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Introduction

In recent years, the theory of torus embeddings has beemdjimaany
applications. The point of the theory lies in its ability e&nslating
meaningful algebra-geometric and analytic phenomenavarpsimple
statements about the combinatorics of conesfiimex space over the
reals.

In different terminology;, it was first introduced by Demaziliie [&] an
then by Mumford et al.[1683], Satake [57] and Miyake-OQdal [40here
is already a good and concise account on il [63]. NevesHzelwe
produce here another. For one thing, we wanted to supplyetsélsl of
the partial classification of complete non-singular 3-disienal torus
embeddings announced [n]40].

Besides, we wanted to make the theory, in its most genernal, fac-
cessible to non-algebraic geometers in view of its possipications
in other branches of mathematics. We can state at least thersxa
sults without using algebraic geometry, although for trepwve cannot
avoid using it. This was made possible by the following daewearth
description due to Ramanan of normdiime torus embeddings over a
field k of finite type as the set of unitary semigroup homomorphisms

U(c) = Hom unit.semigr.(a' N M,K),

where ()N = Z" ando is a convex rational polyhedral conehg = R
with o N (—o) = {0}, (i) for the dualZ-moduleM of N,

ocNnM={meM:{my)>O0forallye o}
is a finitely generated additive semigroup aiiig k is considered to be
a semigroup under thaultiplication

\Y



Vi 0. Introduction

When we have a suitable collectianof such cones, anp.p. de-
compositionthenU (o)’ scan be canonically patched together to form a
normal and separated algebraic variety dvkarcally of finite type

Tn emb@)
which has an #ective action of the algebraic torus
Tn = N®z K" = Homg (M, k") = k" x...xk"

with a dense orbit. Such a variety is calletbaus embeddingsince it
is a partial compactification dofy. Conversely, we get all normal torus
embeddings in this way (Theordm#.1). Important Algebrenrgetric
phenomena can most often be described purely in termgBiieorems
B2, [Z3[Z4 and Corollafy4.5).

We may say thak contains all the relevant information, in a unified
and globalized way, about the “exponents of monomials” seme to
describe such varieties. When an algebraic variety or ahigrpcan be
described solely in terms of monomials, then there is a gbadae that
it can most &ectively be described in terms of torus embeddings. For
instance, a normal irreduciblefae algebraic varietW c A, defined
by equation of the form

X3 X% XE = XX XD

can be expressed &Ho") for someo. (cf. (7.9))

We try to avoid overlaps with Demazuie [8] and Mumford et/@8][
as much as possible. For later convenience for referencepllet to-
gether in§. @ the first main theorem in their most general form and leave
their proof to§. [H. Various standard examples are collected together in
§.[d.

In §. @, we deal with torus embedding which can be embedded into
projectives spaces. The results are slightly more geneaal those in
[8] but less so than those in[63].

§. and§. [@ are devoted to the classification of complete non-
singular torus embeddings. We are reduced to the clasgificat cer-
tain weighted circular graphs and that of weighted triaatjohs of the
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2-sphere. As by-products, we obtain many interesting cetaphon-
singular rational three folds. (cf. Prop._PB.4) Besides, ee that torus
embeddings provides us with a good testing ground for inapbrton-
jectures on birational geometry in higher dimension.

There are many basic results we left out : For the cohomoldgy o
equi variant coherent sheaves on torus embeddings as wikle ate-
scription of the automorphism groups of torus embeddingstefer the
reader to Demazurél[8].

Mumford et al. [63] generalizes the notion of torus embeddin
that oftoroidal embeddingsind proves very importargemi-stable re-
duction theorem Torus embeddings have also been usfdcévely
in the compactification problem of the moduli spaces by Sa{ak],
Hirzebruch [19], Mumford et al.[61], Namikawh [46], Nakaray44],
Rapoport[[54], Oda-Seshadri[49] and Ishidal [26].

Here we deal with more elementary but illustrative appiaat in
ChaptefR.

When the ground field is the fieldC of complex numbers or one
with anon-archimedeamnank one valuation, thed (o) = Homynit semigr
(- n M, K), henceTy emb(), has the topology induced from that lof
by the valuation. Le€CTy be the maximal compact torus @f in this
topology. Then we can usually draw the picture of the quotEra
torus embedding y emb@) by CTy and get better geometric insight.
The quotient was introduced by Mumford et al._[[61]. We calihi¢
manifold with cornersfter Borel-Serre]4] and denote it by

Mc(N, A) = Ty emb@)/CTy.

Using this we will be able to visualize the construction aedeh-
erations of complex tori, Hopf surfaces and other cl$k surfaces
introduced by Inoue. (cf§. [I1, §. [13, §. [[4 and§. [13). Using Suwa’s
classification of hyper elliptic surfaces om[60], Tsuclsihig]62] were
able to describe their degenerations and the compactificafithe mod-
uli space in terms of torus embeddings.

There are many recent results on the actions of algebraiaand
alytic groups other than algebraic tori on algebraic vasgetind com-
plex manifolds. See, for instance, Akdo [1], Popbvi [52].][53rlik-
Wagreich[[50] and Ishide [25].
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Complete non-singular 2-dimensional torus embeddings©ggive
rise to rational compactifications @# and (C*)?. Compactifications of
C? were shown to be always rational by Kodalral[31] and weresifiasl
by Morrow [34]. There are, however, many non-rational, enen-
algebraic, compactifications of{)2. They were recently classified by
simha [58] and Ueda [64].

These notes are based on a joint work with Miyake of Nagoya
University and grew out of the lectures which the author gavEata In-
stitute of Fundamental Research, University of Paris-SQdsay,
Nagoya University, Tohoku University, Instituto Jorge dualarvard
University and various other places. He would like to thamk mathe-
maticians at these institutions for the hospitality andgatence shown
to him. The notes taken by K.Makio at Tohoku University wasyve
helpfulﬂ

Recall that for a connected locally noetherian schefnets du-
alizing complex R is determined uniquely up to quasi-isomorphism,
dimension shift and the tensor product of invertibleriodules. (cf.
Hartshorne, Residue and duality, Lecture Notes in Math.Spoinger-
Verlag, 1966).

LetT = Ty be an algebraic torus and consider the normal torus em-
bedding Temb{) corresponding to an r.p.p.decompositidw £). Let
us fix an orientation for each cone € A and define, in case dim-
dimo = 1, the incidence numbeo : t] = 0,1 or-1 in an appropriate
manner so that we have a complex

C(A,Z)z(...—>O—>Coi>Cl—>...—>CrankN—>O—>...)

whereCl is the freeZ-module generated by the set pHimensional
cones ina and where

do)= > [o:1@).

dimt—dimo=1

1After these notes were written, M.Ishida of Tohoku Univisrsibtained the fol-
lowing seemingly definitive result on the Cohen-Macaulag @orenstein properties in
relation to torus embeddings.
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Let X be aT-invariant closed connected reduced subsch&ie
Temb() and consider the compldxx of Ox-modules defined by

i _
R =& Oy
where the direct sum is taken over all the T-invariant clasediucible

subvarieties oK which is of codimensiorj in Temi{a) and wheres :

Ri( - R;’l is defined as follows X = |J orb(s) for a star closed
ey,

subset), = {0 € A; orb(o) c X}. WhenY = orb(o), then forf, € Oy,
6(f,) = Z[o- : t](the restriction off, to orb(r))
with the sum taken over e A with dimt — dimo = 1.

Theorem 0.1((Ishida)) If X is a T-invariant closed connected reduced
subscheme of a normal torus embedding Temkhen R defined above
is the dualizing complex for X.

Forp € E, let}, = {o € 3,0 < p} and consider the complex of
k-modulesC(},, k) with the coboundary map induced dy

Corollary 1 ((Ishida)) Let X be as above. Then X is Cohen-Macaulay
if and only if there existg such that for any € }, we have

HIO =0 for j#¢
P

We immediately see that Tam#)(tself is Chohen-Maculay (cf. Re-
mark after our Prop[_6l6 and Hochst&rl[20]). On the other hi#nd
Temb@) = A, is the dfine space, we get the results in Reisner (Cohen-
Macaulay quotients of polynomial rings, Advances in Math(1®76),
30-43) and Hochster (Cohen-Macaulay rings, combinataias sim-
plicial complexes, inRing Theory 1] Lecture Notes in Pure and App.
Math. 26(1977). Dekker, pp. 171-223).

In a special case, the complBx. already appears in]44].

Tadao Oda
Mathematical Institute
Tohoku University

Sendai, 980 Japan
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Chapter 1

Torus embeddings

For simplicity, we work over an algebraically closed fiddcof arbi- 1
trary characteristic. Alk-algebras are commutative with unity and all
k-algebra homomorphisms preserve unity. Although ratheooven-
tional, we mean by an algebraic variety a reduced, irredeicibd sepa-
rated scheme ovérwhich is onlylocally of finite type, i.e. possibly an
infinite union of open subsets which are usuiine varieties of finite

type.

1 Algebraic tori

In this section, we recall basic facts about algebraic tdvictv we use
later.

We denote by* the multiplicative group of non-zero elementskof
considered as aalgebraic groupoverk. It is usually denoted b,
and is the fiine algebraic group Spégt,t~]) endowed with the co-
multiplicationt — t ® t on the coordinate ring. It is more convenient
to consider it as a group functor which assigns teagebraB its mul-
tiplicative groupB* of units.

An algebraic torusoverk is an algebraic groufd isomorphic to a
finite direct produck® x - - - x k*.

Mutually dual freeZ-modulesM andN with the pairing(,) : M x

1



2 1. Torus embeddings

N — Z give rise to an algebraic torus
T = Homg (M, k") = N®z K.

Conversely, an algebraic toriisgives rise to the character group

M = Homgg o( T, K*)
and the group of 1-parameter subgroups

N = Homgg g(K", T),
both written additively, together with the duality pairing

(,): MxN — Homgg gdk",K") = Z.

Formin M, we denote bye(m) : T — k* the corresponding charac-
ter. The coordinate ring(0r) is the group algebra ol over k with
{e(m); m € M} forming ak-basis and withe(m + m’) = e(m)e(nT). For
nin N, the corresponding l-parameter subgroup serdsk* to the
element*™ of T = Homy (M, k*) which mapsmin M to t™" in k*.

A homomorphismf : T — T’ of algebraic tori correspond in one-
to-one fashion with a homomorphisfp : N — N’ and a homomor-
phismf* : M” — M, whereN’” and M’ are, respectively, the group of
1-parameter subgroups and character group’ofThe following fact
is quite relevant to us laterf is surjective if and only iff, has finite
cokernel (respf* is injective).

The main reason why things work out so well later is that aigieb
tori are the only algebraic groups which, besides being ectea and
commutative, satisfy the following basic complete redili¢yoproperty:

Theorem. Every algebraic representation of an algebraic torus is eom
pletely reducible, and is in fact a direct sum of one dimemsigepre-
sentations, i.e. characters.

For the proof of this theorem as well as other basic facts tadige-
braic groups, we refer the reader to Bofeél [3].



2. Torus embeddings and Summaries theorem 3

2 Torus embeddings and Summaries theorem

An algebraic action of an algebraic torlison an algebraic varietX

is @ morphismTl x X — X satisfying the usual axiomst{()x = t(t’x)

andex = xfort,t’ € T, x € X ande = (the identity of T). When

algebraic toriT andT’ act on algebraic varieties andX’, respectively,

anequivariant morphisneconsists of a homomorphisi: T — T’ and

a morphismf : X — X’ such thatf(tx) = f(t)f(x) fort € T andx € X.
Here is one of the basic results about torus actions:

Theorem (Sumihiro) If an algebraic torus T acts algebraically on a
normalalgebraic variety over kocally of finite type then X is covered
by T-stableaffine open subsets of finite type.

We do not repeat the proof here and refer the readér fo [583r [
1.2, Thm.5]. Note that since Pig] is finite by [55, Cor. VIl 1.6], the ar-
gument in[[63] can be modified to cover the general case_in |SBjda
pointed out that if an algebraic gro@acts onX locally of finite type,
thenX is covered byG-stable open sets of finite type to whi¢h[59] ap+
plies.

Remark. As was pointed out by H.Matsumura, the assertion of the the-
orem is not true unlesX is normal. Indeed] = k* acts on the rational
curve X with a node obtained by identifying the zero and the point at
infinity of the projective lineP;. The node does not have amystable
affine open neighborhood. Whér= C, C* actsanalyticallyon an ellip-

tic curve E, which is the quotient of* by an infinite cyclic subgroup.
Obviously, there is n@*-stable open neighborhood. (¢f.[I1).

When an algebraic toruk acts onX, not much is lost, even if we
assume the action to be (even scheme-theoreticaflgtive Indeed,
sinceT is commutative, we can repladeby its quotient torus by the
kernel of the canonical homomorphism fromto the automorphism
group functorAut(X). In these notes, we are interested in almost ho-
mogeneous (or sometimes called pre-homogeneous) algdébras ac-
tions on irreducible algebraic varieties, i.e. those wHiele a dense
orbit. The dense orbit is necessarily Zariski open, andosi@phic to
T when the action isféective. Thus we are led to the following:
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Definition. A torus embedding & X consists of an algebraic varieXy
containingT as a Zariski open dense subset and an algebraic action of
T on X which extends the group law @f, i.e. we have a commutative
diagram

TxX——X

U U
TxT —T.

An equivariant dominant morphism from a torus embedding: X

to anotherT” c X’ is a dominant morphism (i.e. with dense image)
f : X = X’ whose restriction td induces asurjectivehomomorphism
fIT : T — T’ and which is equivariant with respect to the actions, i.e.
the following diagram is commutative:

TxX—X

(f|T)><fl lf

T xX —=X
Thus we have the category of torus embeddings.
Although dominant morphisms look too restrictive, those #re
only equivariant morphisms which can be described in terfmspm.

decompositions.
We will give typical examples of torus embeddings§irid.

3 Rational partial polyhedral decompositions

We denote byZ, Q andR the set of integers, rational numbers and real
numbers, respectivelyZq, Qo andRg are the sets ofion-negativeele-
ments in them, respectively.

For a freez-moduleN = Z' of rankr, let M = Hony(N, Z) be its
dualZ-module with the canonical pairing ) : M x N — Z. We denote
their scalar extensions by Ng = R®zN, Mg and(, ) : MgxNg — R.

Definition. A subseto- ¢ Ng is called a strongly convex rational poly-
hedral cone with apex 0 (or simplyanelater) if o N (-o) = {0} and
there exisy, ..., nsin N such that
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oc=Rn+---+R,np={aihy +---+agng;a1,...,as € Ry}

Ny, ..., Ns, under the condition that they are irrredundant with eaca 6
primitive element oN), are uniquely determined layand are called the
fundamental generatorsof o. dimo- is the dimension of th&®-vector
subspacer + (—o) in Ng generated by

When rankN = 3, the following are example of cones.

n2
1 nq
0 0 0
{O} Rony Rong + Rono Z Ronl (S =z 3)

1<i<s

Definition. Let o be a cone ifNg. A subsets”’ of o is afaceof o, and
denotedr’ < o, if there existanin M such thagkm,y) > O for ally € o
and

o ={yeo;imy)=0=cnm.

Here are examples when rahk= 2.

Definition. A rational partial polyhedral decompositioft.p.p. decom- 7
position, for short) is a paimN, A) consisting of a fre@moduleN of fi-
nite rank and a collection of cones inNg such thati)) if A > 0,0 > T,
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thent € A and (i) if o andr belong toA, then the intersectionr N
is a face ofo- as well as ofr.(N, A) is called afinite rational partial
polyhedral decompositig¢h r. p. p. decomposition for short ) it is
finite.

The relative interiors ofr € A are disjoint and fill a part oNg.
When rankN = 2, A looks like this:

Definition. Amaph: (N,A) — (N’,A”) between r.p.p. decompositions
is aZ- homomorphismh : N — N’ with finite cokernel such that for
eacho € A, there exists’ € A’ with the scalar extensiom: Ng — Ng-
satisfyingh(c) ¢ ¢’. Thus we have the category of r.p.p. decomposi-
tions.

Definition. A coneo in Ny is called simplicial if its fundamental gen-
eratorsny, ..., ng areR- linearly independento is called non- singular
if its fundamental generators form a part dZdasis ifN.

Given a strongly convex rational polyhedral cenin Ng, we denote
by & its dual inMg

o= { X € Mg;{x,y) > forally e o-},

whereM = N* is the dual ofN. ¢ can be written as the set Bf-linear
combinations of a finite number of elementshdfand is a convex ratio-
nal polyhedral cone, although it no longer satisfies thengtimnvexity
&+(-&) ={ 0}. Instead, it satisfies ¥ (-5)Mg. For the general theory
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convex polyhedral cones, we refer the reader for instan€ritmbaum
[13] and Rockafellar [56].
For a subset of o, we denote

= { X€ Mg;(x,y)=0forallye T}.

Theny € o is in relative interior ofr if and only if - Ny*+ = o+, i.e for
all x e & notino*, we have(x,y) > 0
The following propositions will be useful later.

Proposition 3.1. Leto be a cone in N ando be its dual in M. Then
the map
T—ontt

is na order reversing bijection

{ faces ofa} 5 { faces ofc“r}.

Proof. By definition, a face otis of the formo ny* fory € o. y
belongs to the relative interior of a fac®f o if and only if 7 Ny+ = v+
J.e.ocnth |

Proposition 3.2. Leto be a come in N and r a face ofo. Then there 9
exists xe & N+ such that

T=0+1t =T +Ro(-X).

Proof. Sincer is a face ofo, there existx € ¢ such thatr = o n x*.
We have inclusions > o+1+ > o+R,(—X) of convex polyhedral cones
in Mg. The duak of the first and the duat NR,(-x)¥ = o N x* of the
third coincide, and we are done. m]

Proposition 3.3. The correspondence
ocr—onNM

establishes a bijection between the set of strongly coraténal poly-
hedral cones in N and the set of subsemigroups S of M which satisfy
the following properties:
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(1) SeOandis finitely generated as a semigroup.
(2) S generates M as a group.

(3) S is saturated, i.e. S contains e M if there exists a positive
integer a such thatam S.

Proof. & N M obviously contains 0 and is a saturated subsemigroup.
Sinceo N (-o) = {0} by definition, we haver+ (-o) = Mg, hence
(ii). The finite generation af N M as a semigroup is what is known as
Gordan’s lemma and can be proved as follows : We may assumé tha
is of the formR,my + - - - + R,mg for R-linearly independent elements
m,...,Ms € M, since generad is a finite union of convex cones of
this form by Carathoeodry’s theorem (see for instance Gaiim [13]).
LetM" = MnN(Qm +---+Qmg). Thenc N M =0 n M andM” =
ZMmy + - - - + Zms, is a submodule of finite index iM’. SincecN M’ =
Zom + --- + Z,mg, We are done. Conversely, IBtsatisfy (i), (ii) and
(iii). By (i), there exist elementay, ..., ms e M such thaZ,my + - - - +
Z.ms. Theno = R.my + --- + R,mg is a convex rational polyhedral
cone inMy, satisfyings + (-&) = Mg. Hences” = & is a strongly
convex rational polyhedral cone. It remains to show ®at o N M.
Again by Caratheodory’s theorem, and elementin M is aQ. linear
combinations ofmy,...,ms. Thus a positive integral multiple of it is
contained isS. Hence we are done by (iii). o

4 First main theorems

For later convenience, we state the first main theoremsinmglabrus
embeddings and r.p.p. decompositions in this section, ekl their
proofs of§. 3.

The following theorem is slightly more general than thosé®a
mazurell8$. @], Mumford et all[63, 1.2, Thm.6] and Miyake-Oda140].



4. First main theorems 9

Theorem 4.1. Given Kk, there exists an equivalence of categories

normal and separated torus
{ r.p.p.decompositiojs— < embeddings over k
locally of finite type

(N, A) — T|\| C T|\| emb(A)

where Ty = N®z k* = Homg(N*, k") and Tyemi{A) is obtained as the 11

canonical patching of its fince open subsets

Homynit semig{d™ N N*, K).

Here k is considered as a unitary semigroup under the midépbn
and Ty acts on it by(tx)(m) = t(m)x(m) fort € Ty, me N* and xe
Homyunit.semigfo™ N N*, K).

Tn emb() is of finite type over k if and only X is finite.

Remark . This down-to-earth description of the functor as well as the

simplified proof in§. B was pointed out by Ramanan.
Theorem 4.2. Let(N, A) be an r.p.p decomposition.

(i) The map
o > orb(r) = Homg (o N N*, k")

is a bijection
orb : A = { Ty - orbits in Ty emb@)},

such thatorb({0}) = Ty anddimo + dim orb() = dim Ty. More-
over,7 < ¢ if and only if the closure obrb(r) contains orlfo).

(i) The map

o +— U(0) = | | orb(r) = Homynitsemighd 1 N*, k)

<o

establishes an order and intersection preserving bijectto — 12

{Tn-stable gfine open sets ingemb()}. In particular, T, emb()
is gffine if and only ifA consists of the faces of a fixed cone . N
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(i) For o € A, let N be the quotient of N by the subgroup generated
by o n N. Then |y = Homg (o N N*, k¥). The closureorb(c) of
orb() in Ty emb() is normal and

orb@) = | | orb@).

o<teA

It coincides with T;emb(@), whereA is the r.p.p.decomposition of
Nr consisting of the imagesof o < T € A under N0 — Ng.

Theorem 4.3. Let (N, A) be an r.p.p.decomposition. Then the corre-
sponding | emb) is non-singular if and only if each € A is non-
singular, i.e. its fundamental generators of each form & paaZ-basis

of N. In this case, the closure of eack-0rbit orb (o) is again non-
singular.

Remark . When Ty, emb(@) is non-singular, the collection of the sets
fundamental generators of with running througha is a “fan” of De-
mazurel[8§. @, n°.2].

Theorem 4.4.Let h: (N,A) — (N’,A’) be a map of r.p.p. decom-
positions, and let f. Ty emb@A) — Ty emb@’) be the corresponding
equivariant dominant morphism. Then f is proper if and orfljor
eacho’ € A’ the sefo € A; h() € o} s finite and h(c”) is the of its
members.

Corollary 4.5. Let(N, A) be an r.p.p.decomposition. TheR &mbQA)
is complete (i.e. proper over Spec k), if and onl it finite and

NRZUO'.

geA

5 The proof of theorems in§.4

In this section, we prove theorems stated.i in a way slightly difer-
ent from Mumford et alll63]. We informally deal witkrvalued points
only, although, to be rigorous, we should deal with pointdhwalues in
arbitraryk-algebras.

Here is thekey observationselating cones and normaftane torus
embeddings. We were inspired by Hochster [20].
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5.1 LetN andM be mutually dual fre&-modules of finite rank with
the pairing<,>. LetT = Ty = N®z k*. Then the correspondence

o +— U(0) = Homypitsemig{o N M, K")

is a bijection from the set of (strongly convex rational pgadgral) cones
o C Ng to the set ohormal gfine Ty-embeddings (of finite type) over
K.

Proof. By Propositior-3Bgn M is a finitely generated saturated sub-
semigroup ofM which generatedM as a group. Thus its semi group
algebraA = A(o) = € kem) is a subalgebra of finite type of thera

mesnM

coordinate ringk[T] = P ke(m) of T. It is T-stable under algebraic

representation of on kr["el"\]/I defined byf(t) — f(t't) for f(t) € k[T]
andt’ € T. Sinceo™n M generatedM as a group, the quotient field of
A coincides with the quotient fielk(T) of k[ T]. Sinced N M is satu-
rated,Ais integrally closed irk(T). Indeed, the integral closu# is of
finite type overk, hence the representation Bfon A" as above is also
algebraic. Thus by the complete reducibility theorékhhas ak-basis
consisting of elements of the forefnY) with Y € M. e(n') satisfies an
equation

e(m ) +are(m) 1+ +a,=0

with g in A, which we may assume to bekamultiple of an element
e(m;), m € o N M. Obviously there exists a non-vanishiag Then we
havec = m + (c—i)m', i.e.im=m e N M, hencem e N M. A
(k-valued) point ofU (o) = SpecA is a k=algebraic homomorphism :
A — K, which is determined uniquely bhye(m)) € k for m e M, such
thatu(e(0)) = 1 andu(e(m+ nY)) = u(e(m))u(e(nr)), i.e.,uce: M — K
is a homomorphism of unitary semigroufdsobviously acts oftJ (o) as
in the statement of Theorem#.1. lmat, . .. ms be generators af " M
as a semigroup. Thev is generates by, ..., msand—(mg +- - - +mg).
Thusk[T] is the localization ofA by e(m; +-+ms). Hencel (o) contains
T as an open set. O

Conversely, leT c SpecA be a normal fiine T-embedding of finite 15
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type. HenceAis ak-subalgebra of finite type & T], is normal with the
quotient fieldk(T) and isT-stable under the algebraic representations
of T onk[T] and isT-stable under the algebraic representation3 .of
Thus by the complete reducibility, it haskebasis consisting of -semi

invariants, i.e A = € ke(m) for a finitely generated subsemigroGm
meS
0 of M. S generateM as a group. Indeed, fon' € M, the denominator

ideal of g(n) is a non-zeroTl -stable ideal ofA, hence contains some
emwith m € S, ande(m)e(nY) € A. S is obviously saturated, since
A'is integrally closed irk(T). Hence by propositioh—3.3, there exists a
unique coner c Ng such thatS = n M.

Remark. Non-normal #inceTy-embedding can also be written as

S pe¢(p ke(m))
meS

for a subsemigrouf® > 0 which generate as a group. The simplest
non-trivial example is the curve Spdgtf, t3]) with an ordinary cusp. In
this caseM = Z, andS is generates by 2 and 3. In general, it ifidult

to describe such non-saturatedFor the special case of dimension one,
we refer the reader to Delormi€ [7], Herzagl[17] and HerzogrK|[21].

5.2 Leth: N — N’ be a homomorphism with finite cokernel and let

f : Ty — T be the corresponding surjective homomorphism of alge-
braic tori. LetTy c U(o) andTy € U(o”) be the normal fine torus
embeddings corresponding to cones- Ng ando’ ¢ N; as in [B1).
Then f can be extended to a unique equivariant dominant morphism
f : U(o) — U(0”), if and only if of the scalar extensiam: Ng — Np
satisfiedh(o) c o”'.

Proof. Let M and M’ be the duals oN and N’, respectively. Then
h induces an injectiom* : M’ — M, which gives rise tof : Ty =
Homg (M, k") — Ty = Homg(M’, K*). Obviously,h(c- <) c ¢ if and
only if h*(c’ N M’) c ¢ N M, and in this case it induces a morphism
f 1 U(o) = Homynitsemigdd N M, K) — U(0”’) = HoMynitsemigdd” N
M’ K). O
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5.3 Leto be acone iz and letM be the dual oN. Then the corre-
sponding normalfiine Ty-embeddindJ (o) = HoMynit semigl(d™ N M, K)
is the disjoint union off \-orbits

orb(r) = Homg(=* N M, k)
with 7 running through the faces of. The closure of ortr in U(o) is
orb(r) = Homynit semigd™ N ™ N M,K)

and it is the disjoint union of orty with 7’ running through the faces of
o witht < 7.

Proof. The following argument, which considerably simplifies otige
inal proof, is due to Ramanan. For simplicity, we denSte- N M.
Letg: S — kbe a unitary semigroup homomorphism, gé0) = 1 and
g(m+ ) for m,nY € S. ThenS is the disjoint union of = g~1(0) and

S’ = g 1(k*). S’ is a subsemigroup containing 08fandS+1 c 1. We 17
first show that a decompositigh= S’ [ ] | is obtained exactly by taking

a faceF of o and lettingS’ = F n M. Indeed, ifF is a face ofo, there
existsy € o such that- = & c y*. Certainly,F n M is a subsemigroup
containing 0 ofS, and forzandw in S with wnotinF N M, z+ w s not
inFnNM. O

Conversely, letS’ be a subsemigroup containing 0 8fsuch that
its complement satisfiesS + 1 c |I. Hencem € Sisin S’ of (S +
m) NS’ # ¢. Replacingo"by its smallest face containing’, we may
assume that there exists € S’ in the relative interior obr” We claim
(S+mnzZm # ¢ forme S, hencem € S’ by assumption and
Z.m c S’. Indeed, sincan is in the relative interior otr; we see
that(nY,n;) > 0 for the fundamental generatans, ..., ns of o-. Thus
S+m={m e M;<m’'n >><mn > forl <i < s}. Choose a
positive integer a such that< m’, n; >><m, n; >for1 <i < s. Then
anfisinS +m.

By proposition[3]L, we know thd& = o n v+ for a unique facer
of o. Thus we see that Hafit semigfd N M, K) = [] HOMynit.semigko N

<o

7+ N M) generates* N M as a group, hence HQ®. semigkd N 7+ N
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M, k*) = Homg (t* N M, K*) = Ty - (), whereg(r) is the trivial group
homomorphismr- N M — k* sending every element to 1. L&t =
e ke(m) and

PD)= € kem).
mednM
mg¢oNtNM

ThenP(7) is a prime ideal oA with the subring o Mke(m) isomor-
meonNtt

phic to A/P(r). Homynit. simigdd N 7+ N M, K) is obviously the disjoint

union of orb ¢’) with 7’ running through the faces of with r < ¢’ and

is precisely (the set dt-valued points of) the closed set Spég¥(r)).
Remark. Let A andP(z) be as above. Then the correspondence
T +— P(7)
establishes an order preserving bijection
{ faces ofo} — {Tn — stable prime ideals of A

P(o) is the largestTy-stable proper ideal oA. Letn,,...,ns be
the fundamental generators of henceRgny,...,Rong are the one-
dimensional faces af~. ThenP(Ryny),...,P(Rgns) are theTy-stable
height one prime ideals &. The localizationAp,) is a discrete valu-
ation ring, hence we have a surjective homomorphism:ck(r)* — Z,
valuation ring ont&,. Composed witle : M — k(T)*, it gives rise to a
surjective homomorphism arde : M — Z, which is exactly the primi-
tive element; € N.

5.4 Leto c Ng be a cone and ldfi (o) = Homypitsemigfo N M, k) be
the corresponding normattae Ty-embedding. Then the map

7+ U(7) = HOMynitsemig{7 N M, K)
is a bijection

{faces ofo} — {Tn — stable #fine open subsets af(o)}.

Moreover, we havé)(t) = [] orb(@’).

<t
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Proof. LetA= B kegm)sothatU (o) = Spech). If 7 is a face ofr,
meaNM

there exists, by propositidn—3.2, an elemegte & N v+ N M such that

TNM = (5N M)+Z,(-mp). Hence P ke(m) = Ale(mp)?], whose

mernM
spectrumU(7) is obviously aTy-stable #ine open set. O

Conversely, let speB be aTy-stable &ine open set o) (o). Then
by (&), There exists a conec o in Nr such thafe(m);m € ¥ N M}
form ak-basis ofB. It remains to show that is a face ofo. The fol-
lowing argument is again due to Ramanan. Replaeiray its smallest
face containingr, we may assume that there exist& v N N in the
relative interior ofo. Thent' n nt is face ofc” and its intersection with
o is exactlyc'n nt = o+. Thus the ideaP(o")B generated by the prime
idealP(0) of Alis a proper ideal oB. Thus orb§) = specf/P(0)) is
contained in thel'y-stable &ine open set spd® Since the closure of
any Ty-orbit in U(c) contains orhf) by (5.3), anyTy-orbit in U(o)
is contained in speB and we are donelJ(7) is the disjoint union of
orb(@), v’ < 7, by (&3).

Combining [&.B) and{5l4), we have the following:

5.5 Leto c Ng be a cone and l&l (o) = Homynit.semigko™ N M, K) be
the corresponding normattme Ty-embedding. Then

7+ orb(r) = Homy (== N M, k")
is a bijection
orb : {faces ofo} — {Tn — orbits inU(c)}.

Moreover,
7+ U(7) = HoMynit.semig{? N M, K)

is a bijection
{faces ofs} — {Ty — stable #ine open subsets tof(o)}.

For eachr < o, they satisfy the following properties :

20
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() dimt + dimorb@) = dimTy, orb(0}) = Ty and orb§) is the
unigue closed orbit af) (o).

(i) U(r) = L] orb(r)

<t

(iii) The closure of orbt) in U(o) is

ob@) = | | orb@) = HoMunisemigh N 7 N M, K).

<r'<o

It is the normal &ine embedding of orb} = Hom,(t* N M, k*)
corresponding to the image of under the map fromNg to its
quotient by the subspace+ (—o) generated by-.

(iv) The morphisnp, : U(o) — orb(r) induced by the inclusion- 1
7+ N M < & N Mis a retraction such that(r) = p;1(orb()).

Remark. The map orb can also be described as in Mumford ef al. [63]
as follows : Fort € k* andn € N, consider the element® of Ty =
Homgs(M, k*). LetU(r) = Homynit. semigkd™ N M, K) be the normal fine
Tn-embedding. The limit of>™ ast tends to zero exists id (o) if and
only if (m,n) > Oforallme o N M, i.e. n € o N N. In that case, the
limit is the semigroup homomorphism formn M to k sending those
mwith {(m n) = 0 to 1 € k and those witHim,n) > 0to O € k, i.e. the
identity element(r) of orb(r) = Homg (r+ N M, k*), wherer is the face

of o containingn in its relative interior, by Propositidn_3.1.

5.6 Leto < Ng correspond to the normalffme Ty-embedding
U(o) = specA. Let P(o) be the largesty-stable proper ideal of
as in the remark aftef(3.3). Then the following are equivale

() U(o) is non-singular.
(i) The local ringAg( is regular.

(iii) o is non-singular, i.e. the fundamental generators &drm a part
of aZ-basis ofN.
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Proof. (i) obviously implies {i). Let us assumsi and showii). Ob-
viously, there existny, ..., ms, s = height (o)), such thafe(n),...,
e(mg)} is a minimal set of generators of the maximal ideal of the lo-
cal ring. It is easy to see tham), m € M is contained in the local
ring if and only ifm € & N M. But suchm can be written uniquely as
m=mg+ a;m + --- + agms with 8 € Zo andmg € o+ N M. Hence 22
a Z-basis ofc* N M together withmy, ..., ms form aZ-basis of M.
Among the dual basis dfl, we can choos@;,...,ns € o such that
(m,n;) = 6ij. Theno = Rony + - + Rony. It remains to show that
(iii) implies (). Let the fundamental generatams, . .., ng of o be ex-
tended to &-basisny,...,n, of N. Letmy, ..., m; be the dual basis
of M. ThenoN M = (Zgm + -+ + ZoMg) + (ZMgy1 + - -+ + ZIMYy),
henceA = K[uy, ..., U, upt, ... us'] with u; = e(my), and sped is non-
singular. O

5.7 Proof of Theorem 4.1Let (N, A) be an r.p.p.decomposition. Let
M = N* be the dual oN. Foro € A, letU(o) = HoMynit.semigko N
M, k) be the corresponding normaffiae openTyembedding of finite
type. Foro,7 € A,o ntis a face ofo- andr. Thus by [E#)U(c N

7) is canonically ary-stable &ine open set otJ(o) andU(t). Thus
we can pastéJ(o)'s together alondJ(o- N 1) to obtain an irreducible
normal schemd’y emb(@) locally of finite type. Obviously,Ty acts
algebraically on it with the dense orBit({0}) = Tn. It is separated,
sinceU(o) N U(r) = U(o N 7) is an dfine open set and the coordinate
ring of U(o- N 1) is generated by those tf(o) andU (7). Indeed, they
k-bases consisting of elements of the faggm) and N M)+ (*NM) =
(cn7)Vn M.

Amaph : (N,A) — (N’,A’) of r.p.p. decompositions obviously
gives rise to an equivariant dormant morphigm Ty emb@) — Ty,
emkA’). On the other hand, suppo$és given. Itinducer: N —» N’. 23
Then foro € A, the unique closedy-orbit orb () of U(o) is mapped
by f to aT-orbit f(orb(c)) = orb(c’) with somes’ € A’. Hence by
&3) we havef (U (o)) c U(o”), i.e. h(o) c o’ by (B2).

Let T c X be a normal and separated torus embedding kwvEhus
there existadN such thafT = Ty. Consider the collection of -stable
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affine open subsets of. Since each of them is a normaffiae T-
embedding of finite type, there exists, by {5.1), a collecfimf cones in
Ngr such thafU(o); o € A} is the set ofT -stable #ine open subsets of
X. By Sumihiro’s theorem ig. [, U (o)’ s convexX. We now show that
(N, A) is an r.p.p.decomposition. ¢f is in A andr is a face ofr , thent
isin A by (54). Foro andr in A,U(c) N U(7) is aT-stable &ine open
set, hence equald(p) for ap € A, sinceX is separated. The coordinate
ring of U(p) is generated by those b&f(o-) andU(7). Hence looking at
T-semiinvariants in them, we see thatd M) + (N M) = pn M. Thus
o Nt =p. SinceU(p) is an dfine open subset & (0”) and ofU (), we
havep < o andp < 7, again by[5}).

X is of finite type ovelk if and only if A is finite, since eaclJ (o) has
only a finite number of -stable &ine open subsets by (5.4)

5.8 Proof of Theorem 4.2: We first show {j). By the construction of
Tn emb @A), it is covered byTy-stable #ine open setfU(o); o € A},
andU (o) nU(r) = U(o n 7). Hence the map- +— U(o) is injective.
Let U be aTy-stable #ine open set of y emb (A). ThenU is a normal
affine Ty-embedding, hence b{%.1) there exists a unique coaeNy
such thaty = U (p).

Leto be inA. Then sincdJ (o)NU(p) is afine, itis equal as if{(8.7)
to U(o-np) which is aTy-stable &ine open set dfl (o) andU(p). Thus
by (53), we see thail (o) is covered byJ (7) with = running through the
elements ofA with 7 < p.

Thus the unique closed orbit orp)(of U (o) belongs to som&J (r) with
A 5 7 < p. On the other hang; is then a face of by (&.3), and we are
done.

We next showi]. Foro € A, orb() is the unique closed orbit of
U(o) by (&3) (i). On the other hand, eadly-orbit of Ty emb Q) is
contained in ary-stable #ine open set, hence by (b.5) is the unique
closedTy-orbit of a uniquer € A.

It remains to showii{). The closureorb(o-) of orb(o)in Tyemb Q)
is the union of its closures i (7) with T running through the elements
of A with o < 1. In particular,orb(o) is the disjoint union of orhx)
with o < 7 € A by (&8) (iii). orb(r) is the union of normal fiine
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embeddings ofy = Homg (o N M, k¥) corresponding to the image
of r underNr — Ng, again by[(5) (iii). The collection of thoser”s
is obviously an r.p.p.decomposition Nf

5.9 Proof of Theorem 4.3: This follows easily from[(516) and theorenes
B2 (iii). Note that ifr is non-singular and- < 7, then its image under
the map fromNy to its quotientNg by the subspace generated dys
again non-singular.

5.10 Proof of Theorem 4.4: For simplicity, letX = TyemkA) and
X' = TnemlA’). By the valuate criterion of properness (see for instance
[2d] and Mumford [[39]),f : X — X’ is proper if and only if it is of
finite type and, moreover, each discrete valuation Rhg k which is
contained in the function field(X) of X and which dominates a local
ring of X’ necessarily dominates a local ringXf

Let ord k(X)* — Z be the valuation corresponding B Let us
denote byn = ordoeits composite witre : M — k(X)*.
Hencen is an element oN. Each non-zero elemente N is obtained
in this way. R dominates a local ring oX if and only if it contains the
coordinate ring of one of one of thig, stable &ine open sets, i.e. there
existso- € A such thatm,ny > O forallme oNM, i.e.n € o. Similarly,
sinceM’ — M, R, dominates a local ring of’ if and only if there exists
o’ € A’ such than € ¢”.

f is of finite type if and only if for eaclo” € A’, there exist only
a finite number otJ(o)’s with f(U(0)) c U(d”), i.e. {oc € A;h(o) C
(o)} is finite, by [5.2). The rest of the proof is obvious.

6 Projective torus embeddings

For simplicity, we restrict ourselves to complete normalsoembed- 26
dings and try to generalize Demazure’s results in [8] on thelaness

of invertible sheaves to this case. Mumford et al.l [63] deatergen-
erally with T-stable fractional ideals on not necessarily complete
embeddings.
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In this section, we fix an f.r.p.p.decompositiodx, A) with Ng =
U o. Note thatA consists of the faces of the maximal dimensional

geA

conesr € A, i.e. dimo- = rankN. For simplicity, we denot& = Ty and
X = TnemHlA), which is complete and normal. As before, we denote by
M theZ-module dual td\ with the canonical pairing,) : M x N — Z.

As usual, a Weil divisoD on X is a finiteZ-linear combination of
reduced and irreducible closed subvarieties of codimermie.D gives
rise to a fractional idedDx (D). A Cartier divisorD is a locally principal
Weil divisor, which gives rise to an invertible fractiondkeialOx (D). We
denote by PicX) the group of isomorphism classes of invertible sheaves
on X, i.e. the group of linear equivalence classes of Cartiesdig on
X.

Let the 1-skeletoi® K(A) = {1, ..., o} be the set of 1-dimensional
cones inA. Letn; be the fundamental generatoraf By Theorenf 4R,
{D1,...,Dq}, whereD; = orb(o), is the set off -stable irreducible Weil
divisors onX and forms @-basis of the group

of T-stable Weil divisors orX.

Proposition 6.1((Demazure)) For a complete normal T-embedding X,
we have exact sequences

; ) linear equivalence
0 M div @ b { classes of Weil } —0
1<i<d divisors on X
U U
div_ [ T-stable Cartier i
0 M { divisors on X } PIC(X) 0

where the first arrows send mM to

div(m) = Z {(m, n;)D;

1<izd

which is the divisor of the charactefra) as a rational function on X
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Proof. Form e M, the divisor of the rational functioglm) on X is equal

to Y (m,n;)D; by the remark aftef{53). This vanishes if and only if
1<i<d
m = 0, sinceX is complete. For a non-zero rational functiéron X,

its divisor onX is T-stable if and only iff is aT-semiinvariant. Since

X— |J Dj =T isfactorial, any Weil divisor orX is linearly equivalent
1<i<d
to a linear combination db;s o

Lemma 6.2. Let D = Y aD; be a T-stable Weil divisor. Then thes
1<i<d
following are equivalent.

(i) Dis a Cartier divisor.

(i) D is principal on each T-stable fine open set (b) of X with
o eA.

(iii) Forall o € A, there exists 1far) € M such that
<m(0-)7 ni> = _ai
for all nj contained ino-.

Proof. D defines ar -stable fractional ideal dD) on X. The space of
its sections over thefane open set (o) has &-basis consisting af(m)
with min

U(o, D) = {me M;(m,n;) > —q; for all nj € o7}

by the complete reducibility. Thud ) and {ii) are obviously equivalent
and imply (). It remains to showi] = (ii). Let A(o) be the coordinate
ring of U(o) and letL(o) be theA(o)- module of sections 0Ox (D)
overU (o). Then, as is well-known (see Cartiéi [®)x(D) is a Cartier
divisor onU (o) if and only if L(0).(A(0) : L(o)) = A(o). In terms of
T-semi invariants in them, it amounts to

Uo,D) +{m e M;m + u(o,D) e Nnm} =N M.

Since the right hand side contains 0, there exisis) € u(o, D)such
that—-m(co-) + u(o, D) € &N M. We thus conclude thai(o, D) = m(c) +
o N M. Hencel (o) = A(o) - e(m(o)). O
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Lemma 6.3. Let D= ) aD; be a T-stable Weil divisor. The frac-
1<i<d
tional ideal O«(D) is generated by its global sections if and only if for

all o € A, there exists ifar) € M such that
(Mm(o), nj) > —a; forl<i<d
with the equality holding if ne o.

Proof. The space of global sections O (D) has a k-basis consisting
of e(m) with min

AD) = {me M;(mn;) > -a  forl<i<dy
O

The sifficiency is obvious, sincen(o) is in A(D) and u(o, D) =
m(o) + o N M. Let us assume th&x(D) is generated by its global
sections. Hence, first of alD is a Cartier divisor. Thus by lemnia®.2,
there existan' (o) € u(o, D) with (M (o), nj) = —a for nj € o such
that u(o, D) = nf'(0) + o N M for eacho € A. On the other hand
u(o, D) = A(D)+ 0 N M by assumption. Hence there exigi&r) € A(D)
such thatm' (o, D) = m(o’) + & N M and we are done.

Theorem 6.4. Let X= Temb(A) be a complete normal T-embedding,
and let D=} aD; be a T-stable Weil divisor. Thenyx(D) is an

1<i<d
ample invertible sheaf if and only if there exists a posithteger b and,

for all maximal dimensionad € A, (a unique nfo) € M, such that
(m(o), ny) > —bg forl<i<d
with the equality holding if and only ififs in o-.

Proof. Let Ox(D) be ample. Then there exists a positive intdgestch
thatOx(bD) is very ample, hence there exists a projective embedding

f:X = B(© ke(m)

whereA(bD) is as in the proof of Lemmia®@.3 and is finite, sin¢as
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complete. Ox(bD) is generated by its global sections, hence for each
o € A there existan(o) € M such thatm(c), nj) > —bag for1 <i <d
with the equality holding ifn; is in o. If dim o is maximal, i.e. o
generate$\, then suchm(c’) is unique. We now show tham(c), n;) —

ba if n; is not in a maximal dimensionat. The restriction off to the.
T-stable &ine open set (o) induces an open immersion Of(o) into
the spectrum of the k-subalgebkfe(m — m(c-)); m € A(bD)] c K[T],
hence into its normalization, which corresponds byl (5.1)h&® cone
o’ ={y € Ng;(m—-m(o),y) > 0 for all m € A(bD)}. Thus by [BH),
o is a face ofg”’. Sinceo is maximal dimensional, we conclude that
o = o’ . Hence ifn; is not in o, there existan € A(bD) such that
0> {m-m(o), nj) and we are done. O

Let us now prove the sficiency. Suppose there exists a positive
integerb and, for each maximal dimensionale A, m(o) € M such that
(Mm(c), nj) > —bg for 1 < i < d with the equality holding if and only if
ni is in o. In particular,m(c’) is in A(bD). Thus by Lemm&&I3Dx(bD)
is generated by its global sections, and there exists a risonph

foX — B @ ke(m)).
meA(bD)

For each maximal dimensional € A, letV(o) be the #ine subspace of31
the projective space whose homogeneous coordinate condisg to
m(c-) does not vanish. To show thétis a closed immersion by possibly
replacingb by its multiple, it is enough to show that

(i) f~1(V(0)) = U(o) for all maximal dimensional € A, and

(i) for a multiple of b, the restrictionf|U(o) : U(o) — V(o) is a
closed immersion.

For (), it is enough to show that
f1(V(c)) N U(c”) = U(o) N U(c)

for all maximal dimensional’ € A, sinceX is covered by thosd (’)’s.
The right hand side is contained in the left hand side andledj@ N
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o’) by TheorenZZR2 (ii). The left hand side is tfiesable &ine open
set ofU(o”") defined by the non-vanishing efm(c’) — m(¢”)), thus it
corresponds to the faeg’ = o’ N (M(o") — m(c”’))* of o’. Hence we
are reduced to showing” = o N ¢’. Both of those are faces of , and
oNo’ co”. Letn be ing’ but not ino. Then{m(c) — m(c”),n;) > 0
by assumption, thus; is not ing”.

It remains to showii). It is enough to show that as a semigroup
o N M is generated bym — m(c); m € A(bD)} by possibly taking a
multiple of b. Letmy,..., ms be generators of h M as a semigroup.
Let b’ be a positive integer. Thus foxr € oo and 1< j < s, we have
(mj,n;) > 0, hence(m; + b'm(c), i) > —b’bg. On the other hand, for
n ¢ oand 1< j < s, we have(m; + b'm(c), i) > —b’ba if b’ is large
enough. Thusn; € A(b’bD) for 1 < j < sand we are done.

Remark. The inequalities in Theorem 6.4 can be interpreted as faiow
The convex hull inMg of {m(c); o € Ao maximal dimensiona} has
exactlyd facets (i.e. codimension one facds), ..., Fq perpendicular
to ny,..., g, respectively. Moreovemn(o)’'s are exactly the vertices,
and the intersection dfi, is the vertexm(c) if and only if nj , ..., n;
are the fundamental generatorsoof

S

Remark . We refer the reader to Mumford et al._[63] for the interpre-
tation of these inequalities in terms of the “concavity” aheé “strict
concavity” of certain functions. In our language, they showheorem

13, p.48 that even X is not completeD = Y, aD; is ample if and
1<i<d
only if there exists a positive integerand, for eachr € A,m(c) € M

such that{m(c), nj) > —ba with the equality holding if and only if
n€o.

Corollary 6.5 (Demazure) Let X = temb({A) be a complete nonsingular

T-embedding, andlet B Y, aD;. Then the following are equivalent
1<i<d

(i) Disvery ample

(i) Disample.
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(iii) For each maximal dimensionat € A, the unique element(m)
M defined by

(m(e),ny=-a fornjeo

satisfies
(Mm(e),m) >-a forn ¢ o

Proof. (ii) = (ii) is obvious.

(i) = (iii). By Theorem 6.4, there exists a positive integeand, for
each maximal dimensionat € A,m'(c) € M such thakn' (o), nj) >
—bg for 1 < i < d with the equality holding if and only ifiy € o~. Since
Xis non-singular, the fundamental generators-débrm az-basis ofN.
Hencent (o) = bm(o’), wherem(c) is as in {ii ). m]

It remains to showii{) = (i). From what we saw in the proof of
TheorenGH, it is enough to show that for each maximal diioeas
o € A,oc N M is generated as a semigroup {my — m(c); m € A(D)}.
We may assume that,...,n, are the fundamental generators wof
hence form &-basis ofN. SinceX is complete and non-singular, there
exists, for each ¥k i < r, a maximal dimensional cong; € A such

that the fundamental generatorsogfn o are{ny, ...,i,...,n}. Let the
remaining fundamental generator @f be n;, with r < i’ < d. Then
(m(ci),nj) > —a; with the equality holding if and only iff = i’ or
1< j<r. Let{my,...,m} be the basis oM dual to{ns,...,n;}. They

generater’n M. We see thain(o) = Z aJ m; andm(c) - m(o) = 34

am, wherea = (M(cj) — M(o), ;) is posmve by assumption. Since
(m(c),nj) > —a; for 1 < j < d, we see easily tham + m(c), nj) > —a;
forl< j <d,i.e.m + m(o) € A(D).

Remark . We show in§. @8 that any 2-dimensional normal torus em-
bedding of finite type is quasi-projective, using Theolfedh 60n the
other hand, there are many are non-projective 3-dimenisaumaplete
non-singular torus embeddings, as we seg [8.

Proposition 6.6 (Demazure) Let X = temb(A) be a non-singular T-
embedding. Then the canonical invertible sth(Q ) equals

wx =0x(- )| Dy),

1<id
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where Q = orb(o;) and SR(A) = {01, ..., 04q).

Proof. For eachs € A, there exists @&-basis{n,, ..., n;} of N such that
ni,...,Ns are the fundamental generatorsoofLet {my, ..., m} be the
dual basis oM, and letu; = ¢(m;). Then the coordinate ring d&f (o)
equalsk[uy, ..., U, 1/uUs 1, ..., 1/u]. Consider the rational section

&= (dur/up) A... A (dur/ur)

of det@}(). Its divisor onU (o) equals— 12 orb(Rgn;). We are done,
<I<S

since for a diferentZ— basis ofN, the rational section of d%) de-
fined in this fashion for anotheiffine open set ¢dliers from& only by
sign. m|

Remark. Mumford et al. [63, Thm.9, p.29 and Thm.14, p.52] show that
any normalT-embeddingX = temb(@) is Cohen-Macaulay. Moreover,
its dualizing sheafux coincides with the double dual of d@t}() and

equals the fractional ideal associated with the Weil diviso 3, D;,
1<i<d

whereD; = orb(o;) andSK(A) = {o,...,0q). (See the end our Intro-
duction for a recent generalization of this result by Ishida

Proposition 6.7. Lettemb(») be a complete non-singular torus embed-
ding. For a 1-codimensional conee A, there exist exactly two max-
imal dimensional cones, o’ € A such thatr < o andr < ¢’. Let
Ny, ..., Nr_1 be the fundamental generatorswofLet the additional fun-
damental generator of-(resp .0”’) be nresp .n’). Then there exist
g €Z,1<i<r-1suchthat

n+n + Z ain = 0.

I<i<r-1

Moreover, we have

a=D;---D?---D;y 1<is<r-1

where D = orbRon;).
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Proof. Since X is complete,Ng is the union of cones ih. The first
assertion, for which the non-singularity is not necessawell-known
fact ibn convex geometry. Sinc& is on-singular{n,ny,...,n;,_1} and
{n',nq,...,Nn_1} areZ-bases ofN. Thusn' is aZ-linear combination of
n,ny,...,N_1 with the codficient of n equals—1, sinces ando’ are 36
on the opposite side af. As for the assertion, it is enough to restrict
ourselves to = 1. The divisorsD; = orb(Ron;) 1 < i < r — 1 intersect
transversally with the intersection ot(= P;. Let {mmy,...,m_q}
be the basis oM dual to{n, ny,...,n_1}. Then divf) is the sum of
D1+(my, n")D’ and a divisor disjoint fronorb(r), whereD’ = orbRor).
Since{m, n’) = —a; andD’ intersects transversally wittrb(r), we are
done. O

7 Example of torus embeddings and morphisms

In this section, we give typical examples of torus embedslangd equiv-
ariant dominant morphisms. We need some of them later.

7.1 Affine spaces Thedimensional fine space\,; = k' is obviously
a (K')"-embedding. It corresponds tiN,(»), whereN = Z" with a
Z—basis{ny,...,n;} and

A = {the faces oRony + - - - + Rohy}.

7.2 More generally for & s < r, k® x (k*)"~S corresponds toN, A)
with

A = {the faces oR,n; + - - + RoNg}.

7.3 K-{0}is again a (K)"- embedding. It corresponds th,(A), where
A consists of the proper (i.e. not equal to itself) faceRof; +- - - +Rony.
Whenr = 2, it looks like this:
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orb(Rong)

n2 rh/40 orb(Rony)

7.4 Projective spaces:Ther-dimensional projective spad& is again
obviously a (K)'-embedding. The correspondinty,(A) is defined as
follows : N = Z" with aZ- basis{ny,...,n/}. Letng = —(ny + - - + ny).
Thena consists of the faces ofy, . .., oy, where

i
g =Ring+---+V+---+Ron,.

orb(oyp)

o @
orb(o2)
Tlo

The canonical morphism' &' — {0} — P, is equivariant and corre-
sponds to the homomorphishh = Z'+*! — N sending elements of the
basis{fi, . .., A} of Nto{n,...,n}.

In this connection, we have the following characterizatafinthe
projective space due to Mabuchi[32].

Theorem 7.1 (Mabuchi) Let X be an r-dimensional complete non-
singular T-embedding. Then the following are equivalent.
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(1) X= P, equivariantly.
(2) The tangent bundlex of X is ample.

(3) The normal bundle of each T-stable irreducible divisahich is
non-singular by Theorem4.3) is an ample invertible sheaf.

(4) The number of T -fixed points of X (which equals the Eulentyar
of X by Iversen[[27]) is exactly + 1.

(5) The number of T-stable irreducible divisors is exacthy 1.
(6) Pic(X) =Z.

Let X = Ty emb@). Then (5) means tha® K(A) hasr + 1 cones.
(4) means thah hasr + 1 maximal dimensional cones.
(1) © (4) & (5) is easy to show in view of Propositionb.7.
(6) = (5) follows easily from the exact sequence in Proposifidh 6.
(5) = (6) follows from the exact sequence and the fact that>Bix$
torsion free. (See Demazui€ [8, p.566]).
(1) = (2) = (3) is well-known.
(3) = (4) is due to Mabuchi, who showed (> (2) & (3) as a
special case of Hartshorne’s conjecturel [1d]+ r) to the dfect that
anr-dimensional non-singular complete variety with the antplegent
bundle is necessarily;.

(H-2) is known to be true.H — 3) was proved recently by Mabuchi
[32] and Mori-Sumihiro[[41].
(6) = (1) can also be proved directly by means of results in Morj,[35
as Sumihiro and Ishida pointed out.

7.5 Products We leave the proof of the following to the reader 39

Proposition 7.2. Let (N’,A”) and (N”,A”) be r.p.p. decompositions.
Then we have

Tn emb@’) x Ty embA”) = Tyrxn €mb@” x A”)
whereA” x A” is the r.p.p.decomposition of X N”” consisting of cones

oc=0' xo"’
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with o ando”” running throughA” and A", respectively.

7.6 Equivariant fiber bundles More generally, we have thifohg
description of equivariant fiber bundles.

Proposition 7.3. Let h: (N,A) — (N’, A’) be a map of r.p.p. decompo-
sitions, and let f: X = Tyemb@) — X’ = Ty emb@’) be the corre-
sponding equivariant dominant morphism. ConsidérNker[h: N —
N’] and an r.p.p. decompositiofN””, A”’) with X’ = Ty, emb@”).
Then f: X — X’ is an equivariant fiber bundle with the typical fibef’ X
if and only if the following conditions are satisfied:

(i) h: N — N’is surjective.

(i) There exists a lifting\’ c A of A’, i.e. (N, A’) is an r.p.p. decom-
position and for eaclo” € A’, there exists a unique’ € A’ such
that h induces a bijection

h:o — o’

(iii) A consists of the cones
oc=0+0" ={y+yyeda,y ed’)
with o ando” running througha” and a”.

Again we leave the proof to the reader. Note that the lifungtself
defines an open set &fwhich is an equivarianty~-bundle overxX’ - X
is associated to it via th€y~-action onX”’.

(7.6") EquivariantP;-bundles: As a special case bf{7.6),1¥}. ..., Dy
beT’-stable Cartier divisors 0¥’ and letL] = Ox(D{). Then the totally
decomposabl@;- bundle

f:X=PLp®---@L)—> X

has a lifting of Ty -action determined b;’s Moreover,X has a fiber-
wise action of (K)" and is aly x (k*)"-embedding. A change of Cartier
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divisors in the linear equivalence classes gives rise tmdgphic torus
embeddings.
In terms of r.p.p.decompositions, it can be described dast Let

N” = Z' with aZ- basis{¢4,...,¢}, and letN = N’ x N”. For each
O0<i<rando’ € A, there existsnf(c’) € M’ = (N’)* such that the
A(c’)-moduleL{(U(c")) is generated bg(n/(c”)), by LemmdG.R. Let
to=—(t1+---+¢), and leto” be the image of” under the linear map
Ny — Ng sendingy’ to (y', - OZ (M (o), y")Ht).

<I<r
The collectiona” = {¢”;0” € A’} forms a lifting of A’ to Ng. Then 41
X = Ty emb(), wherea consists of

oc=0" +0"

with ¢ running throughi’ ando”” running throughn”” = {the faces of
Gl UL With o = Rolo+ -+ V + -+ + Rofy.

Example.Let X’ = P1 andr = 1. Fora € Z,, consider the rational ruled
surface

X =P(Op, @ Op,(a))
which is usually denoted bif, or X, and called a Hirzebruch mani-

fold. The corresponding r.p.p.decompositionNof= Z2 with aZ- basis
{n1, np} looks like this:

Py
—n2 0 n1 0 oo

Remark. WhenE’ is aT’-linearized vector bundle on®-embedding
X’, the bundleP(E’) has a lifting of T’-action. But it is not a torus em-
bedding unles€’ is totally decomposable as above. Nevertheless, it
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provides us with a typical example of varieties with torui@acwhich
need not be a torus embedding. Thus it is of some interesatsiéy
equivariant vector bundles on torus embeddings. This wety p=ar-
ried out by Kaneyama [28], who, in particular, showed thestexice of
equivariant but not homogeneous vector bundle®Bon

7.7 Quotient singularities: The quotient singularitiesplained by
Mumford et all. [63, p.16-19] fit in nicely with our formulatin.

LetN = Z' be a freeZ-module of rank with theZ basis(ny, ..., n}.
Letni,...,n; € N be primitive elements which ai-linearly indepen-
dent inNg, and letN’ c N be theZ-submodule of finite index generated
by n,....n. Consider the simplicial cone

o =RoM) +--- +Ron; € Ng = Nj.

We thus have a map of r.p.p.decompositibns (N’, A) — (N, A),
whereA consists of the faces ef. Hence we have an equivariant sur-
jective morphism

f: Tne emb@) = k' — X = Ty emb@),

which is the quotient map under the canonical action of tichde-
theoretic) kernel ke : Ty — Tn]. When the characteristic of the
ground fieldk does not divide the order &f/N’, then the kernel is (non-
canonically) isomorphic tiN/N’. Indeed, letM (resp. M’) be theZ-
module dual toN (resp. N’). ThenM is canonically a submodule of
finite index of M’, with a pairing

LY M xN—Q

which extends the canonical pairingsx N — Z andM’ xN — Z, and
which, moreover, induces a non-degenerate pairing

() 1 (M/M) x (N/N') — Q/Z

Then kerff : Tyy — Tn] = Homg(M’/M, k"), which is (non-
canonically) isomorphic ttl/N’ via the above pairing.
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For instance, let = 2. We may choose @-basis{ny, ho} of N so
that

n =mn
n, = an + by

where a,b € Z with (a,b) = 1 and 0< a < b. Then the action of
ker[f : Tye = Tn]on I_<2 coincides with the action dt./bZ onl<2 with
the generator acting via

K25 (zw) — ({%z¢w) € K4,

where/ is a primitive b-th root of 1 andz = e(m), w = () with
{m, m,} the basis oM’ dual to{n’, n’}.

ma
o
)
my
n2
. o A
0 1
I
ni\— 1

mi

7.8 Equivariant blowing up: The maps of the fohm (N, A” — (N, A)
give rise to equivariant birational morphisnisof the corresponding
torus embeddings. Obviously, is an open immersion if and only if
N C A

The most interesting case is whahis a subdivision of A. It was
shown by Mumford et all.[163, Thm.10, p.31] that is this cakés the
normalization of the blowing up alongTastable fractional ideal. 43

They show [ibid., Thm.11, p.32] that givex) there always exists a
subdivisionA’” which is non-singular, i.e. any torus embedding has an
equivariant resolution of singularities
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The minimal resolutionof singularities of a 2-dimensional normal
torus embedding can be described very simply as in [ibi®540].
Note that the singularities in this case are isolated, aadtbwing up
an isolated singular point is automatically normal, algjloits descrip-
tion in terms ofr.p.p. decompositions is rather complicated and closely
related to continued fractions. In this connection, werrdfie reader
also to Gonzalez-Sprinberf]12], who dealt wittlash transformsof
2-dimensional normal torus embeddings

We need later the following description of a blowing up in tian-
singular case.

Proposition 7.4. Let T ¢ X be a non-singular torus embedding cor-
responding to an r.p.p.decompositfN, A). For o € A, the blowing
up of X along the T-stable non-singular closed subvar@ty) is a
non-singular T-embedding corresponding to the subdiriéid A*) ob-
tained fromA by “starring at its barycenter” as follows: Lety...,ng
be the fundamental generators ®f and let = ny + --- + ng be the
“barycenter”. For A> > oo andl <i < s. Letrj c Ng be the cone
obtained fromr by replacing one of its fundamental generatoron ny
and leaving the other generators as they are.

Then
AN=(A-{teA >0} U( U {the faces ofi; 1 <i < g)).

o<teA

Proof. orb(c) is non-singular by Theoref4.3. Obviously it is enough
to describe the blowing up on thdhae open set)(r) with U(r) n
orb(o) # Q, i.e.o <t € A by TheoreniL42. Lety,...,ns, withs< ¢

be the fundamental generatorsrofSincer is non-singular, they can be
extended to &-basis{ny,...,n} of N. Let{my, ..., m} be the dual ba-
sis of M = N*, and letu; = e(my). Then the coordinate ring of U(7) is
the localizationA = K[ug, ..., U]y, ,-u, @nd the ideal obrb(c) N U(7)

is generated by, ...,us. For1<i < s let A = Alui/ui, ..., U /ul.
Then the inverse image &f(o) in the blowing up is covered by Spec
A with 1 < i < s. Obviously, Sped is a normal &ne T-embedding

corresponding to the cong = Rong + X, Ron;j. O
1<j<s
j#i
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Corollary 7.5. Let T c X be a2-dimensional non-singular torus em-
bedding corresponding to an r.p.p.decompos{iNnA). For a 2 dimen-
sional cones = Rohy + RNy, the blowing up of X along the T-fixed
point ordo") is a hon-singular T-embedding corresponding( A*),
where A* is obtained fromA by removingos and adding the faces of
o1 = Ro(nl + nz) + Rgp andos = Rony + Ro(nl + nz).

g1

2 rb(R, (11 + n2))

n2

/ ) n1 /
/N

45

Corollary 7.6. Let T c X be a 3-dimensional non-singular torus em-
bedding corresponding to an r.p.p.decompositibinA).

(i) For a 3-dimensional cone- = Rgyny + Rohy + Rohg, the blowing
up of X along the T-fixed poirtrb(o) is a nonsingular T-embedding
corresponding tqN, A*), whereA* is obtained fromA by removingo
and adding the faces of;, 0> ando3 as in the picture below.

(i) For a 2-dimensional cone = Rohy + Rohy, let T = Rong + Rohp +
Ronz and v’ = Rong + Rone + Ronyg be the3-dimensional cones i
havingo as a face (cf. Prop.6.7). Then the blowing up of X along the
T -stable curveorb(o) is a non singular T-embedding corresponding to
(N, A*), whereA* is obtained fromh by removingr, 7, v and adding the
faces ofrq, 15, 71,75 as in the picture below.




36 1. Torus embeddings

ny +nz +n3

) oL
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47 7.9 Algebraic varieties of monomial type: As Mumford et al63]
pointed out in the it introduction the theorey of torus entiegs is
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a unified and globalized treatment of the “exponents of madalsth It
can be said that when we have algebraic varieties or morghiefined
in terms of monomials only, then there is a possibility ofnfiaitating
them more transparently in terms of torus embeddings. Weustier
many examples in Chaptér 2. Here is a motivating example:

Let X c A, = k" be a closed algebraic set defined polynomials
fa(t), ..., f,(t) € k[ta, ..., ], each of which is of the form

f() = 2 g -

with non-singular integerag, ..., a;, by, ..., br. ThenX is invariant the
coordinatewise multiplication of elements of the group

T=Xn(K),

ThisT is an algebraic subgroup of (k but may not be an algebraic
torus. It may neither be connected nor reduced. But wihenan alge-
braic torus, therX is aT-embedding, although it may not be normal in
general. Consider, for instance the rational curve withspcu

X = {(t, o) € Ag; 15 = £3).

We have analogues i} or its generalization in Mori[34]
Here is a more general formulation in thi&e case LeM = Z" and 48
let 0 € S be afinitely generated sub semigroupMfvhich generate
as a group. Hence
X =Homy s dS,K)

is aT-embedding with
T = Homg (M, K").

Letmy,....m,m,...,n, € S. Then consider the quotient
_ M = M/ (the subgroum;end by my—n,...,m,—m) and the image
S of S under the canonical projectidd — M. ThenS is the quotient
of S with respect to the equivalent relation

s~S o3¢ €S a,...,a,b,...,b, € Z, such that
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s= 9"+ Zam + Zbjm
s =5’ +Zbim + Zam

Let

T = Homg(M,k*) c T algebraic subgroup
X = Homysg(S, k) c X closed algebraic set

ThenX containsT as a dense open subset and is invariant ufider
If my —m,...,m, — nv, generates a pure subgroupMf thenT is an
algebraic torus anX is aT-embedding. If, moreovef = 6 N M for
aconeo c Np as in [51), then thenormalization of X corresponds to

the coner N Ng, whereN = NN {mg —nv,...,m, — i}

8 Torus embeddings of dimensiorx 2

Itis easy to see that 1-dimensional normal torus embeddiregg, A; =
k andP1, up to isomorphism.

From now in this section, Ldtl = Z2 andT = Ty. A 2-dimensional
normal T-embedding of finite type looks like this:

W"? &
0 (k") \
N\\\\)\\

A Temb (A)

In particular, a complete normal 2 dimensioffakmbedding is de-
termine by a finite cycle of primitive elements,...,ny in N going
counterclockwise once around O in the given order such taaffg,
niy1) > 0for 1 <i < d(ngea = M), i.e. ni,q lies strictly before—n;
(which may not belong to the cycle).
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n2

e
! orb(Ron1)
ni

ng

Proposition 8.1. Any 2-dimensional normal torus embeddingcT X 50
of finite is quasi-projective, i.e. can be equivariantly euted into a
projective space.

Proof. Let X = Temb (A). By filling in the complemeniNg — |J o

geA
by appropriate cones if necessary, we can embeduivariantly into a

complete normal -embedding. (For the existence of equivariant com-
pletions in general, we refer the reader to Sumitird [59]9 May thus
assume thaX itself is complete. Len,, ... ng be the fundamental gener-
ators of the 1-dimensional conesArarranged, as above, in such a way
that they go around 0 counterclockwise once in this orderTBgorem
64, X is projective if and only if there exist, ..., aq € Z such that for
each 2-dimensional cone € A, there exists a uniqueno) € M with
((0),m) > —a 1 <i < dand with the equality holding if and any if

ni € o. As we remarked after the proof of TheorEml 6.4, this mearts tha
the convex hull of

{M(0) : A > o 2-dimensionagl

in Mg has exactlyd edgesFi, . .., Fq going around O in this order with
Fi perpendicular tm. 0

It is thus enough to show, by induction dnthe existence of a con-
vex polygonP in Mg with the vertices inMg such that it has exactig
edgesFy, ..., Fq going around 0 in this order witk; perpendicular to
N

Obviouslyd > 3 and the casd = 3 is trivial. If d > 4, there 51
certainly existsng, say, such that the cycley,...,ng_1 still defines
an f.r.p.p. decomposition. LeP’ be a polygon withd — 1 edges
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F1.....Fj_, satisfying the required property. At the vertexR§fwhich
is the intersection of edgés andF_,, we can cut the corner by a line
perpendicular tog and obtain a require® with d edges.

&

A complete non-singular 2-dimensionilembedding is determined
by a cycle of elementsy, ..., ng € N as above with

dethi,ni;1) =1 1<i<d.
This condition is rigid enough to allow a complete classtfma

Theorem 8.2. Up to isomorphism, a complete non-singutas dimen-
sional T-embedding is obtained from

P2 or Fa = P(Op, @ Op, () l+a>0

by a finite succession of blowing ups along T-fixed points.att loe
transformed taP, by a finite succession of blowing ups and blowing
downs along T -fixed points. Given non-singular T-embeddXa@nd
X', there exists X obtained both from X and from’Xy a finite succes-
sion of blowing ups along T -fixed points.

Proof. Let X =Temb (A) with A determined by a cycla;,...,nq € N
going around 0 once counterclockwise. Certaihly 3. If d = 3, then
Ny + Ny + n3 = 0 andX = P, (cf. TheorenZ1). We may thus assume
d>4. o

Lemma 8.3. If d > 4, there exist i and j withjn+ n; = 0.
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Sublemma 8.4.Let{n,n’} and {¢, ¢’} be Z-bases of N. If lies in the
interior of the sectoRon+Ron” and if £ is in the sectoRqn’ +Rg(—n),
then¢’ =n’ or & = —n.

4 14

Proof of the sublemma: By assumption, there exist positive integers
a, & such thatt = an+ an’ and non-negative integelsb’ such that

¢ = -bn+ b'n’. We are done, since £ det,¢’) = abl + a’b by
assumption.

Proof of the lemma: Suppose the assertion of the lemma is false. By
re-numbering the primitive elements if necessary, we maymag that
starting counterclockwise fromy, we have more than half of the prims3
itive elements before-n;, which does not coincide with any of tmgs

by assumption. Len;(j > 2) be th last primitive element beforen;.
Sincenj,1 does not coincide with-n; and —n,, we see by sublemma
and the convexity that,  is is strictly between-n, and—n;. Thus

we conclude thaty, ns, ..., n; and -nj,1, —Nj;2,...,—Ng, —Ny are all
different and lie betweem, and—n;.

~~.
~~.
~~o
~~o
~~.

~
—nNgy nj+1 —nj

This is obviously a contradiction in view of Subleminal8.4.
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Proof of Theorem 8.2 continued:By Lemmd8.B, we may assume that
ng + nj = 0 for somei. Letn’ = —ng = nj andn = n;. Thus{n,n’} is a
basis ofN.

If d = 4, we see that, = n” andng = —n + an’ for some integer a.
This gives rise toX = F5. By symmetry, we may assume tlat 0. If
a =1, is the sum of the adjacent primitive elements, hence by oigwi
down we can eliminate’.

Thus we may assun > 5 and at least one primitive element lies
betweem = n; andn’ = n;. It remains to show that

n' =n; njq

—n+an’

!
-n —n/

d=4 d>5

there exists k j < i such than; = nj_1 + nj,1. Foreach k j <i,
there exist non -negative integdxs b with nj = bjn+bin. On the other
hand for eaclj, there exists an integey such thah;j_; +nj,1+ajn; =0
by Propositiol &l7. Obviouslg; < 0. Consider the function

o(j) = bj + b, > 0.

Thenc(j—1)+c(j+1)+ajc(j) = 0. Moreover, since(l) = c(i) = 1,
there existyg so thatc(j) > ¢(j + 1) andc(j) > c(j — 1). For thisj, we
have (2+ aj)c(j) > 0 and conclude; = —1. This means that il > 5,
we can successively bloX down to somé=,. (cf. the Farey series in
additive number theory.)

This fact can also be proved sing Nagata’s classificaliohd#gel-
atively minimal models of rational surfaces. Note that anegtional
curve of the first kind is automatically-stable, hence the blowing down
is equivariant.
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As for the second assertion of Theorend 8.2, we may assUmé 5.
If we insert the sum ofn+ an’ and—-n’ between them, thean + ar' is
the sum of-n+ (a— 1)n" andn’.

I :
—n+ an/ n

g " / AN

—n+(a—1)n \

—n +an’

n —n+(a=1)n

This means that by blowing up a longrafixed point ofF5 and then 55
blowing down aT-stable curve, we gdt,_1. This process is usually
called arelementary transformatioof a ruled surface. By a finite repe-
tition of this process, we transforfy, to F1, which can be blown down
to Po.

The last assertion of TheordmB.2 follows easily from theodec
posability of birational morphisms of non-singular sugadnto blow-
ing ups along closed points. But it can also be proved in tesins
r.p.p.decompositions as follows: L&t = Temb A) and X’ = Temb
(A"). Then the decomposition dfr obtained by the intersectionsno”’
with o € A ando’ € A need not be non singular, but it has a non sin-
gular subdivisionA”. Thus it is enough to show that a non singular
subdivisionA” of a non-singularA is obtained by finite succession of
operations in CorollarfZ715. This can be seen exactly asdrast part
of the proof of the first assertion.

Let us now derive certain consequences from Thedrein 8.2hwilie
we need in the next section and which are also of independtarest.

Let a cycleny, ..., ng of primitive elements irN determine a com-
plete non-singular 2- dimensional torus embeddihgTemb (A). Let
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D; = orbRoNn;). Then by Propositiof 8.7, we have
N_1+n41+an=0 1<i<d

and
a = D2,

Thus we have a cyclB4, ..., Dg of non-singular rational curves, which
can be expressed, as usual, by a circular graph with weaghtote that
this weighted circular graph determines the 2-dimensidraibedding
X up to isomorphism.

no ay
n; [¢%
aj
ni
aq
nq weighted
A X circular
graph

The cycleay, ..., aq of integers cannot be arbitrary. For instance,
we have the following necessary but noffstient condition as a conse-
quence of Noether’s formulé? + ¢, = 12 andc, = d (cf. Iversen[l6]):

a+---+ag=34-d).

We have the following characterization as a consequenceéhebrem
0.4

Corollary 8.5. A weighted circular graph with d vertices corresponds
to a 2-dimensional complete non-singular torus embedditagd only

if it is obtained from those with & 3 or d = 4 below by a successive
application of the following operation: insert one vertethwwveight—1
and subtract 1 from the weights of the two adjacent verti€esd < 6,
we have the following possible cases.
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58

Remark. A 2-dimensional complete non-singular torus embedding can
be considered as a compactificatiorkbfthe dfine plane, in many dif-
ferent ways. The graph obtained from the corresponding te@ybircu-

lar graph by removing two adjacent vertices is the graphetthmple-
ment ofk?. cf. Morrow [31].

9 Complete non-singular torus embeddings in di-
mension 3

In this section, we give a partial classification of 3-dimenal com- 59
plete non-singular torus embeddings. As by-products wenggtly non-
projective complete non singular threefolds and birationarphisms
which cannot be written as a succession of blowing ups alang n
singular centers. These are of some independent interestitthe
torus action is ignored.

Torus embeddings provides us with a good testing groundhier t
birational geometry of non-singular varieties, since maquogstions are
reduced to the elementary geometry of r.p.p.decompositi@onsider,
for instance, the following basic question. By abuse of iy, a blow-
ing upY — X along a non-singular center &fis also called dlowing
down of Y along a non-singular center
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Question: Let X and X’ be birational non-singular algebraic varieties.

(strong version) Does there exisK” which can be obtained both from
X and fromX’ by a finite succession of blowing ups along non-singular
centers?

(weak version) Can X’ be obtained fromX by a finite succession of
blowing ups and blowing along non-singular centers?

The answer is firmative dimension 2, but is not known even in
dimension 3. According to Hironaka 18], we have the follogriveaker
affirmative answer in characteristic 0: There existsobtained fromX
by a finite succession of blowing ups along non-singular ersnguch
that there exists mmorphismfrom X"’ to X'.

In the case of torus embeddings, the question is completdiyced
to one on non-singular r.p.p.decompositions and looks neadier.
Nevertheless, we were unable to prove the following couojectven
in dimension 3. We have already shown in Theofer 8.2 thatdhgc-
ture is true in dimension 2.

Conjecture

(strong version) Let X and X’ be non-singulaiT-embeddings. Then
there exists & -embeddingX”” obtained both fromX and fromX’ by
a finite succession of -equivariant blowing ups along-stable non-
singular centers.

(weak version)Any complete non-singulardimensional torus embed-
ding is obtained fronP; by a finite succession of equivariant blowing
ups and blowing downs along non-singular centers.

From now on, we fixN = Z2 and the ground fiel&.
LetT =Tn.

The classification of 3-dimensional complete non-singlilarem-
beddingsX is reduced to that of f.r.p.p.decompositiohof Np = R3
such thatNg = |J o and that the fundamental generators of each 3-

geA

dimensionab- € A form aZ-basis ofN.
It is slightly more complicated to describe sushin a computable
way than in the 2-dimensional case.
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Definition. Let S = S? be a sphere ilNg centered at 0. Consider a
triangulation ofS by spherical triangles.

(i) By anN—-weightingof the triangulation. we mean a primitive element
of N attached to each spherical vertex.

(i) By a doubleZ-weightingof the triangulation, we mean a pair of
integers attached to each spherical edge with one integéhneoside
of one vertex and with the other on the side of the other verteat
vi,...,Vs be the vertices adjacent to a vertesf the triangulation, and
let a be theZ-weight on the edgev which is on the side of;. The
weighted linkof v is the spherical polygomv, - - - vgvq together with
weightsg; atv;.

<

N-weighting double Z-weighting

b !
(s
Vs

weighted link of v

U1 (2

weighted circular
graph

Let X = Temb (A) be a 3-dimensional complete non-singular tores
embedding. If we intersea with a sphereS c Ng centered at 0, we
get a triangulation 08

s={Jns).

ogeA

We have a canonicdll-weighting for this triangulation. Indeed, each
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spherical vertex is of the form
(Ron)N'S

for a primitive n € N, which we attach to the vertex. Obviously,is
determined completely by thid-weighted triangulation of.

Definition. An N-weighted triangulation 082 is admissiblef it is ob-
tained from a complete non-singulgr= Temb () in this way.

The admissibility means the following : For each spheridahgle,
the N-weights{n,n’,n”’} at the three vertices from Zbasis ofN and
the coneR.n + R,n" + R,n” cuts out the original triangle d8.

On the other hand, an admissileweighting for a triangulation of
S gives rise to a doublg-weighting. Indeed, each spherical edge is of
the form

™S

for a 2-dimensional cone € A. Let{ny, ny} be the fundamental gen-
erators ofr. By Propositior 6l77 is the common fact of exactly two
3-dimensional cones ando”’. Let{n, ny, ny} and{n’, ny, ny} be the fun-
damental generators ofando”’, respectively. There exist b € Z such
that

(<)n+n" +am +bm =0.

We attach a pairg, b) to the edge N S, with a on the side off,n1) NS
andb on the side ofRon) N S.

4
7 -
Oé:_’____u_
\,
N\,
N\,
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In this case, consider a vertexwith N-weightn and its link with
the verticess, ..., Vs with N-weightsng, ..., hs going aroundv in this
order. LetD = orb(Ron) andD; = orb(Ronj) 1 < i < sbe the cor-
respondingT -stable irreducible divisors oX = Temb (A). Again by
Propositior6J7, we have

(==)N_1 + Ny +an+bn=0 1<i<s
whereng = ng, Ns;1 = Ng, and
a =D?-D.

SinceD is a 2-dimensional complete non-singular torus embeddifg 64
TheoremZB) with stable curvdd N D 1 < i < s, we see that the
weighted link atv is exactly the weighted circular graph bBfdescribed
immediately before Corig8.5.

DoND

DmD

DsND

weighted circular
weighted link at v graph of D

Definition. A doubly Z-weighted triangulation 08 is calledadmis-
sibleif, around each vertex, the equations)l < i < sin unknowns
n,ny,...,Ns are compatible and if, moreover, the weighted linkeath
vertex is a weighted circular graph obtained as in Corof@&Hy

Definition. An isomorphism from an admissibi-weighted triangula-
tion to another is an automorphism fwhich induces an isomorphism
from the corresponding f.r.p.p.decomposition to anothecombinato-
rial isomorphismfrom an admissible doublg- weighted triangulation
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of S? to another is an incidence af@dweight preserving bijection from
the set of spherical simplices of one triangulation to tHahe other.
Proposition 9.1. We have canonical bijections

combinatorial

isom. classes of isom. class )
isom. Classes ¢f

3 — diml com-| ~ |of admissiblg ~ S

= — ) admissible doubl
plete n.s. toru N-weighted 7-wei-ted trianan
embeddingk triangnsof s an

of S

Proof. From what we have seen so far, it is enough to prove the sur-
jectivity of the second map. Léh,n’,n”} be aZ -basis ofN. Pick an
arbitrary triangle of an admissible doubBrweighted triangulation of
S, and giveN-weightsn, ', n” to its three vertices in any way. Then
using the equality), we can successively determine tHeveights of
the other vertices of the triangulation. Thsweighting is admissible.
Indeed, for each vertex with N-weightn, the verticess, ..., vs with
N-weightsn, ..., ng of its link satisfy the equalities:). Since the dou-
ble Z-weighting is admissibley,, . . ., ns go arounch oncein this order,
by Propositiof6]7 applied thl/Zn and the images in it ofig, ..., Nns.
Thus the spherical triangles &icut out by

Ron+Ronj+Reniyp 1<i<s

together fill up a neighborhood oR{n) N S combinatorially isomor-
phic to the star of/ in the original triangulation which is the spherical
polygon with verticess, ..., Vs. SinceS is simply connected, we are
done. i

Remark. The advantage of using admissible doubteeighting is the
following: Once a combinatorial type of a triangulation®f is given,
possible admissible doub®weighting on it are computable in princi-
ple, although it is more convenient sometimes to use inftona on
the N-weights. To state the final result, however, it is lagsloersome
to choose a convenietbasis ofN and describe one possible admissi-
ble N-weighting corresponding to it in terms of thebasis.
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Convention Given an admissible N-weighted triangulation®fand a
vertex with the N-weighh, we call that vertexhe vertex nfor simplic-
ity, althoughn itself need not be o8.

By Corollary[Z®, the blowing up oK = TemHA) along orb(c)
corresponds to the following subdivision of theweighted triangula-
tion |J(xNS).

TEA

ni

Ny

N9 n2
ns

The following result, whose proof is immediate, will turntda be 67
useful in our classification below.

Corollary 9.2. Given an admissible N-weighted triangulation of=S
S2, let n be a vertex and letyn. .., n, be the vertices of its link going
around n in this order.

(i) If s> 4, there exist, j such that the vertices, n, n; are collinear
onsS, i.e are on a great circle.

(ii) If the vertexnis 3-valent i.e. s = 3, there exists an integbrsuch
thatn; + ny + nz + bn = 0. The vertexn can be eliminated by a
blowing down along a non-singular center if and onlypit —1.
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The doubleZ-weights around the vertex are as in the picture
below.

(i) If the vertexnis 4-valent i.e s = 4, there exist integea, b, ¢ such
that after re-numbering;’s, we haven, +ng+bn = 0 (in particular,
the vertices,, n, ng are collinear) andh; + nz3 +arp +cn= 0. The
vertexn can be eliminated by a blowing down along a non-singular
center if and only iftb = —1. The doublez-weights around the
vertexn are as in the picture below.

(iv) Ifthe vertexnis5-valenti.e. s = 5, there exist integea, by, by, bs,
b4, bs with by = bz + by and (—l)b2 + (a— l)bg = (—a)b4 + (—1)b5
such that, after re-numberimgs we haven; + nz+(a—21)ny+byn =
O;np+ng—n3+ba3n=0,Nn3+nNs—ng +bsn=0,n4 + n; —arg +
bsn = 0 andn, + ns + byn = O (in particular, the vertices,, n, ns
are collinear) The doublg-weights around the vertaxare as in
picture below.

ny +ng +ns

ni

n2

3-valent 4-valent 5-valent

To show that a given complete non-singukae TemigA) is projec-
tive, i.e. there exist integes satisfying the conditionii{) of Corollary
3, we have to check many inequalities. The followingfisient con-
dition for non projectively is very convenient in concrefgphlcations.
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Proposition 9.3. Let S = |J (oo N S) be an admissible N-weighted

TgeA

triangulation of S= S2. Then the corresponding complete non-singular
TemlA) is non-projective if there exists a spherical polygomn ..
ngny in the triangulation satisfying the following: Fat < i < g, let
oiN'S be one of two triangles havingn, as edgeng,1 = ny). Lets

be the remaining vertex ef, N S, i.e.{{;, nj, n,1} are the fundamental
generators obri. There exists re S not on the polygonin,...ngny
and real numbersg;, i, vi with aj > 0 andy; > 0 such that 69

G + aiziNiyy = Bini + i 1<ic<g,

i.e. the edg€in;,; intersects the great circle passing throughamd n
strictly inside the arc m(-n;).

Proof. If Teml§A) were projective, then Corollafy 8.5, there exiats
bi € Zandm, = m(cj) € M for 1 <i < gsuch that.

(my, &y = —a, (M, i) = =by, (M, Niz1) = —bijq

and
<m—1a gl) > _aiv <m—1a nl+l> > _bi+1’

for1 <i < g, wheremy = myg. We see immediately that @ (m_y,
Gy + & = =iy {{Mi—1, Niy1) + biya} + yi{{mi-g, n) — (M, )}, hence

(Mg, >(m,n) 1<ic<g,

a contradiction. m]
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Let {n,n",n”} be aZ-basis ofN, and letf = -(n+n" + n”’). LetP 70
be the surface of the tetrahedronNp with verticesn, n’, n”’, ¢, which
has 0 as the bary center. Fo#0y € Ng, let us call R.y) N P the pointy
onP. Ford > 7, consider the following subdivisioRq of P, where the
bottom trianglenr'n” is left as it is.

Nn=nn=n,n=n"
ng=+¢
Ns =N3+ Ny
Ng=N1+MNy
nNj=ne+(j—6n(6<j<d-1)
Ng =Ny + Ny
n3
n
ny > No

Proposition 9.4. For d > 7, let Aq be the f.r.p.p.decompaosition okN
obtained by joiningd with the simplices of the above subdivisiogn p
Then we have the following:

() Xg = TemigAy) is a non-projective complete non-singular 3 - di-
mensional tours embedding.

(i) There exists a T-equivariant surjective morphism friggto Ps.

(ii) X4 cannot be (not necessarily equivariantly) blown down along
any non-singular center.
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(iv) The tours embedding obtained by blowing upatong the curve
orb(Rqnz + Rgng) is projective, and is obtained frofg by a suc- 71
cession of blowing ups along T -stable curves.

Proof. It is immediate to see tha{y is complete and non-singulakKq
is non-projective by proposition 9.3 applied to the polygonn”n of
U (o0 n'S), with (Re¢) N S to be taken as in Proposition 9.31() is

gelg
obvious, sincePy is a subdivision ofP. (iii) If X4 were obtained by

blowing up a non-singular variety along a non-singular egrihen the
exceptional divisors is automaticalll-stable. But it is easy to check
that X4 cannot be equivariantly blown along a non-singular cer{tey.
is immediate. O

Remark. The casal = 7 is the simplest non-projective complete non-
singular 3-dimensional torus embedding, which was alrababcribed

in in Miyake-Oda [4D]. See the next page for the pictureTedbrbits
under the process described iv) DemazurellB, Appendice] previously
gave an example of non projective complete non-singulangdsional
torus embeddings which has 32stable irreducible divisors instead of
7 in our case. We latter get many other non-projective examaé the
by-products of our partial classification below.
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By analogy, consider instead the 3-dimensional cone 73
o =Ron+ Ry, + Ron”

andlet’ =n+n’ +n”. Ford > 7, IetAéj be the subdivision of- which
looks like this:

n//

Then the following example gives as answer to a questioeddiy
Fujiki.
Corollary 9.5. The equivariant proper morphism
f:Yq=TemiA,) - U(o) = K3

is non-projective and cannot be written as a successionafiblg ups
along non-singular centers. But the blowing upof Yq along

orb(Ron” + Ro(N” + £7))

is obtained first by blowing up {d-) along the T-fixed point and then by
successively blowing up along T -stable curves.

Proof. All except the non-projectivity off are immediate. Consider
the tetrahedron with verticag n’, n”” and¢ = —(h+ n’ + n”’), and its
subdivision whichA/, induces on the facan'n””. By Propositior(913,
we have a surjective morphism from a non-projective coreplein-
singular torus embedding ;. Sincef is obviously its restriction to 74
U(o) c P3, we are done. O
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It is possible to describe projective equivariant biragilomorphism
directly in terms of the corresponding subdivision. We reffee reader
to Mumford et al. [[68, Chap. Ill, p. 152-154 in particular]e&also
Namikawa [[47].

Remark. On the other hand, we can show in a similar fashion that the
following subdivisionAg of o = Roh + RoY + Rpn” gives rise to a
projectivemorphismTemh{A;) — U(o) = k3 which cannot be written

as a finite succession of blowing ups along non-singularecgnibut can

be ifTemhiAg) is blown up once alongrb®Ron + Ro(3n + 1’ + 2n”)).

Let d be the number of spherical vertices of a triangulatiorséf
Then obviously we have

3d — 6 = the number of spherical edges
2d — 4 = the number of spherical triangles *)
If the triangulation is of forns = U (0' N S) with X = TemidA) com-

plete non-singular, theth = the cardlnallty oS K(A), 3d—6 = the num-
ber of 2-dimensional cones ik 2d — 4 = the number of 3-dimensional
cones inA. By PropositiorL6J1, we have

d — 3 = the Picard number of.
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Furthermore foiv > 3, let p, be the number of-valent spherical
vertices of a triangulation d82. Then we see that

2, 6-vpy =12 )
V>3

By Proposition[311, the classification of complete non-slag 3-
dimensional torus embedding is reduced to

(i) the classification of combinatorially fierent triangulations of?
and

(i) the different admissibléN-weightings (or admissible doubf —
weighting$ on them.

According to Grinbaum[13, Chap.131]14], we have the foHo
ing relevant facts: By Steinitz’'s theorem (which is knownbe false
in higher dimension) the combinatorial equivalence clasdehe trian-
gulation ofS? are in one to one correspondence with the combinatorial
types of convex simplicial polyhedral it®. Givend, there seems, how-
ever, to be no formula for the number of the latter. It is emsplly 76
known for smaller values at as follows:
d|4|5|6|7|8|9]10] 11 | 12 |
|1]1]2]5]14]50]| 2331249 7595 |

In this connection, Eberhard’s theoreml[13, 13.3] lookdguingly rel-
evant to us, in view of our description of blowing ups along+singular
centers immediately before Corolldry.2.

Anyway ford < 8, we have the list in the next page of the combina-
torially different triangulation 082, where we stereographically project
them onto the plane from one of the spherical vertices, andxpesss
circular arcs on the plane simply be liner arcs.

Among 7595 diferent triangulation fod = 12, we have the one
induced by an icosahedron.

For the classification of complete non-singular 3-dimemaidorus
embeddings, it remains to find possible admissilleveightings on
them. Obviously, it is enough to find thosgthout any vertices which
can be eliminated by blowing downs along non-singular asnte
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Combinatorial types of the triangulation 8f for d < 8

AAGI

1] 51

-1 -2 -3 -4  [7-5]

4
mm & 2

8 — 6] (8 —1] 8 —§] [8—9 8 — 10]

£ K 5

8 — 11] [8 —12] [8 —13] [8 — 14]
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Icosahedron.

Theorem 9.6. Let X be a 3-dimensional complete non-singular torus
embedding which cannot be blown down along any no-singuatet.
Then X is isomorphic to one among the projective sfrace

P, — bundles oveP; P(Op, ® Op,(@) ® Op,(b)) abeZ

P1-bundlesP(Oy @ L) over complete non-singular 2-dimensional torus
embeddings Y and E Pic(Y) and, if the Picard number & 3 < 5,
Teml§Aa) corresponding to the following 13gkrent sequences with in-
tegral parameters of admissible N-weighted triangulasiof S, where
{n,n’, "} is aZ-basis of N= Z3.

n n
n' —an’
n// n/
—n
1"
—n—-n —n —n
2n' — an”
/ " " “n—n'—n"
—n' —n n )
!
(n at 00) (—n —n' at c0)

[7 — 2] [7— 5]
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_n+n/_n//

—n —2n' —2n”

(—n —3n' —2n" at 00) (—n —n' at 00) (—n —n' at o)
(8—2] (8 —5'] [8 —5"]
79
:ﬁ
Ixn/ —n' n
IS
C? n” n//
bn//
n An'
—n—2n" —n" —n—n'=n" —n —2n/ —2n/"
(—=n—n/ —=2n" at 00) (—n —n/ — 2n" at 00) (n at oo)
[8 — 8] [8 — 10] (8 —11]
n—n' —n
n’\n+ ¢ —n +bn/ , n+n' +bn”
n /
o ol
o n—n' % n —/ 4 ajn’ n’:
n —n
n+n +an’ —n4en’ (d+ 1)n”
(n—n'+n" at 00) (n” at oc) (n” at o0)

(8 —12] [8 — 13/] (8 —13"]
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N —n

~n/+an’ + bn'

1"

n-+mn

n+n" n+n'

(n/ +n” at OO) (n —n/ —n" at OO)
[8 — 14/) (8 —147]

Remark. This theorem was already announced in Miyake-Qda [40] er-
cept that [8-12] was not counted there. This fact, as welhascbn-
siderable simplification of the proof below, was pointed buytNagaya
[43].

Remark. Some of the torus embeddings listed in Theofem 9.6 can be
blown down along a non-singular center if the integral partars take
special valuesPs3, Po-bundles,P;-bundles, [7-2], [8-2] and [8-10] are

all projective. On the other hand, [7-5] and{&"'] are X7 and Xg of
PropositionT3 K, respectively, hence are non-projectie can show
that [8— 5](a # 0), [8-8], [8-12], [8- 14] and [8 — 14”] are non-
projective, using Propositidn9.3. [813] and [8— 13”] are not pro-
jective, except when they can be blown down for special wbfethe
integral parameters. For these torus embeddings we cdy easck the
weak version of the conjecture at the beginning of this eacti

For simplicity, we adopt the following definition.

Definition . An admissibleN-weighted triangulation 0f5? is called
weakly minimalf the corresponding complete non-singular center, i.e.
the N-weighted triangulation has no 3-valent or 4-valent verdsich
can be eliminated by blowing down along any non-singulataren
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81 Proof of Theorem 9.6.I1f d = 4, thenX = P3 as a special case of
Theoren_Z11. in the remainder of the proof, we repeatedlyOasellary
B4, without explicit reference, to determine admissiteveightings or
the corresponding doubl&-weightings for a given triangulation &?
with d > 5. The argument depends very much on the distribution of the
valency of the vertices.

Lemma 9.7. For d > 5, let [d — 1] be the triangulation of 8 which
looks like the picture. A weakly minimal admissible N-wsighon it
is necessarily of the following form up to isomorphism andesponds
to a projective torus embedding:

ny at oo

[d—1]

(1) d=5, and{ng, n4, ns} are collinear. In this case, the corresponding
torus embedding is By-bundle oveiP;.

(2) d=5,m +n; =0and{ng, n;,ny} are collinear forall3<i <d. In
this case, the corresponding torus embeddingfs-dundle over a
2-dimensional complete non-singular torus embedding daterd
by the images ofin3 < i < d, in N/Zn;.

Proof. If d = 5, look at the 4-valent verticess, ns, ns. Then by
Corollary[@.2, either{ns, n4, ns} are collinear hence on a great circle,
or {ny, n;, b} are collinear for all 3< i < 5. Thus we easily get (1) or
(2)d =5 by[Z8. m]

82 If d = 6, the triangulation is symmetric with respect to the pairs
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{n1, o}, {n3, ns}, and{ng, ng}. Again by Corollan[ 2R applied to the 4-
valent vertices, we may assume thaaindn, are antipodal, i.en;+np, =

0. Hence we get (2 = 6, by[Z.®

Whend > 7, look at the 4-valent verticas, . .., ng. If {ny, nj, no} were
collinear for at most one 3 i < d, then{ns, ng, ..., ng} would be on a
great circle by Corollarf 3912. Since the valencymgfisd — 2 > 5, the
weighted link ofn, would have weight-1 at somen;, 3 < j < d, which
could be eliminated by blowing down. {h1, n;, no} were collinear for
exactly twoi’s, i = 3 andj say, then{ni, nz,nz, n;} would be on a
great circle, andinz, ng, . .., nj} and{nj, nj,1, ..., ng} would be collinear.
Sincenz andn; would then be antipodal, and sin¢es, nz, n;} would
be collinear, the weighted link af, would have weight-1 at some
ni,i # 3, ], which could again be eliminated. Thus we conclude that
{ny, N, Ny} are collinear for more than two, hence for alk3 < d, since
n; andn, are necessarily antipodal. In view[ofI7 &ain, we are done.

Lemma 9.8. For d > 6, let [d — 2] be the triangulation of 8 which
looks like the picture below. A weakly minimal admissiblevdighting

on it satisfies the following conditions{ns, ng,...,nq} are collinear, 83
N1, N2 = N3 + Ng. There existgl < j < d - 3, such thatn;, ny, nj,»} and
{nj, n2, nj;2} are collinear.

Uz
U

Ny 2 ns
ny at 0o)
[d —2]

The corresponding torus embeddings are always projective.
In particular, we have d> 7, and the only possible weakly minimal
admissible N-weightings for & 7,8 are [7-2] and [8-2] in Theorem
up to isomorphism.
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Proof. If d = 6, look at the weighted link of the 5-valent vertax Its
weight atnz andng cannot be-1, since otherwiseg or ng can be elimi-
nated. Thugng, ny, Ng}, {N1, N4, N2} and{ny, N5, Ny} are collinear again by
Corollary[@.2. This means thai andn, are antipodal, a contradiction
to the strong convexity of cones.

Letd > 7. Sincen; andn, cannot be antipodal, there can be at
most one 4< i < d - 1 such that{ns, n;, ny} are collinear, hence on
a great circle. If there were one suighthe weighted link of, would
have weight-1 at somen;,3 < j < d,j # i, but{ng, ns,...,n} and
{n;, Ni+1, ..., Ng} would be collinear, a contradiction. Thus we conclude
that {n3, ny,...,Nnq} are collinear. Now look at the weighted link of
n; (respny). Then weight-1 is possible only ah, (respni). Thus
Ny + Np = N3 + ng, and together witg, ..., ng it lies on a great cir-
cle. Moreover,{nj, ny, nj,2} and {nj, nx, nj;»} are collinear for some
4< j<d-1.1fd = 7or8,there is only one possible such weighted link.
The projectivity of the corresponding torus embeddingofat easily
from Corollanf9.5 in view of the projectivity of 2-dimensial torus em-
beddings (Propositidn8.1) and the fact that- n, = n3 + ng,nN3...,Ng
are on a great circle. m|

Lemma 9.9(Nagaya) For d > 7, the triangulation[d — 3] below has
no weakly minimal admissible N-weightings.

Proof. Suppose there were a weakly minimal admissiHeveighting.
Sincen; andn;, cannot be antipodal, there is at mostong p<d -1
such thafny, nj, np} are collinear, hence on a great circle.
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If there were one suclh look at the 4-valent vertemy. {ny, h4, Ns}
could not be collinear, since otherwise they would be on atgce-
cle disjoint from the great circle above. Henge, ns, Nz} would be
collinear. Then look at the weighted link of. The weight-1 could
not be atg norng. If {ny, ns, N4} were collinear, then they would be on
a great circle disjoint from another great circle, a coritdah. Thus 85
{n, ns, N3} would be collinear, hence,, nz are antipodal, a contradic-
tion again. We thus conclude that;, nj, no} are not collinear for all
5<i<d-1, hencens,ng,...,ng} are collinear. Look at the vertex
ng again. If{ny, ng, N5} were collinear, th&- weight of the edge,n, at
ns would coincide with that ofisng at ng, which is 1. Then look at the
weighted link ofn,. There would exist & j < d such thatng, np, n;}
are collinear. Thus it has weightl at some,6 <k < d, k # |, 4, 1,

5, a contradiction.

Thus{ny, n4, N3} are collinear. Look at the weighted link nf. Since
it cannot have weight 1 atnz andny, either {(){ny, ns, ns} are collinear,
i.e. on a great circle, hendey, ny, ns} are collinear, or (iiYny, ns, N3}
are collinear, hencey, n3 are antipodal, andn,, n;, n3} are collinear.
In both cases, the weighted link af would have weight-1 at some
Nk, 6 < k < d, a contradiction, sincéns, ng, . .., ng} are collinear. |

Lemma 9.10(Nagaya) For d > 7, the triangulation[d — 4] below has
no weakly minimal admissible N-weighting.

Proof. Suppose the contrary. Since the weighted link€annot have
weight -1 atnz andng, {n3, N5, N4} are collinear. Look at the weighteds
link of ng. Since its weight ahz cannot be-1, we have three possibili-
ties:
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() {n1,ng, ns} are collinear, hence on a great circle. Sifieg ns, Ng}

(ii)

(iii)

are then collinear, the weighted link of has weight-1 atny, a
contradiction.

{n3, ng, N7} are collinear. In this case, the weighted link raf
and theZ-weights aroundhs can be determined completely by
means of the compatibility in Corollafy9.2. We see easilgt th
the weighted link of; has positive weights a; andns, a contra-
diction.

{ny, ng, N3} are collinear. Again using the compatibility of tie
weights aroundhs, we easily see thafng, ny, ng} are collinear,
hencenz andn, are antipodal. Thugg, ny, ng} are also collinear.
Sinceny, Ny cannot be antipodakn,, nj, Ny} can be collinear for
at most one 5 i < d — 1. Supposén, nj, ny} were collinear,
hence on a great circle. |f = 5, thennz could be eliminated.
If 6 < j, then a paimg, ng of antipodal points would lie strictly
on one side of the great circle, a contradiction. Tkusn;, ny}
are not collinear for any 5 i < d -1, hence{ng, ny,...,ng} are
collinear. Look at the weighted link af,. Since{ns, ny, ng} are
assumed to be collinear, there exists K < d such that its weight
atng is —1, a contradiction.

O

Lemma 9.11(Nagaya) For d > 8, the triangulation[d — 6] below has
no weakly minimal admissible N-weighting.

Proof. Suppose the contrary. Sinog, n, cannot be antipodalns, n;,
n,} can be collinear for at most one6i < d - 1.
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(1) Suppose for one 8 j < d -1, {ng, nj, np} were collinear, hence on
a great circle. Thefn;, nj,1,...,ng} are collinear. Sincény, Ny, n;}
are collinear, the consideration of the weighted linkngfshows
thatj = d — 1. Look at the weighted link ofiy. Since{ny, ns, N5}
cannot be on a great circle, we see thaf, ny, ng} are collinear.
Look then at the weighted link afis, From what we have seen
so far, we can conclude théts, ns, ng} are collinear, hences, ng
are antipodal and are strictly on one side of the great cpaksing
throughny, np, N4_1, @ contradiction.

(2) We thus conclude thdnh;, n;, np} are not collinear for all 6< i <
d -1, hencdng, ny, ..., ng} are collinear.

Look at the weighted link offis. O 88

(2-) If {ny, n4, N5} are not collinear, thefns, n4, N} are collinear. The
weighted link ofns forces{ns, ns, ng} to be collinear, hences, ng are
antipodal andng, ny, ng} are collinear. Look at the weighted link of
n; andn, simultaneously. Their weights &, 7 < i < d, coincide.

(2 -1 —a) Supposegn;,n, nk},6 < j < k < d, were collinear. Since
N3, N4 are antipodalnyninj.1...NgN2 cannot be a great circle, hence
nj, N are antipodal. The sequence of weights of the weighted link o
Ny atnj,1,..., N1 is a part of that of the weighted link af; at n7,
ng,...,Nq, N1, Ns. We easily see that this is a contradiction.—«(2— b)

If {ny,n>,n;},6 < j < d, are collinear, themynjnyn is a great cir-
cle, which determines a hemisphere containing a pging of antipo-
dal points, a contradiction. (2-i-c) Suppos®,ny,n;},6 < j < d, are
collinear. Then the consideration of the weight:at, ..., ng, Ny of
the weighted link ofn, show thatj = d. Look then at the weighs at
Ng, N7, ...,Ng_1 of the weighted link ofn,. There would be-1 some-
where, a contradiction.

(2 — i) Suppose€ny, ng, N5} are collinear, hence on a great circle and
{n4, N1, N5} are collinear. Look at the weighted link of andny,. As in

(2 —1), we arrive at a contradiction.

Lemma 9.12 (Nagaya) For d > 8, the triangulation[d — 7] has no 89
weakly minimal admissible N-weighting.
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Proof. Suppose the contrary. Againi, nj, no} can be collinear for at
mostone & i <d- 1.

ni at oo
[d—7]

(1) Supposdng, nj,ny}, 6 < j < d-1, are collinear, hence on a great
circle. Hence{ny, ny, nj}, {ne, N7, ..., N} and{nj,nj,1,...,Ng} are
collinear. Looking at the weighted link aof,, we again see that
j =d-=1,{ng,...,ng_1} are collinear andhynyng_1n; is a great
circle. Look then at the weighted link of. Obviously,{ns, n4, ng}
are not collinear, hencg, ns, n3} are collinear andng, ns, N} are
not. At 5-valentns, {n, ns, N3} are necessarily collinear, but we have
a contradiction, since them, nz are antipodal and;nong_1n; is a
great circle.

(2) We conclude thafn,, n;, np} are not collinear forall &< i <d -1,
hencelng, n7, - - - , ng} are collinear. Look at the weighted link of.

(2 — 1) If {ns, N4, ng} are collinear, hence on a great circle, the compati-
bility of the Z-weights around 5-valent; shows that the weighted link
of n, has a positive weight ais.
(2—ii) If {ns, 4, Ng} are not collinear, thefny, n4, N3} are collinear. At 5-
valentns, we see thafn, ns, n3} are collinear, hencey, n3 are antipodal
and{ny, ng, N3} are collinear, Again by the compatibility of teweights
aroundns, we see that the weighted link of has a positive weight at
Ns.

In both cases (2 i) and (2- ii), look at the weighted link ofy,.
Since it has a positive weight ag, {ns, ny, N} are collinear for some
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7 < k < d, hence has weightl at somen;, 6 < i < d, i # k, a
contradiction. O

Lemma 9.13. A weakly minimal admissible N-weighting for the trian-
gulation [7-5] is necessarily of the form in Theoréml9.6 upstmmor-
phism.

Proof. By symmetry, we may assume thfts, ni, ng} are collinear.
Look at the weighted link ofi,.

ng ns

ng Ne

ng at 0o)
[7— 5]

Since the weights a; andn; cannot be-1, {n1, ny, N7} are necessar-
ily collinear. Since its weight atz is then—1, {ny, n3, N} are collinear.
Thus{nz, n4, N7} and{ny, ns, N4} are collinear for the same reason. Look-
ing then at the weighted link afs , we see thatns, ng, N7} are collinear.
From what we have seen so far, an admissible do#bleeighting is
uniquely determined as in the picture, by Cor.9.2.

\0 7
Ny 17
0 1
1
~1 N 1/O 1
e
-1 1 =1 0
0" N
—-1—0
0 -1
1 N
,1/ \72 —2/ 0
7 N N
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n=ns,n =n,n" = n3form aZ-basis ofN. The doubleZ
weighting successively determines the otNeweights as followsn, =
-nn’,ng=-n-n",ng=-n"-n"andn; = -n-n". O

Lemma 9.14. A weakly minimal admissible N-weighting on the trian-
gulation [8-5] is either B — 5] or [ 8 — 5] of Theoren{ 9 up to iso-
morphism.

Proof. Neither{ns, ng, Ny} nor {nq, Ng, Ny} are collinear, since otherwise
theZ weights arounghs would be-1.

ny at 0o)
(8 —5]

In particular,ny, n, are not antipodal. Thuy, nj, Ny} are collinear
for at most one X< i < 7. If there were no such i, themnsngnzngna
would necessarily be a great circle and the weighted linksofvould
have weight-1 atng, a contradiction. By symmetry, it thusfiiges to
consider the following two cases:

1. {n, ns, Ny} are collinear, hencéns, ng, N7, Ng} are collinear. Look
at the weighted link ofhy. We easily see thafns, ns, ns} are
collinear. Look then at the weighted link 8. If {ns, np, N7} were
collinear, themsnynzn;ns would be a great circle, thysy, ny, Ny}
would be collinear, a contradiction. Thus we conclude thatn,,
ng} are collinear. In particulang, ng are antipodal, hencigg, Ny,
ng} are also collinear. Then the weighted linkmafhas necessar-
ily weights —2, -1, —2 at ng, n4, ns, respectively. Looking at the
Z weights aroundy determined so far, we see that the weighted
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link of ng has weight 0 ahs, hence{ny, ng, N3} are collinear. The
collinearity for each vertex thus determined gives rise tmigue
admissible doubl& weighting with one integral parameter, which
determines the admissibM-weighting [8— 5] in Theorem 9.5,
ifweletn=n,,n =ns,n” =ng.

2. {n1, ne, N2}, hence{ny, ns, Ng} and{ne, N7, ng} are collinear. Look
at the weighted link of,. We see thatns, ny, n7} are collinear.
Look then at the weighted link af; andng. By symmetry and
because of the fact that their weightsatcannot be-1, we have
four possibilities:

O

(i) {ny, 4, ng} are collinear, hence are on a great circle. Look at the
weighted link ofn;. Its weights atns, ng, N7 are necessarily-2,
-1, -2. By the compatibility of th& weights around the 4-valent
vertexns, we have a contradiction.

(i) {ny, ng, N3} and{ny, ng, N3} are collinear, hencky, Nz are antipodal.
We see then thdhg, n1, ng} are collinear. Then the weighted linlo3
of n; leads us to a contradiction.

(i) {nz, N4, ns} and{ngz, ng, N7} are collinear, hences, ng are antipodal.
Again we see thdng, ny, ng} are collinear, a contradiction.

(iv) {nz, g, ns} and{nz, ng, Ny} are collinear. Then by the compatibil-
ity of the Zweights around the verticeg andng, we see that the
weighted link ofny has weight-3, -1, -2, -1, 1, 0 atng, n4, Ns, N,
Nz, Ng, respectively, hence in particuldns, ny, n7} are collinear.
An admissible doubleZ -weighting is uniquely determined by
these considerations and gives rise to the admissible ghting
[8 — 5”] of Thm[2.86.

Lemma 9.15. A weakly minimal N-weighting on the triangulation [8-8]
is of the form in Theoreir 9.6 up to isomorphism.
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Proof. By symmetry, we may assume thfis, Ny, ns} are collinear.
Looking at the weighted link of, and ofnz, we see thatny, ny, ng}
and{ny, n3, n7} are collinear.

g ns3

ne ny

ny

n2

ns

ng at 00)
8- 8]

Look then at the weighted link af; and ofns. {ny, N4, ng} are not
collinear, since otherwise they would be on a great ciraiace a con-
tradiction for the weighted link of, would result. Similarly, we see
that{ns, ns, ng} are not collinear. By symmetry, we thus have three pos-
sibilities:

1. {ng, ng, Ng} and{ny, N5, N7} are collinear. Theln,, ng} and{ny, n7}
are pairwise antipodal, a contradiction.

2. {n3, g, ng} and {ny, ns, N7} are collinear. Let the weighted link
of n, have weightb at ng. The collinearity we have so far then
determines all th&-weights around, in terms ofb. But the
compatibility for them leads tb = -1, a contradiction.

3. {n3, N4, ng} and{ny, ns, N7} are collinear. Let the weighted link of
n, have weighto at ng. Then the compatibility of th& weights
aroundn, shows thatns, ng, ng} are collinear. Hence the weighted
link of ng necessarily has weights2, -1 at ny, n3, ng, respec-
tively. In this way, an admissible doubte-weighting is uniquely
determined and gives rise to the admissible N-weighting][8f
Thm[E.5.
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Lemma 9.16. The triangulation [8-9] has no weakly minimal admissi-
ble N-weighting.

Proof. Suppose the contrary. Look at the weighted linkhgf By sym-
metry, it is enough to consider three cases.

2
ng ny
ns
ns Ny
U
ny at 0o)
(8 —9]

1. {np, ny, N3} are collinear, hence on a great circle. Looking at the
weighted link ofny, n3 and ng, we immediately get a contradic-
tion.

2. {nz, ny, ng} are collinear. In this case, the weighted linkmafhas
weights—1 atny andng, a contradiction.

3. {ne, Ny, N7} are collinear. The same argument applies to the other
6 valent vertices,, n3 andns. But for the weighted link ofy,
{ns, Ny, ng} cannot be collinear, since otherwise we would easily
conclude thatng, ny, N4} are also collinear hence on a great circle,
a contradiction by (1) applied tos instead ofn;. Taking into
account the similar conclusion fog, we need, by symmetry, to
consider the following three cases:

O

() {ns, Ny, N7} and{ns, n3, N} are collinear. In this case, the consider-
ation of the weighted link o, andnz leads us to a contraction for
the weighted link of
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(i) {ns, ny, n7} and{ng, N3, Ng} are collinear.
(i) {n7, Ny, ng} and{ng, N3, ng} are collinear.

In casesi{) and {ii), the Z- weights arounchg, n7, ng are necessarily
0,0, —2 a contradiction for the weighted link of.

Lemma 9.17. A weakly minimal admissible N-weighting for the trian-
gulation [8-10] is necessarily of the form in Theor€ml 9.6 apsomor-
phism.

Proof. Note first that the triangulation can be written in a more sygtim
ric form as on the right hand side.

ny n
ny 8
nrz
2
ny
g Uz
p— N3
ns ng
nq Uz
ns at oo
n2
[8 — 10]
ns at oo

Look at the weighted link ofi;. Then{ny,n, ng}. are collinear.
Look then at the weighted link af,. Then{nz, ny, N4} are not collinear,
hence{ns, Ny, ng} are collinear. Indeed, if otherwisés, ny, ns} would
be a great circle. Then looking at the weighted linkngfand ng, we
would get a contradiction for the weighted link iof.

If {ns, N3, N} Or {Ns, N4, Ng} were collinear, thems, ng would be an-
tipodal, and we would get a contradiction for the weighted bf n;.

If {ny, N3, N4} Or {Ny, N4, N3} were collinear, then they would be on a
great circle, a contradiction again.

Thus for the weighted link ofiz, either{ny, n3, n7} or {ny, n3, ng} are
collinear. We have a similar conclusion for the weighted lfin,. By
symmetry, we need to consider the following three cases:
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1. {n1, n3, ng} and{ny, N4, Ng} are collinear. We get a contradictiors7
for the weighted link of;.

2. {ny, N3, N7} and{ny, ng, Ng} are collinear. In this case, we have a
contradiction for thez-weights arounah;, ng, andn,.

3. {n1, N3, N} and{ny, N4, Ng} are collinear. In this case, we can de-
termine all the doubl&-weights uniquely from the collinearity
conditions so far. We get the unique admissible N-weightiag
scribed in Theoreri 9.6.

O

Lemma 9.18. A weakly minimal admissible N-weighting for the trian-
gulation [8-11] is of the form in TheoreM 9.6 up to isomorphis

Proof. Look at the weighted link of; andn,. By symmetry, we need
to consider the following three cases:

nq Ty
nr
ng
e ng ns _ ni
Ne ns
ng ny
ns n2
ng at oo ns at oo
[8 — 11]

1. {ng, Nz, o} and{ny, np, N3} are collinear, henc@y, ny, N3, N4} are
on a great circle. We easily get a contradiction for the wigidh
link of ns.
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2. {ng, N1, np} and {ns, ny, ng} are collinear. In this casey, ns, Ny
andny, ng, ng are necessarily collinear. The consideration of the
weighted link ofnz shows that{ns, n3, ng} are collinear, hence
Ns, Ng are antipodal.

3. {ns, Ny, Ng} and{ns, Ny, ng} are collinear, hences, ng are again an-
tipodal.

O

Thus in cases (2) and (3)s andng are antipodal, henc@s, nz, ng}
and {ns, n4, ng} are collinear. Look at the weighted link of. Since
{n3, ns, N4} cannot be on a great circle, and since the situation is sym-
metric with respect taz andng, we may assume thgh,, ns, ny} are
collinear. Looking at the weighted link @f, and theZ-weights around
n;, ng andn;, we conclude thafn,, ng, ng} are collinear. From what we
have seen so far, we get a unique admissible ddzibdeighting with
two integral parameters, which gives rise to the admissibieeighting
described in Theorefn9.6.

Lemma 9.19(Nagaya) A weakly minimal admissible N-weighting on
the triangulation [8-12] is of the form in Theoref .6 up torisor-
phism.

Proof. The triangulation can again be written in a more symmetnimfo
as on the right hand side.

U

n3 ns

ng

upi
— ny

T8

ng at 0o ns at 0o

812
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99 By symmetry, we may assume tHag, n1, n7} are collinear. Look at
the weighted link oh, and ofnz. We need to consider three cases:

1. If {n3, np, N7} are collinear, thens, n;y are antipodal, hendas, ns,
n;} and{ng, ng, n7} are collinear. Looking at the weighted link of
ns, we see thafns, N, Ng} are collinear, a contradiction for the
weighted link ofng.

2. If {ny, np, N5} and{ny, n3, ns} are collinear, themy, ns are antipo-
dal, hence{ny, ne, N5}, {nN1, N7, N5} and {nz, ns, Ny} are collinear.
Looking at the weighted link ofs, we see thatns, n4, ng} are
collinear, again a contradiction for the weighted linkngf

3. Let{ny, Ny, N5} and {ny, n3, ng} be collinear. If{ng, N4, N7} were
collinear hence on a great circle, the weighted linknpfwould
have weight-2 atn,. Moreover, the weighted link afs would
have weight 1 anhs, hence{ns, ns, n4} would be collinear and
the weight atn, would be-1. Since the weighted link ofi;
has weight 0 at,, we would violate the compatibility for the
Z-weights aroungh;.

O

Thus we conclude thdhs, ny, n7} , {N1, N2, N5}, {N2, N3, Ng} and{ns,
N4, Ng} are collinear. We then have three possibilities for the Wweid
link of ns. If {n3, ns, N7} were collinear, thens, ny would be antipodal, a
contradiction, since we are in case (1){n$, ns, ng} were collinear, then
{n1, Ny, N5, Ng} would be on a great circle, henog ng would be antipo- 100
dal. By symmetry, we are in case (1), a contradiction. Timgsns, ns}
are collinear.

We then four possibilities for the weighted link 0. If {nz, ng, N4}
were collinear, thems, n4 would be antipodal, henda,, n7, ns} would
be collinear, a contradiction for the weighted linkrgf If {ns, ng, ng}
were collinear, thems, ng would be antipodal, hendas, n7, ng} would
be collinear. Looking at the weighted link o§ andn;, we would get a
contradiction for thez- weights arounah;. If {n4, ng, N7} were collinear
hence on a great circlény, n7, ng} would be collinear. Looking at the
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weighted link ofng andnz, we would again get a contradiction for the
Z-weights aroungh;.
Thus{ny, ng, ng} are collinear. These collinearity conditions deter-
mine a unique admissible doubfeweighting, which gives rise to the
N-weighting [8-12] in Theorerh 9.6.

Lemma 9.20. A weakly minimal admissible N-weighting on the trian-
gulation [8-13] is either [8-13] or B — 13”] of TheorenT @6 up to iso-

morphism.
1
ns
Ng ns3
n4
ng at oo

nr

Ng Ty

ns

ns at oo

8 — 13]

n7

101 Proof. Look at the weighted link ofi; andn,. By symmetry, it stfices

to consider three cases:

1. {np,n1,ng} and{ny, ny, n7} are collinear.

Look at the weighted

link of ns. By symmetry, we may assume tHap, ns, ng}, hence
{n4, N3, N5} are collinear. Thugy, ng are antipodal, anthy, ng, Ng}
Looking at the weighted link of, we see that
{n3, 4, Ng} are collinear. We have two possibilities for the weigh-
ted link of ng, but by symmetry with respect tos, ns}, we may
assume thatngs, ng, Ng} are collinear. Thusiz, ng are antipodal,
hence{nz, n7, ng} are collinear. These collinearity conditions de-
termine a unigue admissible doul#e-weighting with two inte-
gral parameter which gives rise to the N-weighting-{83] of

Theoren 9.

are collinear.
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2. {ns,ny, ng} and {ns, Ny, ng} are collinear. In this cases, ng are
antipodal, hencéns, ng, ng} and{ns, n;, ng} are collinear. Look-
ing at the weighted link ofg andn, we see thatng, n3, n7} and
{ne, N4, N7} are collinear, henceg, Ny are antipodal anthg, ns, N7}
and{ng, ng, n7} are collinear. These collinearity conditions deter-
mine a unique admissible doubifeweighting with four integral
parameters, which gives rise to tNeweighting [8— 13"] of The-

orem3.6.

It remains to show that the following cannot happen:

3. {ns, Ny, ng} and{ny, Ny, N7} are collinear.

O

By symmetry with respect ttns, ns} and our argument (1), (2) applied.o2
tonz, ng instead ohy, Ny, we may assume thétg, n3, N7} and{ng, ns, Ng}

are collinear. Looking at the weighted link ®f andng, we see then that
{ny, N5, Nz} and{ny, ng, N4} are collinear. Let a (resp) be theZ-weight

of the edgengns atng (resp.ning atny). Then thez-weights around 4-
valent verticesy, ny, n3, Ny are determined in terms efandb. We see
thata,b # 0,-1. Looking at the compatibility of th&-weights around

n; andng, we see thafns, n7, ns} and{ny, ng, ng} are collinear. Then we
havea(b+1) = b(a+1) = —1, acontradiction, sinca # —1 andb # —1.

Lemma 9.21. A weakly minimal admissible N-weighting on the trian-
gulation [8-14] is either B — 14] or [ 8 — 14”] of TheorenT 36 up to
isomorphism.

Proof. The triangulation can be written in a more symmetric fromiaga

ny =

ng n7 ne

2

ny at oo ng at oo
8 — 14]
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82 1. Torus embeddings

First look at the 5-valenhs, ng, ns aroundn; (1). If {nz, g, ns}
are collinear, then they are on a great circle. Look at theykted link
of ng. Because of the 3-valent verte, {ns, ng, Ng} and{ns, ng, N7} are
not collinear{ny, ng, ng} are not collinear, since otherwise they would
be on a great circle disjoint from the other great cinlgng, ns, n3.
Thus by symmetry we may assume tfiat, ng, ns} are collinear. Look
at the weighted link ofhy. If {ny, Nz, N5} were collinear, themy, ng
would be antipodal, a contradiction, sinog is not on the great cir-
cle ngngnsnz. For the same reason as above, we thus conclude that
{no, n7, Nz} and {ny, ng, N4} are collinear. These collinearity condition
determine a unique admissible doutdewneighting with two integral
parameters, which gives rise to theweighting [8— 14’] of Theorem
B.4.

(2) By (1) and the symmetry around, we need to consider two
cases:

() {n1, 3, ng}, {n1, N4, Nng} and{ny, ns, N} are collinear. Leb be the
Z-weight aroundh;. Then the weighted link ofi; is completely deter-
mined in terms ob.

By the compatibility of theZ-weights aroundhs, the weighted link
of ng has weight 0 abz, hence{ng, ng, N7} are collinear, a contradiction.

(i) {ny, n3, n7}, {N1, N4, Ng} and{ny, ns, ng} are collinear. Again leb
be theZ-weighted aroundh;. The collinearity condition so far deter-
mine some the the doubl& — weights By our argument (1) applied
to n, instead ofny, we conclude easily thdhy, ng, na}, {n,, ng, Ns} and
{ny, n7, Nz} are collinear. We thus get a unique admissible dodble
weighting with an integral parameter, which gives to tit@veighting
[8 — 14'] of Theoren{9.b. i

We thus conclude the proof of Theor&€ml9.6.

Remark . By repeated application of Corollary 9.2 we determined all
admissibleN-weightings on thécosahedraltriangulation ofS?. Ap-
parently, there are 32filerent admissiblé&-weightings, some of which
integral parameters, as in the table below, although sortteeai might

be redundant because of the symmetric nature of the triatigul
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Some of them are projective and some others are not. The weak
version of our conjecture at the beginning of this sectiod$éor all of
them.

Since all the vertices are 5-valent, these admisdibweightings
are automatically weakly minimal. In the table below{letn’'n’’} be a
Z-basis ofN anda, b, c, de, Z
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Ny
n
n3
Ny
Ns
Ne
n7
Ng
No
Mo
M1

N12

(1)

-n+bn +cn’
-n +an”’
_n//

n/ — n//

n/

n//

n-n

n

n-n+n”
n-2n +an”
n — n/ — n//
n-n

@)

-n' + bn’
-n+an +cn’
n//

n

n —_ n/l

_n//

n+n
n+n-n"

n/ - nl/

-n+ @+ 1)n" +cn’
n/n//

n

n+n
nl

-n' +bn +cn’

-n+ (b+ 1)n'(c+ 1)n”

n +n”’

2n’ +n”

(4)

-n+(a+ 1) + b’
n

-n”

-n+an +cn’

—-n+an + (c+ 1)n”

SOT

IS
(5)
n-an —n”
n
n/
n/ — n//
_nll
-n
-n+n +br’
-n
cn—-n +n”’
n//

-n+n +(b+1)n”

-n+n”

sbuippaquwa snioj ‘T



m
7]
N3
Ny
Ns
Ne
Ny
Ng

Ng

Mo

M1

N2

L0T

(6)

—-n+ b +crn’
n’

v
-n+(b-1)n" + (a+c)n”
-n +(a-1)n”
_n”

n +an”’
n-2n"

n+n —-n’

n

-+ (a+1)n”

n-— n/l

@)

-n' +bn +cn’
n//
_nll

-n+bn +(c- 1)n”

n—n"
-

-n”
n-n’
n

n-n +(a+1n”
-n-n"

n-n+an”

®)

—-n+bn+an”’
n-n’

—-n+ b’ + (c+ 1)n”
-+ (a+1)n”

- +n’

-n”

9)

nl —_ nl/

-n+ b + (c- 1)n”
nl

n

n — n//

_nll

n-n +an’

-n +an”’
n+(b-1n +(@+cn”
-n+bn +cn”’

n//

-n+ (a+ 1)n”

€ uoisuawip ui sbuippaquia snioj Jeinbuis-uou a39|dwo) 6
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m
7]
N3
Ny
Ns
Ne
Ny
Ng
Ng
Mo
Ny

N2

(10)

n-n +an’
-n +(a+1)n”
n

n —_ nl/

_n//

-n +an”

n/ — n//
-n+bn +cn’
—-n+bn + (c+1)n”
n//

n/

-n+(b+ 1) +cn”’

(11

an—-n' —(b+ 1)n”
—-n-bn’

n

n —_ n/l

_n//

-n

n/ — n//

-n+n +bn”
-n+n'(b+1)n”
n//

n/

-n+2n+ bn’

n+n’
n//
-n+n +bn’

-n+2n + bn’

(13)

—-n+an + bn”
-n+ (b+ 1)n”
n

n-n’

_n”

_n’

n

n-n'(b+ 1)n”
n—-n —bn’
n

n+n

n+n”
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_n + n/ — n//
n/
-n+bn'n”

-n+n

sbuippaquwa snioj ‘T
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ny
n3
Ny
Ns
Ns
n7
Ng

No

Mo

N1

N2

60T

(15)

n-n +an’
n

_n//

_n/ —_ nl/
_n’

n//

_n —_ n/ nl/
-n
n+n+n’
n/

_n —_ n/l

-n+n +bn+n +n)

(16)

n+nan”’

-n=-n"
-n+bn —n”
-n

-n-n

-n+(b-1)n" —n”

n —_ nl —_ n/l
-n
-n+n” +b(n +n”)

_n/ _ n/l

(19)

n

n-n - (a-1n”

n//

n+n -n’
-n -2n”
_n//

n-n"

-n+bn +(@-1)n”

-n

-n+ (a+ 1)n”

n

-n+ b +an”

€ uoisuawip ui sbuippaquia snioj Jeinbuis-uou a39|dwo) 6
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Ny
ny
N3
Ny
Ns
Ne
n7
Ng
Ng
Mo
M1

N12

2n+n +n”’
n+n

n/ _ n//

(21)

n//

-n—-n'+(a+1)n”

_n”

n+n —-n"’
20 —n”
-n+an”’
-n+ (a-1)n”

n-n"

(22)

-n—-n+arn’

-n+n +an”’
—-n+an”’

nl —_ nl/
n+2n -n”

2n-n"

(23)

n

-n-n'+(a+1)n”

_n/I

n+n

n+n’

n//

n/

-n+n +an”’
-n+an”’

n/ —_ 2nll
n+2n -n’

n-n"

(24)

n+n +an’
n+n”

_n/I

n+2n +an”

n+n’

-n+n —n’

(25)

-n+an + (b+ 1)n”

-n+an +bn’ +c(n’ —n”)

n/ —_ nl/
n/

n/l

- +n
n

n-n+(d+1)n”
-

_n/I

n — n//

n-n+dn’
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m
7]
n3
Ny
Ns
Ne
Ny
Ng
No
Mo
M

N2

(26)

-n+an + bn”
-n +cn’
-n+an + (b+ 1)n”

n/

n/ — n//

_n/I

n

n —- n//

n-n +dn”’
-n" +(c+ 1)n”
n/l

n—-n+(d+1)n”

(27
-n+2n”
-n-n+n”
_n/

n —_ nl nl/
n//

nl

2n-n

n

2n/ n/l

-n

_nll

-n+n -n”

n-2n"

-n +2n”

-n" +n”

n+n”

-n+n”

(30)

n-n +2n”
2n+n”
-n+n’

r{/

n+2n”
n+n”’

n +2n”

n+n’

—-n-n"

—-n-— n/ _ n//

(CHY)

3nl —_ nl/
-n+n +2n”

Zn/ _ n//

-n-n+n”’
n+n”’

n/l

-n+2n”

n/ - n/l

-n-n +2n”

n-n -2n"
_n/ —_ nl/
n+n -n”
n/

_n —_ n/ —_ nl/
n+n”

2n+n —-n”
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Chapter 2

Applications

Mumford et al. [63, Chap. 2] generalized the notion of tourdedding 111
to that oftoroidal embeddings Using this they proved, among other
things, the important semi-stable reduction theorem isadtaristic 0.
Here we are concerned with more elementary applicationsus$ tem-
bedding.

In this chapter we restrict ourselves to tours embedding the
field C of complex numbers, although some of the result have irtieges
analogues over fields with non-archimedean rank one vahuati

10 Manifolds with corners associated to torus em-
beddings

Let U(1) = {zeC; | z |= 1} be thel-dimensional unitary group, i.e.

I-dimensional real torus. Then thedimensional algebraic torus =

(C" has ther-dimensional real toru€T = (U(1))" as the maximal
compact subgroup such that

T/CT = (Rsg) =R’

whereR., is the multiplicative group of positive real numbers.
Here is a coordinates-free description, which will be ukkefiutorus
embeddings. Recall th&j is the set of non-negative real numbers. We

91



92 2. Applications

have the valuation

-
ord : C || Ro 2 R U {co}

112 which induces a homomorphism

-
ord : C* || Rs, % R.

LetN = Z' be a fre€Z-module of rank' and letM be its dual. Then as
in§.[
Tn = N®z C* = Homg (M, C¥)

is anr-dimensional algebraic torus over
Definition. We denote byCTy the compact (real) torus
CTn = N &z U(1) = Homg (M, U(1)).
The valuation ord applied to the second factor thus inducesjac-

tion

ord : Ty = Homge(M, Cx) ——— Homy(M, Rs,)

g Homg (M, R) = Ng

whose kernel i€ Ty, thus we have

ord :TN/CTN - NR.

Let (N, A) be an r.p.p.decomposition. Th@Ty acts on the corre-
sponding tours embeddind@y emb@) endowed with theclassical
(Hausdoyf) topologyinstead of the Zariski topology. We then adopt the
following definition for the notion introduced by Mumford at. [6],
Chap. 18. 1].

Definition. We denote by
ord : Tyemb@) — Mc(N, A) = Ty emb@)/CTy

the quotient space with respect to the classical topologlycati it the
manifold with cornersassociated tdy emb@)
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It is indeed a manifold with corners in the usual sense (cfreBo
Serre [4]) if Ty emb(n) is non-singular. By Theorefn4.Zy emb@) is
the union of #ine open sets

U (o) = Homynit semigc™ N M, C)
with o running through, henceMc(N, A) is the union of its open sets
ord : U(c)/CTn % Homy sg(d- N M, Ro)
~2% Homysg(d N M, R U {oo)).
The second description shows thafo)/CTy is isomorphic to Rg)® X

(R>,) = for somesif ¢ is non-singular.

Proposition 10.1. For an r.p.p.decompositiorfN, A) the associated
manifold with corners M@, o) has an action of N = R ®z N and
is an equivariant partial compactification ofgNwith the orbit decom-
position.

Mc(N, ) = | [ orb(@)/CTy

T€eA

such that

orb(c)/CTyn OTrd> Nr /(R — subspace generated by).
In particular

dime orb(e) = dimg orb(e)/CTn = rankN — dimo-.

Proof. The first part is obvious, sincMc(N, A) has an action of
Tn/CTn = Nr. Since orbg) = Homg (o N M, C*) by Theorenl 412,
we see that

orb()/CTn OTrb> Homg (0 N M, R) = Nr/(R— subspacgerf by o).

Amaph:(, A) — (N, A") of r.p.p. decompositions obviously givesi14
rise to an equivariant continuous map

Mc(h) : Mc(N, A) - Mc(N’, A")
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Example (Mumford) Consider the projective linB1(C), which is the
2-sphere in the classical topology. It corresponds to fhp.rdecompo-
sition (N, 2) = (Z - {R,, {0}, —R.}).

CTn = U(1), and the orbits under it are the circles of the same
latitude. The quotienMc(N, A) is the closed interval, a compactification
of the open interval isomorphic fdz = R.

orb(R,)
- S
N — |
orb(R,)
(N, D) Py(C)— 2P, Mc(N, A)

(N,A)  Pi(C) 2% Mc(N, 2)

Example.For a 2-dimensionalN, A), Mc(N, A) looks like this

g Ron Nr/Rn
\\

(N, 4) Me(N, D)

115 We encounter many other examples late$§n[I1,[TB[TU[T5. Since
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the decomposition ofMc(N, A) into Ng-orbits faithfully reflects the in-
cidence among th&y-orbits of Ty emb (1) the pictures we can draw of
Mc(N, A) in dimensions 2 and 3 will give us a good geometric insight.

Remark. Over a fieldk with a non-archimedean rank one valuation
ord :k — R U {0},
we have an obvious analogue Mfc(N, A).

Although the following description of the fundamental goolias
nothing to do with the manifolds with corners, we state itheince it
will be very convenient later.

Proposition 10.2(Mumford). Let(N, A) be an r.p.p.decomposition and
let Ty emb@) be the corresponding torus embedding oZeendowed
with the classical topology. Then we have the following céred de-
scription of the fundamental group.

m1(Tnemt{a)) = N/(the subgroup géh_J(e-n N)).

[0SV

Proof. For simplicity, letT = Ty and X = Tyemb@). We have a
well-known isomorphism

N — Homg(U(1), T) = m1(T)

which sends € N to the loopU(1) > u — u<* ™ € Homg (M, C*) = T,
where(, ) : MxN — Zis the dual pairing as before. By TheorEml 4X2, 116
is covered byJ (o) = Homy sg(cNM, C) T with o running through.

By generalized van Kampen’s theorem in Olumi [48], it is thosuegh

to show that the canonical homomorphism

N = 71(T) — 71 (U(0))

is surjective with the subgroufN’ generated by N N as the kernel.
Note thatN’ is a direct summand ofl. O
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SinceU (o) is non-canonically isomorphic to the product of the al-
gebraic torus/N’) ® C* and the lower dimensiondly -embedding
corresponding ter considered as a cone M, it is obviously enough
to show thatU (o) is simply connected ié- generatedNg. First of all,

N = m1(T) is mapped surjectively onte; (U (c)), sinceU (o) — T is of
real codimensiore 2 in U(c), by the so-called general position argu-
ment. On the other hand, fore o N N and 0< ¢ < 1, the map

U(L) > u (su)“*™ € Homysg(6 N M,C) = U

establishes a homotopy which kiltsin 71(U(c)) ase goes to 0, since
<m,n>> 0forme dn M. Sincec N N generatedN as a group, we
are done.

For illustrative examples, we refer the readeg $o[13,[13.

11 Complex tori

The following “multiplicative” formulation of complex térand polar-
izations was given by Tate in his lecture in July 1967. It weecdLdfec-
tively by Mumford et al. [[61]. In this way, we can also formtdeheir
analogues in the non-archimedean case, or even in theadeatase.
(cf. Morikawa [36], McCabel133], Mumford [38] and Gerritz¢nl].)
Given ag-dimensional complex toruX, there exists a symmetric
g x g matrix r = (rjk) with the positive definite imaginary part im)(
such that
X=CY(Z° +Zt1+ -+ + Z1g)

wherery, ..., 7q are the row vectors of. We have a surjective homo-
morphism
CY — (C")9

sending £, ..., Zg) to (exp(Zizy), . . ., exp(2rizy)).
LetI" be the image of the lattice, which is a free abelian subgrdup o
(C"9 of rankg such that

X = (C"9/T.
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This description is veryféicient, since it gets rid of the redundarizy.
It also fits in nicely with torus embeddings and will give udansight
into the construction of degenerating families. Here isaberdinate-
freeapproach:

Let N = Z9 be a free abelian group of ramkwith the dualM. As 118
before, lefT = Ty = Homg (M, C*) be the algebraic torus.

Definition. A period for T = Homgy(M, C*) is @ homomorphism
q:T'->T, vy

from a freeZ-moduler” of rankg, which is injective with compact cok-
ernelX = T/q', a complex torus.

Composed with the valuation ord(?) —log|? : C* — R, g gives
rise to a homomorphism

ordoq: I' —» Ng = Mc(N, {0}).

The injectivity and the compactness of the cokernej afe equiva-
lent to those of ordq.

Fory e T'andm e M, let Q(y,m) = g”(m) € C*. Thus we have a
non-degenerate biadditive pairing

Q:T'xM—C".
Definition. For a periody : I' — T = Homg (M, C*), let
4: M — T = Homy (T, C")

be the period given bg™y) = g’(m). We callX = T/gM the dual
complex torus

Recall thatm € M gives rise to the charact@r> t — e(m)(t) € C*
(cf. §. ). Consider théormal Laurent series

o) = " ame(m)(t)
meM

fort e T anday € C. The following is well-known:
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Proposition 11.1. The ring HA.(T) of holomorphic functions consistsi19
of the Laurent series which are convergent everywhere onhE.uhits
in Ho1(T) are of the form

agm) for aeC* and me M.

It is also well-known that th@ositive divisorson the complex torus
X =T/d" are in one to one correspondence withk@variant positive
divisors onT, which are of the form di) for 0 # 6 € Hol(T). From
what we saw above, tHeinvariance means that there exist maps

c:I'-C* and T—-> M

such that
o(q't)c(y)t*™ = g(t) for all y € T. *)

Suché(t) is called atheta function We see immediately the following:

Lemma 11.2. The pair(a, c) satisfies the following conditions and is
called a theta type for the period g.

() @:T - Misa Q-symmetric homomorphism, i.e.
aly +7)=a(y)-ay) and Qy'.a(y)) = Qly,a(y)).
(i) c: I — C*is a quadratic character with respect to(®a(?)), i.e.
c(y +7)/cy)ely’) = Qly, a(y)).
Given theta functiong(t) and ¢’(t) with the theta typesa(, c) and
120 (o, '), respectively, we see thaft)¢’ (1) is of the theta typed+a’, cC).
Moreover, divf) and div ¢’) give rise to linearly equivalent divisors on
X if and only if there existsn € M such that
o =a and ¢ =c-Q(?2m).

Thus we conclude:
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Proposition 11.3. We have an isomorphism
Pic(X) = {theta typega, €)}/{(0, Q(?, m));m e M}
and an exact sequence
0 — X — Pic (X) —» Homg_symn(I’, M) — O.
Given a theta typeq(, ¢), let I'(¢, €) denote the corresponding line
bundle onX.

Proposition 11.4. Given a theta typéa, ) for g, we have a homomor-
phism
A(L(a,C)) : X - X

induced byoa : T = Homg (M, C*) — T = Homg (T, C*).

(1) @ : T — Mis injective if and only if ordeQ(?,a(?)) :T'x T —» R

is non-degenerate. In this cagg, €)) is an isogeny whose degree is
equal to the order degj of coker r : ' —» M], and L(«, c) is called
non-degenerate

(2) If, moreover, orcbQ(?,a(?)) : T x I — R is positive definite, then
L(a’,¢) is an ample line bundle, andis called apolarization In this
case, the theta functions of the theta typgec] form aC-vector space of
dimension deg{). The polarization iprincipal if and only if 121

a:TS>M, ie AL(e0): XX

When we have a principal polarizatienon X, we can identifyl’
with M via «. Thus a principally polarized-dimensional complex torus
Xis determined by a symmetric biadditive map

Q:MxM-C*
with P = ordeQ : M x M — R positive definite so that
X =T/{Q(M, ?);me M}.
Let us fixM = Z9 with theZ-basis{my, ..., mg}. Let

symmetric biadditiveQ : M x M — C*}

PdSyniM x M,C") = {with ord oQ positive definite
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We then have g&ersal familyover PdS yniM x M, C*) of principally
polarizedg-dimensional complex tori, whose total space is the qubtien
of T x PASyniM x M, C*), with T = Homg(M, C*), by the action oM
defined by

(t, Q) — (Q(M 2, Q) for me M.

PdsynfM x M, C*) is an open subset of

Sym (M x M, C* = {symmetric biadditiveQ : M x M — C*}, which,
by component wise multiplication, isgég+ 1)/2-dimensional algebraic
torus overC with the character group

S?(M) = the symmetric product of1 of degree 2 and the group of
one parameter subgroups

SymM x M, Z) = {symmetric bilinear mapd x M — Z}.

As usual, leSg be the Siegel upper half plane of complex symmetric
gxgmatricesr = (k) with the positive definite imaginary palin(r) >
0. Then an element
A B
€ o

of the Siegel modular group y(Z) acts onSy via v — (At + B)(Cr +
D). The mapr — Q defined by

Q(mj, my) = exp(2ritik)

establishes an embedding
1 B ~ X *
S@,/{(o 1)68@,(2)}—> PASyniM x M, C*) c Syn{M x M, C%).

The first step in compactifying the moduli space of prindipalo-
larized complex tori in Mumford et all_[61] is to choose a n®@n{M x
M, C*)-embedding corresponding to admissibler.p.p.decomposition
(SynfM x M, Z, o) which is invariant under the canonical action of
Aut(M) = GLg(Z) with A/Aut(M) finite and fills up the convex hull
in SynfM x M, R) of the set of positive semi-definite integral forms.

The Delony-Voronoi decomposition is such a decompositind a
was used by Namikawa [46] for his Delony-Voroni compactifima of
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the moduli space, over which he could even construct a faofilyhat
he callsstable quasi-abelian varietiesHere is a brief coordinate-free
account of the part relevant to us:

LetP: M x M — R be a positive semi-definite bilinear forni?
defines a pseudo-norfix||, = P(x, X)/? on Mg. Forx € Mg let

W(x, P) = fme M;[ix —milp = min [x - n|ip}.

The convex hullD(x, P) in Mg of w(x, P) is an (unbounded iP is
not definite) polyhedron iMr and is called a&elong cell The set
Del(Mg, P) of Delony cells is theDelony decompositioand is invari-
ant under the translation action bfF.

On the other hand,

V(x,P) = {y € Ng;(n',y) + P(m', 7 + 2m) >
forall m € M and aln € w(x, P)}

is a polyhedron ifNg and is called &/oronoi cell LetP* : Mg — Ng
be the canonical linear map defined ¥y— P(X’,?). ThenV(x, P) is
the image under2P* of {X € Mg;|IX —mllp = nrpela IX' — /||, for
all m € w(x, P)}. The set Vorlg, P) of Voronoi cells is the Voronoi
decompositiorof the image oP* : Mr — Ng and is invariant under the
translation action of R*(M). This is the original definition by Voronoi
and is diferent from the usual one, for instance in Oda-Seshadri [49].

Definition . Positive semi-definite bilinear form8, P : M x M — R 124
areequivalentif
Del(Mg, P) = Del(Mg, P).

An equivalence clasg, of positive semi-definite forms is a poly-
hedral cone, ®elony-Voronoi conein SynfM x M, R). Let Del-Vor
be the set of such equivalence classes. Then we have an dudieniss
r.p.p.decomposition

(SymM x M, Z, Del-Vor),

theDelony-Voronoi decompositiomhich is Aut(M)-invariant with Del-
Vor/Aut(M) finite and which fills up the convex hull of the set of positive
semi-definite integral forms.
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On the other hand, for a Delony-Voronoi copigand a Delony cell
D of the Delony decomposition common to formsjip

O'(Z,D) =(y,P) € NRXZ;(n’f,y>+ P(m/',m +2m) >0
forallm € M and allme M n D}

is a polyhedral cone ilNg & SynfM x M,R). The set Mixed of these
conesmixed conesgives rise to an r.p.p.decomposition

(N& SymM x M,7Z), Mixed)

called themixed decomposition
The second projection induces a map of r.p.p.decomposition

p2: (N® Sym M x M, Z), Mixed) — (SynfM x M, Z), Del — vor).

125
Thus we have an equivariant morphism of torus embeddings

£ TNe sym (MxM, % emb(Mixed)— Tsym (MxM,%emt(Del -Vor)
Z B
a “family of semi-universal coverings” of Namikawa |48, 8].
For various reasons (cf. ibid. (13.8)), it is more conventercon-

sider thelevel 2y action (v > 1) of the latticeM on 8. It is induced by
the action ofM onN @ Syn{M x M, Z) by

(y,P) = (y+ P(2vm,?),P) for meM

which preserves the mixed decomposition. DnPdSym M x M, C) c
B, it coincides with the action

(t,Q) = (Q(2vm,?2%t,Q) for me M.

Let 2°° c 2 be the interior of the closure of PdSym (x M, C*).
ThenB° = p~1(2°°) is the inverse image under ord of the open set in
Mc(Ne® Sym (M x M, Z), Mixed) consisting oNg x PdSym M x M, R)
and the boundary at infinity.
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The level 2 action of M induced on the open set, hence also its
action on®°, is properly discontinuous and fixed point free. Thus we
have a family

o® : a" = B°/(level 2 action ofM) — 2°°

of “stable quasi-abelian varieties of dimensigrand of degree” of
Namikawa [46 8. 13].

We now look more specifically aine parameter degeneration$ 126
principally polarizedg-dimensional complex tori which was studied in
detail by Mumford[[38], Nakamural44], [45] and Namikawal[4617].

See also Namikawa [47] for toroidal degenerations.

Definition. We denote byJ = {1 € C;|4| < 1} the open unit disk and
U* = U — {0} the punctured disk.

It will be more convenient later to think d#* andU as open sets
in Tz, emb(Rqt, {0}}) = C for a freeZ-moduleZ¢ of rank one with the
basef with

U = ord™ (Ruof L {o0})
U* = ord™ (Roof)

whereMc(Z¢, {Rof, {0}}) = R€ 1 {oo}.

As before, we fixM = Z9 and its dualN and letT = Ty =
Homy (M, C*). Given a familyz* : Y* — U* of principally polarized
g-dimensional complex tori, we are interested in extendtrtg a nice
family 7 : Y — U which is proper and flat.

The semi-stable reduction theorem allows us to repldchy its
covering ramified at 0 and reduces the problem to the casaipbtent
monodromy (For details see Namikawa 14§, 17]). We may thus
assume that there existshamomorphicmapU > 1 +— Q, € (the
closure of PdSynil x M, C* in SymM x M, C*)) with ord® Q, positive
definite fora # 0, and a positive semi-definite SynfM x M, Z) such 127
that the restriction of oftiQp to {x € Mg; B(x, X) = 0 for all X € Mg}
is positive definite and that* is the quotient ol x U* under the action
of M defined form e M by

1:Nm(t7 /l) = (Q/l(m’ ?)/lB(m?)7 t, /1)
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Let N = N @ Z¢ and consider the action dfl on N defined for
me M by

hm(n) =nforne N
hm(6) = € + B(m, ?).

Then fr, is the composite of the translation b@(m, ?), 1) € Ty =
T x C* and the automorphism dfg as an algebraic group induced by
hm.

To make sure that there is a nice open\sdtelow, let N, 2) be an
r.p.p.decomposition invariant undey, for all m € M such that the union
of cones inA coincides with

{0} U {B"(Mg) x Rsof},

whereB* : Mg — Ny is the linear map defined bg*(x) = B(x, ?).
SuchA can be most easily described as the join of 0 with a polyhedral
decomposition

A0 (B* (Mg) + 0)

of the dfine subspacB*(Mg)+¢ by bounded polyhedral invariant under
the translation by the latticeB(m, ?);m € M}. It is a special case of
torus embeddings over a discrete valuation ring in Mumfaral.e[63,
Chap.IV,§. 3].

LetV c Tgemb@) be the inverse image under ord of the union of
Nz x R.of and the boundary at infinity dfic(N, 2). Then there exists
a unique extension of the action bf ontoV, denoted again by, for
m e M, which is properly discontinuous and fixed point free. Then

7Y =V/{fmme M} > U

is the sought-for extension of the famity : Y* — U*,
An example of suclk was obtained by Namikawa [46] and Naka-
mura [44], which is of the following form:

X = {5(D); D € Del(Mg, B)},
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i.e. of theVoronoi type where

FD) = (Wl € Ry = Ry o Re; ZT2Y) +WB(W, i + 2m) > 0}.

forallm e Mandme MNnD

For the relation of all these to the compactification of thaegal-
ized Jacobian varieties, we refer the reader to Namikawa§[48] and
Nakamural[44] in theC case and to Oda-Seshadril[49] and Ishida [26]
in the general case.

Example 11.1.(1) Elliptic curves (g= 1) In this case the versal fam-
ily is already a one-parameter family. With the canonicahgpal
polarization, an elliptic curveX over C is of the following form: Let
N=M=T =Z. Aperiod

g:Z2—->C" =T

is determined by the image= q exp(2rit) e C* with0 < 1] < 1,i.e. 129
im(t) > 0. Hence
X =X, =C*/*

whereA? = {12; a € Z}. Dividing everything out b\CT = U(1), we get
ordeq:Z — R = Ng.

As before, letJ = {AC; || < 1} andU* = U — {0}. Then we have a
versal family
Y = (CF x UY)/f2 - U*
of elliptic curvesX, = (7*)~1(1), wheref is the automorphism of* x
U* defined byf (t, 1) = (t, 2). This can be extended to a family

n:¥Y—->U

whose fiber overl = 0 is the rational curve with a node obtained by
identifying 0 andeo of P;. Indeed, letN = N @ Z¢ with the Z-basis
{n,¢}. C* x U* is the inverse image under ord of the upper half plane
R x Rsof of Mc(N, {0}) = Ng. Let X = Tgzemi{2), whereZ consists of
the faces of

0y = Ro(n+ vl) + Ro(N+ (v + 1))
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with v running throughz. Let h be the automorphism df defined by
h(n) = nandh(¢) = ¢ + n. Obviouslyh preserves:, hence defines an130
automorphismf of X. Mc(N, 2) looks like the picture below ankllc(h)

(i) acts as the translation lwnfor points ofNg + w¢ and (i) transforms

the boundary componentgb(c,)/CTg and orbRe(n + v¢))/CTy at
infinity to the next ones correspondingita 1.

Since the group generated bc(h) thus acts properly discontinu-
ously without fixed point on the “upper half”, the group geated by
f also acts properly discontinuously without fixed point oe thpen
setV c X which is the inverse image under ord of the upper half of
Mc(N, 2). Then the horizontal projection induces

n:Y=V/ %> U

Note thatz%(0)/CT is the circle obtained by identifying the two
end points of a closed interval.

We refer the reader to Mumford et al._|61, Chap.8§L.4] for the
certification of universal elliptic curves.

lbé

®0

(N, A) (Zt,{Rot,{0}})
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>0€J_J_{OO}

R¢1 1 {oo}

M.(N, A)

m1(\) ~1(\)/CT Q

A#0

131

(2) Principally polarized 2-dimensional complex tori

Let M = Z2 with a Z— basis{m, mp} and letN the dual ofM
with the dual basign;, ny}. Then the Delony-Voronoi decomposition
of Sym(M x M, R) consists of the Auf{l)-translates of

Z = Rofl + Rofz + Rofg,
3

and its faces), = Rol1 + Rofr, X1 = Rofr and Yo = 0, where
{1, €ellp, £3 € SymM x M, Z are defined as follows:

t1(m,my) =1, 61(mp,mp) =0,  £1(my, mp) =0,
o(my,my) =0, £1(mp,mp) =0,  fo(my,mp) =0,
ta(m,m) =1, {1(mp,mp) =1, £3(myg, np)= -1,

(cf. Namikawa [, 2.7)]). IrS2(M), {mé + mymp, M3 + mymp, —mymy} 132
form theZ-basis dual td¢1, £», £3}. Thus the parameter spagé of the
family of semi-universal coverings is covered by the Aut{tvgnslates
of the open set isomorphic to the interior of the closurérof {(11, Ao,
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A3) € Ag;loglai]log|az| + logldz|log|As| + loglasllog|ds] > O, and
|[A113] < 1}.

We now look at semi-stable one parameter degenerations df-2 -
mensional principally polarized complex tori. It is welbwn that, up
to the Aut(M)-equivalence, positive semi-definBee Syn{M x M, Z)
is of the following from:

(1) B=0
(2) B(my,my) =0, B(mg, mp) = b, B(my, mp) =0
(3) B(mmy) =a, B(mp, mp) = b, B(m, mp) =0

(4) B(m,m)=a+c, B(m,m)=b+c, B({m,m)=-cC

for positive integers, b, c. For simplicity, leth; = hy, andhy = hy,.
They are the identity oilg.

In case (1), a decompositiansatisfying our requirements is neces-
sarily of the formA = {{0}, Rof}.

HenceV = T x U andz~(0) is the complex torus

T/{Qo(m, ?);me M}.

In case (2). m(&) = ¢ andhy(¢) = ¢ + bnp. For any divisorb’
of b, the decomposition akn, + £ into “intervals” of lengthb’ as in
picture below gives rise ta satisfying our requirements. Consider the
P1-bundleW over the elliptic curveC*/Qq(my, my)* obtained by divid-
ing C* x P1 out by the group generated by the automorphigntA) —
(Qo(mq, mpty, Qo(mMy, mp)tp). Then by Theorerfi 4.2 (iii), we see easily
that 771(0) is a cycle ofb/lb’ copies ofW obtained by identifying the
0-section of onaV with the co-section of the next. ¥ is required to
be non-singular, takb’ = 1 and get the Voronoi type degeneration of
Namikawa and Nakamura.
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(+bny - =

f / } w

o L
L4 b'ng = fo w
fi T
14

| W

»/
~ The boundary at 1(0)

AN (Rng +£) infinity of ]\/fc(ﬁa A)

In case (3)h1(¢) = ¢+am andhy(¢£) = £+bny. Again for divisorsa’
andb’ of aandb, take the decomposition &n; + Rny + £ into “rectan-
gles” of sizea’ x by as in the picture below (or a suitable sub division of
it, if Y is required to be non-singular). Without any subdivisiont(0)
consists of &/a’)(b/b’) copies ofP; x P; glued along Ox Py, oo X Py,

P; x 0, P; X oo's like a “toroidal net”, again by Theorefi 3.2 (iii). If

a = b’ =1, we again get the Voronoi type degeneration 134
iL1 fl
{

hol | 04 Hns ~
2

P, x P

2 4 Ha'n { ! !

- The boundary at 7(0)

AN Rny + Ry +£) infinity of ]\/[C(]v, A)

In case (4)h1(¢) = ¢+ (a+c)n —cmp andhy () = €—cny + (b+o)ny.
There are many tierent decompositions &n; + Rn, + ¢ which give
rise to allowableA’s. The “Namikawa decompositions” in Oda-Seshadri
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[49], among which is the Voronoi type decomposition, arenegles.
For instance, led = b = ¢ = 1, and consider the two decomposi-

tions below.
f—mnq+ 2no
¢ N

’—F {4 2n1 — no

~ The boundary at .
AN (Rny +Rng +¢)  infinity of M (N, A) m=1(0)

It is the Voronoi type decomposition antd(0) consists of two
copies ofP, glued along the three coordinates axes, by Thedrein 4.2

(i) and (Z2).

€—n1+2n?

{ +Rn1 — no

The boundary at
AN (Rny +Rng 4+ ¢)  infinity of ZWC(]V, A) 7(0)
135
In this cases~1(0) is obtained by gluing together, as in the picture

above, two copies dP, and oneW obtained by blowingP, up along
the three coordinates vertices, by Theofenh 4.2 (iii) angh&siion[€.F .
Note thatY is non-singular in this case and each of the six rationalesirv
on W has the self-intersection numbef. This is Deligne’'s example
described in Mumford138].
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12 Compact complex surfaces of class VII

Kodaira [30] classified non-singular compact complex sigfainto 136
seven classes. Among then, the last ck$k has been the least un-
derstood until recently.

Definition. (Kodaira [30, Il, Thm 26]) A non-singular compact complex
surfaceX is said to be of clas¥ 1l (resp. of clas¥ Ilp) if the first Betti
numberby(X) = 1 (resp. b1(X) = 1 andX is minimal, i.e. without
exceptional curves of the first kind).

As usual, let

bi(X) = dimc H'(X, C)
hPA(X) = dimc HI(QF)

and letcy (x) andcy(X) be the Chern classes Kf
Moreover, letb* andb~ be the number of positive and negative eigen-
values of the cup products ¢#?(X, R).

Then Kodairall3D, I, Thm 3] showed that a clasH surfaceX has
the following numerical characters:

hO,l — 1’ hl,O — hZ,O -0
b=1b"=0

—C%ICZIbQZb_

Definition. An, r-dimensional compact complex manifoldss called a
Hopf manifoldif its universal covering manifol& is isomorphic taC" —

{O}. If, moreoverr1(X) = Z, thenX is called gprimary Hopf manifold.
(See e.g.[11] for a generalization, the Calabi-Eckmann fakh)

Kodaira [30, Ill, Thm 41] gave a topological characteriaatiof 2- 137
dimensional Hopf manifolds, i.e. Hopf surfaceds = 0 andr1(X)
contains an infinite cyclic subgroup of finite index.

Again according to Kodaira 30, Il, Thm 30], a primary Hopfface
Xis of the following form :

X = (C% - {0) /v,
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whereyZ is the group of automorphisms generatedytnf the form
YzZ) = A2+ u(Z)°, ')
with a positive integeb and4, A’, u € C satisfying

O<I<|V<1
(- ()P =0.

We have the following characterizations of some of the claHg
surfaces:

Theorem . (Kodaira [K3, II, §. @ & §. [IQ]) X is a class VI surface
with b, = 0 and containing at least one curve if and only if X is either

a Hopf surface, or

a certain elliptic surface oveP; with at most non-reduced non-
singular fibers, which is obtained from the productfafand an
elliptic curve by a finite succession of “logarithmic traosha-
tions”.

138 Theorem (Inoue [22]) X is a class VI3 surface with b = 0 containing
no curve, and with a line bundle L such tha?(lﬂz}( ®L) # 0if and only
if X is isomorphic to one of the surfaces

+
Swm, SN, P.o.F and %,q,r

constructed by Inoue.

All these classV 11 surface satisfjp, = 0. Recently, Inoue 23],
[24] and Kato [29] constructed series of example with= 0. As we
see in§. [[4 and§. [, these can most easily be described in terms of
torus embeddings.

In this connection, the following result of Katb ]29] is ofnubst
importance:
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Definition. A global spherical shelin anr-dimensional compact com-
plex manifoldX is an open submanifold isomorphic to

{z=(z1,...,2)eC";1-e< |4 <1+ &}

with 0 < £ < 1 and|Z? = |z1]? + - - - + |z|%, such that the complement in
X is connected

An elliptic curve, for instance, contains global spherigiaglls.

Q““".'o
2 SO mnn S

Theorem. (Kato [29]) Let r > 2. If an r-dimensional compact complex39
manifold X contains a global spherical shell, then X is a dafation of
(hence is dfeomorphic to) the blowing up of a primary Hopf manifold
along a finite humber of points. In particular, X is non-Kéhland
7T1(X) =7Z.

As we see i. [I4 and§. [IH, Kato could also show that all the
examples of Inoue withy, # O dealt with in§. [I4 and§. [I3 contain
global spherical shells, construct a versal family of defations for the
Inoue surfaces i§. [I4 (cf. TheoreniI412), and construct may new class
Vg surfaces with, # 0 which

contain global spherical shells (cf. Remark after Thm. 14.1

13 Hopf surfaces and their degeneration

In this section, we deal with those Hopf surfaces which cateseribed
in terms of torus embeddings. Although we restrict ourseligethe
complex case, the non-archimedean analogue might be stiteyeto
formulate. (cf Gerritzen-Grauelt [15]).

Let us first look at the primary Hopf surface

X=(C2 - {0)) /v~
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wherey(z Z) = (1z, 1’Z) for (z Z) € C2—{0} andA, A’sC with 0 < |1] <
1,0< 2| < 1.
Sincey is defined in terms of monomial¥ can be described by
140 means of torus embeddings as follows: Net Z? with aZ-basis{n, n’},
and consider the r.p.p.decomposition

A = {Ron, RoN', {0}).

Then obviouslyTy emb@) = C? — {0}, which is simply connected
for instance by Propositidn_10.2.is the translation action byl(1’) =
ACm 2 ¢ T Thus it induces the translation actigrby (- log|A))
n+ (—log|’[)n’ € Ng on the manifold with cornerMc(N, 2). As in the
picture below, the action of? on Mc(N, A) is properly discontinuous
and fixed point free, and has a compact fundamental domaias e
action ofy%Z on Ty emb() has the same properties, and we conclude
that

X = Ty emb)/y*

is a non-singular compact complex surface witliX) = Z. Moreover,
X contains mutually disjoint elliptic curves

E = orbRoN)/y* = C* /2%
E’ = orbRon')/y% = C* /'~

By Propositior 6816, the canonical bundleXfs obviously
wy = Ox(-E - E").

SinceE - E’ = 0 and, furthermoreE2 = E’2 = 0, as we see below, we
haveb, = —cf = 0. Indeed, the vertical projectidd — Zn induces

orb(Ron) € Ty emb@) — orb(Rgn) —— C*
Il
C*xC
141 on whichy acts byy(z, Z) = (1z 2’Z). Dividing these out byi?, we get

EcX-E— C"/2%
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X — E’ is obviously the total spacé(L) of a line bundleL of degree 0
on the elliptic curveC*/A% andE is its 0-section. Thus

E2 = —degL = 0.

Xis thus a rather curious compactification\giL).
X has a global spherical shell indicated in the picture.

ord™! of this gives rise to a
global spherical shell in X M.(N, A)—ord (orb (Ron))

fund. domain

=l

M,(N, A) X

For a positive integer a, Ié%, be the non-projective algebraic surz42
face with an ordinary double curve obtained by identifyihg ©-section
and theco-section of the rational ruled surface

Fa = P(O]Pl ® OPJ_ (a))
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by means of the map,0) — (¢(2), ) for ¢ € Aut (P;). Assuming
that the cofficients of¢ as a linear fractional transformation are small,
Kodaira [30, Ill, Thm 45] showed:

Theorem. There exists a complex analytic family over the unit disk
n@:Y@ —oU={1eC;|1 <1}

such that B
(@) ~(0) = Fa

andn(a)(;l) is a Hopf surface fon # 0.

Using torus embeddings, we prove this theorem in the speassd
whereg is the identity. The proof can be modified so that it works for
#(2 = cz5,ce C*.

For this purpose, let us first consider the following Hopfface: As
before, letN = 72 with a basign, n’}. For a positive integer a, let

A(@) = {Ron, Ro(—n + arv), {0}}.
Then by PropositioiI0.2, we see that
m1(Tn emb@(a)) = Z/aZ.

In fact the universal covering spaceTig emb((a)) = C2 — {0}, where
N’ c N is the subgroup generated hyand —n + anf. By (Z&), we
also see thaly emb((a)) is the complement of the 0-section and the
oo-section ofF,.
For A in the punctured unit disk)*, consider the translation action
vaonTyemb@(a)) of
/l<?,n’> c TN-

Then the induced actiom, on Mc(N, A(a)) is the translation by
(—log|A))r’, hence is properly discontinuous, fixed point free with a
compact fundamental domain.

Thus we see that

Xa(a) = Tn emb@(a)) /vy
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is a Hopf surface with

(X)) = Z xZ/aZ.

7

—n 4+ an’

A(a) Mc(N, Afa))

We then consideN = N & Z¢ and its automorphism defined by
h(n=n, hM)=n", h)=¢+n".

Let (N, A(a)) be the r.p.p.decomposition consisting of the faces 1z
oy, o, With v running througtZ, where

oy = Ron+ Ro(€ +vn') + Ro(€ + (v — 1))
o, = Ro(—n+an’) + Ro(£ + vn') + Ro(€ + (v — 1)n').

ThusA(a) N Nr = A(a) andA(a) induces on theffine subspactly + £
the polyhedral decomposition(a) N (Ng + ¢) as in the picture below.
h preservesi(a) and gives rise to an automorphispof non-singular
T emb@(a)).
Note that the boundary at infinity &fc(N, A(a)) consists of two “walls”
orb(Ron)/CTy and orbRo(—n + arn))/CTy as well as the “roof” as in
the picture.

The horizontal projection induces

7(a) : Ty emb@(a)) — Tz ({Rof, {0}}) = C.

LetV be the inverse image of the u~nit diskby 7(a).
Thus ordy) is the upper half oMc(N, A(a)).
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The action ofy” onV is properly discontinuous and fixed point free
¥ coincides withy, above om{a)1(1) = Ty emb(a))x{1}. Hence

n(@) : Y@ = V/7* - U

is the sougth-for family with

m(a)1(0) = F5 and n(a) (1) = X,(a) for 1 £ 0

by TheoreniZ12 (iii) and{ZI®.

et an t L4+vn/
} ~
—n+ an’ L ’h
N — —
li—

521 Aa A(a) N Ng
looked at from above
the north pole.

Ala) N (Ng +£)
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7 :
, )
ord (7(a)~t(X)) / ord (7(a)~"(0))

the roof at infinity of
A#0 S
7 M.(N, A(a))

145

14 Inoue’s examples of clasd/Ily surfaces with
b, =1

Torus embeddings are very convenient to describe Inouempbes of
classVllg surfaces withb, # 0. In this section we describe the first
series of his examples in123]. Besides, we will be able teides their
degeneration easily in terms of torus embeddings. We atdtolskato’s
generalization of Inoue’s construction which provides ithwany new 146
examples.

As before, letN = 72 with a basis(n,n’}. Consider the r.p.p. de-
composition N, A), where

A = {Ron and the faces ofr, for v € Z}
oy = Ro(n+vn') + Ro(n+ (v — 1)n').

By Propositior_IOI2Ty emb() is simply connected. Létbe the auto-
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morphism ofN defined by
h(n)=n+n’, h(n)=n".

h obviously preservea and gives rise to the automorphidm of Ty
emb(@).
Fora e U* = {1 € C;0< |1] <1}, consider the automorphism

ya = (the translation by1*™) o h,
of Toemb@). For (z Z) € Tn, we see that
vz Z) = (A2 z2),

hence
Yi(2Z) = X220 V227) for veZ.

v, induces an automorphisgny of Mc(N, 2)
v, = (the translation by «log|A[)n) o Mc(h).

As we see easily in the picture, the actiony§f hence that o&%, is
properly discontinuous, fixed point free and with a compactimental
domain. Thus

X1 = Tnemb@)/y%

is a non-singular compact complex surface witliX;) = Z, in particu-
larb; = 1.

/ n+vn'

AN

n
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Theorem 14.1(Inoue [23]) For A € U*, the surface Xis of class V1§
with b, = 1 - X, has exactly two irreducible curves, an elliptic curve E
and a rational curve C with a node, such that

E2=-1,C?=0, E-C = 0and C homologous to zero

H2(X,, Q) is 1-dimensional and is generated by E.

Proof. orb(Ron’) = C*is certainlyyﬁ-invariant ance = orb(Ron’)/y% =
C*/A% is an elliptic curve. On the other hand, the closure of Ryt +
vI) is Py for v € Z, and their uniorC* is y2-invariant. C = C*/y% is a
rational curve obtained fror, by identifying 0 and. SinceC* is the
fiber of the equivariant morphism

Tnemb@) — Tznemb(Rgn, {0}})

induced by the vertical projection, we see t84t= 0. Certainly,C and
E are disjoint, henc€ - E = 0. Let us now look at 148

orbRon) € Ty emb(Ror, {0}}) —— Tznemb(0}) = C*
I
C*x C

on whichy? acts viay!(z Z) = (22 2'*~Y/22Z). Dividing these out,
we have
EcX;—C— C*/1%,

which makesX; — C the total spac®/(L) of a line bundleL of degree 1
overC*/A% andE its 0-section. Henc&? = —degL = —1.
By Propositior 616, we see that the canonical bundle is

a))(/1 = OXA(—E - C),

henceb, = -¢Z = —(-E - C)? = 1. ThusH?(X,,Q) is necessarily
spanned by andC is homologous to zero. O

Suppose there were an irreducible cubve: E, C.
SinceC - D = 0, D would be contained iiX, — C = V(L). Thusk - D,
which is non-negative by assumption, would be the degrebeopull-
back of L™t by D — V(L) — C*/4%, a contradiction.X; is minimal,
since it thus has no exceptional curve of the first kind.
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Remark . Kato [29] looks atX; this way: it is obtained, from ord
of the shaded area iMc(N, o), by identifying viay, the two spherical 149
shells which is ord! of the two thick arcs in the picture.

M(N, )

In this way, we need to consider nby emb@) but the simpler torus
embedding

Z = Tnemb(R.n, Ro(n+ 1), R, {O}}

obt ained by blowing ug? along 0. Henc& = V; U V, with V; = C?
andV, = C? with coordinatesZ ©) and ¢, ¢’), respectively, glued along
(C"? via
Z=zand? =1
Let¢, : C*> — V; c Zbe defined by
$A(2zZ) = (A2 Z /).
Consider, fore > 0 small, the spherical shell
Z ={z2Z)eC1-e< (P +1ZAY2<1+¢)

and its inverse imagg’ by the blowing upz — C2. Let Y = ¢a(3).
Then}’ and})] are spherical shells whose images under ord are the
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thick arcs in the picture. Thus, induces an isomorphism, : 3/ —
.

ThenX, is obtained from the inverse image4nof the shaded area150
between the thick arcs orgl() and ord{:)) by identifying }," and}’ ;-
viay,. The common image of," and Y} in X; is obviously a global
spherical shell.

This process was generalized by Kafol[29] to produce newsclas
Vllp surfaces with global spherical shells. InsteadZothe takesz’
obtained fromC? by a finite succession of blowing ups each time along
a point over the previous center.

Kato’s formulation also enabled him to construct a versatilia of
deformations of Inoue’s exampl€,. As before, letJ* be the punctured
unit disk and letB ¢ C? be a small open ball centered at 0 with the
coordinate £, 7).

Theorem 14.2(Kato [29]). There exists a versal family of deformations
Z =X (A 1,7)eU" xB — U"xB
and families of curves
¢ ={Crrr} and & ={Ey.r}
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in 2 such that

(1) Xp00 = Xy is Inoue’s example with (5o = C and E;go = E of
Theoreni_IZ]1.

(i) For 77 # 0, E o, is empty and Xor iS a new class V bl surface
with a unique irreducible curve G - rational with a node of self-
intersection number 0.

151 For differentr” # 0's, X,,0 are all isomorphic.

(i) For #0, X, is blowing up of a primary Hopf surface along
a point.

Here is a sketch of the construction: L&t V; UV, and})’ be as
in the Remark above. Consider

$rre 1 C2—ViCZ

defined bys, .- (2.2) = (1(z). (Z +7')/).
It again induces an isomorphism

Yarr - Z,: - i =arr (Z)

A,1,7

Then take ord" of the shaded area in the pictureZfCTy. Let X, ..
be the manifold obtained from it by identifyig” and}. , .- vViay ..
We then lets” and&” be the images 2" of

{(Z,0 A4, 1,7)eVox U xB:Z + A +At/(1-1) = 0}

and
(¢ A4 77)eVixU xB (=7 =0},

respectively.
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the blowing up

of primary Hopf
. surfaces
Inoue's
surface /

X

new surface

A = constant

152
We now look at the degeneration of Inoue’s surfXgeasA tends to
0.

Theorem 14.3. There exists a proper flat family
Mm:2—U={1€C;|A <1}

with Y non-singular such that fot # 0 I171(2) is Inoue’s surface

Xy, and thatlI1(0) is a non-normal surface obtained by identifying two

[P s on the 2-dimensional complete non-singular torus emingadi as
in the picture.
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—n + 2n/ n
—n+n
27 n
1% The r. p. p. decomposition for W

Proof. Let N = N ® Z¢ and consider the automorphisﬁTof N defined

by _ _ _
h(n=n+n’, h(n), h()=¢+n.

Let (N, A) be the r.p.p.decomposition, whekeconsists of the faces of

Roh”(€) + Roh’*(£) + Roh"1(n)
Roh"*1(€) + Roh*1(n) + Roh(n)
Roh’(£) + Roh”*(€) + Ron
with v running throughz. ThenA N Ng coincides withA of Theorem

[[Z1, andA inducers the polyhedral decompositidm (Ng + ¢) as in
the picture below. Note that

W) = +vn+ (v(v-1)/2)n'.

Obviously, h preserves'& and gives rise to an automorphispof Tg
emb@). The horizontal projection induces : Tgemb@d) — Tz
emb(Ro¢, {0}}) = C. Again letV be the inverse image of the unit disk
U underz. Thus ord (V) is the “upper half” oMc(N, A). The action

of ¥% on V is properly discontinuous and fixed point free. Again by
TheorenZP (iii) and Propositidn 6.7, we see that

n:Y=Vi* —U

is the sought-for family
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ord (F-1())) or.d (%'._1(0)), the roof at
A#£0 infinity of M.(N, A)

154

15 Hilbert modular surfaces and class/ Il surfaces

Inoue [24] constructed another series of examples of Makssurfaces
with by, # 0, using the minimal desingularization by Hirzebru€hl[19]
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of neighborhoods of cusps of the Hilbert modular surfacasiAtorus
embeddings are very convenient to describe them.

We first describe the relevant part of Hirzebruch’s theorieims of
torus embeddings. (See also Cohh [6].) For the completaigdden of
compactified Hilbert modular surfaces, we refer the reaal®&umford
et al. [61, Chap[]1§. H]. See also Rapopoit[54] for the case of totally
real fields in general.

Let K = Q(Vd) be a real quadratic field. Then we have two embed-
dings ofK into R

KaéméeR and Kaém- & eR
so that we have a canonical isomorphisnmReélgebras
R®g K 3 a®é - (at,aé’) € R?
with which we identify them from now on.
Definition. For aZ-latticeN in K, let

Uy = {positive unitsu of k such thatuy = N}
Uy, = {totally positive unitsu of k such thauN = N}.

Then itis known (see, for instance HirzebruChi[19]) thatandUy,
areinfinite cyclic groupswith

[Un:U{]=1o0r2
We have the canonical identification
Nk = R ®g K = R?

with N lying irrationally inIR? with respect to the coordinate system of
R2. Consider the convex hully, of

NN (]R>O)2

and the infinite r.p.p.decompositioNL,(A} ), whereAj is the decompo-
sition of the first quadrantR.o)? into sectors by rays joining 0 and the
points iNN N d Y.
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ThusMc(N, A) is the union ofNgand the infinite chain of intervals
at infinity.

156 The action ofUy, on N by multiplication certainly preservesy,
hence we have an action bff on Ty emb@y). Let Vy be ord? of
the union of the first quadranR{g)? and the boundary at infinity of
Mc(N, Ay). Then the action ot§, on ord{/} ), hence that oWV itself,
is properly discontinuous and fixed point free. Thus the ignbt

WY = Vi /Uy

(or, more generally, the quotient by a subgrougpJgf of finite index) is
non-singular, and contains a finite cycleRjfs. SuchWj, appears as a
neighborhood of the minimal resolution of a cusp of a Hilbeddular
surface.

Inoue [Z24] obtains a new clasdl |y surface by gluing two appropri-157
ate such\j's together. In our formulation, this amounts to applying th
process above to the first and the fourth quadrant simultesteo



158

130 2. Applications

Theorem 15.1(Inoue) Let N be aZ-lattice in a real quadratic field K.
Let X (resp. Xx) be the convex hull of K (R=0)? (resp. NN (Rsg X
R.p)). Consider the infinite r.p.p.decompositifN, An), whereAy is
the decomposition @&.o x R into sectors by rays joining 0 and

(Nmai)u(N mai).
N N

Let Viy beord™! of the union ofR.¢ x R and the boundary at infinity of
Mc(N, An). Then the following hold:

0] Xn = Vn/UY is a non-singular compact surface of class /11
with exactly b # O irreducible curves, which form two disjoint
cycles of rational curves.

(i) If [Uy : U%] = 2, then
Xn = Vn/Un

is also a non-singular compact complex surface of clasg With
exactly. b # 0Oirreducible curves, which form a cycle of rational
curves.

Here is a sketch of the proof:

From the picture below, the action bf, (or Uy in case if)) on Vy
is easily seen to be properly discontinuous, fixed point &ne@ with a
compact fundamental domain.

Note that in caseii(), the multiplication by an element &fy not in
U}, interchanges the first and the fourth quadrant, heévcks in a sense
“symmetric”.

ord™! of the two infinite chains of the boundary gives rise to two
disjoint cycles

C:CO+Cl+"'+Cr_1
C=Dg+D1+:--+Dy1

of rational curves irKy. In caseif), we haver = sand the images o
andD in Xy coincide. We thus have a cycle of rational curves

Czéo+él+---ér_1



15. Hilbert modular surfaces and clagH g surfaces 131

7

Ng = R?
Xy
XN in case (ii)
We refer reader to Inou&[R4] for the proof of the facts: 159
Hl(XN, Z) =7

Hz(XN, Z) = ZGB(H'S)

Co,...,Cr_1andDy,...,Ds 1 are the only irreducible curves Xy. In
particular,Xy andXy are minimal. Note that from the picture, we easily
see that ord' of the positive half of the abscissalic(N, An) gives rise
to aCTy-bundle oversSt in Xy, and thatXy — C — D is homeomorphic
to the product oR and the bundle.

Remark. As Kato [29] has shownXy contains a global spherical shell,
hence is deformation of the blowing up of a primary Hopf scefalong
a finite number of points. Indeed, ofdof a tubular neighborhood of
the boundary of our fundamental domain in the picture giisssto one

To studyW,,, XN and XN in more detail, the “modified” contin-
ued fraction expansion is very convenient as in Hirzebrlicdj pnd
Inoue[24].

Definition. Let£ be areal number. Then the modified continued fraction
expansion

§=leo.e1,.. ]l
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is defined as follows: For non-negative integerdetermines, ande,

inductively by
fo=¢
e, istheintegerwitte,—1<¢,<e,
é:v =6 - 1/€v+l-

160
We call&] stheintermediate termsf the expansion of.

Thene, > 2 for v > 0 with no infinite consecutive equality, =
2 allowed when the expansion is infinite. As in the theory afals
continued fractions, we can show tlgas airrational quadratic number
if and only if its expansion is eventually periodic, i.e. ipeic from
certainy on. (cf. Perron[[51]).

As before, we identify an element € K with its canonical image
(w, ) via K — Nr = R2. Then the continued fraction expansion of
w and the convex geometry ik? have a very close relationship. To
be able to describe degenerations of Inoue’s surfXggswve need the
following slight amplification of the results pointed out blrzebruch
[19] and Cohnl]5].

Proposition 15.2. (1) Up to the multiplication of a totally positive ele-
ment of K, &-lattice N is of the form

N=Z7Z+Zw
withw > 1> ' >0, i.e. w reduced.

161 (2) w € K is reduced if and only if it has a purely periodic continued
fraction expansion

w = [[aOs ala R al'—ll]
(with the smallest period r).

(3) For reducedw, let w, be the intermediate terms of the expansion of
w with the smallest period r. Then

u=1/(wiwz- - wr)
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is a generator of U, , and{n,},cz} are the consecutive elements
of
(Z +Zw) N 3%, s

where
Ngr+j = (@js1- - w)u™t forqge Zando < j<r

and
Ny—1 + Nyy1 =N,

(4) For w reduced,l/w has the expansion of the form

lw=1[1,ea....,a; 4]l

where s is the smallest period and-d < w/(w — 1) < e. Let

w =&, ...a liew/(w-1)<e-1/w'
and letw; be the intermediate terms of the expansionof

Thenu = 1/(wiwz - wr) = 1/(wjw} - wg), and{n}},cz are the con-
secutive elements of(+ Zw) N 0 Y7, , where

Ngstj = U w = 1)/(wp ... wj) forqge Zand 0< j <'s

and

*

K — K
nv—l + nv+1 =any.

Corollary 15.3. For N = Z+Zw with w reduced, the decompositidy 162
of R.o X R consists of the faces of

oy = Rony + RoNyy1
O':j = Roni + Roni+l

for v € Z, with n, and rf, as in Propositior_I5]12.

Combined with Proposition 8.7, this implies the following:
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Proposition 15.4. Let N = Z + Zw with w reduced and lety* be as in
Proposition[I5.P (4) with
w = [[a0, - a1l

W =[[3....a ]

in the smallest periods r and s. Then Inoue’s surfageh&s two cycles
of rational curves

C:C0+C1+~~~+Cr_1
C:D0+D1+---+D5_1

and Xy a cycle of rational curves
C=Co+Ci+---+C
with the following properties:

(i) Ifr = 1or s= 1, then C,C or D is an irreducible rational curve
with one node with

C?=-ag+2 C?=-ap,+2, D?=-a;+2

(i) Ifr > 2o0rs> 2, then G, C; or D; are non-singular rational curves

with
C?=-a,C%= —a i=0,...,r—1
D? = —a; i=0,...,s-1
163 To illustrate the relationship between the continued fomcexpan-

sion ofw and the r.p.p.decompositioN(Ay) with N = Z + Zw, we now
sketch the proof of Propositidn_15.2 except fo the eventeabgdicity
of the expansion and the fact that

U=1(w1- o) = 1(w} )

generatesJJ . Hopefully, it will explain the way we number the element
of NN (0X'NnUAXN)-
The proof of the following inducted step is obvious.
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Lemma 15.5. Let ¢ € K with ¢ > & > 0. For the integer e with
e-1l<é<e,leté¢e=e-1/n. Thenp>1,n>n >0andl/n e Z+ZE.
If £ > ¢ > 1, thené is in the interior of the convex hull ¢Z + Z£) N
(R>0)2-

If&>1>¢ >0,ie. isreduced, thee > 2 andy is also reduced.
Moreover,&, 1 and ¥n are consecutive elements in the intersection of
Z+Z¢ with the boundary of the convex hiilZ, . of (Z +Z¢&) N (Rx0)2.

By repeated application of LemrhaTb.5 to the intermediatagef
the expansion ob, we get:

Lemma 15.6. Letw € K with w > «’ > 0 with the expansion

and the intermediate term,. Let t be the smallest integer such thats4
1 > w{. Then(i) the expansion is periodic from=« t on. Let r be the
smallest period. Thusy,r = wy and a1 = a, forv>1t. Let

l1=1and{, = 1/(wowr - - wy) forv > 0.

Then (ii) {{}wst-1 are consecutive elements of the intersection of
Z(1/w)+Z with the boundary of the convex hull@{(1/w)+Z)N (R-0)>.
Moreover,

fir+ 41 =avy forv>t

(i) 1/(wts1---wier) belongsto U .
In particular, we get (1), (2) and a part of (3) of Propositififn.2,
since
w(Z(1/w) +Z) = Z + Zw.

Let us now prove (4). Let = 1/w with the intermediate terms,
and with the expansioti = [[ey,€1,...]]. Sincew is reduced, hence
& > 1> & > 0by assumption, we havg e 1 and1/£; € R.g X Rog.
Sincel < e —¢1 = 1/6&, < land1/& = e — & > e > 2, we see that
& = w/(w-1), & = w' and @ = e of (4). We now apply (3) to*,
taking u= 1/(wj - - - ) for granted. Thus

(@ 0D/ 0™ = W /0 = )
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forqe Z andO < j < s are the consecutive elements of
(Z+Zw")NIZL 5 .
165 On the other hand, we have

Z+Zw = w(Z + Z(1/w)) = w(Z + Z(1/£1))
= w(Z(1/é1) + Z(1/£1£2)) = (w = L)/ NZ + Zw"}.

Since(w-1) > 0> (v’ — 1), we see thafn }\<z are the consecutive
elements of

(Z+Zw) NS,y = ((cu - l/a)*)){(Z + Z0w") N OE'Z + Zw').

We now describe degenerations of Inoue’s surfage X

Proposition 15.7 (Makio). For reducedw K, let N = Z + Zw. Then
there exists a proper and flat family

.Y —>C

with Y normal such that=1(1) = Xy for all A # 0 and thatz~1(0) is
a non-normal surface obtained by identifying ti¥/cs on the 2 - dimen-
sional complete normalJ-embedding Z as in the picture, whersgamd
n;, are as in Prop[I5]2.

Ny —Ng Nyp—1

o

n_1

The r.p.p. decomposition for Z
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Remark . Unlike Theoren_IZ13Y and Z may be singular in general.
They are non-singular if = 1. For each specifitl, we can certainly
replaceY by a blow up to obtained non-singuldrandz—1(0) consisting
of non-singular components crossing normally. As is obsifsam the
construction ofY below, there, many other choices fér

Proof. As before, letN = N @ Z¢. Left the action ofU?, on N to N by

letting it act as the identity fof. By Propositio 1512, we have

This fact guarantees thalll(A) is aUg-invariant r.p.p.decomposition,
whereA consists of the faces of

Ro(Nir + €) + RoNir yv-1 + RoNir 4y ieZ, 0<v<r
Ro(Nir + €) + RoNig,, + RoNig, 11 ieZ, 0<v<s
Ro(Nir + €) + Ro(Ng+1yr + €) + RoNir1yr—1 ez
Ro(nir + €) + Ro(Ngiry + £) + R0n2<i+l)s i €Z.

Seen from above the north pole, the decomposition inducetidoy
a sphere ifNg centered at O looks like the picture below.

Let B be ord? of the union inMc(N, A) of (R.o x R) x R¢ and the
boundary at infinity. TherB is UJ-invariant and the action is properly
discontinuous without fixed point. By Theoréml4.2 (iii), we a@one.
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-

The "roof” at oo of
M.(N, )

AN (a sphere)

m]
167
Examples.(1) If v = 2+ V3 = [[4]], thenw* = 1+ V3/3 = [[2, 3]].
HenceXy is as in the picture. We have

mM=-w+4m=1Ln1=w,no=4w-1
m=2w-7N=w-3Mm=w-2n; =w-1n,=2w-1

Sincer = 1,Y andZ of Prop.[I5.V are non-singular. Taking tHg-
translates oR(Ng+¢)+Rghg+RoNy andRq(Ng+€)+Re(Ny +£)+ RNy
instead ofRo(Ng+£)+Ro(N1 +£€)+RoNg andRo(Ng+£)+ReN_1+ReNg,
we get a diferent degeneratiod’
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() Letw = (3+ V5)/2 = [[3]] = w*. ThenUy is generated by 168
(-1 + V5)/2. Kato showed that the only possible configurations of
curves for a minimal surface withy = 1 and with a global spherical
shell are that ofXy here as well as those in Theor€m14.2 (i) and

(ii).
In this case, we have
m=3-w,np=1Ln1=w

m=2w-5n=w-2n,;=w-1

Again'Y and Z of Prop. are non-singular in this case. By a
modification as in (1) above, we get dfdrentZ’.

XN XN 7 A

(3) If w = (3+ V7)/2 = [[3,6]], thenw* = (5+ V7)/3=[[3,3,2, 2, 2]].






Bibliography

[1]

[2]

K. Akao On prehomogeneous compact Kahler manifolds, 169
Manifolds-Tokyo 1973Hattori, ed.), Univ.of Tokyo Press, 1975,
365-371

K.Akao, Complex structure 082P*1 x S24*1 with algebraic codi-
mension 1, inComplex Analysis and Algebraic Geome(Baily

and Shioda, eds.), Iwanami Shoten and Cambridge Univ.Press
1977, 205-225

[3] A. Borel, Linear algebraic groups, Benjamin, New Yorlk6b

[4] A.Borel and J.-P.Serre, Corners and arithmetic groups,

[5]

[6]

[7]

[8]

[9]

Comm.Math.Helv. 48 (1973), 436-491

P.Cartier, Questions de ratinalité des diviseurs emngétrie
algébrique, Bull.Soc.Math.France, 86 (1958), 177-Rppendice

H.Cohn, Support polygon and the resolution of modulactional
singularities, Acta Arithmetica, 24 (1973), 261-278

C.Delorme, Sous-monoides d'intersection compléte M,
Ann.Sci.Ecole Norm.Sup., 9 (1976), 145-154

M. Demazure, Sous-groupes algébriques de rang maximum
groupe de Cremona, Ann.Sci.Ecole Norm.Sup. 3 (1970), B87-5

P.Deligne and D.Mumford, The irreduciblility of the spa of
curves of given genus, Publ.Math.IHES, 36 (1969), 75-110 170

141



171

142 BIBLIOGRAPHY

[10] A. Grothendieck and J.Dieudonn&Jément de géométrie alge-
brique, Publ.Math.IHES, 4, 8, 11, 17, 20, 24, 28, 32 (19667)9

[11] L.Gerritzen, On non-archimedean representationsefian vari-
eties, Math.Ann. 196 (1972), 323-346

[12] G.Gonzalez-Sprinberg, Eventails en dimension 2 eisfame de
Nash, Centre de Math. Ecole Norm.Sup. Equipe de Rech.Assoc.
au CNRS No0.589, Fev.1977.

[13] B.GrinbaumConvex polytopednterscience, New York, 1967

[14] B.Grinbaum, Polytopes, graphs, and complexes, Buiher.
Math. Soc., 76 (1970), 1131-1201

[15] L.Gerritzen and H.Grauert, Die Azyklizitat derffiaoiden
Uberdeckung, inGlobal Analysis(lyanaga and Spencer, eds.),
Univ.of Tokyo Press and Princeton Univ.Press, 1969, 158-18

[16] R.HartshorneAmple subvarieties of algebraic varietjdsecture
Notes in Math. 156, Springer-Verlag, 1970

[17] J.Herzog, Generators and relations of abelian sempgroand
semigroup rings, Manuscripta Math. 3 (1970), 175-193

[18] H.Hironaka, Resolution of singularities of an algebraariety
over a field of characteristic zero, I-1l, Ann.of Math. 79 649,
109-326

[19] F.Hirzebruch, Hilbert modular surface, L'enseignenlath. 21
(1973), 183-282

[20] M.Hochster, Rings of invariants of tori, Cohen-Maaaulrings
generated by monomials, and polytopes, Ann.of Math. 962,97
318-337

[21] J.Herzog and E.Kunz, Die Wertehalbgruppe eines lok&dangs
der Dimension 1, Sitzungsberichte der Heidelberger Alexd.d
Wiss., 2.Abh., Springer-Verlag, 1971



BIBLIOGRAPHY 143

[22] M.Inoue, On surface of clasgllg, Inventiones math. 24 (1974),
269-310

[23] M.Inoue, New surfaces with no meromorphic functions Piro-
ceedings of the Intern. Congress of Mattancouver 1974, vol.1,
423-426

[24] M.Inoue, New surfaces with no meromorhic functionsjilCom-
plex Analysis and Algebraic Geometfiaily and Shioda, eds.),
Iwanami Shoten and Cambridge Univ.Press, 1977, 91-106

[25] M.Ishida, Graded factorial rings of diemension 3 of astiwted
bype, to appear in J.Math.Kyoto Univ.

[26] M.Ishida, Compactifications of a family of generalizédcobian
varieties, to appear in th@roceedings of the Intern.Symp.on
Alg.Geom., Kyoto 1977

[27] B.lversen,A fixed point formula for action of tori on algebraici72
varieties, Inventiones math. 16 (1972), 229-236

[28] T.Kaneyama, On equivariant vector bundles on an alrosto-
geneous variety, Nogoya Math.J. 57 (1975), 65-86

[29] Ma.Kato, Complex manifolds containing “global” splead shell,
I, to appear in théroceedings of the Intern.Symp.on Alg.Geom.,
Kyoto 1977

[30] K.Kodaira, On the structure of compact complex analgtirfaces
|  Amer. J. Math. 86 (1964), 751-798

Il ibid. 88 (1966), 682-721

Il ibid. 90 (1968), 55-83

IV ibid. 1048-1066
See also Kunihiko Kodaira Collected Works, Vol.lll lwanami

Shoten and Princeton Univ. Press, 1975

[31] K.Kodaira, Holomorphic mappings of polydiscs into comct
complex manifolds, J.0i. Geom. 6 (1971), 33-46



144 BIBLIOGRAPHY

[32] T.Mabuchi, Almost homogeneous torus actions on viasetvith
ample tangent bundle, to appear in Tohoku Math. J.

[33] J.McCabe, p-adic theta functions, thesis Harvard 11868

[34] S.Mori, On a generalization of complete intersectjodisMath.
Kyoto Univ. 15 (1975), 619-646

[35] S.Mori, Graded factorial domains, to appear in J.M&lkyoto
Univ.

173 [36] H.Morikawa, Theta functions and abelian varieties rovalua-
tion fields of rank one, I-1l, Nagoya Math.J. 20(1962), 1-2ida
21(1962), 231-250

[37] J.Morrow, Minimal normal compactifications of?, Rice
Univ.Studies 59 (1973), 97-112

[38] D.Mumford, An analytic construction of degeneratingehan va-
rieties over complete rings, Compositio Math. 24 (19729-232

[39] D.Mumford, Introduction to algebraic geometry, mingeaphed
notes, Harvard Univ.

[40] K.Miyake and T.Oda, Almost homogeneous algebraicetas un-
der algebraic torus action, iManifolds-Tokyo 1978Hattori,ed.),
Univ.of Tokyo Press, 1975, 373-381

[41] S.Mori and H.Sumihiro, On Hartshorne’s conjectureappear in
J.Math.Kyoto Univ.

[42] M.Nagata, On rational surfaces, I-ll, Memoirs Coli.Sc
Univ.Kyoto, 32 (1960), 351-370 and 33 (1960), 271-293

[43] O.Nagaya, Classification of 3-dimensional completa-smgular
torus embeddings, Master's thesis, Nagoya Univ. 1976

[44] 1.Nakamura, On moduli of stable quasi-abelian vaggtiNagoya
Math.J. 58(1975), 149-214



174

BIBLIOGRAPHY 145

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

I.Nakamura, Relative compactification of the Neron mlaahd its
applications, inComplex Analysis and Algebraic Geome(Baily

and Shioda,eds.),lwanami Shoten and Cambridge Univ.Press
1977,205-225

Y.Namikawa, A new compactification of the Siegel spand the
degeneration of abelian varieties, I-Il, Math.Ann. 221718p 97-
141 and 201-241

Y.Namikawa, Toroidal degeneration of abelian vaéstiinCom-
plex Analysis and Algebraic Geometfigaily and Shioda, eds.),
Iwanami Shoten and Cambridge Univ.Press, 1977, 227-237

P.Olum, Non-abelian cohomology and van Kampen'’s theor
Ann.of Math. 68 (1958), 658-668

T.Oda and C.S.Seshadri, Compactifications of the gdined Ja-
cobian variety, to appear in Transactions Amer.Math.Soc.

P.Orlik and P.Wagreich, Algebraic surfaces withaction, to ap-
pear

O.PerronDie Lehre von KettenbriinchenB3.G.Teubner, Leipzig
und Berlin, 1913

V.L.Popov, Quasi-homogeneousiine algebraic varieties of the
group SL(2), lzv.Akad.Nauk SSSR 37 (1973), 792-832
Math.USSR lzv. 7 (1973), 793-831

V.L.Popov, Classification of 3-dimensionaffiae algebraic va-
rieties that are quasi-homogeneous with respect to an raligeb
group, lzv.Akad.Nauk.SSSR 39 (1975), 566-68Math.USSR

Izv. 9 (1975), 535-576

M.Rapoport, Compactifications de’ Espace de modules da7s
Hilbert-Blumenthal,thesis Universite de Paris-Sud, 1976

M.Raynaud,Faiscaux amples sur les schemas en groupes et les
espaces homogendsecture Notes in Math. 119, Springer-Verlag,
1970



146 BIBLIOGRAPHY

[56] R.T.RockafellarConvex analysisRrinceton Univ.Press 1970

[57] l.Satake, On the arithmetic of tube domains, Bull. Arielath. Soc.
79 (1973), 1076-1094

[58] R.R.Simha, Algebraic varieties biholomorphicdtxC*, to appear
in Tohoku Math.J.

[59] H.Sumihiro, Equivariant completion, I-ll, J.Math.Kio Univ.14
(1974), 1-28 and 15 (1975), 573-605

[60] T.Suma, On hyperelliptic surfaces, J.Fac.Sci.UmikyD, 16
(1970), 469-476

[61] A.Ash, D.Mumford, M.Rapoport and Y.T&mooth compcatifica-
tion of locally symmetric varietied.ie Groups: History Frontiers
and Applications 1V, Math.Sci.Press, Brookline, Mass.397

[62] H.Tsuchihashi, Degenerations of hyperelliptic socfs, Master’'s
thesis, Tohoku Univ., 1978

[63] G.Kempf, F.Knudsen, D.Mumford and B.Saint-Don@groidal
embeddings,ILecture Notes in Math. 339, Springer 1973

[64] T.Ueda, to appear



	Introduction
	Torus embeddings
	Algebraic tori
	Torus embeddings and Summaries theorem
	Rational partial polyhedral decompositions
	First main theorems
	The proof of theorems in §.4
	Projective torus embeddings
	Example of torus embeddings and morphisms
	Torus embeddings of dimension 2
	Complete non-singular torus embeddings in dimension 3

	Applications
	Manifolds with corners associated to torus embeddings
	Complex tori
	Compact complex surfaces of class VII
	Hopf surfaces and their degeneration
	Inoue's examples of class VII0 surfaces...
	Hilbert modular surfaces and class VII0 surfaces


