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Introduction

1. An interesting but still open problem in algebraic geamés the
following:

ZARISKI'S PROBLEM. If X is an gfine algebraic variety over an
algebraically closed field k such that XA} = AE, whereA] denotes
the n-dimensional fine space over k, is X isomorphicAcf(?

In considering this problem it seems important and indispbte
to have algebraic (or topological) characterizations ef dfiine plane
AE as an algebraic variety. Several attempts have been madediow
this direction (cf. [[45],[I3R]), though the obtained chaeaizations are
not good enough to answer the Zariski's Problem. A main ratitwm
in writing these notes is to put together the results whichehaeen
obtained so far surrounding this problem.

The said assumptioX x Al = AE implies the following:

(1) X is a nonsingular gine unirational surface,

(2) thegfine coordinate ring A of X is a unique factorization domain
whose invertible elements are constants, A* = k*,

(3) there lie syficiently many rational (not necessarily nonsingular)
curves with only one place at infinity on X.

In looking for a criterion forX to be isomorphic ta\? it will be rea-
sonable to assume thAtsatisfies the above two conditions (1) and (2),
though the third condition has to be made more precise (oraweul).

A precision of the third condition above is the next conditio
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(3) X has a nontrivial action of the additive group scheme G

Then the conditions (1), (2) and’j3are necessary andffigient for
X to be isomorphic té\? (cf. Theorem 3.1, Chapter ). Whéy, acts on
an dfine scheme&X = Spechf), theGg-action can be interpreted in terms
of a locally finite iterative higher derivation ok Indeed, several prob-
lems concerning th&,-action, e.g. to find the subringyy of invariants
in A and to investigate the propertiesAf and the canonical morphism
Specf) — Specfy) induced by the injectio®y — A, become easier
to treat by observing the locally finite iterative higher idation on A
associated with th&g-action. The first two sections of Chapter | are
devoted to the study of locally finite (iterative) higher igations on
k-algebras.

Instead of the condition (Bone may consider the next milder con-
dition

(3”) Xhas an algebraic family* of closed curves on X parametrized
by a rational curve such that a general memberbfis an gfine
rational curve with only one place at infinity and that twotist
general members o have no intersection on X.

If char(k) = 0 andX satisfies the conditions (1) and (2), the condi-
tions (3) and (3’) are equivalent to each other (cf. Theorem 2.3, Chap-
ter 1); indeed, a general member & is isomorphic toAl. However,
if either one of the conditions (1) and (2) is dropped the egjence of
(3) and (3') no longer holds (cf. 2.4, Chapter I).

In connection with the condition {3 we are interested in an alge-
braic family.# on a nonsingularféne surface, whose general members
are isomorphic ta\1. We have the following result (cf. Theorem 4.1.2,
Chapter I):

Let S be a nonsingular variety over k and let: fX — S be a
faithfully flat, gfine morphism of finite type such that every fiber of f
is irreducible. Assume that the general fiber of f are isorh@po
Al. Then there exist a nonsingular variety 8ver k and a faithfully
flat, finite, radical morphism S— S such that )§S’ is an Al-bundle

over S. Thus, ifchark) = 0 then X is anAl-bundle over S, and if
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chark) > 0 the generic fiber f is a purely inseparabl¢sh-form of AL,
(cf. 4.6, Chapter I).

Weare interested especially in the case wheris the projective 4
line P! overk. Affine Al-bundles ovei! are classified (cf. Theorem
5.5.4, Chapter 1), while the case where the generic fibdrisfa purely
inseparabld(P')-form of A* will be studied more closely in Chapter IlI
in connection with unirational (irrational) surfaces defiroverk.

The Zariski's problem is generalized as follows:

CANCELLATION PROBLEM. Let A and B be k-algebras such that
A[X1,...,%1] is k-isomorphic to Byi,...,yn], Where x,...,X,
and y, ..., Yn are indeterminates. Is A then k-isomorphic to B?

A k-algebraA is said to be strongly-invariant if A satisfies the
condition: If anyk-algebraB and ak-isomorphismg: Alxy, ..., X)] —
B[y1,...,Yn] thend(A) = B. The property tha#\ is strongly 1l-invariant
is closely related to the property thatis not birationally ruled over
k (cf.. Lemma 6.2, Chapter 1), and the strong l-invariance &f a
algebraA is studied via locally finite (iterative) higher derivatiam A
(cf. Lemma 6.3, Proposition 6.6.2, etc., Chapter I).

2. The significance of studying a family of (nonsingular)ioaal
curves with only one place at infinity on a nonsingulé#ires rational
surface may be gathered from the foregoing discussionser&evn-
portant results have been obtained in this line (cf. Abhgamkoh [Z],
Moh [38] and Abhyankar-Singh][3]).

Letk be an algebraically closed field of characterigtid.etCybe an 5
irreducible curve with only one place at infinity @r? := Speck[x, y])
defined byf(x,y) = 0. EmbedA? into the projective plan®? as the
complement of a linéy. LetC be the closure o€ in P2, letC - £ =
do - Po and letd; = multp, C. Let C, be the curve orh? defined by
f(x,y) = a for a € kand letA(f) be the linear pencil o> spanned by
C anddyfp. Then the results are stated as follows:

() IRREDUCIBILITY THEOREM (Moh [3€]; cf. Section 1, Chap-
ter ).

Assume that g dgp or px d;. Then the curve Lis an irreducible
curve with only one place at infinity for an arbitrary constan
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of k.

(i) EMBEDDING THEOREM (Abhyankar-Moh[]2]; cf. Section 1,
Chapter Il).Assume that g dg or p x d1, and that G is honsin-
gular and rational. Then there exists a biregular automaspin
of A2 which maps g into the y-axis.

(i) FINITENESS THEOREM (Abhyankar-Singh_[3]; cf. Sectiod,
Chapter Il).Assume that g= 0. By an embedding o into A2
we mean a biregular mappirgf Cg into AZ; two embeddings;
ande, of Cq into A? are said to be equivalent to each other if there
exists a biregular automorphismof A2 such thak, = p-e;. Then
there exist only finitely many equivalence classes of enihgsid
of Cy into AZ2.

In their proofs the main roles are played by the theory of axipr
materoots of polynomials, i.e., the theory of generalizedhirnhausen
transformations. We shall present more geometric proofeede the-
orems (though we could not prove the third theorem in fullegatity),
which are based on the notions of admissible data and thedeaal
transformations (as well as the, {)-transformations) associated with
admissible data. Roughly speaking, our idea of proof isarpt as
follows.

Let X be a nonsingular fine rational surface defined ovkrand
let Co be an irreducible closed curve ofisuch thatCy has only one
place at infinity. Suppose that there exists an admissibend& =
{V, X,C, £o,T, dg, d1, €} be an admissible datum fax{Co) (cf. Definition
1.2.1, Chapter II)C is then linearly equivalent tdy(efy + T') on V,
and the linear pencik onV spanned byC anddy(efp + I') has base
points centered aPy := C N ¢y and its infinitely near points. 1p x
(do, d;) the Euclidean transformation or the i)-transformation ofv
assomated with plays a role of producing a new admissible datum

= {V,X,C,?,T,do, d1 e} for (X CO) such that eithedy < dg or
do = d; andd; < d; and thatp x (do,dl) After the Euclidean trans-
formations or thed i)-transformations associated with admissible data
repeated finitely many times we reach to an admissible daiure
{(V,X,C, %0, T, do, dy, € for (X, Cp) such thatdg = d; = 1. Then, by



iX

the (€ €)-transformation oW associated witl%, we obtain a nonsingu-
lar projective surfac&/” such that the proper transforxi of A on A’

is free frombase points, thatA is the member oA\’ corresponding to 7
do(efo +T) of A thenA’ is the unique irreducible member &f, that the
fibration of V' defined byA’ has a cross-sectidhandV’ — SUSupp@’)

is isomorphic toX, and that ifC’ is the proper transform & onV’ then
C’ - C’'nSisisomarphic to the given cury. Retaining the notations
Co, C, €o, dg andd; as before the statement of the irreducibility theorem,
{P2, AZ,C, €0, ¢, do, dy, 1} is an admissible datum foré, Co). Hence by
the foregoing arguments we know that the cuBge: f(Xx,y) = a is an
irreducible curve with only one place at infinity for everye k, and that

if Co is isomorphic toA; thenC, is isomorphic toA} for everya € k.
The theorems (i) and (ii) can be proved in this fashion. Thedoing
process of eliminating the base points\dff) in conjunction with Artin-
Winters’s theoren]7] on degenerate fibers of a curve of ggrausl the
Kodaira vanishing theorem by Ramanujami[46] proves the emed
version of the finiteness theorem. Sections 1 and 4 of Chélptee
devoted to the proofs of these theorems.

Furthermore, we can give a new proof of the structure theaam
the automorphism group Auk[x,y] over a field of arbitrary character-
istic, which is based on the foregoing arguments of elinmgathe base
points of the pencilA(f) and an easy lemma on reducible fibers of a
fibration by rational curves (cf. Sections 2 and 3 of Chagder |

In Sections 2 and 6 of Chapter Il, some related topics areistsd.
Let Cy be a nonsingular rational curve akﬁ := Speck[x, y])defined 8
by f(x,y) = 0; Co may have one or more places at infinity. &t be
the curve orAﬁ defined byf(x,y) = a for @ € k, and letA(f) be the
linear pencil onPﬁ defined by the inclusion of field&(f) — k(x, V),
whereA?Z is embedded intdZ as the complement of a ling. Then
the generic member of(f) is a rational curve if and only if is a field
generator, i.ek(x,y) = k(f,g) for someg € k(x,y) (cf. Lemma 2.4.1,
Chapter 1), and iff is a field generator theGy has at most two points
(including infinitely near points) on the ling at infinity (cf. Lemma
2.4.2, Chapter Il). In Section 6 of Chapter Il the followirigebrem is
proved:



Assume that the characteristic of k is zero. With the abote&tioos,
f = c(xdy® — 1) after a suitable change of coordinates x, y §&K],
where ce k* and d and e are positive integers wifth, €) = 1, if and
only if the following conditions are met:

(a) fis afield generator,
(b) C, has exactly two places at infinity for almost alk k,
(c) C, is connected for every ak.

In Section 5 of Chapter I, we shall study the structure ofafiime
coordinate ringA := K[x,y, f/g] of a hypersurface orA\ﬁ of the type:
gz- f = 0, wheref, g € K[x,y] and (f,g) = 1. Namely, we shall
show that the divisor class gro@¥(A) and the multicativegroug* are
completely determined if Spe&) has only isolated singularities, and
that, in case of chak] = 0, Spech) has nontrivialG,-action if and only
if g € K[y] after a suitable change of coordinates of k[ x, y].

3. Letk be an algebraically closed field of characterigtic 0. Let
X be a nonsingular projective surface, andfletX — P be a surjective
morphism such that a general fiber fofs an irreducible rational curve
with a single cusp as its singularity. Then the generic fgiof f with
the unique singular point deletedf @s a purely inseparable form @f’
over the function fieldZ := k(P!), andX is a unirational surface over
k. In Chapter lll, we shall describe the structure of such #aserX in
the case where the arithmetic gerqusf X is either 1 or 2, under the
additional assumption thét has a rational cross-section. Whegnr= 1
thenpis either 2 or 3 anK is a unirational quasi-elliptic surface; there
existK3-surfaces and surfaces with canonical dimensgienl besides
rational surfaces (cf. Theorems 2.1.1 and 2.1.2, Chag)eiVheng =
2 thenpis either 2 or 5; ifp = 5 there exisK3-surfaces and surfaces of
general type besides rational surfaces (cf. Section 3,{€h#p.
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Notations and conventions of the present notes conformetgéim-
eral current practice. Therefore we shall make some additinotes
below.

1. LetAbe an algebra over a fiekd ThenA* denotes the multiplica-
tive group of invertible elements &; thusk* denotexk — (0). If
Ais an integral domai®Q(A) denotes the quotient field & A
unique factorization domaiA is sometimes called a factorial do-
main (or ring). If Az is factorial for every prime ideaf”? of A
then A is called locally factorial. For anfline k-variety X, the
affine coordinate ring oKX is denoted bk[ X] if there is no fear of
confusingk[X] and a polynomial ring ovek.

2. Then-dimensional ffine space and projective space defined over
k are denoted respectively By (or A") andPy, (or P"). We denote
by Al thek-scheme isomorphic to the underlyikgscheme of the
multiplicativek-group schem&y, := Speck[t, t™1]). The additive
k-group scheme is denoted By (or Gak).

3. LetV be a nonsingular projective surface defined over an alge-
braically closed field. Then we use the following notations:

Ky: a canonical divisor (or the canonical divisor classyof

wy: the dualizing invertible sheaf oW, i.e., wy = Oy(Ky).
x(OV) (or x(V, Ov)): the Euler-Poincare characteristic\of
X(00) = (-1 dimHI(V, ). 1

i=

P:(V): ther-genus ofV for a positive integer, i.e., P,(V) =
dim HO(V, ).

Pg(V): the geometric genus of.

Pa(V): the arithmetic genus of, i.e., pa(V) = x(ov) - 1.

k(V) (or x): the canonical dimension of, i.e., x(V) = Supdim

r>0

or(V) wherepy is ther-th canonical mapping 0¥ defined
by [rKyl.
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Let D andD’ be divisors orV. Then we use the notations:

Oy(D): the invertible sheaf attached

pa(D): the arithmetic genus @, i.e., pa(D) = %(D- D+Ky)+1.
(D - D’): the intersection multiplicity oD andD’.

(D?): the self-intersection multiplicity ob.

D ~ D’: Dis linearly equivalent t®’.

D > 0: Dis an dfective divisor.

ID|: the complete linear system defined Dy

ID| - >, mip;i: the linear subsystem ¢D| consisting of members
of |D| which pass through the poings's with multiplicities
> my, wheremy's are positive integers.

Let C be an irreducible curve ovi and letP be a point orC. Then
multp C denotes the multiplicity o€ at P.

. Letf : W — V be a birational morphism of nonsingular projective

surfaces. ID is an dfective divisor onV then f*(D) denotes the
total transform (or the inverse image as a cyclepdiy f; /(D)
denotes the proper transform Dfby f. If C is an irreducible
curve onV, f~1(C) denotes the set-theoretic inverse imageé by
f. On the other hand, B’ is an dfective divisor orW thenf,(D’)
denotes the direct image &f by f as a cycle. IfA is a linear
pencil onV consisting of &ective divisors therf’A denotes the
proper transform of\; namely, if f*A is the linear pencil oW
consisting of the total transform&'D of membersD of A then
f’A is the pencilf*A with all fixed components deletedfolf A’
is a linear pencil o'W consisting of &ective divisors therf, A’
denotes the linear pencil dhconsisting of the direct imagdsD’
of memberdD’ of A’.

JAff 0 W — Vs a finite morphism of nonsingular projective

surfaces then the notatiori$(C), f~(C) and f.(C’) conform to
those in the case wheffeis a birational morphism.
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6. Let A be an irreducible linear pencil oftfective divisors on a
nonsingular projective surfacé. An irreducible curveS onV is
called a quasi-section B is not contained in any member af
andA has no base points @ A quasi-sectiors of A is called a
cross-section ol if (S - D) = 1 for a general membdd of A.

7. AsurfaceV defined over a fiel#t is said to be unirational ovédrif 13
there exists a dominating rational mappihg PE - V.

8. The present notes consist of three chapters. When wetcefer
result stated in the same chapter we only quote the numbkeof t
paragraph (e.g. (cf. Theorem 1.1) or (cf. 1.1)); when werrgfe
a result stated in other chapters we quote it with the number o
chapter (e.g. (cf. Theorem (1.1.1)) or (cf. 1.1.1)).
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Part |
Geometry of the dfine line

1 Locally nilpotent derivations
14

11

Throughout this sectiorns denotes a fixed field of characterispcLet A

be ak-algebra.A locally finite higher derivatioron A is a set ok-linear

endomorphism® = {Dg, D1, ...} of thek-vector space\ satisfying the
following conditions:

(1) Do = identity; Di(ab) = », Dj(a)D,(b) for anya, b of A.
j+=i

(2) For any elemena of A, there exists an integer > 0 such that
Dm(a) = 0 for every integem 2 n.

The higher derivatioD is callediterative if D satisfies the addi-
tional condition:

(3) DiD; = ("')Dy,; foralli, j 2 0.
If D = {Dg, Dy, ...} is alocally finite higher derivation o4, then 15

D1 is ak-trivial derivation onA. If D is iterative, it is an easy
exercise to show that:

o 1 - .
(3-1) If the characteristip is zero,D; = i—I(Dl)' for everyi > 0;

1
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(D1)°(Dp)*...(Dy)"
(i)!(in)! ... (ir)!

i1p+---+irp" is ap-adic expansion af

(3-2) If pis positive,D; = , Wherei =ig +

The fact (3-1) implies that ip = 0 a locally finite iterative higher
derivationD is completely determined by;, which satisfies the
condition that, for any elememtof A, D"(a) = O for suficiently
largen. Such &-trivial derivation onAis calledlocally nilpotent.

1.2

Lemma. Let A be a k-algebra. Then the following conditions are equiv
alent to each other:

(1) Dis alocally finite higher derivation on A.

(2) The mappinge : A — A[t] given byyp(a) = 2 Di(a)t' is a homo-

morphism of k-algebras, where t is an mdetermmate Sitgijla
the following conditions are equivalent to each other:

(1) D is alocally finite iterative higher derivation on A.

(2) ¢ : A — Alt] defined in the above conditid®) is a homo-
morphism of k-algebras such that ® id.)e = (id. ®A)e,
16 where A : K[t] — K[t] ® k[t] is a homomorphism of k-
algebras defined bx(t) = t® 1+ 1®t (cf. the commutative
diagram below);

At Al = ASK]

L .

A%k[t] A%k[t]%k[t]

id. ®A

() a,: SpecA)>k<Gak — Specp) is an action of the additive
k-group scheme £ on Specf).
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Proof. The equivalence of the conditions (1) and (2) is a refornmat
of the definition. The equivalence of the condition$),(12") and (3)
follows easily from an equality:

) DDj@et et = > Dia)tel+let).
i,j>0 >0

1.3

LetD = {Dg, D1, ...} be alocally finite higher derivation onkaalgebra
A. An elementa of A is calleda D-constantif Dy(a) = 0 for every
n > 0, or synonymously ifp(a) = a. The setAq of all D-constants is
clearly ak-subalgebra oA.

131

Lemma.Let A, D and A be as above. Assume that A is an integral
domain. Then the following assertions hold:

(1) Ao is an inert subring of A. Namely, if & bc with a€ Ag and
b, ce Athen b, ce Ag. Therefore, if A is a unique factorizatiom7
domain and Ais noetherian, Ais a unique factorization domain.

(2) A* (:=the multiplicative group of invertible elementsAy) is con-
tained in A; hence A = Ap.

(3) Agisintegrally closed in A.

Proof. (1) Assume that = bcwith a € Ag andb, c € A, thena =
¢(b)¢(c), whence degp(b) = deg ¢(c) = 0. This shows thab,
ce Ao

(2) Leta € A" and letb be its inverse. Thep(a)e(b) = 1 whence
deg ¢(a) = deg ¢(b) = 0. Hencea € Aq.

(3) Assume that an elemeabf A satisfies a monic equation,

X"+ X"+ +c,=0 with cp....ch€ Ao
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Then, by applyingp, one gets
p(@)" +crp@" ™+ +cr =0,

whence follows that deg(a) = 0. Hencea € Ay.

1.3.2

Assume thaf is an integral domain, and I&t be the quotient field of.
The k-algebra homomorphisng : A — A[t] associated with a locally
finite higher derivatiorD is naturally extended to a homomorphigm
K — K][[1]] by setting

a\ _ ¢(b) ,
¢(B)_¢(a) for abe A with a=#0.

18 The homomorphisng defines, in turn, &-trivial higher derivatiorD =
{Do = id.,Dy,...} onK such thaip(1) = 3, Dj()t' for 1 € K and that
i>0

Dila = D; for everyi > 0. We setko := {1 € K;Di(1) = O for every
i > 0}. ThenKy is a sub field oK, and ford € K, A € Kq if and only if
#(1) = 1. We have the following:

Lemma. With the notations as above, the following assertions hold:
(1) Kqis algebraically closed in K.
(2) Kon A= Ay; if Dis iterative Ky is the quotient field of A
Proof. (1) Assume thafl € K satisfies an algebraic equation.
Xn+,uan_1+~-~+yn =0 with pua,...,un€ Ko
Then, by applyings, one obtains
$O" +p1p ()" + -+ pn = 0,

Note that if¢p(1) # A theng(A) is analytically independent over
K; hencep(1) does not satisfy a nontrivial algebraic equation over
Ko. Thusg(2) = 4, i.e.,A € Kg.
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(2) The equalityKo N A = Ag is clear becausg(a) = ¢(a) for a € A.
Assume now thab is iterative. We have only to show that any
A € Ko is written ast = bg/ag. With ag, by € Ag. Write A = b/a
with a, b € Aanda # 0. Let

p@=a+at+---+ant™ with an#0
and
o) =b+byt+---+byt" with by # 0.

SinceDi(am) = DiDm(a) = (iﬁm)DiJ,m(a) =0 fori > 0, we know
thatay, € Ag. Similarly, by, € Ag. Since¢(l) = A implies that
ap(b) = bp(a) we have:n = mandah, = bay,. Henceb/a =
Bn/am.

m|

133

If D is not iterativeKg is not necessarily the quotient field A§, as is
shown by

Example.Let A := K[ x, y] be a polynomial ring in two variables ovkr
Define ak-algebra homomorphism

e:A—> At] by ¢X)=x+xt and ¢(y) =y+yt

which defines a locally finite derivatio® on A. With respect to this
higher derivationAg = k, while, after extending to ak-algebra homo-

morphismg : k(x,y) — k(x, Y)[[t]], we haveg(y/X) = y(1+1)/x(1+1) =
y/X. Thus,Kq # the quotient field ofAg.
1.4

We prove the following:

Lemma. Assume that A is an integral domain and that D is iterative. If
there exists an element u of A such tha{u) = 1 and O (u) = O for all
i > 1, then A= Ag[u] and u is algebraically independent oveg.A
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Proof. For any elemend of A we set/(a) := deg ¢(a) and call itthe D- 20
lengthof a. By induction on thé-length{(a) we show that € Ag[u]. If

{(a) = 0 thena € Ap. Assume thah : ¢(a) > 0. Leta, := Dp(a). Then,

as was noted in the proof of LemmaTl3ag e Ag. Sincef(a—anu") < n

we know thata — a,u" € Ag[u], hence thata € Ao[u]. Therefore we
know thatA = Ag[u]. By virtue of LemmaL312, it is clear that is
algebraically independent ovAg. m|

15

In studying an integral domaiA endowed with a locally finite iterative
higher derivation, a key result is the following:

Lemma. Assume that A is an integral domain and that D is iterative.
If D is nontrivial (i.e., A # Ag) then there exist an element« O of

Ao and an element u of A such thafcAl] = Ag[cY[u], where u is
algebraically independent ovepAConversely, if A is finitely generated
over a subring Athe existence of elements ¢ and u satisfying the above
conditions implies that A has a locally finite iterative higtderivation.

151

The proof of the above lemma is given in the paragrdphsi+-85.4.
Let A :={ae A;Dn(a) = 0 for alln > i}. ThenA; is anAy-module, and

we haveA = [J A. Anintegernis calleda jump indexf An_1 & An.
i>0
If 1is a jump index, leu be an element of\; — Ag and letc = D1(u).

Thenc € Ag. The higher derivatioD can be extended naturally to a
locally finite iterative higher derivation oA[c™1] by settingD;(a/c") =
Di(a)/c", with respect to which the ring @-constants ig\[c™']. Since
D1(u/c) = 1 andD;j(u/c) = O for alli > 1 we have by virtue di-T14 that
Alc™1] = Ag[c7Y][u]. If the characteristi is zero, let a be an element of
Asuch thats:= ¢(a) > 0 and letu := Dg_1(a). Thenu € A; — Ag. Hence

1 is a jump index, and we havdc™] = Ag[cY][u] with ¢ = sDs(a).
Thus we may assume in the rest of the proof that the charstitepiis
positive and that the first jump index is larger than 1.
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Lemma. With the notations and assumptions as above we have the fol-
lowing:

(1) The first jump index n is a power of p, sayrp'.
(2) The m-th jump index is m@m=1,2,...).
Proof. (1) Letn be the first jump index, and let
N=nNg+nNp+---+np with n %0

be thep-adic expansion of. Assume thah is not a power ofp.
Then we have: Either (i)p > 1 or (i) np = 0andny +--- +n, >
2. In case (i),n # 0 (modp). Let a be an element oA, —
An-1, and leta’ = Dy_1(a). Thena' € A; — Ag becauséd;(a’) =
D1Dn-1(a) = NDn(d) # 0 andD;(@) = (™| ™!)Dpyi—1(a) = O for
i > 1. This contradicts the assumption tinat 1. In case (ii), let 22
abe an element oA, — Aq_1, and leta’ = Dyy(a). SinceD;(a’) =
DiDy (@) = (°;")Dp+i(@) = O fori > n—p andn-p' <n-1,
we know thata’ € Ay = Ag. On the other handdp_y (&) =
Dn-prDpr (@) = n:Dn(a) # 0, which implies that’ ¢ Ag because
n—p" > 1. This is a contradiction. Thus= p".

(2) Letu € Ay — Ag. For any integem > 1, u™ € Ang — Anp-1
becausep(u™) = ¢(u)™ andDy (u) is the leading ca@cient of a
polynomiale(u) in t. Hencemg is a jump index fom= 1,2, ....
Let g be the least jump index which is not a multiplegf and let

dpf <g<(d+21)p" with d>1

Leta e Ay— Aq-1 and leta’ = Dgy(a). Letgo := q—-dp < p".
ThenDg, (&) = Dg,Day (&) = Dg(a) # 0, which implies thaf\g &
Aq,. becausa’ € Aq, — Ag. This is a contradiction. Therefore,
every jump index is of the forrmp (m=1,2,...).

m]
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Proof of Lemma 1.5.Letue Ay —Aq. First, we assert that if R(u) # 0
for0 < m< p then mis a power of p andfju) € Ag. Indeed, assume
that Dy(u) # 0forO<m< p', and let

M= my+Mmp+---+msp3(Ms # 0)

be the p-adic expansion of m. If eithegta 2ormy = Ofori < s, let
a = Dys(u). Then By_ps() = Dm-psDps(U) = msDy(u) # 0Oand D(a) =
0ifi > p' — p% hence ac Ay_ps — Ao. This is a contradiction. Thus, m
is a power of p. On the other hand,Qu) € Ay_m = Ag since m> 0.
The first assertion is now verified. Let ¢ be the product of al{Wp # 0
for0 < m< p'. Since ce Ag, we can extend D uniquely tdex?]. Now,
we assert that jg™1] = Ag[c™1][u]. For this, we have only to show that
every element a of A is contained ig[&1][u]. For a € A, there exists
an integer m such that a Any. Let & ;= a— Dmy(a)Dp (U) — mym.
Then Dyg(ar) = 0, whence @ € Am-1)pr. By induction on m we know
that a € Ag[cJ[u]. by virtue of Lemm&L3.2, it is clear that u is
algebraically independent overRA

154

Proof continued. Conversely, assume thafc™t] = Ag[c™1][u] for a
subring Ag and elementg € Ap andu € A, whereu is algebraically
independent ovely andAis finitely generated oveky. Define a locally
finite iterative higher derivatiom on A[c™!] by a homomorphism of
Ao[cY-algebrasy’ : A[c™Y] — Alc7Y][t’] (t’ being a variable) such that
¢’(U) = u+t’. SinceAis finitely generate@’ induces a homomorphism
of Ag-algebrasp : A — A[t] with t = CNt for a sufficiently large integer
N. Then it is easy to see thatdefines a locally finite iterative higher
derivationD on A such thatdg is the set oD-constants irA.

1.6

In this paragraph, we assume thatis an integral domain and is
finitely generated ovek. Let D be a locally finite higher derivation.
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As in[I3, we denote by, K andKg the subring ofD-constants, the
quotient field ofA and the sub field oD-constants oK, respectively.
Concerning a problem whethgy is finitely generated ovek, we have
only a partial result due to Zariski (cf. Nagata [41; p.52]hich is stated
as follows:

Lemma. With the notations and assumptions as above, we have:

(1) If transdeg Ko = 1, then A is finitely generated over k.

(2) If Ais normal andrransdeg, Ko = 2, then A is finitely generated
over k.

2 Algebraic pencils of dfine lines
25

In this section the ground fiell is assumed to be algebraically
closed.

2.1

Let A be an #finek-domain (i.e., &-algebra which is finitely generated
overk and is an integral domain), and IBtbe a locally finite higher
derivation onA. Let Ag be the subring oD-constants, and l& andKg
be respectively the quotient field &fand the sub field ob-constants
of K. Let X := Specf), and letf : X x Al — X be thek-morphism
associated witlp : A — A[t] (cf. 1.2). For any poinP of X, denote by
C(P) the imagef (P x A') on X. ThenC(P) is either a point or a closed
irreducible rational curve with one place at infiﬂhyf A # Ag then the
set.# = {C(P); P € X,C(P) # a point is a family of irreducible rational
curves with one place at infinity. ID is iterative f is the morphism
giving rise to an action of the additive group sche@g(cf. 1.2) and
Z is the set ofG5-orbits; .# contains a subse#” whose members are
parametrized by Spesg[c™1]) (cf. 1.5). In this section, we shall study
the set# more closely when dim = 2.

1An irreducible curveC on an dfine variety is said to have one place at infinitgZif
has only one place having no centerXn
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2.2

Let Y := Specfy), and letq : X — Y be the morphism associated
with the inclusionAg — A. Then we have:q- f = q- pry, where
pry : X x Al — Xis the projection to the first factor. HengéC(P)) =
q(P) for P € X; namelyC(P) is contained in a fiber af. Moreover, if
Ko = Q(Ag) (= the quotient field of\y), then the general fibers gfare
irreducible.

221

Lemma. Assume that k is of characteristic zero, D is nontriviiim A =
2 and A is normal. Assume, moreover, that K Q(Ao) andtransdeg,
Ko = 1. Then there exist elementscdy and ue A such that Ac™!] =
Ao[c™Y[u], where u is algebraically independent ovey. A

Proof. Note thatY := Specfy) is a nonsingular curve sino&is nor-
mal (cf. Lemmd_L3]11, (3)). Embedinto a projective surfac¥ as an
open set; we may assume thats nonsingular at every point &f — X
by desingularizing singularities &f — X if necessary. SincKy is alge-
braically closed irK and trangleg Ko = 1, Ko defines an irreducible
pencil A onV such that ifC is a general member &f thenC n X is a
fiber of g. HenceA has no base points oX. We may assume that
has no base poirﬂsif necessary we can eliminate the base pointa of
by a succession of quadratic transformations with centiepeiats on
V — X and their suitable infinitely near points. L&t V — Y be the
morphism defined by; thendx = q : X — Y. LetZ := §X(Y) and
let r := qz. LetS be an irreducible component df— X such thatS
intersects the general fibers@fthenS is a cross-section af because a
general fiber ofj has only one place at infinity arkds of characteristic
zerdll. Moreover by Bertini’s theorem the general fibersr@re nonsin-
gular rational curves. Then, by virtue of Hironaka [22; Tieen 1.8],
there exists a nonempty open &etof Y such thatr~1(U) = U x P

2SinceV is nonsingular at every point &f — X, A is a linear pencil ifA has base
points.
lindeedn|s : S — Y is a generically one-to-one mapping. Hence it is birational
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Hence,g1(U) = 7~ }(U) - SNz 1(U) = U x AL. This shows that our
assertion holds. O

2.2.2

LemmdZZIl shows that the higher derivatidis determined uniquely
onA[c Y] by those value®;(u) = g;(u)(i > 0) or bye(u) = u+ Y gi(u)t',
i>0

whereg;(u) € Ag[c™2][u]. Then,D is iterative as higher derivation ok
if and only if g1(u) € (Ag[c™1])* andgi(u) = O fori > 1. Conversely,
assume thaf\[c™}] = Ag[c™1][u] for a subringAg and elements ¢
Ap andu € A, whereu is algebraically independent ovég andA is
finitely generated ovefq. For anyg;(u) € Ag[cJ[u](1 < i < n), not
all of which are zero, we can define a locally finite higher \hion
D’ on A[c™1] by a homomorphism of\g[c™1]- algebras,o Alcl] -

A[c™Y[t'] (’ being a variable) given by’(u) = u + Z o] (u)t’I Since

A'is finitely generated ovely we may find an mtegeIN > 0 such that 28
the homomorphisnp’ : A[c™}] — Alc7Y][t'] — A[c1][t] with t’ = cNt
gives rise to a homomorphism @%-algebrasy : A — A[t]. Then

¢ defines a locally finite higher derivatidd on A such thatAg is the
subring of D-constants iMA, Q(A) is the sub field ofD-constants in

K := Q(A) and trangdeg Ko = 1

2.2.3

Note that if the curves in¥ have a point in common we havg = k.
Indeed, if trangleg Q(Ap) = 1 two curves in# belonging to distinct
fibers ofq : X — Y have no points in common. Hence, trafeg), Q
(Ag) = 0, which implies thatAg = k. An example of a locally finite
higher derivatiorD, in which the curves inZ have a point in common,
is given by the following:

Example.Let A be the #ine ring of the &ne cone of an irreducible

projective varietyd. Write A = K[Zo, ..., Z)]/(F1, ..., Fm], whereFy,
., Fm are homogeneous polynomialskfz, ..., Z,]. Define a higher

derivationD’ onk[Zo, ..., Zp] by Dy = i.d., D] (Z.) = Z; and D’ (Z) =
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forO i £ nandj =2 2. ThenD’ induces a nontrivial locally finite
higher derivatiorD on A; the setZ consists of lines il\™! connecting
the point (Q...,0) and points olJ; Ag = k andKq (= the subgield of
D-constants irkK := Q(A)) = k(U).

2.3

An interesting problem is to ask the following: Létbe an &ine surface
defined ovek and let.# be an algebraic family of theffine lines on
X; when are all (or almost all) members &f of the form C(P) with

P € X for a locally finite (or locally finite iterative) higher deetion on
the dfine ring of X? A partial answer to this problem is given by the
following:

Theorem.Let A be a regular, rational, fine k-domain of dimensio
and let X be the gine surface defined by A. Assume that k is of charac-
teristic zero, that A is a unique factorization domain andtti* = k*.
Let.# be an algebraic family of closed curves on X parametrized by
a rational curve such that a general member%fis an gfine rational
curve with only one place at infinity and that two distinct get mem-
bers of.%# have no intersection on X. Then there exists a locally finite
iterative higher derivation D on A such that almost all mensbef .%

are the G-orbits with respect to the associated-@ction on X.

231

The proof of the above theorem is given in the paragraphdl 2. 2.3.3.
Let us embe into a honsingular projective surfatéas an open set;
note thatv — X is of pure co-dimension 1 iW. We have then:

Lemma.Let A, X and V be as above. If¥X is irreducible then V is
isomorphic to the projective plari and V- X is isomorphic to a line.

Proof. Let Vg be a relatively minimal rational surface dominated\lly
Vj is isomorphic taP? or Fy(n = 0,n # 1); V is obtained fromvy by

a succession of quadratic transformatidhs V., — ... —» V. Then
Pic(V) is isomorphic to a fre&-module of rank + 1 orr + 2 according
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asVp = P2 or Vp = Fp. The assumption that PXJ = (0) andV — X is
irreducible implies thaV = Vo = P2 andV — X is a line. O

2.3.2

Lemma.Let A, X and V be as above. Then there exists an irreducible
linear pencilA on V such that for a general member CAfCn X is a
member of%.

Proof. Let T be a rational curve and l&V be a sub variety oK x T
such that if we denote b, and p, the projections ofV onto X and T
respectively, then for any poimtof T, p; = (pgl(t)) is @ member of#.
Since two distinct members ¥ have no intersection oX, it is easy to
ascertain thap; : W — X is a birational morphism and general fibers
of p, : W — T are irreducible. In other words, if we identiifX) with
k(W) by p; andk(T) as a sub field ok(W) by py, k(T) is algebraically
closed ink(X). Hencek(T) defines an irreducible linear penailon V
such that for a general poihbf T, the membef€C; of A corresponding
tot cuts out a membet; N X of .# on X. O

2.3.3

Proof of the theorem .By the second theorem of Bertini, a general
member C of the pencil constructedin 213.2 has no singulartpout- 31
side base points ak. SinceA has no base points on X and@X

is a rational curve with only one place at infinity, € X is isomor-
phic to A and A has at most one base point which will lie on-VX

if it exists. Then by replacing V by the surface which is otsdifrom

V by a succession of quadratic transformations with censtrbase
points (including the infinitely near base points)/fand replacingA

by its proper transform, we may assume thalhas no base points. Let

f : V — P! be the morphism defined by, f has a cross-section S
such that Sc V — X (cf. the proof of LemmiaZZ2.1). Since the general
fibers of f are isomorphic t®*, by virtue of [22; Theorem 1.8], there
exists an gine open set (= ¢) of P! such that f1(U) = U x PL. Then
flU)nX=f1U)-SnflU)=UxAL
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The complemenk — f~1(U) n X consists of a finitely many (mutu-
ally distinct) irreducible curve&s, ..., G, which are defined by prime
elementsay, ..., a, of A, respectively. Thek[f~1(U) n X] = Ala™]
with a = a;...a,. Let B := k[U]; B is a subring ofA[a™!] such that
Ala™l] = B[u] for some elementi of A which is algebraically inde-
pendent oveB. Write B in the formB = k[v, g(v)~] with v € B and
gv) = |H (V- @) (a1,...,as being mutually distinct elements &j.

<ISS

SinceA* = k* andA is a unique factorization domainAfa—])*/k* is
a freeZ-module of rankr generated by, ...,a,. On the other hand,
sinceAla™!] = B[u] we have A[a™1])* = B*. Hence we have = s.

We shall show thaff(X) is an dfine open set oP!. Assume the
contrary: f(X) = PL. Here we note tha¥ — X is not irreducible. In-
deed, if so,V = P2 andV - X is a line by virtue ofZZ3]1; then two
distinct general fibers of have to meet at a point ovi — X which is
a contradiction. The irreducible components\bf- X other than the
sectionS correspond to a finite number of poir@, ..., Qm of P! by
f,i.e., f(V-=XUS) ={Q...,Qn}. Then the assumptiof(X) = P*
implies that for every K i £ m, f~1(Q;) n X is not empty and consists
of a finite number of irreducible curves which belong{@, ..., G;}.
We may assume that ) (f"1(Q)NnX) =GLU...UG,, withr’ <.

<

1<ism

Let f(Gry1U...UGy) = {Qmit,...,Qs}. Thens = s+ 1 sinceU
is obtained fromP! by deleting the pointy = «a1,...,V = as and the
points at infinityv = co; we haves £ r since all irreducible curves of
X - f~1(U) n X are sent to the poin®y, ... ., Qs, by f. However, this is
absurd since = s. Thereforef(X) is an dfine open set ap?.

Let A := k[ f(X)]. ThenAg is a subring ofA, and there exists an ele-
mentag of Ag such that) = Specfyo[a;']), f~1(U)n X = Specfa,’])
and Ala;"'] = Ao[ag'][u]. Now define a locally finite iterative higher
derivationD = {Dg = id., D1,...} by settingD; = (1/i!)D!, D1(b) = 0
for any elemenb of Ag andD4(u) = a('}' for a suficiently large integeN
(cf. [[53). With respect to th&,-action onX associated with, almost
all members of# are theG;-orbits.
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2.3.4

The assumptions oA in the statements of the theorem imply thats
isomorphic to the fline plane (cfl3311 below).

24

Let X be a nonsingularfane surface defined ovég and let.# be an
algebraic family of closed curves parametrized by a clrgeich that a
general member of# is an dfine rational curve with only one place at
infinity and that two distinct general members®fhave no intersection
on X. The proof of Lemmd& 232 slightly modified shows that there
exists a nonsingular projective surfadecontainingX as an open set
and an algebraic pencil onV (whose members are parametrized by
the complete normal model @f) such that almost all members &f

are cut out onX by members of\; in fact, a general member oF is
isomorphic toAl. Thus we may speak o asan algebraic pencil of
affine lines on X parametrized by TGiven an algebraic penci# of
affine lines on anffine surface, it is not necessarily true that almost all
members of%# are Ga-orbits with respect to an action &, on X. To
construct such examples we need the following two lemmas.

241

Lemma. Let C be a nonsingular projective curve of genus g. Let L be an
ample line bundle on C and let E be a nontrivial extension of & (if

it exists at all). Let S be the section of thebundleP(E) corresponding

to L and let X= P(E) — S. Assume that the characteristic of k is zesa
or degL > 2g. Then X is an gine surface such that the restriction
onto X of the projectiorP(E) — C is a surjective morphism onto C.
Conversely, if an gine surface X is @!-bundleP(E) over C deleted

a section then X is isomorphic to agfiae surface constructed in the
above-mentioned way.

Proof. Let L be an ample line bundle o@ and letE be a nontrivial
extension ofL by 0c. Assume that the characteristic lofis zero or
degL > 2g. Then itis known by Giesecker [[15] thatis an ample vector
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bundle onC and the tautological line bundi€g) (1) is isomorphic to
Ope(S). ThereforeS is an ample divisor on a nonsingular projective
surfaceP(E) andX = P(E) — S is dfine. It is clear that the restriction
onto X of the projectionP(E) — C is a surjective morphism onto.
Conversely, lete be a vector bundle of of rank 2, letP(E) be
the P1-bundle associated with and letX be theP(E) deleted a section
S. LetL’ be the quotient line bundle & corresponding to the section
S and letL be the kernel oE — L’. We shall show that’ @ L!
is ample and thaX is isomorphic toP(E ® L) deleted the section
S’ corresponding td’ ® L~1. SinceX is afine, S is irreducible and
P(E) is nonsingular, the sectio regarded as a divisor dA(E) must
be ample. Lef : P(E) — P(E ® L) be the canonical isomorphism.
Then the sectiors is transformed to the sectio® by i and X to the
affine surface?(E ® L™1) — S’. HenceS’ is an ample divisor oi?(E ®
LY. Letj : C — P(E) be the isomorphism sendir@to S. Then
i - is an embedding. Taking account of the facts thafe 1)(1) =
Opeal-1(S) and (- ))* (OpeeL1 (1) = [*(Cre(D@L ) =L L™,
we know thatlL’ ® L™t is an ample divisor og. O

24.2

The dfine ring of an &ine surface observed INZH#.1 has no nontrivial
locally finite iterative higher derivation. This is an imnigi® conse-
gquence of

Lemma. Let V be a variety defined over k, let L be a line bundle over V
and let E be an extension of L 8. Let X be thé®'-bundleP(E) minus

the section corresponding to L. If%X, L) # 0, X has a nontrivial G-
action. Conversely, assume that X has a nontrivigia@tion and that
either there is no non-constant morphism frarhto V or G, acts along
fibers of the canonical projectidf(E) — V. Then H(V, L) # 0.

Proof. Let = {Ui}i be an #ine open covering o¥ such thatE|y,

is Oy,-free for anyi € 1, and let{(% %)} be the transition matrices of
E relative to%, where{a;} is the transition functions of. X is in
fact anAl-bundle onV with affine coordinategx} which are subject

to x; — ajix + bj for anyi, j € I. If HO(V,L™1) # 0, we may assume
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that there is a set of functior{s} on V such thats(# 0) € I'(V,, &v)
ands; = ajs for anyi, j € I. Define a nontrivial locally finite it- 36
erative higher derivatio® = {Dg, D1, ...} onT'(U;, &v)[x] by Dg =
id., Dnlru;.e,) = 0 forn > 0 andDp(x™ = (7)X™"s"if m2= nand 0
otherwise, wher&(U;, 0\))[x] is the dfine ring ofr~%(U;), 7 being the
restriction ontaX of the projectioriP(E) — V; D gives rise to a nontriv-
ial Gg-action onr~1(U;). It is now easy to ascertain that tBg-actions
defined on{z~1(U;)}ii patch each other om1(U; n U;) to give a non-
trivial Ga-action onX. Assume next thaX has a nontrivialzz-action on
X; by the assumption in the statement of Lemi@g,acts along fibers
of r. By virtue of[I.32, theG-invariant sub field irk(X) is k(V). For
everyi e |, theG,-action restricted on~1(U;) gives rise to &'(U;, Ov)-
homomorphismy; : T'(Uj, Ov)[x] — T'(Ui, Oy)[x,t], t being an inde-
terminate. Writepi(x) = st"+ (terms of lower degree ihwith coef-
ficients inT'(U;, Ov)[X%]), wheren =2 1, 5 # 0 ands € T'(U;, Ov)[X%]-
Sinces is Ga-invariant we haves € I'(U;, 6y)[x] N k(V) = T'(U;, Ov).
Moreover it is easy to see thatis independent of ands; = aji s for
i, j € I. Then{slie gives a nonzero section ¢1°(V,L™1). Hence
HO(V,L™Y) # 0. O

2.4.3

By virtue of Lemmd 2411 andZ2.4.2 we can present an exampda of
affine surface with an algebraic pencil dfiae lines, on which there is
no Ga-action such that general members of the pencil aré&therbits.
We shall content ourselves with the following: 37

Example.Let A be the diagonal on the surfaég := P! x P, let X :=

Fo— A and letr : X — P! be the restriction of the projection & onto

the second factor. Consider an algebraic pe#gcibf affine lines onX

consisting of fibers ofr. Then there is n@&,-action onX with respect
to which general members of areG,-orbits.

Proof. LetL = 051(2) and letE = Opi(1) @ Op1(1). Then 0— Op1 —
E — L — 0is a nontrivial extension; the section BfE) = Fq corre-
sponding td_ is the diagonal of Fg. ThusX is an dfine surface of the
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kind treated in.2411. Now, By 2.4.2 our assertion follonanfrthe fact
thatHO(PL, 0p1(-2)) = 0. O

In this example, theféine ringA := K[X] has the property: CK) =
Z and A" = k*. This remark shows that the assumptionA}I& 0 in
TheorenZB is indispensable.

3 Algebraic characterizations of the dfine plane

3.1

As the title indicates, the purpose of this section is to fintkda for a
given dfine surface to be isomorphic to thiae plane; in other words,
criteria for an #fine k-domain to be isomorphic to a polynomial ring in
two variables ovek. In this section the ground fieklis assumed to be
algebraically closed. Firstly we shall prove:

Theorem.Let A be an gine k-domain of dimensica Then A is iso-
morphic to a polynomial ring in two variables over k if and piifl the
following conditions are satisfied:

(1) Ais a unigue factorization domain.
2 A =k

(3) A has a nontrivial locally finite iterative higher derivatio

311

This theorem was firstly proved by the lecturer in [32; TheorH by
analyzing the associate@@,-action on Sped). Recently, Nakail[44]
gave an elementary proof using only the structure offinesk-domain
with a locally finite iterative higher derivation. We shatbgent here the
proof of Nakai's. The theorem will be proved in the parag<lBL2~
BT13.
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3.1.2

Assume thatA is a unique factorization domai®y* = k* and A has
a nontrivial locally finite iterative higher derivatioD. Let Ap be the
subring ofD-constants irA. Then we have:

Lemma. Ag is a polynomial ring in one variable over k. 39

Proof. By virtue of Lemmad_L.311 and 1.6\, is a normal &ine k-
domain such thaf\j = k*; thenAq is a unique factorization domain
(cf.[33). Lemmall5 shows that ditg = 1. Then these facts imply
our assertion. O

3.1.3

With the same notations as[inL.5, t= p" and letM,, := Ane(n =
1,2,...), whereneis then-th jump index. Note that i € A hasD-
lengthn (cf. [L.4) thenD(a) € Ap. Letl, := {Dpe(a);a € My} forn 2 1;
then it is easy to ascertain thatis an ideal ofA. By virtue off321.2, we
may writel, = apAg for n > 1. Letu be an element df1; — Ag such that
De(u) = 3. We shall prove by induction omthe following assertions:

(1)n:|n:|:r|_]
(Z)n: Mn:Ao+A0u+...+A0un

Firstly we shall see that (1)mplies (2),. Leté € M. Then (1) implies
thatDne(¢) = cd] for somec € Ag. Hence theD-length(¢ — cU) < ne,

i.e., & € Mp_1 + Agu". Thus (2), follows from (1),. Next we shall
show that (1) + (2)n = (L)ns1. Leté& be an element o, 1 such that
D(n+1)e(é) = ans1. Sincel™ C 1,1 we may writeal™ = cay.1 with

c € Ag. Thené(cé — u™?l) < (n+ 1e i.e.,c& — u™! € M,. Hence by
(2)n we have:

n
¢t =u"+ Y U with by e Ao,

i=0

We shall show that € A = k*. Assume the contrary, and létbe 40
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a prime factor ofc. Taking the residue classes &y fA, which is an
integral domain by virtue di 1.3.1, we have:

n
Un+l + ZBiUi = 0, Wlth Bi € AO/fAO = k
i=0

Sincek is algebraically closed we findl € k such thafi = 2. Namely,
u-A= fvwithv e A; itis easy to see thate M; anda; = Dg(u) =
fDe(V). This is a contradiction. Therefolg,; = I’l”l. Since (1) and

(2)o obviously hold, we know thah = G Mp = Ag[u]. Hence by virtue
n=1

of BZI.2 we know thaf\ is a polynomial ring in two variables ovér

3.14

Conversely, ifAis a polynomial ring in two variables ovér A satisfies
the conditions (1), (2) and (3) of Theordml3.1.

3.2

Another algebraic characterization of thffime plane is given by the
following:

Theorem.Let k be an algebraically closed field of characteristic zero
and let X be a nonsingularf@ne surface defined by arfiae k-domain
A. Assume that the following conditions are satisfied:

(1) Ais a unique factorization domain and A k*.

(2) There exist nonsingular irreducible curvesg @nd G, on X such
that G;NC;, = {v}, and G and G intersect each other transversely
atv.

(3) Cq (resp. G) has only one place at infinity.

(4) Let & be a prime element of A defining the curve Then a — «
is a prime element of A for alf € k.
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(5) There is a nonsingular projective surface V containing X as a
open set such that the closu@ of C, in V is nonsingular and
(a2)o = Ca.

Then X is isomorphic to thefine planeA?, and the curves Cand G
are sent to the axes of a suitable coordinate systeArof

3.21

The Proof of the theorem will be given in the paragralphs B-4312.4.
We shall begin with

Lemma. Let the notations and assumptions be as above. Lahd &
be prime elements of A defining the curvesa@d G, respectively, and
let C5 be the curve on X defined by a « for « € k. Then we have:

(1) C, and G are rational curves.

(2) Foreverya € k, C;NCY = {v,} and G intersects G transversely
at v,.

Proof. Letd = ap (moduloa;A). Thend is a regular function o1C;.

Let C; be the complete nonsingular model®f, let P., be the unique
point of C; corresponding to the unique place at infinity@fand letw

be the normalized discrete valuationk§C1) determined byP,,. Then

(d) = v+ w(d)Ps, whencew(d) = —1. ThenC; is a rational curve.
Interchanging the roles d; and C,, we know thatC, is a rational 42
curve as well. For every € k, we havew(d — ) = w(d(1 — ad™)) =
w(d) = -1. Hence §-«) = V, — P, whereC;NCJ = {Vv,}; this implies
thatC, andC{ intersect each other transverselyat m]

3.2.2

Lemma. Let A be an #ine k-domain and let a be an element of k.
Assume that A is a unique factorization domain, that=Ak* and that
a-— «a is a prime element of A for evetye k. Let S= k[a] — 0 and let
A’ = S71A. Then we have:

(1) A is aunique factorization domain.
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(2) A" = K*, where K= k(a).

(3) The quotient field Q) of A’ is a regular extension of K; there-
fore A defines an fine variety defined over K with dimension
one less thawlim A.

Proof. The assertion (1) is well-known. K™ # K* there exist elements
x andy of A — K[a] such thatxy = ¢(a) # 0 with ¢(a) € k[a]. Then,
by the assumptions tha is a unique factorization domain armd- «
is a prime element of\ for everya € k we havex, y € k[a]. This is a
contradiction, and the assertion (2) is proved. As for trsed®on (3),
we have only to show thd is algebraically closed iQ(A’) because
chark) = 0. Assume thaf /g is algebraic oveK, wheref andg are
mutually prime elements oA. Then there exist elemengs, ..., ¢, of
k[a] such that the greatest common divisorgf. . ., ¢n is 1 and that

eo(f/Q)" + @1(f/@)"* + -+ ¢n = 0.

Thenf andg divide ¢, andgg respectively. Hencé andg € k[a]. Thus
f/geK. O

3.2.3

Lemma. Let the notations and assumptions be as in the statemerg of th
theorem. Then, for almost all elementf k, C is a rational curve
with only one place at infinity.

Proof. For a general element of k, the principal divisor &, — @) on

V is of the form: @, — @) = C, + D — D’, whereC, is the closure
of CjonV, D and D’ are dfective divisors such thdd > 0, D’ = 0,
SuppD) U SuppD’) € V — X, D andD’ have no common components,
andD andD’ are independent ef. By the condition (5) of the theorem
we have §,) = C,- (the polar divisor), whence we can easily conclude
that @) = DH andD = 0. Therefore, there exists a linear pencibn

2If E is an irreducible component &f — X, letw be the corresponding normalized
discrete valuation df(V). If E ¢ Supp(é2)«) thenw(a,—a) = w(ax(1-aa;t)) = w(ap).
Similarly, if E ¢ Supp(@; — a)..) thenw(a,) = w((a; — a)(1+a(a; —a)™)) = w(az —a).
Hence &;)., = D’.
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V such thaC, andég are members af for almost alle of k; A has no
base points oiX; sinceC; is a nonsingular rational curve, general mem-
bersC, are nonsingular rational curves. L\&tbe the generic member
of A; W is then a nonsingular projective curve of genus 0 defined oxer
K = k(ap). Let C be the #&ine curve defined by anfiine K-domain

A = S7IA whereS = k[ay] — 0 (cf.[Z2Z2). TherC is an open set
of W. Note thatwW has aK-rational pointP which is provided by the
sectional curveS;. HenceW is isomorphic td! overK. Letx be an in-
homogeneous coordinates\Wf:= P such thatx = co atP. Then there
exist irreducible polynomiald, . .., f, of K[X] such that the fline ring
KIC - P]is K[x, f71,..., f71]. Then K[x, f;1, ..., f;1])*/K* is a free
Z-module of rankn. However, sinceY is a unique factorization domain
andA’* = K* we must haveK[C—P])*/K* = Z, i.e.,n = 1. This means
thatW — C consists of only on&-rational prime cycle. On the other
hand,P is linearly equivalent to some multiple of tikerational prime
cycleW — C. This implies thatW — C consists of only on&-rational
point. HenceC is isomorphic toAl over K. This implies thatC? is
isomorphic toA? for aimost alla of k. O

3.24

The proof of the theorem.Let % = {C¢; a € k}. Then Lemm&3213
shows thatZ is an algebraic pencil offne lines parametrized b4;
by virtue of Theoreni Z]3 we can find@,-action onX with respect to
which almost all members ofF areG,-orbits. LetD be the nontrivial
locally finite iterative higher derivation correspondirmthe G;-action.
Then the subring\, of D-constants irA is k[ay]; in fact, if Ag = k[a] for
a prime elemena in A (cf. [3I.2) thera, € k[a], whence follows that
k[ap] = k[a] becausen; is a prime element oA. By virtue of Theorem 45
B we know thatA = k[ap, u] for some elementi of A. HenceX is
isomorphic to the fiine plane, and the cun, is identified with a axis
of a coordinate system @f2. Write a; in the form

a; = go(a) + gr(a)u + - - - + gn(a)u"

with gi(az) € k[ap] for 1 <i < n. SinceC; meetsCS transversely only in
one point (cf(3Z]1) we can easily ascertain théday) = 0for2<i <n
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andgi(az) € k*. This implies that the curve8; andC, are identified
with axes of a coordinate system&f. Thus, Theorerfi3l2 is proved.

4 Flat fibrations by the affine line

4.1

The results of this section were worked out jointly by Kandmtyi and
the lecturer[[Z2B]. The goal of this section is to prove thdofeing two
theorems:

41.1

Theorem.Lety : X — S be an gine. faithfully flat morphism of finite
type; assume that S is a locally noetherian, locally facthrintegral
scheme, and that the generic fibergis A' and all other fibers are
geometrically integral. Then X is a'-bundle over S.

4.1.2

Theorem .Let k be an algebraically closed field, let S be a regular,
integral k-scheme of finite type, and{et X — S be an gine, faithfully
flat morphism of finite type. Assume that each fiberisfgeometrically
integral and the general fibers gf are isomorphic toA! over k. Then
there exists a regular, integral k-scheméed finite type and a faithfully
flat, finite, radical morphism S— S such that )§S’ is an Al-bundle

over S. If the characteristic of k is zero X is ai'-bundle over S.

4.2

The proof of Theoreri4.1.1 will be given in the paragraph$~4Z3

and the proof of Theorefn’21.2 in the paragraphs~4Z6d. We shall
begin with the following elementary result, which is a spéciase of a
theorem by Nagata [40]:
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Lemma.Let o be a discrete valuation ring and let A be a flgf -
algebra of finite type. Let K be the quotient field gf, t a uniformisant
and k the residue field, and letxfand A, denote k® A and I@A re-

S
spectively. Assume thakfAnd A are integral domains. Then we have:
(1) If Ak is anormal ring, sois A.

(2) If Ak is factorial (i.e., A is a unique factorization domain), so is
A.

Proof. We shall prove only (2), as proof of (1) is a routine exercBe.
flatness there is a natural inclusigdi c A, andA is in turn contained
in Ax and is noetherian. Sino# is integral,tA is a prime ideal inA
and N t"A = (0). Let & c A be an arbitrary prime ideal of height 1.

v=0

If t € & then clearlytA = 2. In caset ¢ &2, the idealZ Ak is prime
of height 1 in the factorial domaiAx = A[t™!], whenceZAx = fAk,
where we may and shall take € A — tA. Letb € & be arbitrary,
and writeb = ft™Ma with integermanda € A —tA. If m < 0, then
fa = bt™™ € tA, an absurdity. Consequently) > 0 andZ C fA. It
follows that%? = f A because € £2. O

4.3

Lemma.Let(_¢,t_#) be a discrete valuation ring with residue field k
and quotient field K. Let A be a flay -algebra of finite type. Assume
that Ax := K®A is K-isomorphic to a polynomial ring [K] in one

I
variable and that A := k® A is a geometrically integral domain over k.
Then Ais isomorphic to a polynomial ring in one variable oygr.

Proof. BecauseA is factorial by Lemmd4]2, or rather because of tlag
simple fact that") t"A = (0), we may assume thate A andx is prime

v=0

to uniformisantt of _#. We may writeA = _Z[X,y1,...,Y¥m]. Since
A c Ak = K[X] there exist integers; = 0 such that

1) tOyi = i(X) 1= Do + A X+ -+ + Airy X'V
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with 2jj € # forl <i < mand 0< j £ r(i), where we may assume
with eachi that if &; > 0 not all of ig, A1, . . ., Airg) are divisible byt.
Letay = maXa(l),...,a(m)}. Consider the following assertion:

P(n): If x € Ais found as above withy = n, then there is somg € A
such thatA = Z[X].

We shall prove the assertid?(n) by induction onn. P(0) is obviously
true. We proveP(n) by assuming thal(r) is true ifr < n. By applying
the canonical (reduction modutphomomorphisnp : A — A/tA = A¢
to the both hand sides of (1) for eaicWith a(i) = ax, we get

(2) p(Aio) + p(Aip(X) + -+ + p(Airy)p(N'® = 0

with at least one of the cdigcientsp(4ij) # 0. SinceAy is an integral
domain the equation (2) is a nontrivial algebraic equatibp(®) over
k. SinceAy is geometrically integral the fielld is algebraically closed
in the quotient field ofA,, whencep(X) € k. Letu € % be such that
o(u) = p(X), and writex — u = t¥x; with a positive integep andx; €
A—tA. Then notingpi(u) € t% and by substituting + t*x; for xin (1),
we obtain after cancellation of

t"Oyvie Z[x] for 1<ism and K[ =K[x]

whereay, = maxa/(1),...,a’(M)} < n = ayx. SinceP(ay,) is assumed
to be true, the conclusion &f(n) holds. m|

4.4

It is easy to see, as shown in the paragraph 4.5 below, thair&ime
K11 follows fronTZ4.B in the special case where @m 1. In order to
prove the theorem ove& with dimS = 2 we need the following

Lemma. Let (A,.#) be a factorial local ring of dimensioz 2 with

residue field k. Let R be a flat A-algebra of finite type. Assume t

Ry, = Ay8R is Ay-i hi I ial ri [
7 /§\> is A, -isomorphic to a polynomial ring At »] in

one variable for every nonmaximal prime idegl of A and thatR :=
R/.#R is geometrically regular over k. Then R is A-isomorphic to a
polynomial ring At] in one variable over A.



Flat fibrations by thefine line 27

Proof. The proof consists of four steps.

() Let X := SpecR), S := Specf) and lety : X — S be the flat

(I

morphism of finite type corresponding to the canonical itijggc

A — R ¢ is in fact faithfully flat, and each fiber af is geo-
metrically regulary is, therefore, smooth. Sin&is normal this 50
implies thatX is normal [17; IV (6.5.4)]. ThusR is a normal
domain.

Let U := S — {.#}. SinceR is fainitely generated oveh and
Ry = Ay[t ] foreach # € U, there isf , € A- 7 such
that R f;}] = Al f;}][t/], whence we know that existence of an
open covering” = {Vi}ic) of U such thav; := Specf\[ fi‘l]) with

fi € AandR[f™] = A[f 1][t] for eachi € I. This shows that
Xu = ¢ HU) = X>S<U can be viewed as aa!-bundle overU.

SetA = A[f1], Ajj := ALf, fj‘l] and Ajje := A[f 2, fj‘l, ft
fori, j, ¢ € I. SinceAj[t] = R[f2, fj‘l] = Ajj[t;] and Ajj is an
integral domain we gefj = «jitj + g8 with units e in A and
Bji € Aji for each pait, j of I. wherea;;’s andg;;’s are subject to
the relations inA;j,:

ag = agjaji and B = aiBji + Brj.
Hence {aj;} gives rise to an invertible shehfe H(U, 0\;). How-
ever,H(U, 0\;) = (0) becauseA, .#) is a factorial domain [19;

Exp. Xl, 3.5 and 3.10]. Thus, by replacing by a finer open
covering ofU if necessary, we may assume that

ti=t+B; with gj e A; suchthat
(3) Be =Bji +Ba for i,jlel.

Hence,{3jj} defines an elemeugte H(U, o).

(Il ConsiderXy = ¢~ 1(U) = X>S<U and letY := X — Xy. By the local 51
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cohomology theory we have the following commutative diagra

H(Xy, Ox) ——= H2(X, Ox) ——Im Ex@(R/.Z"RR)

n

9U |9J/{ GA

~ - H 2 n
HY(U, 0s) ——= H2,(S, Os) —— “%1 Extay(A/. 4", A)

where the terms in the upper and lower rows are respectRely
modules and\-modules, andy, 8, andd are homomorphisms
induced by the canonical injectiofis — ¢, Ox; for the defini-
tions and relevant results, s¢el[19] lorl[20]. Sifcis A-flat and
lim commutes witiR®?, we have

- A

lim Ex(R/.Z"RR) = R%Im ExG(A/. 2", A)

n n

andda is identified with the homomorphismu — 1® ufor u e
lim ExG(A/.2" A). SinceRis A-flat, 64 is then injective. The

cnommutative diagram above shows tiigtis injective. On the
other handXy has an open covering™? = {¢"1V,}y, and the
elementdy (£) € HY(Xy, O) is represented by @ech 1-cocycle
{Bij} with respect top~17. The relation (3) above implies that
{Bij} is in fact aCech 1-coboundary because I'(¢~1(V;), Ox) =
A[ti]. Thusdy(¢) = 0, and hencé& = 0 becausdy is injective,
which implies thaiXy has a section and is, in fact, a trivial bundle
Al

(IV) Replacing?” by a finer open cover in df if necessary, we may

assume thaj = yj—y; withy; € A, andfori, j € I. Thentj—y; =
tj —yj for every pain, j of I. Lett :=tj —y;. Thent € I'(Xy, O%).
On the other hand, since codifiK) > 2 andRis normal,f is
Y-closed [17; IV (5.10.5)]. Hencee I'(Xy, Ox) =T'(X, Ox) = R.
Now, look at theA-subalgebrai[t] of R, and letZ := Specf\[t]).
Then, ¢ decomposes aX "7 4 S, wherey; and ¢, are
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the morphisms corresponding to the injectighs— AJt] — R.
By step (Il),R » = A ;[t] for each_# € U. This implies that
QU Xu = ¢t (U) = ZxU is aU-isomorphism. Notice thaf’;

is Z - ¢,1(U)-closed because codidbf ¢,1(U),Z) 2 2 andZ is
normal. Then we have:

Alt] = T(Z, 07) = T(g,"(V), O7) W I'(Xy, Ox) = R

ThusR = A[t].

4.5

Proof of Theorem 4.1.1 Sinceg is afine, it syfices clearly to prove
the theorem under the hypothesis that X and S #imeaschemes. The
proof consists of two steps.

() LetA:=T(S, Os)and R:=T(X, &x). The homomorphism A R
induced byy is injective, and makes R a flat A-algebra of finite
type. For each prime ideal# of A, let R, := A/§R. By induc-

tion on n:= height # we shall establish the following assertion:

PM) - : R # is a polynomial ring in one variable over A
-if _¢# is of height n.

Indeed, RO) follows from the assumption of the theorem. A4, 53
A y is a discrete valuation ring, and (B) follows from Lemma
A3. We shall prove @) for n > 2, assuming &) to hold for
every r < n. By slight abuse of notations we write R and A
instead of R, and A, respectively. Now, A is a factorial lo-
cal ring of dimensiorz 2 with maximal ideal#. By virtue of
[17; 1 (7.1.7)] one can find a discrete valuation ring/ such
that the quotient field K ofZ agrees with that of A and that
2 dominates A. Theﬁ’/ﬁR is a flat% -algebra of finite type,

K®(02/§>R) = K§>R is a polynomial ring in one variable over K,
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and (%/t%)@(%@R) (%/t%) ® (R////R) is geometrically
integral, where tisa unlformlsant cﬂ/ By Lemm@SQ/@R

is then a polynomial ring in one variable ovel. If foIIows
that (%/t%)A/@}z(R/%R) is geometrically regular and, there-

fore, R.ZR is geometrically regular over /A#. This remark
and Rr) for 0 £ r < n imply that A and R satisfy all assump-
tions in Lemmd&]4. Thus, by that Lemma we know that R is a
polynomial ring in one variable over A.

(I Since R is finitely generated over A, step (1) implies thateforh
prime ideal # of A there exists an element ¢ A such that
f¢ 7 and R 1] is a polynomial ring in one variable over
A[f~1]. Thus, for the Zariski open set{U= Spec@[f™1]) c S,
an isomorphism )§Uf = A1>Z§Uf obtains, and S is clearly cov-
ered by finitely many such{$. This completes the proof of The-
orem4.T1.

4.6

Letk be a field. Ak-schemeX is called a form ofA! overk, or simply a
k-form of Al if for an algebraic extension field of k there exists &’-
isomorphisz>|§k’ — A&%k’ = Aﬁ,. When that is so, there is a purely
inseparable extension fiekd of k such that)(%k” is k”’-isomorphic to

A&,, (cf. Chapter 3, 1.2). It is easy to see that, fok-achemeX and
an algebraic extension fiekl of k, X is ak-form of Al if and only if
X%k’ is ak’-form of AL, A k-form of Al is evidently an fiine smooth

k-scheme. Ak-form of A may be characterized as a one-dimensional
k-smooth scheme of geometric genus zero having exactly oredypu
inseparable point at infinity. For detailed study Krforms of Al, see
[26; §6] and [27].

4.7
A key result to prove Theorem4.1.2 is the following
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Lemma. Let k be a field of characteristic p 0, let S be a geometrically
integral k-scheme of finite type, and let: X — S be an gine, flat
morphism of finite type. Assume that the general flbers ae forms
of Al over their respective residue fields. Then the generic fieis)a
K-form of AL, where K is the function field of S over k. I=00, Xk is
K-isomorphic toA}.

Proof. The proof consists of four steps. 55
(I) Let k be an algebraic closure & LetS := S%E, X = X%E
andy = goQI?R. ThenS is an integrak-scheme, and the general

fibers ofg arek-isomorphic toA%. The stated conditions fgrare
evidently present fop. LetK := E%K. As remarked 416, the

generic fibeiXk of ¢ is aK-form of Al if and only if the generic
fiber X of g is aK-form of AL, These observations show that
in proving the lemma we may assume from the outset khat
algebraically closed and that the general fiberskaismmorphic

to A&. Furthermore, we may assume with no loss of generality
thatS is smooth ovek because the set of &lsmooth points 06

is a non-empty open set. We assume these additional carglitio
in the step below.

(I) Let C denote the generic fibetk of ¢-C is an dfine curve ovek,
whose function fiel& (C) is a regular extension field &f [17; IV
(9.7.7), 111 (9.2.2)]. For each positive integemwe letK, := KP".
If p =0, K, is understood to meal. By virtue of [12; Th.5,
p.99], there exists a positive integrsuch that a completiy-
normal model ofKn(C) := KN<§K(C) is smooth ovelKy. We

fix such anN once for all. LetSy be the normalization o in
Kn. SinceS is smooth ovek andk is algebraically closedSy
is smooth ovelk and the normalization morphis®y — S is
identified with theN-th power of the Frobenius morphism $f.

(Il) Let Cy be a complete normal model K (C) overKy. ThenCy 56
is a smooth projective curve ovéry. ThusCy is a closed sub
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scheme in the projective spaEQ'N defined by a finite set of ho-
mogeneous equation$,(Xop, ..., Xm) = 0;1 € A}. One can then
find a nonempty open sét of Sy such that all the cd&cients
of all fﬁ’s, as elements oKy = k(Sy), are defined orJ. Let

Xn be the closed sub schemeﬂéﬁﬁu defined by the same set

of homogeneous equatiof;(Xo, ..., Xm) = 0;2 € A}, and let
&N Xn — U be the projection ontt). The generic fiber ofy;,
which coincides wittCy, is geometrically regular. Applying the
generic flatness theorem [17; IV (6.9.1)] and the Jacobiéa-cr
rion of smoothness, we may assume, by shirinkintp a smaller
nonempty open set if necessary, tiatis smooth ovetJ. Now,
look at the morphismpy : Xy = X>S<U — U obtained from

¢ : X = S by the base chandé — S. SinceCy is a comple-
tion of the generic fibe€Cy := CgKN of ¢n, we have a birational

U-mappingyn : Xn — Xn such thatpy = @y - ¥n. Sinceyy is
everywhere defined o8y, we may assume, by replacitgby a
smaller nonempty open set if necessary, that Xy — Xy is an
open immersion obJ-schemes.

(IV) If now suffices to show thaXy is aK-form of A under the addi-

tional hypotheses:

(i) There exists a projective smooth morphigm X — S and
an open immersioy : X — X such thatp = ¢ - .

(i) Every closed fiber ofp is k-isomorphic toA&.

Then, every closed fiber Gf is k-isomorphic toP} by virtue of
the conditions (i) and (ii). Since is faithfully flat and arithmetic
genus is invariant under flat deformations ([18; Exp. 22%],p.
[17; 1ll, §7]) we have the arithmetic genys(Xi) = O for the
generic fiberXx of @, which is a smooth projective curve defined
over K. We shall next show thaXx — (Xk) has only one point
and the point is purely inseparable over Letn be a point on
Xk —(Xk) and letT be the closure of in X. Then,T € X—y(X),
the restrictiorpt : T — S of g ontoT is a dominating morphism,
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and degor = [K(n) : K]. Notice thatet is a generically one-to-
one morphism because for each closed p8&imn S, ’gE;l(P) -

¢ XP) -y 1(P) = PL - A} = {one poin}. This implies that
ot is a birational morphism ip = 0 and a radical morphism if
p > 0. Thus,k(n) is purely inseparable ovét. If n’ is a point of
Xk = ¢(Xk) distinct fromn, let T’ be the closure af’ in X. Then
T’ ¢ X = y(X) andT # T’. Then, for a general closed poiRton
S, o 1(P) — y¢1(P) would have distinct two points, and this is a
contradiction. ThusX, — ¥(Xk) has only one point, and the point
is purely inseparable ovét. Asy is an open immersion, this last
combined with the facpa(Xk) = O tells us in view of Z16 thaXx

is aK-form of A1, as desired (cf. [26: 6.7.7]).

4.8

Proof of Theorem 4.1.2 Notice that k is assumed to be algebraically
closed. Using the same notations adinl 4.7 (especially $tBjy (ve 58
know that for a sfficiently large integer N the generic fiber gl :

Xn — U is k(Sn)-isomorphic to /%(SN), where KSy) is the function
field of Sy over k. Let S := Sy. Then, S is a regular, integral k-
scheme of finite type and the canonical morphism-SS is a faithfully
flat, finite, radical morphism. Let’X:= X>S<S’ andy’ = g0>S<S’. Then

¢’ is a faithfully flat, gfine morphism of finite type, the generic fiber of
¢’ is k(S’)-isomorphic toAﬁ(S,), and every fiber of’ is geometrically
integral. Thus, all conditions of Theordm 411.1 present3arX’ and

¢’. Hence Xis anAl-bundle over S If p = it is clear that X is an
Al-bundle over S. This completes the proof of Theorem 4.1.2.

4.9

In the characteristic zero case we have the following, digiety stron-
ger, version of Theorefn 4.1.2:

Theorem. Let k be a field of characteristic zero, let S be a locally fac-
torial, geometrically integral k-scheme of finite type, detdp : X - S
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be a faithfully flat, #ine morphism of finite type. Assume that every
fiber of ¢ is geometrically integral. Then, the following conditioa®
equivalent to each other:

(i) XisanA'-bundle over S.

(i) For every point P on S (including the generic point) the fiber
¢~ 1(P) above P is isomorphic to theffme line AI}(P) over the
residue field(P) of P.

(i) The general fibers af are k-isomorphic ta!.
(iv) The generic fiber op is k(S)-isomorphic toA&(S).

Proof. (i) = (ii) = (iii): Obvious. (iii) = (iv) follows from Lemma
E4. (iv)= (i) follows from TheoreniZ.T11. m]

4.10

A flat specialization ofA"(n > 2) is not necessarily isomorphic #9",
as shown by the next:

Example.Let k be an algebraically closed field, and &be a smooth
affine plane curve of genus 0 contained as a closed sub scheme in
AZ = Speck[x,Y]). Let f(x,y) = O be the equation of. Let% :=
K[t] be the local ring ofAl := Speck[t]) att = 0, letK := k(t), and
let A:= Z[xY,Z/(tz- f(xy)). LetX := Specf), S := Spec¢/), and
letp : X — S be the morphism inducted by the injectiorc____ A.
Then, ¢ is a faithfully flat, dfine morphism of finite type, the generic
fiber Xk of ¢ is isomorphic teA2, and the closed fiber ksisomorphic to
C>k<A&, which is evidently not isomorphic taﬁ. (Flatness ofy follows

from [17; 1V (14.3.8)].)

411

In the positive characteristic case there can be a flat firaii a curve
in which every closed fiber i8! and yet the generic fiber is non-isomor-
phic toAl. For instance, let

A:=K[t] c R:= K[t, X, Y]/(YP = X — tXP)
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be the natural inclusion, and: X := SpecR) — S := Specf) be the 60
corresponding morphism, whekadenotes an algebraically closed field
of characteristicp > 0. In this example, the generic fiber is a purely
inseparablé(t)-form of Al studied in [26:86], [27].

5 Classification of dfine Al-bundles over a curve
61

5.1

In this section the ground field is assumed to be algebrgicidised.
Let C be a nonsingular curve defined over An Al-bundle overC
is a surjective morphisnf : X — C from a nonsingular surfacX
defined ovek to C such that for every poirf® onC there exists an open
neighborhoodJ of P for which f~1(U) = U>k<A1. When a curve is fixed

we denote am\-bundle f : X — C simply by (X, f). Given twoA?!-
bundles ¥, f) and X’, f’) overC, we say thatX, f) is isomorphic to
(X', f') if there exists an isomorphism: X — X’ such thatf = /- 6.
An Al-bundle ¥, f) is said to beaffineif the surfaceX is afine. The
purpose of this section is to describe the set of isomorplaisisses of
affine A'-bundles over a nonsingular complete cuBsespecially when
C= P&. In the paragraphs below we I€tbe a nonsingular complete
curve.

5.2

Lemma (cf. 2.4.1) Let f : X — C be an gine A'-bundle over C. Then
there exist an ample line bundle L over C and a nontrivial esien E
of L by &c such that X is isomorphic to tHgt-bundleP(E) minus the
section S, of P(E) corresponding to L and that f is the restriction onto
X of the canonical projectio®(E) — C.

Proof. Let % = {Uj}icy be an &ine open covering o€ such that
f3U)) = Uy x Al fori e I. LetA := kU] andR := k[f~1(U;)].
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ThenR, = Aj[t], wheretj’s are subject to
tj = ajiti + bji with aji € A]-ki and bji € Aji
ai =ajaj and bg =ajbj + by in Ay,

wherei, j, £ € I, Aj = k[Ui n Uj] andAij[ = kUi n ujn U/]. Let
L be a line bundle ove€ having transition functionga;i} with respect
to %, and letE be a rank 2 vector bundle ov€l having transition
matrices{(* ")} with respect to% . ThenE is an extension df by &c;
0> 0c » E—- L - 0,and K, f) is isomorphic to P(E) — S, 7),
whereS,, is the section of th@-bundleP(E) corresponding th. ands
is the restriction ont®(E) — S., of the canonical projectioR(E) — C.
The assumption thaX is affine implies that. is an ample line bundle
andE is a nontrivial extension df by &¢, (cf. 2.4.1). m|

5.3
Lemma. Let (X, f) and(X’, f') be gfine Al-bundles over C. Let

0 Oc E L 0

(resp. 0 Oc L ~E-L> " 0)

be a nontrivial extension of an ample line bundle L (resp.dy ¢ as
constructed if5]2 fron@X, f) (resp.(X’, f’)). Then(X, f) is isomorphic
to (X, f') if and only if there exist isomorphisms : E/ — E and
¥ : L’ S L of vector bundles over C which make the following diagram
commutative:

0 Oc E’ L’ 0
lld ltﬁ llﬁ
P
0 Oc E L 0

Proof. We shall prove the “only if” part only. There exists affiae
open coveringZ = {Uj}iel such thatf~1(U;) = U; x A? andf"l(Ui) o~
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UixAlforanyi € 1. SetA = K[Uj], Aj = k[UinU;], R = K[ f1(Ui)] =
Allt] andR = K[ f'~*(U;)] = Ai[t]]. Let

t = qjt + bji and t} = a’jiti’ + b}i with aji,a’ji € Ai*j

and bji,b’ji e Ajj foranypair i,jel.

Then an isomorphisnd : X — X’ with f = f/ - 4 induces anA;-
isomorphismg; : R — R for anyi € | such thaty; = ¢j on R =
k[f'_l(Ui NUj)]. Write (,oi('[i’) = ajtj + B with @ € A andg; € A.. Then
it is easily ascertained that we have:

a’ji blji a Pi _ (@ Bi\(aj bj
o 1/\0 1 0 1/{0 1
fori, j € I. LetEly; = OyVi + Oyw andE’|ly, = Oy,V + OyW,

wheredy,w = 1(0y;) andOy,w = I’(0y,). Define Oy,-isomorphisms
¢i - E'lu, = Elu, andy; : L'|y; — Z|y, by

$i(V)) = aivi + Biw, ¢i(W) =w and yi(p(V)) = aip(vi).

Then it is easy to see that’s andy;’s patch each other od; N Uj to
give isomorphisms of vector bundleés: E’ — E andy : L’ — L such
thatg; = ¢lu,, ¥i = yly, fori € 1. By constructiong andy satisfy
¢-"=2andy-p =p-¢. O
54

We have the following:

541

Lemma. With the notations di8l2, we haves 0c(Sw - Se), Where 64
S is identified with C.

Proof. LetV := P(E) andS := S.,. Then we have an exact sequence,

0—> 6y(~25) —> Oy(-S) —> O5(-S - S) — 0.
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Now write E|y, 0\, + Oy;w as in the proof of Lemmia3.3. Then we have
vj = ajjVi + bjwfori, j € I. Let M := Oy (-S)/Oy(-2S), which is
viewed as a line bundle 08 = C. ThenM|y, = &y, (w/vi) (modulo
(W/vi)?), andw/v; = a;j(w/v;) (modulo (v/vi)?) onU; n Uj. Therefore
M = L1, and consequently we obtain= ¢'s(S - S). m|

542

An immediate consequence of Lemma 5.2 and Leinma 5.3 is:

Lemma. Let L be an ample line bundle over C. Then the set of isomor-
phism classes offane Al-bundles(X, f) such thatdc(Se - Se) = L
(cf.[22 and®.Z]1) is isomorphic to the projective spa@d*(C, L™1)).

5.5

In this paragraph we assume ti@ats isomorphic to the projective line
PL. Then note that anp*-bundle overC is isomorphic to one oF,’s
(n = 0), whereF, = P(Oc @ Oc(—n)). We denote byB, the unique
section of F, such that B2) = —n and by¢ a fiber of the canonical
projectionF, — C. If n = 0, Fo has two distinct structures &f-bundle
andBg is not uniquely chosen; hence we fix a structur@bbundle on
Fo and a sectiorBg. With these conventions we have:

551

Lemma. Let (X, f) be an gine Al-bundle over C= PL. Then(X, f) is
isomorphic to(Fp — Sw, 7) (cf. B2), where S, ~ B, + sf with s> n and

L = 0c(2s- n). Moreover, such n and s are uniquely determined by the
Al-bundle(X, f).

Proof. SinceS,, is an ample divisor orF, we have:S,, ~ B, + s
with s > n (cf. [16]). With the notations di 52, we havg, = P(E),
whereE is a nontrivial extension of by 0. By virtue of[5.4.1, we
havel = 0c((S2)); hencel = 0¢(2s - n). Moreover, by virtue of5]3,
E andL are uniquely determined up to isomorphism. Henead also
sare uniquely determined by( f). m|
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55.2

Lemma. Let n and s be the fixed integers such that s > 0. Then we
have the following:

(1) The set of isomorphism classes gire A'-bundles of the form
(Fn — Seo, ) With S, ~ By, + st is a locally closed subset(A s)
in the projective spacB(HO(PL, 6(2s — n — 2))) = P22,

(2) dimA(n, s) equals2s—2n—-1ifn >0and2s-2ifn =0.

(3) A0, ) and A1, s) are dense subset &5 2 and P?53, respec-
tively.

Proof. Our proof consists of three steps.

(1) Let (X, f) be an &ine A'-bundle isomorphic toR, — S, 7) with
Se ~ Bn + . By virtue of[2.2, K, f) is determined by a non-
trivial extension

0 Oc ——E a Oc(2s—n)——0,

whereF, = P(E) and & (2s- n) gives rise to a sectio8,, of F,,. 66
Then it is easily shown thd = (s — n)e; & Oc(9)er, where

e, and e, constitute a basis of the decomposable rank 2 vector
bundleE overC. The injectionl : &c — E is given by elements

f € HOC, Oc(s - n)) andg € HO(C, 0c(9)) such thatf # 0,

g # 0 and Suppf) N Suppf) = ¢. Such a pair {, g) is a point

of a nonempty open sét in {A"S1 — (0)} x {AS*1 — (0)}). On
the other hand| determines the surjectign: E — 0c(2s-n)
uniquely up to multiplication of elements &f on &c(2s — n);
indeed, if 0c(2s — n) is identified withAE thenp is given by
p(e1) = —gelAe; andp(e;) = felAe,.

(I Let

0 Oc —L>E L~ 0c(2s-n) —>0

be a nontrivial extension witk’ = Oc(s - n)e| ® Oc(9)€,, and
letI” be determined by a paif{,g) e U. If ¢ : E' —» Eis an
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Oc-isomorphism thew is expressed in the form:

¢(e(l) = (a h) (el) if n> 0, wherea, 8 € k" anh € H(C, 0¢(n));

&) \0 B)le
¢(Z{é)=(‘; g)(g) if n=0, Where(j ’g)eGL(Z,k).

Theng satisfiesiN: ¢-I" andp-¢ = yr-p’ for somed-isomorphism
¥ Oc(2s—n) — Oc(2s-n) if and only if we have:

() f=af’andg=p8g +hf if n> 0,

(i) f=af +yg andg=pf"+dg if n=0.

Let G be an algebraic group defined by:

G= {(g 2);&,,3 e k* and he HO(C, ﬁc(n))} if n>0,
and G = GL(2,K if n=0.

Then it is readily verified that the subsgtof {AS™! — (0)} x
{AS1 _ (0)} is G-stable and acts freely orlJ. Therefore A(n, )
is a locally closed subset &{H*(C, L™1)) with L = 0¢(2s - n),
and A(n, s) is isomorphic to the quotient variety/G. Thus we
know that dimA(n,s) = (2s-n+2)-(n+3) =2s-2n-1if
n> 0, and dimA(Q,s) = (2s+2)—4 = 2s— 2.

(1) Note thatP(H(C,L™1)) = P?"2 whereL = 0c(2s - n). By

5.5.3

comparison of dimensions @(n, s) and P>"2 we know that
A(0, s) and A(L, 9) are dense subsets BfS 2 andP%5-3, respec-
tively. This completes the proof of Lemrha5l5.2.

Lemma. Let(n, s) and (', §') be pairs of integers such thatssn > 0,
s >n z20and2s—n= 25 —n'. Then the subsets(i s) and An’, )

of P(HY(C, 0c(n — 29)) have no intersection i, s) # (17, ).

Proof. Immediate in virtue of Lemmds5.3 ahd 5J5.1. O
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554

In virtue of Lemma§ 5. 412 5 3. 5.5.2 dnd5.5.3 we havedhewing: 68
Theorem.Let m be a positive integer. Then we have:

(1) The set of isomorphism classes giree Al-bundles(X, f) with
(S2) = mis isomorphic to the set of k-rational pointsi§H (P2,
O (m- 2))).

(2) The projective spacB(HO(PL, 0p:(m - 2))) is decomposed into a
disjoint union of locally closed subsetgms), where(n, s) runs
through all pairs of integers such thatsn > 0 and m= 2s—n.

(3) A(n, s) is isomorphic to the set of isomorphism classes i@
Al-bundles(X, f) over P* which are of the form:(F, — S, 71)

5.6

Let (X, f) be an &ine Al-bundle Fp — S., 7) With So, ~ By, + SC and
s > n. Then the #ine surfaceX has structures ofl-bundles other
thanf : X — P1, as will be shown below. Le¥ := F, andS := S..
Let Py be an arbitrary point ors, let oy : Vi3 — V be a quadratic
transformation with center & and letP; = ¢(S) N af(Po). For
1 <i £ m, define inductively a quadratic transformation; : Vi;1 —
Vi with centerP; and letPi,1 = (o1...0i:1)(S) N o4 (Pi), where
m = 2s-n. Let Q be a point on ¢m.1)"*(Py) other thanPy,,1 and
(me1) H(Pm) N (0me) (07 (Pme1)). Let : W — Vi1 be a quadratic
transformation with center &. Leto = (c1-... o1+ 7) : W —
V,letE = (oiz1- ...  Ome1 - T)'(O'i_l(Pi_l)) forl <i <m and let 69
Eme = 7 (02 (Pm) andEme2 := 77HQ). Let ¢ be the fiber of the
canonical projectiorF,, — P! passing througiiPg. Theno (S U ¢o)
has the following configuration:
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5.6.1

Let A be the linear subsystem (B, + (s+ 1)¢| consisting of members
which pass througRy, . . ., Pm, Q with multiplicities > 1. Then we have
the following:

Lemma. With the notations as above, we have:
(1) Ais anirreducible linear pencil.

(2) S+ ¢pis a unique reducible member af and all other members
of A are nonsingular rational irreducible curves.

(3) The proper transform\’ of A by o- has no base points; ko is
a cross-section of the morphis#y, : W — P! defined byA’;
o’ (S) + Emir + Em+ -+ - + E1 + 0/ (£p) is a member of\’.

Proof. Our proof consists of two steps.

(I) Since dimB, + (s+ 1)f| = 2s—n+ 3 = m+ 3 we know that
dimA 2 m+3-(m+2) = 1. LetDbe a reducible member (if at all)

of A such thaD # S + ¢y, and writeD = 2 ntDt with irreducible

componentd; and integers; > 0 for 1 < < t. Then itis easy
to see that one db;’s, sayDys, is linearly equivalent td,, + r¢
withr = 0 andn; = 1, andD., . .., D; are fibers of the canonical
projectionF,, — P%; we haver < s becauseD is a reducible
member. Then, sincam = 2, D; must pass through the poir®g,
Pi1,...,Pm. Thisimplies thatD;-S) = s+tr—n = m+1 = 2s—n+1,
whencer > s+ 1. This is a contradiction. Hence every member
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D of A such thaD # S + ¢ is an irreducible curve. On the other
hand, since - ) = 1 we know thatD is a nonsingular rational
curve.

(I The fact that every numbed of A such thatD # S + ¢y is a
nonsingular irreducible curve implies the following:

) o’(S) + Emir + Em+ -+ + E1 + 07 (€p) is @ member of\’;
henceS + £, is a (unique reducible) member af

(i) Every member ofA’ other tharo’(S) + Eqp1 + - + E1 +
o’ (£p) is of the formo”’ (D) with D € A.

Let D andD’ be general members of. Then, sinceld - D’) =
((Bn+(s+1)6)?) = 2s—n+2 = m+2 we have §’(D)-¢’(D’)) = 0.
This implies in turn the following:

(iii) A’ (henceA) is an irreducible linear pencil\’ has no base
points at all.

(iv) Em:2 is a cross-section of the morphisn,, : W — P!
defined byA’.

The above observations complete the proof of Lenima(5.6.1n

5.6.2

Letp : W — Z be the contraction o#”’(S), Emi1, Em, ..., E1 in this 71
order, and leT = p(Em.2). Sincep contracts only curves in the member
0’ (S)+ Em1+- - -+ E1+ 07 (€p) of A’ we know that the proper transform
of A’ by p defines a structure df*-bundle onz, for which p(c’(D))

(D € A, D # S + £g) andp(c” (£o)) constitute the fibers of tHe'-bundle
q:Z — P andT is a cross-section withT€) = m. Note thatX =

Fn — S is unchanged under a birational transformagiorr= : V — Z.
ConsequentlyX has a structure ofi!-bundleg : X — P! other than

f : X = P!, whereX = Z - T andg := glx. However, we could not
determine integems’ ands’ such thaZ = F, andT ~ By + S'¢.
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5.7

In this paragraph we shall show that th@ree surfaceX = F, — S
constructed ilLR]2 has a nontrividh-action. With the notations ¢f 3.6,
choose a poinPg so thatPy ¢ S, N B, if n > 0. Take the points
P1,...,Pm1 as in[&®, and letrj : V; — Vi_1 be a quadratic trans-
formation with center aP;_; for 1 < i £ m, whereVp = V. Let
¢=01-...-om and letE = (ojs1 - ... om) (07 }(Pi-1)), by abuse of
notations, for 1< i < mandEp = o7 (Pm_1).

5.7.1

Let N be the linear subsystem (B, + (s— 1)¢| consisting of members
which pass through the poinBy, Py, .. ., Pm_2 with multiplicities > 1.
Then we have:

Lemma. With the notations as above, M consists of a single member T
which is a nonsingular rational irreducible curve.

Proof. Since dimB,, + (s—1){| = 2s—n—1=m-1, we have dinM >

(m-1)-(m-1) = 0. HenceM is not empty. LeD be a member of.

We shall show thab is an irreducible curve. Assume the contrary, and
t

write D = X n;D; with irreducible componentB; and integersy > 0

i=1
for 1 < i £ t. Then, as in the proof of Lemnfa5.b.1, one fs,

say Dy, is linearly equivalent t@B, + r£ withr > 0 andn; = 1, and
D,, ..., D are fibers of the canonical projectidf, — PL. Then we
haver £ s—- 2 sinceD is reducible, whence > 2 andm = 3. Then
D1 must pass through the poinBy, Py,...,Pm_2. This implies that
(D1-S) =s+r-nz2m-1=2s—-n-1, whencer 2 s— 1. This
is a contradiction. Thus every memherof M is irreducible. On the
other hand, sincel] - ) = 1 we know thatD is a nonsingular rational
curve. If dimM > O, letD and D’ be general members &fl. Then
(D-D) = ((By+ (s— 1)0)%) = 2s—n -2 = m— 2 while (D - D’) must
be> m- 1. This is a contradiction. Hence dikh = 0. m|
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5.7.2

Let M be the linear subsystem (&, + sf| consisting of members which
pass through the poin®y, Py, ..., Pm_1 with multiplicities 2 1. Then
we have:

Lemma. With the notations as above, we have:
(1) N is an irreducible linear pencil.

(2) T +£ois a unique reducible member of N, and all other members
of N are nonsingular rational irreducible curves.

(3) The proper transform Nof N by¢ has no base points; kis a
cross-section of the morphisty : Vi, — P! defined by K 73
O (T)+ Em1 + -+ E1 + ¢ (€p) is amember of N

Proof. All assertions can be proved in the same fashion as in thd proo
of B.6.1 with slight modifications. Therefore we shall leavproof to
readers as an exercise. O

5.7.3

We have the following configuration gf 1(SU T U ¢g):

Note thatX = Vi, — (¢’ (S) U En U ... U E;) andVy, has a linear
pencil N’ whose members agg(D)’s for D e Nwith D # T + ¢p and
O (T) + Em1 + -+ - + E1 + ¢'(€o). Therefore, it is easily seen that the
affine surfaceX has an algebraic penciF of affine lines parametrized
by the dfine lineAl. Let Qg be the point orA! corresponding to the
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member ¢’(T) U ¢’(£g)) N X. ThenXp := X = (¢'(T) U ¢’(£g)) has an
algebraic pencil of éine lines parametrized by := A — {Qp}, where
every member of the pencil is théfiae line. HenceXg is anAl-bundle
over AL, which is trivial, i.e.,Xo = A x AL Then, as in Lemma_22.1
and Theorerm 213, we can readily show that there exists aiviah{G,-
action onX such that every member ¢F other than¢’(T)U¢’ (£o)) N X

is theG,-orbit.

6 Locally nilpotent derivations in connection with
the cancellation problem

6.1

A k-algebraA is calledstrongly rinvariant (or n-invariant) if A satis-
fies the condition: Given &-algebraB and indeterminateXy, ..., X,
andYy,...,Yn if 61 A[X1,..., Xn] = B[Y4,...,Yn]is ak-isomorphism
then we have necessariiyA) = B (or Ais isomorphic toB under some
k-isomorphism). IfA is stronglyn-invariant (orn-invariant) for all inte-
gersn = 1 thenA is calledstrongly invariant(or invariant). A problem
asking whether or not a (givek}algebraA is strongly invariant (or in-
variant) is called, in general, the cancellation problerhe purpose of
this section is to apply the results in the previous sectioribe cancel-
lation problem. Namely, we are interested in looking foressary or
suficient conditions for a givek-algebra to be strongly invariant, which
can be written in terms of locally finite (or locally finite ragive) higher
derivations.

6.2

A sufficient condition for strong 1-invariance is given, by makirgg of
Nagata’s theoreni [42], in the following:

Lemma (cf. [1]). Let A be an #ine k-domain. If A is not birationally
ruled over k, then A is strongliinvariant.
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Here, an #inek-domainA is said to bebirationally ruled over kif
the quotient fieldQ(A) is a purely transcendental extensig(t) in one
variable over a sub field of Q(A) containingk.

6.3

Another stfficient condition for strong invariance is the following: 75

Lemma. Let A be a k-algebra. If A has no nontrivial locally finite hegh
derivations then A is strongly invariant.

Proof. B Assume that is not strongly invariant. Then there existk-a
algebraB(# A) such thatA[ Xy, ..., Xn] = B[Y1, ..., Y] for some integer
n = 1, whereXy,...,XsandYs,..., Y, are algebraically independent
overA andB, respectively. Letbe an element oA not in B. Thena is
written as

a=3by, oY Y3 = f(Y1,...,Yn) € B.

Assume thaty; appears inf(Yy,...,Y,). Let T be an indeterminate
and lety be ak-algebra homomorphism &[Y,..., Y,] into B[Yy,...,
Yn, T] such thaty (Y1) = Y1+ T andy(Y;) = Y for 2 < i £ n. Then we
can see easily that(a) is written as

y@ =a+T"g(Ye,...,Yn, T)withg(Ys,...,Yn, T) # 0andm> 1.

Write g(Y1,...,Yn, T) = h(Xy,..., X, T) € AlXg,..., X, Tl
Letus, ..., un be a set of positive integers such th@r+, ..., T, T) #
0. Let 2 be the canonical injectiofh — A[Xi,...,X,] and letr be a
homomorphism (ofA-algebras) ofA[ Xy, ..., Xn, T] = B[Y1,...,Ys, T]
into A[T] such thatr(X;)) = T¥i for 1 £ i £ nandr(T) = T. Let
p =1y - 2. Thenp is ak-algebra homomorphism & into A[T] such
thatp(a) ¢ A andp defines a nontrivial locally finite higher derivatiorre
(cf. LemmdLR). m|

3We are indebted t¥. Ishibashi for improving the original proof.
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6.4

As a practical criterion for strong invariance, the nextutegiven in
below is often more useful than the one given in Lera@a 6.

6.4.1

Lemma. Let k be an infinite field and let A be affiae k-domain satis-
fying the conditions:

(1) Spech)(K) is dense irBpecf).

(2) There is no nonconstant k-morphism from thgna line A& to
Specf).
Then A is strongly invariant.

The proof can be done along the same principle as in the prfoof o
Lemmd&.B, and we shall leave it to readers.

6.4.2

The rings in the next two examples can be shown to be strongrii
ant by applying LemmBR®.4.1, the first one of which was firsegiby
Hochster[[ZB] and discussed later by Eakin and Heinzér [13].

Example 1.Let A, := R[Xo, ..., Xp] /(X2 + -+ + X3 — 1) be the fine
ring of the realn-sphere fom > 1. ThenA, is strongly invariant; a
polynomial ringAn[t] in one variable oveA, is invariant; a polynomial
ring An[ts, ..., ty] in n-variables oveA, is not 1-invariant ifn # 1,3, 7.

Example 2.Let k be a non-perfect field of characterisic> 0, and
let A = K[X, Y]/(YP" = X —a1XP — ... — aXP), wherer, n > 0 and
ai,...,a € kwith one ofay,...,a; ¢ kP. Ais the dfine ring of a Rus-
sell k-group, which will be discussed in Chapter Ill. Thans strongly
invariant, while, for the perfect closuké of k, A%k’ is not strongly in-

variant becausé\%k’ is a polynomial ring in one variable ovkt.

The second example exhibits that strong invariance is restgpved
under faithfully flat ascent, while it is preserved undetfilly flat
descent (cf. Miyanishi and Nakal]36]).
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6.4.3

The converse of Lemnia®.3 does not hold as shown by the next

Example.Let k be an algebraically closed field and kbe the &ine
ring of the dfine cone of a nonsingular projective varigty Assume
that there is no nonconstaktrational mapping froma! to U. Then
A is strongly invariant, whileA has a nontrivial locally finite higher
derivation.

Proof. As shown iTZZI3A has a nontrivial locally finite higher deriva-
tion. Hence it remains to show thatis strongly invariant. Assume that
we are given &-algebraB satisfying A[X1, ..., Xn] = B[Y1,..., Yn],
where Xy, ..., X, andYy,..., Y, are algebraically independent ovAar
andB, respectively. Se¥ := Specf) andW := SpecB); W (as well as
V) is an dfine variety defined ovdrbecause the relatiol Xy, ..., X,] =
B[Y1, ..., Yn] implies thatB is an dfine k-domain; we have/ x A} =
Wx AL Letgy : V x Al — V andgw : W x A — W be the canonical
projections onto/ andW, respectively, and let : V — {vp} — U be the
projection of the cone to the base variety, wheyds the vertex of the 78
coneV. For a pointw of W, nqv(q\jvl(w)) is a pointu of U because of the
stated assumption that there is no noncongtaational mapping OA&
to U. Assume thatj (c,; (w)) is not a point. Themy (g (W) = 7~ 1(u)
becauseqv(qgvl(w)) is an dfine rational curve with only one place at in-
finity and qv (g (w)) ¢ 7~*(u). This implies thaty, (w) intersects the
singular Iocusq\‘,l(vo) of Vx Al = Wx A}, Besides, it is readily shown
thatW has a unique singular point andq\jvl(wo) is the singular locus
of W x A%, henceqy (Vo) = ¢ (Wo). Thus, we havev = wy because
Oy (W) N gt (Wo) # ¢. If w # wo we have shown thaty (g, (w)) is a
pointv of V, i.e., gy (W) C gyt(v). Indeed, we havep (w) = g,}(v)
because bothy,;(w) andgy'(v) are isomorphic ta\? (cf. Ax [B]). This
means that every maximal ideal Bfis vertical relative toA in the ter-
minology of [1]. ThenA = B by virtue of [ibid., (1.13)]. O

6.5

A necessary condition for strong invariance is given by the n
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Lemma. Let A be a k-algebra. If A has a nontrivial locally finite itera
tive higher derivation D then A is not stronglyinvariant.

Proof. Let ¢ : A — A[t] be thek-homomorphism associated with
(cf.[I3). LetB = p(A). We shall show thaf[t] = BJ[t]. SinceB[t]
A[t], we have only to show the following assertion by inductionno

P(n) : If ais an element ofA with D-length£(a) = n
(cf.[L3) thera € BJ[t].

If £(a) = 0 thena = ¢(a) € B. Assume that(a) = n > 0 andP(r) is

true for 0< r < n. Sincel(Di(a) < n) fori = 1 we haveDi(a) € BJt]

by virtue of P(r) for r < n. Then, sincea = ¢(a) — = Di(a)t' we have
iz1

a € B[t]. Thus,P(n) is proved, andA is not strongly 1-invariant. O

6.6

In the paragrapHs 8.6 abdb.7 we shall consider whether dhaaton-
verse of LemmEAx®&l6 is true. Wheis an dfinek-domain of dimension
1, this is true and was essentially proved in [1; (3.4)]. Weeha fact:

6.6.1

Proposition . Let A be an #ine k-domain of dimensiofi. Then the
following conditions are equivalent to each other:

(1) Ais strongly invariant.
(2) Ais stronglyl-invariant.
(3) A has no nontrivial locally finite iterative higher derivati.

Proof. (1) = (2) is clear; (2= (3) follows from Lemmd&J5 and its
proof. (3)= (1): Itis proved in [1; (3.4)] that under the stated assump-
tion A is either strongly invariant oA is a polynomial ringkp[X] over

the algebraic closurky of kin A. In the latter casé has a nontrivial
locally finite iterative higher derivation. Thus we have &> (1). 0O
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6.6.2

When dimA = 2 we have the following: 80

Proposition . Let k be an algebraically closed field of characteristic
zero, and let A be an irrational nonsingulagfme k-domain of dimen-
sion2. Then we have one of the following three cases:

(1) Ais stronglyl-invariant.
(2) A has a nontrivial locally finite iterative higher derivatio

(3) There is a surjective morphism : SpecfA) — C from Specf)
to a nonsingular complete curve C of genu®, whose general
fibers are isomorphic to thefane IineA&.

Proof. Assume thatA is not strongly 1-invariant. Then, by virtue of
Lemmal&R A is birationally ruled. SeV := Specf). SinceAis ir-
rational the irregularityg of V is positive; the Albanese mapping of a
nonsingular completitﬁof V induces a unique morphism: V — C,
whereC = n(V) andC is a nonsingular (not necessarily complete) curve
of genusg > 0; the general fibers of are irreducible rational curves.
On the other hand, sinca is not strongly l-invariant there exists an
affine k-domainB(# A) of dimension 2 such tha[X] = B[Y], where

X andY are algebraically independent ovkrand B, respectively. Set
W := SpecB), and letqy : V x Al — V andgw : W x AL — W be the
canonical projections frord x A& =Wx Aﬁ to V andW, respectively. 81
For a general poinv of W, ¢, := qv(qg\,l(w)) is an dfine rational curve
with only one place at infinity. Indeed, a'fv(q\;\}(w)) is a pointv on V
thenay (V) = gy (w); if gy (w) = gy(v) for every pointw of W and a
pointv of V (depending onv) every maximal ideal oB is vertical rela-
tive to A, whenceA = B (cf. [1; (1.13)]); thusqv(qg\,l(w)) is not a point
for some pointw of W and,a fortiori, for a general point ofV. Since
n(fw) is a point onC we know thatt,, is contained in a fiber of; since

a general fiber ofr is irreducible,, coincides with a fiber of for a
general pointv of W. Moreover, since the morphism: V — C defines

“Note thatr does not depend on choices of nonsingular completiois of
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an irrational pencil orvV and since an irrational pencil on a nonsingular
surface has no base points, the second theorem of Bergtigaus that
{w is isomorphic to thefline line. consequently, we know that the mor-
phismzn : V — C is an algebraic pencil offBne lines parametrized by
the curveC (cf. SectiorR). IfC is not complete, sed, := K[C]. Then
A is ak-subalgebra oA of dimension 1, and we have a nontrivial-
action onV with respect to which the general fibersmofire Gy-orbits
(cf. LemmaZZI and TheoremP.3). Thus we are reduced toahe ¢
(2). If Cis a complete curve then we are reduced to the case (3)o

6.6.3

Lemma. Let k be an algebraically closed field of characteristic zero
and let V be a nonsingularfgne surface defined over k. Assume that
there exists a surjective morphism V — C from V onto a nonsingular
complete curve C, whose general fibers are isomorphic toffiredine.
Then we have:

(1) Every irreducible component of a fiber ofis isomorphic to the
affine line; if a fiber is reducible every irreducible componenai
connected component.

(2) There exist a nonsingular projective surfadeand a surjective
morphismr : V — C such that:

() V contains V as an open set, afig = ,
(i) general fibers of are isomorphic to the projective Iin@},

(i) V -V consists of a cross-section S and irreducible compo-
nents contained in several reducible fibersrof

Proof. Let V be a nonsingular projective surface containMcas an
open set. Then the morphism: V — C defines an irreducible pen-
cil A onV, whose base points (if at all) lie ovi — V. By replacing
V (if necessary) by the surface which is obtained frgrby a succes-
sion of quadratic transformations with centers at basetpdincluding
infinitely near base points) ok, we may assume that has no base
points. Letr : Vv — C. Since a general fibetof  is isomorphic toA&
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and the characteristic &fis zero, we know that a general fiber7ois
isomorphic toP} and ¢ is of the form: ¢ = ¢~ ¢ 'S, wherel = PL,

S is a cross-section of and E S) = 1. Then all assertions stated in
the lemma are readily verified by looking at the fibration V. — C
and taking into account th&tis an dfine open set 0¥, (see Chaptdi 2,
SectiorR). m|

6.6.4

In the case (3) of Propositidn_6.6.2 the surfate= Specf) has a 83
structure as described in Lemina6l6.3. We have an imprefisadi

is strongly l-invariant in this case. As an evidence we shale in
the next paragraph th& is strongly l-invariant in the simplest case;
namely the case where every fibernofs irreducible (cf. Theorer’4.9
and Lemm&3’]2).

6.7

Proposition . Let k be an algebraically closed field of characteristic
zero, let C be a nonsingular complete curve of genus @ defined
over k, let L be an ample line bundle over C and let E be a nadatriv
extension of L byc. Let X be thePl-bundleP(E) minus the section S
corresponding to L and let A be thgfiae ring of X. Then A is strongly
l-invariant.

6.7.1

In order to prove this result we need the next

Lemma. Let k be a field of characteristic zero and {ebe a k-automor-
phism of a polynomial ring [k, y] in two variables x, y over k. Assume
that ¢ is given byp(X) = f ande(y) = g with f, ge k[x,y]. Then f has
the following form unless f is a polynomial in x or y alone:

* f:axm+by1+2cijxiyj,
m>j

n>j
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where a, b and¢’'s are elements of k and ap 0. The same assertion
holds for g.

Proof. Our proof consists of four steps.

84 () Firstwe shall treat the case where ond afndg, sayf, is a poly-
nomial in either one only of variablesandy, sayy. Sinceg is a

k-automorphism ok[x,y] the Jacobian determina 88‘( 3;‘ =

- ﬂ @ iS a nonzero constant ik. Henceﬂ = a and
ay )\ ox ay

0 . .
a_g = b are also nonzero constantskn Thence we may write:

X
f = ay+ candg = bx+ h(y) with c € kandh(y) € K[y].

(I Assume thatf has the form«) andg is not a polynomial inx or
y alone. Then we shall show thgihas also the form«. Write

g=ao)X! + a1 ()Xt + -+ auy)  (ao(y) #0,u> 0)

a(f.9)
. . axyl-

can easily ascertain that the first derivativgy) is zero. Hence
ao(y) is a nonzero constant ik Similarly if we write g in the
form

is a nonzero constant knwe

wherea;(y) € K[y]. Since‘

g =By’ + LY+ + ) (Bo(¥) # O,v > 0),
we haveBp(X) € k. These facts imply thag has the form )

(1) Itis known (cf. Chapter Il, Section 3; als6 [43]) thahyk-auto-
morphism ofk[x,y] is a composite of linear automorphisms of
type X Y) — (ax+ By + C,yX + oy + d) with a6 — By # 0 and
de Jonquiere automorphisms of typey) — (X y + h(x)) with
h(x)ek[x]. Using this fact we shall show that akyautomorphism
of k[x,y] is a composite of automorphisms, each of which is an
automorphisny such thato(x) or p(y) coincides with one ofk

85 andy. We shall say such an automorphism to be of tyBg (
Since a de Janquiere automorphism is obviously of tyeit(
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sufices to show that a linear automorphism is a composite of lin-
ear automorphismR). Indeed, a linear automorphism, §) —

(ax + By + ¢, yx + 6y + d) is decomposed as follows: & # 0,

(X’ y) = (Xl’ y,) = ((YX+ﬁy+ C, y)! (Xl’ y,) = (X,’ (’Y/Q)X, + ((a/6 -

By)/ @)y +(d=(yc/a))); if @ = 0, (x,y) = (X, Y) = (¥, yx+oy+d),
(X,Y) = ((By — ad)/7)X + (/7)Y + (- (ad/y)).Y).

(IV) Write the given automorphism asy = ¢r - ¢r_1 - ... - @1, Where
©1,...,¢r are automorphisms of type?). We shall prove our
assertion by induction on If r = 1, ¢ has one of the following
forms: (x,y) — (ax+ h(y),y), (xy) = (y,aX+ hi(y)), (X y) —
(x, by + £(X)) or (x,y) — (byy + £1(X), X), wherea, a;, b, by € k,
h(y), hi(y) € K[y] and £(X), €1(X) € k[x]. Hence the assertion
holds clearly. Assuming that the assertion is true whes a
composition of less than automorphisms of typeR) we shall
consider the case whege= ¢r - ¢r_1-...-@1. Lety = ¢r_1 -
... 1, and let ¢(X), w(y)) = (f1, g1) with f1, g1 € K[x, y]. By the
assumption of inductiorf; andg; have the form £) unless they
are polynomials irx or y alone. Sincey, is an automorphism of
type (P) we have one of the following cases:

) e(¥) = f1, (i) () =91, (i) o(y) = f1, (V) ©(y) = 9.

In any case we can easily ascertain the truth of our assdrtion
virtue of steps (I) and (lI).

6.7.2
86

Proof of Proposition. Our proof consists of three steps.

() Let B be a k-algebra such thaf/] = B[V], where T and V are
algebraically independent over A and B, respectively. SetY
SpecB), and letr : X — C be the restriction onto X of the
canonical projectiorP(E) — C. By a composition of projections
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1p1

YxAl=XxAl = X5 C, each lingly) x Al with y € Y is sent

: P
to a point of C. Hence - p; factors as Yx A& BENAVAL C,andY

is viewed as a C-scheme by means of q. Note that q is surjective

LetZ = {Ui}icl be an gine open covering of C such thaiytis
trivial for every i€ I. Let{x}ic; be an gine coordinate system of
X relative to7; {Xi}ic is subject to x= aji X + bj with a;; € Ri*j
and b € Rj, where R = k[U; n U;]. Set R := k[U;] and
Bi := k[q1(U;)]. Then we have R, T] = Bi[V] for every ic I.
Since Bis an R-algebra and Ris regular there is an element
yi € Bj such that B = R[yi] (cf. [1; (4.7)]). This implies that
q:Y — Cis anA'-bundle over C (cfZ]9). Hence by virtue
of Lemmd&12 there exist an ample line bundieoleer C and a
nontrivial extension Eof L’ by &¢ such that Y is C-isomorphic
to theP-bundleP(E’) minus the section Sorresponding to L

Let QF . be thedx-Module of1-differential forms of X over C.
Since£2§</0|,r =l = (d%)0 - lu,) and dx = a;;dx we have in
fact§2§</C = Lg Ox. The relation AT] = B[V] implies

C

Lo Ox[T] ® Ox[T] = L' @ 6y[V] @ O[V].
ﬁc ﬁc

IR

Hence we obtain Eﬁx[T] L’g@ ov[V], or equivalently
C C

(Lo L) e Ox[T] = 0x[T]. Hence we haveL® L' 1) ® Ox =
Oc Oc Oc Oc
Ox by reduction modulo @x[T]. Write Lg@ L't = ¢c(D) for a
C

divisor D on C. Then there exists an element h(@f)ksuch that
YD) = (h). Letw : P(E) — C be the canonical projection.
Then, viewing h as an element ¢PkE)), we havér (D) +mS =
(h) for some integer m. Singg (D) + mS- ¢) = ((h) - ) = O for
a general fibert of 7 we obtain m= 0, i.e.,7~1(D) = (h). Now by
restricting both hand sides on the section S we know that @
on C. Therefore l= L’.

(1) We have Rx;, T] = Ry, V] for every i€ |. Hence yis written
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as
¥i = fio() + fiO)T + -+ + fin ) T"

with fig(%), ..., fin(X) € R[X%]. We shall show that = 0. If
otherwise, since ki, T] = K[y;, V] with K := k(C), Lemm4&.7]1
implies that §(x) € K. Hence §(x) € R[x] N K = R;.. Besides,
since L = L we may assume, by replacirg by a finer gfine
open covering of C if necessary, thaty ajy; + b with by € R;
for any i, j € I. Thence we know that n is independent &f |
and fin(xj) = a;ji fin(x;) for any i, je I. Seta; = fin(X). Then
fin(X}) = ajifin(x) forany i, j € I. Seta; := fin(x). Then
{ai}icl defines a nonzero element of(8, L™1); this contradicts
the assumption that L is an ample line bundle over C. Thus, n
0. This implies that ye R[x] for every ie I. Hence BC A. 88
Changing the roles ofjxand y in the above argument we have
A c B. Consequently, A B and A is thus strongly 1-invariant.

6.7.3

In contrast with Proposition 8.7 we have the following:

Proposition . Let k be an algebraically closed field. LEX, f) be an
affine Al-bundle over the projective ling; (cf. B2) and let A be the
affine ring of X. Then A is not stronglitinvariant.

Proof. In virtue of[5.T there exists a nontrivi@,-action onX. Namely,
A has a nontrivial locally finite iterative higher derivatiohhenA is not
strongly 1-invariant in virtue of Lemnia®.5. O






Part |l

Curves on an dhine rational
surface

1 Irreducibility theorem
89

11

In this section the ground fieklis assumed to be an algebraically closed
field of characteristiqp. Let A% := Speck[x, y]) be an #fine plane over
k. Fix an open immersion 1 of? into the projective plan®? as a
complement of the line at infinityy. Assume that we are given an
irreducible curveCy : f(x,y) = 0 (f(xy) € K[x,y]) on A2 with only
one place at infinity. Le€ be the closure oy onP?, let py := £ N C,
letdg = (¢o - C) (which equals the total degree bfx, y)) and letd; be
the multiplicity of C at Po. With these notations and assumptions our
ultimate goals are to prove the following theorems.
IRREDUCIBILITY THEOREM [(cf. Moh [38])] Assume that at least
one ofdy andd; is not divisible byp. Then the curve&, on A? defined
by f(x,y) = a is an irreducible curve with only one place at infinity fogo
an arbitrary constant in k.

Even in the case whedg andd; are divisible byp we can establish:
GENERIC IRREDUCIBILITY THEOREM [(cf. Ganong [14])] Let
A(f) be the linear pencil od\? consisting of curve€, with a € k.

59
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Then the generic member &f f) is anirreducible curve with one purely
inseparable place at infinity. Therefore the cu@gis an irreducible
curve with only one place at infinity for a general elememf k.
EMBEDDING THEOREM [(cf. Abhyankar-Moh [2])] Assume that
Co is a nonsingular and rational curve, and that at least oxlg ahdd;

is not divisible byp. Then there exists a biregular algebraic map\éf
onto itself which map€, onto they-axis.

1.2

In the paragraphs below we fix a nonsingular, rationfiina surfacex
defined ovelk and an irreducible closed curé on X with only one
place at infinity (i.e., outside d).

121

Definition. An admissible datum fdiX, Co) is a set? = {V,U,C, ¢,, T,
do, d1, €} such that:

(1) V isanonsingular, rational, projective surface definedrdveon-
taining an open set U such that U is isomorphic to X over k.
(Since U is gine, V- U is of co-dimension 1.)

n
(2) Write V-U := Ul“i with irreducible componentE;. Then the
i=1
following conditions hold:

() T;jis a nonsingular, rational, complete curve.

(i) T intersectd; transversely (if at all) in at most one point.

(i) IinIjnT, = ¢ forthree distinct indices.

(iv) V — U contains no cyclic chains, i.e., there is no sequence
{Ti,.... I} @z 3)such thatly, NI, # (1< jsa-1)
andIli, NT, # ¢.

(3) C is an irreducible closed curve on V such thah@ is isomor-

phic to G by an isomorphism between U and X. (Hence Cy
consists of one point@which is a one-place point.)
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(4) C meets only one irreducible componénbf V—-U at Py. We set
do :=i(C, €o; Po) = (C - £p) and d := the multiplicity of C at Ig.

(5) AsadivisoronV, C is linearly equivalent to a divisqy(elo+T'),
where ez 1 andT is an gfective divisor such thaSupp(’) =
V- (U U fo).

If there is no fear of confusion we dendatesimply by(V, X, C, £,
I', do, d1, €} by identifying U with X.

122

Example.With the notations diT11, the sg&?, A2, C, £o, ¢, do, dy, 1} is
an admissible datum for@, Co). Itis clear thaidg > dy if dp > 1.

1.3

Let2 ={V, X,C, {y,T, dp, d1, €} be an admissible datum foxX(Cg) with
do > d; 2 1. Find integersd,,...,d, anddqa,...,q, by the following
Euclidean algorithm:

do=q1d1+d2 0<d2<d1
d1=C]2d2+d3 0<d3<d2
da—2 = qa—lda—l + da 0< da < da—l
do-1 = Qoo 1<

Here, we introduce the following transformation. 92

13.1

Definition. Let 2 = {V, X,C, £, T, do, d1, €} be an admissible datum for
(X, Cp) with dy > d; = 1. The Euclidean transformation dfassociated
with & (or simply,the Euclidean transformation 9f) is the composition
p of the following quadratic transformations: LepP= o N C, and let
o1 : V1 — Vo := V be the quadratic transformation ofWith center
at Po. Set @Y := ¢(C), I := o) = (D), &5 := o7(to) and
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o =6 = o7Y(Po). Let P = £,,nCO, and letoy : Vo — Vs
be the quadratic transformation of;Mvith center R. For1 £ i £
N:=q+ 02+ + Oy, definesi : Vi = Vi_1 inductively as follows:
o is the quadratic transformation of;\{ inductively as follows:o;
is the quadratic transformation of;\f with center at 1 = £i_1 N
Ci-D, Lets = (0 = o71(Piy), let fg') = (ri’(f?_l)) for0<j <
i, let CO := o/(CiY) and letT® := o/((V) = or(0-Y). The
Euclidean transformation of V associated with is the composition
p.=01...0N.

13.2

ForO<i<N,setrj :=dsif g +---+Qs1 Si<u+--+0s (Set
Qo := 0). Then we have

Lemma (cf. Nagata [43; Prop. 4.3 For 0 < i < N, B, is an in-
finitely near point of Pof order one, and the ffective) multiplicity of
PionCisr.

Proof. The first assertion is clear. As for the second assertiom, that
we have:

iC®, 9; Py = ds

forO<i< N,wheret=i—-(g.+---+0s1). Since 0< t < gs we know
thatds < ds_1 —tdgif i # N—1, and thatls_1 —tds = dsif i = N — 1.
SinceP; is a one-place point &80, the smaller one afs andds_; — tds
is the multiplicity ofC® at P;. O

1.3.3

Lemma.Let2 = {V,X,C, ¢, T, do,Adl,e} be an admissible datum for

(X,Co) with dy > d; = 1. Letp : V — V be the Euclidean transfor-

mation of V associated witly. Then, with the notations §f_1.8.1 we
have:
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Q) t’i(N) (0 £i £ N) is a nonsingular, rational, complete curve.

) @ &Ny =1if () =+ +0s 1, G+ + s 1+ s+ 1)
withl<s<a-1(,])) =@+ - +0e1,00+ -+ Qy), OF
(,)=(@m+ - +0s1+t,h+ - +0s1+t+Withl<s=za
and1<t<gs—1 (V- V) = 0for every pair(i, j) (i # )
other than those enumerated above.

(3) (T = (@) - —1if e > Land(((5")?) = () -cnifa = 1;

(€4 1)) = —2-Gsia for1 < s < @=1((¢4)...q, ,)2) = —1-0, 94
and ((4N?) = ~1;(()...q.,.)?) = —2for 1 £ s < a and
1<t<gs-1
Proof. Follows from a straightforward computation with Lemma=.3.
taken into account. O
1.34

SetEp := (0 andE(s 1) := (M ifi =+ +gs1 +twith 1< s<a
and 1< t £ gs. Then the configuration gi~(¢p) is expressed by the
weighted graphs in the Figure 1, where each vertex 0 stamdmfa-
reducible component gf 1(£o) with self-intersection multiplicity as its
weight and two vertices are connected by an edge if the gmnekng
irreducible components @f 1(¢o) intersect each other.

1.4

Let dy and d; be positive integers such thdy > d;. Find integers
dy,...,d, andqu,...,q, as in[(LB by the Euclidean algorithm. Define
an integera(s,;t) (1 £ s< ;1 £t £ gg) inductively in the following
way:

ag=do
a'(l’ t) = t(aO - dl) forl<t< (o]
a2,t) =ap+t(a(l,q) - do) forl<t=<qp
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ast)=a(s-2,0s2) +t(a(s-109s1)-ds) forl<ts<qs
and 2< s<a.

14.1

Lemma. With the notations as above we have:

Q) fa=1,ie.,d=0then d1,0;) = do; a(1, q1)

Figure 1
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(I)  :even

(ED) Eo
9 ¥ E@2,1)

g2 —1
—9 E(2,q2—1)
—(g3+2) E(2,q2)
—2 O E(4,1)
-2
—(ga-1+2) E(o—2,qa_s)
-2 E(a—1)
qa — 1 H
-2 E<Q7QO<—l)
1 O Blaa)
—(qa +1) E(a—1,¢a-1)
—2
Go—1—1 :
-2 E(a—1,1)
—(at2+2) E(a—3,¢a-3)
—2
2 O E(3,1)
—(¢2+2) E(1,q1)
2 O E(la-1)
@ -1
—9 J) E(1,1)

> d, otherwise. More precisely, # > 1 and q = 2, then 9

a(1,q1) > do.

g2 —1

Go—1—1

Go — 1

@ -1

65

Eqy
E@2,1)

E(2,q0 - 1)
E(2,q2)

E(4,1)

E(“ -3, qg—ii)
E(a—1,1)

E(“ —1,qa-1— 1)

E(a—1,q0-1)

=

(
(@ qa)
E(a,q, — 1)

E(3,1)
E(l,(h)
El,q—1)
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®3)
(4)
(®)
(6)
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If « 2 2then ds5,0s) > ds.1 > ds for 2 £ s £ a. Especially,
a(a, qy) > d,.

For2<s=za,a(sl)>a(s—1,0s1).
Forl<sgaeandl=stzgs-1alst+1)=a(st)>0.
dala(s v).

a(a, Gy)d, = do(do — dy).

Proof. (1) By definition,a(l,q1) = qi(do — d1) = thdp — do + db =

)

®3)

(4)

(®)

(g1 —1)dg + dy. Sincedp > d; we have eitheq; > 2 org; = 1 and
d> > 0. Ifqz 2 2thena(l,q1) 2 dg+dp = dp. If g1 = L andd, > 0
thena(l,q) = dp. If @ = 1thenqg; = 2. Hencea(l,q;) = do. If
a # 1thend, # O anda(l,q;) = do. If @ > 1 andqg; = 2 then
a(l,q1) > do.

If o 2 2thena(l, qi) = dz by (1). Sincea(2, o2) = do+0z(a(l, q1)-
d;), we havea(2,qy) = dp. Hencea(2,qp) > dy > db. If @ 2 3
we shall provea(s, gs) > ds_1 > ds by induction ons. Fors = 3,
a(3,qz) = a(l, ) + ga(a(2, g2) — dz) > dp + gg(dz — dg) > db.
By induction ons(= 4), assume that(s — 2,9s2) > ds2 and
a(s-1,0s-1) > ds-1. Thena(s gs) = a(s - 2,0s-2) + gs(a(s -
l, qs_l) - ds) > dS—2 + qs(ds_l - ds) > ds_2 > ds_l. Therefore, |f
a2 2,a(s,Qs) > ds 1 for 2 £ s< a. Especiallya(a, q,) > dy-1 >
dg-

Fors=2,a(2,1)—a(l,q1) =dy—dr > 0. Fors = 3,a(s, 1) -
a(s_ 1a C]s—l) = a(s_ 2a qS—2) - dS > O by (2)

Fors=1,a(1,t+1)—a(l,t) = dy—d; > 0. Thusa(1,t + 1) >
a(1,t) > 0. Fors= 2,a(s;t+1)—a(st) =a(s—1,9s.1) —ds = 0,
where> 0 takes place i > 3. Thusa(s,t+1) 2 a(st) > ... >
a(s1l)>a(s-1,0s1)=...>a(l,q) > 0by (3).

Note thatd,|d;,dy,...,d,. Sincea(l,t) = t(dy — dyp), d.la(1,t).
Thena(2,t) = d + t(a(l, q1) — do), andd,|a(2,t). Assume that
d.la(s,t) for s < sand 1<t < q¢. Thena(s,t) = a(s-2,0s-2) +
t(a(s- 1,0s-1) — ds), andd,la(s t).
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(6) a(aa qa)da = a(a -2, qa—Z)da + a-(a’ -1, qa—l)qada - qadg

= ala - 2,0p—2)de + {a@ — 1,0p-1) — o }do—1
= a(@ - 2,0y-2)ds + {a(@ — 3,0u-3)
+ala — 2,0y-2)0¢-1 — Go-104-1 — Ay }do1
= a(a — 2,0p-2)(dy + Go-10e-1) + &(@ — 3,0a-3)do-1 — G201
= a(@ - 3,0p-3)do-1 + {a(a — 2,04-2) — do-1}da—2.

Assume by induction that
a(a@, 0o )do = a(j - 2,0j-2)d; + {a(j - 1,9j-1) - dj}dj-a.

Then, sincea(j-1,9j-1)-d;j = a(j -3, gj-3) +qj-1a(j -2, 0j-2) -
dj-1dj-1 — dj = a(j - 3,0j-3) + gj-1a(j — 2, gj-2) — dj_2, we have

a(a, qa)da = a(] -2, qj—Z)(dj + qj—ldj—l)
+a(j - 3,0j-3)dj-1 — dj_2dj_1
= a(j - 3,0j_3)dj_1 + {a(j — 2,0j-2) — dj_1}dj_2.
Thus,a(a, g,)d, = agdz+{a(l, g1)—da}ds = dodz+ (g1 —1)dods =

do(do — dy).
o

14.2

Define positive integers(s,t) (1 £ s< a; 1 £t £ qg) inductively in the
following way:

c(1,t) =t forlstsq
c(2,t) =1+tc(l,qp) forl<t<op
c(st) =c(s—2,0s2) +tc(s—1,0s1) forl<t<gsand

2<sLa.

With the above notations, we shall show 98
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Lemma. c(a, q,)d, = do.
Proof. dw, q,)d, = (@ — 2,94_2)dy + (@ — 1, 94—1)0a by
= C(a’ -2, qa—Z)da + C(CL’ -1, qa—l)da—l
= C(CL’ - 2’ qa—Z)da + {C(a’ - 3’ qa—3) + C(CX - 2’ qa—Z)qa—l}da—l

= C(a’ - 3’ qa—3)da—1 + C(a’ - 2’ qa—Z)(da + qa—lda—l)
=Cla —3,0,-3)dy_1 + Cla@ — 2,0y_2)dy_2.

As in the proof of Lemm&T.4.1, (6), we can show:
(@, Go)dy = ¢(j — 2,9j-2)dj + ¢(j - 1.gj-1)dj-1 for 3sj=a.
Thus

c(a, 00)d, = c(1, q1)ds + C(2, 02)d2 = 0103 + (Q102 + 1)d2 = do.

15

Lemma.Let 2 = {V, X C, {y,I,dg, di, €} be an admissible datum for
(X,Co) with dp > dy = 1. Letp : V — V be the Euclidean transforma-
tion of V associated wittv. LetC := CN) = p/(C), ¢ := £, do = d,
and let

€= {a(a,q)/da + (- 1)c(a, o )do/da}

and
a  Os
T = e(do/de)Eo + )| D {a(s 1)/dy + (€~ 1)e(s )/}
s=1 t=1

E(s 1) + (do/da)o* () — €,

where s t)'s and ¢st)’s are integers defined in_1.4. Leli be the
multiplicity of C atPg := C N €o. Then we have:

(1) D = (V.X,C,.T,do,d1. € is an admissible datum fofX, Co)
withd; £dg £d; < dg andeé = 4e - 2.
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99 (2) (?720) = -1, andT contains no exceptional components providied
contains no exceptional components &) + ¢, if @ > 1 and
(y+qm-1lifa=1

(3) Let A be the linear pencil oV spanned byC and dy(€¢g + T).
ThenA is the proper transform by of the linear pencilA on V
spanned by C andy(ety + I).

Proof. By a straightforward computation we have

a Qs

CMN ~ doEg + Z Z a(s HE(s t) + dgA™
s=1 t=1
a Os
whereA® = p*((e—= 1)l +T) = (e— 1){Eq + Z Zc(s, HE(s t) +p* (D)

s=1 t=1
and where ¢™ . (M) = d,, €™ . €(N)) =0for0< j < Nand
(C™.p*()) = 0. Then, withC, %o, do, €andr defined as above we have
C ~ do(€0o + T). Note thato~1(X) is identified withX, that Suppl) =

V — (X U?p) as is easily seen by Lemfia1}4.1, and Wat X = fo uTl
satisfies the condition (2) of Definitidn_LP.1. Thus, we kribwat 7 =
{V X, C ©o,T, do, d1, € is an admissible datum foK(Cp). Itis clear that
d]_ < d() < d; < dg. Letdy = bpd, andd; = byd,. Then b() b]_) =1and
bp > by = 1, whenceyy = 2. Sincee = by(bg — by) + (e - 1)b2 by virtue
of Lemmag~1.Z]1 and1.4.2, we know tleat 4(e— 1)+ 2 = 4e—2. The
assertion (2) follows from Lemnia™LB.3, and the assertijiis(8asy to
prove. m|

1.6

Definition. LetZ = {V, X, C, g, I, dg, d1, €} be an admissible datum for
(X,Co)withdg =dy = 1. Let Ry := Cnép, and leto; : V1 — Vp =V be

the quadratic transformation ofowvith center at B. Let CY := 01(C), 100
let 1 := o7 (Po) and let R := CM n ¢1. Let &Y be the multiplicity

of CW at Py. (Set @ = dy). Ifdo = d? = dP letoy : v, —» V4

be the quadratic transformation of;\With center at R. Definec; :
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Vi = Vg, €0, 65 = &, gP(0 < t < j) and d” inductively as follows
whenl < j<eand@ =d® = ... = dl™ : o is the quadratic
transformation of Y ; with center at By := CU™ n¢5; C) =
a'j_(cﬂ—l)), = o7 {(Pi-), ¢ = o) dY is the muttiplicity of
ChatpPj:=Cn¢. Fori<ice ifdg=d®=db=.. =d,
defined thée, i)-transformatiorp of V associated witt¥ (or simply, the
(e, i)-transformation oW) as the compositiop := o1... 0.

Here it should be noted that the Euclidean transformatiox aé-

sociated withZ is defined wherly > di, while the g, i)-transformation
of V is defined whemlg = dy = d = ... = d{™P and 1< i < e

1.7

Lemma.Let 2 = {V, X C, {y,I,dg, di, €} be an admissible datum for
(X,Cp) with dy = d; = 1. If the (g i)-transformationp : V; —» V is
defined for some i with < i < e then we have the following:
1) @Dy =1ift =s+1witho < s<i; (¢9 - ey = 0for other
pairs (s, t) with s# t.

@) () = () -1, (") = —2for 1<t <iand (")) = -1.
3) % = Vi, X,C0, ¢,Ti,do, d, (e - i)} is an admissible datum for
(X,Co) whenl £ i < e, where
=o' )+ (e—i+ 1)+ +efd).

If (5(2)) # 0 andT contains no exceptional components tHgn
contains no exceptional components. The linear pex@ilon \f
spanned by € and dy((e—i)¢; +I;) is the proper transform by
of the linear pencilA on V spanned by C ana)@(p + I).

(4) Ifi = e we have €@ ~ doI'e, where
I'e:=p*() + {’ée_)l +ooet efée).

The linear pencilA® on \; spanned by € and @l is the
proper transform by of the linear pencilA on V spanned by
C and @(efo + I'); A©@ is irreducible and free from base points.
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Proof. (1) and (2) follow from a straightforward computation. (3) B
direct computation again we have foli £ e

CO ~ dof(e-i) + (e—i+ 1)+ +e) +T0)

wherer® := p*(r), (CV - &) = do, €V - ) = 0 for 0 < j < i and
(€ .10y = 0. Note thap~(X) is identified withX, thatV; — p~(X) =
p D) U D U u .. Y satisfies the condition (2) of Definition
[LZ1 and that Supp() = Vi — (XU §). Therefore, if 1<i < e % =
Vi, X,CO_ 4.1, do, dg ,(e—1)} is an admissible datum foX(Cgp). The
other assertions are easy to prove.

(4) We have only to note that® is irreducible. Sinc&€® is irre-
ducible,A©@ is apparently irreducible. O

1.8
We need the following auxiliary 102

Lemma. Let k be an algebraically closed field of characteristic p and
let V be a nonsingular projective surface defined over k. LeVf— B

be a surjective morphism of V onto a nonsingular completee,
whose general fibers are irreducible curves. Assume thatresgiaen

a fiber f*(b) such that:

(1) f*(b) = dA, where d is the multiplicity and is the reduced form,
n

i.e., f'(b) = ZdiAi with irreducible components; then d is the
i=1

n
greatest common divisor ofi d .., d, andA = Z(di/d)Ai,
i=1

n
(2) SuppQ) = UAi satisfies the following conditions;
i=1
(i) each irreducible componem; is a nonsingular, rational
complete curve,
(i) Aj intersectsA; (if at all) transversely in at most one point,
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(i) AinAjn A, = ¢ for three distinct indices,
(iv) Supp@) contains no cyclic chains.

Then the multiplicity d of f(b) is a power of the characteristic p.

Proof. Our proof consists of three steps.

() SetZ := Areg. We shall show thaZ is simply connected, i.eZ

has no nontrivial unramified covering of degree primeptolLet
¢ : W — Z be an unramified covering of degree > 1 with
(mp) =1 Forl<gign g = ¢>Z<Ai W= W>Z<Ai — Ajis

an unramified covering of;. SinceA; is isomorphic toP* and

A is thus simply connected); is a disjoint unionW; := Ai(l) U

..U A™ of irreducible componentAi(‘)(l < j £ m) which are
isomorphic toA;. Now we shall prove our assertion by induction
on the numben of irreducible components . Whenn = 1

our assertion holds clearly as seen from the above remark. Fo
n > 1 there exists an irreducible componentZgfsayA;, such
that A1 meets only one irreducible componentdbbther thanA;

n
andz’ = Z-A; = UAi satisfies the same conditions {)(iv)
i=2
as above foZ. LetP := Z' n A; and lety’ := ¢>Z<Z’ W=
W>Z<Z’ — Z’. Sincey’ is an unramified covering of degrem

we know by assumption of induction thef is a disjoint union
W=z20u.. . uz™M wherez®(1 < j < m) is isomorphic
to Z’. Letp Y(P) := {PW,...,PM}. We may assume with no
loss of generality thab € 2 n A for 1 < j < m. Sincez’
andA; meet transversely each otheiPaandy is unramified 2’
andA(l’) meet transversely each otherRdt for 1 < j < m. Set

Z0) = 720y A(lj) for 1 < j <m. Thenitis easy to see that each
Z\) is isomorphic taZ for 1 < j £ mandW is a disjoint union of
ZM, ...,Z™M. Thus, our assertion is proved.

(I Assume thatd is not a power ofp, and writed = p*d’ with

(d,p) = 1. Lett be a uniformisant oB at the pointb, and let



Irreducibility theorem 73

B’ be the complete nonsingular model of an algebraic function
field k(B)(t¥/®). The canonical morphism : B’ — B determined

by the injectionk(B) — k(B)(t*) ramifies totally over the point 104
b. Letb’ be the unique point oB’ overb. LetV’ be the normal-
ization of VB’ and lety : V' - Vandf : V' — B be the
canonical projections ontd andB’, respectively. We have, thus,

a commutative diagram:

v

Vl >

f’ [f
¥

B——B

Let W := f”*(Y). We shall show thay mapsW’ onto p*A
(considered as a closed sub schem¥)oéndy’ := gl : W —
p*Ais a nontrivial unramified covering of degrde Letvbe a k-
rational) point ofV on A, and letx be an element of/y;, such that
x = Ois alocal equation ok (considered as a divisor &f). Then
we havet = ux with u € &7,,. Hence we have/? = (u/?)x"
ink(V’) := k(V)k%k(B’). Here note that andx cannot be chosen

so thatu has ad’-th root in &y,y; indeed, if possiblek(V)k((z%)k(B’)

would be not an integral domain, and this contradicts thetfeat
k(V) is a regular extension ¢&B). We have then:

V,ff Spec@y,) = the normalization Of\(>B<B,)€/< SpecCv,y)
= the normalization oB’>E§ Specyy)
= Speci,[uM?]).

This implies thaty : V' — V is unramified at every point of

V'’ overv. Moreover, we know by construction that(p®A) =
f’*(b') at every point oV’ overv. Since these assertions hold faros
all pointsv of A we know thaty mapsW’ onto p?A andy’ :=

Ylw : W — p?A is an unramified covering of degre, where

¢’ is nontrivial becaus®V’ ;= f’*(b’) is connected.
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() Sety : ¢rop W = W qandZ := (p*A)red. Theny : W — Zis a
nontrivial unramified covering of degrek > 1, which contradict

the assertion in step (I). Consequentlys a power ofp.

1.9

As consequences of Lemmall.8 we have the following results.

191

Corollary. Let 2 = {V, X,C, £o,T, dp, d1, €} be an admissible datum for
(X, Cp) with dy = d; > 1. Assume thatdis not divisible by p. Then
there exists an admissible datugf = {V’, X, C’, €y l"’,dg),d’l,ef} for
(X, Cp) such that:

(1) 2’ is obtained fromZ by somge, i)-transformation of V associ-
ated withZ;

(2) dj=do, d] <djand € <e;

3) (5’(2, = -1, andI” contains no exceptional components provided
(t’g) # 0 andT contains no exceptional components.

Proof.  (I) Assume thatdy = d; = dP = ... = d!™ > d¥ for
somei with 1 £i < e. Let & be an admissible datum foX(Cp)
obtained fromZ by the g, i)-transformation o¥/ associated with
2. Then g satisfies all conditions (1¥ (3) above by virtue of
LemmaLY.

(I) Assume that the equalitiesy = dy = dP = ... = d®™% hold.
Letp : Ve — V be the € e)-transformation ol associated with
2, and letA := Te. The linear pencih© on Ve spanned byc®©
and dogA is an irreducible pencil free from base points. Hence
A® defines a fibratiorf : Ve — P, of which doA is a multiple
singular fiber becausdy > 1. Note thatdy is the multiplicity
of the fiberdpA by virtue of Lemmd_L]7 (esp. (4)) and that the
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n
irreducible components; of A (i.e., Suppf) = UAi) satisfy the

i=1
conditions (i)~ (iv) of LemmalL8. Hence, by virtue of Lemma
L8, dy is a power ofp, which contradicts the assumption tlugt
is not divisible byp.
m|

19.2

Corollary. LetZ = {V, X,C, £y,I',dg, d1, € be an admissible datum for
(X,Cp) with dy = d; = 1. Assume that thée, e)-transformationp :

Ve — V is defined, i.e., the equalitieg & dy = d{") = ... = d® ™ hold.
Let A be the linear pencil on V spanned by C andedy + I'). Then the
generic member of has only one place outside of X, which is a purely
inseparable place. In other words, a general membex bfas only one
place outside of X.

Proof. (1) Let A® be the proper transform of by p; A© is spanned
by C® anddpA, whereA := I's, andA© is an irreducible linear
pencil free from base points. S8t:= £ (cf.[L1). Then C© .
S) = do(A - S) = do, anddy is a power ofp in virtue of Lemma
[L8. Letf : Ve — P} be the fibration defined bi®. LetS :=
S-{SnA}andT := B} - f(A). Then, by restrictingf onto S
we have a surjective morphisin: S — T of degreedy. Choose
inhomogeneous coordinatesandt on S andT respectively such 107
that the poinC® N S is defined bys = 0 and the pointf (C©) is
defined byt = 0. Theng is given by a polynomiat = G(s) in s
with codficient ink and with deds = dyg. By choices ofs andt
we haveG(0) = 0. Since the poin€® N S is a one-place point of
C® andA® has no base points, we conclude readily tBés) is
written asG(s) = ase with a € k. We may assume that= 1 by
substitutings for (a/90)s. This implies thatf := fls : S — PL
is the e-th iteration F® of the Frobenius endomorphisk of S,
wheredp = p®.

(I Let K = k(t) = k(PY), and letW be the generic fiber of,
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e, W = V(e)xlSpec((). ThenW is a projective normal curve
P

defined overK, and the curveS gives rise to a point”Z on W
which is purely inseparable ovét, as was seen in the step ().
Hence? is a one-place point V. Thus the generic member of
A has only one place outside ¥f

i

The following example, which was communicated to the aubyor
A. Sathaye, shows that a general fiberolias only one place outside
of X, while some special fiber has 2 or more places outsidé. dfet k
be a field of characteristip > 0. Choose integens, U, V such that (1)
UV=1+p+---+p'and (U >V > 1 andLU - MV = 1is the
unique relation with., M > 0, L < V andM < U. Then there exists a
unique positive integer a such that

LUp™+UV-1>auUV>LUp™! and az0 (modp).

Consider an fiine plane curvef(x,y) = xVP + yYr + X'yS, wherer =
aVv - Lp™lands = Up - aU + Mp™!. Then the curvef(xy) has
the property thaff + A has exactly one place at infinity for all except
one value ofl and for the special value df, it has 2 or more places at
infinity. Heren can be chosen to be 1 for gdl# 2™ - 1 for anym, and

n < 3 otherwise. Consequently, dég= Up < p? in the former case
and degf < p® in the latter case.

1.10

Corollary to Lemma [[L3 and Corollary L9.d.Let 2 = {V, X,C, (o, T,

do, d1, €} be an admissible datum fdiX, Co) such that at least one of
do and d, is not divisible by p. Then there exists an admissible datum
D = {V,X,C, ¢.T, 1,1, for (X, Co) such that:

(1) There exists a birational morphisg : V. — V, which is the
composition of Fuclidean transformations and (eg)-transfor-
mations associated with admissible data.

(2) C = p/(C) andp~1(X) = X.
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(3) The linear pencilA onV spanned b ande&, + T is the proper
transform byp of the linear pencilA on V spanned by C and
do(efp + ).

Proof. We shall prove the assertion by inductionan If dp = 1, we
have only to takeZ = 2. If dy > d; then the Euclidean transformation
po of V associated withz can be defined, and we obtain by Lemma
LA an admissible datur@ = {V, X, C, ¢o, T, do, d1, 8} for (X, Co) such
thatdy < do < di < do anddp is not divisible byp. By inductive
assumption we have an admissible datgm= {V,X,C, ¢, T, 1,18 109
and a birational morphismg : V — V which satisfy the above con-
ditions (1)~ (3). Then we have only to takB andp := pipo. If

do = d; > 1, Corollary[I.9.11 shows that there exists an admissible da-
tum 2’ = {V', X,C’, £, 1", d(, d;, €} such thad] < djj = d; = do, d;) is

not divisible byp, and that?’ is obtained by somee(i)-transformation

p’ of V associated witl7. By the former case treated above we have
an admissible datury and a birational morphism, : V — V'’ which
satisfy the above conditions (1)(3). Then we have only to tak& and

p=p2p’. m

1.11

Lemma.Let 2 = {V,X C, {,TI,1,1 € be an admissible datum for
(X,Cp). Letp : Ve — V be the(e e)-transformation of V associ-
ated with 2, let A©® be the linear pencil on ¥spanned by € and
Te=p"(0) + (O, + -+ el (cf. LemmdL¥)and let f: Ve — Pl be
the fibration defined by.®. Then we have the following results:

(1) C® is an irreducible curve which is nonsingular at€n fe.
(2) feis a cross-section of the fibration: Ve — P&.
(3) A® has no multiple members.

(4) Let D be amember of® other tharle. Then, D is an irreducible
curve; Dy := D n X has only one place outside opDif Cq is
nonsingular the arithmetic genus of D is equal to the geoimetr
genus of @.
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(5) If Cois nonsingular and rational then D is a non-singular rationa
curve; X with a fibration § := f|x : X — Al := PL—{f(I¢)} is an
Al-bundle overA&, and hence X is isomorphic to th¢iae plane
A2,

k

Proof. It will be clear that the € €)-transformationo : Ve — V asso-
ciated withZ is defined. LemmBl7 tells us thaf® is an irreducible
pencil free from base points. Hence the general fiber§ afe irre-
ducible. SinceC® - ¢;) = 1 we know thatC® is an irreducible curve
which is nonsingular a8©n¢, and that’e is a cross-section df. Hence
A® has no multiple members. LBtbe a member aA® other thar.
Then O - £e) = 1. SinceVe— (XU ) = Supple) (cf. the proof of
LemmalLY) and sincX is afine, D is an irreducible member. Since
Do = D-(Dn¢) andD N £ is a simple point oD, D has only one
place outside oDg. By invariance of arithmetic genera for members
of a linear system we havepa(D) = pa(C®), which is equal to the
genus ofCy if Cq is nonsingular. 11Cqy is non-singular and rational then
pa(D) = 0, whence follows thab is a nonsingular rational curve and
Dy is isomorphic to theféne IineA&. Furthermore, iCq is nonsingular
and rational theg : Ve — Supple) — Al = PL—{f(I¢)} is aP -bundle
overA& by virtue of Hironaka [22; Th. 1.8] anfl — ('e N £¢) is a cross-
section ofy, wherey is the restriction off ontoVe — Supp(’e). Hence,
fo := flx : X = Al is anAl-bundle overA}, andX is isomorphic to the
affine planeA? because evergi!-bundle overd! is trivial. O

1.12
CorollaryZ.ID combined with LemniaT]11 implies the follogi

Theorem.Let 2 = {V, X,C, £g,T', dg, dq, €} be an admissible datum for
(X, Cp) such that at least one ofdnd d, is not divisible by p, and let
A be the linear pencil on V spanned by C anfdedy + I'). Let D be an
arbitrary member ofA other than d(efo+T) and let ) := DN X. Then
we have the following:

(1) Dgis an irreducible curve with only one place outside qf D
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(2) The geometric genus of D is equal to the geometric genus of C if
D is a general member @f and G is nonsingular.

(3) If Cp is nonsingular and rational B is a nonsingular rational
curve; X is isomorphic to theféne pIaneAi.

Proof By Corollary 1.10 there exist an admissible datum
= {(V,X,C,6,T,1,18 for (X Co) and a birational morphisrp :

V — V such that the linear penc onV spanned b)C andefy + T

is the proper transform by of A. Letp : V(‘) — V be the §8)-

transformation ol associated witD and IetA(‘) be the proper trans-

form of A by p. Leto = pp. ThenL := A(@) is the proper trans-

form of A by o. Let D’ be the member oE corresponding td of

A. ThenD6 := D’ n Xis isomorphic toDg, whereX is identified with

o~ Y(X). The above assertions now follow from the assertions (d) an

(5) of Lemm&LTI. O

1.13

Lemma.Let 2 and A be as in Theoreri L2 and let A T'(X, O%).
Then the following assertions hold.

(1) Assume that A is a factorial ring and that A= k*. Let f be a
prime element of A defininggCand let G, be the curve on X 112
defined by £ a for a € k. Then By (cf. TheoreniZLI2¢oincides
with C, for somea € k, and conversely, every,Gs of the form
Do for some member D o other than d(efy +T).

(2) If Cp is nonsingular and rational then A is a polynomial ring in
two variables over k; thence A is a factorial ring with A k*.

Proof. (1) Under the assumptions of the assertion (1) we h&ye=(
C — A with a divisor A such that Sup@) c £o U Suppl). Let
g be an element dk(V) such that@) = C — do(efo + I'). Then
(f/g) = do(efp+T') — A, whencef /g is an invertible element AA.
SinceA" = k*, f = Ag with 1 € k*. Hence ) = C — dp(efp + I).
This implies thatA is spanned by 1 anél (or more precisely, by
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do(efo +T) anddp(efo + T') + (f). It is now clear that the assertion

(1) holds.
(2) The second assertion was proved in the assertion (3) @frEm
12
i
1.14

Theorem.Let A be a nonsingular, rational,fgne k-domain of dimen-
sion 2, and let X := Specf). Assume that the following conditions
hold:

(1) There exists an irreducible closed curvg @ X, which is iso-
morphic to the gine lineA® over k.

(2) There exists an admissible datum= {V, X, C, £o,T", do, d1, €} for
(X, Cp) such that at least one ofcnd d is not divisible by p.

113 Then X is isomorphic to thefne planeA? over k. Furthermore if f is
an element of A defining the curveg then A= k[ f, g] for some element
g of A.

Proof. The first assertion was proved in Theorem1l.12. We shall show
the second assertion. By virtue of LemmaTl.13, the proof @ofém
[L12 and LemmB_L11, we know théthas a structure of aa'-bundle
overA& := Speck][ f]), whose fibers are the curv€s, defined byf — «
with @ € k. HenceA = K[ f, g] for some elemeng of A. ]

1.15

Proof of Irreducibility theorem. SetX := A2 = Speck[x,y]). Then, as
seen i L2122, = {Pi, X, C, €o, ¢, do, d1, 1} is an admissible datum for
(X, Cp); (for the notations, see the paragrépf 1.1). We may asshame t
do > 1; if otherwise,Cis aline onPﬁ and the assertion of the theorem is
apparently true. Ifly > 1, the theorem follows from Theordm 1112 and
LemmaLIB.
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1.16

Proof of Generic irreducibility theorem. Let % be as ilCLI5; we
may assume thaly > d;. Starting with the Euclidean transformation of
Pﬁ associated withy and repeating successively the Euclidean trans-
formations or thed i)-transformations associated with admissible data
we obtain ultimately an admissible datuth = {V, X, C, o, T, do, d1, €}
such that one of the following conditions holds:

(1) do=d; =1;
(2) dp=d; >1ande=1.

In the case (1), we know by virtue of Lemrha_l.11 that every eurv
C.(a € K) is an irreducible curve with only one place at infinity. In14
the case (2), the generic irreducibility theorem followsnfr Corollary

L9.2.

1.17

Proof of the Embedding theorem. Consider an admissible datugn

in the paragraphT15. Hy = 1 the theorem holds apparently; hence
we may assume thak > 1. Thendy > d; = 1. Now the embedding
theorem follows from Theorem1114.

2 Linear pencils of rational curves
115

2.1

In this section the ground fiekdis assumed to be an algebraically closed
field of characteristiqp. LetV be a non-singular projective surface de-
fined overk. We shall consider an irreducible linear pengilon V
satisfying the properties:

(1) General members of are rational curves.
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(2) The generic member & is smoothable; namely, setting” =
the sub field of /) corresponding to the penci, the complete
normal #"-model of an algebraic function fieldK) in one vari-
able over.z" is geometrically regular over?”. The property (2)
is equivalent to saying:

(2') There exist a nonsingular projective surfadeand a birational
morphismp : V — V such that general members of the proper
transformA of A by p are nonsingular curves.

When the fielk is of characteristic zero the pendilsatisfies automati-
cally the property (2); hence the condition (2) is superfiiddoreover,
we note by Tsen’s Theorem thdts a rational surface ik has the prop-
erties (1) and (2). In the next chapter we shall considerealipencil
having only the property (1) but not (2), in order to constmumirational,
irrational surfaces.

2.2

Lemma.Let f: V — B be a surjective morphism from a nonsingular
projective surface V onto a nonsingular complete curve B shat al-
most all fibers are isomorphic tE&. LetF=mCi+---+nC, be a
singular fiber of f, where Cis an irreducible curve, C# Cj ifi # |,
and n > 0. Then we have:

(1) The greatest common divisdng,...,n;) of m,...,n is 1;
r

Suppf) = UC‘ is connected.
i=1

(2) For1<i <, Gy is isomorphic tdPL and (C?) < 0.
(3) Fori#j,(Ci-Cj)=0or1l
(4) For three distinct indices i, jand, C;NC; N C; = ¢.

(5) One of G's, say G, is an exceptional component, i.e., an excep-
tional curve of the first kind. If : V — V; is the contraction of

f
Cy, then f factors as £ V 5 V; — B, where f : V; — Bisa
fibration byP?.
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(6) If one of n's, say n, equalsl then there is an exceptional com-
ponent among B with2 <i < n.

See Gizatullin[[I6]. () Let m = (ng,...,n;) and letC = mD with
D := (ny/m)Cy + --- + (n;/M)C;. Then, by the arithmetic genus
formula we have:

Pa(C) = {M?(D?) + m(D - Ky)}/2+1=m(D - Ky)/2+1=0.

Since D - Ky) is an integer, eithem = 1 orm = 2 and D -
Ky) = —1. In the latter casepa(D) = {(D?) + (D - Ky)}12+ 1 =
1/2, which is a contradiction. Henaa = 1. If r = 1 thenC is
isomorphic th&. Hencer = 2 and we know by virtue of Zariski’s

r
connectedness theorem that Supp€ UC‘ is connected.
i=1

(1) For eachi, nj(C?) + an(Ci - Cj) = 0 where C; - Cj) > 0 for
i#]
some| becausd- is connected. Hence’.:f) < 0. To prove the 117
assertions (2), (3), (4) and (5) we have only to show that dne o
Ci’'sis an exceptional component. Note thatKy/) = —2 because
pa(F) = 0. Hence we have:

(+) —2= (F-Kv) = > ni(Ci-Ky) = " m(2pa(C) 2 (CP)).

where 2,(Ci) - 2 - (Ciz) > -1 and the equality holds if and
only if Cj is an exceptional curve of the first kind. However, it is
impossible that B,(C;) — 2 — (Ciz) > 0 for everyi, as seen from
the above equality«). Therefore, §,(Ci) — 2 - (Ciz) = -1 for
somei.

() We shall prove the assertion (6). Assume the contraey, C; is
an exceptional component with = 1 and none o€j's (2 i £
r) is an exceptional component. Then we have:

2pa(C1) —2—(C3) = —1and D,(Ci) -2-(C*) = Ofor2<i <.
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Then we haveZni (2pa(Ci) - 2- (C?)) 2 -1, which contradicts

the equality ).

2.3

Lemma.Let V be a nonsingular projective surface and letbe an
irreducible linear pencil on V satisfying the properti€k) and (2) of
1. Let B be the set of points of V which are base pointa.olet
F := niCy + --- + n,C, be a reducible member & such that r> 2,
where Gis an irreducible component,G Cjifi # j,and n > 0. Then
the following assertions hold:

(1) If Ci N B = ¢ then G is isomorphic td?; and (C?) < O.

118 (2) fCiNCj = ¢fori # jand GNC;NB = ¢ then GNC; consists of
a single point where Cand G intersect each other transversely.

(3) For three distinct indices i, j£, if CinCjnC, N B = ¢ then
CinCinC,=¢.

(4) Assume tha(CiZ) < 0 whenever €N B # ¢. Then the set S
{Ci; Cj is an irreducible component of F such that@©B = ¢} is
nonempty, and there is an exceptional component in the set S.

(5) With the same assumption as(4) above, if a component of S,
say G, has multiplicity n = 1 then there exists an exceptional
component in S other thamC

Proof. Letp : V — V be the (shortest) succession of quadratic trans-
formations with centers at base points (including infigitekar base
points) of A such that the proper transform of A by p has no base
points. Then, by the equivalence of the properties (2) afdaR ex-
plained in[ZlL, general members &fare isomorphic t&®.. The as-
sertions (1), (2) and (3) are then apparently true. We shallegpthe
assertions (4) and (5), assuming tBat ¢. Let P € B. SetPq := P,

and letPq, ..., Ps_1 exhaust infinitely near base pointssdiuch thaP;
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is an infinitely near point oP;_; of order one for 1< i < s— 1. For
1=<i<s letoj: Vi — Vi 1 be a quadratic transformation gf_; with
center atP;_1, whereVp := V, and letc- = 01 ... 0s. Theno factorsp,
i.e.,p=0-p. LetE = (ois1...06) (07 (Picy)) for 1 < i < sand let
Ef = 051 (Ps1). LetE :=p/'(F/) for 1 < i < s. Itis clear thatE] = E;
and €)= (E?)for1<i < s andthatE?) < -1for1<i < sand 119
(E2) = —1. MoreoverE; is not contained in any member af indeed,
if otherwise, A would have yet a base point @, which contradicts
the choice of point$y, ..., Ps 1. The membefF of A corresponding
to F of A may contain some (hot necessarily al)&f, ..., Es 1. After
the above argument made for every poinBofve know that if we write
F = (mCi+-+nC)+ (mDy +--- + mDy) with C; = p’(G)) for
1<i £rthen we have;

1° if C e SthenC; = C; and C?) = (C?),
2° if G ¢ Sthen C?) < -2,
3 (D) s-2forlsist

Then the assertions (4) and (5) follow from the assertiohatid (6) of
LemmdZR. O

24

Let Aﬁ = Speck[x,y]) be the dfine plane, and fix an open immersion
of AZ into PZ as the complement of a linefl. Let f K[x y] be an irre-
ducible element such that the cu@gdefined byf = 0 is a nonsingular,
rational curve. LetC be the closure o€ in Pﬁ, and letd := (C - ¢p).
Denote byA(f) the linear pencil o@ﬁ spanned by andd{p; A(f) is an
irreducible pencil determined uniquely by the incluskdii) — k(x,y).

We may ask under what conditions the penfeflf) has properties (1) 120

'We note that ifAZ is embedded int®2 as an &ine open set then the complement
is a line. Indeed, let : A2 — P2 be such an embedding; th&d — 7(A2) = U/_,C;
with irreducible component§;. If r = 1, C; ~ myH whereH is a line oﬂP’ﬁ. Since
Pic(A2) = (0) we havem = 1. Assume that > 2 andC; ~ mH for 1 <i <r. Then
there exists a nonconstant regular functioon (A2) such that f) = mC, - mCy,
which is a contradiction.



121

86 Curves on ani@ine rational surface
and (2) of the paragrafih2.1.

24.1

Lemma. With the above notations, the pengi(f) has propertieq1)
and (2) of[Z1 if and only if f is a field generator, i.e., there exists a
element g of &, y) such that kx, y) = k(f, g).

Proof. The properties (1) and (2) €£2.1 are equivalent to saying) tha
an algebraic function fiell(x, y) in one variable ovek(f) has genus 0.
By vartue of Tsen’s theorem, this is equivalent to saying kiva y) is a
purely transcendental extensionkgf). m|

24.2

Various properties of a field generator were studied by R{i&8¢ [50],
one of which tells us:

Lemma Russell [48; Cor. 3.7] Let f € k[x,y] be a field generator.
Then there are at most two points (including infinitely neaings) of f
on the line at infinity. In particular, the degree form of f hatamost two
distinct irreducible factors.

2.4.3

If the curveCy defined byf = 0 is isomorphic toA?, the pencilA(f)
satisfies the properties (1) and (2)[0fl2.1 under some mildictsns,
as we saw in the previous section. An example of a nonsingaléonal
curveCyp : f =0, for whichA(f) does not satisfy the properties (1) and
(2) of 2, is given by the following:

Example. Assume thap # 2. Let f := xy?(x+y)+2xy+1. Thenf is an
irreducible element and the cur@ : f = 0 is a non-singular, rational
curve. Moreover, ip : V — PZ is the shortest succession of quadratic
transformations such that the proper transfoxnof A(f) by p has no
base points, then is a pencil of elliptic curves with three singular fibers
andA has the following configuration:
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S

Cs

Sa

S3

where;

lO

20

30

4°

50

60

244

two dotted linesS; andS3 are cross-sections of; and the dotted
line S; meets each fiber of with multiplicity 2;

the singular fibeff = oo is a singular fiber of typ&q (cf. Safarevit
[51; p. 172));

the singular fiberf = 0is arational curve with only one (ordinary)
node on the liné ;

the singular fiberf = 1 has three irreducible componefds, C,
andC3 which are nonsingular rational curves, and correspond to
the curvesy = 0, x = 0 andy? + xy + 2 = 0 respectively, in the
decompositionf — 1 = yx(y? + xy+ 2); (C%) = -1, (C3) = -3 and 122
(C3) =-2

each fiberf = a(a@ € k,@ # 0,1) is a nonsingular elliptic curve
meetingS; in two distinct points;

V-(the fiberf = c0) US; US, U Sg = A2,

Let f € k[x,y] be an irreducible element such that the cuB¢e: f = 0
is a nonsingular rational curve. EvenGf has exactly two places at
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infinity and f is a field generator, a cun@, : f = a(a € k) does not
necessarily have two places at infinity as is shown by the next

Example. Assume thap # 2. Let f = x2y? + 2xy? + y? + 2xy+ 1. Then

f is an irreducible element and the cu®g : f = 0 is a nonsingular
rational curve. Moreover, ib : V > Pﬁ is the shortest succession of
quadratic transformations such that the proper transforof A(f) has
no base points, then is a pencil of rational curves with two singular
fibers andA has the following configuration:

S1

a#0,1

123 where;

1° the dotted lineS, is a cross-section ok, and the dotted lin&;
meets each fiber with multiplicity 2;

2° the singular fiberf = co is 2C1 +4Cy + 2C3 + 2C4 + Cs + Cg With
(€ =(CH=(C)=(Ch=-2.(CH=-1and €)= -3

3° the singular fiberf = 1isD1 + Do, where P?) = (D3) = -1, and
D, andD, correspond to the curvgs= 0 andx?y+ 2xy+Yy+2X =
0, respectively, in the decompositidn- 1 = y(x2y+ 2xy+ Y+ 2X);

4° the fiberf = 0 is a nonsingular rational curve meetifg in a
single point with multiplicity 2;



Linear pencils of rational curves 89
5° each fiberf = a(a € k,a # 0,1) is a nonsingular rational curve
meetingS; in two distinct points;

6° V-(the fiberf = co) US; USy = AZ.

245

Let f € k[x, y] be an irreducible element such that:
(1) fis afield generator;

(2) every irreducible curve of the for@, : f = a with a € kis a
nonsingular rational curve with exactly two places at infini

Even with these conditions satisfied, there might exist aeqy, :
f = a(a € k) which is not connected, as is shown by the next:

Example.Let f = y(xy+ 1) + 1. Thenf is an irreducible element.
fp:V > PZ is the shortest succession of quadratic transformations
such that the proper transformof A(f) has no base points, thenis a
pencil of rational curves with two singular fibers andas the following 124
configuration:

where;

1° two dotted linesS; andS, are cross-sections of
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2° the singular fiberf = oo is Cy + 3C; + 2C3 + C4 with (C2) = -3,
(C3) =-1and C3) = (C3) = -2;

3° the singular fibef = 1isD;+D,+D3 with (D?) = (D3) = -1 and
(D%) = -2, whereD; and D> correspond to the curves= 0 and
xy+ 1 = 0, respectively, in the decompositidn- 1 = y(xy + 1);

4° the fibersf = a(a # 1, o) are nonsingular rational curves;

5° V-(the fiberf = co) US; US, U D3 = A2,

2.4.6

In the section 6 below we shall show the following result:

Assume that the characteristic lofs zero. Letf be an irreducible
element ofk[x,y], and letC, be the curve defined bf/ = « for a € k.
Thenf = xdy© - 1 for positive integers ande such thatd, €) = 1, after
a suitable change of coordinateandy, if the following conditions are
satisfied:

1° f is afield generator;
2° C, has exactly two places at infinity for almost alk k;

3° C, is connected for every € k.

3 Automorphism theorem

3.1
We shall begin with

Lemma cf. Nagata [43; p. 21].Let k be an algebraically closed field of
characteristic p. Let @be a closed irreducible curve on thgiae plane
Aﬁ := Speck[x, y]) such that @ is defined by = 0with f € k[x,y] and
that Gy is isomorphic to the gine IineA&. Fix an open immersion oﬁﬁﬁ
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into the projective plane f and let(o := P2 — AZ. Let C be the closure
of Gy onPﬁ, let Pp = Cniép, let dy = (C-£p) and let d be the multiplicity
of C at By. Assume that f is a field generat(@f. [Z4]) Then ¢ and
d; are divisible by @ — d;. If either d; or d; is not divisible by p then f
is a field generator, andgdand d are divisible by g — d;.

Proof. Our proof consists of three steps.

() We may assume with no loss of generality tbat>- d;. Let Ag be

an irreducible linear pencil oﬁﬁ spanned byC anddyfp, and let
Vo Pﬁ be the (shortest) succession of quadratic transforma-
tions such that the proper transforinof A has no base points.
By assumption and by virtue B 1.2.2 and .12 when eithesr

d; is not divisible byp, the pencilA satisfies the properties (1)
and (2) oflZ1; furthermore, the member}(‘nfcorresponding to
dolo of Ag is a reducible fiber oh.

(I Asin3, find integersl,, ..., d, andqy, ..., q, by the Euclidean

()

algorithm with respect tdp andd;. To obtain the morphismwe 127
have to start with the Euclidean transformation V — Pi as-
sociated with an admissible datuif, A2, C, fo, ¢, do, dr, 1}. Let

A be the proper transform afy by o- and letF be the member

of A corresponding to the membdgty of Ag. ThenF has the
weighted graph as givenlin_l.3, Figure 1, anflas a unique base
point lying on the curveE(e, q,) but not on other curves of the
weighted graph. We shall now apply Lemmal 2.3 to the pregent

A andF.

Case l.a = 1, i.e.,dy = q1d; with g1 = 2. Then the weighted
graph ofF is:

1—q1 -1 —2 —2
(e O O coe O

Be  E(La) B(LY)

Now, by virtue of Lemm&Z]3, we know thafg) =1-q =-1,
i.e.,q1 = 2. Thendy — d; = dy; hencedy — d; dividesdy andd;.
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Case 2. = 2,i.e.,dy = qud; + d> andd; = qgpody with gp = 2.
Then the weighted graph &fis:

- -2 -2 -1 —(g2+1) -2 -2

O O O O O O
J LN ] A A A 2

Eo E(Qal) E(27 q2 — 1) E(27Q2) E(l,(h) E(Ll) .

Again by Lemma&Zl3 we conclude th@at= 1. Hencedp—d; = d».
Thend, dividesdg andd;.

Case 3.« 2 3. By LemmdZB we know thaEf) = —q; = -1.
Then we can contract the curveésg, E(2,1),...,E(2,g2 — 1) in

this order; in each step of the contractions we obtain a ngoghr
projective surfac&/’, a linear pencilA” and a singular fibeF’ of

A’ to which LemmdZ13 can be applied. However, after contract-
ing the curveE(2, g2 — 1), the proper transforr of E(2, o) has
self-intersection numbeEf) = —qz if @ = 3and E2) = —(gz+1)

if « 2 4. Notethatgz = 2 if @ = 3andgz = 1 if @« 2 4. Hence
(E?) < -2 if @ 2 3. This is a contradiction. Consequently, we
know thatae < 2 and we are done.

3.2

Corollary (Abhyankar-Moh [Z]). Let k be a field of characteristic p.
Let ¢ and ¢ be nonconstant polynomials of degree m and n in t with
cogficients in k. Lep : Al = Speckt]) — AZ = Speck{x,y]) be a
morphism defined by*(X) = ¢(t) and p*(y) = ¥(t), and let f(x,y) be

an irreducible polynomial in k«,y] defining the curve)(Aﬁ). Assume
that t] = k[¢, v] and that f is a field generator. Then either m divides
n or n divides m. If G.C.0n, n) is not divisible by p then f is a field
generator, and either m divides n or n divides m.

Proof. We may assume thétis algebraically closed, by substituting an
algebraic closure ok for k. We may also assume that > n. Fix a
homogeneous coordinat, (Y, Z) on P2, and let{y be the lineZ = 0.
Let AZ := P2 - {o, and letx := X/Z andy := Y/Z. Then a mapping
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t (X= ¢,y =) maps isomorphicall)Aﬁ to a curveCp on AE. LetC
be the closure o€y on Pﬁ and letPg := C N £y5. Now write:

o(t) = amt™ +--- + &g
() 1= bpt"- - + bo

with amb, # 0. Then the pointPq is (am, 0,0), and the curveC is 129
expressed locally & in the following way:

X =am+amat+---+agr"
Y =7™"(op + bp_17 + - - + bo7")

Z=1"

wherer = t1. Thenm = (C - £p), andm — n is the multiplicity ofC at
Po. By virtue of Lemmd_311 we know thatdividesm. O

3.3

Let k be a field of arbitrary characteristjg, and letk[x,y] be a poly-
nomial ring in two variables< andy overk. We denote by Awk[X, Y]
the group ofk-automorphisms ok[x,y]. A k-automorphisn¥ (o or ,
resp. ) ofk[x,y] is called alinear (affine or de Jonquiergresp. ) trans-
formation if¢ (o or , resp. ) has the following expression:

E(X) = ax+ By, £Y) = o/ x+ Bywith a, 8, @, B/ € ksuch
thatap’ # o'B;

o(X) =ax+py+y, o) =ax+pBy+y witha, 8, v, o,
B,y € ksuch thatys’ # o’'B;

7(X) = ax+ f(y), 7(y) = By + v, wheref(y) € K[y] ande, 5,
v € kwith @B # 0.

We denote byGL(2, k) (A2 or J,, resp.) the subgroup of all linear
(affine or de Jonquiere, resp. ) transformations in A, y]. A k-
automorphisnp of k[x,y] is calledtameif p is an element of the sub-
group generated b4, andJ,. An easy consequence of Corollaryl3.2 is
the following:
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3.3.1

AUTOMORPHISM THEOREM (cf. Nagata [43]; Abhyankar-Moh
[2] and many others). Let k be a field of arbitrary characteristic. Then
everyk-automorphism ok[x, y] is tame.

Proof. Letp be ak-automorphism oK[x,y] and let

p(X) == f(xy) = fo(xy) + fi(X y) + - + fm(X.Y)
pY) = d(XYy) = go(Xy) + g1(X.y) + - + gh(X,Y)

wherefi(x, y) andgj(x, y) are the-th and thej-th homogeneous parts of
f andg, respectively, for & i £ mand 0£ j £ n, and wherefih(x,y) #

0 andgn(x,y) # 0. After a suitable change of coordinateandy by a
linear transformation we may assume tliatx, 0) # 0 andgn(x, 0) = O.
Let o(x) := f(x,0) andy(X) := g(x,0). Thenk[x] = Kk[p,¥]. Let
71 Ag = Speck[X]) — AZ = Speck[x’,y’]) be a morphism defined by
(X)) = o(X) and7*(y') = ¥(X), letCqy = T(Aﬁ), and letf’(x',y) be an
irreducible element ik[ X', y’] definingCo. Thenf’ is a field generator;
this is clear becauseis an automorphism d[x,y]. By Corollary[32
we conclude that eithann or njm. Besides, it is easily ascertained that
if mn> 1thenf(x,y) = ad™ andgn(x,y) = A" for a common linear
factor1in xandy and fora, 8 € kKA. Assuming tham = nd > 1, define
a k-automorphisrmo- of k[x,y] by o(x) = x — yy® ando(y) = y, where
a = yBY. Thenop(x) has degree smaller than Thus, we can finish
our proof by induction on max, n). m|

3.3.2

More precisely, we know the following structure theorem on
Autg K[, y]:

2Since the curve (x,y) = 0 is isomorphic toAl, we know thatfm(x,y) = AT for a
linear factoras; similarly, gn(x,y) = 43. Since the curves(x,y) = 0 andg(x,y) = 0
intersect in a single point transversely &g = Speck[x,y]), we know by Bezout’s
Theorem thafl, = yA; with y € k* unlessmn= 1.
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Lemma (cf. Nagata [43; Th. 3.3; Kambayashil[25]) JAutk k[, Y] is
an amalgamated product obAnd }. Namely, ifoj e Ay —J> (121 £
r-=1),7je - A1 £ j£r), thentio11202. .. Tr_107-17r ¢ Ao. 131

For the convenience of readers, we shall give a (sketchyf pino
the next paragraph.

3.4

Lett: 7(x) = ax+ f(y) andr(y) = By +y be a de Jonquiere transforma-
tion of k[x,y]. T defines a birational automorphismof Pﬁ by setting:
T*(X) = aXZ" 1 + F(Y,2), T*(Y) = BYZ"1 + yZ" and T*(2) = Z",
wherex = X/Z,y = Y/Z, n := deg, f(y) andF(Y,Z) := Z”f(Y/Z)E We
assume thah > 1. Then it is easy to see thRy : (X,Y,Z) = (1,0,0)

is a unique fundamental point @f on P2 and the linefp : Z = O'is a
unique fundamental curve @fon Pﬁ. Let 4 be a quadratic transforma-
tion with center aPy. Now eliminating fundamental points (including
infinitely near fundamental points) df by the (shortest) succession of
quadratic transformations, which start with, we have a nonsingular
projective surfac&/ and birational morphismg, ¢ : V — Pﬁ such that

T=y- go_l.
341
Lemma. With the above notations we have:

(1) ¢ 1(to) has the following weighted graph:

-1 -2 -2 —2 -2 -2 -1

O O — o000 — O O O —— o0 — O o]

¢’ (lo) " l P L
n— n—

where each vertex stands for a nonsingular rational curves t132
vertex with weight-n corresponds to the proper transform of

¢ (Po) by pp7 .

SIfn= deg, f(y), 7 is called a de Jonquiére transformation of degree
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(2) Let L be the curve with weightl other thany’(£g). Theny (L) is
the line at infinity of a new projective pIar]R%.

(3) The point Q:= (1,0, 0) on the new projective pIaﬁEf is a unique
fundamental point of T*.

Proof. Straightforward computation. See also Russell [48; 4.2]. O

3.4.2

Note that ifo : o(X) = ax+ By +y ando(y) = &’X+B'y+ 7y is an
affine transformation not idy, i.e., o’ # 0 then the associated biregular
automorphisnk : (X, Y,Z) - (aX+BY +yZ,&’X +B'Y +y'Z, Z) of PZ
maps the point (10, 0) to (, a’, 0) which is distinct from (10, 0). With
this remark in mind we can easily show:

Lemma.letoj e Ao - B(1sisr-1)letrje L-A(1<j<=T)
and letp : 1101 ... Tr_10v_17;. Let iy be the degree of; for1 < j <r.
LetZj(1=si<r-1), Tj(1<j<r)andR be birational automorphisms
of P2 associated witlri, 7j andp, respectively. Then, by elimination of
indeterminacy of a birational automorphismwe obtain a nonsingular
projective surface W and birational morphismsy : W — Pi such
that:

(1) R=y - ¢71, where R=T,Z,_1T,_1...21Tq;
(2) ¢~1(to) has the following weighted graph:

(b/([()> -3 -3 -3 L
—1 -1

—nNnq —Ng —Ny
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where, if L is the curve corresponding to the vertex with Wweig33
—1 other thang’(¢p), theny(L) is the line at infinity of a new
projective planeP?;

(3) nj>1forl1<j<r.

3.4.3
By virtue of Lemmd33.412, it is clear thatg Ay; if p € A, thenfy would

not be a fundamental curve. Therefore we completed a prdoémmima
B32.
3.5

We shall prove in this paragraph the following:

Theorem Igarashi-Miyanishi [24] . Let k be a field of characteristic
zerdl Let F be a finite subgroup of order n &utyk[x,y]. Then

there exists an elemeptof Aut, k[x,y] such thatp~'Fp is contained

in GL(2, k).

The proof will be given in the subparagraphs 3.53.5.5.

351

Lemma. With the notations and assumptions as above, if F is contiaing4
in Az, then F is conjugate to a finite subgroup of @lK).

Proof. It suffices to show that has a fixed point on thefiane planet\ﬁ.
Indeed, lefp be an &ine transformation defined by

610

4The theorem holds for an arbitrary characterigtif (n, p) = 1. Indeed, Lemmas
B35 and—3512 hold true with this condition, while Lemrbas3 and_3.5}4 hold true
without any restriction.
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Thenp~1Fp c GL(2 K) if and only if the point & = s,y = t) on AE is
fixed underF. Eacho € Ay has a matrix representation:

X alo) Blo) alo))(X
o [Y] = [7(0) 6(0) b(ff)] [y] :
1 0 0 1)1

Let ¢(o) = Y(a(o), b(o)) and letM (o) be an invertible matrix such that

(o) )
M(")‘(y(cr) 6(cr))'

Foro, v € Ay, we havel(o - 1) = {(0) + M(0)l(r) andM(o - 1) =
M(c) - M(7). Thenty = Y(so,to) is a fixed point ofF if and only if

{(0) = o — M(0)¢, for everyo of F. Setty := Zf(r) /n. Since

TeF

%Z{’(a-r) ={(0) + M((T)(%Zf(T))’

TeF TeF

we have therf(o) = £p — M(0)fo. Hencely gives rise to a poin@ of
AZ fixed underF. O

3.5.2

Lemma. With the notations and assumptions as above, @ B,, then
F is conjugate to a finite subgroup of @&, k).

Proof. Each elementr € J, acts onAZ in the following way:
o(X) = a(@)x+ f(y) and o(y) = Blo)y + y(0),

wheref,(y) € k[y]; a(o), B(o), (o) € k; a(c)-B(c) # 0. Foro, T € Jo,
we have:

a(o - 1) = a(0) - a(7). Blo - 7) = B(0) - B(7). ¥(0 - 7) = ¥(7) + B(7)¥(0)
andfy+(y) = f(B(0)y + ¥(0)) + a(7) f(y).
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Let J2 be the subgroup af, such thaty(o) = 0. Lete = {Zy(r)}

TeF

/n. Theny(o) = € — B(o)e for everyo of F. Replacingy by y — ¢,
we may assume thdt is contained inJg. We shall now look for a
polynomialg(y) € k[y] such thato-(x + g(y)) = a(o)(X + g(y)) for every
o € F. If such a polynomial exists, we hayelop(x) = a(o)x and
p Yop(y) = B(o)y for everyo e F, settingo(X) = x+ g(y) andp(y) = .
Namely,F c GL(2, k). Now g(y) satisfieso(x + g(y)) = a(o)(x + g(y))
for everyo € F if and only if f,(y) = a(o)g(y) — 9(B(c)y) for every
o € F. Write f,(y) in the form:

_ao) 1
) = 2oy ) = g PO
_ fo2(Y) f(B(0)y) _ Ao R
Thennf,(y) = a(a’); o ; e Setq(y) := ﬁ;%. 136
Thenf,(y) = a(o)g(y) — g(B(0)y) for everyo € F. This completes the
proof. O

3.5.3

Lemma. Let F be a finite subgroup @&utx k[x,y]. Leto be an element
of F. Then there exists an elemenin Auty k[x,y] such thatp~top is
contained in either Aor J, andp 1 (FN(A2UJ))p € p tFpN (AU ),
where A U J; is the set-theoretic union of,Aand 3 in Aut K[X, y].

Proof. Our proof consists of three steps.

() By virtue of Lemmd3:32 we may write in one of the following
ways:

(I)r O =01T1...Tr—10Tr, Whereo; EAQ—AzﬂJz(l§ i < r),
Tj EJz—AzﬁJz(léjél’—l)andTrEJz;

(i)r o =1107...00_jTiop, wherer € J, — AN J(L<i =),

O']EAz—AzﬂJz(léjér—l)andO','.EAz.

We shall prove the following assertions for every 1:
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(1) if o is written in the way (i) then there exists an elemant
of Aut, k[, y] such thatp~1op is written in the way (ii)_1
ando™(F N (A2 U 22))p € p~'Fp N (A2 U Jp);

(2) If o is written in the way (ii) then there exists an element
p of Aut, K[, y] such thafo~top is written in the way (i)_1
andp™1(F N (A2 U J))p € p~tFp N (A U Jp); where (1)
and (2) are understood, respectively as:

1oehy; (Quoeds.

It is apparent that the assertion in Lemma follows from the
above assertions.

(I Proof of the assertioifl);. Sincec™ = 1 for some integen > O,

we have:

o"=(o1r1...001y) ... (1T1...opTy) = L

n-times

Since ¢1...o0¢t)(o1ty. .. ovTy) .. (O1TL. o) = 0'11 € A,
Lemmal33R implies that, € A, N Jo; indeed, ifr, ¢ Ay we
would have a contradiction. tf= 1 theno = o111 € Ay, i.e., (1)
holds. Ifr > 1, we know again by Lemm{a_3B.2 thafr,o; €
A, N Jo because

(t1...tr-)(orrro)(T1 ... Tr21) .. (orTro1) (T . . Tr-1)

= (O'rTrU'l)_l € As.

Leth = o(1r01. Theno,y = ho-Il, ando-Ilo'al =T102...07-1
Tr_1h. ThUSO'Ilo'O'l has an expression as in {ii}. We shall
show thatr ;X (F N (A2 U J))or1 € o7 FoiN (A U o). Letog be
an element of N (AU ). Sinceo-oge Fand g-og)"=1
for some integem > 0, we have:

(c-00)"=(o171...0¢1109) ... (0171 ... 0¢Tr00) = L.

mtimes
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Since f102...0r1r00)(o1T1 . .. 07 Tr07Q) ... (01T1 ... O TrO) =
o-Il € Ay and sincer 1y € Ay — Az N Jp, Lemmal33 P implies
thatog ¢ Jo — Ay N Jo, i.e.,00 € Ay. Since this is true for every
elementog of F N (A2 U Jp) we know thatF N (AU Jo) = F N As.
ThenoY(F N Ax)o1 € o7 Fo1 N (A U L) becauser; € A,
Thus we have only to take; asp.

(1) Proof of the assertioii2),. A proof will be only sketchy because
it is similar to the proof of (1). Sinces" = 1 for some integer
n > 0 we conclude by Lemma33.2 that € A, N Jo. If r =1
theno = 7j0] € Jp, i.e,, (2} holds. Ifr > 1, Lemmd3.3R again
implies tha'[‘z';o"T’l € Aon Jp. Leth' = o). ThenT’O'; =
Wty Landr'; 1 0'T1 = 0175...7,_y0_,". Thust’y 0'7'1 has an
expressmn asin (@)y. We shaII show that' 71 (F N (A2 U )7 ©
T’IlFT’lm(Aquz). Letog be an arbitrary element &N (AU Jy).
Sinceo - 09 € F and ¢ - 09)™ = 1 for some integem > 0,
a similar argument as in step (ll) shows that € J,. Hence
FN (AU L) =Fnd Thent'[HF X)) c 7'1'Fr N (AU Jp)
because; € J,. Thus we have only to take asp.

354

Lemma. Let F be a finite subgroup &uty k[x, y]. Then there exists an
elemenp in Auty K[x, y] such thajp~1Fp is contained in either Aor Js.

Proof. Lemmal3.5.B tells us the following: F has an element not

in A, and J, then there exists an elememtof Autk k[X,y] such that
lo™Fp N (A2 U J)| > |F N (A2 U Jo)|. Hence, by substituting a suitable
conjugate ofF for F, we may assume thd c A, U Jo. If F is not
contained inAy or Jo, then there exist two elementsandg in F such 139
thata € Ao —AonJy andB € Jo — (A2 N Jp). Then Lemm@&3.312 implies
thata - B is not of finite order. This contradicts the fact thatg € F.
Hence eitheF c A, or F c Jo. O
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3.55

Lemma.B5.4 combined with Lemmias3]5.1 &nd3.5.2 completes a proof
of Theoreni-315.

3.6

In the present and the next paragraphs we shall apply Thd@ignn
order to obtain two partial answers of the following:

CONJECTURE. Let k be an algebraically closed field, and let A be a
regular k-subalgebra of a polynomial rindXy] such that kx,y] is a
flat A-module of finite type. Then A is a polynomial ring over k.

The first result is stated as follows:

Proposition . Let k be an algebraically closed field of characteristic
zero. Let X be a nonsingularffane surface and let f. Aﬁ — X be
an étale finite surjective morphism. Then f is an isomonrphis

This result will be proved in the subparagraphs_3-6[16.4.

3.6.1

Definition. Let X and Z be nonsingular varieties defined over k and let
h:Z — X be an étale finite morphism. A pdi, h) is calleda Galois
covering ofX with groupF if there exist a finite group F acting freely on
Z and a k-isomorphism : Z/F — X between the quotient variety Z
and X such that b= ¢q, where g: Z — Z/F is the canonical quotient
morphism.

3.6.2

Lemma.Let f: X — Y be an étale finite morphism of a nonsingular
variety X onto a nonsingular variety Y. Then there exist te&finite
morphism h: Z — X of a nonsingular variety Z onto X, a finite group
G and a subgroup H of G such that:

(1) g: f-h:Z - Y isaGalois covering with group G;
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(2) h:Z — Xis a Galois covering with group H.

Proof. Let n := [k(X) : k(y)] and letS := X>¢X>é...>éX be then-th

iterated fiber product ok overY. Let F be the closed subset 8fcon-
sisting of alln-tuples i, ..., Xa) in which two or more ofx’s coincide
with each other. LeZ := S — F, and letS,, be the symmetric group on
n letters. TherS, acts freely onZ. Leth : Z — X be the projection
onto the first factor, and |&,,_; be the symmetric group am-1 letters,

which we let act orZ in such a way that
o(Xe,..., %) = (X1, 0(X0,..., %)) for o€ Syi.

ThenS,_1 c Sy. Sinceh™(X) consists of i— 1)! points for everyx € X,
his an étale finite morphism. Thug:= f -h: Z — Y is also an étale
finite morphism. Itis obvious that = Z/S, with the quotient morphism
gq:Z - YandX = Z/S,_1 with the quotient morphisrh : Z — X. We
have now only to sé6 := S, andH := Sp,_1. O

3.6.3

Lemma. With the notations dfi-3.8.2, if X is simply connected, i.e.,1X1
has no nontrivial étale finite coverings, then:fX — Y is a Galois
covering.

Proof. SinceX is simply connectedh : Z — X splits. Namely there
exists a regular cross-sectisn X — Z such that the morphistd xX —

Z defined by f, X) — h9qXx) is an isomorphism. Therefore the number of
connected components @f which are all isomorphic t, is the order
[H| of H. Let Xp := §(X) and letF be the subgroup @ consisting of all
elementgy of G such thag(Xp) = Xp. If X3 is a connected component
of Z distinct fromXp and if g is an element o6 such thaig(Xp) = Xq,
theng:F is the set of all elements @& which sendX; to X;. Hence
Z = X x G/F, and|G/F| = |[H|. Therefore the morphismix, : Xo = Y
has degre¢s|/|H| = |F|. SinceF acts freely onXg, we know that a pair
(Xo. 0lx,) is a Galois covering of with groupF. Finally, sinceX = Xg,

f : X - Yis a Galois covering with group. O



142

104 Curves on anfline rational surface

3.6.4

Proof of Proposition 3.6.SinceA§ is simply connected (if the charac-
teristic of k is zero), we know by applying Lenima3.6.3 thatf — X

is a Galois covering with group F. But since every finite sologr of
Autc K[ x, y] has a fixed point omﬁ by virtue of Theorerh 3.5, we know
that F can not act freely oAﬁ. Therefore, F= (1), and f is an isomor-
phism. This completes a proof of Proposition 3.6.

3.7

Another application of Theore 3.5 is the following propiasi which
is a slight improvement of Serre’s result (cf. Lemma3d.7 g

Proposition. Let k be a field of characteristic zero, and let F be a finite
subgroup ofAuty k[x,y]. Then the following conditions are equivalent
to each other:

(1) K[x,y]F is a regular ring;
(2) K[x,y]" is a polynomial ring over k;
where Kx,y]F is the invariant subring of [k, y] with respect to F.

A proof of proposition will be given in the subparagrafihs. 3.7
B.73.

3.7.1

Lemma (Serre [53; Th.1]).Let F be a finite subgroup of Gk, k) and
let kX1, ..., Xn]™ be the invariant subring of[ka, ..., X,] for FE Then
the following are equivalent:

(1) K[X1,...,X%n]" is a polynomial ring over k;
(2) F is generated by pseudo-reflections.

(An elementf of GL(n, k) is called a pseudo-reflectioif rank (I — f) £
1)

5The present and the next lemmas hold for a fletsf arbitrary characteristip, if
we assume thatK|, p) = 1.
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3.7.2

Lemma (Serre [53; Th.1"]). Let S be a regular local ring with maxi-
mal ideal my and let F be a finite subgroup &ut(S). Let S" be the
invariant local subring of S for F. Suppose that:

(1) SF is a noetherian ring;

(2) S is of finite type over'§

(3) S/mg = SF/mgnSF =k; 143
(4) the action of F on $my is trivial.

Lete : F — Autc(mg/m2) be the canonical homomorphism from F to
Autk(ms/mzs). Then the following are equivalent:

(i) SF isa regular local ring;

(i) e(F) is generated by pseudo-reflections.

3.7.3

Proof of Proposition 3.7 .(2) = (1) is clear. We shall show (13
(2). By virtue of Theorefi 3.5 there exists an elemeot Auty k[X, Y]
such thatp~F,, is a finite subgroup of G(2,k). Then kx,y]™ = p (k
[x,y]°"Fo) and Kx, y]°""F is a regular ring. Hence we may assume that
F is a finite subgroup of G(2,k). Let(x,y) be the maximal ideal of
k[x,y] generated by x and y. Let S be the localization [of Y with
respect to the idea(x,y) and let m be the maximal ideal of S. We
can view F as a finite subgroup &ut(S) in a natural way, and it is
easy to see that'S= S n Q(k[x,y]7), where @K[x,y]7) is the quotient
field of Kx,y]™. Since kx,y] is a Kx, y]F-module of finite type and F
fixes the idea(x, y), we know that S is a finitely generated-godule.
Thus S and § satisfy the condition (2) and also the other conditions of
Lemmd37]2. By virtue of Lema3l7¢R;) is generated by pseudo-
reflections inAuti(mg/m2). Now it is easily seen that the actionegF)

on the k-vector space gym2 coincides with that of F on the vector
space kx ky. Therefore F is generated by pseudo-reflections. Byevirtu
of Lemmd3.7]11, we know thabky]F is a polynomial ring over k.
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4 Finiteness theorem

4.1

Throughout this section the ground fiddik assumed to be algebraically
closed field of characteristic zero. L& be a nonsingular irreducible
affine curve of genug > 0 with only one place at infinity. Byan em-
beddingof Cy into the dfine planeAZ we mean a biregular mapping
e 1 Co > AZ. Fix an open immersion of? into the projective plang;
as a complement of a link. Let C(e) be the closure of(Cp) in Pﬁ. Let
Po(€) := C(€) N ¢o, letdy(e) := (C(e) - £o) and letd; (€) be the multiplic-
ity of C(e) at Po(e). Thendg(e) > di(€); indeed, if otherwise, we have
do(e) = 1 and hencg = 0. By abuse of (and for the sake of simplicity
of) the notations, we denot€Cy), C(e), Po(€), do(e) andd;(e) by Co,

C, Py, do andd; if an embedding : C — AZ is given and if there is no
fear of confusion. Find integens, .. .,d, andqa, ..., q, asinCLB by the
Fuclidean algorithm with respect tiy andd;. It should be noted that
integersa, dy,...,d, andqu,...,d, may change depending on choice
of embeddings : C — AZ. We shall first show the following:

Lemma. Given an embedding : Co — AE there exists a birational
automorphisnp of P2, which induces a biregular automorphispg of
AE, such that, with respect to an embedding € : Co — A2, one of the
following conditions holds:

Naz23; (ea=2and q=2; (i)e=1and q=3.

Proof. We have only to show that if either = 2 andq; = 1 ora = 1
andq; = 2 with respect to a given embeddiaghere exists a birational
automorphisnp of P2, which induces a biregular automorphig of
AZ, such that, with respect to an embeddinge : Co — AZ, one of the
conditions (i)~ (iii) holds.

() Case : @« = 2 andq: = 1. We have therdy = (g2 + 1)do
andd; = gy With g 2 2. Leto : Vo — PZ be the Eu-
clidean transformation dfﬁ associated with an admissible datum
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(P2, AZ,C, Lo, ¢, do, d1, 1} and (A2, €(Co)) (cf. (L3 for definition
and notations). Then1(£o U C) has the following configuration:

—(@2+1)

whereN := g + 1, Py = fl(\lN) ncN d, = (fl(\lN) .CN)) ande :=
multp, CN) < d,. Lett; : Vi — Vg be the quadratic transfor-
mation with center ay := Py and letQ; be a point orrll(PN)
other than the points; (C™)nr;1(Qo) and, (¢{")n71(Qo). For
2<i £ -1, definer; : Vi — Vi_; and a pointQ; inductively
as follows: 7; : Vi — Vi_1 is the quadratic transformation with
center alQ;_1, andQ; is a point onri‘l(Qi_l) other than the point
7(T74(Qi-2)) N T7HQizy). Lettg, 1 W = Vg, — Vg,-1 be the 146
quadratic transformation with center@§,-1. Letr ;= r1...7q,,
letL; := T’(t’i(m) forO<i < N, letEj(1 £ j < qgp) be the proper
transform ofr;(Qj-1) onW, and letC := 7/(C(N)). We have then
the following configuration:
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(In

where C-Ly) = d; —eand C- E;) = e Lety : W — P2 be
the contraction of curveso, Lo, ...,Ln-1,Ln, E1, Eo, ..., Eq,-1
andL; in this order, letj := ¢(Eg,) and letC’ := ¢(C). Then
a birational automorphism - (c7)~! is biregular onA2; indeed,
go-(aT)_llA& is a de Jonquiére transformatipp of AZ of degreeN
(cf.[34.1). By a straightforward computation we can easglify
that:

(1) C - (C" n¢e) =Co;
@ C ) =(@+1d-e=dy—¢
(3) multy C" = godz — €= dy — €, wherePj := C" N £,

Lete @ ¢o-€: Co — A2 Thene is an embedding o€, into
AE with (C’ . 56) =dy—e < dyand muh‘% C =d—-e<d.

By induction ondp, we can show that there exists a birational
automorphisnp of P2, which induces a biregular automorphism
po of AZ, such that, with respect to an embeddige : Co — AZ
either one of the conditions (¥ (iii) holds ora = 1 andq; = 2.

In the latter casey becomes smaller than the original one.

Case:a = 1andg; = 2. Leto: Vp — Pﬁ be the Euclidean trans-
formation of PZ associated with an admissible datyfg, AZ,C,
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lo, ¢, do, d1, 1}. Sincedy = 2d; we have the following configura-
tion of 1(£o U C):

Then by the same argument as in step (Il) we can show the ex-
istence of a birational automorphismof P2, which induces a
biregular automorphisrpg of A2, such that, with respect to an
embeddingog - € : Co — A2, either one of the conditions (}

(iii) holds ora = 2 andqg; = 1 with dp smaller than the original
one.

(Il By steps (1) and (I) we can show the existence of a liinaal
automorphisnp as claimed in Lemma.

4.2

With the notations and assumptions[afl4.1, choose an emigddi

Co — AZ for which one of the conditions (i} (iii) of Lemmal[Zl 148
holds. Leto : Vo — P2 be the Euclidean transformation Bf as-
sociated with an admissible datum := {P2, AZ,C, ¢o, ¢, do, dy, 1} for

(A2, €(Cp)). Then, looking at the weighted graph @&%) (cf. Figure 1

of [[L3.4 as well as the figures given in the proof of Lenima 3nd,
know thato—1(¢g) has an exceptional curve of the first kind other than
E(e,q,) ifand only if@ 2 3 andg; = 1. Whena 2 3 andqg; = 1, by
virtue of L3 AT WU and 1.5 we can readily show the follonaisgertions:

1° The curveskq = o’({p), E(2,1),...,E(2,0» — 1) can be con-
tracted successively in this order; tet Vo — V be the contrac-
tion of these curves.
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(T(E. %)% = —(s+ 1) < -2if & 2 4 and ((E(2 q))?) =
-z 2ifa=3.

ap=a21)=...=a2,q) = do.

LetT := 7(CMV), 7o := 7(¢\"), E(s 1) := 7(E(s 1)) for L < s < a,
1stsgsand Gt) # (21).....(2.G — 1), do = d,, dp :=the
multiplicity of C at the pointC n £y, € := a(a, q,)/d,, and

a  Os
T = (do/da)E(2, 0) + ) > (als 1)/du)E(s 1) - o,

s=1 t=1

%2
ThenZ := {V,A2C,(o,T,do,d1, 8 is an admissible datum for
(A2, €(Cp)) such that Sup)) has no exceptional components and
that the divisordg(efo + I') containsE(2, gz) with multiplicity do.

Assume that an embeddirg: Cy — Aﬁ is chosen so that one of the
conditions (i)~ (iii) of Lemmal4] holds. Define an irreducible linear
pencil A as follows; ifa < 2 orq; 2 2, A is the linear pencil onPﬁ
spanned byC anddpfp; if @ 2 3 andqgy = 1, A is the linear pencil
onV spanned byC anddy(efo + ). Now eliminating the base points
of A by a succession of the Euclidean transformations anddhi (
transformations associated with suitable admissiblefdai@?, e(Co)),
we obtain a nonsingular projective surfatkand a surjective morphism
f : W — P} such that:

1° The fibers off are irreducible, except only one fibarwhich

corresponds to the membey¢, (or do(efp + I')) of A.

2° General fibers of are nonsingular curves of gengswhereg is

the genus of the given cuné@.

3° fisarelatively minimal fibration, i.e., each fiber does naitain

exceptional components.
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;
4° If A= ZniCi with irreducible component§; and integers; >

i=1
0 then the greatest common divisorraf. .., n, is equal to 1 and
at least one ofyj’s is equal todp.

[For the proof of the assertion$ and 2, see Corollary_1.310 and
LemmalL1ll; for the proof of the assertioh, 3ee LemmaB_1.5
andLY; the assertiorf follows from the choice ofA and the fact

that f has a regular cross-section.]

4.4

According to Artin-Winters[[7], we shall call any collectiol' of inte-
gers
T::{r7mj7ki’ni;i7j:l""’r}7

up to permutation of indicesa fiber type of genus @ there exist a 150
nonsingular projective surfadé defined ovek, a surjective morphism

f of V onto a nonsingular complete curBavhose general members are
nonsingular irreducible curves of gengsand a reducible fibet of f
such that:

;
Q) A= Znici, C; being its irreducible component,
i=1
(2) mj = (Ci-Cj)andk; = (Ci - Ky) fori, j=1,...,r, whereKy is a
canonical divisor oV.

The integera; are called thamultiplicities of a fiber typeT of genus
0. Afiber typeT = {r,mj,k,m;i,j = 1,...,r} of genusg is called
relatively minimalif mj # -1 ork; # =1 fori = 1,...,r; T is called
reducedif the greatest common divisor af, ..., n; is equal to 1. Now
we can state the following results.

44.1

Lemma (Artin-Winters [7; Cor. 1.7]). Assume that @ 2. Then there
exists an integer kg) depending only on g such that the multiplicities



151

112 Curves on anfline rational surface

ni < N(g) for every relatively minimal fiber type ¥ {r, my, ki, ni;i, j =
1,...,r}of genus g.

4.4.2

Lemma (Kodaira [29; p. 123], Safarevi [51; p.171]) .Assume that
g = 1. Then the multiplicities in< 6 for every reduced relatively mini-
mal fiber type T= {r,my, ki, ni;i, j = 1,...,r} of genusl.

4.5

As a consequence of the observations made in the paradraphsd
&4, we have:

Theorem. Let the notations and assumptions be a1 4.1. Assume that
g > 0. Then there are only finitely many possible pdig d;), for each

of which there exists an embeddiag Cy — Aﬁ such that g = (C - {p)

and d = multp, C (cf. [&J)and that one of the condition) ~ (iii) of
LemmdZll holds.

Proof. By virtue of the assertion®4of 4.3, the singular fibeA has an
irreducible component whose multiplicity i is dg. Then Lemmas
21 and’Z.4]12 imply that there are finitely many possibleesofdg
(and therefore, ofl; because & d; < dp). O

4.6

In the remaining paragraphs of this section we shall progddhowing:

Theorem. Let the notations and assumptions be a1 4.1. Assume that
g > 0. Then there are finitely many embeddinrgs Co — A2, up to
biregular automorphisms af2, such that:

(1) The curve C & the closure o&(Cp) in IPE) is smoothable by the
Euclidean transformation cﬁﬁ associated with an admissible da-
tum{PZ, AZ,C, to, ¢, do, ch, 1} for (AZ, €(Co)).

(2) One of the following conditions holds:
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() a=2andq = 2,
(i) a=1landq = 3.

More precisely, if two embeddingse’ : Co — Aﬁ satisfying the
conditions(1) and(2) above have the same value gftten there
exists an gine automorphisnpg of Aﬁ such thate’ = pp - €. We 152
shall note that this result is a special case of Finitenessofém
due to Abhyankar-Singhl[3]; we also note that the conditji)
above is fulfilled if G.C.04do, dy) = 1.

4.7

Lete : Co — AZ be an embedding & into AZ for which the condition
(2) above holds. Letr : Vo — Pﬁ be the Euclidean transformation of
PZ associated with the admissible datyfg, AZ, C, ¢o, ¢, do, d1, 1} for
(AZ,€(Co)), letC’ := ¢0”(C) and let¢ be a line onP? different from the
line £ := P2 — AZ. Then we have:

Lemma. With the notations as above and agin113.4, we have:
C' = 0"(€) ~ (do — d — 1)o™ () + A,
where
d;Eo if @ =1,

A= {chEo+ X4 2 (doicy — tde)E(2i,t) ife=2r and rz 1,
diEo+ Xy 22 (o —tdx)E(2i,t) ife=2r+1and rx 1

Proof. By virtue of Lemmd_Lb and its proof, we have:

a 0Os
C' ~doEo+ ) > a(s DE(s 1)
s=1t=1
a  Q2s
() ~ o' (lo) = Eo+ ) ) (S DE(SY),

s=1 t=1
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where the integera(s, t) andc(s, t) are defined ilZIl4. Hence we have:

a G

C' —(do—d)o" () ~ diEo+ > > (S DE(S1).

s=1 t=1

153  whereb(s,t) ;= a(s t) — (dp — d1)c(s 1) is defined as follows:

b(1,t) = (dg—di)t —(dg—di)t =0 forlst<q
b(2,t) = d; + t(b(1,0;) — dp) = dy — tdy forl1<t<qp,
b(st) =b(s—2,0s2) +t(b(s—1,0s1) —ds) for L<t £ gs

and 2< s<a.

Thence we haveb(2i,t) = dyj_1 —tdyj forL i £rand 1=t £ gy,
andb(2i + 1,t) =0forOZi£r(2+1 =< @)and 12t £ Opi1, Where

r= [%] Thus we obtain our assertion. O

4.8

According to Ramanujam_[46], arffective divisorD on a nonsingular
projective surface/ defined ovek is callednumerically connected
for every decompositio® = D; + D, with D; > 0(i = 1,2) we have
(D1 - Dy) > 0. We shall show:

Lemma. The divisor(dg — d; — 1)o*(£) + A is numerically connected
provided g = 2.

A proof of the lemma will be given in the subparagraphs 4-8.1
A83.
4.8.1
Lemma. Let D be an gective divisor on a nonsingular projective sur-
r
face V defined over k. Write > Zm D; with irreducible components

i=1
D; and integers m> 0. Assume tha(DiZ) =—qgijforl £i £rand
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Let

D; = ZX|D, withOx sm(lgigr),andletD ;= D - D;. Then

i=1
we have:

r-1 r-1
(D1 D) = (a1 = G + > (@i = 20 + (ar = 1) + Y (6 = Xi1)?
i=2 i=1

r-1

+ (M — aamy)Xg + ) (Mg — @My + Mia)X + (M1 — arM)Xe.

i=2

Proof. A straightforward computation.

4.8.2

Lemma. With the notations as iR 4.7, let B= (dg — d; — 1)o*(¢) + A

and let

r Oa

D1 := Yo' (6) + %o+ ) > X(2i, )E(2i,j) and D,:=D-Dy,

i=1 t=1
where we assume that B Ofori = 1,2. Then we have:
(D1-D2) = =2y + (qh — 20 + (X0 — Y)* + (do — L)y — %o + Q
where Q:=0ifa=1

r—

Q = q2|+1X(2| q2l)2 + X(Zr Qor — 1)

H

I\
-

g-1

{00 - X2 D+ > (X210 - X2 t+ 1))
t=1

[any

r—
+

INg|

i t=1

Cor —

IQJ

t=1

Oi—
{(x(2| 2, tpi_z) — X(2i, 1)) + Z(X(ZI t) — x(2i, t + 1))

+ (X2 = 2,Gpr_2) — X(2r, 1) + Z(X(Zr t) — X(2r, t + 1))?

|
|
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ifa=2randrz= 1;

-1

Q:= ) GinaX(@,qa) +100 - X2 DY + Y (21 - x(2 t+ 1))
i=1 t=1

r i1

+§]um—zq%g—«mnf+zkmmo-ng+nﬁ
t=1

i=2
fa=2r+1landr= 1.
Proof. Note that ¢*(£)?) = 1, (c*(£) - Eg) = 1 and ¢*(¢) - E(2i,t)) =0

for1<i<rand 1=t £ gy. Then we obtain our assertion by applying
LemmdZ4.81l and taking account{of 113.3 &nd1.3.4. i

4.8.3

Proof of Lemma 4.8.Regarding(D; - D») as a function of variables y,
Xo and X2i,1)’s, we shall estimate the smallest valugbf, - D,) when
the variables y, xand X2i,t)’s take integral values in the domain A:

O0<y=<dp—di—-1; O0ZXp<d;; 0= x2it) < dyi_q1 — tdy
(I<isrnl<t<o).

By virtue of LemmBZ.8.2D; - Dy) is written in the form:
(D1-Dg) = =y + (do — 1 - 2x0)y + (t — 1)X§ — X0 + Q,

which, viewed as a function in y only, has the smallest valiye=a0 or
y = dp—d;—1whenever values ofpand X2i,t)’'s (L i £r;1 £t £ )
are fixed in the domain A. If ¥ O we have:

(D1-D2) = %o{(q1 — )Xo — 1} + Q.

Consider first the case whete= 1. Then q = 3 as assumed. Since
D1 > 0, i.e., % # 0 and » takes an integral value, we know th@; -
D,) > Ofor 0 < Xp £ d;. Assume that > 2. Since q = 2 as assumed
and x takes an integral value, we know th@; - D;) 2 Q = 0, and
that (D1 - Do) = Q if and only if either y = 0orq: = 2and % = 1.
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Besides, by virtue of LemriaZ18.2~@ if and only if % = x(2i,t) = 0
forl<igrandl1 <t £ qy. Therefore we havfD; - Dy) > 0 because
D; > 0. Ify = dp — d; — 1 we obtain(D; - D2) > 0 by interchanging
the roles of 3 and D,. Hence(D; - D) > O for every decomposition
D = D; + Do with D; > 0(i = 1,2). This completes a proof of Lemma
3.

4.9

We shall next consider the case wheye= 1 anda > 3. We shall use the
notations of the paragrafh #.2. Thus, Vo — V is the contraction of
curvesEg, E(2,1),...,E(2,02—-1). LetL := r.0"(¢) andEg := E(2, ).
49.1

Lemma.We haveC — L ~ (d» — 1)L + A, where

K . d3Eo ifa = 3,
| dsEo+ 2, 2P (dhioa — tda)E(20, ) ifr 24
Proof. Immediate from LemmB4.7. O
49.2

Lemma.LetD := (d» — 1)L + A and let
. _ r O _ . o

D1 :=yL+XEo+ ) > X(2i,0E(2i,t) and D,:=D-Dy,

i=2 t=1

where we assume thB > Ofori = 1,2. Then we have:

(D1-D2) = —(t2+2)¥° + (s — %5+ (Ro— 9)? + (do— (G2 + 1))y - o+ Q.

where 157

Q:=0if a=3;



158

118 Curves on anfline rational surface

_‘
|
=

6 qZ|+1X(2I q2l) + X(Zr Qor — 1)

I
N

gsa-1
(o~ XA F + ) (XA - X(4.t+ DY)
t=1
r-1 Ooi—-1
+ D U@ - 2,0 2) = X(2, D) + ) (X(2i,1) - X2, t + 1))
i=3 t=1
Oor—2

+{(X(2r — 2, 0pr_p) — X(2r, 1)) + Z (X(2r, 1) - X(2r,t + 1))
t=1

ifa=2r =4

ga-1

Q:= Z 01X (20, 0i)? + {(Ro — X(4, 1)) + Z(x(4 ) - X(4 t+ 1))’}
Qoi—

+Z (X(2i - 2, tpi_p) — X(2i, 1)) + Z(x(zu t) — X(2i,t + 1))
fa=2r+12=4.
Proof. Note that (2) = qu+1, (L-Eg) = 1, (L-E(2i,t)) =0for2<i s
and 1=t < g, and €2) = —qs if @ = 3and Ea) = —(gs + 1) if @ = 4.
Then our assertion follows from Lemrha4l8.1. i
4.9.3

Lemma. The divisorD := (d» — 1)L + A is numerically connected.

Proof. Regarding ; - D) as a function of variablef X, andx(2i, t)'s
(221 2r;1 £t £ 0y), we shall estimate the smallest value bf; ¢ D)
when the variable§, X andx(2i, t)'s take integral values in the domain
A

0=y=<d-1;, 0=X=d3 O0=X(2it) =< dy_1—tdy

for2zisrand 1=t £ qgy.
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By virtue of LemmdZ.912,0; - D») is written in the form:
(D1-D2) = (G2 + 1)y? + {do — (02 + 1) — 2%}y + 0s%5 — %o + Q,

which, viewed as a function only ¥ has the smallest value @t 0 or
y=d, - 1. If y =0 we have:

(D1-D2) = Xo(qsXo — 1) + Q.

SinceX, takes an integral value, we know th&@;(- D,) = Q = 0.
If @ = 3, thengz = 2 and D1 - D2) = Xo(0zXo — 1) = 0 if and only if
%o =0, i.e.,D1 = 0. Thus D1 - D) > 0if @ = 3. Assume thatr > 4.
Then, by virtue of LemmBZ9.2) = 0 if and only if X = X(2i,t) = 0
for2<i<rand1=zt < q,i.e.,D; =0. Hence D1 - Dy) > 0. If
y = d> — 1 we obtain D; - D,) > 0 by interchanging the roles
andD,. Therefore we know thal; - D») > O for every decomposition
D = D1 + Dywith D; > 0 fori = 1, 2. o

4.10

Lemma. With the notations didl1, let: Cy — AE be an embedding
such that one of the following conditions holds:

() az2andq 2 2;
(i) a=1landq = 3.

Leto : Vo — P2 be the Euclidean transformation @E associated
with an admissible daturtPZ, A2, C, fo, ¢, do, d1, 1} for (AZ, €(Co)), let
C’ ;= 07(C) and let£ be a line on[Pﬁ different from the lin€y. Then we 159
have:

dim HY(C’, G (o*(¢) - C)) = 3.

Proof. Consider an exact sequence
0 — Oyy(—C' + o*(£)) = Oyy(o™ () = Oc(07(6) - C") = 0.
Thence we obtain an exact sequence

0 — HO(Vo, By (—C + o (0))) = H(Vo, Oyo (o ())) —



160

120 Curves on anfline rational surface

HO(C’, Oc (o (¢) - C')) = HY(Vo, Ouy(-C’ + (£))).

By virtue of Lemmad~417 and 4.8 we know that — o*(¢) ~ D =
(do — di — )o*(€) + A and D is numerically connected. Sind&, is
a nonsingular projective rational surface we hai#(Vo, 6y,) = (0).
Hence we have:

dimy HY(Vo, Gy, (~D)) = dimg H(D, 0p) - 1,

where dim H°(D, 6p) = 1 by virtue of Ramanujam’s theorem [46:
Lemma 3]. Thus we know that1(Vo, &y, (~C’ + o*(¢))) = (0). Since
HO(Vo, O, (—C’ + a*(¢))) = (0) clearly, we obtain:

HO(C', 6 (o (£) - €)) = HO(Vo, Oy (0" (0)) = HO(BE, ().
Therefore we have digH%(C’, O (o*(¢) - C’)) = 3. O

Remark.If g = 1 anda 2 3, letr : Vo > V be the contraction of
curveskg, E(2,1),...,E(2,02 — 1), letC = 7(C’) and letL := 7.0%(¢)
(cf.[£9). Then we obtain:

dimg H(C, O=(L - C)) = dimg HO(V, G (L)) = dimi HO(Vo, Gy, (a(£))
= dimy HO(PZ, 0p2(2)) = 3.

411

Proof of Theorem 4.6.Lete : Co — Aﬁ be an embedding satisfying the
conditions (1) and (2) as stated in TheorEml 4.6. With thetiosta of
B andZ4Y, we know that:

1° The curve Cis a normalization of the curve C which is of genux
g > 0; setC(e) := C’ andé(e) := o*(¢) - C'.

2° LetP(e) be the (unique) point d(e) dominating the point pof
C. Thens(e) ~ dgP(e), 6(¢) is an gfective divisor such thas(e)|
has no base points ardim|d(¢)| = 2 (cf. . Lemm&Z.10).
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3° Let f(e) : C(e) ﬂ €(Cp) — Pﬁ be the morphism defined from

the embedding, wheren(e) := o|cr and wheres(Cp) = C is the
closure ofe(Cy) in Pﬁ. Then {¢) is a morphism defined b¥(e)|

with respect to a suitable basis [6f¢)|.

Now, lete ande’ be embeddings of{dnto Aﬁ satisfying the conditions
(1) and (2) as stated in Theordm}4.6 and having the same vdldg o
Thene -e71 : €(Cq) — € (Co) induces an isomorphism:tC(e) — C(e’)
such that iP(e)) = P(¢’) and (¢’ - € 1) - n(e) = n(¢’) - h onC(e) - {P(€)}.
Sinces(e) ~ doP(e) ands(e’) ~ doP(¢’), we know that(e) ~ h*s(e’).
This implies by virtue of the above asserti@isand 3° that there exists
a biregular (hence, linear) automorphismof PE such thatp - n(e) =

#(e’) - h andp(to) = ¢o;

— n(e) -
Cle) e(Co)" Py
h CO e 5_1 P
C(¢) ¢ (Co) Py

n(e’)

Letpg = p|A§. Then itis clear thapg - € = €.

5 Simple birational extensions of a polynomial ring

K[x. Y]

5.1

Let k be an algebraically closed field of characterigtiand letk[x, y]
be a polynomial ring ovek in two variablesx andy. Let f andg be

161
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two elements ok[x, y] without common nonconstant factors, and let
A =KXy, f/g]. Inthis section we shall consider the structures of the
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affine k-domainA under an assumption thet:= Specf) has only iso-
lated singularities. In the paragraghsl 5.8.9 we shall describe how
is obtained fromﬁ := Speck[x,y]), and see that i¥/ has only isolated
singularitiesV is a normal surface whose singular points (if any) are ra-
tional double points (cf. Theorem$.9). The divisor classugrC((V)
can be explicitly determined (cf. Theordm 3.11); we obtéerefore,
necessary and fiicient conditions forA to be a unique factorization
domain. Ifgis irreducible and if the curve$ = 0 andg = 0 on AE
meet each other thef is a unique factorization domain if and only if
the curvesf = 0 andg = 0 meet in only one point where both curves in-
tersect transversely. We shall consider, in the paragfagisand5.14 a
problem: When is every invertible elementAdtonstant? (cf. Theorem
B.13). In the remaining paragraphs 34&.23, assuming thdt is of
characteristic zero, we shall look for a necessary afittgnt condition
for A to have a nontrivial locally nilpotenk-derivation (cf. Theorem
B.23). An dfine k-domain of typeA as above was studied by Russell
[49] and Sathaye [52] in connection with the following resul

Assume that A is isomorphic to a polynomial ring over k in two
variables. In a polynomial ring [k, y, z] over k in three variables x, y
and z, let u:= gz— f. Then there exist two elements v, w pf,, 7]
such that kx, y, Z = K[u, v, w].

5.2

Let k[x, v, Z] be a polynomial ring ovek in three variables, y andz,
and IetAﬁ = Speck[x,y,Z]). LetV be an &ine hyper surface oAﬁ
defined bygz— f = 0, and letr : V — A2 := Speck[x,y]) be the
projection: 7(x,y,2) = (x,y). Let F andG be respectively the curves
f = 0andg = 0 onAZ2. Then we have:

Lemma. (1) For each point Pe F n G, 7~1(P) is isomorphic to the
affine lineAy.

(2) If Q is a point on G but not on F, thermX(P) = ¢.

Proof. Straightforward. m|
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5.3

The Jacobian criterion of singularity applied to the hyperface V
shows us the following:

Lemma.Let P be a point on F and G. Then the following assertions
hold:

(1) If Pis asingular point for both F and G then every pointot(P)
is a singular point of V.

(2) If P is a singular point of F but not a singular point of G thereth
point (P, z = 0) is the unique singular point of V lying or*(P).

(3) If P is a singular point of G but not a singular point of F then \64
is nonsingular at every point af(P).

(4) If P is a nonsingular point of both F and G and (H G;P) = 2
then the poin{P, z = «) is the unique singular point of V lying

- g of
-1 or _ % ot _
onz—(P), wherea € k satlsfles.ax(P) aaX(P) and ay(P)
a—gs(P). Ifi(F,G; P) = 1then V is nonsingular at every point of

a(P).

We assume, from now on, th& has only isolated singularities.
Hence, ifP € F NG, eitherF or G is nonsingular aP. Furthermore, we
assume that N G # ¢. WhenF NG = ¢ thenA = K[x,y, 1/g] andAis
a unique factorization domain.

5.4

Let P be a point onF andG. We shall first consider the case where
F is nonsingular aP but G singular atP. Let P; := P and letv; be
the multiplicity of G atP;. Leto1 : Vi — Vg = Aﬁ be the quadratic
transformation with center &, let P, := oj(F) n o;*(P1) and lety,

be the multiplicity ofc”}(G) at P,. Fori = 1 we define a surfac¥, a
point Pi,1 onV,; and an integev;, 1 inductively as follows: Whe;_1,

P; andv; are defined, letr : V; — Vj_1 be the quadratic transformation
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of Vi_1 with center aPi_y, let Pi,1 1= (o1...07) (F) n o7 }(P;) and let
viy1 be the multiplicity of ¢-1...07)'(G) at Pj,;. Let s be the smallest
integer such thats,; = 0, and letN : v1 + - - - + vs. We shall simply say
thatP4,..., Psare all points of G on the curve F overnRNndv, ..., vs
are the respective multiplicities of G a4 P..,Ps. Leto : Vy —» Vo
be the composition of quadratic transformatians:= o;...on and
let Ei := (0i41...0n)' 07 1(P) for 1 < i < N. In a neighborhood of
o 1(P1), o~ 1(F U G) has the following configuration:

(Fig 1)

If g = cd*...di'(c € k') is a decomposition of into n distinct irre-
ducible factors, leG; be the curveg; = 0 onVp := AZfor1< j < n.
Let vi(j) be the multiplicity ofG; at the pointsP; for 1 < i < sand
1< j<n Thenitisclearthatj = B1vi(1)+---+Byvi(n)for1<i < s

5.5

We have the following:

Lemma. With the same assumption and notations @s1h 1.3, V is isomor-
phic, in a neighborhood of 1(P1), to Viy with the curves E ..., En_1
ando’(G) deleted ¢

Proof. Let & := Oy,p,,Vo := Specf) andV := V\>/<VO. Since the
0

curveF is nonsingular aP; there exist local parameteusv of Vp at Py
such thatv = f. Letg(u,v) = 0 be a local equation db at P;. Then
V = Spec@[v/g(u,v)]). Note thatV is nonsingular in a neighborhood
of 771(Py) (cf. [2). Hence there exist a nonsingular projectivease¥
and a birational mapping : V — V such thatp is an open immersion in
a neighborhood of1(P;) and a birational mapping:=7-¢1:V —
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Pﬁ is a morphism, wher¥y is embedded into the projective pIaIPﬁeas a
complement of a line. Sinceg(x~1(P1)) = P1 we know thafr is factored
by the quadratic transformation Bﬁ with center afP1. Hence we know

thatr : V — Vo is factored by : Vi — Vo, i.e., 71V =5 Vi =5 V.
Setv = uvy, U = vu, q(u,uv) = Ugy(u,vi) and g(vun,v) =
Vig) (Ug, V). ThenV1\>/<V0 = Specl[v1]) U Spec[ui]); all(Pl) and
0

c1(G) are respectively defined by = 0 andg;(u,v1) = 0 on Spec
(O[vi1]), and byv = 0 andg; (uz, v) = 0 on Specg[u1]). Since
V= V\>/§Vo = V\>/<1(V1\>/§Vo) = V\>/<1 Spec[v1]) U V\>/<1 Specu1])
= Spec@[vi, v1/u gy (u, v1)]) U Spec@us, 1/v*1g) (ug, v)])

and sincev is an invertible function on Spe6(uy, 1/v'*~1g)(us, v))),
we know that:

(1) V = Spec@vy, vi/ui~1gy (u, vi)]);
() 7 = Q&O : V > V) is a composition ofr; := mﬁo V-
0 0

V1 := Spec@[vi]) and&y = oily, - Vi — Vo

(3) if Q € (07*(P1) U 04 (G)) - o (F) thenm; }(Q) = ¢.

Setvy = UVp,...,Vs1 = UVs and (U, v1) = U2Qa(U,V2),...,0s-1
(u,Vs_1) = Usgs(u, vs). SetVs := Specl[v2]), ..., Vs := Spec[vs]). 167
Then, by the same argument as above, we know that the folipasn
sertions hold for X i £ s:

(1Y V = Spec@[w, vi/u+igi(u,v)]);

2y @ : V > Vg is a composition of a morphis@ : V — V; and
o102 ... Gi : Vi = Vo, wherea = aily © Vi = Vi
moreoversi_1 = o - 7,

@y if Qe (e (P) U (o1...00)(G)) - (01...09) (F) thenm H(Q) =
®.
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Wheni = s, the proper transfornu(; . . . o75)’ (G) of G on Vs does not
meet the proper transforn( . .. os)’ (F)of F on Vs (cf. the definition of
sin[&4). Therefore, in virtue of (3)above, we know thads(u, vs) is an
invertible function oV, wheregs(u, vs) = 0 is the equation of the proper
transform ¢1 ... os)'(G) of G onVs. Thus,V = Spec([vs, Vs/uN=9]).

Furthermore, sets = UVgi1,...,Vn_1 = Uy andVe,q = Spec
(O[Vsi1]), ..., Vn = Spec@[wn]). Then it is easy to see that the fol-
lowing assertions hold fas+ 1 < i < N:

(1) V = Spec@]vi, vi/uN]);

(2)’ 7s : V - Vs is a composition of a morphis@ : V — V; and

Osi1:...-0i - Vi = Vg, whereo; = aily, * Vi = Vi and
M1 =0 " 7.

ThenV = Vy = Spec@[w\]). Hence,V is isomorphic, in a neigh-
borhood ofz~1(P1), to Vy with the curvesEy, ..., En_1 and ¢”(G)
deleted &. In particular,r™X(P1) = € := Ex — En N En-1. O

5.6

Assume that we are given two curves (not necessarily iribi)d=, G
on a nonsingular surfacéy and a pointP; € F n G at which one of
F andG, sayF, is nonsingular. LeP4, Ps,...,Ps be all points ofG
onF overPy, and letvy, ..., vs be the multiplicities ofG at Py, ..., P,
respectively. LeN = v; + --- + vs. As explained ifC5l4, define :
VN — Vo as a composition of quadratic transformations with cerdaérs
N pointsPy,...,Py on F, eachP;(2 £ i £ N) being infinitely near to
Pi_, of order one. We call : Vy — Vg the standard transformation of
Vo with respect to a triple{P1, F, G). The configuration of-—1(F U G)

in a neighborhood of~—1(P,) is given by the Figure 1 ilL3.4. With
the notations in the Figure 1, we obtain a new surfechy deleting
E1,...,En-1 from V. We then say thaV is obtained fromvg by the
standard process of the first kind with respec{Re, F, G). On the other
hand, note thatE{iz) =-2for1<i £ N-1. Hence we obtain a new
normal surfac&/’ from Vy by contractinges, ..., En_1 to a pointQ; on
V’ which is a rational double point (cf. Artin [5; Theorem 2_Aye then
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say thatV’ is obtained fromVy by the standard process of the second
kind with respect t¢P4, F, G).

5.7

We shall next consider the case where, at a peird F N G, the curve
G is nonsingular. Indeed, we prove the following:

Lemma. With the assumption as above, let be the surface obtained
from \p = Aﬁ by the standard process of the second kind with respect
to (P1,G, F). Then, in a neighborhood af1(P;), V is isomorphic to 169
V’ with the proper transform of G deletegdfolf either F is singular at

P, ori(F,G; Py) = 2, V has a unique rational double point an*(Py).

Proof. Let P, P»,...,P; be all points ofF on G over P, and letus,
.., ur be the multiplicities ofF at Py,..., P, respectively. LeM :=
u1 + -+ ur. We prove the assertion by induction dh.  Note that
M = 1lifand only ifi(F,G; P1) = 1. Itis then easy to see thatis
isomorphic, in a neighborhood af!(P1), to a surfacev; obtained as
follows: Leto; : Vi — Vg be the quadratic transformation g := Aﬁ
with center atP;, and letV] := Vi = 0}(G). Now, assume thavl > 1.
SinceG is nonsingular aP; there exist local parameteuts v of Vg at
P, such thatv = g. Let f(u,v) = 0 be a local equation of at P;.
Then,V is isomorphic, in a neighborhood of(P;), to an dfine hyper
surfacevz = f(u,v) in the dfine 3—spaceﬁ\§. There exists only one
singular pointQ; : (u,v,2) = (0,0,a) of V lying on n1(Py), where

f f—ag]
XY, —| =KXV,
b5 =K

andi(F,G; P;) = i(H, G; P1) = M, whereH is the curve orAﬁ defined
by f = ag. Replacingf by f — ag we may assume, from the outset
and without loss of generality, that = 0. Then we have; > 2. Let
p1 1 Wy — A3 be the quadratic transformation &f with center at the
curver(Py) :u=v=0, letV] be the proper transform af on W,
and letr; = p1|Vi : V] — V be the restriction gb; ontoV].
Setv = uv, U = vy and f(u,uvy) = ufi(u,vp), flvu,v) =
e E(ul,v). ThenV] is given byv;z = w11, (u, v1) with respect to 170

a= g—\t(o, 0). Note that ifa # 0 thenA := k
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the coordinate systemu,(vi,2) and byz = u“l‘lﬁ(ul,v) with respect
to the coordinate systenuy(, v, ). By construction oV}, V] dominates
the surface/, obtained fronVy by the quadratic transformatiam, with
center aPy;

A a Vv
T J/ﬂ'
Vi i Vo

The proper transform (~(P1)) of x~1(P1) onV; is given byu = v; =
0; the curver;}(Q)) is given byu = z= 0; 71 : V;—774(Q)) — V-{Q}};
the singular point o¥/] is possiblyQy : (u,v1,2) = (0,0,0).

The morphishry : V; — Vi is isomorphic at every point af;}(Q})
—{Q,}. Indeed, ifvy # 0 andeo, 71 is given by (,v1,2) = (U, vy, U™t
fi(u,v1)/v1) — (u,vi) which is clearly isomorphic; ifr, = oo, 71 is
given by (1, v, V111 (us,v)) — (uy,V) which is isomorphic as well.
Under the morphisnry, 771(Q)) corresponds tar;(P1) and 7
(n71(Py)) to the pointP2; moreoverr;}(P,) = 7 (r1(P1));

Q) Ti(x (7))

Note that the following assertions hold:

(1) V;isisomorphic, in a neighborhood m{l(Pz), to an dfine hyper
surfaceviz = 171y (u, vp) on A3,

(2) in a neighborhood dPy, o (G) is defined by, = 0 ando(F) is
defined byf;(u,v1) = 0;
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(3) Py,...,P; are all points of the curv€, : us 1fy(u,v1) = 0 on
01(G) over Py, and the sum of multiplicities of the curve, at
Py,...,PrisM - 1.

Let V]’ be the surface obtained fron{ by the standard process of
the second kind with respect to a triplé(o (G), F1). Then, by the
assumption of induction applied %/, we know that, in a neighbor-
hood ofr} (x~1(P1)) = 77*(P2), V; is isomorphic tov;’ with the proper
transform ofo) (G) on V" deleted &. Letp : Vi — V; be the standard
transformation o¥/y with respect to a tripleti, ) (G), F1). Theno1-p
is clearly the standard transformation: Vy — Vg with respect to a
triplet (P1, G, F);

E,

(Fig 2)
where, in the Figure 2, we have:
1° Ex=p'(c7 (Py));

2° the surfacev; is obtained by contracting,, ..., Em-1 to a point
Q, and by deleting the proper transformaf(G); under this con- 172
traction, sayp, we havep(E;) = 771(Q)) and¢(Em — Em N
'(G)) = Ty (x"Y(Py).

It is now easy to see thal is isomorphic, in a neighborhood of
n~(P,), to the surface/’ with the proper transform oB deleted df,
whereV’ is obtained fromVy, by contractingEs,...,Eyw_1. Hence,
the unique singular point 0¥ lying on 7~1(P,) is a rational double
point. O
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5.8

Let P; € F NG, and assume th& is nonsingular aP;. LetPy, Py, .. .,
P; be all points ofF onG overPy, and letus, ua, . . ., ur be the multiplic-
ities of F at Py, P, ..., Py, respectively. Iff = cf. J*... fg"(c € k) is
a decomposition of into distinct irreducible factors, 1dtj(1 < j < m)
be the curve orVp defined byf; = 0. Lety;(j) be the multiplicity
of FjatPiforl < i <rand1< j £ m Then itis clear that
i = ai()+ -+ apuimforl<i<r.

5.9

As a consequence of Lemnias]5.5 5.7, we have the following:

Theorem.Assume that V has only isolated singularities. Let W be the
surface obtained from y/:= Aﬁ by the standard processes of the first
(or the second) kind at every point of=G. Then V is isomorphic to
the surface W with the proper transform of G on W deletgd ©he
surface V is, therefore, a normal surface whose singulantsdif any)

are rational double points.

5.10

In the paragraphE_5.110 we shall study the divisor class group
173 C{(V). Letg = cd* ... gh"(c € k*) be a decomposition @ into distinct
irreducible factors, and l&s; be the curveg; = 0OonVpforl1 < j<n.
Assume thaF NG # ¢. LetF nG = {PD,..., pl9). For1< ¢ <e,
eitherF is nonsingular aP(f) but G is singular, oG is nonsingular at
P(f). We may assume thdt is nonsingular aP(l), . ..,P(la) but G is
singular, ands is nonsingular aP(1a+l), e P(le). (The number a may be
0). For1< ¢ < a letP!,...,PY be all points ofG onF overP{”, and
let v{)(j) be the multiplicity ofG; atP for 1 <i < s and 1< j < n;
let NOG) = vO(3j) +- - +v0(j), letv? = B O(2) + - - + g9 (n) and
let NO = BINO(1)+--- +BNO(n). Fora+ 1< ¢ < e letP), ... pY
be all points ofF onG overP!?, and let.") be the multiplicity ofF at
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POfor1<i<r,. LetMO = 4 1.+ 4. SinceG is nonsingular
at p(lf) fora+ 1 < ¢ < e, there exists a uniquéj(1 < j < n) such that
PO, ..., P lie onG;. Then We seM©(j) = M@ andM(j’) = O for

i # . Leteé® = a PPy for1<t<e

5.11
The structure of the divisor class groGg(V) is given by the following:

Theorem. With the notations as above, the divisor class gro¥f\Q is
isomorphic to:

a e
(Ze® + -+ Z&DY Y INOGED + T MO 1< j<n).
=1 {=a+1

Proof. EmbedV, := AZ into the projective plan&2 as a complement174
of alinet.. For1< ¢ < e letEY, ... ,EY) be all exceptional curves
which arise from the standard transformation\6f with respect to a
triplet (P, F,G) (or (P, G, F)), whereq = NO (or M®). Letr :

W — PZ be the composition of standard transformationsPéfwith
respect to tripletsl'{(f), F,G) for 1 £ ¢ £ aand triplets E’(f),G, F) for
a+1<{¢<e Thenitis easy to see that the divisor

a e
(gow—{z NOGIED, + . M@(j)Eﬁ?@)} 1<j<n)
=1

{=a+1

has support on’(Gj), 7’ (€.), EV, ..., E((f_)l (g = NO or MO) for 1 <
¢ £ e. Hence we have:

a

e
@ =2 NOD? + 37 MO ~0

=1 {=a+1

asadivisoron/forl1<j<n.

Now, letC be an irreducible curve ovi such thatr(C) is not a point,
and let the closure of(C) on Vg be defined bynh = 0 with h € k[x,y].
Then, by considering the divisoh)y on W, we easily see that is



175

132 Curves on anfline rational surface

linearly equivalent to an integral combination &b, ..., ®. Hence,
by setting

a e
g = {ZE(l) et Zg(e)}/ {Z N(l’)(j)g(f) + Z M(f)(j)g(f); 1<j< n}
=1

(=a+l

we have a surjective homomorphism:
0:9— ClV); 0ED) = 1<t <.

We shall show thafl is an isomorphism. Assume that Keg (0),
and letd;e® + - - + doe® be a nonzero element of KerThend;e® +
-+ dee® = (t)y onV, wheret € k(V) such thatt ¢ k. Then we
may write ¢)v, = chi with irreducible curve£; on Vg and nonzero

|
integersm;. Lett; € K[x,y] be such thaC; is defined byt; = 0, and
write:

e
(t)y = 7'(C) + Z bi,e®  with by e Z.
=1

Then, since = CIIt™ with ¢ € k* we have:
|

(v = Y (ma'(Ci) + > mbie®) = " dre®.
i (=1 =1

Hence we know that’(C;) = ¢ for everyi. This implies that every
Ci must coincide with one oBj’s (1 < j < n), i.e, t)v is an integral
combination of §;)y's. Hencedie® + --- + dee® = 0ing. Thisis a
contradiction. m]

5.12

The dfine k-domainA = K[x,y, i] is a unique factorization domain if

and only ifC¢(V) = (0). We have the following two consequences of
BE11.
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5.12.1

Corollary. With the notations di5.10, if @ n then A is not a unique
factorization domain.

5.12.2

Corollary. Assume that g is irreducible and that®G # ¢. Then A
is a unique factorization domain if and only if the curves Fl & meet
each other in only one point where they intersect transwgrse

5.13

. : f
Let A* be the group of all invertible elements Af= k{x,y, 5 . Then 176

A* containsk* = k — (0) as a subgroup. By virtue of Miyanishi [32;
Remark 2, p.174] we know th&*/k* is a freeZ-module of finite rank
andA* is isomorphic to a direct product &f andA*/k*. The purpose
of the present and the next paragraphs is to determine thp grgk*.
Let H be the subgroup e + - - - + Ze© generated by

a e
{Z NOG)D + > MO(ei1< < n}.
=1

(=a+l

LetT4,..., Ty ben-indeterminates, and let: ZM := ZT+---+ZT, —
H be a homomorphism such that, fogli < n,

a

n(Ti) = > NO(j)ED + Z MO(j)e®.

=1 (=a+1

LetL be the kernel ofy, and define a homomorphism L — K* (where
K =k(xy)) by

ETi+--+yTn) =0 ...0", where 3 eZ
Then we have the following:

Lemma. The homomorphisginduces an isomorphisgh: L — A*/k*.
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a e
Proof. (1) Since gy = Y NO([)e? + > MO(j)e = n(T;) for

177

)

5.14

_ =1 t=a+l
1<i £n, we have:

nyaTe+ - +yaTn) = (9] ... 9M")v.

Therefore, ify1T1 +- -+ yn Ty € L theng]" ... g}" is an invertible
element ofA, which is a constant if and only #f, = ... = yn = 0.
Thus,¢ induces a monomorphisghfrom L into A*/k*.

Lett be a non-constant invertible elementA&f Write (t)y, =
chi with irreducible curve<; and nonzero integens;. Let

Cli be defined by; = 0 with t; € k[x,y]. As in the proof of 5.1,
write: .
(t)v =7'(Ci) + ) biee? with by eZ.
(=1

Then we have:

v = Z {rmr’(Ci) + Z mbieé([)} =0.
=1

Hence we have’(C;) = ¢ for everyi. This implies thatC; must
coincide with one of5;’s. Hence we could write:

n
(v, = Z m;G;
i=1

wherem; may be zero. Then= cgi™ ...g5" with c € k*. Itisthen
clear thatm_lTl +---+mMyThp € Landé(mTy + - - -+ mpTy) = t/C.
Therefore¢ : L — A*/k* is an isomorphism.

i

By virtue of[5.11 and5.33, we have the following:
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Theorem.Assume that V has only isolated singularities. Then we have
the following exact sequence @&modules:

0- Ak - zZM - 7O 5 ceVv) - 0,

whereZ() stands for a freeZ-module of rank r; n is the number ofi7s
distinct irreducible factors of g; e is the number of distipmints of
FNnG.

5.15

Remarks. (1) Itis clear from{5.1K that ify is irreducible themA* =
k*.
(2) rankC¢(V)) — rank(A*/k*) = e—n.

(3) Though we proved Theorem 5114 under the assumptiorFtimat
G # ¢ itis clear that the theorem is valid also in the c&kse G =

®.

5.16

From now on in the remaining paragraphs of this section wamasghat
- : f .
the characteristic dis zero. Assume thak := k[x, y, —] is normal and

A has a nontrivial locally nilpoterit-derivationD (cf. (T.1)). By virtue
of [[.2 we know thaD defines a nontrivial action of the additive group
schemeG, i on'V andvice versa Then we have the following:

Lemma cf.[L.3A[T6 The subring A of D-constants is a finitely gen-
erated, normal, rational k-domain of dimensiin

Proof. The fact thatdg is rational ovek follows from Liroth’s theorem.
O

5.17

By virtue of the previous lemma we may wrifg) = k[t, Wlt)] with

h(t) € K[t]; U := Specfy) is an open set of theffine IineA&. Let
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g:V — U be the morphism defined by the canonical inclusigr— A.
For almost all elements of k such thath(a) # 0, the fiberqg () is a
Ga-orbit with respect to th&g-action onV corresponding td, and
henceq () is isomorphic to the fiine lineAL. Letp : V' — V be
the minimal resolution of singularities ofl. As we saw if .59, singular
points ofV are rational double points. Hence,is a composition of
guadratic transformations with centers at singular poinésq’ = q-p :
V' — U. Almost all fibers ofg” are therefore isomorphic to théiae
line A&. Now we shall prove the following:

Lemma. There exists a nonsingular projective surface W and a surjec
tive morphism B{W - Pﬁ satisfying the following conditions:

(1) Almost all fibers of p are isomorphic ]Rt

(2) There exists an open immersionV¥’ — W such that pl = l-q,
wherel : U — P& is the canonical open immersion via b»
Ay = Speck[t]).

(3) The fibration p has a cross-section S such that B/ — I(V’).

Proof. Let V be a nonsingular projective surface containMgas an
open set. Then, a sub fiekgt) of k(V’) = k(V) defines a linear pencil

A of effective divisors oV such that a general memberafcuts out a
general fiber off onV’. The base points ok are situated oV — V'.
Letd : W — V be the shortest succession of quadratic transformations
of V with centers at the base pointsAfsuch that the proper transform

A of A by 6 has no base points, and et W — P& be the morphism
defined byA. SinceV’ is naturally embedded intd/ as an open set, let

| : V' — W be the natural open immersion. Then it is not hard to see
thatp: W — Pﬁ andl : V' — W satisfy the conditions (1), (2) and (3)
of Lemma. m]

SFor the existence of the minimal resolution of singulasiti€V, we refer to Lipman
[30; Th. 4.1].

’Sincek is assumed to be of characteristic zero there would not befusion of
notations.
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5.18

LemmdZP applied to the fibratign: W — IP& implies the following:

;

Lemma. Write W—- (V') = UCi with irreducible curves € Then we
i=1

have:

(1) Every G is isomorphic tcPy.

(2) Fori # j, Cj and G meet each other (if at all) in a single point
where they intersect transversely.

(3) For three distinct indices i, jand, G,NC; N C; = ¢.

r
4 UCi does not contain any cyclic chains.
i=1

Proof. Note that one o€;’s is the cross-sectioB and the other compo-
nents are contained in the fiberspfNoting thatS is isomorphic tdPy,
we obtain readily the above assertions from Lerimh 2.2. O

5.19

Let Vo := Speck[x,y]), and letF, G be as if5R. LeGj(1 < j < n)

be as il 5.J10. Embed, into the projective planﬁﬁ as the complement

of a line ., and letF, G, Gj(1 < j < n) be the closures df, G, G in

Pﬁ, respectively. Let: Z — Pﬁ be a composition of the standard trans-
formations oﬂPﬁ with respect to tripletsK F, G) (or (P, G, F)), where

P runs over all points oF N G. Then we know thaV’ is embedded 181
into Z as an open set. We may assume, by replatihg necessary

by a surface which is obtained frow by a succession of the quadratic
transformations, that there exists a birational morphisnW — Z such
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that we have the following commutative diagram:

P 1
w pi
3 -
|
z oy —7

P

T \

T

P2 <V

5.20

Lemma. (1) With the notations dESJQ,Tga)’(G_j) is contained in a
fiber of p forl < j < n; in particular, (t¢)'(G;) is isomorphic to

PL.

k

(2) Let PL € F nG. Assume that F is nonsingular ag But G is
singular at R. Then, with the notations of the Figuieof 5.4,
¢'(E1),...,¢' (En-1) are contained in one and only one fiber of p.

Proof. (1) We know by virtue of 5117 that if is a general member of

p thendy, := I71(AN1(V")) is isomorphic to theffine lineAl; we
also know thair’(Gj) = ¢ for 1 < j < n. Hencedy: N (mp)'(Gj) =
¢. This implies that if o)’ (Gj) N 1 # ¢ thend meets ty)'(G;) at

182 some of finitely many points Oﬁ'(p)/(éj) which are independent
of choice ofd. However, this is impossible becausés a general
member of an irreducible linear pencil Bvifree from base points.
Hence ¢¢)'(Gj) N A = ¢. This implies that{y)’(G;) is contained
in a fiber ofpfor 1 < j < n. The fact that£p)'(G;) is isomorphic
to P, follows from LemmdZR.
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(2) By construction o¥/ andV’ (cf. 5.9) we know thay’ (Ej)NI(V’) =
¢forl<i < N-1. Hence, foreachwithl<i < N-1,ageneral
fiber A of p meetsy’(E;) at some of finitely many points @f (E;)
which are independent of choice #f By the same reason as in
(1) above we know thap’(E;) is contained in a fiber op. Since
¢ (E1),...,¢ (En-1) are connected they are contained in one and
only one fiber ofp.

m]

Note that, with the notations of the assertion (2) above, reege
fiber A of p may intersecty’ (En).

5.21

Lemma. (1) For1 < j £n, Gjhas only one place at infinity; every
singular point of G is a one-place point.

(2) Fordistincti, j(L<i,j£n),GNGj=¢.

Proof. Let Az be the linear pencil oZ defined by a subfield(t) =
k(PY) of k(Z) = k(W), the inclusiork(t) — k(Z) corresponding tg. A
general member ok cuts out onv’ a curve of the formy,, wherea

is a fiber ofp. Hence, ifAz has base points they are centered at a point
ont'({). If ¢ is not an isomorphism, we may assume without loss of
generality thatp is the shortest succession of quadratic transformations
with centers at base points A (including infinitely near base points)
such that the proper transform&$ by ¢ has no base points. Then everys3
singular point 0ofGj(1 < j £ n) lies on the curvé-; indeed, if otherwise,
(r¢)'(Gj) has a singular point, which contradicts Lenimab.20, (1)wNo

if Gj has two or more places at infinity théd — [(V’) would contain

a cyclic chain becauséV’) N ((r¢)'(Gj) U ¢ (r'(¢=))) = ¢, which
contradicts Lemm@5.18. Thu&;(l < j < n) has only one place at
infinity. If G; has a singular poinP; which is not a one-place point,
thenP; € G; n F as remarked above and, with the notations of the
Figure 1 of(&H, £¢)'(Gj) U ¢'(E1) U ... U ¢/(En-1) would contain a
cyclic chain. Sincety)’(Gj) and¢’(Ej)(1L < i < N - 1) are contained

in W—1(V’) this is a contradiction to Lemnia’s]18. Thus, every singular
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point of G; is a one-place point. Similarly, & N Gj # ¢(i # j) then
W —1(V’) would contain a cyclic chain. Thu§ NG =¢fori# j. O
5.22

Lemma. For 1 £ j £ n, the curve Gis nonsingular.

Proof. As remarked in the proof of Lemnia’s]21 Rfis a singular point
of G thenP € F N G;j. Then, in a neighborhood of(P), 7=(F UG;)
must have the following configuration as in the Figure 1 of 5.4

184 wherey’(E1), ..., ¢ (En-1) and (rgo)’(@,-) belong to the same fiber @f
Note thatN > s+ 1 sinceP is a singular point oG; and that (-go)’(éj)
intersectsy’(Eg) transversely in one point. Assume that > 2 and
Vb1 = ... = vg = 1 (cf.[5:4 for the notations). Sudhexists becausP
is a singular point 0G;j and (' (Es) - (TQD)’(GJ')) = 1. Thenitis not hard
to show thats = b + 1 and we have the configuration:

7(G;)

where'(G;) touchesEs 1 with (7'(Gj) - Es-1) = vo— 1 2 1. This
contradicts Lemm&2.2. Therefore, the cuG/gis nonsingular. O

5.23

Theorem.Assume that V has only isolated singularities. Then A has a
nontrivial locally nilpotent k-derivation if and only if wieave ge k[y]
after a suitable change of coordinates x, y pt,k].
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Proof. Assume thag € k[y] after a suitable change of coordinatesy

of K[x,y]. ThenD = g—X is a nontrivial locally nilpotenk-derivation

on A. We shall prove the converse. With the notationg_ofl>-1R22,
Gj(1 £ j £ n)is a nonsingular rational curve with only one place at in-
finity (cf. E20[5.21 anf5.22). Hendg; is isomorphic to thefine line 185
Ag. By virtue of the Embedding theorem of Abhyankar-Moh [cTll)1.

we may assume thah = y after a suitable change of coordinatesy

of k[x,y]. Then, for 2< j £ n, g; is written in the formg; = c; + yh;

with ¢; € kandh; € k[x y] becauseGj N G1 = ¢ (cf. 21, (2)). On
the other hand, by virtue of the Irreducibility theorem [Efl), the fact
thatG; has only one place at infinity implies that the cugje= a on
AZis irreducible for everyr € k. Thereforeh; is a constant k. Thus

g € K[yl |

5.24

We know by virtue of Theorefi_1.3.1 thAtis isomorphic to a polyno-
mial ring overk if and only if A satisfies the following conditions:

(1) Ais a unique factorization domain,
(2) A*=k*,
(3) Ahas a nontrivial locally nilpoterit-derivation.

The condition (1) above can be described as follows:

f - .
Lemma. Assume that A= k[x,y, —] satisfies the condition&) and

(3) above. We may assume thategk[y] after a suitable change of
coordinates X, y of[k, y]. Write: f(x,y) = ag(y) + a1(y)x+--- + a;(y)X
with g (y) € K[y] (0 =i £r). Then A is a unique factorization domain if
and only if a(y) is a unit modulo gkx, y] and a(y) is nilpotent modulo
gixylfor2<si<r.

Proof. Assume that is a unique factorization domain. With the nota-
tions ofl2ID, we hava = 0 because ever@j(1 < j < n) is nonsingular 186
andG;nG; = ¢if i # j. By virtue offl.I#, we have = n. Theoreni 5111
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then implies that ever; intersects- transversely. This is easily seen
to be equivalent to the condition difx, y) in the above statement. The
“if” part of Lemma will be clear by the above argument and Tiezo
E711. O

5.25
Finally, we shall prove the following:

Theorem cf. Russell[[49] and Sathaye [52] in casa = 1; cf. Wright
[66] in casem > 1 Let k be an algebraically closed field of character-
istic zero and let kx, y] be a polynomial ring over k in two variables x
andy. Let f and g be two nonzero elements[&fy such that:

(1) f and g have no nonconstant common factors;

(2) let B := K[x,y,w]/(gw™ — f) with a variable w and an integer
m = 1; then B is isomorphic to a polynomial ring over k. Then
there existp, ¢ € k[x,y, w] such that kx, y,w] = K[e, ¥, gw" - f].

Proof. We shall prove the theorem only in the case whare 1; for
the case wherm = 1, see the original proofs. Our proof consists of four
steps.

() Let A:=K[xY,2Z/(gz- f). LetV := Specfp) andW := SpecB).
By assigningx, y, w" to X, y, z, respectively we have an inclusion
A — B, which defines in turn a morphism: W — V. Letg be
the group ofm-th roots of unity;g is identified with a cyclic group
Zm of orderm. Note thatg acts onW via (X, y, w) — (X, Y, &w) for
£ € q. Itis readily ascertained thétis the subring ofi-invariants
in B and that the morphism : W — V is the quotient morphism
for the above-defined action gfon W.

(I For the moment, assume only thatis nonsingular. By applying
the Jacobian criterion of singularity W we easily see that;

1° the curveF on Aﬁ = Speck[x,y]) defined byf = 0is a
nonsingular curve;
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2° let G be the curve omﬁ defined byg = 0; then, ifG inter-
sectsF at a pointP, eitherG is singular alP or G intersects
F transversely aP.

This implies by virtue of 513 that iV is nonsingular thefV is
nonsingular as well. Let : V — AE be a morphism defined by
(X, ¥,2) — (xY). Note that £q)~1(Q) # ¢ andx Q) # ¢ for
every pointQ on F, and that the proper transfor(F) of F onV

is defined byz = 0. Moreover, note that the morphism W — V

is a finite morphism, which is unramified at every poihbf V
with P ¢ n/(F) and totally ramified on the curve(F).

(1) Assume now thatV is isomorphic to the ffine planeAﬁ. Theng
is a finite subgroup of AytW. SinceV is nonsingular as seen in
the step (Il), Propositiof—3.7 implies th¥tis isomorphic to the
affine pIan%ﬁ as well. We shall show that is isomorphic to the
affine IineAﬁ. Write W := Speck[u, v]). Sinceg is conjugate to a
finite subgroup oGL(2, k) (cf. [B.3) and since a finite subgroup of
GL(2, k) isomorphic taz, is diagonalizable, we may assume that

g acts onW via
u| (¢ 0\(u
“lv) = o v

where¢ € g andi, j € Zm. Sinceq : W — V is totally ramified 188
overn’(F), every point of the ramification locus dfis fixed byag.
Hence either = 0 or j = 0. We may assume that 0. Then the
curveRonW defined by = 0 is the ramification locus af. Since
7'(F) = q(R) and~’(F) is isomorphic toR, we know thatr’(F)

is isomorphic to the féine line. ThereforeF is an irreducible
nonsingular rational curve with only one place at infinitf. tbe
step (I)). ThusF is isomorphic to thefiine IineAﬁ.

(IV) By virtue of the Embedding theorem (¢f—1.1) we may assum
that f = x. On the other hand, sindéis isomorphic to thefiine
plane A2, we know by virtue of Lemm&5.24 and its proof that
the curveG is nonsingular, each connected componenGab
isomorphic toA& andF intersects each connected component of
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G transversely at a single point. Therefore, we may assume tha
g € k[y] (cf.32). Then it is easily verified thax,y,w] =
Kly,z gw™ - f].

6 Certain affine plane curves with two places at in-
finity

6.1

The results of this section were worked out jointly by T. Sugihd

the lecturer (cf. Miyanishi and Sugie [37]). Throughout #eetion the
ground fieldk is assumed to be an algebraically closed field of charac-
teristic zero. Our ultimate purpose is to prove the follagvin

Theorem.Let f be an irreducible element of a polynomial ringky]
and let G, be the curve om\? := Speck[x,y]) defined by f= « for
a € k. The, after a suitable change of coordinates x, y[afW, f =
c(xdye — 1) for ¢ € k* and positive integers d and e wigt, €) = 1if and
only if the following conditions are satisfied:

(1) fis afield generato(cf. Z4.1)
(2) C, has exactly two places at infinity for almost alE k.

(3) C, is connected for every € k.

6.2

Let V be a nonsingular projective surface defined dvand letA be
an irreducible linear pencil o whose general members are rational
curves. LetB be the set of (ordinary) base points &f We assume
that each point of B is a one-place point of a general membex. ol
reducible membeA of A is said to bdinear if the following conditions
are satisfied;
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(i) every irreducible component @ is isomorphic tdPL,

(i) two distinct irreducible components @ meet each other (if at190
all) transversely in a single point,

(i) three distinct irreducible components afhave no points in com-
mon,

(iv) the weighted graph oh is a linear chain.

An irreducible componenbD of a linear reducible membex of A is
calleda terminal componerif D meets only one irreducible component
of A other tharD. An irreducible curves onV is calleda quasi-section
of A if Sis not contained in any member afandA has no base points
on S; a quasi-section oA is calleda section ofA if (C-S) = 1 for a
general membeC of A.

6.3

Lemma. With the notations and assumptions[ofl 6.2,Aet= ngDg +
mD; + --- + nyD, be a linear reducible member of with irreducible
components Pand integers n> 0. Assume that the following condi-
tions are satisfied:

(1) DgpnB={Pland P¢ Dijfor1<i<r;
(2) (D(Z)) = p > 0and Iy is not a terminal component &
(3) (D?) <0for 1<i < rand(D?) < —1whenever bn B = ¢.

Then the multiplicity pof Dg in A is equal tol. Furthermore(C-Dg) =
i(C,Dog;P) =p+ 1

Proof. Our proof consists of six steps.

() Let C be a general member of. Lete := (C- Dg) = i(C, Dg; P)
andv := multpC. LetPg := P,Py,..., Pp be points orDg over
Po, whereP; is an infinitely near point oP;_; of order one for 191
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1<i< pE Leto : V' — V be a succession of quadratic transfor-
mations ofV with centers aPy, ..., Py, letC’ := ¢’(C) and let
D} := ¢’(Do). Theno(Dg) has the configuration as follows:

(I Note thatP is a one-place point o€. We shall show thaC’
meetsEp,1. Assume the contrary, i.eEp.1 NC’ = ¢. Let A’ be
the proper transform ok by o and letA’” be the member o\’
corresponding ta. Then it is easily ascertained that:

1° A’ is spanned by andC’;
2° Dy andEp,; are irreducible components af;
3° there exist no base points af on Dy andEp, ;.

Let7 : V/ — V be the contraction dD’, let A be the proper trans-

form of A’ andA := 7,(A’) be the member ok corresponding to

A’. ThenA has three irreducible components meeting each other
192 in one point, which is not a base pointaf This is a contradiction

(cf.[Z3, (3)). Thus we know tha@’ N Ep,1 # ¢.

(Il1) With the notations of the step (Il), we shall show tt&g, is not
a component o’. Assume the contrary, and I&:= C’ N Ep,;.

8Let oy : Vi — V be the quadratic transformation wfwith center atP. Then
P1 = 0}(Do) N o7X(Po). For 2< i < p, define inductively the quadratic transformation
o 1V = Vi_g of Vi with center aP,_;. ThenP; = (o1...07)' (D) N o7} (Pi-y).
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If Q # Dy N Epy1 we would have a contradiction by contracting
Dg (cf. 23, (3)). Henc& = Dy N Ep,1. However this is again a
contradiction because of the condition (3) above[(cll. 2B, (

(IV) We shall show thaQ := C" N Ep. is distinct fromD6 NEp,1 and
Ep N Eps1. Indeed, ifQ = Dj N Epy1 We have a contradiction
because of the condition (3) above (cfl2.3, (4)). Assume tha
Q = Ep N Eps1. Note thatEy,. .., Ep are contained in one and
only one member oA\’ other thamA’ becauseds; N Supp’) = ¢
forl <i £ p. ThenQis a base point al’. This is a contradiction

becaus& ¢ Supp{\’).

(V) From the above arguments we know tligf, 1 is a quasi-section
of A’ such that 4’ - Ep.1) = ng. Assume thahy > 1. Then we
have a ramified coveringp,; — P& of degreeng, which ramifies
totally over at least three points Bt. By Hurwitz's formula, we
have:

—22-2ng+3(Ng—-1)=np-3.

This is a contradiction. Hence we obtaip= 1.

(VI) Since P is a one-place point of, the fact thatEp,; is a quasi-
section ofA” implies thate = (p + 1)y andv = (C" - Ep,1). Since 193
v =ng =1 we know thae= p+ 1.

6.4

In the paragraphis 8.4 6.8, let the notations and assumptions be as in
[£2. Assume furthermore thathas a linear reducible memb&mwhose
weighted graph is the following linear chain:

[ORS]

G M

S
F o=
=

whereG, M andH are given respectively by
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—(m+1) -2 -2 —(y3+2) -2 —(v2t-3+2) =2 =2 —(y2-1+2)
i 0—o0o— —0—0—0— —0— o0
721 Yor—2 — 1 —2 . 702

Yor — 1

@i, Bj andy, being positive integers for ¥ i < 2r, 1< j £ 2s+1
and 1< ¢ £ 2t. G, M andH are called respectivelthe left, the middle
and the right branchesf the weighted graph ok. The absence of the
left branchG (or the middle branciM, or the right branctH, resp. ) is
denoted byG = ¢ (or M = ¢, or H = ¢, resp. ). In the above graph
the components oA with self-intersection multiplicitiesp and q are
denoted respectively by, andD,.

6.5

Lemma. Let the notations and assumptions be ab1d 6.2[and 6.4. Let
ni(i = 1, 2) be the multiplicity of Din A. Assume that B {P;, P,} with

P, € Dj and R ¢ the components & other than B for i = 1,2, that

ng # 1and n # 1, and that either p< 0 or g £ 0. Then the following
assertions hold true:

(1) Either p= 0or g =2 0. Thus, in the assertions below we assume
that q= O and p< 0.

(2) If p<0and g= O0then H= ¢.
(3) If p=0and g= O0then either G= ¢ or H = ¢.

Proof. Let C be a general member of and letg := (C - D;) = i(C, Dj;
Pi) andv; := multp, C fori = 1,2.
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(1) The assertion (1) follows from LemrhaR.3, (4).

(2) Consider first the case whepe < 0 andq > 0. Assume that
H # ¢. ThenD3 is not a terminal component @f. Lemmal6.B
then tells us that, = 1, which contradicts the assumption. Hence
H = ¢. Consider next the case whepe< 0 andq = 0. Assume
thatH # ¢. Leto : V' — V be the quadratic transformation
of V with center atP,. Let A’ := ¢’(A), C' := ¢/(C), D) =
0’(Dy), E := 07 1(P,), Q := ENC’ andA’ := the member of
A’ corresponding ta\. ThenA’ is spanned byC’ andA’. We
shall show thatQ ¢ D, andE ¢ Supp@’), which imply that
& = vp = Ny and thatE is a quasi-section of’ with (C’ - E) = v».

If Q € D then we would have a contradiction by Lemmal 2.3,
(4), regardless of whether or nBtc Supp@\’). ThusQ ¢ D, If

E c Supp@\’) then we would have a contradiction by contracting
D) as in the proof of LemmBA8.3, becaug is not a terminal 195
component ofA. Thusg ¢ Suppf\’). Since every member of
A’ has a one-place point daand the characteristic ¢fis zero,

E must be a cross-section of, i.e.,vo = np = 1. Thisis a
contradiction. Hence we hawé = ¢.

(3) Assume thaG # ¢ andH # ¢. We shall first consider the case
wherep = 0 andq > 0. Leto : V' — V be the quadratic trans-
formation ofV with center atP;. Let A’ := 0’(A), C’ := ¢/(C),
D} := ¢’/(D1), E := 07}(P1), Q := ENC’ andA’ := the mem-
ber of A’ corresponding ta. ThenA’ is spanned by’ andA’.
We shall show tha@Q ¢ D} andE ¢ Supp@’), which imply that
€ = v1 = Np and thatE is a quasi-section aof’ with (C"-E) = v;.

If Q e D, LemmdG.H applied to ', A’, A’, D}, := 0’(D2), P2)

instead of ¥, A, A, Do, P) implies thatn, = 1, which contradicts
the assumption. Thu® ¢ Dj. If E ¢ Supp@’) we would have
a contradiction by contractin®; as in the proof of Lemm@ad.3,

°If E ¢ Supp@\’) we can apply LemmB®.3 in the stated form becafsis linear.
However, ifE c Supp@’), we have to strengthen Lemrial6.3 so as to apply it to the
present situation. However, this is a very easy task; thengproof works without any
modification.
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becauseD; is not a terminal component df. Since every mem-
ber of A’ has a one-place point dhand the characteristic &fis
zero,E must be a cross-section af, i.e.,v1 = np = 1. Thisis
a contradiction. Therefore, we know that eitli2e= ¢ or H = ¢.
consider next the case whepe= q = 0. Leto : V' — V be
the composition of quadratic transformations\ofwith centers
atPy andPy. LetA’ = o'(A), C" = 0'(C), D] = o’(Dj),
Ei := o }(P), Q = E;nC’ andA’ := the member o\’ corre-
sponding toA, wherei = 1,2. We have only to show that either
Q1 ¢ D} andE; ¢ Supp@’) or Qz ¢ D, andE; ¢ Suppf’); in
either case we get a contradiction.Qf € D/(i = 1,2) we have
a contradiction by Lemm@a=.3 (4), regardless of whether or no
Ei ¢ SuppQ’)(i = 1,2). Thus, eitheQ, ¢ D] or Qz ¢ D7. As-
sume thatQ; ¢ D}. ThenE; ¢ Supp@’), for, if otherwise, we
would have a contradiction by contractiiy becauseD; is not

a terminal component of. Similarly, we haveE, ¢ Supp@\’) if

Q2 ¢ Dy,

6.6

Lemma. Let the notations and assumptions be ds1h 6.4add 6.4. Assume
that B = {P,} with P, € D, and B, ¢ the components & other than

D,. Assume that the multiplicityorof D2 in A is not equal tol. Then

the following assertions hold true:

(1) p<0,andif p# —1then gz 0.
(2) If p£—-2then H= ¢.

(3) If p = —1then either H= ¢ or there exists a contraction of V
onto a nonsingular projective surface W such that is spanned
by p.(C) and p.(A) and thatp.(A) has the following weighted
graph:
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where H is the same graph as[inl.4 arfdgq+ 1 or q+ a1 +1;
in the second case, any component in the graphs G and M as well
as Dy has multiplicity> 1in A.

Proof. Lete, := (C- D2) = i(C, Dy; P2) andv, := multp, C.

(1)

(@)

3)

SinceD1 N B = ¢ we havep = (D3) < 0 (cf.[Z3, (1)). Ifp # -1 197
we must havey > 0 by virtue of Lemma&213, (4).

Assume thaH # ¢. ThenD, is not a terminal component df.
Sincen, # 1 we must have < 0 (cf. Lemmd&.B). Sincg > 0 as
shown above, we know that= 0. The same argument as used to
prove the assertion (2) of Lemrfials.5 leads us to a contradicti
HenceH = ¢.

Assume thaH # ¢. SinceD; is an exceptional component &f
D, is contractible. After the contraction @i, if there exists a
contractible component in the grapBsand M, it must be either
one of the components with weight§a,r + 1) and (81 +1); the
weights becoming-ay and—p; respectively after the contraction
of D1, we must havery, = 1 or; = 1. If 83 = 1 for instance, the
B2 components in the grap¥l with weights—(8, + 1), -2,...,-2
respectively are contractible. After the contraction afsbs,
components, the component with weightror + 1) in the graph
G has a (new) weight(azr —82), and the component with weight
—(B3 + 2) in the graphM has a weight-(83 + 1). If there ex-
ists still a contractible component in the grafhandM after the
contraction ofD; andB, components irM, it must be the com-
ponent with weight-(a,r + 1) in the graplG, i.e., we must have
ay = B2 + 1. Repeat the above argument, anddetV — W
be the contraction of all possible components in the gr&had
M. The contractiomn is uniquely determined. It is clear that the
proper transfornp..(A) of A by p is spanned by(C) andp.(A),
and thap..(A) has the following weighted graph:

!

q
G’ O H,
p(D2)
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198

whereG’ is the graph similar t@& and obtained in the above-
explained way by the contractignfrom the graph:

(OS]

G M

S

and whereq’ = g, the inequalityq’ > q taking place only if
all components of the graphl are contracted by. Note that
p«(A) has only one base poipt(P,), thate, = (o(C) - p(D5))
andv, = mult,p,) p(C) and that, is the multiplicity ofp(D5) in
p«(A). If G # ¢ thenH = ¢ by virtue of the assertion (2) above.
It is easily verified that the case’ = ¢ occurs only in one of the
following four cases:

1°s=r;61 =102 = ax-1, 3 = az-1,...,P2x-1
Bor =az,fr1=a1+1,0 =q+1,

22 s=10,61=17p0 = ax-1, 83 = ax-1,...,fx-1 = a3,
B =a2—1,B241 =1, q’ =Qg+a1+1],

3 s=r-1jax =1,a-1=p1-1,ax_2=Po,...,a3 = fr_3,
@ =Pz, 1=Px-1—- 1,0 =q+1,

& s=r-1;ay =1,ax-1=p1-1,a2r2=Po,...,a3 = B3,
2=Bx-2+1,Bx1=1d =q+a1+ 1

as,

The last assertion is clear because> 1 and the base poiRR,
lies onD5 but not on the other components &of

6.7

199 In the paragraph§—8.7 we shall prove the “if” part of Theorem
[E1. Thus the conditions (B (3) of the theorem are always assumed
to be satisfied. A useful remark is that we may replad®y f — « for a
general element € k if necessary, because fif- « = c(xdy® — 1) for
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¢ € k" and coordinates, y of Aﬁ thenf = c’(x""y’e —-1)forc € k*
and coordinateg’, y’ of Aﬁ. Thus we assume once for all that the curve
Cpon Aﬁ defined byf = 0 has exactly two places at infinity. Embed
A2 := Speck[x, Y]) into P2 as the complement of a linf, and letC be
the closure oo onPZ. We shalll first prove the following:

Lemma.Assume that C intersectg in only one point B. Let d, :=

mults, C. Then there exists a birational automorphignof PE such
that p induces a biregular automorphism @if := P2 — £, and that the
proper transform C of C byp intersectsty in two distinct points with
(C"- o) < dh.

Proof. Our proof consists of four subparagraphs 8 76.7.3. m|

6.7.1

Setdy := (C- £p). Let A be a linear pencil oiﬁﬁ spanned by anddyfo.

Let Vg = Pﬁ and leto; : V1 — Vg be the quadratic transformation of
Vo with center aPo. Let (4 := o7 (to), {1 := o7*(Po), C® := ¢(C)
andA® := ¢ (A). We shall show thatgl> d;. Assume the contrary:

do = di. Then the linear pencih@® is spanned b ® and doé’f)l), and
since CO- (M) = dy - dy = 0 the pencil has no base points. Hend®
defines a fibratiorp; : V; — P& whose general fibers are isomorphic
to P&. Thendy = 1 by virtue of Lemmd 212, (1). However this is
impossible becaudg has two distinct places aofy. Therefore we know 200
thatdo > dy.

6.7.2

We shall prove the following assertion:

Either C) intersects; in two distinct points, or there exists a bira-
tional automorphisnp of Pﬁ such thatp induces a biregular automor-
phism onA? := P2 — (o and that(C’ - {g) < di < do where C is the
proper transform of C by.

Proof. Our proof consists of four steps.
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(I) Assume thalC® intersectst; in a single pointP;. ThenP; =

fél) N {1 becausealy > d;. Leto, : Vo — Vi be the quadratic
transformation o¥/; with center atP;. Let 582) = 0’2(681))5(12) =
o), 2 = €2 = o3Y(Py), C@ = o4(CD) and A@ :=
o(AD). Letd, := multe, C. Then it is easy to see that®
is spanned bZ® anddot) + (do — di)t? + (2do — dy — dp)¢%,
where 2l — dy — do > 0 because?® N (2 = ¢. Note that
dp < di andd, < do - dy because@® - ¢) = do - d; and
(C™. 1) = dh. If do—dy > dp then C@- (%) = dg—dy —dp > 0,
(CP-£2)) = d, > 0and (()?) = —1. However this is impossible
by virtue of Lemm&Z13, (4). Hence we hade= dyp—d; £ d;. By
virtue of LemmdZB, (4) we know th&® intersects> in a sin-
gle pointQ. Indeed, if otherwis€® intersects> in two distinct
pointsQ andQ’, where neitheQ nor Q' lie on féz); then contract

582) and blow up the point® andQ’; this operation leads us to a
contradiction. IfQ # 5(12) N ¢» thend; = dp, whencedy = 2d;. If
dy > do thenQ =P, = 5(12) N &o.

(I Write d; = g2d2 + d3 with integersqp, d3 such that 0< dz < do

andgy 2 1. For2<i £ q + 1 defineV®, o, fﬁ‘)(o <jsgi),
c®, A® andP; inductively as follows: Letr; : V&) — V(-1 pe
the quadratic transformation ®(~Y with center atP;_; and let
& = o foro< j<i-1,6" = 6 = o7Y(P 1), CO =
ol(CO-D), AD := o/(AG-D) andP; := ¢ n ¢, By induction on
i(2 £i £ g+ 1) we shall show the following assertions:

Aq(i) : AD is spanned bZ® anddod) + (do — di)ed + do(ed +
),

Ag(i) = (CO - &) = 0if0<j<i-landj=1; O 0y =
dy - (i - 1)d; (CV - £0) = dp; UL_o¢{” has the following weighted
graph:
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-1 —2 —2 ~1 —i
[o, O O O O
(

g 0@

1

As(i) : CO intersectd; in a single poinQ, whereQ = P; if either
2Zigqori=q+1andd; > 0.

Indeed, the assertior’;(2) ~ Az(2) are verified in the step (I)
above. Assuming thad;(j) ~ As(j) are verified for 2< j < i

we shall proveA;(i) ~ Ags(i). Letu = multp_, CI-Y. Then

p < dpandu < dq — (i — 2)dz, and A is spanned b® and
doty) + (do — cy)£) + do(€8) + -+ -+ £9,) + (2do — dy — )", where
2dg—di—u >0 becauség)mfi('_)l = ¢. Suppose thal, > u. Then 202
the contraction of’g), fg), .. .,fi('_)z leads us to a contradiction by
virtue of LemmdZRB, (4). Henad, = p and 2y — d; — u = do.
ThusAq(i) is proved. By virtue of Lemmia?.3, (4) again, we know
thatC() intersectd; in a single pointQ. Indeed, if otherwis€®
intersects; in two distinct pointsQ andQ’, where neitheQ nor

Q' lieon fi('_)l; then contract’g), . ,t’i('_)l and blow up the point®
andQ’; this operation leads us to a contradictionQif£ P; then
CO- ey =dy—(-2)dp—p=0d1—(i-1)dr =0, i.e.,i =qp+1
anddsz = 0. Hence ifeither X i £ g ori =g+ 1andd; >0
thenQ = Py and CY - ¢1) = dy — (i - 1)d,. Therefore Aq(i) and
As(i) are proved.

() We shall show thatd; = 0. Assume the contraryds > 0. Set
r:=qx+1. Letor,1: Viy1 — V; be the quadratic transformation
of Vi with center aiP;, and lett™% := o7 () foro < j <,

b1 = o L (Py), C*Y = o7 (CO) and ATHD = o7 (AD).

Lety := mults. C"). Theny < dz < d, because@(" -6(1’)) =d; <

dp, andA D is spanned bz + anddol{ Y + (do — dp)¢U Y +

do(€ ™+ - 460D+ (2do—dy —v) £ 1 With 2do—dy—v > 0. Since

(COD- D) = dp—v > 0, C*V-£,1) = v > Oand ((D)?) =

—~(r + 1) < -2 the contraction of{*, ({*1) (U jeads us

>7r-1
to a contradiction by virtue of Lemnia 2.3, (4). Hermte= 0.
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Thencedy = rd, andd; = (r — 1)d,. We reached to the following
configuration:

203

(IV) We setVy := V;, € = €, C := C, Py := QandA = A .-
A0 Letz; : V1 — Vg be the quadratic transformation\dg with
center aiPy, and Ietfél) = 71 (Co), ?(11) = o1 (Po), cP-7@©
andA® = 71(A). By abuse of notations, we deno‘f@(t’ﬁr)) by
t’ﬁr) again for 0 j <r. Letyg = multﬁoa Thenyg £ dp, and
A% is spanned bE™ anddot® + (do — dy)l + do(el) + - +

fﬁr)) + (do — po)¢1. If uo < dy the contraction of’g ), 6(2’), s é’gr_)l

leads us to a contradiction by Leminal2.3, (4). Thyss do. If
r > 2,C" intersectd; in a single poinQ;; indeed, if otherwise,
the contraction ofg ), f(zr), ..., and blowings-up of two points

in 6(1) N ¢, leads us to a contradiction by Leminal2.3, (4). For
1<i £r -2, assume that we obtained inductivély &, Zﬁ')(o <
j<i), 0= s<r),c” andA”, where:
(1) @i : Vi - Vi_1 is the quadratic transformation ¥f_1,
@ A" is spanned b anddet® + (do — ch)&” + (€L +
o 67+ (do - dz)zS) +(do - 2d2)32) +- 4 (do - idZ)zi(l),
3) TV intersects; = ?i(') in a single poinP; with c".7) = d
andy; = mults c?, whereP ¢ ?91.

204 Let7i;1 : Vi1 — V; be the quadratic transformation f with
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center atP;, and Iet?(Hl) = ,+1(€ ) for0 < j <1, €iy1 =
—(i+1) — (|+1) —(i) (|+1) —(i)
by = |+1(P|)C . 1(C )a =0 1(A ) By

abuse of notations we dend‘é+1(£(r)) by f(r) agaln for 0 s <
r. Theny £ do, andA o is spanned b)C andd fg)

(do - ) + do(E® + -+ ) + (do — Ay + -+ (do -
ido)2" ™ + (o — idz — ui)Fs1. If ui < b the contraction of ),

t’m .. t’p),{’('ﬂ),. ,(Hl) leads us to a contradlctlon by virtue

of LemmalZ3B, (4). Hencgj = d2 If i £r-3, C mter—
sectsfj,1 in a single pointP;, 1(¢ f ) indeed, if otherwise, the
contraction off(r) t’(r) .. fﬁr),t’('ﬂ),.. ,fi(i+l) and blowings-up
of two points |nC m ¢i,1 lead us to a contradiction by Lemma
[Z3, (4). continuing the above argument we obtain the fahgw

configuration AR

where: 205

@) A" Vis spanned b~ anddof(r)+(d0 d) 2+ do () +



206

158 Curves on ani@ine rational surface

e Y 4 (o= )T Y et (do = (r = D)L,
i) €. % ) =dand €. 7D 0.

(r-1)

Leto: V' — P2 be the compositionr := (01...07-T1...07-1)
and letr : V' PZ be the contraction od‘g),fg), .. .,fﬁr),?(lr_l), e

?Sr__zl) andt’(lr) in this order. Thew := -0 is a birational automorphism
on PZ such thafp inducesi a biregular automorphism &g := P2 — g
and that C’ - ¢p) = (E(r_ ). tr_1) = dp £ dp, whereC’ is the proper

transform ofC by p. This completes a proof 6f6.7.2. i

6.7.3

We shall prove the following assertion:

Assume that & intersects/; in two distinct points Pand P,. Then
there exists a birational automorphismof Pﬁ such thatp induces a
biregular automorphism oAﬁ = Pﬁ—fo and that C intersectd in two
distinct points, where Cis the proper transform of C by. Moreover,
(C"- o) = d.

Proof. Our proof consists of four steps.

() One of P; and P}, sayP;, must be the pointgl) N £1; indeed, if
otherwise, the penci\®) spanned b anddoé’gl) + (dg — d) 1
has no base points Q?él), which is a contradiction by virtue of
LemmalZ3B, (1) becausef}{))z) = 0. Moreover, bothP; and
P; are one-place points @Y. Letyu; = i(CW, £4; py) andp =
i(CW, ¢1; py). Thend; = pg+u}. We shall show thahulte, CE) =
€D . ¢Wy = dy — dy < p1. Indeed, letrz : Vo — Vi be the
guadratic transformation of, with center atP;, and Iett’ﬁz) =
ol = 0.1), &z = &) = 031 (P1), C@ := o(CY), and
A® = o(AD). Letvy := multe, CD. Thenv; < (CO - ),
vi < u1, andA® is spanned bE® anddot? + (do — ci)t? +
(2do — di — v1)t2. Since €@ - () = (€W ¢D) — vy, (CP - 1) =
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vi > 0and (()?) = -2, the equality; = (CP - ¢V) is implied
by LemmdZB, (4).

() Setd, := vE and writed; — ] = u1 = qd + dj with integers

()

g, dj such that O dj < d; andq = 1. For 2= i < g+ 1 define
V0, o, 5}”(0 < j <), c® A andP; inductively as follows:
Let o : VO — V(-1 pe the quadratic transformation wf—2)
with center atP,_;, and Ietf(ji) = ai’(t’?‘l)) foro<j<i-1,
6= = o7Y(PiLy), CO = o7(CO), AD := (A(-D) and
Pi: 52) N ¢. By induction oni(2 < i < g+ 1) we can show the
following assertions:
A (i) : AD is spanned bZ® anddofd) + (do — dy)ed + do(cd) +
I gi(i)),
Ayi) - (CO- ) =0if0 < j<i-1andj# 1;i(CO, ) P) =
|

w1 — (i — 1)do; (CD - ) = dy; Uf?) has the following weighted

j=0
graph:
-1 -2 -2 -1 —1
O O ces O O O
) «© o, o 0

AL(i) : CO intersectd; in a single poinQ, whereQ = P; if either 207
2<igqori :q+1anddé>0.

The proof is the same as that of the step (I[Lof8.7.2 up taghsli
modification caused by flerence of the situations. Hence we
leave the readers a task to reproduce it.

By the same argument as in the proof of the step (III)CofB,
we can show that; = 0. Then, setting = g+ 1, we have
pur = (r = 1)dp, dp = (r — 1)dp + pj anddp = rdz + y}, where
;> 0. We have the following configuration af":

1%Note thatdo = d1 + dz anddz < dl =M1 +/.l;_.
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where C® - ¢) = dp and € - ¢1) = 1.

(IV) Starting with the quadratic transformation s with center aQ
and following the argument in the step (IV) of the proofaf.@d.7

we obtain the surfac§(r_l) and the configuration on it: See the
next page, whera_?((r_l) -4_1) = dy and C(r_l) : t’(lr>) = ). Let
o VY S PZ be as defined as in the step (IV)[Qf&]7.2 and
letp = - o1 Thenp is a birational automorphism @ such
thatp induces a biregular automorphism @ := PZ — ¢ and
that C’ - £o) = dz + uj < dy, whereC’ is the proper transform of
C by p. Apparently,C’ intersectsp in two distinct points. This
completes a proof ¢f6.4.3.

208
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(The configuration in the step (IV) BE6.T.3)

6.7.4

It is now apparent that we can finish our proof of Lenima 6.7 lopa
tion ondy := (C-£p) and by making use €f6.1.2 ahd6]7.3. As the proofs
of 7.2 and&.713 indicate, we have the following remark:
Remark. Let C, {p, p andC’ be as in LemmB&l7. Lek := (C- ¢g) and
dy := (C’ - £o). Let A be the linear pencil oﬁﬁ spanned byC anddyfo,
and letA’ be the linear pencil oiﬁf spanned byC" anddjto. ThenA’
is the proper transform ok by p. In particular, if f” is an irreducible
element ok{x, y] definingC’ n A2 andC}, is the curve om2 defined by
f’ = afor @ e k, thenf” andC)’s (« € K) satisfy the conditions (1), (2),209
(3) of TheoreniGl1.

Thus,we assume hereafter that C intersefgin two distinct points
each of which is, therefore, a one-place poinCof

6.8

LetCn ¢y = {P,Q}, letdy := i(C, £o; P) and letey := i(C, {p; Q). We
may assume thal < e.

6.8.1

Lemma. With the notations as above, we haye=dimultp C and g =
multg C.

Proof. Lety := multe C andv := multg C. Letoy : Vi — Vo := PZ be
the quadratic transformation 9§ with centers aP andQ, and Ietfgl) =

o (o), E1 := o7}(P) andF1 := o7}(Q). Then, sinceC ~ (do + e)to
we have:C® := ¢(C) ~ (do +€0)¢5” + (o + €0 — ) E1 + (o + €0 — v)F1.

If dp > u or g > v we have a contradiction by virtue of Lemial2.3,
(4) becauseGQ® - ) = do + & — (u+v) > 0, CD - Eq) = pu > 0,
(CD-Fy) =v>0and ((§))?) = (E?) = (F) = -1. Thusdo = x and

€ = V. m|
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6.8.2

By substitutingf — a(a € K) for f if necessary we may (hence shall)
assume hereafter thatdf : W — P2 is the shortest composition of
quadratic transformations by which the proper transferfA of the
pencil A on Pﬁ spanned byC and @y + ey)fp has no base points the
member ofc’ A corresponding td is irreducible (cf. a remark at the
beginning of &F). Then we have the following:

Lemma.Let P, ;= C N Ey, Q := CW N Fy, yg := multp, C and
v1 = multg, C®. Then either g = 1 or ey > do = 3 = v1.

Proof. Let o5 : Vo — V; be the gquadratic transformation @i with
centers aP; andQy, and lett? = o (¢1), E®) = o4(Ey), FP =
ob(F1), B2 = 05} (P1), F2 i= 0,1(Qu) andC(]z) = 0%(CY). Then,
sinceC® ~ (do + e0)¢y? + eoE1 + doFy1, we have:

C@ ~ (do + €0)(? + &E? + doF P + (&9 — 1) E2 + (do — v1)F2,

where we must havey = u; anddg 2 v1. If g > vy anddy > us the
contraction ofé’éz) leads us to a contradiction by Lemial2.3, (4). Hence
eithereg = vy ordp = 1. If &g = vy thendy = v4. HenceF; is a
quasi-section of the pencilrfo)’A. Since every member offo)’ A

has a one-place point df, and since the characteristic kfis zero,

we conclude thatly = (C® - F,) = 1. Thus, ifdy > 1 theney > v1
anddp = u1; moreover, we havey > dy because ifeg = dp(= 1)
then E; is a quasi-section ofa102)’A and thence we conclude that
e =0dy=1. O

6.8.3

Assume now thady > 1. LetP, := C@ N E, and letPs, ..., Pi,.1 be the
points ofC@ overP,, P; being infinitely near td;,; of order one, such
that if ; is the multiplicity of C@ atP; we havedg = uy = ... = i >
ui+1. Then we have the following:

Lemma. With the notations as above, we haye-edg > 0.
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211 Proof. If t = 1 we have nothing to show. Assume thak 2. For
2 <i <t+1,defineV;, oy, £, EV(1 < j < i), FP(j = 1,2), €O
and A® inductively as follows: Lewr; : V; — Vi_; be the quadratic
transformation ofV,_; with center atP;_;, and Ietfg) = o-i’(fg‘l)),
EV = ofEf ) for1 < j < i, B = EY = o71(Piy), FY :=
of(FI™) for j = 1,2,C0 2= 7(Cl-Y) and AD := of(AG-D) (where
AP := (0103 A). Assume that for % i < t, AD is spanned b ()
and o + e0)) + doF I + (do —v1)FY) + e0EY + (€0~ d)EY +- - + (0 —
(i-1)do)E", whereey > (i—1)do, (CV-E") = 0andC®-EY = dy-P;.
Then itis easy to see that'*1) is spanned b+ and o + eo)£g+l) +
doF ™+ (do—v1)F§ ™+ @E{ ™ + (e —do)ES ™+ -+ (ep—idlo) E' Y,
whereey 2 ido, (C™*0 - EMY) = 0.and €0+D - EMY) = 4 = do. If
e = idg, thenEi,1 is a quasi-section ak(*1). Since every member of
A1 has a one-place point df,1, we havedyg = 1, which contradicts
the assumption. Heneg > idp. In particular, we know by induction on
2 <i £ tthatA®™D is spanned bg®D and @y + eo)t’g*l) + doF Y +
(do — va)FI + B 4 (g — do)ES™) + - - + (89 — tdp)EMYY, where

t+1
€ > tdp. O

6.8.4

With the notations il 6.8l3, it is easily checked that we hhesfollow-
ing configuration:

COt+1)

where CD . FIDy = ) (D FID) = gy, (CBD Epyq) = d 212
andu,; = multp,, C*Y with &g > v; anddg > p1. Now lett :
Viz1 — V be the contraction of ™, (00 gD EMY and let
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Fo := t(F!Y), Eo := 7(Ew1), C := 7(CHD) andA := 7.(A®D). Then
it is easy to show the following assertions:
(1) A is spanned b anddyFo + (ey — tdg)Eo, Whereey > tdo,
(2) (B3 =0, (F) =tand Eo- Fo) =1,
(3) E Eo = do -Po andE- Fo = ey Qo, WherePO ¢ Fo andQO ¢ Ep,
(4) dy := multp, C = 1 < do andey := multg, C = v; < ey, where
€ > do = e; (cf. E82).
6.9

In the paragrapHs 8-96.13 we assume thdg > 1 and use the notations
set forth in the assertions (1)(4) of[6.8.4. Find integerd,, ..., d,and

P1, ..., Pm by the Euclidea algorithm with respectdg andd;:
do=p1d1+d2 0<d2<d1
d1:p2d2+d3 0<d3<d2

Om-2 = Pm-10m-1 + dn

0< dm < dm_l

dm-1 = Pmdm 1<pm
Similarly, find integerse,, ..., e, andq, ..., ds by the Euclidean algo-
rithm with respect tay ande; :
€ =016 + & O<ex<g
e = (€2 + €3 O<ez<e
€12 = On-16r-1 + € O<eéen<eni
€n-1 = Onn 1<0n

213
follows:

ap =€ —tdy

As in[L4, define an integex(i, j)(L < i £m;1 < j £ p) inductively as
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(L, j) = j(@—dy) forl<j<ps
a2, j) =ao+ j@l, p1) - do) forl<j<p
aii, )=a(li —2,pi_2) + j@li — 1, pi_1) — d) forl<jsp

and2gi<m

Similarly, define an integdb(i, j)(1 <i < n;1 < j < q) inductively as
follows:

b = do
b(1, ) = j(bo — &) forl<j<o
b(2, j) = bo + j(b(1, 1) — &) forl<jsop

b(i, ) =b(i—2,0g-2) + jlb(i—Lg-1)—&) forl=<j=q
and 2<i £n.

Then we have the following:

Lemma. With the notations as above, we have:

a(m, pm)dm = do(ao —d1) and KN, dn)en = ep(bo — €1).
In particular, am, pm) # 1 and k(n, gn) # 1. 214

Proof. The first equalities are obtained by straightforward coratioms
(cf. the proof of Lemm&T.4l1, (6)). As for the second assertassume
thata(m, pm) = 1. Thendn, = dg, which is absurd becausig > d; = dn.
Hencea(m, pm) # 1. Similarly,b(n, gn) # 1. m|

6.10

SetM : p1+--- + pm. LetPy, P1,...,Pu_1 be the points ofS over
Po, Pi being infinitely near td®;_; of order one for 1< i £ M — 1. Let
oi .V} — Vj_1 be the quadratic transformation @f_; with center at
Pi_yforl<i< m The compositiopy =o1...0m : Vu = Vo=V

1By abuse of (and also for the sake of simplifying) the notaijove use these nota-
tions though they overlap in part those introducefin 6-8618.3.
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is calledthe Euclidean transformation with respect(@, Pp) (cf. [L31).
Letps : Vman — Vi be the Euclidean transformation with respect to
(01(C). p71(Qo)), whereN = gy + - - - + 0. LetW := Vjy,n and letp :=
p1p2 - W — V be the composition gf; andp,. LetC’ := p’(C) and

A’ = p’(A). By abuse of notations, we dengtéEq) andp’(Fo) by Eg
andFq again, respectively. Then it is by a straightforward corapiah
that we obtain the following weighted graphof'(Eq U Fo):

a g
& O O 2
Eo F

where& and.Z are the graphs similar to that in the Figure 1 0f 1.3.4
and wherer = —(py + 1) if m> landa = —pp if m=1,
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(1) m : even

p2—1

—(Pm-1+2)
-2

Pm —1

p1—1

whereE(2,1) is linked toEy, C’ intersectsE(m, pm) but not other
components, andX - E(M, pm)) = dm.

-2 ? E(2,1)

E(2,p> - 1)
E(Q,])Q)

E(4,1)

E(m —2,pm—2)
E(m,1)

E(m,pm — 1)

E(m,pm)
E(m = 1,pm-1)

E(m—1,1)

E(m =3, pm-3)

Figure 2 : The weighted graph&’
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m : odd
-2 E(2
p2—1
—9 O E@2,ps—1)
(i3 +2) O E(2,p2)
—2 O E(4,1)
—2
~(Pm—2+2) E(m —3,pm-3)
-2 E(m—1,1)
Pm—1 —1
-2 E(m—1,pm_1—1)
~(pm+1) Q E(m—1,pm-1)
-1 E(m,pm)
-2 E(m,pm — 1)
pm —1
—2 E(m,1)
—(Pm-1+2) E(m —2,pm-2)
—2
2 O E@3,1)
—(p2+2) E(1,p1)
-2 Q E(l,p—1)
p—1

215
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Figure 3 :

(1) n: even

g2 —1

qn — 1

@ -1
-2
216

7
|
&
it

-2 ? F(2,1)

F(2,¢0-1)
F(2,92)

F(4,1)

F(TL*Z An— 2)
F(n,1)

F(TL (I7171>

F(n,q,)

F(n71Qn l)

F(n—1,1)

(TL73 An— 5)

Curves on anfline rational surface

The weighted graph.%#

(2) n : odd
2 ? F(2,1)
g2 —1 :
2 O F(2,q2—1)
(g3 +2) F(2,q2)
-2 F(4,1)
-2
(gn—2+2) F(n—3,qn-3)
-2 F(n—1,1)
Gn-1—1 .
-2 Fn—1,gp1—1)
(n+1) Q F(n—1,q,-1)
-1 F(n,q,)
—2 F(n,q, — 1)
n—1 :
-2 F(n-1)
(gn-1+2) F(n—2,qn-2)
-2
2 O F(3,1)
(g2 +2) F(1,q1)
-2 F(l,1 —1)
@ -1

—9 J) F(1,1)

whereF(2,1) is linked toFq, C’ intersectsF(n, g,) but not other

217

components, andX - F(n,qn) = en. B =t—(q1 +1)if n> 1 and
B =t-q;if n=1. In order to keep the notations in accordance with the
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present ones, we shall write down the graghand.# in the Figures 2
and 3, which are given in the next two pages.

6.11

With the notations df 619 arld 6110, we have the following:

Lemma. (1) The linear pencilA’ is spanned by Cand

m P n g
A’ 1= aoEo +boFo+ » > ai DEG. ) + Y > bli. DF(. J)

i=1 j=1 i=1 j=1

(2) ap >0and gi,j) 20for1<i £mandl £ j £ p;; moreover, if
E(, j) lies between Eand Em, pm) (excluding Em, pm)) in the
graph & then the multiplicity &, j) > O.

(3) bp >0and i, j)) 2 0for1 <i £nandl £ | £ gj; moreover,
if F(i, j) lies between fand Hn, g,) (excluding Kn, g,)) in the
graph.# then the multiplicity &, j) > O.

Proof. (1) By a straightforward computation we obt&n ~ A’. By
the assumption at the beginning [G 6I8, is an irreducible
member ofA’. Hence the assertion (1) holds.

(2) SinceA’ consists of &ective divisors we know thak(i, j) = O for
1<i<mand1l<j < p. Besidesay = ey — tdg > 0 (cf.[68.B).
If E(i, ) # E(m pm), then C’ - E(i, j)) = 0, which implies that
E(i, j) is an irreducible component of a membe\df Especially,
if E(i, j) lies betweerEg andE(m, py) in the graph?’, it is readily
seen thak(i, j) is connected té&, through the components of.
HencekE(l, j) is a component al’, i.e., a(i, j) > 0.

(3) The assertion (3) is proved by the same argument as above. 218
m|
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6.12

Lemma. (1) Assumethat@, 1) =0. Thendm, py,) = 0anddi, j) =
0whenever B, j) lies between EL, 1) and Em, py) in the graph
&; such Hi, j)'s with a(i, j) = 0 (excluding Em, py)) are con-
tained in one and only one member&f, E(m, py) iS a cross-
section ofA’, esp. ¢, = 1.

(2) Assume that(d, 1) = 0. Then ifn, g,) = 0 and ki, j) = 0 when-
ever Hi, j) lies between EL, 1) and F(n, g,) in the graph.#; such
F(i, j)'s with b(i, j) = 0 (excluding Rn, g,)) are contained in one
and only one member of ; F(n, g,) is a cross-section af’, esp.
e =1

Proof. We shall prove only the assertion (1) because the asse@jon (
is proved in a similar fashion. The assumptaf(i, 1) = 0 implies that
a(m, py) = 0 (cf. Lemmd&P) and thad(1,1) is contained in a mem-
ber of A’ other thanA” (andC’, of course). IfE(i, ) (# E(m, pm)) lies
betweenE(1, 1) andE(m, pm) in the graph$’ then it is readily seen that
E(i, j) is contained in the same memberafasE(l, 1) is, which im-
pliesa(i, j) = 0. Moreover, we know thaE(m, pn) is a quasi-section of
A’. Since C’ - E(m, pm)) = dm and every member of’ has a one-place
point onE(m, py), we know thatd, = 1. m|

6.13

We shall prove the following:
Lemma. With the notations as above, we have:
219 (1) a(1,1) =b(1,1) =0,
(2 dp=e€1,h =e,n=m+ land(dy, &) = 1.

Proof. Our proof consists of four subparagraphs 613 13.4. O
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6.13.1

Assume thata(1,1) > 0 andb(1,1) > 0. Then it is clear from the
arguments in the previous paragraphs that the followingrédess hold
true:

1° a(i, j) > O for every pairi, with1 i <mand 1< | £ p;;
similarly, b(i, j) > 0 for every pair {, j) with 1 < i < n and
1<j=q,

2° a(m, pm) # 1 andb(n,q,) # 1 (cf. Lemmd&D),

3° the setB’ of base points of the pencll’ consists of two points
P’ andQ’ lying on E(m, pm) andF(n, g,), respectively, such that
P’ ¢ the components of’ other tharE(m, py,) andQ’ ¢ the com-
ponents ofA’ other tharF(n, g,),

4° all components oA\’ exceptE(m, pm), F(n, g,) andFo have self-
intersection multiplicitie< —2.

SinceA’ is a linear pencil of rational curves as assumed, Lemma
23, (4) implies thaB = -1, i.e.,Fg is contractible. Let; : W — Wj
be the contraction of the componelig F(2,1),...,F(2,g2—1). Then
(t11(E0)?) = a + @ and (f1F(2, )% = —(gs + 1) £ —2; a unique
contractible component af: (A") is T1(Ep), i.e.,a + g = —1. Letry :
W; — W, be the contraction af1(Ep), T1(E(2,1)), ..., 71(E(2, p2 —1)).
Then (¢211F(2, 02))%) = —(gs — p2 + 1) and (£271E(2, p2))?) = —(ps +
1); a unique contractible component ab£1).A” is To11F(2,02). We
repeat the contractions of this kind as far as we can. 7lLetW — 220
Z be the contraction of all possible componentsA6flying between
E(m, pm) andF(n, g,) of the weighted graph at’ (excludingE(m, pm)
andF(n, g,)). Then the pencit.A’ (= the proper transform ok’ by 7),
which is spanned by(C’) andr.A’, satisfies the same properties as the
pencil observed if6l4.

6.13.2

SetD; := 7(E(M, pm)), D2 := 7(F(n,an)), p := (D) andq := (D).
Write the weighted graph af.(A’) in the form:
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o=
=

M

Q
S0~
S

where:

1° G coincides with the subgraph éfbetweerE(l, 1) andE(m, py)
(excludingE(m, pm)); henceG # ¢,

2° H coincides with the subgraph ¢f betweer(1, 1) andF(n, gn)
(excludingF(n, gn)); henceH = ¢,

3° M is the weighted graph of the images bgf the components of
A’ which lie betweerkE(m, py,) andF(n, g,) in the weighted graph
of A’ (excludingE(m, pm) andF(n, g,)); M might be empty,

4° eitherp<0org=0.

Only the assertion “4needs a proof. Assume thpt> 0 andqg > O.
ThenM = ¢. However, by the contraction either the component af
next toE(m, pm) and not belonging t& (i.e., E(m, pm — 1) if mis even;
221 E(m-1, pm1) if mis odd andm > 1; Eg if m = 1) or the component
of A’ next toF(n, g,) and not belonging t#i (i.e., F(n,g, — 1) if nis
even;F(n-1,0,-1) if nis odd andn > 1; Fq if n = 1) is contracted
last. Thenp = 0 org = 0, which is a contradiction. Hence eithp< 0
or g £ 0. Now, noting thaa(m, py,) # 1 andb(n,q,) # 1 (cf.[6131,
2°), we know by Lemmd&&l5 that eith€& = ¢ or H = ¢. Thisis a
contradiction. Therefore we have eittafl, 1) = 0 orb(1,1) = 0.

6.13.3

Assume that(1, 1) = 0 andb(1, 1) > 0. Then the following assertions
hold true:

1° a(i,j) > 0 if E(,j) lies betweenEg and E(m, py) (excluding
E(m, pm)) in the graphg’ anda(i, j) = 0 if otherwise;b(i, j) > O
forevery pair{, jwith1<i <nand 1< j £ q;,
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2° setD; := Fo, D2 := F(n,qp), p := 8 = (D%) andq = -1 = (DY);
thenA’ has the following weighted graph:

0=
T

G

M

Do
5

where:

(i) Gisthe weighted graph consisting B and components of
& lying betweenEy andE(m, py) (excludingE(m, pm)),

(i) M coincides with the subgraph o betweenFy and
F(n, an) (excludingF(n, an)),

(i) H coincides with the subgraph oF betweenF(1,1) and
F(n, dn) (excludingF (n, dn)); henceH # ¢;

3° the setB’ of base points oA\’ consists of a single poir®” on D,
but not on the other components A,

4 b(n,qn) # 1 (cf.BI31, 2), 222

5° the multiplicity a(m, pm — 1) = dy, = 1 if mis even;a(m -
Lpm) =dn=21lifmisoddandn> 1;a0=d; =1ifm=1
(cf. LemmdEBIR, (1)).

We shall apply LemmB8.6 to the present situation. First, ma@k
thatp = -1, i.e.,t = q1, because = -1 (cf. Lemmd®&b, (1) or (2)).
SinceH # ¢ andb(n,qg,) # 1, Lemmd&bk, (3) implies that any com-
ponent in the graph& andM as well asD1 has multiplicity> 1 in A”.
However this contradicts the assertighabove.

Therefore, the case wheaél, 1) = 0 andb(1, 1) > 0 does not occur.
Similarly, we can show that the case whefé&, 1) > 0 andb(1,1) = 0
does not occur.

6.13.4

We have thus proved thafl,1) = b(1,1) = 0. HenceA’ has no base
points, andE(m, pm) and F(n, g,) are cross-sections of’, i.e.,dy =
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e, = 1. By definition ofa(1,1) andb(1,1) (cf.[69), the equalities
a(1,1) = b(1,1) = 0 imply thatey = tdy + d; anddp = e, where
t=qifn>1landt=q-1ifn= 1 ifn= 1 andt = g; — 1 then
d; = e = dp, which is a contradiction ady > d;. Hence,n > 1 and
t = q1. Then, sinceyp = i€ + di, we haved; = e,. This implies that
n=m+1dy=€,d1=6e,....,dn=€y,andpr =dz,..., Pm = Gn. IN
particular, ¢, e0) = €, = 1. This completes a proof of Lemrha®.13.

6.14

Returning to the situation 6f6.8.1, we shall assume in thiagraph that
do = 1. Letr : V1 — V be the contraction od’(l), and letEg := 7(Ey),

223 Fo:=1(F1), C := 7(CY) andA := 7.(c}A). Then we have:
(1) A is spanned b andegEq + Fo,

(2) (E3) = (F3) = 0 and Eo - Fo) = 1; thenceV is isomorphic to
P; x Pt whose two distinct fibrations b are given by the linear
pencils|Eg| and|Fql,

33) C- Eqo = Po andC - Fo = & - Qo, WherePg, Qp # EgFo.
We shall show the following:
Lemma. (4) C is nonsingular.

(5) Letp: W — V be the shortest composition of quadratic transfor-
mations by which the proper transforii := p’(A) of A byp has
no base points. Then we have:

(i) p~Y(Eo U Fo) has the following weighted graph:

-2 —e -1 =2 -2

O O O
O \9, \9 \9, O
€0

-2 -1
Eeo Eﬂgfl El EO FO Feofl F17

QL

where, by abuse of notations, we denotéey) and p’(Fg)
by Ey and R, respectively,

2SinceF, must be an exceptional componentAdfwe haves = —1.
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e-1
(i) A’ isspanned by C:= p/(C)andA’ := Zi:O(eO_i)Ei +Fo,
(iii) Eeq, and Ry, are cross-sections of’,

(iv) Fi,...,Fg-1 are contained in one and only one member of
AN

Proof. (4) LetEbea member_o|E0| such_thalQo € Ep. Then, sinEe
Eg is isomorphic th& and C-E) = 1,Cis non-singular aQq. C
is apparently nonsingular at other points.

(5) follows from a straightforward computation.

6.15

LetW, A’, C’ and A’ be as il 610 (an@&1L1) broll4. Sinkéhas 224
no base pointsA’ defines a surjective morphisgn: W — P& whose
fibers are members of’. SetS; := E(m, pm) andS; = F(n,qy) if
do > 1; setS; := Eq, andS; := Fg, if dp = 1. Then bothS; andS; are
cross-sections (cf. LemmBs®l 12 &nd 6.14). Wier 1, letR; be the
union of E(i, j)'s which lie betweerk(1, 1) andE(m, py) in the graphs’
(with F(1,1) included andE(m, pm) excluded), and leR, be the union
of F(i, j)’s which lie betweer(1, 1) andF(n, g,) in the graph# (with
F(1,1) included and=(n, g,) excluded). Note thaR; # ¢ andR, # ¢.
Whendp = 1 andep > 1, letRbe the union of 1, ..., Fe-1. LetI'; and
I'; be the fibers ofp containingR; andRy, respectively ifdy > 1; letT’
be the fiber ofp containingRif dy = 1 andey > 1. SetU :=W - (R U
RyUS1US,USUpp@’)) if dg > 1; setU := W—(RUS;US,USupp@’))
if do = 1 andey > 1; setU := W — (S; U S, U Supp@)) if dp = ep = 1.
ThenU is isomorphic to theffine pIaneAﬁ. We shall prove the next:

Lemma. With the above notations, we have:
(4) Ifdp > 1thenl'y =T'p; wesetl ;=T =T>.

(5) If eitherdh > 1ordp = 1 and g > 1thenT has exactly two
irreducible components and G other than those contained in
RiorRy (orRifdy=1and @ > 1).
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(6) Ifdp = & = 1, the fibrationy has only one reducible fib&rwhich
has two irreducible components.

225  Proof. Our proof consists of four steps.
() We shall prove first the following assertion:
i

The fibrationy has one and only one fiber(Q) (Q € P}) such that
¢ Q) n U is reducible; theny™1(Q) n U consists of two irreducible
components.

Proof. Let Qy,..., Qs be the points oP; such thaty™(Q;) N U is re-
ducible for 1< i £ s, and letQg, 1, .. ., Q; be the points oPﬁ such that
¢ 1(Q) is reducible buts1(Q;) N U is irreducible fors+ 1 < i < t.
We may assume that *(Qu). ..., ¢ H(Qs) ande™(Qsi1), - ... ¢ Q)
exhaust all fibers ap having respective properties. Then'(Q;)'s (1 <
i <t)andy1(Q.) := A’ are all reducible fibers af. For 1<i < s, let
n; be the number of irreducible componentsot(Q;)NU. On the other

t
hand, writeU := Specf) andU — [Ugo_l(Qi) N U) := SpecB). Then,
i=1

sinceU is isomorphic toA 2, we know that is a unique factorization do-
main andA* = k*. Hence, by a similar argument asin{213.3), we know
thatB*/k* is a freezz-module of rankny +- - - +ns+ (t—s). Sincep ™ (Pi—
{Q1,...,Q: Qu)) is aP-bundle overP} — {Qi, ..., Qt Q) andU —

t
[Ugo‘l(Qi) N U] = ¢ 1 (PE—{Q1,. .., Qt Qu})—(S1USy), we know that
i—1

t
U- (ng‘l(Qi) NU) is isomorphic toAl x (Pr{Qx, .. ., Qt Qw}), Where
i=1
Al = A&—(one point). Then by virtue of the unit theorem (cf. Sweedle
[54]), B*/k* is a freezmodule of rank & t. Hence we obtain

M+---+Ng+(t—-9=1+t, N=2(12igy9

226 whence follows thas = 1 andn; = 2.
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(I Assume thatdy > 1 andI'y # I',. Then, each of’y andT'; has
two irreducible components other than those containdg, iand
R.. Suppose thdi; has only one irreducible componedt other
than those contained i®;. Then the multiplicity ofC, inT'1 is 1
and C1-Sy) = 1. Since the components Bf contained irR; are
not exceptional components, Lemmal 2.2 tells us that not ©ply
is an exceptional component Bf but alsol'; contains another
exceptional component. This is a contradiction. Therefare
know thatl'y N U andI’, n U are reducible. But this contradicts
the assertion proved in the step (I) above. Hdnce TI',. By the
same argument, we can show tliahas two irreducible compo-
nentsC, andC, other than those contained provideddy = 1
andey > 1.

() We shall show that ifdy > 1 thenI'(:= I'y = I',) has two irre-
ducible component€,; andC, other than those contained Ry
or Ro. Assume the contrary, i.d,n U in irreducible. Then, the
assertion proved in the step (1) implies that there existslacible
fiber o1(Q) of the form:¢~}(Q) = L1 + Lo, wherel; = L, = P,
(Li-L2) =(L1-S1) =(L2-S2) =1, (L1-Sp) = (L2-S1) =0
and (%) = (L3) = —-1. ThenL; n U andL, N U are isomorphic
to the dfine IineA&; moreover, they satisfy the conditions (1)
(5) of TheorenZ312, Chapter I. Hence, after a suitable chaifige
coordinates, y of U : Speck[x,y]), we may assume thah N U
andL, N U are thex-axis and they-axis, respectively; namely,
¢ 1(Q) N U is defined byxy = 0. Thenl"\>/<vU (with scheme struc- 227

ture) is isomorphic to Spekix, y]/(xy — c)) for ¢ € k*, which is
reduced. However, we shall show th%tvu is not reduced. In-

deed, letC; be the unique irreducible componentIofivhich is
not contained iR, andR,. Then, since the componentsia and
R, are not exceptional componentS; must be an exceptional
component of". Then the multiplicity ofC; in T is larger than 1
becausdr; # ¢, R, # ¢ andC; connectR; to R,. Thus, we get a
contradiction, and proved th&ithas two irreducible components
C, andC; other than those contained 3 or R,.
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(IV) If dp = e = 1, the assertion proved in the step (I) implies that
there exists a fibep™(Q) = Ly + L, such thatL; = L, = P,
(Li-L2) =(L1-S1) = (L2 S2) =1, (L1~ S) = (L2~ S1) = 0 and
(L3 =()=-1.

6.16

In this paragraph we shall derive a consequence of Leimmh wHiBh
also completes a proof of the “if” part of Theoréml6.1.

Lemma.Let f be an irreducible element ofXy] satisfying the con-
ditions (1), (2) and (3) of Theorenf€l1. Then f is written in the form
f = c(xdy? — 1) after a suitable change of coordinates x, y fxk],
where ce k*, and d and e are positive integers such tfat) = 1.

Proof. With the notations di6.15, létbe the unique fiber af such that

I' N U is reducible; as a matter of fadt,N U consists of two irreducible
components. Le€; andC, be irreducible components &fsuch that
CinU = ¢fori =12, and letd ande be multiplicities ofC; andC; in

I', respectively. Sinc€ N U is connected; andC; intersect each other
transversely in a single point dh. FurthermoreC; nU andC,NU are
isomorphic to the fine line. We shall show the latter assertion only in
the casaly > 1 as the remaining casedy(= 1 andey > 1;dy = g9 = 1)
can be treated in a similar fashion. SirRe # ¢ andR; N Ry, = ¢,
either one ofC, andC,, sayCy, intersects a component R;. Then
C, NRy = ¢, for otherwiseC; U C, U Ry would contain a cyclic chain.
The same reasoning implies tt@ N Ry, = ¢ if C; N Ry # ¢. Hence,
fCiNnRy # ¢thenConNR =¢fori = 1,2, i.e.,C, c U, which is
absurd adJ is afine. ThusC; N R, = ¢ andCy, N Ry # ¢. Moreover,C;
intersectsR; in a single point foii = 1, 2, for otherwiseC; U R; would
contain a cyclic chain. Sincg€; = P&, we finally know thatCi n U

(i = 1,2) is isomorphic to thefine IineA&. Now, by virtue of Theorem
B2, Chapter | we may assume ti@&tn U andC, n U are defined by

x = 0 andy = 0, respectively, after a suitable change of coordinates
X, y of K[x,y]. Then itis clear thal“\>,<VU (as ak-scheme) is defined by
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x4y = 0 onU = AE := Speck[x,¥y]). By construction ofA’ (or ¢)
we know thatCy is defined byf := xdy® — ¢ = 0 for ¢ € k*. SinceCy
is irreducible we must havel(e) = 1. Apparently we can writd in
the form f = c(xdy® — 1) after a suitable change of coordinatesy of

k[, Y. O

6.17

In this paragraphs we shall show that we may choose variablesf 229
K[x,y] so thatd = dy ande = . In casedy = g = 1, this was proved in
the course of proving Lemnia®]15. In the remaining casessa@raon
follows from the next:

Lemma. (1) Assume thatgl=1and g > 1. Then we have:
'=Ci+eCo+(eg—1)F1+ -+ Fgr1,

where(C%) = —ep, (C3) = -1, and § U S, U Supp() has the
weighted graph:

—1 —ep —1 —2 -2 —2 —1
o——o0—o0——o0—o0——,,,—0—0
S1 Ch Cs Fy Fy Feomr S

(2) Assume thatgl> 1. Then we have:
I'=dyCq1+6Co+ 71 + 2,
where:

1° Z; is an gfective divisor such theuppg;) = R fori = 1, 2;
2° (C%) = —(on + 1) and(C3) = -1,
3° S1U S, U Suppl) has the weighted graph:

~1 (@ +1) —1 -1
O Gy O O Gy O
Sl Cl CQ S27

Gi being the weighted graph of the irreducible components
contained in Rfori =1, 2.
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A proof will be given in the subparagraphs 6.1%85.17.2 below.
The facts which we frequently use in the course of a proof laeefdl-
lowings: LetV be a nonsingular projective surface, ¢et V — P& be
a surjective morphism whose general fibers are isomorphﬁé &md let
I' := mCy +--- + n;C, be areducible fiber ap. Letr: V - W be a
contraction of several components contained invhereW is nonsin-
gular. Then, in the fiber.(I') of the fibrationy : W — P& withp =y -7
the following assertions hold true (cf. Leminal2.2):

(A) No three distinct components of(I') have a point in common,

(B) Let S be a cross-section @¢f. Then no two distinct components
of 7.(I') have a point in common or(S).

In each stage of proof where we proceededuction ad absurdum
if we obtain a situation contrary to the assertion (A) (or,(Bsp. ) we
shall say that we obtain a contradiction of type (A) (or (Bsp. ).

6.17.1 A proof of the first assertion of the lemma.

() Assume thatdy = 1 andey > 1. By virtue of Lemmd.6.15, (2),
I' has exactly two irreducible componer@@s andC, other than
those contained iR, one of which, sag,, has multiplicity 1 in[*
and intersect$; transversely. Sinc N U is connectedC; and
C, intersect each other in a single pointdnThenC,1NR = ¢ and
C, intersects some componehtin R. Since those components
contained irR are not exceptional componentsIgfeither one of
C1 andC; is an exceptional component. We shall show ®ats
so. Indeed, ifC; is an exceptional component, sods by virtue
of LemmdZ.2, (6).

(I We shall show thafl = F;. Suppose thal = Fij(i # 1, —
1). Then sinceT?) = -2 three components(C;), 7(Fi_1) and
7(Fi;1) of 7.I" have a point in common after the contractioof
C, andT, which is a contradiction of type (A). T = Fg,-1 and
€ > 2 then two components(C) andr(Fg,-2) have a point in
common onr(Sy) after the contractionr of C, andT, which is a
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contradiction of type (B). Hencé = F; andS; U SoU Suppl)
has the weighted graph as given in the statement, Wlﬁﬁr)e:(
—ep becauseC; has self-intersection multiplicity O after the con-
traction ofCy, F4, ..., Fg-1. Once we know the way of contract-
ing T to a single (irreducible) curve, it is an easy task to write
downT in the form as given in the statement.

6.17.2

In the remaining of the paragraph 8.17 we assume dpat 1. By
virtue of Lemmd&.115, (2) and the proof of Lemina®.16 we knoat th

I' has exactly two irreducible componeris andC, other than those
contained iR URy such thatC; andC, intersect each other transversely
in a single point orJ and thatC; N R, # ¢(i = 1,2),C1 N Ry = ¢ and

C, N Ry = ¢. LetT; be a unique irreducible componentRfsuch that
(Ri-Cj) >0fori =1,2. LetG;j be the weighted graph & fori = 1, 2.
Note thatfori = 1,2, R} # ¢ andR; contains no exceptional components.
This implies that either one @1 andC; is an exceptional component232
i.e., C3) = -1 or C3 = —1. We shall show thaT; = E(1,1) and

T, = F(1,1). In order to do so we shall consider several possible cases
separately. To avoid the tedious lengthiness a proof willexceed a
sketchy one.

6.17.2.1 The case wherg&; and T, are non-terminal components in
the graphsG; and G, respectively. Let D; andD’ (or, D2 andD5,
resp. ) be components R (or Ry, resp. ) which are linked td, (or T,
resp. ) in the grapks; (or Gy, resp. ). Then we have the configuration
as follows:
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Suppose thatC(f) = —1. Then either one of; and C, becomes
contractible after contracting, i.e., T?) = -2 or (C5) = 2. If Ty
is so the contractiom of C; andT; gives out three component$D;),
7(D?) andr(Cy) of 7.(I') having a point in common, a contradiction of
type (A). If (Cg) = —2 then either one of; andT, becomes contractible
after contractingC; andCy, i.e., (T?) = =3 or (T3) = -2. If (T?) = -3
the contraction o€;, C, andT; leads us to a contradiction of type (A). If
(T22) = -2 the contraction o€, C, andT; leads us to a contradiction of
233 type (A). Thus the assumptioﬁ:i) = —1 ends up with a contradiction.
Similarly, we can show the impossibility of the assumptiﬁ)g)(: -1

6.17.2.2 The case wherg; is a terminal component in the graphG;
and T, is a non-terminal component in the graphG,. Let D, and
D) be as i 6.17.2]11.

() Firstly we shall consider the cage= 1. ThenR,US; andR,US,
have the following weighted graphs (EL._68.10 &nd6113.4):

—1 —2 —2 —2
O O O O
S1 E(l,ge—1) E(1,1),
—2 —2 -2 —(ga+1) —1
O O O O 0
F(1,1) F(l,q1—1) F(1,q) S, .

Hence T3) = -2. If (C3) = -1 then the contraction of C;
and T turns out three componentgD,), 7(D}) and 7(C;) of
7.(I') having a point in common, a contradiction of typ&).(
Hence C3) # -1 and C%) = -1. ThenT; = E(L 1). Indeed,
if T = E(1,92 — 1) andg, = 3 then the contraction of C;
and T, gives out two components(C,) and r(E(1, g2 — 2)) of
7.(I') having a point in common on(S;), a contradiction of type
(B). SinceC, becomes contractible after the contractionGaf
E(1,1),...,E(1, 0z — 1) we have €3) = —(d + 1). Then by the
contractionr of C1, E(1,1),...,E(1, 02 — 1), C, and T, we have
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two components(D2) and7(D5) of 7.(I') possessing a point in
common onr(S1), a contradiction of type (B). Thus, this case is
impossible.

(I Now we assume thah > 1. Looking into the graph o6, which 234
is the subgraph of’ (cf. Figure 2 of 6.ID) consisting of compo-
nentsk(i, j)’'s betweenE(1, 1) andE(m, py) (with E(m, pm) ex-
cluded) we know that the contraction of all possible compisie
in C1 U Ry cannot reduc€; U R; to a point. LetD", ..., D™
and D(lr)(r > 1) be the components R, such that:

1° Ty = DY, andDY is linked toD{*" in the graphG; for
1<isr-1,

2> (02 = —2if i <r and (O)?) # 2.

Suppose thald3) = —1. Then we have eithelT§) = -2 or (C2) =
-2. If (T22) = -2 the contraction o€, andT, leads us to a con-
tradiction of type (A). If Ci) = -2 thenT, becomes contractible
after the contraction o, C1, D, ..., DI ie., (12) = —(r +
2). The contractiorr of C,Cy, D, ..., D™ andT, gives out
three components(D>), 7(D5) andT(D(lr)) of 7..(T") having a point
in common, a contradiction of type (A). Henc@%(j # —1 and
(C?) =-1.

(1) We shall show thafT; = E(1,1). Indeed, assume the contrary:
T; # E(L1). If r 2 2 then the contraction of C; and D{"
gives out two components(D(lz)) and r(C,) of 7.(I') having a
point in common onr(S;), a contradiction of type (B). Hence
r = 1, (C3) = -2 and either T?) = -3 (whereT; = D(lr)) or
(T2) = -2. If (T3) = -2 then the contraction of;, C, and
T, leads us to a contradiction of type (A). ﬁ'i) = -3 andR
contains at least two components (if, has a componerd;
such thaD] # Ty and O] - T1) = 1) then the contraction of Cy,
Cz andTy gives out two componentgD’) andr(T2) possessing 235
a point in common orr(S;), a contradiction of type (B). The
only remaining case ist = 1, Ry = T; and (‘I’f) = —-3. Then
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(Tg) = —3. However, the contractionof C,, C,, T1 andT, gives
out two components(D2) andr(D’) having a point in common
ont(S;), a contradiction of type (B). Thereforé; = E(1, 1).

(IV) C, becomes contractible by contracti@, D,..., DY and
either one oiD(lr) andT, becomes contractible by contractifig
further. If this isT, the contraction o€, D{, ..., DY, C, and
T, turns out a contradiction of type (A). If this rs(lr) and if there
exists a sequence of componebf§™, ..., D™, DY in R, such
thath) is linked tng”) forr <i<t-1and that @9)2) =-2
ifr<i<tand (D(lt))z) #+ —2 thenT, becomes contractible after
the contraction oCy, D, ..., DI, C,, DU, ... DI, while
we obtain a contradiction of type (A) by contractifig further.
The remaining cases are the next two: i1y 2 andp, = 2, or
(2) m= 3 andp, = 1. In each of the cases we have the following
weighted graphs d6; UR; U C; U Cy andS; U Ry:

1) ~1 -3 -2 -2 1 —(g2+1)
o o o vee o o o)
S1 \/_/ Ch Ca,
g2 —1
-2 —2 —(g2+2) -2 -1
o vee o o o o)
\/_/ So
@ —1
-1 -2 -2 -3 -2 -2 -1 —(¢2+1)
(2) O O coe O O O coe O O O
S TN T~ a &
qa—1 -1
-2 -2 —(q2+2) -2 -2 —(@a+1) -1
O fqee—O0—O0—0O0—4,,e—O0—0O0—0O
T~ S

However, it is easy to see that both cases end up with cootiak.
Thus, this case is impossible.
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6.17.2.3 The case wherE; is a non-terminal componentin the graph
G; and T, is a terminal component in the graphG,. The same ar-
guments as i6.17.2.2 with slight modifications show that tlase is
impossible. The details are left to the readers.

6.17.2.4 The case where botli; and T, are terminal components in
the graphsG; and Gy, respectively. We shall show thal; = E(1,1)
andT, = F(1,1).

() We shall first show thal; = E(1, 1). Assume the contrary. Then
R; has at least two components. Suppose tﬁ%} € -1. Then
(Tf) # —2, for otherwise the contractionof C; and T; would
lead us to a contradiction of type (B). Hencfé%l = -2. Let

D(Zl), e, D(ZS)(S > 1) be the components & such that:

(1) T, = DY, andDY is linked to D{*™ in the graphG, for
15i<s-1;

@) (O)?) = -2 fori < sand (DF)?) # 2.

[Itis easy to ascertain the existence of such componentsdky | 237
ing into the graphG,.] ThenT, becomes contractible after the
contraction ofCy, C,, D, ..., DS, though we reach to a con-
tradiction of type (B) by contracting further. Hence((:f) -1

and C%) =-1. Let D(Zl), e D(ZS) be as above. The@; becomes
contractible by contractinG,, DYY,..., D™ and either one of
T, and D(ZS) becomes contractible by contractiy further. If
T, is so then we obtain a contradiction of type (B) by contract-
ing Co, D(Zl), o D(zs‘l), C, andT;. If D(Zs) is so and if there exists
a sequence of componertbé‘“l), o, D(2“) in R, such thath) is
linked toDJ*" for s < i < u-1andthat ®Y)?) = ~2ifs<i<u
and (D(zu))z) # —2 thenT, becomes contractible by contracting
C,, DP,...,DE8M ¢, DY,..., DY, though we obtain a con-
tradiction of type (B) by contractind; further. The remaining
cases are the next two: (h)= 2 andg, = 2 or (2)n = 3 and
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g1 = 1. However,R; consists of only one components in both
cases (cfC6.10 arid 6.1B.4), a contradiction. Hehce E(1,1).

(1IN We shall next show that, = F(1, 1). Assume the contraryf, #

-1

F(1,1). We shall treat the case = 1 first. If m= 1 the weighted
graph of Supf() is given as follows:

S

whereq, 2 2. If (C%) = -1 then €3) = —(dz+1), which is absurd
because there is no contractible components left after Cs is
contracted. HenceOf) # —1 and C2) = —1. Then C%) = -2
andq; = 1, whenceTl, = F(1, 1), a contradiction. We shall now
assume thamn > 1. Suppose thaqg) = -1. Then (I'22) + -2,
for otherwise we would obtain a contradiction of type (B) nde
(C?) = -2. Let D(ll), e D(lr) be a sequence of componentRn
as iNG.I7.ZR. Them, becomes contractible after contractigg,
C1, DY,..., D™D, though we obtain a contradiction of type (B)
by contractingT, further. Therefore,(@) # —1 and Cf) = -1
Let D(ll), el D(lr) be as above. The@, becomes contractible af-

ter the contraction o€;, DY, ..., D™, and either one ob!"
or T, becomes contractible by contracti@g further. If this isT,
then we obtain a contradiction of type (B) becalsex F(1,1)
implies thatR, has at least two components. If thisD%r) and

if there exists a sequence of componelDﬁ‘s*l), o D(lt) in Ry as
chosen il&.17.212 theh, becomes contractible after contracting
C1,DY,...,DI, ¢, D1, ..., D!Y, though we obtain a con-
tradiction of type (B) by contracting, further. The remaining
cases are: (Ih=2andp, = 2, or (2)m= 3 andp, = 1 (cf. the
step (IV) of[EI7.ZPR). These two cases are easily seen tajend
with contradictions. Hencé, = F(1, 1).
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6.17.3

By virtue of[&IZ.P we have the following weighted graprSafu S, U
Supp():

-1 -1
O Gy O O Ga O
Si Cy Cy Ss

If (C2) = -1 then C3) = —(c + 1). However, by writing down 239
concretely the weighted graph of Supp@nd performing the contrac-
tion of all possible components dfwe obtain readily a contradiction.
We omit the detalils. Henceﬁ:@) = —1. Again by writing down con-
cretely the weighted graph of Supp(we know that Cf) =—(qu+1)
andrI’ can be, in fact, reduced to a single (irreducible) compometht
self-intersection multiplicity O by contracting all poskE components
of T

6.17.4

The graphG; is written as:

1 9 -2 —(e2+2)

O O O O H2—|

qi1-1

Ga

Then, looking into the graph$ and.#, we know that the weighted
graph ofA’” is given by

-1 |7 —(+1) -1 —| -1
O Hy O O Gy O
S1 L Ey Fy J So

\//

A/
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By comparing the weighted graphs of Suppénd Suppd’) we
know that the weighted graph of Supy) is obtained from that of Supp
(T') by contractingC, and @1 — 1) components 6, which are linked
successively t€,. Since the multiplicities oEg andFqin A’ aree, and
do = ey, respectively, we know thak; has multiplicitydy in I" and the
component irG, with weight—(gy + 2) has multiplicitye, in IT'. Then it
is apparent that, has multiplicitye, + gi€1 = €y in T'. This completes
a proof of Lemm&&.17.

6.18

The “only if” part of Theorenf Gll is easy to prove. So we omiragb.
We shall finish this section by noting that if is as in the statement
then there exists a nontrivial action of the multiplicaty@up scheme
Gmk 0n A2 := Speck[x, y]) such thatC/,’s areGp,-orbits for almost all
@ € k. Indeed iff is written asf : c(xdy® — 1) we have only to define an
action ofGpk on A2 via: 'x : t®x and'y = tdy for t € Gy
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1 Review on forms of the #fine line over a field
241

11

Throughout this section the ground fiddgs assumed to be a nonperfect
field of characteristip > 0. We denote bks andk the algebraic sepa-
rable closure and the algebraic closur&afespectively. For an integer
n we denote bykP" the sub field{A”"|A € k} of k. An irreducible non-
singular @ine curveX defined ovek is said to bea k-form of the #ine
line A& if X%k’ is k’-isomorphic toA&, for some algebraic extensid

of k. Itis a well-known fact thaX is k-isomorphic tQA& if k" is taken to
be separable ovér Thus, we have only to consider the case wheis
purely inseparable ovée: We shall recall several results from [26] and
[24] which we need in the subsequent sections.

1.2

Let X be ak-form of A{ and letC be a complete normal model k¢X).
ThenC has only one plac®., outside ofX which is possibly singular.
The k-genus ofC is calledthe genus of X The function fieldk(X is a 242
k-form of the rational function field(t), i.e., k(X)%k’ = k'(t) for some

189
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algebraic extensiok’ of k. Conversely, given &-form K of the rational
function fieldk(t), let C be a complet&-normal model. Thei is the
function field of ak-form of A& if and only if C has at most one singular
place. IfC has a unique singular plagg,, X := C — P, is a nontrivial
k-form of Al (cf. [26; 6.7]). If C is nonsingulacC is k-isomorphic taPL
except possibly whep = 2 (cf. [ibid., 6.7.7]); in case = 2, if C has a
k-rational point therC is k-isomorphic toPL; if P, is any point purely
inseparable ovet onC thenX := C — P, is a nontrivialk-form of Aﬁ.

1.3

Letabe an element dé—kP and letn be a positive integer. Let : P& -
P! be the embedding @ into Bf given byt - (L,t,...,t" 1 t”" - a),
wheret is an inhomogeneous parameterIP%éf Let P., be the point of
P! defined byt”" = a. Denote byXan the imagep (P} — {Pw}). Then we
have:

Lemma (cf. [26; Th. 6.8.1]. (i) Every k-rational k-form otéx& is k-
isomorphic toA} of Xa, for suitable ac k — kP and ne Z*.

(i) Xanis a k-rational k-form of. not k-isomorphic tei:.
(iii) Xan is k-isomorphic to ¥, if and only if m= n and there exist,
B, 7,6 inkP" such thatws — By # 0 and(ea + B)/(ya+ 6) = b.
14

Lemma (cf. [ibid.; 6.8.2 f.]) . A k-form X ofA& of k-genusl which has
a k-rational point is k-birationally equivalent to arffme plane k-curve
of one of the following types:

(1) p=3y?=x+ywithy e k- k3.
(2) p=2,y? =X +Bx+ywithB,y € k such thap ¢ k? or y ¢ k.

Let P, := (x = —yY3,y = 0) in the first case and B := (x = g¥/?,y =
y¥2) in the second case. Let C be a complete k-normal mod&Dof k
Then X is k-isomorphic to € P,.
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15

A k-form X of A& is said to behyperelliptic if the completek-normal
model ofk(X) is hyperelliptic.

151

Lemma (cf. [27; Th. 2.2]).Let k be a separably cloﬁdonperfect field
of characteristic p> 2. Then, a hyperelliptic k-form Q&& of k-genus
g = 2is k-birationally equivalent to anffine plane curve of the type

vV =x"—-a, where ack-KkP,

with g = (p™ — 1)/2. Conversely, the complete k-normal model C of
every such plane curve has a unique singular poigt Bnd C— P, is
a k-form ofA} of k-genugp™ - 1)/2.

152

Lemma (cf. [ibid.; Th. 2.3]). Let k be a separably closed nonperfecu4
field of characteristic2. Then a hyperelliptic k-form Q{xﬁ of k-genus

g 2 2is k-birationally equivalent to anfiine plane curve of one of the
following types:

(A) Y2+ (& +a)?y+b =0, where i> 0,£20,aek, bek-{0}
a¢k?ifi>0,bgk?if £>0;and g= 2+ — 1.

(B) y? = x(x+ @)% + E(X), wherea € k, (x+ @)% € K[X], E(x) € K[X]
is an even polynomial of degré® + 2, and Ha) ¢ k? in case
a €k

Conversely, the k-normal completion of every curve of {ygeof type
(B), minus its unique singularity, is a k-form Afﬁ; of k-genus= g in
case(A), of k-genus< g in case(B).

lnstead of assuming the separable closednekstenffices to assume thakeform
of Al has a-rational point.
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153

Lemma (cf. [ibid.; Th. 2.4]). The k-forms oA& of genus2 exist only
if the characteristic p of the separably closed ground field &ither2
or 5. Such a k-form is k-birationally equivalent to one of thddwing
k-normal gfine plane curves:

() Incase p=2
C:y? = x(x+a)* + E(X)

wherea? € k, E(x) € k[x] is even of degre6, and eitherx ¢ k or
E(a) ¢ K.

(I Incase p=5:
D:y*=x"+a, ack-k.

245

1.6

A k group schemés is called ak-group of Russell type i’G%k’ is
k’-isomorphic to the additive group scher@g,. The underlyingk-

schemeG of a k-group scheme of Russell type is clearlk-#form of
AL
16.1

Lemma (cf. Russell [47]; [26; 2.7]) A k-group scheme of Russell type
is a k-closed subgroup scheme ¢f @hose underlying scheme is given
in AZ by an equation

ypn=aoX+alxp+---+arxpr, a e k(0gign),

where @ # 0and g ¢ kP forsomel <i <.
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1.6.2

Lemma (cf. Russell [47]; [26; 6.9.1]) Let X be a k-form ofA} and
let C be the k-normal completion of X. Assume that X has ai&rait
point Py. Then the following conditions are equivalent to each ather

() X has a k-group structure withgRas the neutral point.
(i) X is isomorphic to the underlying scheme of a k-group of Rlusse
type.

(iii) Aut kS(C%ks) is an infinite group.

1.6.3

Remark. With the notations dfZ1.612, Akg(C%ks) = Autks(X%ks) if X

is notk-rational (cf. [27; 3.1.1]). The function fielk{G) of ak-groupG
of Russell type is rational if and only {f = 2 andG is k-isomorphic to 246
an dfine plane curve

Y =x+ad with ack-IK.

If p> 2, the underlyingk-scheme of &-group of Russell type is not
hyperelliptic (cf. [27; Cor. 3.3.2]).

2 Unirational quasi-elliptic surfaces
247

2.1

Throughout this section, the ground fidtds assumed to be an alge-
braically closed field of characteristjg > 0. A nonsingular projective
surfaceX defined ovek is calleda quasi-elliptic surfacéf there exists

a morphismf : X — C from X to a nonsingular projective curn@
such that almost all fibers dfare irreducible singular rational curves of
arithmetic genus 1 (cf[]9].I39]). According to Tate [55lich surfaces
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can occur only in the case where the characterigtis either 2 or 3,
and almost all fibers of have single ordinary cusps. Thus, the generic
fiber X of f, minus the unique singular point, isZ&form of A* of %-
genus 1, wherez is the function field ofC overk. On the other hand,
Xis unirational ovek if and only if C is a rational curveWe assume in
this section that every quasi-elliptic surface has a ratilcrross-section
i.e., there is a rational mappirg: C — X such thatf - s = idc. Our
ultimate purpose is to prove the following two theorems.

2.11

Theorem .Let k be an algebraically closed field of characterisfic
Then any unirational quasi-elliptic surface with a ratidreioss-section
defined over k is birational to a hyper-surface 4§ : t? = x* + ¢(y)
with ¢(y) € k[y] of degree prime t8. Let K := k(t, X, y) be the algebraic
function field of an fine hypersurface of the above type, Iet:rr{%]
and letH be the (nonsingular) minimal model of K when K is not ra-
tional over B. Moreover, if d> 7 assume that the following conditions
hold:

de _
dy
vV, is the(y — a)-adic valuation of ky] with v, (y — @) = 1.

(1) For every roota of ¢’(y) = 0, Vo(e(y) — ¢(a)) < 5, where

(2) If, moreoverg(y) — ¢(e) = a(y — a)3+(terms of higher degree in
y — ) for some rootw of ¢’(y) = 0 and a e k* then v (¢(y) —
(@) - aly - )®) £ 5.

Then we have the following:

@) fm=0,ie., d=5, then K is rational over k. If & 7, K is not
rational over k, and the minimal modkgl exists.

(i) fm=1ie.,7<dzs 11 thenH is a K3-surface.

2Note that ifK is ruled and unirational thel is rational. Hence iK is not rational
K has the minimal model.
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(iii) 1fm>1,i.e., d> 13 then p(H) = pg(H) = m,dimH(H, 05) =
0, the r-genus RH) = r(m- 1) + 1 for every positive integer r
and the canonical dimensiofH) = 1.

21.2

Theorem .Let k be an algebraically closed field of characterisfic
Then any unirational quasi-elliptic surface with a ratidraoss-section
defined over k is birational to a hyper-surfaceAs : t2 = x> + y(y)x +
o(y) with ¢(y), v(y) € K[y]. Conversely, let K= k(t, x,y) be an alge-
braic function field of dimensio generated by t, x, y over k such that

£2 = 53 + g(y) with ¢(y) = yeo(y)? € K[yl and d= deg ¢. Letm= [g]-

Assume moreover that, for evarye k, if we writeg(y + a) = Za;y‘
i20
then one of g az and & is nonzero. Then we have the following:

@) fm=0,ie.,0<d<2 Kisrational over k. If m> 0, K is not 249
rational over k, and the minimal modgl of K over k exists.

(i) fm=1,ie.,3<ds<5, thenH is a K3-surface.

(iii)y 1fm>1,ie., dz 6, then p(H) = py(H) = m,dimH(H, 05) =
0, the r-genus RH) = r(m- Q+ 1 for every positive integer r
and the canonical dimensiofH) = 1.

Proofs of both theorems will be given after some preparatiom
double coverings.

2.2

Let X, with f : X — C, be a quasi-elliptic surface defined oweand
let Z be the function field o overk. Then the generic fibeXs of f

is an irreducible normal projective curve ov@rwith arithmetic genus
pa(X%) = 1 and geometric genus 0. Henkg, has only one singular
point, whose multiplicity is 2. LetZs be a separable algebraic closure

Swith no loss of generality, we may writiy) in the forme(y) = yo(y)>.
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of Z. By Chevalley [12; Th. 5, p. 99})(&%”5 is then a normal projective

curve of arithmetic genus 1. This |mpI|es that the charastterp of k
must be either 2 or 3 by virtue of Tale [55], and that the siagpbint of
Xz is a one-place point of multiplicity 2, which is rational aaepurely
inseparable extension of. Therefore, general fibers dfhave single
ordinary cusps.

LetI" be the closure irX of the unique singular point oks. Let
fr : I — C be the restriction of ontoI'. Since the singular point of
is a one-plance poinftfr is a generically one-to-one morphism. Hence
degfr is a powerp” of the characteristig, and, for a fiberf ~1(p) of f

250 such thatf ~(P) meetd" at a simple point of, the intersection number
(T - f~1(P)) must be 2 or 3 becauden f~1(P) is an ordinary cusp.
Hencen = 1and (- f~1(P)) = p. On the other hand; is a nonsingular
curve. Indeed, if" has a singular poin®, then (- f-1(f(Q))) = 4,
which contradicts the fact thaf ( f~1(f(Q))) = p < 3.

Assume thatf has a rational cross-secti@y by virtue of [17, IV
(2.8.5)] D is in fact extended to a regular cross-sectionfofThis is
equivalent to saying that the generic fibgy, of f has a%-rational
point. With the unique singular point deletedf,aX;, becomes a#-
form of the dfine lineA! of Z-genus 1 with aZ-rational point. Such
a form is birationally equivalent to one of the followingfiae plane
curves (cf[TH):

(i) If p=3,2=x+ywithy e Z - %°.

(i) If p=2,1t2=x3+pBx+ywith 8,y € Z such tha3 ¢ % or
y ¢ %

The surfaceX is unirational ovekif and only if C is rational. Indeed, the
“only if” part is apparent by Luroth’s theorem; the “if” plais also easy
to see: Ifp = 3, %1/3§k(X) is rational ovek, and ifp = 2, ﬁl/zgk(X)

is rational overk. Thus, if f : X — C is a unirational quasi-elliptic
surface defined ovérwith a rational cross-section, the function fiekd
of C overk s a rational function field(y) overk, andX is k-birationally
equivalent to one of the following hypersurfaces in tifigna 3-space
A
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(i) If p=3,t2 =+ ¢(y) with (y) € K[y], whered := deg,¢is 251
prime to 3.

(i) If p=2,12 =X+ y(y)x + ¢(y) with ¢(y), ¥(y) € KIyl.

2.3

We shall recall and apply the canonical divisor formula fliiptc or
quasi-elliptic fibrations (cf.[[10]). Lef : X — C be a morphism form
a nonsingular projective surfacéto a nonsingular projective cun@
such that almost all fibers dfare irreducible curves of arithmetic genus
1. Afiber f=1(P) of f is calleda reducible fiberof f if f~1(P) has ei-
ther not less than two (distinct) irreducible componenta single irre-
ducible component with multiplicitg 2; a fiberf~%(P) is calleda mul-
tiple fiberif, when we write f~1(P) in the form f~1(P) = ZniCi with

|
irreducible components; and positive integens;, the greatest common
divisor q of nj’s is greater than 1. Then, writingy = n;/q, chi is
i
calledthe reduced fornof a multiple fiberf=%(P). On the other hand,

an elliptic or quasi-elliptic fibratiorf : X — C is said to beelatively
minimalif each fiber off contains no exceptional components. Given
an elliptic or quasi-elliptic fibratiorf : X — C we can always find a
fibration fg : Xg — C such thatfy - o = f, whereo : X - Xpis
the contraction of exceptional components contained iffiliees. With
these definitions set down, we have the following:

23.1

Lemma (cf. [9], [10]).Let f : X — C be a relatively minimal elliptic
or quasi-elliptic surface. LefmZ;;i € 1} be the set of all multiple fibers
of f, where Zis the reduced form. Then we have:

wx = T(S)@0x() aZ) and S=ocel™
i

where: (i) 0 £ g < m — 1, (i) L is an invertible sheaf on C defined bgs2
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either fwx 2 wc®LtorRHf,0x = L@ T, T being a torsion sheaf on
C. Lett be the length of T. Then we have

deg®) = x(Ox) — 2¢(0c) +t.
For a point Pon C, B # 0if and only if HO(f_tléP)’ 0x) 2 k, which
r

implies that f(P) is an exceptional multiple fi

2.3.2

A key result in proving the stated theorems is the following

Lemma.Let f: X — C be a unirational quasi-elliptic surface with a
regular cross-section D. Assume that X is relatively minirtden the
following results hold:

(1) f has no multiple fibers.

(2) x(6x) = -(D?).

3) If x(0x) £ 1, X is rational over k; ify(0x) = 2then X is a K3-
surface; ify(0x) = 3then p(X) = pg(X), dimH(X, Ox) = 0,
the r-genus AX) = r(y(0x)—-2)+1, and the canonical dimension
k(X) = 1.

Proof. (1) is obvious becausthas a cross-section.

(2) Since there are no multiple fibers in the fibratibna; = 0 for
everyi andt = 0 in the canonical divisor formula [DZ3.1. Since
is a rational curve we know thaty = f*0c(y(Ox) — 2). SinceD
is a cross-section df, the arithmetic genus formula ofiapplied
to a nonsingular rational cuni@ tells us:

-2= (D + (D - Kx) = (D?) + x(Ox) - 2.

Hence y(0x) = —(D?)

“4a wild fiber, in other words (cf[110]).
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(3) For a positive integer, ther-genusP, (X) is given by
Pr(X) = dimH2(X, ") = dimHO(C, Oc(r(x(6x) - 2))).

If x(Ox) £ 1, P (X) = 0 for everyr > 0, whenceP15(X) = 0.
This implies thaiX is ruled (cf. [10]). SinceX is unirational X is
rational. Ify(0x) = 2, we havavy = Ox. ThenXis aK3-surface
(cf. [9], [2Q)). If x(Ox) = 3, Pr(X) = r(x(Ox) —2)+ 1. Hence the
canonical dimensior(X) is equal to 1, angbg(X) = x(Ox) -1 =
pa(X). Therefore, dinH(X, Ox) = 0.

m]

2.3.3

Corollary. Let f : X —» C be a relatively minimal, unirational, quasi-
elliptic surface defined over k with a regular cross-secti#nX is not
rational over k then X is a minimal (nonsingular) model.

Proof. Sete := y(0x) — 2. ThenKx ~ ef~}(P) for a point onC = P;.

If X is not rational ovelk we know by[Z3P that > 0. Then the
canonical linear systeniKx| has no fixed components, which implies
that X contains no exceptional curve of the first kind.is therefore a
minimal nonsingular model. O

234

Lemma.Let f: X — C be a relatively minimal quasi-elliptic surface
with a rational cross-section, and let B Zni Ei be a reducible fiber 254

|
(having not less than two components). Then every compd&hésita
nonsingular projective rational curve wit(rEiz) = -2

Proof. For everyi, (E; - D) = ni(Eiz) + an(Ei - Ej) = 0. SinceD is
j#i
connected,liiz) < Ofor everyi. SinceKx ~ f*(S) for some divisolS on
1
C as we have seen[NZB.E;( Kx) = 0. Thenp,(Ej) = E(Eiz) +120,
whence E?) = -2 andpa(Fi) = 0. O
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2.4

Throughout the paragraphs2-4€.4, we shall assume thiais an alge-
braically closed field of characteristjt > 0. Let(y) be a polynomial
iny of degreed > 3 with codficients ink such thatA(x, y) := X3+ ¢(Y) is
an irreducible polynomial. We assume tldy) contains no monomial
terms of degree congruent to zero modulo B # 3, and thatp(y) con-
tains no monomial terms of degree congruent to zero modulg 2Zi2.
Consider a hyper surfat& = A(x, y) in the projective 3—spad§f, which
is birational to a double covering &% := Py x Pg. LetK := k(t, X, y).
Let Hp be the normalization oFg in K, and letpg : Hg — Fg be the
normalization morphism. With the above notations and agsiams we
shall show the following:

241

Lemma.Let Q be a point on bl and let P:= po(Q). If P is not a
singular point of C then Q is a simple point ohHvhere C is a closed
irreducible curve on fy defined by the equation(Ay) = 0.

24.2

In order to prove the above lemma we need

Lemma. Let A(X, y) be a nonzero irreducible polynomial ik y] such
that A0,0) = 0, and let U be a hyper surface in thgiae (t, X, y)-space
AE defined by = A(x,y) (e = 2), which is viewed as an e-ple covering
of the(x, y)-plane AZ. Then the point Q= (t = 0,x = 0,y = O)is a
normal point on U if there are no irreducible curves D Alﬁ such that
0A

. A
D passes through the point 2 (x = 0,y = 0), and that(;—X and a_y

vanish on D.

Proof. SinceU is a hyper surface ia3, the local ringd = dqy is a
Cohen-Macaulay ring of dimension 2. By Serre’s criteriomofmality
(cf. [17; IV (5.8.6)]), @ is a normal ring if& 5 is regular for any prime
ideal # of height 1 of &. Let ¢ = Z nKk[xy]. Then ¢ defines an
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irreducible curveD on AE passing through the poim. If 0% is not

. o . . A oA
regular, the Jacobina criterion of singularity tells ustt & and a_y
vanish onD. However, this contradicts our assumption. O

24.3

Proof of LemmalZZ1 in casen casep # 2. LetU; = pg*(Fo — (x =
c0) U (y = o)), Uz := pg*(Fo— (£ = @) U (y = o)), U3 := pg (Fo— (x =
00) U (7 = o)), andUy := p(_)l(Fo — (£ = ) U (n = )), where£ = 1/x
andn = 1/y. Then we can show:

Lemma. Each ofUij's (1 £ i £ 4) is isomorphic to a hyper-surface; V

in A2 defined by the following equatiorfl) t? = x* + ¢(y) for Vi; (2)

2 = x + X*o(y) for vo; (3) for Vs, 12 = x3y¥ + y(y) if d = O( mod 2)
and € = x3y™*! +yy(y) if d = 1( mod 2) (4) for Va, t2 = xy® + x*y(y)

ifd = 0( mod 2)and € = xy™*?! + x*yy(y) if d = 1( mod 2) where
w(y) = Yle(1/y) with y(0) # 0. With the notations dEZ4.1, Q is a simpless
point of Hy if P is not a singular point of C.

Proof. It is not hard to see thatl; is the normalization o¥; in K for

1 £ i £ 4, whence follows thalt); = V; if V; is normal. We shall show
that each o¥;’s is a normal hyper surface. L&:= (t=vy,Xx =6,y = @)
be a point ofV;. (1) Q is a singular point o, only if y = 382 =

¢’ (@) = 0. In casep # 3, the singular locus 0¥, is of co-dimension
2 at Q. SinceV; is a complete intersection &, the Serre’s criterion
of normality shows thaQ is a normal point. Henc¥; is normal. In
casep = 3, apply Lemmd_Z212 to a triple covering = tZ — ¢(y),
Q=(t=0,x=8y=a)andP:=(t =0,y = a), noting thaty’(y) # 0.
Qis then a normal point, and, is therefore normal. (2) Itis easy to see
thatV, — (x = 0) is isomorphic td/; — (x = 0) by a birational mapping
(t,x,y) — (t/x%,1/%,y), and thatV, is nonsingular at every point on the
curvex = 0. (3)V3 — (y = 0) is isomorphic to/; — (y = 0) by birational
mappings € x,y) — (t/y¥?,x,1/y) if d = 0( mod 2) andt( x,y)
(t/y 42 x 1/y)if d = 1( mod 2); and a point 6f3 lying on the curve
y = Ois asingular point only if = 0 andy(0) = 0 whend = 0( mod 2),
and @+1)x3yd+y(y)+yy’ (y) = Owhend = 1( mod 2). However, this is
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impossible becausg0) # 0. (4)V4— (x = 0) isisomorphic to/3—(x =
0) by a mappingt(x,y) — (t/x%,1/xY); V4 — (y = 0) is isomorphic
to Vo, — (y = 0) by birational mappingst(x,y) — (t/y¥/2,x,1/y) if
d = 0( mod 2) andt{x,y) — (t/y¥\4D/2 x 1/y)if d = 1( mod 2).
This implies that the singular locus ®, is of co-dimension 2 if it is
not empty. Hence by Serre’s criterion of normality we knowatt¥, is
normal. The last assertion is now easy to see if one noteQhsta
singular point ofHg only if t = 0. m|

244

Proof of LemmalZZ4.] in casep = 2. Since we assumed thaty) has
no monomial terms of degree congruent to zero modulo 2, wewnidg
©(y) in the form: o(y) = ye1(y)?, whered; := deg,¢1 > 0. Then we can
show the following

Lemma.Define U's (1 £ i £ 4) as in[Z4B. Then each ofjd is
isomorphic to a hyper surface; ¥h A2 defined by the following equa-
tion: (1) t2 = x3 + ¢(y) for Vq; (2) ti( = X+ X*o(y) for Vo; (3) t? =
Xy 1oy (y)? for Va; (4) t2 = xy™*1 + x*yyi(y)? for V4, where
Y(y) = Yle1(1/y) with ¢1(0) # 0. With the notations dE2Z4.1, Q is
a simple point if P is not a singular point of C.

Proof. We shall prove only the last assertion since the remainiegras
tions can be proved in a similar fashion a§in2.4.3 by apglyiemma
ZZ2. LetQ:=(t=y,x=8,y=a)beapointofV, (1 =i <4). (1)If
Q € V4, Qis asingular point only iB = ¢1(@) = 0, whencey = 0. (2) If
Q € V,, Qis asimple point. (3) IQ € V3 anda = 0, Qis a simple point
becaus@1(0) # 0. (4) IfQe VsandQ ¢ Vo, Vzthena ==y =0.In
any casefQ is a singular point oHg only if y = 0. ThusP is a singular
point of C. i

2.5

The equatiomA(x, y) = 0 defines a closed irreducible cur@on Fq. By
Jacobian criterion of singularity, the singular pointsoére the points
P:= (x =8,y = a), lying on the &fine partA? := Fg— (X = o) U (y =
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), such that B2 = ¢’(a) = 8 + ¢(e) = 0, and the poinP,, := (x =

00,y = o). Cis defined by an equationf' + £3y(5) = 0 locally atP.,

where¢ = 1/x, n = 1/y andy () = n%(1/5) with y(0) # 0. Hence P,

is a cuspidal singular point with multiplicity (3,...,3,1,.. ﬂ ifd=

3n+1land (33,...,3,2,1,...)if d=3n+ 2; P is a tacnodal singular
[

point with three simple points in theth (infinitely near) neighborhood
of P, if d = 3n.

251

Here we introduce the following notations: Consider a fibrat¥ :=
{¢, : ¢, is defined byy = a} on Fq defined by the second projection
p2: Fo — P&. We denote by, the fibrey = «, and byS,, the cross-
sectionx = co. We denote by a general fiber ofZ. Letw : F — Fq
be the shortest succession of quadratic transformatiotisognters at
the singular points of and its infinitely near singular points, by which
the proper transforn€ := o’(C) of C on F becomes nonsingular. Let
Se = 7(Sw), and lett,, := 7 (). The following figures will indicate
the configuration 0F (£ UC U Ss) onF :

(Fig. 1)

whered = 3n (n > 0) andp # 3;

5By this notation we mean th&,, is a point with multiplicity 3, the infinitely near
point of C in the first neighborhood of., (which is a single point in this case) has
multiplicity 3, etc. ..
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(Fig. 2)

259 whered =3n+1(n>0) and C,E,) = 3;

(Fig. 3)

whered = 3n+ 2(n > 0) and C - Epy1) = 2.

25.2

Since B)wlr, = 3S + df we have:

(@A) =C+3E1+2E,+---+nE))+D-3
(Seo + E1+2Ep +--- + NE) — d(€oo + E1 + - - - + Ep)
=C-3S,, —do(fs) + D, if d=23n
or d=3n+1;
(@AC +3(E1 + 2E2 + - - - + NEp) + (3N + 2)Eny1 + D — 3(Seo + E1+
2Es+ -+ NEy+ (N+ 1)Eny1) — d(€eo + E1 + -+ + Eny1)
=C-3S, —En1-0"(le) + D, if d=3n+2,
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whereD is an dfective divisor with support in the unio& of excep-
tional curves which arise from the quadratic transformegtivith cen-
ters at the singular points and their infinitely near singplzints ofC in 260
the dfine partAZ c Fo.

253

We may write I*A) uniquely in the form §&*A) = B — 2Z whereB is
a divisor whose cd#cient at each prime divisor is 0 or 1 and whére
is some divisor. Ifp # 2, B is the branch locusf a double covering
p : H — F, whereH is the normalization of in K andp is the nor-
malization morphism (cf[J4]). In order to write dovwe consider the
following six cases separately.

25.3.1 Ifd=6m(i.e.,d= 3nwith n=2m) then we have:

B=C+Ss+Ds
Z =25 +3M(le + E1 +--- + Ep) — Dy,

whereD; andD, are the divisors determined uniquely by the conditions
that D1 is an dfective divisor whose cdgcient at each prime divisor is
Oorl1,D, 20,D;1+ 2D, = D, and SuppD1) U SuppD>) c &.

25.3.2 Ifd=6m+1(i.e.,d=3n+ 1withn = 2m) then we have:

B=C+Sw+ (oo +E1+---+Ep)+ Dy
Z =25 +(BM+1)(le + E1 +--- + Ep) — Do,

whereD; andD> are divisors chosen aslin 2.513.1.

2533 Ifd=6m+2(i.e.,d = 3n+ 2 withn = 2m) then we have:

B=C+S. + Eny1 +Dg
Z =254 + Ens1+ Bm+1)(leo + E1 + - - - + Eny1) — Do,

whereD; andD> are divisors chosen aslin 2.513.1. 261
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25.3.4 Ifd=6m+ 3 (i.e.,d = 3nwith n = 2m+ 1) then we have:
B=C+Se+(leo+E1+---+Ep)+ Dy
Z=2Se+Bm+2)({ew+E1+-+Ep) — Dy,

whereD, andD are divisors chosen as above.

25.35 Ifd=6m+4(i.e.,d=3n+1withn=2m+ 1) then we have:
B=C+Ss+D;
Z=25.+@m+2)(e +Ex+--+ Ep) - Dz,

whereD; andD» are divisors chooser as above.

2.5.3.6 Ifd=6m+5(i.e.,d=3n+2withn=2m+ 1) then we have:
B=C+Sew+ (e +E1+---+Ep)+D1
Z =25 +(BM+3)(le + E1 + -+ + Ens1) — Do,

whereD, andD are divisors chosen as above.

2.6

Leto : F — F be the shortest succession of quadratic transformations
of F such that if one writes &o)*A) in the form (Fo)*A) = B — 27

with divisorsB andZ uniquely determined as [nZ.5.3, every irreducible
component oB is a connected component of Supjp(i.e., SuppB) is
nonsingular. LeH be the normalization df in K, and letp : H — F be

the normalization morphism. We have a commutative diagralowv

H T ﬁ T Ho
P Iﬁ |p0
— o p:
F < F R 2 P&,

wherer andT are the canonical morphisms which make each of squares
commutative. The following result is well-known (ckl[4]):
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2.6.1

Lemma.lf p # 2 then H is a nonsingular projective surface defined
over k.

Proof. Let Q be a point ofH, and letP := p(Q). Let 0 = Oqn and let

O = Opg. We shall show that’ is regular for everk-rational point
Q. If (co)(P) is not a singular point o€, (77)(Q) is a simple point of
Ho (cf. LemmalZ4ll). Henc® is a simple point. Consider the case
where ¢o)(P) is a singular point oC. If P € SuppB), we may write
(Go)*A = h?, whereh € ¢ andg e k(x,y) such thath = 0 is a local
equation of the irreducible componeBi of B on whichP lies. Since
B, is nonsingularh with some elemertt; of & form a regular system of
parameters of’. Thent/g andh; form a regular system of parameters
of 0. If P ¢ SuppB), (co)*A = g?u, whereg € k(x,y) andu is a unit
of &. Then there are two distinct points éhaboveP, one of which is
Q. ThenQ s a simple point since : k(x,y)] = 2. O

2.6.2

Lemma. Assume that p- 2. Let Q be a point of H, and let B= p(Q).
Then Q is a simple point {fl) (co)(P) is not a singular point of C or if
(2) (o) (P) = P (cf.[Z3).

Proof. The first case follows from Lemnia2Z.#.1. Consider the case (®B
As in[ZZ3 we may writep(y) = Ye1(y)? with d; = deg, ¢1(y) and
d = 2d; + 1. We consider the following three cases separately: (1)
di =3m, (Il) d; =3m+1and (lll)d; = 3m+ 2. O

Case (I):d; = 3m. Thend = 6m+ 1. The configuration ofdo) (e U
C U S.) is easily obtained from the Figure 2 (where- 2m):
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where the lines represent nonsingular projective rationates and the
numbers attached to lines are self-intersection multtjdis; where solid
lines (includings’ (C)) are contained i, while the broken lines are not
contained inB; whereLg = 0”(¢), Ly = 07 Y(¢w N Ey), Li = o’ (Ej)
andL = oY Ei NEi1) forl <i £ n, Ly, = o’(En) and the remaining
unnamed lines arise from the quadratic transformationk eénters at
En N S and its infinitely near points. Note that each broken line has
self-intersection multiplicity-1 and meets transversely two irreducible
components oB. Let L be one of broken lines, and 18; and B, be
irreducible components d& which meetL. LetT: F — F be the con-
traction ofL, and letP := 7(L), By := 7(B1) andB; :=7(B,). Letu=0
andv = 0 be local equations @&; andB, atP onF. LetA be the inverse
image ofA(x,y) onF. ThenA = uvT¢, whereu, v, T € G5, T(P) # 0
andg € k(x,y). If P e LandP # L n By, then o) A = uyT(vg)?
with uy = u/v, andOgqn = Opg[Z4/(Z — wT). If P = L n By then
(@o)*A = viT(ug)? with vi = v/u, and Oqn = Zpe[Z/(Z - wT).
Hence ifP € L, Ogn is regular. IfP lies on an irreducible compo-
nentB; of B then Fo)*A = ug?, whereg € k(x,y) andu = 0 is a local
equation ofB; atP. Hencedqn = Opr[Z/(Z% - u), andOq is regular.

Case (II): dp =3m+ 1. Thend = 6m+ 3 = 3nwithn =2m+ 1. The
configuration of o) (£, U C U S..) obtained from the Figure 1 is:
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(Fig. 5)

where we use the same notation as in the Figure 4. Here, naire thgt
each broken line has self-intersection multiplicit} and meets trans-
versely two irreducible componentsBf We can use the same argument
as in the case (I) to show théig 1 is regular.

Case (ll): d; =3m+ 2. Thend = 6m+5=3n+2withn=2m+ 1. 265
The configuration of&o) (¢, U C U S,,) obtained from the Figure 3

(Fig. 6)

wherelLn,;1 = o’(Eny1). Here all broken lines except,,1 have self-
intersection multiplicities-1 and meet transversely two irreducible com-
ponents ofB. Thus, ifP ¢ Ln,1 we can apply the argument in the case
(1) to show thatdgy is regular. Consider the case whdtec Lp,1.
LetT: F — F be the contraction oM andL,.1, and letE, := 7(L,),

C :=7(¢’(C)) andS, := T(¢”(S«)). Letu = 0 andv = 0 be local equa-
tions of E, andS., respectively at the poi® := E,NS. onF. Then the
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inverse image of A(x, y) on F is written in the formA = uv(u?+v3T)g?
with suitable choice ofi andv, whereT € 05, T(P) # 0 andg €
k(x,y). Thenitis easy to show thaF)*A = u(Uv+T)(gV3)2if Pe M
andP ¢ Ln.1, @) A = (U +VT)(gPu)?if P € Lny1 andP ¢ 07 (Se),
and Fo)*A = vi(1+uT)(guw)? if P = 0”(Se) NLns1, Whereuy = uyv,
V1 = V/Uu, Uz = u/vandvs = v/u;. Hencedgy = ﬁp,,:[z]/(22+u1+v2T)
if Pe Lnta andP ¢ 0"(§oo), andﬁQ,H = ﬁpJ:[Z]/(Z2 + V1(1+ UV;’T)) if
P= o"(§oo) N Lnt1, whence follows thatg 1 is regular.

2.6.3

In 2293 below we prove thatl is a nonsingular projective surface de-
fined overk.

2.6.4

In the case wherg # 2 it is easily seen that the configuration of
(o) (t. UCUS,) is the following (cf.Zb):

Cased = 6m(m > 0). Figure 1 withfw, F1,..., E, replaces by
broken lines.

Cased = 6m+ 1(m > 0). Figure 4.

Cased = 6m+ 2(m > 0). Thend = 3n + 2 withn = 2m.

(Fig. 7)
wherelg = 0/ (fs,) andLj = o’(Ej) for 1 <i < n+ 1.
Cased = 6m+ 3. Figure 5.
Cased =6m+4. Thend = 3n+ 1 withn=2m+ 1.
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/
Lo/ \‘\ L?'/I \\\ ........
/ L \
//-1 Ll\\v'l 2 ‘\\
/ PAY \
(Fig. 8)
whereLg = 0/ (fs), Li = o’(E)) for 1 <i < n,and (- o’(C)) = 2. 267

Cased = 6m + 5. Figure 6.

2.7
We assumaen this paragraph thatl is nonsingular ifp = 2 (cf.[Z&.3).

2.7.1

Lemma. (1) Let Dy and D, be divisors on F. The@*(D1)-p*(D2)) =
2(D1 - D).

(2) Let D be anirreducible component of B. TheiiD) = 2A, where
A'is a nonsingular curve. If B PL, so isA.

(3) Assume that g 2. Let D be a curve on F such that BP& and
D ¢ Supp®).

() IfDNSuppB) = ¢ thenp*(D) = D1+ Dy, where B = Dy =
Pi, D1n D2 = ¢ and(D3) = (D3) = (D?).
(ii) If D meets exactly two irreducible components &d B

of B transversely and if Dy B; # D n B, thenp™%(D) is
irreducible and isomorphic t@ﬁ.

(i) Let D = Ly in the Figure8. Thenp*(D) = D1 + Dy, where
D; = D, = P}, (D) = (D3) = -3and(D; - Dp) = 1.
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Proof. (1) and (2) are well-known (cf[[4]) and easy to prove. (3) (i)
p~}(D) is an unramified covering @ = P{ of degree 2. Sincp # 2 and
D is simply connected, we haye(D) = D; + D, with D1 = D, = P}
andD; N Dy = ¢. (ii): Let p*(B1) = 2A1 andp*(By) = 2A,. Then
A1 = A, = PL. Since p*(D)-A1) = (p*(D)-Az) = 1 and since every point
exceptDN B, andDN B, is not branched, we know that*(D)nA; and
p~Y(D)NA; are simple points g5~%(D), and thap~*(D) is a nonsingular
irreducible curve. Then, by Hurwitz’s formula; (D) is isomorphic to
P&. (iii): Let P := L, n ¢”(C). By the quadratic transformatio@swith
centers aP and a point of’(C) infinitely nearP we have the following
configuration:

(06)'(C)

This implies thap*(Ln) = D1 + D2, whereD; = D, = P;. On the other
hand [Z5.315 implies that'A = u(v + u’T)g? whereu, v, T € Opg
with P := S, NnC, T(P) £ 0, g € k(x,y) and whereu = 0 andv = 0
are local equations dB., and E,. Then Fo)*A = (vi + U2T)(gu)?
locally atP, wherev; = v/u; and Ogn = Opr[Z/(Z - (V1 + UPT))
with Q = p~1(P). Sincel, is defined by, = 0, p~1(L,) is defined by
Z = UT. Thus, D1 - D) = 1. Since D?) = (D3) and p*(Ln)?) = -4,
we have D?) = (D3) = -3. O

2.7.2

Letq := (poop) : H —» BL, C = ¢/(C) andSs = ¢/(Sw). Since
C, S. c SuppB) we haveC, S, c SuppB). Hencep%(C) = 2I and
p1(S«) = 25 with nonsingular curveb ands,, onH (cf. 2221, (2)).
We have then the following:
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Lemma. Assume that H is nonsingular if § 2. Thenqg: H — P& is 269
an elliptic or quasi-elliptic fibration with regular crossectionZ.,. The
fibration q is elliptic if p# 2, 3; and q is quasi-elliptic if p= 2 or 3.
Moreover we have:

(1) If p =3, T is the locus of movable singular points of g.

(2) If p = 2, let Sy be the cross-section of defined by x= 0, and
let A := p~((Go)’Sg). ThenA is the locus of movable singular
points of g.

Proof. Let ¢ be a general member of, and letf = (o) (£). Since 2
S.) = 1 we have §*(¢)-Z..) = 1 which implies thap™ l({’) is irreducible
andp 1(f) N T is a simple point op~1(¢). Sincep(€) — p~1(£) N Teo
is isomorphic to a curvé = x3 + p() for somea € k, pa(o~2(0)) = 1.
Thusqis an elliptic or quasi-elliptic fibration with regular c®section
L. p~1(f) has a unique singular point € 0,x = —g(a)Y3) if p = 3;
(t = p(a)¥?,x = 0). Thus,qis quasi-elliptic ifp = 2 or 3; andl is
the locus of movable singular points @ff p = 3, andA is the locus of
movable singular points ajif p = 2. (It will be easy to see that is
irreducible). O

2.7.3

Let (o) be the fiber ofq corresponding toy = co. To illustrate
q1(0) U X, we shall definethe weighted graph of d(c0) U X, in

the following way: Assign a vertex (or o, resp. ) to each irreducible
componentT of q1(c) U X such thato(T) ¢ SuppB) (or p(T) c
Supp@), resp. ); the weight isT(); join two vertices by a single edge
like —— (or a double edge like——") if the corresponding irre-
ducible components meet each other transversely in oné (@ojtouch 270
in one point with multiplicity 2, resp. ). By virtue 6f2.8.4dZ71 we
have the following weighted graphs gf'(c) U X, whenp # 2:

Cased = 6m(m > 0) andp # 3.
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-1 9 9
O——O0——¢ o o
N~ ———
2m

Yo
T
O——0O——°* * * elliptic curve
-1 -2 D)

(Fig. 9)

where all components aj %(c0) U X, except one elliptic component
are nonsingular projective rational curves; in the casesngbelow all
components are nonsingular projective rational curves.

Cased = 6m+ 1(m > 0).

1 2 22 2 3 2 2 2 2 2 2 2 -(m+l)
*—O0—e——, ..
N —— Yo
4m 9
(Fig. 10)

-1 2 -2 3
O O P O O
~
2m
I/
(o, O .« o O O
-1 -2 -2 3
(Fig. 11)

Cased = 6m+ 3(m = 0) andp # 3.
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1 2 2 2 2 2 3 2 -(mtl)
*—O0o—o—., ..
~ ; ; Yoo
4m -2 9 -2
(Fig. 12)

271

Cased = 6m+ 4(m = 0).

-1 2 2 -2 -3
(e, O .« o O O—,
~
-21-(m+1)
2m Lo
T Yoo
O O .« o O O
-1 -2 -2 -2 -3

three components meet each other
in one point transversally

(Fig. 13)

Cased = 6m+ 5(m = 0)

1 2 2 -2 - - - - -
*—O0—=e——,, —O0—0—0—0—C—0DO—
~ Yoo
4m
(Fig. 14)

274

Lemma. Assume that g= 2 and H is nonsingular. Then the weighted
graph of q(c0) U X, is given as follows:

Cased = 6m+ 1(m > 0). Figure 10.
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Cased = 6m+ 3(m = 0). Figure 12.
Cased = 6m+ 5(m = 0). Figure 14.

Proof. Lemma follows fromi.2314 arld2.1.2. We shall only indicatevho
to use these result€ased = 6m+ 1. With the notations df2.6.2, for all
solid linesL, p~(L) = 2L with L = P} and 2(?) = (L?); for all broken
lines L with (L2) = -1, L := p~}(L) is irreducible. Thus the weighted
graph ofg (o) U 2, is

-1 2 2 2 3 2 2 2 2 2 -2 -2 -(ntl)

*—O0——, ., .+O—.—O—I—O—.—O—.—O—.
E() ZE) zl L7L—1L,I,171 En Eoo

-2

wheree represents a nonsingular projective rational curve. sLbe
the contraction oto. If v(Lj) # PL, v(g*(c0)) would be a reducible
fiber of a reIativer minimal quasi-elliptic fibration. Thehy lemma

233, v(Ly) = PL, which is a contradiction. Hencel}) = Pi and
(v(L ) = -1, Whencev(L ) is contractible. Repeating this argument
for Lo, L’ ...,L;] 1 We can see that they are all |somorph|dPﬁ<o Let

7 be the contraction ofy, ..., L’ Y Thenx(L,) = Pl and @(Ln)?) =
—2. Hencer(q*(c0)) is a reducible fiber of a relatlvely minimal quasi-
elliptic fibration. Then the remaining components are ahisrphic to
P} by virtue of[Z33. Thecased = 6m+ 3 can be treated in the same
fashion as aboveCased = 6m+5. The weighted graph @f %(co) U2,

is:

-2 2 2 2 2 2 4 -(m+l)
*—O0o—e—, ., ,—&6—0—e—C _0O—0
EO E6 El Ln—1L1L71 En M Ln—HZO‘?

where represents a curve isomorphi@tofml = p~(Lns1) is reduced
(and irreducible) becausé ;1 - £.,) = 1; M := p~(M) touchesl ;1
in one point with multiplicity 2. The foregoing argument s¥®that
Lo, .. Ln, M are isomorphic t(Pl and contractible. Let be the con-
traction of those curves. Ther(Ln+1) is an irreducible member of a
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relatively minimal quasi-elliptic fibration. HeneeL,.1) has one cusp,
andL,, is a nonsingular projective rational curve. o 273
2.7.5

By contracting all possible exceptional components[d{c), the im-
age ofg1(c0) UZ,, has the following ngghted graph (or configuration);
the type of a singular fiber according $&afarevicl[51] is also given:

Cased = 6m. o (elliptic curve)
Cased = 6m+ 1.

Cased = 6m+ 2.

-2 -2
22 (mtl)
Bs
Yoo
2 2

Cased = 6m+ 3.
-2
20 [2 -2 (m+1)
Bg
Yoo
-2

Cased = 6m + 4. 274
M
[N
XN
i _2] -(m+1)
| ! Ba
IRr
i '? ,,,, three components meet each
L-

- other transversally in one point
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Cased = 6m+ 5.

By

2.8

We shall proceed to a proof of Theor€ém2l1.1. It is easy tolsaetis
rational ovelk if d = 0, 1 or 2. We shall therefore assume that 3.

28.1

Consider reducible fibers of: H — P} other tharg(eo). Such a fiber
q(a) = (Gop)~(t,) has more than two reducible components, and
¢, NCis a singular point o€, whencey’ (@) = 0. Conversely, for a root
a of ¢’(y) = 0,7 Y(a) is a reducible fiber of (cf. [Z8). Letx be a root of
¢'(y) =0, letP := (x = —p(a)2.y = a) be the corresponding singular
point of C, and lete = v,(¢(y) — ¢(@)). The condition (1) of Theorem
11 tells us thae = 2, 3, 4 or 5, while the condition (2) asserts that
275 the casee = 3 can be reduced to the case= 4 or 5 by a birational
transformationt({ x,y) — (t, x + a’3(y — @), y) which is biregular aP.
P is then a cuspidal singular point @f with multiplicity (2,1,...) if
e=2;3L1..)ife=4;(321...)if e=5. Now the weighted graph
of g (@) U X is given as follows by making a similar argument as in

P3:

Casee = 2.
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\\

e

Yoo
2 three components meet each
-~ other transversally in one point
(cf. 2.7.1, (3) (iii)

Casee = 4.

2 -2

2 -2 2
Yoo

2 o

Casee=5.

Notice thatg(a) contains no exceptional components. The type of
a singular fiber according tBafarevic[|[51l] isB, if e = 2; Bg if e = 4;
B1o if e=5.

2.8.2

As shown i ZBN g () is the only singular fiber in the fibration, 276
which contains exceptional components. By a contracfioH — H

of all exceptional components iri(co) we get a relatively minimal
quasi-elliptic surfac& : H — P& with G = q, for whichZe = T(Ze)

is a regular cross-section witB{) = —(m+ 1). (Since we are dealing
with the casep = 3, look at only the cased = 6m+ 1,d = 6m+ 2,

d = 6m+ 4 andd = 6m+ 5). Now, Theorem 2 follows immediately
from2Z2 [23P anf2.3.3.



220 Unirational surfaces

2.9

We shall now prove Theorein Z1.2. The first assertion follfnem

Z3. So, we shall prove the second assertion. To be in acuoedaith
the notations in the paragraghs]2. &4 we start with an equatid? =

X3 + ¢(y), whereo(y) = yp1(y)?, d := deg,¢ andd; := deg, ¢1. Hence
d = 2d; + 1. We have only to consider the cagks 6m+ 1,d = 6m+ 3
andd = 6m+ 5. Moreover, sinck is easily seen to be rational oveif

d = 1 we assume that > 3.

291

Write
eily) = aly —a1)™ ... (y— a9,

wherea € k*, a; € k, anda;’s are mutually distinct. The assumption in
TheorenT 2112 implies that < 2 for everyi. Forifri 2 3, o(y + a;)
starts with a term of degree 6. The singular points of lying on the
affine partFg — (X = o) U (y = o) are given by X = 0,y = «;) for
1<is<s LetP:=(t=0x=0y= a)with ¢i(¢) = 0. Bya
birational transformationt(x,y) — (t, X,y + @) which is biregular aP,

277  Hpis a hyper surface iAﬁ defined locally aP by one of the following
equations:

() 2=x3+y%5(y) if a#0 andr=1
(i) ?=x3+y3(y) if a=0andr=1
(i) 2=x3+y*(y) if a#0 andr=2
(v) 2=x3+y55(y) if a=0 andr =2,
whereds(y) € K[y, (0) # 0, ands(y)y**€ = ¢(y + @) with e = 0 or 1
according as # 0 ora = 0.
2.9.2

Now write

o(y) = ap + aqy + gy’ +agy’ + - with ag#0.
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The case (i) above is now reduced to the case (ii) or (iv) byaibnal
transformationt{ x,y) = (t + ag °y + & °y2, x,y) which is biregular at
P. Namely, ifa; # O we have the case (ii); & = 0 andas # 0 we have
case (iv). (Note thah; = az = 0 does not occur). Similarly, the case
(iii) is reduced to the case (iv). Thus, in order to look irtte singularity

of P, we have only to consider the cases (ii) and (iv).

293

Let £y be the member of# passing through the poink(= 0,y = a).
The configuration ofdc)™1(fo U C U S,,) is given as follows:

Case (ii):

Case (iv): 278

The meanings of solid or broken lines are the same Bs1n 28%.2.
the same argument adin 2]6.2 (especially the proof of Cateete) we
can show:

Lemma. Let Q be a point on H such th&&rop)(Q) = (x = 0,y = a).
Then Q is a simple point. Therefore H is nonsingular.
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294

Now, the weighted graph aj (e) := p~1((co)’ (£o)) is given as fol-
lows:

Case (ii).

Bs

Case (iv).

(For the proof, seEZ.4.4). Thus,(a) contains no exceptional com-
ponents. The proof of Theorem Z1.2 is now completed ds1#12.8
(Consider only the cases= 6m+ 1,d = 6m+ 3 andd = 6m+ 5).

3 Unirational surface with a pencil of quasi-hyper-
elliptic curves of genus2 (in characteristic 5)

3.1

Throughout this section the ground fidids assumed to be an alge-
braically closed field of characteristic 5. A nonsingulaojpctive sur-
face X is said to have pencil of quasi-hyper-elliptic curves of geris
if there exists a surjective morphisfn: X — C from X to a nonsingular
projective curveC such that almost all fibers dfare irreducible singular
curves of arithmetic genus Ve assume that fX — C has a rational
cross-sectionThe purpose of this section is to prove the following:
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Theorem .Let k be an algebraically closed field of characteristic
Then any unirational surface X with a pencil of quasi-hyfigréc
curves of genus 2 defined over k is birationally equivalerd toyper
surface inA?2 : t2 = x° + p(y) with ¢(y) € K[y], provided X has a ratio-
nal cross-section. Conversely, let:K K(t, x,y) be the function field of
an gfine hyper surface of the above type. Assumedgbgtsatisfies the
conditions:

(1) ¢(y) has no terms of degree multiples®f
de) . .
(2) every root ofp’(y) | = d_y is at most a double point.

Letd:= deg, ¢, m:= [d/10] and X the nonsingular minimal model if K
is not rational. Then the structure of X is determined asfef:

Casem=0. 280

d 11234 6 718 9
pa(X) |0|0]0|1 1 212 2
(K2) 0 0 111] 1
rational | unirational | unirational
structure| surface | K3-surface| surface of
general type

Casem > 0.

d |10m+1{10m+2|{10m+3|10m+4|10m+6|10m+ 7|{10m+8|10m+9
pa(X)| 4m 4m dm [ 4dm+1|4dm+1|4dm+2 | dm+2 | dm+ 2
(K2) | 8m-4|8m-4|8m-3|8m-2|8nm-2| 8m 8m 8m

The surface X is then a unirational surface of general type.

A proof which is given in the subsequent paragraphs will be no
more than a sketchy one, as the arguments are similar to geioithe
previous section.
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3.2

Let f : X —» Cbe asifZ31l. LetZ be the function field o€ overk and

let Xz be the generic fiber of. ThenXy is an irreducible normal pro-
jective curve withpa(X4) = 2. LetZs be a separable algebraic closure
of Z. by Chevalley [12; Th. 5, p. 99}(&%’5 is a normal projective curve

of arithmetic genus 2. Hence, every smgular poinKgfis a one-place
point and is rational over a purely inseparable extensiogZ oflf the
281 geometric genus ak, equals 1 therX4 has a single ordinary cusp of
multiplicity 2 as its unique singularity. However, this impossible by
virtue of Tate[55] because the characteristik &f 5. Thus the geomet-
ric genus ofXy is 0 andXy has either two ordinary cusps of multiplicity
2 or a single cuspidal point of multiplicity (2, 1,...) as its singularity.
We shall see that the former case does not occur. Indee@, betone
of two ordinary cusps, Idt be the closure o in X and letfr : ' — C
be the restriction of ontoI'. SinceQ is a one-place point oz, fris
a generically one-to-one morphism. Hence fleg a powerp" of the
characteristiop of k. For a pointP of C such thatf~1(P) meetsI" at a
simple point ofl", we have {~1(P) - T') = 2 or 3 becausd 1(P) N T
is an ordinary cusp of multiplicity 2 ofi~1(P). This is a contradiction
becausep = 5. Therefore we know thaXy, is an irreducible normal
projective curve of arithmetic genus 2 and geometric genasdwith
a single cuspidal point of multiplicity (2, 1,...) as its unique singular-
ity. This implies thatX,, minus the unique singular point, isZ-form
of the dfine line A! of Z-genus 2. Weassumethat f : X — C has a
rational cross-sectiowjz. X, has az-rational point. Then, by virtue of
LemmdlLEN X is Z-birationally equivalent to anfine plane curve:

1) t?=x>+a with aeZ-2%".

The surfaceX is unirational ovek if and only if C is rational overk.
282 Indeed, the “only if” part follows from the Liroth’s theaorg the “if”
part holds becaus@1/5®k(X) is rational overk. Now assumethat X

is unirational overk and write#Z = Kk(y). ThenX is k-birationally
equivalent to a hyper surface Aﬁ

) =X +¢(y) with ¢(y) € Klyl,
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whered := deg, ¢ is prime to 5.

This proves the first assertion in the theorem. ConversetK| :=
k(t, x,y) be the function field of a hyper surface (2) andXebe a non-
singular projective model df; we denote byX a nonsingular minimal
model ofK if K is not rational ovek. We may assume without loss of
generality that the following conditions are satisfied:

() ¢(y) has no terms of degree multiples of 5.

(i) Let @ andB(e K) satisfy¢’(a) = 0 andB® + ¢(a) = o. Then
e = Vy(p(y) — ¢(a)) satisfies < e < 9 ande # 5.

Indeed, a birational transformation of the typex(y) = (t, X + o(y),y)
annihilates the terms of degree multiples of B{i). With the notations
of (ii), the hyper surface is written as

t? = (x=B)° + (Y- @)%p1(y) with ¢1(a) # 0.

If e > 10 the degree af(y) drops by a birational transformatiot X, y)
- (t/(y — @)®, (x=8)/(y - @)?,y). Hence we may assume tteax 9. If
e = 5 a birational transformatiort, (X, y) — (t, (X—8) + y(y — @), y) with
¥® = ¢1(0) enables us to assunmez 6.

3.3

SetA(x,y) := X° + ¢(y). EmbedA2 := Speck{x,Y]) into Fo := PL x PL 283
as the complement of two lines (= o) U (y = o) and letC be the
curve onkq defined byA(x,y) = 0. LetHg be the normalization ofg

in K := k(t, x,y) and letpg : Hg — Fg be the normalization morphism.
Thenpg is a double covering witle contained in the branch locus. We
shall look for a de singularization ¢y. As is well-known (cf[Zb and
28), a de singularization dflg is obtained as follows. L&F : F —
Fo be the shortest succession of quadratic transformatiotisc@nters
at singular points ofS such thatC := ’(C) is nonsingular, leH be
the normalization of in K and letp : H — F be the normalization
morphism. Write ¢ A) in the form:

(c*A) = B-2Z,
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whereB is a divisor whose cdicient at each prime divisor is 0 or 1
andZ is some divisor. The is the branch locus of a double covering
p : H = F. If Bis nonsingular thet is nonsingular. IfB is singu-
lar, leto : F — F be the shortest succession of guadratic transforma-
tions with centers at singular points of SuBpguch that, if one writes
((co)*A) = B — 2Z with divisors B andZ as aboveB is nonsingular,
viz. every irreducible component of Sufg)(is a connected component.
Let H be the normalization oF in K and letp : H — F be the nor-
malization morphism. Thenis a double covering with branch locs
andH is nonsingular. Thu#l is a de singularization dfly; we have a
commutative diagram

Bl

T

H H Ho
F——F 7 . Fo

wherer andx are the canonical morphisms induced by the normaliza-
tions. Setr := o - p. The curveB is said to have negligible singularity
at a pointP if one of the following conditions is satisfied:

(1) Bis nonsingular aP,
(2) Pis adouble point,

(3) P is a triple point with at most a double point (not necessarily
ordinary) infinitely near.

If B has only negligible singularities then some numericalriiaves
of H are computable at the stagefaf Namely we have:

Lemma Artin [4] Assume thaB has only negligible singularities. Then
the following assertions hold true.

(1) " (Ke + Z) is a canonical divisor K on H.
(2) pa(H) = 2pa(Fo) + pPa(Z) = pa(Z).
(3) (KB) = 2((Kg + 2)?).
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3.4

We shall look into singular points of the cur@on Fq. LetP = (x =

B,y = a) be a singular point o€ lying on the dfine partAﬁ Fo—-(x=

00) U (Y = o). Theng'(a) = B° + ¢(a) = 0. Conversely, every root of
¢’(y) = 0 gives rise to a singular point € lying on Aﬁ. LetP:=(x=

B,Y = @) be such a singular point and let= V,(¢(y) — ¢(a)). Then 285
P is a one-place point of, and we have X e £ 9 ande # 5 as we
assumed ii312. LdDp be the contribution by in the dfective divisor
o*(C) - C, and writeDp = Dg) + ZDS), whereDf,l) >0, Df,z) > 0and
every component de;l) has multiplicity 1. LelD(,f) be the contribution

by P in the dfective divisorKe — o (Kg,). In the following, we shall

1
compute the valugsp := E(Dg) -D? - DB andvp := (DY - DY)
for each type of a singular poiftof C.

Casee = 2. ThenP has multiplicity (22, 1,...) ando 1(P) has the
configuration

/ AN 6 with (E2 6) =2

(cf.[ZB2 for the conventions on the broken lines and salicve (or
line)). HenceDp = 2E; + 4E,, DY = 0, D¥ = E; + 2E; andDY) =
Ei+ 2E2;/1p =yvp=0.

Casee = 3. ThenP has multiplicity (32, 1,...) ando }(P) has the
configuration:

with (B - C') = 2.

Then we haveDp = 3E; + 5E,, DY) = E; + Ep, D& = E; + 2E,, 286
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DS’) =E; +2E; and,up =yp=0.

Casee = 4. P has multiplicity (41,...) anda1(P) has the following
configuration:

-
-
-
P
-

L with (Eq - C) = 4.

-
-
-

Ql

Then we have:Dp = 4E;, DY = 0, D¥ = 2€;, D®) = E; and
Mp = Vp = -1.

Casee = 6. P has multiplicity (51,...) andz (P) has the configura-
tion:

E,

> with (E7 - C) = 5.

Ql

Then we haveDp = 5E;, DY = Eq, D¥ = 2, DY) = E; and
Mp = Vp = -1.

Casee = 7. P has multiplicity (52, 2, 1,...) anda*(P) has the config-
uration:
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with (E3 - C) = 2.

Then we haveDp = 5E; + 7E; + 14E3, DY) = E; + E5, D? = 287
2E; + 3E; + 7E3, D& = Ey + 2E, + 4E3 andup = vp = 2.

Casee = 8. P has multiplicity (53,2, 1,...) andz}(P) has the config-
uration:

with (E5 - C) = 2.

Then we haveDp = 5E; + 8E; + 15E3, DY = E; + E3, DY) =
2E; + 4E; + 7E3, D& = E; + 2E, + 4E3 andup = vp = 2.

Casee = 9. P has multiplicity (54, 1,...) anda*(P) has the configu-
ration:

with (Es - C') = 4.

Then we haveDp = 5E; + 9Ep, DY = E; + E, D = 2E; + 4E;,
D® = Ey + 2Ep, up = ~1 andvp = -2.

We denote byD, DM, D@, DG, ; andy the sumZDp, ZDQ),
P P

ZDE), ZDS), Z,up and ZVP’ respectively, wher® runs through
P P P P
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all singular points ofC lying on AE.

3.5

Now we shall turn to the singular points Gfoutside ofAﬁ. Itis easy to
see thatC has only one poin@ outside ofAﬁ andC is given locally at
Q by

n?+ &%) =0; Q=(¢=0,7=0)
wherex = 1/¢,y = 1/n andy(n) = n%(1/5) with »(0) # 0. We
introduce the following notations: Consider a fibratigh= {{, : ¢, is
defined byy = a} on Fo. We denote by, the fibery = « and byS,,
the cross-section = . In the following we shall compute concretely
(@A), B, Z, Ke, Kg + Z, pa(Z) and (Kg + 2)2).

3.5.1
Cased = 5n+ 1. ThenQ is a singular point of multiplicity (5...,5, 1,
N——

n
...)andz (£, US4« UC) has the configuration below in a neighborhood

of 7 1(Q):

with (En - C) = 5if n = 2m;

with (En-C) = 5if n = 2m+ 1, wherefy, := 7 (fe) aNdSe, := 7 (Sw).
We have:
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(c*A) =C +5(E1 + 2Ep + -+ NEy) + D
—5(Se +E1+2Ey + -+ NEy) — d(feo + E1 + -+ - + Ep)
=C-5S, -d7*(fe) +T
and
Eg ~ —2(Se + E1 + 2Ep + -+ + NEp) — 2o + E1 + -+ + Ep)
+ (E1 + 2E5 + - -- + nEy) + DO
= —Se — 0 (Se) — 20" (£e0) + DO,

Hence we have:

3.5.1.1 Casa=10m+1(nh=2m).

=C+Se+luw+Ey+---+Ep+DD
= 3S,, + (5m+ 1) (¢-) - D@
~ 2S5 + (M= 1) (£) — T (Se) + (D) — DP)
=S + (Bm—1)7" ((w)
+{2mle + 2M—1)E1 + - - - + Eom1) + (D®) — DP)

B
z
KE+Z

Pa(Z) = %(Z- Ke+Z)+1=4m+p
(Ke+2)®)=2m-2+v.

3.5.1.2 Casa=10m+6(n=2m+1).

B
Z = 3S, + (5m+ 3)5" (£s) — D@
Z ~ 2S¢ + (5M+ 1)7* (£s) — @ (Seo) + (DB — D?)
= Se + 3M0 (£o) + {(2M+ 1)l + 2ME; + - - - + Eom)
+ (D(3) _ D(Z))
Pa(Z) = 4m+1+pu
(Ke+2)?) =2m-2+v.

KE+
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3.5.2
290 Cased = 5n + 2. ThenQ has multiplicity (5...,5,2,2,1,...) and
N———r

n
7 (s U Se U C) has the following configuration in a neighborhood

of 7 1(Q):

with (C - Ens2) = 2 if n = 2m+ 1. We have:

(@A) = C +5(1 +2E2 + - -- + NEp) + (5n + 2)Eny1 + (100 + 4)Ep, 0+
D —5(Sw + E1 + 2o + -+ - + NEq + (N + 1)Ens1 + (20 + 1)Eny»)
—d(leo + E1 + Eo + - - - + En + Eng1 + 2Ens2)
=C - 5S,, — 00" (£es) — 3Ens1 — Enso + D

and

Ke ~ —207(Sw) = 20" (£eo) + E1 + 2E2 + - - - + NE,
+ (N+ 1)Eny1 + (20 + 2)Ep,2 + DO
= —Se = 7 (Sw) — 20" (£es) + Enyo + DO

291 Hence we have:
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3.5.2.1 Casa =10m+ 2 (h=2m).

=C+Sw + Eny1 + Ens2 + DO
=35, + (6M+ 1) (€0) + 2Ens1 + Enyo — D@
~ 2SS + (5M— 1)7"(lss) — T (Seo)
+ 2Ens1 + 2Ens2 + (DS — D?)
=Se + (BM—1)7"(le) + {2Mle + @M —1)Eq + - -
+ Eom-1 + Eoms1 + Ezmy2) + (D® — D)
Pa(Z) = 4m+pu
(Ke+2)?) =2m-2+v.

B
z
KE+Z

3.5.2.2 Casa=10m+7(n=2m+1).

=C+Sw+ (o +E1+Ep+---+Epn) + Enp+ DO
= 3Se + (5M+ 4)5" (leo) + Enez — D@
~ 2Se + (BM+ 2)5" (£s) — T (Se) + Ens1
+ Ens2 + (D® — D@)
= Se + (BM+ 1) ()
+{(2M+ 1)le + 2MEy + - - - + Eom} + (D® - D))

Pa(Z) = dm+ 2+ pu

(Ke+2)?) =2m—1+v.

B
z
KE+Z

3.5.3

Cased = 5n + 3. ThenQ has multiplicity (5...,5,3,2,1,...) and
————

n
7 Y(ts U S U C) has the configuration below in a neighborhood of

o (0)F
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292

with (C - Ens2) = 2 if n = 2m+ 1. We have:

(@*A) = C + 5(E1 + 2E5 + - - + NEy) + (50 + 3)Ens1
+(10n +5)En 2+ D
—5(Se + E1 + 2E2 + - -+ + NEqy + (N + 1)Epy1 + (20 + 1)Eny2)
—d(feo + E1 + Ep + -+ - + En + Ens1 + 2Ens2)
=C—-5S, — 00" (les) = 2Eps1 + D

and

Ke ~ —20"(Se) = 20 (o) + E1 + 2E2 + - - + NEy + (N + 1)
Eni1 + (2N + 2)Ensp + DO
= =S = 7 (Sw) — 20" (Lso) + Enyo + DO

Hence we have:

3.5.3.1 Casa=10m+ 3 (h=2m).

B=C+Su+ 0o +Ey+---+En+En1+ DY
Z = 3Se + (5M+ 2)7* (£w) + Ens1 — Ens2 — D@
z

Ke +Z ~ 2S¢ + 5M5*(€es) — T (Seo) + Ens1 + (D®) — DP)



Unirational surface with..... 235

= Se + (83M= 1)7" (€e) + {(2M+ 1)l + 2MEy + -+ +
Eom + E2me1 + Ezmiz} + (D — D®)
pa(Z) =4dm+pu
(Ke+2)?)=2m-2+v.

3.5.3.2 Casa=10m+8(n=2m+1). 293

B=C+S,+DW
Z = 3Se + (5M + 4)7* (£e) + Ensr — D@
Ke+Z~ 2Se + (BM+ 2)5" (€x) = 7 (Seo) + Ens1 + Ens2

+ (D(3) _ D(Z))
=S + (Bm+ )7 (€) + {(2m+ 1)le + 2MEg + - - - + E2m}
+ (D(3) _ D(2))

Pa(Z) = dm+ 2+ pu
(Ke+2)?) =2m-1+v.

354
Cased = 5n + 4. ThenQ has multiplicity (5...,5,4,1,...) ando !
N——

n
(€2 USs UC) has the configuration below in a neighborhoo@ot(Q):

with (C - Ens1) = 4if n = 2m;
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with (C - Ensq) = 4if n=2m+ 1. We have:

(@A) =C+5(E1 +2E2+--- + NEp) + (5N + 4)F 1 + D
—5(Se + E1 + 2E5 + -+ - + NEq + (N + 1)Eny1)
—d(feo + Ey + Eo + -+ - + Ep + Eny1)
=C-5S, - 05" (le) — Eny1 + D

294 and

Kg ~ —20"(Seo) =207 (o) + E1 + 2E2 + - - - +
nE, + (N + 1)Fn.1 + DO
= —Se = 7 (Sw) — 207" (£s) + DO

Hence we have:

3.54.1 Casa =10m+4 (n=2m).

B=C+S. +Ep,q + DD
Z = 3Se + (5M+ 2)7* (£e) + Ens1 — D@
Z ~ 254 + 55" (€eo) — T (Swo) + Ens1 + (D®) — DP)
= Seo + 3M0 (€oo) + {2Mlss + (2M— 1)Eq + - - - + Emp_1}
+ (D(3) _ D(2))

KE+

Pa(Z) =4m+ 1+ pu
(Ke+2)?) =2m—-1+v.

3.5.4.2 Casa=10m+9(n=2m+1).

B=C+Sw+0le+E1+---+En+DW
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Z = 3S, + (5m + 5)7* (£s) — D@
Kz +Z ~ 2S + (5m + 3)7* (le) — T (Sw) + (D® — D)
= Se + (3M+ 1)77" (6e) + {(2M+ 2)lo + (2M + 1)
E1+--- + 2Eom + Eam1} + (D® - D®)
Pa(Z) = dm+ 2+ pu
(Ke+2)?) =2m—-2+.

3.6

Next we shall consider the nonsingular minimal modebf K. In the 295
remaining paragraphs of this section we shall assume fosdke of
simplicity thatD® = p®. In view of[33, this is equivalent to assuming
thatv,(¢’(y)) £ 2 for every roota of ¢’(y) = 0, and this implies that

u = v = 0. We shall consider firsthe case m> 1. We know in
view of[32 and35 thaB has negligible singularities; this implies that
Pa(H) = pa(Z) > 0 (becausen > 1) andKy ~ 7*(Kz + Z) (cf. Lemma
B3); in particular,H is not rational ovek and H exists. In each of
the cases enumerated below the results are obtained byhstomivard
computations. So, the details will be omitted.

3.6.1
Cased = 10m+ 1. The following assertions hold true:
(1) (@) (¢ U So) has the next weighted graph:

12 -2 -2 -2 -2 -2 -2 4 -2 -2 -2 -2
*—O0——0—0—

i 7. By E}| E,

P p- R e
s Eom—1 By Eom

-(m+1) 2 -2 -2 -2

S L1 Lio Ly Ls Ly Lg Ls

wheren*(€e) = 20w + £, 7°(E1) = €. + 2E1 + E}, 7*(E}) =
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Ei’_l+2ff,+§’for2<'<2m 1, 7*(Eom) = E 1+2IFEV2m+
6Ly +5L5+21 (12-i)L; andr*(Sw) = 25w +L1+L’+2(21L)

() 7*(Ke+2) ~ 7 (§m)+(3m D T (€oo) + {4ME o + (AM—1)C7, +
296 (A4m-2)E1+- - +2E2m—1+E2m 1} SinceKy ~ 7 (K—+Z) we know
by (1) and (2) above thad is obtained fronH by contracting..,
t,, E1, E,...,Eam1 andE),_,. Hence (< 2) = 2((Kg + 2)?) +
= (4m 4)+4m_8m 4,

3.6.2
Cased = 10m+ 2. The following assertions hold true:

(1) (@n)(Ls U Sw) has the next weighted graph:

-1 -2 2 -4 -2

\ 4 O @ O @
Bam+2 L2 E2m+1 L3 Soo

wherern*(le) = loo + ly, 7*(E)) = B + E/ for 1 < i << 2m-1,
7*(Eom) = Eom+ By + L+ L’ + Ly, 7 (Eami2) = L+ L' + 2Ly +
2Eomio+L2, 7 (Eome1) = Lo+2Eome1+Ls andn*(Sw) = 2Sw+La.

2) Ky ~n (K—+Z) ~T (Soo)+(3m 1)(_71) (500)+ 2m€ +(2m—
l)E1+ -+ E2W1}+{2m€’ +(2m- 1)E’ -+ E’ }+2E2m+1+
2E2nH.2+L+L’+L1+2L2+L3

ThenH is obtained fronH by contractlngé’oo, E....,Exmqand
[0 = =y Hence(( 2) = 2((Ke +Z)2)+4m (4m—4)+
im = 8m 4,

3.6.3

Cased = 10m + 3. The following assertions hold true:
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(1) (@) (¢ U So) has the next weighted graph:

12 2 20 9 2 2 4 -2 -2 -2 -(m+l)
lo Z/oo El Ei EQ Byt Eyy Eamys L Eamn L/ Soo

Wheren(f)_2€ + 0, n(El)_f’ +2E1+E’,7r(E)— 297

m (EZHEZ) E2m+2+|—17T (E2m+l) |-+2|52m+1+|-’ andr*(Se) =
L’ + 2S...

2) Ky ~n (K—+Z) ~ (S )+(3m 1)(_7r) (o) + (4m+ 2)5 +
(4m+ 1)5’ +4mE; + (4m-— 1)E’ -+ 3E’2m 1t 2Eom} + Eomio +
2L + 2E2m+1 + L.

Then H is obtained fromH by contractingle, ., Ei,..., Eom.
Hence K%) = 2((Kg +2)%) + (4m+1) = (4m—4) + (4m+ 1) = 8m- 3.
3.6.4
Cased = 10m + 4. The following assertions hold true:

(1) (@7) Y(ts U Sa) has the next weighted graph:

102 2 3 -2 -2 -2

cee
7 = E, B / / /
17 Ei am-1 By, LY LY LY

wheren*(le) = loo + Co, n*(E)) = E + E/ for 1 < i < 2m -1,
7 (Ezm) = Eom+ Ep+ (52 (Li+ L)) +La, 7 (Eamea) = (Z2,i(Li+
LI’)) +4L4 + 2Eymy1 + Ls andrn® (Soo) Ls + 2Sc.

(2) Ky ~ 7*(Ke+2Z) ~ 7*(Sw) +3m(or)* (ax,)+ {(2Mfe +(2m-1)E; +

-+ Eamea) + (2ME, + (2m = 1)E; + - + B}, _4).
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__ ThenH is obtained fronH by conlractingfw, Ei,...,Eom1andf,,
E/.....E5, ;. Hence (<|§) = 2((Kg+2)?)+4m = (4m-2)+4m = 8m-2.

3.6.5

Cased = 10m + 6. The following assertions hold true:

(1) @) (£ U So) has the next weighted graph:

-1-2 -2 -2

o_o_ooo O & 1

goo El Eom -2 —(m+1)
~

12 2 12 I

o—O0— O

o = eeoe = E2 1

e B Eom

there components meet in one point wilyg.1 - E,..,) = 2 and
(E2m+1 . L) = (E/ . L) = 1

2m+1
wheren*(le) = lo + lo, 7*(Ei) = Ei + E for 1 < i < 2m,

7*(Ezme1) = Eamer + Epyq + L @andn*(Se) = 25w + L.

(2) Ky ~ " (Kg+2Z) ~ 7*(Seo) + 3M(@7)* (Ceo) +{(2M+ 1) +2ME7 +
oo+ Eom} + {@m+ 1)E, + ZmE’1 +-+ E’Zm}.

ThenH is obtained fromH by contracting/e., Ex, . .. , Eom and?’,,,

E},...,Ej, Hence K2) = 2((Kg+2))+(4m+2) = (4m-4)+(4m+2) =
8m- 2.

3.6.6

Cased = 10m+ 7. The following assertions hold true:

(1) @) (£ U So) has the next weighted graph:



wheren*(€e) = 20w + €, 7°(E1) = €, + 2E1 + E/, 7*(E)) =
E/ ,+2E +E for 2 < i <2m, n*(Eame1) = Epy, + 2Eomer +
2(L1 + L2 + L3 + L4) + L5 + L6, 7T*(E2r11j-3) = 2E2rm—3 + L]_ + ?.,LZ +
3Lz +4L4 + 2Ls + 3Lg, 7T*(E2m+2) = Eome2 andzr*(Soo) = 2Ss. 299

(2) Kn ~ 1" (Kg +Z) ~ 1*(Se) + (BM+ 1)@ 7)* (L) + {(4mM+ 2)le +
(4m+ 1)¢%, + 4mEy + - - - + 2Epm + Ep. ).

ThenH is obtained fromH by contractingfe., £, E1, E},.. ., Eom
andE,, . Hence Ka) = 2((Kg +2)?) + (4m+2) = (4m—2)+ (4m+2) =
8m.

3.6.7

Cased = 10m + 8. The following assertions hold true:

(1) (@7) Y(ts U Su) has the next weighted graph:

-1 -2 -2 -3
o0—0o—,,—©° —O
ZOO El Egm E2m+1
-1-2 -2 -3
o0—O0—,,.—© O
0. E By Bhyi

three components meet each other transversely in one ploerew
1 (le) = oo+, m*(Ei) = Ei+E/ for1 i £ 2m+1ori = 2m+3,
7*(E2mi2) = Eamiz andn*(Se) = 2Sc.
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(2 Ky~ = (K— +7Z) ~ 1°(Se) + (Bm+ 1) (o n)* ({’oo) +{(2m+ 1)5 +
2mE; + - -+ + Epm) + +{(2m+ 1)5’ + 2mE’ -+ E’ -
_ ThenH is obtained fromH by (iontractingfoo, Ei,...,Exmandf’,,
E.....,E,,. Hence ((%) = 2((Kg+2)%)+(4m+2) = (4m-2)+(4m+2) =
8m.
3.6.8
Cased = 10m+ 9. The following assertions hold true:
(1) (@n)1(£s U Sw) has the next weighted graph:
- - - -2 -2 -2 -2 -4 —(m+1)
—O0—e—0—,, . ——O0—e—q 12—
goo 6;0 E1 Ei E2m Eénz E2m+1 L E2m+2 goo

where A stands for an irreducible rational curf@mz with an
ordinary cuspP of multiplicity 2, L mtersectsEz,mz at the cusp
point with (L - E2m+2) = 2 andS., |ntersectsE2m+2 transversely
at a simple point; and whevé‘(foo) = 200 + f 7*(Ey) = €.,
2E1+E 7*(Ej) = E +2E,+E’for2<|<2m7r(E2m+1)_
E’ + 2E2m+1 +L, (E2m+2) =L+ 2E2m+2 andr* (Soo) = 28

(2) Ky ~ 7" (Kg +2) ~ 7*(Swo) + (3M+ 1)(@7)*(Leo) + {(4M+ 4)lcs +
(4m+ 3)27;0 +(AM+2)Ey + - - + 4Eom + SE’Zm + 2Epme1 + L)

ThenH is obtained fromH by contracting/e, £%,, E1, Ej, . .., Eom,

E.» Eome1 @andL. Hence (<A) = 2((Kg +2)?) + (4m+ 4) = (4m 4) +
(4m+ 4) = 8m.

3.7

Next we shall considethe case m= 0 and assume th@©@ = D®),
In principle we follow the arguments and computations daorig® and
B8. More precisely, the configurations®f(£s U Se U C) in a neigh-
borhood ofz1(Q) are those ifiL315 up to the following modifications:
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If d = 1,2 3,4 then omitf., E1,...,En1, putn = 0 and set anew
7w = Epand {2) = (E2)+1;ifd = 6,7,8,9 then omite, Ex, .. ., En_1,
putn = 1 and set anev,, := Eg and @i) = (E2 ,)+1. The expressions
of B, Z, Kg + Z, pa(Z) and (Kz + Z)?) are obtained from those [1_8.6
by due modifications.

3.7.1

Cased = 1. ThenK is apparently rational ovek. 301

3.7.2

Cased = 2 (cf.[35Z1 an@38.2). Them(H) = 0 andKy ~ (on)*
(Seo — £). Hence the bigenup,(H) = 0. ThusH is rational ovek by
Castelnuovo’s criterion of rationality.

3.7.3

Cased = 3 (cf.[35.31 an@3.8.3). Themy(H) = 0 andKy ~ 2S,, +

L’ —E, - L. Letp : H — Y be the contraction 06,, andL’. Then
Ky ~ —p(E2) — p(L). Hencepa(Y) = P2(Y) = 0. ThusyY is rational over
k, and so iH.

3.74

Cased = 4 (cf.[35.41 anf3:8.4). Than(H) = 1 andKy ~ 2S. +Ls.
Letp : H — Y be the contraction a6, andLs. ThenKy ~ 0, which
implies thatY is a K3-surface andd = H (the nonsingular minimal
model ofK overk).

3.75

Cased = 6 (cf. BE5L2 anf3B.5). Them(H) = 1 andKy ~ 2S, + L.
Letp : H — Y be the contraction db., andL. ThenKy ~ 0, which
implies thatY is a K3-surface.
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3.7.6

Cased = 7 (cf.[35.2P anf3.8.6). Them(H) = 2 andKy ~ 7 *(Seo +
l) + (@7)* (L) = 2o + é” +2S. + (Tn)*(€x). Letp i H — Y be
the contraction 0B, - andf,. ThenY is a minimal surface with
Ky ~ p.((ocm)*(£)). Hence ((3) = 1. ThenY is a surface of general

type.

3.7.7

Cased = 8 (cf.[35.3.2 an@3.67). Themy(H) = 2 andKy ~ 25 +
loo + 0+ (cn)*(€-). Letp : H = Y be the contraction 0B, loo and

302 f;o. ThenY is a minimal surface withky ~ p.((c7)*(¢-)) and KY) =
HenceY is a surface of general type.

3.7.8

Cased = 9 (cf.35.4P and3.6.8). Thepy(H) = 2 andKy ~ 2S. +
4{ +30 +2E1+L+(0'77) (¢-). Letp : H — Y be the contraction @,
loo t” E; andL. ThenY is a minimal surface withy ~ p.((77)*(¢w))
and ¢<$) = 1. HenceY is a surface of general type.

3.8

Now it is clear that Theoreln3.1 is proved in the argumentfiefore-
going paragraphs. In order to show that there exists a iondtsur-
faces of general type in characterigtic- 5 we shall state the next result
without proof.

Proposition. Let k be an algebraically closed field of characteristic-p
2. Let K: Kk(t, x,y) be the algebraic function field of a hyper surface in
AS:
k
P=xP+yPrlpyP oy 2ty

Then K is rational over k if p= 3 and irrational over k if p> 5. Let
X be the nonsingular minimal model of K over k if2p5. Then X is
a unirational K3-surface if p= 5, and X is a unirational surface of
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general type with gX) = (p— 1)(p — 3)/8 and (K3) = (p - 5)/2 if
p>7.






Bibliography

[1]

Abhyankar, S. S., Eakin, P., Heinzer, W.: On the uniqssna the 303
ring of codficients in a polynomial ring. J. Algebra 23 (1972), 310

- 342.

[2] Abhyankar, S. S., Moh, T. T.: Embeddings of the line in phene.
J. Reine Angew. Math. 276 (1975), 148 - 166.

[3] Abhyankar, S. S., Singh, B.: Embeddings of certain csiivethe
affine plane. Forthcoming.

[4] Artin, M.: On Enriques’ surfaces: Thesis. (Unpublished

[5] Artin, M.: Some numerical criteria for contractibilitgf curves on
algebraic surfaces. Amer. J. math. 84 (1962), 485 - 496.

[6] Artin, M.: On isolated rational singularities of surfe&s Amer. J.
Math. 88 (1966), 129 - 136.

[7] Artin, M., Winters, G.: Degenerate fibers and stable widun of
curves. Topology 10 (1971), 373 - 383.

[8] Ax, J.: Injective endomorphisms of varieties and scheniacific
J. Math. 31 (1969), 1 - 7.

[9] Bombieri, E., Husemoller, D.: Classification and embedd of
surfaces. Proc. Sympos. Pure Math. 29 (1975), 329 - 420.

[10] Bombieri, E., Mumford, D.: Enriques’ classification sifirfaces in
char. p, Il. Complex Analysis and Algebraic Geometry. lwanha
Shoten Publishers - Cambridge University Press, 1977.

247



304

305

248 BIBLIOGRAPHY

[11] Bombieri, E., Mumford, D.: Enriques’ classification sifirfaces in
char. p, lll. Invent. Math. 36 (1976), 197-232.

[12] Chevalley, C.: Introduction to the Theory of Algebrdanctions
of One Variable. Amer. Math. Soc. Mathematical Surveys GvNe
York, 1951.

[13] Fakin, P., Heinzer, W.: A cancellation problem for nd.ecture
Notes in Mathematics. Vol. 311 (pp. 61-77). Berlin-Heidetp
New York: Springer, 1972.

[14] Ganong, R.: On plane curves with one place at infinitytfeom-
ing.

[15] Gieseker, D.: P-ample bundles and their chern claddagoya
Math. J. 43 (1971), 91-116.

[16] Gizatullin, M.H.: On dfine surfaces that can be completed by a
nonsingular rational curve. lzv. Akad. Nauk SSSR, Ser. N4t.
(1970), 778-802; Math. USSR - Izvestija 4 (1970), 787-810.

[17] Grothendieck, A., Dieudonné, J.: Eléments de Gébm’
Algébrique. Inst. Hautes Etudes Sci. Publ. Math. 8, 11, 24,
28, 32.

[18] Grothendieck, A.: Fondements de la Géomeétrie Alghe
- extraits du Séminaire Bourbaki, 1957-62. Paris: Sacidt
Mathématique.

[19] Grothendieck, A.: Séminaire de Géométrie Alggbe (SGA 2).
Amsterdam-paris: North-Holland et Massson, 1968.

[20] Grothendieck, A.: Local Cohomology. Lecture Notes iratife-
matics 41. Berlin-Heidelberg-New York: Springer, 1967.

[21] Hartshorne, R.: Residues and Duality. Lecture Notédathemat-
ics 20. Berlin-Heidelberg-New York: Springer, 1966.

[22] Hironaka, H.: Smoothing of algebraic cycles of smathdnsions.
Amer. J. Math. 90 (1968), 1-54.



BIBLIOGRAPHY 249

[23] Hochster, M.: Non-uniqueness of the ring of fitments in a poly-

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

nomial ring. Proc. Amer. Math. Soc. 34 (1972), 81-82.

Igarashi, T., Miyanishi, M.: Finite subgroups of the@morphism
group of the #ine plane. Forthcoming.

Kambayashi, T.: On the absence of nontrivial separédims of
the dfine plane. J. Algebra 35 (1975), 449-456.

Kambayashi, T., Miyanishi, M., Takeuchi, M.: UnipoteAl-
gebraic Groups. Lecture Notes in Mathematics 414. Berlin-
Heidelberg-New York: Springer, 1974.

Kambayashi, T., Miyanishi, M.: On Forms of thefffne Line
over a Field. Lectures in Mathematics, Department of Matitem
ics, Kyoto University, Vol. 20. Tokyo: Kinokuniya Book-S®Co.
Ltd., 1977.

Kambayashi, T., Miyanishi, M.: On flat fibrations by théiae
line. lllinois J. Math. (to appear).

Kodaira, K.: On compact analytic surfaces, Il. Ann. oatl. 77
(1963), 563-626.

Lipman, J.: Rational singularities, with applicatfoto algebraic
surfaces and unigue factorization. Inst. Hautes EtudesPauil.
Math. 36 (1969), 195-279.

Maruyama, M.: On Classification of Ruled Surfaces. Lees in
Mathematics, Department of Mathematics, Kyoto Univeral.
3. Tokyo: Kinokuniya Book-Store Co. Ltd., 1970.

Miyanishi, M.: An algebraic characterization of théae plane. J. 306
Math. Kyoto Univ. 15 (1975), 169-184.

Miyanishi, M.: Unirational quasi-elliptic surfaces tharacteristic
3. Osaka J. Math. 13 (1976), 513-522.

Miyanishi, M.: Unirational quasi-elliptic surfacedapanese J.
Math. (New Series) 3. (to appear).



250 BIBLIOGRAPHY

[35] Miyanishi, M.: Analytic irreducibility of certain cues on a non-
singular dfine rational surface. Proc. Internat. Sympos. on Alge-
braic Geometry. Kyoto, 1977 (to appear).

[36] Miyanishi, M., Nakai, Y.: Some remarks on strongly ireent
rings. Osaka J. Math. 12 (1975), 1-17.

[37] Miyanishi, M., Sugie, T.: Certainfane plane curves with two
places at infinity. Forthcoming.

[38] Moh, T.T.: On analytic irreducibility ato of a pencil of curves.
Proc. Amer. Math. Soc. 44 (1974), 22-24.

[39] Mumford, D.: Enriques’ classification of surfaces inachp, |I.
Global Analysis. Princeton University Press, 1969.

[40] Nagata, M.: A remark on the unique factorization thearel.
Math. Soc. Japan 9 (1957), 143-145.

[41] Nagata, M.: Lectures on the Fourteenth Problem of HilbEata
Institute of Fundamental Research. Bombay, 1965.

[42] Nagata, M.: A theorem on valuation rings and its appiazs.
Nagoya Math. J. 29 (1967), 85-91.

[43] Nagata, M.: On Automorphism Group kffx, y]. Lectures in Math-
ematics, Department of Mathematics, Kyoto University, . \&l
Tokyo: Kinokuniya Book-Store Co. Ltd., 1972.

307 [44] Nakai, Y.: On locally finite iterative higher derivatis. Osaka J.
Math. (to appear).

[45] ramanujam, C.P.: A topological characterization & #iine plane
as an algebraic variety. Ann. of Math. 94 (1971), 69-88.

[46] Ramanujam, C.P.: Remarks on the Kodaira vanishingrémaoJ.
Indian Math. Soc. 36 (1972), 41-51.

[47] Russell, P.: Forms of thefane line and its additive group. Pacific
J. Math. 32 (1970), 527-539.



BIBLIOGRAPHY 251
[48] Russell, P.: Field generators in two variables. J. ME#foto Univ.
15 (1975), 555-571.

[49] Russell, P.: Simple birational extension of two dimenal &fine
rational domains. Composition Math. 33 (1976), 197-208.

[50] Russell, P.: Good and bad field generators. J. Math. &{biiv.
17 (1977), 319-331.

[51] Safarevit, I.R. et al.: Algebraic Surface. Proc. Stekiast| Math.
75 (1965).

[52] Sathaye, A.: On linear planes. Proc. Amer. Math. Soq(18G6),
1-7.

[53] Serre, J.-P.: Groupes finis d’automorphismes d'anxelad
caux réguliers. Collogue d'Algébre. Exp. 8. Paris: $tamiat
Mathématique.

[54] Sweedler, M.E.: A unit theorem applied to Hopf algebeasl
Amitsur cohomology. Amer. J. Math. 92 (1970), 259-271.

[55] Tate, J.: Genus change in inseparable extensions ofifurfields.
Proc. Amer. Math. Soc. 3 (1952), 400-406.

[56] Wright, D.: Cancellation of variables of the foroT" —a. Preprint.



	Geometry of the affine line
	Locally nilpotent derivations
	Algebraic pencils of affine lines
	Algebraic characterizations of the affine plane
	Flat fibrations by the affine line
	Classification of affine A1-bundles over a curve
	Locally nilpotent........

	Curves on an affine rational surface
	Irreducibility theorem
	Linear pencils of rational curves
	Automorphism theorem
	Finiteness theorem
	Simple birational extensions of a polynomial ring k[x,y]
	Certain affine plane curves with two places at infinity

	Unirational surfaces
	Review on forms of the affine line over a field
	Unirational quasi-elliptic surfaces
	Unirational surface with.....


