Lectures on
 Topics In Finite Element Solution of Elliptic Problems

By
Bertrand Mercier

Lectures on
 Topics In Finite Element Solution of Elliptic Problems

By
Bertrand Mercier

Notes By
G. Vijayasundaram

Published for the
Tata Institute of Fundamental Research, Bombay

Springer-Verlag
Berlin Heidelberg New York
1979

Author

Bertrand Mercier
Ecole Polytechnique
Centre de Mathematiques Appliquees
91128 Palaiseau (France)

© Tata Institute of Fundamental Research, 1979

ISBN 3-540-09543-8 Springer-Verlag Berlin. Heidelberg. New York ISBN 0-387-09543-8 Springer-Verlag New York Heidelberg. Berlin

No part of this book may be reproduced in any form by print, microfilm or any other means without written permission from the Tata Institute of Fundamental Research, Bombay 400005

Printed by N.S. Ray at The Book Centre Limited, Sion East, Bombay 400022 and published by H. Goetze

Springer-Verlag, Heidelberg, West Germany
Printed In India

Preface

THESE NOTES SUMMARISE a course on the finite element solution of Elliptic problems, which took place in August 1978, in Bangalore.

I would like to thank Professor Ramanathan without whom this course would not have been possible, and Dr. K. Balagangadharan who welcomed me in Bangalore.

Mr. Vijayasundaram wrote these notes and gave them a much better form that what I would have been able to.

Finally, I am grateful to all the people I met in Bangalore since they helped me to discover the smile of India and the depth of Indian civilization.

Bertrand Mercier

Paris, June 7, 1979.

Contents

Preface v
1 Sobolev Spaces 1
1.1 Notations 1
1.2 Distributions 2
1.3 Sobolev Space 3
1.4 Negative Properties of $H^{1}(\Omega)$ 5
1.5 Trace Theorem 6
1.6 Dual Spaces of $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$ 7
1.7 Positive Properties of $H_{0}^{1}(\Omega)$ and $H^{1}(\Omega)$. 8
2 Abstract Variational Problems and Examples 11
2.1 Dirichlet Problem 11
2.2 Abstract Variational Problem. 13
2.3 Neumann's problem. 16
2.4 Mixed Problem. 19
2.5 Elasticity Problem. 23
2.6 Stokes Problem. 27
3 Conforming Finite Element Methods 31
3.1 Approximate Problem. 31
3.2 Internal Approximation of $H^{1}(\Omega)$. 33
3.3 Finite Elements of Higher Degree. 37
3.4 Internal Approximation of $H^{2}(\Omega)$. 43
4 Computation of the Solution of the Approximate Problem 49
4.1 Introduction 49
4.2 Steepest Descent Method 50
4.3 Conjugate Gradient method 52
4.4 Computer Representation of a Triangulation 55
4.5 Computation of the Gradient. 56
4.6 Solution by Direct Methods 58
5 Review of the Error Estimates for the... 65
6 Problems with an Incompressibility Constraint 71
6.1 Introduction 71
6.2 Approximation Via Finite Elements of Degree 1 72
6.3 The Fraeiis De Veubeke - Sander Element 75
6.4 Approximation of the Stokes Problem... 77
6.5 Penalty Methods. 78
6.6 The Navier-Stokes Equations. 78
6.7 Existence and Uniqueness of Solutions of... 79
6.8 Error Estimates for Conforming Method 82
7 Mixed Finite Element Methods 85
7.1 The Abstract Continuous Problem 85
7.2 The Approximate Problem 91
7.3 Application to the Stokes Problem 93
7.4 Dual Error Estimates for $u-u_{h}$ 96
7.5 Nonconforming Finite Element Method for... 98
7.6 Approximate Brezzi Condition 104
7.7 Dual Error Estimate for the Multiplien 107
7.8 Application to Biharmonic Problem 108
7.9 General Numerical Methods for the... 110
7.10 Equilibrium Elements for the Dirichlet Problem 113
7.11 Equilibrium Elements for the Plate Problem 118
8 Spectral Approximation for Conforming Finite... 129
8.1 The Eigen Value Problem 129
8.2 The Operator T 130
CONTENTS ix
8.3 Example 130
8.4 Approximate Problem 131
8.5 Convergence and Error Estimate for the Eigen Space. 132
8.6 Error Estimates for the Eigen Values. 134
8.7 Improvement of the Error Estimate for the.. 136
9 Nonlinear Problems 141
9.2 Generalization 146
9.3 Contractive Operators. 147
9.4 Application to Unconstrained Problem 154
9.5 Application to Problems with Constraint. 156
Bibliography 163

Chapter 1

Sobolev Spaces

IN THIS CHAPTER the notion of Sobolev space $H^{1}(\Omega)$ is introduced. 1 We state the Sobolev imbedding theorem, Rellich theorem, and Trace theorem for $H^{1}(\Omega)$, without proof. For the proof of the theorems the reader is referred to ADAMS [1].

1.1 Notations

Let $\Omega \subset \mathbb{R}^{n}(n=1,2$ or 3$)$ be an open set. Let Γ denote the boundary of Ω, it is assumed to be bounded and smooth. Let

$$
\begin{aligned}
L^{2}(\Omega) & =\left\{f: \int_{\Omega}|f|^{2} d x<\infty\right\} \quad \text { and } \\
(f, g) & =\int_{\Omega} f g d x
\end{aligned}
$$

Then $L^{2}(\Omega)$ is a Hilbert space with (\cdot, \cdot) as the scalar product.

1.2 Distributions

Let $\mathscr{D}(\Omega)$ denote the space of infinitely differentiable functions with compact support in Ω. $\mathscr{D}(\Omega)$ is a nonempty set. If

$$
f(x)=\left\{\begin{array}{lll}
\exp \left(\frac{1}{|x|^{2}-1}\right) & \text { if } & |x|<1 \\
0 & \text { if } & |x| \geq 1
\end{array}\right.
$$

then $f(x) \epsilon \mathscr{D}(\Omega), \Omega=\mathbb{R}$.
The topology chosen for $\mathscr{D}(\Omega)$ is such that a sequence of elements ϕ_{n} in $\mathscr{D}(\Omega)$ converges to an element ϕ belonging to $\mathscr{D}(\Omega)$ in $\mathscr{D}(\Omega)$ if there exists a compact set K such that

$$
\operatorname{supp} \phi_{n}, \operatorname{supp} \phi \subset K
$$

$D^{\alpha} \phi_{n} \rightarrow D^{\alpha} \phi$ uniformly for each multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $D^{\alpha} \phi$ stands for

$$
\frac{\partial^{\alpha_{1}+\ldots+\alpha_{n}} \phi}{\partial^{\alpha_{1}} x_{1} \cdots \partial^{\alpha_{n}} x_{n}}
$$

A continuous linear functional on $\mathscr{D}(\Omega)$ is said to be a distribution. The space of distributions is denoted by $\mathscr{D}^{\prime}(\Omega)$. We use $<\cdot, \cdot>$ for the duality bracket between $\mathscr{D}^{\prime}(\Omega)$ and $\mathscr{D}(\Omega)$.

EXAMPLE 1. (a) A square integrable function defines a distribution: If $f \epsilon L^{2}(\Omega)$ then

$$
\langle f, \phi\rangle=\int_{\Omega} f \phi d x \quad \text { for all } \phi \epsilon \mathscr{D}(\Omega)
$$

can be seen to be a distribution. We identify $L^{2}(\Omega)$ as a space of distribution, i.e.

$$
L^{2}(\Omega) \subset \mathscr{D}^{\prime}(\Omega)
$$

(b) The dirac mass δ, concentrated at the origin, defined by

$$
\langle\delta, \phi\rangle=\phi(0) \quad \text { for all } \phi \epsilon \mathscr{D}(\Omega)
$$

defines a distribution.

DEFINITION. Derivation of a Distribution

If f is a smooth function and $\phi \epsilon \mathscr{D}(\Omega)$ then using integration by parts we obtain

$$
\int_{\Omega} \frac{\partial f}{\partial x_{i}} \phi d x=-\int_{\Omega} f \frac{\partial \phi}{\partial x_{i}} d x
$$

This gives a motivation for defining the derivative of a distribution.
If $T \epsilon \mathscr{D}^{\prime}(\Omega)$ and α is a multi index then $D^{\alpha} T \epsilon \mathscr{D}^{\prime}(\Omega)$ is defined by

$$
\left\langle D^{\alpha} T, \phi\right\rangle=(-1)^{|\alpha|}\left\langle T, D^{\alpha} \phi\right\rangle \forall \phi \epsilon \mathscr{D}(\Omega)
$$

If $T_{n}, T \epsilon \mathscr{D}^{\prime}(\Omega)$ then we say $T_{n} \rightarrow T$ in $\mathscr{D}^{\prime}(\Omega)$ if

$$
\left\langle T_{n}, \phi\right\rangle \rightarrow\langle T, \phi\rangle \quad \text { for all } \phi \epsilon \mathscr{D}(\Omega)
$$

The derivative mapping $D^{\alpha}: \mathscr{D}^{\prime} \rightarrow \mathscr{D}^{\prime}$ is continuous since if $T_{n} \rightarrow$ T in \mathscr{D}^{\prime} then

$$
\begin{aligned}
\left\langle D^{\alpha} T_{n}, \phi\right\rangle & =(-1)^{|\alpha|}\left\langle T_{n}, D^{\alpha} \phi\right\rangle \\
& \rightarrow(-1)^{|\alpha|}\left\langle T, D^{\alpha} \phi\right\rangle \\
& =\left\langle D^{\alpha} T, \phi\right\rangle \quad \text { for all } \phi \epsilon \mathscr{D}(\Omega) .
\end{aligned}
$$

1.3 Sobolev Space

The Sobolev space $H^{1}(\Omega)$ is defined by

$$
H^{1}(\Omega)=\left\{v \epsilon L^{2}(\Omega): \frac{\partial v}{\partial x_{i}} \epsilon L^{2}(\Omega), 1 \leq i \leq n\right\}
$$

where the derivatives are taken in the sense of distribution.

$$
f \epsilon L^{2}(\Omega) \text { need not imply } \frac{\partial f}{\partial x_{i}} \epsilon L^{2}(\Omega) .
$$

EXAMPLE 2. Let $\Omega=[-l, l]$

$$
f(x)= \begin{cases}-1 & \text { if } x<0 \\ 0 & \text { if } x \geq 0\end{cases}
$$

Then $f \epsilon L^{2}[-l, l]$; but $d f / d x=\delta$ is not given by a locally integrable function and hence not by an L^{2} function.

We define an inner product $(\cdot, \cdot)_{1}$ in $H^{1}(\Omega)$ as follows:

$$
(u, v)_{1}=(u, v)+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}, \frac{\partial v}{\partial x_{i}}\right) \quad \text { for all } u, v \epsilon H^{1}(\Omega)
$$

Let $\|\cdot\|_{1}$ be the norm associated with this inner product. Then
LEMMA 1. $H^{1}(\Omega)$ with $\|\cdot\|_{1}$ is a Hilbert spaces.
Proof. Let u_{j} be a Cauchy sequence in $H^{1}(\Omega)$. This imply

$$
\left\{u_{j}\right\},\left\{\frac{\partial u_{j}}{\partial x_{i}}\right\} i=1,2, \ldots, n
$$

are Cauchy in L^{2}. Hence there exists $v, v_{i} \in L^{2}(\Omega) 1 \leq i \leq n$ such that

$$
\begin{gathered}
u_{j} \rightarrow v \text { in } L^{2}(\Omega) \\
\frac{\partial u_{j}}{\partial x_{i}} \rightarrow v_{i} \text { in } L^{2}(\Omega), 1 \leq i \leq n,
\end{gathered}
$$

For any $\phi \epsilon \mathscr{D}(\Omega)$,

$$
\left\langle\frac{\partial u_{j}}{\partial x_{i}}, \phi\right\rangle=-\left\langle u_{j}, \frac{\partial \phi}{\partial x_{i}}\right\rangle \rightarrow-\left\langle u, \frac{\partial \phi}{\partial x_{i}}\right\rangle=\left\langle\frac{\partial u}{\partial x_{i}}, \phi\right\rangle .
$$

But

$$
\left\langle<\frac{\partial u_{j}}{\partial x_{i}}, \phi\right\rangle \rightarrow\left\langle v_{i}, \phi\right\rangle .
$$

Hence

$$
v_{i}=\frac{\partial u}{\partial x_{i}}
$$

Thus

$$
\begin{aligned}
u_{j} & \rightarrow u \quad \text { in } \quad L^{2}(\Omega) \\
\frac{\partial u_{j}}{\partial x_{i}} & \rightarrow \frac{\partial u}{\partial x_{i}} \quad \text { in } \quad L^{2}(\Omega) .
\end{aligned}
$$

$5 \quad$ This proves $u_{j} \rightarrow u$ in $H^{1}(\Omega)$.

1.4 Negative Properties of $H^{1}(\Omega)$

(a) The functions in $H^{1}(\Omega)$ need not be continuous except in the case $n=1$.

EXAMPLE 3. Let

$$
\begin{aligned}
\Omega & =\left\{(x, y) \epsilon \mathbb{R}^{2}: x^{2}+y^{2}<r_{\circ}^{2}\right\}, r_{\circ}<1 . \\
f(r) & =(\log 1 / r)^{k}, k<1 / 2 \quad \text { where } \\
r & =\left(x^{2}+y^{2}\right)^{1 / 2}
\end{aligned}
$$

Then $f \epsilon H^{1}(\Omega)$ but f is not continuous at the origin.
In the case $n=1$, if $u \epsilon H^{1}(\Omega), \Omega \subset \mathbb{R}^{1}$ then u can be shown to be continuous using the formula

$$
u(y)-u(x)=\int_{x}^{y} \frac{d u}{d x}(s) d s
$$

where $d u / d s$ denotes the distributional derivative of u.
(b) $\mathscr{D}(\Omega)$ is not dense in $H^{1}(\Omega)$. To see this let $u \epsilon(\mathscr{D}(\Omega))^{\perp}$ in H^{1} and $\phi \epsilon \mathscr{D}(\Omega)$. We have

$$
\begin{aligned}
& (u, \phi)_{1}=(u, \phi)+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}, \frac{\partial \phi}{\partial x_{i}}\right)=0 \\
& \text { i.e. } \quad\langle u, \phi\rangle+\sum_{i=1}^{n}\left\langle-\frac{\partial^{2} u}{\partial x_{i}^{2}}, \phi\right\rangle=0
\end{aligned}
$$

Thus

$$
\langle-\Delta u+u, \phi\rangle=0 \quad \text { for all } \quad \phi \epsilon \mathscr{D}(\Omega)
$$

Hence

$$
-\Delta u+u=0 \quad \text { in } \quad \mathscr{D}^{\prime}(\Omega)
$$

Let $\Omega=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$,

$$
\begin{aligned}
u(x) & =e^{r . x} \quad \text { where } \quad r \in \mathbb{R}^{n}, \\
\Delta u(x) & =|r|^{2} e^{r . x}=|r|^{2} u . \\
& =u \quad \text { if } \quad|r|=1 .
\end{aligned}
$$

Thus when $n=1, u$ with $r= \pm 1$ belongs to $\mathscr{D}(\Omega))^{\perp}$, when $n>1$ there are infinitely many $r^{\prime} s\left(r \in S^{n-1}\right)$ such that $u \epsilon(\mathscr{D}(\Omega))^{\perp}$. Moreover these functions for different r 's are linearly independent. Therefore

$$
\begin{array}{cccc}
\text { dimension } & (\mathscr{D}(\Omega))^{\perp} \geq 2 & \text { if } & n=1 \\
\text { dimension } & (\mathscr{D}(\Omega))^{\perp}=\infty & \text { if } & n>1
\end{array}
$$

This proves the claim (b).
We shall define $H_{\circ}^{1}(\Omega)$ as the closure of $\mathscr{D}(\Omega)$ in $H^{1}(\Omega)$. We have the following inclusions

$$
\mathscr{D}(\Omega) \underset{\text { dense }}{\subset} H_{\circ}^{1}(\Omega) \subset H^{1}(\Omega) \underset{\text { dense }}{\subset} L^{2}(\Omega) .
$$

1.5 Trace Theorem

Let Ω be a bounded open subset of \mathbb{R}^{n} with a Lipschitz continuous boundary Γ : i.e. there exists finite number of local charts $a_{j}, 1 \leq j \leq J$ from $\left\{y^{\prime} \in \mathbb{R}^{n-1}:\left|y^{\prime}\right|<\alpha\right\}$ into \mathbb{R}^{n} and a number $\beta>0$ such that

$$
\begin{gathered}
\Gamma=\bigcup_{j=1}^{J}\left\{\left(y^{\prime}, y_{n}\right): y_{n}=a_{j}\left(y^{\prime}\right),\left|y^{\prime}\right|<\alpha\right\}, \\
\left\{\left(y^{\prime}, y_{n}\right): a_{j}\left(y^{\prime}\right)<y_{n}<a_{j}\left(y^{\prime}\right)+\beta,\left|y^{\prime}\right|<\alpha\right\} \subset \Omega, 1 \leq j \leq J, \\
\left\{\left(y^{\prime}, y_{n}\right): a_{j}\left(y^{\prime}\right)-\beta<y_{n}<a_{j}\left(y^{\prime}\right),\left|y^{\prime}\right|<\alpha\right\} \subset C \bar{\Omega}, 1 \leq j \leq J .
\end{gathered}
$$

It can be proved that $C^{\infty}(\bar{\Omega})$ is dense in $H^{1}(\Omega)$. If $f \epsilon C^{\infty}(\bar{\Omega})$ we define the trace of f, namely γf, by

$$
\gamma f=\left.f\right|_{\Gamma .} . \quad \text { Note } \quad \gamma f \epsilon L^{2}(\Gamma) \quad \text { if } f \epsilon C^{\infty}(\bar{\Omega})
$$

$\gamma: C^{\infty}(\bar{\Omega}) \rightarrow L^{2}(\Gamma)$ is continuous and linear with norm $\|\gamma u\|_{L^{2}(\Gamma)} \leq$ $C\|u\|_{1}$. Hence this can be extended as continuous linear map from $H^{1}(\Omega)$ to $L^{2}(\Gamma)$.

$$
H_{\circ}^{1}(\Omega) \quad \text { is characterised by }
$$

THEOREM 2.

$$
H_{\circ}^{1}(\Omega)=\left\{v \epsilon H^{1}(\Omega): \gamma V=0\right\}
$$

1.6 Dual Spaces of $H^{1}(\Omega)$ and $H_{\circ}^{1}(\Omega)$

The mapping

$$
\begin{array}{r}
I: H^{1}(\Omega) \rightarrow\left(L^{2}(\Omega)\right)^{n+1} \quad \text { defined by } \\
\\
I(v)=\left(v, \frac{\partial v}{\partial x_{1}}, \ldots, \frac{\partial v}{\partial x_{n}}\right)
\end{array}
$$

is easily seen to be an isometric isomorphism of $\left.H^{1}(\Omega)\right)$ into subspace of $\left(L^{2}(\Omega)\right)^{n+1}$. If $f \epsilon\left(H^{1}(\Omega)\right)^{\prime}$ then $F: I\left(H^{1}(\Omega)\right) \rightarrow \mathbb{R}$ with $F(I u)=f(u)$ is a continuous linear functional on $I\left(H^{1}(\Omega)\right)$. Hence by Hahn Banach theorem F can be extended to $\left(L^{2}(\Omega)\right)^{n+1}$. Therefore, there exists $\left(v, v_{1}, \ldots, v_{n}\right) \epsilon\left(L^{2}(\Omega)\right)^{n+1}$ such that

$$
f(u)=F(I u)=(v, u)+\sum_{i=1}^{n}\left(v_{i}, \partial u / \partial x_{i}\right) .
$$

This representation is not unique since F cannot be extended uniquely to $\left(L^{2}(\Omega)\right)^{n+1}$ For all $\phi \epsilon \mathscr{D}(\Omega)$ we have

$$
f(\phi)=\langle v, u\rangle-\sum_{i=1}^{n}\left\langle\frac{\partial v_{i}}{\partial x_{i}}, \phi\right\rangle,
$$

Thus

$$
\left.f\right|_{\mathscr{D}(\Omega)}=v-\sum_{i=1}^{n} \frac{\partial v_{i}}{\partial x_{i}}
$$

Conversely if $T \epsilon \mathscr{D}^{\prime}(\Omega)$ is given by

$$
T=v-\sum_{i=1}^{n} \frac{\partial v_{i}}{\partial x_{i}}
$$

where $v, v_{i} \epsilon L^{2}(\Omega), 1 \leq i \leq n$ then T can be extended as a continuous linear functional on $H^{1}(\Omega)$ by the prescription

$$
T(u)=(v, u)+\sum_{i=1}^{n}\left(v_{i}, \frac{\partial u}{\partial x_{i}}\right) \quad \text { for all } u \in H^{1}(\Omega)
$$

The extension of T to $H^{1}(\Omega)$ need not be unique. But we will prove that the extension of T to $H_{\circ}^{1}(\Omega)$ is unique. Let $\tilde{T} \epsilon\left(H_{\circ}^{1}(\Omega)\right)^{\prime}$ be such that $\left.\tilde{T}\right|_{\mathscr{D}(\Omega)}=T$.

Let $u \epsilon H_{\circ}^{1}(\Omega)$. Then there exists $u_{m} \epsilon \mathscr{D}(\Omega)$ such that $u_{m} \rightarrow u$ in H^{1}. Now

$$
\begin{aligned}
\tilde{T}(u) & =\tilde{T}\left(\lim _{\text {in } H^{1}} u_{m}\right)=\lim _{m} \tilde{T}\left(u_{m}\right) \\
& =\lim _{m} T\left(u_{m}\right) \\
& =\lim _{m}\left[\left(v, u_{m}\right)+\sum_{i=1}^{n}\left(v_{i}, \frac{\partial u_{m}}{\partial x_{i}}\right)\right] \\
& =(v, u)+\sum_{i=1}^{n}\left(v_{i}, \frac{\partial u}{\partial x_{i}}\right)
\end{aligned}
$$

Thus

$$
\tilde{T}=T \text { on } H_{\circ}^{1}(\Omega)
$$

Hence we identify $\left(H_{\circ}^{1}(\Omega)\right)^{\prime}$ with a space of distribution and we denote it by $H^{-1}(\Omega)$. That is

$$
H^{-1}(\Omega)=\left\{v-\sum_{i=1}^{n} \frac{\partial v_{i}}{\partial x_{i}}:\left(v, v_{1}, \ldots, v_{n}\right) \epsilon\left(L^{2}(\Omega)\right)^{n+1}\right\} \subset \mathscr{D}^{\prime}(\Omega)
$$

EXERCISE 1. Show that $\partial / \partial x_{i}: L^{2}(\Omega) \rightarrow H^{-1}(\Omega)$ is continuous.

1.7 Positive Properties of $H_{\circ}^{1}(\Omega)$ and $H^{1}(\Omega)$.

THEOREM 3. (Poincare's Inequality). Let Ω be an open bounded subset of \mathbb{R}^{n}. Then there exists a constant $C(\Omega)$ such that

$$
\int_{\Omega} v^{2} d x \leq C(\Omega) \int_{\Omega}|\nabla v|^{2} d x \quad \text { for all } v \epsilon H_{\circ}^{1}(\Omega)
$$

Proof. We shall prove the inequality for the functions in $\mathscr{D}(\Omega)$ and use the density of $\mathscr{D}(\Omega)$ in $H_{\circ}^{1}(\Omega)$.

Since Ω is bounded, we have

$$
\Omega \subset\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]
$$

For any $u(x) \epsilon \mathscr{D}(\Omega)$, we have

$$
u(x)=\int_{a_{i}}^{x_{i}} \frac{\partial u}{\partial x_{i}}\left(x_{1}, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_{n}\right) d t
$$

Thus

$$
|u(x)| \leq\left(b_{i}-a_{i}\right)^{1 / 2}\left(\int_{a_{i}}^{b_{i}}\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d t\right)^{1 / 2}
$$

Squaring both sides and integrating we obtain

$$
\int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}}|u(x)|^{2} d x \leq\left(b_{i}-a_{i}\right)^{2} \int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}}\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d x .
$$

Thus

$$
\int_{\Omega}|u(x)|^{2} d x \leq C(\Omega) \int_{\Omega}|\nabla u|^{2} d x
$$

where

$$
C(\Omega)=\left(b_{1}-a_{1}\right)^{2}+\cdots+\left(b_{n}-a_{n}\right)^{2}
$$

Let $v \epsilon H_{\circ}^{1}(\Omega)$. Then there exists $u_{n} \epsilon \mathscr{D}(\Omega)$ such that $u_{n} \rightarrow v$ in H^{1}, which implies $u_{n} \rightarrow v$ in L^{2} and $\frac{\partial u_{n}}{\partial x_{i}} \rightarrow \frac{\partial v}{\partial x_{i}}$ in L^{2}. Using this and the inequality for smooth functions we arrive at the result.

REMARK 1. The theorem is not true for functions in $H^{1}(\Omega)$. For example a nonzero constant function belongs to $H^{1}(\Omega)$ but does not satisfy the above inequality.

We state Sobolev imbedding theorem and Rellich's theorem, which have many important applications.

SOBOLEV IMBEDDING THEOREM 4. If Ω is an open bounded set having a Lipschitz continuous boundary then we have the imbedding

$$
H^{1}(\Omega) \hookrightarrow L^{p}(\Omega)
$$

$p<q$ or $p \leq q$ according as $n=2$ or $n>2$ where

$$
1 / q=1 / 2-1 / n
$$

RELLICH'S THEOREM 5. The above imbedding is compact for $p<q$.

Chapter 2

Abstract Variational Problems and Examples

IN SECTION 1 OF this chapter, we give a variational formulation of the
Dirichlet problem. In section 2 we prove the existence and uniqueness results for the abstract variational problem. In the remaining sections, we deal with the Neumann problem, Elasticity problem, Stokes problem and Mixed problem and their variational formulations.

2.1 Dirichlet Problem

The Dirichlet problem is to find u such that

$$
\begin{array}{rlll}
-\Delta u & =f & \text { in } & \Omega \\
u & =0 & \text { on } & \Gamma \tag{2.2}
\end{array}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded open set with smooth boundary Γ and f is a given function.

Multiplying equation (2.1) by a smooth function v which vanishes on Γ and integrating, we obtain

$$
\begin{equation*}
\int_{\Omega}-\Delta u \cdot v d x=\int_{\Omega} f \cdot v d x \tag{2.3}
\end{equation*}
$$

Formally, using integration by parts and the fact that $v=0$ on Γ, we see that

$$
\begin{equation*}
\int_{\Omega} \nabla v \cdot \nabla u d x=\int_{\Gamma} \frac{\partial u}{\partial n} v d \Gamma-\int_{\Omega} \Delta u v d x=\int_{\Omega}-\Delta u \cdot v d x \tag{2.4}
\end{equation*}
$$

Equations (2.3) and (2.4) give

$$
\int_{\Omega} \nabla u \cdot v d x=\int_{\Omega} f v d x
$$

Now, setting

$$
a(u, v)=\int_{\Omega} \nabla u . \nabla v d x
$$

and

$$
L(v)=\int_{\Omega} f v d x
$$

problem (2.1) can be formulated thus:
Find $u \varepsilon V$ such that

$$
\begin{equation*}
a(u, v)=L(v) \quad \text { for all } v \varepsilon V, \tag{2.5}
\end{equation*}
$$

where V has to be chosen suitably.
Since $a(\cdot, \cdot)$ is symmetric, (2.5) is Euler's condition for the minimization problem

$$
\begin{equation*}
J(u)=\inf _{v \varepsilon V} J(v), \tag{2.6}
\end{equation*}
$$

where

$$
J(v)=1 / 2 a(v, v)-L(v)
$$

If u is the solution of the minimization problem then it can be shown that

$$
\begin{equation*}
\left(J^{\prime}(u), v\right)=0 \quad \text { for all } v \varepsilon V, \tag{2.7}
\end{equation*}
$$

where $\left(J^{\prime}(u), v\right)$ is the Gateaux derivative of J in the direction v.
When $a(\cdot, \cdot)$ is symmetric one can show that problems (2.5) and (2.6) are equivalent.

To have $J(v)$ finite, we want our space V to be such that $\nabla v \varepsilon L^{2}(\Omega)$, $f \varepsilon L^{2}(\Omega)$ for all $v \varepsilon V$. The largest space satisfying the above conditions and (2.2) is $H_{\circ}^{1}(\Omega)$ and hence we choose V to be $H_{\circ}^{1}(\Omega)$.

If u is a solution of (2.5) then

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \text { for all } v \varepsilon \mathscr{D}(\Omega) \subset H_{\circ}^{1}(\Omega)
$$

This implies that

$$
\langle-\Delta u, v\rangle=\langle f, v\rangle \quad \text { for all } v \varepsilon \mathscr{D}(\Omega) ;
$$

so

$$
\begin{equation*}
-\Delta u=f \quad \text { in } \quad \mathscr{D}^{\prime} . \tag{2.8}
\end{equation*}
$$

Conversely, if $u \varepsilon H_{\circ}^{1}(\Omega)$ satisfies (2.8), retracing the above steps we obtain

$$
\begin{equation*}
a(u, v)=f(v) \quad \text { for all } v \varepsilon \mathscr{D}(\Omega) \tag{2.9}
\end{equation*}
$$

Since $\mathscr{D}(\Omega)$ is dense in $H_{\circ}^{1}(\Omega),(2.9)$ holds for all $v \varepsilon V=H_{\circ}^{1}(\Omega)$. Thus u is the solution of (2.5).

2.2 Abstract Variational Problem.

We now prove the existence and uniqueness theorem for the abstract variational problem.

THEOREM 1. Let V be a Hilbert space and $a(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ be continuous and bilinear. Further, assume that $a(\cdot, \cdot)$ is coercive: there exists $\alpha>0$ such that $a(v, v) \geq \alpha\|v\|_{V}^{2}$ for all $v \varepsilon V$. Let L be a continuous linear functional on V. Then the problem:

To find $u \varepsilon V$ such that

$$
\begin{equation*}
a(u, v)=L(v), \quad \text { for all } v \varepsilon V \tag{2.10}
\end{equation*}
$$

has a unique solution.

Proof. (i) Uniqueness. Let $u_{1}, u_{2} \varepsilon V$ be two solutions of (2.10). Therefore

$$
\begin{aligned}
& a\left(u_{1}, v\right)=L(v), \\
& a\left(u_{2}, v\right)=L(v), \quad \text { for all } v \varepsilon V .
\end{aligned}
$$

Subtracting one from the other, taking $v=u_{2}-u_{1}$ and using V coercivity of $a(\cdot, \cdot)$, we obtain

$$
\alpha\left\|u_{1}-u_{2}\right\|_{V}^{2} \leq a\left(u_{1}-u_{2}, u_{1}-u_{2}\right)=0,
$$

Thus $u_{1}=u_{2}$.
(ii) Existence when $a(\cdot, \cdot)$ is symmetric. Since $a(\cdot, \cdot)$ is symmetric, the bilinear form $a(u, v)$ is a scalar product on V and the associated norm $a(v, v)^{1 / 2}$ is equivalent to the norm in V. Hence, by the Riesz representation theorem there exists $\sigma L \varepsilon V$ such that

$$
a(\sigma L, v)=L(v) \quad \text { for all } v \varepsilon V .
$$

Hence the theorem is true in the symmetric case.
(iii) Existence in the general case. Let $w \varepsilon V$. The function $L_{w}: V \rightarrow$ \mathbb{R} defined by

$$
L_{w}(v)=(w, v)-\rho(a(w, v)-L(v))
$$

is linear and continuous. Hence by the Riesz representation theorem there exists a $u \varepsilon V$ such that

$$
L_{w}(v)=(u, v) .
$$

Let $T: V \rightarrow V$ be defined by

$$
T w=u
$$

where u is the solution of the equation

$$
L_{w}(v)=(u, v) \quad \text { for all } v \varepsilon V \text {. }
$$

15 we will show that T is a contraction mapping. Hence T has a unique fixed point which will be the solution of (2.10).

Let

$$
u_{1}=T w_{1}, u_{2}=T w_{2} .
$$

Thus

$$
\begin{equation*}
\left(u_{1}-u_{2}, v\right)=\left(w_{1}-w_{2}, v\right)-\rho a\left(w_{1}-w_{2}, v\right) \forall v \varepsilon V \tag{2.11}
\end{equation*}
$$

Let $A: V \rightarrow V$, where $A u$ is the unique solution of

$$
(A u, v)=a(u, v) \quad \text { for all } v \varepsilon V
$$

which exists by the Riesz representation theorem.

$$
\|A u\|=\sup _{v \varepsilon V} \frac{|(A u, v)|}{\|v\|}=\sup _{v \varepsilon V} \frac{|a(u, v)|}{\|v\|} \leq M\|u\|
$$

where $|a(u, v)| \leq M\|u|\|\mid v\|$. So A is continuous. Equation (2.11) can be written as

$$
\left(u_{1}-u_{2}, v\right)=\left(w_{1}-w_{2} \cdot v\right)-\rho\left(A\left(w_{1}-w_{2}\right) v\right) \quad \text { for all } v \varepsilon V,
$$

which implies that

$$
u_{1}-u_{2}=\left(w_{1}-w_{2}\right)-\rho A\left(w_{1}-w_{2}\right) .
$$

So

$$
\begin{aligned}
\left\|u_{1}-u_{2}\right\|^{2}= & \left\|w_{1}-w_{2}\right\|^{2}-2 \rho\left(A\left(w_{1}-w_{2}\right), w_{1}-w_{2}\right) \\
& \quad+\rho^{2}\left\|A\left(w_{1}-w_{2}\right)\right\|^{2} \\
\leq & \left\|w_{1}-w_{2}\right\|^{2}-2 \rho a\left(w_{1}-w_{2}, w_{1}-w_{2}\right) \\
& \quad+\rho^{2} M^{2}\left\|w_{1}-w_{2}\right\|^{2}, \quad(\text { using the continuity of } A) \\
\leq & \left\|w_{1}-w_{2}\right\|^{2}-2 \rho \alpha\left\|w_{1}-w_{2}\right\|^{2}+\rho^{2} M^{2}\left\|w_{1}-w_{2}\right\|^{2},
\end{aligned}
$$

since

$$
a\left(w_{1}-w_{2}, w_{1}-w_{2}\right) \geq \alpha\left\|w_{1}-w_{2}\right\|^{2} .
$$

So

$$
\left\|u_{1}-u_{2}\right\|^{2} \leq\left(1-2 \rho \alpha+\rho^{2} M^{2}\right)\left\|w_{1}-w_{2}\right\|^{2} .
$$

That is,

$$
\left\|T w_{1}-T w_{2}\right\| \leq \sqrt{\left(1-2 \rho \alpha+\rho^{2} M^{2}\right)}\left\|w_{1}-w_{2}\right\| .
$$

Choosing ρ in $] 0, \alpha / 2 M$ [, we obtain that T is a contraction.
This proves the theorem.
REMARK 1. This theorem also gives an algorithm to find the solution of equation (2.10). Let $u^{\circ} \varepsilon V$ be given. Let $u^{n+1}=T u^{n}$. Then $u^{n} \rightarrow w_{\mathrm{o}}$, which is the fixed point of T, and also the solution of (2.10).

2.3 Neumann's problem.

Neumann's problem is to find an u such that

$$
\begin{align*}
-\Delta u+c u & =f & & \text { in } \tag{2.12}
\end{align*} \quad \Omega,
$$

We now do the calculations formally to find out the bilinear form a (\cdot, \cdot), the linear functional $L(\cdot)$ and the space V.

For smooth v, (2.12) implies

$$
\begin{equation*}
\int_{\Omega}(-\Delta u+c u) v d x=\int_{\Omega} f v d x . \tag{2.14}
\end{equation*}
$$

17 From Green's formula,

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Gamma} \frac{\partial u}{\partial n} v d \Gamma-\int_{\Omega} v \Delta u d x,
$$

and by (2.14) we obtain

$$
\int_{\Omega}(\nabla u \cdot \nabla v+c u v) d x=\int_{\Omega} f v d x+\int_{\Gamma} \frac{\partial u}{\partial n} v d \Gamma=\int_{\Omega} f v d x+\int_{\Gamma} g v d \Gamma,
$$

since $\frac{\partial u}{\partial n}=g$ on Γ, by (2.13). This suggests the definitions:

$$
\begin{align*}
a(u, v) & =\int_{\Omega}(\nabla u \cdot \nabla v+c u v) d x \tag{2.15}\\
L(v) & =\int_{\Omega} f v d x+\int_{\Gamma} g v d \Gamma \tag{2.16}\\
V & =H^{1}(\Omega) \tag{2.17}
\end{align*}
$$

where $f \varepsilon L^{2}(\Omega)$ and $g \varepsilon L^{2}(\Gamma)$.
Clearly $a(u, v)$ is bilinear, continuous and symmetric.

$$
\begin{aligned}
a(v, v) & =\int_{\Omega}\left((\nabla v)^{2}+c v^{2}\right) d x \\
& \geq \min \{1, c\}\|v\|_{1}^{2}
\end{aligned}
$$

which shows $a(\cdot, \cdot)$ is $H^{1}(\Omega)$-coercive.
$L(\cdot)$ is a continuous linear functional on $H^{1}(\Omega)$. Hence by the theorem there exists a unique $u \varepsilon V=H^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega}(\nabla u \cdot \nabla v+c u v) d x=\int_{\Omega} f v d x+\int_{\Gamma} \text { for all } v \varepsilon H^{1}(\Omega) \tag{2.18}
\end{equation*}
$$

From (2.18) we obtain that for all $v \varepsilon \mathscr{D}(\Omega)$,

$$
\langle-\Delta u+c u, v\rangle=\langle f, v\rangle .
$$

Hence

$$
\begin{equation*}
-\Delta u+c u=f \quad \text { in } \quad \mathscr{D}^{\prime}(\Omega) \tag{2.19}
\end{equation*}
$$

To find the boundary condition we use Green's formula:

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega}-\Delta u \cdot v d x+\int_{\Gamma} \frac{\partial u}{\partial n} v d \Gamma
$$

which holds for all $u \varepsilon H^{2}(\Omega)$ and for all $v \varepsilon H^{1}(\Omega)$.
Assuming that our solution $u \varepsilon H^{2}(\Omega)$, from (2.19) we have

$$
\int_{\Omega}(-\Delta u+c u) v=\int_{\Omega} f v \text { for all } v \varepsilon H^{1}(\Omega)
$$

Using Green's formula we obtain

$$
\int_{\Omega}(\nabla u \nabla v+c u v) d x=\int_{\Gamma} \frac{\partial u}{\partial n} v d x+\int_{\Omega} f v d x
$$

This, together with (2.18), implies

$$
\int_{\Gamma}\left(g-\frac{\partial u}{\partial n}\right) v d \Gamma=0 \quad \text { for all } v \varepsilon H^{1}(\Omega)
$$

Hence we get the desired boundary condition

$$
\frac{\partial u}{\partial n}=g \quad \text { on } \quad \Gamma .
$$

If $u \varepsilon H^{2}(\Omega)$, these are still valid in "some sense" which is given in LIONS-MAGENES [29].

REMARK 2. Even when $g=0$ we cannot take the space

$$
V_{1}=\left\{v \varepsilon H^{1}(\Omega): \frac{\partial v}{\partial n}=0 \quad \text { on } \quad \Gamma\right\}
$$

19 to be the basic space V, since V_{1} is not closed. In the Neumann problem 2.3 we obtain the boundary condition from Green's formula. In the case of Dirichlet problem 2.1] we impose the boundary condition in the space itself.

REGULARITY THEOREM (FOR DIRICHLET PROBLEM) 2. If

Γ is C^{2} or Ω is a convex polygon and $f \varepsilon L^{2}(\Omega)$, then the solution u of the Dirichlet problem (2.1), (2.2) belongs to $H^{2}(\Omega)$.

REGULARITY THEOREM (FOR THE NEUMANN PROBLEM)

3. If Γ is C^{2} or Ω is a convex polygon, $f \varepsilon L^{2}(\Omega)$ and g belongs to a space finer than $L^{2}(\Omega)\left(\right.$ for example $\left.g \varepsilon H^{1}(\Gamma)\right)$, then the solution u of the Neumann problem (2.12), (2.13) belongs to $H^{2}(\Omega)$.

For a proof of these theorems the reader is referred to NECAS [33].

2.4 Mixed Problem.

In Sections 2.1 and 2.3 we found the variational formulation from the partial differential equation. In the general case it is difficult to formulate the variational problem from the p.d.e. In fact a general p.d.e. need not give rise to a variational problem. So in this section, we will take a general variational problem and find out the p.d.e. satisfied by its solution.

Let Ω be a bounded open set with boundary Γ. Let $\Gamma=\Gamma_{\circ} \cup \Gamma_{1} \mathbf{2 0}$ where Γ_{\circ} and Γ_{1} are disjoint. Let

$$
\begin{equation*}
V=\left\{v \varepsilon H^{1}(\Omega): v=0 \quad \text { on } \quad \Gamma_{\circ}\right\} . \tag{2.20}
\end{equation*}
$$

It is easy to see that V is closed and hence a Hilbert space with $\|\cdot\|_{1}$ norm

Figure 2.1:

We will use summation convention here afterwards. Let

$$
\begin{align*}
a(u, v) & =\int_{\Omega}\left(a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+a_{\circ} u v\right) d x \tag{2.21}\\
L(v) & =\int_{\Omega} f v d x+\int_{\Gamma} g v d \Gamma \tag{2.22}
\end{align*}
$$

where $a_{\circ}>0, a_{i j}$ are smooth and there exists two constants α_{\circ} and α_{1} such that

$$
\begin{equation*}
\alpha_{1} \xi_{i} \xi_{i} \geq a_{i j}(x) \xi_{i} \xi_{j} \geq \alpha_{\circ} \xi_{i} \xi_{i} \quad \text { for all } x \varepsilon \Omega, \xi \varepsilon \mathbb{R}^{n} \tag{2.23}
\end{equation*}
$$

i.e. the quadratic form $a_{i j}(x) \xi_{i} \xi_{j}$ is uniformly continuous and uniformly positive definite.

Inequality (2.23) implies that the bilinear form $a(\cdot, \cdot)$ is continuous and V-coercive. Formally we have

$$
\begin{equation*}
a(u, v)=\int_{\Omega}\left[-\frac{\partial}{\partial x_{j}}\left(a_{i j} \frac{\partial u}{\partial x_{i}}\right) v+a_{\circ} u v\right] d x+\int_{\Gamma} a_{i j} \frac{\partial u}{\partial x_{i}} n_{j} v d \Gamma \tag{2.24}
\end{equation*}
$$

21 Let

$$
\frac{\partial u}{\partial v_{A}}=a_{i j} \frac{\partial u}{\partial x_{i}} n_{j}
$$

and

$$
A u=-\frac{\partial}{\partial x_{j}}\left(a_{i j} \frac{\partial u}{\partial x_{i}}\right) .
$$

If $v \varepsilon \mathscr{D}(\Omega)$ then the equation

$$
\begin{equation*}
a(u, v)=L(v) \tag{2.25}
\end{equation*}
$$

becomes

$$
\langle A u, v\rangle=\langle f, v\rangle .
$$

Therefore

$$
\begin{equation*}
A u=f \quad \text { in } \quad \mathscr{D}^{\prime}(\Omega) \tag{2.26}
\end{equation*}
$$

Now for all $v \varepsilon V$, we have

$$
\begin{aligned}
a(u, v) & =\int_{\Omega} A u \cdot v+\int_{\Gamma} \frac{\partial u}{\partial v_{A}} v d \Gamma \\
& =\int_{\Omega} A u \cdot v+\int_{\Gamma_{1}} \frac{\partial u}{\partial v_{A}} v d \Gamma \\
L(v) & =\int_{\Omega} f v d x+\int_{\Gamma_{1}} g v d \Gamma .
\end{aligned}
$$

Equations (2.25) and (2.26 imply, for all $v \varepsilon V$,

$$
\int_{\Gamma_{1}} \frac{\partial u}{\partial v_{A}} v d \Gamma=\int_{\Gamma_{1}} g v d \Gamma .
$$

From this we obtain formally

$$
\begin{equation*}
\frac{\partial u}{\partial v_{A}}=g \quad \text { on } \quad \Gamma_{1} . \tag{2.27}
\end{equation*}
$$

Thus the boundary value problem corresponding to the variational $\mathbf{2 2}$ problem

$$
a(u, v)=L(v) \quad \text { for all } v \varepsilon V,
$$

with $a(\cdot, \cdot), L(\cdot)$ and V given by the equations (2.20 - 2.22) is

$$
\begin{array}{rlrlr}
A u & =f & & \text { in } & \Omega, \\
\frac{\partial u}{\partial v_{A}} & =g & & \text { on } & \Gamma_{1}, \tag{2.28}\\
u & =0 & & \text { on } & \\
\Gamma_{\circ} .
\end{array}
$$

REMARK 3. Even when f and g are smooth the solution u of the problem (2.28) may not be in $H^{2}(\Omega)$. In general, we will have a singularity at the transition points A, B on Γ. But if Γ_{\circ} and Γ_{1} make a corner then the solution u may be in $H^{2}(\Omega)$ provided that the boundary functions f, g satisfy some compatibility conditions. For regularity theorems the reader is referred to an article by PIERRE GIRSVARD [22].

EXERCISE 1. Transmission Problem. Let $\Omega, \Omega_{1}, \Omega_{2}$ be open sets such that $\Omega=\Omega_{1} \cup \Omega_{2} \cup S$ where Ω_{1} and Ω_{2} are disjoint subsets of Ω and S is the interface between them. Let

$$
\begin{aligned}
a(u, v) & =\sum_{i=1}^{2} \int_{\Omega_{i}} a_{i} \nabla u . \nabla v d x, \\
L(v) & =\int_{\Omega} f v d x,
\end{aligned}
$$

where $a_{i}>0, i=1,2$, and $f \varepsilon L^{2}(\Omega)$. If u is the solution of the problem

$$
a(u, v)=L(v) \text { for all } v \varepsilon H_{\circ}^{1}(\Omega),
$$

and

$$
u_{i}=\left.u\right|_{\Omega_{i}}, f_{i}=\left.f\right|_{\Omega_{i}}
$$

then show that

$$
\begin{aligned}
-a_{i} \Delta u_{i} & =f_{i} \quad \text { on } \quad \Omega_{i}, i=1,2 \\
u_{1} & =u_{2} \quad \text { on } \quad S \\
a_{1} \frac{\partial u_{1}}{\partial n} & =a_{2} \frac{\partial u_{2}}{\partial n} \quad \text { on } \quad S
\end{aligned}
$$

Figure 2.2:

EXERCISE 2. Fourier Condition. Let

$$
\begin{aligned}
V & =H^{1}(\Omega), \\
a(u, v) & =\int_{\Omega} \nabla u \cdot \nabla v d x+\int_{\Gamma} u v d \Gamma \\
L(v) & =\int_{\Omega} f v d x+\int_{\Gamma} g v d \Gamma
\end{aligned}
$$

What is the boundary value problem associated with this? Interpret the problem.

2.5 Elasticity Problem.

(a) 3-DIMENSIONAL CASE. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded, connected
open set. Let Γ be the boundary of Ω and let Γ be split into two parts Γ_{\circ} and Γ_{1}. Let Ω be occupied by an elastic medium, which we assume to be continuous. Let the elastic material be fixed along Γ_{\circ}. Let $\left(f_{i}\right)$ be the body force acting in Ω and $\left(g_{i}\right)$ be the pressure load acting along Γ_{1}. Let $\left(u_{i}(x)\right)$ denote the displacement at x.

Figure 2.3:

In linear elasticity the stress-strain relation is

$$
\begin{equation*}
\sigma_{i j .}(u)=\lambda(\operatorname{div} u) \delta_{i j}+2 \mu \varepsilon_{i j}(u), \varepsilon_{i j}(u)=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right), \tag{2.29}
\end{equation*}
$$

where $\sigma_{i j}$ and $\varepsilon_{i j}$ denote the components of the stress and strain tensors respectively.

The problem is to find $\sigma_{i j}$ and u_{i}, given $\left(f_{i}\right)$ in $\Omega,\left(g_{i}\right)$ on Γ_{1} and $\left(u_{i}\right)=0$ on Γ_{\circ}.

The equations of equilibrium are

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}} \sigma_{i j}+f_{i}=0 \quad \text { in } \quad \Omega, \tag{2.30}
\end{equation*}
$$

$$
\begin{align*}
\sigma_{i j} n_{j} & =g_{i} \quad \text { on } \quad \Gamma_{1}, i=1,2,3 \tag{2.30b}\\
u_{i} & =0 \quad \text { on } \quad \Gamma_{\circ} . \tag{2.30c}
\end{align*}
$$

We have used the summation convention in the above equations. We choose

$$
\begin{gather*}
v=\left\{v \varepsilon\left(H^{1}(\Omega)\right)^{3}: v=0 \quad \text { on } \quad \Gamma_{\circ}\right\}, \tag{2.31}\\
a(u, v)=\int_{\Omega} \sigma_{i j}(u) \varepsilon_{i j}(v) d x \tag{2.32}\\
L(v)=\int_{\Gamma_{1}} g_{i} v_{i} d \Gamma+\int_{\Omega} f_{i} v_{i} d x \tag{2.33}
\end{gather*}
$$

Using (2.29), $a(u, v)$ can be written as

$$
a(u, v)=\int_{\Omega}\left(\lambda \operatorname{div} u \cdot \operatorname{div} v+2 \mu \varepsilon_{i j}(u) \varepsilon_{i j}(v)\right) d x
$$

from which it is clear that $a(\cdot, \cdot)$ is symmetric. That $a(\cdot, \cdot)$ is V elliptic is a nontrivial statement and the reader can refer to CIARLET [9]. Formal application of Green's formula will show that the boundary value problem corresponding to the variational problem (2.31) - 2.33) is 2.30).
$a(\cdot, \cdot)$ can be interpreted as the internal work and $L(\cdot)$ as the work of the external loads. Thus, the equation

$$
a(u, v)=L(v) \quad \text { for all } v \varepsilon V
$$

is a reformulation of the theorem of virtual work.
(b) PLATE PROBLEM. Let 2η be the thickness of the plate. By allowing $\eta \rightarrow 0$ in (a) we obtain the equations for the plate problem. It will be a two dimensional problem.
We have to find the bending moments $M_{i j}$ and displacement $\left(u_{i}\right)$. These two satisfy the equations:

$$
\begin{equation*}
M_{i j}=\alpha \Delta u \delta_{i j}+\beta \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \tag{2.34}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial^{2} M_{i j}}{\partial x_{i} \partial x_{j}} & =f \tag{2.35}\\
& \text { in } \quad \Omega, \tag{2.36}\\
u & =0 \quad \text { on } \quad \Gamma,
\end{align*}
$$

and

$$
\begin{gather*}
\frac{\partial u}{\partial n}=0 \quad \text { if the plate is clamped } \tag{2.37}\\
M_{i j} n_{i} n_{j}=0 \quad \text { if the plate is simply supported } \tag{2.37a}
\end{gather*}
$$

We take

$$
V=\left\{\begin{align*}
H_{\circ}^{2}(\Omega)= & \left\{v \varepsilon H^{2}: V=\frac{\partial v}{\partial n}=0 \quad \text { on } \quad \Gamma\right\} \tag{2.38}\\
& \text { if the plate is clamped; } \\
H^{2}(\Omega) \cap & H_{\circ}^{1}(\Omega), \quad \text { if the plate is simply supported }
\end{align*}\right.
$$

Formally, using Green's formula we obtain

$$
\begin{align*}
\int_{\Omega} \frac{\partial^{2} M_{i j}}{\partial x_{i} \partial x_{j}} v d x= & -\int_{\Omega} \frac{\partial M_{i j}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x+\int_{\Gamma} \frac{\partial M_{i j}}{\partial x_{j}} v n_{i} d \Gamma \\
= & \int_{\Omega} M_{i j} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} d x-\int_{\Gamma} M_{i j} n_{j} \frac{\partial v}{\partial x_{i}} d \Gamma \\
& +\int_{\Gamma} \frac{\partial M_{i j}}{\partial x_{j}} v n_{i} d \Gamma \quad \text { for all } v \varepsilon V \tag{2.39}
\end{align*}
$$

But

$$
\int_{\Gamma} \frac{\partial M_{i j}}{\partial x_{j}} v n_{i} d \Gamma=0 \quad \text { for all } v \varepsilon V, \quad \text { since } \quad v=0 \quad \text { on } \quad \Gamma
$$

and

$$
\int_{\Gamma} M_{i j} n_{j} \frac{\partial v}{\partial x_{i}} d \Gamma=\int_{\Gamma} M_{i j} n_{j}\left(n_{i} \frac{\partial v}{\partial n}+s_{i} \frac{\partial v}{\partial s}\right) d \Gamma
$$

where $\partial v / \partial n$ denotes the normal derivative of v and $\partial v / \partial s$ denotes the tangential derivative. By (2.37) and 2.37a we have

$$
\int_{\Gamma} M_{i j} n_{j} \frac{\partial v}{\partial x_{i}} d \Gamma=0
$$

Hence

$$
\int_{\Omega} f v d x=\int_{\Omega} \frac{\partial^{2} M_{i j}}{\partial x_{i} \partial x_{j}} v d x=\int_{\Omega} M_{i j} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} d x \quad \text { for all } v \varepsilon V
$$

We therefore choose

$$
\begin{equation*}
a(u, v)=\int_{\Omega} M_{i j} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} d x=\int_{\Omega}\left(\alpha \Delta u . \Delta v+\beta \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}\right) d x \tag{2.39}
\end{equation*}
$$

and

$$
\begin{equation*}
L(v)=\int_{\Omega} f v d x \tag{2.40}
\end{equation*}
$$

$a(\cdot, \cdot)$ can be proved to be V-coercive if $\beta \geq 0$ and $\alpha \geq 0$.

REGULARITY THEOREM 4. When Ω is smooth and $f \varepsilon L_{2}(\Omega)$, then the solution u of the problem

$$
\begin{array}{rll}
-\Delta u & =f & \text { in } \quad \Omega, \\
u & =0 & \text { on } \quad \Gamma,
\end{array}
$$

28 belongs to $H^{2}(\Omega)$. Moreover, we have

$$
\|u\|_{2} \leq C\|f\|_{0}=C\|\Delta u\|_{0},
$$

where C is a constant.

This proves the coerciveness of $a(u, v)$ above for $\beta=0$ and $\alpha>0$.

2.6 Stokes Problem.

The motion of an incompressible, viscous fluid in a region Ω is governed by the equations

$$
\begin{array}{rll}
-\Delta u+\nabla p=f & \text { in } & \Omega, \\
\operatorname{div} u=0 & \text { in } & \Omega, \\
u=0 & \text { in } & \Gamma ; \tag{2.43}
\end{array}
$$

where $u=\left(u_{i}\right)_{i=1, \ldots, n}$ denotes the velocity of the fluid and p denotes the pressure. We have to solve for u and p, given f.

We impose the condition (2.42) in the space V itself. That is, we define

$$
\begin{equation*}
V=\left\{v \varepsilon\left(H_{\circ}^{1}(\Omega)\right)^{n}: \operatorname{div} v=0\right\} \tag{2.44}
\end{equation*}
$$

Taking the scalar product on both sides of equation (2.41) with $v \varepsilon V$ and integrating, we obtain

$$
\int_{\Omega} f . v d x=\int_{\Omega} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial v_{i}}{\partial x_{j}},
$$

since

$$
\begin{aligned}
-\int_{\Omega} v . \Delta u & =-\int_{\Omega} v_{j} \frac{\partial^{2} u_{j}}{\partial x_{i} \partial x_{i}} \\
& =\int_{\Omega} \frac{\partial v_{j}}{\partial x_{i}} \cdot \frac{\partial u_{j}}{\partial x_{i}}-\int_{\Gamma} v_{j} \frac{\partial u_{j}}{\partial x_{i}} n_{i},
\end{aligned}
$$

and

$$
\int_{\Omega} \nabla p \cdot v=\int_{\Omega} \frac{\partial p}{\partial x_{i}} v_{i}=-\int_{\Omega} p \frac{\partial v_{i}}{\partial x_{i}}+\int_{\Gamma} p v_{i} n_{i}=0
$$

as $v \varepsilon V$. Therefore we define

$$
\begin{equation*}
a(u, v)=\int_{\Omega} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial v_{i}}{\partial x_{j}} d x \tag{2.45}
\end{equation*}
$$

$$
\begin{equation*}
L(v)=\int_{\Omega} f \cdot v d x . \tag{2.46}
\end{equation*}
$$

We now have the technical lemma.
LEMMA 5. The space

$$
\vartheta=\left\{v \varepsilon(\mathscr{D}(\Omega))^{n}: \operatorname{div} v=0\right\}
$$

is dense in V.
The proof of this Lemma can be found in LADYZHENSKAYA [27].
The equation $a(u, v)=L(v)$ for all $v \varepsilon V$ with $a(),, L(), v$ defined by (2.44) - (2.46) is then equivalent to

$$
\begin{equation*}
\langle\Delta u+f, \phi\rangle=0 \quad \text { for all } \phi \varepsilon \vartheta, \tag{2.47}
\end{equation*}
$$

where \langle,$\rangle denotes the duality bracket between \left(\mathscr{D}^{\prime}(\Omega)\right)^{n}$ and $(\mathscr{D}(\Omega))^{n}$. Notice that (2.46) is not valid for all $\phi \varepsilon(\mathscr{D}(\Omega))^{n}$ since $(\mathscr{D}(\Omega))^{n}$ is not contained in ϑ. To prove conversely that the solution of (2.46) satisfies (2.41), we need

THEOREM 6. The annihilator ϑ^{\perp} of ϑ in $\left(\mathscr{D}^{\prime}(\Omega)\right)^{n}$ is given by $\vartheta^{\perp}=$ $\left\{v\right.$: there exists a $p \varepsilon \mathscr{D}^{\prime}(\Omega)$ such that $\left.v=\nabla p\right\}$.

Theorem 2.6 and Equation (2.46) imply that there exists a $p \varepsilon \mathscr{D}^{\prime}(\Omega)$ such that

$$
\Delta u+f=\Delta p .
$$

Since

$$
u \varepsilon\left(H^{1}(\Omega)\right)^{n} \quad \text { and } \quad f \varepsilon\left(L^{2}(\Omega)\right)^{n}, \Delta u+f \varepsilon\left(H^{-1}(\Omega)\right)^{n} .
$$

Therefore

$$
\nabla p \varepsilon\left(H^{-1}(\Omega)\right)^{n} .
$$

We now state
THEOREM 7. If $p \varepsilon \mathscr{D}^{\prime}(\Omega)$ and $\nabla p \varepsilon\left(H^{-1}(\Omega)\right)^{n}$, then $p \varepsilon L^{2}(\Omega)$ and

$$
\|p\|_{L^{2}(\Omega) / \mathbb{R}} \leq C\|\nabla p\|_{\left(H^{-1}(\Omega)\right)^{n}}
$$

where C is a constant.

From this Theorem we obtain that $p \varepsilon L^{2}(\Omega)$. Thus, if $f \varepsilon L^{2}(\Omega)$ and Ω is smooth, we have proved that the problem (2.44) - (2.46) has a solution $u \varepsilon V$ and $p \varepsilon L^{2}(\Omega)$.

Chapter 3

Conforming Finite Element Methods

IN CHAPTER 2 WE dealt with the abstract variational problems and some examples. In all our examples the function space V is infinite dimensional. Our aim is to approximate V by means of finite dimensional subspaces V_{h} and study the problem in V_{h}. Solving the variational problem in V_{h} will correspond to solving some system of linear equations. In this Chapter we will study an error estimate, the construction of V_{h} and examples of finite elements.

3.1 Approximate Problem.

The abstract variational problem is:

$$
\begin{equation*}
\text { find } u \varepsilon V \text { such that } a(u, v)=L(v) . \quad \text { for all } v \varepsilon V \tag{3.1}
\end{equation*}
$$

where $a(\cdot, \cdot), L(\cdot), V$ are as in Chapter 2
Let V_{h} be a finite dimensional subspace of V. Then the approximate problem corresponding to (3.1) is:

$$
\begin{equation*}
\text { find } u_{h} \varepsilon V_{h} \text { such that } a\left(u_{h}, v\right)=L(v) \quad \text { for all } v \varepsilon V_{h} \tag{3.2}
\end{equation*}
$$

By the Lax-Milgram Lemma (Chapter 2 Theorem 2.1), (3.2) has a unique solution.

Let dimension $\left(V_{h}\right)=N(h)$ and let $\left(w_{i}\right)_{i=1, \ldots, N(h)}$ be a basis of V_{h}. Let

$$
u_{h}=\sum_{i=1}^{N(h)} u_{i} w_{i}, v_{h}=\sum_{j=1}^{N(h)} v_{j} w_{j}
$$

where $u_{i}, v_{j} \varepsilon \mathbb{R}, 1 \leq i, j \leq N(h)$. Substituting these in (3.2), we obtain

$$
\begin{equation*}
\sum_{i, j=1}^{N(h)} u_{i} v_{j} a\left(w_{i}, w_{j}\right)=\sum_{j=1}^{N(h)} L\left(w_{j}\right) v_{j} \tag{3.3}
\end{equation*}
$$

Let

$$
A^{T}=\left(a\left(w_{i}, w_{j}\right)\right)_{i, j}, U=\left(u_{i}\right)_{i}, V=\left(v_{i}\right)_{i}, b=\left(L\left(w_{i}\right)\right)_{i}
$$

Then (3.3) can be written as

$$
V^{T} A U=V^{T} b
$$

This is true for all $V \varepsilon \mathbb{R}^{N(h)}$. Hence

$$
\begin{equation*}
A U=b \tag{3.4}
\end{equation*}
$$

If the linear system (3.4 is solved, then we know the solution u_{h} of (3.2). This approximation method is called the Rayleigh-Galerkin method.
A is positive definite since

$$
\begin{aligned}
V^{T} A V & =\sum_{i, j=1}^{N(h)} a\left(w_{i}, w_{j}\right) v_{i} v_{j}=a\left(\sum_{i=1}^{N(h)} w_{i} v_{i}, \sum_{j=1}^{N(h)} w_{j} v_{j}\right) \\
& \geq \alpha\left\|\sum v_{i} w_{i}\right\|^{2} \quad \text { for all } V \varepsilon \mathbb{R}^{N(h)}
\end{aligned}
$$

A is symmetric if the bilinear form $a(\cdot, \cdot)$ is symmetric.
From the computational point of view it is desirable to have A as a sparse matrix, i.e. A has many zero elements. Usually $a(\cdot, \cdot)$ will be given by an integral and the matrix A will be sparse if the support of the basis functions is "small". For example, if

$$
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x
$$

then $a\left(w_{i}, w_{j}\right)=0$ if Supp $w_{i} \cap \operatorname{Supp} w_{j}=\phi$.
Now we will prove a theorem regarding the error committed when the approximate solution u_{h} is taken instead of the exact solution u.

THEOREM 1. If u and u_{h} denote the solutions of (3.1) and (3.2) respectively, then we have

$$
\left\|u-u_{h}\right\|_{V} \leq C \inf _{v_{h} \varepsilon V_{h}}\left\|u-v_{h}\right\|_{V}
$$

Proof. We have

$$
\begin{array}{cl}
a(u, v)=L(v) & \text { for all } v \varepsilon V \\
a\left(u_{h}, v\right)=L(v) & \text { for all } v \varepsilon V_{h}
\end{array}
$$

so

$$
\begin{equation*}
a\left(u-u_{h}, v\right)=0 \quad \text { for all } v \varepsilon V_{h} \tag{3.5}
\end{equation*}
$$

By the V-coerciveness of $a(\cdot, \cdot)$ we obtain

$$
\begin{aligned}
\left\|u-u_{h}\right\|^{2} & \leq 1 / \alpha a\left(u-u_{h}, u-u_{h}\right) \\
& =1 / \alpha a\left(u-u_{h}, u-v+v-u_{h}\right), \quad \text { for all } v \varepsilon V_{h} \\
& =1 / \alpha a\left(u-u_{h}, u-v\right), \quad \text { by (3.5) } \\
& \leq M / \alpha\left\|u-u_{h}\right\|\|u-v\|
\end{aligned}
$$

This proves the theorem with $C=M / \alpha$.

3.2 Internal Approximation of $H^{1}(\Omega)$.

Let $\Omega \subset \mathbb{R}^{2}$ be a polygonal domain. Let T_{h} be a triangulation of Ω : that is T_{h} a finite collection of triangles such that

$$
\bar{\Omega}=\bigcup_{K \varepsilon T_{h}} \bar{K} \quad \text { and } \quad K \cap K^{\prime}=\phi \quad \text { for } \quad K, K^{\prime} \varepsilon T_{h}, K \neq K^{\prime} .
$$

Let $P(K)$ be a function space defined on K such that $P(K) \subset H^{1}(K)$. Usually we take $P(K)$ to be the space of polynomials of some degree. We have

THEOREM 2. If

$$
V_{h}=\left\{v_{h} \varepsilon C^{\circ}(\Omega):\left.v_{h}\right|_{K} \varepsilon P(K), K \varepsilon T_{h}\right\}
$$

where $P(K) \subset H^{1}(K)$, then $V_{h} \subset H^{1}(\Omega)$.
Proof. Let $u \varepsilon V_{h}$ and v_{i} be a function defined on Ω such that $\left.v_{i}\right|_{K}=$ $\frac{\partial}{\partial x_{i}}\left(\left.u\right|_{K}\right)$. This makes sense since $\left.u\right|_{K} \varepsilon H^{1}(K)$. Moreover $v_{i} \varepsilon L^{2}(\Omega)$, since $\left.v_{i}\right|_{K}=\frac{\partial}{\partial x_{i}}\left(\left.u\right|_{K}\right) \varepsilon L^{2}(K)$. We will show that $v_{i}=\frac{\partial u}{\partial x_{i}}$ in $\mathscr{D}^{\prime}(\Omega)$.

For any $\phi \varepsilon \mathscr{D}(\Omega)$, we have

$$
\begin{aligned}
\left\langle v_{i}, \phi\right\rangle & =\int_{\Omega} v_{i} \phi d x=\sum_{K \varepsilon T_{h}} \int_{K} v_{i} \phi d x=\sum_{K \varepsilon T_{h}} \int_{K} \frac{\partial}{\partial x_{i}}\left(\left.u\right|_{K}\right) \phi d x \\
& =\sum_{K \varepsilon T_{h}}-\int_{K}\left(\left.u\right|_{K}\right) \frac{\partial \phi}{\partial x_{i}} d x+\int_{K}\left(\left.u\right|_{K}\right) \phi n_{i}^{K} d \Gamma,
\end{aligned}
$$

where n_{i}^{K} is the $i^{\text {th }}$ component of the outward drawn normal to ∂K. So

$$
\begin{equation*}
\left\langle v_{i}, \phi\right\rangle=-\int_{\Omega} u \frac{\partial \phi}{\partial x_{i}} d x+\sum_{K \varepsilon T_{h}} \int_{\partial K}\left(\left.u\right|_{K}\right) \phi n_{i}^{K} d \Gamma \tag{3.6}
\end{equation*}
$$

The second term on the right hand side of $\sqrt{3.6}$ is zero since u is continuous in Ω and if K_{1} and K_{2} are two adjacent triangles then $n_{i}^{K_{1}}=$ $-n_{i}^{K_{2}}$. Therefore

$$
\left\langle v_{i}, \phi\right\rangle=-\int_{\Omega} u \cdot \frac{\partial \phi}{\partial x_{i}} d x=\left\langle\frac{\partial u}{\partial x_{i}}, \phi\right\rangle
$$

which implies

$$
v_{i}=\frac{\partial u}{\partial x_{i}} \quad \text { in } \mathscr{D}^{\prime}(\Omega) .
$$

Hence $u \varepsilon H^{1}(\Omega)$. Thus $V_{h} \subset H^{1}(\Omega)$.
We assume that the triangulation T_{h} is such that if $K_{1}, K_{2} \varepsilon T_{h}$ are distinct, then either $\bar{K}_{1} \cap \bar{K}_{2}$ is empty or equal to the common edge of
the triangles K_{1} and K_{2}. By this assumption we eliminate the possibility of a triangulation as shown in figure.

Figure 3.1:

Construction of V_{h}.
Let Ω be a polygonal domain and T_{h} be a triangulation of Ω, where

$$
h=\max _{K \varepsilon T_{h}} \quad(\text { diameter of } K)
$$

Figure 3.2:

Let

$$
\begin{equation*}
N(h)=\# \text { nodes of the triangulation } \tag{3.8}
\end{equation*}
$$

$P(K)=P_{1}(K)=$ polynomial of degree less than or equal to

Let

$$
\begin{equation*}
V_{h}=\left\{v_{h}:\left.v_{h}\right|_{K} \varepsilon P_{1}(K), K \varepsilon T_{h}\right\} \tag{3.10}
\end{equation*}
$$

We know that a polynomial of degree 1 in x and y is uniquely determined if its values on three non-collinear points are given. Using this we construct a basis for V_{h}. A function in V_{h} is uniquely determined if its value at all the nodes of the triangulation is given. Let the nodes of the triangulation be numbered $\{1,2, \ldots, N(h)\}$. Let $W_{i} \varepsilon V_{h}$ be

$$
w_{i}= \begin{cases}1 & \text { at the } i^{\text {th }} \text { node } \tag{3.11}\\ 0 & \text { at other nodes }\end{cases}
$$

It is easy to see that w_{i} are linearly independent. If $v \varepsilon V_{h}$, then

$$
\begin{equation*}
v=\sum_{i=1}^{N(h)} v_{i} w_{i} \tag{3.12}
\end{equation*}
$$

where v_{i} the value of v at the $i^{t h}$ node. This proves that $\left\{w_{i}\right\}_{1, \ldots, N(h)}$ is a basis of V_{h} and dimension of $V_{h}=N(h)$.

Moreover, Supp $w_{i} \subset \cup \bar{K}$, where the union is taken over all the triangles whose one of the vertices is the $i^{t h}$ node.

Hence if $i^{\text {th }}$ node and $j^{t h}$ node are not the vertices of a triangle K, for any $K \varepsilon T_{h}$, then

$$
\text { Supp } w_{i} \cap \operatorname{Supp} w_{j}=\phi .
$$

We will show that V_{h} given by (3.10 is contained in $C^{\circ}(\bar{\Omega})$. Let $v \varepsilon V_{h}$ and let $K_{1}, K_{2} \varepsilon T_{h}$ be adjacent triangles. Let ' ℓ ' be the side common to both K_{1} and $K_{2} .\left.v\right|_{K_{1}}$ and $\left.V\right|_{K_{2}}$ are polynomials of degree less than or equal to one in x and y. Let \tilde{v}_{1} and \tilde{v}_{2} be the extensions of $\left.v\right|_{K_{1}}$ and $\left.v\right|_{K_{2}}$ to \bar{K}_{1} and \bar{K}_{2} respectively. $\left.\tilde{v}_{1}\right|_{\ell}$ and $\left.\tilde{v}_{2}\right|_{\ell}$ can be thought of as a polynomial of degree less than or equal to one in a single variable and hence can be determined uniquely if their values at two distinct points the common vertices of K_{1} and K_{2}. Hence $\left.\tilde{v}_{1}\right|_{\ell}=\left.\tilde{v}_{2}\right|_{\ell}$. This proves that v is continuous across K_{1} and K_{2}. Thus $v \varepsilon C^{\circ}(\bar{\Omega})$. Hence $V_{h} \subset C^{\circ}(\bar{\Omega})$.

Using the theorem 3.2 we conclude that $V_{h} \subset H^{1}(\Omega)$. When we impose certain restrictions on T_{h}, it is possible to prove that $d\left(u, V_{h}\right) \rightarrow$ 0 as $h \rightarrow 0$ where $d\left(u, V_{h}\right)$ is the distance between the solution u of (3.1) and the finite dimensional space V_{h}. The reader can refer to CIARLET [9]. Thus V_{h} "approximates" $H^{1}(\Omega)$.

The finite element method and the finite difference scheme are the "same" when the triangulation is uniform. For elliptic problems the finite element method gives better results than the finite difference scheme.

3.3 Finite Elements of Higher Degree.

DEFINITION. Let K be a triangle with vertices $\left(a_{i}, i=1,2,3\right)$. Let the coordinates of a_{i} be $a_{i j}, j=1,2$. For any $x \in \mathbb{R}$, the barycentric coordinates $\lambda_{i}(x), i=1,2,3$, of x are defined to be the unique solution of the linear system

$$
\begin{align*}
\sum_{i=1}^{3} \lambda_{i} a_{i j} & =x_{j}, j=1,2 \\
\sum_{i=1}^{3} \lambda_{i} & =1 \tag{3.13}
\end{align*}
$$

Notice that the determinant of the coefficient matrix of the system (3.13) is twice the area of the triangle K. It is easy to see that the barycentric coordinates of a_{1}, a_{2}, a_{3} are $(1,0,0),(0,1,0)$ and $(0,0,1)$ respectively. The barycentric coordinate of the centroid G of K is $(1 / 3$, $1 / 3,1 / 3$).

Using Cramer rule we find from (3.13) that

$$
\lambda_{1}=\frac{\left|\begin{array}{ccc}
x_{1} & a_{21} & a_{31} \\
x_{2} & a_{22} & a_{32} \\
1 & 1 & 1
\end{array}\right|}{\left|\begin{array}{ccc}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
1 & 1 & 1
\end{array}\right|}
$$

$$
\text { i.e. } \begin{array}{rlr}
\lambda_{1} & =\frac{\text { area of the triangle }}{} \quad x a_{2} a_{3} \\
\text { area of the triangle } & a_{1} a_{2} a_{3} \\
\text { Similarly, } \lambda_{2} & =\frac{\text { area of the triangle }}{} a_{1} x a_{3} \\
\text { area of the triangle } & a_{1} a_{2} a_{3} \\
\lambda_{3} & =\text { area of the triangle } & a_{1} a_{2} x \\
\text { area of the triangle } & a_{1} a_{2} a_{3}
\end{array}
$$

This geometric interpretation of the barycentric coordinates will be helpful in specifying the barycentric coordinates of a point. For example, the equation of the side $a_{2} a_{3}$ in barycentric coordinates is $\lambda_{1}=0$.
40 DEFINITION. A finite element is a triple $\left(K, P_{K}, \Sigma_{K}\right)$, where K is a polyhedron, P_{K} is polynomial space whose dimension is m and \sum_{K} is a set of distributions, whose cardinality is m. Further $\sum_{K}=\left\{L_{i} \varepsilon \mathscr{D}^{\prime} ; i=\right.$ $1,2, \ldots, m\}$ is such that for given $d_{i} \varepsilon \mathbb{R}, 1 \leq i \leq m$, the equations

$$
L_{i}(p)=d_{i}, 1 \leq i \leq m
$$

have a unique solution $p \varepsilon P_{K}$.
The elements L_{i} are called degree of freedom of P.
EXAMPLE 1. (Finite Element of Degree 1). Let $K=a$ triangle,

$$
\begin{aligned}
P_{K}=P_{1}(K) & =\text { Polynomials of degree } \leq 1 \\
& =\text { Span }\{1, x, y\}
\end{aligned}
$$

$\operatorname{dim} P_{K}=3$,
$\sum_{K}=\left\{\delta_{a_{i}}: a_{i}\right.$ vertices, $\left.i=1,2,3\right\}$,
where $\delta_{a_{i}}$ denotes the dirac mass at the point a_{i}. Then $\left(K, P_{K}, \sum_{K}\right)$ is a finite element.

Figure 3.3:

This follows from the fact that $p \varepsilon P_{1}(K)$ is uniquely determined if its values at three non collinear points are given.

$$
\delta_{a_{i}}\left(\lambda_{j}\right)=\lambda_{j}\left(a_{i}\right)=\delta_{i j}
$$

Hence $\lambda_{j}, j=1,2,3$, form a basis for $P_{1}(K)$ and if $p \varepsilon P_{1}(K)$ then

$$
p=\sum_{i=1}^{3} p\left(a_{i}\right) \lambda_{i}
$$

REMARK 1. In the definition, dimension of P_{K} is m and we require that the equations
$L_{i}(p)=d_{i}, 1 \leq i \leq m$, for given $d_{i} \varepsilon \mathbb{R}$ have a solution. So, in examples, to prove existence we have to prove only uniqueness. To prove the uniqueness it is enough to show that

$$
L_{i}(p)=0,1 \leq i \leq m, \quad \text { implies } \quad p \equiv 0 .
$$

REMARK 2. If $p_{j} \varepsilon P_{K}, 1 \leq j \leq m$, are such that

$$
L_{i}\left(p_{j}\right)=\delta_{i j}, 1 \leq i \leq m, 1 \leq j \leq m
$$

then $\left\{p_{j}\right\}$ form a basis for P_{K} and any $p \varepsilon P_{K}$ can be written as

$$
p=\sum_{i=1}^{m} L_{i}(p) P_{i}
$$

EXAMPLE 2. (Finite Element of Degree 2). Let $K=a$ triangle,

$$
\begin{aligned}
& P_{K}=P_{2}(K)=\quad \operatorname{Span} \quad\left\{1, x, y, x^{2}, x y, y^{2}\right\} \\
& \sum_{K}=\left\{\delta_{a_{i}}, 1 \leq i \leq 3, \delta_{a_{i j}}: 1 \leq i<j \leq 3\right\}
\end{aligned}
$$

where a_{i} denote the vertices of K and $a_{i j}$ denote the mid point of the side $a_{i} a_{j}$.

Figure 3.4:

The equations of the lines $a_{3} a_{2}$ and $a_{13} a_{12}$ are $\lambda_{1}=0$ and $\lambda_{1}=1 / 2$ respectively. Hence the function $\lambda_{1}\left(\lambda_{1}-1 / 2\right)$ vanishes at the points $a_{2}, a_{3}, a_{12}, a_{23}, a_{13}$. The value of $\lambda_{1}\left(\lambda_{1}-1 / 2\right)$ at a_{1} is $1 / 2$. Hence $\lambda_{1}\left(2 \lambda_{1}-1\right)$ takes the value 1 at a_{1} and 0 at other nodes.

The equations of the lines $a_{1} a_{3}$ and $a_{2} a_{3}$ are $\lambda_{2}=0$ and $\lambda_{1}=0$ respectively. Therefore the function $\lambda_{1} \lambda_{2}$ vanishes at $a_{1}, a_{2}, a_{13}, a_{23}, a_{3}$ and takes the value $1 / 4$ at a_{12}. Thus $4 \lambda_{1} \lambda_{2}$ is 1 at a_{12} and zero at the other nodes.

Thus any $p \varepsilon P_{2}(K)$ can be written in the form

$$
p=\sum_{i=1}^{3} p\left(a_{i}\right) \lambda_{i}\left(2 \lambda_{i}-1\right)+\sum_{\substack{i<j \\ i, j=1}}^{3} 4 p\left(a_{i j}\right) \lambda_{i} \lambda_{j}
$$

EXAMPLE 3. (Finite Element of Degree 3). Let $K=a$ triangle,

$$
P_{K}=P_{3}(K)=\quad \text { Span }\left\{1, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{2}, y^{3}\right\}
$$

Thus $\operatorname{dim} P_{3}=10$.

$$
\sum_{K}=\left\{\delta_{a_{i}}, 1 \leq i \leq 3 ; \delta_{a_{i i j}} 1 \leq i \leq j \leq 3, \delta_{a_{123}}\right\}
$$

where a_{i} denote the vertices of K and $a_{i i j}=\frac{2}{3} a_{i}+\frac{1}{3} a_{j}$.

Figure 3.5:
It is easy to see that

$$
\begin{aligned}
p_{i} & =1 / 2 \lambda_{i}\left(3 \lambda_{i}-1\right)\left(3 \lambda_{i}-2\right), \\
p_{i i j} & =9 / 2 \lambda_{i} \lambda_{j}\left(3 \lambda_{i}-1\right), \\
p_{123} & =27 \lambda_{1} \lambda_{2} \lambda_{3},
\end{aligned}
$$

$1 \leq i, j \leq 3$, is a basis of $P_{3}(K)$.
Moreover, p_{i} is 1 at the node a_{i} and zero at the other nodes; $p_{i i j}$ is 1 at the node $a_{i i j}$ and vanishes at the other nodes; p_{123} is zero at all nodes except a_{123} where its value is 1 .

REMARK 3. In the above three examples \sum_{K} contains only Dirac masses and not derivatives of Dirac masses. All the above three finite elements are called Lagrange finite elements.

Let Ω be a polygonal domain and let T_{h} be a triangulation of Ω, i.e. $\bar{\Omega}=\bigcup_{K \varepsilon T_{h}} \bar{K}$. Let $P_{K}=P_{\ell}(K)$ consists of polynomials of degree $\leq \ell$. Let $\left(K, P_{K}, \sum_{K}\right)$ be a finite element for each $K \varepsilon T_{h}$. Let $\sum_{h}=\bigcup_{K \varepsilon T_{h}} \sum_{K}$ and

$$
V_{h}=\left\{v_{h}:\left.v_{h}\right|_{K} \varepsilon P_{K}, K \varepsilon T_{h}\right\}
$$

From the definition of finite element it follows that a function in V_{h} 44 is uniquely determined by the distributions in \sum_{h}.

REMARK 4. In the example
$\sum_{h}=\left\{\delta_{a_{i}}: a_{i}\right.$ is a vertex of a triangle in the triangulation $\}$. We proved in Sec. 3.2 that $V_{h} \subset H^{1}(\Omega)$. In this case we say that the finite element is conforming.

REMARK 5. The V_{h} so constructed above need not be contained in $H^{1}(\Omega)$. If $V_{h} \not \subset H^{1}(\Omega)$ we say that the finite element method is nonconforming.

Let K be a triangle, $P_{K}=P_{1}(K)$ and

$$
\sum_{K}=\left\{\delta_{a_{i j}}: 1 \leq i<j \leq 3\right\} .
$$

Then $\left(K, P_{K}, \Sigma_{K}\right)$ will be a finite element, but the space $V_{h} \not \subset H^{1}(\Omega)$.

Figure 3.6:

When $\left(K, P_{K}, \sum_{K}\right)$ is as in Example 2 we will prove that $V_{h} \subset$ $C^{\circ}(\bar{\Omega})$. This together with theorem 3.2 implies $V_{h} \subset H^{1}(\Omega)$. Thus the finite element in Example 2 is conforming.

To prove that $V_{h} \subset C^{\circ}(\bar{\Omega})$, let K_{1} and K_{2} be two adjacent triangles in the triangulation.

Figure 3.7:

A polynomial of degree 2 in x and y when restricted to a line in the plane is a polynomial of degree 2 in a single variable and hence can be determined on the line if the value of the polynomial at three distinct points on the line are known. Let $v_{h} \varepsilon V_{h}$. Let \tilde{v}_{1} and \tilde{v}_{2} be the continuous extension of $\left.v_{h}\right|_{K_{1}}$ and $\left.v_{h}\right|_{K_{2}}$ to \bar{K}_{1} and \bar{K}_{2} respectively; \tilde{v}_{1} and \tilde{v}_{2} are polynomials of degree 2 in one variable along the common side; \tilde{v}_{1} and \tilde{v}_{2} agree at the two common vertices and at the midpoint of the common side. Hence $\tilde{v}_{1}=\tilde{v}_{2}$ on the common side. This shows v_{h} is continuous. Hence $V_{h} \subset C^{\circ}(\bar{\Omega})$.

Exercise 1. Taking $\left(K, P_{K}, \Sigma_{K}\right)$ as in Example 3] show that $V_{h} \subset H^{1}(\Omega)$.

3.4 Internal Approximation of $H^{2}(\Omega)$.

In this section we give an example of a finite element which is such that the associated space V_{h} is contained in $H^{2}(\Omega)$. This finite element can be used to solve some fourth order problems. We need

THEOREM 3. If $V_{h}=\left\{v_{h}:\left.v_{h}\right|_{K} \varepsilon P_{K} \subset H^{2}(K)\right.$, for all $\left.K \varepsilon T_{h}\right\}$ is contained in $C^{1}(\bar{\Omega})$ then V_{h} is contained in $H^{2}(\Omega)$.

The proof of this theorem is similar to that of theorem 2 of this section.

EXAMPLE 4. Let K be a triangle

$$
\begin{aligned}
P_{K} & =P_{3}(K)=\quad \text { Span } \quad\left\{1, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{2}, y^{3}\right\} \\
\sum_{K} & =\left\{\delta_{a_{i}}, \frac{\partial}{\partial x} \delta_{a_{i}}, \frac{\partial}{\partial y} \delta_{a_{i}}, \delta_{a_{123}}, 1 \leq i \leq 3\right\}
\end{aligned}
$$

where a_{i} are vertices of K, a_{123} is the centroid of K and

$$
\operatorname{dim} P_{K}=\operatorname{Card} \sum_{K}=10
$$

Figure 3.8:

The arrows in the figure denote that the values of the derivatives at the vertices are given. Using the formula

$$
\begin{aligned}
p= & \sum_{i=1}^{3}\left(-2 \lambda_{i}^{3}+3 \lambda_{i}^{2}-7 \lambda_{1} \lambda_{2} \lambda_{3}\right) p\left(a_{i}\right)+27 \lambda_{1} \lambda_{2} \lambda_{3} p\left(a_{123}\right) \\
& +\sum_{1 \leq i<j \leq 3} \lambda_{i} \lambda_{j}\left(2 \lambda_{i}+\lambda_{j}-1\right) D p\left(a_{i}\right)\left(a_{j}-a_{i}\right) \quad \text { for all } p \varepsilon P_{3}
\end{aligned}
$$

where

$$
D p\left(a_{i}\right)=\left(\frac{\partial p}{\partial x}\left(a_{i}\right), \frac{\partial p}{\partial y}\left(a_{i}\right)\right)
$$

We obtain that $p \equiv 0$ if

$$
p\left(a_{i}\right)=p\left(a_{123}\right)=\frac{\partial p}{\partial x}\left(a_{i}\right)=\frac{\partial p}{\partial y}\left(a_{i}\right)=0,1 \leq i \leq 3 .
$$

Hence $\left(K, P_{K}, \sum_{K}\right)$ is a finite element.
The corresponding V_{h} is in $C^{\circ}(\bar{\Omega})$ but not in $C^{1}(\bar{\Omega})$. This shows that $V_{h} \not \subset H^{2}(\Omega)$. Hence this is not a conforming finite element for fourth order problems.

We now give an example of a finite element with $V_{h} \subset H^{2}(\Omega)$.
EXAMPLE 5. The Argyris Triangle. The Argyris triangle has 21 degrees of freedom. Here the values of the polynomial, its first and second derivatives are specified at the vertices; the normal derivative is given at the mid points.

In the figure we denote the derivatives by circles and normal derivative by a straight lines.

Figure 3.9:

We take $P_{K}=P_{5}=$ Space of polynomials of degree less than or
equal to5.

$$
\begin{gathered}
\operatorname{dim} P_{K}=21 \\
\sum_{K}=\left\{\delta_{a_{i}}, \frac{\partial}{\partial x} \delta_{a_{i}}, \frac{\partial}{\partial y} \delta_{a_{i}}, \frac{\partial^{2}}{\partial x^{2}} \delta_{a_{i}}\right.
\end{gathered}
$$

$$
\left.\frac{\partial^{2}}{\partial x \partial y} \delta_{a_{i}}, \frac{\partial^{2}}{\partial y^{2}} \delta_{a_{i}}, 1 \leq i \leq 3, \frac{\partial}{\partial n} \delta_{a_{i j}} 1 \leq i<j \leq 3\right\}
$$

where a_{i} denote the vertices of $K, a_{i j}$ the midpoint of the line joining a_{i} and a_{j}, and $\partial / \partial n$, the normal derivative.

Let $p \varepsilon P_{K}$ be such that $L(p)=0, L \varepsilon \sum_{K}$ We will prove that $p=0$ in $K . p$ is a polynomial of degree 5 in one variable along the side $a_{1} a_{2}$. By assumption p, and its first and second derivatives vanish at a_{1} and a_{2}. Hence $p=0$ along $a_{1} a_{2}$. Consider $\partial p / \partial n$ along $a_{1} a_{2}$. By assumption $\partial p / \partial n$ vanishes at $a_{1} a_{2}$ and a_{12}. Since the second derivatives of p vanish at a_{1}, a_{2} we have the first derivatives of $\partial p / \partial n$ vanish at a_{1} and $a_{2} ; \partial p / \partial n$ is polynomial of degree 4 in one variable along $a_{1} a_{2}$. Hence $\partial p / \partial n=0$ along $a_{1} a_{2}$. Since $p=0$ along $a_{1} a_{2}, \partial p / \partial \tau=0$ along $a_{1} a_{2}$, where $\partial / \partial \tau$ denote the tangential derivative, i.e. derivative along $a_{1} a_{2}$. Therefore we have p and its first derivatives zero along $a_{1} a_{2}$.

Figure 3.10:

The equation of $a_{1} a_{2}$ is $\lambda_{3}=0$. Hence we can choose a line perpendicular to $a_{1} a_{2}$ as the λ_{3} axis. Let τ denote the variable along $a_{1} a_{2}$. Changing the coordinates from (x, y) to $\left(y_{3}, \tau\right)$ we can write the polynomial p as

$$
p=\sum_{i=0}^{5} \lambda_{3}^{i} q_{i}(\tau)
$$

where $q_{i}(\tau)$ is a polynomial in τ of degree $\leq 5-i$. Now

$$
\frac{\partial p}{\partial \lambda_{3}}=\sum_{i=1}^{5} i \lambda_{3}^{i-1} q_{i}(\tau)
$$

Since p and its first derivatives vanish along $a_{1} a_{2}$ we have

$$
\begin{aligned}
& 0=p(0, \tau)=q_{\circ}(\tau), \\
& 0=\frac{\partial p}{\partial \lambda_{3}}(0, \tau)=q_{1}(\tau)
\end{aligned}
$$

Hence

$$
p=\lambda_{3}^{2} \sum_{i=2}^{5} \lambda_{3}^{i-2} q_{i}(\tau)
$$

Thus λ_{3}^{2} is a factor of p. By taking the other sides we can prove that λ_{1}^{2} and λ_{2}^{2} are also factors of p. Thus

$$
p=c \lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2}
$$

But $\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2}$ is a polynomial of degree 6 which does not vanish identically in K and p is a polynomial of degree 5 . Hence $c=0$. Therefore $p \equiv 0$ in K. Thus $\left(K, P_{K}, \sum_{K}\right)$ is a finite element with 21 degrees of freedom.

THEOREM 4. If V_{h} is the space associated with the Argyris finite element, then $V_{h} \subset C^{1}(\bar{\Omega})$.

Proof. Let K_{1}, K_{2} be two adjacent finite elements in the triangulation. Let $v \varepsilon V_{h}$ and let $p_{1}=\left.\underline{v}\right|_{K_{1}}, p_{2}=\left.v\right|_{K_{2}}$. We denote the continuous extensions of p_{1} and p_{2} to \bar{K}_{1} and \bar{K}_{2} also by p_{1} and p_{2}. We have to show that

$$
p_{1}=p_{2}, D p_{1}=D p_{2}
$$

along the common side Q of K_{1} and K_{2}.

Figure 3.11:
Since $v \varepsilon V_{h}, p_{1}, p_{2}$ their first and second derivatives agree at the two common vertices of K_{1} and $K_{2} . p_{1}$ and p_{2} are polynomials of degree 5 in one variable along the common side Q. Hence, along Q,

$$
\begin{equation*}
p_{1}=p_{2} \tag{3.14}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{\partial p_{1}}{\partial \tau}=\frac{\partial p_{2}}{\partial \tau} \quad \text { along } \quad Q \tag{3.15}
\end{equation*}
$$

The normal derivatives $\frac{\partial p_{1}}{\partial n}$ and $\frac{\partial p_{2}}{\partial n}$ are polynomials of degree 4 in one variable along Q. Since $v \varepsilon V_{h}, \frac{\partial p_{1}}{\partial n}=\frac{\partial p_{2}}{\partial n}$ at the two common vertices and at the midpoint of the common side Q. Moreover, the first derivatives of $\frac{\partial p_{1}}{\partial n}$ and $\frac{\partial p_{2}}{\partial n}$ coincide at the common vertices. Hence

$$
\begin{equation*}
\frac{\partial p_{1}}{\partial n}=\frac{\partial p_{2}}{\partial n} \quad \text { along } \quad Q \tag{3.16}
\end{equation*}
$$

Equations (3.14-3.16 show that

$$
p_{1}=p_{2}, D p_{1}=D p_{2} \quad \text { along } \quad Q
$$

This proves that v and its first derivative are continuous across Q. Therefore $v \varepsilon C^{1}(\bar{\Omega})$. Hence $V_{h} \subset C^{1}(\bar{\Omega})$.

Theorems 3.3 and 3.4 imply that $V_{h} \subset H^{2}(\Omega)$. For other examples of finite element, the reader can refer to CIARLET [9].

Chapter 4

Computation of the Solution of the Approximate Problem

4.1 Introduction

THE SOLUTION OF THE APPROXIMATE PROBLEM. Find $u_{h} \varepsilon V_{h} \mathbf{5 2}$ such that

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=L\left(v_{h}\right) \forall v_{h} \varepsilon V_{h} \tag{4.1}
\end{equation*}
$$

can be found using either iterative methods or direct methods. We describe these methods in this chapter.

Let $\left\{w_{i}\right\}_{1 \leq i \leq N(h)}$ be a basis of V_{h}. Let $A=\left(a\left(w_{i}, w_{j}\right)\right)$ and $b=\left(L\left(w_{i}\right)\right)$. If $a(\cdot, \cdot)$ is symmetric, then 4.1) is equivalent to the minimization problem

$$
\begin{equation*}
J\left(u_{h}\right)=\min _{v_{h} \varepsilon V_{h}} J\left(v_{h}\right) \tag{4.2}
\end{equation*}
$$

where $J(v)=\frac{1}{2} v^{T} A v-v^{T} b, v \varepsilon \mathbb{R}^{N(h)}$. Here we identify V_{h} and $\mathbb{R}^{N(h)}$ through the basis $\left\{w_{i}\right\}$ and the natural basis $\left\{e_{i}\right\}$ of $\mathbb{R}^{N(h)}$. u_{h} is a solution of (4.2) iff $A u_{h}=b$. Iterative methods are applicable only when $a(\cdot, \cdot)$ is symmetric.

4.2 Steepest Descent Method

Let $J: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be differentiable.
In the steepest descent method, at each iteration we move along the direction of the negative gradient to a point such that the functional value of J is reduced. That is, let $x^{\bullet} \varepsilon \mathbb{R}^{N}$ be given. Knowing $x^{n} \varepsilon \mathbb{R}^{N}$, we define $x^{n+1} \varepsilon \mathbb{R}^{N}$ by

$$
\begin{equation*}
x^{n+1}=x^{n}-\lambda^{n} J^{\prime}\left(x^{n}\right), \tag{4.3}
\end{equation*}
$$

where λ^{n} minimizes the functional

$$
\begin{equation*}
\phi(\lambda)=J\left(x^{n}-\lambda J^{\prime}\left(x^{n}\right)\right) \tag{4.4}
\end{equation*}
$$

In the case

$$
J(x)=1 / 2 x^{T} A x-x^{T} b,
$$

λ^{n} can be computed explicitly. It is easy to see that

$$
J^{\prime}(x)=A x-b .
$$

Since λ^{n} minimizes $\phi(\lambda)$, we have

$$
\begin{equation*}
\phi^{\prime}\left(\lambda^{n}\right)=\left(J^{\prime}\left(x^{n}-\lambda^{n} J^{\prime}\left(x^{n}\right)\right),-J^{\prime}\left(x^{n}\right)\right)=0 \tag{4.5}
\end{equation*}
$$

Let

$$
r^{n}=J^{\prime}\left(x^{n}\right)=A x^{n}-b
$$

Then (4.5) implies

$$
\begin{equation*}
\lambda^{n}=\frac{\left(r^{n}, r^{n}\right)}{\left(A r^{n}, r^{n}\right)} \tag{4.6}
\end{equation*}
$$

For proving an optimal error estimate for this scheme we need Kantorovich's inequality which is left as an exercise.

Exercise 1. (See LUENBERGER [30]).

Prove the Kantorovich's inequality

$$
\begin{equation*}
\frac{(A x, x)\left(A^{-1} x, x\right)}{\|x\|^{4}} \leq \frac{(M+m)^{2}}{4 m M} \tag{4.7}
\end{equation*}
$$

where A is symmetric, positive definite matrix with

$$
m=\operatorname{Inf}_{x \neq 0} \frac{(A x, x)}{\|x\|^{2}}>0, M=\operatorname{Sup}_{x \neq 0} \frac{(A x, x)}{\|x\|^{2}}
$$

THEOREM 1. For any $x_{\circ} \varepsilon X$ the sequence $\left\{x_{n}\right\}$ defined by

$$
x_{n+1}=x_{n}+\frac{\left(r_{n}, r_{n}\right)}{\left(r_{n}, A r_{n}\right)} r_{n},
$$

where

$$
r_{n}=b-A x_{n}
$$

converges to the unique solution \bar{x} of $A x=b$. Furthermore, defining

$$
E(x)=((x-\bar{x}), A(x-\bar{x}))
$$

we have the estimate

$$
\left\|x_{n}-\bar{x}\right\|^{2} \leq \frac{1}{m} E\left(x_{n}\right) \leq \frac{1}{m}\left(\frac{M-m}{M+m}\right)^{2 n} E\left(x_{\circ}\right) .
$$

Proof. We have

$$
\begin{aligned}
E(x) & =(x-\bar{x}, A(x-\bar{x})) \\
& =2 J(x)+(\bar{x}, A \bar{x}),
\end{aligned}
$$

where

$$
J(x)=1 / 2(x, A x)-(b, x)
$$

It is easy to see that

$$
\frac{E\left(x_{n}\right)-E\left(x_{n+1}\right)}{E\left(x_{n}\right)}=\frac{\left(r_{n}, r_{n}\right)^{2}}{\left(r_{n}, A r_{n}\right)\left(r_{n}, A^{-1} r_{n}\right)} \geq \frac{4 M m}{(M+m)^{2}}
$$

by Kantorovich inequality. Therefore

$$
\frac{E\left(x_{n+1}\right)}{E\left(x_{n}\right)} \leq\left(\frac{M-m}{M+m}\right)^{2}
$$

This implies

$$
E\left(x_{n+1}\right) \leq\left(\frac{M-m}{M+m}\right)^{2(n+1)} E\left(x_{\circ}\right)
$$

From the definition of m we obtain

$$
\left\|x_{n}-\bar{x}\right\|^{2} \leq \frac{1}{m} E\left(x_{n}\right) \leq \frac{1}{m}\left(\frac{M-m}{M+m}\right)^{2 . n} E\left(x_{\circ}\right) .
$$

The condition number of A is defined by $\operatorname{Cond}(A)=\frac{M}{m}$. We have

$$
\left(\frac{M-m}{M+m}\right)^{2} \sim 1-\frac{2 m}{M}=1-\frac{2}{\operatorname{Cond}(A)}
$$

If the condition number of A is smaller, then the convergence is faster. The steepest descent method is not a very good method for finite elements, since $\operatorname{Cond}(A) \sim C / h^{2}$ when $V_{h} \subset H^{1}(\Omega)$.

4.3 Conjugate Gradient method

DEFINITION. The directions $w_{1}, w_{2} \varepsilon \mathbb{R}^{N}$ are said to be conjugate with respect to the matrix A if $w_{1}^{T} A w_{2}=0$.

In the conjugate gradient method, we construct conjugate directions using the gradient of the functional. Then the functional is minimized by proceeding along the conjugate direction. We have
THEOREM 2. Let $w^{1}, w^{2}, \ldots, w^{N}$ be N mutually conjugate directions.
Let

$$
x^{k+1}=x^{k}-\lambda^{k} w^{k}
$$

where λ^{k} minimizes

$$
\phi(\lambda)=J\left(x^{k}-\lambda w^{k}\right), \lambda \varepsilon \mathbb{R}
$$

56 When $x^{1} \varepsilon \mathbb{R}^{N}$ is given, we have

$$
x^{N+1}=x^{*}
$$

where

$$
A x^{*}=b
$$

Proof. Let

$$
r^{n}=-J^{\prime}\left(x^{n}\right)=b-A x^{n} .
$$

Since λ^{k} minimizes $\phi(\lambda)$ we have

$$
\phi\left(\lambda^{k}\right)=\left(J^{\prime}\left(x^{k}-\lambda^{k} w^{k}\right),-w^{k}\right)=0 .
$$

This gives

$$
\begin{equation*}
\lambda^{k}=\frac{\left(r^{k}\right)^{T} w^{k}}{\left(w^{k}\right)^{T} A w^{k}} \tag{4.8}
\end{equation*}
$$

Since $w^{1}, w^{2}, \ldots, w^{N}$ are mutually conjugate directions, they are linearly independent. Therefore there exist $\alpha_{i}, 1 \leq i \leq N$, such that

$$
x^{1}-x^{*}=\sum_{k=1}^{N} \alpha_{k} w^{k}
$$

From this, using the fact that w^{j} are mutually conjugate, we obtain

$$
\left(x^{1}-x^{*}\right)^{T} A w^{j}=\alpha_{j}\left(w^{j}\right)^{T} A w^{j} .
$$

This gives

$$
\begin{equation*}
\alpha_{j}=\frac{\left(x^{1}-x^{*}\right)^{T} A w^{j}}{\left(w^{j}\right)^{T} A w^{j}} \tag{4.9}
\end{equation*}
$$

Using induction we show that

$$
\alpha_{k}=\lambda^{k}
$$

Since $A x^{*}=b$, we have

$$
r^{1}=A x^{1}-b=A\left(x^{1}-x^{*}\right)
$$

This shows that

$$
\alpha_{1}=\lambda^{1}
$$

Let $\alpha_{i}=\lambda^{i}$ for $1 \leq i \leq k-1$.
From the definition of x^{k} we obtain

$$
x^{k}=x^{1}-\sum_{i=1}^{k-1} \lambda^{i} w^{i}=x^{1}-\sum_{i=1}^{k-1} \alpha_{i} w^{i},
$$

(by induction hypothesis). Since

$$
\left(w^{i}\right)^{T} A w^{k}=0 \quad \text { for } \quad 1 \leq i \leq k-1
$$

we get

$$
\left(x^{k}-x^{1}\right)^{T} A w^{k}=0
$$

This together with (4.8) and (4.9) shows that

$$
\alpha_{k}=\lambda^{k}
$$

Thus $\alpha_{k}=\lambda^{k}$ for $1 \leq k \leq N$.
The definition of x^{k} implies

$$
x^{N+1}=x^{1}-\sum_{i=1}^{N} \lambda^{i} w^{i}=x^{1}-\sum_{i=1}^{N} \alpha_{i} w^{i}=x^{*}
$$

Algorithm for Conjugate Gradient Method

58 THEOREM 3. Let $x_{\circ} \in \mathbb{R}^{N}$. Define $w^{1}=b-A x^{1}$. Knowing x^{n} and w^{n-1} we define x^{n+1} and w^{n} by

$$
\begin{aligned}
x^{n+1} & =x^{n}+\alpha_{n} w^{n} \\
w^{n} & =r^{n}+\beta_{n} w^{n-1},
\end{aligned}
$$

where

$$
r^{n}=b-A x^{n}, \alpha_{n}=\frac{\left(r^{n}, w^{n}\right)}{\left(w^{n}, A w^{n}\right)}, \beta_{n}=\frac{\left(r^{n}, r^{n}\right)}{\left(r^{n-1}, r^{n-1}\right)}
$$

Then w^{n} are mutually conjugate directions and x^{N+1} is the unique solution of $A x=b$.

A proof of this theorem can be found in LUENBERGER [31]. It can be shown that

$$
x^{n}-x^{N+1} \sim\left(\frac{1-\sqrt{c}}{1+\sqrt{c}}\right)^{n}
$$

where $c=m / M$. Thus the convergence rate in the conjugate gradient method is faster than in the steepest descent method, at least for quadratic functionals.

4.4 Computer Representation of a Triangulation

Figure 4.1:

Let T_{h} be a triangulation of the domain Ω. We number the nodes of the triangulation and the triangles in T_{h}. Let

$$
\begin{array}{ll}
N S=\# & \text { of nodes of } \quad T_{h}, \\
N T=\# & \text { of triangles in } T_{h} .
\end{array}
$$

The triangulation is uniquely determined by the two matrices

$$
Q(2, N S)=\left(q_{i j}\right) \quad \text { and } \quad M E(3, N S)=\left(m_{j k}\right)
$$

where $q_{i j}$ denotes the $i^{\text {th }}$ coordinate of the $j^{t h}$ node and $m_{j k}$ denotes the $j^{\text {th }}$ vertex of the $k^{\text {th }}$ triangle.

The matrix $M E$, corresponding to the triangulation in the above figure is

$$
M E=\left(\begin{array}{llllllll}
1 & 1 & 2 & 2 & 2 & 6 & 4 & 6 \\
2 & 5 & 4 & 6 & 5 & 5 & 6 & 8 \\
3 & 2 & 3 & 4 & 6 & 8 & 7 & 7
\end{array}\right)
$$

In some problems it is better to know the boundary nodes. The array $N G(N S)$ defined by

$$
N G(i)= \begin{cases}1 & \text { if } \quad i \varepsilon \Gamma \\ 0 & \text { otherwise }\end{cases}
$$

is used for picking boundary nodes.
Exercise 2. Draw the triangulation

$$
\begin{gathered}
Q=\left(\begin{array}{lllllcccc}
0 & 1 & 1 & 0 & 0.5 & 0.5 & 0.5 & 1 & 0 \\
0 & 0 & 1 & 1 & 0.5 & 1 & 0 & 0 & 0.5
\end{array}\right) \\
M E=\left(\begin{array}{llllllll}
2 & 2 & 6 & 3 & 4 & 4 & 1 & 5 \\
7 & 5 & 5 & 6 & 6 & 9 & 7 & 7 \\
5 & 8 & 8 & 8 & 9 & 5 & 9 & 9
\end{array}\right)
\end{gathered}
$$

4.5 Computation of the Gradient.

In the Neumann problem we have

$$
\left(J^{\prime}(u), v\right)=\int_{\Omega}\left(\nabla u \cdot \nabla v+a_{\circ} u v\right)-\int_{\Omega} f v
$$

We now give a practical way of computing the gradient $J^{\prime}(u)$.
Let w_{i} be the basis function in V_{h} which takes the value 1 at the $i^{t h}$ node and zero at the other nodes. Let V_{h} be defined by \mathbb{P}_{1} Lagrange finite element. Let

$$
u=\left(u_{i}\right)_{1 \leq i \leq N S}
$$

be given. We want to compute $J^{\prime}(u)$. Let $\left(J^{\prime}(u)_{i}=\left(J^{\prime}(u) ; w_{i}\right)\right.$ and

$$
B_{i}=\int_{\Omega} \nabla u \cdot w_{i} d x=\sum_{K \varepsilon T_{h}} \int_{K} \nabla u \cdot \nabla w_{i} d x
$$

We know that

$$
w_{i}=\left\{\begin{array}{l}
\lambda_{j}^{k} \quad \text { if } \quad i=m_{j k}, \quad \text { for some } \quad j \quad \text { and } \quad k \\
0 \quad \text { otherwise },
\end{array}\right.
$$

where λ_{j}^{k} is the $j^{\text {th }}$ rycentric coordinate of the $k^{\text {th }}$ triangle. Therefore

$$
B_{i}=\sum_{1 \leq j \leq 3,1 \leq k \leq N T, i=m_{j k}} a_{j}^{k},
$$

$$
a_{j}^{k}=\int_{K_{k}} \nabla u \cdot \nabla \lambda_{j}^{k} d x, \quad \text { where } \quad K_{k}
$$

is the triangle corresponding to the $k^{t h}$ element.

Algorithm to Compute B.

```
Set \(B=0\)
for \(k=1,2, \ldots, N T\);
for \(j=1,2,3\),
do \(\quad B_{m_{j k}}=B_{m_{j k}}+a_{j}^{k}\).
```


Computation of the $a_{j^{\prime}}^{k} s$.

Since $u=\left(u_{i}\right)_{1 \leq i \leq N S}$ and we take \mathbb{P}_{1} Lagrange finite elements, we have

$$
\begin{aligned}
u & =\sum_{j=1}^{3} \lambda_{j}^{k} u_{m_{j k}} \quad \text { in } \quad K_{k} \\
& =a x+b y+c, \quad \text { say. }
\end{aligned}
$$

Let $\left(\xi_{i}, \eta_{i}\right), 1 \leq i \leq 3$, be the coordinates of the vertices of K_{k}. Let $w_{j}=u_{m_{j k}}$. Then a, b are found from the equations

$$
\begin{align*}
& a \xi_{1}+b \eta_{1}+c=w_{1}, \\
& a \xi_{2}+b \eta_{2}+c=w_{2}, \tag{4.10}\\
& a \xi_{3}+b \eta_{3}+c=w_{3}
\end{align*}
$$

as

$$
\begin{align*}
& a=\frac{\left(w_{1}-w_{3}\right)\left(\eta_{2}-\eta_{3}\right)-\left(w_{2}-w_{3}\right)\left(\eta_{1}-\eta_{3}\right)}{C_{2}} \tag{4.11}\\
& b=-\frac{\left(w_{1}-w_{3}\right)\left(\xi_{2}-\xi_{3}\right)-\left(w_{2}-w_{3}\right)\left(\xi_{1}-\xi_{3}\right)}{C_{2}} \tag{4.12}
\end{align*}
$$

where

$$
C_{2}=\left(\xi_{1}-\xi_{3}\right)\left(\eta_{2}-\eta_{3}\right)-\left(\xi_{1}-\xi_{2}\right)\left(\eta_{1}-\eta_{3}\right)
$$

Hence $\nabla u=\binom{a}{b}$ is determined.
If $\lambda_{j}^{k}=a^{j} x+b^{j} y+c$, then a^{j} and b^{j} are got from (4.11) and (4.12) by taking $w_{i}=\delta_{i j}$. Note that $C_{2}=1 / 2$ area K_{k}. Then $a_{j}^{k}=C_{2} / 2\left(a a_{j}+b b_{j}\right)$.

4.6 Solution by Direct Methods

In Section 4.6.2 and 4.6.3 we gave algorithms to solve the equation $A x=$ b when A is symmetric and positive definite. When A is not symmetric or A is sparse, direct methods can be used to solve the equation $A x=b$.

4.6.1 Review of the Properties of Gaussian Elimination

The principle of Gaussian elimination is to decompose A into a product $L U$ where L is lower triangular and U is upper triangular so that the linear system

$$
A x=b
$$

is reduced to solving 2 linear systems with triangular matrices

$$
\begin{aligned}
L y & =b, \\
U x & =y .
\end{aligned}
$$

Each of these is very easy to solve. For $L y=b, y=\left(y_{i}\right), y_{1}$ is given by the first equation, hence y_{2} is given by the second since y_{1} is already known, etc.

To decompose A into $L U$, one proceeds iteratively. Let

$$
A^{(k)}=\left(a_{i j}^{(k)}\right) 1 \leq i, j \leq N
$$

be such that

$$
a_{i j}^{(k)}=0 \quad \text { for } \quad 1 \leq j \leq k-1 \quad \text { and } \quad i>j
$$

Figure 4.2:

Then U is $A^{(N)}$.

To get $A^{(k+1)}$ from $A^{(k)}$ one adds the $k^{\text {th }}$ equation multiplied by a scaling factor of the $i^{t h}$ equation in order to have $a_{i k}^{(k+1)}=0$. The scaling factor has to be

$$
a_{i j}^{(k+1)}=a_{i j}^{(k)}-\frac{a_{i k}^{(k)} a_{k j}^{(k)}}{a_{k k}^{(k)}} i, \quad j=k+1, \ldots, n .
$$

For a full matrix the order of operations for this process is $N^{3} / 3$. For a band matrix, i.e. a matrix such that

$$
a_{i j}=0 \quad \text { if } \quad|i-j| \geq w,
$$

We see that if $|i-j| \geq w$, then either $|k-i|$ or $|k-j|$ is greater than $w+1$, provided that $i, j \geq k+1$. Hence in the formula (4.13) an element which is outside the band is never modified since the corrective term in 4.13) is a always zero.

Figure 4.3:
More precisely we have
PROPOSITION 4. For a band matrix A with bandwidth w, at the $k^{t h}$ step of the Gaussian elimination, only w^{2} "corrective elements" have to be computed and added to the submatrix.

$$
\left(\begin{array}{ccc}
a_{k+1, k+1} & \cdots & a_{k+1, k+w} \\
\vdots & & \\
a_{k+w, k+1} & \cdots & a_{k+w, k+w}
\end{array}\right)
$$

Note that we get an evaluation of the number of operations for the process which is about $N w^{2}$ (instead of $N^{3} / 3$).

4.6.2 Stiffness Matrix and Stiffness Submatrix

For simplicity we consider the Neumann problem. Find $u_{h} \varepsilon V_{h}$ such that

$$
a\left(u_{h}, v\right)=L(v) \forall v \varepsilon V_{h},
$$

where V_{h} is a finite dimensional subspace of $H^{1}(\Omega)$ constituted with functions which are continuous and piecewise linear on the elements of the triangulation T_{h} and

$$
a(u, v)=\int_{\Omega}(\nabla u . \nabla v+u v) d x
$$

For $\left(w_{i}\right)_{1 \leq i \leq N}$, a basis of V_{h} (where N denotes the number of vertices of
T_{h}), we have

$$
a(u, v)=\sum_{i, j=1}^{N} u_{i} a_{i j} v_{j}
$$

where v_{i} (respectively u_{i}) denote the value of v (respectively u) at the $i^{\text {th }}$ vertex of T_{h} and

$$
a_{i j}=\int_{\Omega}\left(\nabla w_{i} \nabla w_{j}+w_{i} w_{j}\right) d x
$$

But this is not a practical way to compute the elements $a_{i j}$ of the matrix A of the linear system to be solved, since the support of the w_{i} involves several elements of T_{h}. Instead one writes

$$
a(u, v)=\sum_{K \varepsilon T_{h}} \int_{K}(\nabla u \cdot \nabla v+u v) d x .
$$

Hence, as

$$
\begin{aligned}
& u(x)=\sum_{\alpha=1}^{3} u_{m_{\alpha K}} \lambda_{\alpha}^{K}(x), \\
& v(x)=\sum_{\beta=1}^{3} v_{m_{\beta K}} \lambda_{\beta}^{K}(x),
\end{aligned}
$$

in the element K, where $\left(m_{\alpha K}\right)_{\alpha=1,2,3}$ denotes the 3 vertices of the element K and $\lambda_{\alpha}^{K}(x)$ the associated barycentric coordinates. One has

$$
\sum_{i, j=1}^{N} u_{i} a_{i j} v_{j}=\sum_{K \varepsilon T_{h}} \sum_{\alpha, \beta=1}^{3} u_{m_{\alpha K}} v_{m_{\beta K}} a_{\alpha \beta}^{K},
$$

where

$$
a_{\alpha \beta}^{K}=\int_{K}\left(\nabla \lambda_{\alpha}^{K} \cdot \nabla \lambda_{\beta}^{K}+\lambda_{\alpha}^{K} \lambda_{\beta}^{K}\right) d x .
$$

The matrix $A^{K}=\left(a_{\alpha \beta}^{K}\right)_{1 \leq \alpha, \beta \leq 3}$ is called the element stiffness matrix of K.

A convenient algorithm to compute A is then the following Assembling algorithm.

$$
\left\{\begin{array}{l}
\text { 1. } \text { Set } \quad A=0 \\
\text { 2. For } K \varepsilon T_{h}, \quad \text { compute } A^{K} \text { and for } \alpha, \beta=1,2,3 \text { make } \\
a_{m_{\alpha K}, m_{\beta K}}=a_{m_{\alpha K}, m_{\beta K}}+a_{\alpha \beta}^{K} .
\end{array}\right.
$$

Exercise 3. Write a Fortran subroutine performing the assembling algorithm (without the computation of the element stiffness matrices A^{K} which will be assumed to be computed in another subroutine).

4.6.3 Computation of Element Stiffness Matrices

We shall consider more sophisticated elements, e.g. the triangular, quadratic element with 6 nodes.

The midside points have to be included in the numbering of the vertices to describe properly the triangulation. For each element K, one has to give the 6 numbers of its 6 nodes in the global numbering,

$$
m_{\alpha K}, \alpha=1, \ldots, 6
$$

The assembling algorithm of last section is still valid except that α and β range now from 1 to 6 and that λ_{α}^{K} has to be replaced by $p_{\alpha}^{K}, \alpha=$ $1,2, \ldots, 6$, the local basis functions of the interpolation (see chapter 3].

To compute the element stiffness matrix

$$
A^{K}=\left(a_{\alpha \beta}^{K}\right)_{\alpha, \beta=1, \ldots, 6},
$$

one introduces the mapping,

$$
F: \hat{K} \rightarrow K
$$

where \hat{K} is the triangle $(0,0),(1,0),(0,1)$. Since F is affine, we have

$$
F(\xi)=B \xi+b,
$$

where B is 2×2 matrix and $b \varepsilon \mathbb{R}^{2}$.

Let $\hat{u}(\xi)=u(F(\xi))$ and $\hat{v}(\xi)=v(F(\xi))$. One has

$$
\begin{equation*}
\int_{K} u v d x=\int_{\hat{K}} \hat{u} \hat{v} \operatorname{det}(B) d \xi \tag{4.14}
\end{equation*}
$$

In the same way one has

$$
\left.\nabla \hat{u}\right|_{\xi}=\left.B^{T} \nabla u\right|_{F(\xi)},
$$

since B^{T} is the Jacobian matrix of F. Therefore,

$$
\begin{equation*}
\int_{K} \nabla u \cdot \nabla v d x=\int_{\hat{K}}\left(B^{-T} \nabla \hat{u}\right) \cdot\left(B^{-T} \nabla \hat{v}\right) \operatorname{det}(B) d \xi \tag{4.15}
\end{equation*}
$$

Finally to compute the coefficients $a_{\alpha \beta}^{K}$ of the element stiffness matrix A^{K}, one notices that

$$
\hat{u}(\xi)=\sum_{\alpha=1}^{6} u_{m_{\alpha K}} p_{\alpha}(\xi)
$$

where $\left(p_{\alpha}(\xi), \alpha=1, \ldots, 6\right)$ are the basis functions of K which are easily computed once for all. Note that

$$
\lambda_{1}=1-\xi_{1}-\xi_{2}, \lambda_{2}=\xi_{1}, \lambda_{3}=\xi_{2}
$$

As p are polynomials (even for higher degree elements) the integrals in (4.14) and 4.15) can be computed by noticing that

$$
\int_{\hat{K}} \xi_{1}^{i} \xi_{2}^{j} d \xi=\frac{i!j!}{(i+j+2)!}
$$

However, for the simplicity of the programming they are usually computed by numerical integration: every integral of the type $\int_{K} f(\xi) d \xi$ is replaced by

$$
\sum_{\ell=1}^{L} w_{\ell} f\left(b_{\ell}\right)
$$

where $\left(b_{\ell}\right)_{\ell=1, \ldots, L}$ are called the nodes of the numerical integration formula and $\left(w_{\ell}\right)_{\ell=1, \ldots, L}$ the coefficients.

The programming is easier since one may compute (in view of (4.14) and 4.15) only the values of p_{α} and $\partial p_{\alpha} / \partial \xi_{i}$ at the points b_{ℓ}. For more details and model programs we refer to Mercier - Pironneau [32].

Chapter 5

Review of the Error
 Estimates for the Finite Element Method

THE PURPOSE OF this chapter is to state the theorems on error estimates which are useful for our future analysis. The proof of the theorems can be found in CIARLET [9].

DEFINITION. Let $\Omega \subset \mathbb{R}^{n}$ be an open subset, $m \geq 0$ be an integer and $1 \leq p \leq+\infty$. Then the Sobolev Space $W^{m, p}(\Omega)$ is defined by

$$
W^{m, p}(\Omega)=\left\{v \varepsilon L^{p}(\Omega): \partial^{\alpha} v \varepsilon L^{p}(\Omega), \quad \text { for all }|\alpha| \leq m\right\}
$$

On the space $W^{m, p}(\Omega)$ we define a norm $\|\cdot\|_{m, p, \Omega}$ by

$$
\|v\|_{m, p, \Omega}=\left(\int_{\Omega} \sum_{|\alpha| \leq m}\left|D^{\alpha} v\right|^{p} d x\right)^{1 / p}
$$

and a semi norm $|\cdot|_{m, p, \Omega}$ by

$$
|v|_{m, p, \Omega}=\left(\int_{\Omega} \sum_{|\alpha|=m}\left|D^{\alpha} v\right|^{p} d x\right)^{1 / p} .
$$

If k is an integer, then we consider the quotient space

$$
W^{-k+1, p}(\Omega)=W^{k+1, p}(\Omega) / p_{k}(\Omega)
$$

with the quotient norm

$$
\|\tilde{v}\|_{k+1, p, \Omega}=\operatorname{Inf}_{\ell \in \mathbb{P}_{k}}\|v+\ell\|_{k+1, p, \Omega},
$$

70 where \tilde{v} is the equivalence class containing v.
We introduce a semi norm in $\tilde{W}^{k+1, p}(\Omega)$ by

$$
|\tilde{v}|_{k+1, p, \Omega}=|v|_{k+1, p, \Omega}
$$

Then we have
THEOREM 1. (CIARLET - RAVIART). In $\tilde{W}^{k+1, p}(\Omega)$ the semi norm $|\tilde{v}|_{k+1, p, \Omega}$ is a norm equivalent to the quotient norm $\|v\|_{k+1, p, \Omega}$.

Using this theorem it is easy to prove
THEOREM 2. Let $W^{k+1, p}(\Omega)$ and $W^{m, q}(\Omega)$ be such that $W^{k+1, p}(\Omega) \hookrightarrow$ $W^{m, q}(\Omega)$ (continuous injection). Let

$$
\pi \in \mathscr{L}\left(W^{k+1, p}(\Omega), W^{m, q}(\Omega)\right)
$$

be such that for each $p \varepsilon \mathbb{P}_{k}, \pi p=p$. Then there exists a $c=c(\Omega, \pi)$ such that for each $v \in W^{k+1, p}(\Omega)$

$$
|v-\pi v|_{m, q, \Omega} \leq c|v|_{k+1, p, \Omega}
$$

DEFINITION. Two open subsets $\hat{\Omega}, \Omega$ of \mathbb{R}^{n} are said to be affine equivalent if there exists an affine map F from $\hat{\Omega}$ onto Ω such that $F(\hat{x})=$ $B \hat{x}+b$, where B is a $n \times n$ non singular matrix and $b \varepsilon \mathbb{R}^{n}$.

We have
THEOREM 3. Let $\hat{\Omega}, \Omega$ be affine equivalent with F as their affine map. Then there exist constants \hat{c}, c such that for all $v \varepsilon W^{m, p}(\Omega)$,

$$
|\hat{v}|_{m, p, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / p}|v|_{m, p, \Omega}
$$

and for all $\hat{v} \varepsilon W^{m, p}(\hat{\Omega})$,

$$
|v|_{m, p, \Omega} \leq \hat{c}\left\|B^{-1}\right\|^{m}|\operatorname{det} B|^{1 / p}|\hat{v}|_{m, p, \hat{\Omega}},
$$

where

$$
\hat{v}=v \bullet F .
$$

If $h(r e s p . \hat{h})$ is the diameter of $\Omega(\operatorname{resp} . \hat{\Omega})$ and $p(r e s p . \hat{p})$ is the supremum of the diameters of all balls that can be inscribed in Ω (resp. $\hat{\Omega}$), then we have

THEOREM 4. $\|B\| \leq h / \hat{\rho}$ and $\left\|B^{-1}\right\| \leq \hat{h} / \rho$.
DEFINITION. Two finite elements $(\hat{K}, \hat{\Sigma}, \hat{P})$ and (K, Σ, P) are said to be affine equivalent if there exists an affine map $F \hat{x}=B \hat{x}+b$ on \mathbb{R}^{n}, where B is an $n \times n$ non singular matrix, and bs \mathbb{R}^{n} such that
(i) $F(\hat{K})=K$
(ii) $\hat{p}=\{\hat{p}=p \circ F: p \varepsilon P\}$,
(iii) $\hat{\Sigma}=\left\{\hat{\phi}=F^{-1} \circ \phi: \phi \varepsilon \Sigma\right\}$
where

$$
F^{-1} \circ \phi(\hat{p})=\phi\left(\hat{p} \circ F^{-1}\right) .
$$

DEFINITION. Let (K, Σ, P) be a finite element and $v: K \rightarrow \mathbb{R}$ be a
smooth function on K. Then by virtue of the P-unisolvency of Σ there exists a unique element, say, $\pi_{K} v \in P$, such that $\phi\left(\pi_{K} v\right)=\phi(v)$ for all $\phi \in \Sigma$. The function $\pi_{K} v$ is called the P-interpolate function of v and the operator $\pi_{K}: C^{\infty}(K) \rightarrow P$ is called the P-interpolation operator.

Now we state an important theorem which is often used.
THEOREM 5. Let $(\hat{K}, \hat{\Sigma}, \hat{P})$ be a finite element. Let $s(=0,1,2)$ be the maximal order of derivatives occurring in Σ. Assume that
(i) $W^{k+1, p}(\hat{K}) \hookrightarrow C^{s}(\hat{K})$,
(ii) $W^{k+1, p}(\hat{K}) \hookrightarrow W^{m, q}(\hat{K})$,
(iii) $P_{k} \subset \hat{P} \subset W^{m, q}(\hat{K})$,

Then there exists a constant $C=C(\hat{K}, \hat{\Sigma}, \hat{P})$ such that for all affine equivalent finite elements (K, Σ, P) we have

$$
\left|v-\pi_{K} v\right|_{m, q, K} \leq C(\text { meas } K)^{1 / q-1 / p} \frac{h_{K}^{k+1}}{\rho_{K}^{m}}|v|_{k+1, p, K}
$$

for all $v \in W^{k+1, p}(K)$, where π_{K} is a P-interpolate operator, h_{K} is the diameter of K and ρ_{K} is the supremum of diameter of all balls inscribed in K.

DEFINITION. A family $\left(T_{h}\right)$ of triangulations of Ω is regular if
(i) for all h and for each $K \varepsilon T_{h}$ the finite elements (K, Σ, P) are all affine equivalent to a single finite element $(\hat{K}, \hat{\Sigma}, \hat{P})$;
(ii) there exists a constant σ such that for all T_{h} and for each $K \varepsilon T_{h}$ we have

$$
\frac{h_{K}}{\rho_{K}} \leq \sigma
$$

(iii) for a given triangulation T_{h}, if

$$
h=\max _{K \varepsilon T_{h}} h_{K},
$$

then $h \rightarrow 0$.
Exercise 1. Prove that there exists a constant C independent of h such that

$$
|p|_{1, k} \leq C / h|p|_{o, K} \quad \text { for all } p \varepsilon \mathbb{P}_{k}
$$

A theorem which gives a global error bound is the following.
THEOREM 6. Let us assume that
(i) $\pi_{h}: H^{k+1}(\Omega) \rightarrow V_{h}$, the restriction of π_{h} to V_{h} being the identity,
(ii) $V_{h} \subset \underset{K \varepsilon T_{h}}{\pi} \mathbb{P}_{k}(K)$,
(iii) $V_{h} \subset H^{m}(\Omega)$,
(iv) $u \in H^{m}(\Omega) \quad$ (regularity assumption),

Then we have

$$
\left\|u-\pi_{h} u\right\|_{m, \Omega} \leq C h^{k+1-m}|u|_{k+1, \Omega},
$$

where C is a constant independent of h and $\left(T_{h}\right)$ is a regular family of triangulations.

For stating a theorem on L_{2}-error estimates we need the definition of a regular adjoint problem.

DEFINITION. Let $V=H^{1}(\Omega)$ or $H_{\circ}^{1}(\Omega), H=L^{2}(\Omega)$. The adjoint problem:

$$
\left\{\begin{array}{l}
\text { Find } \phi \varepsilon V \text { such that } \\
a(v, \phi)=(g, v) \text { for all } v \varepsilon V,
\end{array}\right.
$$

is said to be regular if
(i) for all $g \varepsilon L^{2}(\Omega)$, the solution ϕ of the adjoint problem for g belongs to $H^{2}(\Omega) \cap V$;
(ii) there exists a constant C such that

$$
\|\phi\|_{2, \Omega} \leq C|g|_{\circ, \Omega} .
$$

We now have
THEOREM 7. Let $\left(T_{h}\right)$ be a regular family of triangulations on Ω with reference finite element $(\hat{K}, \hat{\Sigma}, \hat{P})$. Let $s=0$ and $n \leq 3$. Suppose there exists an integer $k \geq 1$ such that uع $H^{k+1}(\Omega) P_{k} \subset \hat{p} \subset H^{1}(\hat{K})$. Assume further that the adjoint problem is regular. Then there exists a constant C independent of h such that

$$
\left|u-u_{h}\right|_{o, \Omega} \leq C h^{k+1}|u|_{k+1, \Omega} .
$$

Chapter 6

Problems with an Incompressibility Constraint

6.1 Introduction

We recall the variational formulation of the Stokes problem (see Chapter 76 (2).

Find $u \varepsilon V$ such that

$$
a(u, v)=L(v) \forall v \varepsilon V,
$$

where

$$
\begin{aligned}
a(u, v) & =\int_{\Omega} \nabla u \cdot \nabla v d x \\
L(v) & =\int_{\Omega} f \cdot v d x, f \varepsilon\left(L^{2}(\Omega)\right)^{n},
\end{aligned}
$$

and

$$
V=\left\{v \varepsilon\left(H_{\circ}^{1}(\Omega)\right)^{n}: \operatorname{div} v=0\right\}
$$

It is difficult to construct internal approximations of V because of the constraint $\operatorname{div} v=0$. In two dimensional problem we know that
$\nu \varepsilon V \Leftrightarrow$ there exists $\psi \varepsilon H_{\circ}^{2}(\Omega)$ such that

$$
v=\operatorname{rot} \psi,
$$

where

$$
\operatorname{rot} \psi=\left(\frac{\partial \psi}{\partial x_{2}},-\frac{\partial \psi}{\partial x_{1}}\right)
$$

Therefore, it seems logical that the difficulties we encountered in approximating $H^{2}(\Omega)$ in a conforming way are transferred to the conforming approximation of V.

6.2 Approximation Via Finite Elements of Degree 1

77 Let $W_{h}=\left\{v_{h} \varepsilon\left(C^{\circ}(\bar{\Omega})\right)^{2}:\left.v_{h}\right|_{K} \varepsilon\left(\mathbb{P}_{1}(K)\right)^{2}\right.$, for $K \varepsilon T_{h}, v_{h}=0$ on $\left.\partial \Omega\right\}$ It is natural to try for V_{h} the space

$$
\left\{v_{h} \varepsilon W_{h}: \operatorname{div} v_{h}=0\right\} .
$$

But for most triangulations, $V_{h}=\{0\}$. This is due to the fact that the number of equations due to the constraint $\operatorname{div} v_{h}=0$ is greater than the number of degrees of freedom of W_{h}. In fact,

$$
\text { Dimension of } \quad W_{h}=2 \quad \text { (\# internal vertices). }
$$

Number of equations due to the constraint $\operatorname{div} v_{h}=0$ is equal to number of triangles.
Hence V_{h} cannot be a good approximation to V. However, if the triangulation T_{h} is obtained by first taking quadrilaterals and then dividing each quadrilateral into four triangles by joining the diagonals (see figure 6.1), we obtain a 'good space' V_{h}. In this case only 3 of the four equations $\operatorname{div} v_{h}=0$ are independent.

Figure 6.1:
Exercise 1. Let K be a quadrilateral. Let it be divided into four triangles
$T_{i}, 1 \leq i \leq 4$, by

Figure 6.2:
joining the diagonals of K. Let $v \varepsilon C^{\circ}(\bar{K})$ such that

$$
\left.v\right|_{T_{i}} \varepsilon \mathbb{P}_{1}\left(T_{i}\right), 1 \leq i \leq 4 . \quad \text { Let } \quad d_{i}=\left.\operatorname{div} v\right|_{T_{i}} 1 \leq i \leq 4
$$

Then show that $d_{1}+d_{3}=d_{2}+d_{4}$.
When the mesh is uniform, it is possible to prove convergence and to construct an interpolation operator,

$$
\pi_{h}: V \rightarrow V_{h}
$$

such that

$$
\left\|v-\pi_{h} v\right\|_{1, \Omega} \leq \operatorname{ch}\|v\|_{2, \Omega}
$$

Therefore the solution v_{h} of the approximate problem

$$
a\left(u_{h}, v_{h}\right)=L\left(v_{h}\right) \forall v_{h} \varepsilon V_{h}
$$

satisfies

$$
\left\|u-u_{h}\right\|_{1, \Omega} \leq \operatorname{ch} ;\left\|u-u_{h}\right\|_{0, \Omega} \leq \operatorname{ch}^{2} .
$$

When the domain is a square and the mesh is uniform we define π_{h} as follows.

We choose for simplicity the diagonals of the square to be the coordinate axes.

Figure 6.3:
$\pi_{h} u$ at each of the main nodes (like $1,5,6,7$) is chosen as an average of u. For example, at the node 1 the two components of $\pi_{h} u$ are given by

$$
\begin{aligned}
& \left(\pi_{h} u\right)_{1}=\text { average of } u_{1} \text { on } 02, \\
& \left(\pi_{h} u\right)_{2}=\text { average of } u_{2} \text { on } 34 .
\end{aligned}
$$

At each of the secondary nodes (like $0,2,3,4) \pi_{h} u$ is chosen as an average of the values of $\pi_{h} u$ at the main nodes. For example, at the node 0

$$
\begin{aligned}
& \left(\pi_{h} u\right)_{1}(0)=\frac{\left(\pi_{h} u\right)_{1}(1)+\left(\pi_{h} u\right)_{1}(7)}{2} \\
& \left(\pi_{h} u\right)_{2}(0)=\frac{\left(\pi_{h} u\right)_{2}(5)+\left(\pi_{h} u\right)_{2}(6)}{2}
\end{aligned}
$$

Numerically the method works even for irregular, not too distorted, meshes.

6.3 The Fraeijs De Veubeke - Sander Element

We shall first describe a C^{1} element of a non standard type: the Fraeijs de Veubeke - Sander element.

Let K be a quadrilateral. We divide K into four triangles $T_{i}, 1 \leq i \leq \mathbf{8 0}$ 4, by joining the diagonals of K.

Figure 6.4:

Let

$$
Q(K)=\left\{p \varepsilon C^{1}(K): p \varepsilon \mathbb{P}_{3}\left(T_{i}\right), 1 \leq i \leq 4\right\}
$$

We have

LEMMA 1. $\operatorname{dim} Q(K)=16$.
Proof. Indeed we choose $p=p_{1}$ on T_{1} where $p_{1} \varepsilon \mathbb{P}_{3}$. Then p_{1} depends on 10 parameters. Let $p_{2} \varepsilon \mathbb{P}_{3}$ be such that p_{2} and $\partial p_{2} / \partial n$ vanish on the diagonal 13. Hence p_{2} depends on $10-4-3=3$ parameters. We choose $p=p_{1}+p_{2}$ on T_{2} and it is easy to see that p is C^{1} across 13 .

In the same way we choose $p=p_{1}+p_{3}$ on T_{3} with $p_{3}=\partial p_{3} / \partial n=0$ on 24. p_{3} depends again on 3 parameters and p will be C^{1} across 24 .

Taking $p=p_{1}+p_{2}+p_{3}$ on T_{4}, it is easy to see that p is C^{1} across 13 and 24. Finally, p depends on $10+3+3=16$ parameters. Hence the result.

We choose,

$$
\Sigma_{K}=\left\{\delta_{i}, \frac{\partial}{\partial x} \delta_{i}, \frac{\partial}{\partial y} \delta_{i}, 1 \leq i \leq 4 ; \frac{\partial}{\partial n} \delta_{b_{i}}, 1 \leq i \leq 4\right\}
$$

as the set of degrees of freedom. Here b_{i} denotes the midpoint of a side of the quadrilateral K.

Figure 6.5:

We refer the reader to CIAVALDINI-NEDELEC [11] to prove that this is an admissible choice of degrees of freedom.

Let Q_{h} denote a regular family of quadrangulations of the polygonal domain Ω. Let

$$
\chi_{h}=\left\{\phi_{h} \varepsilon C^{1}(\bar{\Omega}):\left.\phi_{h}\right|_{K} \varepsilon Q(K), \phi_{h}=\frac{\partial \phi_{h}}{\partial n}=0 \quad \text { on } \quad \partial \Omega\right\} .
$$

Then the following result has been proved by CIAVALDINI-NEDELEC [11].

THEOREM 2. The operator $\pi_{h}: H^{3}(\Omega) \rightarrow \chi_{h}$ defined by the above choice of degrees of freedom satisfies

$$
\left\|\phi-\pi_{h} \phi\right\|_{2, \Omega} \leq \operatorname{ch}^{s}\|\phi\|_{s+2, \Omega},
$$

where $s=1,2$.
As a consequence of this result the space χ_{h} can be used to approximate any variational problem on $H_{\circ}^{2}(\Omega)$ and in particular the biharmonic problem associated to the Stokes problem. However, as is the case with any Hermite finite element, the programming of the Fde V-S element is difficult and it is easier to use the corresponding element in the velocity formulation, which is quadratic.

6.4 Approximation of the Stokes Problem Via Quadratic Elements

Let T_{h} be the triangulation associated to Q_{h} by dividing each quadrilateral of Q_{h} into four triangles in the usual way. Let

$$
W_{h}=\left\{v_{h} \varepsilon C^{\circ}(\bar{\Omega})^{2}:\left.v_{h}\right|_{T} \varepsilon\left(\mathbb{P}_{2}(T)\right)^{2}, T \varepsilon T_{h}, v_{h}=0 \quad \text { on } \quad \partial \Omega\right\}
$$

and

$$
V_{h}=\left\{v_{h} \varepsilon W_{h}: \operatorname{div} v_{h}=0\right\} .
$$

Obviously $v_{h} \varepsilon V_{h}$ implies that there exists $\psi_{h} \varepsilon \chi_{h}$ such that $v_{h}=$ $\operatorname{rot} \psi_{h}$. Therefore we can state
THEOREM 3. There exists a constant c such that, for $u \varepsilon V \cap H^{s+1}(\Omega)$ ($s=1$ or 2),

$$
\operatorname{Inf}_{v_{h} \varepsilon V_{h}}\left\|u-v_{h}\right\|_{1, \Omega} \leq \operatorname{ch}^{s}\|u\|_{s+1, \Omega}
$$

Proof. As $u \varepsilon V$, there exists $\psi \varepsilon H^{s+2}(\Omega) \cap H_{\circ}^{2}(\Omega)$ such that $u=\operatorname{rot} \psi$. Then choosing $v_{h}=\operatorname{rot} \pi_{h} \psi$ we obtain the result.

Numerically, one may solve the approximate problem:

$$
\left\{\begin{array}{l}
\text { find } \quad u_{h} \varepsilon V_{h} \quad \text { such that } \\
a\left(u_{h}, v_{h}\right)=L\left(v_{h}\right) \forall v_{h} \varepsilon V_{h},
\end{array}\right.
$$

via a penalty method.
Let $\varepsilon>0$ and

$$
a_{\varepsilon}(u, v)=a(u, v)+1 / \varepsilon \int_{\Omega} \operatorname{div} v \operatorname{div} u d x .
$$

The penalised problem is:

$$
\left\{\begin{array}{l}
\text { Find } u_{h} \varepsilon W_{h} \quad \text { such that } \\
a_{\varepsilon}\left(u_{\varepsilon h}, v_{h}\right)=L\left(v_{h}\right) \forall v_{h} \varepsilon W_{h} .
\end{array}\right.
$$

This problem is much easier to solve. We shall see in Chapter 7 that the order of the error due to penalization is only

$$
0(\varepsilon):\left\|u_{\varepsilon h}-u_{h}\right\|_{1} \leq c . \varepsilon,
$$

where c may depend on h.

6.5 Penalty Methods.

We now come back to the case of finite elements of degree 1 where the space W_{h} is

$$
W_{h}=\left\{v_{h} \varepsilon\left(C^{\circ}(\bar{\Omega})\right)^{2}:\left.v_{h}\right|_{K} \varepsilon\left(\mathbb{P}_{1}(K)\right)^{2}, K \varepsilon T_{h}, v_{h}=0 \text { on } \partial \Omega\right\} .
$$

The approximate problem can be taken as

$$
\left\{\begin{array}{l}
\text { Find } \quad u_{\varepsilon h} \varepsilon W_{h} \quad \text { such that } \\
a_{\varepsilon}\left(u_{\varepsilon h}, v_{h}\right)=L\left(v_{h}\right) \quad \text { for all } v_{h} \varepsilon W_{h} .
\end{array}\right.
$$

We have
84 THEOREM 4. Assume that $u \varepsilon H^{2}(\Omega)$. Then there exists a constant c such that

$$
\left\|u_{\varepsilon h}-u\right\|_{1}^{2} \leq c\left[h^{2}(1+1 / \varepsilon)+h+\sqrt{\varepsilon}\right] .
$$

Hence by choosing $\varepsilon=h^{4 / 3}$ we obtain

$$
\left\|u_{\varepsilon h}-u\right\|_{1} \leq \operatorname{ch}^{1 / 3}
$$

Exercise 2. Prove the above theorem.
Note that the above convergence rate is very poor, which is confirmed by the poor numerical results obtained with this method.

6.6 The Navier-Stokes Equations.

The stationary flow of a viscous, Newtonian fluid subjected to gravity loads in a bounded region Ω of \mathbb{R}^{3} is governed by the following dimensionless equations.

$$
\left.\begin{array}{rl}
-\gamma \Delta u+\sum_{i=1}^{3} u_{i} \frac{\partial u}{\partial x_{i}}+\nabla p=f & \text { in } \tag{6.1}\\
\operatorname{div} u=0 & \text { in } \\
u & \Omega \\
u & =0 \\
\text { in } & \partial \Omega,
\end{array}\right\}
$$

where u represents the velocity, p the pressure and f is the body force. All these quantities are in dimensionless form and $\gamma=\frac{\mu}{D V_{\rho}}=\frac{1}{R e}$ where $R e$ is called the Reynolds number. Here is the viscosity of the fluid D a length characterizing the domain Ω, V a characteristic velocity of the flow and ρ the density of the fluid (For more details the reader is referred to BIRD-STEWART-LIGHTFOOR ‘Transport Phenomena, Wiley Ed. p. 108).

The Reynolds number is the only parameter in the equation and it measures how far the Navier-Stokes model is from the Stokes model. The limiting case $\gamma=0$ corresponds to Euler's equations for inviscid fluids. However, at high Reynolds number, the flow develops a boundary layer near the boundary. Moreover, instability and bifurcation phenomena can be observed which correspond physically to turbulence. We are going to study only the flows at low Reynolds number.

6.7 Existence and Uniqueness of Solutions of Navier-Stokes

EQUATIONS AT LOW REYNOLDS NUMBERS. The variational formulation of Navier-Stokes equations is:

$$
\left\{\begin{array}{l}
\text { Find } \quad u \varepsilon V \quad \text { such that } \tag{6.2}\\
a(u, v)+b(u, u, v)=(f, v) \quad \forall v \varepsilon V,
\end{array}\right.
$$

where

$$
\begin{array}{r}
a(u, v)=\gamma \int_{\Omega} \nabla u \cdot \nabla v d x \\
b(u, v, w)=\int_{\Omega} \sum_{i, j=1}^{3} u_{i} \frac{\partial v_{j}}{\partial x_{i}} w_{j} d x
\end{array}
$$

and

$$
V=\left\{v \varepsilon\left(H_{\circ}^{1}(\Omega)\right)^{3}: \operatorname{div} v=0\right\} .
$$

Exercise 3. Show that if u is a solution of (6.2), then there exists a $\mathbf{8 6}$ $p \varepsilon L^{2}(\Omega)$ such that $\{u, p\}$ is a solution of (6.1) in the sense of distributions.

Exercise 4. Show that for all $u, v, w \varepsilon V$ one has

$$
\begin{aligned}
b(u, v, w) & =-b(u, w, v) \\
b(u, v, v) & =0
\end{aligned}
$$

As $H^{1}(\Omega) \hookrightarrow L^{4}(\Omega)$ (see LADYZHENSKAYA [27] for a proof of this), using Schwarz inequality twice we obtain

$$
b(u, v, w) \leq\|u\|_{0,4}\|v\|_{1}\|w\|_{0,4} \leq c\|u\|_{1}\|v\|_{1}\|w\|_{1} .
$$

Hence

$$
\beta=\operatorname{Sup}_{u, v, w \varepsilon V} \frac{b(u, v, w)}{\|u\|\| \| v\| \|\| \|}<\infty
$$

where $\|u\|=|u|_{1}$. We have
THEOREM 5. Assume that $\beta / \gamma^{2}\|f\|_{*}<1$. Then the problem (6.2) has a unique solution.

Proof. Let $u^{i} \varepsilon V, i=1,2$. Let $v^{i}, i=1,2$ be the solution

$$
\begin{equation*}
a\left(v^{i}, w\right)+b\left(u^{i}, v^{i}, w\right)=(f, w) \quad \forall w \varepsilon V i=1,2 \tag{6.3}
\end{equation*}
$$

Note that (6.3) is a linear problem and has a unique solution by virtue of the Lax-Milgram Lemma.

Choosing $w=v^{i}$ in (6.3) it is easy to see that

$$
\gamma\left\|v^{i}\right\|^{2} \leq\left(f, v^{i}\right) \leq\|f\|_{*}\left\|v^{i}\right\|
$$

Thus

$$
\left\|v^{i}\right\| \leq \frac{\|f\|_{*}}{\gamma}
$$

Taking $w=v^{2}-v^{1}$, we obtain

$$
\begin{array}{r}
\gamma\|w\|^{2} \leq a\left(v^{2}-v^{1}, w\right)=b\left(u^{1}, v^{1}, w\right)-b\left(u^{2}, v^{2}, w\right)=b\left(u^{1},-w, w\right)+ \\
+b\left(u^{1}-u^{2}, v^{2}, w\right) \leq 0+\beta\left\|v^{2}\right\| \cdot\|w\|\left\|u^{1}-u^{2}\right\|
\end{array}
$$

Hence we obtain

$$
\left\|v^{1}-v^{2}\right\| \leq \frac{\beta}{\gamma^{2}}\|f\|_{*}\left\|u^{1}-u^{2}\right\| .
$$

Since $\frac{\beta}{\gamma^{2}}\|f\|_{*}<1$, the mapping $T: u^{i} \rightarrow v^{i}$ is a strict contraction and has a fixed point which obviously is the unique solution of (6.2)

REMARK 1. The proof is constructive in the sense that the algorithm $u^{n+1}=T u^{n}$ gives a sequence which converges to the solution. At each step of this algorithm one has to solve the linearised problem 6.3.

REMARK 2. If $\gamma^{2} \geq \beta\|f\|_{*}$ then there exists atleast one solution to (6.2). The solution of (6.2) in this case may not be unique (see LIONS [28]). Note that problem (6.2) is equivalent to solving a non-linear 88 equation $F(u)=0$ where $F: V \rightarrow V^{\prime}$ is given by

$$
F(u)(v)=a(u, v)+b(u, u, v)-(f, v) .
$$

Let G_{u} be the linear operator which is tangent to F, i.e.
$\left(G_{u} w, v\right)=\lim _{\theta \rightarrow 0} \frac{1}{\theta}(F(u+\theta w)-F(u), v)=a(w, v)+b(u, w, v)+b(w, u, v)$.
If G_{u} is not singular, then u is an isolated solution, otherwise there may be a bifurcation. The eigenvalue problem associated to the linearised problem is:

$$
\left\{\begin{array}{l}
\text { Find } \quad w \varepsilon V, \lambda \varepsilon \mathscr{C} \quad \text { such that } \\
a(w, v)+b(u, w, v)+b(w, u, v)=\lambda(w, v) \quad v \varepsilon V
\end{array}\right.
$$

and a study of this problem is of fundamental interest.
We refer the reader to BREZZI-RAPPAZ-RAVIART [6] for a study of the convergence in the case where u is an isolated solution. In the next section we restrict ourselves to the case where u is unique.

6.8 Error Estimates for Conforming Method

Let $V_{h} \subset V$. We consider the approximate problem:

$$
\left\{\begin{array}{l}
\text { Find } u_{h} \varepsilon V_{h} \quad \text { such that } \tag{6.4}\\
a\left(u_{h}, v_{h}\right)+b\left(u_{h}, u_{h}, v_{h}\right)=\left(f, v_{h}\right) \forall v_{h} \varepsilon V_{h}
\end{array}\right.
$$

Let

$$
\beta_{h}=\operatorname{Sup}_{u, v, w \varepsilon V_{h}} \frac{b(u, v, w)}{\|u\|\| \|\| \| \|}
$$

and

$$
\|f\|_{h *}=\operatorname{Sup}_{u \varepsilon V_{h}} \frac{(f, v)}{\|v\|}
$$

Then it is easy to see that has a unique solution when

$$
\frac{\beta_{h}}{\gamma^{2}}\|f\|_{h *}<1
$$

The iterative method mentioned in Remark converges for all γ satisfying $\gamma^{2}>\beta_{h}\|f\|_{h *}$ Note that $\beta_{h} \leq \beta$ and $\|f\|_{h *} \leq\|f\|_{*}$; however, JAMET-RAVIART [23] proved that $\beta_{h} \rightarrow \beta$ and $\|f\|_{h *} \rightarrow\|f\|_{*}$ as $h \rightarrow 0$.

THEOREM 6. Assume that

$$
\frac{\beta}{\gamma^{2}}\|f\|_{*}<1-\delta
$$

with $0<\delta<1$; then one has

$$
\left\|u-u_{h}\right\| \leq 3 / \delta\left\|u-v_{h}\right\| \quad \forall v_{h} \varepsilon V_{h}
$$

Proof. Let $w_{h}=v_{h}-u_{h}$. Then

$$
\begin{gathered}
\gamma\left\|w_{h}\right\|^{2} \leq a\left(v_{h}-u, w_{h}\right)+a\left(u-u_{h}, w_{h}\right), \\
a\left(u, w_{h}\right)=\left(f, w_{h}\right)-b\left(u, u, w_{h}\right), \\
a\left(u_{h}, w_{h}\right)=\left(f, w_{h}\right)-b\left(u_{h}, u_{h}, w_{h}\right), \\
a\left(u-u_{h}, w_{h}\right)=b\left(u_{h}, u_{h}-u, w_{h}\right)
\end{gathered}
$$

$$
\begin{gathered}
+b\left(u_{h}-u, u, w_{h}\right) \leq \beta\left\|u_{h}\right\|\left\|v_{h}-u\right\|\left\|w_{h}\right\|+\beta\left\|u_{h}-u\right\| \cdot\|u\| \\
\left\|w_{h}\right\| \quad \text { since } \quad b\left(u_{h}, u_{h}-v_{h}, w_{h}\right)=0
\end{gathered}
$$

But we know that

$$
\|u\| \leq 1 / \gamma\|f\|_{*},\left\|u_{h}\right\| \leq 1 / \gamma\|f\|_{*}
$$

Therefore we obtain

$$
\left\|w_{h}\right\|^{2} \leq\left(\left\|v_{h}-u\right\|+(1-\delta)\left\|v_{h}-u\right\|+(1-\delta)\left\|u_{h}-u\right\|\right) .\left\|w_{h}\right\|
$$

As

$$
\left\|u-u_{h}\right\| \leq\left\|u-v_{h}\right\|+\left\|w_{h}\right\|
$$

we get

$$
\delta\left\|w_{h}\right\|^{2} \leq(3-2 \delta)\left\|v_{h}-u\right\|\left\|w_{h}\right\|
$$

Hence

$$
\left\|u-u_{h}\right\| \leq\left\|v_{h}-u\right\|+\frac{3-2 \delta}{\delta}\left\|u-v_{h}\right\|
$$

This gives the desired result.

An immediate consequence of Theorem6 is that, when the solution u of (6.2) is sufficiently regular, we obtain the same error estimate for Navier-Stokes equations at low Reynolds number as for Stokes.

The method described in Section 6.4 is probably one of the best methods for Navier-Stokes equations at low Reynolds number.

However, when the Reynolds number is large, a major disadvantage is that the velocity field is required to be continuous (since our method is conforming) and this is not good to take into account boundary layer phenomena.

Indeed the velocity profile near the boundary has the behaviour as $\mathbf{9 1}$ shown in figure.

Figure 6.6:
ϵ is called the thickness of the boundary layer. In fact, $\epsilon=\gamma^{1 / 2}$, so that for high Reynolds number, this requires a very high refinement of the mesh near the boundary and therefore very expensive computer time. This can be partly avoided with mixed finite element since we shall work with discontinuous velocity fields.

Chapter 7

Mixed Finite Element Methods

7.1 The Abstract Continuous Problem

Let V, M, H be Hilbert spaces with $V \hookrightarrow H$. The continuous problem is: 92
Find $\{u, \lambda\} \varepsilon V \times M$ such that

$$
\begin{align*}
& a(u, v)+b(v, \lambda)=(f, v) \quad \forall v \varepsilon V \tag{7.1}\\
& b(u, \mu)=(\phi, \mu) \forall \mu \varepsilon M \tag{7.1b}
\end{align*}
$$

where $a(\cdot, \cdot): H \times H \rightarrow \mathbb{R}$ and $b(\cdot, \cdot): V \times M \rightarrow \mathbb{R}$ are continuous bilinear forms and $f \varepsilon V^{\prime}, \phi \varepsilon M^{\prime}$.

Let $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ satisfy

$$
\begin{align*}
& a(v, v) \geq \alpha\|v\|_{H}^{2} \forall v \varepsilon H \quad \text { ellipticity, } \tag{7.2}\\
& \operatorname{Sup}_{v \varepsilon V} \frac{b(v, \mu)}{\|v\|_{V}} \geq \beta\|\mu\|_{M} \quad \text { Brezzi's condition } \tag{7.3}
\end{align*}
$$

$|a(u, v)| \leq|a|\|u| || | v| |,|b(v, \mu)| \leq|b|\| v| || | \mu \|$. We have
THEOREM 1. If $H=V$ then, under the above assumptions problem (7.1) has a unique solution.

Proof. Let us consider the regularised problem:

$$
\begin{align*}
& a\left(u_{\varepsilon}, v\right)+b\left(v, \lambda_{\varepsilon}\right)=(f, v) \forall v \varepsilon V \tag{7.4}\\
& -b\left(u_{\varepsilon}, \mu\right)+\varepsilon\left(\lambda_{\varepsilon}, \mu\right)=-(\phi, \mu) \forall \mu \varepsilon M \tag{7.4b}
\end{align*}
$$

Let $\Phi=\{u, \lambda\}, \Psi=\{v, \mu\} \varepsilon V \times M$. We define

$$
A_{\varepsilon}(\Phi, \Psi)=a(u, v)+b(v, \lambda)-b(u, \mu)+\varepsilon(\lambda, \mu), L(\Psi)=(f, v)-(\phi, \mu)
$$

93 Then $A_{\varepsilon}(\Phi, \Psi)$ is $V \times M$ coercive and $L(\Psi)$ is a continuous, linear form on $V \times M$.

It is easy to see that problem (7.4) is equivalent to:

$$
\left.\begin{array}{c}
\text { Find } \quad \Phi \varepsilon V \times M \quad \text { such that } \tag{7.5}\\
A_{\varepsilon}(\Phi, \Psi)=L(\Psi) \forall \Psi \varepsilon V \times M
\end{array}\right\}
$$

By Lax-Milgram Lemma, problem (7.5) has a unique solution which implies that the regularized problem (7.4) has a unique solution.

Taking $v=u_{\varepsilon}$ in (7.4), $\mu=\lambda_{\varepsilon}$ in (7.4b) and adding and using the continuity of bilinear forms and H-ellipticity of $a(\cdot, \cdot)$, we get

$$
\begin{equation*}
\alpha\left\|u_{\varepsilon}\right\|^{2}+\varepsilon\left\|\lambda_{\varepsilon}\right\|^{2} \leq C\left(\left\|u_{\varepsilon}\right\|+\left\|\lambda_{\varepsilon}\right\|\right) \tag{7.6}
\end{equation*}
$$

where C is a constant.
Since

$$
b\left(v, \lambda_{\varepsilon}\right)=(f, v)-a\left(u_{\varepsilon}, v\right) \leq\left(\|f\|_{*}+|a|\left\|u_{\varepsilon}\right\|\right)\|v\|
$$

we obtain, using Brezzi's condition,

$$
\beta\left\|\lambda_{\varepsilon}\right\| \leq \operatorname{Sup}_{v \varepsilon V} \frac{b\left(v, \lambda_{\varepsilon}\right)}{\|v\|} \leq\|f\|_{*}+|a|\left\|u_{\varepsilon}\right\|
$$

This implies

$$
\begin{equation*}
\left\|\lambda_{\varepsilon}\right\| \leq C\left(1+\left\|u_{\varepsilon}\right\|\right) \tag{7.7}
\end{equation*}
$$

From (7.6) and (7.7) we obtain

$$
\left\|u_{\varepsilon}\right\| \leq C \quad \text { and } \quad\left\|\lambda_{\varepsilon}\right\| \leq C
$$

94 where C is a constant. Hence there exists a subsequence $\left\{\epsilon^{\prime}\right\}, u \in V$, $\lambda \in M$, such that

$$
u_{\epsilon^{\prime}} \rightharpoonup u \quad \text { and } \quad \lambda_{\epsilon^{\prime}} \rightharpoonup \lambda
$$

Obviously $\{u, \lambda\}$ is a solution of (7.1).
If $\left\{u_{1}, \lambda_{1}\right\}$ and $\left\{u_{2}, \lambda_{2}\right\}$ are solutions of (7.1), then

$$
\begin{array}{r}
a\left(u_{1}-u_{2}, v\right)+b\left(v, \lambda_{1}-\lambda_{2}\right)=0 \forall v \in V, \\
b\left(u_{1}-u_{2}, \mu\right)=0 \forall \mu \in M . \tag{7.8}
\end{array}
$$

Taking $v=u_{1}-u_{2}$ and $\mu=\lambda_{1}-\lambda_{2}$, we obtain

$$
\alpha\left\|u_{1}-u_{2}\right\|^{2} \leq a\left(u_{1}-u_{2}, u_{1}-u_{2}\right)=0 .
$$

Therefore

$$
u_{1}=u_{2} .
$$

Since $u_{1}=u_{2}$, using Brezzi's condition, we obtain from (7.8) that

$$
\lambda_{1}=\lambda_{2}
$$

Hence the solution of (7.1) is unique.
REMARK 1. We now give an error estimate for the solution of (7.1) and the regularized problem (7.4). We have

$$
a\left(u-u_{\varepsilon}, v\right)+b\left(v, \lambda-\lambda_{\varepsilon}\right)=0 \forall v \in V .
$$

Hence

$$
\begin{equation*}
\beta\left\|\lambda-\lambda_{\in}\right\| \leq|a| .\left\|u-u_{\in}\right\| \tag{7.9}
\end{equation*}
$$

From 7.1b and 7.4b we obtain

$$
b\left(u-u_{\epsilon}, \mu\right)+\in\left(\lambda_{\epsilon}, \mu\right)=0 \forall \mu \in M .
$$

Choosing $v=u-u_{\epsilon}, \mu=\lambda-\lambda_{\epsilon}$, we get
$\alpha\left\|u-u_{\epsilon}\right\|^{2} \leq a\left(u-u_{\epsilon}, u-u_{\epsilon}\right)=\in\left(\lambda_{\epsilon}, \lambda-\lambda_{\epsilon}\right) \leq \in\left\|\lambda_{\in}\right\|\| \|-\lambda_{\epsilon} \|$
Thus, using (7.7)

$$
\left\|u-u_{\in}\right\| \leq C \in
$$

Thus from (7.9) we get

$$
\left\|\lambda-\lambda_{\in}\right\| \leq C \in
$$

So we obtain

$$
\left\|u-u_{\in}\right\|=0(\in) \quad \text { and } \quad\left\|\lambda-\lambda_{\in}\right\|=0(\epsilon)
$$

REMARK 2. Let $B: V \rightarrow M$ be such that

$$
(B v, \mu)_{M}=b(v, \mu) \forall \mu \in M
$$

One has, from (7.4b and (7.4),

$$
\begin{gathered}
\lambda_{\in}=1 / \in\left(B u_{\epsilon}-\phi\right), \\
a\left(u_{\in}, v\right)+1 / \in\left(B v, B u_{\in}-\phi\right)=(f, v) \forall v \in V
\end{gathered}
$$

which correspond to penalization of (7.1b.
REMARK 3. We proved the existence and uniqueness of (7.1) only under the assumption $V=H$. If $V \neq H$ then we do not have a general existence theorem. But existence theorems for particular examples when $V \neq H$ are proved.

We now give examples of (7.1).
96 EXAMPLE 1. The Stokes Problem. We recall that the Stokes problem is:

Find $\{u, p\}$ such that

$$
\begin{array}{rll}
-\gamma \Delta u+\nabla p=f & \text { in } & \Omega \\
\operatorname{div} u=0 & \text { in } & \Omega \\
u=0 & \text { on } & \Gamma .
\end{array}
$$

Without loss of generality we can take $\gamma=1$. Using the standard technique of integration by parts we find that this corresponds to the problem:

Find

$$
\{u, p\} \varepsilon\left(H_{\circ}^{1}(\Omega)\right)^{n} \times\left(L^{2}(\Omega) / \mathbb{R}\right)
$$

such that

$$
\begin{aligned}
a(u, v)+b(v, p) & =(f, v) \forall v \varepsilon\left(H_{\circ}^{1}(\Omega)\right)^{n}, \\
b(u, \mu) & =0 \forall \mu \varepsilon L^{2}(\Omega) / \mathbb{R}
\end{aligned}
$$

where

$$
\begin{aligned}
& a(u, v)=\int_{\Omega} \nabla u . \nabla v d x \\
& b(v, \mu)=-\int_{\Omega} \mu \operatorname{div} v d x
\end{aligned}
$$

We take

$$
\begin{aligned}
V & =H=\left(H_{\circ}^{1}(\Omega)\right)^{n}, \\
M & =\left(L^{2}(\Omega) / \mathbb{R}\right) .
\end{aligned}
$$

Clearly $a(\cdot, \cdot)$ is H-elliptic, continuous and bilinear. Let us prove Brezzi's condition,

$$
\begin{aligned}
\operatorname{Sup}_{\nu \varepsilon V} \frac{b(v, \lambda)}{\|v\|_{V}} & =\operatorname{Sup}_{v \varepsilon\left(H_{0}^{1}(\Omega)\right)^{n}} \frac{-\int_{\Omega} \lambda \operatorname{div} v}{\|v\|_{V}}=\operatorname{Sup}_{v \varepsilon\left(H_{0}^{1}(\Omega)\right)^{n}} \frac{\langle\nabla \lambda, v\rangle}{\|v\|_{V}} \\
& =\|\nabla \lambda\|_{\left(H^{-1}(\Omega)\right)^{n} \geq \frac{1}{C}\|\lambda\|_{L^{2}(\Omega) / \mathbb{R}}}
\end{aligned}
$$

where \langle,$\rangle denotes the duality between \left(H_{\circ}^{1}(\Omega)\right)^{n}$ and $\left(H^{-1}(\Omega)\right)^{n}$.
Thus Stokes problem has a unique solution.
EXAMPLE 2. The Biharmonic Problem. Let

$$
V=H^{1}(\Omega), M=H_{\circ}^{1}(\Omega), H=L^{2}(\Omega)
$$

Consider the problem:
Find

$$
\{u, \lambda\} \varepsilon H^{1}(\Omega) \times H_{\circ}^{1}(\Omega)
$$

such that

$$
\begin{align*}
& a(u, v)+b(v, \lambda)=0 \forall v \varepsilon H^{1}(\Omega) \tag{7.10}\\
& b(u, \mu)=\int_{\Omega} \phi \mu d x \forall \mu \varepsilon H_{\circ}^{1}(\Omega) \tag{7.11}
\end{align*}
$$

where

$$
a(u, v)=\int_{\Omega} u v d x, b(v, \mu)=\int_{\Omega} \nabla v \cdot \nabla \mu d x
$$

and $\phi \varepsilon L^{2}(\Omega)$.
Using integration by parts, we obtain from (7.10) that

$$
\int_{\Omega} u v d x-\int_{\Omega} \Delta \lambda \cdot v d x+\int_{\Gamma} \frac{\partial \lambda}{\partial n} v d \Gamma=0
$$

which implies

$$
\left.\begin{array}{rlrl}
u-\Delta \lambda & =0 & \text { in } & \Omega, \tag{7.12}\\
\frac{\partial \lambda}{\partial n}=0 & \text { on } & \Gamma .
\end{array}\right\}
$$

From (7.11) we get

$$
\begin{equation*}
-\Delta u=\phi . \tag{7.13}
\end{equation*}
$$

Thus we have, from (7.12) and (7.13), the biharmonic problem

$$
\left\{\begin{array}{l}
\Delta^{2} \lambda=0 \quad \text { in } \quad \Omega, \tag{7.14}\\
\frac{\partial \lambda}{\partial n}=0 \quad \text { on } \quad \Gamma \\
\lambda=0 \quad \text { on } \quad \Gamma .
\end{array}\right.
$$

In the variational form of the biharmonic equation, we notice that $V=H^{1}(\Omega) \neq L^{2}(\Omega)=H$. It is easy to see when (7.10), (7.11) has one solution. If a solution λ of (7.14) is in $H^{3}(\Omega) \cap H_{\circ}^{2}(\Omega)$ then u defined by (7.13) is in $H^{1}(\Omega)$. Moreover, one can check that this $\{u, \lambda\}$ is a solution of (7.10), 7.11.

7.2 The Approximate Problem

Let $V_{h} \subset V$ and $M_{h} \subset M$ be two families of finite-dimensional spaces approximating V and M. We shall study the approximate problem:

Find

$$
\left\{u_{h}, \lambda_{h}\right\} \varepsilon V_{h} \times M_{h}
$$

such that

$$
\begin{align*}
& a\left(u_{h}, v_{h}\right)+b\left(v_{h}, \lambda_{h}\right)=\left(f, v_{h}\right) \forall v_{h} \varepsilon V_{h}, \tag{7.15}\\
& b\left(u_{h}, \mu_{h}\right)=\left(\phi, \mu_{h}\right) \forall \mu_{h} \varepsilon M_{h} . \tag{7.15b}
\end{align*}
$$

Exercise 1. Show that the problem (7.15) leads to solving a linear system with matrix

$$
\left(\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right)
$$

where A is a $m \times m$ positive definite matrix and B is $n \times m$ matrix where $m=\operatorname{dim} V_{h}$ and $n=\operatorname{dim} M_{h}$.

Since V_{h} is finite-dimensional, the norms $\|\cdot\|_{v}$ and $\|\cdot\|_{H}$ on V_{h} are equivalent, that is there exists a function $S(h)$ such that

$$
\begin{equation*}
\left\|v_{h}\right\|_{v} \leq S(h)\left\|v_{h}\right\|_{H} \quad \forall v_{h} \varepsilon V_{h} . \tag{7.16}
\end{equation*}
$$

We introduce the affine spaces

$$
\begin{aligned}
& Z_{h}(\phi)=\left\{v_{h} \varepsilon V_{h}: b\left(v_{h}, \mu_{h}\right)=\left(\phi, \mu_{h}\right) \forall \mu_{h} \varepsilon M_{h}\right\} \\
& Z(\phi)=\{v \varepsilon V: b(v, \mu)=(\phi, \mu) \forall \mu \varepsilon M\}
\end{aligned}
$$

Exercise 2. Let $\phi=0$. Show that (7.1) is equivalent to the problem:
Find

$$
\left.\begin{array}{l}
u \varepsilon Z=Z(0) \quad \text { such that } \tag{7.17}\\
a(u, v)=(f, v) \forall v \varepsilon Z
\end{array}\right\}
$$

In the same way show that (7.15) is equivalent to:
Find

$$
\left\{\begin{array}{l}
u_{h} \varepsilon Z_{h}=Z_{h}(0) \quad \text { such that } \tag{7.18}\\
a\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \varepsilon Z_{h}
\end{array}\right.
$$

The present framework allows us to deal with $Z_{h} \not \subset Z$ and hence we can consider non-conforming approximations of (7.17).

We now give an error bound in H-norm.
THEOREM 2. Assuming that the continuous problem has at least one solution $\{u, \lambda\}$ one has the error bound

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{H} \leq\left(1+\frac{|a|}{\alpha}\right) \inf _{v_{h} \varepsilon Z_{h}(\phi)}\left\|u-v_{h}\right\|_{H}+\frac{|b|}{\alpha} S(h) \inf _{\mu_{h} \varepsilon M_{h}}\left\|\lambda-\mu_{h}\right\|_{M} \tag{7.19}
\end{equation*}
$$

Proof. Let $w_{h}=v_{h}-u_{h}$ and we have

$$
a\left(w_{h}, w_{h}\right)=a\left(v_{h}-u, w_{h}\right)+a\left(u-u_{h}, w_{h}\right)
$$

From (7.1) and (7.15), we obtain

$$
a\left(u-u_{h}, w_{h}\right)=b\left(w_{h}, \lambda_{h}-\lambda\right) \forall w_{h} \varepsilon V_{h} .
$$

We notice that for $v_{h} \varepsilon Z_{h}(\phi)$,

$$
b\left(v_{h}-u_{h}, \mu_{h}\right)=0 \forall \mu_{h} \varepsilon M_{h}
$$

and hence

$$
a\left(u-u_{h}, v_{h}-u_{h}\right)=b\left(v_{h}-u_{h}, \mu_{h}-\lambda\right) \forall v_{h} \varepsilon Z_{h}(\phi), \mu_{h} \varepsilon M_{h} .
$$

Using the H-coerciveness of $a(\cdot, \cdot)$ and the continuity of $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ we obtain

$$
\begin{array}{r}
\alpha\left\|v_{h}-u_{h}\right\|_{H}^{2} \leq|a|\left\|v_{h}-u_{h}\right\|_{H}\left\|v_{h}-u\right\|_{H}+|b|\left\|\lambda-\mu_{h}\right\|_{M}\left\|v_{h}-u_{h}\right\|_{V} \\
\leq|a|\left\|v_{h}-u_{h}\right\|_{H}\left\|v_{h}-u\right\|_{H}+|b|\left\|\lambda-\mu_{h}\right\|_{M} S(h) .\left\|v_{h}-u_{h}\right\|_{H}
\end{array}
$$

101 Hence

$$
\left\|v_{h}-u_{h}\right\|_{H} \leq \frac{|a|}{\alpha}\left\|v_{h}-u\right\|_{H}+\frac{|b|}{\alpha} S(h)\left\|\lambda-\mu_{h}\right\|_{M}
$$

We get the desired result by noticing that

$$
\left\|u-u_{h}\right\|_{H} \leq\left\|u-v_{h}\right\|_{H}+\left\|v_{h}-u_{h}\right\|_{H}
$$

REMARK 4. If $Z_{h}(0) \subset Z(0)$ then the error estimate (7.19) reduces to

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{H} \leq\left(1+\frac{|a|}{\alpha}\right) \inf _{v_{h} \varepsilon Z_{h}(\phi)}\left\|u-v_{h}\right\|_{H} \tag{7.20}
\end{equation*}
$$

using the fact $b\left(v_{h}-u_{h}, \lambda_{h}-\lambda\right)=0$ as $v_{h}-u_{h} \varepsilon Z_{h}(0) \subset Z(0)$.
When $\phi=0$, the error estimate (7.20) is obvious, inview of exercise 2 Then (7.20) is the error bound obtained in the conforming case.

7.3 Application to the Stokes Problem

In what follows T_{h} will denote a regular family of triangulations of the polygonal domain Ω, ϑ_{h} will denote the set of vertices of T_{h}, m_{h} the set of mid side points and \mathscr{E}_{h} the set of edges.

We consider the Stokes problem (example 1) where u is the velocity $\mathbf{1 0 2}$ and λ is the pressure.

We shall choose for V_{h} a conforming \mathbb{P}_{2} space and for M_{h} a piecewise constant space, namely

$$
V_{h}=\left\{v_{h} \varepsilon\left(C^{\circ}(\bar{\Omega})\right)^{n}:\left.v_{h}\right|_{K} \varepsilon\left(\mathbb{P}_{2}(K)\right)^{n}, K \varepsilon T_{h}, v_{h}=0 \quad \text { on } \quad \partial \Omega\right\}
$$

and

$$
M_{h}=\left\{\mu_{h} \varepsilon L^{2}(\Omega):\left.\mu_{h}\right|_{K} \varepsilon \mathbb{P}_{0}(K), K \varepsilon T_{h}\right\}
$$

We notice that
$\operatorname{dim} V_{h}=n$ (\# internal vertices + \# internal edges) and choose Σ_{h} for the set of degrees of freedom in each component where

$$
\Sigma_{h}=\left\{\delta_{N}, N \varepsilon \vartheta_{h} ; M_{\gamma}, \gamma \varepsilon \mathscr{E}_{h}\right\}
$$

$M_{\gamma}(p)=\frac{1}{|\gamma|} \int_{\gamma} p d s$ denoting the average on the edge.
With this choice of Σ_{h}, the interpolation operator

$$
\pi_{h}:\left(H^{2}(\Omega)\right)^{n} \rightarrow V_{h}
$$

defined by

$$
\delta_{N}\left(\pi_{h} u\right)=\delta_{N}(u), N \varepsilon \vartheta_{h}
$$

$$
M_{\gamma}\left(\pi_{h} u\right)=M_{\gamma}(u), \gamma \varepsilon \mathscr{E}_{h},
$$

will have some nice properties. Note that π_{h} is defined only on a subset of V since $u(N)$ is not defined for all u in $\left(H_{\circ}^{1}(\Omega)\right)^{n} ; \pi_{h}$ is defined on
$103 V \cap\left(H^{2}(\Omega)\right)^{n}$ since the functions in $\left(H^{2}(\Omega)\right)^{n}$ are continuous.
Exercise 3. Let K be a triangle.
Let $P_{K}=\mathbb{P}_{2}(K)$ and

$$
\Sigma_{K}=\left\{\delta_{a_{i}}, M_{\gamma_{i}}, 1 \leq i \leq 3\right\}
$$

where a_{i} are the vertices of K and γ_{i} are edges of $K . M_{\gamma_{i}}$ is defined by

$$
M_{\gamma_{i}}(p)=\frac{1}{\left|\gamma_{i}\right|} \int_{\gamma_{i}} p d s
$$

Show that Σ_{K} is P_{K} unisolvent.
We have
LEMMA 3. One has

$$
\int_{K} \operatorname{div}\left(\pi_{h} v\right) d x=\int_{K} \operatorname{div} v d x \forall v \varepsilon\left(H^{2}(\Omega)\right)^{n}
$$

Proof. Indeed, by Green's formula,

$$
\begin{aligned}
\int_{K} \operatorname{div}\left(\pi_{h} v\right) d x & =\int_{\partial K}\left(\pi_{h} v \cdot n\right) d s \\
& =\int_{\partial K} v \cdot n d s
\end{aligned}
$$

since n is constant on each side of K.
Applying again Green's formula we get the desired result.

104 Error Estimates for $\left\|u-u_{h}\right\|_{1}$ If $u \varepsilon H^{2}(\Omega)$ (which is true when Ω is convex) then, since $u \varepsilon Z(0)$ (i.e. $\operatorname{div} u=0$) and M_{h} contains functions
which are piecewise constant, we have, by Lemma $3 \pi_{h} u \varepsilon Z_{h}(0)$. Hence we obtain

$$
\inf _{v_{h} \varepsilon Z_{h}(0)}\left\|u-v_{h}\right\|_{1} \leq\left\|u-\pi_{h} u\right\|_{1} \leq \operatorname{ch}\|u\|_{2} .
$$

If the solution $u \varepsilon H^{3}(\Omega)$ (which is unlikely since Ω is a polygon) the error bound becomes $c h^{2}\|u\|_{3}$. Indeed, the interpolation operator π_{h} leaves invariant the polynomial space $\mathbb{P}_{2}(K)$ on each element K and the above error bound follows from Chapter 5 .

However, we have

$$
\inf _{u_{h} \varepsilon M_{h}}\left\|\lambda-\mu_{h}\right\|_{0} \leq \operatorname{ch}\|\lambda\|_{1}
$$

provided that the pressure $\lambda \varepsilon H^{1}(\Omega)$.
Finally, Theorem 2 gives

$$
\left\|u-u_{h}\right\|_{1} \leq \operatorname{ch}\left(\|u\|_{2}+\|\lambda\|_{1}\right)
$$

which is only $0(h)$ due to the low degree of approximation for the multiplier.

Other Choices for V_{h} and M_{h}.
Let

$$
Q(K)=\mathbb{P}_{2}(K)+\left\{\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right\}
$$

where $\lambda_{1} \lambda_{2} \lambda_{3}$ is called the bubble function. Note that the dimension of $\mathbf{1 0 5}$ $Q(K)$ is 7 .

The choice

$$
\begin{aligned}
V_{h} & =\left\{v_{h} \varepsilon\left(C^{\circ}(\bar{\Omega})\right)^{2},\left.v_{h}\right|_{K} \varepsilon(Q(K))^{2}, K \varepsilon T_{h}, v_{h}=0 \quad \text { on } \quad \partial \Omega\right\} \\
M_{h} & =\prod_{K} \mathbb{P}_{1}(K)
\end{aligned}
$$

leads to the error estimates

$$
\left\|u-u_{h}\right\|_{1} \leq \operatorname{ch}^{2},\left\|u-u_{h}\right\|_{0} \leq \operatorname{ch}^{3} .
$$

(See CROUZEIX - RAVIART [14].
The choice

$$
\begin{aligned}
V_{h} & =\left\{v_{h} \varepsilon\left(C^{\circ}(\bar{\Omega})\right)^{2}:\left.v_{h}\right|_{K} \varepsilon\left(\mathbb{P}_{2}(K), K \varepsilon T_{h}, v_{h}=0 \quad \text { on } \quad \partial \Omega\right\}\right. \\
M_{h} & =\left\{\mu_{h} \varepsilon C^{\circ}(\bar{\Omega}):\left.\mu_{h}\right|_{K} \varepsilon \mathbb{P}_{1}(K), K \varepsilon T_{h}\right\}
\end{aligned}
$$

in which M_{h} contains continuous piecewise linear functions, leads to the same error estimates. (See BERCOVIER-PIRONNEAU [3]).

This last method, due to TAYLOR-HOOD [42], is widely used by engineers.

7.4 Dual Error Estimates for $u-u_{h}$

Let

$$
\begin{aligned}
& V_{2} \hookrightarrow V \hookrightarrow V_{0} \\
& M_{1} \hookrightarrow M .
\end{aligned}
$$

106 We denote by $\|\cdot\|_{i}$ the norms in $V_{i}(i=0,2)$ and $\|\cdot\|_{1}$ the norm in M_{1}. We assume that $V_{0} \equiv V_{0}^{\prime}$. (In practical applications V_{0} will be a L^{2} space) and that $H=V$ (i.e. $a(\cdot, \cdot)$ is V-coercive).

Let $g \varepsilon V_{0}$ and $\{w, \psi\} \varepsilon V \times M$ satisfy

$$
\begin{align*}
& a(v, w)+b(v, \psi)=(g, v) \forall v \varepsilon V \tag{7.21}\\
& b(w, \mu)=0 \forall \mu \varepsilon M \tag{7.21b}
\end{align*}
$$

We assume (regularity result) that

$$
\begin{equation*}
\|w\|_{2}+\|\psi\|_{1} \leq c\|g\|_{0} \tag{7.22}
\end{equation*}
$$

and

$$
\begin{align*}
& \inf _{v_{h} \varepsilon Z_{h}(\phi)}\left\|w-v_{h}\right\|_{V} \leq e(h)\|w\|_{2} \tag{7.23}\\
& \inf _{\mu_{h} \varepsilon M_{h}}\left\|\mu-\mu_{h}\right\|_{M} \leq e(h)\|\psi\|_{1} \tag{7.24}
\end{align*}
$$

$A V_{0}$-error estimate is given by

THEOREM 4. Under the above assumptions, we have

$$
\left\|u-u_{h}\right\|_{0} \leq c e(h)\left(\left\|u-v_{h}\right\|_{V}+\inf _{\mu_{h} \varepsilon M_{h}}\left\|\lambda-\mu_{h}\right\|_{M}\right)
$$

Proof. We know that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{0}=\operatorname{Sup}_{g \varepsilon V_{0}} \frac{\left(g, u-u_{h}\right)}{\|g\|_{0}} \tag{7.25}
\end{equation*}
$$

From (7.21) we have

$$
\begin{equation*}
\left(g, u-u_{h}\right)=a\left(u-u_{h}, w\right)+b\left(u-u_{h}, \psi\right) \tag{7.26}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
& a\left(u-u_{h}, v_{h}\right)+b\left(v_{h}, \lambda-\lambda_{h}\right)=0 \forall v_{h} \varepsilon V_{h}, \\
& a\left(u-u_{h}, v_{h}\right)+b\left(v_{h}, \lambda-\mu_{h}\right)=0 \forall v_{h} \varepsilon Z_{h}(\phi), \forall \mu_{h} \varepsilon M_{h}, \tag{7.27}
\end{align*}
$$

and

$$
\begin{equation*}
b\left(u-u_{h}, v_{h}\right)=0 \quad \forall v_{h} \varepsilon M_{h} \tag{7.28}
\end{equation*}
$$

From 7.26, 7.21b, 7.27) and 7.28 we obtain

$$
\begin{gathered}
\left(g, u-u_{h}\right)=a\left(u-u_{h}, w-v_{h}\right)+b\left(w-v_{h}, \lambda-\mu_{h}\right)+b\left(u-u_{h}, \psi-v_{h}\right) \\
\forall v_{h} \varepsilon Z_{h}(\phi) \\
\forall \mu_{h}, v_{h} \varepsilon M_{h} .
\end{gathered}
$$

Using the continuity of $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ we get
$\left(g, u-u_{h}\right) \leq c\left(\left\|u-u_{h}\right\|_{V}\left\|w-v_{h}\right\|_{V}+\left\|w-v_{h}\right\|_{V}\left\|\lambda-\mu_{h}\right\|_{M}+\right.$ $\left.+\left\|u-u_{h}\right\|_{V}\left\|\psi-v_{h}\right\|_{M}\right) \quad \forall v_{h} \varepsilon Z_{h}(\phi), \forall \mu_{h}, v_{h} \varepsilon M_{h}$.

Taking the infimum over $v_{h} \varepsilon Z_{h}(\phi)$ and $\mu_{h}, v_{h} \varepsilon M_{h}$ and using (7.23), (7.24), we obtain

$$
\begin{array}{r}
\left(g, u-u_{h}\right) \leq c\left[\|w\|_{2}\left(\left\|u-u_{h}\right\|_{V}+\inf _{\mu_{h} \varepsilon M_{h}}\left\|\lambda-\mu_{h}\right\|_{M}\right)+\right. \\
\left.+\left\|u-u_{h}\right\|_{V}\|\psi\|_{1}\right] e(h)
\end{array}
$$

Finally, using the regularity result (7.22 and 7.25) we get the desired result.

Application to Stokes Problem.

We choose

$$
V_{0}=\left(L^{2}(\Omega)\right)^{n}, V_{2}=\left(H^{2}(\Omega)\right)^{n}, M_{1}=H^{1}(\Omega) .
$$

108 From the error estimates of section 7.3 we have

$$
\inf _{v_{h} \varepsilon Z_{h}(0)}\left\|w-v_{h}\right\|_{1} \leq \operatorname{ch}\|w\|_{2}
$$

and

$$
\inf _{\mu_{h} \varepsilon M_{h}}\left\|\psi-\mu_{h}\right\|_{0} \leq \operatorname{ch}\|\psi\|_{1} .
$$

The regularity result 7.22 is nothing but the regularity result for the Stokes problem.

Hence applying Theorem 4 we obtain L^{2}-error estimate.

$$
\left\|u-u_{h}\right\|_{0} \leq \operatorname{ch}^{2}\left(\|u\|_{2}+\|\lambda\|_{1}\right) .
$$

7.5 Nonconforming Finite Element Method for Dirichlet Problem

We recall that the variational formulation of the Dirichlet problem

$$
\left.\begin{array}{rll}
-\Delta u=f & \text { in } & \Omega \tag{7.29}\\
u=0 & \text { on } & \partial \Omega
\end{array}\right\}
$$

is:
Find $u \varepsilon H_{\circ}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=(f, v) \quad \forall v \varepsilon H_{\circ}^{1}(\Omega), \tag{7.30}
\end{equation*}
$$

where

$$
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v=\sum_{K \varepsilon T_{h}} \int_{K} \nabla u \cdot \nabla v
$$

$$
(f, v)=\int_{\Omega} f v
$$

and T_{h} is a triangulation of Ω.
We like to consider the nonconforming finite element approximation of (7.30, namely

Find $u_{h} \varepsilon Z_{h}$ such that

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \varepsilon Z_{h}, \tag{7.31}
\end{equation*}
$$

where

$$
Z_{h}=\left\{v_{h}:\left.v_{h}\right|_{K} \varepsilon \mathbb{P}_{1}(K), K \varepsilon T_{h}, v_{h}\right. \text { is continuous }
$$

across the midside points of internal edges,
$v_{h}=0$ on $\left.\partial \Omega\right\}$.
Notice that $Z_{h} \not \subset H_{\circ}^{1}(\Omega)$.
We will construct a mixed finite element which is equivalent to 7.31. Multiplying the first equation in (7.29) by $v \varepsilon \prod_{K} H^{1}(K)$ and integrating we obtain, using integration by parts in each triangle K,

$$
\sum_{K} \int_{K} \nabla u . \nabla v-\sum_{K} \int_{\partial K}(\nabla u . n) v=\int_{\Omega} f v .
$$

This suggests

$$
\begin{align*}
& a(u, v)=\sum_{K} \int_{K} \nabla u \cdot \nabla v \tag{7.32}\\
& b(v, \mu)=-\sum_{K} \int_{K}(\mu \cdot n) v \tag{7.33}
\end{align*}
$$

where μ belongs to some suitable space.
We have to construct finite-dimensional subspaces V_{h} and M_{h} such that the problem

$$
\left.\begin{array}{l}
\text { Find } \quad\left\{u_{h}, \lambda_{h}\right\} \varepsilon V_{h} \times M_{h} \quad \text { with } \tag{7.34}\\
a\left(u_{h}, v_{h}\right)+b\left(v_{h}, \lambda_{h}\right)=\left(f, v_{h}\right) \forall v_{h} \varepsilon V_{h} \\
b\left(u_{h}, \mu_{h}\right)=0 \forall \mu_{h} \varepsilon M_{h}
\end{array}\right\}
$$

is equivalent to (7.31). Here $a(\cdot, \cdot), b(\cdot, \cdot)$ are as in (7.32) and (7.33).
We take $V_{h}=\prod_{K} \mathbb{P}_{1}(K)$.
It is easy to see that if $\left(\mu_{h} . n\right)$ is constant and continuous along internal edges, then $b\left(v_{h}, \mu_{h}\right)=0 \quad \forall v_{h} \varepsilon Z_{h}$.

Define

$$
Q(K) \subset\left(\mathbb{P}_{1}(K)\right)^{2}
$$

by

$$
Q(K)=\left\{q=\left(q_{1}, q_{2}\right): q_{1}=a+b x, q_{2}=c+\text { by }\right\}
$$

If $\alpha x+\beta y=\ell$ is the equation of an edge γ then $q . n$ is constant on γ for $q \varepsilon Q(K)$, where n is normal to γ. The set
$\sum_{K}=\left\{(q \cdot n)\left(a_{i j}\right): a_{i j}\right.$ are mid points of the sides of $\left.K\right\}$ is $Q(K)$ unisolvent. Hence

$$
\begin{aligned}
M_{h} & =\left\{q \varepsilon\left(L^{2}(\Omega)\right)^{2}:\left.q\right|_{K} \varepsilon Q(K), K \varepsilon T_{h}, \text { div } q \varepsilon L^{2}(\Omega)\right\} \\
& =\left\{q \varepsilon\left(L^{2}\right)^{2}:\left.q\right|_{K} \varepsilon Q(K), K \varepsilon T_{h}, q \cdot n\right. \\
& \text { is continuous across the edges of } \left.T_{h}\right\}
\end{aligned}
$$

serves our purpose.
111 Exercise 4. With the above constructed V_{h} and M_{h} show that (7.31) and 7.34) are equivalent. Further show that $Z_{h}(0)=Z_{h}$.

$$
\text { (Recall } Z_{h}(0)=\left\{v_{h} \varepsilon V_{h}: b\left(v_{h}, \mu_{h}\right)=0 \forall \mu_{h} \varepsilon M_{h}\right)
$$

The continuous problem corresponding to (7.34) can be obtained as follows:

It is natural to take

$$
V=\prod_{K} H^{1}(K) .
$$

When μ is smooth we can write

$$
\begin{aligned}
b(v, \mu) & =-\sum_{K} \int_{\partial K}(\mu \cdot n) v \\
& =-\sum_{K}\left(\int_{K} \operatorname{div} \mu \cdot v+\int_{K} \mu \cdot \nabla v\right)
\end{aligned}
$$

Hence we take

$$
M=\left\{\mu \varepsilon\left(L^{2}(\Omega)\right)^{2}: \operatorname{div} \mu \varepsilon L^{2}(\Omega)\right\}
$$

Thus the continuous problem is:

$$
\left.\begin{array}{l}
\text { Find }\{u, \lambda\} \varepsilon V \times M \quad \text { such that } \tag{7.35}\\
a(u, v)+b(v, \lambda)=(f, v) \quad \forall v \varepsilon V \\
b(u, \mu)=0 \forall \mu \varepsilon M
\end{array}\right\}
$$

where

$$
a(u, v)=\sum_{K} \int_{K} \nabla u . \nabla v .
$$

We have the characterisation:

LEMMA 5.

$$
Z=\{v \varepsilon V: b(v, \mu)=0 \forall \mu \varepsilon M\}=H_{\circ}^{1}(\Omega) .
$$

Proof. Let $v \varepsilon \mathscr{D}(\Omega)$. Then

$$
\begin{aligned}
b(v, \mu) & =-\sum_{K}\left(\int_{K} \operatorname{div} \mu \cdot v+\int_{K} \mu \cdot \nabla v\right) \\
& =-\left(\int_{\Omega} \operatorname{div} \mu \cdot v+\int_{\Omega} \mu \cdot \nabla v\right) \\
& =-\langle\operatorname{div} \mu, v\rangle-\langle\mu, \nabla v\rangle \\
& =-\langle\operatorname{div} \mu, v\rangle+\langle\operatorname{div} \mu, v\rangle \\
& =0
\end{aligned}
$$

Since $b(\cdot, \cdot)$ is continuous on $V \times M$ and $\mathscr{D}(\Omega)$ is dense in $H_{\circ}^{1}(\Omega)$ in the $\|\cdot\|_{1}$ norm topology, we obtain

$$
H_{\circ}^{1}(\Omega) \subset Z
$$

We have to prove the other inclusion. Let $v \varepsilon Z$. Define

$$
\begin{aligned}
& v_{i} \text { by }\left.v_{i}\right|_{K}=\frac{\partial}{\partial x_{i}}\left(\left.v\right|_{K}\right), \forall K \varepsilon T_{h} . \\
& \text { Then } \quad v_{i} \varepsilon L^{2}(\Omega) .
\end{aligned}
$$

Let $\phi \varepsilon \mathscr{D}(\Omega)$. Then

$$
\begin{aligned}
\left\langle v_{1}, \phi\right\rangle & =\sum_{K} \int_{K} v_{1} \phi=\sum_{K} \int_{K} \frac{\partial v}{\partial x_{1}} \phi \\
& =\sum_{K}\left(-\int_{K} v \frac{\partial \phi}{\partial x_{1}}+\int_{\partial K} v \phi n_{1}\right) \\
& =-\left\langle v, \frac{\partial \phi}{\partial x_{1}}\right\rangle+\sum_{K} \int_{\partial K} v \phi n_{1} .
\end{aligned}
$$

113 Since $v \varepsilon Z, b(v, \mu)=0 \forall \mu \varepsilon M$. Taking $\mu=(\phi, 0)$, we obtain

$$
\begin{aligned}
0=b(v, \mu) & =-\left(\sum_{K} \int_{K} \operatorname{div} \mu \cdot v+\int_{K} \nabla v \cdot \mu\right) \\
& =-\sum_{K} \int_{\partial K}(\mu \cdot n) v \quad \text { since } \mu \text { is smooth } \\
& =-\sum_{K} \int_{\partial K} \phi v n_{1} .
\end{aligned}
$$

Therefore,

$$
\left\langle v_{1}, \phi\right\rangle=-\left\langle v, \frac{\partial \phi}{\partial x_{1}}\right\rangle .
$$

Hence $v_{1}=\frac{\partial v}{\partial x_{1}}$ in \mathscr{D}^{\prime}. Similarly we have $v_{2}=\frac{\partial v}{\partial x_{2}}$ in \mathscr{D}^{\prime}. Therefore $v \varepsilon H^{1}(\Omega)$. Further

$$
0=b(v, \mu)=-\sum_{K} \int_{\partial K}(\mu . n) v \forall \mu \varepsilon\left(H^{1}(\Omega)\right)^{2} \subset M
$$

This implies $v=0$ on $\partial \Omega$. Thus $v \varepsilon H_{\circ}^{1}(\Omega)$. Hence $Z \subset H_{\circ}^{1}(\Omega)$.
If $\{u, \lambda\}$ is a solution of 7.35 then Lemma 5 and the second equation in 7.35) imply that $u \varepsilon H_{0}^{1}(\Omega)$. The first equation in (7.35) gives that $-\Delta u=f$ in \mathscr{D}^{\prime}. Thus if $\{u, \lambda\}$ is a solution of (7.35), then u is the solution of the Standard Dirichlet problem:

$$
\left\{\begin{array}{lll}
-\Delta u & =f & \text { in } \quad \Omega \tag{7.36}\\
u & =0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

and λ is the Lagrange multiplier for the continuity constraint for u from one element to the other; (7.35) is called the primal hybrid formulation of the Dirichlet problem.

If u is the solution of the Dirichlet problem (7.36) then $\{u,-\nabla u\}$ is a solution of (7.35). Note that when λ is smooth then $b(\cdot, \cdot)$ contains only the trace of $\lambda . n$ on the edges γ, so that λ is certainly not unique and the Brezzi condition does not hold.

Error Estimates for $u-u_{h}$.

We notice that the interpolation operator

$$
\pi_{h}: H^{2}(\Omega) \rightarrow Z_{h}
$$

such that $\pi_{h} u=u$ at the mid side points of T_{h} satisfies

$$
\left\|u-\pi_{h} u\right\|_{1, K} \leq \operatorname{ch}\|u\|_{2, K} .
$$

Therefore

$$
\begin{equation*}
\left\|u-\pi_{h} u\right\|_{V} \leq \operatorname{ch}\|u\|_{2} . \tag{7.37}
\end{equation*}
$$

On the other hand, we define

$$
\pi_{h}^{\prime}:\left(H^{1}(\Omega)\right)^{2} \rightarrow M_{h}
$$

on γ by

$$
\left(\pi_{h}^{\prime} \mu\right) \cdot n=\frac{1}{|\gamma|} \int_{\gamma} \lambda \cdot n
$$

We now state a theorem whose proof can be found in RAVIARTTHOMAS [38].

THEOREM 6. There exists a constant c such that

$$
\begin{gather*}
\left\|\mu-\pi_{h}^{\prime} \mu\right\|_{M} \leq \operatorname{ch}\left(\|\mu\|_{1}+\|\operatorname{div} \mu\|_{1}\right), \tag{7.38}\\
\left\|\pi_{h}^{\prime} \mu\right\|_{M} \leq c\|\mu\|_{1} .
\end{gather*}
$$

Using Theorem 2 7.37 and (7.38) we obtain

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{v} \leq \operatorname{ch}\|u\|_{2} . \tag{7.39}
\end{equation*}
$$

The dual error estimate of section 7.4 together with (7.39) gives

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{0} \leq \operatorname{ch}^{2}\|u\|_{2} \tag{7.40}
\end{equation*}
$$

REMARK 5. In practice, one solves the approximate problem;

$$
\begin{aligned}
& \text { Find } \quad u_{h} \varepsilon Z_{h} \quad \text { such that } \\
& a\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \forall v_{h} \varepsilon Z_{h},
\end{aligned}
$$

since Z_{h} is a simple finite element space. The fact that $Z_{h} \not \subset H_{\circ}^{1}(\Omega)$ has no importance for practical purposes. The same Z_{h} can be used to approximate the Stokes problem. One chooses $V_{h}=\left(Z_{h}\right)^{2}$ (for the velocities) and piecewise constant pressure; i.e. M_{h} as in section 7.3 For the error analysis we refer the reader to CROUZEIX-RAVIART [14].
REMARK 6. Other primal hybrid finite elements can be obtained with other choices for $V_{h} \mathscr{E} M_{h}$, some of them giving other well known nonconforming finite elements. (See RAVIART-THOMAS [37]).

7.6 Approximate Brezzi Condition

116 We assume that the approximate Brezzi condition

$$
\begin{equation*}
\operatorname{Sup}_{v_{h} \varepsilon V_{h}} \frac{b\left(v_{h}, \mu_{h}\right)}{\left\|v_{h}\right\|_{V}} \geq \gamma\left\|\mu_{h}\right\|_{M} \forall \mu_{h} \varepsilon M_{h} \tag{7.41}
\end{equation*}
$$

where γ is independent of h, holds. The approximate Brezzi condition guarantees a unique solution for the approximate problem. Notice that the continuous Brezzi condition need not imply the approximate Brezzi condition.

We have the following result:

THEOREM 7. Under the assumption (7.41) there exists a constant c_{1} such that

$$
\begin{equation*}
\operatorname{Inf}_{v_{h} \varepsilon V_{h}(\phi)}\left\|u-v_{h}\right\|_{v} \leq c_{1} \operatorname{Inf}_{w_{h} \delta V_{h}}\left\|u-w_{h}\right\|_{V} \tag{7.42}
\end{equation*}
$$

Proof. We will show that for each $w_{h} \varepsilon V_{h}$ there exists a $v_{h} \varepsilon Z_{h}(\phi)$ such that

$$
\left\|u-v_{h}\right\| \leq c\left\|u-w_{h}\right\|
$$

where c is a constant. This will imply (7.42).
Let $w_{h} \varepsilon V_{h}$. Let $\left\{y_{h}, v_{h}\right\} \varepsilon V_{h} \times M_{h}$ be the solution of

$$
\begin{aligned}
& \left(y_{h}, v_{h}\right)_{V}+b\left(v_{h}, v_{h}\right)=0 \forall v_{h} \varepsilon V_{h}, \\
& b\left(y_{h}, \mu_{h}\right)=b\left(u-w_{h}, \mu_{h}\right) \forall \mu_{h} \varepsilon M_{h} .
\end{aligned}
$$

Using the approximate Brezzi condition and the continuity of $b($,$) ,$ it is easy to prove that

$$
\begin{aligned}
\left\|v_{h}\right\|_{M} \leq 1 / \gamma\left\|y_{h}\right\|_{V}, \\
\left\|y_{h}\right\|_{V} \leq|b| / \gamma\left\|u-w_{h}\right\|_{V} .
\end{aligned}
$$

Let $v_{h}=y_{h}+w_{h}$. Then

$$
\begin{aligned}
b\left(v_{h}, \mu_{h}\right) & =b\left(u-w_{h}, \mu_{h}\right)+b\left(w_{h}, \mu_{h}\right) \\
& =b\left(u, \mu_{h}\right) .
\end{aligned}
$$

Hence $v_{h} \varepsilon Z_{h}(\phi)$. Further

$$
\begin{aligned}
\left\|u-v_{h}\right\|_{V} & \leq\left\|u-w_{h}\right\|_{V}+\left\|y_{h}\right\|_{V} \\
& \leq(1+|b| / \gamma)\left\|u-w_{h}\right\|_{V} .
\end{aligned}
$$

Hence the theorem.
We now give an error estimate for the multiplier.
THEOREM 8. If (7.41) holds then one has the error estimate

$$
\begin{equation*}
\left\|\lambda-\lambda_{h}\right\|_{M} \leq c\left(\left\|u-u_{h}\right\|_{H}+\inf _{\mu_{h} \delta M_{h}}\left\|\lambda-\mu_{h}\right\|_{M}\right) \tag{7.43}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
b\left(v_{h}, \lambda_{h}-\mu_{h}\right) & =b\left(v_{h}, \lambda_{h}-\lambda\right)+b\left(v_{h}, \lambda-\mu_{h}\right) \\
& =a\left(u-u_{h}, v_{h}\right)+b\left(v_{h}, \lambda-\mu_{h}\right)
\end{aligned}
$$

From (7.41) we obtain

$$
\begin{align*}
\gamma\left\|\lambda_{h}-\mu_{h}\right\|_{M} & \leq \operatorname{Sup}_{v_{h} \varepsilon V_{h}} \frac{b\left(v_{h}, \lambda_{h}-\mu_{h}\right)}{\left\|v_{h}\right\|_{V}} \\
& \leq|a| c\left\|u-u_{h}\right\|_{H}+|b|\left\|\lambda-\mu_{h}\right\|_{M} . \tag{7.44}
\end{align*}
$$

118 Further

$$
\begin{equation*}
\left\|\lambda-\lambda_{h}\right\|_{M} \leq\left\|\lambda-\mu_{h}\right\|_{M}+\left\|\lambda_{h}-\mu_{h}\right\|_{M} \tag{7.45}
\end{equation*}
$$

From (7.44) and 7.45) we obtain 7.43.

We now give a practical way of verifying the approximate Brezzi condition 7.41.

LEMMA 9. If $b(\cdot, \cdot)$ satisfies continuous Brezzi condition and if

$$
\Lambda_{h}: V \rightarrow V_{h}
$$

is such that

$$
\begin{equation*}
b\left(v-\Lambda_{h} v, \mu_{h}\right)=0 \quad \forall \mu_{h} \varepsilon M_{h} \tag{7.46}
\end{equation*}
$$

(in fact Λ_{h} maps $Z(\phi)$ into $Z_{h}(\phi)$) and

$$
\begin{equation*}
\left\|\Lambda_{h} v\right\|_{V} \leq c\|v\|_{V} \tag{7.47}
\end{equation*}
$$

then (7.41) holds with $\gamma=\beta / c$.
Exercise 5. Prove Lemma 9
For further details see FORTIN [18].

7.7 Dual Error Estimate for the Multiplier

119 This section is an analogue to Section 7.4 We assume that $V_{2} \hookrightarrow V$ and $M_{3} \hookrightarrow M \hookrightarrow M_{0}$. Further, we assume that $M_{0}^{\prime}=M_{0}$ and that for $g \varepsilon M_{0}$, the problem:

Find $\{w, \psi\} \varepsilon V \times M$ such that

$$
\begin{array}{r}
a(v, w)+b(v, \psi)=0 \forall v \varepsilon V \\
b(w, \mu)=(g, \mu) \forall \mu \varepsilon M \tag{7.48b}
\end{array}
$$

has one solution such that

$$
\begin{equation*}
\|w\|_{2}+\|\psi\|_{3} \leq c\|g\|_{0} \tag{7.49}
\end{equation*}
$$

We also assume that

$$
\begin{gather*}
\operatorname{Inf}_{v_{h} \varepsilon V_{h}}\left\|w-v_{h}\right\|_{V} \leq e(h)\|w\|_{2}, \tag{7.50}\\
\operatorname{Inf}_{\mu_{h} \varepsilon M_{h}}\left\|\psi-\mu_{h}\right\|_{M} \leq \varepsilon(h)\|\psi\|_{3} . \tag{7.51}
\end{gather*}
$$

Here $\left\|\left\|_{0},\right\|\right\|_{2},\| \|_{3}$ denote the norms in M_{0}, V_{2}, M_{3} respectively. The dual error estimate is given by

THEOREM 10. One has

$$
\begin{align*}
& \left\|\lambda-\lambda_{h}\right\|_{0} \leq c e(h)\left(\left\|\lambda-\lambda_{h}\right\|_{M}+\left\|u-u_{h}\right\|_{H}\right)+ \\
& +c \varepsilon(h)\left(S(h)\left\|u-u_{h}\right\|_{H}+\operatorname{Inf}_{y_{h} \delta V_{h}}\left(\left\|u-y_{h}\right\|_{V}+S(h)\left\|u-y_{h}\right\|_{H}\right)\right) \tag{7.52}
\end{align*}
$$

Proof. We have

$$
\left\|\lambda-\lambda_{h}\right\|_{0}=\operatorname{Sup}_{g \varepsilon M_{0}} \frac{\left(g, \lambda-\lambda_{h}\right)}{\|g\|_{0}}
$$

and

$$
\begin{aligned}
\left(g, \lambda-\lambda_{h}\right) & =b\left(w, \lambda-\lambda_{h}\right) \\
& =b\left(w-v_{h}, \lambda-\lambda_{h}\right)-a\left(u-u_{h}, v_{h}\right)
\end{aligned}
$$

where the above is obtained from (7.1) and 7.15). Using $b\left(u-u_{h}, v_{h}\right)=$ $0 \forall v_{h} \varepsilon M_{h}$ and 7.48, we obtain

$$
\left(g, \lambda-\lambda_{h}\right)=b\left(w-v_{h}, \lambda-\lambda_{h}\right)+a\left(u-u_{h}, w-v_{h}\right)+b\left(u-u_{h}, \psi-v_{h}\right)
$$

This implies,
$\left(g, \lambda-\lambda_{h}\right) \leq c\left(e(h)\left(\left\|\lambda-\lambda_{h}\right\|_{M}+\left\|u-u_{h}\right\|_{H}\right)+\left\|u-u_{h}\right\|_{V} \varepsilon(h)\right)\|g\|_{0}$.
Here (7.49) - 7.51) are used.
To estimate $\left\|u-u_{h}\right\|_{V}$, we remark that

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{V} & \leq\left\|u-y_{h}\right\|_{V}+\left\|y_{h}-u_{h}\right\|_{V}, \\
\left\|y_{h}-u_{h}\right\|_{V} & \leq S(h)\left\|y_{h}-u_{h}\right\|_{H} \\
& \leq S(h)\left(\left\|y_{h}-u\right\|_{H}+\left\|u-u_{h}\right\|_{H}\right) .
\end{aligned}
$$

Finally,

$$
\begin{gathered}
\left\|\lambda-\lambda_{h}\right\|_{0} \leq c\left[e(h)\left(\left\|\lambda-\lambda_{h}\right\|_{M}+\left\|u-u_{h}\right\|_{H}\right)+\right. \\
\left.\varepsilon(h)\left(S(h)\left\|u-u_{h}\right\|_{H}+\operatorname{Inf}_{y_{h} \delta V_{h}}\left(\left\|u-y_{h}\right\|_{V}+S(h)\left\|u-y_{h}\right\|_{H}\right)\right)\right]
\end{gathered}
$$

7.8 Application to Biharmonic Problem

121 We shall now study a finite element approximation to the biharmonic problem. (Example 2, Section 7.1. We recall that in the variational formulation of the biharmonic problem

$$
\begin{aligned}
\Delta^{2} \lambda & =-\phi \quad \text { in } \quad \Omega \\
\lambda & =\frac{\partial \lambda}{\partial n}=0 \quad \text { on } \quad \partial \Omega
\end{aligned}
$$

we have

$$
V=H^{1}(\Omega), M=H_{\circ}^{1}(\Omega), H=L^{2}(\Omega)
$$

$$
a(u, v)=\int_{\Omega} u v d x, b(v, \mu)=-\int_{\Omega} \nabla v \cdot \nabla \mu
$$

and $f=0$.
In the terminology of hydrodynamics $\lambda=\psi$ is called the stream function and $w=-\Delta \psi=u$ is called the Vortex function.

For both V_{h} and M_{h} we shall use standard Lagrange finite element space of degree k :

$$
V_{h}=\left\{v_{h} \varepsilon C^{\circ}(\bar{\Omega}):\left.v_{h}\right|_{K} \varepsilon \mathbb{P}_{k}(K), \forall K \varepsilon T_{h}\right\}
$$

and

$$
M_{h}=\left\{\mu_{h} \varepsilon V_{h}: \mu_{h}=0 \quad \text { on } \quad \partial \Omega\right\} .
$$

We immediately notice that the approximate Brezzi condition (7.41) holds. Indeed,

$$
\operatorname{Sup}_{v_{h} \varepsilon V_{h}} \frac{\int_{\Omega} \nabla v_{h} \cdot \nabla \mu_{h}}{\left\|v_{h}\right\|_{1}} \geq \frac{\int_{\Omega}\left|\nabla \mu_{h}\right|^{2}}{\left\|\mu_{h}\right\|_{1}} \geq \gamma\left\|\mu_{h}\right\|_{1} .
$$

since $M_{h} \subset V_{h}$. Here γ is the constant occurring in Poincare's inequality.
Moreover, assuming that the triangulation satisfies the uniformity condition

$$
h \leq c \rho_{K}, \forall K \varepsilon T_{h},
$$

where ρ_{K} denotes the diameter of the largest ball included in K and c is a constant independent of h, one always has

$$
\|v\|_{1} \leq \frac{c}{\min _{K \varepsilon T_{h}} \rho_{K}}\left\|v_{h}\right\|_{0} .
$$

Therefore one has the inverse inequality $\left\|v_{h}\right\|_{1} \leq \frac{c}{h}\left\|v_{h}\right\|_{0}$ which gives an evaluation of $S(h)$.

We can state a convergence result for $k>2$.
THEOREM 11. If $\lambda \varepsilon H^{m+1}(\Omega)$ and $u \varepsilon H^{m}(\Omega)$ then one has

$$
\begin{gathered}
\left\|u-u_{h}\right\|_{0}+\left\|\lambda-\lambda_{h}\right\|_{1} \leq \operatorname{ch}^{m-1}\left(\|u\|_{m}+\|\lambda\|_{m+1}\right) \\
\text { for } \quad m=2, \ldots, k \text { and } \\
\left\|\lambda-\lambda_{h}\right\|_{0} \leq \operatorname{ch}^{m}\left(\|u\|_{m}+\|\lambda\|_{m+1}\right)
\end{gathered}
$$

The above result is a consequence of Theorems 2 7 8, 10, We note that the result is not optimal since with polynomials of degree k, we should get an error bound in h^{k} for $\left\|\lambda-\lambda_{h}\right\|_{1}$ provided that $\lambda \varepsilon H^{k+1}$.

These results have been recently improved by SCHOLTZ [41] who is able to give an error estimate in the case $k=1$.

Note that the matrix A of the bilinear form on V_{h} has to be computed exactly in this case. (The use of a 1-point formula for the computation of $\int_{K} u v d x$ leads to a diagonal matrix A but there is no convergence).

REMARK 7. Due to the inclusion $M_{h} \subset V_{h}$, the matrix B of the bilinear form $b(\cdot, \cdot)$ on $V_{h} \times M_{h}$ has the particular form $B=\left(B_{1}, B_{2}\right)$ where B_{1} is the matrix of $b(\cdot, \cdot)$ on $M_{h} \times M_{h}$ and therefore B_{1} is invertible. The linear system corresponding to the approximate problem can be written as

$$
\left(\begin{array}{ccc}
A_{1} & A_{2} & B_{1}^{T} \\
A_{2}^{T} & A_{3} & B_{2}^{T} \\
B_{1} & B_{2} & 0
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
\lambda
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
\phi
\end{array}\right)
$$

One can eliminate u_{1} from the last equation $\left(u_{1}=-B_{1}^{-1} \quad B_{2} u_{2}\right)$ and λ from the first one. This gives a linear system of equations in u_{2} which can be solved by any of the standard method.

The advantage is that the size of the linear system is $p \times p$ where p is the number of boundary points which is relatively small.

7.9 General Numerical Methods for the Solution of the Approximate Problem

124 As we have noticed in Exercise 1 the approximate problem is equivalent to solving

$$
\left(\begin{array}{cc}
A & B^{T} \tag{7.53}\\
B & 0
\end{array}\right)\binom{u}{\lambda}=\binom{f}{\phi}
$$

where the matrix on the left is invertible (provided that B has a maximal rank, i.e. the approximate Brezzi condition holds at least for γ dependent on h) and symmetric if $a(\cdot, \cdot)$ is symmetric but not positive.

Alternatively one can use the matrix

$$
\left(\begin{array}{cc}
A & B^{T} \\
-B & 0
\end{array}\right)
$$

which is positive but not symmetric.
a) Solution of the Linear System (7.53) by Direct Methods. The Gaussian elimination of 7.53 can be performed without pivoting. However, due to storage considerations, it is often much better to permute rows and columns to get a band matrix after a suitable ordering of the unknowns. (For finite elements, we order the unknowns following the ordering that we give to the associated nodes, with no distinction between λ_{i} 's and u_{i} 's). In this case a strategy of partial pivoting may be necessary.
b) Solution of the Approximate Problem by Penalty Methods. 125

First solve

$$
\left(A+1 / \in B^{T} B\right) u^{\epsilon}=f+1 / \in B^{T} \phi
$$

and then find

$$
\lambda^{\epsilon}=1 / \in\left(B u^{\epsilon}-\phi\right) .
$$

If B has maximal rank the error is only $0(\epsilon)$ (see proof of Theorem 11, which is certainly small compared to the discretization error if $\epsilon=10^{-4}$ or 10^{-6}.

However, the condition number of the matrix

$$
A+1 / \in B^{T} B
$$

might be quite big and it is wise in such a case to use direct methods and then to compute explicitly the matrix $B^{T} B$, which is easy only if

$$
M_{h}=\pi_{K}\left(\mathbb{P}_{k}(K)\right)^{d}
$$

for some positive k and d; in otherwords, no continuity requirements has to be asked for λ_{h} between two elements. (Then $B^{T} B$
can be computed by assembling some stiffness matrices). Otherwise the computation of $B^{T} B$ is too costly. Note that this method is possible even if B has not a maximal rank (and the error is then only $0(\sqrt{\epsilon})$).
c) Solution of the Problem by Iterative Methods. The conjugate gradient method has been successfully extended to the case of matrices such as 7.53) by PAIGE and SAUNDERS [35].

Another way of applying the conjugate gradient method is to notice that u can be eliminated from (7.53):

$$
u=A^{-1} f-A^{-1} B^{T} \lambda
$$

Then we get

$$
C \lambda=b
$$

where

$$
C=B A^{-1} B^{T}, b=B A^{-1} f-\phi
$$

As C is symmetric and positive definite (if $a(\cdot, \cdot)$ is symmetric) then the conjugate gradient method can be applied to the matrix C, but one has never to compute the matrix C explicitly. (This is too costly unless A is block diagonal and therefore V_{h} is a finite element space with no continuity requirements between 2 elements. Let A_{K} denote the element matrix of $a(\cdot, \cdot)$ on K and B_{K} that of $b(\cdot, \cdot)$; the matrix C is computed by assembling the $B_{K} A_{K}^{-1} B_{K}^{T}$'s. This is the case for hybrid elements).

Indeed what one needs for the conjugate gradient method is to be able to compute $y=C z$ for any column vector z and this is done in the following way:

$$
\begin{aligned}
\text { Compute } \quad z_{1} & =B^{T} \\
\text { Solve } \quad A z_{2} & =z_{1} \\
\text { Compute } \quad y & =B z_{2}
\end{aligned}
$$

Note that it is not necessary for B to have maximal rank.

7.10 Equilibrium Elements for the Dirichlet Problem

Let us consider the following problem:
Find $\{u, \lambda\}$ such that

$$
\left\{\begin{array}{l}
u-\nabla \lambda=0 \text { in } \Omega \tag{7.54}\\
\operatorname{div} u=\phi \text { in } \Omega \\
\lambda=0 \text { in } \partial \Omega
\end{array}\right.
$$

If $\{u, \lambda\}$ is a solution of 7.54 then λ is the solution of the Standard Dirichlet Problem:

$$
\left\{\begin{array}{l}
\Delta \lambda=\phi \text { in } \Omega \tag{7.55}\\
\lambda=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Multiplying (7.54) by $v \in\left(L^{2}(\Omega)\right)^{2}$ and using integration by parts we obtain an equivalent problem:

Find $\{u, \lambda\} \in\left(L^{2}(\Omega)\right)^{2} \times H_{\circ}^{1}(\Omega)$ such that

$$
\left\{\begin{array}{l}
a(u, v)+b(v, \lambda)=0 \forall v \in\left(L^{2}(\Omega)\right)^{2}, \\
b(u, \mu)=\int_{\Omega} \phi \mu \forall \mu \in H_{\circ}^{1}(\Omega),
\end{array}\right.
$$

where

$$
\begin{aligned}
& a(u, v)=\int_{\Omega} u \cdot v d x, \\
& b(v, \mu)=-\int_{\Omega} v \cdot \nabla \mu d x .
\end{aligned}
$$

If $M_{h}=C^{\circ}(\bar{\Omega}) \cap \pi \mathbb{P}_{k}(K)$ then a natural choice for V_{h} is

$$
V_{h}=\frac{\pi}{K}\left(\mathbb{P}_{k-1}(K)\right)^{2} .
$$

Note that the operator ∇ maps M_{h} into V_{H}. This implies that the approximate Brezzi condition holds.

Problem (7.54) can be formulated in another way also.
Find $\{u, \lambda\} \in H(\operatorname{div}, \Omega) \times L^{2}(\Omega)$ such that

$$
\begin{gathered}
\int_{\Omega} u v+\int_{\Omega} \lambda \operatorname{div} v=0 \forall v \in H(\operatorname{div}, \Omega), \\
\int_{\Omega} \mu \operatorname{div} u=(\mu, \phi) \forall \mu \in L^{2}(\Omega)
\end{gathered}
$$

where

$$
H(\operatorname{div}, \Omega)=\left\{v \in\left(L^{2}(\Omega)\right)^{2}: \operatorname{div} v \in L^{2}(\Omega)\right\}
$$

We notice that

$$
a(u, v)=\int_{\Omega} u \cdot v d x
$$

is coercive on

$$
H=\left(L^{2}(\Omega)\right)^{2}
$$

To prove that $b(\cdot, \cdot)$ satisfies Brezzi condition, we use the fact that if $\mu \varepsilon L^{2}(\Omega)$ then the solution ψ of the Dirichlet problem:

$$
\begin{aligned}
\Delta \psi=\mu & \text { in } \quad \Omega \\
\psi=0 & \text { on } \quad \partial \Omega
\end{aligned}
$$

129 satisfies $\|\psi\|_{1} \leq c\|\mu\|_{0}$.
Therefore,

$$
\operatorname{Sup}_{v \varepsilon\left(L^{2}(\Omega)\right)^{2}} \frac{\int_{\Omega} \mu \cdot \operatorname{div} v}{\|v\|_{V}} \geq \frac{\int_{\Omega} \mu \operatorname{div}(\nabla \psi)}{\|\nabla \psi\|_{V}} \geq \frac{\int_{\Omega} \mu^{2} d x}{c\|\mu\|_{0}}=\frac{1}{c}\|\mu\|_{0}
$$

As approximate spaces, we choose

$$
\begin{array}{ll}
V_{h}=\left\{v \varepsilon V:\left.v\right|_{K} \varepsilon Q(K), v . n\right. & \text { is } \\
\text { continuous across the sides of } & \left.T_{h}\right\} .
\end{array}
$$

(See Section 7.5 for the definition of $Q(K)$).

$$
M_{h}=\pi_{K} \mathbb{P}_{0}(K)
$$

As div : $V_{h} \rightarrow M_{h}$, we see that $Z_{h}(0) \subset Z(0)$. (Hence the name equilibrium elements: u_{h} will satisfy equilibrium equations $\operatorname{div} u_{h}=\phi$ for ϕ piecewise constant).

We may then apply the error estimate derived in Section 7.2 and use the improvement given in Remark 4, since $Z_{h}(0) \subset Z(0)$. We shall choose $v_{h}=\pi_{h}^{\prime} v$ where π_{h}^{\prime} is the interpolation operator defined in Section 7.5

Indeed, we have

$$
\int_{\gamma}\left(\pi_{h}^{\prime} v\right) \cdot n d s=\int_{\gamma} v \cdot n d s \quad \text { for each edge } \quad \gamma \quad \text { of } \quad T_{h}
$$

Therefore,

$$
\begin{aligned}
\int_{\Omega} \mu_{h} \operatorname{div} \pi_{h}^{\prime} v & =\sum_{K} \int_{\partial K}\left(\pi_{h}^{\prime} v\right) \cdot n \mu_{h} d \Gamma \\
& =\sum_{K} \int_{\partial K}(v . n) \mu_{h} d \Gamma=\int_{\Omega} \mu_{h} \operatorname{div} v d x \forall \mu_{h} \varepsilon M_{h} .
\end{aligned}
$$

This shows that $v \varepsilon Z(\phi) \Rightarrow \pi_{h}^{\prime} v \varepsilon Z_{h}(\phi)$.
Finally we get

$$
\left\|u-u_{h}\right\|_{0} \leq c\left\|u-\pi_{h}^{\prime} u\right\|_{0} \leq \mathrm{ch}
$$

where we have used the estimate given in Theorem 6
To get an error estimate for $\left\|\lambda-\lambda_{h}\right\|_{0}$, we shall make use of the results in Section 7.6 and construct the operator π_{h} occurring in Lemma 9

Let v in V be given and ϕ satisfy

$$
\begin{aligned}
\Delta \phi & =\operatorname{div} \quad v \quad \text { in } \quad \Omega, \\
\phi & =0 \quad \text { on } \quad \partial \Omega .
\end{aligned}
$$

Let

$$
\Lambda: V \rightarrow\left(H^{1}(\Omega)\right)^{2}
$$

be defined by

$$
\Lambda v=\nabla \phi
$$

We have (regularity result)

$$
\|\Lambda v\|_{1} \leq c\|\operatorname{div} v\|_{0}
$$

so that

$$
\Lambda_{h}=\pi_{h}^{\prime} \Lambda
$$

131 satisfies

$$
\left\|\Lambda_{h} v\right\|_{M} \leq c\|\Lambda v\|_{1} \leq c\|\operatorname{div} v\|_{0}
$$

and

$$
b\left(\mu_{h}, \pi_{h}^{\prime} \Lambda v\right)=b\left(\mu_{h}, \Lambda v\right)=b\left(\mu_{h}, v\right)
$$

where we used the definitions of π_{h}^{\prime} and Λv.
Thus Λ_{h} satisfies the conditions required in Lemma 9 Hence we have

$$
\left\|\lambda-\lambda_{h}\right\|_{0} \leq \mathrm{ch}
$$

by Theorem 8
For further details about equilibrium elements the reader can refer the thesis of J.M. THOMAS, 1977.

REMARK 8. If we replace $Q(K)$ by $\left(\mathbb{P}_{1}(K)\right)^{2}$ we get a finite element with 6 degrees of freedom instead of 3 (2 values of v.n on each side). The interpolation operator π_{h}^{\prime} is defined with the help of the degrees of freedom and has the same properties.

Figure 7.1:
In fact, π_{h}^{\prime} is defined by

$$
\int_{\gamma} p\left(\pi_{h}^{\prime} v\right) \cdot n d s=\int_{\gamma} p(v . n) d s \forall p \varepsilon \mathbb{P}_{1}(\gamma)
$$

However, the error estimates now become

$$
\begin{aligned}
& \left\|u-u_{h}\right\|_{0} \leq \mathrm{ch}^{2} \\
& \left\|\lambda-\lambda_{h}\right\|_{0} \leq \mathrm{ch}
\end{aligned}
$$

REMARK 9. The present finite element method can be extended to the elasticity equation where v represents the stress tensor $\sigma_{i j}$. The difficulty lies in the required symmetry of $\sigma_{i j}$ but can be surmounted. See C. JOHNSON-B. MERCIER [25]] and AMARA-THOMAS/2].

REMARK 10. Aposteriori Error Estimate. Let us consider the following optimization problem:

$$
\begin{aligned}
& \operatorname{Inf} J(v, \mu) \\
& v \varepsilon Z(\phi) \\
& \mu \varepsilon M
\end{aligned}
$$

where $J(v, \mu)=1 / 2\|v-\nabla \mu\|^{2}$. Clearly the optimal value is zero and corresponds to $v=u$ and $\mu=\lambda$ solution of (7.54). Since $v \varepsilon Z(\phi)$, we
also have

$$
J(v, \mu)=1 / 2\|\nabla \mu\|^{2}+(\phi, \mu)+1 / 2\|v\|^{2}
$$

Since $J(u, \lambda) \leq J\left(v_{h}, \lambda\right) \forall v_{h} \varepsilon Z(\phi)$, we obtain

$$
1 / 2\|u\|^{2} \leq 1 / 2\left\|v_{h}\right\|^{2}
$$

133 Adding

$$
1 / 2\left\|\nabla \mu_{h}\right\|^{2}+\left(\phi, \mu_{h}\right)
$$

to both sides, where $\mu_{h} \varepsilon M$, we get

$$
J\left(u, \mu_{h}\right) \leq J\left(v_{h}, \mu_{h}\right) \forall \mu_{h} \varepsilon M, v_{h} \varepsilon Z(\phi)
$$

That is,

$$
\left\|\nabla\left(\lambda-\mu_{h}\right)\right\|_{0} \leq\left\|v_{h}-\nabla \mu_{h}\right\|_{0} \quad \forall v_{h} \varepsilon Z(\phi)
$$

Suppose that μ_{h} is a solution of Dirichlet problem with a conforming finite element method, then an upper bound for the error in the energy norm is given by

$$
\left\|v_{h}-\nabla \mu_{h}\right\|_{0}
$$

where

$$
v_{h} \varepsilon Z_{h}(\phi)
$$

is arbitrary. One can choose $v_{h}=u_{h}$, a solution of the present equilibrium finite element approximation to Dirichlet problem.

7.11 Equilibrium Elements for the Plate Problem

We recall that the equations of the plate problem are:
Find $\sigma_{i j}, w$ such that

$$
\begin{align*}
\sigma_{i j} & =\lambda \Delta w \delta_{i j}+2 \mu \frac{\partial^{2} w}{\partial x_{i} \partial x_{j}} \text { in } \Omega \subset \mathbb{R}^{2} \tag{7.57}\\
\frac{\partial^{2} \sigma_{i j}}{\partial x_{i} \partial x_{j}} & =f \text { in } \Omega \tag{7.57b}
\end{align*}
$$

$$
\begin{equation*}
w=0 \text { on } \partial \Omega \tag{7.57c}
\end{equation*}
$$

134 and

The summation convention is used in the above equations.
Exercise 6. Show that 7.57 is equivalent to a biharmonic problem for w alone, and write the variational formulation of that biharmonic problem. Notice that in the clamped case several bilinear forms may be chosen unlike in the simply supported case.

It is easy to check that (7.57) is equivalent to

$$
\begin{equation*}
\alpha \sigma_{i j}+\beta\left(\sigma_{k k}\right) \delta_{i j}=\frac{\partial^{2} w}{\partial x_{i} \partial x_{j}} \tag{7.58}
\end{equation*}
$$

where

$$
\alpha=1 / 2 \mu \quad \text { and } \quad \beta=\frac{-\lambda}{2 \mu(2 \lambda+2 \mu)}
$$

Let

$$
a(\sigma, \tau)=\int_{\Omega}\left(\alpha \sigma_{i j} \tau_{i j}+\beta\left(\sigma_{k k}\right)\left(\tau_{\ell \ell}\right)\right) d x
$$

and

$$
D w=\left(\frac{\partial^{2} w}{\partial x_{i} \partial x_{j}}\right)
$$

Then problem 7.57) is equivalent to:

$$
\begin{aligned}
& \text { Find } \sigma \varepsilon\left(L^{2}(\Omega)\right)_{s}^{4}, w \varepsilon H_{\circ}^{2}(\Omega) \quad \text { such that } \\
& a(\sigma, \tau)-\int_{\Omega} \tau D w d x=0 \forall \tau \varepsilon\left(L^{2}(\Omega)\right)_{s}^{4}, \\
& \int_{\Omega} \sigma D v=\int_{\Omega} f v d x . \forall\left\{\begin{array}{l}
v \varepsilon H_{\circ}^{2}(\Omega) . \\
v \varepsilon H^{2}(\Omega) \cap H_{\circ}^{1}(\Omega) .
\end{array}\right.
\end{aligned}
$$

$\left(L^{2}(\Omega)\right)_{s}^{4}$ denotes the set of symmetric 2×2 tensors which are in $L^{2}(\Omega)$.
However, as noticed in Section7.10, to approximate this problem in the usual way does not represent any progress on the usual conforming approximations since one has to approximate $H_{\circ}^{2}(\Omega)$.

We have, by Green's formula,

$$
\begin{aligned}
\int_{K} \tau D v & =\int_{K} \tau_{i j} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} d x \\
& =\int_{\partial K} \tau_{i j} n_{j} \frac{\partial v}{\partial x_{i}}-\int_{K} \frac{\partial \tau_{i j}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x
\end{aligned}
$$

Since

$$
\frac{\partial v}{\partial x_{i}}=\frac{\partial v}{\partial n} n_{i}+\frac{\partial v}{\partial s} s_{i}
$$

where $\left(s_{i}\right)$ are the components of the unit tangent vector, we obtain

$$
\int_{\Omega} \tau D v=\sum_{K} \int_{\partial K} M_{n}(\tau) \frac{\partial v}{\partial n}+\sum_{K}\left(\int_{\partial K} M_{n s}(\tau) \frac{\partial v}{\partial s}-\int_{K} \frac{\partial \tau_{i j}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x\right)
$$

Here

$$
M_{n}(\tau)=\tau_{i j} n_{i} n_{j}, M_{n s}(\tau)=\tau_{i j} n_{j} s_{i}
$$

136 We define

$$
\begin{aligned}
& b(\tau, v)=\sum_{K}\left(\int_{K} \frac{\partial \tau_{i j}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x-\int_{\partial K} M_{n s}(\tau) \frac{\partial v}{\partial s} d s\right), \\
& V=\left\{\tau:\left.\tau\right|_{K} \varepsilon\left(H^{1}(K)\right)_{s}^{4}, K \varepsilon T_{h}, M_{n}(\tau)\right.
\end{aligned}
$$

is continuous across inter element boundaries\}.
Then

$$
\int_{\Omega} \tau D v=b(v, \tau) \forall v \varepsilon H_{\circ}^{2}(\Omega), \tau \varepsilon V
$$

In fact, $b(\cdot, \cdot)$ is continuous over $V \times M$ where $M=W_{\circ}^{1, p}(\Omega)(p>2)$ so that 7.57) (clamped case) is equivalent to:

Find $\{\sigma, w\} \varepsilon V \times M$ such that

$$
\begin{align*}
& a(\sigma, \tau)+b(\tau, w)=0 \forall \tau \varepsilon V \\
& b(\sigma, v)=-(f, v) \forall v \varepsilon M \tag{7.59}
\end{align*}
$$

We take

$$
H=\left(L^{2}(\Omega)\right)_{s}^{4}
$$

The Brezzi condition holds only on $H_{\circ}^{1}(\Omega)$, since if v is smooth and $\tau_{i j}=v \delta_{i j}$, then

$$
\begin{aligned}
M_{n s}(\tau) & =v\left(\delta_{i j} n_{j} s_{i}\right)=0 \\
M_{n}(\tau) & =v
\end{aligned}
$$

and

$$
b(v, \tau)=\int_{\Omega}|\nabla v|^{2} d x \geq \alpha\|v\|_{1}^{2} \geq c\|v\|_{1}\|\tau\|
$$

For the proof of existence of solutions of (7.59) and modified error estimates see BREZZI-RAVIART [7].

We choose

$$
V_{h}=\left\{\tau: \tau \varepsilon\left(\mathbb{P}_{o}(K)\right)_{s}^{4}, K \varepsilon T_{h}, M_{n}(\tau) \quad \text { is continuous }\right\}
$$

Since

$$
v \varepsilon W_{\circ}^{1, p}(\Omega) \subset C^{\circ}(\bar{\Omega})
$$

we find that after integration by parts on each of $\partial K, b(\tau, v)$ involves only the values of v at the vertices of T_{h} :

$$
\begin{equation*}
b(\tau, v)=\sum_{K} \int_{\partial K} M_{n s}(\tau) \frac{\partial v}{\partial s}=\sum_{N} R(\tau, N) v(N) \forall \tau \varepsilon V_{h} . \tag{7.59b}
\end{equation*}
$$

Notice that only the value of v at the vertices has to be taken; therefore, we choose

$$
M_{h}=\left\{v_{h} \varepsilon C^{\circ}(\bar{\Omega}):\left.v_{h}\right|_{K} \varepsilon \mathbb{P}_{1}(K), K \varepsilon T_{h}, v_{h}=0 \quad \text { on } \quad \partial \Omega\right\}
$$

so that, if $\tau \varepsilon V_{h}$, then

$$
b\left(\tau, v_{h}\right)=0 \forall v_{h} \varepsilon M_{h} \Rightarrow b(\tau, v)=0 \forall v \varepsilon M
$$

Therefore, $Z_{h}(0) \subset Z(0)$. Hence

$$
\left\|\sigma-\sigma_{h}\right\|_{0} \leq \operatorname{Inf}_{\tau_{h} \varepsilon Z_{h}(-f)}\left\|\sigma-\tau_{h}\right\|
$$

Here $\left\{\sigma_{h}, w_{h}\right\} \varepsilon V_{h} \times M_{h}$ is the solution of the approximate problem.

$$
\left\{\begin{array}{l}
a\left(\sigma_{h}, \tau_{h}\right)+\Sigma R\left(\tau_{h}, N\right) w_{h}(N)=0 \forall \tau_{h} \varepsilon V_{h} \tag{7.60}\\
\Sigma R\left(\sigma_{h}, N\right) v_{h}(N)=-\left(f, v_{h}\right) \forall v_{h} \varepsilon M_{h}
\end{array}\right.
$$

138

Interpolation Operator.

The interpolation operator

$$
\pi_{h}:\left(H^{1}(\Omega)\right)^{4} \rightarrow V_{h}
$$

is defined by

$$
\int_{\gamma} M_{n}\left(\pi_{h}, \sigma\right) d s=\int_{\gamma} M_{n}(\sigma) d s
$$

for each edge γ of the triangulation.
We have the estimate
THEOREM 12. There exists a constant c independent of h such that

$$
\begin{equation*}
\left\|\pi_{h} v\right\|_{V} \leq c\|v\|_{V} \tag{7.61}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\pi_{h} v-v\right\|_{0, \Omega} \leq \operatorname{ch}\|v\|_{1 . \Omega} \quad \forall v \varepsilon\left(H^{1}(\Omega)\right)^{4} \tag{7.62}
\end{equation*}
$$

The proof of this is found in C.JOHNSON [24].

Properties of T_{h}.

We have

$$
\begin{aligned}
b\left(\pi_{h} \sigma, v_{h}\right) & =\sum_{K} \int_{\partial K} M_{n}\left(\pi_{h} \sigma\right) \frac{\partial v_{h}}{\partial n}-\int_{K}\left(\pi_{h} \sigma\right) D v_{h} \\
& =\sum_{K} \int_{\partial K} M_{n}(\sigma) \frac{\partial v_{h}}{\partial n}, \forall v_{h} \varepsilon M_{h} \\
& =b\left(\sigma, v_{h}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
b\left(\pi_{h} \sigma-\sigma, v_{h}\right)=0 \quad \forall v_{h} \varepsilon M_{h} \tag{7.63}
\end{equation*}
$$

Therefore π_{h} maps $Z(\phi)$ into $Z_{h}(\phi)$.
Equations 7.61 and 7.63 imply that the discrete Brezzi condition is satisfied.

We have the error estimate

$$
\left\|w-w_{h}\right\|_{1} \leq c\left(\left\|\sigma-\sigma_{h}\right\|_{0}+\operatorname{Inf}_{v_{h} \varepsilon M_{h}}\left\|w-v_{h}\right\|_{1, p}\right)
$$

(See BREZZI-RAVIART [7]).
The above method is called Hermann-Johnson method.

Morley Nonconforming Method.

Let

$$
W_{h}=\left\{v_{h}:\left.v_{h}\right|_{K} \varepsilon \mathbb{P}_{2}(K), K \varepsilon T_{h},\right.
$$

v_{h} continuous at the vertices,
$\frac{\partial v_{h}}{\partial n}$ continuous at the mid side point,
$v_{h}=0$ at the boundary vertices,
$\frac{\partial v_{h}}{\partial n}=0 \quad$ at the mid point of boundary edges $\}$

The space W_{h} makes use of the Morley finite element which has 6 degrees of freedom, namely, values at the three vertices and the values of the normal derivatives at the three mid side points.

Figure 7.2:

We consider, for simplicity, the case $\lambda=0$ and $\mu=1 / 2$ so that

$$
a(\sigma, \tau)=\int_{\Omega} \tau_{i j} \sigma_{i j} d x
$$

Let

$$
L(v)=\sum_{N} f_{N} v(N)
$$

that is L is a linear combination of Dirac masses (concentrated loads). Then

THEOREM 13. The problem:
Find $u_{h} \varepsilon W_{h}$ such that

$$
\begin{equation*}
\sum_{K} \int_{K} D u_{h} D v_{h} d x=L\left(v_{h}\right) \forall v_{h} \varepsilon W_{h} \tag{7.64}
\end{equation*}
$$

is equivalent to 7.60 when

$$
(f, v)=\sum_{N} f_{N} v(N)
$$

in the sense that

$$
u_{h}(N)=W_{h}(N) \quad \text { at the vertices } \quad N,
$$

and

$$
\left.\sigma_{h}\right|_{K}=\left.D u_{h}\right|_{K}, K \varepsilon T_{h}
$$

Proof. Let u_{h} be a solution of (7.64).
Define

$$
\left.\sigma_{h}^{*}\right|_{K}=\left.D u_{h}\right|_{K} \quad \text { and } \quad w_{h}^{*} \varepsilon M_{h} \quad \text { by } \quad w_{h}^{*}(N)=u_{h}(N)
$$

We will show that $\left\{\sigma_{h}^{*}(N), w_{h}^{*}\right\}$ is the solution of 7.60. Since u_{h} is a solution (7.64, we have

$$
\begin{equation*}
\sum_{K} \int_{K} \sigma_{h}^{*} D v_{h} d x=L\left(v_{h}\right) \forall v_{h} \varepsilon W_{h} \tag{7.65}
\end{equation*}
$$

Using Green's formula, we obtain

$$
\begin{equation*}
\sum_{K}\left(\int_{\partial K} M_{n}\left(\sigma_{h}^{*}\right) \frac{\partial v_{h}}{\partial n}+\int_{\partial K} M_{n s}\left(\sigma_{h}^{*}\right) \frac{\partial v_{h}}{\partial s}\right)=L\left(v_{h}\right) \forall v_{h} \varepsilon W_{h} \tag{7.66}
\end{equation*}
$$

If b_{i} is one mid side point, then substituting v_{h} satisfying:

$$
\begin{aligned}
& v_{h}=0 \quad \text { at the vertices } \\
& \frac{\partial v_{h}}{\partial n}= \begin{cases}1 & \text { at } \quad b_{i} \\
0 & \text { at the other nodes } \quad b_{j}, j \neq i\end{cases}
\end{aligned}
$$

in the above equation we obtain that $M_{n}\left(\sigma_{h}^{*}\right)$ is continuous at b_{i} (by using 7.59b) This proves that ${ }_{h}{ }_{h} \varepsilon V_{h}$.

Since $\sigma_{h}^{*} \varepsilon V_{h}$, equation (7.66) gives

$$
\sum_{K} \int_{\partial K} M_{n s}\left(\sigma_{h}^{*}\right) \frac{\partial v_{h}}{\partial s}=\sum_{N} f_{N} v_{h}(N) \forall v_{h} \varepsilon W_{h}
$$

But

$$
\sum_{K} \int_{K} M_{n s}\left(\sigma_{h}^{*}\right) \frac{\partial v_{h}}{\partial s}=-\sum_{N} R\left(\sigma_{h}^{*}, N\right) v_{h}(N)
$$

Hence

$$
\begin{equation*}
\sum_{K} R\left(\sigma_{h}^{*}, N\right) v_{h}(N)=-\sum_{N} f_{N} v_{h}(N) \forall v_{h} \varepsilon W_{h} \tag{7.67}
\end{equation*}
$$

Let $v_{h} \varepsilon M_{h}$. Consider $\tilde{v}_{h} \varepsilon V_{h}$ defined by

$$
\tilde{v}_{h}(N)=v_{h}(N), \frac{\partial}{\partial n} \tilde{v}_{h}\left(b_{i}\right)=0
$$

Then (7.67) gives

$$
\sum_{K} R\left(\sigma_{h}^{*}, N\right) \tilde{v}_{h}(N)=-\sum_{N} f_{N} \tilde{v}_{h}(N)
$$

Therefore

$$
\sum_{N} R\left(\sigma_{h}^{*}, N\right) v_{h}(N)=-\sum_{N} f_{N} v_{h}(N) \forall v_{h} \varepsilon M_{h}
$$

This is nothing but the second equation in 7.60 with σ_{h} replaced by σ_{h}^{*}. Now

$$
\begin{aligned}
a\left(\sigma_{h}^{*}, \tau\right) & =\sum_{K} \int_{K}\left(\sigma_{h}^{*}\right)_{i j} \tau_{i j} \\
& =\sum_{K} \int_{K} \frac{\partial^{2} u_{h}}{\partial x_{i} \partial x_{j}} \tau_{i j} \\
& =\sum_{K} \int_{K} M_{n}(\tau) \frac{\partial u_{h}}{\partial n}+\int_{K} M_{n s}(\tau) \frac{\partial u_{h}}{\partial s} \forall \tau \varepsilon V_{h}
\end{aligned}
$$

by Green's formula.
The first term in the right side is zero since $u_{h} \varepsilon W_{h}$ and $\tau \varepsilon V_{h}$. The second term equals $-\sum_{N} R(\tau, N) u_{h}(N)$. Hence we obtain

$$
a\left(\sigma_{h}^{*}, \tau\right)+\sum_{N} R(\tau, N) w_{h}^{*}(N)=0 \forall \tau \varepsilon V_{h}
$$

since $u_{h}(N)=w_{h}^{*}(N)$.
143 Thus $\left\{\sigma_{h}^{*}, w_{h}^{*}\right\}$ is a solution of (7.60). By uniqueness we have $\sigma_{h}=$ σ_{h}^{*} and $w_{h}^{*}=w_{h}$.

Thus we have proved that $7.64 \Rightarrow$. Let $\left\{\sigma_{h}, w_{h}\right\}$ be the solution of 7.60 . We will show that u_{h} defined by

$$
\begin{align*}
& u_{h}(N)=w_{h}(N) \quad \text { for each vertex } \quad N \tag{7.68}\\
& \left.D u_{h}\right|_{K}=\left.\sigma_{h}\right|_{K} \quad \text { for each } \quad K \varepsilon T_{h} \tag{7.69}
\end{align*}
$$

is the solution of 7.64.
It is easy to see that (7.68) and 7.69 define a unique u_{h} such that $\left.u_{h}\right|_{K} \varepsilon \mathbb{P}_{2}(K)$ for each $K \varepsilon T_{h}$. We will prove that this $u_{h} \varepsilon W_{h}$.

From the first equation in (7.60, we obtain

$$
\sum_{K} \int_{\partial K} M_{n}(\tau) \frac{\partial u_{h}}{\partial n}=0 \forall \tau \varepsilon V_{h}
$$

This implies $\partial u_{h} / \partial n$ is continuous at mid side points and $\partial u_{h} / \partial n=0$ at the boundary mid side points. Hence $u_{h} \varepsilon W_{h}$.

Let $v_{h} \varepsilon W_{h}$. Then there exists $v_{h} \varepsilon M_{h}$ such that $\tilde{v}_{h}(N)=v_{h}(N)$. Hence the second equation in (7.60) gives

$$
\sum R\left(\sigma_{h}, N\right) v_{h}(N)=-\sum f_{N} v_{h}(N)
$$

This shows

$$
\sum_{K} \int_{K} D u_{h} D v_{h}=\sum_{N} f_{N} v_{h}
$$

This proves $7.60 \Rightarrow 7.64$.
Thus the Hermann-Johnson method and the Morley nonconforming method are equivalent, in this particular case where the load is a sum of concentrated loads.

Exercise 7. Let K be a triangle. Let $\mathbb{P}_{K}=\mathbb{P}_{2}(K)$ and

$$
\sum_{K}=\left\{\delta_{a_{i}}, \frac{\partial}{\partial n} \delta_{a_{i j}}, 1 \leq i<j \leq 3\right\}
$$

where a_{i} 's denote the vertices of K and $a_{i j}$'s denote the mid points of the sides of K. Show that \sum_{K} is \mathbb{P}_{K}-unisolvent. The above finite element is called the Morley finite element.

Figure 7.3:

REMARK 11. We note that the Morley element has advantage over Herrmann-Johnson method, since in Morley's method we get a positive definite matrix and we have no constraints.

Chapter 8

Spectral Approximation for Conforming Finite Element Method

8.1 The Eigen Value Problem

Let V and H be Hilbert spaces such that $V \hookrightarrow H$. We also assume that $\mathbf{1 4 5}$ this imbedding is compact. Let $\|\cdot\|_{1}$ denote the norm in V. The norm in H is denoted by $\|\cdot\|$ or $\|\cdot\|_{0}$ and the scalar product in H is (\cdot, \cdot). We identify H with its dual H^{\prime}.

Let $a(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ be a continuous, symmetric bilinear form which is V-coercive with α as the coercive constant.

We shall consider the eigen value problem:
Find $u \varepsilon V, \mu \varepsilon \mathbb{R}$ such that

$$
\begin{equation*}
a(u, v)=\mu(u, v) \quad \forall v \varepsilon V \tag{8.1}
\end{equation*}
$$

In the following, for an operator $\top: H \rightarrow H$, we write

$$
\|\mathrm{T}\|=\operatorname{Sup}_{f \varepsilon H, f \neq 0} \frac{\|\mathrm{~T} f\|}{\|f\|} .
$$

8.2 The Operator T

The operator $\mathrm{T}: H \rightarrow V$ is defined as follows. If $f \varepsilon H$ then $\mathrm{T} f$ is defined to be the unique solution of the variational equation

$$
a(\top f, v)=(f, v) \quad \forall v \varepsilon V .
$$

By Lax-Milgram Lemma $\top f$ is well defined for all $f \varepsilon H$. As the imbedding $V \hookrightarrow H$ is compact we obtain that T , considered as an operator from H into H, is compact. The symmetry of $a(\cdot, \cdot)$ implies that T is symmetric. It is easy to see that (8.1) is equivalent to:

Find $u \varepsilon V$ and $\lambda \varepsilon \mathbb{R}$ such that

$$
\begin{equation*}
\mathrm{T} u=\lambda u \tag{8.2}
\end{equation*}
$$

The μ and λ in 8.1 and 8.2 have the relation

$$
\lambda \mu=1
$$

From the Spectral Theorem for compact self-adjoint operators we have:
$\mathrm{Sp}(\mathrm{T})$ is a countable set with no accumulation point other than zero. Every point in $\mathrm{Sp}(\mathrm{T})$ other than zero is an eigenvalue of T with finite multiplicity.

8.3 Example

The model problem for 8.1 is

$$
V=H_{\circ}^{1}(\Omega), H=L^{2}(\Omega)
$$

where Ω is a smooth bounded open subset of \mathbb{R}^{n},

$$
a(u, v)=\int_{\Omega} \nabla u . \nabla v
$$

The compactness of the imbedding $H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is well known. Problem 8.1) corresponds to:

Find $u \varepsilon H_{\circ}^{1}(\Omega), \mu \varepsilon \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
-\Delta u=u \quad \text { in } \Omega \tag{8.3}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

We note that T is the inverse of $-\Delta$.

8.4 Approximate Problem

Let $V_{h} \hookrightarrow V$ be a finite element subspace of V. We consider the approximate eigen value problem:

Find $u_{h} \varepsilon V_{h}, \mu_{h} \varepsilon \mathbb{R}$ such that

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=\mu_{h}\left(u_{h}, v_{h}\right) \quad \forall v_{h} \varepsilon V_{h} \tag{8.4}
\end{equation*}
$$

Here again, we introduce an operator $\mathrm{T}_{h}: H \rightarrow H$ where $\mathrm{T}_{h} f$ is the unique solution of

$$
\begin{equation*}
a\left(T_{h} f, v_{h}\right)=\left(f, v_{h}\right) \forall v_{h} \varepsilon V_{h} . \tag{8.5}
\end{equation*}
$$

As in the continuous case, we have $\left\|\mathrm{T}_{h}\right\| \leq c / \alpha$ which shows that T_{h} is uniformly bounded. Again (8.4) is equivalent to:

Find $u_{h} \varepsilon V_{h}$ and $\lambda_{h}=1 / \mu_{h}$ such that

$$
\begin{equation*}
\mathrm{T}_{h} u_{h}=\lambda_{h} u_{h} \tag{8.6}
\end{equation*}
$$

It is obvious that T_{h} is a self-adjoint, compact operator.
We assume that

$$
\begin{equation*}
\left\|\top-\top_{h}\right\| \leq \varepsilon(h) \tag{8.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(\top-\mathrm{T}_{h}\right) f\right\| \leq e(h) \tag{8.8}
\end{equation*}
$$

for all smooth f and $\top f$. Further, we assume

$$
\begin{equation*}
0 \leq e(h) \leq \varepsilon(h) \quad \text { and } \quad \varepsilon(h) \rightarrow 0 \tag{8.9}
\end{equation*}
$$

EXAMPLE. Let

$$
V_{h}=\left\{v_{h} \varepsilon H_{\circ}^{1}(\Omega):\left.v_{h}\right|_{K} \varepsilon \mathbb{P}_{k}(K), K \varepsilon T_{h}\right\}
$$

where T_{h} is a regular family of triangulations of Ω. We have (cf. Chapter 5)

$$
\begin{equation*}
\left\|\top f-\mathrm{T}_{h} f\right\|_{0, \Omega} \leq \mathrm{ch}^{s+1}\|f\|_{s-1, \Omega}, 1 \leq s \leq k \tag{8.10}
\end{equation*}
$$

provided that Ω is a convex polygon and that

$$
\begin{equation*}
\|\top f\|_{s+1} \leq c\|f\|_{s-1, \Omega} \tag{8.11}
\end{equation*}
$$

From GRISVARD [22] this is atleast true for $s=1$, which shows that $\varepsilon(h)=\operatorname{ch}^{2}$ and $e(h)=0\left(h^{k+1}\right)$.

8.5 Convergence and Error Estimate for the Eigen Space.

Assumption (8.7) (8.9) show that $\mathrm{T}_{h} \rightarrow \mathrm{~T}$ in norm.
From KATO [26] (Chapter 5] Section 4.3) we know that the spectrum of T_{h} converges to the spectrum of T in the following sense: For all non-zero $\lambda \varepsilon \operatorname{Sp}(T)$ with multiplicity m and for each h such that $\varepsilon(h)<d / 2$, where

$$
d=\min _{\lambda^{\prime} \varepsilon \operatorname{Sp}(T)}\left|\lambda-\lambda^{\prime}\right|
$$

there exist exactly m eigen values $\lambda_{i h} \varepsilon \operatorname{Sp}\left(T_{h}\right)$ (counted according to multiplicity) such that

$$
\left|\lambda-\lambda_{i h}\right| \leq \varepsilon(h)
$$

Let $\Gamma=\{z \varepsilon C:|z-\lambda|=d / 2\}$. We know that

$$
\begin{align*}
& P=-\frac{1}{2 \pi i} \int_{\Gamma} R_{z}(\mathrm{~T}) d z \tag{8.12}\\
& P_{h}=-\frac{1}{2 \pi i} \int_{\Gamma} R_{z}\left(\mathrm{~T}_{h}\right) d z, \varepsilon(h)<d / 2, \tag{8.13}
\end{align*}
$$

where $R_{z}(T)=(T-z)^{-1}$, are the spectral projections on to the eigenspaces E and E_{h} associated with λ and $\lambda_{i h}$'s. The dimension of each of the spaces E and E_{h} is m (See KATO [26], Chapter4] Section4.3].

LEMMA 1. For usE, we have

$$
\begin{equation*}
\left\|u-P_{h} u\right\| \leq c_{2}\left\|\left(\top-\mathrm{T}_{h}\right) u\right\| . \tag{8.14}
\end{equation*}
$$

Proof. We consider

$$
\begin{aligned}
R_{z}(\mathrm{~T})-R_{z}\left(\mathrm{~T}_{h}\right) & =R_{z}\left(\mathrm{~T}_{h}\right)\left(\mathrm{T}_{h}-z\right) R_{z}(\mathrm{~T})-R_{z}\left(\mathrm{~T}_{h}\right)(\mathrm{T}-z) R_{z}(\mathrm{~T}) \\
& =R_{z}\left(\mathrm{~T}_{h}\right)\left(\mathrm{T}_{h}-\mathrm{T}\right) R_{z}(\mathrm{~T}) .
\end{aligned}
$$

Hence

$$
P-P_{h}=-\frac{1}{2 \pi i} \int_{\Gamma} R_{z}\left(\mathrm{~T}_{h}\right)\left(\mathrm{T}_{h}-\mathrm{T}\right) R_{z}(\mathrm{~T}) d z
$$

Let $u \varepsilon E$. Then we have

$$
P u=u, \mathrm{\top} u=\lambda u \quad \text { and } \quad R_{z}(\mathrm{~T}) u \frac{1}{\lambda-z} u .
$$

Therefore

$$
u-P_{h} u=-\frac{1}{2 \pi i} \int_{\Gamma} \frac{R_{z}\left(\mathrm{~T}_{h}\right)}{\lambda-z} d z\left(\mathrm{~T}-\mathrm{T}_{h}\right) u .
$$

We show that the integral on the right is bounded. Indeed, for $z \varepsilon \Gamma$ and $\varepsilon(h)<d / 2$ we have

$$
\begin{aligned}
\mathrm{T}_{h}-z & =\mathrm{T}_{h}-\mathrm{T}+\mathrm{T}-z \\
& =\left(\left(\mathrm{T}_{h}-\mathrm{T}\right) R_{z}(\mathrm{~T})+I\right)(\mathrm{\top}-z),
\end{aligned}
$$

which implies

$$
R_{z}\left(\mathrm{~T}_{h}\right)=R_{z}(\mathrm{~T})\left(I+A_{h}\right)^{-1}
$$

where

$$
A_{h}=\left(\mathrm{T}_{h}-\mathrm{T}\right) R_{z}(\mathrm{~T}) .
$$

If $P(T)$ denotes the resolvent set of T then, as $R_{z}(T)$ is continuous in $z \varepsilon P(\mathrm{~T})$ and Γ is a compact subset of $P(T)$, we obtain

$$
\left\|R_{z}(\mathrm{~T})\right\| \leq c_{1} \quad \text { for all } z \varepsilon \Gamma
$$

and $\left\|A_{h}\right\| \leq c_{1} \varepsilon(h)$, where c_{1} is a constant. This implies

$$
\left\|\left(I+A_{h}\right)^{-1}\right\| \leq 2 \quad \text { for } \quad \varepsilon(h) \leq \frac{1}{2 c_{1}}
$$

Thus

$$
\left\|u-P_{h} u\right\| \leq c_{2}\left\|\left(\top-\mathrm{T}_{h}\right) u\right\| .
$$

LEMMA 2. If the eigen vectors in E are smooth enough, we have

$$
\begin{equation*}
\delta\left(E, E_{h}\right) \leq c e(h) \tag{8.15}
\end{equation*}
$$

151 where

$$
\delta\left(E, E_{h}\right)=\operatorname{Sup}\left\{d\left(u, E_{h}\right): u \varepsilon E,\|u\|=1\right\}
$$

Remark 1. In this chapter we follow closely OSBORN [34]. We will use the result: "In a Hilbert space $H, \delta\left(E, E_{h}\right)=\delta\left(E_{h}, E\right)$ ". Osborn, however, considers the more general case of a non-self-adjoint operator in a Banach space, which involves more complicated arguments.

8.6 Error Estimates for the Eigen Values.

Let $Q_{h}=\left.P_{h}\right|_{E}$, the restriction of P_{h} to E. Then Q_{h} maps E into E_{h}. We prove that Q_{h} is invertible for small h.

Indeed, for h small enough we have $\operatorname{dim} E=\operatorname{dim} E_{h}$.
Let $f \varepsilon E$ be such that $Q_{h} f=0$. Then

$$
\|f\|=\left\|f-Q_{h} f\right\|=\left\|f-P_{h} f\right\| \leq c_{2} \varepsilon(h)\|f\|
$$

where we have used Lemma 1 Therefore, for $c_{2} \varepsilon(h)<1$ we have $\|f\|=0$. Hence Q_{h} is invertible for $\varepsilon(h)<\min \left(d / 2,1 / c_{2}\right)$.

Let us evaluate $\left\|Q_{h}^{-1}\right\|$. If $f \varepsilon E$ with $\|f\|=1$, then

$$
1-\left\|Q_{h} f\right\| \leq\left\|f-P_{h} f\right\| \leq c_{2} \varepsilon(h)
$$

Therefore

$$
\left\|Q_{h} f\right\| \geq 1 / 2, \quad \text { if } \quad \varepsilon(h) \leq 1 / 2 c_{2}
$$

and

$$
\left\|Q_{h}^{-1}\right\| \leq 2, \quad \text { for } \quad \varepsilon(h) \leq 1 / 2 c_{2}
$$

Let $\hat{\top}_{h}: E \rightarrow E$ be defined by

$$
\hat{\mathrm{T}}_{h}=Q_{h}^{-1} \mathrm{~T}_{h} Q_{h} .
$$

The eigenvalues of $\hat{\top}_{h}$ are again $\lambda_{i h}, i=1,2, \ldots, m$ (but the eigenvectors of $\hat{\top}_{h}$ are different from those of T_{h}).

Let $W_{j h} \varepsilon E,\left\|W_{j h}\right\|=1$ be an eigen vector of $\hat{\mathrm{T}}_{h}$ associated with the eigen value $\lambda_{j h}$. Therefore,

$$
\begin{aligned}
\lambda-\lambda_{j h} & =\left(\left(\lambda-\lambda_{j h}\right) w_{j h}, w_{j h}\right) \\
& =\left(\left(\mathrm{T}-\mathrm{T}_{h}\right) w_{j h}, w_{j h}\right) \\
& \leq \operatorname{Sup}_{\phi \varepsilon E,\|\phi\|=1}\left\{\left(\left(\mathrm{~T}-\mathrm{T}_{h}\right) \phi, \phi\right)\right\} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{T}-\hat{\mathrm{T}}_{h} & =\mathrm{\top}-Q_{h}^{-1} \mathrm{~T}_{h} Q_{h}=\mathrm{\top}-Q_{h}^{-1} \mathrm{~T}_{h} P_{h} \\
& =\mathrm{\top}-Q_{h}^{-1} P_{h} \mathrm{\top}_{h} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\mathrm{T}-\hat{\mathrm{T}}_{h}=Q_{h}^{-1} P_{h}\left(\mathrm{~T}-\mathrm{T}_{h}\right) \tag{8.16}
\end{equation*}
$$

since P_{h} commutes with T_{h} and $Q_{h}^{-1} P_{h} u=u$ for $u \varepsilon E$. Hence

$$
\left\|\left(\mathrm{T}-\hat{\mathrm{T}}_{h}\right) \phi\right\| \leq 2\left\|\left(\mathrm{~T}-\mathrm{T}_{h}\right) \phi\right\| \quad \text { for all } \phi \varepsilon E
$$

since

$$
\left\|Q_{h}^{-1}\right\| \leq 2,\left\|P_{h}\right\| \leq 1 \quad \text { for } \quad \varepsilon(h) \leq 1 / 2 c_{1}
$$

Therefore

$$
\begin{equation*}
\left|\lambda-\lambda_{j h}\right| \leq 2 e(h) \quad \text { for } \quad \varepsilon(h) \leq \min \left(1 / 2 c_{1}, d / 2\right) \tag{8.17}
\end{equation*}
$$

Application. In the example given in Section 8.3, where T is the inverse of the negative Laplace operator, we get

$$
\begin{align*}
& \left|\lambda-\lambda_{i h}\right| \leq \operatorname{ch}^{k+1}, \quad 1 \leq i \leq m \tag{8.18}\\
& d\left(E, E_{h}\right) \leq \operatorname{ch}^{k+1} \tag{8.19}
\end{align*}
$$

since $e(h) \leq \mathrm{ch}^{k+1}$ provided that the eigen functions in E are in H^{k+1} (This may happen even though Ω is a polygon: If $\Omega=] 0,1\left[{ }^{2}\right.$ the eigen functions are known explicitly and they are C^{∞}. In fact, the eigen functions are

$$
u_{n m}=\operatorname{Sin} n \pi x . \operatorname{Sin} m \pi x .
$$

However, the error estimate for $\left|\lambda-\lambda_{j h}\right|$ can be improved as will be shown in the following section. One indeed has

$$
\left|\lambda-\lambda_{j h}\right| \leq \operatorname{ch}^{2 k}
$$

8.7 Improvement of the Error Estimate for the Eigen Values.

We denote by S_{h} the projection on E_{h} along E^{\perp}. We notice that

$$
R_{h}=Q_{h}^{-1} P_{h}
$$

is the projection on E along E_{h}^{\perp}.

Figure 8.1:
S_{h} and R_{h} are related by
LEMMA 3. $S_{h}=R_{h}^{*}$.
Proof. For $u, v \varepsilon H$, we have

$$
\begin{aligned}
\left(u, S_{h} \phi\right) & =\left(P_{h} u, S_{h} \phi\right), \quad \text { since } \quad P_{h} S_{h}=S_{h} \quad \text { and } \quad P_{h}^{*}=P_{h}, \\
& =\left(P_{h} R_{h} u, S_{h} \phi\right), \text { since } \quad R_{h} \text { is the projection on } E \text { along } E_{h}^{\perp} ; \\
& =\left(R_{h} u, S_{h} \phi\right) \\
& =\left(R_{h} u, P S_{h} \phi\right), \quad \text { since } \quad P R_{h}=R_{h} \quad \text { and } \quad P=P^{*}, \\
& =\left(R_{h} u, P \phi\right), \quad \text { since } P S_{h}=P, \\
& =\left(R_{h} u, \phi\right) .
\end{aligned}
$$

We will now prove a Lemma which will give an upper bound for $\left\|P-S_{h}\right\|$.

LEMMA 4. We have

$$
\begin{equation*}
\left\|P-S_{h}\right\| \leq \frac{\delta\left(E_{h}, E\right)}{1-\delta\left(E_{h}, E\right)} \tag{8.20}
\end{equation*}
$$

Proof. Since S_{h} is the projection on E_{h} along E^{\perp} we have $P=P S_{h}$. If $x \varepsilon E_{h}$ and $\|x\|=1$ then

$$
\|x-P x\|=d(x, E) \leq \operatorname{Sup}_{x \varepsilon E_{h},\|x\|=1} d(x, E)=\delta\left(E_{h}, E\right) .
$$

Therefore,

$$
\begin{equation*}
\|y-P y\| \leq \delta\left(E_{h}, E\right)\|y\| \quad \text { for all } y \varepsilon E_{h} \tag{8.21}
\end{equation*}
$$

Now, for any $x \varepsilon H$,

$$
\begin{aligned}
\left\|S_{h} x\right\| & \leq\left\|S_{h} x-P S_{h} x\right\|+\left\|P S_{h} x\right\| \\
& \leq \delta\left(E_{h}, E\right)\left\|S_{h} x\right\|+\|P x\| .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\|S_{h} x\right\| \leq \frac{1}{1-\delta\left(E_{h}, E\right)}\|x\| \tag{8.22}
\end{equation*}
$$

Hence we obtain

$$
\begin{aligned}
\left\|\left(P-S_{h}\right) x\right\| & =\left\|P S_{h} x-S_{h} x\right\| \\
& \leq \delta\left(E_{h}, E\right)\left\|S_{h} x\right\|, \quad \text { by (8.21), } \\
& \leq \frac{\delta\left(E_{h}, E\right)}{1-\delta\left(E_{h}, E\right)}\|x\|, \quad \text { using (8.22) }
\end{aligned}
$$

Therefore

$$
\left\|P-S_{h}\right\| \leq \frac{\delta\left(E_{h}, E\right)}{1-\delta\left(E_{h}, E\right)}
$$

Finally we have from 8.16,

$$
\begin{aligned}
\left(\left(\mathrm{T}-\hat{\mathrm{T}}_{h}\right) \phi, \phi\right) & =\left(R_{h}\left(\mathrm{~T}-\mathrm{T}_{h}\right) \phi, \phi\right) \\
& =\left(\left(\mathrm{T}-\mathrm{T}_{h}\right) \phi, S_{h} \phi\right) \\
& =\left(\left(\mathrm{T}-\mathrm{T}_{h}\right) \phi, \phi\right)+\left(\left(\mathrm{T}-\mathrm{T}_{h}\right) \phi, S_{h} \phi-\phi\right),
\end{aligned}
$$

$156 \quad$ where $\phi \varepsilon E$ and $\|\phi\|=1$.

For $\phi \varepsilon E$, using Lemma4 and Lemma we obtain

$$
\left\|\phi-S_{h}\right\| \leq \frac{\delta\left(E_{h}, E\right)}{1-\delta\left(E_{h}, E\right)} \leq k e(h)
$$

for sufficiently small h, where k is a constant.
We know that for all $\phi \varepsilon E$ with $\|\phi\|=1$

$$
\lambda-\lambda_{i h}=\left(\left(\mathrm{T}-\hat{\mathrm{T}}_{h}\right) \phi, \phi\right)
$$

Hence

$$
\left|\lambda-\lambda_{i h}\right| \leq \operatorname{Sup}_{\phi \varepsilon E,\|\phi\|=1}\left(\left(\mathrm{~T}-\mathrm{T}_{h}\right) \phi, \phi\right)+k(e(h))^{2} .
$$

Thus we have proved
THEOREM 5. When E is a smooth subset of H and h is sufficiently small we have

$$
\begin{equation*}
\left|\lambda-\lambda_{i h}\right| \leq \operatorname{Sup}_{\phi \varepsilon E,\|\phi\|=1}\left(\left(\mathrm{~T}-\mathrm{T}_{h}\right) \phi, \phi\right)+k(e(h))^{2}, \tag{8.23}
\end{equation*}
$$

where k is a constant.

Application. In the case of the example in Section 8.3 we give an estimate of

$$
\alpha_{h}=\operatorname{Sup}_{\phi \varepsilon E,\|\phi\|=1}\left(\left(\mathrm{~T}-\mathrm{T}_{h}\right) \phi, \phi\right) .
$$

Let w be the solution of

$$
\begin{equation*}
a(v, w)=(\phi, v) \quad \forall v \varepsilon V \tag{8.24}
\end{equation*}
$$

where $\phi \varepsilon E$ and $\|\phi\|=1$.
We have

$$
\begin{aligned}
\left(\left(\mathrm{T}-\mathrm{T}_{h}\right) \phi, \phi\right) & =a\left(\left(\mathrm{~T}-\mathrm{T}_{h}\right) \phi, w\right) \\
& =a\left(\left(\mathrm{~T}-\mathrm{T}_{h}\right) \phi, w-v_{h}\right) \quad \text { for all } v_{h} \varepsilon V_{h}
\end{aligned}
$$

since

$$
a\left(\left(\mathrm{~T}-\mathrm{T}_{h}\right) \phi, v_{h}\right)=0 \quad \text { for all } v_{h} \varepsilon V_{h} .
$$

If $w \varepsilon H^{k+1}(\Omega)$, we get

$$
\left\|w-v_{h}\right\|_{1} \leq \operatorname{ch}^{k}\|w\|_{k+1} \leq \operatorname{ch}^{k}\|\phi\|_{k-1}
$$

using regularity theorem and the error estimates in Chapter 5
Since E is finite-dimensional there exists a constant c such that

$$
\|\phi\|_{k-1} \leq c\|\phi\|=c .
$$

Finally, we have

$$
\begin{gathered}
\alpha_{h} \leq \operatorname{ch}^{k}\left\|\left(\mathrm{~T}-\mathrm{T}_{h}\right) \phi\right\|_{1} \\
\leq \operatorname{ch}^{2 k}
\end{gathered}
$$

provided that $E \subset H^{k+1}$.
Thus we have proved
THEOREM 6. For the model problem (See Section 8.3) we have

$$
\left|\lambda-\lambda_{i h}\right| \leq \operatorname{ch}^{2 k}
$$

provided $E \subset H^{k+1}(\Omega)$, the solution of (8.24) is in $H^{k+1}(\Omega)$ and h is small.

REMARK 2. Error estimates for the semi-discrete approximation to parabolic equation of the form

$$
\begin{gathered}
\left(\frac{d u}{d t}, v\right)+a(u, v)=(f, v) \quad \text { for all } v \varepsilon V \\
u(0)=v_{0}, v_{\circ} \varepsilon V
\end{gathered}
$$

can be obtained using spectral approximation. The reader is referred to THOMEE [44], [45].

Chapter 9

Nonlinear Problems

Introduction.

We consider here problems of the following type:
Find $u \varepsilon C$ such that

$$
\begin{equation*}
J(u) \leq J(v) \quad \text { for all } v \varepsilon V \tag{9.1}
\end{equation*}
$$

where C is a closed, convex subset of a Banach space V and $J: V \rightarrow \mathbb{R}$ is a convex, lower semi-continuous (l.s.c.) function.

We denote by (\cdot, \cdot) the duality pairing $V^{\prime}-V$ and $\|\cdot\|$ the norm in V. We write (9.1) in the form:

Find $u \varepsilon C$ such that

$$
\begin{equation*}
J(u)=\operatorname{Inf}_{v \varepsilon C} J(v) . \tag{9.2}
\end{equation*}
$$

The existence and uniqueness of the solutions of 9.2 is given by
THEOREM 1. Assume that J is coercive on C, that is

$$
\begin{equation*}
J(v) \rightarrow \infty \quad \text { if } \quad\|v\| \rightarrow \infty, v \varepsilon C . \tag{9.3}
\end{equation*}
$$

Then problem (9.2 has atleast one solution provided that V is reflexive. If J is strictly convex, then (9.2) has almost one solution.

The proof of theorem 1] can be found in EMELAND-TEMAN [15].

Exercise 1. If J is Gateaux-differentiable, then u is a solution of 9.2160 iff

$$
\left(J^{\prime}(u), v-u\right) \geq 0 \quad \text { for all } v \varepsilon C
$$

If C is affine linear, 9.1 implies

$$
\left(J^{\prime}(u), v-u\right)=0 \forall v \varepsilon C
$$

Approximation.

Let V_{h} be a finite-dimensional subspace of V and C_{h} a closed, convex subset of V_{h}. Then the approximate problem corresponding to 9.2 is:

Find $u_{h} \varepsilon C_{h}$ such that

$$
\begin{equation*}
J\left(u_{h}\right)=\operatorname{Inf}_{v_{h} \varepsilon C_{h}} J\left(v_{h}\right) \tag{9.4}
\end{equation*}
$$

We assume that J is strictly convex and coercive. Moreover, we assume that C_{h} approximates C.

$$
\left.\begin{array}{l}
\text { For all } v \varepsilon C \text { there exists } v_{h} \varepsilon C_{h} \\
\text { such that } \quad v_{h} \rightarrow v \quad \text { (strongly) as } h \rightarrow 0 ;
\end{array}\right\}, \begin{aligned}
& \text { If } \quad w_{h} \rightharpoonup w \varepsilon V \quad \text { as } \quad h \rightarrow 0 \text { and } w_{h} \varepsilon C_{h} \tag{9.6}\\
& \text { then } \quad w \varepsilon C \text {. }
\end{aligned}
$$

Then one can easily prove that the solution u_{h} of (9.4) converges weakly to u, the solution of 9.2 .

Note that (9.5) implies that C_{h} has to be sufficiently big and 9.6 demands C_{h} to be sufficiently small.

To get strong convergence of u_{h} to u, one needs some strong monotonicity; there exists $\alpha, \gamma>0$ such that

$$
\begin{equation*}
\left(J^{\prime}(u)-J^{\prime}(v), u-v\right) \geq \alpha\|u-v\|^{\gamma}, \forall u, v \varepsilon C \tag{9.7}
\end{equation*}
$$

Case 1. We obtain an error estimate when $C_{h}=C \cap V_{h}$. From Exercise (7) we have

$$
\begin{array}{r}
\left(J^{\prime}(u), v-u\right) \geq 0 \forall v \varepsilon C, \\
\left(J^{\prime}\left(u_{h}\right), v_{h}-u_{h}\right) \geq 0 \forall v_{h} \varepsilon C_{h} . \tag{9.9}
\end{array}
$$

As $C_{h}=C \cap V_{h}$, choosing $v=u_{h}$ in (9.8) and adding to (9.9), we get

$$
\left(J^{\prime}(u)-J^{\prime}\left(u_{h}\right), u_{h}-u\right)+\left(J^{\prime}\left(u_{h}\right), v_{h}-u\right) \geq 0
$$

Therefore (assuming J to be continuously differentiable)

$$
\alpha\left\|u_{h}-u\right\|^{\gamma} \leq\left(J^{\prime}\left(u_{h}\right), v_{h}-u\right) \leq c\left\|v_{h}-u\right\|,
$$

since u_{h} is bounded. Finally,

$$
\begin{equation*}
\left\|u_{h}-u\right\| \leq c \operatorname{Inf}_{v_{h} \varepsilon C_{h}}\left\|v_{h}-u\right\|^{1 / \gamma} \tag{9.10}
\end{equation*}
$$

provided J^{\prime} is weakly continuous.
Note that

$$
\operatorname{Inf}_{v_{h} \varepsilon C_{h}}\left\|v_{h}-u\right\|
$$

measures how good is the approximation C_{h} to C. Note also that, as u_{h} is bounded, it is enough if (9.7) holds on bounded subsets of C.

Exercise 2. Let $\phi: V \rightarrow \mathbb{R}$ be Lipschitz but not differentiable. Then

$$
J(u)=\operatorname{Inf}_{v \varepsilon C}[J(v)+\phi(v)]
$$

is equivalent to

$$
\left(J^{\prime}(u), v-u\right)+\phi(v)-\phi(u) \geq 0 \quad \forall v \varepsilon C .
$$

Derive an error estimate similar to 9.10 .
Case 2. When C is of the form

$$
\begin{equation*}
C=\{v \varepsilon V: b(v, \mu)=(\phi, \mu) \forall \mu \varepsilon M\}, \tag{9.11}
\end{equation*}
$$

where M is a Hilbert space, $b(\cdot, \cdot)$ is a continuous, bilinear form on $V \times M$ and $\phi \varepsilon M$ satisfying Brezzi's condition (See Chapter 7), Problem (9.1) is equivalent to:

Find $\{u, \lambda\} \varepsilon V \times M$ such that

$$
\begin{gather*}
<J^{\prime}(u), v>+b(v, \lambda)=0 \forall v \varepsilon V \tag{9.12}\\
b(u, \mu)=(\phi, \mu) \forall \mu \varepsilon M . \tag{9.13}
\end{gather*}
$$

We notice that (9.11) is affine linear and from Exercise \square we obtain that 9.1 is equivalent to

$$
\begin{equation*}
\left(J^{\prime}(u), v-u\right)=0 \quad \forall v \varepsilon C \tag{9.14}
\end{equation*}
$$

Let $B: V \rightarrow M$ be defined by

$$
(B v, \mu)=b(v, \mu) \forall v \varepsilon V, \mu \varepsilon M
$$

163 Clearly $C=v+\operatorname{Ker} B$, where $v \varepsilon C$. This together with 9.14 implies

$$
J^{\prime}(u) \varepsilon(\operatorname{Ker} B)^{\perp}=\operatorname{Im} B^{*}
$$

which is closed from Brezzi's condition. Hence there exists $\lambda \varepsilon M$ such that

$$
J^{\prime}(u)=-B^{*} \lambda
$$

Thus

$$
\left(J^{\prime}(u), v\right)+b(v, \lambda)=0 \quad \forall v \varepsilon V
$$

$u \varepsilon C$ implies $b(u, \mu)=(\phi, \mu) \forall \mu \varepsilon M$.
So we have proved that (9.1) implies (9.12) and 9.13).
If (9.12) and 9.13) hold, then ueC and

$$
\left(J^{\prime}(u), u\right)=-b(u, \lambda)=-b(v, \lambda) \quad \forall v \varepsilon C
$$

Hence $\left\langle J^{\prime}(u), v-u\right\rangle=0 \forall v \varepsilon C$, which is equivalent to 9.1 .
Thus we proved the equivalence of (9.1) and 9.12) (9.13).
A natural approximation C_{h} to C will be

$$
C_{h}=\left\{v \varepsilon V: b\left(v, \mu_{h}\right)=\left(\phi, \mu_{h}\right) \forall \mu_{h} \varepsilon M_{h}\right\}
$$

where M_{h} approximates M. In this case

$$
C_{h} \not \subset C .
$$

164 EXAMPLE 1. Nonlinear Dirichlet Problem.

$$
\begin{aligned}
& V=W^{1, p}(\Omega), C=V \\
& J(v)=\frac{1}{p} \int_{\Omega}|\nabla v|^{p} d x-\int_{\Omega} f v d x,
\end{aligned}
$$

where

$$
f \varepsilon L^{q}, 1 / p+1 / q=1
$$

For $1<p<\infty, W^{1 \cdot p}(\Omega)$ is reflexive and $J(v) \rightarrow \infty$ as $\|v\| \rightarrow \infty$. One has

$$
\left(J^{\prime}(u), v\right)=\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v d x-\int_{\Omega} f v d x
$$

and some strong monotonicity results of the type 9.7) are proved in GLOWINSKI-MARROCCO [19].

EXAMPLE 2. The Obstacle Problem.

$$
\begin{aligned}
V & =H_{\circ}^{1}(\Omega), \\
C & =\left\{v \varepsilon H_{\circ}^{1}(\Omega): v \geq 0 \text { a.e. on } \Omega\right\}, \\
J(v) & =\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} f v d x .
\end{aligned}
$$

Existence and uniqueness of the solution of the minimization problem are straightforward.

Let V_{h} be the standard Lagrange finite element space of degree 1 and $C_{h}=C \cap V_{h}$. One has (9.10) with $\gamma=2$; therefore it seems that one gets

$$
\left\|u-u_{h}\right\|=0(\sqrt{h})
$$

since the interpolate $\pi_{h} u \varepsilon C_{h}$ as long as $u \varepsilon C$. However, one has

$$
\begin{aligned}
& \left(J^{\prime}\left(u_{h}\right), v_{h}-u\right)=\left(J^{\prime}(u), v_{h}-u\right)+\left(J^{\prime}\left(u_{h}\right)-J^{\prime}(u), v_{h}-u\right) \\
& \leq\left(-\Delta u-f, v_{h}-u\right)+\frac{M \varepsilon}{2}\left\|u_{h}-u\right\|_{1}^{2}+\frac{M}{2 \varepsilon}\left\|v_{h}-u\right\|_{1}^{2} .
\end{aligned}
$$

Hence

$$
\left\|u-u_{h}\right\|_{1}^{2} \leq c\left(\left\|v_{h}-u\right\|_{0}^{2}+\left\|v_{h}-u\right\|_{1}^{2}\right)
$$

Therefore

$$
\left\|u-u_{h}\right\|_{1}=0(h)
$$

EXAMPLE 3. Elasto - Plastic Torsion. J and V as is Example 2,

$$
C=\left\{v \varepsilon H_{\circ}^{1}(\Omega):|\nabla v| \leq 1 \text { a.e. on } \Omega\right\},
$$

V_{h} same as in Example 2and $C_{h}=C \cap V_{h}$.
In this case the interpolate $\pi_{h} u$ is not in C_{h} whereas u is in C. One gets $0\left(h^{1 / 2-\varepsilon}\right)$.

EXAMPLE 4. The Flow of a Bingham Fluid in a Cylindrical Pipe. This is a particular case of Exercise 2 with J, V as above and

$$
\phi(v)=\int_{\Omega}|\nabla v| d x
$$

9.2 Generalization

Note that $J^{\prime}: V \rightarrow V^{\prime}$ satisfies

$$
\left(J^{\prime}(u)-J^{\prime}(v), u-v\right) \geq 0 \quad \forall u, v \varepsilon V
$$

An operator $A: V \rightarrow V^{\prime}$ is said to be monotone if

$$
\begin{equation*}
(A u-A v, u-v) \geq 0 \quad \forall u, v \varepsilon V \tag{9.15}
\end{equation*}
$$

A is bounded if A maps bounded sets of V into bounded sets of V^{\prime}. A is hemi-continuous if

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0}(A(u+\lambda w), v)=(A(u), v) \forall u, v, w \varepsilon V \tag{9.16}
\end{equation*}
$$

A is coercive if

$$
\begin{equation*}
\frac{(A(v), v)}{\|v\|} \rightarrow \infty \text { if }\|v\| \rightarrow \infty \text { for } v \varepsilon C \tag{9.17}
\end{equation*}
$$

We have

THEOREM 2. If A is a monotone, bounded hemi continuous and coercive operator then the problem:

Find usC such that

$$
\begin{equation*}
(A(u), v-u) \geq 0 \quad \forall v \varepsilon C \tag{9.18}
\end{equation*}
$$

has atleast one solution.
For a proof of this Theorem see LIONS [28]. The problem (9.18) has at most one solution if A is strongly monotone, i.e. there exists $\alpha, \gamma>0$ such that

$$
\begin{equation*}
\alpha\|u-v\|^{\gamma} \leq(A(u)-A(v), u-v) \forall u, v \varepsilon C \tag{9.19}
\end{equation*}
$$

The error analysis can be carried out in the same way.

9.3 Contractive Operators.

Let $T: C \rightarrow C$ be a mapping, where C is a closed, convex subset of a
Hilbert space H. The scalar product in H is denoted by (\cdot, \cdot).
We call T contractive iff

$$
\begin{equation*}
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \varepsilon C . \tag{9.20}
\end{equation*}
$$

T is strictly contractive iff there exists a θ with $0<\theta<1$ such that

$$
\begin{equation*}
\|T x-T y\| \leq \theta\|x-y\| \quad \forall x, y \varepsilon C . \tag{9.21}
\end{equation*}
$$

We say that T is firmly contractive iff (cf. BROWDER-PETRYSHN [8])

$$
\begin{equation*}
\|T x-T y\|^{2} \leq(T x-T y, x-y) \forall x, y \varepsilon C \tag{9.22}
\end{equation*}
$$

T is quasi firmly contractive iff there exists a $\theta, 0<\theta<1$ such that

$$
\begin{equation*}
\|T x-T y\|^{2} \leq \theta(T x-T y, x-y)+(1-\theta)\|x-y\|^{2} \tag{9.23}
\end{equation*}
$$

Note that $(9.22) \Rightarrow(9.23) \Rightarrow(9.20$ and 9.21$) \Rightarrow(9.20$.
Geometrical Interpretation of the Above Definitions Let $y \varepsilon C$ be a fixed point of T, i.e. $T y=y$. If T is contractive and $x \varepsilon C$ then $T x$ lies in
the closed ball with y as centre and $\|y-x\|$ as radius. If T is strictly contractive, then $T x$ lies in the open ball with y as centre and $\|y-x\|$ as radius, for all $x \varepsilon C$. If T is firmly contractive then from (9.22) we obtain

$$
(T x-y, x-T x) \geq 0 \forall x \varepsilon C .
$$

168 This means that the angle between $y-T x$ and $x-T x$ is obtuse.

Figure 9.1:

Note that if T_{1} and T_{2} are contractive then $T=T_{1} T_{2}$ is contractive and T is strictly contractive if any one of T_{1} and T_{2} is. However, T_{1}, T_{2} firmly (or quasi-firmly) contractive implies only $T=T_{1} T_{2}$ is contractive.
Fixed Points. We recall that x is a fixed point of T iff $T x=x$. Let $F(T)$ denote the set of all fixed points of T. If T is strictly contractive then T has a unique fixed point and $F(T)$ is singleton. We have

THEOREM 3. If T is contractive, then $F(T)$ is closed and convex.
Proof. Let $x_{n} \varepsilon F(T), x_{n} \rightarrow x$. Then

$$
\left\|x_{n}-T x\right\| \leq\left\|x_{n}-x\right\|
$$

169 Taking the limit as $n \rightarrow \infty$ we get $\|x-T x\|=0$, i.e. $x \varepsilon F(T)$. Hence $F(T)$ is closed.

Let $x, y \varepsilon F(T)$ and $u=\theta x+(1-\theta)$ where $0<\theta<1$. We have

$$
\begin{equation*}
\|x-T u\| \leq\|x-u\|=(1-\theta)\|x-y\|, \tag{9.24}
\end{equation*}
$$

$$
\begin{align*}
& \|y-T u\| \leq\|y-u\|=\theta\|x-y\| \tag{9.25}\\
& \|x-y\| \leq\|x-T u\|+\|y-T u\| \leq\|x-y\| \tag{9.26}
\end{align*}
$$

Since H is strictly convex, we obtain using (9.24) and 9.25),

$$
\begin{align*}
& x-T u=c(y-T u) \tag{9.27}\\
& \|x-T u\|^{2}=c(y-T u, x-T u) \tag{9.28}
\end{align*}
$$

$$
\|x-y\|^{2}=\|x-T u\|^{2}+\|y-T u\|^{2}+2\|x-T u\|\|y-T u\|,
$$

by 9.26 ,

$$
\begin{aligned}
\|x-y\|^{2} & =\|x-T u+T u-y\|^{2} \\
& =\|x-T u\|^{2}+\|T u-y\|^{2}+2(x-T u, T u-y)
\end{aligned}
$$

So

$$
\begin{equation*}
(x-T u, T u-y)=\|x-T u\|\|y-T u\|>0 . \tag{9.29}
\end{equation*}
$$

From (9.28) and 9.29) we obtain $c<0$.
Equations (9.26) and 9.27 imply

$$
\|y-T u\|=\frac{1}{1+|c|}\|x-y\|
$$

This with 9.25 gives $|c| \geq(1-\theta) \theta^{-1}$. Similarly using 9.24, 9.26 and (9.27) we obtain $|c| \leq(1-\theta) \theta^{-1}$. Thus

$$
|c|=(1-\theta) \theta^{-1}
$$

Hence

$$
\theta(x-T u)=-(1-\theta)(y-T u) .
$$

Therefore

$$
T u=\theta x+(1-\theta) y=u,
$$

that is

$$
u \varepsilon F(T) .
$$

REMARK 1. Theorem 3 can be proved geometrically.
Let $u=\theta x+(1-\theta) y, x, y \varepsilon F$. Since $x \varepsilon F(T)$ and T is contractive Tu lies in the closed ball C_{x} with x as centre and $\|x-u\|$ as radius. Similarly Tu lies in the closed ball C_{y} with y as centre and $\|y-u\|$ as radius. But $C_{x} \cap C_{y}=u$. Hence $T u=u$. Thus $u \varepsilon F(T)$ and $F(T)$ is convex.

Figure 9.2:
If C is bounded and T is contractive, then

$$
F(T) \neq \phi .
$$

171 In the following we assume $F(T) \neq \phi$ and study the convergence of the iterative method

$$
x^{n+1}=T x^{n} .
$$

which is known to be strongly convergent to the unique fixed point of T if T is strictly contractive. One has

THEOREM 4. If T is firmly contractive and $F(T) \neq \phi$ then

$$
x^{n} \rightharpoonup \xi \varepsilon F(T) \text { as } n \rightarrow \infty
$$

i.e. x^{n} converges weakly to a fixed point.

Proof. Let $y \varepsilon F(T)$. We have

$$
\left\|x^{n+1}-y\right\|^{2} \leq\left(x^{n+1}-y, x^{n}-y\right)
$$

But

$$
\begin{aligned}
\frac{1}{2}\left\|x^{n+1}-x^{n}\right\|^{2} & =\frac{1}{2}\left\|x^{n+1}-y\right\|^{2}+\frac{1}{2}\left\|x^{n}-y\right\|^{2}-\left(x^{n+1}-y, x^{n}-y\right) \\
& \leq \frac{1}{2}\left\|x^{n}-y\right\|^{2}-\frac{1}{2}\left\|x^{n+1}-y\right\|^{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left\|x^{n+1}-y\right\|^{2}+\left\|x^{n+1}-x^{n}\right\|^{2} \leq\left\|x^{n}-y\right\|^{2} \\
& \left\|x^{N+1}-y\right\|^{2}+\sum_{n=0}^{N}\left\|x^{n+1}-x^{n}\right\|^{2} \leq\left\|x^{\circ}-y\right\|^{2}
\end{aligned}
$$

which proves that $\left\|x^{n+1}-x^{n}\right\| \rightarrow 0$ and $\left\{x^{n}\right\}$ is a bounded sequence. Let $x^{n^{\prime}} \rightharpoonup x$ be a weakly convergent subsequence.

Since

$$
(T x-T y, T x-T y+y-x) \leq 0
$$

choosing $y=x^{n^{\prime}-1}$ we obtain

$$
\left(T x-x^{n^{\prime}}, T x-x^{n^{\prime}}+x^{n^{\prime}-1}-x\right) \leq 0
$$

As $n^{\prime} \rightarrow \infty$, we get

$$
(T x-x, T x-x) \leq 0
$$

and hence $x \varepsilon F(T)$.
As $\left\|x^{n}-y\right\|^{2}$ is a decreasing sequence for any $y \varepsilon F(T)$ it converges to some number $P(y)$, and we conclude from the following Lemma that the whole sequence x^{n} converges.

OPAL'S LEMMA 5. Let $F \subset H$ be a subset of a Hilbert space H and $\left\{x_{n}\right\}$ a sequence such that
(i) $\left\|x^{n}-y\right\|^{2} \rightarrow P(y)$ as $n \rightarrow \infty$ for any $y \varepsilon F$
(ii) any weakly converging subsequence $x_{n^{\prime}} \rightharpoonup z$ is such that z belongs actually to F.

Then $x^{n} \rightharpoonup \xi \varepsilon F$.
Proof. Let $x_{m^{\prime}} \rightharpoonup y, x_{n^{\prime}} \rightharpoonup z$ be two converging subsequences, we have

$$
\begin{aligned}
\left\|x_{n}-y\right\|^{2} & =\left\|x_{n}-z+z-y\right\|^{2} \\
& =\left\|x_{n}-z\right\|^{2}+2\left(x_{n}-z, z-y\right)+\|z-y\|^{2}
\end{aligned}
$$

hence taking the limit following m

$$
P(y)=P(z)+2(y-z, z-y)+\|z-y\|^{2}=P(z)-\|z-y\|^{2}
$$

and taking the limit following n^{\prime}

$$
P(y)=P(z)+0+\|z-y\|^{2}
$$

hence $\|z-y\|^{2}=0 \Rightarrow z=y$.
Exercise 3. Prove Theorem 4 when T is quasi firmly contractive.
THEOREM 6. Let $T=Q S$ where S is quasi-firmly contractive and Q is firmly contractive. Then

$$
x^{n} \rightharpoonup x \varepsilon F(T)
$$

provided that $F(T)$ is non-empty.
Proof. Let $y \varepsilon F(T)$. We have

$$
\begin{aligned}
&\left\|S x^{n}-S y\right\|^{2} \leq \theta\left(S x^{n}-S y, x^{n}-y\right)+(1-\theta)\left\|x^{n}-y\right\|^{2} \\
&\left(S x^{n}-S y, x^{n}-y\right)=\frac{1}{2}\left\|S x^{n}-S y\right\|^{2}+\frac{1}{2}\left\|x^{n}-y\right\|^{2} \\
&-\frac{1}{2}\left\|S x^{n}-S y+y-x^{n}\right\|^{2}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left(1-\frac{\theta}{2}\right)\left\|S x^{n}-S y\right\|^{2}+\frac{\theta}{2}\left\|S x^{n}-S y+y-x^{n}\right\|^{2} \leq\left(1-\frac{\theta}{2}\right)\left\|x^{n}-y\right\|^{2} \tag{9.30}
\end{equation*}
$$

In the same way,

$$
\begin{aligned}
&\left\|Q S x^{n}-y\right\|^{2} \leq\left(Q S x^{n}-y, S x^{n}-S y\right) \\
&= \frac{1}{2}\left\|Q S x^{n}-y\right\|^{2}+ \\
& \quad \frac{1}{2}\left\|S x^{n}-S y\right\|^{2} \\
&-\frac{1}{2}\left\|Q S x^{n}-y+S y-S x^{n}\right\|^{2}
\end{aligned}
$$

i.e.
$\frac{1}{2}\left\|x^{n+1}-y\right\|^{2}+\frac{1}{2}\left\|x^{n+1}-y+S y-S x^{n}\right\|^{2} \leq \frac{1}{2}\left\|S x^{n}-S y\right\|^{2}$
From 9.30 and 9.31) we obtain
$\left\|x^{n+1}-y\right\|^{2}+\left\|x^{n+1}-y+S y-S x^{n}\right\|^{2}+\alpha\left\|S x^{n}-S y+y-x^{n}\right\|^{2} \leq\left\|x^{n}-y\right\|^{2}$
where

$$
\alpha=\frac{\theta}{2-\theta}
$$

This implies

$$
\begin{aligned}
& \left\|x^{N+1}-y\right\|^{2}+\sum_{n=0}^{N}\left(\left\|x^{n+1}-y+S y-S x^{n}\right\|^{2}+\right. \\
& \left.+\alpha\left\|S x^{n}-S y+y-x^{n}\right\|^{2}\right) \leq\left\|x^{\circ}-y\right\|^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& x^{n+1}-S x^{n} \rightarrow y-S y, \\
& S x^{n}-x^{n} \rightarrow S y-y \\
& x^{n+1}-x^{n} \rightarrow 0
\end{aligned}
$$

Let $x^{n^{\prime}} \rightharpoonup x, T$ being contractive, we have

$$
\left\|T x^{n^{\prime}}-T x\right\|^{2} \leq\left\|x^{n^{\prime}}-x\right\|^{2}
$$

that is

$$
\left(x^{n^{\prime}+1}-x^{n^{\prime}}+x-T x, x^{n^{\prime}+1}+x^{n^{\prime}}-T x-x\right) \leq 0
$$

and to the limit

$$
\begin{gathered}
(x-T x, x+x-T x-x) \leq 0 \\
x=T x
\end{gathered}
$$

Once again we apply Opial's Lemma to get the convergence of the whole sequence x^{n} to a fixed point of T.

Exercise 4. Let $C \subset V$ be a closed convex subset of a Hilbert space V, then show that the projection map $P_{c}: V \rightarrow C$ is firmly contractive.

9.4 Application to Unconstrained Problem

We shall apply the previous results to the solution of

$$
A(u)=0 .
$$

where A is a monotone operator from $D(A)$ into H; i.e.

$$
(A u-A v, u-v) \geq 0 \quad \forall u, v \varepsilon D(A)
$$

A is said to be maximal monotone if $E \subset H \times H$, Graph $A \subset E$,

$$
\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \geq 0 \quad \forall\left\{x_{i}, y_{i}\right\} \varepsilon E, i=1,2
$$

implies

$$
\text { Graph } \quad A=E \text {. }
$$

It is proved in BRÉZIS [4] that
THEOREM 7. A maximal monotone iff

$$
R(I+\lambda A)=H \quad \text { for } \quad \lambda \geq 0
$$

176 EXAMPLE 5. Let $A: V \rightarrow V^{\prime}$ satisfy 9.15-9.17) with

$$
V \underset{\text { dense }}{\hookrightarrow} H \hookrightarrow V^{\prime}
$$

Then the restriction of A to

$$
D(A)=\{v \varepsilon V: A v \varepsilon H\}
$$

is a maximal monotone operator.

Exercise 5. Use Theorem6 to prove that the operator defined in Example 5 is monotone.

We have
LEMMA 8. If A is maximal monotone then

$$
T=(I+\lambda A)^{-1}
$$

is firmly contractive.
Proof. Let

$$
(I+\lambda A) x=(I+\lambda A) y .
$$

Then

$$
\lambda(A(x)-A(y))=-(x-y)
$$

Therefore

$$
-\|x-y\|^{2}=\lambda(A(x)-A(y), x-y) \geq 0
$$

Hence $x=y$. This proves $(I+\lambda A)$ is one-one.
From Theorem 6 we obtain $R(I+\lambda A)=H$. Hence $(I+\lambda A)^{-1}$ is $\mathbf{1 7 7}$ well defined on H.

Let

$$
u_{i}=T x_{i}, x_{i} \varepsilon H, i=1,2
$$

Then

$$
u_{i}+\lambda A u_{i}=x_{i} .
$$

We have to prove that

$$
\left\|T x_{1}-T x_{2}\right\|^{2} \leq\left(T x_{1}-T x_{2}, x_{1}-x_{2}\right)
$$

i.e.

$$
\left(T x_{1}-T x_{2}, T x_{1}-T x_{2}+x_{2}-x_{1}\right) \leq 0
$$

i.e.

$$
\left(u_{1}-u_{2},\left(u_{1}-u_{2}\right)-\left(u_{1}-u_{2}\right)-\lambda\left(A u_{1}-A u_{2}\right)\right) \leq 0,
$$

i.e.

$$
-\lambda\left(u_{1}-u_{2}, A u_{1}-A u_{2}\right) \leq 0
$$

which is true since A is monotone.

COROLLARY 1. The algorithm

$$
\begin{equation*}
x^{n+1}=(I+\lambda A)^{-1} x^{n} \tag{9.34}
\end{equation*}
$$

converges weakly to a solution of

$$
\begin{equation*}
A(u)=0 \tag{9.35}
\end{equation*}
$$

Note that algorithm 9.34) can be written as

$$
\begin{equation*}
\frac{x^{n+1}-x^{n}}{\lambda}+A\left(x^{n+1}\right)=0 \tag{9.36}
\end{equation*}
$$

178 and corresponds to an implicit scheme for

$$
\begin{equation*}
\frac{\partial u}{\partial t}+A(u)=0 \tag{9.37}
\end{equation*}
$$

Proof. Since $T=(I+\lambda A)^{-1}$ is firmly contractive, algorithm (9.34) converges weakly to a fixed point of T which is a solution of (9.35).

REMARK 2. Algorithm 9.34 is called a proximal point algorithm. Note that computing x^{n+1} at each step might be as difficult as the original problem except in some special cases.

REMARK 3. If $A: V \rightarrow V^{\prime}$ where V is a Hilbert space, then it is better to choose $H=V$. Let $J: V^{\prime} \rightarrow V$ be the Riesz isometry. Then one has to replace A by JA. Then algorithm 9.34 is an implicit scheme for

$$
\frac{\partial u}{\partial t}+J A(u)=0
$$

9.5 Application to Problems with Constraint.

We want to solve the problem

$$
\begin{equation*}
(A(u), v-u) \geq 0 \forall v \varepsilon C \tag{9.38}
\end{equation*}
$$

If u is a solution of 9.38 then for any $\lambda>0$ we have

$$
(u-\lambda A(u)-u, v-u) \leq 0 \forall v \varepsilon C
$$

179 which implies $u=P_{C} S u$, where

$$
S u=u-\lambda A(u)
$$

Conversely if u is a fixed point of $P_{C} S$, then u is a solution of 9.38). We like to solve (9.38) via the algorithm

$$
\begin{equation*}
x^{n+1}=P_{C} S x^{n}=P_{C}\left(x^{n}-\lambda A\left(x^{n}\right)\right) . \tag{9.39}
\end{equation*}
$$

Note that if J is a convex, l.s.c., Gateaux differentiable function and $A=J^{\prime}$ then 9.38 is the gradient algorithm with projection for solving

$$
\operatorname{Inf}_{v \varepsilon C} J(v) .
$$

We will now give some conditions on A and λ which will ensure the convergence of the algorithm 9.39) to a solution of 9.38 .

THEOREM 9. If A is strongly monotone, i.e.

$$
\begin{equation*}
(A(u)-A(v), u-v) \geq \alpha\|u-v\|^{2} \forall u, v \varepsilon C \tag{9.40}
\end{equation*}
$$

and Lipshitzian,

$$
\begin{equation*}
\|A(u)-A(v)\| \leq c\|u-v\| \forall u, v \varepsilon C \tag{9.41}
\end{equation*}
$$

then the algorithm 9.39) converges strongly to the solution 9.38 for all $0<\lambda<2 \alpha / c$.

Proof. S is strictly contractive for $0<\lambda<2 \alpha / c$. Indeed

$$
\begin{aligned}
& \|S u-S v\|^{2}=\|u-v\|^{2}-2 \lambda(A(u)-A(v), u-v)+ \\
& +\lambda^{2}\|A(u)-A(v)\|^{2} \leq\|u-v\|^{2}\left(1-2 \lambda \alpha+\lambda^{2} c^{2}\right)
\end{aligned}
$$

by 9.40 and 9.41 and

$$
1-2 \alpha \lambda+\lambda^{2} c^{2}<1 \quad \text { for } \quad 0<\lambda<\frac{2 \alpha}{c^{2}}
$$

From exercise 4, we know that P_{C} is firmly contractive. Therefore $P_{C} S$ is strictly contractive for $0<\lambda<2 \alpha / c^{2}$. Thus the algorithm 9.39) converges strongly to the solution of 9.38 .

We will now give a condition on A which will imply weak convergence of the algorithm 9.39.

THEOREM 10. If A^{-1} is coercive, namely

$$
\begin{equation*}
(A(u)-A(v), u-v) \geq \alpha\|A(u)-A(v)\|^{2} \forall u, v \varepsilon C \tag{9.42}
\end{equation*}
$$

then for $0<\lambda<2 \alpha$ the algorithm (9.39) converges weakly to a solution of 9.38).

Proof. We claim that S is quasi firmly contractive for $\alpha<\lambda<2 \alpha$. In fact,

$$
\begin{align*}
\|S u-S v\|^{2} & \leq\|u-v\|^{2}+\left(\frac{\lambda^{2}}{\alpha}-2 \lambda\right)(A(u)-A(v), u-v) \quad \text { by } 9.42 \\
& =(1-\theta)\|u-v\|^{2}+\theta(S u-S v, u-v) \tag{9.43}
\end{align*}
$$

181 where

$$
\theta=2-\lambda / \alpha
$$

When $\alpha<\lambda<2 \alpha$, we have $0<\theta<1$.
When $0<\lambda<\alpha$ we obtain S to be firmly contractive. To prove this use (9.43), the Schwarz inequality and the fact that $\theta \varepsilon[1,2]$ when $0<\lambda<\alpha$. Thus S is quasi firmly contractive for $0<\lambda<2 \alpha$. Using Theorem 5, we obtain the conclusion of the Theorem.

REMARK 4. When A satisfies (9.42 and $0<\lambda<2 \alpha$, we obtain from the proof of Theorem 5 that
i.e. $\quad A\left(x^{n}\right) \rightarrow A(x), \quad$ (Strong convergence)
whereas

$$
x^{n} \rightarrow x . \quad \text { (Weak convergence) }
$$

We also notice that $x-S x$ is unique and therefore $A(x)(x$, the solution of (9.38), need not be unique).

EXAMPLE 6. Let

$f: H \rightarrow \mathbb{R}$ be convex, l.s.c. differentiable and
$A: V \rightarrow H$ be a linear operator.
We want to solve

$$
\begin{equation*}
\operatorname{Inf}_{v \varepsilon V} f(A v) \tag{9.44}
\end{equation*}
$$

Note that 9.44 is equivalent to

$$
\begin{equation*}
\operatorname{Inf}_{y \varepsilon C} f(y) \tag{9.45}
\end{equation*}
$$

where $C=R(A)$, the range of A.
Now apply the algorithm (9.39). The projection on C is easy to compute. In fact,

$$
P_{C}=A\left(A^{*} A\right)^{-1} A^{*}
$$

The nonlinear Dirichlet problem and the Minimal surface problem are particular cases of the abstract problem.

EXAMPLE 7. Let us consider

$$
\begin{array}{r}
\frac{\partial u}{\partial t}+A u=0 \tag{9.46}\\
u(0)=u^{\circ}
\end{array}
$$

which has a solution provided A is maximal monotone.
We like to solve this problem via the algorithm

$$
\begin{equation*}
u^{n+1}=F(\lambda) u^{n} \tag{9.47}
\end{equation*}
$$

In BREZIS [4] one can find the proof of
THEOREM 11. If $F(\lambda)$ is a contraction and if

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \frac{x-F(\lambda) x}{\lambda}=A(x) \quad \text { exists, } \tag{9.48}
\end{equation*}
$$

then

$$
(F(t / n))^{n} u^{\circ} \rightarrow u(t) \quad \text { uniformly. }
$$

Applications:

1. If $F(\lambda)=I-\lambda A$, where A satisfies 9.40 , then $F(\lambda)$ is a contraction for $0<\lambda<2 \alpha$. The limit in 9.48 exists and hence the algorithm 9.47) converges.
2. Let $F(\lambda)=(I+\lambda A)^{-1}$, where A is maximal monotone. Then by Lemma 7, $F(\lambda)$ is firmly contractive and hence contractive. Existence of the limit (9.48) is proved in BRÉZIS [4] In this case also algorithm 9.47) converges.

REMARK 5. Theorem 11 can be used to prove that $F(\lambda)=P_{C}(I-\lambda A)$ gives a sequence converging to the solution of

$$
\begin{aligned}
\left(\frac{d u}{d t}+A u, v-u\right) & \geq 0 \quad \forall v \varepsilon C, \\
u(0) & =u^{\circ} .
\end{aligned}
$$

REMARK 6. If A is linear, monotone and closed then A is maximal monotone.

EXAMPLE 8. The Flow of a Bingham Fluid: Consider the problem: Find $\sigma \varepsilon\left(L^{2}(\Omega)\right), u \varepsilon H_{\circ}^{1}(\Omega)$ such that

$$
\begin{gather*}
J^{\prime}(\sigma)-\nabla u=0 \tag{9.49}\\
(\sigma, \nabla v)=(f, v) \forall v \varepsilon H_{\circ}^{1}(\Omega)
\end{gather*}
$$

where

$$
\begin{aligned}
& J(\sigma)=\frac{1}{2}\left\|\sigma-P_{K} \sigma\right\|^{2}\left(L^{2}(\Omega)\right)^{n} \\
& K=\left\{\sigma \varepsilon\left(L^{2}(\Omega)\right)^{n}:|\sigma(x)| \leq 1 \text { a.e. in } \Omega\right\}
\end{aligned}
$$

It is possible to prove that 9.49 is equivalent to the Bingham flow given in Example 4 It can be proved that

$$
J^{\prime}(\sigma)=\sigma-P_{K} \sigma
$$

Let

$$
Z(f)=\left\{\sigma \varepsilon\left(L^{2}(\Omega)\right)^{2}:(\sigma, \nabla v)=(f, v) \forall v \varepsilon H_{\circ}^{1}(\Omega)\right\}
$$

If σ is a solution of 9.49, then σ is also a solution of

$$
\begin{equation*}
J(\sigma)=\operatorname{Inf}_{\tau \varepsilon Z(f)} J(\tau) \tag{9.50}
\end{equation*}
$$

Therefore, we can apply previous results. Note that J^{\prime} satisfies 9.42 with $\alpha=1$, so that previous results can be applied. Note also that the projection on $Z(f)$ is easy to compute:

$$
P_{Z(f)}(\sigma)=\sigma+\nabla(-\Delta)^{-1} \operatorname{div} \sigma+\nabla(-\Delta)^{-1} f
$$

EXAMPLE 9. Transonic Flows.

Figure 9.3:
The potential flow at transonic speed in a nozzle is governed by the equations

$$
\begin{aligned}
& \operatorname{div}(\rho \vec{q})=0 \\
& \operatorname{rot} \vec{q}=0, \vec{q}=\nabla \phi \\
& \rho=\left(1-\frac{\gamma-1}{2} M_{\infty}^{2}\left(1-q^{2}\right)\right)^{1 / \gamma-1}
\end{aligned}
$$

(Practical value of $\gamma=1.4$) where $q=|\vec{q}|$.
Finally we solve

$$
\operatorname{div}(\rho(|\nabla \phi|) \nabla \phi)=0
$$

$$
\begin{aligned}
\left.\phi\right|_{\Gamma_{1}} & =\phi_{\circ}, \\
\left.\frac{\partial \phi}{\partial n}\right|_{\Gamma_{2}} & =0
\end{aligned}
$$

Let $M=q / a$, where $a=\frac{\rho^{\gamma-1}}{M_{\infty}^{2}}$. M is called the Mach number. The equation is elliptic for $M<1$ and hyperbolic for $M>1$. When $M<1$ continuous piecewise linear finite element can be used. For $M>1$, we do not know much (see COURANT- FRIEDRICHS [13]).

The reader can refer to GLOWINSKI-PIRONNEAU [20],[21], RAVIART [36], CIAVALDINI-POGU-TOURNEMINE [12], J. ROUX [40].

Bibliography

[1] ADAMS, R.A.: Sobolev Spaces, Academic Press, 1976.
[2] AMARA, M. and J.M. THOMAS: Une méthode d'éléments finis équilibre pour le problème de l'élasticité linéaire, C.R. Acad. Sci. Paris, Série A, Séance du 3 Avril 1978.
[3] BERCOVIER, M. and O. PIRONNEAU: Estimations d'erreur pour la résolution du problème de STokes en éléments finis conformes de Lagrange, C.R. Acad. Sci. Paris, t 285 Série A (1977), 557-559.
[4] BRÉZIS, H.: Operateurs Maximaux Monotones, Lecture Notes \# 5, North Holland, 1975, RAIRO, 1974.
[5] BREZZI, F.: On the existence, Uniqueness and Approximation of Saddle point problems arising from lagrangian multipliers, RAIRO, Vol. 8, 1974, 129 - 151.
[6] BREZZI, F.; J. RAPPAZ and P.A. RAVIART: Finite element approximation of bifurcation problem (to appear).
[7] BREZZI, F. and P.A. RAVIART: Mixed finite element methods for $4^{\text {th }}$ order elliptic equations, Topics in Numerical Analysis III, ed. by John, J.H. Miller, Academic Press, 33 - 57.
[8] BROWDER, F.E. and W.V. PETRYSHN: Construction of fixed points of nonlinear mappings in Hilbert Spaces, J. Math. Anal. Appl., 20 (1977), 197 - 228.
[9] CIARLET, P.G.: The Finite Element Method for elliptic problems, North Holland, 1978.
[10] CIARLET, P.G. and P.A. RAVIART: A Finite Element Method for the Biharmonic Equation, Mathematical Aspects of Finite Elements in Partial Differential Equations, by Carl de Boor, Academic Press, 1974, 125 - 146.
[11] CIAVALDINI, J.F. and J.C. NEDELEC: Sur l'element de Fraeijs de Veubeke et Sander, Serie Analyse Numerique, RAIRO, 1974, 29-46.
[12] CIAVALDINI, J.F.: M.POGU and G. TOURMINE: Une nouvelle approche daus le plan physique pour le calcul d'elements subcritiques et Stationnaires autour d'un profil portant, Journal de mécanique, 16 (1977) $257-288$.
[13] COURANT, R and K.O. FRIEDRICHS: Supersonic flow and Shock Waves, J. Wiley, 1948.
[14] CROUZEIX, M. and P.A. RAVIART: Conforming and Nonconforming Finite Elements Methods for solving the Stationary Stokes Equations, RAIRO, 1974, 1 - 53.
[15] EKELAND, I. and R. THEMAN: Convex Analysis and Variational Problems, North-Holland, 1976.
[16] FORTIN, M.: Approximation des Fonctions a Divergence Nulle par la Methode des Elements Fini, Springer-Verlag Lecture Notes in Physics, \# 18, 1972, 99 - 103.

188 [17] FORTIN, M.: Résolution Numerique des Equations de NavierStokes par des Eléments Fini de type Mixte, IRIA Report, \# 184, 1976.
[18] FORTIN, M: Analysis of the convergence of mixed finite element methods, Serie Numerical Analysis, RAIRO, 1977341 - 354.
[19] GLOWINSKI, R. and MARROCCO: Approximation par éléments Finis d'ordre un et resolution par pénalisation dualite d'une classe de problemes nonlineariès, Serie Analyse Numerique, RAIRO, 1975, 41 - 76.
[20] GLOWINSKI, R.; J. PERIAUX and O. PIRONNEAU: Use of Optimal Control Theory for the Numerical Simulation of Transonic Flow by the Method of Finite Elements, Springer-Verlag, Lecture Notes in Physics, \# 59, 1976, 205 - 211.
[21] GLOWINSKI, R. and O. PIRONNEAU: Calcul d ecoulements transoniques par des méthodes d'éléments finis et de controle optimal, Springer-Verlag Lecture Notes in Economics and Mathematical systems, \# 134, 1975, 276 - 296.
[22] GRISVARD, P.: Behaviour of the solutions of an Elliptic Boundary Value Problem in a polygonal or polyhedral Domain, Numerical Solution of Partial Differential Equations III, Synspade, 1975, ed. by Vert Hubbard, Academic Press, 1976, 207 - 274.
[23] JAMET, P. and P.A. RAVIART: Numerical solution of the stationary Navier-Stokes Equations by finite element methods, SpringerVerlag Lecture Notes in Computer Science, \# 10, 1973, 193 - 223.
[24] JOHNSON, C: On the convergence of some mixed finite element methods in plate bending problems, Num. Math. 21 (1973), 43 62.
[25] JOHNSON, C. and B. MERCIER: Some mixed finite element methods for elasticity problems, Num. Math., 30 (1978) 103 - 116.
[26] KATO, T.: Perturbation Theory for linear operators, SpringerVerlag 1976.
[27] LADYZHENSKAYA, O.A.: The Mathematical Theory of Viscous Incompressible Flow, Gorden and Breach, 1969.
[28] LIONS, J.L.: Quelques méthodes de résolution des problèms aux limites nonlinéaries, Paris, Dunod, 1969.
[29] LIONS, J.L. and E. MAGENES: Non Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, 1973.
[30] LUENBERGER, D.G.: Introduction to linear and nonlinear programming, Addison-Wesley, 1973.
[31] LUENBERGER, D.G.: Optimization by Vector Space Methods, John Wiley, 1969.
[32] MERCIER, B. and O. PIRONNEAU: Some Examples of implementation and of application of the finite element method,

190 [33] NEČAS, J: Les méthodes directes en theorie des equations elliptiques, Masson, 1967.
[34] OSBORN, J.E.: Spectral approximation for compact operators, Mathematics of Computations, 29 (1975) 712 - 725.
[35] PAIGE, C.C. and M.A. SAUNDERS: Solution of sparse indefinite systems equations, SIAM, J. Num. Analysis, 12 (1975), 617 - 629.
[36] RAVIART, P.A.: Journees elements finis, Conference, Rennes, 1978.
[37] RAVIART, P.A. and J.M. THOMAS: Primal hybrid finite element methods for $2^{\text {nd }}$ order Elliptic equations, Mathematics of Computations, 31 (1977), 391 - 413.
[38] RAVIART, P.A. and J.M. THOMAS: A mixed finite element method for second order elliptic problems, Springer-Verlag Lecture Notes, \# 606, ed. by Galligani, I. and E. Magenes (1975), 292 -315 .
[39] de RHAM, G.: Varietes differentiables, Hermann, 1950.
[40] ROUX, J.: Resolution Numerique d'un probleme d Ecoulement Subsonique de Fluides Compressibles, Springer-Verlag Lecture Notes in Physics, \# 59, 1976, 360 - 369.
[41] SCHOLZ, R.: A mixed method for $4^{\text {th }}$ order problems using linear finite elements, Serie Numerical Analysis, RAIRO, Vol. 12, 1978, 85-90.
[42] TAYLOR, C. and P. HOOD: A numerical solution of the NavierStokes Equation using the finite elements technique, Computers and Fluids, Vol. I, 1973, 73 - 100.
[43] TEMAN, R.: On the theory and numerical analysis of NavierStokes equations, North-Holland, 1977.
[44] THOMEE, V. : Some convergence results for Galerkin Methods for Parabolic Boundary Value Problems, Mathematical Aspects of Finite Elements in Partial Differential Equations, ed. by Carl de Boor, Academic Press, 1974, 55-88.
[45] THOMEE, V.: Some Error Estimates in Galerkin Methods for Parabolic Equations, Springer-Verlag Lecture Notes in Mathematics, \# 606, 1975, 343 - 352.
[46] YOSIDA, K.: Functional Analysis, Springer-Verlag, 1974.
[47] SIENKIEWICZ, O.C.: Why Finite Elements? Finite elements in Fluids, Vol. I, ed. by Gallagher, John Wiley, 1975, 1-24.

