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Preface

These notes are based upon my lectures at the Tata Instaoi&lbvem-
ber 1975 to March 1976 and further oral communication between me
and the note taker.

The notes are divided into two parts. In 88 or Part One we pilove
Fundamental Theorem on the structure of the coordinateofiagnero-
morphic curve and its value group. We then give some apfiitsit
of the Fundamental Theorem, the principal one among thenglbie
Epimorphism Theorem. The proof of the Main Lemmas (8§ 7) priesk
here is a simplified version of the original proof of Abhyankad Moh.
The process of simplification started with my lectures atrRRodniver-
sity in 1975 and culminated into the present version duriygantures
at the Tata Institute. The simplification resulted mainiynfrthe keen
and stimulating interest in my lectures shown by the audieatc¢hese
two places, especially at the Tata Institute.

In Part Two we record some progress on the Jacobian problem,
which is as yet unsolved. The results presented here weainedtby
me during 1970-71. Partial notes on these were prepared lvahider
Put and W. Heinzer at Purdue University in 1971. Howevegssithe
notes were not complete, they were never formally circdlate

| wish to thank the Tata Institute for inviting me and provigime
with an opportunity to give these lectures. My special tisagé to Bal-
want Singh who took over the task of recording the lecturespmapar-
ing these notes entirely on his own even to the extent ofvialieme of
the tedium of having to read and check the manuscript.

S. S. Abhyankar






Notation

The following notation is used in the sequel.

The set of integers (resp. non-negative integers, posititagjers,
real numbers) is denoted By(resp.Z*, N, R). We write card §) for the
cardinality of a se§ and we write inf8) (resp. sup)) for the infimum
(resp. supremum) of a subsetof R. If T is a subset of a s& then
S — T denotes the complement @f in S. If k is a field andn is a
positive integer, we denote hy (k) the group ofnth roots of unity ink.
Forw € un(k) we write ordv) for the order ofwi.e., ord{v) is the least
positive integer such thaw' = 1.

Suppose. in a given contextjs a fixed field. We then denote by the
symbol & a generic (i.e. unspecified) non-zero elemerk.ofhus ifk’
is a ring containindg anda € k' thena = @ means thah € k anda # O.
Similarly, b = ¢ means thab = ac for somea € k, a # 0. Note that
a= o, b= o does not mean that= b.

Vii
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Chapter 1

G-Adic Expansion and
Approximate Roots

1 Strict Linear Combinations

(1.1) NOTATION. Let e be a non-negative integer and tet (ro,r1, 1
...,re) be an €+ 1)-tuple of integers such thag # 0. We define

di(r) =g.cd.(rg,...,ri,1), 1l<i<e+1l

Sincerg # 0, we haved;(r) > 0 for everyi. Moreover, it is clear
thatdi.1(r) dividesd;(r) for 1 <i < e. We putn;(r) = di(r)/di+1(r) for
l1<i<e

(1.2) LEMMA. Let j, c be integers such thdt< j < eand0 < c <
nj(r). If nj(r) divides cf/d;j,1(r) then c= 0.

Proof. Since g.c.d.q;(r),r;) = g.cd. (ro,...r;) = dj;1(r), we have

g.c.d. j(r),rj/dj+1(r)) = 1. Therefore ifn;(r) dividescr;/d;,1(r) then
nj(r) dividesc. Therefore, since & ¢ < nj(r), we getc = 0. O

j
(1.3) LEMMA. Let j, c beintegerd < j < e and letc= Zciri with
i=

¢ e Zfor0<i < j. Assume thad < ¢ < nj(r). Let

j’ =inf {i|1 <i<e+1dfr) divides (}

3



4 1. G-Adic Expansion and Approximate Roots

Thenj’ = j + 1. In particulard; (r) does not divides andc # 0.

Proof. Sincedj,1(r) dividesr; for 0 < i < j, it is clear thatdj ,(r)
dividesc. Thereforej” < j + 1. Next, since O< ¢; < nj(r), we see
by lemmd(T.3) thah;(r) does not dividegjrj/dj,1(r). Therefored;(r)

-1

does not divideejr. Sinced;(r) dividesZciri, we conclude thadi;(r)
i=0

does not divide. This proves thaj’ > j + 1. i

(1.4) DEFINITION. LetT be a subsemigroup @ By aT- strict linear
combination aof r we mean an expression of the form

e
a= > an
i=0

withageT"'andg € Z,0<a <n(r)forl<i<e IfT =Z*then we
call aI"-strict linear combination of simply astrict linear combination
ofr.

(1.5) PROPOSITION. LetI" be a subsemigroup @ and let

a= ia;ri, b= ibiri
i=0 i=0

beT- strict linear combinations af. If a = b theng = by; for everyi,
o<i<e

Proof. If the assertion is false then there exists an intgger< j < e,
such that; # bj anda = b; for j + 1 <i < e. We may assume without
loss of generality tha#; > b;. Writing ¢ = a— b andc; = a - b for
everyi, we get

i
c= Zciri, cj>0.
i=0

Sincec = 0 andrg # 0, we havej > 1. Therefore we have 8 a; <
nj(r) and 0< b; < n;(r), which shows that & c; < nj(r), sincec; > 0.
Thereforec # 0 by Lemmd{Z.3). This is a contradiction. o
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(1.6) COROLLARY. If an integer a can be expressedads- strict lin-
ear combination of then such an expression afs unique.

(1.7) DEFINITION. Let I',G be subsemigroups ¢t. We sayG is
strictly generatedresp.I'- strictly generatedl by r if G coincides with
the set of all strict (resfd-- strict) linear combinations af.

(1.8) PROPOSITION.Assume that > 1 andr; < Ofori = 0,1. If 3
—dx(r) can be expressed as a strict linear combinatiartioénrg divides
r, orrq dividesrg.

Proof. Letd; = di(r), 1 < i < e+ 1. Suppose-d, is a strict linear
combination ofr. Then .
—-dp = Z Cili
i=0

withcge Z*, ¢ €2,0< ¢ <ni(r) forl <i < e Since-d, # 0, there
existsi, 0<i < e such that; # 0. Let

j:Z{i|Osise, G #0}.

Then we have .
i
-dr = Zciri, Cj # 0.
i=0

Note that, sincep # 0, we haveg < 0 by assumption. Now, if = 0
then—d, = cgrg, so thatrg dividesd,. Therefore in this cask) divides
r.. Assume now thaj > 1. Then O< ¢; < nj(r). Sinced, divides—d,,
it follows from Lemmd{T.3) thaj < 1. Thereforej = 1 and we have

(1.8.1) —dz = Coro + C1l'1

with ¢g € Z*, ¢; € Z and 0< ¢; < ny(r). The last inequalities mean, in
particular, thad; /d> = ny(r) > 1, so that

—rg=d; >dy = ng (’0, rl).
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This shows that; # 0, so that by assumption < 0. Therefore,
sinced, dividesry, we get

—dz >1r1 2> Cl1 = Colg + C1I'1 = —dz.
This gives—d, = ciry, so thatr; dividesd,. Thereforer; dividesry.
(1.9) PROPOSITION. Let p be a positive integer and laty, . . ., up) be

a p-tuple of positive integers such thatdividesu;,; for1 <i < p- 1.
Letay,...,ap by, ..., bp be non-negative integers such that

(2.9.1) g < U;1/ui andb; < up1/uy forl<i<p-1
If

P P
(2.9.2) Z au = Z biu;

i=1 i=1
theng; = b; for everyi, 1 <i < p.
Proof. Lete = p—1 and letr = (rg,...,re), Wherery; = Ug.1j for
O0<i<e Thend(r) = Ugpj forl <i < e+ 1. Thereforeni(r) =

Uero—i/Ueti—i for 1 <i < e Letd = @e1-i,b = beyrjfor0O<i<e
Then the equality{1.9.2) takes the form

e e
Z ai’ri = Z b’lri
i=0 i=0

and conditions[{I.911) take the form
a < ni(r) and § < ni(r)

for1 < i < e Moreover, we havey, € Z* andby € Z*. Now the

assertion follows from Propositign (1}5) by takifig= Z*. o

2 G-Adic Expansion of a Polynomial

(2.1)

Let R be a ring (commutative, with unity) and IBfY] be the poly no-
mial ring in one variabler overR. ForF € R[Y], we write deg- for its
Y-degree. We use the convention that deg9c.
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(2.2)

Let p be a positive integer and 1& = (Gg,...,Gp) be ap-tuple of
elements oR[Y] such that the following three conditions are satisfied:

(i) G;iis monicinY and deds; > O for everyi, 1 <i < p.
(i) degG; divides dedsi.1 for everyi, 1<i<p-1.
(iii) degG; = 1.

We putu;(G) = degG;) for 1 <i < p, andup,1(G) = co. We then
definen;(G) = ui 1(G)/ui(G) for 1 <i < p. Note thatny(G) = ~ and
ni(G) is a positive integer for ki < p- 1. Let

A(G):{a:(al,...,ap)eZpOSa; <ni(G)forl<ix p}.

ap

Forae A(G), we putG? = GJ*---G,".

(2.3) DEFINITION. An elementF € R[Y] is called a strict polynomial
in G if F has an expression of the form

F= ) FG°
acA(G)

with F, € Rfor every a and5, = 0 for almost alla. We write RiG*] for
the set of strict polynomials i6. Note thatR[G*] is the R-submodule

of R[Y] generated by the s&@” = {Ga ae A(G)}.

(2.4) LEMMA. Leta, be A(G). If a # b thendegG? # degGP.
Proof. This is immediate from Propositiqn (119). For, by taking=
U(G), 1<i < p, we have

p p
degG? = Z au;, degG® = Z biu;.

i=1 i=1
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(2.5) COROLLARY. Let 6

F= ) FG
acA(G)

be a strict polynomial is. Then

degF = sup degFaG?).
aca(G)

In particular, ifG = 0 thenF, = 0 for all a € A(G).
(2.6) COROLLARY. R[G"]is a freeR-module withG* as a free basis.

(2.7) DEFINITION. LetF € R[GA]. The expression

F= > FG

acA(G)

which is unique by Corollarfy (Z), is called tieadic expansion of.

(2.8) DEFINITION. ForF e R[G#], we define

Supps;(F) = {a € A(G)

Fa;tO}.

(2.9) COROLLARY. Let F be a non-zero element 8{G"]. Then

degF = sup degG?.
asSupp;(F)

More precisely, there exists a unique elemeertSupg;(F) such that
degF = degG? > degGP

for everybinSupp;(F), b # a.

Proof. Immediate from LemmBa{Z}). o

(2.10) LEMMA. Let e be anintegerl < e < p, and let a,...,a
be non-negative integers such thata ni(G) for 1 < i < e. Then
e

> aui(G) < U (G).
i=1
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Proof. We use induction omr. If e = 1 thena; < ny(G) implies that

U1 (G) < N (G)ui(G) = ux(G). Now, suppose > 2. By induction
e-1

hypothesis, we havgai U (G) < Ueg(G). Therefore

i=1

D, ati(G) < Ue(G) + 3eUe(G)
i=1

= (1 + ae)ue(G)
= Ne(G)Ue(G) (sinceae < ne(G))
= Ue1(G).

O

(2.11) LEMMA. Letebe anintegefl <e< p. Leta= (ay,...,ap) be
an element of fG) suchthata+ 0andg =0fore+1<i < p. Then

Proof. we have de? = Zip:l au(G) = X7, aui(G). Therefore, since
a: > 0 andg > O for all i, we getig(G) < degG?. The inequality
degG? < ue1(G) follows from Lemmd(Z.10). i

(2.12) LEMMA. Let F be an element of[B”] such that F¢ R. Let
e= sup{i|1 <i < p,dae Supp(F) with & # O}.
Thenug(G) < degF < Ug:1(G).
Proof. By Corollary[(Z.9) there exista € Supp;(F) such that
(2.12.1) dedr degG? > GP

for everyb € Supp;(F). SinceF ¢ R, we havea # 0. Forb €
Supp;(F), b #0, let

eo:sup{i|lsis P, bi ¢0}-
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Then Lemmd (Z.11)e (G) < degG® < ug, + (G). Therefore it 8
follows from (Z12.1) that we have

and thatug, (G)ue,+1(G) for everyb € Supp;(F), b # 0. This last in-
equality shows thady, < e,, so that we get

esup{a)|b € Supp;(F),b # O} =€,
Now the lemma follows from{Z12.2).
(2.13) THEOREM. R[G"] = R[Y].

Proof. We have to show that every eleménof R[Y] belongs toR[G*].
We do this by induction on deg. The assertion being clear for dEg<
0, let us assume that dég> 1. Sinceuy(G) = 1 andup,1(G) = oo,
there exists a unique integerl < e < p, such that

Then there exists a unique positive integgsuch that
(2.13.2) beUe(G) < degF < (be + 1)ue(G).
If follows from (@) that we have
(2.13.3) be < Ne(G)
SinceGe and hencésfje is monic, there exish, P € R[Y] such that
(2.13.4) F=QGXr+P
and

(2.13.5) dedP < degGL = beUgs(G) < degF.
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By induction hypothesis? € RiG”]. Therefore it is enough to prove
that QG € R[GA]. From [ZI34) and{ZI3.5) we see that Beg
deg(QGge), which shows that we have

(2.13.6) ded = degF — beUe(G) < degF.
Therefore, by induction hypothesi®, e R[G”]. Writing

Q= ), Q6% QacR

acA(G)

we get
QGF = ) QG°GY.
acA(G)

It is therefore enough to show that
a+(0,...,be,...,0) e AG)

for everya € Supp;(Q). Sincebe < ue(G) by (ZI3B), it is enough to
prove thatae = O for everya € Supp;(Q). This last assertion is clear if
Q € R. Assume therefore th& ¢ R. Then, since

degQ = degF — beug(G) (by 2138))
< Ug(G) (by (ZT132))

we see by Lemmp(Z.72) that = O for everya € Supp;(Q). This
completes the proof of the theorem.

(2.14) COROLLARY. Every element oR[Y] has a uniqués-adic ex-
pansion.

Proof. Clear from Theorerfi {Z.13) and Corolldry (2.6) o 10

3 Tschirnhausen Operator

We preserve the notation [of (2. 1)
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(3.1)

Let g € R[Y] be a monic polynomial of positive degree. L@t =Y,
G, = g. Then the conditions (i) - (iii) of (Z:2) are satisfied B =
(G1, Gy) with p = 2, and we note that we hawg(G) = degg, nx(G) =
oo and

A@G) = {a —(an.a0) € ZF X Z*

< degg}.
By Corollary[(Z:14) every element &[Y] has a uniqué&s = (Y, g)—
adic expansion. Let € R[Y] and let

(3.1.1) f= > farug®
acA(G)

be itsG-adic expansion. Fdre Z*, let
C(fi)(g) = Z faYal
acA(G)
az=l

Then we can rewritd {31.1) in the form
(3.1.2) f=> cPogd
i=0

with C(fi)(g) € R[Y], degC(fi)(g) < degg andC(fi)(g) = 0 for almost all
i. The expressior(3.1.2) is called theadic expansion of. It follows
from Corollary[{2.14) that every elemeftof R[Y] has a uniqueg-adic

expansion. In particular, if = Zcigi with Cj € R[Y], degC; < degg
i=0
andC; = 0 for almost alli, thenC; = C(fi)(g) for everyi andf = Zcigi

i=0
is theg-adic expansion of .

e
(32) LEMMA. Let f € RIY]. Suppose f= »'Cid, where e is a

i=0
nonnegative integer, & R[Y] with degC; < degg forO < i < e, and
Ce # 0. Thendegf = edegg + degCe. In particular, we have

edegg < degf < (e+ 1)degg.
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Proof. For everyi, 0<i < e-1, we have

degCig') = i degg + degC;
< (e-1)degg + degC;
< edegg (since ded; < degg)
< edegg + degCe (sinceCe # 0)

= degCed®).
This shows that def = edegg + degCe. The asserted inequalities now
follow from the fact that < degCe < degg. O

(3.3) COROLLARY. Let f be an element dR[Y] such thatf is monic
and degf = ddegg for some non-negative integdr Then

d-1
f=gl+ Z cOg)d.
i=0
Proof. Since ded = ddegg, Lemmd(3.9) shows that
d
f=) clad
i=0

with degC(fd)(g) = 0. This means tha = C(fd)(g) € R. By Lemmd(3:9)
again, we have

d-1 '
(3.3.1) degf - CJ) = deg[z C(f')(g)g') < ddegg.

i=0

Since degCd) = ddegg = degf and since bottf andg are monic, 12
it follows from 3.31) thaC = 1. O

(3.4) DEFINITION. Let d be a positive integer. Lay € R[Y] be a
monic polynomial of positive degree and et R[Y] be a monic poly-
nomial of degree degg. Then we have

d-1
(3.4.1) f=g"+> cV(gyd
i=0
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by Corollary[(3:3). We calC(fd‘l)(g) the Tschirnhausen cggcient in
the g-adic expansion of and denote it simply b¢(g). If d is a unit
in R then theTschirnhausen transforraf g with respect tof, denoted
7¢(g), is defined to be

7(g) = g+ d*Ct(9).

We callr; the Tschirnhausen operatawith respect tof. Note that
degC+(g) < degg andr(g) € R[Y] is monic with degr¢(g) = degg.

In[(3:5] to[(3-7) below, we preserve the notatiofi Of {3.4) a8g&ime,
moreover, that d is a unitin R.

(3.5) LEMMA. If C¢(g) # Othen
degC+(g) = deg(f — g%) — (d - 1) degg.

Proof. By[3.4.] we have
d-1 _
f-g'=> cPayd.
i=0

Since deg:(fi)(g) < degg for everyi, the above expression is theadic
expansion off — g¥. Therefore, sincé:(fd‘l)(g) = C¢(g) # 0, we see by

Lemmd(3:3) that
deg(f - %) = (d - 1) degg + degCi(q).

(3.6) PROPOSITION.

(i) If C¢(g) = 0thenCs(r¢(g)) = 0.

(i) If Cs(g) # Othen de@¢(7+(g)) < degC¢(9).
Proof.

() is clear, sincers(g) = gif C¢(g) = 0.



3. Tschirnhausen Operator 15

(i) Let h=7¢(g) = g+ d1Cs(g). Then we have
(3.6.1) hd = g% + C(g)g®* + k,

where

Kk : dd—i i ~d—i
=Z(i) Cr(g)g™".

i=2

Letc = degC¢(g). Then 0< ¢ < degg. Therefore we have
degk < 2c + (d — 2)degg < ¢ + (d — 1) degg.
Now, from (3.6.1) we get

f—h?=1f-g'-Ci(@g®* -k
d

- chgd -k (by @)

i=0

N

Since
deg| > C¥(g)d) < (d - 1)degy < ¢ + (d - 1) degy
i=0
by Lemmd(3:3) and since d&g c + (d — 1) degg, we get
deg(f — h%) < (d - 1)degh + c.

Therefore ifC¢(h) # 0 then de@¢(h) < ¢ by Lemma[(3.G). If
Ct(h) = 0 then de@¢(h) = - < C. 14

(3.7) COROLLARY. C¢((r)!(g)) = O for all j > degg.

Proof. This is clear from Propositiop (3]6), since degg) < deg@).
o
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4 Approximate Roots

(4.1)

Let Rbe aring (commutative, with unity) and IBfy] be the polynomial
ring in one variableY overR.

(4.2) PROPOSITION. Let n,d be positive integers such thadivides
n. Let f € R[Y] be a monic polynomial of degrae Letg € R[Y] be a
monic polynomial. Then the following two conditions are aglent:

(i) deg(f - g) < n—(n/d).
(i) degg=n/d andC¢(g) = 0.
Proof. (i) = (ii). Sinceg is monic, it is clear from (i) that degj= n/d.

Therefore we get ded(- g9) < (d — 1) degg. this shows (by Lemma
[(3:2)) that theg-adic expansion of — g% has the form

d-2
f-g'=>c¥ (g9.
i=0

It follows that s
f=g'+ > cP (o9
i=0
is theg-adic expansion of andC¢(g) = C(fd‘l)(g) =0.

(i) = (i). Since deg = n/d, we have ded = ddegg. Therefore,
sinceC¢(g) = 0, we get

d-2
f=g'+> clyd
i=0
15 by Corollary{(3-3). Therefore

d_2 . .
deg(f - g% = deg[Z C‘f')(g)g']
i=0
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< (d-1)degg (by Lemmd(3.2))
=n-(n/d).

(4.3) DEFINITION. Let f € R[Y] be a monic polynomial of positive
degreen. Letd be a positive integer such thaitlividesn. An elemenig
of R[Y] is called anapproximate dth root of f(with respect to ¥)g is
monic and satisfies the equivalent conditions (i) and (iiPofposition
(4.2).

(4.4) THEOREM. Let f € R[Y] be a monic polynomial of positive
degree n. Let d be a positive integer such that d divides nurAeghat
d is a unit in R. Then there exists a unique approximate dth obd
with respectto Y.

Proof. Let g = (r)d4(Y"9). Theng is monic of degreen/d and
C+t(g) = 0 by Corollary[(3-7). This proves the existence of an approxi
matedth root of f with respect tor. O

Now, supposa), g» are approximateith roots of f with respect to
Y. Then

deg(f - ¢) < n— (n/d) and degf - ¢9) < n— (n/d).

Therefore

(4.4.1) degf - &7) < n— (n/d).
Now, we have

(4.4.2) -0 =(n-o) Z gilgé'

i+j=d-1

Since bothy; andg, are monic of deg/d, g‘lgé is monic of degree
(d-1)(n/d) fori+ j = d—1. Therefored™! Yi+j=d-1 910, is monic with 16

(4.4.3) de{d‘l > gilg;} = (d - 1)(/d) = n— (n/d).

i+j=d-1

It follows from[ZZ1[Z4P and4.4.3 thgt — g, = O.
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(4.5) NOTATION. We denote the approximatith root of f with re-
spect toY by Ap(f).

(4.6) COROLLARY. Let f € R[Y] be a monic polynomial of positive
degreen. Letd be a positive integer such thadividesn. Assume that
dis aunitinR. Letg € R[Y] be any monic polynomial of degragd.
Then

(1) (@) = ApF(f)
forall j > n/d.
Proof. Immediate from Corollarf (3.¥). o

Let S be a ring (commutative, with unity) and let: R —» S be a
(unitary) ring homomorphism. Denote againdynR. Let f € R[Y]
be a monic polynomial of positive degree Theno(f) € S[Y] is also
a monic polynomial of degree Letd be a positive integer such that
dividesn. Assume thatl is a unit inR. Thend is also a unit inS, and
we have

(4.7) PROPOSITION. Ap(o-(f)) = o(ApH(f)).

Proof. Putg = Appﬂ(f). Theno(g) is monic of degre@/d. Moreover,
we haver(f) — (o(g))? = o(f — g¥). Therefore

degr(f) - ((@))?) < n— (n/d).
This shows thatr(g) = Ap(o(f)). O



Chapter 2

Characteristic Sequences of a
Meromorphic Curve

5 Newton-puiseux Expansion

(5.1) NOTATION. Letk be a field. Ifnis a positive integer we denotet7
by un(K) (or simply by un if no confusion is likely) the group ofith
roots of unity ink. We use the letterX, Y, t to denote indeterminates.
As usual K[[t]] denotes the ring of formal power seriestioverk. We
denote byk((t)) the quotient field ok[[t]]. Recall that every elemerat
of k((t)) has a unique expression of the foam= Zajtj with a; € K

jeZ
for everyj anda; = O for j < 0. We denote by (;rgd thet-order ofa.
Recall that ifa # 0 then writinga = 3 a;t' with a; € k, we have

orda= inf{j eZ|aj # 0}.

If a = 0then orda = . If a = Y ajtl € k((t)) (with a; € k) we
define

Suppa= {j € Z|aj # O}.
If Ris aring andf € R[Y], we write deg f (or simply degf if
no confusion is likely) for ther-degree off. We use the convention:

deg 0= —co.

19
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(5.2) HENSEL'S LEMMA.

Let f = f(X Y) be an element c&[[ X]][ Y] such thatf is monic inY.
Supposef (0, Y) = gh, whereg, h are elements d{[Y], both monic inY,
andg.c.d. (@, h) = 1. Then there exist elemergs= g(X, Y), h = h(X,Y)
of K[ X]][ Y], both monic inY, such thag(0, Y) = g, h(0,Y) = h and
f =gh

Proof. Letn = deg, f. we can writef = Z fgX% with fq € k[Y] for
q=0

everyq. Thenfq is monic inY of degreen and degfy < nforg> 1. Let

r = degg, s = degh. Thenr + s = n. Now, in order to prove the lemma.

it is enough to find, for everiye Z*, elementsy;, h; of k[Y] such that

1. gO = gandho = h
2. deqggi < r and dedh; < sforalli > 1.
3. fq= Ziqzo gihg-i for all g > 0.

O

For, theng = Z gX,h= Z hiX' would meet the requirements of
0 0
the lemma.

We defineg;, h; by induction oni, these being already defined for
i = 0 by condition (i). Letq be a positive integer and suppageh; are
already defined for< q. Let

g-1
€= fq- Zgihq—i-
i=1

Then degy < n. Sinceg.c.d. (do, ho) = 1, there exisGq, Hg € K[Y]
such thakg = Hqgo + Ggho. Let Gq = goQ + gq With Q, gq € k[Y] and
deggq < deggo = r. Theney = hggo + ggho, Wherehy = Hqg + Qhy.
Since de@; < n=r + s, we get dedny < s. Now

q
fg= > dihgi
i=0
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and the lemma is proved.

(5.3) COROLLARY. Letk be an algebraically closed field. Lebe an
element ofk((X)) such that ordu = 0. Letn be an integer such that
chark does not dividen. Then there existg € k((X)) such thau = V".

Proof. Since orgqu = 0 if and only if ordg u™ = 0 and sincau = V" if 19

and only ifu™* = v, we may assume thatis positive. Since orgu =

0, we haveu = u(X) € K[ X]] and u(0) # 0. Let f(X,Y) = Y" —u. Then

f(XY) € K[X]JI[Y] and f(0,Y) = Y" — u(0). Sincek is algebraically
n

closed, there exist € k, 1 < i < n, such thaty" — u(0) = l_[(Y - V).
i=1
Sinceu(0) # 0 and chak does not dividen, we havev; # vj fori # j.
n

Therefore if we lefj = Y — v; andh = H(Y —v)theng.cd.§h =1
i=2
and f(0,Y) = gh. Therefore by Hensel's Lemnfa (3.2) there exists an
elemenig(X,Y) in K[[ X]][ Y] such thaig(X, Y) is monic inY, g(0,Y) =g
andg(X,Y) divides f(X,Y) in f(X,Y) in K[[X]][ Y]. From the equality
0(0,Y) = g = Y — v; and the fact thag(X, Y) is monic inY, we get
g(xX,Y) = Y — v for somev € k((X)). Now g(x,v) = 0. Therefore
f(X,v) = 0. This means that" = u. ]

(5.4) COROLLARY. Let k be an algebraically closed field. Late a
nonzero element df((X)) and letn = ordx a. Assume that chat does
not dividen. Then there exists € k((X)) such that:

(i) a=2"

(ii) ordyxz=1.

(iii) K[[Z]] = K[ X]] andk((2)) = k((X)).
Proof. (iii) isimmediate from (ii), and (ii) is immediate from (i)' here-
fore it is enough to prove (i). Writa = X"u with u € k((X)). Then

ordyx u = 0. Therefore by Corollarff (5.B) there exists k((X))) such
thatu = V". Letz= Xv. Thena = Z". O
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(5.5) NEWTON’'S LEMMA

Letk be an algebraically closed field. L&X, Y) be a non-zero element
of k((X))[Y]. Assume that chak does not divide degf(X,Y). Then
there exists a positive integar and an elemenj(t) € k((t)) such that
f(t™ y(t)) = 0.

Proof. Without loss of generality, we may assume thiéX,Y) is irre-
ducible. LetN = deg, f(X,Y). We shall prove the result by induction
onn. If n = 1 then the assertionn is clear with = 1. Assume there-

fore thatn > 2. Write f(X,Y) = Z Y™ with f; = f;,(X) € k(X)) for

i=0
0 <i<n, fo # 0. Now, for the moment, grant the following O

(5.4.1) CLAIM. In order to prove the lemma, we may, without loss of
generality, make the following three assumptions:

() fo=1.
(i) f,=0.
(i) fy € K[ X]] for everyi and f;(0) # O for somei, 2<i < n.
Then[(5:4.7) implies that(X, Y) € k[ X]][ Y] and we have
£(0,Y) = Y" + f(0)Y"2 + - - + £,(0)

with f;(0) # O for somei, 2 < i < n. Since chak does not dividen, it
follows from the above expression f6(0, Y) that f (0, Y) is not thenth
power of an element d[Y]. Therefore, sincd is algebraically closed,
there existg,h € k[Y], both of them monic inY of degree less than
n, such thatf(0,Y) = gh and g.c.d. @ h) = 1. It follows by Hensel's
Lemmd(5.9) that there exig{X, Y), h(X,Y) € K[[ X]][ Y], both of them
monic inY, such thatf (X, Y) = g(X, Y)h(X, Y) andg(0, Y) =g, h(0,Y) =
h. Letr = deg, g(x, Y) = degg, s = deg, H(X,Y) = degh. Thenr < n,

s < nandr+s=n. Since chak does not dividen, chark does not divide
at least one of ands, sayr. Then, by induction hypothesis, there exists
a positive integem and an element(t) € k((t)) such thag(t™, y(t)) = 0.
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Thereforef(t™, y(t)) = 0, and the lemma is proved modulo the Claim

.4.9).
Proof of [5.4.T)

(i) Sincefo # 0, we may replacé(X,Y) by f;2f(X,Y).

(i) Assume (i), i.e. fo = 1. LetZ = Y + n"1fy. Thenf(XY) =
f(X,Z - n1f1) = g(X, 2), say. Itis clear thag(X, Z) has the form

9X,2) = Z"+ Z" 2 + - + gy

with gi € k((X)), 2 <i < n. If mis a positive integer angt) is an
element ok((t)) such thag(t™, y(t)) = 0 then we havd (t™, z(t)) =
0, wherez(t) = y(t) — n~1f,(t™).

(i) Assume thatf already satisfies (i) and (ii). SincgX,Y) is irre-
ducible andh > 2, there exist$,2 < i < n, such thatf; # 0. Let
Ui = ordyx fi and let

uinf {ui/i|2§isn}.

Letr be an integer, 2< r < n, such thatu = u,/r. Let W be
an indeterminate and & = WY, Letg(W,Z) = W f(W',Y) =
Z"+ 3", gZ™, whereg = gi(W) = fi(W)W. Now ordyg =
rui —iuy > riu — iu, = 0 with equality fori = r. This means that
g € k[[W]] forall i,2 <i < n, andg(0) # 0. Now, if mis a positive
integer andy(t) is an element ok((t)) such thag(t™, y(t)) = 0 then we
have
0= g(t™ y(t) = ™™™ f(t™ y(1)),

so thatf (t™, ™4 y(t)) = 0.
(5.6) NOTATION. Let mbe a positive integer. We writd(t™)) for the

set of thosea € k((t)) for which Suppa c mZ. Note thatk((t™)) is a
subfield ofk((t)). 22

(5.7) LEMMA. Let m be a positive integer. Therf(#)/k((t™) is a
finite algebraic extension of degree m.
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Proof. The set{1,t,...t™ 1} is clearly ak((t™))-vector space basis of

k((®)- O

(5.8) DEFINITION. Let m be a positive integer and lgt = y(t) be
an element ok((t)). By Lemmd[(5.4)y is algebraic ovek((t")). Let
f(t™,Y) in k((t™)[Y] be the minimal monic polynomial gfoverk((t™)).
Putf = f(X,Y). Thenf € k((X))[Y]. By abuse of language, we shall
call f theminimal monic polynomiabf y overk((t™)).

(5.9) LEMMA. Let m be a positive integer and lety y(t) be an el-
ement of Kt)). Let f = (X Y) € k((X))[Y] be the minimal monic
polynomial of y over {t™)). Then we have:

(i) fismonicinY and f isirreducible in(KX))[Y].
@iy f(t™y) =0.

(i) If g = g(X,Y) is any element of(kX))[Y] such that ¢™ y) = O
then f divides g in {X))[Y].

(iv) deg, f = [k((t™)(y) : k().
(v) deg, f divides m.

Proof. (i), (ii), (iii) and (iv) are clear from Definitiof (5.8). Torpve
(v), we note that sincg € k((t)), we have

m = [k((t)) : k()]
= [k((®)) : K(EDMIKE™NY) = k(™))
= [k((®)) : K(t™)(y)] degy f.

O

(5.10) LEMMA. Let m be a positive integer and letyy(t) be an ele-
ment of K(t)). Let f(X,Y) € k((X))[Y] be the minimal monic polynomial
of y over K(t™)). Assume that char k does not divide m and that

g.cd. (fm U Suppy) = 1.
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Then we have:

@i fem™y) = l_[ (Y — y(wt)), wherek is the algebraic closure of
weim(k)
k. Moreover, them rootsy(wt), w € um(k), of f(t™,Y) = 0 are
distinct.

(i) [k(™)(Y) : k()] = deg, f(X,Y) =m.
Proof. By Lemmd(5.9) (v) we have ded (X,Y) < m. Therefore it is
enough to prove the following two statements:
(1) (™, y(wt)) = O for everyw € um(Kk).
(2) 1f wi, Wo € um(K), wy # Wa, theny(wit) # y(wot).

For, given (1) and (2)f(t™, Y) will have at leastm distinct roots
y(wt), w € um(K)., Since deg f(X,Y) < mand f(X,Y) is monic inY,
both (i) and (ii) would be proved. O

Proof of (1). Sincew™ = 1, substitutingwt for t in the equality f (t™,
y(t)) = 0, we getf(t™, y(wt)) = 0.

Proof of (2). Writey = Y y;t} with y; € k. Theny(wt) = 3 y;witl.
Therefore ify(wt) = y(w,t) then we havev = w, for everyj € Suppy.
Writing w = wiw;t, we get gew! = 1 for everyj € Suppj € Suppy. 24
Since alsov™ = 1 and

g.c.d. (muUSuppy) =1,
we getw = 1. This means that; = w».

(5.11) REMARK. A more general version of the above lemma appears

in Propositior] (5.18).

(5.12) LEMMA. Let p = char k. Let f= f(X,Y) be an irreducible
element of KX))[Y] such that f¢ k((X))[YP]. Let m be a positive
integer and let y= y(t) be an element of(k)) such that {t™,y) = 0. If
p divides m then ¢ k((tP)).
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Proof. Writey = Zyjtj with y; € k. Supposey ¢ k((tP)). Then, since
yP = L yjtIP € k((t?)), the minimal monic polynomial of overk((t"))
is g(X,Y) = YP — z(X), wherez(X) = nyxj. Note thatg(tP,Y) =
YP — z(tP) = (Y —y)P. Letm = pr and leth(X,Y) = f(X",Y). Then
h(tP,y) = f(t™M,y) = 0. Thereforeg(X,Y) dividesh(X,Y) in k((X))[Y],
so thatg(tP,Y) = (Y — y)P dividesh(tP,Y) = f(t™ YY) in k((t?))[Y].
This implies that in the algebraic closurekg{t™))y occurs as a root of
the polynomialf(t™,Y) in Y with multiplicity at leastp. But this is a
contradiction, since (t™,Y), being irreducible irk((t™))[Y] and being
not an element ok((t™))[YP], is a separable polynomial ové&((t™)).
This contradiction proves thate k((tP)). m|

(5.13) LEMMA. Letk be an algebraically closed field. Letf f (X, Y)
be an irreducible element of&X))[ Y] such that f is monic in Y and char
k does not divideleg, f. Then there exists an eleme(i)yf k((t)) and a
positive integer m such that char k does not divide m af@, §(t)) = 0.

Proof. By Newton’s Lemm@(5.%) thee exists a positive integend an
elementy(t) of k((t)) such thatf (t™, y(t)) = 0. Let us choosento be the
least positive integer for which there exists an elenyéiof k((t)) with
f(t™, y(t)) = 0. We then claim that ch&rdoes not dividen. For, letp =
chark and suppos@ dividesm. Then by Lemm@ (5. IP)(t) € K((tP)).
Therefore there exis®t) € k((t)) such thaty(t) = z(tP). Now, we get
0 = f(t™ y(t)) = f((tP)™P, Z(tP)), which shows thaff (t™/P, z(t)) = O.
This contradicts the minimality ah. m|

(5.14) NEWTON’'S THEOREM

Letk be an algebraically closed field. Lét= f(X,Y) be an irreducible
element ofk((X))[Y] such thatf is monic inY. Letn = deg, f, and
assume that chd does not dividen. Then there exists an elemeyft)
of k((t)) such thatf (t", y(t)) = 0. Moreover, for any suci(t) we have:

M fev =[] v-ywo).

wepik(K)

(i) The nrootsy(wt), w € up(Kk), of f(t",Y) = 0 are distinct.
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(iii) g.c.d. ({n} U Suppy(wt)) = 1 for everyw € un(K).
Proof. By Lemmg(5.13) there exists a positive integesuch that

(5.13.2) CLAIM. chark does not divide m and(tf", y(t)) = 0 for some
y(t) € k().

O

Let us assume than is the smallest positive integer satisfying

BI32). Let
d=g.c.d. {m}uU Suppy(t)).

We claim thatd = 1. for, sinced divides everyj € Supp y(t), there
existsz(t) € k((t)) such that(t) = z(t%). Now, we have

0= f(t™ y() = F(H™, z(1),

which shows thatf (t™9, z(t)) = 0. Therefore by the minimality ofn 26
we getd = 1. Sincef(X,Y) is monic inY and irreducible irk((X))[Y]
and sincef(t™, y(t)) = O, f is the minimal monic polynomial of(t)
over k((t™). Therefore, sincel = 1, by Lemmd(5.10) we get =
deg, f(X,Y) = m. Now, (i) and (ii) follow directly from Lemm@ (5.1D).
Since, Suppy(wt) = Suppy(t) for everyw e un(K), (ii) follows from
the factd = 1 proved above.

(5.15) REMARK. With the notation of Theorerfi (5.34). Igft) =
Syth with yj € k. If we write XY™ for t theny(XY/") = 3 y;xI/n

and f(X,y(X¥") = 0. Note thaty(X'/") is a power series ixX with
fractional exponents, in fact with exponents in/(0Z. The equality
(X, y(X*")) = 0 can thus be interpreted to mean that given an equation
f(X,Y) = 0 (wheref(X,Y) is an irreducible element &{(X))[Y]), we

can expand’ as a fractional power series Xwith exponents in (1n)Z.

We call y(X¥/") a Newton-Puiseux expansiai Y in fractional powers

of X. Note that there ara distinct Newton-Puiseux expansions bf
given by then distinct rootsy(wt), w € un(K).
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(5.16) PROPOSITION.Let m be a positive integer such that char
does not dividen, and lety = y(t) be an element df((t)). Let f(X,Y) €
k((X))[Y] be the minimal monic polynomial of overk((t™)). Let

d=g.c.d. {m}USuppy).

Then
(Fam vt =[] v -ywo).

wegim(K)

wherek is the algebraic close @& In particular, we have

(k™)) : k()] = deg, f(X.Y) = my/d.

Proof. Sinced dividesj for everyj € Supp y(t), there existg(t) € k((t))
such that(t) = z(t%). Letr = t9. Theny(t) = z(r) and clearly we have

g.c.d. {m/d}uU Supp z(7)) = 1.

Therefore by Lemmg(5.7]0) we have
(5.16.1) fEmey) = [ (Y- =zwr)).

WeLmyd

whereumd = pumya(K). Letv be a primitivemth root of unity ink. Then
V! is a primitive fn/d)th root of unity ofk. Therefore

Hmyd = {vd‘|1 <i< m/d}

and from5. 1611 we get
m/d _
fmY) = [ JoY - 2v')
i=1
m/d )
(5.16.2) = [ Jov-zvo)
i=1
m/d

= [¢v -y
i=1
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Letn = m/d. Sinced divides ] for every j € Supp y(t), mdividesnj
for every j € Suppy(t). It follows thaty(V"*'t) = y(V't) for all integers
i, r. Therefore we get

m

[] v =yowty =] Jev - yvin)

wepm(K) =1

ﬁ

r=0 i
= (f(t™,Y))¢ (byBI6.2).

n

n d
[ oY - o™iy = ( (Y - y(v t»]
1 1

6 Characteristic Sequences

Throughout this section, we shall preserve the notatiorodhiced in 28
below

(6.1)

Let k be an algebraically closed field and Dt Y, t be indetermi-
nates. Letf = f(X Y) be an irreducible element &f{(X))[Y] such
that f is monic inY. We call such anf a meromorphic curveverKk.
Let n = deg, f, and assume that ch&rdoes not dividen. Then by
Newton’s Theorerfi (5.1]4) there exists an elemgtjte k((t)) such that
f(t", y(t)) = 0and
()= [ (v -yw).
wegn(K)

Therefore ifz(t) is any element dk((t)) such thatf (t", z(t)) = 0 then
Z(t) = y(wt) for somew € un(k). In particular, we have Supgt) =
Suppy(t). Thus the set Supp(t) depends only orf and not on a root
y(t) of f(t",Y) = 0. Therefore we can make

(6.2) DEFINITION. Thesupportof f denoted Sup(d() is defined by

Supp(f) = Supp y(t)
wherey(t) is any element ok((t)) such thatf (t", y(t)) = 0.
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(6.3) CONVENTION. We extend the notion of divisibility ifZ to the
setZ U {c0, —oo} by postulating that:

() oo and—oo divide every element Af U {co, —co}.
(ii) No integer divideso or —co.

Note that ‘a dividesh” is still a reflexive and transitive relation dhu

{oo,—c0}. If | is a subset ofZ we denote, as usual, by g.c.d) (he

unique non-negative generator of the ideaZafenerated by. If | is a
subset ofZ U {o0, —0} such thatl ¢ Z then wedefineg.c.d. () = —co.

For a subsel of Z we denote by infl() the infimum ofl. As usual, we
set inf@) = co.

(6.4) DEFINITION. Let J be a subset df bounded below and letbe
a non-zero integer. We defima(v, J) andd;,1(v, J) for everyi € Z* by
induction oni as follows: my(v, J) = v, di(v, J) = |v|, m(v, J) = inf(J)
and,i > 2,

di(v,J) = g.c.d. €i—1(v,J), m_1(v,J)),
m(v, J) = inf {j e i = 0(moddi(v. J))}.
Note that we havei(-v, J) = d;(v, j) for everyi > 1.

(6.5) LEMMA. With the notation df (6.4), let;J= J and, fori> 2, let
J = {j € 3i|j  O(mod d(. J))}.
Letd = g.c.d. {v} U J). Then we have:
() di;1(v,J) =g.c.d. (v, d),...,m(v,J)) foralli > 0.
(i) diz1(v, J) dividesd;(v, J) for everyi > 1.

(i) J o Jr1andmi(v, J) ¢ Jiyq for everyi > 1. In particular, ifJ; # ¢
thenJeJHl andm(v, J) < my,1(v, J).
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(iv)

If i > 2andJ # ¢ thendi(v,J) > di;1(v,J) > d. Ifi > 1and
ji = ¢ thendi;1(v, J) = —oo.

Moreover, there exists a unique non-negative intégeuch that
we have:

(v) di(,J) = do(v, J) > d3(v, J) > - -+ > dhy1(v, J) = d.

(vi) di(v,J) = —ofori >h+2.
(vii) m(v,J)eZforO<i<handm(v,J)=cofori >h+1.
(viii) Mm@, J) <--- <My, J) < Myza(v, J) = .

(ix) d(»,J)=g.cd. (u{jedj<m@ I} forl<i<h+1.
Proof.

(i) Clear from the definition by induction an

(i) Follows from (i).

(i) Let i = 1. It follows from (ii) thatJ > J;1. Moreover, since

(iv)

di;1(v, J) divides mi(v, J), we havemy(v,J) ¢ Ji.1. If J # ¢
thenmi(v, J) = inf(J;) belongs toJ;, so that we get]@\]m and

mi(v, J) < miz1(v, J).

Leti > 2. If J; # ¢ thenm(v,J) € J;, so thatd;(v, J) does not
divide mi(v, J). This shows thatl(v,J) > di.1(v, J). Moreover,
sinceJ; # ¢, by (i) we haveJ, # ¢ for 1 < p < i. Therefore
mp(v,J € J) for 1 < p < i, so thatd = g.c.d. {v} U J) divides
g.c.d. (v, d),...,m(v,Jd)) = diy1(v, J). This shows thatl,; >
d. Now, supposé > 1 andJ; = ¢. Thenmi(v, J) = inf(J;) = .
Therefored;,1(v, J) = —co. This proves (iv).

We now claim that there exisis> 1 such that); = ¢. For, if
Ji # ¢ for everyi then, by (iv),{di(v, J)|i > 2} is a strictly decreas-
ing infinite sequence of integers bounded belowdbyl his is not
possible. Therefore there existsuch that); = ¢. Let

h+1=inf{i > 13 =¢>}.
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Then, sincel; > J,1 for everyi > 1, we havel; # ¢ for 1 <i <h
andJ; = ¢ fori > h+ 1. This proves (vi), (vii) and (viii) in view
of (iii) and (iv).

(v) SinceJ, # ¢ for 1 < p < h, we havemp(v,J) e Jfor 1< p<h.
Therefored dividesdh,1(v, J). On the other hand, sincl,; = ¢,
thi1(v, J) divides j for everyj € J. Sincedy.1(v, J) also divides,
we see thath1(v, J) dividesd. Therefore we get,1(v, J) = d.
Now, (v) follows from (i) and (iv).

(ix) Fixani,1<i<h+1. Let
J’:{jeJ|j<m(V,J)}

and letd’ = g.c.d. {(v}uUJ). Ifi = 1thenJ = ¢ and we have
d’ = |v| = di(v,J). Assume therefore that2 i < h+ 1. Since
m(v, J) = inf(J;), we haveJ’ N J; = ¢. This means thad (v, J)

divides j for every j € J'. Therefored;(v, J) dividesd’. On the
other hand, by (viij)mp(v,J) € J for 1 < p < i — 1. Therefore,
sincev = mp(v, J), d’ divides

g.c.d. (v,Jd),...,m_1(v,J)),
which is equal tad; (v, J) by (i). Thus we getl’ = di(v, J).
i

(6.6) DEFINITION. Let J be a subset of bounded below and let
be a non-zero integer. Tha-sequencef J with respect ta’, denoted
m(v, J), is defined to be

m(v, J) = (Mo(v, ), ..., (v, J), Mhu1(v, ),

wheremi(v, J) is defined as in Definitiop (6.4) and whéerés the unique
non-negative integer of Lemnfa_(8.5). #fand J are not clear from
the context then we shall writa(v, J) for h. Note then thah(-v, J) =
h(v, J). Note also that by Lemnja(6]5) we havgy, J) e ZforO<i <h
andmy,1(v, J) = oo.
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(6.7) LEMMA. Let J be a subset ¢ bounded below and let be a
non-zero integer. Let e be an integer such thate < h(v, J) + 1. Let

¥ ={irde

where d = dg(v, J). Lety’ = v/de. Then J c Z, J’ is bounded below;
is a hon-zero integer and we have

jeJ,J<me<v,J)},

h(/,J)=e-1,
m(V/, ‘]/) = m(V, ‘])/d69
di+1(V/, ‘]/) = di+1(V, J)/de

forO<i<h(,J).

Proof. A straightforward verification.
In the remainder of this section we letbe an integer such that
v =n. ]

(6.8) DEFINITION. The m-sequence fm, f) of f with respect tov is
defined by

m(v, ) = m(v, Supp()).
Note that, sincév| = deg, f, h(v, Supp()) depends only orf an does
not depend upom. We shall writeh(f) for h(v, Supp(f)) and m(v, f)
for my(v, Supp()) for 0 < i < h(f) + 1. Note thatm(v, f) = ord; y(wt)
for everyw € up(K).

(6.9) DEFINITION. Thed-sequence () of f is defined to be

d(f) = (da(f), ..., dnsa(f), dns2(f)),

whereh = h(f) andd;(f) = di(v, Supp(f)) as defined in Definitiop (6.}4), 33
1<i < h+2. We note that, since| = deg, f, d(f) depends only orf
and does not depend upen

(6.10) DEFINITION. Theg-sequence (@, f) of f with respect tor is
defined to be

C](V, f) = (qO(Vv f)? ) CIn(Vy f)? Qh+1(V7 f))’
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whereh = h(f), g(v, f) = m+i(y, f) fori = 0,1, andq;(v, f) =
m;(v, f) —mj_1(v, f) for2< j<h+1.

(6.11) DEFINITION. The ssequence(s f) of f with respect tov is
defined to be

s, f) = (o, f), ..., (¥ ), She1 (v, 1)),
whereh = h(f), s5(v, f) = qo(v, f) and
SO, f) = " dp(v, )dp(F)
p=1
forl<i<h+1.

(6.12) DEFINITION. Ther-sequence (v, f) of f with respect to is
defined to be

r(Vv f) = (rO(Vv f)? cee rh(V’ f)’ rh+1(V’ f))’

whereh = h(f),ro(v, f) = so(v, f) andri(v, f) = s(v, f)/di(f) for 1 <
i<h+1.

Some properties of the various sequences defined abovestaa i
in the following proposition. These will be used in the sdqueostly
without explicit reference.

(6.13) PROPOSITION.Let v be an integer such thaf = n. Leth =
h(f) and for everyi,0 < i < h+1, letm = m(v, f), g = q(v f),
s = s f), ri =ri(v, f) anddi,1 = di;1(f). Then:

(i) di,1 dividesd; for 1 <i<h+1.
(i) dy=>do>d3>--->0dy>dp1 = 1.

(i) di = nanddy = —c.

(iv) ro=s=0o=mp=vandr; =q; = m.

(V) Thi1 = She1 = Ohe1 = Mhyg = o0.
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(vi) my, gi, S, rj are integers for @ i < h.
(Vi) Mm<nmp<--- <Ny < Myp = oo,
(vii) g is a positive integer for Z i < h.
(ix) di=g.c.d. {(nfU{jeSuppf)lj<mpforl<i<h+1l.
(x) ForO<i<h+1,wehave
(1) diva =g.c.d. fno,....,m),
(2) di;1 =g.cd. Go,---,q),

() div1 =g.c.d. €o,--.,ri),
(4) dy1=9.cd. &,st/ds...,s/d).

In particular, each of the four sequenea(s, f), q(v, f), s(v, f) and
r(v, f) determineg(f), the sequenceg(v, f) determiningd(f) by
the recursive formula (4).

(xi) each one of the four sequenceéy, f), q(v, ), s(v, f) andr(y, f)
determines the other three.

Proof.
(i) Follows from Lemm&(6.3).

(i) Follows from Lemmd{6.3) and Theordm (5.]14).

(iii) Clear from the definition and Lemnfa_(6]5).

(iv) Clear from the definition. 35
(v) Clear from the definition.

(vi) By Lemmd{6.9m is an integer for & i < h. Therefore it follows
the definition thaty, 5 are integers for @ i < hand thatrg is an
integer. Now by (i)p/di is an integer for K p <i < h. Therefore
forl1<i<h

i
ri=s/d =) qp(dp/dh)
p=1
is an integer.
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(vii) Follows from Lemmd{6.5).
(viii) Follows from (vi) and (vii).
(ix) Follows from Lemm4 (6.5), since = |v].

(x) (i) follows from Lemmd(6.5). (2) follows easily from (1yince
Qo=Mg, 01 =M andg =m —mi_1 forl <i < h+1. To prove
(3), we note that we have

i-1
(6.13.1) ri ) ap(dp/dh) +
p=1

for 1 <i < h+ 1. Therefore, sincdp/d; is an integer and sinag
dividesq, for1 < p<i-1, we get

g.c.d. @,r)=g.cd. €. q)
=g.c.d. Qo...,0i-1.0) (by (2))
= diy1 (by (2))

for 1 <i < h+ 1. Therefore, sincd; = |qg| = [rol, we get (3) for
0 <i < h+1byinduction ori, (4) is immediate from (3).

36 (xi) Since each of four sequences determidéf by (x), it is enough
to show that each one of thetogether with df) determines the
other three. It is clear from the definition thafy, f) determines
dlv, ), a(v, f) andd(f) determines(v, f), ands(v, f) andd(f) de-
terminer (v, f). Moreoverq(v, f) clearly determines(v, f) by the
formulas

Mo = Jo,

|
mi:qu, l<i<h+1
p=1
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Therefore, to complete the cycle, it is enough to show tlatf)
andd(f) determineg(v, f). But this is clear from the recursive formulas

Co = fo,
i-1
Gi=ri— ) Gp(dp/dh), 1<i<h+1,
p=1
which we get from 6. 1311.

(6.14) LEMMA. Letv be an integer such thigt = n. Let h= h(f)
and letm = m(v, f), d,1 = di,2(f) for 0 < i < h+ 1. Let\t) be an
element of Kt)) such that {t",y(t)) = 0. Let e be an integer such that
1 <e<h+1 Letw be an nth root of unity in k and let $ ordw).
Then we have:

(i) ordi(y(t) — y(wt)) = me if and only if p divides g
(i) ord(y(t) — y(wt)) < me if and only if p does not dividegg; .

(iii) ord(y(t) — y(wt)) = me if and only if p divides dand p does not
divide d,;.

Proof. It is clearly enough to prove (i) and (ii). Since efgt) = m =
ord; y(wt) and sincep dividesn = d, (i) is obvious fore = 1. Since
Mhy1 = oo and sincep does hot divide-co = dh,2, (ii) is obvious for 37
e=h+ 1. Therefore it is enough to prove (i) fer> 2 and (ii) fore < h.
Now, for the moment, grant the following two statements:

(i) If 2<e<h+1and p divides gdthenord;(y(t) — y(wt)) > me.

(i) If 1 < e< hand p does not dividesd, thenord(y(t) — y(wt)) <
Me.

Then if 2< e < h+ 1 and org(y(t) — y(wt)) > me we get org(y(t) —
y(wt)) > me_3, Sinceme > Me_1. This shows by (i) that p dividesde. If
1 < e < hand ord(y(t) — y(wt)) < me then we get ordy(t) — y(wt)) <
Mey1 SINCEMe < Mey1. This shows by () that p does not dividede, ;.
Thus, in order to complete the proof of the lemma, it is endiagbrove
(i) and (if).
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(") Let J = Supp(f) = Suppy(t). Write y(t) = > yjt! with y; e k,
jed
h;j # 0 for everyj € J. Theny(wt) = ijyjtj. Therefore we have
jed
ord(y(t) — y(wt) = inf { j e lw 1}
= inf {j € i # o(mod p)}
= inf {j cdli= O(modde)}
Me,
where the inequality follows from the fact thptdividesde.
(i”) Let
c = inf {i|1 <i <h, pdoes not divideji+1}.
Then, sincep dividesn = d;, we see thap dividesd. and p does
not divided.,1. Moreover,c < e. Now, dc1 = g.c.d. €, mc). Sincep

dividesd, and p does not dividal., 1, we see thap does not dividem.
Thereforew™ # 1, which shows that

ord(y(t) — y(wt)) < me < me.

O

38 (6.15) PROPOSITION.Let v be an integer such thaf = n. Leth =
h(f) and letmy = my(v, f), di;1 = di,1(f) forO < i < h+ 1. Lety(t) be
an element ok((t)) such thatf (t", y(t)) = 0. Let

E = {orch(y(wat) - ywat)|wa, W € oK), s # .
Ml = {ml,...,mh}
and Mo = {mp, ..., my}.
ThenM, c E ¢ M1. Moreover, we have

_ |V|1, if d]_ > dz,
| My, ifdi =y
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Proof. If h = 0thend; = 1 andE = M; = My = ¢. We may therefore
assume that > 1. Since orgy(wit) — y(wst)) = orck(y(t) — y(wzv\qlt)),
it is clear thatE = {ord(y(t) - y(wt))|w € un(K), w # 1}. Letw € un(K),

w # 1, and letp = ord(w). Thenp dividesn = d; and p does not divide
1 = dn,1. Therefore there exists 1 < e < h, such thatp dividesd, and
p does not dividede,1. Therefore by Lemm@(6.74) we get

ordy(y(t) — y(wt)) = me € My.

This proves thaE c M;. Now, leti be an integer such thati < h.
Sinced; dividesd; = n, there existsv € un(k) such that ord{) = d;.
Sincei > 2, d; does not divide,1 by Propositiorf (6.13). Therefore by

Lemmd{6.T4) we have
m; = ord(y(t) — y(wt)) € E.

This proves thaM, c E. Now, supposal; > do. Then, ifwisa 39
primitive nth root of unity ink, ordiw) = d; does not dividad,, so that

by Lemmd(6.14) we get
my = ordk(y(t) - y(wt)) € E,

which proves thaE = M;. Finally, supposel; = d,. Then, sincel, =
g.c.d. @1,m),d; dividesmy. Thereforew™ = 1 for everyw € un(K).
Since ordy(t) = my = ord; y(wt), it follows that

ordy(y(t) — y(wt)) > my

for everyw € up(k). This means thaty ¢ E, which proves thaE =
Mo. [m}

(6.16) PROPOSITION.Let v be an integer such thatf = n. Lete
be an integer such that £ e < h(f) + 1. Letds = dg(f) and let
N =n/dev’ = v/de. Let f’ be an irreducible element &{(X))[Y] such
that f is monic inY and deg f’ = n’. Assume that

Supp(") = {1/dd|j € Supp(). j < me(v. ).

Thenh(f’) =e—-1, and foro < i < h(f’) we have:
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(i) m@/, ) =m(, f)de.
(i) disa(f') = diza(f)/de.
(i) g, f)=q+i(, f)/de.
V) SO/, 1) = 50 F)/2 (if i  0).
V) ri(, £) =ri(v, f)/de.

Proof. (i) and (ii) follow from Lemmg{6.4). (iii), (iv) and (v) folbw
40  immediately from (i) and (ii). m|

(6.17) PROPOSITION.Let v be an integer such that = n. Let f’
be an irreducible element & (X))[Y] such thatf’ is monic inY and
deg, f” = n. Suppose there existft) € k((t)) such thatf’(t", z(t)) = 0
and ord(z(t) — y(t)) > my(v, f), whereh = h(f). Then we have:

() h(f") = h(f).
(i) mv, ) = m(v, f).
iy q(v, /) = qW, ).
(iv) s(v, ') = (v, ).
W) (v, £) = r(v, f).
(vi) d(f’) = d(f).

Proof. Let J = Supp(), J* = Supp(’). Then the hypothesis implies
that we have

j < My, f)}.

(6.17.1) {j eJ|j <m0, f)}:{j e

We shall prove the lemma under the weaker assumpfion (§.17.1
Note that it is enough to prove (ii). For, the rest then fokofrom (ii)
and the definition. We first prove by induction bthat we have

(6.17.2) i < h(f") andm(v, f) = m(», )
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for0 <i < h=nh(f). Fori = 0, this is clear. Suppose now thais an
integer, 1< p < h, such that[[617]12) holds for€i < p- 1. Then by
Propositior (6.13)X) we have

do(f') = do() = dy, say Let
S {jeJ|j¢0 (moddp)}, if p> 2,
"1 if p=1,

¥ - {jeJ’j;tO (moddp)}, if p>2,
p J’, pr:1

Then we haveny(v, f) = inf(Jp), mp(v, ') = inf(Jp). Sincemy(v, f) 41
< my(v, f), we havemp(v, f) € J; by @I71). This shows thaty(v, ')
< mp(v, f) < mu(v, f). Therefore by (&I A1Mnp(v, f’) € Jy so that
mp(v, f) < mp(v, f). This proves thamy(v, f’) = mp(v, f) < co, which
shows also thap < h(f’). Thus [E&I7PR) is proved for & i < h. In
particular, we geh < h(f’) anddy,1(f") = dn1(f) = 1 by Proposition
[6.13). This means that

Fhoa = {i € J]i # 0 (moddh,1 ()

is empty, so thah > h(f’). Thus we havéh(f’) = h = h(f) and by
€©&I172) we gem(v, f) = m(y, f'). m|






Chapter 3
The Fundamental Theorem

7 The Main Lemmas

Throughout this section, we preserve the notation intredua[{7.1) 42

and[{7.2) below

(7.1) NOTATION. Letk be an algebraically closed field and )tY, t

be indeterminates. Le&tbe a positive integer such that chadoes not
dividen. Let f = f(X,Y) be an irreducible element &(X))[Y] such
that f is monic inY and deg f = n. Lety be an integer such thpg = n.

Leth = h(f) and foreveryi,0<i<h+1,let

m = m(v, f)
a=a(f)
s =s(f)
ri=ri(v, f)
i1 = dipa(f).
Also, let
n = di/di;1

for 1 <i < h. (Note that by Propositioh (6.13)) is a positive integer
for everyi andn; > 2 for 2 < i < h. Finally, we fix a rooty(t) of
f(t",Y) =0, i.e., we fix an elemeny(t) of k((t)) such thatf (t", y(t)) = O.
Recall then that by Newton’s Theorgm (5]14) we have

f,Y) = [ [ - yw),

WELn

43
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where for a positive integan we write um for um(K). Let
yo) = > yit!
i

with y; € k for every j.

(7.2) NOTATION. We shall use the symbat to denote a generic (i.e.
unspecified) non-zero elementkf Thus ifk’ is an overfield ok and
a € k' thena = g means thah € kanda = 0. Similarly,b = gc means
thatb = acfor somea € k, a # 0. Note thata =  andb = & does not
mean that = b.

(7.3) DEFINITION. Letk’ be an overfield ok and letz be a non-zero
element ok’((t)). If m = ord; z, we can writez in the form

z=at™+ ™z

with a € k,a # 0 andz € K'((t)). We define the initial form (resp. initial
co-dficient) of z, denoted info ) (resp. inco %)), by info (2 = at™
(resp. inco ) = a). We also define info (0¥ 0, inco (0)= 0.

(7.4) DEFINITION. Leti be an integer with ki < h+ 1. We define

AG) = {w € o ord () - ywt) < m},
R() = {w € o] orek(y(®) - ywt) = m .
S(0) = {w € u ord(y(®) - y(wt) = m}.

(7.5) LEMMA. Letibeanintegerl <i <h+ 1. Then:

(i) R(i) = ug . In particular, card(R(i)) = d;.

(i) Leti< h. Then &i) = R(i) - R(i + 1) = ug, — ug,,- In particular,
card (S(i)) = di — di1.

(i) S(h+1) = {1).

Proof.
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(i) By Lemmd[(6.14) we have

R() = {we 1

ord@) dividesdi}
wh = l} = Ug;.

:{Welln

(i) Since, for everyw e upn, ord(y(t) — y(wt)) belongs to the set

{my, ..., mn1} by Propositio{ (6.1%), we see th&(i) = R(i) —
R(i + 1), for 1 <i < h. Therefore (ii) follows from (i).

(iii) This is clear, sincemy,,1 = oo and the rootg/(wt), w € up, are
distinct.
m|

(7.6) LEMMA. Lete be anintegefi < e<h, and let m= me. Let z be
an element of an overfield of k. Then we have

[ @-whym) = @ - yie).
weR(e)

Proof. Letu be a primitivedeth root of unity ink and letv = u™. Then,
sincede,1 = g.c.d. @, M), we see that is a primitiven{! root of unity.
Therefore, since

R(€) = g, = {u‘|1 <i< de}
by Lemmd{7.5), we get

de
[ ] @ w™m) =] |- Vym)
weR(e) i=1
Oer1—1 ne o
=[] [ ]@=veym
i=0 =1

Ne de+1
= [n(z— viym)] (sincev’ = 1)

j=1
= (2% - o),

sincev is a primitiven{! root of unity. O

45
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(7.7) LEMMA. Letibe anintegerl <i < h+ 1. Then we have

EEE mi_1d;, ifi >2,
orak {W];[(i)(y(t) - y(Wt))] = {0, ifi =1

Proof. Since, for everyw e up, orc(y(t) — y(wt)) belongs to the set
{m, ..., mn1} by Propositiorf (6.1%), we get
i—1

771 []oo-yw) =[] [] o0 -ywn).

weQ(i) J=1 wes(j)

From this the assertion is clear foe= 1. Assume now thait > 2.
Since card$(j)) = d; — dj+1 by Lemmd{7.3), we have

ordt[ []ow- y(wt))] = (dj - djs)my

weS(j)

for 1 < j < h. Therefore from[[Z7]11) we get

i-1
orq[ [Too- y(wt))] = > (di — djea) my

weQ(i) i=
|

[y

[REN

gjd; — m_1d;

=

j:
S-1—M_1d;.

(7.8) COROLLARY.

h
orck | [ ® - ywd) [ = > aj(d - 1) = sh - .

Wen j=1
w#l

h
Proof. The equalityz gj(dj — 1) = s — my is clear. Now, ifh = 0
=1
thenn = d; = dy.1 = 1, so that the assertion is clear in this case, since
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in the middle we have an empty sum and on the left hand sidertiez o
of an empty product. Assume now that> 1. Takingi = h+ 1 in

Lemmd{7.7), we ge(i) = un — {1} and

h
S—1—M_10i = Sh— MyOhi1 = SH— My = qu'(dj -1
=1

O

(7.9) COROLLARY. Let fy(X,Y) denote theY-derivative of f(X,Y).
Then we have

h
ord(Fy(t",y(®)) = > aj(dj = 1) = sh— .
=1

Proof. Since
fEnY) = [ ] (Y- ywd)

WELn

we get
() = | | 1) - ywn)

WELn

wal
and the assertion follows from Corolldry (4.8). o

(7.10) COROLLARY. Let u(t) be an element ok((t)) such that ord
(u(t) = y(t)) > my. Then

orck(f(t", u(t))) = sh — My + ordk(u(t) — y(t)).

Proof. Letw € un, w # 1. Then orgy(t) — y(wt)) < my by Lemma
[(6-14). Therefore, since

u(t) — y(wt) = (u(t) — y(t)) + (y(t) — y(wt))
and since ordu(t) — y(t)) > my, we get 47

ordk(u(t) — y(wt)) = ord(y(t) — y(wt))
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for everyw € un, w # 1. Therefore

ordy(f(t", u(t))) = ord [ [ Jww - Y(Wt))}

WELUR

= orck(u(t) - (1)) + orck [ﬂ(y(t) - y(wt»}

w1l
= ord(u(t) — y(t)) + sh — My
by Corollary[(7-9). o
(7.11) LEMMA. Letibe anintegerl <i <h+ 1 Lety(t) = ¥ y;tl.

j<m
Let G = Gi(X,Y) € k((X))[Y] be the minimal monic polynomial gft)

over K(t")). (See Definitiof (5.8).) Then we have:
(i) deg,Gi =n/d.
(i) Gj is also the minimal monic polynomial §fwt) over K(t")) for
every We un.
Proof.
() We have
SupRY(®) = {i € SupRY(Vj < m}.
Therefore by Propositign (6.33) (ix) we have
di = g.c.d. {n} U Suppy(t)).
Now, the assertion follows from Propositipn (5]16).
(i) Substituting wt for t in the equalityG;(t",y(t)) = 0 we get
Gi(t", y(wt)) = 0. This proves (ii).
i
(7.12) DEFINITION. Leti be aninteger, X i < h+ 1. The element
Gi = Gi(X,Y) of Lemma[(7.17) is called thpseudo th root of f. By
Lemma[(7-T7) we note tha®; depends only orf andi and does not

depend upon the rogft) of f(t", Y) and thaG; is an irreducible element
of k((X))['Y], monic inY, and deg G; = n/d..
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(7.13) LEMMA. Letibe anintegerl <i < h, and let G(x, Y) be the
pseudo gh root of f. Let kbe an overfield of k and let yoe an element
of K((t)) such that

info (y* = > yjtl) = "

j<m
with ze K', z# 0. Then info(G;(t", y*)) = @zt'.

Proof. Lety(t) = Z yjtj. Then by Propositiof (6.1B) (ix) we have
j<my

di = g.c.d. {n} U Supp¥y(t)).
Therefore by Propositidn (5.16) we get
(7.13.1) [ ]eY = ywt) = Git" v)*.

WELn

Now, ord (y(wt) — y(wt)) = m; for everyw € u,. Therefore, since
y = Y(wt) = (v - (1) + (1) — Y1) + (y(t) — y(wt)) + (y(wt) - J(wb)
and since ordy* — y(t)) = my by assumption, we have
(7.13.2) info(y" — y(wt)) = info(y(t) — y(wt)) for w € Q(i).

Next, if w € R(i) thenw! = 1 for all j in Supp y(t) such thatj < m.
Thereforey(t) = y(wt) for all w € R(i) and we get 49

(7.13.3)  info(y" —y(wt)) = info(y* — y(t)) = zt™ for w € R(i).

From[ZI31 we get
(7.13.4)

info(G;(t", Y*)%) = [1—[ v - V(Wt))}

WELn

- info[ []o- V(Wt))] [ ] infoty" ~y(wp)

weQ(i) WweR(i)

= info[ ]_[ (y(t) - y(wt))] 2 gmd
weQ(i)
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by[ZT32 and 7133, since cal(i)) = di by Lemmd(7.3). Sincg(t)
andy(wt) belong tok((t)), we have

inco[ n (y(t) - y(wt))} ek
weQ(i)

Therefore by Lemmpe(7]7) we have
. gtS-rmaad - f > 2,
mfo[ [] oo —y(wt»} ={ M
weQ(i) 2, mi=2L
Therefore froni.Z.1314 we get
info(Gi(t",y")%) = ZtS,

where

midi, if i = 1.
We see that in either case we hare s = rid;. Thus we have
(info(Gi(t",y*)))% = info(Gi(t",y*)%) = g4,
50 It follows that we have
info(Gi(t", y*)) = zzt.

. {3—1 —m_adi +md;, ifix2,

O

(7.14) DEFINITION. Let e be an integer, Xk e < h, and letZ be an
indeterminate. By ang(Z)-deformationof y(t) we mean an element
of K'(Z)((t)), wherek’ is an overfield ok, such that

infoly - > yjt)) = Zt™.
j<me
(7.15) COROLLARY. Leti.e, be integers such thatdi < e< h. Let

Gi(X,Y) be the pseuddith root of f. Lety* be an & Z)- deformation
of y(t). then we have

oth,  ifi<e

info (Gi(tn’ yk)) = {thh ifi=e
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Proof. Let k" be an overfield ok such thaty* € k'(Z)((t)). Lety(t) =

Y yjthandy'(t) = X yjtl. Then, since/ is an g, Z)-deformation
j<m m<j<me
of y(t), we have

Yy =Y(t) + Y (t) + Zt™ + u(t)

for someu(t) € K'(Z)((t)) with ordiu(t) > me > m;. It follows that if
i <ethen

info (Y* — J(t)) = ymt™ = ot™,

whereas if = ethen
info (y* — y(t)) = Zt™ = Zt™.
Now, the corollary follows from Lemma{7-13). o

(7.16) LEMMA. Lete be anintegefi < e< h, and lety be an(e, Z)- 51
deformation of {t). Then we have

info (f(t",y")) = 2(Z" - yi) e t™.
Proof. The assumption oy means that we can writg in the form
Y = y() + (Z = ymt™ + u(t)

with u(t) € k'(2)((t)) and ordu(t) > me, wherek’ is some overfield ok.
Therefore for everw € u, we have

(7.16.1) Y = YW = (Z = ym )t + (Y(1) — y(wt)) + u(t).
It follows that if w € Q(e) then
(7.16.2) info §* — y(wt)) = info (y(t) — y(wt)).

Sincey(t) andy(wt) belong tok((t)), we have

inco [ ]_[ () - y(wt))] ek
weQ(e)
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Therefore it follows from[(Z1612) and Lemrpa({.7) that weéa

} ~ {gtse—l—ma—lde’ if e> 2,

(7.16.3) info[ [ ] -yw) . N

weQ(e)

Next, letw € R(e). Then it follows fron_Z_I6]1 that ogf)* —y(wt)) > me
and that the cd@écient oft™ in y* — y(wt) is

(Z = Yme) + (Yme = W™Ym) = Z = W™y,
which is non-zero, sincg is an indeterminate. This shows that
info (y* — y(wb) = (Z — w™eym)t™
for everyw € R(€). Therefore by Lemm@(7]6) we get

info { [ - y(wt»} =[] @-weymt™

weR(e) weR(e)

(7.16.4) = (2" - y”ni)daltﬂbde’
since cardR(€)) = de by Lemmd(7.9). Since
ey = [ [ - yow)

WELUR

= [ & -yt [ o - yow)

weQ(e) weR(e)
and since
Se-1— Me10e + Mede, if €22,
S = .
mede, If e= 1,
the lemma follows from[{Z.16.3) and (7. 16.4). o

(7.17) MAIN LEMMA 1.

Letebe aninteger, kK e < h. LetC = C(X,Y) be a non-zero element
of k((X))[Y] such that degC < n/de. Lety* be an ¢ Z)-deformation of
y(t). Theninco C(t",y*)) = &.
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Proof. Supposee = 1. Thenn/d. = n/d; = 1, so that degC = 0. This
means tha€(X,Y) is a non-zero element &{(X)). ThereforeC(t", y*)
is a non-zero element &f(t)) and the assertion is clear in this casa&

Assume now that > 2. LetG; = Gj(X,Y) be the pseuddith root
of f,1<i<e-1,andleG = (Gy,...,Ge1). Since, by Lemmp(71]),
G;i is monic inY with deg,G; = n/di, 1 < i < e— 1, we see that the
three conditions

(i)-(iii) of {Z.2)] are satisfied byG with R = k((X)) andp = e—1. 53
With the notation of (Z.2), we note thag_1(G) = o and

(7.17.1) ni(G) = (n/dis1)/(n/di) = di/dis1

for 1 <i <e-2. By Corollary[{Z.19), let

(7.17.2) C= Z Ca(X)G%,  Ca(X) € k(X))
acA(G)

be theG-adic expansion of. Since degC < n/de be hypothesis,
we have, by Corollarj {Z.p), de@>® < n/de for everya € Supp;(C).

e-1

Since deg(G?) = Zai deg, Gi, we get, in particularae_; deg, Ge-1 <

-1
n/de for every a Ie Supp;(C). Since degGe1 = n/de1, We get
s 1N/de_1n/de_1 < N/de < n/de, which gives

for everya e Supp;(C). Now, substitutingX = t", Y = y* in (Z1Z2),
we get

(7.17.4) Chy)= >, CaltG(t"y)

acSupp;(C)

Fora e Supp;(C), letag = (n/rp) ordy Ca(X). Then we have
(7.17.5) ordC4(t") = nordy Ca(X) = agro.
Moreover, for 1<i < e- 1, we have

(7.17.6) info Gi(t",y")) = ot"
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by Corollary{(7-15). From{Z.I7.5) and (7.1l7.6) we get
e-1

(7.17.7) orgd(Ca(tMG(t", y*)?) = Z ar;.
i=0

Now, letr = (ro,...,re-1). Then, with the notation ¢7 (T]L), we have
ni(r) = di(r)/diz1(r) = di/diyg for 1 <i < e—1. Leta € Supg;(C).
Then for 1<i < e- 2, we have

0<ag <n(G) =di/di;1

by (ZIZ1). Moreoverae_1 < e 1/de by (ZIZB). Thus{ZIA.7) ex-

presses orfC,(t")G(t", y*)?) as a strict linear combination of There-
fore it follows from Propositiofi (1.5) that

ordk(Ca(tG(t", y*)?) # orc(Co(t)G(t", y")P)

if a, b € Supp;(C) anda # b. Therefore, in view of[[ZI714), we see
that there exista € Supp;(C) such that

info (C(t", y)) — info (Ca(t"G(t", y*)?)
and, in particular,
(7.17.8) inco C(t",y")) = inco Ca(t"G(t", y*)?).

Now, inco Ca(t") = &, sinceCy(t") € k((t)) andCa(X) # 0. Also,

e-1
inco G(t",y")?) = l_[ inco Gi(t",y")®)
i—1
= (by (ZILH))

Therefore byl[Z1718) incdX(t", y*)) = &, and the lemma is proved.
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(7.18) MAIN LEMMA 2.

Let R = k((X)). Letebe an integer, X e < h. Letg = g(x Y) be an
element ofR[ Y] such thatg is monic inY and deg g = n/de.

Let y* be an €.2) deformation ofy(t) such that info ¢(t",y*)) =
@Zt'=. Then info ¢+ (Q)(t",y*) = @Zt'e, wherers is the Tschirnhausen
operator with respect tb € R[Y]. (See § 3 for definition of;.)

Proof. Letd = de and let
-1
(7.18.1) f=¢+> Cd
i=0

be theg-adic expansion of, whereC; = C(fi)(g), O<i<d-1. (See
@Z1).) Then, by definitionz(g) = g + d"'Cq4_1. Therefore, in order
to prove the lemma, it is enough to prove that we have

(7.18.2) ordCq_1(t", ¥*) > re.

Now, from [ZI81) we get
d .
f(Ehy) = > Gt y)at"y")',
i—0
whereCqy = 1. Let
(7.18.3) ue f {ordt(Ci (ty)aty))o<i < d} .
SinceCq = 1 and ordg(t", y*)d = dre, we see thati < co. Let

(7.18.4) | = {i|o <i<d,ord(Ci(t", y)g(t".y)) = U}-

ThenC;i(t",y*) # O for everyi € I. Leta = inco Ci(t",y*)), i € I.
Then, since degci < degg = n/de, it follows from Main Lemm4.(7-1T)
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thata € kanda; # O for everyi € |. Also, by hypothesis we have info
(g(t", y*)") = bjZ't"e for someb; € k, bj # 0. Therefore we get
inco(Ci (", y)gt", y')') = aibiZ!

for everyi € |. It follows that the cofficient oft" in f(t",y*) is 56

Z aibiZi

iel
, Which is non-zero, sinck # ¢ andZ is an indeterminate. Therefore
we have

info(f(t",y)) = [Z a;biZi]t“.
i€l
On the other hand, by Lemria{7.]L6) we have
info(f(t",y") = & (2% - yie ) > t=.
Therefore we getl = S = dere and
. des
> abzi = & (2% -y )<
iel

This last equality shows that we have

(7.18.5) > abz' e Kz™.
iel
Now, we havene = de/des1 > 2 by Propositior] (6.18) (i), since
e > 2. Thereforene does not divided, — 1 = d — 1, and it follows from
(Z185%) thad — 1 ¢ |. This means that

u < orck (Cq-1(t", y)g(t", y)* )
= ordk Cy_1(t",y") + (d — L)re.

sinceu = dgre, We get
re < orck Cy_1(t", y").
which proves[(Z.18]2).
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(7.19) THEOREM. Let e be an intege? < e < h, and let g(X,Y) =
Appff(f). (Sed[43).) Let'ybe an(e, Z)-deformation of ¢). Then

info(ge(t", y*)) = zZt".
Proof. Let Gg¢(X, Y) be the pseudd! root of f. Then we have 57
(7.19.1) info Ge(t",y")) = zZt"

by Corollary[{7.15). Now,Ge is monic inY with deg,Ge = n/de

(Lemmd{7.17)). Therefore by Corollgry (4.6) we haeX,Y) = (r)]
(Ge), wherej = n/de. Now, the theorem follows froni.{7.19.1) oy de

applications of Main Lemma{7-18). i

(7.20) COROLLARY. Letebe aninteger, Z e < h, and letge(X, Y) =
Appﬂe(f). Letk’ be an overfield ok. Leta € k' and letu be an element
of K’((t)) such that orgdu > m.. Let

V= Z yit +at™ + u.
j<me

Then there exist € k, ¢ # 0, and an element of k’((t)) such that
ord v >reand
0e(t",y) = cat’e +v.

Proof. Let Z be an indeterminate and let

y = Zyjtj+Ztme+u.

j<me

Theny* is an g, Z)-deformation ofy(t). Note thaty* € K'((t))[Z] c
K'(Z)((t)). Thereforege(t", y*) € K’'((t))[Z] and we can write

p .
(7.20.1) ge(t".y) = > bi(®Z,
i=0

wherep is a non-negative integer af(t) € k’((t)) for 0 <i < p. Now,
we have info §e(t",y*)) = @Zt'e by Theoren|{ (7.19). This means thats
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we have

(7.20.2) info Py (t)) = ct'

for somec € k, c # 0, and

(7.20.3) ordb(t) > re fori# 1

Let ¢ : K((1)[Z] — K((t) be thek'((t))-algebra homomorphism
defined byyp(Z) = a. Theng(y*) =Y. Therefore we have

9e(t".¥) = ¢(e(t", ¥))

p
(7.20.4) = > bina (by[7203).
i=0

Let
P
v =bo(t) + (ou(t) - ct®)a+ > by(t)al.
i=2

Then by [Z20R) and{7.20.3) we have ord re, and from [(ZZD]4)
we getge(t",y) = cate + v.
8 The Fundamental Theorem

Throughout this section we preserve the notatiop of (7.4)addition,
we also fix the following notation:

(8.1) NOTATION. For anintegee, 1 < e<h+ 1, we get

(X.Y) = Y, ife=1,
Ge = G Apds(f), ifex2

We note thagp,; = f.
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(8.2) Fundamental Theorem (Part One).
Letebe an integer, k¥ e < h+ 1. Then we have ofde(t", y(t)) = re.

Proof. Sincegn,1 = f andrp,1 = oo, the assertion is clear fer= h+ 1.

Next, we haveg, (t", y(t)) = y(t), and ordy(t) = my = ry, which proves

the assertion foe = 1. Assume now that Z e < h. Then the assertion

is immediate from Corollary (7.2D) by takirg= ym, andu = Zyjt'
j>me

and noting thaym, # 0. O

(8.3) Fundamental Theorem (Part Two)

Let R be a subring ok((X)) such thatn is a unitinRand f € R[Y].
Then:

() g R[Y]foreveryi,1<i<h+1.
Further, letR[Y] = R[Y]/fR[Y] and letg; be the image ofj under
the canonical maR[Y] — R[Y]. Then:

(i) RY]is a freeR-module with the se{gﬂb € B} as a free basis,
whereg = (01,...,0n) and

B={b=(b1,-..,bh)€Zh|0Sbi <di/di+1f0r1SiSh}.

(Forh = 0 interpret this notation a8 = {¢} and{§h|b € B} ={1}.)

Proof.

1. Fori=1,g91 =Y € RY]. Fori > 2 the assertion follows from the
uniqueness oApd!(f).

2. We first note that since ded = n > 0 and sincef is monic in
Y, the restriction of the canonical map: R[Y] — R[Y]to Ris
injective. We identifyR with its image inR[Y]. Then, writing
F = n(F) for F € R[Y], we have

(8.3.1) F = F for everyF e R
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O

Now, letG; = g for1 < i < h+ 1. Then the if + 1)-tuple
G = (Gy, ..., Gn1) satisfies conditions (i)-(iii) df (Z.P) witlp = h + 1.
Therefore by Corollary (Z.I§) every elemdntof R[Y] has a unique
expression of the form
(8.3.2) F= ) FaG% FacR
acA(G)

where

A(G) = {a: (@, ..., an1) € ZM1

O<ag<n@Gforl<icx h+1}.
Recall that with the notation ¢T (Z]2) we hamg 1(G) = « and

(8.3.3) n(G) = (n/di;1)/(n/di) = di/dis1

for 1 <i <h. Now, letF be any element dR[Y] and letF € R[Y] be a
lift of F. Then from [B:311) and{8.3.2) we get

a

(8.3.4) F= > FaG.
acA(G)

__Now Ghi1 = 0. Therefore, ifa € A(G) is such thatn,1 # 0 then
G’ = 0. Therefore, in view off8313), the expressiGi{d.3.4ums to

the form .
F=> Fa
beB

whereF; = F,...b,0) for b € B. This proves thaR[Y] is generated as

anR-module by the se{§b|b € B}. Now, to prove that this set is a free
basis, suppose

(8.3.5) 0= Z Fio

with F| € Rfor everyb andF; = O for almost allb. Fora € A(G),
define

(8.3.6) Fa= Fla..a) 1fan1=0,
0, if apq # 0.
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Let
F= ) FG
acA(G)

It is enough to prove thaf = 0. For, this would imply by the
uniqueness of the expressidn (813.2) tRat= 0 for everya € A(G),
which would prove, in view of[(8.316), th& = O for everyb € B.
Now, supposé= # 0. Then, sincef dividesF in F[Y] by 833), we
haveF ¢ R and ded- > degf = degGy,1. But this is a contradiction
by B36) and LemmB(Z2.32). Therefdfe= 0, and the proof of the
theorem is complete.

(8.4) LEMMA.. Let K(X)) be identified with the subfieldk")) of k((t))
by putting X=t". Let R be a subring of(kX)) such that fe R[Y]. Let
R[y(t)] be the R-subalgebra of{t)) generated by ). Then:

() RO = {FEyO)|FX V) € RV .
(i) There exists an R-algebra isomorphism

U RIY]/ERY] — RIy(t)]

which fits in a commutative diagram

R[v]\ i /R[Y]/fR[Y]
RIy(t)]

where n is the canonical homomorphism and u is defined by
u(F(x, Y)) = F(t", y(t)) for F(X,Y) € R[Y].

Proof.
() Thisis clear.

(ii) It is clear thatu is anR-algebra homomorphism. Sincgf) =
f(t", y(t) = 0, u factors vian to giveu. Sinceu is surjective by (i),
so ist. To show thaliis injective, it is enough to show that ke 62
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fRY]. Let F(X,Y) € keru. ThenF(t", y(t)) = 0. Therefore, since
f is the minimal monic polynomial of(t) overk((t")), f divides
F(OXY) in k((X))[Y]. Sincef is monic, it that followsf divides
F(x, Y)in R[Y].

(8.5) Fundamental Theorem (Part Three)

Let k((X)) be identified with the subfiell((t")) of k((t)) by puttingX =
t". LetRbe a subring ok((X)) such thanis a unitinRand f € R[Y].
Let

RV = {FEy©)|F (X V) € RV}
LetQ = gi(t",y(t)), 1<i < h. Then:

() Ry(t)] is a freeR-module with the set§b|b € B} as a free basis,
whereg = (Qy, . . ., 0,) and

B:{b:(bl ..... br) € Z'|0 < by < i /dhus for 1< sh}.

(i) Let F € R[y(t)] and let

F=> Fd’. FpeR
beB

If b,b’ € B,b# b/ andF, # 0, Fy # 0 then
orck(Fsg°) # ord(Fy3”).

In particular, ifF # O then there exists a unigqueee B such that
orck F = orck(Fua").

(iif) With the notation of (ii), letb € B be the unique element such that
orck(F) = ordy(Fpa"). Then

h
ordi F = ord; Fp + Z bir;.
i=1
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Proof.

(i) We first note that by Theorefn (8]3) we hagee R[Y] for 1 <
i < h. Let us now identifyR[Y(t)] andR[Y] = R[Y]/fR[Y] asR-
algebras via the isomorphisaof Lemmg(8.4). With this identifi-
cation,g; is the image ofy; under the canonical magY] — R[Y].
Therefore (i) follows directly from Theore (8} 3).

(i) LetT.(R) = {(n/ro)ordx G|G eRG=# O}. Then, sincen = |rg,
it is clear thatl' . (R) is a subsemigroup dR is a subsemigroup
of Z. Forb = (by,...,by) € B such thatF, # 0, let us define
bo = (n/ro)ordx Fp. Thenby € T'.(R). Sincer; = ordg; by
Theoren{(8.2), we get

h h
(8.5.1) ord(Fyg°) = orck Fyp + Y biri = ) lars,
i=1 i=0
sincebgrg = nordyx Fp = ord Fy. Similarly, if b” € BandFy # 0
then
h
(8.5.2) ord(Fyg”) = > biri, by e (R,

i=0

Now, sinceb, b’ € B, we have 0< by < dj/diy1, 0 < b < dj/diy1
for 1 <i < h. Thus [B51) and(83.2) afg (R)-strict linear com-
binations ofr = (ro,...,rn). Therefore (ii) follows from Proposi-

tion[(T.5).
(iii) This was proved in[(85]1) above.

O

(8.6) DEFINITION. Let R be a subring ok((X)) such thatf € R[Y].
Letw € un(k). The set

@mmemmenemnfmymm¢q.

which is clearly independent @f € un(K) and is a subsemigroup @f is
called thevalue semigroupf f with respect to Rand is denotedr(f). 64
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(8.7) Fundamental Theorem (Part Four).

Let Rbe a subring ok((X)) such thanis a unitinRandf € R[Y]. Let
I.(R) = {(n/ro)ordx FIF eRF o}.

Then we have:
(i) I(R) is a subsemigroup d&f.
(i) T (RrocI'r(f)andr; € I'r(f) for everyi, 1 <i < h.
(i) Tr(f)isT(R)-strictly generated by = (ro, ..., n).
In particular, suppose we are in one of the following two sase

(1) The ALGEBROID CASER = K[[X]] for some subfieldk’ of k,
f e RfY]andrg = n.

(2) The PURE MEROMORPHIC CASR = k’[X~] for some subfield
k' of k, f € R[Y] andrg = —n.

Then we have:
(i) T(Ry=2".
(i) r; e Ir(f) for everyi,0 <i < h.
(ii"y Tr(f)is strictly generated by = (ro, ..., rn).
(For the definition of", (R)-strict generation, sg¢e (1} 7))
Proof.
(i) Thisis clear, since = |rg|.

(i) Let y € T, (R). Then there exists = F(X) € Rsuch that- # 0
andy = (n/ro)ordx F. This givesyrp = nordx F = ord; f(t"),
which shows thairg € T'r(f). Next, sinceg; € R[Y] by Theorem

and since okdj;(t", y(t)) = ri by Theorenj (8:2), we get €
I'r(f)for1<i<h.
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(i) Let y € Tr(f) and letF(X,Y) € R[Y] be such thaty = ord
F(t", y(t)). PutF = F(t",y(t)). ThenF # 0. Therefore by Theo-
rem[(8.5) (iii) we have

h
vy =orck F = ord, Fp(t") + Z biri,
i=1

whereFp = Fp(X) e R, Fp # 0, andb; € Z, 0 < by < di/d;,; for 65
1<i<h. Letby = (n/rg) ordx Fp. Thenbg € I'.(R) and we have
h

ord; Fp(t") = bgrg. Thereforey = Z biri, which shows thay is
i=0
h

aT’, (R)-strict linear combination of. Conversely, ify = Zyiri

i=0
is aT',(R)-strict linear combination of then it follows (ii) that
v € Tr(f). This proves (iii).

(") is clear, and (ii"), (iii’) follow from (i), (i) and (i ii). O

(8.8) COROLLARY. With the notation of Theorerfi (8]7), suppoRe
contains an element of-order 1 or-1. (This condition is satisfied,
for example, ifX € Ror X! € R). Them g.c.d.I(r(f)) = 1, i.e., the
subgroup ofz generated byr(f) coincides withZ.

Proof. By assumption, we havwe/ro € I'.(R) or —n/rg € T'.(R). There-
fore by Theorenf (8F) (ii)n € I'r(f) or —n € T'r(f). Sincen = |ry|,
we getro € T'r(f) or —ro € Tr(f). Alsor; e I'g(f) forl <i < hby
Theorem (8.7)(ii). Now, since

g.cd. (-ro,r1,...rp) =g.cd. (ro,r1,...,rp) =dhe1 = 1,

the corollary follows. O






Chapter 4

Applications of The
Fundamental Theorem

9 Epimorphism Theorem
Letk be afield and leX, Y, Z, r be indeterminates. 66

(9.1) DEFINITION. LetC be a finitely generatekl-subalgebra ok[Z]
such that the quotient field @ is k(Z). We callC (the coordinate ring
of) anaffine polynomial curveverk and we calk(Z) the function field
of C. If, moreover,C is generated as lkaalgebra by two elements then
we callC an dfine polynomialplanecurve. Ak-algebra epimorphism
(i.e., surjective homomorphism): K[ X, Y] — Cis called arembedding
of C in the dfine plane ovek.

Note that ifC has an embedding in théime plane thel€ is a plane
curve. Moreover, the mapping— (a(X), a(Y)) gives a bijective corre-
spondence between the embedding€ f the dfine plane and ordered
pair (x,y) of elements ofC such thaC = k[x, y].

(9.2) DEFINITION. An embeddingr : k[X, Y] — C is said to beper-
missibleif «(X) # 0 and chak does not divide dega(X).

(9.3) Equation of an Embedding

Let @ : k[X,Y] — C be a permissible embedding of afiime plane
polynomial curveC. LetX = a(X), ¥ = a(Y). Thena(F) = F(X,y) for

67
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everyF = F(X,Y) € kIXY]. Letn = deg X. Let k be the algebraic
closure ofk and letd : k[Z] — k((7)) be thek-algebra monomorphism
defined byg(Z) = 1. Then it is clear that we have

(9.3.2) ord O(F(X,y)) = —deg, F(X,y)

for everyF (X, Y) € K[X, Y]. In particular, we have ord)(X) = —n. Since
chark does not dividen, there exists, by Corollarfy (5]4), an element
t € k((r)) such that ordt = 1 andg(X) = t". Note then that we have
k((t)) = k((r)) and orda = ord; a for everya e k((t)). Write x =
X(t) = 6(X) = t™"andy = y(t) = 6(y). We cally(t) a Newton-Puiseux
expansiorof y in fractional powers ok L. Let f = f(x,Y) € k((X))[Y]

be the minimal monic polynomial of over k((t")) (Definition [(5.8)).
Recall thatf is the unique irreducible element kf(X))[Y] such thatf

is monic inY and f(t",y) = 0. We call f the meromorphic equationf
the embedding.

(9.4) LEMMA. With the notation df (9-8), we have:
(i) deg, f =n.
(i) f eKkXLY].
Proof. (i) We have deg f = [k((t"))(y) : k((t"))]. Therefore, since €
k((t)), we get B B
deg, f < [k((1)) : k((t")] = n.

On the other hand, sinceis surjective, we hav& € k(X,y). Therefore
L e k(x,y) c k((t)(y), so thatr € k((t"))(y). Therefore

deg, f > [k((t")(x) : k()] = n

by Lemmd(5.10), since & Supp(r). This proves (i).

(i) Since deg X = n > 0, X is transcendental ovér andk(Z) is
algebraic ovek(x) with [k(Z) : k(X)] = n. Letg(X,Y) € k(X)[Y] be
the minimal monic polynomial o over k(X). Sincea is surjective,
we havek(X)(y) = k(Z). Therefore degg(X,Y) = n. We claim that
g(X, Y € K[X][Y]). In order to prove the claim, we have only to show that
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n
y is integral ovek[X]. Now, writing X = Zaizi, g ekforO<i<n,
i=1
an # 0, we have
n-1

2"+ Z aa;tZ' + (ag — X)a;t = 0,

i=1

which shows thaf is integral overk[X]. Sincey € K[Z], ¥ is also
integral overk[X]. Thusg(X,Y) € K[X][Y]. Puth(X,Y) = g(X~1,VY).
Thenh(X,Y) € K[X1[Y] < k((X))[Y] and h(X, Y) is monic inY with
deg, h(X,Y) = n. Now, h(t",y) = g(t™.y) = 9(6(X), 6(¥)) = 6(a(X.)) =
0. This shows thaf (X, Y) = h(X, Y) and (ii) is proved. O

(9.5) REMARK. Puty = ¢(X,Y) = f(X71,Y). Then by Lemm@ (9:})
¢ € K[X,Y]. We claim thaty generates ker. To see this we note that
kera is a principal prime ideal ok[X, Y] and, sincef is irreducible in
K[X71,Y], ¢ is irreducible ink[X,Y]. Therefore it is enough to show
thaty € kera. Now, 8(p(X,Y)) = ¢(t™y) = f(t",y) = 0. Sinced
is @ monomorphism, our claim is proved. Noting thais the unique
generator of kew which is monic inY, we cally thealgebraic equation
of the embedding. If ¥ is any generator of ker then, clearly, we have
W = Fo for somey.

(9.6) REMARK. With the notation of (9.3), suppos®is a subring of
k such thafx andy belong toS[Z]. Consider the pairX — X, Y —¥) of
elements ofS[Z][ X, Y] and letg = g(X,Y) € S[X, Y] be theZ-resultant
of X —XandY —y. Then clearlyzg is monic inY and, since degx =

n, we have degg = n. Moreover, we havg(X,y) = 0, so that O=
0(9(X.y)) = g(t™,y). therefore it follows from Lemm@_(9}4) (i) that
(X, Y) = g(X71,Y) € S[X7L,Y]. This gives an alternative proof of
part (ii) of Lemmd(9.9).

(9.7) Characteristic Sequences of an Embedding

Continuing with the notation ¢f(91), I& = k[X71]. Thenf e R[Y] by 69
Lemma[(9.4). Leth = h(f) and letm; = mi(-n, f), g = qgi(-n, f),
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s = s(-n,f), ri = ri(-=n,f), di;1 = di;2(f) for0 < i < h+ 1.
The sequencent, ..., My, 1), (resp. €o,...,0n1), resp. &, ..., Shil),
resp. €o, ..., 1), resp.
(di,...,dn:2)) is called thecharacteristic m(resp.q, resp.s, resp.r,
resp.d)- sequenc®f the permissible embedding Note that we have

(9.7.1) ro = —n = —deg a(X).
Moreover, by [2.311) we have
(9.7.2) r{ = orcy = ord. y = —deg, a(Y).

Let
7~ ={aeZa<O0}.

Recall that'g(f) is the subsemigroup & defined by

() = {ord F(,y)|F(X ) € RIYL, F(t".y) # 0}.
(9.8) LEMMA. With the notation df (9.F), we have:
(i) Tr(f)czZ".
(i) IfC = K[Z] thenTr(f) =7Z".
(iii) Tr(f) is strictly generated by & (ro,r1,...,rh).
(iv) ro<0O,rp=corry<0,andr <0for2<i<h.
(v) fC=kZ] and h> 2then, = -1.

Proof. (i) Let F(X,Y) € R[Y] be any element such th&{t",y) # 0. Put
G(X,Y) = F(X71,Y). ThenG(X,Y) € k[X, Y] and, with the notation of
[9:3], we have

ordk F(t",y) = orcdt G(t™", y)
= ord, G(t™",y)
(9.8.1) = ord, G(6(X), 6(Y))
= ord; 6(G(X,Y))
= —deg G(X.Y)
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by @.31). Therefore ogd-(t",y) < 0. this proves (i)

(i) In view of (i), it is enough to prove thatl € T'r(f). Sincea
is surjective, thee exist§(X,Y) € K[x, Y] such thatG(X,y) = Z. Put
F(X,Y) = G(X7L1,Y). ThenF(X,Y) € R[Y] andG(X,Y) = F(X71,Y).
Therefore by the computatioh {9.B.1) we get;dtt",y) = —deg, Z =
—1. This shows that1 € I'g(f).

(i) This is immediate from Theoren (8]7) (i)i

(iv) The assertion about andr; follows from (3.7.1) and[{9.712).
Now suppose Z i < h. Then we have

(9.8.2) di > disq

by Propositior (6.I3) (ii). Therefore & d;/di,1, so thatr; is a strict
linear combination of = (ro,r1,...,rnh). Thereforer; € T'r(f) by (iii),
which shows by (i) that; < 0. Sinced; does not divide; by (@.8.2), we
haver; # 0. Therefore; < 0.

(v) It follows from (ii) and (iii) thatr; = —1 for somei, 0 <i < h.
Sinceh > 2 and sincal, dividesr; fori < h— 1 it follows from (@.8:2)
thatr; # -1 for0<i < h-1. Thereforey, = -1. o 71

(9.9) LEMMA. With the notation df (9.7), supposel, € I'r(f). Then
rg divides r or rp divides p.

Proof. Since-d, € Z, we haved, # —oco. This means thah > 1.
Thereforer; # oo and it follows from Lemm§{9.8) (iv) that < O for
i =0,1. since-d; € I'r(f), Lemmg{9.9) (iii) shows thatd, is a strict
linear combination of = (ro,...,ry). Now, the assertion follows from

Propositior (1.8). ]
(9.10) DEFINITION. If C = k[Z], we callC theaffine lineoverk.

In Theorenj (9.11) ar{d (9.19) below we study the embeddingjseof
affine line in the &ine plane.

(9.11) Epimorphism Theorem (First Formulation)

Letk be any field and lat : K[ X, Y] — K[Z] be ak-algebra epimorphism
such thate(X) # 0, a(Y) # 0. Letn = deg a(X), m = deg, a(Y).
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Suppose chak does not divide g.c.dnf, n). Thenn dividesm or m
dividesn.

Proof. By the symmetry of the assertion, we may assume that ichar
does not dividen. Thena is a permissible embedding. We now use the
notation of[(9.3) anf (9.)7) wit = k[Z]. By (@73) and[[3.7]2) we
haverp = —nandr; = —-m # co. Thereforeh > 1. By Lemmd(9.8) (ii)
we havel'r(f) = Z~. Therefore-d, € I'r(f), so thatrg dividesry orry
dividesro by Lemmd(9.9). This means thadividesm or mdividesn,
and the theorem is proved. m|

The following example shows that in Theorm (9]11) we caneot
lax the condition “chak does divide g.c.d.nf, n)”.

(9.12) EXAMPLE. Let p = chark. Lete, sbe positive integers and let
x= 2"

S
y= Z+Zaizip
=0

with g € kfor0 <i < sandas # 0. Leta : k[X,Y] — k[Z] be the
k-algebra homomorphism defined bgX) = x, a(Y) = y. We claim that
« is surjective. To prove our claim, it is enough to show that k[x, y].
In fact, we show by descending induction ¢rihat ZP" € k[x,y] for
0 < | < g this assertion being clear fgr= e. Suppose now that> 0

andzP"* € k[x, y]. We have
j j > j j+1;
yP =2ZP 4 el (ZP.
0

This shows thaZ? € k{x,y], and our claim is proved. Now, let
n=deg x = p%, m=degy = sp Itis clear that we can choosgsto
be such that neithardividesm nor mdividesn. Specifically, take > 2
ands = gp° whereq, c are integers such thgt> 2,q = 0 (mod p) and
O<c<e-2
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(9.13) QUESTION.Leta : k[ X, Y] — k[Z] be ak-algebra epimorphism
such thatz(X) # 0, a(Y) # 0. Letn = deg, a(X), m = deg, a(Y). Let
p = chark, and letn = n’p, m = n'p?, wheen’, 7, e, d are integers
such tha’” # 0 (modp), M £ 0 (mod p), e> 0,d > 0. Is it then true
thatn’ dividesnY or nY dividesn’?

(9.14) DEFINITION. Let A = K[X,Y] and leto- be ak-algebra auto-
morphism ofA. We sayo is primitive if there existsP(Z) € k[Z] such
that

either a(X) =X, o(Y) =Y+ P(X);
or a(X) = X+ P(Y), o(Y)=Y.

We sayo is linear if there exista;, bj, ¢ € k, i = 1,2, such that
o(X) = ayX+bY+cp, o(Y)=aX+hY+co.

We sayo is elementaryif o is primitive or linear. We say- istame 73
if o is a finite product of elementary automorphisms.

(9.15) REMARK. It is easily checked that the set of all tame automor-
phisms ofA is a subgroup of the group of dtalgebra automorphisms
of A. In fact, it is true that alk-algebra automorphisms éfare tame.

In the next section we shall deduce this fact from the Epirnisrp The-
orem in case chade = 0 (Theorenj (10.]))

(9.16) DEFINITION. Leta, B : K[X,Y] — K[Z be k-algebra epimor-
phisms. We say is equivalenf(resp.tamely equivalentto 3 if there ex-
ists ak-algebra automorphism (resp. tame automorphisnof k[ X, Y]
such that the diagram

k[x, Y]
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is commutative, i.eq = Bo.

(9.17) REMARK. ltis clear that both equivalence and tame equivalence
are equivalence relations and that tame equivalence isngtjaivalence.

(9.18) DEFINITION. Let @ : k[X, Y] — k[Z] be ak-algebra epimor-
phism. We sayr is wild if a(X) # 0, a(Y) # 0 and chak divides both
deg a(X) and deg a(Y).

(9.19) EPIMORPHISM THEOREM (SECOND FORMULA-
TION).

Let o,8 : K[X,Y] — K[Z] be k-algebra epimorphisms. Assume that
neithera norgis wild. Thena andg are tamely equivalent. In particular,
« andg are equivalent.

Proof. Lety : kK[ X, Y] — k[Z] be thek-algebra epimorphism defined by
y(X) = Z, y(Y) = 0. Then, since tame equivalence is an equivalence
relation, it is enough to prove the following assertion: m|

(9.19.1)

If @ is not wild thene andy are tamely equivalent.

Given «, we define theransposer! of « to be thek-algebra epi-
morphisma! : K[X,Y] — k[Z] given by a'(X) = a(Y), a'(Y) = a(X).
Clearly, @ and o! are tamely equivalent and is wild if and only if
o' is wild. PutD(e) = deg, o(X) + deg, a(Y). ThenD(a) = D(a).
We now provg (9.19:11) by induction dd(e). First, supposd®(a) <
1. Replacinge by o', if necessary, we may assume that ge(x) >
deg a(Y). Then, sincer is surjective, the assumptidd(a) < 1 im-
plies that dega(Y) < 0 and dega(X) = 1. This means that there
exista,b,c,€ k, a # 0, such thaty(X) = aZ+ b andea(Y) = c. Leto
be thek-algebra automorphism &f X, Y] defined bys(X) = a(X) + b,
o(Y) =Y + c. Theno is tame and clearly we have= yo.

Now, supposéd(a) > 2. Again, replacingy by !, if necessary, we
may assume that deg(X) > deg, «(Y). This means, in particular, that
a(X) ¢ k. If a(Y) € kthen deg a(X) > 2. This is not possible, since
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« is surjective. Therefore(X) ¢ k anda(Y) ¢ k. Letn = deg, «(X),
m = degy a(Y). Sincea is not wild andn > m > 1, it follows from
Theoren[(9.1]) tham dividesn. Letn = rm, wherer is a positive
integer. Write

m

a(X)= > aZ, oY) = zm: b;Z!
=0

i=0

with &, bj € kfor 0 <i <rm, 0 < j < mandby, # 0. Leto be the 75
k—algebra automorphism & X, Y] defined byo(X) = X — aymb;] Y'
ando(Y) = Y. Theno is primitive, therefore tame. Let’ = ao. Then

a’ : KX, Y] — K[Z] is ak-algebra epimorphism andanda’ are tamely
equivalent. Now, we have

@' (X) = a(o(X))
= a(X — amby Y")

m r
Z ijj] .
i=0

This shows thatlegca’(X) < rm = n. Moreovera’(Y) = a(o(Y)) =
a(Y). Therefore dege’(Y) = m, and we geD(a’) < D(a). Now, since
« is not wild, chark does not divide g.c.dn(m) = m = deg, ¢’(Y).
This shows thaty’ is not wild, so thate’ andy are tamely equivalent
by induction hypothesis. Thereforeandy are tamely equivalent, and

is proved.

(9.20) COROLLARY. If char k = 0 then any twdk-algebra epimor-
phismsk[X, Y] — K[Z] are tamely equivalent.

rm )
= > aZ - amby
i=0

Proof. Immediate from Theoreifn (9.19), sine if char= 0 then there
are no wildk-algebra epimorphisms. O

(9.21) COROLLARY. Let chark = 0. Lety be an element df[X, Y]
such thak[X, Y]/(¢) is isomorphic (as &-algebra) tk[Z]. Then there
exists an element of k[ X, Y] such thak[y, ¢] = K[X, Y].
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Proof. Let a : K[X,Y] — k[Z] be thek-algebra epimorphism defined
by @ = vu, whereu : k[X,Y] — k[X, Y]/(¢) is the natural surjection
andv : k[X,Y]/(¢) — k[Z] is ak-algebra isomorphism. Then ker=
(¢). LetgB : KX Y] — K[Z be thek-algebra epimorphism defined by
B(X) = Z, B(Y) = 0. then kep = (Y). By Corollary[(9:20) there exists
a k-algebra automorphisror of K[ X, Y] such that3 = ao. This gives
(¢) = kera = o(kerp) = (o(Y)). Thereforer(Y) = gp. Let¥ = o(X).
Thenk[x, Y] = Klo(X), o(Y)] = K[y, 2¢] = K[y, ¢]. O

(9.22) LEMMA. Let the assumptions be those of Corollary (9.21). As-
sume, moreover, thakeg, ¢ > 0. Then:

(i) geismonicinY for somer.

(i) o(X71,Y) is irreducible ink((X))[Y], wherek is the algebraic clo-
sure of k.

Proof. Let @ : K[X,Y] — k[Z] be thek-algebra epimorphism defined
at the beginning of the proof of Corollafy (9:21). Then &kee (y).
Since degy > 0, we haveX — a # 0 (mody) for everya € k. This
shows that dega(X) > 0. Thereforex is a permissible embedding. Let
f = (X, Y) € k((X))[Y] be the meromorphic equation af It follows
from Remari(9.3) that ker = (f(X~1,Y)). Thereforef(X~1,Y) = gy
for someg, and the lemma is proved. O

(9.23) COROLLARY. Let the assumptions be those of Corollary (9.21).
Assume, moreover, that dgg > 0. Then there exists an elemenbf
K[X, Y] such that degy < deg, ¢ andk[y, ¢] = K[X, Y].

Proof. By Corollary[(9.2]) there existg € k[X, Y] such thatkk[y, ¢] =
K[X, Y]. It is now enough to show that if deg > deg, ¢ then there ex-
istsy’ € K[X, Y] such that degy’ < deg, y andk[y’, ¢] = k[X, Y]. Let
n = deg, ¢, m = deg, ¢ and supposen > n. In view of Lemmd(9.22),
replacingy by ¢, we may assume thatis monic inY. Similarly, since

KIX. Y1/ (@) = Kl¥. ]/ () = Klg] ~ K[Z].

we may replacey by @y and assume thak is monic inY. Now,
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K[y, ¢] = K[X, Y] implies thatk'[y, ¢] = K'[Y], wherek’ = k(X). There-
fore if S, T are indeterminates then tké-algebra homomorphism :
K'[S,T] — K[Y] defined byy(S) = v, y(T) = ¢, is surjective. There-
fore by Theoren] (9.1]Lh divides m or m dividesn. Sincem > n,
we getm = pn for some positive integep. Lety’ = ¢ — ¢P. Then
K[y, ¢] = K[y, ¢] = K[ X, Y]. Moreover, since botly ande are monic in
Y, we have degy’ <m. ]

(9.24) THEOREM. Let char k= 0. Lety = ¢(X,Y) be an element of
K[X, Y] such that n= deg,¢ > 0, ¢ is monic in Y and kX, Y]/(¢) is
isomorphic (as a k-algebra) tdK]. Let f = f(X,Y) = (X1, Y). Then
f is irreducible ink((X))[Y]. Let h= h(f) and lety = Appﬂ(ga), where
d = dn(f). If h > 2then Ky, ¢] = K[X,Y]. (As usualk denotes the
algebraic closure of k.)

Proof. Leta : K[X, Y] — K[Z] be thek-algebra epimorphism defined by
a = vu, whereu : K[X, Y] — KX, Y]/(¢) is the natural surjection and
v : KX, Y]/(¢) — K[Z] is ak-algebra isomorphism. Then ker= (¢)
and, sincen > 0, « is a permissible embedding. Singas monic inY,

it follows from RemarK{9.3) thaf is the meromorphic equation of
We now use the notation pF{9]3) afd (9.7). lget g(X, Y) = Apd(f).
Then by Propositiof (ZJJ(X, Y) = ¢(X1,Y). Sinceh > 2, we have
ordiy(t™",y) = ord g(t",y) = rn by Theoren{(8.:2). Since(t™",y) =
(¥ (X,y)), it follows from (231) that degy(X,y) = —rn. By Lemma
(v) we haver,, = —1. Therefore we have

(9.24.1) dega(y) = 1.

O

Now, by Corollary[{9:23) there exists an elemgnif k[ X, Y] such
that deg v’ < nandk[y/, ¢] = k[ X, Y]. It follows thatk[Z] = k[a(y)]. 78
Therefore we have

(9.24.2) dega(y) = 1.
It follows from @.24.1) and{9.241.2) that we hav@/’) = aa(y) +b

for somea, b € k, a # 0. This means that

V' =ay+b+ g
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for somed € k[X,Y]. Since degy’ < nand degy = n/d < n, we
getd = 0 andy’ = ay + b. This shows thak[y’, ¢] = K[, ¢], and the
theorem is proved.

With the notation and assumptions of Theofem (9.24) we Hawe t
following four corollaries:

(9.25) COROLLARY. If h > 2 thenrp(—n, f) = —-1.
Proof. This was noted in the proof of the theorem above. m|
(9.26) COROLLARY. deg, ¢ divides deg ¢ or deg, ¢ divides deg ¢.

Proof. Let a : K[X,Y] — Kk[Z] be the permissible embedding defined
in the proof of Theorenf (9.24). Then, sind€X,Y) = o(X71,Y) is
the meromorphic equation ef (RemarK(9.3)), it follows from Lemma
that dega(X) = deg,¢ = n, Letm = deg, ¢. If m = 0 thenn
dividesm. If m > O then by the argument above, we get ge@y) = m.
Now, it follows from Theoreri (9:11) thatdividesmor mdividesn. O

(9.27) COROLLARY. da(f) = dy(f) or do(f) = —qu(~n, ).

Proof. As seen in the proof of Corollafy (9.26), we have deg, a(X).

Therefored;(f) = deg, a(X). Moreover, by [9.712) we have deg

a(Y) = —u(-n, f). Now, the corollary follows from Theorefn (9.11).
i

(9.28) COROLLARY. K[ X, Y]/(¥) is isomorphic (as &-algebra) to
K[Z].

Proof. This is clear, sinc&[X, Y] = K[y, ¢]. m|

(9.29) REMARK. The results proved in (9.41] -(9.28) above hold also
for chark > 0 (and, infact, the same proof goes through), provided
we make the assumption that geg(or, by symmetry, degy) is not
divisible by chark.
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10 Automorphism Theorem

As in 9,k ia an arbitrary field an&, Y, Z are indeterminates.

(10.1) Automorphism Theorem.

Everyk-algebra automorphism &f X, Y] is tame.

(For the definition of a tame automorphism, Eee (9.14). Irptoef
below we deduce the Automorphism Theorem from the Epimsrphi
Theorem in case chdr= 0. For a proof in the general case the reader
is referred tollb].)

Proof of [T0.T} in chark = 0. Lety be ak-algebra automorphism of
K[X,Y]. Lety : k[X, Y] — k[Z] be thek-algebra epimorphism defined
by y(X) = Z, y(Y) = 0, and leta = yp. Thena : k[X,Y] — k[Z] is
also an epimorphism. Therefore by Corollary (9120) theiistex tame
k-algebra automorphisnmr of K[ X, Y] such thate = yo. Thus we get
yo = yo. Puty = o1, Theng = yo, and it is enough to prove that
¥ is tame. Nowyy = y. Thereforey(kery) = kery. Now, kery = (Y).
Therefore we have 80

(10.1.1) w(Y) = aY
for somea € k, a # 0. Now,
KIYIEX] = K[y (Y), w(X)] = K[aY, ¢(X)] = K[Y][¥(X)].
Therefore there exig?(Y) € k[Y] andb € k, b # 0, such that
(10.1.2) w(X) = bX + P(Y).

It is clear from [I0.111) and{10.1.2) thatis tame.

(10.2) THEOREM. Let f, g be elements of X, Y] such that kf, g] =
K[X, Y]. Thendegf dividesdegg or degg dividesdegf.

(Here deg denotes total degree with respecXtd’. In the proof
below we deduce Theorefn (10.2) from the Epimorphism Thedrem
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case chak = 0. For a proof in the general case the reader is referred to
[51.)

Proof of [10.2) in case chak = 0. Letn = degf, m = degg. Let f* be
the homogeneous componentfadf degreen, i.e., f* is a homogeneous
polynomial inX, Y of degreen such thatf = f* + " with f’ € k[X, Y]
and dedf’ < n. Itis then clear that degf < nif an only if X dividesf*.
Similarly, deg, g < mif and only if X dividesg*, whereg* is the homo-

geneous component gof degrean. Sincej X + aY|a € kt is aninfinite

set of mutually coprime elements kffX, Y], there existsa € k, a # 0,
such thatX’ = X + aY divides neitherf* norg*. Therefore, replacini
by X" we may assume that= deg, f, m = deg, g. Letk’ = k(X) and
let S, T be indeterminates. Let : K'[S, T] — K'[Y] be thek’-algebra
homomorphism defined by(S) = f, a(T) = g. Then the assumption
K[ f,g] = k[X, Y] implies thata is an epimorphism. Therefore it follows
from Theorenf (9.11) that dividesm or mdividesn.

11 Affine Curves with One Place at Infinity

(11.1)

Throughout this section, by waluationwe shall mean aeal discrete
valuation with value grou@. Thus ifK is a field then a valuation of
Kisamapv: K — Z U {oo} satisfying the following three conditions:

() v(a) = ifanonlyifa=0

(i) vIK*: K* — Zis a surjective homomorphism of groups, whire
is the group of units oK

(i) v(a+ b) = min(v(a), v(b)) for all a, b € K.

We denote byR, the ring ofv and bym, the maximal ideal oR,.
Recall thatR, = {a € klv(a) > 0} andm, = {a € K|v(a) > 0}. The ring
R, is a discrete valuation ring with quotient fiekl If k is a subfield
of K such thaw(a) = 0 for every non-zero elemeatof k then we say,
as usual, that is a valuation ofK/k. Note that in this case the residue
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field R,/m, of vis an overfield ok. We sayv is residually rational over
kif kK= R,/m,. LetL/K be a field extension. Latbe a valuation of
K and letw be a valuation oL.. We sayw extends (or lies over) if
RyN K =R,

(11.2) DEFINITION. Letk be a field and leA be ak-algebra. We say
Ais anaffine curveoverk (more precisely, theoordinate ringof anin-
tegral gfine curveoverk) if the following three conditions are satisfied:

(i) Ais finitely generated aslaalgebra.
(i) Ais an integral domain.

(iii) A has Krull dimension one, i.e. K is the quotient field oA then 82
tr.deg K =1

(11.3) DEFINITION. Let A be an &ine curve ovek. We sayA is a
planeatfine curve (respthe gfine ling if A is generated askalgebra
by two elements (resp. one element). Note that tii@ealine is the
polynomial ring in one variable ovéx

(11.4) DEFINITION. Let A be an #ine curve ovek. We sayA has
only one place at infinityf the following two conditions are satisfied:

() There exists exactly one valuatianof K/k, whereK is the quo-
tient field of A, such thatA ¢ R,.

(i) The unique valuatiorv of condition (i) is residually rational over
K.

We callv the place(or valuation) of Aat infinity.

(11.5) EXAMPLE. An affine polynomial curve ovek (Definition[(9.1))
has only one place at infinity. For,A4fis such a curve theA c k[Z] and
the quotient field ofA is k(Z), whereZ is an indeterminate. W is the
Z1-adic valuation ok(Z)/k then it is clear thav is residually rational
overk and is the unique place @ at infinity. In particular, the fine
line has only one place at infinity.
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(11.6) LEMMA. Let v be a valuation of Kk. Let x be a non-zero
element of K. If x is algebraic over k thefxy = 0.

Proof. Suppose/(X) # 0. Sincex is algebraic ovek if an only if x 1 is
algebraic ovek, we may assume thafx) > 0. If xis algebraic ovek
then, sincex # 0, there exish > 1 anda; € k, 0 <i < n- 1, such that
ag # 0and

X"+ a1 X"+ agx = ag.

Sincev(x) > 0, we havev(x" + a,_1 + ... + a1X) > 0. Butv(ag) = O.
This contradiction proves thafx) = 0. m|

(11.7) LEMMA. Let v be a valuation of Kk such that v is residually
rational over k. Then k is algebraically closed in K.

Proof. Let x € K be algebraic ovek. We want to show thak € k.
We may assume that # 0. Thenx ! is also algebraic ovek. Since
x € R, or x1 e R, we may assume, without loss of generality, that
x € Ry. Then sincey is residually rational ovek, there exista € k such
thatv(x — a) > 0. Now, sincex — a is algebraic ovek, it follows from
Lemmd(11.8) thak — a = 0, which shows that € k. o

(11.8) LEMMA.. Let A be an #ine curve over k with only one place v
at infinity. Let K be the quotient field of A. LeexA, x¢ k. Then:

(i) x is transcendental over k and v is the unique valuation gf K
extending the %-adic valuation of kx)/k.

(i) v(x) = —[K : k(xX)]. In particular, (x) < O.
(iii) A'is integral over kx].
Proof.

() Sincev is residually rational ovek and sincex ¢ k, x is transcen-
dental overk by Lemma[{T1.]). Let’be any valuation oK/k
extending thext-adic valuation ok(x)/k. Thenx! is a non-unit
in the ringR, of V.. This means thax ¢ R,. ThereforeA ¢ Ry,
and the hypothesis ofsimplies thatv = V'.
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(i) Sincevis the only valuation oK /k extending thex1-adic valua-
tion of k(x)/k and since the residue field efs k, [K : k(X)] equals
the ramification index o over thext-adic valuation ofk(x)/k,
i.e., [K: k(X)] = v(x1) = —v(x).

(i) Let y € A. To show thaty is integral overk[x], it is enough to
show thaty is integral over each valuation ring kfx)/k containing
k[x]. Let thenR, be such a valuation ring with valuatiom and
let wy,...,w; be all the extensions af to t( Then, ifRy is the

integral closure oR,, in K, we haveR,, = ﬂ Rw. Therefore it is

enough to prove that e Ry, for everyi, 1 Isll <r. SinceAc Ry
for every valuationv’ of K/k other thanv, we have only to show
thatw; # v for everyi, 1 <i <r. Butthis is clear, sinca € Ry,
for everyi, 1 <i <r, andx ¢ R, by (ii).

O

(11.9) COROLLARY. Let A be an #ine curve ovek with only one
placev at infinity. Thenv(A —{0}) = {v(a)|a cAa=+ 0} is a subsemi-

group of the semigroup of non-positive integers. Moreoteg, only
units of A are the non-zero elementslof

Proof. The first assertion is immediate from Lemifna (1}1.8) (ii). To
prove the second assertion, bet¢ k. Thenx is transcendental over
k, hence a non unit iR[X]. SinceA is integral ovelk[x], X is a hon-unit

in A O

(11.10) REMARK. In view of Corollary[{TIT.9), we may omit explicit
mention ofk in Definition[(TT.4). Thatis, we may s&yto have only one
place at infinity ifthere existsa subfieldk of A such thatA is an dfine
curve overk with only one place at infinity in the sense of Definition
[TIZ). The subfield is then uniquely determined Wy, viz, it is the set

of all units of A together with zero. We call the ground fieldof A. 85

(11.11) DEFINITION. Let R be a ring and leR[Y] be the polynomial
ring in one variableY overR. An elementf of R[Y] is said to bealmost
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monicin Y if f # 0 and the leading cdicient of f is a unit inR, i.e.
f # 0 and there exists a uratin R such that ded( — aY") < n, where
n=deg, f.

(11.12) PROPOSITION.Let k' be a field and lek be its algebraic clo-
sure. Letp = ¢(X,Y) be an element df'[X, Y] < k((X"1))[Y] such that
deg, ¢ > 0. LetA = K'[X,Y]/(¢), where ) = ¢k'[X, Y]. Assume that
Alis an dfine curve ovek’ with only one placer at infinity. Then:

() ¢ is almost monic iny.

(ii) degy ¢ = -V(X + (¢)).
(iii) ¢ is irreducible ink((X"1)[Y].

Proof. Letx = X+ (¢). Since deg¢ > 0, we havex ¢ k. Therefore by
Lemmd(IT:gK is transcendental ovéf andA is integral ovek’[x]. In
particulary = Y + (¢) is integral ovek’[X], and (i) is proved. Now, iK
is the quotient field oA then we have degy = [K : K'(X)]. By Lemma
we haveK : K'(x)] = —v(x). This proves (ii). In order to prove
(iii), we may, in view of (i), replacep by ay for a suitable non-zero
elementa of k' to assume thag is monic inY. Theny(x, Y) € K'[X][Y]
is the minimal monic polynomial of overk’(x). Let L be an overfield
of k((x™1)) such that we havelkd(x)-monomorphisnu : K — L andL is
generated ovek((x 1)) by u(y). (Here we regar#((x 1)) as an overfield
of K'(X) via the natural inclusionk’ < k(xX) < k((x1)).) Lety(x,Y) €
k((x~1))[Y] be the minimal monic polynomial af(y) overk((x1)). In
order to prove (iii), it is enough to show thatx, Y) = ¢(x,Y). Now,
since(x, U(y)) = u(e(x,y)) = 0, ¥(x, Y) dividesg(x, Y) in k((x"1)[Y].
Therefore it is now enough to show that degx, Y) < deg, ¢(x,Y).
Letn = deg, ¢(x,Y), m = deg, ¥(x,Y). Thenn = v(x ) by (ii), and
m = [L : k(x1))]. Letw be a valuation ol extending thex1-adic
valuation ofk((x™1))/k. We claim that there exists a (unique) valuation
v of K such thatw is an extension of’. For, letw : K — Z U {c0}
denote the restriction affto K. Then, writingK* for the group of units
of K, w'(K*) is a subgroup af. Sincew(x™!) > 0 andx* € K, we have
w (K*) # 0. If r is the positive generator oF (K*), we putv’ = r=1w'.
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Thenv : K — ZU{oo} is surjective and our claim is proved. Now, since
v(x1) > 0, v is an extension of the!-adic valuation ofk’(x)/K’.
Thereforev' = vby Lemmd{TL.8). Now, we get= v(x 1) = v(x 1) =
rlw(x 1) <w(x 1) < [L : k((x1))] = m, and (iii) is proved.

This completes the proof of the proposition. O

(11.13) NOTATION. Let k be an algebraically closed field and et
¢(X,Y) be an element ok[X, Y] such thaty is monic inY and char
k does not divide degy. In particular, this means that deg > O.
Letn = deg, ¢. Assume that is irreducible ink((X"1))[Y]. Putf =
f(X,Y) = (X1, Y). Thenf is a irreducible element &{(X))[Y] and f

is monic inY with deg, f = n. Therefore by Newton’s Theorem (5.114)
there existg/(t) € k((t)) such thatf (t", y(t)) = 0. Letk’ be a subfield of
k such thatp € K[x,Y]. Let R = K[X1]. Thenf € RY]. LetR[Y] =
RY]/fR[Y] and letA = K'[X, Y]/oK'[X, Y]. Itis then clear that th&’-
algebra isomorphisn®’ : K'[X,Y] — R[Y] defined by#'(X) = X1,
¢'(Y) = Y, induces &’-algebra isomorphisrd’ : A — R[Y]. Recall
also that ifk’[t™", y(t)] denotes théx’-subalgebra ok((t)) generated by 87
t™" andy(t) then by Lemm#& (8:3) there exists-algebra isomorphism
U: RY] - K[t™, y(t)] given byT(F(X, Y)) = F(t", y(t)), whereF (X, Y)
denotes the image of an elemdn(X, Y) of R[Y] under the canonical
homomorphismR[Y] — R[Y]. Puttingé = T¢’, we get ak’-algebra
isomorphism

0:A=K[X Y]/oK[X Y] = K[t™", y(t)]

given byd(F(x,Y)) = F(t™", y(t)) for F(X,Y) € K'[X, Y], wherex (resp.
y) is the canonical image of (resp.Y) in A. In the sequel we shall

(11.13.1) Identify Awith K'[t™", y(t)] via 6.
Note that under this identification we haxe= t™" andy = y(t).
Let K = K'(t", y(t)) be the quotient field oA. SinceK is a subfield of

k((t)), we have a map

ordi : K = Z U {o0}.
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Leth = h(f) and letrj = rij(-n, f), di;1 = di;1(f)forO<i <h+ 1.
LetI'g(f) be the value semigroup dfwith respect tR. Recall that

i(f) = {ord FE y)F(X. ) € RIYL F(y(t) # 0}
(11.14) LEMMA. With the notation df (TT.IB), we have:
(i) ordi(A—{0}) = I'r(f).
(ii) ord, is a valuation of Kk’.
(iii) A'is an gfine curve over kwith only one place ordat infinity.
(iv) ord:(A —{0}) is strictly generated by £ (rg,...,rn)

88 (V) ro<0,rp=co0rrp<0,andr <0for2<i<h,.
Proof.

(i) In view of the identification ofs with K'[t™", y(t)] via 6, we have
TR(f) = {ord FE YO)|FOC Y) € RIYL (. ()  0f
- {orolt F(E y@)|F (X Y) € KIX. Y] F(E" y(0) # o}
= {ord F(x y)|F(X ¥) € KIX. Y1, F(x) # 0}
= {ordt a|a eA % 0}
= orck(A — {O}).

(i) We have only to show that ofd K — Z U {oo} is surjective or,
equivalently, that ordK*) = Z, whereK* = K—{0}. Now ord(K*)
is clearly the subgroup & generated by the semigroup ¢l —

{0}), hence by['r(f) in view of (i). SinceX™! e R, the assertion
now follows from Corollanf(8.8).

(iii) Since ¢ is monic inY, Ais integral ovelk’[x]. We have orgdx) =
ord(t™") = —n. Therefore

ordk(x 1) = n=deg, ¢ = [K : K(X)].
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This shows that ordis the only valuation oK/k’ extending the
x~1-adic valuation ofk’(x)/k and that orgis residually rational
overk’. Now, letw be any valuation oK/k’ such thatA ¢ R,.

Then, sinceA is integral overk'[x], we havek’'[X] ¢ Ry. This

means thawv(x) < 0, so thatw(x™1) > 0. Thereforew extends the
x~1-adic valuation ok’(x), and we getv = ord.

(iv) Thisisimmediate from Theorefn (8]7) (jii since we have og(A—
{0}) = I'r(f) by (i) and we are in the pure meromorphic case.

(v) We haverg = —n < 0. Next,r; = ordi(y). If y e kK thenord(y) =0 89
orco. If y ¢ K then, sincey € A, we get orgy) < O by (iii) and
lemma[TTLA) (ii). Now, leti = gi(X,Y) = Apdi(f), 2<i <h.
Theng € K[XY[Y] for everyi by Theoren{(8.3)(i). Puy; =
X, Y) = gi(X7L,Y), 2 <i < h. Theny; € K[X,Y] for everyi.
Now, for 2< i < h, we have

ri = ord gi(t", y(t)) (by Theorenf{8:2))
= ord ¢i (t™", y(1))
= org; ¥i(X, ) (by I1.I312))

Therefore by (iii) and Lemma{ZTI]8) (ii) it is enough to prakaty;(x, y)
¢ k' for everyi, 2 <'i < h. Now, we have degy; = n/d;. This shows
that 1 < deg,¢i < n = deg, ¢ for everyi, 2 < i < h. Therefore,

for everya € k', ¢ does not divides; — ain K'[X,Y]. This means that
vi(xy) K. O

(11.15) THEOREM. Let k be an algebraically closed field and {ebe
an element of K, Y] such thatdeg, ¢ > 0. Consider the following four
conditions.

(i) Forevery subfieldkof k such thatp € K'[X, Y], K[X, Y]/oK'[X, Y]
is an gfine curve kwith only one place at infinity.

(i) KX Y]/¢k[x Y] is an gfine curve over k with only one place at
infinity.
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(iii) There exists a subfield &f k such thatp € K'[X, Y] and K[X, Y]/¢
K'[X,Y] is an gfine curve over kwith only one place at infinity.

(iv) ¢ is almost monic in Y and is irreducible in K(X"1))[Y].

We have (i (ii) = (iii) = (iv). Moreover, if char k does not divide
deg, ¢ then (iv)= (i).

Proof. (i) = (ii) = (iii). Trivial.

(i) = (iv). Immediate from Proposition (11.32).

(iv) — (i). Assume that chak does not divide dggy. Letk’ be
a subfield ofk such thaty € k'[X,Y]. Then, replacingy by a ¢ for a
suitablea € k', we may assume thatis monic inY. Now, (i) follows

from Lemmd{IT.13) (iii). o

(11.16) COROLLARY. Let K be a field and lek be its algebraic clo-
sure. Lety = (X, Y) be a non-zero element &f[ X, Y] such that chak
does not divide dggy andk'[X, Y]/¢k'[X, Y] is an dfine curve ovek’
with only one place at infinity. Then for every € k, kK'(2)[X, Y] is an
affine curve ovek’(1) with only one place at infinity

Proof. Since chak does not divide degp, we have degy > 0. There-
fore by Theoremi (T1.1h) is almost monic irY, i.e. there exista € K/,
a # 0, such that@a ¢ is monic inY. Sincek = {a/1|/l € k}, we may
replacey by a ¢ and assume thatis monic inY. By Theorenf (T1.T})
¢ is irreducible ink((X~1))[Y]. Since deg(y¢ + 1) = deg, ¢ is not di-
visible by chark for every 1 € k, it is enough, by Theoretfn (11.15),
to prove thaty + A is irreducible ink((x1))[Y] for every A € k. Let
n =deg ¢. Putf = f(X,Y) = ¢(X71,Y). Thenf is an irreducible
element ofk((X))[Y] and f is monic inY with deg, f = n. Clearly, itis
enough to prove that + A is irreducible ink((X))[Y] for every A € k.
By Newton’s Theorer (5.1)) there exists an elemgtytof k((t)) such
that f(t",y(t)) = 0. Leth = h(f), s = s(-n, f) andr; = rj(-n, )
for 0 < i < h. Then by Lemm4 (ITI.T4)(v) we havg < 0. First,
suppose that, = 0. Then by LemmAT{II.T4)(v) we hatre= 1. There-
fore we get 1= dn;+1(f) = do(f) = g.c.d. €o,r1) = g.c.d. £n,0) = n.
Thus in this case we have dgd + 1) = 1, which clearly implies that
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f + A is irreducible ink((X))[Y]. Now, suppose that, < 0. Then
$h < 0. Letfy = f+ 4 Thenfi(t",y(t)) = 2 € k. Therefore
ord f(t",y(t)) > 0 > s,. Now, it follows from the Irreducibility Cri- 91
terion (Theoreni (IZ:}4)) proved in the next section thas irreducible

in K(())[Y]. ]

(11.17) REMARK. Let us justify the use of a result from€]12 in prov-

ing Corollary[{T1.1§) by declaring that the result of Caaofi[(T1.16)
will not be used anywhere in the sequel.

(11.18) QUESTION.Is Corollary[{IT.18) true without the assumption
that chark does not divide degy?

(11.19) PROPOSITION.Let k be a field and leh be a positive integer
such that chak does not dividen. Let

© = 9% Y) = ao(X)Y" + & (XY™ + - + an(X)

with & (X) € k[X] for 0 < i < n, a(X) # 0. Letm = deg¢. As-
sume thak[ X, Y]/¢K[ X, Y] is an dfine curve ovek with only one place
at infinity. Thenag(X) € k and we havendeg, & (X) < im for every
i,0 <i < n. Moreover, ifm > 1 then we have dgg,(X) = mand

ndegy & (X) < idegy an(X) for everyi,0<i <n.

Proof. By Propositior] {TI.T2) is almost monic irlY. This means that
ag(X) € k. Therefore, replacing by ag(X) ¢, we may assume that
ag(X) = 1. Now, if m = 0 then the assertion is clear. Assume therefore
thatm > 1. Then by Propositiofp {T1.712) is almost monic inX. This
shows that degan(X) = m. O

_ Now, by Propositio (TT.Tpp is irreducible ink((X"1)[Y], where
kis the algebraic closure & Therefore by Newton's Theoren (5.].4)
there existg/(t) € k((t)) such that

et Y) = [ ] (Y- yw).

wepn(k)

Let q = ord y(wt) for all w € un(k). Then, sincey(t™") equals €1) 92
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times thei elementary symmetric function @f(ww € un(k)}, we
have orda;(t™) > iq for 1 < i < n. Moreover, since

an(t™) = (1" [] yow),

wegin(k)

we have ordan(t™") = ng, which givesq = ordy a,(X 1) = —deg,
an(X). Therefore for every, 1 <i < n, we get

ndeg, a;(X) = —nordy a (X1
= —orca(t™)
< -iq
= i degy an(X)
=im.

(11.20) COROLLARY. Letk be a field of characteristic zero and et
g be elements ok[X, Y] such thatk[ f,g] = k[X,Y]. Let m = deg f,
n = deg, f and let

f =ag(X)Y"+ar(X)Y™ L + -+ ay(X)

with a(x) € k[X] for 0 < i < n. Then we havendeg, &(X) < im for
0 <i < n. Moreover, ifm> 1 (resp.n > 1) thenf is almost monic inX
(resp.Y).

Proof. The inequalityndegy a(X) < imis obvious forn = 0. We may
therefore assume that> 0. Then, sinc&[X, Y]/ fk[X, Y] is isomorphic
to k[g], which is an #&ine curve ovek with only one place at infinity
(Example[(IT3)), the corollary follows from PropositidfiSL.I9) and
L12). 0

(11.21) DEFINITION. Letk be afield and lef be a non-zero element
of k[X,Y]. Write f = } &;X'Y! with &; € k. Thedegree formof f,
denotedf*, is defined by

1= > aXY

i+j=n
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wheren = degf. (Note that ded and f* depend only on th&-vector
subspacdX @ kY of k[ X, Y] and do not depend uponkabasisX, Y of
kXa®KkY.)

(11.22) DEFINITION. Let f € K[X,Y], f ¢ k. We sayf hasonly one
point at infinityif f* is a power of a linear polynomial ik{x, Y], where

k is the algebraic closure &€ (Note that this definition depends only
on thek-vector subspackX @ kY of K[ X, Y] and is independent of the
choice of &k-basisX, Y of kX & kY.)

(11.23) PROPOSITION.Let k be a field of characteristic zero and let
f be an element df[ X, Y] such thatk[ X, Y]/ fk[X, Y] is an dfine curve
over k with only one place at infinity. Theri has only one point at
infinity.

Proof. We may assume that is algebraically closed. For, by inter-
changingX andY, if necessary, we may assume that@{dég> 0 and
then apply Theoreln (T1.15).

Now, supposef* is not a power of a linear polynomial kX, Y].
Then, replacingX, Y by a suitablek-basis ofkX @ kY, we may assume
that f* is of the form

q
=X [x+ay),
i=1
wherer, g are positive integers argd € k, g # 0, for 1L <i < . Let 94
m = degy f andn = deg, f. Thenm=r +gqandm>n>q=> 1. By
Propositio {TT.I2¥ is almost monic irY. Thereforen > qand we can
write f in the form
f = fl + f2 + f3,
wheref, = f*, f, = bY" for someb € k, b # 0, and
fz = Z CiniYi
i+j<m
j<n

with cij € k. Let A = k[X, Y]/ fK[X, Y] and letv be the valuation oA
at infinity. Let F denote the image of an elemdrtof k[ X, Y] under
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the canonical mag[X, Y] — A. Then by Propositiofi (11.12) we have
V(X) = —=n, (Y) = —-m. Since—-m < —n, we havev(X + &Y) = —m for
everyi, 1 <i < g, and we get

v(f)) = -rmn—-gm<-rm-qgn=-mn
Therefore, since(f,) = —-mn, we get
(11.23.1) v(f, + f,) <—mn

Now, let (, j) € Z* x Z* be such that;; # 0. Then by Proposition
we havei < (n— j)m. This gives—in — jm > —-mn Therefore
we get

(11.23.2) v(f3) > inf{—in - jmig;j # 0} > —mn

Sincef, + f, = —f,, ([I231) and{I1.23.2) together give a contra-
diction. O

(11.24) COROLLARY. Letk be a field of characteristic zero and et
g be elements oK[X, Y] such thatk[ f,g] = Kk[X,Y]. Thenf has only
one point at infinity.

Proof. Sincek[X, Y]/fk[X, Y] ~ K[g] is an dfine curve ovek with only
one place at infinity, the corollary follows from Proposit[6[T.Z3). o

(11.25) REMARK. Proposition (I1.Z3) and Corollafy {I1.P4) are, in
fact, true even without the assumption that dkarO.

(11.26) REMARK. Let us callk[X, Y] the affine planeoverk. Let A

be an &ine curve ovek. By anembeddingy of A in the dfine plane

we mean &-algebra epimorphism (i.e. surjective homomorphis)
kKIX,Y] — A. (See Definitiorf (9.]1).) We say two such embedding
betaareequivalenif there exists &-algebra automorphisin of k[ X, Y]

such thate = Bo. With this terminology, the Epimorphism Theorem
says that if chak = 0 (or, more generally, if we restrict our
attention to non-wild embeddings) then all embeddings @éfine line

in the dfine plane are equivalent to each other. This statement is not
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true for more generalffine curves. However, iA is an dfine curve
with only one place at infinity then to each embeddindh\ai the dfine
plane we can associate certain characteristic sequendesising the
Fundamental Theorem of[3 8, we can classify the equivalelasseas
of the embeddings in terms of these characteristic seqaeiitcean be
deduced from this classification that if chae 0 (or, more generally,
if we restrict our attention to certain “non-wild” embedds) then the
number of these equivalence classes is finite. For precienseénts
and proofs of these assertions, the reader is referred toH8ever,
in Theorems (11.26.1) and (11.26.2) below we state (witipoaof) a
simplified version of these results. 96

Suppose chak = 0 andA is an dfine curvek with only one place
v at infinity. Let @ be an embedding oA (in the dfine plane) such
thata(X) ¢ k. Let x = a(X), y = «(Y). Then by Lemm@ (TTBX is
transcendental ovérandA = K[, y] is integral ovelk[x]. Therefore the
minimal monic in polynomialp(x, Y) € k(X)[Y] of y overk(x) belongs
tok[x, Y]. Lety = ¢(X,Y). Theng is monic inY and deg ¢ = n, where
n = -v(x) (Lemm&{T1.g)). Moreover, it is clear that ker= ¢k[X, Y].
Therefore it follows from Propositiop {11.]12) thatis irreducible in
K((X"1)[Y], wherek is the algebraic closure & Let f = ¢(X1,Y).
Puth(a) = h(f), da(a) = dx(f), gi(—n, f) for 0 < i < h(a) + 1, and
d(@) = (do(@), qa(@), - - ., Gh+1(a@)) = a(-n, f), whereh = h(e).

For an embedding of A we define itstransposen! to be the em-
bedding ofA given bya!'(X) = a(Y), a!(Y) = o(X). Note thate anda!
are equivalent embeddings.d{X) € k thena!(X) ¢ k, and in this case
we define:h(a) = h(a'), da(a) = da(a"), do(e) = qu(e"), du(e) = go(a),
gi(a) = gi(a)for2<i<h+1and

(@) = (Go(@"), G (@), - .., Gher(@h)),

whereh = h(a!).

Let @ be an embedding cA. Thenv(a(X)) = go(a(Y)) = qi(@).
We call the pair £v(a(X)), —v(a(Y))) thebidegreeof @ and denote it by
bideg @). Let bideg &) = (m,n). We saya is principal if m # —co,
n # —oo andm dividesn or n dividesm. Otherwise, we say is hon-
principal. Note thatd,(a) = g.c.d. fn, n). We now state
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(11.26.1) THEOREM

Let k be a field of characteristic zero and ketbe an #ine curve over
k with only one place at infinity. Then any embedding Af(in the
affine plane) is equivalent to a non-principal embeddinga,If3 are
non-principal embeddings @& then the following four conditions are
equivalent:

(1) a andp are equivalent.

(2) (@) = a(g) or g(a) = a(B").

(3) bideg @) = bideg @) or bideg @) = bideg {3!).
(4) d2(e) = da(B).

(11.26.2) THEOREM

Let A be as in Theoreri (T1.26}1). Then the number of equivalence
classes of embeddings Afin the &fine plane is finite.



Chapter 5

Irreduciblility, Newton’s
Polygon

12 Irreducibility Criterion

(12.1)

Letk be an algebraically closed field. Lét= f(X, Y) be an irreducible 98
element ok((X))[Y] such thatf is monic inY and chak does not divide
deg, f. Letn = deg, f. By Newton’s Theorerfi (5.1}4) there exists an
elementy(t) of k((t)) such that

f,Y) = [ Y - yw).

WELn

whereun = un(K). Lety be an integer such thag = n. Leth = h(f) and
letm = m(v, f), g = q(v. f), s = s( ), ri = ri(v, f), diy1 = diya(f)
forO<i<h+1.

(12.2)

Let L be an overfield ok((t)) and letv be a valuation oL extending
the valuation orgdof k((t))/k. (As in 8[11, by a valuation we mean a real
discrete valuation with value grouf as defined if (ITT]1).) Let= v(t).
Then we havey(a) = eord; a for everya € k((t)).

With the notation of (12.1) arf{d (12]2), we have

95
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(12.3) LEMMA. Let z be an element of L such thdz v y(wt)) < em,
for every we un. Then {f(t", 2) < es,.

Proof. Let m = sup{v(z—y(wt))|we;1n}. Thenm < em,. We may

assume, without loss of generality, tiat v(z—y(t)). Thenv(z—y(t)) >
v(z — y(wt)) for everyw € un. Therefore, since

y(t) — y(wt) = (y(t) — 2 + (z— y(w1)),
we get

(12.3.1) v(y(t) - y(WB) = Uz - y(wt)

for everyw € un. Now, we have

v(f(t",2)) = v[ [ - y(wt))]

WELUR

= V(z-y(V) + v[]‘[(z - y(wt»}

w#l

<em+ v[ [ow- y(wt))} (by @Z32))

wml

= eny + eord []—[(y(t) - Y(Wt))}

w1l

= enp + &(sh — My) (by[7:8))
= es,.

(12.4) Theorem (Irreducibility Criterion).

Letk be an algebraically closed field and tebe a positive integer such
that chark does not dividen. Let f = f(X,Y), ¢ = ¢(X,Y) be elements
of k((X))[Y] such thatf andy are monic inY and deg f = deg, ¢ = n.

Assume thatff is irreducible ink((X))[Y], and lety(t) be an element of
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K((t)) such thatf(t",y(t)) = 0. Letv be an integer such that = n.
Suppose that
ordk ¢(t", y(t)) > sn(v, f),

whereh = h(f). Then:
(i) ¢isirreducible ink((X))[Y].
(i) There existsz(t) € k((t)) such thatp(t", z(t)) = 0 and org(z(t) —
y(©) > mu(v, f). 100
Proof. We shall use the notation pf{12.1).

(i) Let L be a finite algebraic normal extension kgft)) such thatL
contains the splitting field ap(t", Y) overk((t")). Then there exist
Z1,...,Zn € L such that we have

(12.4.1) o(t",Y) = ]_[(Y - 2).
i=1

Let v be a valuation olL extending the valuation oraf K((t)).
(Sed(IZ.3).) Lee = v(t). Then we have(a) = eord; a for every
a € k((t)). Now, we have

ord; ¢(t", y(wt) = ordk o(t", y(t)) > s

for everyw € upn. Thereforev(e(t", y(wt))) > es, for everyw € un
and it follows that

nes <V [ | sO(t”,y(Wt))]

WELin

:ﬂ/rlrka—meﬂ (by IZZ1))

i=1 Weun

=V ﬁ f(t”,zi)]

i=1

n

= > V(" 2),
i=1
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Therefore there existig, 1 < ig < n, such that, writingz = 7,
we havev(f(t", 2) > es,. It therefore follows from Lemm@g(IZ]3)
that there exist®/ € u, such that we have

(12.4.2) V(z - y(w't)) > em,.

Puty = y(w't). Forw € upn, let o, be thek((t"))-automorphism
of k((t)) defined byo(t) = wt. Let r,, be an extension of
to an automorphism of. Sincek((t)) it complete with respect
to the valuation ord v is the only valuation oL extending orgd
Therefore, since ofd= ord; oo, we havev = v o 7, for every
W € upn. In particular, from[[TZ4]12) we get

(12.4.3) V(tw(@) - Tw(Y)) = V(z-Y) > em,

for everyw € un. Moreover, ifwy, Wy € un, W1 # Wop, then by
Propositior (6.1%) we have

(12.4.8) V(7, (V) = 7w, () = €Ordi(y(Wiw't) —y(wow't)) < em.

Therefore, since

Ty (2) = Twp (D = (Twy (2 — Twa (V)
+ (T, (Y) = 7w, (Y)) + (tw, (Y) — 7w, (9),
it follows from (IZ.4.3) and{1Z.4.4) thatry, (2) — Tw,) < emy if
Wy # Wo. In particular,ty, (2) # tw,(2) if wy # wo. Therefore the
setS = {TW(Z)|W € pn} consists of distinct elements. Since all the

n elements ofS are conjugates af overk((t")), the minimal poly-
nomial of z overk((t")) has degree at least On the other hand,
et Y) € k(tM)[Y], deg, ¢(t",Y) = nande(t",2 = 0. There-
fore p(t", Y) is irreducible ink((t"))[Y]. This means thap(X,Y) is
irreducible ink((X))[Y]. This proves (i).

(i) Sincegisirreducible by (i), all the roots af(t", Y) belong tok((t))

by Newton’s Theorerfi (5.14). Thereforg(2) € k((t)) for every
W € pn. Now, takingz(t) = ry(2) with w = w1, (ii) follows from

(1ZZ3).
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13 Irreducibility of the Approximate Roots

(13.1)

Let k be an algebraically closed field and let= f(X,Y) be an irre- 102
ducible element ok((X))[Y]. Assume thaff is monic inY and that char

k does not dividen = deg, f. Letv be an integer such thag = n. With

this notation, we have the following theorem:

(13.2) THEOREM. Let \(t) be an element of(k)) such that f{t",
y(1)) = 0. Let e be an integer such that< e < h(f) + 1 and let

Ge = Ge(X. Y) = ApHE(f).
where @ = dg(f). Then:
() geisirreducible in K(X))[Y].

(i) If e = 2 then there exists an element)zof k((t)) such that
0e(t"%, (1)) = 0 andordk(z(t%) - y(t)) = me(v, ).

Proof.

(i) If e=1then degge = n/d; = 1, so that the assertion is clear in
this case. Ie = h(f) + 1 thenge = f, so that the assertion is clear
also in this case. We assume now that 2 < h(f). Write y(t) =
Syt with y; € k for every j, and lety(t) = > yjt!, whereme =

j<me
me(v, ). Let Ge = Ge(X,Y) be the pseudd!" root of f. Recall
thatGe is the minimal monic polynomial dj(t) overk((t")). Now,
by Propositio {6.138) (ix)3e divides j for every j € Suppy(t).
Therefore there existg(t) € k((t)) such thafy(t) = y'(t%). Put
N = n/de, t’ = t%. Then we hav&Se(t™, Y (t)) = Ge(t", y(t)) = O.
Letv’ = v/de. Now, in order to prove (i), it is enough to show that

(13.2.1) ordy ge(t™, Y (t")) > sv (v, Go),

wherehl = h(Gg). For, given [I3.2]1), we can apply Theoremnn3
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(ii)

5. Irreducibility, Newton’s Polygon
with f (resp.y) replaced byGe (resp.ge) and conclude that
Qe is irreducible. Now,[[I3.211) is clearly equivalent to
(13.2.2) ordge(t", ¥(t)) > sv (v, Ge)de.

By Propositior] (6.18) we hav& = e— 1 and

Sr (v, Ge)de = Se-1(v, f)/de < se(v, f)/de = Te(v, f).
Therefore, in order to prov€{I3.2.2), it is enough to prana t
(13.2.3) ordge(t", y(t)) > re(v, ).

Now, (I3Z.38) follows from Corollarff (7.2D) by takirey= 0 and
u = 0. This completes the proof of (i).

If e =h(f)+ 1thends = 1,ge = f andme = co. Therefore in
this case the assertion is clear by takafg = y(t). Now, suppose
2 < e < h(f). Then, in view of [I3.2]1), it follows from Theorem

that there exist&(t’) e k((t')) such thaige(t™, Z(t’)) = 0
and

(13.2.4) org(Z (t') — y(t')) > my (v, Ge).

Therefore by Propositign (6.17) we get

(13.2.5) h(ge) = ', m(V',ge) = M(v', Ge), S(', Ge) = (', Ge).
In particular, from[[13.2]4) we get

(13.2.6) org(y' (t') — Z(t")) > my (v, Qe).

Now, by Corollanf{7.10) applied t{13.2.6) by replacifiigresp.
y(t), resp.u(t)) by ge (resp.Z (t"), resp.y’(t’)), we get

orck (Ge(t™. Y (t'))) = S (v, Ge) — My (v, Ge) + Ordk (' (t') — Z (1))
From this, by[13.Z]5) we get
orck (Ge(t™. Y (t'))) = Sv(V'Ge) — My (v'Ge) + orck (v (t') — Z(t')).
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Now, sincet’ = t%, there existg(t) € k((t)) such thaZ (t’) = z(t%),
and we get

orch(e(t", (1)) = desiv (v/, Ge) — deMyy (', Ge) + Orck(¥(t) — Z(t*)).
Therefore by[[I3.213) we get

re(v, f) < desy (', Ge) — Gemiy (v, Ge) + OTG(Y(t) — (1))
= Se1(v, T)/de — Me_1(v, ) + Orak(y(t) — ()t%)

by Propositioff (6.1§). This gives

ord(y(t) - Z(t%)) > Me1 (v, f) + fe(v, f) = Se-a(v, f)/de
= Me1(v, F) + (Se(v. f) — Se-1(v. 1)) /de
= Me_1(v, f) + Ge(v, )
= mg(v, f).

Therefore, since ok (t) — y(t)) = mg(v, f), we get

ordy(z(t*) — y(t)) = ord((Zt*) - 7)) + (1) - y(1)))
= me(v, f).

Also, from ge(t'™,Z(t')) = 0 we getge(tV%, z(t)) = 0. This completes 105
the proof of (ii). m|

(13.3) COROLLARY. Let f andy be as if{13]). Let be an integer,
2 <e<h(f)+1. Letge = Apps(f), wherede = de(f). Lety = v/de.
Thenh(ge) = e— 1 and for 0< i < e— 1 we have

MV, Ge) = M(v, f)/de,

ai(v',9e) = Gi(v f)/de,
S(/.00) = s f)/d2  (if i #0).
ri(v',ge) = ri(v, 1)/,

di+1(ge) = dir1(f)/de.
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Proof. This is immediate from Theoremn (13.2) (ii). o

(13.4) COROLLARY. Let chark = 0. Lety = ¢(X, Y) be an element
of k[X, Y] such thatn = deg, ¢ > 0, ¢ is monic inY andk[X, Y]/(¢)
is isomorphic (as &-algebra) t&[Z], whereZ is an indeterminate. Let
f=1f(XY)=¢X71Y). Thenf is irreducible ink((X))[Y]. Leth =
h(f)and for1< e < h+ 1 letye = Appﬂe(go), wherede = de(f).
Thenk[X, Y]/(ve) is isomorphic (as &-algebra) tok[Z] for every e,
l<e<h+1.

Proof. The irreducibility of f follows from Theorenf {9.2%). Now, since
di(f) = n, ¢y is monic inY of Y-degree one. Therefore the assertion is
clear fore = 1. For 2< e < h+ 1 we prove the assertion by decreasing
induction one. If e = h+ 1 thende = 1, so thatye = ¢ and the asser-
tion follows from the hypothesis. Now, let 2 e < h(f) and suppose
K[X, Y]/(¥e+1) is isomorphic tok[Z]. Let ger1 = Appﬂ‘*l(f). Then by
Propositior (4-1) we havge;1(X, Y) = te,1(X71,Y). Leth’ = h(ge1).
Then by CoroIIar){]'I_dB:\B) we havg = eanddy (ge;1) = de/der1. If
follows thatye = ApR;” (Ves1), Wheredy = diy(ger1). Now it follows
from Corollary[(9.29) thak[ X, Y]/(e) is isomorphic tk[Z]. i

(13.5) COROLLARY. With the notation and assumptions of Corollary

ri = ri(—n, f) andd;,; = di;1(f) for 0 <i < h. Then we have:

(i) ri=-dyifor2<i<h.

(i) s =-ddi,1for2<i<h.

(i) g =di1—d,ifor3<i<h.

(iv) m=d;—d—digfor2<i<h.

(v) If h>2thenm, < n-2foreveryi,1<i<h.
Proof.

(i) Fixane 2 < e < h, and lety = Appﬂ“l(go). Then by Corol-
lary [[T3:4) k[ X, Y]/(¥) is isomorphic tok[Z]. Letg = g(X,Y) =
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w(X71,Y). Theng = Appﬂe”(f). Leth’ = h(g). Then by Corol-
lary [(I3:3) we havdY = e anddy(g) = de/der1. Noting that
deg,y = n/dey1 andh’ = e > 2, it follows from Corollary

that we havey (—n/de.1,9) = —1. By Corollary[{I3:3)
we havery (—n/de; 1, g) = re(—n, f)/dei1 = re/der1. Thus we have
—1=rg/des1, and (i) is proved.

(i) This is immediate from (i), sincg = dir;. 107
(iii) By (ii) we have
—didi1 =5

=§-1+0qd;
= —di_10 + gid;,

sincei > 3. This givesyj = di_1 — di, 1.
(iv) Fori > 3 we have
m = M_1 + G
=M1+ di_1 —disq

by (iii). Therefore, by induction om, it is enough to prove that
mp = dq —dy —d3. Now, by (II) we have-do,dz = s, = qldl +Q2d2.
Therefore we get

Mp =01 + G = -0 ((d1/d) — 1) - da.

Now, by Corollary[{9.2]) we have, = dj or dp = —1. We
consider the two cases separately.

Case(1). d = d;. Thennp = —d3 = d; — do — ds.

Case (2). d = —q;. Then

mp = dp((dy/dp) — 1) —dz =dy — dr — da.

(v) Supposéh > 2. Itis enough to prove thaty, < n— 2. By (iv) we
havermy = d; —dh —dhep < di =2 = n- 2, sincedy;; = 1 and
dh > 2.
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O

(13.6) REMARK. Corollaried (13.4) and (13]5) hold also for clkax 0
(and, in fact, the same proof goes through) provided we asshatn is
not divisible by chak.

(13.7) PROPOSITION. Let f andv be as if (13.]). Letbe an integer,
1 < e < h(f). Lety(t) be an element df((t)) such thatf (t", y(t)) = O.
Letk’ be an overfield ok and lety*(t) be an element df ((t)) such that

orck(y"(t) — y(1)) = me(v, f) andme(v, f) € Suppy*(t). Letge = ge(X, Y)
be defined as follows: & > 2 thenge = Apf*(f), whereas ife = 1

theng; = Appﬂl(f) orgi = Y, wherede = de(f). Let g; denote the
Y-derivative ofge. Then we have

ordk ge(t", y' (1)) = re(v, f) — me(v, f).

Proof. With either definition ofg; we haveg; = 1. Therefore, since
ri(v, f) = my(v, f), the assertion is clear in case- 1. Assume now that
e > 2. By Theorenf (I3:2Ye is irreducible ink((X))[Y]. Putd = de,
g=0eN =h(g),v =v/d g, = (,09), M, = my(V,9). Then by
Corollary[(7-9) applied tg we have

(13.7.1) ordg' (1", z(t)) = 5, — M,

whereg’ = g, andz(t) € k((t)) is any zero ofg(t"9,Y). Putm =
m(v, T), g = g (v, ), s = s(v, f) andr; = ri(v, f) for 0 <i < h(f). then

by Corollary[(I3.3) we have’ = e-1,5, = Se1/02, m, = me1/d.
Therefore

d(s, —m,) = Se1/d—me g
= S/d =0 —Me1
=le—Me

Therefore it follows from[[13.711) that we have
(13.7.2) ordg (t", (t%) = re — me
for any zeroz(t) of g(t"9,Y). By Theoren{ (I3.2) we may choosg)
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such that ordy(t) — z(t%)) = me. Then, since ordy*(t) — y(t)) > me and
Me € Supp y*(t) by assumption and sineg. ¢ Supp z(t%), we get

(13.7.3) org(y* (t) — z(t%)) = me.
Now, we have

gt ) = [ ] (Y -zwy),

WELin/d

wherepnq = un/da(K). Therefore

ot”Y) = [ ] (¥ —zwt).

WELn/d

differentiating with respect t¥ and then substituting = y*(t), we
get

gLy = ) [ o) - 2wt

VELn/d WEV

Pr+ > Py,

VEun/d
v#l

whereP, = ]_[(y“(t) — z(wt%). Thus, in order to complete the proof of
the proposigivé\rl\, it is now enough to prove the following twatements:
() ord; Py =re— me.
(i) ord¢ Py > re — me for everyv e un/q — {1}.

Since we have

Y (1) - Zwt’) = (v (1) - 2(t%) + (&) - Zwt))

and since fow = 1 110

ordk((t) — z(wt)) < dnr, (Propositior] (6.15%))
Me-1 (Corollary[(I3.3))
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=< M,
it follows from (I323B) that we have
(13.7.4) orgy* (t) — zwt?) = ord(z(t?) — z(wt%)) < me
for w # 1. Therefore

ord; Py = ordk | [(t?) - zwt))

w1l

= ord g (t", (t%)
=le—Me

by (I3Z2). This proves (i). Now, lte /g, v # 1. We have
Py = Pa(y"(t) — Z(t))(y" (t) - Zvt™) ™.

Therefore by (i) we have

ord; Py = re — me + orck(y" (t) — Z(t")) — ordi(y"(t) — Z(vt?).

Therefore (ii) will be proved if we show that

ordy(y"(t) — %)) > orck(y"(t) — Z(vt)).
Sincev # 1, this last inequality is clear froni{I3.Y.3) afid(13.7.4).
O
14 Newton’s Algebraic Polygon

(14.1)

111 We revert to the notation §f (711), (712) dnd (T.3). In addiitiwe fix the
following notation: for an integem, we put

p(m):inf{i|1§ish+1,m< m}.



14. Newton’s Algebraic Polygon 107

Letd*(m) = dym) and let

S*(m) _ Sp—l + (m— mp_l)dp’ |f p — p(m) > 2
mak. it p(m) = 1.

Note thatp(m) =i+ 1,d*(m)) = di,s ands'(m) = sforl<i<h.
If Zis an indeterminate, define

Z - Ym, ifmeg{m,...,mMy},

P(m,Z) =
(m2) {Z”E—yﬂi, if me {my,...,m},

wheree = p(m) — 1.
with the above notation, we have

(14.2) THEOREM. Let m be an integer. Let Z be an indeterminate and
let kK = k(Z). Let y be an element of (t)) such that

info (y* - y(t)) = (Z - ymt™

Then
info (f(t",y")) = gP(m, Z)¥Mts M

Proof. Supposen € {my, ..., My}. saym = M. Thenp(m) = e+ 1. Let
y(t) = Zyjtl. Then it easily follows from the assumption ghthat we 112

j<me
have

info (y* — y(t)) = Zt™.
Thereforey* is an g, Z)-deformation ofy(t) and it follows from Lemma
that we have

info (1", ") = & (2% - yie ) * t=.

Sinced*(meg) = dey1 ands'(mg) = &, the assertion is proved in case
me{m,..., My}. O

Now, supposen ¢ {my,...,my}. Let p = p(m). Let Q(p), R(p) be
the sets defined in Definitign (7]4). W € R(p) then ordy(t) — y(wt)) >
m, > m. Therefore, since

(14.2.1) y = ywt) = (v - () + (1) — y(w)),
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we get info {7 — y(wt)) = info (y* — y(t)) = (Z — ym)t™ for w € R(p).
This shows that we have

info [ []o- y(wt))] =[] @-ymr"

weR(p) weR(p)
(14.2.2) = (Z - ym)F Mgmdm,

since by Lemm@{7.p) cardR(p)) = d, = d*(m). Now, supposav €

Q(p) andp > 2. Then by Propositiof (6.115) we get gf(t)) < mp_1.
Sincem¢ {my, ..., my}, we havam,_; < m. Therefore from[(I4.211) we
get

(14.2.3)  info ¢ — y(wt) = info (y(t) — y(wt)) for w e Q(p).

SinceQ(1) = ¢, (IA2Z3) holds also fop = 1. Now, clearly, inco
113 (Y(t) — y(wt)) = & for everyw € Q(p). Therefore we get

info [ []o- y(wt»] = info [ []oo- y(wt))]

weQ(p) weQ(p)
(14.2.4) = ot

where by Lemm@(7}) we have

o, if p=1.

From [I4.2P) and{14.2.4) we get

info (f(t",y*)) = info [ l_[ (y* —y(wt))]
wepin(K)
— ﬁ(z _ ym)d*(m)tmd‘(m)+s

= gP(m,Z)4 (Ms M
(14.3) REMARK. The above theorem is an algebraic version of the

method of Newton’s polygon for constructing a rookit)) of the equa-
tion f(t",Y) = 0. The successive cfigientsy; of a rooty(t) = } y;t/
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are found by induction of. Thus, suppose we knoyy for j less than a
certain integem. LetZ be an indeterminate and kgt = Z yjtj +ZtM
<m

Find inco (f(t", y*)). This will be a certain ponnomiaE(JZ) € K[Z], viz.
F(2) = 2P(m, 2)¥' (™. Takeym to be any root of the equatidf(Z) = 0.
Note that ifm ¢ {my, ..., my} thenF(Z) = 0 will have a unigque root,
whereas ifm = m, for somee, 1 < e < h, thenF(Z) = 0 will have
Nne distinct roots. Let us remark that, sin€&", 0) = (—=1)" [] y(wt), we
havem, = ordy f(X, 0). Therefore we magtartthe inductive construc-
tion of y; by takingy; = O for all j < ordy f(x,0).
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Chapter 6

The Jacobian Problem

15 Statement of the Problem

(15.1)

Letk be a field and leA = K[ X3, X2] be the polynomial ring in two vari- 117
ablesxy, xo overk. Let K be the quotient field oA. A pair (U, Up) of
elements ofA is anautomorphic pair(for A) if A = k[uz, up]. Note that

(ug, Up) is an automorphic pair if and only if thiealgebra homomor-
phismo : A — Adefined byo(x) = u;, i = 1,2, is an automorphism.

A pair (uz, up) of elements oK is atranscendence bagef K overk) if

K is algebraic ovek(u;, u). Clearly, every automorphic pair is a tran-
scendence base.

Let u = (ug, U2) be a transcendence base. Thenu, are alge-
braically independent oved. Therefore there exi&-derivationsDy, 1,
Dy of k(ug, up) defined byDyi(uj) = 6ij (Kronecker delta). Suppose
now thatK is separable ovet(us, up). Then for each = 1,2,D,; ex-
tends to a uniqu&-derivation ofK. We shall denote this extension also

by Dy, i = 1,2. In particular, for each automorphic paie (uj, up) we
havek-derivationsD,; of K, i = 1, 2. We shall often write simplyp; for
Dyi, I = 1,2, wherex = (x1, X2). Note that ifu is an automorphic pair

thend,i(A) c A i=1,2.

(15.2) DEFINITION. Letu = (up, u2) be an automorphic pair and let
f, g € A. TheJacobian of(f, g) with respect to udenotedJy(f, g), is

113
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defined by
Dul(f) Duz(f)
Ju(f,qg) =det| - ’
(1. 9) e(Du,l(g) Du2(9)

We shall write simplyd(f, g) for J«(f, g).

) - Du(f)Du2(@) - Duz(f)Du1(@).

118 (15.3) LEMMA. Letu= (u1, W), v = (v1, V) be automorphic pairs for
A and let f, ge A. Then we have

Ju(f, @) = Ju(f, 9) Ju(vi, v2).
Proof. This is immediate from the chain rule for derivations, namel
Dui(@) = Dy1(8)Dy,i(v1) + Dy2(a@)Dy(v2) for ae Aji=1,2.

O

(15.4) COROLLARY. Letu = (uz,u), v = (v1,V2) be automorphic
pairs forA. ThenJy(vy, v2) is a unit ofA.

Proof. By Lemmd(15.3) we have
1= Ju(un, W) = Jy(un, Up) Ju(va, v2)

and the corollary is proved. m|

(15.5)

Noting that the units oA are the non-zero elementslgfit follows from
Corollary[(I5.4) that if {,g) is an automorphic pair foA then J(f, g)

is a non-zero element & Then Jacobian problem asks whether the
converse is true in case chae O:

The Jacobian Problem.Suppose chak = 0. Let f, g be elements oA
such thatl(f, g) is a non-zero element &f Is (f, g) then an automorphic
pair for A?

(15.6) REMARK. Suppose chak = p > 0. Letf = x; + X, g =
2. ThenJ(f,g) = 1. ThenJ(f,g) = 1. However, {,Q) is not an
automorphic pair. Folk[xq, X2]/(9) = K[x1] # k[xq + x‘l’], which shows
thatk[ f, g] # K[xq, X2]. This explains the assumption chlae= 0 made
in the Jacobian problem.
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16 Notation

(16.1)

Let A = k[xq, o] as in 8[I5.We assume henceforth thatark = 0. Let 119
w = (w1, W) be a pair of integers. By the-gradationon A we mean

the gradation oA obtained by giving weightv; to x;, i = 1,2. Recall
that this means that we writin the form

A= o AY,

nez

whereAy is the k-subspace of generated by monomialg!X? with
1wy + ioWws = n. The elements oA(,\’,’) are calledw-homogeneousle-
ments ofw-degree n Note that by this definition 0 is-homogeneous of
w-degreen for everyn. Every elemenf of A can be written uniquely in
the form f = Z " wheref{" is w-homogeneous of-degreen and

n
£ = 0 for almost alh. We call f"’ then® w-homogeneous component
of f. Supposef # 0. Then there exists1 € Z such thatf\,(\,m) # 0 and
f\,(vn) = 0 for alln > m. We call thismthew-degreeof f and denote it by
dw(f). Thus
dw(f) = sup{ne z|{ % 0}.

If f=0,we defined,(f) = —c0. If f # 0 then thew-degree fornof
f, denotedf;’, is defined byf;, = £{™, wherem = dy(f). If f = 0, we
definef,; = 0. Note thatf is w-homogeneous if and only i = f,.

Suppose now thaw = (1,1). then thew-gradation orA is called
the usual gradationon A. In this case we often omit the symbaelin
the notation introduced above. Thus we wdtd), f™, f+, ... etc. for
dw(f), £V, £+, ... whenw = (1, 1).

(16.2)

Thew-gradation orA defined i (16.1) above is with respect to the auz0
tomorphic pairx = (X1, X2). If u = (ug, W) is any automorphic pair then
we can also define a gradation Arby giving weightw; to u;, i = 1, 2.
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However, in the sequel we will mostly need to consider onéy th1)-
gradation oA with respect to an arbitrary automorphic pairin order
to distinguish this from the usual gradation, we fix the faflog nota-
tion:

degf denotes d 1)(f) with respect tox,
deq, f denotes d 1)(f) with respect tay,

If u= (u, Up) is an automorphic pair antl € A, we write deg, f
(resp. deg, f) for the u;- degree (respup-degree) off regarded as a
polynomial inu; (resp.uy) with codficients ink[uy] (resp.k[u1]).

(16.3)

One final piece of notation: We denote ki the set of non-zero el-
ements ofk and, as noted ifi (7]2), we use the sympoto denote a
generic (i.e., unspecified elementkdf)

17 w-Relation

We preserve the notation of 915 arldB16. In particular, we fthar
k = 0. Letw = (w1, W) be a pair of integers.

(17.1) LEMMA. Let F, G be non-zero w-homogeneous elements of A.
The following two conditions are equivalent:

(1) F" = gGSforsomerse Z*;r + s> 0.

(2) There exist p, e Z* and a w-homogeneous element H of A such
that F = gHP, G = gHA.

Proof. (1) = (2). Write F = gHM .. H{", G = gH* ... HF", where
H; is an irreduciblen-homogeneous element 8§ p;, g € Z* for 1 <
i <nandg.c.d.fi,H;) = 1fori # j. Then (1) implies thatp; = sq
for everyi, 1 <i < n. Now, ifr = 0ors= 0, sayr = 0, thens > 0
andgq; = O for everyi, so thatG = &. In this case (2) follows by taking
H=F, p=1,g= 0. We may therefore assume tmat 0 ands > 0.
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Then for anyi, p; = 0 if and only if g = 0. Therefore we may assume
thatp; > 0 andg; > O for everyi, 1 < i < n. Then for everyi we
havepi/g = s/r = p/q, say, wherep, q are positive integers such that
g.c.d. 0,g) = 1. For everyi, 1 < i < n, there exists a positive integer
t such thatpi = pt, g = gt. LetH = H'...Hp. ThenF = gHP,
G = gH4.

2= @). f p=0=qthenF = 2, G = &, so thatF = zG,
which implies (1) in this case. Assume therefore thatq > 0. Now,
(2) implies thatFq = 2GP, which implies (1). O

(17.2) DEFINITION. Let f, g € A. We sayf andg arew-related if

f #0,9# 0, andF = fj andg = g}, satisfy the equivalent conditions
(1) and (2) of Lemm&T{I7]). We sdyandg arerelatedif f andg are
(1,1)-related.

(17.3) LEMMA. Let f,g1,...,0e be elements of A.
() If fy = g and g # Othen f and g are w-related.

(i) If f and g are w-related for every il <i <e,then fand g...0ge
are w-related.

Proof.
(i) We havefy = & = 2(g;,)°-

(ii) By induction one, it is enough to consider the case- 2. There
existri, s € Z*,ri + 5 > 0, such thaF" = G, whereF = f;,
Gi =g;,,i =1,2. This gives

(17.3.1) Fri®tizs = g(G1Gy)™%.

If s =0fori =1or2,says; =0, thenr, > 0andF" = 2G] =g 122
shows thaF = &. Therefore in this casé is related tag; g, by (i). We
may therefore assume that> 0, s, > 0. Thens; s, > 0, and it follows
from (IZ31) thatf andg,g, arew-related. O

(17.4) PROPOSITION.Let F, G be non-zeron - homogeneous ele-
ments ofA of w-degreesn, n, respectively. Consider the following five
conditions:



123

118 6. The Jacobian Problem

(1) F andG arew-related.

(2) F andG are algebraically dependent over

(3) J(F.G) =0.
(4) F" = gG™.
(5) FN = gGIM.

Among these five conditions we have the following implicato
D=2@=06)=@=0)

Assume, moreover, that at least one of the following two ¢ond
tions is satisfied:

(i) waw, > 0 andF ¢ kor G ¢ k.
(i) m#0orn=#0.

Then the above five conditions (1) - (5) are equivalent to each
other. Further, letd = g.c.d. fm,n). Thend > 0 and the con-
ditions (1) - (5) are also equivalent to each of the followtng
conditions:

(6) Fn/d — ,@Gm/d.

(7) We havemn> 0 and there exists@-homogeneous elemehit of
Asuch thafF = gHM/d G = gHIN/d,

In order to prove the proposition, we need the following ¢hiem-
mas:
(17.14.1) LEMMA.

Let L be a field and leL(t) be the field of rational functions in one
variablet overL. Let D; be thelL-derivation ofL(t) defined byD(t) = 1.
If his an element ok (t) such thaD¢(h) = 0 thenh € L.

(17.14.2) LEMMA.

Let f, g be non-zero elements &f of w-degreesn, n, respectively. If
f" = gg™thenmn> 0.
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(17.14.3) LEMMA.

Let F, G be non-zerav homogeneous elements Afof w-degreesn, n
respectively. Then we have:

(i) mF = wy %1 D1(F) + wax2D2(F),
nG = W]_X]_D]_(G) + W2X2D2(G).

(ii) w1 X1 J(F, G) = mFD2(G) - nGD,(F),
WoXoJ(F, G) = nGDy(F) — mFd (G).

Proof of Lemma[(I7.14.7]). The assertion is clearlif € L[t]. In general,
we can writeh = f/gwith f, g € L[t] and g.c.d. €,9) = 1. Then we
have

0= Dy(h) = (gDx(f) - FDu(9))/d",

which shows thagD;(f) = fD¢(g). Thusg divides fD¢(g) in L[t].
Therefore, since g.c.df(g) = 1, g divides Di(g). Since degD:(g) <
degg, we getDi(g) = O, so thatg € L. Thereforeh € L[t], and the
assertion follows.

Proof of Lemma [(17.14.7). Supposemn < 0. then one ofm, n is
positive and the other is negative. We may supposenthat 0 and
n> 0. Thenf"g™™ = & implies thatf (alsog) is a unit ofA. Therefore
f € k*. But this means thah = 0, which is a contradiction.

Proof of Lemma[(17.14.3).(i) We have only to observe that
wiaDs (X35) + wxoDa (45 = (i + iawe) .

(i) We have

wix J(F, G) = det(WlxlDl(F) Dz(F))

w1x1D1(G) D2(G)

= det(W1X1D1(F) + W2X2D2(F) Dz(F))
W1 X1D1(G) + WoxoDo(G)  Do(G)

_ det(f:g %g) (by ()

124
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=m FDx(G) — nGDy(F).

This proves the first equality of (ii). The second is provedikirly.

Proof of Proposition[[I7.4). (1) = (2). We haveF" = G* for some
non-negative integers s, r+s> 0. Thereford= andG are algebraically
dependent ovek.
(2) = (3). Let Xz, X, be indeterminates and let = (X1, Xo) €
K[ X1, Xo] be such thatp # 0 andg(F,G) = 0. Theng ¢ k. Therefore
degy, ¢+degy, ¢ > 0. We may choose to be such that dgg¢+deg,, ¢
is the least possible. Let = Dx(¢), i = 1,2, whereX = (Xz, X2). Then
we have deg ¢; + deg,, ¢1 < deg, ¢ + deg, ¢, i = 1,2. Moreover
125 @1 # 0 0rgy # 0. Ir follows that we havep;(F, G) # 0 or p»(F, G) # 0.
Now, we have

0 = D1(¢(G, G)) = ¢1(F,G)D1(F) + ¢2(F, G)D1(G),
0 = D2(¢(F, G)) = ¢1(F, G)D2(F) + ¢2(F, G)D2(G).

Sincep1(F,G) # 0 orgo(F, G) # 0, we get

Di(F) Di(G)

0-ce( i3 DU - a0

which proves (3).
(3) = (4). We havel(F, G) = 0 and we want to show th&"/G™ e
k. Sincek = Kk(x1) N k(x2), it is enough, by symmetry, to show that

F"/G™ € k(x1). By lemmd{(17.143), we have
0 =wix1J(F, G) = mFDy(G) — nGDy(F).
This gives
D2(F"/G™ = F™1G™ (NG D,(F) — mFD,(G))/G?" = 0.
ThereforeF"/G™ € k(x1) by Lemmd(17.14.]).
(4) = (5). SinceF" = gGMifand only if F" = agG™, it is

enough to show that we have> 0,n > 0 orm < 0, n < 0. But this is
immediate, sincenn> 0 by Lemmd (17.T4.P).
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Assume now that one of the conditions (i) and (ii) is satisfikds
then enough to prove thdt< 0, (5)= (1) and (1)= (7) = (6) = (2).
We first note that if condition (i) is satisfied then eithey > O,
Wy > 0 orwy < 0,wy < 0. In either case, sindeé ¢ kor G ¢ k, we get
m % 0 orn # 0. Therefore we may assume that condition (ii) is satisfied.
It is then clear thatl > 0. 126
(5) = (2). Trivial, sincem# 0 orn # 0.
(1) = (7). There exisip, q € Z* and aw-homogeneous elemeht
of A such thatF = gEP, G = oEY. Lete = dy(E). Thenm = pe
n = ge It follows thatmn> 0. Also, since condition (ii) is satisfied, we
havep > 0 org > 0, sayq > 0. Letd’ =g.c.d. o, q) and writep = p'd’,
q=qd, sothatg.cd.ff.q) = 1. LetH = EY. ThenF = gH",
G = gHY. Itis now enough to show that = |m|/d, ¢ = |n|/d. Since
g > 0 and since

g.cd. @,q)=1=g.cd. (my/d,|n|/d),

it is enough to prove that’|n| = g’|m|. Now, sinceF = gEP, G = gEY,
we havepn = d(GP) = dy(EPY) = dw(F?) = gm This shows that
p'Inl = o'[ml.

(7) = (6). Immediate, sincenn> 0.

(6) = (2). Immediate, sincen# 0 orn # 0.

(17.5) COROLLARY. Let f, g1,...,0e be non-zero elements &f Let
m = dy(f), i = dw(gi), 1 <i < e and letd = g.c.d. fnny,...,Ne).
Assume that > 0 and thatf andg; arew related for every, 1<i <e.
Then there exists w-homogeneous elemeht € A of w-degreed such
that f; = gH™4,

Proof. We prove the assertion by induction enSincef andg; arew-
related, there exists, by Propositipn_(1f.4)w-4omogeneous element
Hj, of A such thatf,; = ﬁH'ln/dl, whered; = g.c.d. fn,ny). It follows
thatdy(H1) = d1, so that the assertion is proved o 1. Now, lete > 1

and letd’” = g.c.d. fn,ny,...,Ne 1), d’= g.c.d. (n,ng). By induction
hypothesis and by the case= 1, there existv-homogeneous elements
Ha, Hz of Awith dy(H2) = d', dy(H3) = d”, such thatf; = gHY'Y = 127

ZHYY. This shows thatl, and Hs arew-related. Therefore by the
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casee = 1, there exists a-homogeneous elemeht € A of w-degree
d such thatH, = zHY/9, (Note thatd = g.c.d. ¢’,d”).) Thus we get
fr=Hmd, O

18 Structure of thew-Degree Form

We preserve the notatiof 815 alidi816. In particular, we hiaaeke= 0.
Letw = (wy, W») be a pair of integers.

(18.1) DEFINITION. For non-zero elements, g of A we define
ow(f,9) = dw(fg) — dw(X1X%2) — dw(I(f,9)).
(18.2) LEMMA.. Let f, g be non-zero elements of A. Then we have:
(i) sw(f,g) >0.

(i) I(fs. a8 = {;ff’g)w’ :: xggi > 8
Proof.
() Clearly, we have
dw(Di(f)) < dw(f) —wi,
dw(Di(9)) < dw(g) — Wi
fori=1,2. Therefore
dw(D1(f)D2(9) — D2(f)D1(9)) < dw(fg) — w1 — W = dy(fg) — du(X1Xz).
which proves (i).

(i) Let f" = f—1,,9 =g—0;. Thendy(f") < dw(f), dw(g") < dw(Q).
An easy computation shows that
J(f.9) = I(fy.05) +h.

whereh € A with dy(h) < dw(fg) — dw(x1x2). Now, (i) follows,
since J(f),0;,) is (either zero orw-homogeneous oiv-degree

dw(fg) — dw(x1X2).
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O

(18.3) LEMMA. Let f be a non-zero element of A such thgatfd = 0.
Suppose there existsagA such that f and (¥, g) are w-related. Then
there exists te A such that f and (f, h) are w-related and,,(f, h) = 0.

Proof. If 6u(f,g) = 0 then we may také = g. Assume therefore that
ow(f,g) > 0. Itis then enough to prove the following assertion:

(18.3.1)

There exists l& A such that f and {f, h) are w-related and(f, h) <
ow(f, Q).

For, then the lemma would follow by induction ég(f, g). To prove
[(I8-371), we note first that, sinceand J(f, g) arew-related, we have
i(f, g) arew-related, we havd(f, g) # 0 by definition. Thereforg # 0.
Moreover, by Lemm§ (I8P) the assumpti@(f,g) > O implies that
J(fy, g5 = 0. Therefore by Propositidn (17]4)andg arew-related
and there exists € k* such thatc(f;)" = (gi)™, wherem = dy(f),
n = dw(g). (Note that by assumption we hawe # 0.) Defineh =
g™ —cfl Then

J(f,h) = J(f, g™ — cf"y = )mig™M J(F, g).
It follows from Lemmd{I7.3) that andJ(f, h) arew-related. Now,
put p = |m|. Then we have
dw(J(f, ) = du(@” ) + dw(I(f. 9))
= dw(g°™) + dw(fQ) — du(xaX2) — 6u(f, )
= dw(fgP) — dw(x1%2) — ow(f, )
> dy(fh) — dw(X1X2) — ow(f, 9),

since @)P — c(f;)" = 0. Thus we get 129
ow(f,9) > dw(fh) — dw(xax2) — dw(J(f, h))
= 5wl h).

This prove§ (I8:31), and the lemma is proved. m
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(18.4) COROLLARY. Let f be a non-zero element 8fsuch thatd,,(f)
# 0. Suppose there existse A such thatf and J(f,g) arew-related.
Then there existv-homogeneous elemerits G of A, a positive integer
p and a non-negative integesuch thatf; = #HP andJ(H,G) = gH",

Proof. By Lemmd(I8.3), replacing by h we may assume thaj,(f, g)

= 0. Then by Lemm@{I8R) we haf,qg)y, = J(f;.0;). Sincef

and J(f, g) arew-related, there exist non-negative integersg and a
w-homogeneous elemeht of A such thatf} = gHP, J(f, g), = gHY.

Sinced,(f) # 0, we havep > 0. LetG = g;,. Then

@HY = J(f, )i, = J(gHP,G) = g pHPLI(H,G).

which shows thagy > p— 1. Letr = gq— (p - 1). Then we have
J(H,G) = gH". O

(18.5) LEMMA. Assume the ww, > 0. Let H, G be non-zero w-
homogeneous elements of A such that, &) = H" for some positive
integer r. Then H divides G in A.

Proof. We want to show thaB/H' 1 € A. Letk be the algebraic closure
of k. SinceA = K[ Xy, X2] N K(Xy, X2), it is enough to prove tha®/H 1 e
K[ X1, X2]. We may therefore assume that k. m|

Sincew;w, > 0, we havew; > 0, w, > Oorwy; < 0, w, < 0.
Since an elemenf of A is (w1, wp)-homogeneous if and only if it is
(w1, -W»)-homogeneous, we may assume twat> 0, w, > 0. Let
m = dy(H), n = dw(G). SinceU(H,G) # 0, we haveh ¢ k, G ¢ k.
Thereforem > 0 andn > 0. FromJ(H, G) = @H" we getm+n— (wy +
Wy) = mr (Lemmd{I8:9)). This gives

(18.5.1) n/m=r—-1+(wy+w)/m>r—-1

Next, by Lemm& (17.14.B) we have

NGDy(H) — mMHDy(G) = woxoJ(H, G) = ZXoH",

(18.5.2) r
NGDy(H) — mHD,(G) = ~wy1xJ(H, g) = @xH'".
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Letuy, Up be indeterminates. Identif with the subring<[u;”, uy?]
of K[uy, Up] by puttingx = U, i = 1,2. ThenA = K[uy, Uz] N K(X1, X2).
Therefore it is enough to prove the following assertion:

(18.5.3) H"1 dividesG in k[uy, u)].

Putu = (u3,u) and letDy; be thek-derivation ofk(us, uy) de-
fined by Dy;(u;) = 6i; (Kronecker delta)j, j = 1,2. ThenDy;(F) =
W u}”“lDi(F) for everyF € A. Therefore from[[1835]2) we get

NGDy1(H) - mHDy1(G) = zu* 'uj?H",

(18.5.4) .
NGDy2(H) — MHDy2(G) = zuy*uy? "H'.
SinceH, G arew-homogeneous i, they are (11)-homogeneous 131
in K[uy, up] of degreesm, n respectively. Now,[([I8.5.3) follows from

{@851) and(I8.514) in view of the following

(18.5.5) SUBLEMMA

Assume thak is algebraically closed. Lét, G be non-zero homoge-
neous elements oA of positive degreesn, n, respectively. Let be
a positive integer such that— 1 < n/m andH" dividesnGD/(H) -

mHD(G) fori = 1,2. ThenH'! dividesG.

Proof. Being homogeneous] is a product of homogeneous linear poly-
nomials inA. Therefore it is enough to prove thatHfis a homogeneous
linear polynomial inA and p is a positive integer such th&® divides
H thenF(-DP dividesG. So, letF = a;x; + apx, with a1, a € k, and
supposé-P dividesH. We want to show thaE~DP dividesG. We may
assume thaf P! does not divideH. Moreover, by interchanging, and
Xo, if necessary, we may assume that¢ 0. We may then assume that
a; = 1. WriteH = FPH’, G = F9G’ with q € Z* andH’, G’ € A
such thatH” # 0 (modF), G’ £ 0 (modF). We want to show that
g = (r — 1)p. We consider two cases:

CASE (1). np = mg In this case we havg/p = n/m>r — 1, by
assumption. Thereforg> (r — 1)p.
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CASE (2). np # mg SinceD1(F) = 1, we have

Di(H) = pFP'H’ (mod FP)
D1(G) = gF9 G’ (mod F9).

Therefore we get

NGDy(H) - mHDy(G) = (np— mgFP*41G'H’  (mod FP*9).

132 Sincenp—-mqg+ 0 andG’H’ # 0 (mod F) and since, by assumption,
H" dividesnGDy(H) — mHDy(G), we getpr < p+ q— 1. This gives
r-Lp<a. m|

(18.6) COROLLARY. Assume thatv;w, > 0. LetH, G be non-zerav-
homogeneous elementsAtuch thatl(H, G) = gH" for some positive
integerr. Then there existsw-homogeneous eleme@t of A such that
JH,G') = gH.

Proof. By Lemmg{18.9) we havé = G’H~! for someG’ € A. Since
H, G are w-homogeneous, so §’. Now, gH" = JH,G’H'1) =
H~1J(H,G"), so thatJ(H,G’) = gH. O

(18.7) COROLLARY. Assume thatv; > 0, w, > 0. Let f, g be el-
ements ofA such thatf and J(f, g) arew-related. Then there exist-

homogeneous elemenk$, G of A and a positive integep such that
fy = gHPandJ(H,G) = gH3with s= 0 or 1.

Proof. Since f and J(f,g) arew-related, we have(f,g) # 0, which
shows thatf ¢ k. Therefore, sincev; > 0, wy > 0, we haved,,(f) # 0.
Therefore by Corollary {I8]4) there existhomogeneous elemerits
G of Aand a positive integgp such thatf} = gHP andJ(H, G) = gH'
for some non-negative integer If r = 0, we are through. If > O then
by Corollary[(I8:8) there existsshomogeneous eleme@t of A such
thatJ(H,G’) = gH. ReplacingG by G’, the assertion is proved. O

(18.8) LEMMA. Assume that wv, > 0. Let H, G be w-homogeneous
elements of A such thatd, G) = . Then:
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() If w1 = |wp| then H = a3x; + axx, with &g, ap € k, & # 0 or
a # 0.

(ii) If il > [wal then H= @z, where z= x, or z = g + aXy”/" with 133
a € k. Moreover, if a# 0then w/w, € N.

(iii) If wa| < Iwo| then H= 2z, where z= x; or = X, + ax?/"* with
a € k. Moreover, if a# 0then w/wq € N.

Proof. By symmetry, it is enough to prove (i) and (ii). Sinagw, > O,
we have eithew; > 0,w, > 0 orw; < 0, w, < 0. We may assume,
without loss of generality, that, > 0, wo > 0. Then, sinceH ¢ Kk,
G ¢ k, we have

dw(H) = min(wy, wy),

(18.8.1) dw(G) > min(wy, wy).

O

SinceJ(H,G) = &, it follows from Lemmg(18:2) thatl,(HG) =
dw(X1X2) = Wy + Wa.

(i) If wg = w; thendy(HG) = 2w;. Therefore from[I8.811) we
getdyw(H) = wy. This means thatl is a non-zero homogeneous
polynomial inxy, X, of degree one.

(i) Sincew; = wp we havedy(G) > w, by (I881). Therefore
dw(H) < wy. This means that dggH < 1. If deg, H = 0O then,
sinceH is w-homogeneous, we hav¢ = #x] for somen € N.
This implies thatxz”‘l dividesJ(H, G) = @. Thereforen = 1 and
H = #x. Now, suppose dggH = 1. ThenH is w-homogeneous
of w-degreew;. Therefore we havel = bx + c>2§’1/""2 with b € k*,
c e kandwi/wy € Nif ¢ # 0. Letz = x; + b1ex}'*. Then
H=gz

(18.9) LEMMA. Assume that w+ w, # 0. Let H be a non-zero w-
homogeneous element of A such th@t,k;x) = @gH. Then H =
Qfx'llx'z2 for some non-negative integegs i, with iy + i, > 0.
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Proof. Let J(H, x;x2) = cH with ¢ € k*. Then we have 134

o det(Dl(H) Dz(H))
X2 X1

= X1D1(H) — x2D2(H).

Letd = dy(H). We can write
H = Z Hiljzxilxéz
jawr+jowe=d

with Hp,j, € k. Then

x1D1(H) = XeD2(H) = > (j1 = j2)Hj,jp X4 %

Therefore we havg; — j» = cfor all those pairs |, j2) for those pairs
(j1, J2) for which Hj, j, # 0. Since alsgw; + jow» = d and since

det( 1 _1) #0
W1 Wp

(becausev, +w, # 0), there exists a unique paif (i) such that;,;, #
0. This means thatl = zx/'x?. SinceJ(H, x;xz # 0), we haveH ¢ k.
Thereforei; + i, > 0. O

(18.10) LEMMA. Assume that w=w, # 0. Let H, G be w - homoge-
neous elements of A such that4D and XH,G) = gH. Then

G = (ay X1 + axx2)(b1x1 + boxo)
and
H= ﬁ(alxl + azxz)il(blxl + b2X2)i2,

135 where i, io are hon-negative integers with # i, > 0 and a, ap, by,
b, are elements k such thatxa + a)xo and b x; + boxo are linearly
independent over K.
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Proof. We may assume, without loss of generality, that= w, = 1.
SinceJ(H,G) = @H, by Lemma(I8:2) we havd(HG) = d(H) +
d(x1x2), whered = dy. This givesd(G) = 2. Now, assume for the
moment thak is algebraically closed. Then there exast by, ap, by € k
such thau; = a;x; +axx2 anduy = by X; +boXo are linearly independent
overk andG = uf or G = upuz. Now, u = (up, Up) is an automorphic
pair for A. If G = uZ then we have

ZH = J(H,G) = J4(H,G)

Du,l(H) Du,Z(H))
2Up 0

= gu Dy 2(H).

=g det(

This is not possible, since dgdy2(H) < deg, H. Thus we have
G = uzup. Now, since

ZH = J(H,G) = @ Jy(H, urup)

andH is (1,1)-homogeneous with respectugait follows from Lemma
that we havél = guj'u2 with i + i, > 0. Thus we have proved
that we can choose elemerasg by, ap, b, € k (= algebraic closure of
k) which meet the requirements of our lemma. If this choicencaibe
made ink thenG would be irreducible inA and it would follow from
the form ofH thati; = i, andH = G, But this is not possible, since
J(H,G) # 0. O

(18.11) LEMMA. Assume that ywv, > 0. Let H G be w-homogeneousi36
elements of A such that B 0 and JH,G) = gH. If lwy| > |wy]
(resp.|wy| < [w|) then G= gzx% and H= zZ1x? (resp. G= #x,z and

H= Qfxillziz) for some non-negative integersip with i1 +i, > 0, where

z= % + X" (resp. z= o + ax?’") for some a k. If a # 0 then
w1/Wo € N (resp. w/w; € N).

Proof. The proof is analogous to that Lemina (18]10). First, we note
that, by symmetry, it is enough to consider the cagé > |wy|. Since
wiw, > 0, we may assume, without loss of generality, that> O,
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wy > 0. Thenw; > w,. SinceJ(H,G) = @H, we haved,(HG) =
dw(H) + dw(xax2) (Lemma[(I8:3)). Thereford,(G) = w; + wy. Since
w1 > Wp, the only monomials irnx;, X, of w-degreew; + w, are x; X
and (ifwi/wy € N then)x{"/")*! | Therefore we havé = bx;x, +
oMM with b, ¢ € k andwy/w; € N if ¢ # 0. We claim thab # 0.
For, if b = 0 then we get

Di(H) D2(H)

wl/wz) = %" D(H),

Q»‘H:J(H,G):det( "

which is not possible, since dgd>:(H) < deg, H. Thusb # 0. Let
z=x +axX" wherea = blc. ThenG = bzx. Letu; = z Uy = Xo.
Thenu = (uz, Up) is an automorphic pair foh andu; is w-homogeneous
of w-degreew;, i = 1, 2. ThereforeH is w-homogeneous with respect to
u. Moreover, we havegH = J(H, G) = @ Jy(H, buitp) = g Ju(H, urup).
Therefore it follows from Lemma{I89) that we hade= zul'u? with

i1 +i2 > 0, and the lemma is proved. O

(18.12) LEMMA. Assume that w> 0, w, > 0 and that vy divides w
and w # wi. Let a be a non-zero element of k and let (uy, Uy) be
137 the automorphic pair defined by & x; +axy™’"2, up = x,. Let f be an

element of A such thatf f= quilluizz, where i is a positive integer and
I2 is a non-negative integer. Theleg, f < degf.

(Sed(16.2) for the definition of dgd and degdf.)

Proof. Letn = dy(f). Sinceu; is w-homogeneous ofi-degreew;, i =
1,2, f} is also thew-degree form off with respect tas = (uy, up) (i.e.,
when we regard as a polynomial iruy, up; and give weightw; to u;,
i = 1,2). Sincefy = zu!u?, we can writef in the form

(18.12.1) f=puiuz+ > bypufuf?

P1W1+pawW2<n

and also in the form

(18.12.2)  f=glu+ax™) g+ > gppx

P1w1+p2w2<n
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with by, p,,Cpp, € k. Let pg, p2 be non-negative integers such that
p1W1 + P2Wo < n. Then, noting that by assumption we havgw, > 2,
we get

p1 + P2 < pr(Wi/Wo) + P2 < N/Wo = ig(Wy/Wp) + ia.

Therefore we have

deg,[ > bplpzuflu;h] < i1(W1/W2) + iz,
P1w1+p2w2<n

(18.12.3)
deg[ > cplpzxflsz’Z] < i1 (W1 /W) + i,

Piwi+p2w2<n

O

Since deg(uilluizz) = i1+ < i1(W1/Wo) + i» (Decauseny /wy > 2
andiy > 0) and since
1/W2)i1

deg((xl +a x';) = ig(W1/W2) +i2

(becausa # 0), it follows from (I8I1Z11),[I8.12 2) and(18.112.3) thaBs

dng f < i1(W1/W2) +ip = degf

(18.13) THEOREM. Assume that w> 0, w, > 0. Let f, g be elements
of A such that f,g) = . Then § = zulu?, where i, i, are non-
negative integers, i+ i> > 0, and u= (uy, Up) is an automorphic pair
for A which has one of the following three forms:

(i) Ifwy =w, then yis homogeneous linear imxx,i =1, 2.

(i) 1fwi > wy then u = x + axy’™,u; = %, with a € k and
wi/Wo e Nifa # 0.

(i) fwy < wothenuy = X, b = X + ax‘f’Z/Wl with a € k and

wWo/wy € Nifa #0.

Moreover, if u is given by (ii) (resp. (iii)) and ifi# O (resp. b # 0) and
# Othendeq, f < degf.
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Proof. By symmetry, it is enough to consider the casgs= w, and
w1 > Wo. If wg > w, and ifi; # 0 anda # 0 in (i) then the last assertion
of the theorem follows immediately from Lemja{18]12). O

Now, J(f, g) = @ implies thatf andJ(f, g) arew-related. Therefore
by Corollary[(I8.14) there exist-homogeneous elemerits G of A and
a positive integer such thatf = gH" andJ(H,G) = gH® with s=0
or 1. SinceJ(f,g) = &, we havef # 0. HenceH # 0.

Supposes = 0. ThenJ(H,G) = &. Therefore ifw; = wy then
by Lemmd{I8:8H is homogeneous linear ixy, x,. Letu; = H and
let u, be any homogeneous linear polynomialxin x, such thatuy, up
are linearly independent ovér Takingi, = r, i = 0, we havef =
guiuz. Now, if wy > w, then by Lemm@ (I8P = zzwherez = x,
orz = x; + axy/" with a € k andwy/w, € Nif a # 0. Letu; =
x; + ax¥t"2 u, = %, and let

[0, ifz=u,
(I1.12) = {(o, 0, ifz= .

Then we havef;; = guu?.

Now, supposes = 1. ThenJ(H,G) = @H. If wy = wy then by
Lemma[{I8-10) we havel = zu'uy?, whereu, u, are homogeneous
linear and are linearly independent overTakingii = rjy, i> = rjo,
we getfy = guiu?. If wy > w, then by Lemm@(I8.1]L) we havé =
ZUlulz, whereup = X, up = xq + ax5"/" with a € k andw /w € N if
a# 0, andjy, j» are non-negative integers such that- j, > 0. Taking
i1 ="rj1,i2 =rj2, we getfyy = guju?.

(18.14) DEFINITION. Let f be an element oA such thatf ¢ kand let

r be a positive integer. We sdyhasr points at infinity with respect to the
w-gradationif f; is a product of mutually coprime factors ik[xy, Xo],
wherek is the algebraic closure &, i.e., if f = hi*...h, where
ni, ..., N, are positive integers and, . . ., h; are irreducible elements of
k[ x1, %] with g.c.d. hi,hj) = L fori # j. We say simply thaff has

r points at infinityif f hasr points at infinity with respect to the usual
(i.e., (1,1)-)gradation.
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(18.15) COROLLARY. Let f, gbe elements ofA such that)(f, g) = &.

If wp > 0,w, > 0thenf (alsog) has at most two points at infinity with
respect to thev-gradation. In particularf (alsog) has at most two
points at infinity.

Proof. Immediate from Theoren (18:33). o

19 Various Equivalent Formulations of the
Jacobian Problem

We preserve the notation of 915 arfldB16. In particular, wes fthar 140
k =0.

(19.1) Newton Polygon off

Let u = (ug, up) be an automorphic pair foA. Let f € A. Writing
f = X ay,ulu? with a,;, € k, we putSy(f) = {(il,i2)|ali2 + o}. We
call Sy(f) the support of f with respect to.uLet Ny(f) be the smallest

convex subset of the real plaRé containing the seB,(f)uU{(0, 0)}. We
call Ny(f) the Newton Polygon of f with respect to u

U2

Uy

Newton Polygon of f
(Points ofSy(f) are indicated by dots)
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Note thatNy(f) is the set of pointsfy, p2) € R? for which there
exist (1,12), (j1, j2) in Sy(f) ands,t e R with 0 < s,t < 1 such that

(P1, P2) = (izst+ j1(1 - 9)t,izst+ jo(1 - 9).

U2

(i1,72)

(i15+ j1(1 = s),425 + ja(1 — 5))

(p1,p2) (j1,72)

0 (5%

We write S(f) (resp.N(f)) for Sx(f) (resp.Nx(f)) and call it simply
the support(resp.Newton Polygojof f.

(19.2) THEOREM. Let f, g be elements of A such thdtf,.g) = &.
Assume that f has only one point at infinity and tdagf > 2. Then
there exists an automorphic pair 4 (ug, u) for A such thatdeqg, f <
degf.

Proof. Let k be the algebraic closure &f Sincef has only one point
at infinity, there exists an irreducible homogeneous eldémén A such
that f* = gF" for some positive integer and o

(19.2.1)

F is a power of a homogeneous linear polynomiakjir, X].

Since chak = 0, the homogeneous polynomia) being irreducible
in K[ X1, X2], factors into distinct (i.e. mutually coprime) homogeneo
linear polynomials irk[x;, x2]. Therefore in view of (19.2.1) we neces-
sarily have dedr = 1, so that by a suitable homogeneous linear change
of variables inA, we may assume th& = x; and f* = gx + 2"
with n = degf > 2. Then (On) € S(f) andiy + io < n for all
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(i1,i2) € S(f) — {(0,n)}. It follows that (Qn) € N(f) andiy +i> < n
forall (i1,i2) € N(f) — {(0, n)}. (this means thall(f) lies below the line
through (Qn) with slope—1 and meets that line only in the point, ().
See the figure below.) Sinckf, g) = o andn > 2, we havef ¢ Kk[xy].
Therefore there exist$;(i,) € S(f) withi; > 0. Let

q = inf {(n ~ig)/iafGn.iz) € S(f). iy > o}

and let o1, p2) € S(f) be such that] = (n— p2)/p1- (Note that p1, p2)
is one of

T

the points ofS(f) — {(0, n)} lying on the linePQin the above figure
and that—q is the slope of the lin€®Q.) Letw = (w1, W»), wherew; =
n— p2, Wo = p1. Sincep; + p2 < N, we havew; > w,. Therefore by
Theoren{{I8.IB) we havk) = zui'u?, wherery, r, are non-negative
integers withry + 1, > 0, Uy = X andu; = X; + axg’l/""2 with a € k 143
andwy/w, € N if a # 0. Let (1,i2) € S(f). Then, sincd, < n and
sinceq = wy/Wp, we getiqwy + ioW, < nwe. This, together with the
fact thatpywy + powo = nwe, shows that,,(f) = nw, and that the two
distinct points (On) and (o1, p2) belong toS(f,). Thereforef, is not
a monomial inxg, Xo. This means that; # 0 anda # 0. Therefore by
Theorenf (I8:TB) we have def < degf, and the theorem is proved.

(19.3) REMARK. Let u = (up, Up) be an automorphic pair fok. Let
o be thek-algebra automorphism & defined byo(x) = u, i = 1,2.
Let us say that is obtainedfrom x by . We sayo is homogeneous
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linear if there exista;, b € k such thaty; = ajx; + bixp, i = 1,2. We
sayo is very primitiveif there exista € kandn € Z, n > 2, such that
Ui = Xq + axg, Up = Xp OFU; = X1, Up = Xo + ax‘{. We then note from
the proof of Theorerfi (I9]) that there exists an automorpdicu for
A such that degf < degf anduis obtained fronx by a homogeneous
linear automorphism followed by a very primitive automagph.

(19.4) THEOREM. The following four statements are equivalent;
() If f,ge Aand Jf,g) = o then Kf,g] = A.
(i) If f,ge Aand Jf,g) = & then f has only one point at infinity.

(i) If f,g e Aand Jf,g) = @ then Nf) is a triangle with vertices
(0, n), (0,0), (m, 0) for some non-negative integers m, n.

(iv) If f,g € A and Jf,g) = & thendegf dividesdegg or degg
dividesdegf.

Proof.

(1) = (IN). This follows from Corollary[(IT.23).

(I = (). If degf > 2 then, since by (II)f has only one point at
infinity, it follows from Theorenf (19.2) that there existsautomorphic
pairu = (ug, up) for Asuch that degf < degf. Moreover,J,(f,g) = &,
so thatf has only one point at infinity with respect to Therefore,
by a repeated application of (II) and TheorEm (19.2), we nesu@me
that degf = 1. Now, by a further linear automorphism Af we may
assume thaf = x;. Theng = J(f,g) = D2(g), which shows that
g = g% + p(x1) with p(x1) € K[x1]. Now, it is clear thak[f,g] = A.

(1) = (). Let m = deg, f, n = deg, f. LetT be the triangle
with vertices (On), (0,0), (m, 0). WeclaimthatNf = T. This is clear
if m= 0orn = 0. Assume therefore that > 1 andn > 1. Then by
Corollary[(TI-Z0)f is almost monic in bottx; andx,. This means that
(m,0) € S(f) and (Qn) € S(f). ThereforeT c N(f). Now, let

f = ap(x1)X5 + a1 (X)X + -+ + an(X1)

with a(x1) € K[x3] for 0 < i < n. Then by Corollary (IT.2D) we have
ndeg, ai(x1) < imforeveryi, 0 <i < n. It follows that if (p, g) € S(f)
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thennp < (h—g)m, so thanp+mg-mn > 0. This shows that, q) € T.
ThereforeS(f) c T and henceN(f) c T. ThusN(f) =T.

(1) = (II). We may assume thétis algebraically closed. Let =
deg(f). Supposef has at least two points at infinity. Then by a linear
homogeneous change of variables (i.e. by replaging, by a suitable
k-basis ok x ®kx) we may assume thdt" = X[ G, wherer is a positive
integer andG is a homogeneous element Afsuch thatx; does not
divide G in Aand deds > 0. SinceJ(f,g) = &, N(f) is a triangle with
vertices (0n), (0.0), (m, 0), wherem, n non-negative integers such that4s
m+n > 0. This shows that ifi > mthen the monomiak} appears in
f* with a non-zero cadicient. But this is not possible, sindeé = x|G
with r > 0. Thus we have < m. Therefore, sincé\(f) is the triangle
(0,n), (0,0), (m,0), we getf* = gx]". This is also not possible sinog
does not dividés and deds > O.

() = (V). This follows from Theorenji (10.P).

(IV) = (I). Assuming (IV), we prove (1) by induction on defyy).
SinceJ(f,g) = &, we havef ¢ k, g ¢ k. Therefore ded > 1, degg > 1
and degfg) > 2. If deg(fg) = 2 then deg = 1 = degg and the
assertion is clear in this case. Now, ket degf, n = degg, and assume
thatm+ n > 3. Without loss of generality, we may assume timat n.
Then by (IV)n dividesm. Since deg{g) > 3 andJ(f,g) = &, we have
J(f*,g") = 0 by Lemmd(I8.2). Therefore by Propositjon (1}7.4) we
havef* = c(g*)™" for somec € k*. Leth = f — cg™". Then dedh <
degf. Moreover, clearlyd(h,g) = J(f,g) = . Thereforek[h,g] = A
by induction hypothesis. Sindéf, g] = k[h, g], (I) is proved. O

(19.5) REMARK. In order to solve the Jacobian problem, we may as-
sume that the fieldk is algebraically closed. For, each of statements
(11, (1) and (IV) of Theorem[{I9.9) is unaltered if we regaek by its
algebraic closure.

(19.6) REMARK. In the next section we give yet another equivalent
formulation of the Jacobian problem in terms of a NewtonsBuk ex-
pansion.
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20 Jacobian Problem Via Newton-Puiseux Expan-
sion

We preserve the notation of 815 arf[d1816. In particular, we lednar
k = 0. We assume, in addition, thiats algebraically closed.

(20.1) Newton-Puiseux Expansion

146 Let f, g be elements oA. Assume thah = deg, f > 0 and that
f is monic inx,. By a construction analogous to the one used[in 89,
we can expandy in fractional powers off 1 with coeficients in the
algebraic closure ok(x;). Explicitly, let L be the algebraic closure of
k(x1) and letr be an indeterminate. Lét : L[x)] — L((r)) be the
L-algebra monomorphism defined Bfx,) = 1. It is then clear that
we have ordd(F) = —deg, F for everyF € L[x;]. In particular, we
have ord 6(f) = —n. By Corollary[(5.4) there exists € L((r)) such
that ord(t) = 1 andg(f) = t™". We then have((t)) = L((r)) and
ord; F = ord; F for everyF € L((t)). LetB = k[x;]. ThenB c L and
we haveA = B[xy]. Let

B((t)) = {Z ati € L(®)|a € B Vi}.

Then we have

(20.1.1) LEMMA
6(A) c B((1).

Proof. We have only to show thai(x,) = 7~ belongs toB((t)). Since
f is monic inx; with deg,, f = n, we can writef = xg + fp with f; € A
and deg, f; < n. Therefore we get

t"=6(f)=7t"(Q+71p)

with p € B[[7]]. It follows thatt = ¢7(1 + 7q), where! € un(k) (= n
roots of unity ink) and

q (is)ri_lpi e Be Bl[7]].

(]
i=1
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wheres = —1/n. Replacingt by /~t, we may assume thgt= 1. Let

7= Zati with g € L. Then we get 147
i1

T= Z ar(l+ Tq)i.
i=1

Now, we can write (¥ 7q)' = 1+ 7q with g € B[[7]]. Let g = ZbijTj
ic0
with bj; € B. Then we get

i=1 j=0

Comparing the caécients ofr, we geta; = 1 € B. Inductively, assume
thatg; € Bfor 1 <i < d- 1 for some integed > 2. Then, comparing
the codficients ofr% in Z0LL1) we get & a4 + ¢, where

o
=

c= ) abigii.

1l
=

By induction hypothesis € B. Thereforeay € B. This proves that we
have

(20.1.1.2) T=t(1+1r)

with r € BJ[[t]]. Therefore we get
=t (1 + Z(—l)itiri].
i=1
which shows that™! € B((t)). o

(20.1.2) COROLLARY

For any choice of € L((r)) such that(f) = t™", we haver = /t(1 +tr.)
for somer € B[[t]] and some&’ € un(K).
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Proof. Immediate from[[Z0.1.712).
In view of Lemmg{20.1.7), we can restrigto A to get aB-algebra
monomorphisn® : A — B((t)) such tha®(f) =t and

(20.1.3) ord6(F) = —deg, F
for everyF € A. Let
(20.1.4) 0() = > gjt!

j

with g; = gj(x1) € B. We call ZO.TH) dNewcon-Puiseux expansion of
g in fractional powers of fX. Note that for fixedxs, %o, f, g, C0L3)
depends on the choice of an elemésuch thatd(f) = t™. If t, t»

are two such choices then we haye= /t, for some? € un(k). Thus
there are atmostdistinct Newton-Puiseux expansionsgih fractional
powers off~1 and any two of them are conjugate to each other under
a B-automorphism oB((t)) given byt — ¢t for somel € up(k). In
particular, the condition (JC) in Definitiqn (20.2) belowpdsds only
onx = (X, X2), f, gand does not depend uptn m|

(20.2) DEFINITION. With the notation of (20.1), we say the patft, §)
satisfies conditioflJC) (with respect to X]Jf the following holds:
(JC) gj € kfor every j< n—-2anddeg, gn-1 = 1.

(20.3) A DERIVATION OF L((t)).

Continuing with the notation df (Z0]1), put = X1, up = f andu =

(U1, up). Since deg, f > 0, uis a transcendence basekof= k(xy, X)

over k. Therefore we havé&-derivationsD, 1, U, of K as defined in
[(I51). Letd denote the unique extension Df,; to a k-derivation of
L(x2),i=1,2. Letd : L((t)) — L((t)) be the map defined by

5[2 a,-t‘] = du(ayt.
j j

Thené is clearly ak((t))-derivation ofL((t)). We note thas(B((t))) c
B((t).
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Moreover, denoting again l#ythe extension of to anL - monomor-
phismL(xp) — L((t)) of fields, we have

(20.3.1) LEMMA
66 = 6d;.

Proof. SinceL(xy) is separable algebraic oviefuy, Up), it is enough to
show thatsg|k(uy, up) = 6d;|k(us, up). Therefore it is enough to check
thatéo(u;) = 0dy(u), i = 1,2. Now,60(uy) = 66(X1) = 6(X1) = 6(uy) =

1 andddi(uz) = 6(1) = 1. Next,60(u2) = 60(f) = 5(t™") = 0 and
0d;(u) = 8(0) = 0. The lemma is proved. O

(20.4) THEOREM. Let f, g be elements of A. Assume that f is monic
in x; and thatdeg,, f > 0. Then the following two conditions are equiv-
alent:

@) J(f,0)=g2.
(i) (f,Qg) satisfiegJC).

Proof. We use the notation §f (20]1) ahd (20.3). Dgt= Dy;,i = 1,2,
wherex = (x1, X2). By the chain rule of derivation we have

J(f,9) = Ju(f, g)Ix(uy, u2)
= Ju(f, 9)Ix(xq, T)

oty ollol o

di(g) d2(9) Da(f) Da(f)
= —d1(g)D2(f).
This gives
6(d1(9))0(D2(f)) = -6(J(f, ).

Therefore by Lemm&(20.3]1) we gé&v(9))d(D2(f)) = —6(3(f, g)).
Using the expressiol (20.1.4) féfg) we get

(20.4.1) [Z dl(gj)ti] 6(D2(f)) = -6(J(f. 9)).
i
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Now, letn = deg(2 f. Thenn > 1. Sincef is monic inxy, we 150
getDy(f) = n><g‘l + f7 with f* € Aand deg, f* < n— 1. Therefore
6(D2(f)) = ne™" + g(f) with ord, 6(f") > 1 — n. It therefore follows
from Corollary[{20.1.2) tha#(D,(f)) = zt*™" + e, wheree € L((t)) and
ordee > 1 - n. This shows that we haw#Dy(f))™* = zt"! + h with
h e L((t)) and ordh > n— 1. Therefore from[{Z0.411) we get

(20.4.2) > (gt = ~6(3(F.g)(t" L + h).
j

Now, supposel(f,g) = &. Then we have

D du(git! = #(2t"t + h).
i

This shows thatl;(g;) = O for j < n—2 andd;(gr-1) = &, which clearly
implies that {, g) satisfies conditionJC).

Conversely, suppose that, ) satisfies conditionJC). Then we
haved;(g;) = 0 for j < n-2 andd;(gn-1) = &. Therefore it follows
from (Z0.4.2) that we have

(20.4.3) gt > di(gt! = —6(3(F, g))(#t™ + ).

j<n

This shows that ord(J(f, g)) = 0. Therefore by[[20.T13) we get dgg
J(f,g) = 0, which means thai(f,g) € L. Puta = J(f,g). Then
6(1) = A. Therefore comparing the cfieients oft"! in Z0.4.3) we
getz = —A~, which shows that = &, and the theorem is proved. o

(20.5) NOTATION. Let f,g be elements oA. Assume thah = deg,,
f > 0 and thatf is monic inx,. Then with the notation di (Z0]1) we
have a commutative diagram

L[xz] —2 L((®))

i 0 BZJa))

151 wheref is aB-algebra monomorphism such tle§f) = t™" and
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(20.5.1) ordd(F) = —deg, F

0(0) = > gjt’
j

with g; = gj(x1) € B. Assume that the paiff, g) satisfies condition
(JC), i.e. assume that we have

for everyF € A. Let

gj e kforeveryj<n-2,

(20.5.2)
deg, On-1=1

Then by Theoreni (204) we hauif,g) = #. Let® = O(X,Y) €
L((X))[Y] be the minimal monic polynomial od(g) over L((t")). (See
Definition [(5.8).) Recall thatb is the unique irreducible element of
L((X))[Y], monic inY, such thatd(t",6(g)) = 0. Putd = d(X,Y) =
O(XL,Y).

(20.5.3) LEMMA

(i) @ is monicinY and deg ® = n.

(i) ® e B[X,Y].

(i) @(f,g) = 0.

(iv) L[X, Y]/(®) is isomorphic (as ah-algebra) td_[f, g].
Proof.

(i) By definition of®, ® is monic inY. By (Z0.5:2)n—1 € Supp 6(g).
Therefore
g.c.d. {n}USuppo(g)) = 1.
Now it follows from Lemmg(5.10) that dggb = n. This proves 152
().

(i) Let ¥ = ¥(X Y) € B[X Y] be thexy-resultant of f — X, Y —
0). Sincef is monic inxz, ¥ is monic inY. Moreover, since
deg, f = n, we have deg? = n. Put¥(X,Y) = ¢(X1Y).
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We have¥(f,g) = 0. Therefore 0= 9(\I’(f g)) =Yt 0(9)
P(t", 6(g)). It now follows from (i) that® = ¥. Therefored =
Y e B[X, Y].

(iii) Since ® =¥ as proved above, we hadg f,g) = ¥(f,g) =0

(iv) Let @ : L[X,Y] — L[f,q] be theL-algebra epimorphism defined
by a(X) = f, a(Y) = g. then (ii) and (ii)® € kera. Since®
is irreducible inL((X™1)[Y] > L[X, Y] and is monic inY, ® is
irreducible inL[X, Y]. Therefore ket = (@), and (iv) is proved.

O

(20.5.4) A SPECIALIZATION.

Since deg gn-1 = 1 by (20.5.2), there existse k such thag,_1(x1) #
On-1(c) # 0. We choose such@e k and keep it fixed in the sequel. For
an elemenFE of A = B[xy] (resp. B((t)), B[X, Y], B[X1,Y],...) we shall
denote byF the element ok[x,] (resp.k((t)), K[X, Y], K[X™ 1vl,..)

obtained fronF by puttingx; = c. Lety = @, & = ®.

(20.5.5) LEMMA

() ¢ € KX, Y], ¢ is monic inY and deg ¢ = n.
(i) @€ k[X1,Y]%is monicinY and deg & = n.

(iii) % is the minimal monic polynomial of(g) = ¥, G;t! overk((t").
j

(iv) ordk(6(g) — 6(g)) = n— 1.
Proof.
(i) is immediate from Lemmp{Z0.5]3).

(i) This follows from (i), sinceg(X, Y) = o(X71,Y).
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153 (iii) Since ®(t",6(g)) = 0, we haves{t", 6(g)) = O. Sinceg,,_; # 0, we
haven — 1 € Supp 6(g). Therefore the minimal monic polynomial
of 6(g) overk((t")) hasY-degreen (Lemmg{5.10)). Therefore by
(ii) % is the minimal monic polynomial af(g) overk((t")).

(iv) Sincegj € kfor j < n-2, we haveg; = g; for j < n—2. Moreover,
we haveg,-1 # §,_1. Therefore the assertion follows.

(20.5.6) Characteristic Sequences df, g).

(See §5.) We defini(f,g) = h(®) and we define theharacteristic
sequencesf the pair (f, g) by

m(f.g) = m(-n, @),
q(f,g) = g(-n, ),
s(f.g) = s(-n, ),
ri(f.g) = ri(-n ),
disa(f, Q) = dia(P),
for0 <i < h(f,g) + 1. (Note that these sequences depend not only on

f, g, but also orx = (X1, X2). However, the omission ofin the notation
m;(f, g) etc. will cause no confusion.)

(20.5.7) LEMMA

We haveh(¢) = h(f, g) and
M(—n, 9’5) = m(f’ 9)9
qi(_n’ 9’5) = Qi(f, g)’
S(_n’ QZ) = S(f’ g)v

ri(_n’ QZ) = ri(f’ g)v
di;1(9) = di;a(f, Q)

for0<i<h(g)+1.
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Proof. Immediate, since g.c.dn(n—1) = 1,n—1 € Suppé(g),n—1€ 154

SupR 6(g) and orq(6(g) - 6(g)) = n— 1 by Lemmd (2055). 0
In the remainder of subsectipn (2Q.5) we fix the followingtioh:
h = h(f,g),
m = my(f, g),
g = ai(f,9),
s = s(f,9),
ri = ri(f. ),

di+1 = di+1(f, g)

forO<i<h+1. Also,forl<i<h+1,let

- Y, ifi=1
Vi = Apdi(@, ifi=2

Y ifi>1,
Vi = Apdi(e), ifiz2,
~,_a_J,i
Vi= oy
Wi
wi_aY'

(See gh).

(20.5.8) LEMMA

We have:
(i) h>1.
(i) my =-deg,g<0.
(i) m<n-1forl<i<h-1andm,<n-1.

155 Proof. (i) This is clear, sinc#(g) # 0.
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(i) Follows from (20.5.1) and the fact thgt O.
(iii) Thisis also clear, sinca—1 € Suppé(g) and g.c.d.if,n—1) = 1.
m]
(20.5.9) LEMMA

Forl<i<h+1, wehave
() Gi(XY) = ¢i(XLY),
(i) ¥i(XY) = ¢{(XLY).
Proof. (i) Follows from Propositiofi (4.7).

(i) Follows from (i)

(20.5.10) LEMMA
ForF(X,Y) € k[X, Y], we have deg F(f,g) = —ord F(t™", 6(9)).

Proof. This follows fromZO.51, sinc&(F(f, g)) = F(t™", 6()). o

(20.5.11) LEMMA
For 1< e < h, we have deg ye(f,g) = —re.

Proof. We havey1(X,Y) = Y. Therefore by Lemma(20.5.10) deg1
(f,g) = —ord 6(g) = -y = —ry. This proves the assertion fer= 1.
Assume now that > 2. Sinceme < n—1 by Lemmg{20.5.8), it follows
from Lemmd{20.5.%) (iv) that we have

00 = Y Gith + gmt™ + Y gitl.
j<me j>me

Therefore, sincegn, # O, it follows from Corollary[{7.20) that
ord §(t", 6(g)) = re. Therefore by Lemm@ (20.5]9) we have ase(t™,
6(g)) = re. Now, the lemme follows from Lemnja (Z0.5.110). o
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(20.5.12) LEMMA
For 1< e < h, we have deg y¢(f,g) = me —re.

Proof. Since orgd(g) — #(g)) = n—1 > me andme € Supp 6(9), it
follows from Propositiofi (T3.7) that ord’(t", 6(g)) = re — Me. There-
fore by Lemmaﬂ’ZCTS'B) arjd (20.5110) we get,deg(f.g) = —ord(
Ye(t™,0(g)) = Me — Te.

156  (20.6) DEFINITION. An elementf of A is said to bex, regular if
f # 0Oand ded = deg,, f

Note thatf is xo-regular if and only ofx; does not dividef* in A.
In Lemmaq(20.7) [(Z0.P) below, we let the notation and agsum
tions be thosg (20.5). We assume, moreover, thatx,-regular.

(20.7) LEMMA. Let e be an intege < e < h. Assume tha;(f, g) is
related to f for every il <i < e- 1. Let F = F(X,Y) be a non-zero
element of kX, Y] with deg, F < n/de. Then RF, g) is related to f.

Proof. LetR = K[X]. Let p = e~ 1 and letG = (Gy,...,Gp), where
Gi = yj for 1 <i < p. ThenG satisfies conditions (i)-(iii) df {(Z.2) and,
with the notation of (Z.2), we havg(G) = d;/di;1 for 1 <i < p—1. Let

A@G) = {a: (au.....ap) € (Z')7]a < d/cho for 1<i < p- 1}.

i
Then by Corollary (Z:T4) we have ti&adic expansion
(20.7.1) F= ) FG
acA(G)
of F with f; = F4(X) € Rfor everya € A(G). By Corollary[(Z.9) we
have

p
Z g deg, Gj = deg, G® < deg, F < n/de = n/dps1

for everya € Supg; F. In particular, we have

apn/d, = apdeg, Gp < n/dp,1.
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This gives
(20.7.2) ap < dp/dps1
for everya € Supp;(F). PuttingX = f, Y = gin Z0.Z1), we get 157
(20.7.3) F(f.9) = Y Fa()G(f, 9,

aesS

whereS = Supp;(F). SinceGy(f) € K[ f], we can rewrite[[Z0.713) in
the form
F(f.g)= > apHP
beB(H)
with A, € k for everyb, whereh = (ho,...,hp) with hg = f. H; =
Gi(f,g) for 1 <i < p, and where

B(H) = {b = (bo..... bp) € (ZH)PH

Note that the conditiot, < dp/dp+1 for b € B(H) is justified in

view of (ZO.Z2). Since dggH; = —r; for 1 <i < p (Lemmg(20.5.11))
and deg, Ho = deg,, f = n= -ro, we have, for everp € (B(H)).

bi < d/dhus for1<i < p}.

p
deg, H® = 3" bi(-ny).
i=0

which is clearly a strict linear combination off, ..., —rp). (See L.
Therefore ifb,b” € B(H), b # b’, then deg2 Hb # deg(2 HY". It follows
that there exists a uniquee B(H) such thatl, # 0 and

(20.7.4) deg, F(f,g) = deg, (1,H®) > deg, (1w H")

for everyly € B(H), b* # b. Now, by assumptionH; is related tof
for everyi, 0 < i < p. In particular, sincef is xp-regular, so idH; for
everyi, 0 < i < p. Therefore we have dggH” = degH" for every

b’ € B(H), and it follows from [2Z0.ZW) that we have
F(f,9)" = (H").

Since eacHH; is related tof, so isA,H® by Lemm&{I7.3). Thus158
F(f, g) is related tof, and the lemma is proved.
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(20.8) LEMMA.. Let e be an intege® < e < h. Assume that;(f, g)
is related to f for every il <i < e—1. Then f has only one point at
infinity or ye(f, g) is X-regular.

Proof. By the chain rule for dterentiation we have
(20.8.1) I(f.ve(f.9) = ve(f, 9)I(F, 9) = Bye(f, 0).

Now, if J(f*,ye(f,g)*) = 0 then by Propositiop (T714) andye(f, g)
are related. Therefore in this case, sifcis xy-regular, so isye(f, g).
Thus we may now assume thaf*, ye(f,g)*) # 0. Then by [20.8]1)
and Lemm& (I8:P) we have

(20.8.2) I yef,9)7) = syt 9)".

O

Since deg y, = deg, ¥e — 1 < n/dg, it follows from Lemmd{20.7)
that y¢(f, g) is related tof. Therefore there exist non-negative inte-
gersp, g and a homogeneous elemétof A such thatf* = gHP,
vo(f,g)t = oHY. From [Z08R) we get)(H9,G) = «HY, where
G = ye(f,g)*. This shows thap - 1 < qandJ(H,G) = gH'", where
r=q-p+1 Ifr =0thenJ(H,G) = & and it follows from Lemma
(i) thatH is linear inxq, o, which shows thaf has only one point
at infinity. We may therefore assume that 0. Then by LemmBA{I8b)
H'! dividesG. LetG = EH! with E € A. Then fromJ(H,G) =
ZH" we getJ(H,E) = gH. Therefore by Lemm@ (18.70) we have
E= (a1x1+a2x2)(b1x1+b2x2) andH = g(a1x1+a2x2)i1(b1x1+b2x2)i2,
whereis, i are non-negative integers, + io > 0, anday, ap, by, b, are
elements ok such thata; x; + apxo andbyx; + boX are linearly inde-
pendent ovek. If i1 = 0 orip = 0 thenH (and thereforef) has only
one point at infinity. Assume therefore that> 0, i, > 0. Then, since
f (and therefordH) is xo-regular, we havey, # 0, by, # 0. This implies
that E is xo-regular. Thereforés = EH1is Xo-regular. This means
thatye(f, g) is Xo-regular.

(20.9) LEMMA. Let e be an intege® < e < h. Assume that;(f, g)
is related to f for every il <i < e— 1. Assume also thatg n— 2.
Then f has only one point at infinity @r(f, g) is related to f.
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Proof. If f has only one point at infinity, there is nothing to prove.
Therefore by LemmB{20]8) we may assume thdf, g) is x-regular.
By Propositior{ (17.4) we have to show thitf*, ye(f,9)*) = 0. Sup-
poseJ(f*, ye(f,9)*) # 0. Then, since by({20.8.1) we have

I(F. ve(f. 9)) = 2ye(f.9)

we get
(20.9.1) ded + degye(f,g) — 2 = degye(f. 9)

by Lemmd{(I8:3). Since deg; < n/de, ¥g, ¥o(f, ) is related tof by
Lemmd(Z0.17). Therefore, sindeis xp-regular, so is¢(f,g). Also, by
assumptionye(f, g) is xo-regular. Therefore we have

degye(f,g) = deg,, ye(f,Q) = —re
by Lemmd(20.5.11) and
degye(f,g) = deg, ye(f,0) = me—re

by Lemmd{Z20.5.T?). Therefore, since deg n, (Z0.9.1) gives1—re— 160
2 = Me — e, SO thatme = N — 2, which is a contradiction. Therefore

J(f*,we(f,0)*) = 0, and the lemma is proved. O

(20.10) THEOREM (cf. Theoren](19.4)) The following three state-
ments are equivalent:

(N If f,ge Aand Jf,g) = & then Kf,g] = A.

(V) Let f, ge A. Assume thadleg,, f > O and that f is x-regular
and is monic in % If the pair (f, g) satisfies condition (JC) then we
havedeg, f = 1 or me(f,g) < deg, f —2forevery el < e < h(f, g).

(V1) Let f, ge A be as in statement (V). If the pdif, g) satisfies
(JC) then we haveleg,, f = 1 or m(f,g) # deg, f — 2 for every e,
1<e<nh(f,9g).

Proof. Consider the statement
(I If f,ge AandJ(f,g) = & thenf has only one point at infinity.
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By theoren{(19.3) it is enough the implications
N = (V) = (V) = ().

() = (V). Let f, g satisfy the hypothesis of (V). Then by Theorem
we havel(f,g) = &. Therefore by (I) we havig[f,g] = A. We
now use the notation ¢f(20]5). From the equakfy,g] = A we get
L[f,g] = L[x2]. This means that[X, Y]/(®) is isomorphic toL[X,]
(Lemmd(20.5.3)) (iv)). Now, by Lemnja(20.5.8) we hdve 1. If h >
2 then it follows from Corollar§ {I3:5) (v) thate(f, g) = me(—n, ®) <
n-2 for everye, 1 < e < h, wheren = deg,, f. Suppose now that= 1.
Letm; = my(f, g). Thenh = 1 implies that g.c.d. r;, m;) = 1. Suppose
my > n—2. Thenn—my < 2. Sincemy < 0 by Lemm4d20.5.8), we get
n < 2. If n = 2 then we must havey = 0. This is not possible, since
g.c.d. f,m) = 1. Thereforen = 1, and (V) is proved.

(V) = (VI). Trivial.

(VD) = (). Let f, gbe elements oA such thatl(f, g) = . We have
to show thatf has only one point at infinity. To do this we may replace
X1, X2 by any basis of thé&-vector spacdx @ kx.. We may therefore
assume, without loss of generality, thatdoes not dividef™, i.e., f is
Xo-regular. Then, in particular, dggf > 0. Moreover, replacing by
& f for suitablez, we may assume thdtis monic inx,. By Theorem
[(20:4), sincel(f,g) = &, the pair , g) satisfies condition (JC). Let=
deg, f = degf. If n = 1 then, clearly,f has only one point at infinity.
Assume therefore that> 1. Then by (VI) we havene(f,g) # n— 2 for
everye, 1 < e < h, whereh = h(f,g). Since ded > 1 andJ(f,g) = &,
it follows from Lemmg{1823) thad(f*,g") = 0. Let us now use the
notation off (20.3). Sincd(f*,g*) = 0, it follows from Proposition
thatf andg = y1(f, g) are related. Now, sincee(f,g) # n—2
for everye, 1 < e < h, it follows from Lemmd(Z0.9) by induction oa
that f has only one point at infinity of is related tay¢(f, g) for every,e,

1 <e<h. If f has only one point a infinity then we have nothing more
to prove. We may therefore assume thads related taye(f, g) for every
e, 1 < e< h. In particular, since is xp-regular, so ig/(f, g) for every
e. Therefore, for I< e < h, we have deg(f, ) = deg,, ve(f,9) = —re
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by Lemmd(20.5.T]). Therefore since deg n = —rg and since
g.cd. (fo,...,rn) =dhy1 =1,

it follows from Corollary[{I7.5) that there exists a homogeus element 162
H of A of degree 1 such thdt" = H". This means that has only one
point at infinity. ]

21 Solution in the Galois Case

In this section we show that the answer to the Jacobian proidean
the dfirmative in case(xz, x)/K(f, g) is a Galois extension (Theorem
Zrm).

We preserve the notation of[€]15 an@8 16. In addition, we fix the
following notation: Letf, g be elements oA = K[X1, X»] such that
J(f,g) = @. PutB = k[f,g] andL = k(f,g). Recall that we have
k = k(x1, X2) and that chak = 0.

(21.1) Definition and Notation.

As in 8[11, by avaluationwe shall mean a real discrete valuation. Det
be a field of characteristic zero aid F be over fields of2 such thate
is a finite field extension df. Letv be a valuation oE/Q and letV = R,
be the discrete valuation ring &f/ Q associated to. LetW = VNF. We
sayV lies over(or is anextensiorof) W. We denote by w (or simply,
ev) the ramification indexof V overW, i.e.,ey = V(2), wherezis a
uniformizing parameter fow. We sayV is ramified (resp.unramified
in the extensiorE/F if E, > 1 (resp.ey = 1). We sayW is ramifiedin
E/F if there exists an extensiovt of W to E such thatV is ramified in
E/F.

In our proof of Theoreni (Z1.111) we shall need the followinglwe
known formula:

(21.2) Lemma (Hurwitz Formula).

Let Q be an algebraically closed field of characteristic zero anhH,|F
be function fields of one variable ov@rsuch thak is a finite extension 163
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of F. Letn = [F : F] and letge (resp.gr) be the genus oE/Q
(resp.F/Q). Then we have

20 ~ 2= (2gr — 2+ > (ev ~ 1),
\%

where the summation is over all discrete valuation rixgsf E/Q and

€v = eyvnF-
For a proof of this lemma see, for instance, [4].

(21.3) COROLLARY. With the notation of LemmRa{Z1]2) suppose that
gr = 0 and that there exists atmost one discrete valuation ririgy Of
ramified inE/F. ThenE = F.

Proof. By Lemmg(Z1.9) we have
20e -2=-2n+ ) (ev - 1).
Vv
By assumption, all thos¥ for whiche, > 1 lie over the same discrete
valuation ring ofF. Therefore we hav{l(a/ —1)<n-1and we get
\%
20e -2<-n-1,sothan<1-2ge < 1. m|
(21.4) LEMMA. K/L is a finite (separable) extension.

Proof. SinceK is finitely generated ovdr, we have only to show that
K has no non-triviaL-derivations. Let be anL-derivation ofK. Then
we have

0 = d(f) = D1(f)d(x1) + D2(f)d(x2),
0 = d(g) = D1(9)d(x1) + D2(9)d(x2).

SinceJ(f, g) # 0, we getd(x;) = 0 = d(x2). Therefored = 0. m|

(21.5) COROLLARY. f andg are algebraically independent owesnd
B is the polynomial ring in two variablet andg overk.

(21.6) LEMMA. Let ¢ be a prime ideal of A of height one. Then
ht(_# n B) = 1. (Here ht denotes “height”.)
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Proof. Let k be the algebraic closure &fand letA = K[x, Xo], B =
K[ f,g]. SinceA is integral overA, there exists a prime ideayf’ of A
suchthat # NA= _#. Moreoverht # = 1. sinceB s integral overB,
we haveht(? NB) = ht(_# n B). We may therefore assume tlkat k.
SinceK/L is algebraic (LemmBa{Z2T}4)) we havg N B # 0. Suppose
ht( # NnB) > 1. Then # N B = (f —a)B + (g - b)B for somea, b € k.
We have # = pAfor somep € A. Sincep dividesf —aandg—bin A,
p dividesJ(f —a,g—b) = J(f,g) = & in A. This is a contradiction. O

(21.7) Proposition (Birational Case)
If L= KthenB = A.

Proof. Let 2 be any prime ideal oB of height one. The2 = gB for
someq € B. Sinceq ¢ k, g is a non-unit inA. Therefore there exists a
prime ideal_# of A of height one such that € _#. Then by Lemma
we have# N B = 2. ThereforeBy c A . Now, bothB and
A ; are discrete valuation rings of the same fildTherefore we have
B2 = Az, sothatA c Bg. Thus

ac ﬂ By = B.
ht2=1
(]

(21.8) DEFINITION. Let ¢ be a prime ideal of of height one. We
say # is unramified Bif the discrete valuation ring , is unramified
in the extensiorK/L (Definition[(ZL1)).

Note that_# is unramified oveBif and only if # NB¢ #2.

(21.9) LEMMA. Every prime ideal of A of height one is unramifietb5
over B.

Proof. Let _# be a prime ideal oA of height one and le2 = 7 N B.
We have to show tha® ¢ #2. Let # = pA 2 = qBwith p € A,
g € B. Sinceq ¢ gk, we have

(21.9.1) 0a/0f)B + (9g/0g)B ¢ gB.
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Now, we have
Di(a) = (9a/0f)Di(f) + (6a/99)Di(g)
fori = 1, 2. Therefore sincd(f, g) = &, we get
(21.9.2) 0a/0f)A + (09/09)A c D1(g)A + D2(q)A.

Now, suppose] € pA. thenD;i(q) € pA, i = 1,2. Therefore by[{Z1.912)
we have
(0g/0f)B + (09/0g)B c pAn B =B,

which contradicts[[Z1.9.1) m|

(21.10) LEMMA. Let w, w be elements of K such that/Kuy, uy)
is a finite extension. Then there exist€ &K such that ku; + aw) is
algebraically closed in K.

Proof. For a subfieldF of K let F denote its algebraic closure K.
Consider the family

fir T aw)(we)|a < k)

of subfields oK containingk(uz, uy). Since there are only finitely many
fields betweerk(us, uz) andK (and sincek is infinite), there existy,
a € k, a1 # ap, such tha.k(Vl)(Uz) = k(Vz)(Uz), wherev; = u; + ajuy,
V2 = U +apUa. Sinceu € k(vi, v2), we getk(vi) c k(v2)(tz) < k(v2)(va)
andk(v,) c k(vi)(uz) c k(v1)(vo). Therefore we havé(vi)(vo) =
kk(v2)(v1). Sincek(vo) c K = k(x1, %), k is algebraically closed in
k(o). Therefore, sincen, up and hencer, v» are algebraically inde-
pendent ovek, k(v1) is algebraically closed ilt(v2)(v1) = k(v1) (V).
This means that(vy) = k(v1). O

(21.11) THEOREM. If K/L is a Galois extension then B A.

Proof. In view of Propositiorj (Z1.T), we have only to show that K.
Replacingf by f + ag for somea € k, we may assume th&(f) is
algebraically closed iK(Lemma[(Z1.1IQ)). Then, denoting [y the
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algebraic closure df(f), we see tha®2 andK are linearly disjoint over
k(f). It follows that Q(g) andK are linearly disjoint ovel, so that
L = Q(g)nK, the intersection being taken§eK. Therefore, puttinde =
QK, F = Q(g), itis enough to show thd& = F. Supposé # F. Theniit
follows from Corollany[{Z1.3) that at least two (discret@uation rings
of F/Q are ramified inE/F. Since the g~!)-adic valuation ring is the
only valuation ring ofF/Q not containing®2[g], there exists a valuation
ring W of F/Q such thatW’ > Q[g] and W’ is ramified inE/F. Let
W =W’ NnL. ThenW is a discrete valuation ring &f containingk(f)[g]
and is ramified irK/L. SinceK/L is Galois, the extensions 8Y to K
are ramified ovek. Now, sinceW > k(f)[g], W = B for some prime
ideal of B of height one. Let = gBwith g € B. thenq is a non-
unit in A. Therefore there exists a prime idegl of A of height one
such thatg € _#. By Lemma[(Z1.8) we have# n B = . Therefore
W=B=A,nL. Thus_¢# is ramified overB. This is a contradiction 167

by Lemmd(2129). i

(21.12) REMARK. The above proof shows, in fact, that there cannot
exist a proper Galois extension lofcontained irk.
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