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Preface

THESE ARE THE lecture notes of a course of about twentyfociules
given at the T.I.LF.R. centre, Indian Institute of Sciencan@alore, in
January and February 1978.

The first three chapters provide basic background on theythafo
characteristics and shock waves. These are meant to beuntosy
and are abbreviated versions of topics in my book “Linearradinear
waves”, which can be consulted for amplification.

The main content is an entirely new presentation. It is onewat
waves, with special emphasis on old and new results for waxes
sloping beach. This topic was chosen as a versatile one valnezaor-
mous number of the methods and techniques used in applideemat-
ics could be illustrated on a single area of application.himrelatively
short time availabel, | wanted to avoid spending time on thfilation
of problems in diferent areas. Waves on beaches together with ramifi-
cations to islands, tsunamis, etc., is also a very active @ittesearch.

In any current course on wave propagation, it seemed eabtmti
mention, at least, the quite amazing results being foundxantesolu-
tions for the Korteweg-de Vries equation and related equoati Since
this has now become such a huge subject, the choice was &npies
new approach we have developed (largely by R. Rosaleskrréthn
review the original and alternative approaches. Since theeegde
Vries equation and its solutions originated in water waestl, this fits
well with the other material. Like the other topics, the neattatical re-
sults go far beyond this original field and have many otheliegions.

\Y



Vi Preface

The enthusiasm and participation of the audience madenhisiost
enjoyable teaching experience | have ever had. | wish toktkia stu-
dents, faculty and N.A.L. participants for their kindnesd atimulation.

Notes were taken by G. Vijayasundaram and P.S. Datti, anahkth
them for their devotedftorts.

Professors K.G. Ramanathan and K. Balagangadharan gawe mos
generously of their time and energy to make all aspects ofvigitr
smooth and enjoyable. We are sincerely grateful.

G.B. Whitham

Pasadena, California
August, 1978
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Chapter 1

Introduction to Nonlinear
Waves

1.1 One dimensional linear equation
The Wave equation
o = GV
occurs in the classical fields of acoustics, electromagmetind elastic-

ity and many familiar “mathematical methods” were devetbpa it.
The solution of the one-demensional form,

(1.1) ¢t — Copxx = O,

is almost trivial. Introducing the variables 8 by
a = X—Cpt,
B = X+ Cot,

equation[[LI) becomes,z = 0. The general solution of this equation
is

¢ = f(a) + 9(B)
Therefore, the general solution @I {fl.1) is
1.2) p(x. 1) = f(X— cot) + g(x + Cot);

1



1. Introduction to Nonlinear Waves

f, g are determined by the initial or boundary conditions.

(i) For the initial value problem

t=0:¢=¢o(X),dt = p1(X) > —00 < X < 00,

the solution is

X+Cot
_ fo(X—Cot) + go(X+Cot) 1
(1.3) ¢(xb) = 5 * o f #1(9) ds
X—Cpt

(il) For the signalling problem
t=0:¢=0,¢y =0,x> 0,
x=0:¢=¢(),t>0,

the solution inx > 0,t > 0, is
X

(1.4) 6= { R
ot-%) >3

1.2 A basic non-linear wave equation

The solutionf andg correspond to the two factors when equationl(1.1)
9 ,62) (9 _¢9\s-0

ot P ot “9ax)? =Y

While equation[{T]1) is simple to handle it would be given dien
if only one of the factors occurred, and we had, for example,

is written as

0 o
ot +CO(’)X =9,

with the solutiong = f(x — cpt).
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The simplest non-linear wave equation is a counterpart i@ th
namely:

9%
ot
wherec(¢) is a given function of. For the initial value problem, we
would add the initial condition

d
(1.5) +C(¢)6_(i =0,t>0,—0c0 < X< 00,

(1.6) t=0:¢=f(X), —00 < X< o0,

Though this equation looks simple it poses nontrivial peats in
the analysis and leads to new phenomena.

The equation can be solved by the method of characterislibs.
idea is to note that a linear combination

N

can be interpreted as the directional derivativegoin the direction
(a, b). A characteristic curve is introduced such that its dioects (a, b)
at each point. Then the equation provides information onrgle of
change ofp on this curve and we havefectively an ordinary dfer-
ential equation, which leads to the solution. In applyinig idea and
carrying out the details fof(1l.5), we first consider any eifidescribed
by x = x(t). (See Fig[CTl1)

t €

Figure 1.1:
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On %, we have
¢ = ¢(X(t),1);
i.e. ¢ may be treated temporarily as a functiortofFfurthermore, on we
have

d_¢_ dx

(1.8) =

Now to implement the idea noted above we chogso thatdx/dt =
c(¢). Then the right hand side di-(1.8) is just the combinaticat Hp-
pears in the equatiof.(1.5) and we halggdt = 0. If the initial point on
the characteristic curve is denoted &ythen the initial condition[{116)
requiresp(0) = f(£). Combining these we have the following “charac-
teristic form”.

d
(L9) T =00, X0)=¢
On %: do
(1.10) Py ¢(0) = f(&).

We cannot solve[{119) independently bfT1.10) sinds a function
of ¢. Hence we have a coupled pair of ordinarffeliential equations
on%. The solution forp depends on theb initial condition; therefofg,
also depends on the initial condition.

Although [I.9) cannot be solved immediately, (1.10) cagives

¢ = constant on %,
and therefore
¢ = 1(£) on the whole of %.
Then, returning td{T]9) and definifg(&) by

F(&) = c(f(£)).

we have
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dx
(1.11) at - e
x(0) = &
Integrating [I11) we obtain
X = tF(&) + &.

The characteristic curve is a straight line whose slope mpens.
Combining the results we have the solution in parametrimfor

(1.12) ¢ = f(&)
(1.13) X =& +1tF(€).

In making this construction it is easiest to think of just gaeticular
characteristic curve. But from the final answier_(1.12)=8]. ve can
then find the solution in a whole(t) region by varyingé. This leads
to a change of emphasis: To figdat a given %, t), solve [I.IB) for
&(x,t) and substitute if{1.12). This final form is an analytic esta¢nt
free of the geometrical construction. We check directly itwsolves the
problem.

In solving [I.IB), there is a unique solutig(x, t) provided

(1.14) 1+ tF'(&) # 0,

which we assume for the present.
Initial condition . Whent = 0,¢ = x by (I.I3). Hence[TL12) impliesé
¢ = £(x).

Equation. Differentiating the equation§ {1]113) arfld (1.12) partially
w.r.t. t we obtain

0=F(&) +{tF'(¢) + 1} &,
¢ = F'(€)é.
Eliminating & we have

VEFE

h= 1+ tF @)
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Similarly, differentiating the equation§{1113) aid (1.12) partially
w.r.t. x and eliminatingty we find

RG]
Ox = 1+tF/ (&)
Hence
_ P(OF() f'(£)
¢t + C(P)px = ) F(f)rlz,(g)
=0,

Uniqueness If y(x, t) is some other solution of {1.5) arld{lL.6) then on
X =& +1tF (&)
Y(x 1) = ¢(£,0) = £(£) = s(x.1).
Hencey = ¢.
Thus we have proved the following.

Theorem. The initial value problem
¢t + C(P)px = 0,1 > 0, —c0 < X < 00,

witht=0:¢ = f(X), —0 < X < o0, has a unique solution in

O<t< ——
max |F’
i) (§)<Ol ]

if f € CX(R),c e CL(R), where
F(£) = c(f(©).
The solution is given in the parametric form:
X =& +1F(8),
$(x. 1) = £(£).

Remark. Whenc(¢) = cg, a positive constant, equatidn_{1.5) becomes
the linear wave equation:

$t + Coppx = O.
The characteristic curves axe= ot + £, andg is given by
P(x 1) = £(£) = f(x— cot).



1.3. Expansion wave

1.3 Expansion wave

Consider the problem

Gt +C(P)px =0, on t>0,—oco< X< o0,
t=0:¢=f(X),—00 < X< o0,

where
¢, if x<O

f(X) = ¢ monotonic increasing, if & x<L
¢1, = if x>L,

with ¢1 > ¢ andc’(¢) > 0.
We shall letc; = c(¢1), ¢ = c(¢2).

Y =¥
Y = P2

L

Figure 1.2:

We recall the solution of the problem:

¢ = (&),
x =& +1F(S),

where

F (&) = c(f(£)).
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Let us consider the characteristics of this problem. Far0,

F(€) = c(f(£) = c¢2) = c2.

Therefore, the characteristics througfx 0) are straight lines with
constant slope:.

Foré > L, F(€) = c(f(¢)) = c(p1) = c1. Hence, the characteristics
through&(> L) are also straight lines, with constant sloée For 0<
& < L, the characteristics throughare straight lines having slop%%g
with £ < % <&

Since the characteristics do not intersect, (and this spamrds
([ I2) we obtainp as a single valued function. A typicat,f) diagram
is shown in Fig. 1.4(b).

The behavior of the solution can be explained geometricaly
shown in the figureS71.3(4).1.3(b).

@ ©
Y =1 f
Y= T le=w
x X
t=0 t>0
Figure 1.3: (a) Figure 1.3: (b)

Every point €, ¢(£)) att = 0 will move parallel to thex-axis through
a distanceet; in timet;. Sincec (@) > 0, ¢, < ¢1, the points £, ¢1)(& >
L) move faster than the points,¢2) (¢ < 0). Hence, the graph gfat
t = 0 is stretched as the time increases.

The analytic details can be carried out most easily by worldn-
tirely with ¢ as the dependent variable.

Equation for C:
Consider the equation

Gt +C(P)px =0 in t>0, —co< X< 00
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t=0:¢=f(X), —0 < X< 0.

We have found that(¢) is the “propagation speed”, and in con-
structing solutions we have to deal with two functions, ngmgandc.
But by multiplying the equation by (¢) we obtain

Ci+CCy=0 in t>0,—0c0 < X< o0,
(1.15)
t=0:C=F(X),—c0 < X< 00,
whereC(x,t) = c(¢(x, 1)) and 10

F (&) = c(f(£)).

This equation involves only the unknown functi@(x,t) = ¢
(p(x,1)); we can recovep from C afterwards. The solution of the prob-

lem in (TIB5) is

X =&+ tF(9),

(1.16) C = Fe)

In the special case,

c; in x<0,
_ G-C i
C(x0)=qCc+2=x in 0<x<lL,
cp in x>L,

the x — t diagram is shown below in Fig. 1.4(b).

X

E. .
¢ t e

O t=0 O L

Figure 1.4: (a) Figure 1.4: (b)
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1.4 Centred expansion wave

We now consider the limiting case of the above problem, as 0. In
the limit the interval §;, ¢1] is associated with the origin. In the limit
we will have the characteristics

X=&+1c, if £<0,
X=&+1tc, if £€>0,
x=Ct, if £€=0,cp<C<c.

The collection of characteristice = Ct : C € [y, ¢1] through the
origin is called a ‘Centred fan’ and we ha@= x/t. In this case the
full solution is

Cy, If Xx<oo,
.17 C=<{x/t, if ct<x<cyt
cy, if Xx>cqt.

0 - 0
Limit as L — 0 Centered fan

Figure 1.5: (a) Figure 1.5: (b)

Thus we have the following.
Theorem. The initial value problem

Ci+CCy=0, t>0, —c0< X< 00,
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t—0:c=)% T £<0
c if £€>0,

and C continuous for ¢+ 0, has a unique solution given Z.TT)

1.5 Breaking

12
We consider again the geometrical intepretation of thetiswiof the

equations[(T1]5) and{1.6). We assume ttiat) > 0. The graph of at
timet = 0 is the graph off. Since

$(& +tF(E).1) = f(£),

we find that the point4, f(£)) moves parallel toc-axis in the positive
direction through a distandé (¢) = ct. It is important to note that the
distance moved depends énthis is typical of non-linear phenomena.
(In the linear case the curve moves parallekiaxis with constant ve-

locity cp).

®
patt=0 patt=1t patt>ip
X
0 § £+ cty

Figure 1.6:

After some timet = tg, the graph of the curvé may become many
valued as shown in the above figlirel1.6. This phenomenon lexdcal
“breaking”. It could at least make physical sense in the cdsgater
waves (although the equations are in fact not valid), but @stneases a
three valued solution would not make sense. We have to rietnsur
approximations and assumptions.
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13 We have seen thatif’(¢) + 1 # 0 then breaking will not occur. A
necessary and flicient condition for breaking to occur is thiat(¢) < 0
for someé. (We assume’(¢) > 0). For sucht’s the envelope of the
characteristics is obtained by eliminatitdrom the equations

X =&+ tF(9),
0=tF'(¢¥) +1

Breaking corresponds to the formation of such an envelopeel
assume that’(£) is minimum only atg andF’(£g) < O, the first break-
ing time will be

oo 11
°T F)  FE)l
¥ ¥
0 t=0 ’ 0 t=tp v
(a) (b)
Figure 1.7:

In thex, t, plane the breaking can be seen as follows: ski¢&s) <
0, F is a decreasing function in a neighbourhood®Wwill have increas-
ing slopes and therefore will converge giving a multivaluegion.
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0 {B
Figure 1.8:
14
From equations
b= - FE'(E) by = f"(£)
R TT75 W R G T 75 W

we see thad, ¢x will become infinite at the time of breaking.

In order to understand the physical meaning of breaking agith-m
ods used to correct the solution, we need to look at specifjsipal
problem.

Probelm on method of characteristics
Solve the following:

1. pr+elgy=0int>0,—c0 < X < 00,

1
t=0:¢=
¢ 1+ %2
2. ¢t +Coppx+ap =0int > 0, —co < X < o0,
t=0:¢=f(X

(a andCy positive constants)
3. X%+ dy+tp=0inX>0,—c0 <t < o0,
Xx=0:¢ = ()
4. Some equation as (3), but regig 0, t > 0, 15
t=0:¢=f(x), x>0,
Xx=0:¢=0(),t>0,
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B. ¢t +ddx +ap =0int >0, —co < X < o0,
t=0:¢ = f(X) as shown in Fig_T]6.
a is a positive constant.

Show that breaking need not always occur; i.e. solutiomigleval-
ued for allt in some cases.



Chapter 2

Examples

WE NOW DESCRIBE some problems which lead to the non-linear
eqguation
¢t + C(¢)px = 0.
In most of the problems we relate two quantitiegx, t) which is
the density of something per unit length agid, t) which is the flow per
unit time. If the ‘something’ is conserved, then for a settie < X < xg
we have the conservation equation

X1

d
(2.1) G [ pax+atan-aven -0
X2
Q(xZat) q(xlvt)
R — ——
i) (A
Figure 2.1:

15
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If p andq are continuously dierentiable then in the limix; — X,
equation[[(ZI1) becomes
dp 0q
—+—==0
ot ox

If there exists also a functional relatipn= Q(p) (this is so to a first
approximation in many cases) thén{2.2) can be written as

(2.3) pt+ c(p)px = 0,
wherec(p) = Q'(p).

We will now give some specific examples.

2.2)

2.1 Traffic Flow

We consider the flow of cars on a long highway. Herwill be the
number of cars per unit length. Letbe the average local velocity of
the cars. Them, the flow per unit time, is given by = pv. For a long
section of highway with no exits or entrances the cars arserwed so
that [Z1) holds. It also seems reasonable to assume thae@vérage
vis a function ofp to a first approximation. Hengesatisfies[(Z13). The
velocity v will be a decreasing functio¥ (p), andQ(p) = pV(p). When
the density is small the velocity will be some upper limitveue, and
when the density is maximum the velocity will be zero. Therefthe
graph ofV will take a form as shown in the figure 2.2.

O pj = maxp

Figure 2.2:
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Sinceq = Q(p) = pV, there will be no flow when the velocity is
maximum (i.e,po = 0) and wherp is maximum (i.eV = 0). Hence the 18
graph ofQ(p) will look like the figure 2.3.

It was found in one set of observations on U.S. highways that t
maximum density is approximately 225 vehicles per mile (jpaffic
lane), and the maximum flow is approximately 1500 vehicleshoer.
When the flowg is maximum the density is found to be around 80 vehi-
cles per mile.

M
Qmax [-====-=-=-===----= :
: p
O pym =~ 80vpm S;
Figure 2.3:

The propagation speed for the wavec{p) = Q'(p) = V(o) + ?TX
SinceV is a decreasing function @f ?TX < 0. Thusc(p) < V(p) i.e. the
propagation velocity is less than the average velocityafe to indi-
vidual cars the waves arrive from ahead.

Referring to theQ(p) diagram decreasing irpfs, p;], Q attains a
maximum atoy. Thereforec(p) = Q'(p) is positive in [Qpwm), zero at
pwm and negative indy, pj]. That is waves move forward relative to the
highway in [Q pm), are stationary gty and move backward ippfs, p;].

Greenberg in 1959, found a good fit with data for the Lincolnriel
in New York by taking

Q) = aplog (pj/p)

with a = 17.2mphandp; = 228vpm For this formula, 19
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V(o) = 22 — alog(oi )

andc(p) = Q'(p) = a(log(pj/p) — 1) = V(p) — a. Hence the relative
propagation velocity is equal to the constaaitdt all densities and this
relative speed is about 17 mph. The valuep@fandgmax are:

oM =83vpm and Qmax = 1430vph
(om =pi/e and Gmax= apj/e)

Figure 2.4:

Let f be the initial distribution function as shown in the figuré(2).
Sincec (p) = V’'(p) < 0, breaking occurs on the left. The solution of the
problem is

p =p()
x=tF()+¢ where F(¢&) =c(f(£))

Breaking occurs wheR’(£) < 0. But
F'@=c(f@).f'¢©<0 if >0

i.e. whenf is increasing.
In most other examples(p) > 0, so that a wave of increasing den-
sity breaks at the front.
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2.2 Flood waves in rivers
20

Another example comes from an approximate theory for floodewan
rivers. For simplicity we take a rectangular channel of tanisbreadth,
and assume that the disturbance is roughly the same acebsetidth.
Then the heighh(x, t) plays the role of ‘density’. Lep be the flow per
unit breadth, per unit time. Then from the conservation laavhave

d [
d—tfhdx+q1—q2:0
X2

Taking the limitx, — X3, we obtain
ht + qx = 0

A functional relationg = Q(h) is a good first approximation when the
river is flooding. Therefore the governing equation is

he + c(h)hy = 0

wherec(h) = ‘é—ﬁ .

This formula for the wave speed was first proposed by Kleiz an
Seddon. The functio@(h) is determined from a balance between grav-
itational acceleration down the sloping bed and frictiogfeécts. When
the function is given by the Chezy formwarh!/?i.e. V = kh'/2, where
V is the velocity of the flow, we have

Q(h) = Vh = kh*?
andc(h) = 3kht/2 = 3V. According to this, flood waves move roughlp1
half as fast again as the stream.
2.3 Chemical exchange processes

In chemical engineering various processes concern a flowiof ¢ar-
rying some substances or particles through a solid bed. elptbcess
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some part of the material in the fluid will be deposited on thlesed.
In a simple formulation we assume that the fluid has constelaicity
V. We take density to bp = p; + ps, Whereps is the density of the
substance concerned in the fluid angis the density of the material
deposited on solid bed. The total flow of material across agian is

q=piV.
The conservation equation becomes

0 Opt
(24) a (pf +p5) + VW =0

To complete the system we require more equations. When tegels
are slow we can assume to a first approximation that is a quexgii-
librium between the amounts in the fluid and on the solid amad tiis
balance leads to a functional relatipg= R(o¢). Then [Z}) becomes

0 0
Fridi C(Pf)a_xpf =0

where

Vv
1+R’(pf).

The relation betweep; andps is discussed in more detail below
(see 3.6).

Clot) =

2.4 Glaciers

Nye (1960, 1963) has pointed out that the ideas on flood wawely a
equally to the study of waves on glaciers and has developedatrtic-
ular aspects that are most important there. He refers tddrimalder
(1907) for the first studies of wave motion on glaciers anchttepen-
dent formulations by Weertman (1958). For order of magmitpdr-
poses, one may take

Q(h) o« hN
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with N roughly in the range 3 to 5. The propagation speed is

dQ
c= % = Ny,
wherev is the average velocit®)/h. Thus the waves move about three
to five times faster than the average flow velocity. Typicdbeiies are
of the order of 10 to 100 metres per year.

An interesting question considered by Nye is tlfiee of periodic
accumulation and evaporation of the ice; depending on thedehis
may refer either to seasonal or climatic changes. To dodipsescribed

source termf (x, t) is added to the continuity equation; that is one takes
he + gx = (% t),q = Q(h, X).

The consequences are determined from integration of thractes-
istic equations

dh
a = f(X’ t) - QX(h’ X),
-,

23
The main results in that parts of the glacier may be very teasi
and relatively rapid local changes can be triggered by thecsaerm.

2.5 Erosion

Erosion in mountains was studied by Luke. Ik, t) be the height
of the mountain from the ground level. It is reasonable tamaesa
functional relation betweeh andhy as:

ht = _Q(hx)-

(When the slope of the mountain is greater, it is more vulvlergo
erosion).
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Let
(2.5) s=hy
Then diferentiating [[Z) with respect towe obtain

htx = _Q’ (hx) hxx,

. 0s Js L . . .
that is 5 + Q' (89— = 0, which is our one dimensional non-linear

wave equation witle(s) = Q'(s). When breaking occurs we introduce
discontinuities ins, which ishy, andh remains continuous but with a
sharp corner.



Chapter 3

Shock Waves

WE OBTAINED THE solution of the equation 24
ptt+ax=0
on the assumptions
(1) p andq are continuously dierentiable.

(2) There exists a functional relation betwegmand p; that isq =

Qlp)-

In our discussions we found the phenomena of breaking in some
cases. At the time of breaking we have to reconsider our gsioms.
We will approach this in two directions.

(i) We still assume a functional relation betwegrandp i.e. q =
Q(p), but allow jump discontinuities fgs andaq.

(i) We assume andq are continuously dierentiable andis a func-
tion of p andpy. For simplicity we take this in the form

g = Q(p) — vpx

wherey > 0.

23



25

24 3. Shock Waves

3.1 Discontinuous shocks

We now work with the assumption (i). Our conservation eaunaiin the

integrated form:
X1

d
d—tfde+Q1—Q2=0

X2

still holds even ifo andq have jump discontinuities.

We now assume that the functipiix, t) has a jump discontinuity at
x = §(t), wheresis a continuously dferentiable function of.

Attimet, letx; > g(t) > X andU(t) = §(t) = ‘(’,—f The conservation
eguation can now be written as

d S(t)- X1
o fpdx+fpedx +01-02=0
X2 s(t)+
This implies
S(t)- X1
[ o s 0-9+ [ pudx
X2 s(t)+

—S(t)p (s()+,1) + a(x1, t) — alx2, 1) = 0

Taking the limitsx, — (t)— andx; — s(t)+ we obtain

—S()(p(s()+. 1) — p(S(t)-, 1)) + (a(s(t)+. 1) — q(s(t)—. 1)) = 0

We symbolically write this as

3.1 —Ulp] +[a] =0

where [] denotes the jump.
Equation[311) is called the ‘shock condition’.
The basic problem can now be written as

pt+0x =0, at points of continuity

(3.2) : I :
—U[p] +[d] =0, atdiscontinuity points
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There is a nice correspondence between tifergintial equation and
the shock condition.

P P
o ULl o [

26
The shock condition can also be written as

Uo®-q _ Q(p2) — Q(p1)

(3.3)

pP2—p1 pP2—p1
where the sfiixes 1 and 2 stand for the argumergf)i, t) and &(t)—, t)
respectively.

It is important to note that thdirect association of a jump condi-
tion with a diferential equation in conservation form is not unique. For
example, consider

(3.4 pt+ppx =0

This can be written ag; + (%pz)x = 0, and the corresponding jump
condition is

(3.5) - U[p] +

12
zp]—o

However, equatiorf{3.4) can also be written as

1, 13,
— — :O’
[27)+ (),

the associated shock condition would be

1,

13
- -0
3’0]

Obviously [35) and(316) areftierent.

We have to choose the appropriate jump condition only froen th
physical considerations of the problem and the origimtggrated form
of the conservation law.

We now give the simplest example in which a shock occurs.
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Example. The simplest case in which breaking occurs will be 27

pt+ClE)ox=0 in t>0, —oc0 < X< o0,

P2 if x<O
t=0:p= .
p1 it x>0, (o2 > p1)

with ¢/(p) > 0

Figure 3.1:

In this case breaking will occur immediately. The proposesdah-
tinuous solution is just a shock moving with velocity

U= Q(p2) — Q(p1)
P2 —pP1

an separating uniform regiops= p; andp = p, on the two sides.

3.2 Equal arearule

The general question of fitting in a discontinuous shock fdaee a
multivalued region can be answered elegantly by the folgwargu-
ment. The integrated form of the conservation equation, i.e

X1

d
d—tfpdx+q1—q2:0,

X2
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holds for both the multivalued solution and the discontumigolution.
If we take the case of a single hump disturbance as shown ifigiine
3.2(a), withp = pg on both sides of the disturbance, and if we takex,
far away from the disturbance with = g2 = Q(oo), then
X1

fp dx= constant in time

X2
This is so for both the multivalued solution in figure 3.2(bflahe dis-
continuous solution in figure 3.2(c). Hence the positiontaf shock
must be chosen to give equal aréas B for the two lobes as shown in
figure 3.2(d).

The analytic implementation of this construction is desediin [1]

P P
é
t=0 Multivalued case t > tp
(a) (b)
P p
- A
— B
Solution with shock Equal area rule

() (d)

Figure 3.2:
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3.3 Asymptotic behavior

We are interested in finding out what happens to the solutdn-a oo,
and this can be obtained directly without going through thevious
construction in detail. We first study a spedigp) which simplifies the
results.

The equation is,

3.7) pt+0dx=0

with the shock condition

(3.8) —Ulp] +[a] =0

If g = Q(p) andc(p) = Q'(p) then, as noted already, (B.7) can be
written as

1
Ci+CCy=0, or ct+(§c2) =0

X

whereC(x,t) = c(o(x,t)). From the second form of the equation for
C, we may be tempted to write the shock conditibnl(3.8}-84C] +
[3C?] = 0. But this is not always true, i.e. conservationpofloes not
imply the conservation of. However, wherQ is quadratic, say,

Q) = ap® +Bp +y
then conservation gf implies the conservation @, sinceC is linear in

p-
This can be easily checked as follows: We have

(o = Q') = 2ap +p;
by equation[(318),

(3.9) - U[p] +[ap2+ﬂp+y] =0

Now,
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~U[C] + % |C?| = -U[2ap + ] +

20%0% + 2aBp + %ﬂz]
=20 {-U[p] +|ap® + Bp + 7]}

and this is seen to be zero By {3.9). (Here we have ysfed [34?] =
[v] = 0 sinceB andy are constants).
In this case we can work wit@ alone and the shock condition is
CL+C
Uu=>-—=
2

The initial value problem is

(3.10)

Ci+CCx=0,t>0, —co < X<
C=F(X),t=0: —c0o < X< o0,

We will now consider the asymptotic behavior of a single huingp

Cp in x<a
F@E) =499 in [alL]
Co in x>L

whereg is continuous ind, L] with g(a) = g(L) = ¢p, as shown in figure
3.2(a).

In this case breaking will occur at the front and we fit a shaxk t
remove multivaluedness. As time increases, much of thalietail
is lost. As this process is continued, it is plausible to oeathat the
remaining disturbance becomes lineaxirn any event, there is such a1
simple solution withC = x/t. We propose, therefore, that the solution is

Co, X< Cot
(3.11) C=4%, cot<x<9),
Co, S(t) <X,
wherex = g(t) is the position of the shock still to be determined.
The shock condition i&) = =32; therefore, since; = cop,C; =

s(t)/t, we have

e 3fee
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The solution of this is easily found to be
S = cot + bt'/?,

whereb is a constant. So we have a triangular waveGaxs shown in
figure 3.3. The area of the triangle%ia2 and this must remain equal to
the areaA under the initial hump. Hende = (2A)Y2. Only the area of
the initial wave appears in this final asymptotic solutidhpther details
are lost. It shold be remarked that this behavior is comlyletigferent
from linear theory.

C
Ry
&7 bt—3
Co CO
bts
0 s(t) z
Figure 3.3:
32 Problems.
1. Solve

ﬁ+ui ﬁ+u£ U+u=0,t>0, —co < X<
ot ax) \at T T ox -7 ’ ’

u=_0,
t=0: )
U = asin kx —oo < X < o0

using the method of characteristics. Find also the time of fir
occurence of singularities.
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2. Solve

pt+ppx=0,1>0, —00 < X< 00,

0 in x<0

(=0:p= X in 0<x<3
1-x in 3<x<1
0 in x=21

Find the first time of breaking and the point at which it bredkis
a shock to this and find the shock velocity.

3. solve

Ci+CC=0,t>0, —o0 < X< 00,

co In x=£0
t=0:c=<5f(x) in [0,1]
Co in x>1

where f(x) is continuous in [01] with f(0) = f(1) = co, f de-
creases in [Q%] and increases in%[, 1]. Show that breaking oc-
curs. Describe the asymptotic behavior of the solutionuigdicly 33
the shock.

4. The equation is the same as in the problem 3. Now the initial
distribution is

Co in x=£-1
t=0:f=1<9(x) in [-11]
Co in x=1

whereg is a continuous function witlg(0) = g(-1) = g(1) =
Co. g is decreasing in{1, 3] and increasing in{3, 3] and again
decreasing ini, 1]. Fit shocks wherever necessary and find the
asymptotic behavior of the solution. The asymptotic forwaited

an N-wave.
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5. Solve

Ci+CCx=0,t>0, —00 < X< 00,
.21

t=0:C= F(g):Co+asm7§
Use the fact tha = ¥ is a solution of the equation to describe the
asymptotic behavior of the solution. Deduce that the asgtitpt
solution is independent o&* and that the shock decays like!
rather thart/2. Note that the area under the initial curve in the
left interval [Q A/2] is not preserved.

6. Assuming that shocks are only required when breaking reccu
show that the shock velocity lies betwe€nandCo,.

3.4 Shock structure

In the first approach to resolve breaking we have assumedctidoal
relation inp andq with appropriate shock conditions. Now we consider
the second approach, namely tha@ndp are continuously dierentiable
but thatq is a function ofo andpy. For simplicity we take

(3.13) q = Q(p) — vpx

wherev > 0. (Here the sign o¥ is important). Wherpy is small,
g = Q(p) is a good approximation; but near breaking wheyés large,
BI3) gives a better approximation. A motivation for ().28n be seen
from traftic flow. In trafic flow, the density is the number of cars per
unit length. When the density is increasing ahgady 0, one expects
the drivers to adjust the speed a little below equilibrigre Q(p), and
whenpy < 0 perhaps a little above. This is represented by the exima ter
vox in (3I3). The other examples in chapter have similar ctioec
terms in an improved description.

The conservation equation is

X1

d
E[fpdx"‘(h—CIz:O

X2
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and for diferentiablep, g we have the dferential equation
(3.14) pr+0x=0
as before. Usind(3:13),. (3114) becomes

(3.15) pt + C(P)ox = VPxx

wherec(p) = Q’(p). Before considering the solution df(3115) in detais
we note the general qualitativéfects of the terms(p)px andvpxy. To
see this we take the initial function to be a step function.

if x<O
(3.16) t:O:p={p2 LS
p1 If x>0

with po > p;. Omitting the termc(o).ox, the equation[{3.15) becomes
the heat equation,

(3.17) Pt = VPxx

The solution to[[317) with the initial conditionS{3]116) is
Vit
_P2—p1 e_gz d¢

=

(3.18) p=p2

—00

This shows that theffect of the termvpyy is to smooth out the initial
distribution like ¢t)~1/2.

Neglecting the termrpyy in 3I3) we have the immediate breaking
discussed earlier.

Thus our equatior{3:15) will have both thiexts, namely stretch-
ing and steepening, and it seems reasonable that thereengblitions
having the balance between the two. We will now look for siengidlu-
tions to test the idea. Let us assume that

(3.19) o =p(X),X =x-Ut
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is a solution of [315), wherd is a constant. We also assume that

p—op1L @ X—o o
(3.20) p—op2 a8 X— —
and px >0 as X— xoo

36
Now (3.I%) becomes

(3.21) c(p)ox — Upx = vpxx

Using c(p) = Q' (o) and integrating[{3:21) with reference Xowe
obtain

(3.22) Q) -Up+A=v,,
whereA s the constant of integration. Equatiofs{3.22) and{3raQ)y
U= Qlp2) — Qle1)
P2 —pP1

which is exactly the same as the shock velocity in the discoity the-
ory. Equation[[3.22) can be written as

11w
v Q) -Up+A dX

Integrating this with reference % we get

X do
@29 v | s

Sincep1, p2 are zeroes 0f(p) — Up + A the integrals taken over the
neighbourhoods g1, p, diverge; soX — +co asp — p; Or pp. This is
consistent with our assumptiois(3.20).

If ¢’(p) > 0thenQ(p) £ Up—Ain [p1, p2] and then byl(322)x < 0.
Hencep is decreasing and the solution can be schematically repaxse
as in figure 3.4.
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P =p2

Pz <0

p=pi

O T

Figure 3.4:

An explicit solution for [3.1b) and{3:16) can be obtainedewl) is
the quadratic

Q=ap*+pp+y
Then
Q) -Up+A=-a(p-p1), (02—-p),

and by [(3.2B)

X__ do
v fa(pz—p) (o —p1)

1 pz—P)
= lo .
a (p2 — p1) g(ﬁ—pl

Hence we obtain a solution

exp(= (p2 — p1) aX/v)
1+ exp(= (o2 — p1) aX/v)

Whenv is small, the transition region betweeqnto p, is very thin.
This can be made more precise as follaw

Consider the tangent through the point of inflexion of thevewrin 38
thep — X Plane. Let it cut the linep = p1, andp = p, at the points
(X1, 01) and Xz, p2) respectively. The dierence betweeKX; and X, is
called the ‘shock thickness’.

(3.24) p=p1+(p2-p1)
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P2 I\
N1 — p2)/2
i \ p

0 4/ ( )

[——

Figure 3.5:

In the particular cas€ (3.P4) we find the shock thickness /e
(02 — p1)- From this we conclude that the thickness tends to zero as
v tends to zero for fixegh1, po. However, notice that for fixed the
thickness eventually increases@as- p1 — 0.

In the improved theory this smooth, but rapid, transitioyetare-
places the discontinuous shock of the earlier theory. &nhgjlwe ex-
pect the discontinuities in more general solutions to b&aceul by thin
transition layers in the improved theory. This can be showfmli detail
for the case of quadratiQ(p) as explained in the next section.

3.5 Burger’s equation

Multiplying both sides of the equatiof (3115) b{(p) and manipulating
we obtain

(3.25) Ct + CCx = vCyy + vC” (p)p2

In the special case whe&(p) is again the quadratiep? + Sp + y we
havec” (p) = 0. Hencel[3.25) becomes

(326) Ct + CCX = VCXX

Equation [3.26) is called Burgers’ equation. This equatsoorigi-
nally due to Bateman (1935) but Burgers gave special salsitio it in
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1940 and emphasized its importance. In 1950-51 Cole and#toked
independently on this and solved it explicitly. They intnggéd a non-
linear transformation which convertedd (3.26) into the dinbeat equa-
tion. We now give a brief account of this transformation.

First, if we introduce the variable

(3.27) C=VY,,
equation[[3.26) becomes
Wyt + Px.Wxx = VWyxxx-

Integrating this with reference towe obtain
(3.28) W + %\Pi = YWy

The transformation
(3.29) Y =-2viogg¢
converts the equatiofi (3128) into the linear heat equation

(3.30) bt = vxx
The initial condition
t=0: C=F(X

for (328) becomes

Vv
0

(3.31) t=0:¢=0(@) = exp{—zi fF(x)dx}
Then the solution of{3:30) with the initial condition{3)34&

P N2
oy =—= [ c1><n)exp{—(x ) }d

Vvt vt

40
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and therefore,

[ee)

_. \2
[ 06 exp{ -5 |
C(xt) = —— -
[ o exp{-L32} dy

The counterparts of the various solutions discussed in iged-
tinuity theory can be studied in this improved theory. Exciep ex-
tremely weak shocks in certain cases, the only significaahgé (for
smallv) is the smoothing of the shocks into thin transition layér$ull
account is given irJ].

3.6 Chemical exchange processes; Thomas's equa-
tion

The situation is similar in chemical exchange processes.cbnserva-
tion equation is

0 0
(3.32) e (,of +ps) * o (fo) =0
whereps, ps are as before (see sectionl2.3. We took
(3.33) ps=R(ps)

to be an approximation and obtained the one dimensionallinear
wave equation. In many cases a more detailed descriptiadhdsecond
relation betweep; andps is

9ps

(3.34) 5 - K (A-ps)ps — szs(B—,of)

whereK4, Ky, A, B are constantsA, B represent the saturation levels of
the substance in the solid bed and the fluid respectively.

An approximation of the fornT{3:83) is obtained from (3.3%)rte-
glecting the ternﬁ%. We will work with the ‘improved theory’ provided

by (333).



3.6. Chemical exchange processes; Thomas's equation 39

Thomas (1945) gave transformations to comnVeri{3.32) ifinear
eqguation.

Step 1.By the transformation

X X
(335) T—t—v,O’—v
B32) and[[3:34) become
opt  Ops
3.36 —+—=0
( ) oo " or
)
(3.37) and f = apt — fps — YpsP1

wherea, 8,y are constants.

Step 2.Consider now the transformation
(3.38) pt =¥, ps=-Ys
Then [336) is satisfied identically, aid (3.37) becomes

(3.39) Y, + a¥; + Y, + y¥, ¥, =0

Step 3.The final step is to introduce the transformation
I

(3.40) ¥ = —logy,
Y

and this is the crucial one. Thdn (3 39) reduces to

(3'41) Xor +axr +Bxs =0

which is linear and can be solved by standard methods. Agaious
questions in the discontinuity theory can be viewed fromithgroved
description.

42






Chapter 4

A Second Order System;
Shallow Water Waves

43

THE EXTENSION OF the ideas presented so far to higher order sy
tems can be adequately explained on a typical example. Weusiea
the so called shallow water wave theory for this purposéoaltyh the
pioneering work was originally done in gas dynamics.

4.1 The equations of shallow water theory

In shallow water theory the heightx, t) of the water surface above the
bottom is small relative to the typical wave lengths; it ilexh shallow
water theory or long wave theory depending on which aspedswants
to stress.

We take the bottom to be horizontal and neglect friction. thet
density of the water be normalized to unity and let the wid¢home
unit.

Let u(x, t) be the velocity,pp the atmospheric pressure angh &
p’(x, 1)) the pressure in the fluid. In every sectign< x < x; the mass

41
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is conserved, i.e.
X1
gfh(x t)dx+ =0
dt 9 ql q2 - ]
X2

where the flong = uh.

— /_\_/

42— — (1

[7777777777777777777777777777777777777777777777

Figure 4.1:
44
Taking the limitx, — x;, we obtain

ht + qx = 0,
(4.1) ie. h+(Uuh)yx=0

This time a second relation betwearand h is obtained from the
conservation of the momentum in thedirection. If we consider a sec-
tion X £ X £ X, as shown in figure 4.1, a constant presspgeact-
ing all around the boundary, including free surface anddoottis self-
equilibrating. Therefore, only the excess pressuireontributes to the
momentum balance. P(x,t) denotes the total excess pressure,

h
P=fp’dy
0
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acting across a vertical section, the momentum equatidreis t
d [
(4.2) I f hudx= hi? ey, —hWP |yex, +P2 — P1
X2

whereP; = P(x,1),i = 1, 2.

The term in the left hand side df{4.2) is the total rate of dean
of momentum in the sectior, < X < x3, andht? Ix=x, On the right, 45
denotes the momentum transport across the surface thooegk (i =
1,2).

The basic assumption is shallow water theory is that thespreds
hydrostatic, i.e.

op _

(4.3) 5y "

-0
whereg is the acceleration due to gravity.
Integrating [[£B) and assuming the conditipa: pg at the topy = h,
we obtain
p=po+9gh-y).

Hence the total excess pressure is

h
1
(@.) P [gth-ydy=3a
0
Equations[(4]2) and(4.4) yield
X1
d 1 L
(4.5) —fhudx+ hi? + Zgh?| =0
dt 27 |,
X2

The conservation form should be noted.

In the case of river flow discussed earlier, there would a¢gstulther
terms on the right hand side ¢f(#.5) due to the slapectand friction;
the slope is now omitted and frictionaffects are neglected.
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In the limit x, — X1, (8) becomes
(4.6) hu); + (hu2 + %ghz) =0
X

Equations[(411) and(4.6) provide the system for the detetitin ofu
andh.

If h andu have jump discontinuities, the shock conditions corre-
sponding to[(411) and{4.6) (but deduced basically from tigiral in-
tegrated form) are

—U[h] +[uh] =0
— U[uh] + [hu2+ %ghz] =0
respectively, wher#J is the shock velocity.
Using equationd {41 1) in{4.6) we obtain
4.7) U + UUy + ghy = 0;
equation[[Z11) can be written as

(4.8) h +uhy + huy =0

4.2 Simple waves
Each of the conservation equations14.1) (4.6) takesanlier form

pt+0x=0.

In those earlier cases, a relatign= Q(p) was provided in the ba-
sic formulation. In the present case, we might ask in retatm(4.1)
whether there are solutions in which= uhis a function ofh, where
the appropriate functional relation is provided not fronisile obser-
vations but from the second equatién{4.6). We might equadi}f ask
with respect to[[Z]6) whether there are solutions in whigh+ % gré is
a function ofhu, where the functional relation is provided iy {4.1). The
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two are equivalent and come down to the question of whetlese thre
solutions in which, sayh is a function ofu. We try

h = H(u),

and consider the consistancy of the two equations. We usirtipdified 47
equations[(417) and(4.8) for the actual substitution. §Tdpproach is
equivalent to Earnshaw’s approach in gasamics).

After the substitutiorh = H(u), we have

4.7y U + Uuk + gH’ (U)ux = 0
(4.8y Ut + Uk + HH,((I:J)) uy=0

For consistancy we requife.6y]

GH (W) =

which implies
(4.9) VaH'(u) = £ VH

Taking the positive sign ii{4.9) and integrating we obtain
(4.10) 2\/gH - 2+/gHo = u
whereHp = H(0). Ther[{47)]becomes
(4.11) U+ (u+ vgH)ux =0

Thusu + +/gH is the velocity of propagation. If we useé{4110) and
setco = +/gHo, equation[{Z111) can be written as

3
(4.12) ut+(co+7u)uxzo
We now have exactly the form discussed in the earlier chajted

can take over the results from there. Equation{4.10) is uhetfonal
relation equivalent tg = Q(p).
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If we take the negative sign if{4.9) we will obtain the raati

24/gH - 2+/gHg = -u

and the equation 48

U+ (u=- +gH)uc =0

Each of these equations represents a so called ‘simple wahe
choice of signs in[{410) an@(4]12) correspond to wave ngptanthe
right, the other signs correspond to one moving to the left.

Example .We consider a piston ‘wave maker’ moving parallel to the
x-axis in the negative direction with given velocity. Inltjawhen the
piston is at rest, the water is at rest.

ALY

Figure 4.2:

The movement of the piston is represented inthteplane by the
curve

X = X(t), u= X(t),

whereX(t) is a given function.
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Figure 4.3:

The flow of water is governed by the equation 49
=3
U +|Co+ ) uy =0,

since a wave moving to the right is produced.
Following the constructions of chapfdr 1, we choose a cleiatic

curve on which
dx_ 3
at @t
On this characteristiéV = 0; thereforey = constant= X(z), if the
characteristic is passing through(t), 7). Therefore,‘é—? =Co+ %X(r).
Integrating we obtain

x:ﬂﬂ+{%+gﬂﬂ}a—ﬂ

Hence the solution of the piston problem is

x = X(7) + {Co + ;X(T)} (t-1),
u= X(7),

wherer is the characteristic parameter.
As in the previous cases, expansion waves (in this E&9e< 0) do
not break and the solution is valid for &ll On the other hand, moving
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the piston forward or providing a positive acceleration|| wioduce a
breaking wave. The inclusion of discontinuities based enump con-
ditions (noted after equatiofh{4.6)) is similar in spirith@ discussion of
chapteB, but is somewhat more complicated than before rélagon
#10) is not strictly valid across discontinuities (notevas deduced
from the diferential equations), and approximations have to be made
if the simple wave solutions are still used. (SEk [1] for detm the
equivalent gas dynamics case).

4.3 Method of characteristics for a system

The above simple wave solutions provide an interesting aggbr and
tie the discussion closely to the earlier material on a sirggjuation.
However, they are limited to waves moving in one directiotyoiVe
want to consider questions of waves moving in both direstiand in-
teracting with each other. We shall also find via Riemanrgsiarents a
further understanding of the role of the simple waves.

Since we already know that= \/g_h is a useful quantity here, we
shall introduce it at the outset to simplify the expressibusit is in no
way crucial. The equationg{4.7) arid{4.8) then become

(4.13) Us + Uly + 2cc = O,

1
(4.14) Ct + UGy + > cu, =0.

Now we note that each equation relates the directional aldres
of u andc for different directions. If the directions were the same we
might make progress as in Chagikr 1. But we can try linear auatibns
of @I3) and[[414) that have the desired property. Acowlgli we
consider[[Z 18} m. (@13), wheremis a quantity to be determined. We
have

1
(4.15) {U + UUy + 2cC4} + m{ct + Uucy + > cux} =0
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This will take the desired form,
{U + vy} + m{c; + vey} = 0,

provided

m 2c
U+ —=C=U+— =V.
2 m

The latter givesn = +2. Puttingm = 2 in (£I%) we have
(4.16) U+20)+@U+c)(Uu+20)x=0

We choose th&’, characteristic to be

%+:%(:u+c

on%,, (418) becomesg—t(u + 2¢) = 0, which impliesu + 2c = constant
ong,.
Takingm = -2 in (£1I%), we obtain

(4.17) U-20)+@U-c)(u-20)x=0
we choose th&”_ characteristic with the property

Jdx
Tdt
Then equation{4.17) implies:

b u-c

d
On %, d_t(u -20)=0,
ieu—-2c= constanton %-

Thus we obtian
u+2c= constanton
u-—2c= constanton

The constants may filer from characteristic to characteristic.
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This is the method of characteristics for higher order systeFor 52
ann" order system of first order equations far . . ., un, one looks for
a linear combination of the equations so that the directidedvatives
of eachy; is the same. If there arereal diferent combinations with the
characteristic property the systemhigperbolic.

In the present case the characteristic equations will bieluigsevar-
ious ways. We first reconsider the simple wave solutions.

4.4 Riemann’s argument for simple waves

We focus on the piston problem to show how the argument goesgh
and refer to figure 4.4.

Ty
. C_
@\\ N
A
A
=) 7
x
O
Figure 4.4:

Using the fact thati— ¢ < uwe can show that th&” characteristics
cover the whole regiof(x,t) : t = 0, x = X(t)}. On each_ we have
u — 2c = constant; from the initial condition

t=0:u=0,c=co,

we find thatu — 2c = —2cy. But this is true for eacl’ with the same
constant. Therefore

(4.18) u-2c=-2c
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everywhere. This is exactly the relatidn(4.10): We coulavmrefer
to the previous discussion to complete the solution. To detapghe
solution in the present context, we use #ierelation

dx
u+2c= constanton O =u+cC

From [4.1IB) this becomes

u= constant on dx = + 3u
B gt - et oY

exactly the information contained i{4112). We concludat th
u = X(r)

4.19 .
( ) X = X(1) + {Co + gX(T)} t-17)

as before.

Problem. Dam break. In an idealization, the flow of water out of a dam
is governed by the equations

Us + Uy + 2cc =0
1
ct+ucx+§cuxzo
with the initial conditions

U=0, —o0 < X< 00,
t=0: he hy, —o0o < X< 0,
10, 0< x< 0.

Find the solution. (There is no discontinuity and the finadvaer
takes a simple explicit form).
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4.5 Hodograph transformation

54
In the interaction of waves, where both families of chanasties carry

nontrivial disturbances (i.el-{Z118) does not hold), sohg are much
more dificult, and numerical methods are often used.

However, one alternative analytic method for studying titeriac-
tion of waves, or the two interacting families of waves progi by gen-
eral initial conditions, is the ‘hodograph’ method. The ations are

1
C+uck+—=cu,=0
(4.20) t+ UG 5 Clk

Us + Uly + 2cc, =0

and we note that the cficients are functions of the dependent vari-
ables only. We try to make use of that fact by interchangirgrte of
dependent and independent variables.

We haveu = u(x, 1), c = ¢(x, t) and consider the inverse functions

X = X(u,c), t=t(u,c).

The term ‘hodograph’ is used when the velocitieandc are con-
sidered as independent variables. We have the relations

t

Ct :_E’CX: _u’
g g
t

ut = E’UX:__C’
g g

whereg = % = Xute = Xctu.
For the systeni{4.20), the highly non-linear fagg@ancels through
and we have

1
(4.20) =t-g th}

Xc = Ute — 2cty,

Notice g would not cancel if there were urtirentiated terms.
Equationd (#£0Y] are now linear and thisffers considerable simplifi-
cation.
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Differentiating the first equation with respect toc, par-
tially, and the second one with respecutand subtracting, we find

3
(421) 4uu = tcc + Etc

This is a linear equation fdfu, c) which can be solved by standard
methods.
However, the diiculties in this method are:

(1) The transformed boundary conditions in thec plane will some-
times be awkward.

(2) When breaking occurg = 0, corresponding to the multivalued-
ness, and fitting in shocks may sometimes figadilt in this plane.

For these reasons a numerical method is often preferred.ettwin
the case of waves on a sloping beach an analogous methodlhasale
extremely valuable solution; it will be described in sexnf®Z.

In that connection, a particularly elegant form of the tfanmmation
is useful and we note it here for the case of the horizontdbbut We 56
use the characteristic form

dx
p=u+2c= constant on a:u+c

dx
g=u-2c= constanto%—t =u-=C.

If p,qare used as variables, we can write

d—X—u+c
dt

as  Xg=(u+olg,

sincep is a constant on that characteristic apcn be used as parame-
ter. Similarly
Xp = (U= C)tp.

We then substitute far andc in terms ofp andq to obtain

3p+q p+3q
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These are the linear hodograph equations equivalgnt20)|4 Elimi-
natingx, we have

2(q - Ptpg —3(tg —tp) = O,

which is equivalent td{4.21).



Chapter 5

Waves on a Sloping Beach;
Shallow Water Theory

IN THE LAST chapter we considered flow over a horizontal lesal- 57
face. In the case of a non-uniform bottom, we will get an acddl
term in the horizontal momentum equation due to the forcmgain
the bottom surface.

5.1 Shallow water equations

We choose a coordinate systeqry such thaty = —hg(X) denotes the
bottom andy = n(x, t) the water surface. Hence the total deptk, t) is

h(x, t) = ho(X) + (% 1).

The equation of conservation of mass is
d [
(5.1) afh(x,t)dx+[uh]§; =0
X2

as before, and ifi andh are continuously dierentiable, then
5.1y h; + (uh)x = 0.

55
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/
O T2 dz T v

y = —ho(x

dS _ l_— 0( )
I —
p/
Figure 5.1:
58 Let us now consider the momentum balance inxtrection. Let

p’ be the excess pressure as before. When the bottom is nobihializ
the contribution ofp’ from the bottom surface will have a non-zero hor-
izontal component. Let us consider a thin section of thiskmkx and
let ds be the line element along the bottom= —hp(X). Let a be the
inclination ofdsto thex-axis. Then

_dx

= osa”

Hence the momentum balance in the horizontal direction is

X1
1 L ,dx )
hl]2+§gh2]xz——f(p @)Slna

X2

d
(5.2) d—tfhudx+
X2

In the shallow water theory we hay® = g(n —y). Aty = —hg, p’ =
g(n + hg) = gh. Therefore[(5]2) becomes

X1 X1 d I,b
Rk
2 X2

since‘fj—r)“(’ = tana. If all the quantities are smooth, in the limig — X1,
we obtain

h&+%g¥

d
(5.3) d—tfhudx+
X2

(5.4) ) + (hu2 + % gh2)X = gh%
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When there are discontinuities, the shock condition ddrifrem
GBI is
—Ulhu] +

huz+%gh2]=0,

since the right hand side df (5.3) becomes zero in the ligit> x;.
Thus, the shock conditions are difected by the extra terrgh‘fj—r)‘g due
to the non-uniform bottom.

Using the mass conservation equafioriithe momentum equa-59
tion (&4) can be written as

Ut + Ul + gnpx = 0.

Hence the system of equations for the flow of shallow water ave
non-uniform bottom is

h: + uhy + huy = 0,
(5.5) Up + Ulk + gnpx = 0,
h=ho+77.

5.2 Linearized equations

We assume that the disturbances are small of arderl i.e. hlo = 0(e)
and — = o(e). We also assume that the derivative are also of the

Vaho

same order.
Sinceh = n(x,t) + ho(X), equations[{5]5) can be written down as

(5.6) Mt + Uhp + houy + uny + ux = 0
(5.7) U + Uly + gnx = 0.

The first three terms of{3.6) are of ordeePwhereas the last two
terms are of order @f). In the equation{5] 7)u, = 0(e?) and the other
terms are of orde¢. Hence to a first order approximation we have

(5.8)

1t + houx + hgu = 0,
U+ agnx = 0.
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Equations[(518) are the linearized versions of equatlofl.(Differ-
entiating the first equation df (3.8) partially w.itiand using the secondso
eguation, we obtain

(5.9) M = 9honxx + ghpmx.

This is the wave equation with an additional termhdfwere con-
stant then

1t = 9hornxx
and the general solution of this is

n = f1(x— vghot) + f2(x - /ghot).

The velocity of propagation is/gh.

5.3 Linear theory for waves on a sloping beach

We now consider a sloping beach with inclinatigrio the horizontal.
We assumg to be small so that linearized shallow water theory can be
applied.

However there will be some questions about validity to besabn
ered later. These are

() The guestion of using the shallow water theoryxas>» co, when
the water becomes deep.

(i) The question of the assumptiafihg < 1 nearx = 0 wherehy —
0.

We have to solve equatiof{5.9) witlg = xtang and we takeny ~
Bxsincep is very small. Hence the equation can be written as

(5.10) Mt = G8Xnxx + 9B

Letn = N(X)e"'“! be a solution of equatiofi{51L0). Then we obtain
an ordinary dfferential equation foN as follows:
1 21
(5.11) N" + =N + 2 N =0.
X o3 X
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This is to be solved in & X < .

The pointx = 0 is a regular point of equatioh{5]11), ard= ~ is
an irregular point. This suggests a transformation to Bisssquation
or some other confluent hypergeometric equation. In factriresfor-
mation
_®Bx
T W? 4
converts it into the Bessel equation of order zero.

X

d2N+|dN+

dx2 X dX
The Bessel functiondy(X), Yo(X) are two linearly independent so-

lutions of the equatior{5.12). Hence a general solutiofbdfl) is

oo a3 o 3.

whereA andB are constants. Since the power seriesJgiX) contains
only even powers aX, Jy (Za) /@) is an integer power series xand is
regular at the beack= 0. We note thaly has a logarithmic singularity

atx = 0.
The complete solution of (5.110) is

X X -
xt) =<{Ad (Zw —) —iBY, (Zcu —)} et
1) = { A 20 [ X) oo 20 [ 2
As X — oo the asymptotic formula fo is
1 /g8 \Y*A+B . x . ni
n-~ ﬁ (m) > exp(—IZa) @ —lwt + Z)

A-B . [x . i
+ 5 exp(IZw @ —lwt — Z)
62

The first term in the bracket corresponds to an incoming wade a
the second one to an outgoing wave. In a uniform medium aromgg
periodic wave is given by

(5.12) N = 0.

(5.13)

aéKX—ia)t
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wherek, w,a are the wave number, frequency and amplitude respec-
tively. The terms in[[5.13) are generalizations to the form

a(x, t)e’

A generalized wave number and frequency can be defined irsterm
of the phase functiosi(x, t) by

(5.14) k(X 1) = Oy, v(X 1) = -0

the generalized phase velocity is
(5.15) c(x,t)=-=——.

The functiona(x, t) is the amplitude.
In our particular case the outgoing wave has

o(x t) =2w\/§—cut—i—:.

Hence the wave number, frequency and phase velocity are

k(1) = Oy = ——

VoBX

v(X, 1) = -6 = w,

c(x t) = \/g8x.

We note that the waves get shortenas> 0, and that = /ghy(X)
is the generalization of the result for constant depth. Tiberming wave
is similar with the opposite sign of propagation.

Behavior asx — o .

We note that the amplitude a varies proportionaktd*. As x —
o0,a — 0. This means that, within shallow water, we cannot pose the
natural problem of a prescribed incoming wave at infinityhwatgiven
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nonzero amplitude. This is due to the failure of the shallow water as-
sumptions ato, one of the questions noted at the beginning of this sec-
tion. It it found from the full theory in Chaptéd 7, (for thelation cor-
responding talp) that the ratio of amplitude at infinitg, to amplitude

at shorelineag is in fact (98/7)Y?. Thereforea,,/ag — 0 asg — 0, and

the x4 behavior is the shallow water theory’s somewhat inadequate
attempt to cope with this. However, the full solution doesvglthat the
shallow water theory is a good approximation near the shangl it is
valuable there since, for example, the corresponding neatisolution
can be found in the shallow water theory (see the next sgdbiginnot

in the full theory.

Behavior asx — 0 and breaking .

We see from[[5.13) that the ratio & to A, which controls the
amount ofJy andYj in the solution, also determines the proportion of
incoming wave that is reflected back to infinity.

For B = 0, we have perfect reflection with 64

(5.16) n=AX% (240%() gt

and the solution is bounded and regular at the shoraliaed.
In the other extremei = B, there is no reflection, we have a purely
incoming wave

(5.17) n=A(Jo—iYo) e,

but it is now singular at the shoreline. The interpretatibthe singular-
ity is that it is the linear theory’s crude attempt to repragbe breaking
of waves and the associated loss of energyBAscreases, more energy
goes into the singularity (breaking) and less is reflected.

Although breaking is the most obvious phenomenon we obsarve
the seashore, a number of long wave phenomena (long swdlig, e
waves, tsunamis) are in the range where breaking does nat sat¢hat
the Jp solution B = 0) with perfect reflection is relevant. This is for-
tunate since practical use of tig solution would be limited, although
the situation is mathematically interesting.
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The singular solution is related also to the second questaiad
at the beginning of this section: The breakdown of the lizéay as-
sumptionn/hg <« 1 ashy — 0 at the shoreline. On this we can say
that the nonlinear solution corresponding Jpcan be found without
this assumption (next section), and it endorses the linganoaimation.
The Yy solution with its crucial ties to complicated nonlinear dking
is clearly a dfferent matter.

The eigenvalue problem and expansion theorem

One further aspect of th&, solution is certainly intriguing mathe-
matically. The eigenvalue problefi{5l11) with/gs as eigenparameter
is of “limit circle” type at x = 0. This is identified by the fact théioth
solutions are square integrable there and it has imporéamifications
in the general theory of eigenfunction expansions. The ma@is that
various choices of linear combinations &f and Yg each lead to a sat-
isfactory eigenfunction expansion to represent a giveaisgimtegrable
function (as required, say, in solving the initial value lgeom). In our
context this is interpreted as an arbitrary choice of theekegf break-
ing, within this theory. The natural choice would then apgesbe an
expansion theorem

(5.18) () = A(w){Jo(Zw\/z)—imYo(Zw i)} dw
of s (o/¢]

wherewe must givemin the range & m < 1 to indicate our estimate of
the relative amount of breaking. With the choime= 0 this is the usual
Fourier-Bessel expansion, and is certainly one valid pdiggi When
m % 0, the result obtainde from the usual general theory (sebfiarsh
[2], p. 78) is not quite[(5.18). Th¥; has to be replaced by

(5.19) Yo (Zw g—XB )— ;Jo (m& ) log w.

It seems hard to find a “natural” physical interpretationtfos mod-
ification. Moreover, one may still ask whether the unmodifiedn
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(&.I8) is in fact a correct possible choice. A further questhat arises,
since we expect flierent amounts of breaking forfeérent frequencies,
is whether there is an expansion theorem for reasonableehoffunc-
tions m(w) in &13).

It might be remarked that these points are particularlyrésing
because in most applications where the “limit circle” casses, only
a bounded solution makes physical sense and the one paraarigte
trariness is not in fact used in any significant way. The iesetf the
mathematical discussion are not displayed.

Tidal estuary problem .
In a channel where the breadifx) varies, as well as the depih(x),
the shallow water equations are modified to

0 0
a{(h0+ﬂ)b}+a—x{(ho+ﬂ)Ub}—0,
o ou oy

E+uax+gaxzo'

For the casdip(X) = Bx, b(X) = ax the linearized equation farcan
again be solved in Bessel functions. G.l. Taylor used thigtism to
study the large tidal variations in the Bristol channel. Histapplica-
tion to extremely long waves, breaking is not an issue anyg thd J,,
solution is accepted.

5.4 Nonlinear waves on a sloping beach

In Sectio5.B we considered the linear approximation ofetipgations
for waves on a sloping beach. Carrier and Greendgan [4] iB §8be
an exact solution of the nonlinear equations using a modifipd of
hodograph transformation applied to characteristic éeg@ We recall
that the governing equations are

ht + uhy + hu, = 0,
Ut + Uuy + ghy — g8 = 0,
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whereh = gx + n(x, t).
Introducing the variable = \/Jl which we know to be significant,
the above equations become

2Ct + 2ucy + cuy = 0,
(5.20) ¥ SUG Clk }

U + Ul + 2ccx — g6 = 0.

Due to the presence of the teigf, the straight forward hodograph
transformation ,c) — (x,t) will not simplify the equations, since
this time the Jacobiag would not cancel through. However, Carrier
and Greenspan introduced new variables suggested by tractdvstic
forms and applied a hodograph transformation to these.

The characteristic forms of the equatiofs (5.20) are

(U+20);+(U+cC) (Uu+2c)x —gB8 =0,
(U-20);+(u-c) (u-2c)x — g8 =0.

These can be written as
(u+2c—gBt) + (U+c) (U+2c—gBt)x =0,
(U—2c—gBt) +(U——c) (U-2c—gBt)x = 0.

The ¥, and%_ characteristic curves are defined by

dx

G, a =U+C, U+ 2c— gt = constant
dx

€ . a =U-C, U—2c— gBt = constant

We define the characteristic variablgs) by

(5.21)

(5.22) p=u+2c-gst,
(5.23) q=u-2c—gst.

Then equationd{5.21) can be written

Xg = (U+O)tg,
Xp = (U—C)tp,
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which introduces the hodograph transformatigng) — (x,t). Solv-
ing (5.22), [5.2B) fou, ¢ and inserting them in the above equations we
obtain

Xq = (3%”4 + gBt)tq,

Xp = (p+T3q + g@t)tp.

Equations[(5.24) are still nonlinear, but by good fortune rionlin-
ear terms are in the forn%QBtz)q, (%gﬂtz)p so that when we take cross
derivatives and subtract to obtain an equationtfathese terms can-
cel each other. This was the remarkable fact observed byeCamd
Greenspan. Diierentiating the first equation ii{5124) partially with re-
spect top and the second equation with respectj@and subtracting we 69
obtain

(5.24)

(5.25) 20 - Ptpg + 3(tq — tp) = 0.

Equation[[5.2b) is inear equation which can ve solved by standard
methods.

This is the main step, but further transformations can bel tise
convert [5.2b) into the cylindrical wave equation whoseusohs are
already well documented. First, by the transformation

(5.26) 7=P%
A=—(p+0),
equation[[5.25) becomes
(527) t=t+ Eto—.
g

This can be further simplified by introducing the transfotioma

(5.28) gpt=2_ %
2 o
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the term—% is for transforming[[5.27) into the cylindrical wave equa-
tion and the tern¥ is included to give a simple final form far. Thus
we obtain cylindrical wave equation

1
(529) b = Yoo + —o
(oa

Equations[[5.22) [{5.23) give, c in terms ofp,g. From the trans-
formation [5.2B) we obtaip, g in terms ofo, . These together with
equation[[5.28) lead to

a
(5.30) c= 7
(5.31) u= —¢—‘T,
a
(5.32) gpr=2_ %
2 o
It can be shown fronT{5.24), with a use Bf(3.29), that
(1 1¢2 o2
(@BX) = (—me T gt 1_6)0’
1 142
(98X = (_Z¢A + E;)A-
From these we obtain
1 1¢2 o2
(533) gBX = —Z(ﬁ,l + E ; + 1_6

The final set of transformations (513M)-(3.33) isfwiently involved
that it seems inconceivable that anyone would discover ttieattly.
One can note that

u—gBt——d and }u2+cz—g8x—+}
T2 2 id

take simple forms and these combinations appear in twonalige
ways of absorbingy3 in conservation forms for the second 6f(3.20),
i.e.

(U - gBt)t)t + (%U2 + C2) =0,
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1
ut+(—u2+cz—gﬂx) = 0.
2 X

But this comment does not appear to lead any further.

Almost equally important as the linearity ¢f(5129) is thetfdhat the
moving shorelinec = 0 is now fixed ato- = 0 in the new independent
variables. We can now work in a fixed domain.

The simplest separable solution Bf{3.29) is

(5.34) ¢ = N(o) cosaA,

whereqa is an arbitrary separation constant. The equationNfr) is
then the Bessel equation of order zero.

1
(5.35) N” + =N’ + &?N = 0.
g
The solution bounded at the shorelime= 0 is 71
N = AJy(ao),

whereA is a constant. Hence
(5.36) ¢ = Ady(ao) cosaA.

Equation [5.36) together with the above transformatiors rata-
tions give an exact solution for the non linear equationdp.2

Linear approximation

It will be useful to note how the linearized approximatiomigained
from (&38). In the linear theory is small which impliesp is small.
Hence to a first order approximation we obtain frém (b.3ZB34pthat

A

gBt = E’

(5.37) -
gBX x~ 1_6

Thus
¢ = Ay (4er\/gBx) cos(2vgat).
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Takinga = =2 we obtain

= 23
o ~A (Za) l)cosﬂ)t
Va8

which is in agreement with our result obtained in secfioh F@relate
¢ to the particle velocitys and elevation;, we first note that

J(ao
uz %o —azA—o( ) cosal
(oA aog
J’ (Zcu /i)
2w 0 [e%}
ﬁao coSwt,
X
20) @
where
B > w
5.38 = —a°A= —A
(5.38) =5 85

Then rather than trying to improve on the approximationdfaand
hencec to find i, we rather note that the above linearized approximation
for u goes along in linear theory with

(5.39) n=-agJdo (Zw \/g) sinwt.

These approximations provide a rough way to interpret thiabkes
in the nonlinear form[{5.36). In particular we see it as thelinear
counterpart of the wave with perfect reflection at the beach.

Run-up. Perhaps the most important quantity among the results is the
range ofx at the shoreliner = 0, since this provides the amplitude of
the run-up.

If x=F(4,0) then the range okato- =0 is [mﬁinF(/l, 0), mﬂaxF(/l, 0)].

Using [5.3B),[[5.36) and the fact thatolfééz—) = —% we obtain:
-

1 . 1
at the shore o = 0, g8x = ZaAsma/l + §a4A2 cog a.
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At maximum or minimum run-upy = —¢.-/o- = 0. Therefore, from

(©.38),

cosad =0, andhence sial=+1.

Therefore at the maximum run ugsx = %aA, at the minimum run
up: g8x = —2eA. Hence the range ofis

oA aA
—— < X< —
73
If ag is the vertical amplitude, we have
oA
(5.40) a=—.
49

This agrees with[{5.38) when the linearized relatios /293 is
used. The latter will not be quite accurate in the nonlinéaoty for
the relation ofa to the frequencyw, but it is probably a good enough
approximation; the exact relation could, of course, beutated.

Breaking condition. Infinding a solution for equationg{5J20) we made
use of many transformations and got a solution which is singlued,
bounded and smooth in terms of the variables. When the Jacobian
of the transformationA, o) — (X, t) becomes zero the solution in the
xt-plane will be multivalued i.e. breaking will occur. We wilhd the
condition for breaking to occur. B{L(5.24) arid (3.26),

g = Xte — X1y
= (Ut,l + Cto-) ta- - (Ct,l + Uto-) t,1
2 2
=c(tZ - t3)

Differentiating [5.32) partially with respect te and A and using
(&38), we obtain

Ad® 2
bty = T Jo + EJO cosaA,

3

Add
g6ty = E + TJOS"‘](Y/L
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wherez = ao. Using the relations 74
’ 2 ’
‘]O =-Ji; Jo + EJO =-J,
we obtain

(5.41) PBti-ts) =5 -

1 Aag(Jl sinad — J, cosm)

2 z
(5.42) @Bt +1,) = % B Aag(Jlsina/l -;Jz COSa'/l).
Now
Jisinad + Jcosad _ 32 +32 sinfed £ 1)

z 3

wheren = tan‘l(j—i). Hence, the maximum values of these expressions

are )
J1 + J2

ZZ

It can be shown that

d(2+J 6,
d—z( 2 —-;JZSO for z>0.

Hence for positive, @ is a decreasing function and its maximum
value is attained at = 0, where it is equal to /2. Therefore the factors
in (&41), [5.2D) first vanish whefe® = 1, and breaking first occurs at
the shoreline.

If we again use the approximate relation= ﬁ, together with
(E.40) a necessary andfBaient condition for breaking to occur is

2
w
W

(5.43) 7 > 1.

This is a very fruitful result obtained from the nonlineaediny.
Breaking is obviously a complicated phenomenon with widéati@ns
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in type and conditions. BUE{5.43) gives a valuable resulthensignifi-
cant combination of parameters. From observations alsddtind that

the quantityP = “:%0 plays an important role. Galvin's experiments and
observations[]5] group breaking phenomena intéedént ranges of.
He distinguishes the ranges (although with some overlap).

P Type
<0.045 Surging; no breaking
0.045-0.81 Collapsing; Fig. 5.2
0.28-19 Plunging; Fig. 5.3
14-64 Spilling; Fig. 5.4

Munk and Wimbush([6] give further supporting evidence arglar
ments. The criterior {5.43) is thought to correspond venghty to the

plunging regime.

Figure 5.2:

T

Figure 5.3:

O

Figure 5.4:

76
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Carrier and Greenspan [4] give other solutions and inclbhdeahsl-
ysis for solving the general initial value problem.

5.5 Bore on beach

When breaking occurs, a discontinuous “bore”, correspando the
shocks discussed earlier would be fitted in. The appropjigig con-
ditions were noted in Sectidn4.1. This has not been carhieigh in

the Carrier-Greenspan solutions. However the simplerlerolof what
happens when a bore initially moving with constant speedsarehgth

in an dfshore region of constant depth impinges on a sloping beach ha
been studied by approximate and numerical methods. Refenmay

be made to the original papels [7] and [8] and recent additiodid].

5.6 Edge waves

In the previous section we have considered only normal @rxd with
dependence only on distangenormal to the shore. We now turn to
phenomena that include longshore dependence; i§ normal to and
X is along the shore, the linearized equation for the surféeeaton
n(X1, X2, t) is modified from [5.ID0) to

(544) 77tt = gBX]. (rIX]_X]_ + r]XzXz) + anX1~

The modification is slight and we do not give the derivation.
We use separation of variables and let

(5.45) 1 = N(xg)ethoesiot,

ThenN(xy) satisfies
1 2
(5.46) N + =N + (“’— - k2) N = 0.
X1 gBx1

The interval of interest is & x; < 0. The originx; = 0 is a regular
singular point; one solution is analytic and the other hasgarithmic
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singularity. Ateo, the equation is roughly
(5.47) N” — kN = 0,
with solutions

(5.48) N~ e, g

In this case only the solutions bounded at bethk= 0 and appear to
be of interest. We shall see that the solutions represenésvainning
along the beach, and no-one seems to have interpreted tettogic
solution in any sense such as breaking. So we choose thdiarsally-
tion nearx; = 0. Then, in general, this solution will be a linear combi-
nation of bothe™* ande*** at co. For an acceptable physical solution
the term iné®® should be absent. This is possible only for special values
of w?/gB. We have a singular eigenvalue problem. If we set

(5.49) N = e F(X), X = 2kx, k> 0,

it becomes a standard one. We have

(5.50) XFxx + (1 - X)F N A P
. XX X 2 gBk =Y,
and the required solutions are Laguerre polynomials
d" ng—-X
Ln(X) = exd—)@(x eX),
with 78
(5.51) w? = gk(2n + 1)8, n = positive integer

The solution folN(x;) is
(5.52) N(x1) = e L, (2kxq).
The final solutions for, are

(5.53) n= e Kx Ln (21k|x1) eiisziia)t’
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wherelk| is appropriate if negative values bfire used.

These solutions all decay away from the shoreline and hastscr
perpendicular to the shoreline. For this reason they arevkras ‘edge
waves’. The lowest mode = 0 has

N(x1) = €4, w? = gks, k> 0,
and one might take for example
(5.54) n =€ cos(kxo — wt).

This corresponds to a solution first found by Stokes. It isrigsting
to note how the dferent terms in[{5.34) are balanced by this solution.
One might note the propagation speedyigéx; and expect the waves
to swing round to the beach due to the increase of speedxyitiihe
final result avoids this and we see from{3.54) that the baléc

(555) 77X1X1 + 77X2X2 = 09 Nt = wnxl

The propagation speed argument applies directly whemalances
the second derivatives ix{, xo); the balance in{5.55) avoids this.

The equation is hyperbolic but these particular solutiorscathe
hyperbolic character and appear as ‘dispersive waves’ digpersion
relations given in[{5.31). (Sekl[1] Chapter 1 for a discussibthe dis-
tinctions, and Chapter 11 for the main properties of dispensaves).

We also note there is no possibility of an oblique wavecatThis
would require

n~ eiifxliikXQiia)t

with real £ andk. We have only the wave of normal incidence found in
Sectiol &b,

(5.56) n=J (Zw \/g) gt

or the edge waves travelling along the beach. As noted gafi&8)
does not have a finite nonzero amplitude<gtout it does at least repre-
sent a normal wave. For the oblique case there is not evenespond-
ing solution. This again is a breakdown of the shallow watsuanp-
tion in deep water. We can interpret the result roughly byaskinmg
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that oblique deep water waves would in reality swing arowwdatds
the shore when they feel the depth decrease. They do thisletatyp
and achieve normal incidence aslin_($.56), by the time thikoshaater
theory applies. In the linear theory, edge waves are notutdited di-
rectly by incoming waves at infinity. We check these explimast from
the full linear theory in Chaptél 7.

5.7 Initial value problem and completeness

80
Conversely if we turn to the case of an initial disturbancérife extent,

we need only the edge waves. The solutidns{5.52) for insager 0
form a complete set, and any square integrable functior, afan be
represented as an infinite series. Combined with a Foutiegrial with
respect tax; in (&.53), we can represent any square integrable function
of (xg, X2). For example, the solution of the initial value problem

n=no(X, %), =0, at t=0

would be
(5.57) n= Z f An(Ke ML (21KIx1) €92 cost +/g(2m + 1)k dk,
m=0_"_,

where, using the two inversion formulas,
(5.58)

10 K
An(K) =~ f f no (€1, £2) €M Ly (2Kigy)
0 —o

e & dz; de,.

A term proportional to[[5.86) is not required since the Lagere
polynomials are already complete. Of course, one would @xje
solution for an initial disturbance that is very long in thedirection to
be represented closely by a superposition of the normaléncie solu-
tions [5.56). To resolve the apparenffeience in form, we consider the
case

1o (X1, X2) = f(x1)g(x2);
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then

2| k|

An(K) = f f(é1)e ""fle(ZIklfl)( ,)2

X o f 9(&2)e 2 dé.

As g — 1, the second factor iAn(k) becomes the Dirac delta func-
tion 6(k). Hence, after substitution iB(5J57) we have

m=0

o im { 5 [ [ et ohe) s @0 ., ey 1)'[-2|k|}-

k—0 m!
0

Because of the factdk|, the contribution comes from the additon of
many small terms for larga. As m — oo, [kmfinite,

Lo (2K) _ o

(5.59) =

2miK| xl) .

Using this and introducing

2 2
M _ oigm, 2k — A(ﬁ),
as

we have

1~ S o 5 5 o 1)

This is the Riemann sum for

o= [{[ sl oo ) m(5)

This is the result forg(x1) = f(X1) using the Fourier-Bessel expan-
sion with [556). The key relation to the correspondencé oarse the

approximation[(5.59).
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5.8 Weather fronts

In the atmosphere when a layer of cold air pushes under a tHyer
warmer air, a wedge shaped region of cold air is often fornied;
controlled by the Coriolis forces. Disturbances runningnglthe front
of this wedge have important meteorologic#ieets. In an ideal situ-
ation (the formulation of approximate equations given iokst [10],
Chapter 10.11), these are like the above edge waves, anddhesia in
Laguerre polynomials is similar. This gives further stiatidn for the
interest in this kind of wedge problem.






Chapter 6

Full Theory of Water Waves

IN CHAPTERY 4B ANLCLH we considered the approximate shallow véa
ter theory which has some advantages of simplicity, but sdsoe inad-
equacies such as the behavidi-shore from a sloping beach. Here we
deal with the full theory and some of its solutions.

6.1 Conservation equations and the boundary value
problem

Consider a 3-dimensional flow of water on a general slopingoba

We assume that the water is inviscid and neglect surfacétensetV

be a volume element enclosed in a smooth surtade the fluid. Let
u(x, t) be the velocity of the fluid particle at the positiarat timet. Let

p(x, 1) and p(x, t) denote the density and pressure of the fluid particle at
x at timet. The outward drawn unit normal to the surfégés denoted

by n. The equation of conservation of mass is

(6.1) %fpdVZ—fpnjUj ds.
\Y% S

We assume that all the quantities aréisiently smooth. Then using

79
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the divergence theorem we obtain

dp 9 (Y dy -
(6.2) fEdV+fa—Xj(puj) dVv = 0.
\Y

\Y

Here the summation convention is used for repeated indite thés
will be adopted throughout.

Since [G.D) is true for all volume elemen¥sand the functions are
smooth it follows that

do 0

(6.3) a0 o (ouj) = 0.

Equation[[E&B) is the mass conservation equation or ‘caityirequa-
tion’.

We now derive the momentum equationFIflenotes the body force
per unit mass acting on the volurie then the conservation of momen-
tum in thei® direction can be expressed by

(6.4) dgtf'OUi dV:—f(pui)njuj dS—fnipdS+fFipdV
S S

\% \Y

The first term on the right hand side 6f{6.4) denotes the pamof
momentum, the second term the surface force actin§ and the third
term the body force acting ovi. Equation[[&4) can be written as

d
d—tfpuidV+f(pUin+p6ij)nde=fFipdV.
\% S \%

Using the divergence theorem, we have
0 0
f{a (o) + 8_XJ (Uiuj + péij) —pFi} dv=0.
Vv

Since this is true for a\/ we obtain

P 5 ap
(65) a (pUi) + (9_)(] (pUin) + a = pF|
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Under normal conditions for water waves it is reasonablessnmne
thatp = constant. This together with (6.3) implies
6.6) Wi _

' an h
85

Using [&6) ang = constant, the momentum equati@n16.5) can be
written as
oy '8ui 10p

————+Fi.

6.7 — — =
©.7 ot "Yax T Tp ax

In water waves the body forde is the gravitational acceleratian
acting vertically downwards. We shall eventually use a mhiretation
with the vertical coordinate replaced lpy With that in mind (but not
making the change yet), we denote the unit vector in theoadrtiirec-
tion by j. Then

(6.8) F=-qj

Potential flow .
In vector notation, the equatiorls{6.6) ahd¥6.7) are

(6.9) V.u=o,

(6.10) % + (uUVu= —%Vp - 9]
The vorticity is defined by

(6.11) w=VXU

if (£9) is first written as

ou 1, 1 .
(6.12) E+V(§g)+gxg_—;Vp—g_J,
and then the curl is taken, we obtain
(6.13) (29—(;) + (U.V)w = (w.V)u.
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It is clear thaiw = 0 is a solution of this vorticity equation. Furtherse
more, ifw = 0 fort = 0 then (under mild conditions oviu) w = O for
all t.

Hence we assume that = 0; i.e. the flow is ‘irrotational’. This
implies

(6.14) u=Ve

for some scalar fielg; ¢ is called the velocity potential.
The first equatior{6]9) then gives

(6.15) V2¢ =0,

and the second equatidn(6.10) becomes

o) (i) (2w

ot
(9¢ P~ Po

ie — —(qu)2 S roy= function of t.

Without loss of generality we can set this functiontdbd be zero
since otherwise it can be absorbedirbut it will be convenient to keep
an arbitrary constary. We have

Po—p _9¢

6.16
(6.16) 5 50

+5 (V¢>)2 + gy.
Relation [6.IB) gives the pressypen terms of the potentiap.

Boundary conditions .
At the bottom surface (or any other fixed solid surface), theral
velocity must be zero, so we have

(6.17) un=-—=0
At the free surface of the water we give two conditions. They a

coupled, but we may think of one as essentially determinivegftee
surface, and the other as a boundary condition[for{6.15).
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The first one is obtained from the defining property of the fee
face, namely that

(6.18) normal velocity of the surface normal velocity of the fluid
To implement this, let the water surface at titriwe given by
(6.19) f (X1, X2, X3,1) = 0.

In terms off we have:

Unit normal vector n= ﬁ
(6.20) ¢
Normal velocity of surface = —ﬁ.

(To show [E.2D) we consider two successive positions of tihfiase
at timest andt + dt. Pointsx on the first andk + ndson the second are
separated by distancksalong the normal. We have

f(xt)=0
f(x+ndst+dt) = f(x,t) + (n.Vf)ds+ fidt+---
=0.
Therefore
ds___f
dt |V
and this is the normal velocity). ThUs{6l18) implies
\Ai fy
szl
o2 i.e f+uﬂ+uﬂ+uﬂ—0
o t 1(9X1 2(9X2 3(9X3 o

88
We now introduce the mixed notation, in whighis the vertical co-
ordinate andris the vertical velocity, and take =y, uz = v. Then if f
is specialized to

f (Xla X2, X3, t) =n (le X2, t) =Y
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€&21) becomes

M+ Oxllxg + Oxollx, =V
At the surface

(6.22) y=n(x1,%),
we have
(623) nt + ¢X177X1 + ¢X2T]x2 =V

The second boundary condition (if surface tension is igipisethat
the pressure in the water must equal the pressure in the thie atter-
face. Since the changes in air pressure are small (becaudenisity is
small), it is a good approximation to take the air pressutmeta constant
po. If this is taken as th@g in (€18), the boundary condition becomes

1
¢ + E(Vfﬁ)z +on=0.

Thus the full boundary value problem is formulated as foiow

V2¢ =0,
o¢
(6.24) an - 0 atthe bottom surface

1
¢ + E(Vfﬁ)z +gn=0 at y=n(x,Xt),
where the surfaceg = n(xy, X, 1) is determined by

(6.25) M+ $xllx + Pollx, = Py-

6.2 Linearized theory

Assumeg, Vo, ¢, n, etc., are all small, i.e. consider small disturbances.
To the first order approximation the boundary conditionhatftee sur-
face become

n= ¢’y,
6.26 at =0.
(6.26) ée+0On = 0,} y
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These can be combined into
(6.27) dt+0py=0 at y=0.

Assuming the bottom surface to be horizontal, the boundanglie
tion at the bottom surface becomes

(6.28) py=0 at y=—ho.
In the case of one dimensional waves, let
(6.29) ¢ = Dy)dx et

be a solution of [[6.15) [{6.27)[ {6128). Then the ordinaryedéntial
equation satisfied b is

(6.30) Dyy — k2D = 0,
and we have
w2
(6.31) Free surface: @y — EQ) =0 at y=0,
(6.32) Bottom: ®,=0 at y=-ho.
We note that 90
(6.33) ® = coshk(hp +V),

is a solution of [[6.30) and satisfies the boundary condif2Bd). The
boundary condition at the free surfafe(6.31) is satisfiegiged

(6.34) w? = gktanh khy.

Equation [&3K) is an important relation called the “dispmr rela-
tion”. In (€34)k denotes the wave number, the frequency of the wave
andc = ¢ the phase velocity. Frori{6134) we obtain

g

(6.35) = © tanhkty,.
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From formula [6.3F), we note that the phase velocity depends
which means that for a general disturbance the waves wjlkdée. The

equations[(6.26)[(6.29) anld (6133) imply
1
n= '_éd’dy =0
= %) cosh khye*iet,
Hence a solution to the probleifi(6124) in the linearized théo
n = Adkxiet

w? = gktanh khy,

w  coshkhy ’

(6.36)

91  whereA = %’ cosh khp.

In the shallow water (long wave) theory the wave length 2?” is
large compared witlng; thereforekhy < 1. Askhy — 0,tanhkhy =~

khy, and we have
w =~ =+/ghgk.
Hence
(6.37) =~ % ~ + /gho.

This is what we found in linear shallow water theory. The #oluin
this case is nondispersive and hyperbolic. This shows tlesdididitional
terms change the character of the wave. For a full discussidhe
relation of shallow water theory to the full theory, sge [gcBon 13.10.

In the other extreme of deep water, ikdy > 1,

(6.38) w =~ ++/gk and Czi\/g.

Equation [6.3B) tells us that the waves are still disperbiviesim-
plifies the formula. Here

¢ ~ —%Aekyeikx‘i”t. (y < 0)
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The above formulae give good results even when the depthlys on
about twice the wave length.

Initial value problem
We want to find the solution faof when the initial conditions

(6.39) t=0:)1= M
n = n1(X)
are given. From{6.36) we see thawill be of the form 92
(6.40) n= f Aq (k)RR g 4 f Ag(k)ex WK gl
where
(6.41) W(K) = {gktanh khy}¥/?.

Equations[(6.39) an@{&K1) imply

[

no = f (Au(K) + As(K)} € dk

—00

(9

m = f IW(K) (~Ar(K) + Ao(K)} € dk

—00
Using Fourier inversion theorem, we obtain

(9

A= [ {00 - ymefeax
(6.42) - _
fo=3 f 1o + gm( e+ x

—00

Equations[(6.41)[{6.42) give the solution for the initialue prob-
lem.






Chapter 7

Waves on a Sloping Beach:
Full Theory

WE NOW USE the full theory to consider some of the problematee 93
by the shallow water theory in Chapf{dr 5, and obtain impantaodi-
fications and extensions. These problems are consideraing com-
plicated in the full theory and we shall consider only theéirized ap-
proximation. As described in Chapfdr 6 we have to solve thewing
problem for the velocity potential:

(7.1) V2¢ =0 in the fluid
P
(7.2) an 0 on bottom
1
(7.3) ¢y + §¢tt =0 on y=0.

Then the surface elevation is given by

1
(74) n= —5 [¢t]y=0 .

7.1 Normal incidence

With x out to seay vertical, and beach angk we have
(7.5) dxx + dyy = 0,

89
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with the boundary conditions.
At the bottom:

(7.6) xsinB+ycosp=0: % = ¢y SinB + ¢y cosp = 0.
On the topy = 0:
(7.7) ¢ + 9y = 0.

94
If ¢(x, Yy,1) is of the form

o(x Y, 1) = S(x,y)e !,

then [Z5){(ZJ7) become
(78) SXX + Syy = O’
(7.9) Bottom: Sysing + Sycoss = 0,
on xsing+ycosB =0,
(7.10) Top: Sy—-¢S=0 on y=0,
where
0=
g
Yy
S, —£8=0
5 T
Sz +Syy =0
% =0

on

Figure 7.1:
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Hanson in 1926 observed that when= 55 (N is an integer) an
exact solution of the problem can be given as the sum of exyiate
For example in the special cgge- 7, (N = 2), he obtained

S = (4 iye™ 4 214 et
(7.11) f 41
= Nl OXHEY | (1 _ g OXFHLY
+ 4(1+ i)e + 4(1 i)e .
95

The first and third terms are just deep water solutions, semte
ing outgoing and incoming waves, respectively, but igrnptime bottom
boundary condition[{719). The second and fourth terms cofoe the
boundary condition and tend to zero xas—» o« away from the shore.
We note that the solution is regular at the shore, with perttection.
Thus it corresponds to th& solution of [5.I6). This time we see that
the amplitude at infinity is non-zero. The ratio of the amyali at in-
finity (combined incident plus reflected) to the total amyl#g at the
shoreline is
a1
a V2

In the 1940’s Lewy and Stoker (see10]) found a consisternt twa
generate these solutions for the special anglesnz/2N (and later for
B = Mn/2N). As N increases, for small beach anglghe number of
exponentials becomes large. Asymptotics and various guge$ors <
1 become dficult with these formulas. However, Friedrichs][12] found
a form which is useful for these and other purposes. The at@wiv is
not given in the paper. It seems intirely possible that Fridd noted
that sums of exponentials would follow from complex intégraf the

form 1
1 (xziy)
=l f HOED d
C

(7.12)

when f () is a meromorplic function, and observed which factors ing6
are needed to give the known results. For example it is easyrstruct
(Z13) with poles at = +i¢. Here, we give an independent derivation,
which is independent of previously known results.
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First, by separation of variables, elementary solutionkagflace’s
eqguation are

(7.13) X gty
and by superposition we obtain a general solution of the temuan

(Z38) to be

1 - 1 ,
(7.14) S(x,y) = yoei f f(0)eEW) dg + o fg({)é(x"y) d¢
v ¢

where% is a contour in the complex plane to be chosen later. The form
(Z132) is also immediately suggested by the fact that aiediyhctions

of x + iy or x — iy satisfy Laplace’s equation. IE{Z114) satisfies the top
boundary condition{Z.10) then

1 . .
o {(iZ - 0f(©Q) - (£ + )9y e ds = 0.
¢
Since this is true for alk, we obtain

L+t
(7.15) 90 = mf(é)-

In order to find out the functional relation betweérandg so that
(Z12) satisfies the bottom boundary conditibnl(7.9), itaevenient to
introduce polar coordinates. Then on the bottom,

X=TrCO0SB, y=-rsing,

the boundary conditioi{4.9) is satisfied by (1.14) if

1 . . x
ﬁf(sm,8+|cosﬂ)§e§re "f(Q) de
%

b f (sinB — i cosB)zé™® g(¢) dZ = 0,
4ri
€
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ie. — f e f () dr — — f dBre® £ () d¢ = 0.
4 4r
4

¢

Using the transformatioti = ¢/€?¥ for the first integral, we obtain
1 iB 1 L 1EP ' 2iB , 1 relf
(7.16) — | P () dr - — | (& g)ds =0.
4 4r

where%” is the image of¢ under the mag — ¢’€?¥.
If ¥’ can be deformed back 6 without crossing singularities then
(Z18) can be replaced by

+ [lteo)@” -] w =0
€

This gives
(7.17) 9(¢0) = 1 (7).
If we combine [ZIb) and{Z.17) we have the functional refati
_apd it ig
(7.18) f(7) = € o - (¢e)
for (2).
Special casg = r/2N . 98

It will be convenient in this case, to defimeas
(7.19) w=e?h =N
with the properties
(7.20) wN=-1 wN=1
Then [ZIB) becomes

(7.21) £(0) = %wf(wg).
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If this relation is applied R times to relatef (¢) to f(w?N¢) the ac-
cumulated factors cancel and we deduce only fi@&} is single-valued.
If we apply it N times to relatef (¢) to f(WN¢), we have

(¢ —if) (wg = it)... (wNL - ie)
(C+i)(WZ +i)...(WN-1Z2 +i¢)

(7.22) fQ)=- f(=0).

sincewN = —1. In the multiplying function, we observe that the nu-
merator.# () = (-1)N2(-¢) where 2(¢) is the denominator, so that
solutions forf(¢) are easily readf. First it is convenient to modify

(Z22) to

(¢ +itw) ( +iew?).. (¢ +iewN)
(=it (€ — W) (¢ —itwN)

(7.23) f(Q) = f(=2).

by taking out factors inv, using
wm = _WN—m
and re-ordering. We then observe that

évN—l
(€ —itw) ([ —1tW2) .. (£ — itwN)

(7.24) f(¢) =

is a solution, the factafN~ (or some equivalent) being necessary to ad-
just the spare powers efl. We check that this not only satisfi€s{1.23),
but also the original[{Z.21). We show that this leads to ssfeatiory
solution forS(x, y) and then return to consider its uniqueness.

We introduce

(7.25) ln = iew" = iee™N,
and write

é«N—l
(7.26) f(0) =

(€-21)...(C=dn)
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Then, from [Z1b),

é«N—l
((—-20)... (= In-1)

(7.27) 9¢) =

The solution[[ZI4) becomes
(7.28) i) iy
1 N—leg XAy’ 1 N—leg X—ly’
Sy = 4 [ ¢

) G- - ) T =)
€ €

dz.

In particular, on the surfacg= 0,

1 Ne :
(7.29) S(X’O)_%(g (¢ -20).--(¢— ) %

the surface elevation is given by

(7.30) n(x,t) = %’S(x, 0)e et

Solution regular at the shoreline. 100
The singularities in[{Z.28) are poles at

{=th=itN n=0,...,N;

they lie on the semicirclez{ < 0 shown in Fig. 7.2. If¢ is taken
to be a contour enclosing all these poles then the importamditon
following (Z18) that, after rotatior¥” should be deformable back ¥
is satisfied. With this contou6(x, y) is bounded for alk andy, and is
regular at the shoreline. In fact expanding the integrahastm of the

residues at the poles we have contributions involving orpyoeentials
gn0xsiy)
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Figure 7.2:

All these have acceptable behaviorxas»> o« sinceZ/, < 0 for
n=0,1,...,N. In particular

N
(7.31) S(x.0)= )" cne™,
0

where
&
({n _40)---(évn _éVN)’

101 omitting the zero factor in the denominator.

Cn:

Value at shoreline.
From [Z.29)

N

_ 1 ¢
S(O’O)‘%i!@—go)...(g—m)dg'

Taking % to be a large contour and noting that the integrand13¢
as¢ — oo, we have

(7.32) S(0,0)= 1.

Of course any multiple 0B(x, y) is also a solution.
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Behavior asx — oo.

SinceZ¢, < 0 except forfy = i€ and{y = —i¢, the asymptotic
behavior of the solution as — o is given by the latter. We have, from
the residues ati¢,

1 —I{X+Ly 1 IOX+Ly
(7.33) S(x,Y) 55 € +2De' ,

where
(7.34) D=(1-w@-w)...(1-wN"), w=e"N,

andD* denotes complex conjugate Dt This shows the equal ampli-
tude of incoming and outgoing waves; we have perfect refiectiVe
can also write

1
(7.35) S(x,0) ~ DI cos{x — argD).
102
The amplitude factor D.

The productDD* contains all the 2Nth roots of unity excepl and
—1. Therefore

WaN _ 1
DD* = lim ————————— = N.
w-1(W—-1) (W + 1)
Moreover,
D (l—w)...(l—w’\"l)
D* (1-w)...(1-w"?)
But T-w  1-w
BALAE Bl —
1-w" 1-whn
Hence
D

o = COM hwewe = e

— o i(N-1)/2.



103

98 7. Waves on a Sloping Beach: Full Theory

Therefore
(7.36) D = NY2e7i's

We note that the ratio of amplitudes is

A 1 2,3 1/2

Since this holds for a sequenge= /2N converging to zero, if
a./ap is an analytic function of3, this formula holds for alj3. The
formula checks with[{Z.12), and was quoted in the discussi@ection
B3

Singular solutions .
In view of the following conditions of¥”:

() After a rotation through 2to a new paths”, ¢’ must be de-
formable back to the origin&’ without crossing a singularity;

(b) A path going too must haveZ¢ < 0 as{ — oo, in order that the
integrals in[[Z2B) be convergent far- 0;

the only other choices of contour a&g or %%, shown in Fig. 7.3, or
some combination.

Figure 7.3:
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We considelS;(x, 0) in (Z29) for the patl¥;.

Since the integrand 1/ as¢ — oo, the convergence of the integral
is lost whenx = 0. AccordinglyS(x, 0) is singular at the shoreline. We
may write

Sl(x,O):%f§d§+O(1), Xx—0

(o)

1 _de &
- = £26 - _S
27rife c +0(1), where ¢ .
AX
df
1
27r : + 0(2),
AX
(7.38) B log x + 0(1)
' = 2m Y :
so the singularity is logarithmic. 104

We may also use partial fractions and write
N

Yoz [
"2ri ) ¢ -in
61

n=0

Z Che™ + f gi

RIGEY \)g >0

S]_(X, O)

(7.39)

(The latter integral is indented above the poléas in the caseN is
even). The transformatiofi = ¢, — ¢/x converts the final integrals into
standard exponential integrals.

As X — oo, the dominant term if{Z.89) is from the pole/gt= —i¢.
Therefore,

(7.40) S1(x,0) ~ cne'?, X — co.

ThusS1(x, 0) represents a purely incoming wave with loss of energy
at the beach.
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Similarly, if ¢, (Fig. 7.3) is taken inN{Z.29), the corresponding solu-
tion S,(x, 0) represents a purely outgoing wave, with logarithmic sing
larity at the shoreline.

The correspondence with the Bessel functions of the shallater
theory, Sectiof 5l3, is

(7.41) S(x,0) =S1(x,0) — S2(x.0) & Jo.’
S1(%,0) + S2(%,0) & —iYp.
Uniqueness of the solution of the functional relation forf () .

One could show that the uniqueness of the soluti®{g,y),
S1(X,y), S2(X, y), under the various conditions at= 0 andx — oo, by
direct arguments. However itis interesting to consideuhigueness of
the solution to the functional equatidn{7.21) directlyisTis especially
S0, since important alternative solutions arise in theasponding case
for oblique incidence, which we consider in Secfiod 7.5.

If f(2) is set equal t@&(¢) times the expression iR{7124) and substi-
tuted in [Z2Z1), it follows that

(7.42) G(?) = GW?), w = /N,

ClearlyG(¢) = H(¢?N) is a solution for any single valued function
H(2). Itis also the only solution under reasonable hypotheses.

Proof. We know thatG(¢) is single-valued. Suppose that it has a Lau-
rent expansion in some annular region, i.e.

(7.43) G(@) =) am™
Then
1 G(s)
=20 P 9s

—iSBG(Wt)dti S=wt
© 2ni tml T rpm T

1 G(t) 1
= o 56 el dt.m, from (Z42)




7.2. The shallow water approximation 101

Thereforean, = 0 unlessm = 0, +2N, +4N, .. .. Thus from[Z4B), 106
G(0) = H (™)

whereH(2) is a single-valued function.

Although the solution of fZ21) is non-unique to this exjé¢hé extra
possibility does not appear tffactS(x, y). We consider the case where
¢ is a closed contour and include the extra fadttg?N) in (Z28).
If H(?N) is analytic inside?, the residues al, have an extra factor
H(Z2N). Since2N = (i6)?N, this is independent af and leads only to
a constant factor multiplying(x, y). If H(2) has a pole at the origin,
thenH(Z?N) o« £~™ wheremis at least Rl. The residue would lead to
positive powers ok andy in S(x,y); these are unacceptable. Hf(2)
has a pole at = A, thenH(¢?N) has poles at = AY?N. Some of these
haveZ ¢ > 0 and lead to exponentials with positive exponer{R, y);
again they are unacceptable for a physical solution. O

7.2 The shallow water approximation

Let3 — 0 in such a manner th%tx is fixed and let = éﬂ in (Z29).

Then St o):if e1B dpy
2 ) p(1-82). (1- &)

o). -2

= Iog(l—@)+---+log(1—’8ﬂ)
{n n

Now

=—§(§o+---+§N)+0(ﬁ2N)
n

:—%8(1+W+---+WN)+O(B)
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B |ﬂ WN+l -1
T ow-1 +06)
|[3 w+ 1
+w—1 " o)
107
Since
w=el=14+2 +O(i)
N2
we have
w+1
Hence
l
(7.44) Iog( %) ..(1 MN) =+ 0().
n n
Therefore
1 ee(gn-3)
S(x,0) ~ %ffdn
(7.45) v
2
“ol242 ] =
B g
This is the solution we obtained in shallow water theory.
Since this is the asymptotic behavior witk/3 held fixed, it is ap-
propriate only forx = 0(B).
7.3 Behaviorass — 0
108

Friedrichs [12] obtained improved approximations for drbalch an-
gles. The main step is to improve on the approximation {7 .kdf) we
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work with different variables. It is convenient to get iz in (£29) and
work with the form

(7.46) S = — f Zle dz 2z, = &N
' Zﬂicg (z-2)...(z—2v) '

Now, for largeN (smallg),

%Iog(l—%)ﬂog(l—Z—Zl)+---+log(1—ZN—Z_l)+%Iog(l—z?N)

is a Riemann sum approximation to the integral

(7.47) leog(l— )do-,
0

taking the dissectionr = n/N anddo = 1/N. If we let this be
2NiF(2)/n = iIF(2)/B, so that

geﬂi(r
Z

1 .
n £emo
(7.48) F(2 = Eflog(l— - )do-,
0
we have
izx-LF(2)
(7.49) S() ~ — €’ dz

2ri J (z— O)Y2(z+ €)1/2
%

(Notezg =€, zy = —£.)

Expression[{7.49) is valid for sma#i, irrespective ofx. But fur-
ther approximations can now be made. The shallow watertresul
example, corresponds to the approximation

F(2) ~ —g for large z

109
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The main approximation that Friedrichs considered is thmtilig
behaviorB — 0 with the depttBx fixed. The precise form i§8x fixed,
but we will not trouble to normalize the variables complgtéThe ex-

ponent in[Z.2B) is

1

—=(Bxz- F(2),

ﬂ(ﬁ 2)
so the saddle point method can be applieddor> 0, px fixed. It is
convenient first to simplify{Z.48) by the substitutior= ze ™'’ to give

z

(7.50) F@2) = lfl og =L
2 T T—+¢
0

Then the saddle points= +«, k > £ > 0, satisfy

, 1 K+

(751) ﬂX =F (K) = Z IOg Py
(7.52) = Lannt
K K

We note thak is a function ofx and [Z5PR) can be re-written

2
(7.53) = % — xtanhiBx.

This is exactly the relatiod {6.B4) withy = 8X, so thatk(x) is the
local wave number. This is confirmed in the full saddle pojmpraxi-
mation to [[Z.4P). We have

3 B 1/2 g
(754) S(X) (27_‘_) {(K2 _ 52) |F”(K)|}l/2
where

(7.55) O(X) = kX — %F(K).

110 Then, the local wave number discussedin (b.14) is
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1 d
HX =K+ {X— EF,(K)} d_l)(( =K,
from (Z&1). So we see that the local wavenumber changesrespiect
to xaccording to[(Z.33), this would be expected in advance asdtian
been used as a direct approximation. The amplitude fac{@gitd) also
has a simple interpretation. It can be shown that it satisfies

(7.56) A2C(x) = constant

whereC(x) is the group velocityw/dk. This is a statement of constant
energy flux, and again has often been used directly.

The approximation in{Z.%3J=(Zb5) overlaps with the shallvater
approximation[[Z.45) géx — 0 and gives the correct asymptotic behav-
ior at infinity (8X — o). In a typical case g8 = 6°, numerical work on
the exact solution showed that the shallow water result wasl grom
the shoreline to a distance out of two wavelengths, whel€83 \-[Z.55)
applied from about one third of a wavelength out to infinity.

7.4 Generalg

We note that[[Z18) can in fact be solved in terms of an integraall
values of3. This was obtained by Petefs[13]. The form appears to make
it difficult to use in any very practical way, so we just quote theltesu

(o)

757 1ogct©) = 5 [ oo
0

. T _
z—|{’) r 7t

— .= dz
z+it) B ztIF — (7B

in 0 < argZ < 28, with suitable analytic continuation. 111

7.5 Oblique incidence and edge waves

We now consider solutions that include dependence on thgshmre
co-ordinate, which is taken to be. These will include waves with



106 7. Waves on a Sloping Beach: Full Theory

obligue incidence at infinity, and edge waves trapped neasltiore. In

Z1)-(3), we takd
(7.58) (X, X2, Y, 1) = S(x, y)gkre e,

and the problem foB(x, y) is to solve
(7.59) Sux+ Sy — k?S =0,
with boundary conditions

(7.60) Top y=0:S,-1S=0,1=w?/g.
(7.61) Bottom xsing +ycoss = 0 : Sysing + Sy coss = 0.

Again Hanson[[11] had found solutions as the sum of expoalsnti
in some special cas@gs= n/2N. ForB = n/4 he had

i1
+_

(r&)axw=%@ -

) {@h+t eV} 4 complex conjugate
with

(7.63) A=V +k2, 0<l<oo0, K< A< o0,

As x — o0, the asymptotic behavior is given by the first term and its
conjugate. Combined with {7F8), we have

b~ 1 {(1 N E)eifxnkxz—iwt
(7.64) 4l £
N (1 3 E) e—i[x+ikxz—iwt} o
7 .
112
This represents an incoming oblique wave travelling in thection
(—¢, k), and its prefect reflection in the directiof) k). Perfect reflection
and regularity at the shore go together as before.

1We usex rather tharx; for the dfshore coordinate, since it is onkthat appears
after the separatiofL{Z58).
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Much earlier Stokes (1846) had found the basic edge wavéi@olu

W2

(7.65) S = gkxcosprkysing ) — i ksing,

valid for all g.

Viewed as an eigenvalue problem for (Z63) gives a continuous
spectrum irk < 1 < oo, and [Z.6b) gives a discrete point in01 < k.
Forp = /4, there is in fact just the single poibf(7165), and (¥ .6Z6H)
give the complete spectrum.

In 1952, Peterd[13] found an integral form of solution (extiag
(Z59)) for the continuous spectrum

(7.66) K<< oo,

and valid for generagB. Also in 1952, Ursell found further edge wave
solutions with discrete eigenvalues

(7.67) A=ksin(2p + 1)8, p = integet

provided
2p+ 1B <n/2

Thus forn/6 < B < x/2, there is just the Stokes edge walve (I7.65)
corresponding te = 0. But isg drops belowr/6 a second one appears,
asp drops belowr/10 a third one, and so on.

The relations between these two sets of solutions was nat. cle 113
appears that Peters was only interested in oblique wavaefirty with
A >k, and Ursell only in edge waves with< k. Peters’ approach was
not used to obtain edge waves, and Ursell appears to have theedge
waves (which are sums of exponentials) by inspection anéraqce
with other trapped modes, rather than by some procedurecthad
be tied to the other solutions. Peters’ integral is quit@aililt to use,
and although Ursell's edge waves are sums of exponenti@s)umber
increases a8 — 0 and various asymptotics becoméidillt.

Here, we shall do the following which appears to be new.

(1) Use a general Peters type approach, but for the gaser/2N,
and obtain an extension df{7]128pth for oblique incidencek <
A < o0) and for edge waves (@ 1 < k).
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(2) Show that in the edge wave case the final form can be fresd fr
the restriction3 = 7/2N. These extensions di{7128) can be used
conveniently for various asymptotics, although detailt mat be
given.

The unified derivation also gives confidence in the compkerof
the solutions; this has been proved in detail for the ¢ase n/4 by
Minzoni [15].

We start from separated solutions Bf(7.59):

S=ePeW, p?+qf = K.
114 In order to keep a fairly symmetric form we might consider
p = kcoshy, g = ik sinhy,

or
p = kcosy, q=Kksiny,

q= k- p?

say. Both of the former are special cases of

rather than

k2 . k2
(768) p:§+4—§,q:i|(§—@),

with ¢ = 3e¥ or £ = 1€¥; ([ZEB) turns out to be most convenient of all.
So we choose a superposition using this form and take

S) = 7 f f(od“EPleE o
4

(7.69 b [[od B Ry
4

as the generalization of(7]28) fér # 0. This satisfies the reduced
Laplace equatior {7.59). The bottom conditibn (¥.61) respui

(7.70) Pt (;e7%) = g(0).
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just as before. (SeE{Z117)). Animportant conditiorf&is again that,
after a rotatiory” = (€, the new contoufs” should be deformable
back into%” without crossing any singularities. The top conditibn(j.6
gives

K2 . ¢ K2
I LG (e E)
Combining [Z7D) and{Z¥1), we have
2 i1y K
(7.72) f(0) = wo e £ (),
2+iag-%

wherew = €?£. We have a relation very similar t6{7]18), but with1is
guadratic instead of linear factors.

If B = n/2N,wN = —1, the application of[{Z12) successiveN,
times, relatesf(¢) to f(-¢), as before. Since the numerator and de-
nominator difer by a sign change, we can redfl @ solution extending

(Z23). We have

§2N—1
. f - > @
(7.73) V=50 a0
where
(7.74) Qn(0) = 22 —iawe - kZZWZ”, w= /N,

The solution forS(x, y) is

1 gZN—le(“%)x”(‘f‘%)y

S(y) = 4ri J Q1(0) ... QN %

L pder Ry
_4_7Ti<g Qo(?) ... Qn-1(2)

(7.75)
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7.6 Oblique incidencek < A <

The diference between the two cases concerns the roots of the juadra
ics in (Z74). Ifk < A < o0, the roots are

(7.76) [ = i—ﬁgfeﬂ‘”/N, i—lgfe’“”/N,

wheret = VA2 — k2; they lie on semicircles i#/ < 0 as shown in Fig.
7.4. These points are poles in the integral§1n{7.75); tlesidues have
exponentials wittZ (¢ + %) < 0, so that all of them

Figure 7.4:

are acceptable. Hence solutions can be obtained which raikarsto
the casek = 0 but with double the number of terms. The solution for
perfect reflection (regular at the shoreline) is obtainednfthe paths’
chosen as in Fig. 7.4. This time there is an essential sirigug = 0
which must be excluded, otherwise unacceptable solutioqmsitive
powers ofx andy would be obtained. This choice &f satisfies the ro-
tation requirement noted after equatibn{¥.70). The mtattquirement
excludes paths going between the poles on either semicingtean al-
ternative is still to take a path enclosing only one or thep#emicircle.
However such choices give the same solution as the one sathran
additional numerical factor.

Whenx = y = 0, the integrands i .{Z¥5) are asymptotic @ As
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{ — oo, Therefore
S(0,0)=1

as before. 117

Behavior asx — oo .
The asymptotic behavior as— o is given by the four poles with
Z¢ = 0, namely

i/1+€

i/1—€
5 .

(7.77) =+ 5

,§:i

We then have, after some simplification of the factors in ésidues,

CINNY
(7.78)  S(xy) ~ — {1+( D7 }é"”ﬁhc.c.,

2CD 1-p
where
(7.79) D=(1-w)(@-w)...(1-w'?), w=e"N,
(7.80) C=1-pwW)(1-p)...(1-pwN?), p= j—;i

Combined with[[7.98), we see th&f (7.78) represents thegtené-
flection of an incoming oblique wave with direction{, k).

The codficient D arose in the case of normal incidenge=( 0) and
was found in[[Z.36) to be

(7.81) D = N/2e's

We can findC| by an argument similar to the one used Er We
consider
CC =(1-pw)...(1-pwN ) (1-pw?)...(1-pw D)
— i _ _aN=-1 R | _ N-1)
VI\IIT1(W pW)...(W oW )(W oW )(W oW )
W2N _ 2N

. p
= WL W) (W p)
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118
There appears to be no simplified expression forCargHowever,
we have simplified the expression for the amplitufie (7. &pmes

1 (1+(=DNoN 142
7.83) S(xy) ~ . gixrytia 4 cc
7:83) S ~ g0 { o T +

where
(7.84) a =—argC + n(N — 1)/4.

Whenp — 1, there is a surprising filerence in the behavior of
the amplitude depending on whethidris odd or even. It is perhaps
best viewed by renormalizing the solution so that the amnghditof the
incoming wave is unity and the amplitude at the shorelinebess

1- ()N 1-p |
7.85 = N2 .
(7.89) % {1+(—1)Np'\I 1+p

WhenN is evenag — 0 asp — 1, whereas it remains finite foy
odd. However, in this limiC — D so that

a— a(N-1)/2

WhenN is even, 2 is an odd multiple ofr so the incoming and

reflected wave are exactly out of phase in the limit and cavblenN
is odd, Zv is an even multiple of so the incoming and reflected waves
reinforce. Related to this is the fact (seen below) that wkea odd a
new edge wave mode appears, and just when it appears the suale u
exponential decay is absent.

119 Neverthless, the behavior is quite strange. For large sabfibl the
corresponding changes jhare small and one would not expect rapid
changes in behavior a¢$ oscillates between odd and even values.
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Singular solutions .

As in the case of normal incidence, solutions with zero otiglar
reflection may be obtained by taking the path of integratio@/17%) to
be similar to the path%7, ¢, in Fig. {Z3). In this case, because of the
essential singularity at = 0, they must go into the origin witk?/ < 0.

7.7 Edge waves) < 1 < k

For A in the range ((K), if we set
(7.86) A=Kksinu, 0<u<n/2,
the roots of the quadratic iB{ZI74) are given by

(7.87) @ gw”ei“, (B) —gw”e—iﬂ.

These lie on two dferent semicircles of theamecircle as indicated
in Fig.[Z3.

Now these are poles of the integrals[In.(T.75). Those with< 0
would lead to exponentials with positive exponentxiand are unac-
ceptable (since we require bounded solutionx as o). Therefore,
the contributions of the poles wit#/ > 0 must cancel between the two
integrals in [Z7b). This will only be possible for

A

Figure 7.5:
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120
certain values ofl, and leads to the restriction dfto a discrete set of
values: the point spectrum.

To carry out the details, we take the same contéuas before, but
deform it into the

Figure 7.6:

two circlesI” andy as shown in Fig. 7.6. Furthermore, the substitution
of £ = k?/4¢ in the integrals ory converts them into integrals dn
When this is carried through, and pairs of integrals conthimes have

gN_l {gN + (k_z)N} Yo, K2

_ 1 4 (g (et )y

S(x,y)—%f oo e( 44) ( 4:) do
r

1 N {fN + (%)N}e(ﬁ%)x—i({—%)y

(788) + % ) QO - QN_l

daz.

It should be especially noted that the final form fits with thigioal
(Z£89), but for a dierent functionf(/). Thus there is a very impor-
tant lack of uniqueness in the solution of the functionahtieh [Z72).
However, the solutions foB(x,y) are the same; the change o) is
compensated for by the change in contour fafno T

Now the requirement that poles witi# > 0 do not contribute is
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easily obtained. The factor in the numerator[of {¥.88),

k2\"
N —
(7.89) N+ (4{)
vanishes at points
k2 iz .
(7.90) = Ee?” 2N, q= integer

These zeros are equally spaced around the circle in Fignith,
anglesn/N between them. Ifi is tuned so that these zeros lie on the
poles there will be no singularities in the parts/ond B whereA and
B do not overlap, and this includes all those wi#t > 0. WhereA
andB do overlap, the double poles will be converted to single paled
provide non-zero contributions. Thus, the requirement is

2p+1
(7.91) ==

for some integep. For 1 in (Z88) we have
(7.92) A, = ksin(2p + 1)% = ksin(2p + 1)B.

where (D + 1)38 < n/2. This is the result quoted iR {7167).
If we denote the modified (¢) that appears I {Z88) bfi (), we 122

have
2+ (5)"

)= oo

For A = Ap as given in[Z91)E(Z.92), the cancellation of appropriate
factors can be carried through and we are left with

17— Ke@DB o kel2p1is

(7.93) f1(0) = Z [+ l%e_(ZP_l)iB T %e(2p+l)iﬂ'

Here the relatior8 = 7/2N has been used to eliminakéin favour
of B. In this form , (£93) is valid for any3, and is no longer limited to
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submultiples ofr/2. So the edge wave solutio8¢x, y) can be extended
to all 8 using [ZZ9B). The first one,

p=0,1p=ksing,

1{-5e°

7.94 fi(¢) = = :
(7.94) =7 i

leads to the Stokes solutidn (7165).
As regards the direct strategy for findiig(4.93) frém (¥, ¥&® note
that [Z.72), withd = ksinu, can be written

(¢-3€") (¢ +5e™)

(¢+5er) (¢~ e )
Whenu = (2p + 1)B, one would have to note how an appropriate

number of iterations and some re-arrangement allows theicolto be

picked df. For example, in the Stokes cage= B, (Z.893) can be re-
written

(7.95) f1(g) = &

f1(¢e%).

i _kdB 2B KdB
79 @)= (4 Zé][gz i

¢ \¢+%ep )\ ce2b - Keb
Then one checks thdi{7]94) is a solution. But this may not hav
been easy to see in advance, especially for higher

] f (c).



Chapter 8

Exact Solutions for Certain
Nonlinear Equations

FOR THE WAVE problems of hyperbolic type studied in Chapfifs 124
@ we noted that the inclusion of dissipation would lead ingheplest
case to Burgers’ equation

(8.1) M+ 1Mx = Nxx-

We also noted the remarkable fact that this equation coutdape-
formed into the heat equation

by the substitution

X

(8.3) n = -2(logv)x = —ZVT.
Thomas’s equation

(8.4) Uxy + PUx + Uy + UxUy = 0

could be made linear by a similar transformation:

u=logv.

117
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In the water wave context, when dispersion rather thanitisin
is incorporated, the simplest basic equation is the Korgeda Vries
eqguation

(8.5) Nt + Mx + Mxxx = 0.

The derivation of the equation and its background are desdrin
[]], Sections 13.11-13.13. In recent years, a remarkabieoeu of de-
125 velopments have led to unusual and quite intricate methbdisding
solutions to[(8)). These in turn have led to similar develepts for the
following equations.

(8.6) Modified KAV U; + 3UPUy + Uxyy = O,
(8.7) Sine-Gordon Ui — Uyy + Sinu = 0,

(8.8) Cubic Schrodinger iu + Uxy + [ul?u = 0,
(8.9) Boussinesq U — Uy — (U%)xx — Uxxoxx = O.

8.1 Solitary waves

In their original paper[16] published in 1895, Korteweg\tkes found
special solutions of[{8l5) in the form of steady profile wawesving
with constant velocity. These may be obtained by taking

(8.10) n =n(X), X = X—at,
wherea? is the constant velocity of translation. We have

Mxxx+ mix — &’nx = 0,
and after two integrations

1 1 1
8.11 2+ St - 2o+ A+ B=0,
(8.11) SIx T gl — 5+ A
whereA, B are constants of integration. In genefal{8.11) has saistio

in periodic elliptic functions (‘cnoidal waves’), so thELT0) represents
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a moving wave train. In the special cade- B = 0 (which corresponds
to the limitcr? — sech? in the elliptic functions) we have

1
(8.12) nx = 313~ 1),
with solution
1
(8.13) n = 3a? sechzé(ax - ).

This is the ‘solitary wave’ consisting of a single hump. loshd be 126
noted that the velocity/? is related to the heighta®; stronger waves
move faster.

Similar solutions can be obtained far{B.4)-{8.9).

However, the big advance came with the discovery of more gen-
eral solutions for[(8]5), and in particular solutions foe ithteraction of
solitary waves, by Gardner, Greene, Kruskal, Muird [17]9671. The
formula for the interaction oN solitary waves is

2

3
(8.14) n =12 log|Dl.

where|D| is theN x N determinant with elements

(8.15) D = G + —2 Mg amerait
am+ an

Each parametery, corresponds to one of the solitary waves (B.13);
in the caseN = 1,y; = a1 B12)-[8.1I5) reduces th(8]13). The parame-
tersym play the monor role of spacing the original positions of tbl-s
tary waves. The form of the solutiof_(8114) isfstiently unusual and
complicated to indicate that a whole new set of ideas anchiquhs is
involved. Even the thought of verifyingL {8114) by direct stitution is
alarming since five derivatives (| would be required!

Physically the result is also interesting since it showsalftar inter-
action each solitary wave emerges with its original shagevatocity. 127

Similar results were eventually found for the equationsi8)-
@3). As another illustration of the novelty of these siolo$ it may
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be noted tha{{816) has a solution
0, 4(a :
u= 2\/58—)( tan {F sech(ax — Bt) sinkx— wt)
w

@42y B
k o
This represents a ‘wave packet’ with oscillations movingtlgh an
envelope of solitary shape.
The original methods are reviewed [ [1], Chapter 17. Heralan
ternative recent method will be described.

= -3k? + a2

8.2 Perturbation approaches

So much of the progress on nonlinear problems in all fieldshessn
made by perturbation methods that we wondered what the stasy
here. Could the above solutions be obtained by relativehpls per-
turbation approaches, even if we have to rely on the exisgsglts to
stimulate the correct procedures? Secondly, having léhentorrect
procedures, is there hope of applying these metliodgpproximate
form in cases where it seems most unlikely that exact solutiontdco
be expected? The first question does lead to an interestuhgadimer
simple way of finding the solutions, with information of gealevalue
for perturbation theory. It also gives a new view on what ¢hejsecial
eguations have in common. The second question is still moee;cas
we shall see certain features of the equation must be just tagnake
progress.

This programme was carried through by R. Rosales and hisiatco
will appear in Ref.[[18].

We start with Burgers’ equation, since a nice feature is thase
earlier cases can be included and contrasted with the lags. 0

8.3 Burgers’ and Thomas’s equations

We shall establish all the ideas and notation on this caskesadcount
may appear long for a ‘simple’ method.
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We write the equation as

(8-16) Nt — Nixx = —NMx,

and we begin with an expansion in terms of a small parameitethe
form

(8.17) n=> emMx).
1
After substitution we readfbthe usual hierarchy
(8.18) - niq =0,
n-1 ) i
(8.19) === > P,
=1

to be solved successively. At each stage the right side_b8)& known
so that only the solution of the inhomogeneous heat equadi@ver
involved.

Of course, experience suggests that such a simple approiéchias
prove inadequate in some way, and the art of perturbationoappes
is in learning how to correct the definciencies.

The dificulty in this case is easily seen by considering the shock
wave solution of [8116). This solution is the counterpar@®I3) and is
found in similar fashion. It may be written

e—ax+azt

(6.20) 1515 co

2a
where a parameterhas been include to compare wilh(8.17).[0E.(8.20)
is formally expanded in a power seriesdnwe have

—ax+a?t 62 —2ax+2a2t
(821) n=ee —2—e + .-
(04

It may be verified that this is the solution ¢f(8l19) startfrgm the

special case

77(1) — e—ax+azt.
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We immediately see the limitation on{8121); it convergely dor

e—ax+(12t

|e <1,
i.e. for suficiently largex. But we also see that theis spurious. It
could be absorbed by replacixdy

1
X——loge.
[04

Since this is a trivial change in origin, theplays no real role. It
serves only to suggest the ordering of term$§1n (8.19). Wesety= 1.
The real issue is to sum the series(8.21) in the form18.20)hat the
perturbation series valid only for ficiently largex is extended to be
valid for all x. This is like finding an analytic continuation. In this
particular case we need only sum

72-Z2+27- ...

as
z

1+7

and we have the exact solution.

We now examine the general case starting with as the general
solution of the heat equatiofi{8118). Although we are notligun-
terested in real exponential solutions of linear equat{sirce they are
unbounded), we see from{8]20) ahd(8.21) that they areatlyianpor-
tant in the present context; the final form [n_{8.20) is bouhdedeed
one important case would be

N
(822) n(l)(x’ t) — Z aj e—Kj X+szt;
j=1

this would lead to the interaction of shocks. But we are alderested
in the usual Fourier integral solution

(8.23) n(x 1) = f K tE (k) dk
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To include both and to avoid the display of too many summatams
in (822), we use the notation

(8.24) nM(x,t) = f e ) ().

This should not conjure up worries of any deep measure thdory
merely means sum over any distributionecoWith appropriate weights.
In 822) the sum is over

(8.25) @ = K1,K2, ..., KN,
with weights
(8.26) a, a,...,anN,

in B.23) the sum is overico < a < ico, With @ = ik and weighting 131
functionF (k) dk. The general form would include both. We shall further

write 8:23) as

(8.27) n® = f e di(a),
where
(8.28) Q= —ax+a?t,

and after a while drop theé1 altogether.

For the successive equations for tf8(x, t), it is clear that one may
take solutions in the form af-fold integrals
(8.29)

nW(x 1) = f f ™ (a1, ..., an) €M N dA(ar). .. dA(an),

where eaclf2; has the corresponding;. For example,

2 2 1
D =& = -

. f f 426™% dA(a) dA(e),
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using the dummy variable; for the first factom) and dummy variable
a> in the second factoy&l) Then, using[(8.29) witm = 2, we have

(8.31) {ai + az (a1 + ag)z} @ = a,.
132 Therefore,
1
(8.32) ¢ = ——.
20’1

Forn®, we have

7753)_,7(3) =0 (2)_ n®n (1)

(8.33) f f f { “22;2“3 “31}e91+92+93 diy diy dis,

In the first paira; is used fom®, anday, a5 are used i{. In the
second pair, 1, a,) are used im®@, andas in 7{Y. This preservation
of symmetry in the right hand side is important. Now, usin@®3 with
n =3, we have
(8.34)

2 2 2 2 3
{al+a2+a3—(a1+a2+a3) }¢()

a/lafz + a1a3 + a/2a/3

2012
Therefore,

1

8.35 ®) = .
(8.35) ) s

At this stage, or after one more iteration, one can compag)8
B32), [83b) and suggest the general form

(-1

8.36 ™ (ag,...,ap) = =—=—F——.
(8.36) 60 ) = g

Accepting this for the present, the series solution is

n-1 1+-4+Qn
(8.37) n(x, t)_z( L) f f ¢ d/l(al) .dA(an).

2n-1 a1as
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Now this series solution is the general counterparfigJj8a2d is
limited in the same way: it will only be valid for siiciently largex.
The crux of the matter is whether it can be summed to give atmif
valid solution for allx. But we see that it can. The multiple integral is
in fact a product of integrals. If we define

(8.38) B(x.t) = f %eﬂ di(e), satisfying B — By =0,
then
(839) n(x’ t) — _ZZ(_l)n_an_le-

1

We have the same simple series as before and it is immediately
summed to give

(8.40) n= _21?5 = —2{log(1+ B)},.

Equation [B3B) and(8.#0) provide exactly the Cole-Hoahsfor-
mation [8B) withv = 1 + B! We believe this is the first derivation of the
Cole-Hopf transformation.

In the case of Thomas's equatidn_{8.4), the perturbatioreseés
found to be

(8.41) u:i$ f f el d(eq) . . . dA(an),
1

this time with

(8.42) h=ax+py }

aB + pa +q8 =0,

to fit the diferent linear part. Thus, with

(8.43) B(x,t) = f e’ di(a),
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we have 134
>yt
u=>" -
1
=log(1+ B).
And, from (8:43) and(8.42§B satisfies

This is Thomas’s transformation.

We observe the two key features in both casesy{1¥actors into a
product, and (2) the resulting series is easily summed.

Detailed verification of[{8:36) will not be given, since itshelearly
led to the correct results. We prefer to leave the detailadysto the
corresponding steps in the more interesting case of the KpMteon.
It should also be stressed that the success of the methodspoiting
the form of thegp™ after the first few values have been found. Once
the general form is strongly indicated, its proof dependprving an
algebraic identity among the, ..., an, and is standard (if not always
obvious). Thus, it is more important to add a few further reman
deducing[(8.35) than on proving the general form.

The common factor

a1a2 + @13 + @203

is cancelled through if{8.B4) because the symmetry on tite of
B33) was carefully preserved. To illustrate what is imeol, suppose
the parametett; is used fom™ and parametersy, a3) in ® for both
terms. Then we should have
a2 + a3+ a;
200
as the factor on the right. One then has to spot that

12 + @13 + @203 1 a3 a3

2012 T2 200  2a1

is an equivalent form under the triple integrals, since dhgare just
dummy variables ands/2a, can be relabelledy/2a5.
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8.4 Korteweg-de Vries equation

It simplifies things, but is not essential, to introduge= —12y4y, inte-
grate once with respect tq and work with

(8.45) Yt + Yrxxx = 691’)20

a form that has often been used for other purposes. (The fatgure
convenience to avoid powers of 6 appearing in later expaski
The perturbation series is

w=p v
2
(8.46) "+ =6 udul ™,
i=1

To see the nature of the problem one might again check thetisitu
for the simplest solution, nemely the single solitary wd¥g8). If we 136
start with
’7[’(1) _ e—ax+a3t - aP, say

it is easily found that the seridS{8146) is
y=a) (-1)"tP".
1

The validity is originally limited by convergence, but isinediately
summed to

aP Py 0
(8.47) ¢_1+P_—1+P_—6—Xlog(1+P).

This is [BIB) written in terms af. The issue is again to sum the
sereis to obtain a solution valid for atl Again the series is no more
than (1+ P)L.

For the general solution we start with

(8.48) y = f e?di(a), Q = —ax+at,
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which in our notation is the general solution of the lineanattpn
(8.49) UiV +ylk =0,

The change fron{{8.27)=(8P8) is only in tie The expression for
™ will be an n-integral [822D) as before. The detailed derivation of
the codficient¢(ax, .. ., an) is given later so that we can immediately
focus on the method and the contrast with the Burgers’ andnHss
cases. The perturbation series is found to be

(8.50)
00 . g axtaitgraaxtajt  granx+ajt
= 3 1y ff ,
4=, (01 +02) (02 + 02) . (ana + )

and thedA(ai) dA(a?) ... dA(an) is not displayed in this already long
expression. In this case tinefold integral does not split into a product,
but the successive integrals are only linked pairwise thincthe factors

(@j + ajs1) in the denominator. It is the second class in the order of
complexity. Burgers’ and Thomas's cases have completerfaation;

the codficient ¢(" takes the formf(a1)f(a2)... f(an), although with
very simple case$ « 1/a,f « 1. In (85D) we have the next class
where the factorization is pairwise.

(8.51) f (a1, @2) f (2, 3) ... f(an-1,an),

again with very simple.
To bring out the pairwise linkage more strongly, we may ipcoate
the exponentials into the scheme by splitting

e—a/jX+a/jt

into
1 .,.13 1 .,.1.3
e_EQJX"'iajt_e_iaJX"'?“jt

and combining the first with — 1 and the second with+ 1. Part will
be left over at beginning and end, but we may write
(8.52)

Y=Y (-1 p(e1)P (a1, @2) P(a2,@3) ... P (an 1, @) Plan),
n=1
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where
p(a) = e—%ax+%a3t,

(8.53) 5 Ze—%ax+%a3t.e—%ﬂx+%ﬂ3t

(a.B) = oy
(8.54) e P(a,p) = 2APB)

a+p
0

(8.55) (@B = ~pR(),
and we use a 138

Summation Convention:
Repeated’s are to be integrategﬁ dA(a).

8.5 Discrete set oty’ sinteracting solitary waves

We now consider the special caBe(8.45)=(8.26) where'theange over
a discrete set
@ = K1,K2,...,KN,

and the integrals are in fact sums. Then eaghranges over
(856) m = Kim,im = 1,...,N.

If we let
pi = aie—%lq X+%Kit

1

Loywil.3r _Leysil,3
g ZkiX+3Kt @ KX+ 5Kt

(8.57) Pij = 2a;aj
PiPj

Ki+Kj’

Ki + Kj

(8.58) =2
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then [B.5R) may be written
(8.59) Y= (1" i PiioPisy - - Piy ain Pios

1

where eachp, is summed over,1..,N, according to[(836). But this
summation convention is now the usual one dnd {8.59) ingojust
ordinary matrix products. In matrix forn{{8159) is written

(8.60) = (1) tp P ip,
1
139 wherep! is the transpose (row vector) of the column vegioNow, the
crucial step is to suni{8.50) in the matrix form
(8.61) y=p (1+P)'p,

in order to extend the validity to ak. This is an acceptable form, but it
can also be manipulated into a more convenient one. First

pTAp= piA;p; = Ajp;pi
= Trace App';

Therefore
y =Trace {(1+P)™pp'}.

Then, from [85b) ol (8.37)-(8.58),

oP
T _ .
PP ==3%

therefore
g =Tr{-(1+P)'Py
0
= —a—XTr{Iog(1+ P)}.
Finally for any matrixA

TrlogA = log det|A;
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this is trivially true for a diagonal matrix and any symmetmatrix can
be made diagonal by a similarity transformation. Therefore

0
(8.61) VEE ~x log det|1 + P|.

With i = —12y, this is [BIH).

8.6 Continuous range; Marcenko integral equation

140
In the case when has a continuous range oveiro to ico, i.e. we start

with a Fourier integral in[{8.48), then formally at ledSEH@). could still
be written

Y= (1" p(e)P™ e, HP(B),
n=1

with the understanding that powers and products have totbgneted
with the summationy d. If we define

(8.62) (1+P) L= i(_l)n—lpn—l’
n=1

then formally
y=p (1+P)'p,

but any practical use would require some interpretatiorhefdperator
(1+P)~! other than the series ii{8162). There seems to be no imneediat
analogue of[(8.81).

In fact explicit solutions corresponding to this case hawtbeen
found by any method. However, the problem can be reduceditear|
integral equation, which is useful for various quesionghsas asymp-
totics fort — oo. This can be found most easily froln{8.50) by writing
the terms as products in afidirent way.

In Fourier integrals it is natural to associate additioretérs ina
with operations with respect ta For example if

(8.63) B(X) = f et g (),
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then

(o)

f B(2) dz= f C—t«a—‘“ﬂﬁt dA(a).

X

But in 50), we have the pairwise linkage to contend wittowH
ever, if the exponentials are split into two halves, as lefand the
integration performed on the successive pairs

_Llwi+ai
e 2("J+“J+1)X’

we obtain the required factors. This leads to

w:2(_1)n—1f...f5(x+;1)5(21;ZZ)...

1+ X
B(%l+

(8.64)

)da-~d44,

where B(x) is given by [8.6B). (The dependence Bfont is not dis-
played).

Now (B.62) is another type of product. To bring this out, wesmu
define multiplication in some way as “multiplication B/and integra-
tion fxw First in order to keep clear the féierent arguments dB in
[B53), we temporarily writeB(Y) as B(x, Y). Then to introduce the
appropriate multiplication we define the operaBacting on functions

f(x,y) by
(8.65) Bf(xy) = f f(xy)B(zy) dz
X
Then [B.6}) may be written

(8.66) =

i(—l)”‘lé”‘lB(x, y)]
n=1

y=x

Notice that two space-like variables come in automaticallyhis
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view, anﬂ]
¥(x) = K(x, X)
where
(8.67) K(x,y) = i(—l)”‘lén‘lB(x, y).

1

The appearance of the extra dimension is a crucial stepgiotily-
inal inverse scattering methods it arises due to the adedcszattering
problem. Here it arises in writing (8.164) precisely as a pisid

Formally, we would suni(8.67) as

(8.68) K(xy) = (I + B)™*B(x, y).

Then,Aagain, practical use would require interpretatidrtheoper-
ator ( + B)™* other th:o\n by the series. However it would follow from
@B.58) by applying + B to both sides that

(8.69) 1 + B)K(x,y) = B(x,Y).

This can be justified (avoiding use @f(8168) and the definitid(l +
B)~! by applying the well-defined operatbr B directly to [8.6Y); the
only assumption is thalE{867) converges foffisiently largex. From
the definition ofB, (869) is

(o)

(8.70) K(x,y)+fK(x,z)B(z,y)dz= B(x,y).

X

This is the Marcenko integral equation. So the final pretionipis 143
to take a general solutiof(8163) of the linear equation

Bt + Bxxx = 0,
solve [87D) foiK(x, y, t), then
U(x 1) = K(x %, t).

1Thet-dependence is suppressed throughout these manipulamtisatk, like B,
is in fact a funcion of, y, t.
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8.7 The series solution

The derivation of the terms ifi.{850) is now given in detaihce by
this approach everything depends on the factored (paiyvidsm. As
explained in connection with Burgers’ equation, we have

(8.71) z,l/(”)(x,t)zf...qu(”) (@1, ..., an) €0+ da; .. dA,

where

The equation fop/@ is

v+ y Q) = euPyd;
hence
(8.72) {ai’ + ag — (ag + a2)3} ¢(2) = 612,
and we have
(8.73) o® - _ﬁ

The equation for® is
U+ yh= i@ + euldy
144 hence
(8.74) {af + ag + ag — (a1 +ap + a3)3} ¢(3) = 6{2a1 + 23} .
The factor on the left simplifies to
=3 (@2 + a3) (a3 + 1) (@1 + a2),

and we have
22

(a1 + a2) (a2 + @3)

(8.75) #® =
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It is, surely, now reasonable to propose

(_l)n—lzn—l
(1 + a2)...(an-1 +an)’
On substitution in

O g - sz(l) ) ns 1

(8.76) o = n> 1

we have

{ai 4o+ a/n (g + -+ a/n)3} ¢(”)

n-1

=1 (a1 +a2)... (aj_l + aj)

(@1 + - + an)

(Cvj+1 + @j+2) ... (an-1+an)
Thus, to provel(8.16), we need to show that

(a1+---+an)3—((x?+~-~+aﬁ)
(8.77) :32 a+ -+ @ (a/j +a/j+1) (a/j+1+...+a/n)

The sum on the right hand side is equal to

Z(a1+~-~+aj_1)aj (ij+1+---+an)
+Z CL’J+1+ +an)

=2 Z akem + Z aﬁag.

k>f>m k#¢

145

The expression on the left of {8]77) is 3 times this, so theltes
follows.
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8.8 Other equations

The series approach goes through in a similar way for ther @tyea-
tions noted in[(8J6)E(8]9). A common feature is that the etintalways
displays the pairwise linking in the integral noted [I0_(§.54nd takes
the form

(8.88) f f f (@1, @2). .. f(@n-1, an) €N dA(ay) . . . dA(an).

In the diferent cases, the quanti®always corresponds to the linear
part of the equation, such that

eQ — e—ax+ﬂ(a)t
is a solution. Thug = B(«) is essentially the linear dispersion relation

(usually writtenw = w(a) with @ = —ik, 8 = —iw). It is surprising that
in all cases except the Boussinesq equafiod (8 @), a») is just

1
8.89
( ) a1 + a2
and even for[(819) takes the form

1
8.90
( ) a + by

wherea; is simply related tax; andb, is related tox,. The pairwise
linking in B.88) classifies a whole group of problems, andekample
the matrix form in [8.59) would go through for arfy It would seem
surprising if only such special cases @S (B.89) &nd18.90¢ wWe only
ones of real interest.

A second point in these examples is that the series to be sdrizme
just the expansion of @P)~* or (1+P?)~1 or some slight variant. Again
it would be surprising if these very simple series were thig ones of
relevance. But the extent of these methods, as well as trabjlitg
mentioned earlier of summing the crucial part of the seriegite a
satisfactory approximation, is still not known.

In the direction of classification, the next group would ilwefac-
tors f in (B88) depending on trios @i’s, but it is not clear that such
cases occur or what one could do with them.
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