ify; is a fixed charac-
ter modq andy runs through all characters maqgdtheny1y also runs
through all characters mayl a fact which can be expressed through

xam > oxm= > )M > x(m), VmeZ. (1.48)

x modq x modq y modq

This leads us to the following counterpart Bf{1.44):

Z () = {go(q) for m= 1modq, (1.49)

motq 0 for m# 1 modg.

For, whenm = 1 modg this assertion follows froni.{T.#0) arld(1147)
and for n, q) > 1 itis trivially true in view of [1.39). In this remaining
case

m # 1 modg, (M, q) = 1, (1.50)

we need the result that, for amysubject to[(T.50), there is a character
x1modq such thagy1(m) # 1, and then the result follows frofi{1148).
Next we note the following equivalence:

x(Mx1(n) = xo(n), ¥n & x1(n) = x(n). vn. (1.51)

This is clear for §,q) > 1. For , g) = 1 we multiply on the left by
x(n) and use[[1.42) an@{TK3) (the latter implies always that= x),
and this step can be reversed becagysg # 0. Sinceyy is a character,
it may be used in{1.24), and because[of {I1.37) And}(1.51) weérob

. o(@ for x = x1,

(1.52)
0 for xy # x1.

"x(Oxa(l) = {

(=1

Finally we prove that

{ga(q) for n=¢modgq,

if (¢,09) =1 1.53
0 for nz ¢modq (¢.9 ( )

> xew(n) =

x modqg
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26 In view of (I.39) we may assume that, ) = 1. Since {,q) = 1,
we can determiné€ such that

(¢,9) =1,¢¢ = 1modq, (1.54)

and hence by{{1T.40) and{1137) one Ry (¢’) = 1, which yields after
multiplication by ((¢)), in view of {T.42), thay(¢) = x(¢’), so that, by
using [L.3F) again follows

’

DT ey = > x(en). (1.55)

x modqg x modg

On the otherhand, by the definition &f we have
¢'n=1modg & n = ¢modg. (1.56)

Hence [1.5B) follows from[{1.49) witm = ¢'n, using [I.5b) and

(L.58).
From [I.5B) we now derive the following analogue [6f (1.27):

1 a q ’
el DD Oul =, v e, (1.57)
a8 xmodg ¢=1 =1
Keeping [1.3P) in mind, we see that the left-hand side equals

1 & _ R R | _
) D O = ) W 3 AOxn).

x modq ¢,n=1 £,n=1 x modq

(1.58)
so that [[L.HI7) follows form{1.%3).
If dlgandy; is a character mod, then
() = xiu(m) for (mq) =1, (1.59)
0 for (mq) > 1,

is a character mog, and we say thay; modd induces the character
xy modg. If ymodq is not induced by any charactgf modd for any
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d < q, y is then called grimitive character mod. The smallesf, f|q,
such that * modf inducesy modq is calledconductoof y. 27
For any charactey modq the ‘Gaussian sum’ is defined by

>, (0. (1.60)

¢modq

q
W= Y MOelg) =
=1

since bothy(¢) and e(g) are of periodg. By (.39), ¢ runs actually

through a reduced system of residues modnd so doesi¢ also if

(n,g) = 1. Therefore it follows, by using(L.50) far, (.37) and[1.42),
that

T(x)x(n) :x(n)[mzodq)?(nf)e(né):
= % chi(t)g(nf), for anyy modgand 6,q) = 1.

¢modq
(1.61)
It requires a little moreféort to prove that for primitive characteys
([@C&1) holds even without the restriction, §) = 1, i.e,,

TQ)X(n): Z )?(t’)e(né), for primitive ymodg,ne Z. (1.62)
¢modq

If we takea, = x(¢) in (LZ1), it follows from [(.ER) that for any
primitive charactef modq

q
£ 2 O = () (1.63)
n=1
or
It(x)?| = q for primitive y modaq. (1.64)

If y is not a primitive character, let it be induced by
¥ modf,q=rf, (1.65)
wheref is the conductor of. It can be shown that

™) =0 if (r,f)>1 (1.66)
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and that
)P = ()P = (D f, if (r,f) =1, (1.67)

by (L.€3), since/* is a primitive character mofl Collecting together 28
the results[{1.84)[{1.66) arld (1167). we have, for the Ganssims, the
following

Lemma 1.1. If f is the conductor of mod g, then

g=rf (1.68)
and ,
Ir(x) I—{ Wt for () =1 (1.69)
otherwise

We close this chapter with another application which dertrates
the usefulness of our characters.

Lemma 1.2. For any g,s inC and any for charactey mod g put

Sa.0= ), an.Skxx) =) an.  (L70)

n<x n<x
n=¢modq

Then

q
’ . (X XO) 2
;1 SCc0.0 - =255 = o5 ;XO IS(% )| (1.71)

Proof. First we note that, by[{1.53) (witk being replaced by fol-
lowed by taking the complex conjugate) abhd(1.52), we have

2ROSKA0 = X XO T anchy T X(O%(M) -

n<x X1 modq

2 z ox = 172

nsx X1 mod

= S(X, X).
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Next, takingu, = S(x; g, {) — Skxo) ¢ in (C&1), it follows that

(@)
q
; ’

m > Zx(f)(S(x a.0) -

xmodq (=1

S(X7X0)) 2
ela) 1
(1.73)

S(x, xo) |2
(o)

S(x;9.6) —

29 According to [I.7P) and{1.24). we have

S(X,)(o)) _Jo for x = xo. (1.74)
) S(x.x) for x # xo,
and using this in[(1.13) we obtain {1171).
For the theory of prime numbers the important special case
p6a.0 = D AP0 1 D AMX(M) (1.75)

n=x n<x
n=¢ modq

q
D XOS(x:6,6) -
=1

yields, on nothing thaA(n) is a real-valued function, the identity

q
’ . _ lﬁ(X /\/O)
Z{ Wxa0 - =252 = X;O (%X (1.76)

This formula was the starting point in the proof of the meatug
theorem of Davenport and Halberstdrh [2] (EL.(6.34)).

NOTES
(I Z1): As another example, take [01.27)

_J1 for(,q) =1,
o for(,q) > 1.

Then, in view of [IT.2P),
q
D" &) = ap(a). (1.77)
n=1

3: For the proofs omitted in this section we refer, for instartoe
Davenport[[l] (Chaptdd 9) and Huxley [7] (Chapiér 3).



Chapter 2

The Large Sieve

WE START by recalling the notation introduction in Chafiéch (@1) 30
and [0.5PR)). Lety be a set consisting & integers from an interval of
lengthN:

yc(M,M+N],MeZ NeN,S:=y. (2.1)

and let

T(0) = ) &ny. (2.2)

ney

Then, as has been indicated in Chapter 0, the large sievehasic
form is concerned with the estimation, of the expression

PN

2

¢
T(=) (2.3)
0<Q ¢=1 q
in terms ofN, Q andS, of the form
9 ¢ 2
Y UTE <cinQs. (2.4)
0<Q ¢=1 q

The simplest approach to a bound of the typdinl(2.4) is nowtadue
Gallagherl[l]. Gallagher’s starting point is the followitemma which
occurs in the earlier work of Hardy and Littlewood, and of Slel (for
several variables):

29
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Lemma 2.1. Let u ands(> 0) be real numbers, and let(X) (complex-
. 0 o1 . . L
valued) be continuous ({Iﬂl — 5 u+ 5] with a continuous derivative in

0 9]
(U - E, u+ E) Then
u+d u+$
|f(u)|2 < f [f(X) " (X)|dx + 5t f |f(X)|2dX (2.5)
u-3 u-4
Proof. Put

F(X) = f23(x). (2.6)
Then, by partial integration, we find the identity

Flu =061 fu(x(u—%))F’(x)dx+5‘l fz(x—(u+%))F’(x)dx+
+ot fEF(x)dx
o 2.7)
Hence
|F(u)|s%f|F’(x)|dx+6‘1f|F(x)|dx, (2.8)

which gives [Zb) on usind(2.6).

Gallagher’s use of the above lemma enables one to obtainraltwgiu
the type in[[ZK) when the expression on the left there isnebeé in two
directions; namely, when the terms of the sunfinl(2.2) havghte (ar-
bitrary complex numbers, and the set of (fractional) point—g in Z3)

are replaced by a finite set of real numbers which are distimariulo
1. O
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Theorem 2.1. For any complex numbers;aM <n < M + N, set

U= > aneny. (2.9)

M<n<M+N
Let xq,..., Xg be real numbers which are distinct mod 1 and put

6 = min|x — X4, if R> 2,||X|| := min|x—k|;§ := oo, if R=1. (2.10)
rs kezZ

r#s

Then o
QU <@N+6) 3 fanl (2.12)
r=1

M<n<M+N
We shall present the proof of this theorem in all its detailt some

proofs of large sieve inequalities, in particular, for tmeqf of Theorem

271 which is based on LemniaR.1 (cf. also the prooflaf_{2.95)%

a advantageous (cf{Z]30)) to consider a shifted intenvalidlly, an 32

interval symmetric about the point zero) instead of therirge(M +

M + N]. Then the general case is easily derived by reversing tiftangh

procedure. The idea of the last step is contained in thevioligp

Lemma 2.2. Let N € N, let x,...,Xr(R > 2) be real numbers which
are district modL and put

0= rp’isnllxr - Xgll. (2.12)
Ir£S
Set
V)= > bremx), by e C. (2.13)
~Nem<l

Then the inequality

R
DINOP<ANG) > lowl VbmeC (2.14)
r=1

N N
—-><m<S

with some (positive) function(N, 6) depending only oiN ands implies
that for anyM € Z,

R
D UIE<ANG ) P vaeC  (215)
r=1 M<n<M+N
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where

U= > aneny. (2.16)

M<n<M+N
Proof of lemmal2.2. If U(X) is defined by[(Z16), let us consider

VO =el-(M+[ME)ueg= % ae((n-M-[M3])x) =
= Z bme(mx) = Z bme(mx)»
[ 3] eme-[ 2] N ~y<mey
(2.17)
where N N
bm:a.rmM_‘_[%],—E <m< E (218)

Now |U(X)| = |V(X)| for all real x from which we easily see that
&159) is an immediate consequencelof(R.14).
Now we are in a position to prove Theoréml2.1.

Proof of Theorem[Z. To start with we disposefbthe caseR = 1.
This is easily done in view of{Z.10) and Cauchy’s inequality

V)P <N >0 Jal (2.19)
M<n<M+N

So we assume that
R>2 (2.20)

and further, because of Lemral2.2, we shall consitlerstead ofU.
SinceV(X) is of period 1 we can also suppose that

O<xXxp<X<...<xg< 1l (2.21)

By the pigeon-hole principle follows easily that

§< %. (2.22)

Now, from LemmdZl withf = V andu = X,, one has

VP < f VOOV (Qldx+ 572 f VOORdx  (2.23)

Ir Ir
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where
_ 6 6
Iy = [Xr - E,Xr + E] (224)
By (Z12), we have for # s
0 <X = Xgl| < % — Xsl, (2.25)
so that our interval$; do not overlap and their total length, i.e., lengttu
of
R
gL (2.26)
r=1
equals
0R<1, (2.27)

on recalling [Z2R). Summing now ovein (Z2Z3) (and using that both
V(x) andV’(x) have period 1) we can replace the integration on the right

1
over [Z2Z6) byf. Thus we get, by employing Schwarz’s inequality.
0

R 1 1 1
DTIVOOR < ([ IVOIPAMZ( [ IV (PR + 67 | V(9Pdx
oot eofen [ /
(2.28)
Now, it follows from [T.Z8) that
1
[veorax=" 3 iour (2.29)
0 -<ms<3

and also

1
f VPdx= Y bl <N Y w2 (2.30)
0 N

Nemel ~Nemel
Hence [Z.28) yields
R
2 NP @N+5Y) 3 bl (2:31)

r=1 _N N
> <M<
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This is [ZI#) with
A(N,8) =N+ 672, (2.32)

Therefore, by lemm&2.2[(Z115) with {2132) giv€s (2.11)¢hg
completing the proof of Theorem2.1.

Now we discuss the result of Theoréml2.1. Due to the preseince o
the factors! the dficiency of [ZI1l), as of other large sieve inequali-
ties that we shall consider, depends on the information aswo'well-
spaced’ (in the sense df(2]110) the poirtsare.

The simplest case is, for any &R € N. with

xr:L, 1<r<R (2.33)
R
so that 1
= —. 2.34
6=2 (2:34)
Now Theoreni Zll gives
R r 2
YUE)| <@N+R D jad? (2.35)
R
r=1 M<n<M+N
In the more interesting case
{
xr=a,1s€sqSQ, (t.a)=1, (2.36)

the set of Farey fractions of ord€), the points are not quite so well-
spaced. We find, on assuming tt@t> 2, for any two distinct Farey

fractions in [Z.3b)

1
A

g -qt

|_ _ _|| _ H (2.37)

Hence we get from Theorem 2.1 afd (2.19) the following
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Theorem 2.2. Let M € Z, N e Nand let (M < n < M + N) be
arbitrary complex numbers. Then

q
» ’|U(£)|2 <@N+Q) ), lvQeN,  (2.39)

0<Q ¢=1 M<n<M+N
where Ux) is defined througtfZ.9).

Regarding the quality of the preceding results we make theweo 36
ing remarks. Under the assumptions of Theokem 2.1, recakkstima-

tion (ZI3):
R
DIUeIP <A > el (2.40)
r=1

M<n<M+N
In some application the bound iDL {2111) is quite satisfactétow-
ever, if we are inserted in better estimates we need applg fi@ctive
tools in the proof.
In order to see some necessary conditions for having a deaetst
of the form [Z.4D) first note that ¥, = 0Oanda, = 1forM <n< M+N
then the left hand side is at ledist(x;)|> = N2, so that

AN, 6) > N. (2.41)

Next, sinces is invariant under a translation of the sgt. .., xg by
any givenx € R, (Z40) would also simply that

R
Z U (% + X)*> < A(N, 6) Z lan|® forevery xe R.  (2.42)
r=1 M<n<M+N

Integrating this with respect tg over an interval of length 1 and
using [I.2ZB), we see that

R

1
R D =) [W0e+0fdxsag) Y leol
0

M<n<M+N r=1 M<n<M+N
(2.43)
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Therefore from our examplE{ZI33) of equally-spaced pdoitsws
that
A(N,6) > 671, (2.44)

Furthermore, Bombieri and Davenpdrt [3] have given exasfotam
which one gets
ANN,8) > N+61-1 (2.45)

These remarks can be considered as negative ones.

In the positive direction the following result, due to Moatgery
and Vaughan(]2], leaves only a small gap when compared {n#)2
SinceN is usually large in applications thisftirence in minor.

Theorem 2.3. Under the hypotheses of TheorEm 2.1, we have

R
2P <(N+6D ) fanl (2.46)
r=1

M<n<M+N

(In what follows we assume th&> 2 (cf. (Z20)).)
Their proof uses the principle of duality due to Hellingereplitz,
namely that for aiRx N matrix (c,,) with complex entries and a constant

A N R R
DD cnvilP<AY M Vv e C (2.47)
n=1 r=1 r=1
implies that (and is implied by)
R N N
Z | Z Cran|2 < AZ |Wr|2, Yw, € C (2.48)
r=1 n=1 n=1

and the following extension of Schur’s result regardingbEit’s in-
equality (Montgomery and Vaughan [1]):

Lemma 2.3. Under the hypotheses of Theorem 2.1, we have

R

R
1> > wiscoseér(x — xs) <57 ) vy eC. (2.49)
r=1 s= r=1

2rp=
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Proof of LemmalZ3. First we can impose the normalization condition
R
Z U2 =1 (2.50)
r=1

Also we can assume, since the double-sum[In{2.49) is a skew-
hermitian form, that theu) which makes the left-hand side there maxi-

mum satisfies

Z Ur COSecC fr(X — Xs)) =idus, 1<S<R (2.51)

r=1
r£s

with some (real)l. Thus it sifices to show (undef{Z50) arld(2.51))

that
<6t (2.52)
38

Further, we can assume that all thés lie in the interval (0,1] (with-
out any loss of generality).

We have, by[(Z15) an@1{250),

R R
A2 =3 | Y urcosecf(X — X)) =
s=1 r=1
R R R
= 2, X X Ulg COSEC fr — Xs)) COSec k(% — Xs)) = (2.53)
s=1r=1t=1
r£st#s
=21+202
where
R R 5
Y1 =212 lul? cosed(n(x — Xs))
s=1 r=1
r£s
and
RR _R
Yo =2 X Ul Y, cosec(X — X)) COSEC £(X — Xs)).
r=1t=1 s=1
r#t S#I
S#t
(2.54)
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Using the identity (ifR > 3-for R = 2 the inequality[[Z.83) below is
trivial, because, thel,, = 0)

cosech; cosed, = cosecf; — 6)(cotd, — cotd,),if0,10:(01 — 62) # 0.
—T < 01,062,600 — 60> <,

we see that
Z - Z - Z (2.55)
2 3 4
where
R R R
23 = 2 2 Ul cose€r(X — %)) X cot(m(X — Xs))
r=1t=1 s=1
r#t S#r,S#E
and (2.56)
R R R
Ya= % Z rU COSEEn(X — X)) X COtm(X — Xs)).
e oy
39 Denoting
R
by = Z cot(m(X — Xg)), 1<r<R (2.57)
s=1
S#Er
we will have
R R
Z Z Z Wik cosega(x XD - ), (258)
r=1 t= 31
r#t
with

Z i i UrUg cosect (X — X)) cot@r(X — %)) = Re Z . (2.59)

31

Now, from (Z58) and{Z.15), we obtain

R R
D>t => b =i1 ) bjul (2.60)
3 31 r=1 t=1
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Treating)., of (Z.58) similarly, we also get
)IEDIND 109 IEES IR L
3 31 4 41 41 31
so that, from[(Z.85) and{Z.59). follows
> =-2Re) . (2.62)
2 31
Hence

R R
D127 0> (ulPl+ )l cosed(n(x - %) cos)(x - X)),
2 31

r=1 t=1
r#t

(2.63)
which yields in view of symmetry, by (2.53) anld (2154),

R R
AP < > D (1Url? cose(a(x — x))(L+ 2 costr(x —x))). (2.64)

r=1 t=1
r#t
Observing here that sitnf) = sir?(x||6))) and |cos@d) =
| cosfr]|0]))| (for any reald) and employing the inequality
coseé (1 +2cosd) <392 for0< 6 < g (2.65)

we obtain further

R R

AP <3072 Y el ) Ik = x> (2.66)
r=1 t=1
t#r

Since the value of the inner sum here is unaltered wware trans-
lated by integers, we can arrange, for any gixentranslates of alk;'s

40

. . 1 1 . .
(t #r)tolie in the interval & — 5o Xt 5). Then the inner sum if.(Zb6)

is easily majorized, because @f(2.10), bf]ﬁ(éj)‘z. So (on recalling
=1
(Z20)) holds

AP <6r2672 ) jP=5" (2.67)
=1
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This is [Z52) and thereby LemrhaR.3 is completely proved.
Now we are in a position to deduce TheorEml 2.3 frém {2.47) to

Z49).
Proof of Theorem[Z3. Taking

Cm = &((M + n)x), Wy = ap, (2.68)
it suffices for a proof of[{2.46), in view of {Z17) and (2.48), to show
that
N R R
Z | Z CnVe 2N + 671 Z v [2, Vv € C. (2.69)
n=1 r=1 r=1

Expanding the left-hand side here we obtain from the dialgenas
the contribution

R
N> w2 (2.70)
r=1

The remaining part amounts to

R R
DL DV D en(x - xs)), (2.71)

r=1 s=1 M<n<M+N
r#s

and the inner sum here is

SiE(M+3)(X —X5))-e((M+N+)(x ~Xs))) cosect(x —xs)). (2.72)

41
We apply [Z.2B) twice with the choices

u = vie((M + %)xr) andu; = Vie((M + N + %)xr). (2.73)

Then, because of the fact%rin Z-2), we obtain that the contribu-
tion Z_7) is

R
RN (2.74)
r=1
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and this in combination witH{2.¥0) yields (2]169).

Montgomery and Vaugharl[2] have also obtained a more sophis-
ticated form of the large sieve, which has turned out to becaxtly
powerful in arithmetical applications. The weights atedere enable
one to take care of the irregular spacing of Farey fractiénTleeorems
23 andZb below).

Theorem 2.4. Under the assumption of Theor€éml2.1, put

Or = msin||xr — Xgl|. (2.75)
S£r

Then
R 3
DN+ D el (2.76)
r=1 M<n<M+N

The proof is very similar to that of Theorem R.3. The esséntia
change is the following version, involving s, of LemmalZB (Mont-
gomery and Vaughanl[1]):

Lemma 2.4. Under the hypothesis and notation of Theofen 2.4, there
holds

R R R
_ 3 _
| E E UrUs cosedn(X — Xs))| < 5 El lu %67, Yu € C. (2.77)
r=

r=1 s=1
r+s

Here we shall only conclude Theordml2.4 using(P.47), {2a41)
@11).

Proof of Theorem[Z4. Now we put, instead of Z.68), 42
K
cm = (N+567) 26((M + N)X;), Wn = an. (2.78)

Then the diagonal terms, from the expression on the lefCaa)?
contribute

R
3 1y-
NN+ 557wl (2.79)
r=1
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and the remaining part is

R

R
3 41— 3 .41
DI UIN+SED) TN+ 5602 D en(x - xg). (2.80)
2 2
r=1s=1 M<n<M+N
r£s

Again the inner sum is given b{Z{Z172). Now we apfly (2.77)cavi
with the choices

3 1 1 3 1 1
U = V(N + 56,‘1)‘5e((M + E)x,) andu, = (N + 56,‘1)‘ie((M +N+ E)x,).
(2.81)
1. . .
Then, because of the factarln EZ-2), we obtain that the contribu-

tion (Z80) is

NIl w

R
<5 > PN+ 25;1)-15;1. (2.82)
r=1

Now, this together with[{Z19) proveE(2147) with = 1 for our
choice [Z7B) ofc;n. Therefore [Z.48) with the above choi¢e(2.78) of
w,, yields [Z78), thereby proving Theordml2.4.

Let us now specialize again, We assume Qat 2, because the
theorems that follow are trivially true fd@ = 1 as before (cf.[[Z19)).
Take

xrzg,lsfgqgQ,(f,q):l, (2.83)

so that we have (cf. ((ZB7)), for any two distinct Farey fiats$ of

) 11 1
- —llZz2=m2z2 =2 = 2.84
qa qll gy " aQ Q2 (284
which shows that in Theoref2.3 and Theolem 2.4 the quan(tié
and g1Q2 are permissible lower bounds férand ¢,, respectively.

Therefore we obtain from these theorems

Hf t

Theorem 2.5. For any complex number,aput

U= > aeny. (2.85)

M<n<M+N
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Then
RN 2 2
DU <N+ > Jadl (2.86)
0<Q ¢=1 q M<n<M+N
and
Z(N+§qQ)‘1i’IU(£)I2< Dok (287)
5 s . :
a=<Q =1 M<n<M+N

Finally, returning to the beginning of the this chapter,,i.e

1 if nevy,
= 2.88
& {O if n¢y, ( )

whereU(x) = T(X), we note that Theorei 2.5 contains, with respect to
&3), the following

Theorem 2.6. Lety be a set of S integers from an interdl, M + N]
and put

T(x) = ) &ny. (2.89)
ney
Then
q ’ 2
DYTE)| <(N+Q)S (2.90)
g<Q I=1 q
and
N+ o ‘1q’T£25 2.91
2 (N+30Q97 ) TQ)| <8 (2.91)
0<Q =1

NOTES

The (explicit) qualitative version of{ZB9) occurs for thest time
in Bombieri [1] with the factor 7 maxy{, Q?). His method may be con-
sidered to be a refinement of Linnik’s, 44
An improvement of Bombieri's factor as well as the extendiom
Farey fractions to well-spaced points, i.€.,(2.40), is tu®avenport
and HalberstamJ1]. Their substantial improvement of thehame is
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based on a convolution df(x) with a suitable auxiliary function, an
idea introduced by Roth]2]. Subsequent developments andiskions
along these lines were given by Bombieri and DavenportB]@dnd by
Liu [I]). The paper of Bombieri and Davenpdri [3] containsaavarious
investigations under fferent assumptions about the relative order of
ands. In particular, they have proved the only result that stipersedes,
under certain conditions, the Theorerm3;2hamely

A(N,6) < 671+ 270N362 if N6 < (2.92)

Al

which is superior to{Z46) ifN6)? < .

The best general result known to date, Thedrem 2.3, is duetd-M
gomery and Vaughanl[2]. They have pointed out (cf. Montggnaed
Vaughanl[l]) that it is possible to replace the faatot in (Z29), and so
also in [Z25), byt—cfor somec > 0. Indeed, from the remarks subse-
guent to[[Z.66) we see that the inner sunfin{R.66) can be mecisply
estimated as follows: Lel; andJ, denote the number of translates of

. . 1 1 )
X{s which lie in the intervals X, — =, %) and &, x + E] respectively,
so thatJ; + J» = R— 1. Then the above-mentioned inner sum is at most

(cf. 10))

A, 2, 2 du T duy
R R N T
j= =1 I+l

_ 2 (R+1) 2 4 2o 2 8¢-1
=9 (ﬂ (J1+1)(J2+1))<5 (ﬂ —m)ﬁ %5 _§5

(2.93)

on usingR > 2, which implies in view of [Z22) thatR + 1) < ;6‘1.
Now, on combining[(Z.86)[(Z93) and{2150) we obtain

8 4
MP<6?- =6t <@t - ). (2.94)
T T

, 4
Thus one can take, for instanees — |n the above remark. How-

ever, according td{Z.45), it is not p033|ble to obtain thgeseeral esti-
mates with any > 1. The essential tools for the proofs of the Theorem
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23 andZ U were developed in Montgomery and Vaughian [1Moht-
gomery [6]). Earlier similar approaches had been discusstt work
of Elliott [[7], Mathews [1], [2], [3], and Kobayashi]1].

An intermediate result of Bombieri{[4] and p. 17 bf [6], ndgne

AN, 671 <N +2572, (2.95)

is based on Theorem™®.1. Under the assumption of Therdncé@i,
sidering the sunZE'N ae(nx) (cf. LemmdZR) instead df (x), he takes
the Hilbert space? of sequences = {an} with (a,8) = X% anB,
lall? = ¥, |anl?>. Choosing

anif [N <N,

e(—nx) if INf<N
LeN,f=< | _ ) Nelnya2 ,
Oif Inl > N,¢r = {(—=—)"“e(-nx) fN<n<N+L
0 if In|>N+L,
(2.96)
one gets

N N
2= lanl (f.e) = > ane(n¥). r=1.... R (2.97)
-N -N

Bombieri proves thatforeaah 1 <r <R

72 1

i (2.98)

R
Dl el <2N+ L+
S=1
Now (Z.9%) follows from Theorefa 0.1 or frori{0]59), by taking 46
L=|(=]. 2.99
H 299
1
@I0) : orIX|| := [x =[x+ E]|.

43) 43) : cf. Montgomery and Vaughan [2].

Z41) (Z438) : cf. Hardy, Littlewood and Poly&ambridgeTheorem
288.
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@&31) : cf. Mirsky, L.,An Introduction to Linear Algebi@xford),
p. 388 Theorem 18.5.

Z83) : We rewrite[[2.85) in the more convenient form:

3sirf6 > 67(1 + 2cosd) for Os@sg (2.100)

Now, from the series expansion of giland co®, we have

. 1 1 1
sinf > 6 — 693’ cosf<1- 592 +—@*for0<6 < (2.101)

T

24 -2

since M)~16™ > ((M+ 2))~1e™2 if m > 1 andé? < 6. This gives

(ZI00) on verifying

62 6> &

1- =2 =1+2(1- =+ =—).
A-gr=1ral-7+37)

(Z78): In connection with this venfiective form of the large sieve

we have in Montgomery and Vaughan [2] the remark that it mathbe

(2.102)

3.
the constantz in 1), and consequently also In(2.76), can be re-
12+ V78

placed by 1. Actually, their work contains the const (=
T
1.45282---) (and some slight improvements) instead of the aforemen-

tioned constang (cf. notes of Chaptdnl 8 unddr (8l36)). For a previous
result of this type, see MontgomelV [5] (Therefbrd 4.1). Atfiweighted
form of this sieve occurs in Davenport and Halberstam [1]&t$o Dav-
enport [1] Liu [1] and Montgomeny [5]. (Theorem2.4).

By comparing the results of this chapter with those of thevipres
forms [Q.54) gives in ChaptEl 0, itis natural to ask the felfay question
(Erdos [3]) Consider (in the notation of dH. 0)

p-1
Y 3 TR < NS, (2.109)

p<Q I=1

where now only a ‘negligible’ proposition of terms remain the left-
hand side. Then are there better results Gg(N, Q) than those for
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C(N, Q), (cf. Z32)) or, more specifically, can one expect a gain of a
factor log Q here? Erdos ]3] (cf. Erdds and Rényi [1]) proved that if
Q < VN this is true foralmost allsetsy. Wolke [2] (cf. Wolke [1])
has proved a slightly weaker estimate which holds also faréngen-
eral) U(x), (cf. (Z9)), and forall setsy, but under the severe condition
N < Q(log Q)° for somes > 0. On the other hand Erdds [3] (cf. Erdos
and Rényil[l]) has shown th&y (N, Q) is of the same order of magni-
tude asC(N, Q), if Q is of a higher order than/NlogN. For further
literature in this connection, see Ellioff [5[)[7]. The wéiss generally
speaking, that (except under special circumstances) weotdmave a
better estimate i {Z.ID3) than that fbr{2.4).

Another attempt, at sharpening the large sieve, is due tgd3sr
([Z]). He proved that for any se? U N

ZZ U= >| <@Q2)N+@Q2)( », laP) (2104)

0<Q ¢=1 M<n<M+N
ge2

from which saving is made whef is a sparse set. (Note also that here
U occurs to the first power on the left-hand side.)

In the other direction one may ask for general lower bounds, f
instance in[[Z103). In view of{0.b3) such results would mézat
‘general sequences cannot be too well-distributed in arathsarith-
metic progressions’. The first result in this context is giby Roth [1], 48
For further literature concerning this question, we refeRoth [3], [5],
Choi [1], Montgomery[[5] (Chaptdd 5) and Huxley [5]. WolkeJJi(cf.
Wolke [9]) has stated the explicit lower bound (in the natat{I.29))

ZZ U= )I2 >y a2, A

0<Q ¢=1 0=<Q M<n<M+N
qe2 ge2

2
for any set.2 c N.

(2.105)
However, [Z105) should rather be considered as a reducfitre
expression on the right-hand side to the large sieve[[cZ3}R.






Chapter 3

The Large Sieve for
Character Sums

THERE IS another version of the large sieve which concerrb thie 49
averaging of character sums (cE—{3.2) below). In this chapte give
three such results which are readily obtained from Thedréin ¥e
prove first

Theorem 3.1. Let Q € N. For any characteyy mod q and for any com-
plex numbers g satisfying

a, =0, unless(n,g) = 1v¥q < Q, (3.2)
write
X0)= ) aw(n. (32)
M<n<M+N

Then, we have

Yo O MFXP (N Q) Y el (33

g<Q x modq M<n<M+N

SN+ 3007 Y rwPxEs Y ek (@34
2 ¢(0) - ’

9<Q x modg M<n<M+N

49
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50 3. The Large Sieve for Character Sums

and

Zlog% Z XCP<(N+Q) > lal,  (35)

9<Q x modq M<n<M+N
wherer(y) is defined by[(1.90) and

DS (3.6)

x modq x modq
X primitive

Remark. The condition [[311) is not usually a severe restrictioncain
in applications either this fulfilled or the extra terms #aggin the other
case are separately estimated to be small.

Proof. First of all, for (n, q) = 1, it follows from [I.61)

q
D) = D AOaenD), (3.7)
=1

which holds, by[(311), also fon(q) > 1. Now [3.T) gives
q
"X = Y AOU() 3.8)
(=1

whereU(x) is defined through{219). Multiplying each side Bf{3.8) by
its complex conjugate, summing over all charagtenodq and using

(@C51) withu, = (g). we get the identity

ﬁ > ITCV)IZIXCV)|2=Z’IU(£)IZ, (3.9)

q
x modqg =1

(cf. Bombieri and Davenport]2]) and further use of this inebhenTZb
yields [33) and[(314).

Next, for a charactey modq let f be its conductor, and lgt be
induced byy* mod f. Then by the assumptioh(8.1) (dE_(11.59)),

X(x) = X(x"), (3.10)
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and using LemmB1l.1 as well as

12(r)
Sﬁ(f)(;) (r))>logxfor x> 0, (3.11)

(r,f)=1

we obtain, in our notatior.(3.6),

T aco = 3 moda TERIXO)R = Lreq o Sregyt L0 3
{ 4<Q (q) < modg f<Q () (rfgifl o(r) <y modf

IXO)P 2 10109 F X5 moar XM
(3.12)

Thus [35) is a consequence bi{3.3).

Regarding the quality of the results in TheorEml 3.1 we nod, th
in view of the identity [3P), the estimatds{3.3) abdl(3.A eapable
of improvements only along with sharpening of Theolen 2.5 tie
other hand, the statemehi{]3.5) leaves a gap (even throaghetuality
@@11) is capable of an asymptotic formulation. m|

In the case when only primitive characters occur in bbif)(argl 51
@@:3) our condition[(3]1) can be removed to prove the next

Theorem 3.2. For any charactery mod f, re N and for arbitrary com-
plex numbers g set

X() = ), awo () (3.13)

M<N<M+N

where ¢(n) is given by(T.Z9) Then, we have

. Z WP <N+Q) D lanls  (314)

rf<Q "0 x mod f M<n<M+N
(r.f)=1

Z(?%’ (rf) Z X< >l (3.15)

x mod f M<n<M+N
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Remark. Observe that, under the conditidn{3.1), we hexa) appear-
ing in the non-zero terms of (3113) aé) and so,[[3.14) also leads to

@3) in view of [3IP).
Proof. We have for any € N, by (T.51),

1 4, L2
= > mea)\ -

xmodqg ' (=1

g ¢
’ IU(a)IZ- (3.16)
=1

Now if y modqis induced by* modf (f conductor ofy). we have,

on using [.68) and{1.59),
g=rf,x(€) =x*(¢) for (¢£,q) = 1. (3.17)

Therefore, summind{3.16) ovgr< Q gives

*

g ¢ 1 g ¢
"U)P > — 1> "Y(OU(=)P. (3.18)

For any primitive charactey modf, q = rf, (r, f) = 1 and any,
(¢,9) = 1, on writing

C=2r +uf, (L) =1, (ur) = 1, (3.19)

we will have
q f r
)y ’)?(f)U(é) = Y aXxnNT’en(4+4)=
=1 M<n<M+N =1 u=1

f f
=x(n X anZ;)?(/l)e(n%)Z;e(n’r‘)=)?(Y)TC€)Xer),
et

M<n<M+N A=
(3.20)

because of{{1.62) and{1129). Sincef() = 1, we have (by[{1.42)) that
ly(N)| = 1 and further by LemmBl.1 that(y)? = f. Thus [32D) and
@I8), on using[(2.86), prove the pdif(3.14). The proofdLy) is the

same in the before summing owvgiin .18) we need multiply by the
factor (N + qu)‘l and at the and emplof {2187) instead [0f (2.86).
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Since obviously
ci(n) =1, (3.21)

we obtain, by retaining only the parts with= 1 in the expressions
occurring on the left-hand sides of Theorgm 3.2, as a péaticase O

Theorem 3.3. For any charactery mod g and for any complex humbers
an, define
X0) = D, aw(n). (3.22)

M<n<M+N
Then, we have

Do o XOPSNA@) Y ol (3.23)

0<Q xmodq M<n<M+N

and

T t3@ Y Kls S ik @24)

0<Q x modg M<n<M+N

NOTES 53

The version of the large sieve discussed in this chapterredon
the first time in Bombieril[1] (see, however, Rényi [2]; EE3d)). Sim-
plifications of the proof and improvement of the quality oé tresult
were made by Davenport and Halberstain [1], who also obtétimee
the first weighted form. However, as has been mentioneckearlid can
also be seen froni{3.9) and (3.18), the results of this chapeemore
or less direct consequences of those in Chdpter 2.

A first result with conditions[(3]1) was given by Bombieri aDév-
enport [2] (and for[(315), see Bombiefil [6] (Théoreme 8Y)ere they
also prove a generalization df(B.3) which, via Theofen Z8en the
assumptions of TheorelnB.1, becomes

> ﬁ P DY anX(n)|2S(%+l+Q2) > lal

a<Q x modqg M<n<M+N M<n<M+N
(a.k=1 n=¢( modk)
(3.25)
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wherek e Nand ¢, k) = 1.
@11): By Chapterlll. We have that, fox > 0,

f 1 (r) 1y-1 _
mz( r.f)=1 tp(f) Hp\f( - _) 2( rf)xlﬂr np\f(l ) -

= Tpr(1+ 232 P) 2 e 5 Tloe(L+ 5520 ) = Snew > o,
(3.26)
onusing, forx > 1,if N < X< N+ 1,

Z Zfdt log(N + 1) > log x (3.27)

n<x n<N

(cf. van Lint and Richert1]).

Clearly, analogous to the derivation f{3.5) frdm13.3) cae ob-
tain a corresponding result frofi(B.4). In the special agse A(n),
this has been done by Montgomery and Vaughan [2] [cf.16.29))

The extension to sums involving Ramanujan’s scifm), namely,
TheorenZ3P which contains Theor€ml3.3, is due to A. SelljBlgdf.
Bombieri [€] (Théoreme 7A)).

We obtained[(3.23) froni{3.14) by keeping only the part with 1.
On the otherhand, by taking the part corresponding o1, we get

Zﬁlqﬂ > ancq(n)|2<ZZ U(= )|2 (3.28)
M<

=<Q n<M+N g<Q ¢-1

which should be compared with Wolke’s resulf{{Z1105)).

The main importance of Selberg’s generalizatibn {|3.14)us tb
its application in proving density theorems for Dirichgel’-functions
(cf. Chaptefb, 2.). There the strongest known results (cfnfgomery
[8], Motohashi [11] and Jutile_[12] are based on the follogvstrinking
identity again due to A. Selberg:

L(S IM(S x> ) = g S2ue (0) Lo éa, (v 1= x mod )
for any set oy € C, &4 = 0(2).

(3.29)
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where
M(S . 01) = Zx(n)fnwr(n) [a- X(p) (3.30)
Pl 7 (@)
Yre(n) = p((r, n)e((r, ), (3.31)
and
u(r) #0. (3.32)

Actually, (313) is employed in the weaker from

r)f 2 2
> EOES S a0 Y faf”
rf<Q plr xmodf M<n<M+N M<n<M+N
(r,f)=1
(3.33)
55
In fact, the expression on the left-hand side[af (B.33) ispdue: of
the sum in[[3.14) corresponding to squarefrise since (under(3.32))
one has one has readily, iy {1.32),

6 () = Z r (r n)

= pu(——=)e((r,n)) = u(r)gr(n) (u(r) # 0).
dn (r n) d (r, n)

(3.34)

Motohashi [14] has in turn shown th&f{3133) can be gen@dltm

give the foIIowmg estimate: Leg;modfj, f; < F(j = 1,...,J), be
distinct primitive characters. Then

2 f.
ST AN S e < (N + OIFRI0gFR) > ladf?

r<R j<J "D(rfJ) M<n<M+N M<n<M+n
(fj.n=1

(3.35)
which, for suficiently smallJ, improves upon{3.33).

Slightly more general forms than those of Theoren 3.1 3.3
(namely, without the restrictioli.{3.1) or removing the liation to sum-
ming over only primitive characters) are possible but atdkgense of
the quality of the estimates (cf. Bombielri [1] and Davenpord Hal-
berstam|[L]).

For an estimate of averages involving real characters sagyjutila

6],
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Finally, there are result concerning averages of chamaems,
which are useful when combined with large sieve estimatesome
applications. They can be obtained without employing tesafl Chap-
ter[@ (cf. Montgomeryllb] (Theorems 6.2 and 6.3)). We mentaman
example, (Montgomery [5] (Theorem 6.2)):

"E) Y ek o

M<n<M+N
(na)=1

D X@P < e+

x modqg

For a proof, splitX(y) into 1+ parts of lengthg (introducing

additionsa,’s = 0, if necessary). For each pai(y), say, it results from
(@Cx51), with obvious appropriate choices fgr that

DL XP=¢@ ) lanl, (3.37)
xmodq ne.%
(ng=1

where.# denotes the range aofin X;(y). Now (3.36) following on us-
ing Minkowski's and Cauchy'’s inequalities. Likewise, buittva more
complicated yet still elementary, reasoning (Montgom&jy(Theorem
6.3)) one obtains

D IXEP <+

x modqg

")y e e

M<n<M+N
(ng)=1

where for eachy modq, y* denotes the primitive character which in-
ducesy.



Chapter 4

The Large Sieve for Dirichlet
Polynomials and Dirichlet
Series

STILL ANOTHER from of the large sieve,as has been noted Dpodn 57
can be obtained with respect to Dirichlet polynomials

N
Z apn™s,s=o0 + it (o,treals )a, € C, 4.1)
n=1

as an application of Lemnia2.1.

Theorem 4.1. Let To, T(> 0) and t be real numbers satisfying
T0=t0<t1<---<tR<tR+1:TQ+T, (42)

and put
‘= min - 4,
0 0grgRtr+l b (4.3)

Then, we have

r=1 n=1

< (T+4N logN)(log N+6™1) Z lanl?, Va, € C. (4.4)
n=1

57



58 4. The Large Sieve for Dirichlet Polynomials...

Proof. By @3) and[[4B), we havér(+ 1)6 < T and so we can suppose
. 0 )

thatN > 2. Also, by [4.3), the mterval%r - E’tr + 5,], 1<r<Rdo

not overlap. Therefore, taking in Lemipal2.1

N
fW=> an™u=t(1<r<R (4.5)
n=1

and proceeding as i {2128), we obtain

To+T To+T To+T
Z|f(tr)|2<( f ()P’ f 1 (OPdy? +671 f f(OPdt (4.6)
Now
To+T To+T
f |f(t)|2dt—TZ|an|2 S awdn f Sytgt. @.7)
mnl

58
The second sum, on noting that

In—m|

max(, m) (4.8)

‘Io n‘>
gm_

and using the arithmetic-geometric inequality, may benestied by

|aman| 2 (a2
(Iaml* + 1anl?). (4.9
mn1||09n| Z ,In— ml
m#n m;&n

Due to symmetry irm andn (of these expressions), it is enough to
consider the factor d&,|? on the right-hand side. This equals

D Z — m—Z > —<2IogN (4.10)

1<mkn 1<k<n 1<k<N-n

Therefore, the expressian_(B.9) can further be estimated by

N
ANTogN > lan[?. (4.11)
n=1
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Using this in[4Y), we get

To+T N
f If(t)2dt < (T + 4N logN) ) |anl>. (4.12)
To n=1

Clearly, for f” instead off @12) holds with an extra factor of I8¢\
on the right-hand side; in otherwords, we have

To+T N
f [f(1)|2dt < (T + 4N log N) Z ENG (4.13)
To n=1

Now (Z:3) follows from [45),[(Z12) an@{413).

For applications in the direction of the classical meamugaheo-
rems for the Dirichlet series, the powerful tools of Montgeasn and
Vaughan([[l], nameh{Z.49) and{2177), can be remodellededdllow-
ing Lemma.

Lemma4.1. LetA4,..., Ar be distinct real number and set
A:minjd; — A4 (4.14)
r#s
and
Ar . msinl/lr - /ls|. (4.15)
S#r
Then
R R u i R
‘Z D= <aat Y P vur e C. (4.16)
r=1 s=1 A = As r=1
r#s
and
R R — R
uru 3
‘Z > = <sr ) Az vu e C (4.17)
— S=1 /lr - /ls 2 1

59



60 4. The Large Sieve for Dirichlet Polynomials...

Proof. Let e > 0 denote a small number to be suitably restricted below.
Put
X =€e(1<r<R). (4.18)

Then, we have in the notation ¢f{2110) ahd(4.14), for diiisiently
smalle,

r#+s s
and, similarly in the notation of {Z¥5) anid{4115).
5 =eh (L<r<R). (4.20)

Multiplying both sides of[[2.49) and{ZI77) i and further using
E13), [419) and4.20), we obtain Lemmal4.1 as a consegquai

e 1

S —x)) ~ (=19 (4.21)

O

We obtain almost immediately from Lemrial4.1 the following

Theorem 4.2. Under the assumptions and notation of Lenima 4.1, we
have

T R R
. 2
f | aéﬂrt| dt=2(T +6ra ™) Y jal?, vaeC.  (4.22)
e r=1 r=1
60 and

T R R
L2
f | > ad | dt=">"lal? @T +36m8Y), Va eC,  (4.23)
T r=1

r=1

where
o)l <1,j=12 (4.24)
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Proof. The integral of the theorem is

AT _ grith-a9)T

R T ' R r R
> aag f é“f‘“)tdtzzT;'ar|2+ DIPI> i(Ar — )

rs=1 e r=1 s=1
r£s

(4.25)
Now application of [4.16) and{Z1L7) with the choices

U = a s’ (4.26)

to the double sum i {4.25) yield{4122) afd(4.23) respebtiv
The most interesting use of TheorEml4.2 is when applieds finatn

#23), to Dirichlet series via Dirichlet polynomials. Tag

A = —logr, (4.27)
we find, by [43),
At<r+d, (4.28)
and so get, by[{423),
T R 2 R
f Dlar ™ dt=)" (2T +30s(r + 1)), 165 <1, VReN.
g o=l r=1
(4.29)
Further, if we impose the condition
D rla? < oo, (4.30)
r=1
we can conclude froni.{4.R9) that the Dirichlet polynomials
R .
Dar (4.31)
r=1
converge in the mean to the Dirichlet series
D ar e Ly(-T.T). (4.32)
r=1

61



62 4. The Large Sieve for Dirichlet Polynomials...

Thus we derive from{4.23) the following important result.

Theorem 4.3. For a, € C, suppose that

(9]

> nlagl? < co. (4.33)

r=1

Then

T () 2 (o)
f Z a.n~t| dt = Z a2 (2T + 36r(n + 1)), (4.34)

T n=1 n=1

where
6] < 1. (4.35)
NOTES

TheorenZlL, due to Davenport, was published by Montgoniry [

Lemmal[4ll, Theorems4.2 add14.3 are due to Montgomery and
Vaughan([l] (Theorem 2 and Corollaries 2 and 3).

&1): Clearly, it is no restriction to have the result ofstichapter
with o = 0. Theorem§412 ari{d4.3: Obviously, it is possible to obtain
with the help of Gallagher's Lemnia2.1 (cEZ{¥.6)) resulisrespond-
ing to Theorem§&-412 arild 3.3, in with the integral is replacga lsum
over a set of well-spaced points.

#&32): For the reasoning leading {0 (4.32), cf, TitchmaisiC.,
The Theory of Function®xford), pp. 386—387.

For a discussion gf(N, T) in the general inequality

T N N
f Y aan P dt<p(NT) D a2 (4.36)
T

n=1 n=1

see Elliott [1].



Chapter 5

The Hybrid Sieve

FOR SOME very important applications to number theory, viigchlet 62
series, estimations of averages of the type

N T
EODS f (5.1)
T

0<Q X'modq

which is a combined version of the forms of the large sievesimmred
in Chapterd13 anfll 4, are of much use. Prior to the innovatioanof
ingenious method of HalasZl[1] there was no method of dgadiith
this question without carrying out at least one of the openat}.* or
f in a trivial fashion. Methods, for the purpose of this hybsidve,
were developed independently by Montgoméily [2], combindteps of
Halasz with the large sieve, and by Jutila [1], who used ahotkbf
Rodosskij with large sieve. Subsequently, a common basibdth of
these was provided by Gallaghér [4] through the introductid new
technical devices (see Lemnias]5.1 5.2 below).
We start with

Lemmab5.1. Let

D(t) : )" c(r)e(v), (5.2)
wherev runs through a countable set of real numbers and thgfiwients

63



64 5. The Hybrid Sieve

c(v)(e C) are subjected to the condition

D ler) I< . (5.3)
Lets andT be positive real numbers satisfying
1
T< —. 4
oT < o (5.4)
Then, for some absolute constagf holds
T 00
[ 1Rt < co [ 1cstHPay (5.5)
-T —oco
63 where
Csy): 67t > ). (5.6)
ly-vi<$

Proof. For a proof of [5.b) we use two results from the theory of Fawuri
transforms. Introduce

ot iflyl<é/2

eR 5.7
0 otherwise ver) ®.7)

Fs(y) : {

so that

Coly) = ), C)Fsly ). (5.8)

In view of (&3),C;s(y) is a bounded integrable function and hence
it belongs toL2(—o?, o). Therefore, by Plancherel’'s theore@; has a
Fourier transfornCs and further, by Parseval’s formula, we have

f | Caly) 2 dy = f 1 Gs(t) 2 dt. (5.9)

Now one has

Cst) = f Cs(y)elyt)dy = 3., c(v) f Fs(y — v)e(yydy =
o0 —oo (5.10)

= %, ceint) [ Fs(x)e(xt)dx = DOFs(t)
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say, on using(5l8) anf(%.2). Also, By (5.7),

5/2 _
Es(t) = 672 f e(xt)dx = S":T(gft). (5.11)
~5/2

Thus [B9) yields

o) 00 T
f | Cs(y) P dy = f | DOFs(t) P dt < f IDOFs®) Pdt (5.12)
—00 —00 -T

because of(5.10). Fdtt < T, we use[[5.11) to note (cf(3.4)) 64
A sin(@oT) 1
IFs(t)l > 5T 2 Vo (5.13)
say, so that{5]5) follows froni{5.112). m|

Following Gallagher we use Lemnia’b.1 to prove (Gallaghir [4]
Theorem 1).

Lemmab5.2. For a, € C, let
Z la, < co. (5.14)
n=1

Then, forT > 1,

[ee)

T [es]
f|2ann—it|2dtsclT2f| Z an|2d—XX (5.15)
T

n=1 0 x<n<xel/T
holds with some absolute constant

Proof. In Lemmd&.]l we choose

1
V=g log n, c(v) =a,, NeN (5.16)
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and note thaf{5l3) is satisfied becausd af {5.14). Furtrepw

1
o= 2er (Iogx+ —) (x> 0), (5.17)

so that[[5.4) is fulfilled and the condition of summation[i)5eads

0 0 1
—§<y—v<§@Iogx<logn<?+logx. (5.18)

Therefore[[55) yields (with the above choice)

T
> 2
f|Zann 't| dt<c0f27rT2 | % (5.19)
g o=l x<n<xel/T X
This completes the proof of the lemma. o

Now we shall give two applications of Lemrhalk.2 for the avesg
of the type [B1).

65 Theorem 5.1. For a, € C, let
Z lan| < co. (5.20)
n=1

Then, forT > 1,

Z (e))

a<Q

Z f| Z an)((n)n_lt| dt < 2¢; Z:(TQ2 +n)aP¥Q € N

xmod g 7
(5.21)

holds with the constart; of Lemmd&.D.

Proof. We use LemmB&l 2 with,y(n) instead ofa, and then apply

*

D % D (5.22)

a<Q X modqg
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to (the resulting)[[55). Then, we have for the squaredesgion on
the righthand side of(5.15), in the notation of Theofem B843= [X]
andN < x(e¥T — 1) + 1 so that using{3.23) it follows that

.
q < S >
q;@ 2, f@amn)n ‘ot

Xmodq_-l-
2 s 2 1 2, dX
<aT? [ (Q%+1+xET - 1) Z 2nl?) . (5.23)
0 x<n<xet/T

Herein, the factor ofa — nj2 is

n n
[ T2(Q% +1) f d—XX + Tt - 1) f dx
ne1/T ne /T
2 2,1 _1
=aT(@+1)+aT3e" -1)(1-eT)n<2c(T@+n), (5.24)
where we have employed the estimate
T2’ -1)(1-eVy<2forT > 1. (5.25)
O
Now, putting togethel{5.23) and{5124) we obt&in (5.21).
Theorem 5.2. Let Qe N. Fora, € C, let

Z lan| < oo. (5.26)
n=1
and suppose that
a, =0 unless(n,g) =1 forall q<Q. (5.27)

Then, forT > 1,

* T o) (&)
Zlog9 Z f|2anx(n)n‘it|2dts20121(TQ2+n)|an|2 (5.28)

0<Q q xmodqy n=1 n=

holds with the constart; of Lemmd&.P.
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Proof. We proceed as in the proof of Theoréml5.1 but applying

*

> Iog% > (5.29)

0<Q modq

instead of [5.22). Now the conditioh{5127) permits us to &8) of
Theoren 311 to obtain the same bound a§1n{5.23) for thénbeftd side
of (&28). So the proof is again completed by (5.24). i

NOTES

It is possible to put Halasz's method in an abstract form fébnt-
gomery [5] (Lemma 1.7) and Huxleyl[7] (p. 115)). Gallaghed &om-
bieri ([3]) have observed that Bellman’s inequalify {0.88htains both
the large sieve and the idea of Halasz.

All the results of this chapter are due to Gallagheér [4]. @leas-
timates corresponding to the other results of Chdgdter 3 eatiebved
in the same way. For general results conforming to the thentlei®
chapter and also for more sophisticated forms of the hybedes see
Montgomery [5]. Huxley [[F], Gallaghei [4], Forti and Viol&[] (cf.
Bombieri [B] and [[6] §5)), Huxley [9], [11], Jutilal[6] and Huxley [12].

(&4): This condition can be relaxedd® < 1- e for anye > 0 and
then the constanty of (5.3) depends, as can be seen from the proof (cf.
&13)), one.

(&3): Since there is not need in applications we do not aiobat
taining the best possible values (for instance, byfizdint choice ob)
for the constantsy andc; in this chapter. However, just for a complete
form of the proof we obtain some permissible values for thesstants.
From [5.IB) and(5]l4) we see that one can take

1
co=(2 S|n§)‘2 <11 (5.30)
Lemma 5.3. As Gallagher [4] has stated, if the,& are irregular,

Lemmd&P is more precise than Theofen 5.1, since in Ldmithé.2
codficients are first smoothed and then squared.
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(&12): The condition (occurring in Theoremsl5.1 5.2)

D lanl < o0 (5.31)
n=1

of this chapter stems from Lemrhialb.1. Further, our conditibiiheo-
rem[4.B, namely

(9

Z njag|2co, (5.32)

n=1

need also be satisfied; for, otherwise, the theorems of kaipter hold
trivially true. Also, it may be noted from the examples

L ifn=2"meN
=—— anda,={"™ ’ ’ 5.33
& nlog(n + 1) & {0 otherwise ( )
that the conditiond(5.81) and (5132) are independent.
&19): From[519) and(5.B0) we see that
€ = 21Co < 7. (5.34)

(&.23): For a proof of[{5.25) if diices to verify, by dierentiation
and the use otY* > 1 + ;((x > 0), that the functiorx(1 — e /%) is
decreasing ix > 0 so that we have

X(eY* - 1)[1-e ) = (x(1-e¥)%e* < (e-1)(1-e71) for x > 1,
(5.35)
which gives the upper bound IE{5]25) because

(e- 1) < 2e. (5.36)






Chapter 6

Applications of the Large
Sieve

THE SIGNIFICANCE of the large sieve is due to its usefulnesgards 68
the solution of important problems of number theory. Fos fhirpose
the large sieve is employed in two ways; namely, in provinguits
which have number-theoretic consequences of depth andeoatlier
side, for direct applications to number theory. We shalkddfie dis-
cussion of the (latter) arithmetical version of the largevsito the next
chapter and confine ourselves here to a brief survey of tloeefaen-
tioned) indirect applications.

1. Moments of the Dirichlet’s L-series

In this section we mention the applications to the momenthef
Dirichlet’s L-series. For the historical introduction to this topic wkere
to Montgomery[[5] (Chaptdr_10).

Gallagher[[1] has shown that the large sieve (in its versid@@hapter
B) can be used to prove

Y LG it < @Tg QNS T T 22 (6.1)
4<Q xmodq

Montgomery ([%] (Lemma 10.5)) reduced the problem of estiinga
the mean fourth power df(s, y*), using the work of Lavrik on approx-

71
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imate functional equations for the Dirichletsseries, to an application
of the result[[3:36) and{3:B7), and obtained ([5] (Theor&i))

>0 | Lo +it,xl*dt < o(A)T log*(qT) for o — Sl <log*(@m). T2,
Xmodqu

(6.2)
which may be considered as the average-version of the dzeer&in-
delof hypothesis:

LG +it) < @), 121 (6.3)

Then he proceeds to derive easily ([5] (Corollary 10.2))

.
Z |L(% +it, )()L’(:—ZL +it, x)Pdt < o(@T log®(qT), T > 2. (6.4)
x modq 3

2. Density theorems.

The next important applications of the large sieve (empuloyeits
hybrid version of Chaptéil 5 along with many other ingenialess) con-
cern to the ‘statistical density theorems’ for the zeroshef Dirichlet’'s
L-series and, in particular, of the Riemann zeta functiom.tlk® history

of this subject, see Montgomeiy [5] (Chagdiel 12).
We recall the following standard notation required for tlesatip-

tion of the results of this section. As usual,
N(o, T,x) (oc<1) (6.5)
denotes the number of zeros
p=pB+iy (6.6)

of the function
L(S, x) (6.7)

in the rectangle
c<B<Lyl<T. (6.8)
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Particularly for the Riemann zeta function, i.e+ 1, we use
N(o, T) (6.9)

instead of [€)5).
Regarding the average oveof (&3), for a fixedq, the best known
results at present are the following. We have

@T)7+ @ log’(qT), £ < o < 3

( Montgomery [5]( Theorem 12)),
(@N)z10-7% 2 < o < 4(Huxley [12]), (e > O).
(@T)@90-9) 2 < & < 1(Jutila [12])

Z N(o, T, x) <

x modq

(6.10)
(Here and in what follows, the - constant is understood to depend oro
€ whenever the bound contaiag It is easily deduced froni_{€.1L0) that

<oc<l (¢>0), (6.11)

NI =

> NG T x) < (@) Ee),
x modqg

holds uniformly ino, g > 1 andT > 2. And, for the average overwe
have

(QPT) 2+ log®(qT), L <o < 2
. ( Montgomery [5](Theorem 12))
N(o, T,
2, 2, N T.0 < (Q@T)z516-2+ 2 < & < 4( Huxley [12]), (¢ > 0).
(Q2T)29=) 2 < o < 1( Jutila [12])

a<Qy modq

(6.12)
from which one gets the estimate analogou§fa{6.11)

- 1
DT N Tox) < (QPT)E), 5<0<l(>0) (619
0<Qx modq

valid uniformly ino, Q > 1 andT > 2.
The functionN(o, T) has been investigated more extensively. Esti-
mates of the form

N(o, T) < T?A=90¢ (¢ > 0). (6.14)
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valid in o > «a (for somea) uniformly, are called ‘density hypothesis’.
It is known that the Lindelof hypothesis:

g(% +it) < L+ ) (e>0) (6.15)

N : 1 o
implies [61%), withe = =. For some applications proved under the

assumption of{6.15) it ffices instead to have a result of the tylpe(b.14).
Now the density hypothesis is known for

11
== - 07857 1
o> 7, =078571. (6.16)

and this result is due to Jutilal[9],-110] (cf.112]). in > % still better
estimates are available; namely,
N(o, T) < TAOA-)+e (¢ 5 ) (6.17)
with
37(453 1. % < o < ${(Huxley [11]),
o) = 2.8 <o< 37+f( Huxley [11]),
4(30r-2 37+ V73
3(40(—3)(22—1)’ B <0<l
(Montgomery [5]( Corollary 121)).

(6.18)

Close to the liner = 1, we have (Halasz and Turén [1]) even
1
N T) < T Iog3(m), c>1-6 (5>0) (6.19)
and (Montgomery([5] (Corollary 12.5))

1
N(o, T) < T®7E 0gl " T o > 2. T > 2. (6.20)

N

On the other side, in the vicinity af = E and for (2 o <2 st|II
the best known density estimates are due to A. Selberg ammgcf



75

Montgomery [[5] (Chaptef12)). Far betweeni—%1 and Jutila’s bound
(&18), the best known estimafe{8.17) with

A(o) = 3(minmax 1 1 ) 3 <0< 1
T e Bor-1)+2(1-0) 2k(4o-3)+3(1-0)"4 ‘1(4 )
6.21

is also due to Jutila [10].

The connection between the order/¢§) and the density estimates
has already been indicated (di.{8.14) dnd (6.15)). Indsewhe of the
aforementioned bounds fdd(o, T) can be improved slightly by using72
better estimates faf(s). For general results in this context we refer to
Bombieri [3] (and forL(s, x) to Forti and Violal[1]).

3. Mean-value Theorems of the Bombieri type.

In this section and the next we mention the applicationsplinv
ing number-theoretic functions, which have important egpugnces in
(proper) number theory. As regards the notation almostralstandard
and so we repeat only one of these, namely, the Hurwitz's foete:
tion,defined through

(sw) =Y (+wW)Ss=co+it (¢>1)0<ws<l  (6.22)
n=0

and analytic continuation.

Now, one of the most important applications of the large esieas
been to what we shall call as Bombieri's prime number theorem
(Bombieri [1]): For any given numbed (> 0) there exists a value
C = C(U) such that

X
—_— 2
2 m aphoso- gl e 62

1
q<x2 log=

or equivalently

> max (%?XIw(y,q,f) U Tog 00" (6.24)

1
q<x2 log=
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A result of this kind can be derived, either via estimatesheftype
@&12) or directly, from the large sieve. Bombieri provéd2@ (via
€&12)-type result) with the valu€ = 3U + 23, and the best known

result now is with .
C=U+ > (6.25)

due to Vaughari]6], who obtained this by a refinement of Ghttag [2]
method (-a direct application of the large sieve-) for a pafo(6.24).
Jutila [1] has proved a corresponding result for short iratisr which
states that

x?
Z r;lilgx ({r}nax|¢(x+z a,)-y(xq,0)— go(q) u o9V ,0<0< 1
(6.26)
where 4cH 420 - 1 4c
+ j— —_
B =p,¢€ = 5 Ac 3 (6.27)

in which c denotes a constant satisfying, for the function[in{b.22),
1 . c+6
g(z +it,w) <5 (1 + |t])*™° for everys > 0. (6.28)

For the various (more or less equivalent) forms[of (6.23) @24)
we refer the reader to Elliott and Halberste [2] and Montgon{S]
(Chapter 15). As an example, we mention an interesting erofr
Montgomery and Vaughaml[2] in connection with the followiregult
derived from[Z4)

x modqg

Z Iog(F) Z (N, )2 < N2logN, N > N, (6.29)
as 9—

where (cf. [1.7b))

ol

w(Nx) = ) Ax(n). (6.30)

n<N
Now the term corresponding tp= 1 in (629) contributes already
1 . .
§N2 logN + o(N?) to the sum. Further, iE(s y1) has a Siegel - zero,
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g1 = N9, then|y(N, x1)| > (1 — 6)N and consequently the contribution
from the term fory, in €.29) is atleasty — 25)N?log N so that

> NP < 6N?logN, (6.31)

N1 ymodq

o 2
N°<d< 755

which seems rather unlikely to be true forffsciently smalls.

There are results, analogous[fo($.23), concerning thegeerder
of remainder terms with respect to other number-theoretitctions.
From these results also one has been able to obtain resuéts eduld 74
only be proved earlier either by the use of the complicateuhikis dis-
persion method or only under the assumption of the genethlRie-
mann hypothesis.

Such analogues are now available for the functidyts) (A.l. Vino-
gradov [1], MotohashiJ1],[1I7])r(n) (Motohashi 2], Siebert and Wolke
[1]) and for certain powers of these functions. Certain ptgecial
functions have also been investigated (Siebert and Wolkeé¢e [6.3B)
below, and Wolkel]7]) and interestingly we have now geneesllts
of the type [&22B), based on the large sieve, due to Wolke \{¢dlke
[5], [B]l, Siebert and Wolke[]1]): Under certain conditiorstdmming

from the work of Wirsing) for a multiplicative number-thexic func-
tion f(n), one has

X
Z maxmax] Z )_ﬂ Z f(n)|<U<W,U>o,c:C(U).

n<y
q<x7 log=Cx n= {’modq (N q) 1

(6.32)
As an example, we mention the following consequence _of }j6.32
(Siebert and Wolke ]1]):

Z max max| Z u(n )|fu )U,U>OC C(U).

y<X =y

l |
g<x2 log™© n=¢ modq

(6.33)
Orr [I] (cf. [2]) has derived such a result for the number afag-
free integers (i.e 4?(n)) in an arithmetic progression in an elementary
way. For another elementary derivation of such results fecdifferent
type of mean-value theorems we refer to the next section.
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4. Mean-value Theorems of the Barban-Danport-Halberstampe.

There is another type of mean-value theorem correspondif@Z4)
which deals with the mean-square instead and has a corfsliglenach
wider range of validity (foig):

2

q
3 U Y i q,f)—so); )2 <« for U > 0. (6.34)

X
g<xlog =1 ( ) v (Iog X)U
Such a result was found (in a slightly weaker form) first by kizer
(6] (Theorem 1), cf. [[10] (Theorem 3.2)) and was later redigered
by Davenport and Halberstam [2]. The improved fofm(b.34jus to
Gallagherl[l]. The proof is based on the Siegel-Walfisz tiwoand the
identity (Davenport and Halberstaix [2[1):(]176),

q
’ . 2
;1 W(x a0 - 9D(q)) So(q) DR, (6.35)

X#X0
and an application of the large sieve in its form of Chaflter 3.
Montgomery ([4], cf. [5] (Chapter 17)) discovered a prooff6i32)
independent of the large sieve and also succeeded in afgathie
asymptotic formulae:

QxlogQ + o(Qx+ x?log™" x),

q for Q < x, (for any fixedU < 0)
Z'(xp(x 0.0 - —)% = ] Qxlog x - By Iog
4=Q (=1 #(a) Qx+ AX + o(Qxlog™ x),
forQ > x.

(6.36)

The partQ < x of (&38) is an improved version of Montgomery’s
first result (Croft[[1]).

Montgomery’s method of proof of {6.B6) is based on a deep-theo
rem of Lavrik [1], [4], about the average order of the ermmt in the
generalized twin-prime problem, which may be stated as

DY Amne-20-26-20)| o o) [ 557 = o

a<¥ 20<nsx p>2 2<plq |ng
(6.37)
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and which in turn depends on the method of I.M. Vinogradovtifar
estimation of exponential sums.

Regarding the first party < x) of (€38), Hooley[[5] has shown that7e
one can replace the error term by

AQx+ O(QY4x%* + x?log ™V x) (6.38)

as an application of the (simpler) large sieve method only.

Hooley [8] has also proved, on the basis of the large sievénadet
(of Chaptel(B), the general result of the Barban-Davenidaiberstam
type: Lety be a set of positive integers and suppose that there holds, fo
allU > 0 and all integers, ¢, (for some functiorg(qg, b))

S(x.q,1) := § 1=g(q, (I, q)x + Oy(xlog™¥ X) as x — .
ney
n<x

n=¢ modq
(6.39)
Then
g
D> US(6a.1) - g(a, (1,9 = O(QX) + O(log™ x)
0<Q I=1
for 1 < Q < x (for any fixed U) (6.40)

Combining this with the method of his papEl [5] he derived tha

q
Z( Z Yu(n))? = %Qx+ O(x%log™ x) for 1 < x, ( for any fixedU).
TT

=1 n<x
n=l modq

g=Q
(6.41)
An interesting connection between the mean-value theoodrtise
squared expression and those of the preceding section wesmoBar-
ban [6]. He observed that from a mean-value theorem of the {§Z0)
it is possible to derive in an elementary manner a Bombjgrétresult
for a related function (depending on the parameder Here we shall
present a proof in the simplest case: Let us put

o al) = Y > AMA(), (6.42)

Np<XnNx<x
ninp=¢ modq
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E>(x;q,l N 6.43
2% a.1) :=y2(x 1) - ¢(q) (6.43)
Ei(x0a,l) = N 6.44
1%g.1) :=¢(x0,1) - ¢(q) (6.44)
77 and assume that
(¢,9) =1 (6.45)
We have
q
Ya(xq,1) =Z' Z A(m) Z A(np)
h=1 m<yx M2< VX
ni=hmodg n;=h~1 modq
q
= > u(VX a b (VX g, h) (6.46)
h=1
(hereh™! represent the residue class npibr which hh™* = 1 modq)
and
q
S (v - X[ <|u(vR - VR +log g (6.47)
i 7e)

Subtracting% from both the the sides of{6K6) and usibg(6.47) we
obtain, by Cauchy’s inequality,

Ex(xql) < Z E1(vX g, h)E1(vX g h™)
2(,1;*) {l(v¥) - VX + log g} <

< bz_; E2(VX .b) + 2% (V) - VX + log q
(6.48)
uniformly in ¢ subject to [6.45). Now summation ovgrand the use
of (&34) along with an application of the prime number tlesoin the
form

WV = VR) << V)XM (6.49)



81

give

X X
max A(np)A(np) — < .
s ] 2 2% e - sl < e
gs vxlog~ U+ x Ni< VX< X

MmN2= I modq

(6.50)
Thus we have shown that this Bombieri-type result is an etdang

consequences di(6134).

5. Some number-theoretic applications.

In this last section we merely record a few applications ef phe-
ceding result to pure number theory.

First of all we have the important consequences about thereince 78
between consecutive primes that

Prst — Pn < PoT¢ for n > ng(e), € > 0, (6.51)

with 1
=1-- 6.52
§ 1 (6.52)

whenever there is a resulf{6117) with uniforinvalid in 1 <o <
1 (cf., for the history of this question, Montgomefy [5] (@her 14)).

. . 1 .
Therefore the density hypothesis (8.14) with= > would give [6.51L)

with 6 = % Montgomery [[3] proved{6.%1) with = 3/5 and Huxley
[8] (cf. [7] (p. 119)) succeeded in getting the best knowrueal

7

521—2.

(6.53)

(Now, in view of our initial statement, we can gef(8.53) freither of

€&11) or [&1B) also.)
An analogous application di{6110) is known with respechileast

prime p1(q, ¢) in the arithmetic progressiod, £+ g, + 29, ...}, (£,Q) =
1,0< ¢ < g. This stated (Iwanie¢[4])

P1(0 £) <eq@ 97 €> 0, (6.54)
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so that one has from Jutila’s resdili{d.11) that
P1(q1) <cqig % "€ > O. (6.55)

(However, observe that the-constant depend on the kernel apfcf.
([@19)). Here, with respect to Linnik's famous theorem, lllest known
exponent in[(6.34) with«-constant independent gfq) is 550 proved
unconditionally by Jutila.)

Regarding the analogues, for other arithmetical functiaisthe
Bombieri theorem as well as of Barban-Davenport-Halbargteeorem
mentioned earlier, we have their applications in the préetoious del-
icate asymptotic formulae, involving such function as thasdr func-
tion dg(n), r(n), u(n) etc., as also general function fulfilling certain con-
ditions, their powers and some mixed forms of these funstiand fur-
ther, with the argument running through certain polynorag&duences.
For these problems we refer to Barbah [6],1[10], Elliot andkdetam
[1], Hooley [1], [€], Huxley and Iwaniec]1]. Indlekofer[1]2], Iwaniec
[2], 18], Katai [1], Linnik [4], Motohashi [1], [2], [4], L] Orr 1], [2],
Proter [2]. [3], Rodriquez[1], Siebert and Wolke [1], Vawgh[4], [5],
A.l. Vinograndov [1], and Wolke[[3],[5],[16].

NOTES

1.: Montgomery and Vaugharil[1] have shown that the proof of tas-cl
sical formula

.
f |§(% +it)2dt=TlogT + O(T) (6.56)
0

can be greatly simplified by an application of Theorem 4.3.- Ra
machandra 16],17] has extended this to various other mosn&ith
reports ta’(s) andL-functions. Such results are important for the re-
sults mentioned in the second section of this chapter (aalresdy
been indicated in the context ¢ (6115)).

- . o1
€1), [&2): For similar results mvolvnig(z +it, x)|* see Gallagher
[8]. More general forms, with an averaging over certain vgpthced
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t-sets of points, can be obtained by an additional usé€af (663
Montgomery [5]) (Theorem 10.3 and Corollary 10.4), and HyxI 80
[I7] (pp. 97,108)). Such results can be found in Ramachaid#]faf

Z(9) in % < o < 1, for L(s x) in Ramachandre 7] and Jutila]10],
and withy modp for L(s, x) in Elliott [2].

@&3): A simple proof of[[6R) has been given by Ramacharidfa [
For a result of this type with real characters only see J[ifjla

1 . :
(&34): For a mean-value theorem ﬂtbf(é + it, x)|?> which can be
derived in the same way, see Vaughan [6].

.. ([&3): Gallagher([B] has proved that one has
N(o, T, x) < T3ED o T, forq< T (6.57)
and

DT N@ T +1x) = N(, o)) < * 7 logC T, for T < g
x modqg
(6.58)
with some constartt.

For results about the size bf1, y), y modp, we refer to the papers
of Bareman, Chowla and Erddsl [1], Barbah [8].1[10]. EIlifit.
Joshi [1] and for any.(s, x) to Elliott [8].

€&710), [61R): For estimates of these averages, undegicas-
strictions ong andQ, respectively, see Ramachandra [4]. For earlier
results, in particular, regarding the ‘generalized dgrsyipothesis’
(namely, the estimateE{6]1d), (d.12) with the exponent-2¢) + €
instead), see Balasubramanian and Ramachahdra [1], H[Bjley
Huxley and Jutilal[ll], and Jutilal[5].]9]. [10]. T11].

&12): For a result, with the summation restriction to ref@rac-
ters only, which has better estimates in some cases, sége [4]ti
[6]. A. Selberg 6], cf. Montgomery(][8]) had proved (usingshig1i
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results [[(3:IK¥) and3.83)) that

- 1
Z Z N(o, T, X) <. (Q°T3)1+91-9) = < & < 1(e > 0).
2
0<Q X'modq
(6.59)
In this connection we have also the following deep result tiue
Bombieri ([€6] (Théorem 14)): If there is a ‘Siegel-zegy (relative
to T > 2 and a certain constan > 0) then holds

*

>0 > N(o, Tx) < ((1-Br) log T) T (6.60)

g<T y modq

with some absolute andfective c and <-constants, where on the
left-hand side the exceptional zeros are not included. Aepatica-
tion of this Bombieri[[6] derives the well-known theorem aégel:
One has

1-B12¢c(e)T5, T = 2(e > 0), (6.61)

with (as in all other known proofs) an iffective c(e¢) > o. We
briefly sketch this deduction. Introducirigas the supremum of the
real parts of the zeros of all the Dirichlet'sfunctions, we see easily
that one can suppose (for the purposdof {6.615)1. Now, taking
T to satisfy

Co
(1 -Bo

T > max@o, lyol, exp ).Bo>1-¢€ (6.62)

whereqp is the (least) modules of the-function which has a zero
Po = o + 1y, (With B, > 1 — €), we see thgp, is not an exceptional
zero (relative tdr andcy) and also that the left-left-hand side{d.60)
with o = 1 - € is > 1. Hence we have

(1-p1) > ((logT)T%)L (6.63)
which gives [6.611) foll subject to[[6.62) and so for all > 2.
(€582): Halasz and Turahl[1] have shown thaf({b.15) gieesif)

N T) < T, for o> ;’1 + 6, (with € > 0). (6.64)
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Also they have proved ir[2] that the generalized Lindel opdih-
esis,

. 1
L(s x) < ¢, uniformly foro > > tI<T, (6.65)
€T
implies the uniformly estimates, fdr(6112).

1 3
< Q¥+ for 5sos<l and< Qfforo > vl 5(e > 0,6 > 0).

€TH
(6.66)
82

(&1I6): In this connection, for earlier results, see Montgoy [3],
Huxley [6], Ramachandral[8], Forti and Viola [2], Huxley [§11],
[12], and Jutilall8].

(&11): Ramachandral[9] has proved o % that

N(o, T + T2 - N(o, T) < Te&@749 (¢ > 0)  (6.67)

and more generally, Balasubramanian [1] has shown thdgramiy

inoc > =
2

N(o, T + H) = N(o, T) < H¥5 1) |ogl®H for T# > H > T.
(6.68)

@&21): This type of exponents iA{6110) afd (6.12) occuss @b
Ramachandrd 8], and Balasubramanian and Ramachandran [1]

: @23), [&2h): The first result of this type is due to Réi#]i [Re-
placing the sum on the left by

> (6.69)

gsxe

Barban|[2] improved Rényi’s result (i,e., with a certainaha > 0)

1 .
toa = = — € (for everye > 0) and succeeded thenl([4]] [51! [6]) in
extending it to alle < 3/8. Since the value of the result increases
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considerably withy, Bombieri’'s theorem has led to most important
applications. A.l. Vinogradov [1] proved the same theorémolugh

in a slightly weaker form, namely, with = 5 € for everye >

. . . 1
0) simultaneously. A result of this type with > > would have

important consequences (cf. Buchstad [2], Helberstankafand
Richert [1]) and it has been conjectured by Elliott and Hedtaam
[2] (cf. Elliott [B]) that every value ofr < 1 is admissible.

€&23): Gallagher]2] uses in his proof ¢f{6l24) the decositpmn

L . .
T = (1- LG)ZT +2L'G - LL'G? whereG is a partial sum of

- ) 1. : .
the Dirichlet’s series fot, instead of which Vaughail[6], to obtain
. N L
€&29), uses the mordfeient spllttlngr = (f +F)(A-LG) +
. . . L
(L” + LF)G - F with F being the partial sum correspondlng—lt_o.

(&28): For a direrent proof of (a slightly weaker form of| {6]26)
see Motohashi]5]; more recent results which in certain ean@or
) improves [6.26) are due to Huxley and Iwani€t [1] (accaydin
to Motgomery (oral communication), S. Ricci, a student &f hias
obtained a similar result).

&2Z8): The best exponents known here,

173 1

c< Wm< 5 (6.70)

is due to Kolesnik[]1].

@&29): For similar results, see Bombieri and Davengdrt N&nt-
gomery [5] (Chapter 15), and Vaughan [6].

&32): In this context, we mentioned that the functign) which
appears in this and the last section of this Chapter and fatwaiso
(&32) holds, denotes the general

r(n) ;= ZX(d)’X modg,ne N : (6.71)
din
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in particular, whery is the non-principle character to the modulus
4, r(n) denotes the number of representatiomafs a sum of two
squares (apart from a factor of 4).

. (&38): For stronger and more general results, and alschfiwet
which can be obtained on the assumption of the generalized Ri
mann hypothesis, see Hooléy [2]] [7]] [9]. The correspongirob-
lem for

AL (6.72)

n>x
n=l modq

has been investigated extensively, both with the help oflalge 84
sieve as well as by elementary methods only (Orr [1] (cf. @f).[
Warlimont [1], [2], and Croft[[1]). Motohash[]6] has usecktidea
of Montgomery’s proof, namely without using the large siete@
obtain an asymptotic formula with respect to

D dmn) (6.73)

n<x
n=l modq

(&50): Barban [[10] (Theorem 3.3)) has extended his resdsit to
the more general sums
> (6.74)

p1...pk=l modq
where

O<a1<...<aa1+-+ax=1k> 2, (6.75)

of which (&50) corresponds to the case

k=201 =ap = % (676)
Orr [, [2] has obtained results, with sums of the tylpe (. Where
primes are replaced by squarefree numbers, and also withdmix

products instead.

For results of others types concerning short interval weelgenen-
tion two recent papers: Gallaghér [5], and Ramachandia [10]
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5.: @&X%1): The history of the more general question of the nunobe
primes in short interval

[X, X+ %]

starts with Hohesisel, who was the first to prove a result stk 1,
actually with anys > 1 — (33000y!. Another famous question,
concerning small dierences of primes, is to find an estimate of the
form

Pn+1 — Pn <

lim <6,  (pn:n"prime) (6.77)

n—co Iog Pn

Itis conjectured that this lis zero, an obvious consequences of the
twin-prime conjecture and it has been known that, under gseirap-
tion of the generalized Riemann hypothesis, one would H&E ) with

1 . . .
0= > However, Bombieri and Debenpori [1] obtain€d (6.77) umiton

. . 1. . 1
tionally with a6 < 5> in fact, withg = 5(2 + V3) = 0.46650..., where

they used among other ideas the large sieve. Now we haveé) (6ld&
to Huxley [10], with

A+
- 16

For earlier results generalizations and allied questi@ss ®r in-
stance, Huxleyl12], Uchiyamal[1], Morenbl [1], and Wolkel[11]

©52): Forg = p', see Gallaghef]5]: for previous result and further
references see Jutila [5].

(&53): The corresponding problem for general sequenogsar-
ticular for squarefree numbers, was dealt with by WolKe |2]].as an
application of (2.103) (see also Warlimoht [2]).

We have more application for the result of Sectiore® also of those
in the notes to that section. First of all there is the questibthe least
character non-residues for which we refer to Montgomiery(3japter
[[3). and Elliott[4]. For estimations of character sums,deatgomery
[5] (ChapterIB), Gallaghef1[4[]8], and Jutilal [6] (as alsdild [2]).
Regarding primitive roots and Artin’s conjecture we mentibe papers
of Gallagherl([l]. Burgess and Ellioftl[1], Goldfeldl [1], it [], [2],
Vaughan [[1], and for some related questions, Gallagher[Bl],and

0 = 0.44634. .. (6.78)
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Goldfeld [2]. Finally, for the applications to the problerhthe largest
prime factor of numbers we refer to the papers of Goldfeld fjoley
[@], [21, Jutila |3], Motohashil[8],[[11], and Ramachandi,[[2].






Chapter 7

The ‘Sieve Form’ of the
Large Sieve

AS HAS been mentioned in the beginning of the preceding enape 87
consider now the (direct) general application of the langeesin its
arithmetical form, in the sense @&. of ChaptefD. Let us recall the
situation described there. Consider the set of integersimterval
(M, M + N]. For each primep (be-longing to a certain se) we drop
from our set all such numbers as which fall in any one of cerd#ip)

of the residue classes mqgxl and denote the set of remaining integers
by y. Our object is to obtain an upper bound #r= |y|.

If w(p) is (absolutely) bounded the sieve methods of Brun and Sel-
berg yield satisfactory result. On the other hand, thesdodefail if,
for instancew(p) is an increasing function gb. This was the reason,
as has already been started in our remark precefling (Ot28)L.-innik
called his method the large sieve. In this context one migkihether
it is not possible to have a version of the large sieve whicl gclude
the Selberg sieve, say wheitp) is bounded.

This problem has not yet been solved. However as we shalitsee,
is possible to adapt the large sieve for this purpose prowde confine
ourselves to the ‘linear sieve’ and aim merely for the sirapielberg
upper bound.

In connection with his problem, we recall that in the oridifam

91
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(of Linnik's method) there was the defect, of having the swatiam re-
stricted to primes only (cf.[{0.54)), which existed upto firet paper
of Gallagher [[L]. Bombieri was the first to notice (cf, Bomibiand
Davenport[[2]) that one can solve this problem if the dimensi (cf.
([@I1.3)) of the sieve problem in question equals one (iwép) = 1 on
the average). In the general case. Montgomery [1] obtaimsd¢sult
first, by discovering the identity (in our notation of Chayfi

q q
a) |3 HDs P =S
h=1 diqg =1

and thereby extendin@{0J53) to composite numbers.

However, there is a simpler way of dealing with this probletick
does not make use di(T.1) but starts instead with the weliwknfor-
mula [I3%). This was first found for = 1 only (cf. Richert [2]).
Later Huxley [5] (see also Montgomery [5] (Chagdiér 3), andckldy [[7]
(ChapteiB) succeeded in extending this method to the gereega (cf.
(Z23)). In both the cases the question is reduced to ancapiph of the
large sieve in its version of Chap{dr 2. Therefore, the best solu-
tion so far, for our sieve problem, is due to Montgomery andgfan
[2] (regarding [Zb), see also Gallagher [6]), who derivad from their
strong result given in ChaptEr 2.

Before stating the main result of this chapter we sketch riwsv t
aforementioned simpler approach in the case 1: Let 2 denote the
set of all natural numbers composed of only prirpés our setp and let
us drop (as in Selberg sieve) from the set of integerd/fin\ + N] those
divisible by somep € p to obtain oury(w(p) = 1). (All other notation
are as usual.) BY{T.B4). we have (sinoeqg) = 1)

T(é)|2 Vg eN, (7.1)

q
uey=3" e(né) Vney, Vge 2. (7.2)
=1

Summing this over alh € y and interchanging summation we obtain
(on squaring both sides)

q
@S2 =1 TR, (7.3)
1=1
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which gives, by Cauchy’s inequality and summing (after dasitim bu

e(g)) overallge 2,9 < Q, 89
2(0)\ 3, Lo
O )52 o T2 (7.4)
ge2 qe2

Now an application of[{Z.90) gives an upper bound of the ddsir
from for S:
_N+Q@®

< .
S HZ(Q))

< (7.5)
(Xa<0 G
K0

Now we come to the main result of this chapter. We state it as

Theorem 7.1.Lety c (M, M+N] be a set of S integers. For each prime
p let us denote by(p) the number of residue classes which do not have
any number frormy. Then, for any z- 0, we have

s< ' Z 76)
where
VLN i .7)
and also 1
S< g (7.8)
with
SCEDY(E S0 [] e S )

Remarks. Observe here that the inequalities17.6L1(7.8), and alsseth
of Theorem_ZR, do not deterioratezfis replaced by its integral part
(with an obvious interpretation if & z < 1. Therefore, we set €7]
and it sfices now to prove our results f@ > 1. Further, these results
remain true ifw(p) = p for prime p (since thenS = 0). Hence we
assume throughout that 90
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w(p) < p forall p (7.10)

holds.

Proof. Our first objective is to prové{Z.P4), an inequality whidkitlly
if w(p) = 0 for somep|q or if u(g) = 0 and also folg = 1. So we can
impose the conditions that

1 < g(< Q) is a squarefree number, (7.12)
as well as (cf.[[Z.10))
O<w(p)<p Vpla. (7.12)
Now, for eachp|q we have (for certaif = h(p))
nzhmodpi=1...,0(p), VYnevy, (7.13)

which restrictions are equivalent to, by Chinese remaititieorem and

(£11), (with certainf = f(q))

n-f,)=Lj=1...,0(Q),Yney (7.14)
with
w(@ = [ Jw(p), (7.15)
plq

so thatw(p) become a multiplicative functior(0, because of{7.12))
on setting
w(1) = 1; (7.16)

i.e., we also have
wem, (7.17)
Next, in view of [ZI#), we have, b{f{1.134),

q

u(q) = Z’e((n - fj)é) Yney and j=1,...w(Q). (7.18)
=1

Here summing over afi € y and also over alj followed by squaring
both the sides results in, by Cauchy’s inequality,
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q w(@)
SHA@e?@ = (3 3 end)'y, e(~TiL)? <
=1ney =1 (7.19)

9, vy, <9 ¢
< TEAE Y el o),
=1 ¢=1},j’=1

where we have employed as before (€.1(7.3)) our usual defin{tf.
Z89))
T(9) = ) &ny. (7.20)
ney
Denoting the second factor in the last expressiofiLof {7.$9).Kq)
and taking the summation inside, we see that one has on ERg) (

and [1.3P)

(@]

()] w(q)
@ = ¥ cofy=f)= 3 X du(@)=

Li= ji’=1 dq
d|fj/—fj

q d w(a) 2

=N X % 12
diq b=1 j=1
fj=bmodd

(7.21)

Note that here th&’s for which the corresponding inner sum is not
empty are precisely those(d) forbidden residue classes madbe-
cause of[[Z14). Further, for each suzthe inner sum counts the same
number offj’s, namelyw(q/d). Hence, from[{Z21).

@ = Y du DA (). (7.22)
° dig

Now taking f1(n) = nw(n), f2(n) = u(nN)w?(n) in (CIB) it follows,
because of (Z17)(1J11) ard (11.12), that

D@ = [(p(p) - *) = [ Jl(p)p-w(p)).  (7.23)

pla pla

Using [ZZB) in[[Z.1P) and notin§{7]15) we obtain

2,2 w(p) 3, 12
%) 1;4[ e IZl T (7.24)
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This is the basic inequality providing the connection betweur 92
sieve problem fory and large sieve method. In view of the remarks at
the beginning of the proofl TZP4) is valid for ai¢N.

Finally, summing [Z24) over alff < Q it follows, by (Z1) and
(Z290). that

Q< ) Zq: T(lq)|2 SN+Q) Y 1=(N+Q)S. (7.25)

0<Q ¢=1 n=ey

This proves[(Z16). on recalling our earlier remark precgdiil0).
Further, [IZB) is proved in the same manner by multiplylng@4y by

(N + qu)‘1 before summation and then usiig(2.91). Thus Theorem
[Z1 is completely proved. m|

The following seemingly more general result is easily deifrom
TheorenZ1:

Theorem 7.2. Under the assumptions of Theoréml 7.1, lgta arbi-
trary complex numbers satisfying

a,=0 VvVné¢y. (7.26)

Then, for anyz > 0, we have

2 N+Z
| > al < G > fal? (7.27)
M<n<M+N M<n<M+N
and )
an| < janl?. (7.28)
M<n<M+N ( ) M<n<M+N

Proof. It follows from (Z28), that by Cauchy’s inequality the lfand
side of [Z.ZF) (and so also df(7128)) is

<O Y, aP=s > &l (7.29)

ney M<n<M+N M<n<M+N

from which our results are readily obtained from Theofemh 7.1 O
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Remark. One might like to consider Theordm17.2 as a weighted from
of TheorenZ11; but the restrictioR (7126) and the relatioZg) show
that TheoreniL 711 is never weaker than Thedrem 7.2.

NOTES

(Z1): Montgomery’s[lil] proof of[{7]1) proceeds in the fellimg
way: Set

N & ¢ ¢
T(a.h) = > T(=)e(-h-) (7.30)
=1 q q

so that, by[[T.27), one has
a q ¢
2 T@hE=a) M (7.31)
h=1 (=1
Now, using [1.2ZP) [[1.32) an@{0.2),

q
Tah=> > en- h)é) =3 > du() = D du()S(E. .

ney h=1 ney dq diq
din-h
(7.32)
from which [Z1) is derived by means @ {1130) ahd (¥.31).

For identities of this type se€(1127), Montgomelry [1], Hax|4]
(Chapter 18), and Sokolovskiil[1].

Theoreni_ZIl: This result contains th&{version of the large sieve,
as well as, in the cases mentioned in the introduction of chipter,
the ‘small’ sieves. On the other hand, as per an observatimterhy
Kobayashil[l], one can also derive Theoren] 7.1, and consdgusso
Theorem_ZR and Theorem B.1, in these cases from the Seliesry s
with the additional tool of Theoren 2.6 (see Halberstam aictiétt [1]
(pp. 125-126)).

In the case ofv(p) being close top (at least on the average). the
‘larger sieve’ of Gallaghei [3] is mordlective. This sieve also includes
prime-power moduli.
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(Z8): Johnser]1] has generalized Montgomeryi's [1] firsuleof 94
this kind to include non-squarefree numbers also by reduttia ques-
tion to an inequality of the type o {ZR4), so that the immdwersion
(2.90) leads to the following:

‘For each p remove all butg(p) residue classes maqu In each
of the remaining classes, remove all ljp?) different residue classes
modp?. and so on. Then the numberm& N which remain is at most
(N + 22)/L(2), for everyz > 0, where

. . pv ~ pv—l
(@ ._Z]_[(h(pv) —h(pv_l)) (7.33)

asz p'llq

with h(p*) = g(p)g(p?)...g(p") being the number of residue classes
modp’ remaining at the" stage’.

A simpler proof of this result has been given by Gallaghér(£T]
Gallagherl(l5]).

(£22): For the remark that preced€s(¥.22) note that oikeniy
(1?:)5) and[[Z11), there will be one forbiddemodd with more than
w(q
w(d)
one suchf; we would haverf - fi’g) > 1 contrary to[(Z.14).

(£Z3): For a variant of the proof of {7I24) see Montgomery [5
(ChaptefB), and Bombieli[6] (p. 21).

‘“(g) of distinct fj’s = bmodd and hence for anp(e y) and



Chapter 8

The Brun-Titchmarsh
Theorem

IN THIS chapter we deal with an important application, of éinthmeti- 95

cal sieve result of the previous chapter, in prime numbesrtheOne of
the prominent problems of number theory is the study ofithistion of
primes in arithmetic progressions; i.e., to investigate

axk 6= > 1, (8.1)
p<x

p=¢ modk

in particular, to obtain estimates valid uniformly in (rasgf)k (relative
to Xx).

In this direction there is the famous Siegel-Walfisz theotieat, for
anyC > 0 andU > 0,

m(x Kk, ) = Jix + Ouc(xlog™ x) uniformly in k<log®x (8.2)

¢(K)

(with an indfective O-constant due to the possible existence of a Siegel-

zero), which was one of the main tools in I.M. Vinogradov'®qir of
the solubility of the famous equation

2N+1=p1+ p2+p3s for N> No. (8.3)

99
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Titchmarsh used the generalized Riemann hypothesis ttetéoi
divisor problem (since then named after him)

Z d(p-1)~cx as x— oo (certainc > 0) (8.4)

p<x

where he also employed (cE{8121)) the estimate

7(x K, £) <a for k<x* (fixed ,0<a<1), (8.5)

X
a(K) log x
which he obtained by Brun’sieve.

This problem provides a good example to illustrate our earie-
mark that Bombieri's prime number theorem can replace thmeeigd-

. . . : li x .
ized Riemann hypothesis on average, siice]6.23) statkes'ﬁ%als the
Y

2
leading term for almost ak <

log® x’
Now we are in a position to outline thanconditionalproof of (8.4)
employing [6.2B) and{8.5). To start with have

Ddp-1=> > 1=> > 1=>z(xd1) (86)

p<x p<xdp-1 d<x  p=x d<x
p=1 modd

(in the notation of [[811)). Let > 0 denote a number to be suitably
restricted and le€C = C(U)(> 1) be a value for which[{6.23) holds.
Then splitting the range af in the last sum of[{8]6) into three parts

d<xzlogCx x2logx<d<x2logCx x2logt x<d< x (8.7)
and denoting the corresponding partial sums there by

20202, 88)
1 2 3

we see that, in view of(8.5), one has

X w— 1 xlog logx
; < IogXZ 2@ < ogx (8.9)
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where” denote the restriction afto the second range iB.(B.7). Here we
have used the fact (cf. Estermaih [1]) that

1
Z (d)_clogy+o(1) asy — oo, c_l_[( p(p—l))' (8.10)

d<y

Next consider (in a notation similar to the one above)

23::2 > 1:2511. (8.11)

otmodd dp-1

Treating Y4 similarly we see that (after a simple rearrangement)
sinceC > 1,

Z Y« 31+ > dp-1)< ) +xlogtx (8.12)
2

3 p<x dip-1 p<xlog=2 x
from which one obtains, with the help ¢f(B.9) ahd18.6), 97
xlog Iogx
Dld(p-1)= 22 +Oo(—2=22 oax (8.13)
p<x

Now, by our choice o and [6.2B), we have

D= Z(ﬂ(xdl) (d) I|XZ¢(d)+IxZE+O(ong X).

1

(8.14)
Using herel(870) again we get, in view pi(d.13).
Z dip-1)=2lix(c Iog(xz log=C x)) + O(M) (8.15)

p<x

on takingU = 2 say. Thus, after inserting the valueadfom (B.10), we
have the asymptotic formulB(8.4) in a more precise form:

xlog logx

> d(p- 1)—x]_[(1+ (p T+ o( — ). (8.16)

p<x
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For number-theoretic purposes the ‘Brun-Titchmarsh Témor
@.3) is very valuable being the only known result valid icls@ wide
range fork.

In the direction of [[B) we shall prove the following resofitMont-
gomery and Vaughail[2] as an application of Thedrer LII(7.8

Theorem 8.1. For any positive real numbers x and y, and for afyk
from N with

(€K =1, (8.17)
there is an absolute constarg such that
2y
n(X+Y; K, £) = m(X K, ) < : (8.18)
o(K)(log(}) + 2
provided
Y > (8.19)

Remark. Under the assumptions of TheorEml 8.1 we have, in particular,

. . 13 . .
the estimate{8.18) without the ter1 . In this context, by adding some

numerical computation, Montgomery and Vaughan have alsaisthat
Co can be taken equal to 1, i.e,. we have the neat result

2y
a(X+Vy, k&) —n(x k) < —————,1<<k<y ((,K) =1,Vx>0;
¢(K) log (%)
(8.20)
s0, in particular, choosing = 0 (and replacingy by x)
: 2y _
(k) < —————=,1<I<k<x (k) =1 (8.21)

¢(K) log(®)’

Proof. Letz > 0 denote a number to be suitably chosen later. Consider
the set

yi={m:x<mk+£< x+y, (mk+0), [ | p) =1 (8.22)
p<z

ptk



103

In the notation of Theorel_4.1 we have

X—1 X+y—+~ X—1
M= =T e
and so
?—(/—1<N<%+1. (8.24)

Note thaty contains all those prime numbers countedr{i + v,
k, £) — n(x; k, £) which are> z, and also

wp)> VYp<zptk (8.25)
Hence, by[[ZB),
aX+y;k ) —n(xk ) <S+z< — L*() _ML(Z)JFZ’ (8.26)
K
where, by[([8.25),
M 1+ 11500 8.27
() : Z( Sty @ (8.27)
(qk) 1
We now choose 5
Z= (§ N)2 (8.28)
so that 5 5
_ 1
N =2 (8.29)
which makes 2
M(2) = 1+qz ) 1D 8.30
«(2) ZZ( raz ) (8.30)
(k=1

The equality part of[[3.26) and the observation that-(4z )™
decreases asgincreases, enable us to uphold

K
@z 2 Y ar) @ oWy g
g<z

99
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Now we need, instead of the estimate[In(8.26) which yielddg o
the leading term, the more precise formula due to D.R. WérahEimely
that

Z ZAC) Iogw+ c1+0(1) asw — oo, (8.32)

a=w ¥

where

B logp . logp
C1—7+Zp:p(p_l)—Jmo(logu—Z— = 133258 .- (8.33)

p<u

(cf. Rosser and Schoenfeld [1]). Usiig(8.32) for partiahswation we
getasN — oo

Mi(2) =logz+cy —log2+o(1) = :—ZLIogN +c1—log2- :_ZL Iogg+ o(1)

(8.34)
because of{8.28), and consequently
¥ M1(2) = Iog(N +1)+c;+0(1) asN — o (8.35)
with, in view of (8:33),
cz_cl—I092——Iog§_cl——log6> ;—S’ (8.36)

We obtain, on usind(8:82), (8135) ald (8.28),

NNlM (Z)>s0()

(log(N + 1)+ 2co + 0(1)),z< (N - 1)2 as N — oo.
(8.37)
Thus, on choosing a ficiently largecy, it follows from an use of

@37) in [B.26)

| | (N - 1) %
rxryik ) =k D) < g+ D 25 oy TNV Y
Y (8.38)

¢(K)(log(}) + 32
because of{8.24) and{8]19). This completes the proof atberem.
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NOTES

For the history of Brun-Titchmarsh theorem we refer to Hedtsm
and Richert[[lL] (Chaptdd 3).
@132): The estimations of [8]12) are obtained as follows.NAve

Z-Z:Z[Z 1—i1]. (8.39)

1 3 p<x\dp-1  dp-1

For any fixedp < x, the diference of the sums inside is precisely the
p-1

number ofd’ (< xz log~C x) dividing p-1 and with < x2 logC x.

-~ . . -1
Now splitting such d's into parts according gsd— < x2 log=C x or not

and noting further further that the second part is empfy ¥ log=% x
we obtain the first majorization. The remaining part emplogly the

simple > d(m) = O(ylogy).
m<y

@1I8): This unconditional result is due to RodriquEz [1d aal-
berstaml[l] (cf. Halberstam and Richert [1] (Theorem 3.9%ré/lgen-
eral results of this type have already been mentioned in ttesnof
Chapteib.

Theorem[81l: The estimatE_[8120) demonstrates the powéreof t
weighted sieve of Montgomery and Vaughan (cf. under Thedf€n
in the notes for Chaptél 7. However, an estimate of the fygEj&an
also be derived without the use of obayashi’s results: cflbétatam 101
and Richert[[l] (pp. 124-125)). On the other hand, it is gadilecked
that if we use, at the beginning of the proof, the estimaifl) (instead
of (£Z8) we cannot obtaiff{8.P0), even subject to the comli{BI9),
without an extra term on the right-hand side.

@21): A further improvement of the factor 2 [D{8121) to astant
¢ < 2 would have important consequences concerning the Sieget
of Dirichlet’s L-functions, as has been first pointed out by Rodosskij (cf.
for example, Bombieri and Davenpori [2]).

@B38): Itis easily checked to have, instead[of (B.36), that

c > 1, (8.40)
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e 13, . :
so that one has neat€r(g.18) with 1 in placel—gf it would be stficient

. 3 .
to improve the constanﬁ (at least in[[Z91)) (cf. notes for Chapfér 2,
under [Z.7b)) to a constantsatisfying

A%ezcl‘l = 132163 -- (8.41)

On the other hand (see the above remark) we point out tha¢igedb
sieve permits one to replace/18 in (8I8) by any constar@ (with a
Co = ¢o(C) in €.19)).

Recently, starting from the works of Hooley and Motohasho¢H
ley [2], [6], and Motohashi[l8],[19],[[111]) there has been anarkable
progress with respect to the Brun-Titchmarsh theorem. Saftieese
results are concerning averages and certain others ack oslly for
some ranges df. As an example, we mention one of the most recent
results of the latter type (Goldfeldl[4]): For every fsciently small)
€ > 0 holds, with a certaic > 0,

a(x k1) < (1+¢€) )ifxE% <k < x2 (8.42)

X
X
29 Tog(5



Chapter 9

Selberg’s Sieve

NOW WE turn to the small sieves. The most elegant version ofi@ls 102
sieve is due to Selberg. In this chapter we present its sshpkrsion
with a view to clarifying the main ideas involved. Also, Iate the next
chapter we importance in the proof of the remarkable theak@hen.
This sieve method can be considered as concerning the questi
finding bounding for
S(,1,2). (9.1)

the number of elements in a (finite) sequence, dependingvenadea-
rameters,
o ={a:---},acZ. (9.2)

of (not necessarily distinct and not necessarily positiggers, which
are not divisible by any prime numberz,

z>(zeR), (9.3)
belonging to a set of primes
fi={p:...1 (9.4)
Introducing

P@2) := ]—[ P, (9.5)

p<z
pep

107
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we can restate this question as that of estimating
S(#.p,2) = {a:ae <, (a P(2) = 1 (9.6)

The required estimates would be naturally dependent ondtieus
parameters describing’, p, and also orz. However, we would be in-
terested in bounds, fof{9.6), which do not involve the spiefgiatures
of these defining arguments/(andp). To make this remark clearer, we
introduce the following notation.

Let

ady:={a:aea/,a=0modd} for deN. (9.7)

First we choose a convenient approximatkto |.<7|, requiring
X> 1 (9.8)
we write for the remainder
Ry = 7| — X. (9.9)
w(p)

Next, for each primep € p, we chooseuv(p)(€ R) so thatTX is
close tol.e7p|, and set

Further, denoting by

p (9.11)
the complement of with respect to the set of all primes, we also put
w(p) = Ypenp. (9.12)

(This is consistent with our interest being only with regardhe distri-
bution of numbers of7 in the residue class 0 modulo primes frqm)
If we now define

wd) =] Je(® vdeNwithud)#0,wl)=1  (9.13)
pid
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(andw(d) = 0 if u(d) = 0), we see that
weMN (9.14)

104 and also that the definition

Ry = || - #X ¥Yd € N with u(d) # 0, (9.15)

is consistent with[{9]9) an@({3110). (Note thamay depend on both”
andp. Now we can elaborate a little on our remarks made subsequent
to (@.8). The estimates fol_(9.6) are allowed to depenXpw (and
consequently orR), but not on the particular structures of and p
(apart from those which yields information towards the naggiropriate
choices forX andw as introduced above).

For the purposes of the method we also require to fulfill thedéo
tion

w(

(&) 0< Tp) <1- Ai with some constand; > 1 (9.16)
1

or equivalently

(Q1) 1< 1 1w(p) < A; with some constamd; > 1.
p
(9.16,)
We introduce further
w(p) -
d) = ————V¥deN with d) #0, 9.17
o(d) mp_w(m u(d) (9.17)

which is well-defined (because d®{)). The productg(d) reminds us
of the function occurring in Theorefl¥.1, but the advantagye fis that
w(p) need no longer be integer-valued. On the other hand, when co
pared with Theoreri 4.2, the conditioR4) already prevents us from
dealing with ‘too large a sieve’

By (@12) we see that

gd)=0 if (dp) %L1 (9.18)
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and also (from[{3.13)) that
g(d) =0 w(d) =0. (9.19)

(Here and in what followsd, p) = 1 means that np € p dividesd.)
105 Finally, we put

w(p)
= - 28 9.20
W@ lpl(l o) (9.20)
G@ = ) kA (dg(d). (9:21)
d<z
and more generally
G0 = > pA(d)g(d), 0<xeRkeN. (9.22)
d<x
(dk)=1

In view of (@.8) we could start with the identity (cf{1]20))

S(.p9= ), ), u@) (9.23)
ace d|(a,P(2)

in fact, this is the sieve formula of Eratosthenes-Legendselberg’s
sieve, for obtaining an upper bound B¢, p, ), consists in the intro-
duction of arbitrary real numberg; with the only condition

=1 (9.24)

which already implies that

S(. 222 > (D P= ) dadey (9.25)

aca/ d|x d,|P(2)x aca
diP(2) v=1,2 a=0mod [dy,dz]

Hence, by[[@17) and{2.15),

S(#.p.) <X ¥ Agde, 0B 5 g A6, Rl = XD+ T
d,/P@) (sG] 1 2

d,|P(2)
v=1,2 v=1,2[d1,d>]

(9.26)
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say. With a view to keep’, small one takes in this method

106

Ag=0 for d>z (9.27)
and then the remaining;S(2 < d < zdP(2)) are chosen so as to mini-
mize Y1

This leads to the choice
Ga(3)
Ag = 9.28

u(d )m RN (9.28)

Note here thaf{9.28) includes bofh{9.24) and (9.27). Nexan
be shown by the argument ¢f{3126) that

gl < 1. (9.29)
Now, with the choice[{9.28), one obtains
1
Zl: - 50 (9.30)

and further[[@27) and{2.R9) give

Z Z IRdy,d5]- (9.31)

dy<z
4IP@)
y=1,2

Here the numberd = [d1, dy] are < z% and divideP(2). Sinced is
square free, the number of terms with the sahieatmost

l(d1, dy : [dy,dp] = d} = 3@ (9.32)
From [9.26),[[9.30) and{3.B1) we now obtain (in view[of (9)32

Theorem 9.1. (Q1): We have, in the above notatifin

S(M p, Z) - G(Z) + Z |R[d1 d2]| = G(Z)

dIP(Z)
Rt (9.33)
+ 3 3Ry < g5 + Z HA(A)IOIRy.
d<Z
diP@) (d 5) 1

1By this notation, which is also employed in a similar way fatee mean that the
subsequent statement is valid subject to the conditionarenheses.
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Now we give two important special cases of Theofem 9.1.

Theorem 9.2. Suppose that
w(d)=1and |Ry <1, if u(d)#0 and (d,p) = 1. (9.34)

Then
X

+ 7
(rm@a- %)) logz
p<z
pep

Proof. From our assumption am in (@.34) it follows that the condition
(1) is fulfilled and further

S(/,p,2) < (9.35)

2
p(d)

G(2) = ey 9.36
@ dz ) (9.36)

(d,K=1

where

k=[]p. (9.37)

p<z

pép

Therefore, by[[3.26), we have

G(2) > ﬂkk) logz = lpl(l - lp) logz, (9.38)
pép

so that first inequality of {3.33) yieldE{3135) (sin€y| < 1 by (T.3%)).
Let us set
pk ={p:pPtK}, KeZ (9.39)

i
Theorem 9.3. Let K(# 0) be an even integer and suppose that
w(p) = prl for p € pk. (9.40)
Then, we have

S(/. .2 < K G+ O + [ W3R, (0.41)

p<Z
(d.K)=1
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where

S(K) = 2]—[(1 7 I E (9.42)

p>2 2<plK

Proof. We use the last bound given in-{933). Clearly, we need only
show that

1 p-1 1 1
@szl;[z(l 1)2 ) ] - 2Iogz O(Iogz))’ (9.43)

2<plK

since ;) is satisfied withA; = 2 in view of 2K. we note that 108

1 1
p-2 p—1(1+ p-2

and so (cf.[[3.T7))

1
2(0) (1+9(p) for pt K, (9.44)

a(p) = ) =

9(d) = — 20 sz(l)g(l) if (d,K) = (9.45)

l|d

Then, by [3.26).

o\ 00 ) K090 |
D= 2 i 2 em 1,_K[( 1_[ e
(¢K)=1 (m,K)[ 1 P ( K) 1

(9.46)
on observing that fof > z the lower bound log i) for the (empty)
inner sum, is negative, Further, iy (9.44) and (Il 18)

S 090
2 =0 ]—[( p(p 5 (0.47)

=1
(.K)=1

and

#2(hg(l) |
(t K) 1 | ( K) 1 (9.48)
_logp
= Zpik 52 T )T 1@ )
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Using [@.4Y) and(9.48) in(9.116) we obtain

G(z)>l_[(1——)l—[( + p(p 7! Z( 1)2} (9.49)

pK

which upholds[{3.43). Thus the theorem is completely proved O
NOTES

Selberg’s sieve occurs for the first time in Selbérg [1] (célb&rg
[B1, 41, [5], [B]).

For the content of this chapter we refer the reader to Haterand
Richert [1] (Chaptel3).

@29): The details leading t6(9]129) are the following. law of
©@.28) consider (for only squarefreks)

[Tpd p_%'(p)ed(ﬁ) = ([Tpa(L + 9(p)( . ;Z/d 1?(dy)g(dy))

, , (d.d)=1 (9.50)

= (X p(d)g(@d))(( ¥ wA(d1)g(dy)).
do|d di<z/d

1
(d1.d)=1

Now multiplying out the last expression and comparing vi{z)

we obtain [3.2P)

B1: cf. Halberstam and Richefd [1] (Theorem 3.2)

The observation due to Kobayashi, which we have mentiondiéiea
(cf. notes for Chapteid 7 aflfl 8), consists in noticing

G2 > d=% Z bg &(-ng)

d|F(n) o<z 1=1
dP@ (9.51)
bq,|=3r|1(1—”(—?)—1 z o).

piq

(F(h) q) 1
and

q
K29 = Y lbgi. (9.52)
=1
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and using the duality principle (cfC{ZZA71=(2148)). Hé&ralenotes an
integer-valued polynomial angp) is the number of solutions &f(n) =
0 modp. Actually, Kobayashillll] proves the following dual form dfet
large sieve (in our notation)

R R
D) ae-nx)P=(N+O@E™) ) alVa eC, (9.53)
r=1

M<n<M+N r=1

using the upper bound form of the large sieve as well as a $rimgpt
technique. of Bombieri[]4], for a lower bound. (TH&constant in
(@53) is absolute.) From this he derives Selberg’s siekeMathews 110
[3]), from which on using[[Z.90) one obtains, instead[ol 8,3

X + 2

S(+,p,2) < GO

(9.54)

(cf. Halberstam and Richeiifl[1] (pp. 125-126)) a result gfaduld be
compared with[{7]6). It is also possible similarly to get gisnger
form {Z8) by definingdy’s in Selberg’s sieve in a flerent way (cf.
Halberstam and Richeiil[1] (p. 126)).

@33): For the second inequality in(9133) we have usedftbat
d,|P(2), v = 1,2, one hadl := [dy, dy]|P(2) and also for each suah

o, dz : d, < dIP(2), [d1, dp] = d}| < {1, 0y : [, dp] = d} = 3@
(9.55)
B3: cf. Halberstam and Richefd [1] (Theorem 3.3)
B.3: cf. Halberstam and Richefti [1] (Theorem 3.10)






Chapter 10

Some Applications of the
Small Sielge In the Case

w(p) = m

AS ALREADY mentioned at the beginning of Chapfdr 9 we present
here some applications of the results obtained there inhbpter for
our purposes. Theoreln .3, which is not contained in thbragtical
form of the large sieve (cf. the remark made subsequeffId@)p.is of
particular interest.

We have the following two interesting (cf. Notes) applioas,
which we shall quote without any details of proof.

Theorem 10.1. We have, as N> oo,

loglogN
——{1+0 ,

YheZ,h+0, h=0mod2. (10.1)

{p:p<N,p+h=p}<4e(h)

uniformly in h, and also

log logN
logN

N
Hp:p<N,N-p= p’}s4<5(h)|—{1+0( )

0g® N

117
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for N = Omod2. (10.2)
where& is defined througt@.42)
More generally one also has
Theorem 10.2.Let A> Oand let gb, k, ¢ be integers satisfying
ab# 0,(a,b) = 1,ab= 0mod2. (10.3)

and
(k,6) =1,1 <k <log"x(R 3 X > Xo). (10.4)

Then we have, uniformly ia, b, k and¢, asx — oo

loglogx

log x )

(10.5)

A much more delicate application is the next theorem whictl &te

112 used in Chaptdr_13. Though some of the majorizations in thefmf

TheorenZIOI3 are crude, many others involve rather del@aisidera-

tions. Before coming to the formulation of this theorem walkbbtain
some useful auxiliary results.

{p:p<xp=modk ap+b = p'}| < 4&(abk {1+0a(

o(K) log? x

Lemma 10.1. We have

2
Z LIt <n (log x+ 1)" for x> 1,h € N. (10.6)

q<x

Proof. Consider

Z @hv(‘” < n(l + %) < n(l + %)h_ (10.7)

asx p<x p<x

Now (I0.8) is apparent in view of the well-known formula dee t
Mertens,
e’ 1

1
1_[(1——p)= ogx* Yiogx

[1 oo% )). (10.8)

on noting that (& lp) <(1- é)‘l. O
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Lemma 10.2. Let A> Oand let h, ke N. Let K < log” x for syficiently
large x. Set i
i X
E(x,d) := max|z(x;d,£) - —|. 10.9
(x.d) i= maxir(d. ) - o (10.9)
Then for anyU,1(> 0) there exists a valu€; = Cy(Uj, h, A) such
that

> RV DEX dK) <uyna ——g. (10.10)
" o(K) log~* x
d<—%¢
klog™~1 x
Proof. By the rough estimate (cfi{10.9))
E(x, dh) < dl for di < x (10.11)
1

and an application of the Cauchy’s inequality followed bye@sions of
ranges for variables in the resulting summations, we sad¢htbaxpres-
sion on the left-hand side i {I0]10) is

. 2(q)h2@ | )
< (E)E(Z%)Q( > Exd). (10.12)
VX

d<x d<

log~1 x
113
In view of the bound given by {10.6) for the first sum here, wéena
the choice ofC, for givenU1, by means of[{6.23) such that the second
sum is bounded by(log X)~@U1+"*+A) Then, continuing the estimation

in (LO.12). we obtain further

X\1 12 (2U1+h2+Ay 3 Ui-3A -1

U (k)2(|09 X)2" (x(log x) )2 U X(log x)~*72%(e(K)) 2.
(10.13)
which proves[[I0.10) becaugék) < k < (log X)A. o

Now we are in a position to prove the main theorem of this arapt

Theorem 10.3. Let v be a real number satisfying

v> 3. (10.14)
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Leth( 0) satisfy, being determined with respect téfwiently large

heZh=0mod2 andeither h=[x] or 0< |h < x'3.
(10.15)
Then, asx — oo, holds

Cu(x h) := [{lh— prp2psl : |h— pap2ps| = p, X/
< p1 < X3 < pp < pa, prp2Ps < X < (10.16)
< 4c(V)6(h) 5 {1+ 0y(g29)].

log x

where® is defined by[[9.42) and

1/3

(" log(2~- 3a)
C(V) .—fmda’ (1017)

1v

(Note that theD-constant in[(10.16) depends at moston

Proof. Let us consider (the finite sequence)
X

%’::{b:b:pd,de.@,psd

1 (10.18)

114 where
7= {d td=ppo XV <p<xP<pp< \/pl}' (10.19)
1

We note that eactl € & (has a unique representation @, and)

satisfies

1.1
3ty

Wi

X3<x3"v<d=p1p2 < p1x<x%. (10.20)

and so \
|2] < x2. (10.21)

With a view to determine a suitable approximation|#, we use
. 1 1
the formula (taking = " andp = 5)

D L 10299y L o= yfory s . (10.22)
oy P plogx plogx
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. . 1
for Stieltjes integration to obtain (with = :—%)
1 X/p1 q
Z log XBx f lo Iz X/pl (I092 x) (10.23)
X%§p2<\/pz1 p2 109 P2 Wi nlognliog ==

Further multiplying [I0.23) bypi1 and summing ovexV < p; <
1/3 we get, by use of {I0.22) (with = 1/V),

(52
d
Z + Ov(logz )=

X1/3
1 f -
desy 1095 i élogé s nlognlog(z,
. 1/3d (1-a)/2 ”
= oox | & Ao * Ovliggs) =
v 1/3
1
3
_ 1 log(2-3e) —
- Wlf ao(1-a) dar +OV(Iog x) Ig(g;/)x OV(Iog x)
(10.24)
where we have put
E=x"n=%. (10.25)
and have also used the notati@n (10.17). Thus since avery? is
< x2/3 (cf. (IT@20)), by [I018) and the prime-number theorem (in.z6
weak from) one has
c(v)x 1
(I )) = v )
og X log x log x
(10.26)

| B = 1=
. m}

deZ p<}
on using [I0:24). (Note that the formu[@a{10.26) counts thalmers in

4 according to the multiplicity of their occurrence.)
(10.27)

Towards the estimaté{10]17), we naturally consider

S(<, pn, 2),
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where

o = {lh — p1p2pl : XY < py < X3 < pp < pa, Pr. P2, Ps < X},

(10.28)
phi={p: pfh (10.29)
and (we make the choice)
2=xi18 (10.30)
with the abbreviation
¢:L=logx (10.31)

Instead ofe it is more convenient (cf[{10.60)) to work with

= {lh—pipapal : XMV < pp < xP < pp < \/g P1P2P3 < X}
(10.32)
Now the primespi(i = 1,2,3) occurring in satisfy plpg < X
and sop, < é which shows thaty is contained in* (even with
regard to multiplicity of numbers in it). Therefore
S(, pn, 2) < S(™, ph, 2). (10.33)
Note also that all the elements of* have the same type of repre-
116 sentation from among
h — p1p2ps, P1p2p3 — h or |h| + p1p2p3 (10.34)

according a$ = [x], |h| < x/3 with h > 0 orh < 0 respectively (cf.
(@0O.1%)) and hence, in particular, that the multiplicityaaiumber ine7*
is exactly the multiplicity of the correspondirg p2ps in £.

Next, we prepare for an application of Theorlen 9.3 with respé&’,
ph andz. Comparing the definitions of7* and % (through %) we see
that, for @, h) = 1 with u(q) # 0, by {I.53) (in the notation of Chapter

[@) one has
Gl = L l=gg 2 ) T x(b)=
€7 x modq =
) bzlh modg . . - (10.35)
@ bez.@XO( ) " m){ﬂ%qu( )bg,a/\/(b)’

X#X0
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in view of the remark involving[{I0.34). From here we get

IRel = 1Y X))+ == =R,
(q) | < so<q)XmZO;jqb€§ () ij
X#X0 (b.g)>1
(10.36)
say. In particular
|| = )| = |, (10.37)

which is clear otherwise also. Therefore we make the choices
w(p) = ﬁforp € Ph (10.38)

and, by (10.76),

=|%| = C(V)@(l OV(E)) (10.39)
Now, S(«, pn, 2) counts all numbers of (the set if).{10.16) which
exceedz and so (because di{10133)) applying Theofem 9.3 Wita h

for &7* it follows, by (3.41), [10.39) and{10.130). 117

log log x
Oy( s )}+§O:, (10.40)

where (cf. [10.36))

di=z+ Y AR, (10.41)
° g<Z
(ah)=1

The rest of the proof concerns with an estimatiofy gfwhich shows
this contribution to[(10.40) as being of the nature of anret@am. The

sum in [I0.41) is, by Cauchy’s inequality ahd (10.36),

(Y BP@IVRNI D B@R):. (10.42)
q<Z q<Z?
(gh)=1 (gh)=1
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Now trivially, from (I0.3%), [I0.26), we have (cfi_{1011%5), also
Ia11))

X+ x/3 X X
IRyl < + <y - 10.43
Rl =v (7 Z@logx’ < g (10.43)

so that the first sum if.{I0M2) is, by Lemnal0.1,

= Oy(xlog® x). (10.44)

(Observe that the first term of the middle expressiorin_3ig ob-
tained by using the fact that the multiplicity of any membér#* is
absolutely bounded (cf[{I0134)).) Next we deal with thepdanpart,
of the second sum ifi{I0M2), arising from the second ternmidefR;,.
We have forg < x with g squarefree,

T lc31+ T 3 1sv@(2lekt 3 )
(t?%)gl d&q@ Xl/vSPLPKX% p< plp2 Xl/\/<p2<x2
’ pilg

<y X1 logx,

on using [I0.21) [TT0. 22, TT0J15) and the trivial estimate

(10.45)

v(g) < Vq eN. (10.46)

Hencel[(10.45) leads to the estimate, for the part of the sitlidA2)
which in under consideration via{8132)

<y XV log x Z £ (q) <y XV log? x. (10.47)

d<z2

Now collecting together the bounds{10.42),(10.44) anddd)0we
see that because of the choite (ID.30).

2
Z <y 2 + xlog® x(<¥ log? x + Z) <y X2V logtt x + xlog? x. Z

0 1 1
(10.48)
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where (cf. [10.36))

1)
Z 2 2| 2x0 (10.49)

<z xmodq be#
X#X0
Observe thah has no longer a part to play in the sequel.
Transition to primitive characters iii{10149) yields (d.53)), on
writing g = rf (f: conductory modq)
2 f *
S1= 5 50 2, eSS a0 s

f<_ ymodf be

o e G0 (10.50)
20 ¢ A0« _ v 0
Z o) 222 o(f) rr%dfl o (b)l Z or) ZZ(r)’
Yo (BN)=1

where (on replacindg by q)

2
NOE Z/;(((?)) D1 X (10.51)
2 <z ymodq beZ

x#yo (br)=1

(In the remaining part we also use the abbreviatlon (10.31grever
convenient.)
By the Siegel-Walfisz theorem (cf{8.2)) we have for any abtar

x # yomodgq, in view of (I.Z23) and[{10.46), 119

|Z (p)|_|092+|2)((5)ﬂ(y 6.0] < o0 + yp(Q)e @

uniformly for g < log%y asy — oo, (10.52)
so that (withg = 17)

2 *
DR IDR IR BRI IR C IO
qset x modqg b€93 o7 x modqg de@ p<x/dy
)(i)(o (b.r)=1 X#xvo  (dn)=1 ptr
< 3 (p(q)[ o1 <y X~ 16,

qsey? d69
(10.53)
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Hence
Do) < DL+ xS, (10.54)
2 3
where
*(a)
(r) := e YO)l. (10.55)
23: [17<q< 2 "O(q) )(mzo:dq‘ be% ‘

For an estimation of {10.55) we use contour integration aechy-
brid sieve. To this and we put

T=x, (10.56)
as well as
a=1+¢1 (10.57)
Further let
M <w<? (10.58)

and also note that theupposition

=[x + % (10.59)

involves no loss of generality. We also introduce the Digtleries

P=P(s0i= > XD g qsy:= Y 1P

s s
p<w? P p>w? P
ptr ptr
D=Di(sx)= )Q(Res > 1). (10.60)
a7y

120
Now, by (I0.IP) and a well-known formula (usiig{10.59))

a+iT

Y, K@= 5 [ P+ QD(ESds+ O

be#
(b,r)=1 a—|T

xlogx

). (10.61)
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Splitting the integral here into two parts, correspondiodRD)(s)
and QD)(s) respectively, and shifting the line of integration of ttoe-f

1 . .
mer only too = > we obtain, on usind(10.57).

be A
(b,r)=1

1
+X [ [(QD)(@+it, )| + XX,
T

T 1/2
Y x(b) < XE—“I[ I(PD)(3 + it,)()%II + % af |(PD)(o +iT, y)ldo+

(10.62)

For the second term on the right-hand side the crude estimate

. 1
(PD)(e it )l < > > 1<wiZ| < xzfor5 <o<a (10.63)
p<w2 deZ

obtained from[[10.81)[{I0.b9L, {10131) abd (10.22}ises.

Towards an estimation of the remaining terms we introduceta-n
tion (for convenience of description). For an arbitrarydtion f(s, y),
s= o + it we set (with respect to, w, T andz as before)

:
- . d
Mo f)= > % > f|f(o-+|t,)()|rt|t|, (10.64)

<W
@ne1  XmodeT

and observe that, by Cauchy-Schwarz inequality, for any agsoich)
functionsl; and f, one has
M(o, f1f2) < (Mo 12)3(M(o- £2))"2. (10.65)

We would also need the estimate (valid with an absckiteonstant)

M(c, f2) < Z(w2 log X + N)ja.?n 2, forf = f(s,y) = Z %X(n) if Z % < o,
n=1 n=1 n= (1066)
which is obtained by partial integration in Theoréml]5.1 arsthg 121

(I0.586).
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By (I0.62), (10.64) [(10.55) anB{10156) there holds

a L ooyt b2y
2 @ 2| 2 X0l < (MG PG, DY)
<g< B
7<g<w X modqg (ﬁf)%él

+x(M(a, Q)M(a, D?))Z + w2, (10.67)

Now we apply [10.66) to the fouvl’s occurring in [I0.617) to obtain
in succession (with absolute-constants)

M(%, P?) < > (wWPlogx + p)p~ < w?log? x (10.68)
p<w?2

because of (T0.60). (10J58) ald{10.30)),

M(%, D?) < > WPlogx+d)d ™t < wPlog? x+ x5, (10.69)
de2

using in addition[(I0.21) further (c{10157))

M(a @) < > W?logx+ p)p 2 logx, (10.70)

p>w?

and lastly

M(a, D?) < Z(w2 logx + d)d 2@ < wA(log® )x "3 + logx. (10.71)
deo

Using the four estimate§ (10168)=(10.71) In (10.67) wevar(cf.
(I0.58), (10.30))
S g 215 a0« (wPlog? xwPlog x + X))}
17<g<w ¢ y modqg (l?f)gil
+x(log? X(W2Xx~3))% + W2 < x2wlog x(wlog +X + X3)
+xlog X(Wx 8 + 1) + W2 < xlog X + w336 log x + w2x? log? x,
(10.72)



122

129

valid uniformly inr. This gives, by partial summation arild(1d.30),

1

e DT ) < x P xR < x7 (10.73)
¢
17<q<z?

mod be %
XMOSa Bne

uniformly inr.
Note that the left-hand side expressionIn (ID.73) majerizgr) of
(I055). Therefore, it follows froni{I0.b4) that

Z(r) <y X718, (10.74)
2

which when used if{I10.50) yields (by means[af (8.32)) thienede

Z <y X8, (10.75)
1

Thus we obtain, on using(10175) [D{10.48),

Z <y x(logx) 3, (10.76)
0

from which in view of [10.4D), follows the estimate iR {10)16This
completes the proof if Theoren1ID.3.

NOTES

[[03: The results of this theorem were proved first under the a
sumption of the generalized Riemann hypothesis by Wanhgaf#],the
unconditional proof of these results (with an applicatiorhave [6.717)

. 1. - .
with af < =) is due to Bombieri and Davenpoli [1]. The main terms of

([@01) and[(I0J2) are 4 times the conjectured asymptotiditae (with-
out error terms), for the respective problems, of Hardy aitidebood.
In this context it is significant to mention that Montgomegstpointed
out (in correspondence) that a decrease of the factor 4 hgreoastant
¢ < 4 would have the same consequences regarding the Siegsla®r
has been remarked in connection with the Brun-Titchmarsargm (cf.
Notes of Chaptdil8, unddr{8121)).
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TheorenI0OR: See Klimo¥[1].]2], and Halberstam and Ritcfigr 123

(Theorem 3.12).

(@IU38): The formulal{I0I8) though not needed in this fulcéfor
LemmdI0lL, is of much use in later chapters.

LemmdIO.P: cf. Halberstam and Richért [1] (Lemma 3.5)

TheorenZIOI3: This result is the most essential part of Ghanaof
of his famous theorem with respect to Goldach’s conjecticey = 10
it occurs in Chen[]1], Halberstam and Richéert [1] (Chajigr Wwith
some simplifications due to P.M. Ross) (with the weigh{s)), and in
Ross [1]. We shall use Theordm10.3 with= 8 in Chapteil”II3 and
thereby obtaining the advantage of dealing with elemenfiamgtions
in connection with the lower bound estimation via Selbesjgve. (cf.
Notes of Chaptdr13, precedifg{13.27).)

(@IUIT): For later use we obtain an estimatedgw). First, note
that the functionf(x) = x2 — 2xlog x is increasing fox > 1 (since the
derivative f’(x) = 2(x — 1 -logx) > O for x > 1). Sof(x) > f(1), for
X > 1, which means that®> — 2xlogx > 1; i.e.,

(x=1D(x+1)
2X

logx < for x > 1. (10.77)

(However, observe also th&f{10.77) follows from
b
(b-2a) .
F(y)dy < 5 (F(b) + F(a)) for any convex functior, b > a,

a

(20.77)
on takingF(y) = ytanda = 1,b = x(> 1).) Hence[[I0.47), with
X = 2 - 3a, gives

log2-32) 1-3¢ 3 3,1 3 1
al-a) =~ 2 a@-32) 2% 2-3)O0<es3
(10.78)
from which, we obtain
1
3
_ (" log(2- 3a) 3 o= 3 V2
c(v) _f ol_a) da < 7 log(a(2 3&))Ia:% =1 Iog(3(2\/_3)).

<=

(10.79)
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(@0.61): TitchmarshE.C. The theory of the Riemann zeta functiore4
(Oxford),

Lemma 3.12.

The dfective way of treating the remainder terms by an explicit use
of analytical methods. as done here subsequelifo {10$6df.recent
origin. It occurs in the papers Barban and Vehaw [1] (see Mashi
[10]) Hooley (2], [E]. Huxley [5], Chenl[1]. Motohash[[8]. &lber-
stam and Richeri]1]. Goldfeld][4], and Ro§&$ [1]. Exceptihg first of
these paper all the others employ this method for the purpbseme
applications only. In that paper Barban and Vethadv [1] sketphoof (- a
rigorous proof was given by Motohashi [10]-) of the followisurpris-
ingly uniform result:

If x>z logz>logz,z > zand

{y(d) ifd<z
Ag = |og(%i) . (10.80)
M(d)m |fZ<dSZ]_.
then we have X
() A9)? . (10.81)
Kzngx dzl,; log(%)

d>z;






Chapter 11

A Generalized form of
Selberg’s Sieve

IN CHAPTERD we discussed a simple version of Selberg’s sidweg 125
with two particular cases, corresponding to the choices

w(p) = 1 andw(p) = p—fl(forp € ). (11.1)

and applied the latter, in the next chapter, to obtain theoitat Theo-
rem[I0.3B for the purposes of Chagiel 13. In this chapter weraanthe
theme of the small sieve of Selberg with a view to enunciattirig its
best form (in a certain sense), with is useful also in the fsrobthe re-
sults of Chaptdr13. However, our account of this aspecteoSeiberg’s
sieve here will be sketchy (with relevant references beistuded in the
Notes).

At the out we recall that Selberg’s Theor€ml 9.1 was provegestib
to only the condition ;) (cf. a) which restriction can also
stated in the form

0<w(p)<ép forsome <1 (11.2)

(Though [ITR) does not make Selberg’s sieve ‘too largee’siaev-
ertheless it leaves the sieve a ‘large’ one still.) Howelegffectively
deal with the functiors(z) and the remainder terms of Theorert 8ne

133
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needs information concerning the average order of magnivfid (and
also ofRy’s). In this connection the condition

@k L)-L< > &;Om)—klog(v—zv) < Afor2<w<z (11.3)

w<p<z

which tells us thatv is ‘on the average’ equal tois useful (wherRy's
are ‘small’ atleast on the average) for obtaining both theemand lower
estimates folS(«7, p,2). Then theO-constants in these estimates are
allowed to depend oA (fromQ,)) andk (and hence, comparing with
[@I2). the sieve is ‘small’A; (from (Q2(k, L))), (and some constants
implicit in the restrictions oiRy’s (cf. (I1.62))) but not on any other pa-
rameter involved (in particular, independentlofwhich is of the nature
of an error term, in practice thereby requiring a separatsideration).

The constant in (I1.3) is called the ‘dimension’ of the sieve prob-
lem.

As we shall see later the equation of obtaining lower boumas f
our sifting functionS(«, p, 2) can be linked up, in a significant way
with the problem of finding good upper estimates for it. Aciogly,
we now deal with the latter problem. First, we mention thatwlone
combines for this purpose, Theor€ml9.1 widb(x, L), or instead even
with the one - sided restriction

I .
@) WPIOGP _ 10gZy Ay if 2<wsz (11.4)
p w
w<p<z
the results obtained are quite satisfactory. In fact, amefdary reason-
ing gives, under the conditiof2o(Kk)) (in addition to €2,)), the estimate

1
@ < W(Z) (115)
for the functionG(2) of Theorenf @l in terms WV(2) defined by[[3.20),
and with a little more ffort, on using Q2(k, L)) in place ofQ,(x) here,
one obtains

1 ) L
o = W@ T+ DiL+ O ) (11.6)

Thus we get, by means of (the last inequality of) Theoker I9el t
following two theorems (respectively):
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Theorem 11.1.(Q1), (Q2(x)) :

S0 < XW@+ ) pHAIORI (117)
d<Z
(d.p)=1
and 127

Theorem 11.2. (1), (Qo(x, L)) :

S/, 9.2) < XW(@)e"T(k+ 11 + O(@)} + L IRy

(@p)=1
(11.8)

Here, again, we point out th®-constants in these two theorems
depend atmost oA, A andk inherent in 1) andQ(k, L) (or Q2(k)).

Next, in accordance with the remark involvirig_(111.3), wesidar
the question of the magnitude Bf's There are many cases in which
one has the following information

(R |Ryl<w(d) if wu(d)#0and@.p)=1 (11.9)

In such a situation one readily obtains, from (the seconduality
of) TheorenfT@1 and{11.5).
Theorem 11.3. (1), (Q2(x)), (R): For any A> 0

S, 9,9 < X[ |- @) if z< XA, (11.10)

p<z

where the<x-constant depends almost on A, A; andk.

In the literature, usually, the phrase ‘by Brun’s sievé refers to
the statemenf{IT.10). Here notice that Thedreml 11.3 isitablathe
more convenient condition, instead 61(«)),

(Q0) w(p) < Ao (11.11)

(since Qo)) implies Q2(«))). Similar to Theoreni 1113, on using{1l.6)
with Theorenf @11 (cf.[{I018)), one has the explicit
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Theorem 11.4.(Q,), (Q2(x, L)), (R):

S(<7,p,2) <T(k+1 1o 9Py Ly X
(o7, p,2) <T(x+ )]:[{( L P
(1+0(09log®+Ly e E (11.12)

logz

where the infinite product converges and the O-constantriéspatmost
on A, Ay andk.

On the other hand, in absence of the informati® @s happens
with more delicate problems, one has to seek atleast angs/eesult
aboutRy’s (cf. the remark containind(11.3)). It is at this staget the
Bombieri-type results (cf. ChaptEl 8) are dfective. It is easily seen
from the last sums in Theorem 111.1 d0d11.2 that the siz2 @fhich

is about
VX
log® X

usually) is very important, since a smaller choice ofcreases the lead-
ing term view of the factolW(2). For making this remark a little more
explicit notice that underR) one couldZ?? < X (cf. (TI.12)), whereas
the use of Bombieri's theorem allows us, for example, upttbund

[II.13), so that
VX

<
log® X

which worsens the leading term [D.{T11.8) by a factor‘ofi view of the
fact thatW, behaves like(x) log,* underQa(k, L)). However, if we ask
for a bound to the primes represented by an (irreduciblegatvalued
polynomial F then we can sieve the sequen&gp)}. Then (leaving
minor details apart) the dimension of the problem would be&d ene
has to use Bombieri's theorem instead &f,(thereby (apparently) lose
a factor 2. Instead one can also sieve (as was necessarg befavail-
ability of Bombieri’s theorem) the sequengig=(n)}. In that event, the
dimension becomes 2 and consequently one loses a factdeddinasf 2.
This example provides an instance of how Bombieri's theopemmits

(11.13)

(11.14)
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linearizing a problem (-i.e., reduce the dimension by oaa¢ thus save
a factor of 2 in the upper estimate.

Now returning to our problem of obtaining good upper estasat129
with a view to achieve lower bounds (which are far more imgat,
for S(«, p, 2) we find that it is helpful (cf. [[I1.32)) to generalize the
method of Chaptdr]9 by the introduction of a new parameteicfwis
possible because of the dual rolezahere expressed throughP(z) and
d < 2) in the following way.

Again we start with[{9.26) which holds true under the singiadi-
tion ©23),

A =1, (11.15)

and then requird {3.27) with respect to some arbitrary
&>1 (11.16)
instead of the inherent inS(«, p, 2), i.e.,
Ag=0 for d=>E. (11.17)

(Note that [[TT117) is consistent with(111.15) becausd_oflfd)1) Pro-

ceeding as in ChaptEl 9 one is now led to the choices

_ p G52
Ag = ﬂ(d)];j[ o) G (11.18)

where

Gux2:= > o), G(x2):=Gy(x2)for0<xeR  (11.19)
d??é)
(dK)=1
are generalizations of the functionsin{9.22) (dnd {9-2A)o note here
that [IT.IB) includes botlh(11]15) add (11.17). Now aganhefore,

one has
A4l < 1. (11.20)
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Further, with the choicd{TTIL8), we gef{d.26) with

1
= (11.21)
2" 5
and also, corresponding 10 {9 31), 130
2.< 2, Raal< Y, 3Ry, (11.22)
2 d,& d<£?
&IP(2 dP@
v=1,2

because of [T 20)(IT117) arid {9.32). Now we seedhws, so to
speak, taken over fromthe role of controlling the order of magnitude of
the remainder sum (cf. the remark preceding the statemefflot’)).

Also we would formulate (cf. agaifi.{11]32)) TheorEml 9.1 gahe
ized further so as include al;'s for ¢ srestricted by

Q) u(@ #0.(a.P(2) =1.(a.p) =1 (11.23)

Here we stress that/y's are related toz through the approxima-
tions required by[(9.15) (and(9.9)) and consequently ttep $ not
merely a change of notation. The condition (Q) ensures,Higrgtep,
that the only changes required in the previous generadizati Theorem
are the replacements of

> by @Z (11.24)
1 q 1

and of
Rys by Rygs (11.25)

Thus from [9.26), [IT21) [(ITP4Y(I1122) ahd (11.25)yview
([@1.18), the required generalization of Theorem 9.1 fodipwamely,
one has

Theorem 11.5.(Q3), (Q): For any real numbeg > 1,

X
S(y, p,2) < @ N Z 3 D|Rgl. (11.26)
’ d<&?

diP(2
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Actually, for g= 1 and¢ = z, @I.28)is the second inequality of
Theoreni @11 since
o = o (11.27)

and 131
G(z, 2 = G(2). (11.28)

Here, by imposing the conditiof2,(x)) alone we cannot expect to
get very useful results. However,as a starting point forrttethod of
obtaining a lower bound for our sifting function, we uge,(x)) only

1
to derive a simple estimate f so that it follows from Theorem
P Ee o
IT3.
Theorem 11.6. (Q1), (Q2(x)), (Q): For

2
rom 008, (11.29)
logz
there holds
S(s7.0.2) < “CUXWIL+ Olexpi- (09 + 201 + Y, 3O Ree
d<&?
dlpé(cz)

(11.30)

Now we are in a position to point out how by means of a certaig ve
effective combinatorial argument (in the from of identitiesicerning
our function S(.«7, »,2) and W(2)), which is really a result about ar-
rangements from mathematical logic,one can obtain somerlbaunds
and also improved estimates for our sifting functions friwa ¢éstimates
of TheorenITl6.

Buchstab was the first to notice the fruitful utility of thisrabina-
torial result for the purposes of sieve methods. We stagerésiult as

Lemma11.1.(Q): If
2<z <z (11.31)
then we have
S(. 1.2 = S(g, 1. 21) = Y S(p. . P) (11.32)

71<p<z
pep
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as well as

W =wz - Y P w (11.33

21<p<z p

Proof. Let p1, p2... be all the primes belonging af, written in their
natural order, which are greater than or equatolf z < p; we have,

by (@1%) and[3.12)
P(2 = P(z7) and w(p) =0 for zy < p<z (11.34)

This gives, by[(3J6) and{9.P0),
S(. v.2) = S, ».21) andW(2) = W(z), if z< pr. (11.35)

Thus Lemm&ITl1 is trivially true in this casg &€ z < p1).
Now suppose thap; < z so that defining the integét by py < z <
P.., We haveN > 1. Then, for each integer=1,..., N, (@.8) yields

S, pv+1) — S(Hg, py) =
= [{a:ae oy,a=0modp,, (a P(p,) = 1}l = (11.36)
= _S(%py, p9 pV)a

and, by [3.2D), we have

W(P,2) - W(P,) = —@W(py). (11.37)

Summing up the identitie§ (11136) arld (11.37) owvet 1,...,N
and observing thaB(.a7, »,2) = S(#, Pn+1) andW(2) = W(pn.1) we
obtain [I1.3P) andTIT.B3). This completes the proof of ¢nerha.

To see as to how {IT.B2) links up the problem of obtaining atow
bound for sifting functions to that of having good upper resties, sup-
pose that one has a lower bound for (the lar@{w/, », z1). Then up-
per bounds foS(.<7yp, », P)’s enable us to obtain a lower bound for (the
smaller)S(«7, », 2). (We also have a similar remark the problem of ob-
taining upper bounds by means &f(11.32).) However, theifgignt
part of [T1.3R) is its iterative aspect consisting of usihfi.82) to (some
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of) the S-functions with (the respectivg)’s in place ofz, thereby ob-
taining more terms of both signs which in turn (after ‘margrations)
would provide a moreféective scheme for the above procedure. Actu-
ally , it is again this iterative process because of wHich3a)lis stated
with a (general) (rather than withg = 1).

Since, to start with, we do not have general lower boundsfgy,
p,z1) one can only make the choice

=2 (11.38)
so that, by[(9.15),
w(9)

S( A P> 21) = |yl = Tx +Ry. (11.39)

Then, on multiplying [T133) bya%X and subtracting the result

from (I1.32) we are led to deal with the remaindggg's only. Now, in
order not to accumulate too many terms from the upper estifoathe
sum in [II3R), we use Theordm 1.5 Kt p, p, p) With £2 replaced
gg/p (and also withp instead ofz, which ensures@) for gp in place
of g). Thus we arrive at a first step lower bound correspondindn¢o t
upper bound of Theorefn11.6, and so we state this result iofthe
asymptotic equality: O

Theorem 11.7.(Q1), (Q2(x)), (Q): For

2
. loge” (11.40)
logz
there holds
S(, 9, 2) = @xwg)um(exg—%(log % +2N+0 D 3Rl 101 < 1
d<&?
diP(2)

(11.41)

It should be mentioned here that, wigh= 1 and a suitable choice
for &.

One easily obtains from Theordm 1.7, under the condif®)nthie 134
so-called ‘Fundamental Lemma’ (cf. Kubiliyus [2], Lemm&)L.
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Theorem 11.8.(Q1), (Q2(K)), (R): For

log X
U'——g >1

= Togz 2t (11.42)

there hold
S(7, p,2) = XW(D){1 + O(e 24109 1 (e~ VIouX);  (11.43)

and
S(7,p.2) = XW(2{1 + O(e2"}. (11.44)

Observe that the preceding results (i.e., Theoreml TG and
[LT.8) are significant only ifi (or 7) is large (which means thatshould
be small in comparison witlX (or £)). The reason for this limitation
is, apart from the weak conditiorf26(x)), mainly due to the fact that
LemmdIT1l has been used with a ‘trivial’ choice #91in deriving the
lower estimate. However, using the stronge(x, L)) instead of 2,(«))
we obtain a more precise information ab@&(¥, z). And still more im-
portant is that TheorefnI1.7 enables us to employ Lefnma lithlaw
‘non trivial’ choice forz; (cf. (I1.52)).

From this point onwards we shall confine ourselves to the oése
dimension

k=1, (11.45)

and we owe some explanation for doing so. First of all, thecugsti-
mates foIG(¢, 2) under Q(«, L)) in the case of general dimensieifand
then so all forS(.«7, p, ) via Theorenl_I1]5) become quite complicated
and further, they do not further, they do not yield satisgfactresults

: 1 .
(apart from the particular casesof 1 andk = 5), when applied for

obtaining lower bounds by means of Lemmal1.1. Also, whenisne
interested solely in finding upper estimates (in the mosté#ting ques-
tions) the generalized Theordm111.5 has no advantage teesithple)
Theoren 3. Finally, we have that most of the prominent lerob in
prime number theory which can be attacked by Selberg’s siathod
are dimension 1.

Now on imposing 22(1, L)) one obtains
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Lemma 11.2. (Q1), (Q2(1,L)): Let

2
e 1098 (11.46)
logz
Then holds
L~ WIFo(r) + O (e + 7)) (11.47)
G2 o logz- " " '
whereF(7) is defined by
Fo(r) = z;ey foro<t <2, (11.48)
T
and by the dierential-diference equation
! ) 1 for > 2. (11.49)

(TF()(T) - _T2F0(T -2)

If we apply lemmd_IT]2 in Theorem1Il.5 we obtain, correspundi
to Theoreni 1116, the following

Theorem 11.9.(Q3), (©2(1,L)), (Q): For any real numbe¥ > 1 and

. logé&?
T o0z (> 0), (11.50)
there holds
L
S(g. 1.2 < @xwa)wo(r) + 0(@«3 7+ Y (DR
< 2
ir)

(11.51)
where Fy(7) is defined by{I1.48)and (I1.29)

We can now repeat that above Buchstab-procedure (cf. géeari
preceding TheorefI1.7) to obtain a general non-triviakioound for 136
our sifting functions. To this end we chooseIn{11.32)

logé
log logé

Z = exp } (11.52)
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(and also assumeto be stficiently large; indeed, we can even suppose
that¢ > z since the result below (Theordm_11.10) is otherwise trivial
because of[{T1.59)). This choice enables us to employ Thel@iel

for a lower estimate o6(/, p,z1) and for the remaining part of the
right-hand side in[{I1.32) we can use now Theofem]11.9 idsteat
again with

é);Z

£2 replaced by and z replaced byp (11.53)

for the same reasons as before. However, here we encounéetdan

log(2/p)

tional difficulty due to the presence of factdeg( ) (instead of

1 in the previous case) stemming from our use of Thedren 19 w
(@I53). This diiculty is overcome by deriving fron-{TTI3) the fol-
lowing

Lemma 11.3. (Q1), (Q2)1, L)) : Suppose that
2<71<z<¢, (11.54)

and lety(t) be a non-negative, monotonic and continuous function for
t > 1. Further, define

. log(&?/w)
M .ngzzw(w), (11.55)
Then holds
@(P)\ log(£2/p)
Zp o W)
ouc”
LMW(2) logz
=W(Z t — 1)dt + O(—————). 11.56
Ot | - D OIETREY, 1so

log¢2
logz

Thus using LemmBT1.3 (instead bf(11.33)) along With (Tl d3e
obtain, by the above procedure, without any mof&dalilty the required
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137 Theorem 11.10.(Q31), (Q2(1, L)), (Q): For any real numbe¥ > 1 and

._ loglogé?
T gz (> 0). (11.57)
there holds
L(log log %)
S)40.2) > 2D xwa) fo(r) + O IT) 5 Wy,
q log¢ 4oz
diP(@
(11.58)
where §(u) is defined by
fo(t) =0forO< 1t < vy =206---, (11.59)
and by, with the function gof Lemmd41T112,
(tfo(r)) = Fo(r — 1) for t > vp. (11.60)

Now, before starting the iteration of the Buchstab-procedaf. the
remarks made subsequent to the proof to Lerima 11.1), we rhake t
result of TheorenZIT.10 explicit (fay = 1) by imposing the following
condition (abouRy’s):

Suppose that there are constants

O<a<l Ag(>1), A1) (11.61)
such that
X
RLa) > pPAFORI < Ay—5— for X>2 (11.62)
4o e log” X
log™s X
(d,p)=1

Then one gets from Theordm171.10 in the agsel, on making the

choice
Xaf

- log" X
and noting thatl|P(z) implies thatu(d) # 0 and €, p) = 1,

&2 (11.63)
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Theorem 11.11.(Q4), (Q22(1, L)), (R(L, @)):

Iogx) +O(L(Iog log 3X)5)}’ (11.64)

S(/,0.2) > XW(z){fo(a 002 00X

where §(7) is defined by{I1.59)and (T1.60) 138

Returning now to the remarkable iterative aspect of the Biadh
procedure we see that on using Theoreml111.9, with an apptepri
choice ofz;, one has an upper bound for the first term on the right- hand
side in [I1.3R) and also that using Theordm (111.10), withréipdace-
ments mentioned i {I1b3). in combination with Lemimall 108 {y
in place ofy) there follows a lower bound for the sum [ {11.32). Thus
we arrive at another form of Theordm 111.9, whé€r is replaced by
some other (similar) functiof1(r) and this in turn also yields another
form of TheorenZIT10, wherg(7) is replaced by arf,(7) (related to
F1(7)-

Continuing this procedure we are led to results of the typeofém
19 andI1.70, with (at the th step) the following pair of functions
(instead ofFq(7) fo(r) respectively)

Fu(0), fu(r), u=012---, (11.65)
where (analogous to the first step as indicate@1n{11.88))

fo(r) =0forr <v,,

fu(7) = < 11.66
u(®) 1—%f(F,,(t—1) dtforr > v, ( )
with the numbew,, defined by
if (Fut-1)-1)dt=1 (11.67)
Vi Jv,

(cf. the remark following[[I1.88)) and similarly

Fo(r) forr<v,,

- . . 11.68

pn(®) =9, 1 [P(ft-1)- 1) dtforr > v, ( )
T T
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139  with suitably chosen numbev§ foru=0,12,...
The power of this procedure is demonstrated by the surprisiot
that, at each step, the quality of the respective forms ofTtmeorems
[IT9 and_TT70 improves. Further, the sequence of nunibgrgon-
verges to 2 from above, as also dde$}, and the pair of functions
{F., f,} converges to a pair of limit functiong, f} converges to a pair
of limit functions{F, f}, asy — o :

lim v, =2=lim v, lim F,(7),= F(r), lim f, = f(r). (11.69)
Now, from (I1.69),[(T1.86)[{I1T.18) arld (111.59), we find that
2
F(r) = %ey,f(r) =0for0O<7<2 (11.70)
and
(rF(@)) = f(r-1) and ¢f(r)) =F(r-1), for r>2,  (11.71)

which gives on integrating from 2 to

u-1 u-1
uF(u) — 2¢” = f f(t)dt anduf(u) = f F(t)dt, foru> 2.
1 1

(11.72)
Then we obtain from{I1.72), in particular, (dE{11.70))
2¢”
F(u) = o forO<u<3 (11.73)
and (so) further
f(u) = z%y logu—1)for2<u<4. (11.74)

Also, we have

F(u) > 0, f(u) > 0, F(u) L, f(u) 1 (for u > 0)
and  limF(u) = 1= lim f(u) (11.75)
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and

0< F(uy) - F(up) < F(5) 22—

0< fup) - f(u) <202~ foro<s<u<up  (11.76)

1

Actually, when one knows these results (abeuf) there is no need
to consider the sequence of pairs of functi¢Rg, f,} (and so also the
numbersy,, v;). One can instead iterate {111.32) as well as Lefimd 11.3
(with y = F andy = f) and apply the Buchstab-procedure (as was done,
for instance, to obtain Theordm 111.10) only once. More pedgij in the
iterated version of{11.82) among the various functimecurring with
different signs, one can apply TheorEm11.7 for those which ahenwi
its domain (of applicability). For those of the remainiBfs which are
to be estimated from above one can use Thedrem 11.9 whileivfze t
lower estimateS > 0 in used for the rest. It remains only to prove that
this process converges. However, this can be done if therdiioex
satisfies

K < Ko, (12.77)

wherekg is some constant greater than 1. Therefore we can succeed in

our case[(11.45).

Now we can state the final result of the Buchstab-procedusasrodal
in the manner mentioned in our previous remark.

Theorem 11.12.(Q4), (Q2(1, L)), (Q): For

£>z (11.78)
there hold
(q) logé? l, o)
S(%’ P, Z) < XW( ){ ( IOgZ ) + O((Iogé:)l/]A } dgflz 3 |qu|
diP(z)
(11.79)
and
(Q) log &2 l, v(d)
S(ey p.2 2 ZEXWE F(502) + Ol )| + é TR,
diP(2)

(11.80)
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where the functions F, f are defined @_70)and (II_Z1) and the
O-constants depend atmost opand A. 141

This theorem is also true if
1<¢<zbut < & (11.81)

with a positive constant, in which case th€®-constant in[[T1.49) de-
pends also on.

Similar to TheoreniZIT.11 we can obtain, in the casel, with the
same choice a§ (11163) the following final result from Thedi& 2.

Theorem 11.13.(Q1), (Q2(1, L)), (R(1, @)): For

z< X, (11.82)
we have
log X L
S(, .2 < XWR{F (o o052 gt b ey
and
S(,p,2) > XW(z){f(aIOQX) +O(——t )} (11.84)
= logz (log X)Y/1a”)’ '

where the functions F, f are defined f.70)and (IT.71) and the
O-constants depend atmost op iA= 1, 2, 3,4, anda.

Although the functions$=, f are invariant under the Buchstab - pro-
cedure, in view of the fact that

f(uy<F@u) VYu>0 (11.85)

and the procedure described preceding (11.77) it is natbave some
doubt as to whether the qualities of our final results (viz.ediems
[T.12 and_I113) cannot further be improved. However, iteashown
that, for the sets

A =B, = {n l<n<xQn) = |vm0d2},v= 1,2 andp = p;
(11.86)
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(cf. @39)). the relationd(IT1.B3) arld (11.84) hold withuaiity signs

(upto the leading term) for = 1 andv = 2 respectively and for all 142
values ofu : II(;L;Z( > 0 in both cases); (Actually, here we taKe= 12(
w(p) = 1 and slightly modifyR(1, @), with « = 1, via Theoreni_I1.12).

It is in this sense that the final form, as stated in Thedredidl lof the

(proper Selberg sieve is best possible.

NOTES

They survey of the Selberg’s sieve given in this chapteowad the
approach of Halberstam and Richért [1] and we refer to (Glrapt,
B, [@,1,08, of) this book for the content of this chapter as \aslifor
the applications of these results. So all the referencesab@linless
otherwise explicitly stated) are referred to by ‘l,c.’.

@I3) cf. LemmdZll
@I58} cf. Lemmab5.4

TheorenITI1: cf. l.c Theorem 4.1.

Theoren_ITI2: cf. l.c. Theorem®.2 (see also under(11.1ane

TheorenI113: cf. l.c. Theorel2.2. Actually, Theolem1l bRi&
for z> XA also when the restriction in the produptx z, is replaced by
p< X

Theoren_IIM; cf. I.c. Theoreln®.1.

(@III12): Actually, in theO-term of [TI.IP) (and also of Theorem
[LT2L can be replaced by mirL(log 2) so that the Theorefin’11.4 (and
respectively TheoremnI1.2) would include Theoleml]11.3 (@spec-
tively Theoren{_ITI1). This is, however, not surprising heseaof the
fact that the condition,(, L)) includes (x)).

([CI.I3): For more details concerning the description hiereon-
nection with

(I1I3): see l.c ChaptEl 5,

TheorenI1l5: cf. I.c. Theorem 6.1.

143 TheorenI1J6: cf. l.c. Theorem 6.2.

LemmdITIll: cf. l.c. Lemma 7.1.
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TheorenI1]7: cf. I.c TheorefnT.1.

Theoren{ITI8: cf. I.c. Theorem¥.2. Also cf. |.c. Theofenfarsa
slightly stronger result derived from Brun’s sieve.

LemmdIIP: cf. l.c. Lemma 6.1 and also I[c.{4.18) on p. 201.

(I123), [I1.29): For the functioRy defined here, it can be proved
that

Fo(r) > 0, Fo(7) | (forr > 0) and Em Fo(r) = 1. (11.87)

For more details aboWq(7), cf. |.c. Chapte[J63 (where this func-

tion occurs as——).
o1\T

1(7)
Theorerrl]]ﬁg: cf. l.c. Theorem 6.3.

LemmdILB: cf. l.c. TheoremT.2.

Theorem[II10): cf. l.c. Theorem 7.3.

(@159),[(I1.80): To form an idea of the introduction of thiaction
fo(7) it is useful to observe that, by the procedure leading toofdm
[LT.T0 here, the contributions to the leading term (aparmfiloe factor

@XW(Z)) are, in view of Lemm&II13 here (with(t) = Fo(t)) and

Theoren_ITP here,
1- % fw(Fo(t -1)-1)dt = fo(7). (11.88)

This gives [I1.60) and the choice ¢f_(11.59) made sifife) is
negative ifr < vy (by (I1.88)), wherey is defined by

1 00
—f (Fo(t-1)-1)dt=1, (11.89)
V0 Jvg

while one has always, on the other hand, the tri@igl/, v, 2) > 0, Now

(IT.89) yields
vo = 2.06.

Further, one can show, correspondingfo (111.87) above 144

fo(r) > 0, fo(r) T (for r > 0) and Tﬂrg fo(r) = 1. (11.90)
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(@I1.62): Clearly, this condition has been modelled suchBlambi-
eri-type theorems are directly applicable.
TheorenIT1. cf. l.c. Theorem 7.4.

(ITIX0),..[A1736): Jurkat and Richert [1] (cf. I.c. (CteafB, 2)).
TheorenIT.12: cf. l.c. Theorem 8.3.

TheoremCII3: Jurkat and Richer [1], Halberstam, Jurkat a
Richert [1] (cf. l.c. (Theorem 8.4)). Selberd [5] has pothiteut that
(according to an unpublished paper of J.B. Rosser) thidtrean also
be derived from Brun’s sieve. This has been proved, even avitet-

21 : .
ter error term (namely, with— replaced by 1) by lwanie¢]1]. Iwaniec

[] has also applied this improved version of Theofem Jll1olgharpen
the bounds for the Legendre-Jacobsthal functa(r), the maximum
length a block of consecutive integers each of which is iilésby at
least one of the firat primes. His result is

Co(r) < r?log?r,
whereas (our) Theorem 11113 leads only to the estimate
Co(r) < r?exp{(logr)t¥14}.

In the opposite direction we have, by Rankin [1].

_.rlog?rloglog logr
(log logr)?2

Co(r) > e

(cf. Lc. (p. 239)). (For the case = % see Iwaniec[]2],[16], and

1 . .
for k < = see Iwaniec[]7]. However, far exceeding some constant

k1(> 1) Selberg’s sieve seems to be always superior than Brugve si
(for instance, in sifting values of reducible polynomials)

145 (I1.88): This fact (abouE(I1.B6) was established by Sel|#r(for
0 < u < 2), and he added the remark that the sieve method “cannot
distinguish between numbers with an odd or an even numbetirakp
factors”.



Chapter 12

Weighted Sieves

AS ALREADY mentioned in the previous chapter our object isige 146
the ‘final’ results there for the proofs of the results of nekapter.

For this purpose we need further improve to the quality obé¢hee-
sults,inspite of the concluding remarks of Chapfdr 11, arglis achie-
ved by considering a weighted sieve, which actually cossia combi-
nation of various sifting functions (so that the counteareples [11.86)
collapse).

Before commencing the introduction of weighted sievesHergur-
pose mentioned above, we briefly point out as to how the firsallref
ChapteflL, in particulaf {I1.B4), already yields a resuthe direction
of TheorenZI3R. For this, let us consider

;z%::{p+2:psx},p::p2 (12.1)

(cf. @39)). Here we can take

p

-1 forpe p(i.e, for p>2) (12.2)

X=li X,w(p) =
and then the condition$Yy), (Q2(1, L)) are verified easily for some fixed
constants A A, andL(> 1). Further, Bombieri's theorem (Lemma
[I0.2) enables us to fulfillR(1, @)) with

1

a= (12.3)

153
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(for some suitably chosen absolute constaatandA,). Also we find,

by (I0.8),
W@ = 11 -5 =2[10- Plecpl i) =

2<p<z
— 2a~ 1 1 1
= 2e7 ng(l - ) ez (L + Olh2):

(12.4)
147 Therefore, taking
zZ= x%,u>4;u=4.2 (12.5)
say, we obtain fronT{I1.84) and (111 74) that, for some p@sitbnstant
Co,
S(#,p,2 = Co X2 for x> Xo. (12.6)
log® x

Now, note that the numbers counted on the left-hand sideHsare
no prime divisor< zand so for each of these numbers we have

X+2>p+2=pp---p > X" (12.7)

which shows tht necessarity< u or by (IZ5) thar < 4. Thus, letting
X — oo, we have that for infinitely many primgsholds

P+2=P4 (12.8)

At this point it is worthwhile to notice that Theordm 111. 1 hiead
of (I1.84)) would have also led tb{IP.6), though with a seralkalue
for ¢y, and so also to[{12.8). We can express this remark by saying
that [IZB) follows from Selberg’s upper bound sieve coraBimvith
the (one-step) Buchstab-procedure on using Bombierim@®number
theorem (cf. also the remark involving(13.21), with regged heorem
[Z2 below).

Now we turn to the weighted sieves. The first weighted siewit; s
able for our purpose also, was introduced by Kuhn (in conmeatith
Brun’'s sieve). Since then there have been other more sajattesd
sieves invented. However, we shall need only a special fdiiie
simplest of these, namely Kuhn's sieve (cf. Theofeml12.1).
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Theorem 12.1. (R(1,@)) : Let h be an even integer (determined with
respect to x) satisfying

O<lh <x (12.9)
and suppose that (associated with a seques@ave have 148
X = li x, w(p) = p—pl for p € pp. (12.10)
Let u and v be two real numbers (independent of x) such that
1
—<u<Vw (12.11)
a
Define
1
W(; pn, V, U, A) = {1-- 1, 12.12
(' P V. U, 2) % - 12 ; (12.12)
@pody=1 TR
pPepn
2<1€eR. (12.13)
Then
W( © i,V U, 4) 2 €7 C(h) —s—V
log” x
1 1. dt 1
{f(av) -2 fu JF(Ma- DT + O(W)} (12.14)

whereC is defined by[[@.42) and th®-constant depends atmost on
u,v, Az, A4 anda.

Proof. We may assume that
X > Xo(U, v, Az, A, @). (12.15)

Let us set )
z:=xv, y:= x\ (12.16)

Then, by [IZ1R),
W( : pp,V, U, A) = S(, ph, 2)
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1 1
-3 2 Sl ) =S D -7 ) (12.17)
z<p<y 1
PEPh

say. Since b, by (IZD), the conditioncl,) is satisfied with arabso-
149 luteconstantd;. Also (Q2(1, L)) is fulfilled with someabsoluteconstant

A, and, by [IZB) with

L <O(1)+ Z gp1> < log 3| < loglogx. (12.18)
plh
Hence we get, by {11.B4) (sinse> 1 by (IZ.11)),
Iog li X 1
S(A, ph, Z) = XW(2){ f (o ( X ) + O(W)}. (12.19)

We apply TheoreriZIT.12 for the estimation)f, and for this we
define (in terms of the constants froR({, a)))

X(Z
2
=— 12.20
é: IogA3+a X ( )
Note that for eaclp in the range o, we have
2 Xa—%
¢ (12.21)

R A—
p IOgA3+a X

Therefore applyind{IIL.Y9), for each termM)y, with £2/pin place
of &2, p = py (andq = p so that Q) is satisfied because qf > z and
p € pn) We obtain

w 2
Z Z (P)XW(){F(Iog(f /p)) o( g]i/15)}+ Z 12(d)F DRy,

z<p<Y logz d<&?
(d.p)=1

(12.22)

in view of (IZ21),[(12111) [[T1.81) and {121 18). Estimgtihe last sum

in (IZ22) by means ofR(1, @)) (cf. (I1.62)), (IZ20) and{1Z110) one
gets

E XW(Z){
1

1 X
(log x)1/15)} ’ O(Iog3 x)'
(12.23)

Z X (Iog(f /p)) + O

=<p<Y Iog z
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after some simple considerations involvidg (12.10Y,_(B),. {TL75),
I17%), 0Z1k) and{I0P2).
Now, from (IZID),[[T0I8) and(1Z116), it follows that (€£2(4))

B Iog Iogx
W(2) = zﬂw(l - p—l) - ,ng S +O(——>)  (1224)
prh
whereG is defined by[[9.42) and (so) satisfies, (EL_(12.9)), 150
&(h) = O(log log 3h|) = O(log logx). (12.25)

Using [IZ.24) in both[{I2.19) and{12123) we are led to [yI2p
and [IZ1B))

W( © pn, Vs U, ) > ——e " C(h)v
log” x

{f(av—% > ey o2 1)} (12.26)

5ty P logx (logx)®

by means of[I1.716) an@{1Z]20). It remains only to deal withgum
in (IZ.26) and for this we proceed as In{10.24) obtainingehy

1 |09(Xa log(X).  dw 1
Z _pF(V( Iogx f v log x Wlogw+o(logz)

z<p<y

f Fivla - )T +0 (@) (12.27)

Using this in [IZ.26) yieldd{IZ114) and so the proof is caosteal.
i

Regarding the terms containing the functibandF it turns out that
for a suitable range of one can have instead an expression involving

only elementary functions (cf[{I1]73)) arld(11.74)). Mprecisely,
we have
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Lemma 12.1. Let
1 2 4
—<u<yv,-— -
a a a

<v< —(forO<a <) (12.28)

Then (for2 < 1 € R)

v—21
f(a/v)—%fF(( —1))0'1:2e {Io (v - 1)——Iog C;}.

(fz.zg)

Proof. Note that the arguments of the functiohandF in (IZ29) sat-
isfy, by (IZ.2Z8),

1 1
ZSCL’VS4andO<V(C¥—a)SV(CL’—\—/):CIV—].S?). (12.30)

Hence, by [I1.43) and{I1174) one has that the left-hand afide

(IZ29) equals
267 1 dt
2 {Iog(av—l)—z | = } (12.31)

This proves[[IZ.29). m]

For our use in the next chapter itfBaes to have the specialization
of Theoren{_IZ]1 to the sequences

151

={lp+h:p=<x,2h0<ih <x (12.32)

whereh is determined with respect to féigiently largex, and withu
andv restricted by[[IZ.48). Here note that fof one has[[12.]0) and
Ry = O(E(x, d)) so that lemm&ZI02 (witk = 1) fulfills (R(1, @)) for

=~ 12.33
=3 (12.33)

Hence we have, by Theordm 112.1 and Lenimal12.1 the required
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Theorem 12.2. Let h denote an even integer (determined with respect
to x) satisfying
O<lh <x (12.34)

Let u andv be two real numbers (independent®fsubject to
2<u<v,4<v<8 (12.35)

and let
2<1eR. (12.36)

Then we have

D {1—% D }zlo‘;’z(xy(h)

p<x xWV<p<xtiu
(p+h,IT p)=1 p'|lp+h
p/<X1/V p,*h
p'th
og¥ - 1)- Tiog¥=2 L o(—E . (12.37)

where @ is defined by[(9.42) and th®-constant depends atmost on
andv.

NOTES 152

(Z3): Here and in the sequel one recognizes ffeceof Bombi-
eri's theorem (and possible improvements, for instan&e, the Elliott
and Halberstani]2] conjecture mentioned in the notes of @kl 3)
when used along with Selberg’s sieve.

Among the various weighted sieves introduced succesdfialhap-
plications) we mention first Kuhri1][2][3]. Here the basdea
consists in forming th&V-function ((IZIR)). Next we have Selberg’s
weights of the form

> {1 - %D(a)}(z q)? (12.38)

ac/ dla
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(with A4’s given by [3.2B)). By takingZ = {n(n+2) :n< x,2+{ n} and
D(a) = d(n) + d(n+ 2) here, Selberd 2] (cf. Selberigl [4]][5]) succeeded
in proving that

n(n+ 2) = Ps (12.39)

holds for infinitely many integers. This method, in the case where
D(a) has (apart from a term to take care of the ‘small’ prime dixgsof
a) the form of the inner sum in Kuhn¥ (cf. (IZ12)) has been pub-
lished by Miechl|[1], 2], and Portef]1], Next, Ankeny and ©mi [1]

have replaced Kuhn'’s constant weigiht attached to the inner sum in

[@Z12), by a logarithmic weight which is moré&ective and also has a
smoothing &ect on the prime divisors in that sum and this weight has
been generalized by Richerd [1]. Both the Kuhn weight anddbarith-
mic weight can also be used simultaneously(in (112.38) (ctbétatam
and Richert[[lL] (Theorem 10.8)). In the first case, a gereatdin and
refinement of Selberg’s second method (mentioned abovenimemtion
with (IZ:39)) can be found in Bombielll[6§ (8). Bombieri [6] § 9)
(cf. [8]) has used this method, which is both elegant and @ratjvely
simple (through some what weaker than the other methodsibedc
above), for the problermp+2 = P4. (For a more general result which can
be obtained by this method, are Halberstam and Richart [i¢giem
10.9).) Buchstabl]2] has generalised Kuhn's idea of constesights
by splitting up the inner sum i {IZ112) into many parts andciting
different constant weights to each part. This method is higligctve
but is, on the other hand, very complicated. Roughly spegktrmay
be described as splitting the inner sum into two parts andrierportion
attaching constant weights which approximate to the ltigaic weight
(thereby achieving a smoothing) while in the other portioa &ttached
weights approximate to a smoothing in the opposite diractio

Chen’s ingenious idea, for which we refer to Chapidr 13,iteatb
an improvement in respect of some very prominent problenadti-
tive prime number theory does not need any of the more sdiqtist
weighted sieves described above, but just the very speciah¥ sieve
(in the form stated in Theorem 12.2).

However, contrary to the other sieves methods mentionedealits
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method cannot be applied to a great variety of sieves prabldtrcan
be directly applied to the problems of the type

N=p+Pap+h=P;, ap+b=P; (12.40)

(cf. TheorenTI311[T32; the last one (cf. Theoleml]10.2) racg
to Halberstam (oral communication)). The problem of atigglother
related problems by this method has not yet been tackled\N@tes of
ChaptelIB), and in this context the logarithmic weight prhae still
gives the best results known to date. In case of dimensienl we
mention (Richert([1]):

Let F(n) be an irreducible polynomial of degrgé> 1) with integer

codficients. Leto(p) denote the number of solutions of the congruence

F(m) = 0 modp. (12.412)
and suppose that
p(p) < pforall p. (12.42)
Then, we have
14(Y)]
2 (1-58)
Hn:1<n<xF(N) = Pg}l > 51:[ 1o ) Iogx or X > X,(F)
(12.43)
and if further
p(p)<p-1forpt F(O)andp<g+1, (12.44)
then (excluding the cade(n) = +n) we also have
(p)
4 1-55)
{p: p<XF(p) =Py}l 2 3
3 m]:([m -3
(1- 2D
for x> Xo(F). (12.45)

2
HF () (1‘5) log” x

154
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Hence, in particular (n; I|mM = 0), there are infinitely many

natural numbers such that X

F(n) = Pg.1. (12.46)
and also infinitely many primeg such that

F(p) = Pog1. (12.47)

(Note that for [IZ.4l7) there is no need to exclude the &fsg = +n as
was done for[(12.45).)

The corresponding problems for polynomials in two variable
F(m, n) canceled more successfully. In this connection we refar, f
instance, to the papers of Greaves [, [2], lwaniec [2Z], [5], [6], and
Huxley and Iwaniec]1].

Regarding the question of almost primes in arithmetic pFssjons,
ie.,

Pr = Imodk, (I, k) = 1, (12.48)

Motohashi has proved, by averaging the logarithmic weighRic-
hert [1], that there is a
P, < kM, (12.49)

and that there is a
P3 < klog”%k (12.50)

for almost allk and also the corresponding results valid for almost all
¢modk(k — o0) (Motohashi [12], [13], [[15]). Without any exceptions
we have only the existence of

P, < k22, (12.51)
P; < k7 (12.52)
and
1+-Ls
Pr<k ™7 forr>2 (12.53)

in (IZ48). (Actually, here the exponents can be replacedligitly
smaller ones.) (Richert][1]. cf. Halberstam and Richert(lfjeorem
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9.6)). These results be compared with the correspondingfonprimes
(cf. the remark following[(6.35)).

For more details and various other applications of weiglsiedes
we refer to Halberstam and Richéri [1] (Chaifer 9add 10).

As to the literature pertaining to the small sieves in gengearefer
to the extensive list of references given in Halberstam aictid®t [1].
We take this opportunity to add the following list of papesdich are
neither included there nor are mentioned in these lecturésrs

Bombieri [4], Buchstabl]3], Elliott[[3], Hall[[1], Hooley B [LO]. 156
Meijer [1], [2], Ramachandra[5], Scourfield [1], WolKe [48].

Lastly, we take up now again (cf. Notes of Chapiédsl 7, 8[ant®) t
question of comparison of the large sieves and the smalésieThe
importance of the large sieves for applications in analgtimber the-
ory should be clear from the exposition in the Chaplérs 2uitin@®,
and it can hardly be overestimated. Also in arithmeticalstjoes the
large sieves turns out to be powerful when applied, in anlianxica-
pacity, along with ‘small’ sieves, not only via the Bombigype re-
sults of Chaptefl63 (cf. our condition R(1, @)), (I1.62)), and under
([@Z3) in these notes above) but also in a wider sense asesteaflin
the proof of Chen’s theorem (cf. Theordm 0.3 and the beginoi
notes for Chaptdr_13). It is only in its arithmetical versi@h Chapter
[d) that the large sieve, even in its most powerful form (ngmtie
weighted Montgomery-Vaughan sieve)ffaus from some deficiencies
when compared with Selberg’s sieve (in particular, whenmganmed with
the weighted form of the latter). Without repeating our reksamade
in the Notes of Chaptél ] 8 aiil 9, we mention only the follgafacts:
The large sieve (for example, Theoréml7.1) can be used (8% b i
obtain only upper bounds, while Buchstab’s method (cf. Lexfiii])
provides (at least in principle)a corresponding lower lihumowever,

logN . .
Io%z > 2. TheoreniLITA3 (foK = N) gives a better estimate than

does Theorerfi4.1. Therefore, a suitably iterated forni_&) (3hould

be investigated. With respect to the functiofp) the large sieve has the
decisive advantage over the Selberg’s sieve in that Thd@r@#mmposes

no restriction on the order of magnitude ©fp), so in particularw(p)
need not be bounded on the ‘average’ as required by our comdi2,) 157

for
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of the small sieve. However, the large sieve cannot deal thighvery
important caseu(p) = ﬁ for example with the problem

F(p) = P:. (12.54)

Here, the defect steams from the fact that the large sievasably
requires than has to run through a sequenceaainsecutivantegers.
Thus the large sieve, while applicable to the problem

F(n) = P.. (12.55)

(leading to a trivial estimate when applied directly to si¢glve sequence
{F(p)} requires that one has to sieve the sequgn&¢n)} for the prob-
lem (1254), but then (cf. our remarks following{11]14)) the consia
the upper estimate is worsened by a factor 2.



Chapter 13

On Goldbach’s Conjecture
and Prime-Twins

NOW WE have prepared the ground for providing the main resaflt 158
(the second part of) these lectures. These results repribeehest ap-
proximation (in case sense) to the two most prominent proflim the
additive theory of prime numbers (hamely, those mentionetthé title

of this chapter). The first proof of these results is due torJag (for
simplifications see Ros§l[1]. cf. Malberstan and Richert({lhapter
11)). Here we shall give a proof with further simplificatioms respect

of (numerical) calculations and more specifically, invatyionly ele-
mentary functions. Actually this is accomplished at theemge of the
quality of the constantsc() occurring in these results, which do not
however &ect the qualitative statement of these results. For thefproo
we use the special form (as given in Theofem112.2) of Kuheigesand,
instead of the earlier practices of translating this theoneto the lan-
guage of additive number theory, follow the idea of Chen ytmcting

an additional term. Then, as one would expect, reformulegtoblem

for an application of TheorefI0.3, thereby completing tfoaH

165
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We start with (cf. [IZ37) [{10.16))
1 1
G(N) := > (1-3 I > . (13.1)
p<N-1 NY/8<p <N1/3 p1p2p3<N
(N-p, T p)=1 o' IN=p NY8<p;<NY3<pops
o/ <N/ N-p=p1p2ps
u(N-p)#0

As we shall see latef3(N) > 0 implies (in the direction of Gold-
bach’s conjecture) that
N=p+P> (13.2)

159 is soluble. One can even obtain a lower bound3¢X) (whenN is even
and large) in terms dN, by means of TheorenisTP.2 dnd10.3. Indeed,
with suitable choices for the parameters in these theoreamely

X=N,2NeN,v=8 (13.3)

in both of them and further

h=-N,u=31=2, (13.4)
in TheorenZIZ12, while in Theore 1D.3
h=N, (13.5)

one obtains an estimate for an expression similaG(h). Actually,
then one would have

5 1-3 = 1-1 5 >

p<N NY/8<p <N1/3 P1p2ps<N
(N-p. S pIN-p NY8<p; <NY3<py<ps
p<NYE p'IN N-—p=p1p2p3

PN
246005§NH093—%bgG—%q&44KngY%L
(13.6)
Now a comparison of the left-hand side here Wa&fN) shows that
we need the estimate

1+ > 1+ > > 1<logN+ > %«NWB.

N e 1 p=N NB<p
N*P<p<N2 N-p=0 modp’2

(13.7)
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which provides a bound for the (&&rence in) contributions to these
expressions arising from (the possile= N — 1,) the numberdN — p
satisfying either of the conditions

(N-pN)>1andu(N-p) =0 (13.8)
Hence we havas(N) also the same lower estimate given by thi@o
right-hand side ofl(1316). Since, Hy{10.79) witk 8,
4{ log 3- 1 Iog 6-— 1c(8)} =2 Iogg —2c(8) > 2log

33 1 3’

5~ 5100 —( 9515 =;Co) > (13.9)

we see that one has (for instance) the lower bound

N for N > Ny, (13.10)

whereNp is some absolute constant.

Next, we elaborate on the remark above pertaining_1o (13.12)
being with observe thab(N) does not exceed the parGi{(N) say, of
its defining sum comprising only of all thgositive (i,e., > 0) terms.
And also note that any term df{IB.1) with its second inner stileast
1 makes the first sum, accompanyingzit,1 so that such a term is
0. Thus we see that the terms occurring@h(N) have their second
inner sum empty and the first one is atmost 1. In otherwords(since

u(N - p) #0)

GIN) <G'(N) < glip<N:N-p=p,
NS <p <NSJU{p<N:N-p=pp

13.11
N1/8<p<N3<pz}+|{p<N N-—p=p, ( )
pL> N3} U{p<N:N-p=pips N5 < p; < pall
and also
GN)<|{p<N:N-p=P} (13.12)

From [I3ID),[[1312) we obtain the desired
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Theorem 13.1. There is an absolute constant Nuch that for all even
numbers N> Ng, we have

N
2

{p < N:N-p= Py} <coC(N)
log“N

., (co>0), (13.13)

where g may be taken constant defined@@.9) in particular, there is
always a solution of the equation

N=p+P, if 2N and N> Np.

The proof of the corresponding result regarding the geizedl
prime-twins proceeds analogously. Now we choose agaiffI8i3))

x,2h,0<|h < x3,v=8 (13.14)
in both the Theorenis_12.2Z10.3 and further
u=3v=841=2 (13.15)

in Theoren{_IZ]2. Also we note that the sufh on the left-hand side

p<x

of (IZ3T) can be replaced by, (cf. (I3I3)) apart from a negligible

p+h<x
error of the orderO(x%). Lastly, by [I3IK), we observe that thes
counted in[[T0.716) satisfy (irrespective of the sigrhpfo + h < x and
alsop + h = p1p2ps.
Now, by the choiced(1314), (13115) for the parametergllivs
from Theorem§&12]12 aiid 1.3 (correspondind 1o {13.6))

» {1—% > 1-1 » 1}

p+h<x KBy <173 PLP2P3<X

(p+h, T1 p)_ p'|p+h X/B<py <x3<pp<ps
pextie =1 p'th p+h=p1p2ps (13.16)
p'th

> 43(h)—%-{ 1109 2 - 1c(8) + O((log x)~ 5

= T2 W iog?x | 2 93 -3 g .

From here, on using the argument bI{13.7) dnd {13.9), orarabt
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(for the analogue o&(N) the lower bound

1 1

m= oy fi-3 % 1-3 3 4

p+h<x xY8<p <xt/3 P1P2P3=Xx

(p+h, T1 P)_; p'|p+h x8<p<x3<pp<pg

p<xt/8 = p+h=p1p2p3

u(p+h)=0
> coS(h) Ioé(zx for x > Xo.

(13.17)

Again the reasoning leading tb{13l11), and so alsd_Igo (A 3i42 162
applicable withp + hin place ofN — p. Thus one arrives at the final

Theorem 13.2. There is an absolute constang such that for any even
number h (determined with respect to x) satisfying

0<|h <x3, (13.18)
we have

X
{p+h<x:p+h=PylicgS(h)

forx > xo, (cp > 0). (13.19)
log? x
where @ (again) may be taken as the constant define@®3), is par-
ticular, for any non-zero even number h, there are infinitaBny primes
p such that

p+h=po. (13.20)

NOTES

Chen’s theorem féords a beautiful instance of théfective use of
various powerful tools of numbers theorey. As an inspeatiits proof
(and those of TheorenfSIP.2 and 10.3) discloses we have yedplo
Kuhn's sieve, Selberg’s sieve (several times), Bombig@riise number
theorem, Siegel-Walfisz theorem, contour integration,hylerid form
of the large sieve and Chen’s new idea described below.

Chen’s idea, which has already been briefly indicated at ¢ggnb
ning of this Chapter, can be described as follows. (We shaliice our-
selves, for this purpose, to Theor€m13.1) One first siftssdmience
N — p so that the remaining numbers satisfy.

N—p=P; (13.21)
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(and then the numbers of these remaining ones is estimatechielow.

cf. TheorenZIZ]2). Now to remove from the rest those whicloatke
form p1p2p3, one subtracts (from the preceding lower bound) another
sieve estimate (from above) for the numbers of solutions of

N - pip2ps = p (13.22)

(cf. TheoreniZIOI3). If, as has been shown to be the case fprobdems
under consideration, the lower bound exceeds the uppenasti(for
[@322)), it follows then that (since the surviving membefgN — p}
are all nowP;s) there must be solutions of the equation

N=p+ P, (13.23)

This procedure of inverting the equation (13.21) Eo_(113.Aa%
turned out to be much more fruitful than any further known iove-
ment of the sieve method one has started with. Other suctegsdli-
cations of this last step have been given by Indlekater [2ixIy and
lwaniec [1].

In this context we recall the remarks preceding (112.40). fTefly
expand on that statement, we mention that to attempt an iraprent

upon [I2.46) (or[[IZ347)) by Chen’s method one would req(ife
[@321) and[(I3:32)), limiting ourselves now to the simptese, for

nP+1="P, (13.24)
a satisfactory upper bound for the number of solutions of
pp2ps —1=1? (13.25)

with pi’s restricted by some conditions (like those in Theofem1L0.3
Surprisingly we do not any method of obtaining a satisfagctstimate
for the number of square in a sequence under appropriataticosd
and specifically not even in this case. An explanation woliddrty be
that the sequence of squares, even though more regulathibdied,

is much thinner than the sequence of primes. This also itetictat
the corresponding problem with respect[f0{IP.46) [or (ARid much
complicated.
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TheoremdI3]1 and_1I3.2: It is possible to state Thedrem ©3.1 i
more precise form with respect to the prime factorPgfas can be seen
from a combination of[{I3710) an@{I3]111). A similar remaakplies
to TheoreniZI3]2 also.

Regarding the constamp (cf. (I3.I3), [I3.19)) in these theorems
we note that our value of

Co > 0.0446 (13.26)

(cf. (@39)) is rather small. One of the reasons for this & ¢hoice
v = 8, which was made to enable us to deal (EE_(IN.73),_(11.74) w
elementary functions only (and also to simplify numericdtalations),
as has been mentioned in the introductions to this chaptenaenience
not available under the better choice (of all earlier prpofss = 10. Of

course, we can replade (13.26) by (€1.{13.9))

3 3 64

but a better constant can be obtained by taking 10. With this later
choice, Chenl]1] obtained

Co > 0.3354 (13.28)
and any numerical integration one can even get
Co = 0.3445 (13.29)

(see Halberstam and Richeri [1] (p. 338)). It returns out¥ha 11 is
close to the optimal choice, by considering the non-eleargritinctions
F, f in a wider range, and then one is led to

co > 0.3716 (13.30)

165
In all these cases is kept fixed to be 3, a value convenient in the
arithmetical interpretation of the estimates of the wesdghsieve. The
constantcy can further be slightly improved by taking > 3 but then
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Chen’s procedure becomes more complicated. As to the cunsta
under consideration it is worthwhile to compare it with 1yiew of the
conjecture of Hardy and Littlewood mentioned (under Thedfg.]1)
in the Notes for ChaptérJL0. This suggests that our preserstaatc
should be capable of much further improvement. In this cdntee add
that one has theorems (corresponding to Theofem$ 13 [IaApviith
P,’s in (I3:13) and[[13:39) replaced IRg for a better (corresponding)
constant

Co> — (13.31)

(cf. Helberstam and Richelfl[1] (Theordml]9.2)). Comparimg meth-
ods of proof it is considered to be likely that the constayin Chen’s
theorem can be further improved by using the logarithmicgives in-
stead of Kuhn’'s weights.

Continuing on with related questions we mention now a fewltes
concerning Goldbach numbers (namely, those even nunibevkich
can be written as sums of two primes)

N=p+p (2N). (13.32)

Ramachandrd[4] has derived from an estimaté_of [6.11)- bte-
ally from (the uniform)

Z N(o, T, x) < (PT)9E) log'4(qT) for % <o<1l  (13.33)
X

that the numbers of Goldbach numbers in the interval
X< N<x+x! (13.34)
has the asymptotic formula
%xﬂ + O a(x'log™x) as x — oo, if (12)1>1- é (13.35)
and has also deduced from(13.35), by combining with a re§itont-

gomery [3], that (forx > xg) there is always a prime in the interval
([@333) such that botp + 1 andp — 1 are Goldbach numbers.
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Many results have been proved (in various forms) in ordehtms
that ‘almost all’ (with respect to the error-term correspioig to that of
(@3I%) even numbers are Goldbach numbers. The best remink
here, upto this time, is due to Montgomery an Vaughan [3] datks
that the number of even integeks < x, which are not Goldbach num-
bers is

< x¥9, for somes > 0. (13.36)

(For a previous result, see Vaughhh [2].)

Further, turning to problems allied to Theorém 3.2, we h@a¥e
([IZ20)) the observation of Vaughdn [3] which yields, whembined
with Chen’s method the following result: Either the equatio

2p+1=p (13.37)
has infinitely many solutions or
2p+1=pip2 (13.38)

has infinitely many solutions, in which extend event one ,artipular,
infinitely many solutions of the equation

d(n + 1) = d(n). (13.39)

This statement concernin§_{13139) is a conjecture of Emlid
Mirsky [d] (cf. Helberstam and Richelil[1] (p. 338)). 167
Lastly we mention an application, due to Jutila [1], to a dioesal-
lied to TheoreniZI3]2. He deduced from his reduli{6.26), byhiaing
it with a theorem of Levin[[2] (reference to Richeri [1] woybeérmit
to replace ‘8’ by ‘7’ in the following statement), th&tir every integer

r > 8 there exists a numbe#§r) satisfying (withc an in [&28))

.. 1+4c
(c" = >+ 4c Qo) <1 (13.40)

(andd(r) decreasing t&€* for increasing’), such that

x<p<x+xXO p+2="p, forall x> x, (13.41)
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is soluble. Also he started that a similar result can be ddrior (an
almost-) Goldbach problems, which may be interpreted dghkaqua-
tion

N=p+P,N2=Ng,2IN,r >8, (13.42)
has a solution in two ‘almost equal’ (-in a sense which israjar for
largerr-) numbersp, P;.
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