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Preface

These lectures were given at the Tata Institute of FundaahBetsearch,
Bombay, in the Fall of 1972. Excellent notes were taken by. Shorey.

The theory of Irregularities of Distribution began as a lotaaf Uni-
form Distributions, but is of independent interest. Thegramppearing
in 1922 of Harday an Littlewood [8] and of Ostrowski_[16] oradr
tional parts of sequences 2a, ..., may be regraded as forerunners of
the general theory. The first papers dealing with the digioh of gen-
eral sequences, Xy, ... are due to T. Van Aardenne Ehrenfest [1, 2] in
1945, 49, and K. F. Roth [19] in 1954.

In these lectures | restricted myself to distribution pesb$ with a
geometric interpretation. Unfortunately, because of laictime, it was
not possible to include the important results of K. F. Rothiroegu-
larities of distribution of integer sequences with respecarithmetic
progressions.

December, 1973 Wolfgang M. Schmidt
Boulder, Colorado
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Chapter 1

A Quantitative Theory of
Uniform Distribution

1 The Uniform Distribution of a sequence in an in-

terval or in a cube
1

Denote byU the unit interval 0< x < 1, and byl any sub-interval of
U. (We shall allow open, closed, half open intervals, as wekiagle
points and the empty seé). Denote the length df by |I]. Let xg, %o, ...
be a sequence of numbersun For every interval, put

An )= > 1

1<i<n
Xi€l

The sequenceay, X, . .. is calleduniformly distributed if for every
| we have the asymptotic relation

zZ(n, 1) = n|l|,
that is, ifz(n, 1)/(n|l]) tends to 1 as goes to infinity. Set

D(n, 1) =2z(n, 1) —nll|,
A(n) = sup|D(n, 1],
|
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where the supermum is taken over all the sub-intervald.of he func-
tion A(n) is called thediscrepancyfunction.

Let € be a finite collection of sub-intervals of with ¢eC€, UeC.

For an arbitraryl, write

6(1) = min (l2l~ 1)

11CICly

Further set
og = Sll-lp5(£(|),

where the supermum is taken over all the sub-intervald,aind put
Ag(n) = supD(n, I)I.
le€
We claim that

6(n) < Ag(n) + ndg 1.1

The proof is as follows. Let | be arbitrary. Sin€ds a finite collec-
tion, there exist intervally, 1,€€ with

l1clcly and |l —|l4] < 6.
Now
D(n,1) = z(n,1) - nll|
< z(n, 12) = nllg| + n(ll2| = 1)

< D(n, 12) + nd¢
< Ag(N) + Nég.

A lower bound forD(n, I) may be proved similarly, so thid(n, I)| <
Ag(n) + Nég.
Since this is true for everl, we get[T11).

Lemma 1A. A sequence is uniformly distributed if and only if

a(n) = o(n)t.

1The notatiorg(n) = o( f (n)) means thag(n)/ f(n) — 0 asn — .
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Proof. A(n) = o(n) implies thatD(n, 1) = o(n) for anyl, which is equiv-
alent toz(n,1) ~ n|l| for any|. Hence the sequence is uniformly dis-
tributed. O

To go in the opposite direction, it will be convenient to oduce the
symbol<. The notationx<g we shall mearx < g if g # 1, andx < g if
B = 1. For a positive integef), denote by€, the collection of 3

. u SV .
sub-intervals ol of the type—- < x<_- with integersu, v. SinceCh

is a finite collection of intervals, the uniform distributiomplies that
Ag,(n) = o(n). Further observe thal, < 2.27". Thus for any given

€ > 0 we can chooshk with 6g, < g Using [1), we obtain

A(N) < Ag, () + %n.

In view of Ag,(n) = o(n), we geta(n) < en for largen. This com-
pletes the proof of LemmdA.

We are interested in sequences which are very well unifoidy
tributed, i.e. which haves(n) <« f(nﬂ where f(n)/(n) tends to zero
very rapidly. The following is an example of such a sequef8ee also
Theorem [ID.)

Every real numbefs may uniquely be written as a sum

where [3], the “integer part ofy”, is an integer, and whefg}, the “frac-
tional part of3J", satisfies 0< {J} < 1.

Theorem 1B".# [L2] Supposer is a real number which has bounded
partial denominators in its continued fraction expansidrhen the se-
quence€a}, {2a}, {3a}, ... has

a(n) < logn.

1The notationg(n) < f(n) (which is due to Vinogradov) means tHg(n)/ f(n)| is
bounded as a function of
2Theorems with an attached star are not proved in these ésctur
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The following result shows that it is not possible to improve
Theorem [B (except for giving an explicit value for the constant
implies by<). Recall that the notation

f(n) = Q(g(n)
means thaf (n)/g(n) doesnottend to 0 as — oo.

Theorem 1C. [B]-[16] For an arbitrary real numberea, the sequence
{a},{2a},. ..

has
A(n) = Q(logn).

We now shall study the discrepancy function of the sequehvare

der Corput:
11315371

The method of constructing the above sequence is illustiayehe
scheme

@Ik AR NI
YNNI

Theorem 1D.[29] The above sequence has

A(n) < logn.

. . w
Proof. Call | ¢ U anelementary intervalf it is of the type > <

.w+1 . . L
x<7, wherew is an integer. For a positive integky denote by¢
. . u SV
the collection of sub-interval df of the type% < x<%, with integers
u,v. Note thatsg, < 22", O
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We shall show in a moment that
ID(n, I < 1 (1.2)

for every elementary interval | 5
It is readily seen by induction dmthat an interval off}, is the union
of not more than R disjoint elementary intervals. SB{lL.2) implies that

A(gh(n) < 2h,

since the functiod(n, 1) is additive (i.e.D(n,1) = D(n, 1) + D(n, 1), if
| =1, Ulyandly N1, = ¢). Using [I1). we get

A(n) < 2h+n2t ",

Settingh = [log, n]E +1, we obtain
a(n) <2(logy,n+1)+2< @Iogn+4<< logn.
It remains to prove[l.d). Letl be the arbitrary elementary interval
% < x'<W2—+kl. Write the integen in the dyadic scale,
n=2a...a.

Notice that Vander Corput's sequernxe= 3,x, = ... has

Xn=0. a...& (in the dyadic scale).
It follows that xnel precisely ifw above has the dyadic expansion

W= apa; ...a 1. Thus for fixedw, we havex,el precisely if n lies in a
certain fixed residue class mo#. Hence

D(n,l):|z(n,|)—%|§1.

This completes the proof of Theorefll1D.
Now we generalise tk dimensions. Points in k - dimensional space
will be written asx = (x4, ..., Xx). Denote byUX the unit cube consist-6

%log, x is the logarithm ofk with base 2.
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ing of X = (Xg, ..., %) with xieU(1 <i <K).

A setB c Uwill be called aboxif it is a Cartesian produdt x. . . x
I of intervalsly, ..., ly. If, for example,lj = [aj,b;], 1 < j <k, thenB
consists ofk = (X1,...,X) witha; < x; <bj(j =1,...,K).

Let X X be a sequence of points UK. Given a boxB, put

AnB)= Y 1

1<i<n
ﬁeB

The Sequence , X ... . is calleduniformly distributed if for every
box B we have the asymptotic relation

z(n, B) ~ n|B|,
where|B| denote the volume dB. Set

D(n,B) = z(n, B) — n|B|,
A(n) = sup|D(n, B)|,
B

where the supremum is taken over all the boRea UK. Herea(n) is
called thediscrepancyfunction.

Let € be a finite collection of boxes withe€, UKeE. For an arbitrary
box B, define

6c(B) = sup (B2l —Bal),
B1,B2eC
B1CBCB2

d¢ = supd¢(B),
B

where the supremum is taken over all the boReés U, and put

Ag(n) = sup/D(n, B)|.
BeC®

We remark that the the inequaliti_{IL.1) can be establishetthign
general set-up, and Lemm@llA can also be generalised.
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Given a pointx = (X, . . ., X), write

X = ({xah .. {Xd).

Leta be arbitrary irk-dimensional space, and consider the sequence

{a},{2a},.... One would like to have pointg fro which this sequence

h_aSA(E) < (logn)k. If k > 1, itis not known whether such anexists,
and hence there is no satisfactory analogue of Theofém iBndt even
known if ane exists fork > 1 such thata(n) < (logn)*1. However,
it was proved[[2D] that for “almost every” (in the sense of Lebesgue

measuren(n) < (logn)<+1*€ for everye > 0.

Like for Theorem [[B, no satisfactory analogue of Theorel¥'i€
known. For an analogue of Theorer® lwe now turn to the sequence
of Hammersleyil/7].

Let p1,..., px be integers greater than 1 and relatively prime in pairs
(i.e., (o, p;) = 1 wheneveri # j). (The simplest choice is to take
P1, ..., Pk to be the firsk primes). For a positive integex write

n=aly. ag’l) (in the scale gby),

n=aP . a  (in the scale o).

Put
Xn1 = O.aépl) . a\(,\,pll) (in the scale o)
Xk = O.agp") . a\(,\‘,f(") (in the scale ofy).
8
Set

X = (..o (M=12..))

The sequencg , X so constructed is calleHammersley’s seque-
nce (Fork = 1, p1 = 2 it gives Van der Corput’s sequence).

Theorem 1E.[6] Hammersley's sequence has

A(n) < (logn)X.
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Proof. Let th](l < j £ K) be the collection of intervals it of the type

plT < x'<plT, with integersu, v. Let @, = € x ... x €, i.e. let€, be the

collection of all the boxe® = 11 x ... x I with I,-e(ifj](j =1...,K. O

We claim that
og, < 61% +...+ 6k¢h' (1.3)

LetB =11 x...Xx I be an arbitrary box. Choose intervals

I 1

Ik.ll Ik
ERRRERE L PRI

2
such that S
1L Clycl) 1l De€ (j=1,....K).
and
|Ié|—|li|56¢g](j=1,...,k).

SetBy = I1x...x1¥andB, = 1 x...x 1X. ThenB; ¢ B ¢ B, and
B, BoeC.

Further observe that

06, (B) < B2 = |By| < 5@% +...+ 6¢E'

Since this is true for any boReCy,, we obtain [LB).
Notice thatéq < 2pj‘h(1 < j <K), and so (13) gives

e, < 2(p" + ...+ B < 24k, (1.4)

An interval of the type;—‘é < x'<W—tp+_—1, wherew is an integer, is called
J J
anelementary p-type interval Abox B = I; x ... X I¢ is called an
elementary box if eachy is anelementary p-type interval.
LetB =11 x...x Ik be an elementary box with given by
Wj Wj +1 )
i < T 1<j<Kk).
j j
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ThusgneB if and only if

wj+1 jw+l
tj S an < tj
i j
Sincexyj < 1 for the Hammersley sequence, we may repladsy
< here. For fixedj, the inequalities above determimgdigits in the
expansion ofx,j in the scale ofp;, hence determine digits in the
expansion ofi in the scale op;. Thus for fixedj, the inequalities hold
if and if n lies in a fixed residue class modytd. Hence by the Chinese

Remainder Theorenx € B precisely ifn lies in a fixed residue class
~n

1<j<k).

modulop; ... p.

Hence N 10

D(n,B) = |z2(n, B) — /<1 (1.5)
[ oy

As is easily seen by induction dn every intervall of CS‘h is a dis-
joint union of not more than 2{ — 1)h < 2p;h elementaryp;-type inter-
vals.

Hence every bo»B of ¢ is the union of not more than (2h)...
(2pkh) = (2h)¥py ... px elementary boxes. We therefore see fofml(1.1),

(C3) and[(Lkb) that
A(n) < (2h)<py ... pc + n2¥ k.
Settingh = [log, n] + 1, we get
A(n) < (2log, N+ 2)py ... pi + 2k < (logn)*.

2 Roth’s Theorem

Assumek = 1. One can ask if there exists a sequence wiif) < 1.
Van der Corput[Z9] conjectured thafn) < 1 is impossible. Aardenne-
Ehrenfestl[L] proved the conjecture. Later [2] she furthevweed that
a(n) = Q(loglogn/logloglogn). Then K. F. Roth[[I9] improved it to
Q(+/logn) and W. M. Schmidt{[25] t&2(log n).

Whenk is arbitrary,a(n) = Q((logn)*/?), which is contained in the
following theorem of K. F. Roth[19].
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Theorem 2A.Let X ,52, ... be a sequence inJIf N > ¢, then there
exists an nl < n < N, such that

A(n) > ¢ (log N)¥/2, (2.1)
Here & > 0,c, > 0 are constants depending only on k.

Remark. It follows from Theorem A that there exist infinitely many
n satisfyinga(n) > ¢, (logn)¥/2. If n,1 < n < N, satisfies[[Z]1), then
n > a(n) > ¢ logN)¥/2, and son — o asN — co. Hencea(n) =
Q((logn)</?).

Letp.....p be N points inUK. If A is a measurable subset bf¢

with me_alsurep(_,&l), put Z(A) for the number of(1 < i < N) for which
peA, D(A) = Z(A) — N(A) — Nu(A).
=

Theorem 2B.There exists a box B with
ID(B)| > di(logN)* D2 if N > dy.

Heredk > 0, d; > O are constants depending onlykn

Roth observedThe case lof Theorem PA is equivalent to the case
(k+ 1) of Theorem PB. We shall prove this equivalenceker 1, as the
proof for arbitraryk is similar. We shall first show that

THEOREM 2B withk = 2 implies THEOREM PA withk = 1.

BY Theorem EB withk = 2, there exists for larghl a box B satis-

fying
ID(B)| > dj +/logN. (2.2)
Introduce the notationB(x,y) = [0, X] x [0,y], B(x-,y) = [0, X) x
[0,y], B(x,y-) = [0, X] x[0,y) andB(x—,y-) = [0, X) x [0, y) for boxes.
Put
Z(x,y) = Z(B, (x.y))
D(x,y) = D(B(x,Y)) = Z(x,y) — Nxy.
Similarly defineZ(x—, y), D(x—,y), etc. Assume at the moment that
the boxB of (Z2) is of the type

B:(,n),a<{<bc<np<d



2. Roth’s Theorem 11

Then
Z(B) = Z(b,d) - Z(a,d) — Z(b,c) + Z(a, ¢).

and therefore 12
D(B) = D(b,d) — D(a,d) — D(b, c) + D(a, c).

Since|D(B)| > d; /logN, there exists a pointxg, yo) (with xo = a
orb, yo = ¢) such that

/

d,
ID(Xo, Yo)| > == «/Iog

If B is of some other type, we may come up with, say,

4

d,
ID(Xo—, Yo)| > —= x/log

If D(Xo—,Yo) > O, thenD(xo,¥o0) = D(Xo—,Yo) > dffw/log N. If
D(Xo—,Yo) < 0, choosexy with X5 — l(|D(x0 ,Yo)l — i\/Iog N) <
Xo < Xo. Then|D(Xo, Yo)| = =D (%o, Yo) = NXoyo — Z(Xo, yo) > NXoYo —
Z(Xo ,¥0) — NYyo(Xo — Xo) > [D(Xo—, Yo)I = (ID(Xo— yo))l——xflog N) =

logN

In thls way one sees that there is alwaysxgny, with |D(Xo, Yo)| >
vlogN with x = d,/4.

Let Xq,...,xy be inUL = U. Apply what we just said to thé
pointsEl = (X, &), - - P = (xn, N)- Let (Xo, o) be such that

ID(Xo, Yo)l > v/IogN.

Let| be the interval < x < Xg. Putn = [Nyg]. Then1<n< Nis
large.

For if we hadn = 0, thenyp, < 1/N, whence 1> |NXyYol =
ID(Xo0, Yo)| > +/log N. which is not possible for largh. Observe that

z(n, 1) = the number of i withl< i < n, xel, hence

= the number of i for whichp = (X, IN) has
=i
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0<x < xo,iﬁ < % hence
n
=2(0.y)
= Z(Xo, Yo), since% <y < n%l
Further
ID(n, 1) = z(n, 1) — nil]]

= 1Z(Xo, Yo) — [NYo] %ol
> |Z(Xo, Yo) — NXoYol — INXoYo — [NYo] Xl
> D(%,Yo)| - 1 > g JiogN, if
N is large. Thusz(n) > £ 4/logN.
We next are going to show that THEOREMI2A wikh= 1 implies

THEOREM 2B withk = 2.
Letp = (X1, Y1),..., P = (Xn,Yyn) be anyN points inU2. We may

=1 =N
assume, without loss of generality, that
Yi<Y2...<YN.

We construct new points

o (., L « _ (v N

Apply Theorem BA, withk = 1, to the points«, ... XN; there exists
an integem, 1 < n < N, such that

A(N) > ¢} y/logN.
i. e., there exists an intervalwith
[z(n, 1) — n[l]| > ¢} y/logN.

Supposd is, say,a < x < b. If we definez(n, xX) as the number df
inl<i<nwith0<x <X then

zZ(n, 1) —n|l| = (z(n,b) — nb) — (z(n, @) — na).
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So there exists ary (namelyxg = a or Xy = b) with

c
|2(n, %) — NXg| > El ViogN.

Even ifl is of any other type, we can conclude that there existsian
Xo With the above property.

Let
M= sup IZ(xy) - Nxy,
(xy)eU?
M* = sup |Z*(X,y) — Nxy,
(xy)eu?

where Z*(x,y) is the number of(1 < i < N) with p“eB(x,y). Put
=i
Yo = N-
Note thatZ*(xg, yo) = z(n, Xp) and

c,
1Z* (X0, Yo) — NXoyol = 1z(n, Xo) — nxo| > 51 ViogN.
Hence o
M* > El ViogN.

If we can show thatM — M*| < 3M, then we are through, since

thenM > %M* > C—Bllw/log N. Sowhat remains to be proved is that
IM — M*| < 3M.
Observe that for every(y)eU?,

1Z(x.y) - Z"(x.y)| < max¢,t'),

wheret denotes the number ofvith y; <y < ﬁ andt’ the number of
with & <y <. It suffices to prove that mak(’) < 3M, since

26 y) = N>l = 1Z° (% y) = Ny < [2(x y) = Z° (%, y)].

From the definition oM, at most M numbersy; can be equal. (If
more than 2M were equal, eith&¢l, 0) > 2M whencgZ(1, 0)-N.1.0| >
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2M, which is impossible. OE(1,y) would have a ‘jump’ greater than
2M for somey > 0, henceZ(1,y) — Ny would have a ‘jump’> 2M

and supZ(1,y) — Ny} > M, which contradicts the definition d¥). It
0<y<1
follows that

1Z(L,y)-ij<2M -1  (L<i<N).

By the definition of M,
IZ(L,y)) —ny| <M (1<i<N).
Combining the above two inequalities, we obtain
INyi —i|<3M-1 (1<i<N) (2.3)
By the definition oft,
Vit1 < ... Yjqt Y < u‘ < J—+t
N N
Observe that
j+t=j+1+(t-1)>Ny+(t—1),yj«N < Ny.
Combining these inequalities, we obtain
I(J + 1) = Nyjul 2 (t - 1).

This last inequality together witi (2.3) yields< 3M. Similarly
t’ < 3M. Hence max(t’) < 3M. This completes the proof.

More generally, one sees that Theordn 2A for a partiduigequiv-
alent to Theorem 2B witk + 1. Since Theorem[ZdB is trivial fdf = 1,
the Theorem[ZA and2B are equivalent.

Let uuby, uuby, ... be Hammersley's sequence - 1) -dimen-
sional space.

This sequence has(n) < (logn)k1. The pointsx = (y. ﬁ),gz =

v.2).... X =y 1) liein UK. An argument given above shows that
=2 - =N
ID(B)| < T(log N)**

for every boxB with sides parallel to the axes.



3. Proof of Roth’s Theorem 15

Theorem 2C (Roth).Let p,...,p be N points in U. Put Z(xq, ...,
-1 =N
xx) for the number of,il <1 < N, for which_p lies in the box Bxy, ...,
X) consisting of points g (py. . . ., P« with 0 <pj<xi(j=1...,k. 16

If N> e, then
f...f(Z(xl,...,xk)—le...xk)zdxl...dxk>efK(|ogN)k—1.
Uk

Hereec > 0, € > 0 are constants depending onlykn
In particular, there exists a k-tupley( . . ., xg) with

1Z(Xq. - .., %) = Nxg... X >_T€(log N2,

Hence Theorem[ZC implies Theoreml 2B.

[Added in June 1976: Recently W. M. Schmidt in a manuscript “I
regularities of Distribution X" extended Theorefil2C by shgvthat
forr > 1,

Moreover, fork > 1,

fk...f|Z(x1,...,xk)—le...xk|dx1...dxk
U
> ¢/ log logN/ log log logN.]

3 Proof of Roth’s Theorem

We shall prove TheoreniZ2C. For convenience we shall resinictelves
to the casd = 2. We have to show that

1 M1
f f (Z(x.y) — Nxy)?dxdy> &, logN
o Jo

if N is large. ForxeU, write

X = Z B(x)27)  (dyadic expansion),
i=0
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wheregj(x) is 0 or 1. Assume thag;(x) never equals 1 for alj > jo,
except forx = 1. Then the dyadic expansion friis unique. Put

() = (1% (r=12..).
(They,(X) are called ‘Rademacher - functions’.)
17 Letp = (XL,Y1),....P = (Xn,Yn) be anyN points inU?. Let
-1 =N
n > 1 be an integer. Further assume that an integer with O< r < n.
For (X, y)eU?, set
0, ifthereisap = (X, Y;)with
=i
Fr(x ) = Ya(%) = va(X)s ..., Yr-1(%) = ¢r-a1(X),
1) = ¥a(y)s - - ¥nr-1(Vi) = ¥nr-1(y).
Yr(XYnr(y), otherwise.

We explain the functior, (x, y) with the help of the following dia-
gram.

(v + 1)2—(n—r— ) beccccprrrr syt = = = = = = = =

U? .

Vv2-n=r=1) koo MLl LA, - -

Hereu, v are integersk,(x,y) = 0, ifthere is a poinE_ in the shaded
“big” rectangle A. If there is no pointp in the A, theﬁlFr(x, y) = £1
=i
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in the pattern shown, i. e. , it is1l and-1 in two of the four “small”
rectangles i

Lety be fixed and let be an interval whose end points are integral
multiples of 201, Then

fFr(x, y)dx = 0.
|

18
This is true because in any interval

u2 Y <« x< (u+1)27 0D,
eitherF(x,y) = 0, orF(x,y) = £1 in sub - intervals of equal length.

Similarly fix x and take an intervdl whose end points are integral
multiples of 2("-1)_ Then

fFr(x, y)dy = 0.
|
DefineF(x,y) for (x, y)eU by
FOOY) = . Fr(xy).

O<r<n
The proof of Theorem[AC depends on the following lemmas.

Lemma 3A.

1 1
f f xyF(x, y)dxdy> (n— 1)272"(2"2 — N).
0 0

Proof. It is suficient to show that

1 1
f f xyF: (x, y)dxdy > 2-2"(2"2 — N) (0 < r < n).
0 0

O

4These rectangles include their left and their lower edgenditheir right and upper
edge, except when they adjoin the right or upper eddg?of
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Let B be a rectangle of the form2~(-1 < x<(u + 1)2-D, y2-(-r-1)
< y<(v+1)2"™"-1 Denote the centre of this rectangle yrf).
Suppose that no poirgt is in B. Applying the substitutionx = £ +

—l
X,y =n+Y, we obtain

f f xyF (, y)dxdy
R

(1)
f fz ¢+ X)n+Y)signx signydXdy

2-(n-1)

2—(n-1)
( (£ + X) sign xdx)(f (n+y) signydy)
—2-r —2-(n-1)

19 (Here signx = 1if x> 0,= -1if x< 0,= 0 if x=0). Observe that

vl vl 24
f (¢ + X) signxdx= gf signxdx+f X sign xdx
_2—T _2—r

—2-r

2-r
=0+ 2f xdx=2"%.
0

Similarly,

2—(n-r)
f (n +Yy) signydy = 272071

_o—(nir)
Hence

ff xyFr(x, y)dxdy= 22" (0 < r < n).

If peB then [ [ xyF(x y)dxdy = 0. The total number of boxes B

as above is®212n-1-1 = 22 The number of boxes containimg point
p is> (22 - N). Hence
=i

1 1
f f xyF: (%, y)dxdy> 272"(2"2 - N) (0 < r < n).
0 0

This proves Lemma3A.
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1 1
f f F2(x, y)dxdy< (n - 1).
0 0
Proof. We have

1 1 1 1
[ [ Froxpaxay= 30 [ [ Feoeyaxay
0 0 0 0

O<r<n

1,1
+2 Z Fr,(X y)Fr, (X y)dx dy
o Jo

O<ri<ra<n

Lemma 3B.

O

Clearly the first sum on the right hand sidecign—1), sinceF2(x, y)
is< 1.

We shall show that the second sum on the right hand side i$ tqua
zero. For this, it sfiices to show that for evemy,ro withO <ry <rp, < 20
n,

1 1
LﬁFrl(x,y)Frz(x,y)dxdy: 0.

Lety be fixed. Letl be an interval forx, of the typeu2-(-1) <
x<(u + 1)2°271)_ In this interval,F,,(x,y) is constant and,,(x,y) is
either identically zero o#1, —1 in sub-intervals of equal length. There-
fore

[F”(X’ Y)Fr, (X y)dx = 0.

and sinceJ is the disjoint union of interval, we get
1
j; Fr.(X y)Fr, (X y)dx = 0.

This holds for everyin U. Hencefo1 fol Fr, (% Y)Fr,(x y)dx dy and
the proof of Lemmal3B is complete.

Lemma 3C.Let p = (X, y;) be any of the given N points. Then
=i

flle(x,y)dxdy:O(ls i <N).
% Jy

Yi
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Proof. It is enough to show that for everyO<r < n,

1 1
ffFr(X,y)dxdyzo (1<i<N).
X JYi
O

Let X be the least integer multiple of €Y which is> x andY the
least integer multiple of 2"~ which is> y;. Then

f:fyilFf(X’Y)dxdwLXLY...+fxlfle
X 1 1o

In the domain of the first integrak,(x,y) = 0, because it is con-
tained in a boxB of the formu2=(—D < x&(u + 1)27 (-1, y2-(-r-1) <
y<(v + 1)~ which containsp . In the second integral the end

=i
points for integrationx are integer multiples of 21, Therefore

fxl Fr(x,y)dx = 0. So the second integral is also zero. An arguments
similar to that just given for the second integral, with tlaues ofx,y
interchanged, shows that the third integral is zero. In #&st integral

we may integrate in either order, and in either case the imtegral is
zero. Hence Lemmd3C is proved.

Proof of Theorem[2ICAs mentioned earlier, we shall restrict ourselves
to casek = 2 for the proof of the Theorem. antl = (XL Y1), ., pN =

(xn, Yn) be anyN points inU2. Observe that

1 1
[ [ zocyFeyaxay
o Jo
1 1 N 1 1
:ff ZlF(x,y)dxdy:foF(x,y)dxdy:O,
0 JO |iwith i=1 VX Y

X <X
yisy
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by Lemma BC. Therefore

1 1
[ o= zexF e yyenay
1 1
=N f f xyF(xy)dx dy> (n— 1)N272"(2"2 - N),
0 Jo
by Lemma BA. This holds for any integar> 1. Suppose now that
272 5 N.
By the inequality just derived and by Schwarz’ inequality.
(n— 12(N272"(2"2 — N))?
1 1 1 1
< (f f (Nxy— Z(x,y))zdxdg (f f F2(x,y)dxd>a
o Jo o Jo
1 1
<(r-1 [ [ @y - Nxpaxay
o Jo
in view of Lemma BB. Hence
1 1
f f (Z(x,y) - Nxy)?dxdy> (n— 1)(N272"(2"2 — N)).
o Jo
Now choosen with
25N < 2" < 2°N.

Using 22 > 2N, 27" > 274N~1 andn > log, N + 3, we obtain

1 1
_ 2
fo fo (Z(x.y) - NxyPdxdy

2—16
-16 _
> (log, N)27° = oG, log N.

22
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4 A Theorem of Davenport

Theorem 4A [3]. Suppose that is any irrational number with bounded
partial quotients in its expansion as a simple continuedtica.

Let M be a large integer. Pt = 2M. Consider theN points
({+t6) t) t=1 M
£}, —)t=1....M.

Then with theseéN points, we have

1 1
f f (Z(x,y) — Nxy)?dx dy< c(6) log N.
o Jo

Herec(9) is a positive constant depending only @n

This shows that Theoren_RC is best possible & 2. If k > 2,
we do not know if Theorem[AC is best possible. However Davenpo
remarked that one could obtain an analogue of Theofem 4K for2,
if there existed ak(— 1) tupled,, ..., 6«1 of real numbers with

o B2

q

_ Px-1
q

S c(6n, .. k Ok-1)
q

>

... ’9k—1

for all integerspy,..., pk1, 4 > 0. (Fork = 3, this is equivalent to
the falsity of a well-known conjecture of Littlewood.) Notieat when

k = 2, the above inequality reduces|@o— §| > % for all integersp, q;
which is equivalent to saying thathas bounded partial quotients in its
expansion as a simple continued fraction.

Proof of Theorem[4ADefine

x—[x] — %, if xis not an integer
W):{ M- 0

0, if X is an integer.

This function has the Fourier series

=y -5

v#0
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wheree(vx) = €% and the sum is taken over all intege# 0. Suppose
that 0< x < 1, @eU. Then it is easy to check that

1, if0O<a<yX
X+yl@—x) —y(@) =10, ifx<a<l, 4.1)
3, ifa=0ora=xora=1

Assume that < x < 1 andx # {6k} (k = 1,2,...). Consider[[411)
with @ = {6k}. Thena cannot be equal to 0 or 1 (sinéds irrational).
Furthera # X, because of the restriction onUsing [41) and observing
that only the first or second alternative may occur and ndtiady (X)
is periodic with period 1, we obtainfhe number of k1 < k < V, with
{0k} < x equals 24

\%
DX+ w0k = %) = y(6K).
k=1

Further, the number & 1 < k <V, with {-0k} < X, equals

\Y
DX+ =0k = X) = y(~0K).
k=1

Hence sincey is odd, the number df, 1 < k < V, with {+6} < X,
equal

\Y
2V X+ Z(w(@k — %) + Y(=0k — X)),
k=1

and this is

M<

=2VX+

e(v(ok - X)) _ ev(=tk - X))
;)( 2niv T 2y )

~
1

1

v+ Y Y %(e(vx — v6K) + e(vX + vOK))

k=1 v#0

=2VX+ Z e(vx)c,,

v#0

5k is counted twice if both+6k} < x and{-6k} < x.
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where v
1
6 =5 k;(e(vek) + e(—voK)).

Suppose thayeU and thatyM > 1. PutV = [yM] > 1. Clearly
Z(x,Y) is the number of points

{0k}, %), (k=1,..., M) with {6k} < x,k < My.

But k < My is equivalent tdk < [My] = V, so thatZ(x,y) is the
number ofk, 1 < k <V, with {6k} < X, and hence is

2V X+ Z e(vX)c,.
v#0
25 All this is true provided that &< x < 1, x # {6k}, (k = 1,2,...),
and thatyeU andyM > 1. Note that the countably many exceptional

x with x = {6k} form a set of Lebesgue measure zero. By Parseval’'s
formula.

1
f (Z(xy) - 2VRPdx= > e, (4.2)
0 v#0
This formula is valid for any, satisfyingyeU andyM > 1.
Now we shall estimatg’, .o |c,|?. Sincec? = ¢2,, we have

Z|cy|2=2§]|cv|2 <<Eiv—12

2

\Y
> (e(vK) + (-vk))
k=1

v#0 v=1 v=1

We have

\%

e(voV) — 1’ 2
K)| = :

2,50 e 00 -1~ o) -1

Denote byi|/]| the distance frond to the nearest integer. We claim
that
Q) — 1 > [iZll.

6The symbolk (introduced by Vinogradov) is used as follows.<« B means that
A < cBwith an absolute constamt f(n) < g(n) means thatf(n) < cg(n) with ¢
independent on.
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It is sufficient to prove this folZ| < % since both sides of the in-
equality are periodic with period 1. But faff < % we have

80) - 1 = [a(5) + o-5)| = 2ine > k1 = e
We therefore obtain

< —
[ 9||

Z e(voKk)

and a similar inequality witle(vok) replaced bye(—v6k). Hence

;) e < Z = mm(v2 ||V9II2)
) Z 2 ( ||ve||2) “9

r—1<y<2r

- o 1
Z Z 22rm|n(V2”v9”2).

2-lcy<2r

26
Sincef is irrational and has bounded partial quotients, we have

o®

>_

g_H
‘ y2

4

for all rational numberé&, wherecyi(6) > 0 is a constants depending
only oné. Therefore

vl > (v=12..). (4.4)

c1(9)
v
We claim that if s > 0 is an integer, there is at most one integer
with
sa(0)27" < {ov} < (s+ 1)cy(0)2" (4.5)

and
1<y <2,
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Suppose there were twa/i < v,. Then

c1(0) P! (6)

1Bv2 — Ovill < [{Ov2} — {61}l < o :
v2—V1

This contradicts[{4]3). Similarly there exists at most amntegerv
with

sa(0)2" <{-6v} < (s+1)cr(¥)2"and 2L < v < 2.
Sincel|@v|| = min({6v}, {—06v}), there are at most two integemwith
sa(0)27" < |lovll < (s+ 1)cy(@)2 " and 371 <y < 2. (4.6)

Further note that eachwith 21 < v < 2 does satisfy[{416) with
some integes > 0, since otherwise

ol < @2 < 29,
v
which contradicts[{4]3).

Ordering the summands in the last inner sumlofl (4.3) witheesp
to thesfor which {Z5) holds, we see that the bottom line[af)4.3) is

s 22r
—2r ; 2
SZZ ZZmln(V ’—01(9)232)

< logV + 1 < log M,
sinceV = [yM] < yM < M. Hence by[[42) [4]13)
1
f (Z(x,y) — 2xV)?dx < log M.
0

All this was done under the hypothesis tiit < 1. But the inequal-
ity obtained is also true foyM < 1, since therZ(x,y) = 0 andV = 0.
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Using the inequalityd + b)? < a + b?, and recalling thaN = 2M, we
obtain

f l(Z(x, y) — Nxy)2dx

0

- [ (@)~ 2xV) + 2V — My)dx
0

1
< f (Z(x,y) — 2xV)?dx+ 1 < logM < logN.
0

Davenport’s Theorem follows on integration with respegy.to

5 The Correct Order of Magnitude of A(n) in the
One-dimensional Case

In this section section, we shall restrict ourselves to tiedimensional 28
casek = 1. Letxq, Xo, ... be a sequence of points ih. We shall prove
that
A(n) = Q(logn). (5.1
This is the correct order of magnitude fakn), since we saw in
Section 1 that there exist sequences with) = 0(logn). Now (&1)
follows from the following

Theorem 5A.[25] Suppose that N> 1 is an integer. Then there exists
an integer n,1 < n < N, such that

1
A(n) > mlog N.

Note. 13 can be improved tg5; and even better. This Theorem im-
proves the cask = 1 of Theorem PZA. No improvement of the relation
A(n) = Q((logn)¥/?) or of Theorem PA is known ik > 1.

Theorem 5B.Let p,...,p be N points in 4. Then there is a box B
=1 =N
with sides parallel to the axes, with the property that

1
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By the arguments of Sectidh 2, Theorel 5A ahdl 5B are equitvalen
except for the values of the constants.
Let xq, Xo, ... be a sequence of numbersln Suppose at first that

O<ax<l
Put
Ane)= Y 1
1<i<n
0<X<a
29 and

D(n,a) = z(n, @) — na.

We extend these definitions to arbitrarypy

zZ(n, @) = z(n, {a}) + n[a],
D(n, @) = z(n, @) — na
= z(n,{a}) — n{a}.

ThenD(n, ) is periodic ina with period 1.

Denote by R, ... “intervals” of integers. If7 is the intervala <
n < b with integer end points, b, put{(7) = b — a, so that?(.7) is the
number of integers i7. Write

g (7, a) = maxD(n,@),g (7, a) = minD(n, @),
ne7 ne.7
h7,a)=g"(7,a) -9 (7, a).
Put

D(n,a,B) = D(n,B) — D(n, @)
= Z(nvﬂ) - Z(nv Cl’) - n(ﬂ - Cl’),

g'(R, @, B) = maxd(n, @, ), g" (R, a, ) = minD(n, . B).

For every pair of intervalsi, ®’, put

h(S‘R’ ER/’ anB) = maX(Q g_(%» a’»ﬂ) - g+(§]{” O’,ﬂ), g_(%/» a’»ﬂ) - g+(%» O’,ﬂ)).
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Lemma 5C.Let 7 be an interval of integers and Ik, R’ be sub-
intervals of.7. Then for any, 8, we have

h(7, a)+h(,8) = h(R, R, a, B)+ %(h(‘ﬁ, a@)+h(R, B)+h(R’, a)+h(R’, B)).

Proof. The lemma is trivial ifh(R,R’,a,B) = 0. We may therefore 30
assume without loss of generality that

hR,R",a,8) =9 R,a,8) —g"(R’,a,p) > 0.

Then for everyneR and for every’eR’ we have

D(n, . B) - D(', @, B) > h(R,R', a, B),

D(n.B) - D(n,a) — D(", B) + D(', @) > h(R, R’, a, B). (5.2)
We choosen,, n,, mg, NgeR with

g’ (R, @) = D(My, @), g (R, @) = D(Ne, @),
g+(mvﬂ) = D(n‘lﬁ’vﬂ)? g_(i}{’ﬂ) = D(nﬂ’ﬂ)

Then

(i) D(My. @) - D(ny, @) = h(R, ),

(i) D(mg.pB) — D(ng.B) = h(%.B).

Similarly choosen,, nj,, mj, nzeR’ with

(iiiy D(,, @) — D(,, @) = h(R’, a),
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(iv) D(M,.B) - D(m,. B) = h(%". ).

Applying (&2) withn =m,,n’ = n;, we get

(v) D(My.f) — D(M,. @) — D}, B) + D(M,, )(R, K. . ).

Applying (&2) withn = ng, " = r,, we obtain

(vi) D(ng,B) — D(ng, @) — D(n;,. ) + D(,,, @) > h(R,N’, @, B).
Adding the equations and inequalities (i) to (iv), we obtain
D(1,. @) - D(N,, @) + D(mf, @) ~ D(p. @)

+ D(mg, B) — D(ng, B) + D(Me, B) — D(N,, B)
> 2h(R, %', @, B) + h(R, @) + h(R, B) + h(', @) + (', ).

31
Since

h(.7, @) > max(m,) — D(n,, @), D(%, @) — D(ng, @))
and

h(y’ﬂ) > maX(D(rnG’ﬂ) - D(n/ ’ﬂ)’ D(rna’ﬁ) - D(n:wﬁ))
we finally get

2h(7, @) + 2h( 7, B)
> 2h(R, %', @, B) + h(R, @) + h(R, B) + h(R', @) + h(R', ).

This proves LemmaFdC.
Lemma 5D. Suppose that 3 0,t > 1 are integers, and” is an interval

with
07) = 65,
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Then for evenys,

6t
1 aost t
— > —
th;h(y,ﬁﬂe )= 155
Remarks.

(i) Only the special case = 0 will be used in the proof of Theorem
98. The general case will be used in Section 6.

(i) No special significance is attached to the number 6.

Proof of LemmalkDThe proof is by induction oh First taket = 1. Put
€= %65”. Suppose is an integer. Then

DN+ ¢,8+65Y) —D(n,g+651) —D(n+¢,8) + D(n,B)
=a-N+0)B+65H+nB+65H+(n+08-n8
—a-(651

1 ) .
—a- > where a is some integer.
Hence 32

[D(n+¢6.5+651 - D(n,B+6 1) - D(n+¢,B) + D(n,G)| >

NI

which implies that
DN+ ¢,8+ 65 —D(n,g+6 1) +ID(N+£,8) - D(n,B)| > %

Now if £(.7) > 651, there exists an integersuch thain,n + te.7.
Hence

h(7.,8+ 651 + h(7,p) > %

This is true for every. Therefore

=

1

126:h(§ bj6 Y2232 = 2
6 G T672 47 120
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The proof of the case= 1 is complete.

We now turn to the induction step fromto t + 1. Say.7 is the
intervala < n < b, with £(.7) > 651, Let %, be the intervals + (r —
165t <n<a+r65(r =1,...,6). Sincel(7) > 65 Ry,..., Re <

7.
a+6-6" 1+ s
a+5-6 4 s
LGSt
a+4-6 72
a+3-6 1
K3
a+2-6"" 4
o
a+6s+t
1
a <+
i i
B a2 Q-1 O g = 34678
33 If the given sequence ixq, Xp, ..., construct the pointsx{, 1),

(X2, 2), (X3, 3), .. .. All these points will be in the “half strip” & x < 1,
y > 0. To account for our periodic extension zfh, @), construct the
“periodic” set of points X3 + my, 1), (X2 + My, 2),... wheremy, My, ...
run through the integers. Then for>- 0, a > 0, z(n, @) is the number of
points in the rectangle @ x < @, 0 <y < n. Put

Z=za+4.65"8+6°5 —za+46% +65Y
—Za+ 6%, B+ 675 + z(a+ 65,8+ 6751,

Write
aj=p+ j6_s_t_l,
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and put

zj =7(a+ 4.6, a)) — 2(a+ 4.6°", aj_1)
- z(a+ 6" a)) + Z(a + 6%, @j_1) (j=0,1,2,..).

Z is the number of points in the shaded rectangle of the diagram
above. Alsaz; is the number of points in the doubly shaded rectangle.
Note that thez; are non-negative integers and that

We shall consider the following two cases separately :

5
|:Z> =26
>3

5
Il:Z< 36"
=7

Case l. Z> %Gt. For everyneRs, n'eR,, the rectangle with vertices
(n,@j), (", j), (n,aj-1), ("', @j_1) contains the (doubly shaded) rect-
angle with vertices & + 4.6%*',aj), (@ + 6%, a}), (@ + 4.65, aj_1),
(a+ 6%, aj_1), and hence 34

zAn, @) — AN, @) - ZAn, aj_1) + AN, @j-1) > Zj(2 < j < 6.
Therefore

D(n, aj-1,@j) - D(", aj-1,@j) > zj — (n—N')(aj — aj-1)
>z - 5.6%6 1
5

IZj—é.

So

5
h(Rs, R1, aj-1, @) > zj - &

whence

1
h(R1, Rs, aj-1,@j) > 52
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sinceh(R1, Rs, j_1, @j) is non-negative and; is an integer. On using
Lemma &C, we obtain

NT.aj1) + T, ;) (2<j<6Y

1 1
> ézj + E(h(mla a’j_l) + h(iRl, aJ) + h(‘R5,a/j_1) + h(‘R5,a/j))
We shall also require the trivial estimates

(7. a1) 2 (0%, 1) + N3, ),

1
h(7, CL’6t+1) > E(h(ﬁRl’ CL’6t+1) + h(Rs, CX61+1)),

Taking the sum of all these inequalities, we get

6t+1 1 6t+1 6t+1 6t+1
ZZ h(7.aj) 2 Z zi + Z h(R1, @) + Z h(Rs, ;).
=1 =2 j=1 j=1
35
Note that/(R1) > 65 and

6[+1 6[+1
D h(®Ra,a)) = ) (R, B+ 6751
i=1 i=1
5 6t+l
= Z Z h(R1, 5+ j6~ ST |.
i=0 j=1
j=i(modb)

By induction hypothesis, the inner sum herezithleo, and our
double sum is> 6" 5. Similarly,

6t+l

6t+1t
Z h(iR5,a/j) > 120"

=1
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Hence

6t+1 t
t+1
ZJZ;h(ﬁ L) = Z+26 56
1-36t+1 2 6t+1 t 2'6t+l(t + 1)
676 120 120
i. e,
1 & t+1)
J:
Casell. Z< %6‘. For everyn € Ry, ' € Ry, we have
zn, o) — 2, @j) — AN, @j-1) + 2N, @j-1) < ;.
Therefore
D(",@j-1,j) - D(n,aj_1,a)) < =z; + (N — "' )(ej, aj-1)
—st-1
> 6S+t6 s—t-1 _ Zj
1
== z,
and we have 1
h(R2, R4, aj-1, @) > 6~ z;.
By Lemma &£C,

T, 1) + (T, ).

6

We also note that the trivial relations

(7, 1) 2 (002, 02) + W%, a0),

1
h(7, ag+1) = E(h(ﬂ%z, ag+1) + h(Ra, ager)).

(2 < J < 6t+1)

1
27+ = (h(iRz,aJ 1) + h®2, ) + h(Ra, @j_1) + h(Ra, }))

36
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Adding all these inequalities, we obtain

6t+l 6t+l 6t+l

22 hT,a)) = (6”1 1)-Z+ Z h(®z, ) + > h(a, ).

j=1
Here in Case I,

1 5 5 5
- 6t+l_1 - 7> _6t Z> 6t__6t _6t 6t+1
6( ) ~ 6 6 7 42 — 120

Proceeding similarly as in Case |, we finally obtain

5

6t+1

(t+1)

1
61 JZ:; 7, e) 2 55

This completes the proof of LemmBBD.
Proof of Theorem[HAFirst suppose thatl > 6* Pickt with 6! < N <
37 61 Let.7 be the interval 6< n < 6. Applying Lemma BID withs = 0.
we get

6t
1 ot t
géh(yﬁ+16 )21—20

There exists @ with

t
h(y,ﬂ) > 1—20

So there exists an e .7 with

t
DA = 55 = 5eo(1006N - 1)
> L lo IOg N
=320 2%~ 000
Hence | N
og
200 > To00°

with 1 < n < 6' < N. On the other hand, iN < 6% thena(1) >
ID(1, 2)| Ifool\é The proof of Theorem[HA is complete.
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6 A question of Erdos

It was known since Ehrenfest result (§d8), thata(n) is bounded. Re-

call thata(n) = sup|D(n, I)|. P.Erdos([b] asked the following question:
Icu

Does there always exist an intervald U such that On,1) is un-
bounded?

This question was answered, in th@ranative, by W. M. Schmidt
[27].

A stronger result is

Theorem 6A. There always exists ancU with

limsu B0, ) > 1
n—>oop logn 2000

(o depends on the sequencg X, ... ).
The proof of Theorem[GA depends on Lemrid 5D and the following
simple

Lemma 6B. Suppose thad < € < nanda € U. Then there exists a
closed subinterval | of U containing such thatl| = €/n and

ID(n,B)I > ID(n, )| — € (6.1)

for everypel.
38

Proof. We distinguish three cases. O

Case I.|D(n, )| < e. The lemma follows trivially, since now the right
hand side of (A) is< 0.

Case Il. D(n, @) > e. In this case we have
n—na > z(n,a) — na = D(n,a) > ¢,

whence
€
a<l--—.
n
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Let| be the interval

a/<,8<a/+E
<B< -
Observe that ¢ U with |I| = £, and forg € | we have

|D(n’ﬂ)| 2 Z(n’ﬂ) - nB
> z(n, @) — ha + N(a — B)
> |D(nv Cl’)l — €

Case lll. D(n, @) < —e. We now have
Na > na — z(n,a) = —D(n, @) > ¢,

whence .
a>—.
n

We takel to be the interval

E<,3<
a n_ S a.
Thenl c U with |I| = ﬁ,and forg € 1,

ID(n,B)I > nB — z(n, B)
> na —2zn,a) — N(a —pB)
> |D(n,a)| — €.

39

Proof of Theorem[@Alt is sufficient to proof the followingThere exists
a nested sequence b ... 2 I, 2 ... of closed intervals and positive
integers A < ... < Np <..., such that for everg € I,

1
ID(Nm, B)| = mmg Nrm.

(Since N Im # ¢ chooseae N Im. Then|D(Nm, )] > 'gggg’ for

m=I
everym.
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So Theorem[BA follows).

The proof is by induction om. If m = 1, takel; = U, ny = 1,
and the desired inequality holds trivially. Suppose fhat. ., I, 1 and
Ny, ...,Nm-1 are already constructed. L€t , by the subinterval ofy_1
with 17| = %|Im_1| and with the same midpoint &g_1. Chooses so
large that

675 < |l 4l (6.2)

Further choost so large that
t>st>25001. (6.3)

Lets be the left and points df, ;. Let.7 be the interval of integers
nwith 0 < n < 65*'. We now apply Lemmal8D and obtain

6t

1 t
— ) hWT,B+ 65> —.
6 JZ:; 120
By €.2), e o
B+j6 el (1<j<6).
Hence there exists ane I, with
hT,a)> ——
"7 120
There exists an € .7, 0 < n < 6%*!, with
t
|D(n, Cl’)l > 2—40

Now « lies in the interior ofl,-1. Hence if we choose > 0 suf-
ficiently small and apply Lemmd®B, we see the existence obsed
subintervall, of I,-1 such that

t
ID(n.B)I > 250 (6.4)
for everygelny. Since|D(n,B)| < n, €.3) and[B}) yield

t
n>ﬁ)>nm_l.

40
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Setny, = n. It follows from (6.3) and[(&M), that for evep/e Im

t s+t S l0gg Nm S log nm
O 500 © 500 ~— 2000°

This completes our inductive construction.

ID(m, B)I > e

Theorem 6C.For almost everyy,

limsu D(n, o) > =
n_mplog logn = 2000

This is stronger than in a paper by W. M. Schmidtl[21]. It is an
open problem whether log logmay be replaced by a faster increasing
function, perhaps even by log

Proof. Fork = 1,2,..., the intervals¥ < x < &3 withu =0,1,.

(k! = 1) will be calledlnterval of order k leen any intervall, the
subinterval with the same midpoint &sand with Iength [1] will be
denoted by’. m|

Letk be a fixed large integer; s&y> kg = 100. PutN = N(K) =
Let I, be an interval of ordek — 1. Chooses with 651 < 2(k — 1)! <
6°%. Lett be such that 8' < N(k) < 651, Thent > 1 in view of
k > 100 > 72. Letpg be the left end point of,_,. Denote by.7 the
interval 0< n < 65!, By Lemma EID, we obtain

61

1 st
6t;h(9,8+16 )> — 120

Observe thap + j65t e 1, (0 < j < 6", sincej65" < 6 <
2(l<—1)!' Hence there is Ap € I;_, and an integen, 0 < n < 65" < N,
with t
D(n > —.
ID(n, Bo)| = 20

By Lemma EB withe = 2, there is an interval of length€ > 2
containingBp, such that

t
D)l > 5752,
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for everya € 1. Sincekis large,l < lx_1. Now|l| < % and therefore
and a fortioril,_; contains a subintervaj of orderk having

t
>
ID(n, @)l > 520 2,

for everya € Ix. Now

1 k
6t — 65+t+l—S—l >N k -
= N )62.2(k —1) 72
and
logN(k) < klogk < K2.

Hence for everyr € Iy,

1 k 1 1
ID(n, @)| = %Iog6(7—2) -2> mlogk > mlog logN(k) (6.5)

> L log logn.
— 2000
For every intervally_1 of orderk — 1(= kg — 1), we may select a42
subintervally of orderk with the property[(6J5). Denote the union of the
intervalsly so obtained byE(k). Let a be such that it lies in infinitely
many of the set&(ky), E(kg + 1), .... Then the inequality

1
ID(n, @)| > mlog logn
holds for infinitely manyn. Hence Theoren{@C is proved if we can show
that almost every lies in infinitely many of the set&(kg), E(ko+1), . . ..
For every natural numbek > kg, let Tx be the complement of

U E(K). Itis suficient to prove that(Tk) = 0 for everyK (u denotes
k>K
the Lebesgue measure). But this is so, since

um = [ Ja-uEn =] Ja-p=o
k=K k=K

This proves Theoren6C.
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7 The Scarcity of Intervals With Bounded Error

Recall that forw € U, D(n, @) = z(n, @) — na. Put

E(e) = sup|D(n, a)I,

where the supremum is taken over all positive integers-or every
non-negativek, let S(K) be the set of all those € U which have
E(e) < K.

Let S(e0) consist ofw in U with E(a) < co. Clearly,

awzﬁam.

K=0

We shall prove thaB(wo) is at most countable.
Thederivativeof a setS of real numbers is the collection of the limit
points of S. It will be denoted bg®. Define inductively

S@ = (s@-Hd  (d=273,..)).
For convince, we shall writg(© for S.
Theorem 7A.(W. M. Schmidt([24]) Suppose thatd4K. Then
(SN = ¢,
i. e., the empty set.

In view of the following lemma, TheorenTA implies th&{c) is
at most countable.

Lemma 7B.Suppose that S is a set of real numbers havifd) S ¢
for some d. Then S is at most countable and is nowhere dense.

Proof. We claim that for any sef of real numbers, the set theoretic
differenceB = A — A® is at most countable. Denote I8/ the collec-
tion of all the open intervaldl with rational end points. Note th& is
countable. Further observe that foin B, there exists an intervéy of
S with Ny N B = x. For distinctxy, xp in B, the intervalsNy,, Ny, are
distinct. This shows thaB is countable, sinc€ is so. O
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We haveA = (A-AD)U(ANAD). Hence ifAD) is at most countable,
then so isA. Hence ifS©@ = ¢, thenS is at most countable.

Now suppose thaA!) is nowhere dense. Then every interizaion-
tains a closed subintervdy with J; N A® = ¢. ThenJ; N Ais finite.
Thus there is a subintervdlof J; with J N A = ¢. ThusA is nowhere
dense. More generally, &9 is nowhere dense, then sdAs|f S@ = ¢,
thenS is nowhere dense.

COROLLARY. For every non-negativi, S(X) is at most countable
and is nowhere dense. The §to) is at most countable.

Forl C U, set
D(n, 1) =z(n, 1) — n|l|,
E() = sup|D(n, 1)|.

44
We may callE(l) theerror of I.

Theorem 7C:. (W. M. Schmidt([26].) The lengths of all the intervals |
with finite error §1) form at most a countable &t

The above Theorem does not give any information about the car
dinality of the set of interval$ with E(I) < co. It has the power of
continuum in the following case.

Theorem 7D'. Leta be an irrational number. Consider the sequence
{a},{2a},....

ThenE(l) is finite if and only ifl = {ka} for some non-zero integer
K.

The “if” part is due toA. Ostrowski [1F]. The “only if” part was
shown by H. Kesteri [J.ﬁ]

“see remark on padels4.

8Addded June 1976. H.Furstenberg, H. Keynes and L. ShapitméMlows in
topological dynamics, Israel J. Math, 14(1) (1973), 26-88) G. Halasz (Remarks on
the remainder in Birkh® Ergodic Theorem (preprint)) proved this with ergodic theor
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A proof of the “if” part is as follows. More generally, we shal
consider the sequence

{a+p) {20+, ....

Because of the arbitrary paramefgrit will be sufficient to deal
with the case whelh is of the type 0< x < {ka}. We may assume that
0 < {ka} < 1. Further we may assume that- 0 : For ifk < 0O, put
k = -k, K > 0. Then the length of the complemdhif | in U is equal
to {K'a}, sincefka} + {K'a} = 1. We haveE(l) = E(I"), so thatE(l) is
finite if E(1”) is finite, and in particulaE(l) is finite if the ‘if’ part of the
theorem is true fok’ > 0.

Consider th& sequence

{a+B), {(K+La+8}, ...,
{2a + B}, {(K+2a+p}, ...,

It is suficient to prove thaE(l) is finite for each of these sequences.
In each of these sequences, the commdfetinces of the arithmetic
progression i&a. Since|l| = {ka}, we may replace by ke and see that
it will suffice to prove the assertion in the special case whea {a},
i. e. the special cade= 1. Thus the problem reduces to showing that
E(l), with | : 0 < X < «, is finite for the sequence

{a+p) {20 +8),....
Observe that

z(n,1) = the number ok, 1 < k < n, with {ka + 8} < a
= the number of integemm andk, 1 < k < n, satisfying the
inequality
O<ka+B-m<a.

Any m satisfying this inequality with k k < n must satisfy

p<m<na +p6.
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For everym, there exists a unique integkrsatisfying the first in-
equality.

Moreover ifm satisfies the second inequality, then this intdgeat-
isfies 1< k < n. Hencezn,I) is equal to the number of integens
satisfying the second inequality, ajzth, 1) — na| < 1.

ThereforgD(n.1)| < 1 for every integen, andE(l) < 1. 46

This proves the ‘if’ part of Theoren1D. The moréfitiult ‘only if’
part will not be proved here.

Denote byU° the open unit interval & x < 1. BY aneighbour-
hood we shall always mean an open interval containetdYn For the
proof of Theorem [7A, we shall need several lemmas.

Lemma 7E.Leta € U° ande > 0 be given. Then there exists a neigh-
bourhood A ofy, and an integer p, such that for apye A and for any
interval .7 of integers with?(.7) > p,

1
h(Z7.B) > = —e
2
Proof. Assume at first that & o < 3. Put

+ 1

1
p=|=
a

Consider the numbers

a,2a,...,pa.

Every numbery with § < ¢ < (p + 3)a has a distance § from
(at least) one of thesg numbers. Hence it has a distansé. Thus for
everyy with & < ¢ < (p + 3)e, there is an integem, 1 < n < p, such
that|ne — ¢l < 3. O

Since§ <y < (p+ %)a has lengthpa > 1, the translations of this
interval by integers cover the real line. Therefore for asl numbetry,
there exist integers, mwith 0 < n < pandjne — m-y| < 1. Further
the restriction O< @ < 3 can be removed, since fér< @ < 1, there
exist integers, m’ such that < n < pandin(1 —a) —m + y| < %1, ie.

1 i _
N —m—y| < z,withm=n-n.
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Let A consist of3 € U° with p|g — | < 5. For every real number
v, there are integemns, m, 0 < n < p, such thainB — m—y| < %1 +5
holds for allg € A, sincelne — m—-y| < % and 0< n < p, implies that
N8 —m-—y| < %1 + 5 for g € A. Now sincey is arbitrary, we see that for
everyy, there are integeng m, 0 < n < p, having O< N8 —my < % +€
for everyB € A. Hence for every interval” with £(.9) > p, evenyp € A
and everyy, there are integers,m with ne 7 and

1
O<nﬂ—m—1//<§+e.

ForpB € Aand an interval? with ¢(.7) > p, choose integens e .7
andm such that

O<nﬁ—m+g‘(9,ﬂ)<%+e. (7.1)

Then
zn,p) = D(n,B) +nB > g (n,B) + B > m.
Therefore
z(n,B) >m+ 1. (7.2)

Combining [[Z11) and{712), we obtain

hT.B)=9"(7.8) -9 (7.B)
>D(n.p) -9 (7.p)
= Z(n’ﬂ) - HB - g_(y’ﬁ)

1
>m+l—m—§—e
1

= < —E€.

2
This is true for eveng € A. Lemma [ is proven.

Lemma 7F.Suppose thad < € < 1 and g> 1is an integer. Suppose
thate,8 € U with 0 < | — | < 8£q' Then there is an integer p and
there are neighbourhoods A af B of 8 with the following property: If
Z is an interval with¢(Z) < p and ify € A, § € B, then there exist
subintervalsik, R’ of 7 with £(R) = ¢(R’) = q and

9 (Z,7,0) -9 (Z',y.6) > 1-e€
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Proof. We may assume that< 8. Putpy = ﬁTla +1. By an argument as
in the proof of LemmalZE, one sees that for every real numbénere
exist integers, m, 1 < n < pg, such that

|n(B—a/)—m—lﬁ|S%W—al<§.

Let A consist ofy € U with

ly — almax@, po) < 1—66,

and B ofs € U° with
€
6 — Bl max@, po) < 16
o

Then for everyy € A andés € B, and for everyy, there are integers
n, mwith 0 < n < pg and

NG —y) - m-vi <.

Now sincey is arbitrary, it follows that for every € A, everys € B
and everyy, there exist integems, m, 0 < n < pp, with

O<n(6—y)—m—zﬁ<§.

Here the condition & n < pp may be replaced by € .77, where.7
is a given interval with'(.7) > po.

Suppose that’; is any interval with¢(.7,) < po. Lety € A and
¢ € B be fixed. Choosey € .7, with

9 (Z%,7,0) = D(ny, ¥, 9).
Choose integersy € .7, andmsuch that

0 <No(6 =) =M+ g (%0.7.0) < 5. (7.3)
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Then
Z(no, 6) — Z(No, ¥) = D(No, ¥, 6) + No(6 — )
>0 (J%,7,0) +No(d —y)
>m.
49 Therefore
Z(ng, 6) — z(ng, @) > m+ 1 (7.4)

Combining [ZB) and{714), we obtain

D(no,,6) — D(ng,¥,6) = m+ 1—-no(6 —y) - 9 (5,7, 96)
€

m+1l-m- -
” 2

=1- (7.5)

Now put
p=po+20.

Suppose that” is an interval with(Z) > p. Let 7, be the in-
terval obtained from7 by cutting df segments of lengthy on either
side. Then clearly(%) > po. Hence there exist integers, nj € 7,

satisfying [Zb). Set

R:inp<n<ng+gandR :ng—g<n <mn,.
It is clear that
{(R) = ((R') =qandR, R’ C 7.

For everyn € R we have

D(n,y,6) — D(no,y,6) = —(N—no)(6 — )
> g6 —a) > —Z, (7.6)
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sincey € A, 6 € Bhas

€ € €

€
|y_6|§|y_a/|+|a/_ﬂ|+l'8_6|<ﬁ+8q+ 1&:] = 4q

Similarly, for everyn’ € R’, we have

D(né)? Y 6) - D(n/v Y 6) > _Z (77)

Adding (Z3), [Z6) and{717), we get
D(n,y,a) - D(n,v,6) >1- €.

50
This holds for everyn € ® and every’ € R®’. Lemma [F follows
immediately

Lemma 7G.Suppose tha#,...,6; € U° and belong to the deriva-
tive RY of some set R of real numbers. Lei,D.,D; be respec-
tive neighbourhoods afy,...,0. Lete> 0 and an integer g> 1 be
given. Then there exist numbersg 81, ..., a1, B; of R such thatv, 81 €
D1,...,a, Bt € Dy, there exist neighbourhoods /B, . .., A, Bt of @y,
B1,...,at B, respectively, with A By C Dy, ..., A, By € Dy, and there
exists an integer r with the following property : ..’ are inter-
vals withé(7) > r, €(7') > rand if y1,61,...,v, 6 liein Ay, By, .. .,
A, By, respectively, then there are subinterv@isc .7, R’ € .7 with
{(R) = (R) =qgand

h(R, R, 7i,6) > 1- € i=1,...,1.

We shall apply this lemmawitl¥ = .77, but generality is necessary
to carry out the inductive proof.

Proof. Suppose at first that= 1. Then#; € RY, a neighbourhood
D1 of 6;, e> 0 and an integeq > 1 are given. We may suppose that
0 <e< 1. Sincety, € R, there exist elements;, 81 € RN Dy with 0 <

lay — B1] < é. We now apply LemmaldF. There exist neighbourhoods
A; of a1, By of 81, and an integep as follows: If.7 is an interval with
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(7)) > pand ify; € Ay, 81 € By, then there exist intervaig,, R, € .7
such that’(R1) = £(R,) = gand
0 (R1,71.61) — 9" (R2,y1.61) > 1-€ (7.8)
We may choosd\;, B; such thatA;, B; € D1. O

Let .7’ be another interval with.7") > p. By applying Lemmal[dF
again, we conclude that these exigt R, C .77 with £(R]) = {(R)) = ¢
and

9 (R, 71,01) — 9" (R, 71,61) > 1 - € (7.9)

From [Z.8) and[{7]19) it follows that either

g (R1,71,61) —9 (RS, y1,61) > 1—€

or
g (R1.71.61) — 9" (R, 71,61) > 1-€.
Therefore
eitherh(Ry, Ry, y1,01) > 1 — e orh(Rz, R}, v,6) > 1 -e
In the first case puk = R, R’ = RN, and in the second case out
RN =R, N =N,

Hence
h(‘R,iR’,yl, 51) >1l-e

Thus the lemma is proved for= 1 with r® = p.

We now shall do the inductive step from- 1 tot. Suppose we
are givends, ..., 6 € RY with respective neighbourhoods, . . ., D,
e > 0 and an integeg > 1. By induction hypothesis there exist
a1, B1, ..., a1, B and an integer™1 satisfying the conclusions of
the lemma. Therefore if7 and.7’ are intervals with/(7), €(7") >
rt1) and if)/]_ € A1,01 € Be,...,7-1 € A1,0t-1 € Bi1, then there
existR € .7, R’ € .7 with £(R) = £(R’) = gand

hR,R,y,6)>1-€  (i=1....t—1). (7.10)

Apply the casé = 1 of the lemma t@;, D; and tor®?1) in place ofq.
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There existay, B¢ of R with respective neighbourhoods, B; € D; and
an integer® with the following property: 1.7 and.7” are intervals
with £(2),6(7") > r~® and ify; € A, 6 € B, then there existp C

T.9y ¢ T with (%) = ((Fy) = r'"1, such that

h( T8, 5. 70,60 > L— €. (7.11)

Sincel(%) = £(7y) = rY, and by the case- 1 discussed above,
there exist subinterval® ¢ %, R’ ¢ 75 with ((R) = ((R') = q,
satisfying (710). We also hav&(R,R’, v, 6t) > 1- € by (7.11). The
proof of Lemmas[7G is complete.

Lemma 7H. Lete> 0 and an integer & 0 be given. Let R be a set of
real numbers such that® has non - empty intersection witf"UThen
there exist w= 29 elementsiy, ..., A,, of R contained in 9, with re-
spective neighbourhoods L . ., Ly, and there exists an integer p, such
that if & is any interval with¢(#) > p and ifu; € Ly,...,uw € Lw,
then

1 1
V—V;h(y,y,-) >S@d+D-e

Proof. The proof is by induction od. Whend = 1, our lemma reduces
toLemma lE. (Puiv=1,1; = a« € R, Ly = A). Assume the truth of
the lemma fod — 1; we shall proceed to prove it fok ]

Putt = 291, Apply the caseal — 1 of the lemma tdR®). Therefore
aret elementds, . . ., 6; of RY contained inJ°, with respective neigh-
bourhoodsDy, ..., D;. and there is an integer®1), so that if.7, is an
interval with£(.7;) > p-b and ifp; € Dy, ...,n € Dy, then

1¢ 1, €

=N (T, mj) > Sd- <. 7.12

t; (%) > 5d - 5 (7.12)
Apply Lemma TG tddy,...,6; andR, toq = p@Y and toD,..., 53

D:. There exist elementsy,B1,. .., a1, Bt of R with respective neigh-
bourhoodsA;, B; € Dy,..., A, B € Dt and an integer, so that if.7
is an interval withf(.7") > r, then there exist interval8, R’ € T with
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LR) = (R) = pL, such that for any; € A1, 61 € By,...,n €
A, ot € By, we have

hwﬂ%%ﬁo>1—g (i=1...1).
An application of LemmEIC yields
h(7 i) + h(Z, 6;)
1 .
> 1= 5+ (R, %) + (R, 6) + O, 7) + hW.&) (1 =1....0).

Taking the sum of these inequalities for<li < t and dividing by

2t, we get
1 t t
5| 20Ty + 2 (T .6)
i=1 i=1
1 € 4, 1 1 1
> E - Z+ 4_t(t(§d_ 56)) > E(d"‘l)—f,

sincef(R) = (W) = pY, 4, c A CD;,6eB eD(l<i<t),and
so [ZI2) is valid for each of the four sums

t t t t
h(R, 1), ) h(R.6), ) hR 7). D h(R', 63).
i=1 i=1 i=1 i=1
Hence Lemmal/H is true with = r and

A1 =ayg,..., 4 = a, Ay = B, .., dw=2t = B,
Ll:Ala“"Lt:AtaBt+1: Bl’“-aLW:Zt: Bt

Proof of Theorem[dA.The proof is by contradiction. Suppose that

SOK) # ¢ whered > 4%X. Putd; = d — 1. ThenS@)(K) has a

non-empty intersection withl®. Pute= %d - 2K > 0. By Lemma [/H
54  thereis an element e S(K) and an intervalZ with

m%@>%@¢n—e
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So there exists an integare .7 with
1 €
D(n, Q)| > =(d1 +1)- = =K.
DO, 1> 20 +1) -5 =%

Thus
E(1) > K.

which contradicts the fact that € S(%). This completes the proof of
Theorem [ZA.

The restrictiond > 4% can be replaced somewhat relaxed, but it
can-not be replaced Wy > K — 1. We shall now show that for the Van
der Corput sequence (sgfl), SO + 1) # ¢.

For every non-negative integdr define a seRy as follows:

0, ifd=0
Ry =<0 and the collection of all the numbers®+ ... + 27%,
withO<t<dandO<g;...<g, ifd#0.

Observe thaRy is precisely the collection of the numbers of 1)
which have at modad “ones” in their dyadic expansion. Lete Ry with
d # 0. Consider the interval & x < «a. It is the disjoint union of at
mostd elementary intervals, in the sense defined [

It was shown ir§ M that|D(n,1)| < 1(n=1,2,...),i.e., thatE(l) < 1
for elementary intervals. The interval 0< x < @ with @ € Ry, being
the union of at mostl elementary intervals, has errgrd, and since the
elements of the Van der Corput sequence are distinct, tsedloterval
O<x<ahaserro<d+ 1. Thus

ID(n, @) <d+1 n=212...).

55
This is true for everyr € Ry, so that

Ry € S(d +1).
It is easy to check that

RP =Ry1,(d=12..),
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whence
RY =Ry = (0} # ¢.

SinceRY ¢ S@(d + 1), we obtain
SO+ 1) # ¢.

We finally mention that Theoren[_T@an be generalized todimen-
sions: The volumes of the box&swith finite errorE(B) from at most a
countable set. This result is complemented by

Theorem 7I*. Suppose k- 1. Thereisa sequenc_%,»_%, ...inUX, such

that for everyu in 0 < u < 1, there is a convex set S inwvith measure
(S) = w and with §S) < 1.

This last result was generalized bly Niederreiter[[15].



Chapter 2

The Method of Integral
Equations

1 A Theorem on Balls

Let p p be points inUX, all of whose coordinates are less thass

1. A pomtf |n k-dimensional spacB* will be called aninteger point
if all its coordinates are integers. Integer points will bendted by
¢, 5 5 .. Denote byZ? the set of pomtsp +¢,1<i<n, where

4 runs over all the integer points. Thuyg is a perlodlc set. LetA be
a bonded set with volume(A). Write

Z(A) for the number of points of”Z in A,

and
D(A) = Z(A) — Nu(A).

Call D(A) the ‘error’. LetK(r, c) be the ball with radius and centre
¢, i. e. the set of all the pointswith [x — ¢ < r. Put

2r,9) = 2AK(r, ©). D(r, &) = D(K(r, ), (1) = u(K(r, O).
Set
E(r, 9 = f D(r.¢)D(s o)dc.
Uk = ==

55
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Theorem 1A (W. M. Schmidt [22]). Let k> 0, e > 0. Suppose& > 0
satisfies N > N¢. Then

0 1_1-_
f rLE(r, r)dr > (n6¥) Kk
0

where the constant implied by depends on k anel but is independent
of N ando.

Theorem 1B.Let k €, 6 be as in Theorem[Z1A. Then there exists a ball
K(r,c)withr < § and

ID(r, 0)| > (nd¥)z %,

where the constant implied by depends on k anel but is independent
of N ands.

According to Theorem[dIB, there exists a ball with ‘error’ wéarge
as compared with that of boxes with sides parallel to the.akesrecall:
Roth proved (see Chapter§,2), that there exists a boR with sides
parallel to the axes contained i€ with

ID(B)| > c(logN)'Z .
On the other hand, there are distributions Mfpoints such that
ID(B)| < ¢(logN)¥"1 (see Chapter §B2).
Remarks.

() If 6 andk are fixed, the hypotheses of Theoreld 1A and Theorem
18 are satisfied for larghl. On the other hand, we can allato
be small, namely as small as= N-1+2_ and still we get a lower
bound which tends to infinity witi.

(i) The ballK(r, c) of Theorem B is not necessarily containedlif

(iii) One would like to ask if there exists a ball with pos#i(r, c) and
with - -
D(r,c) > (N&¥)2~%,
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or a ball with negative(r, c) and with
—D(r,¢) > (N6¥)z- %<,

(iv) We do not know what would be the best possible exponettién
estimate of Theorem[B, Using probabilistic methods, ores se
the existence of pointp ,...,p with

=1 =N
ID(r, 0)] < NZ*€, if r < 1.
(See, e.g., W. Philipp118].) 58

We shall prove that Theorerill A implies Theor&inAd.this we require
the following:

Lemma 1C.
IE(r, 5)| < NZmax*sk, min(rk, $)).

Remark. Here and later, the constant 4a depends ok ande, but is
independent of, 6.

Proof. Note that

91 < [ @9+ Nu)(es 9 + Nu(9)de

Observe that
(s, ¢) < Nmax(L ),
f (s, c)dc = Nu(s) < N<. (1.1)
uk = =

Using these relations, we obtain

IE(r, 91 < Nmax(1r¥) f (2(s.¢) + Nu(9)dc
Uk - -
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< Nmax(1 rf)N <
= N2 max(s, rks9).
Since|E(r, 9)| is symmetric inr ands, we also obtain
IE(r, 9)| < NZmax(k, r*s9).

Hence
IE(r, 5)] < N2 max(ks, min(r¥, $).

This proves LemmaldC.
59 The proof that TheorenTA implies Theorefl 1B runs as folldfvs.
NsK < 1, take a ball with centr@ and very small radius. Then
=i

ID(r. 9l = |Z(r, ) — INu(r)|
1 1
>1- 55 > (Nék)%‘zik‘f.

So we may assume thalsk > ¢/, wherec’ is a large positive con-
stant depending only dnande. Put

n = N2k
Thenn < 6, sinceNi¥ = N1 < N€ < N&X. By Lemma [T,
Ui 7] K K
f rLE(@r, rdr < sz rldr > N2 = 1. (1.2)
0 0
From Theorem[IA and{1l.2), we obtain

)
f rLE(r, r)dr > (N6K):ke, (1.3)
n

if ¢’ is large enough. Notice that

)
f r~LE(r, r)dr
n

< (nrgrz?glE(r, 9)) jj ridr. (1.4)
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But
0 s
f rldr = log(=) = log(EN%¥)
n n
1 k
=% log(6“N, N)

< log(6*N) < (*N)e (1.5)

sinceskN > N¢ and sinceNsX is large. Combining (B), (1.4), (1.5), we
conclude that there is arwithnp <r < 6 and

IE(r, 1) > (NSK)L %<

Hence there exists@e UX such that

1

ID(r, )| > (N6¥)Z %5,
Thus Theorem[IB is true.

2 Setting up an Integral Equation
Letk be an integer 1. Put

1, if kis odd,
y =
0, ifkiseven

Let 0 < a < 1, and letB be such thatr + 8 = 1 + v. Assume that
0> 0. Put

1 1
A:f f E(sr,69)r — S79r + §77dr  ds
o Jo

r+s<1

We shall show that

A <<f6E(r,r)r‘1dr, (2.1)
0
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where the constant implied by depends only orr andk. Note that
2591 < [ 2D(r.9D(s e
Uk = - -
< [ (09 + DHsO)e
Uk - - -
= E(r,r) + E(s, 9).
Therefore
1 1 1
Al < Ef f (E(6t,67) + E(6S,69)Ir — S79r + §77dr ds
0 0
r+s<1

Sincelr — §7|r + §7# is symmetric inr ands, we have

1 1
|A|§f f E(sr, 60)r — 97 r + §7Pdr  ds
0 0

r+s<1

1
:f E(ér,ér)r‘vdrf
0 0

61 by introducing a new variablegiven bys =rt. ForO<r < 1, observe
that the inner integral

=l

-1
11— 71+ t|Pdt,

14 1, fa+B=1+v=2,
f 11—t 1+t Pdt < {1, ifl+v<?2 and% < 10,
0 log, ifl+v=1and?> 10

So in general the above integral is
1
< (1+log F)l“’ <t O0O<r<1).
Hence
1 5
Al < f E(sr, 6r)rtdr = f E(r,r)r1dr,
0 0

and [Z1) is proved.
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Put

1, if xeK(r,c),
0 otherwise

fmg§={

so thatf(r, c; x) for fixedr, c is the characteristic function &(r, c).
Write - -
oG = ) frcx+0),

4

where the sum is taken over all the integer pointSotice thatf (r, c; x+
£) = 0 except for finitely many. Further observe that

N N
A=) > frgp+0=> drcp) (2.2)
i=1 ¢ - T i3 -

Put
w(Xy) = m{inlg—x— L.

where the minimum is taken over all the integer points. Weddnter-
pretw as the “distance modulo 1" of andy. Denote byK(r, s, w) the

volume of the intersection of two ba_lls with radiands, whose centres 62
have distance). We shall show that if r and s are positive real numbers

) 1
withr + s< > then

N N

B9 = ), D (Kso)pp) - [ | Ksolepix dp.
1 - = k k - = - =

i=1 j=
(2.3)
We start by noting that

E(r,9) = j;k D(r, g)D(s g)dg
- [ (.9~ Nu(ats © ~ Nu9)de
- [ tr. s 9)de - Nu(u(s) (2.
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since

fukz(r,:)dgzizg:fw f(r,c—

From [Z2) and[(Z]4),

1o
e
Il'o
Ilo
Mz
IIO
Il'o
Ilo
1l
Z
=

N
£ = ZZ( [, srgpssp)e-pous)  @5)
i=1 j
The integral

L, JnENS Cy)de

is periodic inx andy. (That is, the integral remains unchanged &nd
y are replaced by + £1 andy + ﬁz, respectively). Therefore to study
the integral we may assume that (X1, ..., %),y = (V1. ... Yk) satisfy

IXi — Vil < %(l <i < k). Observe that

[ s gvas g yde- [ DIDIIE VA (LA

-1 =2

=Zf f(r.c- £ xf(sc- ¢ y)dc
7 JUK = == = 2=

63 since if{ = (f11,...,¢1w), £ = (€21,...,€x), ¢ = (C1,...,C) and
f(r,g—fl;z) = f(sc- £2’X) =1, then -

I — {1 —X|<randlc-f-yl<s (1<i<Kk).

1 1 . .
So|€1i—€2i|sr+s+|xi—yi|<§+§:1 (1 < i <K). which
implies thatty; = £ for1 <i <k, i.e. thatﬁl = ﬁz. Therefore

f o(r.c: a(s ¢ Y)de = f (r.0; 0 F(s 6 y)de
Uk - - - = - RK == - = =
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= K(r. s [x- Y.
. . 1 .
This holds if|x — yi| < 5(1 <i <K). In general we have

[ otr.g:v0(s ey = K(r. s w(xy) (2.6)

The last equation yields

kakaK(r,S,wQ(,):/))d;( dy
_ fu k fu k fu oregscyde dx dy
- fu ( L 9(r, & )(dX)( fu (s Gy)dy)de

= pu(r)u(s) (2.7)

since [ 9(r.c; X)dx = ¥ [« f(r.¢; X+ O)dx = e Fr 6 ) = ().
Combining [Z5),[[26) and{2.7), we obtaln{2.3).
Lemma 2A (Fundamental Lemma).Suppose thal < 6 < % Suppose

f(r) is continuous i <r < % with

1f(r) <rt**asr— 0,

and satisfies the integral equation

K(ré, ss, w)
fOK(réréw)f(r)dr ffo |r—sja|r+s|ﬁr ds (w<0).

r+s<1
(2.8)

Then 64

E((Sr 09)
f(; E(or, or)f(r)dr = f fo R dr ds (2.9)
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Proof. The lemma follows immediately from (). All the functions
occurring in the integrals are summable. m|

Remark. If (£28) is true for somé > 0, then [Z.8) and{Z]9) are true for
everyé > 0. This is seen as follows. For a positive integerdenote by

1 , : .
Z* the seta . DefineE*(r, s) with reference to%?*. Notice that for
everyr, s> 0,

(T S
E (m m) E(r,9), (2.10)

r c S c

since the setZ? is periodic andD (E E) = Dfr, c) D* (ﬁ E)

=D(s.0).
Suppose thal{2.8) is true for some> 0. Since for anyc > 0,
K(cr,cs cw) = cK(r, s, w), (Z8) is true forcs and hence for every

. . : 1
6 > 0. Now givens > 0, choose an integer in such tign < > Then
by Lemma EA,

j(; E*(—r —r | f(r)dr = fj: |rE—* s|“|r+$ﬁ ds

r+s<1

which along with [Z.100) give$T(2.9).

3 Differentiating the Integral Equation

In view of the Remarks at the end $, we may restrict ourselves to
the equation[{Z18) with = 1, i. e. to

K(r, s, w)
f f(r)K(r,r,w)dr = f fo S Sﬂdr ds (w=0). (3.1)
r+s<1
We shall determine a solutiof(r) of this integral equation. It is
suficient to consider(3l1) for & w < 1, since both sides of{3.1) are
zero wherw > 1.
Further we may assume thatQw < 1, since both sides of(3.1)
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are continuous functions af. In fact they satisfy a Lipschitz condition,
since

IK(r, s w) — K(r, s o) < o — | min(r T, &1, (3.2)
since
1
2
f If(r)rktdr < 1 (3.3)
0
by virtue of f(r) < ri %= and since
min(rk-1, 1)
————~dr ds<x 1 3.4
ff Ir —ger + s (3.4)
r+s<1

Now suppose that—9 < w < r+s. LetK(r, c) K(s d) be balls with
|c d| w. The boundaries dk(r, c) K(s, d) intersect in a spherg 2.

Denote the radius &2 by e, the distance from the centre 82 to
c, d by a, b, respectively. (The reader might want to draw a sketch). We
have

a+tb=wa+e&=r2andb® + & = &.

Eliminatinga andb, we obtain

& = %(1 G ;23)2 ).

We have

K(r,s w) = clfoezk‘z(\/rz—22+ \/sz—zz—cu)dz

(The constant; and subsequent constanscs, . . . are positive and
depend only ork and ona). Since the integrand vanishes ot e, we
obtain

e
iK(I’,Sw) = —clf Z2dz= —ce L.
ow 0

66
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All this holds for[r - § < w < |r + 9. Forw < |r — g, K(r, s, w) is
independent ofv, and forw > r + s, we haveK(r, s,w) = 0. From all
this, it follows that

9 k(s w) =

ow

—cel ifr—gd<w<r+s
0 otherwise

Now we diferentiate both sides df(3.1) with respectutoBy (3.3),
(Z3) and Lebesgue’s Theorem on dominated convergencee(ges
19 of [14]), the left hand side of{3.1) can beTdrentiated inside the
integral.

By 332), [Z3B) and the dominated convergence Theorem,ahees
can be done for the right hand side Bf{3.1). The derivativéhefleft
hand side ofl(3]11) is

1

2 (_Uz
e, f F)(r2 — “0)kDr2gy, (3.5)
w/2 4

The derivative of the right hand side 6f(B.1) is

1 (r—s)2 )(k—l)/2

1 A1 i - -
(3(r-E)w+ 92-0D

Ir — gelr + ¥

dr ds

r—g<w<r+s<1

Putx =r + sandy = |r — §. The above integral becomes

1 ) 2
- C3 (f (X2 _ wZ)(k—l)/ZX—ﬁdX) (f (1 _ y_z)(k—l)/Zy—ady)
w 0 w

1
— _C4a)l—af X—ﬁ(XZ _ a)Z)(k—l)/ZdX’
w

since substituting = tw we get

w 2\ 1
f (1 - —2) yody = f (1 - tA)*kD/2teqt,
0 w 0

Hence after dferentiation, the equatiof (B3.1) becomes

1
2

= wz
f f(r)(r® - =)D 2dr
w/2 4
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1
= csw’® f X PP - )& V2dx  (0<w<1). (3.6)

67
Any solution of this integral equation is also a solutioni®ll), since
both sides ofi{3]1) are continuous and are zeraJfer 1. Puttingw? = t

in (2.8), we get

1
3 NG
& f(r)(r _Z) dr

1
= c5tt-)/2 f x B - ) D2dx(0<t<1). (3.7)
Vi

We now diferentiate[[317)

times with respect tb. The left hand side becomes

1
_m 2 2_£ (v-1)/2
co(=1) L{ f(r)(r 4) dr.

If on the right hand side we fierentiatet(1-)/2 preciselyi times,
and the integraﬁi xP(x2 - t)&D/2dx (m - i) times, we obtain

1
(_l)mcg))t(l—a/)/Z f X—ﬁ(XZ _ t)(v—l)/ZdX
WVt
1/t
= (-1)"cg f yP(y? - 1) D2dyif i = 0
1
and

1
(_l)mcg)t(l—a—Zi)/Z f B2 — t)k1-2mi2gy
Vi

A _
= (_1)mcg)f y Ay - 1)(v—1+2|)/2dyif 1<i<m
1
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Here all the constantsg) are positive (0< i < m). Hence [[(3TF)
becomes

1
f C 02 - )(V‘l)/zdr

V2

(0) f —ﬁ(yz _ l)(v—l)/Zdy

Z (|)f ,3(y2 1)(v 1+2|)/2dy(0< t < 1) (3.8)

68 Now the left hand side and the right hand side[0fl(3.7) and fhret
m-— 1 derivatives are continuous frand vanish fot = 1. From this fact
it follows that every solutiorf (r) of (3.8) is also a solution of{3.7). We
now write vt = w and rewrite[[3B) as

f ® fn? - 2)(V‘1)/2dr
/2
) f VB2 — 1) D2gy Z () f yE(2 — 1)1 02gy
=mm—2mm, (3.9)
i=1

say. This equation is to hold for@ w < 1. For everyi with0 <i < m,
we shall find a solutiorfi(r) of the integral equation

1/2 a)2
f fi(nr? - =)"2dr = (w) (O<w < 1) (3.10)
w/2 4

Then
f(r) = fo(r) - > fi(r)

i=1

will be a solution of [3.B).
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4 Solving the Integral Equation

Case l. kisodd, i.ex = 1.
Differentiate[(3110) with respect i We obtain
1 w ) gey_oi_ 1400
_Efl(i) — —Cg)wﬁ 2i 1(1_ a)Z)( l+2l)/2. (4.1)

Hence o _
fi(5) = 2w 2A2(1 - WP,

or

=

fi(r) =cPro2(1-4r%  (0<r<3).

N

69
Itis clear thatfi(r) is in fact a solution of the integral equatidn{3.10).
Put

f.(r) = fi(r) and f(r) = fo(r) — f.(r).

&MB

Observe that the functionﬁ;(r) (0 <'i < m) are continuous in &
r < 1. Whenr — 0,
fo(r) >« re[l

(k-1)/2 _
f.(r) >< Z o2 s rlke, 4.2)
i=1

Thereforef(r) is continuous in G< r < 3, and
1f(r)] < r'% asr - 0.
Hence by LemmBJA and the remark below it,

E(6r,69) 3
foE(érér)f(r)dr ff|r—qa|r+s|ﬁd ds=A

r+s<1

1The notationf >< g means that botti < gandg < f.
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Put diterently,
; ;
f E(ér,ér)fo(r)dr—A:f E(6r, or) f.(r)dr. (4.3)
0 0

Now |A] < f: E(r, r)r~tdr by (Z1), and further more

1 1 5
fz E(6r, or) fo(r)dr <<f E(sr, sr)rtdr :f E(r, r)rdr,
0 0 0

sincefyp(r) < r~® asr — 0 and since & a < 1. Therefore the left hand
side of [£3B) is
0
< f E(r,r)r idr. (4.4)
0
Now we shall show that the right hand side[0f14.3) is largetiddo

that
ID(r, g)l > |INp(n)Il,

70
where||/]| denotes the distance frofmto the nearest integer. It fol-

lows that
E(r,r) > INu()I%.

In view of this and of[[ZR), the right hand side Bf{4.3) exdee

Co
f IN(oTYIPesor edr. (4.5)
0

Let the intervall consist ofr > 0 with

Alw

1
2 < Nu(or) = CllrkékN <
Then every € | satisfies
(Acyn) YNk < 1 < 3Yk(dcyy) K (Nk) 2k

and
plkeo o (N («)-k)—(l—k—a)/k.
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Observe that C [0, cg] if N is large enough and that
1] 3> (N&¥) /K.

Therefore

Co
f INu(or) P cyor ™ dr > f IN(8)[[2e10r dlr s (Ngk)H £
0 |
(4.6)
Combining [£38),[[44)[(4]15) anf{4.6), we get

fé E(r,r)r~tdr > (Nék)1+%—§.
0
This is true for everyr with 0 < a < 1. Puttinga = 1- ¢, we obtain

)
f E(r,r)rdr > (Ns¥)1k€. @4.7)
0

71
Thus Theorem[TIA is true whéais odd.

Casell. kiseven,i. e:=0.
Puttingv = 0 in (3.I0), we have

fﬁ fO0 - Dy ddr= 6@)  O<w<1)  (48)
w2 4

This is an Abel integral equation. We check that
4 1
fi(r) = ——f r2-4ard)z¢Mmdt  (O<r<Z)  (4.9)
T Jor 2

is a solution. Namely, substitutinf_(#.9) into left handesaf (4.8), we
get

1 2 1
-i‘fz (rZ-%)—%drf r(t2—4r2)—%e;(t)dt

T Jw/2 2r

3 t/2 2
=—ilf2 fi’(t)dtf r(rz—%)‘%(t2_4r2)—%dr‘

T Jw/2 w/2
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The inner integral equals

12,2 1

2 1
f (t2—4u2-w2)—%du:—f(1—u2)—%du:f.
0 2 Jo 4

So the left hand side of{4.8) becomes

1
i@ = [ adt=66) - 60 = )

Notice thatfi(r) (0 <i < m)is continuous in &< r < % and can be

. . 1 .
extended continuously in@ r < > Furtherfi(r) > 0, since{(t) < 0
in0<t<1(seel(dl)). Usind(4.9) and(#.1), we have

1 . .
fi(r) = c12 f r(t2 — 4?2t 21 - )@ D24t (0<i<m).
2

r

. 1 .
72 Suppose thatis small, say &< r < 3 Write

1 1
2
fi(r):clzrf ...+c12rf
2r 1

2

The second integral is r < r'=*=2_ The first integral is

1

2 .
> rf (t? - 4r2)_%t_“_2'dt
2r
L du
1-a-2i
>« rle2,

It follows that forr — 0,

1-a-2i

fi(r) ><r O<i<m).

We now many proceed exactly as in Casand conclude thaf{4.7)
holds. This completes the proof of Theore 2A.
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5 A Good Distribution of Points

We shall show that TheoremAlis in a sense best possible.

Theorem 5A (K. B. Stolarsky, [28a]).For every k and N, there exists
a distribution of N points in U, such that

. 1
E(r,s) < ci(NY R mink?, 1) forr + s< >
whence that

0
f rLE(r, r)dr < co(K)(N§)9 for 0 < § < %.
0

For the proof, we note that there is a partition &f¢ into N dis-
joint subsetsS;, ..., Sy, each with measure/l and with diametex
c3(K)N-T/K,

Let E(r,s p p ) be E(r,s) with respect to theN points 73

p,....,p in Uk Theorem BA is an immediate consequence of
=1 =N

. 1
Lemma 5B.Forany r,s with r+ s < > we have

NNf f dp E(r, SPs B ) < NE@R minrkt, &1y,
S1 —1 Sn —

Proof. In view of (Z3), we have to show that
F* — F < NY min@k?, o<, (5.1)

where

=i =

N N
fsl U ‘fs,NdBNZJZKUSw(p p)).

F=N [ [ Ksolxydx dy
Uk Uk - = - =
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Now

NZZ‘EI dng(r,aw(gi,:pj))
i#]

N
N dp K(r, ,
+ zl] , dPK(rsw(p.p)

N
=F + N? Zf dzf dy(K(r, s w(x, X)) — K(r, s w(x, ).
i—1 VS TJSs = - = - =
Now sinceS; has diameter N-V/%, we have
w(XYy) - (XX = w(XYy) < Nk,
whence by[(3R2),

< N VK min@k-1, 8¢,

K. s 0% X)) - K(r. s w(x.Y))

if both XYye S;. Thus

F* — F < N"Y*min(rk1, & 1)N22f dx dy,
and [521) follows.

6 Balls Contained in the Unit Cube

74 Let p p be points in the unit cub&X. If the ball K(r, c) is con-

talned |nUk erte Zr, c) for the number of pomt:p in K(r, c) Also
write

D(rvg) = Z(r’ g) - Nﬂ(r)a
D(r, o} M) = Z(r, g) - Mu(r).
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Put
F(r,M) = f D(r, c, M)?dc.
K(r,(::)gUk
The domain of integration consists of alfor which K(r, ¢) is con-
tained in the unit cube. -

Theorem 6A. Suppose that k 1. Lets, M and e be positive real num-
bers satisfying

0<e< andl < M€ < Mok < MY/(k+2)-¢

1
2(k+2)
Then

(IR (r, M)dr s> (Mg¥)t- (70,
0

Theorem 6B.Let k €,6, M be as in Theorem[BA. Then there exists a
ball K(r, c) € UK with r < 6, having

ID(r, ¢, M)| 3> (M6¥)2-1/20¢

Now suppose; > 0. Pute = /2 and
k+1 €

0= M K27k,

For suficiently smalln the conditions of Theoren®B are satisfied
and we obtain the

COROLLARY . SupposeM > 1, > 0. Then there exists a ball7s
k+1

k,
ID(r, ¢ M)| > M i

(The constant in> depends only ok, n). Clearly, the interesting
case for these results is whéh = N. The general case will be needed
in Theorem BT below.

We shall now show that Theorefl 6A implies TheolemT6® hy-
potheses imply that & § < 1. Since §/8) > ¥, we may assume that
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1 1 )
0<d< g Let U be the cube of Sld% whose centre is the same as

that ofUX. This cube has the property thatit U*, thenK (s, c) ¢ UK.
Earlier we derived TheorenfZ1B from Theorefl 1A (see Chapter I
§ ). We used LemmdC of Chapter Il. In fact, we used

IE(r,r)] < N?rKif0 <r < 1.
We can similarly show that
IF(r, M) < M2rK,

provided thatN < 2¢*IM and O< r < 1. In this case the proof that
Theorem BA implies Theorenf®B is similar to the proof that Grieen
1IAlimplies Theorem[IB.

Let N* be the number of pointp in Uk,

=
Suppose at first thal* < 2M, and putM’ = 27XM, so thatN* <
2<1IM’. Blow up UX andN* points in it by the factor 2. By what we
just said, there is a bal{(r, c) in this blown up cube witl < § and

|z’(r,g) - M'u(r)| > (M’6%)2

whereZ (r, ¢) is counting function in this blown up cube. HenceUk

itself, there is a balk (% d) with

2(5.9) - Mu(3)1 = 2.9 - Mu(r)

> (M/(«)-k)%—(l/Zk)—e > (M(')-k)%—(l/Zk)—e.

It remains to dispose of the case whHgh> 2M. If p,...,p are
=1 =N*

the points inUX’, then

f z(é,g)dng > 1fde
Kegeuk = = JKEQUK | 1gone | T

Ic-p <6
=5
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N* N*
zilkf ®:§1f dc = N*u(s).
i=1 T i vplss ~
K(5,)cUk ==
lc-plso

HencefK((sgguk D(s, ¢, M)dc

=j‘ 25, ¢)dc - (o) dc
K(5,(::)<;Uk - -

K(s,c)cuk —

> p(O)N* — p(0)M > Mp(6).

Therefore there exists@with K(s,c) ¢ UX and

ID(, ¢, M)| = Mu(8) > MK > (Mg¥)2=(1/20-¢

This completes the proof that Theorefnl 6B follows from Theore
dAl We postpone the proof of Theoreml6A until after Theordm 6C
below.

Let © be a completely arbitrary set of points in k-dimensionakspa
Put

Z'(r, c) for the number of points o® in K(r, ¢),

and
D*(r,9) = Z(r,9) - ().

Theorem 6C.Suppose that k 1, e> 0and R> 1. Then there is a ball 77
K(r,c) with r < R,|c| < R“2 and

|ID*(r,c)| > R%l‘f,

where the constants implied by depends or and K, but is indepen-
dent of R.
This theorem was conjectured by P. Erdos [5].

Remark. If k = 2 andS is the set of integer points iR, then the above
theorem has some relation with the circle problem.
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DEDUCTION OF THEOREM 6€CJ] we may assume th& > k. Put

L:[Q“%*ﬁ]mmmzzﬂ.

1 .
Construct the set? = ES N UK. We can assume tha® is finite,

forif &2 is infinite, it has a limit point and the theorem follows imnied
ately. Now we apply the Corollary to Theoreml6B with referene the
setZ. There is a balK(s, d) contained in the unit cube with

k
s< M D = K3,
and with . .
|D(3 g’ |\/|)| > Mzk2) = | 2k2),

Put
r = Lsandc = Ld.

We shall show thaK(r, ¢) satisfies the conclusions of the theorem.
Observe that -
z(r.c) = s d)

sinceK (s, d) € UX. Now
D*(r,c) = Z'(r, ) — u(r)

= s, - L'
= (s ) - Mu(9

= D(s d, M).
Hence
D'(r.g) > LI » R
r= Ls_s LL-(D/(ke2) | Y(e2) < R
and

c = L|d| < LkZ < R¢*2,
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This completes the proof of Theorefnl6C.
We finally come to the proof of Theoreri BA. It will be advantage

. . 1.
to use to the cub®k of points x with |xj| < E(I =1,...,K), rather that

UK. If 1> 0, letV(1) be the cube 2VK, and if 0< A’ < 4, let V(. 1)
consist of the complement &f(2’) in V(1).

: 1
Again we may assume thatf¢ < 3 We may further assume that

¢ is such that there is no poiqt on the boundary of/(% - 26). Note
=i
that

1
gev(z—é) andr <6

imply thatK(r, ¢) V(%) =V.

Suppose\, of the points of#? lie in V (% - 26) ; let these points be

gq,...,q .LetZ?; be the set of points
-1 =No

q +(1-40)¢

=i -

with 1 < i < Ng and? an integer point. The?; is a “periodic” set of 79
points with period 1- 4. Write z(r, c) for the number of points af?;

in K(r, ). -

Lemma 6D.

)
f dr f der(zu(r, ©) — Mu(r))? > (M) WR-< (6.1)
0 V($-26) — =

Proof. Itis more convenient to work witt#?, = (1—46)"1.2, i. e. the
set points

(1-45)"q +¢.
=i -
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ThenZ?, has period 1, i.e. itis invariant under translation by ieteg
points, and haBly points inVX. Definez(r, ¢), Do(r, ¢) andEx(r, s) with
respect ta#,, in the obvious way. Now theoreni LA shows us that

)
f FLEx(r, r)dr s> (Ngs¥)t- (/-
0

provided
Nod® > NE/2 (6.2)

PuttingM’ = M(1 - 46)¥, we have
fv (2(r.0) - M’p(r))?de = fv (z(r.0) - No())?de+ (M = No)?u(r)?
= Ea(r,1) + (M" = No)?u(r)?,

whence
)

f rldr f do(za(r. &) - M'A(r))?
0 vk — -

0
> (Noo*) " MR7¢ 4+ (M’ = N)? f r?tdr
0

> (Noék)l—(l/k)—e + (M/ _ No)252k
> (M’6K)1-(1/K-€ (6.3)
> (M(«)-k)l—(l/k)—s.

80 All this holds if £2) is true. But if[BR) is not true, thekys® <
Ng/z, and together wittMsk > M€ and 0< 6 < 1/8, we obtain

(4kMI)1—E > Ml—E > 6—'( > N(])-_(E/Z)
whence
NO< (4kM/)(l—e)/(l—e/2) < (4le)1—(E/2) < }M/
2
if M is suficiently large. The left hand side df{(®$.3) is therefore again

> (M’ = Np)%6% > (M’65)? > (mg*)1- (/K¢
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The proof of LemmalED is completed by noting that

)
f dr f dorL(z1(r.©) — Mu(r))?
0 V(3-25) ~ -

5(1-46)1

_ (1- 45)¢ f dr’ f ATz, ) - Mu(r'))?
0 vk = -

> (Mék)l—(l/k)—s.

Now write A for the contribution to the left hand side &f{6.1) by the

. . . . . . 1
pointsc which are notinv (3 - 26). i.e. which are m/(% -36.5 - 25).

If Ais small as compared with the right hand side[ofl(6.1), then

)
-1 -1 _ 2
jjr F(r,M)drszdrfv%_%)dgr (r.©) - Mu(n))

)

- f dr f derY(zu(r.¢) - Mu(r))?
0 V(3-30) — -

> (M&k)l_(l/k)_e,

and Theorem[BA is true. We therefore shall assume hencdfath
A s> (MK 1/K-€, (6.4)

Put

S
B= [ar [ der 'z (r. o)
0 V($-353-26) — -

Q
I
h
%
Qo
-
< ]
Sies
|
g
Nl
¢
o
il'e)
—
AN
<
N
=
—~
-
N
N

81
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Then

C<C' «é f6 rIM2u(r)?dr < M25%+t

_ E)M )L (LI0-26 (g 5Ky L+ @K+ 2e g~ LK

<(M («)-k)l—(l/k)—ZeM(%z+2)(W12—e—(l/k)) (6.5)

< (Mg¥)L-@/R-2¢
by virtue of Mk < M/ (k+2)-¢ 'which is a hypothesis in TheoreriBA.
Lemma 6E.B < 2¢B'.
Proof. Suppose € V(3 — 35, 3 — 26) andr < 6, Observe thaty(r, ¢) is
the number of pointg_ + (1-406)¢ in K(r, c). For such pointsjg_ +(1-
) -d<r<s, wﬁ'enceg - (1_— 4)¢ e_V(% - 26+06) = v_(l% - 6),
sinceg_ € V(% — 26). As£ runs through the integer poim:s,— a- 46)£

lies inV (3 - 26) only for £ = 0, and hence all these points lie outside

V (% - 35) O
Thus we have
1 1
g—(l—46)£eV(§ —36,5 —0). (6.6)
For givenc, there are at mostZuch integer points.

We have

arg< ), Anc-(L-49)).
B gsatisfieslIES) B B

82 and by Cauchy’s inequality

Zrg<2 > Zrg-(1-2).
B 4 satisfies[[616) B B

This yields

[ A, 9dc< 2 [ 2(r.0)dc
V(3-36.3-20) T = v(i-36i-s) T =
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and LemmalgE follows.
The proof of Theorem[BA is now completed as follows. By the
general inequalityg — b)? < 2a? + 2b?, we have

A<2B+2C (6.7)

")
- f dr f der(z(r. ¢) - Mu(r))2.
0 V(3-35,3-0) ~ -

By the general inequalitya(— b)? > %az - b?, we have

Now set

1
A >=-B -C.
5 C
Hence by LemmalgE, by (8.4], ($.5) afd{6.7), we obtain
A >2KIB_C > 2K 2A-C - C > (MK (/K<

Theorem BA follows.

7 Rectangles in Arbitrary Position

For anyu = (uz, Up), denote byR(u) the rectangle of points = (X1, X2)
with 0 < x; < ug], 0 < X < |up|. Denote byr,, the rotation by the angle

@ about 0(i. e. if X = (X1, X2)), thenr¢x (X1 COSp — X2 SiNg, X1 Sing +

X2 COSg). Write RL u,v, ¢) for the rectangle of pomts‘,x + Vv with X €
R(_) Itis easy to see that all the rectangles of diamé&®me of the form 83

ROW). V. ¢). (0 <,y < 2n)
wherew(y) = (cosy, siny).
Let | p = (X, Y1), . ..,p = (XN, YN) be N points in the plane with

0 < x, yI <11<ic< N) Denote by#? the set of pomtsp + £,

1 <i < N, where/ runs through all the integer points. Define the set
function D(A) as in§ .
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Theorem 7A.Lete> 0, § > 0 with N6¥ > N¢. Then there exists a
rectangle R with diametef and with

ID(R)| > (N&2)3<.
Theorem [ZA follows from

Theorem 7B.Lete, 6 be as in TheorenZA. Then

1 (= o 1
Y f d f AVDOW(). v, ) > (N2,
0 vz = = =

47T2 0
where 0u, V. ¢) = D(R(U. V. ¢)).

Weaker results were proved in [21 a].
Put

1 ifxeRUVe),
0 otherwise

fR(U V. ¢ ) = {

so that fr(u, Vv, ¢; X) for fixed u,v, ¢ is the characteristic function of
R(U, V, ¢), and fr(U, v + ¢, ¢; X + €) = fr(U,V, ¢; X) for anyc. Next put

GrU V¢ X) = ) falU g X+ 0.
¢

where the sum is taken over all the integer poifitdNotice that only
finitely many summands are non-zero. Further observegi{ayv, ¢; X)
is periodic inx. ===

) 1
Lemma 7C.For anys with0 < 6 < >

1 21 21
I f de f AVD(OW(). V. )2
0 vz = = =

472 J,

N
= D eapp)- [ teoeydx dg ()

i.j=1
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wherew(x,y) is as in§ 2, and where

1 27
(0. = 5 f U KROW(Y). ),
i w
with

2n
Kr(U, w) = % fo de fR | viR(Y 0,0;) fR(U, 0. 0V + wW(p))-

) 1 .
Letu e U?with 0 < |u| < > Let x = (X1, X2) andy = (y1.y2) be in

1.
the plane, and assume, for the moment,|the yi| < E(I =1,2). Put
hRQ_’L é? X)

1 21
=5 f de | dvOr(U, V, ¢; X)GR(U, V. ¢} Y)
0 uz - —--= - -=- =

21
Zzif do | dvfr(u,0 ¢ x—v+£)TRU 0.0 y—V+ L)
7 7 2r 0 U2 — - - = = = - = = = =
-1 =2

The new variable/ = x - v + ﬁl ranges over the whole plari.
Hence the above sum equals

21
§ if dgof dv fr(u, 0, ¢; V) fr(U, 0, 0; V +y — X+ £ )
7 21 Jo R = =="'= =="'= Z = =

=2

2
= if de | dvfr(U,0,¢; V) fR(U O, ;V+Y—X), (7.2)
27T 0 R2 = - = = —_ = = = f—

since if fr(U, 0, ; V) fr(U. 0,V + Y — X + gz) = 1, then bothy” and

V+y-X+ £2 belong toR(u). Thereforely — X + {5 < % If, say,

1 1 . 1 T
£2 = (€21, €22), then|ly 1| < > + 5= 1, sincely; — x| < > This implies 85
thatﬁ2 = (0,0).
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Note thatfr(u, 0, ¢;v) = 1 if and only ifv = 7,zwith € R(u), i. e.
if 7,'v € R(u). Therefore[ZR) equals
= 2ﬂd dvf T, W) fR(Y,0,0; 7 v + 7t
=), ¥ Vfr(U. 0,0;7,°V) fr(U. 0,0; 7"V + 7, (%’—é))
1 21
-5 [ de [ dvin@ 0.0 (w.0.0: v+ w(x Yt
2t Jo R = == = - = = — =
= Kr(U (X ¥))-
for asg ranges from 0 to 2, T;l(z — X) ranges over the circle

Iy = Xw(p) = w(x, y)W(p) with 0 < ¢ < 2r.

. 1
Hence for everyu with 0 < |u| < > and everyx = (X1, X2), y =

(v1.2) with [ ~yil < 3, = 1.2), we have
hr(U, X Y) = Kr(U, w(X. ). (7.3)

Since both sides of(4.3) are periodicxrandy, this equation holds
in fact arbitraryx andy. We have -

j; 2 fu Kn(G (s y)dx dy

= f hr(u, X, y)dx dy
U2 Juz? - — = - =

2r
_ L f de f dv f fr(U, Y, ¢; X) fR(U, V, s Y)dX  dy
27T 0 Uz —-JrR2JR2 - - - - - = - =
= u(RW)>. (7.4)
Proceeding similarly as i and using[[Z13) an@{4.4), we obtain

1

d dvD 2
27'[ SD U2 - (g’\:/’go)
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—Z(KR(u “(@.p))- f f Kr w(x )dxdy).  (7.5)

i,j=1

. 1
provided that O< |g| < > 86

We now consider rectangles with diamefelf 0 < § < = then the

relation [Z5) is valid for alu = sw(y). Substituteu = dw(y) in (Z3)
and integrate both the sides with respecigtisom 0 to 2r. We obtain
(Z1), and LemmalAC is proved.

We now recall formulal{2]3) the special cdse 2,r = s:

N

E(r,r) = Z Z(K(r, r, a)(E,BJ_))
j=1 ==

i=1
1
- LZLZ K(r,r, w(é,z))déd%/) (0< r< Z) (7.6)

1
Lemma 7D (“Fundamental Lemma”). Suppose thad < 6 < > Let

. . 1
f(r) be non - negative and continuousOn< r < > Further assume
that f(r) satisfies the integral equation

1

fz K(6r, or, w) f(r)dr = (r(S, w) (w = 0). (7.7)
0
Then
f * E(or, o) F(r)dr
0
EN h f de f WDROW. V) (7.8)

4712

Proof. The Lemma follows immediately froni(d1.1) arld({7.6). 0

8 Solving the Integral Equation for Rectangles

We shall require the following :
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Lemma 8A. Write ¢(w) for ¢r(1, w). Then
awy=%«1+zfmmamw—3wu—ah”% O<w<1),
' (w) = %(warc cosw—-(1-w?¥?)  (O<w<l),
" (w) = ﬂ—82arcc03a) O<w<1l),
" (w) = —%(1 - w?)7? O<w<1).

87

Here arc cos € [0, /2] for everyw with0 < w < 1.
We postpone the proof of this lemma until pagel106.
We shall determine a solutiof(r) of the integral equatioi.{4.7) such

. . . 1
that f(r) is continuous in < r < > and

If(r)] < rtasr -0, (8.1)

hence such that )
fﬂmwm<1 (8.2)
0

By the argument of & (see pagé®4), we see thafif{7.7) is true for
somes > 0, then [ZF) and(718) are true for evety> 0. So it will
sufice to consider the integral equati@n{7.7) witk 1, i. e.

1

jﬁmeﬁmm:@@@:a@ w=0) (83
0

Observe that the left hand side vanishesdor 1. Furtherf(1) = 0
by Lemma BA, and(w) = 0 for w > 1 by the definition of(w). Hence
it will be enough to considel{8.3) for & w < 1. Further we may
assume that & w < 1, since both sides di{8.3) for® w < 1. Further
we may assume that@w < 1, since both sides df(8.3) are continuous
in 0 < w < 1. (The right hand side is continuous by Lemnid 8A. That
the left hand side is continuous infollows from {3:2) withk = 2 and

from B2)).
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We now diferentiate both sides di{8.3) with respecttoBy ((32)
@2) and by Lebesgue’s Theorem on dominated convergehedeft
hand side off{813) can beftirentiated under the integral sign. Proceed-
ing similarly as in§ 3, we see the derivative of the left hand side[0fl(8.3)

equals
1

5 2
—c1f2 F(r)(r? - %)Wdr.

/2

(See [[3b) withk = 2). Herec; is a positive constafit Hence by
differentiating the integral equatidn{B.3), we get

2 w21
—Cc- 1fw/2 f(r)(r® - T)zolr ={(w) (O<w<]l). (8.4)

Any solution of this integral equation is also a solution [Bf),
since both sides of{8.3) are continuousdirand are zero fow = 1.
Differentiating again with respect ég we obtain

3 2
}clfz FO? - £y YV20dr = 0'(w) (O<w<1),
4 w)2 4
i. e.
% o7
f f(r)(r? - T)‘l/zdr =mw) (O<w<l) (8.5)
w/2
where 4
M) = =),
CT w

Now the left hand side and the right hand sidd ofl(8.4) areicoatis
in w and vanish fow = 1. So it follows that every solution of(8.5) is
also a solution of[{814).

Using the argument df[3, we see that

f(r) = 2 flr(t2—4r2)‘1/2m’(t)dt (0< r< %)
T Jor

is a solution of[[85B). By LemmdB8A, 89

2The numbering of constants is begin a new in each section.
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arccost 1
+

rTf(t) = _C2( t2 t(l B tz)%

), (O<t<1l).

Therefore

: 4cy ! arccost 1
lim f(r) = =2 nmf r(t2—4r2)—%( — + 1]dt
r—3 3 Jor t t(1 - t2)2

2 T oro3

Observe that

1 1/2r
f (t2 — 4r?)~3 (arc costyt?dt < r‘zf (2 - 1) 2du— O,
2r 1

asr — 1. Further

1
Iimf (- a2 i 9t

-1 Jor t(1-t2)2
= lim rf - -
r-3 Jo (t2 + 4r2)2(1 - 4r2 — t2)2

. L dt
= Ilmlr T T
r-3 Jo (1-12)2((1 - 4rd)t2 + 4r2)2
3 1 n«

22 4
Hence f(r) can be extended continuously inOr << % and is
positive through out. We next check the behaviouf @) asr — 0. We

have
1
f(r) < f r(t? — 4r2)—frac12(t12 N ;]dt
2r

t(1-t2)2
3 1
:f +f
2 1

2

The second integral is clearly boundedras> 0. The first integral
is

r

1 1/2r
1 du 1
< f rt2(t2 - 4r2)~2dt = —f - < =, asr - 0.
2 4r 1 (U _ l)i r
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90 Now if t is small, then
I (t)] > t~2.

Therefore ifr is small, then

A4r
f(r) > f r(t2 — 4r3)"2t2dt
2

r
1 (?  dt

1
= — —1>>—,a.Sf—>0.
a J; t2(t2 _ 1)§ r

Hence

f(r) ><r 1.

So [81) is satisfied. We conclude that there exists a fumdt{(o)
satisfying the integral equatiof(8.3), which is continsi@uO < r < %
Hence by Lemmal7DD, we have

1 21

2n %
il 2 _
22 ), dwfo de degD(év:v(¢),¥, ) _j; f(r)E(or, or). (8.6)

In view of an earlier remark, the above relation is true fbwat 0.
The right hand side of(8.6) exceeds

2 ¥
Cgf r—~E(or, or)dr = Cgf r—E(r,r). (8.7)
0 0

By Theorem [[A,

Cgf
0

Combining [85),[(817) and{8.8), we obtain Theordnh 7B.
Proof of Lemmal8AAssume that & w < 1. Put

a ifa>0,
<a>= .
0 otherwise

Nl

o
fLE(r, r)dr > (N62)L-27¢ = (N§2)2 ¢ (8.8)
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Observe that
1 21
()= 5 [ dutetw).o)
1 21
=22 ),

21
v [ dp [ dvia(u). 1 0:om(e) fwv). . 0:0.

91
For fixedu = (ug, up) andx = (X1, X2), consider the integral

dvfr(u, v, 0;X) fr(U, v, 0; 0). (8.9)
R - —-=- - —-—= =

Note that

1, if [xq] < Jugl, [X2| < ug] @and ifv
lies in a certain rectangle of area

(lugl = Ixe)(uz2l = [X2l),
0, otherwise

fr(U, v, 0; X) fr(U, v, 0; 0) =

Therefore the integral{8.9) above is equal to

(lug = Ixall) Cluz] = Ix2) .

Hence

1 27 21
g(w):@\fo dlﬁﬁ do (| cosy| — w| cospl) (| siny| — w|sing]) .

Since(| cosy| — w| cosyl) (| siny| — w| sing|) is periodic iny and in
o with periodsr, we may reduce everything to the domain

T

< <E
2_%w_2

We may further restrict ourselves to the domain

T
0< < —
—So’lﬁ—z’
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since the integrand is an even functiongodnd ofy. Hence

4 /2 /2
l(w) == f dzﬁf dy (cosyr — w cosy) (Siny — w Siny)
™ Jo 0
7T/ 2 C(w,p)
= 4 dgof dy(cosy — w cosy)(siny — w sing),
s

n2 Jo o)

whereC(w, ¢) = arccosf cosy) andS(w, ¢) = arcsin(w sing). The 92
above integral is of the type

4 /2

= T(w, p)dp (8.10)

= Jo

and after a lengthy computation we get

T(w, ¢) = %(l + w?) — w(COSP A1 — W2 SN @ + Sing /1 — w2 co )
+W? sing cose(C(w, ¢) — S(w, ).

Substituting this into[{8.30), we get
4 7T/ 2

€)= [ T
= Jo

2
= S((1+ 2w?)arccosw — 3w(1 - w)?)  (0<w<1l).
T

The lemma now follows by obvious fiierentiation. The proof of
Theorem [7A is complete.

Let the dimensiork be arbitrary, For any subsBtof RX, define the
diameter as the supermum of the distapce y| for all pairs of points

X,y € B. By a box in arbitrary position, we mean a box obtained from a

box parallel to axes (as studied in Chapter |) by a rotatiomaAalogue
of Theorem [7/B fok > 2 is as follows :

Theorem 8B‘. Let N and<” be as usual. Suppose thatk3, e> 0 and
6 > 0, with N6 > N€. Then there exists a box B (in arbitrary position)
with diameters and with

ID(B)| > (N&¥)/3)-¢, (8.11)

93
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Remark. It may be seen that it is flicient to prove Theorem[3Bin

casek = 3. In this case, the Theorem can be obtained by the method

used for Theorem[AA. For arbitrakythe computations become awk-
ward. One would like to be able to replace the right hand sfdg.a1)
by (Nék)%—(l/Zk)—e_

9 Triangles

Theorem 9A. Suppose that k 2 ande> 0. Let N and<” be as usual.
Then there exists a closed right angle trianglecTU? with sides con-
taining the right angle parallel to co-ordinate axes, andtwi

ID(T)| > N4,

where the constant implied by depends only oa. There exists such a
triangle with no points of#2 on its hypotenuse.

This theorem gives rise to a rather paradoxical phenomehenT
be a triangle as given by Theorefl9A. There is a unique riggrgdte
T’ such thaflf U T’ is a rectangldr with sides parallel to the coordinate
axes.

Since no points of” lies on the hypotenuse af, we have

D(R) = D(T) + D(T").
We know that there exist sets (s&B of Chapter 1) with
ID(R)| < logN
for every rectangl® with sides parallel to the axes. We have thus

ID(T)| > N&4=¢ ID(T")] 3> NV/4re,
ID(T)| - ID(T")|| < log N.
So there exist set¢” which are quite irregularly distributed with re-

spect to triangles such @&sandT’, but mush more regularly with respect
to rectanglefRR. We may say thalD(T) andD(T’) “almost cancel”.
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Proof of Theorem[GA.

Case |. Suppose that there exists a line segment of léngtarallel to
one of the axes, with N/4)-¢ points of#? on it.
In this case there exists a line segm8nif length< 1 contained in

. 1 . . .
U2 with > EN(l/“)‘f points on it. Construct a triangl€ of very small
area withS as a base. This triangle will ha@(T) > N1/4)-¢,

Case Il. Suppose that case | does not hole, but that therésexikne
segment of length with N/4)-(¢/2) points of22 on it.

Then there exists a line segment of length contained ifJ? with

1 . o .
> ZNWA4-(/2) points of 2 on it Since case | is ruled out, there are

< 4ANW4)-¢ points of 2 on the boundary of)2. Hence these is a line
segmentsS in the interior ofU? with > N®/4-(€/2) points on it. Con-
struct the right angled trianglE with S as hypotenuse. Lét, be a right
angled triangle which is slightly larger thahand contains. Let T_

be a right angled triangle which is slightly smaller thirand is con-
tained inT. Since the line segme®& is contained in the interior dfi?,

it is possible to choose trianglds andT_ as described above such that
they are contained ib2. Further they can be chosen in such a way that
neither the hypotenuse @f. nor of T_ contains any point of” on it. It

is clear that

D(T,) - D(T_) > NA/A/2)_ g NA/A-e,
if the area of T, — T_ is small. Hence eithelD(T,)| > N&4-€ or
ID(T_)| > NW/4)-e,

Case lll. Suppose that the Cases | and Il do not holtien on every 95
line segment of length 1, there lie N(/4-¢ points of 2. Now we
apply Theorem[7A witke/3 in place ofe and withs = 1. There exists a
rectangleR of diameter 1 with

ID(R)| > NL/4)-(e/3).

Now if R has sides parallel to the coordinate axes, then it is the
union of two right trianglesT1, T, with sides parallel to the axes, and
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this union is disjoint except for line segments. Since tregeeless that
N/4)-¢ points of 22 on such line segments, we have either

|D(T1)| > N(1/4)—(E/3) or |D(T2)| > N(1/4)—(€/3)_

If the sides ofR are not parallel to the coordinate axes, then there
exist right trianglesT 1, To, T3, T4 with sides containing the right angle
parallel to the coordinate axes, such tRatT; UT,UT3UTy is a disjoint
union except for line segments and constitutes a rectdrighdth sides
parallel to the axes. AgaiR = Ts U Tg with right angled triangles
Ts, T, and this union is again disjoint except for a line segmemnds
for someT;, 1 <i < 6, we have

ID(T;)| > N (L/4)-(e/3).

So in either case there is a triangle of diameter at most 1 latitfe
ID(T)|. This triangle is a union of a bounded number of right triasgl
which are contained in triangles &f? by integer points. One finds
eventually the existence of a right angled triangle in therior of U?
with largeD(T). By slightly enlargingT we may assure that there is no
point of £2 on the hypotenuse of this triangle.

10 Points on a sphere

Denote byS = SK the sphere consisting of poings= (X1, . . ., Xks1) Of
R+ with [x = 1. Letp,...,p be points onS. Denote bydsx the

= = =N =
volume ofS and assume that it is normalised so that

fdsl(I 1
s =

u( = [ dsx.

If Ac S, then set

if it exists. Write

Z(A) for the number of pointg in A
=i
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D(A) = z(A) — Nu(A).
Write w(X, y) for the spherical distance of pointsy onS. Forc € S

andrwithO <r < g denote byC(r, c) the spherical capwith centre

, ¢ and radiusr consisting of the pointx € S with w(x,c) < r. Put
u(r) = u(C(r, 9), r. o) = ZC(r, 0)), D(r, ¢) = D(C(r, ©)),

E(r, s):fSD(r,g)D(s,g)dgg.

Theorem 10A.Suppose that k- 1 ande> 0. Let§ satisfy0 < § <
and Ns¥ > N¢. Then

T
2
)
f E(r,r)r dr > (N&¥)1- (/- (10.1)
0

It can easily be shown that an analogue of TheorEin 5A holds, an
hence that the exponent on the right hand sidd_0f110.1) engally
best possible.

Theorem 10B.Suppose that,k and ¢ are as in Theorem I0A. Then
there exists a spherical cap(€c) with 0 < r < § and with

ID(r, ©)l > (Nék)%—(l/Zk)—e.
97

Lemma 10C.
E(r, s) < N?min(rk, &9).

Proof.
(.9 = | D(r.9D(s Iasg
, D(r.9D(s g)dsg
< [+ Nu(ets 9 + Nu(9)dsg

<N [ (s 9 + Nu(9)dsg
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= AN?u(s) < N2

The lemma follows by symmetry.

Using Lemma 10IC, one can easily derive Theorefm 10B from The-
orem 10A. The procedure is the same as was followelirto derive
Theorem PB from Theorenf2A. i

A half sphereis a spherical cap of radiui. A sliceis an inter-

section of two half spheres.

Theorem 10D*. Suppose that k 1 ande> 0. Then there exists a slice
L with
ID(L)] > N2-(1/20-¢

For k = 2, there exists a spherical trianglewith 2 right angles
having
ID(T)| > N@/4)-e,

Theorem 10D may be proved by combining the argument offJ21b]
with Theorem 10A.

11 The Integral Equation for Spherical Caps

Set
3 {0 if kis even,

|1 ifkisodd

Let 0< a < 1, and lefB be the number with
a+B=1+v

In what follows, the constant implied by will depend ork and on
.
T
ForO< ¢ < > set
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r+s
=6 1ffE(r s)cos— cos%

r+s<o6
r=9\ /. r+s\#
(sm > ) (sm—2 ) drds

|2E(r, 5)| < E(r,1) + E(S 9).

Note that

Therefore

|A|s&v‘lfféE(r,r)(sin”JFS
o Jo

r+s<é

) )
< 6”‘1f f E(r,n)Ir — 97%(r + 9)#drds
o Jo

r+s<é

-8
) drds

. . T . .
since sin>< X, whenever (x x < > The above integral is equal to

0 )
f f E(or,6r)Ir — 97%(r + 9)Pdr ds
0 Jo

r+s<dé

Using the argument df [, we may conclude that

0
A < f E(r,r)ridr. (11.1)
0

Forc,xonS, put

1 ifxeC(r,c),ie.ifw(c,X) <r,
f(r.cx) = - .( 9 ey
= 0 otherwise,

so thatf(r, c; x) for fixedr, c is the characteristic function &(r, _) 99
Notice thatf (r, G x) is symmetric |nx andc Put

h(r.s x.y) = fs f(r.c ¥ i(s cy)dsc.
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The integrand

1 ifceC(r,9NC(sy),
0 otherwise

frr.aXf(scy) = {

So
h(r. s x.y) = u(C(r. ¥ NC(s.y)
=K(, s o).

whereK(r, s, w) denotes the volume of the intersection of two spheri-
cal caps with radius and s whose centres have spherical distance
Proceeding similarly as if[2, one obtains

E9 =) DK sw(p.p))- [ [ K(r.s wlxy)dsxdsy)
i=1 j=1
(11.2)
Lemma 11A (Fundamental Lemma).Suppose thad < 6 < 7.

Suppose that(f) = f5(r) is continuous i < r < % has

() <rt% asr— 0,
and satisfies the integral equation
1
2 -S__r+s
f K(or, or; w) f(r)dr = 5V‘1f6f K(r, s w) cost—> cost =5
0 0 2 2

r+s<dé

. |I’ - SI - r+s\8
(sm > ) ((2'2 <%drds (11.3)

Then

fE(&r sr)f(r)dr = 5V1f f E(r, s)cos—scosr%S
0

r+s<é

r=9\ Y/ . r+s\#
(sm > ) (smT) drds
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Proof. The lemma follows immediately froni{I1.2). In contrast te th
situation in§ [, a solutionf (r) = fs(r) of the integral equation will now
depend or. O

We now proceed to determine a solutidr) of our integral equa-
tion. NowK(r, s,w) = 0if w > r+s, and hence both sides of the integral
equation[[TT13) are zerodf > 6. So it is suficient to consider the inter-
val 0 < w < 6. Since both sides of the equation are continuous,iwe
may in fact restrict ourselves toxw < 6.

Assume, for a moment, that= 2 and that

r-g<w<r+s

o

Let c,d be points withw(c,d) = w. The boundaries oE(r,c) and 101
C(s, d) will intersect in two pointsu andv. The big circle through, v
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will intersect the big circle througlk, d in two antipodal pointsw, w'.
Of these two points, let be the one withu(w, d) = w. Put o
oW, U) = w(W,V) =€,
wWw, ) =a,(w,d) =

Then
a+b=o,

and using the right spherical trianglws

,c andw, u, d we obtain
cosacose = cosr, cosbcose = Coss.

Combining these relations with the identities

X + X —
COSX + Cosy = 2 cosotY cos2 =Y
2 2
and « «
CX+Y . X—
COSX — cosy = —2 sm—y sin —y,
2 2
we get
cos2t b cos2= b cose = cos—— cost—=
2 2 B 2 2’
sin2t bsma_ bcose sintSginl =5
2 2 2 2

We now multiply the first of these two equations by %nthe sec-
ond by cosaz—), then square both and add. Singe- a + b, we obtain
sir? 2 cos 2 code

—S|n2—coszr+S 52—+0052—S|n2r+S nzr_S
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which gives

sife= (sin2 % _sir? ! ; S) (sin2 ' ; ®_sir? %)_2 (cosg)

-2

(11.4)

We have seen that fdr= 2, the boundaries d(r, c), C(s, d) inter-
sect two pointsy, v, and we defined numbeasb, ein terms ofw, 1, s. In
general, we may assume a rotation thaklie on thexy, xo- plane. Con-
structw so thatw(c, w) = a, w(d, W) = b ; thenw also lies in the Xy, Xo)-
plane. By a further rotation, we may assume that (1,0,...,0).
Now let z be an arbitrary point on the intersection of the boundarfes o
C(r,c),C(s,d). There exists a rotatiop leaving points on thexg, x»)

- plane invariant such that(2) lies in the &, X, X3) - coordinate sub-
space. Them(2) again lies in the intersection of the boundaries of the
two spherical caps, and therefgr@) = uorv. Thus

p(2) = (cose, 0, +sing, 0, ..., 0),

andzitself is

Z= (cose, 0,y3sine, ..., Yk 18ine),

where
y§+...+ i1 = L

It follows that the intersection of the boundaries of theesjtal caps
C(r,c), C(s d) consists of the points on the hyperplage= 0 whose
spherical distance fromw s e.

The intersectiorC(r, ¢) N C(s, d) itself is contained in the saW/(e)
of points whose spherical distance from the cirefet X5 = 1, X =
... X1 = 0 is < e. Put diferently, W(e) consists of pointsyg cose, y»

cosy, Y3Sing, ..., Y1 Sing) with ys +y3 = 1,y2+...+y2 , = 1 and
0 < ¢ < e. We note that 103

e
u(w(e) = le cosy| sing|<?dy = c(sine)< .
0



104 2. The Method of Integral Equations

Still under the assumption thiat-§ < w < r+s, a simple geometric
argument shows that as — o,

K s @) =K s o) = Lo Duw(e) + ofw - o) B

This implies that
9 (K. 80)) =~ pu(W(®)) = —ca(sing)
Bt PN =T - ‘

In general we have

i(K(r, S w) = —cg(sine*L, if Ir — Q <w<r+s
O 0 otherwise.

>

The derivative of the left hand side of the integral equat{®h.3)
with respect tav is

1
s | (sine(sr, or, )<L (r)dr
w/26

6/2
= —Cgot f f(r/6)(sine(r, r, w))<dr.

w/2

In view of (T1.3), this integral is equal to

/2
—c36‘1(c03a))1"‘f f(r/s)(sin’r — sin? %)(k‘l)/zdr. (11.5)
w/2

LW, . 0 . )
Pth_smE/smé,R_smr/Zsmz and
F(R) = f(r/6)cosr.

104 Nowif wisin0<w < 6,thenQisin0<Q <1,andif0<r <§/2,
then 0< R < 1/2. With these substitutiond, {11.5) becomes

3 2
—caYsin 2)¥(cos )1k f " FRIRR - LyteDizgr
2 2 Q/2 4

3The notationf (t) = o(t) means thaf (t)/t tends to zero as> 0 tends to zero.
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The right hand side of the integral equation afté¢fetentiation with
respect tav becomes

r+s

) )
. r—s
— 50"t f f (sine(r, s, w))<* cos—— cos——
o Jo 2 2

[r—s<w<r+s<é

r=9\ /. r+s\#8
(sm > ) (smT) drds
Substituting the value of simas given by (14), we obtain

o (sin 2)_(k_l) (cos2 )_(k_l) X
> 2 2

f: f; (s st =)' (s 22— gie g)<7>x

[r—g<w<r+s<é

r-s r+s{. r=s\“/. r+s\#
cos > cos > (sm > ) (smT) drds
Put
s w, 6 . r+s .6  _r-g .9
Q_smz/smz,x_sm 5 /smz,y_sm 5 /S|n2.

The above integral then becomes
1 ein O \kea—p+L/nm e D1k
— Cgo (smE) (cosE) X
Lo o212 ° Y ()2
fg (2 — @21y x—ﬁole0 (1- @)( “Di2yegy
e Ok O ka2 2\ 2up
= —C70 (smE) (cosz) Q (Xt — Q) XPdx
Q

Hence we obtain the new integral equation

1

2 Q2
f FR(R? - —)&D/2gR
Q2 4
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Y 1
)
- Cs(—, 5] Ql“’f (@ - QD2 Bax (0<Q<1). (11.6)
S|ni Q

105
If F(R) is a solution of this integral equation, thdifr) = F(ré)
cosr§ is a solution of the given integral equatidn(11.3).
Except for the factord/ sin(6/2))” and except for the notation, this
integral equation is the same BS13.6). Hence there is daohft (TT.6)
of the type
F(R) = Fo(R) - F.(R),

whereFo(R) andF.(R) are positive and continuous inOR < 1/2, and
have
Fo(R) >< R andF,(R) >« Rk, (11.7)

asR — 0. These functions depend énthey are §/ sin(@G/2))" times
functions which are independent &fSince
6/sinE/2) »>< 1, (0O<é6<m/2)

the estimated(11.7) hold uniformly &
By what we said above the function

f(r) = fo(r) - 1.(r)

with fo(r) = Fo(6r) cosér, f.(r) = F.(ér)cosdr, is a solution of the
original equation[{IT]3). The functiorfg(r) and f.(r) are positive and
continuous in O< r < 1/2, andr — 0 they satisfy

1-v—a 1-k—a
b

fo(r) ><r andf.(r) ><r

uniformly in é.
106 In view of the Fundamental Lemma and by the definitiod\pf

1

f * Eor.or) f(ndr = A
0

and

f * E(or, 6r) fo(r)dr — A = f * E(or, o) . (r)dr. (11.8)
0 0
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In view of (II1) and sincdp(r) < ri~® <« r~1, the left hand side
of this equation is

)
< f E(r, r)r~dr.
0

On the other han¢D(r, ¢)| > [INu(3)ll, whenceE(r,r) > [[Nu(r)|?,
and the right hand side df{11.8) is

o oo
>>f rl"““E(o“r,ér)drzf r k=) N (sr)1Pdr.
0 0

A suitable adaptation of the argument beléw4.5) showstthats
> (N§¥)1+@/0-2/K 'and hence also

)
f E(r, )r dr = (N&K)1He/k-/k
0

Sincea was arbitrary in O< @ < 1, Theorem 18 is proved.

12 Point with Weights

Many results of these lectures may be generalized to disiwitis of
points with weights. As a sample, we will now mention a padener-
alization of Theorem 10A.

Letp,...,p be points on the sphe® = SX. Suppose that non-

negative weightsvy, ..., wy are attached to these points. Now given a
measurable subsétof S, write

AR = D W,

Ei eA
D(A) = Z(A) — u(A)ZA(S).

Theorem 12A°. (W. M. Schmidt [23]). Suppose that> 0. There exists 107
a spherical cap @, c) with

IDC(r, Q) > (W5 + ... +WR)Y2N- (2,

Results about countable distributions of points with a dinittal
weight may also be obtained.
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13 Convex Sets

Theorem 13A(W. M. Schmidt [27]). Supposé® < ¢ < 1. There exists
a convex set S in twith diameter< 6 and with

ID(S)| > (N§¥)1- /1),

This is stronger than an earliest estimate due to S. K. ZaadBtj.
By a quadrant setwe shall understand a subg@tof U¥ with the
property that ify = (Y1,...,¥k) € Q, then the box consisting of =

(X,...,X) With0 < x < yi(i = 1,...,K) is contained imQ.

Theorem 13B.Supposé < § < 1. There is a quadrant set Q of diame-
ter < ¢ with
ID(Q)] > (Ng)*~ (¥

Proof of Theorem T3AWe may suppose th&t > 1, and thatNs¥ is
large. LetB be a ball of diamete§ contained inUX, and letS be the
surface ofB. LetC be a closed spherical cap 8with spherical radius
p. (With the radius normalized such that a half sphere hasisagi
The convex hulC of C is a solid spherical cap. For8p < %, u(C) is
a continuous function gf with

P8¢ < u(C) < prisk. (13.1)

If N&¥ is sufficiently large, there is a numbgg such that a ca@ of
spherical radiugg has 1
u(C) = N’
In view of (I31), 0< po < (N&¥)"Y&+D We now pick as many
pairwise disjoint caps with radiysy as possible; sag,,...,Cy. For
largeNsk and hence smatly we haveM > p(_)(k_l), whence

M > (NgK)(-D/ (1), (13.2)

Given a sequence of numbars, ..., ou, with eacho; either+1
or -1, letB(o1,...,0m) consist of allx € B which do not lie in a cap
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C; with oj = =1. In othgr wordsB(o 1, ...,o0 ) is obtained fromB by
removing the solid cap8; for whichoj = —1.
Now the functionD(A) is additive i. e. it satisfies

D(AU A) = D(A) + D(A)
if AN A" = ¢. It follows easily that
M J—
D(B(o....,om)) = D(B(-01,....,.—om)) = Y 0iD(C).
i=1

We have

=

D(Ci) = ZCi) - Nu((C)i) = «Ci) - >

Hence for every, eitherD(C;) > 3 or D(C;) < —3. Chooser; such
thatoiD(Ci) > 3(1 < i < M). Then

1
D(B(o1,....om)) - D(B(-01,...,—0owm)) = SM.
and eitherS = B(oy,...,om) Or S = B(~01,...,—0n) has|D(S)] > 109

%M. Thus by (1),
ID(S)] 3> (Ng*) D/ (e,

Theorem 1BA is proven.

Proof of Theorem T3BWe may suppose th&t > 1, and thatN&X is
large. LetG consist of points irJX with x; + ..., +X < 6/k, andH of
points withx; +. ..+ Xk = 6/k. Lete> 0 be small, and lex = (x1, ..., X)
be a points orH with (k- 1)§ e< x(i = 1,...,Kk). Let P(X) consist of
pointsy = (y1,.. ., Yk) with B

Vi+...+Y>0/kandyi < x+oe(i=1,...,K).

ThenP(X) lies in UX and has volumg@(P(x)) = (kse)/K!. If No¥ is
sufficiently large, we may choosesuch that this volume equalg(2N).
Thene < (N&¥)~/kK,
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Pick as many pairwise disjoint sé®$x) as possible ; say1,. .., Pwu.
ClearlyM >e~&1 whence
M > (ns*)-D/k,

For any sequencey, ..., on of +1 and-1 signs, leQ(o1,...,0m)
be the union ofG with the “blisters” P; for which o = 1. Th set
Q(o1,...,0m) is a quadrant set of diametgrs. We have

M
D(Q, .. om)) = D(Q=01, ..., —om)) = D 5iD(Q).
i=1

By an argument used in the proof of TheorenfiIL3A, we obtain a
quadrant se@ of diameter< ¢ with

1 .
DQ)I 2 ZM > (Ngk) =Dk,

14 Comparison of dfferent discrepancies
110 If ais anon-empty class of measurable sets fawrite
D(a) = supID(A)I,
where the supermum is over @le a. Further put
A(a) = D(a)/N.

It is clear that 0< D(a) < N ando < A(a) < 1. One could call
D(a) the discrepancy with respect toof the givenN points; but some
authors prefer to calk(a) the discrepancy.

Let ¢ be the class of boxes id* of the typeay < x1 < by, ..., &
< X < by, let M be the class of closed cubeslitf with sides parallel
to the coordinate axes? the class of closed balls ¥, G the class of
convex subsets df¥ andq the class of quadrant sets.

We have already seen that

A(3) > N71(log N)k-Dr2 (Ch. I, Theorem ZR)
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A(3) > N7Y(logN) if k = 2 (Ch. |, Theorem[BB)

AL > Nk-D)/(kk+2))-1-€ (Corollary to Theorem[BR)

AG > Nk (Theorem 1BA)
and that

A(q) > N"Y%  (Theorem 1BB)

Now a < o’ impliesa(a) < A(a"), so that

AR < A(T) < A(S),
ML) < A(S).

Theorem 14A (W. M. Schmidt [27]).

A(S) < A(M)YK
Ag) < A()YK

111

Earlier, E. Hlawka [[ID] (see alsdl[9]) had shown thafS)
< A(m)YED anda(S) < a(3)VK.
Write expx = €.

Theorem 14B.BothA(S) and A(qg) are
< A(ZL)Y*exp2(log 2)Y2k Y log A(L)1M?).
In particular, it follows that foe> 0, bothA(S) anda(q) are
< A(L) R,

This is stronger than estimates of Hlawkal[10]. J. W. S. dagse-
published) and C. J. Smyth [28]. But on the other hand Smyids(s,
Cambridge, Engaland) obtained

A®S) < AL)YX(A + log|a(L)1XM).
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which will not be proved here.
Let B(r, c) be the closed ball with radiusand centerc. Given a

subsets of Jk, let S(r) consist of point for which B(r, x) CS. LetS’

be the complement & in UX.
For eachr > 0. let S(o) be the class of subseSsof UX having

u(S(r)) > u(S) — ot u(S'(r)) > u(S') - or (14.1)
for everyr > 0.

Lemma 14C.There are constants;(k), c,(k) such that
S C &(c1).q9 C (C2).

112 The proof of this lemma is easy and will not be given here. For a
rather more thorough discussionggfS(r)) for convex sets, see H. G.
Eggleston[[4].

Theorem 1BA, 14B are respective consequences of

Theorem 14C.
A(S(0)) < ca(k, o) a(M)YX

Theorem 14D.

A(S(0)) < calk, o) a(L)Y¥exp2(log 2)2k Y log (L) [Y?).

Proof of Theorem T4CLet S[r] consist of pointsx € UX which have a
distance< r from the boundary 08. Everyx € S[r] is either inS but
not in S(r), oris inS’ but not inS’(r). Hence forS € &(o).

u(S[r]) < 2o7.

Now if k = 1 and ifz, ..., zy are on the boundary @& and in the
interior of U, then for smallr, S[r] contains theM open intervals with
centresz, ..., zy and of length 2. Hence for smalk, u(S[r]) > 2rM,
and we getM < ¢. ThusS has at most- + 2 boundary points, and is
therefore the union of a bounded numbers of points and iafertdence
Theorem 18T is true fdr = 1.
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We may henceforth assume that 1. Pick a pointa = (ag, .. ., &)
such that for each of the given poirE)_s(i =1...,N), each coordinate

—l
of p — airrational. For a positive integar, let Mt(n) be the class of
=i =
cubes
Ui

+1 .
- i=1,....K

with integersus, .. ., Uk. LetW(n) be the set of cubelzs af(n) which are
contained irS. Since a cube dfi(n) has diametekz /n, it follows that
the cubes ofi3(n) coverS(k% /n), and their number(n) satisfies

Ui
a|+FSX|Sa|+

nKu(S) > v(n) > Nu(S(k2/n)) = nu(S) — n-Lokz. (14.2)

113
For each positive integey the union of the cubes aB(2') contains
the union of the cubes ai3(2-1). Put®; = W(2L), and fori > 2. let
Wi consist of the cubes af3(2') which are not contained in a cube of
W(2-1). If v; is the number of cubes i;, thenv; = v(2), and fori > 2

we have _ ' _
27Ky 4 270=Dky 271y < 1(S),

whence byl[(14]2),
Vi < 2ikv(S) - 2kv(2i‘1) < k3 2ik-1)+1

Since any two distinct cubes in any of the s8ig 1y, ... are dis-
joint except possibly for their boundaries, and since byathaice ofa
none of the giverN points lie on such a boundary, we have for every
positive integetM,

M
A8)z ), ), AW)

i=1 Wel;

M
>, >, (Nu(W) — Na(m)

i=1 We;
M
N[[ > ]mvv))—A(ﬂJt)Zw]
i=1

WedB(2M)
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M
2k + O'k% Z 2i(k—1)+l}]

i=2
>Nu(S) — Nos(k, ) (2™ + a(@i)2Mk-D),

>N {,u (s (k%z—M)) — A

sincek > 1. Now if we chooseM such that ¥-1 < A(M) Yk < 2M,
then

Z(S) — Nu(S) > =Nos(k, ) a@M) ¥ + 271 = —Neg(k, o) a@M)YX.
This inequality remains true if we repla&by S’. Hence
1Z(S) - Nu(S)| < Nea(k, o) a (@)Y,

and Theorem T4C follows.

15 Proof of Theorem 14D by “successive sweeping”

Given a sefA letrA +y be the set of pointsa + y with a € A. Leta(A)

be the class of set#\ ;Xwith r > 0 which are contained ib¥. Thus if
Bis any closed ball, them(B) = .. Hence Theorem I4D follows from

Theorem 15A.Suppose:(A) > 0 and Ae S(r) for somer. Then
A(&(e) < c(A 0)a(a(A)ex2(log 2k log a(a(A))1?).

The proof of this theorem will require a series of lemmas. @en
the distance of pointg, y by

Now letry, o, ... be positive reals with

1 .
i1 < Eri i=12.... (15.1)

and sets = k%ri. The sefr; A has diametex s.



15. Proof of Theorem [4D by “successive sweeping” 115

For a sefT, let X(T|x) be the characteristic function @f. Let S be
a set belonging t&(o).
We are going to construct functiorfs(x), g,(X), h,(X) (v = 0,1, 2,

o)
We begin by setting

fo(X) = 0.

If a continuous functiorf,(X) is given, write

& (%) = X(SI¥) - (X,
h,(=_min g,(y).

ly-X<81
2 = 8+ 0aA) [ (1A YR ()ay.
Lemma 15B.We have 115
@i 0< fv—l(é) < fy(é) < X(SI%() v=12,..),

(ii@) [f,(x) - f,(x)| < c(A)r;Yx— X| (v=1,2,...), and in partic-
ular f,(x) is continuous.

(iib) 1,00 — £,x) < 2 ca(Wrx - X[ ifi < i < v—1and if
IX—x|<s, andx X € SB(S:1+...+5)).

(iia) f,()=1ifxeS@s) (v=12..),
(iiib) f,(x) > 1-2"7c3(A)(s,/s) if 1 <i < v—1and xe S(Bs.1).

Our construction may be interpreted as follows. We first gnwg&e
with a broom of the size and shapergA. We can sweep the middle of
S, more precisel\5(2s;), very well. But we cannot sweep the border
areas ofs very well. We then take a smaller broom of the size and shape
of roA. And so on. We obtain a better and better sweepirfg which is
expressed byi) and (iib). But it would have been irfBcient to sweep
right away with a very small broom of the size and shape, Af
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Proof. We proceed by induction on. Assume that either = 0 or
that the lemma is true for a particular valuerof> 0. We have 0<
f,(x) < X(S|X), whence 0< g,(X) < X(S|x). Now ify € r,.1A + X, then

Y- X€E A, whencdz - X < S41, Whencehv(y) < g,(X). We obtain

0< [ X(ruaA+y9h0)dy < 6.0 [ X(raA+ iy
= gv():()ﬂ(rv+lA)-

and
() < f111(0) < 1(X) +6,(%) = X(S\X).

Hence () is true forv + 1. m]

Now it is clear thatt,1(X) = f,+1(X) — f,(X) has

y41(X) - £v+1(%(,) = (u(ry+1A)

f (X (2 A+ Y\X) = X(raA + 3:/\;(’)) h, (y)dy.

Since 0< h,(y) < 1, we obtain

€V+1(é) - €V+1Ll(/) < (/J(rv+lA))_1/~l(Cl)’

whereC; consists of/ for which—ylies inr, 1 A—Xxbut notinr, 1A—X'.

#(C1) = r*_pu(Cy),

whereC; consists ofy which are inA -~ (x — X') but not inA. Now

Now

if y € Cz lies in Uk,_theny € A andy ¢ A’(r;+11|1< — X|). Hence by
virtue of A € (1), the intersectiorC, N U¥ has volumes 7%, x - X/.
On the other hand ig € C, lies putside ofuX, then, it has distance

< rv_+11|§ ~ X| from Uk, and if r;jllé - X| < 1, then the part o,
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outsideUX has volume< 62 [x — x'|. Thus if[x — X| is smalll, then
u(C2) < (r +69r;L |x— x|, and therefore
’ 1 -1 ’
brva(X) = 6a(X) < §C2(A)ry+1|é =X

with co(A) = 2u(A)X(r + 6Y). It follows that forevery x X,

/ 1 - /
161100 = o1 (X < SC2(AN X - X (15.2)

Now if v = 0, we havef,,1(X) = f1(X) = ¢1(X), and the case = 1 of
(iia) follows. If v > 0, we use our inductive assumptiof,_(15.LL{15.2)
and the relatiorf, 1(X) = f,(X) + £,+1(X) to obtain

1
4100 = fraa(X)] < (C2(A)* + ECz(A)r;fl)lé— X| < (A, X XI.

Thus (iia) is true fow + 1. 117
Before taking up the proof of (iib) we observe the following.
Suppose that either

i =vandzZ € S(s,+1), (15.3)
or that
1<i<v-1lz-ZlandzZ € S(3(S+1+...+S) +S+1) (15.4)

Now h, (2) equalsg, (w) for somew with |w — 7 < s,,1. Sinceh,(z')
is defined as the minimum @, (u) for |u - Z| <'s,,1, and sincev’ =
W+ Z - zhaslw' - Z| < s,,1, we geth,(Z) < g,(w'), whence

h(2) - B < 5 W) - g, (w). (155)

Our hypotheses og, Z imply thatw, w' € S, whence §\w) =
X(S\w) =1 and S

gv@) - gv(V:V) = fv(V:V) - f‘,(&/) (156)
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Now if (15.3) holds, applyi{@a) tow, w'. On the other hand, if (18)
holds, theriw — w'| = [z— Z| < s, andw, W € S(3(S4+1 + ...+ S)). In
this case we applyiib) to w,w. We may do so, sincdilf) is true for
our particular value of by induction. In either case, we get

I1,W) — W)l < 2 (A iw - W = 2 e (A)r iz - ZI.

Combining this with [[I515) and(13.6), we may conclude thathb
@532) or [(I5H) implies

Ih,(Z) - h,@)I < 2 (A Yz~ 2.

Now suppose that X i < v, that|x,X| < s,;1 and thatx, X' €

S(3(S:1 + ...+ S41)). We have

610X = 621(X) = ((rysaA) ™ f XA+ Y\X)((y + X - X) — hiy))dy.

The integrand is zero unle@_s— X'| < s,4+1, hence is zero unless
y e S@B(ss+...+5)H+2s,.0). I_3utIheny+ X—X €S(3(S41+...+
:sv) + S,41). We apply the remark made a:bo;e;t; Y. Z =y+Xx-X,
and we obtairh,(y + x — X') — h,(y)| < 2V‘ic2(A);i‘1|l<_—_l<’|. Hence

1674209 = 62 (X)) < 2o (A Hx = X

Sincef,;1(X) = £,(X) + £,+1(X) and sincgf,(x) - f,(X)| < 2"7'co(A)
r7tx — X| by induction, we obtain

14200 = fra1 ()] < 27 (A Hx - X,

Thus (ib) is true foev + 1.
We have

6 = u(r) [ XA+ y9ho(ydy

4The empty sum occurring wher= v is to be interpreted as zer0.
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If xe S(2s1) and ifx e r{A+ Y, thenlz— X < s andX € S(s1). Since
9o is the characteristic function &, the definition ofho(y) implies that
ho(y) = 1 fory € S(s1). Thereforex € S(2s;) implies thatfy(x) = 1.
Sincefi(X) < T,(x) < 1 by (), we obtain {jia). -
There remains (iiib). Supposed i < vandx € S(3(S+1 + ... +

S,+1)).
We have

ha = i) [ XA+ PR NIy (157)

Hereb,(y) = g,(w) for somew with |w —y| < s,,;. In particular, 119
if X € r 1A+ y, we havely — X < S,41, whencelw — x| < 2s,,1. In
particularw € S, so thatg,(w) = 1 - f,(w) and

fv():() + hv(z) =1+ fv(%() - fv(V:V)

Now eitheri = v; then we estimaté, (x)— f,(w) by (iia). Ori < v-1,
w—x € 2s,1 < s, and bothx,w € S(3(S;1 + ... + S,)). Then we
estimatef, (x) — f,(w) — f(w) by (iib). In either case we get

15,09 = fL W) < 27 Co(A)rHx - Wi < 27 ep(A) (28,4 /1i)
= 2""c3(A)(S41/9),

say¢, Thus ever)_/with XErA+Y has

L0 + ) > 1- 2 Leg(A(s 1/,

and [I5Y) yields
fraa(X) > 1- 27 ca(A)(S41/8)-

SinceS(6s,1) € S(3(S41 + ... + S,41)) by (I51), the lemma is
proved.

Letry,ro,... and s, S, ... be as above, and I&¥l be an integer
greater than 1.
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The spacé = a(A) of setsrA+yin UX may be parametrized by the
pair (r,y). We introduce a measuteon Q by the formula

M-1
[ atpdo = Y a8y [ atrn phipay
o = prd =T

This formula is valid for functions(r,y) on Q for which the inte-
grals on the right are defined. -

Lemma 15C.We have
0] fQ(rA + X\é)d‘“ < X(S\;(),
(i) [, dw < ca(A o)(ri*+2rs¥ry + ...+ 2 fry_g),
(iii) fgy(rA)dw < u(S) - 2Mcs(A, o)rw.

Proof. We begin by observing that

M-1
[ XA+ y9d0 = ) ram) [ X yoh0)dy
Y 2, Y\9h, ()

M-1
= Z fv()_()
v=0 -
= fu-1(Y) < X(S\X).

O
Next,
M-1 M-1
dw =) (1A | hy(y)dy < AL | g, (y)dy.
| ) n)f(pgwf(lnjb@g
(15.8)
We have

[ ooay= [ x(s.ydy=ucs) (159)
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Forv > 1 we write

fgv(yz/)d%/:j;l+fsz+...+j;v+£:,

whereS; = S(6s;), whereS; is the complement oB(6s;_;) in S(6s;)
(j=23,...), and wheres} is the complement 0&(6s,) in S. By (iiia)
of Lemma 1E]Bgv(3_/) = Ofor x € S;. so that the integral ove3; is zero.

By (iiib) of Lemma 15B, we have
() < 270 Des(A)(s,/s,)

if y € Sjwith 2 < j <v. On the other hand we hay&S;) < 6sj_10,
becausé € S(o). Thus for 2< j < v. 121

f gy (y)dy < 6C3(A)0'5‘,2V—J'+1.
Sj - =

OnS; we haveg,(y) < 1, and since«(S}) < 6s,0, the integral over
S;is< 60s,. Combini_ng our estimates, we obtain

f 9/ (Y)dy < 60-(1+C(A)s, (2" +2 %+, +1), c5(A, 0)2'T,. (15.10)

In view of (I5.8) and[(I5]9) we obtain part (ii) of the lemma.
Finally,

[ ndy= sy [ [ Xansyondsy= [ a0

Thus

| uteAydo = MZ; | iy i [ ewax

- f fm()dx=u(S) - | gu(X)dx
> u(S) - 2Mes(A, o)r
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by (I510).
The proof of Theorem 184s now finished as follows. We may as-
sume thatr = A(a(A)) is so small that
|log al/(log 2) > 9K2. (15.11)

Repeated application of Lemmal5C yields

i=1 N
AS)= ) X(S\p) = f > X(A +y\p)dw
N = Qi

= f Z(rA + y)dw
Q =

> f(N,u(rA)—NA(a(A)))da) (15.12)
Q

= N( fg u(rA)dw — A fg dw)

> N(u(S) — 2Vcs(A, o)rm — ACa(A, 0)Rw)

122 with
Ru = ri¥+ 2058 + o+ 2M T kg

Choose the integevl with
M -1<|logalz(log2)yzkt <M (15.13)
ThenM > 3 by (I511). Led be the number with
logd = |log Al/(Mk + 1).
Now by (I5.11), (I5.13)
[logAl/(Mk + 1) > |log al/(2]log A|%(Iog 2)‘% +1)
> %| log A|%(Iog 2)% >log 2

so thatd > 2.
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Putri=d(i=1,2...). Then
Ry = d¢ 4+ 2021 4 4 oM-1GMk=(M-1) 5 2MdM(k—l)+1’
so that
2Mry + ARy < /M (1 + adM Ty = 2(2/d)M, (15.14)
by our choice ofd, We have
M(logd —log 2) = (M/(Mk + 1)) log A| — M log 2
> |log Al((1/K) - (1/k*M)) — M log 2
> (1/K)[log | — (2/K)| log A|%(Iog 2)% —log2
by (I5.IB), so that by (15.114), 123
2Mrm + ary < 4aY%exp2(log 2)%k Y log A]Y?).
This in conjunction with[[T5.12) gives
Z(S) > N(u(S)) - ci(A, o)akexp. . .)).

The same inequality holds with replaced bys’. Both inequalities
together yield

12(S) — Nu(S)| < N(c1(A, o)a*exp(2(log 2)Y?k Y| log a]*/?).

This holds for evens € &(o), and Theorem I5A is established.

16 Open Problems

We noted that TheorenThB of Chaptembout rectangles with sides
parallel to the axes is best possible (except for the valtieeofonstant).
Also Theorem 13B of Chapter Il is best possible, since it isye@
construct distributions dfl points inUX with |D(Q)| <« (N&¥)-(/% for
gquadrant set® of diameter< §. But all the other known estimates of
this type are almost certainly not best possible. It appiedre a dificult
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problem to improve Roth’s Theoreri2B of Chapter |, and Thewr&B,
dB, 4G, TA, 8B, BA, 10B, 10D and L[3A of chapter II.

Almost certainly there is a generalization of Davenportsedrem
4A] (Chapter I). Namely, that for arkyand largeN, there exists a distri-
bution of N points inU¥ with

fuk...f(Z(xl,...xk) — NXq...%)%dx ...dx < (logN)<?.

124
As was already mentioned in Chapter |, Theordm 6C is probably
capable of improvement.
Let f(x) be a periodic function of period 1, arid-integrable in
0 < x < 1. Write fy(x) for the translated functiori(x — t). Given a
sequencey, X, . . ., put

z(in, f) = i f(x%),

i=1
1
f)=zn, f) - f(x)d
D(n. f) = 2n. ) nfo (x)dx
A(n, f) = sup|D(n, f)].
t

Are there functionsf such thata(n, f) — oo, no matter what the
given sequence? Which functiofihave this property?

Perhaps related is a question of Erdos [5]. §§t§2 be a se-
guence of points on the unit circlg = 1. For anyp on this circle,
put - =

I(n, p) = ”in=1|§i - pl.

Let I1(n) be the supermum di(n, p) over all p on the unit circle. Is

it true thatII(n) — co?

In Theorem B of Chapter Il we noted the existence of baNsith
large|a(B)|. Itis an open question whether there are balls witB) > 0
and large, or whether there are balsvith A(B) < 0 and|A(B)| large.
There is a similar question with regard to Theorefl10B, i. ith regard
to spherical caps.
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Now suppose we havd points in a circular disc of area 1. Define
D(A) for measurable subsefsof this disc in the obvious way. K. F.
Roth asked whether there is a segmgnit e. an intersection of the disc125
with a half plane, having larg®(S)|.

Let _# be the class of rectangles < x; < b, a < % < bz in u?,
let 7’ be the subclass of rectanglesOx; < by, 0 < X < b, and let
# be the class of closed discsliff. In the notation of [I4,

A7) < 8(F) < 2a( 7). (16.1)

We know that the estimate(_¢) < N-llogN of Theorem BA
(Chapter 1) is best possible, but fa.#’) there is the much better es-
timate A(.Z) < N~("/8)-¢ (Corollary to Theorem 3A, Chapter Il). Why
is this? Probably, becaus# has more “essential” parameters thgh
Namely, . is a 3-parameter family. On the other hang; is a 4-
parameter family, but in view of{18.1) and the close conibecbe-
tween_# and the 2-parameter family?’, we may argue that? has
only two “essential” parameters. It would be desirable teeha theory
of classes of sets depending on a given number of essent@hpters,
and to give estimates which depend on the number of parasnater
on the dimension of the spadé{, S¥, or more general spaces) in which
these sets lie.
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