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Preface

THESE ARE NOTES based on the lectures given at the T.l.F.R.

Centre, Indian Institute of Science, Bangalore, during dud August
of 1977. Starting from Brownian Motion, the lectures quicbt into
the areas of Stochastic fBerential Equations and Busion Theory. An
attempt was made to introduce to the students diverse aspéthe
theory. The last section on Martingales is based on somdiautli
lectures given by K. Ramamurthy of the Indian Institute ae8ce. The
author would like to express his appreciation of tifios by Tara R.
Nanda and PL. Muthuramalingam whose dedication and paesse
has made these notes possible.

S.R.S. Varadhan



1. The Heat Equation

LET US CONSIDER the equation 1
1

Q) Wh—-Au=0
2

which describes (in a suitable system of units) the tempezatistribu-

tion of a certain homogeneous, isotropic body in the absehapy heat
sources within the body. Here

ou 4 92u
u=u(xg,...,Xd,t); utsa—; Au = —.
t = 0%
t represents the time ranging over ¢0) or [0, T] and X = (X1...Xq)

belongs tdr¢.
We first consider the initial value problem. It consists itegrating
equation[{l) subject to the initial condition

2 u(0, x) = f(x).
The relation[(R) is to be understood in the sense that
thtou(t, X) = f(X).

Physically [2) means that the distribution of temperathreughout
the body is known at the initial moment of time.

We assume that the solutianhas continuous derivatives, in the
space coordinates upto second order inclusive and first dedevative
in time.



2 1. The Heat Equation

It is easily verified that

(3) ut,x) = m exp(_El) . |X|2 Z X,
satisfies[{ll) and

4) u(0,x) = tE»tO u(t, X) = 6(x)

Equation [#) gives us a very nice physical interpretatioe o-
lution (@) can be interpreted as the temperature distobuivithin the
body due to a unit sourse of head specified at0 at the space point
x = 0. The linearity of the equatiol](1) now tells us that (by sppe
sition) the solution of the initial value problem may be esfeel in the
form

5) u(t, ) = f F(y)p(t. x - y)dy.
Rd
where
(t,X) = ———= ex —&
PLX = omaz P2

Exercise 1.Let f(X) be any bounded continuous function. Verify that
p(t, x) satisfies[{ll) and show that

(@ [ p(t.xdx=1,vt>0;
() Lt [ p(t, x) f(x)dx = f(0);

(c) using (b) justify [#). Also show thaEl(5) solves the ialtvalue
problem.

(Hints: For (a) usef eXdx = /. For part (b) make the substitution

—00

y= % and apply Lebesgue dominated convergence theorem).
v/



Since equatior{1) is linear with constant fii@ents it is invariant
under time as well as space translations. This means thedldtas of
solutions are also solutions. Further, ¢ 0,t > 0 andy € RY,

) X - y?
©6) u(t, x) = 2r(t + 992 exp—m
and fort > s,y € RY,

) x - y?
@) u(t,x) = 2 (t - 992 eXp_m

are also solutions of the heat equatibh (1).

The above method of solving the initial value problem is & sbr
trial method, viz. we pick out a solution and verify that itisties [1).
But one may ask, how does one obtain the solution? A partialtd this
is provided by the method of Fourier transforms. We pretend aur
solutionu(t, X) is going to be very well behaved and allow all operations
performed oru to be legitimate.

Putv(t, X) = Q(t, X) where " stands for the Fourier transform in the
space variables only (in this case), i.e.

v(t, X) = f u(t, y)e *vdy.
Rd

Using equation[{]1), one easily verifies that

® () = S, ¥
with
9) v(0, x) = f(X).

The solution of equatiori]8) is given by
(10) v(t, x) = f(x)e /2

We have used9) in obtaining{10).
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Exercise 2.\Verify that 4

2
p(t, X) = exp— (%)

Using Exercis€]2[{10) can be written as
(11) v(t, x) = G(t, X) = T P(t. ).

The right hand side above is the product of two Fourier tiansé
and we know that the Fourier transform of the convolutionvad fun-
tions is given by the product of the Fourier transforms. Hai(t, X) is
expected to be of the forrl(5).

Observe that iff is non-negative, then is nonnegative and if
is bounded byM thenu is also bounded b in view of part (a) of
Exercisel.

The Inhomogeneous EquationConsider the equation
AV .
Vi — - = g, with v(0,x) =0,

which describes the temperature within a homogeneoujfsotbody
in the presence of heat sources, specified as a function efaitd space
by g(t, X). Fort > s,

exp_ = y2
[27(t — 9)]9/2 2(t -9

ut, x) =

: . 1 . .
is a solution ofu(t, X) — EAu(t, X) = 0 corresponding to a unit source at

t = s, x =Y. Consequently, a solution of the inhomogeneous problem is
obtained by superposition.
Let

t
~ 1 |x — y?

R




t
vt,X) = | w(t, x, s)ds
/

where

w2
W(t, X, ) = fg(s, y) [Zn(t’ls)]d/z eXp(_ |2X(t _y|s)) dy.
Rd

Exercise 3.Show thatv(t, X) defined above solves the inhomogeneous
heat equation and satisfiefd, x) = 0. Assume thaty is suficiently

smooth and has compact suppast-- EAV = SI__)tt w(t, X, s) and now use
part (b) of Exercise{1).

Remark 1. We can assumghas compact support because in evaluating

Vi — :—LAV the contribution to the integral is mainly from a small neigh
bourhood of the pointt(x). Outside this neighbourhood

X — yI?
2a(t - 9]972 eXp(‘za - s))

satisfies

1
- =Au=0.
Ut 2uO

2. If we putg(s,y) = 0 for s < 0, we recognize that(t, X) = g = p.
Taking spatial Fourier transforms this can be written as

t
1
v(t.€) = f o(s £) exp-5(t - 9lds,
0

or
oV ov 1 1
T g(t,é) + EAV = (g(t, &)+ EAV)'
Therefore
ov 1
— —=Av=
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. 1 .
Exercise 4.Solvew; — EAW =gon[0,00)xRIwithw= f on{0}xRY 6
(Cauchy problem for the heat equation).

UniquenessThe solution of the Cauchy problem is unique provided the
class of solutions is suitably restricted. The uniquendgbensolution
is a consequence of the Maximum Principle.

Maximum Principle. Let u be smooth and bounded [ T] x RY sat-
isfying
Au . d d
ut—720 in (0,T]xRY and u(0,x) >0, YxeR"

Then
ut,x)>0Vv, te[0,T] and VxeRC

Proof. The idea is to find minima fou or for an auxillary function.

Step 1.Letv beanyfunction satisfying

A .
vt—%/ >0 in (0, T] xR

Claim . v cannot attain a minimum fag € (0, T]. Assume (to get a
contradiction) that/(tg, Xo) < V(t, X) for somety > 0 and for allt €
[0, T], Vx € RY. At a minimumw(to, Xo) < 0, (sincety # 0) AV(to, Xo) >
0. Therefore

Av
(Vt - 7) (to, Xo0) < 0.
Thus, ifv has any minimum it should occur gt= 0.
Step 2.Lete > 0 be arbitrary. Choose such that
h(t, X) = | + at

satisfies

ht—%h:a—d>0 (saya = 2d).



Putv. = u+ eh. Then

ov. 1
E - EAVE > 0.

Asuis boundedy, — +o0 as|x| — +oco0, V. must attain a minimum.
This minimum occurs at= 0 by Step 1. Therefore,

Ve(t, X) > Ve(0, %) for some xg € RY,

ie.
Ve(t, X) = U(0, Xo) + €lxof* > O,
ie.
u(t, X) + eh(t, x) > 0, Ve.
This gives
u(t,x) = 0.
This completes the proof. O

Exercise 5. (a) LetL be a linear dterential operator satisfyingu =
gonQ (open inRY% andu = f on Q. Show thatu is uniquely
determined byf andg if and only if Lu = 0 onQ andu = 0 on
0Q imply u = 0 onQ.

(b) Letu be a bounded solution of the heat equatipr- }Au =g
with u(0, x) = f(x). Use the maximum principle and part (a) to
show thatu is unique in the class of all bounded functions.

(c) Let

0 - eV’ ift>0,
=10, ift<0,

(o9

g (/2%
ut, x) = =— - on RxR
kz;o (2k)!
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Then A
u0,x) =0, ut=7u, uz0,
i.e.u satisfies
16%u .
U — 252 =0, with u(0,x)=0.

This example shows that the solution is not unique becauise,
not bounded. (This example is due to Tychfiho

X2

Lemma 1. Let pt, X) = exp—7t fort > 0. Then

1
(2ﬂ't)d/2
pit,-) = p(s-) = pt+s-).

Proof. Let f be any bounded continuous function and put

ut, x) = f F(y)P(t. X — y)dy.
Rd

Thenu satisfies
1
U — EAU =0, u(0,x) = f(x).

Let
v(t, X) = u(t + s X).
Then

1
Vi — EAV =0, Vv(0,X) =u(s X).

This has the unique solution
vt ) = [ s y)p(x-y)dy
Thus

ff(y)p(t+s,x—y)dy=fff(z)p(sy—z)p(t,x—y)dzdy
Rd



This is true for allf bounded and continuous. We conclude, there-
fore, that

pt,-) = p(s,-) = p(t+s,-).

Exercise 6.Prove Lemma@l1 directly using Fourier transforms.

It will be convenient to make a small change in notation whiglh
be useful later on. We shall wrifgs, x,t,y) = p(t—s, y—X) for everyx, y
andt > s. p(s, % t,y) is called thetransition probability in dealing with
Brownian motion. It represents the probability densityt tnéBrownian
particle” located at space poirtat times moves to the space poiptat
a later timet.

Note .We use the same symbgl for the transition probability; it is
function of four variables and there will not be any ambiguit using
the same symbap.

Exercise 7.Verify that

f B(S X Ly)P(L Y. o 2y = PS X0, 2), S<t <o
Rd

(Use Exercis€l6).

Remark . The significance of this result is obvious. The probability
that the particle goes from at time s to z at time o is the sum total
of the probabilities, that the particle moves fromat s to y at some
intermediate timé and then ta at timeo-.

(y,1)
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10 . . : . . :
In this section we have introduced Brownian Motion corresjiog

1 . ..
to the operatoréA. Later on we shall introduce a more generdidiion
02 d

. 1
process which corresponds to the oper%t@i ajj IxIX + 2. b; v
i i



2. Kolmogorov’s Theorem

Definition. LET (Q, 4, P) BE A probability space. A stochastic process.
in RY is a collection{X; : t € |} of R3-valued random variables defined
on Q, A).

Note 1.1 will always denote a subset &* = [0, ).

2. X; is also denoted b¥(t).

Let {X; : t € |} be a stochastic process. For any collecttpn
tr,...,tx such thatt; e land 0< t; <ty < ... < tx and any Borel
setA, inRY xR x --- x RY (k times),. define

Fi, ... t(A) = P(we Q : (X, (W), ..., X, (W) € A).

If
{ti,.. ..ty c{s,....s}cl, with 1>k
such that
s(lo)<...<sfg)<t1<s(ll)...<Sf1l)<t2...<tk<s(1k)...<s§1?,
let then

7RI x - x RI(1 times)— RY x - - - x RY(k times)

be the canonical projection. E, c RY is any Borel set irRY, i =
1,2,...,k then

A YEy X X Ey) =RIX - X Eyy xRIX -+ X By, X -+ - x R

11



13

12 2. Kolmogorov’s Theorem

(I times). The following condition always holds.
(*) Ey...t(Ey X - xEy) =Fg ... s(ITYEy X - - x Ey)).

If («) holds for an arbitrary collectiofF, ...t : 0<t; <ty... <t} 12
(k = 1,2,3...) of distributions then it is said to satisfy tlwensistency
condition.

Exercise 1. (a) Verify thatFy, ...t is a probability measure dR® x
.- x RY (k times).

(b) Verify (). (If By denotes the Boref field of R™, Byyn = Bm X
Bn).

The following theorem is a converse of Exerdi$e 1 and is aftsd
to identify a stochastic process with a family of distrilums satisfying
the consistency condition.

Kolmogorov's Theorem.

yeen

distributions (onRY x --- x RY, k times, k= 1,2,...) satisfying the
consistency condition. Then there exists a measurableegjgag B),

a unique probability measure P &, %) and a stochastic process
{X; : 0 £t < oo} such that the family of probability measures associated
with it is precisely

{(Futh.t :0<Sti<th<...<ty<oo}, k=1,2....

A proof can be found in the APPENDIX. We mention a few points
about the proof which prove to be very useful and should bervks
carefully.

1. The space) is the set of allR%-valued functions defined on
[0, o0):
oc=[] r
te[0,00)

2. The random variabl¥; is thet™-projection ofQk ontoRY.
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3. % is the smallestr-algebra with respect to which all the projec-
tions are measurable.

4. P given by
Pw: Xy (W) € Ag, ... X, (W) € A) = Frp (A X -+ X A)

whereA, is a Borel set ifRY, is a measure on the algebra generated
by {Xy,, ... X }(k=1,2,3...) and extends uniquely t&.

Remark . Although the proof of Kolmogorov’s theorem is very con-
structive the spacf is too “large” and ther-algebra% too “small”

for practical purposes. In applications one needs a “niadlection

of R%-valued functions (for example continuous, offelientiable func-
tions), a “large”o-algebra on this collection and a probability measure
concentrated on this family.






3. The One Dimensional
Random Walk

BEFORE WE TAKE up Brownian motion, we describe a one dimet#
sional random walk which in a certain limiting case possesse prop-
erties of Brownian motion.

Imagine a person at the position= 0 at timet = 0. Assume that at
equal intervals of timé = 7 he takes a step either along the positive
X axis or the negative axis and reaches the poixit) = x(t — 7) + hor
X(t) = x(t — ) — h respectively. The probability that he takes a step in
either direction is assumed to bg2l Denote byf (x,t) the probability
that after the timeé = nr (nintervals of timer) he reaches the position
If he takesm steps to the right (positive-axis) in reaching then there
are"Cp, possible ways in which he can achieve thessteps. Therefore,

- . 1
the probability f (x, t) is ”Cm(z)”-
f(x, t) satisfies the dierence equation

(1) f(x,t+r):%f(x—h,t)+%f(x+h,t)
and
(2) x=h(m-(n-m)) = (2m- n)h.

To see this one need only observe that to reach+ ) there are
two ways possible, vizx-h,t) - (X, t+7) or (x+h,t) - (x,t+7) and
the probability for each one of these ig21 Also note that by definition

15
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16 3. The One Dimensional Random Walk

of f,
1
3 f(h7)= 3= f(-h.7),
so that
4) f(x,t+7)=f(h7)f(x-ht)+ f(-h,7)f(x+ h,t).

The reader can identiff(4) as a “discrete version” of couatioh.
By our assumption,

(5) f(0,00=1, f(x0)=0 if x#O0.

We examine equatiori](1) in the limit - 0, 7 — 0. To obtain
reasonable results we cannotltedndr tend to zero arbitratily. Instead
we assume that

(6) D—>1 as h—->0 and 7-0.
T

The physical nature of the problem suggests fHat (6) shaaitd fio
see this we argue as follows. Since the person is equallly likego in
either direction the average valuexoivill be 0. Therefore a reasonable
measure of the “progress” made by the person is ej#her x°. Indeed,
sincex is a random variable (singeis one) one gets, usinfl(2),

E(X)=2E(mM -n=0, E(®) =h’E((2m-n)?) = h’n

)

1\" n(n+1)
2) 4

n 1\" n n
(UsemZ::Om”Cm(E) = E mz:: (

Thus 5 2 5
efr}-fe0a -1 -1
t nr T

and ag becomes large we expect that the average distance covared pe

unit time remains constant. (This constant is chosen to loe defisons
that will become apparent later). This justifié$ (6). In featsimple

argument shows that fH]— — 0 or +oc0, X may approach-co in a finite
time which is phyS|caIIy untenable.
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(1) now gives
f(x,t+71)— f(x,t) = %{f(x— h,t) — f(xt) + f(x, h,t) = f(xt)}.

Assuming s#ficient smoothness oh we getin the limita$, 7 — 0
and in view of [®),

of  19°f

(7) T 20%

h? . . -
(to get the factor 12 we choose— — 1). This is the equation satisfied

T
by the probability densityf. The particle in this limit performs what is
known asBrownian motiorto which we now turn our attention.

References.
[1] GNEDENKO:The theory of probabilityCh. 10.

[2] The Feynman Lectures on physiesl. 1, Ch. 6.






4. Construction of Wiener
Measure

ONE EXAMPLE WHERE the Kolmogorov construction yields a paeb 17
bility measure concentrated on a “nice” cl@ss the Brownian motion.

Definition. A Brownian motion with starting poink is anR%valued
stochastic proceqd(t) : 0 <t < oo} where

() X(0) = x = constant;

(i) the family of distribution is specified by
o ) = [ POX 10 x)P 0,120
A

P(tk-1, Xk-1, tk> Xi)dXq . . . dX%c
for every Borel seAA in R9 x - - - RY (k times).

N.B. The stochastic process appearing in the definition aboveisre
given by the Kolmogorov construction.

It may be useful to have the following picture of a Browniantiom.
The space2x may be thought of as representing particles performing
Brownian movement{X; : 0 < t < oo} then represents the trajectories
of these particles in the spaké as functions of time and? can be con-
sidered as a representation of the observations made anpghegles.

Exercise 2. (a) Show that~, ; defined above is a probability mea-
sure orRY x - - - x RY (k times).

19
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(b) {Fy.t : 0 <t <t < ...t < oo} satisfies the consistency
condition. (Use Fubini’s theorem).

(€) Xty =X, Xe, — Xy, - - . » Xy — Xy, @re independent random variables
and ift > s, thenX; — Xq is a random variable whose distribution
density is given by

plt—sy) = exp(—%(t - S)‘llylz).

1
[2n(t — 9)]9/2
(Hint: Try to show thatX;, — X, Xt, — X, ..., X — Xy, have a
joint distribution given by a product measure. For thisddbe
any bounded real measurable functionRshx - - - x RY (k times).
Then

E(¢(Z1,....Z)) = E. (P(Z1— % ..., Zx — Zk-1))

th—X, th —th,...,Xlk—thil g 5000 tk

where E(¢) is the expectation ap with respect to the joint dis-
Xiy Xty

tribution of (X, ..., X ). You may also require the change of vari-
able formula).

Problem. Given a Brownian motion with starting poistour aim is to
find a probabilityPy on the spac& = C([0, o); RY) of all continuous
funcitons from [Qeo) — RY which induces the Brownian motion. We
will thus have acontinuous realisatioio Brownian motion. To achieve

.....

t} wheret; € D, a countable dense subset ofdd).

Step 1.The first step is to find a probability measure on a “smaller”
space and lift it taC([0, co); RY). Let

Q = C([0, 0); RY),

D a countable dense subset of§§); Q(D) = {F : D — RY} wheref
is uniformly continuous on [N n D for N = 1,2,.... We equipQ
with the topology of uniform convergence on compact sets Q(id)
with the topology of uniform convergence on sets of the f@m K
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whereK c [0, o) is compactQ2 andQ(D) are separable metric spaces
isometric to each other.

Exercise 3.Let

O<t<n
and
Pnp(f,g) = sup|f(t) —g(t)l for f,geQ(D).
Otsetsn
Define
1 pn(f,Q)
p(f,q) = Zzn1+pn(f 5 Vhoeo
l an(fag)
f,g) = ——— " VYf ge QD).
po(f.0) ézmpw(f,g) geQ(D)
Show that

() {fa} c Q converges tof if and only if f, — f uniformly on
compact subsets of [&);

(i) {fn} c (D) converges tdf if and only if fyprk — fipnk| uNi-
formly for every compact subsét of [0, o);

(iii) {(P1,...,Pq)} whereP; is a polynomial with rational cagcients 20
is a countable dense subsetf

(iv) {(P1ip,...,Pgp)}is a countable dense subsetyD);

(v) 7: Q — Q(D) wherer(f) = fp is a (p, pp)-isometry ofQ onto
Q(D);

(vi) if V(f,e,n)={geQ: pn(f,0) <eforfeQ, e>0and
Vb(f,e,n) ={ge QD) : pap(f.g) <€} for feQ(D),e>0,

then
{(V(f,e,n): feQe>0n=12..}



22 4. Construction of Wiener Measure

is a base for the topology ¢ and
{(Vp(f,e,n): f e Q(D),e>0,n=12,...}
is a base for the topology 6i(D).

Remark. By ExercisdB(v) any Borel probability measure @Q(D) can
be lifted to a Borel probability measure én

2nd Step.Define the modulus of continuit&;g&(f) of a function f on
D in the interval [QT] by

AL(f) = sudlf(t) - f(9): t— o < 6t,se DN[O, T}

As D is countable one has

1
Exercise 4. (a) Show thatf : Ag"(f) < %} is measurable in the-
algebra generated by the projections

m:mRY : te D} - RY

21 Proof. The lemma is equivalent to showing th@t= (&). As each of
the projectionry, s, is continuousg (&) ¢ 4. To show thatZ c o (&),
it is enough to show thatp(f, €, n) € & becaus&)(D) is separable. (Cf.
ExercisdB(iv) anfl3(vi)). By definition

Vp(f,e,n) = {ge QD) : Pnp(f,0) <€}
« 1
= rg{g € Q(D) : pnp(f,g) <e- ﬁ}
= | Jtge D) £ 1g6) - f()I <~ vt e Do),
m=1

The result follows if one observes that eaghis continuous. O

Remark 1.The lemma together with Exerci§& 4(b) signifies that the
Kolmogorov probabilityP, on n{RE‘ . t € D} is defined on the topo-
logical Borelo-field of Q(D).

2. The proof of the lemma goes through{D) is replaced by2.
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Step 3.We want to show thaPy(Q(D)) = 1. By ExercisdH}(b) this is
equivalent to showing that LP(ANY)(f) < &) = 1 for all N andk.
>0

The lemmas which follow will give the desired result.

Lemma (Lévy).Let X, ... X, be independent random variablesy 0
and¢é > O arbitrary. If

P(er+Xr+1+“‘+X€|26)SE
Yr,fsuchthatl <r < ¢ <n, then

P(sup Xy +---+ Xj| = 26) < 2e.
1<j<n
(see Kolmogorov's theorem) for every5 1,2,..., for every N= 22
1,2,... and for every k= 1,2,.... (Hint: Use the fact that the pro-
jections are continuous).

0 0 1
(b) Show that@(D) = () () U{ART(f) < &} and hence(D) is
N=1k=1 j=1

measurable inr(RY : t € D).

Let .y, : QD) — RYx RYx ---RY (k times) be the projections
and let
Biv.te = T g (BRYX - XBRT).
times

Put
E=Uby.4, -0t <th<...<tg<oo;tj € D}.
Then, as
éatl...tk ) gS]_S]_ - é()T]_...Tma
where

{fti...4,S1...s1} C{r1...Tm},
& is an algebra. Let(&) be theo-algebra generated hy.

Lemma . Let % be the (topological) Borel-field of Q(D). ThenZ is
theo-algebra generated by all the projections

{my 4, :0<ty<tr<...<t.t €D}
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Remark. By subadditivity it is clear that 23
P(sup|X1+---+Xj| 226)3 Ne.
1<j<n

Ultimately, we shall leh — oo and this estimate is of no utility. The
importance of the lemma is that it gives an estimate indegenof n.

Proof. LetSj = Xy +--- + Xj, E = { sup ISj| > 26}. Put

1<j<n

E1 = {IS1] > 26},
E> = {IS1] < 26, |S2| > 26},

En=1{ISjl <25,1<j<n-1]Sy > 26}.
Then

n
E:UEJ-, EinEi=¢ if j#i
ji=1

P{EN (|Sn| < 5) = P{U(Ej N (|Sn| < 6))]
=1

<P{l JE N (S-Sl 2 6))

n
< Z P(Ej)P(ISh — Sjl = 6) (by independence)
=1

< eP(E) (by data).
= P{EN(IShl > 6)} < P(ISnl > 6) < € (by data).

Combining the two estimates above, we get

P(E) < € + eP(E).

1 1 .
24 If € > > 2¢> 1. Ife< > 1L < 2e. Ineither cas®(E) < 2¢. O
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Lemma . Let {X(t)} be a Brownian motion, &£ [0, «) be a finite inter-
val, F c | n D be finite. Then

Py | SupIX(®) - X(@)) = 45) < c(d)“6—|2,
F

toe

where|l| is the length of the interval and(@) a constant depending only
on d.

Remark. Observe that the estimate is independent of the finit& set

Proof. LetF ={tj: 0<ti <th < ... <tx < oo}.
Put
X1 = X(t2) = X(ty), . . ., Xier = X(tk) — X(tx-1)-

ThenX; ... X, 1 are independent (Cf. ExerciEe 2(c)). Let

€= sup  Py(IXi + Xep1 + -+ Xq| 2 6).
1<r<i<k-1
Note that
Py(IX; + - + Xq| > 8) = P(IX(t") = X(t")| > ) for somet’,t” in F

_ E0X() - X))
< -

(see Tchebyshey’s inequality in Appendix)

* Y
© < % (C” = constant)
C/|||2
<~
1112
Thereforee < all . Now
54
Px(sup[X(t) - X(o)| > 49)
t,oeP
Px(sup [X(ti) — X(to)l > 20)
1<i<k
=Py( sup [Xy+---+Xj|>2) <2 (byprevious lemma)
i<j<k-1
2C12  ClIf?
PA
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Exercise 5.Verify ().

(Hint: Use the density function obtained in Exerdise 2(®valuate the
expectation and go over to “popular” coordinates. (The eafiC’ is
d(2d + 1))).

Lemma.
Px{ sup IX(®)-X(9)I>pp = Px(AL" > p)

[t-si<h
t,se[0,f]nD

h (T
Note thatg(T, p, h) - 0as h— 0 for every fixed T ang.

Proof. Define the interval$,, I», ... by

I I
| | |
0 2h L, 4 T
L 1

I = [(k = Dh, (k+ D] N (0,T], k=1,2,....

Letlq, Ilo,...I; be those intervals for which

iN[0, Tl #¢(j=12,...,1).

26 Clearly there are—I{] +1 of them. Ifit— g < hthent, se |; for some
jy1<j<r.WriteD = |J Fn whereF, c Fn,1 andF, is finite. Then
n=1

[

Pei sup IXO = X(9)>pp=Peil J| sup X)) -X(9I>p
lt—sl<h no1| It=s<h
t,s€[0,T]ND t,seDNFy

= SupPx {sup sup (X, (®) - X(9)| > p)}
n ] tseFp
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<supY. Pu( sup(, (0 - X(91> )|
n ]:l

t,seFp

sgp([%] + 1) C(;(/ZE))E by the last lemma

< ¢(T,p, h).

Theorem . P4 (Q(D)) = 1.

Proof. Itis enough to show that
1
Lt P, (Ag’l (f) < ﬁ) —1 (See Exercisg 4(b)).
]—)00

But this is guaranteed by the previous lemma. O
Remark. 1. It can be shown that the outer measur€a$ 1.

2. Qis not measurable ifif RY.
t>0

Let P, be the measure of2 induced byP, on Q(D). We have al- 27
ready remarked thd®y is defined on the (topological Borel field of
Q(D). As P, is a probability measuredy is also a probability mea-
sure. It should now be verified th&j is really the probability measure
consistent with the given distribution.

Theorem . Py is a required probability measure for a continuous real-
ization of the Brownian motion.

Proof. We have to show that
Fu.t = Pargty forall titp...tc in [0, o).
Step 1.Letty,...,tx € D. Then
Pyt 5 (A1 X - X A) = Pyt (A1 X - X AY))
for everyA Borel inRY. The right side above is
Px(rt o (A X -+ X A) = Fry_ g (AL x -+~ X A
(by definition ofPy).
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Step 2.We know thatTy, 1, 1, = Pxm, 1,1 provided thats, to, ..., tx €

D. Let us pickt&”),...,tl((”), such that“é’aclq(”) eD andtl((”) - t, as
n — oo. For eachn and for each fixed : RY — R which is bounded
and continuous,

M P
EFL U [f(xq, ..., )] = EPx[f(X(t(ln), . ,.,X(tl((n))))].

Lettingn — oo we see that

forallty,...,t. This completes the proof. m|

The definition of the Brownian motion given earlier has a tbuil
constraint that all “trajectories” start frod(0) = x. This result is given

by
Theorem . By{f : f(0) = 0} = 1.
Proof. Obvious; becausE'aX[¢(x(0))] = ¢(X). m|

Note. In future P, will be replaced byP, andPy = Py will be denoted
by P.

Let Tx : Q — Q be the map given byTif)(t) = x + f(t). Ty
translates every ‘trajectory’ through the vecior
x A

(T2 f)(®)

f(t)

Time

Let us conceive a real Brownian motion of a system of padiclée

operationTy means that the system is translated in space (along with
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everything else thatffects it) through a vectox. The symmetry of the

29  physicl laws governing this motion tells us that any propesthibited
by the first process should be exhibited by the second praresyice
versa. Mathematically this is expressed by

Theorem .Py = PT; L.
Proof. Itis enough to show that

Px(Txﬂt_ﬁ.tk(A]_ XX AY) = P(”t_ﬁ.tk(Al XX AY))
for everyA Borel inRY. Clearly,

Tt (AL X X A = Tt (A = XX - X A= X).

Thus we have only to show that

f ff PO, X, t1, X1) . .. P(tk-1, Xi—1, tk> Xi)dXq . .. dX¢
A1—X Ax—X
=f f P(0,0,t1, X1) . .. P(tk-1, X1, tk X)X . .. AX,
A A

which is obvious. m|

Exercise. (a) If A(t,-) is a Brownian motions tarting at (Q0) then
1 . . . .
7’8(60 is a Brownian motion starting at (0) for everye > 0.
€

(b) If Xis ad-dimensional Brownian motion andis ad’-dimensio-
nal Brownian motion thenX, Y) is ad+d’ dimensional Brownian
motion provided thaX andY are independent.

(€) If X = (X&, ..., XY is ad-dimensional Brownian motion, the)tqj
is a one-dimensional Brownian motion. j £ 1,2,...d).

(W) = inf{t : | X;(w)| > +1}
=inf{t: w(t)| > 1}

7(w) is the first time the particle hits either of the horizontakk 30



4. Construction of Wiener Measure

S T

2. Let{X;} be ad-dimensional Brownian motior§ any closed set in

RY. Define

7(w) = inf{t : w(t) € G}.
This is a generalization of Example 1. To see that a stopping
time use

[

<s= lim :

{fr<s ﬂ eel[rg,]s] {w: w(0) € Gp},
n=1 g rational

where

Gn:{xeRd:d(x,G)s%}.

. Let (X;) be ad-dimensional Brownian motior; and D disjoint
closed sets i9. Define

7(w) = inf{t; w(t) € C and for somes < t,w(s) € D}.

7(w) is the first time thatv hits C after visitingD.



5. Generalised Brownian
Motion

LET Q BE ANY space,# ao-field and (%#;) an increasing family of 31
subo-fields such thatr(U.%) = .#. Let P be a measure oifX .%).

X(t,w) : [0,w) x Q — RY
is called aBrownian motion relative tdQ, .#, P) if
(i) X(t,w) is progressively measurable with respectig
(i) X(t,w) is a.e. continuous ity

(i) X(t,w) — X(s,w) fort > sis independent af*5 and is distributed
normally with mean 0 and variante- s, i.e.

2
P(X(t,:) — X(s,-) € AL%s) = j,; [27(t j- S)]d/s exp— 2(1|:y|_ ) dy.

Note. 1. The Brownian motion constructed previously was concen-
trated onQ = C([0, 0); RY), .# was the Borel field o2, X(t, w) =
w(t) and.%; = o{X(s) : 0 < s < t}. The measur® so obtained is
often called theNiener measure

2. The above definition is more general because

o{X(9): 0<s<t}c .

31



32

32 5. Generalised Brownian Motion

Exercise.(Brownian motion starting at tims). LetQ = C([s, «); RY),
% = Borel field ofQ. Show that for eack € R 3 a probability measure
P onQ such that

(i) PR{w:w(s) = x} =1;

(ll) P)S((th € A]_, Ceey th € Ak)

=fff p(s, X, t1, X1) p(ty, X1, t2, X2) . ...
AL JA Ay

oo P(tke1 Xi-1, T, Xi)dXq . .. dX,
Vs<ty<...<t

For reasons which will become clear later, we would like tift $he
measureP§ to a measure 06([0, 0); RY). To do this we define

T : C([s ©);RY) — C([0, 0); RY)

by
w(t), ift>s
w(s), ift<s

(Tw)(t) = {
Clearly,T is continuous. Put
Psx = P§T L.
Then

() Psxis a probability measure on the Borel field®f0, «); RY);
(i) Psxiw:w(s) = x} = 1.



6. Markov Properties of
Brownian Motion

Notation. 1. Arandom variable of a stochastic procesf)}« shall 33
be denoted by; or X(t). 0 <t < co.

2. %5 will denote theo-algebra generated by, : 0 <t < s;
Fs = {Fa : a > s); Fs will be the o-algebra generated by
U{Z,:a< sis> 0. ltis clear thal.#;} is an increasing family.

3. Forthe Brownian motionZ = theo-algebra generated .7 :
t < oo} will be denoted by#.

Theorem .Let{X; : 0 <t < oo} be a Brownian motion. Then; X Xqis
independent of7s.

Proof. Let
O<ti<tbh<tz<...<tk<s

Then theo-algebra generated b, ..., X is the same as the-
algebra generated by

Kiys Kty = Xigs -+ -5 Xty = Xty -

SinceX; — Xs is independent of these increments, it is independent
of o{Xy,, ..., Xy }. This is true for every finite sef, . . ., ty and therefore
Xt — Xg is independent of7s.

Let us carry out the following calculation vefgrmally.

P[X; € Al Fs](W) = P[X — Xs € B| F](W), B=A—Xs(W),

33



34 6. Markov Properties of Brownian Motion

= P[X; — Xs € B], by independence,

1 ly = Xs(W)I?
— _ _
P[Xt eA]| Js](W) = f (27Tt)d/2 exp Z(t - S)
A
m|
This formal calculation leads us to
Theorem .
~ 1 ly = Xs(W)P?
P[X; € A| Zd](w) = f (ert)d/z exp 2(t -9 .
A

where A is Borel irRY, t > s.

Remark. It may be useful to note tha(s, Xs(w), t,y) can be thought of
as a conditional probability density.

Proof. (i) We show that

_ 2
) — f L o VX
A

(2rt)d/2 2(t—9)

is #s-measurable. Assume first thatis bounded and Borel in
RY. If wy — w, thenfa(wn) — fa(w), i.e. fa is continuous and
hence.%#s-measurable. The general case follows if we note that
any Borel set can be got as an increasing union of a countable
number of bounded Borel sets.

(i) ForanyC e .#swe show that

. X1 ~ exp—ly — Xs(w)?
) fc X {(A)dP() = Cf Af dy dRw).

(2n(t - 5)9/2

It is enough to verify £) for C of the form

C={w: Xy(w),..., X (@) eAgx---xA; 0<ty<...<t< s,
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whereA is Borel inR9 fori = 1,2...k. The left side of §) is
then

p(0, O, t1, X, ) p(t1, X, , t2, X,) - - - P(ts Xe» t, X)AX, - . . AX%.
A XX AXA
35

To compute the right side define

fiROD B

by
Clearly f is Borel measurable. An application of Fubini's theorem
to the right side of£) yields

f dy f Xy (Xes (@) . .- X (X, () P(S Xs(). £, y)dP(w)

A Q
= fdy f f(X1... X, Xs)dF, 4, S
A

RIx...xRY
(k+1) times

f dy f p(0,0,11, X1) . .. P(tk-1, tk, X«)

A Ag XX AxRA

Pk, Xk» S Xs)P(S, Xs, 1, V)X . .. A% Xs

P(0, 0, tg, X1) . . . P(tk-1, Xi—1, tk» Xi) P(tic, Xk, T, )

ApXeXAXA
dxg ..., dxdy
(by the convolution rule)
= left side

Examples of Stopping Times.
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1. Let (X;) be a one-dimensional Brownian motion. Definlby

(o)

fr<s= ﬂ y_r? (W : W(61) € D, W(6o) € Cp},
n=1g, 6, rational in [as]

36 where
d. 1 d. 1
Dh={xeR .d(x,D)sﬁ ,Ch=<{XeR .d(x,C)sﬁ

Exercise 1.Letr be as in Example 1.
(@) If A={w: Xy(w) < 7} show thatA ¢ .7;.
(Hint: An{r <0} ¢ .%p). This shows that”. & .Z.
(b) Po{w: t(w) = oo} = 0.

(Hint: Pofw: w(t)| <1} < [ e L2¥ dy vt).
lyl<t-%/2

Theorem . (Strong Markov Property of Brownian Motion). Lebe any
finite stopping time, i.ex < o a.e. Let Y= X;;t — X;. Then

1. P{(Yy € Ar..... Yy € A)NA] = P(Xy, € Ar,... %, € A - P(A),
Y A € .%, and for every ABorel inRY. Consequently,

2. (Yy) is a Brownian motion.
3. (Yy) is independent of7..

The assertion is that a Brownian motion starts afresh aiestep-
ping time.

Proof.

Step 1.Let 7 take only countably many values, say $, S3.... Put
E; = v}{sj}. Then eaclE; is .#,-measure and

Q= Ej, EENE=0j#i.

j=1
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37
Fix Ae 7.

PI(Yy € Av....,Ys € A) NA]

= ZF’[(Yt1 €AL....Y, € A)NANE]]
i1

P[(Xt1+5j - XSJ) € Al, ceey th+sj - XSJ € Ak) N Aﬂ E]]

M

1l
=

PI(Xt, € A1), ..., (X4 € AYIP(ANE;j)

M

I

1l
=

(by the Markov property)
=P(Xy, € A,.... X € A - P(A)

Step 2.Let 7 be any stopping time; put, = [ +1

. A simple cal-

culation shows that, is a stopping time taking only countably many

values. Asty | 7, Zr C Fr V. Let Y = X, o — Xe...
By Step 1,

PIOYY < xq,.., Y < %) n A
= P(th < X1,... ,th < Xk) . P(A)

(wherex < ymeansx; < vyii =1,2,...,d) for everyA € #;. As all
the Brownian paths are continuouﬁ{,”) — Yia.e. Thus, ifxq, ..., X IS
a point of continuity of the joint distribution oy, ..., X, we have

PI(Yt, < X1,..., Yo < X) NA] = P(Xy, < X1, ..., Xg, < X)P(A)

¥ A € .Z.. Now assertion (1) follows easily.
For (2), putA = Qin (1), and (3) is a consequence of (1) and (2n






/. Reflection Principle

LET (X;) BE A one-dimensional Brownian motion. Th&tsup Xs > 39
O<s<t
a) = 2P(X; > a) with a > 0. This gives us the probability of a Brownian

particle hitting the linex = a some time less than or equal to The
intuitive idea of the proof is as follows.

T

> Time, ¢

L I

Among all the paths that hé before timet exactly half of them end
up belowa at timet. This is due to the reflection symmetry. X = a
for somes < t, reflection about the horizontal line atgives a one -
one correspondence between paths With- a and paths withX; < a.
Therefore

P{maxXS >a X > a} = {maxxsz a, X < a}

O<s<t O<s<t

39
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SinceP{X; = a} = 0, we obtain

P{supxsza} = P{supxsza,xt>a}+P{sustza,Xt>a}

O<s<t O<s<t O<s<t

= 2P({X; > a}

40 We shall now give a precise argument. We need a few elementary
results.

Lemma 1. Let X, = Z Yk where the ¥ are independent random vari-

k=1
ables such that Py € B} P{-Yk € B}Y Borel set Bc R (i.e. X are
symmetric). Then for any real number a,

P{m_axXi > a} < 2P{X, > &}
1<i<n

Proof. It is easy to verify that a random variable is symmetric if and
only if its characteristic function is real. Define

A={X1<a,...X1<a X >al,i=12...,n
B={X,>a}
ThenA NA; =0if i # j. Now,
P(Ai N B) > P(A N {X, > Xi})
= P(A)P(X, = X)), byindependence.
= P(A)P(Yis1 + -+ Yn 2 0).
AsYi.1,..., Yy are independent, the characteristic functioty;of +

-+ + Yp is the product of the characteristic functionsYpf; + - - - + Yp,
so thatYj,1 + - - - + Yy, is symmetric. Therefore

=

P(Yisy1+--+Yh>0)> -.

N

ThusP(A N B) > %P(Ai) and

PE) > ) PAN B> N O P(OA.],
i=1

i=1
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41 i.e.

ZNQZPUUA}
i=1

P{m_axxi > a} < 2P{X, > a}
1<i<n

or

O

Lemma 2. LetY,,..., Y, be independent random variables. Put X

n
> Yxand letr = min{i : X;j > a}, a> 0andr = « if there is no such i.

k=1
Then for eaclke > 0,

n-1
(@) Pl <n-1X,—X, < —e} <P{r<n-1X, <al+ ¥ P(Yj>e).
j=1

n-1
(b) P{r <n-1,Xn > a+2¢} < P{r < n-1, X=X, > e}+ Y, P{Y; > €}
=1

(©) P(Xn>a+2e} <P{r<n—1,X%,>a+ 2¢} + P{Yy > 2¢}
If, further, Y4,..., Y, are symmetric, then

w)mp@mi>axnsa}zpmn>a+2a—Pwnzzd—
<I<n

n-1

2% P{Y) > e

=1

(e) P{maxX; > a} > 2P{X, > a+ 2¢} - 2 zn] P{Yj > €}

1<i<n =1

Proof. (@) Supposav € {r < n—-1 X, - X; < —¢} andw € {r <

n—1Xy < al. ThenXp(w) > aandXp(w) + € < Xy w)(W) or,
X-,-(W)(W) >a+e.

By definition ofr(w), X;w)-1(W) < aand therefore,
Yew)(W) = Xy (W) — Xew)-1(W) > a+e-a=e

if T(w) > 1;if 7(W) = 1, Yy (W) = Xey(W) > a+ € > €.
ThusYj(w) > e for somej <n-1,i.e.

42
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n-1
we U{Yj > €}.
j=1

Therefore

n-1
(r<n-1X-X <-elcfr<n-1X <a| Ji¥; >
=1

and (q) follows.

(b) Supposeve {r<n-1,X,>a+2ebutwe {r<n-1 X,—-X; >
€}. Then
Xn(w) — XT(W)(W) <e¢€

or, X(w)(W) > a+ € so thatY- ) (W) > € as in (a); henc&j(w) > €
for somej < n— 1. This proves (b).

() fwe {X,>a+2¢, thent(w) <nifweg{r<n-1X, >
a + 2¢}, thent(w) = n so thatX,_1(w) < a; thereforeY,(w) =
Xn(W) — Xp_1(W) > 2¢. i.e.w € {Y,, > 2¢}. Therefore

Xn>a+2el clr<n—1%X,>a+2eU(Yy> 2€).

This establishes (c).

(d) P{maxX; >a X, <a}=P{r<n-1X,<a}

1<i<n

n-1
>P{r<n-1X,- X <—€} - 3 P(Yj>¢), by(a),
j=1
n-1 n-1
PlUfr =k Xn =X < —€}| = X P(Yj > ¢)
k=1 j=1
n-1 1
=Y Plr=kXn— X< —€} = 3 P(Yj > €
=1

T
(RN
I

=S P = KIPXn = Xk < —€} = 3 P(Y; > €)
=1

(by independence)
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-1
KIP(Xy — X > el — %, P(Y; > ¢) (by symmetry)
=

n-1
=Plr<n-1X,-X > ¢} - ¥ P(Yj > ¢

s -
P

P(YJ‘ > 6)
1

>Plr<n-1X,—X: > ¢} -

-1
>P{r<n-1X,>a+2¢} — ZnZ P{Y; > € (by (b))
=1

-1
> P(Xy > a+ 26 — PYa > 26 =2 % PY| > €
j=1
This proves (d).

(by (c))

43
(e) P{maxX; >
1<i<n

a) = P{maxX; > a, X, < @) + P(maxX; > a, X, > a}
<i<n

1<i<n
1<i<n

=P{maxX > a, X, < a} + P{X, > a}

= P{X, > a+ 2¢} — P{Yn > 2¢} + P{X, > a}
n-1
-2 Zl P{Y; > e} (by (d))
J:
SinceP{X, > a+ 2¢} < P{X, > a} and

P{Yh > 2¢} < P{Y, > €} < 2P{Y, > €},
we get

P{maxX; > a} > 2P{X, > a+ 2¢
1<i<n

n
b=2) P(Yj > €)
=1
This completes the proof.

Proof of the reflection principle.

44
By Lemmal

p= P{ln;jzgx(j—r:) >} < 2P(X(t) > a).
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By Lemmd2(e),

p> 2P(X(t) > a+ 2€) 22 P{(X(j—r;[) - x((j _nl)t)) > e}.
=

it
n

SinceX ( ) -X ((J_—nl)t) are independent and identically distribu-

. . b :
ted normal random variables with mean zero and varlann(m partic-
ular they are symmetric),

p((x(j_r:)_x((j_—rf)t)) > e) - P( X(%)—X(O)) > e)
:P(X(%)>e).

b > 2P(X(t) > a+ 2¢) — 2n P(X(%) > e).

Therefore

P(X(t/n) > e XI5

5 —1c0
= € dx < e VI V(2D f xe X dx

VX A
e/ \(2t) eVn/ (20
or
P(X(t/n) > €) < 1 gena, V2
2+/n eyn
Therefore

NPIX(E/N) > €) < 2—1\/(2t)/\/(7m)e—62“/2t 50 as N— +ow.

45
By continuity,

P{maxX(jt/n) > a} - P{maxX(s) > a}.
1<<n O<s<t
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We letn tend toco through values 2,2 23, . .. so that we get
2P(X(t) > &+ 2€} — 2n PIX(t/n) > €}
sP{maxX(t/n) > a} < 2P{X(t) > a},
1<j<n

or

2P(X(t) > a} < 2P(X(t) > a) sP{ maxX(t) > a}

2P(X(t) > al,

on lettingn — +o first and then letting — 0. Therefore,

P{ maxX(s) > a} — 2P(X(t) > a}

=2 f 1/~/(2rt)e /2 dx
a
AN APPLICATION. Consider a one-dimensional Brownian motion. A
particle starts at 0. What can we say about the behaviouregfdinticle
in a small interval of time [0e)? The answer is given by the following
result.

P(A) = P{w: ¥Ye > 0,3t, sin [0, €) such thatX;(w) > 0 and
Xs(W) < 0} = 1.

INTERPRETATION. Near zero all the particles oscillate about theis
starting point. Let

A" ={w:V e> 03t € [0, ) such thatX;(w) > 0},
A™ ={w: Ve > 0ds€ [0, ¢) such thaiXs(w) < 0}.

We show thatP(A*) = P(A™) = 1 and thereford?(A) = P(A™ N
A) = 1.

A+3ﬁ{ sup w>0}:ﬁ
n=1 =

Ost<1/n el me1

O( sup w(t) > 1/m)

0<t<1/n
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Therefore

P(A*) > nLt sup P( sup w(t) > 1/m]

m—oo O<t<1/n

> 2n Lt  supP(w(1/n) > 1/m) (by the reflection principle)

— ocom—
>1
Similarly P(A™) = 1.

Theorem . Let{X;} be a one-dimensional Brownian motioncA(—oo, a)
(a > 0) and Borel subset &. Then

Po{X;i € A, Xs < aV¥ssuchthaD < s<t}
_ f 1/~/(2nt)eY 2 dy — f 1/~/(2nt)e" @2 gy
A

A

Proof. Let r(w) = inf{t : w(t) > a}. By the strong Markov property of
Brownian motion,

Po{B(X(t + ) — X(1) € A)} = Po(B)Po(X(s) € A)
for every seB in .%;. This can be written as
E(X(x(r+9-x@em-F) = Po(X(s) € A)
Therefore
E(Xx(r+ew)-Xx()en) ) = Po(X(E(W)) € A)
for every functionf(w) which is.%.-measurable. Therefore,
Po((r < t) N ((X(7 + £(w)) — X(7)) € A) = f Po(X(£(w)) € A)dP(w)

fr<t)

In particular, takef/(w) = t — 7(w), clearly £(w) is .%,-measurable.
Therefore,

Po((r < ((X(t) - X(7)) € A)) = f Po(X(£(w) € A)dP(W)).

{r<t}
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Now X(r(w)) = a. ReplaceA by A — ato get

() Pol(r =) n (X(t) € A) = f Po(X(£(w) € A—a)dP(w))

{r<t}
Consider now

P2a(X(t) € A) = Po(X(t) € A— 24a)
= Po(X(t) e 2a— A) (by symmetry ofx)
= Po((r < t) n (X(t) € 2a - A)).

The last step follows from the face thatc (-0, @) and the conti-
nuity of the Brownina paths. Therefore

Poa(X(t) € A) = f Po(X(¢(w)) € a— A)dP(W), (usingx)
{r<t}
= Po((r < t) n (X(t) € A)).

Now the required probability

Po{X; € A, Xs < a¥se 0 < s< t} = Po{X; € A} — Po{(r < t) N (X € A)}
- f 1/y(2rt)e Y 2y - f 1/y/(2ntye @ /2y,
A

A

The intuitive idea of the previous theorem is quite clear.obtain 48
the paths that reach at timet without hitting the horizontal line = a,
we consider all paths that reagtat timet and subtract those paths that
hit the horizontal linex = a before timet and then reacl at timet. To
see exactly which paths reaghat timet after hittingx = awe consider
a typical pathX(w).
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The reflection principle (or the strong Markov property)oais us
to replace this path by the dotted path (see Fig.). The symmoéthe
Brownian motion can then be used to reflect this path aboutirtbe
X = a and obtain the path shown in dark. Thus we have the following
result:

the probability that a Brownian particle starts from=x0att= 0
and reaches A at time t after it has hitxa at some time < t is the
same as if the particle started at time-t0 at X = 2a and reached A at
time t. (The continuity of the path ensures that at some time, this
particle has to hit x= a).

We shall use the intuitive approach in what follows, the reathti-
cal analysis being clear, thorugh lengthy.

Theorem . Let X(t) be a one-dimensional Brownian motioncA-1, 1)
any Borel subset &. Then

O<s<t

Po[SUpIX(S)I <L X() e A] = f ¢(t, y)dy,
A

where

o(t.y) = i (—1)"/+/(2nt)e 20?72,
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Proof.

+1

/'\/\,\/\,__-.

-1

Let E, be the set of those trajections which (i) starkat O at time
t = 0 (ii) hit x = +1 at some timer, < t (iii) hit x = -1 at some later
timer, < t (iv) hit x = 1 again at a later timez < t... and finally reach
A at timet. The number of’s should be equal tao at least, i.e.

En = {w: there exists a sequencg ..., of

stopping times such that® 71 < 7 < ... < t, < t, X(r)) = (1)L,
X(t) € A}. Similarly, let

Fn = {w: there exists a sequencg ..., T, of stopping times
O<mi<m<...<t<tX(r)) = (-1)}, X(t) € A}

Note that
E]_D EzD EgD...,
F]_D FzD FgD...,
Fn D Ens1y En D Fnyg,
EnNFn=En1 U Fpyr.
Let

o(t, A) = P[sup IX(9)] < 1, X(t) € A].

O<s<t

Therefore

o, A) = P[X(t) € A] - P[sup IX(9)] = 1, X(t) € A]

O<s<t



51

50 7. Reflection Principle

- f 1/y/(2rt)e™Y 1 2dy — P[(E1 U F1) N Ag],
A

where

Po = (X(t) € A) = f 1/y(2nt)e /2 dy - P(E1 1 Ag) U (F1 N Ag)].

A

Use the fact thaP[A U B] = P(A) + P(B) — P(A N B) to get

ot A) = f 1/y(@rt)e ¥/ 2dy—P[E; N Ad] ~P[F1n Aol + PE1F1nAd],

A

asE; N F1 = Ex U F». Proceeding successively we finally get

0.A) = [ L(ene” 2y Y (1P PIENAG+Y (1Y PIFanA
n=1 n=1

A

We shall obtain the expression fB{E; N Ag) andP[E> N Ag], the
other terms can be obtained similarly.

E1 N Ap consists of those trajectries that it= =1 at some time
7 < t and then react at timet. ThusP[E; N Ag] is given by the
previous theorem by

f 1/y(2rt)e 02 12y,

A

E> N Ag consists of those trajectories that Rit= +1 at timerq, hit
x = =1 attimer, and reachA at timet(ry < 2 < t).
According to the previous theorem we can reflect the trajgaipto
75 aboutx = —1 so thatP(E,> N Ag) is the same as if the particle starts at
X = =2 attimet = 0, hitsx = —3 at timer; and ends up i\ at timet.
We can now reflect the trajectory
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upto timer; (the dotted curve should be reflected) abgut -3 to
obtain the required probability as if the trajectory stdrtg x = —4.

Thus,
P(E; N Ag) = f e 0P IZN @ gy

A
Thus

oA = ) (1 [ 1y VEre b2 gy

N=—0oc0

A
- f o(t.y)dy.
A

The previous theorem leads to an interesting result:

1
P[sup|><(s)| < 1] = [otyay
O<s<t

-1
Therefore

P[suplX(s)l > 1] =1- P[sup IX(9)| < 1]

O<s<t O<s<t

52
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1
-1 f o(t.y)dy.
-1

p(t.y) = i (=1)"/+/(2nt)e” 0207/

N=—o00

Case (i).t is very small.

In this case itis enough to consider the terms corresporiding: 0,
+1 (the higher order terms are very small). Yagaries from-1to 1,

o(t,y) =~ 1/+/(2xt) [e—y2/2t _ e 272 _ e—(Y+2)2/2t] .
Therefore

1
f o(t.y)dy ~ 4/y(2r)e 2.
1

Case (ii).t is large. In this case we use Poisson’s summation formula
for ¢(t, y):

B(ty) = > e @A TBCog (k+ 1)/2ny),
k=0

to get

1
f #(t, y)dy =~ 4/me V8
-1

for larget. Thus,P(r > t) = 4/re ™18,

This result says that for large values tofhe probability of paths
which stay betweer1 and+1 is very very small and the decay rate is
governed by the factae™ "8, This is connected with the solution of a
certain diferential equation as shall be seen later on. m|



8. Blumenthal’'s Zero-One
Law

LET X; BE A d-dimensional Brownian motion. WA € %, = (%, 54
t>0
thenP(A) = 0 or P(A) = 1.

Interpretation. If an event is observable in every interval {Pof time
then either it always happens or it never happens.
We shall need the following two lemmas.

Lemma 1. Let (Q, 4, P) be any probability spaceg, sub-algebra of
. Then

(@) L%(Q, %, P) is a closed subspace of(Q, 4, P).

(b) If 7 : L3(Q, B, P) — L%(Q, ¢, P) is the projection map themf =
E(f|€).

Proof. Refer appendix. O

Lemma 2. LetQ = C([0, ); RY), Py the probability corresponding to
the Brownian motion. Then the sgi(r,,...,t%) € ¢ is continuous,

bounded oY x - - - x RY (k times) xry,, . . ., tk the canonical projection)
is dense in B(Q, 2, P).

Proof. Functions of the formp(x(t1), ..., X(tx) where¢ runs over con-

.....
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54 8. Blumenthal’s Zero-One Law

is clearly dense i,(Q, £, P). O

55 Proof of zero-one law.Let

H = L%(Q, %, P),H = L@, #,P), Ho. = [ | Ht.
>0

ClearlyHo, = L(Q, Z., P).

Letr; : H — H; be the projection. Thenaif — mg, f Vs in H.
To prove the law it is enough to show thdg, contains only constants,
which is equivalent torg, f = constantvf in H. As mg, is continuous
and linear it is enough to show thag, ¢ = const¥¢ of the LemmdR:

mor¢ = Lt mp = Lt E(gk) by Lemmdl,

= tE:[o E(o(ty, ..., tWlHA).
We can assume without loss of generality thatt; <t <... < tk.

E((ta, ..., t).F) = f Y1, ... Y1/ V(2r(ty — )e M X260
Y12
1/ @ (t — tier))e T wr dys . dyk.
SinceXo(w) = 0 we get, ag — 0,
mo+d = constant.

This completes the proof.

1
APPLICATION. Leta > 1A ={w: fIW(t)I/t" < oo}. ThenA e ;.
0

1

For,if0< s< 1, thenf |w(t)|/t* < oo. Thereforew € Aor not according
S

S
56 asf|w(t)|/t“dt converges or not. But this convergence can be asserted
0
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by knowing the history ofv upto times. HenceA € .%5. Blumenthal's
law implies that

1 1

f|w(t)|/t“dt < oo a.e.Ww., or,f|w(t)|/t“dt = 0o a.e.W.

0 0

A precise argument can be given along the following lined ¥
s<1,

A={w: f|w(t)|/t“ < oo}
0

= {w : suplns(w) < oo}

wherel, s(w) is the lower Riemannian sum of(t)"|/t* corresponding
to the partition{0, s/n, ..., s} and eachs € Zs.






9. Properties of Brownian
Motion in One Dimension

WE NOW PROVE the following. 57
Lemma . Let (X;) be a one-dimensional Brownian motion. Then

(@) P(lim X; = =) = 1; consequently @im X; < o) = 0.

(b) P(lim X; = —o0) = 1; consequently fim X; > —co) = 0.

(¢) P(lim X; = —c0); Tim X; = o) = 1.

SIGNIFICANCE. By (c) almost every Brownian path assumes each
value infinitely often.

Proof.

(lim X; > n)

DX

{lim X; = oo} =

>
1
=

( lim X, >n) (by continuity of Brownian paths)
6 rational

DX

1

=)
1]

First, note that

Po[sup X(s) < n] =1- Po[sup X(s) > n]

O<s<t O<s<t

57



58 9. Properties of Brownian Motion in One Dimension
= 1-21/+/(2nt) f e¥/2dy
n

n

= v/(2/nt) f e Y12y,

0
Therefore, for anyg andt,
P[ sup X(s) = n|X(tp) = xo] = PO[ sup X(s)=n- xo]
to<s<t O<s<t-tp
(independent increments) which tends to 1 as «. Consequently,
Po [supX(t) > n] = EP[supX(t) > n|X(to)]
t>to t>to
=El=1

58
In other words,

Po [Iim supX(t) > n] =1
t—oo
for everyn. Thus L
P(lim X; = o) = 1.
(b) is clear if one notes that — —w leaves the probability invariant.
() P(im X; = oo, lim X; = —c0)
= P(lim X; = c0) — P(lim X; > —co, lim X; = o).
> 1- P(“_m Xt > —OO)
=1.

Corollary . Let(X;) be a d-dimensional Brownian motion. Then

P(lim |X{| = o) = 1.
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Remark. If d > 3 we shall see later thzﬂ(tLt IXi| = o) = 1. i.e.
almost every Brownian path “wandersif¢o .

Theorem . Almost all Brownian paths are of unbounded variation in
any interval.

Proof. Let| be any intervald, b] with a< b. Forn= 1,2, ... define

n

Vo(WQp) = Z W(t) — W(ti_)| (& = a+ (b—a)i/n,i =0,1,2,...n),

i=1

The variation corresponding to the partidp dividing [a, b] inton 59
equal parts. Let

Un(w, Qo) = D I(w(t) — w(ti_1)I2.
i=1

If
An(W, Qn) Sup Iw(ti) — w(ti-1)l,
then
An(W’ Qn)Vn(W’ Qn) 2 Un(W’ Qn)
By continuityn Lt An(w, Qn) = 0. O

Claim. Lt E[(Un(w.Qn) - (b- a))?] = 0.
Proof.

E[(Un - (b-a))]

2
=E {Z[(th - th_l)z - (b - a/n)]}
=1

EI) @ -b-a/m), Zj = Xy = X,
= nE[(ZZ - b-a/n)?]
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(becausej are independent and identically distributed).
=n[E(Z}) - (b-a/n)?] = 2(b - a/n)*> — 0.

Thus a subsequents, — b—aalmost everywhere. Sinds, — 0
it follows thatVy, (w, Qn) — oo almost everywhere. This completes the
proof. m|

Note .{w : w is of bounded variation ona[b]} can be shown to be
measurable if one proves

Exercise.Let f be continuous ong] b] and defineV,(f, Q,) as above.

Show thatf is of bounded variation ora[b] iff sup Vu(f, Qn) < oo.
n=12,...

Theorem .Let t be any fixed real number i, ), D; = {w : wis
differentiable at}. Then RD;) = 0.

Proof. The measurability ob; follows from the following observation:
if f is continuous therf is differentiable at if and only if

L feen-fo
r—0 r
r rational

exists. Now

| < M, for all h# 0, rationa}

D, = UW:|W(t+hI,)]_W(t)

and

M+/h
Xt+h

P{W: |T‘X‘| <MVheQh# o} < 2inf f @e—'w“dy: 0
0

O

Remark. A stronger result holds:

F’[U Dt} o

>0



Hint: ) o J{ n[j {W:W(E)_W(%l)l = 771}

O<t<1 =1 m=1n-m i=1 k=i+1,i+2,i+3

P[i:lk::@ i+3{w:w(lﬁ()—w(%)|s %1} const/\/n)

.....

and

This construction is due to A. Dvoretski, P. Erdos & S. Kakita






10. Dirichlet Problem and
Brownian Motion

LET G BE ANY bounded open set irY. Define the exit timeg(w) as 61
follows:
Ta(w) = {inft : w(t) ¢ G}.

If w(0) € G, 7g(wW) = 0; if W(0) € G, 7c(w) is the first timew escapes
G or, equivalently, it is the first time that hits the boundaryG of G.
Clearly 7g(w) is a stopping time. By definitioiX.,(w) € dG, Yw and
Xz Is a random variable. We can define a Borel probability measor
oG by

n6(X,T) = Px(X; €T)
= probability thatw hitsT".

If fis a bounded, real-valued measurable funciton defined@n
we define

U = Ex(F(Xe0)) = f f(y)ma(x. dy)
G

where
Ex = EPx.
In caseG is a sphere centred aroumdthe exact form ofg(x,I') is
computable.

Theorem .Let S=S(0:;r) = {ye RY: |yl <r}. Then
surface area of’
surface area of S

ns(0,r) =

63
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64 10. Dirichlet Problem and Brownian Motion

.....

ant under rotations. Thuss(0,-) is a rotationally invariant probability
measure. The result follows from the fact that the only pbillig mea-
sure (on the surface of a sphere) that is invariant undetiosotais the
normalised surface area. m|

Theorem .Let G be any bounded region, f a bounded measurable real
valued function defined a#G. Define (x) = Ex(f(X;)). Then

() uis measurable and bounded;
(i) u has the mean value property; consequently,
(iii) uis harmonic in G.

Proof. (i) To prove this, it is enough to show that the mapping»
Px(A) is measurable for every Borel sit

Let% = {Ae % : x— Py(A) is measurable

.....

% is a monotone clasg = 4.

(i) Let S be any sphere with centre at andS c G. Lett = 15
denote the exit time througB. Clearlyr < rg. By the strong
Markov property,

uXy) = E(f(XTG)Lg\T)-

Now
U0 = Ex(F(Xe)) = Ex(ECFXe))IF)
= E(u(X,)) = f uy)rs(x. dy)

oS

= éfu(y)ds; |S| = surface area d8.
aS
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(i) is a consequence of (i) and (ii). (See exercise below).
m|

Exercise’. Letu be a bounded measurable function in a redtosatis-
fying the mean value property, i.e.

U = é f uy)ds
S

for every spher& G Then

0 u00 = 275 [ U)oy

(i) Using (i) show thatu is continuous.
(iii) Using (i) and (ii) show thau is harmonic.

We shall now solve the boundary value problem under suitztrbe
ditions on the regioft.

Theorem .Let G, f, u be as in the previous theorem. Further suppose
that

(i) fis continuous;

(i) G satisfies the exterior cone condition at every poind@f i.e.
for each ye dG there exists a coneQwith vertex at the point y
of height h and such thatyG- {y} c exterior of G. Then

lim u(x) = f(y), Yy € 6G.
X—Y,xeG
64
Proof.
Step 1.Py{w : w(0) = y,wremains inG for some positive time= 0.

Let A, = {w: w(0) = y,w(s) e Gfor 0 < s< 1/n},

(o) (o)

BnZQ_AniA: UAFI!B: m Bn-
n=1 n=1
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As Ay’s are increasingBy’s are decreasing and, € .%1,; so that
B € %o.. We show thaPP(B) > 0, so that by Bluementhal’s zero-one
law, P(B) = 1, i.e.P(A) = 0.

. ™ 1
Py(B) = lim Py(Bn) > lim Py{w: w(0) =y, w(z-) € Ch — {y}}
Thus

Py(b) > lim f 1/4/(2r/2n)% exp(|z - yI?/2/2n)dz
Ch—{y}
- [ V@t rzay
Ceo
whereC,, is the cone of infinite height obtained froGy. ThusPy(B) >
0.

Step 2.If C is closed then the mapping — Py(C) is upper semi-
continuous.

For, denote byXc the indicator function of. As C is closed (in
a metric space)l a sequence of continuous functiofysdecreasing to
Xc such that 0< f, < 1. ThusEx(f,) decreases t&x(Xc) = Px(C).
Clearly x — Ex(Fp) is continuous. The result follows from the fact that
the infimum of any collection of continuous functions is upgemi-
continuous.

65  Step 3.Leté >0,

N(y;6) ={z€ dG : |z-y| < 6},
Bs = {w: w(0) € G, X;(W) € 9G — N(y; 9)},

i.e. B; consists of trajectories which start at a poin@®énd escape for
the first time througldG at a point not inN(y; 6). If Cs = Bs, then

Csniw:w)=y}cAn{w:w0) =y}

whereAis as in Step 1.
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For, suppos& € Csn{w : w(0) = y}. Then there exista, € Bs such
thatwn, — wuniformaly on compact sets. W ¢ An{w : w(0) = y} there
existse > 0 such thaw(t) € GVtin (0,¢]. Lets* = 0irtlf d(w(t),G —

<t<e

N(y,5)). Thens* > 0. If t, = 7g(Ws) andt, does not converge to O,
then there exists a subsequence, again denotg &ych that, > ke >

0 for somek € (0,1). Sincewn(ke) € G andwp(ke), w(ke) € G, a
contradiction. Thus we can assume thatonverges to 0 and also that
€ > taVn, But then

*) Wn(tn) — W(tn)| > 6".
However, asv, converges tav uniformly on [Q €],
Wn(tn) — W(th) — W(0) - w(0) = 0
contradicting (*). Thusv e A{w : w(0) = y}.
Step 4.X_I>iyr£(1EG Px(Bs) = 0.
For, 66
E Px(Bs) < @/ Px(Cs) < Py(Cs) (by Step 2)
= Py(Cs N {w :w(0) =y}

< Py(A) (by Step3)
=0.

Step 5.

u(x) — F)l = | f F (X (W) APLW) — f F(y)dPx(w)|
Q Q

< f [f(Xes(W)) - f(Y)IdPx(W)+IJ(f(XTG(W))— f(y))dPx(w)|

Q-B;s
< f [ (Xeg (W) — F()IAPx(W) + 2 llooP(B5)
Q-Bgs

and the right hand side converges to &xas y (by Step 4 and the fact
that f is continuous). This proves the theorem.
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Remark. The theorem is local.

Theorem .LetG={y e RY: 6 < |y| < R}, f any continuous function
ondG = {lyl = 6} n{lyl = R}. If uis any harmonic function in G with
boundary values f, then(x) = Ex(f(X:)).

Proof. ClearlyG has the exterior cone property. Thus, if
V(X) = Ex(f(Xr5))

thenv is harmonic inG and has boundary valuefs (by the previous
theorem). The result follows from the uniqueness of thetgoiwf the
Dirichlet problem for the Laplacian operator.

The functionf = Oonlyl = Randf = 1 on|y = ¢ is of spe-
cial interest. Denote byg’lo the corresponding solution of the Dirichlet
problem. m|

Exercise. (i) If d=2then

logR- |
URO(x) = logh ~ logiX og|x|’ VX € G.
2 logR - logés
(i) If d > 3then
RO B |X|—n+2 _ R—n+2
Usr (¥ = S —gmz

Case (i):d = 2. Then

logR-1logIx  Rro
logR-logs Us1 ()
Now,
E(106e)) = [ e cy) = Pllecl =)
lyl=s
i.e.
logR - log|x
R ~100X _ b (1., | = )

logR-logé
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Py (the particle hitgy| = 6 before it hitsly| = R).

Fix Rand lets — 0; then 0= Py (the patrticle hits 0 before hitting

Iyl = R).
Let Rtake values 12,3, ..., then 0= Py (the patrticle hits 0 before
hitting any of the circle$y| = N). Recalling that

Py(lim [X| = 00) = 1,
we get

Proposition . A two-dimensional Brownian motion does not visit a
point.
Next, kee fixed and let R oo, then,

1=Py(w(t)| =6 forsometime t0).

Since any time t can be taken as the starting time for the Bieownes
motion, we have

Proposition . Two-dimensional Brownian motion has the recurrence
property.

Case (ii):d = 3. In this case

Pyx(w : whits|y] = § before it hitsly| = R)
= (1/IX"2 - 1/RV?)/(1/6"2 - 1/R™?).

Letting R — co we get
Py(w : w hits|y] = 6) = (6/Ix)"2

which lies strictly between 0 and 1. Fixirgand letting|x| — oo, we
have

Proposition . If the particle start at a point for away fror then it has
very little chance of hitting the circlg| = 6.
If |x| <6, then

P(w hits ) = 1where § = {y e R4 : |y| = 6}.
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Let
Vs(X) = (6/IX)"2 for |X| > 6.

In view of the above result it is natural to extend % all space
by putting (x) = 1for || < 6. As Brownian motion has the Markov

property
P.{w : w hits S after time }

= fv(;(y)l/\/(ert)OI exp—|yi?/2t dy - 0as t— +oo.

ThusP(w hits Ss for arbitrarily larget) = 0. In other wordsP(w :
lim w(t)] > §) = 1. As this is truev¥é > 0, we get the following

t—oo

important result.

Proposition . P(lim [w(t)| = ) = 1,
t—oo

i.e. for d > 3, the Brownian particle wander away teso.



11. Stochastic Integration

LET {X; : t > 0} BE A one-dimensional Brownian motion. We warito

first to define integrals of the typﬁ f(s)dX(s) for real functionsf e
0

L1[0, o). If X(s, W) is of bounded variation almost everywhere then we
can give a meaning tg? f(g)dX(s,w) = g(w). However, sinceX(s, w)

0
is not bounded variation almost everywhegéw) is not defined in the
usual sense.

In order to defingy(w) = f f(s)dX(s, w) proceed as follows.

0
Let f be a step function of the following type:

n
f= Zaix[ti,tiﬂ),o <t<tr<...<tpa1.
i—1

We naturally define
o) = [ F(9X(s W) = Y 8,(w) - X, ()
0 i=1

= Z a(W(tiz1) — w(t)).
i=1

g satisfies the following properties:

() gis arandom variable;

71
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(i) E(9) =0; E(¢?) = ¥ a(tiv1 — ) = IIfll.

This follows from the facts that (a);,, — X is @ normal random
variable with mean 0 and variandg,{ — t;) and (b)X;,, — Xy, are inde-
pendent increments, i.e. we have

E[ffdx]:o, E[lfdelZ]: 1115

0

Exercise 1.If

f = aiX[ti’ti+1),0St1 <... <tn+1,

g: biX[S’S+1),OSS[|_<...<Sm+1,

Show that
(f+gdX(sw) = [ fdX(sw)+ | gdX(s w)
/ Jroen]

and

f(af)dX(a W) = a/f fdX(s W), Vo € R.
0 0

Remark. The mappingf — f fdXis therefore a Iinear_f&-isometry of
0
the spaces of all simple functions of the type
n
Z X1, (0<t1 < ... <thya)
i=1

into L2(Q, 4, P).
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Exercise 2.Show thatS is a dense subspace Iof[0, ).
Hint: C.[0, o), i.e. the set of all continuous functions with compact sup-
port, is dense ih.2[0, o). Show thatS contains the closure @;[0, ).

Remark. The mappingf — f fdX can now be uniquely extended as
0
an isometry ol_?[0, c0) into L%(Q, 4, P).
Next we define integrals fo the type 72
t
o) = [ X(swax(sw
0
Putt = 1 (the general case can be dealt with similarly). It seems
natural to define
1

¢ [ Xewaxg = Lt S XEDXE) - Xt1)
=1

supltj-tj_1|—0
0

where O=tp <t; <... <ty = lis apartion of [01] with tj_1 < & <t;.
In general the limit on the right hand side may not exist. Eifeh
exists it may happen that depending on the choic§ ,ofre may obtain
different limits. To consider an example we chogge= t; and then
&j = tj_1 and compute the right hand side }.(If £; = tj_1,

n n
Z ij (th - th_l) = Z th—l - (th - th_l)
=1 =t

1y 1y
=5 Z(th) - (Xyy) — > Z(th - Xt;1)
=1 =1

1 1
E[x2(1) - X%(0)] - 5 asn— o, and suptj —tj_1| — O,

arguing as in the proof of the result that Brownian motion @ of
bounded variation. I§; = t;,

n
Lt Z Xe, (Xg; = Xy;_,) = 1/2X(1) - 1/2X(0) + 1/2.
Supitj—tj-1|-0 j=1
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73 Thus we get dferent answers depending on the choicejoand
hence one has to be very careful in defining the integral. ristwut
that the choice of; = tj_, is more appropriate in the definition of the
integral and gives better results.

Remark. The limit in (x) should be understood in the sense of conver-
gence probability.

Exercise 3.Let 0 < a < b. Show that the “left integral”4; = tj-1) is
given by
b
201 — X2(a) — (h—
LfX(s)dX(s) _ X4(b) - X (2a) (b-a)
a

and the “right integral” £ = t;) is given by

b
fo(s)dx(s) _ X2(b) - X2(2a) +(b- a)'

S

We now take up the general theory of stochastic integratido.
motivate the definitions which follow let us considedalimensional
Brownian motion{A3(t) : t > 0}. We have

E[B(t+ ) —B(t) € ALFA] = f 1/ \/(zﬂs)e—ly|2/2sdy

A

Thus

BB+ 9 - FONT = [ T0L/v@roe ™ dy
In particular, iff(x) = &4,

E[e (5t + 9 - BN = [ /(2o 2oy

74 Thus
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E[éu.ﬁ(t+s)|%] _ eiu.ﬁ(t)e—slulz/z’

or,
E[eiu.ﬁ(t+s)+(t+s)|u|2/2|%] — duB®)+tu?/2.

Replacingiu by 6 we get
E[ee.ﬁ(s)—lsf)lz/Z | 7] = fBO-W2 o ¢ v,

Itis clear thag?A®-16/2 js Z-measurable and a simple calculation
gives
E(&PO-0FY2) < o v,

We thus have

Theorem .If {8(t) : t > 0} is a d-dimensional Brownian motion then

explp.B(t) - |6°t/2] is a_MartingaIe relative ta%, theo-algebra gener-
ated by(B(s) : s<t).

Definition. Let (2, 4, P) be a probability space#;)-0 and increasing
family of subo-algebras of# with . = o (|J %).

>0
Let
() a: [0, 0)xQ — [0, ) be bounded and progressively measurable;
(i) b:[0,)xQ — R be bounded and progressively measurable;

(i) X:[0,0)xQ — R be progressively measurable, right continuous
on [0, ), ¥ w € Q, and continous on [@) almost everywhere
onQ;

OX(tw)—6 ft b(sw)ds- % ft a(sw)ds
(iv) Z(w) =e 0 0

be a Martingale relative to%:):>o-

75

ThenX(t, w) is called an Ito process corresponding to the parameters
b anda and we writeX; € I[b, a].

N.B. The progressive measurability ¥f= X; is .#;-measurable.
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Example.If {5(t) : t = 0O} is a Brownian motion, theiX(t,w) = By(w)
is an Ito process corresponding to parameters 0 and 1. (i)igrate
obvious. (iii) follows by right continuity of3; and measurability oB;
relative to.%; and (iv) is proved in the previous theorem.

Exercise 4.Show thatZ;(w) defined in (iv) is.%#;-measurable and pro-
gressively measurable.

[Hint:
(i) Z is right continuous.

(ii) Use Fubini's theorem to prove measurability].

t
Remark. If we put Y(t,w) = X(t,w) — fb(s, w)dsthenY(t,w) is pro-

0
gressively measurable andt,w) is an Ito process corresponding to
the parameters @. Thus we need only consider integrals of the type
t

[ f(s w)dY(s w) anddefine
0

t t t
ff(s,W)dX(s,W)=ff(s,W)dY(s,W)+ff(s,W)b(s,W)ds
0 0 0

(Note thatformally we havedY = dX — dbt).

Lemma . If Y(t,w) € |0, a], then
t
Y(t,w) and YA(t,w) - f a(s, w)ds
0

are Martingales relative t@.%).

Proof. To motivate the arguments which follow, we first give a formal
proof. Let

oY (tw —% fta(sw)ds
Yo(t) =€ 0 .
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. . Yo—1. .
ThenYy(t) is a martingaleYé. ThereforegT is a Martingaleyo.
Hence (formally),

is a Martingale.

Step 1.Y(t,") € LXQ,.Z,P), k = 0,1,2,... andVt. In fact, for every
reald, Yq(t) is a Martingale and hendg(Yy) < . Sincea is bounded
this means that

E¥®)) < oo, V.

Takingd = 1 and—1 we conclude thaE(e"!) < o« and hence
E(IY[%) < o0, ¥k = 0,1, 2, .... SinceY is an Ito process we also get

k

SupE

|0|<a

e < 00

)t [
Y(t.)-% [ads
0

Yk and for everyy > 0.

Step 2.Let Xg(t) = [Y(t,") — eftads]Y(t) = %Yg(t, ).
Define °

oa(6) = f (Xo(t. ) = X )dP()
A

wheret > s, A e Z,. Then

)

)
Pa(6)de = [Xa(t, -) = Xo(S, -)]dP(w)do.
Joon-]]
Sincea is bounded, sug([Y(t, -)]¥) < oo, andE(Y[¥) < oo, Yk; we

|0|<a

can use Fubini’'s theorem to get

77} ()
Pa(6)de = [Xo(t, ) = Xo(s, -)]de dP(w).
Jo]]
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or

02
PaO)do = | Yo,(t,-) = Yo (t, )dPW) — [ Yo,(s ) = Yo,(s -)dP(w).
oo [ f

A A

Let A e .Z5andt > s, then, sinceY is a Martingale,

02
f #a(6)d6 = 0.
01

This is truevd, < 6, and sincepa(0) is a continuous function df,
we conclude that

#a(6) = 0, V6.

In particular,¢a(d) = 0 which means that

fY(t, dP(w) = fY(s, JdP(w), VAe Z, t> s
A A
i.e., Y(t) is a Martingale relative to(¥, %, P).
To prove the second part we put
d2
Z(t) = 55 Yalt)

and

Ua) = f (Zu(t. ) — Zo(s. )}dPW).

A

Then, by Fubini,

02 6>
Ya(0)do = Zy(t, ") — Zo(s, -)do dP(w).
Jron=]]
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or,

02
f UAE)d8 = Ba(62) — Ba61)
01
=0ifAe %, t>s

Therefore
wa(0) =0, V6.
In particular,ya(6) = 0 implies that

t

Y2(t, w) — f a(s w)ds

0

is an Q, %, P) Martingale. This completes the proof of lemfla 1.0

Definition. A function g : [0, ) x Q — R is called simple if there exist
realssg, S1,..., S, ...

O0<s9<s<...<H... <00,
s, increasing torco and
A(s. W) = 6(w)
if s€ [s;j, sj+1), wheredj(w) is .75 -measurable and bounded. 79

Definition. Let 9 : [0, ) x Q — R be a simple function and(t,w) €
1[0, a]. We define the stochastic integral @Wwith respect tor, denoted

t

f 6(s WdY(s w)).

0

by

t
£(tow) = f 6(s w)dY(s W)
0
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k
= > O aWLY(s), W) = Y(5i1, W)] + @Y (L, W) - Y(S W),
j=1

| | | it |
so=20 S1 S2 Sk Sk+1

Lemma 2. Leto : [0, ) x Q — R be a simple function and(¥, w)
I[0,a]. Then

t

£(t,w) = f o (s, w)dY(s,w) € 1[0, ac?].
0

Proof. (i) By definition, o is right continuous andr(t,w) is .%-
measurable; hence it is progressively measurable. Sfifgpro-
gressively measurable and bounded

ao? 1 [0,00) x Q — [0, o)
is progressively measurable and bounded.

80 (iiy From the definition of¢ it is clear that(t, -) is right continuous,
continous almost everywhere an#-measurable thereforg is
progressively measurable.

et [arag
(i) Z(w) =e 0

is clearly.#-measurabl&’d. We show that

E(Z) < oo, VtandE(Z,| %) = Z, if ty < ta.

We can assume without loss of generality that 1 (if 0 # 1 we
replaceo by 607). Therefore

t
[£(tw)- [ ao?dg
Zi(w) = e 0 .
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Sincea ando are bounded uniformly on [f], it is enough to show that
E(e6W) < co. By definition,

k
£tw) = > 0 s WLY(Sj.W) — Y(Si-1. W)] + B()(Y(E W) — V(S W)).
=1

The resultE(e™W) < oo will follow from the generalised Holder’s in-
equality provided we show that

E(/MWIYEW-Y(swly < o
for every bounded functiof which is.%s-measurable. Now
E(eH[Y(t;)—Y(S;)] FAE
constant for every consta#tsinceY e 1[0, a]. Therefore
E@WINE)-YESI) 2) = constant
for everyd which is bounded and?s-measurable. Thus
E(WIYL)-Y(]) < oo,

This proves thaE(Z;(w)) € .
Finally we show that

E(Z,|l%) = Zy(w), if t <t
Consider first the case whénpandt, are in the same interval
[Sc: Skr1)-
Then

E(to, W) = &(t1, W) + ok(W)[Y(t2, W) — Y(t1,W)] (see definition),

to t1 t
fao-z(s,w)ds:fao-z(s,w)ds+fao-2(s,w)ds
0 0 t

81
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Therefore

2 A
(2 WI7) = 2, WEEPEr WYt ) - Yt w] - 5 [ a0?dsi)
t

asY € 1[0, a.

t
5 2

() EExpb(rw - Tew) - 2 [aswdgiz,) =1

t1

and sincery(w) is ., -measurable«) remains valid ifd is replaced by
fo. Thus
E(Zt2|°%1) = Ztl(W)-

The general case follows if we use the identity
E(E(X|C€1)|Cg2) = E(X|C€2) for % c %1.
ThusZ, is a Martingale ang(t, w) € 1[0, ac?]. O

82  Corollary . (i) &(t,w)is a martingale; E£(t,w)) = 0;

t
(i) &2(t,w) — facrzds
0
is a Martingale with

t
EE2(t W) = E( f ar?(s w)ds
0

Proof. Follows from Lemma&ll. O

Lemma 3. Leto (s, w) be progressively measurable such that for each
t,

t
E(fo-z(s,w)ds) < co.
0
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Then there exists a sequeneg(s, w) of simple functions such that
t
lim E[flo-n(s W) — o (s, w)|2ds] =0.
0

Proof. We may assume that is bounded, for ifon = o for o] < N
and O ifjo] > N, theno, — o, Y(s W) € [0,1] x Q. oy is progressively
measurable anid-, — 0| < 4|o2. By hypothesisr € L([0,1] : Q).

t

ThereforeE(f lon—oldg — 0, by dominated convergence. Further,
0
we can also assume thatis continuous. For, ifr is bounded, define

t
oh(t,w) = 1/h f o(sw)ds
(t-hvo

o is continuous it and.%#;-measurable and hence progressively mea-
surable. Also by Lebesgue’s theorem

op(t,w) — o(t,w), as h-0,Vt,w.

Sinceo is bounded byC, o, is also bounded bg. Thus 83
t
E( f loh(s, W) — o (s, W)[2dg) — 0.
0

(by dominated convergence). df is continuous, bounded and progres-
sively measurable, then

on(sW) = (r(%,w)

is progressively measurable, bounded and simple. But

nI;tc>o on(sSW) = o(sW).
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Thus by dominated convergence

t
E[f|an—a|2ds]_>o as n — oo.
0

Theorem .Leto (s, W) be progressively measurable, such that

t
E(faz(sw)ds) < o0
0

for each t> 0. Let (o) be simple approximations i@ as in Lemma&l3.

Put
t

ént,w) = f on(s, W)dY(s w)

0
where Ye 1[0, a]. Then

() Lt &n(t,w) exists uniformly in probability, i.e. there exists an al-
n—oo
most surely continuougt, w) such that

Lt P( sup |§n(t,w)—§(t,w)|ze)=o
N—oo  \o<t<T

for eache > 0 and for each T. Moreoveg is independent of the
sequencéoy).

84 (i) The mapr — &is linear.
t
(iii) &(t,w) and&2(t,w) — [‘ac?ds are Martingales.
0

(iv) If o is bounded¢ € 1[0, ar?].
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Proof. (i) It is easily seen that for simple functions the stochmasti
integral is linear. Therefore

t
(En— Em)(tW) = f (0 — o) (s WAY(S W),
0

Sinceé, — &m is an almost surely continuous martingale

P( SUp Ién(t, W) — én(t, W) > ) < LElE - £n?(T W)
0<t<T €

This is a consequence of Kolmogorov inequality (See Appendi

Since .

(€0 &7~ [ alon - owids
0
is a Martingale, ana is bounded,

T
*) E[(é:n_é:m)z(T’W)] = E[f(o'n—o'm)za dS].
0

.
1
< constE [f(o-n - o-m)zds].
€
0

Therefore
Lt E[(én—ém*(T.w)] = 0.

Thus ¢,—&m) is uniformly Cauchy in probability. Therefore there
exists a progressively measurablsuch that

Lt P( sup [&n(t, W) — £(t,wW)| > e) =0, Ye >0, VT.

N—=co \o<t<T

It can be shown that is almost surely continuous.
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If (om) and @) are two sequences of simple functions approxs
matingo, then &) shows that

El(én — &)%(T.w)] - O.
Thus
Lté&, = Lt&,
n n
i.e.£ is independent ofc,).
(i) is obvious.

(i) (*) shows that&, — £ in L and therefore(t, -) — &(t,-) in L for
each fixed. Since&y(t,w) is a martingale for each, £(t,w) is a
martingale.

t
(iv) £(t.w) - [ac?is a martingale for each
0

Sincen(t, w) — &(t, w) in L2 for each fixed and

£2(t,w) - £3(t,w) in LY for each fixed.

For &2(t,w) — £2(t,w) = (& — &)(&n + £€) and using Holder's in-
equality, we get the result.

Similarly, since

on — o in L%([0,1] x Q),
o2 = a?in LY([0,1] x Q),
and becausais boundedio? — ac?in L([0, t] xQ). This shows

t
that£a(t,w) — [ acidsconverges to
0

t
£2(t,w) — f aods
0
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for eacht in L. Therefore
t
gz(t,w)—fao-zds
0

is a martingale. 86

Let o be bounded. To show théte 1[0, o?] it is enough to show
that

9§(t,w)—§ ft ac2ds
e 0
is a martingale for eachy the other conditions being trivially sat-
isfied. Let

t
2
9entw)-% [acids
0

Zn(t, W) =e
We can assume thaty,| < Cif |o] < C (see the proof of Lemma

B).

t t
(26)° 2 2 2
Zn = exp|20&n(t, w) — - aonds+6° | acpds|.
0 0
Thus

e = const

29§n(t,w)—@ ftaa-ﬁds
(**) E(Z,) < conste 0

sinceZ, is a martingale for each A subsequencé, converges
to .
9§(t,w)—§ [acr?ds
e 0
almost everywhereR). This together with (**) ensures uniform
integrability of ¢,) and therefore

t
0§(t,w)—§ [acr?ds
e 0
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is a martingale. Thusis an Ito process € 1[0, ao?].
i

Definition. With the hypothesis as in the above theorem we define the
stochastic integral
t

£t w) = f (s WdY(s W)
0

Exercise.Show thatd(X + Y) = dX + dY.

Remark. If o is bounded, theg satisfies the hypothesis of the previ-
ous theorem and so one can define the integrgl with respect toy.
Further, sincé itself is 1td, we can also define stochastic integrals with
respect to.

Examples. 1. Let{A(t) : t > 0} be a Brownian motion; thes(t, w) is
progressively measurable (being continuous Sianeasurable).
Also,

t

t t
_ _ _I
Qfofﬁz(s)ds dP_Ofo,BZ(s)dP ds 0fsds 5

Hence .
f B(s, w)dB(s, w)
0
is well defined.
t
2. Similarlyfﬁ(s/Z)dﬂ(s) is well defined.
0
3. However

t
f B9dB(S)
0

is not well defined, the reason being té2s) is not progressively
measurable.
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Exercise 5.Show thaiB(2s) is not progressively measurable. 88
(Hint: Try to show tha(2s) is not.#s-measurable for everg. To show
this prove thatZs # %»s).

Exercise 6.Show that for a Brownian motigs(t), the stochastic integral

1

[ B8t )
0
is the same as the left integral
1
L [ s dpts)
0

defined earlier.






12. Change of Variable
Formula

WE SHALL PROVE the 89

Theorem .Let o be any bounded progressively measurable function
and Y be an Ito process. fis any progressively measurable function

such that .
E[f/lzds] < 00, W,
0
then
t t
% f Adé(s ) = f A(s W (s wdY(s w)
0 0
where
t
£(tw) = f o(sw)dY(s,w).
0
Proof.

Step 1l.Let 1 ando be both simple, witll bounded. By a refinement
of the partition, if necessary, we may assume that there mdds 0=
0, St,..., S, ... INCreasing to+oco such thatl and o are constant on
[Sj, Sj+1), sayd = (W), o = oj(w), whered;j(w) andoj(w) are Fs; -
measurable. In this case (*) is a direct consequence of fivatamn.

91
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Step 2.Let A be simple and bounded. Let{) be a sequence of simple
bounded functions as in Lemrh 3. Put
t

En(t,w) = | on(sw)dY(sw)
/
By Step 1,
t t
) Adén = | dondY(sw).
[ |

0

Sinced is bounded/lcrn converges tola in L2([0, t] x Q). Hence,

by definition, f/lo-ndY(s, w) converges t(f/lo-len probability.
0 0
Further,

t

f AdEn(S W) = (S0, WEn(S1 W) — En(S0. W] + - --

0
+ o+ A(S6 W[En(t, W) — En(Se1, W),

wheresy < 1 < ...... is a partition ford, and&,(t, w) converges to
&(t, w) in probability for everyt. Therefore

f/ldfn SW)

0

converges in probability to
t
[ s w.
0
Taking limit asn — oo in (**) we get
t t
f Adé(sw) = f AcdY(sw).

0 0
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Step 3.Let A be any progressively measurable function with

t
E(f/lzds) < oo, Vt.
0

Let A, be a simple approximation tbas in Lemm&lI3. Then, by Step
2,

t t

(***) f An(s W)dé(s, W) = f An(S W)or (s, w)dY(s, w).

0 0
By definition, the left side above converges to

t
f A(s, w)dé(s,w)
0

in probability. Aso is boundedl,o converges talo in L2([0,1] x Q). 91
Therefore

t t
P[ sup| | AhodY(sw) — f/lo- dy(s,w)| > e]
O<t<T

0 0

t

lalle1/€*E [f(/lna - /lO')ZdS]

0

(see proof of the main theorem leading to the definition ostieehastic

integral). Thus
t

f AnordY(s, W)

0

converges to
t

f/lcr dY(s,w)
0
in probability. Letn tend to+ in (***) to conclude the proof.
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12. Change of Variable Formula



13. Extension to
Vector-Valued Itd Processes

Definition. Let (Q, .#, P) be a probability space andA) an increasing 92
family of subo-algebras of#. Suppose further that

(i) a:[0,00)xQ — SY

is a probability measurable, bounded function taking \&indhe class
of all symmetric positive semi-definitx d matrices, with real entries;

(ii) b: [0, ) x Q — R
is a progressively measurable, bounded function;
(iii) X 1[0, 00) x Q@ - RY

is progressively measurable, right continuous for eveignd continu-
ous almost everywherd;

t
Z(t,) = expl6, X(t. ) - f 0, b(s ))ds
0

t

(iv) - % f (6, a(s,-)0)dg

0

is a martingale for each e RY, where

(XY) = Xay1 + - + Xdyd» % y € R

95
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Then X is called an It process corresponding to the paraméters

anda, and we writeX € |[b, a]

Note. 1. Z(t,w) is a real valued function.

2. b is progressively measurable if and only if edghis progres-
sively measurable.

3. ais progressively measurable if and only if eaghis so.

Exercise 1.If X € I[b, a], then show that

0) X € I[bi, &,
d
(ii) Y = 36X € 1[0, b), (0, )],
i=1
where
6=(61....0q).

(Hint: (ii) (i). To prove (ii) appeal to the definition).

Remark. If X has a multivariate normal distribution with mearand
covariance 4jj), thenY = (6, X) has also a normal distribution with
mean(d, i) and varianceg6, pd). Note the analogy with the above exer-
cise. This analogy explains why at timess referred to as the “mean”
anda as the “covariance”.

Exercise 2.If {8(t) : t > 0} is ad-dimensional Brownian motion, then
B(t,w) € 1[0, I]wherel = d x d identity matrix.

t
As before one can show th#(t, ) = X(t,-) — fb(s w)dsis an Itd
0

process with parameters 0 aad

Definition. Let X be ad-dimensional Ito processs = (01,...,04) a
d-dimensional progressively measurable function such that

t
E| | (o(s),0(s ) > dS]
/
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is finite or, equivalently,

t
E[fo-iz(s,-)ds]<oo, (i=12...d).

0

Then by definition

t d t
[totsraxs =), [osaxs
0 i=1%

Proposition . Let X be a d-dimensional 1td processeXl[b, a] and let
o be progressively measurable and bounded. If

t

at.) = f idX (s ).

0

then
£=(61,...,8d) €1[BA],

where
B= (O‘lbl, Ceey O’dbd) and Aj = Oi0jdj.

Proof. (i) Clearly Ajj is progressively measurable and bounded.
Sinceae SY, Ae SY.

(i) Again B is progressively measurable and bounded.

(iii) Since o is bounded, each(t, ) is an Itd process; henceis pro-
gressively measurable, right continuous, continuous stiree-
erywhere P). It only remains to verify the martingale condition.

Step 1.Letd = (64, ...,6q) € RY. By hypothesis,

t
*) E(exp[@1 X1 + - - - + OaXa)ls - - - f(91b1 + - + 6gbg)du

94



98 13. Extension to Vector-Valued It Processes

t

_ % fZeiejade|ﬁs) =1

0

95 Assume that eachr; is constant ongt], o5 = oj(w) and Fs-
measurable. Then (*) remains trugifare replaced bg;6;(w) and since
oi's are constant overs[t], we get

t d t
E(expl [ Y (s 9dX(s) - [ abir(s )ds
0 i=1

0
t

_% f > 60i0i(s )ri(s Jaijddls)
0

d S S
explf Oioi(s )dX(s, -)—f(@, B)du - 1[(9,A9)du‘.
o =1 0 0

Step 2.Let eachoj be a simple function.

eveeee — 1 |  eeeee oeecee I |  eeccee

i (@) J
s s s S s
Ly St L)

By considering finer partitions we may assume that egdh a step
function,

eecece 1 1 1 1 eecece

finest partition

i.e. there exist pointsg, S1, $,...,5,S= 9 < St < ... < Sy1 =1,
such that ong;, sj;1) eacho; is a constant ang}—measurable. Then (**)
holds if we use the fact that #1 > %5.

E(E(f141)I%2) = E(f|%2).
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Step 3.Let o be boundedjo| < C. Let (¢™) be a sequence of sim-
ple functions approximating- as in Lemmd13. (**) is true ifr; is re-
placed byo-i(”) for eachn. A simple verification shows that the expres-
sionZy(t, -), in the parenthes is on the left side of (**) with replaced
by o-i(” , converges to

Z(t,) =

t t
=EXp(f29i0'i(S, ')dS—fZQibiO'i(S,')dS—
o ! o !
t

_%fZQinO'iO'jajde)
o b

asnh — oo in probability. SinceZu(t, -) is a martingale and the functions
oi, oj, aare all bounded,

SUPE(Zx(t, ) < oo.

This proves thaZ(t, -) is a martingale. O

Corollary . With the hypothesis as in the above proposition define

t
2(t) = f (o(.).dX(s. ).
0

Then
Z(t,") € l[{o, by, cac™]

whered™ is the transpose af.
Proof. Zt,-) = &u(t,-) +--- + &a(t, ). o

Definition. Let o(s,w) = (oj(s, w)) be an x d matrix of progressively
measurable functions with

t
E[fo-ﬁ(s, -)ds] < o0

0
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If X is ad-dimensional Itd process, we define 97

t t
[ f o(s )dX(s -)] - f 7ij(s )dXi(s. ).
i 0

d
0 =1

Exercise 3.Let .

Z(tw) = f (s )dY(s ),
0

whereY € 1[0, a] is ad-dimensional 1td process andis as in the above
definition. Show that
Z(t,-) € 1[0, cac™]

is ann-dimensional Ito process, (assume thds bounded).

Exercise 4.\erify that

t
E(Z(t)?) = E[ f tr(o-ao-*)ds].

0

Exercise 5.Do exercise 3 with the assumption thedo™ is bounded.

Exercise 6.State and prove a change of variable formula for stochastic
integrals in the case of several dimensions.

(Hint: For the proof, use the change of variable formula ia ¢me di-
mensional case ard{X + Y) = dX + dY).



14. Brownian Motion as a
Gaussian Process

SO FAR WE have been considering Brownian motion as a Markov 98
cess. We shall now show that Brownian motion can be considese
Gaussian process.

Definition. Let X = (Xq, ..., Xn) be anN-dimensional random variable.
It is called anN-variate normal (or Gaussian) distribution with mean
u = (u1,...,un) and covarianca if the density function is

1 1
(20)V72 (detA)1/2

wo( - 10¢ A 0
whereA is anN x N positive definite symmetric matrix.
Note. 1. E(X) = yj.

2. Cov(Xi, X)) = (A)ij.

Theorem . X = (Xy,..., Xn) is a multivariate normal distribution if and
only if for everyd € RN, (6, X) is a one-dimensional Gaussian random
variable.

We omit the proof.

Definition. A stochastic proceds : t € 1} is called a Gaussian process
if Vig,to, ..., tn €1, Xy, - .., Xty ) IS @anN-variate normal distribution.

101



102 14. Brownian Motion as a Gaussian Process
Exercise 1.Let {X; : t > 0} be a one dimensional Brownian motion.
Then show that

(a) X; is a Gaussian process. 99

(Hint: Use the previous theorem and the fact that incremares
independent)

(b) E(X;) =0, Vt, E(X(t)X(9)) = sAt.
Letp : [0,1] = [0,1] — R be defined by

o(st) =sAt.

DefineK : L2[0,1] — L2[0, 1] by
1
Kf(s) = f o(s ) f(t)dt.
0

Theorem .K is a symmetric, compact operator. It has only a countable
number of eigenvalues and has a complete set of eigenvectors

We omit the proof.

Exercise 2.Let A be any eigenvalue &€ andf an eigenvector belonging
to 4. Show that

(@) Af” + f = Owith Af(0) = 0 = Af'(1).

(b) Using (a) deduce that the eigenvalues are giveaby 4/(2n +
1)’z and the corresponding eigenvectors are given by

fn=+42SinY2[(2n+ )atln=0,1,2,....

LetZy, Z1,...,2Z,... beidentically distributed, independent, normal
random variables with mean 0 and variance 1. Then we have

Proposition . Y(t, W) = 3 Zn(w) fa(t)vAn
n=0

converges in mean for every real t.
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m
100 Proof. Let Yp(t,w) = 3 Z(w) fi(t)y/4i. Therefore
i=0

n+m

E{(Ynem(t ) = Yalt, D% = D 1204,
n+1

E(||Yn+m(') - Yn(')||2 < Z Ai— 0.

n+1

O

Remark. As eachYy(t, -) is a normal random variable with mean 0 and
n

variance} 4; fiz(t), Y(t,-) is also a normal random variable with mean
i=0

zero and variancg; 4 f2. To see this one need only observe that the

i=0
limit of a sequence of normal random variables is a normaleanvari-
able.

Theorem (Mercer).
pst) = > Afi)fi(9. (st €[0.1]x[0.1].
i=0

The convergence is uniform.
We omit the proof.

Exercise 3.Using Mercer’'s theorem show théX; : 0 <t < 1} is a
Brownian motion, where

X(t,w) = i Zn(W) fr(t)VAn.
n=0

This exercise now implies that

1
fxz(s, w)ds = (L2 — norm ofX)?
0
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= Z /anﬁ(W),
since f,(t) are orthonormal. Therefore 101
—ﬂfxz(s )ds -A z nZ2W),
Ee ©  )=E )= [ | E@e%)
n=0

(by independence &)

[ee)

l_[ —ano)

n=0

asZy, Z, ... are identically distributed. Therefore

E(e_/lofXZ(SS 9 1—[ 1/+/(1 + 224y)
—ﬂ”d @ 1)
= 1/\/(cosh)\/(2/l).

1
APPLICATION. If F(a) = P(f X¥(9)ds < a), then
0

(o0 [ee)

f e@dF(a) = f e "2dF(a)

0 —00
= E(e™* b X4(9ds) = 1/4/(cosh)/(21).



15. Equivalent For of Ito
Process

LET (Q, %, P) BE A probability space with.#)i~0 and increasing fam- 102

ily of sub o-algebras of# such thav(U %) = .. Let
>0

(i) a:[0,0)xQ — S be aprogressively measurable, bounded func-
tion taking values ir§§, the class of altix d positive semidefinite
matrices with real entries;

(i) b:[0,0) xQ — RYbe a bounded, progressively measurable
function;

(iii) X : [0, ) x Q — RY be progressively measurable, right continu-
ous and continuous a.g(s,w) € [0, o) x Q.

For (s,w) € [0, ) x Q define the operator
d 2 d
1 0 0
Low =5 -,Z::laj (W * ,Z:;‘ bj(s W

|
For f, u, h belonging toCZ (RY), C([0, o) x RY) andCL*([0, o) x
RY) respectively we defin¥; (t, w), Zy(t, w), Pn(t, w) as follows:

t
Yi(t,w) = f(X(t,w)) — f(LSW(f)(X(s, w))ds,
0

105



106 15. Equivalent For of Itd Process

t

Zy(t,w) = u(t, X(t,w)) — f(

0

ou

s + stu) (s, X(sw))ds

t
Pt w) = exph(e Xt w) - [ (3—2 + sth) (s X(s Wds-
0

t
-3 fo (a(s W)V,h(s X(s W), Vxh(s X(s w))d.

Theorem . The following conditions are equivalent.

t t
(i) Xo(t, W) = expko, X(t,w)) — [¢6,b(s w))ds— [(6,a(s w)e)dg
0 0

is a martingale relative t¢Q, .%, P), V0 € RY.

(i) X,(t,w) is a martingalev, in RY. In particular Xg(t, w) is a mar-
tingale v6 € RY.

(i) Yi(t,w) is a martingale for every £ Cg’(Rd)
(iv) Zu(t,w) is a martingale for every & C3([0, ) x RY).
(V) Pn(t,w) is a martingale for every k C?[(0, o) x RY).

(vi) The result (v) is true for functions & CL2([0, ) x RY) with
linear growth, i.e. there exist constants A and B such fia)| <

AlX + B.
2
The functionsa—h,a—h,and— oh which occur under the integral
ot 0% 0%i0X;

sign in the exponent also grow linearly.

Remark. The above theorem enables one to replace the martingale con-
dition in the definition of an Itd process by any of the six igglent
conditions given above.

Proof. (i) (ii). X,(t,-) is.%#-measurable because it is progressively mea-
surable. ThaE(|X,(t,w)|) < o is a consequence of (i) and the fact that
ais bounded.
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X/l (t, W)
Xa(s,w)

Morera’s theorem shows thatis analytic. LetA € .%s. Then
Xa(t, W)
dP(w
f Xa(s w) v
is analytic. By hypothesis, 104

Xa(t,w) d
fx( 0P = 1. VA R

The functiona ?, is continuous for fixed, s, w, (t > 9).

f J(t dP(W) =1,V complexa. Therefore
A

E(Xa(t, W)l Fs) = Xa(sw),

proving (ii). (i) = (iii). Let

t t
Alt,w) = expl—i f(@, b(s, w))ds + % f(@, a(s, w)e)ds|, 6 € RY.
0 0

By definition, A is progressively measurable and continuous. Also
dA . _
|—(t,w)| is bounded on every compact setRnand the bound is in-

dependent ofv. ThereforeA(t, w) is of bounded variation on every in-
terval [Q T] with the variation||Allp. 1) bounded uniformly inw. Let
M(t,w) = Xig(t, W). Therefore

sup IM(t,w)| < €2 T sup |, av)).
O<t<T o<t<T

By (ii) M(t, ) is a martingale and since
E( sup [M(t, w)| [IAlljo.] (W)) < 00, VT,

O<t<T
t

M(L )AL, -)—% f M(s )dA(S )

0
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is a martingale (for a proof see Appendix), i¥:.(t,w) is a martingale
whenf(x) = €%,

Let f € Cg"(Rd). Thenf e .Z(RY) the Schwartz-space. Therefore
by the Fourier inversion theorem

f(x) = f f(9)d“ do.
Rd

On simplification we get

Yit,w) = | £(0)Yo(t, w)do
/

whereYy = Yei(0, x). Clearly Y¢(t, ) is progressively measurable and
hence%;-measurable.
Using the fact that

d2
E(IYp(t, W) < 1+t dif] [Iblles + 7|9|2 [E

the fact that#Z(RY) c LY(RY) and that.Z(RY) is closed under multi-
plication by polynomials, we geE(|Y;(t,w)|) < co. An application of
Fubini's theorem give&(Y;(t, W)|.%s) = Yi(sw), if t > s. This proves
(iii).

(iii) = (iv). Letu € Co([0, c0) x RY).

Clearly Z,(t, -) is progressively measurable. Singgt, w) is boun-
ded for everyw, E(|Zy(t,w)|) < co. Lett > s. Then

E(Zu(t, W) — Zy(s W)|Fs) =
t
= E(u(t, X(t, W) — u(s, X(s, W)|.Zs) — E(f(g_; + Lowl)(o, X(o, W)do|-F)
= E(U(t, X(t, W) — u(t, X(s, W))|-Zs) + E(U(t, X(s W) - u(S X(s W))|-F9)-

t
- E(f(g_; + LoUw)(o, X(o, w))do|.%)
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t
- E( f (Lo (t, X(o. W)dor| F)+
t
+E( f . X(5 Wil 72~
t
- E(f(g—s_ + Lo", W) (o, X(o, w))do|.Zs), by (iii)
= E(f[ LowU(t, X(o, W) — Lowu(o, X(o, W))]dor|.Zs)
t
+ E([ 150 X(s W) - o (0 X w))dor 7
- E( f (Loa(t, X( W) = Losi(cr, X(er, W] der| 7
t o
K f dor f Ly e (o X(p, W) )
106

The last step follows from (iii) (the fact that > s gives a minus
sign).

= E(fdo-f LowU(o, X(o, w))dp|.Zs)

—E( f do f & X, W)l 7

S

=0

(by Fubini). ThereforeZ,(t, w) is a martingale.
Before proving (iv)= (v) we show that (iv) is true ifi € Cé’z([o, o)
xRY. Letu e C}2.
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(*) Assume that there exists a sequenag € C7’[[0, o) xR9] such
that
du, du du, AU dup d%u
_—— =, — > —, -
ot ot 0% 0%~ 0% 0X; 0% 0X;
uniformly on compact sets.

Thenz,, — Z, pointwise and sufiZ, (t, w)|) < co.

n

unh — U,

ThereforeZ, is a martingale. Hence it is enough to justify (*).
For everyu € C([0, o) x RY) we construct ai € Cp?((—oo, 00) X
RY) = CH(R x RY) as follows. Put

u(t, x), if t >0,
u(t, x) = t ,
Cau(-t, X) + Cou(-3, x), if t < 0;
.0t ou
matching—, — att = 0 anduft, X) andu(t, X) att = 0 andu(t, x) and
u(t, x) att = 0 yields the desired constar®s andC. In factC; = -3,

C, = 4. (*) will be proved if we obtain an approximating sequence f
0. LetS : R be anyC function such that ifx| < 1,

1, if|x<1
S =1 l IX <1,
0, if|x=>2

2
X N
LetSp(X) = S _|r|1 where|x|? = X2 + -+ + X3, ,. Puru, = Spll.

This satisfies (*).
(iv) = (v). Let
h e CE2([0, c0) x RY).

Putu = exph(t, X)) in (iv) to conclude that

g—z + Lswh+ :—2L<Vxh, avyhyds

t
ML, w) = EXaw) f J(sX(sw)
0

is a martingale.
Put
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t
A(t, W) = exp— {f Z—Z(s, W) + Lsw — (S W) + %(a(a w)Vyh, Vihyds|.
0

A((t,w)) is progressively measurable, continuous everywhere and

lAlo. 1) (W) < C1 € CoT

. dA .
whereC; andC, are constants. This follows from the fact that-| is

uniformly bounded inw. Also sup |[M(t,w)| is uniformly bounded in
O<t<T
w. Therefore

E( sup IM(t, W)l lAllfo,T7(W)) < co.
O<t<T

t
HenceM(t, -)A—fM(s, )JdA(s, -) is a martingale. Now
0

dA(sW) _
Asw)

oh 1
- [a—s(s, w) + Lswh(s w) + §<anh, Vyh)

Therefore

t
M(t, w) = ehEXtw) 4 f (s X(sw) dA(s w) ‘
9 A(s, W)

t
M(t, WA(t, w) = Pr(t, W) + A(t, W) f eXE) d:((; V\\Il\;)
0

t

t
f M(s )dA(s. ) = f XS W)

0

0
t S dA( )

(o X(ow)) GO, W
+ [answ [ ZRD
0 0

Use Fubini's theorem to evaluate the second integral onite r
above and conclude thBf(t, w) is a martingale.



109

112 15. Equivalent For of Itd Process

(vi) = (i) is clear if we takeh(t, X) = (6, X). It only remains to prove
that (v)= (vi).

(v) = (vi). The technique used to prove this is an important one and
we shall have occasion to use it again.

Step 1.0 Leth(t, X) = 611 + Oaxo + - - - OgXg = (0, X) for every ¢, X) €
[0, ) x RY, 6 is some fixed element &Y. Let

t t

00 [(0.00s- fw,a@d%

0 0

Z(t) = exp

We claim thatZ(t, -) is a supermartingale.

Let f : R —» R be aC® function with compact support such that
f(xX) = xin |x < 1/2 and|f(x)| < 1, Yx. Putf,(X) = nf(x/n). Therefore
[fa(X)| < C|x for someC independent of andx and f,(x) converges to
X.

d
Letha(X) = 3. 6i fa(X). Thenhy(X) converges tdo, x) and|hy(X)| <
i=1

1=
C’|x| whereC is also independent afandx. By (v),

t t
h 1
(e X0 - [ (‘Z—S + sth)ds— > [ <avxhn,vxhn>d%
0 0

is a martingale. A#i,(X) converges taé, x), Zn(t, -) converges t&(t, -)
pointwise. Consequently

Zy(t) = exp

E(Z(1)) = E(lim Zx(D) < lim E(Zx(t) = 1
andZ(t) is a supermartingale.

Step 2.E(expB sup|X(s,w)|) < oo for eacht andB. For, letY(w) =
O<s<t

sup [X(sw)l, Yi(w) = sup|Xi(s,w) whereX = (Xq,...,Xq). Clearly

O<s<t O<s<t

Y <Y1+ -+ Yy. Therefore

E(e®Y) < E(eBY1e%Y2. .. eBYd).
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The right hand side above is finite providE@®"i) < o for eachi
as can be seen by the generalised Holder’s inequality. Thpoiote the
assertion it is enough to sho(eBYi) < o for eachi = 1,2,...d with
aB different fromB; more specifically folB’ bounded.

Putd, =0=03=...=6qin Step 1 to get

t t

u(t) = explprXa(t) - f 61ba (s, )ds— %ef f a1(s -)dg

0 0

is a supermartingale. Therefore

P(sup u(s,-) > /1) < %E(u(t)) = % ¥Ya>0.

O<s<t

(Refer section on Martingales). Letbe a common bound for both
anda;; and letg; > 0. Then ) reads

1 1
P( sup expé;X1(s) > 1exp@sct + Eefct)) <=

O<s<t

Replacingl by
el gcth1—1/2ct6]

we get

P( sup expglxl(s) > exp/wl) < e—/l€1+01ct+l/20§ct’
O<sst

i.e.
P( sup Xy (s) > /l) < g Mot l/26et g, 5
O<s<t
Similarly
P( sup —X1(s) > /l) < @ HOCL/200C g s
O<s<t
As

{Yi(w) > A} { sup Xy(s) = /1} U { sup —Xq(s) = /1},

O<s<t O<s<t
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we get 111
P{Y]_ > /1} < 26—291+€1ct+1/29§ct’ Vo, > 0.

Now we get

[ee)

E(expBY;) = % f expBX)P(Y: = X)dx (sinceYy > 0)
0

2 [ 1
<z fexp(Bx— X01 + 61Ct + Eefct)dx
0
< 00, if B< 61

This completes the proof of step 2.

Step 3.Z(t,w) is a martingale. For

|Zn(t, W)| = Zn(t, W)

t t
oh 1
hn(Xt) — f(a_n + sthn)dX— > f(avxhny Vxhn>d%
0 0

S
t
hn(X0) - f sthn‘

0

= exp

< exp

(sincea is positive semidefinite angh,/ds = 0).

ohn 8%,
hn(9)| < C|x| and —
Ihn(s)l < CIX| % IX0%
result now follows from the dominated convergence theorach $tep
2. O

Therefore |Z,(t,w)] < AexpBsup|X(s,w)|) (use the fact that
Ost

are bounded by the same constant). The

Remark. In Steps 1, 2 and 3 we have proved that£yYi). The idea of

112 the proof was to expres&(t, ) as a limit of a sequence of martingales
proving first thatZ(t, -) is a supermartingale. Using the supermartingale
inequality it was then shown thaZy) is a uniformly integrable family
proving thereby thakZ(t, -) is a martingale.
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h h
Step 4.Leth(t, X) € C2([0, co)xRY) such that(t, x), g—s(t, X), j_xi(t’ X),

4°h _ _
v (t, x) are all dominated by|x| + 4 for some suitable scalansand
O]
B. Let ¢, be a sequence of real valuéf® functions defined o®® such
that
{1 onjx <n
n =

Oonix > 2n

and suppose there exists a common boQridr

Opn  P¢n
—, ——(¥n).
Let hy(t,X) = h(t, X)¢n(X). By (V) Zn,(t,w) is a martingale. The
conditions on the functioh and¢n,’s show that

|Zn, (L, W)| < Aexp(B sup [X(s, W)I)
O<s<t
whereA andB are constants. By Step Zy{) are uniformly integrable.
Also Zy, (t, -) converges pointwise tBy(t, -) (sinceh, — h pointwise).
By the dominated convergence theorBtt, -) is a martingale, proving

(vi).






16. It0’s Formula

Motivation. Let3(t) be a one-dimensional Brownian motion. We haua3s
seen that the left integral

*) L = [B°(t,-) - B7(0,") — 1]

2 j B(s,-)dB
0

Formally (*) can be written as

dB?(t) = 28(H)da(t) + dt.

For, on integrating we recover (*).
Newtonian calculus gives the result:

df(a(t) = f'((1))dB(t) + %f”(ﬁ(t))dﬂz(t) +ee

for reasonably smooth functiorfsandg. If 8 is of bounded variation,
only the first term contributes something if we integratedbheve equa-
tion. This is becaus& ds? = 0 for a function of bounded variation.
For the Brownian motion we have seen thati3> — a non zero value,
but one can prove that dg3, ... converge to 0. We therefore expect the
following result to hold:

1
df(a) ~ f"(8(1)ds(t) + > £ (B(t))d®B(t).
We show that for a one-dimensional Brownian motion
D @By, sup@g)’,...

117
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all vanish.

a =t f 15} 13 b =ty

EQ (d)® =E [Zw(nm _,B(ti)]3} = " El(B(ti1) - S0
i=0 i=0

114  because(ti;1) — B(t;) is a normal random variable with mean zero and
variancetj,1 — ti. Similarly the higher odd moments vanish. Even mo-
ments of a normal random variable with mean 0 and variarfcare
connected by the formula

poks2 = 02(2K + D)o, K > 1.
So .
D@8yt = > (Bltiea) - BH))".
i=0

Therefore

EQ (8" = D E([B(ti) - BE))]
i=0

= 3Zn:(ti+1 -t)%
=0

the right hand side converges to 0 as the mesh of the partjten to O.
Similarly the higher order even moments vanish.
More generally, if3(t, -) is ad-dimensional Brownian motion then
we expect
1 i

df(B(®) ~ V() - ds) + 5 9%

dgidg;.
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However}, dgid3; = O if i # j (see exercise below). Therefore

df(a() ~ VI(B) - dB(t) + %Af(ﬂ(t))dﬂz(t)-

The appearance df on the right side above is related to the heat
eqguation.

Exercise 4.Check thatg;dg; = d;;dt. 115
(Hint: Fori = j, the result was proved earlier. ilf+ j, consider a
partition O=tg <t; < ... <t, =t. Let A8 = Bi(tx) — Bi(tk_1). Then

n 2
E[Z AkﬁiAkﬂj] = ) E(AZBIAZ) +2 ) EL(AB)AaB))];
k=1 k

kel

the right side converges to 0 as— co because\s; andAg; are inde-
pendent fok % ¢).
Before stating Itd’s formula, we prove a few preliminargués.

Lemma 1. Let X(t,-) € I[b, 0] be a one-dimensional 1td process. Then

t
X(t,-)—X(O,-):fb(s, Jds a.e.
0

t

Proof. exppX(t,-) — 6X(0,-) — 0 f b(s, -)dg is a martingale for each.
0

Therefore

t
E(exp[P(X(t,-) — X(0,-)) — 6 f b(s,-)dg) = constant= 1, Vt.
0
Let .
W(t,-) = X(t,-) = X(0,-) = | b(s-)ds
/

Then
E(expdW(t,-)) = Moment generating function ef = 1, Vt.
Therefored(t,-) = 0 a.e. O
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116 Remark. If X(t,) € I[0,0] thenX(t,:) = X(0,-) a.e.; i.e.X(t,") is a
trivial process.

We now state a theorem, which is a particular case of the ¢heor

on pagd_103.

Theorem .If h € CY([0, ») x RY) such that(i) |h(x)] < AX + B,

Vx € [0, ) x RY, for constants A and Bi) — éh oh & also grow
o ax' axax, o0 9

linearly, then

exph(t. A, ) - f (—+ Ah)(&ﬁ(&)—— f IVhP(s (s ))dd

is a martingale.

lto’s Formula. Let f € CF%([0, «0) x RY) and letg(t, -) be ad-dimensio-
nal Brownian motion. Then

t
f(LB0) - 10.60) = [ S (s (s )dsr
0

t t

v [HepsNdBs N+ 5 [AtsAsNds
0

0

where
92 92

2 2"
ox] axd

A

Proof.

Step 1.Consider aq + 1)-dimensional process defined by

XO(tv ) = f(tvﬂ(t’ ))7
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We claim thatX(t, -) = (Xo, X1, ..., Xq) is a d + 1)-dimensional 1td-
process with parameters

of 1
b= (a—s+§Af)(s,8(s-)),0,0,...O dterms
and 117
8o a1 ... aod
aio
a=
ldxd
ado

where
aoo = [VxfIA(s B(s 1),
0
aoj = (a—xjf)(s,ﬁ(s, D)}
ajo = doj-
For, puth = Af(t, X) + (6, X), X = (X4, ..., Xq) € RY, in the previous
theorem. Then
oh of oh of
a_S = /la—S,Ah = /lAf, (9_)(] = /la—xj +91.

Therefore we seen that

t
explaf(.p(t9) + 0809 - 4 [ (52 + 581 (sts s

0s
0
t

t
- 52 [ 9P (s ps s g6t - ace. [ V(T(s 5 N)ds]
0 0

is a martingale.
Consider 4, 6)a(;). We have

aio
A

Al

_ |200d + X, a0jf);
p+0 ’

ado
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Therefore

d d
= agod? + 1 ) a0j0 + ) 8o;0+
=1 =1

A
(1,0)a p

f
= VI[P + 2/1‘9—9,- +161%.
f)Xj

118
Thus (*) reads

t t
1
explf(t.At.-) + (6.B(t.-)) — f bo(s,-)ds— 3 f (e, a)dg
0 0

is a martingale where = (1,6) € R%*1. This proves the claim made
above.

Step 2.Derineo (s, ) = (1, -V« f (s A(s,-))) and let
t
Z(t,") = f(a(s, ), dX(s, 1)) whereX ~ (Xo, X1, ..., Xq)
0

is the ¢+ 1)-dimensional It process obtained in Step 1. SiheeC?,
Z(t,) is an Itd process with parametdis, b) andoac™:

of 1
<O',b> = a—s + EAf,

SR

" 1] |=Vxf
0
_ aoo—<p,vxf>] _1°
p* = Vxf :
0

Thereforeocac™ = 0. Hence by Lemmil 1,

t
Z(t,) - 2(0,) - f (s, byds = 0O(a.e.)
0
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t t
2(t,) = f dXo(9) - f (VS A ). dB(S )
0 0

t
= f(t.BWM) - 1(0.5(0)) - f(Vf(f,ﬂ(S, ). dB(s. )
0

119
HenceZ(0) = 0. Thus

t
F(LA() - F(0.5(0)) - f (Vs A(s )dB(S )
0

t
_ f(—s ; }Axf) (sA(s ))ds= 0 a.e.
0

This estabilished Itd’s formula.

Exercise.(Itd’s formula for the general case). Let
¢(t, X) € CHA([0, c0) x RY).

If X(t,-) is ad-dimensional Itd6 process corresponding to the param-
etersb anda, then the following formula holds:

¢(t, X(t, w)) — ¢(0, X(0, w))
t t t
([ 0¢ 1 o
_fa—s(s,X(s,x))ds+f<Vx¢,dX>+§fZa,J—aXiands
0 0 0

This is also written as
1 ¢
do(S X(s W) = gds+ (W, 0X0 + 5 ) & 7 o

To prove this formula proceed as follows.
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() Takeh(t, X) = 2¢(t, X) + (0, Xy in (vi) of the theorem on the equiv-
alence of Itd process to conclude that

Yt ) = (¢t X(t. ), X(t. )

is a d + 1)-dimensional Ito process with parameters

b = (‘%’ + Lowd, b)

ot
120 and
@V, V), aVye
B 1x1 1xd
B aVye a
dx1 dxd

(i) Let o(t,x) = (1, —Vxe(t, X)) and
t

2(t,) = f (o(s X(s ), dY(s ).

0
The assumptions animply thatZ is an 1td process corresponding
to

g &’¢
(o B, rA) _(_ ZZ 1 %0’ )
(iii) Use (ii) to conclude that

t

Z(t,-):f(a,b’)ds a.e.

0

This is Itd’s formula.

(iv) (Exercise) Verify that 1td’s formula agrees with therfnula ob-
tained for the case of Brownian motion.

Note.Observe that Itd’s formula does not dependoon
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Examples. 1. LetB(t) be a one-dimensional Brownian motion. Then

d(e'p(B(D) = €dp(B(1) + (A(1)d(e)
= €¢'(B(1)dB(D) + ¢(B)e dt+

+ %qﬁ”(ﬂ(t))etdt.

2. To evaluatel(ek VESNISy(t, 4(t))) whereV is a smooth function, 121

put
t
_ ) B 0 b
Xo(t, ) = Of V(8(s )ds b= [V . '»] _ [bz]
a= [(]-3 8] . Let X]_(t, ) = ﬁ(t, '), X= (X]_, X2)
Then

t
expiXa(t, ) — 62Xa(t, 1) — 61 fbl(X(Ss ))ds
0

t t
1
~ 0z [ ba(X(s s 5 [ (@09

62,
expPrXa(t, <) — %t];

the right side is a martingale. Therefob& (X5) is a 2-dimensio-

nal Itd process with parametebsand a and one can use Itd’s
formula to write

d (e Ve, (1)) = d (€9Outt.50))
= eh V(ﬁ(s'»%u(t, BO)dt+

+eb VW(S”dtaﬁx u(t, B)A() + eb VEEdsy L B(t)dX
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1 bvEsyas?
+ 2(—:wa e u(t, B(t))dt

_ b V(B(S'))dt%u(t, Bt)dt + %u(t, B(9)d(t) + %:—;u(t, A(t))dt
+U(L BOIV (B, ).

122 3. Letoy, fi,i = 1,2,...kbe bounded and progressively measurable
relative to a one-dimensional Brownian motidp, (#;, P). Write

t

t
Xi(t, ) = f oi(s )dB(s ) + f fi(s )ds
0

0

t
ThenX;(t, -) is an 1td process with parametegﬁﬁ(s, )ds o-iz) and

0
(X1,..., Xy) is an Itd process with parameters

t t
= fi(s-)ds..., | fk(s-)d S] ,
o]

A= (A”) whereAij = 00 0ij.
If ¢ = ¢(t, X1(1)..., Xk(1)), then by I1td’s formula

_ 945, 92 . ¢
do¢ = asds+ 8x1dX1+ ka

1 ¢
+—ZO‘iO'j5ij—a 2 _dS

_0¢ 0 0¢
X —
=5 ds+a ld + - E)xkdxk

LLN 299
2 — a
Exercise.Takeo1 = 1,05, =0, f; = f, = 0 above and verify that if

¢ = Mu(t, A1),

then one gets the result obtained in Example 2 above.
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We give below a set of rules which can be used to calcudaten
practice, where is as in Example 3 above.

1. With eachdB associate a terny/(dt)

2. If ¢ = o(t, Xq,...,X), formally differentiate¢ using ordinary 123
calculus retaining terms upto the second order to get

5 dp = @gis 90 9y AN P yax
*) do = atdt+axldxl+ + g Kk zzamaxjdxdxl

3. Formally writedX = fidt + ;dg;, dX; = od3; + fjdt.

4. Multiply dXdX; and retain only the first order term oit., For
dsidg; substitutes;; dt. Substitute in (*) to get the desired formula.

[llustration of the use of It® Calculus.We refer the reader to the sec-
tion on Dirichlet problem. There it was shown that

u(x) = f u(y)zr(x, dy) = E(u(X(7)))

G

satisfiesAu = 0 in a regionG with u = u(X(r)) on the boundry of5
(herer is the first hitting time).

The form of the solution is given directly by Itd’s formulavithout
having recourse to the mean value property).u l£ u(X(t)) satisfies
Au = 0 then by Itd’s formula

du(X(t)) = (Vu, dx).



128 16. It6’'s Formula

Therefore

t

u(X(t)) = u(X(0)) + f (Vu(X(9)), dX(s))
0
124
AssumingVu to be bounded, we see th&iX(t)) is a martingale. By
the optional stopping theorem

E(u(X(1)) = u(X(0)) = u(x).

Thus Ité’s formula connects solutions of certairffeliential equa-
tions with the hitting probabilities.



17. Solution of Poisson’s
Equations

LET X(t,-) BE A d-dimensional Brownian motion with¢Y, %, P) as 125
1
usual. Letu(x) : RY - R be such thatéAu = f. Assumeu € CZ(RY).

t
ThenLgyu = :—ZLAu = f and we know that(X(t,-)) — f f(X(s,-))dsis

0
a (@, %, P)-martingale. Suppose now thatx) is defined only on an
1 . .
open subse® c RY and EAU = f onG. We would like to consider

t
Z(t,) = U(X(t, ) - f F(X(s )ds
0

and ask whetheL(t,-) is still a martingale relative toC, %, P). Let
T(w) = inf{t, X(t,w) € dG}. Put this way, the question is not well-posed
becaus&(t, -) is defined only upto time(w) for uis not defined outside
G. Eveniif at a time > 7(w)X(t,w) € G, one needs to know the values
of f for t > r(w) to compute the integral.

To answer the question we therefore proceed as follows.ALet
[w: T(w) > t]. AstincreasesA; have decreasing measures. We shall
give a meaning to the statemef(t, -) is a martingale om’. Define

TAL
Z(t.) = UX(r At )) - f F(X(s ))ds
0

129
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130 17. Solution of Poisson’s Equations
Therefore

7t = Z(1), on A
"7z, ), on (A

SinceZ(t,-) is progressively measurable upto timeZ(t, -) is .Z-
measurable.

Theorem .Z(t, ) is a martingale.

Proof. Let G, be a sequence of compact sets increasing soich that
Gh C Gg+l. Choose a&* function ¢, such thatp, = 1 on G, and

1
supportg, c G. Putu, = ¢gpuandf, = EAU”' Then

t
Zo(t,) = in(X(t, ) - f f(X(s ))ds
0

is a martingale for each. Put
T = inf{t: X(t,") ¢ Gn}
ThenZ,(th A t,) is also a martingale (See exercise below). But
Zo(tn At) = Z(th A ).

ThereforeMp(t,-) = Z(my A t,-) is a martingale. Observe that <
Tnhe1 @nd sincesy, 1 G we havery, 1 1. ThereforeZ(m,At) — Z(r At) (by
continuity); alsoMn(t, -)| < |lUlle + || fllot. ThereforeZ(r A t) = Z(t, ")
is a martingale. m|

Exercise.If M(t, ) is a @, %, P)-martingale, show that for my stopping
timer, M(r A t,-) is also a martingale relative tg#).
[Hint: One has to show that 6 > t;,

f M(r A to, W)dP(W) = f M(r A ty, W)dP(W), VA € ., .
A A
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The right side=

M (t1, w)dP(w) + f M (r, w)d P(w).

AN(r>t1) An(r<ty)
127 The left side
= f M(to, W)dP(w) + f M(t, w)dP(w).
AN(r>t1) An(r<ts)

Now use optional stopping theorem].

Lemma . Let G be a bounded region andbe as above. Then&) <
00, ¥X € G, where E, = EPx.

Proof. Without loss of generality we assume tiats a sphere of radius
R? - Ix?

R. The functionu(x) = .

the previous theorem

. 1 ,
> 0 and satlsfle%Au =-1inG. By

TAL
u(X(T/\t,-)+fds
0

is a martingale. Therefore
Ex(U(X(r A t,))) + Ex(r A t) = u(X(0)) = u(x).

ThereforeEx(r A t) < u(X) (sinceu > 0). By Fatou’s lemma, on

lettingt — oo, we obtainEy(r) < u(X) < . Thus the mere existence of

.1 . ,
au satlsfylngEAu =1 helps in concluding thad(7) < . ]
Theorem .Letue Cg(G) and suppose that u satisfies
1 .
* §Au =finG,

u=gondG.

Then §x) = E4[qg] — EX[fT f(X(s, -))dd solves (*).
0
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Remark. The first part of the solutimi(X) is the solution of the homo-
geneous equation, and the second part accounts for the agemeous
term.

TAL

128 Proof. DefineZ(t,) = u(X(r At)) - [ f(X(s,))ds ThenZ is a mar-
0

ﬂngale. Also|Z| < ||ulle + 7lIflle. Therefore, by the previous Lemma,
Z(t,-) is a uniformly integrable martingale. Therefore we canatguhe
expectations at time= 0 and at timé = o to get

U0 = Ex(g) — Bl f F(X(s ))dd.
0



18. The Feynman-Kac
Formula

WE NOW CONSIDER the modified heat equation 129
1
*) % + EAU +V(Xu(t,x) =0, 0<t<T,

whereu(T, X) = f(X). The Feynman-Kac formula says that the solution
for s< T is given by
) U(s X) = Eqy(ek YOISE(x(T)).

Observe that the solution at tinsedepends on the expectation with
respect to the process starting at time

Note.(**) is to be understood in the following sense. If (*) admés
smooth solution then it must be given by (**). We shall not gtoithe
conditions under which the solution exists. Let

t
Z(t,-) = u(t, X(t, -))els VX(@)do) ¢ 5 o

By Ito’s formula (see Example 2 of sectibn] 16), we get
t

Z(t)=Z(s ")+ f ol VT (71, X(1)), AX(A)),
S

provided thatu satisfies (*). Assume tentatively th& and Vu are
bounded and progressively measurable. TH@R-) is a martingale.
Therefore

Esx(Z(T,+)) = Ezx(Z(s ),

133
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or
.
Esx(U(T, X(T)ele VX9 = (s )
This proves the result.
130 We shall now remove the conditioW, is bounded and prove the

uniqueness of the solution corresponding to (*) under tisaimption
thatV is bounded above and

lut, x| < X e <2 on [sT).

In particular, the Feynman-Kac formula extends the unigasrthe-
orem for the heat equation to the class of unbounded furetatisfying
a growth condition of the form given above.

Let ¢ be aC* function such thap = 1 on|X| < R, and¢ = 0 outside
X > R+ 1. Putug(t, X) = u(t, X)¢,

Za(t, X) = Ur(t, X)ek VX(@)do),
By what we have already provedg(t, -) is a martingale. Let
Tr(w) = Inf{t : t > sw(t) € S(O;R) = {|x < R}}.
ThenZg(t A 1R, -)) is also a martingale, i.e.

tAT
UR(t A TR, X(t A TR, .))efs RV(X(0))dor

is a martingale. Equating the expectations at ttimesand timet = T
and using the fact that

UR(t A TR, X(t A TR, 1)) = U(t A TR, X(t A TR, 7)),
we conclude that
U(S X) = Esx[U(TR A T, X(TR A T, ))ek ™ VX(9)ds)
= EsulXamam) F(X(T))ek VOS]

TfRV(X(s))ds
+ Esx[ X< U(TR, X(zg)€5
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131
Consider the second term on the right:

R
[Esx[XrreT)U(TR, X(T R))GL‘ VX(9)ds,
<APR<T]

(whereA’ is a constant given in terms of the constaitand T and the
bound ofV)
= A P[ sup [X(0) = R].

s<o<T

P[ sup |X(o)| > R]is of the order ofe®MR* and sincea < 2, the
Ss<o<T
second term on the right side above tends to Ras o. Hence, on

letting R — +o0, we get, by the bounded convergence theorem,

U(s. ) = Eax[ F(X(T))els VxS

Application. LetA(t, -) be a one-dimensional Brownian motion. Recall

(Cf. Reflection principle) thaP{ sup |3(s)| < 1} is of the order ofé—le—
O<s<t T
2

2 2 2
of the factor— in the exponent. First observe th%{ = wherea is

the first positive root of Cog = 0. Let
7(w) = inf{t : |B(t)] > 1}.

Then
P{sup|B(s, )| <1} = P{r > t}.

O<s<t

Let ¢(X) = Ex[e'], 1 < 0. We claim that satisfies

1
* 50"+ =0, X<1,
*) 2
=1 X=1

t . .
%. The Feynman-Kac formula will be used to explain the occcean

132
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Assumeg to be stficiently smooth. Using Ité’s formula we get

d(e"p(B(1) = €4 (B(1)dB(H) + [16(B(D) + %fb”(ﬁ(t))]e“dt-

Therefore

t
e"¢(B(1)) — ¢(B(0)) = f e'%¢'(5(9))dB(s)+
0

t
¢ [L069) + 36" BN ds
0

t
e"p(B(1) - H(B(0) - f [19(8(9) + 50" (B ds
0

is a martingale. By Doob’s optional sampling theorem we d¢ap this
martingale at time, i.e.

tAT

el g(p(t A 1) - 9(6(0) — [L(H(S) + 56 (G(eds
0

is also a martingale. Butf@ <t A T,
1
Ao+ =¢” = 0.
¢ 2¢>

Thus we conclude that(8(t A 7))e™Y is a martingale. Sincg <
0 and¢(B(t A 7)) is bounded, this martingale is uniformly integrable.
Therefore equating the expectationtat 0 andt = o we get (since
¢(B(7)) = 1)
¢(x) = Ex[e"].

By uniqueness property this must be the solution. Howevehds

a solution given by
_ Cos(y(21x))

0= Costy@1)
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Therefore

1) Eole''] = (1<0)

1
Cos(y(21))
If F(t) = P(r = t), then

f el'dF(t) = Eg(e™).
0

A theorem on Laplace transforms now tells us that (1) is villid
2

1 b4
we cross the first singularit . Thisoccursafl = —. B
gularity & S s@) g Y
the monotone convergence theorem

Eo[€™ /8] = +oo

N

00 2
Hence [ edF(t) converges forl < % and diverges fon > %
0
2 00
Thus% is the supremum of for which fe/“dF(t) converges, i.e. sup
0

[A : Eg(e')] exists, i.e. the decay rate is connected to the existence o
the non existence of the solution of the system (*). This ienegal
feature and prevails even in higher dimensions.






19. An Application of the
Feynman-Kac Formula. The
Arc Sine Law.

LET B(t, -) BE THE one-dimensional Brownian motion wisi(0, -) = 0. 134

Define
t

memmmmS

0

&(w) =

~| =

&(w) is a random variable and denotes the fraction of the timedha
Brownian particle stays above tixeaxis during the time interval [@)].
We shall calculate

Plw: &(w) < a] = Fy(a)

. . 1 , .
Brownian Scaling. Let X;(s) = —t,B(ts). ThenX; is also a Brownian

motion with same distribution as that gfs). We can write

1
am=j&mmmammS
0

The &(w) = time spent above thg-axis by the Brownian motion
X(s) in [0, 1]. HenceF(a) is independent of and is therefore denoted

139
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by F(a). Suppose we succeed in solving fofa); if, now,

t

&Ww) = f X0,00)(B(8))ds = t&,

0

then the amount of timg(s, -) > 0in [0, t] is t (amount of timeX(s) > 0
in [0, 1]). Hence we can solve fd?[&(w) < a] = Gi(a). Clearly the
solution ofG; is given by

Gi(a) = F(a/t).

It is clear that

if
Fa) = 0 | a<o,
1 if a>1

Hence it is enough to solve féi(a) in0<a < 1. Let
Ua(t, X) = Exe @b XoeBsm)ds;

Then
1

uy(t, 0) = E[e¥W)] = f e *dF(X).
0
Also note thatu,(t, X) is bounded by 1, ift > 0. By the Feynman-
. e 1, . 1
Kac formula (appropriately modified in ca% is replaced by—EA)
u1(t, X) satisfies

@_}8_211_“ x>0
*) ot 20x2 7 ’
16%u
zﬁﬁ’ X <0,

andu(0,x) = 1. Let
ba(X) = afu(t, e dt, o >0, where u=u,
0
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= fu(t, X)(—de ).
0

A simple integration by parts together with (*) gives theldaling
system of ordinary dierential equations fap,,:

1

—§¢>f1’+(a/+1)¢(, =qa, X>0,
1 144

—§¢>Q+a¢a:a, x < 0.

These have a solution
do(X) = % + AgV@e+D) | Be‘x‘/(z(‘”l)), x>0,
a
=1+CeV@) L pgV@)  y Q,

136
Howeveru is bounded by 1 (see definition of(t, X)). Thereforep,
is also bounded by 1. This forcéds= D = 0. We demand thag, and

% should match ak = 0. (Some justification for this will be given

later on).
Lt ¢a(x) = Lt ¢a(x)
X—0+ X—0—

gives
T:a +B=C+1
Similarly we get-B+/(2(a + 1)) = C+/(2«) by matchingd(;i)‘:. Solv-
ing for B andC we get
B= Va

A+ o)Wa+ @+ 1)

B 1

- VA + ) (Va + (e +1)

Therefore

a Va
%0 =77 +B= o1y



142 19. An Application of the Feynman-Kac Formula....

(o)

e ot N
fE[e Yiye t]dt_\/(a+1)'
0

Using Fubini’'s theorem this gives

a

] = V(—),

E
[a+§ a+1

or

1

1 . 1 _ dF(x) 1
E[1+g/a] B ‘/(1+ (1/a))’ €. 0f1+7x VA +y)
137

This can be inverted to get

dx
VX1 =)’

(Refer tables on transforms or check directly that

dH@:%

1

gf 1 dx 1
nJ 1+pxy(x1-%)  V(1+p)

0

by expanding the left side in powers @#)( Therefore

2 .
F(@ =—- arcsin @a), O<ac<l
T

HenceGy(a) = 2 arcsin §/(2)),0<a<t, i.e.

Plé < a] = ; arcsin (\/(%)), O<ac<t.

This result goes by the name afc sine lawfor obvious reasons.
We now give some justification regarding the matching caokit
used above.
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The equation we solved was
l 144
ag— 59" + V¢ = f

whereg was bounded/ > 0. Suppose we formally use 1td’s formula to
calculate

d(p(B()e beEeas)
= & BB (g(s o+ 2 (a0)po]

(see Example 2 of Ité’s formula). Therefore
t S
t
(2. = o(6tt. D b0 [ epis yexp- [ o+ Vido)ds
0
0

is a martingale. Since, f are bounded and > 0, 138

(9]

1Z(t, ) < llglleo + 11 flleo fe‘“sdss lI$lleo + ClIfllco-

0

ThereforeZ(t, -) is uniformly integrable. Equating the expectations
at time 0 andx gives

) ¢(0) = Eo f [f(8(s ) s o VE@IN|gg
0

This is exactly the form obtained by solving thdtdrential equa-
tions. In order to use 1td’s formula one has to justify it. we show
that 1td’s formula is valid for functions having a discamiity in the
second derivative, (*) will be a legitimate solution and iengral there
is no reason why the second derivatives (or higher derigtigshould be

matched. This partially explains the need for matchﬁr@dd—(f( only.



144 19. An Application of the Feynman-Kac Formula....

Proposition . Let 3(t,-) denote a one-dimensional Brownian motion.
Suppose € C} and satisfied

g — }qb" +Vo = T,
2
Then

t
S(B(0) - f F(B(9)ds
0

is a martingale.

Proof. Let (¢) € C2 such thatg, — 3¢” + Vo, + Vg, = f. and such
that (i) ¢ converges t@ uniformly on compact sets, (i), converges to
¢’ uniformly on compact sets, (i), converges pointwise " except
at 0. We may suppose that the convergence is bounded. m|

t t
139 Claim. [ f.(8(s))ds converges t¢ f(3(s))ds a.eAs f.(3(s)) converges

0 0
to f(B(s)) except wherB(s) = 0, it is enough to prove that
(*) P[w: Lebesgue measurs (5(s) = 0) > O]= 0. Let X o denote
the indicator function of0}. Then

t t

E [ Xo@e)ds= [ Exo(s(s)ds=0

0 0

Thus (*) holds and establishes the claim. Now

t

b (B1)) - f f.(B(9)ds

0

is a uniformly bounded martingale converging to

t

o(B(0) - f f(B(9)ds

0
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Therefore

t
o(B(D) - f f(8(9)ds
0

is a martingale.






20. Brownian Motion with
Drift

LET Q = C[0, o0; RY], .# = BOREL o-FIELD of Q, {X(t,-)} = Brow- 140
nian motion,.%; = o[X(s,-) : 0 < s < t], Px = probability measure

on Q corresponding to the Brownian motion starting at time kat

F = o-(tgo%). Letb : RY - RY be any bounded measurable funci-

ton. Then the maps(w)| — b(w(s)) is progressively measurable and
t t
1
2(.) = expl [ (B(X(s ). aX(s ) - 5 [ Io0X(s NP
0 0

is a martingale relative taY, .7, Py). DefineQ\ on.%; by
W= [ z.9dr
A

i.e.Z(t,) is the Radon-Nikodym derivative @, with respect tdPy on
F.

Proposition . (i) Q! is a probability measure.
(i) {Q% :t > 0}is a consistent family owO%, iLe.if Ae %, and
>
t, > t; then Q1(A) = QL2(A).

Proof. @ being an indefinite integral, is a measure. Sid¢e-) > 0,
Q! is a positive measureQ.(Q) = Ex(Z(t,-)) = Ex(Z(0,-)) = 1. This
proves (i). (ii) follows from the fact thak(t, -) is a martingale.

147



148 20. Brownian Motion with Drift

If Ae %, we define

Qu(A) = Q.

141 The above proposition shows th@f is well defined and since#;)
is an increasing familyQy is finitely additive onl J .%:. O
t>0

Exercise.Show thatQy is countably additive on the algebta #;.
>0
Then Qy extends as a measure 6 = o(|J #;). Thus we get a
>0

family of measure$Q, : x € RY} defined onQ, .%).

Proposition . If s < t then
Qx(Xt € ALFs) = Qxg(X(t—9 € A) ae.

Definition. If a family of measure$Qy} satisfies the above property it
is called a homogeneous Markov family.

Proof. Let B € Z5. ThereforeB n X 1(A) € .%; and by definition,

QX € AN B)) = f Z(t, )dP,

BNX;L(A)

EP(Z(t, Wy a(X(t, )
Z(t,- W ~
_ EP*(EP*(%ZL& WA )P
Z(t,)

— EPx WEPx( S\ / . T
= E™([xsZ(s "))E (Z(s .)XA(/\,/(tv NI Fs)

(sinceB € FsandZ(s, ) is .#s-measurable)

_ EQup P 26 ) .
(1) =E>[xsE (Z(s,-)XA(X(t’ )IEZS]

t t
- E%TraE"(expL [ (0.0 - 5 [ IbPLeaCK(t )17

0
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t-s t-s
= E[ygE™ (exp] f <b,dx>% f I Xa(X(t = 9))]
0 0

(by Markov property of Brownian motion)
-S

d
= E%(eEXO (ralx(t - 9)) (since o _ Z(t-s-)
(9

d PX S
= EX(XeEP@xa(X(t - s.)

O 142

The result follows from definition.
Letb : [0, 0] x RY — RY be a bounded measurable functid,

the probability measure corresponding to the Brownian omastarting
at timesat the pointx. Define, fort > s,

t
Zsi(w) = exp[ f (b(o, X(o, W), dX(o, w))

t

_% f Ib(cr, X(cr, w))I?der]

S
Exercise. (i) Zs:is a martingale relative to%?, Psx).
(i) Define Q\, by QL,(A) = [ ZsdPsx, YA € F&.
A
Show thathX is a probability measure of;’.
(iiiy Qi is a consistent family.

(iv) Qsx defined ony T by QsxlZ° = Qi is a finitely additive set
>S
function which is countably additive.

(v) The family {Qsx : 0 < s < o0, x € RY} is an inhomogeneous
Markov family, i.e.

Qsx(X(t.)) € ALF7) = Qux()(X(t,) € AL Vs<o <t Ae F.
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[Hint: Repeat the arguments of the previous section withHals/ 143
modifications].

Proposition . Lett be a stopping timer, > s. Then

Qsx[X(t,-) € ALZ]] = Qrx,()(X(t,-) € A)onT(w) < t,
= ya(X(t, ")) ont(w) > t.
Proof. Let B € %2 andB c {r < t} so thatB € .%".
E%*(ygra(X)) = EP(Zsrara(Xt))
= EP[EP(Z1Zs rxey a(XO)1 7))
(sinceZ satisfies the multiplicative property)
= EP(Zs o BEP (Zeax aX)LZD)]

(sinceZs; is .Z2-measurable)

*) = EPS[Z: XgEP ™ (Zr iy a(X))]
(by strong Markov property).
Now
dQsx _
dPS,X ()02‘15 St-
so that the optional stopping theorem,
dQsx|
FSX s = ZS, on {T < t}, VX
144 Putting this in (*) we get

EQS’X[XBXA(Xt)] — EPsx[ZSTXBEQT,xTCVAXt)]_

Observe that
XBE (ya(Xy))

is .#2-measurable to conclude the first part of the proof. For part (
observe that
XFHA) Nzt nf{r <k
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isin.Z2if k> s, so that
X HA) N>t e ZS.
Therefore
E%x (X € AN (7 2 IF?) = xa(x ey

or
EQ[(X € ALFS] = xalX) if 7>t

O

Proposition . Let b: [0, ) x RY — RY be a bounded measurable func-
tion, f : R4 > R any continuous bounded function. If

1
ou + =Au+(b(s,X),Auy =0, 0<s<t,

s 2
ut, x) = f(x)

has a solution u, then

u(s,x) = | f(X)dQsx-
/

Remark. b is called thedrift. If b = 0 ands = 0 then we recover the145
result obtained earlier. With the presence of the drift tethre result is

the same except that insteadRfx one has to us€sy to evaluate the
expectation.

Proof. Let
V() = [00.X(09).8X0.9) - 5 [ Ib0.x(0. ).
S S
Step 1.(X(o, -)-X(s,-), Y(o, ) is a d+1)-dimensional Itd process with

parameters
(0,0,...,0, —%|b(<f, X(o,))P) and
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dterms

ldxd bdxl]
b;xd b

LetAd = (44,...,4q). We have to show that

o

expluY + % f Ib(or, X(o, )2do + (1, X(c, -) = X(s, -))—

S

-5 [0+ 2t b+ bt o]

is a martingale, i.e. that

[oa 1 a
expla, X(o, ) = X(s,*)) +uf<b,dX> -3 fl/l + bulPdp].

is a martingale; in other words that

expl f A+ b, d0 - 3 f 1A+ budg]
) S

146  is a martingale. But this is obvious because
o
Z(o,) = f(/l + ub, dX)
S

is a stochastic integral and hence an Itd process with s (0] +
ubl?). (Refer to the section on vector-valued Itd process).

Step 2.Puté(o, X(o,-), Y(o, ) = u(o, X(o, -))e'). By Itd formula,

ou 1 2
d¢ = e’ —dt+ e"(Vu,dX YdY + = f—
p=e Bt +e'(Vu,dX) + ue +22a”82,-82j’

wherez = (x,y), or

do = Y[%dt +(Vu, dX) + u(b, dX) — '%|b|2dt + %Vudt+ (b, Vuydt+
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1. 0
+5ulbfdf]
= e'[(Vu,dX) + Wb, dX)].

Thereforey is an 1td process and hence a martingale. Therefore

E(4(t.)) = E(6(s. )

“(b,dX)—1 (bR
Ws ¥ = EP(foxpe T

= EQ[f(X(1))],

which proves the theorem.

Alternate Proof. 147

Exercise .Let Y(o, ) be progressively measurable for > s. Then
Y(o,-) is a martingale relative toQsx, %) if and only if Y(0)Zs, is
a martingale relative taRgx, -Z;’).

Now for any functiord which is progressively measurable and boun-

ded,
t 1 t
exp| f 0.d%) - 5 f 161°dor]
S S

is a martingale relative taY, .72, Psx). In particular letd be replaced
by 6 + b(o, w(c)). After some rearrangement one finds tKats an 1td
process with parametebs | relative toQsx. Therefore

t
u(t, X)) — f(;’)_u + (b, Vu) + %Vu) do
g
S

is a martingale relative tQsx. But

ou 1
8_0' + <b, vu) + EVU =0.
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Therefore
EQsx(u(t, X(t)) = u(s, X).

We have defined)sy by using the notion of the Radon-Nikodym
derivative. We give one more relation betwdeandQ.

Theorem .Let T : C([s, ), RY) — C([s, =), RY) be given by
t
TX=Y where Yt)=X({)- f b(c, X(c))dor.
S

(b is as before). Then
stT_l = Psx.

Proof. DefineY(t,w) = X(t, Tw) whereX is a Brownian motion. We
prove thatY is a Brownian motion with respect Qsyx. Clearly Y is
progressively measurable becalsis (% — %;)-measurable for every
t,i.e. T"1(%) c % andX is progressively measurable. Cleaxt, w)
is continuousY w. We have only to show that(tz) — Y(t1) iS Qsx-
independent of#$ and has distributioN(0; (2 - t1)1) for eacht, >
t; > s. But we have checked that

t
exp[(d, X; — X) — %|9|2(t —9 - f (6, bydo]

is a martingale relative tQsx. Therefore
Qsx oS 1 2
E s (exmea Ytz - Yt1>|°/t1) = exp(§|9| (t2 - tl))s

showing thatv;, — Yy, is independent of7> and has normal distribution
N(O; (t2 — t1)l). ThusY is a Brownian motion relative tQs . Therefore

QsxT 71 = Psy.



21. Integral Equations

Definition. A functionb : RY — RY is said to be locally Lipschitz if 149
given anyxo € R there exists an open se containingxo such that
bly, is Lipschitz.

Exercise 1.bis locally Lipschitz it bk is Lipschitz for every compact
setK i.e. iff bk is Lipschitz for every closed spheke

Exercise 2.Every locally Lipschitz function is continuous.

Theorem .Let b: RY — RY be locally Lipschitz and X [0, o) — RY
continuous. Then

() the equation
t
Y(t) = X(t) + f b(Y(s)ds (x)
0

has a continuous solution nefr i.e. there exists aa > 0 and a
continuous function Y [0, €] — R such that the above equation
is satisfied for all t in[0, €].

(i) (Uniqueness) IfY, Y, are continuous solutions of the above equa-
tion in [0, T], then

Y=Y on [0,T].

Proof. (ii) (Uniqueness) Leff (t) = [Yi(t) — Ya(t)]. As Yy, Y, are con-
tinuous, there exists B > 0 such thatYy(t)|, |Y2(t)] < k for all t in

155
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156 21. Integral Equations

[0, T]. ChooseC such thatib(x) — b(y)| < C|x -] for |, lyl < k and
t

C sup f(t). Thenf(t) < Candf(t) < Cf f(s)dsso thatf (t) < (%,)n for
0<t<T 0 .
alln=1,23,.... ThusYy(t) = Yu(t), proving unigueness.
() (Existence) We can very well assume thg0) = 0. Leta =
inf{t : IX(t)] = 1},

M > sug|b(X)| : X < 2}, a =inf{a, %},
C # 0, a Lipschitz constant, so thi(x) — b(y)| < C|x -] for all |x|,
Iyl < 2. Define the iteration¥p, Y1, ... by

t
Yo) = X®,  Yoea(t) = X(0) + f b(Ya(9)ds
0

for all t > 0. By induction, eachy,, is continuous. By induction again,

[Yn(t) — X(t)] < Mt for all n, 0 <t < . Again, by inductionYp,1(t) —
n+1

Ya()l < %L for 0 < t < . Again, by inducitonYn,1(t) - Ya(t)l <

%% for 0 <t < a. ThusYy(t) converges uniformly on [@] to a

continuous functiorY(t) which is seen to satisfy the integral equation.
i

Remark. Let X : [-6,00) — RY be continuous wheré > 0. Then a
similar proof guarantees that the equation (*) has a saiutio[—e, €]
for somee > 0.

Define B(X) = suft : (x) has a solution in [(&]}. The theorem
above implies that & B(X) < co. B(X) is called theexploding time

Remark . If b is, in addition, either bounded or globally Lipschitz,
B(X) = oo for every continuou : [0, c0) — RY.

Example. Let b(y) = y?, X(t) = 0. The equation

t
Y(t) = %0 + f by(9)ds
0
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with Xg > 0 has a solution

1 1

Y(t) = , V< —;
(t) " %

1
X0

the solution explodes at= x5™.

Proposition . If

B hen Lt )| = .
W) <o, then Lt ()] =+oo

Proof. Suppose that_limly] = R < 0. Let (t,) be a sequence increas-
t—B(w)
ing to B(w) such thaty(t,)] < R+ 1, Vn. Let

mn = inf{t > tn 1 y(t) — Y(—n)l = 1}.
Then

1 = |y(Tn) — y(tn)l
< W(tn) = W(ty)| + (7n — tn) suplb()|. .., (1)
A€ S(y(tn), 1).

Since () is bounded, we can choose a constsinsuch that
W(th) — w(t)| < % if Jt—ty] <M.
Then using (1),
Tn —th > inf{M, (2 supb(1))™* where 1€ S(Y(tn); 1)
Therefore
T — tn > inf(M, (2 supb(1)) ™1, 1 € S(O; R+ 2)) = a(say)¥ n.

152
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Chosen such thatr, > B(w) > t,. Theny is bounded int,, B(w)]
and hence it is bounded in,[B(w)). From the equation

t
y(t) = X(t) + f biy(9)ds
0

one then gets thatlt B(L)ty(t) exists. But this is clearly a contradiction
—B(W,

since in such a case the solution exists ing@) + ¢) for suitablee,
contradicting the definition dB(w). Thus

lim |y(t)] = +o0
t—>B(w)

and hence
lim )| = .
HIB(W)Iy()I +00

O

Corollary . If b is locally Lipschitz and bounded, therf>8 = ~ for all
X in C([0, o), RY).

Proof. Left as an exercise. O

Proposition . Letb: R — RY be locally Lipschitz and bounded. Define
T : C([0, ), RY) — C([0, 0),RY) by TX= Y where

t
Y() = X(®) + | b(Y(9)ds
/

Then T is continuous.

Proof. Let X, X* : [0,00) — RY be continuousK > 0 be given.

Let Yo, Y1,..., Y5, Y], ... be the iterations foK, X* respectively. Then

Ya(t) — X(t)] < K]|lbllw for0 <t < K,n=0,1,23,..., so that we can

find R such thatYy(t)], Yi(t) < RforO <t <k, n=20,12,..., Let

C > 1 be any Lipschitz constant for the functibron|x| < R. Then
(Ct)?

[Yn(t) = Ya(O)l < sup [X(t) - X*(0)] - (1 + Ct+ ——+
O<t<K 2!
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L

+.
n!

) for 0<t<K, n=0123,....
A b is bounded,Y,, converges uniformly tor on [0, K]. Letting
n — co, we get

sup [(TX)t — TX)t < € sup [X(t) = X*(t), ... (2)
O<t<K O<t<K

wherec depends on supX(t)|, sup [X*(t)]. The proof follows by (2).
O<t<K O<t<K
m|






22. Large Deviations

LET P. BE THE Brownian motion starting from zero scaled to Browns4
: : : A .
ian motion corresponding to the operal:eéf. More precisely, let

o[

whereP is the Brownian motion starting at time 0 at the point 0.

Interpretation 1. Let {X; : t > 0} be Brownian motion withX(0) = x.
LetY(t) = X(et), Yt = 0. ThenP, is the measure induced by the process
Y(t). This amounts to stretching the time or scaling time.

Interpretation 2. Let Y(t,-) = +eX(t,). In this case alsd. is the
measure induced by the proceds, -). This amounts to ‘looking at the
process from a distance’ or scaling the length.

Exercise.Make the interpretations given above precise.
(Hint: Calculate (i) the probability tha(et) € A, and (ii) the probability
that+y/eX(t,) € A).

Problem. Let
1
1 .
I(W)=§ Iw(t)|“dt
0

if w(0) = 0, w absolutely continuous on [@]. Putl(w) = co otherwise.

161
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162 22. Large Deviations

We would like to evaluate

Fw)
f e« dP.(w)

Q

for small values ofe. HereF(w) : C[0,1] — R is assumed to the a
bounded and continuous function.

Theorem .Let C be any closed set in@ 1] and let G be any open set
in C[O, 1]. Then

limsupe logP.(C) < - f I(w),

e—0
weC

liminf elog P(G) > — inf I (w).
e—0 weG
Here P.(G) = P.(x~1G) wheren : C[0, o) — C[0, 1] is the canoni-
cal projection.
Significance of the theorem If

1.
=1(w)

dP. = e <,

=)
PE(A):fe < dP.
A

is asymptotically equivalent to

then

exp[—} inf 1(w)].
€ WeA
2. If Ais any set such that
inf 1(w) = inf [(w),
weAl WeA
then by the theorem

€|:>t0 log P.(A) = Jvr;& [(w).
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156 Proof of the theorem.

Lemma 1. Let wp € Q with (W) = € < oo. If S = S(wp; 6) is any
sphere of radiug with centre at w thenlim € log P.(S) > —I(wp).

e—0

Proof.
PS) = [ X80P
N )
_fXS(O;)OdPE
w

=f)(g(o;5)(/lw)dp( \/E)’ where A(w) = w — W,

= f Xs(0:) (A(Vew))dP(w)

dP(w)

r 1 1
1 .
= f Xs(0.5)(Vew) exp f <Wo,dX>—§ f \Wol>dor
0 0

dP(w)

r 1
- f Y505 (Vew) exp f (W, dX) — I (W)
LO

dP.(w)

1
1 . 1
2 f (o, dX) — Z1wp)
€ €
0

= f Xs(0:5)(W) exp

1
—1(0

Wo) . 1 .
=€ ¢ PE(S(O,5))WS(!) expl—— f(WO,dX)
0

0

=

dP.

m

—l(wp)
> e P.(S(0;6))e

1
f (Wo, dX)dP,
0

1 1
€ P(S(0;6)) f
S(0;0)

by Jensen’s inequality,

—l(wp)

=e c P.S(0,6))e’(useP(w) = P.(-w) if w € S(0;6))

—l(wp)

— e~ P.(S(0,5)).
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Therefore

—l(wp)

lﬂ&%ﬁ»zefpﬁmh%»

\/_
or,
€l0g P.(S(wo; 6)) > —1 (Wo) + €log P(S(0; ~=));
Ve
let e — O to get the result. Note that the Lemma is trivially satisifed
I (Wp) = +o0. O

Proof of Part 2 of the theorem.
Let G be openwg € G; then there existg > 0 with S(wp, §) c G.
By Lemmdl

lim < logP.(G) > lim € log P.(S(wo: 8)) > ~I (wo).

e—0 e—0
Sincewy is arbitrary, we get

lim € log P(G) > —inf{l(wp) : wp € G}.
For part 1 we need some more preliminaries.

Lemma 2. Let(wp) € C[0, 1] be such that w— w uniformly on[0, 1],
[(Wn) < @ < oo, Then (W) < a, i.e. | is lower semi-continuous.

Proof.

Step 1.w is absolutely continuous. Léx',x")}; be a collection of
mutually disjoint intervals in [01]. Then

n n Xi//
D Win(x) = Win(X) < D 1% = XM f Wil ]2
i=1 g
X

i=1]

(by Holder’s inequality)
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2 1/2
n n 1/2
< Zlem|2 (Z |>q'—>q|] (again by Holder)
i=1 Y i=1
X],

< V@a)(D I = XM,

158
Lettingm — oo we get the result.

Step 2.0bserve thatvy,(0) = 0Sgw(0) = 0. Therefore

x+h
wn(X+ h) Wn(X)| -z f wndt)? < h2[ f |Wn|dt]

X
1 mh
<+ f Wl 2dt.
X

2

Hence
h 1-h h
f|wn(x+hr)1 — () 2 S% f dx f |(Win(X + t))[2dlt
0 0 0
h 1-h
< f dt f WX + Pl
0 0

NII—‘

fdt—Za

lettingn — oo, we get
1-h H
fledXS 2a.

Leth — 0 to getl(w) < a, completing the proof.



166 22. Large Deviations

159 Lemma 3. Let C be closed and put’G= |J S(w; 6); then
weC
ARCACE 1000 = g 10
Proof. If 61 < &,, thenC% c C?2 so that |2§ I(w) is decreasing. As
we
C% > C for eacho,
lim(inf | inf 1
lim( inf, (w)) < inf I(w)

Letl = (Isimo( incl;_ I (w)). Then there exista; € C° such that (w;s) —
—U we
¢, and thereforel(wy)) is a bounded set bounded by(say).

Claim.

to
Ws(tr) — Wis(t)l = | | wsdt] < vI(its — t2)( | Iwsl?)?
I f

< V(2alty - to).

The family {w;) is therefore equicontinuous which, in view of the
fact thatws(0) = 0, implies that it is uniformly bounded and the claim
follows from Ascoli’'s theorem. Hence every subfamily ofs] is equi-
continuous. By Ascoli's theorem there exists a sequeéice> 0 such
thatws, — w uniformly on [Q 1]. It is clear thatw € C. By lower
semicontinuity ofl (w),

lim inf I(w) > inf
6—0weC? weC

completing the proof.
i

160 Proof of Part 1 of the theorem.Let X be continuous in [AL]. For each
nlet X, be a piecewise linear version ¥fbased om equal intervals, i.e.



167

Xnis a polygonal function joining the points,(8(0)), (1/n, X(1/n)),...,
(L, X(2)).

Pe(lXn = X1 = 6), (Il - 11 = 11 - llo0)

j;1)|22L\/d],

where X =(Xg,...,Xq).

noi<j<n Jl<t<

< P[U sup- sup X (t) - (

< ndP.( sup |X(t) — X(0) >
(oﬂglr/)nl (t) - X(O) 2vd
dimensional).

(Markov property; hereX is one-

< ndPE( sup X > (sinceX(0) = 0)

0<t<1/n 2\/ ]

<2nd P.( sup X; >
0<t<1/n t 2\/0'

0
= 2dn sup X >
I:>(O<t<1p;n ' 2‘/ d

=4dn R(X(1/n) > ) (by the reflection principle)

\/

1
f Var/ ne_nf/zdy

6y/n/2+/ed

roo1
=4d — e X/

f varo

6y/n/2+/ed

Now, for everya > 0,

(o9 [ee)

afe‘xz/zdngxex/zdx e &2,

a a

Thus

161



168 22. Large Deviations

Adn eno?/(8<d)
Pc(IlXn = X|| > 6) < 4dn e 0 _ C1(n)\/ -no%/(8ed).
5vn/2+/ed \/5

whereC, depends only on. We have now

P.(Xn € C%) < P(1(Xn) = £5) wherels = inf{l(w)w € C°}.

18 (j+1 j
=P|= )= X[ 2)?
38w x(d)r=
j=0
2
:P(Yf+Y§ YR > 55),
€

whereY; = 4/n(X1(1/n) — X1(0)) etc. areindependenhormal random
variables with mean 0 and variance 1. Therefore,

2¢
P(Yf+---+Y§d2—5)
€

) f 2o 070" dy, .. dyng
€

=C(n) f e " 2pnd-1gy,
V(2Ls/€)
using polar coordinates, i.e.

2¢, n
POY2+ Y2+ 4+ Y2, > 22 =C'(n) f eSs71ds
€
(s/€)

2
(change the variable fromto s = %). An integration by parts gives

[o0)

f e Sds=e(a" D k|1)| 24,

a

Using this estimate (fon even) we get

P((Yf -+ de) > _) <C (n)e‘f&/f( )7_1



whereC, depends only on. Thus,

Pe(C) < Pe(IIXn — XII > 6) + Pe(Xn ¢ C°)
€ 2 8ed ¢ 55 %d_l
< Cl(n)\/(g)e‘”‘S IBed) | Cy(n)eto/e (—)
€

n

-1

SE

< 2maxCy(n)v (g) /(D) (myetle (&s)

€
€ log P.(C) < elog 2+ e max[logCx1(n)v (g g 9*/(8<d)

log Ca(ne /()51
€

Lete — Oto get
— -n6? —¢s
< _— Y — .
lim € logP.(C) < max{ 8d 1 }
Fix 6§ and leth — oo through even values to get
lim € logP.(C) < —¢;.
Now lets — 0 and use the previous lemma to get
ﬁ elogP.(C) < - f I (w).
€

weC
Proposition . Let ¢ be finite; thenfw : 1(w) < ¢} is compact inc.

Proof. Let (w,) be any sequencé(w,) < £. Then

IWn(t1) — Wn(t2)l < V({Ity — t2])

169

162

and sincew,(0) = 0, we conclude thaiw,} is equicontinuous and uni-

formly bounded.

Assumptions.Let Q be any separable metric spacg,= Borel o-field
on Q. For everye > 0 let P, be a probability measure. Lét: Q —

[0, o0] be any function such that

O
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() 1is lower semi-continuous.
(ii) V finite ¢, {w: I(w) < £} is compact. 163
(i) For every closed set in Q,

lim supe log P(C) < — inf 1(w).
e—0 weC

(iv) For every open séb in Q
lim inf € log P.(G) > — inf 1(w).
e—0 weG
Remark. Let Q = C[0, 1], P. the Brownian measure corresponding to
. 1t : :
the scalinge. If 1(w) = > f|w|2dt if w(0) = 0 andeo otherwise, then all

0
the above assumptions are satisfied.

Theorem .Let F : Q — R be bounded and continuous. Under the
above assumptions the following results hold.

(i) For every closed set C if2

lim supe Iogfexp@dPE < supg(F(w) — I(w)).
e—0 < € weC

(i) For every open set G if

liminf € Iogfexp@dPE > sup(F(w) — 1(w)).
e—0 € weG

In particular, if G = Q = C, then

I|m € Iogfexp—dP = sup(F(w) — I(w)).

weQ
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Proof. Let G be openwp € G. Lets — 0 be given. Then there exists a
neighbourhoodN of wp, F(w) > F(wp) — §, Ywin N. Therefore

fexp@dezfexp@dezeF(wg)é 2
€ €

G N

164
Therefore

elogfexp@d& > F(wp) — 6 + elog P(N).

Thus
Ii_mlogfexpmdPE > F(wWp) — 6 + lim elog P¢(N).
€
> F(wp) — 6 — inf I(w) > F(wp) — I (wp) — 6.
weN
Sinced andwy are arbitrary W € G) we get

lim e Iogfexp—dPE > sug(F(w) — 1(w)).

weG

This proves Part (ii) of the theorem. O
Proof of Part (i).
Step 1.Let C be compactL = sugF(w) — I(w)). If L = —co it follows
weG

easily that
lim supe IogfeF/edPe < —oo.
€E—

(Use the fact thaF is bounded). Thus without any loss, we may assume
L to be finite. Letwy € C; then there exists a neighbourhobidof wy
such that=(w) < F(wp) + 6 and by lower semi-continuity df,

[(w) > I(wp) — 6, YW € N(Wp).
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By regularity, there exists an open €&f, containingwp such that
Gw,Gw,N(Wp). Therefore 165

f expmd P, exp(@) Pc(Gw,)-

€
GWO

Therefore

Iirrg)supe log f exp@d& < F(wp) +6 + eﬁ P(Gw,)

G
<F(wp) +6— inf I(w)

WeGWo
F(W()) +0 - |(W0) +0
<L+ 26

LetK, = {w: I(w) < ¢}. By assumptionK, is compact. Therefore,
for eachs > 0, there exists an open & containingK, N C such that

lim supe Iogfemew dP. < L +26.
e—
Gs

Therefore

. Fw)

Ilr%supe log f e« dP. <L+ 25,

€E—

GsNC
e dP. < M<P(C N GY).
G§nC

Therefore

Iir%supe log f e@dPe <M+ Iir%supelog P(C5NC)
€— €—
G§nC
<M- inf I(w).

weCnG§
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166 Now
G§ c K;nC°".
Therefore
CNnG§cCnK;

if we CNG§, w¢ K,. Thereforel (w) > £. Thus

lim supe log e Wiedp, < M—-¢<L<L+25
€

G$nC
This proves that

. F
Ilmosupe log expﬂdPE <L+26
€— €

C
SinceC is compact there exists a finite number of poings. .., w,

in C such that .
Ccl Jou
i=1

Therefore
lim e Iogfexpﬁdpe < lim elog f e Wiegp,
€

c UL, Gu

< W(elognMaxfeprdPE)
1<i<

Guw,

<L+ 26.

Sinces is arbitrary.

lim e Iogfexp@dPE < sup(F(w) — 1(w)).
€ weC

The above proof shows that given a compactGeindé > 0 there 167
exists an open s& containingC such that

lim eIogfexp—dP <L+ 26
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Step 2.Let C be any arbitrary closed set . Let
L = sugF(w) — I (w)).
weC

SinceF is bounded there exists av such thatF(w)| < M for all
w. Choos¢’ so large thaM — ¢ < L. Sinces is arbitrary

lim supe Iogfexp@dPE < supg(F(w) — I(w))
e—0 2 € weC

We now prove the above theorem whpis replaced byQs. Let
P5 be the Brownian motion starting at tinte= O at the space point
corresponding to the scaling Precisely stated, if

7. 1 C([0, 0); RY) = C([0, »0); RY)

is the map given byr(w)(t) = w(et), then P;d:fPXrgl. NoteT}r. = T
e
andT, is given by

t
Tew =y wherey(t) = w(et) + f b(y(s))ds
0

Hence
PuTt = Pu(Tr, 7o)t = Py AT = PETTY
either of these probability measures is denoteby

Theorem .Let b: RY — RY be bounded measurable and locally Lips-
chitz. Define

1
W) - % f IX(t) — bOX()2dlt
0

168
If w € C([0, »);RY), w(0) = x and x absolutely continuous. Put
| (w) = oo otherwise. If C is closed in [(0, 1]; RY), then

lim € log Q$(C) < — inf I (w).
e—0 weC



If G is open in @[O0, 1]; RY), then

lim € log QY(G) > - inf 1 (w).

e—0
As usual Q(C) = Qs %(C) where
7 C([0, 00); RY) — C([0, 1]; RY)
is the canonical projection.
Remark. If b = 0 we have the previous case.

Proof. Let T be the map«(-) — y(-) where

t
y(t) = x(t) + f by(9)ds
0

Then
Q5 = PY(T™).
If Cis closed
5(C) = PY(T'C).

The mapT is continuous. Thereforé1(C) is closed. Thus

lim supe log Q«(C) = lim supe log P(T1C)

1
. 1 .
< - m{( )§f|X|2dt (see ExercisEl 1 below)
(*) weT~1(C

0

L 1

g )

= Vlvr;fczflT w|“dt.
0

Now

t
yO oy - f bly($)ds
0

175
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176 22. Large Deviations

Therefore
(TYy) = y - b(y(9).
Therefore
Iel_%supe log Q5(C) < —\Lr;fcl(w).
The proof wherG is one is similar. ]

Exercise 1.ReplaceP, by Ps andl by Iy where

1
1 .
I (W) = 5 f|w|2, w(0) = x, w absolutely continuous
0

= oo otherwise.
Check that (*) holds, i.e.
lim supe log Py (C) < — inf Ix(w), if Cis closed
e—0 weC

and
IE|_>mO|nf € log Py (G) > _JVQI; [ (W).

Let G be a bounded open setli!, with a smooth boundary = 9G.
Letb : RY — RY be a smootiC™ function such that

(i) (b(x),Nn(x))0, ¥x € G wheren(x) is the unit inward normal.

(i) there exists a poinky € G with b(xg) = 0 and|b(x)| > 0, ¥X in
G - {xo}-

170 (i) for any xin G the solution

t
£(t) = x+ f bE(9)ds
0

of the vector field starting frort converges to ast — +oo.

Remark. (@) (iii) is usually interpreted by saying thatg'is stable”.
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(b) By (i) and (ii) every solution of (iii) takes all its valgen G and
ultimately stays close tgy.
Lete > 0 be given;f : 9G — R be any continuous bounded func-
tion. Consider the system

1 .
L.u. = EAUE +b(X)-Au. =0inG
u. = f onoG.

We want to study Iigruf(x). Define
€E—

.
|amm:%fmm—umm%uxqmnﬁRd
0

whenevelX is absolutely continuous; oo otherwise.

Remark. Any solution of (iii) is called an integral curve. For any ear
X on [0,T], Ig gives a measure of the deviation Xffrom being an
integral curve. Let

Vr(x,y) = inf{lg (X) : X(0) = x; X(T) =y}

and
V(XYy) = inf{Vt(xy) : T > 0}.

V has the following properties.
() V(xy) V(%2 +V(zYy) VX,Y,Z 171
(i) Given anyx, 35 — 0 andC > 0 such that for alyy with [x—y| < 6.
V(x.y) < Clx-Y
Proof. Let X(t) = W=,
ly—X
Put

T = |y_ Xl? X(O) =X X(T) = y9
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2
ds

.
I3 (X)) = %ﬂ? —b(X + $(y— X))
0

Then

1
1T <=
0=2

)

— X2
f2(|yT2| +||b||§o)ds
0

bl = sup  b(4),
-xsly-X

where

or,
1§ < @+ b))y - X.

As a consequence of (ii) we conclude that

V(x,y)s[1+ sup |b(ﬂ)|2]|y—x|,

J-x<ly-X

i.e. Vs locally Lipschitz.
The answer to the problem raised is given by the following. ©

Theorem .
lim u(X) = f(yo)

where y is assumed to be such thats G and

V(Xo,Yo) < V(X,y), VY € 0G, y # Yo.
172

We first proceed to get an equivalent statement of the theoken
P5 be the Brownian measure corresponding to the starting pord
corresponding to the scaling Then there exists a probability measure
Q¢ such that
dQ

Z =7
P F=Z(1)
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where
t 1 t
Z(t,) = exp [ b*(X(s)), dX(s)) — 5 | b*(X(s))ds
/ ]

b* is any bounded smooth function such tbat= b on G. Further we
have the integral representation

U(x) = f F(X(0)dQE

G

wherer is the exit time ofG, i.e.
(w) = inf{t : w(t) ¢ G}.
et~ 0 =1 [ (FOX(E) - FoIQy

oG
<| f (F(X(0)) — F(Yo)dQEl+
NNIG
N f (FX(@)) - F(Yo)dQK)
N¢NoG
(N is any neighbourhood gf).

< Qi(X(r) e NN 9G) sup [f(4) - f(yo)l+
AeNNIG

+2|| flloe Q(X(7) € N° N G).
173
Sincef is continuous, to prove the theorem it idfstient to prove
the

Theorem .
Iirrg) Qx(X(r) e N°N6G) =0

for every neighbourhood N ofy
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Let N be any neighbourhood gf. Let

V=Vl V' = ol V()

By definition ofyg and the fact tha®ndG is compact, we conclude
thatV’ > V. Choosej = n(N) > 0 such thav’ = V + . For anys > 0

let D = S(X0;6) ={y:ly—Xol <6},dD ={y: |y — Xol = 6}.

Claim. We can choose & such that

i) V(xy)=V+ 37477 V¥Xx € dD2, y € N¢ 9G.

(i) V(xyo) <V + g, Vx € 9D
Proof. (i) V(x0,Y) =V + 1, Vy e N®AG. Therefore
V+1<V(X,Y) < V(X, X) +V(XY)
< CIx = Xol + V(X Y).

ChooseC such thaC|x — Xg| < % Thus

V + 37477 <V(xy)if C|x— Xg| < % Yy € N© 6G.
174 C depends only omg. This proves (i).

(i) V(x0,Y¥0) — V(X Yo)l < V(X0, X) < Clxg— X < % if xis close toxg.

Thus

n

4

if xis close toxg. This can be achieved by choosifigvery small.

O

V(X ¥o) < V(Xo.Yo) + % =V+

Claim (iii) We can choosé; < 6, such that for points¢, X, in D1
there is a pathX(-) joining X1, X with X(-) € Dy — Dy, i.e. it never
penetrate®q; and

I(X) <

[oc] BN
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Proof. Let C = sug|b(1)|? : |1 — Xo| < 62}. ChooseX(:) to be any path
on [0, T], taking values irD, with X(0) = x1; X(T) = X, and such that
|X| = 1 (i.e. the path has unit speed). Then

T T
15 (X) < f(|X|2+C)dts CT+f|X|dt
0 0
=(Cc+ 1T =(C+1)x— xql.

Choose’; small such that@ + 1)[xo — x3| < g

Let Q51 = {w : w(t) € G — D1, Vt > 0}, i.e. Q5; consists of all
trajectories inG that avoidD;. O

Claim (iv)

. . 3n
T D)) > —
ITrlfo Xeﬂgl!QIO)eaDg lo(X() 2V~ 4
X(T) € N°n oG
175
Proof. Follows from Claim (i) and (ii). O

Claim (v)

. . 3n

inf inf IT(X() <V + =L,

T>0 XeQy, X(0)edD; o(X() =V+ 8
X(T)=Yo

Proof. By (ii) V(X,yo) <V + %VX € 0Dy, i.e.

inf inf_ 1IT(X() <V + 2.
e X(O)=>I<,r;((T)=yo o(X() =V + 4
Lete > 0 be arbitrary. ChoosE andX(-) such thalg(X) < V+1—71+e

with X(0) = x, X(T) = yo, X(-) € G. If X € Qg, defineY = X. If X ¢ Qs,
defineY as follows:
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Let t; be the first time thaX entersD; andt, the last time that it
gets out ofD;. Then O< t; <t < T. Let X* be a path on [0g] such

that (by Claim (jii)) I5(X*) < g with X*(0) = X(t1) and X*(s) = X(t2).
DefineYon [0, T — (to —t)) + g [T — (to — t1) + S, o) by

Y(t) = X(t) on [0, 1] = X*(t —t1) on [ty, t1 + 9
= X(t—tl— S+t1), on [t1+ sT —(tz—tl) + S]
=X(t), fort>T - (tp —t1) + s

Then

11 S
Trasues 2 f X - b(X(9)Pds+ > f X — b(X*(s)2ds
0 0

.

+% f 1X(s) — b(X(s))]?ds
t2

n

n
<V4- s
SV +etrg

176 by choice ofX andX*. AsY € Q;,, we have shown that

. . 3n
inf inf X)) < V+ = +e
T>0 XeQy, X(0)edD1 o (X()) = g "€
X(T)=Yo
Sincee is arbitrary we have proved (v). m|
Lemma. Ig is lower semi-continuous for every finite T.

Proof. This is left as an exercise as it involves a repetiti on of guar
ment used earlier. m]

Lemma . Let X, € Q. If Ty — oo then ["(X,) — co.

This result says that we cannot have a trajectory whichsstautside
of a deleted ball for which remains finite for arbitrary long lengths of

time.
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Proof. Assume the contrary. Then there exists a constarstuch that
Ig”(Xo) <M, Vn. LetT < o0, so thatM = SanpIg(Xn) < oo,

DefineX! = Xnljo.17- o
Claim. {X!}-1 is an equicontinuous family. 177
Proof.

X2
X3 (%2) = X (x)I? = | f Xn (Hdt?
X1
X2
< %2 — X f X3 [2dt
X1

X2 T
< 2 - xf [ 1] ~b0q)Pds+ [ bOG)Rd
0
< 2% — x1l’[2M7 + TI[blI].

Thus,{X[}, is an equicontinuous family. Sin€is bounded{X!},
is uniformly bounded. By Arzela-Ascoli theorem and a “dingbpro-
cedure” there exists a subsequenGg and a continuous function 8
uniformly on compact subsets of,[®). As X, (-) € G-D1, X € G-D;.
Letm>n. 11"(Xm) < M. X, — X uniformly on [Q T,,]. By lower semi-
continuity I ) (X) < M. Since this is true for every we get on lettingl
tend toco, that

%f|x- b(X(s))?ds< M.
0

Thus we can find a sequenag< by < a» < by < ... such that

bn
20D = 5 [ XO - bix(o)Pet
an
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converges to zero with, — a, — co. Let Yu(t) = X(t + a,). Then
1272 (Y,) = 0 with by —an — +o0, YneQy,.

Just asX was constructed from,,, we can construct from Y, such
thatY,, — Y uniformly on compact subsets of,[&).

122 (Y) < inf | 2 (Yp) = 0

(by lower semi-confirmity of ). Thuslg”_a"(Y) = 0, Vn, showing that

f Y(t) — b(Y(t))[2dt = 0

0
t —

ThusY satisfiesY(:) = x+ [ b(Y(s))dswith Y(t) € G — 4Dy, ¥t.
0

Case (i).Y(tp) € Gfor somety. LetZ(t) = Y(t+tp) so thatZis an integral
curve starting at a point @ and remaining away fror; contradicting
the stability condition.

Case (ii). Y(tg) ¢ G for anytp, i.e. Y(t) € oG for all t. SinceY(t) =
b(Y(®))Y(t), n(Y(t))) is strictly positive. ButY(t) € dG and hence
(Y(t),n(Y(t))) = 0 which leads to a contradiction. Thus our assump-
tion is incorrect and hence the lemma follows. m|

Lemma . Let xe 0D, and define

E = {X(t) exits from G before hitting Pand it exits from N
F = {X(t) exists from G before hitting Dand it exits from N}

Then
Q%(F) 3 1 _ _
Q<(E) sexpl-g- 0 ol | e 0 uniformly in Xx € D).

Significance.Q5(E) andQ$(F) are both small becausefidision is small
and the drift is large. The lemma says ti(E) is relatively much
larger thanQs(F).
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Proof. Q(E) > Qs{X(t) exists fromG before hittingD;, and exists in

N before timeT}, = Qx(B) > exp[—:—L inf Ig(X(-))] where the infimum
€
is taken over the interior dB,

ol 2ol

Q5 (F) < exp[—% (V + 374'7) + O(})] :

€

Similarly,

Therefore

Q(F) 3 (1
QE) = exp[_§ " 0(2)

We now proceed to prove the main theorem. Let

—-0 as e€—0.

70=0,
71 = first timedD1 is hit,
7o = next timedD>, is hit,
73 = hext timedD4 is hit,

and so on. Observe that the particle can get o ohly between the
time intervalsry, andron, 1. Let E, = {betweenry, andton,q the path
exits fromG for the first time and that it exits iN}, F,, = {betweenry, 180
andrn, 1 the path exits front for the first time and that it exists IN°}.

K(X(1) € N) + Qu(X(1) € N°) = 1.

Also

5(X(7) € N©) = > Q5(Fn),
n=1

Qs(X(1) € N) = > Q5(En),
n=1
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186
> Q) = > EX(Qs(FalFr)
n=1 n=1
< E%x(smm) SUp Q(F)] (by the Strong Markov property)
xedD»

n=1
X(F)

< 0(e) Z; EX Wrn) Jf QUEN (@sEgy = O)

< 0(e) D Q4(En) = 0(6)Qx(X(r) € NO).
n=1

Therefore

(@) €N) > 1, QuX(r) € N) - 0.

i
Exercise.Suppose)(x) = Vu(x) for someu € C}(G U 6G, R). Assume
thatu(xg) = 0 andu(x) < 0 for X # Xp. Show that
V(xo.y) = —2u(y).

[Hint: For any trajectoryX with X(0) = xo,

T T
X(T) =y, 15(X) = % f IX + Vu(X)?dt — 2 f Vu(X) - X(t)dt > —2u(y)
0 0

so thatV(xo, y) = —2u(y). For the other inequality, letbe a solution of
X(t) + Vu(X(t) = 0 on [Q o) with X(0) = y. Show that becaus%l?O
for X(s) # 0 andxg is the only zero of, ItimitX(t) = Xp. Now conclude

181

thatV(xo,y) < —u(y)].



23. Stochastic Integral for a
Wider Class of Functions

WE SHALL NOW define the stochastic integral for a wider clags 082
functions.

Let6 : [0,) x Q@ — RY be any progressively measurable function
such that for every

t
fle(s,w)lzds< o, a.e.
0

Define, for every finitd. > 0,

S
o(sw), if [lo(t w)Pdt< L < oo,
0

OL(sw) = s
0, if [ 1ot w)l2dt > L.
0
We can writedy (s, w) = 0(s, W)x[o,)(¢(s, w)) where

(s W) = f 6(t, w2t
0

is progressively measurable. Hengds, w) is progressively measur-

187
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.
able. Itis clear thaf |6.(s w)lds < L, a.e.v¥T. Therefore
0

]
E( f 6L(s W)Pd9 < L.
0

t
Thus the stochastic integral (t, w) = f(eL(s, w), dX(s,w)) is well de-
0

fined.
The proofs of the next three lemmas follow closely the treatnof
Stochastic integration given earlier.

Lemma 1. Letr be a bounded, progressively measurable, continuous
183 function. Letr be any finite stopping time. #{s,w) = 0, ¥(s, w) such
t

that0 < s < 7(w) then [(6(s, w), dX(s w)) = 0for 0 < t < 7(w).
0

Proof. Definefn(s,w) = e(fn—sl,w). 0n is progressively measurable and
by definition of the stochastic integral éf,

t
f On(sW).dX(SW) =0, Vi 0<t< (W)
0

Now
t
E| | I6n(sw) - 6(s W)IzdS]
/
t
[ng 2
=E |9(—w)—9(s,w)| dS]—)O&SI’]—)oo
i
and

t

t
f (On(s W), X(s, W) — f (6(s W), dX(s W)
0

0
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in probability. Therefore
t
f(e,dX) =0if0 <t <7(w).
0
m]

Lemma 2. If 6 is progressively measurable and bounded the assertion
of LemmdL still holds.

Proof. Let

1
On(t, W) = - f o(s,w)ds
(t=1/n)Vo

Then
T
E [fwn(t, w) — o(t, W)|2dt] — 0 (Lebesgue’s theorem).
0
6 is continuous and boundél,(t,w) = 0 for 0 < t < 7(w). By lemmdl 184
t

[ entsw.axis wy -0
0

if 0 <t < 7(w). This proves the result. m]

Lemma 3. Letd be progressively measurable such that, for all t,

t
E| | 16(s w)|2ds] < 0.
/

If 6(s,w) = Ofor O < s< 7(w), then

t
f(e(aw),dX(aw)) =0 for O0<t<t(w).
0
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Proof. Define

g, iflgl<n,
On = .
0, if |6] >n.

Then

Cc
f(en,dX> =0,if0<t<t(w), (LemmdR)and
0

t
E([ |6n — 61*d9 — 0. The result follows. O
0

Lemma 4. Letd be progressively measurable such that

t

f|9(SW)|2dS<oo a.e.
0

ThenLLt &L (t, w) exists a.e.

Proof. Define

TL(W) = inf {s: fle(o-,w)|2do- > L};

0

clearly 7| is a stopping time. IfL; < Ly, 7 ,(W) < 71,(w) and by
assumptions of the lemma 7 oo asL T co. If

L1 <Lz, 6,(sw)=6,(sw) for 0<s<7,(W).
Therefore by LemmAl 3,
EL(tw) = &, (tw)

if 0 <t < 7,(w). Therefore as soon dsis large enough such that
t < 7(w), &.(t,w) remains constant (as a function bf. Therefore
LLt &L (t,w) exists a.e. m|
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Definition. The stochastic integral @fis defined by
t
f(e(s, w), dX(s,w)) = Lhtw &L (t,w).
0

Exercise.Check that the definition of the stochastic integral giveovab
coincides with the previous definition in case

t
E| [ 16(s. W)|2ds] < o0, Vit
/

Lemma . Letd be a progressively measurable function, such that

t
f|9(s,w)|2ds< oo, Vt.
0

If £(t, w) denotes the stochastic integral @fthen 186
T
L2
P( sup (L, )| = e) < P[f|9|2dsz L] +—.
O<t<T J €

t
Proof. Let7, = infi{t : [|2ds > L}. If T < 7 (W), thenf (s w) =
0

0(s,w). Also
‘fL(t’ W) = f(t, W) for 0<t<T.

Claim.

{w: sup |£(t, w)| > e}

O<t<T

{w o osup |é(t,w)] > e} Uiw: . (w) < T}

O<t<T
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For, if wis not contained in the right side, then

sup lE (W) <e and |r(w) > T.
o<t<T

If 7o > T, &L(t,w) = £(t,w) Yt < T. Therefore

sup [EL(t, W) = sup [&(t, W)

O<t<T O<t<T

Thereforew ¢ left side. Since
-
(Wit (W) >T)={w: f|9|2dsz L
0

we get

F’( sup J£(t, )l = e)

O<t<T
T
<P f|9|2dsz L|+ P( sup [&L(L, ) = e)
O<t<T

€2’

0
.
L2
<P f|9|2dszL +
0

187 by Kolmogorov’s inequality. This proves the result.

Corollary . Let 8, and 8 be progressively measurable functions such
that

t t
@ [16n(sW)Pds< oo, [16(s W)2ds < o, Vt;
0 0

t
(b) Lt [ 16n(s. W) — 6(s,w)[?ds = 0 in probability.
— 00 0

If &q(t, w) and£(t, w) denote, respectively the stochastic integrals of

0 andg, then sup |£x(t, W) — £(t, w)| converges to zero in probability.
O<t<T
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t
Proof. Letn (W) = inf{t : [|64/°ds > L}; replacing® by 6, — 6 andé
0

by &, — € in the previous lemma, we get

P( sup [&n(t, ) — &(t, )l = e)

O<t<T
-
L2 )
< = +P 1On(s, ) — 6(s,-)|°ds> L |.
0
Lettingn — oo, we get

L2
n—oo €

O<t<T

As L is arbitrary we get the desired result. O

Proposition . Letd be progressively measurable such that
t
fIH(S, w)Pds< oo, VtandV w.
0

Then 188
t

t
oz -)=expl f (#(s).4X(s ) - 5 f (s, -)|2ds‘
0

0
is a super martingale satisfying

(@ E(Z(t,)) <1,

(b) Lt E(Z(t,-)) = 1.

Proof. Let (9,) be a sequence of bounded progressively measurable
functions such that

t
f 16n — 6Pds— 0 Vt, Vw.
0
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(For example we may take, = 0 if |9 < n, = 0 otherwise). Then
(+) is a martingale whea# is replaced by,. This martingale satisfies
E(Zn(t,)) = 1, andZy(t,) — Z(t,-) pointwise (a) now follows from
Fatou’s lemma:

HmE@GJ)zE@mZ@Q)
=0 t—0

=E(1) =1

Thereforet I_OtE(Z(t, -)) = 1. This proves (b). m|



24. Explosions

Exercise.Let R > 0 be given. Pubr = bgg wheregr = 1 on|x] > R, 189
¢or = 0if X > R+ 1; ¢r is C*. Show thator = bon|x < R, bris
bounded orRY andbg, is globally Lipschitz.

LetQr = {we Q: B(w) > T}. LetST = Qr — C[0, T] be the map
STw = y(-) wherey(t) = w(t) + ft b(y(s))dson [0, T]. Unless otherwise
specifieb : RY — RYis assurcr)1ed to be locally Lipschitz. Define the
measureQ! on (@, T) by

QM (A) = Pyfw: STwe A Bw) > T},
wherePy is the probability measure corresponding to Brownian nmotio

Theorem .
QI (A) = f Z(T,)dPy, VAe .7,
A
where

T T
1
Z(T,-) = eXpl f (b,dX) - > f Io(X(s, ))Ids|.
0 0
Remark. If bis bounded or itb satisfies a global Lipschitz condition

thenB(w) = o, so thatQt = Q andQ/ are probability measures.

Proof. Let 0< R < co. For anyw in Q, lety be given by
t
y0 =) + [ by
0

195
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Defineor(w) = inf{t : |y(t)] > Rand letbr be as in the Exercise.
Then the equation

t
YR(t) = W(t) + f bR(YR(e)dor
0

has a global solution. Denote I8 : Q — Q the mapw — yr. If Qrx
is the measure induced I8g, then

t t
d 1
Cﬁ:’ix F=2Z(t) = eXp[f(bR,dX> - E f|bR|2dS] .
0 0

Let Tr(W) = inf{t : w(t)] > R}. 7r is a stopping time satisfying
TRSR = or. By the optional stopping theorem.

dQrx
dPy

(1)

yTR/\T = ZR(TR A T) = Z(TR A\ T)

Claim. Qrx((tr > T) N A) = QY (rr > T) N A), VAin Fr.
Proof.

Right side = Py{w : B(w) > T,ST(W) € An (tr > T)}

= Py{w: Bw) > T,ye A sup lyt) <R}
o<t<T

= Py{w : yis defined at least upto timg

yeA, suply(t) >R}
o<t<T

= Py{w:yr e A suplyr(t) <R}
o<t<T

= Py{w : Sr(W) € A, TrSR(W) > T}
= QR,X{(TR >T)NA}

(by definition). AsQ is an increasing union ¢tr > T} for Rincreasing,

QiAW = It Qi((rr>T)NA), YAin 7,
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1t Qrul(rr>T)NA) (b claim)

TRAT TRAT
= I f exp[ f (b,dX)—% f |b|2ds]dPX (by (1))
(TrAT)NA 0 0

T T
fexp[f(b,dX)-%f|b|2ds]dpx
A 0 0
= f Z(T)dP,.

A

o 191

. , . A
Theorem . Suppose bRY — RY s locally Lipschitz; let L= > +b.V.

(i) If there exists a smooth function iRY — (0, o) such that (x) —
o as|X — oo and Lu < cu for some ¢ 0then B{w : B(w) <
oo} = 0, i.e. for almost all w there is no explosion.

(i) If there exists a smooth bounded function B¢ — (0, o) such
that Lu > cu for some ¢ 0, then R{w : B(w) < o} > 0, i.e.
there is explosion.

Corollary . Suppose, in particular, b satisfig®(x), X)| < A + B|x]? for
some constants A and B; thep(® : B(w) < o) = 0.

Proof. Takeu(x) = 1+ |x> and use part (1) of the theorem. O

. . A
Proof of theorem. Let b be as in the Exercise and leg = > +br-V;
thenLru(x) < cu(x) if [Xl < R.

Claim. u(X(t))e ' is a supermartingale upto time relative toQR,

t t
d[u(X(t))e‘Ct exp[f(bR,dX> - % f|bR|2ds]]

0 0
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t t
—ct [(br,dX)—3 [ Ibri%ds
0 0

e X

2
x{—cudt+ (Vu,dX) + u(x)[(bg, dX) — Ib%ldt] + brudt + %|bR|2udt}

t t
:exp(—ct+f<bR,dX —%flelzdS)
0 0

[Lr = QU+ (Vu,dX) + u(br, dX)].

192
Therefore

t t
J(br.dX)-3 [ Ibrl?ds
0

u(X(t))e e
t

- f exp[—cs+ f (br, dX) — f |bR|2ds]-(LR—c)u(X(s))ds
0 0

0

is a Brownian stochastic integral. Therefore

TRAL 1 TRAL
u(X(TR/\t))eXp[—C(TR/\t)+ f <bR,o|x>—E f |bR|2ds]—
0 0

TRAL

- f exp[—cs+ f (br, dX —% f |bR|2ds](LR—c)u(X(s))ds
0 0

0

is a martingale relative tBy, .#: . Butbr(X) = b(x) if X < R. There-
fore

TRAL TRAL
u(X(TR/\t))exp[—C(TR/\t)+ f (b,dX)—% f |b|2ds]—
0 0

TRAL

- fexp[—cs+ (b,dX)—f|b|2ds](LR—c)u(X(s))ds
0

0
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is a martingale relative t&; . But (Lr — c)u < 0in [0, 7R].
Therefore

TRAL TRAL

1
uX(rr At)) explc(rr A + | (b,dX)— = | |bj’ds)

is a supermartingale relative 1;,, Px. Thereforeu(X(rr A t)e %=

is a supermartingale relative @R (optional sampling theorem). There-

fore .
EQX (u(X(tr A t))e 4" < u(x);

lettingt — oo, we get, using Fatou’s lemma,

EQ (u(X(rR)E™) < U(X).

Therefore )
EQ5 g R < L
€ inf_ju(y)l
ly=R
Thus )
u(x
EPx(e" %R < —
( ) inf_{u(y)l
lyl=R

(by change of variable). L&R — oo to get Lt [e%rdPy = 0, i.e.
Py{w : B(w) < oo} = 0.

Sketch of proof for Part (ii).

By using the same technique as for Part (i), show tigs{t))e ! is
a submartingale upto time relative toQR, so that

w9 ux

supluy)l ~ llulle ~
lyI=R

EPx (€“R) >

let R — o to get the result.
102 o

Exercise.Show that ifL = =— + x*—, there is explosion. (Hint: take

s 20x oX
u = €27 () and show that.u > u).

194






25. Construction of a
Diffusion Process

Problem . Givena : [0, ) x RY — S§, bounded measurable abd: 195
[0, ) x RY — RY bounded measurable, to fin@,(%#, P, X) whereQ is

a space{.%}i-0 an increasing family af-algebras o162, P a probability
measure on the smallestalgebra containing all the%’'s. and X :

[0,t) xQ — RY, a progressively measurable function such ¥@tw) e
I[b(t, %), a(t, Xo)]-

Let Q = CJ[0,);R"), B(t,-) = n-dimensional Brownian motion,
Z = a{B(9) : 0 < s< t}, P the Brownian measure dn anda andb as
given in the problem. We shall show that thee problem haswiso|
under some special conditions amndb.

Theorem .Assume that there exists : [0, ©) x R — Mgxn (Maxn=
set of all dx n matrices over the reals) such that-* = a. Further let

Dot ®I<C ) bt Xl <C.
ihj i
D loii(t %) = i (4 )] < Alxa = Xel,
ihj
3 1bj(t x1) = bj(t. X2)| < Alxy — .

i

201
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197

202 25. Construction of a Diusion Process

Then the equation
t t

(1) &t)=x+ f (o(S (s ). dB(s ) + f b(s £(s ))ds
0 0

has a solution. The solutiof(t,w) : [0,) x Q@ — RY can be taken
to be such tha£(t, -) is progressively measurable and such thét -) is
continuous for a, a.e. I§, n are progressively measurable, continuous
(for a.a.e) solutions of equation (1), thén= n for a.a.w.

Proof. The proof proceeds in several steps. m|

Lemma 1. LetQ be any space witli#;):»0 an increasing family ofr-
algebras. If0 < T < oo then there exists a-algebra .oy c & =
A[0,T) x F7 such that a function f [0, T] x Q — R is progressively
measurable if and only if f is measurable with respectAp

Proof. Let o = {A € & . ya is progressively measurableClearly
[0,T] x Q € o, and ifA € &, A® € o%. Thusa is an algebra. As
increasing limits (decreasing limits) of progressivelyasigrable func-
tions are progressively measurahig, is a monotone class and hence a
o-algebra. m|

Let f : [0, T] x Q — R be progressively measurable; in fatt, =

f+l=f| f—[f|
———, 7= ———. Letg= f*. Then
2 2 g
Zi-1
O = 2, Xt i)

i=1

is progressively measurable. Hentéq, is progressively measurable,
I.8. Nyg-1[n,) IS Progressively measurable. Similadg_l[%’zh) is pro-
gressively measurable, etc. Therefore, by definitmnis measurable
with respect tazy. Asg = f* is the pointwise limit ofg,, f* is mea-
surable with respect to7. Similarly f~ is @%-measurable. Thus$ is
“g-measurable.
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Let f : [0, T] x Q — R be measurable with respectt4. Again, if
g=f"
n2" .
i—-1
Onh = Z —2n )(gfl[i_z—nl’iin) + n/\/g—l[n’oo)
i=1
. ] =1
is afp-measurable. Sincg[n, ),...g [ on ,?) € . SO g
is progressively measurable. Therefgrés progressively measurable.
Hencef is progressively measurable. This completes the proofef th
Lemma.
To solve (1) we use the standard iteration technique.

Step 1.Let &(t, w) = X,

t t
tw) = x+ [(o(séra(aw). dasw) + [ blséra(sw)ds
0 0
By induction, it follows thatt,(t, w) is progressively measurable.

t
Step 2.Let Ap(t) = E(lénsa(t) = £n®)I?). FO <t < T, Ap(t) < C* [Ang

0
(s)dsandAp(t) < C*t, whereC* is a constant depending only dn

Proof.

Ao(t) = E(I&(t) — X1%)
t t
=E|l [ {(sx.d8(s X))+ | b(s, x)dsZ]
il /

t
< 2€|] f (o(s %), dB(s x)>|2] .
0

t
+ 2E|| f b(s, x)ds]z] (use the fact thak + y|?
0

< 2(x? + y1?) Vx y € RY)
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t t
:ZE[fTrcrcr*ds]:2E[|fb(s,x)d512].
0

0

198 or

t

t
Ao(t) < 2E [ftro-o-*ds] +2E [tflb(s, x)|2ds]
0

0
(Cauchy-Schwarz inequality)

< 2nd C*(1 + Tt.
An(t) = E(I€ns1(t) — En®)P)

t
-E [| f (s, én(s W) — o (s &n-1(S W)dB) +
: 0
+ f b(s, én(s W) — b(s, én-1(s, w))d 32]
° t
<2E [I f (0(s En(s W) — (S, én-1(s, W), dB(S, W)>|2] +
\
+ 26 f (B(S, £n(S W) — b(S, £n_1(S W))d?)
0

t
< 2E( f trl(o(S £n(S W) — (S én1(S W)X
0
X [0°(S £n(S W) — 0 (S £n-1(S W)]d S+

t
+2E [t f Ib(s, &n(s, W)) — b(S, én-1(S, W))IZdS]
0

t t
< 2dn AzfAn_l(s)ds+ 2tA2ann_1(s)ds
0 0
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.
<2dn (1 +T) f An-1(s)ds
0

199
This proves the result. ]
(C*t)n+1

Step 3.Aq(t) < m

¥Ynin0<t<T,where

C*=max2nd C2(1+T), and A%(1+T)}.
Proof follows by induction om.

Step 4.£qlj0 T)xa is Cauchy inL2([0, T] x Q, B([0, T] xQ), ux P), where
u is the Lebesgue measure onT0.

#+\N+1
Proof. Ap(t) < )

<+ ) implies that

(C*T)n+2
(n+2)!°

Here|| - ||» is the norm inL2([0, T] x Q). Thus

2
[€n+1 = &nll> <

> léni = &lla < o, proving Step (4).
n=1

O
Step 5.(4) implies thatéaljo.1ixq is Cauchy inL%([0,T] x Q, o, u X

P) where o is as iQ Lemma 1. Thugnlotxo converges tctt in
L%([0, T] x Q) whereé; is progressively measurable.

Step 6.If &ljo.T,1xeéT, IN L2([0, T2] x Q) and 200
§n|[0,T1]><QET1 In L2([Oa Tl] X Q)v

thenETﬂmﬂXQ =&r,a.e.0n 0Ty xQ, Ty < To.

This follows from the fact that i, — & in L?, a subsequence of
(&) converges pointwise a.e. §0
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Step 7.Let ¢ be defined on [(x) x Q by &l Tjxq = £ We now show
that

t t
Et.w) = x+ f (o(E(s ). dB(s ) + f b(s (s ))ds
0 0
Proof. Let0<t < T. By definition,

t t
En(t,w) = x+ [ (o(s6n-1(S ), dB(S, )y + | b(S én-a(s -))ds
/ /

t 2
E [f((rf(s,fn(s, N -o(sés W))),d,B(S,W»]
0

;
- E( f tr{(o(S £n(S W) — (S (8 W))(0 (S n(S W) — (s E(S W)))'ds
0

T

<dnA lEn(s W) — E(sW)P’ds— 0 as n— o
il

0

(by Lipschitz condition ornr).
Therefore

t t

f (o (S én1(s W), dB(S W) > f (o(s E(s W)). dB(s W)

0 0

201 in L2(Q, P). Similarly,
t t
[osaswds— [bsiswyds in L2
0 0
Thus we get

t
*) E(tw) = x+ f (o(s E(s W), dB(s W) +
0
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+fb(s,§(sw))ds a.e.in t,w.
0

O

Step 8.Let £(t,w) = the right hand side of«) above. Therg(t, w) is
almost surely continuous because the stochastic intefebounded
progressively measurable function is almost surely cootits. The re-

sult follows by noting that [Oco) = U [0, n] and a function on [0x) is
continuousfi it is continuous on [(h] vn.

Step 9.Replacing by & in the right side of £) we get a solution

t t
W) =x+ [(0(s8).d8) + | b(s &(sw))ds
[oeaw-]

that is a.s. continuoug¢t and a.e.

UniquenessLet & andn be two progressively measurable a.s. continu-

ous functions satisfying (1). As in Step 3,

t t
E(&(t, W) — X?) < 2(E( | troo*ds) + 2E(t | bl*ds)
/ /

$2E(ftrmr*ds+ 2E(Tf|b|2ds), if 0<t<T

< 00.

ThusE(|4(t, w)|?) is bounded in &< t < T. Therefore

(1) = E(IE(t, w) — n(t, w))
< 2E(J(t, w)[?) + 2E(n(t, w)?)

202
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and sog(t) is bounded in &t < T. But

t
$(t) < 2dn (L +T) f #(s)ds
0

as in Step 2; using boundednessggf) in 0 < t < T we can find a
constaniC such that

t
¢(t) <Ct and ¢(t)sCf¢(s)ds 0<t<T.
0

By iterationg(t) < . Therefore

cy" _€T"
nn = n!

¢=0 on [QT],

i.e. £(t,w) = n(t,w) a.e. in [QT]. But rationals being dense ik we
have
&£=n ae.and Vit

It is now clear that € I[b, a].

Remark. The above theorem is valid for the equation

t t
fmm=m+fw@xwwjhaam st
to to

This solution will be denoted b, x,-

Proposition . Let¢ : C[(0, «0);R") — C([to, ); RY) be the map send-
ing W to &, x,, P the Brownian measure on([D, ); R"). Let R, x, =
P¢~! be the measure induced or{[6, ); RY). Define X: [to, o) X
C)[to, 0); RY) by X(t,w) = w(t). Then X is an Itd process relative to
(C([to, ©); RY), 1, Pty x,) With parameters

[b(t. Xy). alt, X)].

The proof of the proposition follows from
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Exercise.Let (ﬁ, ?t,ﬁ), (Q, Z, P) be any two measure spaces with
Y progressively measurable 6n Q respectively. Suppose: Q — Q
is such thatl is (Z1,.%)-measurable for alt, andP1! = P. Let
X(t, W) = Y(t, Aw), YW € Q. Show that

(a) If Xis a martingale, so i¥.
(b) If X e I[b(t, X;), a(t, X;)] then
Y e I[b(t, Yy), a(t, Yy)].

Lemma.Let f : R? - R be(Q, P)-measurabley a sub -o - algebra
of Z. Let X: Q - Rand Y: Q — R be such that X i$.-measurable
and Y is}-independent. If W) = f(X(w), Y(w)) with E(g(w)) < oo,

then

E(g ) )W) = E(FO6Ylxexw,
E(f(X,Y)Iz)(W)=ff(X(W),Y(W))dF’(W)-
Q
Proof. Let A and B be measurable subsetsin The result is trivially 204
verified if f = Xaxg. The set

o/ ={F e R : theresultis true foKg}

is a monotone class containing all measurable rectangldsis The
Lemma is true for all characteristic functions. The geneeallt fol-
lows by limiting procedures. O






26. Uniqueness of Ofusion
Process

IN THE LAST section we proved that 205

t t

W) = X0 + f (o(s.£(s W), dB(s W) + f b(s (s wds
o

to

has a solution under certain conditionslbando whereoo* = a. The
measurePy, , = P&.% was constructed orC([to, ); RY), ) so that
the mapX(t,w) = w(t) is an Itd process with parametdrsanda. We
now settle the uniqueness question, about tieslon process.

Theorem . Let

() a:[0,00) xRY - S and b: [0,00) x R - RY be bounded
measurable functions;

(i) @ =C(0,);R%;
(i) X :[0, ) x Q — RY be defined by &, w) = w(t);
(V) X =(X(9:0<s<t)
(v) P be any probability measure on
ol
t=0

211
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such that RPX(0) = xo} = 1 and X is an Itd process relative to
(Q, X:, P) with parameters {, X;) and dt, X;);

(vi) o :[0,00) x RY = Mgxn be a bounded measurable map into the
set of all real dx n matrices such thato* = a on[0, o) x RY.

Then there exists a generalised n-dimensional Brownianomgt
on (€, %1, Q) and a progressively measurable a.s. continuous ghap
[0, ) x Q — RY satisfying the equation

t t
(1) LW =%+ f (o(s f (S W)). dB(s. W) + f b(s £(s W)ds
0 0

with Q=1 = P, wheret : Q — Q is given by(¢(W))(t) = £(t, W).

Roughly speaking, any Itd process can be realised by meaas o
diffusion process governed by equatibh (1) with* = a.

Proof. Case (i).Assume that there exist constamisM > 0 such that
ml < a(t,X) < Ml ando is ad x d matrix satisfyingoo™* = a. In this
case we can identify(t, 3, Q) with (Q, %, P). SinceD(t,-) is an Itd
process,

t t
exp(0. X(0) [ (60.0(s X(s Mds- 5 [ (6.a(s X(s Dords
0 0
is a @, .%;, P)-martingale. Put
t
Y(t,w) = X(t,w) — fb(s, X(s,w))ds— Xo.
0

Clearly Y(t,w) is an Itd process corresponding to the parameters

[0, a(s Xs)l,
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so that

t
expo, (L W) - 2 f 0, a(s X(s ))o)ds
0

is a @, %, P)-martingale. The conditions1 < a < M imply thato—?*
exists and is bounded. Let

t

t
n(t) = f oY = f o1(s X(s NAY(s ),
0

0

so that (by definition of a stochastic integralls a @, %, P)-Itd pro- 207
cess with parameters zero amd'a(c—1)* = 1. Thusy is a Brownian
motion relative to Q, %, P). Now by change of variable formula for

stochastic integrals,
t t
fo-dn: fo-a_ldY
0 0

= Y() - Y(0) = Y((V),

sinceY(0) = 0. Thus

t t

X(t) = 0 + f (s X(s ))d + f b(s X(s )ds
0

0

Taking Q = P we get the result.
Case (ii).a=0,b=0,% = 0,0 = 0 whereo € Myxn. Let (Q*, %", P¥)
be ann-dimensional Brownian motion. Define

(ﬁ,Z,Q) = (Qx Q, F x F,PxPY).
t

If g is then-dimensional Brownian motion o), .%;", P*), we de-
fine B on Q by B(t,w,w*) = B(t,w*). It is easy to verify thaB is an
n-dimensional Brownian motion o) 3, Q). Taking&(t, w, w*) = xg
we get the result. O
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Before we take up the general case we prove a few Lemmas.

Lemma 1. Leto : R" — RY be linearco* = a : RY — RY; then 208
there exists a linear map which we denotesby : RY — R" such that

o lar™* = mye, Wherern denotes the projection and,Nwull space of

ag.

Proof. Let R, = range ofo. Clearlyo : Nt — Ris an isomorphism.
Lett: R, — N be the inverse. We put

cl=7100:R, ®R: - Nf @ N,.
O

Lemma 2. Let X, Y be martingales relative (®, .%;, P) and(Q, .#, P)
respectively. Then Z given by

Z(t,w, W) = X(t, w)Y(t, W)
is a martingale relative to
QX Q, Fy x Z,PxP).
Proof. From the definition it is clear that for evety- s
f Z(t, w, W)d(P x 5)[%@ = f Z(s,w, W)d(P x P)
AxA AxA
if Ae ZsandA e .Zs The general case follows easily. m|
As a corrollary to LemmBl2, we have

Lemma 3. Let X be a d-dimensional Itd process with parameters b and
arelative to(Q2, #, P) and let Y be al-dimensional 1td process relative
to (Q, 74, P) relative tob anda. Then Zt,w,w) = (X(t,w), Y(t,W)) is a

(d + d)-dimensional It6 process with parameters=B(b, b), A = [Sg
relative to(Q x Q, % x .Z, P x P).
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209 Lemma 4. Let X be an Itd process relative {@, %, P) with parame-
t

tersO and a. Ifg is progressively measurable such tha(thle,ds) <
0

t
o0, Yt anddap* is bounded, therf (6, dX) € 1[0, 6ag*].
0

Proof. Let 6, be defined by

g _ ¢, ifl16 <n,
"o, otherwise:

t
Then [(6h, dX) € 1[0, 6has;]. Therefore
0

t 5 t
0 0

is a martingale converging pointwise to

t 5 t
X(t) = exp[/i f(e,dX} - % f(@, ae)ds].
0 0

t
To prove thatf (0,dX) is an Itd process we have only to show that

0
Xn(t) is uniformly integrable. Without loss of generality we nagsume
thatd = 1. Let [0, T] be given

=]

[ t t
E(X3(t,w)) = E|exp|2 f (O, dX) — f (9n,a9n>dsU

L 0 0
[ t t
L 0 0

].

t

+ f(@n, adn)ds

0
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< e’ sup(bn, abh).
O<t<T

210 But (9, ag*) is bounded and therefo(é,, ad,) is uniformly bounded
in n. Therefore X,) are uniformly integrable. ThuX(t, -) is a martin-
gale.

Case (iii). Taked = 1, and assume that

t
fa‘l)((,»o)ds< oo, YVt
0

with a > 0O; leto = +ve squareroot od. Define Yo = 1/0 if o > 0,
and Yo =0if o = 0. Let

t
Y0 = X0 -~ [ bsX(9)ds
0
Denote byZ the one-dimensional Brownian motion d*( .%", P*)

whereQ* = C([0, ), R). Now
Y e 1[0, a(s X(s,-))], Z € 1[0, 1].

Y,2) el ((o, 0): (g 2))

By Lemmd3,

t
1
n(t, w, w*) = f((m)((mow(a:o, acy, Z)))
0

then Lemmd&¥ shows that
n € 1[0,1].

Thereforen is a one-dimensional Brownian motion 6n = (Q x
Q, F x F,PxP). Put

Y(t,w,w*) = Y(t,w) and X(t,w,w*) = X(t,W);
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211 then
t t 1 t
fO'dn: fo';X(0'>0)dY+f0—X(a':0)dZ
0 0 0
t
= f X(>0)dY.
0
Since

t
fo-zx\/((r=0)d S] =0,

0

t 2
f/\/(0'=0)dY] ] =E

0

|

it follows that

t

t
fo-dn = Ofdvz Y(t) = Y(t, w, w).

0

Thus,

t
X(t,w, W) = X0+ f (s, X(s W, w)dy+
0

t
+ f b(s, X(s, w, w")ds
0

with X(t, w, w*) = X(t, w). Now
(P x PY)X H(A) = (P x P*)(Ax Q) = P(A).
Therefore

(PxP)X '=P or QX ‘=P
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Case (iv).(General Case). Define
t
V(L) = X - x0- [ bla X(s )ds
0
ThereforeY € 1[0, a(s, X(s, -))] relative to Q, %, P). LetZ be the 212
n-dimensional Brownian motion o), .%", P*) where
Q* = C(]0, o0); Rp).

as, Xs), 0”

v,2) | [(0, 0); 0 |

Let o be ad x n matrix such that-o* = aon [0, c0) x RY. Let

t

t
ptww) = [ s Xsmidvsw + [y (s Zsw)dzs w)
0 0

t
- f (s X(s W), my (S Z(s W))). (Y. 2)).
0

Thereforen is an Ito process with parameters zero and

ST

= O'_la.(O'_l)* + 7IN, TN -
=N, + N, (for any projectionPP* = PP = P)

= Ign.

Thereforen is n-dimensional Brownian motion on

(Q, 7, P) = (QxQ", Ty x F,PxP).
t

f (s X(s w))dn(s, w, W)

o
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o(s X(s W, w))dn(s, w, w*), whereX(s, w,w*) = X(s,w),

t

t
J
t
=f0'0'_1dY+f0'7TN(,dZ
0
f

0

nr,dY, sinceco™ = 7g, andony, = 0,

0
t
- f (1- g )dY.
0

o 213

t
Claim. [ g dY =0.
0
For

t t

:faﬂ'R(rdSsz—O—*ﬂ'R{rdS

0 0
t

= f o(0)ds= 0.

0

[ fr]

0

Therefore we obtain
t t
[ ots xswyansww) = [av=v©-¥© =¥
0 0
putting Y(t, w, w*) = Y(t,w), one gets

t
X(EWW) = %o + f (s X(s W, w)dn(s w, ')
0
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t
+ | b(s X(s,w,w"))ds
/

As in Case (iii) one shows easily that
(PxP)X " =P
This completes the proof of the theorem.

Corollary . Leta: [0,00) x R — S, and b: [0,00) x RY — RY
be bounded, progressively measurable functions. If foresohoice of
a Lipschitz functionr : [0, %) X RY — Mgxn, oo* = a then the Itd
process corresponding {t, a) is unique.

214 To state the result precisely, IBf and P, be two probability mea-
sures onC([0, «); RY) such thatX(t,w) = w(t) is an Itd process with
parameterd anda. ThenP; = P,.

Proof. By the theorem, there exists a generalisedimensional Brow-
nian motiong; on (Q;, Y1, Qi) and a mag; : Q; — Q satisfying (for
i=12)

t t

9 =0+ [ o(sa(sw)d(aw+ [ blsa(swhds
0

0

andP; = Q,fl_l
Now o is Lipschitz so that; is unique but we know that the iter-
ations converge to a solution. As the solution is unique theaions
converge t&;. Each iteration is progressively measurable with respect
to
{ = o{Bi(9); 0 < s < t} so that is also progressively

measurable with r«_aspectﬁti . Thus we can restate the result as follows:
There exists®;, %/, Q) and a mag; : Q; — Q satisfying

t

GLW) = Yo + f (s (s W)dBi (s W)

0
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t
+ | b(s &i(sw)ds
/

andP; = Q,fl_l
(Qi, #, Q. Bi) can be identified with the standard Brownian motion
(Q*, #,Q,B). ThusP; = Q¢~1 = P,, completing the proof. O






27. On Lipschitz Square
Roots

Lemma.Let f : R — R be such that fx) > 0, f(X) € C?and|f”(X)| < 215

A on(—oo, 0); then
1)) < VF(X) V2A.

Proof.

O<f(y=f(X)+(y—xf'(X)+

(y_ X)2 ”
G
ZZ
<f(X)+Zf(X) + > (&)

2
whereZ =y —x, or f(y) < f(x) + Zf'(x) + % Therefore

2
%+Zf’(x)+ f(x) =0, VZeR

1F/(Q)1% < 2A f(x).

So
1f/(X)] < V2Af(x).

O

Note. If we take f(x) = x2, we note that the constant is the best possible.

Corollary . If f >0, |f"”] < A, then
V(T (x1)) = V(T (X)) < V(A/2)Ix1 — Xa.

223
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Proof. Lete > 0, theny/(f(X) + €) is a smooth function.

, P (e
VI +9) = 079 ~ 2y + &

Therefore

(VT + €))'] < V(2A/2) < V(A/2),

or
IWV(f(x2) + €) = V(T (%) + &)l < V(A/2)Ix1 - Xal.
216
Lete — 0 to get the result.
We now consider the general case and give conditions on thiixma
a so thato defined byoo* = ais Lipschitz. m|

Theorem .Leta: R" — Sg be continuous and bounded@unction
such that the second derivative is uniformly bounded||DgD;a;j|| <

. . d :
M, where M is independent of i, j, r, $D; = R). Ifo:R"— S]is
the unigue positive square root of a, then

llo(X1) — o (X)Il < AlX1 — Xol, VX1, X2, A = A(M, d).
Proof.

ep l.LetAe e strictly positive suc - Al < 1. Then
Step 1.LetA Sgb trictl iti hthdt — Al < 1. Th

VA= -(-A)
= &(I -A),
r!
r=0
so that on the sgtA : ||l — Al < 1} the mapA — A is C*® (in fact

analytic).
Now assume thaf is any positive definite matrix. Lety,..., A,
be the eigen values so thaf > 0, j = 1,2...n. Thereforel — €A is
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aymmetric with eigen values-1 ed;. By choosinge suficiently small
we can make

I —eAll =maxX{l-eds,...,1—edn} <1l
Fixing such are we observe that

L
Ve

1

VA= -

V(eA) = (I = (I - €A)).

217
So the mapA — +/A is smooth on the set of symmetric positive
definite matrices.

Step 2.Letn = 1, o(tg) = v(a(tp) wherea(tp) is positive definite. As-
sumea(tp) to be diagonal so that(tp) is also diagonal.

> i O k() = a().
j

Differentiating with respect tbatt = ty we get
Z aij(to)oy (to) + Z oij(to)o jk(to) = & (to)
j j

or
Vaii (to)oj, (to) + Vaxk(to)oi (to) = &, (to)

or

aj/k (tO)
V(@i (to)) + V(a(to))”

Since the second derivatives are boundedMyahda; — 2a;; +a;; >
0, we get

|G (t) + 28 (t) + &; ()] < V(BM)/(aii (1) + 2aj(t) + ajj (1))
< V(BM)vV2v(ai + ajj)(t)

o i,k (to) =

or

(1) 8 (1) + 28, (1) + & (O] < 4YM(Vai + Vayp):
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Sincea is non-negative definite,
lai ()] < V(2ZM)/(aii (1)), Vi.
substituting this in[{{1), we get 218
3, (0] < 4YM(Vai + Vay),

and hence
o (to)] < 4V/M.

Step 3.Let a(ty) be positive definite and- its positive definite square
root. There exists a constant unitary matriguch thatra(to)a* = b(tg)
is a diagonal positive definite matrix. Ldfty) be the positive square
root of b(tg) so that

Ato) = ao(to)at.

Thereforeo” (tp) = (¢~ 2A’a@)(to) where ¢~ (to)); j= O'i’j (to) and
a’(to) = (o~ *b" @)(to)-
Sincea is unitary.
Al = llerll, &’ IF = 11711 11 = Nl l.
By hypothesis||b”|| = ||a”|| < C(d) - M. Therefore

1l < 4v(MC(d)),

llo”ll < 4V(MC(d)).
Thus|lo(t1) — o(t2)ll < [ta — 2|C(M, d).

Step 4.Leta : R — Sj ando be the unique non-negative definite
square root ob. For eache > O leta, = a+ €l, o« = unique positive
square root of,.. Then by step 3,

lloe(ta) — oe(t2)ll < C(M, )ity — t2.



227

If ais diagonal then it is obvious that, — o ase — 0. In the
general case reduego the diagonal form and conclude that — o
219 Thus
llor(t1) — o(t2)Il < C(M, d)ity — t2l.

Step 5.Leta: R" — S} ando? = a, with [ID,Dsajjll < M, VX, i, j; T,
sx eR". Choosexp, X, € R". LetX; = y1,¥2,...,¥ns1 = X2 be (O + 1)
points such thay, andy;,, differ almost in one coordinate. By Step 4,
we have

* llor(yi) = o(Yi+)ll < Clyi — Visal-

The result follows easily from the fact that
n
Il = " 1%l and Xl = (xg + - + Xo) 2
i=1

are equivalent norms.
This completes the proof of the theorem.






28. Random Time Changes

LET 220
1 0 9
L == . L
2 ; A gxax; ; i5x

with a: R? - S andb : RY — RY bounded measurable funcitons. Let
X(t, ), given byX(t, w) = w(t) for (t,w) in [0, o) x C([0, c0) : RY) be an
Itd process corresponding tR(.%;, Q) with parameterd® anda where

Q = C([0, ); RY). For every constart > 0 define

|_=C}Z.. & _,_Zb.ﬂ
"7 82 L Maxax T 247

Define Q. by Q. = PT;! where Tcw)(t) = w(ct). Then one can
show thatX is an Itd process corresponding 10, (#:, Qc) with param-
etersch andca[Note: We have done this in the case whaye= dj;].

Consider the equation

% = Lcu with u(0,x) = f(x).

This can be written aau = Luwith u(0,x) = f(xX) whent = ct.

Thus changing time in the 71';ﬂérential equation is equivalent to stretch-
ing time in probablistic language.

So far we have assumed thais a constant. Now we shall allow
to be a function ok.

229
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Let¢ : RY > R be any bounded measurable function such that
0<Ci1<¢(X) <Cy<oo, ¥xeR

and suitable constan€; andCo. If

1 92 d
== . b —
- [zzajamaxj * 2 ’axj]

221  we define

L¢=¢)LE¢

1 82 0

In this case we can say that the manner which time changesd&pe
on the position of the particle.
DefineT, : Q — Q by

(TewW)(t) = W(re(w))
whereri(w) is the solution of the equation

Tt

ds i
J ow(s)

- 1 1
AsC; < ¢ < Cyitis clear thatrtc— <t< TtC—. Wheng = ca
1 2
constant, them; = ctandT, coincides withT.

As

A
1
0<Ci<op<C 00, —d
<tasgstec< quxw(s))S

is continuous and increases strictly from Octoas A increases, so that
Tt €xists, is unique, and is a continuous functiort fafr each fixedw.

Some properties of 4T

(i) If I'is the constant function taking the value 1 then it is cleat th
T, = identity.
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222 (i) Let ¢ andy be two measurable funcitons such that @ < ¢(x),
Y(X) <b<eo,¥VxeRL ThenTyoT =Ty, =Ty o Ty.

Proof. Fix w. Letr; be given by

Tt 1
———ds=t.
of e 257"

Let w*(t) = w(r¢) and leto; be given by

ot 1
Of oSt

Letw™(t) = w*(ot) = W(t,,). Therefore

((Ty o Te)W)(B) = (Tew)(t) = W (o)
= W7 (t) = W(ts,)-

Hence to prove the property (ii) we need only show that

fLLd
. p(W(9) y(W(g)

Since .
1 dt 1
—d :t’ =
of pW(9) S dr . g
and
ﬂ _ 1 _ 1
dot  yW (o) v(W(ts))
Therefore
dr,, 3 dry, o 3
gt doy dt - d(W(T ) (W' (0t))

= ¢(W(Ta't W (W(Tm )
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= (P)(W(7e))-

223
Thus

Tot

1

) @) St

This completes the proof. m|

(i) From (i) and (ii) it is clear that'l';l =Ty-1 wherep™! = i—;

(iv) (1) is a stopping time relative tg. i.e.

A
w:f = ds>r; e Aforeacha > 0.
P(W(s))
0
(V) TaW)(t) = wW(Tew) = X, (W).
ThusTy is (%t — #7,)-measurable, i.é[qgl(c%) C Fr,.
Since X(t) is an Itd process, with parametdrsa, Vf € Cg"(Rd),
t
f(X(1)) - f(Lf)(X(s))dsis a martingale relative ta, .%#;, P). By the
0
optional sampling theorem

Tt

1) - [ (LHX)s

0

is a martingale relative tay, .7, P), i.e.

t
um%jhﬂmmwu
0
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. : . d
is a martingale relative tqY, .%-,, P). But ﬁ = ¢. Therefore

t
fmmnifummmmam
0

is a martingale. 224
PutY(t) = X;, and appeal to the definition af, to conclude that

t
FCY(D) - f (Ls F)(Y(s)ds
0

is a martingaleY (t, w) = X, (w) = (Tsw)(t). Let.Z; = o{Y(5): 0<s<
t}. Then.%, = T(;l(%) c Z,. Thus

t
SORIEHIOE
0
is a martingale relative tqY, .%;, P). DefineQ = Pqul so that

t
FX®) = | (Lp F)(X(9))ds
/

is an Q, %, Q)-martingale, i.eQ is an Itd process that corresponds
to the operatopL. Or, PTQ;l is an Itd process that corresponds to the
operatorgL.

We have now proved the following theorem.

Theorem .LetQ = C([0, o); RY); X(t, w) = w(t);
1 02 d
L=zYaj——+ S bj—.
2 .ZJ: N gxax; 2. I9%,

Suppose that ) is an Itd process relative t(2, %, P) that corre-
sponds to the operator L. L& < C; < ¢ < C, whereg : R —» R 225
is measurable. If Q= PT¢;1, then Xt) is an Itd process relative to
(Q, %, Q) that corresponds to the operatet..
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As0 < Ci < ¢ <Cy,wegetO< 1/Cy < 1/¢p < 1/Cq with
Ty-1 0 Ty = I. We have thus an obvious corollary.
Corollary . There exists a probability measure P Qrsuch that X is an
Itd process relative tqQ, .#;, P) that corresponds to the operator L if

and only if there exists a probability measure Q@rsuch that X is an
Ito process relative t@Q, .#;, Q) that corresponds to the operatot..

Remark. If C; > ¢ > C1 > 0 then we have shown that existence and
uniqueness of an Itd process for the operatguarantees existence and
unigueness of the Itd process for the operatr The solution is no
longer unique if we relax the strict positivity dy as is illustrated by
the following example.

1 62 :
Letg = a(xX) = |X|* A L where O< @ < 1 and letL = §a8_><' Define

50 on{C([0, o0); R)} by

1, if 6eA VYAe

So(A) =
oA {o, it 0¢A

whereg is the zero function on [Go).

Claim. &g is an Itd process with parameters 0 andror this it is enough
to show thaty f € C7(R)

t

fX() - f (LF)(X(s))ds
0
226 is a martingale, using(0) = 0, it follows easily that

t
f f (LH)(X(0))dordso = O
A 0

¥ Borel setA of C([0, 0); R) andf f(X(t))dso = 0if 9 ¢ Aand
A

f F(X(©)ddo = £(0)
A
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if 8 € A, and this is true/t, showing thaiX(t, w) = w(t) is an Itd process
relative tosg corresponding to the operatbr

Next we shall defind, (as in the theorem); we note thBt cannot
be defined everywhere (for examglg(d) is not defined). However,
is defined a.eP whereP = Py is the Brownian motion.

t t o
o " e S R N
; [Of |X(s)|ﬂds]‘of of R M

since O< a < 1. Thus by Fubini's theorem,

t
ds< a.e.
Of W

Takingt = 1,2,3.. ., there exists a s&* such thatP(Q*) = 1 and

t
oo, VYt, YweQ*
[ s
0

Observe that .
f IW(S)Ia
0

t
1
—ds
f wEeE AL S
0

t ds 3
f w(s)l* Al
0
ds ds
- f W AL f N

[0.tH{Iw(s)l*>1} {w(g)l*<1}[0]

implies that

for

227
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1

ds<
wEer

t
<m{(w(9)I* > 1)[0, 1]} +
|

(m = Lebesgue measure)

Thus T, is defined on the whole d®*. Using the same argument
as in the theorem, it can now be proved tKas an Itd process relative
to Q corresponding to the operatbr Finally, we show thafQ{g} = 0.
Q{0) = PT;1{6). Now: T;1{#} = empty. For, letw € T;1{6). Then
w(ty) = 0, Vt, w € Q*. Since|r; — 74 < |t — g, one finds that is a
continuous function of. Furtherr; > 0, andw = 0 on [Q 74] gives

T1

1
f W P A0S
0

This is false unles3;1{0} = empty. ThusQ{#} = 0 andQ is differ-
ent fromég.



29. Cameron - Martin -
Girsanov Formula

LET US REVIEW what we did in Brownian motion with drift. 228
Let (@, %, P) be ad-dimensional Brownian motion with

Piw:w(0)=x} =1

Letb: RY - RY be a bounded measurable function and define

t t
Z(t) = exp[f(b,dx) - % f|b|2ds].
0 0

Then we see thal(t, ) is an Q, %, P)-martingale. We then had a
probability measure€) given by the formula

dQ
—|  =Z(t,-).
dPl# ®.)

We leave it as an exercise to check thatfifeet X is an 1td process
relative toQ with parameterd andl. In other words we had made a
transition from the operatok/2 to A/2 + b- V. We now see whether
such a relation also exists for the more general opetator

Theorem .Leta: RY — S§ be bounded and measurable such that
a> Cl for some C> 0. Let b: RY — RY be bounded2 = ([0, «); RY),
X(t,w) = w(t), P any probability measure of2 such that X is an It6

237
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process relative tq¢Q, .%;, P) with parameterd0, a]. Define @ on .%;

by the rule
t 1 t
f (@b, dXy - > f (b, a‘%}ds‘ .
0 0

dQ
ﬁ|% =Z(t,-) = exp

229
Then

(i) {0t > Ois a consistent family.

(i) there exists a measure Q otf||.%):

(iif) X(t) is an It process relative t2, .#;, Q) with parametergb, a],
i.e. it corresponds to the operator

1 92 0
2 .ZJ: i gxax T Z,: b’a_xj'

t
Proof. (i) Let Att) = [(a'b,dX). ThenA € I[0, (b,ab)].
0

ThereforeZ(t) is a martingale relative taY, .%, P) hence{QY0
is a consistent family.

(i) Proof as in the case of Brownian motion.

(iii) We have to show that
t t
expKo, X(t, -)>—<9,fbds>—%f(9, av)dg
0 0

is a martingale relative td), .%#, Q).



239

Now for any functiord which is progressively measurable and boun-
ded

t t
exp[f(@,dX) - % f(@, ag)dg
0 0

230 is an Q,.%, P)-martingale. Replacé by 6(w) = 6 + (a tb)(y(s w)),
whereéd now is a constant vector. Then

t

t
exp[f(@ +a b, dX) - % f(@ +a b, ap)ds
0 0

is an Q, %, P)-martingale, i.e.

t t t
1 1 1
0 0 0

is an Q, %, Q)-martingale, and

(@b, a) = (a*a b, )
=(aa'b,0) (sincea=a’)
= (b, 9).

Thus

t t
explo, X)) - % f(@, avyds— f(@, b)dg
0 0

is an Q, %, Q)-martingale, i.eX is an Itd process relative t6)( .#;, Q)
with parameterst], a]. This proves the theorem. O

We now prove the converse part.

Theorem . Let
82

1 .
l=3 2 X OX;
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and ,
1 P p
225 2% s * L5

where a: RY — S* is bounded measurable such thateC| for some
C>0;b:RY— Rg is bounded and measurable. l@t= C([0, 0); RY)

231 with % as usual. Le® be a probability measure om(U.%;) and X a
progressively measurable function such that X is an It&cess relative
to (Q, Z;, Q) with parameterdb, a] i.e. X corresponds to the operator
L,. Let

t t
Z(t) = exp[- f (@b, dXx)y + % f (b,a tbydg.
0 0

Then
() Z(t) is an(Q, %, Q)-martingale.
(ii) If Ptis defined onZ; by

dP
dols = Z(1),

Then there exists a probability measure Paofu.%#;) such that

=P

T

P

(i) Xis an Itd process relative €2, .%;, P) corresponding to param-
eters[0, a], i.e. X corresponds to the operatog.L

Proof. (i) Let

t
A(t) = f (-a b, dX).
0

ThenA(t) is an Itd process with parametets &b, by, (a~1b, b)].
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Thus
t t
-1 1 -1
exp[A(t)—f(—a b,b)ds—§f<a b, bydg
0 0

is an Q, .%#;, Q)-martingale, i.eZ(t) is an Q, .%#;, Q) martingale.

(i) By (i), P'is a consistent family. The proof that there exists2a2
probability measur® is same as before.
SinceX is an Itd process relative 1Q with parameterd anda,

t t t
exp[f(@,dX) - f(@, b)ds— % f(@, agydg
0 0 0

is a martingale relative tQ for every bounded measuralfieReplaced
by O(w) = 6 — (a~*b)(X(s, w)) whered now is a constant vector to get

t t t
exp[(6, X(t)) — f (@b, dX) — f 6,b) + f (a'b,byds-
0 0 0

t
—% f(@ —alb,af — bydg
0

is an Q, %, Q) martingale, i.e.

exp[(, X) — f (@b, dXx)y - f (6, byds+ f (a b, byds-

__f<9 ag)ds— —f(a‘lb byds+ = f(@ b)ds+

; f (@b, anydg
0
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is an Q, .7, Q) martingale. Let € RY, so that
t 1 t 1 t
exp[(d, X) — % f (6, byds— 5 f (6, a0)ds + > f (@b, ap)dgZ(1)
0 0 0

is an Q, %, Q)-matringale and
(@b,a) = (b,6) (sincea= a’).

Therefore

t
1
expl0. %) - - f (6, 26)d9Z(t)
0

is an Q, %, Q) martingale.
P
Using the fact thatj—Q| - Z(t), we conclude that
't

t
exp[Ko, X) — % f(@, agydg
0
is a martingale relative td), %, P), i.e. X € 1[0, @] relative to
(Q, #, P).
This proves the theorem. m|

Summary. We have the following situation
L1,Q, 7, Q = C([0,);RY), L, Q, F.

P a probability measure X is an Itd process relative
such thatX is an It Pro- to a probability measur®
cess relative toP corre- | = corresponding td,. Q is

sponding to the operatof given byz_g 5 = Z(t, ")
7t

L;.
X is an Itd process relativg X'is an Itd process relative
to P corresponding tol; — to Q corresponding td.,.
P 1
where—

dQlz ~ Z(t.)
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Thus existence and uniqueness for any system guaranteesishe
tence and uniqueness for the other system.

Application. (Exercise). 234
Taked =1,a: R — szounded and measurable with<0C; <
aod 0 . .
a<Cy <. LetL = ;—— + b-. Show that there exists a unique

X X
probability masuré® on Q = C([0, «); R) such thatX(t) is It relative
to P corresponding td.. (X(t, w) = w(t)) for any given starting point.






30. Behaviour of Dffusions
for Large Times

LET L, = A/2+b-VWITH b : RY - RY measurable and bounded3s
on each compact set. We assume that there is no explosiBr.idfthe
d-dimensional Brownian measure éh= C([0, «0); RY) we know that
there exists a probability measu@g on Q such that

t t
= explf(b,dX)— %f|b|2d%
0 0

Let K be any compact set iR? with non-empty interior. We are
interested in finding out how often the trajectories visiand whether
this ‘frequency’ depends on the starting point of the trimjgcand the
compact sek.

dQx
dPy

Theorem .Let K be any compact set Bf' having a non-empty interior.
Let

EK = {w: w revisits K for arbitrarily large times
= {w: there exists a sequenced t, < - <
with t, — oo such that wt,)) € K}

Then,

either Q(EX) = 0, Vx, andVK,
or QuEX) =1, vx, andVK.

245
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Remark. 1. Inthefirstcaste lIMX(t)| = +o0 a.e.Qy, VX, i.e. almost
—+00
all trajectories stay withik only for a short period.

236 These trajectories are callé@nsient In the second case almost
all trajectories visitk for arbitrary large times. Such trajectories
are calledecurrent

2. If b = 0thenQy = Py. For the casel = 1 ord = 2 we know
that the trajectories are recurrent. df> 3 the trajectories are
transient.

Proof.

Step 1.We introduce the following sets.

ES = {w: X(t,w) € K for somet > 0},
EX = {w: X(t,w) € K for somet > to}, 0 < tg < co.

Then clearly
EX = )ES =) ES
n=1 to>0
Let

¥(¥) = Q(ES), F = xgx.
EX(FI.%) = E%(vex | %) = Q@ (ES)
by the Markov property,

= y(X(1)) a.e.Qx.
Next we show thaty(X(t)) is a martingale relative t®Qy. For, if
S<t,
EX W (X())-F5)
= EX(EX(FIF).F9)
= E%(FI.79)

= y(X(9)).
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237 Equating the expectations at tihe 0 and timet one gets

Y = | (X(1))dQ«
|

- f )t % y)dy.

whereq(t, x, A) = Qx(X; € A), YA Borel inRY.
We assume for the present thatx) is continuous (This will be
shown in Lemm@&l4 in the next section). By definitiom @ < 1.

Step 2.4(X) = 1, ¥xory(x) = 0, Vx.
Suppose that(xg) = 0 for somexy. Then

0= u(x) = f )AL Xo. y)dy:

As g > 0 a.e. ands > 0 we conclude that(y) = 0 a.e. (with respect to
Lebesgue measure). Singds continuousy must vanish identically.

If Y(xg) = 1 for somexy, we apply the above argument to-1y
to conclude thaty = 1, Yx. We now show that the third possibility
0 < ¢¥(X) < 1 can never occur.

SinceK is compact and is continuous,

O<a=infy(y) <supy(y) =b< 1
yeK yeK

From an Exercise in the section on martingales it follows$ tha
Y(X(t)) > xex ae. Qx as t— +oo.
Thereforet_ljorpw(X(t))(l —y(X(t))) = 0 a.e.Qx. Now
¥(%0) = Qx(EX) = Qe {w : wW(t) € K for arbitrary large timg
< Quiw : a < y(X(t,w)) < b for arbitrarily large timep

< Qeiw: (1 -b)a < y(X(H))[1 - y(X(1)] < b(1-a)
for arbitrarily large timep
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=0.

238
Thusy(x) = 0 identically, which is a contradiction. Thus for the
given compact sef,

either Qx(EX) =0, vx,
or Q(EX) =1, vx

Step 3.If Q(EX®) = 1 for some compact sdﬁo(lo<o # 0) andVx, then
Qx(EX) = 1, V compact seK with non-empty interior.

We first given an intuitive argument. Suppo@Q(Ecﬁo) =1, ie.
almost all trajectories visiKg for arbitrarily large times. Each time a
trajectory hitsKg, it has some chance of hittirtg. Since the trajectory
visits Ko for arbitrarily large times it will visitK for arbitrarily large
times. We now give a precise arguent. Let

T0 = inf{t . X(t) € Ko}
Ti=inf{t>tp+1 X(t) € Ko}

Clearlytg < 11 < ... <andr, > n.

Qu(EX) > Qu(X(t) e K for t > )
> QuX(t) e K fort e U[T,-,T,- +1])

=

j=n

> 1—Qx{ﬂxm +1)e K}

j=n

- 1—Qx{ﬂxa) ¢ Kforte[r,7j +1]}



249

239
We claim that

Q[ | X(rj+1) ¢ K) =0,

j=n
so thatQy(EX) = 1 for everyn and henceQy(EX) = 1, completing the

proof of the theorem.
Now

q(1, x,K) > g(1, x, IO<) >0, VX K interior of K.

Itis clear that ifx, — X, then
lim q(L, X, K) > g(L, x, K).

Letd = in}l‘ a(1, x, IZ). Then there exists a sequenggein Ko such
XeKo

thatd = Lt g(1, Xn, ;2). Ko being compact, there exists a subsequence
n—oo
Yn Of Xy with y, — xin Ko, so that

d = lim q(1,x K) = lim o(L, yn, K) > (1,  K) > 0.

Thus
inf (1, x,K) >d > 0.
)

Now
N
[ [X@i+1)¢ K7,
j=n

of
N1

= | [ x(X(rj + 1) ¢ K)Qx(X(rn + 1) € K|.F,) because

J=n

Ti+1l<1N for j <N,

N-1
= [ [Orxr;+n € K)Qxro(X(1) ¢ K) by the strong
j=n
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Markov property,
-1

= 1_[ C](l, X(TN)a KC)X(X(T]+1)¢K)-
i=

240
Therefore
N
Qx{ﬂ X(rj+1) ¢ K]
j=n
N
= E9(Qu([ ) X(rj + 1) ¢ Kly)))
j=n
N-1
= E® [l_[()([x(rﬁl)er(])qu, X(Tn), KC)]
j=n
SinceKg is compact anX(ry) € Ko,
(L X(rn), K®) = 1-q(1, X(rn).K) < 1-d
Hence
N N-1
Qx[ﬂ X(rj+1) ¢ K] <(1- d)Qx[ﬂ X(rj+1) ¢ K].
j=n j=n
Iterating, we get
N
Qx {ﬂ X(rj +1) ¢ K] <@ -dN"™ VN,
j=n
241 LetN — oo to get

Qx[ﬂ X(rj +1) ¢ K] =0,

j=n

since 0< 1-d < 1. Thus the claim is proved and so is the theorem.
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Corollary . Let K be compactf( # 0. Then Q(EK) = 1if and only if
Qu(ES) =1, ¥x.

Proof. SupposeQx(EX) = 1; thenQu(Ef) = 1 becaus€EXES. Sup-
poseQy(Ef) = 1, then

QuER) = EX(E>(xex |- 7))
= E&(Qxn(Ep))
= E%(1)
=1, vn.
ThereforeQy(EX) = 1. O

Remark. If Qx(EX) = 0 then it need not imply that
Q«(ES) = 0.
Example.Takeb = 0 andd = 3. LEtK = S; = {x € R3 such that
|X| < 1}. Define
1, for |x <1,
n) =
v {ﬁ for |x > 1

Px(ES) # constant buP,(EK) = 0. In fact, Px(ES) = y(X) (Refer
Dirichlet Problem).






31. Invariant Probability
Distributions

Definition. Let {Py},.rs be a family of Markov process on 242
Q = C([0, 0); RY)

indexed by the starting points with homogeneous transition probabil-
ity p(t,x, A) = Py(% € A) for every Borel sefA in RY. A probability
measurg: on the Borel field oY is called aninvariant distributionif,
VA Borel inRY.

f p(t. X, A)du(x) = u(A).
Rd

We shall denotd p(t, X, y) by p(t, X, dy) or p(t, x, y)dyif it has a den-
sity.

Proposition .Let L, = A/2 + b - V with no explosion. Let Qbe the
associated measure. {lQ} has an invariant measugethen the process
is recurrent.

Proof. It is enough to show that iK is a compact set with non-empty
interior then

Q«(EX) =1
for somex. Also Qu(Ef) > Qu(X € K) = q(t, X, K). Therefore

u(K) = f ot x, K)du(x) < f QUEN)du(¥.

253
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Now, 0 < Qx(EX) < 1 andQ«(E) decreases tQ«(EX) ast — .
Therefore by the dominated convergence theorem

u(K) < f QuEX)dhu().

If the process were transient, thQ}(Efo") = 0, Vn, whereS, =
{(x e RY:|x < n},ie.u(Sn) = 0, Vn. Thereforeu(R%) = 0, which is
false. Thus the process is recurrent.

The converse of this propositiontittrue as is seen by the follow-

ing example.
192 : . : N
LetL = 292 so that we are in a one-dimensional situation (Brow-

nian motion). Then

1
p(t, x,K) =
[

whereA denotes the Lebesgue measureRotf there exists an invariant
distributiony, then

= x/(zm)M )

AK)
u(K) = f pit. x, K)du(¥) < W“K) f () = Jiak

Lettingt — oo, we getu(K) = 0¥ compactK, giving 4 = 0, which
is false. m]

Theorem .Let L = A/2 + b - V with no explosion. Assume b to be
C*. Define the formal adjointLof L by L' = A/2-V -b (i.e. L'u =

1 . .

EAU — V- (bu)). Suppose there exists a smooth funci¢@? - would

do) such that k¢ = 0, ¢ > O, inf ¢dx = 1. If one defineg by the rule
u(A) = f o(y)dy, thenu is an invariant distribution relative to the family
A

{Qx}.

Proof. We assume the following result from the theory of partidiedi
ential equations.
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If f e C3(G) whereG is a bounded open set with a smooth bound-
arydG andf > 0, then there exists a smooth functidg : [0, 0)xG —
[0, o0) such that

oU
a—tezLUG on (Qoo)xG,

Us(0,x) = f(X) on {0} xG,
Us(t,X) =0, V¥YxeG.

Lett > 0. AsUg, ¢ are smooth an is bounded, we have

0
athG(t X)p(X)dx = fatUG¢>ds fquUde

Using Green'’s formula this can be written as

;fUG(t X)p(X)dx = fUGL (Z)——f[({)aU—G—UG: ds+
G

oG

+ f(b- NUg(t, X)o(X)dS

Heren is assumed to be the inward normab@. So,

0 fUG(t X)p(X)dx = —= f(x)aU—G(t X)dS

ot
G G

(Use the equation satisfied Byand the conditions odg). Now Ug(t, X)
>0,¥xe G, Ug(t,X) = 0,¥xin dG, so that

aU—G(t X) > 0.
This means that 245
gthG(t X)¢p(X)dx < 0, Vt > 0,

G
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i.e. fUG(t, X)¢(X)dx is a monotonically decresing function bfThere-
G

fore

fUG(t, x)qb(x)dxstG(O, X)p(X)dx

G

G
f f(X)p(X)dx
G

f f(X)p(X)dx
Rd

Next we prove thatit) : [0, 0)xR? — [0, ) is such thag? = LU,
Yt > 0andU(0, x) = f(X), then

fU(t, x)qb(x)dxsff(x)qb(x)dx
Rd

Rd

The solutionUg(t, X) can be obtained by using Itd calculus and is
given by

Ua(t:) = [ X0t
We already know that
U(t,x) = f F(X(1))dOx.
Therefore
[ utxemax= [ rexnempeax
Now
[ 1xOend@a9ax
ng(t, X)¢(X)dXSff(X)¢(X)dX
Y
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Letting G increase t®Y and using Fatou’s lemma, we get

[ foxnemaaaxs [ 1090ax

This proves the assertion made above.
Let

(A = f o(X)dx
A

V(A = f QX € Adu(x) = f ot X A)d(x).

Let f € CJ(G), f > 0, whereG is a bounded open set with smooth
boundary. Now

|t = [[ s xyucday
- [[ texepaQuu
- f Ut X)du(X)
- f UL, X)(x)dx
< f F(X)()dx = f F()du(x).

Thus,Vf > 0 such thatf € C7,

f fF()dv(X) < f f(X)du(X).

This implies that/(A) < u(A) for every Borel seA. (Use mollifier 247
sand the dominated convergence theorem to prove the abayesility
for ya whenA is bounded). Thereforg(A®) < u(A°), or 1- u(A) < 1-
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u(A), sinceu, v are both probability measures. This givé®\) = v(A),
ie.

i = [ ot x M.
i.e.u is an invariant distribution.
We now see whether the converse result is true or not. Supipese
exists a probability measugeon R? such that
f Qu(X: € Adu(X) = u(A), YA Borel inRY andVt.

The question we have in mind is whethgA) = fqbdxfor some
A

smoothg satisfyingL*¢ = 0, ¢ > 0, fq&(x)dx = 1. To answer this we
proceed as follows.

By definitionu(A) = f q(t, x, Adu(x). Therefore

[ rxnd@auc
- [[ 1620t x 8y dutx

® - [ 1))t € CEIf <1

SinceX is an Itd process relative Q4 with parameterd andl,

t
fFX(®) - f (L)(X(s)ds
0

is a martingale. Equating the expectations at ttrae0 and timet we
obtain

t
EQ(f(X(t)) = f(X) + E® [ f (Lf)(X(s))ds]
0

Integrating this expression with respectitgives

[ roxend@auco = [ fogekew ([ ft (LEX(S)ds dQa.
Rd O
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Using (1), we get

0=j:ff¢ﬂM®NQmsmm
R Q O

Applying equation (1) to the functiobf we then get

0=fjﬂnmwmm
0

Rd

ﬂjhnmmm,W>o
Rd

Thus
0= [Nk, V1 eCTE)
Rd

In the language of distributions this just means ttat = 0.
From the theory of partial fierential equations it then follows that
there exists a smooth functignsuch thatVA Borel inRY,

u(® = [ 66)dy
A
with L*¢ = 0. Asu > 0, ¢ > 0 and since
u®Y) =1, f p(X)dx = 1.
Rd
249

We have thus proved the following (converse of the previds-
rem.

Theorem .Letu be an invariant distribution with respect to the family
{Qx} with b: RY — RY being C°. Then there exists@ e L'(RY), ¢ > 0,
¢ smooth such that

L' =0, j@mw=1



260 31. Invariant Probability Distributions

and such that

w(A) = f #(y)dy, VA Borelin RY.
A

Theorem (Uniqueness)Let ¢, ¢, be smooth oY such that
$1,42>0,1= f¢ldy: fd’zdy, L*¢1 =0=L"¢>.
Rd Rd
Theng, = ¢».
Proof. Let f(X) = ¢1(X) — ¢2(X),

,ui(A)=f¢i(x)dx, i=12
A
Thenus, andus are invariant distributions. Therefore

f q(t, x, y)gi(x)dx = f a(t, X, y)dui (X)
=¢i(y), (a.e), i=12

Taking the dfference we obtain

f ot x Y Fdx = 1Y), ae.

[itray=[1 [ atxyrooaxay
Sffq(t, X YIf(ldx dy

Now
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Thus

¢ [[ oo xyaxdy= [1 [ axnrogaxay

We show thatf does not change sign, i.€.> 0 a.e. orf < 0 a.e.
The result then follows from the fact thﬁtf(x)dx = 0. Now

| f AL ) F(9dH < f oL x Y)IF (¥idx

and ¢) above gives

1 atwxyreonxay = [[ e xifiex dy

Thus

| f oL X y) F(9dX = f oL x y) f(ldxa.ey,

| a@xy)fdx+ [ (L, x y)f(x)dx
/ /
:fq(l, x,y)f(x)dx—fq(l, x y)f(X)dxa.e.y,
E+ E-

where
Ef={x:f() >0}, E ={x:f(x) <0}, E°={x:f(x)=0).

Squaring both sides of the above equality, we obtain

(**) [Efq(l, x,y)f(x)dx] [Efq(l, x,y)f(x)dx] =0, a.e. V.

251
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Let A be a set of positive Lebesgue measure; tipéh x, A) =
Px(X(1) € A) > 0. SinceQy is equivalent td?, onQ we haveQy(X(1) €
A) = q(1, x,A) > 0. Thereforeq(1, x,y) > 0 a.e.y for eachx. By
Fubini’'s theoremq(l, x,y) > 0 a.e.x, y. Therefore for almost al,
q(1, x,y) > 0 for almost allx. Now pick ay such that £x) holds for
whichq(1, x,y) > 0 a.e.x.

We therefore conclude from) that either

fq(l, x,y)f(X)dx=0, inwhichcase f <0 a.e,
E+

or
fq(l, x,y)f(X)dx=0, inwhichcase f>0 a.e.
e

Thusf does not change its sign, which completes the proof. o

Remark. The only property of the operatarwe used was to conclude
g > 0. We may therefore expect a similar result for more gengraia
tors.

Theorem .Let L*¢ = O whereg > Ois smooth and ¢(x)dx = 1. Let K
be any compact set. Then

sup | gt x,y) —é(y)ldy—>0 as t— +oo.
xeK

Lemma 1. Let b be bounded and smooth. For everyRd — R that is
bounded and measurable leftix) = EQ«(f(X(t)). Then for every fixed
t, u(t, X) is a continuous function of x. Further, fopte > 0,

2
lu(t, X) — fu(t -€Y) \/(Zj-l'é)d eXp_|XZEY|
< Il V(€™ (€™ - 1)),

dyf

where c¢ is a constant depending only |, .
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Proof. Let
(TeF)(x) = EX(F(X() = EP(F(X(1)Z(e, 1)+

1
@ +EP(F(XO)Z®) - Z(e 1)),
where
t 1 t
Z(t) = expl (L%, dx) — = |b|2d+
Jorens]
t t
Z(e,t) = explf(b,dx) - % flb(X(s))|2d%.
EP(f(X(®)Z(e, 1) = EP(E™(f(X()Z(e D))
= EP(E™e)(F(X(t - €)Z(t - €)))
(by Markov property),
= EPx(u(t — €, X(¢)).
(x=y)P?
@) S e [_3?_Py
Now

(EP(1Z() - Z(e, 1)) =
= EP(1Z(€)Z(e.t) - Z(e. 1))
= EP(Z(e, )Z(e) - 1))
< (EP((2(e) - D)E" (Z%(e. 1))
(by Cauchy Schwarz inequality),
< EPX(Z%(€) - 2Z(€) + DE™(Z%(e, 1))
< EPX(Z%(€) - D)EP*(Z%(e, 1)), (sinceEPx(Z(¢)) = 1),

t t t
< EPx(Z%(e) - 1)EP*(exp(2 f <b,dx>—§ f Ibds+ f Ibj2ds9)
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< EPX(Z%(e) - 1),

using Cauchy Schwarz inequality and the fact that

t t
2
EPx(exp(2 f (b, dX) —% f Ib?d9) = 1.
Thus

EPx(1Z(t) - Z(e, O)I? < (% — 1)e™

wherec depends only ofib||... Hence

IEPX(f(XW®)(Z() - Z(e, V)] < 1Tl EP(Z(Y) - Z(e, 1))
®) < [Ifllo V(€™ — 1)e™).

Substituting [[R) and{3) ifd1) we get

v — w2
e = [ - eXp[ e ]dy
< Ifllo V(€™ - 1))

Note that the right hand side is independenka@ind ase — O the
right hand side converges to 0. Thus to show tifgtx) is a continuous
function of x (t fixed), it is enough to show that

1 —Ix—yP?
J - exp[ 2€

is a continuous function of; but this is clear since is bounded. Thus
for any fixedtu(t, X) is continuous. m|

dy

Lemma 2. For any compact set k& RY, for r large enough so that
Kc{x:|x<r}, X—o Qxrr <t)
is continuous on K for eachx 0, where

(W) = inf{s: |w(9)| > r}.
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Proof. Q(rr < t) depends only on the cfisientb(X) on|x < r. So
modifying, if necessary, outside < r, we can very well assume that
Ib(x)| < M for all x. Let
77 = inf{s: s> ¢,|W(S)| > r}.
Qu(rf <) = EF(UX(e))),
where
u(x) = Qx(rr <t-e)

As b andu are bounded, for every fixed> 0, by LemmallQx (7, <
t) is a continuous function of. As

|Qx(7f < 1) = Qu(rr <) < Qu(7r < ),
to prove the lemma we have only to show that

limit supQx(rr <€) =0
€0 yeK

Now

Qulrr <& = f Z0dp,

{rr<e}
< f (Z(€)2dPYM2 - yPy(rr < ).

by Cauchy-Schwarz inequality. The first factor is boundechheeb is 255
bounded. The second factor tends to zero uniformlKdrecause

SUpPyx(rr < €) < P(sup [w(9)| > 6)
xeK O<s<e
where
6 = inf |(x=Y)I.
yeK
IX|=r.
O

Lemma 3. Let K be compact iiRY. Then for fixed t, Qr; < t) monot-
ically decreses to zero as + oo and the convergence is uniform on
K.
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Proof. Let f(X) = Q«(rr < t). As{r, <t} decreases to the null sét(x)
decreases to zero. A§is compact, there exists aip such that for >
ro, fr(X) is continuous orK, by Lemmd®2. LemmEBl3 is a consequence
of Dini’s theorem. m]

Lemma 4. Letb: R" — RY be smooth (not necessarily bounded). Then
EQ¢(f(X(t))) is continuous in x for every fixed t, f being any bounded
measurable function.

Proof. Let b, be any bounded smooth function 8 such that, = b
on|x < r andQ the measure correspondinglio Then by Lemm&l1,
EQ¢(f(X(t))) is continuous irx for all r. Further,

[E(F(X()) - EX(fXONI < 2lflle - Qu(rr <1).
The result follows by Lemm@ 3. m|

Lemma 5. With the hypothesis as the same as in Lerilhn(&4), is an
equicontinuous family, where

S; = {f : RY - R, f bounded measurabléf||. < 1}
Proof. For anyf in Sy, letU(x) = U(t, X) = E(f(X(t))) and

—|x - yi?
2¢e

Uc(X) = U(t, X) = fU(t -€ exp[ ]dy.

) 1
Yo
By Lemmd,

U(x) = Ul < (((€% - 1)e*)M?
|U(X) - U(y)l < |U(X) - Ue(x)l + |U€(y) - U(y)l + |UE(X) - Us(y)l
< 2V((€* ~ 1)) + IUe(x) — U(y)L.

The family{U. : f € S1} is equicontinuous because evéhoccur-
ing in the expression fdd, is bounded by 1, and the exponential factor
is uniformly continuous. Thus the right hand side is very Biifie is
small andx — y| is small. This proves the lemma. m|
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Lemma 6. Let b be smooth and assume that there is no explosion (b
is not necessarily bounded). Thé®;) is an equi-continuous family
vt > 0.

Proof. Letr > 0 be given. Defing, € C* suchthab, = 0on|x > r+1,
b =bon|x <r, b : RY - R. By Lemmd®, we have that

(ES(F(X®)) : f € Sy)

is equicontinuous, wher@;, is the probability measure correspondings?
to the functionb.

@) EQ(F (XMt >t) E(F(XW)x iz, >1)-
Therefore
[EQ(F(X(1))) — E%(F (X))
= [E(f (XOW(r,>1) + EX(FXOW(r <t)
— EQ(F(XOWirr>t) — E(F(XO)x(r <)
= [E(f (X () (r, <) — EZ(FXO)xfr, <0)
< 1l (B (<)) + E% (e, <)
< IE%(y(r,<0) + E% (v, <n))(use (1) withf = 1)
= 2E%(x(r, <b)-

Thus
sup sup [EX(F(X(t)) — EZ(f(X®)| < 2 SUfyr <t))-
XeK || fllo<1 xeK

By LemmaB,

SupE®(r; <t) - 0
xeK
for every compact sék asn — oo, for every fixedt.
The equicontinuity of the familyS;) now follows easily. For fixed 258
X0, put ur(X) = EX(F(X(1)) andu(x) = EX(f(X(t))) and letK =
gXg, 1] = {X: |X— Xo| < 1}. Then

[u(X) — u(Xo)l < [u(X) — ur(X)| + [u(Xo) — Ur(Xo)I + [ur (X) — Ur (Xo)|
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<2 SUKPEQVCV(Trsm) + [Ur (X) — Ur (Xo)|
ye

By the previous lemmdu;} is an equicontinuous family and since

SUPE¥(y(r<1)) — O, {u : |Iflls < 1} is equicontinuous ako. This
yeK
proves the Lemma. m|

Lemma7. Ty o Tg = Ty, VS, 1> 0.
Remark. This property is called theemigroup property
Proof.

T (TsF)(X)

- [[ t@atsy. 200 xay dz

Thus we have only to show that

f ot x y)o(s Y. A)dy = qt + 8 %, A).

qlt + s % A) = EX(X(t + ) € A
= EX(X(t + ) € Alp))
= EX(EXX®)(X(9) € A))),
by Markov property
= E&(q(s X(t). A))

= f a(t, x y)a(s, y, Ady,

which proves the result.
259 As a trivial consequence we have the following. o

Lemma 8. Lete > Oand let S be the unit ball in BRY). Then( J T¢(S1)
t>e

is equicontinuous.
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Proof. UoTt(Sl) = T(tL>JO T:(S1)) (by LemmdF)T(Sy).

t>e>

The result follows by Lemm@ 6. O

Lemma 9. Let u(ttx) = E(f(X(t))) with || f|l. < 1. Lete > O be given
and K any compact set. Then there existspa=T Tp(e, K) such that
VT > ToandV¥xg, % € K,

[u(T, x1) = u(T, X)| < e.

Proof. Defineq"(t, X1, X2, Y1, ¥2) = q(t, X1, y1)q(t, X2, y2) and letQx, x,)
be the measure corresponding to the operator

1
L = E(Axl + AXZ) + b(Xl) . Vxl + b(X2) . VXZ

i.e., foranyu: RYxRY - R,

2d 2 t
1 o°u ou
Lu== > — + ) bi(Xy,...,Xq)—+
DITAPILR T

ThenQ(x, x,) will be a measure of([0, ); R?x R). We claim that
Q(Xl,Xz) = Qxl X sz- Note that

C([0, 0); RY x RY) = C([0, o0); RY) x C[(0, c0); RY)

and sinceC([0, «0); RY) is a second countable metric space, the Bogsb
field of C([0, 0)RY x RY) is theo-algebra generated by

% = (C([0, ); RY)) x B(C[0, ); RY).

By going to the finite-dimensional distributions one canaththat
Poaxe) = Py X Py,

t

t
1
_ (1) _ = (1)2
yt_explf(b ,dX1) 2f|b [“ds| x
0

0

dQx.x)
dP(x;.x)
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t t
f (b(z),dxz>—% f Ib®@2ds|,
0 0

X exp

where
bBD(xq ... %g) = b(Xq ..., Xa) - B@(Xds1 . . . Xaq) = D(Xds1s - - - » Xod)s

S0 thatQx,,x,) = Qx; X Qx,.
It is clear that if¢p defined an invariant measure for the proc@ss
le.

f p(x)dx = f 6()Qy% € A)dy,
A

then ¢(y1)#(y2) defines an invariant measure for the proc€gsg x,).
Thus the procesQy, x,) iS recurrent.

Next we show thati(T —t, X1(t)) is a martingale (& t < T) for any
fixed T onC([0, T]; RY).

EQU(T - t, X(t)|.7s))
- [ f UT = £y)a(t = S % dy)lxexcs
- [ f f F@AT — .y, d2q(t - s X dy)lxxco

- [ f FQAT = s X dlexcs
=uT -sX(9), s<t.

It now follows thatu(T —t, X1 (t)) is a martingale o€([0, c0); RY) x
C([0, 0); RY). Henceu(T —t, X1(t)) — u(T — t, Xo(t)) is a martingale
relative toQ(x, x,)-

LetV = S(0,6/2) c RY x RAwith 6 < 1/4. If (x1, %) € V, then

X1 = X2 < [(X1,0) = (0,0) + (0, 0) - (0, x)| < 6.
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Claim 1. Q. x)(tv < T) = 1 asT — oo, wherery is the exit time
from R4 - V.

Proof. If w is any trajectory starting at some point Vi thenty =

0 < T, VT. If wstarts at some point outsidéthen, by the recurrence

property,w has to visit a ball with centre 0 and radi&&; hence it must

get intoV at some finite time. Thugy < T} T to the whole space as

T 7T . Next we show that the convergence is uniform on compact sets
If X1, X2 € K, (X1, X2) € K x K (a compact set). P@r(x1, X2) =

Q) (v < T). Thengr (X1, X2) > 0 andgr (X1, X2) increases to 1 ab

tends toco.

g7 (X1, X2) = Qxy.x)(rv < T)
Q(Xl,Xz)(T\l/ <T),
where 262
5 = inf{t > 1: (X1, %) € V}.

Therefore

g7 (X1, %2) = E(x1, %2)(EQ(x1, %) (73 < T)n))
= EQ(x1, X2)(Quyxapity < T
= E9(xq, x2) (7 (X1(1), X2(1))),

whereyt is a bounded non-negative function. Thus, if

hr (X1, X2) = Q) (Ty < T) =
= EQ(xq, %) (7 (X1(1), X2(1))),

then by Lemm@aldhy is continuous for each, gr > hr andhy increases
to 1 asT — oo. Thereforeht converges uniformly (and so dogsg) on
compact sets.

Thus givene > 0 choseT = Ty(e, K) such that ifT > T,

SUp SUpQuux)(tv > T - 1) <e.

X2eK X1eK
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By Doob’s optional stopping theorem and the fact that
u(T —t, Xq (1)) — u(t — t, Xx(t))
is a martingale, we get, on equating expectations,

[u(T, Xa) — u(T, X2)I
= [EQw=2[u(T - 0, X1(0) — u(T — 0, Xx(0)]|
= |EQw [u(T = (ry A (T = 1)), Xo(T = (v A (T = 1))—
—U(T = (v AT(=1)), Xo(T = (7v A (T = DI

| f [U(L. Xa(1)) - U(L Xo(1))]dQuepp+

{ry=T-1}
+ f [U(T = 7y, Xo(T = 7)) — u(T = 7v), Xo(T = 7v))d Qs x5) -
{re<(T-1))
263
Therefore
u(T, x1) — u(T, x2)|
< [ U ) - UL XA Qu
{TVZ(T*:L)’
+ | f [U(T = 7y, Xo(T = 7)) = U(T = 7, Xo(T = 7)) d Qs x0)|
{ry<(T-1)}
< 26 + | f [U(T — Ty, Xl(T - T\/)) - U(T — Ty, X2(T - TV))]dQ(Xl,Xz)L
{re<(T-1)}
sinceu is bounded by 1.
The second integration is to be carried out on the{Fet v > 1}.
Since | T(S1) is equicontinuous we can choosesa> 0 such that
t>1
wheneverxy, X € K such thatx; — x| < 6
u(t, x1) —ut, xp)l <€, Vt>1
264

Thus|u(T, X1) — u(T, X2)] < 3e wheneverxs, X € K andT > Ty.
This proves the Lemma. m|
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Corollary to LemmaBl sup flq(t, X1, Y)|dy converges tBast— oo.
X1,%X0€K

Proof. Since the dual okl is L*, we have

f la(t, x1, y) — q(t, X2, y)ldy
= sup | | [a(t, x1,y) — q(t, X2, y)] f(y)dy]

Ifllo<1

and the right side converges to Otas o, by LemmdD®.
We now come to the proof of the main theorem stated before La&amm
M. Now
[ et x3) - oty

_ f ot x.) - f o0t 3, y)dxtdy

(by invariance property)
= [ [ et x st - [ st - ypaxy
(since f p(xHdxt = 1)
< [[ 1att.x3) - ot sy (sinces > 0)

= f P(xL)dx f la(t, x.y) - a(t, ', y)ldy

Since
[ = L [ oo,
Ixt|<n
choose a compact setk such that [ ¢(x})dx! < e. Then 265
RA-L

f o) f ot x.y) — ot ¥ y)ldy
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= [o6hax [1axy) - ot X iy
L

4 f o) f ot x.y) - q(t. x4, y)idy

RI-L

1 B 1
S[fqb(x )dxlflq(t, x,y) — q(t, X}, y)ldv + 2e.

Chosetg such that whenevdr> tg,

t,xy) - q(t, x}, y)d _;
flq( X,y) = q(t, X", y)ldy < L+ [90d)ar
L

VX, X1 in L. (Corollary to Lemm&l9). Then

f la(t, X, y) — ¢(y)ldy < 3,

if t > to¥x € K completing the proof of the theorem. i



32. Ergodic Theorem

Theorem .Let f : RY - R be bounded and measurable wijthl., < 1. 266
If ¢ is an invariant distribution for the familyQy}, x € RY then

Jm - ESCHXE) X)) = [ [ 1))

O<tr—t;—o0

Proof.

EQ[(f(X(t2) f(X(t2))]
= EQ(EX[F(X(t2)) f (X)) F1,])
= EX(F(X(t))(EX[ f(X(t2))-,]))

= E&(f(X(t) f FY)atz — tu. X(t), Y)dy). t2 >
(by Markov property),

) = f f(2a(t1, x, 2dz f fly)a(tz - t1, z y)dy
does any bounded an measurabldy theorem of§ 21,
?;JKPI f(y)la(t, x.y) - ¢(y)ldyt — 0
ast — +oo0. We can therefore writ€l1) in the form
EQ[(f(X(t2)) f (X(t2))] =
- ([ 1@t x a3 [ fo+ [ a0 DA - 1202

275



276 32. Ergodic Theorem

whereA(to—t;, 2) converges to 0 (uniformly on compact setstas}; —
267 +O<).'I'o prove the theorem we have therefore only to show that

f f(2q(t1, X, DAt — t1,2dz— 0

ast; — +oo andt; —t; — oo (becausef f(2)q(ts, x, 22dz— [ f4). Now
| [ t@atx 24 - . 202
<l [ ot x 1A - . 21dz

@ < [ dux2iA - 1.2z

Let K be any compact set, then

f o(te. X 2dz= f ot % 2dz— f o2z
K

att; — oo. Givene > 0, letK be compact so that
JERCEEE
then| f)(ch(tl, X,2)dZ < 2eif t; > 0. Using [2) we therefore get
| [ f@atux 4G - 1202

SfQ(tl, X,Z)lA(tz—t1,2)|dZ+chil, X, 2)|A(t2 — t1, 2)|dz
K Ke

< fq(tl, X, 2)|A(tz — t1, 2)|dz+ qu(tl, X, 2)dz
K Ke

sincelA(tz — t1,2)] < 2,

< fq(tl, X, 2)|A(t2 — t1, 2)|dz+ 2¢, if t; > 0.
K
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The theorem now follows from the fact that

lim suplA(ta —t1,2) =

fr-t1—00 zk

Weak Ergodic Theorem.

t|im EQx

Proof.

EQX

t
I% f f(X(s))ds- f f(x)¢(x)dx]>e‘
0

1
< — EQx
62

t
|% f F(X(9)ds— F()p()dX > e‘ -0,
0

t
¢ [ foxods- [ f(y)as(y)dﬂ,
0

277

by Tchebychev’s inequality. We show that the right sideéd ast — .

Now

EQX

T ft X9 [ fof

- %3 f f F(X(or1)) F(X(o-2))dery dorz + ( f fpely)

— 2= f f(X(c))dor f fpay]

Also

SUPIEQF(X(1)) - f Fy)em)dy]l
xeK
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- sup f ot x.y) F)dy - f F(y)p(y)y

< Iflleo squ la(t, x,y) — ¢(y)ldy,
Xe

269 the right hand side tends to O efends to+co. Consider
t
B [ fxtonde - [ 160ty
0
1 r 1 ‘
=|EQX[fff(X(0'))d0'—ff(y)¢(y)dy+fff(X(O'))dO'],OSTSt,
0 0
.
< 71 [ BT xondr =T [t
0

t
+|EQ{% [ txtonar-(-7) [ f(y)¢(y)dy]|-
T

Givene > 0 chooseT large so that

[EX(f(X(o)) - f fVe()dyt <€, (o0 =T).

Then

t
E%(; [ f(x(odo - [ 101000 <
0

X

N s T

<l [ BTN - ¢
0

< 2e

providedt is large. Thus

t
Jim E[2 f f(X(0))do] = f fpdy.
0
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To prove the result we have therefore only to show that
1 t t 2
lim EQx[t—z I f(X(al))f(X(az))daldaz]=[ [ tonsre
0 O

A

Q

OB=AB=t

270
POR is the regiowr, > tg, 071 — 02 > to.
Let|

) X } t t )
—EQ[ of of f(X(al))f(X(az))daldazl ( | f¢dy)

2
-z [EQX(f(X(al))f(X((rz)))—( [ teetray) ldO'ldtfz

O<oo<o01<t.

—

Then

2
Illstg2 f IEQX(f(X(Ul))f(X(Uz)))—( f f(y)¢(y)dy) |dor1 o

APQR
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2
tg 2||f|l>, [area ofOAB- area ofPQR

By the Ergodic theorem the integrand of the first term on thhtri
can be made less thayi2 providedty is large (see diagram). Therefore

e 2 4 2 ((t-2t)\>
<= = POR+ || fI% | = - [———
Il <5 area ofPQR+ | ||0<,[2 ( >
2|11
t2

< -+ [4ttg — 4t2].

™ NI m

A

271 if tis large. This completes the proof of the theorem. m|



33. Application of Stochastic
Integral

LET b BE A bounded function. For every Brownian measi#gon 272
Q = C([0, ); RY) we have a probability measu€® on @, .%).

Problem. Let q(t, x, A) = Qx(X; € A) - ((t, X, -) is a probability measure
onRY. We would like to know ifg(t, x, -) is given by a density function
onRY and study its properties.

Step (i). q(t, x, -) is absolutely continuous with respect to the Lebesgue
measure.

For, p(t, x, A) = Px(X(t) € A) is given by a density function. There-
fore p(t, x, -) > my (Lebesgue measure). Since

Qx < Pyon %,
q(t,z -) < Mg on #.

Step (ii). Let g(t, X, y) = 0 be the density function aj(t, x, -) and write
p(t, x, y) for the density ofp(t, X, -). Let 1 < a < 0. Put

t, X,
rit,x,y) = ?)Et x ;2

f qdy= f r‘p*dy
Rd
a=-1 2 l/a/
:fr“pl/“PTdys(fr“ pdy) X

281
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a-1/a
X (f pa+ldy)

273 Step (iii).
Qu(X(t) € A) = f o(t, . y)dy
- [ rex et xy)dy
_ f r(t, % Y)Px(X € dy).
Therefore dOy
Pl = r(t, x,y)
Therefore
([0 [,
< H‘;S:t ;PX, since .7 c %,
{EPX[Z(t)az]}l/a

t 2 t
— (EP(exp(e? f b.0%) - & f IbPd9]yH
0 0

4 4_ 2
= {EP[exp(@® f(b,dX> - %f|b|2d5+ ¢ 2a flblzds)]}l/“,
0 0 0

i.e.,

, 1/a
(fr“ pdy) < JE™

wherec is such thatb|? < ¢. Using Schwarz inequality we then get

o2 Ye oA —a? \[M°
f rY pdy] <|exp > ct .

t t 1/a
4 A2 4
exp[a 2a ct+a2f<b,dx>—%f|b|2ds”}
0

0
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274 Hence

4 2 1/a a-1/a
fq“dys(exp[a Za ct]) (fP“*ldy)

Significance.Pure analytical objects likg(t, X, y) can be studied using
stochastic integrals.
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Appendix
Language of Probability

275 Definition. A probability space is a measure spafe 4, P) with P(Q)
= 1. Pis called aprobability measur®r simply aprobability. Elements
of & are calledevents A measurable functioX : (Q, %) —» Rl is
called d-dimensionalrandom variable Given the random variabl¥,
defineF : RY — R by

F((ai,...an) = Plw: Xiw) <a, fori =1,2,...,d}

where X = (X1, Xo,...,Xq). ThenF is called thedistribution func-
tion of the random variabl&X. For any random variabli, fX dP =
([ X1dP...., [ XqdP), if it exists, is calledmeanof X or expectatiorof
X and is denoted bf(X). ThusE(X) = [XdP = u. E(X"), where
XM= (X1, X3,..., X0 is called then™ momenabout zero E((X — u)")
is called then™ central momentThe 2nd central moment is calledri-
anceand is denoted by-? we have the following.

Tchebyshev's Inequality.
Let X be a one-dimensional random variable with mean and variance
u. Then for evene > 0, P{w : [X(W) — u| > €} < 0?/€2.

Generalised Tchebyshev's InequalityLet f : R — R be measurable
276 such thatf(u) = f(-u), f is strictly positive and increasing on,®).
Then for any random variabl : Q — R,

E(F(X)
f(e)

P(w : [X(W)] > €) <

for everye > 0.

For any random variablX : Q — R9, ¢(t) = E(€%) : R¢ - Ciis
called thecharacteristic functiorof X. Heret = (ti,...,tg) andtX =
tlxl + thz + -+ thd.
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Independence.EventsE,, ..., E, are calledindependenif for every
{it,...,ik} c{1,2,...,n} we have

F’(Ei1 Nn...N Eik) = P(Eil)P(Eiz) . P(Eik).

An arbitrary collection of event&e,, : a € 1} is called independent
if every finite sub-collection is independent. ¥, : @ € |} be a
collection of subs-algebras of#. This collection is said to be inde-
pendent if for every collectiofE,, : a € |}, whereE, € .%,, of events
is independent. A collection of random variable§, : a € 1} is said
to be independent fo(X,) : @ € I} is independent where(X,) is the
o-algebra generated b¥,,.

Theorem .Let X, Xp,...,Xn be random variables with &, ..., Fx,

as their distribution functions and let F be distributiomftiion of X=

(X1, ..., Xn), ¢x,5 - - - » Px, the characteristic functions ofX .., X, and

¢ that of X = (Xq,...,Xpn). Xg,...,Xn are independent if and only if
F((@1,...,an) = Fx,(a1)...Fx,(an) forall as, ..., an, iff o((t1, ..., tn))

= ¢x,(t1) ... ¢x,(tn) for all tq, ..., tn. 277

Conditioning.

Theorem .Let X : (Q, %,P) — RY be a random variable, with )
finite, i.e. if X= (Xq,...,Xq), E(X) is finite for each i. Le® be a sub-
o-algebra of#. Then there exists a random variable: YQ, ) — RY
such that[ YdP= [ XdP for every C ir’.

C C

If Z is any random variable with the same properties ther\Z
almost everywheréP).

Definition. Any suchY is called theconditional expectation of X with
respect tog” and is denoted b (X|%).

If X = ya, the characteristic function df in %, thenE(yal%) is
also denoted bP(A|%).

Properties of conditional expectation.

1. E(%) = 1.
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2. E(aX+DbY|%) = aE(X|¥) + bE(Y|¥) for all real numbers, b and
random variable¥, Y.

3. If X is a one-dimensional random variable akd> 0, then
E(X|¥) = 0.

4. If Y is a bounde&®’-measurable real valued random variable and
X is a one-dimensional random variable, then

E(YX%) = YEX[?).

5. If 9 c € c % arec-algebras, then

E(E(XI%)12) = E(X|2).
6. [IE(XIZ2)d(PI2) < [ E(XIE)d(PI?).
Q Q

Exercise 1.Let (Q, %4, P) be a probability spac&” a sube-algebra of
AB. Let X(t,)Y(t,-) : Q@ — R be measurable with respect % and%¢
respectively wheréranges over the real line. Further EBgX(t, -)|%) =
Y(t,-) for eacht. If f is a simpleg’-measurable function then show that

f X(f (w), Wyd(P|%) = f Y(f (w)w)dP

C c

for everyCin %.

[Hint. Let Aq,..., A, be a¥-measurable partition such thatis con-
stant on eacl;. Verify the equality wherC is replaced byC N A;.]

Exercise 2.Give conditions orX, Y such that exercidg 1 is valid for all
bounded#’-measurable functions and prove your claim.

The next lemma exhibits conditioning as a projection on defil
space.

Lemma . Let(Q, 4, P) be any probability spac& a sube-algebra of
%. Then
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(@) L%(Q, %, P) is a closed subspace of(Q, 4, P).

(b) If 7 : L3(Q, B,P) — L%Q, %, P) is the projection,themr(f) =
E(f%).

Proof. (a) is clear, because for arfye LY(Q, %, P)

!mm%:!mp

(use simple function & s; < ... < f,if f > 0) andL?(Q,%,P) 279
is complete.

(b) To prove this it is enough to verify it for characteristimctions
because both andf — E(f|%) are linear and continuous.

LetAe 4, C e ¢ thenn(yc) = xc. Asnx is a projection

f (AT cA(PIZ) = f XAT)A(PI).

f 7(xa)d(PI) = f Xad(PI2).

C C

Sincen(yp) is ¥-measurable,

f r(xa)(PI) = f r(ya)A(PIE)

c c

Therefore

f r(xa)d(PIE) = f ad(PI). VCinZ.

C C

Hence

n(xa) = E(xal?).
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Kolmogorov's Theorem.

Statement.Let A be any nonempty set and for each finite ordered subset
(t1,to, ..., ty) of Afi.e. (t1,...,tn) an orderech-tuple witht; in A], let

280 Pyg,..t,) be a probability on the Borel sets Ri" = R x RY x - R,
Assume that the famil¥, ) satisfies the following two conditions

() Lett:{12...,n} —» {1,2,...,n} be any permutation ané} :
RI" s RI" be given by

fe((Xe, - -5 X)) = Oy, - -5 Xam)-

We have
P (E) =Pu..)(fHE)
(te@yse-mte(ry)
for every Borel sekt of RA" In short, we write this condition as
P‘rt = PtT_l.

(i) P (E) =Puitr. totnes tnm(E x RA™ for all Borel setsE of RA"

(t1,....tn)
and this is true for alty, . . ., ty, thet, . - ., tham OF A.

Then, there exists a probability space £, P) and a collection of
random variabléX; : t € A} : (Q, 2) — R4 such that

P(t(E)t ) = P{w: (X, (W),. .., X, (w)) € E}

for all Borel setsE of RAM,

Proof. Let Q = #{R¢ : t € A} whereR! = RY for eacht. Define
X 1 Q — RIto be the projection given b¥(w) = w(t). Let %, be
the algebra generated Y : t € A} and % the o-algebra generated by
{X; : t € A}. Having gotQ and.Z we have to construct a probabiligy
on (Q, %) satisfying the conditions of the theorem.

281 Giventy,...,t, define

Tty ty) - 2 — RIx R x - x R(n times)
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by

.....

t1,...,tn in A and a suitable Borel sé& of RA". Define P on %, by
P("(_tll,...,tn)(_E)) = P(tl,_...,tn)(E)- Conditions (1) and (2) ensure that?s
a well-defined function o4, and that, ad, 1, are measures is
finitely additive on%,. O

Claim. LetC; > C, ... > C, D ... be a decreasing sequencesy

with limit P(C,) = 6 > 0. ThennC, is nhon-empty. Once the claim is
Nn—oco

proved, by Kolmogorov's theorem on extension of measuhesfinitely

additive set functiorP can be extended to a meas&ren %. One easily

sees thaP is a required probability measure.

Proof of the Claim. As C,, € %, we have

..... f(?))(En) for suitablet™ in A

and Borel seE,, in R | et

To= (... tQ) and Ay= (... .t3).

We can very well assume thay, is increasing witin. Choose a compact2s2
subsetE], of E, such that
Pr (En— E}) < 6/2™L.
If C,, = n72(Ep), thenP(Ch—Cy) < 6/2™1. If C = C;nCyn...NCy,
thenC; c C/, c C,, C is decreasing and

n
P(C/) = P(Cn) - > P(Ci - C[) > 6/2
i=1
We provenCy/ is not empty, which proves the claim.
Choosew, in C/. As nt,(Wy) is in the compact seE; for all n,
choose a subsequence

n,n, ... of 1,2,... such thatrr, (Wn, (1))
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converges ag — oo. But for finitely manyn(kl)’s, 77,(wn, (1)) Is in
the compact se;. As before choose a subsequemm{fé of n(kl) such
thatrr, (wn (2)) converges ak — oo. By the diagonal process obtain a
subsequencay;, of wy such thatrr, (w};) converges ag — oo for all m.
Thus, iftisin

LJAn  then  limitwi(t) =
me1 n—oo

exists. Definavbyw(t) = 0ift € A [ ] AmW(t) = % ift € |) Ay One
m=1 m=1
easily sees that € ﬁ C//, completing the proof of the theorem.
n=1

Martingales.

Definition. Let (Q, .%, P) be a probability spaceT(<) a totally ordered
set. Let %)t be an increasing family of sutp-algebras of%#. A
collection )it Of random variables of is called amartingalewith
respect to the family. %)t if

(i) E(X]) < o0, VteT;
(i) X is Z#i-measurable for eadhe T;

(i) E(X{Zs) = Xsa.s. for eachs, tin T witht > s. (Markov prop-
erty).
If instead of (iii) one has

(i) E(Xi]-7s) = ()Xs a.s.,
then K¢t IS called asubmartingale(respectivelysupermartin-
gale).

From the definition it is clear thaiX()r is a submartingale if
and only if Xt is a supermartingale, hence it isflicient to
study the properties of only one of theSeis usually any one of
the following sets

[0,00),N,Z,{1,2,...,n},[0,00] or N U {oo}.



291

Examples. (1) Let (Xp)n=12.. be a sequence of independent random
variables with
E(Xn) = O.

ThenY, = X3 +-- -+ X, is a martingale with respect to4,)n=12.. 284
where
Fn=0{Y1,.... Yo} = 0{Xq,..., Xn).

Proof. By definition, eachy,, is .%#,-measurable.

E(Y,) = 0.
E((Xp+ -+ Xn+ Xnsz + - + Xnem)lo{Xg, ..., X))
=Xi+ -+ Xn+ E((Xngr + -+ + Xnym)lo{Xe, ..., Xn})
=Yy + EXny1 + - + Xnem) = Yn.

O

(2) Let ,.7,P) be a probability spacey a random variable with
E(Y]) < . Let % c ¥ be ac-algebra such thatt € [0, )

FrC Fs if t<s

If X; = E(Y|.%), X; is a martingale with respect tg#4).
Proof. (i) By definition, X; is #;-measurable.
(i) E(X) = E(Y) (by definition)< oo.
(iii) if t>s
E(XilFs) = E(E(Y|F4)|.Fs) = E(Y|.Fs) = Xs
mi

Exercise 1.Q = [0,1], .# = o-algebra of all Borel sub sets 6f, P =
Lebesgue measure.
Let #, =-algebra generated by the sets

11 2 2" -1
[0 %) o) [T 1)
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Let f € L’[0, 1] and define 285
2n_1 ]/Zn 1
Xn(w) = 2" Z () f f dy+)([%_1’1] f f dy
=1 j—1/2n 2n_1/2n

Show that K,) is a martingale relative to%n).

Exercise.Show that a submartingale or a supermartinglg¢ is a mar-
tingale if E(Xs) = constant.

Theorem . If (Xohet, (Yi)ieT are supermartingales then
() (aX% + bY;)er is a supermartingaleya, be R* = [0, o).
(i) (Xt A Yider is a supermartingale.

Proof. (i) Clearly Z; = aX + bY; is #-measurable an&(|Z]) <
aE(1X]) + bE([Yy]) < oo.

E(aX + bYil.7s) = aE(Xi|.Fs) + bE(Yi|.Fs)
SaXs"‘bYs:Zs, If tZ S.
(i) Again X; A Y; is F-measurable anB(|X; A Yi]) < o,
E(Xt A Yﬂgs) < E(thﬁs) < Xs.

286 Similarly

Therefore

O

Jensen’s Inequality. Let X be a random variable incX, 4, P) with
E(IX|]) < o and letg(X) be a convex function defined on the real line

such thatE(|¢oX|) < 0. Then
P(E(XIF)) < E(¢oX%) a.e.
where% is any subs-algebra of%.



293

Proof. The functiong being convex, there exist sequenegsay, . . . a,,
...,b1,by,...of real numbers such tha{x) = sup(a,x+ by) for eachx.
n

LetLn(X) = anx+ by. Then
La(E(X|%)) = E(La(X)I?) < E(¢(X)I€)

for all n so that
P(E(XI?)) < E(p(X)IF).

O

Exercise. (a) If {X; : t € T}is a martingale with respect {¢# : t €
T}andg is a convex function on the real line such tE#p(X;)[) <
oo for everyt, then{¢(X;)} is a sub martingale.

(b) If (Xt is @ submartingale and(x) is a convex function and
nondecreasing and E(j¢oX:]) < oo, Yt then{¢(X;)} is a sub-
martingale. (Hint: Use Jensen’s inequality).

Definition. Let (Q, %, P) be a probability space and&)p,.) an in- 287
creasing family of suler-algebras of7. Let (X)ie0,) be a family of
random variables of such thatX; is .#;-measurable for each> 0.

(%) is said to beprogressively measurablé

X:[0,f] xQ — R defined by X(sw) = Xg(W)
is measurable with respect to thealgebraZ|0, t] x .%; for everyt.

Stopping times.Let us suppose we are playing a game of chance, say,
tossing a coin. The two possible outcomes of a tosdHafeleads) and

T (Tails). We assume that the coin is unbiased so that the pildba

of getting a head is the same as the probability of getting.aRarther
suppose that we gainl for every head and lose 1 for every tail. A game
of chance of this sort has the following features.

1. A person starts playing with an initial amouvitand finishes with
a certain amouni.
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2. Certain rules are specified which allow one to decide whetap
playing the game. For example, a person may not haffeisunt
money to play all the games, in which case he may decide to play
only a certain number of games.

It is obvious that such a game of chance is fair in that it ithegiad-
vantageous nor disadvantageous to play such a game and aretiage
M will equal N, the initial amount. Furthermore, the stopping rules that
are permissible have to be reasonable. The following typsagping
rule is obviously unreasonable.

Rule. If the first toss is a tail the person quits at time 0 and if thst fir
toss is a head the person quits at time1l.

This rule is unreasonable because the decision to quit iroad
the basis of a future event, whereas if the game is fair thigsiba
should depend only on the events that have already occurgupoSe,
for example, 10 games are played, then the quitting timesbeaq,
1,2,...,10. If &,..., &0 are the outcomegi(= +1 for H, & = -1 for
T) then the quitting time at the 5th stage (say) should depahd an
&1,...,&and not any ofs, . . ., &o. If we denotef = (£4,...,&10) and
the quitting timer as a function of then we can say thdft : 7 = 5
depends onlys, ..., &4}. This leads us to the notion of stopping times.

Definition. Let (@, .#, P) be a probability space,#;)e[o,.) an increas-
ing family of suber-algebras of#. 7 : Q — [0, 0] is called astopping
timeor Markov time(or a random variable independent of the future) if

w:t(w) <t)e.% foreach t>0.

Observe that a stopping time is a measurable function withegt
too(UH) c 7.

Examples. 1. r = constant is a stopping time.

2. For a Brownian motionX;), the hitting time of a closed set is
stopping time.

Exercise 2.Let %, = (| Zs= S
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[If this is satisfied for every > 0, .%; is said to beight continuoug If
{r <t} € Z for eacht > 0, thenr is a stopping time. (Hint{r <t =

N {r < t+ 1/n} for everyk).

k
We shall denote by#,, theo-algebra generated by Z;. If ris a
teT
stopping time, we define

Fr={Aec F,  An{t <t} € F#, V¥Vt >0}
Exercise 3. (a) Show that#; is ac-algebra. (IfA e #,,

An{r<sti={t<ti-An{r<t).

(b) If T =t (constant) show tha#, = .%;.
Theorem .Lett ando be stopping times. Then
() T+ o, 1vo, T A o are all stopping times.
(i) If o <7, then?, c 7.
(iii)y 7is.Z-measurable.
(iv) If A e Z,,then An{oc = r}and An{o < 1} are in ;5. C
F» N Z.. In particular, {r < o}, {t = o}, {T > o} are all in 290
Fe N Ty
(v) If 7 is #.-measurable and’ > 7, thent’ is a stopping time.

(vi) If {ry} is a sequence of stopping times, tliemz,. lim 7, are also
stopping times provided tha#, = %, ¥t > 0.

(vii) If Ty | 7, thenz, = ﬁ Fr, provided that#, = %, Vt > 0.
n=1
Proof. (i)

{oc+ti>t}={oc+r>t,r<to<stju{r>tiu{o >t}

[c+t>to<stl=7< &
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= U{o->r>t—T,Tst,0'§t}
re2
O<r<t
(£ = set of rationals)
{o>r>t—-rn7r<t,o<t}={tzo>r}In{t>r>t-r}

={oc<tinfoc<r®nir<tin{r<t-rj-

The right side is in%;. Therefores + t is a scopping time.
{tVo <t} ={r<tin{oc <t}
ftAho>t)={r>t}n{oc >t}

(i) Follows from (iv).
(i) {r<tifr<sf={r<tAse FsC Fs ¥s20.
(iv) An{o<tin{iocArnT<t}=[An{oc<t<T]

UAN U {oc<<tin{r<t}] € #.
5%
291 An{oc<tinfoAntT<t}=An{oc <tin{oc <t}.
It is now enough to show that(< 1) € .%,; but this is obvious
becaused < o) = (o < 7)°isin F, A, C Z,. ThereforeAn{o <
7} € Zonr and (iv) is proved.

V) {(r<tt={r <tin{r<t}e Has <t)e . Z. Thereforer' is
a stopping time.
(vi) lim T, = supinf 7
- n k>n
= supir}f inf{tn, Tn+1, - - -, Tnee)-
n
By (i), inf{rn, Ths1,...,Tnse} IS @ stopping time. Thus we have
only to prove that ifry T 7 or r, | T wherer, are stopping times,
thent is a stopping time. Let, T 7. Then{r <t} = N{m < t}
n=1
so thatr is a stopping time. Let, | 7. Then

fr>t)=| |{mn >t}
n=1
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By Exercise 37 is a stopping time. Thaim =, is a stopping time
is proved similarly.

(vii) Sincet < 7w, VN, Z; € (| %;,. LetA € N F,,. Therefore
n=1 n=1
An(th<t)e F#,Vn. An(r<t)= NAAN(tm < 1)) € F.
m=1

ThereforeA € %,
O

Optional Sampling Theorem. (Discrete case)lLet {Xy,..., X} be a
martingale relative tq.71, ..., %x}. Let{ry,...,7p} be a collection of
stopping times relative t6#1,..., %} such thatr; < 7o < ... < 71y 292
a.s. and eachr; takes values iql,2,...,k}l. Then{X,..., X} is a
martingale relative to{.#,,..., #;,} where for any stopping time,
X‘r(w) = XT(W) (w)

Proof. Itis easy to see that eaef, is a random variable. In faet;, =

K
2 XiX(rm=i}- L€tT € {1,2,...,K}. Then
i=1

k
E(X) < Y f|x,-|dp < oo
=1

Consider

X <ON(rj<9 =X <)e s
{<s
Then K, < t)isin 7, i.e. X is #; -measurable. Next we show
that
* EQX| 7)) < Xq, if j2k

(*) is true if and only if
fXTdestdeP forevery Ae . 7.

A A
The theorem is therefore a consequence of the following O
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Lemma .Let{Xy,..., Xk} be a supermartingale relative to
{(F1,..., F).
If - and o are stopping times relative 71, ..., %} taking values in

{1,2,...,k} such thatr < o then

fXTszfX(,dP forevery Ae 7.
A A

293 Proof. Assume firstthat- — v < 1. Then

k
Af(xT xyp=Y [ - %P

=l an(=()n(r<o)]
k

> [ =X
=lAn(=i)

A € Z. ThereforeAn (r = j) € .#;. By supermartingale property

(Xj - Xj+1)dP > 0.
[AN(r=])]

Therefore
f(x, - Xs)dP > 0.
A

Consider now the general case< o. Definery, = o A (t + n).
Thereforer, > 1. T is a stopping time taking values {, 2, .. ., k},

Tl >Th, Te1—Th<1l w=o0.

dP, VA € %, .

n

If A e %, thenA €

Tn+l

Therefore [ X, dP > [ X
A

A
Fr,, YN. Therefore

fleszfxTzsz...zfkadP, VA€ Z,.

A A A
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Nowt; — 7 < 1.7 < 71. Therefore

fXTszfXTlszfX(,dP.
A

A A
This completes the proof. O
N.B. The equality in (*) follows by applying the argument to 294
{=X1,...,—Xk}.

Corollary 1. Let{Xy, Xo,..., Xk} be a super-martingale relative to
{(F1, ..., P}
If 7 is any stopping time, then
E(Xy) < E(X:) < E(X).

Proof. Follows from the fact thatXy, X;, Xk} is a supermartingale rela-
tive to {.%1, %+, Fk). |

Corollary 2. If {X1, Xo, ..., X} is a super-martingale relative to
{F1,..., P}
andr is any stopping time, then

E(Xr) < E(Xa]) + 2E(X,) < 3 sup E(Xnl)

1<n<k

X - X
2

where for any real x, X =
Xk = X
Proof. X = X=X o E(X7) = E(X) — E(X%)-

By theorem{ X, A0, Xk AOQ} is a super-martingale relative {&., .#}.
ThereforeE(Xk A 01.%;) < E(X; A 0). Hence

o) = £ - ED=EC%)
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Therefore

E(Xl) < 2E(X;) + E(X;)
< 2E(Xg) + E(X1) < 3 sup E(|Xql).

1<n<k

O

Theorem . Let(Q, .#, P) be a probability space an@#)-o on increas-
ing family of subs-algebras of%. Letr be a finite stopping time, and
(X0 @ progressively measurable family (i.e. :X[0,0) x Q — R
defined by Xt,w) = X;(w) is progressively measurable). If.v) =
Xew)(W), then X is .7 ;-measurable.

Proof. We show thafw : X(r(w),w) < t,7(w) < s} € % for everyt.
Let Qg = {w: (W) < 8}; Qg € .%5 and hence ther-algebra induced by
s 0nQgis precisely

Sincer(w) is measurable,
w— (t(w),w) of Qgs— [0,s]x Qs

is (Zs, [0, g x .%#5)-measurable. Sinck is progressively measurable,

X :
[0, 5] x Qs — R is measurable.

Therefore{w : X(r(w), w) < t,7(W) < s} € o-algebra oM. There-
fore X; is .%, measurable.

The next theorem gives a condition under whi)&o is progres-
sively measurable. m|

Theorem . If X; is right continuous in tyw and X is .#;-measurable,
Yt > 0then(X¢)w0 is progressively measurable.

Proof. Define

It

Yo (t, W) = X([nt]n+ 1’W). [nt]n+ 1
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Then
nhtoo Xn(t,w) = X(t,w) (by right continuity)
296
Step 1.Suppose is rational, T = m/nwherem > 0 is an integer. Then
{t,bw):0<t<T, Xp(t,w) < a}

.. X-_l
- U [55h5ea)

O<ism-1

Thus if T = m/n, Xilpo.1)xa is #[0,T] x Fr-measurable. Now
km . , I :
T= W Lettingk — oo, by right continuity ofX(t) one getsX|jp)xq is

[0, T] x F#r-measurable. AX(T) is #t-measurable, one geXo 1jxo
is [0, T] x .#t-measurable.

Step 2.Let T beirrational. Choose a sequence of ratioiglgcreasing
toT.

{(t,bw):0<t<T, X(t,w) < a}

- U{(t, W) 10 <t < Sp X(LW) < a}U(T)x X7i(~, 0]
n=1

The countable union is ig8[0, T]x.%t by Step 1. The second mem-
ber is also inZ[0, T] x Z7 asX(T) is Fr-measurable. ThuX|o 1jxo
IS Ao, X Fr-measurable whe is irrational also.

O

Remark. The technique used above is similar to the one used for prov-
ing that a right continuous functiof: R — R is Borel measurable.

Theorem .Let{Xy,..., Xk} be a supermartingale anél> 0. Then 297
(1) AP(sup Xn > ) <E(X)) - [ XdP
1<n<k {Suan</l}
1<n<k

< E(Xq) + E(X)).
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(2) AP(inf Xn<-)<- [ XdP
1<n<k {inf Xn<-2}

< E(X)).
Proof. Define

T(w) =inf{n: X, > A} if supX,> A4,

=k, if supX,<A
n

Clearlyr > 0 andr is a stopping time. It < k, thenX.(w) > A for

eachw.
E(X,) = f X.dP + f X.dP
(supXnp=21) (supXp<A)
> AP(supX, = 1) + f X dP.
(supXp<2)
Therefore

E(X1) > AP(SUpXn > 1) + f X dP,

(supXp<A)

AP(supXp > 1) < E(Xy) — f X dP < E(X1) + E(XL)

(supXp<2)
The proof of (2) is similar if we define
inf{n: X, <-4}, ifinf X, <-4,
(W) = L
K, if inf Xq>-A.
i
298 Kolmogorov's Inequality (Discrete Case)Let{X,..., Xy} be a finite

sequence of independent random variables with nedien

P( sup(IXg + -+ Xpl = 2) < /l_lZE((Xl +Xo+ -+ Xk)z))

1<n<k
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Proof. If S, = X1 +---+ Xy, n = 1,2,...,k then{Sq,...,Sk} is a
martingale with respect t6%#,..., %} where %, = o{Xy,..., Xn}.
ThereforeS?, ..., SZ is a submartingale (since — x? is convex). By
the previous theorem,

A?P{inf =82 < —2%} < E((-S2)7)
Therefore
E((-S?)7) _ E(S?)
A2 Q2
= 1E Xq + X Xi)?
- ((Xe+ X+ + Xi)9).

P{sup|Sp| = 4} <

O

Kolmagorov’s Inequality (Continuous case)Let {X(t) : t > 0} be a
continuous martingale with &(0)) = 0. If 0 < T < oo, then for any
e>0 1

P{w: sup X(sw)| =€) < zE((X(T))Z).

0<s<T

Proof. For any positive integek defineYy = X(0),

Y; = X(%)—X(O), Y, = X(ZZ—I)—X(%),...,sz
24T (2¢-1)
_ X(F)—x( - T).

By Kolmogorov inequality for the discrete case, for anhy O.

P( sup |X(nz—1—)| > 5] < (,).—]-ZE((X(T))Z)'

O<n<2k
nT

2k)| > ¢} increases to 299

By continuity of X(t), Ax = {w: sup |X(
O<n<2k
{ sup |X(9)| > 6} so that one gets

0<s<T

1) P( sup IX(9)] > 6) < ZEM?)

0<s<T
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Now

P( sup [X(9)| = e) < Ierit P( sup [X(9)] > € - n%)

0<s<T 0<s<T

< limit E_+/m2E«X<T))Z), by (1).

= 1/EE((X(T))?).
This completes the proof. m|

Optional Sampling Theorem (Countable case)Let{X, : n > 1} be
a supermartingale relative t¢%#, : n > 1}. Assume that for some

X € LY, Xy > E(Xo|-Zn). Leto, T be stopping times taking values in
N U {oo}, with o < 7. Define X = X, on{oc = o} and X = X, on
{o- = oo}, Then EX |.%,) < X,

Proof. We prove the theorem in three steps.
Step 1.Let X, = 0 so thatX, > 0. Letry = 7 Ak, ox = T Ak By
optional sampling theorem for discrete c&9gX; ) < E(Xx) < E(Xy).

By Fatou’s lemmaE(X;) < oo. Again by optional sampling theorem
for the discrete case,

EXeFoy) < X - - -5 (0).
300 LetAec .%,. ThenAn {o <k} € %,,, and by (0)

fXTdPs f X, dP < f X dP < f X,dP,
Anfr<k} AN(r<k) AN(o<k) ANn(o<k)

Lettingk — oo,

(1) fXTdPs f X, dP
AN(T#00) AN(o#o0)

Clearly

) fXTdP:wadP: f X, dP

AN(T=00) A AN(o=c0)
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By (1) and (2), infX dP < [ X-dP, proving that
A

E(Xel-Z5) < X

Step 2.SupposeX, = E(X.|-%n). In this case we show thaX, =
E(X«|-#;) for every stopping time so th&(X,|.Z,) = X,. If Ae F,
then

X dP = f XdP forevery k.

(<Kk) An(r<K)
Lettingk — oo,
1) f X.dP = f XodP,
AN(1#00) AN(1#00)
) f deP:fxde: f XodP
AN(T=00) A AN(T=00)

The assertion follows from (1) and (2).
Step 3.Let X, be general. Then 301
Xn = Xn = E(Xeol- Zn) + E(Xeol-Zn).
Apply Step (1) toY, = Xn — E(Xe|-%n) and Step (2) to
Zn = E(Xe|Fn)

to complete the proof.

Uniform Integrability.

Definition. Let (Q, %, P) be any probability spacé,! = LY(Q, 4, P).
A family H c L is calleduniformly integrableif for every e > 0 there

exists & > O such that [ |X|dP < e for all Xin H.
(IXI26)
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Note. Every uniformly integrable family is a bounded family.

Proposition . Let X, be a sequence in‘Land let %, — X a.e. Then
Xn = X in LY iff {(Xn : n > 1} is uniformly integrable.

Proof. is left as an exercise. O

As {Xn : n > 1} is a bounded family, by Fatou’s lemmé@a e L.
Let e > 0 be given. By Egorfi’s theorem there exists a detsuch that
P(F) < e andX, — X uniformly onF.

f Xo = XIdP < [IXn = Xlleor_p+ f X — XIdP
F
< X = Xllo.op + f XldP+ f X|dP
F F

< X = Xl + f XeldP+ f X|dP+
FN(|Xn|=6) FN(X[=6)
+ f |Xn|dP + f XdP
FN{|Xnl<5} FN(X|<6)
< ||IXn = X||00’Q_|: + f [Xn|dP + f |X|dP + 26e
(IXnl=6) (IXI=6)

302
The result follows by uniform integrability dix, X, : n > 1}.

Corollary . Let% be any subr-algebra of#. If X, — X a.e. and Xis
uniformly integrable, then §,|%) — E(X|¥) in LY(Q, €, P).

Proposition . Let H c L. Suppose there exists an increasing convex
function G: [0, o) — [0, o) such that

limit S0 =o0 and SupE(G(X])) < co.
toeo XeH

Then the family H is uniformly integrable.
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Example.G(t) = t? is a function satisfying the conditions of the theo-
rem.

Proof. (of the proposition). Let

M = SupE(G(IXI)).
XeH

Let e > 0 be given. Choosé > 0 such that

6 , M

for t>96.
t €

Then forXin H

€

IX|dP < ﬁ f G(X)dP < fG(le)dPse
G

(IX129) (IX=0)

Remark. The converse of the theorem is also true.

Exercise.Let H be a bounded set ib™, i.e. there exists a constakt
such that|X||., < M for all X in H. ThenH is uniformly integrable.

Up Crossings and Down Crossings. 303

Definition. Let a < b be real numbers; led;, s, ..., s be also given
reals. Defineq, i», ..., ik as follows.

{inf{n DSy < al),
11 =

k, ifnos <a;

i inf{n > iy :s,> b},
|k if s, < bfor eachn > iy;

. Jinf{n>1i;: s <al,
* 7k, if s, > afor eachn > iy

and so on
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Lett; = S, b = S, If (tl,tz), (tg,t4), cen (t2p—17t2p) are the
only non-empty intervals andof,1, t2p+2), ... are all empty, therp is
called the ******** of the sequencesy, ..., & for the interval g, b] and

is denoted byJ(s1,..., &; [a b]).
Note.U (the up crossing) always takes valueg@nl, 2,3, .. .}.

Definition. For any subse$ of reals define
U(S;[a b)) = supgU(F;[a b]) : F is a finite subset 08}
The number of down crossings is defined by
D(S; [a b]) = U(=S; [-b, -a]).
For any real valued functiofi on any seS we define
U(f, S, [a b]) = U(f(S).[a b]).
If the domain ofS is known, we usually suppress it.

304 Proposition . Let &, ap, ... be any sequence of real numbers angS
{a,a,...}. fU(S,[a,b]) < = for all a < b, then these sequenta,}
is a convergent sequence.

Proof. It is clear that ifT c S thenU(T,[a,b]) < U(S,[ab]). If
the sequence were not convergent, then we candiaddb such that
liminf a, < a < b < limsupa,. Choosen; < hp < nz...; M < N <
... such that, <aanday > bforalli. If T = {an,, am,, an,, amy. - - .},
thenU(S;[a,b]) > U(T;[a b]) = «o; a contradiction. m|

Remark. The converse of the proposition is also true.

Theorem . (Doob’s inequalities for up crossings and down crossings).
Let {X1,...,Xx} be a submartingale relative t671,..., %c}a < b.
Define Uw, [a,b]) = U(Xy(w),..., Xk(W); [a,b]) and similarly define
D(w,[a,b]). Then

() U, D are measurable functions;
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E(Xk—a) +1) - E((X1 - a)").
b-a ’

(i) E(D(.[a-b]) < E(X«—b)*)/(b—a).

(i) E(U(.[a b)) <

Proof. (i) is left as an exercise.

(i) DefineY, = (X, — @)*; there are submartingales. Then clearly
Yh < 0ifand only if X, < aandY, > b —aiff X, > b, so that

UYi(w),. ... Y(w); [0,b—a]) = U(Xz(w), ..., Xk(w); [a b])

305
Define

T1=1

inf{n:Y,=0}
To =
2 k, if eachY, =0

infin>1:Yy,>b—-a,
T2 =
3 k, if Y, <b-aforeachn> 15;

Tke1 = K

As{Yy,..., Y} is a submartingale, by optional sampling theorem
Y5 -, Yr,, IS @ls0 @ submartingale. Thus

1) E(Yr, = Yo,) + E(Yr, — YT3) +.--20.
Clearly

[(Yrs = Yro) + (Yes = Yo, ) + -~ (W) = (b— @) U (Ya(W), ... Yi(W);
[0,b—a]) = (b—a) U (w,[ab]).

Therefore

(2) E(Yry = Yr,) + E(Yrs — Yz, ) +--- 2 (b - 2)E(U(:, [a b])).
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By (1) and (2),
E(Yk - Y1) = (b—a)E(U(., [a,b]))
giving the result.
(i) Let Y, = (X, —a)* so that

D(Y1(W). ... Yk(w); [0,b — a]) = D(Xy(W). . ... X(W); [a, b])

306 Define
T = 1;

inf{n:Y,>b-aj,
T =
k, ifeachY,<b-gq

~ {inf{n > 121 Yo =0},
k, if eachY;,, > O for eachn > 5;
Tke1 = K

By optional sampling theorem we get

0> E(Yr, — Yr3) + E(Yg, = Yog) + -+ .
Therefore

0> (b-a)E(D(Ys,..., Yi; [0,b—a])) + E((b —a) — Y).

Hence
E(D(,[ab]) < E(X-a)" - (b-a)/(b-a)

_ E(&-b")
- (b-9)
for all c.

,for(c-a)"-(b-a)<(c-b)*
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Corollary . Let{Xy,..., Xx} be a supermartingale. U, D as in theorem.
Then

() E(D(.[ab]) < CHAADZEXAD)

b-a
() EUC.[a)) < ECD)
Proof. (i) E(D(.[a b)) = E(U(=Xy(W), ..., —X(W),[-b, -a])
< E((=Xc+b)" - (=X1 + b)+), by above theorem,
b-a
CEBAXI=OAX)) G ee for

- b-a ’
since for alla, b,c, (b-¢)* —(b-a)* < (bAra) - (bAc).

(i) E(U(.[ab]) =

= E(D(=X1(W), . .., =Xi(W); [-b, —a]))
< E((—bx+;a)+)’ by theorem,
< w, 307

(since £X¢ +a)t < (X —b)7,
o

Theorem .Let{X,: n=1,2,...} be asupermartingale relative {¢#, :
n=12...}. Let(Q, 7%, P) be complete.
(i) If supE(X;) < oo, then X converges a.e. to a random variable
dennoted by X.
(ii) if {Xn : n = 1} is uniformly integrable, then also.Xexists. Fur-

ther, (X, : n=1,2,..., n = oo} is a supermartingale with the
natural order.

(@iii) if {X, : n > 1} is a martingale, therX, : n > 1,n = o} is a
martingale.
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Proof. (i) LetU(Ww[a b]) = U(Xy(W), Xo(W),...,[a, b]). By the coro-
llary to Doob’s inequalities theorem,

E(U(.[a b]) < supE((Xn—Db)7) < eo
n
308 for all a < b. Allowing a, b to vary over the rationals alone we
find that the sequencé, is convergent a.e.
(i) SUpE(X;) < sSupE(IXnl) < oo so thatX, exists. AsX, — X in
n n
L we get thatX, : n> 1, n = oo} is a supermartingale.

(iii) follows from (ii).
i

Proposition . Let{X; : t > 0} be a supermartingale relative {o7; : t >

0. I =[r,g,a< bandS any countable dense subset. Let,$ N
I,[a,b]) = U(, {X«(w) : te SN}, [a b]). Then
E(Xs—b)7)

E(U(.SNlL[ab) < =7 —

Proof. Let S n | be an increasing union of finite sd¥g: then

E((Xmaan - b)_) < E((Xs - b)_).

E(U(, Fn.[a,b]) < b_a = b-a

The result follows by Fatou'’s lemma. m|

Exercise .If further X; is continuous i.et — X:(w) is continuous for
eachw, then prove that

E(Xs—b)7)

E(U(. 1 [a b)) < ==

Theorem .Let (Q,.#,P) be complete andX; : t > 0} a continuous
supermartingale.

309 (i) If supE(X{) < oo, then X converges a.e. to a random variable
>0
Koo-



313

(i) If {X; : t > 0O} is uniformly integrable then also Xexists and

{X{ :t>0,t = oo} is a supermartingale.
Proof. (i) E(U(-[O,n],[a b])) < E((Xn —b)7)/(b - a) so that

E((Xs - 0)7)
b-a

limit E(U(-, [0, n], [, b])) < sup

n—oo 0<s
for all a < b. Thus{X;(w) : t > 0} converges a.e. whose limit in
denoted byX,, which is measurable.

(i) As E(X;) < E(1Xt]) by (i) X exists, the other assertion is a con-
sequence of uniform integrability.
m]

Corollary . Let{X; : t > O} be a continuous uniformly integrable mar-
tingale. Ther{X; : 0 <t < oo} is also a martingale.

Exercise.Let {X; : t > 0} be a continuous martingale such that for some
Y with 0 <Y < 1 E(Y|%:) = X show thatX; — Y a.e.

Lemma . Let (Q,.%, P) be a probability space#; > .%» > #3... be
subo-algebras. Let X X, ... be a real valued functions measurable
with respect to#,, ..., %y, ... respectively. Let

() E(Xn-1l%n) < Xn

(i) supE(Xn) < 0.

Then{X, : n > 1} is uniformly integrable. 310

Proof. By (i) E(Xy) is increasing. By (ii) givere > 0, we can findng
such that ifn > ng thenE(Xp) < E(Xp,) + €. For ands > 0,

n>np f |XnldP
(IXn[=6)
(Xn=-0) (Xn<6)
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< f —Xp,dP — f Xn,dP + E(Xn) Dby (i)

(Xn<—5) (Xn<9)
<e+ f XnodP — f XnodP  (becauseE(Xy) < E(Xn,) + €)
(Xn=6) (Xn<—0)
cer [ P
(IXnl=6)

Thus to show uniform integrability we have only to sh&{X,| >
6) — 0 uniformly innass — co. Now
E(Xnl) = E(Xn + 2X7)
< E(Xn) + 2E(IX1]) by (i)
< M < oo for all n by (ii)

The result follows a®(|1X,| > 6) < M/§. O

Optional Sampling Theorem.(Continuous case).

Let {X; : t > 0} be a right continuous supermartingale relative to
{Z: . t > 0}. Assume there exists an,>e L'(Q, %, P) such that X >
E(X-|%) for t > 0. For any stopping time taking values if0, ], let
X; = X ON{7T = o0}. Then

(i) X;isintegrable.
(i) If o <t are stopping times, then
E(Xe|-Z5) < X

Proof. Define
_[2"0]+1 _[2"0]+1
T T T
Theno, t, are stopping timesgn < ™, ¢ < on, T < The Ony
7 take values iD,, = {,0,1/2",2/2",...,1/2",...} so that we have
ECX: | %s,) < X, Thusif,A € .Z, c .%,,, then

* fXTndPﬁfXUndP
A

A
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As o1 > 02 > ..., by optional sampling theorem for the countable
case, we have
E(XO'n—1|§0'n) S XO'n'
Further
Foy D Py Doy E(Xsy |- F0) < Xo.

By the lemma{X,,}, {X;,} are uniformly integrable families. By
right continuity X,, — X, pointwise andX;, — X, pointwise. Letting
n — oo in (*) we get the required result. O

Lemma (Integration by Parts). Let M(t,-) be a continuous progres-312
sively measurable martingale andtAw) : [0,00) X Q@ — R be of
bounded variation for each w. Further, assume théit W) is .#;-measu-
rable for each t. Then

t
Y(t.) = M(t. A, ) = f M(s )dAGs )
0

is a martingale if

E(supIM(s. ) IAC)I) < oo

O<s<t
for each t, wherd A(w)||; is the total variation of As,wj) in [0, ].

Proof. By hypothesis,
n

Z M(s, )(A(si11,-) — A(si, )
i=0

converges to
t

fM(u, )dA(, ) in LY asn — oo

S
and as the norm of the partiti= 55 < 51 < ... < $41 = t converges
to zero. Hence it is enough to show that

E(M(t )AL ) = > M(Sie2. A1) — A(S, )]1Fs)
i=0
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= M(s )A(S, ).

But the left side= E(M(Shs1, )A(Shs1, 1)~

n
= > U M(S41, )(AGS 11, ) — AlS, )L Fs)
i=0
= M(s,)A(S ).
313 Taking limits asn — oo and observing that

sup|(s+1—S)I — 0,

O<izn
we get

t

E(M(t )AL ) - f M(u, YA, | F5)

0
S

= M(s JA(S ) - f M(u, )dA, ).

0
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