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Introduction

1

1. An interesting but still open problem in algebraic geometry is the
following:

ZARISKI’S PROBLEM. If X is an affine algebraic variety over an
algebraically closed field k such that X× A1

k � A3
k, whereAn

k denotes
the n-dimensional affine space over k, is X isomorphic toA2

K?

In considering this problem it seems important and indispensable
to have algebraic (or topological) characterizations of the affine plane
A2

k as an algebraic variety. Several attempts have been made toward
this direction (cf. [45], [32]), though the obtained characterizations are
not good enough to answer the Zariski’s Problem. A main motivation
in writing these notes is to put together the results which have been
obtained so far surrounding this problem.

The said assumptionX × A1
k � A3

k implies the following:

(1) X is a nonsingular affine unirational surface,

(2) theaffine coordinate ring A of X is a unique factorization domain2
whose invertible elements are constants,i.e.,A∗ = k∗,

(3) there lie sufficiently many rational (not necessarily nonsingular)
curves with only one place at infinity on X.

In looking for a criterion forX to be isomorphic toA2 it will be rea-
sonable to assume thatX satisfies the above two conditions (1) and (2),
though the third condition has to be made more precise (or improved).
A precision of the third condition above is the next condition:

v
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(3′) X has a nontrivial action of the additive group scheme Ga.

Then the conditions (1), (2) and (3′) are necessary and sufficient for
X to be isomorphic toA2 (cf. Theorem 3.1, Chapter I). WhenGa acts on
an affine schemeX = Spec(A), theGa-action can be interpreted in terms
of a locally finite iterative higher derivation onA. Indeed, several prob-
lems concerning theGa-action, e.g. to find the subringA0 of invariants
in A and to investigate the properties ofA0 and the canonical morphism
Spec(A) → Spec(A0) induced by the injectionA0 ֒→ A, become easier
to treat by observing the locally finite iterative higher derivation onA
associated with theGa-action. The first two sections of Chapter I are
devoted to the study of locally finite (iterative) higher derivations on
k-algebras.

Instead of the condition (3′) one may consider the next milder con-
dition

(3′′) Xhas an algebraic familyF of closed curves on X parametrized3

by a rational curve such that a general member ofF is an affine
rational curve with only one place at infinity and that two distinct
general members ofF have no intersection on X.

If char(k) = 0 andX satisfies the conditions (1) and (2), the condi-
tions (3′) and (3′′) are equivalent to each other (cf. Theorem 2.3, Chap-
ter I); indeed, a general member ofF is isomorphic toA1. However,
if either one of the conditions (1) and (2) is dropped the equivalence of
(3′) and (3′′) no longer holds (cf. 2.4, Chapter I).

In connection with the condition (3′′) we are interested in an alge-
braic familyF on a nonsingular affine surface, whose general members
are isomorphic toA1. We have the following result (cf. Theorem 4.1.2,
Chapter I):

Let S be a nonsingular variety over k and let f: X → S be a
faithfully flat, affine morphism of finite type such that every fiber of f
is irreducible. Assume that the general fiber of f are isomorphic to
A1. Then there exist a nonsingular variety S′ over k and a faithfully
flat, finite, radical morphism S′ → S such that X×

S
S′ is an A1-bundle

over S′. Thus, ifchar(k) = 0 then X is anA1-bundle over S , and if
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char(k) > 0 the generic fiber f is a purely inseparable k(S)-form ofA1.
(cf. 4.6, Chapter I).

Weare interested especially in the case whereS is the projective 4

line P1 over k. AffineA1-bundles overP1 are classified (cf. Theorem
5.5.4, Chapter I), while the case where the generic fiber off is a purely
inseparablek(P1)-form ofA1 will be studied more closely in Chapter III
in connection with unirational (irrational) surfaces defined overk.

The Zariski’s problem is generalized as follows:

CANCELLATION PROBLEM. Let A and B be k-algebras such that
A[x1, . . . , xn] is k-isomorphic to B[y1, . . . , yn], where x1, . . . , xn

and y1, . . . , yn are indeterminates. Is A then k-isomorphic to B?

A k-algebraA is said to be stronglyn-invariant if A satisfies the
condition: If anyk-algebraB and ak-isomorphismθ: A[x1, . . . , xn]

∼
−→

B[y1, . . . , yn] thenθ(A) = B. The property thatA is strongly 1-invariant
is closely related to the property thatA is not birationally ruled over
k (cf. . Lemma 6.2, Chapter I), and the strong 1-invariance of ak-
algebraA is studied via locally finite (iterative) higher derivationon A
(cf. Lemma 6.3, Proposition 6.6.2, etc., Chapter I).

2. The significance of studying a family of (nonsingular) rational
curves with only one place at infinity on a nonsingular affine rational
surface may be gathered from the foregoing discussions. Several im-
portant results have been obtained in this line (cf. Abhyankar-Moh [2],
Moh [38] and Abhyankar-Singh [3]).

Letk be an algebraically closed field of characteristicp. LetC0 be an 5

irreducible curve with only one place at infinity onA2 := Spec(k[x, y])
defined by f (x, y) = 0. EmbedA2 into the projective planeP2 as the
complement of a lineℓ0. Let C be the closure ofC0 in P2, let C · ℓ0 =

d0 · P0 and letd1 = multP0 C. Let Cα be the curve onA2 defined by
f (x, y) = α for α ∈ k and letΛ( f ) be the linear pencil onP2 spanned by
C andd0ℓ0. Then the results are stated as follows:

(i) IRREDUCIBILITY THEOREM (Moh [38]; cf. Section 1, Chap-
ter II).

Assume that p× d0 or p× d1. Then the curve Cα is an irreducible
curve with only one place at infinity for an arbitrary constant α



viii

of k.

(ii) EMBEDDING THEOREM (Abhyankar-Moh [2]; cf. Section 1,
Chapter II).Assume that p× d0 or p× d1, and that C0 is nonsin-
gular and rational. Then there exists a biregular automorphism
ofA2 which maps C0 into the y-axis.

(iii) FINITENESS THEOREM (Abhyankar-Singh [3]; cf. Section 4,
Chapter II).Assume that p= 0. By an embedding ofC0 into A2

we mean a biregular mappingǫ of C0 intoA2; two embeddingsǫ1
andǫ2 of C0 intoA2 are said to be equivalent to each other if there
exists a biregular automorphismρ ofA2 such thatǫ2 = ρ ·ǫ1. Then
there exist only finitely many equivalence classes of embeddings
of C0 intoA2.

In their proofs the main roles are played by the theory of approxi-
materoots of polynomials, i.e., the theory of generalized Tschirnhausen6

transformations. We shall present more geometric proofs ofthese the-
orems (though we could not prove the third theorem in full generality),
which are based on the notions of admissible data and the Euclidean
transformations (as well as the (e, i)-transformations) associated with
admissible data. Roughly speaking, our idea of proof is explained as
follows.

Let X be a nonsingular affine rational surface defined overk and
let C0 be an irreducible closed curve onX such thatC0 has only one
place at infinity. Suppose that there exists an admissible datum D =

{V,X,C, ℓ0, Γ, d0, d1, e} be an admissible datum for (X,C0) (cf. Definition
1.2.1, Chapter II).C is then linearly equivalent tod0(eℓ0 + Γ) on V,
and the linear pencilΛ on V spanned byC andd0(eℓ0 + Γ) has base
points centered atP0 := C ∩ ℓ0 and its infinitely near points. Ifp ×
(d0, d1) the Euclidean transformation or the (e, i)-transformation ofV
associated withD plays a role of producing a new admissible datum
D̃ = {Ṽ,X, C̃, ℓ̃0, Γ̃, d̃0, d̃1, ẽ} for (X,C0) such that either̃d0 < d0 or
d̃0 = d1 and d̃1 < d1 and thatp × (d̃0, d̃1). After the Euclidean trans-
formations or the (e, i)-transformations associated with admissible data
repeated finitely many times we reach to an admissible datumD̂ =

{V̂,X, Ĉ, ℓ̂0, Γ̂, d̂0, d̂1, ê} for (X,C0) such thatd̂0 = d̂1 = 1. Then, by
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the (̂e, ê)-transformation of̂V associated witĥD , we obtain a nonsingu-
lar projective surfaceV′ such that the proper transformΛ′ of Λ onΛ′

is free frombase points, that if∆′ is the member ofΛ′ corresponding to 7

d0(eℓ0+Γ) of Λ then∆′ is the unique irreducible member ofΛ′, that the
fibration ofV′ defined byΛ′ has a cross-sectionS andV′−S∪Supp(∆′)
is isomorphic toX, and that ifC′ is the proper transform ofC onV′ then
C′−C′ ∩S is isomorphic to the given curveC0. Retaining the notations
C0, C, ℓ0, d0 andd1 as before the statement of the irreducibility theorem,
{P2

k,A
2
k,C, ℓ0, φ, d0, d1, 1} is an admissible datum for (A2

k,C0). Hence by
the foregoing arguments we know that the curveCα : f (x, y) = α is an
irreducible curve with only one place at infinity for everyα ∈ k, and that
if C0 is isomorphic toA1

k thenCα is isomorphic toA1
k for everyα ∈ k.

The theorems (i) and (ii) can be proved in this fashion. The foregoing
process of eliminating the base points ofΛ( f ) in conjunction with Artin-
Winters’s theorem [7] on degenerate fibers of a curve of genusg and the
Kodaira vanishing theorem by Ramanujam [46] proves the weakened
version of the finiteness theorem. Sections 1 and 4 of ChapterII are
devoted to the proofs of these theorems.

Furthermore, we can give a new proof of the structure theoremon
the automorphism group Autk k[x, y] over a field of arbitrary character-
istic, which is based on the foregoing arguments of eliminating the base
points of the pencilΛ( f ) and an easy lemma on reducible fibers of a
fibration by rational curves (cf. Sections 2 and 3 of Chapter II).

In Sections 2 and 6 of Chapter II, some related topics are discussed.
Let C0 be a nonsingular rational curve onA2

k := Spec(k[x, y])defined 8

by f (x, y) = 0; C0 may have one or more places at infinity. LetCα be
the curve onA2

k defined by f (x, y) = α for α ∈ k, and letΛ( f ) be the
linear pencil onP2

k defined by the inclusion of fieldsk( f ) ֒→ k(x, y),
whereA2

k is embedded intoP2
k as the complement of a lineℓ0. Then

the generic member ofΛ( f ) is a rational curve if and only iff is a field
generator, i.e.,k(x, y) = k( f , g) for someg ∈ k(x, y) (cf. Lemma 2.4.1,
Chapter II), and iff is a field generator thenC0 has at most two points
(including infinitely near points) on the lineℓ0 at infinity (cf. Lemma
2.4.2, Chapter II). In Section 6 of Chapter II the following theorem is
proved:
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Assume that the characteristic of k is zero. With the above notations,
f = c(xdye − 1) after a suitable change of coordinates x, y of k[x, y],
where c∈ k∗ and d and e are positive integers with(d, e) = 1, if and
only if the following conditions are met:

(a) f is a field generator,

(b) Cα has exactly two places at infinity for almost allα ∈ k,

(c) Cα is connected for every a∈ k.

In Section 5 of Chapter II, we shall study the structure of theaffine
coordinate ringA := k[x, y, f /g] of a hypersurface onA3

k of the type:
gz− f = 0, where f , g ∈ k[x, y] and (f , g) = 1. Namely, we shall
show that the divisor class groupCℓ(A) and the multicativegroupA∗ are9

completely determined if Spec(A) has only isolated singularities, and
that, in case of char(k) = 0, Spec(A) has nontrivialGa-action if and only
if g ∈ k[y] after a suitable change of coordinatesx, y of k[x, y].

3. Letk be an algebraically closed field of characteristicp > 0. Let
X be a nonsingular projective surface, and letf : X→ P1 be a surjective
morphism such that a general fiber off is an irreducible rational curve
with a single cusp as its singularity. Then the generic fiberXR of f with
the unique singular point deleted off is a purely inseparable form ofA1

over the function fieldR := k(P1), andX is a unirational surface over
k. In Chapter III, we shall describe the structure of such a surfaceX in
the case where the arithmetic genusg of X is either 1 or 2, under the
additional assumption thatf has a rational cross-section. Wheng = 1
thenp is either 2 or 3 andX is a unirational quasi-elliptic surface; there
exist K3-surfaces and surfaces with canonical dimensionκ = 1 besides
rational surfaces (cf. Theorems 2.1.1 and 2.1.2, Chapter III). Wheng =
2 thenp is either 2 or 5; ifp = 5 there existK3-surfaces and surfaces of
general type besides rational surfaces (cf. Section 3, Chapter III).
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Notations and conventions 10

Notations and conventions of the present notes conform to the gen-
eral current practice. Therefore we shall make some additional notes
below.

1. LetA be an algebra over a fieldk. ThenA∗ denotes the multiplica-
tive group of invertible elements ofA; thusk∗ denotesk − (0). If
A is an integral domainQ(A) denotes the quotient field ofA. A
unique factorization domainA is sometimes called a factorial do-
main (or ring). If AP is factorial for every prime idealP of A
then A is called locally factorial. For an affine k-variety X, the
affine coordinate ring ofX is denoted byk[X] if there is no fear of
confusingk[X] and a polynomial ring overk.

2. Then-dimensional affine space and projective space defined over
k are denoted respectively byAn

k (orAn) andPn
k (orPn). We denote

byA1
∗ thek-scheme isomorphic to the underlyingk-scheme of the

multiplicativek-group schemeGm := Spec(k[t, t−1]). The additive
k-group scheme is denoted byGa (or Ga,k).

3. Let V be a nonsingular projective surface defined over an alge-
braically closed field. Then we use the following notations:

KV: a canonical divisor (or the canonical divisor class) ofV.

ωV: the dualizing invertible sheaf onV, i.e., ωV � OV(KV).
χ(OV) (or χ(V,OV)): the Euler-Poincare characteristic ofV,

χ(OV) =
2∑

i=0
(−1)i dimHi(V,OV). 11

Pr(V): the r-genus ofV for a positive integerr, i.e., Pr (V) =
dim H0(V, ω⊗r

V ).

Pg(V): the geometric genus ofV.

Pa(V): the arithmetic genus ofV, i.e., pa(V) = χ(OV) − 1.

κ(V) (or κ): the canonical dimension ofV, i.e., κ(V) = Sup
r>0

dim

ρr (V) whereρr is the r-th canonical mapping ofV defined
by |rKV |.
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Let D andD′ be divisors onV. Then we use the notations:

OV(D): the invertible sheaf attached toD.

pa(D): the arithmetic genus ofD, i.e., pa(D) =
1
2

(D ·D+KV)+1.

(D · D′): the intersection multiplicity ofD andD′.

(D2): the self-intersection multiplicity ofD.

D ∼ D′: D is linearly equivalent toD′.

D > 0: D is an effective divisor.

|D|: the complete linear system defined byD.

|D| −
∑

mi pi : the linear subsystem of|D| consisting of members
of |D| which pass through the pointspi ’s with multiplicities
≧ mi , wheremi ’s are positive integers.

LetC be an irreducible curve onV and letP be a point onC. Then
multP C denotes the multiplicity ofC at P.

4. Letf : W→ V be a birational morphism of nonsingular projective12

surfaces. IfD is an effective divisor onV then f ∗(D) denotes the
total transform (or the inverse image as a cycle) ofD by f ; f ′(D)
denotes the proper transform ofD by f . If C is an irreducible
curve onV, f −1(C) denotes the set-theoretic inverse image ofC by
f . On the other hand, ifD′ is an effective divisor onW then f∗(D′)
denotes the direct image ofD′ by f as a cycle. IfΛ is a linear
pencil onV consisting of effective divisors thenf ′Λ denotes the
proper transform ofΛ; namely, if f ∗Λ is the linear pencil onW
consisting of the total transformsf ∗D of membersD of Λ then
f ′Λ is the pencilf ∗Λ with all fixed components deleted off. If Λ′

is a linear pencil onW consisting of effective divisors thenf∗Λ′

denotes the linear pencil onV consisting of the direct imagesf∗D′

of membersD′ of Λ′.

5. If f : W → V is a finite morphism of nonsingular projective
surfaces then the notationsf ∗(C), f −1(C) and f∗(C′) conform to
those in the case wheref is a birational morphism.
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6. Let Λ be an irreducible linear pencil of effective divisors on a
nonsingular projective surfaceV. An irreducible curveS on V is
called a quasi-section ifS is not contained in any member ofΛ
andΛ has no base points onS. A quasi-sectionS of Λ is called a
cross-section ofΛ if (S · D) = 1 for a general memberD of Λ.

7. AsurfaceV defined over a fieldk is said to be unirational overk if 13

there exists a dominating rational mappingf : P2
k → V.

8. The present notes consist of three chapters. When we referto a
result stated in the same chapter we only quote the number of the
paragraph (e.g. (cf. Theorem 1.1) or (cf. 1.1)); when we refer to
a result stated in other chapters we quote it with the number of
chapter (e.g. (cf. Theorem (I.1.1)) or (cf. I.1.1)).
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Part I

Geometry of the affine line

1 Locally nilpotent derivations
14

1.1

Throughout this section,x denotes a fixed field of characteristicp. Let A
be ak-algebra.A locally finite higher derivationon A is a set ofk-linear
endomorphismsD = {D0,D1, . . .} of thek-vector spaceA satisfying the
following conditions:

(1) D0 = identity; Di(ab) =
∑

j+ℓ=i
D j(a)Dℓ(b) for anya, b of A.

(2) For any elementa of A, there exists an integern > 0 such that
Dm(a) = 0 for every integerm≧ n.

The higher derivationD is callediterative if D satisfies the addi-
tional condition:

(3) DiD j =
(
i+ j
i

)
Di+ j for all i, j ≧ 0.

If D = {D0,D1, . . .} is a locally finite higher derivation ofA, then 15

D1 is a k-trivial derivation onA. If D is iterative, it is an easy
exercise to show that:

(3-1) If the characteristicp is zero,Di =
1
i!

(D1)i for everyi > 0;

1
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(3-2) If p is positive,Di =
(D1)i0(DP)i1 . . . (Dpr )ir

(i0)!(i1)! . . . (ir )!
, wherei = i0 +

i1p+ · · · + ir pr is a p-adic expansion ofi.

The fact (3-1) implies that ifp = 0 a locally finite iterative higher
derivationD is completely determined byD1, which satisfies the
condition that, for any elementa of A, Dn(a) = 0 for sufficiently
largen. Such ak-trivial derivation onA is calledlocally nilpotent.

1.2

Lemma. Let A be a k-algebra. Then the following conditions are equiv-
alent to each other:

(1) D is a locally finite higher derivation on A.

(2) The mappingϕ : A→ A[t] given byϕ(a) =
∑
i≥0

Di(a)ti is a homo-

morphism of k-algebras, where t is an indeterminate. Similarly,
the following conditions are equivalent to each other:

(1′) D is a locally finite iterative higher derivation on A.

(2′) ϕ : A → A[t] defined in the above condition(2) is a homo-
morphism of k-algebras such that(ϕ ⊗ id.)ϕ = (id.⊗∆)ϕ,
where∆ : k[t] → k[t] ⊗ k[t] is a homomorphism of k-16

algebras defined by∆(t) = t ⊗ 1+ 1⊗ t (cf. the commutative
diagram below);

A

ϕ

��

ϕ // A[t] = A⊗
k
k[t]

ϕ⊗id.

��
A⊗

k
k[t]

id.⊗∆
// A⊗

k
k[t]⊗

k
k[t]

(3′) aϕ : Spec(A)×
k
Ga,k → Spec(A) is an action of the additive

k-group scheme Ga,k on Spec(A).
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Proof. The equivalence of the conditions (1) and (2) is a reformulation
of the definition. The equivalence of the conditions (1′), (2′) and (3′)
follows easily from an equality:

∑

i, j≥0

DiD j(a) ⊗ ti ⊗ t j
=

∑

ℓ≥0

Dℓ(a)(t ⊗ 1+ 1⊗ t)ℓ.

�

1.3

Let D = {D0,D1, . . .} be a locally finite higher derivation on ak-algebra
A. An elementa of A is calleda D-constantif Dn(a) = 0 for every
n > 0, or synonymously ifϕ(a) = a. The setA0 of all D-constants is
clearly ak-subalgebra ofA.

1.3.1

Lemma . Let A, D and A0 be as above. Assume that A is an integral
domain. Then the following assertions hold:

(1) A0 is an inert subring of A. Namely, if a= bc with a ∈ A0 and
b, c ∈ A then b, c∈ A0. Therefore, if A is a unique factorization17

domain and A0 is noetherian, A0 is a unique factorization domain.

(2) A∗ (:= the multiplicative group of invertible elements inA) is con-
tained in A0; hence A∗ = A∗0.

(3) A0 is integrally closed in A.

Proof. (1) Assume thata = bc with a ∈ A0 andb, c ∈ A, thena =
ϕ(b)ϕ(c), whence degt ϕ(b) = degt ϕ(c) = 0. This shows thatb,
c ∈ A0.

(2) Let a ∈ A∗ and letb be its inverse. Thenϕ(a)ϕ(b) = 1 whence
degt ϕ(a) = degt ϕ(b) = 0. Hencea ∈ A0.

(3) Assume that an elementa of A satisfies a monic equation,

Xn
+ c1Xn−1

+ · · · + cn = 0 with c1 . . . , cn ∈ A0.
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Then, by applyingϕ, one gets

ϕ(a)n
+ c1ϕ(a)n−1

+ · · · + cn = 0,

whence follows that degt ϕ(a) = 0. Hencea ∈ A0.
�

1.3.2

Assume thatA is an integral domain, and letK be the quotient field ofA.
Thek-algebra homomorphism,ϕ : A → A[t] associated with a locally
finite higher derivationD is naturally extended to a homomorphismφ :
K → K[[ t]] by setting

φ

(a
b

)
=
ϕ(b)
ϕ(a)

for a, b ∈ A with a , 0.

The homomorphismφ defines, in turn, ak-trivial higher derivationD =18

{D0 = id .,D1, . . .} on K such thatφ(λ) =
∑
i≥0

Di(λ)ti for λ ∈ K and that

Di |A = Di for every i ≥ 0. We setK0 := {λ ∈ K; Di(λ) = 0 for every
i > 0}. ThenK0 is a sub field ofK, and forλ ∈ K, λ ∈ K0 if and only if
φ(λ) = λ. We have the following:

Lemma. With the notations as above, the following assertions hold:

(1) K0 is algebraically closed in K.

(2) K0 ∩ A = A0; if D is iterative K0 is the quotient field of A0.

Proof. (1) Assume thatλ ∈ K satisfies an algebraic equation.

Xn
+ µ1Xn−1

+ · · · + µn = 0 with µ1, . . . , µn ∈ K0.

Then, by applyingφ, one obtains

φ(λ)n
+ µ1φ(λ)n−1

+ · · · + µn = 0.

Note that ifφ(λ) , λ thenφ(λ) is analytically independent over
K; henceφ(λ) does not satisfy a nontrivial algebraic equation over
K0. Thusφ(λ) = λ, i.e.,λ ∈ K0.
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(2) The equalityK0 ∩ A = A0 is clear becauseφ(a) = ϕ(a) for a ∈ A.
Assume now thatD is iterative. We have only to show that any19

λ ∈ K0 is written asλ = b0/a0. With a0, b0 ∈ A0. Write λ = b/a
with a, b ∈ A anda , 0. Let

ϕ(a) = a+ a1t + · · · + amtm with am , 0

and
ϕ(b) = b+ b1t + · · · + bntn with bn , 0.

SinceDi(am) = DiDm(a) =
(
i+m

i

)
Di+m(a) = 0 for i > 0, we know

that am ∈ A0. Similarly, bn ∈ A0. Sinceφ(λ) = λ implies that
aϕ(b) = bϕ(a) we have:n = m andabn = bam. Henceb/a =
bn/am.

�

1.3.3

If D is not iterativeK0 is not necessarily the quotient field ofA0, as is
shown by

Example.Let A := k[x, y] be a polynomial ring in two variables overk.
Define ak-algebra homomorphism

ϕ : A→ A[t] by ϕ(x) = x+ xt and ϕ(y) = y+ yt

which defines a locally finite derivationD on A. With respect to this
higher derivation,A0 = k, while, after extendingϕ to ak-algebra homo-
morphismφ : k(x, y)→ k(x, y)[[ t]], we haveφ(y/x) = y(1+ t)/x(1+ t) =
y/x. Thus,K0 , the quotient field ofA0.

1.4

We prove the following:

Lemma. Assume that A is an integral domain and that D is iterative. If
there exists an element u of A such that D1(u) = 1 and Di(u) = 0 for all
i > 1, then A= A0[u] and u is algebraically independent over A0.
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Proof. For any elementa of A we setℓ(a) := degt ϕ(a) and call itthe D- 20

lengthof a. By induction on theD-lengthℓ(a) we show thata ∈ A0[u]. If
ℓ(a) = 0 thena ∈ A0. Assume thatn : ℓ(a) > 0. Letan := Dn(a). Then,
as was noted in the proof of Lemma 1.3.2,an ∈ A0. Sinceℓ(a−anun) < n
we know thata − anun ∈ A0[u], hence thata ∈ A0[u]. Therefore we
know thatA = A0[u]. By virtue of Lemma 1.3.2, it is clear thatu is
algebraically independent overA0. �

1.5

In studying an integral domainA endowed with a locally finite iterative
higher derivation, a key result is the following:

Lemma. Assume that A is an integral domain and that D is iterative.
If D is nontrivial (i.e., A , A0) then there exist an element c, 0 of
A0 and an element u of A such that A[c−1] = A0[c−1][u], where u is
algebraically independent over A0. Conversely, if A is finitely generated
over a subring A0 the existence of elements c and u satisfying the above
conditions implies that A has a locally finite iterative higher derivation.

1.5.1

The proof of the above lemma is given in the paragraphs 1.5.1∼ 1.5.4.
Let Ai := {a ∈ A; Dn(a) = 0 for all n > i}. ThenAi is anA0-module, and
we haveA =

⋃
i≥0

Ai. An integern is calleda jump indexif An−1 & An.

If 1 is a jump index, letu be an element ofA1 − A0 and letc = D1(u).
Thenc ∈ A0. The higher derivationD can be extended naturally to a21

locally finite iterative higher derivation onA[c−1] by settingDi(a/cr ) =
Di(a)/cr , with respect to which the ring ofD-constants isA0[c−1]. Since
D1(u/c) = 1 andDi(u/c) = 0 for all i > 1 we have by virtue of 1.4 that
A[c−1] = A0[c−1][u]. If the characteristicp is zero, let a be an element of
A such thats := ℓ(a) > 0 and letu := Ds−1(a). Thenu ∈ A1−A0. Hence
1 is a jump index, and we haveA[c−1] = A0[c−1][u] with c = sDs(a).
Thus we may assume in the rest of the proof that the characteristic p is
positive and that the first jump index is larger than 1.
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1.5.2

Lemma. With the notations and assumptions as above we have the fol-
lowing:

(1) The first jump index n is a power of p, say n= pr .

(2) The m-th jump index is mpr (m= 1, 2, . . .).

Proof. (1) Letn be the first jump index, and let

n = n0 + n1p+ · · · + nr pr with nr , 0

be thep-adic expansion ofn. Assume thatn is not a power ofp.
Then we have: Either (i)n0 ≥ 1 or (ii) n0 = 0 andn1 + · · · + nr ≥

2. In case (i),n . 0 (mod p). Let a be an element ofAn −

An−1, and leta′ = Dn−1(a). Thena′ ∈ A1 − A0 becauseD1(a′) =
D1Dn−1(a) = nDn(a) , 0 andDi(a′) =

(
n+i−1

i

)
Dn+i−1(a) = 0 for

i > 1. This contradicts the assumption thatn > 1. In case (ii), let 22

a be an element ofAn − An−1, and leta′ = Dpr (a). SinceDi(a′) =
DiDpr (a) =

(
pr
+i
i

)
Dpr+i(a) = 0 for i > n− pr andn− pr < n− 1,

we know thata′ ∈ An−pr = A0. On the other hand,Dn−pr (a′) =
Dn−pr Dpr (a) = nr Dn(a) , 0, which implies thata′ < A0 because
n− pr ≥ 1. This is a contradiction. Thusn = pr .

(2) Let u ∈ Apr − A0. For any integerm ≥ 1, um ∈ Ampr − Ampt−1

becauseϕ(um) = ϕ(u)m andDpr (u) is the leading coefficient of a
polynomialϕ(u) in t. Hencempr is a jump index form= 1, 2, . . ..
Let q be the least jump index which is not a multiple ofpr , and let

dpr < q < (d + 1)pr with d ≥ 1.

Let a ∈ Aq − Aq−1 and leta′ = Ddpr (a). Let q0 := q− dpr < pr .
ThenDq0(a

′) = Dq0Ddpr (a) = Dq(a) , 0, which implies thatA0 &

Aq0. becausea′ ∈ Aq0 − A0. This is a contradiction. Therefore,
every jump index is of the formmpr(m= 1, 2, . . .).

�
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1.5.3

Proof of Lemma 1.5.Let u∈ Apr−A0. First, we assert that if Dm(u) , 0
for 0 < m≦ pr then m is a power of p and Dm(u) ∈ A0. Indeed, assume
that Dm(u) , 0 for 0 < m≦ pr , and let

m= m0 +m1p+ · · · +msps(ms , 0)

be the p-adic expansion of m. If either ms ≧ 2 or mi , 0 for i < s, let23

a = Dps(u). Then Dm−ps(a) = Dm−psDps(u) = msDm(u) , 0 and Di(a) =
0 if i > pr − ps; hence a∈ Apr−ps − A0. This is a contradiction. Thus, m
is a power of p. On the other hand, Dm(u) ∈ Apr−m = A0 since m> 0.
The first assertion is now verified. Let c be the product of all Dm(u) , 0
for 0 < m≦ pr . Since c∈ A0, we can extend D uniquely to A[c−1]. Now,
we assert that A[c−1] = A0[c−1][u]. For this, we have only to show that
every element a of A is contained in A0[c−1][u]. For a ∈ A, there exists
an integer m such that a∈ Ampr . Let a1 := a − Dmpr (a)Dpr (u) − mum.
Then Dmpr (a1) = 0, whence a1 ∈ A(m−1)pr . By induction on m we know
that a ∈ A0[c−1][u]. by virtue of Lemma 1.3.2, it is clear that u is
algebraically independent over A0.

1.5.4

Proof continued. Conversely, assume thatA[c−1] = A0[c−1][u] for a
subringA0 and elementsc ∈ A0 andu ∈ A, whereu is algebraically
independent overA0 andA is finitely generated overA0. Define a locally
finite iterative higher derivation∆ on A[c−1] by a homomorphism of
A0[c−1]-algebrasϕ′ : A[c−1] → A[c−1][ t′] (t′ being a variable) such that
ϕ′(u) = u+ t′. SinceA is finitely generatedϕ′ induces a homomorphism
of A0-algebrasϕ : A→ A[t] with t′ = CNt for a sufficiently large integer
N. Then it is easy to see thatϕ defines a locally finite iterative higher24

derivationD on A such thatA0 is the set ofD-constants inA.

1.6

In this paragraph, we assume thatA is an integral domain andA is
finitely generated overk. Let D be a locally finite higher derivation.
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As in 1.3, we denote byA0, K andK0 the subring ofD-constants, the
quotient field ofA and the sub field ofD-constants ofK, respectively.
Concerning a problem whetherA0 is finitely generated overk, we have
only a partial result due to Zariski (cf. Nagata [41; p.52]),which is stated
as follows:

Lemma. With the notations and assumptions as above, we have:

(1) If trans.degk K0 = 1, then A0 is finitely generated over k.

(2) If A is normal andtrans.degk K0 = 2, then A0 is finitely generated
over k.

2 Algebraic pencils of affine lines
25

In this section the ground fieldk is assumed to be algebraically
closed.

2.1

Let A be an affinek-domain (i.e., ak-algebra which is finitely generated
over k and is an integral domain), and letD be a locally finite higher
derivation onA. Let A0 be the subring ofD-constants, and letK andK0

be respectively the quotient field ofA and the sub field ofD-constants
of K. Let X := Spec(A), and let f : X × A1 → X be thek-morphism
associated withϕ : A→ A[t] (cf. 1.2). For any pointP of X, denote by
C(P) the imagef (P× A1) on X. ThenC(P) is either a point or a closed
irreducible rational curve with one place at infinity1. If A , A0 then the
setF := {C(P); P ∈ X,C(P) , a point} is a family of irreducible rational
curves with one place at infinity. IfD is iterative f is the morphism
giving rise to an action of the additive group schemeGa (cf. 1.2) and
F is the set ofGa-orbits;F contains a subsetF ′ whose members are
parametrized by Spec(A0[c−1]) (cf. 1.5). In this section, we shall study
the setF more closely when dimA = 2.

1An irreducible curveC on an affine variety is said to have one place at infinity ifC
has only one place having no center onX.



10 Geometry of the affine line

2.2

Let Y := Spec(A0), and letq : X → Y be the morphism associated
with the inclusionA0 ֒→ A. Then we have:q · f = q · pr1, where26

pr1 : X × A1 → X is the projection to the first factor. Henceq(C(P)) =
q(P) for P ∈ X; namelyC(P) is contained in a fiber ofq. Moreover, if
K0 = Q(A0) (= the quotient field ofA0), then the general fibers ofq are
irreducible.

2.2.1

Lemma. Assume that k is of characteristic zero, D is nontrivial,dim A =
2 and A is normal. Assume, moreover, that K0 = Q(A0) and trans.degk
K0 = 1. Then there exist elements c∈ A0 and u∈ A such that A[c−1] =
A0[c−1][u], where u is algebraically independent over A0.

Proof. Note thatY := Spec(A0) is a nonsingular curve sinceA is nor-
mal (cf. Lemma 1.3.1, (3)). EmbedX into a projective surfaceV as an
open set; we may assume thatV is nonsingular at every point ofV − X
by desingularizing singularities ofV − X if necessary. SinceK0 is alge-
braically closed inK and trans.degk K0 = 1, K0 defines an irreducible
pencilΛ on V such that ifC is a general member ofΛ thenC ∩ X is a
fiber of q. HenceΛ has no base points onX. We may assume thatΛ
has no base points2; if necessary we can eliminate the base points ofΛ

by a succession of quadratic transformations with centers at points on
V − X and their suitable infinitely near points. Letq̃ : V → Ỹ be the
morphism defined byΛ; then d̃|X = q : X → Y. Let Z := q̃−1(Y) and
let π := q̃|Z. Let S be an irreducible component ofZ − X such thatS27

intersects the general fibers ofq̃; thenS is a cross-section ofπ because a
general fiber ofq has only one place at infinity andk is of characteristic
zero1. Moreover by Bertini’s theorem the general fibers ofπ are nonsin-
gular rational curves. Then, by virtue of Hironaka [22; Theorem 1.8],
there exists a nonempty open setU of Y such thatπ−1(U) � U × P1.

2SinceV is nonsingular at every point ofV − X, Λ is a linear pencil ifΛ has base
points.

1Indeed,π|S : S→ Y is a generically one-to-one mapping. Hence it is birational.
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Hence,q−1(U) = π−1(U) − S ∩ π−1(U) � U × A1. This shows that our
assertion holds. �

2.2.2

Lemma 2.2.1 shows that the higher derivationD is determined uniquely
onA[c−1] by those valuesDi(u) = gi(u)(i > 0) or byϕ(u) = u+

∑
i>0

gi(u)ti ,

wheregi(u) ∈ A0[c−1][u]. Then,D is iterative as higher derivation onA
if and only if g1(u) ∈ (A0[c−1])∗ andgi(u) = 0 for i > 1. Conversely,
assume thatA[c−1] = A0[c−1][u] for a subringA0 and elementsc ∈
A0 andu ∈ A, whereu is algebraically independent overA0 and A is
finitely generated overA0. For anygi(u) ∈ A0[c−1][u](1 ≤ i ≤ n), not
all of which are zero, we can define a locally finite higher derivation
D′ on A[c−1] by a homomorphism ofA0[c−1]-algebrasϕ′ : A[c−1] →

A[c−1][ t′] (t′ being a variable) given byϕ′(u) = u +
n∑

i=1
gi(u)t′ i. Since

A is finitely generated overA0 we may find an integerN > 0 such that 28

the homomorphismϕ′ : A[c−1] → A[c−1][ t′] ֒→ A[c−1][ t] with t′ = cNt
gives rise to a homomorphism ofA0-algebrasϕ : A → A[t]. Then
ϕ defines a locally finite higher derivationD on A such thatA0 is the
subring ofD-constants inA, Q(A0) is the sub field ofD-constants in
K := Q(A) and trans.degk K0 = 1.

2.2.3

Note that if the curves inF have a point in common we haveA0 = k.
Indeed, if trans.degk Q(A0) ≧ 1 two curves inF belonging to distinct
fibers ofq : X → Y have no points in common. Hence, trans.degk Q
(A0) = 0, which implies thatA0 = k. An example of a locally finite
higher derivationD, in which the curves inF have a point in common,
is given by the following:

Example .Let A be the affine ring of the affine cone of an irreducible
projective varietyU. Write A = k[Z0, . . . ,Zn]/(F1, . . . , Fm], whereF1,
. . . , Fm are homogeneous polynomials ink[Z0, . . . ,Zn]. Define a higher
derivationD′ onk[Z0, . . . ,Zn] by D′0 = i.d., D′1(Zi) = Zi andD′j(Zi) = 0



12 Geometry of the affine line

for 0 ≦ i ≦ n and j ≧ 2. ThenD′ induces a nontrivial locally finite
higher derivationD onA; the setF consists of lines inAn+1 connecting
the point (0, . . . , 0) and points ofU; A0 = k andK0 (= the subgield of
D-constants inK := Q(A)) � k(U).

2.3

An interesting problem is to ask the following: LetX be an affine surface
defined overk and letF be an algebraic family of the affine lines on29

X; when are all (or almost all) members ofF of the formC(P) with
P ∈ X for a locally finite (or locally finite iterative) higher derivation on
the affine ring ofX? A partial answer to this problem is given by the
following:

Theorem.Let A be a regular, rational, affine k-domain of dimension2
and let X be the affine surface defined by A. Assume that k is of charac-
teristic zero, that A is a unique factorization domain and that A∗ = k∗.
Let F be an algebraic family of closed curves on X parametrized by
a rational curve such that a general member ofF is an affine rational
curve with only one place at infinity and that two distinct general mem-
bers ofF have no intersection on X. Then there exists a locally finite
iterative higher derivation D on A such that almost all members of F
are the Ga-orbits with respect to the associated Ga-action on X.

2.3.1

The proof of the above theorem is given in the paragraphs 2.3.1∼ 2.3.3.
Let us embedX into a nonsingular projective surfaceV as an open set;
note thatV − X is of pure co-dimension 1 inV. We have then:

Lemma. Let A, X and V be as above. If V− X is irreducible then V is
isomorphic to the projective planeP2 and V− X is isomorphic to a line.

Proof. Let V0 be a relatively minimal rational surface dominated byV;30

V0 is isomorphic toP2 or Fn(n ≧ 0, n , 1); V is obtained fromV0 by
a succession of quadratic transformationsV = Vr → . . . → V0. Then
Pic(V) is isomorphic to a freeZ-module of rankr + 1 or r + 2 according
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asV0 � P
2 or V0 � Fn. The assumption that Pic(X) = (0) andV − X is

irreducible implies thatV = V0 � P
2 andV − X is a line. �

2.3.2

Lemma. Let A, X and V be as above. Then there exists an irreducible
linear pencilΛ on V such that for a general member C ofΛ, C∩ X is a
member ofF .

Proof. Let T be a rational curve and letW be a sub variety ofX × T
such that if we denote byp1 and p2 the projections ofW onto X andT
respectively, then for any pointt of T, p1 ∗ (p−1

2 (t)) is a member ofF .
Since two distinct members ofF have no intersection onX, it is easy to
ascertain thatp1 : W → X is a birational morphism and general fibers
of p2 : W→ T are irreducible. In other words, if we identifyk(X) with
k(W) by p1 andk(T) as a sub field ofk(W) by p2, k(T) is algebraically
closed ink(X). Hencek(T) defines an irreducible linear pencilΛ on V
such that for a general pointt of T, the memberCt of Λ corresponding
to t cuts out a memberCt ∩ X of F on X. �

2.3.3

Proof of the theorem .By the second theorem of Bertini, a general
member C of the pencil constructed in 2.3.2 has no singular points out- 31

side base points ofΛ. SinceΛ has no base points on X and C∩ X
is a rational curve with only one place at infinity, C∩ X is isomor-
phic toA1 andΛ has at most one base point which will lie on V− X
if it exists. Then by replacing V by the surface which is obtained from
V by a succession of quadratic transformations with centersat base
points (including the infinitely near base points) ofΛ and replacingΛ
by its proper transform, we may assume thatΛ has no base points. Let
f : V → P1 be the morphism defined byΛ; f has a cross-section S
such that S⊂ V − X (cf. the proof of Lemma 2.2.1). Since the general
fibers of f are isomorphic toP1, by virtue of [22; Theorem 1.8], there
exists an affine open set U(, φ) of P1 such that f−1(U) � U × P1. Then
f −1(U) ∩ X = f −1(U) − S ∩ f −1(U) � U × A1.
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The complementX − f −1(U) ∩ X consists of a finitely many (mutu-
ally distinct) irreducible curvesG1, . . . ,Gr which are defined by prime
elementsa1, . . . , ar of A, respectively. Thenk[ f −1(U) ∩ X] = A[a−1]
with a = a1 . . . ar . Let B := k[U]; B is a subring ofA[a−1] such that
A[a−1] = B[u] for some elementu of A which is algebraically inde-
pendent overB. Write B in the formB = k[v, g(v)−1] with v ∈ B and
g(v) =

∏
l≦i≦s

(v − αi) (α1, . . . , as being mutually distinct elements ofk).

SinceA∗ = k∗ andA is a unique factorization domain, (A[a−1])∗/k∗ is
a freeZ-module of rankr generated bya1, . . . , ar . On the other hand,
sinceA[a−1] = B[u] we have (A[a−1])∗ = B∗. Hence we haver = s.32

We shall show thatf (X) is an affine open set ofP1. Assume the
contrary: f (X) = P1. Here we note thatV − X is not irreducible. In-
deed, if so,V � P2 and V − X is a line by virtue of 2.3.1; then two
distinct general fibers off have to meet at a point onV − X which is
a contradiction. The irreducible components ofV − X other than the
sectionS correspond to a finite number of pointsQ1, . . . ,Qm of P1 by
f , i.e., f (V − X ∪ S) = {Q1, . . . ,Qm}. Then the assumptionf (X) = P1

implies that for every 1≦ i ≦ m, f −1(Qi) ∩ X is not empty and consists
of a finite number of irreducible curves which belong to{G1, . . . ,Gr}.
We may assume that

⋃
1≦i≦m

( f −1(Qi) ∩ X) = G1 ∪ . . . ∪ Gr , with r′ ≦ r.

Let f (Gr ′+1 ∪ . . . ∪ Gr ) = {Qm+1, . . . ,Qs}. Then s′ = s+ 1 sinceU
is obtained fromP1 by deleting the pointsv = α1, . . . , v = αs and the
points at infinityv = ∞; we haves′ ≦ r since all irreducible curves of
X− f −1(U)∩ X are sent to the pointsQ1, . . . ,Qs, by f . However, this is
absurd sincer = s. Thereforef (X) is an affine open set ofP1.

Let A0 := k[ f (X)]. ThenA0 is a subring ofA, and there exists an ele-
menta0 of A0 such thatU = Spec(A0[a−1

0 ]), f −1(U)∩X = Spec(A[a−1
0 ])

and A[a−1
0 ] = A0[a−1

0 ][u]. Now define a locally finite iterative higher
derivationD = {D0 = id., D1, . . .} by settingDi = (1/i!)Di

1, D1(b) = 0
for any elementb of A0 andD1(u) = aN

0 for a sufficiently large integerN
(cf. 1.5.4). With respect to theGa-action onX associated withD, almost
all members ofF are theGa-orbits.33
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2.3.4

The assumptions onA in the statements of the theorem imply thatX is
isomorphic to the affine plane (cf. 3.1 below).

2.4

Let X be a nonsingular affine surface defined overk, and letF be an
algebraic family of closed curves parametrized by a curveT such that a
general member ofF is an affine rational curve with only one place at
infinity and that two distinct general members ofF have no intersection
on X. The proof of Lemma 2.3.2 slightly modified shows that there
exists a nonsingular projective surfaceV containingX as an open set
and an algebraic pencilΛ on V (whose members are parametrized by
the complete normal model ofT) such that almost all members ofF
are cut out onX by members ofΛ; in fact, a general member ofF is
isomorphic toA1. Thus we may speak ofF asan algebraic pencil of
affine lines on X parametrized by T.Given an algebraic pencilF of
affine lines on an affine surface, it is not necessarily true that almost all
members ofF areGa-orbits with respect to an action ofGa on X. To
construct such examples we need the following two lemmas.

2.4.1

Lemma. Let C be a nonsingular projective curve of genus g. Let L be an
ample line bundle on C and let E be a nontrivial extension of L by OC (if
it exists at all). Let S be the section of theP1-bundleP(E) corresponding
to L and let X= P(E) − S . Assume that the characteristic of k is zero34

or degL > 2g. Then X is an affine surface such that the restriction
onto X of the projectionP(E) → C is a surjective morphism onto C.
Conversely, if an affine surface X is aP1-bundleP(E) over C deleted
a section then X is isomorphic to an affine surface constructed in the
above-mentioned way.

Proof. Let L be an ample line bundle onC and letE be a nontrivial
extension ofL by OC. Assume that the characteristic ofk is zero or
degL > 2g. Then it is known by Giesecker [15] thatE is an ample vector
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bundle onC and the tautological line bundleOP(E)(1) is isomorphic to
OPE(S). ThereforeS is an ample divisor on a nonsingular projective
surfaceP(E) andX = P(E) − S is affine. It is clear that the restriction
ontoX of the projectionP(E)→ C is a surjective morphism ontoC.

Conversely, letE be a vector bundle onC of rank 2, letP(E) be
theP1-bundle associated withE and letX be theP(E) deleted a section
S. Let L′ be the quotient line bundle ofE corresponding to the section
S and letL be the kernel ofE → L′. We shall show thatL′ ⊗ L−1

is ample and thatX is isomorphic toP(E ⊗ L−1) deleted the section
S′ corresponding toL′ ⊗ L−1. SinceX is affine, S is irreducible and
P(E) is nonsingular, the sectionS regarded as a divisor onP(E) must
be ample. Leti : P(E) → P(E ⊗ L−1) be the canonical isomorphism.
Then the sectionS is transformed to the sectionS′ by i and X to the
affine surfaceP(E ⊗ L−1) − S′. HenceS′ is an ample divisor onP(E ⊗
L−1). Let j : C → P(E) be the isomorphism sendingC to S. Then35

i · j is an embedding. Taking account of the facts thatOP(E⊗L−1)(1) �
OP(E⊗L−1)(S

′) and (i · j)∗(OP(E⊗L−1)(1)) = j∗(OP(E)(1)⊗ L−1) = L′ ⊗ L−1,
we know thatL′ ⊗ L−1 is an ample divisor onC. �

2.4.2

The affine ring of an affine surface observed in 2.4.1 has no nontrivial
locally finite iterative higher derivation. This is an immediate conse-
quence of

Lemma. Let V be a variety defined over k, let L be a line bundle over V
and let E be an extension of L byOV. Let X be theP1-bundleP(E) minus
the section corresponding to L. If H0(X, L−1) , 0, X has a nontrivial Ga-
action. Conversely, assume that X has a nontrivial Ga-action and that
either there is no non-constant morphism fromA1 to V or Ga acts along
fibers of the canonical projectionP(E)→ V. Then H0(V, L−1) , 0.

Proof. Let U = {Ui}iI be an affine open covering ofV such thatE|Ui

is OUi -free for anyi ∈ I , and let
{(

aji bji

0 1

)}
be the transition matrices of

E relative toU , where{a ji } is the transition functions ofL. X is in
fact anA1-bundle onV with affine coordinates{xi} which are subject
to x j − a ji xi + b ji for any i, j ∈ I . If H0(V, L−1) , 0, we may assume
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that there is a set of functions{si} on V such thatsi(, 0) ∈ Γ(Vi ,OV)
and sj = a ji si for any i, j ∈ I . Define a nontrivial locally finite it- 36

erative higher derivationD = {D0,D1, . . .} on Γ(Ui ,OV)[xi ] by D0 =

id., Dn|Γ(Ui ,OV) = 0 for n > 0 andDn(xm
i ) =

(
m
n

)
xm−n

i sn
i if m ≧ n and 0

otherwise, whereΓ(Ui ,OV)[xi ] is the affine ring ofπ−1(Ui), π being the
restriction ontoX of the projectionP(E)→ V; D gives rise to a nontriv-
ial Ga-action onπ−1(Ui). It is now easy to ascertain that theGa-actions
defined on{π−1(Ui)}iI patch each other onπ−1(Ui ∩ U j) to give a non-
trivial Ga-action onX. Assume next thatX has a nontrivialGa-action on
X; by the assumption in the statement of Lemma,Ga acts along fibers
of π. By virtue of 1.3.2, theGa-invariant sub field ink(X) is k(V). For
everyi ∈ I , theGa-action restricted onπ−1(Ui) gives rise to aΓ(Ui ,OV)-
homomorphismϕi : Γ(Ui ,OV)[xi ] → Γ(Ui ,OV)[xi , t], t being an inde-
terminate. Writeϕi(xi) = si tn+ (terms of lower degree int with coef-
ficients inΓ(Ui ,OV)[xi ]), wheren ≧ 1, si , 0 andsi ∈ Γ(Ui ,OV)[xi ].
Sincesi is Ga-invariant we havesi ∈ Γ(Ui ,OV)[xi ] ∩ k(V) = Γ(Ui ,OV).
Moreover it is easy to see thatn is independent ofi and sj = a ji si for
i, j ∈ I . Then {si}i∈I gives a nonzero section ofH0(V, L−1). Hence
H0(V, L−1) , 0. �

2.4.3

By virtue of Lemma 2.4.1 and 2.4.2 we can present an example ofan
affine surface with an algebraic pencil of affine lines, on which there is
noGa-action such that general members of the pencil are theGa-orbits.
We shall content ourselves with the following: 37

Example.Let ∆ be the diagonal on the surfaceF0 := P1 × P1, let X :=
F0−∆ and letπ : X→ P1 be the restriction of the projection ofF0 onto
the second factor. Consider an algebraic pencilF of affine lines onX
consisting of fibers ofπ. Then there is noGa-action onX with respect
to which general members ofF areGa-orbits.

Proof. Let L = OP1(2) and letE = OP1(1) ⊕ OP1(1). Then 0→ OP1 →

E → L → 0 is a nontrivial extension; the section ofP(E) = F0 corre-
sponding toL is the diagonal∆ of F0. ThusX is an affine surface of the
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kind treated in 2.4.1. Now, By 2.4.2 our assertion follows from the fact
thatH0(P1,OP1(−2)) = 0. �

In this example, the affine ringA := k[X] has the property: Cl(A) �
Z andA∗ = k∗. This remark shows that the assumption Cl(A) = 0 in
Theorem 2.3 is indispensable.

3 Algebraic characterizations of the affine plane
38

3.1

As the title indicates, the purpose of this section is to find criteria for a
given affine surface to be isomorphic to the affine plane; in other words,
criteria for an affinek-domain to be isomorphic to a polynomial ring in
two variables overk. In this section the ground fieldk is assumed to be
algebraically closed. Firstly we shall prove:

Theorem.Let A be an affine k-domain of dimension2. Then A is iso-
morphic to a polynomial ring in two variables over k if and only if the
following conditions are satisfied:

(1) A is a unique factorization domain.

(2) A∗ = k∗.

(3) A has a nontrivial locally finite iterative higher derivation.

3.1.1

This theorem was firstly proved by the lecturer in [32; Theorem 1] by
analyzing the associatedGa-action on Spec(A). Recently, Nakai [44]
gave an elementary proof using only the structure of an affinek-domain
with a locally finite iterative higher derivation. We shall present here the
proof of Nakai’s. The theorem will be proved in the paragraphs 3.1.2∼
3.1.4.
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3.1.2

Assume thatA is a unique factorization domain,A∗ = k∗ and A has
a nontrivial locally finite iterative higher derivationD. Let A0 be the
subring ofD-constants inA. Then we have:

Lemma. A0 is a polynomial ring in one variable over k. 39

Proof. By virtue of Lemmas 1.3.1 and 1.6,A0 is a normal affine k-
domain such thatA∗0 = k∗; then A0 is a unique factorization domain
(cf. 1.3.1). Lemma 1.5 shows that dimA0 = 1. Then these facts imply
our assertion. �

3.1.3

With the same notations as in 1.5, lete := pr and letMn := Ane(n =
1, 2, . . .), wherene is then-th jump index. Note that ifa ∈ A hasD-
lengthn (cf. 1.4) thenDn(a) ∈ A0. Let In := {Dne(a); a ∈ Mn} for n ≧ 1;
then it is easy to ascertain thatIn is an ideal ofA0. By virtue of 3.1.2, we
may writeIn = anA0 for n ≧ 1. Letu be an element ofM1−A0 such that
De(u) = a1. We shall prove by induction onn the following assertions:

(1)n : In = In
1

(2)n : Mn = A0 + A0u+ · · · + A0un

Firstly we shall see that (1)n implies (2)n. Let ξ ∈ Mn. Then (1)n implies
thatDne(ξ) = can

1 for somec ∈ A0. Hence theD-lengthℓ(ξ − cun) < ne,
i.e., ξ ∈ Mn−1 + A0un. Thus (2)n follows from (1)n. Next we shall
show that (1)n + (2)n ⇒ (1)n+1. Let ξ be an element ofMn+1 such that
D(n+1)e(ξ) = an+1. SinceIn+1

1 ⊆ In+1 we may writean+1
1 = can+1 with

c ∈ A0. Thenℓ(cξ − un+1) < (n + 1)e, i.e.,cξ − un+1 ∈ Mn. Hence by
(2)n we have:

cξ = un+1
+

n∑

i=0

biu
i with bi ∈ A0.

We shall show thatc ∈ A∗0 = k∗. Assume the contrary, and letf be 40
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a prime factor ofc. Taking the residue classes inA/ f A, which is an
integral domain by virtue of 1.3.1, we have:

un+1
+

n∑

i=0

biu
i
= 0, with bi ∈ A0/ f A0 = k.

Sincek is algebraically closed we findλ ∈ k such thatu = λ. Namely,
u − λ = f v with v ∈ A; it is easy to see thatv ∈ M1 anda1 = De(u) =
f De(v). This is a contradiction. ThereforeIn+1 = In+1

1 . Since (1)0 and

(2)0 obviously hold, we know thatA =
∞⋃

n=1
Mn = A0[u]. Hence by virtue

of 3.1.2 we know thatA is a polynomial ring in two variables overk.

3.1.4

Conversely, ifA is a polynomial ring in two variables overk, A satisfies
the conditions (1), (2) and (3) of Theorem 3.1.

3.2

Another algebraic characterization of the affine plane is given by the
following:

Theorem.Let k be an algebraically closed field of characteristic zero
and let X be a nonsingular affine surface defined by an affine k-domain
A. Assume that the following conditions are satisfied:

(1) A is a unique factorization domain and A∗ = k∗.

(2) There exist nonsingular irreducible curves C1 and C2 on X such
that C1∩C2 = {v}, and C1 and C2 intersect each other transversely
at v.

(3) C1 (resp. C2) has only one place at infinity.41

(4) Let a2 be a prime element of A defining the curve C2. Then a2−α
is a prime element of A for allα ∈ k.
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(5) There is a nonsingular projective surface V containing X as an
open set such that the closureC2 of C2 in V is nonsingular and
(a2)0 = C2.

Then X is isomorphic to the affine planeA2, and the curves C1 and C2

are sent to the axes of a suitable coordinate system ofA2.

3.2.1

The Proof of the theorem will be given in the paragraphs 3.2.1∼ 3.2.4.
We shall begin with

Lemma. Let the notations and assumptions be as above. Let a1 and a2

be prime elements of A defining the curves C1 and C2, respectively, and
let Cα

2 be the curve on X defined by a2 − α for α ∈ k. Then we have:

(1) C1 and C2 are rational curves.

(2) For everyα ∈ k, C1∩Cα
2 = {vα} and C1 intersects Cα2 transversely

at vα.

Proof. Let d = a2 (moduloa1A). Thend is a regular function onC1.
Let C̃1 be the complete nonsingular model ofC1, let P∞ be the unique
point of C̃1 corresponding to the unique place at infinity ofC1 and letw
be the normalized discrete valuation ofk(C1) determined byP∞. Then
(d) = v + w(d)P∞, whencew(d) = −1. ThenC1 is a rational curve.
Interchanging the roles ofC1 and C2, we know thatC2 is a rational 42

curve as well. For everyα ∈ k, we havew(d − α) = w(d(1 − αd−1)) =
w(d) = −1. Hence (d−α) = vα−P∞, whereC1∩Cα

2 = {vα}; this implies
thatC1 andCα

2 intersect each other transversely atvα. �

3.2.2

Lemma. Let A be an affine k-domain and let a be an element of A− k.
Assume that A is a unique factorization domain, that A∗

= k∗ and that
a− α is a prime element of A for everyα ∈ k. Let S= k[a] − 0 and let
A′ = S−1A. Then we have:

(1) A′ is a unique factorization domain.
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(2) A′∗ = K∗, where K= k(a).

(3) The quotient field Q(A′) of A′ is a regular extension of K; there-
fore A′ defines an affine variety defined over K with dimension
one less thandimA.

Proof. The assertion (1) is well-known. IfA′∗ , K∗ there exist elements
x andy of A − k[a] such thatxy = ϕ(a) , 0 with ϕ(a) ∈ k[a]. Then,
by the assumptions thatA is a unique factorization domain anda − α
is a prime element ofA for everyα ∈ k we havex, y ∈ k[a]. This is a
contradiction, and the assertion (2) is proved. As for the assertion (3),
we have only to show thatK is algebraically closed inQ(A′) because
char(k) = 0. Assume thatf /g is algebraic overK, where f andg are
mutually prime elements ofA. Then there exist elementsϕ0, . . . , ϕn of
k[a] such that the greatest common divisor ofϕ0, . . . , ϕn is 1 and that43

ϕ0( f /g)n
+ ϕ1( f /g)n−1

+ · · · + ϕn = 0.

Then f andg divideϕn andϕ0 respectively. Hencef andg ∈ k[a]. Thus
f /g ∈ K. �

3.2.3

Lemma. Let the notations and assumptions be as in the statement of the
theorem. Then, for almost all elementsα of k, Cα2 is a rational curve
with only one place at infinity.

Proof. For a general elementα of k, the principal divisor (a2 − α) on
V is of the form: (a2 − α) = C

α

2 + D − D′, whereC
α

2 is the closure
of Cα

2 on V, D andD′ are effective divisors such thatD ≧ 0, D′ ≧ 0,
Supp(D) ∪ Supp(D′) ⊆ V − X, D andD′ have no common components,
andD andD′ are independent ofα. By the condition (5) of the theorem
we have (a2) = C2- (the polar divisor), whence we can easily conclude
that (a2)∞ = D′2 andD = 0. Therefore, there exists a linear pencilΛ on

2If E is an irreducible component ofV − X, let w be the corresponding normalized
discrete valuation ofk(V). If E ⊂ Supp((a2)∞) thenw(a2−α) = w(a2(1−αa−1

2 )) = w(a2).
Similarly, if E ⊂ Supp((a2−α)∞) thenw(a2) = w((a2−α)(1+α(a2−α)−1)) = w(a2−α).
Hence (a2)∞ = D′.
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V such thatC2 andC
α

2 are members ofΛ for almost allα of k; Λ has no
base points onX; sinceC2 is a nonsingular rational curve, general mem-
bersC

α

2 are nonsingular rational curves. LetW be the generic member
of Λ; W is then a nonsingular projective curve of genus 0 defined over44

K = k(a2). Let C be the affine curve defined by an affine K-domain
A′ = S−1A, whereS = k[a2] − 0 (cf. 3.2.2). ThenC is an open set
of W. Note thatW has aK-rational pointP which is provided by the
sectional curveC1. HenceW is isomorphic toP1 overK. Let x be an in-
homogeneous coordinates ofW := P1

K such thatx = ∞ at P. Then there
exist irreducible polynomialsf1, . . . , fn of K[x] such that the affine ring
K[C − P] is K[x, f −1

1 , . . . , f −1
n ]. Then (K[x, f −1

1 , . . . , f −1
n ])∗/K∗ is a free

Z-module of rankn. However, sinceA′ is a unique factorization domain
andA′∗ = K∗ we must have (K[C−P])∗/K∗ � Z, i.e.,n = 1. This means
that W − C consists of only oneK-rational prime cycle. On the other
hand,P is linearly equivalent to some multiple of theK-rational prime
cycleW − C. This implies thatW − C consists of only oneK-rational
point. HenceC is isomorphic toA1 over K. This implies thatCα

2 is
isomorphic toA1 for almost allα of k. �

3.2.4

The proof of the theorem.Let F := {Cα
2 ;α ∈ k}. Then Lemma 3.2.3

shows thatF is an algebraic pencil of affine lines parametrized byA1;
by virtue of Theorem 2.3 we can find aGa-action onX with respect to
which almost all members ofF areGa-orbits. LetD be the nontrivial
locally finite iterative higher derivation corresponding to theGa-action.
Then the subringA0 of D-constants inA is k[a2]; in fact, if A0 = k[a] for
a prime elementa in A (cf. 3.1.2) thena2 ∈ k[a], whence follows that
k[a2] = k[a] becausea2 is a prime element ofA. By virtue of Theorem 45

3.1 we know thatA = k[a2, u] for some elementu of A. HenceX is
isomorphic to the affine plane, and the curveC2 is identified with a axis
of a coordinate system ofA2. Write a1 in the form

a1 = g0(a2) + g1(a2)u+ · · · + gn(a2)un

with gi(a2) ∈ k[a2] for 1 ≦ i ≦ n. SinceC1 meetsCα
2 transversely only in

one point (cf. 3.2.1) we can easily ascertain thatgi(a2) = 0 for 2≦ i ≦ n
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andg1(a2) ∈ k∗. This implies that the curvesC1 andC2 are identified
with axes of a coordinate system ofA2. Thus, Theorem 3.2 is proved.

4 Flat fibrations by the affine line
46

4.1

The results of this section were worked out jointly by Kambayashi and
the lecturer [28]. The goal of this section is to prove the following two
theorems:

4.1.1

Theorem.Letϕ : X → S be an affine. faithfully flat morphism of finite
type; assume that S is a locally noetherian, locally factorial, integral
scheme, and that the generic fiber ofϕ is A1 and all other fibers are
geometrically integral. Then X is anA1-bundle over S .

4.1.2

Theorem .Let k be an algebraically closed field, let S be a regular,
integral k-scheme of finite type, and letϕ : X→ S be an affine, faithfully
flat morphism of finite type. Assume that each fiber ofϕ is geometrically
integral and the general fibers ofϕ are isomorphic toA1 over k. Then
there exists a regular, integral k-scheme S′ of finite type and a faithfully
flat, finite, radical morphism S′ → S such that X×

S
S′ is anA1-bundle

over S′. If the characteristic of k is zero X is anA1-bundle over S .

4.2

The proof of Theorem 4.1.1 will be given in the paragraphs 4.2∼ 4.5
and the proof of Theorem 4.1.2 in the paragraphs 4.6∼ 4.8. We shall
begin with the following elementary result, which is a special case of a
theorem by Nagata [40]:
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Lemma . Let σ be a discrete valuation ring and let A be a flatJ - 47

algebra of finite type. Let K be the quotient field ofJ , t a uniformisant
and k the residue field, and let AK and Ak denote K⊗

J
A and k⊗

J
A, re-

spectively. Assume that AK and Ak are integral domains. Then we have:

(1) If AK is a normal ring, so is A.

(2) If AK is factorial (i.e., AK is a unique factorization domain), so is
A.

Proof. We shall prove only (2), as proof of (1) is a routine exercise.By
flatness there is a natural inclusionJ ⊂ A, andA is in turn contained
in AK and is noetherian. SinceAk is integral,tA is a prime ideal inA
and

⋂
ν≧0

tνA = (0). Let P ⊂ A be an arbitrary prime ideal of height 1.

If t ∈ P then clearlytA = P. In caset < P, the idealPAK is prime
of height 1 in the factorial domainAK = A[t−1], whencePAK = f AK,
where we may and shall takef ∈ A − tA. Let b ∈ P be arbitrary,
and writeb = f tma with integerm anda ∈ A − tA. If m < 0, then
f a = bt−m ∈ tA, an absurdity. Consequently,m ≧ 0 andP ⊆ f A. It
follows thatP = f A becausef ∈P. �

4.3

Lemma. Let (J , tJ ) be a discrete valuation ring with residue field k
and quotient field K. Let A be a flatJ -algebra of finite type. Assume
that AK := K ⊗

J
A is K-isomorphic to a polynomial ring K[x] in one

variable and that Ak := k⊗A is a geometrically integral domain over k.
Then A is isomorphic to a polynomial ring in one variable overJ .

Proof. BecauseA is factorial by Lemma 4.2, or rather because of the48

simple fact that
⋂
ν≧0

tνA = (0), we may assume thatx ∈ A andx is prime

to uniformisantt of J . We may writeA = J [x, y1, . . . , ym]. Since
A ⊂ AK = K[x] there exist integersαi ≧ 0 such that

(1) tα(i)yi = ϕi(x) := λi0 + λil x+ · · · + λir (i)x
r(i)
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with λi j ∈ J for 1 ≦ i ≦ m and 0≦ j ≦ r(i), where we may assume
with eachi that if αi > 0 not all ofλi0, λi1, . . . , λir (i) are divisible byt.
Let αx = max{α(1), . . . , α(m)}. Consider the following assertion:

P(n): If x ∈ A is found as above withαx = n, then there is somex′ ∈ A
such thatA = U [x′].

We shall prove the assertionP(n) by induction onn. P(0) is obviously
true. We proveP(n) by assuming thatP(r) is true if r < n. By applying
the canonical (reduction modulot) homomorphismρ : A→ A/tA � Ak

to the both hand sides of (1) for eachi with α(i) = αx, we get

(2) ρ(λi0) + ρ(λil )ρ(x) + · · · + ρ(λir (i))ρ(x)r(i)
= 0

with at least one of the coefficientsρ(λi j ) , 0. SinceAk is an integral
domain the equation (2) is a nontrivial algebraic equation of ρ(x) over
k. SinceAk is geometrically integral the fieldk is algebraically closed
in the quotient field ofAk, whenceρ(x) ∈ k. Let µ ∈ U be such that
ρ(µ) = ρ(x), and writex − µ = tβx1 with a positive integerβ and x1 ∈49

A− tA. Then notingϕi(µ) ∈ tU and by substitutingµ+ tβx1 for x in (1),
we obtain after cancellation oft

tα
′(i)yi ∈ U [x1] for 1 ≦ i ≦ m, and K[x] = K[x1]

whereαx1 = max{α′(1), . . . , α′(m)} < n = αx. SinceP(αx1) is assumed
to be true, the conclusion ofP(n) holds. �

4.4

It is easy to see, as shown in the paragraph 4.5 below, that Theorem
4.1.1 follows from 4.3 in the special case where dimS = 1. In order to
prove the theorem overS with dimS ≧ 2 we need the following

Lemma . Let (A,M ) be a factorial local ring of dimension≧ 2 with
residue field k. Let R be a flat A-algebra of finite type. Assume that
RJ := AJ⊗

A
R is AJ -isomorphic to a polynomial ring AJ [tJ ] in

one variable for every nonmaximal prime idealJ of A and thatR :=
R/M R is geometrically regular over k. Then R is A-isomorphic to a
polynomial ring A[t] in one variable over A.
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Proof. The proof consists of four steps.

(I) Let X := Spec(R), S := Spec(A) and letϕ : X → S be the flat
morphism of finite type corresponding to the canonical injection
A ֒→ R. ϕ is in fact faithfully flat, and each fiber ofϕ is geo-
metrically regular.ϕ is, therefore, smooth. SinceS is normal this 50

implies thatX is normal [17; IV (6.5.4)]. Thus,R is a normal
domain.

(II) Let U := S − {M }. SinceR is fainitely generated overA and
RJ = AJ [tJ ] for eachJ ∈ U, there is fJ ∈ A −J such
thatR[ f −1

J ] = A[ f −1
J ][ tJ ], whence we know that existence of an

open coveringV = {Vi}i∈I of U such thatVi := Spec(A[ f −1
i ]) with

fi ∈ A andR[ f −1
i ] = A[ f −1

i ][ ti ] for eachi ∈ I . This shows that
XU := ϕ−1(U) = X×

S
U can be viewed as anA1-bundle overU.

SetAi := A[ f −1
i ], Ai j := A[ f −1

i , f −1
j ] andAi jℓ := A[ f −1

i , f −1
j , f −1

ℓ
]

for i, j, ℓ ∈ I . SinceAi j [ti ] = R[ f −1
i , f −1

j ] = Ai j [t j ] and Ai j is an
integral domain we gett j = α ji ti + β ji with units α ji in A ji and
β ji ∈ A ji for each pairi, j of I . whereαi j ’s andβi j ’s are subject to
the relations inAi jℓ:

αℓi = αℓ jα ji and βℓi = αℓ jβ ji + βℓ j .

Hence,{αi j } gives rise to an invertible sheafL ∈ H1(U,O∗U). How-
ever,H1(U,O∗U) = (0) because (A,M ) is a factorial domain [19;
Exp. XI, 3.5 and 3.10]. Thus, by replacingV by a finer open
covering ofU if necessary, we may assume that

t j = ti + β ji with β ji ∈ A ji such that

βℓi = β ji + βℓi for i, j, ℓ ∈ I .(3)

Hence,{βi j } defines an elementξ ∈ H1(U,OU).

(III) ConsiderXU = ϕ
−1(U) = X×

S
U and letY := X−XU . By the local 51
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cohomology theory we have the following commutative diagram:

H1(XU ,OX)
∼ // H2

Y(X,OX) ∼ // lim
−−→

n

Ext2R(R/M nR,R)

H1(U,OS)

θU

OO

∼ // H2
M (S,OS)

θM

OO

∼ // lim
−−→

n

Ext2A(A/M n,A)

θA

OO

where the terms in the upper and lower rows are respectivelyR-
modules andA-modules, andθU , θM andθA are homomorphisms
induced by the canonical injectionOS ֒→ ϕ∗OX; for the defini-
tions and relevant results, see [19] or [20]. SinceR is A-flat and
lim
−−→

n

commutes withR⊗
A
?, we have

lim
−−→

n

Ext2R(R/M nR,R) � R⊗
A

lim
−−→

n

Ext2A(A/M n,A)

andθA is identified with the homomorphism:u 7→ 1 ⊗ u for u ∈
lim
−−→

n

Ext2A(A/M n,A). SinceR is A-flat, θA is then injective. The

commutative diagram above shows thatθU is injective. On the
other handXU has an open coveringϕ−1V = {ϕ−1Vi}J′ , and the
elementθU(ξ) ∈ H1(XU ,OX) is represented by ǎCech 1-cocycle
{βi j } with respect toϕ−1V . The relation (3) above implies that
{βi j } is in fact aČech 1-coboundary becauseti ∈ Γ(ϕ−1(Vi),OX) =
Ai [ti ]. ThusθU(ξ) = 0, and henceξ = 0 becauseθU is injective,
which implies thatXU has a section and is, in fact, a trivial bundle
A1

U .

(IV) ReplacingV by a finer open cover in ofU if necessary, we may52

assume thatβ ji = γ j−γi with γi ∈ Ai, and fori, j ∈ I . Thenti−γi =

t j − γ j for every pairi, j of I . Let t := ti − γi . Thent ∈ Γ(XU ,OX).
On the other hand, since codim(Y,X) ≧ 2 andR is normal,OX is
Y-closed [17; IV (5.10.5)]. Hencet ∈ Γ(XU ,OX) = Γ(X,OX) = R.
Now, look at theA-subalgebraA[t] of R, and letZ := Spec(A[t]).

Then, ϕ decomposes asX
ϕ1
−−→ Z

ϕ2
−−→ S, whereϕ1 and ϕ2 are
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the morphisms corresponding to the injectionsA ֒→ A[t] ֒→ R.
By step (III), RJ = AJ [t] for eachJ ∈ U. This implies that
ϕ1|U : XU → ϕ−1

2 (U) = Z×
S
U is aU-isomorphism. Notice thatOZ

is Z − ϕ−1
2 (U)-closed because codim(Z − ϕ−1

2 (U),Z) ≧ 2 andZ is
normal. Then we have:

A[t] = Γ(Z,OZ) = Γ(ϕ−1
2 (U),OZ)

∼
−−−−−→
(ϕ1|U )∗

Γ(XU ,OX) = R.

ThusR= A[t].

�

4.5

Proof of Theorem 4.1.1 .Sinceϕ is affine, it suffices clearly to prove
the theorem under the hypothesis that X and S are affine schemes. The
proof consists of two steps.

(I) Let A := Γ(S,OS) and R:= Γ(X,OX). The homomorphism A→ R
induced byϕ is injective, and makes R a flat A-algebra of finite
type. For each prime idealJ of A, let RJ := AJ⊗

A
R. By induc-

tion on n:= heightJ we shall establish the following assertion:

P(n)
: RJ is a polynomial ring in one variable over AJ
: if J is of height n.

Indeed, P(0) follows from the assumption of the theorem. If n= 1, 53

AJ is a discrete valuation ring, and P(1) follows from Lemma
4.3. We shall prove P(n) for n ≧ 2, assuming P(r) to hold for
every r < n. By slight abuse of notations we write R and A
instead of RJ and AJ , respectively. Now, A is a factorial lo-
cal ring of dimension≧ 2 with maximal idealM . By virtue of
[17; II (7.1.7)] one can find a discrete valuation ringU such
that the quotient field K ofU agrees with that of A and that
U dominates A. ThenU ⊗

A
R is a flatU -algebra of finite type,

K⊗
U

(U ⊗
A
R) = K⊗

A
R is a polynomial ring in one variable over K,
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and (U /tU )⊗
U

(U ⊗
A
R) = (U /tU ) ⊗

A/M
(R/M R) is geometrically

integral, where t is a uniformisant ofU . By Lemma 4.3,U ⊗
A
R

is then a polynomial ring in one variable overU . If follows
that (U /tU ) ⊗

A/M
(R/M R) is geometrically regular and, there-

fore, R/M R is geometrically regular over A/M . This remark
and P(r) for 0 ≦ r < n imply that A and R satisfy all assump-
tions in Lemma 4.4. Thus, by that Lemma we know that R is a
polynomial ring in one variable over A.

(II) Since R is finitely generated over A, step (I) implies that foreach
prime idealJ of A there exists an element f∈ A such that
f < J and R[ f −1] is a polynomial ring in one variable over
A[ f −1]. Thus, for the Zariski open set Uf := Spec(A[ f −1]) ⊆ S ,
an isomorphism X×

S
U f � A1×

Z
U f obtains, and S is clearly cov-54

ered by finitely many such Uf ’s. This completes the proof of The-
orem 4.1.1.

4.6

Let k be a field. Ak-schemeX is called a form ofA1 overk, or simply a
k-form ofA1 if for an algebraic extension fieldk′ of k there exists ak′-
isomorphismX×

k
k′
∼
−→ A1

k⊗k
k′ = A1

k′ . When that is so, there is a purely

inseparable extension fieldk′′ of k such thatX⊗
k
k′′ is k′′-isomorphic to

A1
k′′ (cf. Chapter 3, 1.2). It is easy to see that, for ak-schemeX and

an algebraic extension fieldk′ of k, X is a k-form of A1 if and only if
X⊗

k
k′ is ak′-form of A1. A k-form of A1 is evidently an affine smooth

k-scheme. Ak-form of A1 may be characterized as a one-dimensional
k-smooth scheme of geometric genus zero having exactly one purely
inseparable point at infinity. For detailed study onK-forms ofA1, see
[26; §6] and [27].

4.7

A key result to prove Theorem 4.1.2 is the following
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Lemma. Let k be a field of characteristic p≧ 0, let S be a geometrically
integral k-scheme of finite type, and letϕ : X → S be an affine, flat
morphism of finite type. Assume that the general flbers ofϕ are forms
ofA1 over their respective residue fields. Then the generic fiber XK is a
K-form ofA1, where K is the function field of S over k. If p= 0, XK is
K-isomorphic toA1

K .

Proof. The proof consists of four steps. 55

(I) Let k be an algebraic closure ofk. Let S := S⊗
k
k, X := X⊗

k
k

andϕ := ϕ⊗
k
k. ThenS is an integralk-scheme, and the general

fibers ofϕ arek-isomorphic toA1
k
. The stated conditions forϕ are

evidently present forϕ. Let K := k⊗
k
K. As remarked in 4.6, the

generic fiberXK of ϕ is aK-form ofA1 if and only if the generic
fiber XK of ϕ is a K-form of A1. These observations show that
in proving the lemma we may assume from the outset thatk is
algebraically closed and that the general fibers arek-isomorphic
to A1

k. Furthermore, we may assume with no loss of generality
thatS is smooth overk because the set of allk-smooth points ofS
is a non-empty open set. We assume these additional conditions
in the step below.

(II) Let C denote the generic fiberXK of ϕ·C is an affine curve overK,
whose function fieldK(C) is a regular extension field ofK [17; IV
(9.7.7), III (9.2.2)]. For each positive integern we letKn := Kp−n

.
If p = 0, Kn is understood to meanK. By virtue of [12; Th.5,
p.99], there exists a positive integerN such that a completeKN-
normal model ofKN(C) := KN⊗

K
K(C) is smooth overKN. We

fix such anN once for all. LetSN be the normalization ofS in
KN. SinceS is smooth overk andk is algebraically closed,SN

is smooth overk and the normalization morphismSN → S is
identified with theN-th power of the Frobenius morphism ofSN.

(III) Let C̃N be a complete normal model ofKN(C) overKN. Then,C̃N 56

is a smooth projective curve overKN. ThusC̃N is a closed sub
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scheme in the projective spacePm
KN

defined by a finite set of ho-
mogeneous equations{ fλ(X0, . . . ,Xm) = 0;λ ∈ Λ}. One can then
find a nonempty open setU of SN such that all the coefficients
of all f ′

λ
s, as elements ofKN = k(SN), are defined onU. Let

X̃N be the closed sub scheme ofPm
k ×k

U defined by the same set

of homogeneous equations{ fλ(X0, . . . ,Xm) = 0;λ ∈ Λ}, and let
ϕ̃N : X̃N → U be the projection ontoU. The generic fiber of̃ϕN,
which coincides with̃CN, is geometrically regular. Applying the
generic flatness theorem [17; IV (6.9.1)] and the Jacobian crite-
rion of smoothness, we may assume, by shirinkingU to a smaller
nonempty open set if necessary, thatϕ̃N is smooth overU. Now,
look at the morphismϕN : XN := X×

S
U → U obtained from

ϕ : X → S by the base changeU → S. SinceC̃N is a comple-
tion of the generic fiberCN := C⊗

K
KN of ϕN, we have a birational

U-mappingψN : XN → X̃N such thatϕN = ϕ̃N · ψN. SinceψN is
everywhere defined onCN, we may assume, by replacingU by a
smaller nonempty open set if necessary, thatψN : XN → X̃N is an
open immersion ofU-schemes.

(IV) If now suffices to show thatXK is aK-form ofA1 under the addi-
tional hypotheses:

(i) There exists a projective smooth morphism̃ϕ : X̃ → S and
an open immersionψ : X→ X̃ such thatϕ = ϕ̃ · ψ.

(ii) Every closed fiber ofϕ is k-isomorphic toA1
k.57

Then, every closed fiber of̃ϕ is k-isomorphic toP1
k by virtue of

the conditions (i) and (ii). Sincẽϕ is faithfully flat and arithmetic
genus is invariant under flat deformations ([18; Exp. 221, p.5],
[17; III, §7]) we have the arithmetic genuspa(X̃k) = 0 for the
generic fiber̃XK of ϕ̃, which is a smooth projective curve defined
over K. We shall next show that̃XK − ψ(XK) has only one point
and the point is purely inseparable overK. Let η be a point on
X̃K−ψ(XK) and letT be the closure ofη in X̃. Then,T ⊆ X̃−ψ(X),
the restrictioñϕT : T → S of ϕ̃ ontoT is a dominating morphism,
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and deg̃ϕT = [K(η) : K]. Notice thatϕ̃T is a generically one-to-
one morphism because for each closed pointP on S, ϕ̃−1

T (P) ⊆
ϕ̃−1(P) − ψϕ̃−1(P) � P1

k − A
1
k = {one point}. This implies that

ϕ̃T is a birational morphism ifp = 0 and a radical morphism if
p > 0. Thus,k(η) is purely inseparable overK. If η′ is a point of
X̃K = ψ(XK) distinct fromη, let T′ be the closure ofη′ in X̃. Then
T′ ⊆ X̃ − ψ(X) andT , T′. Then, for a general closed pointP on
S, ϕ̃−1(P) − ψϕ−1(P) would have distinct two points, and this is a
contradiction. Thus,̃Xk−ψ(XK) has only one point, and the point
is purely inseparable overK. Asψ is an open immersion, this last
combined with the factpa(X̃K) = 0 tells us in view of 4.6 thatXK

is aK-form ofA1, as desired (cf. [26: 6.7.7]).

�

4.8

Proof of Theorem 4.1.2 .Notice that k is assumed to be algebraically
closed. Using the same notations as in 4.7 (especially step (III)), we 58

know that for a sufficiently large integer N the generic fiber ofϕN :
XN → U is k(SN)-isomorphic to A1k(SN), where k(SN) is the function
field of SN over k. Let S′ := SN. Then, S′ is a regular, integral k-
scheme of finite type and the canonical morphism S′ → S is a faithfully
flat, finite, radical morphism. Let X′ := X×

S
S′ andϕ′ := ϕ×

S
S′. Then

ϕ′ is a faithfully flat, affine morphism of finite type, the generic fiber of
ϕ′ is k(S′)-isomorphic toA1

k(S′), and every fiber ofϕ′ is geometrically
integral. Thus, all conditions of Theorem 4.1.1 present forS′, X′ and
ϕ′. Hence X′ is anA1-bundle over S′. If p = 0 it is clear that X is an
A1-bundle over S . This completes the proof of Theorem 4.1.2.

4.9

In the characteristic zero case we have the following, superficially stron-
ger, version of Theorem 4.1.2:

Theorem.Let k be a field of characteristic zero, let S be a locally fac-
torial, geometrically integral k-scheme of finite type, andlet ϕ : X→ S
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be a faithfully flat, affine morphism of finite type. Assume that every
fiber ofϕ is geometrically integral. Then, the following conditionsare
equivalent to each other:

(i) X is anA1-bundle over S .

(ii) For every point P on S (including the generic point) the fiber
ϕ−1(P) above P is isomorphic to the affine lineA1

κ(P) over the
residue fieldκ(P) of P.

(iii) The general fibers ofϕ are k-isomorphic toA1.59

(iv) The generic fiber ofϕ is k(S)-isomorphic toA1
k(S).

Proof. (i) =⇒ (ii) =⇒ (iii): Obvious. (iii) =⇒ (iv) follows from Lemma
4.7. (iv)=⇒ (i) follows from Theorem 4.1.1. �

4.10

A flat specialization ofAn(n ≧ 2) is not necessarily isomorphic toAn,
as shown by the next:

Example.Let k be an algebraically closed field, and letC be a smooth
affine plane curve of genus> 0 contained as a closed sub scheme in
A2

k := Spec(k[x, y]). Let f (x, y) = 0 be the equation ofC. Let U :=
k[t](t) be the local ring ofA1

k := Spec(k[t]) at t = 0, let K := k(t), and
let A := U [x, y, z]/(tz− f (x, y)). Let X := Spec(A), S := Spec(U ), and
let ϕ : X → S be the morphism inducted by the injectionU � � A .
Then,ϕ is a faithfully flat, affine morphism of finite type, the generic
fiberXK of ϕ is isomorphic toA2

K, and the closed fiber isk-isomorphic to
C×

k
A1

k, which is evidently not isomorphic toA2
k. (Flatness ofϕ follows

from [17; IV (14.3.8)].)

4.11

In the positive characteristic case there can be a flat fibration of a curve
in which every closed fiber isA1 and yet the generic fiber is non-isomor-
phic toA1. For instance, let

A := k[t] ⊂ R := k[t,X,Y]/(YP − X − tXp)
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be the natural inclusion, andϕ : X := Spec(R) → S := Spec(A) be the 60

corresponding morphism, wherek denotes an algebraically closed field
of characteristicp > 0. In this example, the generic fiber is a purely
inseparablek(t)-form of A1 studied in [26;§6], [27].

5 Classification of affineA1-bundles over a curve
61

5.1

In this section the ground field is assumed to be algebraically closed.
Let C be a nonsingular curve defined overk. An A1-bundle overC
is a surjective morphismf : X → C from a nonsingular surfaceX
defined overk to C such that for every pointP onC there exists an open
neighborhoodU of P for which f −1(U) � U×

k
A1. When a curve is fixed

we denote anA1-bundle f : X → C simply by (X, f ). Given twoA1-
bundles (X, f ) and (X′, f ′) over C, we say that (X, f ) is isomorphic to
(X′, f ′) if there exists an isomorphismθ : X

∼
−→ X′ such thatf = f ′ · θ.

An A1-bundle (X, f ) is said to beaffine if the surfaceX is affine. The
purpose of this section is to describe the set of isomorphismclasses of
affineA1-bundles over a nonsingular complete curveC, especially when
C � P1

k. In the paragraphs below we letC be a nonsingular complete
curve.

5.2

Lemma (cf. 2.4.1).Let f : X→ C be an affineA1-bundle over C. Then
there exist an ample line bundle L over C and a nontrivial extension E
of L byOC such that X is isomorphic to theP1-bundleP(E) minus the
section S∞ of P(E) corresponding to L and that f is the restriction onto
X of the canonical projectionP(E)→ C.

Proof. Let U = {Ui}i∈I be an affine open covering ofC such that
f −1(Ui) � Ui × A

1 for i ∈ I . Let Ai := k[Ui] and Ri := k[ f −1(Ui)].
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ThenRi = Ai [ti ], whereti ’s are subject to

t j = a ji ti + b ji with a ji ∈ A∗ji and b ji ∈ A ji

aℓi = aℓ ja ji and bℓi = aℓ jb ji + bℓ j in Ai jℓ,

wherei, j, ℓ ∈ I , Ai j = k[Ui ∩ U j ] and Ai jℓ = k[Ui ∩ U j ∩ Uℓ]. Let62

L be a line bundle overC having transition functions{a ji } with respect
to U , and letE be a rank 2 vector bundle overC having transition
matrices

{(
aji bji

0 1

)}
with respect toU . ThenE is an extension ofL by OC;

0 → OC → E → L → 0, and (X, f ) is isomorphic to (P(E) − S∞, π),
whereS∞ is the section of theP1-bundleP(E) corresponding toL andπ
is the restriction ontoP(E) −S∞ of the canonical projectionP(E)→ C.
The assumption thatX is affine implies thatL is an ample line bundle
andE is a nontrivial extension ofL by OC, (cf. 2.4.1). �

5.3

Lemma. Let (X, f ) and(X′, f ′) be affineA1-bundles over C. Let

0 // OC
ı // E

ρ // L // 0

(resp. 0 // OC
ı′ // E

ρ′ // L′ // 0)

be a nontrivial extension of an ample line bundle L (resp. L′) by OC as
constructed in 5.2 from(X, f ) (resp.(X′, f ′)). Then(X, f ) is isomorphic
to (X′, f ′) if and only if there exist isomorphismsφ : E′

∼
−→ E and

ψ : L′
∼
−→ L of vector bundles over C which make the following diagram

commutative:

0 // OC

id.
��

l′ // E′

φ

��

ρ′ // L′

ψ

��

// 0

0 // OC
l // E

ρ // L // 0

Proof. We shall prove the “only if” part only. There exists an affine63

open coveringU = {Ui}i∈I such thatf −1(Ui) � Ui ×A
1 and f ′−1(Ui) �
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Ui×A
1 for anyi ∈ I . SetAi = k[Ui], Ai j = k[Ui∩U j ], Ri = k[ f −1(Ui)] =

Ai[ti ] andR′i = k[ f ′−1(Ui)] = Ai [t′i ]. Let

t j = a ji ti + b ji and t′j = a′ji t
′
i + b′ji with a ji , a

′
ji ∈ A∗i j

and b ji , b
′
ji ∈ Ai j for any pair i, j ∈ I .

Then an isomorphismθ : X → X′ with f = f ′ · θ induces anAi-
isomorphismϕi : R′i → Ri for any i ∈ I such thatϕi = ϕ j on R′i j :=

k[ f ′−1(Ui ∩U j)]. Write ϕi(t′i ) = αiti + βi with αi ∈ A∗i andβi ∈ Ai . Then
it is easily ascertained that we have:

(
a′ji b′ji
0 1

) (
αi βi

0 1

)
=

(
α j β j

0 1

) (
a ji b ji

0 1

)

for i, j ∈ I . Let E|Ui = OUi vi + OUi w and E′|Ui = OUi v
′
i + OUi w

′,
whereOUi w = 1(OUi ) andOUi w

′
= l′(OUi ). DefineOUi -isomorphisms

φi : E′|Ui → E|Ui andψi : L′|Ui → Z|Ui by

φi(v
′
i ) = αivi + βiw, φi(w

′) = w and ψi(ρ(v′i )) = αiρ(vi).

Then it is easy to see thatφi ’s andψi ’s patch each other onUi ∩ U j to
give isomorphisms of vector bundlesφ : E′ → E andψ : L′ → L such
that φi = φ|Ui , ψi = ψ|Ui for i ∈ I . By constructionφ andψ satisfy
φ · l′ = 2 andψ · ρ′ = ρ · φ. �

5.4

We have the following:

5.4.1

Lemma. With the notations of 5.2, we have L� OC(S∞ · S∞), where 64

S∞ is identified with C.

Proof. Let V := P(E) andS := S∞. Then we have an exact sequence,

0 // OV(−2S) // OV(−S) // OS(−S · S) // 0.
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Now write E|UiOvi +OUi w as in the proof of Lemma 5.3. Then we have
v j = a ji vi + b ji w for i, j ∈ I . Let M := OV(−S)/OV(−2S), which is
viewed as a line bundle onS � C. ThenM|Ui � OUi (w/vi) (modulo
(w/vi)2), andw/v j = ai j (w/vi) (modulo (w/vi)2) on Ui ∩ U j . Therefore
M � L−1, and consequently we obtainL � OS(S · S). �

5.4.2

An immediate consequence of Lemma 5.2 and Lemma 5.3 is:

Lemma. Let L be an ample line bundle over C. Then the set of isomor-
phism classes of affineA1-bundles(X, f ) such thatOC(S∞ · S∞) � L
(cf. 5.2 and 5.4.1) is isomorphic to the projective spaceP(H1(C, L−1)).

5.5

In this paragraph we assume thatC is isomorphic to the projective line
P1. Then note that anyP1-bundle overC is isomorphic to one ofFn’s
(n ≧ 0), whereFn = P(OC ⊕ OC(−n)). We denote byBn the unique
section ofFn such that (B2

n) = −n and byℓ a fiber of the canonical
projectionFn→ C. If n = 0, F0 has two distinct structures ofP1-bundle
andB0 is not uniquely chosen; hence we fix a structure ofP1-bundle on
F0 and a sectionB0. With these conventions we have:

5.5.1

Lemma. Let (X, f ) be an affineA1-bundle over C= P1. Then(X, f ) is65

isomorphic to(Fn−S∞, π) (cf. 5.2), where S∞ ∼ Bn+ sℓ with s> n and
L � OC(2s− n). Moreover, such n and s are uniquely determined by the
A1-bundle(X, f ).

Proof. SinceS∞ is an ample divisor onFn we have: S∞ ∼ Bn + sℓ
with s > n (cf. [16]). With the notations of 5.2, we haveFn = P(E),
whereE is a nontrivial extension ofL by OC. By virtue of 5.4.1, we
haveL � OC((S2

∞)); henceL � OC(2s− n). Moreover, by virtue of 5.3,
E andL are uniquely determined up to isomorphism. Hencen and also
sare uniquely determined by (X, f ). �
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5.5.2

Lemma. Let n and s be the fixed integers such that s> n ≧ 0. Then we
have the following:

(1) The set of isomorphism classes of affineA1-bundles of the form
(Fn − S∞, π) with S∞ ∼ Bn + sℓ is a locally closed subset A(n, s)
in the projective spaceP(H0(P1,O(2s− n− 2))) = P2s−n−2.

(2) dimA(n, s) equals2s− 2n− 1 if n > 0 and2s− 2 if n = 0.

(3) A(0, s) and A(1, s) are dense subset ofP2s−2 and P2s−3, respec-
tively.

Proof. Our proof consists of three steps.

(I) Let (X, f ) be an affineA1-bundle isomorphic to (Fn−S∞, π) with
S∞ ∼ Bn + sℓ. By virtue of 5.2, (X, f ) is determined by a non-
trivial extension

0 // OC
ı // E

ρ // OC(2s− n) // 0,

whereFn = P(E) andOC(2s−n) gives rise to a sectionS∞ of Fn. 66

Then it is easily shown thatE = OC(s− n)e1 ⊕ OC(s)e2, where
e1 and e2 constitute a basis of the decomposable rank 2 vector
bundleE overC. The injectionl : OC ֒→ E is given by elements
f ∈ H0(C,OC(s − n)) and g ∈ H0(C,OC(s)) such that f , 0,
g , 0 and Supp(f ) ∩ Supp(g) = φ. Such a pair (f , g) is a point
of a nonempty open setU in {An−s+1 − (0)} × {As+1 − (0)}. On
the other hand,l determines the surjectionρ : E → OC(2s− n)
uniquely up to multiplication of elements ofk∗ on OC(2s − n);
indeed, ifOC(2s− n) is identified withΛ2E thenρ is given by
ρ(e1) = −ge1Λe2 andρ(e2) = f e1Λe2.

(II) Let

0 // OC
ı′ // E′

ρ′ // OC(2s− n) // 0

be a nontrivial extension withE′ = OC(s− n)e′1 ⊕ OC(s)e′2, and
let l′ be determined by a pair (f ′, g′) ∈ U. If φ : E′ → E is an
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OC-isomorphism thenφ is expressed in the form:

φ

(
e′1
e′2

)
=

(
α h
0 β

) (
e1

e2

)
if n > 0, whereα, β ∈ k∗ anh ∈ H0(C,OC(n));

φ

(
e′1
e′2

)
=

(
α β

γ δ

) (
e1

e2

)
if n = 0, where

(
α β

γ δ

)
∈ GL(2, k).

Thenφ satisfiesl = φ·l′ andρ·φ = ψ·ρ′ for someOC-isomorphism67

ψ : OC(2s− n)
∼
−→ OC(2s− n) if and only if we have:

(i) f = α f ′ andg = βg′ + h f ′ if n > 0,

(ii) f = α f ′ + γg′ andg = β f ′ + δg′ if n = 0.

Let G be an algebraic group defined by:

G =

{(
α h
0 β

)
;α, β ∈ k∗ and h ∈ H0(C,OC(n))

}
if n > 0,

and G = GL(2, k) if n = 0.

Then it is readily verified that the subsetU of {As−n+1 − (0)} ×
{As+1− (0)} is G-stable andG acts freely onU. Therefore,A(n, s)
is a locally closed subset ofP(H1(C, L−1)) with L � OC(2s− n),
andA(n, s) is isomorphic to the quotient varietyU/G. Thus we
know that dimA(n, s) = (2s− n + 2) − (n + 3) = 2s− 2n − 1 if
n > 0, and dimA(0, s) = (2s+ 2)− 4 = 2s− 2.

(III) Note that P(H1(C, L−1)) � P2s−n−2 whereL � OC(2s− n). By
comparison of dimensions ofA(n, s) andP2s−n−2 we know that
A(0, s) andA(1, s) are dense subsets ofP2s−2 andP2s−3, respec-
tively. This completes the proof of Lemma 5.5.2.

�

5.5.3

Lemma. Let (n, s) and (n′, s′) be pairs of integers such that s> n ≧ 0,
s′ > n′ ≧ 0 and2s− n = 2s′ − n′. Then the subsets A(n, s) and A(n′, s′)
of P(H1(C,OC(n− 2s)) have no intersection if(n, s) , (n′, s′).

Proof. Immediate in virtue of Lemmas 5.3 and 5.5.1. �
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5.5.4

In virtue of Lemmas 5.4.2, 5.5.1, 5.5.2 and 5.5.3 we have the following: 68

Theorem.Let m be a positive integer. Then we have:

(1) The set of isomorphism classes of affineA1-bundles(X, f ) with
(S2
∞) = m is isomorphic to the set of k-rational points ofP(H0(P1,

OP1(m− 2))).

(2) The projective spaceP(H0(P1,OP1(m− 2))) is decomposed into a
disjoint union of locally closed subsets A(n, s), where(n, s) runs
through all pairs of integers such that s> n ≧ 0 and m= 2s− n.

(3) A(n, s) is isomorphic to the set of isomorphism classes of affine
A1-bundles(X, f ) over P1 which are of the form:(Fn − S∞, π)
with S∞ ∼ Bn + sℓ.

5.6

Let (X, f ) be an affineA1-bundle (Fn − S∞, π) with S∞ ∼ Bn + sℓ and
s > n. Then the affine surfaceX has structures ofA1-bundles other
than f : X → P1, as will be shown below. LetV := Fn andS := S∞.
Let P0 be an arbitrary point onS, let σ1 : V1 → V be a quadratic
transformation with center atP0 and letP1 := σ′1(S) ∩ σ−1

1 (P0). For
1 ≤ i ≤ m, define inductively a quadratic transformationσi+1 : Vi+1 →

Vi with centerPi and letPi+1 := (σ1 . . . σi+1)′(S) ∩ σ−1
i+1(Pi), where

m = 2s− n. Let Q be a point on (σm+1)−1(Pm) other thanPm+1 and
(σm+1)−1(Pm) ∩ (σm+1)′(σ−1

m (Pm−1)). Let τ : W→ Vm+1 be a quadratic
transformation with center atQ. Let σ := (σ1 · . . . · σm+1 · τ) : W →
V, let Ei := (σi+1 · . . . · σm+1 · τ)′(σ−1

i (Pi−1)) for 1 ≤ i ≤ m, and let 69

Em+1 := τ′(σ−1
m+1(Pm)) andEm+2 := τ−1(Q). Let ℓ0 be the fiber of the

canonical projectionFn → P
1 passing throughP0. Thenσ−1(S ∪ ℓ0)

has the following configuration:
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5.6.1

Let Λ be the linear subsystem of|Bn + (s+ 1)ℓ| consisting of members
which pass throughP0, . . . ,Pm, Q with multiplicities≧ 1. Then we have
the following:

Lemma. With the notations as above, we have:

(1) Λ is an irreducible linear pencil.

(2) S + ℓ0 is a unique reducible member ofΛ, and all other members
ofΛ are nonsingular rational irreducible curves.

(3) The proper transformΛ′ of Λ by σ has no base points; Em+2 is
a cross-section of the morphismΦΛ′ : W → P1 defined byΛ′;
σ′(S) + Em+1 + Em+ · · · + E1 + σ

′(ℓ0) is a member ofΛ′.

Proof. Our proof consists of two steps.

(I) Since dim|Bn + (s+ 1)ℓ| = 2s− n + 3 = m+ 3 we know that
dimΛ ≧ m+3−(m+2) = 1. LetD be a reducible member (if at all)

of Λ such thatD , S+ ℓ0, and writeD =
t
Σ

i=1
ntDt with irreducible

componentsDi and integersni > 0 for 1 ≦ i ≦ t. Then it is easy70

to see that one ofDi ’s, sayD1, is linearly equivalent toBn + rℓ
with r ≧ 0 andn1 = 1, andD2, . . . ,Dt are fibers of the canonical
projection Fn → P

1; we haver ≦ s becauseD is a reducible
member. Then, sincem≧ 2, D1 must pass through the pointsP0,
P1, . . . ,Pm. This implies that (D1·S) = s+r−n ≧ m+1 = 2s−n+1,
whencer ≧ s+ 1. This is a contradiction. Hence every member



Classification of affineA1-bundles over a curve 43

D of Λ such thatD , S + ℓ0 is an irreducible curve. On the other
hand, since (D · ℓ) = 1 we know thatD is a nonsingular rational
curve.

(II) The fact that every numberD of Λ such thatD , S + ℓ0 is a
nonsingular irreducible curve implies the following:

(i) σ′(S) + Em+1 + Em + · · · + E1 + σ
′(ℓ0) is a member ofΛ′;

henceS + ℓ0 is a (unique reducible) member ofΛ.

(ii) Every member ofΛ′ other thanσ′(S) + Em+1 + · · · + E1 +

σ′(ℓ0) is of the formσ′(D) with D ∈ Λ.

Let D andD′ be general members ofΛ. Then, since (D · D′) =
((Bn+(s+1)ℓ)2) = 2s−n+2 = m+2 we have (σ′(D)·σ′(D′)) = 0.
This implies in turn the following:

(iii) Λ′ (henceΛ) is an irreducible linear pencil;Λ′ has no base
points at all.

(iv) Em+2 is a cross-section of the morphismΦΛ′ : W → P1

defined byΛ′.

The above observations complete the proof of Lemma (5.6.1).�

5.6.2

Let ρ : W → Z be the contraction ofσ′(S), Em+1, Em, . . . ,E1 in this 71

order, and letT = ρ(Em+2). Sinceρ contracts only curves in the member
σ′(S)+Em+1+ · · ·+E1+σ

′(ℓ0) of Λ′ we know that the proper transform
of Λ′ by ρ defines a structure ofP1-bundle onZ, for which ρ(σ′(D))
(D ∈ Λ,D , S + ℓ0) andρ(σ′(ℓ0)) constitute the fibers of theP1-bundle
q : Z → P1, andT is a cross-section with (T2) = m. Note thatX =
Fn − S is unchanged under a birational transformationρ ·σ−1 : V → Z.
Consequently,X has a structure ofA1-bundleg : X → P1 other than
f : X → P1, whereX = Z − T andg := q|X. However, we could not
determine integersn′ ands′ such thatZ = Fn′ , andT ∼ Bn′ + s′ℓ.
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5.7

In this paragraph we shall show that the affine surfaceX = Fn − S∞
constructed in 5.2 has a nontrivialGa-action. With the notations of 5.6,
choose a pointP0 so thatP0 < S∞ ∩ Bn if n > 0. Take the points
P1, . . . ,Pm−1 as in 5.6, and letσi : Vi → Vi−1 be a quadratic trans-
formation with center atPi−1 for 1 ≦ i ≦ m, whereV0 := V. Let
ϕ = σ1 · . . . · σm, and letEi = (σi+1 · . . . · σm)′(σ−1

i (Pi−1)), by abuse of
notations, for 1≦ i < mandEm = σ

−1
m (Pm−1).

5.7.1

Let N be the linear subsystem of|Bn + (s− 1)ℓ| consisting of members
which pass through the pointsP0,P1, . . . ,Pm−2 with multiplicities ≧ 1.
Then we have:

Lemma. With the notations as above, M consists of a single member T
which is a nonsingular rational irreducible curve.

Proof. Since dim|Bn+ (s− 1)ℓ| = 2s− n− 1 = m− 1, we have dimM ≧72

(m− 1)− (m− 1) = 0. HenceM is not empty. LetD be a member ofM.
We shall show thatD is an irreducible curve. Assume the contrary, and

write D =
t
Σ

i=1
niDi with irreducible componentsDi and integersni > 0

for 1 ≦ i ≦ t. Then, as in the proof of Lemma 5.6.1, one ofDi ’s,
say D1, is linearly equivalent toBn + rℓ with r ≧ 0 andn1 = 1, and
D2, . . . ,Dt are fibers of the canonical projectionFn → P

1. Then we
haver ≦ s− 2 sinceD is reducible, whences ≧ 2 andm ≧ 3. Then
D1 must pass through the pointsP0,P1, . . . ,Pm−2. This implies that
(D1 · S) = s+ r − n ≧ m− 1 = 2s− n − 1, whencer ≧ s− 1. This
is a contradiction. Thus every memberD of M is irreducible. On the
other hand, since (D · ℓ) = 1 we know thatD is a nonsingular rational
curve. If dimM > 0, let D and D′ be general members ofM. Then
(D · D′) = ((Bn + (s− 1)ℓ)2) = 2s− n− 2 = m− 2 while (D · D′) must
be≧ m− 1. This is a contradiction. Hence dimM = 0. �
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5.7.2

Let M be the linear subsystem of|Bn+ sℓ| consisting of members which
pass through the pointsP0,P1, . . . ,Pm−1 with multiplicities ≧ 1. Then
we have:

Lemma. With the notations as above, we have:

(1) N is an irreducible linear pencil.

(2) T + ℓ0 is a unique reducible member of N, and all other members
of N are nonsingular rational irreducible curves.

(3) The proper transform N′ of N byϕ has no base points; Em is a
cross-section of the morphismΦN′ : Vm → P

1 defined by N′; 73

ϕ′(T) + Em−1 + · · · + E1 + ϕ
′(ℓ0) is a member of N′.

Proof. All assertions can be proved in the same fashion as in the proof
of 5.6.1 with slight modifications. Therefore we shall leavea proof to
readers as an exercise. �

5.7.3

We have the following configuration ofϕ−1(S ∪ T ∪ ℓ0):

Note thatX = Vm − (ϕ′(S) ∪ Em ∪ . . . ∪ E1) andVm has a linear
pencil N′ whose members areϕ′(D)’s for D ∈ N with D , T + ℓ0 and
ϕ′(T) + Em−1 + · · · + E1 + ϕ

′(ℓ0). Therefore, it is easily seen that the
affine surfaceX has an algebraic pencilF of affine lines parametrized
by the affine lineA1. Let Q0 be the point onA1 corresponding to the



46 Geometry of the affine line

member (ϕ′(T) ∪ ϕ′(ℓ0)) ∩ X. ThenX0 := X − (ϕ′(T) ∪ ϕ′(ℓ0)) has an
algebraic pencil of affine lines parametrized byA1

∗ := A1 − {Q0}, where
every member of the pencil is the affine line. HenceX0 is anA1-bundle
overA1

∗, which is trivial, i.e.,X0 � A
1 × A1

∗. Then, as in Lemma 2.2.1
and Theorem 2.3, we can readily show that there exists a nontrivial Ga-
action onX such that every member ofF other than (ϕ′(T)∪ϕ′(ℓ0))∩X
is theGa-orbit.

6 Locally nilpotent derivations in connection with
the cancellation problem

74

6.1

A k-algebraA is calledstrongly n-invariant (or n-invariant) if A satis-
fies the condition: Given ak-algebraB and indeterminatesX1, . . . ,Xn

andY1, . . . ,Yn, if θ : A[X1, . . . ,Xn]
∼
−→ B[Y1, . . . ,Yn] is ak-isomorphism

then we have necessarilyθ(A) = B (or A is isomorphic toB under some
k-isomorphism). IfA is stronglyn-invariant (orn-invariant) for all inte-
gersn ≧ 1 thenA is calledstrongly invariant(or invariant). A problem
asking whether or not a (given)k-algebraA is strongly invariant (or in-
variant) is called, in general, the cancellation problem. The purpose of
this section is to apply the results in the previous sectionsto the cancel-
lation problem. Namely, we are interested in looking for necessary or
sufficient conditions for a givenk-algebra to be strongly invariant, which
can be written in terms of locally finite (or locally finite iterative) higher
derivations.

6.2

A sufficient condition for strong 1-invariance is given, by makinguse of
Nagata’s theorem [42], in the following:

Lemma (cf. [1]) . Let A be an affine k-domain. If A is not birationally
ruled over k, then A is strongly1-invariant.
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Here, an affinek-domainA is said to bebirationally ruled over kif
the quotient fieldQ(A) is a purely transcendental extensionK(t) in one
variable over a sub fieldK of Q(A) containingk.

6.3

Another sufficient condition for strong invariance is the following: 75

Lemma. Let A be a k-algebra. If A has no nontrivial locally finite higher
derivations then A is strongly invariant.

Proof. 3 Assume thatA is not strongly invariant. Then there exists ak-
algebraB(, A) such thatA[X1, . . . ,Xn] = B[Y1, . . . ,Yn] for some integer
n ≧ 1, whereX1, . . . ,Xn andY1, . . . ,Yn are algebraically independent
overA andB, respectively. Leta be an element ofA not in B. Thena is
written as

a = Σbα1...αnY
α1
1 . . .Yαn

n = f (Y1, . . . ,Yn) < B.

Assume thatY1 appears inf (Y1, . . . ,Yn). Let T be an indeterminate
and letψ be ak-algebra homomorphism ofB[Y1, . . . ,Yn] into B[Y1, . . .,
Yn,T] such thatψ(Y1) = Y1 + T andψ(Yi) = Yi for 2 ≦ i ≦ n. Then we
can see easily thatψ(a) is written as

ψ(a) = a+ Tmg(Y1, . . . ,Yn,T) with g(Y1, . . . ,Yn,T) , 0 andm≧ 1.

Write g(Y1, . . . ,Yn,T) = h(X1, . . . ,Xn,T) ∈ A[X1, . . . ,Xn,T].
Let µ1, . . ., µn be a set of positive integers such thath(Tµ1, . . . ,Tµn,T) ,
0. Let 2 be the canonical injectionA ֒→ A[X1, . . . ,Xn] and letτ be a
homomorphism (ofA-algebras) ofA[X1, . . . ,Xn,T] = B[Y1, . . . ,Yn,T]
into A[T] such thatτ(Xi) = Tµi for 1 ≦ i ≦ n and τ(T) = T. Let
ρ = τ · ψ · 2. Thenρ is ak-algebra homomorphism ofA into A[T] such
thatρ(a) < A andρ defines a nontrivial locally finite higher derivation76

(cf. Lemma 1.2). �

3We are indebted toY. Ishibashi for improving the original proof.
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6.4

As a practical criterion for strong invariance, the next result given in
6.4.1 below is often more useful than the one given in Lemma 6.3.

6.4.1

Lemma. Let k be an infinite field and let A be an affine k-domain satis-
fying the conditions:

(1) Spec(A)(k) is dense inSpec(A).

(2) There is no nonconstant k-morphism from the affine lineA1
k to

Spec(A).

Then A is strongly invariant.

The proof can be done along the same principle as in the proof of
Lemma 6.3, and we shall leave it to readers.

6.4.2

The rings in the next two examples can be shown to be strongly invari-
ant by applying Lemma 6.4.1, the first one of which was first given by
Hochster [23] and discussed later by Eakin and Heinzer [13].

Example 1.Let An := R[X0, . . . ,Xn]/(X2
0 + · · · + X2

n − 1) be the affine
ring of the realn-sphere forn ≧ 1. ThenAn is strongly invariant; a
polynomial ringAn[t] in one variable overAn is invariant; a polynomial
ring An[t1, . . . , tn] in n-variables overAn is not 1-invariant ifn , 1, 3, 7.

Example 2 .Let k be a non-perfect field of characteristicp > 0, and
let A = k[X,Y]/(Ypn

− X − a1Xp − . . . − arXpr
), wherer, n > 0 and

a1, . . . , ar ∈ k with one ofa1, . . . , ar < kp. A is the affine ring of a Rus-77

sell k-group, which will be discussed in Chapter III. ThenA is strongly
invariant, while, for the perfect closurek′ of k, A⊗

k
k′ is not strongly in-

variant becauseA⊗
k
k′ is a polynomial ring in one variable overk′.

The second example exhibits that strong invariance is not preserved
under faithfully flat ascent, while it is preserved under faithfully flat
descent (cf. Miyanishi and Nakai [36]).
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6.4.3

The converse of Lemma 6.3 does not hold as shown by the next

Example.Let k be an algebraically closed field and letA be the affine
ring of the affine cone of a nonsingular projective varietyU. Assume
that there is no nonconstantk-rational mapping fromA1

k to U. Then
A is strongly invariant, whileA has a nontrivial locally finite higher
derivation.

Proof. As shown in 2.2.3,A has a nontrivial locally finite higher deriva-
tion. Hence it remains to show thatA is strongly invariant. Assume that
we are given ak-algebraB satisfying A[X1, . . . ,Xn] = B[Y1, . . . ,Yn],
whereX1, . . . ,Xn and Y1, . . . ,Yn are algebraically independent overA
andB, respectively. SetV := Spec(A) andW := Spec(B); W (as well as
V) is an affine variety defined overk because the relationA[X1, . . . ,Xn] =
B[Y1, . . . ,Yn] implies thatB is an affine k-domain; we haveV × An

k =

W× An
k. Let qV : V × An

k → V andqW : W× An
k →W be the canonical

projections ontoV andW, respectively, and letπ : V − {v0} → U be the
projection of the cone to the base variety, wherev0 is the vertex of the 78

coneV. For a pointw of W, πqV(q−1
W (w)) is a pointu of U because of the

stated assumption that there is no nonconstantk-rational mapping ofA1
k

to U. Assume thatqV(q−1
W (w)) is not a point. ThenqV(q−1

W (w)) = π−1(u)
becauseqV(q−1

W (w)) is an affine rational curve with only one place at in-
finity andqV(q−1

W (w)) ⊂ π−1(u). This implies thatq−1
W (w) intersects the

singular locusq−1
V (v0) of V ×An

k = W×An
k. Besides, it is readily shown

thatW has a unique singular pointw0 andq−1
W (w0) is the singular locus

of W × An
k; henceq−1

V (v0) = q−1
W (w0). Thus, we havew = w0 because

q−1
W (w) ∩ q−1

W (w0) , φ. If w , w0 we have shown thatqV(q−1
W (w)) is a

point v of V, i.e.,q−1
W (w) ⊂ q−1

V (v). Indeed, we haveq−1
W (w) = q−1

V (v)
because bothq−1

W (w) andq−1
V (v) are isomorphic toAn

k (cf. Ax [8]). This
means that every maximal ideal ofB is vertical relative toA in the ter-
minology of [1]. ThenA = B by virtue of [ibid., (1.13)]. �

6.5

A necessary condition for strong invariance is given by the next
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Lemma. Let A be a k-algebra. If A has a nontrivial locally finite itera-
tive higher derivation D then A is not strongly1-invariant.

Proof. Let ϕ : A → A[t] be thek-homomorphism associated withD
(cf. 1.2). LetB = ϕ(A). We shall show thatA[t] = B[t]. SinceB[t] ⊆
A[t], we have only to show the following assertion by induction on n:

P(n) : If a is an element ofA with D-length ℓ(a) = n79

(cf. 1.4) thena ∈ B[t].

If ℓ(a) = 0 thena = ϕ(a) ∈ B. Assume thatℓ(a) = n > 0 andP(r) is
true for 0≦ r < n. Sinceℓ(Di(a) < n) for i ≧ 1 we haveDi(a) ∈ B[t]
by virtue of P(r) for r < n. Then, sincea = ϕ(a) − Σ

i≧1
Di(a)ti we have

a ∈ B[t]. Thus,P(n) is proved, andA is not strongly 1-invariant. �

6.6

In the paragraphs 6.6 and 6.7 we shall consider whether or notthe con-
verse of Lemma 6.6 is true. WhenA is an affinek-domain of dimension
1, this is true and was essentially proved in [1; (3.4)]. We have in fact:

6.6.1

Proposition . Let A be an affine k-domain of dimension1. Then the
following conditions are equivalent to each other:

(1) A is strongly invariant.

(2) A is strongly1-invariant.

(3) A has no nontrivial locally finite iterative higher derivation.

Proof. (1) =⇒ (2) is clear; (2)=⇒ (3) follows from Lemma 6.5 and its
proof. (3)=⇒ (1): It is proved in [1; (3.4)] that under the stated assump-
tion A is either strongly invariant orA is a polynomial ringk0[x] over
the algebraic closurek0 of k in A. In the latter caseA has a nontrivial
locally finite iterative higher derivation. Thus we have (3)=⇒ (1). �
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6.6.2

When dimA = 2 we have the following: 80

Proposition . Let k be an algebraically closed field of characteristic
zero, and let A be an irrational nonsingular affine k-domain of dimen-
sion2. Then we have one of the following three cases:

(1) A is strongly1-invariant.

(2) A has a nontrivial locally finite iterative higher derivation.

(3) There is a surjective morphismπ : Spec(A) → C from Spec(A)
to a nonsingular complete curve C of genus> 0, whose general
fibers are isomorphic to the affine lineA1

k.

Proof. Assume thatA is not strongly 1-invariant. Then, by virtue of
Lemma 6.2,A is birationally ruled. SetV := Spec(A). SinceA is ir-
rational the irregularityg of V is positive; the Albanese mapping of a
nonsingular completion4 of V induces a unique morphismπ : V → C,
whereC = π(V) andC is a nonsingular (not necessarily complete) curve
of genusg > 0; the general fibers ofπ are irreducible rational curves.
On the other hand, sinceA is not strongly 1-invariant there exists an
affine k-domainB(, A) of dimension 2 such thatA[X] = B[Y], where
X andY are algebraically independent overA andB, respectively. Set
W := Spec(B), and letqV : V × A1

k → V andqW : W× A1
k → W be the

canonical projections fromV × A1
k = W× A1

k to V andW, respectively. 81

For a general pointw of W, ℓw := qV(q−1
W (w)) is an affine rational curve

with only one place at infinity. Indeed, ifqV(q−1
W (w)) is a pointv on V

thenq−1
V (v) = q−1

W (w); if q−1
W (w) = q−1

V (v) for every pointw of W and a
point v of V (depending onw) every maximal ideal ofB is vertical rela-
tive to A, whenceA = B (cf. [1; (1.13)]); thusqV(q−1

W (w)) is not a point
for some pointw of W and,a fortiori, for a general point ofW. Since
π(ℓw) is a point onC we know thatℓw is contained in a fiber ofπ; since
a general fiber ofπ is irreducibleℓw coincides with a fiber ofπ for a
general pointw of W. Moreover, since the morphismπ : V → C defines

4Note thatπ does not depend on choices of nonsingular completions ofV.
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an irrational pencil onV and since an irrational pencil on a nonsingular
surface has no base points, the second theorem of Bertini’s tells us that
ℓw is isomorphic to the affine line. consequently, we know that the mor-
phismπ : V → C is an algebraic pencil of affine lines parametrized by
the curveC (cf. Section 2). IfC is not complete, setA0 := k[C]. Then
A0 is ak-subalgebra ofA of dimension 1, and we have a nontrivialGa-
action onV with respect to which the general fibers ofπ areGa-orbits
(cf. Lemma 2.2.1 and Theorem 2.3). Thus we are reduced to the case
(2). If C is a complete curve then we are reduced to the case (3).�

6.6.3

Lemma . Let k be an algebraically closed field of characteristic zero
and let V be a nonsingular affine surface defined over k. Assume that
there exists a surjective morphismπ : V → C from V onto a nonsingular
complete curve C, whose general fibers are isomorphic to the affine line.82

Then we have:

(1) Every irreducible component of a fiber ofπ is isomorphic to the
affine line; if a fiber is reducible every irreducible component is a
connected component.

(2) There exist a nonsingular projective surfacẽV and a surjective
morphism̃π : Ṽ → C such that:

(i) Ṽ contains V as an open set, andπ̃|V = π,

(ii) general fibers of̃π are isomorphic to the projective lineP1
k,

(iii) Ṽ − V consists of a cross-section S and irreducible compo-
nents contained in several reducible fibers ofπ̃.

Proof. Let Ṽ be a nonsingular projective surface containingV as an
open set. Then the morphismπ : V → C defines an irreducible pen-
cil Λ on Ṽ, whose base points (if at all) lie oñV − V. By replacing
Ṽ (if necessary) by the surface which is obtained fromṼ by a succes-
sion of quadratic transformations with centers at base points (including
infinitely near base points) ofΛ, we may assume thatΛ has no base
points. Let̃π : ṽ→ C. Since a general fiberℓ of π is isomorphic toA1

k
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and the characteristic ofk is zero, we know that a general fiber ofπ̃ is
isomorphic toP1

k andℓ is of the form: ℓ = ℓ̃ − ℓ̃ ∩ S, whereℓ̃ � P1
k,

S is a cross-section of̃π and (̃ℓ · S) = 1. Then all assertions stated in
the lemma are readily verified by looking at the fibrationπ̃ : Ṽ → C
and taking into account thatV is an affine open set of̃V, (see Chapter 2,
Section 2). �

6.6.4

In the case (3) of Proposition 6.6.2 the surfaceV := Spec(A) has a 83

structure as described in Lemma 6.6.3. We have an impressionthat A
is strongly 1-invariant in this case. As an evidence we shallprove in
the next paragraph thatA is strongly 1-invariant in the simplest case;
namely the case where every fiber ofπ is irreducible (cf. Theorem 4.9
and Lemma 5.2).

6.7

Proposition . Let k be an algebraically closed field of characteristic
zero, let C be a nonsingular complete curve of genus g> 0 defined
over k, let L be an ample line bundle over C and let E be a nontrivial
extension of L byOC. Let X be theP1-bundleP(E) minus the section S
corresponding to L and let A be the affine ring of X. Then A is strongly
1-invariant.

6.7.1

In order to prove this result we need the next

Lemma. Let k be a field of characteristic zero and letϕ be a k-automor-
phism of a polynomial ring k[x, y] in two variables x, y over k. Assume
thatϕ is given byϕ(x) = f andϕ(y) = g with f , g∈ k[x, y]. Then f has
the following form unless f is a polynomial in x or y alone:

(*) f = axm
+ byn

+

∑

m>i
n> j

ci j x
iy j ,
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where a, b and ci j ’s are elements of k and ab, 0. The same assertion
holds for g.

Proof. Our proof consists of four steps.

(I) First we shall treat the case where one off andg, say f , is a poly-84

nomial in either one only of variablesx andy, sayy. Sinceϕ is a

k-automorphism ofk[x, y] the Jacobian determinant
∣∣∣∣∣
∂( f , g)
∂(x, y)

∣∣∣∣∣ =

−

(
∂ f
∂y

) (
∂g
∂x

)
is a nonzero constant ink. Hence

∂ f
∂y
= a and

∂g
∂x
= b are also nonzero constants ink. Thence we may write:

f = ay+ c andg = bx+ h(y) with c ∈ k andh(y) ∈ k[y].

(II) Assume thatf has the form (∗) andg is not a polynomial inx or
y alone. Then we shall show thatg has also the form (∗). Write

g = α0(y)xu
+ α1(y)xu−1

+ · · · + αu(y) (α0(y) , 0, u > 0)

whereαi(y) ∈ k[y]. Since
∣∣∣∣∣
∂( f , g)
∂(x, y)

∣∣∣∣∣ is a nonzero constant ink we

can easily ascertain that the first derivativeα′0(y) is zero. Hence
α0(y) is a nonzero constant ink. Similarly if we write g in the
form

g = β0(x)yv
+ β1(x)yv−1

+ · · · + βv(y) (β0(x) , 0, v > 0),

we haveβ0(x) ∈ k. These facts imply thatg has the form (∗)

(III) It is known (cf. Chapter II, Section 3; also [43]) that any k-auto-
morphism ofk[x, y] is a composite of linear automorphisms of
type (x, y) 7→ (αx + βy + c, γx + δy + d) with αδ − βγ , 0 and
de Jonquière automorphisms of type (x, y) 7→ (x, y + h(x)) with
h(x)⊖k[x]. Using this fact we shall show that anyk-automorphism
of k[x, y] is a composite of automorphisms, each of which is an
automorphismρ such thatρ(x) or ρ(y) coincides with one ofx
and y. We shall say such an automorphism to be of type (P).85

Since a de Janquière automorphism is obviously of type (P) it
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suffices to show that a linear automorphism is a composite of lin-
ear automorphism (P). Indeed, a linear automorphism (x, y) 7→
(αx + βy + c, γx + δy + d) is decomposed as follows: Ifα , 0,
(x, y) 7→ (x′, y′) = (αx+ βy+ c, y), (x′, y′) 7→ (x′, (γ/α)x′ + ((αδ−
βγ)/α)y′+(d−(γc/α))); if α = 0, (x, y) 7→ (x′, y′) = (y, γx+δy+d),
(x′, y′) 7→ (((βγ − αδ)/γ)x′ + (α/γ)y′ + (c− (αd/γ)), y′).

(IV) Write the given automorphismϕ asϕ = ϕr · ϕr−1 · . . . · ϕ1, where
ϕ1, . . . , ϕr are automorphisms of type (P). We shall prove our
assertion by induction onr. If r = 1, ϕ has one of the following
forms: (x, y) 7→ (ax+ h(y), y), (x, y) 7→ (y, a1x + h1(y)), (x, y) 7→
(x, by+ ℓ(x)) or (x, y) 7→ (b1y + ℓ1(x), x), wherea, a1, b, b1 ∈ k,
h(y), h1(y) ∈ k[y] and ℓ(x), ℓ1(x) ∈ k[x]. Hence the assertion
holds clearly. Assuming that the assertion is true whenϕ is a
composition of less thanr automorphisms of type (P) we shall
consider the case whereϕ = ϕr · ϕr−1 · . . . · ϕ1. Let ψ = ϕr−1 ·

. . . · ϕ1, and let (ψ(x), ψ(y)) = ( f1, g1) with f1, g1 ∈ k[x, y]. By the
assumption of inductionf1 andg1 have the form (∗) unless they
are polynomials inx or y alone. Sinceϕr is an automorphism of
type (P) we have one of the following cases:

(i) ϕ(x) = f1, (ii) ϕ(x) = g1, (iii) ϕ(y) = f1, (iv) ϕ(y) = g1.

In any case we can easily ascertain the truth of our assertionin
virtue of steps (I) and (II).

�

6.7.2
86

Proof of Proposition. Our proof consists of three steps.

(I) Let B be a k-algebra such that A[T] = B[V], where T and V are
algebraically independent over A and B, respectively. Set Y:=
Spec(B), and letπ : X → C be the restriction onto X of the
canonical projectionP(E) → C. By a composition of projections
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Y×A1
k = X×A1

k

p1
−−→ X

π
−→ C, each line(y)×A1

k with y∈ Y is sent

to a point of C. Henceπ · p1 factors as Y×A1
k

p′1
−−→ Y

q
−→ C, and Y

is viewed as a C-scheme by means of q. Note that q is surjective.
Let U = {Ui}i∈I be an affine open covering of C such that E|Ui is
trivial for every i ∈ I. Let {xi}i∈I be an affine coordinate system of
X relative toU ; {xi}i∈I is subject to xj = a ji xi + b ji with aji ∈ R∗i j
and bji ∈ Ri j , where Ri j := k[Ui ∩ U j]. Set Ri := k[Ui ] and
Bi := k[q−1(Ui)]. Then we have Ri[xi ,T] = Bi[V] for every i∈ I.
Since Bi is an Ri-algebra and Ri is regular there is an element
yi ∈ Bi such that Bi = Ri[yi ] (cf. [1; (4.7)]). This implies that
q : Y → C is anA1-bundle over C (cf. 4.9). Hence by virtue
of Lemma 5.2 there exist an ample line bundle L′ over C and a
nontrivial extension E′ of L′ by OC such that Y is C-isomorphic
to theP1-bundleP(E′) minus the section S′ corresponding to L′.

(II) Let Ω1
X/C be theOX-Module of1-differential forms of X over C.

SinceΩ1
X/C|π − l(Ui ) = (dxi )Oπ − l(Ui ) and dxj = a ji dxi we have in

factΩ1
X/C � L⊗

OC

OX. The relation A[T] = B[V] implies

L⊗
OC

OX[T] ⊕ OX[T] � L′ ⊗
OC

OY[V] ⊕ OY[V].

Hence we obtain L⊗
OC

OX[T] � L′ ⊗
OC

OY[V], or equivalently87

(L⊗
OC

L′−1)⊗
OC

OX[T] � OX[T]. Hence we have(L⊗
OC

L′−1)⊗
OC

OX �

OX by reduction modulo TOX[T]. Write L⊗
OC

L′−1
= OC(D) for a

divisor D on C. Then there exists an element h of k(X) such that
π−1(D) = (h). Let π̃ : P(E) → C be the canonical projection.
Then, viewing h as an element of k(P(E)), we havẽπ−1(D)+mS=
(h) for some integer m. Since(̃π−1(D) +mS · ℓ) = ((h) · ℓ) = 0 for
a general fiberℓ of π̃ we obtain m= 0, i.e., π̃−1(D) = (h). Now by
restricting both hand sides on the section S we know that D∼ 0
on C. Therefore L� L′.

(III) We have Ri [xi ,T] = Ri[yi ,V] for every i∈ I. Hence yi is written
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as
yi = fi0(xi) + fil (xi)T + · · · + fin(xi)T

n

with fi0(xi), . . . , fin(xi) ∈ Ri[xi ]. We shall show that n= 0. If
otherwise, since K[xi ,T] = K[yi ,V] with K := k(C), Lemma 6.7.1
implies that fin(xi) ∈ K. Hence fin(xi) ∈ Ri[xi ] ∩ K = Ri. Besides,
since L′ � L we may assume, by replacingU by a finer affine
open covering of C if necessary, that yj = a ji yi + b′ji with bji ∈ Ri j

for any i, j ∈ I. Thence we know that n is independent of i∈ I
and fjn(x j) = a ji fin(xi) for any i, j ∈ I. Setαi := fin(xi). Then
f jn(x j) = a ji fin(xi) for any i, j ∈ I. Setαi := fin(xi). Then
{αi}i∈I defines a nonzero element of H0(C, L−1); this contradicts
the assumption that L is an ample line bundle over C. Thus, n=

0. This implies that yi ∈ Ri[xi ] for every i ∈ I. Hence B⊆ A. 88

Changing the roles of xi and yi in the above argument we have
A ⊂ B. Consequently, A= B and A is thus strongly 1-invariant.

6.7.3

In contrast with Proposition 6.7 we have the following:

Proposition . Let k be an algebraically closed field. Let(X, f ) be an
affineA1-bundle over the projective lineP1

k (cf. 5.2) and let A be the
affine ring of X. Then A is not strongly1-invariant.

Proof. In virtue of 5.7 there exists a nontrivialGa-action onX. Namely,
A has a nontrivial locally finite iterative higher derivation. ThenA is not
strongly 1-invariant in virtue of Lemma 6.5. �





Part II

Curves on an affine rational
surface

1 Irreducibility theorem
89

1.1

In this section the ground fieldk is assumed to be an algebraically closed
field of characteristicp. LetA2 := Spec(k[x, y]) be an affine plane over
k. Fix an open immersion 1 ofA2 into the projective planeP2 as a
complement of the line at infinityℓ0. Assume that we are given an
irreducible curveC0 : f (x, y) = 0 ( f (x, y) ∈ k[x, y]) on A2 with only
one place at infinity. LetC be the closure ofC0 onP2, let p0 := ℓ0 ∩C,
let d0 = (ℓ0 · C) (which equals the total degree off (x, y)) and letd1 be
the multiplicity of C at P0. With these notations and assumptions our
ultimate goals are to prove the following theorems.
IRREDUCIBILITY THEOREM [(cf. Moh [38])] Assume that at least
one ofd0 andd1 is not divisible byp. Then the curveCα onA2 defined
by f (x, y) = α is an irreducible curve with only one place at infinity for90

an arbitrary constantα in k.
Even in the case whered0 andd1 are divisible byp we can establish:

GENERIC IRREDUCIBILITY THEOREM [(cf. Ganong [14])] Let
Λ( f ) be the linear pencil onA2 consisting of curvesCα with α ∈ k.

59
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Then the generic member ofΛ( f ) is an irreducible curve with one purely
inseparable place at infinity. Therefore the curveCα is an irreducible
curve with only one place at infinity for a general elementα of k.
EMBEDDING THEOREM [(cf. Abhyankar-Moh [2])] Assume that
C0 is a nonsingular and rational curve, and that at least one ofd0 andd1

is not divisible byp. Then there exists a biregular algebraic map ofA2

onto itself which mapsC0 onto they-axis.

1.2

In the paragraphs below we fix a nonsingular, rational, affine surfaceX
defined overk and an irreducible closed curveC0 on X with only one
place at infinity (i.e., outside ofC0).

1.2.1

Definition. An admissible datum for(X,C0) is a setD = {V,U,C, ℓ0, Γ,
d0, d1, e} such that:

(1) V is a nonsingular, rational, projective surface defined over k con-
taining an open set U such that U is isomorphic to X over k.
(Since U is affine, V− U is of co-dimension 1.)

(2) Write V− U :=
n⋃

i=1

Γi with irreducible componentsΓi. Then the

following conditions hold:

(i) Γi is a nonsingular, rational, complete curve.91

(ii) Γi intersectsΓ j transversely (if at all) in at most one point.

(iii) Γi ∩ Γ j ∩ Γℓ = φ for three distinct indices.

(iv) V − U contains no cyclic chains, i.e., there is no sequence
{Γi1, . . . , Γia} (a ≧ 3) such thatΓi j ∩ Γi j+1 , φ(1 ≦ j ≦ a− 1)
andΓia ∩ Γi1 , φ.

(3) C is an irreducible closed curve on V such that C∩ U is isomor-
phic to C0 by an isomorphism between U and X. (Hence C− C0

consists of one point P0, which is a one-place point.)
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(4) C meets only one irreducible componentℓ0 of V−U at P0. We set
d0 := i(C, ℓ0; P0) = (C · ℓ0) and d1 := the multiplicity of C at P0.

(5) As a divisor on V, C is linearly equivalent to a divisor d0(eℓ0+Γ),
where e≧ 1 and Γ is an effective divisor such thatSupp(Γ) =
V − (U ∪ ℓ0).

If there is no fear of confusion we denoteD simply by(V,X,C, ℓ0,
Γ, d0, d1, e} by identifying U with X.

1.2.2

Example.With the notations of 1.1, the set{P2,A2,C, ℓ0, φ, d0, d1, 1} is
an admissible datum for (A2,C0). It is clear thatd0 > d1 if d0 > 1.

1.3

Let D = {V,X,C, ℓ0, Γ, d0, d1, e} be an admissible datum for (X,C0) with
d0 > d1 ≧ 1. Find integersd2, . . . , dα andq1, . . . , qα by the following
Euclidean algorithm:

d0 = q1d1 + d2 0 < d2 < d1

d1 = q2d2 + d3 0 < d3 < d2

. . . . . . . . . . . . . . .

dα−2 = qα−1dα−1 + dα 0 < dα < dα−1

dα−1 = qαdα 1 < qα.

Here, we introduce the following transformation. 92

1.3.1

Definition. LetD = {V,X,C, ℓ0, Γ, d0, d1, e} be an admissible datum for
(X,C0) with d0 > d1 ≧ 1. The Euclidean transformation ofV associated
with D (or simply,the Euclidean transformation ofV) is the composition
ρ of the following quadratic transformations: Let P0 := ℓ0 ∩C, and let
σ1 : V1 → V0 := V be the quadratic transformation of V0 with center
at P0. Set C(1) := σ′1(C), Γ(1) := σ′1(Γ) = σ∗1(Γ), ℓ(1)

0 := σ′1(ℓ0) and
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ℓ1 = ℓ
(1)
1 := σ−1

1 (P0). Let P1 := ℓ1 ∩ C(1), and letσ2 : V2 → V1

be the quadratic transformation of V1 with center P1. For 1 ≦ i ≦
N := q1 + q2 + · · · + qα, defineσi : Vi → Vi−1 inductively as follows:
σi is the quadratic transformation of Vi−1 inductively as follows:σi

is the quadratic transformation of Vi−1 with center at Pi−1 := ℓi−1 ∩

C(i−1). Let ℓi = ℓ
(i)
i := σ−1

i (Pi−1), let ℓ(i)
j := σ′i (ℓ

(i−1)
j ) for 0 ≦ j <

i, let C(i) := σ′i (C
(i−1)) and let Γ(i) := σ′i (Γ

(i−1)) = σ∗i (Γ
(i−1)). The

Euclidean transformation of V associated withD is the composition
ρ := σ1 . . . σN.

1.3.2

For 0 ≦ i < N, setr i := ds if q1 + · · · + qs−1 ≦ i < q1 + · · · + qs. (Set
q0 := 0). Then we have

Lemma (cf. Nagata [43; Prop. 4.3.)] For 0 ≦ i < N, Pi+1 is an in-
finitely near point of Pi of order one, and the (effective) multiplicity of93

Pi on C is ri .

Proof. The first assertion is clear. As for the second assertion, note that
we have:

i(C(i), ℓ
(i)
q1+···+qs−1

; Pi) = ds−1 − tds

i(C(i), ℓ
(i)
i ; Pi) = ds

for 0 ≦ i < N, wheret = i − (q1 + · · ·+ qs−1). Since 0≦ t < qs we know
thatds < ds−1 − tds if i , N − 1, and thatds−1 − tds = ds if i = N − 1.
SincePi is a one-place point ofC(i), the smaller one ofds andds−1− tds

is the multiplicity ofC(i) at Pi . �

1.3.3

Lemma . Let D = {V,X,C, ℓ0, Γ, d0, d1, e} be an admissible datum for
(X,C0) with d0 > d1 ≧ 1. Let ρ : V̂ → V be the Euclidean transfor-
mation of V associated withD . Then, with the notations of 1.3.1 we
have:
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(1) ℓ(N)
i (0 ≦ i ≦ N) is a nonsingular, rational, complete curve.

(2) (ℓ(N)
i · ℓ

(N)
j ) = 1 if (i, j) = (q1 + · · · + qs−1, q1 + · · · + qs−1 + qs+ 1)

with 1 ≦ s ≦ α − 1, (i, j) = (q1 + · · · + qα−1, q1 + · · · + qα), or
(i, j) = (q1 + · · · + qs−1 + t, q1 + · · · + qs−1 + t + 1) with 1 ≦ s≦ α
and 1 ≦ t ≦ qs − 1; (ℓ(N)

i · ℓ
(N)
j ) = 0 for every pair(i, j) (i , j)

other than those enumerated above.

(3) ((ℓ(N)
0 )2) = (ℓ2

0)− q1− 1 if α > 1 and((ℓ(N)
0 )2) = (ℓ2

0)− q1 if α = 1;

((ℓ(N)
q1+···+qs

)2) = −2−qs+1 for 1 ≦ s< α−1 ((ℓ(N)
q1+···+qα−1

)2) = −1−q, 94

and ((ℓ(N)
N )2) = −1; ((ℓ(N)

q1+···+qs−1+t)
2) = −2 for 1 ≦ s ≦ α and

1 ≦ t ≦ qs − 1.

Proof. Follows from a straightforward computation with Lemma 1.3.2
taken into account. �

1.3.4

SetE0 := ℓ(N)
0 andE(s, t) := ℓ(N)

i if i = q1+ · · ·+ qs−1+ t with 1 ≦ s≦ α
and 1≦ t ≦ qs. Then the configuration ofρ−1(ℓ0) is expressed by the
weighted graphs in the Figure 1, where each vertex 0 stands for an ir-
reducible component ofρ−1(ℓ0) with self-intersection multiplicity as its
weight and two vertices are connected by an edge if the corresponding
irreducible components ofρ−1(ℓ0) intersect each other.

1.4

Let d0 and d1 be positive integers such thatd0 > d1. Find integers
d2, . . . , dα andq1, . . . , qα as in 1.3 by the Euclidean algorithm. Define
an integera(s, t) (1 ≦ s ≦ α; 1 ≦ t ≦ qs) inductively in the following
way:

a0 = d0

a(1, t) = t(a0 − d1) for 1 ≤ t ≤ q1

a(2, t) = a0 + t(a(1, q′) − d2) for 1 ≦ t ≦ q2

. . . . . .
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a(s, t) = a(s− 2, qs−2) + t(a(s− 1, qs−1) − ds) for 1 ≦ t ≦ qs

and 2≦ s≦ α.

1.4.1

Lemma. With the notations as above we have:

(1) If α = 1, i.e., d2 = 0 then a(1, q1) ≧ d0; a(1, q1)

Figure 195
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≧ d2 otherwise. More precisely, ifα > 1 and q1 ≧ 2, then 96

a(1, q1) > d0.



66 Curves on an affine rational surface

(2) If α ≧ 2 then a(s, qs) > ds−1 > ds for 2 ≦ s ≦ α. Especially,
a(α, qα) > dα.

(3) For 2 ≦ s≦ α, a(s, 1) > a(s− 1, qs−1).

(4) For 1 ≦ s≦ α and1 ≦ t ≦ qs − 1, a(s, t + 1) ≧ a(s, t) > 0.

(5) dα|a(s, t).

(6) a(α, qα)dα = d0(d0 − d1).

Proof. (1) By definition,a(l, q1) = q1(d0 − d1) = q1d0 − d0 + d2 =

(q1−1)d0+d2. Sinced0 > d1 we have eitherq1 ≧ 2 orq1 = 1 and
d2 > 0. If q1 ≧ 2 thena(l, q1) ≧ d0+d2 ≧ d0. If q1 = 1 andd2 > 0
thena(l, q1) = d2. If α = 1 thenq1 ≧ 2. Hencea(l, q1) ≧ d0. If
α , 1 thend2 , 0 anda(l, q1) ≧ d2. If α > 1 andq1 ≧ 2 then
a(l, q1) > d0.

(2) If α ≧ 2 thena(l, q1) ≧ d2 by (1). Sincea(2, q2) = d0+q2(a(l, q1)−
d2), we havea(2, q2) ≧ d0. Hencea(2, q2) > d1 > d2. If α ≧ 3
we shall provea(s, qs) > ds−1 > ds by induction ons. For s = 3,
a(3, q3) = a(1, q1) + q3(a(2, q2) − d3) > d2 + q3(d2 − d3) > d2.
By induction ons(≧ 4), assume thata(s − 2, qs−2) > ds−2 and
a(s− 1, qs−1) > ds−1. Thena(s, qs) = a(s− 2, qs−2) + qs(a(s−
1, qs−1) − ds) > ds−2 + qs(ds−1 − ds) > ds−2 > ds−1. Therefore, if
α ≧ 2, a(s, qs) > ds−1 for 2 ≦ s≦ α. Especiallya(α, qα) > dα−1 >

dα.

(3) For s = 2, a(2, 1) − a(1, q1) = d0 − d2 > 0. For s ≧ 3, a(s, 1) −
a(s− 1, qs−1) = a(s− 2, qs−2) − ds > 0 by (2).

(4) For s = 1, a(1, t + 1) − a(1, t) = d0 − d1 > 0. Thusa(1, t + 1) >
a(1, t) > 0. Fors≧ 2, a(s, t + 1)− a(s, t) = a(s− 1, qs−1)− ds ≧ 0,
where> 0 takes place ifs ≧ 3. Thusa(s, t + 1) ≧ a(s, t) ≧ . . . ≧97

a(s, 1) > a(s− 1, qs−1) ≧ . . . > a(1, q1) > 0 by (3).

(5) Note thatdα|d1, d2, . . . , dα. Sincea(1, t) = t(d0 − d1), dα|a(1, t).
Thena(2, t) = d + t(a(1, q1) − d2), anddα|a(2, t). Assume that
dα|a(s′, t) for s′ < sand 1≦ t ≦ qs′ . Thena(s, t) = a(s−2, qs−2)+
t(a(s− 1, qs−1) − ds), anddα|a(s, t).



Irreducibility theorem 67

(6) a(α, qα)dα = a(α − 2, qα−2)dα + a(α − 1, qα−1)qαdα − qαd2
α

= a(α − 2, qα−2)dα + {a(α − 1, qα−1) − dα}dα−1

= a(α − 2, qα−2)dα + {a(α − 3, qα−3)

+ a(α − 2, qα−2)qα−1 − qα−1dα−1 − dα}dα−1

= a(α − 2, qα−2)(dα + qα−1dα−1) + a(α − 3, qα−3)dα−1 − dα−2dα−1

= a(α − 3, qα−3)dα−1 + {a(α − 2, qα−2) − dα−1}dα−2.

Assume by induction that

a(α, qα)dα = a( j − 2, q j−2)d j + {a( j − 1, q j−1) − d j}d j−1.

Then, sincea( j−1, q j−1)−d j = a( j−3, q j−3)+q j−1a( j−2, q j−2)−
q j−1d j−1 − d j = a( j − 3, q j−3) + q j−1a( j − 2, q j−2) − d j−2, we have

a(α, qα)dα = a( j − 2, q j−2)(d j + q j−1d j−1)

+ a( j − 3, q j−3)d j−1 − d j−2d j−1

= a( j − 3, q j−3)d j−1 + {a( j − 2, q j−2) − d j−1}d j−2.

Thus,a(α, qα)dα = a0d2+{a(1, q1)−d2}d1 = d0d2+(q1−1)d0d1 =

d0(d0 − d1).
�

1.4.2

Define positive integersc(s, t) (1 ≦ s≦ α; 1 ≦ t ≦ qs) inductively in the
following way:

c(1, t) = t for 1 ≦ t ≦ q1

c(2, t) = 1+ tc(1, q1) for 1 ≤ t ≤ q2

. . . . . . . . .

c(s, t) = c(s− 2, qs−2) + tc(s− 1, qs−1) for 1 ≤ t ≤ qs and

2 ≦ s≦ α.

With the above notations, we shall show 98
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Lemma. c(α, qα)dα = d0.

Proof. c(α, qα)dα = c(α − 2, qα−2)dα + c(α − 1, qα−1)qαdα

= c(α − 2, qα−2)dα + c(α − 1, qα−1)dα−1

= c(α − 2, qα−2)dα + {c(α − 3, qα−3) + c(α − 2, qα−2)qα−1}dα−1

= c(α − 3, qα−3)dα−1 + c(α − 2, qα−2)(dα + qα−1dα−1)

= c(α − 3, qα−3)dα−1 + c(α − 2, qα−2)dα−2.

As in the proof of Lemma 1.4.1, (6), we can show:

c(α, qα)dα = c( j − 2, q j−2)d j + c( j − 1, q j−1)d j−1 for 3 ≦ j ≦ α.

Thus

c(α, qα)dα = c(1, q1)d3 + c(2, q2)d2 = q1d3 + (q1q2 + 1)d2 = d0.

�

1.5

Lemma . Let D = {V,X,C, ℓ0, Γ, d0, d1, e} be an admissible datum for
(X,C0) with d0 > d1 ≧ 1. Letρ : V̂ → V be the Euclidean transforma-
tion of V associated withD . LetĈ := C(N)

= ρ′(C), ℓ̂0 := ℓ(N)
N , d̂0 = dα,

and let
ê= {a(α, qα)/dα + (e− 1)c(α, qα)d0/dα}

and

Γ̂ = e(d0/dα)E0 +

α∑

s=1

qs∑

t=1

{a(s, t)/dα + (e− 1)c(s, t)d0/dα}

E(s, t) + (d0/dα)ρ∗(Γ) − ê̂ℓ0,

where a(s, t)’s and c(s, t)’s are integers defined in 1.4. Let̂d1 be the
multiplicity of Ĉ at P̂0 := Ĉ ∩ ℓ̂0. Then we have:

(1) D̂ = {V̂,X, Ĉ, ℓ̂0, Γ̂, d̂0, d̂1, ê} is an admissible datum for(X,C0)
with d̂1 ≦ d̂0 ≦ d1 < d0 andê≧ 4e− 2.
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(2) (̂ℓ2
0) = −1, andΓ̂ contains no exceptional components providedΓ99

contains no exceptional components and(ℓ2
0) , q1 if α > 1 and

(ℓ2
0) , q1 − 1 if α = 1.

(3) Let Λ be the linear pencil on̂V spanned bŷC andd̂0(̂êℓ0 + Γ̂).
ThenΛ is the proper transform byρ of the linear pencilΛ on V
spanned by C and d0(eℓ0 + Γ).

Proof. By a straightforward computation we have

C(N) ∼ d0E0 +

α∑

s=1

qs∑

t=1

a(s, t)E(s, t) + d0∆
(N)

where∆(N)
= ρ∗((e−1)ℓ0+Γ) = (e−1){E0+

α∑

s=1

qs∑

t=1

c(s, t)E(s, t)+ρ∗(Γ)

and where (C(N) · ℓ
(N)
N ) = dα, (C(N) · ℓ

(N)
j ) = 0 for 0 ≦ j < N and

(C(N) ·ρ∗(Γ)) = 0. Then, withĈ, ℓ̂0, d̂0, êand̂Γ defined as above we have
Ĉ ∼ d̂0(̂êℓ0 + Γ̂). Note thatρ−1(X) is identified withX, that Supp(̂Γ) =

V − (X ∪ ℓ̂0) as is easily seen by Lemma 1.4.1, and thatV̂ − X = ℓ̂0 ∪ Γ̂

satisfies the condition (2) of Definition 1.2.1. Thus, we knowthat D̂ =
{V̂,X, Ĉ, ℓ̂0, Γ̂, d̂0, d̂1, ê} is an admissible datum for (X,C0). It is clear that
d̂1 ≦ d̂0 ≦ d1 < d0. Let d0 = b0dα andd1 = b1dα. Then (b0, b1) = 1 and
b0 > b1 ≧ 1, whenceb0 ≧ 2. Sincêe= b0(b0 − b1) + (e− 1)b2

0 by virtue
of Lemmas 1.4.1 and 1.4.2, we know thatê≧ 4(e− 1)+ 2 = 4e− 2. The
assertion (2) follows from Lemma 1.3.3, and the assertion (3) is easy to
prove. �

1.6

Definition. LetD = {V,X,C, ℓ0, Γ, d0, d1, e} be an admissible datum for
(X,C0) with d0 = d1 ≧ 1. Let P0 := C∩ℓ0, and letσ1 : V1→ V0 := V be
the quadratic transformation of V0 with center at P0. Let C(1) := σ′1(C), 100

let ℓ1 := σ−1
1 (P0) and let P1 := C(1) ∩ ℓ1. Let d(1)

1 be the multiplicity

of C(1) at P1. (Set d(0)
1 := d1). If d0 = d(0)

1 = d(1)
1 , let σ2 : V2 → V1

be the quadratic transformation of V1 with center at P1. Defineσ j :
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V j → V j−1, C( j), ℓ j := ℓ( j)
j , ℓ( j)

t (0 ≦ t < j) and d( j)
1 inductively as follows

when1 ≤ j ≤ e and d0 = d(0)
1 = . . . = d( j−1)

1 : σ j is the quadratic
transformation of Vj−1 with center at Pj−1 := C( j−1) ∩ ℓ j−1; C( j) :=
σ′j(C

( j−1)), ℓ j := σ−1
j (P j−1), ℓ( j)

t := σ′j(ℓ
( j−1)
t ); d( j)

1 is the multiplicity of

C( j) at Pj := C( j) ∩ ℓ j . For 1 ≦ i ≦ e, if d0 = d(0)
1 = d(1)

1 = . . . = d(i−1)
1 ,

defined the(e, i)-transformationρ of V associated withD (or simply, the
(e, i)-transformation ofV) as the compositionρ := σ1 . . . σi.

Here it should be noted that the Euclidean transformation ofV as-
sociated withD is defined whend0 > d1, while the (e, i)-transformation
of V is defined whend0 = d1 = d(1)

1 = . . . = d(i−1)
1 and 1≦ i ≦ e.

1.7

Lemma . Let D = {V,X,C, ℓ0, Γ, d0, d1, e} be an admissible datum for
(X,C0) with d0 = d1 ≧ 1. If the (e, i)-transformationρ : Vi → V is
defined for some i with1 ≦ i ≦ e then we have the following:

(1) (ℓ(i)
s · ℓ

(i)
t ) = 1 if t = s+ 1 with 0 ≦ s < i; (ℓ(i)

s · ℓ
(i)
t ) = 0 for other

pairs (s, t) with s, t.

(2) ((ℓ(i)
0 )2) = (ℓ2

0) − 1, ((ℓ(i)
t )2) = −2 for 1 ≦ t < i and ((ℓ(i)

i )2) = −1.

(3) Di = {Vi ,X,C(i), ℓi , Γi , d0, d
(i)
1 , (e− i)} is an admissible datum for101

(X,C0) when1 ≦ i < e, where

Γi := ρ∗(Γ) + (e− i + 1)ℓ(i)
i−1 + · · · + eℓ(i)

0 .

If (ℓ2
0) , 0 and Γ contains no exceptional components thenΓi

contains no exceptional components. The linear pencilΛ
(i) on Vi

spanned by C(i) and d0((e− i)ℓi + Γi) is the proper transform byρ
of the linear pencilΛ on V spanned by C and d0(eℓ0 + Γ).

(4) If i = e we have C(e) ∼ d0Γe, where

Γe := ρ∗(Γ) + ℓ(e)
e−1 + · · · + eℓ(e)

0 .

The linear pencilΛ(e) on Ve spanned by C(e) and d0Γe is the
proper transform byρ of the linear pencilΛ on V spanned by
C and d0(eℓ0 + Γ); Λ(e) is irreducible and free from base points.
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Proof. (1) and (2) follow from a straightforward computation. (3) By a
direct computation again we have for 1≦ i ≦ e:

C(i) ∼ d0{(e− i)ℓi + (e− i + 1)ℓ(i)
i−1 + · · · + eℓ(i)

0 + Γ
(i)}

whereΓ(i) := ρ∗(Γ), (C(i) · ℓi) = d0, (C(i) · ℓ
(i)
j ) = 0 for 0 ≦ j < i and

(C(i) · Γ(i)) = 0. Note thatρ−1(X) is identified withX, thatVi − ρ
−1(X) =

ρ−1(Γ) ∪ ℓ(i)
0 ∪ ℓ

(i)
1 ∪ . . . ∪ ℓ

(i)
i satisfies the condition (2) of Definition

1.2.1 and that Supp(Γi) = Vi − (X ∪ ℓi). Therefore, if 1≦ i < e, Di =

{Vi ,X,C(i), ℓi , Γi , d0, d
(i)
1 , (e− i)} is an admissible datum for (X,C0). The

other assertions are easy to prove.
(4) We have only to note thatΛ(e) is irreducible. SinceC(e) is irre-

ducible,Λ(e) is apparently irreducible. �

1.8

We need the following auxiliary 102

Lemma. Let k be an algebraically closed field of characteristic p and
let V be a nonsingular projective surface defined over k. Let f: V → B
be a surjective morphism of V onto a nonsingular complete curve B,
whose general fibers are irreducible curves. Assume that we are given
a fiber f∗(b) such that:

(1) f ∗(b) = d∆, where d is the multiplicity and∆ is the reduced form,

i.e., f∗(b) =
n∑

i=1

di∆i with irreducible components∆i then d is the

greatest common divisor of d1, . . . , dn and∆ =
n∑

i=1

(di/d)∆i ,

(2) Supp(∆) =
n⋃

i=1

∆i satisfies the following conditions;

(i) each irreducible component∆i is a nonsingular, rational
complete curve,

(ii) ∆i intersects∆ j (if at all) transversely in at most one point,
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(iii) ∆i ∩ ∆ j ∩ ∆ℓ = φ for three distinct indices,

(iv) Supp(∆) contains no cyclic chains.

Then the multiplicity d of f∗(b) is a power of the characteristic p.

Proof. Our proof consists of three steps.

(I) SetZ := ∆red. We shall show thatZ is simply connected, i.e.,Z
has no nontrivial unramified covering of degree prime top. Let
ϕ : W → Z be an unramified covering of degreem > 1 with
(m, p) = 1. For 1≦ i ≦ n, ϕi := ϕ×

Z
∆i : Wi := W×

Z
∆i → ∆i is

an unramified covering of∆i . Since∆i is isomorphic toP1 and103

∆i is thus simply connected,Wi is a disjoint unionWi := ∆(1)
i ∪

. . . ∪ ∆
(m)
i of irreducible components∆( j)

i (1 ≦ j ≦ m) which are
isomorphic to∆i . Now we shall prove our assertion by induction
on the numbern of irreducible components ofZ. Whenn = 1
our assertion holds clearly as seen from the above remark. For
n > 1 there exists an irreducible component ofZ, say∆1, such
that∆1 meets only one irreducible component ofZ other than∆1

andZ′ = Z − ∆1 =

n⋃

i=2

∆i satisfies the same conditions (i)∼ (iv)

as above forZ. Let P := Z′ ∩ ∆1 and letϕ′ := ϕ×
Z
Z′ : W′ :=

W×
Z
Z′ → Z′. Sinceϕ′ is an unramified covering of degreem

we know by assumption of induction thatW is a disjoint union
W := Z′(1)

∪ . . . ∪ Z′(m), whereZ′( j)(1 ≦ j ≦ m) is isomorphic
to Z′. Let ϕ−1(P) := {P(1), . . . ,P(m)}. We may assume with no
loss of generality thatP( j) ∈ Z′( j) ∩ ∆

( j)
1 for 1 ≦ j ≦ m. SinceZ′

and∆1 meet transversely each other atP andϕ is unramified,Z′( j)

and∆( j)
1 meet transversely each other atP( j) for 1 ≦ j ≦ m. Set

Z( j) := Z′( j)
∪ ∆

( j)
1 for 1 ≦ j ≦ m. Then it is easy to see that each

Z( j) is isomorphic toZ for 1 ≦ j ≦ mandW is a disjoint union of
Z(1), . . . ,Z(m). Thus, our assertion is proved.

(II) Assume thatd is not a power ofp, and writed = pαd′ with
(d′, p) = 1. Let t be a uniformisant ofB at the pointb, and let
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B′ be the complete nonsingular model of an algebraic function
field k(B)(t1/d

′

). The canonical morphismψ : B′ → B determined
by the injectionk(B) ֒→ k(B)(t1/d

′

) ramifies totally over the point 104

b. Let b′ be the unique point ofB′ overb. Let V′ be the normal-
ization of V×

B
B′ and letψ̂ : V′ → V and f ′ : V′ → B′ be the

canonical projections ontoV andB′, respectively. We have, thus,
a commutative diagram:

V′

f ′

��

ψ̃ // V

f

��
B′

ψ // B

Let W′ := f ′∗(b′). We shall show that̃ψ mapsW′ onto pα∆
(considered as a closed sub scheme ofV) andϕ′ := ψ̃|W′ : W′ →
pα∆ is a nontrivial unramified covering of degreed′. Letv be a (k-
rational) point ofV on∆, and letx be an element ofOV,v such that
x = 0 is a local equation of∆ (considered as a divisor onV). Then
we havet = uxd with u ∈ O∗V,v. Hence we havet1/d

′

= (u1/d′ )xpα

in k(V′) := k(V) ⊗
k(B)

k(B′). Here note thatt andx cannot be chosen

so thatu has ad′-th root inOV,v; indeed, if possible,k(V) ⊗
k(B)

k(B′)

would be not an integral domain, and this contradicts the fact that
k(V) is a regular extension ofk(B). We have then:

V′×
V

Spec(OV,v) = the normalization of (V×
B
B′)×

V
Spec(OV,v)

= the normalization ofB′×
B

Spec(OV,v)

= Spec(OV,v[u
1/d′ ]).

This implies that̃ψ : V′ → V is unramified at every point of
V′ over v. Moreover, we know by construction that̃ψ∗(pα∆) =
f ′∗(b′) at every point ofV′ overv. Since these assertions hold for105

all pointsv of ∆ we know thatψ̃ mapsW′ onto pα∆ andϕ′ :=
ψ̃|W′ : W′ → pα∆ is an unramified covering of degreed′, where
ϕ′ is nontrivial becauseW′ := f ′∗(b′) is connected.
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(III) Set ϕ : ϕ′red, W := W′red andZ := (pα∆)red. Thenϕ : W→ Z is a
nontrivial unramified covering of degreed′ > 1, which contradict
the assertion in step (I). Consequently,d is a power ofp.

�

1.9

As consequences of Lemma 1.8 we have the following results.

1.9.1

Corollary. LetD = {V,X,C, ℓ0, Γ, d0, d1, e} be an admissible datum for
(X,C0) with d0 = d1 > 1. Assume that d0 is not divisible by p. Then
there exists an admissible datumD ′ = {V′,X,C′, ℓ′0, Γ

′, d′0, d
′
1, e
′} for

(X,C0) such that:

(1) D ′ is obtained fromD by some(e, i)-transformation of V associ-
ated withD ;

(2) d′0 = d0, d′1 < d′0 and e′ < e;

(3) (ℓ′20) = −1, andΓ′ contains no exceptional components provided
(ℓ2

0) , 0 andΓ contains no exceptional components.

Proof. (I) Assume thatd0 = d1 = d(1)
1 = . . . = d(i−1)

1 > d(i)
1 for

somei with 1 ≦ i < e. Let Di be an admissible datum for (X,C0)
obtained fromD by the (e, i)-transformation ofV associated with
D . ThenDi satisfies all conditions (1)∼ (3) above by virtue of
Lemma 1.7.

(II) Assume that the equalitiesd0 = d1 = d(1)
1 = . . . = d(e−1)

1 hold.
Let ρ : Ve→ V be the (e, e)-transformation ofV associated with106

D , and let∆ := Γe. The linear pencilΛ(e) on Ve spanned byC(e)

and d0∆ is an irreducible pencil free from base points. Hence
Λ

(e) defines a fibrationf : Ve → P
1
k, of which d0∆ is a multiple

singular fiber becaused0 > 1. Note thatd0 is the multiplicity
of the fiberd0∆ by virtue of Lemma 1.7 (esp. (4)) and that the
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irreducible components∆i of ∆ (i.e., Supp(∆) =
n⋃

i=1

∆i) satisfy the

conditions (i)∼ (iv) of Lemma 1.8. Hence, by virtue of Lemma
1.8,d0 is a power ofp, which contradicts the assumption thatd0

is not divisible byp.
�

1.9.2

Corollary. Let D = {V,X,C, ℓ0, Γ, d0, d1, e} be an admissible datum for
(X,C0) with d0 = d1 ≧ 1. Assume that the(e, e)-transformationρ :
Ve→ V is defined, i.e., the equalities d0 = d1 = d(1)

1 = . . . = d(e−1)
1 hold.

LetΛ be the linear pencil on V spanned by C and d0(eℓ0 + Γ). Then the
generic member ofΛ has only one place outside of X, which is a purely
inseparable place. In other words, a general member ofΛ has only one
place outside of X.

Proof. (I) LetΛ(e) be the proper transform ofΛ by ρ; Λ(e) is spanned
by C(e) andd0Λ, where∆ := Γe, andΛ(e) is an irreducible linear
pencil free from base points. SetS := ℓe (cf. 1.7). Then (C(e) ·

S) = d0(∆ · S) = d0, andd0 is a power ofp in virtue of Lemma
1.8. Let f : Ve → P

1
k be the fibration defined byΛ(e). Let S :=

S − {S ∩ ∆} andT := P1
k − f (∆). Then, by restrictingf onto S

we have a surjective morphismϕ : S → T of degreed0. Choose
inhomogeneous coordinatessandt on S andT respectively such 107

that the pointC(e) ∩ S is defined bys= 0 and the pointf (C(e)) is
defined byt = 0. Thenϕ is given by a polynomialt = G(s) in s
with coefficient ink and with degG = d0. By choices ofs andt
we haveG(0) = 0. Since the pointC(e) ∩S is a one-place point of
C(e) andΛ(e) has no base points, we conclude readily thatG(s) is
written asG(s) = asd0 with a ∈ k. We may assume thata = 1 by
substitutings for (a1/d0)s. This implies thatf := f |S : S → P1

k

is theα-th iterationFα of the Frobenius endomorphismF of S,
whered0 = pα.

(II) Let K := k(t) = k(P1), and letW be the generic fiber off ,
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i.e., W = V(e)×
P1

Spec(K). ThenW is a projective normal curve

defined overK, and the curveS gives rise to a pointP on W
which is purely inseparable overK, as was seen in the step (I).
HenceP is a one-place point ofW. Thus the generic member of
Λ has only one place outside ofX.

�

The following example, which was communicated to the authorby
A. Sathaye, shows that a general fiber ofΛ has only one place outside
of X, while some special fiber has 2 or more places outside ofX. Let k
be a field of characteristicp > 0. Choose integersn, U, V such that (1)
UV = 1 + p + · · · + pn and (2)U > V > 1 andLU − MV = 1 is the
unique relation withL, M > 0, L < V andM < U. Then there exists a
unique positive integer a such that

LU pn+1
+ UV − 1 > aUV > LU pn+1 and a . 0 (mod p).

Consider an affine plane curvef (x, y) = xV p
+ yUp + xrys, wherer =

aV − Lpn+1 and s = U p − aU + Mpn+1. Then the curvef (x, y) has108

the property thatf + λ has exactly one place at infinity for all except
one value ofλ and for the special value ofλ, it has 2 or more places at
infinity. Heren can be chosen to be 1 for allp , 2m − 1 for anym, and
n ≦ 3 otherwise. Consequently, degf = U p < p2 in the former case
and degf < p5 in the latter case.

1.10

Corollary to Lemma 1.5 and Corollary 1.9.1.LetD = {V,X,C, ℓ0, Γ,
d0, d1, e} be an admissible datum for(X,C0) such that at least one of
d0 and d1 is not divisible by p. Then there exists an admissible datum
D̃ = {Ṽ,X, C̃, ℓ̃0, Γ̃, 1, 1, ẽ} for (X,C0) such that:

(1) There exists a birational morphismρ : Ṽ → V, which is the
composition of Fuclidean transformations and the(e, i)-transfor-
mations associated with admissible data.

(2) C̃ = ρ′(C) andρ−1(X) � X.
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(3) The linear pencil̃Λ on Ṽ spanned bỹC andẽ̃ℓ0 + Γ̃ is the proper
transform byρ of the linear pencilΛ on V spanned by C and
d0(eℓ0 + Γ).

Proof. We shall prove the assertion by induction ond0. If d0 = 1, we
have only to takẽD = D . If d0 > d1 then the Euclidean transformation
ρ0 of V associated withD can be defined, and we obtain by Lemma
1.5 an admissible datum̂D = {V̂,X, Ĉ, ℓ̂0, Γ̂, d̂0, d̂1, ê} for (X,C0) such
that d̂1 ≦ d̂0 ≦ d1 < d0 and d̂0 is not divisible byp. By inductive
assumption we have an admissible datum̃D = {Ṽ,X, C̃, ℓ̃0, Γ̃, 1, 1, ẽ} 109

and a birational morphismρ0 : Ṽ → V̂ which satisfy the above con-
ditions (1) ∼ (3). Then we have only to takẽD and ρ := ρ1ρ0. If
d0 = d1 > 1, Corollary 1.9.1 shows that there exists an admissible da-
tum D ′ = {V′,X,C′, ℓ′0, Γ

′, d′0, d
′
1, e
′} such thatd′1 < d′0 = d1 = d0, d′0 is

not divisible byp, and thatD ′ is obtained by some (e, i)-transformation
ρ′ of V associated withD . By the former case treated above we have
an admissible datum̃D and a birational morphismρ2 : Ṽ → V′ which
satisfy the above conditions (1)∼ (3). Then we have only to takẽD and
ρ := ρ2ρ

′. �

1.11

Lemma . Let D = {V,X,C, ℓ0, Γ, 1, 1, e} be an admissible datum for
(X,C0). Let ρ : Ve → V be the(e, e)-transformation of V associ-
ated withD , let Λ(e) be the linear pencil on Ve spanned by C(e) and
Γe = ρ

∗(Γ) + ℓ(e)
e−1 + · · · + eℓ(e)

0 (cf. Lemma 1.7)and let f : Ve→ P
1
k be

the fibration defined byΛ(e). Then we have the following results:

(1) C(e) is an irreducible curve which is nonsingular at C(e) ∩ ℓe.

(2) ℓe is a cross-section of the fibration f: Ve→ P
1
k.

(3) Λ(e) has no multiple members.

(4) Let D be a member ofΛ(e) other thanΓe. Then, D is an irreducible
curve; D0 := D ∩ X has only one place outside of D0; if C0 is
nonsingular the arithmetic genus of D is equal to the geometric
genus of C0.
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(5) If C0 is nonsingular and rational then D is a non-singular rational
curve; X with a fibration f0 := f |X : X→ A1

k := P1
k−{ f (Γe)} is an110

A1-bundle overA1
k, and hence X is isomorphic to the affine plane

A2
k.

Proof. It will be clear that the (e, e)-transformationρ : Ve → V asso-
ciated withD is defined. Lemma 1.7 tells us thatΛ(e) is an irreducible
pencil free from base points. Hence the general fibers off are irre-
ducible. Since (C(e) · ℓe) = 1 we know thatC(e) is an irreducible curve
which is nonsingular atC(e)∩ℓe and thatℓe is a cross-section off . Hence
Λ

(e) has no multiple members. LetD be a member ofΛ(e) other thanΓe.
Then (D · ℓe) = 1. SinceVe− (X ∪ ℓe) = Supp(Γe) (cf. the proof of
Lemma 1.7) and sinceX is affine, D is an irreducible member. Since
D0 = D − (D ∩ ℓe) andD ∩ ℓe is a simple point ofD, D has only one
place outside ofD0. By invariance of arithmetic genera for members
of a linear system we have:pa(D) = pa(C(e)), which is equal to the
genus ofC0 if C0 is nonsingular. IfC0 is non-singular and rational then
pa(D) = 0, whence follows thatD is a nonsingular rational curve and
D0 is isomorphic to the affine lineA1

k. Furthermore, ifC0 is nonsingular
and rational thenϕ : Ve−Supp(Γe)→ A1

k := P1
k − { f (Γe)} is aP1-bundle

overA1
k by virtue of Hironaka [22; Th. 1.8] andℓe− (Γe∩ ℓe) is a cross-

section ofϕ, whereϕ is the restriction off ontoVe− Supp(Γe). Hence,
f0 := f |X : X→ A1

k is anA1-bundle overA1
k, andX is isomorphic to the

affine planeA2
k because everyA1-bundle overA1

k is trivial. �

1.12

Corollary 1.10 combined with Lemma 1.11 implies the following

Theorem.Let D = {V,X,C, ℓ0, Γ, d0, d1, e} be an admissible datum for111

(X,C0) such that at least one of d0 and d1 is not divisible by p, and let
Λ be the linear pencil on V spanned by C and d0(eℓ0 + Γ). Let D be an
arbitrary member ofΛ other than d0(eℓ0+Γ) and let D0 := D∩X. Then
we have the following:

(1) D0 is an irreducible curve with only one place outside of D0.
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(2) The geometric genus of D is equal to the geometric genus of C if
D is a general member ofΛ and C0 is nonsingular.

(3) If C0 is nonsingular and rational D0 is a nonsingular rational
curve; X is isomorphic to the affine planeA2

k.

Proof. By Corollary 1.10 there exist an admissible datum
D̃ = {Ṽ,X, C̃, ℓ̃0, Γ̃, 1, 1, ẽ} for (X,C0) and a birational morphismρ :
Ṽ → V such that the linear pencil̃Λ on Ṽ spanned bỹC and ẽ̃ℓ0 + Γ̃

is the proper transform byρ of Λ. Let ρ̃ : Ṽ(̃e) → Ṽ be the (̃e, ẽ)-
transformation of̃V associated with̃D and letΛ̃(̃e) be the proper trans-
form of Λ̃ by ρ̃. Let σ = ρρ̃. Then L := Λ̃(̃e) is the proper trans-
form of Λ by σ. Let D′ be the member ofL corresponding toD of
Λ. ThenD′0 := D′ ∩ X is isomorphic toD0, whereX is identified with
σ−1(X). The above assertions now follow from the assertions (4) and
(5) of Lemma 1.11. �

1.13

Lemma . Let D andΛ be as in Theorem 1.12 and let A= Γ(X,OX).
Then the following assertions hold.

(1) Assume that A is a factorial ring and that A∗ = k∗. Let f be a
prime element of A defining C0, and let Cα be the curve on X 112

defined by f− α for α ∈ k. Then D0 (cf. Theorem 1.12)coincides
with Cα for someα ∈ k, and conversely, every Cα is of the form
D0 for some member D ofΛ other than d0(eℓ0 + Γ).

(2) If C0 is nonsingular and rational then A is a polynomial ring in
two variables over k; thence A is a factorial ring with A∗ = k∗.

Proof. (1) Under the assumptions of the assertion (1) we have (f ) =
C − ∆ with a divisor∆ such that Supp(∆) ⊂ ℓ0 ∪ Supp(Γ). Let
g be an element ofk(V) such that (g) = C − d0(eℓ0 + Γ). Then
( f /g) = d0(eℓ0+Γ)−∆, whencef /g is an invertible element ofA.
SinceA∗ = k∗, f = λg with λ ∈ k∗. Hence (f ) = C − d0(eℓ0 + Γ).
This implies thatΛ is spanned by 1 andf (or more precisely, by
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d0(eℓ0+Γ) andd0(eℓ0+Γ)+ ( f ). It is now clear that the assertion
(1) holds.

(2) The second assertion was proved in the assertion (3) of Theorem
1.12.

�

1.14

Theorem.Let A be a nonsingular, rational, affine k-domain of dimen-
sion 2, and let X := Spec(A). Assume that the following conditions
hold:

(1) There exists an irreducible closed curve C0 on X, which is iso-
morphic to the affine lineA1 over k.

(2) There exists an admissible datumD = {V,X,C, ℓ0, Γ, d0, d1, e} for
(X,C0) such that at least one of d0 and d1 is not divisible by p.

Then X is isomorphic to the affine planeA2 over k. Furthermore if f is113

an element of A defining the curve C0 then A= k[ f , g] for some element
g of A.

Proof. The first assertion was proved in Theorem 1.12. We shall show
the second assertion. By virtue of Lemma 1.13, the proof of Theorem
1.12 and Lemma 1.11, we know thatX has a structure of anA1-bundle
overA1

k := Spec(k[ f ]), whose fibers are the curvesCα defined byf − α
with α ∈ k. HenceA = k[ f , g] for some elementg of A. �

1.15

Proof of Irreducibility theorem. SetX := A2
= Spec(k[x, y]). Then, as

seen in 1.2.2,D0 = {P
2
k,X,C, ℓ0, φ, d0, d1, 1} is an admissible datum for

(X,C0); (for the notations, see the paragraph 1.1). We may assume that
d0 > 1; if otherwise,C is a line onP2

k and the assertion of the theorem is
apparently true. Ifd0 > 1, the theorem follows from Theorem 1.12 and
Lemma 1.13.
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1.16

Proof of Generic irreducibility theorem. Let D0 be as in 1.15; we
may assume thatd0 > d1. Starting with the Euclidean transformation of
P2

k associated withD0 and repeating successively the Euclidean trans-
formations or the (e, i)-transformations associated with admissible data
we obtain ultimately an admissible datumD = {V,X,C, ℓ0, Γ, d0, d1, e}
such that one of the following conditions holds:

(1) d0 = d1 = 1;

(2) d0 = d1 > 1 ande= 1.

In the case (1), we know by virtue of Lemma 1.11 that every curve
Cα(α ∈ k) is an irreducible curve with only one place at infinity. In114

the case (2), the generic irreducibility theorem follows from Corollary
1.9.2.

1.17

Proof of the Embedding theorem.Consider an admissible datumD0

in the paragraph 1.15. Ifd0 = 1 the theorem holds apparently; hence
we may assume thatd0 > 1. Thend0 > d1 ≧ 1. Now the embedding
theorem follows from Theorem 1.14.

2 Linear pencils of rational curves
115

2.1

In this section the ground fieldk is assumed to be an algebraically closed
field of characteristicp. Let V be a non-singular projective surface de-
fined overk. We shall consider an irreducible linear pencilΛ on V
satisfying the properties:

(1) General members ofΛ are rational curves.
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(2) The generic member ofΛ is smoothable; namely, settingK :=
the sub field of k(V) corresponding to the pencilΛ, the complete
normalK -model of an algebraic function field k(V) in one vari-
able overK is geometrically regular overK . The property (2)
is equivalent to saying:

(2′) There exist a nonsingular projective surfacẽV and a birational
morphismρ : Ṽ → V such that general members of the proper
transformΛ̃ ofΛ byρ are nonsingular curves.

When the fieldk is of characteristic zero the pencilΛ satisfies automati-
cally the property (2); hence the condition (2) is superfluous. Moreover,
we note by Tsen’s Theorem thatV is a rational surface ifΛ has the prop-
erties (1) and (2). In the next chapter we shall consider a linear pencil
having only the property (1) but not (2), in order to construct unirational,
irrational surfaces.

2.2

Lemma. Let f : V → B be a surjective morphism from a nonsingular
projective surface V onto a nonsingular complete curve B such that al-
most all fibers are isomorphic toP1

k. Let F = n1C1 + · · · + nrCr be a
singular fiber of f , where Ci is an irreducible curve, Ci , C j if i , j,116

and ni > 0. Then we have:

(1) The greatest common divisor(n1, . . . , nr ) of n1, . . . , nr is 1;

Supp(F) =
r⋃

i=1

Ci is connected.

(2) For 1 ≦ i ≦ r, Ci is isomorphic toP1
k and (C2

i ) < 0.

(3) For i , j, (Ci ·C j) = 0 or 1.

(4) For three distinct indices i, j andℓ, Ci ∩C j ∩Cℓ = φ.

(5) One of Ci ’s, say C1, is an exceptional component, i.e., an excep-
tional curve of the first kind. Ifτ : V → V1 is the contraction of

C1, then f factors as f: V
τ
−→ V1

f1
−→ B, where f1 : V1 → B is a

fibration byP1.
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(6) If one of ni ’s, say n1, equals1 then there is an exceptional com-
ponent among Ci ’s with 2 ≦ i ≦ n.

See Gizatullin [16]. (I) Let m = (n1, . . . , nr ) and letC = mD with
D := (n1/m)C1 + · · · + (nr/m)Cr . Then, by the arithmetic genus
formula we have:

pa(C) = {m2(D2) +m(D · KV)}/2+ 1 = m(D · KV)/2+ 1 = 0.

Since (D · KV) is an integer, eitherm = 1 or m = 2 and (D ·
KV) = −1. In the latter case,pa(D) = {(D2) + (D · KV)}2 + 1 =
1/2, which is a contradiction. Hencem = 1. If r = 1 thenC is
isomorphic toP1

k. Hencer ≧ 2 and we know by virtue of Zariski’s

connectedness theorem that Supp(F) =
r⋃

i=1

Ci is connected.

(II) For eachi, ni(C2
i ) +

∑

i, j

n j(Ci · C j) = 0 where (Ci · C j) > 0 for

some j becauseF is connected. Hence (C2
i ) < 0. To prove the 117

assertions (2), (3), (4) and (5) we have only to show that one of
Ci ’s is an exceptional component. Note that (F ·KV) = −2 because
pa(F) = 0. Hence we have:

(∗) −2 = (F ·KV) =
∑

i

ni(Ci ·KV) =
∑

i

ni (2pa(Ci)−2− (C2
i )),

where 2pa(Ci) − 2 − (C2
i ) ≧ −1 and the equality holds if and

only if Ci is an exceptional curve of the first kind. However, it is
impossible that 2pa(Ci) − 2 − (C2

i ) ≧ 0 for everyi, as seen from
the above equality (∗). Therefore, 2pa(Ci) − 2 − (C2

i ) = −1 for
somei.

(III) We shall prove the assertion (6). Assume the contrary,i.e.,C1 is
an exceptional component withn1 = 1 and none ofCi ’s (2 ≦ i ≦
r) is an exceptional component. Then we have:

2pa(C1)− 2− (C2
1) = −1 and 2pa(Ci)− 2− (C2

i ) ≧ 0 for 2≦ i ≦ r.
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Then we have
∑

i

ni(2pa(Ci) − 2− (C2
i )) ≧ −1, which contradicts

the equality (∗).
�

2.3

Lemma . Let V be a nonsingular projective surface and letΛ be an
irreducible linear pencil on V satisfying the properties(1) and (2) of
2.1. Let B be the set of points of V which are base points ofΛ. Let
F := n1C1 + · · · + nrCr be a reducible member ofΛ such that r≧ 2,
where Ci is an irreducible component, Ci , C j if i , j, and ni > 0. Then
the following assertions hold:

(1) If Ci ∩ B = φ then Ci is isomorphic toP1
k and(C2

i ) < 0.

(2) If Ci∩C j , φ for i , j and Ci∩C j∩B = φ then Ci∩C j consists of118

a single point where Ci and Cj intersect each other transversely.

(3) For three distinct indices i, j,ℓ, if Ci ∩ C j ∩ Cℓ ∩ B = φ then
Ci ∩C j ∩Cℓ = φ.

(4) Assume that(C2
i ) < 0 whenever Ci ∩ B , φ. Then the set S=

{Ci; Ci is an irreducible component of F such that Ci ∩ B = φ} is
nonempty, and there is an exceptional component in the set S .

(5) With the same assumption as in(4) above, if a component of S ,
say C1, has multiplicity n1 = 1 then there exists an exceptional
component in S other than C1.

Proof. Let ρ : Ṽ → V be the (shortest) succession of quadratic trans-
formations with centers at base points (including infinitely near base
points) ofΛ such that the proper transform̃Λ of Λ by ρ has no base
points. Then, by the equivalence of the properties (2) and (2′) as ex-
plained in 2.1, general members ofΛ̃ are isomorphic toP1

k. The as-
sertions (1), (2) and (3) are then apparently true. We shall prove the
assertions (4) and (5), assuming thatB , φ. Let P ∈ B. SetP0 := P,
and letP1, . . . ,Ps−1 exhaust infinitely near base points ofΛ such thatPi
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is an infinitely near point ofPi−1 of order one for 1≦ i ≦ s− 1. For
1 ≦ i ≦ s, letσi : Vi → Vi−1 be a quadratic transformation ofVi−1 with
center atPi−1, whereV0 := V, and letσ = σ1 . . . σs. Thenσ factorsρ,
i.e., ρ = σ · ρ. Let E′i := (σi+1 . . . σs)′(σ−1

i (Pi−1)) for 1 ≦ i < s and let
E′s := σ−1

s (Ps−1). Let Ei := ρ′(F′i ) for 1 ≦ i ≦ s. It is clear thatE′i � Ei

and (E′1i ) = (E2
i ) for 1 ≤ i ≦ s, and that (E2

i ) < −1 for 1 ≦ i < s and 119

(E2
s) = −1. MoreoverEs is not contained in any member of̂Λ; indeed,

if otherwise,Λ̃ would have yet a base point onEs, which contradicts
the choice of pointsP1, . . . ,Ps−1. The member̃F of Λ̃ corresponding
to F of Λ may contain some (not necessarily all) ofE1, . . . ,Es−1. After
the above argument made for every point ofB we know that if we write
F̃ = (n1C̃1 + · · · + nrC̃r) + (m1D1 + · · · + mtDt) with C̃i = ρ′(Ci) for
1 ≦ i ≦ r then we have;

1◦ if Ci ∈ S thenC̃i � Ci and (̃C2
i ) = (C2

i ),

2◦ if Ci < S then (̃C2
i ) ≦ −2,

3◦ (D2
i ) ≦ −2 for 1≦ i ≦ t.

Then the assertions (4) and (5) follow from the assertions (5) and (6) of
Lemma 2.2. �

2.4

Let A2
k := Spec(k[x, y]) be the affine plane, and fix an open immersion

of A2
k into P2

k as the complement of a lineℓ0
1. Let f k[x, y] be an irre-

ducible element such that the curveC0 defined byf = 0 is a nonsingular,
rational curve. LetC be the closure ofC0 in P2

k, and letd := (C · ℓ0).
Denote byΛ( f ) the linear pencil onP2

k spanned byC anddℓ0; Λ( f ) is an
irreducible pencil determined uniquely by the inclusionk( f ) ֒→ k(x, y).
We may ask under what conditions the pencilΛ( f ) has properties (1) 120

1We note that ifA2
k is embedded intoP2

k as an affine open set then the complement
is a line. Indeed, letτ : A2

k → P
2
k be such an embedding; thenP2

k − τ(A
2
k) = ∪

r
i=1Ci

with irreducible componentsCi . If r = 1, C1 ∼ m1H whereH is a line ofP2
k. Since

Pic(A2
k) = (0) we havem = 1. Assume thatr ≧ 2 andCi ∼ mi H for 1 ≦ i ≤ r. Then

there exists a nonconstant regular functionf on (A2
k) such that (f ) = m1C2 − m2C1,

which is a contradiction.
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and (2) of the paragraph 2.1.

2.4.1

Lemma . With the above notations, the pencilΛ( f ) has properties(1)
and (2) of 2.1 if and only if f is a field generator, i.e., there exists an
element g of k(x, y) such that k(x, y) = k( f , g).

Proof. The properties (1) and (2) of 2.1 are equivalent to saying that
an algebraic function fieldk(x, y) in one variable overk( f ) has genus 0.
By vartue of Tsen’s theorem, this is equivalent to saying that k(x, y) is a
purely transcendental extension ofk( f ). �

2.4.2

Various properties of a field generator were studied by Russel [48], [50],
one of which tells us:

Lemma Russell [48; Cor. 3.7.] Let f ∈ k[x, y] be a field generator.
Then there are at most two points (including infinitely near points) of f
on the line at infinity. In particular, the degree form of f hasat most two
distinct irreducible factors.

2.4.3

If the curveC0 defined byf = 0 is isomorphic toA1
k, the pencilΛ( f )

satisfies the properties (1) and (2) of 2.1 under some mild restrictions,
as we saw in the previous section. An example of a nonsingular, rational
curveC0 : f = 0, for whichΛ( f ) does not satisfy the properties (1) and
(2) of 2.1, is given by the following:

Example.Assume thatp , 2. Let f := xy2(x+y)+2xy+1. Thenf is an121

irreducible element and the curveC0 : f = 0 is a non-singular, rational
curve. Moreover, ifρ : Ṽ → P2

k is the shortest succession of quadratic

transformations such that the proper transformΛ̃ of Λ( f ) by ρ has no
base points, theñΛ is a pencil of elliptic curves with three singular fibers
andΛ̃ has the following configuration:
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where;

1◦ two dotted linesS2 andS3 are cross-sections of̃Λ; and the dotted
line S1 meets each fiber of̃Λ with multiplicity 2;

2◦ the singular fiberf = ∞ is a singular fiber of typeB9 (cf. Šafarevič
[51; p. 172]);

3◦ the singular fiberf = 0 is a rational curve with only one (ordinary)
node on the lineS1;

4◦ the singular fiberf = 1 has three irreducible componentsC1, C2

andC3 which are nonsingular rational curves, and correspond to
the curvesy = 0, x = 0 andy2

+ xy+ 2 = 0 respectively, in the
decompositionf − 1 = yx(y2

+ xy+ 2); (C2
1) = −1, (C2

2) = −3 and 122

(C2
3) = −2;

5◦ each fiberf = α(α ∈ k, α , 0, 1) is a nonsingular elliptic curve
meetingS1 in two distinct points;

6◦ Ṽ-(the fiber f = ∞) ∪ S1 ∪ S2 ∪ S3 � A
2
k.

2.4.4

Let f ∈ k[x, y] be an irreducible element such that the curveC0 : f = 0
is a nonsingular rational curve. Even ifC0 has exactly two places at
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infinity and f is a field generator, a curveCα : f = α(α ∈ k) does not
necessarily have two places at infinity as is shown by the next:

Example.Assume thatp , 2. Let f = x2y2
+ 2xy2

+ y2
+ 2xy+ 1. Then

f is an irreducible element and the curveC0 : f = 0 is a nonsingular
rational curve. Moreover, ifρ : Ṽ → P2

k is the shortest succession of

quadratic transformations such that the proper transformΛ̃ of Λ( f ) has
no base points, theñΛ is a pencil of rational curves with two singular
fibers and̃Λ has the following configuration:

where;123

1◦ the dotted lineS2 is a cross-section of̃Λ, and the dotted lineS1

meets each fiber with multiplicity 2;

2◦ the singular fiberf = ∞ is 2C1+ 4C2+ 2C3+ 2C4+C5+C6 with
(C2

1) = (C2
4) = (C2

5) = (C2
6) = −2, (C2

2) = −1 and (C2
3) = −3;

3◦ the singular fiberf = 1 is D1 + D2, where (D2
1) = (D2

2) = −1, and
D1 andD2 correspond to the curvesy = 0 andx2y+2xy+y+2x =
0, respectively, in the decompositionf −1 = y(x2y+2xy+y+2x);

4◦ the fiber f = 0 is a nonsingular rational curve meetingS1 in a
single point with multiplicity 2;
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5◦ each fiberf = α(α ∈ k, α , 0, 1) is a nonsingular rational curve
meetingS1 in two distinct points;

6◦ Ṽ-(the fiber f = ∞) ∪ S1 ∪ S2 � A
2
k.

2.4.5

Let f ∈ k[x, y] be an irreducible element such that:

(1) f is a field generator;

(2) every irreducible curve of the formCα : f = α with α ∈ k is a
nonsingular rational curve with exactly two places at infinity.

Even with these conditions satisfied, there might exist a curve Cα :
f = α(α ∈ k) which is not connected, as is shown by the next:

Example .Let f = y(xy + 1) + 1. Then f is an irreducible element.
If ρ : Ṽ → P2

k is the shortest succession of quadratic transformations

such that the proper transform̃Λ of Λ( f ) has no base points, theñΛ is a
pencil of rational curves with two singular fibers andΛ̃ has the following 124

configuration:

where;

1◦ two dotted linesS1 andS2 are cross-sections of̃Λ’
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2◦ the singular fiberf = ∞ is C1 + 3C2 + 2C3 +C4 with (C2
1) = −3,

(C2
2) = −1 and (C2

3) = (C2
4) = −2;

3◦ the singular fiberf = 1 isD1+D2+D3 with (D2
1) = (D2

2) = −1 and
(D2

3) = −2, whereD1 andD2 correspond to the curvesy = 0 and
xy+ 1 = 0, respectively, in the decompositionf − 1 = y(xy+ 1);

4◦ the fibersf = α(α , 1,∞) are nonsingular rational curves;

5◦ Ṽ-(the fiber f = ∞) ∪ S1 ∪ S2 ∪ D3 � A
2
k.

2.4.6

In the section 6 below we shall show the following result:
Assume that the characteristic ofk is zero. Let f be an irreducible

element ofk[x, y], and letCα be the curve defined byf = α for α ∈ k.
Then f = xdye−1 for positive integersd andesuch that (d, e) = 1, after
a suitable change of coordinatesx andy, if the following conditions are125

satisfied:

1◦ f is a field generator;

2◦ Cα has exactly two places at infinity for almost allα ∈ k;

3◦ Cα is connected for everyα ∈ k.

3 Automorphism theorem
126

3.1

We shall begin with

Lemma cf. Nagata [43; p. 21].Let k be an algebraically closed field of
characteristic p. Let C0 be a closed irreducible curve on the affine plane
A2

k := Spec(k[x, y]) such that C0 is defined by f= 0 with f ∈ k[x, y] and
that C0 is isomorphic to the affine lineA1

k. Fix an open immersion ofA2
k
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into the projective plane P2k, and letℓ0 := P2
k − A

2
k. Let C be the closure

of C0 onP2
k, let P0 = C∩ℓ0, let d0 = (C ·ℓ0) and let d1 be the multiplicity

of C at P0. Assume that f is a field generator(cf. 2.4.1). Then d0 and
d1 are divisible by d0 − d1. If either d0 or d1 is not divisible by p then f
is a field generator, and d0 and d1 are divisible by d0 − d1.

Proof. Our proof consists of three steps.

(I) We may assume with no loss of generality thatd0 > d1. LetΛ0 be
an irreducible linear pencil onP2

k spanned byC andd0ℓ0, and let

ρ : Ṽ → P2
k be the (shortest) succession of quadratic transforma-

tions such that the proper transform̃Λ of Λ0 has no base points.
By assumption and by virtue of 1.2.2 and 1.12 when eitherd0 or
d1 is not divisible byp, the pencilΛ̃ satisfies the properties (1)
and (2) of 2.1; furthermore, the member ofΛ̃ corresponding to
d0ℓ0 of Λ0 is a reducible fiber of̃Λ.

(II) As in 1.3, find integersd2, . . . , dα andq1, . . . , qα by the Euclidean
algorithm with respect tod0 andd1. To obtain the morphismρ we 127

have to start with the Euclidean transformationσ : V → P2
k as-

sociated with an admissible datum{P2
k,A

2
k,C, ℓ0, φ, d0, d1, 1}. Let

Λ be the proper transform ofΛ0 by σ and letF be the member
of Λ corresponding to the memberd0ℓ0 of Λ0. ThenF has the
weighted graph as given in 1.3, Figure 1, andΛ has a unique base
point lying on the curveE(α, qα) but not on other curves of the
weighted graph. We shall now apply Lemma 2.3 to the presentV,
Λ andF.

(III) Case 1.α = 1, i.e.,d0 = q1d1 with q1 ≧ 2. Then the weighted
graph ofF is:

.

Now, by virtue of Lemma 2.3, we know that (E2
0) = 1− q1 = −1,

i.e., q1 = 2. Thend0 − d1 = d1; henced0 − d1 dividesd0 andd1.
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Case 2.α = 2, i.e.,d0 = q1d1 + d2 andd1 = q2d2 with q2 ≧ 2.
Then the weighted graph ofF is:

.

Again by Lemma 2.3 we conclude thatq1 = 1. Henced0−d1 = d2.
Thend2 dividesd0 andd1.

Case 3.α ≧ 3. By Lemma 2.3 we know that (E2
0) = −q1 = −1.

Then we can contract the curvesE0, E(2, 1), . . . ,E(2, q2 − 1) in
this order; in each step of the contractions we obtain a nonsingular
projective surfaceV′, a linear pencilΛ′ and a singular fiberF′ of128

Λ
′ to which Lemma 2.3 can be applied. However, after contract-

ing the curveE(2, q2 − 1), the proper transformE of E(2, q2) has
self-intersection number (E2) = −q3 if α = 3 and (E2) = −(q3+1)
if α ≧ 4. Note thatq3 ≧ 2 if α = 3 andq3 ≧ 1 if α ≧ 4. Hence
(E2) ≦ −2 if α ≧ 3. This is a contradiction. Consequently, we
know thatα ≦ 2 and we are done.

�

3.2

Corollary (Abhyankar-Moh [2]) . Let k be a field of characteristic p.
Let ϕ and ψ be nonconstant polynomials of degree m and n in t with
coefficients in k. Letρ : A1

k = Spec(k[t]) → A2
k = Spec(k[x, y]) be a

morphism defined byρ∗(x) = ϕ(t) and ρ∗(y) = ψ(t), and let f(x, y) be
an irreducible polynomial in k[x, y] defining the curveρ(A1

k). Assume
that k[t] = k[ϕ, ψ] and that f is a field generator. Then either m divides
n or n divides m. If G.C.D(m, n) is not divisible by p then f is a field
generator, and either m divides n or n divides m.

Proof. We may assume thatk is algebraically closed, by substituting an
algebraic closure ofk for k. We may also assume thatm > n. Fix a
homogeneous coordinate (X,Y,Z) on P2

k, and letℓ0 be the lineZ = 0.
Let A2

k := P2
k − ℓ0, and letx := X/Z andy := Y/Z. Then a mapping
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t 7→ (x = ϕ, y = ψ) maps isomorphicallyA1
k to a curveC0 onA2

k. Let C
be the closure ofC0 onP2

k and letP0 := C ∩ ℓ0. Now write:

ϕ(t) := amtm+ · · · + a0

ψ(t) := bntn · · · + b0

with ambn , 0. Then the pointP0 is (am, 0, 0), and the curveC is 129

expressed locally atP0 in the following way:

X = am + am−1τ + · · · + a0τ
m

Y = τm−n(bn + bn−1τ + · · · + b0τ
n)

Z = τm

whereτ = t−1. Thenm = (C · ℓ0), andm− n is the multiplicity ofC at
P0. By virtue of Lemma 3.1 we know thatn dividesm. �

3.3

Let k be a field of arbitrary characteristicp, and letk[x, y] be a poly-
nomial ring in two variablesx andy overk. We denote by Autk k[x, y]
the group ofk-automorphisms ofk[x, y]. A k-automorphismξ (σ or τ,
resp. ) ofk[x, y] is called alinear (affineor de Jonquière, resp. ) trans-
formation if ξ (σ or τ, resp. ) has the following expression:

ξ(x) = αx+ βy, ξ(y) = α′x+ β′y with α, β, α′, β′ ∈ k such
thatαβ′ , α′β;

σ(x) = αx+ βy+ γ, σ(y) = α′x+ β′y+ γ′ with α, β, γ, α′,
β′, γ′ ∈ k such thatαβ′ , α′β;

τ(x) = αx+ f (y), τ(y) = βy+ γ, where f (y) ∈ k[y] andα, β,
γ ∈ k with αβ , 0.

We denote byGL(2, k) (A2 or J2, resp. ) the subgroup of all linear
(affine or de Jonquière, resp. ) transformations in Autk k[x, y]. A k-
automorphismρ of k[x, y] is called tameif ρ is an element of the sub-
group generated byA2 andJ2. An easy consequence of Corollary 3.2 is
the following:
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3.3.1

AUTOMORPHISM THEOREM (cf. Nagata [43]; Abhyankar-Moh
[2] and many others). Let k be a field of arbitrary characteristic. Then130

everyk-automorphism ofk[x, y] is tame.

Proof. Let ρ be ak-automorphism ofk[x, y] and let

ρ(x) := f (x, y) = f0(x, y) + f1(x, y) + · · · + fm(x, y)

ρ(y) := g(x, y) = g0(x, y) + g1(x, y) + · · · + gn(x, y)

where fi(x, y) andg j(x, y) are thei-th and thej-th homogeneous parts of
f andg, respectively, for 0≦ i ≦ mand 0≦ j ≦ n, and wherefm(x, y) ,
0 andgn(x, y) , 0. After a suitable change of coordinatesx andy by a
linear transformation we may assume thatfm(x, 0) , 0 andgn(x, 0) , 0.
Let ϕ(x) := f (x, 0) andψ(x) := g(x, 0). Thenk[x] = k[ϕ, ψ]. Let
τ : A1

k = Spec(k[x]) → A2
k = Spec(k[x′, y′]) be a morphism defined by

τ∗(x′) = ϕ(x) andτ∗(y′) = ψ(x), let C0 = τ(A1
k), and let f ′(x′, y′) be an

irreducible element ink[x′, y′] definingC0. Then f ′ is a field generator;
this is clear becauseρ is an automorphism ofk[x, y]. By Corollary 3.2
we conclude that eitherm|n or n|m. Besides, it is easily ascertained that
if mn> 1 then fm(x, y) = αλm andgn(x, y) = βλn for a common linear
factorλ in x andy and forα, β ∈ k∗2. Assuming thatm= nd > 1, define
a k-automorphismσ of k[x, y] by σ(x) = x − γyd andσ(y) = y, where131

α = γβd. Thenσρ(x) has degree smaller thanm. Thus, we can finish
our proof by induction on max(m, n). �

3.3.2

More precisely, we know the following structure theorem on
Autk k[x, y]:

2Since the curvef (x, y) = 0 is isomorphic toA1
k, we know thatfm(x, y) = λm

1 for a
linear factorλ1; similarly, gn(x, y) = λn

2. Since the curvesf (x, y) = 0 andg(x, y) = 0
intersect in a single point transversely onA2

k = Spec(k[x, y]), we know by Bezout’s
Theorem thatλ2 = γλ1 with γ ∈ k∗ unlessmn= 1.
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Lemma (cf. Nagata [43; Th. 3.3.; Kambayashi [25]) ]Autk k[x, y] is
an amalgamated product of A2 and J2. Namely, ifσi ∈ A2− J2 (1 ≦ i ≦
r − 1), τ j ∈ J2 − A2(1 ≦ j ≦ r), thenτ1σ1τ2σ2 . . . τr−1σr−1τr < A2. 131

For the convenience of readers, we shall give a (sketchy) proof in
the next paragraph.

3.4

Let τ : τ(x) = αx+ f (y) andτ(y) = βy+ γ be a de Jonquière transforma-
tion of k[x, y]. τ defines a birational automorphismT of P2

k by setting:
T∗(X) = αXZn−1

+ F(Y,Z), T∗(Y) = βYZn−1
+ γZn andT∗(Z) = Zn,

wherex = X/Z, y = Y/Z, n := degy f (y) andF(Y,Z) := Zn f (Y/Z).3 We
assume thatn > 1. Then it is easy to see thatP0 : (X,Y,Z) = (1, 0, 0)
is a unique fundamental point ofT on P2

k and the lineℓ0 : Z = 0 is a
unique fundamental curve ofT onP2

k. Letϕ1 be a quadratic transforma-
tion with center atP0. Now eliminating fundamental points (including
infinitely near fundamental points) ofT by the (shortest) succession of
quadratic transformations, which start withϕ1, we have a nonsingular
projective surfaceV and birational morphismsϕ, ψ : V → P2

k such that
T = ψ · ϕ−1.

3.4.1

Lemma. With the above notations we have:

(1) ϕ−1(ℓ0) has the following weighted graph:

where each vertex stands for a nonsingular rational curve; the 132

vertex with weight−n corresponds to the proper transform of
ϕ−1(P0) byϕϕ−1

1 .

3If n = degy f (y), τ is called a de Jonquière transformation of degreen.
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(2) Let L be the curve with weight−1 other thanϕ′(ℓ0). Thenψ(L) is
the line at infinity of a new projective planeP2

k.

(3) The point Q:= (1, 0, 0) on the new projective planeP2
k is a unique

fundamental point of T−1.

Proof. Straightforward computation. See also Russell [48; 4.2]. �

3.4.2

Note that ifσ : σ(x) = αx + βy + γ andσ(y) = α′x + β′y + γ′ is an
affine transformation not inJ2, i.e.,α′ , 0 then the associated biregular
automorphismΣ : (X,Y,Z) 7→ (αX + βY+ γZ, α′X + β′Y+ γ′Z,Z) of P2

k
maps the point (1, 0, 0) to (α, α′, 0) which is distinct from (1, 0, 0). With
this remark in mind we can easily show:

Lemma. Letσi ∈ A2 − J2(1 ≦ i ≦ r − 1), let τ j ∈ J2 − A2(1 ≦ j ≦ r)
and letρ : τ1σ1 . . . τr−1σr−1τr . Let nj be the degree ofτ j for 1 ≦ j ≦ r.
LetΣi(1 ≦ i ≦ r − 1), T j(1 ≦ j ≦ r) and R be birational automorphisms
of P2

k associated withσi, τ j andρ, respectively. Then, by elimination of
indeterminacy of a birational automorphismρ, we obtain a nonsingular
projective surface W and birational morphismsφ, ψ : W → P2

k such
that:

(1) R= ψ · φ−1, where R:= TrΣr−1Tr−1 . . .Σ1T1;

(2) φ−1(ℓ0) has the following weighted graph:
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where, if L is the curve corresponding to the vertex with weight 133

−1 other thanφ′(ℓ0), thenψ(L) is the line at infinity of a new
projective planeP2

k;

(3) n j > 1 for 1 ≦ j ≦ r.

3.4.3

By virtue of Lemma 3.4.2, it is clear thatρ < A2; if ρ ∈ A2 thenℓ0 would
not be a fundamental curve. Therefore we completed a proof ofLemma
3.3.2.

3.5

We shall prove in this paragraph the following:

Theorem Igarashi-Miyanishi [24] . Let k be a field of characteristic
zero.4 Let F be a finite subgroup of order n ofAutk k[x, y]. Then
there exists an elementρ of Autk k[x, y] such thatρ−1Fρ is contained
in GL(2, k).

The proof will be given in the subparagraphs 3.5.1∼ 3.5.5.

3.5.1

Lemma. With the notations and assumptions as above, if F is contained 134

in A2, then F is conjugate to a finite subgroup of GL(2, k).

Proof. It suffices to show thatF has a fixed point on the affine planeA2
k.

Indeed, letρ be an affine transformation defined by

ρ


x
y
1

 =


1 0 s
0 1 t
0 0 1




x
y
1

 .

4The theorem holds for an arbitrary characteristicp if (n, p) = 1. Indeed, Lemmas
3.5.1 and 3.5.2 hold true with this condition, while Lemmas 3.5.3 and 3.5.4 hold true
without any restriction.
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Thenρ−1Fρ ⊂ GL(2, k) if and only if the point (x = s, y = t) onA2
k is

fixed underF. Eachσ ∈ A2 has a matrix representation:

σ


x
y
1

 =


α(σ) β(σ) a(σ)
γ(σ) δ(σ) b(σ)

0 0 1




x
y
1

 .

Let ℓ(σ) = t(a(σ), b(σ)) and letM(σ) be an invertible matrix such that

M(σ) =

(
α(σ) β(σ)
γ(σ) δ(σ)

)
.

For σ, τ ∈ A2, we haveℓ(σ · τ) = ℓ(σ) + M(σ)ℓ(τ) and M(σ · τ) =
M(σ) · M(τ). Thenℓ0 =

t(s0, t0) is a fixed point ofF if and only if

ℓ(σ) = ℓ0 − M(σ)ℓ0 for everyσ of F. Setℓ0 :=


∑

τ∈F

ℓ(τ)

 /n. Since

1
n

∑

τ∈F

ℓ(σ · τ) = ℓ(σ) + M(σ)


1
n

∑

τ∈F

ℓ(τ)

 ,

we have thenℓ(σ) = ℓ0 − M(σ)ℓ0. Henceℓ0 gives rise to a pointQ of135

A2
k fixed underF. �

3.5.2

Lemma. With the notations and assumptions as above, if F⊂ J2, then
F is conjugate to a finite subgroup of GL(2, k).

Proof. Each elementσ ∈ J2 acts onA2
k in the following way:

σ(x) = α(σ)x+ fσ(y) and σ(y) = β(σ)y+ γ(σ),

where fσ(y) ∈ k[y]; α(σ), β(σ), γ(σ) ∈ k; α(σ) ·β(σ) , 0. Forσ, τ ∈ J2,
we have:

α(σ · τ) = α(σ) · α(τ), β(σ · τ) = β(σ) · β(τ), γ(σ · τ) = γ(τ) + β(τ)γ(σ)

and fσ·τ(y) = fτ(β(σ)y+ γ(σ)) + α(τ) fσ(y).
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Let J0
2 be the subgroup ofJ2 such thatγ(σ) = 0. Letǫ =


∑

τ∈F

γ(τ)


/n. Thenγ(σ) = ǫ − β(σ)ǫ for everyσ of F. Replacingy by y − ǫ,
we may assume thatF is contained inJ0

2. We shall now look for a
polynomialg(y) ∈ k[y] such thatσ(x+ g(y)) = α(σ)(x+ g(y)) for every
σ ∈ F. If such a polynomial exists, we haveρ−1σρ(x) = α(σ)x and
ρ−1σρ(y) = β(σ)y for everyσ ∈ F, settingρ(x) = x+ g(y) andρ(y) = y.
Namely,F ⊂ GL(2, k). Now g(y) satisfiesσ(x+ g(y)) = α(σ)(x+ g(y))
for everyσ ∈ F if and only if fσ(y) = α(σ)g(y) − g(β(σ)y) for every
σ ∈ F. Write fσ(y) in the form:

fσ(y) =
α(σ)
α(σ · τ)

fσ·τ(y) −
1
α(τ)

fτ(β(σ)y).

Thenn fσ(y) = α(σ)
∑

τ∈F

fσ·τ(y)
α(σ · τ)

−
∑

τ∈F

fτ(β(σ)y)
α(τ)

. Setg(y) :=
1
n

∑

τ∈F

fτ(y)
α(τ)

. 136

Then fσ(y) = α(σ)g(y) − g(β(σ)y) for everyσ ∈ F. This completes the
proof. �

3.5.3

Lemma. Let F be a finite subgroup ofAutk k[x, y]. Letσ be an element
of F. Then there exists an elementρ in Autk k[x, y] such thatρ−1σρ is
contained in either A2 or J2 andρ−1(F∩(A2∪J2))ρ ⊂ ρ−1Fρ∩(A2∪J2),
where A2 ∪ J2 is the set-theoretic union of A2 and J2 in Autk k[x, y].

Proof. Our proof consists of three steps.

(I) By virtue of Lemma 3.3.2 we may writeσ in one of the following
ways:

(i)r σ = σ1τ1 . . . τr−1σrτr , whereσi ∈ A2 − A2 ∩ J2(1 ≦ i ≦ r),
τ j ∈ J2 − A2 ∩ J2(1 ≦ j ≦ r − 1) andτr ∈ J2;

(ii) r σ = τ′1σ
′
1 . . . σ

′
r−1τ

′
rσ
′
r , whereτ′i ∈ J2 − A2 ∩ J2(1 ≦ i ≦ r),

σ′j ∈ A2 − A2 ∩ J2(1 ≦ j ≦ r − 1) andσ′r ∈ A2.

We shall prove the following assertions for everyr ≧ 1:
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(1)r if σ is written in the way (i)r then there exists an elementρ
of Autk k[x, y] such thatρ−1σρ is written in the way (ii)r−1

andρ−1(F ∩ (A2 ∪ J2))ρ ⊂ ρ−1Fρ ∩ (A2 ∪ J2);

(2)r If σ is written in the way (ii)r then there exists an element
ρ of Autk k[x, y] such thatρ−1σρ is written in the way (i)r−1

andρ−1(F ∩ (A2 ∪ J2))ρ ⊂ ρ−1Fρ ∩ (A2 ∪ J2); where (1)1137

and (2)1 are understood, respectively as:

(1)1 σ ∈ A2; (2)1 σ ∈ J2.

It is apparent that the assertion in Lemma follows from the
above assertions.

(II) Proof of the assertion(1)r . Sinceσn
= 1 for some integern > 0,

we have:

σn
= (σ1τ1 . . . σrτr ) . . . (σ1τ1 . . . σrτr)︸                                     ︷︷                                     ︸

n-times

= 1.

Since (τ1 . . . σrτr)(σ1τ1 . . . σrτr ) . . . (σ1τ1 . . . σrτr) = σ−1
1 ∈ A2,

Lemma 3.3.2 implies thatτr ∈ A2 ∩ J2; indeed, ifτr < A2 we
would have a contradiction. Ifr = 1 thenσ = σ1τ1 ∈ A2, i.e., (1)1
holds. If r > 1, we know again by Lemma 3.3.2 thatσrτrσ1 ∈

A2 ∩ J2 because

(τ1 . . . τr−1)(σrτrσ1)(τ1 . . . τr−1) . . . (σrτrσ1)(τ1 . . . τr−1)

= (σrτrσ1)−1 ∈ A2.

Let h = σrτrσ1. Thenσrτr = hσ−1
1 , andσ−1

1 σσ1 = τ1σ2 . . . σr−1

τr−1h. Thusσ−1
1 σσ1 has an expression as in (ii)r−1. We shall

show thatσ−1
1 (F ∩ (A2∪ J2))σ1 ⊂ σ

−1
1 Fσ1∩ (A2∪ J2). Letσ0 be

an element ofF ∩ (A2 ∪ J2). Sinceσ · σ0 ∈ F and (σ · σ0)m
= 1

for some integerm> 0, we have:

(σ · σ0)m
= (σ1τ1 . . . σrτrσ0) . . . (σ1τ1 . . . σrτrσ0)︸                                             ︷︷                                             ︸

m-times

= 1.
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Since (τ1σ2 . . . σrτrσ0)(σ1τ1 . . . σrτrσ0) . . . (σ1τ1 . . . σrτrσ0) =
σ−1

1 ∈ A2 and sinceσrτr ∈ A2 − A2 ∩ J2, Lemma 3.3.2 implies138

thatσ0 < J2 − A2 ∩ J2, i.e.,σ0 ∈ A2. Since this is true for every
elementσ0 of F ∩ (A2∪ J2) we know thatF ∩ (A2∪ J2) = F ∩A2.
Thenσ−1

1 (F ∩ A2)σ1 ⊂ σ−1
1 Fσ1 ∩ (A2 ∪ J2) becauseσ1 ∈ A2.

Thus we have only to takeσ1 asρ.

(III) Proof of the assertion(2)r . A proof will be only sketchy because
it is similar to the proof of (1)r . Sinceσn

= 1 for some integer
n > 0 we conclude by Lemma 3.3.2 thatσ′r ∈ A2 ∩ J2. If r = 1
thenσ = τ′1σ

′
1 ∈ J2, i.e., (2)1 holds. If r > 1, Lemma 3.3.2 again

implies thatτ′rσ
′
rτ
′
1 ∈ A2 ∩ J2. Let h′ = τ′rσ

′
rτ
′
1. Thenτ′rσ

′
r =

h′τ′−1
1 andτ′−1

1 στ′1 = σ′1τ
′
2 . . . τ

′
r−1σ

′
r−1h′. Thusτ′−1

1 στ′1 has an
expression as in (i)r−1. We shall show thatτ′−1

1 (F∩ (A2∪ J2))τ′1 ⊂
τ′−1

1 Fτ′1∩(A2∪J2). Letσ0 be an arbitrary element ofF∩(A2∪J2).
Sinceσ · σ0 ∈ F and (σ · σ0)m

= 1 for some integerm > 0,
a similar argument as in step (II) shows thatσ0 ∈ J2. Hence
F ∩ (A2 ∪ J2) = F ∩ J2. Thenτ′−1

1 (FJ2)τ′1 ⊂ τ
′−1
1 Fτ′1 ∩ (A2 ∪ J2)

becauseτ′1 ∈ J2. Thus we have only to takeτ′1 asρ.

�

3.5.4

Lemma. Let F be a finite subgroup ofAutk k[x, y]. Then there exists an
elementρ in Autk k[x, y] such thatρ−1Fρ is contained in either A2 or J2.

Proof. Lemma 3.5.3 tells us the following: IfF has an elementσ not
in A2 and J2 then there exists an elementρ of Autk k[x, y] such that
|ρ−1Fρ ∩ (A2 ∪ J2)| > |F ∩ (A2 ∪ J2)|. Hence, by substituting a suitable
conjugate ofF for F, we may assume thatF ⊂ A2 ∪ J2. If F is not
contained inA2 or J2, then there exist two elementsα andβ in F such 139

thatα ∈ A2−A2∩ J2 andβ ∈ J2− (A2∩ J2). Then Lemma 3.3.2 implies
thatα · β is not of finite order. This contradicts the fact thatα · β ∈ F.
Hence eitherF ⊂ A2 or F ⊂ J2. �
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3.5.5

Lemma. 3.5.4 combined with Lemmas 3.5.1 and 3.5.2 completes a proof
of Theorem 3.5.

3.6

In the present and the next paragraphs we shall apply Theorem3.5, in
order to obtain two partial answers of the following:

CONJECTURE. Let k be an algebraically closed field, and let A be a
regular k-subalgebra of a polynomial ring k[x, y] such that k[x, y] is a
flat A-module of finite type. Then A is a polynomial ring over k.

The first result is stated as follows:

Proposition . Let k be an algebraically closed field of characteristic
zero. Let X be a nonsingular affine surface and let f: A2

k → X be
an étale finite surjective morphism. Then f is an isomorphism.

This result will be proved in the subparagraphs 3.6.1∼ 3.6.4.

3.6.1

Definition. Let X and Z be nonsingular varieties defined over k and let
h : Z → X be an étale finite morphism. A pair(Z, h) is calleda Galois
covering ofX with groupF if there exist a finite group F acting freely on
Z and a k-isomorphismϕ : Z/F

∼
−→ X between the quotient variety Z/F140

and X such that h= ϕq, where q: Z → Z/F is the canonical quotient
morphism.

3.6.2

Lemma. Let f : X → Y be an étale finite morphism of a nonsingular
variety X onto a nonsingular variety Y. Then there exist an étale finite
morphism h: Z → X of a nonsingular variety Z onto X, a finite group
G and a subgroup H of G such that:

(1) g : f · h : Z→ Y is a Galois covering with group G;
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(2) h : Z→ X is a Galois covering with group H.

Proof. Let n := [k(X) : k(y)] and let S̃ := X×
Y

X×
Y
. . .×

Y
X be then-th

iterated fiber product ofX overY. Let F be the closed subset of̃S con-
sisting of alln-tuples (x1, . . . , xn) in which two or more ofxi ’s coincide
with each other. LetZ := S̃ − F, and letSn be the symmetric group on
n letters. ThenSn acts freely onZ. Let h : Z → X be the projection
onto the first factor, and letSn−1 be the symmetric group onn−1 letters,
which we let act onZ in such a way that

σ(x1, . . . , xn) = (x1, σ(x2, . . . , xn)) for σ ∈ Sn−1.

ThenSn−1 ⊂ Sn. Sinceh−1(x) consists of (n−1)! points for everyx ∈ X,
h is an étale finite morphism. Thusq := f · h : Z → Y is also an étale
finite morphism. It is obvious thatY � Z/Sn with the quotient morphism
q : Z → Y andX � Z/Sn−1 with the quotient morphismh : Z→ X. We
have now only to setG := Sn andH := Sn−1. �

3.6.3

Lemma . With the notations of 3.6.2, if X is simply connected, i.e., X141

has no nontrivial étale finite coverings, then f: X → Y is a Galois
covering.

Proof. SinceX is simply connected,h : Z → X splits. Namely there
exists a regular cross-sections : X→ Z such that the morphismH×X→
Z defined by (h, x) 7→ hs(x) is an isomorphism. Therefore the number of
connected components ofZ, which are all isomorphic toX, is the order
|H| of H. Let X0 := s(X) and letF be the subgroup ofG consisting of all
elementsg of G such thatg(X0) = X0. If X1 is a connected component
of Z distinct fromX0 and if g is an element ofG such thatg(X0) = X1,
theng1F is the set of all elements ofG which sendX0 to X1. Hence
Z � X ×G/F, and|G/F | = |H|. Therefore the morphismq|X0 : X0 → Y
has degree|G|/|H| = |F |. SinceF acts freely onX0, we know that a pair
(X0, g|X0) is a Galois covering ofY with groupF. Finally, sinceX � X0,
f : X→ Y is a Galois covering with groupF. �
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3.6.4

Proof of Proposition 3.6.SinceA2
k is simply connected (if the charac-

teristic of k is zero), we know by applying Lemma 3.6.3 that f: A2
k → X

is a Galois covering with group F. But since every finite subgroup of
Autk k[x, y] has a fixed point onA2

k by virtue of Theorem 3.5, we know
that F can not act freely onA2

k. Therefore, F� (1), and f is an isomor-
phism. This completes a proof of Proposition 3.6.

3.7

Another application of Theorem 3.5 is the following proposition which142

is a slight improvement of Serre’s result (cf. Lemma 3.7.1 below):

Proposition. Let k be a field of characteristic zero, and let F be a finite
subgroup ofAutk k[x, y]. Then the following conditions are equivalent
to each other:

(1) k[x, y]F is a regular ring;

(2) k[x, y]F is a polynomial ring over k;

where k[x, y]F is the invariant subring of k[x, y] with respect to F.

A proof of proposition will be given in the subparagraphs 3.7.1 ∼
3.7.3.

3.7.1

Lemma (Serre [53; Th.1]).Let F be a finite subgroup of GL(n, k) and
let k[x1, . . . , xn]F be the invariant subring of k[x1, . . . , xn] for F.5 Then
the following are equivalent:

(1) k[x1, . . . , xn]F is a polynomial ring over k;

(2) F is generated by pseudo-reflections.

(An elementf of GL(n, k) is called a pseudo-reflectionif rank (I − f ) ≦
1.)

5The present and the next lemmas hold for a fieldk of arbitrary characteristicp, if
we assume that (|F|, p) = 1.
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3.7.2

Lemma (Serre [53; Th.1’]) . Let S be a regular local ring with maxi-
mal ideal mS and let F be a finite subgroup ofAut(S). Let SF be the
invariant local subring of S for F. Suppose that:

(1) SF is a noetherian ring;

(2) S is of finite type over SF ;

(3) S/mS = SF/mS ∩ SF
= k; 143

(4) the action of F on S/mS is trivial.

Let ǫ : F → Autk(mS/m
2
S) be the canonical homomorphism from F to

Autk(ms/m
2
S). Then the following are equivalent:

(i) SF is a regular local ring;

(ii) ǫ(F) is generated by pseudo-reflections.

3.7.3

Proof of Proposition 3.7 .(2) ⇒ (1) is clear. We shall show (1)⇒
(2). By virtue of Theorem 3.5 there exists an elementρ of Autk k[x, y]
such thatρ−1Fρ is a finite subgroup of GL(2, k). Then k[x, y]F

= ρ (k
[x, y]ρ

−1Fρ ) and k[x, y]ρ
−1Fρ is a regular ring. Hence we may assume that

F is a finite subgroup of GL(2, k). Let (x, y) be the maximal ideal of
k[x, y] generated by x and y. Let S be the localization of k[x, y] with
respect to the ideal(x, y) and let mS be the maximal ideal of S . We
can view F as a finite subgroup ofAut(S) in a natural way, and it is
easy to see that SF = S ∩ Q(k[x, y]F), where Q(k[x, y]F ) is the quotient
field of k[x, y]F . Since k[x, y] is a k[x, y]F-module of finite type and F
fixes the ideal(x, y), we know that S is a finitely generated SF-module.
Thus S and SF satisfy the condition (2) and also the other conditions of
Lemma 3.7.2. By virtue of Lemma 3.7.2,ǫ(F) is generated by pseudo-
reflections inAutk(mS/m

2
S). Now it is easily seen that the action ofǫ(F)

on the k-vector space mS/m
2
S coincides with that of F on the vector

space kx+ky. Therefore F is generated by pseudo-reflections. By virtue
of Lemma 3.7.1, we know that k[x, y]F is a polynomial ring over k.
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4 Finiteness theorem
144

4.1

Throughout this section the ground fieldk is assumed to be algebraically
closed field of characteristic zero. LetC0 be a nonsingular irreducible
affine curve of genusq > 0 with only one place at infinity. Byan em-
beddingof C0 into the affine planeA2

k we mean a biregular mapping
ǫ : C0→ A

2
k. Fix an open immersion ofA2

k into the projective planeP2
k

as a complement of a lineℓ0. LetC(ǫ) be the closure ofǫ(C0) in P2
k. Let

P0(ǫ) := C(ǫ) ∩ ℓ0, let d0(ǫ) := (C(ǫ) · ℓ0) and letd1(ǫ) be the multiplic-
ity of C(ǫ) at P0(ǫ). Thend0(ǫ) > d1(ǫ); indeed, if otherwise, we have
d0(ǫ) = 1 and henceg = 0. By abuse of (and for the sake of simplicity
of) the notations, we denoteǫ(C0), C(ǫ), P0(ǫ), d0(ǫ) andd1(ǫ) by C0,
C, P0, d0 andd1 if an embeddingǫ : C→ A2

k is given and if there is no
fear of confusion. Find integersd2, . . . , dα andq1, . . . , qα as in 1.3 by the
Fuclidean algorithm with respect tod0 andd1. It should be noted that
integersα, d1, . . . , dα andq1, . . . , qα may change depending on choice
of embeddingsǫ : C→ A2

k. We shall first show the following:

Lemma . Given an embeddingǫ : C0 → A
2
k there exists a birational

automorphismρ of P2
k, which induces a biregular automorphismρ0 of

A2
k, such that, with respect to an embeddingρ0 · ǫ : C0→ A

2
k, one of the

following conditions holds:

(i) α ≧ 3; (ii) α = 2 and q1 ≧ 2; (iii) α = 1 and q1 ≧ 3.

Proof. We have only to show that if eitherα = 2 andq1 = 1 or α = 1145

andq1 = 2 with respect to a given embeddingǫ there exists a birational
automorphismρ of P2

k, which induces a biregular automorphismρ0 of
A2

k, such that, with respect to an embeddingρ0 · ǫ : C0→ A
2
k, one of the

conditions (i)∼ (iii) holds.

(I) Case : α = 2 and q1 = 1. We have thend0 = (q2 + 1)d2

and d1 = q2d2 with q2 ≧ 2. Let σ : V0 → P2
k be the Eu-

clidean transformation ofP2
k associated with an admissible datum
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{P2
k,A

2
k,C, ℓ0, φ, d0, d1, 1} and (A2

k, ǫ(C0)) (cf. 1.3.1 for definition
and notations). Thenσ−1(ℓ0∪C) has the following configuration:

whereN := q2 + 1, PN := ℓ(N)
N ∩C(N), d2 = (ℓ(N)

N ·C(N)) ande :=
multPN C(N) ≦ d2. Let τ1 : V1 → V0 be the quadratic transfor-
mation with center atQ0 := PN and letQ1 be a point onτ−1

1 (PN)

other than the pointsτ′1(C(N))∩τ−1
1 (Q0) andτ′1(ℓ(N)

N )∩τ−1
1 (Q0). For

2 ≦ i ≦ q2 − 1, defineτi : Vi → Vi−1 and a pointQi inductively
as follows: τi : Vi → Vi−1 is the quadratic transformation with
center atQi−1, andQi is a point onτ−1

i (Qi−1) other than the point
τ′i (τ

−1
i−1(Qi−2)) ∩ τ−1

i (Qi−1). Let τq2 : W := Vq2 → Vq2−1 be the 146

quadratic transformation with center atQq2−1. Let τ := τ1 . . . τq2,
let Li := τ′(ℓ(N)

i ) for 0 ≦ i ≦ N, let E j(1 ≦ j ≦ q2) be the proper
transform ofτ−1

j (Q j−1) onW, and letC := τ′(C(N)). We have then
the following configuration:
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where (C · LN) = d2 − e and (C · E1) = e. Let ϕ : W → P2
k be

the contraction of curvesL0, L2, . . . , LN−1, LN,E1,E2, . . . ,Eq2−1

andL1 in this order, letℓ′0 := ϕ(Eq2) and letC′ := ϕ(C). Then
a birational automorphismϕ · (στ)−1 is biregular onA2

k; indeed,
ϕ ·(στ)−1|A2

k
is a de Jonquière transformationϕ0 ofA2

k of degreeN
(cf. 3.4.1). By a straightforward computation we can easilyverify
that:

(1) C′ − (C′ ∩ ℓ′0) � C0;

(2) (C′ · ℓ′0) = (q2 + 1)d2 − e= d0 − e;

(3) multp′ C′ = q2d2 − e= d1 − e, whereP′0 := C′ ∩ ℓ′0.

Let ǫ′ : ϕ0 · ǫ : C0 → A
2
k. Thenǫ′ is an embedding ofC0 into

A2
k with (C′ · ℓ′0) = d0 − e < d0 and multP′0 C′ = d1 − e < d1.147

By induction ond0, we can show that there exists a birational
automorphismρ of P2

k, which induces a biregular automorphism
ρ0 ofA2

k, such that, with respect to an embeddingρ0·ǫ : C0→ A
2
k′

either one of the conditions (i)∼ (iii) holds orα = 1 andq1 = 2.
In the latter cased0 becomes smaller than the original one.

(II) Case:α = 1 andq1 = 2. Letσ : V0→ P
2
k be the Euclidean trans-

formation ofP2
k associated with an admissible datum{P2

k,A
2
k,C,
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ℓ0, φ, d0, d1, 1}. Sinced0 = 2d1 we have the following configura-
tion of σ−1(ℓ0 ∪C):

Then by the same argument as in step (II) we can show the ex-
istence of a birational automorphismρ of P2

k, which induces a
biregular automorphismρ0 of A2

k, such that, with respect to an
embeddingρ0 · ǫ : C0 → A

2
k, either one of the conditions (i)∼

(iii) holds or α = 2 andq1 = 1 with d0 smaller than the original
one.

(III) By steps (I) and (II) we can show the existence of a birational
automorphismρ as claimed in Lemma.

�

4.2

With the notations and assumptions of 4.1, choose an embedding ǫ :
C0 → A2

k for which one of the conditions (i)∼ (iii) of Lemma 4.1 148

holds. Letσ : V0 → P
2
k be the Euclidean transformation ofP2

k as-
sociated with an admissible datumD := {P2

k,A
2
k,C, ℓ0, φ, d0, d1, 1} for

(A2
k, ǫ(C0)). Then, looking at the weighted graph ofσ−1

(ℓ0) (cf. Figure 1
of 1.3.4 as well as the figures given in the proof of Lemma 3.1),we
know thatσ−1(ℓ0) has an exceptional curve of the first kind other than
E(α, qα) if and only if α ≧ 3 andq1 = 1. Whenα ≧ 3 andq1 = 1, by
virtue of 1.3.4, 1.4 and 1.5 we can readily show the followingassertions:

1◦ The curvesE0 := σ′(ℓ0), E(2, 1), . . . ,E(2, q2 − 1) can be con-
tracted successively in this order; letτ : V0 → V be the contrac-
tion of these curves.
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2◦ (τ(E(2, q2))2) = −(q3 + 1) ≦ −2 if α ≧ 4 and (τ(E(2, q2))2) =
−q3 ≦ −2 if α = 3.

3◦ a0 = a(2, 1) = . . . = a(2, q2) = d0.

4◦ Let C := τ(C(N)), ℓ0 := τ(ℓ(N)
N ), E(s, t) := τ(E(s, t)) for 1 ≦ s≦ α,

1 ≦ t ≦ qs and (s, t) , (2, 1), . . . , (2, q2 − 1), d0 := dα, d1 := the
multiplicity of C at the pointC ∩ ℓ0, e := a(α, qα)/dα, and

Γ := (d0/dα)E(2, q2) +
α∑

s=1
s,2

qs∑

t=1

(a(s, t)/dα)E(s, t) − eℓ0.

ThenD := {V,A2
k,C, ℓ0, Γ, d0, d1, e} is an admissible datum for

(A2
k, ǫ(C0)) such that Supp(Γ) has no exceptional components and

that the divisord0(eℓ0 + Γ) containsE(2, q2) with multiplicity d0.

4.3

Assume that an embeddingǫ : C0 → A
2
k is chosen so that one of the

conditions (i)∼ (iii) of Lemma 4.1 holds. Define an irreducible linear149

pencilΛ as follows; if α ≦ 2 or q1 ≧ 2, Λ is the linear pencil onP2
k

spanned byC and d0ℓ0; if α ≧ 3 andq1 = 1, Λ is the linear pencil
on V spanned byC andd0(eℓ0 + Γ). Now eliminating the base points
of Λ by a succession of the Euclidean transformations and the (e, i)-
transformations associated with suitable admissible datafor (A2

k, ǫ(C0)),
we obtain a nonsingular projective surfaceW and a surjective morphism
f : W→ P1

k such that:

1◦ The fibers of f are irreducible, except only one fiber∆ which
corresponds to the memberd0ℓ0 (or d0(eℓ0 + Γ)) of Λ.

2◦ General fibers off are nonsingular curves of genusg, whereg is
the genus of the given curveC0.

3◦ f is a relatively minimal fibration, i.e., each fiber does not contain
exceptional components.
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4◦ If ∆ :=
r∑

i=1

niCi with irreducible componentsCi and integersni >

0 then the greatest common divisor ofn1, . . . , nr is equal to 1 and
at least one ofni ’s is equal tod0.

[For the proof of the assertions 1◦ and 2◦, see Corollary 1.10 and
Lemma 1.11; for the proof of the assertion 3◦, see Lemmas 1.5
and 1.7; the assertion 4◦ follows from the choice ofΛ and the fact
that f has a regular cross-section.]

4.4

According to Artin-Winters [7], we shall call any collection T of inte-
gers

T := {r,mi j , ki , ni ; i, j = 1, . . . , r},

up to permutation of indices,a fiber type of genus gif there exist a 150

nonsingular projective surfaceV defined overk, a surjective morphism
f of V onto a nonsingular complete curveB whose general members are
nonsingular irreducible curves of genusg, and a reducible fiber∆ of f
such that:

(1) ∆ :=
r∑

i=1

niCi , Ci being its irreducible component,

(2) mi j = (Ci ·C j) andki = (Ci · KV) for i, j = 1, . . . , r, whereKV is a
canonical divisor ofV.

The integersni are called themultiplicities of a fiber typeT of genus
g. A fiber typeT = {r,mi j , ki , ni ; i, j = 1, . . . , r} of genusg is called
relatively minimalif mii , −1 or ki , −1 for i = 1, . . . , r; T is called
reducedif the greatest common divisor ofn1, . . . , nr is equal to 1. Now
we can state the following results.

4.4.1

Lemma (Artin-Winters [7; Cor. 1.7]). Assume that g≧ 2. Then there
exists an integer N(g) depending only on g such that the multiplicities
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ni ≦ N(g) for every relatively minimal fiber type T= {r,mi j , ki , ni ; i, j =
1, . . . , r} of genus g.

4.4.2

Lemma (Kodaira [29; p. 123], Šafarevǐc [51; p.171]) .Assume that
g = 1. Then the multiplicities ni ≦ 6 for every reduced relatively mini-
mal fiber type T= {r,mi j , ki , ni ; i, j = 1, . . . , r} of genus1.

4.5

As a consequence of the observations made in the paragraphs 4.3 and
4.4, we have:

Theorem.Let the notations and assumptions be as in 4.1. Assume that151

g > 0. Then there are only finitely many possible pairs(d0, d1), for each
of which there exists an embeddingǫ : C0→ A

2
k such that d0 = (C · ℓ0)

and d1 = multP0 C (cf. 4.1)and that one of the conditions(i) ∼ (iii) of
Lemma 4.1 holds.

Proof. By virtue of the assertion 4◦ of 4.3, the singular fiber∆ has an
irreducible component whose multiplicity in∆ is d0. Then Lemmas
4.4.1 and 4.4.2 imply that there are finitely many possible values ofd0

(and therefore, ofd1 because 0< d1 < d0). �

4.6

In the remaining paragraphs of this section we shall prove the following:

Theorem.Let the notations and assumptions be as in 4.1. Assume that
q > 0. Then there are finitely many embeddingsǫ : C0 → A

2
k, up to

biregular automorphisms ofA2
k, such that:

(1) The curve C (:= the closure ofǫ(C0) in P2
k) is smoothable by the

Euclidean transformation ofP2
k associated with an admissible da-

tum {P2
k,A

2
k,C, ℓ0, φ, d0, d1, 1} for (A2

k, ǫ(C0)).

(2) One of the following conditions holds:
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(i) α = 2 and q1 ≧ 2;

(ii) α = 1 and q1 ≧ 3.

More precisely, if two embeddingsǫ, ǫ′ : C0 → A
2
k satisfying the

conditions(1) and(2) above have the same value of d0 then there
exists an affine automorphismρ0 of A2

k such thatǫ′ = ρ0 · ǫ. We 152

shall note that this result is a special case of Finiteness Theorem
due to Abhyankar-Singh [3]; we also note that the condition(1)
above is fulfilled if G.C.D.(d0, d1) = 1.

4.7

Let ǫ : C0→ A
2
k be an embedding ofC0 intoA2

k for which the condition
(2) above holds. Letσ : V0 → P

2
k be the Euclidean transformation of

P2
k associated with the admissible datum{P2

k,A
2
k,C, ℓ0, φ, d0, d1, 1} for

(A2
k, ǫ(C0)), let C′ := σ′(C) and letℓ be a line onP2

k different from the
line ℓ0 := P2

k − A
2
k. Then we have:

Lemma. With the notations as above and as in 1.3.4, we have:

C′ − σ∗(ℓ) ∼ (d0 − d1 − 1)σ∗(ℓ) + ∆,

where

∆ :=



d1E0 if α = 1,

d1E0 +
∑r

i=1
∑q2i

t=1(d2i−1 − td2i)E(2i, t) if α = 2r and r ≧ 1,

d1E0 +
∑r

i=1
∑q2i

t=1(d2i−1 − td2i)E(2i, t) if α = 2r + 1 and r ≧ 1.

Proof. By virtue of Lemma 1.5 and its proof, we have:

C′ ∼ d0E0 +

α∑

s=1

qs∑

t=1

a(s, t)E(s, t)

σ∗(ℓ) ∼ σ∗(ℓ0) = E0 +

α∑

s=1

q2s∑

t=1

c(s, t)E(s, t),
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where the integersa(s, t) andc(s, t) are defined in 1.4. Hence we have:

C′ − (d0 − d1)σ∗(ℓ) ∼ d1E0 +

α∑

s=1

qs∑

t=1

b(s, t)E(s, t),

whereb(s, t) := a(s, t) − (d0 − d1)c(s, t) is defined as follows:153

b(1, t) = (d0 − d1)t − (d0 − d1)t = 0 for 1≦ t ≦ q1

b(2, t) = d1 + t(b(1, q1) − d2) = d1 − td2 for 1 ≦ t ≦ q2,

. . . . . . . . . . . .

b(s, t) = b(s− 2, qs−2) + t(b(s− 1, qs−1) − ds) for 1 ≦ t ≦ qs

and 2≦ s≦ α.

Thence we have:b(2i, t) = d2i−1 − td2i for 1 ≦ i ≦ r and 1≦ t ≦ q2i ,
andb(2i + 1, t) = 0 for 0 ≦ i ≦ r(2i + 1 ≦ α) and 1≦ t ≦ q2i+1, where

r =
[
α

2

]
. Thus we obtain our assertion. �

4.8

According to Ramanujam [46], an effective divisorD on a nonsingular
projective surfaceV0 defined overk is callednumerically connectedif
for every decompositionD = D1 + D2 with Di > 0(i = 1, 2) we have
(D1 · D2) > 0. We shall show:

Lemma. The divisor(d0 − d1 − 1)σ∗(ℓ) + ∆ is numerically connected
provided q1 ≧ 2.

A proof of the lemma will be given in the subparagraphs 4.8.1∼
4.8.3.

4.8.1

Lemma. Let D be an effective divisor on a nonsingular projective sur-

face V defined over k. Write D:=
r∑

i=1

miDi with irreducible components

Di and integers mi > 0. Assume that(D2
i ) = −αi for 1 ≦ i ≦ r and
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(Di · D j) = δ j,i+1 (Kronecker’s delta)for 1 ≦ i, j ≦ r and i , j. Let154

D1 :=
r∑

i=1

xiDi with 0 ≦ xi ≦ mi(1 ≦ i ≦ r), and let D2 := D − D1. Then

we have:

(D1 · D2) = (α1 − 1)x2
1 +

r−1∑

i=2

(αi − 2)x2
i + (αr − 1)x2

r +

r−1∑

i=1

(xi − xi+1)2

+ (m2 − α1m1)x1 +

r−1∑

i=2

(mi−1 − αimi +mi+1)xi + (mr−1 − αrmr )xr .

Proof. A straightforward computation. �

4.8.2

Lemma. With the notations as in 4.7, let D:= (d0 − d1 − 1)σ∗(ℓ) + ∆
and let

D1 := yσ∗(ℓ) + x0E0 +

r∑

i=1

q2i∑

t=1

x(2i, j)E(2i, j) and D2 := D − D1,

where we assume that Di > 0 for i = 1, 2. Then we have:

(D1 · D2) = −2y2
+ (q1 − 2)x2

0 + (x0 − y)2
+ (d0 − 1)y− x0 + Q

where Q:= 0 if α = 1;

Q : =
r−1∑

i=1

q2i+1x(2i, q2i )
2
+ x(2r, q2r − 1)2

+ {(x0 − x(2, 1))2 +
q2−1∑

t=1

(x(2, t) − x(2, t + 1))2}

+

r−1∑

i=2


(x(2i − 2, q2i−2) − x(2i, 1))2 +

q2i−1∑

t=1

(x(2i, t) − x(2i, t + 1))2



+


(x(2r − 2, q2r−2) − x(2r, 1))2 +

q2r−2∑

t=1

(x(2r, t) − x(2r, t + 1))2
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if α = 2r and r ≧ 1;

Q : =
r∑

i=1

q2i+1x(2i, q2i )
2
+ {(x0 − x(2, 1))2 +

q2−1∑

t=1

(x(2, t) − x(2, t + 1))2}

+

r∑

i=2

{(x(2i − 2, q2i−2) − x(2i, 1))2 +
q2i−1∑

t=1

(x(2i, t) − x(2i, t + 1))2}

if α = 2r + 1 and r ≧ 1.155

Proof. Note that (σ∗(ℓ)2) = 1, (σ∗(ℓ) · E0) = 1 and (σ∗(ℓ) · E(2i, t)) = 0
for 1 ≦ i ≦ r and 1≦ t ≦ q2i . Then we obtain our assertion by applying
Lemma 4.8.1 and taking account of 1.3.3 and 1.3.4. �

4.8.3

Proof of Lemma 4.8.Regarding(D1 · D2) as a function of variables y,
x0 and x(2i, t)’s, we shall estimate the smallest value of(D1 · D2) when
the variables y, x0 and x(2i, t)’s take integral values in the domain A:

0 ≦ y ≦ d0 − d1 − 1; 0≦ x0 ≦ d1; 0 ≦ x(2i, t) ≦ d2i−1 − td2i

(1 ≦ i ≦ r; 1 ≦ t ≦ q2i).

By virtue of Lemma 4.8.2,(D1 · D2) is written in the form:

(D1 · D2) = −y2
+ (d0 − 1− 2x0)y+ (q1 − 1)x2

0 − x0 + Q,

which, viewed as a function in y only, has the smallest value at y = 0 or
y = d0−d1−1 whenever values of x0 and x(2i, t)’s (1 ≦ i ≦ r; 1 ≦ t ≦ q2i)
are fixed in the domain A. If y= 0 we have:

(D1 · D2) = x0{(q1 − 1)x0 − 1} + Q.

Consider first the case whereα = 1. Then q1 ≧ 3 as assumed. Since
D1 > 0, i.e., x0 , 0 and x0 takes an integral value, we know that(D1 ·156

D2) > 0 for 0 < x0 ≦ d1. Assume thatα ≧ 2. Since q1 ≧ 2 as assumed
and x0 takes an integral value, we know that(D1 · D2) ≧ Q ≧ 0, and
that (D1 · D2) = Q if and only if either x0 = 0 or q1 = 2 and x0 = 1.
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Besides, by virtue of Lemma 4.8.2, Q= 0 if and only if x0 = x(2i, t) = 0
for 1 ≦ i ≦ r and 1 ≦ t ≦ q2i . Therefore we have(D1 · D2) > 0 because
D1 > 0. If y = d0 − d1 − 1 we obtain(D1 · D2) > 0 by interchanging
the roles of D1 and D2. Hence(D1 · D2) > 0 for every decomposition
D = D1 + D2 with Di > 0(i = 1, 2). This completes a proof of Lemma
4.8.

4.9

We shall next consider the case whereq1 = 1 andα ≧ 3. We shall use the
notations of the paragraph 4.2. Thus,τ : V0 → V is the contraction of
curvesE0, E(2, 1), . . . ,E(2, q2−1). LetL := τ∗σ∗(ℓ) andE0 := E(2, q2).

4.9.1

Lemma. We have:C − L ∼ (d2 − 1)L + ∆, where

∆ :=


d3E0 if α = 3,

d3E0 +
∑r

i=2
∑q2i

t=1(d2i−1 − td2i)E(2i, t) if α ≧ 4.

Proof. Immediate from Lemma 4.7. �

4.9.2

Lemma. Let D := (d2 − 1)L + ∆ and let

D1 := yL+ x0E0 +

r∑

i=2

q2i∑

t=1

x(2i, t)E(2i, t) and D2 := D − D1,

where we assume thatDi > 0 for i = 1, 2. Then we have:

(D1 ·D2) = −(q2+2)y2
+ (q3−1)x2

0+ (x0−y)2
+ (d0− (q2+1))y− x0+Q,

where 157

Q := 0 if α = 3;
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Q :=
r−1∑

i=2

q2i+1x(2i, q2i )
2
+ x(2r, q2r − 1)2

+ {(x0 − x(4, 1))2 +
q4−1∑

t=1

(x(4, t) − x(4, t + 1))2}

+

r−1∑

i=3

{(x(2i − 2, q2i−2) − x(2i, 1))2 +
q2i−1∑

t=1

(x(2i, t) − x(2i, t + 1))2}

+ {(x(2r − 2, q2r−2) − x(2r, 1))2 +
q2r−2∑

t=1

(x(2r, t) − x(2r, t + 1))2}

if α = 2r ≧ 4;

Q :=
r∑

i=2

q2i+1x(2i, q2i )
2
+ {(x0 − x(4, 1))2 +

q4−1∑

t=1

(x(4, t) − x(4, t + 1))2}

+

r∑

i=3

{(x(2i − 2, q2i−2) − x(2i, 1))2 +
q2i−1∑

t=1

(x(2i, t) − x(2i, t + 1))2}

if α = 2r + 1 ≧ 4.

Proof. Note that (L2) = q2+1, (L ·E0) = 1, (L ·E(2i, t)) = 0 for 2≦ i ≦ r

and 1≦ t ≦ q2i , and (E
2
0) = −q3 if α = 3 and (E

2
0) = −(q3 + 1) if α ≧ 4.

Then our assertion follows from Lemma 4.8.1. �

4.9.3

Lemma. The divisorD := (d2 − 1)L + ∆ is numerically connected.

Proof. Regarding (D1 ·D2) as a function of variablesy, x0 andx(2i, t)’s
(2 ≦ i ≦ r; 1 ≦ t ≦ q2i), we shall estimate the smallest value of (D1 ·D2)
when the variablesy, x0 andx(2i, t)’s take integral values in the domain
A:

0 ≦ y ≦ d2 − 1; 0≦ x0 ≦ d3; 0 ≦ x(2i, t) ≦ d2i−1 − td2i

for 2 ≦ i ≦ r and 1≦ t ≦ q2i .158



Finiteness theorem 119

By virtue of Lemma 4.9.2, (D1 · D2) is written in the form:

(D1 · D2) = −(q2 + 1)y2
+ {d0 − (q2 + 1)− 2x0}y+ q3x2

0 − x0 + Q,

which, viewed as a function only iny, has the smallest value aty = 0 or
y = d2 − 1. If y = 0 we have:

(D1 · D2) = x0(q3x0 − 1)+ Q.

Sincex0 takes an integral value, we know that (D1 · D2) ≧ Q ≧ 0.
If α = 3, thenq3 ≧ 2 and (D1 · D2) = x0(q3x0 − 1) = 0 if and only if
x0 = 0, i.e.,D1 = 0. Thus (D1 · D2) > 0 if α = 3. Assume thatα ≧ 4.
Then, by virtue of Lemma 4.9.2,Q = 0 if and only if x0 = x(2i, t) = 0
for 2 ≦ i ≦ r and 1≦ t ≦ q2i , i.e., D1 = 0. Hence (D1 · D2) > 0. If
y = d2 − 1 we obtain (D1 · D2) > 0 by interchanging the roles ofD1

andD2. Therefore we know that (D1 · D2) > 0 for every decomposition
D = D1 + D2 with Di > 0 for i = 1, 2. �

4.10

Lemma. With the notations of 4.1, letǫ : C0 → A
2
k be an embedding

such that one of the following conditions holds:

(i) α ≧ 2 and q1 ≧ 2;

(ii) α = 1 and q1 ≧ 3.

Let σ : V0 → P
2
k be the Euclidean transformation ofP2

k associated
with an admissible datum{P2

k,A
2
k,C, ℓ0, φ, d0, d1, 1} for (A2

k, ǫ(C0)), let
C′ := σ′(C) and letℓ be a line onP2

k different from the lineℓ0. Then we 159

have:
dimk H0(C′,OC′ (σ

∗(ℓ) ·C′)) = 3.

Proof. Consider an exact sequence

0→ OV0(−C′ + σ∗(ℓ))→ OV0(σ
∗(ℓ)) → OC′(σ

∗(ℓ) ·C′)→ 0.

Thence we obtain an exact sequence

0→ H0(V0,OV0(−C′ + σ∗(ℓ)))→ H0(V0,OV0(σ
∗(ℓ))) →
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H0(C′,OC′(σ
∗(ℓ) ·C′))→ H1(V0,OV0(−C′ + σ∗(ℓ))).

By virtue of Lemmas 4.7 and 4.8 we know thatC′ − σ∗(ℓ) ∼ D :=
(d0 − d1 − 1)σ∗(ℓ) + ∆ and D is numerically connected. SinceV0 is
a nonsingular projective rational surface we have:H1(V0,OV0) = (0).
Hence we have:

dimk H1(V0,OV0(−D)) = dimk H0(D,OD) − 1,

where dimk H0(D,OD) = 1 by virtue of Ramanujam’s theorem [46;
Lemma 3]. Thus we know thatH1(V0,OV0(−C′ + σ∗(ℓ))) = (0). Since
H0(V0,OV0(−C′ + σ∗(ℓ))) = (0) clearly, we obtain:

H0(C′,OC′(σ
∗(ℓ) ·C′)) � H0(V0,OV0(σ

∗(ℓ))) � H0(P2
k,OP2(1)).

Therefore we have dimk H0(C′,OC′(σ∗(ℓ) ·C′)) = 3. �

Remark . If q1 = 1 andα ≧ 3, let τ : V0 → V be the contraction of
curvesE0, E(2, 1), . . . ,E(2, q2 − 1), letC = τ(C′) and letL := τ∗σ∗(ℓ)
(cf. 4.9). Then we obtain:

dimk H0(C,OC(L ·C)) = dimk H0(V,OV (L)) ≧ dimk H0(V0,OV0(σ
∗(ℓ))

= dimk H0(P2
k,OP2(1)) = 3.

160

4.11

Proof of Theorem 4.6.Letǫ : C0→ A
2
k be an embedding satisfying the

conditions (1) and (2) as stated in Theorem 4.6. With the notations of
4.1 and 4.7, we know that:

1◦ The curve C′ is a normalization of the curve C which is of qenux
g > 0; setC̃(ǫ) := C′ andδ(ǫ) := σ∗(ℓ) ·C′.

2◦ Let P̃(ǫ) be the (unique) point of̃C(ǫ) dominating the point P0 of
C. Thenδ(ǫ) ∼ d0P̃(ǫ), δ(ǫ) is an effective divisor such that|δ(ǫ)|
has no base points anddim |δ(ǫ)| = 2 (cf. . Lemma 4.10).
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3◦ Let f(ǫ) : C̃(ǫ)
π(ǫ)
−−−→ ǫ(C0) ֒→ P2

k be the morphism defined from

the embeddingǫ, whereπ(ǫ) := σ|C′ and whereǫ(C0) = C is the
closure ofǫ(C0) in P2

k. Then f(ǫ) is a morphism defined by|δ(ǫ)|
with respect to a suitable basis of|δ(ǫ)|.

Now, letǫ andǫ′ be embeddings of C0 intoA2
k satisfying the conditions

(1) and (2) as stated in Theorem 4.6 and having the same value of d0.
Thenǫ′ ·ǫ−1 : ǫ(C0)→ ǫ′(C0) induces an isomorphism h: C̃(ǫ) → C̃(ǫ′)
such that h(P̃(ǫ)) = P̃(ǫ′) and(ǫ′ · ǫ−1) · π(ǫ) = π(ǫ′) · h onC̃(ǫ)− {P̃(ǫ)}.
Sinceδ(ǫ) ∼ d0P̃(ǫ) andδ(ǫ′) ∼ d0P̃(ǫ′), we know thatδ(ǫ) ∼ h∗δ(ǫ′).
This implies by virtue of the above assertions2◦ and3◦ that there exists
a biregular (hence, linear) automorphismρ of P2

k such thatρ · π(ǫ) =
π(ǫ′) · h andρ(ℓ0) = ℓ0;

C̃(ǫ)

h

��

π(ǫ) // ǫ(C0)

ǫ′·ǫ−1

��

� � // P2
k

ρ

��

C0

ǫ
99ssssssssss

ǫ′ %%KKKKKKKKKK

C̃(ǫ′)
π(ǫ′)

// ǫ′(C0)
� � // P2

k

Letρ0 = ρ|A2
k
. Then it is clear thatρ0 · ǫ = ǫ

′. 161

5 Simple birational extensions of a polynomial ring
k[x, y]

162

5.1

Let k be an algebraically closed field of characteristicp and letk[x, y]
be a polynomial ring overk in two variablesx andy. Let f andg be
two elements ofk[x, y] without common nonconstant factors, and let
A := k[x, y, f /g]. In this section we shall consider the structures of the
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affinek-domainA under an assumption thatV := Spec(A) has only iso-
lated singularities. In the paragraphs 5.2∼ 5.9 we shall describe howV
is obtained fromA2

k := Spec(k[x, y]), and see that ifV has only isolated
singularitiesV is a normal surface whose singular points (if any) are ra-
tional double points (cf. Theorem 5.9). The divisor class group Cℓ(V)
can be explicitly determined (cf. Theorem 5.11); we obtain,therefore,
necessary and sufficient conditions forA to be a unique factorization
domain. If g is irreducible and if the curvesf = 0 andg = 0 onA2

k
meet each other thenA is a unique factorization domain if and only if
the curvesf = 0 andg = 0 meet in only one point where both curves in-
tersect transversely. We shall consider, in the paragraphs5.13 and 5.14 a
problem: When is every invertible element ofA constant? (cf. Theorem
5.14). In the remaining paragraphs 5.16∼ 5.23, assuming thatk is of
characteristic zero, we shall look for a necessary and sufficient condition
for A to have a nontrivial locally nilpotentk-derivation (cf. Theorem
5.23). An affine k-domain of typeA as above was studied by Russell
[49] and Sathaye [52] in connection with the following result:163

Assume that A is isomorphic to a polynomial ring over k in two
variables. In a polynomial ring k[x, y, z] over k in three variables x, y
and z, let u:= gz− f . Then there exist two elements v, w of k[x, y, z]
such that k[x, y, z] = k[u, v,w].

5.2

Let k[x, y, z] be a polynomial ring overk in three variablesx, y andz,
and letA3

k := Spec(k[x, y, z]). Let V be an affine hyper surface onA3
k

defined bygz− f = 0, and letπ : V → A2
k := Spec(k[x, y]) be the

projection: π(x, y, z) = (x, y). Let F andG be respectively the curves
f = 0 andg = 0 onA2

k. Then we have:

Lemma. (1) For each point P∈ F ∩ G, π−1(P) is isomorphic to the
affine lineA1

k.

(2) If Q is a point on G but not on F, thenπ−1(P) = φ.

Proof. Straightforward. �
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5.3

The Jacobian criterion of singularity applied to the hyper surface V
shows us the following:

Lemma. Let P be a point on F and G. Then the following assertions
hold:

(1) If P is a singular point for both F and G then every point ofπ−1(P)
is a singular point of V.

(2) If P is a singular point of F but not a singular point of G then the
point (P, z= 0) is the unique singular point of V lying onπ−1(P).

(3) If P is a singular point of G but not a singular point of F then V164

is nonsingular at every point ofπ−1(P).

(4) If P is a nonsingular point of both F and G and if i(F,G; P) ≧ 2
then the point(P, z = α) is the unique singular point of V lying

on π−1(P), whereα ∈ k satisfies:
∂ f
∂x

(P) = α
∂g
∂x

(P) and
∂ f
∂y

(P) =

α
∂g
∂y

(P). If i(F,G; P) = 1 then V is nonsingular at every point of

π−1(P).

We assume, from now on, thatV has only isolated singularities.
Hence, ifP ∈ F ∩G, eitherF or G is nonsingular atP. Furthermore, we
assume thatF ∩G , φ. WhenF ∩G = φ thenA = k[x, y, 1/g] andA is
a unique factorization domain.

5.4

Let P be a point onF andG. We shall first consider the case where
F is nonsingular atP but G singular atP. Let P1 := P and letν1 be
the multiplicity of G at P1. Let σ1 : V1 → V0 := A2

k be the quadratic
transformation with center atP1, let P2 := σ′1(F) ∩ σ−1

1 (P1) and letν2

be the multiplicity ofσ′1(G) at P2. For i ≧ 1 we define a surfaceVi, a
point Pi+1 on Vi and an integerνi+1 inductively as follows: WhenVi−1,
Pi andνi are defined, letσi : Vi → Vi−1 be the quadratic transformation
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of Vi−1 with center atPi−1, let Pi+1 := (σ1 . . . σi)′(F) ∩ σ−1
i (Pi) and let

νi+1 be the multiplicity of (σ1 . . . σi)′(G) at Pi+1. Let s be the smallest
integer such thatνs+1 = 0, and letN : ν1 + · · · + νs. We shall simply say
thatP1, . . . ,Ps are all points of G on the curve F over P1 andν1, . . . , νs

are the respective multiplicities of G at P1, . . . ,Ps. Let σ : VN → V0

be the composition of quadratic transformationsσ := σ1 . . . σN and165

let Ei := (σi+1 . . . σN)′σ−1
i (Pi) for 1 ≦ i ≦ N. In a neighborhood of

σ−1(P1), σ−1(F ∪G) has the following configuration:

(Fig 1)

If g = cgβ1
1 . . .gβn

n (c ∈ k∗) is a decomposition ofg into n distinct irre-
ducible factors, letG j be the curveg j = 0 onV0 := A2

k for 1 ≦ j ≦ n.
Let νi( j) be the multiplicity ofG j at the pointsPi for 1 ≦ i ≦ s and
1 ≦ j ≦ n. Then it is clear thatνi = β1νi(1)+ · · · + βnνi(n) for 1 ≦ i ≦ s.

5.5

We have the following:

Lemma. With the same assumption and notations as in 1.3, V is isomor-
phic, in a neighborhood ofπ−1(P1), to VN with the curves E1, . . . ,EN−1

andσ′(G) deleted off.

Proof. Let O := OV0,P1, Ṽ0 := Spec(O) and Ṽ := V×
V0

Ṽ0. Since the

curveF is nonsingular atP1 there exist local parametersu, v of V0 atP1

such thatv = f . Let g(u, v) = 0 be a local equation ofG at P1. Then
Ṽ = Spec(O[v/g(u, v)]). Note thatV is nonsingular in a neighborhood
of π−1(P1) (cf. 1.2). Hence there exist a nonsingular projective surfaceV
and a birational mappingϕ : V → V such thatϕ is an open immersion in
a neighborhood ofπ−1(P1) and a birational mappingπ := π · ϕ−1 : V →166



Simple birational extensions of a polynomial ringk[x, y] 125

P2
k is a morphism, whereV0 is embedded into the projective planeP2

k as a
complement of a line. Sinceπ(π−1(P1)) = P1 we know thatπ is factored
by the quadratic transformation ofP2

k with center atP1. Hence we know

thatπ : V → V0 is factored byσ1 : V1→ V0, i.e.,π : V
π1
−−→ V1

σ1
−−→ V0.

Set v = uv1, u = vu1, q(u, uv1) = uν1g1(u, v1) and g(vu1, v) =
vν1g′1(u1, v). ThenV1×

V0
Ṽ0 = Spec(O[v1]) ∪ Spec(O[u1]); σ−1

1 (P1) and

σ′1(G) are respectively defined byu = 0 andg1(u, v1) = 0 on Spec
(O[v1]), and byv = 0 andg′1(u1, v) = 0 on Spec(O[u1]). Since

Ṽ := V×
V0

Ṽ0 = V×
V1

(V1×
V0

Ṽ0) = V×
V1

Spec(O[v1]) ∪ V×
V1

Spec(O[u1])

= Spec(O[v1, v1/u
ν1−1g1(u, v1)]) ∪ Spec(O[u1, 1/v

ν1−1g′1(u1, v)])

and sincev is an invertible function on Spec(O[u1, 1/vν1−1g′1(u1, v)]),
we know that:

(1) Ṽ = Spec(O[v1, v1/uν1−1g1(u, v1)]);

(2) π̃ := π×
V0

Ṽ0 : Ṽ → Ṽ0 is a composition of̃π1 := π1×
V0

Ṽ0 : Ṽ →

Ṽ1 := Spec(O[v1]) andσ̃1 := σ1|Ṽ1
: Ṽ1→ Ṽ0;

(3) if Q ∈ (σ−1
1 (P1) ∪ σ′1(G)) − σ′1(F) thenπ̃−1

1 (Q) = φ.

Setv1 = uv2, . . . , vs−1 = uvs andg1(u, v1) = uν2g2(u, v2), . . . , gs−1

(u, vs−1) = uνsgs(u, vs). SetṼ2 := Spec(O[v2]), . . . , Ṽs := Spec(O[vs]). 167

Then, by the same argument as above, we know that the following as-
sertions hold for 2≦ i ≦ s:

(1)′ Ṽ = Spec(O[vi , vi/uν1+···+νi−igi(u, vi )]);

(2)′ π̃ : Ṽ → Ṽ0 is a composition of a morphism̃πi : Ṽ → Ṽi and
σ̃1 · σ̃2 · . . . · σ̃i : Ṽi → Ṽ0, whereσ̃i := σi |Ṽi

: Ṽi → Ṽi−1;
moreover,̃πi−1 = σ̃i · π̃i;

(3)′ if Q ∈ (σ−1
i (Pi) ∪ (σ1 . . . σi)′(G)) − (σ1 . . . σi)′(F) thenπ̃−1

i (Q) =
φ.
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Wheni = s, the proper transform (σ1 . . . σs)′(G) of G onVs does not
meet the proper transform (σ1 . . . σs)′(F)of F onṼs (cf. the definition of
s in 5.4). Therefore, in virtue of (3)′ above, we know thatgs(u, vs) is an
invertible function oñV, wheregs(u, vs) = 0 is the equation of the proper
transform (σ1 . . . σs)′(G) of G on Ṽs. Thus,Ṽ = Spec(O[vs, vs/uN−s]).

Furthermore, setvs = uvs+1, . . . , vN−1 = uvN and Ṽs+1 = Spec
(O[vs+1]), . . . , ṼN = Spec(O[vN]). Then it is easy to see that the fol-
lowing assertions hold fors+ 1 ≦ i ≦ N:

(1)′′ Ṽ = Spec(O[vi , vi/uN−i ]);

(2)′′ π̃s : Ṽ → Ṽs is a composition of a morphism̃πi : Ṽ → Ṽi and
σ̃s+1 · . . . · σ̃i : Ṽi → Ṽs, whereσ̃i := σi |Ṽi

: Ṽi → Ṽi−1 and
π̃i−1 = σ̃i · π̃i.

ThenṼ � ṼN = Spec(O[vN]). Hence,V is isomorphic, in a neigh-
borhood ofπ−1(P1), to VN with the curvesE1, . . . ,EN−1 and σ′(G)
deleted off. In particular,π−1(P1) = ǫ := EN − EN ∩ EN−1. �

5.6

Assume that we are given two curves (not necessarily irreducible) F, G168

on a nonsingular surfaceV0 and a pointP1 ∈ F ∩ G at which one of
F andG, sayF, is nonsingular. LetP1,P2, . . . ,Ps be all points ofG
on F overP1, and letν1, . . . , νs be the multiplicities ofG at P1, . . . ,Ps,
respectively. LetN := ν1 + · · · + νs. As explained in 5.4, defineσ :
VN → V0 as a composition of quadratic transformations with centersat
N pointsP1, . . . ,PN on F, eachPi(2 ≦ i ≦ N) being infinitely near to
Pi−1 of order one. We callσ : VN → V0 the standard transformation of
V0 with respect to a triplet(P1, F,G). The configuration ofσ−1(F ∪G)
in a neighborhood ofσ−1(P1) is given by the Figure 1 in 5.4. With
the notations in the Figure 1, we obtain a new surfaceV by deleting
E1, . . . ,EN−1 from VN. We then say thatV is obtained fromV0 by the
standard process of the first kind with respect to(P1, F,G). On the other
hand, note that (E2

i ) = −2 for 1 ≦ i ≦ N − 1. Hence we obtain a new
normal surfaceV′ from VN by contractingE1, . . . ,EN−1 to a pointQ1 on
V′ which is a rational double point (cf. Artin [5; Theorem 2.7]). We then
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say thatV′ is obtained fromV0 by the standard process of the second
kind with respect to(P1, F,G).

5.7

We shall next consider the case where, at a pointP1 ∈ F ∩G, the curve
G is nonsingular. Indeed, we prove the following:

Lemma. With the assumption as above, let V′ be the surface obtained
from V0 := A2

k by the standard process of the second kind with respect
to (P1,G, F). Then, in a neighborhood ofπ−1(P1), V is isomorphic to 169

V′ with the proper transform of G deleted off. If either F is singular at
P1 or i(F,G; P1) ≧ 2, V has a unique rational double point onπ−1(P1).

Proof. Let P1,P2, . . . ,Pr be all points ofF on G over P1, and letµ1,
. . . , µr be the multiplicities ofF at P1, . . . ,Pr , respectively. LetM :=
µ1 + · · · + µr . We prove the assertion by induction onM. Note that
M = 1 if and only if i(F,G; P1) = 1. It is then easy to see thatV is
isomorphic, in a neighborhood ofπ−1(P1), to a surfaceV′1 obtained as
follows: Letσ1 : V1 → V0 be the quadratic transformation ofV0 := A2

k
with center atP1, and letV′1 := V1 = σ

′
1(G). Now, assume thatM > 1.

SinceG is nonsingular atP1 there exist local parametersu, v of V0 at
P1 such thatv = g. Let f (u, v) = 0 be a local equation ofF at P1.
Then,V is isomorphic, in a neighborhood ofπ−1(P1), to an affine hyper
surfacevz = f (u, v) in the affine 3-spaceA3

k. There exists only one
singular pointQ′1 : (u, v, z) = (0, 0, α) of V lying on π−1(P1), where

α =
∂ f
∂v

(0, 0). Note that ifα , 0 thenA := k

[
x, y,

f
g

]
= k

[
x, y,

f − αg
g

]

andi(F,G; P1) = i(H,G; P1) = M, whereH is the curve onA2
k defined

by f = αg. Replacing f by f − αg we may assume, from the outset
and without loss of generality, thatα = 0. Then we haveµ1 ≧ 2. Let
ρ1 : W1 → A

3
k be the quadratic transformation ofA3

k with center at the
curveπ−1(P1) : u = v = 0, let V′1 be the proper transform ofV on W1,
and letτ1 := ρ1|V′1

: V′1→ V be the restriction ofρ1 ontoV′1.
Set v = uv1, u = vu1 and f (u, uv1) = uµ1 f1(u, v1), f (vu1, v) =

vµ1 f̃1(u1, v). ThenV′1 is given byv1z = uµ1−1 f1(u, v1) with respect to 170
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the coordinate system (u, v1, z) and byz = uµ1−1 f̃1(u1, v) with respect
to the coordinate system (u1, v, z). By construction ofV′1, V′1 dominates
the surfaceV1 obtained fromV0 by the quadratic transformationσ1 with
center atP1;

V′1

π1

��

τ1 // V

π

��
V1

σ1 // V0

The proper transformτ′1(π−1(P1)) of π−1(P1) onV′1 is given byu = v1 =

0; the curveτ−1
1 (Q′1) is given byu = z= 0; τ1 : V′1−τ

−1
1 (Q′1)

∼
−→ V−{Q′1};

the singular point ofV′1 is possiblyQ′2 : (u, v1, z) = (0, 0, 0).
The morphismπ1 : V′1→ V1 is isomorphic at every point ofτ−1

1 (Q′1)
−{Q′2}. Indeed, ifv1 , 0 and∞, π1 is given by (u, v1, z) = (u, v1, uµ1−1

f1(u, v1)/v1) 7→ (u, v1) which is clearly isomorphic; ifv1 = ∞, π1 is
given by (u1, v, vµ1−1 f̃1(u1, v)) 7→ (u1, v) which is isomorphic as well.
Under the morphismπ1, τ−1

1 (Q′1) corresponds toσ−1
1 (P1) and τ′1

(π−1(P1)) to the pointP2; moreoverπ−1
1 (P2) = τ′1(π−1(P1));

Note that the following assertions hold:171

(1) V′1 is isomorphic, in a neighborhood ofπ−1
1 (P2), to an affine hyper

surfacev1z= uµ1−1 f1(u, v1) onA3
k;

(2) in a neighborhood ofP2, σ′1(G) is defined byv1 = 0 andσ′1(F) is
defined byf1(u, v1) = 0;
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(3) P2, . . . ,Pr are all points of the curveF1 : uµ1−1 f1(u, v1) = 0 on
σ′1(G) over P2, and the sum of multiplicities of the curveF1 at
P2, . . . ,Pr is M − 1.

Let V′′1 be the surface obtained fromV′1 by the standard process of
the second kind with respect to a triplet (P2, σ

′
1(G), F1). Then, by the

assumption of induction applied toV′1, we know that, in a neighbor-
hood ofτ′1(π−1(P1)) = π−1

1 (P2), V′1 is isomorphic toV′′1 with the proper
transform ofσ′1(G) on V′′1 deleted off. Let ρ : VM → V1 be the standard
transformation ofV1 with respect to a triplet (P2, σ

′
1(G), F1). Thenσ1 ·ρ

is clearly the standard transformationσ : VM → V0 with respect to a
triplet (P1,G, F);

(Fig 2)

where, in the Figure 2, we have:

1◦ E1 = ρ
′(σ−1

1 (P1));

2◦ the surfaceV′1 is obtained by contractingE2, . . . ,EM−1 to a point
Q′2 and by deleting the proper transform ofσ′(G); under this con- 172

traction, sayϕ, we haveϕ(E1) = τ−1
1 (Q′1) and ϕ(EM − EM ∩

σ′(G)) = τ′1(π−1(P1)).

It is now easy to see thatV is isomorphic, in a neighborhood of
π−1(P1), to the surfaceV′ with the proper transform ofG deleted off,
whereV′ is obtained fromVM by contractingE1, . . . ,EM−1. Hence,
the unique singular point ofV lying on π−1(P1) is a rational double
point. �
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5.8

Let P1 ∈ F ∩G, and assume thatG is nonsingular atP1. Let P1,P2, . . .,
Pr be all points ofF onG overP1, and letµ1, µ2, . . . , µr be the multiplic-
ities of F at P1,P2, . . . ,Pr , respectively. Iff = c f. α1

1 . . . f αm
m (c ∈ k∗) is

a decomposition off into distinct irreducible factors, letF j(1 ≤ j ≤ m)
be the curve onV0 defined by f j = 0. Let µi( j) be the multiplicity
of F j at Pi for 1 ≦ i ≦ r and 1 ≦ j ≦ m. Then it is clear that
µi = α1µi(1)+ · · · + αmµi(m) for 1 ≦ i ≦ r.

5.9

As a consequence of Lemmas 5.5 and 5.7, we have the following:

Theorem.Assume that V has only isolated singularities. Let W be the
surface obtained from V0 := A2

k by the standard processes of the first
(or the second) kind at every point of F∩ G. Then V is isomorphic to
the surface W with the proper transform of G on W deleted off. The
surface V is, therefore, a normal surface whose singular points (if any)
are rational double points.

5.10

In the paragraphs 5.10∼ 5.12 we shall study the divisor class group
Cℓ(V). Let g = cgβ1

1 . . .gβn
n (c ∈ k∗) be a decomposition ofg into distinct173

irreducible factors, and letG j be the curveg j = 0 onV0 for 1 ≦ j ≦ n.
Assume thatF ∩ G , φ. Let F ∩ G = {P(1)

1 , . . . , p(e)
1 }. For 1≦ ℓ ≦ e,

eitherF is nonsingular atP(ℓ)
1 but G is singular, orG is nonsingular at

P(ℓ)
1 . We may assume thatF is nonsingular atP(1)

1 , . . . ,P(a)
1 but G is

singular, andG is nonsingular atP(a+1)
1 , . . . ,P(e)

1 . (The number a may be

0). For 1≦ ℓ ≦ a, let P(ℓ)
1 , . . . ,P(ℓ)

sℓ be all points ofG on F overP(ℓ)
1 , and

let ν(ℓ)
i ( j) be the multiplicity ofG j at P(ℓ)

i for 1 ≦ i ≦ sℓ and 1≦ j ≦ n;

let N(ℓ)( j) = ν(ℓ)
1 ( j)+ · · ·+ ν(ℓ)

sℓ ( j), let ν(ℓ)
i = β1ν

(ℓ)
i (1)+ · · ·+ βnν

(ℓ)
i (n) and

let N(ℓ)
= β1N(ℓ)(1)+ · · ·+ βnN(ℓ)(n). Fora+ 1 ≦ ℓ ≦ e, let P(ℓ)

1 , . . . ,P(ℓ)
rℓ

be all points ofF onG overP(ℓ)
1 , and letµ(ℓ)

i be the multiplicity ofF at
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P(ℓ)
i for 1 ≦ i ≦ rℓ. Let M(ℓ)

= µ
(ℓ)
1 + · · · + µ

(ℓ)
rℓ . SinceG is nonsingular

at P(ℓ)
1 for a+ 1 ≦ ℓ ≦ e, there exists a uniqueG j(1 ≦ j ≦ n) such that

P(ℓ)
1 , . . . ,P(ℓ)

rℓ lie onG j. Then We setM(ℓ)( j) = M(ℓ) andM(ℓ)( j′) = 0 for

j′ , j. Let ǫ(ℓ) := π−1(P(ℓ)
1 ) for 1 ≦ ℓ ≦ e.

5.11

The structure of the divisor class groupCℓ(V) is given by the following:

Theorem.With the notations as above, the divisor class group Cℓ(V) is
isomorphic to:

{Zǫ(1)
+ · · · + Zǫ(e)}/{

a∑

ℓ=1

N(ℓ)( j)ǫ(ℓ)
+

e∑

ℓ=a+1

M(ℓ)( j)ǫ(ℓ); 1 ≦ j ≦ n}.

Proof. EmbedV0 := A2
k into the projective planeP2

k as a complement174

of a line ℓ∞. For 1≦ ℓ ≦ e, let E(ℓ)
1 , . . . ,E(ℓ)

q be all exceptional curves
which arise from the standard transformation ofV0 with respect to a
triplet (P(ℓ)

1 , F,G) (or (P(ℓ)
1 ,G, F)), whereq = N(ℓ) (or M(ℓ)). Let τ :

W → P2
k be the composition of standard transformations ofP2

k with

respect to triplets (P(ℓ)
1 , F,G) for 1 ≦ ℓ ≦ a and triplets (P(ℓ)

1 ,G, F) for
a+ 1 ≦ ℓ ≦ e. Then it is easy to see that the divisor

(g j)W −


a∑

ℓ=1

N(ℓ)( j)E(ℓ)
N(ℓ) +

e∑

ℓ=a+1

M(ℓ)( j)E(ℓ)
M(ℓ)

 (1 ≦ j ≦ n)

has support onτ′(G j), τ′(ℓ∞), E(ℓ)
1 , . . . ,E(ℓ)

q−1 (q = N(ℓ) or M(ℓ)) for 1 ≦
ℓ ≦ e. Hence we have:

(g j)V =

a∑

ℓ=1

N(ℓ)( j)ǫ(ℓ)
+

e∑

ℓ=a+1

M(ℓ)( j)ǫ(ℓ) ∼ 0

as a divisor onV for 1 ≦ j ≦ n.
Now, letC be an irreducible curve onV such thatπ(C) is not a point,

and let the closure ofπ(C) on V0 be defined byh = 0 with h ∈ k[x, y].
Then, by considering the divisor (h)W on W, we easily see thatC is
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linearly equivalent to an integral combination ofǫ(1), . . . , ǫ(e). Hence,
by setting

g := {Zǫ(1)
+ · · · + Zǫ(e)

}/


a∑

ℓ=1

N(ℓ)( j)ǫ(ℓ)
+

e∑

ℓ=a+1

M(ℓ)( j)ǫ(ℓ); 1 ≦ j ≦ n



we have a surjective homomorphism:

θ : g→ Cℓ(V); θ(ǫ(ℓ)) = ǫ(ℓ)(1 ≦ ℓ ≦ e).

We shall show thatθ is an isomorphism. Assume that Kerθ , (0),175

and letd1ǫ
(1)
+ · · ·+ deǫ

(e) be a nonzero element of Kerθ. Thend1ǫ
(1)
+

· · · + deǫ
(e)
= (t)V on V, wheret ∈ k(V) such thatt < k. Then we

may write (t)V0 =

∑

i

miCi with irreducible curvesCi onV0 and nonzero

integersmi. Let ti ∈ k[x, y] be such thatCi is defined byti = 0, and
write:

(ti)V = π
′(Ci) +

e∑

ℓ=1

biℓǫ
(ℓ) with biℓ ∈ Z.

Then, sincet = CΠ
i
tmi
i with c ∈ k∗ we have:

(t)V =

∑

i

{miπ
′(Ci) +

e∑

ℓ=1

mibiℓǫ
(ℓ)} =

e∑

ℓ=1

dℓǫ
(ℓ).

Hence we know thatπ′(Ci) = φ for every i. This implies that every
Ci must coincide with one ofG j ’s (1 ≦ j ≦ n), i.e., (t)V is an integral
combination of (g j)V’s. Henced1ǫ

(1)
+ · · · + deǫ

(e)
= 0 in g. This is a

contradiction. �

5.12

The affine k-domainA = k[x, y,
f
g

] is a unique factorization domain if

and only ifCℓ(V) = (0). We have the following two consequences of
5.11.
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5.12.1

Corollary . With the notations of 5.10, if e> n then A is not a unique
factorization domain.

5.12.2

Corollary . Assume that g is irreducible and that F∩ G , φ. Then A
is a unique factorization domain if and only if the curves F and G meet
each other in only one point where they intersect transversely.

5.13

Let A∗ be the group of all invertible elements ofA = k

[
x, y,

f
g

]
. Then 176

A∗ containsk∗ = k − (0) as a subgroup. By virtue of Miyanishi [32;
Remark 2, p.174] we know thatA∗/k∗ is a freeZ-module of finite rank
andA∗ is isomorphic to a direct product ofk∗ andA∗/k∗. The purpose
of the present and the next paragraphs is to determine the group A∗/k∗.
Let H be the subgroup ofZǫ(1)

+ · · · + Zǫ(e) generated by


a∑

ℓ=1

N(ℓ)( j)ǫ(ℓ)
+

e∑

ℓ=a+1

M(ℓ)( j)ǫ(ℓ); 1 ≦ j ≦ n

 .

Let T1, . . . ,Tn ben-indeterminates, and letη : Z(n) := ZT1+ · · ·+ZTn→

H be a homomorphism such that, for 1≦ i ≦ n,

η(Ti) =
a∑

ℓ=1

N(ℓ)( j)ǫ(ℓ)
+

e∑

ℓ=a+1

M(ℓ)( j)ǫ(ℓ).

Let L be the kernel ofη, and define a homomorphismξ : L→ K∗ (where
K = k(x, y)) by

ξ(γ1T1 + · · · + γnTn) = gγ1
1 . . . gγn

n , where γi ∈ Z.

Then we have the following:

Lemma. The homomorphismξ induces an isomorphismξ : L
∼
−→ A∗/k∗.
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Proof. (1) Since (gi)V =

a∑

ℓ=1

N(ℓ)( j)ǫ(ℓ)
+

e∑

ℓ=a+1

M(ℓ)( j)ǫ(ℓ)
= η(Ti) for

1 ≦ i ≦ n, we have:

η(γ1T1 + · · · + γnTn) = (gγ1
1 . . . gγn

n )V.

Therefore, ifγ1T1+ · · ·+ γnTn ∈ L thengγ1
1 . . . gγn

n is an invertible
element ofA, which is a constant if and only ifγ1 = . . . = γn = 0.177

Thus,ξ induces a monomorphismξ from L into A∗/k∗.

(2) Let t be a non-constant invertible element ofA. Write (t)V0 =∑

i

miCi with irreducible curvesCi and nonzero integersmi. Let

Ci be defined byti = 0 with ti ∈ k[x, y]. As in the proof of 5.11,
write:

(ti)V = π
′(Ci) +

e∑

ℓ=1

biℓǫ
(ℓ) with biℓ ∈ Z.

Then we have:

(t)V =

∑

i

miπ
′(Ci) +

e∑

ℓ=1

mibiℓǫ
(ℓ)

 = 0.

Hence we haveπ′(Ci) = φ for every i. This implies thatCi must
coincide with one ofG j ’s. Hence we could write:

(t)V0 =

n∑

j=1

mjG j

wheremj may be zero. Thent = cgm1
1 . . .gmn

n with c ∈ k∗. It is then
clear thatm1T1 + · · ·+mnTn ∈ L andξ(m1T1 + · · ·+mnTn) = t/c.
Therefore,ξ : L → A∗/k∗ is an isomorphism.

�

5.14

By virtue of 5.11 and 5.13, we have the following:
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Theorem.Assume that V has only isolated singularities. Then we have
the following exact sequence ofZ-modules:

0→ A∗/k∗ → Z(n) → Z(e) → Cℓ(V)→ 0,

whereZ(r) stands for a freeZ-module of rank r; n is the number of178

distinct irreducible factors of g; e is the number of distinct points of
F ∩G.

5.15

Remarks. (1) It is clear from 5.14 that ifg is irreducible thenA∗ =
k∗.

(2) rank(Cℓ(V)) − rank(A∗/k∗) = e− n.

(3) Though we proved Theorem 5.14 under the assumption thatF ∩
G , φ it is clear that the theorem is valid also in the caseF ∩G =
φ.

5.16

From now on in the remaining paragraphs of this section we assume that

the characteristic ofk is zero. Assume thatA := k[x, y,
f
g

] is normal and

A has a nontrivial locally nilpotentk-derivationD (cf. (1.1)). By virtue
of 1.2 we know thatD defines a nontrivial action of the additive group
schemeGa,k on V andvice versa. Then we have the following:

Lemma cf. 1.3.1, 1.6.The subring A0 of D-constants is a finitely gen-
erated, normal, rational k-domain of dimension1.

Proof. The fact thatA0 is rational overk follows from Lüroth’s theorem.
�

5.17

By virtue of the previous lemma we may writeA0 = k

[
t,

1
h(t)

]
with

h(t) ∈ k[t]; U := Spec(A0) is an open set of the affine lineA1
k. Let
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q : V → U be the morphism defined by the canonical inclusionA0 ֒→ A.
For almost all elementsα of k such thath(α) , 0, the fiberq−1(α) is a
Ga-orbit with respect to theGa-action onV corresponding toD, and
henceq−1(α) is isomorphic to the affine lineA1

k. Let ρ : V′ → V be179

the minimal resolution of singularities ofV6. As we saw in 5.9, singular
points of V are rational double points. Hence,ρ is a composition of
quadratic transformations with centers at singular points. Letq′ := q·ρ :
V′ → U. Almost all fibers ofq′ are therefore isomorphic to the affine
lineA1

k. Now we shall prove the following:

Lemma. There exists a nonsingular projective surface W and a surjec-
tive morphism p7:W → P1

k satisfying the following conditions:

(1) Almost all fibers of p are isomorphic toP1
k.

(2) There exists an open immersion l: V′ →W such that p· l = l · q′,
wherel : U ֒→ P1

k is the canonical open immersion via U֒→
A1

k := Spec(k[t]).

(3) The fibration p has a cross-section S such that S⊂W− l(V′).

Proof. Let V be a nonsingular projective surface containingV′ as an
open set. Then, a sub fieldk(t) of k(V′) = k(V) defines a linear pencil
Λ of effective divisors onV such that a general member ofΛ cuts out a
general fiber ofq′ on V′. The base points ofΛ are situated onV − V′.
Let θ : W → V be the shortest succession of quadratic transformations
of V with centers at the base points ofΛ such that the proper transform
Λ of Λ by θ has no base points, and letp : W → P1

k be the morphism180

defined byΛ. SinceV′ is naturally embedded intoW as an open set, let
l : V′ → W be the natural open immersion. Then it is not hard to see
that p : W→ P1

k andl : V′ → W satisfy the conditions (1), (2) and (3)
of Lemma. �

6For the existence of the minimal resolution of singularities ofV, we refer to Lipman
[30; Th. 4.1].

7Sincek is assumed to be of characteristic zero there would not be a confusion of
notations.
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5.18

Lemma 2.2 applied to the fibrationp : W→ P1
k implies the following:

Lemma. Write W− l(V′) =
r⋃

i=1

Ci with irreducible curves Ci. Then we

have:

(1) Every Ci is isomorphic toP1
k.

(2) For i , j, Ci and Cj meet each other (if at all) in a single point
where they intersect transversely.

(3) For three distinct indices i, j andℓ, Ci ∩C j ∩Cℓ = φ.

(4)
r⋃

i=1

Ci does not contain any cyclic chains.

Proof. Note that one ofCi ’s is the cross-sectionS and the other compo-
nents are contained in the fibers ofp. Noting thatS is isomorphic toP1

k,
we obtain readily the above assertions from Lemma 2.2. �

5.19

Let V0 := Spec(k[x, y]), and letF, G be as in 5.2. LetG j(1 ≤ j ≤ n)
be as in 5.10. EmbedV0 into the projective planeP2

k as the complement
of a lineℓ∞, and letF, G, G j(1 ≦ j ≦ n) be the closures ofF, G, G j in
P2

k, respectively. Letτ : Z→ P2
k be a composition of the standard trans-

formations ofP2
k with respect to triplets (P, F,G) (or (P,G, F)), where

P runs over all points ofF ∩ G. Then we know thatV′ is embedded 181

into Z as an open set. We may assume, by replacingW if necessary
by a surface which is obtained fromW by a succession of the quadratic
transformations, that there exists a birational morphismϕ : W→ Z such
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that we have the following commutative diagram:

W

ϕ

{{xxx
xxx

xxx
xxxx

p // P1
k

Z

τ

��

V′? _oo q′ //

ρ

��

?�

l

OO

U
?�

l

OO

V

π

��
P2

k V0? _oo

5.20

Lemma. (1) With the notations of 5.19,(τϕ)′(G j) is contained in a
fiber of p for1 ≦ j ≦ n; in particular, (τϕ)′(G j) is isomorphic to
P1

k.

(2) Let P1 ∈ F ∩ G. Assume that F is nonsingular at P1 but G is
singular at P1. Then, with the notations of the Figure1 of 5.4,
ϕ′(E1), . . . , ϕ′(EN−1) are contained in one and only one fiber of p.

Proof. (1) We know by virtue of 5.17 that ifλ is a general member of
p thenλV′ := l−1(λ∩ l(V′)) is isomorphic to the affine lineA1

k; we
also know thatπ′(G j) = φ for 1 ≦ j ≦ n. HenceλV′ ∩ (πρ)′(G j) =
φ. This implies that if (τϕ)′(G j)∩λ , φ thenλ meets (τϕ)′(G j) at
some of finitely many points of (τϕ)′(G j) which are independent182

of choice ofλ. However, this is impossible becauseλ is a general
member of an irreducible linear pencil onW free from base points.
Hence (τϕ)′(G j)∩ λ = φ. This implies that (τϕ)′(G j) is contained
in a fiber ofp for 1 ≦ j ≦ n. The fact that (τϕ)′(G j) is isomorphic
to P1

k follows from Lemma 2.2.
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(2) By construction ofV andV′ (cf. 5.9) we know thatϕ′(Ei)∩l(V′) =
φ for 1 ≦ i ≦ N−1. Hence, for eachi with 1 ≦ i ≦ N−1, a general
fiberλ of p meetsϕ′(Ei) at some of finitely many points ofϕ′(Ei)
which are independent of choice ofλ. By the same reason as in
(1) above we know thatϕ′(Ei) is contained in a fiber ofp. Since
ϕ′(E1), . . . , ϕ′(EN−1) are connected they are contained in one and
only one fiber ofp.

�

Note that, with the notations of the assertion (2) above, a general
fiberλ of p may intersectϕ′(EN).

5.21

Lemma. (1) For 1 ≦ j ≦ n, Gj has only one place at infinity; every
singular point of Gj is a one-place point.

(2) For distinct i, j (1 ≦ i, j ≦ n), Gi ∩G j = φ.

Proof. Let ΛZ be the linear pencil onZ defined by a subfieldk(t) =
k(P1) of k(Z) = k(W), the inclusionk(t) ֒→ k(Z) corresponding top. A
general member ofΛZ cuts out onV′ a curve of the formλV′ , whereλ
is a fiber ofp. Hence, ifΛZ has base points they are centered at a point
on τ′(ℓ∞). If ϕ is not an isomorphism, we may assume without loss of
generality thatϕ is the shortest succession of quadratic transformations
with centers at base points ofΛZ (including infinitely near base points)
such that the proper transform ofΛZ byϕ has no base points. Then every183

singular point ofG j(1 ≦ j ≦ n) lies on the curveF; indeed, if otherwise,
(τϕ)′(G j) has a singular point, which contradicts Lemma 5.20, (1). Now,
if G j has two or more places at infinity thenW − l(V′) would contain
a cyclic chain becausel(V′) ∩ ((τϕ)′(G j) ∪ ϕ−1(τ′(ℓ∞))) = φ, which
contradicts Lemma 5.18. Thus,G j(l ≦ j ≦ n) has only one place at
infinity. If G j has a singular pointP1 which is not a one-place point,
then P1 ∈ G j ∩ F as remarked above and, with the notations of the
Figure 1 of 5.4, (τϕ)′(G j) ∪ ϕ′(E1) ∪ . . . ∪ ϕ′(EN−1) would contain a
cyclic chain. Since (τϕ)′(G j) andϕ′(Ei)(1 ≦ i ≦ N − 1) are contained
in W− l(V′) this is a contradiction to Lemma 5.18. Thus, every singular
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point of G j is a one-place point. Similarly, ifGi ∩ G j , φ(i , j) then
W− l(V′) would contain a cyclic chain. Thus,Gi ∩G j = φ for i , j. �

5.22

Lemma. For 1 ≦ j ≦ n, the curve Gj is nonsingular.

Proof. As remarked in the proof of Lemma 5.21, ifP is a singular point
of G j thenP ∈ F ∩G j. Then, in a neighborhood ofτ−1(P), τ−1(F ∪G j)
must have the following configuration as in the Figure 1 of 5.4:

whereϕ′(E1), . . . , ϕ′(EN−1) and (τϕ)′(G j) belong to the same fiber ofp.184

Note thatN ≧ s+ 1 sinceP is a singular point ofG j and that (τϕ)′(G j)
intersectsϕ′(Es) transversely in one point. Assume thatνb ≧ 2 and
νb+1 = . . . = νs = 1 (cf. 5.4 for the notations). Suchb exists becauseP
is a singular point ofG j and (ϕ′(Es) · (τϕ)′(G j)) = 1. Then it is not hard
to show thats= b+ 1 and we have the configuration:

whereτ′(G j) touchesEs−1 with (τ′(G j) · Es−1) = νb − 1 ≧ 1. This
contradicts Lemma 2.2. Therefore, the curveG j is nonsingular. �

5.23

Theorem.Assume that V has only isolated singularities. Then A has a
nontrivial locally nilpotent k-derivation if and only if wehave g∈ k[y]
after a suitable change of coordinates x, y of k[x, y].
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Proof. Assume thatg ∈ k[y] after a suitable change of coordinatesx, y

of k[x, y]. Then D = g
∂

∂x
is a nontrivial locally nilpotentk-derivation

on A. We shall prove the converse. With the notations of 5.16∼ 5.22,
G j(1 ≦ j ≦ n) is a nonsingular rational curve with only one place at in-
finity (cf. 5.20, 5.21 and 5.22). Hence,G j is isomorphic to the affine line 185

A1
k. By virtue of the Embedding theorem of Abhyankar-Moh (cf. 1.1),

we may assume thatg1 = y after a suitable change of coordinatesx, y
of k[x, y]. Then, for 2≦ j ≦ n, g j is written in the formg j = c j + yhj

with c j ∈ k andh j ∈ k[x, y] becauseG j ∩ G1 = φ (cf. 5.21, (2)). On
the other hand, by virtue of the Irreducibility theorem (cf.1.1), the fact
thatG j has only one place at infinity implies that the curveg j = α on
A2

k is irreducible for everyα ∈ k. Therefore,h j is a constant∈ k. Thus
g ∈ k[y]. �

5.24

We know by virtue of Theorem 1.3.1 thatA is isomorphic to a polyno-
mial ring overk if and only if A satisfies the following conditions:

(1) A is a unique factorization domain,

(2) A∗ = k∗,

(3) A has a nontrivial locally nilpotentk-derivation.

The condition (1) above can be described as follows:

Lemma . Assume that A:= k[x, y,
f
g

] satisfies the conditions(2) and

(3) above. We may assume that g∈ k[y] after a suitable change of
coordinates x, y of k[x, y]. Write: f(x, y) = a0(y)+ a1(y)x+ · · ·+ ar(y)xr

with ai(y) ∈ k[y] (0 ≦ i ≦ r). Then A is a unique factorization domain if
and only if a1(y) is a unit modulo gk[x, y] and ai(y) is nilpotent modulo
gk[x, y] for 2 ≦ i ≦ r.

Proof. Assume thatA is a unique factorization domain. With the nota-
tions of 5.10, we havea = 0 because everyG j(1 ≦ j ≦ n) is nonsingular 186

andG j∩Gi = φ if i , j. By virtue of 5.14, we havee= n. Theorem 5.11
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then implies that everyG j intersectsF transversely. This is easily seen
to be equivalent to the condition onf (x, y) in the above statement. The
“if” part of Lemma will be clear by the above argument and Theorem
5.11. �

5.25

Finally, we shall prove the following:

Theorem cf. Russell [49] and Sathaye [52] in casem= 1; cf. Wright
[56] in casem > 1. Let k be an algebraically closed field of character-
istic zero and let k[x, y] be a polynomial ring over k in two variables x
and y. Let f and g be two nonzero elements of k[x, y] such that:

(1) f and g have no nonconstant common factors;

(2) let B := k[x, y,w]/(gwm − f ) with a variable w and an integer
m ≧ 1; then B is isomorphic to a polynomial ring over k. Then
there existϕ, ψ ∈ k[x, y,w] such that k[x, y,w] = k[ϕ, ψ, gwm− f ].

Proof. We shall prove the theorem only in the case wherem > 1; for
the case wherem= 1, see the original proofs. Our proof consists of four
steps.

(I) Let A := k[x, y, z]/(gz− f ). Let V := Spec(A) andW := Spec(B).
By assigningx, y, wm to x, y, z, respectively we have an inclusion
A ֒→ B, which defines in turn a morphismg : W → V. Let g be
the group ofm-th roots of unity;g is identified with a cyclic group
Zm of orderm. Note thatg acts onW via (x, y,w) 7→ (x, y, ξw) for
ξ ∈ g. It is readily ascertained thatA is the subring ofg-invariants187

in B and that the morphismq : W→ V is the quotient morphism
for the above-defined action ofg on W.

(II) For the moment, assume only thatW is nonsingular. By applying
the Jacobian criterion of singularity toW we easily see that;

1◦ the curveF on A2
k := Spec(k[x, y]) defined by f = 0 is a

nonsingular curve;
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2◦ let G be the curve onA2
k defined byg = 0; then, ifG inter-

sectsF at a pointP, eitherG is singular atP or G intersects
F transversely atP.

This implies by virtue of 5.3 that ifW is nonsingular thenV is
nonsingular as well. Letπ : V → A2

k be a morphism defined by
(x, y, z) 7→ (x, y). Note that (πq)−1(Q) , φ andπ−1(Q) , φ for
every pointQ onF, and that the proper transformπ′(F) of F onV
is defined byz= 0. Moreover, note that the morphismq : W→ V
is a finite morphism, which is unramified at every pointP of V
with P < π′(F) and totally ramified on the curveπ′(F).

(III) Assume now thatW is isomorphic to the affine planeA2
k. Theng

is a finite subgroup of Autk W. SinceV is nonsingular as seen in
the step (II), Proposition 3.7 implies thatV is isomorphic to the
affine planeA2

k as well. We shall show thatF is isomorphic to the
affine lineA1

k. Write W := Spec(k[u, v]). Sinceg is conjugate to a
finite subgroup ofGL(2, k) (cf. 3.5) and since a finite subgroup of
GL(2, k) isomorphic toZm is diagonalizable, we may assume that
g acts onW via

ξ

(
u
v

)
=

(
ξi 0
0 ξ j

) (
u
v

)

whereξ ∈ g and i, j ∈ Zm. Sinceq : W → V is totally ramified 188

overπ′(F), every point of the ramification locus ofq is fixed byg.
Hence eitheri = 0 or j = 0. We may assume thati = 0. Then the
curveRonW defined byv = 0 is the ramification locus ofq. Since
π′(F) = q(R) andπ′(F) is isomorphic toR, we know thatπ′(F)
is isomorphic to the affine line. Therefore,F is an irreducible
nonsingular rational curve with only one place at infinity (cf. the
step (II)). Thus,F is isomorphic to the affine lineA1

k.

(IV) By virtue of the Embedding theorem (cf. 1.1) we may assume
that f = x. On the other hand, sinceV is isomorphic to the affine
planeA2

k, we know by virtue of Lemma 5.24 and its proof that
the curveG is nonsingular, each connected component ofG is
isomorphic toA1

k andF intersects each connected component of
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G transversely at a single point. Therefore, we may assume that
g ∈ k[y] (cf. 1.3.2). Then it is easily verified thatk[x, y,w] =
k[y, z, gwm − f ].

�

6 Certain affine plane curves with two places at in-
finity

189

6.1

The results of this section were worked out jointly by T. Sugie and
the lecturer (cf. Miyanishi and Sugie [37]). Throughout thesection the
ground fieldk is assumed to be an algebraically closed field of charac-
teristic zero. Our ultimate purpose is to prove the following:

Theorem.Let f be an irreducible element of a polynomial ring k[x, y]
and let Cα be the curve onA2

k := Spec(k[x, y]) defined by f= α for
α ∈ k. The, after a suitable change of coordinates x, y of k[x, y], f =
c(xdye− 1) for c ∈ k∗ and positive integers d and e with(d, e) = 1 if and
only if the following conditions are satisfied:

(1) f is a field generator(cf. 2.4.1).

(2) Cα has exactly two places at infinity for almost allα ∈ k.

(3) Cα is connected for everyα ∈ k.

6.2

Let V be a nonsingular projective surface defined overk and letΛ be
an irreducible linear pencil onV whose general members are rational
curves. LetB be the set of (ordinary) base points ofΛ. We assume
that each point of B is a one-place point of a general member ofΛ. A
reducible member∆ of Λ is said to belinear if the following conditions
are satisfied;
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(i) every irreducible component of∆ is isomorphic toP1
k,

(ii) two distinct irreducible components of∆ meet each other (if at190

all) transversely in a single point,

(iii) three distinct irreducible components of∆ have no points in com-
mon,

(iv) the weighted graph of∆ is a linear chain.

An irreducible componentD of a linear reducible member∆ of Λ is
calleda terminal componentif D meets only one irreducible component
of ∆ other thanD. An irreducible curveS onV is calleda quasi-section
of Λ if S is not contained in any member ofΛ andΛ has no base points
on S; a quasi-section ofΛ is calleda section ofΛ if (C · S) = 1 for a
general memberC of Λ.

6.3

Lemma . With the notations and assumptions of 6.2, let∆ := n0D0 +

n1D1 + · · · + nr Dr be a linear reducible member ofΛ with irreducible
components Di and integers ni > 0. Assume that the following condi-
tions are satisfied:

(1) D0 ∩ B = {P} and P< Di for 1 ≦ i ≦ r;

(2) (D2
0) = p > 0 and D0 is not a terminal component of∆;

(3) (D2
i ) < 0 for 1 ≦ i ≦ r and (D2

i ) < −1 whenever Di ∩ B = φ.

Then the multiplicity n0 of D0 in ∆ is equal to1. Furthermore,(C ·D0) =
i(C,D0; P) = p+ 1.

Proof. Our proof consists of six steps.

(I) Let C be a general member ofΛ. Let e := (C · D0) = i(C,D0; P)
andν := multP C. Let P0 := P,P1, . . . ,PP be points onD0 over
P0, wherePi is an infinitely near point ofPi−1 of order one for 191
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1 ≦ i ≦ p.8 Letσ : V′ → V be a succession of quadratic transfor-
mations ofV with centers atP0, . . . ,Pp, let C′ := σ′(C) and let
D′0 := σ′(D0). Thenσ−1(D0) has the configuration as follows:

(II) Note that P is a one-place point ofC. We shall show thatC′

meetsEp+1. Assume the contrary, i.e.,Ep+1 ∩C′ = φ. LetΛ′ be
the proper transform ofΛ by σ and let∆′ be the member ofΛ′

corresponding to∆. Then it is easily ascertained that:

1◦ Λ′ is spanned by∆′ andC′;

2◦ D′0 andEp+1 are irreducible components of∆′;

3◦ there exist no base points ofΛ′ on D′0 andEp+1.

Let τ : V′ → V be the contraction ofD′, letΛ be the proper trans-
form ofΛ′ and∆ := τ∗(∆′) be the member ofΛ corresponding to
∆
′. Then∆ has three irreducible components meeting each other

in one point, which is not a base point ofΛ. This is a contradiction192

(cf. 2.3, (3)). Thus we know thatC′ ∩ Ep+1 , φ.

(III) With the notations of the step (II), we shall show thatEp+1 is not
a component of∆′. Assume the contrary, and letQ := C′ ∩ Ep+1.

8Let σ1 : V1 → V be the quadratic transformation ofV with center atP. Then
P1 = σ

′
1(D0) ∩ σ−1

1 (P0). For 2≦ i ≦ p, define inductively the quadratic transformation
σi : Vi → Vi−1 of Vi with center atPi−1. ThenPi = (σ1 . . . σi)′(D) ∩ σ−1

i (Pi−1).
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If Q , D′0 ∩ Ep+1 we would have a contradiction by contracting
D′0 (cf. 2.3, (3)). HenceQ = D′0 ∩ Ep+1. However this is again a
contradiction because of the condition (3) above (cf. 2.3, (4)).

(IV) We shall show thatQ := C′ ∩Ep+1 is distinct fromD′0∩Ep+1 and
EP ∩ Ep+1. Indeed, ifQ = D′0 ∩ Ep+1 we have a contradiction
because of the condition (3) above (cf. 2.3, (4)). Assume that
Q = EP ∩ Ep+1. Note thatE1, . . . ,EP are contained in one and
only one member ofΛ′ other than∆′ becauseEi ∩ Supp(∆′) = φ
for 1 ≦ i ≦ p. ThenQ is a base point ofΛ′. This is a contradiction
becauseQ < Supp(∆′).

(V) From the above arguments we know thatEp+1 is a quasi-section
of Λ′ such that (∆′ · Ep+1) = n0. Assume thatn0 > 1. Then we
have a ramified coveringEp+1→ P

1
k of degreen0, which ramifies

totally over at least three points ofP1
k. By Hurwitz’s formula, we

have:
−2 ≧ −2n0 + 3(n0 − 1) = n0 − 3.

This is a contradiction. Hence we obtainn0 = 1.

(VI) Since P is a one-place point ofC, the fact thatEp+1 is a quasi-
section ofΛ′ implies thate= (p+ 1)ν andν = (C′ · Ep+1). Since 193

ν = n0 = 1 we know thate= p+ 1.

�

6.4

In the paragraphs 6.4∼ 6.6, let the notations and assumptions be as in
6.2. Assume furthermore thatΛ has a linear reducible member∆ whose
weighted graph is the following linear chain:

whereG, M andH are given respectively by
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αi , β j andγℓ being positive integers for 1≦ i ≦ 2r, 1 ≦ j ≦ 2s+ 1
and 1≦ ℓ ≦ 2t. G, M andH are called respectivelythe left, the middle
and the right branchesof the weighted graph of∆. The absence of the
left branchG (or the middle branchM, or the right branchH, resp. ) is
denoted byG = φ (or M = φ, or H = φ, resp. ). In the above graph
the components of∆ with self-intersection multiplicitiesp and q are
denoted respectively byD1 andD2.

6.5

Lemma. Let the notations and assumptions be as in 6.2 and 6.4. Let194

ni(i = 1, 2) be the multiplicity of Di in ∆. Assume that B= {P1,P2} with
Pi ∈ Di and Pi < the components of∆ other than Di for i = 1, 2, that
n1 , 1 and n2 , 1, and that either p≦ 0 or q ≦ 0. Then the following
assertions hold true:

(1) Either p≧ 0 or q ≧ 0. Thus, in the assertions below we assume
that q≧ 0 and p≦ 0.

(2) If p < 0 and q≧ 0 then H= φ.

(3) If p = 0 and q≧ 0 then either G= φ or H = φ.

Proof. Let C be a general member ofΛ and letei := (C · Di) = i(C,Di;
Pi) andνi := multPi C for i = 1, 2.
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(1) The assertion (1) follows from Lemma 2.3, (4).

(2) Consider first the case wherep < 0 andq > 0. Assume that
H , φ. ThenD2 is not a terminal component of∆. Lemma 6.3
then tells us thatn2 = 1, which contradicts the assumption. Hence
H = φ. Consider next the case wherep < 0 andq = 0. Assume
that H , φ. Let σ : V′ → V be the quadratic transformation
of V with center atP2. Let Λ′ := σ′(Λ), C′ := σ′(C), D′2 :=
σ′(D2), E := σ−1(P2), Q := E ∩ C′ and∆′ := the member of
Λ
′ corresponding to∆. ThenΛ′ is spanned byC′ and∆′. We

shall show thatQ < D′2 and E 1 Supp(∆′), which imply that
e2 = ν2 = n2 and thatE is a quasi-section ofΛ′ with (C′ ·E) = ν2.
If Q ∈ D′2 then we would have a contradiction by Lemma 2.3,
(4), regardless of whether or notE ⊂ Supp(∆′). ThusQ < D′2. If
E ⊂ Supp(∆′) then we would have a contradiction by contracting
D′2 as in the proof of Lemma 6.3, becauseD2 is not a terminal 195

component of∆. ThusE 1 Supp(∆′). Since every member of
Λ
′ has a one-place point onE and the characteristic ofk is zero,

E must be a cross-section ofΛ′, i.e., ν2 = n2 = 1. This is a
contradiction. Hence we haveH = φ.

(3) Assume thatG , φ andH , φ. We shall first consider the case
wherep = 0 andq > 0. Letσ : V′ → V be the quadratic trans-
formation ofV with center atP1. LetΛ′ := σ′(Λ), C′ := σ′(C),
D′1 := σ′(D1), E := σ−1(P1), Q := E ∩ C′ and∆′ := the mem-
ber ofΛ′ corresponding to∆. ThenΛ′ is spanned byC′ and∆′.
We shall show thatQ < D′1 andE 1 Supp(∆′), which imply that
e1 = ν1 = n1 and thatE is a quasi-section ofΛ′ with (C′ ·E) = ν1.
If Q ∈ D′1, Lemma 6.39 applied to (V′,Λ′,∆′,D′2 := σ′(D2),P2)
instead of (V,∆,∆,D0,P) implies thatn2 = 1, which contradicts
the assumption. ThusQ < D′1. If E ⊂ Supp(∆′) we would have
a contradiction by contractingD′1 as in the proof of Lemma 6.3,

9If E 1 Supp(∆′) we can apply Lemma 6.3 in the stated form because∆′ is linear.
However, if E ⊂ Supp(∆′), we have to strengthen Lemma 6.3 so as to apply it to the
present situation. However, this is a very easy task; the given proof works without any
modification.
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becauseD1 is not a terminal component of∆. Since every mem-
ber ofΛ′ has a one-place point onE and the characteristic ofk is
zero,E must be a cross-section ofΛ′, i.e.,ν1 = n1 = 1. This is
a contradiction. Therefore, we know that eitherG = φ or H = φ.
consider next the case wherep = q = 0. Let σ : V′ → V be
the composition of quadratic transformations ofV with centers
at P1 and P2. Let Λ′ := σ′(Λ), C′ := σ′(C), D′i := σ′(Di),
Ei := σ−1(Pi), Qi := Ei ∩ C′ and∆′ := the member ofΛ′ corre-
sponding to∆, wherei = 1, 2. We have only to show that either196

Q1 < D′1 andE1 1 Supp(∆′) or Q2 < D′2 andE2 < Supp(∆′); in
either case we get a contradiction. IfQi ∈ D′i (i = 1, 2) we have
a contradiction by Lemma 2.3 (4), regardless of whether or not
Ei ⊂ Supp(∆′)(i = 1, 2). Thus, eitherQ1 < D′1 or Q2 1 D′2. As-
sume thatQ1 < D′1. ThenE1 1 Supp(∆′), for, if otherwise, we
would have a contradiction by contractingD′1 becauseD1 is not
a terminal component of∆. Similarly, we haveE2 1 Supp(∆′) if
Q2 < D′2.

�

6.6

Lemma. Let the notations and assumptions be as in 6.2 and 6.4. Assume
that B = {P2} with P2 ∈ D2 and P2 < the components of∆ other than
D2. Assume that the multiplicity n2 of D2 in ∆ is not equal to1. Then
the following assertions hold true:

(1) p < 0, and if p, −1 then q≧ 0.

(2) If p ≦ −2 then H= φ.

(3) If p = −1 then either H= φ or there exists a contractionρ of V
onto a nonsingular projective surface W such thatρ∗Λ is spanned
by ρ∗(C) and ρ∗(∆) and thatρ∗(∆) has the following weighted
graph:
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where H is the same graph as in 6.4 and q′
= q+ 1 or q+ α1+ 1;

in the second case, any component in the graphs G and M as well
as D1 has multiplicity> 1 in ∆.

Proof. Let e2 := (C · D2) = i(C,D2; P2) andν2 := multP2 C.

(1) SinceD1 ∩ B = φ we havep = (D2
2) < 0 (cf. 2.3, (1)). Ifp , −1 197

we must haveq ≧ 0 by virtue of Lemma 2.3, (4).

(2) Assume thatH , φ. ThenD2 is not a terminal component of∆.
Sincen2 , 1 we must haveq ≦ 0 (cf. Lemma 6.3). Sinceq ≧ 0 as
shown above, we know thatq = 0. The same argument as used to
prove the assertion (2) of Lemma 6.5 leads us to a contradiction.
HenceH = φ.

(3) Assume thatH , φ. SinceD1 is an exceptional component of∆,
D1 is contractible. After the contraction ofD1, if there exists a
contractible component in the graphsG andM, it must be either
one of the components with weights−(α2r +1) and (−(β1+1); the
weights becoming−α2r and−β1 respectively after the contraction
of D1, we must haveα2r = 1 orβ1 = 1. If β1 = 1 for instance, the
β2 components in the graphM with weights−(β1+1),−2, . . . ,−2
respectively are contractible. After the contraction of theseβ2

components, the component with weight−(α2r + 1) in the graph
G has a (new) weight−(α2r −β2), and the component with weight
−(β3 + 2) in the graphM has a weight−(β3 + 1). If there ex-
ists still a contractible component in the graphsG andM after the
contraction ofD1 andβ2 components inM, it must be the com-
ponent with weight−(α2r + 1) in the graphG, i.e., we must have
α2r = β2 + 1. Repeat the above argument, and letρ : V → W
be the contraction of all possible components in the graphsG and
M. The contractionρ is uniquely determined. It is clear that the
proper transformρ∗(Λ) of Λ by ρ is spanned byρ(C) andρ∗(∆),
and thatρ∗(∆) has the following weighted graph:
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198

whereG′ is the graph similar toG and obtained in the above-
explained way by the contractionρ from the graph:

and whereq′ ≧ q, the inequalityq′ > q taking place only if
all components of the graphM are contracted byρ. Note that
ρ∗(Λ) has only one base pointρ(P2), that e2 = (ρ(C) · ρ(D2))
andν2 = multρ(P2) ρ(C) and thatn2 is the multiplicity ofρ(D2) in
ρ∗(∆). If G′ , φ thenH = φ by virtue of the assertion (2) above.
It is easily verified that the caseG′ = φ occurs only in one of the
following four cases:

1◦ s = r; β1 = 1, β2 = α2r−1, β3 = α2r−1, . . . , β2r−1 = α3,
β2r = α2, β2r+1 = α1 + 1; q′ = q+ 1,

2◦ s = r; β1 = 1, β2 = α2r−1, β3 = α2r−1, . . . , β2r−1 = α3,
β2r = α2 − 1, β2r+1 = 1; q′ = q+ α1 + 1,

3◦ s= r−1;α2r = 1,α2r−1 = β1−1,α2r−2 = β2, . . . , α3 = β2r−3,
α2 = β2r−2, α1 = β2r−1 − 1; q′ = q+ 1,

4◦ s= r−1;α2r = 1,α2r−1 = β1−1,α2r−2 = β2, . . . , α3 = β2r−3,
α2 = β2r−2 + 1, β2r−1 = 1; q′ = q+ α1 + 1.

The last assertion is clear becausen2 > 1 and the base pointP2

lies onD2 but not on the other components of∆.

�

6.7

In the paragraphs 6.7∼ 6.17 we shall prove the “if” part of Theorem199

6.1. Thus the conditions (1)∼ (3) of the theorem are always assumed
to be satisfied. A useful remark is that we may replacef by f − α for a
general elementα ∈ k if necessary, because iff − α = c(xdye − 1) for
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c ∈ k∗ and coordinatesx, y of A2
k then f = c′(x′dy′e − 1) for c′ ∈ k∗

and coordinatesx′, y′ of A2
k. Thus we assume once for all that the curve

C0 onA2
k defined by f = 0 has exactly two places at infinity. Embed

A2
k := Spec(k[x, y]) into P2

k as the complement of a lineℓ0, and letC be
the closure ofC0 onP2

k. We shall first prove the following:

Lemma . Assume that C intersectsℓ0 in only one point P0. Let d1 :=
multP0 C. Then there exists a birational automorphismρ of P2

k such
that ρ induces a biregular automorphism onA2

k := P2
k − ℓ0 and that the

proper transform C′ of C byρ intersectsℓ0 in two distinct points with
(C′ · ℓ0) ≦ d1.

Proof. Our proof consists of four subparagraphs 6.7.1∼ 6.7.4. �

6.7.1

Setd0 := (C · ℓ0). LetΛ be a linear pencil onP2
k spanned byC andd0ℓ0.

Let V0 := P2
k and letσ1 : V1 → V0 be the quadratic transformation of

V0 with center atP0. Let ℓ(1)
0 := σ′1(ℓ0), ℓ1 := σ−1

1 (P0), C(1) := σ′1(C)
andΛ(1) := σ′1(Λ). We shall show that d0 > d1. Assume the contrary:

d0 = d1. Then the linear pencilΛ(1) is spanned byC(1) andd0ℓ
(1)
0 , and

since (C(1) · ℓ
(1)
0 ) = d0−d1 = 0 the pencil has no base points. HenceΛ(1)

defines a fibrationϕ1 : V1 → P
1
k whose general fibers are isomorphic

to P1
k. Then d0 = 1 by virtue of Lemma 2.2, (1). However this is

impossible becauseC has two distinct places onℓ0. Therefore we know 200

thatd0 > d1.

6.7.2

We shall prove the following assertion:
Either C(1) intersectsℓ1 in two distinct points, or there exists a bira-

tional automorphismρ of P2
k such thatρ induces a biregular automor-

phism onA2
k := P2

k − ℓ0 and that(C′ · ℓ0) ≦ d1 < d0 where C′ is the
proper transform of C byρ.

Proof. Our proof consists of four steps.
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(I) Assume thatC(1) intersectsℓ1 in a single pointP1. ThenP1 =

ℓ
(1)
0 ∩ ℓ1 becaused0 > d1. Let σ2 : V2 → V1 be the quadratic

transformation ofV1 with center atP1. Let ℓ(2)
0 := σ′2(ℓ(1)

0 )ℓ(2)
1 :=

σ′2(ℓ1), ℓ2 = ℓ
(2)
2 := σ−1

2 (P1), C(2) := σ′2(C(1)) and Λ(2) :=
σ′2(Λ(1)). Let d2 := multP1 C(1). Then it is easy to see thatΛ(2)

is spanned byC(2) andd0ℓ
(2)
0 + (d0 − d1)ℓ(2)

1 + (2d0 − d1 − d2)ℓ(2)
2 ,

where 2d0 − d1 − d2 > 0 becauseℓ(2)
0 ∩ ℓ

(2)
1 = φ. Note that

d2 ≦ d1 and d2 ≦ d0 − d1 because (C(1) · ℓ
(1)
0 ) = d0 − d1 and

(C(1) · ℓ1) = d1. If d0−d1 > d2 then (C(2) · ℓ
(2)
0 ) = d0−d1−d2 > 0,

(C(2)·ℓ
(2)
2 ) = d2 > 0 and ((ℓ(2)

0 )2) = −1. However this is impossible
by virtue of Lemma 2.3, (4). Hence we haved2 = d0−d1 ≦ d1. By
virtue of Lemma 2.3, (4) we know thatC(2) intersectsℓ2 in a sin-
gle pointQ. Indeed, if otherwiseC(2) intersectsℓ2 in two distinct
pointsQ andQ′, where neitherQ nor Q′ lie on ℓ(2)

0 ; then contract

ℓ
(2)
0 and blow up the pointsQ andQ′; this operation leads us to a

contradiction. IfQ , ℓ(2)
1 ∩ ℓ2 thend1 = d2, whenced0 = 2d1. If201

d1 > d2 thenQ = P2 := ℓ(2)
1 ∩ ℓ2.

(II) Write d1 = q2d2 + d3 with integersq2, d3 such that 0≦ d3 < d2

andq2 ≧ 1. For 2≦ i ≦ q2 + 1 defineV(i), σi , ℓ
(i)
j (0 ≦ j ≦ i),

C(i), Λ(i) andPi inductively as follows: Letσi : V(i) → V(i−1) be
the quadratic transformation ofV(i−1) with center atPi−1 and let
ℓ

(i)
j := σ′i (ℓ

(i−1)
j ) for 0 ≦ j ≦ i − 1, ℓ(i)

i = ℓi := σ−1
i (Pi−1), C(i) :=

σ′i (C
(i−1)), Λ(i) := σ′i (Λ

(i−1)) andPi := ℓ(i)
1 ∩ ℓi. By induction on

i(2 ≦ i ≦ q2 + 1) we shall show the following assertions:

A1(i) : Λ(i) is spanned byC(i) andd0ℓ
(i)
0 + (d0 − d1)ℓ(i)

1 + d0(ℓ(i)
2 +

· · · + ℓ
(i)
i ),

A2(i) : (C(i) · ℓ
(i)
j ) = 0 if 0 ≦ j ≦ i − 1 and j , 1; (C(i) · ℓ

(i)
1 ) =

d1− (i −1)d2; (C(i) · ℓ
(i)
i ) = d2; ∪i

j=0ℓ
(i)
j has the following weighted

graph:
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A3(i) : C(i) intersectsℓi in a single pointQ, whereQ = Pi if either
2 ≦ i ≦ q2 or i = q2 + 1 andd3 > 0.

Indeed, the assertionsA1(2) ∼ A3(2) are verified in the step (I)
above. Assuming thatA1( j) ∼ A3( j) are verified for 2≦ j < i
we shall proveA1(i) ∼ A3(i). Let µ := multPi−1 C(i−1). Then
µ ≦ d2 andµ ≦ d1 − (i − 2)d2, andΛ(i) is spanned byC(i) and
d0ℓ

(i)
0 + (d0−d1)ℓ(i)

1 +d0(ℓ(i)
2 + · · ·+ ℓ

(i)
i−1)+ (2d0−d1−µ)ℓ(i)

i , where

2d0−d1−µ > 0 becauseℓ(i)
1 ∩ℓ

(i)
i−1 = φ. Suppose thatd2 > µ. Then 202

the contraction ofℓ(i)
0 , ℓ(i)

2 , . . . , ℓ
(i)
i−2 leads us to a contradiction by

virtue of Lemma 2.3, (4). Henced2 = µ and 2d0 − d1 − µ = d0.
ThusA1(i) is proved. By virtue of Lemma 2.3, (4) again, we know
thatC(i) intersectsℓi in a single pointQ. Indeed, if otherwiseC(i)

intersectsℓi in two distinct pointsQ andQ′, where neitherQ nor
Q′ lie onℓ(i)

i−1; then contractℓ(i)
0 , . . . , ℓ

(i)
i−1 and blow up the pointsQ

andQ′; this operation leads us to a contradiction. IfQ , Pi then
(C(i) · ℓ

(i)
1 ) = d1− (i − 2)d2− µ = d1− (i − 1)d2 = 0, i.e., i = q2+ 1

andd3 = 0. Hence if either 2≦ i ≦ q2 or i = q2 + 1 andd3 > 0
thenQ = Pi and (C(i) · ℓ

(i)
1 ) = d1 − (i − 1)d2. Therefore,A2(i) and

A3(i) are proved.

(III) We shall show thatd3 = 0. Assume the contrary:d3 > 0. Set
r := q2+ 1. Letσr+1 : Vr+1→ Vr be the quadratic transformation
of Vr with center atPr , and letℓ(r+1)

j := σ′r+1(ℓ(r)
j ) for 0 ≦ j ≦ r,

ℓr+1 := σ−1
r+1(Pr ), C(r+1) := σ′r+1(C(r)) andΛ(r+1) := σ′r+1(Λ

(r)).

Let ν := multPr C(r). Thenν ≦ d3 < d2 because (C(r) · ℓ
(r)
1 ) = d3 <

d2, andΛ(r+1) is spanned byC(r+1) andd0ℓ
(r+1)
0 + (d0 − d1)ℓ(r+1)

1 +

d0(ℓ(r+1)
2 +· · ·+ℓ

(r+1)
r )+(2d0−d1−ν)ℓr+1 with 2d0−d1−ν > 0. Since

(C(r+1) ·ℓ
(r+1)
r ) = d2−ν > 0, (C(r+1) ·ℓr+1) = ν > 0 and ((ℓ(r+1)

1 )2) =

−(r + 1) < −2 the contraction ofℓ(r+1)
0 , ℓ(r+1)

2 , . . . , ℓ
(r+1)
r−1 leads us

to a contradiction by virtue of Lemma 2.3, (4). Henced3 = 0.
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Thenced0 = rd2 andd1 = (r − 1)d2. We reached to the following
configuration:

203

(IV) We setV0 := Vr , ℓ0 := ℓr , C := C(r), P0 := Q andΛ := Λ
(0)

:=
Λ

(r). Letσ1 : V1→ V0 be the quadratic transformation ofV0 with

center atP0, and letℓ
(1)
0 := σ′1(ℓ0), ℓ

(1)
1 := σ−1

1 (P0), C
(1)
= σ′(C)

andΛ
(1)
= σ′1(Λ). By abuse of notations, we denoteσ′1(ℓ(r)

j ) by

ℓ
(r)
j again for 0≦ j ≦ r. Let µ0 := multP0

C. Thenµ0 ≦ d2, and

Λ
(1)

is spanned byC
(1)

andd0ℓ
(r)
0 + (d0 − d1)ℓ(r)

1 + d0(ℓ(r)
2 + · · · +

ℓ
(r)
r ) + (d0 − µ0)ℓ1. If µ0 < d2 the contraction ofℓ(r)

0 , ℓ(r)
2 , . . . , ℓ

(r)
r−1

leads us to a contradiction by Lemma 2.3, (4). Thusµ0 = d2. If

r > 2, C
(1)

intersectsℓ1 in a single pointQ1; indeed, if otherwise,
the contraction ofℓ(r)

0 , ℓ(r)
2 , . . . , ℓ

(r)
r and blowings-up of two points

in C
(1)
∩ ℓ1 leads us to a contradiction by Lemma 2.3, (4). For

1 ≦ i ≦ r − 2, assume that we obtained inductivelyVi , σi , ℓ
(i)
j (0 ≦

j ≦ i), ℓ(r)
s (0 ≦ s≦ r), C

(i)
andΛ

(i)
, where;

(1) σi : Vi → Vi−1 is the quadratic transformation ofVi−1,

(2) Λ
(i)

is spanned byC
(i)

andd0ℓ
(r)
0 + (d0 − d1)ℓ(r)

1 + d0(ℓ(r)
2 +

· · ·+ ℓ
(r)
r ) + (d0 − d2)ℓ

(i)
1 + (d0 − 2d2)ℓ

(i)
2 + · · ·+ (d0 − id2)ℓ

(i)
i ,

(3) C
(i)

intersectsℓi := ℓ
(i)
i in a single pointPi with (C

(i)
·ℓi) = d2

andµi = multPi
C

(i)
, wherePi < ℓ

(i)
i−1.

Let σi+1 : Vi+1 → Vi be the quadratic transformation ofVi with204
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center atPi, and letℓ
(i+1)
j := σ′i+1(ℓ

(i)
j ) for 0 ≦ j ≦ i, ℓi+1 :=

ℓ
(i+1)
i+1 := σ−1

i+1(Pi)C
(i+1)

:= σ′i+1(C
(i)

) andΛ
(i+1)

:= σ′i+1(Λ
(i)

). By
abuse of notations we denoteσ′i+1(ℓ(r)

s ) by ℓ(r)
s again for 0≦ s ≦

r. Thenµi ≦ d2, andΛ
(i+1)

is spanned byC
(i+1)

and d0ℓ
(r)
0 +

(d0 − d1)ℓ(r)
1 + d0(ℓ(r)

2 + · · · + ℓ
(r)
r ) + (d0 − d2)ℓ

(i+1)
1 + · · · + (d0 −

id2)ℓ
(i+1)
i + (d0 − id2 − µi)ℓi+1. If µi < d2 the contraction ofℓ(r)

0 ,

ℓ
(r)
2 , . . . , ℓ

(r)
r , ℓ

(i+1)
1 , . . . , ℓ

(i+1)
i−1 leads us to a contradiction by virtue

of Lemma 2.3, (4). Henceµi = d2. If i ≦ r − 3, C
(i+1)

inter-

sectsℓi+1 in a single pointPi+1(< ℓ
(i+1)
i ); indeed, if otherwise, the

contraction ofℓ(r)
0 , ℓ(r)

2 , . . . , ℓ
(r)
r , ℓ

(i+1)
1 , . . . , ℓ

(i+1)
i and blowings-up

of two points inC
(i+1)
∩ ℓi+1 lead us to a contradiction by Lemma

2.3, (4). continuing the above argument we obtain the following

configuration onV
(r−1)

:

where: 205

(i) Λ
(r−1)

is spanned byC
(r−1)

andd0ℓ
(r)
0 +(d0−d1)ℓ(r)

1 +d0(ℓ(r)
2 +
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· · · + ℓ
(r)
r ) + (d0 − d2)ℓ

(r−1)
1 + · · · + (d0 − (r − 1)d2)ℓ

(r−1)
r−1 ,

(ii) (C
(r−1)
· ℓr−1) = d2 and (C

(r−1)
· ℓ

(r−1)
r−2 ) = 0.

Letσ : V
(r−1)
→ P2

k be the compositionσ := (σ1 . . . σr ·σ1 . . . σr−1)

and letτ : V
(r−1)
→ P2

k be the contraction ofℓ(r)
0 , ℓ

(r)
2 , . . . , ℓ

(r)
r , ℓ

(r−1)
1 , . . .,

ℓ
(r−1)
r−2 andℓ(r)

1 in this order. Thenρ := τ·σ−1 is a birational automorphism
on P2

k such thatρ induces a biregular automorphism onA2
k := P2

k − ℓ0

and that (C′ · ℓ0) = (C
(r−1)
· ℓr−1) = d2 ≦ d1, whereC′ is the proper

transform ofC by ρ. This completes a proof of 6.7.2. �

6.7.3

We shall prove the following assertion:
Assume that C(1) intersectsℓ1 in two distinct points P1 and P′1. Then

there exists a birational automorphismρ of P2
k such thatρ induces a

biregular automorphism onA2
k := P2

k−ℓ0 and that C′ intersectsℓ0 in two
distinct points, where C′ is the proper transform of C byρ. Moreover,
(C′ · ℓ0) ≦ d1.

Proof. Our proof consists of four steps.

(I) One of P1 andP′1, sayP1, must be the pointℓ(1)
0 ∩ ℓ1; indeed, if

otherwise, the pencilΛ(1) spanned byC(1) andd0ℓ
(1)
0 + (d0− d1)ℓ1

has no base points onℓ(1)
0 , which is a contradiction by virtue of

Lemma 2.3, (1) because ((ℓ(1)
0 )2) = 0. Moreover, bothP1 and

P′1 are one-place points ofC(1). Letµ1 := i(C(1), ℓ1; p1) andµ′1 :=
i(C(1), ℓ1; p′1). Thend1 = µ1+µ

′
1. We shall show thatmultP1 C(1)

=206

(C(1) · ℓ
(1)
0 ) = d0 − d1 ≦ µ1. Indeed, letσ2 : V2 → V1 be the

quadratic transformation ofV1 with center atP1, and letℓ(2)
j :=

σ′2(ℓ(1)
j )( j = 0, 1), ℓ2 := ℓ

(2)
2 := σ−1

2 (P1), C(2) := σ′2(C(1)), and

Λ
(2) := σ′2(Λ(1)). Let ν1 := multP1 C(1). Thenν1 ≦ (C(1) · ℓ

(1)
0 ),

ν1 ≦ µ1, andΛ(2) is spanned byC(2) andd0ℓ
(2)
0 + (d0 − d1)ℓ(2)

1 +

(2d0− d1− ν1)ℓ2. Since (C(2) · ℓ
(2)
0 ) = (C(1) · ℓ

(1)
0 )− ν1, (C(2) · ℓ2) =
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ν1 > 0 and ((ℓ(2)
1 )2) = −2, the equalityν1 = (C(1) · ℓ

(1)
0 ) is implied

by Lemma 2.3, (4).

(II) Set d2 := ν1
10 and writed1 − µ

′
1 = µ1 = qd2 + d′3 with integers

q, d′3 such that 0≦ d′3 < d2 andq ≧ 1. For 2≦ i ≦ q + 1 define

V(i), σi , ℓ
(i)
j (0 ≦ j ≦ i), C(i), Λ(i) andPi inductively as follows:

Let σi : V(i) → V(i−1) be the quadratic transformation ofV(i−1)

with center atPi−1, and letℓ(i)
j := σ′i (ℓ

(i−1)
j ) for 0 ≦ j ≦ i − 1,

ℓi := ℓ
(i)
i := σ−1

i (Pi−1), C(i) := σ′i (C
(i−1)), Λ(i) := σ′i (Λ

(i−1)) and

Pi : ℓ(i)
1 ∩ ℓi . By induction oni(2 ≦ i ≦ q + 1) we can show the

following assertions:

A′1(i) : Λ(i) is spanned byC(i) andd0ℓ
(i)
0 + (d0 − d1)ℓ(i)

1 + d0(ℓ(i)
2 +

· · · + ℓ
(i)
i ),

A′2(i) : (C(i) · ℓ
(i)
j ) = 0 if 0 ≦ j ≦ i − 1 and j , 1; i(C(i), ℓ

(i)
1 ; Pi) =

µ1 − (i − 1)d2; (C(i) · ℓi) = d2;
i⋃

j=0

ℓ
(i)
j has the following weighted

graph:

A′3(i) : C(i) intersectsℓi in a single pointQ, whereQ = Pi if either 207

2 ≦ i ≦ q or i = q+ 1 andd′3 > 0.

The proof is the same as that of the step (II) of 6.7.2 up to a slight
modification caused by difference of the situations. Hence we
leave the readers a task to reproduce it.

(III) By the same argument as in the proof of the step (III) of 6.7.2,
we can show thatd′3 = 0. Then, settingr = q + 1, we have
µ1 = (r − 1)d2, d1 = (r − 1)d2 + µ

′
1 andd0 = rd2 + µ

′
1, where

µ′1 > 0. We have the following configuration onV(r):

10Note thatd0 = d1 + d2 andd2 < d1 = µ1 + µ
′
1.
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where (C(r) · ℓ
(r)
r ) = d2 and (C(r) · ℓ

(r)
1 ) = µ′1.

(IV) Starting with the quadratic transformation ofV(r) with center atQ
and following the argument in the step (IV) of the proof of 6.7.2

we obtain the surfaceV
(r−1)

and the configuration on it: See the

next page, where (C
(r−1)
· ℓr−1) = d2 and (C

(r−1)
· ℓ

(r)
1 ) = µ′1. Let

σ, τ : V
(r−1)

→ P2
k be as defined as in the step (IV) of 6.7.2 and

let ρ = τ · σ−1. Thenρ is a birational automorphism ofP2
k such

that ρ induces a biregular automorphism onA2
k := P2

k − ℓ0 and
that (C′ · ℓ0) = d2 + µ

′
1 ≦ d1, whereC′ is the proper transform of

C by ρ. Apparently,C′ intersectsℓ0 in two distinct points. This
completes a proof of 6.7.3.

208
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(The configuration in the step (IV) of 6.7.3)

�

6.7.4

It is now apparent that we can finish our proof of Lemma 6.7 by induc-
tion ond0 := (C ·ℓ0) and by making use of 6.7.2 and 6.7.3. As the proofs
of 6.7.2 and 6.7.3 indicate, we have the following remark:

Remark. Let C, ℓ0, ρ andC′ be as in Lemma 6.7. Letd0 := (C · ℓ0) and
d′0 := (C′ · ℓ0). LetΛ be the linear pencil onP2

k spanned byC andd0ℓ0,
and letΛ′ be the linear pencil onP2

k spanned byC′ andd′0ℓ0. ThenΛ′

is the proper transform ofΛ by ρ. In particular, if f ′ is an irreducible
element ofk[x, y] definingC′∩A2

k andC′α is the curve onA2
k defined by

f ′ = α for α ∈ k, then f ′ andC′α’s (α ∈ k) satisfy the conditions (1), (2),209

(3) of Theorem 6.1.

Thus,we assume hereafter that C intersectsℓ0 in two distinct points,
each of which is, therefore, a one-place point ofC.

6.8

Let C ∩ ℓ0 = {P,Q}, let d0 := i(C, ℓ0; P) and lete0 := i(C, ℓ0; Q). We
may assume thatd0 ≦ e0.

6.8.1

Lemma. With the notations as above, we have d0 = multP C and e0 =
multQ C.

Proof. Let µ := multP C andν := multQ C. Letσ1 : V1 → V0 := P2
k be

the quadratic transformation ofV0 with centers atPandQ, and letℓ(1)
0 :=

σ′1(ℓ0), E1 := σ−1
1 (P) andF1 := σ−1

1 (Q). Then, sinceC ∼ (d0 + e0)ℓ0

we have:C(1) := σ′1(C) ∼ (d0+e0)ℓ(1)
0 + (d0+e0−µ)E1+ (d0+e0−ν)F1.

If d0 > µ or e0 > ν we have a contradiction by virtue of Lemma 2.3,
(4) because (C(1) · ℓ

(1)
0 ) = d0 + e0 − (µ + ν) > 0, (C(1) · E1) = µ > 0,

(C(1) · F1) = ν > 0 and ((ℓ(1)
0 )2) = (E2

1) = (F2
1) = −1. Thusd0 = µ and

e0 = ν. �
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6.8.2

By substituting f − α(α ∈ k) for f if necessary we may (hence shall)
assume hereafter that ifσ : W → P2

k is the shortest composition of
quadratic transformations by which the proper transformσ′Λ of the
pencil Λ on P2

k spanned byC and (d0 + e0)ℓ0 has no base points the
member ofσ′Λ corresponding toC is irreducible (cf. a remark at the
beginning of 6.7). Then we have the following:

Lemma. Let P1 := C(1) ∩ E1, Q1 := C(1) ∩ F1, µ1 := multP1 C(1) and210

ν1 := multQ1 C(1). Then either d0 = 1 or e0 > d0 = µ1 ≧ ν1.

Proof. Let σ2 : V2 → V1 be the quadratic transformation ofV1 with
centers atP1 and Q1, and letℓ(2)

0 = σ′2(ℓ(1)
0 ), E(2)

1 := σ′2(E1), F(2)
1 :=

σ′2(F1), E2 := σ−1
2 (P1), F2 := σ−1

2 (Q1) andC(2) := σ′2(C(1)). Then,

sinceC(1) ∼ (d0 + e0)ℓ(1)
0 + e0E1 + d0F1, we have:

C(2) ∼ (d0 + e0)ℓ(2)
0 + e0E(2)

1 + d0F(2)
1 + (e0 − µ1)E2 + (d0 − ν1)F2,

where we must havee0 ≧ µ1 andd0 ≧ ν1. If e0 > ν1 andd0 > µ1 the
contraction ofℓ(2)

0 leads us to a contradiction by Lemma 2.3, (4). Hence
either e0 = ν1 or d0 = µ1. If e0 = ν1 then d0 = ν1. HenceF2 is a
quasi-section of the pencil (σ1σ2)′Λ. Since every member of (σ1σ2)′Λ
has a one-place point onF2 and since the characteristic ofk is zero,
we conclude thatd0 = (C(2) · F2) = 1. Thus, ifd0 > 1 thene0 > ν1

and d0 = µ1; moreover, we havee0 > d0 because ife0 = d0(= µ1)
then E2 is a quasi-section of (σ1σ2)′Λ and thence we conclude that
e0 = d0 = 1. �

6.8.3

Assume now thatd0 > 1. LetP2 := C(2)∩E2 and letP2, . . . ,Pt+1 be the
points ofC(2) overP2, Pi being infinitely near toPi+1 of order one, such
that if µi is the multiplicity ofC(2) at Pi we haved0 = µ1 = . . . = µt >

µt+1. Then we have the following:

Lemma. With the notations as above, we have e0 − td0 > 0.
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Proof. If t = 1 we have nothing to show. Assume thatt ≧ 2. For211

2 < i ≦ t + 1, defineVi, σi, ℓ
(i)
0 , E(i)

j (1 ≦ j ≦ i), F(i)
j ( j = 1, 2), C(i)

andΛ(i) inductively as follows: Letσi : Vi → Vi−1 be the quadratic
transformation ofVi−1 with center atPi−1, and letℓ(i)

0 := σ′i (ℓ
(i−1)
0 ),

E(i)
j := σ′i (E

(i−1)
j ) for 1 ≦ j < i, Ei := E(i)

i := σ−1
i (Pi−1), F(i)

j :=

σ′i (F
(i−1)
j ) for j = 1, 2,C(i) := σ′i (C

(i−1)) andΛ(i) := σ′i (Λ
(i−1)) (where

Λ
(2) := (σ1σ2)′Λ). Assume that for 2≦ i ≦ t, Λ(i) is spanned byC(i)

and (d0+e0)ℓ(i)
0 +d0F(i)

1 + (d0−ν1)F(i)
2 +e0E(i)

1 + (e0−d0)E(i)
2 + · · ·+ (e0−

(i−1)d0)E(i)
i , wheree0 > (i−1)d0, (C(i) ·E(i)

i−1) = 0 andC(i) ·E(i)
i = d0 ·Pi.

Then it is easy to see thatΛ(i+1) is spanned byC(i+1) and (d0+e0)ℓ(i+1)
0 +

d0F(i+1)
1 + (d0−ν1)F(i+1)

2 +e0E(i+1)
1 + (e0−d0)E(i+1)

2 + · · ·+ (e0− id0)E(i+1)
i+1 ,

wheree0 ≧ id0, (C(i+1) · E(i+1)
i ) = 0 and (C(i+1) · E(i+1)

i+1 ) = µi = d0. If
e0 = id0, thenEi+1 is a quasi-section ofΛ(i+1). Since every member of
Λ

(i+1) has a one-place point onEi+1, we haved0 = 1, which contradicts
the assumption. Hencee0 > id0. In particular, we know by induction on
2 ≦ i ≦ t thatΛ(t+1) is spanned byC(t+1) and (d0 + e0)ℓ(t+1)

0 + d0F(t+1)
1 +

(d0 − ν1)F(t+1)
2 + e0E(t+1)

1 + (e0− d0)E(t+1)
2 + · · ·+ (e0 − td0)E(t+1)

t+1 , where
e0 > td0. �

6.8.4

With the notations in 6.8.3, it is easily checked that we havethe follow-
ing configuration:

where (C(t+1) · F(t+1)
2 ) = ν1, (C(t+1) · F(t+1)

1 ) = e0− ν1, (C(t+1) ·Et+1) = d0 212

andµt+1 = multPt+1 C(t+1) with e0 > ν1 and d0 > µt+1. Now let τ :
Vt+1 → V be the contraction ofF(t+1)

2 , ℓ(t+1)
0 , E(t+1)

1 , . . . ,E(t+1)
t , and let
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F0 := τ(F(t+1)
1 ), E0 := τ(Et+1), C := τ(C(t+1)) andΛ := τ∗(Λ(t+1)). Then

it is easy to show the following assertions:

(1) Λ is spanned byC andd0F0 + (e0 − td0)E0, wheree0 > td0,

(2) (E2
0) = 0, (F2

0) = t and (E0 · F0) = 1,

(3) C · E0 = d0 ·P0 andC · F0 = e0 ·Q0, whereP0 < F0 andQ0 < E0,

(4) d1 := multP0 C = µt+1 < d0 ande1 := multQ0 C = ν1 < e0, where
e0 > d0 ≧ e1 (cf. 6.8.2).

6.9

In the paragraphs 6.9∼ 6.13 we assume thatd0 > 1 and use the notations
set forth in the assertions (1)∼ (4) of 6.8.4. Find integersd2, . . . , dm and
p1, . . . , pm by the Euclidea algorithm with respect tod0 andd1:

d0 = p1d1 + d2 0 < d2 < d1

d1 = p2d2 + d3 0 < d3 < d2

. . . . . .

dm−2 = pm−1dm−1 + dm 0 < dm < dm−1

dm−1 = pmdm 1 < pm

Similarly, find integerse2, . . . , en andq1, . . . , qn by the Euclidean algo-
rithm with respect toe0 ande1 :

e0 = q1e1 + e2 0 < e2 < e1

e1 = q2e2 + e3 0 < e3 < e2

. . . . . .

en−2 = qn−1en−1 + en 0 < en < en−1

en−1 = qnen 1 < qn

As in 1.4, define an integera(i, j)(1 ≦ i ≦ m; 1 ≦ j ≦ pi) inductively as213

follows:

a0 = e0 − td0
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a(1, j) = j(a0 − d1) for 1 ≦ j ≦ p1

a(2, j) = a0 + j(a(1, p1) − d2) for 1 ≦ j ≦ p2

. . . . . .

a(i, j) = a(i − 2, pi−2) + j(a(i − 1, pi−1) − di) for 1 ≦ j ≦ pi

and 2≦ i ≦ m.

Similarly, define an integerb(i, j)(1 ≦ i ≦ n; 1 ≦ j ≦ qi) inductively as
follows:

b0 = d0

b(1, j) = j(b0 − e1) for 1 ≦ j ≦ q1

b(2, j) = b0 + j(b(1, q1) − e2) for 1 ≦ j ≦ q2

. . . . . .

b(i, j) = b(i − 2, qi−2) + j(b(i − 1, qi−1) − ei) for 1 ≦ j ≦ qi

and 2≦ i ≦ n.

Then we have the following:

Lemma. With the notations as above, we have:

a(m, pm)dm = d0(a0 − d1) and b(n, qn)en = e0(b0 − e1).

In particular, a(m, pm) , 1 and b(n, qn) , 1. 214

Proof. The first equalities are obtained by straightforward computations
(cf. the proof of Lemma 1.4.1, (6)). As for the second assertion, assume
thata(m, pm) = 1. Thendm ≧ d0, which is absurd becaused0 > d1 ≧ dm.
Hencea(m, pm) , 1. Similarly,b(n, qn) , 1. �

6.10

Set M : p1 + · · · + pm. Let P0, P1, . . . ,PM−1 be the points ofC over
P0, Pi being infinitely near toPi−1 of order one for 1≦ i ≦ M − 1. Let
σi : Vi → Vi−1 be the quadratic transformation ofVi−1 with center at
Pi−1 for 1 ≦ i ≦ m.11 The compositionρ1 = σ1 . . . σM : VM → V0 := V

11By abuse of (and also for the sake of simplifying) the notations, we use these nota-
tions though they overlap in part those introduced in 6.8.1∼ 6.8.3.
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is calledthe Euclidean transformation with respect to(C,P0) (cf. 1.3.1).
Let ρ2 : VM+N → VM be the Euclidean transformation with respect to
(ρ′1(C), ρ−1

1 (Q0)), whereN = q1 + · · · + qn. Let W := VM+N and letρ :=
ρ1ρ2 : W → V be the composition ofρ1 andρ2. Let C′ := ρ′(C) and
Λ
′ := ρ′(Λ). By abuse of notations, we denoteρ′(E0) andρ′(F0) by E0

andF0 again, respectively. Then it is by a straightforward computation
that we obtain the following weighted graph ofρ−1(E0 ∪ F0):

whereE andF are the graphs similar to that in the Figure 1 of 1.3.4
and whereα = −(p1 + 1) if m> 1 andα = −p1 if m= 1,
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Figure 2 : The weighted graphE

215

whereE(2, 1) is linked toE0, C′ intersectsE(m, pm) but not other
components, and (C′ · E(m, pm)) = dm.
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Figure 3 : The weighted graphF

216

whereF(2, 1) is linked toF0, C′ intersectsF(n, qn) but not other
components, and (C′ · F(n, qn)) = en. β = t − (q1 + 1) if n > 1 and217

β = t− q1 if n = 1. In order to keep the notations in accordance with the



Certain affine plane curves with two places at infinity 169

present ones, we shall write down the graphsE andF in the Figures 2
and 3, which are given in the next two pages.

6.11

With the notations of 6.9 and 6.10, we have the following:

Lemma. (1) The linear pencilΛ′ is spanned by C′ and

∆
′ := a0E0 + b0F0 +

m∑

i=1

pi∑

j=1

a(i, j)E(i, j) +
n∑

i=1

qi∑

j=1

b(i, j)F(i, j)

(2) a0 > 0 and a(i, j) ≧ 0 for 1 ≦ i ≦ m and1 ≦ j ≦ pi ; moreover, if
E(i, j) lies between E0 and E(m, pm) (excluding E(m, pm)) in the
graphE then the multiplicity a(i, j) > 0.

(3) b0 > 0 and b(i, j) ≧ 0 for 1 ≦ i ≦ n and1 ≦ j ≦ qi ; moreover,
if F (i, j) lies between F0 and F(n, qn) (excluding F(n, qn)) in the
graphF then the multiplicity b(i, j) > 0.

Proof. (1) By a straightforward computation we obtainC′ ∼ ∆′. By
the assumption at the beginning of 6.8.2,C′ is an irreducible
member ofΛ′. Hence the assertion (1) holds.

(2) SinceΛ′ consists of effective divisors we know thata(i, j) ≧ 0 for
1 ≦ i ≦ m and 1≦ j ≦ pi . Besides,a0 = e0 − td0 > 0 (cf. 6.8.3).
If E(i, j) , E(m, pm), then (C′ · E(i, j)) = 0, which implies that
E(i, j) is an irreducible component of a member ofΛ′. Especially,
if E(i, j) lies betweenE0 andE(m, pm) in the graphE , it is readily
seen thatE(i, j) is connected toE0 through the components of∆′.
HenceE(i, j) is a component of∆′, i.e.,a(i, j) > 0.

(3) The assertion (3) is proved by the same argument as above. 218

�
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6.12

Lemma. (1) Assume that a(1, 1) = 0. Then a(m, pm) = 0and a(i, j) =
0 whenever E(i, j) lies between E(1, 1) and E(m, pm) in the graph
E ; such E(i, j)’s with a(i, j) = 0 (excluding E(m, pm)) are con-
tained in one and only one member ofΛ′; E(m, pm) is a cross-
section ofΛ′, esp. dm = 1.

(2) Assume that b(1, 1) = 0. Then b(n, qn) = 0 and b(i, j) = 0 when-
ever F(i, j) lies between F(1, 1) and F(n, qn) in the graphF ; such
F(i, j)’s with b(i, j) = 0 (excluding F(n, qn)) are contained in one
and only one member ofΛ′; F (n, qn) is a cross-section ofΛ′, esp.
en = 1.

Proof. We shall prove only the assertion (1) because the assertion (2)
is proved in a similar fashion. The assumptiona(1, 1) = 0 implies that
a(m, pm) = 0 (cf. Lemma 6.9) and thatE(1, 1) is contained in a mem-
ber ofΛ′ other than∆′ (andC′, of course). IfE(i, j) (, E(m, pm)) lies
betweenE(1, 1) andE(m, pm) in the graphE then it is readily seen that
E(i, j) is contained in the same member ofΛ′ asE(1, 1) is, which im-
pliesa(i, j) = 0. Moreover, we know thatE(m, pm) is a quasi-section of
Λ
′. Since (C′ · E(m, pm)) = dm and every member ofΛ′ has a one-place

point onE(m, pm), we know thatdm = 1. �

6.13

We shall prove the following:

Lemma. With the notations as above, we have:

(1) a(1, 1) = b(1, 1) = 0,219

(2) d0 = e1, d1 = e2, n = m+ 1 and(d0, e0) = 1.

Proof. Our proof consists of four subparagraphs 6.13.1∼ 6.13.4. �
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6.13.1

Assume thata(1, 1) > 0 andb(1, 1) > 0. Then it is clear from the
arguments in the previous paragraphs that the following assertions hold
true:

1◦ a(i, j) > 0 for every pair (i, j) with 1 ≦ i ≦ m and 1≦ j ≦ pi ;
similarly, b(i, j) > 0 for every pair (i, j) with 1 ≦ i ≦ n and
1 ≦ j ≦ qi ,

2◦ a(m, pm) , 1 andb(n, qn) , 1 (cf. Lemma 6.9),

3◦ the setB′ of base points of the pencilΛ′ consists of two points
P′ andQ′ lying on E(m, pm) andF(n, qn), respectively, such that
P′ < the components of∆′ other thanE(m, pm) andQ′ < the com-
ponents of∆′ other thanF(n, qn),

4◦ all components of∆′ exceptE(m, pm), F(n, qn) andF0 have self-
intersection multiplicities≦ −2.

SinceΛ′ is a linear pencil of rational curves as assumed, Lemma
2.3, (4) implies thatβ = −1, i.e.,F0 is contractible. Letτ1 : W → W1

be the contraction of the componentsF0, F(2, 1), . . . , F(2, q2−1). Then
(τ1(E0)2) = α + q2 and ((τ1F(2, q2))2) = −(q3 + 1) ≦ −2; a unique
contractible component ofτ1∗(∆′) is τ1(E0), i.e.,α + q2 = −1. Letτ2 :
W1→W2 be the contraction ofτ1(E0), τ1(E(2, 1)), . . . , τ1(E(2, p2−1)).
Then ((τ2τ1F(2, q2))2) = −(q3 − p2 + 1) and ((τ2τ1E(2, p2))2) = −(p3 +

1); a unique contractible component of (τ2τ1)∗∆′ is τ2τ1F(2, q2). We
repeat the contractions of this kind as far as we can. Letτ : W → 220

Z be the contraction of all possible components of∆′ lying between
E(m, pm) andF(n, qn) of the weighted graph of∆′ (excludingE(m, pm)
andF(n, qn)). Then the pencilτ∗Λ′ (= the proper transform ofΛ′ by τ),
which is spanned byτ(C′) andτ∗∆′, satisfies the same properties as the
pencil observed in 6.4.

6.13.2

SetD1 := τ(E(m, pm)), D2 := τ(F(n, qn)), p := (D2
1) andq := (D2

2).
Write the weighted graph ofτ∗(∆′) in the form:
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where:

1◦ G coincides with the subgraph ofE betweenE(1, 1) andE(m, pm)
(excludingE(m, pm)); henceG , φ,

2◦ H coincides with the subgraph ofF betweenF(1, 1) andF(n, qn)
(excludingF(n, qn)); henceH , φ,

3◦ M is the weighted graph of the images byτ of the components of
∆
′ which lie betweenE(m, pm) andF(n, qn) in the weighted graph

of ∆′ (excludingE(m, pm) andF(n, qn)); M might be empty,

4◦ eitherp ≦ 0 orq ≦ 0.

Only the assertion 4◦ needs a proof. Assume thatp > 0 andq > 0.
ThenM = φ. However, by the contractionτ, either the component of∆′

next toE(m, pm) and not belonging toG (i.e., E(m, pm− 1) if m is even;
E(m− 1, pm−1) if m is odd andm > 1; E0 if m = 1) or the component221

of ∆′ next toF(n, qn) and not belonging toH (i.e., F(n, qn − 1) if n is
even;F(n − 1, qn−1) if n is odd andn > 1; F0 if n = 1) is contracted
last. Thenp = 0 or q = 0, which is a contradiction. Hence eitherp ≦ 0
or q ≦ 0. Now, noting thata(m, pm) , 1 andb(n, qn) , 1 (cf. 6.13.1,
2◦), we know by Lemma 6.5 that eitherG = φ or H = φ. This is a
contradiction. Therefore we have eithera(1, 1) = 0 orb(1, 1) = 0.

6.13.3

Assume thata(1, 1) = 0 andb(1, 1) > 0. Then the following assertions
hold true:

1◦ a(i, j) > 0 if E(i, j) lies betweenE0 and E(m, pm) (excluding
E(m, pm)) in the graphE anda(i, j) = 0 if otherwise;b(i, j) > 0
for every pair (i, j) with 1 ≦ i ≦ n and 1≦ j ≦ qi ,
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2◦ setD1 := F0, D2 := F(n, qn), p := β = (D2
1) andq = −1 = (D2

2);
then∆′ has the following weighted graph:

where:

(i) G is the weighted graph consisting ofE0 and components of
E lying betweenE0 andE(m, pm) (excludingE(m, pm)),

(ii) M coincides with the subgraph ofF betweenF0 and
F(n, qn) (excludingF(n, qn)),

(iii) H coincides with the subgraph ofF betweenF(1, 1) and
F(n, qn) (excludingF(n, qn)); henceH , φ;

3◦ the setB′ of base points ofΛ′ consists of a single pointQ′ on D2

but not on the other components of∆′,

4◦ b(n, qn) , 1 (cf. 6.13.1, 2◦), 222

5◦ the multiplicity a(m, pm − 1) = dm = 1 if m is even; a(m −
1, pm−1) = dm = 1 if m is odd andm > 1; a0 = d1 = 1 if m = 1
(cf. Lemma 6.12, (1)).

We shall apply Lemma 6.6 to the present situation. First, we know
that p = −1, i.e.,t = q1, becauseq = −1 (cf. Lemma 6.6, (1) or (2)).
SinceH , φ andb(n, qn) , 1, Lemma 6.6, (3) implies that any com-
ponent in the graphsG andM as well asD1 has multiplicity> 1 in ∆′.
However this contradicts the assertion 5◦ above.

Therefore, the case wherea(1, 1) = 0 andb(1, 1) > 0 does not occur.
Similarly, we can show that the case wherea(1, 1) > 0 andb(1, 1) = 0
does not occur.

6.13.4

We have thus proved thata(1, 1) = b(1, 1) = 0. HenceΛ′ has no base
points, andE(m, pm) and F(n, qn) are cross-sections ofΛ′, i.e.,dm =
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en = 1. By definition of a(1, 1) and b(1, 1) (cf. 6.9), the equalities
a(1, 1) = b(1, 1) = 0 imply that e0 = td0 + d1 and d0 = e1, where
t = q1 if n > 1 andt = q1 − 1 if n = 112. If n = 1 andt = q1 − 1 then
d1 = e1 = d0, which is a contradiction asd0 > d1. Hence,n > 1 and
t = q1. Then, sincee0 = q1e1 + d1, we haved1 = e2. This implies that
n = m+ 1, d0 = e1, d1 = e2, . . . , dm = en, andp1 = q2, . . . , pm = qn. In
particular, (d0, e0) = en = 1. This completes a proof of Lemma 6.13.

6.14

Returning to the situation of 6.8.1, we shall assume in this paragraph that
d0 = 1. Letτ : V1 → V be the contraction ofℓ(1)

0 , and letE0 := τ(E1),

F0 := τ(F1), C := τ(C(1)) andΛ := τ∗(σ′1Λ). Then we have:223

(1) Λ is spanned byC ande0E0 + F0,

(2) (E2
0) = (F2

0) = 0 and (E0 · F0) = 1; thenceV is isomorphic to
P1

k ×P
1
k whose two distinct fibrations byP1

k are given by the linear
pencils|E0| and|F0|,

(3) C · E0 = P0 andC · F0 = e0 · Q0, whereP0, Q0 , E0F0.

We shall show the following:

Lemma. (4) C is nonsingular.

(5) Letρ : W→ V be the shortest composition of quadratic transfor-
mations by which the proper transformΛ′ := ρ′(Λ) ofΛ byρ has
no base points. Then we have:

(i) ρ−1(E0 ∪ F0) has the following weighted graph:

where, by abuse of notations, we denoteρ′(E0) and ρ′(F0)
by E0 and F0, respectively,

12SinceF0 must be an exceptional component of∆′ we haveβ = −1.
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(ii) Λ′ is spanned by C′ := ρ′(C) and∆′ :=
e0−1∑

i=0
(e0− i)Ei+F0,

(iii) Ee0 and Fe0 are cross-sections ofΛ′,

(iv) F1, . . . , Fe0−1 are contained in one and only one member of
Λ
′.

Proof. (4) Let E be a member of|E0| such thatQ0 ∈ E0. Then, since
E0 is isomorphic toP1

k and (C ·E) = 1,C is non-singular atQ0. C
is apparently nonsingular at other points.

(5) follows from a straightforward computation.
�

6.15

Let W, Λ′, C′ and∆′ be as in 6.10 (and 6.11) or 6.14. SinceΛ′ has 224

no base points,Λ′ defines a surjective morphismϕ : W → P1
k whose

fibers are members ofΛ′. SetS1 := E(m, pm) andS2 := F(n, qn) if
d0 > 1; setS1 := Ee0 andS2 := Fe0 if d0 = 1. Then bothS1 andS2 are
cross-sections (cf. Lemmas 6.12 and 6.14). Whend0 > 1, let R1 be the
union ofE(i, j)’s which lie betweenE(1, 1) andE(m, pm) in the graphE
(with F(1, 1) included andE(m, pm) excluded), and letR2 be the union
of F(i, j)’s which lie betweenF(1, 1) andF(n, qn) in the graphF (with
F(1, 1) included andF(n, qn) excluded). Note thatR1 , φ andR2 , φ.
Whend0 = 1 ande0 > 1, letRbe the union ofF1, . . . , Fe0−1. LetΓ1 and
Γ2 be the fibers ofϕ containingR1 andR2, respectively ifd0 > 1; let Γ
be the fiber ofϕ containingR if d0 = 1 ande0 > 1. SetU := W− (R1 ∪

R2∪S1∪S2∪Supp(∆′)) if d0 > 1; setU := W−(R∪S1∪S2∪Supp(∆′))
if d0 = 1 ande0 > 1; setU :=W− (S1 ∪ S2 ∪Supp(∆′)) if d0 = e0 = 1.
ThenU is isomorphic to the affine planeA2

k. We shall prove the next:

Lemma. With the above notations, we have:

(4) If d0 > 1 thenΓ1 = Γ2; we setΓ := Γ1 = Γ2.

(5) If either d0 > 1 or d0 = 1 and e0 > 1 thenΓ has exactly two
irreducible components C1 and C2 other than those contained in
R1 or R2 (or R if d0 = 1 and e0 > 1).
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(6) If d0 = e0 = 1, the fibrationϕ has only one reducible fiberΓwhich
has two irreducible components.

Proof. Our proof consists of four steps.225

(I) We shall prove first the following assertion:

�

The fibrationϕ has one and only one fiberϕ−1(Q) (Q ∈ P1
k) such that

ϕ−1(Q) ∩ U is reducible; thenϕ−1(Q) ∩ U consists of two irreducible
components.

Proof. Let Q1, . . . ,Qs be the points ofP1
k such thatϕ−1(Qi) ∩ U is re-

ducible for 1≦ i ≦ s, and letQs+1, . . . ,Qt be the points ofP1
k such that

ϕ−1(Qi) is reducible butϕ−1(Qi) ∩ U is irreducible fors+ 1 ≦ i ≦ t.
We may assume thatϕ−1(Q1), . . . , ϕ−1(Qs) andϕ−1(Qs+1), . . . , ϕ−1(Qt)
exhaust all fibers ofϕ having respective properties. Thenϕ−1(Qi)’s (1 ≦
i ≦ t) andϕ−1(Q∞) := ∆′ are all reducible fibers ofϕ. For 1≦ i ≦ s, let
ni be the number of irreducible components ofϕ−1(Qi)∩U. On the other

hand, writeU := Spec(A) andU −


t⋃

i=1

ϕ−1(Qi) ∩ U

 := Spec(B). Then,

sinceU is isomorphic toA2
k, we know thatA is a unique factorization do-

main andA∗ = k∗. Hence, by a similar argument as in (2.3.3), we know
thatB∗/k∗ is a freez-module of rankn1+ · · ·+ns+ (t− s). Sinceϕ−1(P1

k−

{Q1, . . . ,Qt,Q∞}) is a P1-bundle overP1
k − {Q1, . . . ,Qt,Q∞} and U −

t⋃

i=1

ϕ−1(Qi) ∩ U

 = ϕ−1(P1
k−{Q1, . . . ,Qt,Q∞})−(S1∪S2), we know that

U − (
t⋃

i=1

ϕ−1(Qi)∩U) is isomorphic toA1
∗ × (P1

k{Q1, . . . ,Qt,Q∞}), where

A1
∗ = A

1
k-(one point). Then by virtue of the unit theorem (cf. Sweedler

[54]), B∗/k∗ is a freez-module of rank 1+ t. Hence we obtain

n1 + · · · + ns + (t − s) = 1+ t, ni ≧ 2(1≦ i ≦ s)

whence follows thats= 1 andn1 = 2.226
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(II) Assume thatd0 > 1 andΓ1 , Γ2. Then, each ofΓ1 andΓ2 has
two irreducible components other than those contained inR1 and
R2. Suppose thatΓ1 has only one irreducible componentC1 other
than those contained inR1. Then the multiplicity ofC1 in Γ1 is 1
and (C1 ·S2) = 1. Since the components ofΓ1 contained inR1 are
not exceptional components, Lemma 2.2 tells us that not onlyC1

is an exceptional component ofΓ1 but alsoΓ1 contains another
exceptional component. This is a contradiction. Therefore, we
know thatΓ1 ∩ U andΓ2 ∩ U are reducible. But this contradicts
the assertion proved in the step (I) above. HenceΓ1 = Γ2. By the
same argument, we can show thatΓ has two irreducible compo-
nentsC1 andC2 other than those contained inR providedd0 = 1
ande0 > 1.

(III) We shall show that ifd0 > 1 thenΓ(:= Γ1 = Γ2) has two irre-
ducible componentsC1 andC2 other than those contained inR1

or R2. Assume the contrary, i.e.,Γ ∩ U in irreducible. Then, the
assertion proved in the step (I) implies that there exists a reducible
fiberϕ−1(Q) of the form:ϕ−1(Q) = L1 + L2, whereL1 � L2 � P

1
k,

(L1 · L2) = (L1 · S1) = (L2 · S2) = 1, (L1 · S2) = (L2 · S1) = 0
and (L2

1) = (L2
2) = −1. ThenL1 ∩ U andL2 ∩ U are isomorphic

to the affine lineA1
k; moreover, they satisfy the conditions (1)∼

(5) of Theorem 3.2, Chapter I. Hence, after a suitable changeof
coordinatesx, y of U : Spec(k[x, y]), we may assume thatL1 ∩U
and L2 ∩ U are thex-axis and they-axis, respectively; namely,
ϕ−1(Q) ∩ U is defined byxy= 0. ThenΓ×

W
U (with scheme struc- 227

ture) is isomorphic to Spec(k[x, y]/(xy− c)) for c ∈ k∗, which is
reduced. However, we shall show thatΓ×

W
U is not reduced. In-

deed, letC1 be the unique irreducible component ofΓ which is
not contained inR1 andR2. Then, since the components inR1 and
R2 are not exceptional components,C1 must be an exceptional
component ofΓ. Then the multiplicity ofC1 in Γ is larger than 1
becauseR1 , φ, R2 , φ andC1 connectsR1 to R2. Thus, we get a
contradiction, and proved thatΓ has two irreducible components
C1 andC2 other than those contained inR1 or R2.
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(IV) If d0 = e0 = 1, the assertion proved in the step (I) implies that
there exists a fiberϕ−1(Q) = L1 + L2 such thatL1 � L2 � P

1
k,

(L1 · L2) = (L1 · S1) = (L2 · S2) = 1, (L1 · S2) = (L2 · S1) = 0 and
(L2

1) = (L2
2) = −1.

�

6.16

In this paragraph we shall derive a consequence of Lemma 6.15, which
also completes a proof of the “if” part of Theorem 6.1.

Lemma. Let f be an irreducible element of k[x, y] satisfying the con-
ditions (1), (2) and (3) of Theorem 6.1. Then f is written in the form
f = c(xdye − 1) after a suitable change of coordinates x, y of k[x, y],
where c∈ k∗, and d and e are positive integers such that(d, e) = 1.

Proof. With the notations of 6.15, letΓ be the unique fiber ofϕ such that
Γ∩U is reducible; as a matter of fact,Γ ∩U consists of two irreducible
components. LetC1 andC2 be irreducible components ofΓ such that228

Ci ∩U , φ for i = 1, 2, and letd andebe multiplicities ofC1 andC2 in
Γ, respectively. SinceΓ∩U is connectedC1 andC2 intersect each other
transversely in a single point onU. Furthermore,C1∩U andC2∩U are
isomorphic to the affine line. We shall show the latter assertion only in
the cased0 > 1 as the remaining cases (d0 = 1 ande0 > 1; d0 = e0 = 1)
can be treated in a similar fashion. SinceR1 , φ and R1 ∩ R2 = φ,
either one ofC1 andC2, sayC1, intersects a component inR1. Then
C2 ∩ R1 = φ, for otherwiseC1 ∪C2 ∪ R1 would contain a cyclic chain.
The same reasoning implies thatC2 ∩ R2 = φ if C1 ∩ R2 , φ. Hence,
if C1 ∩ R2 , φ thenC2 ∩ Ri = φ for i = 1, 2, i.e.,C2 ⊂ U, which is
absurd asU is affine. ThusC1 ∩R2 = φ andC2 ∩R2 , φ. Moreover,Ci

intersectsRi in a single point fori = 1, 2, for otherwiseCi ∪ Ri would
contain a cyclic chain. SinceCi � P

1
k, we finally know thatCi ∩ U

(i = 1, 2) is isomorphic to the affine lineA1
k. Now, by virtue of Theorem

3.2, Chapter I we may assume thatC1 ∩ U andC2 ∩ U are defined by
x = 0 andy = 0, respectively, after a suitable change of coordinates
x, y of k[x, y]. Then it is clear thatΓ×

W
U (as ak-scheme) is defined by
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xdye
= 0 on U = A2

k := Spec(k[x, y]). By construction ofΛ′ (or ϕ)
we know thatC0 is defined byf := xdye − c = 0 for c ∈ k∗. SinceC0

is irreducible we must have (d, e) = 1. Apparently we can writef in
the form f = c(xdye − 1) after a suitable change of coordinatesx, y of
k[x, y]. �

6.17

In this paragraphs we shall show that we may choose variablesx, y of 229

k[x, y] so thatd = d0 ande= e0. In cased0 = e0 = 1, this was proved in
the course of proving Lemma 6.15. In the remaining cases our assertion
follows from the next:

Lemma. (1) Assume that d0 = 1 and e0 > 1. Then we have:

Γ = C1 + e0C2 + (e0 − 1)F1 + · · · + Fe0−1,

where(C2
1) = −e0, (C2

2) = −1, and S1 ∪ S2 ∪ Supp(Γ) has the
weighted graph:

(2) Assume that d0 > 1. Then we have:

Γ = d0C1 + e0C2 + z1 + z2,

where:

1◦ Zi is an effective divisor such thatSupp(Zi) = Ri for i = 1, 2;

2◦ (C2
1) = −(q1 + 1) and(C2

2) = −1;

3◦ S1 ∪ S2 ∪ Supp(Γ) has the weighted graph:

Gi being the weighted graph of the irreducible components
contained in Ri for i = 1, 2.
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A proof will be given in the subparagraphs 6.17.1∼ 6.17.4 below.230

The facts which we frequently use in the course of a proof are the fol-
lowings: LetV be a nonsingular projective surface, letϕ : V → P1

k be
a surjective morphism whose general fibers are isomorphic toP1

k and let
Γ := n1C1 + · · · + nrCr be a reducible fiber ofϕ. Let τ : V → W be a
contraction of several components contained inΓ, whereW is nonsin-
gular. Then, in the fiberτ∗(Γ) of the fibrationψ : W→ P1

k with ϕ = ψ · τ
the following assertions hold true (cf. Lemma 2.2):

(A) No three distinct components ofτ∗(Γ) have a point in common,

(B) Let S be a cross-section ofϕ. Then no two distinct components
of τ∗(Γ) have a point in common onτ(S).

In each stage of proof where we proceed onreduction ad absurdum,
if we obtain a situation contrary to the assertion (A) (or (B), resp. ) we
shall say that we obtain a contradiction of type (A) (or (B), resp. ).

6.17.1 A proof of the first assertion of the lemma.

(I) Assume thatd0 = 1 ande0 > 1. By virtue of Lemma 6.15, (2),
Γ has exactly two irreducible componentsC1 andC2 other than
those contained inR, one of which, sayC1, has multiplicity 1 inΓ
and intersectsS1 transversely. SinceΓ ∩ U is connected,C1 and
C2 intersect each other in a single point onU. ThenC1∩R= φ and
C2 intersects some componentT in R. Since those components
contained inRare not exceptional components ofΓ, either one of231

C1 andC2 is an exceptional component. We shall show thatC2 is
so. Indeed, ifC1 is an exceptional component, so isC2 by virtue
of Lemma 2.2, (6).

(II) We shall show thatT = F1. Suppose thatT = Fi(i , 1, e0 −

1). Then since (T2) = −2 three componentsτ(C1), τ(Fi−1) and
τ(Fi+1) of τ∗Γ have a point in common after the contractionτ of
C1 andT, which is a contradiction of type (A). IfT = Fe0−1 and
e0 > 2 then two componentsτ(C1) andτ(Fe0−2) have a point in
common onτ(S2) after the contractionτ of C2 andT, which is a
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contradiction of type (B). HenceT = F1 andS1 ∪ S2U Supp(Γ)
has the weighted graph as given in the statement, where (C2

0) =
−e0 becauseC1 has self-intersection multiplicity 0 after the con-
traction ofC2, F1, . . . , Fe0−1. Once we know the way of contract-
ing Γ to a single (irreducible) curve, it is an easy task to write
downΓ in the form as given in the statement.

6.17.2

In the remaining of the paragraph 6.17 we assume thatd0 > 1. By
virtue of Lemma 6.15, (2) and the proof of Lemma 6.16 we know that
Γ has exactly two irreducible componentsC1 andC2 other than those
contained inR1∪R2 such thatC1 andC2 intersect each other transversely
in a single point onU and thatCi ∩ Ri , φ(i = 1, 2), C1 ∩ R2 = φ and
C2 ∩ R1 = φ. Let Ti be a unique irreducible component ofRi such that
(Ri ·Ci) > 0 for i = 1, 2. LetGi be the weighted graph ofRi for i = 1, 2.
Note that fori = 1, 2,Ri , φ andRi contains no exceptional components.
This implies that either one ofC1 andC2 is an exceptional component,232

i.e., (C2
1) = −1 or (C2

2) = −1. We shall show thatT1 = E(1, 1) and
T2 = F(1, 1). In order to do so we shall consider several possible cases
separately. To avoid the tedious lengthiness a proof will not exceed a
sketchy one.

6.17.2.1 The case whereT1 and T2 are non-terminal components in
the graphsG1 and G2, respectively. Let D1 andD′1 (or, D2 andD′2,
resp. ) be components inR1 (or R2, resp. ) which are linked toT1 (or T2,
resp. ) in the graphG1 (or G2, resp. ). Then we have the configuration
as follows:
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Suppose that (C2
1) = −1. Then either one ofT1 andC2 becomes

contractible after contractingC1, i.e., (T2
1) = −2 or (C2

2) = −2. If T1

is so the contractionτ of C1 andT1 gives out three componentsτ(D1),
τ(D′1) andτ(C2) of τ∗(Γ) having a point in common, a contradiction of
type (A). If (C2

2) = −2 then either one ofT1 andT2 becomes contractible
after contractingC1 andC2, i.e., (T2

1) = −3 or (T2
2) = −2. If (T2

1) = −3
the contraction ofC1, C2 andT1 leads us to a contradiction of type (A). If
(T2

2) = −2 the contraction ofC1, C2 andT2 leads us to a contradiction of
type (A). Thus the assumption (C2

1) = −1 ends up with a contradiction.233

Similarly, we can show the impossibility of the assumption (C2
2) = −1.

6.17.2.2 The case whereT1 is a terminal component in the graphG1

and T2 is a non-terminal component in the graphG2. Let D2 and
D′2 be as in 6.17.2.1.

(I) Firstly we shall consider the casem= 1. ThenR1∪S1 andR2∪S2

have the following weighted graphs (cf. 6.10 and 6.13.4):

Hence (T2
2) = −2. If (C2

2) = −1 then the contractionτ of C2

and T2 turns out three componentsτ(D2), τ(D′2) and τ(C1) of
τ∗(Γ) having a point in common, a contradiction of type (A).
Hence (C2

2) , −1 and (C2
1) = −1. ThenT1 = E(1, 1). Indeed,

if T1 = E(1, q2 − 1) andq2 ≧ 3 then the contractionτ of C1

and T2 gives out two componentsτ(C2) and τ(E(1, q2 − 2)) of
τ∗(Γ) having a point in common onτ(S1), a contradiction of type
(B). SinceC2 becomes contractible after the contraction ofC1,
E(1, 1), . . . ,E(1, q2 − 1) we have (C2

2) = −(q2 + 1). Then by the
contractionτ of C1, E(1, 1), . . . ,E(1, q2 − 1), C2 andT2 we have
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two componentsτ(D2) andτ(D′2) of τ∗(Γ) possessing a point in
common onτ(S1), a contradiction of type (B). Thus, this case is
impossible.

(II) Now we assume thatm> 1. Looking into the graph ofG1 which 234

is the subgraph ofE (cf. Figure 2 of 6.10) consisting of compo-
nentsE(i, j)’s betweenE(1, 1) andE(m, pm) (with E(m, pm) ex-
cluded) we know that the contraction of all possible components
in C1 ∪ R1 cannot reduceC1 ∪ R1 to a point. LetD(1)

1 , . . . ,D(r−1)
1

andD(r)
1 (r ≧ 1) be the components inR1 such that:

1◦ T1 = D(1)
1 , andD(i)

1 is linked toD(i+1)
1 in the graphG1 for

1 ≦ i ≦ r − 1,

2◦ ((D(i)
1 )2) = −2 if i < r and ((D(r)

1 )2) , −2.

Suppose that (C2
2) = −1. Then we have either (T2

2) = −2 or (C2
1) =

−2. If (T2
2) = −2 the contraction ofC2 andT2 leads us to a con-

tradiction of type (A). If (C2
1) = −2 thenT2 becomes contractible

after the contraction ofC2,C1,D
(1)
1 , . . . ,D(r−1)

1 , i.e., (T2
2) = −(r +

2). The contractionτ of C2,C1,D
(1)
1 , . . . ,D(r−1)

1 andT2 gives out

three componentsτ(D2), τ(D′2) andτ(D(r)
1 ) of τ∗(Γ) having a point

in common, a contradiction of type (A). Hence (C2
2) , −1 and

(C2
1) = −1.

(III) We shall show thatT1 = E(1, 1). Indeed, assume the contrary:
T1 , E(1, 1). If r ≧ 2 then the contractionτ of C1 and D(1)

1

gives out two componentsτ(D(2)
1 ) and τ(C2) of τ∗(Γ) having a

point in common onτ(S1), a contradiction of type (B). Hence
r = 1, (C2

2) = −2 and either (T2
1) = −3 (whereT1 = D(r)

1 ) or
(T2

2) = −2. If (T2
2) = −2 then the contraction ofC1, C2 and

T2 leads us to a contradiction of type (A). If (T2
1) = −3 andR1

contains at least two components (i.e.,R1 has a componentD′1
such thatD′1 , T1 and (D′1 ·T1) = 1) then the contractionτ of C1,
C2 andT1 gives out two componentsτ(D′1) andτ(T2) possessing 235

a point in common onτ(S1), a contradiction of type (B). The
only remaining case is:r = 1, R1 = T1 and (T2

1) = −3. Then
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(T2
2) = −3. However, the contractionτ of C1, C2, T1 andT2 gives

out two componentsτ(D2) andτ(D′2) having a point in common
on τ(S1), a contradiction of type (B). Therefore,T1 = E(1, 1).

(IV) C2 becomes contractible by contractingC1, D(1)
1 , . . . ,D(r−1)

1 and

either one ofD(r)
1 andT2 becomes contractible by contractingC2

further. If this isT2 the contraction ofC1, D(1)
1 , . . . ,D(r−1)

1 , C2 and

T2 turns out a contradiction of type (A). If this isD(r)
1 and if there

exists a sequence of componentsD(r+1)
1 , . . . ,D(t−1)

1 ,D(t)
1 in R1 such

thatD(i)
1 is linked toD(i+1)

1 for r ≦ i ≦ t − 1 and that ((D(i)
1 )2) = −2

if r < i < t and ((D(t)
1 )2) , −2 thenT2 becomes contractible after

the contraction ofC1,D
(1)
1 , . . . ,D(r−1)

1 ,C2,D
(r)
1 , . . . ,D(t−1)

1 , while
we obtain a contradiction of type (A) by contractingT2 further.
The remaining cases are the next two: (1)m = 2 andp2 = 2, or
(2) m= 3 andp2 = 1. In each of the cases we have the following
weighted graphs ofS1 ∪R1 ∪C1 ∪C2 andS2 ∪ R2:

(1)

(2)

236

However, it is easy to see that both cases end up with contradictions.
Thus, this case is impossible.
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6.17.2.3 The case whereT1 is a non-terminal component in the graph
G1 and T2 is a terminal component in the graphG2. The same ar-
guments as in 6.17.2.2 with slight modifications show that this case is
impossible. The details are left to the readers.

6.17.2.4 The case where bothT1 and T2 are terminal components in
the graphsG1 and G2, respectively. We shall show thatT1 = E(1, 1)
andT2 = F(1, 1).

(I) We shall first show thatT1 = E(1, 1). Assume the contrary. Then
R1 has at least two components. Suppose that (C2

1) = −1. Then
(T2

1) , −2, for otherwise the contractionτ of C1 andT1 would
lead us to a contradiction of type (B). Hence (C2

2) = −2. Let

D(1)
2 , . . . ,D(s)

2 (s≧ 1) be the components ofR2 such that:

(1) T2 = D(1)
2 , andD(i)

2 is linked toD(i+1)
2 in the graphG2 for

1 ≦ i ≦ s− 1;

(2) ((D(i)
2 )2) = −2 for i < sand ((D(s)

2 )2) , −2.

[It is easy to ascertain the existence of such components by look- 237

ing into the graphG2.] Then T1 becomes contractible after the
contraction ofC1, C2, D(1)

2 , . . . ,D(s−1)
2 , though we reach to a con-

tradiction of type (B) by contractingT1 further. Hence (C2
1) , −1

and (C2
2) = −1. Let D(1)

2 , . . . ,D(s)
2 be as above. ThenC1 becomes

contractible by contractingC2,D
(1)
2 , . . . ,D(s−1)

2 and either one of

T1 and D(s)
2 becomes contractible by contractingC1 further. If

T1 is so then we obtain a contradiction of type (B) by contract-
ing C2,D

(1)
2 , . . . ,D(s−1)

2 ,C1 andT1. If D(s)
2 is so and if there exists

a sequence of componentsD(s+1)
2 , . . . ,D(u)

2 in R2 such thatD(i)
2 is

linked toD(i+1)
2 for s≦ i ≦ u−1 and that ((D(i)

2 )2) = −2 if s< i < u

and ((D(u)
2 )2) , −2 thenT1 becomes contractible by contracting

C2, D(1)
2 , . . . ,D(s−1)

2 ,C1,D
(s)
2 , . . . ,D(u−1)

2 , though we obtain a con-
tradiction of type (B) by contractingT1 further. The remaining
cases are the next two: (1)n = 2 andq2 = 2 or (2) n = 3 and
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q1 = 1. However,R1 consists of only one components in both
cases (cf. 6.10 and 6.13.4), a contradiction. HenceT1 = E(1, 1).

(II) We shall next show thatT2 = F(1, 1). Assume the contrary:T2 ,

F(1, 1). We shall treat the casem= 1 first. If m= 1 the weighted
graph of Supp(Γ) is given as follows:

whereq2 ≧ 2. If (C2
1) = −1 then (C2

2) = −(q2+1), which is absurd
because there is no contractible components left inΓ afterC2 is238

contracted. Hence (C2
1) , −1 and (C2

2) = −1. Then (C2
1) = −2

andq1 = 1, whenceT2 = F(1, 1), a contradiction. We shall now
assume thatm > 1. Suppose that (C2

2) = −1. Then (T2
2) , −2,

for otherwise we would obtain a contradiction of type (B). Hence
(C2

1) = −2. Let D(1)
1 , . . . ,D(r)

1 be a sequence of components inR1

as in 6.17.2.2. ThenT2 becomes contractible after contractingC2,
C1, D(1)

1 , . . . ,D(r−1)
1 , though we obtain a contradiction of type (B)

by contractingT2 further. Therefore, (C2
2) , −1 and (C2

1) = −1.

Let D(1)
1 , . . . ,D(r)

1 be as above. ThenC2 becomes contractible af-

ter the contraction ofC1,D
(1)
1 , . . . ,D(r−1)

1 , and either one ofD(r)
1

or T2 becomes contractible by contractingC2 further. If this isT2

then we obtain a contradiction of type (B) becauseT2 , F(1, 1)
implies thatR2 has at least two components. If this isD(r)

1 and

if there exists a sequence of componentsD(r+1)
1 , . . . ,D(t)

1 in R1 as
chosen in 6.17.2.2 thenT2 becomes contractible after contracting
C1,D

(1)
1 , . . . ,D(r−1)

1 ,C2,D
(r)
1 , . . . ,D(t−1)

1 , though we obtain a con-
tradiction of type (B) by contractingT2 further. The remaining
cases are: (1)m= 2 andp2 = 2, or (2)m= 3 andp2 = 1 (cf. the
step (IV) of 6.17.2.2). These two cases are easily seen to endup
with contradictions. HenceT2 = F(1, 1).
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6.17.3

By virtue of 6.17.2 we have the following weighted graph ofS1 ∪ S2 ∪

Supp(Γ):

If (C2
1) = −1 then (C2

2) = −(q2 + 1). However, by writing down 239

concretely the weighted graph of Supp(Γ) and performing the contrac-
tion of all possible components ofΓ we obtain readily a contradiction.
We omit the details. Hence (C2

2) = −1. Again by writing down con-
cretely the weighted graph of Supp(Γ) we know that (C2

1) = −(q1 + 1)
andΓ can be, in fact, reduced to a single (irreducible) componentwith
self-intersection multiplicity 0 by contracting all possible components
of Γ.

6.17.4

The graphG2 is written as:

Then, looking into the graphsE andF , we know that the weighted
graph of∆′ is given by



188 Curves on an affine rational surface

By comparing the weighted graphs of Supp(Γ) and Supp(∆′) we
know that the weighted graph of Supp(∆′) is obtained from that of Supp
(Γ) by contractingC2 and (q1 − 1) components inG2 which are linked
successively toC2. Since the multiplicities ofE0 andF0 in ∆′ aree2 and
d0 = e1, respectively, we know thatC1 has multiplicityd0 in Γ and the240

component inG2 with weight−(q2 + 2) has multiplicitye2 in Γ. Then it
is apparent thatC2 has multiplicitye2 + q1e1 = e0 in Γ. This completes
a proof of Lemma 6.17.

6.18

The “only if” part of Theorem 6.1 is easy to prove. So we omit a proof.
We shall finish this section by noting that iff is as in the statement
then there exists a nontrivial action of the multiplicativegroup scheme
Gm,k onA2

k := Spec(k[x, y]) such thatC′α’s areGm,k-orbits for almost all
α ∈ k. Indeed if f is written asf : c(xdye− 1) we have only to define an
action ofGm,k onA2

k via: tx : t−ex andty = tdy for t ∈ Gm,k.



Part III

Unirational surfaces

1 Review on forms of the affine line over a field
241

1.1

Throughout this section the ground fieldk is assumed to be a nonperfect
field of characteristicp > 0. We denote byks andk the algebraic sepa-
rable closure and the algebraic closure ofk, respectively. For an integer
n we denote bykpn

the sub field{λpn
|λ ∈ k} of k. An irreducible non-

singular affine curveX defined overk is said to bea k-form of the affine
line A1

k if X⊗
k
k′ is k′-isomorphic toA1

k, for some algebraic extensionk′

of k. It is a well-known fact thatX is k-isomorphic toA1
k if k′ is taken to

be separable overk. Thus, we have only to consider the case wherek′ is
purely inseparable overk. We shall recall several results from [26] and
[27] which we need in the subsequent sections.

1.2

Let X be ak-form ofA1
k and letC be a complete normal model ofk(X).

ThenC has only one placeP∞ outside ofX which is possibly singular.
Thek-genus ofC is calledthe genus of X. The function fieldk(X is a 242

k-form of the rational function fieldk(t), i.e.,k(X)⊗
k
k′ � k′(t) for some

189
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algebraic extensionk′ of k. Conversely, given ak-form K of the rational
function fieldk(t), let C be a completek-normal model. ThenK is the
function field of ak-form ofA1

k if and only if C has at most one singular
place. IfC has a unique singular placeP∞, X := C − P∞ is a nontrivial
k-form ofA1

k (cf. [26; 6.7]). If C is nonsingularC is k-isomorphic toP1
k

except possibly whenp = 2 (cf. [ibid., 6.7.7]); in casep = 2, if C has a
k-rational point thenC is k-isomorphic toP1

k; if P∞ is any point purely
inseparable overk onC thenX := C − P∞ is a nontrivialk-form ofA1

k.

1.3

Let a be an element ofk−kp and letn be a positive integer. Letϕ : P1
k →

Pn
k be the embedding ofP1

k into Pn
k given byt 7→ (1, t, . . . , tpn−1, tpn

− a),
wheret is an inhomogeneous parameter ofP1

k. Let P∞ be the point of
P1

k defined bytpn
= a. Denote byXa,n the imageϕ(P1

k − {P∞}). Then we
have:

Lemma (cf. [26; Th. 6.8.1]. (i) Every k-rational k-form ofA1
k is k-

isomorphic toA1
k of Xa,n for suitable a∈ k− kp and n∈ Z+.

(ii) Xa,n is a k-rational k-form ofA1
k not k-isomorphic toA1

k.

(iii) Xa,n is k-isomorphic to Xb,m if and only if m= n and there existα,
β, γ, δ in kpn

such thatαδ − βγ , 0 and(αa+ β)/(γa+ δ) = b.

1.4

Lemma (cf. [ibid.; 6.8.2 f.]) . A k-form X ofA1
k of k-genus1 which has243

a k-rational point is k-birationally equivalent to an affine plane k-curve
of one of the following types:

(1) p = 3; y2
= x3

+ γ with γ ∈ k− k3.

(2) p = 2; y2
= x3

+ βx+ γ with β, γ ∈ k such thatβ < k2 or γ < k2.

Let P∞ := (x = −γ1/3, y = 0) in the first case and P∞ := (x = β1/2, y =
γ1/2) in the second case. Let C be a complete k-normal model of k(X).
Then X is k-isomorphic to C− P∞.
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1.5

A k-form X of A1
k is said to behyperelliptic if the completek-normal

model ofk(X) is hyperelliptic.

1.5.1

Lemma (cf. [27; Th. 2.2]).Let k be a separably closed1 nonperfect field
of characteristic p> 2. Then, a hyperelliptic k-form ofA1

k of k-genus
g ≧ 2 is k-birationally equivalent to an affine plane curve of the type

y2
= xpm

− a, where a∈ k− kp,

with g = (pm − 1)/2. Conversely, the complete k-normal model C of
every such plane curve has a unique singular point P∞, and C− P∞ is
a k-form ofA1

k of k-genus(pm − 1)/2.

1.5.2

Lemma (cf. [ibid.; Th. 2.3]) . Let k be a separably closed nonperfect244

field of characteristic2. Then a hyperelliptic k-form ofA1
k of k-genus

g ≧ 2 is k-birationally equivalent to an affine plane curve of one of the
following types:

(A) y2
+ (x2i

+ a)2ℓy + b = 0, where i≧ 0, ℓ ≧ 0, a ∈ k, b ∈ k − {0};
a < k2 if i > 0, b < k2 if ℓ > 0; and g= 2i+ℓ − 1.

(B) y2
= x(x+ α)2g

+ E(x), whereα ∈ k, (x+ α)2g ∈ k[x], E(x) ∈ k[x]
is an even polynomial of degree2g + 2, and E(α) < k2 in case
α ∈ k.

Conversely, the k-normal completion of every curve of type(A) of type
(B), minus its unique singularity, is a k-form ofA1

k; of k-genus= g in
case(A), of k-genus≦ g in case(B).

1Instead of assuming the separable closedness onk it suffices to assume that ak-form
of A1

k has ak-rational point.
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1.5.3

Lemma (cf. [ibid.; Th. 2.4]) . The k-forms ofA1
k of genus2 exist only

if the characteristic p of the separably closed ground field kis either2
or 5. Such a k-form is k-birationally equivalent to one of the following
k-normal affine plane curves:

(I) In case p= 2:

C : y2
= x(x+ α)4

+ E(x)

whereα4 ∈ k, E(x) ∈ k[x] is even of degree6, and eitherα < k or
E(α) < k2.

(II) In case p= 5:

D : y2
= x5

+ a, a ∈ k− k5.

245

1.6

A k group schemeG is called ak-group of Russell type ifG⊗
k
k′ is

k′-isomorphic to the additive group schemeGa,k′ . The underlyingk-
schemeG of a k-group scheme of Russell type is clearly ak-form of
A1

k.

1.6.1

Lemma (cf. Russell [47]; [26; 2.7]).A k-group scheme of Russell type
is a k-closed subgroup scheme of G2

a whose underlying scheme is given
in A2

k by an equation

ypn
= a0x+ a1xp

+ · · · + ar xpr
, ai ∈ k(0 ≦ i ≦ r),

where a0 , 0 and ai < kp for some1 ≦ i ≦ r.
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1.6.2

Lemma (cf. Russell [47]; [26; 6.9.1]) .Let X be a k-form ofA1
k and

let C be the k-normal completion of X. Assume that X has a k-rational
point P0. Then the following conditions are equivalent to each other:

(i) X has a k-group structure with P0 as the neutral point.

(ii) X is isomorphic to the underlying scheme of a k-group of Russell
type.

(iii) Aut ks(C⊗
k
ks) is an infinite group.

1.6.3

Remark. With the notations of 1.6.2, Autks(C⊗
k
ks) = Autks(X⊗

k
ks) if X

is notk-rational (cf. [27; 3.1.1]). The function fieldk(G) of ak-groupG
of Russell type is rational if and only ifp = 2 andG is k-isomorphic to 246

an affine plane curve

y2
= x+ ax2 with a ∈ k− k2.

If p > 2, the underlyingk-scheme of ak-group of Russell type is not
hyperelliptic (cf. [27; Cor. 3.3.2]).

2 Unirational quasi-elliptic surfaces
247

2.1

Throughout this section, the ground fieldk is assumed to be an alge-
braically closed field of characteristicp > 0. A nonsingular projective
surfaceX defined overk is calleda quasi-elliptic surfaceif there exists
a morphism f : X → C from X to a nonsingular projective curveC
such that almost all fibers off are irreducible singular rational curves of
arithmetic genus 1 (cf. [9], [39]). According to Tate [55], such surfaces
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can occur only in the case where the characteristicp is either 2 or 3,
and almost all fibers off have single ordinary cusps. Thus, the generic
fiber XR of f , minus the unique singular point, is aR-form ofA1 of R-
genus 1, whereR is the function field ofC overk. On the other hand,
X is unirational overk if and only if C is a rational curve.We assume in
this section that every quasi-elliptic surface has a rational cross-section,
i.e., there is a rational mappings : C → X such thatf · s = idC. Our
ultimate purpose is to prove the following two theorems.

2.1.1

Theorem .Let k be an algebraically closed field of characteristic3.
Then any unirational quasi-elliptic surface with a rational cross-section
defined over k is birational to a hyper-surface inA3

k : t2 = x3
+ ϕ(y)

withϕ(y) ∈ k[y] of degree prime to3. Let K := k(t, x, y) be the algebraic
function field of an affine hypersurface of the above type, let m= [ d

6]

and let Ĥ be the (nonsingular) minimal model of K when K is not ra-
tional over k2. Moreover, if d≧ 7 assume that the following conditions248

hold:

(1) For every rootα of ϕ′(y) =
dϕ
dy
= 0, vα(ϕ(y) − ϕ(α)) ≦ 5, where

vα is the(y− α)-adic valuation of k[y] with vα(y− α) = 1.

(2) If, moreover,ϕ(y) − ϕ(α) = a(y − α)3
+(terms of higher degree in

y − α) for some rootα of ϕ′(y) = 0 and a ∈ k∗ then vα(ϕ(y) −
ϕ(α) − a(y− α)3) ≦ 5.

Then we have the following:

(i) If m = 0, i.e., d≦ 5, then K is rational over k. If d≧ 7, K is not
rational over k, and the minimal model̂H exists.

(ii) If m = 1, i.e.,7 ≦ d ≦ 11, thenĤ is a K3-surface.

2Note that ifK is ruled and unirational thenK is rational. Hence ifK is not rational
K has the minimal model.
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(iii) If m > 1, i.e., d≧ 13, then pa(Ĥ) = pg(Ĥ) = m,dimH1(Ĥ,OĤ) =
0, the r-genus Pr(Ĥ) = r(m− 1) + 1 for every positive integer r
and the canonical dimensionκ(H) = 1.

2.1.2

Theorem .Let k be an algebraically closed field of characteristic2.
Then any unirational quasi-elliptic surface with a rational cross-section
defined over k is birational to a hyper-surface inA3

k : t2 = x3
+ ψ(y)x+

φ(y) with φ(y), ψ(y) ∈ k[y]. Conversely, let K:= k(t, x, y) be an alge-
braic function field of dimension2 generated by t, x, y over k such that

t2 = x3
+ φ(y) with φ(y) = yϕ(y)2 ∈ k[y]3 and d= degy ϕ. Let m= [

d
3

].

Assume moreover that, for everyα ∈ k, if we writeφ(y + α) =
∑

i≧0

aiyi

then one of a1, a3 and a5 is nonzero. Then we have the following:

(i) If m = 0, i.e.,0 ≤ d ≦ 2, K is rational over k. If m> 0, K is not 249

rational over k, and the minimal model̂H of K over k exists.

(ii) If m = 1, i.e.,3 ≦ d ≦ 5, thenĤ is a K3-surface.

(iii) If m > 1, i.e., d≧ 6, then pa(Ĥ) = pq(Ĥ) = m,dimH1(Ĥ,OĤ) =

0, the r-genus Pr(Ĥ) = r(m− 1) + 1 for every positive integer r
and the canonical dimensionκ(Ĥ) = 1.

Proofs of both theorems will be given after some preparations on
double coverings.

2.2

Let X, with f : X → C, be a quasi-elliptic surface defined overk and
let R be the function field ofC overk. Then the generic fiberXR of f
is an irreducible normal projective curve overR with arithmetic genus
pa(XR) = 1 and geometric genus 0. HenceXR has only one singular
point, whose multiplicity is 2. LetRs be a separable algebraic closure

3With no loss of generality, we may writeφ(y) in the formφ(y) = yϕ(y)2.
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of R. By Chevalley [12; Th. 5, p.99],X⊗
R
Rs is then a normal projective

curve of arithmetic genus 1. This implies that the characteristic p of k
must be either 2 or 3 by virtue of Tate [55], and that the singular point of
XR is a one-place point of multiplicity 2, which is rational over a purely
inseparable extension ofR. Therefore, general fibers off have single
ordinary cusps.

Let Γ be the closure inX of the unique singular point ofXR. Let
fΓ : Γ→ C be the restriction off ontoΓ. Since the singular point ofXR

is a one-plance point,fΓ is a generically one-to-one morphism. Hence
deg fΓ is a powerpn of the characteristicp, and, for a fiberf −1(p) of f
such thatf −1(P) meetsΓ at a simple point ofΓ, the intersection number250

(Γ · f −1(P)) must be 2 or 3 becauseΓ ∩ f −1(P) is an ordinary cusp.
Hence,n = 1 and (Γ · f −1(P)) = p. On the other hand,Γ is a nonsingular
curve. Indeed, ifΓ has a singular pointQ, then (Γ · f −1( f (Q))) ≧ 4,
which contradicts the fact that (Γ · f −1( f (Q))) = p ≦ 3.

Assume thatf has a rational cross-sectionD; by virtue of [17, IV
(2.8.5)] D is in fact extended to a regular cross-section off . This is
equivalent to saying that the generic fiberXR of f has aR-rational
point. With the unique singular point deleted off, XR becomes aR-
form of the affine lineA1 of R-genus 1 with aR-rational point. Such
a form is birationally equivalent to one of the following affine plane
curves (cf. 1.4):

(i) If p = 3, t2 = x3
+ γ with γ ∈ R −R3.

(ii) If p = 2, t2 = x3
+ βx + γ with β, γ ∈ R such thatβ < R2 or

γ < R2.

The surfaceX is unirational overk if and only ifC is rational. Indeed, the
“only if” part is apparent by Lüroth’s theorem; the “if” part is also easy
to see: Ifp = 3, R1/3⊗

R
k(X) is rational overk, and if p = 2, R1/2⊗

R
k(X)

is rational overk. Thus, if f : X → C is a unirational quasi-elliptic
surface defined overk with a rational cross-section, the function fieldR
of C overk is a rational function fieldk(y) overk, andX is k-birationally
equivalent to one of the following hypersurfaces in the affine 3-space
A3

k:
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(i)′ If p = 3, t2 = x3
+ ϕ(y) with ϕ(y) ∈ k[y], whered := degy ϕ is 251

prime to 3.

(ii) ′ If p = 2, t2 = x3
+ ψ(y)x+ φ(y) with φ(y), ψ(y) ∈ k[y].

2.3

We shall recall and apply the canonical divisor formula for elliptic or
quasi-elliptic fibrations (cf. [10]). Letf : X → C be a morphism form
a nonsingular projective surfaceX to a nonsingular projective curveC
such that almost all fibers off are irreducible curves of arithmetic genus
1. A fiber f −1(P) of f is calleda reducible fiberof f if f −1(P) has ei-
ther not less than two (distinct) irreducible components ora single irre-
ducible component with multiplicity≧ 2; a fiber f −1(P) is calleda mul-
tiple fiber if, when we write f −1(P) in the form f −1(P) =

∑

i

niCi with

irreducible componentsCi and positive integersni , the greatest common
divisor q of ni ’s is greater than 1. Then, writingmi = ni/q,

∑

i

miCi is

called the reduced formof a multiple fiber f −1(P). On the other hand,
an elliptic or quasi-elliptic fibrationf : X → C is said to berelatively
minimal if each fiber of f contains no exceptional components. Given
an elliptic or quasi-elliptic fibrationf : X → C we can always find a
fibration f0 : X0 → C such thatf0 · σ = f , whereσ : X → X0 is
the contraction of exceptional components contained in thefibers. With
these definitions set down, we have the following:

2.3.1

Lemma (cf. [9], [10]) . Let f : X → C be a relatively minimal elliptic
or quasi-elliptic surface. Let{miZi; i ∈ I } be the set of all multiple fibers
of f , where Zi is the reduced form. Then we have:

ωX � f ∗(S) ⊗ OX(
∑

i

aiZi) and S� OC ⊗ L−1,

where: (i) 0 ≦ ai ≦ mi − 1, (ii) L is an invertible sheaf on C defined by252
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either f∗ωX � ωC ⊗ L−1 or R1 f∗OX � L ⊕ T, T being a torsion sheaf on
C. Let t be the length of T. Then we have

deg(S) = χ(OX) − 2χ(OC) + t.

For a point P on C, TP , 0 if and only if H0( f −1(P),OX) ' k, which
implies that f−1(P) is an exceptional multiple fiber4.

2.3.2

A key result in proving the stated theorems is the following

Lemma. Let f : X → C be a unirational quasi-elliptic surface with a
regular cross-section D. Assume that X is relatively minimal. Then the
following results hold:

(1) f has no multiple fibers.

(2) χ(OX) = −(D2).

(3) If χ(OX) ≦ 1, X is rational over k; ifχ(OX) = 2 then X is a K3-
surface; ifχ(OX) ≧ 3 then pa(X) = pq(X), dim H1(X,OX) = 0,
the r-genus Pr(X) = r(χ(OX)−2)+1, and the canonical dimension
κ(X) = 1.

Proof. (1) is obvious becausef has a cross-section.

(2) Since there are no multiple fibers in the fibrationf , ai = 0 for
everyi andt = 0 in the canonical divisor formula in 2.3.1. SinceC
is a rational curve we know thatωX � f ∗OC(χ(OX) − 2). SinceD
is a cross-section off , the arithmetic genus formula onX applied253

to a nonsingular rational curveD tells us:

−2 = (D2) + (D · KX) = (D2) + χ(OX) − 2.

Hence,χ(OX) = −(D2)

4a wild fiber, in other words (cf. [10]).
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(3) For a positive integerr, ther-genusPr(X) is given by

Pr(X) = dimH0(X, ω⊗r
X ) = dimH0(C,OC(r(χ(OX) − 2))).

If χ(OX) ≦ 1, Pr (X) = 0 for everyr > 0, whenceP12(X) = 0.
This implies thatX is ruled (cf. [10]). SinceX is unirational,X is
rational. Ifχ(OX) = 2, we haveωX � OX. ThenX is aK3-surface
(cf. [9], [10]). If χ(OX) ≧ 3, Pr (X) = r(χ(OX)− 2)+ 1. Hence the
canonical dimensionκ(X) is equal to 1, andpg(X) = χ(OX) − 1 =
pa(X). Therefore, dimH1(X,OX) = 0.

�

2.3.3

Corollary. Let f : X → C be a relatively minimal, unirational, quasi-
elliptic surface defined over k with a regular cross-section. If X is not
rational over k then X is a minimal (nonsingular) model.

Proof. Sete := χ(OX) − 2. ThenKX ∼ e f−1(P) for a point onC � P1
k.

If X is not rational overk we know by 2.3.2 thate ≧ 0. Then the
canonical linear system|KX| has no fixed components, which implies
that X contains no exceptional curve of the first kind.X is therefore a
minimal nonsingular model. �

2.3.4

Lemma. Let f : X → C be a relatively minimal quasi-elliptic surface
with a rational cross-section, and let D=

∑

i

niEi be a reducible fiber 254

(having not less than two components). Then every componentEi is a
nonsingular projective rational curve with(E2

i ) = −2.

Proof. For everyi, (Ei · D) = ni(E2
i ) +

∑

j,i

n j(Ei · E j) = 0. SinceD is

connected, (E2
i ) < 0 for everyi. SinceKX ∼ f ∗(S) for some divisorS on

C as we have seen in 2.3.1, (Ei ·KX) = 0. Thenpa(Ei) =
1
2

(E2
i )+ 1 ≧ 0,

whence (E2
i ) = −2 andpa(Fi) = 0. �
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2.4

Throughout the paragraphs 2.4∼ 2.7, we shall assume thatk is an alge-
braically closed field of characteristicp ≧ 0. Letϕ(y) be a polynomial
in y of degreed ≧ 3 with coefficients ink such thatA(x, y) := x3

+ϕ(y) is
an irreducible polynomial. We assume thatϕ(y) contains no monomial
terms of degree congruent to zero modulo 3 ifp = 3, and thatϕ(y) con-
tains no monomial terms of degree congruent to zero modulo 2 if p = 2.
Consider a hyper surfacet2 = A(x, y) in the projective 3-spaceP3

k, which
is birational to a double covering ofF0 := P1

k × P
1
k. Let K := k(t, x, y).

Let H0 be the normalization ofF0 in K, and letρ0 : H0 → F0 be the
normalization morphism. With the above notations and assumptions we
shall show the following:

2.4.1

Lemma . Let Q be a point on H0, and let P := ρ0(Q). If P is not a
singular point of C then Q is a simple point of H0, where C is a closed
irreducible curve on F0 defined by the equation A(x, y) = 0.

2.4.2

In order to prove the above lemma we need

Lemma. Let A(x, y) be a nonzero irreducible polynomial in k[x, y] such255

that A(0, 0) = 0, and let U be a hyper surface in the affine(t, x, y)-space
A3

k defined by te = A(x, y) (e≧ 2), which is viewed as an e-ple covering
of the (x, y)-planeA2

k. Then the point Q:= (t = 0, x = 0, y = 0) is a
normal point on U if there are no irreducible curves D onA2

k such that

D passes through the point P:= (x = 0, y = 0), and that
∂A
∂x

and
∂A
∂y

vanish on D.

Proof. SinceU is a hyper surface inA3
k, the local ringO := OQ,U is a

Cohen-Macaulay ring of dimension 2. By Serre’s criterion ofnormality
(cf. [17; IV (5.8.6)]),O is a normal ring ifOB is regular for any prime
ideal B of height 1 ofO. Let J = B ∩ k[x, y]. ThenJ defines an
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irreducible curveD on A2
k passing through the pointP. If OB is not

regular, the Jacobina criterion of singularity tells us that
∂A
∂x

and
∂A
∂y

vanish onD. However, this contradicts our assumption. �

2.4.3

Proof of Lemma 2.4.1 in casein casep , 2. LetU1 := ρ−1
0 (F0 − (x =

∞)∪ (y = ∞)), U2 := ρ−1
0 (F0− (ξ = ∞)∪ (y = ∞)), U3 := ρ−1

0 (F0− (x =
∞) ∪ (η = ∞)), andU4 := ρ−1

0 (F0 − (ξ = ∞) ∪ (η = ∞)), whereξ = 1/x
andη = 1/y. Then we can show:

Lemma. Each ofUi ’s (1 ≦ i ≦ 4) is isomorphic to a hyper-surface Vi

in A3
k defined by the following equation:(1) t2 = x3

+ ϕ(y) for V1; (2)
t2 = x + x4ϕ(y) for v2; (3) for V3, t2 = x3yd

+ ψ(y) if d ≡ 0( mod 2)
and t2 = x3yd+1

+ yψ(y) if d ≡ 1( mod 2); (4) for V4, t2 = xyd
+ x4ψ(y)

if d ≡ 0( mod 2)and t2 = xyd+1
+ x4yψ(y) if d ≡ 1( mod 2), where

ψ(y) = ydϕ(1/y) withψ(0) , 0. With the notations of 2.4.1, Q is a simple256

point of H0 if P is not a singular point of C.

Proof. It is not hard to see thatUi is the normalization ofVi in K for
1 ≦ i ≦ 4, whence follows thatUi = Vi if Vi is normal. We shall show
that each ofVi ’s is a normal hyper surface. LetQ := (t = γ, x = β, y = α)
be a point ofVi. (1) Q is a singular point ofV1 only if γ = 3β2

=

ϕ′(α) = 0. In casep , 3, the singular locus ofV1 is of co-dimension
2 at Q. SinceV1 is a complete intersection atQ, the Serre’s criterion
of normality shows thatQ is a normal point. HenceV1 is normal. In
casep = 3, apply Lemma 2.4.2 to a triple coveringx3

= t2 − ϕ(y),
Q = (t = 0, x = β, y = α) andP := (t = 0, y = α), noting thatϕ′(y) , 0.
Q is then a normal point, andV1 is therefore normal. (2) It is easy to see
thatV2 − (x = 0) is isomorphic toV1 − (x = 0) by a birational mapping
(t, x, y) 7→ (t/x2, 1/x, y), and thatV2 is nonsingular at every point on the
curvex = 0. (3)V3 − (y = 0) is isomorphic toV1 − (y = 0) by birational
mappings (t, x, y) 7→ (t/yd/2, x, 1/y) if d ≡ 0( mod 2) and (t, x, y) 7→
(t/y(d+1)/2, x, 1/y) if d ≡ 1( mod 2); and a point ofV3 lying on the curve
y = 0 is a singular point only ift = 0 andψ(0) = 0 whend ≡ 0( mod 2),
and (d+1)x3yd

+ψ(y)+yψ′(y) = 0 whend ≡ 1( mod 2). However, this is
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impossible becauseψ(0) , 0. (4)V4− (x = 0) is isomorphic toV3− (x =
0) by a mapping (t, x, y) 7→ (t/x2, 1/x, y); V4 − (y = 0) is isomorphic
to V2 − (y = 0) by birational mappings (t, x, y) 7→ (t/yd/2, x, 1/y) if
d ≡ 0( mod 2) and (t, x, y) 7→ (t/y(d+1)/2, x, 1/y) if d ≡ 1( mod 2).
This implies that the singular locus ofV4 is of co-dimension 2 if it is257

not empty. Hence by Serre’s criterion of normality we know that V4 is
normal. The last assertion is now easy to see if one notes thatQ is a
singular point ofH0 only if t = 0. �

2.4.4

Proof of Lemma 2.4.1 in casep = 2. Since we assumed thatϕ(y) has
no monomial terms of degree congruent to zero modulo 2, we maywrite
ϕ(y) in the form:ϕ(y) = yϕ1(y)2, whered1 := degyϕ1 > 0. Then we can
show the following

Lemma . Define Ui ’s (1 ≦ i ≦ 4) as in 2.4.3. Then each of Ui ’s is
isomorphic to a hyper surface Vi in A3

k defined by the following equa-
tion: (1) t2 = x3

+ ϕ(y) for V1; (2) t2 = x + x4ϕ(y) for V2; (3) t2 =
x3yd+1

+ yψ1(y)2 for V3; (4) t2 = xyd+1
+ x4yψ1(y)2 for V4, where

ψ1(y) = yd1ϕ1(1/y) with ψ1(0) , 0. With the notations of 2.4.1, Q is
a simple point if P is not a singular point of C.

Proof. We shall prove only the last assertion since the remaining asser-
tions can be proved in a similar fashion as in 2.4.3 by applying Lemma
2.4.2. LetQ := (t = γ, x = β, y = α) be a point ofVi (1 ≦ i ≦ 4). (1) If
Q ∈ V1, Q is a singular point only ifβ = ϕ1(α) = 0, whenceγ = 0. (2) If
Q ∈ V2, Q is a simple point. (3) IfQ ∈ V3 andα = 0, Q is a simple point
becauseψ1(0) , 0. (4) If Q ∈ V4 andQ < V2, V3 thenα = β = γ = 0. In
any case,Q is a singular point ofH0 only if γ = 0. ThusP is a singular
point ofC. �

2.5

The equationA(x, y) = 0 defines a closed irreducible curveC on F0. By258

Jacobian criterion of singularity, the singular points ofC are the points
P := (x = β, y = α), lying on the affine partA2

k := F0 − (x = ∞) ∪ (y =
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∞), such that 3β2
= ϕ′(α) = β3

+ ϕ(α) = 0, and the pointP∞ := (x =
∞, y = ∞). C is defined by an equationηd

+ ξ3ψ(η) = 0 locally atP∞,
whereξ = 1/x, η = 1/y andψ(η) = ηdϕ(1/η) with ψ(0) , 0. Hence,P∞
is a cuspidal singular point with multiplicity (3, 3, . . . , 3︸      ︷︷      ︸, 1, . . .)

5 if d =

3n+ 1 and (3, 3, . . . , 3︸      ︷︷      ︸, 2, 1, . . .) if d = 3n+ 2; P∞ is a tacnodal singular

point with three simple points in then-th (infinitely near) neighborhood
of P∞ if d = 3n.

2.5.1

Here we introduce the following notations: Consider a fibration F :=
{ℓα : ℓα is defined byy = α} on F0 defined by the second projection
p2 : F0 → P

1
k. We denote byℓ∞ the fibrey = ∞, and byS∞ the cross-

sectionx = ∞. We denote byℓ a general fiber ofF . Letσ : F → F0

be the shortest succession of quadratic transformations with centers at
the singular points ofC and its infinitely near singular points, by which
the proper transformC := σ′(C) of C on F becomes nonsingular. Let
S∞ := σ′(S∞), and letℓ∞ := σ′(ℓ∞). The following figures will indicate
the configuration ofσ−1(ℓ∞ ∪C ∪ S∞) on F :

-1 -2 -2 -2
-1

(Fig. 1)

whered = 3n (n > 0) andp , 3;

5By this notation we mean thatP∞ is a point with multiplicity 3, the infinitely near
point of C in the first neighborhood ofP∞ (which is a single point in this case) has
multiplicity 3, etc. . .
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(Fig. 2)

whered = 3n+ 1 (n > 0) and (C̄,En) = 3;259

-1 -2 -2 -2 -1-2

(Fig. 3)

whered = 3n+ 2(n > 0) and (C · En+1) = 2.

2.5.2

Since (A)∞|F0 = 3S∞ + dℓ∞ we have:

(σ∗A) = C + 3(E1 + 2E2 + · · · + nEn) + D − 3

(S∞ + E1 + 2E2 + · · · + nEn) − d(ℓ∞ + E1 + · · · + En)

= C − 3S∞ − dσ∗(ℓ∞) + D, if d = 3n

or d = 3n+ 1;

(σ∗A)C + 3(E1 + 2E2 + · · · + nEn) + (3n+ 2)En+1 + D − 3(S∞ + E1+

2E2 + · · · + nEn + (n+ 1)En+1) − d(ℓ∞ + E1 + · · · + En+1)

= C − 3S∞ − En+1 − σ
∗(ℓ∞) + D, if d = 3n+ 2,
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whereD is an effective divisor with support in the unionE of excep-
tional curves which arise from the quadratic transformations with cen-
ters at the singular points and their infinitely near singular points ofC in 260

the affine partA2
k ⊂ F0.

2.5.3

We may write (σ∗A) uniquely in the form (σ∗A) = B − 2Z whereB is
a divisor whose coefficient at each prime divisor is 0 or 1 and whereZ
is some divisor. Ifp , 2, B is the branch locusof a double covering
ρ : H → F, whereH is the normalization ofF in K andρ is the nor-
malization morphism (cf. [4]). In order to write downB we consider the
following six cases separately.

2.5.3.1 If d = 6m (i.e., d = 3n with n = 2m) then we have:

B = C + S∞ + D1

Z = 2S∞ + 3m(ℓ∞ + E1 + · · · + En) − D2,

whereD1 andD2 are the divisors determined uniquely by the conditions
thatD1 is an effective divisor whose coefficient at each prime divisor is
0 or 1,D2 ≧ 0, D1 + 2D2 = D, and Supp(D1) ∪ Supp(D2) ⊂ E .

2.5.3.2 If d = 6m+ 1 (i.e.,d = 3n+ 1 with n = 2m) then we have:

B = C + S∞ + (ℓ∞ + E1 + · · · + En) + D1

Z = 2S∞ + (3m+ 1)(ℓ∞ + E1 + · · · + En) − D2,

whereD1 andD2 are divisors chosen as in 2.5.3.1.

2.5.3.3 If d = 6m+ 2 (i.e.,d = 3n+ 2 with n = 2m) then we have:

B = C + S∞ + En+1 + D1

Z = 2S∞ + En+1 + (3m+ 1)(ℓ∞ + E1 + · · · + En+1) − D2,

whereD1 andD2 are divisors chosen as in 2.5.3.1. 261
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2.5.3.4 If d = 6m+ 3 (i.e.,d = 3n with n = 2m+ 1) then we have:

B = C + S∞ + (ℓ∞ + E1 + · · · + En) + D1

Z = 2S∞ + (3m+ 2)(ℓ∞ + E1 + · · · + En) − D2,

whereD1 andD2 are divisors chosen as above.

2.5.3.5 If d = 6m+ 4 (i.e.,d = 3n+ 1 with n = 2m+ 1) then we have:

B = C + S∞ + D1

Z = 2S∞ + (3m+ 2)(ℓ∞ + E1 + · · · + En) − D2,

whereD1 andD2 are divisors chooser as above.

2.5.3.6 If d = 6m+ 5 (i.e.,d = 3n+ 2 with n = 2m+ 1) then we have:

B = C + S∞ + (ℓ∞ + E1 + · · · + En) + D1

Z = 2S∞ + (3m+ 3)(ℓ∞ + E1 + · · · + En+1) − D2,

whereD1 andD2 are divisors chosen as above.

2.6

Let σ : F → F be the shortest succession of quadratic transformations
of F such that if one writes ((σσ)∗A) in the form ((σσ)∗A) = B − 2Z
with divisorsB andZ uniquely determined as in 2.5.3, every irreducible
component ofB is a connected component of Supp(B), i.e., Supp(B) is
nonsingular. LetH be the normalization ofF in K, and letρ : H → F be
the normalization morphism. We have a commutative diagram below:

H

ρ

��

τ // H

ρ

��

τ // H0

ρ0

��
F

σ // F
σ // F0

p2 // P1
k,

whereτ andτ are the canonical morphisms which make each of squares262

commutative. The following result is well-known (cf. [4]):
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2.6.1

Lemma . If p , 2 then H is a nonsingular projective surface defined
over k.

Proof. Let Q be a point ofH, and letP := ρ(Q). Let Õ := OQ,H and let
O := OP,F. We shall show that̃O is regular for everyk-rational point
Q. If (σσ)(P) is not a singular point ofC, (ττ)(Q) is a simple point of
H0 (cf. Lemma 2.4.1). HenceQ is a simple point. Consider the case
where (σσ)(P) is a singular point ofC. If P ∈ Supp(B), we may write
(σσ)∗A = hg2, whereh ∈ O andg ∈ k(x, y) such thath = 0 is a local
equation of the irreducible componentB1 of B on whichP lies. Since
B1 is nonsingular,h with some elementh1 of O form a regular system of
parameters ofO. Thent/g andh1 form a regular system of parameters
of Õ . If P < Supp(B), (σσ)∗A = g2u, whereg ∈ k(x, y) andu is a unit
of O. Then there are two distinct points onH aboveP, one of which is
Q. ThenQ is a simple point since [K : k(x, y)] = 2. �

2.6.2

Lemma. Assume that p= 2. Let Q be a point of H, and let P:= ρ(Q).
Then Q is a simple point if(1) (σσ)(P) is not a singular point of C or if
(2) (σσ)(P) = P∞ (cf. 2.5).

Proof. The first case follows from Lemma 2.4.1. Consider the case (2). 263

As in 2.4.4 we may writeϕ(y) = yϕ1(y)2 with d1 = degyϕ1(y) and
d = 2d1 + 1. We consider the following three cases separately: (I)
d1 = 3m, (II) d1 = 3m+ 1 and (III) d1 = 3m+ 2. �

Case (I):d1 = 3m. Thend = 6m+ 1. The configuration of (σσ)−1(ℓ∞ ∪
C ∪ S∞) is easily obtained from the Figure 2 (wheren = 2m):
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-1 -1-1 -1 -1 -1 -1 -1

-1

-2 -4 -4 -4 -6 -4 -4 -4 -(2m+2)

(Fig. 4)

where the lines represent nonsingular projective rationalcurves and the
numbers attached to lines are self-intersection multiplicities; where solid
lines (includingσ′(C)) are contained inB, while the broken lines are not
contained inB; whereL0 = σ′(ℓ∞), L′0 = σ−1(ℓ∞ ∩ E1), Li = σ′(Ei)
andL′i = σ

−1(Ei ∩ Ei+1) for 1 ≦ i ≦ n, Ln = σ
′(En) and the remaining

unnamed lines arise from the quadratic transformations with centers at
En ∩ S∞ and its infinitely near points. Note that each broken line has
self-intersection multiplicity−1 and meets transversely two irreducible
components ofB. Let L be one of broken lines, and letB1 andB2 be
irreducible components ofB which meetL. Let τ̂ : F → F̂ be the con-264

traction ofL, and letP̂ := τ̂(L), B̂1 := τ̂(B1) andB̂2 := τ̂(B2). Let u = 0
andv = 0 be local equations of̂B1 andB̂2 at P̂ on F̂. Let Â be the inverse
image ofA(x, y) on F̂. ThenÂ = uvTg2, whereu, v, T ∈ OP̂,F̂ ,T(P̂) , 0
andg ∈ k(x, y). If P ∈ L and P , L ∩ B2, then (σσ)∗A = u1T(vg)2

with u1 = u/v, andOQ,H � OP,F[z]/(z2 − u1T). If P = L ∩ B2 then
(σσ)∗A = v1T(ug)2 with v1 = v/u, andOQ,H � QP,F[z]/(z2 − v1T).
Hence if P ∈ L, OQ,H is regular. If P lies on an irreducible compo-
nentB1 of B then (σσ)∗A = ug2, whereg ∈ k(x, y) andu = 0 is a local
equation ofB1 atP. HenceOQ,H � OP,F[z]/(z2−u), andOQ,H is regular.

Case (II): d1 = 3m+ 1. Thend = 6m+ 3 = 3n with n = 2m+ 1. The
configuration of (σσ)−1(ℓ∞ ∪C ∪ S∞) obtained from the Figure 1 is:
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(Fig. 5)

where we use the same notation as in the Figure 4. Here, note again that
each broken line has self-intersection multiplicity−1 and meets trans-
versely two irreducible components ofB. We can use the same argument
as in the case (I) to show thatOQ,H is regular.

Case (III): d1 = 3m+ 2. Thend = 6m+ 5 = 3n + 2 with n = 2m+ 1. 265

The configuration of (σσ)−1(ℓ∞ ∪ C ∪ S∞) obtained from the Figure 3
is:

(Fig. 6)

whereLn+1 = σ′(En+1). Here all broken lines exceptLn+1 have self-
intersection multiplicities−1 and meet transversely two irreducible com-
ponents ofB. Thus, ifP < Ln+1 we can apply the argument in the case
(I) to show thatOQ,H is regular. Consider the case whereP ∈ Ln+1.
Let τ̂ : F → F̂ be the contraction ofM andLn+1, and letÊn := τ̂(Ln),
Ĉ := τ̂(σ′(C)) andŜ∞ := τ̂(σ′(S∞)). Let u = 0 andv = 0 be local equa-
tions ofÊn andŜ∞ respectively at the point̂P := Ên∩Ŝ∞ on F̂. Then the
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inverse imagêA of A(x, y) on F̂ is written in the formÂ = uv(u2
+v3T)g2

with suitable choice ofu andv, whereT ∈ OP̂,F̂, T(P̂) , 0 andg ∈

k(x, y). Then it is easy to show that (σσ)∗A = u2(u2v+T)(gv3)2 if P ∈ M
andP < Ln+1, (σσ)∗A = (u1+v2T)(gv2u1)2 if P ∈ Ln+1 andP < σ′(S∞),
and (σσ)∗A = v1(1+uv3

1T)(gu2)2 if P = σ′(S∞)∩Ln+1, whereu1 = u/v,
v1 = v/u, u2 = u1/vandv2 = v/u1. HenceOQ,H � OP,F[z]/(z2

+u1+v2T)266

if P ∈ Ln+1 andP < σ′(S∞), andOQ,H � OP,F[z]/(z2
+ v1(1+ uv3

1T)) if
P = σ′(S∞) ∩ Ln+1, whence follows thatOQ,H is regular.

2.6.3

In 2.9.3 below we prove thatH is a nonsingular projective surface de-
fined overk.

2.6.4

In the case wherep , 2 it is easily seen that the configuration of
(σσ)−1(ℓ∞ ∪C ∪ S∞) is the following (cf. 2.5):

Cased = 6m(m > 0). Figure 1 withℓ∞, F1, . . . ,En replaces by
broken lines.

Cased = 6m+ 1(m> 0). Figure 4.
Cased = 6m+ 2(m> 0). Thend = 3n+ 2 with n = 2m.

(Fig. 7)
whereL0 = σ

′(ℓ∞) andLi = σ
′(Ei) for 1 ≦ i ≦ n+ 1.

Cased = 6m+ 3. Figure 5.
Cased = 6m+ 4. Thend = 3n+ 1 with n = 2m+ 1.
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(Fig. 8)

whereL0 = σ
′(ℓ∞), Li = σ

′(Ei) for 1 ≦ i ≦ n, and (Ln · σ
′(C)) = 2. 267

Cased = 6m+ 5. Figure 6.

2.7

Weassumein this paragraph thatH is nonsingular ifp = 2 (cf. 2.6.3).

2.7.1

Lemma. (1) Let D1 and D2 be divisors on F. Then(ρ∗(D1)·ρ∗(D2)) =
2(D1 · D2).

(2) Let D be an irreducible component of B. Thenρ∗(D) = 2∆, where
∆ is a nonsingular curve. If D� P1

k, so is∆.

(3) Assume that p, 2. Let D be a curve on F such that D� P1
k and

D 1 Supp(B).

(i) If D ∩Supp(B) = φ thenρ∗(D) = D1+D2 where D1 � D2 �

P1
k, D1 ∩ D2 = φ and(D2

1) = (D2
2) = (D2).

(ii) If D meets exactly two irreducible components B1 and B2

of B transversely and if D∩ B1 , D ∩ B2 thenρ−1(D) is
irreducible and isomorphic toP1

k.

(iii) Let D = Ln in the Figure8. Thenρ∗(D) = D1 + D2, where
D1 � D2 � P

1
k, (D2

1) = (D2
2) = −3 and(D1 · D2) = 1.
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Proof. (1) and (2) are well-known (cf. [4]) and easy to prove. (3) (i):
ρ−1(D) is an unramified covering ofD � P1

k of degree 2. Sincep , 2 and
D is simply connected, we haveρ∗(D) = D1 + D2 with D1 � D2 � P

1
k

and D1 ∩ D2 = φ. (ii): Let ρ∗(B1) = 2∆1 andρ∗(B2) = 2∆2. Then
∆1 � ∆2 � P

1
k. Since (ρ∗(D)·∆1) = (ρ∗(D)·∆2) = 1 and since every point

exceptD∩B1 andD∩B2 is not branched, we know thatρ−1(D)∩∆1 and
ρ−1(D)∩∆2 are simple points ofρ−1(D), and thatρ−1(D) is a nonsingular268

irreducible curve. Then, by Hurwitz’s formula,ρ−1(D) is isomorphic to
P1

k. (iii): Let P := Ln ∩ σ
′(C). By the quadratic transformationŝσ with

centers atP and a point ofσ′(C) infinitely nearP we have the following
configuration:

This implies thatρ∗(Ln) = D1 + D2, whereD1 � D2 � P
1
k. On the other

hand, 2.5.3.5 implies thatσ∗A = u(v + u3T)g2, whereu, v, T ∈ OP,F

with P := S∞ ∩ C, T(P) , 0, g ∈ k(x, y) and whereu = 0 andv = 0
are local equations ofS∞ and En. Then (σσ)∗A = (v1 + u2T)(gu)2

locally at P, wherev1 = v/u; andOQ,H � OP,F[z]/(z2 − (v1 + u2T))
with Q = ρ−1(P). SinceLn is defined byv1 = 0, ρ−1(Ln) is defined by
z2
= u2T. Thus, (D1 · D2) = 1. Since (D2

1) = (D2
2) and (ρ∗(Ln)2) = −4,

we have (D2
1) = (D2

2) = −3. �

2.7.2

Let q := (p2σσρ) : H → P1
k, C̃ := σ′(C) and S̃∞ := σ′(S∞). Since

C, S∞ ⊂ Supp(B) we haveC̃, S̃∞ ⊂ Supp(B). Henceρ−1(C̃) = 2Γ and
ρ−1(S̃∞) = 2Σ∞ with nonsingular curvesΓ andΣ∞ on H (cf. 2.7.1, (2)).
We have then the following:
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Lemma. Assume that H is nonsingular if p= 2. Then q: H → P1
k is 269

an elliptic or quasi-elliptic fibration with regular cross-sectionΣ∞. The
fibration q is elliptic if p, 2, 3; and q is quasi-elliptic if p= 2 or 3.
Moreover we have:

(1) If p = 3, Γ is the locus of movable singular points of q.

(2) If p = 2, let S0 be the cross-section ofF defined by x= 0, and
let ∆ := ρ−1((σσ)′S0). Then∆ is the locus of movable singular
points of q.

Proof. Let ℓ be a general member ofF , and let̃ℓ = (σσ)′(ℓ). Since (̃ℓ ·
S̃∞) = 1 we have (ρ∗ (̃ℓ)·Σ∞) = 1 which implies thatρ−1(̃ℓ) is irreducible
andρ−1(̃ℓ) ∩ Σ∞ is a simple point ofρ−1(̃ℓ). Sinceρ−1(̃ℓ) − ρ−1(̃ℓ) ∩ Σ∞
is isomorphic to a curvet2 = x3

+ ϕ(α) for someα ∈ k, pa(ρ−1(̃ℓ)) = 1.
Thusq is an elliptic or quasi-elliptic fibration with regular cross-section
Σ∞. ρ−1(̃ℓ) has a unique singular point (t = 0, x = −ϕ(α)1/3) if p = 3;
(t = ϕ(α)1/2, x = 0). Thus,q is quasi-elliptic if p = 2 or 3; andΓ is
the locus of movable singular points ofq if p = 3, and∆ is the locus of
movable singular points ofq if p = 2. (It will be easy to see that∆ is
irreducible). �

2.7.3

Let q−1(∞) be the fiber ofq corresponding toy = ∞. To illustrate
q−1(∞) ∪ Σ∞ we shall definethe weighted graph of q−1(∞) ∪ Σ∞ in
the following way: Assign a vertex◦ (or ◦, resp. ) to each irreducible
componentT of q−1(∞) ∪ Σ∞ such thatρ(T) 1 Supp(B) (or ρ(T) ⊂
Supp(B), resp. ); the weight is (T2); join two vertices by a single edge
like ◦ ◦ (or a double edge like◦ ◦ ) if the corresponding irre-
ducible components meet each other transversely in one point (or, touch 270

in one point with multiplicity 2, resp. ). By virtue of 2.6.4 and 2.7.1 we
have the following weighted graphs ofq−1(∞) ∪ Σ∞ whenp , 2:

Cased = 6m(m> 0) andp , 3.
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(Fig. 9)

where all components ofq−1(∞) ∪ Σ∞ except one elliptic component
are nonsingular projective rational curves; in the cases given below all
components are nonsingular projective rational curves.

Cased = 6m+ 1(m> 0).

(Fig. 10)

Cased = 6m+ 2(m> 0).

(Fig. 11)

Cased = 6m+ 3(m≧ 0) andp , 3.
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(Fig. 12)

271

Cased = 6m+ 4(m≧ 0).

2m

-1 -2 -2 -2 -3

-1 -2 -2 -2 -3

-2 -(m+1)

three components meet each other
in one point transversally

(Fig. 13)

Cased = 6m+ 5(m≧ 0)

(Fig. 14)

2.7.4

Lemma. Assume that p= 2 and H is nonsingular. Then the weighted
graph of q−1(∞) ∪ Σ∞ is given as follows:

Cased = 6m+ 1(m> 0). Figure 10.
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Cased = 6m+ 3(m≧ 0). Figure 12.

Cased = 6m+ 5(m≧ 0). Figure 14.

Proof. Lemma follows from 2.3.4 and 2.7.2. We shall only indicate how
to use these results.Cased = 6m+1. With the notations of 2.6.2, for all
solid linesL, ρ−1(L) = 2L̃ with L̃ � P1

k and 2(̃L2) = (L2); for all broken
lines L with (L2) = −1, L̃ := ρ−1(L) is irreducible. Thus the weighted
graph ofq−1(∞) ∪ Σ∞ is:

where• represents a nonsingular projective rational curve. Letν be272

the contraction of̃L0. If ν(L̃′0) , P1
k, ν(q−1(∞)) would be a reducible

fiber of a relatively minimal quasi-elliptic fibration. Then, by lemma
2.3.4, ν(L̃′0) � P1

k, which is a contradiction. Henceν(L̃′0) � P1
k and

(ν(L̃′0)2) = −1, whenceν(L̃′0) is contractible. Repeating this argument
for L̃0, L̃′0, . . . , L̃

′
n−1 we can see that they are all isomorphic toP1

k. Let
π be the contraction of̃L0, . . . , L̃′n−1. Thenπ(L̃n) � P1

k and (π(L̃n)2) =
−2. Henceπ(q−1(∞)) is a reducible fiber of a relatively minimal quasi-
elliptic fibration. Then the remaining components are all isomorphic to
P1

k by virtue of 2.3.4. Thecased = 6m+ 3 can be treated in the same
fashion as above.Cased = 6m+5. The weighted graph ofq−1(∞)∪Σ∞
is:

where represents a curve isomorphic toP1
k; L̃n+1 := ρ−1(Ln+1) is reduced

(and irreducible) because (L̃n+1 · Σ∞) = 1; M̃ := ρ−1(M) touches̃Ln+1

in one point with multiplicity 2. The foregoing argument shows that
L̃0, . . . , L̃n, M̃ are isomorphic toP1

k and contractible. Letπ be the con-
traction of those curves. Thenπ(L̃n+1) is an irreducible member of a
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relatively minimal quasi-elliptic fibration. Henceπ(L̃n+1) has one cusp,
andL̃n+1 is a nonsingular projective rational curve. � 273

2.7.5

By contracting all possible exceptional components ofq−1(∞), the im-
age ofq−1(∞)∪Σ∞ has the following weighted graph (or configuration);
the type of a singular fiber according toŠafarevič [51] is also given:

Cased = 6m. o (elliptic curve)

Cased = 6m+ 1.

Cased = 6m+ 2.

Cased = 6m+ 3.

Cased = 6m+ 4. 274
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Cased = 6m+ 5.

2.8

We shall proceed to a proof of Theorem 2.1.1. It is easy to see thatK is
rational overk if d = 0, 1 or 2. We shall therefore assume thatd > 3.

2.8.1

Consider reducible fibers ofq : H → P1
k other thanq−1(∞). Such a fiber

q−1(α) := (σσρ)−1(ℓα) has more than two reducible components, and
ℓα∩C is a singular point ofC, whenceϕ′(α) = 0. Conversely, for a root
α of ϕ′(y) = 0,q−1(α) is a reducible fiber ofq (cf. 2.5). Letα be a root of
ϕ′(y) = 0, let P := (x = −ϕ(α)1/3.y = α) be the corresponding singular
point of C, and lete = vα(ϕ(y) − ϕ(α)). The condition (1) of Theorem
2.1.1 tells us thate = 2, 3, 4 or 5, while the condition (2) asserts that
the casee = 3 can be reduced to the casee = 4 or 5 by a birational275

transformation (t, x, y) 7→ (t, x + a1/3(y − α), y) which is biregular atP.
P is then a cuspidal singular point ofC with multiplicity (2, 1, . . .) if
e = 2; (3, 1, . . .) if e = 4; (3, 2, 1, . . .) if e = 5. Now the weighted graph
of q−1(α) ∪ Σ∞ is given as follows by making a similar argument as in
2.5:

Casee= 2.
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(cf. 2.7.1, (3) (iii))
Casee= 4.

Casee= 5.

Notice thatq−1(α) contains no exceptional components. The type of
a singular fiber according tǒSafarevič [51] isB4 if e = 2; B8 if e = 4;
B10 if e= 5.

2.8.2

As shown in 2.8.1,q−1(∞) is the only singular fiber in the fibrationq, 276

which contains exceptional components. By a contractionτ̂ : H → Ĥ
of all exceptional components inq−1(∞) we get a relatively minimal
quasi-elliptic surfacêq : Ĥ → P1

k with q̂̂τ = q, for which Σ̂∞ := τ̂(Σ∞)

is a regular cross-section with (Σ̂2
∞) = −(m+ 1). (Since we are dealing

with the casep = 3, look at only the casesd = 6m+ 1, d = 6m+ 2,
d = 6m+ 4 andd = 6m+ 5). Now, Theorem 2 follows immediately
from 2.2, 2.3.2 and 2.3.3.
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2.9

We shall now prove Theorem 2.1.2. The first assertion followsfrom
2.2. So, we shall prove the second assertion. To be in accordance with
the notations in the paragraphs 2.4∼ 2.7 we start with an equationt2 =
x3
+ ϕ(y), whereϕ(y) = yϕ1(y)2, d := degyϕ andd1 := degy ϕ1. Hence

d = 2d1+ 1. We have only to consider the casesd = 6m+ 1, d = 6m+ 3
andd = 6m+ 5. Moreover, sinceK is easily seen to be rational overk if
d = 1 we assume thatd ≧ 3.

2.9.1

Write
ϕ1(y) = a(y− α1)r1 . . . (y− αs)

rs,

wherea ∈ k∗, αi ∈ k, andαi ’s are mutually distinct. The assumption in
Theorem 2.1.2 implies thatr i ≦ 2 for everyi. For if r i ≧ 3, ϕ(y + αi)
starts with a term of degree≧ 6. The singular points ofC lying on the
affine partF0 − (x = ∞) ∪ (y = ∞) are given by (x = 0, y = αi) for
1 ≦ i ≦ s. Let P := (t = 0, x = 0, y = α) with ϕ1(α) = 0. By a
birational transformation (t, x, y) 7→ (t, x, y+ α) which is biregular atP,
H0 is a hyper surface inA3

k defined locally atP by one of the following277

equations:

(i) t2 = x3
+ y2δ(y) if α , 0 and r = 1

(ii) t2 = x3
+ y3δ(y) if α = 0 and r = 1

(iii) t2 = x3
+ y4δ(y) if α , 0 and r = 2

(iv) t2 = x3
+ y5δ(y) if α = 0 and r = 2,

whereδ(y) ∈ k[y], δ(0) , 0, andδ(y)y2r+ǫ
= ϕ(y + α) with ǫ = 0 or 1

according asα , 0 orα = 0.

2.9.2

Now write

δ(y) = a0 + a1y+ a2y2
+ a3y3

+ · · · with a0 , 0.
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The case (i) above is now reduced to the case (ii) or (iv) by a birational
transformation (t, x, y) 7→ (t + a1/2

0 y + a1/2
2 y2, x, y) which is biregular at

P. Namely, ifa1 , 0 we have the case (ii); ifa1 = 0 anda3 , 0 we have
case (iv). (Note thata1 = a3 = 0 does not occur). Similarly, the case
(iii) is reduced to the case (iv). Thus, in order to look into the singularity
of P, we have only to consider the cases (ii) and (iv).

2.9.3

Let ℓ0 be the member ofF passing through the point (x = 0, y = α).
The configuration of (σσ)−1(ℓ0 ∪C ∪ S∞) is given as follows:

Case (ii):

Case (iv): 278

-1 -1 -1 -1
-4-4-4-4-4

-1

The meanings of solid or broken lines are the same as in 2.6.2.By
the same argument as in 2.6.2 (especially the proof of Case (I) there) we
can show:

Lemma. Let Q be a point on H such that(σσρ)(Q) = (x = 0, y = α).
Then Q is a simple point. Therefore H is nonsingular.
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2.9.4

Now, the weighted graph ofq−1(α) := ρ−1((σσ)′(ℓ0)) is given as fol-
lows:

Case (ii).

Case (iv).

(For the proof, see 2.7.4). Thus,q−1(α) contains no exceptional com-
ponents. The proof of Theorem 2.1.2 is now completed as in 2.8.2.
(Consider only the casesd = 6m+ 1, d = 6m+ 3 andd = 6m+ 5).

3 Unirational surface with a pencil of quasi-hyper-
elliptic curves of genus2 (in characteristic 5)

279

3.1

Throughout this section the ground fieldk is assumed to be an alge-
braically closed field of characteristic 5. A nonsingular projective sur-
faceX is said to havea pencil of quasi-hyper-elliptic curves of genus2
if there exists a surjective morphismf : X→ C from X to a nonsingular
projective curveC such that almost all fibers off are irreducible singular
curves of arithmetic genus 2.We assume that f: X→ C has a rational
cross-section. The purpose of this section is to prove the following:



Unirational surface with..... 223

Theorem .Let k be an algebraically closed field of characteristic5.
Then any unirational surface X with a pencil of quasi-hyperelliptic
curves of genus 2 defined over k is birationally equivalent toa hyper
surface inA3

k : t2 = x5
+ ϕ(y) with ϕ(y) ∈ k[y], provided X has a ratio-

nal cross-section. Conversely, let K:= k(t, x, y) be the function field of
an affine hyper surface of the above type. Assume thatϕ(y) satisfies the
conditions:

(1) ϕ(y) has no terms of degree multiples of5,

(2) every root ofϕ′(y)

(
=

dϕ
dy

)
is at most a double point.

Let d := degy ϕ, m := [d/10] and X the nonsingular minimal model if K
is not rational. Then the structure of X is determined as follows:

Casem= 0. 280

d 1 2 3 4 6 7 8 9
pa(X) 0 0 0 1 1 2 2 2
(K2

X) 0 0 1 1 1

structure
rational unirational unirational
surface K3-surface surface of

general type

Casem> 0.

d 10m+ 1 10m+ 2 10m+ 3 10m+ 4 10m+ 6 10m+ 7 10m+ 8 10m+ 9
pa(X) 4m 4m 4m 4m+ 1 4m+ 1 4m+ 2 4m+ 2 4m+ 2
(K2

X) 8m− 4 8m− 4 8m− 3 8m− 2 8m− 2 8m 8m 8m

The surface X is then a unirational surface of general type.
A proof which is given in the subsequent paragraphs will be not

more than a sketchy one, as the arguments are similar to the ones in the
previous section.
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3.2

Let f : X→ C be as in 3.1. LetR be the function field ofC overk and
let XR be the generic fiber off . ThenXR is an irreducible normal pro-
jective curve withpa(XR) = 2. LetRs be a separable algebraic closure
of R. by Chevalley [12; Th. 5, p.99],X⊗

R
Rs is a normal projective curve

of arithmetic genus 2. Hence, every singular point ofXR is a one-place
point and is rational over a purely inseparable extension ofR. If the
geometric genus ofXR equals 1 thenXR has a single ordinary cusp of281

multiplicity 2 as its unique singularity. However, this is impossible by
virtue of Tate [55] because the characteristic ofk is 5. Thus the geomet-
ric genus ofXR is 0 andXR has either two ordinary cusps of multiplicity
2 or a single cuspidal point of multiplicity (2, 2, 1, . . .) as its singularity.
We shall see that the former case does not occur. Indeed, letQ be one
of two ordinary cusps, letΓ be the closure ofQ in X and let fΓ : Γ→ C
be the restriction off ontoΓ. SinceQ is a one-place point ofXR, fΓ is
a generically one-to-one morphism. Hence degfΓ is a powerpn of the
characteristicp of k. For a pointP of C such thatf −1(P) meetsΓ at a
simple point ofΓ, we have (f −1(P) · Γ) = 2 or 3 becausef −1(P) ∩ Γ
is an ordinary cusp of multiplicity 2 onf −1(P). This is a contradiction
becausep = 5. Therefore we know thatXR is an irreducible normal
projective curve of arithmetic genus 2 and geometric genus 0and with
a single cuspidal point of multiplicity (2, 2, 1, . . .) as its unique singular-
ity. This implies thatXR , minus the unique singular point, is aR-form
of the affine lineA1 of R-genus 2. Weassumethat f : X → C has a
rational cross-section,viz. XR has aR-rational point. Then, by virtue of
Lemma 1.5.1,XR is R-birationally equivalent to an affine plane curve:

(1) t2 = x5
+ a with a ∈ R −R5.

The surfaceX is unirational overk if and only if C is rational overk.
Indeed, the “only if” part follows from the Lüroth’s theorem; the “if”282

part holds becauseR1/5⊗
R

k(X) is rational overk. Now assumethat X

is unirational overk and writeR := k(y). Then X is k-birationally
equivalent to a hyper surface inA3

k:

t2 = x5
+ ϕ(y) with ϕ(y) ∈ k[y],(2)
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whered := degy ϕ is prime to 5.

This proves the first assertion in the theorem. Conversely, let K :=
k(t, x, y) be the function field of a hyper surface (2) and letX be a non-
singular projective model ofK; we denote byX a nonsingular minimal
model ofK if K is not rational overk. We may assume without loss of
generality that the following conditions are satisfied:

(i) ϕ(y) has no terms of degree multiples of 5.

(ii) Let α andβ(∈ k) satisfyϕ′(α) = 0 andβ5
+ ϕ(α) = σ. Then

e := vα(ϕ(y) − ϕ(α)) satisfies 2≦ e≦ 9 ande, 5.

Indeed, a birational transformation of the type (t, x, y) 7→ (t, x+ ρ(y), y)
annihilates the terms of degree multiples of 5 inϕ(y). With the notations
of (ii), the hyper surface is written as

t2 = (x− β)5
+ (y− α)eϕ1(y) with ϕ1(α) , 0.

If e≧ 10 the degree ofϕ(y) drops by a birational transformation (t, x, y)
7→ (t/(y− α)5, (x− β)/(y− α)2, y). Hence we may assume thate≦ 9. If
e= 5 a birational transformation (t, x, y) 7→ (t, (x− β)+ γ(y−α), y) with
γ5
= ϕ1(0) enables us to assume.e≧ 6.

3.3

SetA(x, y) := x5
+ ϕ(y). EmbedA2

k := Spec(k[x, y]) into F0 := P1
k × P

1
k 283

as the complement of two lines (x = ∞) ∪ (y = ∞) and letC be the
curve onF0 defined byA(x, y) = 0. Let H0 be the normalization ofF0

in K := k(t, x, y) and letρ0 : H0 → F0 be the normalization morphism.
Thenρ0 is a double covering withC contained in the branch locus. We
shall look for a de singularization ofH0. As is well-known (cf. 2.5 and
2.6), a de singularization ofH0 is obtained as follows. Letσ : F →
F0 be the shortest succession of quadratic transformations with centers
at singular points ofC such thatC := σ′(C) is nonsingular, letH be
the normalization ofF in K and letρ : H → F be the normalization
morphism. Write (σ∗A) in the form:

(σ∗A) = B− 2Z,
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whereB is a divisor whose coefficient at each prime divisor is 0 or 1
andZ is some divisor. ThenB is the branch locus of a double covering
ρ : H → F. If B is nonsingular thenH is nonsingular. IfB is singu-
lar, letσ : F → F be the shortest succession of quadratic transforma-
tions with centers at singular points of Supp(B) such that, if one writes
((σσ)∗A) = B − 2Z with divisors B andZ as above,B is nonsingular,
viz.every irreducible component of Supp(B) is a connected component.
Let H be the normalization ofF in K and letρ : H → F be the nor-
malization morphism. Thenρ is a double covering with branch locusB,
andH is nonsingular. ThusH is a de singularization ofH0; we have a
commutative diagram

H

ρ

��

τ // H

ρ

��

τ // H0

ρ0

��
F

σ // F
σ // F0,

whereτ andτ are the canonical morphisms induced by the normaliza-284

tions. Setπ := σ · ρ. The curveB is said to havea negligible singularity
at a pointP if one of the following conditions is satisfied:

(1) B is nonsingular atP,

(2) P is a double point,

(3) P is a triple point with at most a double point (not necessarily
ordinary) infinitely near.

If B has only negligible singularities then some numerical invariants
of H are computable at the stage ofF. Namely we have:

Lemma Artin [4]. Assume thatB has only negligible singularities. Then
the following assertions hold true.

(1) π∗(KF + Z) is a canonical divisor KH on H.

(2) pa(H) = 2pa(F0) + pa(Z) = pa(Z).

(3) (K2
H) = 2((KF + Z)2).
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3.4

We shall look into singular points of the curveC on F0. Let P := (x =
β, y = α) be a singular point ofC lying on the affine partA2

k : F0 − (x =
∞) ∪ (y = ∞). Thenϕ′(α) = β5

+ ϕ(α) = 0. Conversely, every root of
ϕ′(y) = 0 gives rise to a singular point ofC lying onA2

k. Let P := (x =
β, y = α) be such a singular point and lete := Vα(ϕ(y) − ϕ(α)). Then 285

P is a one-place point ofC, and we have 2≦ e ≦ 9 ande , 5 as we
assumed in 3.2. LetDP be the contribution byP in the effective divisor
σ∗(C) −C, and writeDP = D(1)

P + 2D(2)
P , whereD(1)

P ≧ 0, D(2)
P ≧ 0 and

every component ofD(1)
P has multiplicity 1. LetD(3)

P be the contribution
by P in the effective divisorKF − σ

∗(KF0). In the following, we shall

compute the valuesµP :=
1
2

(D(2)
P ·D

(2)
P −D(3)

P ) andνP := ((D(2)
P −D(3)

P )2)

for each type of a singular pointP of C.

Casee = 2. ThenP has multiplicity (2, 2, 1, . . .) andσ−1(P) has the
configuration

(cf. 2.6.2 for the conventions on the broken lines and solid curve (or
line)). HenceDP = 2E1 + 4E2, D(1)

P = 0, D(2)
P = E1 + 2E2 andD(3)

P =

E1 + 2E2; µP = νP = 0.

Casee = 3. ThenP has multiplicity (3, 2, 1, . . .) andσ−1(P) has the
configuration:

Then we have:DP = 3E1 + 5E2, D(1)
P = E1 + E2, D(2)

P = E1 + 2E2, 286
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D(3)
P = E1 + 2E2 andµP = νP = 0.

Casee = 4. P has multiplicity (4, 1, . . .) andσ−1(P) has the following
configuration:

Then we have:DP = 4E1, D(1)
P = 0, D(2)

P = 2E1, D(3)
P = E1 and

µP = νP = −1.

Casee = 6. P has multiplicity (5, 1, . . .) andσ−1(P) has the configura-
tion:

Then we have:DP = 5E1, D(1)
P = E1, D(2)

P = 2E1, D(3)
P = E1 and

µP = νP = −1.

Casee= 7. P has multiplicity (5, 2, 2, 1, . . .) andσ−1(P) has the config-
uration:
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with

Then we have:DP = 5E1 + 7E2 + 14E3, D(1)
P = E1 + E2, D(2)

P = 287

2E1 + 3E2 + 7E3, D(3)
P = E1 + 2E2 + 4E3 andµP = νP = −2.

Casee= 8. P has multiplicity (5, 3, 2, 1, . . .) andσ−1(P) has the config-
uration:

Then we have:DP = 5E1 + 8E2 + 15E3, D(1)
P = E1 + E3, D(2)

P =

2E1 + 4E2 + 7E3, D(3)
P = E1 + 2E2 + 4E3 andµP = νP = −2.

Casee = 9. P has multiplicity (5, 4, 1, . . .) andσ−1(P) has the configu-
ration:

Then we have:DP = 5E1 + 9E2, D(1)
P = E1 + E2, D(2)

P = 2E1 + 4E2,

D(3)
P = E1 + 2E2, µP = −1 andνP = −2.

We denote byD, D(1), D(2), D(3), µ andν the sum
∑

P

DP,
∑

P

D(1)
P ,

∑

P

D(2)
P ,

∑

P

D(3)
P ,

∑

P

µP and
∑

P

νP, respectively, whereP runs through
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all singular points ofC lying onA2
k.

3.5

Now we shall turn to the singular points ofC outside ofA2
k. It is easy to288

see thatC has only one pointQ outside ofA2
k andC is given locally at

Q by
ηd
+ ξ5ψ(η) = 0; Q = (ξ = 0, η = 0)

where x = 1/ξ, y = 1/η andψ(η) = ηdϕ(1/η) with ψ(0) , 0. We
introduce the following notations: Consider a fibrationF = {ℓα : ℓα is
defined byy = α} on F0. We denote byℓ∞ the fibery = ∞ and byS∞
the cross-sectionx = ∞. In the following we shall compute concretely
(σ∗A), B, Z, KF, KF + Z, pa(Z) and ((KF + Z)2).

3.5.1

Case d = 5n+ 1. ThenQ is a singular point of multiplicity (5, . . . , 5︸  ︷︷  ︸
n

, 1,

. . .) andσ−1(ℓ∞∪S∞∪C) has the configuration below in a neighborhood
of σ−1(Q):

with (En ·C) = 5 if n = 2m;

with (En ·C) = 5 if n = 2m+ 1, whereℓ∞ := σ′(ℓ∞) andS∞ := σ′(S∞).
We have:289
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(σ∗A) = C + 5(E1 + 2E2 + · · · + nEn) + D

− 5(S∞ + E1 + 2E2 + · · · + nEn) − d(ℓ∞ + E1 + · · · + En)

= C − 5S∞ − d σ∗(ℓ∞) + Γ

and

EF ∼ −2(S∞ + E1 + 2E2 + · · · + nEn) − 2(ℓ∞ + E1 + · · · + En)

+ (E1 + 2E2 + · · · + nEn) + D(3)

= −S∞ − σ
∗(S∞) − 2σ∗(ℓ∞) + D(3).

Hence we have:

3.5.1.1 Cased = 10m+ 1 (n = 2m).

B = C + S∞ + ℓ∞ + E1 + · · · + En + D(1)

Z = 3S∞ + (5m+ 1)σ∗(ℓ∞) − D(2)

KF + Z ∼ 2S∞ + (5m− 1)σ∗(ℓ∞) − σ∗(S∞) + (D(3) − D(2))

= S∞ + (3m− 1)σ∗(ℓ∞)

+ {2mℓ∞ + (2m− 1)E1 + · · · + E2m−1} + (D(3) − D(2))

pa(Z) =
1
2

(Z · KF + Z) + 1 = 4m+ µ

((KF + Z)2) = 2m− 2+ ν.

3.5.1.2 Cased = 10m+ 6 (n = 2m+ 1).

B = C + S∞ + D(1)

Z = 3S∞ + (5m+ 3)σ∗(ℓ∞) − D(2)

KF + Z ∼ 2S∞ + (5m+ 1)σ∗(ℓ∞) − α∗(S∞) + (D(3) − D(2))

= S∞ + 3mσ∗(ℓ∞) + {(2m+ 1)ℓ∞ + 2mE1 + · · · + E2m}

+ (D(3) − D(2))

pa(Z) = 4m+ 1+ µ

((KF + Z)2) = 2m− 2+ ν.
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3.5.2

Cased = 5n + 2. ThenQ has multiplicity (5, . . . , 5︸  ︷︷  ︸
n

, 2, 2, 1, . . .) and290

σ−1(ℓ∞ ∪ S∞ ∪ C) has the following configuration in a neighborhood
of σ−1(Q):

with (C · En+2) = 2 if n = 2m;

with (C · En+2) = 2 if n = 2m+ 1. We have:

(σ∗A) = C + 5(E1 + 2E2 + · · · + nEn) + (5n+ 2)En+1 + (10n+ 4)En+2+

D − 5(S∞ + E1 + 2E2 + · · · + nEn + (n+ 1)En+1 + (2n+ 1)En+2)

− d(ℓ∞ + E1 + E2 + · · · + En + En+1 + 2En+2)

= C − 5S∞ − dσ∗(ℓ∞) − 3En+1 − En+2 + D

and

KF ∼ −2σ∗(S∞) − 2σ∗(ℓ∞) + E1 + 2E2 + · · · + nEn

+ (n+ 1)En+1 + (2n+ 2)En+2 + D(3)

= −S∞ − σ
∗(S∞) − 2σ∗(ℓ∞) + En+2 + D(3).

Hence we have:291
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3.5.2.1 Cased = 10m+ 2 (n = 2m).

B = C + S∞ + En+1 + En+2 + D(1)

Z = 3S∞ + (5m+ 1)σ∗(ℓ∞) + 2En+1 + En+2 − D(2)

KF + Z ∼ 2S∞ + (5m− 1)σ∗(ℓ∞) − σ∗(S∞)

+ 2En+1 + 2En+2 + (D(3) − D(2))

= S∞ + (3m− 1)σ∗(ℓ∞) + {2mℓ∞ + (2m− 1)E1 + · · ·

+ E2m−1 + E2m+1 + E2m+2} + (D(3) − D(2))

pa(Z) = 4m+ µ

((KF + Z)2) = 2m− 2+ ν.

3.5.2.2 Cased = 10m+ 7 (n = 2m+ 1).

B = C + S∞ + (ℓ∞ + E1 + E2 + · · · + En) + En+2 + D(1)

Z = 3S∞ + (5m+ 4)σ∗(ℓ∞) + En+1 − D(2)

KF + Z ∼ 2S∞ + (5m+ 2)σ∗(ℓ∞) − σ∗(S∞) + En+1

+ En+2 + (D(3) − D(2))

= S∞ + (3m+ 1)σ∗(ℓ∞)

+ {(2m+ 1)ℓ∞ + 2mE1 + · · · + E2m} + (D(3) − D(2))

pa(Z) = 4m+ 2+ µ

((KF + Z)2) = 2m− 1+ ν.

3.5.3

Cased = 5n + 3. ThenQ has multiplicity (5, . . . , 5︸  ︷︷  ︸
n

, 3, 2, 1, . . .) and

σ−1(ℓ∞ ∪ S∞ ∪ C) has the configuration below in a neighborhood of
σ−1(Q):
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with (C · En+2) = 2 if n = 2m;292

with (C · En+2) = 2 if n = 2m+ 1. We have:

(σ∗A) = C + 5(E1 + 2E2 + · · · + nEn) + (5n+ 3)En+1

+ (10n+ 5)En+2 + D

− 5(S∞ + E1 + 2E2 + · · · + nEn + (n+ 1)En+1 + (2n+ 1)En+2)

− d(ℓ∞ + E1 + E2 + · · · + En + En+1 + 2En+2)

= C − 5S∞ − dσ∗(ℓ∞) − 2En+1 + D

and

KF ∼ −2σ∗(S∞) − 2σ∗(ℓ∞) + E1 + 2E2 + · · · + nEn + (n+ 1)

En+1 + (2n+ 2)En+2 + D(3)

= −S∞ − σ
∗(S∞) − 2σ∗(ℓ∞) + En+2 + D(3).

Hence we have:

3.5.3.1 Cased = 10m+ 3 (n = 2m).

B = C + S∞ + ℓ∞ + E1 + · · · + En + En+1 + D(1)

Z = 3S∞ + (5m+ 2)σ∗(ℓ∞) + En+1 − En+2 − D(2)

KF + Z ∼ 2S∞ + 5mσ∗(ℓ∞) − σ∗(S∞) + En+1 + (D(3) − D(2))
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= S∞ + (3m− 1)σ∗(ℓ∞) +
{
(2m+ 1)ℓ∞ + 2mE1 + · · ·+

E2m + E2m+1 + E2m+2

}
+ (D(3) − D(2))

pa(Z) = 4m+ µ

((KF + Z)2) = 2m− 2+ ν.

3.5.3.2 Cased = 10m+ 8 (n = 2m+ 1). 293

B = C + S∞ + D(1)

Z = 3S∞ + (5m+ 4)σ∗(ℓ∞) + En+1 − D(2)

KF + Z ∼ 2S∞ + (5m+ 2)σ∗(ℓ∞) − σ∗(S∞) + En+1 + En+2

+

(
D(3) − D(2)

)

= S∞ + (3m+ 1)σ∗(ℓ∞) +
{
(2m+ 1)ℓ∞ + 2mE1 + · · · + E2m

}

+

(
D(3) − D(2)

)

pa(Z) = 4m+ 2+ µ

((KF + Z)2) = 2m− 1+ ν.

3.5.4

Cased = 5n + 4. ThenQ has multiplicity (5, . . . , 5︸  ︷︷  ︸
n

, 4, 1, . . .) andσ−1

(ℓ∞∪S∞∪C) has the configuration below in a neighborhood ofσ−1(Q):

with (C · En+1) = 4 if n = 2m;
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with (C · En+1) = 4 if n = 2m+ 1. We have:

(σ∗A) = C + 5(E1 + 2E2 + · · · + nEn) + (5n+ 4)Fn+1 + D

− 5(S∞ + E1 + 2E2 + · · · + nEn + (n+ 1)En+1)

− d(ℓ∞ + E1 + E2 + · · · + En + En+1)

= C − 5S∞ − dσ∗(ℓ∞) − En+1 + D

and294

KF ∼ −2σ∗(S∞) − 2σ∗(ℓ∞) + E1 + 2E2 + · · ·+

nEn + (n+ 1)Fn+1 + D(3)

= −S∞ − σ
∗(S∞) − 2σ∗(ℓ∞) + D(3).

Hence we have:

3.5.4.1 Cased = 10m+ 4 (n = 2m).

B = C + S∞ + En+1 + D(1)

Z = 3S∞ + (5m+ 2)σ∗(ℓ∞) + En+1 − D(2)

KF + Z ∼ 2S∞ + 5mσ∗(ℓ∞) − σ∗(S∞) + En+1 + (D(3) − D(2))

= S∞ + 3mσ∗(ℓ∞) + {2mℓ∞ + (2m− 1)E1 + · · · + E2m−1}

+ (D(3) − D(2))

pa(Z) = 4m+ 1+ µ

((KF + Z)2) = 2m− 1+ ν.

3.5.4.2 Cased = 10m+ 9 (n = 2m+ 1).

B = C + S∞ + ℓ∞ + E1 + · · · + En + D(1)
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Z = 3S∞ + (5m+ 5)σ∗(ℓ∞) − D(2)

KF + Z ∼ 2S∞ + (5m+ 3)σ∗(ℓ∞) − σ∗(S∞) + (D(3) − D(2))

= S∞ + (3m+ 1)σ∗(ℓ∞) +
{
(2m+ 2)ℓ∞ + (2m+ 1)

E1 + · · · + 2E2m + E2m+1

}
+ (D(3) − D(2))

pa(Z) = 4m+ 2+ µ

((KF + Z)2) = 2m− 2+ ν.

3.6

Next we shall consider the nonsingular minimal modelĤ of K. In the 295

remaining paragraphs of this section we shall assume for thesake of
simplicity thatD(2)

= p(3). In view of 3.4, this is equivalent to assuming
that vα(ϕ′(y)) ≦ 2 for every rootα of ϕ′(y) = 0, and this implies that
µ = ν = 0. We shall consider firstthe case m≧ 1. We know in
view of 3.4 and 3.5 thatB has negligible singularities; this implies that
pa(H) = pa(Z) > 0 (becausem≧ 1) andKH ∼ π

∗(KF + Z) (cf. Lemma
3.3); in particular,H is not rational overk and Ĥ exists. In each of
the cases enumerated below the results are obtained by straightforward
computations. So, the details will be omitted.

3.6.1

Cased = 10m+ 1. The following assertions hold true:

(1) (σπ)−1(ℓ∞ ∪ S∞) has the next weighted graph:

whereπ∗(ℓ∞) = 2̃ℓ∞ + ℓ̃′∞, π∗(E1) = ℓ̃′∞ + 2Ẽ1 + Ẽ′1, π∗(Ei) =
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Ẽ′i−1 + 2Ẽi + Ẽ′i for 2 ≦ i ≦ 2m− 1, π∗(E2m) = Ẽ′2m−1 + 2Ẽ2m +

6L1+5L′2+Σ
11
i=2(12− i)Li andπ∗(S∞) = 2S̃∞+L1+L′2+2(Σ11

i=2Li).

(2) π∗(KF +Z) ∼ π∗(S∞)+ (3m−1)π∗σ∗(ℓ∞)+ {4mℓ∞+ (4m−1)̃ℓ′∞ +
(4m−2)E1+· · ·+2Ẽ2m−1+Ẽ′2m−1}. SinceKH ∼ π

∗(KF+Z) we know296

by (1) and (2) above that̂H is obtained fromH by contracting̃ℓ∞,
ℓ̃′∞, Ẽ1, Ẽ′1, . . . , Ẽ2m−1 andẼ′2m−1. Hence (K2

Ĥ
) = 2((KF + Z)2) +

4m= (4m− 4)+ 4m= 8m− 4.

3.6.2

Cased = 10m+ 2. The following assertions hold true:

(1) (σπ)−1(ℓ∞ ∪ S∞) has the next weighted graph:

whereπ∗(ℓ∞) = ℓ̃∞ + ℓ̃′∞, π∗(Ei) = Ẽi + Ẽ′i for 1 ≦ i ≦≦ 2m− 1,
π∗(E2m) = Ẽ2m + Ẽ′2m + L + L′ + L1, π∗(E2m+2) = L + L′ + 2L1 +

2Ẽ2m+2+L2, π∗(E2m+1) = L2+2Ẽ2m+1+L3 andπ∗(S̃∞) = 2S̃∞+L3.

(2) KH ∼ π
∗(KF +Z) ∼ π∗(S∞)+ (3m−1)(σπ)∗(ℓ∞)+ {2m̃ℓ∞+ (2m−

1)Ẽ1+ · · ·+ Ẽ2m−1}+ {2m̃ℓ′∞+ (2m−1)Ẽ′1+ · · ·+ Ẽ′2m−1}+2Ẽ2m+1+

2Ẽ2m+2 + L + L′ + L1 + 2L2 + L3.

ThenĤ is obtained fromH by contracting̃ℓ∞, Ẽ1, . . . , Ẽ2m−1 and
ℓ̃′∞, Ẽ′1, . . . , Ẽ

′
2m−1. Hence (K2

Ĥ
) = 2((KF +Z)2)+4m= (4m−4)+

4m= 8m− 4.

3.6.3

Cased = 10m+ 3. The following assertions hold true:
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(1) (σπ)−1(ℓ∞ ∪ S∞) has the next weighted graph:

whereπ∗(ℓ∞) = 2̃ℓ∞ + ℓ̃′∞, π∗(E1) = ℓ̃′∞ + 2Ẽ1 + Ẽ′1, π∗(Ei) = 297

Ẽ′i−1 + 2Ẽi + Ẽ′i for 2 ≦ i ≦ 2m− 1, π∗(E2m) = Ẽ′2m−1 + 2Ẽ2m,
π∗(E2m+2) = Ẽ2m+2+L, π∗(E2m+1) = L+2Ẽ2m+1+L′ andπ∗(S∞) =
L′ + 2S̃∞.

(2) KH ∼ π
∗(KF + Z) ∼ π∗(S∞) + (3m− 1)(σπ)∗(ℓ∞)+ {(4m+ 2)̃ℓ∞ +

(4m+1)̃ℓ′∞ +4mẼ1+ (4m−1)Ẽ′1+ · · ·+3Ẽ′2m−1+2Ẽ2m}+ Ẽ2m+2+

2L + 2Ẽ2m+1 + L′.

Then Ĥ is obtained fromH by contractingℓ̃∞, ℓ̃′∞, Ẽ1, . . . , Ẽ2m.
Hence (K2

Ĥ
) = 2((KF +Z)2)+ (4m+ 1) = (4m− 4)+ (4m+ 1) = 8m− 3.

3.6.4

Cased = 10m+ 4. The following assertions hold true:

(1) (σπ)−1(ℓ∞ ∪ S∞) has the next weighted graph:

-2 -2

-2

-2

-2

-3

-2

-2

-2

-1

-(m+1)

-1

-2 -2-3

-3-2 -2

whereπ∗(ℓ∞) = ℓ̃∞ + ℓ̃′∞, π∗(Ei) = Ẽi + Ẽ′i for 1 ≦ i ≦ 2m− 1,
π∗(E2m) = Ẽ2m+Ẽ′2m+(Σ3

i=1(Li+L′i ))+L4, π∗(E2m+1) = (Σ3
i=1i(Li+

L′i )) + 4L4 + 2Ẽ2m+1 + L5 andπ∗(S̄∞) = L5 + 2S̃∞.

(2) KH ∼ π
∗(KF+Z) ∼ π∗(S∞)+3m(σπ)∗(ℓ∞)+{2m̃ℓ∞+(2m−1)Ẽ1+

· · · + Ẽ2m−1} + {2m̃ℓ′∞ + (2m− 1)Ẽ′1 + · · · + Ẽ′2m−1}.
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ThenĤ is obtained fromH by contracting̃ℓ∞, Ẽ1, . . . , Ẽ2m−1 and̃ℓ′∞,
Ẽ′1, . . . , Ẽ

′
2m−1. Hence (K2

Ĥ
) = 2((KF+Z)2)+4m= (4m−2)+4m= 8m−2.

3.6.5

Cased = 10m+ 6. The following assertions hold true:

(1) (σπ)−1(ℓ∞ ∪ S∞) has the next weighted graph:298

-2 -2-2

-2 -2

-2

-2

-1

-(m+1)

-1

there components meet in one point with (Ẽ2m+1 · Ẽ′2m+1) = 2 and
(Ẽ2m+1 · L) = (Ẽ′2m+1 · L) = 1

whereπ∗(ℓ∞) = ℓ̃∞ + ℓ̃
′
∞, π∗(Ei) = Ẽi + Ẽ′i for 1 ≦ i ≦ 2m,

π∗(E2m+1) = Ẽ2m+1 + Ẽ′2m+1 + L andπ∗(S∞) = 2S̃∞ + L.

(2) KH ∼ π
∗(KF+Z) ∼ π∗(S∞)+3m(σπ)∗(ℓ∞)+{(2m+1)̃ℓ∞+2mẼ1+

· · · + Ẽ2m} + {(2m+ 1)̃ℓ′∞ + 2mẼ′1 + · · · + Ẽ′2m}.

ThenĤ is obtained fromH by contracting̃ℓ∞, Ẽ1, . . . , Ẽ2m andℓ̃′∞,
Ẽ′1, . . . , Ẽ

′
2m. Hence (K2

Ĥ
) = 2((KF+Z)2)+(4m+2) = (4m−4)+(4m+2) =

8m− 2.

3.6.6

Cased = 10m+ 7. The following assertions hold true:

(1) (σπ)−1(ℓ∞ ∪ S∞) has the next weighted graph:
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whereπ∗(ℓ∞) = 2̃ℓ∞ + ℓ̃′∞, π∗(E1) = ℓ̃′∞ + 2Ẽ1 + Ẽ′1, π∗(Ei) =
Ẽ′i−1 + 2Ẽi + Ẽ′i for 2 ≦ i ≦ 2m, π∗(E2m+1) = Ẽ′2m + 2Ẽ2m+1 +

2(L1 + L2+ L3+ L4)+ L5+ L6, π∗(E2m+3) = 2Ẽ2m+3 + L1+ 2L2+

3L3 + 4L4 + 2L5 + 3L6, π∗(E2m+2) = Ẽ2m+2 andπ∗(S∞) = 2S̃∞. 299

(2) KH ∼ π
∗(KF + Z) ∼ π∗(S∞) + (3m+ 1)(σπ)∗(ℓ∞)+ {(4m+ 2)̃ℓ∞ +

(4m+ 1)̃ℓ′∞ + 4mẼ1 + · · · + 2Ẽ2m + Ẽ′2m}.

ThenĤ is obtained fromH by contracting̃ℓ∞, ℓ̃′∞, Ẽ1, Ẽ′1, . . . , Ẽ2m

andẼ′2m. Hence (K2
Ĥ

) = 2((KF +Z)2)+ (4m+2) = (4m−2)+ (4m+2) =
8m.

3.6.7

Cased = 10m+ 8. The following assertions hold true:

(1) (σπ)−1(ℓ∞ ∪ S∞) has the next weighted graph:

-3 -2-2

-3 -2-2

-1

-(m+1)

-1 -2

-4

-2

three components meet each other transversely in one point where
π∗(ℓ∞) = ℓ̃∞+ℓ̃′∞, π∗(Ei) = Ẽi+Ẽ′i for 1 ≦ i ≦ 2m+1 or i = 2m+3,
π∗(E2m+2) = Ẽ2m+2 andπ∗(S̃∞) = 2S̃∞.
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(2) KH ∼ π
∗(KF +Z) ∼ π∗(S∞)+ (3m+ 1)(σπ)∗(ℓ∞)+ {(2m+ 1)̃ℓ∞ +

2mẼ1 + · · · + Ẽ2m} + {(2m+ 1)̃ℓ′∞ + 2mẼ′i + · · · + Ẽ′2m}.

ThenĤ is obtained fromH by contracting̃ℓ∞, Ẽ1, . . . , Ẽ2m andℓ̃′∞,
Ẽ′1, . . . , Ẽ

′
2m. Hence (K2

Ĥ
) = 2((KF+Z)2)+(4m+2) = (4m−2)+(4m+2) =

8m.

3.6.8

Cased = 10m+ 9. The following assertions hold true:

(1) (σπ)−1(ℓ∞ ∪ S∞) has the next weighted graph:300

-1 -2 -2 -2 -2 -4-2 -2-2

where∆ stands for an irreducible rational curvẽE2m+2 with an
ordinary cuspP of multiplicity 2, L intersectsẼ2m+2 at the cusp
point with (L · Ẽ2m+2) = 2 andS̃∞ intersectsẼ2m+2 transversely
at a simple point; and whereπ∗(ℓ∞) = 2̃ℓ∞ + ℓ̃′∞, π∗(E1) = ℓ̃′∞ +
2Ẽ1 + Ẽ′1, π∗(Ei) = Ẽ′i−1 + 2Ẽi + Ẽ′i for 2 ≦ i ≦ 2m, π∗(E2m+1) =
Ẽ′2m + 2Ẽ2m+1 + L, π∗(E2m+2) = L + 2Ẽ2m+2 andπ∗(S∞) = 2S̃∞.

(2) KH ∼ π
∗(KF +Z) ∼ π∗(S∞)+ (3m+ 1)(σπ)∗(ℓ∞)+ {(4m+ 4)̃ℓ∞ +

(4m+ 3)̃ℓ′∞ + (4m+ 2)Ẽ1 + · · · + 4Ẽ2m + 3Ẽ′2m + 2Ẽ2m+1 + L}.

ThenĤ is obtained fromH by contracting̃ℓ∞, ℓ̃′∞, Ẽ1, Ẽ′1, . . . , Ẽ2m,
Ẽ′2m, Ẽ2m+1 andL. Hence (K2

Ĥ
) = 2((KF + Z)2) + (4m+ 4) = (4m− 4)+

(4m+ 4) = 8m.

3.7

Next we shall considerthe case m= 0 and assume thatD(2)
= D(3).

In principle we follow the arguments and computations done in 3.5 and
3.6. More precisely, the configurations ofσ−1(ℓ∞ ∪S∞ ∪C) in a neigh-
borhood ofσ−1(Q) are those in 3.5 up to the following modifications:
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If d = 1, 2, 3, 4 then omitℓ∞, E1, . . . ,En−1, put n = 0 and set anew

ℓ∞ := E0 and (ℓ
2
∞) = (E2

n)+1; if d = 6, 7, 8, 9 then omitℓ∞, E1, . . . ,En−1,

putn = 1 and set anewℓ∞ := E0 and (ℓ
2
∞) = (E2

n−1)+1. The expressions
of B, Z, KF + Z, pa(Z) and ((KF + Z)2) are obtained from those in 3.6
by due modifications.

3.7.1

Cased = 1. ThenK is apparently rational overk. 301

3.7.2

Cased = 2 (cf. 3.5.2.1 and 3.6.2). Thenpa(H) = 0 andKH ∼ (σπ)∗

(S∞ − ℓ∞). Hence the bigenusp2(H) = 0. ThusH is rational overk by
Castelnuovo’s criterion of rationality.

3.7.3

Cased = 3 (cf. 3.5.3.1 and 3.6.3). Thenpa(H) = 0 andKH ∼ 2S̃∞ +
L′ − Ẽ2 − L. Let ρ : H → Y be the contraction of̃S∞ andL′. Then
KY ∼ −ρ(E2) − ρ(L). Hencepa(Y) = P2(Y) = 0. ThusY is rational over
k, and so isH.

3.7.4

Cased = 4 (cf. 3.5.4.1 and 3.6.4). Thenpa(H) = 1 andKH ∼ 2S̃∞+L5.
Let ρ : H → Y be the contraction of̃S∞ andL5. ThenKY ∼ 0, which
implies thatY is a K3-surface andY � H (the nonsingular minimal
model ofK overk).

3.7.5

Cased = 6 (cf. 3.5.1.2 and 3.6.5). Thenpa(H) = 1 andKH ∼ 2S̃∞ + L.
Let ρ : H → Y be the contraction of̃S∞ andL. ThenKY ∼ 0, which
implies thatY is a K3-surface.
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3.7.6

Cased = 7 (cf. 3.5.2.2 and 3.6.6). Thenpa(H) = 2 andKH ∼ π
∗(S∞ +

ℓ∞) + (σπ)∗(ℓ∞) = 2̃ℓ∞ + ℓ̃′∞ + 2S̃∞ + (σπ)∗(ℓ∞). Let ρ : H → Y be
the contraction of̃S∞, ℓ̃∞ and ℓ̃′∞. ThenY is a minimal surface with
KY ∼ ρ∗((σπ)∗(ℓ∞)). Hence (K2

Y) = 1. ThenY is a surface of general
type.

3.7.7

Cased = 8 (cf. 3.5.3.2 and 3.6.7). Thenpa(H) = 2 andKH ∼ 2S̃∞ +
ℓ̃∞ + ℓ̃

′
∞ + (σπ)∗(ℓ∞). Let ρ : H → Y be the contraction of̃S∞, ℓ̃∞ and

ℓ̃′∞. ThenY is a minimal surface withKY ∼ ρ∗((σπ)∗(ℓ∞)) and (K2
Y) = 1.302

HenceY is a surface of general type.

3.7.8

Cased = 9 (cf. 3.5.4.2 and 3.6.8). Thenpa(H) = 2 andKH ∼ 2S̃∞ +
4̃ℓ∞+3̃ℓ′∞+2Ẽ1+L+(σπ)∗(ℓ∞). Letρ : H → Y be the contraction of̃S∞,
ℓ̃∞, ℓ̃′∞, Ẽ1 andL. ThenY is a minimal surface withKY ∼ ρ∗((σπ)∗(ℓ∞))
and (K2

Y) = 1. HenceY is a surface of general type.

3.8

Now it is clear that Theorem 3.1 is proved in the arguments of the fore-
going paragraphs. In order to show that there exists a unirational sur-
faces of general type in characteristicp > 5 we shall state the next result
without proof.

Proposition. Let k be an algebraically closed field of characteristic p>
2. Let K : k(t, x, y) be the algebraic function field of a hyper surface in
A3

k:

t2 = xp
+ yp+1

+ yp−1
+ yp−2

+ · · · + y2
+ y.

Then K is rational over k if p= 3 and irrational over k if p≧ 5. Let
X be the nonsingular minimal model of K over k if p≧ 5. Then X is
a unirational K3-surface if p= 5, and X is a unirational surface of
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general type with pa(X) = (p − 1)(p − 3)/8 and (K2
X) = (p − 5)2/2 if

p ≧ 7.
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