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Preface

THESE NOTES SUMMARISE a course on the finite element solution
of Elliptic problems, which took place in August 1978, in Bangalore.

I would like to thank Professor Ramanathan without whom this
course would not have been possible, and Dr. K. Balagangadharan who
welcomed me in Bangalore.

Mr. Vijayasundaram wrote these notes and gave them a much better
form that what I would have been able to.

Finally, I am grateful to all the people I met in Bangalore since they
helped me to discover the smile of India and the depth of Indian civi-
lization.

Bertrand Mercier
Paris, June 7, 1979.
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Chapter 1

Sobolev Spaces

IN THIS CHAPTER the notion of Sobolev spaceH1(Ω) is introduced. 1

We state the Sobolev imbedding theorem, Rellich theorem, and Trace
theorem forH1(Ω), without proof. For the proof of the theorems the
reader is referred to ADAMS [1].

1.1 Notations

LetΩ ⊂ Rn(n = 1, 2 or 3) be an open set. LetΓ denote the boundary of
Ω, it is assumed to be bounded and smooth. Let

L2(Ω) =



















f :
∫

Ω

| f |2 dx< ∞



















and

( f , g) =
∫

Ω

f g dx

ThenL2(Ω) is a Hilbert space with (· , · ) as the scalar product.

1



2 1. Sobolev Spaces

1.2 Distributions

Let D(Ω) denote the space of infinitely differentiable functions with
compact support inΩ. D(Ω) is a nonempty set. If

f (x) =















exp
(

1
|x|2−1

)

if |x| < 1

0 if |x| ≥ 1

then f (x)ǫD(Ω),Ω = R.
The topology chosen forD(Ω) is such that a sequence of elements

φn in D(Ω) converges to an elementφ belonging toD(Ω) in D(Ω) if
there exists a compact setK such that

supp φn, supp φ ⊂ K

Dαφn → Dαφ uniformly for each multi-indexα = (α1, . . . , αn) where2

Dαφ stands for
∂α1+...+αnφ

∂α1 x1 · · · ∂αn xn
.

A continuous linear functional onD(Ω) is said to be adistribution.
The space of distributions is denoted byD ′(Ω). We use<· , ·> for the
duality bracket betweenD ′(Ω) andD(Ω).

EXAMPLE 1. (a) A square integrable function defines a distribu-
tion: If f ǫL2(Ω) then

〈 f , φ〉 =
∫

Ω

fφdx for all φǫD(Ω)

can be seen to be a distribution. We identifyL2(Ω) as a space of
distribution, i.e.

L2(Ω) ⊂ D
′(Ω).

(b) The dirac massδ, concentrated at the origin, defined by

〈δ, φ〉 = φ(0) for all φǫD(Ω)

defines a distribution.



1.3. Sobolev Space 3

DEFINITION. Derivation of a Distribution
If f is a smooth function andφǫD(Ω) then using integration by parts

we obtain
∫

Ω

∂ f
∂xi

φdx= −
∫

Ω

f
∂φ

∂xi
dx.

This gives a motivation for defining the derivative of a distribution. 3

If TǫD ′(Ω) andα is a multi index then DαTǫD ′(Ω) is defined by

〈DαT, φ〉 = (−1)|α|〈T,Dαφ〉 ∀φǫD(Ω).

If Tn,TǫD ′(Ω) then we say Tn→ T in D ′(Ω) if

〈Tn, φ〉 → 〈T, φ〉 for all φǫD(Ω).

The derivative mapping Dα : D ′ → D ′ is continuous since if Tn →
T in D ′ then

〈DαTn, φ〉 = (−1)|α|〈Tn,D
αφ〉

→ (−1)|α|〈T,Dαφ〉
= 〈DαT, φ〉 for all φǫD(Ω).

1.3 Sobolev Space

The Sobolev spaceH1(Ω) is defined by

H1(Ω) =

{

vǫL2(Ω) :
∂v
∂xi

ǫL2(Ω), 1 ≤ i ≤ n

}

where the derivatives are taken in the sense of distribution.

f ǫL2(Ω) need not imply
∂ f
∂xi

ǫL2(Ω).

EXAMPLE 2. LetΩ = [−l, l]

f (x) =















−1 if x < 0

0 if x ≥ 0.

Then f ǫL2[−l, l]; but d f/dx = δ is not given by a locally integrable
function and hence not by anL2 function.
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We define an inner product (· , · )1 in H1(Ω) as follows: 4

(u, v)1 = (u, v) +
n

∑

i=1

(

∂u
∂xi

,
∂v
∂xi

)

for all u, vǫH1(Ω).

Let ‖· ‖1 be the norm associated with this inner product. Then

LEMMA 1. H1(Ω) with ‖· ‖1 is a Hilbert spaces.

Proof. Let u j be a Cauchy sequence inH1(Ω). This imply

{u j},
{

∂u j

∂xi

}

i = 1, 2, . . . , n

are Cauchy inL2. Hence there existsv, viǫL2(Ω)1 ≤ i ≤ n such that

u j → v in L2(Ω),

∂u j

∂xi
→ vi in L2(Ω), 1 ≤ i ≤ n,

For anyφǫD(Ω),
〈

∂u j

∂xi
, φ

〉

= −
〈

u j ,
∂φ

∂xi

〉

→ −
〈

u,
∂φ

∂xi

〉

=

〈

∂u
∂xi

, φ

〉

.

But
〈

<
∂u j

∂xi
, φ

〉

→ 〈vi , φ〉 .

Hence

vi =
∂u
∂xi

.

Thus

u j → u in L2(Ω)

∂u j

∂xi
→

∂u
∂xi

in L2(Ω).

This provesu j → u in H1(Ω). �5
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1.4 Negative Properties ofH1(Ω)

(a) The functions inH1(Ω) need not be continuous except in the case
n = 1.

EXAMPLE 3. Let

Ω =

{

(x, y)ǫR2 : x2
+ y2 < r2

◦
}

, r◦ < 1.

f (r) = (log 1/r)k, k < 1/2 where

r = (x2
+ y2)1/2.

Then f ǫH1(Ω) but f is not continuous at the origin.

In the casen = 1, if uǫH1(Ω),Ω ⊂ R1 thenu can be shown to be
continuous using the formula

u(y) − u(x) =

y
∫

x

du
dx

(s) ds

wheredu/dsdenotes the distributional derivative ofu.

(b) D(Ω) is not dense inH1(Ω). To see this letuǫ(D(Ω))⊥ in H1 and
φǫD(Ω). We have

(u, φ)1 = (u, φ) +
n

∑

i=1

(

∂u
∂xi

,
∂φ

∂xi

)

= 0

i.e. 〈u, φ〉 +
n

∑

i=1

〈

−
∂2u

∂x2
i

, φ

〉

= 0

Thus

〈−∆u+ u, φ〉 = 0 for all φǫD(Ω).

Hence

−∆u+ u = 0 in D
′(Ω).
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LetΩ = {xǫRn : |x| < 1}, 6

u(x) = er.x where rǫRn,

∆u(x) = |r |2er.x
= |r |2u.

= u if |r | = 1.

Thus whenn = 1, u with r = ±1 belongs toD(Ω))⊥, whenn > 1
there are infinitely manyr′s(rǫSn−1) such thatuǫ(D(Ω))⊥. Moreover
these functions for differentr ’s are linearly independent. Therefore

dimension (D(Ω))⊥ ≥ 2 if n = 1

dimension (D(Ω))⊥ = ∞ if n > 1.

This proves the claim (b).
We shall defineH1

◦(Ω) as the closure ofD(Ω) in H1(Ω). We have
the following inclusions

D(Ω) ⊂
dense

H1
◦(Ω) ⊂ H1(Ω) ⊂

dense
L2(Ω).

1.5 Trace Theorem

Let Ω be a bounded open subset ofRn with a Lipschitz continuous
boundaryΓ : i.e. there exists finite number of local chartsa j , 1 ≤ j ≤ J
from {y′ǫRn−1 : |y′| < α} into Rn and a numberβ > 0 such that

Γ =

J
⋃

j=1

{

(y′, yn) : yn = a j(y
′), |y′| < α

}

,

{

(y′, yn) : a j(y
′) < yn < a j(y

′) + β, |y′| < α
}

⊂ Ω, 1 ≤ j ≤ J,
{

(y′, yn) : a j(y
′) − β < yn < a j(y

′), |y′| < α
}

⊂ CΩ, 1 ≤ j ≤ J.

It can be proved thatC∞(Ω) is dense inH1(Ω). If f ǫC∞(Ω) we7

define the trace off , namelyγ f , by

γ f = f |Γ. Note γ f ǫL2(Γ) if f ǫC∞(Ω)
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◦(Ω) 7

γ : C∞(Ω)→ L2(Γ) is continuous and linear with norm‖ γu ‖L2(Γ)≤
C ‖ u ‖1. Hence this can be extended as continuous linear map from
H1(Ω) to L2(Γ).

H1
◦(Ω) is characterised by

THEOREM 2.
H1
◦(Ω) = {vǫH1(Ω) : γV = 0}

1.6 Dual Spaces ofH1(Ω) and H1
◦(Ω)

The mapping

I : H1(Ω)→ (L2(Ω))n+1 defined by

I (v) =

(

v,
∂v
∂x1

, . . . ,
∂v
∂xn

)

is easily seen to be an isometric isomorphism ofH1(Ω)) into subspace
of (L2(Ω))n+1. If f ǫ(H1(Ω))′ thenF : I (H1(Ω))→ R with F(Iu) = f (u)
is a continuous linear functional onI (H1(Ω)). Hence by Hahn Ba-
nach theoremF can be extended to (L2(Ω))n+1. Therefore, there exists
(v, v1, . . . , vn)ǫ(L2(Ω))n+1 such that

f (u) = F(Iu) = (v, u) +
n

∑

i=1

(vi , ∂u/∂xi).

This representation is not unique sinceF cannot be extended uniquely
to (L2(Ω))n+1 For allφǫD(Ω) we have

f (φ) = 〈v, u〉 −
n

∑

i=1

〈

∂vi

∂xi
, φ

〉

,

Thus 8

f |D(Ω) = v−
n

∑

i=1

∂vi

∂xi
.

Conversely ifTǫD ′(Ω) is given by

T = v−
n

∑

i=1

∂vi

∂xi
,
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wherev, viǫL2(Ω), 1 ≤ i ≤ n thenT can be extended as a continuous
linear functional onH1(Ω) by the prescription

T(u) = (v, u) +
n

∑

i=1

(

vi ,
∂u
∂xi

)

for all uǫH1(Ω).

The extension ofT to H1(Ω) need not be unique. But we will prove
that the extension ofT to H1

◦(Ω) is unique. LetT̃ǫ(H1
◦ (Ω))′ be such that

T̃ |D(Ω) = T.
Let uǫH1

◦ (Ω). Then there existsumǫD(Ω) such thatum → u in H1.
Now

T̃(u) = T̃( lim
in H1

um) = lim
m

T̃(um)

= lim
m

T(um)

= lim
m















(v, um) +
n

∑

i=1

(

vi ,
∂um

∂xi

)















= (v, u) +
n

∑

i=1

(

vi ,
∂u
∂xi

)

Thus
T̃ = T on H1

◦(Ω).

Hence we identify (H1
◦(Ω))′ with a space of distribution and we de-9

note it byH−1(Ω). That is

H−1(Ω) =















v−
n

∑

i=1

∂vi

∂xi
: (v, v1, . . . , vn)ǫ(L2(Ω))n+1















⊂ D
′(Ω).

EXERCISE 1. Show that∂/∂xi : L2(Ω)→ H−1(Ω) is continuous.

1.7 Positive Properties ofH1
◦(Ω) and H1(Ω).

THEOREM 3. (Poincare’s Inequality). LetΩ be an open bounded
subset ofRn. Then there exists a constant C(Ω) such that

∫

Ω

v2 dx≤ C(Ω)
∫

Ω

|∇v|2 dx for all vǫH1
◦ (Ω).
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◦(Ω) andH1(Ω). 9

Proof. We shall prove the inequality for the functions inD(Ω) and use
the density ofD(Ω) in H1

◦(Ω).
SinceΩ is bounded, we have

Ω ⊂ [a1, b1] × . . . × [an, bn].

For anyu(x)ǫD(Ω), we have

u(x) =

xi
∫

ai

∂u
∂xi

(x1, . . . , xi−1, t, xi+1, . . . , xn) dt.

Thus

|u(x)| ≤ (bi − ai)
1/2























bi
∫

ai

∣

∣

∣

∣

∣

∂u
∂xi

∣

∣

∣

∣

∣

2

dt























1/2

Squaring both sides and integrating we obtain

b1
∫

a1

· · ·
bn

∫

an

|u(x)|2 dx≤ (bi − ai)
2

b1
∫

a1

· · ·
bn

∫

an

∣

∣

∣

∣

∣

∂u
∂xi

∣

∣

∣

∣

∣

2

dx.

Thus 10
∫

Ω

|u(x)|2 dx≤ C(Ω)
∫

Ω

|∇u|2 dx

where
C(Ω) = (b1 − a1)2

+ · · · + (bn − an)2.

Let vǫH1
◦ (Ω). Then there existsunǫD(Ω) such thatun → v in H1,

which impliesun → v in L2 and
∂un

∂xi
→

∂v
∂xi

in L2. Using this and the

inequality for smooth functions we arrive at the result. �

REMARK 1. The theorem is not true for functions in H1(Ω). For ex-
ample a nonzero constant function belongs to H1(Ω) but does not satisfy
the above inequality.

We state Sobolev imbedding theorem and Rellich’s theorem, which
have many important applications.
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SOBOLEV IMBEDDING THEOREM 4. If Ω is an open bounded set
having a Lipschitz continuous boundary then we have the imbedding

H1(Ω) ֒→ Lp(Ω),

p < q or p≤ q according as n= 2 or n > 2 where

1/q = 1/2− 1/n.

RELLICH’S THEOREM 5. The above imbedding is compact for
p < q.



Chapter 2

Abstract Variational
Problems and Examples

IN SECTION 1 OF this chapter, we give a variational formulation of the 11

Dirichlet problem. In section 2 we prove the existence and uniqueness
results for the abstract variational problem. In the remaining sections,
we deal with the Neumann problem, Elasticity problem, Stokes problem
and Mixed problem and their variational formulations.

2.1 Dirichlet Problem

The Dirichlet problem is to findu such that

−∆u = f in Ω (2.1)

u = 0 on Γ (2.2)

whereΩ ⊂ Rn is a bounded open set with smooth boundaryΓ and f is a
given function.

Multiplying equation (2.1) by a smooth functionv which vanishes
onΓ and integrating, we obtain

∫

Ω

−∆u.v dx=
∫

Ω

f .v dx (2.3)

11
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Formally, using integration by parts and the fact thatv = 0 onΓ, we
see that

∫

Ω

∇v.∇u dx=
∫

Γ

∂u
∂n

v dΓ −
∫

Ω

∆u v dx=
∫

Ω

−∆u.v dx (2.4)

Equations (2.3) and (2.4) give
∫

Ω

∇u.v dx=
∫

Ω

f v dx.

Now, setting

a(u, v) =
∫

Ω

∇u.∇v dx

and12

L(v) =
∫

Ω

f v dx,

problem (2.1) can be formulated thus:
Find uεV such that

a(u, v) = L(v) for all vεV, (2.5)

whereV has to be chosen suitably.
Sincea(· , · ) is symmetric, (2.5) is Euler’s condition for the mini-

mization problem
J(u) = inf

vεV
J(v), (2.6)

where
J(v) = 1/2a(v, v) − L(v).

If u is the solution of the minimization problem then it can be shown
that

(J′(u), v) = 0 for all vεV, (2.7)

where (J′(u), v) is the Gateaux derivative ofJ in the directionv.
When a(· , · ) is symmetric one can show that problems (2.5) and

(2.6) are equivalent.
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To haveJ(v) finite, we want our spaceV to be such that∇v εL2(Ω),
fεL2(Ω) for all vεV. The largest space satisfying the above conditions
and (2.2) isH1

◦(Ω) and hence we chooseV to beH1
◦(Ω).

If u is a solution of (2.5) then
∫

Ω

∇u.∇v dx=
∫

Ω

f v dx for all vεD(Ω) ⊂ H1
◦(Ω).

This implies that 13

〈−∆u, v〉 = 〈 f , v〉 for all vεD(Ω);

so
− ∆u = f in D

′. (2.8)

Conversely, ifuεH1
◦(Ω) satisfies (2.8), retracing the above steps we

obtain
a(u, v) = f (v) for all vεD(Ω). (2.9)

SinceD(Ω) is dense inH1
◦(Ω), (2.9) holds for allvεV = H1

◦(Ω). Thusu
is the solution of (2.5).

2.2 Abstract Variational Problem.

We now prove the existence and uniqueness theorem for the abstract
variational problem.

THEOREM 1. Let V be a Hilbert space and a(· , · ) : V × V → R be
continuous and bilinear. Further, assume that a(· , · ) is coercive: there
existsα > 0 such that a(v, v) ≥ α ‖ v ‖2V for all vεV. Let L be a
continuous linear functional on V. Then the problem:

To find uεV such that

a(u, v) = L(v), for all vεV (2.10)

has a unique solution.
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Proof. (i) Uniqueness. Let u1, u2εV be two solutions of (2.10).
Therefore

a(u1, v) = L(v),

a(u2, v) = L(v), for all vεV.

Subtracting one from the other, takingv = u2 − u1 and usingV-14

coercivity ofa(· , · ), we obtain

α ‖ u1 − u2 ‖2V≤ a(u1 − u2, u1 − u2) = 0,

Thusu1 = u2.

(ii) Existence whena(· , · ) is symmetric. Sincea(· , · ) is symmetric,
the bilinear forma(u, v) is a scalar product onV and the associated
norma(v, v)1/2 is equivalent to the norm inV. Hence, by the Riesz
representation theorem there existsσLεV such that

a(σL, v) = L(v) for all vεV.

Hence the theorem is true in the symmetric case.

(iii) Existence in the general case.Let wεV. The functionLw : V →
R defined by

Lw(v) = (w, v) − ρ(a(w, v) − L(v))

is linear and continuous. Hence by the Riesz representationtheo-
rem there exists auεV such that

Lw(v) = (u, v).

Let T : V → V be defined by

Tw= u

whereu is the solution of the equation

Lw(v) = (u, v) for all vεV.
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we will show thatT is a contraction mapping. HenceT has a unique15

fixed point which will be the solution of (2.10).
Let

u1 = Tw1, u2 = Tw2.

Thus

(u1 − u2, v) = (w1 − w2, v) − ρa(w1 − w2, v) ∀vεV (2.11)

Let A : V → V, whereAu is the unique solution of

(Au, v) = a(u, v) for all vεV,

which exists by the Riesz representation theorem.

‖ Au ‖= sup
vεV

|(Au, v)|
‖ v ‖

= sup
vεV

|a(u, v)|
‖ v ‖

≤ M ‖ u ‖,

where|a(u, v)| ≤ M ‖ u ‖‖ v ‖. SoA is continuous. Equation (2.11) can
be written as

(u1 − u2, v) = (w1 − w2.v) − ρ(A(w1 − w2)v) for all vεV,

which implies that

u1 − u2 = (w1 − w2) − ρA(w1 − w2).

So

‖ u1 − u2 ‖2 =‖ w1 − w2 ‖2 −2ρ(A(w1 − w2),w1 − w2)

+ ρ2 ‖ A(w1 − w2) ‖2

≤‖ w1 − w2 ‖2 −2ρa(w1 − w2,w1 − w2)

+ ρ2M2 ‖ w1 − w2 ‖2, (using the continuity ofA)

≤‖ w1 − w2 ‖2 −2ρα ‖ w1 − w2 ‖2 +ρ2M2 ‖ w1 − w2 ‖2,

since 16

a(w1 − w2,w1 − w2) ≥ α ‖ w1 − w2 ‖2 .
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So
‖ u1 − u2 ‖2≤ (1− 2ρα + ρ2M2) ‖ w1 − w2 ‖2 .

That is,

‖ Tw1 − Tw2 ‖≤
√

(1− 2ρα + ρ2M2) ‖ w1 − w2 ‖ .

Choosingρ in ]0, α/2M[, we obtain thatT is a contraction. �

This proves the theorem.

REMARK 1. This theorem also gives an algorithm to find the solution
of equation(2.10). Let u◦εV be given. Let un+1

= Tun. Then un → w◦,
which is the fixed point of T, and also the solution of(2.10).

2.3 Neumann’s problem.

Neumann’s problem is to find anu such that

−∆u+ cu= f in Ω, (2.12)

∂u
∂n
= g on Γ. (2.13)

We now do the calculations formally to find out the bilinear form a (·, ·),
the linear functionalL(·) and the spaceV.

For smoothv, (2.12) implies
∫

Ω

(−∆u+ cu)v dx=
∫

Ω

f v dx. (2.14)

From Green’s formula,17
∫

Ω

∇u.∇v dx=
∫

Γ

∂u
∂n

v dΓ −
∫

Ω

v∆u dx,

and by (2.14) we obtain
∫

Ω

(∇u.∇v+ cuv) dx =
∫

Ω

f v dx+
∫

Γ

∂u
∂n

v dΓ =
∫

Ω

f v dx+
∫

Γ

gv dΓ,
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since
∂u
∂n
= g onΓ, by (2.13). This suggests the definitions:

a(u, v) =
∫

Ω

(∇u.∇v+ cuv) dx (2.15)

L(v) =
∫

Ω

f v dx+
∫

Γ

gv dΓ, (2.16)

V = H1(Ω), (2.17)

where fεL2(Ω) andgεL2(Γ).
Clearlya(u, v) is bilinear, continuous and symmetric.

a(v, v) =
∫

Ω

(

(∇v)2
+ cv2

)

dx

≥ min{1, c} ‖ v ‖21,

which showsa(·, ·) is H1(Ω)-coercive.
L(·) is a continuous linear functional onH1(Ω). Hence by the theo-

rem there exists a uniqueuεV = H1(Ω) such that
∫

Ω

(∇u.∇v+ cuv) dx=
∫

Ω

f v dx+
∫

Γ

for all vεH1(Ω) (2.18)

From (2.18) we obtain that for allvεD(Ω), 18

〈−∆u+ cu, v〉 = 〈 f , v〉.

Hence

−∆u+ cu= f in D
′(Ω) (2.19)

To find the boundary condition we use Green’s formula:
∫

Ω

∇u.∇v dx=
∫

Ω

−∆u.v dx+
∫

Γ

∂u
∂n

v dΓ,



18 2. Abstract Variational Problems and Examples

which holds for alluεH2(Ω) and for allvεH1(Ω).
Assuming that our solutionuεH2(Ω), from (2.19) we have

∫

Ω

(−∆u+ cu)v =
∫

Ω

f v for all vεH1(Ω).

Using Green’s formula we obtain
∫

Ω

(∇u∇v+ cuv) dx =
∫

Γ

∂u
∂n

v dx+
∫

Ω

f v dx.

This, together with (2.18), implies
∫

Γ

(

g− ∂u
∂n

)

v dΓ = 0 for all vεH1(Ω).

Hence we get the desired boundary condition

∂u
∂n
= g on Γ.

If uεH2(Ω), these are still valid in “some sense” which is given in
LIONS–MAGENES [29].

REMARK 2. Even when g= 0 we cannot take the space

V1 =

{

vεH1(Ω) :
∂v
∂n
= 0 on Γ

}

to be the basic space V, since V1 is not closed. In the Neumann problem19

2.3, we obtain the boundary condition from Green’s formula.In the case
of Dirichlet problem 2.1, we impose the boundary condition in the space
itself.

REGULARITY THEOREM (FOR DIRICHLET PROBLEM) 2. If
Γ is C2 or Ω is a convex polygon and fεL2(Ω), then the solution u of the
Dirichlet problem(2.1), (2.2)belongs to H2(Ω).

REGULARITY THEOREM (FOR THE NEUMANN PROBLEM)
3. If Γ is C2 or Ω is a convex polygon, fεL2(Ω) and g belongs to a
space finer than L2(Ω) (for example gεH1(Γ)), then the solution u of the
Neumann problem(2.12), (2.13)belongs to H2(Ω).

For a proof of these theorems the reader is referred to NECAS [33].
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2.4 Mixed Problem.

In Sections 2.1 and 2.3 we found the variational formulationfrom the
partial differential equation. In the general case it is difficult to formulate
the variational problem from the p.d.e. In fact a general p.d.e. need
not give rise to a variational problem. So in this section, wewill take
a general variational problem and find out the p.d.e. satisfied by its
solution.

Let Ω be a bounded open set with boundaryΓ. Let Γ = Γ◦ ∪ Γ1 20

whereΓ◦ andΓ1 are disjoint. Let

V =
{

vεH1(Ω) : v = 0 on Γ◦
}

. (2.20)

It is easy to see thatV is closed and hence a Hilbert space with‖· ‖1
norm

Figure 2.1:

We will use summation convention here afterwards. Let

a(u, v) =
∫

Ω

(

ai j (x)
∂u
∂xi

∂v
∂x j
+ a◦ uv

)

dx, (2.21)

L(v) =
∫

Ω

f v dx+
∫

Γ

gv dΓ, (2.22)
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wherea◦ > 0, ai j are smooth and there exists two constantsα◦ andα1

such that

α1ξiξi ≥ ai j (x)ξiξ j ≥ α◦ξiξi for allxεΩ, ξεRn (2.23)

i.e. the quadratic formai j (x)ξiξ j is uniformly continuous and uniformly
positive definite.

Inequality (2.23) implies that the bilinear forma(· , · ) is continuous
andV-coercive. Formally we have

a(u, v) =
∫

Ω

[

−
∂

∂x j

(

ai j
∂u
∂xi

)

v+ a◦uv

]

dx+
∫

Γ

ai j
∂u
∂xi

n jv dΓ (2.24)

Let21
∂u
∂vA
= ai j

∂u
∂xi

n j ,

and

Au= −
∂

∂x j

(

ai j
∂u
∂xi

)

.

If vεD(Ω) then the equation

a(u, v) = L(v) (2.25)

becomes
〈Au, v〉 = 〈 f , v〉.

Therefore
Au= f in D

′(Ω). (2.26)

Now for all vεV, we have

a(u, v) =
∫

Ω

Au.v+
∫

Γ

∂u
∂vA

v dΓ

=

∫

Ω

Au.v+
∫

Γ1

∂u
∂vA

v dΓ

L(v) =
∫

Ω

f v dx+
∫

Γ1

gv dΓ.
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Equations (2.25) and (2.26) imply, for allvεV,
∫

Γ1

∂u
∂vA

v dΓ =
∫

Γ1

g v dΓ.

From this we obtain formally

∂u
∂vA
= g on Γ1. (2.27)

Thus the boundary value problem corresponding to the variational 22

problem
a(u, v) = L(v) for all vεV,

with a(· , · ), L(· ) andV given by the equations (2.20) - (2.22) is

Au= f in Ω,

∂u
∂vA
= g on Γ1,

u = 0 on Γ◦.

(2.28)

REMARK 3. Even when f and g are smooth the solution u of the prob-
lem (2.28)may not be in H2(Ω). In general, we will have a singularity
at the transition points A, B onΓ. But if Γ◦ andΓ1 make a corner then
the solution u may be in H2(Ω) provided that the boundary functions
f , g satisfy some compatibility conditions. For regularity theorems the
reader is referred to an article by PIERRE GIRSVARD [22].

EXERCISE 1. Transmission Problem. Let Ω,Ω1,Ω2 be open sets
such thatΩ = Ω1 ∪ Ω2 ∪ S whereΩ1 andΩ2 are disjoint subsets of
Ω andS is the interface between them. Let

a(u, v) =
2

∑

i=1

∫

Ωi

ai∇u.∇v dx,

L(v) =
∫

Ω

f v dx,
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whereai > 0, i = 1, 2, and fεL2(Ω). If u is the solution of the problem 23

a(u, v) = L(v) for all vεH1
◦(Ω),

and
ui = u|Ωi , fi = f |Ωi

then show that

−ai∆ui = fi on Ωi , i = 1, 2;

u1 = u2 on S,

a1
∂u1

∂n
= a2

∂u2

∂n
on S.

Figure 2.2:

EXERCISE 2. Fourier Condition. Let

V = H1(Ω),

a(u, v) =
∫

Ω

∇u.∇v dx+
∫

Γ

uv dΓ,

L(v) =
∫

Ω

f v dx+
∫

Γ

gv dΓ,

What is the boundary value problem associated with this ? Interpret the
problem.
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2.5 Elasticity Problem.

(a) 3-DIMENSIONAL CASE. LetΩ ⊂ R3 be a bounded, connected24

open set. LetΓ be the boundary ofΩ and letΓ be split into two
partsΓ◦ andΓ1. LetΩ be occupied by an elastic medium, which
we assume to be continuous. Let the elastic material be fixed
alongΓ◦. Let (fi) be the body force acting inΩ and (gi ) be the
pressure load acting alongΓ1. Let (ui (x)) denote the displacement
at x.

Figure 2.3:

In linear elasticity the stress-strain relation is

σi j.(u) = λ(div u)δi j + 2µεi j (u), εi j (u) =
1
2

(

∂ui

∂x j
+
∂u j

∂xi

)

, (2.29)

whereσi j andεi j denote the components of the stress and strain
tensors respectively.

The problem is to findσi j andui , given (fi) in Ω, (gi) on Γ1 and
(ui) = 0 onΓ◦.

The equations of equilibrium are

∂

∂x j
σi j + fi = 0 in Ω, (2.30)
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σi j n j = gi on Γ1, i = 1, 2, 3 (2.30b)

ui = 0 on Γ◦. (2.30c)

We have used the summation convention in the above equations.25

We choose

v =
{

vε(H1(Ω))3 : v = 0 on Γ◦
}

, (2.31)

a(u, v) =
∫

Ω

σi j (u)εi j (v) dx, (2.32)

L(v) =
∫

Γ1

givi dΓ +
∫

Ω

fivi dx. (2.33)

Using (2.29),a(u, v) can be written as

a(u, v) =
∫

Ω

(λdiv u. div v+ 2µεi j (u)εi j (v)) dx,

from which it is clear thata(· , · ) is symmetric. Thata(· , · ) is V-
elliptic is a nontrivial statement and the reader can refer to CIAR-
LET [9]. Formal application of Green’s formula will show that the
boundary value problem corresponding to the variational problem
(2.31) - (2.33) is (2.30).

a(· , · ) can be interpreted as the internal work andL(· ) as the work
of the external loads. Thus, the equation

a(u, v) = L(v) for all vεV

is a reformulation of the theorem of virtual work.

(b) PLATE PROBLEM. Let 2η be the thickness of the plate. By al-26

lowing η→ 0 in (a) we obtain the equations for the plate problem.
It will be a two dimensional problem.

We have to find the bending momentsMi j and displacement (ui ).
These two satisfy the equations:

Mi j = α∆uδi j + β
∂2u

∂xi ∂x j
, (2.34)
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∂2Mi j

∂xi ∂x j
= f in Ω, (2.35)

u = 0 on Γ, (2.36)

and

∂u
∂n
= 0 if the plate is clamped, (2.37)

Mi j nin j = 0 if the plate is simply supported (2.37a)

We take

V =



























H2
◦(Ω) =

{

vεH2 : V = ∂v
∂n = 0 on Γ

}

,

if the plate is clamped;

H2(Ω) ∩ H1
◦(Ω), if the plate is simply supported

(2.38)
Formally, using Green’s formula we obtain

∫

Ω

∂2Mi j

∂xi∂x j
v dx= −

∫

Ω

∂Mi j

∂x j

∂v
∂xi

dx+
∫

Γ

∂Mi j

∂x j
vni dΓ

=

∫

Ω

Mi j
∂2v

∂xi∂x j
dx−

∫

Γ

Mi j n j
∂v
∂xi

dΓ

+

∫

Γ

∂Mi j

∂x j
vni dΓ for all vεV. (2.39)

But 27

∫

Γ

∂Mi j

∂x j
vni dΓ = 0 for all vεV, since v = 0 on Γ,

and
∫

Γ

Mi j n j
∂v
∂xi

dΓ =
∫

Γ

Mi j n j

(

ni
∂v
∂n
+ si

∂v
∂s

)

dΓ,
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where∂v/∂n denotes the normal derivative ofv and∂v/∂sdenotes
the tangential derivative. By (2.37) and (2.37a) we have

∫

Γ

Mi j n j
∂v
∂xi

dΓ = 0.

Hence

∫

Ω

f v dx=
∫

Ω

∂2Mi j

∂xi∂x j
v dx=

∫

Ω

Mi j
∂2v

∂xi∂x j
dx for all vεV.

We therefore choose

a(u, v) =
∫

Ω

Mi j
∂2v

∂xi∂x j
dx=

∫

Ω

(

α∆u.∆v+ β
∂2u
∂xi∂x j

∂2v
∂xi∂x j

)

dx

(2.39)
and

L(v) =
∫

Ω

f v dx. (2.40)

a(· , · ) can be proved to beV-coercive ifβ ≥ 0 andα ≥ 0.

REGULARITY THEOREM 4. WhenΩ is smooth and fεL2(Ω), then
the solution u of the problem

−∆u = f in Ω,

u = 0 on Γ,

belongs to H2(Ω). Moreover, we have28

‖ u ‖2≤ C ‖ f ‖◦= C ‖ ∆u ‖◦,

where C is a constant.

This proves the coerciveness ofa(u, v) above forβ = 0 andα > 0.
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2.6 Stokes Problem.

The motion of an incompressible, viscous fluid in a regionΩ is governed
by the equations

−∆u+ ∇p = f in Ω, (2.41)

div u = 0 in Ω, (2.42)

u = 0 in Γ; (2.43)

whereu = (ui)i=1,...,n denotes the velocity of the fluid andp denotes the
pressure. We have to solve foru andp, given f .

We impose the condition (2.42) in the spaceV itself. That is, we
define

V = {vε(H1
◦(Ω))n : div v = 0} (2.44)

Taking the scalar product on both sides of equation (2.41) with vεV and
integrating, we obtain

∫

Ω

f .v dx=
∫

Ω

∂ui

∂x j

∂vi

∂x j
,

since

−
∫

Ω

v.∆u = −
∫

Ω

v j
∂2u j

∂xi∂xi

=

∫

Ω

∂v j

∂xi
.
∂u j

∂xi
−

∫

Γ

v j
∂u j

∂xi
ni ,

and 29
∫

Ω

∇p.v =
∫

Ω

∂p
∂xi

vi = −
∫

Ω

p
∂vi

∂xi
+

∫

Γ

pvini = 0

asvεV. Therefore we define

a(u, v) =
∫

Ω

∂ui

∂x j

∂vi

∂x j
dx (2.45)
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L(v) =
∫

Ω

f .v dx. (2.46)

We now have the technical lemma.

LEMMA 5. The space

ϑ =
{

vε(D(Ω))n : div v = 0
}

is dense in V.

The proof of this Lemma can be found in LADYZHENSKAYA [27].
The equationa(u, v) = L(v) for all vεV with a(, ), L( ), v defined by

(2.44) - (2.46) is then equivalent to

〈∆u+ f , φ〉 = 0 for all φεϑ, (2.47)

where〈, 〉 denotes the duality bracket between (D ′(Ω))n and (D(Ω))n.
Notice that (2.46) is not valid for allφε(D(Ω))n since (D(Ω))n is not
contained inϑ. To prove conversely that the solution of (2.46) satisfies
(2.41), we need

THEOREM 6. The annihilatorϑ⊥ of ϑ in (D ′(Ω))n is given byϑ⊥ =
{v : there exists a pεD ′(Ω) such that v= ∇p}.

Theorem 2.6 and Equation (2.46) imply that there exists apεD ′(Ω)30

such that
∆u+ f = ∆p.

Since

uε(H1(Ω))n and fε(L2(Ω))n,∆u+ fε(H−1(Ω))n.

Therefore
∇pε(H−1(Ω))n.

We now state

THEOREM 7. If pεD ′(Ω) and∇pε(H−1(Ω))n, then pεL2(Ω) and

‖ p ‖L2(Ω)/R≤ C ‖ ∇p ‖(H−1(Ω))n

where C is a constant.
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From this Theorem we obtain thatpεL2(Ω). Thus, if fεL2(Ω) andΩ
is smooth, we have proved that the problem (2.44) - (2.46) hasa solution
uεV andpεL2(Ω).
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Chapter 3

Conforming Finite Element
Methods

IN CHAPTER 2 WE dealt with the abstract variational problemsand 31

some examples. In all our examples the function spaceV is infinite di-
mensional. Our aim is to approximateV by means of finite dimensional
subspacesVh and study the problem inVh. Solving the variational prob-
lem in Vh will correspond to solving some system of linear equations.
In this Chapter we will study an error estimate, the construction of Vh

and examples of finite elements.

3.1 Approximate Problem.

The abstract variational problem is:

find uεV such thata(u, v) = L(v). for all vεV, (3.1)

wherea(· , · ), L(· ),V are as in Chapter 2.
Let Vh be a finite dimensional subspace ofV. Then the approximate

problem corresponding to (3.1) is:

find uhεVh such thata(uh, v) = L(v) for all vεVh. (3.2)

By the Lax-Milgram Lemma (Chapter 2, Theorem 2.1), (3.2) hasa
unique solution.

31
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Let dimension (Vh) = N(h) and let (wi)i=1,...,N(h) be a basis ofVh. Let

uh =

N(h)
∑

i=1

uiwi , vh =

N(h)
∑

j=1

v jw j ,

whereui , v jεR, 1 ≤ i, j ≤ N(h). Substituting these in (3.2), we obtain32

N(h)
∑

i, j=1

uiv j a(wi ,w j) =
N(h)
∑

j=1

L(w j)v j (3.3)

Let
AT
= (a(wi ,w j))i, j ,U = (ui)i , V = (vi)i , b = (L(wi))i

Then (3.3) can be written as

VTAU = VTb.

This is true for allVεRN(h). Hence

AU = b. (3.4)

If the linear system (3.4) is solved, then we know the solution uh

of (3.2). This approximation method is called the Rayleigh-Galerkin
method.

A is positive definite since

VTAV =
N(h)
∑

i, j=1

a(wi ,w j)vi v j = a



















N(h)
∑

i=1

wivi ,

N(h)
∑

j=1

w jv j



















≥ α ‖
∑

viwi ‖2 for all VεRN(h).

A is symmetric if the bilinear forma(· , · ) is symmetric.
From the computational point of view it is desirable to haveA as a

sparse matrix, i.e.A has many zero elements. Usuallya(· , · ) will be33

given by an integral and the matrixA will be sparse if the support of the
basis functions is “small”. For example, if

a(u, v) =
∫

Ω

∇u.∇v dx,
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thena(wi ,w j) = 0 if Supp wi ∩ Supp w j = φ.
Now we will prove a theorem regarding the error committed when

the approximate solutionuh is taken instead of the exact solutionu.

THEOREM 1. If u and uh denote the solutions of(3.1) and (3.2) re-
spectively, then we have

‖ u− uh ‖V≤ C inf
vhεVh

‖ u− vh ‖V

Proof. We have

a(u, v) = L(v) for all vεV,

a(uh, v) = L(v) for all vεVh;

so
a(u− uh, v) = 0 for all vεVh (3.5)

By theV-coerciveness ofa(· , · ) we obtain

‖ u− uh ‖2 ≤ 1/α a(u− uh, u− uh)

= 1/α a(u− uh, u− v+ v− uh), for all vεVh

= 1/α a(u− uh, u− v), by (3.5)

≤ M/α ‖ u− uh ‖ ‖ u− v ‖

�

This proves the theorem withC = M/α. 34

3.2 Internal Approximation of H1(Ω).

LetΩ ⊂ R2 be a polygonal domain. LetTh be a triangulation ofΩ: that
is Th a finite collection of triangles such that

Ω =

⋃

KεTh

K and K ∩ K′ = φ for K,K′εTh,K , K′.

Let P(K) be a function space defined onK such thatP(K) ⊂ H1(K).
Usually we takeP(K) to be the space of polynomials of some degree.
We have
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THEOREM 2. If

Vh =
{

vhεC
◦(Ω) : vh|KεP(K),KεTh

}

where P(K) ⊂ H1(K), then Vh ⊂ H1(Ω).

Proof. Let uεVh and vi be a function defined onΩ such thatvi |K =
∂

∂xi
(u|K). This makes sense sinceu|KεH1(K). MoreoverviεL2(Ω), since

vi |K =
∂

∂xi
(u|K)εL2(K). We will show thatvi =

∂u
∂xi

in D ′(Ω).

For anyφεD(Ω), we have

〈vi , φ〉 =
∫

Ω

viφdx=
∑

KεTh

∫

K

viφdx=
∑

KεTh

∫

K

∂

∂xi
(u|K)φdx

=

∑

KεTh

−
∫

K

(u|K)
∂φ

∂xi
dx+

∫

K

(u|K)φ nK
i dΓ,

wherenK
i is theith component of the outward drawn normal to∂K. So35

〈vi , φ〉 = −
∫

Ω

u
∂φ

∂xi
dx+

∑

KεTh

∫

∂K

(u|K)φnK
i dΓ (3.6)

The second term on the right hand side of (3.6) is zero sinceu is
continuous inΩ and if K1 andK2 are two adjacent triangles thennK1

i =

−nK2
i . Therefore

〈vi , φ〉 = −
∫

Ω

u.
∂φ

∂xi
dx=

〈

∂u
∂xi

, φ

〉

which implies

vi =
∂u
∂xi

in D
′(Ω).

HenceuεH1(Ω). ThusVh ⊂ H1(Ω).
We assume that the triangulationTh is such that ifK1,K2εTh are

distinct, then eitherK1 ∩ K2 is empty or equal to the common edge of
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the trianglesK1 andK2. By this assumption we eliminate the possibility
of a triangulation as shown in figure.

Figure 3.1:

Construction of Vh. 36

LetΩ be a polygonal domain andTh be a triangulation ofΩ, where

h = max
KεTh

(diameter ofK).

Figure 3.2:

Let

N(h) = # nodes of the triangulation, (3.8)
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P(K) = P1(K) = polynomial of degree less than or equal to

1 in x and y
(3.9)

Let
Vh = {vh : vh|KεP1(K),KεTh} (3.10)

We know that a polynomial of degree 1 inx andy is uniquely de-
termined if its values on three non-collinear points are given. Using this
we construct a basis forVh. A function inVh is uniquely determined if
its value at all the nodes of the triangulation is given. Let the nodes of
the triangulation be numbered{1, 2, . . . ,N(h)}. Let WiεVh be

wi =















1 at the ith node,

0 at other nodes.
(3.11)

It is easy to see thatwi are linearly independent. IfvεVh, then37

v =
N(h)
∑

i=1

viwi (3.12)

wherevi the value ofv at theith node. This proves that{wi}1,...,N(h) is a
basis ofVh and dimension ofVh = N(h).

Moreover, Suppwi ⊂ ∪K, where the union is taken over all the
triangles whose one of the vertices is theith node.

Hence if ith node andjth node are not the vertices of a triangleK,
for anyKεTh, then

Suppwi ∩ Suppw j = φ.

We will show thatVh given by (3.10) is contained inC◦(Ω). LetvεVh

and letK1,K2εTh be adjacent triangles. Let ‘ℓ′ be the side common to
both K1 andK2. v|K1 andV|K2 are polynomials of degree less than or
equal to one inx and y. Let ṽ1 and ṽ2 be the extensions ofv|K1 and
v|K2 to K1 and K2 respectively. ˜v1|ℓ and ṽ2|ℓ can be thought of as a
polynomial of degree less than or equal to one in asingle variableand
hence can be determined uniquely if their values at two distinct points
are known. But, by the definition ofVh in (3.10), ṽ1|ℓ and ṽ2|ℓ agree at38

the common vertices ofK1 andK2. Hence ˜v1|ℓ = ṽ2|ℓ. This proves that
v is continuous acrossK1 andK2. ThusvεC◦(Ω). HenceVh ⊂ C◦(Ω).
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Using the theorem 3.2 we conclude thatVh ⊂ H1(Ω). When we
impose certain restrictions onTh, it is possible to prove thatd(u,Vh) →
0 ash→ 0 whered(u,Vh) is the distance between the solutionu of (3.1)
and the finite dimensional spaceVh. The reader can refer to CIARLET
[9]. ThusVh “approximates”H1(Ω).

The finite element method and the finite difference scheme are the
“same” when the triangulation is uniform. For elliptic problems the fi-
nite element method gives better results than the finite differencescheme.

�

3.3 Finite Elements of Higher Degree.

DEFINITION . Let K be a triangle with vertices(ai , i = 1, 2, 3). Let
the coordinates of ai be ai j , j = 1, 2. For any xεR, the barycentric
coordinatesλi(x), i = 1, 2, 3, of x are defined to be the unique solution
of the linear system

3
∑

i=1

λi ai j = x j , j = 1, 2;

3
∑

i=1

λi = 1

(3.13)

Notice that the determinant of the coefficient matrix of the system39

(3.13) is twice the area of the triangleK. It is easy to see that the
barycentric coordinates ofa1, a2, a3 are (1, 0, 0), (0, 1, 0) and (0, 0, 1)
respectively. The barycentric coordinate of the centroidG of K is (1/3,
1/3, 1/3).

Using Cramer rule we find from (3.13) that

λ1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 a21 a31

x2 a22 a32

1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a21 a31

a12 a22 a32

1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣
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i.e. λ1 =
area of the triangle xa2a3

area of the triangle a1a2a3

Similarly, λ2 =
area of the triangle a1xa3

area of the triangle a1a2a3

λ3 =
area of the triangle a1a2x
area of the triangle a1a2a3

This geometric interpretation of the barycentric coordinates will be
helpful in specifying the barycentric coordinates of a point. For exam-
ple, the equation of the sidea2a3 in barycentric coordinates isλ1 = 0.

DEFINITION. A finite element is a triple (K,PK,
∑

K), where K is a40

polyhedron, PK is polynomial space whose dimension is m and
∑

K is a
set of distributions, whose cardinality is m. Further

∑

K = {LiεD
′; i =

1, 2, . . . ,m} is such that for given diεR, 1 ≤ i ≤ m, the equations

Li(p) = di , 1 ≤ i ≤ m

have a unique solution pεPK.
The elements Li are calleddegree of freedom ofP.

EXAMPLE 1. (Finite Element of Degree 1). LetK = a triangle,

PK = P1(K) = Polynomials of degree≤ 1.

= Span {1, x, y}

dim PK = 3,
∑

K = {δai : ai vertices, i = 1, 2, 3},
whereδai denotes the dirac mass at the pointai . Then (K,PK ,

∑

K) is a
finite element.

Figure 3.3:
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This follows from the fact thatpεP1(K) is uniquely determined if its
values at three non collinear points are given.

δai (λ j) = λ j(ai ) = δi j .

Henceλ j , j = 1, 2, 3, form a basis forP1(K) and if pεP1(K) then 41

p =
3

∑

i=1

p(ai )λi

REMARK 1. In the definition, dimension of PK is m and we require
that the equations

Li(p) = di , 1 ≤ i ≤ m, for given diεR have a solution. So, in
examples, to prove existence we have to prove only uniqueness. To prove
the uniqueness it is enough to show that

Li(p) = 0, 1 ≤ i ≤ m, implies p≡ 0.

REMARK 2. If p jεPK , 1 ≤ j ≤ m, are such that

Li(p j) = δi j , 1 ≤ i ≤ m, 1 ≤ j ≤ m,

then{p j} form a basis for PK and any pεPK can be written as

p =
m

∑

i=1

Li(p)Pi .

EXAMPLE 2. (Finite Element of Degree 2). LetK = a triangle,

PK = P2(K) = Span {1, x, y, x2, xy, y2},
∑

K

= {δai , 1 ≤ i ≤ 3, δai j : 1 ≤ i < j ≤ 3},

whereai denote the vertices ofK andai j denote the mid point of the
sideaia j .
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Figure 3.4:

The equations of the linesa3a2 anda13a12 areλ1 = 0 andλ1 = 1/242

respectively. Hence the functionλ1(λ1 − 1/2) vanishes at the points
a2, a3, a12, a23, a13. The value ofλ1(λ1 − 1/2) at a1 is 1/2. Hence
λ1(2λ1 − 1) takes the value 1 ata1 and 0 at other nodes.

The equations of the linesa1a3 anda2a3 areλ2 = 0 andλ1 = 0
respectively. Therefore the functionλ1λ2 vanishes ata1, a2, a13, a23, a3

and takes the value 1/4 at a12. Thus 4λ1λ2 is 1 ata12 and zero at the
other nodes.

Thus anypεP2(K) can be written in the form

p =
3

∑

i=1

p(ai )λi(2λi − 1)+
3

∑

i< j
i, j=1

4p(ai j )λiλ j .

EXAMPLE 3. (Finite Element of Degree 3). LetK = a triangle,

PK = P3(K) = Span {1, x, y, x2, xy, y2, x3, x2y, xy2, y3}.

Thus dimP3 = 10.

∑

K

= {δai , 1 ≤ i ≤ 3; δaii j 1 ≤ i ≤ j ≤ 3, δa123}.

whereai denote the vertices ofK andaii j =
2
3

ai +
1
3

a j .
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Figure 3.5:

It is easy to see that 43

pi = 1/2 λi(3λi − 1) (3λi − 2),

pii j = 9/2 λiλ j (3λi − 1),

p123 = 27 λ1λ2λ3,

1 ≤ i, j ≤ 3, is a basis ofP3(K).
Moreover,pi is 1 at the nodeai and zero at the other nodes;pii j is 1 at
the nodeaii j and vanishes at the other nodes;p123 is zero at all nodes
excepta123 where its value is 1.

REMARK 3. In the above three examples
∑

K contains only Dirac
masses and not derivatives of Dirac masses. All the above three finite
elements are calledLagrange finite elements.

LetΩ be a polygonal domain and let Th be a triangulation ofΩ, i.e.
Ω =

⋃

KεTh

K. Let PK = Pℓ(K) consists of polynomials of degree≤ ℓ. Let

(K,PK,
∑

K) be a finite element for each KεTh. Let
∑

h =
⋃

KεTh

∑

K and

Vh = {vh : vh|KεPK,KεTh}

From the definition of finite element it follows that a function in Vh 44

is uniquely determined by the distributions in
∑

h.
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REMARK 4. In the example
∑

h = {δai : ai is a vertex of a triangle in the triangulation}. We
proved in Sec. 3.2 that Vh ⊂ H1(Ω). In this case we say that the finite
element isconforming.

REMARK 5. The Vh so constructed above need not be contained in
H1(Ω). If Vh 1 H1(Ω) we say that the finite element method isnon-
conforming.

Let K be a triangle, PK = P1(K) and

∑

K

= {δai j : 1 ≤ i < j ≤ 3}.

Then(K,PK,
∑

K) will be a finite element, but the space Vh 1 H1(Ω).

Figure 3.6:

When (K,PK,
∑

K) is as in Example 2, we will prove thatVh ⊂45

C◦(Ω). This together with theorem 3.2 impliesVh ⊂ H1(Ω). Thus the
finite element in Example 2 is conforming.

To prove thatVh ⊂ C◦(Ω), let K1 andK2 be two adjacent triangles
in the triangulation.
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Figure 3.7:

A polynomial of degree 2 inx andy when restricted to a line in the
plane is a polynomial of degree 2 in a single variable and hence can be
determined on the line if the value of the polynomial at threedistinct
points on the line are known. LetvhεVh. Let ṽ1 andṽ2 be the continuous
extension ofvh|K1 and vh|K2 to K1 and K2 respectively; ˜v1 and ṽ2 are
polynomials of degree 2 in one variable along the common side; ṽ1 and
ṽ2 agree at the two common vertices and at the midpoint of the common
side. Hence ˜v1 = ṽ2 on the common side. This showsvh is continuous.
HenceVh ⊂ C◦(Ω).

Exercise 1.Taking (K,PK ,
∑

K) as in Example 3, show thatVh ⊂ H1(Ω).

3.4 Internal Approximation of H2(Ω).

In this section we give an example of a finite element which is such that 46

the associated spaceVh is contained inH2(Ω). This finite element can
be used to solve some fourth order problems. We need

THEOREM 3. If Vh = {vh : vh|KεPK ⊂ H2(K), for all KεTh} is con-
tained in C1(Ω) then Vh is contained in H2(Ω).

The proof of this theorem is similar to that of theorem 2 of this
section.
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EXAMPLE 4. Let K be a triangle

PK = P3(K) = Span {1, x, y, x2, xy, y2, x3, x2y, xy2, y3},
∑

K

=

{

δai ,
∂

∂x
δai ,

∂

∂y
δai , δa123, 1 ≤ i ≤ 3

}

whereai are vertices ofK, a123 is the centroid ofK and

dim PK = Card
∑

K

= 10.

Figure 3.8:

The arrows in the figure denote that the values of the derivatives at
the vertices are given. Using the formula

p =
3

∑

i=1

(

−2λ3
i + 3λ2

i − 7λ1λ2λ3

)

p(ai ) + 27λ1λ2λ3p(a123)

+

∑

1≤i< j≤3

λiλ j(2λi + λ j − 1)Dp(ai )(a j − ai) for all pεP3

47
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where

Dp(ai ) =

(

∂p
∂x

(ai),
∂p
∂y

(ai )

)

.

We obtain thatp ≡ 0 if

p(ai ) = p(a123) =
∂p
∂x

(ai ) =
∂p
∂y

(ai) = 0, 1 ≤ i ≤ 3.

Hence (K,PK,
∑

K) is a finite element.
The correspondingVh is in C◦(Ω) but not inC1(Ω). This shows that

Vh 1 H2(Ω). Hence this is not a conforming finite element for fourth
order problems.

We now give an example of a finite element withVh ⊂ H2(Ω).

EXAMPLE 5. The Argyris Triangle . The Argyris triangle has 21 de-
grees of freedom. Here the values of the polynomial, its firstand second
derivatives are specified at the vertices; the normal derivative is given at
the mid points.

In the figure we denote the derivatives by circles and normal deriva-
tive by a straight lines.

Figure 3.9:
48

We takePK = P5 = Space of polynomials of degree less than or

equal to5.

dim PK = 21;
∑

K

=

{

δai ,
∂

∂x
δai ,

∂

∂y
δai ,

∂2

∂x2
δai ,
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∂2

∂x ∂y
δai ,

∂2

∂y2
δai , 1 ≤ i ≤ 3,

∂

∂n
δai j 1 ≤ i < j ≤ 3

}

,

whereai denote the vertices ofK, ai j the midpoint of the line joiningai

anda j , and∂/∂n, the normal derivative.
Let pεPK be such thatL(p) = 0, Lε

∑

K We will prove thatp = 0 in
K. p is a polynomial of degree 5 in one variable along the sidea1a2. By
assumptionp, and its first and second derivatives vanish ata1 anda2.
Hencep = 0 alonga1a2. Consider∂p/∂n alonga1a2. By assumption
∂p/∂n vanishes ata1a2 anda12. Since the second derivatives ofp vanish
ata1, a2 we have the first derivatives of∂p/∂nvanish ata1 anda2; ∂p/∂n
is polynomial of degree 4 in one variable alonga1a2. Hence∂p/∂n = 0
alonga1a2. Sincep = 0 alonga1a2, ∂p/∂τ = 0 alonga1a2, where∂/∂τ
denote the tangential derivative, i.e. derivative alonga1a2. Therefore we
havep and its first derivatives zero alonga1a2.49

Figure 3.10:

The equation ofa1a2 is λ3 = 0. Hence we can choose a line per-
pendicular toa1a2 as theλ3 axis. Letτ denote the variable alonga1a2.
Changing the coordinates from (x, y) to (y3, τ) we can write the polyno-
mial p as

p =
5

∑

i=0

λi
3qi(τ)
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whereqi (τ) is a polynomial inτ of degree≤ 5− i. Now

∂p
∂λ3
=

5
∑

i=1

iλi−1
3 qi(τ).

Sincep and its first derivatives vanish alonga1a2 we have

0 = p(0, τ) = q◦(τ),

0 =
∂p
∂λ3

(0, τ) = q1(τ)

Hence

p = λ2
3

5
∑

i=2

λi−2
3 qi(τ).

Thusλ2
3 is a factor ofp. By taking the other sides we can prove that

λ2
1 andλ2

2 are also factors ofp. Thus

p = cλ2
1λ

2
2λ

2
3.

But λ2
1λ

2
2λ

2
3 is a polynomial of degree 6 which does not vanish identi-50

cally in K and p is a polynomial of degree 5. Hencec = 0. Therefore
p ≡ 0 in K. Thus (K,PK ,

∑

K) is a finite element with 21 degrees of
freedom.

THEOREM 4. If Vh is the space associated with the Argyris finite ele-
ment, then Vh ⊂ C1(Ω).

Proof. Let K1,K2 be two adjacent finite elements in the triangulation.
Let vεVh and letp1 = v|K1, p2 = v|K2. We denote the continuous exten-
sions ofp1 and p2 to K1 andK2 also byp1 and p2. We have to show
that

p1 = p2,Dp1 = Dp2

along the common sideQ of K1 andK2.
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Figure 3.11:

SincevεVh, p1, p2 their first and second derivatives agree at the two
common vertices ofK1 andK2. p1 andp2 are polynomials of degree 551

in one variable along the common sideQ. Hence, alongQ,

p1 = p2. (3.14)

Therefore
∂p1

∂τ
=
∂p2

∂τ
along Q. (3.15)

The normal derivatives
∂p1

∂n
and

∂p2

∂n
are polynomials of degree 4

in one variable alongQ. SincevεVh,
∂p1

∂n
=
∂p2

∂n
at the two common

vertices and at the midpoint of the common sideQ. Moreover, the first

derivatives of
∂p1

∂n
and

∂p2

∂n
coincide at the common vertices. Hence

∂p1

∂n
=
∂p2

∂n
along Q. (3.16)

Equations (3.14) - (3.16) show that

p1 = p2,Dp1 = Dp2 along Q.

�

This proves thatv and its first derivative are continuous acrossQ.
ThereforevεC1(Ω). HenceVh ⊂ C1(Ω).

Theorems 3.3 and 3.4 imply thatVh ⊂ H2(Ω). For other examples
of finite element, the reader can refer to CIARLET [9].



Chapter 4

Computation of the Solution
of the Approximate Problem

4.1 Introduction

THE SOLUTION OF THE APPROXIMATE PROBLEM. FinduhεVh 52

such that

a(uh, vh) = L(vh) ∀vhεVh, (4.1)

can be found using either iterative methods or direct methods. We de-
scribe these methods in this chapter.

Let {wi}1≤i≤N(h) be a basis ofVh. Let A = (a(wi ,w j)) andb = (L(wi)).
If a(· , · ) is symmetric, then (4.1) is equivalent to the minimizationprob-
lem

J(uh) = min
vhεVh

J(vh), (4.2)

whereJ(v) = 1
2vTAv− vTb, vεRN(h). Here we identifyVh andRN(h)

through the basis{wi} and the natural basis{ei} of RN(h). uh is a solution
of (4.2) iff Auh = b. Iterative methods are applicable only whena(· , · )
is symmetric.

49
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4.2 Steepest Descent Method

Let J : RN → R be differentiable.
In the steepest descent method, at each iteration we move along the

direction of the negative gradient to a point such that the functional value
of J is reduced. That is, letx•εRN be given. KnowingxnεRN, we define
xn+1εRN by

xn+1
= xn − λn J′(xn), (4.3)

whereλn minimizes the functional

φ(λ) = J
(

xn − λJ′(xn)
)

(4.4)

53

In the case
J(x) = 1/2 xTAx− xTb,

λn can be computed explicitly. It is easy to see that

J′(x) = Ax− b.

Sinceλn minimizesφ(λ), we have

φ′(λn) =
(

J′(xn − λnJ′(xn)),−J′(xn)
)

= 0 (4.5)

Let
rn
= J′(xn) = Axn − b.

Then (4.5) implies

λn
=

(rn, rn)
(Arn, rn)

. (4.6)

For proving an optimal error estimate for this scheme we needKan-
torovich’s inequality which is left as an exercise.

Exercise 1.(See LUENBERGER [30]).
Prove the Kantorovich’s inequality

(Ax, x) (A−1x, x)

‖ x ‖4
≤

(M +m)2

4mM
(4.7)
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whereA is symmetric, positive definite matrix with

m= Inf
x,0

(Ax, x)

‖ x ‖2
> 0,M = Sup

x,0

(Ax, x)

‖ x ‖2

THEOREM 1. For any x◦εX the sequence{xn} defined by

xn+1 = xn +
(rn, rn)

(rn,Arn)
rn,

where 54

rn = b− Axn,

converges to the unique solutionx of Ax= b. Furthermore, defining

E(x) = ((x− x),A(x− x))

we have the estimate

‖ xn − x ‖2≤
1
m

E(xn) ≤
1
m

( M −m
M +m

)2n

E(x◦).

Proof. We have

E(x) = (x− x,A(x− x))

= 2J(x) + (x, Ax),

where

J(x) = 1/2(x,Ax) − (b, x).

It is easy to see that

E(xn) − E(xn+1)
E(xn)

=
(rn, rn)2

(rn,Arn)(rn,A−1rn)
≥

4Mm

(M +m)2

by Kantorovich inequality. Therefore

E(xn+1)
E(xn)

≤
( M −m
M +m

)2

.
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This implies

E(xn+1) ≤
(M −m
M +m

)2(n+1)

E(x◦).

From the definition ofmwe obtain 55

‖ xn − x ‖2≤
1
m

E(xn) ≤
1
m

(M −m
M +m

)2.n

E(x◦).

The condition number ofA is defined by Cond(A) = M
m . We have

( M −m
M +m

)2

∼ 1− 2m
M
= 1− 2

Cond(A)

If the condition number ofA is smaller, then the convergence is
faster. The steepest descent method is not a very good methodfor finite
elements, since Cond(A) ∼ C/h2 whenVh ⊂ H1(Ω). �

4.3 Conjugate Gradient method

DEFINITION. The directions w1,w2εR
N are said to beconjugatewith

respect to the matrix A if wT1 A w2 = 0.
In the conjugate gradient method, we construct conjugate directions

using the gradient of the functional. Then the functional isminimized by
proceeding along the conjugate direction. We have

THEOREM 2. Let w1,w2, . . . ,wN be N mutually conjugate directions.
Let

xk+1
= xk − λkwk

whereλk minimizes

φ(λ) = J(xk − λwk), λεR.

When x1εRN is given, we have56

xN+1
= x∗

where
Ax∗ = b.
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Proof. Let
rn
= −J′(xn) = b− Axn.

Sinceλk minimizesφ(λ) we have

φ(λk) = (J′(xk − λkwk),−wk) = 0.

This gives

λk
=

(rk)Twk

(wk)TAwk
(4.8)

Sincew1,w2, . . . ,wN are mutually conjugate directions, they are lin-
early independent. Therefore there existαi , 1 ≤ i ≤ N, such that

x1 − x∗ =
N

∑

k=1

αk wk.

From this, using the fact thatw j are mutually conjugate, we obtain

(x1 − x∗)TAwj
= α j(w

j)T Awj .

This gives

α j =
(x1 − x∗)T Awj

(w j)T Awj
. (4.9)

Using induction we show that 57

αk = λ
k.

SinceAx∗ = b, we have

r1
= Ax1 − b = A(x1 − x∗).

This shows that
α1 = λ

1.

Let αi = λ
i for 1 ≤ i ≤ k− 1.

From the definition ofxk we obtain

xk
= x1 −

k−1
∑

i=1

λiwi
= x1 −

k−1
∑

i=1

αi wi ,
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(by induction hypothesis). Since

(wi)T Awk
= 0 for 1≤ i ≤ k− 1,

we get
(xk − x1)T Awk

= 0

This together with (4.8) and (4.9) shows that

αk = λ
k

Thusαk = λ
k for 1 ≤ k ≤ N.

The definition ofxk implies

xN+1
= x1 −

N
∑

i=1

λi wi
= x1 −

N
∑

i=1

αiw
i
= x∗

�

Algorithm for Conjugate Gradient Method

THEOREM 3. Let x◦εRN. Define w1
= b−Ax1. Knowing xn and wn−158

we define xn+1 and wn by

xn+1
= xn

+ αnwn

wn
= rn
+ βnwn−1,

where

rn
= b− Axn, αn =

(rn,wn)
(wn,Awn)

, βn =
(rn, rn)

(rn−1, rn−1)

Then wn are mutually conjugate directions and xN+1 is the unique
solution of Ax= b.

A proof of this theorem can be found in LUENBERGER [31]. It
can be shown that

xn − xN+1 ∼
(

1−
√

c

1+
√

c

)n

,

wherec = m/M. Thus the convergence rate in the conjugate gradi-
ent method is faster than in the steepest descent method, at least for
quadratic functionals.
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4.4 Computer Representation of a Triangulation

1

2

3

4

5

6
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6

81

3

4

7

2

Figure 4.1:

Let Th be a triangulation of the domainΩ. We number the nodes of the59

triangulation and the triangles inTh. Let

NS = # of nodes of Th,

NT = # of triangles in Th.

The triangulation is uniquely determined by the two matrices

Q(2, NS) = (qi j ) and ME(3, NS) = (mjk),

whereqi j denotes theith coordinate of thejth node andmjk denotes the
jth vertex of thekth triangle.

The matrixME, corresponding to the triangulation in the above fig-
ure is

ME =





















1 1 2 2 2 6 4 6
2 5 4 6 5 5 6 8
3 2 3 4 6 8 7 7





















In some problems it is better to know the boundary nodes. The array
NG(NS) defined by

NG(i) =















1 if iεΓ

0 otherwise
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is used for picking boundary nodes.

Exercise 2.Draw the triangulation

Q =

(

0 1 1 0 0.5 0.5 0.5 1 0
0 0 1 1 0.5 1 0 0 0.5

)

ME =





















2 2 6 3 4 4 1 5
7 5 5 6 6 9 7 7
5 8 8 8 9 5 9 9
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4.5 Computation of the Gradient.

In the Neumann problem we have

(J′(u), v) =
∫

Ω

(∇u.∇v+ a◦uv) −
∫

Ω

f v.

We now give a practical way of computing the gradientJ′(u).
Let wi be the basis function inVh which takes the value 1 at theith

node and zero at the other nodes. LetVh be defined byP1 Lagrange
finite element. Let

u = (ui)1≤i≤NS

be given. We want to computeJ′(u). Let (J′(u)i = (J′(u); wi ) and

Bi =

∫

Ω

∇u.wi dx=
∑

KεTh

∫

K

∇u.∇wi dx.

We know that

wi =















λk
j if i = mjk, for some j and k

0 otherwise,

whereλk
j is the jth rycentric coordinate of thekth triangle. Therefore

Bi =

∑

1≤ j≤3,1≤k≤NT,i=mjk

ak
j ,
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ak
j =

∫

Kk

∇u.∇λk
j dx, where Kk

is the triangle corresponding to thekth element. 61

Algorithm to Compute B.

Set B = 0
for k = 1, 2, . . . ,NT;
for j = 1, 2, 3,
do Bmjk = Bmjk + ak

j .

Computation of the ak
j
′ s.

Sinceu = (ui)1≤i≤NS and we takeP1 Lagrange finite elements, we have

u =
3

∑

j=1

λk
jumjk in Kk,

= ax+ by+ c, say.

Let (ξi , ηi), 1 ≤ i ≤ 3, be the coordinates of the vertices ofKk. Let
w j = umjk . Thena, b are found from the equations

aξ1 + bη1 + c = w1,

aξ2 + bη2 + c = w2,

aξ3 + bη3 + c = w3,

(4.10)

as

a =
(w1 − w3)(η2 − η3) − (w2 − w3)(η1 − η3)

C2
(4.11)

b = − (w1 − w3)(ξ2 − ξ3) − (w2 − w3)(ξ1 − ξ3)
C2

(4.12)

where
C2 = (ξ1 − ξ3)(η2 − η3) − (ξ1 − ξ2)(η1 − η3).
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Hence∇u =
(

a
b

)

is determined. 62

If λk
j = a j x+b jy+c, thena j andb j are got from (4.11) and (4.12) by

takingwi = δi j . Note thatC2 = 1/2 areaKk. Thenak
j = C2/2 (aaj+bbj ).

4.6 Solution by Direct Methods

In Section 4.6.2 and 4.6.3 we gave algorithms to solve the equationAx=
b whenA is symmetric and positive definite. WhenA is not symmetric
or A is sparse, direct methods can be used to solve the equationAx= b.

4.6.1 Review of the Properties of Gaussian Elimination

The principle of Gaussian elimination is to decomposeA into a product
LU whereL is lower triangular andU is upper triangular so that the
linear system

Ax= b

is reduced to solving 2 linear systems with triangular matrices

Ly = b,

Ux = y.

Each of these is very easy to solve. ForLy = b, y = (yi), y1 is given
by the first equation, hencey2 is given by the second sincey1 is already
known, etc.

To decomposeA into LU, one proceeds iteratively. Let

A(k)
=

(

a(k)
i j

)

1 ≤ i, j ≤ N ’

be such that63

a(k)
i j = 0 for 1≤ j ≤ k − 1 and i > j.
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Figure 4.2:

ThenU is A(N).

To get A(k+1) from A(k) one adds thekth equation multiplied by a
scaling factor of theith equation in order to havea(k+1)

ik = 0. The scaling
factor has to be

−
a(k)

ik

a(k)
kk

, and hence

a(k+1)
i j = a(k)

i j −
a(k)

ik a(k)
k j

a(k)
kk

i, j = k + 1, . . . , n.

(4.13)

For a full matrix the order of operations for this process isN3/3. For
a band matrix, i.e. a matrix such that

ai j = 0 if |i − j| ≥ w,

We see that if|i − j| ≥ w, then either|k− i| or |k− j| is greater thanw+1,
provided thati, j ≥ k+1. Hence in the formula (4.13) an element which
is outside the band is never modified since the corrective term in (4.13)
is a always zero.
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Figure 4.3:

More precisely we have64

PROPOSITION 4. For a band matrixA with bandwidthw, at thekth

step of the Gaussian elimination, onlyw2 “corrective elements” have to
be computed and added to the submatrix.

























ak+1,k+1 · · · ak+1,k+w
...

ak+w,k+1 · · · ak+w,k+w

























Note that we get an evaluation of the number of operations forthe pro-
cess which is aboutNw2 (instead ofN3/3).

4.6.2 Stiffness Matrix and Stiffness Submatrix

For simplicity we consider the Neumann problem. FinduhεVh such that

a(uh, v) = L(v)∀ vεVh,

whereVh is a finite dimensional subspace ofH1(Ω) constituted with
functions which are continuous and piecewise linear on the elements of
the triangulationTh and

a(u, v) =
∫

Ω

(∇u.∇v+ uv) dx.

For (wi)1≤i≤N, a basis ofVh (whereN denotes the number of vertices of65
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Th), we have

a(u, v) =
N

∑

i, j=1

uiai j v j ,

wherevi (respectivelyui) denote the value ofv (respectivelyu) at theith

vertex ofTh and

ai j =

∫

Ω

(∇wi ∇w j + wiw j) dx.

But this is not a practical way to compute the elementsai j of the
matrix A of the linear system to be solved, since the support of thewi

involves several elements ofTh. Instead one writes

a(u, v) =
∑

KεTh

∫

K

(∇u.∇v+ uv) dx.

Hence, as

u(x) =
3

∑

α=1

umαKλ
K
α (x),

v(x) =
3

∑

β=1

vmβKλ
K
β (x),

in the elementK, where (mαK)α=1,2,3 denotes the 3 vertices of the ele-
mentK andλK

α (x) the associated barycentric coordinates. One has

N
∑

i, j=1

uiai j v j =

∑

KεTh

3
∑

α,β=1

umαK vmβK aK
αβ,

where 66

aK
αβ =

∫

K

(∇λK
α .∇λK

β + λ
K
α λ

K
β ) dx.

The matrixAK
= (aK

αβ
)1≤α,β≤3 is called theelement stiffness matrixof K.
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A convenient algorithm to computeA is then the followingAssem-
bling algorithm.



























1. Set A = 0

2. For KεTh, computeAK and forα, β = 1, 2, 3 make

amαK ,mβK = amαK ,mβK + aK
αβ
.

Exercise 3.Write a Fortran subroutine performing the assembling al-
gorithm (without the computation of the element stiffness matricesAK

which will be assumed to be computed in another subroutine).

4.6.3 Computation of Element Stiffness Matrices

We shall consider more sophisticated elements, e.g. the triangular, qua-
dratic element with 6 nodes.

The midside points have to be included in the numbering of thever-
tices to describe properly the triangulation. For each elementK, one has
to give the 6 numbers of its 6 nodes in the global numbering,

mαK , α = 1, . . . , 6.

67

The assembling algorithm of last section is still valid except thatα
andβ range now from 1 to 6 and thatλK

α has to be replaced bypK
α , α =

1, 2, . . . , 6, the local basis functions of the interpolation (see chapter 3).
To compute the element stiffness matrix

AK
=

(

aK
αβ

)

α,β=1,...,6
,

one introduces the mapping,

F : K̂ → K

whereK̂ is the triangle (0, 0), (1, 0), (0, 1). SinceF is affine, we have

F(ξ) = Bξ + b,

whereB is 2× 2 matrix andbεR2.
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Let û(ξ) = u(F(ξ)) andv̂(ξ) = v(F(ξ)). One has
∫

K

uv dx=
∫

K̂

ûv̂ det(B) dξ (4.14)

In the same way one has

∇û|ξ = BT ∇u|F(ξ) ,

sinceBT is the Jacobian matrix ofF. Therefore,
∫

K

∇u.∇v dx=
∫

K̂

(B−T∇û).(B−T ∇v̂) det(B) dξ (4.15)

Finally to compute the coefficientsaK
αβ

of the element stiffness ma-

trix AK, one notices that

û(ξ) =
6

∑

α=1

umαK pα(ξ),

where (pα(ξ), α = 1, . . . , 6) are the basis functions ofK which are 68

easily computed once for all. Note that

λ1 = 1− ξ1 − ξ2, λ2 = ξ1,λ3 = ξ2.

As p are polynomials (even for higher degree elements) the integrals
in (4.14) and (4.15) can be computed by noticing that

∫

K̂

ξi
1ξ

j
2 dξ =

i! j!
(i + j + 2)!

However, for the simplicity of the programming they are usually
computed by numerical integration: every integral of the type

∫

K

f (ξ) dξ

is replaced by
L

∑

ℓ=1

wℓ f (bℓ)
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where (bℓ)ℓ=1,...,L are called the nodes of the numerical integration for-
mula and (wℓ)ℓ=1,...,L the coefficients.

The programming is easier since one may compute (in view of (4.14)
and (4.15) only the values ofpα and∂pα/∂ξi at the pointsbℓ. For more
details and model programs we refer to Mercier – Pironneau [32].



Chapter 5

Review of the Error
Estimates for the Finite
Element Method

THE PURPOSE OF this chapter is to state the theorems on error esti- 69

mates which are useful for our future analysis. The proof of the theo-
rems can be found in CIARLET [9].

DEFINITION. LetΩ ⊂ Rn be an open subset, m≥ 0 be an integer and
1 ≤ p ≤ +∞. Then the Sobolev Space Wm,p(Ω) is defined by

Wm,p(Ω) = {vεLp(Ω) : ∂αvεLp(Ω), for all |α| ≤ m}.

On the space Wm,p(Ω) we define a norm‖ � ‖m,p,Ω by

‖ v ‖m,p,Ω=





















∫

Ω

∑

|α|≤m

|Dαv|p dx





















1/p

,

and a semi norm| � |m,p,Ω by

|v|m,p,Ω =





















∫

Ω

∑

|α|=m

|Dαv|p dx





















1/p

.

65
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If k is an integer, then we consider the quotient space

W−k+1,p(Ω) =Wk+1,p(Ω)/pk(Ω)

with the quotient norm

‖ ṽ ‖k+1,p,Ω= Inf
ℓεPk

‖ v+ ℓ ‖k+1,p,Ω,

whereṽ is the equivalence class containing v.70

We introduce a semi norm iñWk+1,p(Ω) by

|ṽ|k+1,p,Ω = |v|k+1,p,Ω.

Then we have

THEOREM 1. (CIARLET - RAVIART). In W̃k+1,p(Ω) the semi norm
|ṽ|k+1,p,Ω is a norm equivalent to the quotient norm‖ v ‖k+1,p,Ω.

Using this theorem it is easy to prove

THEOREM 2. Let Wk+1,p(Ω) and Wm,q(Ω) be such that Wk+1,p(Ω) ֒→
Wm,q(Ω) (continuous injection). Let

π ∈ L (Wk+1,p(Ω), Wm,q(Ω))

be such that for each pεPk, πp = p. Then there exists a c= c(Ω, π) such
that for each v∈Wk+1,p(Ω)

|v− πv|m,q,Ω ≤ c|v|k+1,p,Ω.

DEFINITION. Two open subsetŝΩ,Ω ofRn are said to be affine equiv-
alent if there exists an affine map F fromΩ̂ ontoΩ such that F(x̂) =
Bx̂+ b, where B is a n× n non singular matrix and bεRn.

We have

THEOREM 3. LetΩ̂,Ω be affine equivalent with F as their affine map.
Then there exist constantsĉ, c such that for all vεWm,p(Ω),71

|v̂|m,p,Ω̂ ≤ c ‖ B ‖m |detB|−1/p|v|m,p,Ω,
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and for all v̂εWm,p(Ω̂),

|v|m,p,Ω ≤ ĉ ‖ B−1 ‖m |detB|1/p |v̂|m,p,Ω̂,

where
v̂ = v • F.

If h (resp. ĥ) is the diameter ofΩ (resp. Ω̂) and p (resp. p̂) is
the supremum of the diameters of all balls that can be inscribed inΩ
(resp. Ω̂), then we have

THEOREM 4. ‖ B ‖≤ h/ρ̂ and‖ B−1 ‖≤ ĥ/ρ.

DEFINITION . Two finite elements(K̂, Σ̂, P̂) and (K,Σ,P) are said to
be affine equivalent if there exists an affine map F̂x = Bx̂ + b onRn,
where B is an n× n non singular matrix, and bεRn such that

(i) F (K̂) = K

(ii) p̂ = {p̂ = p ◦ F : pεP},

(iii) Σ̂ = {φ̂ = F−1 ◦ φ : φεΣ}

where
F−1 ◦ φ(p̂) = φ(p̂ ◦ F−1).

DEFINITION . Let (K,Σ,P) be a finite element and v: K → R be a 72

smooth function on K. Then by virtue of the P-unisolvency ofΣ there
exists a unique element, say,πKv ∈ P, such thatφ(πKv) = φ(v) for all
φ ∈ Σ. The functionπKv is called the P-interpolate function of v and the
operatorπK : C∞(K)→ P is called the P-interpolation operator.

Now we state an important theorem which is often used.

THEOREM 5. Let (K̂, Σ̂, P̂) be a finite element. Let s(= 0, 1, 2) be the
maximal order of derivatives occurring inΣ. Assume that

(i) Wk+1,p(K̂) ֒→ Cs(K̂),

(ii) Wk+1,p(K̂) ֒→Wm,q(K̂),
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(iii) P k ⊂ P̂ ⊂Wm,q(K̂),

Then there exists a constant C= C(K̂, Σ̂, P̂) such that for all affine
equivalent finite elements(K,Σ,P) we have

|v− πKv|m,q,K ≤ C (measK)1/q−1/p hk+1
K

ρm
K

|v|k+1,p,K

for all v ∈ Wk+1,p(K), whereπK is a P-interpolate operator, hK is the
diameter of K andρK is the supremum of diameter of all balls inscribed
in K.

DEFINITION. A family(Th) of triangulations ofΩ is regular if

(i) for all h and for each KεTh the finite elements(K,Σ,P) are all73

affine equivalent to a single finite element(K̂, Σ̂, P̂);

(ii) there exists a constantσ such that for all Th and for each KεTh

we have
hK

ρK
≤ σ;

(iii) for a given triangulation Th, if

h = max
KεTh

hK ,

then h→ 0.

Exercise 1.Prove that there exists a constantC independent ofh such
that

|p|1,k ≤ C/h |p|◦,K for all pεPk.

A theorem which gives a global error bound is the following.

THEOREM 6. Let us assume that

(i) πh : Hk+1(Ω)→ Vh, the restriction ofπh to Vh being the identity,

(ii) Vh ⊂ π
KεTh

Pk(K),
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(iii) Vh ⊂ Hm(Ω),74

(iv) u ∈ Hm(Ω) (regularity assumption),

Then we have
‖ u− πhu ‖m,Ω≤ C hk+1−m|u|k+1,Ω,

where C is a constant independent of h and(Th) is a regular family of
triangulations.

For stating a theorem onL2 -error estimates we need the definition
of a regular adjoint problem.

DEFINITION . Let V = H1(Ω) or H1
◦(Ω), H = L2(Ω). The adjoint

problem:















Find φεV such that

a(v, φ) = (g, v) for all vεV,

is said to be regular if

(i) for all gεL2(Ω), the solutionφ of the adjoint problem for g belongs
to H2(Ω) ∩ V;

(ii) there exists a constant C such that

‖ φ ‖2,Ω≤ C|g|◦,Ω.

We now have

THEOREM 7. Let (Th) be a regular family of triangulations onΩwith
reference finite element(K̂, Σ̂, P̂). Let s= 0 and n≤ 3. Suppose there75

exists an integer k≥ 1 such that uεHk+1(Ω) Pk ⊂ p̂ ⊂ H1(K̂). Assume
further that the adjoint problem is regular. Then there exists a constant
C independent of h such that

|u− uh|◦,Ω ≤ C hk+1 |u|k+1,Ω.
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Chapter 6

Problems with an
Incompressibility Constraint

6.1 Introduction

We recall the variational formulation of the Stokes problem(see Chapter 76

2).
FinduεV such that

a(u, v) = L(v) ∀ vεV,

where

a(u, v) =
∫

Ω

∇u.∇v dx,

L(v) =
∫

Ω

f .v dx, fε (L2(Ω))n,

and
V = {vε(H1

◦(Ω))n : div v = 0}.

It is difficult to construct internal approximations ofV because of
the constraint divv = 0. In two dimensional problem we know that

71
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vεV ⇔ there existsψεH2
◦(Ω) such that

v = rotψ,

where

rotψ =

(

∂ψ

∂x2
,−

∂ψ

∂x1

)

Therefore, it seems logical that the difficulties we encountered in
approximatingH2(Ω) in a conforming way are transferred to the con-
forming approximation ofV.

6.2 Approximation Via Finite Elements of Degree 1

Let Wh = {vh ε (C◦(Ω))2 : vh|K ε(P1(K))2, for KεTh, vh = 0 on∂Ω} It is77

natural to try forVh the space

{vh ε Wh : div vh = 0}.

But for most triangulations,Vh = {0}. This is due to the fact that the
number of equations due to the constraint divvh = 0 is greater than the
number of degrees of freedom ofWh. In fact,

Dimension of Wh = 2 (# internal vertices).

Number of equations due to the constraint divvh = 0 is equal to number
of triangles.

HenceVh cannot be a good approximation toV. However, if the triangu-
lationTh is obtained by first taking quadrilaterals and then dividingeach
quadrilateral into four triangles by joining the diagonals(see figure 6.1),
we obtain a ‘good space’Vh. In this case only 3 of the four equations
div vh = 0 are independent.
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Figure 6.1:

Exercise 1.Let K be a quadrilateral. Let it be divided into four triangles78

Ti , 1 ≤ i ≤ 4, by

Figure 6.2:

joining the diagonals ofK. Let vεC◦(K) such that

v|Ti εP1(Ti), 1 ≤ i ≤ 4. Let di = div v|Ti 1 ≤ i ≤ 4.

Then show thatd1 + d3 = d2 + d4.
When the mesh isuniform, it is possible to prove convergence and

to construct an interpolation operator,

πh : V → Vh

such that
‖ v− πh v ‖1,Ω≤ ch ‖ v ‖2,Ω .

Therefore the solutionvh of the approximate problem

a(uh, vh) = L(vh) ∀ vh ε Vh,
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satisfies
‖ u− uh ‖1,Ω≤ ch;‖ u− uh ‖0,Ω≤ ch2 .

When the domain is a square and the mesh is uniform we defineπh

as follows.
We choose for simplicity the diagonals of the square to be thecoor-

dinate axes.

2 3

1 5
4

0

6 7

Figure 6.3:
79

πhu at each of the main nodes (like 1, 5, 6, 7) is chosen as an average of
u. For example, at the node 1 the two components ofπhu are given by

(πhu)1 = average ofu1 on 02,

(πhu)2 = average ofu2 on 34.

At each of the secondary nodes (like 0, 2, 3, 4)πhu is chosen as an
average of the values ofπhu at the main nodes. For example, at the node
0

(πhu)1 (0) =
(πhu)1 (1)+ (πhu)1 (7)

2
,

(πhu)2 (0) =
(πhu)2 (5)+ (πhu)2 (6)

2
,

Numerically the method works even for irregular, not too distorted,
meshes.
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6.3 The Fraeijs De Veubeke - Sander Element

We shall first describe aC1 element of a non standard type: the Fraeijs
de Veubeke - Sander element.

Let K be a quadrilateral. We divideK into four trianglesTi , 1 ≤ i ≤ 80

4, by joining the diagonals ofK.

1

2 3

4

Figure 6.4:

Let

Q(K) = {pεC1(K) : pεP3(Ti), 1 ≤ i ≤ 4}.

We have

LEMMA 1. dimQ(K) = 16.

Proof. Indeed we choosep = p1 on T1 wherep1εP3. Thenp1 depends
on 10 parameters. Letp2εP3 be such thatp2 and∂p2/∂n vanish on the
diagonal 13. Hencep2 depends on 10-4-3=3 parameters. We choose
p = p1 + p2 on T2 and it is easy to see thatp is C1 across 13.

In the same way we choosep = p1+ p3 onT3 with p3 = ∂p3/∂n = 0
on 24. p3 depends again on 3 parameters andp will be C1 across 24.

Taking p = p1 + p2 + p3 on T4, it is easy to see thatp is C1 across
13 and 24. Finally,p depends on 10+ 3+ 3 = 16 parameters. Hence the
result. �

We choose, 81

ΣK =

{

δi ,
∂

∂x
δi ,

∂

∂y
δi , 1 ≤ i ≤ 4;

∂

∂n
δbi , 1 ≤ i ≤ 4

}
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as the set of degrees of freedom. Herebi denotes the midpoint of a side
of the quadrilateralK.

1
2

3
4

Figure 6.5:

We refer the reader to CIAVALDINI-NEDELEC [11] to prove that
this is an admissible choice of degrees of freedom.

Let Qh denote a regular family ofquadrangulationsof the polygonal
domainΩ. Let

χh = {φhεC
1(Ω) : φh|KεQ(K), φh =

∂φh

∂n
= 0 on ∂Ω}.

Then the following result has been proved by CIAVALDINI-NEDELEC
[11].

THEOREM 2. The operatorπh : H3(Ω) → χh defined by the above
choice of degrees of freedom satisfies

‖ φ − πhφ ‖2,Ω≤ chs ‖ φ ‖s+2,Ω,

where s= 1, 2.

As a consequence of this result the spaceχh can be used to approxi-82

mate any variational problem onH2
◦(Ω) and in particular the biharmonic

problem associated to the Stokes problem. However, as is thecase with
any Hermite finite element, the programming of the Fde V-S element is
difficult and it is easier to use the corresponding element in the velocity
formulation, which is quadratic.
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6.4 Approximation of the Stokes Problem Via
Quadratic Elements

Let Th be the triangulation associated toQh by dividing each quadrilat-
eral ofQh into four triangles in the usual way. Let

Wh =
{

vh εC
◦(Ω)2 : vh|T ε(P2(T))2,TεTh, vh = 0 on ∂Ω

}

and
Vh = {vhεWh : div vh = 0}.

Obviously vhεVh implies that there existsψhεχh such thatvh =

rotψh. Therefore we can state

THEOREM 3. There exists a constant c such that, for uεV ∩ Hs+1(Ω)
(s= 1 or 2),

Inf
vhεVh

‖ u− vh ‖1,Ω≤ chs ‖ u ‖s+1,Ω .

Proof. As uεV, there existsψεHs+2(Ω) ∩ H2
◦(Ω) such thatu = rotψ.

Then choosingvh = rotπhψ we obtain the result. �

Numerically, one may solve the approximate problem: 83














find uh εVh such that

a(uh, vh) = L(vh) ∀ vh εVh,

via a penalty method.
Let ε > 0 and

aε (u, v) = a(u, v) + 1/ε
∫

Ω

div vdiv u dx.

The penalised problem is:














Find uh εWh such that

aε(uεh, vh) = L(vh) ∀ vh εWh.

This problem is much easier to solve. We shall see in Chapter 7that the
order of the error due to penalization is only

0(ε) :‖ uεh − uh ‖1≤ c.ε,

wherec may depend onh.
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6.5 Penalty Methods.

We now come back to the case of finite elements of degree 1 wherethe
spaceWh is

Wh =
{

vh ε (C◦(Ω))2 : vh|K ε (P1(K))2,K ε Th, vh = 0 on∂Ω
}

.

The approximate problem can be taken as















Find uεh ε Wh such that

aε(uεh, vh) = L(vh) for all vh ε Wh.

We have

THEOREM 4. Assume that uεH2(Ω). Then there exists a constant c84

such that
‖ uεh − u ‖21≤ c[h2(1+ 1/ε) + h+

√
ε].

Hence by choosingε = h4/3 we obtain

‖ uεh − u ‖1≤ ch1/3 .

Exercise 2.Prove the above theorem.
Note that the above convergence rate is very poor, which is con-

firmed by the poor numerical results obtained with this method.

6.6 The Navier-Stokes Equations.

The stationary flow of a viscous, Newtonian fluid subjected togravity
loads in a bounded regionΩ of R3 is governed by the following dimen-
sionless equations.

−γ∆u+
3

∑

i=1

ui
∂u
∂xi
+ ∇p = f in Ω,

div u = 0 in Ω,

u = 0 in ∂Ω,











































(6.1)
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whereu represents the velocity,p the pressure andf is the body force.
All these quantities are in dimensionless form andγ =

µ

DVρ
=

1
Re where

Re is called the Reynolds number. Here is the viscosity of the fluid D
a length characterizing the domainΩ,V a characteristic velocity of the85

flow andρ the density of the fluid (For more details the reader is referred
to BIRD-STEWART-LIGHTFOOR ‘Transport Phenomena, Wiley Ed.
p. 108).

The Reynolds number is the only parameter in the equation andit
measures how far the Navier-Stokes model is from the Stokes model.
The limiting caseγ = 0 corresponds to Euler’s equations for inviscid
fluids. However, at high Reynolds number, the flow develops a bound-
ary layer near the boundary. Moreover, instability and bifurcation phe-
nomena can be observed which correspond physically to turbulence. We
are going to study only the flows atlow Reynolds number.

6.7 Existence and Uniqueness of Solutions of
Navier-Stokes

EQUATIONS AT LOW REYNOLDS NUMBERS. The variational for-
mulation of Navier-Stokes equations is:















Find uεV such that

a(u, v) + b(u, u, v) = ( f , v) ∀vεV,
(6.2)

where

a(u, v) = γ
∫

Ω

∇u.∇v dx,

b(u, v,w) =
∫

Ω

3
∑

i, j=1

ui
∂v j

∂xi
w j dx

and

V = {vε (H1
◦(Ω))3 : div v = 0}.
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Exercise 3.Show that ifu is a solution of (6.2), then there exists a86

pεL2(Ω) such that{u, p} is a solution of (6.1) in the sense of distri-
butions.

Exercise 4.Show that for allu, v,wεV one has

b(u, v,w) = −b(u,w, v),

b(u, v, v) = 0.

As H1(Ω) ֒→ L4(Ω) (see LADYZHENSKAYA [27] for a proof of
this), using Schwarz inequality twice we obtain

b(u, v,w) ≤‖ u ‖0,4‖ v ‖1‖ w ‖0,4≤ c ‖ u ‖1‖ v ‖1‖ w ‖1 .

Hence

β = Sup
u,v,wεV

b(u, v,w)
‖ u ‖‖ v ‖‖ w ‖

< ∞.

where‖ u ‖= |u|1. We have

THEOREM 5. Assume thatβ/γ2 ‖ f ‖∗< 1. Then the problem(6.2)
has a unique solution.

Proof. Let uiεV, i = 1, 2. Letvi , i = 1, 2 be the solution

a(vi ,w) + b(ui , vi ,w) = ( f ,w) ∀wε V i = 1, 2 (6.3)

Note that (6.3) is a linear problem and has a unique solution by virtue of
the Lax-Milgram Lemma.

Choosingw = vi in (6.3) it is easy to see that87

γ ‖ vi ‖2≤ ( f , vi) ≤‖ f ‖∗‖ vi ‖ .,

Thus

‖ vi ‖≤
‖ f ‖∗
γ

Takingw = v2 − v1, we obtain

γ ‖ w ‖2≤ a(v2 − v1,w) = b(u1, v1,w) − b(u2, v2,w) = b(u1,−w,w)+

+b(u1 − u2, v2,w) ≤ 0+ β ‖ v2 ‖ � ‖ w ‖‖ u1 − u2 ‖ .
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Hence we obtain

‖ v1 − v2 ‖≤ β

γ2
‖ f ‖∗‖ u1 − u2 ‖ .

Since β

γ2 ‖ f ‖∗< 1, the mappingT : ui → vi is a strict contraction
and has a fixed point which obviously is the unique solution of(6.2) �

REMARK 1. The proof is constructive in the sense that the algorithm
un+1

= Tun gives a sequence which converges to the solution. At each
step of this algorithm one has to solve the linearised problem (6.3).

REMARK 2. If γ2 ≥ β ‖ f ‖∗ then there exists atleast one solution to
(6.2). The solution of(6.2) in this case may not be unique (see LIONS
[28]). Note that problem(6.2) is equivalent to solving a non-linear88

equation F(u) = 0 where F: V → V′ is given by

F(u)(v) = a(u, v) + b(u, u, v) − ( f , v).

Let Gu be the linear operator which is tangent to F, i.e.

(Guw, v) = lim
θ→0

1
θ

(F(u+ θw)− F(u), v) = a(w, v) + b(u,w, v) + b(w, u, v).

If Gu is not singular, then u is an isolated solution, otherwise there may
be a bifurcation. The eigenvalue problem associated to the linearised
problem is:















Find wεV, λ ε 6C such that

a(w, v) + b(u,w, v) + b(w, u, v) = λ(w, v) v εV

and a study of this problem is of fundamental interest.
We refer the reader to BREZZI-RAPPAZ-RAVIART [6] for a studyof

the convergence in the case where u is an isolated solution. In the next
section we restrict ourselves to the case where u is unique.
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6.8 Error Estimates for Conforming Method

Let Vh ⊂ V. We consider the approximate problem:














Find uh εVh such that

a(uh, vh) + b(uh, uh, vh) = ( f , vh) ∀ vh ε Vh
(6.4)

Let

βh = Sup
u,v,wεVh

b(u, v,w)
‖ u ‖‖ v ‖‖ w ‖

and89

‖ f ‖h∗= Sup
uεVh

( f , v)
‖ v ‖

.

Then it is easy to see that (6.4) has a unique solution when

βh

γ2
‖ f ‖h∗< 1.

The iterative method mentioned in Remark 1 converges for allγ satis-
fying γ2 > βh ‖ f ‖h∗ Note thatβh ≤ β and‖ f ‖h∗≤‖ f ‖∗; however,
JAMET-RAVIART [23] proved thatβh → β and ‖ f ‖h∗→‖ f ‖∗ as
h→ 0.

THEOREM 6. Assume that

β

γ2
‖ f ‖∗< 1− δ

with 0 < δ < 1; then one has

‖ u− uh ‖≤ 3/δ ‖ u− vh ‖ ∀ vh εVh.

Proof. Let wh = vh − uh. Then

γ ‖ wh ‖2≤ a(vh − u,wh) + a(u− uh,wh),

a(u,wh) = ( f ,wh) − b(u, u,wh),

a(uh,wh) = ( f ,wh) − b(uh, uh,wh),

a(u− uh,wh) = b(uh, uh − u,wh)
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+b(uh − u, u,wh) ≤ β ‖ uh ‖‖ vh − u ‖‖ wh ‖ +β ‖ uh − u ‖ � ‖ u ‖
‖ wh ‖ since b(uh, uh − vh,wh) = 0.

But we know that

‖ u ‖≤ 1/γ ‖ f ‖∗, ‖ uh ‖≤ 1/γ ‖ f ‖∗ .

Therefore we obtain 90

‖ wh ‖2≤ (‖ vh − u ‖ +(1− δ) ‖ vh − u ‖ +(1− δ) ‖ uh − u ‖) . ‖ wh ‖ .

As

‖ u− uh ‖≤‖ u− vh ‖ + ‖ wh ‖

we get

δ ‖ wh ‖2≤ (3− 2δ) ‖ vh − u ‖‖ wh ‖ .

Hence

‖ u− uh ‖≤‖ vh − u ‖ +
3− 2δ
δ
‖ u− vh ‖ .

This gives the desired result. �

An immediate consequence of Theorem 6 is that, when the solution
u of (6.2) is sufficiently regular, we obtain the same error estimate for
Navier-Stokes equations at low Reynolds number as for Stokes.

The method described in Section 6.4 is probably one of the best
methods for Navier-Stokes equations at low Reynolds number.

However, when the Reynolds number is large, a major disadvantage
is that the velocity field is required to be continuous (sinceour method
is conforming) and this is not good to take into account boundary layer
phenomena.

Indeed the velocity profile near the boundary has the behaviour as 91

shown in figure.
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Figure 6.6:

∈ is called the thickness of the boundary layer. In fact,∈= γ1/2, so that
for high Reynolds number, this requires a very high refinement of the
mesh near the boundary and therefore very expensive computer time.
This can be partly avoided with mixed finite element since we shall work
with discontinuous velocity fields.



Chapter 7

Mixed Finite Element
Methods

7.1 The Abstract Continuous Problem

Let V,M,H be Hilbert spaces withV ֒→ H. The continuous problem is:92

Find {u, λ} εV × M such that

a(u, v) + b(v, λ) = ( f , v) ∀ v εV, (7.1)

b(u, µ) = (φ, µ) ∀ µ εM, (7.1b)

wherea(· , · ) : H × H → R andb(· , · ) : V × M → R are continuous
bilinear forms andfεV′, φεM′.

Let a(· , · ) andb(· , · ) satisfy

a(v, v) ≥ α ‖ v ‖2H ∀ v εH ellipticity , (7.2)

Sup
vεV

b(v, µ)
‖ v ‖V

≥ β ‖ µ ‖M Brezzi’s condition (7.3)

|a(u, v)| ≤ |a| ‖ u ‖‖ v ‖, |b(v, µ)| ≤ |b| ‖ v ‖‖ µ ‖. We have

THEOREM 1. If H = V then, under the above assumptions problem
(7.1)has a unique solution.

85
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Proof. Let us consider the regularised problem:

a(uε, v) + b(v, λε) = ( f , v) ∀ v ε V, (7.4)

− b(uε, µ) + ε(λε, µ) = −(φ, µ) ∀ µ εM, (7.4b)

LetΦ = {u, λ},Ψ = {v, µ}εV × M. We define

Aε(Φ,Ψ) = a(u, v) + b(v, λ) − b(u, µ) + ε(λ, µ), L(Ψ) = ( f , v) − (φ, µ)

ThenAε(Φ,Ψ) is V × M coercive andL(Ψ) is a continuous, linear form93

on V × M.
It is easy to see that problem (7.4) is equivalent to:

Find ΦεV × M such that

Aε(Φ,Ψ) = L(Ψ) ∀ ΨεV × M















(7.5)

By Lax-Milgram Lemma, problem (7.5) has a unique solution which
implies that the regularized problem (7.4) has a unique solution.

Taking v = uε in (7.4), µ = λε in (7.4b) and adding and using the
continuity of bilinear forms andH-ellipticity of a(· , · ), we get

α ‖ uε ‖2 +ε ‖ λε ‖2≤ C (‖ uε ‖ + ‖ λε ‖) , (7.6)

whereC is a constant.
Since

b(v, λε) = ( f , v) − a(uε, v) ≤ (‖ f ‖∗ +|a| ‖ uε ‖) ‖ v ‖

we obtain, using Brezzi’s condition,

β ‖ λε ‖≤ Sup
vεV

b(v, λε)
‖ v ‖

≤‖ f ‖∗ +|a| ‖ uε ‖ .

This implies
‖ λε ‖≤ C (1+ ‖ uε ‖) . (7.7)

From (7.6) and (7.7) we obtain

‖ uε ‖≤ C and ‖ λε ‖≤ C,
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whereC is a constant. Hence there exists a subsequence{∈′}, u ∈ V,94

λ ∈ M, such that
u∈′ ⇀ u and λ∈′ ⇀ λ.

Obviously{u, λ} is a solution of (7.1).
If {u1, λ1} and{u2, λ2} are solutions of (7.1), then

a(u1 − u2, v) + b(v, λ1 − λ2) = 0 ∀v ∈ V,

b(u1 − u2, µ) = 0 ∀µ ∈ M.
(7.8)

Takingv = u1 − u2 andµ = λ1 − λ2, we obtain

α ‖ u1 − u2 ‖2≤ a(u1 − u2, u1 − u2) = 0.

Therefore
u1 = u2.

Sinceu1 = u2, using Brezzi’s condition, we obtain from (7.8) that

λ1 = λ2.

Hence the solution of (7.1) is unique. �

REMARK 1. We now give an error estimate for the solution of(7.1)
and the regularized problem(7.4). We have

a(u− uε, v) + b(v, λ − λε) = 0 ∀v ∈ V.

Hence
β ‖ λ − λ∈ ‖≤ |a|. ‖ u− u∈ ‖ . (7.9)

From (7.1b)and (7.4b)we obtain

b(u− u∈, µ)+ ∈ (λ∈, µ) = 0∀µ ∈ M.

Choosing v= u− u∈, µ = λ − λ∈, we get 95

α ‖ u− u∈ ‖2≤ a(u− u∈, u− u∈) =∈ (λ∈, λ − λ∈) ≤∈‖ λ∈ ‖‖ λ − λ∈ ‖

Thus, using(7.7)
‖ u− u∈ ‖≤ C ∈ .
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Thus from(7.9)we get

‖ λ − λ∈ ‖≤ C ∈ .

So we obtain

‖ u− u∈ ‖= 0(∈) and ‖ λ − λ∈ ‖= 0(∈).

REMARK 2. Let B : V → M be such that

(Bv, µ)M = b(v, µ) ∀ µ ∈ M.

One has, from(7.4b)and (7.4),

λ∈ = 1/ ∈ (Bu∈ − φ),

a(u∈, v) + 1/ ∈ (Bv, Bu∈ − φ) = ( f , v) ∀ v ∈ V,

which correspond to penalization of(7.1b).

REMARK 3. We proved the existence and uniqueness of(7.1) only
under the assumption V= H. If V , H then we do not have a general
existence theorem. But existence theorems for particular examples when
V , H are proved.

We now give examples of(7.1).

EXAMPLE 1. The Stokes Problem.We recall that the Stokes problem96

is:
Find {u, p} such that

−γ∆u+ ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on Γ.

Without loss of generality we can takeγ = 1. Using the standard
technique of integration by parts we find that this corresponds to the
problem:

Find
{u, p} ε (H1

◦(Ω))n × (L2(Ω)/R)
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such that

a(u, v) + b(v, p) = ( f , v) ∀ v ε (H1
◦(Ω))n,

b(u, µ) = 0 ∀ µ ε L2(Ω)/R;

where

a(u, v) =
∫

Ω

∇u.∇v dx,

b(v, µ) = −
∫

Ω

µ div v dx.

We take

V = H = (H1
◦(Ω))n,

M = (L2(Ω)/R).

Clearly a(· , · ) is H-elliptic, continuous and bilinear. Let us prove
Brezzi’s condition,

Sup
vεV

b(v, λ)
‖ v ‖V

= Sup
vε(H1

◦ (Ω))n

−
∫

Ω

λdiv v

‖ v ‖V
= Sup

vε(H1
◦ (Ω))n

< ∇λ, v >
‖ v ‖V

=‖ ∇λ ‖(H−1(Ω))n≥
1
C
‖ λ ‖L2(Ω)/R

where〈, 〉 denotes the duality between (H1
◦(Ω))n and (H−1(Ω))n. 97

Thus Stokes problem has a unique solution.

EXAMPLE 2. The Biharmonic Problem. Let

V = H1(Ω), M = H1
◦(Ω), H = L2(Ω).

Consider the problem:
Find

{u, λ} ε H1(Ω) × H1
◦(Ω)
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such that

a(u, v) + b(v, λ) = 0 ∀ v ε H1(Ω), (7.10)

b(u, µ) =
∫

Ω

φµ dx ∀ µ ε H1
◦(Ω). (7.11)

where

a(u, v) =
∫

Ω

uv dx, b(v, µ) =
∫

Ω

∇v.∇µ dx

andφ ε L2(Ω).
Using integration by parts, we obtain from (7.10) that

∫

Ω

uv dx−
∫

Ω

∆λ.v dx+
∫

Γ

∂λ

∂n
v dΓ = 0,

which implies
u− ∆λ = 0 in Ω,

∂λ

∂n
= 0 on Γ.



















(7.12)

From (7.11) we get98

− ∆u = φ. (7.13)

Thus we have, from (7.12) and (7.13), the biharmonic problem



























∆
2λ = 0 in Ω,

∂λ
∂n = 0 on Γ,

λ = 0 on Γ.

(7.14)

In the variational form of the biharmonic equation, we notice that
V = H1(Ω) , L2(Ω) = H. It is easy to see when (7.10), (7.11) has one
solution. If a solutionλ of (7.14) is inH3(Ω)∩H2

◦(Ω) thenu defined by
(7.13) is inH1(Ω). Moreover, one can check that this{u, λ} is a solution
of (7.10), (7.11).
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7.2 The Approximate Problem

Let Vh ⊂ V and Mh ⊂ M be two families of finite-dimensional spaces
approximatingV andM. We shall study the approximate problem:

Find
{uh, λh} ε Vh × Mh

such that

a(uh, vh) + b(vh, λh) = ( f , vh) ∀ vh ε Vh, (7.15)

b(uh, µh) = (φ, µh) ∀ µh ε Mh. (7.15b)

99

Exercise 1.Show that the problem (7.15) leads to solving a linear sys-
tem with matrix

(

A BT

B 0

)

whereA is am×mpositive definite matrix andB is n×mmatrix where
m= dimVh andn = dim Mh.

SinceVh is finite-dimensional, the norms‖· ‖v and ‖· ‖H on Vh are
equivalent, that is there exists a functionS(h) such that

‖ vh ‖v≤ S(h) ‖ vh ‖H ∀ vh ε Vh. (7.16)

We introduce the affine spaces

Zh(φ) = {vh ε Vh : b(vh, µh) = (φ, µh) ∀ µh ε Mh}
Z(φ) = {v ε V : b(v, µ) = (φ, µ) ∀ µ ε M}

Exercise 2.Let φ = 0. Show that (7.1) is equivalent to the problem:
Find

u ε Z = Z(0) such that

a(u, v) = ( f , v) ∀ v ε Z















(7.17)

In the same way show that (7.15) is equivalent to:
Find















uh ε Zh = Zh(0) such that

a(uh, vh) = ( f , vh) ∀ vh ε Zh
(7.18)
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100

The present framework allows us to deal withZh 1 Z and hence we
can consider non-conforming approximations of (7.17).

We now give an error bound inH-norm.

THEOREM 2. Assuming that the continuous problem has at least one
solution{u, λ} one has the error bound

‖ u− uh ‖H≤
(

1+
|a|
α

)

inf
vhεZh(φ)

‖ u− vh ‖H +
|b|
α

S(h) inf
µhεMh

‖ λ − µh ‖M
(7.19)

Proof. Let wh = vh − uh and we have

a(wh,wh) = a(vh − u,wh) + a(u− uh,wh)

From (7.1) and (7.15), we obtain

a(u− uh,wh) = b(wh, λh − λ) ∀ wh ε Vh.

We notice that forvhεZh(φ),

b(vh − uh, µh) = 0 ∀ µh ε Mh

and hence

a(u− uh, vh − uh) = b(vh − uh, µh − λ) ∀ vh ε Zh(φ), µh ε Mh.

Using theH-coerciveness ofa(· , · ) and the continuity ofa(· , · ) and
b(· , · ) we obtain

α ‖ vh − uh ‖2H≤ |a| ‖ vh − uh ‖H‖ vh − u ‖H +|b| ‖ λ − µh ‖M‖ vh − uh ‖V
≤ |a| ‖ vh − uh ‖H‖ vh − u ‖H +|b| ‖ λ − µh ‖M S(h). ‖ vh − uh ‖H

Hence101

‖ vh − uh ‖H≤
|a|
α
‖ vh − u ‖H +

|b|
α

S(h) ‖ λ − µh ‖M .

We get the desired result by noticing that

‖ u− uh ‖H≤‖ u− vh ‖H + ‖ vh − uh ‖H

�
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REMARK 4. If Zh(0) ⊂ Z(0) then the error estimate(7.19)reduces to

‖ u− uh ‖H≤
(

1+
|a|
α

)

inf
vhεZh(φ)

‖ u− vh ‖H , (7.20)

using the fact b(vh − uh, λh − λ) = 0 as vh − uh ε Zh(0) ⊂ Z(0).
Whenφ = 0, the error estimate(7.20) is obvious, inview of exercise

2. Then(7.20)is the error bound obtained in the conforming case.

7.3 Application to the Stokes Problem

In what followsTh will denote a regular family of triangulations of the
polygonal domainΩ, ϑh will denote the set of vertices ofTh,mh the set
of mid side points andEh the set of edges.

We consider the Stokes problem (example 1) whereu is the velocity 102

andλ is the pressure.
We shall choose forVh a conformingP2 space and forMh a piece-

wise constant space, namely

Vh = {vh ε (C◦(Ω))n : vh|K ε(P2(K))n,K ε Th, vh = 0 on ∂Ω}

and
Mh = {µh ε L2(Ω) : µh|K ε P0(K),K ε Th}.

We notice that
dimVh = n (# internal vertices+ # internal edges) and chooseΣh

for the set of degrees of freedom in each component where

Σh = {δN, N εϑh; Mγ, γ ε Eh},

Mγ(p) = 1
|γ|

∫

γ

p dsdenoting theaverageon the edge.

With this choice ofΣh, the interpolation operator

πh : (H2(Ω))n→ Vh

defined by

δN(πhu) = δN(u), N εϑh;
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Mγ(πhu) = Mγ(u), γ ε Eh,

will have some nice properties. Note thatπh is defined only on a subset
of V sinceu(N) is not defined for allu in (H1

◦(Ω))n; πh is defined on
V ∩ (H2(Ω))n since the functions in (H2(Ω))n are continuous.103

Exercise 3.Let K be a triangle.
Let PK = P2(K) and

ΣK = {δai , Mγi , 1 ≤ i ≤ 3},

whereai are the vertices ofK andγi are edges ofK. Mγi is defined by

Mγi (p) =
1
|γi |

∫

γi

p d s.

Show thatΣK is PK unisolvent.
We have

LEMMA 3. One has
∫

K

div (πhv) dx=
∫

K

div v dx ∀ v ε (H2(Ω))n

Proof. Indeed, by Green’s formula,
∫

K

div (πhv) dx=
∫

∂K

(πhv.n) ds

=

∫

∂K

v.n ds

sincen is constant on each side ofK.
Applying again Green’s formula we get the desired result. �

Error Estimates for ‖ u − uh ‖1 If uεH2(Ω) (which is true whenΩ is104

convex) then, sinceuεZ(0) (i.e. divu = 0) andMh contains functions
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which are piecewise constant, we have, by Lemma 3,πhuεZh(0). Hence
we obtain

inf
vhεZh(0)

‖ u− vh ‖1≤‖ u− πhu ‖1≤ ch ‖ u ‖2 .

If the solutionuεH3(Ω) (which is unlikely sinceΩ is a polygon) the
error bound becomes ch2 ‖ u ‖3. Indeed, the interpolation operatorπh

leaves invariant the polynomial spaceP2(K) on each elementK and the
above error bound follows from Chapter 5.

However, we have

inf
uhεMh

‖ λ − µh ‖0≤ ch ‖ λ ‖1,

provided that the pressureλεH1(Ω).
Finally, Theorem 2 gives

‖ u− uh ‖1≤ ch(‖ u ‖2 + ‖ λ ‖1),

which is only 0(h) due to the low degree of approximation for the mul-
tiplier.

Other Choices for Vh and Mh.

Let

Q(K) = P2(K) + {λ1 λ2 λ3},

whereλ1λ2λ3 is called thebubblefunction. Note that the dimension of105

Q(K) is 7.
The choice

Vh =
{

vh ε (C◦(Ω))2, vh|K ε (Q(K))2,K ε Th, vh = 0 on ∂Ω
}

Mh = Π
K
P1(K)

leads to the error estimates

‖ u− uh ‖1≤ ch2, ‖ u− uh ‖0≤ ch3 .
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(See CROUZEIX - RAVIART [14].
The choice

Vh =
{

vh ε (C◦(Ω))2 : vh|K ε (P2(K),K ε Th, vh = 0 on ∂Ω
}

Mh =
{

µh ε C◦(Ω) : µh|K ε P1(K), K ε Th

}

,

in which Mh contains continuous piecewise linear functions, leads to the
same error estimates. (See BERCOVIER-PIRONNEAU [3]).

This last method, due to TAYLOR-HOOD [42], is widely used by
engineers.

7.4 Dual Error Estimates for u− uh

Let

V2 ֒→ V ֒→ V0

M1 ֒→ M.

We denote by‖· ‖i the norms inVi (i = 0, 2) and‖· ‖1 the norm inM1. We106

assume thatV0 ≡ V′0. (In practical applicationsV0 will be a L2 space)
and thatH = V (i.e. a(· , · ) is V-coercive).

Let gεV0 and{w, ψ}εV × M satisfy

a(v,w) + b(v, ψ) = (g, v) ∀ v ε V, (7.21)

b(w, µ) = 0 ∀ µ ε M. (7.21b)

We assume (regularity result) that

‖ w ‖2 + ‖ ψ ‖1≤ c ‖ g ‖0 (7.22)

and

inf
vhεZh(φ)

‖ w− vh ‖V≤ e(h) ‖ w ‖2, (7.23)

inf
µhεMh

‖ µ − µh ‖M≤ e(h) ‖ ψ ‖1 . (7.24)

A V0-error estimate is given by
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THEOREM 4. Under the above assumptions, we have

‖ u− uh ‖0≤ ce(h)

(

‖ u− vh ‖V + inf
µhεMh

‖ λ − µh ‖M
)

.

Proof. We know that

‖ u− uh ‖0= Sup
gεV0

(g, u− uh)
‖ g ‖0

(7.25)

From (7.21) we have

(g, u− uh) = a(u− uh,w) + b(u− uh, ψ) (7.26)

Moreover, we have 107

a(u− uh, vh) + b(vh, λ − λh) = 0 ∀ vh ε Vh,

a(u− uh, vh) + b(vh, λ − µh) = 0 ∀ vh ε Zh(φ), ∀ µh ε Mh, (7.27)

and
b(u− uh, νh) = 0 ∀ νh ε Mh. (7.28)

From (7.26), (7.21b), (7.27) and (7.28) we obtain

(g, u− uh) = a(u− uh,w− vh) + b(w− vh, λ − µh) + b(u− uh, ψ − νh)

∀ vh ε Zh(φ),

∀ µh, νh ε Mh.

Using the continuity ofa(· , · ) andb(· , · ) we get

(g, u− uh) ≤ c (‖ u− uh ‖V‖ w− vh ‖V + ‖ w− vh ‖V‖ λ − µh ‖M +
+ ‖ u− uh ‖V‖ ψ − νh ‖M) ∀ vh ε Zh(φ), ∀ µh, νh ε Mh.

Taking the infimum overvhεZh(φ) andµh, νhεMh and using (7.23),
(7.24), we obtain

(g, u− uh) ≤ c[‖ w ‖2
(

‖ u− uh ‖V + inf
µhεMh

‖ λ − µh ‖M
)

+

+ ‖ u− uh ‖V‖ ψ ‖1] e(h)

Finally, using the regularity result (7.22) and (7.25) we get the de-
sired result. �
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Application to Stokes Problem.

We choose

V0 = (L2(Ω))n,V2 = (H2(Ω))n, M1 = H1(Ω).

From the error estimates of section 7.3, we have108

inf
vhεZh(0)

‖ w− vh ‖1≤ ch ‖ w ‖2

and
inf
µhεMh

‖ ψ − µh ‖0≤ ch ‖ ψ ‖1 .

The regularity result (7.22) is nothing but the regularity result for
the Stokes problem.

Hence applying Theorem 4, we obtainL2-error estimate.

‖ u− uh ‖0≤ ch2 (‖ u ‖2 + ‖ λ ‖1) .

7.5 Nonconforming Finite Element Method for
Dirichlet Problem

We recall that the variational formulation of the Dirichletproblem

−∆u = f in Ω

u = 0 on ∂Ω















(7.29)

is:
Find uεH1

◦(Ω) such that

a(u, v) = ( f , v) ∀ v ε H1
◦(Ω), (7.30)

where

a(u, v) =
∫

Ω

∇u.∇v =
∑

KεTh

∫

K

∇u.∇v,
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( f , v) =
∫

Ω

f v,

andTh is a triangulation ofΩ.109

We like to consider the nonconforming finite element approximation
of (7.30), namely

FinduhεZh such that

a(uh, vh) = ( f , vh) ∀ vh ε Zh, (7.31)

where
Zh = {vh : vh|KεP1(K),KεTh, vh is continuous

across the midside points of internal edges,
vh = 0 on∂Ω}.

Notice thatZh 1 H1
◦(Ω).

We will construct a mixed finite element which is equivalent to
(7.31). Multiplying the first equation in (7.29) byvεΠ

K
H1(K) and in-

tegrating we obtain, using integration by parts in each triangleK,

∑

K

∫

K

∇u.∇v−
∑

K

∫

∂K

(∇u.n) v =
∫

Ω

f v.

This suggests

a(u, v) =
∑

K

∫

K

∇u.∇v, (7.32)

b(v, µ) = −
∑

K

∫

K

(µ.n) v, (7.33)

whereµ belongs to somesuitable space.
We have to construct finite-dimensional subspacesVh andMh such

that the problem

Find {uh, λh} ε Vh × Mh with

a(uh, vh) + b(vh, λh) = ( f , vh) ∀ vh ε Vh

b(uh, µh) = 0 ∀ µh ε Mh



























(7.34)
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is equivalent to (7.31). Herea(· , · ), b(· , · ) are as in (7.32) and (7.33). 110

We takeVh = Π
K
P1(K).

It is easy to see that if (µh.n) is constant and continuous along inter-
nal edges, thenb(vh, µh) = 0 ∀vhεZh.

Define
Q(K) ⊂ (P1(K))2

by
Q(K) = {q = (q1, q2) : q1 = a+ bx, q2 = c+ by}.

If αx+ βy = ℓ is the equation of an edgeγ thenq.n is constant onγ for
qεQ(K), wheren is normal toγ. The set

∑

K = {(q.n)(ai j ) : ai j are mid points of the sides ofK} is Q(K)-
unisolvent. Hence

Mh = {q ε (L2(Ω))2 : q|K ε Q(K),K ε Th, div q ε L2(Ω)}
= {q ε (L2)2 : q|K ε Q(K), K ε Th, q.n

is continuous across the edges ofTh}

serves our purpose.

Exercise 4.With the above constructedVh andMh show that (7.31) and111

(7.34) are equivalent. Further show thatZh(0) = Zh.

(Recall Zh(0) = {vh ε Vh : b(vh, µh) = 0 ∀ µh ε Mh)

The continuous problem corresponding to (7.34) can be obtained as
follows:

It is natural to take
V = Π

K
H1(K).

Whenµ is smooth we can write

b(v, µ) = −
∑

K

∫

∂K

(µ.n)v

= −
∑

K





















∫

K

div µ.v+
∫

K

µ.∇v
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Hence we take

M =
{

µ ε (L2(Ω))2 : div µ ε L2(Ω)
}

.

Thus the continuous problem is:

Find {u, λ} ε V × M such that

a(u, v) + b(v, λ) = ( f , v) ∀ v ε V,

b(u, µ) = 0 ∀ µ ε M,



























(7.35)

where

a(u, v) =
∑

K

∫

K

∇u.∇v.

We have the characterisation:

LEMMA 5.

Z = {v ε V : b(v, µ) = 0 ∀ µ ε M} = H1
◦(Ω).

112

Proof. Let vεD(Ω). Then

b(v, µ) = −
∑

K





















∫

K

div µ.v+
∫

K

µ.∇v





















= −





















∫

Ω

div µ.v+
∫

Ω

µ.∇v





















= −〈div µ, v〉 − 〈µ, ∇v〉
= −〈div µ, v〉 + 〈div µ, v〉
= 0.

Sinceb(· , · ) is continuous onV × M andD(Ω) is dense inH1
◦(Ω) in the

‖· ‖1 norm topology, we obtain

H1
◦(Ω) ⊂ Z
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We have to prove the other inclusion. LetvεZ. Define

vi by vi |K =
∂

∂xi
(v|K), ∀ K ε Th.

Then vi ε L2(Ω).

Let φεD(Ω). Then

〈v1, φ〉 =
∑

K

∫

K

v1φ =
∑

K

∫

K

∂v
∂x1

φ

=

∑

K





















−
∫

K

v
∂φ

∂x1
+

∫

∂K

v φ n1





















= −
〈

v,
∂φ

∂x1

〉

+

∑

K

∫

∂K

v φ n1.

SincevεZ, b(v, µ) = 0 ∀µεM. Takingµ = (φ, 0), we obtain113

0 = b(v, µ) = −





















∑

K

∫

K

div µ.v+
∫

K

∇v.µ





















= −
∑

K

∫

∂K

(µ.n)v since µ is smooth

= −
∑

K

∫

∂K

φv n1.

Therefore,

〈v1, φ〉 = −
〈

v,
∂φ

∂x1

〉

.

Hencev1 =
∂v
∂x1

in D ′. Similarly we havev2 =
∂v
∂x2

in D ′. Therefore

vεH1(Ω). Further

0 = b(v, µ) = −
∑

K

∫

∂K

(µ.n)v ∀ µ ε (H1(Ω))2 ⊂ M
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This impliesv = 0 on∂Ω. ThusvεH1
◦(Ω). HenceZ ⊂ H1

◦(Ω).
If {u, λ} is a solution of (7.35) then Lemma 5 and the second equa-

tion in (7.35) imply thatuεH1
◦(Ω). The first equation in (7.35) gives

that−∆u = f in D ′. Thus if {u, λ} is a solution of (7.35), thenu is the
solution of the Standard Dirichlet problem:















−∆u = f in Ω

u = 0 on ∂Ω,
(7.36)

andλ is the Lagrange multiplier for the continuity constraint for u from 114

one element to the other; (7.35) is called theprimal hybrid formulation
of the Dirichlet problem.

If u is the solution of the Dirichlet problem (7.36) then{u,−∇u} is a
solution of (7.35). Note that whenλ is smooth thenb(· , · ) contains only
the trace ofλ.n on the edgesγ, so thatλ is certainly not unique and the
Brezzi condition does not hold. �

Error Estimates for u− uh.

We notice that the interpolation operator

πh : H2(Ω)→ Zh

such thatπhu = u at the mid side points ofTh satisfies

‖ u− πhu ‖1,K≤ ch ‖ u ‖2,K .

Therefore
‖ u− πhu ‖V≤ ch ‖ u ‖2 . (7.37)

On the other hand, we define

π′h : (H1(Ω))2→ Mh

onγ by

(π′hµ).n =
1
|γ|

∫

γ

λ.n

We now state a theorem whose proof can be found in RAVIART-
THOMAS [38].
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THEOREM 6. There exists a constant c such that 115

‖ µ − π′hµ ‖M≤ ch(‖ µ ‖1 + ‖ div µ ‖1) , (7.38)

‖ π′hµ ‖M≤ c ‖ µ ‖1 .
Using Theorem 2,(7.37)and (7.38)we obtain

‖ u− uh ‖V≤ ch ‖ u ‖2 . (7.39)

The dual error estimate of section 7.4 together with(7.39)gives

‖ u− uh ‖0≤ ch2 ‖ u ‖2 (7.40)

REMARK 5. In practice, one solves the approximate problem;

Find uh ε Zh such that

a(uh, vh) = ( f , vh) ∀ vh ε Zh,

since Zh is a simple finite element space. The fact that Zh 1 H1
◦(Ω)

has no importance for practical purposes. The same Zh can be used
to approximate the Stokes problem. One chooses Vh = (Zh)2 (for the
velocities) and piecewise constant pressure; i.e. Mh as in section 7.3.
For the error analysis we refer the reader to CROUZEIX-RAVIART [14].

REMARK 6. Other primal hybrid finite elements can be obtained with
other choices for VhE Mh, some of them giving other well known non-
conforming finite elements. (See RAVIART-THOMAS [37]).

7.6 Approximate Brezzi Condition

We assume that the approximate Brezzi condition116

Sup
vhεVh

b(vh, µh)
‖ vh ‖V

≥ γ ‖ µh ‖M ∀ µh ε Mh, (7.41)

whereγ is independent ofh, holds. The approximate Brezzi condition
guarantees a unique solution for the approximate problem. Notice that
the continuous Brezzi condition need not imply the approximate Brezzi
condition.

We have the following result:
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THEOREM 7. Under the assumption(7.41) there exists a constant c1

such that
Inf

vhεVh(φ)
‖ u− vh ‖V≤ c1 Inf

whεVh

‖ u− wh ‖V (7.42)

Proof. We will show that for eachwhεVh there exists avhεZh(φ) such
that

‖ u− vh ‖≤ c ‖ u− wh ‖,

wherec is a constant. This will imply (7.42).
Let whεVh. Let {yh, νh}εVh × Mh be the solution of

(yh, vh)V + b(vh, νh) = 0 ∀ vh ε Vh,

b(yh, µh) = b(u− wh, µh) ∀ µh ε Mh.

Using the approximate Brezzi condition and the continuity of b(, ), 117

it is easy to prove that

‖ νh ‖M ≤ 1/γ ‖ yh ‖V,
‖ yh ‖V ≤ |b|/γ ‖ u− wh ‖V .

Let vh = yh + wh. Then

b(vh, µh) = b(u− wh, µh) + b(wh, µh)

= b(u, µh).

HencevhεZh(φ). Further

‖ u− vh ‖V ≤‖ u− wh ‖V + ‖ yh ‖V
≤ (1+ |b|/γ) ‖ u− wh ‖V .

Hence the theorem. �

We now give an error estimate for the multiplier.

THEOREM 8. If (7.41)holds then one has the error estimate

‖ λ − λh ‖M≤ c

(

‖ u− uh ‖H + Inf
µhεMh

‖ λ − µh ‖M
)

(7.43)
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Proof. We have

b(vh, λh − µh) = b(vh, λh − λ) + b(vh, λ − µh)

= a(u− uh, vh) + b(vh, λ − µh)

From (7.41) we obtain

γ ‖ λh − µh ‖M ≤ Sup
vhεVh

b(vh, λh − µh)
‖ vh ‖V

≤ |a|c ‖ u− uh ‖H +|b| ‖ λ − µh ‖M . (7.44)

Further118

‖ λ − λh ‖M≤‖ λ − µh ‖M + ‖ λh − µh ‖M (7.45)

From (7.44) and (7.45) we obtain (7.43). �

We now give a practical way of verifying the approximate Brezzi
condition (7.41).

LEMMA 9. If b(· , · ) satisfies continuous Brezzi condition and if

Λh : V → Vh

is such that

b(v− Λhv, µh) = 0 ∀ µh ε Mh (7.46)

(in factΛh maps Z(φ) into Zh(φ)) and

‖ Λhv ‖V≤ c ‖ v ‖V, (7.47)

then(7.41)holds withγ = β/c.

Exercise 5.Prove Lemma 9.
For further details see FORTIN [18].
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7.7 Dual Error Estimate for the Multiplier

This section is an analogue to Section 7.4. We assume thatV2 ֒→ V and119

M3 ֒→ M ֒→ M0. Further, we assume thatM′0 = M0 and that forgεM0,
the problem:

Find {w, ψ} εV × M such that

a(v,w) + b(v, ψ) = 0 ∀ v εV (7.48)

b(w, µ) = (g, µ) ∀ µ ε M (7.48b)

has one solution such that

‖ w ‖2 + ‖ ψ ‖3≤ c ‖ g ‖0 (7.49)

We also assume that

Inf
vhεVh

‖ w− vh ‖V ≤ e(h) ‖ w ‖2, (7.50)

Inf
µhεMh

‖ ψ − µh ‖M ≤ ε(h) ‖ ψ ‖3 . (7.51)

Here‖ ‖0, ‖ ‖2, ‖ ‖3 denote the norms inM0,V2,M3 respectively. The
dual error estimate is given by

THEOREM 10. One has

‖ λ − λh ‖0≤ ce(h) (‖ λ − λh ‖M + ‖ u− uh ‖H)+

+ c ε(h)

(

S(h) ‖ u− uh ‖H + Inf
yhεVh

(‖ u− yh ‖V +S(h) ‖ u− yh ‖H)

)

(7.52)

Proof. We have

‖ λ − λh ‖0= Sup
gεM0

(g, λ − λh)
‖ g ‖0

and 120

(g, λ − λh) = b(w, λ − λh)

= b(w− vh, λ − λh) − a(u− uh, vh).
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where the above is obtained from (7.1) and (7.15). Usingb(u−uh, νh) =
0 ∀ νh ε Mh and (7.48), we obtain

(g, λ − λh) = b(w− vh, λ − λh) + a(u− uh,w− vh) + b(u− uh, ψ − νh)

This implies,

(g, λ−λh) ≤ c(e(h)(‖ λ−λh ‖M + ‖ u−uh ‖H)+ ‖ u−uh ‖V ε(h)) ‖ g ‖0 .

Here (7.49) - (7.51) are used.
To estimate‖ u− uh ‖V, we remark that

‖ u− uh ‖V ≤‖ u− yh ‖V + ‖ yh − uh ‖V,
‖ yh − uh ‖V ≤ S(h) ‖ yh − uh ‖H

≤ S(h)(‖ yh − u ‖H + ‖ u− uh ‖H).

Finally,

‖ λ − λh ‖0≤ c[e(h)(‖ λ − λh ‖M + ‖ u− uh ‖H)+

ε(h)(S(h) ‖ u− uh ‖H + Inf
yhεVh

(‖ u− yh ‖V +S(h) ‖ u− yh ‖H))]

�

7.8 Application to Biharmonic Problem

We shall now study a finite element approximation to the biharmonic121

problem. (Example 2, Section 7.1). We recall that in the variational
formulation of the biharmonic problem

∆
2λ = −φ in Ω,

λ =
∂λ

∂n
= 0 on ∂Ω,

we have

V = H1(Ω), M = H1
◦(Ω),H = L2(Ω),
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a(u, v) =
∫

Ω

uv dx, b(v, µ) = −
∫

Ω

∇v.∇µ

and f = 0.
In the terminology of hydrodynamicsλ = ψ is called thestream

functionandw = −∆ψ = u is called theVortexfunction.
For bothVh and Mh we shall use standard Lagrange finite element

space of degreek:

Vh =
{

vh ε C◦(Ω) : vh|K ε Pk(K), ∀ K ε Th

}

and
Mh = {µh ε Vh : µh = 0 on ∂Ω} .

We immediately notice that the approximate Brezzi condition (7.41)
holds. Indeed,

Sup
vhεVh

∫

Ω

∇vh.∇µh

‖ vh ‖1
≥

∫

Ω

|∇µh|2

‖ µh ‖1
≥ γ ‖ µh ‖1 .

sinceMh ⊂ Vh. Hereγ is the constant occurring in Poincare’s inequality.122

Moreover, assuming that the triangulation satisfies the uniformity
condition

h ≤ cρK , ∀ K ε Th,

whereρK denotes the diameter of the largest ball included inK andc is
a constant independent ofh, one always has

‖ v ‖1≤
c

minρK
KεTh

‖ vh ‖0 .

Therefore one has the inverse inequality‖ vh ‖1≤ c
h ‖ vh ‖0 which gives

an evaluation ofS(h).
We can state a convergence result fork > 2.

THEOREM 11. If λεHm+1(Ω) and uεHm(Ω) then one has

‖ u− uh ‖0 + ‖ λ − λh ‖1≤ chm−1 (‖ u ‖m + ‖ λ ‖m+1)

for m= 2, . . . , k and

‖ λ − λh ‖0≤ chm (‖ u ‖m + ‖ λ ‖m+1)
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The above result is a consequence of Theorems 2, 7, 8, 10. We note
that the result is not optimal since with polynomials of degree k, we
should get an error bound inhk for ‖ λ − λh ‖1 provided thatλεHk+1.

These results have been recently improved by SCHOLTZ [41] who123

is able to give an error estimate in the casek = 1.
Note that the matrixA of the bilinear form onVh has to be computed

exactly in this case. (The use of a 1-point formula for the computation
of

∫

K

uv dxleads to a diagonal matrixA but there is no convergence).

REMARK 7. Due to the inclusion Mh ⊂ Vh, the matrix B of the bilinear
form b(· , · ) on Vh × Mh has the particular form B= (B1, B2) where B1

is the matrix of b(· , · ) on Mh × Mh and therefore B1 is invertible. The
linear system corresponding to the approximate problem canbe written
as





















A1 A2 BT
1

AT
2 A3 BT

2
B1 B2 0









































u1

u2

λ





















=





















0
0
φ





















One can eliminate u1 from the last equation(u1 = −B−1
1 B2 u2) andλ

from the first one. This gives a linear system of equations in u2 which
can be solved by any of the standard method.

The advantage is that the size of the linear system is p× p where p
is the number of boundary points which is relatively small.

7.9 General Numerical Methods for the Solution of
the Approximate Problem

As we have noticed in Exercise 1, the approximate problem is equivalent124

to solving
(

A BT

B 0

) (

u
λ

)

=

(

f
φ

)

(7.53)

where the matrix on the left is invertible (provided thatB has a maxi-
mal rank, i.e. the approximate Brezzi condition holds at least for γ de-
pendent onh) and symmetric ifa(· , · ) is symmetric but not positive.
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Alternatively one can use the matrix

(

A BT

−B 0

)

which is positive but not symmetric.

a) Solution of the Linear System(7.53)by Direct Methods. The
Gaussian elimination of (7.53) can be performed without pivot-
ing. However, due to storage considerations, it is often much bet-
ter to permute rows and columns to get a band matrix after a suit-
able ordering of the unknowns. (For finite elements, we orderthe
unknowns following the ordering that we give to the associated
nodes, with no distinction betweenλi ’s andui ’s). In this case a
strategy of partial pivoting may be necessary.

b) Solution of the Approximate Problem by Penalty Methods. 125

First solve

(A+ 1/ ∈ BTB) u∈ = f + 1/ ∈ BT φ,

and then find
λ∈ = 1/ ∈ (Bu∈ − φ).

If Bhas maximal rank the error is only 0(∈) (see proof of Theorem
1), which is certainly small compared to the discretizationerror if
∈= 10−4 or 10−6.

However, the condition number of the matrix

A+ 1/ ∈ BTB

might be quite big and it is wise in such a case to use direct meth-
ods and then to compute explicitly the matrixBTB, which is easy
only if

Mh = π
K
(Pk(K))d

for some positivek andd; in otherwords, no continuity require-
ments has to be asked forλh between two elements. (ThenBTB
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can be computed by assembling some stiffness matrices). Other-
wise the computation ofBTB is too costly. Note that this method
is possible even ifB has not a maximal rank (and the error is then
only 0(

√
∈)).

c) Solution of the Problem by Iterative Methods. The conjugate
gradient method has been successfully extended to the case of
matrices such as (7.53) by PAIGEand SAUNDERS [35].126

Another way of applying the conjugate gradient method is
to notice thatu can be eliminated from (7.53):

u = A−1 f − A−1BTλ.

Then we get
Cλ = b

where
C = BA−1 BT, b = BA−1 f − φ.

As C is symmetric and positive definite (ifa(· , · ) is sym-
metric) then the conjugate gradient method can be applied tothe
matrix C, but one has never to compute the matrix C explicitly.
(This is too costlyunless Ais block diagonal and thereforeVh is
a finite element space with no continuity requirements between 2
elements. LetAK denote the element matrix ofa(· , · ) on K and
BK that of b(· , · ); the matrixC is computed by assembling the
BKA−1

K BT
K ’s. This is the case for hybrid elements).

Indeed what one needs for the conjugate gradient method
is to be able to computey = Cz for any column vectorz and this
is done in the following way:

Compute z1 = BT ;

Solve Az2 = z1 ;

Compute y = Bz2 .

Note that it is not necessary forB to have maximal rank.127
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7.10 Equilibrium Elements for the Dirichlet Prob-
lem

Let us consider the following problem:
Find {u, λ} such that



























u− ∇λ = 0 in Ω

div u = φ in Ω

λ = 0 in ∂Ω

(7.54)

If {u, λ} is a solution of (7.54) thenλ is the solution of the Standard
Dirichlet Problem:















∆λ = φ in Ω

λ = 0 on ∂Ω
(7.55)

Multiplying (7.54) byv ∈ (L2(Ω))2 and using integration by parts
we obtain an equivalent problem:

Find {u, λ} ∈ (L2(Ω))2 × H1
◦(Ω) such that



















a(u, v) + b(v, λ) = 0 ∀ v ∈ (L2(Ω))2,

b(u, µ) =
∫

Ω

φµ ∀ µ ∈ H1
◦(Ω),

where

a(u, v) =
∫

Ω

u.v dx,

b(v, µ) = −
∫

Ω

v.∇µ dx.

If Mh = C◦(Ω) ∩ π
K
Pk(K) then a natural choice forVh is 128

Vh = π
K
(Pk−1(K))2.

Note that the operator∇mapsMh into VH. This implies that the approx-
imate Brezzi condition holds.
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Problem (7.54) can be formulated in another way also.
Find {u, λ} ∈ H(div, Ω) × L2(Ω) such that

∫

Ω

uv+
∫

Ω

λdiv v = 0 ∀ v ∈ H (div, Ω),

∫

Ω

µ div u = (µ, φ) ∀ µ ∈ L2(Ω),

where
H (div,Ω) = {v ∈ (L2(Ω))2 : div v ∈ L2(Ω)}.

We notice that

a(u, v) =
∫

Ω

u.v dx

is coercive on
H = (L2(Ω))2.

To prove thatb(· , · ) satisfies Brezzi condition, we use the fact thatif
µεL2(Ω) then the solutionψ of the Dirichlet problem:

∆ψ = µ in Ω

ψ = 0 on ∂Ω,

satisfies‖ ψ ‖1≤ c ‖ µ ‖0.129

Therefore,

Sup
vε(L2(Ω))2

∫

Ω

µ. div v

‖ v ‖V
≥

∫

Ω

µ div (∇ψ)

‖ ∇ψ ‖V
≥

∫

Ω

µ2 dx

c ‖ µ ‖0
=

1
c
‖ µ ‖0 .

As approximate spaces, we choose

Vh = {v ε V : v|K ε Q(K), v.n is

continuous across the sides ofTh}.

(See Section 7.5 for the definition ofQ(K)).

Mh = π
K
P0(K).



7.10. Equilibrium Elements for the Dirichlet Problem 115

As div : Vh → Mh, we see thatZh(0) ⊂ Z(0). (Hence the nameequi-
librium elements:uh will satisfy equilibrium equations divuh = φ for φ
piecewise constant).

We may then apply the error estimate derived in Section 7.2 and
use the improvement given in Remark 4, sinceZh(0) ⊂ Z(0). We shall
choosevh = π

′
hvwhereπ′h is the interpolation operator defined in Section

7.5.
Indeed, we have

∫

γ

(π′h v).n ds=
∫

γ

v.n ds for each edge γ of Th.

Therefore, 130

∫

Ω

µh div π′h v =
∑

K

∫

∂K

(π′hv).nµh dΓ

=

∑

K

∫

∂K

(v.n) µh dΓ =
∫

Ω

µh div v dx ∀ µh ε Mh.

This shows thatvεZ(φ)⇒ π′h v ε Zh(φ).
Finally we get

‖ u− uh ‖0≤ c ‖ u− π′h u ‖0≤ ch,

where we have used the estimate given in Theorem 6.
To get an error estimate for‖ λ − λh ‖0, we shall make use of the

results in Section 7.6 and construct the operatorπh occurring in Lemma
9.

Let v in V be given andφ satisfy

∆φ = div v in Ω,

φ = 0 on ∂Ω.

Let
Λ : V → (H1(Ω))2
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be defined by

Λv = ∇φ.

We have (regularity result)

‖ Λv ‖1≤ c ‖ div v ‖0,

so that

Λh = π
′
h Λ

satisfies131

‖ Λhv ‖M≤ c ‖ Λv ‖1≤ c ‖ div v ‖0

and

b(µh, π
′
h Λv) = b(µh, Λv) = b(µh, v),

where we used the definitions ofπ′h andΛv.

ThusΛh satisfies the conditions required in Lemma 9. Hence we
have

‖ λ − λh ‖0≤ ch,

by Theorem 8.

For further details about equilibrium elements the reader can refer
the thesis of J.M. THOMAS, 1977.

REMARK 8. If we replace Q(K) by (P1(K))2 we get a finite element
with 6 degrees of freedom instead of 3 (2 values of v.n on each side).
The interpolation operatorπ′h is defined with the help of the degrees of
freedom and has the same properties.
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Figure 7.1:

In fact,π′h is defined by 132

∫

γ

p(π′hv).n ds=
∫

γ

p(v.n) ds ∀ p ε P1(γ)

However, the error estimates now become

‖ u− uh ‖0 ≤ ch2

‖ λ − λh ‖0 ≤ ch

REMARK 9. The present finite element method can be extended to the
elasticity equation where v represents the stress tensorσi j . The difficulty
lies in the required symmetry ofσi j but can be surmounted. See C.
JOHNSON-B. MERCIER [25] and AMARA-THOMAS[2].

REMARK 10. Aposteriori Error Estimate. Let us consider the fol-
lowing optimization problem:

Inf J(v, µ)

v ε Z(φ)

µ ε M

where J(v, µ) = 1/2 ‖ v − ∇µ ‖2. Clearly the optimal value is zero and
corresponds to v= u andµ = λ solution of (7.54). Since vεZ(φ), we
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also have

J(v, µ) = 1/2 ‖ ∇µ ‖2 +(φ, µ) + 1/2 ‖ v ‖2 .

Since J(u, λ) ≤ J(vh, λ) ∀ vh ε Z(φ), we obtain

1/2 ‖ u ‖2≤ 1/2 ‖ vh ‖2 .

Adding133

1/2 ‖ ∇µh ‖2 +(φ, µh)

to both sides, whereµhεM, we get

J(u, µh) ≤ J(vh, µh) ∀ µh ε M, vh ε Z(φ).

That is,
‖ ∇(λ − µh) ‖0≤‖ vh − ∇µh ‖0 ∀ vh ε Z(φ).

Suppose thatµh is a solution of Dirichlet problem with a conforming
finite element method, then an upper bound for the error in theenergy
norm is given by

‖ vh − ∇µh ‖0

where
vh ε Zh(φ)

is arbitrary. One can choose vh = uh, a solution of the present equilib-
rium finite element approximation to Dirichlet problem.

7.11 Equilibrium Elements for the Plate Problem

We recall that the equations of the plate problem are:
Findσi j ,w such that

σi j = λ∆wδi j + 2µ
∂2w

∂xi ∂x j
in Ω ⊂ R2 (7.57)

∂2σi j

∂xi ∂x j
= f in Ω (7.57b)
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w = 0 on∂Ω (7.57c)

and134














∂w
∂n = 0 on ∂Ω clamped case

σi j ni n j = 0 on ∂Ω simply supported plate problem
(7.57d)

The summation convention is used in the above equations.

Exercise 6.Show that (7.57) is equivalent to a biharmonic problem forw
alone, and write the variational formulation of that biharmonic problem.
Notice that in the clamped case several bilinear forms may bechosen
unlike in the simply supported case.

It is easy to check that (7.57) is equivalent to

ασi j + β(σkk) δi j =
∂2w

∂xi ∂x j
, (7.58)

where

α = 1/2µ and β =
−λ

2µ(2λ + 2µ)
.

Let

a(σ, τ) =
∫

Ω

(ασi jτi j + β(σkk)(τℓℓ)) dx

and

Dw =

(

∂2w
∂xi ∂x j

)

.

Then problem (7.57) is equivalent to: 135

Find σε (L2(Ω))4
s, w ε H2

◦(Ω) such that

a(σ, τ) −
∫

Ω

τ Dw dx= 0 ∀ τε (L2(Ω))4
s,

∫

Ω

σ Dv =
∫

Ω

f v dx. ∀














v ε H2
◦(Ω).

v ε H2(Ω) ∩ H1
◦(Ω).
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(L2(Ω))4
s denotes the set of symmetric 2× 2 tensors which are inL2(Ω).

However, as noticed in Section 7.10, to approximate this problem in
the usual way does not represent any progress on the usual conforming
approximations since one has to approximateH2

◦(Ω).
We have, by Green’s formula,

∫

K

τ Dv =
∫

K

τi j
∂2v

∂xi∂x j
dx

=

∫

∂K

τi j n j
∂v
∂xi
−

∫

K

∂τi j

∂x j

∂v
∂xi

dx

Since
∂v
∂xi
=
∂v
∂n

ni +
∂v
∂s

si

where (si) are the components of the unit tangent vector, we obtain

∫

Ω

τ Dv =
∑

K

∫

∂K

Mn(τ)
∂v
∂n
+

∑

K





















∫

∂K

Mns(τ)
∂v
∂s
−

∫

K

∂τi j

∂x j

∂v
∂xi

dx





















Here
Mn(τ) = τi j ni n j , Mns(τ) = τi j n j si .

We define136

b(τ, v) =
∑

K





















∫

K

∂τi j

∂x j

∂v
∂xi

dx−
∫

∂K

Mns(τ)
∂v
∂s

ds





















,

V = {τ : τ|K ε (H1(K))4
s, K ε Th,Mn(τ)

is continuous across inter element boundaries}.
Then

∫

Ω

τ Dv = b(v, τ) ∀ v ε H2
◦(Ω), τ ε V.

In fact,b(· , · ) is continuous overV×M whereM =W1,p
◦ (Ω)(p > 2)

so that (7.57) (clamped case) is equivalent to:
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Find {σ,w} ε V × M such that

a(σ, τ) + b(τ,w) = 0 ∀ τ ε V,

b(σ, v) = −( f , v) ∀ v ε M.
(7.59)

We take
H = (L2(Ω))4

s.

The Brezzi condition holds only onH1
◦(Ω), since ifv is smooth and

τi j = vδi j , then

Mns(τ) = v (δi j n j si) = 0,

Mn(τ) = v,

and 137

b(v, τ) =
∫

Ω

|∇v|2 dx≥ α ‖ v ‖21≥ c ‖ v ‖1‖ τ ‖ .

For the proof of existence of solutions of (7.59) and modifiederror
estimates see BREZZI-RAVIART [7].

We choose

Vh = {τ : τ ε (P◦(K))4
s, K ε Th, Mn(τ) is continuous}.

Since
v ε W1,p

◦ (Ω) ⊂ C◦(Ω)

we find that after integration by parts on each of∂K, b(τ, v) involves
only the values ofv at the vertices ofTh:

b(τ, v) =
∑

K

∫

∂K

Mns(τ)
∂v
∂s
=

∑

N

R(τ,N) v(N) ∀ τ ε Vh. (7.59b)

Notice that only the value ofv at the vertices has to be taken; there-
fore, we choose

Mh =
{

vh ε C◦(Ω) : vh|K ε P1(K),K ε Th, vh = 0 on ∂Ω
}
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so that, ifτεVh, then

b(τ, vh) = 0 ∀ vh ε Mh⇒ b(τ, v) = 0 ∀ v ε M.

Therefore,Zh(0) ⊂ Z(0). Hence

‖ σ − σh ‖0≤ Inf
τhεZh(− f )

‖ σ − τh ‖ .

Here{σh,wh}εVh × Mh is the solution of the approximate problem.















a(σh, τh) + Σ R(τh,N) wh(N) = 0 ∀ τh ε Vh,

Σ R(σh,N) vh(N) = −( f , vh) ∀ vh ε Mh
(7.60)

138

Interpolation Operator.

The interpolation operator

πh : (H1(Ω))4→ Vh

is defined by
∫

γ

Mn(πh, σ) ds=
∫

γ

Mn(σ) ds,

for each edgeγ of the triangulation.
We have the estimate

THEOREM 12. There exists a constant c independent of h such that

‖ πhv ‖V≤ c ‖ v ‖V (7.61)

and

‖ πhv− v ‖0,Ω≤ ch ‖ v ‖1.Ω ∀ v ε (H1(Ω))4. (7.62)

The proof of this is found in C.JOHNSON [24].
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Properties ofTh.

We have

b(πhσ, vh) =
∑

K

∫

∂K

Mn(πhσ)
∂vh

∂n
−

∫

K

(πhσ) D vh

=

∑

K

∫

∂K

Mn(σ)
∂vh

∂n
, ∀ vh ε Mh

= b(σ, vh).

Hence 139

b(πhσ − σ, vh) = 0 ∀ vh ε Mh (7.63)

Thereforeπh mapsZ(φ) into Zh(φ).
Equations (7.61) and (7.63) imply that the discrete Brezzi condition

is satisfied.
We have the error estimate

‖ w− wh ‖1≤ c

(

‖ σ − σh ‖0 + Inf
vhεMh

‖ w− vh ‖1,p
)

(See BREZZI-RAVIART [7]).
The above method is called Hermann-Johnson method.

Morley Nonconforming Method.

Let
Wh = {vh : vh|K ε P2(K), K ε Th,

vh continuous at the vertices,

∂vh

∂n
continuous at the mid side point,

vh = 0 at the boundary vertices,

∂vh

∂n
= 0 at the mid point of boundary edges}
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The spaceWh makes use of the Morley finite element which has 6
degrees of freedom, namely, values at the three vertices andthe values
of the normal derivatives at the three mid side points.

Figure 7.2:
140

We consider, for simplicity, the caseλ = 0 andµ = 1/2 so that

a(σ, τ) =
∫

Ω

τi j σi j dx.

Let
L(v) =

∑

N

fN v(N);

that isL is a linear combination of Dirac masses (concentrated loads).
Then

THEOREM 13. The problem:
Find uhεWh such that

∑

K

∫

K

D uh D vh dx= L(vh) ∀ vh ε Wh, (7.64)

is equivalent to(7.60)when

( f , v) =
∑

N

fN v(N)



7.11. Equilibrium Elements for the Plate Problem 125

in the sense that

uh(N) =Wh(N) at the vertices N,

and
σh|K = Duh|K , K ε Th.

Proof. Let uh be a solution of (7.64). 141

Define

σ∗h|K = Duh|K and w∗hεMh by w∗h(N) = uh(N).

We will show that{σ∗h(N),w∗h} is the solution of (7.60). Sinceuh is a
solution (7.64), we have

∑

K

∫

K

σ∗h Dvh dx= L(vh) ∀ vh ε Wh (7.65)

Using Green’s formula, we obtain

∑

K





















∫

∂K

Mn(σ∗h)
∂vh

∂n
+

∫

∂K

Mns(σ
∗
h)
∂vh

∂s





















= L(vh) ∀ vh ε Wh (7.66)

If bi is one mid side point, then substitutingvh satisfying:

vh = 0 at the vertices

∂vh

∂n
=















1 at bi

0 at the other nodesb j , j , i

in the above equation we obtain thatMn(σ∗h) is continuous atbi (by using
7.59b). This proves that∗

h
εVh.

Sinceσ∗hεVh, equation (7.66) gives

∑

K

∫

∂K

Mns(σ
∗
h)
∂vh

∂s
=

∑

N

fNvh(N) ∀ vh ε Wh
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But
∑

K

∫

K

Mns(σ
∗
h)
∂vh

∂s
= −

∑

N

R(σ∗h, N) vh(N).

Hence 142
∑

K

R(σ∗h,N) vh(N) = −
∑

N

fN vh(N) ∀ vh ε Wh. (7.67)

Let vhεMh. Consider ˜vhεVh defined by

ṽh(N) = vh(N),
∂

∂n
ṽh(bi) = 0.

Then (7.67) gives
∑

K

R(σ∗h,N) ṽh(N) = −
∑

N

fN ṽh(N)

Therefore
∑

N

R(σ∗h,N) vh(N) = −
∑

N

fN vh(N) ∀ vh ε Mh.

This is nothing but the second equation in (7.60) withσh replaced by
σ∗h. Now

a(σ∗h, τ) =
∑

K

∫

K

(σ∗h)i j τi j

=

∑

K

∫

K

∂2uh

∂xi ∂x j
τi j

=

∑

K

∫

K

Mn(τ)
∂uh

∂n
+

∫

K

Mns(τ)
∂uh

∂s
∀ τ ε Vh

by Green’s formula.
The first term in the right side is zero sinceuhεWh andτεVh. The

second term equals−
∑

N
R(τ,N)uh(N). Hence we obtain

a(σ∗h, τ) +
∑

N

R(τ,N) w∗h(N) = 0 ∀ τ ε Vh,
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sinceuh(N) = w∗h(N).
Thus{σ∗h,w

∗
h} is a solution of (7.60). By uniqueness we haveσh =143

σ∗h andw∗h = wh.
Thus we have proved that (7.64)⇒ (7.60). Let{σh,wh} be the solu-

tion of (7.60). We will show thatuh defined by

uh(N) = wh(N) for each vertex N (7.68)

Duh|K = σh|K for each K ε Th (7.69)

is the solution of (7.64).
It is easy to see that (7.68) and (7.69) define a uniqueuh such that

uh|K ε P2(K) for eachKεTh. We will prove that thisuhεWh.
From the first equation in (7.60), we obtain

∑

K

∫

∂K

Mn(τ)
∂uh

∂n
= 0 ∀ τ ε Vh.

This implies∂uh/∂n is continuous at mid side points and∂uh/∂n = 0
at the boundary mid side points. HenceuhεWh.

Let vhεWh. Then there existsvhεMh such that ˜vh(N) = vh(N). Hence
the second equation in (7.60) gives

∑

R(σh, N) vh(N) = −
∑

fN vh(N).

This shows
∑

K

∫

K

Duh Dvh =

∑

N

fN vh.

This proves (7.60)⇒ (7.64).
Thus the Hermann-Johnson method and the Morley nonconforming 144

method are equivalent, in this particular case where the load is a sum of
concentrated loads. �

Exercise 7.Let K be a triangle. LetPK = P2(K) and

∑

K

=

{

δai ,
∂

∂n
δai j , 1 ≤ i < j ≤ 3

}

,
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whereai ’s denote the vertices ofK andai j ’s denote the mid points of the
sides ofK. Show that

∑

K is PK-unisolvent. The above finite element is
called the Morley finite element.

Figure 7.3:

REMARK 11. We note that the Morley element has advantage over
Herrmann-Johnson method, since in Morley’s method we get a positive
definite matrix and we have no constraints.



Chapter 8

Spectral Approximation for
Conforming Finite Element
Method

8.1 The Eigen Value Problem

Let V andH be Hilbert spaces such thatV ֒→ H. We also assume that145

this imbedding is compact. Let‖· ‖1 denote the norm inV. The norm
in H is denoted by‖· ‖ or ‖· ‖0 and the scalar product inH is (· , · ). We
identify H with its dualH′.

Let a(· , · ) : V × V → R be a continuous, symmetric bilinear form
which isV-coercive withα as the coercive constant.

We shall consider the eigen value problem:
FinduεV, µεR such that

a(u, v) = µ(u, v) ∀ v ε V (8.1)

In the following, for an operator⊤ : H → H, we write

‖ ⊤ ‖= Sup
fεH, f,0

‖ ⊤ f ‖
‖ f ‖

.

129
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8.2 The Operator⊤

The operator⊤ : H → V is defined as follows. IffεH then⊤ f is
defined to be the unique solution of the variational equation

a(⊤ f , v) = ( f , v) ∀ v ε V.

By Lax-Milgram Lemma⊤ f is well defined for all fεH. As the
imbeddingV ֒→ H is compact we obtain that⊤, considered as an oper-146

ator fromH into H, is compact. The symmetry ofa(· , · ) implies that⊤
is symmetric. It is easy to see that (8.1) is equivalent to:

Find uεV andλεR such that

⊤u = λu (8.2)

Theµ andλ in (8.1) and (8.2) have the relation

λµ = 1.

From the Spectral Theorem for compact self-adjoint operators we
have:

Sp(⊤) is a countable set with no accumulation point other than zero.
Every point in Sp(⊤) other than zero is an eigenvalue of⊤ with finite
multiplicity.

8.3 Example

The model problem for (8.1) is

V = H1
◦(Ω), H = L2(Ω)

whereΩ is a smooth bounded open subset ofRn,

a(u, v) =
∫

Ω

∇u.∇v

The compactness of the imbeddingH1(Ω) ֒→ L2(Ω) is well known.
Problem (8.1) corresponds to:
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FinduεH1
◦(Ω), µεR such that















−∆u = u in Ω,

u = 0 on ∂Ω
(8.3)

We note that⊤ is the inverse of−∆. 147

8.4 Approximate Problem

Let Vh ֒→ V be a finite element subspace ofV. We consider the approx-
imate eigen value problem:

Finduh ε Vh, µh ε R such that

a(uh, vh) = µh(uh, vh) ∀ vh ε Vh (8.4)

Here again, we introduce an operator⊤h : H → H where⊤h f is the
unique solution of

a(⊤h f , vh) = ( f , vh) ∀ vh ε Vh. (8.5)

As in the continuous case, we have‖ ⊤h ‖≤ c/α which shows that
⊤h is uniformly bounded. Again (8.4) is equivalent to:

FinduhεVh andλh = 1/µh such that

⊤h uh = λh uh (8.6)

It is obvious that⊤h is a self-adjoint, compact operator.
We assume that

‖ ⊤ − ⊤h ‖≤ ε(h) (8.7)

and
‖ (⊤ − ⊤h) f ‖≤ e(h) (8.8)

for all smoothf and⊤ f . Further, we assume 148

0 ≤ e(h) ≤ ε(h) and ε(h)→ 0 (8.9)
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EXAMPLE. Let

Vh = {vh ε H1
◦(Ω) : vh|K ε Pk(K), K ε Th}

whereTh is a regular family of triangulations ofΩ. We have (cf. Chapter
5)

‖ ⊤ f − ⊤h f ‖0,Ω≤ chs+1 ‖ f ‖s−1,Ω, 1 ≤ s≤ k, (8.10)

provided thatΩ is a convex polygon and that

‖ ⊤ f ‖s+1≤ c ‖ f ‖s−1,Ω . (8.11)

From GRISVARD [22] this is atleast true fors = 1, which shows
thatε(h) = ch2 ande(h) = 0(hk+1).

8.5 Convergence and Error Estimate for the Eigen
Space.

Assumption (8.7) (8.9) show that⊤h→ ⊤ in norm.
From KATO [26] (Chapter 5. Section 4.3) we know that the spec-

trum of ⊤h converges to the spectrum of⊤ in the following sense:
For all non-zeroλεSp(⊤) with multiplicity m and for eachh such that
ε(h) < d/2, where

d = min
λ′εSp(⊤)

|λ − λ′|,

there exist exactlym eigen valuesλihεSp(⊤h) (counted according to
multiplicity) such that

|λ − λih| ≤ ε(h).

149

Let Γ = {zεC : |z− λ| = d/2}. We know that

P = −
1

2πi

∫

Γ

Rz(⊤) dz, (8.12)

Ph = −
1

2πi

∫

Γ

Rz(⊤h) dz, ε(h) < d/2, (8.13)
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whereRz(⊤) = (⊤ − z)−1, are the spectral projections on to the eigen-
spacesE andEh associated withλ andλih’s. The dimension of each of
the spacesE andEh is m (See KATO [26], Chapter 4, Section 4.3).

LEMMA 1. For uεE, we have

‖ u− Phu ‖≤ c2 ‖ (⊤ − ⊤h) u ‖ . (8.14)

Proof. We consider

Rz(⊤) − Rz(⊤h) = Rz(⊤h)(⊤h − z)Rz(⊤) − Rz(⊤h)(⊤ − z)Rz(⊤)

= Rz(⊤h)(⊤h − ⊤)Rz(⊤).

Hence

P− Ph = −
1

2πi

∫

Γ

Rz(⊤h)(⊤h − ⊤)Rz(⊤) dz.

Let uεE. Then we have

Pu= u,⊤u = λu and Rz(⊤)u
1

λ − z
u.

Therefore 150

u− Phu = −
1

2πi

∫

Γ

Rz(⊤h)
λ − z

dz (⊤ − ⊤h) u.

We show that the integral on the right is bounded. Indeed, forzεΓ
andε(h) < d/2 we have

⊤h − z= ⊤h − ⊤ + ⊤ − z

= ((⊤h − ⊤) Rz(⊤) + I ) (⊤ − z),

which implies
Rz(⊤h) = Rz(⊤) (I + Ah)−1,

where
Ah = (⊤h − ⊤) Rz(⊤).
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If P(⊤) denotes the resolvent set of⊤ then, asRz(⊤) is continuous
in zεP(⊤) andΓ is a compact subset ofP(⊤), we obtain

‖ Rz(⊤) ‖≤ c1 for all z εΓ,

and‖ Ah ‖≤ c1ε(h), wherec1 is a constant. This implies

‖ (I + Ah)−1 ‖≤ 2 for ε(h) ≤
1

2c1
.

Thus
‖ u− Phu ‖≤ c2 ‖ (⊤ − ⊤h) u ‖ .

�

LEMMA 2. If the eigen vectors in E are smooth enough, we have

δ(E, Eh) ≤ c e(h), (8.15)

where151

δ(E, Eh) = Sup{d(u,Eh) : u ε E, ‖ u ‖= 1}.

Remark 1. In this chapter we follow closely OSBORN [34]. We will
use the result: “In a Hilbert spaceH, δ(E,Eh) = δ(Eh,E)”. Osborn,
however, considers the more general case of a non-self-adjoint operator
in a Banach space, which involves more complicated arguments.

8.6 Error Estimates for the Eigen Values.

Let Qh = Ph|E, the restriction ofPh to E. ThenQh mapsE into Eh. We
prove thatQh is invertible for smallh.

Indeed, forh small enough we have dimE = dim Eh.
Let fεE be such thatQh f = 0. Then

‖ f ‖=‖ f − Qh f ‖=‖ f − Ph f ‖≤ c2ε(h) ‖ f ‖,

where we have used Lemma 1. Therefore, forc2ε(h) < 1 we have
‖ f ‖= 0. HenceQh is invertible forε(h) < min(d/2, 1/c2).
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Let us evaluate‖ Q−1
h ‖. If fεE with ‖ f ‖= 1, then

1− ‖ Qh f ‖≤‖ f − Ph f ‖≤ c2 ε(h).

Therefore
‖ Qh f ‖≥ 1/2, if ε(h) ≤ 1/2c2

and 152

‖ Q−1
h ‖≤ 2, for ε(h) ≤ 1/2c2.

Let ⊤̂h : E→ E be defined by

⊤̂h = Q−1
h ⊤h Qh.

The eigenvalues of̂⊤h are againλih, i = 1, 2, . . . ,m (but the eigenvectors
of ⊤̂h are different from those of⊤h).

Let WjhεE, ‖ Wjh ‖= 1 be an eigen vector of̂⊤h associated with the
eigen valueλ jh. Therefore,

λ − λ jh = ((λ − λ jh) w jh, w jh)

= ((⊤ − ⊤h) w jh, w jh)

≤ Sup
φεE,‖φ‖=1

{((⊤ − ⊤h) φ, φ)}.

Now

⊤ − ⊤̂h = ⊤ − Q−1
h ⊤h Qh = ⊤ − Q−1

h ⊤h Ph

= ⊤ − Q−1
h Ph ⊤h.

Hence
⊤ − ⊤̂h = Q−1

h Ph (⊤ − ⊤h), (8.16)

sincePh commutes with⊤h andQ−1
h Phu = u for uεE. Hence

‖ (⊤ − ⊤̂h)φ ‖≤ 2 ‖ (⊤ − ⊤h)φ ‖ for all φεE

since
‖ Q−1

h ‖≤ 2, ‖ Ph ‖≤ 1 for ε(h) ≤ 1/2c1.

Therefore 153
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|λ − λ jh| ≤ 2e(h) for ε(h) ≤ min(1/2c1, d/2) (8.17)

Application. In the example given in Section 8.3, where⊤ is the inverse
of the negative Laplace operator, we get

|λ − λih| ≤ chk+1, 1 ≤ i ≤ m, (8.18)

d(E,Eh) ≤ chk+1, (8.19)

sincee(h) ≤ chk+1 provided that the eigen functions inE are inHk+1

(This may happen even thoughΩ is a polygon: IfΩ =]0, 1[2 the eigen
functions are known explicitly and they areC∞. In fact, the eigen func-
tions are

unm = Sin nπx.Sin mπx.

However, the error estimate for|λ − λ jh| can be improved as will be
shown in the following section. One indeed has

|λ − λ jh| ≤ ch2k .

8.7 Improvement of the Error Estimate for the
Eigen Values.

We denote bySh the projection onEh alongE⊥. We notice that

Rh = Q−1
h Ph

is the projection onE alongE⊥h .
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Figure 8.1:
154

Sh andRh are related by

LEMMA 3. Sh = R∗h.

Proof. Foru, vεH, we have

(u,Shφ) = (Phu,Shφ), since PhSh = Sh and P∗h = Ph,

= (PhRhu,Shφ), since Rh is the projection onE alongE⊥h ;

= (Rhu,Shφ)

= (Rhu,PShφ), since PRh = Rh and P = P∗,

= (Rhu,Pφ), since PSh = P,

= (Rhu, φ).

�

We will now prove a Lemma which will give an upper bound for
‖ P− Sh ‖.

LEMMA 4. We have

‖ P− Sh ‖≤
δ(Eh,E)

1− δ(Eh,E)
(8.20)

155



138 8. Spectral Approximation for Conforming Finite...

Proof. SinceSh is the projection onEh alongE⊥ we haveP = PSh. If
xεEh and‖ x ‖= 1 then

‖ x− Px ‖= d(x,E) ≤ Sup
xεEh,‖x‖=1

d(x,E) = δ(Eh,E).

Therefore,

‖ y− Py ‖≤ δ(Eh,E) ‖ y ‖ for all y εEh (8.21)

Now, for anyxεH,

‖ Shx ‖ ≤‖ Shx− PShx ‖ + ‖ PShx ‖
≤ δ(Eh,E) ‖ Shx ‖ + ‖ Px ‖ .

Thus

‖ Shx ‖≤
1

1− δ(Eh,E)
‖ x ‖ (8.22)

Hence we obtain

‖ (P− Sh)x ‖ =‖ PShx− Shx ‖
≤ δ(Eh,E) ‖ Shx ‖, by (8.21),

≤ δ(Eh,E)
1− δ(Eh,E)

‖ x ‖, using (8.22)

Therefore

‖ P− Sh ‖≤
δ(Eh,E)

1− δ(Eh,E)
.

�

Finally we have from (8.16),

((⊤ − ⊤̂h) φ, φ) = (Rh (⊤ − ⊤h)φ, φ)

= ((⊤ − ⊤h) φ, Shφ)

= ((⊤ − ⊤h)φ, φ) + ((⊤ − ⊤h)φ,Shφ − φ),

whereφεE and‖ φ ‖= 1.156
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ForφεE, using Lemma 4 and Lemma 2, we obtain

‖ φ − Sh ‖≤
δ(Eh,E)

1− δ(Eh,E)
≤ k e(h),

for sufficiently smallh, wherek is a constant.
We know that for allφεE with ‖ φ ‖= 1

λ − λih = ((⊤ − ⊤̂h) φ, φ).

Hence
|λ − λih| ≤ Sup

φεE,‖φ‖=1
((⊤ − ⊤h)φ, φ) + k(e(h))2.

Thus we have proved

THEOREM 5. When E is a smooth subset of H and h is sufficiently
small we have

|λ − λih| ≤ Sup
φεE,‖φ‖=1

((⊤ − ⊤h)φ, φ) + k(e(h))2, (8.23)

where k is a constant.

Application. In the case of the example in Section 8.3, we give an157

estimate of
αh = Sup

φεE,‖φ‖=1
((⊤ − ⊤h)φ, φ).

Let w be the solution of

a(v,w) = (φ, v) ∀ v ε V, (8.24)

whereφεE and‖ φ ‖= 1.
We have

((⊤ − ⊤h)φ, φ) = a((⊤ − ⊤h)φ, w)

= a((⊤ − ⊤h)φ,w− vh) for all vh ε Vh,

since
a((⊤ − ⊤h)φ, vh) = 0 for all vh ε Vh.
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If wεHk+1(Ω), we get

‖ w− vh ‖1≤ chk ‖ w ‖k+1≤ chk ‖ φ ‖k−1,

using regularity theorem and the error estimates in Chapter5.
SinceE is finite-dimensional there exists a constantc such that

‖ φ ‖k−1≤ c ‖ φ ‖= c.

Finally, we have

αh ≤ chk ‖ (⊤ − ⊤h)φ ‖1
≤ ch2k,

provided thatE ⊂ Hk+1.158

Thus we have proved

THEOREM 6. For the model problem (See Section 8.3) we have

|λ − λih| ≤ ch2k,

provided E⊂ Hk+1(Ω), the solution of(8.24) is in Hk+1(Ω) and h is
small.

REMARK 2. Error estimates for the semi-discrete approximation to
parabolic equation of the form

(

du
dt
, v

)

+ a(u, v) = ( f , v) for all v ε V,

u(0) = v◦, v◦ ε V,

can be obtained using spectral approximation. The reader isreferred to
THOMEE [44], [45].



Chapter 9

Nonlinear Problems

Introduction.

We consider here problems of the following type: 159

FinduεC such that

J(u) ≤ J(v) for all v ε V, (9.1)

whereC is a closed, convex subset of a Banach spaceV andJ : V → R
is a convex, lower semi-continuous (l.s.c.) function.

We denote by (· , · ) the duality pairingV′−V and‖· ‖ the norm inV.
We write (9.1) in the form:

FinduεC such that
J(u) = Inf

vεC
J(v). (9.2)

The existence and uniqueness of the solutions of (9.2) is given by

THEOREM 1. Assume that J is coercive on C, that is

J(v)→ ∞ if ‖ v ‖→ ∞, v ε C. (9.3)

Then problem(9.2)has atleast one solution provided that V is reflexive.
If J is strictly convex, then(9.2)has almost one solution.

The proof of theorem 1 can be found in EMELAND-TEMAN [15].

141
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Exercise 1.If J is Gateaux-differentiable, thenu is a solution of (9.2) 160

iff

(J′(u), v− u) ≥ 0 for all v ε C.

If C is affine linear, (9.1) implies

(J′(u), v− u) = 0 ∀ v ε C.

Approximation.
Let Vh be a finite-dimensional subspace ofV andCh a closed, con-

vex subset ofVh. Then the approximate problem corresponding to (9.2)
is:

Find uh ε Ch such that

J(uh) = Inf
vhεCh

J(vh). (9.4)

We assume thatJ is strictly convex and coercive. Moreover, we
assume thatCh approximatesC.

For all v ε C there exists vh ε Ch

such that vh→ v (strongly) as h→ 0;



























(9.5)

If wh ⇀ w ε V as h→ 0 and wh ε Ch

then w ε C.















(9.6)

Then one can easily prove that the solutionuh of (9.4) converges weakly
to u, the solution of (9.2).

Note that (9.5) implies thatCh has to be sufficiently big and (9.6)
demandsCh to be sufficiently small.

To get strong convergence ofuh to u, one needs some strong mono-161

tonicity; there existsα, γ > 0 such that

(J′(u) − J′(v), u− v) ≥ α ‖ u− v ‖γ,∀u, v ε C (9.7)
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Case 1.We obtain an error estimate when Ch = C∩ Vh. From Exercise
1, we have

(J′(u), v− u) ≥ 0 ∀ v ε C, (9.8)

(J′(uh), vh − uh) ≥ 0 ∀ vh ε Ch. (9.9)

As Ch = C∩Vh, choosing v= uh in (9.8)and adding to(9.9), we get

(J′(u) − J′(uh), uh − u) + (J′(uh), vh − u) ≥ 0.

Therefore (assuming J to be continuously differentiable)

α ‖ uh − u ‖γ≤ (J′(uh), vh − u) ≤ c ‖ vh − u ‖,

since uh is bounded. Finally,

‖ uh − u ‖≤ c Inf
vhεCh

‖ vh − u ‖1/γ, (9.10)

provided J′ is weakly continuous.
Note that

Inf
vhεCh

‖ vh − u ‖

measures how good is the approximation Ch to C. Note also that, as uh

is bounded, it is enough if(9.7)holds on bounded subsets of C.

Exercise 2.Let φ : V → R be Lipschitz but not differentiable. Then 162

J(u) = Inf
vεC

[J(v) + φ(v)]

is equivalent to

(J′(u), v− u) + φ(v) − φ(u) ≥ 0 ∀ v ε C.

Derive an error estimate similar to (9.10).

Case 2.When C is of the form

C = {v ε V : b(v, µ) = (φ, µ) ∀ µ ε M}, (9.11)
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where M is a Hilbert space, b(· , · ) is a continuous, bilinear form on
V × M andφεM satisfying Brezzi’s condition (See Chapter 7), Problem
(9.1) is equivalent to:

Find {u, λ} ε V × M such that

< J′(u), v > +b(v, λ) = 0 ∀ v ε V, (9.12)

b(u, µ) = (φ, µ) ∀ µ ε M. (9.13)

We notice that(9.11) is affine linear and from Exercise 1 we obtain
that (9.1) is equivalent to

(J′(u), v− u) = 0 ∀ v ε C. (9.14)

Let B : V → M be defined by

(Bv, µ) = b(v, µ) ∀ v ε V, µ ε M.

Clearly C= v+ KerB, where vεC. This together with(9.14)implies163

J′(u) ε (KerB)⊥ = Im B∗,

which is closed from Brezzi’s condition. Hence there existsλεM such
that

J′(u) = −B∗λ.

Thus
(J′(u), v) + b(v, λ) = 0 ∀ v ε V.

uεC implies b(u, µ) = (φ, µ)∀µεM.
So we have proved that(9.1) implies(9.12)and (9.13).
If (9.12)and (9.13)hold, then uεC and

(J′(u), u) = −b(u, λ) = −b(v, λ) ∀ v ε C

Hence〈J′(u), v− u〉 = 0 ∀vεC, which is equivalent to(9.1).
Thus we proved the equivalence of(9.1)and (9.12) (9.13).
A natural approximation Ch to C will be

Ch = {v ε V : b(v, µh) = (φ, µh) ∀ µh ε Mh},

where Mh approximates M. In this case

Ch 1 C.
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EXAMPLE 1. Nonlinear Dirichlet Problem.164

V =W1,p(Ω),C = V

J(v) =
1
p

∫

Ω

|∇v|p dx−
∫

Ω

f v dx,

where
f ε Lq, 1/p+ 1/q = 1

For 1< p < ∞,W1.p(Ω) is reflexive andJ(v) → ∞ as‖ v ‖→ ∞. One
has

(J′(u), v) =
∫

Ω

|∇u|p−2∇u.∇v dx−
∫

Ω

f v dx,

and some strong monotonicity results of the type (9.7) are proved in
GLOWINSKI-MARROCCO [19].

EXAMPLE 2. The Obstacle Problem.

V = H1
◦(Ω),

C = {v ε H1
◦(Ω) : v ≥ 0 a. e. on Ω},

J(v) =
1
2

∫

Ω

|∇v|2 dx−
∫

Ω

f v dx.

Existence and uniqueness of the solution of the minimization prob-
lem are straightforward.

Let Vh be the standard Lagrange finite element space of degree 1
andCh = C∩Vh. One has (9.10) withγ = 2; therefore it seems that one
gets

‖ u− uh ‖= 0(
√

h)

since the interpolateπhuεCh as long asuεC. However, one has 165

(J′(uh), vh − u) = (J′(u), vh − u) + (J′(uh) − J′(u), vh − u)

≤ (−∆u− f , vh − u) +
Mε

2
‖ uh − u ‖21 +

M
2ε
‖ vh − u ‖21 .
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Hence
‖ u− uh ‖21≤ c

(

‖ vh − u ‖20 + ‖ vh − u ‖21
)

Therefore
‖ u− uh ‖1= 0(h).

EXAMPLE 3. Elasto - Plastic Torsion.J andV as is Example 2,

C = {v ε H1
◦(Ω) : |∇v| ≤ 1 a. e. on Ω},

Vh same as in Example 2 andCh = C ∩ Vh.
In this case the interpolateπhu is not inCh whereasu is in C. One

gets 0(h1/2−ε).

EXAMPLE 4. The Flow of a Bingham Fluid in a Cylindrical Pipe. This
is a particular case of Exercise 2 withJ,V as above and

φ(v) =
∫

Ω

|∇v|dx.

9.2 Generalization

Note thatJ′ : V → V′ satisfies

(J′(u) − J′(v), u− v) ≥ 0 ∀ u, v ε V.
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An operatorA : V → V′ is said to bemonotoneif

(Au− Av, u− v) ≥ 0 ∀ u, v ε V. (9.15)

A is boundedif A maps bounded sets ofV into bounded sets ofV′.
A is hemi-continuousif

lim
λ→0

(A(u+ λw), v) = (A(u), v) ∀ u, v,w ε V. (9.16)

A is coerciveif

(A(v), v)
‖ v ‖

→ ∞ if ‖ v ‖→ ∞ for v ε C. (9.17)

We have
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THEOREM 2. If A is a monotone, bounded hemi continuous and co-
ercive operator then the problem:

Find uεC such that

(A(u), v− u) ≥ 0 ∀ v ε C (9.18)

has atleast one solution.

For a proof of this Theorem see LIONS [28]. The problem (9.18)has
at most one solution ifA is strongly monotone, i.e. there existsα, γ > 0
such that

α ‖ u− v ‖γ≤ (A(u) − A(v), u− v) ∀ u, v ε C (9.19)

The error analysis can be carried out in the same way.

9.3 Contractive Operators.

Let T : C → C be a mapping, whereC is a closed, convex subset of a167

Hilbert spaceH. The scalar product inH is denoted by (· , · ).
We callT contractiveiff

‖ T x− Ty ‖≤‖ x− y ‖, ∀ x, y ε C. (9.20)

T is strictly contractiveiff there exists aθ with 0 < θ < 1 such that

‖ T x− Ty ‖≤ θ ‖ x− y ‖ ∀ x, y ε C. (9.21)

We say thatT is firmly contractiveiff (cf. BROWDER-PETRYSHN [8])

‖ T x− Ty ‖2≤ (T x− Ty, x− y) ∀ x, y ε C (9.22)

T is quasi firmly contractiveiff there exists aθ, 0 < θ < 1 such that

‖ T x− Ty ‖2≤ θ(T x− Ty, x− y) + (1− θ) ‖ x− y ‖2 (9.23)

Note that (9.22)⇒ (9.23)⇒ (9.20) and (9.21)⇒ (9.20).

Geometrical Interpretation of the Above Definitions Let yεC be a
fixed point ofT, i.e. Ty= y. If T is contractive andxεC thenT x lies in
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the closed ball withy as centre and‖ y − x ‖ as radius. IfT is strictly
contractive, thenT x lies in the open ball withy as centre and‖ y− x ‖ as
radius, for allxεC. If T is firmly contractive then from (9.22) we obtain

(T x− y, x− T x) ≥ 0 ∀ x ε C.

This means that the angle betweeny− T xandx− T x is obtuse.168

(a) (b) (c)

Figure 9.1:

Note that ifT1 andT2 are contractive thenT = T1T2 is contractive
andT is strictly contractive if any one ofT1 andT2 is. However,T1,T2

firmly (or quasi-firmly) contractive impliesonly T = T1T2 is contrac-
tive.
Fixed Points.We recall thatx is a fixed point ofT iff T x= x. Let F(T)
denote the set of all fixed points ofT. If T is strictly contractive thenT
has a unique fixed point andF(T) is singleton. We have

THEOREM 3. If T is contractive, then F(T) is closed and convex.

Proof. Let xnεF(T), xn→ x. Then

‖ xn − T x ‖≤‖ xn − x ‖

Taking the limit asn → ∞ we get‖ x − T x ‖= 0, i.e. xεF(T). Hence169

F(T) is closed.
Let x, yεF(T) andu = θx+ (1− θ) where 0< θ < 1. We have

‖ x− Tu ‖≤‖ x− u ‖= (1− θ) ‖ x− y ‖, (9.24)
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‖ y− Tu ‖≤‖ y− u ‖= θ ‖ x− y ‖, (9.25)

‖ x− y ‖≤‖ x− Tu ‖ + ‖ y− Tu ‖≤‖ x− y ‖, (9.26)

SinceH is strictly convex, we obtain using (9.24) and (9.25),

x− Tu= c(y− Tu) (9.27)

‖ x− Tu ‖2= c(y− Tu, x− Tu), (9.28)

‖ x− y ‖2=‖ x− Tu ‖2 + ‖ y− Tu ‖2 +2 ‖ x− Tu ‖ ‖ y− Tu ‖,

by (9.26),

‖ x− y ‖2 =‖ x− Tu+ Tu− y ‖2

=‖ x− Tu ‖2 + ‖ Tu− y ‖2 +2(x− Tu,Tu− y)

So
(x− Tu,Tu− y) =‖ x− Tu ‖ ‖ y− Tu ‖> 0. (9.29)

From (9.28) and (9.29) we obtainc < 0.
Equations (9.26) and (9.27) imply

‖ y− Tu ‖= 1
1+ |c|

‖ x− y ‖ .

This with (9.25) gives|c| ≥ (1 − θ)θ−1. Similarly using (9.24), (9.26)
and (9.27) we obtain|c| ≤ (1− θ)θ−1. Thus

|c| = (1− θ) θ−1.

Hence 170

θ(x− Tu) = −(1− θ)(y− Tu).

Therefore
Tu= θx+ (1− θ)y = u,

that is
u ε F(T).

�
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REMARK 1. Theorem 3 can be proved geometrically.
Let u = θx + (1 − θ)y, x, yεF. Since xεF(T) and T is contractive

Tu lies in the closed ball Cx with x as centre and‖ x − u ‖ as radius.
Similarly Tu lies in the closed ball Cy with y as centre and‖ y− u ‖ as
radius. But Cx ∩ Cy = u. Hence Tu= u. Thus uεF(T) and F(T) is
convex.

Figure 9.2:

If C is bounded andT is contractive, then

F(T) , φ.

In the following we assumeF(T) , φ and study the convergence of171

the iterative method

xn+1
= T xn.

which is known to be strongly convergent to the unique fixed point of T
if T is strictly contractive. One has

THEOREM 4. If T is firmly contractive and F(T) , φ then

xn ⇀ ξ ε F(T) as n→ ∞

i.e. xn converges weakly to a fixed point.
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Proof. Let yεF(T). We have

‖ xn+1 − y ‖2≤ (xn+1 − y, xn − y)

But

1
2
‖ xn+1 − xn ‖2 = 1

2
‖ xn+1 − y ‖2 +1

2
‖ xn − y ‖2 −(xn+1 − y, xn − y)

≤
1
2
‖ xn − y ‖2 −

1
2
‖ xn+1 − y ‖2 .

Therefore

‖ xn+1 − y ‖2 + ‖ xn+1 − xn ‖2≤‖ xn − y ‖2,

‖ xN+1 − y ‖2 +
N

∑

n=0

‖ xn+1 − xn ‖2≤‖ x◦ − y ‖2,

which proves that‖ xn+1− xn ‖→ 0 and{xn} is a bounded sequence. Let
xn′ ⇀ x be a weakly convergent subsequence.

Since 172

(T x− Ty, T x− Ty+ y− x) ≤ 0

choosingy = xn′−1 we obtain
(

T x− xn′ , T x− xn′
+ xn′−1 − x

)

≤ 0

As n′ → ∞, we get
(T x− x, T x− x) ≤ 0,

and hencexεF(T).
As ‖ xn − y ‖2 is a decreasing sequence for anyyεF(T) it converges

to some numberP(y), and we conclude from the following Lemma that
the whole sequencexn converges. �

OPAL’S LEMMA 5. Let F ⊂ H be a subset of a Hilbert space H and
{xn} a sequence such that

(i) ‖ xn − y ‖2→ P(y) as n→ ∞ for any yεF
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(ii) any weakly converging subsequence xn′ ⇀ z is such that z belongs
actually to F.

Then xn ⇀ ξεF.

Proof. Let xm′ ⇀ y, xn′ ⇀ zbe two converging subsequences, we have

‖ xn − y ‖2 =‖ xn − z+ z− y ‖2

=‖ xn − z ‖2 +2(xn − z, z− y)+ ‖ z− y ‖2

hence taking the limit followingm

P(y) = P(z) + 2(y− z, z− y)+ ‖ z− y ‖2= P(z)− ‖ z− y ‖2

and taking the limit followingn′173

P(y) = P(z) + 0+ ‖ z− y ‖2

hence‖ z− y ‖2= 0⇒ z= y. �

Exercise 3.Prove Theorem 4 whenT is quasi firmly contractive.

THEOREM 6. Let T = QS where S is quasi-firmly contractive and Q
is firmly contractive. Then

xn ⇀ x ε F(T),

provided that F(T) is non-empty.

Proof. Let yεF(T). We have

‖ S xn − S y‖2≤ θ(S xn − S y, xn − y) + (1− θ) ‖ xn − y ‖2,

(S xn − S y, xn − y) =
1
2
‖ S xn − S y‖2 +1

2
‖ xn − y ‖2

−1
2
‖ S xn − S y+ y− xn ‖2 .

Therefore,

(1− θ
2

) ‖ S xn−S y‖2 + θ
2
‖ S xn−S y+y−xn ‖2≤ (1− θ

2
) ‖ xn−y ‖2 (9.30)
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In the same way,

‖ QS xn − y ‖2≤ (QS xn − y, S xn − S y)

=
1
2
‖ QS xn − y ‖2 +1

2
‖ S xn − S y‖2

− 1
2
‖ QS xn − y+ S y− S xn ‖2,

i.e. 174

1
2
‖ xn+1 − y ‖2 +1

2
‖ xn+1 − y+ S y− S xn ‖2≤ 1

2
‖ S xn − S y‖2 (9.31)

From (9.30) and (9.31) we obtain

‖ xn+1−y ‖2 + ‖ xn+1−y+S y−S xn ‖2 +α ‖ S xn−S y+y−xn ‖2≤‖ xn−y ‖2

where

α =
θ

2− θ
This implies

‖ xN+1 − y ‖2 +
N

∑

n=0

(

‖ xn+1 − y+ S y− S xn ‖2 +

+α ‖ S xn − S y+ y− xn ‖2
)

≤‖ x◦ − y ‖2 .

Therefore,

xn+1 − S xn→ y− S y,

S xn − xn→ S y− y,

xn+1 − xn→ 0.

Let xn′ ⇀ x, T being contractive, we have

‖ T xn′ − T x ‖2≤‖ xn′ − x ‖2

that is
(

xn′+1 − xn′
+ x− T x, xn′+1

+ xn′ − T x− x
)

≤ 0
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and to the limit

(x− T x, x+ x− T x− x) ≤ 0

x = T x.

Once again we apply Opial’s Lemma to get the convergence of the175

whole sequencexn to a fixed point ofT. �

Exercise 4.Let C ⊂ V be a closed convex subset of a Hilbert spaceV,
then show that the projection mapPc : V → C is firmly contractive.

9.4 Application to Unconstrained Problem

We shall apply the previous results to the solution of

A(u) = 0.

whereA is a monotone operator fromD(A) into H; i.e.

(Au− Av, u− v) ≥ 0 ∀ u, v ε D(A).

A is said to bemaximal monotoneif E ⊂ H × H, GraphA ⊂ E,

(x1 − x2, y1 − y2) ≥ 0 ∀{xi , yi} ε E, i = 1, 2

implies
Graph A = E.

It is proved inBRÉZIS [4] that

THEOREM 7. A maximal monotoneiff

R(I + λA) = H for λ ≥ 0.

EXAMPLE 5. Let A : V → V′ satisfy (9.15) - (9.17) with176

V ֒→ H
dense

֒→ V′

Then the restriction ofA to

D(A) = {v ε V : Av ε H}

is a maximal monotone operator.
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Exercise 5.Use Theorem 6 to prove that the operator defined in Exam-
ple 5 is monotone.

We have

LEMMA 8. If A is maximal monotone then

T = (I + λA)−1

is firmly contractive.

Proof. Let
(I + λA)x = (I + λA)y.

Then
λ(A(x) − A(y)) = −(x− y)

Therefore
− ‖ x− y ‖2= λ(A(x) − A(y), x− y) ≥ 0.

Hencex = y. This proves (I + λA) is one-one.
From Theorem 6, we obtainR(I + λA) = H. Hence (I + λA)−1 is 177

well defined onH.
Let

ui = T xi , xi ε H, i = 1, 2.

Then
ui + λAui = xi .

We have to prove that

‖ T x1 − T x2 ‖2≤ (T x1 − T x2, x1 − x2),

i.e.
(T x1 − T x2,T x1 − T x2 + x2 − x1) ≤ 0,

i.e.
(u1 − u2, (u1 − u2) − (u1 − u2) − λ(Au1 − Au2)) ≤ 0,

i.e.
−λ(u1 − u2,Au1 − Au2) ≤ 0,

which is true sinceA is monotone. �
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COROLLARY 1. The algorithm

xn+1
= (I + λA)−1 xn (9.34)

converges weakly to a solution of

A(u) = 0 (9.35)

Note that algorithm(9.34)can be written as

xn+1 − xn

λ
+ A(xn+1) = 0 (9.36)

and corresponds to an implicit scheme for178

∂u
∂t
+ A(u) = 0. (9.37)

Proof. SinceT = (I +λA)−1 is firmly contractive, algorithm (9.34) con-
verges weakly to a fixed point ofT which is a solution of (9.35). �

REMARK 2. Algorithm (9.34) is called aproximal point algorithm.
Note that computing xn+1 at each step might be as difficult as the origi-
nal problem except in some special cases.

REMARK 3. If A : V → V′ where V is a Hilbert space, then it is better
to choose H= V. Let J : V′ → V be the Riesz isometry. Then one has
to replace A by JA. Then algorithm(9.34)is an implicit scheme for

∂u
∂t
+ JA(u) = 0.

9.5 Application to Problems with Constraint.

We want to solve the problem

(A(u), v− u) ≥ 0 ∀ v ε C. (9.38)

If u is a solution of (9.38) then for anyλ > 0 we have

(u− λA(u) − u, v− u) ≤ 0 ∀ v ε C
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which impliesu = PCS u, where179

S u= u− λA(u).

Conversely ifu is a fixed point ofPCS, thenu is a solution of (9.38).
We like to solve (9.38) via the algorithm

xn+1
= PCS xn = PC(xn − λA(xn)). (9.39)

Note that ifJ is a convex,l.s.c., Gateaux differentiable function and
A = J′ then (9.38) is the gradient algorithm with projection for solving

Inf
vεC

J(v).

We will now give some conditions onA andλ which will ensure the
convergence of the algorithm (9.39) to a solution of (9.38).

THEOREM 9. If A is strongly monotone, i.e.

(A(u) − A(v), u− v) ≥ α ‖ u− v ‖2 ∀ u, v ε C (9.40)

and Lipshitzian,

‖ A(u) − A(v) ‖≤ c ‖ u− v ‖ ∀ u, v ε C (9.41)

then the algorithm(9.39) converges strongly to the solution(9.38) for
all 0 < λ < 2α/c.

Proof. S is strictly contractive for 0< λ < 2α/c. Indeed 180

‖ S u− S v‖2=‖ u− v ‖2 −2λ(A(u) − A(v), u− v)+

+λ2 ‖ A(u) − A(v) ‖2≤‖ u− v ‖2 (1− 2λα + λ2c2)

by (9.40) and (9.41) and

1− 2αλ + λ2c2 < 1 for 0< λ <
2α

c2

From exercise 4, we know thatPC is firmly contractive. Therefore
PCS is strictly contractive for 0< λ < 2α/c2. Thus the algorithm (9.39)
converges strongly to the solution of (9.38). �
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We will now give a condition onA which will imply weak conver-
gence of the algorithm (9.39).

THEOREM 10. If A−1 is coercive, namely

(A(u) − A(v), u− v) ≥ α ‖ A(u) − A(v) ‖2 ∀ u, v ε C (9.42)

then for0 < λ < 2α the algorithm(9.39)converges weakly to a solution
of (9.38).

Proof. We claim thatS is quasi firmly contractive forα < λ < 2α. In
fact,

‖ S u− S v‖2 ≤‖ u− v ‖2 +
(

λ2

α
− 2λ

)

(A(u) − A(v), u− v) by (9.42)

= (1− θ) ‖ u− v ‖2 +θ(S u− S v, u− v)
(9.43)

where181

θ = 2− λ/α.

Whenα < λ < 2α, we have 0< θ < 1.
When 0< λ < α we obtainS to be firmly contractive. To prove

this use (9.43), the Schwarz inequality and the fact thatθε[1, 2] when
0 < λ < α. ThusS is quasi firmly contractive for 0< λ < 2α. Using
Theorem 5, we obtain the conclusion of the Theorem. �

REMARK 4. When A satisfies(9.42)and0 < λ < 2α, we obtain from
the proof of Theorem 5 that

λA(xn) = xn − S xn→ x− S x= λA(x),

i.e. A(xn)→ A(x), (Strong convergence)
whereas

xn→ x. (Weak convergence)

We also notice that x−S x is unique and therefore A(x) (x, the solu-
tion of (9.38), need not be unique).
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EXAMPLE 6. Let
f : H → R be convex,l.s.c. differentiable and
A : V → H be a linear operator.
We want to solve

Inf
vεV

f (Av). (9.44)

Note that (9.44) is equivalent to 182

Inf
yεC

f (y), (9.45)

whereC = R(A), the range ofA.
Now apply the algorithm (9.39). The projection onC is easy to

compute. In fact,
PC = A(A∗A)−1 A∗.

The nonlinear Dirichlet problem and the Minimal surface problem
are particular cases of the abstract problem.

EXAMPLE 7. Let us consider

∂u
∂t
+ Au= 0,

u(0) = u◦,
(9.46)

which has a solution providedA is maximal monotone.
We like to solve this problem via the algorithm

un+1
= F(λ) un. (9.47)

In BREZIS [4] one can find the proof of

THEOREM 11. If F (λ) is a contraction and if

lim
λ→0

x− F(λ)x
λ

= A(x) exists, (9.48)

then 183

(F(t/n))n u◦ → u(t) uniformly.
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Applications:

1. If F(λ) = I − λA, whereA satisfies (9.40), thenF(λ) is a con-
traction for 0< λ < 2α. The limit in (9.48) exists and hence the
algorithm (9.47) converges.

2. Let F(λ) = (I + λA)−1, whereA is maximal monotone. Then
by Lemma 7,F(λ) is firmly contractive and hence contractive.
Existence of the limit (9.48) is proved inBRÉZIS [4] In this case
also algorithm (9.47) converges.

REMARK 5. Theorem 11 can be used to prove that F(λ) = PC(I −λA)
gives a sequence converging to the solution of

(

du
dt
+ Au, v− u

)

≥ 0 ∀ v ε C,

u(0) = u◦.

REMARK 6. If A is linear, monotone and closed then A is maximal
monotone.

EXAMPLE 8. The Flow of a Bingham Fluid: Consider the problem:
Findσε(L2(Ω)), uεH1

◦(Ω) such that

J′(σ) − ∇u = 0 (9.49)

(σ,∇v) = ( f , v) ∀ v ε H1
◦(Ω),

where184

J(σ) =
1
2
‖ σ − PKσ ‖2 (L2(Ω))n,

K = {σ ε (L2(Ω))n : |σ(x)| ≤ 1 a. e. in Ω}.

It is possible to prove that (9.49) is equivalent to the Bingham flow
given in Example 4. It can be proved that

J′(σ) = σ − PKσ.
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Let
Z( f ) = {σ ε (L2(Ω))2 : (σ,∇v) = ( f , v) ∀ v ε H1

◦(Ω)}

If σ is a solution of (9.49), thenσ is also a solution of

J(σ) = Inf
τεZ( f )

J(τ). (9.50)

Therefore, we can apply previous results. Note thatJ′ satisfies (9.42)
with α = 1, so that previous results can be applied. Note also that the
projection onZ( f ) is easy to compute:

PZ( f )(σ) = σ + ∇(−∆)−1 divσ + ∇(−∆)−1 f .

EXAMPLE 9. Transonic Flows.

Figure 9.3:

The potential flow at transonic speed in a nozzle is governed by the 185

equations

div(ρ−→q ) = 0,

rot−→q = 0,−→q = ∇φ,

ρ =

(

1−
γ − 1

2
M2
∞(1− q2)

)1/γ−1

.

(Practical value ofγ = 1.4) whereq = |−→q |.
Finally we solve

div(ρ(|∇φ|)∇φ) = 0,
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φ|Γ1 = φ◦,

∂φ

∂n
|Γ2 = 0

Let M = q/a, wherea = ργ−1

M2
∞

. M is called theMach number.
The equation is elliptic forM < 1 and hyperbolic forM > 1.
WhenM < 1 continuous piecewise linear finite element can be used.

For M > 1, we do not know much (see COURANT- FRIEDRICHS
[13]).

The reader can refer to GLOWINSKI-PIRONNEAU [20],[21],
RAVIART [36], CIAVALDINI-POGU-TOURNEMINE [12],
J. ROUX [40].
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