Lectures on Diffusion Problems and Partial Differential Equations

By
S. R. S. Varadhan

Notes by
Pl. Muthuramalingam
Tara R. Nanda

Tata Institute of Fundamental Research, Bombay 1989

Author
S. R. S. Varadhan
Courant Institute of Mathematical Sciences
251, Mercer Street
New York. N. Y. 10012.
U.S.A.

© Tata Institute of Fundamental Research, 1989

ISBN 3-540-08773-7. Springer-Verlag, Berlin, Heidelberg. New York ISBN 0-387-08773-7. Springer-Verlag, New York. Heidelberg. Berlin

No part of this book may be reproduced in any form by print, microfilm or any other means without written permission from the Tata Institute of Fundamental Research, Bombay 400005

Printed by N. S. Ray at the Book Centre Limited Sion East, Bombay 400022 and published by H. Goetze Springer-Vertal, Heidelberg, West Germany

PRINTED IN INDIA

Contents

1 The Heat Equation 1
2 Kolmogorov's Theorem 11
3 The One Dimensional Random Walk 15
4 Construction of Wiener Measure 19
5 Generalised Brownian Motion 31
6 Markov Properties of Brownian Motion 33
7 Reflection Principle 39
8 Blumenthal's Zero-One Law 53
9 Properties of Brownian Motion in One Dimension 57
10 Dirichlet Problem and Brownian Motion 63
11 Stochastic Integration 71
12 Change of Variable Formula 91
13 Extension to Vector-Valued Itô Processes 95
14 Brownian Motion as a Gaussian Process 101
15 Equivalent For of Itô Process 105
16 Itô's Formula 117
17 Solution of Poisson's Equations 129
18 The Fevnman-Kac Formula 133
19 An Application of the Feynman-Kac Formula.... 139
20 Brownian Motion with Drift 147
21 Integral Equations 155
22 Large Deviations 161
23 Stochastic Integral for a Wider Class of Functions 187
24 Explosions 195
25 Construction of a Diffusion Process 201
26 Uniqueness of Diffusion Process 211
27 On Lipschitz Square Roots 223
28 Random Time Changes 229
29 Cameron - Martin - Girsanov Formula 237
30 Behaviour of Diffusions for Large Times 245
31 Invariant Probability Distributions 253
32 Ergodic Theorem 275
33 Application of Stochastic Integral 281
Appendix 284
Language of Probability 284
Kolmogorovs Theorem 288
Martingales 290
Uniform Integrability 305
Up Crossings and Down Crossings 307
Bibliography 317

Preface

THESE ARE NOTES based on the lectures given at the T.I.F.R. Centre, Indian Institute of Science, Bangalore, during July and August of 1977. Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. An attempt was made to introduce to the students diverse aspects of the theory. The last section on Martingales is based on some additional lectures given by K. Ramamurthy of the Indian Institute of Science. The author would like to express his appreciation of the efforts by Tara R. Nanda and PL. Muthuramalingam whose dedication and perseverance has made these notes possible.
S.R.S. Varadhan

1. The Heat Equation

LET US CONSIDER the equation

$$
\begin{equation*}
u_{t}-\frac{1}{2} \Delta u=0 \tag{1}
\end{equation*}
$$

which describes (in a suitable system of units) the temperature distribution of a certain homogeneous, isotropic body in the absence of any heat sources within the body. Here

$$
u \equiv u\left(x_{1}, \ldots, x_{d}, t\right) ; \quad u_{t} \equiv \frac{\partial u}{\partial t} ; \quad \Delta u=\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}
$$

t represents the time ranging over $[0, \infty)$ or $[0, T]$ and $x \equiv\left(x_{1} \ldots x_{d}\right)$ belongs to \mathbb{R}^{d}.

We first consider the initial value problem. It consists in integrating equation (11) subject to the initial condition

$$
\begin{equation*}
u(0, x)=f(x) \tag{2}
\end{equation*}
$$

The relation (2) is to be understood in the sense that

$$
\underset{t \rightarrow 0}{\operatorname{Lt}} u(t, x)=f(x)
$$

Physically (2) means that the distribution of temperature throughout the body is known at the initial moment of time.

We assume that the solution u has continuous derivatives, in the space coordinates upto second order inclusive and first order derivative in time.

It is easily verified that

$$
\begin{equation*}
u(t, x)=\frac{1}{(2 \pi t)^{d / 2}} \exp \left(-\frac{|x|^{2}}{2 t}\right) ; \quad|x|^{2}=\sum_{i=1}^{d} x_{i}^{2} \tag{3}
\end{equation*}
$$

satisfies (1) and

$$
\begin{equation*}
u(0, x)=\operatorname{Lt}_{t \rightarrow 0} u(t, x)=\delta(x) \tag{4}
\end{equation*}
$$

Equation (4) gives us a very nice physical interpretation. The solution (3) can be interpreted as the temperature distribution within the body due to a unit sourse of head specified at $t=0$ at the space point $x=0$. The linearity of the equation (1) now tells us that (by superposition) the solution of the initial value problem may be expected in the form

$$
\begin{equation*}
u(t, x)=\int_{\mathbb{R}^{d}} f(y) p(t, x-y) d y \tag{5}
\end{equation*}
$$

where

$$
p(t, x)=\frac{1}{(2 \pi t)^{d / 2}} \exp -\frac{|x|^{2}}{2 t}
$$

Exercise 1. Let $f(x)$ be any bounded continuous function. Verify that $p(t, x)$ satisfies (11) and show that
(a) $\int p(t, x) d x=1, \forall t>0$;
(b) $\underset{t \rightarrow 0+}{\mathrm{Lt}} \int p(t, x) f(x) d x=f(0)$;
(c) using (b) justify (4). Also show that (5) solves the initial value problem.
(Hints: For (a) use $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$. For part (b) make the substitution $y=\frac{x}{\sqrt{\pi}}$ and apply Lebesgue dominated convergence theorem).

Since equation (I) is linear with constant coefficients it is invariant under time as well as space translations. This means that translates of solutions are also solutions. Further, for $s \geq 0, t>0$ and $y \in \mathbb{R}^{d}$,

$$
\begin{equation*}
u(t, x)=\frac{1}{[2 \pi(t+s)]^{d / 2}} \exp -\frac{|x-y|^{2}}{2(t+s)} \tag{6}
\end{equation*}
$$

and for $t>s, y \in \mathbb{R}^{d}$,

$$
\begin{equation*}
u(t, x)=\frac{1}{[2 \pi(t-s)]^{d / 2}} \exp -\frac{|x-y|^{2}}{2(t-s)} \tag{7}
\end{equation*}
$$

are also solutions of the heat equation (1).
The above method of solving the initial value problem is a sort of trial method, viz. we pick out a solution and verify that it satisfies (I). But one may ask, how does one obtain the solution? A partial clue to this is provided by the method of Fourier transforms. We pretend as if our solution $u(t, x)$ is going to be very well behaved and allow all operations performed on u to be legitimate.

Put $v(t, x)=\hat{u}(t, x)$ where - stands for the Fourier transform in the space variables only (in this case), i.e.

$$
v(t, x)=\int_{\mathbb{R}^{d}} u(t, y) e^{i x-y} d y .
$$

Using equation (1), one easily verifies that

$$
\begin{equation*}
v_{t}(t, x)=\frac{1}{2}|x|^{2} v(t, x) \tag{8}
\end{equation*}
$$

with

$$
v(0, x)=\hat{f}(x) .
$$

The solution of equation (8) is given by

$$
\begin{equation*}
v(t, x)=\hat{f}(x) e^{-t|x|^{2} / 2} . \tag{10}
\end{equation*}
$$

We have used (9) in obtaining (10).

Exercise 2. Verify that

$$
\hat{p}(t, x)=\exp -\left(\frac{t|x|^{2}}{2}\right)
$$

Using Exercise (10) can be written as

$$
\begin{equation*}
v(t, x)=\hat{u}(t, x)=\hat{f}(x) \hat{p}(t, x) . \tag{11}
\end{equation*}
$$

The right hand side above is the product of two Fourier transforms and we know that the Fourier transform of the convolution of two funtions is given by the product of the Fourier transforms. Hence $u(t, x)$ is expected to be of the form (5).

Observe that if f is non-negative, then u is nonnegative and if f is bounded by M then u is also bounded by M in view of part (a) of Exercise 1

The Inhomogeneous Equation. Consider the equation

$$
v_{t}-\frac{\Delta v}{2}=g, \quad \text { with } \quad v(0, x)=0
$$

which describes the temperature within a homogeneous isotropic body in the presence of heat sources, specified as a function of time and space by $g(t, x)$. For $t>s$,

$$
u(t, x)=\frac{1}{[2 \pi(t-s)]^{d / 2}} \exp -\frac{|x-y|^{2}}{2(t-s)}
$$

is a solution of $u_{t}(t, x)-\frac{1}{2} \Delta u(t, x)=0$ corresponding to a unit source at $t=s, x=y$. Consequently, a solution of the inhomogeneous problem is obtained by superposition.

Let

$$
v(t, x)=\int_{\mathbb{R}^{d}} \int_{0}^{t} g(s, y) \frac{1}{[2 \pi(t-s)]^{d / 2}} \exp \left(-\frac{|x-y|^{2}}{2(t-s)}\right) d y d s
$$

$$
v(t, x)=\int_{0}^{t} w(t, x, s) d s
$$

where

$$
w(t, x, s)=\int_{\mathbb{R}^{d}} g(s, y) \frac{1}{[2 \pi(t, s)]^{d / 2}} \exp \left(-\frac{|x-y|^{2}}{2(t-s)}\right) d y
$$

Exercise 3. Show that $v(t, x)$ defined above solves the inhomogeneous heat equation and satisfies $v(0, x)=0$. Assume that g is sufficiently smooth and has compact support. $v_{t}-\frac{1}{2} \Delta v=\underset{s \rightarrow t}{\operatorname{Lt}} w(t, x, s)$ and now use part (b) of Exercise (1).

Remark 1. We can assume g has compact support because in evaluating $v_{t}-\frac{1}{2} \Delta v$ the contribution to the integral is mainly from a small neighbourhood of the point (t, x). Outside this neighbourhood

$$
\frac{1}{[2 \pi(t-s)]^{d / 2}} \exp \left(-\frac{|x-y|^{2}}{2(t-s)}\right)
$$

satisfies

$$
u_{t}-\frac{1}{2} \Delta u=0
$$

2. If we put $g(s, y)=0$ for $s<0$, we recognize that $v(t, x)=g * p$. Taking spatial Fourier transforms this can be written as

$$
v(t, \xi)=\int_{0}^{t} g(s, \xi) \exp -\frac{1}{2}(t-s)|\xi|^{2} d \xi
$$

or

$$
\frac{\partial \hat{v}}{\partial t}=\frac{\partial v}{\partial t}=g(t, \xi)+\frac{1}{2} \Delta v=\left(g(t, \xi)+\frac{1}{2} \Delta v\right) .
$$

Therefore

$$
\frac{\partial v}{\partial t}-\frac{1}{2} \Delta v=g .
$$

Exercise 4. Solve $w_{t}-\frac{1}{2} \Delta w=g$ on $[0, \infty) \times \mathbb{R}^{d}$ with $w=f$ on $\{0\} \times \mathbb{R}^{d} \quad 6$ (Cauchy problem for the heat equation).

Uniqueness. The solution of the Cauchy problem is unique provided the class of solutions is suitably restricted. The uniqueness of the solution is a consequence of the Maximum Principle.
Maximum Principle. Let u be smooth and bounded on $[0, T] \times \mathbb{R}^{d}$ satisfying

$$
u_{t}-\frac{\Delta u}{2} \geq 0 \quad \text { in } \quad(0, T] \times \mathbb{R}^{d} \quad \text { and } \quad u(0, x) \geq 0, \forall x \in \mathbb{R}^{d}
$$

Then

$$
u(t, x) \geq 0 \quad \forall, \quad t \in[0, T] \quad \text { and } \quad \forall x \in \mathbb{R}^{d}
$$

Proof. The idea is to find minima for u or for an auxillary function.
Step 1. Let v be any function satisfying

$$
v_{t}-\frac{\Delta v}{2}>0 \quad \text { in } \quad(0, T] \times \mathbb{R}^{d}
$$

Claim. v cannot attain a minimum for $t_{0} \in(0, T]$. Assume (to get a contradiction) that $v\left(t_{0}, x_{0}\right) \leq v(t, x)$ for some $t_{0}>0$ and for all $t \in$ $[0, T], \forall x \in \mathbb{R}^{d}$. At a minimum $v_{t}\left(t_{0}, x_{0}\right) \leq 0,\left(\right.$ since $\left.t_{0} \neq 0\right) \Delta v\left(t_{0}, x_{0}\right) \geq$ 0 . Therefore

$$
\left(v_{t}-\frac{\Delta v}{2}\right)\left(t_{0}, x_{0}\right) \leq 0
$$

Thus, if v has any minimum it should occur at $t_{0}=0$.
Step 2. Let $\epsilon>0$ be arbitrary. Choose α such that

$$
h(t, x)=|x|^{2}+\alpha t
$$

7
satisfies

$$
h_{t}-\frac{\Delta h}{2}=\alpha-d>0 \quad(\text { say } \alpha=2 d)
$$

Put $v_{\epsilon}=u+\epsilon h$. Then

$$
\frac{\partial v_{\epsilon}}{\partial t}-\frac{1}{2} \Delta v_{\epsilon}>0
$$

As u is bounded, $v_{\epsilon} \rightarrow+\infty$ as $|x| \rightarrow+\infty, v_{\epsilon}$ must attain a minimum. This minimum occurs at $t=0$ by Step 1. Therefore,

$$
v_{\epsilon}(t, x) \geq v_{\epsilon}\left(0, x_{0}\right) \quad \text { for some } \quad x_{0} \in \mathbb{R}^{d}
$$

i.e.

$$
v_{\epsilon}(t, x) \geq u\left(0, x_{0}\right)+\epsilon\left|x_{0}\right|^{2}>0
$$

i.e.

$$
u(t, x)+\epsilon h(t, x)>0, \forall \epsilon
$$

This gives

$$
u(t, x) \geq 0
$$

This completes the proof.
Exercise 5. (a) Let L be a linear differential operator satisfying $L u=$ g on Ω (open in \mathbb{R}^{d}) and $u=f$ on $\partial \Omega$. Show that u is uniquely determined by f and g if and only if $L u=0$ on Ω and $u=0$ on $\partial \Omega$ imply $u=0$ on Ω.
(b) Let u be a bounded solution of the heat equation $u_{t}-\frac{1}{2} \Delta u=g$ with $u(0, x)=f(x)$. Use the maximum principle and part (a) to show that u is unique in the class of all bounded functions.
(c) Let

$$
\begin{aligned}
& g(t)= \begin{cases}e^{-1 / t^{2}}, & \text { if } t>0, \\
0, & \text { if } t \leq 0,\end{cases} \\
& u(t, x)=\sum_{k=0}^{\infty} \frac{g^{(k)}(t / 2) x^{2^{k}}}{(2 k)!}, \quad \text { on } \quad R \times R .
\end{aligned}
$$

Then

$$
u(0, x)=0, \quad u_{t}=\frac{\Delta u}{2}, \quad u \not \equiv 0
$$

i.e. u satisfies

$$
u_{t}-\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}=0, \quad \text { with } \quad u(0, x)=0
$$

This example shows that the solution is not unique because, u is not bounded. (This example is due to Tychonoff).

Lemma 1. Let $p(t, x)=\frac{1}{(2 \pi t)^{d / 2}} \exp -\frac{|x|^{2}}{2 t}$ for $t>0$. Then

$$
p(t, \cdot) * p(s, \cdot)=p(t+s, \cdot)
$$

Proof. Let f be any bounded continuous function and put

$$
u(t, x)=\int_{\mathbb{R}^{d}} f(y) p(t, x-y) d y
$$

Then u satisfies

$$
u_{t}-\frac{1}{2} \Delta u=0, \quad u(0, x)=f(x)
$$

Let

$$
v(t, x)=u(t+s, x)
$$

Then

$$
v_{t}-\frac{1}{2} \Delta v=0, \quad v(0, x)=u(s, x) .
$$

This has the unique solution

$$
v(t, x)=\int u(s, y) p(t, x-y) d y
$$

Thus

$$
\int_{\mathbb{R}^{d}} f(y) p(t+s, x-y) d y=\iint f(z) p(s, y-z) p(t, x-y) d z d y .
$$

This is true for all f bounded and continuous. We conclude, therefore, that

$$
p(t, \cdot) * p(s, \cdot)=p(t+s, \cdot)
$$

Exercise 6. Prove Lemma directly using Fourier transforms.
It will be convenient to make a small change in notation which will be useful later on. We shall write $p(s, x, t, y)=p(t-s, y-x)$ for every x, y and $t>s . p(s, x, t, y)$ is called the transition probability, in dealing with Brownian motion. It represents the probability density that a "Brownian particle" located at space point x at time s moves to the space point y at a later time t.
Note. We use the same symbol p for the transition probability; it is function of four variables and there will not be any ambiguity in using the same symbol p.

Exercise 7. Verify that

$$
\int_{\mathbb{R}^{d}} p(s, x, t, y) p(t, y, \sigma, z) d y=p(s, x, \sigma, z), s<t<\sigma
$$

(Use Exercise 6.
Remark. The significance of this result is obvious. The probability that the particle goes from x at time s to z at time σ is the sum total of the probabilities, that the particle moves from x at s to y at some intermediate time t and then to z at time σ.

In this section we have introduced Brownian Motion corresponding to the operator $\frac{1}{2} \Delta$. Later on we shall introduce a more general diffusion process which corresponds to the operator $\frac{1}{2} \sum a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum b_{j} \frac{\partial}{\partial x_{j}}$.

2. Kolmogorov's Theorem

Definition. LET (Ω, \mathscr{B}, P) BE A probability space. A stochastic process 11 in \mathbb{R}^{d} is a collection $\left\{X_{t}: t \in I\right\}$ of \mathbb{R}^{d}-valued random variables defined on (Ω, \mathscr{B}).

Note 1. I will always denote a subset of $\mathbb{R}^{+}=[0, \infty)$.
2. X_{t} is also denoted by $X(t)$.

Let $\left\{X_{t}: t \in I\right\}$ be a stochastic process. For any collection t_{1}, t_{2}, \ldots, t_{k} such that $t_{i} \in I$ and $0 \leq t_{1}<t_{2}<\ldots<t_{k}$ and any Borel set Λ, in $\mathbb{R}^{d} \times \mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d}(k$ times $)$, define

$$
F_{t_{1}} \ldots t_{k}(\Lambda)=P\left(w \in \Omega:\left(X_{t_{1}}(w), \ldots, X_{t_{k}}(w)\right) \in \Lambda\right) .
$$

If

$$
\left\{t_{1}, \ldots, t_{k}\right\} \subset\left\{s_{1}, \ldots, s_{\ell}\right\} \subset I, \quad \text { with } \quad l \geq k
$$

such that

$$
s_{1}^{(0)}<\ldots<s_{n_{0}}^{(0)}<t_{1}<s_{1}^{(1)} \ldots<s_{n}^{(1)}<t_{2} \ldots<t_{k}<s_{1}^{(k)} \ldots<s_{n_{k}}^{(k)}
$$

let then

$$
\pi: \mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d}(1 \text { times }) \rightarrow \mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d}(k \text { times })
$$

be the canonical projection. If $E_{t_{i}} \subset \mathbb{R}^{d}$ is any Borel set in $\mathbb{R}^{d}, i=$ $1,2, \ldots, k$, then

$$
\pi^{-1}\left(E_{t_{1}} \times \cdots \times E_{t_{k}}\right)=\mathbb{R}^{d} \times \cdots \times E_{t_{1}} \times \mathbb{R}^{d} \times \cdots \times E_{t_{2}} \times \cdots \times \mathbb{R}^{d}
$$

(l times). The following condition always holds.
(*) $\quad E_{t_{1}} \ldots t_{k}\left(E_{t_{1}} \times \cdots \times E_{t_{k}}\right)=F_{s_{1}} \ldots s_{1}\left(\Pi^{-1}\left(E_{t_{1}} \times \cdots \times E_{t_{k}}\right)\right)$.
If $(*)$ holds for an arbitrary collection $\left\{F_{t_{1}} \ldots t_{k}: 0 \leq t_{1}<t_{2} \ldots<t_{k}\right\}$ ($k=1,2,3 \ldots$) of distributions then it is said to satisfy the consistency condition.

Exercise 1. (a) Verify that $F_{t_{1}} \ldots t_{k}$ is a probability measure on $\mathbb{R}^{d} \times$ $\cdots \times \mathbb{R}^{d}$ (k times).
(b) Verify (*). (If B_{m} denotes the Borel σ field of $\mathbb{R}^{m}, B_{m+n}=B_{m} \times$ B_{n}).

The following theorem is a converse of Exercise 1 and is often used to identify a stochastic process with a family of distributions satisfying the consistency condition.

Kolmogorov's Theorem.

Let $\left\{F_{t_{1}, t_{2}, \ldots, t_{k}} 0 \leq t_{1}<t_{2}<\ldots<t_{k}<\infty\right\}$ be a family of probability distributions (on $\mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d}$, k times, $k=1,2, \ldots$) satisfying the consistency condition. Then there exists a measurable space $\left(\Omega_{k}, \mathbb{B}\right)$, a unique probability measure P an $\left(\Omega_{k}, \mathscr{B}\right)$ and a stochastic process $\left\{X_{t}: 0 \leq t<\infty\right\}$ such that the family of probability measures associated with it is precisely

$$
\left\{F_{t_{1}, t_{2}, \ldots t_{k}}: 0 \leq t_{1}<t_{2}<\ldots<t_{k}<\infty\right\}, \quad k=1,2, \ldots
$$

A proof can be found in the APPENDIX. We mention a few points about the proof which prove to be very useful and should be observed carefully.

1. The space Ω_{k} is the set of all \mathbb{R}^{d}-valued functions defined on $[0, \infty)$:

$$
\Omega_{K}=\prod_{t \in[0, \infty)} \mathbb{R}^{d}
$$

2. The random variable X_{t} is the $t^{\text {th }}$-projection of Ω_{K} onto \mathbb{R}_{t}^{d}.
3. \mathscr{B} is the smallest σ-algebra with respect to which all the projections are measurable.
4. P given by

$$
P\left(w: X_{t_{1}}(w) \in A_{1}, \ldots X_{t_{k}}(w) \in A_{k}\right)=F_{t_{1} \ldots t_{k}}\left(A_{1} \times \cdots \times A_{k}\right)
$$

where A_{i} is a Borel set in \mathbb{R}^{d}, is a measure on the algebra generated by $\left\{X_{t_{1}}, \ldots X_{t_{k}}\right\}(k=1,2,3 \ldots)$ and extends uniquely to \mathscr{B}.

Remark. Although the proof of Kolmogorov's theorem is very constructive the space Ω_{K} is too "large" and the σ-algebra \mathscr{B} too "small" for practical purposes. In applications one needs a "nice" collection of \mathbb{R}^{d}-valued functions (for example continuous, or differentiable functions), a "large" σ-algebra on this collection and a probability measure concentrated on this family.

3. The One Dimensional Random Walk

BEFORE WE TAKE up Brownian motion, we describe a one dimen-
sional random walk which in a certain limiting case possesses the properties of Brownian motion.

Imagine a person at the position $x=0$ at time $t=0$. Assume that at equal intervals of time $t=\tau$ he takes a step h either along the positive x axis or the negative x axis and reaches the point $x(t)=x(t-\tau)+h$ or $x(t)=x(t-\tau)-h$ respectively. The probability that he takes a step in either direction is assumed to be $1 / 2$. Denote by $f(x, t)$ the probability that after the time $t=n \tau$ (n intervals of time τ) he reaches the position x. If he takes m steps to the right (positive x-axis) in reaching x then there are ${ }^{n} C_{m}$ possible ways in which he can achieve these m steps. Therefore, the probability $f(x, t)$ is ${ }^{n} C_{m}\left(\frac{1}{2}\right)^{n}$.
$f(x, t)$ satisfies the difference equation

$$
\begin{equation*}
f(x, t+\tau)=\frac{1}{2} f(x-h, t)+\frac{1}{2} f(x+h, t) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x=h(m-(n-m))=(2 m-n) h . \tag{2}
\end{equation*}
$$

To see this one need only observe that to reach $(x, t+\tau)$ there are two ways possible, viz. $(x-h, t) \rightarrow(x, t+\tau)$ or $(x+h, t) \rightarrow(x, t+\tau)$ and the probability for each one of these is $1 / 2$. Also note that by definition
of f,

$$
\begin{equation*}
f(h, \tau)=\frac{1}{2}=f(-h, \tau), \tag{3}
\end{equation*}
$$

so that

$$
\begin{equation*}
f(x, t+\tau)=f(h, \tau) f(x-h, t)+f(-h, \tau) f(x+h, t) . \tag{4}
\end{equation*}
$$

The reader can identify (4) as a "discrete version" of convolution. By our assumption,

$$
\begin{equation*}
f(0,0)=1, \quad f(x, 0)=0 \quad \text { if } \quad x \neq 0 . \tag{5}
\end{equation*}
$$

We examine equation (11) in the limit $h \rightarrow 0, \tau \rightarrow 0$. To obtain reasonable results we cannot let h and τ tend to zero arbitratily. Instead we assume that

$$
\begin{equation*}
\frac{h}{\tau} \rightarrow 1 \quad \text { as } \quad h \rightarrow 0 \quad \text { and } \quad \tau \rightarrow 0 \tag{6}
\end{equation*}
$$

The physical nature of the problem suggests that (6) should hold. To see this we argue as follows. Since the person is equally likely to go in either direction the average value of x will be 0 . Therefore a reasonable measure of the "progress" made by the person is either $|x|$ or x^{2}. Indeed, since x is a random variable (since m is one) one gets, using (2),

$$
\begin{aligned}
& E(x)=2 E(m)-n=0, \quad E\left(x^{2}\right)=h^{2} E\left((2 m-n)^{2}\right)=h^{2} n . \\
& \text { (Use } \left.\sum_{m=0}^{n} m^{n} C_{m}\left(\frac{1}{2}\right)^{n}=\frac{n}{2}, \sum_{m=0}^{n}{ }^{n} C_{m}\left(\frac{1}{2}\right)^{n}=\frac{n(n+1)}{4}\right)
\end{aligned}
$$

Thus

$$
E\left\{\frac{x^{2}}{t}\right\}=\frac{1}{t} E\left(x^{2}\right)=\frac{h^{2} n}{n \tau}=\frac{h^{2}}{\tau},
$$

and as t becomes large we expect that the average distance covered per unit time remains constant. (This constant is chosen to be 1 for reasons that will become apparent later). This justifies (6). In fact, a simple argument shows that if $\frac{h^{2}}{\tau} \rightarrow 0$ or $+\infty, x$ may approach $+\infty$ in a finite time which is physically untenable.
(1) now gives
$f(x, t+\tau)-f(x, t)=\frac{1}{2}\{f(x-h, t)-f(x, t)+f(x, h, t)-f(x, t)\}$.
Assuming sufficient smoothness on f, we get in the limit as $h, \tau \rightarrow 0$ and in view of (6),

$$
\begin{equation*}
\frac{\partial f}{\partial t}=\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} \tag{7}
\end{equation*}
$$

(to get the factor $1 / 2$ we choose $\frac{h^{2}}{\tau} \rightarrow 1$). This is the equation satisfied by the probability density f. The particle in this limit performs what is known as Brownian motion to which we now turn our attention.

References.

[1] GNEDENKO: The theory of probability, Ch. 10.
[2] The Feynman Lectures on physics, Vol. 1, Ch. 6.

4. Construction of Wiener Measure

ONE EXAMPLE WHERE the Kolmogorov construction yields a probability measure concentrated on a "nice" class Ω is the Brownian motion.

Definition. A Brownian motion with starting point x is an \mathbb{R}^{d}-valued stochastic process $\{X(t): 0 \leq t<\infty\}$ where
(i) $X(0)=x=$ constant;
(ii) the family of distribution is specified by

$$
\begin{aligned}
F_{t_{1}} \ldots t_{k}(A)= & \int_{A} p\left(0, x, t_{1}, x_{1}\right) p\left(t_{1}, x_{1}, t_{2}, x_{2}\right) \ldots \\
& p\left(t_{k-1}, x_{k-1}, t_{k}, x_{k}\right) d x_{1} \ldots d x_{k}
\end{aligned}
$$

for every Borel set A in $\mathbb{R}^{d} \times \cdots \mathbb{R}^{d}(k$ times $)$.
N.B. The stochastic process appearing in the definition above is the one given by the Kolmogorov construction.

It may be useful to have the following picture of a Brownian motion. The space Ω_{k} may be thought of as representing particles performing Brownian movement; $\left\{X_{t}: 0 \leq t<\infty\right\}$ then represents the trajectories of these particles in the space \mathbb{R}^{d} as functions of time and \mathscr{B} can be considered as a representation of the observations made on these particles.

Exercise 2. (a) Show that $F_{t_{1} \ldots t_{k}}$ defined above is a probability measure on $\mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d}$ (k times).
(b) $\left\{F_{t_{1} \ldots t_{k}}: 0 \leq t_{1}<t_{2}<\ldots t_{k}<\infty\right\}$ satisfies the consistency condition. (Use Fubini's theorem).
(c) $X_{t_{1}}-x, X_{t_{2}}-X_{t_{1}}, \ldots, X_{t_{k}}-X_{t_{k-1}}$ are independent random variables and if $t>s$, then $X_{t}-X_{s}$ is a random variable whose distribution density is given by

$$
p(t-s, y)=\frac{1}{[2 \pi(t-s)]^{d / 2}} \exp \left(-\frac{1}{2}(t-s)^{-1}|y|^{2}\right)
$$

(Hint: Try to show that $X_{t_{1}}-x, X_{t_{2}}-X_{t_{1}}, \ldots, X_{t_{k}}-X_{t_{k-1}}$ have a joint distribution given by a product measure. For this let ϕ be any bounded real measurable function on $\mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d}(k$ times $)$. Then

$$
\underset{X_{t_{1}}-x, X_{t_{2}}-X_{t_{1}}, \ldots, X_{t_{k}}-X_{t_{k-1}}}{E\left(\phi\left(Z_{1}, \ldots, Z_{k}\right)\right)}=\underset{X_{t_{1}}, \ldots, X_{t_{k}}}{E}\left(\phi\left(Z_{1}-x, \ldots, Z_{k}-Z_{k-1}\right)\right)
$$

where $E(\phi)$ is the expectation of ϕ with respect to the joint dis$X_{t_{1}} \ldots X_{t_{k}}$
tribution of $\left(X_{t_{1}} \ldots, X_{t_{k}}\right)$. You may also require the change of variable formula).

Problem. Given a Brownian motion with starting point x our aim is to find a probability P_{x} on the space $\Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right)$ of all continuous funcitons from $[0, \infty) \rightarrow \mathbb{R}^{d}$ which induces the Brownian motion. We will thus have a continuous realisation to Brownian motion. To achieve this goal we will work with the collection $\left\{F_{t_{1}, \ldots, t_{k}}: 0 \leq t_{1}<t_{2}<\ldots<\right.$ $\left.t_{k}\right\}$ where $t_{i} \in D$, a countable dense subset of $[0, \infty)$.

19 Step 1. The first step is to find a probability measure on a "smaller" space and lift it to $C\left([0, \infty) ; \mathbb{R}^{d}\right)$. Let

$$
\Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right)
$$

D a countable dense subset of $[0, \infty) ; \Omega(D)=\left\{F: D \rightarrow \mathbb{R}^{d}\right\}$ where f is uniformly continuous on $[0, N] \cap D$ for $N=1,2, \ldots$.. We equip Ω with the topology of uniform convergence on compact sets and $\Omega(D)$ with the topology of uniform convergence on sets of the form $D \cap K$
where $K \subset[0, \infty)$ is compact; Ω and $\Omega(D)$ are separable metric spaces isometric to each other.

Exercise 3. Let

$$
p_{n}(f, g)=\sup _{0 \leq t \leq n}|f(t)-g(t)| \quad \text { for } \quad f, g \in \Omega
$$

and

$$
p_{n, D}(f, g)=\sup _{\substack{0 \leq t \leq n \\ t \in \bar{D}}}|f(t)-g(t)| \quad \text { for } \quad f, g \in \Omega(D) \text {. }
$$

Define

$$
\begin{aligned}
\rho(f, g) & =\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{p_{n}(f, g)}{1+p_{n}(f, g)}, \forall f, g \in \Omega \\
\rho_{D}(f, g) & =\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{p_{n, D}(f, g)}{1+p_{n, D}(f, g)}, \forall f, g \in \Omega(D)
\end{aligned}
$$

Show that
(i) $\left\{f_{n}\right\} \subset \Omega$ converges to f if and only if $f_{n} \rightarrow f$ uniformly on compact subsets of $[0, \infty)$;
(ii) $\left\{f_{n}\right\} \subset \Omega(D)$ converges to f if and only if $f_{n \mid D \cap K} \rightarrow f_{|D \cap K|}$ uniformly for every compact subset K of $[0, \infty)$;
(iii) $\left\{\left(P_{1}, \ldots, P_{d}\right)\right\}$ where P_{i} is a polynomial with rational coefficients 20 is a countable dense subset of Ω;
(iv) $\left\{\left(P_{1 D}, \ldots, P_{d D}\right)\right\}$ is a countable dense subset of $\Omega(D)$;
(v) $\tau: \Omega \rightarrow \Omega(D)$ where $\tau(f)=f_{\mid D}$ is a $\left(\rho, \rho_{D}\right)$-isometry of Ω onto $\Omega(D)$;
(vi) if $V(f, \epsilon, n)=\left\{g \in \Omega: p_{n}(f, g)<\epsilon\right\}$ for $f \in \Omega, \epsilon>0$ and
$V_{D}(f, \epsilon, n)=\left\{g \in \Omega(D): p_{n, D}(f, g)<\epsilon\right\} \quad$ for $\quad f \in \Omega(D), \epsilon>0$,
then

$$
\{V(f, \epsilon, n): f \in \Omega, \epsilon>0, n=1,2 \ldots\}
$$

is a base for the topology of Ω and

$$
\left\{V_{D}(f, \epsilon, n): f \in \Omega(D), \epsilon>0, n=1,2, \ldots\right\}
$$

is a base for the topology of $\Omega(D)$.
Remark. By Exercise 3v) any Borel probability measure on $\Omega(D)$ can be lifted to a Borel probability measure on Ω.

2nd Step. Define the modulus of continuity $\Delta_{D}^{T, \delta}(f)$ of a function f on D in the interval $[0, T]$ by

$$
\Delta_{D}^{T, \delta}(f)=\sup \{|f(t)-f(s)|:|t-s|<\delta t, s \in D \cap[0, T]\}
$$

As D is countable one has
Exercise 4. (a) Show that $\left.f: \Delta_{D}^{N, \frac{1}{j}}(f) \leq \frac{1}{k}\right\}$ is measurable in the σ algebra generated by the projections

$$
\pi_{t}: \pi\left\{\mathbb{R}_{t}^{d}: t \in D\right\} \rightarrow \mathbb{R}_{t}^{d}
$$

Proof. The lemma is equivalent to showing that $\mathscr{B}=\sigma(\mathscr{E})$. As each of the projection $\pi_{t_{1} \ldots t_{k}}$ is continuous, $\sigma(\mathscr{E}) \subset \mathscr{B}$. To show that $\mathscr{B} \subset \sigma(\mathscr{E})$, it is enough to show that $V_{D}(f, \epsilon, n) \in \mathscr{E}$ because $\Omega(D)$ is separable. (Cf. Exercise 3(iv) and 3(vi)). By definition

$$
\begin{aligned}
& V_{D}(f, \epsilon, n)=\left\{g \in \Omega(D): P_{n, D}(f, g)<\epsilon\right\} \\
&=\bigcup_{m=1}^{\infty}\left\{g \in \Omega(D): p_{n, D}(f, g) \leq \epsilon-\frac{1}{m}\right\} \\
&=\bigcup_{m=1}^{\infty}\left\{g \in \Omega(D):\left|g\left(t_{i}\right)-f\left(t_{i}\right)\right| \leq \epsilon-\frac{1}{m}, \forall t_{i} \in D \cap[0, n]\right\} .
\end{aligned}
$$

The result follows if one observes that each $\pi_{t_{i}}$ is continuous.
Remark 1. The lemma together with Exercise 4(b) signifies that the Kolmogorov probability P_{x} on $\pi\left\{\mathbb{R}_{t}^{d}: t \in D\right\}$ is defined on the topological Borel σ-field of $\Omega(D)$.
2. The proof of the lemma goes through if $\Omega(D)$ is replaced by Ω.

Step 3. We want to show that $P_{x}(\Omega(D))=1$. By Exercise 4(b) this is equivalent to showing that $\operatorname{Lt}_{j \rightarrow \infty} P\left(\Delta_{D}^{N, 1 / j}(f) \leq \frac{1}{k}\right)=1$ for all N and k. The lemmas which follow will give the desired result.

Lemma (Lévy). Let $X_{1}, \ldots X_{n}$ be independent random variables, $\epsilon>0$ and $\delta>0$ arbitrary. If

$$
P\left(\left|X_{r}+X_{r+1}+\cdots+X_{\ell}\right| \geq \delta\right) \leq \epsilon
$$

$\forall r, \ell$ such that $1 \leq r \leq \ell \leq n$, then

$$
P\left(\sup _{1 \leq j \leq n}\left|X_{1}+\cdots+X_{j}\right| \geq 2 \delta\right) \leq 2 \epsilon .
$$

(see Kolmogorov's theorem) for every $j=1,2, \ldots$, for every $N=\mathbf{2 2}$ $1,2, \ldots$ and for every $k=1,2, \ldots$ (Hint: Use the fact that the projections are continuous).
(b) Show that $\Omega(D)=\bigcap_{N=1}^{\infty} \bigcap_{k=1}^{\infty} \bigcup_{j=1}^{\infty}\left\{\Delta_{D}^{N, \frac{1}{j}}(f) \leq \frac{1}{k}\right\}$ and hence $\Omega(D)$ is measurable in $\pi\left\{\mathbb{R}_{t}^{d}: t \in D\right\}$.

Let $\pi_{t_{1} \ldots t_{k}}: \Omega(D) \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{d} \times \cdots \mathbb{R}^{d}(k$ times $)$ be the projections and let

$$
\mathscr{E}_{t_{1} \ldots t_{k}}=\pi_{t_{1} \ldots t_{k}}^{-1}\left(\mathscr{B}\left(\mathbb{R}^{d}\right) \underset{k \text { times }}{\cdots \times \times\left(\mathscr{B}\left(\mathbb{R}^{d}\right)\right) .}\right.
$$

Put

$$
\mathscr{E}=\cup\left\{\mathscr{E}_{t_{1} \ldots t_{k}}: 0 \leqq t_{1}<t_{2}<\ldots<t_{k}<\infty ; t_{i} \in D\right\}
$$

Then, as

$$
\mathscr{E}_{t_{1} \ldots t_{k}} \cup \mathscr{E}_{s_{1} \ldots s_{1}} \subset \mathscr{E}_{\tau_{1} \ldots \tau_{m}}
$$

where

$$
\left\{t_{1} \ldots t_{k}, s_{1} \ldots s_{1}\right\} \subset\left\{\tau_{1} \ldots \tau_{m}\right\}
$$

\mathscr{E} is an algebra. Let $\sigma(\mathscr{E})$ be the σ-algebra generated by \mathscr{E}.
Lemma. Let \mathscr{B} be the (topological) Borel σ-field of $\Omega(D)$. Then \mathscr{B} is the σ-algebra generated by all the projections

$$
\left\{\pi_{t_{i} \ldots t_{k}}: 0 \leq t_{1}<t_{2}<\ldots<t_{k}, t_{i} \in D\right\} .
$$

Remark. By subadditivity it is clear that

$$
P\left(\sup _{1 \leq j \leq n}\left|X_{1}+\cdots+X_{j}\right| \geq 2 \delta\right) \leq n \epsilon
$$

Ultimately, we shall let $n \rightarrow \infty$ and this estimate is of no utility. The importance of the lemma is that it gives an estimate independent of n.

Proof. Let $S_{j}=X_{1}+\cdots+X_{j}, E=\left\{\sup _{1 \leq j \leq n}\left|S_{j}\right| \geq 2 \delta\right\}$. Put

$$
\begin{aligned}
& E_{1}=\left\{\left|S_{1}\right| \geq 2 \delta\right\} \\
& E_{2}=\left\{\left|S_{1}\right|<2 \delta,\left|S_{2}\right| \geq 2 \delta\right\}, \\
& \ldots \quad \cdots \quad \cdots \quad \cdots \\
& \ldots \\
& \ldots \quad \cdots \quad \cdots \\
& E_{n}=\left\{\left|S_{j}\right|<2 \delta, 1 \leq j \leq n-1,\left|S_{n}\right| \geq 2 \delta\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& E=\bigcup_{j=1}^{n} E_{j}, E_{j} \cap E_{i}=\phi \quad \text { if } \quad j \neq i \\
& P\left\{E \cap\left(\left|S_{n}\right| \leq \delta\right)=P\left(\bigcup_{j=1}^{n}\left(E_{j} \cap\left(\left|S_{n}\right| \leq \delta\right)\right)\right)\right. \\
& \leq P\left\{\bigcup\left(E_{i} \cap\left(\left|S_{n}-S_{j}\right| \geq \delta\right)\right)\right\} \\
& \leq \sum_{j=1}^{n} P\left(E_{j}\right) P\left(\left|S_{n}-S_{j}\right| \geq \delta\right) \quad \text { (by independence) } \\
& \leq \epsilon P(E) \quad(\text { by data }) . \\
& =P\left\{E \cap\left(\left|S_{n}\right|>\delta\right)\right\} \leq P\left(\left|S_{n}\right|>\delta\right) \leq \epsilon \quad \text { (by data). }
\end{aligned}
$$

Combining the two estimates above, we get

$$
P(E) \leq \epsilon+\epsilon P(E)
$$

$$
\text { If } \epsilon>\frac{1}{2}, 2 \epsilon>1 \text {. If } \epsilon<\frac{1}{2}, \frac{\epsilon}{1-\epsilon} \leq 2 \epsilon \text {. In either case } P(E) \leq 2 \epsilon \text {. }
$$

Lemma. Let $\{X(t)\}$ be a Brownian motion, $I \subset[0, \infty)$ be a finite interval, $F \subset I \cap D$ be finite. Then

$$
P_{x}\left(\operatorname{Sup}_{t, \sigma \in F}|X(t)-X(\sigma)| \geq 4 \delta\right) \leq C(d) \frac{|I|^{2}}{\delta^{4}}
$$

where $|I|$ is the length of the interval and $C(d)$ a constant depending only on d.

Remark. Observe that the estimate is independent of the finite set F.
Proof. Let $F=\left\{t_{i}: 0 \leq t_{1}<t_{2}<\ldots<t_{k}<\infty\right\}$.
Put

$$
X_{1}=X\left(t_{2}\right)-X\left(t_{1}\right), \ldots, X_{k-1}=X\left(t_{k}\right)-X\left(t_{k-1}\right)
$$

Then $X_{1} \ldots X_{k-1}$ are independent (Cf. Exercise [2] c)). Let

$$
\epsilon=\sup _{1 \leq r \leq 1 \leq k-1} P_{x}\left(\left|X_{r}+X_{r+1}+\cdots+X_{1}\right| \geq \delta\right)
$$

Note that
$P_{x}\left(\left|X_{r}+\cdots+X_{1}\right| \geq \delta\right)=P\left(\left|X\left(t^{\prime}\right)-X\left(t^{\prime \prime}\right)\right| \geq \delta\right)$ for some $t^{\prime}, t^{\prime \prime}$ in F
$\leq \frac{E\left(\left|X\left(t^{\prime}\right)-X\left(t^{\prime \prime}\right)\right|^{4}\right)}{\delta^{4}} \quad$ (see Tchebyshey's inequality in Appendix)
$\leq \frac{C^{\prime}\left(t^{\prime \prime}-t^{\prime}\right)}{\delta^{4}} \quad\left(C^{\prime \prime}=\right.$ constant $)$
$\leq \frac{C^{\prime}|I|^{2}}{\delta^{4}}$.
Therefore $\epsilon \leq \frac{C^{\prime}|I|^{2}}{\delta^{4}}$. Now

$$
\begin{aligned}
& P_{x}\left(\sup _{t, \sigma \in P}|X(t)-X(\sigma)| \geq 4 \delta\right) \\
& \quad P_{x}\left(\sup _{1 \leq i \leq k}\left|X\left(t_{i}\right)-X\left(t_{1}\right)\right| \geq 2 \delta\right) \\
& =P_{x}\left(\sup _{i \leq j \leq k-1}\left|X_{1}+\cdots+X_{j}\right| \geq 2\right) \leq 2 \epsilon \quad \text { (by previous lemma) } \\
& \quad \frac{2 C^{\prime}|I|^{2}}{\delta^{4}}=\frac{C|I|^{2}}{\delta^{4}}
\end{aligned}
$$

Exercise 5. Verify (*).
(Hint: Use the density function obtained in Exercise 2 c) to evaluate the expectation and go over to "popular" coordinates. (The value of C^{\prime} is $d(2 d+1)))$.

Lemma .

$$
\begin{gathered}
P_{x}\left\{\sup _{\substack{t t-s \mid \leq h \\
t, s \in[0, t] \cap D}}|X(t)-X(s)|>\rho\right\}=P_{x}\left(\Delta_{D}^{T, h}>\rho\right) \\
\leq \phi(T, \rho, h)=C \frac{h}{\rho^{4}}\left(\left[\frac{T}{h}\right]+1\right) .
\end{gathered}
$$

Note that $\phi(T, \rho, h) \rightarrow 0$ as $h \rightarrow 0$ for every fixed T and ρ.
Proof. Define the intervals I_{1}, I_{2}, \ldots by

$$
I_{k}=[(k-1) h,(k+1) h] \cap(0, T], k=1,2, \ldots .
$$

Let $I_{1}, I_{2}, \ldots I_{r}$ be those intervals for which

$$
I_{j} \cap[0, T] \neq \phi(j=1,2, \ldots, r)
$$

Clearly there are $\left[\frac{T}{h}\right]+1$ of them. If $|t-s| \leq h$ then $t, s \in I_{j}$ for some $j, 1 \leq j \leq r$. Write $D=\bigcup_{n=1}^{\infty} F_{n}$ where $F_{n} \subset F_{n+1}$ and F_{n} is finite. Then

$$
\begin{aligned}
& P_{x}\left\{\sup _{\substack{|t-s| \leq h \\
t, s \in[0, T] \cap D}}|X(t)-X(s)|>\rho\right\}=P_{x}\left\{\bigcup_{n=1}^{\infty}\left(\sup _{\substack{|t-s| \leq h \\
t, s \in D \cap F_{n}}}|X(t)-X(s)|>\rho\right)\right\} \\
& \quad=\sup _{n} P_{x}\left\{\sup _{j} \sup _{t, s \in F_{n}}\left(\left|X_{I_{j}}(t)-X(s)\right|>\rho\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sup _{n} \sum_{j=1}^{r} P_{x}\left(\sup _{t, s \in F_{n}}\left(\left|X_{I_{j}}(t)-X(s)\right|>\rho\right)\right) \\
& \sup _{n}\left(\left[\frac{T}{h}\right]+1\right) \frac{C(2 h)^{2}}{(\rho / 4)^{4}} \quad \text { by the last lemma } \\
& \leq \phi(T, \rho, h) .
\end{aligned}
$$

Theorem . $P_{x}(\Omega(D))=1$.
Proof. It is enough to show that

$$
\operatorname{Lt}_{j \rightarrow \infty} P_{x}\left(\Delta_{D}^{N, \frac{1}{j}}(f) \leq \frac{1}{k}\right)=1 \quad(\text { See Exercise } 4(\mathrm{~b}))
$$

But this is guaranteed by the previous lemma.
Remark. 1. It can be shown that the outer measure of Ω is 1 .
2. Ω is not measurable in $\prod_{t \geq 0} \mathbb{R}_{t}^{d}$.

Let \tilde{P}_{x} be the measure on Ω induced by P_{x} on $\Omega(D)$. We have already remarked that P_{x} is defined on the (topological Borel σ field of $\Omega(D)$. As P_{x} is a probability measure, \tilde{P}_{x} is also a probability measure. It should now be verified that \tilde{P}_{x} is really the probability measure consistent with the given distribution.

Theorem . \tilde{P}_{x} is a required probability measure for a continuous realization of the Brownian motion.

Proof. We have to show that

$$
F_{t_{1} \ldots t_{k}}=\tilde{P}_{x} \pi_{t_{1} \ldots t_{k}}^{-1} \quad \text { for all } t_{1}, t_{2} \ldots t_{k} \quad \text { in }[0, \infty)
$$

Step 1. Let $t_{1}, \ldots, t_{k} \in D$. Then

$$
P_{x}\left(\pi_{t_{1} \ldots t_{k}}^{-1}\left(A_{1} \times \cdots \times A_{k}\right)\right)=P_{x}\left(\tau \pi_{t_{1} \ldots t_{k}}\left(A_{1} \times \cdots \times A_{k}\right)\right)
$$

for every A_{i} Borel in \mathbb{R}^{d}. The right side above is

$$
P_{x}\left(\pi_{t_{1} \ldots t_{k}}^{-1}\left(A_{1} \times \cdots \times A_{k}\right)\right)=F_{t_{1} \ldots t_{k}}\left(A_{1} \times \cdots \times A_{k}\right)
$$

(by definition of P_{x}).

Step 2. We know that $T_{t_{1}, t_{2} \ldots t_{k}}=\tilde{P}_{x} \pi_{t_{1}, t_{2}, \ldots, t_{k}}$ provided that $t_{1}, t_{2}, \ldots, t_{k} \in$ D. Let us pick $t_{1}^{(n)}, \ldots, t_{k}^{(n)}$, such that each $t_{i}^{(n)} \in D$ and $t_{k}^{(n)} \rightarrow t_{k}$ as $n \rightarrow \infty$. For each n and for each fixed $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ which is bounded and continuous,

$$
E^{F_{1}^{(n)} \ldots, t_{k}^{(n)}}\left[f\left(x_{1}, \ldots, x_{k}\right)\right]=E^{\tilde{P}_{x}}\left[f\left(x\left(t_{1}^{(n)}, \ldots, x\left(t_{k}^{(n)}\right)\right)\right)\right] .
$$

Letting $n \rightarrow \infty$ we see that

$$
E^{F_{t_{1}, \ldots, t_{k}}}\left[f\left(x_{1}, \ldots, x_{k}\right)\right]=E^{P_{x}}\left[f\left(x\left(t_{1}\right), \ldots, x\left(t_{k}\right)\right)\right]
$$

for all t_{1}, \ldots, t_{k}. This completes the proof.
The definition of the Brownian motion given earlier has a built-in constraint that all "trajectories" start from $X(0)=x$. This result is given by

Theorem. $\tilde{P}_{0}\{f: f(0)=0\}=1$.
Proof. Obvious; because $E^{\tilde{P}_{x}}[\phi(x(0))]=\phi(x)$.
Note. In future \tilde{P}_{x} will be replaced by P_{x} and $\tilde{P}_{0}=P_{0}$ will be denoted by P.

Let $T_{x}: \Omega \rightarrow \Omega$ be the map given by $\left(T_{x} f\right)(t)=x+f(t) . T_{x}$ translates every 'trajectory' through the vector x.

Let us conceive a real Brownian motion of a system of particles. The operation T_{x} means that the system is translated in space (along with
everything else that affects it) through a vector x. The symmetry of the physicl laws governing this motion tells us that any property exhibited by the first process should be exhibited by the second process and vice versa. Mathematically this is expressed by

Theorem . $P_{x}=P T_{x}^{-1}$.
Proof. It is enough to show that

$$
P_{x}\left(T_{x} \pi_{t_{1} \ldots t_{k}}^{-1}\left(A_{1} \times \cdots \times A_{k}\right)\right)=P\left(\pi_{t_{1} \ldots t_{k}}^{-1}\left(A_{1} \times \cdots \times A_{k}\right)\right)
$$

for every A_{i} Borel in \mathbb{R}^{d}. Clearly,

$$
T_{x} \pi_{t_{1} \ldots t_{k}}^{-1}\left(A_{1} \times \cdots \times A_{k}\right)=\pi_{t_{1} \ldots t_{k}}^{-1}\left(A_{1}-x \times \cdots \times A_{k}-x\right)
$$

Thus we have only to show that

$$
\begin{aligned}
& \int_{A_{1}-x} \int \ldots \int_{A_{k}-x} p\left(0, x, t_{1}, x_{1}\right) \ldots p\left(t_{k-1}, x_{k-1}, t_{k}, x_{k}\right) d x_{1} \ldots d x_{k} \\
& \quad=\int_{A_{1}} \ldots \int_{A_{k}} p\left(0,0, t_{1}, x_{1}\right) \ldots p\left(t_{k-1}, x_{k-1}, t_{k}, x_{k}\right) d x_{1} \ldots d x_{k}
\end{aligned}
$$

which is obvious.
Exercise. (a) If $\beta(t, \cdot)$ is a Brownian motion s tarting at $(0,0)$ then $\frac{1}{\sqrt{\epsilon}} \beta(\epsilon t)$ is a Brownian motion starting at $(0,0)$ for every $\epsilon>0$.
(b) If X is a d-dimensional Brownian motion and Y is a d^{\prime}-dimensional Brownian motion then (X, Y) is a $d+d^{\prime}$ dimensional Brownian motion provided that X and Y are independent.
(c) If $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right)$ is a d-dimensional Brownian motion, then X_{t}^{j} is a one-dimensional Brownian motion. $\quad(j=1,2, \ldots d)$.

$$
\begin{aligned}
\tau(w) & =\inf \left\{t:\left|X_{t}(w)\right| \geq+1\right\} \\
& =\inf \{t:|w(t)| \geq 1\}
\end{aligned}
$$

+1 or -1 .

2. Let $\left\{X_{t}\right\}$ be a d-dimensional Brownian motion, G any closed set in \mathbb{R}^{d}. Define

$$
\tau(w)=\inf \{t: w(t) \in G\}
$$

This is a generalization of Example 1. To see that τ is a stopping time use

$$
\{\tau \leq s\}=\bigcap_{n=1}^{\infty} \varlimsup_{\substack{\theta \in[0, s] \\ \theta \text { rational }}}\left\{w: w(\theta) \in G_{n}\right\}
$$

where

$$
G_{n}=\left\{x \in \mathbb{R}^{d}: d(x, G) \leq \frac{1}{n}\right\}
$$

3. Let $\left(X_{t}\right)$ be a d-dimensional Brownian motion, C and D disjoint closed sets in \mathbb{R}^{d}. Define

$$
\tau(w)=\inf \{t ; w(t) \in C \text { and for some } s \leq t, w(s) \in D\}
$$

$\tau(w)$ is the first time that w hits C after visiting D.

5. Generalised Brownian Motion

LET Ω BE ANY space, \mathscr{F} a σ-field and $\left(\mathscr{F}_{t}\right)$ an increasing family of 31 sub σ-fields such that $\sigma(\cup \mathscr{F})=\mathscr{F}$. Let P be a measure on (Ω, \mathscr{F}).

$$
X(t, w):[0, w) \times \Omega \rightarrow \mathbb{R}^{d}
$$

is called a Brownian motion relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$ if
(i) $X(t, w)$ is progressively measurable with respect to \mathscr{F}_{t};
(ii) $X(t, w)$ is a.e. continuous in t;
(iii) $X(t, w)-X(s, w)$ for $t>s$ is independent of \mathscr{F}_{s} and is distributed normally with mean 0 and variance $t-s$, i.e.

$$
P\left(X(t, \cdot)-X(s, \cdot) \in A \mid \mathscr{F}_{s}\right)=\int_{A} \frac{1}{[2 \pi(t-s)]^{d / s}} \exp -\frac{|y|^{2}}{2(t-s)} d y
$$

Note. 1. The Brownian motion constructed previously was concentrated on $\Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right), \mathscr{F}$ was the Borel field of $\Omega, X(t, w)=$ $w(t)$ and $\mathscr{F}_{t}=\sigma\{X(s): 0 \leq s \leq t\}$. The measure P so obtained is often called the Wiener measure.
2. The above definition is more general because

$$
\sigma\{X(s): 0 \leq s \leq t\} \subset \mathscr{F}_{t}
$$

Exercise. (Brownian motion starting at time s). Let $\Omega=C\left([s, \infty) ; \mathbb{R}^{d}\right)$, $\mathscr{B}=$ Borel field of Ω. Show that for each $x \in \mathbb{R}^{d} \exists$ a probability measure P_{x}^{s} on Ω such that
(i) $P_{x}^{s}\{w: w(s)=x\}=1$;
(ii) $P_{x}^{s}\left(X_{t_{1}} \in A_{1}, \ldots, X_{t_{k}} \in A_{k}\right)$

$$
\begin{aligned}
& \quad=\int_{A_{1}} \int_{A_{2}} \ldots \int_{A_{k}} p\left(s, x, t_{1}, x_{1}\right) p\left(t_{1}, x_{1}, t_{2}, x_{2}\right) \ldots \\
& \quad \ldots p\left(t_{k-1} x_{k-1}, t_{k}, x_{k}\right) d x_{1} \ldots d x_{k} \\
& \forall s<t_{1}<\ldots<t_{k}
\end{aligned}
$$

For reasons which will become clear later, we would like to shift the measure P_{x}^{s} to a measure on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$. To do this we define

$$
T: C\left([s, \infty) ; \mathbb{R}^{d}\right) \rightarrow C\left([0, \infty) ; \mathbb{R}^{d}\right)
$$

by

$$
(T w)(t)= \begin{cases}w(t), & \text { if } t \geq s, \\ w(s), & \text { if } t \leq s\end{cases}
$$

Clearly, T is continuous. Put

$$
P_{s, x}=P_{x}^{s} T^{-1}
$$

Then
(i) $P_{s, x}$ is a probability measure on the Borel field of $C\left([0, \infty) ; \mathbb{R}^{d}\right)$;
(ii) $P_{s, x}\{w: w(s)=x\}=1$.

6. Markov Properties of Brownian Motion

Notation. 1. A random variable of a stochastic process $\{X(t)\}_{t \in I}$ shall 33 be denoted by X_{t} or $X(t) .0 \leq t<\infty$.
2. \mathscr{F}_{s} will denote the σ-algebra generated by $\left\{X_{t}: 0 \leq t \leq s\right\}$; $\mathscr{F}_{s+}=\left\{\mathscr{F}_{a}: a>s\right\} ; \mathscr{F}_{s-}$ will be the σ-algebra generated by $\cup\left\{\mathscr{F}_{a}: a<s\right\} s>0$. It is clear that $\left\{\mathscr{F}_{t}\right\}$ is an increasing family.
3. For the Brownian motion, $\mathscr{B}=$ the σ-algebra generated by $\cup\left\{\mathscr{F}_{t}\right.$: $t<\infty\}$ will be denoted by \mathscr{F}.

Theorem. Let $\left\{X_{t}: 0 \leq t<\infty\right\}$ be a Brownian motion. Then $X_{t}-X_{s}$ is independent of \mathscr{F}_{s}.

Proof. Let

$$
0 \leq t_{1}<t_{2}<t_{3}<\ldots<t_{k} \leq s .
$$

Then the σ-algebra generated by $X_{t_{1}}, \ldots, X_{t_{k}}$ is the same as the σ algebra generated by

$$
X_{t_{1}}, X_{t_{2}}-X_{t_{1}}, \ldots, X_{t_{k}}-X_{t_{k-1}}
$$

Since $X_{t}-X_{s}$ is independent of these increments, it is independent of $\sigma\left\{X_{t_{1}}, \ldots, X_{t_{k}}\right\}$. This is true for every finite set t_{1}, \ldots, t_{k} and therefore $X_{t}-X_{s}$ is independent of \mathscr{F}_{s}.

Let us carry out the following calculation very formally.

$$
P\left[X_{t} \in A \mid \mathscr{F}_{s}\right](w)=P\left[X_{t}-X_{s} \in B \mid \mathscr{F}_{s}\right](w), B=A-X_{s}(w)
$$

$$
=P\left[X_{t}-X_{s} \in B\right], \quad \text { by independence },
$$

34 i.e.

$$
P\left[X_{t} \in A \mid \mathscr{F}_{s}\right](w)=\int_{A} \frac{1}{(2 \pi t)^{d / 2}} \exp -\frac{\left|y-X_{s}(w)\right|^{2}}{2(t-s)} d y
$$

This formal calculation leads us to

Theorem .

$$
P\left[X_{t} \in A \mid \mathscr{F}_{s}\right](w)=\int_{A} \frac{1}{(2 \pi t)^{d / 2}} \exp -\frac{\left|y-X_{s}(w)\right|^{2}}{2(t-s)} d y
$$

where A is Borel in $\mathbb{R}^{d}, t>s$.
Remark. It may be useful to note that $p\left(s, X_{s}(w), t, y\right)$ can be thought of as a conditional probability density.

Proof. (i) We show that

$$
f_{A}(w)=\int_{A} \frac{1}{(2 \pi t)^{d / 2}} \exp -\frac{\left|y-X_{s}(w)\right|^{2}}{2(t-s)} d y
$$

is \mathscr{F}_{S}-measurable. Assume first that A is bounded and Borel in \mathbb{R}^{d}. If $\omega_{n} \rightarrow \omega$, then $f_{A}\left(\omega_{n}\right) \rightarrow f_{A}(\omega)$, i.e. f_{A} is continuous and hence \mathscr{F}_{s}-measurable. The general case follows if we note that any Borel set can be got as an increasing union of a countable number of bounded Borel sets.
(ii) For any $C \in \mathscr{F}_{s}$ we show that
(*) $\quad \int_{C}^{X} X_{t}^{-1}(A) d P(\omega)=\int_{C} \int_{A} \frac{\exp -\left|y-X_{s}(\omega)\right|^{2}}{(2 \pi(t-s))^{d / 2}} d y d P(\omega)$.
It is enough to verify $(*)$ for C of the form

$$
C=\left\{\omega:\left(X_{t_{1}}(\omega), \ldots, X_{t_{k}}(\omega)\right) \in A_{1} \times \cdots \times A_{k} ; 0 \leq t_{1}<\ldots<t_{k} \leq s\right\},
$$

where A_{i} is Borel in \mathbb{R}^{d} for $i=1,2 \ldots k$. The left side of $(*)$ is then

$$
\int_{A_{i} \times \cdots \times A_{k} \times A} p\left(0,0, t_{1}, x_{t_{1}}\right) p\left(t_{1}, x_{t_{1}}, t_{2}, x_{t_{2}}\right) \ldots p\left(t_{k}, x_{t_{k}}, t, x_{t}\right) d x_{t_{1}} \ldots d x_{t}
$$

To compute the right side define

$$
f: \mathbb{R}^{(k+1) d} \rightarrow \mathbb{B}
$$

by

$$
f\left(u_{1}, \ldots, u_{k}, u\right)=X_{A_{1}}\left(u_{1}\right) \ldots X_{A_{k}}\left(u_{k}\right) p(s, u, t, y) .
$$

Clearly f is Borel measurable. An application of Fubini's theorem to the right side of $(*)$ yields

$$
\begin{aligned}
& \int_{A} d y \int_{\Omega} X_{A_{1}}\left(X_{t_{1}}(\omega)\right) \ldots X_{A_{k}}\left(X_{t_{k}}(\omega)\right) p\left(s, X_{s}(\omega), t, y\right) d P(\omega) \\
& \quad=\int_{A} d y \int_{\substack{\mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d} \\
(k+1)}} f\left(x_{1} \ldots x_{k}, x_{s}\right) d F_{t_{1} \ldots t_{k}}, s \\
& \quad=\int_{A}^{\text {times }} d y \int_{A_{1} \times \cdots \times A_{k} \times \mathbb{R}^{d}} p\left(0,0, t_{1}, x_{1}\right) \ldots p\left(t_{k-1}, t_{k}, x_{k}\right) \\
& =\int_{A_{1} \times \cdots \times A_{k} \times A} p\left(t_{k}, x_{k}, s, x_{s}\right) p\left(s, x_{s}, t, y\right) d x_{1} \ldots d x_{k} d x_{s} \\
& \quad \text { (by the convolution rule) } \\
& =\text { left side. }
\end{aligned}
$$

Examples of Stopping Times.

1. Let $\left(X_{t}\right)$ be a one-dimensional Brownian motion. Define τ by

$$
\{\tau \leq s\}=\bigcap_{n=1}^{\infty} \varlimsup_{\substack{\theta_{1}, \theta_{2} \\ \theta_{1}, \theta_{2} \\ \text { rational in }[0, s]}}\left\{w: w\left(\theta_{1}\right) \in D_{n}, w\left(\theta_{2}\right) \in C_{n}\right\},
$$

where

$$
D_{n}=\left\{x \in \mathbb{R}^{d}: d(x, D) \leq \frac{1}{n}\right\}, C_{n}=\left\{x \in \mathbb{R}^{d}: d(x, C) \leq \frac{1}{n}\right\}
$$

Exercise 1. Let τ be as in Example 1.
(a) If $A=\left\{w: X_{1}(w) \leq \tau\right\}$ show that $A \notin \mathscr{F}_{\tau}$.
(Hint: $A \cap\{\tau \leq 0\} \notin \mathscr{F}_{0}$). This shows that $\mathscr{F}_{\tau} \varsubsetneqq \mathscr{F}_{0}$.
(b) $P_{0}\{w: \tau(w)=\infty\}=0$.
(Hint: $P_{0}\{w:|w(t)|<1\} \leq \int_{|y| \leq t^{-1 / 2}} e^{-1 / 2|y|^{2}} d y \forall t$).
Theorem . (Strong Markov Property of Brownian Motion). Let τ be any finite stopping time, i.e. $\tau<\infty$ a.e. Let $Y_{t}=X_{\tau+t}-X_{\tau}$. Then

1. $P\left[\left(Y_{t_{1}} \in A_{1}, \ldots, Y_{t_{k}} \in A_{k}\right) \cap A\right]=P\left(X_{t_{1}} \in A_{1}, \ldots X_{t_{k}} \in A_{k}\right) \cdot P(A)$, $\forall A \in \mathscr{F}_{\tau}$ and for every A_{i} Borel in \mathbb{R}^{d}. Consequently,
2. $\left(Y_{t}\right)$ is a Brownian motion.
3. $\left(Y_{t}\right)$ is independent of \mathscr{F}_{τ}.

The assertion is that a Brownian motion starts afresh at every stopping time.

Proof.
Step 1. Let τ take only countably many values, say $s_{1}, s_{2}, s_{3} \ldots$. Put $E_{j}=\tau^{-1}\left\{s_{j}\right\}$. Then each E_{j} is \mathscr{F}_{τ}-measure and

$$
\Omega=\bigcup_{j=1}^{\infty} E_{j}, \quad E_{j} \cap E_{i}=\emptyset j \neq i
$$

Fix $A \in \mathscr{F}_{\tau}$.

$$
\begin{aligned}
& P\left[\left(Y_{t_{1}} \in A_{1}, \ldots, Y_{t_{k}} \in A_{k}\right) \cap A\right] \\
& \quad=\sum_{j=1}^{\infty} P\left[\left(Y_{t_{1}} \in A_{1}, \ldots, Y_{t_{k}} \in A_{k}\right) \cap A \cap E_{j}\right] \\
& \left.\quad=\sum_{j=1}^{\infty} P\left[\left(X_{t_{1}+s_{j}}-X_{s_{j}}\right) \in A_{1}, \ldots, X_{t_{k}+s_{j}}-X_{s_{j}} \in A_{k}\right) \cap A \cap E_{j}\right] \\
& \quad=\sum_{j=1}^{\infty} P\left[\left(X_{t_{1}} \in A_{1}\right), \ldots,\left(X_{t_{k}} \in A_{k}\right)\right] P\left(A \cap E_{j}\right) \\
& \quad \quad \quad \quad \begin{array}{l}
\text { by the Markov property) }
\end{array} \\
& \quad P\left(X_{t_{1}} \in A_{1}, \ldots, X_{t_{k}} \in A_{k}\right) \cdot P(A)
\end{aligned}
$$

Step 2. Let τ be any stopping time; put $\tau_{n}=\frac{[n \tau]+1}{n}$. A simple calculation shows that τ_{n} is a stopping time taking only countably many values. As $\tau_{n} \downarrow \tau, \mathscr{F}_{\tau} \subset \mathscr{F}_{\tau_{n}} \forall_{n}$. Let $Y_{t}^{(n)}=X_{\tau_{n}+t}-X_{\tau_{n}}$.

By Step 1,

$$
\begin{aligned}
& P\left[\left(Y_{t_{1}}^{(n)}<x_{1}, \ldots, Y_{t_{k}}^{(n)}<x_{k}\right) \cap A\right] \\
& =P\left(X_{t_{1}}<x_{1}, \ldots, X_{t_{k}}<x_{k}\right) \cdot P(A)
\end{aligned}
$$

(where $x<y$ means $x_{i}<y_{i} i=1,2, \ldots, d$) for every $A \in \mathscr{F}_{\tau}$. As all the Brownian paths are continuous, $Y_{t}^{(n)} \rightarrow Y_{t}$ a.e. Thus, if x_{1}, \ldots, x_{k} is a point of continuity of the joint distribution of $X_{t_{1}}, \ldots, X_{t_{k}}$, we have

$$
P\left[\left(Y_{t_{1}}<x_{1}, \ldots, Y_{t_{k}}<x_{k}\right) \cap A\right]=P\left(X_{t_{1}}<x_{1}, \ldots, X_{t_{k}}<x_{k}\right) P(A)
$$

$\forall A \in \mathscr{F}_{\tau}$. Now assertion (1) follows easily.
For (2), put $A=\Omega$ in (1), and (3) is a consequence of (1) and (2).

7. Reflection Principle

LET $\left(X_{t}\right)$ BE A one-dimensional Brownian motion. Then $P\left(\sup X_{s} \geq 39\right.$
$a)=2 P\left(X_{t} \geq a\right)$ with $a>0$. This gives us the probability of a Brownian particle hitting the line $x=a$ some time less than or equal to t. The intuitive idea of the proof is as follows.

Among all the paths that hit a before time t exactly half of them end up below a at time t. This is due to the reflection symmetry. If $X_{s}=a$ for some $s<t$, reflection about the horizontal line at a gives a one one correspondence between paths with $X_{t}>a$ and paths with $X_{t}<a$. Therefore

$$
P\left\{\max _{0 \leq s \leq t} X_{s} \geq a, X_{t}>a\right\}=\left\{\max _{0 \leq s \leq t} X_{s} \geq a, X_{t}<a\right\}
$$

Since $P\left\{X_{t}=a\right\}=0$, we obtain

$$
\begin{aligned}
P\left\{\sup _{0 \leq s \leq t} X_{s} \geq a\right\} & =P\left\{\sup _{0 \leq s \leq t} X_{s} \geq a, X_{t}>a\right\}+P\left\{\sup _{0 \leq s \leq t} X_{s} \geq a, X_{t}>a\right\} \\
& =2 P\left\{X_{t} \geq a\right\}
\end{aligned}
$$

We shall now give a precise argument. We need a few elementary results.
Lemma 1. Let $X_{n}=\sum_{k=1}^{n} Y_{k}$ where the Y_{k} are independent random variables such that $P\left\{Y_{k} \in B\right\}=P\left\{-Y_{k} \in B\right\} \forall$ Borel set $B \subset R$ (i.e. Y_{k} are symmetric). Then for any real number a,

$$
P\left\{\max _{1 \leq i \leq n} X_{i}>a\right\} \leq 2 P\left\{X_{n}>a\right\}
$$

Proof. It is easy to verify that a random variable is symmetric if and only if its characteristic function is real. Define

$$
\begin{gathered}
A_{i}=\left\{X_{1} \leq a, \ldots X_{i-1} \leq a, X_{i}>a\right\}, i=1,2, \ldots, n \\
B=\left\{X_{n}>a\right\}
\end{gathered}
$$

Then $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$. Now,

$$
\begin{aligned}
P\left(A_{i} \cap B\right) & \geq P\left(A_{i} \cap\left\{X_{n} \geq X_{i}\right\}\right) \\
& =P\left(A_{i}\right) P\left(X_{n} \geq X_{i}\right), \quad \text { by independence. } \\
& =P\left(A_{i}\right) P\left(Y_{i+1}+\cdots+Y_{n} \geq 0\right) .
\end{aligned}
$$

As Y_{i+1}, \ldots, Y_{n} are independent, the characteristic function of $Y_{i+1}+$ $\cdots+Y_{n}$ is the product of the characteristic functions of $Y_{i+1}+\cdots+Y_{n}$, so that $Y_{i+1}+\cdots+Y_{n}$ is symmetric. Therefore

$$
P\left(Y_{i+1}+\cdots+Y_{n} \geq 0\right) \geq \frac{1}{2}
$$

Thus $P\left(A_{i} \cap B\right) \geq \frac{1}{2} P\left(A_{i}\right)$ and

$$
P(B) \geq \sum_{i=1}^{n} P\left(A_{i} \cap B\right) \geq \frac{1}{2} \sum P\left(A_{i}\right) \geq \frac{1}{2} P\left(\bigcup_{i=1}^{n} A_{i}\right)
$$

41 i.e.

$$
2 P(B) \geq P\left(\bigcup_{i=1}^{n} A_{i}\right)
$$

or

$$
P\left\{\max _{1 \leq i \leq n} X_{i}>a\right\} \leq 2 P\left\{X_{n}>a\right\}
$$

Lemma 2. Let Y_{i}, \ldots, Y_{n} be independent random variables. Put $X_{n}=$ $\sum_{k=1}^{n} Y_{k}$ and let $\tau=\min \left\{i: X_{i}>a\right\}, a>0$ and $\tau=\infty$ if there is no such i. Then for each $\epsilon>0$,
(a) $P\left\{\tau \leq n-1, X_{n}-X_{\tau} \leq-\epsilon\right\} \leq P\left\{\tau \leq n-1, X_{n} \leq a\right\}+\sum_{j=1}^{n-1} P\left(Y_{j}>\epsilon\right)$.
(b) $P\left\{\tau \leq n-1, X_{n}>a+2 \epsilon\right\} \leq P\left\{\tau \leq n-1, X_{n}-X_{\tau}>\epsilon\right\}+\sum_{j=1}^{n-1} P\left\{Y_{j}>\epsilon\right\}$
(c) $P\left\{X_{n}>a+2 \epsilon\right\} \leq P\left\{\tau \leq n-1, X_{n}>a+2 \epsilon\right\}+P\left\{Y_{n}>2 \epsilon\right\}$.

If, further, Y_{1}, \ldots, Y_{n} are symmetric, then
(d) $P\left\{\max _{1 \leq i \leq n} X_{i}>a, X_{n} \leq a\right\} \geq P\left\{X_{n}>a+2 \epsilon\right\}-P\left\{Y_{n} \geq 2 \epsilon\right\}-$ $2 \sum_{j=1}^{n-1} P\left\{Y_{j}>\epsilon\right\}$
(e) $P\left\{\max _{1 \leq i \leq n} X_{i}>a\right\} \geq 2 P\left\{X_{n}>a+2 \epsilon\right\}-2 \sum_{j=1}^{n} P\left\{Y_{j}>\epsilon\right\}$

Proof. (a) Suppose $w \in\left\{\tau \leq n-1, X_{n}-X_{\tau} \leq-\epsilon\right\}$ and $w \in\{\tau \leq$ $\left.n-1, X_{n} \leq a\right\}$. Then $X_{n}(w)>a$ and $X_{n}(w)+\epsilon \leq X_{\tau(w)}(w)$ or, $X_{\tau(w)}(w)>a+\epsilon$.
By definition of $\tau(w), X_{\tau(w)-1}(w) \leq a$ and therefore,

$$
Y_{\tau(w)}(w)=X_{\tau(w)}(w)-X_{\tau(w)-1}(w)>a+\epsilon-a=\epsilon
$$

if $\tau(w)>1$; if $\tau(w)=1, Y_{\tau(w)}(w)=X_{\tau(w)}(w)>a+\epsilon>\epsilon$.
Thus $Y_{j}(w)>\epsilon$ for some $j \leq n-1$, i.e.

$$
w \in \bigcup_{j=1}^{n-1}\left\{Y_{j}>\epsilon\right\} .
$$

Therefore

$$
\left\{\tau \leq n-1, X_{n}-X_{\tau} \leq-\epsilon\right\} \subset\left\{\tau \leq n-1, X_{n} \leq a\right\} \bigcup_{j=1}^{n-1}\left\{Y_{j}>\epsilon\right\}
$$

and (q) follows.
(b) Suppose $w \in\left\{\tau \leq n-1, X_{n}>a+2 \epsilon\right\}$ but $w \in\left\{\tau \leq n-1, X_{n}-X_{\tau}>\right.$ $\epsilon\}$. Then

$$
X_{n}(w)-X_{\tau(w)}(w) \leq \epsilon,
$$

or, $X_{\tau(w)}(w)>a+\epsilon$ so that $Y_{\tau(w)}(w)>\epsilon$ as in (a); hence $Y_{j}(w)>\epsilon$ for some $j \leq n-1$. This proves (b).
(c) If $w \in\left\{X_{n}>a+2 \epsilon\right\}$, then $\tau(w) \leq n$; if $w \notin\left\{\tau \leq n-1, X_{n}>\right.$ $a+2 \epsilon\}$, then $\tau(w)=n$ so that $X_{n-1}(w) \leq a$; therefore $Y_{n}(w)=$ $X_{n}(w)-X_{n-1}(w)>2 \epsilon$. i.e. $w \in\left\{Y_{n}>2 \epsilon\right\}$. Therefore

$$
\left\{X_{n}>a+2 \epsilon\right\} \subset\left\{\tau \leq n-1, X_{n}>a+2 \epsilon\right\} \cup\left\{Y_{n}>2 \epsilon\right\} .
$$

This establishes (c).
(d) $P\left\{\max _{1 \leq i \leq n} X_{i}>a, X_{n} \leq a\right\}=P\left\{\tau \leq n-1, X_{n} \leq a\right\}$
$\geq P\left\{\tau \leq n-1, X_{n}-X_{\tau} \leq-\epsilon\right\}-\sum_{j=1}^{n-1} P\left(Y_{j}>\epsilon\right), \quad$ by (a),
$P\left[\bigcup_{k=1}^{n-1}\left\{\tau=k, X_{n}-X_{k} \leq-\epsilon\right\}\right]-\sum_{j=1}^{n-1} P\left(Y_{j}>\epsilon\right)$
$=\sum_{k=1}^{n-1} P\left\{\tau=k, X_{n}-X_{k} \leq-\epsilon\right\}-\sum_{j=1}^{n-1} P\left(Y_{j}>\epsilon\right)$
$=\sum_{k=1}^{n-1} P\{\tau=k\} P\left\{X_{n}-X_{k} \leq-\epsilon\right\}-\sum_{j=1}^{n-1} P\left(Y_{j}>\epsilon\right)$
(by independence)
$=\sum_{k=1}^{n} P\{\tau=k\} P\left\{X_{n}-X_{k}>\epsilon\right\}-\sum_{j=1}^{n-1} P\left(Y_{j}>\epsilon\right) \quad$ (by symmetry)
$=P\left\{\tau \leq n-1, X_{n}-X_{\tau} \geq \epsilon\right\}-\sum_{j=1}^{n-1} P\left(Y_{j}>\epsilon\right)$
$\geq P\left\{\tau \leq n-1, X_{n}-X_{\tau}>\epsilon\right\}-\sum_{j=1}^{n-1} P\left(Y_{j}>\epsilon\right)$
$\geq P\left\{\tau \leq n-1, X_{n}>a+2 \epsilon\right\}-2 \sum_{j=1}^{n-1} P\left\{Y_{j}>\epsilon\right\} \quad$ (by (b))
$\geq P\left\{X_{n}>a+2 \epsilon\right\}-P\left\{Y_{n}>2 \epsilon\right\}-2 \sum_{j=1}^{n-1} P\left\{Y_{j}>\epsilon\right\} \quad$ (by (c))
This proves (d).
(e) $P\left\{\max _{1 \leq i \leq n} X_{i}>a\right\}=P\left\{\max _{1 \leq i \leq n} X_{i}>a, X_{n} \leq a\right\}+P\left\{\max _{1 \leq i \leq n} X_{i}>a, X_{n}>a\right\}$

$$
=P\left\{\max _{1 \leq i \leq n} X_{i}>a, X_{n} \leq a\right\}+P\left\{X_{n}>a\right\}
$$

$$
=P\left\{X_{n}>a+2 \epsilon\right\}-P\left\{Y_{n}>2 \epsilon\right\}+P\left\{X_{n}>a\right\}
$$

$$
-2 \sum_{j=1}^{n-1} P\left\{Y_{j}>\epsilon\right\} \quad(\mathrm{by}(\mathrm{~d}))
$$

Since $P\left\{X_{n}>a+2 \epsilon\right\} \leq P\left\{X_{n}>a\right\}$ and

$$
P\left\{Y_{n}>2 \epsilon\right\} \leq P\left\{Y_{n}>\epsilon\right\} \leq 2 P\left\{Y_{n}>\epsilon\right\},
$$

we get

$$
P\left\{\max _{1 \leq i \leq n} X_{i}>a\right\} \geq 2 P\left\{X_{n}>a+2 \epsilon\right\}-2 \sum_{j=1}^{n} P\left(Y_{j}>\epsilon\right)
$$

This completes the proof.

Proof of the reflection principle.

By Lemma

$$
p=P\left\{\max _{1 \leq j \leq n} X\left(\frac{j t}{n}\right)>\right\} \leq 2 P(X(t)>a)
$$

By Lemma_(e),

$$
p \geq 2 P(X(t)>a+2 \epsilon)-2 \sum_{j=1}^{n} P\left\{\left(X\left(\frac{j t}{n}\right)-X\left(\frac{(j-1) t}{n}\right)\right)>\epsilon\right\} .
$$

Since $X\left(\frac{j t}{n}\right)-X\left(\frac{(j-1) t}{n}\right)$ are independent and identically distributed normal random variables with mean zero and variance $\frac{t}{n}$ (in particular they are symmetric),

$$
\begin{aligned}
P\left(\left(X\left(\frac{j t}{n}\right)-X\left(\frac{(j-1) t}{n}\right)\right)>\epsilon\right) & =P\left(\left(X\left(\frac{t}{n}\right)-X(0)\right)>\epsilon\right) \\
& =P\left(X\left(\frac{t}{n}\right)>\epsilon\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& p \geq 2 P(X(t)>a+2 \epsilon)-2 n P\left(X\left(\frac{t}{n}\right)>\epsilon\right) . \\
& P(X(t / n)>\epsilon)=\int_{\epsilon}^{\infty} \frac{1}{\sqrt{(2 t / n)}} e^{-x^{2} / \frac{2 t}{n}} d x \\
&=\int_{\epsilon \sqrt{n} / \sqrt{(2 t)}}^{\infty} \frac{e^{-x^{2}}}{\sqrt{x}} d x \leq \frac{\epsilon \sqrt{n} / \sqrt{(2 t)}}{\sqrt{\pi}} \int_{\epsilon \sqrt{n} / \sqrt{(2 t)}}^{-1 \infty} x e^{-x^{2}} d x
\end{aligned}
$$

or

$$
P(X(t / n)>\epsilon) \leq \frac{1}{2 \sqrt{\pi}} e^{-\epsilon^{2} n / 2 t} \cdot \frac{\sqrt{(2 t)}}{\epsilon \sqrt{n}} .
$$

Therefore

$$
n P(X(t / n)>\epsilon) \leq \frac{n}{2 \epsilon} \sqrt{ }(2 t) / \sqrt{ }(\pi n) e^{-\epsilon^{2} n / 2 t} \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty .
$$

By continuity,

$$
P\left\{\max _{1 \leq \leq n} X(j t / n)>a\right\} \rightarrow P\left\{\max _{0 \leq s \leq t} X(s)>a\right\} .
$$

We let n tend to ∞ through values $2,2^{2}, 2^{3}, \ldots$ so that we get

$$
\begin{array}{r}
2 P\{X(t)>a+2 \epsilon\}-2 n P\{X(t / n)>\epsilon\} \\
\leq P\left\{\max _{1 \leq j \leq n} X(t / n)>a\right\} \leq 2 P\{X(t)>a\},
\end{array}
$$

or

$$
\begin{gathered}
2 P\{X(t)>a\} \leq 2 P\{X(t) \geq a\} \leq P\left\{\max _{0 \leq s \leq t} X(t)>a\right\} \\
2 P\{X(t)>a\},
\end{gathered}
$$

on letting $n \rightarrow+\infty$ first and then letting $\epsilon \rightarrow 0$. Therefore,

$$
\begin{aligned}
P\left\{\max _{0 \leq s \leq t} X(s)>a\right\} & =2 P\{X(t)>a\} \\
& =2 \int_{a}^{\infty} 1 / \sqrt{ }(2 \pi t) e^{-x^{2} / 2 t} d x .
\end{aligned}
$$

AN APPLICATION. Consider a one-dimensional Brownian motion. A particle starts at 0 . What can we say about the behaviour of the particle in a small interval of time $[0, \epsilon)$? The answer is given by the following result.

$$
\begin{gathered}
P(A) \equiv P\left\{w: \forall \epsilon>0, \exists t, s \text { in }[0, \epsilon) \text { such that } X_{t}(w)>0\right. \text { and } \\
\left.X_{s}(w)<0\right\}=1 .
\end{gathered}
$$

INTERPRETATION. Near zero all the particles oscillate about their starting point. Let

$$
\begin{aligned}
& A^{+}=\left\{w: \forall \in>0 \exists t \in[0, \epsilon) \text { such that } X_{t}(w)>0\right\}, \\
& A^{-}=\left\{w: \forall \epsilon>0 \exists s \in[0, \epsilon) \text { such that } X_{s}(w)<0\right\} .
\end{aligned}
$$

We show that $P\left(A^{+}\right)=P\left(A^{-}\right)=1$ and therefore $P(A)=P\left(A^{+} \cap\right.$ $\left.A^{-}\right)=1$.

$$
A^{+} \supset \bigcap_{n=1}^{\infty}\left\{\sup _{0 \leq \leq \leq 1 / n} w>0\right\}=\bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty}\left(\sup _{0 \leq \leq \leq 1 / n} w(t) \geq 1 / m\right)
$$

Therefore

$$
\begin{aligned}
P\left(A^{+}\right) & \geq \operatorname{Lt}_{n \rightarrow \infty} \sup _{m \rightarrow \infty} P\left(\sup _{0 \leq t \leq 1 / n} w(t) \geq 1 / m\right) \\
& \geq 2 \underset{n \rightarrow \infty m \rightarrow \infty}{\mathrm{Lt}} \sup P(w(1 / n) \geq 1 / m) \quad \text { (by the reflection principle) } \\
& \geq 1 \\
& \text { Similarly } P\left(A^{-}\right)=1
\end{aligned}
$$

Theorem. Let $\left\{X_{t}\right\}$ be a one-dimensional Brownian motion, $A \subset(-\infty, a)$ $(a>0)$ and Borel subset of \mathbb{R}. Then

$$
\begin{aligned}
& P_{0}\left\{X_{t} \in A, X_{s}<a \forall s \text { such that } 0 \leq s \leq t\right\} \\
& =\int_{A} 1 / \sqrt{ }(2 \pi t) e^{-y^{2} / 2 t} d y-\int_{A} 1 / \sqrt{ }(2 \pi t) e^{-(2 a-y)^{2} / 2 t} d y
\end{aligned}
$$

Proof. Let $\tau(w)=\inf \{t: w(t) \geq a\}$. By the strong Markov property of Brownian motion,

$$
P_{0}\{B(X(\tau+s)-X(\tau) \in A)\}=P_{0}(B) P_{0}(X(s) \in A)
$$

for every set B in \mathscr{F}_{t}. This can be written as

$$
E\left(X_{(X(\tau+s)-X(\tau) \in A)} \mid \mathscr{F}_{\tau}\right)=P_{0}(X(s) \in A)
$$

Therefore

$$
E\left(X_{(X(\tau+\ell(w))-X(\tau) \in A)} \mid \mathfrak{F}_{\tau}\right)=P_{0}(X(\ell(w)) \in A)
$$

for every function $\ell(w)$ which is \mathscr{F}_{τ}-measurable. Therefore,

$$
P_{0}\left((\tau \leq t) \cap((X(\tau+\ell(w))-X(\tau)) \in A)=\int_{\{\tau \leq t\}} P_{0}(X(\ell(w)) \in A) d P(w)\right.
$$

In particular, take $\ell(w)=t-\tau(w)$, clearly $\ell(w)$ is \mathscr{F}_{τ}-measurable.
Therefore,

$$
P_{0}((\tau \leq t)((X(t)-X(\tau)) \in A))=\int_{\{\tau \leq t\}} P_{0}(X(\ell(w) \in A) d P(w))
$$

Now $X(\tau(w))=a$. Replace A by $A-a$ to get
(*)

$$
P_{0}((\tau \leq t) \cap(X(t) \in A))=\int_{\{\tau \leq t\}} P_{0}(X(\ell(w) \in A-a) d P(w))
$$

Consider now

$$
\begin{aligned}
P_{2 a}(X(t) \in A) & =P_{0}(X(t) \in A-2 a) \\
& \left.=P_{0}(X(t) \in 2 a-A) \quad \text { (by symmetry of } x\right) \\
& =P_{0}((\tau \leq t) \cap(X(t) \in 2 a-A)) .
\end{aligned}
$$

The last step follows from the face that $A \subset(-\infty, a)$ and the continuity of the Brownina paths. Therefore

$$
\begin{aligned}
P_{2 a}(X(t) \in A) & =\int_{\{\tau \leq t\}} P_{0}(X(\ell(w)) \in a-A) d P(w), \quad(\text { using } *) \\
& =P_{0}((\tau \leq t) \cap(X(t) \in A)) .
\end{aligned}
$$

Now the required probability

$$
\begin{gathered}
P_{0}\left\{X_{t} \in A, X_{s}<a \forall s \in 0 \leq s \leq t\right\}=P_{0}\left\{X_{t} \in A\right\}-P_{0}\left\{(\tau \leq t) \cap\left(X_{t} \in A\right)\right\} \\
=\int_{A} 1 / \sqrt{ }(2 \pi t) e^{-y^{2} / 2 t} d y-\int_{A} 1 / \sqrt{ }(2 \pi t) e^{-(2 a-y)^{2} / 2 t} d y
\end{gathered}
$$

The intuitive idea of the previous theorem is quite clear. To obtain 48 the paths that reach A at time t without hitting the horizontal line $x=a$, we consider all paths that reach A at time t and subtract those paths that hit the horizontal line $x=a$ before time t and then reach A at time t. To see exactly which paths reach A at time t after hitting $x=a$ we consider a typical path $X(w)$.

The reflection principle (or the strong Markov property) allows us to replace this path by the dotted path (see Fig.). The symmetry of the Brownian motion can then be used to reflect this path about the line $x=a$ and obtain the path shown in dark. Thus we have the following result:
the probability that a Brownian particle starts from $x=0$ at $t=0$ and reaches A at time t after it has hit $x=a$ at some time $\tau \leq t$ is the same as if the particle started at time $t=0$ at $x=2 a$ and reached A at time t. (The continuity of the path ensures that at some time $\tau \leq t$, this particle has to hit $x=a$).

We shall use the intuitive approach in what follows, the mathematical analysis being clear, thorugh lengthy.

Theorem. Let $X(t)$ be a one-dimensional Brownian motion, $A \subset(-1,1)$ any Borel subset of \mathbb{R}. Then

$$
P_{0}\left[\sup _{0 \leq s \leq t}|X(s)|<1, X(t) \in A\right]=\int_{A} \phi(t, y) d y
$$

where

$$
\phi(t, y)=\sum_{n=-\infty}^{\infty}(-1)^{n} / \sqrt{ }(2 \pi t) e^{-(y-2 n)^{2} / 2 t}
$$

Proof.

Let E_{n} be the set of those trajections which (i) start at $x=0$ at time $t=0$ (ii) hit $x=+1$ at some time $\tau_{1}<t$ (iii) hit $x=-1$ at some later time $\tau_{2}<t$ (iv) hit $x=1$ again at a later time $\tau_{3}<t \ldots$ and finally reach A at time t. The number of τ 's should be equal to n at least, i.e.

$$
E_{n}=\left\{w: \text { there exists a sequence } \tau_{1}, \ldots \tau_{n}\right. \text { of }
$$

stopping times such that $0<\tau_{1}<\tau_{2}<\ldots<t_{\tau_{n}}<t, X\left(\tau_{j}\right)=(-1)^{j-1}$, $X(t) \in A\}$. Similarly, let

$$
\begin{aligned}
F_{n}= & \left\{w: \text { there exists a sequence } \tau_{1}, \ldots, \tau_{n}\right. \text { of stopping times } \\
& \left.0<\tau_{1}<\tau_{2}<\ldots<\tau_{n}<t, X\left(\tau_{j}\right)=(-1)^{j}, X(t) \in A\right\}
\end{aligned}
$$

Note that

$$
\begin{aligned}
& E_{1} \supset E_{2} \supset E_{3} \supset \ldots, \\
& F_{1} \supset F_{2} \supset F_{3} \supset \ldots, \\
& F_{n} \supset E_{n+1} ; E_{n} \supset F_{n+1}, \\
& E_{n} \cap F_{n}=E_{n+1} \cup F_{n+1} .
\end{aligned}
$$

Let

$$
\phi(t, A)=P\left[\sup _{0 \leq s \leq t}|X(s)|<1, X(t) \in A\right]
$$

Therefore

$$
\phi(t, A)=P[X(t) \in A]-P\left[\sup _{0 \leq s \leq t}|X(s)| \geq 1, X(t) \in A\right]
$$

$$
=\int_{A} 1 / \sqrt{ }(2 \pi t) e^{-y^{2} / 2 t} d y-P\left[\left(E_{1} \cup F_{1}\right) \cap A_{0}\right]
$$

where

$$
A_{0}=\{X(t) \in A\}=\int_{A} 1 / \sqrt{ }(2 \pi t) e^{-y^{2} / 2 t} d y-P\left[\left(E_{1} \cap A_{0}\right) \cup\left(F_{1} \cap A_{0}\right)\right]
$$

Use the fact that $P[A \cup B]=P(A)+P(B)-P(A \cap B)$ to get
$\phi(t, A)=\int_{A} 1 / \sqrt{ }(2 \pi t) e^{-y^{2} / 2 t} d y-P\left[E_{1} \cap A_{0}\right]-P\left[F_{1} \cap A_{0}\right]+P\left[E_{1} \cap F_{1} \cap A_{0}\right]$,
as $E_{1} \cap F_{1}=E_{2} \cup F_{2}$. Proceeding successively we finally get
$\phi(t, A)=\int_{A} 1 / \sqrt{ }(2 \pi t) e^{-y^{2} / 2 t} d y+\sum_{n=1}^{\infty}(-1)^{n} P\left[E_{n} \cap A_{0}\right]+\sum_{n=1}^{\infty}(-1)^{n} P\left[F_{n} \cap A_{0}\right]$
We shall obtain the expression for $P\left(E_{1} \cap A_{0}\right)$ and $P\left[E_{2} \cap A_{0}\right]$, the other terms can be obtained similarly.
$E_{1} \cap A_{0}$ consists of those trajectries that hit $x= \pm 1$ at some time $\tau \leq t$ and then reach A at time t. Thus $P\left[E_{1} \cap A_{0}\right]$ is given by the previous theorem by

$$
\int_{A} 1 / \sqrt{ }(2 \pi t) e^{-(y-2)^{2} / 2 t} d y
$$

$51 \quad E_{2} \cap A_{0}$ consists of those trajectories that hit $x= \pm 1$ at time τ_{1}, hit $x=-1$ at time τ_{2} and reach A at time $t\left(\tau_{1}<\tau_{2}<t\right)$.

According to the previous theorem we can reflect the trajectory upto τ_{2} about $x=-1$ so that $P\left(E_{2} \cap A_{0}\right)$ is the same as if the particle starts at $x=-2$ at time $t=0$, hits $x=-3$ at time τ_{1} and ends up in A at time t. We can now reflect the trajectory

upto time τ_{1} (the dotted curve should be reflected) about $x=-3$ to obtain the required probability as if the trajectory started at $x=-4$. Thus,

$$
P\left(E_{2} \cap A_{0}\right)=\int_{A} e^{-(y+4)^{2} / 2 t / \sqrt{ }(2 \pi t)} d y
$$

Thus

$$
\begin{aligned}
\phi(t, A) & =\sum_{n=-\infty}^{\infty}(-1)^{n} \int_{A} 1 / \sqrt{2 \pi t} e^{-(y-2 n)^{2} / 2 t} d y \\
& =\int_{A} \phi(t, y) d y
\end{aligned}
$$

The previous theorem leads to an interesting result:

$$
P\left[\sup _{0 \leq s \leq t}|X(s)|<1\right]=\int_{-1}^{1} \phi(t, y) d y
$$

Therefore

$$
P\left[\sup _{0 \leq s \leq t}|X(s)| \geq 1\right]=1-P\left[\sup _{0 \leq s \leq t}|X(s)|<1\right]
$$

$$
\begin{gathered}
=-1-\int_{-1}^{1} \phi(t, y) d y \\
\phi(t, y)=\sum_{n=-\infty}^{\infty}(-1)^{n} / \sqrt{ }(2 \pi t) e^{-(y-2 n)^{2} / 2 t}
\end{gathered}
$$

Case (i). t is very small.
In this case it is enough to consider the terms corresponding to $n=0$, ± 1 (the higher order terms are very small). As y varies from -1 to 1 ,

$$
\phi(t, y) \simeq 1 / \sqrt{ }(2 \pi t)\left[e^{-y^{2} / 2 t}-e^{-(y-2)^{2} / 2 t}-e^{-(y+2)^{2} / 2 t}\right]
$$

Therefore

$$
\int_{-1}^{1} \phi(t, y) d y \simeq 4 / \sqrt{ }(2 \pi t) e^{-1 / 2 t}
$$

Case (ii). t is large. In this case we use Poisson's summation formula for $\phi(t, y)$:

$$
\phi(t, y)=\sum_{k=0}^{\infty} e^{-(2 k+1)^{2} \pi^{2} t / 8} \operatorname{Cos}\{(k+1) / 2 \pi y\}
$$

to get

$$
\int_{-1}^{1} \phi(t, y) d y \simeq 4 / \pi e^{-\pi^{2} t / 8}
$$

53 for large t. Thus, $P(\tau>t)=4 / \pi e^{-\pi^{2} t / 8}$.
This result says that for large values of t the probability of paths which stay between -1 and +1 is very very small and the decay rate is governed by the factor $e^{-\pi^{2} t / 8}$. This is connected with the solution of a certain differential equation as shall be seen later on.

8. Blumenthal's Zero-One Law

LET X_{t} BE $A d$-dimensional Brownian motion. If $A \in \mathscr{F}_{0+}=\bigcap_{t>0} \mathscr{F}_{t}, \quad \mathbf{5 4}$ then $P(A)=0$ or $P(A)=1$.

Interpretation. If an event is observable in every interval $[0, t]$ of time then either it always happens or it never happens.

We shall need the following two lemmas.
Lemma 1. Let (Ω, \mathscr{B}, P) be any probability space, \mathscr{C}_{a} sub-algebra of \mathscr{B}. Then
(a) $L^{2}(\Omega, \mathscr{C}, P)$ is a closed subspace of $L^{2}(\Omega, \mathscr{B}, P)$.
(b) If π : $L^{2}(\Omega, \mathscr{B}, P) \rightarrow L^{2}(\Omega, \mathscr{C}, P)$ is the projection map then $\pi f=$ $E(f \mid \mathscr{C})$.

Proof. Refer appendix.

Lemma 2. Let $\Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right), P_{0}$ the probability corresponding to the Brownian motion. Then the set $\left\{\phi\left(\pi_{t_{1}}, \ldots, t_{k}\right) \in \phi\right.$ is continuous, bounded on $\mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d}$ (k times), $\pi_{t_{1}}, \ldots, t_{k}$ the canonical projection) is dense in $L^{2}(\Omega, \mathscr{B}, P)$.

Proof. Functions of the form $\phi\left(x\left(t_{1}\right), \ldots, x\left(t_{k}\right)\right.$ where ϕ runs over continuous functions is clearly dense in $L_{2}\left(\Omega, \mathscr{F}_{t_{1}, t_{2}, \ldots, t_{k}}, P\right)$ and

$$
\bigcup_{k} \bigcup_{t_{1}, \ldots, t_{k}} L_{2}\left(\Omega, \mathscr{F}_{t_{1}, \ldots, t_{k}}, P\right)
$$

is clearly dense in $L_{2}(\Omega, \mathscr{B}, P)$.

Proof of zero-one law. Let

$$
H_{t}=L^{2}\left(\Omega, \mathscr{F}_{t}, P\right), H=L^{2}(\Omega, \mathscr{B}, P), H_{0+}=\bigcap_{t>0} H_{t}
$$

Clearly $H_{0+}=L^{2}\left(\Omega, \mathscr{F}_{0+}, P\right)$.
Let $\pi_{t}: H \rightarrow H_{t}$ be the projection. Then $\pi_{t} f \rightarrow \pi_{0+} f \forall_{f}$ in H. To prove the law it is enough to show that H_{0+} contains only constants, which is equivalent to $\pi_{0+} f=$ constant $\forall f$ in H. As π_{0+} is continuous and linear it is enough to show that $\pi_{0+} \phi=$ const $\forall \phi$ of the Lemma

$$
\begin{aligned}
\pi_{0+} \phi=\operatorname{Lt}_{t \rightarrow 0} \pi_{t} \phi & =\operatorname{Ltt}_{t \rightarrow 0} E\left(\left.\phi\right|_{t}\right) \quad \text { by Lemma } \\
& =\operatorname{Ltt}_{t \rightarrow 0} E\left(\phi\left(t_{1}, \ldots, t_{k}\right) \mid \mathscr{F}_{t}\right)
\end{aligned}
$$

We can assume without loss of generality that $t<t_{1}<t_{2}<\ldots<t_{k}$.

$$
\begin{aligned}
& E\left(\phi\left(t_{1}, \ldots, t_{k}\right) \mid \mathscr{F}_{t}\right)=\int \phi\left(y_{1}, \ldots, y_{k}\right) 1 / \sqrt{ }\left(2 \pi\left(t_{1}-t\right)\right) e^{-\left|y_{1}-X_{t}(w)\right|^{2} / 2\left(t_{1}-t\right)} \ldots \\
& \left.\ldots 1 / \sqrt{(} 2 \pi\left(t_{k}-t_{k-1}\right)\right) e^{\frac{-\left|y_{k}-y_{k-1}\right|^{2}}{2\left(l_{k}-k_{k}-1\right)}} d y_{1} \ldots d y_{k} .
\end{aligned}
$$

Since $X_{0}(w)=0$ we get, as $t \rightarrow 0$,

$$
\pi_{0+} \phi=\text { constant. }
$$

This completes the proof.
APPLICATION. Let $\alpha \geq 1 A=\left\{w: \int_{0}^{1}|w(t)| / t^{\alpha}<\infty\right\}$. Then $A \in \mathscr{F}_{0+}$. For, if $0<s<1$, then $\int_{s}^{1}|w(t)| / t^{\alpha}<\infty$. Therefore $w \in A$ or not according as $\int_{0}^{s}|w(t)| / t^{\alpha} d t$ converges or not. But this convergence can be asserted
by knowing the history of w upto time s. Hence $A \in \mathscr{F}_{s}$. Blumenthal's law implies that

$$
\int_{0}^{1}|w(t)| / t^{\alpha} d t<\infty \text { a.e.w., or, } \int_{0}^{1}|w(t)| / t^{\alpha} d t=\infty \text { a.e.w. }
$$

A precise argument can be given along the following lines. If $0<$ $s<1$,

$$
\begin{aligned}
A & =\left\{w: \int_{0}^{s}|w(t)| / t^{\alpha}<\infty\right\} \\
& =\left\{w: \sup I_{n, s}(w)<\infty\right\}
\end{aligned}
$$

where $I_{n, s}(w)$ is the lower Riemannian sum of $\left|w(t)^{n}\right| / t^{\alpha}$ corresponding to the partition $\{0, s / n, \ldots, s\}$ and each $I_{n, s} \in \mathscr{F}_{s}$.

9. Properties of Brownian Motion in One Dimension

WE NOW PROVE the following.

Lemma. Let $\left(X_{t}\right)$ be a one-dimensional Brownian motion. Then
(a) $P\left(\overline{\lim } X_{t}=\infty\right)=1$; consequently $P\left(\overline{\lim } X_{t}<\infty\right)=0$.
(b) $P\left(\underline{\lim } X_{t}=-\infty\right)=1$; consequently $P\left(\underline{\lim } X_{t}>-\infty\right)=0$.
(c) $\left.P\left(\underline{\lim } X_{t}=-\infty\right) ; \varlimsup X_{t}=\infty\right)=1$.

SIGNIFICANCE. By (c) almost every Brownian path assumes each value infinitely often.

Proof.

$$
\begin{aligned}
\left\{\overline{\lim } X_{t}=\infty\right\} & =\bigcap_{n=1}^{\infty}\left(\overline{\lim } X_{t}>n\right) \\
& =\bigcap_{n=1}^{\infty}\left(\varlimsup_{\theta \text { rational }} X_{\theta}>n\right) \quad \text { (by continuity of Brownian paths) }
\end{aligned}
$$

First, note that

$$
P_{0}\left[\sup _{0 \leq s \leq t} X(s) \leq n\right]=1-P_{0}\left[\sup _{0 \leq s \leq t} X(s)>n\right]
$$

$$
\begin{aligned}
& =1-21 / \sqrt{ }(2 \pi t) \int_{n}^{\infty} e^{-y^{2} / 2 t} d y \\
& =\sqrt{ }(2 / \pi t) \int_{0}^{n} e^{-y^{2} / 2 t} d y
\end{aligned}
$$

Therefore, for any x_{0} and t,

$$
P\left[\sup _{t_{0} \leq s \leq t} X(s) \geq n \mid X\left(t_{0}\right)=x_{0}\right]=P_{0}\left[\sup _{0 \leq s \leq t-t_{0}} X(s) \geq n-x_{0}\right]
$$

(independent increments) which tends to 1 as $t \rightarrow \infty$. Consequently,

$$
\begin{aligned}
P_{0}\left[\sup _{t \geq t_{0}} X(t) \geq n\right] & =E P\left[\sup _{t \geq t_{0}} X(t) \geq n \mid X\left(t_{0}\right)\right] \\
& =E 1=1
\end{aligned}
$$

In other words,

$$
P_{0}\left[\limsup _{t \rightarrow \infty} X(t) \geq n\right]=1
$$

for every n. Thus

$$
P\left(\overline{\lim } X_{t}=\infty\right)=1
$$

(b) is clear if one notes that $w \rightarrow-w$ leaves the probability invariant.
(c) $P\left(\overline{\lim } X_{t}=\infty, \underline{\lim } X_{t}=-\infty\right)$

$$
\begin{aligned}
& =P\left(\varlimsup X_{t}=\infty\right)-P\left(\underline{\lim } X_{t}>-\infty, \overline{\lim } X_{t}=\infty\right) \\
& \geq 1-P\left(\underline{\lim } X_{t}>-\infty\right) \\
& =1
\end{aligned}
$$

Corollary . Let $\left(X_{t}\right)$ be a d-dimensional Brownian motion. Then

$$
P\left(\overline{\lim }\left|X_{t}\right|=\infty\right)=1
$$

Remark. If $d \geq 3$ we shall see later that $P\left(\underset{t \rightarrow \infty}{\operatorname{Lt}}\left|X_{t}\right|=\infty\right)=1$. i.e. almost every Brownian path "wanders" off to ∞.

Theorem . Almost all Brownian paths are of unbounded variation in any interval.

Proof. Let I be any interval $[a, b]$ with $a<b$. For $n=1,2, \ldots$ define

$$
V_{n}\left(w Q_{n}\right)=\sum_{i=1}^{n}\left|w\left(t_{i}\right)-w\left(t_{i-1}\right)\right|\left(t_{i}=a+(b-a) i / n, i=0,1,2, \ldots n\right)
$$

The variation corresponding to the partioin Q_{n} dividing $[a, b]$ into $n \quad \mathbf{5 9}$ equal parts. Let

$$
U_{n}\left(w, Q_{n}\right)=\sum_{i=1}^{n} \mid\left(w\left(t_{i}\right)-\left.w\left(t_{i-1}\right)\right|^{2}\right.
$$

If

$$
A_{n}\left(w, Q_{n}\right) \sup _{1 \leq i \leq n}\left|w\left(t_{i}\right)-w\left(t_{i-1}\right)\right|
$$

then

$$
A_{n}\left(w, Q_{n}\right) V_{n}\left(w, Q_{n}\right) \geq U_{n}\left(w, Q_{n}\right)
$$

By continuity $\underset{n \rightarrow \infty}{\operatorname{Lt}} A_{n}\left(w, Q_{n}\right)=0$.
Claim. $\operatorname{Lt}_{n \rightarrow \infty} E\left[\left(U_{n}\left(w, Q_{n}\right)-(b-a)\right)^{2}\right]=0$.
Proof.

$$
\begin{aligned}
& E\left[\left(U_{n}-(b-a)\right)^{2}\right] \\
& =E\left\{\sum_{j=1}^{n}\left[\left(X_{t_{j}}-X_{t_{j-1}}\right)^{2}-(b-a / n)\right]\right\}^{2} \\
& E\left[\left(\sum^{2}\left(Z_{j}^{2}-b-a / n\right)\right)^{2}\right], Z_{j}=X_{t_{j}}-X_{t_{j-1}} \\
& =n E\left[\left(Z_{1}^{2}-b-a / n\right)^{2}\right]
\end{aligned}
$$

(because Z_{j} are independent and identically distributed).

$$
=n\left[E\left(Z_{1}^{4}\right)-(b-a / n)^{2}\right]=2(b-a / n)^{2} \rightarrow 0
$$

Thus a subsequence $U_{n_{i}} \rightarrow b-a$ almost everywhere. Since $A_{n_{i}} \rightarrow 0$ it follows that $V_{n_{i}}\left(w, Q_{n}\right) \rightarrow \infty$ almost everywhere. This completes the proof.

60 Note . $\{w: w$ is of bounded variation on $[a, b]\}$ can be shown to be measurable if one proves

Exercise. Let f be continuous on $[a, b]$ and define $V_{n}\left(f, Q_{n}\right)$ as above.
Show that f is of bounded variation on $[a, b]$ iff $\sup V_{n}\left(f, Q_{n}\right)<\infty$. $n=1,2, \ldots$

Theorem. Let t be any fixed real number in $[0, \infty), D_{t}=\{w: w$ is differentiable at $t\}$. Then $P\left(D_{t}\right)=0$.

Proof. The measurability of D_{t} follows from the following observation: if f is continuous then f is differentiable at t if and only if

$$
\underset{\substack{r \rightarrow 0 \\ r \text { rational }}}{\operatorname{Lt}} \frac{f(t+r)-f(t)}{r} .
$$

exists. Now

$$
\left.D_{t}=\bigcup_{m=1}^{\infty} w:\left|\frac{w(t+h)-w(t)}{h}\right| \leq M, \text { for all } h \neq 0, \text { rational }\right\}
$$

and

$$
P\left\{w:\left|\frac{X_{t+h}-X_{t}}{h}\right| \leq M \forall h \in Q, h \neq 0\right\} \leq 2 \inf _{h} \int_{0}^{M \sqrt{ } h} \frac{1}{\sqrt{ }(2 \pi)} e^{-|y|^{2 / 2}} d y=0
$$

Remark. A stronger result holds:

$$
P\left(\bigcup_{t \geq 0} D_{t}\right)=0
$$

Hint: $\bigcup_{0 \leq t \leq 1} D_{t} \bigcup_{=1} \bigcup_{m=1} \bigcup_{n-m}^{n+2}\left\{w: \left.w\left(\frac{k}{n}\right)-w\left(\frac{k-1}{n}\right) \right\rvert\, \leq \frac{71}{n}\right\}$
and

$$
P\left(\bigcup_{i=1}^{n+2}\left\{w: \left.w\left(\frac{k}{n}\right)-w\left(\frac{k-1}{n}\right) \right\rvert\, \leq \frac{71}{n}\right\} \quad \text { const } / \sqrt{ } n\right)
$$

This construction is due to A. Dvoretski, P. Erdos \& S. Kakutani.

10. Dirichlet Problem and Brownian Motion

LET G BE ANY bounded open set in \mathbb{R}^{d}. Define the exit time $\tau_{G}(w)$ as $\mathbf{6 1}$ follows:

$$
\tau_{G}(w)=\{\inf t: w(t) \notin G\}
$$

If $w(0) \in G, \tau_{G}(w)=0$; if $w(0) \in G, \tau_{G}(w)$ is the first time w escapes G or, equivalently, it is the first time that w hits the boundary ∂G of G. Clearly $\tau_{G}(w)$ is a stopping time. By definition $X_{\tau_{G}}(w) \in \partial G, \forall w$ and $X_{\tau_{G}}$ is a random variable. We can define a Borel probability measure on ∂G by

$$
\begin{aligned}
\pi_{G}(x, \Gamma) & =P_{x}\left(X_{\tau_{G}} \in \Gamma\right) \\
& =\text { probability that } w \text { hits } \Gamma .
\end{aligned}
$$

If f is a bounded, real-valued measurable funciton defined on ∂G, we define

$$
u(x)=E_{x}\left(f\left(X_{\tau_{G}}\right)\right)=\int_{\partial G} f(y) \pi_{G}(x, d y)
$$

where

$$
E_{x}=E^{P_{x}} .
$$

In case G is a sphere centred around x, the exact form of $\pi_{G}(x, \Gamma)$ is computable.

Theorem. Let $S=S(0 ; r)=\left\{y \in \mathbb{R}^{d}:|y|<r\right\}$. Then

$$
\pi_{S}(0, r)=\frac{\text { surface area of } \Gamma}{\text { surface area of } S}
$$

62 Proof. The distributions $\left\{F_{t_{1}, \ldots ., t_{k}}\right\}$ defining Brownian motion are invariant under rotations. Thus $\pi_{S}(0, \cdot)$ is a rotationally invariant probability measure. The result follows from the fact that the only probability measure (on the surface of a sphere) that is invariant under rotations is the normalised surface area.

Theorem. Let G be any bounded region, f a bounded measurable real valued function defined on ∂G. Define $u(x)=E_{x}\left(f\left(X_{\tau_{G}}\right)\right)$. Then
(i) u is measurable and bounded;
(ii) u has the mean value property; consequently,
(iii) u is harmonic in G.

Proof. (i) To prove this, it is enough to show that the mapping $x \rightarrow$ $P_{x}(A)$ is measurable for every Borel set A.
Let $\mathscr{C}=\left\{A \in \mathscr{B}: x \rightarrow P_{x}(A)\right.$ is measurable $\}$
It is clear that $\pi_{t_{1}, \ldots, t_{k}}^{-1}(B) \in \mathscr{C}, \forall$ Borel set B in $\mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d}$. As \mathscr{C} is a monotone class $\mathscr{C}=\mathscr{B}$.
(ii) Let S be any sphere with centre at x, and $S \subset G$. Let $\tau=\tau_{S}$ denote the exit time through S. Clearly $\tau \leq \tau_{G}$. By the strong Markov property,

$$
u\left(X_{\tau}\right)=E\left(f\left(X_{\tau_{G}}\right) \mid \mathscr{F}_{\tau}\right)
$$

Now

$$
\begin{aligned}
u(x) & =E_{x}\left(f\left(X_{\tau_{G}}\right)\right)=E_{x}\left(E\left(f\left(X_{\tau_{G}}\right)\right) \mid \mathscr{F}_{\tau}\right) \\
& =E_{x}\left(u\left(X_{\tau}\right)\right)=\int_{\partial S} u(y) \pi_{S}(x, d y) \\
& =\frac{1}{|S|} \int_{\partial S} u(y) d S ;|S|=\text { surface area of } S
\end{aligned}
$$

(iii) is a consequence of (i) and (ii). (See exercise below).

Exercise ${ }^{\prime}$. Let u be a bounded measurable function in a region G satisfying the mean value property, i.e.

$$
u(x)=\frac{1}{|S|} \int_{\partial S} u(y) d S
$$

for every sphere $S G$. Then
(i) $u(x)=\frac{1}{v \in l S} \int_{S} u(y) d y$.
(ii) Using (i) show that u is continuous.
(iii) Using (i) and (ii) show that u is harmonic.

We shall now solve the boundary value problem under suitable conditions on the region G.

Theorem. Let G, f, u be as in the previous theorem. Further suppose that
(i) f is continuous;
(ii) G satisfies the exterior cone condition at every point of ∂G, i.e. for each $y \in \partial G$ there exists a cone C_{h} with vertex at the point y of height h and such that $C_{h}-\{y\} \subset$ exterior of G. Then

$$
\lim _{x \rightarrow y, x \in G} u(x)=f(y), \forall y \in \partial G .
$$

Proof.
Step 1. $P_{y}\{w: w(0)=y, w$ remains in \bar{G} for some positive time $\}=0$.
Let $A_{n}=\{w: w(0)=y, w(s) \in \bar{G}$ for $0 \leq s \leq 1 / n\}$,
$B_{n}=\Omega-A_{n}, A=\bigcup_{n=1}^{\infty} A_{n}, B=\bigcap_{n=1}^{\infty} B_{n}$.

As A_{n} 's are increasing, B_{n} 's are decreasing and $B_{n} \in \mathscr{F}_{1 / n}$; so that $B \in \mathscr{F}_{0+}$. We show that $P(B)>0$, so that by Bluementhal's zero-one law, $P(B)=1$, i.e. $P(A)=0$.

$$
P_{y}(B)=\lim _{n \rightarrow \infty} P_{y}\left(B_{n}\right) \geq \varlimsup_{n \rightarrow \infty} P_{y}\left\{w: w(0)=y, w\left(\frac{1}{2 n}\right) \in C_{h}-\{y\}\right\}
$$

Thus

$$
\begin{gathered}
P_{y}(b) \geq \varlimsup_{C_{h}-\{y\}} 1 / \sqrt{ }(2 \pi / 2 n)^{d} \exp \left(-|z-y|^{2} / 2 / 2 n\right) d z \\
\quad=\int_{C_{\infty}} 1 / \sqrt{ }(2 \pi) e^{-|y|^{2} / 2} d y
\end{gathered}
$$

where C_{∞} is the cone of infinite height obtained from C_{h}. Thus $P_{y}(B)>$ 0.

Step 2. If C is closed then the mapping $x \rightarrow P_{x}(C)$ is upper semicontinuous.

For, denote by X_{C} the indicator function of C. As C is closed (in a metric space) \exists a sequence of continuous functions f_{n} decreasing to X_{C} such that $0 \leq f_{n} \leq 1$. Thus $E_{x}\left(f_{n}\right)$ decreases to $E_{x}\left(X_{C}\right)=P_{x}(C)$. Clearly $x \rightarrow E_{x}\left(F_{n}\right)$ is continuous. The result follows from the fact that the infimum of any collection of continuous functions is upper semicontinuous.

Step 3. Let $\delta>0$,

$$
\begin{gathered}
N(y ; \delta)=\{z \in \partial G:|z-y|<\delta\} \\
B_{\delta}=\left\{w: w(0) \in G, X_{\tau_{G}}(w) \in \partial G-N(y ; \delta)\right\}
\end{gathered}
$$

i.e. B_{δ} consists of trajectories which start at a point of G and escape for the first time through ∂G at a point not in $N(y ; \delta)$. If $C_{\delta}=\bar{B}_{\delta}$, then

$$
C_{\delta} \cap\{w: w(0)=y\} \subset A \cap\{w: w(0)=y\}
$$

where A is as in Step 1.

For, suppose $w \in C_{\delta} \cap\{w: w(0)=y\}$. Then there exists $w_{n} \in B_{\delta}$ such that $w_{n} \rightarrow w$ uniformaly on compact sets. If $w \notin A \cap\{w: w(0)=y\}$ there exists $\epsilon>0$ such that $w(t) \in \bar{G} \forall t$ in $(0, \epsilon]$. Let $\delta^{*}=\inf _{0 \leq t \leq \epsilon} d(w(t), G-$ $N(y, \delta)$). Then $\delta^{*}>0$. If $t_{n}=\tau_{G}\left(w_{n}\right)$ and t_{n} does not converge to 0 , then there exists a subsequence, again denoted by t_{n}, such that $t_{n} \geq k \epsilon>$ 0 for some $k \in(0,1)$. Since $w_{n}(k \epsilon) \in \bar{G}$ and $w_{n}(k \epsilon), w(k \epsilon) \in \bar{G}$, a contradiction. Thus we can assume that t_{n} converges to 0 and also that $\epsilon \geq t_{n} \forall n$, But then

$$
\begin{equation*}
\left|w_{n}\left(t_{n}\right)-w\left(t_{n}\right)\right| \geq \delta^{*} . \tag{*}
\end{equation*}
$$

However, as w_{n} converges to w uniformly on $[0, \epsilon]$,

$$
w_{n}\left(t_{n}\right)-w\left(t_{n}\right) \rightarrow w(0)-w(0)=0
$$

contradicting $(*)$. Thus $w \in A\{w: w(0)=y\}$.
Step 4. $\lim _{x \rightarrow y, x \in G} P_{x}\left(B_{\delta}\right)=0$.
For,

$$
\begin{aligned}
\varlimsup_{x \rightarrow y} P_{x}\left(B_{\delta}\right) & \left.\leq \varlimsup_{x \rightarrow y} P_{x}\left(C_{\delta}\right) \leq P_{y}\left(C_{\delta}\right) \quad \text { (by Step } 2\right) \\
& =P_{y}\left(C_{\delta} \cap\{w: w(0)=y\}\right) \\
& \leq P_{y}(A) \quad \text { (by Step 3) } \\
& =0 .
\end{aligned}
$$

Step 5.

$$
\begin{aligned}
\mid u(x) & -f(y)\left|=\left|\int_{\Omega} f\left(X_{\tau_{G}}(w)\right) d P_{x}(w)-\int_{\Omega} f(y) d P_{x}(w)\right|\right. \\
& \leq \int_{\Omega-B_{\delta}}\left|f\left(X_{\tau_{G}}(w)\right)-f(y)\right| d P_{x}(w)+\left|\int_{B_{\delta}}\left(f\left(X_{\tau_{G}}(w)\right)-f(y)\right) d P_{x}(w)\right| \\
& \leq \int_{\Omega-B_{\delta}}\left|f\left(X_{\tau_{G}}(w)\right)-f(y)\right| d P_{x}(w)+2\|f\|_{\infty} P_{x}\left(B_{\delta}\right)
\end{aligned}
$$

and the right hand side converges to 0 as $x \rightarrow y$ (by Step 4 and the fact that f is continuous). This proves the theorem.

Remark. The theorem is local.
Theorem. Let $G=\left\{y \in \mathbb{R}^{d}: \delta<|y|<R\right\}$, f any continuous function on $\partial G=\{|y|=\delta\} \cap\{|y|=R\}$. If u is any harmonic function in G with boundary values f, then $u(x)=E_{x}\left(f\left(X_{\tau_{G}}\right)\right)$.

Proof. Clearly G has the exterior cone property. Thus, if

$$
v(x)=E_{x}\left(f\left(X_{\tau_{G}}\right)\right)
$$

then v is harmonic in G and has boundary values f (by the previous theorem). The result follows from the uniqueness of the solution of the Dirichlet problem for the Laplacian operator.

The function $f=0$ on $|y|=R$ and $f=1$ on $|y|=\delta$ is of special interest. Denote by $\cup_{\delta, 1}^{R, 0}$ the corresponding solution of the Dirichlet problem.

67 Exercise. (i) If $d=2$ then

$$
U_{\delta, 1}^{R, 0}(x)=\frac{\log R-\log |x|}{\log R-\log \delta}, \forall x \in G
$$

(ii) If $d \geq 3$ then

$$
U_{\delta, 1}^{R, 0}(x)=\frac{|x|^{-n+2}-R^{-n+2}}{\delta^{-n+2}-R^{-n+2}}
$$

Case (i): $d=2$. Then

$$
\frac{\log R-\log |x|}{\log R-\log \delta}=U_{\delta, 1}^{R, 0}(x)
$$

Now,

$$
E_{x}\left(f\left(X_{\tau_{G}}\right)\right)=\int_{|y|=\delta} \pi_{G}(x, d y)=P_{x}\left(\left|X_{\tau_{G}}\right|=\delta\right),
$$

i.e.

$$
\frac{\log R-\log |x|}{\log R-\log \delta}=P_{x}\left(\left|X_{\tau_{G}}\right|=\delta\right)
$$

$$
P_{x} \quad(\text { the particle hits }|y|=\delta \text { before it hits }|y|=R)
$$

Fix R and let $\delta \rightarrow 0$; then $0=P_{x}$ (the particle hits 0 before hitting $|y|=R)$.

Let R take values $1,2,3, \ldots$, then $0=P_{x}$ (the particle hits 0 before hitting any of the circles $|y|=N$). Recalling that

$$
P_{x}\left(\overline{\lim }\left|X_{t}\right|=\infty\right)=1,
$$

we get
Proposition . A two-dimensional Brownian motion does not visit a point.

Next, keep δ fixed and let $R \rightarrow \infty$, then,

$$
1=P_{x}(|w(t)|=\delta \quad \text { for some time } \quad t>0) .
$$

Since any time t can be taken as the starting time for the Brownian $\mathbf{6 8}$ motion, we have

Proposition . Two-dimensional Brownian motion has the recurrence property.

Case (ii): $d \geq 3$. In this case

$$
\begin{aligned}
& P_{x}(w: w \text { hits }|y|=\delta \text { before it hits }|y|=R) \\
& =\left(1 /|x|^{n-2}-1 / R^{n-2}\right) /\left(1 / \delta^{n-2}-1 / R^{n-2}\right) .
\end{aligned}
$$

Letting $R \rightarrow \infty$ we get

$$
P_{x}(w: w \text { hits }|y|=\delta)=(\delta /|x|)^{n-2}
$$

which lies strictly between 0 and 1 . Fixing δ and letting $|x| \rightarrow \infty$, we have

Proposition. If the particle start at a point for away from 0 then it has very little chance of hitting the circle $|y|=\delta$.

If $|x| \leq \delta$, then

$$
P\left(w \text { hits } S_{\delta}\right)=1 \text { where } S_{\delta}=\left\{y \in R^{d}:|y|=\delta\right\} .
$$

$$
\begin{aligned}
& \text { Let } \\
& \qquad V_{\delta}(x)=(\delta /|x|)^{n-2} \text { for }|x| \geq \delta
\end{aligned}
$$

In view of the above result it is natural to extend V_{δ} to all space by putting $V_{\delta}(x)=1$ for $|x| \leq \delta$. As Brownian motion has the Markov property

$$
\begin{gathered}
P_{x}\left\{w: w \text { hits } S_{\delta} \text { after time } t\right\} \\
=\int V_{\delta}(y) 1 / \sqrt{ }(2 \pi t)^{d} \exp -|y|^{2} / 2 t d y \rightarrow 0 \text { as } t \rightarrow+\infty
\end{gathered}
$$

Thus $P\left(w\right.$ hits S_{δ} for arbitrarily large $\left.t\right)=0$. In other words, $P(w$: $\left.\underline{\lim }_{t \rightarrow \infty}|w(t)| \geq \delta\right)=1$. As this is true $\forall \delta>0$, we get the following important result.

Proposition. $P(\underset{t \rightarrow \infty}{\lim }|w(t)|=\infty)=1$,
i.e. for $d \geq 3$, the Brownian particle wander away to $+\infty$.

11. Stochastic Integration

LET $\left\{X_{t}: t \geq 0\right\}$ BE A one-dimensional Brownian motion. We want first to define integrals of the type $\int_{0}^{\infty} f(s) d X(s)$ for real functions $f \in$ $L^{1}[0, \infty)$. If $X(s, w)$ is of bounded variation almost everywhere then we can give a meaning to $\int_{0}^{\infty} f(s) d X(s, w)=g(w)$. However, since $X(s, w)$ is not bounded variation almost everywhere, $g(w)$ is not defined in the usual sense.

In order to define $g(w)=\int_{0}^{\infty} f(s) d X(s, w)$ proceed as follows.
Let f be a step function of the following type:

$$
f=\sum_{i=1}^{n} a_{i} X_{\left[t_{i}, t_{i+1}\right)}, 0 \leq t_{1}<t_{2}<\ldots<t_{n+1}
$$

We naturally define

$$
\begin{aligned}
g(w)=\int_{0}^{\infty} f(s) d X(s, w) & =\sum_{i=1}^{n} a_{i}\left(X_{t_{i+1}}(w)-X_{t_{i}}(w)\right) \\
& =\sum_{i=1}^{n} a_{i}\left(w\left(t_{i+1}\right)-w\left(t_{i}\right)\right) .
\end{aligned}
$$

g satisfies the following properties:
(i) g is a random variable;
(ii) $E(g)=0 ; E\left(g^{2}\right)=\sum a_{i}^{2}\left(t_{i+1}-t_{i}\right)=\|f\|_{2}$.

This follows from the facts that (a) $X_{t_{i+1}}-X_{t_{i}}$ is a normal random variable with mean 0 and variance ($t_{i+1}-t_{i}$) and (b) $X_{t_{i+1}}-X_{t_{i}}$ are independent increments, i.e. we have

$$
E\left(\int_{0}^{\infty} f d X\right)=0, E\left(\left|\int_{0}^{\infty} f d X\right|^{2}\right)=\|f\|_{2}^{2}
$$

Exercise 1. If

$$
\begin{aligned}
& f=\sum_{i=1}^{n} a_{i} X_{\left[t_{i}, t_{i+1}\right]}, 0 \leq t_{1}<\ldots<t_{n+1}, \\
& g=\sum_{i=1}^{m} b_{i} X_{\left[s_{i}, s_{i+1}\right)}, 0 \leq s_{1}<\ldots<s_{m+1},
\end{aligned}
$$

Show that

$$
\int_{0}^{\infty}(f+g) d X(s, w)=\int_{0}^{\infty} f d X(s, w)+\int_{0}^{\infty} g d X(s, w)
$$

and

$$
\int_{0}^{\infty}(\alpha f) d X(s, w)=\alpha \int_{0}^{\infty} f d X(s, w), \forall \alpha \in \mathbb{R} .
$$

Remark. The mapping $f \rightarrow \int_{0}^{\infty} f d X$ is therefore a linear $L_{\mathbb{R}}^{2}$-isometry of the space S of all simple functions of the type

$$
\sum_{i=1}^{n} a_{i} X_{[t i, t i+1)},\left(0 \leq t_{1}<\ldots<t_{n+1}\right)
$$

into $L^{2}(\Omega, \mathscr{B}, P)$.

Exercise 2. Show that S is a dense subspace of $L^{2}[0, \infty)$.
Hint: $C_{c}[0, \infty)$, i.e. the set of all continuous functions with compact support, is dense in $L^{2}[0, \infty)$. Show that S contains the closure of $C_{c}[0, \infty)$.

Remark. The mapping $f \rightarrow \int_{0}^{\infty} f d X$ can now be uniquely extended as an isometry of $L^{2}[0, \infty)$ into $L^{2}(\Omega, \mathscr{B}, P)$.

Next we define integrals fo the type

$$
g(w)=\int_{0}^{t} X(s, w) d X(s, w)
$$

Put $t=1$ (the general case can be dealt with similarly). It seems natural to define

$$
\begin{equation*}
\int_{0}^{1} X(s, w) d X(s)=\underset{\sup \left|t_{j}-t_{j-1}\right| \rightarrow 0}{\mathrm{Lt}} \sum_{j=1}^{n} X(\xi j)\left(X\left(t_{j}\right)-X\left(t_{j-1}\right)\right) \tag{*}
\end{equation*}
$$

where $0=t_{0}<t_{1}<\ldots<t_{n}=1$ is a partion of $[0,1]$ with $t_{j-1} \leq \xi_{j} \leq t_{j}$. In general the limit on the right hand side may not exist. Even if it exists it may happen that depending on the choice of ξ_{j}, we may obtain different limits. To consider an example we choose $\xi_{j}=t_{j}$ and then $\xi_{j}=t_{j-1}$ and compute the right hand side of (*). If $\xi_{j}=t_{j-1}$,

$$
\begin{aligned}
& \sum_{j=1}^{n} X_{\xi_{j}}\left(X_{t_{j}}-X_{t_{j-1}}\right)=\sum_{j=1}^{n} X_{t_{j-1}}-\left(X_{t_{j}}-X_{t_{j-1}}\right) \\
& \quad=\frac{1}{2} \sum_{j=1}^{n}\left(X_{t_{j}}\right)-\left(X_{t_{j-1}}\right)-\frac{1}{2} \sum_{j=1}^{n}\left(X_{t_{j}}-X_{t_{j-1}}\right) \\
& \frac{1}{2}\left[X^{2}(1)-X^{2}(0)\right]-\frac{1}{2} \text { as } n \rightarrow \infty, \text { and } \sup \left|t_{j}-t_{j-1}\right| \rightarrow 0,
\end{aligned}
$$

arguing as in the proof of the result that Brownian motion is not of bounded variation. If $\xi_{j}=t_{j}$,

$$
\underset{\substack{n \rightarrow \infty \\ \text { Sup }\left|t_{j}-t_{j-1}\right| \rightarrow 0}}{\operatorname{Lt}_{j=1}} \sum_{j=1}^{n} X_{t_{j}}\left(X_{t_{j}}-X_{t_{j-1}}\right)=1 / 2 X(1)-1 / 2 X(0)+1 / 2 .
$$

Thus we get different answers depending on the choice of ξ_{j} and hence one has to be very careful in defining the integral. It turns out that the choice of $\xi_{j}=t_{j-1}$ is more appropriate in the definition of the integral and gives better results.

Remark. The limit in (*) should be understood in the sense of convergence probability.

Exercise 3. Let $0 \leq a<b$. Show that the "left integral" $\left(\xi_{j}=t_{j-1}\right)$ is given by

$$
L \int_{a}^{b} X(s) d X(s)=\frac{X^{2}(b)-X^{2}(a)-(b-a)}{2}
$$

and the "right integral" $\left(\xi_{j}=t_{j}\right)$ is given by

$$
R \int_{s}^{b} X(s) d X(s)=\frac{X^{2}(b)-X^{2}(a)+(b-a)}{2}
$$

We now take up the general theory of stochastic integration. To motivate the definitions which follow let us consider a d-dimensional Brownian motion $\{\beta(t): t \geq 0\}$. We have

$$
E\left[\beta(t+s)-\beta(t) \in A \mid \mathscr{F}_{t}\right]=\int_{A} 1 / \sqrt{ }(2 \pi s) e^{-|y|^{2} / 2 s} d y
$$

Thus

$$
E\left(f(\beta(t+s)-\beta(t)) \mid \mathscr{F}_{t}\right]=\int f(y) 1 / \sqrt{ }(2 \pi s) e^{-|y|^{2 / 2 s}} d y
$$

In particular, if $f(x)=e^{i x . u}$,

$$
\begin{aligned}
E\left[e^{i u}(\beta(t+s)-\beta(t)) \mid \mathscr{F}_{t}\right] & =\int e^{i u . y} 1 / \sqrt{ }(2 \pi s) e^{-|y|^{2} / 2 s} d y \\
& =e^{\frac{-\left.s u\right|^{2}}{2}} .
\end{aligned}
$$

Thus

$$
E\left[e^{i u \cdot \beta(t+s)} \mid \mathscr{F}_{t}\right]=e^{i u \cdot \beta(t)} e^{-s|u|^{2} / 2}
$$

or,

$$
E\left[e^{i u . \beta(t+s)+(t+s)|u|^{2} / 2} \mid \mathscr{F}_{t}\right]=e^{i u . \beta(t)+t|u|^{2} / 2}
$$

Replacing $i u$ by θ we get

$$
E\left[e^{\theta \cdot \beta(s)-|s \theta|^{2} / 2} \mid \mathscr{F}_{t}\right]=e^{\theta \cdot \beta(t)-t|\theta|^{2 / 2}}, s>t, \forall \theta
$$

It is clear that $e^{\theta \cdot \beta(t)-t|\theta|^{2} / 2}$ is \mathscr{F}_{t}-measurable and a simple calculation gives

$$
E\left(e^{\theta \cdot \beta(t)-|\theta|^{2} t / 2 \mid}\right)<\infty \forall \theta .
$$

We thus have
Theorem. If $\{\beta(t): t \geq 0\}$ is a d-dimensional Brownian motion then $\exp \left[\theta . \beta(t)-|\theta|^{2} t / 2\right]$ is a Martingale relative to \mathscr{F}_{t}, the σ-algebra generated by $(\beta(s): s \leq t)$.

Definition. Let (Ω, \mathscr{B}, P) be a probability space $\left(\mathscr{F}_{t}\right)_{t \geq 0}$ and increasing family of sub- σ-algebras of \mathscr{F} with $\mathscr{F}=\sigma\left(\bigcup_{t \geq 0} \mathscr{F}_{t}\right)$.

Let
(i) $a:[0, \infty) \times \Omega \rightarrow[0, \infty)$ be bounded and progressively measurable;
(ii) $b:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ be bounded and progressively measurable;
(iii) $X:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ be progressively measurable, right continuous on $[0, \infty), \forall w \in \Omega$, and continous on $[0, \infty)$ almost everywhere on Ω;
(iv) $Z_{t}(w)=e^{\theta X(t, w)-\theta \int_{0}^{t} b(s, w) d s-\frac{\theta^{2}}{2} \int_{0}^{t} a(s, w) d s}$
be a Martingale relative to $\left(\mathscr{F}_{t}\right)_{t \geq 0}$.
Then $X(t, w)$ is called an Ito process corresponding to the parameters b and a and we write $X_{t} \in I[b, a]$.
N.B. The progressive measurability of $X \Rightarrow X_{t}$ is \mathscr{F}_{t}-measurable.

Example. If $\{\beta(t): t \geq 0\}$ is a Brownian motion, then $X(t, w)=\beta_{t}(w)$ is an Ito process corresponding to parameters 0 and 1. (i) and (ii) are obvious. (iii) follows by right continuity of β_{t} and measurability of β_{t} relative to \mathscr{F}_{t} and (iv) is proved in the previous theorem.

Exercise 4. Show that $Z_{t}(w)$ defined in (iv) is \mathscr{F}_{t}-measurable and progressively measurable.
[Hint:
(i) Z_{t} is right continuous.
(ii) Use Fubini's theorem to prove measurability].

Remark. If we put $Y(t, w)=X(t, w)-\int_{0}^{t} b(s, w) d s$ then $Y(t, w)$ is progressively measurable and $Y(t, w)$ is an Ito process corresponding to the parameters $0, a$. Thus we need only consider integrals of the type $\int_{0}^{t} f(s, w) d Y(s, w)$ and define

$$
\int_{0}^{t} f(s, w) d X(s, w)=\int_{0}^{t} f(s, w) d Y(s, w)+\int_{0}^{t} f(s, w) b(s, w) d s
$$

(Note that formally we have $d Y=d X-d b t$).
76 Lemma. If $Y(t, w) \in I[0, a]$, then

$$
Y(t, w) \quad \text { and } \quad Y^{2}(t, w)-\int_{0}^{t} a(s, w) d s
$$

are Martingales relative to $\left(\mathscr{F}_{t}\right)$.
Proof. To motivate the arguments which follow, we first give a formal proof. Let

$$
Y_{\theta}(t)=e^{\theta Y(t, w)-\frac{\theta^{2}}{2} \int_{0}^{t} a(s, w) d s}
$$

Then $Y_{\theta}(t)$ is a martingale, $\forall \theta$. Therefore $\frac{Y_{\theta}-1}{\theta}$ is a Martingale, $\forall \theta$. Hence (formally),

$$
\lim _{\theta \rightarrow 0} \frac{Y_{\theta}-1}{\theta}=\left.Y_{\theta}^{\prime}\right|_{\theta=0}
$$

is a Martingale.
Step 1. $Y(t, \cdot) \in L^{k}(\Omega, \mathscr{F}, P), k=0,1,2, \ldots$ and $\forall t$. In fact, for every real $\theta, Y_{\theta}(t)$ is a Martingale and hence $E\left(Y_{\theta}\right)<\infty$. Since a is bounded this means that

$$
E\left(e^{\theta Y(t,)}\right)<\infty, \forall \theta
$$

Taking $\theta=1$ and -1 we conclude that $E\left(e^{|Y|}\right)<\infty$ and hence $E\left(|Y|^{k}\right)<\infty, \forall k=0,1,2, \ldots$. Since Y is an Ito process we also get

$$
\sup _{|\theta| \leq \alpha} E\left(\left[e^{Y(t, \cdot)-\frac{\theta^{2}}{2} \int_{0}^{t} a d s}\right]^{k}\right)<\infty
$$

$\forall k$ and for every $\alpha>0$.
Step 2. Let $X_{\theta}(t)=\left[Y(t, \cdot)-\theta \int_{0}^{t} a d s\right] Y(t)=\frac{d}{d \theta} Y_{\theta}(t, \cdot)$.
Define

$$
\phi_{A}(\theta)=\int_{A}\left(X_{\theta}(t, \cdot)-X_{\theta}(s, \cdot)\right) d P(w)
$$

where $t>s, A \in \mathscr{F}_{s}$. Then

$$
\int_{\theta_{1}}^{\theta_{2}} \phi_{A}(\theta) d \theta=\int_{\theta_{1}}^{\theta_{2}} \int_{A}\left[X_{\theta}(t, \cdot)-X_{\theta}(S, \cdot)\right] d P(w) d \theta
$$

Since a is bounded, $\sup _{|\theta| \leq \alpha} E\left(\left[Y_{\theta}(t, \cdot)\right]^{k}\right)<\infty$, and $E\left(|Y|^{k}\right)<\infty, \forall k$; we can use Fubini's theorem to get

$$
\int_{\theta_{1}}^{\theta_{2}} \phi_{A}(\theta) d \theta=\int_{A} \int_{\theta_{1}}^{\theta_{2}}\left[X_{\theta}(t, \cdot)-X_{\theta}(s, \cdot)\right] d \theta d P(w)
$$

or

$$
\int_{\theta_{1}}^{\theta_{2}} \phi_{A}(\theta) d \theta=\int_{A} Y_{\theta_{2}}(t, \cdot)-Y_{\theta_{1}}(t, \cdot) d P(w)-\int_{A} Y_{\theta_{1}}(s, \cdot)-Y_{\theta_{1}}(s, \cdot) d P(w) .
$$

Let $A \in \mathscr{F}_{s}$ and $t>s$; then, since Y is a Martingale,

$$
\int_{\theta_{1}}^{\theta_{2}} \phi_{A}(\theta) d \theta=0
$$

This is true $\forall \theta_{1}<\theta_{2}$ and since $\phi_{A}(\theta)$ is a continuous function of θ, we conclude that

$$
\phi_{A}(\theta)=0, \forall \theta
$$

In particular, $\phi_{A}(\theta)=0$ which means that

$$
\int_{A} Y(t, \cdot) d P(w)=\int_{A} Y(s, \cdot) d P(w), \forall A \in \mathscr{F}_{s}, t>s
$$

78 i.e., $Y(t)$ is a Martingale relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$.
To prove the second part we put

$$
Z_{\theta}(t, \cdot)=\frac{d^{2}}{d \theta^{2}} Y_{\theta}(t)
$$

and

$$
\psi_{A}(\theta)=\int_{A}\left\{Z_{\theta}(t, \cdot)-Z_{\theta}(s, \cdot)\right\} d P(w)
$$

Then, by Fubini,

$$
\int_{\theta_{1}}^{\theta_{2}} \psi_{A}(\theta) d \theta=\int_{A} \int_{\theta_{1}}^{\theta_{2}} Z_{\theta}(t, \cdot)-Z_{\theta}(s, \cdot) d \theta d P(w)
$$

or,

$$
\begin{aligned}
\int_{\theta_{1}}^{\theta_{2}} \psi_{A}(\theta) d \theta & =\phi_{A}\left(\theta_{2}\right)-\phi_{A}\left(\theta_{1}\right) \\
& =0 \text { if } A \in \mathscr{F}_{s}, t>s .
\end{aligned}
$$

Therefore

$$
\psi_{A}(\theta)=0, \forall \theta .
$$

In particular, $\psi_{A}(\theta)=0$ implies that

$$
Y^{2}(t, w)-\int_{0}^{t} a(s, w) d s
$$

is an $\left(\Omega, \mathscr{F}_{t}, P\right)$ Martingale. This completes the proof of lemma
Definition. A function $\theta:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ is called simple if there exist reals $s_{0}, s_{1}, \ldots, s_{n}, \ldots$

$$
0 \leq s_{0}<s_{1}<\ldots<s_{n} \ldots<\infty,
$$

s_{n} increasing to $+\infty$ and

$$
\theta(s, w)=\theta_{j}(w)
$$

if $s \in\left[s_{j}, s_{j+1}\right)$, where $\theta_{j}(w)$ is $\mathscr{F}_{s_{j}}$-measurable and bounded.
Definition. Let $\theta:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ be a simple function and $Y(t, w) \in$ $I[0, a]$. We define the stochastic integral of θ with respect to Y, denoted

$$
\left.\int_{0}^{t} \theta(s, w) d Y(s, w)\right)
$$

by

$$
\xi(t, w)=\int_{0}^{t} \theta(s, w) d Y(s, w)
$$

$$
\begin{gathered}
=\sum_{j=1}^{k} \theta_{j-1}(w)\left[Y\left(s_{j}, w\right)-Y\left(s_{j-1}, w\right)\right]+\theta_{k}(w)\left[Y(t, w)-Y\left(s_{k}, w\right)\right] . \\
\begin{array}{c}
1 \\
s_{0}=0
\end{array} s_{1} \\
\begin{array}{ll}
-1 & s_{2}
\end{array} \\
s_{k}
\end{gathered}
$$

Lemma 2. Let $\sigma:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ be a simple function and $Y(t, w) \in$ $I[0, a]$. Then

$$
\xi(t, w)=\int_{0}^{t} \sigma(s, w) d Y(s, w) \in I\left[0, a \sigma^{2}\right] .
$$

Proof. (i) By definition, σ is right continuous and $\sigma(t, w)$ is $\mathscr{F}_{t^{-}}$ measurable; hence it is progressively measurable. Since a is progressively measurable and bounded

$$
a \sigma^{2}:[0, \infty) \times \Omega \rightarrow[0, \infty)
$$

is progressively measurable and bounded.
(ii) From the definition of ξ it is clear that $\xi(t, \cdot)$ is right continuous, continous almost everywhere and \mathscr{F}_{t}-measurable therefore ξ is progressively measurable.
(iii) $Z_{t}(w)=e^{\left[\theta \xi(t, w)-\frac{\theta^{2}}{2} \int_{0}^{t} a \sigma^{2} d s\right]}$
is clearly \mathscr{F}_{t}-measurable $\forall \theta$. We show that

$$
E\left(Z_{t}\right)<\infty, \forall t \text { and } E\left(Z_{t_{2}} \mid \mathscr{F}_{t_{1}}\right)=Z_{t_{1}} \text { if } t_{1}<t_{2}
$$

We can assume without loss of generality that $\theta=1$ (if $\theta \neq 1$ we replace σ by $\theta \sigma$). Therefore

$$
Z_{t}(w)=e^{\left[\xi(t, w)-\int_{0}^{t} a \sigma^{2} d s\right]}
$$

Since a and σ are bounded uniformly on $[0, t]$, it is enough to show that $E\left(e^{\xi(t, w)}\right)<\infty$. By definition,
$\xi(t, w)=\sum_{j=1}^{k} \theta_{j-1}(w)\left[Y\left(s_{j}, w\right)-Y\left(s_{j-1}, w\right)\right]+\theta_{k}(w)\left(Y(t, w)-Y\left(s_{k}, w\right)\right)$.
The result $E\left(e^{\xi(t, w)}\right)<\infty$ will follow from the generalised Holder's inequality provided we show that

$$
E\left(e^{\theta(w)[Y(t, w)-Y(s, w]]}\right)<\infty
$$

for every bounded function θ which is \mathscr{F}_{s}-measurable. Now

$$
E\left(e^{\theta[Y(t,)-Y(s,)]} \mid \mathscr{\mathscr { F }}_{s}\right)=
$$

constant for every constant θ, since $Y \in I[0, a]$. Therefore

$$
E\left(e^{\theta(w)[Y(t,)-Y(s,)]} \mid \mathscr{F}_{s}\right)=\text { constant }
$$

for every θ which is bounded and \mathscr{F}_{s}-measurable. Thus

$$
E\left(e^{\theta(w)[Y(t,)-Y(s,)]}\right)<\infty .
$$

This proves that $E\left(Z_{t}(w)\right) \in \infty$.
Finally we show that

$$
E\left(Z_{t_{2}} \mid \mathscr{F}_{t_{1}}\right)=Z_{t_{1}}(w), \quad \text { if } \quad t_{1}<t_{2}
$$

Consider first the case when t_{1} and t_{2} are in the same interval

$$
\left[s_{k}, s_{k+1}\right)
$$

Then

$$
\begin{aligned}
& \xi\left(t_{2}, w\right)=\xi\left(t_{1}, w\right)+\sigma_{k}(w)\left[Y\left(t_{2}, w\right)-Y\left(t_{1}, w\right)\right] \quad \text { (see definition), } \\
& \int_{0}^{t_{2}} a \sigma^{2}(s, w) d s=\int_{0}^{t_{1}} a \sigma^{2}(s, w) d s+\int_{t_{1}}^{t_{2}} a \sigma^{2}(s, w) d s
\end{aligned}
$$

Therefore
$E\left(Z_{t_{2}}(w) \mid \mathscr{F}_{t_{1}}\right)=Z_{t_{1}}(w) E\left(\left.\exp \left[\theta \sigma_{k}(w)\left[Y\left(t_{2}, w\right)-Y\left(t_{1}, w\right)\right]-\frac{\theta^{2}}{2} \int_{t_{1}}^{t_{2}} a \sigma^{2} d s\right) \right\rvert\, \mathscr{F}_{t_{1}}\right)$ as $Y \in I[0, a]$.
(*) $\quad E\left(\left.\exp \left[\theta\left(Y\left(t_{2}, w\right)-T\left(t_{1}, w\right)\right)-\frac{\theta^{2}}{2} \int_{t_{1}}^{t_{2}} a(s, w) d s\right] \right\rvert\, \mathscr{F}_{t_{1}}\right)=1$
and since $\sigma_{k}(w)$ is $\mathscr{F}_{t_{1}}$-measurable $(*)$ remains valid if θ is replaced by $\theta \sigma_{k}$. Thus

$$
E\left(Z_{t_{2}} \mid \mathscr{F}_{t_{1}}\right)=Z_{t_{1}}(w)
$$

The general case follows if we use the identity

$$
E\left(E\left(X \mid \mathscr{C}_{1}\right) \mid \mathscr{C}_{2}\right)=E\left(X \mid \mathscr{C}_{2}\right) \quad \text { for } \quad \mathscr{C}_{2} \subset \mathscr{C}_{1}
$$

Thus Z_{t} is a Martingale and $\xi(t, w) \in I\left[0, a \sigma^{2}\right]$.
82 Corollary . (i) $\xi(t, w)$ is a martingale; $E(\xi(t, w))=0$;
(ii) $\xi^{2}(t, w)-\int_{0}^{t} a \sigma^{2} d s$
is a Martingale with

$$
E\left(\xi^{2}(t, w)\right)=E\left(\int_{0}^{t} a \sigma^{2}(s, w) d s\right.
$$

Proof. Follows from Lemma 1
Lemma 3. Let $\sigma(s, w)$ be progressively measurable such that for each t,

$$
E\left(\int_{0}^{t} \sigma^{2}(s, w) d s\right)<\infty
$$

Then there exists a sequence $\sigma_{n}(s, w)$ of simple functions such that

$$
\lim _{n \rightarrow \infty} E\left(\int_{0}^{t}\left|\sigma_{n}(s, w)-\sigma(s, w)\right|^{2} d s\right)=0
$$

Proof. We may assume that σ is bounded, for if $\sigma_{N}=\sigma$ for $|\sigma| \leq N$ and 0 if $|\sigma|>N$, then $\sigma_{n} \rightarrow \sigma, \forall(s, w) \in[0, t] \times \Omega . \sigma_{N}$ is progressively measurable and $\left|\sigma_{n}-\sigma\right|^{2} \leq 4|\sigma|^{2}$. By hypothesis $\sigma \in L([0, t]: \Omega)$.

Therefore $E\left(\int_{0}^{t}\left|\sigma_{n}-\sigma\right| d s\right) \rightarrow 0$, by dominated convergence. Further, we can also assume that σ is continuous. For, if σ is bounded, define

$$
\sigma_{h}(t, w)=1 / h \int_{(t-h) v 0}^{t} \sigma(s, w) d s
$$

σ_{n} is continuous in t and \mathscr{F}_{t}-measurable and hence progressively measurable. Also by Lebesgue's theorem

$$
\sigma_{h}(t, w) \rightarrow \sigma(t, w), \quad \text { as } \quad h \rightarrow 0, \forall t, w .
$$

Since σ is bounded by C, σ_{h} is also bounded by C. Thus

$$
E\left(\int_{0}^{t}\left|\sigma_{h}(s, w)-\sigma(s, w)\right|^{2} d s\right) \rightarrow 0
$$

(by dominated convergence). If σ is continuous, bounded and progressively measurable, then

$$
\sigma_{n}(s, w)=\sigma\left(\frac{[n s]}{n}, w\right)
$$

is progressively measurable, bounded and simple. But

$$
\operatorname{Lt}_{n \rightarrow \infty} \sigma_{n}(s, w)=\sigma(s, w) .
$$

Thus by dominated convergence

$$
E\left(\int_{0}^{t}\left|\sigma_{n}-\sigma\right|^{2} d s\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Theorem. Let $\sigma(s, w)$ be progressively measurable, such that

$$
E\left(\int_{0}^{t} \sigma^{2}(s, w) d s\right)<\infty
$$

for each $t>0$. Let $\left(\sigma_{n}\right)$ be simple approximations to σ as in Lemma 3 Put

$$
\xi_{n}(t, w)=\int_{0}^{t} \sigma_{n}(s, w) d Y(s, w)
$$

where $Y \in I[0, a]$. Then
(i) $\underset{n \rightarrow \infty}{\operatorname{Lt}} \xi_{n}(t, w)$ exists uniformly in probability, i.e. there exists an almost surely continuous $\xi(t, w)$ such that

$$
\operatorname{Lt}_{n \rightarrow \infty} P\left(\sup _{0 \leq t \leq T}\left|\xi_{n}(t, w)-\xi(t, w)\right| \geq \epsilon\right)=0
$$

for each $\epsilon>0$ and for each T. Moreover, ξ is independent of the sequence $\left(\sigma_{0}\right)$.

84 (ii) The map $\sigma \rightarrow \xi$ is linear.
(iii) $\xi(t, w)$ and $\xi^{2}(t, w)-\int_{0}^{t} a \sigma^{2} d s$ are Martingales.
(iv) If σ is bounded, $\xi \in I\left[0, a \sigma^{2}\right]$.

Proof. (i) It is easily seen that for simple functions the stochastic integral is linear. Therefore

$$
\left(\xi_{n}-\xi_{m}\right)(t, w)=\int_{0}^{t}\left(\sigma_{n}-\sigma_{m}\right)(s, w) d Y(s, w)
$$

Since $\xi_{n}-\xi_{m}$ is an almost surely continuous martingale

$$
P\left(\sup _{0 \leq t \leq T}\left|\xi_{n}(t, w)-\xi_{m}(t, w)\right| \geq \epsilon\right) \leq \frac{1}{\epsilon^{2}} E\left[\left(\xi_{n}-\xi_{m}\right)^{2}(T, w)\right]
$$

This is a consequence of Kolmogorov inequality (See Appendix). Since

$$
\left(\xi_{n}-\xi_{m}\right)^{2}-\int_{0}^{t} a\left(\sigma_{n}-\sigma_{m}\right)^{2} d s
$$

is a Martingale, and a is bounded,
(*) $E\left[\left(\xi_{n}-\xi_{m}\right)^{2}(T, w)\right]=E\left(\int_{0}^{T}\left(\sigma_{n}-\sigma_{m}\right)^{2} a d s\right)$.

$$
\leq \text { const } \frac{1}{\epsilon^{2}} E\left(\int_{0}^{T}\left(\sigma_{n}-\sigma_{m}\right)^{2} d s\right)
$$

Therefore

$$
\underset{n, m \rightarrow \infty}{\mathrm{Lt}} E\left[\left(\xi_{n}-\xi_{m}\right)^{2}(T, w)\right]=0
$$

Thus $\left(\xi_{n}-\xi_{m}\right)$ is uniformly Cauchy in probability. Therefore there exists a progressively measurable ξ such that

$$
\operatorname{Lt}_{n \rightarrow \infty} P\left(\sup _{0 \leq t \leq T}\left|\xi_{n}(t, w)-\xi(t, w)\right| \geq \epsilon\right)=0, \forall \epsilon>0, \forall T
$$

It can be shown that ξ is almost surely continuous.

If $\left(\sigma_{n}\right)$ and $\left(\sigma_{n}^{\prime}\right)$ are two sequences of simple functions approxi- $\mathbf{8 5}$ mating σ, then $(*)$ shows that

$$
E\left[\left(\xi_{n}-\xi_{n}^{\prime}\right)^{2}(T, w)\right] \rightarrow 0
$$

Thus

$$
\operatorname{Ltt}_{n} \xi_{n}=\operatorname{Lt}_{n}^{\prime} \xi_{n}^{\prime},
$$

i.e. ξ is independent of $\left(\sigma_{n}\right)$.
(ii) is obvious.
(iii) $\left(^{*}\right)$ shows that $\xi_{n} \rightarrow \xi$ in L and therefore $\xi_{n}(t, \cdot) \rightarrow \xi(t, \cdot)$ in L^{1} for each fixed t. Since $\xi_{n}(t, w)$ is a martingale for each $n, \xi(t, w)$ is a martingale.
(iv) $\xi_{n}^{2}(t, w)-\int_{0}^{t} a \sigma_{n}^{2}$ is a martingale for each n.

Since $\xi_{n}(t, w) \rightarrow \xi(t, w)$ in L^{2} for each fixed t and

$$
\xi_{n}^{2}(t, w) \rightarrow \xi^{2}(t, w) \quad \text { in } \quad L^{1} \quad \text { for each fixed } t
$$

For $\xi_{n}^{2}(t, w)-\xi^{2}(t, w)=\left(\xi_{n}-\xi\right)\left(\xi_{n}+\xi\right)$ and using Hölder's inequality, we get the result.
Similarly, since

$$
\begin{aligned}
\sigma_{n} & \rightarrow \sigma \text { in } L^{2}([0, t] \times \Omega), \\
\sigma_{n}^{2} & \rightarrow \sigma^{2} \text { in } L^{1}([0, t] \times \Omega),
\end{aligned}
$$

and because a is bounded $a \sigma_{n}^{2} \rightarrow a \sigma^{2}$ in $L^{1}([0, t] \times \Omega)$. This shows that $\xi_{n}^{2}(t, w)-\int_{0}^{t} a \sigma_{n}^{2} d s$ converges to

$$
\xi^{2}(t, w)-\int_{0}^{t} a \sigma^{2} d s
$$

for each t in L^{1}. Therefore

$$
\xi^{2}(t, w)-\int_{0}^{t} a \sigma^{2} d s
$$

is a martingale.
(v) Let σ be bounded. To show that $\xi \in I\left[0, \sigma^{2}\right]$ it is enough to show that

$$
e^{\theta \xi(t, w)-\frac{\theta^{2}}{2} \int_{0}^{t} a \sigma^{2} d s}
$$

is a martingale for each θ, the other conditions being trivially satisfied. Let

$$
Z_{n}(t, w)=e^{\theta \xi_{n}(t, w)-\frac{\theta^{2}}{2} \int_{0}^{t} a \sigma_{n}^{2} d s}
$$

We can assume that $\left|\sigma_{n}\right| \leq C$ if $|\sigma| \leq C$ (see the proof of Lemma 3].

$$
Z_{n}=\exp \left[2 \theta \xi_{n}(t, w)-\frac{(2 \theta)^{2}}{2} \int_{0}^{t} a \sigma_{n}^{2} d s+\theta^{2} \int_{0}^{t} a \sigma_{n}^{2} d s\right]
$$

Thus
$(* *) \quad E\left(Z_{n}\right) \leq \operatorname{const} E\left(e^{2 \theta \xi_{n}(t, w)-\frac{(2 \theta)^{2}}{2} \int_{0}^{t} a \sigma_{n}^{2} d s}\right)=\mathrm{const}$
since Z_{n} is a martingale for each θ. A subsequence $Z_{n_{i}}$ converges to

$$
e^{\theta \xi(t, w)-\frac{\theta^{2}}{2} \int_{0}^{t} a \sigma^{2} d s}
$$

almost everywhere (P). This together with $\left({ }^{* *}\right)$ ensures uniform integrability of $\left(Z_{n}\right)$ and therefore

$$
e^{\theta \xi(t, w)-\frac{\theta^{2}}{2} \int_{0}^{t} a \sigma^{2} d s}
$$

is a martingale. Thus ξ is an Ito process, $\xi \in I\left[0, a \sigma^{2}\right]$.

Definition. With the hypothesis as in the above theorem we define the stochastic integral

$$
\xi(t, w)=\int_{0}^{t} \sigma(s, w) d Y(s, w)
$$

Exercise. Show that $d(X+Y)=d X+d Y$.
Remark. If σ is bounded, then ξ satisfies the hypothesis of the previous theorem and so one can define the integral of ξ with respect to Y. Further, since ξ itself is Itô, we can also define stochastic integrals with respect to.

Examples. 1. Let $\{\beta(t): t \geq 0\}$ be a Brownian motion; then $\beta(t, w)$ is progressively measurable (being continuous and \mathscr{F}_{t}-measurable).
Also,

$$
\int_{\Omega} \int_{0}^{t} \beta^{2}(s) d s d P=\int_{0}^{t} \int_{\Omega} \beta^{2}(s) d P d s=\int_{0}^{t} s d s=\frac{t}{2}
$$

Hence

$$
\int_{0}^{t} \beta(s, w) d \beta(s, w)
$$

is well defined.
2. Similarly $\int_{0}^{t} \beta(s / 2) d \beta(s)$ is well defined.
3. However

$$
\int_{0}^{t} \beta(2 s) d \beta(s)
$$

is not well defined, the reason being that $\beta(2 s)$ is not progressively measurable.

Exercise 5. Show that $\beta(2 s)$ is not progressively measurable.
(Hint: Try to show that $\beta(2 s)$ is not \mathscr{F}_{s}-measurable for every s. To show this prove that $\mathscr{F}_{s} \neq \mathscr{F}_{2 s}$).

Exercise 6. Show that for a Brownian motion $\beta(t)$, the stochastic integral

$$
\int_{0}^{1} \beta(s, \cdot) d \beta(s, \cdot)
$$

is the same as the left integral

$$
L \int_{0}^{1} \beta(s, \cdot) d \beta(s, \cdot)
$$

defined earlier.

12. Change of Variable Formula

WE SHALL PROVE the

Theorem. Let σ be any bounded progressively measurable function and Y be an Ito process. If λ is any progressively measurable function such that

$$
E\left(\int_{0}^{t} \lambda^{2} d s\right)<\infty, \forall t
$$

then
(*)

$$
\int_{0}^{t} \lambda d \xi(s, w)=\int_{0}^{t} \lambda(s, w) \sigma(s, w) d Y(s, w)
$$

where

$$
\xi(t, w)=\int_{0}^{t} \sigma(s, w) d Y(s, w)
$$

Proof.
Step 1. Let λ and σ be both simple, with λ bounded. By a refinement of the partition, if necessary, we may assume that there exist reals $0=$ $s_{0}, s_{1}, \ldots, s_{n}, \ldots$ increasing to $+\infty$ such that λ and σ are constant on $\left[s_{j}, s_{j+1}\right)$, say $\lambda=\lambda_{j}(w), \sigma=\sigma_{j}(w)$, where $\lambda_{j}(w)$ and $\sigma_{j}(w)$ are $\mathscr{F}_{s_{j}}$ measurable. In this case $\left({ }^{*}\right)$ is a direct consequence of the definition.

Step 2. Let λ be simple and bounded. Let $\left(\sigma_{n}\right)$ be a sequence of simple bounded functions as in Lemma 3 Put

$$
\xi_{n}(t, w)=\int_{0}^{t} \sigma_{n}(s, w) d Y(s, w)
$$

By Step 1,
(**)

$$
\int_{0}^{t} \lambda d \xi_{n}=\int_{0}^{t} \lambda \sigma_{n} d Y(s, w)
$$

Since λ is bounded, $\lambda \sigma_{n}$ converges to $\lambda \sigma$ in $L^{2}([0, t] \times \Omega)$. Hence, by definition, $\int_{0}^{t} \lambda \sigma_{n} d Y(s, w)$ converges to $\int_{0}^{t} \lambda \sigma d Y$ in probability.

Further,

$$
\begin{aligned}
\int_{0}^{t} \lambda d \xi_{n}(s, w)= & \lambda\left(s_{0}, w\right)\left[\xi_{n}\left(s_{1}, w\right)-\xi_{n}\left(s_{0}, w\right)\right]+\cdots \\
& +\cdots+\lambda\left(s_{k}, w\right)\left[\xi_{n}(t, w)-\xi_{n}\left(s_{k-1}, w\right)\right]
\end{aligned}
$$

where $s_{0}<s_{1}<$ \qquad is a partition for λ, and $\xi_{n}(t, w)$ converges to $\xi(t, w)$ in probability for every t. Therefore

$$
\int_{0}^{t} \lambda d \xi_{n}(s, w)
$$

converges in probability to

$$
\int_{0}^{t} \lambda d \xi(s, w)
$$

Taking limit as $n \rightarrow \infty$ in (**) we get

$$
\int_{0}^{t} \lambda d \xi(s, w)=\int_{0}^{t} \lambda \sigma d Y(s, w)
$$

Step 3. Let λ be any progressively measurable function with

$$
E\left(\int_{0}^{t} \lambda^{2} d s\right)<\infty, \forall t
$$

Let λ_{n} be a simple approximation to λ as in Lemma3. Then, by Step
2 ,
$(* * *) \quad \int_{0}^{t} \lambda_{n}(s, w) d \xi(s, w)=\int_{0}^{t} \lambda_{n}(s, w) \sigma(s, w) d Y(s, w)$.
By definition, the left side above converges to

$$
\int_{0}^{t} \lambda(s, w) d \xi(s, w)
$$

in probability. As σ is bounded $\lambda_{n} \sigma$ converges to $\lambda \sigma$ in $L^{2}([0, t] \times \Omega) . \quad 91$ Therefore

$$
\begin{aligned}
& P\left(\sup _{0 \leq t \leq T}\left|\int_{0}^{t} \lambda_{n} \sigma d Y(s, w)-\int_{0}^{t} \lambda \sigma d y(s, w)\right| \geq \epsilon\right) \\
& \|a\|_{\infty} 1 / \epsilon^{2} E\left(\int_{0}^{t}\left(\lambda_{n} \sigma-\lambda \sigma\right)^{2} d s\right)
\end{aligned}
$$

(see proof of the main theorem leading to the definition of the stochastic integral). Thus

$$
\int_{0}^{t} \lambda_{n} \sigma d Y(s, w)
$$

converges to

$$
\int_{0}^{t} \lambda \sigma d Y(s, w)
$$

in probability. Let n tend to + in $\left({ }^{* * *}\right)$ to conclude the proof.

13. Extension to

Vector-Valued Itô Processes

Definition. Let (Ω, \mathscr{F}, P) be a probability space and $\left(\mathscr{F}_{t}\right)$ an increasing 92 family of sub σ-algebras of \mathscr{F}. Suppose further that

$$
\begin{equation*}
a:[0, \infty) \times \Omega \rightarrow S_{+}^{d} \tag{i}
\end{equation*}
$$

is a probability measurable, bounded function taking values in the class of all symmetric positive semi-definite $d \times d$ matrices, with real entries;

$$
\begin{equation*}
b:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{d} \tag{ii}
\end{equation*}
$$

is a progressively measurable, bounded function;
(iii)

$$
X:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{d}
$$

is progressively measurable, right continuous for every w and continuous almost everywhere (P);
(iv)

$$
Z(t, \cdot)=\exp \left[\langle\theta, X(t, \cdot)\rangle-\int_{0}^{t}\langle\theta, b(s, \cdot)\rangle d s\right.
$$

$$
\left.-\frac{1}{2} \int_{0}^{t}\langle\theta, a(s, \cdot) \theta\rangle d s\right]
$$

is a martingale for each $\theta \in \mathbb{R}^{d}$, where

$$
\langle x, y\rangle=x_{1} y_{1}+\cdots+x_{d} y_{d}, x, y \in R^{d}
$$

Then X is called an Itô process corresponding to the parameters b and a, and we write $X \in I[b, a]$

Note. 1. $Z(t, w)$ is a real valued function.
2. b is progressively measurable if and only if each b_{i} is progressively measurable.
3. a is progressively measurable if and only if each $a_{i j}$ is so.

Exercise 1. If $X \in I[b, a]$, then show that
(i)

$$
X_{i} \in I\left[b_{i}, a_{i i}\right]
$$

$$
Y=\sum_{i=1}^{d} \theta_{i} X_{i} \in I[\langle\theta, b\rangle,\langle\theta, a \theta\rangle]
$$

where

$$
\theta=\left(\theta_{1}, \ldots, \theta_{d}\right)
$$

(Hint: (ii) (i). To prove (ii) appeal to the definition).
Remark. If X has a multivariate normal distribution with mean μ and covariance $\left(\rho_{i j}\right)$, then $Y=\langle\theta, X\rangle$ has also a normal distribution with mean $\langle\theta, \mu\rangle$ and variance $\langle\theta, \rho \theta\rangle$. Note the analogy with the above exercise. This analogy explains why at times b is referred to as the "mean" and a as the "covariance".

Exercise 2. If $\{\beta(t): t \geq 0\}$ is a d-dimensional Brownian motion, then $\beta(t, w) \in I[0, I]$ where $I=d \times d$ identity matrix.

As before one can show that $Y(t, \cdot)=X(t, \cdot)-\int_{0}^{t} b(s, w) d s$ is an Itô process with parameters 0 and a.

Definition. Let X be a d-dimensional Ito process. $\sigma=\left(\sigma_{1}, \ldots, \sigma_{d}\right)$ a d-dimensional progressively measurable function such that

$$
E\left(\int_{0}^{t}\langle\sigma(s, \cdot), \sigma(s, \cdot)\rangle>d s\right)
$$

is finite or, equivalently,

$$
E\left(\int_{0}^{t} \sigma_{i}^{2}(s, \cdot) d s\right)<\infty, \quad(i=1,2, \ldots d)
$$

Then by definition

$$
\int_{0}^{t}\langle\sigma(s, \cdot), d X(s, \cdot)\rangle=\sum_{i=1}^{d} \int_{0}^{t} \sigma_{i}(s, \cdot) d X_{i}(s, \cdot) .
$$

Proposition. Let X be a d-dimensional Itô process $X \in I[b, a]$ and let σ be progressively measurable and bounded. If

$$
\xi_{i}(t, \cdot)=\int_{0}^{t} \sigma_{i} d X_{i}(s, \cdot),
$$

then

$$
\xi=\left(\xi_{1}, \ldots, \xi_{d}\right) \in I[B, A]
$$

where

$$
B=\left(\sigma_{1} b_{1}, \ldots, \sigma_{d} b_{d}\right) \quad \text { and } \quad A_{i j}=\sigma_{i} \sigma_{j} a_{i j} .
$$

Proof. (i) Clearly $A_{i j}$ is progressively measurable and bounded.
Since $a \in S_{+}^{d}, A \in S_{+}^{d}$.
(ii) Again B is progressively measurable and bounded.
(iii) Since σ is bounded, each $\xi_{i}(t, \cdot)$ is an Itô process; hence ξ is progressively measurable, right continuous, continuous almost everywhere (P). It only remains to verify the martingale condition.

Step 1. Let $\theta=\left(\theta_{1}, \ldots, \theta_{d}\right) \in \mathbb{R}^{d}$. By hypothesis,

$$
\begin{equation*}
E\left(\operatorname { e x p } \left[\left.\left(\theta_{1} X_{1}+\cdots+\theta_{d} X_{d}\right)\right|_{s} ^{t} \cdots \int_{s}^{t}\left(\theta_{1} b_{1}+\cdots+\theta_{d} b_{d}\right) d u\right.\right. \tag{*}
\end{equation*}
$$

$$
\left.\left.-\frac{1}{2} \int_{0}^{t} \sum \theta_{i} \theta_{j} a_{i j} d s\right] \mid \mathscr{F}_{s}\right)=1
$$

Assume that each σ_{i} is constant on $[s, t], \sigma_{i}=\sigma_{i}(w)$ and $\mathscr{F}_{s^{-}}$ measurable. Then $\left(^{*}\right)$ remains true if θ_{i} are replaced by $\theta_{i} \theta_{i}(w)$ and since σ_{i} 's are constant over $[s, t]$, we get

$$
\begin{aligned}
& E\left(\operatorname { e x p } \left[\int_{0}^{t} \sum_{i=1}^{d} \theta_{i} \sigma_{i}(s, \cdot) d X_{i}(s, \cdot)-\int_{0}^{t} \theta_{i} b_{i} \sigma_{i}(s, \cdot) d s\right.\right. \\
& \left.\left.\quad-\frac{1}{2} \int_{0}^{t} \sum \theta_{i} \theta_{j} \sigma_{i}(s, \cdot) \sigma_{j}(s, \cdot) a_{i j} d s\right]\left.\right|_{s}\right) \\
& \exp \left[\int_{0}^{s} \sum_{i=1}^{d} \theta_{i} \sigma_{i}(s, \cdot) d X_{i}(s, \cdot)-\int_{0}^{s}\langle\theta, B\rangle d u-1 \int_{0}^{s}\langle\theta, A \theta\rangle d u\right] .
\end{aligned}
$$

Step 2. Let each σ_{i} be a simple function.

By considering finer partitions we may assume that each σ_{i} is a step function,

finest partition
i.e. there exist points $s_{0}, s_{1}, s_{2}, \ldots, s_{n}, s=s_{0}<s_{1}<\ldots<s_{n+1}=t$, such that on $\left[s_{j}, s_{j+1}\right)$ each σ_{i} is a constant and s_{j}-measurable. Then $\left(^{* *}\right)$ holds if we use the fact that if $\mathscr{C}_{1} \supset \mathscr{C}_{2}$.

$$
E\left(E\left(f \mid \mathscr{C}_{1}\right) \mid \mathscr{C}_{2}\right)=E\left(f \mid \mathscr{C}_{2}\right)
$$

Step 3. Let σ be bounded, $|\sigma| \leq C$. Let $\left(\sigma^{(n)}\right)$ be a sequence of simple functions approximating σ as in Lemma 3 (**) is true if σ_{i} is replaced by $\sigma_{i}^{(n)}$ for each n. A simple verification shows that the expression $Z_{n}(t, \cdot)$, in the parenthes is on the left side of $\left({ }^{* *}\right)$ with σ_{i} replaced by $\sigma_{i}^{(n)}$, converges to

$$
\begin{gathered}
Z(t, \cdot)= \\
=\operatorname{Exp}\left(\int_{0}^{t} \sum_{i} \theta_{i} \sigma_{i}(s, \cdot) d s-\int_{0}^{t} \sum_{i} \theta_{i} b_{i} \sigma_{i}(s, \cdot) d s-\right. \\
\left.-\frac{1}{2} \int_{0}^{t} \sum_{i, j} \theta_{i} \theta_{j} \sigma_{i} \sigma_{j} a_{i j} d s\right)
\end{gathered}
$$

as $n \rightarrow \infty$ in probability. Since $Z_{n}(t, \cdot)$ is a martingale and the functions $\sigma_{i}, \sigma_{j}, a$ are all bounded,

$$
\sup _{n} E\left(Z_{n}(t, \cdot)\right)<\infty
$$

This proves that $Z(t, \cdot)$ is a martingale.
Corollary. With the hypothesis as in the above proposition define

$$
Z(t)=\int_{0}^{t}\langle\sigma(s, \cdot), d X(s, \cdot)\rangle
$$

Then

$$
Z(t, \cdot) \in I\left[\langle\sigma, b\rangle, \sigma a \sigma^{*}\right]
$$

where σ^{*} is the transpose of σ.
Proof. $Z(t, \cdot)=\xi_{1}(t, \cdot)+\cdots+\xi_{d}(t, \cdot)$.
Definition. Let $\sigma(s, w)=\left(\sigma_{i j}(s, w)\right)$ be a $n \times d$ matrix of progressively measurable functions with

$$
E\left(\int_{0}^{t} \sigma_{i j}^{2}(s, \cdot) d s\right)<\infty
$$

$$
\left(\int_{0}^{t} \sigma(s, \cdot) d X(s, \cdot)\right)_{i}=\sum_{j=1}^{d} \int_{0}^{t} \sigma_{i j}(s, \cdot) d X_{j}(s, \cdot) .
$$

Exercise 3. Let

$$
Z(t, w)=\int_{0}^{t} \sigma(s, \cdot) d Y(s, \cdot)
$$

where $Y \in I[0, a]$ is a d-dimensional Itô process and σ is as in the above definition. Show that

$$
Z(t, \cdot) \in I\left[0, \sigma a \sigma^{*}\right]
$$

is an n-dimensional Ito process, (assume that σ is bounded).
Exercise 4. Verify that

$$
E\left(|Z(t)|^{2}\right)=E\left(\int_{0}^{t} \operatorname{tr}\left(\sigma a \sigma^{*}\right) d s\right) .
$$

Exercise 5. Do exercise 3 with the assumption that $\sigma a \sigma^{*}$ is bounded.
Exercise 6. State and prove a change of variable formula for stochastic integrals in the case of several dimensions.
(Hint: For the proof, use the change of variable formula in the one dimensional case and $d(X+Y)=d X+d Y)$.

14. Brownian Motion as a Gaussian Process

SO FAR WE have been considering Brownian motion as a Markov pro-
cess. We shall now show that Brownian motion can be considered as a Gaussian process.

Definition. Let $X \equiv\left(X_{1}, \ldots, X_{N}\right)$ be an N-dimensional random variable. It is called an N-variate normal (or Gaussian) distribution with mean $\mu \equiv\left(\mu_{1}, \ldots, \mu_{N}\right)$ and covariance A if the density function is

$$
\frac{1}{(2 \pi)^{N / 2}} \frac{1}{(\operatorname{det} A)^{1 / 2}} \exp \left(-\frac{1}{2}\left[(X-\mu) A^{-1}(X-\mu)^{*}\right]\right)
$$

where A is an $N \times N$ positive definite symmetric matrix.
Note. 1. $E\left(X_{i}\right)=\mu_{i}$.
2. $\operatorname{Cov}\left(X_{i}, X_{j}\right)=(A)_{i j}$.

Theorem. $X \equiv\left(X_{1}, \ldots, X_{N}\right)$ is a multivariate normal distribution if and only if for every $\theta \in \mathbb{R}^{N},\langle\theta, X\rangle$ is a one-dimensional Gaussian random variable.

We omit the proof.
Definition. A stochastic process $\left\{X_{t}: t \in I\right\}$ is called a Gaussian process if $\forall t_{1}, t_{2}, \ldots, t_{N} \in I,\left(X_{t_{1}}, \ldots, X_{t_{N}}\right)$ is an N-variate normal distribution.

Exercise 1. Let $\left\{X_{t}: t \geq 0\right\}$ be a one dimensional Brownian motion. Then show that
(a) X_{t} is a Gaussian process.
(Hint: Use the previous theorem and the fact that increments are independent)
(b) $E\left(X_{t}\right)=0, \forall t, E(X(t) X(s))=s \wedge t$.

Let $\rho:[0,1]=[0,1] \rightarrow \mathbb{R}$ be defined by

$$
\rho(s, t)=s \wedge t
$$

Define $K: L_{\mathbb{R}}^{2}[0,1] \rightarrow L_{\mathbb{R}}^{2}[0,1]$ by

$$
K f(s)=\int_{0}^{1} \rho(s, t) f(t) d t
$$

Theorem. K is a symmetric, compact operator. It has only a countable number of eigenvalues and has a complete set of eigenvectors.

We omit the proof.
Exercise 2. Let λ be any eigenvalue of K and f an eigenvector belonging to λ. Show that
(a) $\lambda f^{\prime \prime}+f=0$ with $\lambda f(0)=0=\lambda f^{\prime}(1)$.
(b) Using (a) deduce that the eigenvalues are given by $\lambda_{n}=4 /(2 n+$ $1)^{2} \pi^{2}$ and the corresponding eigenvectors are given by

$$
f_{n}=\sqrt{ } 2 \operatorname{Sin} 1 / 2[(2 n+1) \pi t] n=0,1,2, \ldots
$$

Let $Z_{0}, Z_{1}, \ldots, Z_{n} \ldots$ be identically distributed, independent, normal random variables with mean 0 and variance 1 . Then we have

Proposition. $Y(t, w)=\sum_{n=0}^{\infty} Z_{n}(w) f_{n}(t) \sqrt{ } \lambda_{n}$ converges in mean for every real t.
$100 \quad$ Proof. Let $Y_{m}(t, w)=\sum_{i=0}^{m} Z_{i}(w) f_{i}(t) \sqrt{ } \lambda_{i}$. Therefore

$$
\begin{aligned}
& E\left\{\left(Y_{n+m}(t, \cdot)-Y_{n}(t, \cdot)\right)^{2}\right\}=\sum_{n+1}^{n+m} f_{i}^{2}(t) \lambda_{i} \\
& E\left(\left\|Y_{n+m}(\cdot)-Y_{n}(\cdot)\right\|^{2} \leq \sum_{n+1}^{n+m} \lambda_{i} \rightarrow 0\right.
\end{aligned}
$$

Remark. As each $Y_{n}(t, \cdot)$ is a normal random variable with mean 0 and variance $\sum_{i=0}^{n} \lambda_{i} f_{i}^{2}(t), Y(t, \cdot)$ is also a normal random variable with mean zero and variance $\sum_{i=0}^{\infty} \lambda_{i} f_{i}^{2}$. To see this one need only observe that the limit of a sequence of normal random variables is a normal random variable.

Theorem (Mercer).

$$
\rho(s, t)=\sum_{i=0}^{\infty} \lambda_{i} f_{i}(t) f_{i}(s),(s, t) \in[0,1] \times[0,1]
$$

The convergence is uniform.
We omit the proof.
Exercise 3. Using Mercer's theorem show that $\left\{X_{t}: 0 \leq t \leq 1\right\}$ is a Brownian motion, where

$$
X(t, w)=\sum_{n=0}^{\infty} Z_{n}(w) f_{n}(t) \sqrt{ } \lambda_{n}
$$

This exercise now implies that

$$
\int_{0}^{1} X^{2}(s, w) d s=\left(L^{2}-\operatorname{norm} \text { of } X\right)^{2}
$$

$$
=\sum \lambda_{n} Z_{n}^{2}(w)
$$

since $f_{n}(t)$ are orthonormal. Therefore

$$
\begin{aligned}
& E\left(e^{-\lambda \int_{0}^{1} X^{2}(s,) d s}\right)= E\left(e^{-\lambda \sum_{n=0}^{\infty} \lambda_{n} Z_{n}^{2}(w)}\right)=\prod_{n=0}^{\infty} E\left(e^{-\lambda \lambda_{n} Z_{n}^{2}}\right) \\
&\left.\quad \quad \quad \quad \text { by independence of } Z_{n}\right) \\
&= \prod_{n=0}^{\infty} E\left(e^{-\lambda \lambda_{n} Z_{0}^{2}}\right)
\end{aligned}
$$

as $Z_{0}, Z_{n} \ldots$ are identically distributed. Therefore

$$
\begin{aligned}
E\left(e^{-\lambda \int_{0}^{1} x^{2}(s,) d s}\right) & =\prod_{n=0}^{\infty} 1 / \sqrt{ }\left(1+2 \lambda \lambda_{n}\right) \\
& =\prod_{n=0}^{\infty} 1 / \sqrt{ }\left(1+\frac{88 \lambda}{(2 n+1)^{2} \Pi^{2}}\right) \\
& =1 / \sqrt{ }(\cosh) \sqrt{ }(2 \lambda) .
\end{aligned}
$$

APPLICATION. If $F(a)=P\left(\int_{0}^{1} X^{2}(s) d s<a\right)$, then

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-\lambda a} d F(a)=\int_{-\infty}^{\infty} e^{-\lambda a} d F(a) \\
= & E\left(e^{-\lambda \int_{0}^{1} X^{2}(s) d s}\right)=1 / \sqrt{ }(\cosh) \sqrt{ }(2 \lambda) .
\end{aligned}
$$

15. Equivalent For of Itô Process

LET (Ω, \mathscr{F}, P) BE A probability space with $\left(\mathscr{F}_{t}\right)_{t \geq 0}$ and increasing fam-
ily of sub σ-algebras of \mathscr{F} such that $\sigma\left(\underset{t>0}{U \mathscr{F}_{t}}\right)=\mathscr{F}$. Let
(i) $a:[0, \infty) \times \Omega \rightarrow S_{d}^{+}$be a progressively measurable, bounded function taking values in S_{d}^{+}, the class of all $d \times d$ positive semidefinite matrices with real entries;
(ii) $b:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{d}$ be a bounded, progressively measurable function;
(iii) $X:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{d}$ be progressively measurable, right continuous and continuous a.s. $\forall(s, w) \in[0, \infty) \times \Omega$.

For $(s, w) \in[0, \infty) \times \Omega$ define the operator

$$
L_{s, w}=\frac{1}{2} \sum_{i, j=1}^{d} a_{i j}(s, w) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{d} b_{j}(s, w) \frac{\partial}{\partial x_{j}} .
$$

For f, u, h belonging to $C_{0}^{\infty}\left(\mathbb{R}^{d}\right), C_{0}^{\infty}\left([0, \infty) \times \mathbb{R}^{d}\right)$ and $C_{b}^{1,2}([0, \infty) \times$ $\left.\mathbb{R}^{d}\right)$ respectively we define $Y_{f}(t, w), Z_{u}(t, w), P_{h}(t, w)$ as follows:

$$
Y_{f}(t, w)=f(X(t, w))-\int_{0}^{t}\left(L_{s, w}(f)(X(s, w)) d s\right.
$$

$$
\begin{gathered}
Z_{u}(t, w)=u(t, X(t, w))-\int_{0}^{t}\left(\frac{\partial u}{\partial s}+L_{s, w} u\right)(s, X(s, w)) d s, \\
P_{h}(t, w)=\exp \left[h(t, X(t, w))-\int_{0}^{t}\left(\frac{\partial h}{\partial s}+L_{s, w} h\right)(s, X(s, w) d s-\right. \\
\left.\quad-\frac{1}{2} \int_{0}^{t}\left\langle a(s, w) \nabla_{x} h(s, X(s, w)), \nabla_{x} h(s, X(s, w))\right\rangle d s\right] .
\end{gathered}
$$

103 Theorem. The following conditions are equivalent.
(i) $X_{\theta}(t, w)=\exp \left[\langle\theta, X(t, w)\rangle-\int_{0}^{t}\langle\theta, b(s, w)\rangle d s-\int_{0}^{t}\langle\theta, a(s, w) \theta\rangle d s\right]$ is a martingale relative to $\left(\Omega, \mathscr{F}_{t}, P\right), \forall \theta \in \mathbb{R}^{d}$.
(ii) $X_{\lambda}(t, w)$ is a martingale \forall_{λ} in \mathbb{R}^{d}. In particular $X_{i \theta}(t, w)$ is a martingale $\forall \theta \in \mathbb{R}^{d}$.
(iii) $Y_{f}(t, w)$ is a martingale for every $f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$
(iv) $Z_{u}(t, w)$ is a martingale for every $u \in C_{0}^{\infty}\left([0, \infty) \times \mathbb{R}^{d}\right)$.
(v) $P_{h}(t, w)$ is a martingale for every $h \in C_{b}^{1,2}\left[(0, \infty) \times \mathbb{R}^{d}\right)$.
(vi) The result (v) is true for functions $h \in C^{1,2}\left([0, \infty) \times \mathbb{R}^{d}\right)$ with linear growth, i.e. there exist constants A and B such that $|h(x)| \leq$ $A|x|+B$.

The functions $\frac{\partial h}{\partial t}, \frac{\partial h}{\partial x_{i}}$, and $-\frac{\partial^{2} h}{\partial x_{i} \partial x_{j}}$ which occur under the integral sign in the exponent also grow linearly.

Remark. The above theorem enables one to replace the martingale condition in the definition of an Itô process by any of the six equivalent conditions given above.

Proof. (i) (ii). $X_{\lambda}(t, \cdot)$ is \mathscr{F}_{t}-measurable because it is progressively measurable. That $E\left(\left|X_{\lambda}(t, w)\right|\right)<\infty$ is a consequence of (i) and the fact that a is bounded.

The function $\lambda \xrightarrow{\phi} \frac{X_{\lambda}(t, w)}{X_{\lambda}(s, w)}$ is continuous for fixed $t, s, w,(t>s)$. Morera's theorem shows that ϕ is analytic. Let $A \in \mathscr{F}_{s}$. Then

$$
\int_{A} \frac{X_{\lambda}(t, w)}{X_{\lambda}(s, w)} d P(w)
$$

is analytic. By hypothesis,

$$
\int_{A} \frac{X_{\lambda}(t, w)}{X_{\lambda}(s, w)} d P(w)=1, \forall \lambda \in \mathbb{R}^{d} .
$$

Thus $\int_{A} \frac{X_{\lambda}(t, w)}{X_{\lambda}(s, w)} d P(w)=1, \forall$ complex λ. Therefore

$$
E\left(X_{\lambda}(t, w) \mid \mathscr{F}_{s}\right)=X_{\lambda}(s, w)
$$

proving (ii). (ii) \Rightarrow (iii). Let

$$
A(t, w)=\exp \left[-i \int_{0}^{t}\langle\theta, b(s, w)\rangle d s+\frac{1}{2} \int_{0}^{t}\langle\theta, a(s, w) \theta\rangle d s\right], \theta \in \mathbb{R}^{d}
$$

By definition, A is progressively measurable and continuous. Also $\left|\frac{d A}{d t}(t, w)\right|$ is bounded on every compact set in \mathbb{R} and the bound is independent of w. Therefore $A(t, w)$ is of bounded variation on every interval $[0, T]$ with the variation $\|A\|_{[0, T]}$ bounded uniformly in w. Let $M(t, w)=X_{i \theta}(t, w)$. Therefore

$$
\sup _{0 \leq t \leq T}|M(t, w)| \leq e^{1 / 2 T} \sup _{0 \leq t \leq T}|\langle\theta, a \theta\rangle| .
$$

By (ii) $M(t, \cdot)$ is a martingale and since

$$
\begin{aligned}
& E\left(\sup _{0 \leq t \leq T}|M(t, w)|\|A\|_{[0, T]}(w)\right)<\infty, \forall T \\
& M(t, \cdot) A(t, \cdot)-\frac{1}{2} \int_{0}^{t} M(s, \cdot) d A(s, \cdot)
\end{aligned}
$$

is a martingale (for a proof see Appendix), i.e. $Y_{f}(t, w)$ is a martingale when $f(x)=e^{i\langle\theta, x\rangle}$.

Let $f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$. Then $f \in \mathscr{F}\left(\mathbb{R}^{d}\right)$ the Schwartz-space. Therefore by the Fourier inversion theorem

$$
f(x)=\int_{\mathbb{R}^{d}} \hat{f}(\theta) e^{i\langle\theta, x\rangle} d \theta
$$

On simplification we get

$$
Y_{f}(t, w)=\int_{\mathbb{R}^{d}} \hat{f}(\theta) Y_{\theta}(t, w) d \theta
$$

where $Y_{\theta} \equiv Y_{e} i\langle\theta, x\rangle$. Clearly $Y_{f}(t, \cdot)$ is progressively measurable and hence \mathscr{F}_{t}-measurable.

Using the fact that

$$
E\left(\left|Y_{\theta}(t, w)\right|\right) \leq 1+t d|\theta|\|b\|_{\infty}+\frac{d^{2}}{2}|\theta|^{2}\|a\|_{\infty}
$$

the fact that $\mathscr{F}\left(\mathbb{R}^{d}\right) \subset L^{1}\left(\mathbb{R}^{d}\right)$ and that $\mathscr{F}\left(\mathbb{R}^{d}\right)$ is closed under multiplication by polynomials, we get $E\left(\left|Y_{f}(t, w)\right|\right)<\infty$. An application of Fubini's theorem gives $E\left(Y_{f}(t, w) \mid \mathscr{F}_{s}\right)=Y_{f}(s, w)$, if $t>s$. This proves (iii).
(iii) \Rightarrow (iv). Let $u \in C_{0}\left([0, \infty) \times \mathbb{R}^{d}\right)$.

Clearly $Z_{u}(t, \cdot)$ is progressively measurable. Since $Z_{u}(t, w)$ is bounded for every $w, E\left(\left|Z_{u}(t, w)\right|\right)<\infty$. Let $t>s$. Then

$$
\begin{aligned}
& E\left(Z_{u}(t, w)-Z_{u}(s, w) \mid \mathscr{F}_{s}\right)= \\
& =E\left(u \left(t, X(t, w)-u\left(s, X(s, w) \mid \mathscr{F}_{s}\right)-E\left(\int_{s}^{t}\left(\frac{\partial u}{\partial \sigma}+L_{\sigma, w} u\right)\left(\sigma, X(\sigma, w) d \sigma \mid \mathscr{F}_{s}\right)\right.\right.\right. \\
& \quad=E\left(u\left(t, X(t, w)-u(t, X(s, w)) \mid \mathscr{F}_{s}\right)+E\left(u\left(t, X(s, w)-u(s, X(s, w)) \mid \mathscr{F}_{s}\right)-\right.\right. \\
& \quad-E\left(\left.\int_{s}^{t}\left(\frac{\partial u}{\partial \sigma}+L_{\sigma} u_{w}\right)(\sigma, X(\sigma, w)) d \sigma \right\rvert\, \mathscr{F}_{s}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =E\left(\int_{s}^{t}\left(L_{\sigma, w} u\right)(t, X(\sigma, w)) d \sigma \mid \mathscr{F}_{s}\right)+ \\
& +E\left(\int_{s}^{t}\left(\left.\frac{\partial u}{\partial \sigma}(\sigma, X(s, w)) d \sigma \right\rvert\, \mathscr{F}_{s}\right)-\right. \\
& -E\left(\left.\int_{s}^{t}\left(\frac{\partial u}{\partial \sigma}+L \sigma^{u}, w\right)(\sigma, X(\sigma, w)) d \sigma \right\rvert\, \mathscr{F}_{s}\right), \quad \text { by (iii) } \\
& =E\left(\int_{s}^{t}\left[L_{\sigma, w} u(t, X(\sigma, w))-L_{\sigma, w} u(\sigma, X(\sigma, w))\right] d \sigma \mid \mathscr{F}_{s}\right) \\
& +E\left(\left.\int_{s}^{t}\left[\frac{\partial u}{\partial \sigma}(\sigma, X(s, w))-\frac{\partial u}{\partial \sigma}(\sigma, X(\sigma, w))\right] d \sigma \right\rvert\, \mathscr{F}_{s}\right) \\
& =E\left(\int_{s}^{t}\left(L_{\sigma, w} u(t, X(\sigma, w))-L_{\sigma, w} u(\sigma, X(\sigma, w))\right] d \sigma \mid \mathscr{F}_{s}\right) \\
& -E\left(\left.\int_{s}^{t} d \sigma \int_{s}^{\sigma} L_{\rho, w} \frac{\partial u}{\partial \sigma}(\sigma, X(\rho, w)) d \rho \right\rvert\, \mathscr{F}_{s}\right)
\end{aligned}
$$

The last step follows from (iii) (the fact that $\sigma>s$ gives a minus sign).

$$
\begin{aligned}
& =E\left(\left.\int_{0}^{t} d \sigma \int_{\sigma}^{t} \frac{\partial}{\partial \rho} L_{\sigma, w} u(\rho, X(\sigma, w)) d \rho \right\rvert\, \mathscr{F}_{s}\right) \\
& -E\left(\left.\int_{s}^{t} d \sigma \int_{s}^{\sigma} L_{\rho, w} \frac{\partial u}{\partial \sigma}(\sigma, X(\rho, w)) d \rho \right\rvert\, \mathscr{F}_{s}\right) \\
& =0
\end{aligned}
$$

(by Fubini). Therefore $Z_{u}(t, w)$ is a martingale.
Before proving (iv) $\Rightarrow(\mathrm{v})$ we show that (iv) is true if $u \in C_{b}^{1,2}([0, \infty)$ $\times \mathbb{R}^{d}$. Let $u \in C_{b}^{1,2}$.
(*) Assume that there exists a sequence $\left(u_{n}\right) \in C_{0}^{\infty}\left[[0, \infty) \times \mathbb{R}^{d}\right]$ such that

$$
u_{n} \rightarrow u, \frac{\partial u_{n}}{\partial t} \rightarrow \frac{\partial u}{\partial t}, \frac{\partial u_{n}}{\partial x_{i}} \rightarrow \frac{\partial u}{\partial x_{i}}, \frac{\partial u_{n}}{\partial x_{i} \partial x_{j}} \rightarrow \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}
$$

uniformly on compact sets.
Then $Z_{u_{n}} \rightarrow Z_{u}$ pointwise and $\sup \left(\left|Z_{u_{n}}(t, w)\right|\right)<\infty$.
Therefore Z_{u} is a martingale. Hence it is enough to justify (*).
For every $u \in C_{b}^{1,2}\left([0, \infty) \times \mathbb{R}^{d}\right)$ we construct a $u \in C_{b}^{1,2}((-\infty, \infty) \times$ $\left.\mathbb{R}^{d}\right) \equiv C_{b}^{1,2}\left(\mathbb{R} \times \mathbb{R}^{d}\right)$ as follows. Put

$$
u(t, x)=\left\{\begin{array}{l}
u(t, x), \text { if } t \geq 0 \\
C_{1} u(-t, x)+C_{2} u\left(-\frac{t}{2}, x\right), \text { if } t<0
\end{array}\right.
$$

matching $\frac{\partial \tilde{u}}{\partial t}, \frac{\partial u}{\partial t}$ at $t=0$ and $\hat{u}(t, x)$ and $u(t, x)$ at $t=0$ and $\tilde{u}(t, x)$ and $u(t, x)$ at $t=0$ yields the desired constants C_{1} and C_{2}. In fact $C_{1}=-3$, $C_{2}=4 .\left(^{*}\right)$ will be proved if we obtain an approximating sequence for \tilde{u}. Let $S: \mathbb{R}$ be any C function such that if $|x| \leq 1$,

$$
S(x)= \begin{cases}1, & \text { if }|x| \leq 1 \\ 0, & \text { if }|x| \geq 2\end{cases}
$$

Let $S_{n}(x)=S\left(\frac{|x|^{2}}{n}\right)$ where $|x|^{2}=x_{1}^{2}+\cdots+x_{d+1}^{2}$. Pur $u_{n}=S_{n} \tilde{u}$. This satisfies (*).

$$
\text { (iv) } \Rightarrow \text { (v). Let }
$$

$$
h \in C_{b}^{1,2}\left([0, \infty) \times \mathbb{R}^{d}\right)
$$

Put $u=\exp (h(t, x))$ in (iv) to conclude that

$$
M(t, w)=e^{h(t, X(t, w))}-\int_{0}^{t} e^{h(s, X(s, w))}\left[\frac{\partial h}{\partial s}+L_{s, w} h+\frac{1}{2}\left\langle\nabla_{x} h, a \nabla_{x} h\right\rangle d s\right]
$$

is a martingale.

$$
A(t, w)=\exp -\left[\int_{0}^{t} \frac{\partial h}{\partial s}(s, w)+L_{s, w}-(s, w)+\frac{1}{2}\left\langle a(s, w) \nabla_{x} h, \nabla_{x} h\right\rangle d s\right] .
$$

$A((t, w))$ is progressively measurable, continuous everywhere and

$$
\|A\|_{[0, T]}(w) \leq C_{1} \in C_{2} T
$$

where C_{1} and C_{2} are constants. This follows from the fact that $\left|\frac{d A}{d t}\right|$ is uniformly bounded in w. Also $\sup _{0 \leq t \leq T}|M(t, w)|$ is uniformly bounded in w. Therefore

$$
E\left(\sup _{0 \leq t \leq T}|M(t, w)|\|A\|_{[0, T]}(w)\right)<\infty .
$$

Hence $M(t, \cdot) A-\int_{0}^{t} M(s, \cdot) d A(s, \cdot)$ is a martingale. Now

$$
\frac{d A(s, w)}{A(s, w)}=-\left[\frac{\partial h}{\partial s}(s, w)+L_{s, w} h(s, w)+\frac{1}{2}\left\langle a \nabla_{x} h, \nabla_{x} h\right\rangle\right]
$$

Therefore

$$
\begin{gathered}
M(t, w)=e^{h(t, X(t, w))}+\int_{0}^{t} e^{h(s, X(s, w))} \frac{d A(s, w)}{A(s, w)} \\
M(t, w) A(t, w)=P_{h}(t, w)+A(t, w) \int_{0}^{t} e^{h(s, X(s, w))} \frac{d A(s, w)}{A(s, w)} \\
\int_{0}^{t} M(s, \cdot) d A(s, \cdot)=\int_{0}^{t} e^{h(s, X(s, w))} d A(s, w) \\
+\int_{0}^{t} d A(s, w) \int_{0}^{s} e^{h(\sigma, X(\sigma, w))} \frac{d A(\sigma, w)}{A(\sigma, w)}
\end{gathered}
$$

Use Fubini's theorem to evaluate the second integral on the right above and conclude that $P_{h}(t, w)$ is a martingale.
$(\mathrm{vi}) \Rightarrow$ (i) is clear if we take $h(t, x)=\langle\theta, x\rangle$. It only remains to prove that $(\mathrm{v}) \Rightarrow(\mathrm{vi})$.
(v) \Rightarrow (vi). The technique used to prove this is an important one and we shall have occasion to use it again.

109 Step 1. 0 Let $h(t, x)=\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots \theta_{d} x_{d}=\langle\theta, x\rangle$ for every $(t, x) \in$ $[0, \infty) \times \mathbb{R}^{d}, \theta$ is some fixed element of \mathbb{R}^{d}. Let

$$
Z(t)=\exp \left[\left\langle\theta, X_{t}\right\rangle-\int_{0}^{t}\langle\theta, b\rangle d s-\frac{1}{2} \int_{0}^{t}\langle\theta, a \theta\rangle d s\right]
$$

We claim that $Z(t, \cdot)$ is a supermartingale.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{∞} function with compact support such that $f(x)=x$ in $|x| \leq 1 / 2$ and $|f(x)| \leq 1, \forall x$. Put $f_{n}(x)=n f(x / n)$. Therefore $\left|f_{n}(x)\right| \leq C|x|$ for some C independent of n and x and $f_{n}(x)$ converges to x.

Let $h_{n}(x)=\sum_{i=1}^{d} \theta_{i} f_{n}\left(x_{i}\right)$. Then $h_{n}(x)$ converges to $\langle\theta, x\rangle$ and $\left|h_{n}(x)\right| \leq$ $C^{\prime}|x|$ where C is also independent of n and x. By (v),

$$
Z_{n}(t)=\exp \left[h_{n}\left(t, X_{t}\right)-\int_{0}^{t}\left(\frac{\partial h_{n}}{\partial s}+L_{s, w} h\right) d s-\frac{1}{2} \int_{0}^{t}\left\langle a \nabla_{x} h_{n}, \nabla_{x} h_{n}\right\rangle d s\right]
$$

is a martingale. As $h_{n}(x)$ converges to $\langle\theta, x\rangle, Z_{n}(t, \cdot)$ converges to $Z(t, \cdot)$ pointwise. Consequently

$$
E(Z(t))=E\left(\underline{\lim } Z_{n}(t)\right) \leq \underline{\lim } E\left(Z_{n}(t)\right)=1
$$

and $Z(t)$ is a supermartingale.
Step 2. $E(\exp B \sup |X(s, w)|)<\infty$ for each t and B. For, let $Y(w)=$ $\sup _{0 \leq s \leq t}|X(s, w)|, Y_{i}(w)=\sup _{0 \leq s \leq t}\left|X_{i}(s, w)\right|$ where $X=\left(X_{1}, \ldots, X_{d}\right)$. Clearly $Y \leq Y_{1}+\cdots+Y_{d}$. Therefore

$$
E\left(e^{B Y}\right) \leq E\left(e^{B Y} 1 e^{B Y} 2 \ldots e^{B Y} d\right)
$$

110 The right hand side above is finite provided $E\left(e^{B Y} i\right)<\infty$ for each i as can be seen by the generalised Holder's inequality. Thus to prove the assertion it is enough to show $E\left(e^{B Y} i\right)<\infty$ for each $i=1,2, \ldots d$ with $a B^{\prime}$ different from B; more specifically for B^{\prime} bounded.

Put $\theta_{2}=0=\theta_{3}=\ldots=\theta_{d}$ in Step 1 to get

$$
u(t)=\exp \left[\theta_{1} X_{1}(t)-\int_{0}^{t} \theta_{1} b_{1}(s, \cdot) d s-\frac{1}{2} \theta_{1}^{2} \int_{0}^{t} a_{11}(s, \cdot) d s\right]
$$

is a supermartingale. Therefore

$$
P\left(\sup _{0 \leq s \leq t} u(s, \cdot) \geq \lambda\right) \leq \frac{1}{\lambda} E(u(t))=\frac{1}{\lambda}, \forall \lambda>0 .
$$

(Refer section on Martingales). Let c be a common bound for both b_{1} and a_{11} and let $\theta_{1}>0$. Then $(*)$ reads

$$
P\left(\sup _{0 \leq s \leq t} \exp \theta_{1} X_{1}(s) \geq \lambda \exp \left(\theta_{1} c t+\frac{1}{2} \theta_{1}^{2} c t\right)\right) \leq \frac{1}{\lambda}
$$

Replacing λ by

$$
e^{\lambda \theta_{1}} e^{-c t \theta_{1}-1 / 2 c t \theta_{1}^{2}}
$$

we get

$$
P\left(\sup _{0 \leq s \leq t} \exp \theta_{1} X_{1}(s) \geq \exp \lambda \theta_{1}\right) \leq e^{-\lambda \theta_{1}+\theta_{1} c t+1 / 2 \theta_{1}^{2} c t}
$$

i.e.

$$
P\left(\sup _{0 \leq s \leq t} X_{1}(s) \geq \lambda\right) \leq e^{-\lambda \theta_{1}+\theta_{1} c t+1 / 2 \theta_{1}^{2} c t}, \forall \theta_{1}>0
$$

Similarly

$$
P\left(\sup _{0 \leq s \leq t}-X_{1}(s) \geq \lambda\right) \leq e^{-\lambda \theta_{1}+\theta_{1} c t+1 / 2 \theta_{1}^{2} t c}, \forall \theta_{1}>0
$$

As

$$
\left\{Y_{1}(w) \geq \lambda\right\}\left\{\sup _{0 \leq s \leq t} X_{1}(s) \geq \lambda\right\} \cup\left\{\sup _{0 \leq s \leq t}-X_{1}(s) \geq \lambda\right\}
$$

we get

$$
P\left\{Y_{1} \geq \lambda\right\} \leq 2 e^{-\lambda \theta_{1}+\theta_{1} c t+1 / 2 \theta_{1}^{2} c t}, \forall \theta_{1}>0
$$

Now we get

$$
\begin{aligned}
E\left(\exp B Y_{1}\right) & =\frac{1}{B} \int_{0}^{\infty} \exp (B x) P\left(Y_{1} \geq x\right) d x \quad\left(\text { since } Y_{1} \geq 0\right) \\
& \leq \frac{2}{B} \int_{0}^{\infty} \exp \left(B x-x \theta_{1}+\theta_{1} c t+\frac{1}{2} \theta_{1}^{2} c t\right) d x \\
& <\infty, \quad \text { if } \quad B<\theta_{1}
\end{aligned}
$$

This completes the proof of step 2 .
Step 3. $Z(t, w)$ is a martingale. For

$$
\begin{gathered}
\left|Z_{n}(t, w)\right|=Z_{n}(t, w) \\
=\exp \left[h_{n}\left(X_{t}\right)-\int_{0}^{t}\left(\frac{\partial h_{n}}{\partial s}+L_{s, w} h_{n}\right) d x-\frac{1}{2} \int_{0}^{t}\left\langle a \nabla_{x} h_{n}, \nabla_{x} h_{n}\right\rangle d s\right] \\
\leq \exp \left[h_{n}\left(X_{t}\right)-\int_{0}^{t} L_{s, w} h_{n}\right]
\end{gathered}
$$

(since a is positive semidefinite and $\partial h_{n} / \partial s=0$).
Therefore $\left|Z_{n}(t, w)\right| \leq A \exp \left(B \sup _{0 \text { st }}|X(s, w)|\right)$ (use the fact that $\left|h_{n}(s)\right| \leq C|x|$ and $\frac{\partial h_{n}}{\partial x_{i}}, \frac{\partial^{2} h_{n}}{\partial x_{i} \partial x_{j}}$ are bounded by the same constant). The result now follows from the dominated convergence theorem and Step 2.

Remark. In Steps 1, 2 and 3 we have proved that $(\mathrm{v}) \Rightarrow$ (i). The idea of the proof was to express $Z(t, \cdot)$ as a limit of a sequence of martingales proving first that $Z(t, \cdot)$ is a supermartingale. Using the supermartingale inequality it was then shown that $\left(Z_{n}\right)$ is a uniformly integrable family proving thereby that $Z(t, \cdot)$ is a martingale.

Step 4. Let $h(t, x) \in C^{1,2}\left([0, \infty) \times \mathbb{R}^{d}\right)$ such that $h(t, x), \frac{\partial h}{\partial s}(t, x), \frac{\partial h}{\partial x_{i}}(t, x)$, $\frac{\partial^{2} h}{\partial x_{i} \partial x_{j}}(t, x)$ are all dominated by $\alpha|x|+\beta$ for some suitable scalars α and β. Let ϕ_{n} be a sequence of real valued C^{∞} functions defined on \mathbb{R}^{d} such that

$$
\phi_{n}=\left\{\begin{array}{l}
1 \text { on }|x| \leq n \\
0 \text { on }|x| \geq 2 n
\end{array}\right.
$$

and suppose there exists a common bound C for

$$
\phi_{n}, \frac{\partial \phi_{n}}{\partial x_{i}}, \frac{\partial^{2} \phi_{n}}{\partial x_{i} \partial x_{j}}(\forall n) .
$$

Let $h_{n}(t, x)=h(t, x) \phi_{n}(x)$. By (v) $Z_{h_{n}}(t, w)$ is a martingale. The conditions on the function h and ϕ_{n} 's show that

$$
\left|Z_{h_{n}}(t, w)\right| \leq A \exp \left(B \sup _{0 \leq s \leq t}|X(s, w)|\right)
$$

where A and B are constants. By Step $2,\left(Z_{h_{n}}\right)$ are uniformly integrable. Also $Z_{h_{n}}(t, \cdot)$ converges pointwise to $P_{h}(t, \cdot)$ (since $h_{n} \rightarrow h$ pointwise). By the dominated convergence theorem $P_{h}(t, \cdot)$ is a martingale, proving (vi).

16. Itô's Formula

Motivation. Let $\beta(t)$ be a one-dimensional Brownian motion. We have
seen that the left integral

$$
\begin{equation*}
L\left[2 \int_{0}^{t} \beta(s, \cdot) d \beta\right]=\left[\beta^{2}(t, \cdot)-\beta^{2}(0, \cdot)-t\right] \tag{*}
\end{equation*}
$$

Formally (*) can be written as

$$
d \beta^{2}(t)=2 \beta(t) d \beta(t)+d t
$$

For, on integrating we recover (*).
Newtonian calculus gives the result:

$$
d f(\beta(t))=f^{\prime}(\beta(t)) d \beta(t)+\frac{1}{2} f^{\prime \prime}(\beta(t)) d \beta^{2}(t)+\cdots
$$

for reasonably smooth functions f and β. If β is of bounded variation, only the first term contributes something if we integrate the above equation. This is because $\sum d \beta^{2}=0$ for a function of bounded variation. For the Brownian motion we have seen that $\sum d \beta^{2} \rightarrow$ a non zero value, but one can prove that $\sum d \beta^{3}, \ldots$ converge to 0 . We therefore expect the following result to hold:

$$
d f(\beta(t)) \approx f^{\prime}(\beta(t)) d \beta(t)+\frac{1}{2} f^{\prime \prime}(\beta(t)) d^{2} \beta(t)
$$

We show that for a one-dimensional Brownian motion

$$
\sum(d \beta)^{3}, \quad \sup (d \beta)^{4}, \ldots
$$

all vanish.

$$
\begin{gathered}
\hline a=t_{0} \quad t_{1} \quad t_{2} \quad t_{3} \\
E\left(\sum(d \beta)^{3}\right)=E\left(\sum_{i=0}^{n}\left[\beta\left(t_{i+1}\right)-\beta\left(t_{i}\right)\right]^{3}\right)=\sum_{i=0} E\left[\left(\beta\left(t_{i+1}\right)-\beta\left(t_{i}\right)\right]^{3}\right. \\
=\sum_{i=1}^{n} 0=0
\end{gathered}
$$

114 because $\beta\left(t_{i+1}\right)-\beta\left(t_{i}\right)$ is a normal random variable with mean zero and variance $t_{i+1}-t_{i}$. Similarly the higher odd moments vanish. Even moments of a normal random variable with mean 0 and variance σ^{2} are connected by the formula

$$
\mu_{2 k+2}=\sigma^{2}(2 k+1) \mu_{2 k}, k>1
$$

So

$$
\sum(d \beta)^{4}=\sum_{i=0}^{n}\left(\beta\left(t_{i+1}\right)-\beta\left(t_{i}\right)\right)^{4}
$$

Therefore

$$
\begin{aligned}
E\left(\sum(d \beta)^{4}\right) & =\sum_{i=0}^{n} E\left(\left[\beta\left(t_{i+1}\right)-\beta\left(t_{i}\right)\right)^{4}\right] \\
& =3 \sum_{i=0}^{n}\left(t_{i+1}-t_{i}\right)^{2}
\end{aligned}
$$

the right hand side converges to 0 as the mesh of the partition goes to 0 . Similarly the higher order even moments vanish.

More generally, if $\beta(t, \cdot)$ is a d-dimensional Brownian motion then we expect

$$
d f(\beta(t)) \approx \nabla f(\beta(t)) \cdot d \beta(t)+\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} d \beta_{i} d \beta_{j}
$$

However $\sum d \beta_{i} d \beta_{j}=0$ if $i \neq j$ (see exercise below). Therefore

$$
d f(\beta(t)) \approx \nabla f(\beta(t)) \cdot d \beta(t)+\frac{1}{2} \Delta f(\beta(t)) d \beta^{2}(t)
$$

The appearance of Δ on the right side above is related to the heat equation.

Exercise 4. Check that $d \beta_{i} d \beta_{j}=\delta_{i j} d t$.
(Hint: For $i=j$, the result was proved earlier. If $i \neq j$, consider a partition $0=t_{0}<t_{1}<\ldots<t_{n}=t$. Let $\Delta_{k} \beta_{i}=\beta_{i}\left(t_{k}\right)-\beta_{i}\left(t_{k-1}\right)$. Then

$$
E\left(\sum_{k=1}^{n} \Delta_{k} \beta_{i} \Delta_{k} \beta_{j}\right)^{2}=\sum_{k} E\left(\Delta_{k}^{2} \beta_{i} \Delta_{k}^{2} \beta_{j}\right)+2 \sum_{k \neq l} E\left[\left(\Delta_{k} \beta_{i}\right)\left(\Delta_{1} \beta_{j}\right)\right]
$$

the right side converges to 0 as $n \rightarrow \infty$ because $\Delta_{k} \beta_{i}$ and $\Delta_{\ell} \beta_{j}$ are independent for $k \neq \ell$).

Before stating Itô's formula, we prove a few preliminary results.
Lemma 1. Let $X(t, \cdot) \in I[b, 0]$ be a one-dimensional Itô process. Then

$$
X(t, \cdot)-X(0, \cdot)=\int_{0}^{t} b(s, \cdot) d s \quad \text { a.e. }
$$

Proof. $\exp \left[\theta X(t, \cdot)-\theta X(0, \cdot)-\theta \int_{0}^{t} b(s, \cdot) d s\right]$ is a martingale for each θ. Therefore

$$
E\left(\exp \left[\theta(X(t, \cdot)-X(0, \cdot))-\theta \int_{0}^{t} b(s, \cdot) d s\right]\right)=\text { constant }=1, \forall t
$$

Let

$$
W(t, \cdot)=X(t, \cdot)-X(0, \cdot)-\int_{0}^{t} b(s, \cdot) d s
$$

Then
$E(\exp \theta W(t, \cdot))=$ Moment generating function of $w=1, \forall t$.
Therefore $\theta(t, \cdot)=0$ a.e.

116 Remark. If $X(t, \cdot) \in I[0,0]$ then $X(t, \cdot)=X(0, \cdot)$ a.e.; i.e. $X(t, \cdot)$ is a trivial process.

We now state a theorem, which is a particular case of the theorem on page 103

Theorem. If $h \in C^{1,2}\left([0, \infty) \times \mathbb{R}^{d}\right)$ such that (i) $|h(x)| \leq A|x|+B$, $\forall x \in[0, \infty) \times \mathbb{R}^{d}$, for constants A and B (ii) $\frac{\partial h}{\partial t}, \frac{\partial h}{\partial x_{i}}, \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}}$ also grow linearly, then

$$
\exp \left[h \left(t, \beta(t, \cdot)-\int_{0}^{t}\left(\frac{\partial h}{\partial s}+\frac{1}{2} \Delta h\right)\left(s, \beta(s, \cdot)-\frac{1}{2} \int_{0}^{t}|\nabla h|^{2}(s, \beta(s, \cdot)) d s\right]\right.\right.
$$

is a martingale.
Ito's Formula. Let $f \in C_{0}^{1,2}\left([0, \infty) \times \mathbb{R}^{d}\right)$ and let $\beta(t, \cdot)$ be a d-dimensional Brownian motion. Then

$$
\begin{aligned}
& f(t, \beta(t))-f(0, \beta(0))=\int_{0}^{t} \frac{\partial f}{\partial s}(s, \beta(s, \cdot)) d s+ \\
& \quad+\int_{0}^{t}\langle\nabla f(s, \beta(s, \cdot)), d \beta(s, \cdot)\rangle+\frac{1}{2} \int_{0}^{t} \Delta f(s, \beta(s, \cdot)) d s .
\end{aligned}
$$

where

$$
\Delta \equiv \frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{d}^{2}}
$$

Proof.
Step 1. Consider a $(d+1)$-dimensional process defined by

$$
\begin{aligned}
& X_{0}(t, \cdot)=f(t, \beta(t, \cdot)), \\
& X_{j}(t, \cdot)=\beta_{j}(t, \cdot) .
\end{aligned}
$$

We claim that $X(t, \cdot) \equiv\left(X_{0}, X_{1}, \ldots, X_{d}\right)$ is a $(d+1)$-dimensional Itôprocess with parameters

$$
b=\left[\left(\frac{\partial f}{\partial s}+\frac{1}{2} \Delta f\right)(s, \beta(s, \cdot)), 0,0, \ldots 0\right] \quad d \text { terms }
$$

and

$$
a=\left[\begin{array}{cccc}
a_{00} & a_{01} & \ldots & a_{0 d} \\
a_{10} & & & \\
\ddots & & & I_{d \times d} \\
a_{d 0} & & &
\end{array}\right]
$$

where

$$
\begin{aligned}
a_{00} & =\left|\nabla_{x} f\right|^{2}(s, \beta(s, \cdot)), \\
a_{0 j} & =\left(\frac{\partial}{\partial x_{j}} f\right)(s, \beta(s, \cdot)), \\
a_{j 0} & =a_{0 j}
\end{aligned}
$$

For, put $h=\lambda f(t, x)+\langle\theta, x\rangle, x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, in the previous theorem. Then

$$
\frac{\partial h}{\partial s}=\lambda \frac{\partial f}{\partial s}, \Delta h=\lambda \Delta f, \frac{\partial h}{\partial x_{j}}=\lambda \frac{\partial f}{\partial x_{j}}+\theta_{j} .
$$

Therefore we seen that

$$
\begin{aligned}
& \exp \left[\lambda f(t, \beta(t, \cdot))+\langle\theta, \beta(t, \cdot)\rangle-\lambda \int_{0}^{t}\left(\frac{\partial f}{\partial s}+\frac{1}{2} \Delta_{x} f\right)(s, \beta(s, \cdot) d s\right. \\
& \left.-\frac{1}{2} \lambda^{2} \int_{0}^{t}|\nabla f|^{2}(s, \beta(s, \cdot)) d s-\frac{1}{2}|\theta|^{2} t-\lambda\left\langle\theta, \int_{0}^{t} \nabla(f(s, \beta(s, \cdot))) d s\right\rangle\right]
\end{aligned}
$$

is a martingale.
Consider $(\lambda, \theta) a\binom{\lambda}{\theta}$. We have

$$
a\left[\begin{array}{l}
\lambda \\
\theta
\end{array}\right]=\left[\begin{array}{c}
a_{00} \lambda+\sum_{j=1}^{d} a_{0 j} \theta_{j} \\
\rho+\theta
\end{array}\right], \quad \rho=\lambda\left[\begin{array}{c}
a_{10} \\
\ddots \\
a_{d 0}
\end{array}\right]
$$

Therefore

$$
\begin{aligned}
(\lambda, \theta) a\left[\begin{array}{l}
\lambda \\
\theta
\end{array}\right] & =a_{00} \lambda^{2}+\lambda \sum_{j=1}^{d} a_{0 j} \theta_{j}+\sum_{j=1}^{d} a_{0 j} \theta_{j}+ \\
& =\lambda^{2}|\nabla f|^{2}+2 \lambda \frac{\partial f}{\partial x_{j}} \theta_{j}+|\theta|^{2}
\end{aligned}
$$

Thus (*) reads

$$
\exp \left[\lambda f\left(t, \beta(t, \cdot)+\langle\theta, \beta(t, \cdot)\rangle-\lambda \int_{0}^{t} b_{0}(s, \cdot) d s-\frac{1}{2} \int_{0}^{t}\langle\alpha, a \alpha\rangle d s\right]\right.
$$

is a martingale where $\alpha=(\lambda, \theta) \in \mathbb{R}^{d+1}$. This proves the claim made above.

Step 2. Derine $\sigma(s, \cdot)=\left(1,-\nabla_{x} f(s, \beta(s, \cdot))\right)$ and let

$$
Z(t, \cdot)=\int_{0}^{t}\langle\sigma(s, \cdot), d X(s, \cdot)\rangle \text { where } X \approx\left(X_{0}, X_{1}, \ldots, X_{d}\right)
$$

is the $(d+1)$-dimensional Itô process obtained in Step 1. Since $f \in C_{b}^{1,2}$, $Z(t, \cdot)$ is an Itô process with parameters $\langle\sigma, b\rangle$ and $\sigma a \sigma^{*}$:

$$
\begin{aligned}
\langle\sigma, b\rangle & =\frac{\partial f}{\partial s}+\frac{1}{2} \Delta f, \\
a \sigma^{*} & =\left[\begin{array}{cc}
a_{00} & \rho \\
\rho^{*} & I
\end{array}\right]\left[\begin{array}{c}
1 \\
-\nabla_{x} f
\end{array}\right] \\
& =\left[\begin{array}{c}
a_{00}-\left\langle\rho, \nabla_{x} f\right\rangle \\
\rho^{*}-\nabla_{x} f
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
\end{aligned}
$$

Therefore $\sigma a \sigma^{*}=0$. Hence by Lemma

$$
Z(t, \cdot)-Z(0, \cdot)-\int_{0}^{t}\langle\sigma, b\rangle d s=0(\text { a.e. }),
$$

$$
\begin{aligned}
Z(t, \cdot) & =\int_{0}^{t} d X_{0}(s)-\int_{0}^{t}\langle\nabla f(s, \beta(s, \cdot)), d \beta(s, \cdot)\rangle \\
& =f(t, \beta(t))-f(0, \beta(0))-\int_{0}^{t}\langle\nabla f(f, \beta(s, \cdot)), d \beta(s, \cdot)\rangle
\end{aligned}
$$

Hence $Z(0)=0$. Thus

$$
\begin{aligned}
f(t, \beta(t)) & -f(0, \beta(0))-\int_{0}^{t}\langle\nabla f(s, \beta(s, \cdot)) d \beta(s, \cdot)\rangle- \\
& -\int_{0}^{t}\left(\frac{\partial f}{\partial s}+\frac{1}{2} \Delta_{x} f\right)(s, \beta(s, \cdot)) d s=0 \text { a.e. }
\end{aligned}
$$

This estabilished Itô's formula.

Exercise. (Itô's formula for the general case). Let

$$
\phi(t, x) \in C_{b}^{1,2}\left([0, \infty) \times \mathbb{R}^{d}\right)
$$

If $X(t, \cdot)$ is a d-dimensional Itô process corresponding to the parameters b and a, then the following formula holds:

$$
=\int_{0}^{\phi(t, X(t, w))-\phi(0, X(0, w))} \frac{\partial \phi}{\partial s}(s, X(s, x)) d s+\int_{0}^{t}\left\langle\nabla_{x} \phi, d X\right\rangle+\frac{1}{2} \int_{0}^{t} \sum a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} d s
$$

This is also written as

$$
d \phi(s, X(s, w))=\phi_{s} d s+\left\langle\nabla_{x} \phi, d X\right\rangle+\frac{1}{2} \sum a_{i j} \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}} d x
$$

To prove this formula proceed as follows.
(i) Take $h(t, x)=\lambda \phi(t, x)+\langle\theta, x\rangle$ in (vi) of the theorem on the equivalence of Itô process to conclude that

$$
Y(t, \cdot)=(\phi(t, X(t, \cdot)), X(t, \cdot))
$$

is a $(d+1)$-dimensional Ito process with parameters

$$
b^{\prime}=\left(\frac{\partial \phi}{\partial t}+L_{s, w} \phi, b\right)
$$

and

$$
A=\left|\begin{array}{cc}
\left\langle a \nabla_{x} \phi, \nabla_{x} \phi\right\rangle, & a \nabla_{x} \phi \\
1 \times 1 & 1 \times d \\
a \nabla_{x} \phi & a \\
d \times 1 & d \times d
\end{array}\right|
$$

(ii) Let $\sigma(t, x)=\left(1,-\nabla_{x} \phi(t, x)\right)$ and

$$
Z(t, \cdot)=\int_{0}^{t}\langle\sigma(s, X(s, \cdot)), d Y(s, \cdot)\rangle
$$

The assumptions on ϕ imply that Z is an Itô process corresponding to

$$
\left(\left\langle\sigma, b^{\prime}\right\rangle, \sigma A \sigma^{*}\right) \equiv\left(\frac{\partial \phi}{\partial t}+\frac{1}{2} \sum a_{i j} \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}, 0\right)
$$

(iii) Use (ii) to conclude that

$$
Z(t, \cdot)=\int_{0}^{t}\left\langle\sigma, b^{\prime}\right\rangle d s \quad \text { a.e. }
$$

This is Itô's formula.
(iv) (Exercise) Verify that Itô's formula agrees with the formula obtained for the case of Brownian motion.

Note. Observe that Itô's formula does not depend on b.

Examples. 1. Let $\beta(t)$ be a one-dimensional Brownian motion. Then

$$
\begin{aligned}
d\left(e^{t} \phi(\beta(t))=\right. & e^{t} d \phi(\beta(t))+\phi(\beta(t)) d\left(e^{t}\right) \\
= & e^{t} \phi^{\prime}(\beta(t)) d \beta(t)+\phi(\beta(t)) e^{t} d t+ \\
& +\frac{1}{2} \phi^{\prime \prime}(\beta(t)) e^{t} d t .
\end{aligned}
$$

2. To evaluate $d\left(e_{e}^{t} V(\beta(s)) d s u,(t, \beta(t))\right)$ where V is a smooth function, 121 put

$$
\begin{aligned}
& X_{2}(t, \cdot)=\int_{0}^{t} V(\beta(s, \cdot)) d s, b=\left[\begin{array}{c}
0 \\
V((t, \cdot))
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] \\
& a=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] . \operatorname{Let} X_{1}(t, \cdot)=\beta(t, \cdot), X=\left(X_{1}, X_{2}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \exp \left[\theta_{1} X_{1}(t, \cdot)-\theta_{2} X_{2}(t, \cdot)-\theta_{1} \int_{0}^{t} b_{1}(X(s, \cdot)) d s\right. \\
& \left.\quad-\theta_{2} \int_{0}^{t} b_{2}(X(s, \cdot)) d s-\frac{1}{2} \int_{0}^{t}\langle a \theta, \theta\rangle d s\right] \\
& \quad \exp \left[\theta_{1} X_{1}(t, \cdot)-\frac{\theta_{1^{2}}^{2}}{2} t\right]
\end{aligned}
$$

the right side is a martingale. Therefore $\left(X_{1}, X_{2}\right)$ is a 2 -dimensional Itô process with parameters b and a and one can use Itô's formula to write

$$
\begin{gathered}
d\left(e \int_{0}^{\int_{0}^{t} V(\beta(s,)) d s} u(t, \beta(t))\right)=d\left(e^{X_{2}(t)} u(t, \beta(t))\right) \\
=e^{\int_{0}^{t} V(\beta(s,))} \frac{\partial}{\partial t} u(t, \beta(t)) d t+ \\
+e^{\int_{0}^{t} V(\beta(s,)) d t} \frac{\partial}{\partial x} u(t, \beta(t)) d(t)+e^{\int_{0}^{t} V(\beta(s,)) d s} u(t, \beta(t)) d X_{2}
\end{gathered}
$$

$$
\begin{gathered}
+\frac{1}{2} e^{\int_{0}^{t} V(\beta(s, \cdot) d s} \frac{\partial}{\partial t} u(t, \beta(t)) d t \\
=e^{\int_{0}^{t} V(\beta(s, \cdot)) d t} \frac{\partial}{\partial t} u(t, \beta(t)) d t+\frac{\partial}{\partial t} u(t, \beta(s)) d(t)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} u(t, \beta(t)) d t \\
\quad+u(t, \beta(t)) V(\beta(t, \cdot) d t]
\end{gathered}
$$

3. Let $\sigma_{i}, f_{i}, i=1,2, \ldots k$ be bounded and progressively measurable relative to a one-dimensional Brownian motion $\left(\Omega, \mathscr{F}_{t}, P\right)$. Write

$$
X_{i}(t, \cdot)=\int_{0}^{t} \sigma_{i}(s, \cdot) d \beta(s, \cdot)+\int_{0}^{t} f_{i}(s, \cdot) d s
$$

Then $X_{i}(t, \cdot)$ is an Itô process with parameters $\left(\int_{0}^{t} f_{i}(s, \cdot) d s, \sigma_{i}^{2}\right)$ and $\left(X_{1}, \ldots, X_{k}\right)$ is an Itô process with parameters

$$
\begin{aligned}
& B=\left(\int_{0}^{t} f_{1}(s, \cdot) d s, \ldots, \int_{0}^{t} f_{k}(s, \cdot) d s\right) \\
& A=\left(A_{i j}\right) \text { where } A_{i j}=\sigma_{i} \sigma_{j} \delta_{i j}
\end{aligned}
$$

If $\phi \equiv \phi\left(t, X_{1}(t) \ldots, X_{k}(t)\right)$, then by Itô's formula

$$
\begin{aligned}
d \phi= & \frac{\partial \phi}{\partial s} d s+\frac{\partial \phi}{\partial x_{1}} d X_{1}+\cdots+\frac{\partial \phi}{\partial x_{k}} d X_{k} \\
& +\frac{1}{2} \sum \sigma_{i} \sigma_{j} \delta_{i j} \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}} d s \\
= & \frac{\partial \phi}{\partial s} d s+\frac{\partial \phi}{\partial x_{1}} d X_{1}+\cdots+\frac{\partial \phi}{\partial x_{k}} d X_{k} \\
& +\frac{1}{2} \sum_{i=1}^{k} \sigma_{i}^{2} \frac{\partial \phi}{\partial x_{i}} d s
\end{aligned}
$$

Exercise. Take $\sigma_{1}=1, \sigma_{2}=0, f_{1}=f_{2}=0$ above and verify that if

$$
\phi=e^{X_{2}(t, \cdot)} u(t, \beta(t))
$$

then one gets the result obtained in Example 2 above.

We give below a set of rules which can be used to calculate $d \phi$ in practice, where ϕ is as in Example 3 above.

1. With each $d \beta$ associate a term $\sqrt{ }(d t)$
2. If $\phi=\phi\left(t, X_{1}, \ldots, X_{k}\right)$, formally differentiate ϕ using ordinary calculus retaining terms upto the second order to get
(*) $d \phi=\frac{\partial \phi}{\partial t} d t+\frac{\partial \phi}{\partial x_{1}} d X_{1}+\cdots+\frac{\partial \phi}{\partial x_{k}} X_{k}+\frac{1}{2} \sum \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}} d X_{i} d X_{j}$
3. Formally write $d X_{i}=f_{i} d t+\alpha_{i} d \beta_{i}, d X_{j}=\sigma_{j} d \beta_{j}+f_{j} d t$.
4. Multiply $d X_{i} d X_{j}$ and retain only the first order term in $d t$., For $d \beta_{i} d \beta_{j}$ substitute $\delta_{i j} d t$. Substitute in (*) to get the desired formula.

Illustration of the use of Itô Calculus. We refer the reader to the section on Dirichlet problem. There it was shown that

$$
u(x)=\int_{G} u(y) \pi(x, d y)=E(u(X(\tau)))
$$

satisfies $\Delta u=0$ in a region G with $u=u(X(\tau))$ on the boundry of G (here τ is the first hitting time).

The form of the solution is given directly by Itô's formula (without having recourse to the mean value property). If $u=u(X(t))$ satisfies $\Delta u=0$ then by Itô's formula

$$
d u(X(t))=\langle\nabla u, d X\rangle
$$

Therefore

$$
u(X(t))=u(X(0))+\int_{0}^{t}\langle\nabla u(X(s)), d X(s)\rangle
$$

124
Assuming ∇u to be bounded, we see that $u(X(t))$ is a martingale. By the optional stopping theorem

$$
E(u(X(\tau))=u(X(0))=u(x)
$$

Thus Itô's formula connects solutions of certain differential equations with the hitting probabilities.

17. Solution of Poisson's Equations

LET $X(t, \cdot)$ BE A d-dimensional Brownian motion with $\left(\Omega, \mathscr{F}_{t}, P\right)$ as 125 usual. Let $u(x): \mathbb{R}^{d} \rightarrow \mathbb{R}$ be such that $\frac{1}{2} \Delta u=f$. Assume $u \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$. Then $L_{s, w} u \equiv \frac{1}{2} \Delta u=f$ and we know that $u(X(t, \cdot))-\int_{0}^{t} f(X(s, \cdot)) d s$ is a $\left(\Omega, \mathscr{F}_{t}, P\right)$-martingale. Suppose now that $u(x)$ is defined only on an open subset $G \subset \mathbb{R}^{d}$ and $\frac{1}{2} \Delta u=f$ on G. We would like to consider

$$
Z(t, \cdot)=u(X(t, \cdot))-\int_{0}^{t} f(X(s, \cdot)) d s
$$

and ask whether $Z(t, \cdot)$ is still a martingale relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$. Let $\tau(w)=\inf \{t, X(t, w) \in \partial G\}$. Put this way, the question is not well-posed because $Z(t, \cdot)$ is defined only upto time $\tau(w)$ for u is not defined outside G. Even if at a time $t>\tau(w) X(t, w) \in G$, one needs to know the values of f for $t>\tau(w)$ to compute the integral.

To answer the question we therefore proceed as follows. Let $A_{t}=$ [$w: \tau(w)>t$]. As t increases, A_{t} have decreasing measures. We shall give a meaning to the statement ' $Z(t, \cdot)$ is a martingale on A_{t} '. Define

$$
\bar{Z}(t, \cdot)=u(X(\tau \wedge t, \cdot))-\int_{0}^{\tau \wedge t} f(X(s, \cdot)) d s
$$

Therefore

$$
\bar{Z}(t, \cdot)= \begin{cases}Z(t), & \text { on } A_{t} \\ Z(\tau, \cdot), & \text { on }\left(A_{t}\right)^{c}\end{cases}
$$

Since $Z(t, \cdot)$ is progressively measurable upto time $\tau, \bar{Z}(t, \cdot)$ is $\mathscr{F}_{t^{-}}$ measurable.

Theorem. $\bar{Z}(t, \cdot)$ is a martingale.
Proof. Let G_{n} be a sequence of compact sets increasing to G such that $G_{n} \subset G_{n+1}^{0}$. Choose a C^{∞} function ϕ_{n} such that $\phi_{n}=1$ on G_{n} and support $\phi_{n} \subset G$. Put $u_{n}=\phi_{n} u$ and $f_{n}=\frac{1}{2} \Delta u_{n}$. Then

$$
Z_{n}(t, \cdot)=u_{n}(X(t, \cdot))-\int_{0}^{t} f_{n}(X(s, \cdot)) d s
$$

is a martingale for each n. Put

$$
\tau_{n}=\inf \left\{t: X(t, \cdot) \notin G_{n}\right\}
$$

Then $Z_{n}\left(\tau_{n} \wedge t, \cdot\right)$ is also a martingale (See exercise below). But

$$
Z_{n}\left(\tau_{n} \wedge t\right)=Z\left(\tau_{n} \wedge t\right)
$$

Therefore $M_{n}(t, \cdot)=Z\left(\tau_{n} \wedge t, \cdot\right)$ is a martingale. Observe that $\tau_{n} \leq$ τ_{n+1} and since $G_{n} \uparrow G$ we have $\tau_{n} \uparrow \tau$. Therefore $Z\left(\tau_{n} \wedge t\right) \rightarrow Z(\tau \wedge t)$ (by continuity); also $\left|M_{n}(t, \cdot)\right| \leq\|u\|_{\infty}+\|f\|_{\infty} t$. Therefore $Z(\tau \wedge t)=\bar{Z}(t, \cdot)$ is a martingale.

Exercise. If $M(t, \cdot)$ is a $\left(\Omega, \mathscr{F}_{t}, P\right)$-martingale, show that for my stopping time $\tau, M(\tau \wedge t, \cdot)$ is also a martingale relative to $\left(\mathscr{F}_{t}\right)$.
[Hint: One has to show that if $t_{2}>t_{1}$,

$$
\int_{A} M\left(\tau \wedge t_{2}, w\right) d P(w)=\int_{A} M\left(\tau \wedge t_{1}, w\right) d P(w), \forall A \in \mathscr{F}_{t_{1}}
$$

The right side $=$

$$
\int_{A \cap\left(\tau>t_{1}\right)} M\left(t_{1}, w\right) d P(w)+\int_{A \cap\left(\tau<t_{1}\right)} M(\tau, w) d P(w) .
$$

The left side

$$
=\int_{A \cap\left(\tau>t_{1}\right)} M\left(t_{2}, w\right) d P(w)+\int_{A \cap\left(\tau<t_{1}\right)} M(\tau, w) d P(w)
$$

Now use optional stopping theorem].
Lemma. Let G be a bounded region and τ be as above. Then $E_{x}(\tau)<$ $\infty, \forall x \in G$, where $E_{x}=E^{P_{x}}$.

Proof. Without loss of generality we assume that G is a sphere of radius R. The function $u(x)=\frac{R^{2}-|x|^{2}}{d} \geq 0$ and satisfies $\frac{1}{2} \Delta u=-1$ in G. By the previous theorem

$$
u\left(X(\tau \wedge t, \cdot)+\int_{0}^{\tau \wedge t} d s\right.
$$

is a martingale. Therefore

$$
E_{x}(u(X(\tau \wedge t, \cdot)))+E_{x}(\tau \wedge t)=u(X(0))=u(x)
$$

Therefore $E_{x}(\tau \wedge t) \leq u(x)$ (since $u \geq 0$). By Fatou's lemma, on letting $t \rightarrow \infty$, we obtain $E_{x}(\tau) \leq u(x)<\infty$. Thus the mere existence of a u satisfying $\frac{1}{2} \Delta u=1$ helps in concluding that $E_{x}(\tau)<\infty$.

Theorem. Let $u \in C_{b}^{2}(G)$ and suppose that u satisfies

$$
\begin{align*}
\frac{1}{2} \Delta u & =f \text { in } G \tag{*}\\
u & =g \text { on } \partial G
\end{align*}
$$

Then $u(x)=E_{x}[g]-E_{x}\left[\int_{0}^{\tau} f(X(s, \cdot)) d s\right]$ solves $(*)$.

Remark. The first part of the solutin $u(x)$ is the solution of the homogeneous equation, and the second part accounts for the inhomogeneous term.
128 Proof. Define $\bar{Z}(t, \cdot)=u(X(\tau \wedge t))-\int_{0}^{\tau \wedge t} f(X(s, \cdot)) d s$. Then \bar{Z} is a martingale. Also $|\bar{Z}| \leq\|u\|_{\infty}+\tau\|f\|_{\infty}$. Therefore, by the previous Lemma, $\bar{Z}(t, \cdot)$ is a uniformly integrable martingale. Therefore we can equate the expectations at time $t=0$ and at time $t=\infty$ to get

$$
u(x)=E_{x}(g)-E_{x}\left[\int_{0}^{\tau} f(X(s, \cdot)) d s\right]
$$

18. The Feynman-Kac Formula

WE NOW CONSIDER the modified heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{1}{2} \Delta u+V(x) u(t, x)=0, \quad 0 \leq t \leq T \tag{*}
\end{equation*}
$$

where $u(T, x)=f(x)$. The Feynman-Kac formula says that the solution for $s \leq T$ is given by

$$
\begin{equation*}
u(s, x)=E_{S, x}\left(e^{\int_{s}^{T} V(X(s)) d S} f(X(T))\right) \tag{**}
\end{equation*}
$$

Observe that the solution at time s depends on the expectation with respect to the process starting at time s.

Note. $\left({ }^{* *}\right)$ is to be understood in the following sense. If $\left(^{*}\right)$ admits a smooth solution then it must be given by $\left({ }^{* *}\right)$. We shall not go into the conditions under which the solution exists. Let

$$
Z(t, \cdot)=u(t, X(t, \cdot)) e^{\int_{s}^{t} V(X(\sigma, \cdot) d \sigma)}, \quad t \geq s
$$

By Ito's formula (see Example 2 of section 16), we get

$$
Z(t, \cdot)=Z(s, \cdot)+\int_{s}^{t} e^{\int_{s}^{t} V(X(\sigma, \cdot) d \sigma)}\langle\nabla u(\lambda, X(\lambda)), d X(\lambda)\rangle
$$

provided that u satisfies (*). Assume tentatively that V and ∇u are bounded and progressively measurable. Then $Z(t, \cdot)$ is a martingale. Therefore

$$
E_{s, x}(Z(T, \cdot))=E_{z, x}(Z(s, \cdot)),
$$

or

$$
E_{S, x}(u(T, X(T))) e^{\int_{s}^{T} V(X(\sigma, \cdot)) d \sigma}=u(s, x)
$$

This proves the result.
We shall now remove the condition ∇_{u} is bounded and prove the uniqueness of the solution corresponding to $(*)$ under the assumption that V is bounded above and

$$
|u(t, x)| \leq e^{A+|x|^{\alpha}}, \quad \alpha<2, \quad \text { on } \quad[s, T) .
$$

In particular, the Feynman-Kac formula extends the uniqueness theorem for the heat equation to the class of unbounded functions satisfying a growth condition of the form given above.

Let ϕ be a C^{∞} function such that $\phi=1$ on $|X| \leq R$, and $\phi=0$ outside $|x|>R+1$. Put $u_{R}(t, x)=u(t, x) \phi$,

$$
Z_{R}(t, x)=u_{R}(t, x) e^{\int_{s}^{t} V(X(\sigma) d \sigma)}
$$

By what we have already proved, $Z_{R}(t, \cdot)$ is a martingale. Let

$$
\tau_{R}(\omega)=\inf \{t: t \geq s \omega(t) \in S(0 ; R)=\{|x| \leq R\}\}
$$

Then $\left.Z_{R}\left(t \wedge \tau_{R}, \cdot\right)\right)$ is also a martingale, i.e.

$$
u_{R}\left(t \wedge \tau_{R}, X\left(t \wedge \tau_{R}, \cdot\right)\right) e^{\int_{s}^{t \wedge \tau_{R}}} V(X(\sigma)) d \sigma
$$

is a martingale. Equating the expectations at time $t=s$ and time $t=T$ and using the fact that

$$
\left.u_{R}\left(t \wedge \tau_{R}, X\left(t \wedge \tau_{R}, \cdot\right)\right)=u\left(t \wedge \tau_{R}, X\left(t \wedge \tau_{R}, \cdot\right)\right)\right)
$$

we conclude that

$$
\left.\begin{array}{rl}
u(s, x)= & E_{s, x}\left[u\left(\tau_{R} \wedge T, X\left(\tau_{R} \wedge T, \cdot\right)\right) e^{\tau_{s}^{\tau_{R} \wedge T} V(X(s)) d s}\right] \\
= & E_{s, x}\left[X_{\left(\tau_{R} \wedge T\right)} f(X(T)) e^{\int_{s}^{T} V(X(s)) d s}\right]+ \\
& +E_{s, x}\left[X _ { (\tau _ { R } \leq T) } u \left(\tau_{R}, X_{\left(\tau_{R}\right)} e^{\int_{R}} V(X(s)) d s\right.\right.
\end{array}\right]
$$

Consider the second term on the right:

$$
\begin{gathered}
\left|E_{s, x}\left[X_{\left(\tau_{R} \leq T\right)} u\left(\tau_{R}, X\left(\tau_{R}\right)\right) e_{s}^{\int_{R}^{\tau_{R}} V(X(s)) d s}\right]\right| \\
\leq A^{\prime} e^{R^{\alpha}} P[R \leq T]
\end{gathered}
$$

(where A^{\prime} is a constant given in terms of the constants A and T and the bound of V)

$$
=A^{\prime} e^{R^{\alpha}} P\left[\sup _{s \leq \sigma \leq T}|X(\sigma)| \geq R\right] .
$$

$P\left[\sup _{s \leq \sigma \leq T}|X(\sigma)| \geq R\right]$ is of the order of $e^{-c(T) R^{2}}$ and since $\alpha<2$, the second term on the right side above tends to 0 as $R \rightarrow \infty$. Hence, on letting $R \rightarrow+\infty$, we get, by the bounded convergence theorem,

$$
u(s, x)=E_{s, x}\left[f(X(T)) e_{s}^{T} V(X(s)) d s\right]
$$

Application. Let $\beta(t, \cdot)$ be a one-dimensional Brownian motion. Recall (Cf. Reflection principle) that $P\left\{\sup _{0 \leq s \leq t}|\beta(s)| \leq 1\right\}$ is of the order of $\frac{4}{\pi} e-$ $\frac{\pi^{2} t}{8}$. The Feynman-Kac formula will be used to explain the occurance of the factor $\frac{\pi^{2}}{8}$ in the exponent. First observe that $\frac{\pi^{2}}{8}=\frac{\lambda^{2}}{2}$ where λ is the first positive root of $\operatorname{Cos} \lambda=0$. Let

$$
\tau(w)=\inf \{t:|\beta(t)| \geq 1\} .
$$

Then

$$
P\left\{\sup _{0 \leq s \leq t} \beta \beta(s, \cdot) \mid \leq 1\right\}=P\{\tau \geq t\} .
$$

Let $\phi(x)=E_{x}\left[e^{\lambda \tau}\right], \lambda<0$. We claim that ϕ satisfies

$$
\begin{align*}
& \frac{1}{2} \phi^{\prime \prime}+\lambda \phi=0, \quad|x|<1, \tag{*}\\
& \phi=1, \quad|x|=1 .
\end{align*}
$$

Assume ϕ to be sufficiently smooth. Using Itô's formula we get

$$
d\left(e^{\lambda t} \phi(\beta(t))=e^{\lambda t} \phi^{\prime}(\beta(t)) d \beta(t)+\left[\lambda \phi(\beta(t))+\frac{1}{2} \phi^{\prime \prime}(\beta(t))\right] e^{\lambda t} d t .\right.
$$

Therefore

$$
\begin{gathered}
e^{\lambda t} \phi(\beta(t))-\phi(\beta(0))=\int_{0}^{t} e^{\lambda s} \phi^{\prime}(\beta(s)) d \beta(s)+ \\
\quad+\int_{0}^{t}\left[\lambda \phi(\beta(s))+\frac{1}{2} \phi^{\prime \prime}(\beta(s))\right] e^{\lambda s} d s
\end{gathered}
$$

i.e.

$$
e^{\lambda t} \phi(\beta(t))-\phi(\beta(0))-\int_{0}^{t}\left[\lambda \phi(\beta(s))+\frac{1}{2} \phi^{\prime \prime}(\beta(s))\right] e^{\lambda s} d s
$$

is a martingale. By Doob's optional sampling theorem we can stop this martingale at time τ, i.e.

$$
e^{\lambda_{(t \wedge \tau)}} \phi(\beta(t \wedge \tau))-\phi(\beta(0))-\int_{0}^{t \wedge \tau}\left[\lambda \phi(\beta(s))+\frac{1}{2} \phi^{\prime \prime}(\beta(s))\right] e^{\lambda s} d s
$$

is also a martingale. But for $s \leq t \wedge \tau$,

$$
\lambda \phi+\frac{1}{2} \phi^{\prime \prime}=0
$$

Thus we conclude that $\phi(\beta(t \wedge \tau)) e^{\lambda(\tau \wedge t)}$ is a martingale. Since $\lambda<$ 0 and $\phi(\beta(t \wedge \tau))$ is bounded, this martingale is uniformly integrable. Therefore equating the expectation at $t=0$ and $t=\infty$ we get (since $\phi(\beta(\tau))=1)$

$$
\phi(x)=E_{x}\left[e^{\lambda \tau}\right] .
$$

By uniqueness property this must be the solution. However (*) has a solution given by

$$
(x)=\frac{\operatorname{Cos}(\sqrt{ }(2 \lambda x))}{\operatorname{Cos}(\sqrt{ }(2 \lambda))}
$$

Therefore

$$
\begin{equation*}
E_{0}\left[e^{\lambda \tau}\right]=\frac{1}{\operatorname{Cos}(\sqrt{ }(2 \lambda))}(\lambda<0), \tag{1}
\end{equation*}
$$

If $F(t)=P(\tau \geq t)$, then

$$
\int_{0}^{\infty} e^{\lambda t} d F(t)=E_{0}\left(e^{\lambda \tau}\right)
$$

A theorem on Laplace transforms now tells us that (1) is valid till we cross the first singularity of $\frac{1}{\operatorname{Cos}(\sqrt{ }(2 \lambda))}$. This occurs at $\lambda=\frac{\pi^{2}}{8}$. By the monotone convergence theorem

$$
E_{0}\left[e^{\tau \pi^{2} / 8}\right]=+\infty
$$

Hence $\int_{0}^{\infty} e^{\lambda t} d F(t)$ converges for $\lambda<\frac{\pi^{2}}{8}$ and diverges for $\lambda \geq \frac{\pi^{2}}{8}$. Thus $\frac{\pi^{2}}{8}$ is the supremum of λ for which $\int_{0}^{\infty} e^{\lambda t} d F(t)$ converges, i.e. sup [$\left.\lambda: E_{0}\left(e^{\ell \tau}\right)\right]$ exists, i.e. the decay rate is connected to the existence or the non existence of the solution of the system (*). This is a general feature and prevails even in higher dimensions.

19. An Application of the Feynman-Kac Formula. The Arc Sine Law.

LET $\beta(t, \cdot)$ BE THE one-dimensional Brownian motion with $\beta(0, \cdot)=0 . \quad 134$ Define

$$
\xi_{t}(w)=\frac{1}{t} \int_{0}^{t} X_{[0, \infty)}(\beta(s, w)) d s
$$

$\xi_{t}(w)$ is a random variable and denotes the fraction of the time that a Brownian particle stays above the x-axis during the time interval $[0, t]$. We shall calculate

$$
P\left[w: \xi_{t}(w) \leq a\right]=F_{t}(a)
$$

Brownian Scaling. Let $X_{t}(s)=\frac{1}{\sqrt{t}} \beta(t s)$. Then X_{t} is also a Brownian motion with same distribution as that of $\beta(s)$. We can write

$$
\xi_{t}(w)=\int_{0}^{1} X_{[0, \infty)}\left(X_{t}(s, w)\right) d s
$$

The $\xi_{t}(w)=$ time spent above the x-axis by the Brownian motion $X_{t}(s)$ in $[0,1]$. Hence $F_{t}(a)$ is independent of t and is therefore denoted
by $F(a)$. Suppose we succeed in solving for $F(a)$; if, now,

$$
\xi_{t}^{*}(w)=\int_{0}^{t} X_{[0, \infty)}(\beta(s)) d s=t \xi_{t}
$$

then the amount of time $\beta(s, \cdot)>0$ in $[0, t]$ is t (amount of time $X_{t}(s)>0$ in $[0,1]$). Hence we can solve for $P\left[\xi_{t}^{*}(w) \leq a\right]=G_{t}(a)$. Clearly the solution of G_{t} is given by

$$
G_{t}(a)=F(a / t)
$$

It is clear that

$$
F(a)=\left\{\begin{array}{lll}
0 & \text { if } & a \leq 0 \\
1 & \text { if } & a \geq 1
\end{array}\right.
$$

Hence it is enough to solve for $F(a)$ in $0 \leq a \leq 1$. Let

$$
u_{\lambda}(t, x)=E_{x}\left[e^{-\left(\lambda \int_{0}^{t} X_{[0, \infty)}(\beta(s, w)) d s\right)}\right]
$$

Then

$$
u_{1}(t, 0)=E\left[e^{-\xi(w))}\right]=\int_{0}^{1} e^{-t x} d F(x)
$$

Also note that $u_{\lambda}(t, x)$ is bounded by 1 , if $\lambda \geq 0$. By the FeynmanKac formula (appropriately modified in case $\frac{1}{2} \Delta$ is replaced by $-\frac{1}{2} \Delta$) $u_{1}(t, x)$ satisfies

$$
\begin{align*}
\frac{\partial u}{\partial t} & =\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}-u, \quad x>0 \tag{*}\\
& =\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad x<0
\end{align*}
$$

and $u(0, x)=1$. Let

$$
\phi_{\alpha}(x)=\alpha \int_{0}^{\infty} u(t, x) e^{-\alpha t} d t, \quad \alpha>0, \quad \text { where } \quad u=u_{1}
$$

$$
=\int_{0}^{\infty} u(t, x)\left(-d e^{-\alpha t}\right) .
$$

A simple integration by parts together with $\left(^{*}\right)$ gives the following system of ordinary differential equations for ϕ_{α} :

$$
\begin{aligned}
& -\frac{1}{2} \phi_{\alpha}^{\prime \prime}+(\alpha+1) \phi_{\alpha}=\alpha, \quad x>0 \\
& -\frac{1}{2} \phi_{\alpha}^{\prime \prime}+\alpha \phi_{\alpha}=\alpha, \quad x<0
\end{aligned}
$$

These have a solution

$$
\begin{aligned}
\phi_{\alpha}(x) & =\frac{\alpha}{\alpha+1}+A e^{x \sqrt{ }(2(\alpha+1))}+B e^{-x \sqrt{ }(2(\alpha+1))}, \quad x>0, \\
& =1+C e^{x \sqrt{ }(2 \alpha)}+D e^{-x \sqrt{ }(2 \alpha)}, \quad x<0 .
\end{aligned}
$$

However u is bounded by 1 (see definition of $u_{\lambda}(t, x)$). Therefore ϕ_{α} is also bounded by 1 . This forces $A=D=0$. We demand that ϕ_{α} and $\frac{d \phi_{\alpha}}{d x}$ should match at $x=0$. (Some justification for this will be given later on).

$$
\operatorname{Lt}_{x \rightarrow 0+} \phi_{\alpha}(x)=\operatorname{Lt}_{x \rightarrow 0-} \phi_{\alpha}(x)
$$

gives

$$
\frac{\alpha}{1+\alpha}+B=C+1
$$

Similarly we get $-B \sqrt{ }(2(\alpha+1))=C \sqrt{ }(2 \alpha)$ by matching $\frac{d \phi_{\alpha}}{d x}$. Solving for B and C we get

$$
\begin{aligned}
& B=\frac{\sqrt{ } \alpha}{(1+\alpha)(\sqrt{ } \alpha+\sqrt{ }(\alpha+1))} \\
& C=\frac{1}{\sqrt{ }(1+\alpha)(\sqrt{ } \alpha+\sqrt{ }(\alpha+1))}
\end{aligned}
$$

Therefore

$$
\phi_{\alpha}(0)=\frac{\alpha}{\alpha+1}+B=\frac{\sqrt{ } \alpha}{\sqrt{ }(\alpha+1)}
$$

i.e.

$$
\int_{0}^{\infty} E\left[e^{-t \xi_{t}} \alpha e^{-\alpha t}\right] d t=\frac{\sqrt{ } \alpha}{\sqrt{ }(\alpha+1)}
$$

Using Fubini's theorem this gives

$$
E\left[\frac{\alpha}{\alpha+\xi}\right]=\sqrt{ }\left(\frac{\alpha}{\alpha+1}\right),
$$

or

$$
E\left[\frac{1}{1+\xi / a}\right]=\sqrt{ }\left(\frac{1}{1+(1 / \alpha)}\right), \quad \text { i.e. } \quad \int_{0}^{1} \frac{d F(x)}{1+\gamma x}=\frac{1}{\sqrt{ }(1+\gamma)}
$$

This can be inverted to get

$$
d F(x)=\frac{2}{\pi} \frac{d x}{\sqrt{ }(x(1-x))} .
$$

(Refer tables on transforms or check directly that

$$
\frac{2}{\pi} \int_{0}^{1} \frac{1}{1+\beta x} \frac{d x}{\sqrt{ }(x(1-x))}=\frac{1}{\sqrt{ }(1+\beta)}
$$

by expanding the left side in powers of (β). Therefore

$$
F(a)=\frac{2}{\pi} \quad \arcsin \quad(\sqrt{ } a), \quad 0 \leq a \leq 1 .
$$

Hence $G_{t}(a)=\frac{2}{\pi} \arcsin \left(\sqrt{ }\left(\frac{a}{t}\right)\right), 0 \leq a \leq t$, i.e.

$$
P\left[\xi_{t} \leq a\right]=\frac{2}{\pi} \quad \arcsin \quad\left(\sqrt{ }\left(\frac{a}{t}\right)\right), \quad 0 \leq a \leq t
$$

This result goes by the name of arc sine law for obvious reasons.
We now give some justification regarding the matching conditions used above.

The equation we solved was

$$
\alpha \phi-\frac{1}{2} \phi^{\prime \prime}+V \phi=f
$$

where ϕ was bounded $V \geq 0$. Suppose we formally use Itô's formula to calculate

$$
\begin{gathered}
d\left(\phi\left(\beta(t) e^{-\int_{0}^{t}(\alpha+V)(\beta(s) d s)}\right)\right. \\
=e^{-\int_{0}^{t}(\alpha+V)(\beta(s,)) d s}\left[-f(\beta(s, \cdot)) d t+\frac{d \phi}{d X}(\beta(t)) d \beta(t)\right]
\end{gathered}
$$

(see Example 2 of Itô's formula). Therefore
$\left(Z(t, \cdot)=\phi(\beta(t, \cdot)) e^{-\int_{0}^{t}(\alpha+V)(\beta(s, \cdot)) d s}+\int_{0}^{t} f \beta(s, \cdot) \exp \left(-\int_{0}^{s}(\alpha+V) d \sigma\right) d s\right.$
is a martingale. Since ϕ, f are bounded and $V \geq 0$,

$$
|Z(t, \cdot)| \leq\|\phi\|_{\infty}+\|f\|_{\infty} \int_{0}^{\infty} e^{-\alpha s} d s \leq\|\phi\|_{\infty}+C\|f\|_{\infty}
$$

Therefore $Z(t, \cdot)$ is uniformly integrable. Equating the expectations at time 0 and ∞ gives

$$
\begin{equation*}
\phi(0)=E_{0} \int_{0}^{\infty}\left[f(\beta(s, \cdot)) e^{-\alpha s-\int_{0}^{s} V(\beta(\sigma) d \sigma)}\right] d s \tag{*}
\end{equation*}
$$

This is exactly the form obtained by solving the differential equations. In order to use Itô's formula one has to justify it. If we show that Itô's formula is valid for functions having a discontinuity in the second derivative, (*) will be a legitimate solution and in general there is no reason why the second derivatives (or higher derivatives) should be matched. This partially explains the need for matching ϕ and $\frac{d \phi}{d x}$ only.

Proposition . Let $\beta(t, \cdot)$ denote a one-dimensional Brownian motion. Suppose $\phi \in C_{b}^{1}$ and satisfied

$$
\alpha \phi-\frac{1}{2} \phi^{\prime \prime}+V \phi=f
$$

Then

$$
\phi(\beta(t))-\int_{0}^{t} f(\beta(s)) d s
$$

is a martingale.
Proof. Let $\left(\phi_{\epsilon}\right) \in C_{b}^{2}$ such that $\alpha \phi_{\epsilon}-\frac{1}{2} \phi_{\epsilon}^{\prime \prime}+V \phi_{\epsilon}+V \phi_{\epsilon}=f_{\epsilon}$ and such that (i) ϕ_{ϵ} converges to ϕ uniformly on compact sets, (ii) ϕ_{ϵ}^{\prime} converges to ϕ^{\prime} uniformly on compact sets, (iii) $\phi_{\epsilon}^{\prime \prime}$ converges pointwise to $\phi^{\prime \prime}$ except at 0 . We may suppose that the convergence is bounded.
$139 \quad$ Claim. $\int_{0}^{t} f_{\epsilon}(\beta(s)) d s$ converges to $\int_{0}^{t} f(\beta(s)) d$ s a.e. As $f_{\epsilon}(\beta(s))$ converges to $f(\beta(s))$ except when $\beta(s)=0$, it is enough to prove that
(*) $P[w$: Lebesgue measure $(s: \beta(s)=0)>0]=0$. Let $X_{\{0\}}$ denote the indicator function of $\{0\}$. Then

$$
E \int_{0}^{t} X_{\{0\}}(\beta(s)) d s=\int_{0}^{t} E X_{\{0\}}(\beta(s)) d s=0
$$

Thus (*) holds and establishes the claim. Now

$$
\phi_{\epsilon}(\beta(t))-\int_{0}^{t} f_{\epsilon}(\beta(s)) d s
$$

is a uniformly bounded martingale converging to

$$
\phi(\beta(t))-\int_{0}^{t} f(\beta(s)) d s
$$

Therefore

$$
\phi(\beta(t))-\int_{0}^{t} f(\beta(s)) d s
$$

is a martingale.

20. Brownian Motion with Drift

LET $\Omega=C\left[0, \infty ; \mathbb{R}^{d}\right], \mathscr{F}=$ BOREL σ-FIELD of $\Omega,\{X(t, \cdot)\} \equiv$ Brow-
nian motion, $\mathscr{F}_{t}=\sigma[X(s, \cdot): 0 \leq s \leq t], P_{x} \equiv$ probability measure on Ω corresponding to the Brownian motion starting at time 0 at x. $\mathscr{F}=\sigma\left(U_{t \geq 0}^{U} \mathscr{F}_{t}\right)$. Let $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be any bounded measurable funciton. Then the map $(s, w) \mid \rightarrow b(w(s))$ is progressively measurable and

$$
Z(t, \cdot)=\exp \left[\int_{0}^{t}\langle b(X(s, \cdot)), d X(s, \cdot)\rangle-\frac{1}{2} \int_{0}^{t}|b(X(s, \cdot))|^{2} d s\right]
$$

is a martingale relative to $\left(\Omega, \mathscr{F}_{t}, P_{x}\right)$. Define Q_{x}^{t} on \mathscr{F}_{t} by

$$
Q_{x}^{t}(A)=\int_{A} Z(t, \cdot) d P_{x}
$$

i.e. $Z(t, \cdot)$ is the Radon-Nikodym derivative of Q_{x}^{t} with respect to P_{x} on \mathscr{F}_{t}.

Proposition . (i) Q_{x}^{t} is a probability measure.
(ii) $\left\{Q_{x}^{t}: t \geq 0\right\}$ is a consistent family on $\cup \mathscr{F}_{t \geq 0}$, i.e. if $A \in \mathscr{F}_{t_{1}}$ and $t_{2} \geq t_{1}$ then $Q_{x}^{t} 1(A)=Q_{x}^{t} 2(A)$.

Proof. Q_{x}^{t} being an indefinite integral, is a measure. Since $Z(t, \cdot) \geq 0$, Q_{x}^{t} is a positive measure. $Q_{x}^{t}(\Omega)=E_{x}(Z(t, \cdot))=E_{x}(Z(0, \cdot))=1$. This proves (i). (ii) follows from the fact that $Z(t, \cdot)$ is a martingale.

If $A \in \mathscr{F}_{t}$, we define

$$
Q_{x}(A)=Q_{x}^{t(A)}
$$

141 The above proposition shows that Q_{x} is well defined and since (\mathscr{F}_{t}) is an increasing family, Q_{x} is finitely additive on $\bigcup_{t \geq 0} \mathscr{F}_{t}$.
Exercise. Show that Q_{x} is countably additive on the algebra $\bigcup \mathscr{F}_{t \geq 0}$.
Then Q_{x} extends as a measure to $\mathscr{F}=\sigma\left(\bigcup_{t \geq 0} \mathscr{F}_{t}\right)$. Thus we get a family of measures $\left\{Q_{x}: x \in \mathbb{R}^{d}\right\}$ defined on (Ω, \mathscr{F}).

Proposition. If $s<t$ then

$$
Q_{x}\left(X_{t} \in A \mid \mathscr{F}_{s}\right)=Q_{X(s)}(X(t-s) \in A) \quad \text { a.e. }
$$

Definition. If a family of measures $\left\{Q_{x}\right\}$ satisfies the above property it is called a homogeneous Markov family.
Proof. Let $B \in \mathscr{F}_{s}$. Therefore $B \cap X_{t}^{-1}(A) \in \mathscr{F}_{t}$ and by definition,

$$
\begin{aligned}
& \left.Q_{x}((X(t) \in A) \cap B)\right)=\int_{B \cap X_{t}^{-1}(A)} Z(t, \cdot) d P_{x} \\
& E^{P_{x}}\left(Z(t, \cdot) \chi_{B}^{(w)} \chi_{A}(X(t, \cdot))\right) \\
& =E^{P_{x}}\left(E^{P_{x}}\left(\left.\frac{Z(t, \cdot)}{Z(s, \cdot)} Z(s, \cdot) \chi_{B}^{(w)} \chi_{A}(X(t, \cdot)) \right\rvert\, \mathscr{F}_{s}\right)\right. \\
& =E^{P_{x}}\left(\left.\left[\chi_{B} Z(s, \cdot)\right) E^{P_{x}} Z\left(\frac{Z(t, \cdot)}{Z(s, \cdot)} \chi_{A}(\chi(t, \cdot))\right] \right\rvert\, \mathscr{F}_{s}\right)
\end{aligned}
$$

(since $B \in \mathscr{F}_{s}$ and $Z(s, \cdot)$ is \mathscr{F}_{s}-measurable)
(1) $=E^{Q_{x}}\left[\chi_{B} E^{P_{x}}\left(\frac{Z(t, \cdot)}{Z(s, \cdot)} \chi_{A}\left(\chi(t, \cdot) \mid \mathscr{F}_{s}\right)\right] \ldots\right.$

$$
=E^{Q_{x}}\left[\chi_{B} E^{P_{x}}\left(\left.\exp \left[\int_{s}^{t}\langle b, d X\rangle-\frac{1}{2} \int_{0}^{t}|b|^{2}\right] \chi_{A}(X(t, \cdot)) \right\rvert\, \mathscr{F}_{s}\right)\right]
$$

$$
=E^{Q_{x}}\left[\chi_{B} E^{P_{X(s)}}\left(\exp \left[\int_{0}^{t-s}\langle b, d X\rangle \frac{1}{2} \int_{0}^{t-s}|b|^{2}\right] X_{A}(X(t-s))\right]\right.
$$

(by Markov property of Brownian motion)

$$
\begin{aligned}
& =E^{Q_{x}}\left(\chi _ { B } E ^ { Q _ { X (s) } ^ { t - s } } (\chi _ { A } (\chi (t - s))) \quad \left(\text { since } \frac{d Q_{X(s)}^{t-s}}{d P_{X(s)}}=Z(t-s, \cdot)\right.\right. \\
& =E^{Q_{x}}\left(X_{B} E^{Q_{X(s)}} \chi_{A}(X(t-s, \cdot))\right.
\end{aligned}
$$

The result follows from definition.
Let $b:[0, \infty] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a bounded measurable function, $P_{s, x}$ the probability measure corresponding to the Brownian motion starting at time s at the point x. Define, for $t \geq s$,

$$
\begin{aligned}
Z_{s, t}(w)= & \exp
\end{aligned} \int_{s}^{t}\langle b(\sigma, X(\sigma, w)), d X(\sigma, w)\rangle
$$

Exercise. (i) $Z_{s, t}$ is a martingale relative to $\left(\mathscr{F}_{t}^{s}, P_{s, x}\right)$.
(ii) Define $Q_{s, x}^{t}$ by $Q_{s, x}^{t}(A)=\int_{A} Z_{s, t} P_{s, x}, \forall A \in \mathscr{F}_{t}^{s}$.

Show that $Q_{s, x}^{t}$ is a probability measure on \mathscr{F}_{t}^{s}.
(iii) $Q_{s, x}^{t}$ is a consistent family.
(iv) $Q_{s, x}$ defined on $\underset{t \geq s}{U} \mathscr{F}_{t}^{s}$ by $Q_{s, x} \mid \mathscr{F}_{t}^{s}=Q_{s, x}^{t}$ is a finitely additive set function which is countably additive.
(v) The family $\left\{Q_{s, x}: 0 \leq s<\infty, x \in \mathbb{R}^{d}\right\}$ is an inhomogeneous Markov family, i.e.

$$
Q_{s, x}\left(X(t, \cdot) \in A \mid \mathscr{F}_{\sigma}^{s}\right)=Q_{\sigma, X(\sigma, \cdot)}(X(t, \cdot) \in A), \forall s<\sigma<t, A \in \mathscr{F}_{t}^{s} .
$$

[Hint: Repeat the arguments of the previous section with obvious $\mathbf{1 4 3}$ modifications].

Proposition. Let τ be a stopping time, $\tau \geq s$. Then

$$
\begin{aligned}
Q_{s, x}\left[X(t, \cdot) \in A \mid \mathscr{F}_{\tau}^{s}\right] & =Q_{\tau, X_{\tau}(\cdot)}(X(t, \cdot) \in A) \text { on } \tau(w)<t, \\
& =\chi_{A}(X(t, \cdot)) \text { on } \tau(w) \geq t .
\end{aligned}
$$

Proof. Let $B \in \mathscr{F}_{\tau}^{s}$ and $B \subset\{\tau<t\}$ so that $B \in \mathscr{F}_{t}^{s}$.

$$
\begin{aligned}
E^{Q_{s, x}}\left(\chi_{B} \chi_{A}\left(X_{t}\right)\right) & =E^{P_{s, x}}\left(Z_{s, t} \chi_{B} \chi_{A}\left(X_{t}\right)\right) \\
& =E^{P_{s, x}}\left[E^{P_{s, x}}\left(Z_{\tau, t} Z_{s, \tau} \chi_{B} \chi_{A}\left(X_{t}\right) \mid \mathscr{F}_{\tau}^{s}\right)\right]
\end{aligned}
$$

(since Z satisfies the multiplicative property)

$$
=E^{P_{s, x}}\left(Z_{s, \tau} \chi_{B} E^{P_{s, x}}\left(Z_{\tau, t} \chi_{A}\left(X_{t}\right) \mid \mathscr{F}_{\tau}^{s}\right)\right]
$$

(since $Z_{s, \tau}$ is \mathscr{F}_{τ}^{s}-measurable)

$$
\begin{equation*}
=E^{P_{s, x}}\left[Z_{s, \tau} X_{B} E^{P_{\tau}, X_{\tau}}\left(Z_{\tau, t} \chi_{A}\left(X_{t}\right)\right)\right] \tag{*}
\end{equation*}
$$

(by strong Markov property).
Now

$$
\left.\frac{d Q_{s, x}}{d P_{s, x}}\right|_{\mathscr{F}_{t}^{s}}=Z_{s, t}
$$

so that the optional stopping theorem,

$$
\left.\frac{d Q_{s, x}}{d P_{s, x}}\right|_{\mathscr{F}_{\tau}^{s}}=Z_{s,} \quad \text { on } \quad\{\tau<t\}, \forall x .
$$

144 Putting this in (*) we get

$$
E^{Q_{s, x}}\left[X_{B} \chi_{A}\left(X_{t}\right)\right]=E^{P_{s, x}}\left[Z_{s, \tau} \chi_{B} E^{Q_{\tau, X_{T}}\left(\chi_{A} X_{t}\right)}\right] .
$$

Observe that

$$
\chi_{B} E^{Q_{\tau, X_{\tau}}}\left(\chi_{A}\left(X_{t}\right)\right)
$$

is \mathscr{F}_{τ}^{s}-measurable to conclude the first part of the proof. For part (ii) observe that

$$
X_{t}^{-1}(A) \cap\{\tau \geq t\} \cap\{\tau \leq k\}
$$

is in \mathscr{F}_{k}^{s} if $k>s$, so that

$$
X_{t}^{-1}(A) \cap\{\tau \geq t\} \in \mathscr{F}_{\tau}^{s}
$$

Therefore

$$
\left.E^{Q_{s, x}}\left(X_{t} \in A \cap(\tau \geq t)\right) \mid \mathscr{F}_{\tau}^{S}\right)=\chi_{A}\left(X_{t}\right) \chi_{\{\tau \geq t\}}
$$

or

$$
E^{Q_{s, x}}\left[\left(X_{t} \in A\right) \mid \mathscr{F}_{\tau}^{s}\right]=\chi_{A}\left(X_{t}\right) \quad \text { if } \quad \tau \geq t
$$

Proposition. Let $b:[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a bounded measurable function, $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ any continuous bounded function. If

$$
\begin{gathered}
\frac{\partial u}{\partial s}+\frac{1}{2} \Delta u+\langle b(s, x), \Delta u\rangle=0, \quad 0 \leq s \leq t, \\
u(t, x)=f(x)
\end{gathered}
$$

has a solution u, then

$$
u(s, x)=\int_{\Omega} f\left(X_{t}\right) d Q_{s, x}
$$

Remark. b is called the drift. If $b=0$ and $s=0$ then we recover the result obtained earlier. With the presence of the drift term, the result is the same except that instead of $P_{s, x}$ one has to use $Q_{s, x}$ to evaluate the expectation.

Proof. Let

$$
\left.Y(\sigma, \cdot)=\int_{s}^{\sigma}\langle b(\theta, X(\theta, \cdot)), d X(\theta, \cdot)\rangle-\frac{1}{2} \int_{s}^{\sigma} \right\rvert\, b\left(\theta,\left.X(\theta, \cdot)\right|^{2} d \theta\right.
$$

Step 1. $(X(\sigma, \cdot)-X(s, \cdot), Y(\sigma, \cdot))$ is a $(d+1)$-dimensional Itô process with parameters

$$
\left(0,0, \ldots, 0,-\frac{1}{2}|b(\sigma, X(\sigma, \cdot))|^{2}\right) \quad \text { and }
$$

d terms

$$
a=\left[\begin{array}{cc}
I_{d \times d} & b_{d \times 1} \\
b_{1 \times d}^{*} & b
\end{array}\right]
$$

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$. We have to show that

$$
\begin{gathered}
\exp \left[\left.\mu Y+\frac{\mu}{2} \int_{s}^{\sigma} \right\rvert\, b\left(\sigma,\left.X(\sigma, \cdot)\right|^{2} d \sigma+\langle\lambda, X(\sigma, \cdot)-X(s, \cdot)\rangle-\right.\right. \\
\left.\quad-\frac{1}{2} \int_{s}^{\sigma}\langle\lambda, \lambda\rangle+\left.2 \mu\left\langle\lambda, b+\mu^{2}\right| b(\sigma, \cdot)\right|^{2} d \sigma\right]
\end{gathered}
$$

is a martingale, i.e. that

$$
\exp \left[\langle\lambda, X(\sigma, \cdot)-X(s, \cdot)\rangle+\mu \int_{s}^{\sigma}\langle b, d X\rangle-\frac{1}{2} \int_{s}^{\sigma}|\lambda+b \mu|^{2} d \rho\right] .
$$

is a martingale; in other words that

$$
\exp \left[\int_{s}^{\sigma}\langle\lambda+b \mu, d X\rangle-\frac{1}{2} \int_{s}^{\sigma}|\lambda+b \mu|^{2} d \rho\right]
$$

146
is a martingale. But this is obvious because

$$
Z(\sigma, \cdot)=\int_{s}^{\sigma}\langle\lambda+\mu b, d X\rangle
$$

is a stochastic integral and hence an Itô process with parameters $(0, \mid \lambda+$ $\left.\mu b\right|^{2}$). (Refer to the section on vector-valued Itô process).

Step 2. Put $\phi(\sigma, X(\sigma, \cdot), Y(\sigma, \cdot))=u(\sigma, X(\sigma, \cdot)) e^{Y(\sigma, \cdot)}$. By Itô formula,

$$
d \phi=e^{Y} \frac{\partial u}{\partial t} d t+e^{Y}\langle\nabla u, d X\rangle+u e^{Y} d Y+\frac{1}{2} \sum a_{i j} \frac{\pi^{2} \phi}{\partial z_{i} \partial z_{j}},
$$

where $z=(x, y)$, or

$$
d \phi=e^{Y}\left[\frac{\partial u}{\partial t} d t+\langle\nabla u, d X\rangle+u\langle b, d X\rangle-\frac{\mu}{2}|b|^{2} d t+\frac{1}{2} \nabla u d t+\langle b, \nabla u\rangle d t+\right.
$$

$$
\begin{gathered}
\left.+\frac{1}{2} u|b|^{2} d t\right] \\
=e^{Y}[\langle\nabla u, d X\rangle+u\langle b, d X\rangle] .
\end{gathered}
$$

Therefore ϕ is an Itô process and hence a martingale. Therefore

$$
\begin{gathered}
E(\phi(t, \cdot))=E(\phi(s, \cdot)) \\
u(s, x)=E^{P_{s, x}}\left[\left(f(X(t)) e^{\left.\int_{s}^{t}\langle b, d X\rangle-\frac{1}{2} \int_{0}^{t} \int^{|b|^{2} d \theta}\right]}\right.\right. \\
=E^{Q_{s, x}}[f(X(t))]
\end{gathered}
$$

which proves the theorem.

Alternate Proof.

Exercise. Let $Y(\sigma, \cdot)$ be progressively measurable for $\sigma \geq s$. Then $Y(\sigma, \cdot)$ is a martingale relative to $\left(Q_{s, x}, \mathscr{F}_{t}^{s}\right)$ if and only if $Y(\sigma) Z_{s, \sigma}$ is a martingale relative to $\left(P_{s, x}, \mathscr{F}_{t}^{S}\right)$.

Now for any function θ which is progressively measurable and bounded,

$$
\exp \left[\int_{s}^{t}\langle\theta, d X\rangle-\frac{1}{2} \int_{s}^{t}|\theta|^{2} d \sigma\right]
$$

is a martingale relative to $\left(\Omega, \mathscr{F}_{t}^{s}, P_{s, x}\right)$. In particular let θ be replaced by $\theta+b(\sigma, w(\sigma))$. After some rearrangement one finds that X_{t} is an Itô process with parameters b, I relative to $Q_{s, x}$. Therefore

$$
u\left(t, X_{t}\right)-\int_{s}^{t}\left(\frac{\partial u}{\partial \sigma}+\langle b, \nabla u\rangle+\frac{1}{2} \nabla u\right) d \sigma
$$

is a martingale relative to $Q_{s, x}$. But

$$
\frac{\partial u}{\partial \sigma}+\langle b, \nabla u\rangle+\frac{1}{2} \nabla u=0 .
$$

Therefore

$$
E^{Q_{s, x}}(u(t, X(t))=u(s, X)
$$

We have defined $Q_{s, x}$ by using the notion of the Radon-Nikodym derivative. We give one more relation between P and Q.

Theorem . Let $T: C\left([s, \infty), \mathbb{R}^{d}\right) \rightarrow C\left([s, \infty), \mathbb{R}^{d}\right)$ be given by

$$
T X=Y \quad \text { where } \quad Y(t)=X(t)-\int_{s}^{t} b(\sigma, X(\sigma)) d \sigma
$$

(b is as before). Then

$$
Q_{s, x} T^{-1}=P_{s, x} .
$$

148 Proof. Define $Y(t, w)=X(t, T w)$ where X is a Brownian motion. We prove that Y is a Brownian motion with respect to $Q_{s, x}$. Clearly Y is progressively measurable because T is $\left(\mathscr{F}_{t}-\mathscr{F}_{t}\right)$-measurable for every t, i.e. $T^{-1}\left(\mathscr{F}_{t}\right) \subset \mathscr{F}_{t}$ and X is progressively measurable. Clearly $Y(t, w)$ is continuous $\forall w$. We have only to show that $Y\left(t_{2}\right)-Y\left(t_{1}\right)$ is $Q_{s, x^{-}}$ independent of $\mathscr{F}_{t_{1}}^{s}$ and has distribution $N\left(0 ;\left(t_{2}-t_{1}\right) I\right)$ for each $t_{2}>$ $t_{1} \geq s$. But we have checked that

$$
\exp \left[\left\langle\theta, X_{t}-x\right\rangle-\frac{1}{2}|\theta|^{2}(t-s)-\int_{s}^{t}\langle\theta, b\rangle d \sigma\right]
$$

is a martingale relative to $Q_{s, x}$. Therefore

$$
E^{Q_{s, x}}\left(\exp \left\langle\theta, Y_{t_{2}}-Y_{t_{1}}\right\rangle \mid \mathscr{F}_{t_{1}}^{s}\right)=\exp \left(\frac{1}{2}|\theta|^{2}\left(t_{2}-t_{1}\right)\right)
$$

showing that $Y_{t_{2}}-Y_{t_{1}}$ is independent of $\mathscr{F}_{t_{1}}^{s}$ and has normal distribution $N\left(0 ;\left(t_{2}-t_{1}\right) I\right)$. Thus Y is a Brownian motion relative to $Q_{s, x}$. Therefore

$$
Q_{s, x} T^{-1}=P_{s, x}
$$

21. Integral Equations

Definition. A function $b: R^{d} \rightarrow R^{d}$ is said to be locally Lipschitz if 149 given any $x_{0} \in R^{d}$ there exists an open set U_{0} containing x_{0} such that $\left.b\right|_{U_{0}}$ is Lipschitz.

Exercise 1. b is locally Lipschitz iff $\left.b\right|_{K}$ is Lipschitz for every compact set K i.e. iff $\left.b\right|_{K}$ is Lipschitz for every closed sphere K.

Exercise 2. Every locally Lipschitz function is continuous.
Theorem. Let $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be locally Lipschitz and $X:[0, \infty) \rightarrow \mathbb{R}^{d}$ continuous. Then
(i) the equation

$$
\begin{equation*}
Y(t)=X(t)+\int_{0}^{t} b(Y(s)) d s \tag{*}
\end{equation*}
$$

has a continuous solution near 0 , i.e. there exists an $\epsilon>0$ and a continuous function $Y:[0, \epsilon] \rightarrow R^{d}$ such that the above equation is satisfied for all t in $[0, \epsilon]$.
(ii) (Uniqueness) If Y_{1}, Y_{2} are continuous solutions of the above equation in $[0, T]$, then

$$
Y_{1}=Y_{2} \quad \text { on } \quad[0, T] .
$$

Proof. (ii) (Uniqueness) Let $f(t)=\left|Y_{1}(t)-Y_{2}(t)\right|$. As Y_{1}, Y_{2} are continuous, there exists a $k>0$ such that $\left|Y_{1}(t)\right|,\left|Y_{2}(t)\right| \leq k$ for all t in
$[0, T]$. Choose C such that $|b(x)-b(y)| \leq C|x-y|$ for $|x|,|y| \leq k$ and
$C \sup _{0 \leq \leq \leq T} f(t)$. Then $f(t) \leq C$ and $f(t) \leq C \int_{0}^{t} f(s) d s$ so that $f(t) \leq \frac{(c t)^{n}}{n!}$ for all $n=1,2,3, \ldots$ Thus $Y_{1}(t)=Y_{2}(t)$, proving uniqueness.
(i) (Existence) We can very well assume that $X(0)=0$. Let $a=$ $\inf \{t:|X(t)| \geq 1\}$,

$$
M>\sup \{|b(x)|:|x| \leq 2\}, \quad \alpha=\inf \left\{a, \frac{1}{M}\right\},
$$

$C \neq 0$, a Lipschitz constant, so that $|b(x)-b(y)| \leq C|x-y|$ for all $|x|$, $|y| \leq 2$. Define the iterations Y_{0}, Y_{1}, \ldots by

$$
Y_{0}(t)=X(t), \quad Y_{n+1}(t)=X(t)+\int_{0}^{t} b\left(Y_{n}(s)\right) d s
$$

for all $t \geq 0$. By induction, each Y_{n} is continuous. By induction again, $\left|Y_{n}(t)-X(t)\right| \leq M t$ for all $n, 0 \leq t \leq \alpha$. Again, by induction $\mid Y_{n+1}(t)-$ $Y_{n}(t) \left\lvert\, \leq \frac{M}{C} \frac{\left(C t^{n+1}\right.}{(n+1)!}\right.$ for $0 \leq t \leq \alpha$. Again, by induciton $\left|Y_{n+1}(t)-Y_{n}(t)\right| \leq$ $\frac{M}{C} \frac{(C t)^{n+1}}{(n+1)!}$ for $0 \leq t \leq \alpha$. Thus $Y_{n}(t)$ converges uniformly on $[0, \alpha]$ to a continuous function $Y(t)$ which is seen to satisfy the integral equation.

Remark. Let $X:[-\delta, \infty) \rightarrow \mathbb{R}^{d}$ be continuous where $\delta>0$. Then a similar proof guarantees that the equation $\left({ }^{*}\right)$ has a solution in $[-\epsilon, \epsilon]$ for some $\epsilon>0$.

Define $B(X)=\sup \{t:(*)$ has a solution in $[0, t]\}$. The theorem above implies that $0<B(X) \leq \infty . B(X)$ is called the exploding time.

Remark. If b is, in addition, either bounded or globally Lipschitz, $B(X)=\infty$ for every continuous $X:[0, \infty) \rightarrow \mathbb{R}^{d}$.

Example. Let $b(y)=y^{2}, X(t)=0$. The equation

$$
Y(t)=x_{0}+\int_{0}^{t} b(y(s)) d s
$$

with $x_{0}>0$ has a solution

$$
Y(t)=\frac{1}{\frac{1}{x_{0}}-t}, \forall t<\frac{1}{x_{0}}
$$

the solution explodes at $t=x_{0}^{-1}$.
Proposition. If

$$
B(w)<\infty, \quad \text { then } \quad \operatorname{Lt}_{t \uparrow B(w)}|y(t)|=+\infty .
$$

Proof. Suppose that $\underset{t \rightarrow B(w)}{\lim }|y|=R<\infty$. Let $\left(t_{n}\right)$ be a sequence increasing to $B(w)$ such that $\left|y\left(t_{n}\right)\right| \leq R+1, \forall n$. Let

$$
\tau_{n}=\inf \left\{t \geq t_{n}:\left|y(t)-y\left(-_{n}\right)\right| \geq 1\right\}
$$

Then

$$
\begin{aligned}
& 1=\left|y\left(\tau_{n}\right)-y\left(t_{n}\right)\right| \\
& \leq w\left(\tau_{n}\right)-w\left(t_{n}\right)\left|+\left(\tau_{n}-t_{n}\right) \sup \right| b(\lambda) \mid \ldots,(1) \\
& \quad \lambda \in S\left(y\left(t_{n}\right), 1\right)
\end{aligned}
$$

Since $\left(t_{n}\right)$ is bounded, we can choose a constant M such that

$$
\left|w\left(t_{n}\right)-w(t)\right|<\frac{1}{2} \quad \text { if } \quad\left|t-t_{n}\right| \leq M .
$$

Then using (1),

$$
\tau_{n}-t_{n} \geq \inf \left\{M,(2 \sup |b(\lambda)|)^{-1} \quad \text { where } \quad \lambda \in S\left(Y\left(t_{n}\right) ; 1\right)\right.
$$

Therefore

$$
\tau_{n}-t_{n} \geq \inf \left(M,(2 \sup |b(\lambda)|)^{-1}, \lambda \in S(0 ; R+2)\right)=\alpha(\text { say }) \forall n
$$

Chose n such that $\tau_{n}>B(w)>t_{n}$. Then y is bounded in $\left[t_{n}, B(w)\right]$ and hence it is bounded in $[0, B(w))$. From the equation

$$
y(t)=X(t)+\int_{0}^{t} b(y(s)) d s
$$

one then gets that $\operatorname{Lt}_{t \rightarrow B(w)} y(t)$ exists. But this is clearly a contradiction since in such a case the solution exists in $[0, B(w)+\epsilon)$ for suitable ϵ, contradicting the definition of $B(w)$. Thus

$$
\underline{\lim }_{t \rightarrow B(w)}|y(t)|=+\infty
$$

and hence

$$
\lim _{t \rightarrow B(w)}|y(t)|=+\infty
$$

Corollary. If b is locally Lipschitz and bounded, then $B(X)=\infty$ for all X in $C\left([0, \infty), \mathbb{R}^{d}\right)$.

Proof. Left as an exercise.
Proposition. Let $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be locally Lipschitz and bounded. Define $T: C\left([0, \infty), \mathbb{R}^{d}\right) \rightarrow C\left([0, \infty), \mathbb{R}^{d}\right)$ by $T X=Y$ where

$$
Y(t)=X(t)+\int_{0}^{t} b(Y(s)) d s
$$

Then T is continuous.
Proof. Let $X, X^{*}:[0, \infty) \rightarrow \mathbb{R}^{d}$ be continuous, $K>0$ be given. Let $Y_{0}, Y_{1}, \ldots, Y_{0}^{*}, Y_{1}^{*}, \ldots$ be the iterations for X, X^{*} respectively. Then $\left|Y_{n}(t)-X(t)\right| \leq K\|b\|_{\infty}$ for $0 \leq t \leq K, n=0,1,2,3, \ldots$, so that we can find R such that $\left|Y_{n}(t)\right|, Y_{n}^{*}(t) \mid \leq R$ for $0 \leq t \leq k, n=0,1,2, \ldots$, Let $C \geq 1$ be any Lipschitz constant for the function b on $|x| \leq R$. Then

$$
\left|Y_{n}(t)-Y_{n}^{*}(t)\right| \leq \sup _{0 \leq t \leq K}\left|X(t)-X^{*}(t)\right| \cdot\left(1+C t+\frac{(C t)^{2}}{2!}+\right.
$$

$$
\left.+\cdots+\frac{(C t)^{n}}{n!}\right) \quad \text { for } \quad 0 \leq t \leq K, \quad n=0,1,2,3, \ldots
$$

A b is bounded, Y_{n} converges uniformly to Y on $[0, K]$. Letting $n \rightarrow \infty$, we get

$$
\left.\sup _{0 \leq t \leq K} \mid(T X) t-T X^{*}\right) t\left|\leq e^{c k} \sup _{0 \leq t \leq K}\right| X(t)-X^{*}(t) \mid, \ldots \text { (2) }
$$

where c depends on $\sup _{0 \leq t \leq K}|X(t)|, \sup _{0 \leq t \leq K}\left|X^{*}(t)\right|$. The proof follows by (2).

22. Large Deviations

LET P_{ϵ} BE THE Brownian motion starting from zero scaled to Brownian motion corresponding to the operator $\epsilon \frac{\Delta}{2}$. More precisely, let

$$
P_{\epsilon}(A)=P\left(\frac{A}{\sqrt{\epsilon}}\right)
$$

where P is the Brownian motion starting at time 0 at the point 0 .
Interpretation 1. Let $\left\{X_{t}: t \geq 0\right\}$ be Brownian motion with $X(0)=x$. Let $Y(t)=X(\epsilon t), \forall t \geq 0$. Then P_{ϵ} is the measure induced by the process $Y(t)$. This amounts to stretching the time or scaling time.

Interpretation 2. Let $Y(t, \cdot)=\sqrt{ } \epsilon X(t, \cdot)$. In this case also P_{ϵ} is the measure induced by the process $Y(t, \cdot)$. This amounts to 'looking at the process from a distance' or scaling the length.

Exercise. Make the interpretations given above precise.
(Hint: Calculate (i) the probability that $X(\epsilon t) \in A$, and (ii) the probability that $\sqrt{ } \epsilon X(t,) \in A)$.

Problem. Let

$$
I(w)=\frac{1}{2} \int_{0}^{1}|\dot{w}(t)|^{2} d t
$$

if $w(0)=0, w$ absolutely continuous on $[0,1]$. Put $I(w)=\infty$ otherwise.

We would like to evaluate

$$
\int_{\Omega} e^{\frac{F(w)}{\epsilon}} d P_{\epsilon}(w)
$$

155 for small values of ϵ. Here $F(w): C[0,1] \rightarrow \mathbb{R}$ is assumed to the a bounded and continuous function.

Theorem. Let C be any closed set in $C[0,1]$ and let G be any open set in $C[0,1]$. Then

$$
\begin{aligned}
& \limsup _{\epsilon \rightarrow 0} \in \log P_{\epsilon}(C) \leq-\int_{w \in C} I(w), \\
& \liminf _{\epsilon \rightarrow 0} \epsilon \log P_{\epsilon}(G) \geq-\inf _{w \in G} I(w) .
\end{aligned}
$$

Here $P_{\epsilon}(G)=P_{\epsilon}\left(\pi^{-1} G\right)$ where $\pi: C[0, \infty) \rightarrow C[0,1]$ is the canonical projection.

Significance of the theorem . If
1.

$$
d P_{\epsilon}=e^{\frac{-I(l)}{\epsilon}}
$$

then

$$
P_{\epsilon(A)}=\int_{A} e^{\frac{-I(w)}{\epsilon}} d P_{\epsilon}
$$

is asymptotically equivalent to

$$
\exp \left[-\frac{1}{\epsilon} \inf _{w \in A} I(w)\right] .
$$

2. If A is any set such that

$$
\inf _{w \in A^{0}} I(w)=\inf _{w \in \bar{A}} I(w),
$$

then by the theorem

$$
\operatorname{Lt}_{\epsilon \rightarrow 0} \log P_{\epsilon}(A)=\inf _{w \in A} I(w) .
$$

Proof of the theorem.

Lemma 1. Let $w_{0} \in \Omega$ with $I\left(w_{0}\right)=\ell<\infty$. If $S=S\left(w_{0} ; \delta\right)$ is any sphere of radius δ with centre at w_{0} then $\underline{\lim }_{\epsilon \rightarrow 0} \in \log P_{\epsilon}(S) \geq-I\left(w_{0}\right)$.

Proof.

$$
\begin{aligned}
& P(S)=\int \chi_{S\left(w_{0}, \delta\right)}^{(w)} d P_{\epsilon} \\
& =\int \chi_{S(0 ;)}^{\left(w-w_{0}\right)} d P_{\epsilon} \\
& =\int \chi_{S(0 ; \delta)}(\lambda w) d P\left(\frac{w}{\sqrt{\epsilon}}\right), \text { where } \lambda(w)=w-w_{0}, \\
& =\int \chi_{S(0 ; \delta)}(\lambda(\sqrt{ } \epsilon w)) d P(w) \\
& =\int \chi_{S(0, \delta)}(\sqrt{ } \epsilon w) \exp \left[\int_{0}^{1}\left\langle w_{0}, d X\right\rangle-\frac{1}{2} \int_{0}^{1}\left|\dot{w}_{0}\right|^{2} d \sigma\right] d P(w) \\
& =\int \chi_{S(0 ; \delta)}(\sqrt{ } \epsilon w) \exp \left[\int_{0}^{1}\left\langle\dot{w}_{0}, d X\right\rangle-I\left(w_{0}\right)\right] d P(w) \\
& =\int \chi_{S(0 ; \delta)}(w) \exp \left[-\frac{1}{\epsilon} \int_{0}^{1}\left\langle\dot{w}_{0}, d X\right\rangle-\frac{1}{\epsilon} I\left(w_{0}\right)\right] d P_{\epsilon}(w) \\
& =e^{\frac{-I\left(w_{0}\right)}{\epsilon}} P_{\epsilon}(S(0 ; \delta)) \frac{1}{P_{\epsilon}(S(0 ; \delta))} \int_{S(0 ; \delta)} \exp \left[-\frac{1}{\epsilon} \int_{0}^{1}\left\langle\dot{w}_{0}, d X\right\rangle\right] d P_{\epsilon} \\
& \geq e^{\frac{-I\left(w_{0}\right)}{\epsilon}} P_{\epsilon}(S(0 ; \delta)) e\left[-\frac{1}{\epsilon} \frac{1}{P_{\epsilon}(S(0 ; \delta))} \int_{S(0 ; \delta)}^{\int_{0}}\left\langle\dot{w}_{0}, d X\right\rangle d P_{\epsilon}\right]
\end{aligned}
$$

by Jensen's inequality,

$$
\begin{aligned}
& =e^{\frac{-I\left(w_{0}\right)}{\epsilon}} P_{\epsilon}(S(0, \delta)) e^{0}\left(\text { use } P_{\epsilon}(w)=P_{\epsilon}(-w) \text { if } w \in S(0 ; \delta)\right) \\
& =e^{\frac{-I\left(w_{0}\right)}{\epsilon}} P_{\epsilon}(S(0, \delta))
\end{aligned}
$$

Therefore

$$
P_{\epsilon}\left(S\left(w_{0} ; \delta\right)\right) \geq e^{\frac{-I\left(w_{0}\right)}{\epsilon}} P\left(S\left(0 ; \frac{\delta}{\sqrt{\epsilon}}\right)\right)
$$

or,

$$
\epsilon \log P_{\epsilon}\left(S\left(w_{0} ; \delta\right)\right) \geq-I\left(w_{0}\right)+\epsilon \log P\left(S\left(0 ; \frac{\delta}{\sqrt{\epsilon}}\right)\right) ;
$$

let $\epsilon \rightarrow 0$ to get the result. Note that the Lemma is trivially satisfied if $I\left(w_{0}\right)=+\infty$.

Proof of Part 2 of the theorem.

Let G be open, $w_{0} \in G$; then there exists $\delta>0$ with $S\left(w_{0}, \delta\right) \subset G$. By Lemma

$$
\varliminf_{\epsilon \rightarrow 0} \in \log P_{\epsilon}(G) \geq \lim _{\epsilon \rightarrow 0} \in \log P_{\epsilon}\left(S\left(w_{0} ; \delta\right)\right) \geq-I\left(w_{0}\right) .
$$

Since w_{0} is arbitrary, we get

$$
\underline{\lim } \in \log P_{\epsilon}(G) \geq-\inf \left\{I\left(w_{0}\right): w_{0} \in G\right\} .
$$

For part 1 we need some more preliminaries.
Lemma 2. Let $\left(w_{n}\right) \in C[0,1]$ be such that $w_{n} \rightarrow w$ uniformly on $[0,1]$, $I\left(w_{n}\right) \leq \alpha<\infty$. Then $I(w)<\alpha$, i.e. I is lower semi-continuous.

Proof.
Step 1. w is absolutely continuous. Let $\left\{\left(x_{i}^{\prime}, x_{i}^{\prime \prime}\right)\right\}_{i=1}^{n}$ be a collection of mutually disjoint intervals in $[0,1]$. Then

$$
\begin{gathered}
\sum_{i=1}^{n}\left|w_{m}\left(x_{i}^{\prime}\right)-w_{m}\left(x_{i}^{\prime \prime}\right)\right| \leq \sum_{i=1 \mid}^{n}\left|x_{i}^{\prime \prime}-x_{i}^{\prime}\right|^{1 / 2}\left[\int_{x_{i}^{\prime}}^{x_{i}^{\prime \prime}}\left|w_{m}\right|^{2}\right]^{1 / 2} \\
\text { (by Hölder’s inequality) }
\end{gathered}
$$

$$
\begin{aligned}
& \leq\left(\sum_{i=1}^{n} \int_{x_{i}^{\prime}}^{x_{i}^{\prime \prime}}\left|w_{m}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left|x_{i}^{\prime \prime}-x_{i}^{\prime}\right|\right)^{1 / 2} \quad \text { (again by Hölder) } \\
& \leq \sqrt{ }(2 \alpha)\left(\sum\left|x_{i}^{\prime \prime}-x_{i}^{\prime}\right|\right)^{1 / 2}
\end{aligned}
$$

Letting $m \rightarrow \infty$ we get the result.
Step 2. Observe that $w_{m}(0)=0 S_{0} w(0)=0$. Therefore

$$
\begin{aligned}
\left|\frac{w_{n}(x+h)-w_{n}(x)}{h}\right|^{2} & =\left|\frac{1}{h} \int_{x}^{x+h} w_{n} d t\right|^{2} \leq \frac{1}{h^{2}}\left(\int_{x}^{x+h}\left|w_{n}\right| d t\right)^{2} \\
& \leq \frac{1}{h} \int_{x}^{x+h}\left|w_{n}\right|^{2} d t
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int_{0}^{1-h}\left|\frac{w_{n}(x+h)-w_{n}(x)}{h}\right|^{2} d x & \leq \frac{1}{h} \int_{0}^{1-h} d x \int_{0}^{h}\left|\left(\dot{w}_{n}(x+t)\right)\right|^{2} d t \\
& \leq \frac{1}{h} \int_{0}^{h} d t \int_{0}^{1-h}\left|\dot{w}_{n}(x+t)\right|^{2} d x \\
& \leq \frac{1}{2} 2 \int_{0}^{h} d t=2 \alpha
\end{aligned}
$$

letting $n \rightarrow \infty$, we get

$$
\int_{0}^{1-h}\left|\frac{w(x+h)-w(x)}{h}\right|^{2} d x \leq 2 \alpha
$$

Let $h \rightarrow 0$ to get $I(w) \leq \alpha$, completing the proof.

159 Lemma 3. Let C be closed and put $C^{\delta}=\bigcup_{w \in C} S(w ; \delta)$; then

$$
\lim _{\delta \rightarrow 0}\left(\inf _{w \in C^{\delta}} I(w)\right)=\inf _{w \in C} I(w)
$$

Proof. If $\delta_{1}<\delta_{2}$, then $C^{\delta_{1}} \subset C^{\delta_{2}}$ so that $\inf _{w \in C^{\delta}} I(w)$ is decreasing. As $C^{\delta} \supset C$ for each δ,

$$
\lim _{\delta \rightarrow 0}\left(\inf _{w \in C^{\delta}} I(w)\right) \leq \inf _{w \in C} I(w)
$$

Let $\ell=\lim _{\delta \rightarrow 0}\left(\inf _{w \in C^{\delta}} I(w)\right)$. Then there exists $w_{\delta} \in C^{\delta}$ such that $I\left(w_{\delta}\right) \rightarrow$ ℓ, and therefore $\left(I\left(w_{\delta}\right)\right)$ is a bounded set bounded by α (say).

Claim.

$$
\begin{aligned}
\left|w_{\delta}\left(t_{1}\right)-w_{\delta}\left(t_{2}\right)\right| & =\left|\int_{t_{1}}^{t_{2}} w_{\delta} d t\right| \leq \sqrt{ } \mid\left(\left|t_{1}-t_{2}\right|\right)\left(\int\left|w_{\delta}\right|^{2}\right)^{1 / 2} \\
& \leq \sqrt{ }\left(2 \alpha\left|t_{1}-t_{2}\right|\right)
\end{aligned}
$$

The family $\left(w_{\delta}\right)$ is therefore equicontinuous which, in view of the fact that $w_{\delta}(0)=0$, implies that it is uniformly bounded and the claim follows from Ascoli's theorem. Hence every subfamily of $\left(w_{\delta}\right)$ is equicontinuous. By Ascoli's theorem there exists a sequence $\delta_{n} \rightarrow 0$ such that $w \delta_{n} \rightarrow w$ uniformly on $[0,1]$. It is clear that $w \in C$. By lower semicontinuity of $I(w)$,

$$
\lim _{\delta \rightarrow 0} \inf _{w \in C^{\delta}} I(w) \geq \inf _{w \in C}
$$

completing the proof.

160 Proof of Part 1 of the theorem. Let X be continuous in [0, 1]. For each n let X_{n} be a piecewise linear version of X based on n equal intervals, i.e.
X_{n} is a polygonal function joining the points $(0, X(0)),(1 / n, X(1 / n)), \ldots$, (1, $X(1)$).

$$
\begin{gathered}
P_{\epsilon}\left(\left\|X_{n}-X\right\| \geq \delta\right),\left(\|\cdot\|=\|\cdot\|_{\infty}\right) \\
\leq P\left(\bigcup_{n} \sup _{i \leq j \leq n} \cdot \sup _{\frac{j-1}{n} \leq t \leq \frac{j}{n}}\left|X_{r}(t)-X_{r}\left(\frac{j-1}{n}\right)\right| \geq \frac{\delta}{2 \sqrt{ } d}\right), \\
\text { where } X=\left(X_{1}, \ldots, X_{d}\right)
\end{gathered}
$$

$\leq n d P_{\epsilon}\left(\sup _{0 \leq t \leq 1 / n}|X(t)-X(0)| \geq \frac{\delta}{2 \sqrt{ } d}\right.$ (Markov property; here X is onedimensional).

$$
\begin{aligned}
& \leq n d P_{\epsilon}\left(\sup _{0 \leq t \leq 1 / n}\left|X_{t}\right| \geq \frac{\delta}{2 \sqrt{ } d}\right) \quad(\text { since } X(0)=0) \\
& \leq 2 n d P_{\epsilon}\left(\sup _{0 \leq t \leq 1 / n} X_{t} \geq \frac{\delta}{2 \sqrt{ } d}\right) \\
& =2 d n P\left(\sup _{0 \leq t \leq 1 / n} X_{t} \geq \frac{\delta}{2 \sqrt{ } \epsilon d}\right) \\
& =4 d n P\left(X(1 / n) \geq \frac{\delta}{2 \sqrt{ } \epsilon d}\right) \quad(\text { by the reflection principle }) \\
& =4 d n \int_{\delta \sqrt{n} / 2 \sqrt{ } \epsilon d}^{\infty} \frac{1}{\sqrt{ } 2 \pi / n} e^{-n y^{2} / 2} d y \\
& =4 d \int_{\delta \sqrt{n} / 2 \sqrt{ } \epsilon d}^{\infty} \frac{1}{\sqrt{ } 2 \pi} e^{-x^{2} / 2} d x
\end{aligned}
$$

Now, for every $a>0$,

$$
a \int_{a}^{\infty} e^{-x^{2} / 2} d x \leq \int_{a}^{\infty} x e^{-x^{2} / 2} d x=e^{-a^{2} / 2}
$$

Thus

$$
P_{\epsilon}\left(\left\|X_{n}-X\right\| \geq \delta\right) \leq \frac{4 d n e^{-n \delta^{2} /(8 \epsilon d)}}{\delta \sqrt{ } n / 2 \sqrt{\epsilon} d}=C_{1}(n) \frac{\sqrt{ } \epsilon}{\sqrt{ } \delta} e^{-n \delta^{2} /(8 \epsilon d)},
$$

where C_{1} depends only on n. We have now

$$
\begin{aligned}
P_{\epsilon}\left(X_{n} \in C^{\delta}\right) & \leq P_{\epsilon}\left(I\left(X_{n}\right) \geq \ell_{\delta}\right) \text { where } \ell_{\delta}=\inf \left\{I(w) w \in C^{\delta}\right\} . \\
& =P\left(\frac{1}{2} \sum_{j=0}^{n-1} n\left|X\left(\frac{j+1}{n}\right)-X\left(\frac{j}{n}\right)\right|^{2} \geq \ell_{\delta}\right) \\
& =P\left(Y_{1}^{2}+Y_{2}^{2}+\cdots+Y_{n d}^{2} \geq \frac{2 \ell_{\delta}}{\epsilon}\right),
\end{aligned}
$$

where $Y_{1}=\sqrt{ } n\left(X_{1}(1 / n)-X_{1}(0)\right)$ etc. are independent normal random variables with mean 0 and variance 1 . Therefore,

$$
\begin{aligned}
& P\left(Y_{1}^{2}+\cdots+Y_{n d}^{2} \geq \frac{2 \ell_{\delta}}{\epsilon}\right) \\
& =\int_{y_{1}^{2}+\cdots+y_{n d}^{2}} \frac{2 \ell_{\delta}}{\epsilon} e^{-\left(y_{1}^{2}+\cdots+y_{n d}^{2}\right)^{1 / 2}} d y_{1} \ldots d y_{n d} . \\
& =C(n) \int_{\sqrt{\left(2 \ell_{\delta} / \epsilon\right)}}^{\infty} e^{-r^{2} / 2} r^{n d-1} d r
\end{aligned}
$$

using polar coordinates, i.e.

$$
P\left(Y_{1}^{2}+Y_{2}^{2}+\cdots+Y_{n d}^{2} \geq \frac{2 \ell_{\delta}}{\epsilon}\right)=C^{\prime}(n) \int_{\left(\ell_{\delta} / \epsilon\right)}^{\infty} e^{-s} s^{\frac{n d}{2}-1} d s
$$

(change the variable from r to $s=\frac{r^{2}}{2}$). An integration by parts gives

$$
\int_{\alpha}^{\infty} e^{-s} s^{k} d s=e^{-\alpha}\left(\alpha^{k}+\frac{k!}{(k-1)!} \alpha^{k-2}+\cdots\right)
$$

Using this estimate (for n even) we get

$$
P\left(\left(Y_{1}^{2}+\cdots+Y_{n d}^{2}\right) \geq \frac{2 \ell_{\delta}}{\epsilon}\right) \leq C_{2}(n) e^{-\ell_{\delta} / \epsilon}\left(\frac{\ell_{\delta}}{\epsilon}\right)^{\frac{n d}{2}-1}
$$

where C_{2} depends only on n. Thus,

$$
\begin{aligned}
P_{\epsilon}(C) & \leq P_{\epsilon}\left(\left\|X_{n}-X\right\| \geq \delta\right)+P_{\epsilon}\left(X_{n} \notin C^{\delta}\right) \\
& \leq C_{1}(n) \sqrt{ }\left(\frac{\epsilon}{\delta}\right) e^{-n \delta^{2} /(8 \in d)}+C_{2}(n) e^{-\ell_{\delta} / \epsilon}\left(\frac{\ell_{\delta}}{\epsilon}\right)^{\frac{n d}{2}-1} \\
& \leq 2 \max \left[C_{1}(n) \sqrt{ }\left(\frac{\epsilon}{\delta}\right) e^{-n \delta^{2} /(8 \in d)}, C_{2}(n) e^{-\ell_{\delta} / \epsilon}\left(\frac{\ell_{\delta}}{\epsilon}\right)^{\frac{n d}{2}-1}\right. \\
& \in \log P_{\epsilon}(C) \leq \epsilon \log 2+\epsilon \max \left[\operatorname { l o g } \left(C_{1}(n) \sqrt{ }\left(\frac{\epsilon}{\delta}\right) e^{-n \delta^{2} /(8 \in d)}\right.\right. \\
& \left.\log C_{2}(n) e^{-\ell_{\delta} / \epsilon}\left(\frac{\ell_{\delta}}{\epsilon}\right)^{\frac{n d}{2}-1}\right]
\end{aligned}
$$

Let $\epsilon \rightarrow 0$ to get

$$
\overline{\lim } \in \log P_{\epsilon}(C) \leq \max \left\{\frac{-n \delta^{2}}{8 d}, \frac{-\ell_{\delta}}{1}\right\}
$$

Fix δ and let $n \rightarrow \infty$ through even values to get

$$
\overline{\lim } \in \log P_{\epsilon}(C) \leq-\ell_{\delta}
$$

Now let $\delta \rightarrow 0$ and use the previous lemma to get

$$
\varlimsup_{\epsilon \rightarrow 0} \in \log P_{\epsilon}(C) \leq-\int_{w \in C} I(w) .
$$

Proposition. Let ℓ be finite; then $\{w: I(w) \leq \ell\}$ is compact in Ω.
Proof. Let $\left(w_{n}\right)$ be any sequence, $I\left(w_{n}\right) \leq \ell$. Then

$$
\left|w_{n}\left(t_{1}\right)-w_{n}\left(t_{2}\right)\right| \leq \sqrt{ }\left(\ell\left|t_{1}-t_{2}\right|\right)
$$

and since $w_{n}(0)=0$, we conclude that $\left\{w_{n}\right\}$ is equicontinuous and uniformly bounded.

Assumptions. Let Ω be any separable metric space, $\mathscr{F}=$ Borel σ-field on Ω. For every $\epsilon>0$ let P_{ϵ} be a probability measure. Let $I: \Omega \rightarrow$ $[0, \infty]$ be any function such that
(i) I is lower semi-continuous.
(ii) \forall finite $\ell,\{w: I(w) \leq \ell\}$ is compact.
(iii) For every closed set C in Ω,

$$
\lim _{\epsilon \rightarrow 0} \sup \in \log P_{\epsilon}(C) \leq-\inf _{w \in C} I(w)
$$

(iv) For every open set G in Ω

$$
\lim _{\epsilon \rightarrow 0} \inf \in \log P_{\epsilon}(G) \geq-\inf _{w \in G} I(w)
$$

Remark. Let $\Omega=C[0,1], P_{\epsilon}$ the Brownian measure corresponding to the scaling ϵ. If $I(w)=\frac{1}{2} \int_{0}^{1}|w|^{2} d t$ if $w(0)=0$ and ∞ otherwise, then all the above assumptions are satisfied.

Theorem. Let $F: \Omega \rightarrow \mathbb{R}$ be bounded and continuous. Under the above assumptions the following results hold.
(i) For every closed set C in Ω

$$
\lim _{\epsilon \rightarrow 0} \sup \epsilon \log \int_{C} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \leq \sup _{w \in C}(F(w)-I(w)) .
$$

(ii) For every open set G in Ω

$$
\lim _{\epsilon \rightarrow 0} \inf \in \log \int_{G} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \geq \sup _{w \in G}(F(w)-I(w))
$$

In particular, if $G=\Omega=C$, then

$$
\lim _{\epsilon \rightarrow 0} \in \log \int_{\Omega} \exp \frac{F(w)}{\epsilon} d P_{\epsilon}=\sup _{w \in \Omega}(F(w)-I(w)) .
$$

Proof. Let G be open, $w_{0} \in G$. Let $\delta \rightarrow 0$ be given. Then there exists a neighbourhood N of $w_{0}, F(w) \geq F\left(w_{0}\right)-\delta, \forall w$ in N. Therefore

$$
\int_{G} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \geq \int_{N} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \geq e^{\frac{F\left(w_{0}\right)-\delta}{\epsilon}} P_{\epsilon}(N)
$$

Therefore

$$
\epsilon \log \int_{G} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \geq F\left(w_{0}\right)-\delta+\epsilon \log P_{\epsilon}(N)
$$

Thus

$$
\begin{gathered}
\underline{\lim } \log \int_{G} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \geq F\left(w_{0}\right)-\delta+\underline{\lim } \epsilon \log P_{\epsilon}(N) . \\
\geq F\left(w_{0}\right)-\delta-\inf _{w \in N} I(w) \geq F\left(w_{0}\right)-I\left(w_{0}\right)-\delta .
\end{gathered}
$$

Since δ and w_{0} are arbitrary $\left(w_{0} \in G\right)$ we get

$$
\underline{\lim } \in \log \int_{G} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \geq \sup _{w \in G}(F(w)-I(w)) .
$$

This proves Part (ii) of the theorem.

Proof of Part (i).

Step 1. Let C be compact; $L=\sup _{w \in G}(F(w)-I(w))$. If $L=-\infty$ it follows easily that

$$
\lim _{\epsilon \rightarrow 0} \sup \in \log \int_{C} e^{F / \epsilon} d P_{\epsilon} \leq-\infty
$$

(Use the fact that F is bounded). Thus without any loss, we may assume L to be finite. Let $w_{0} \in C$; then there exists a neighbourhood N of w_{0} such that $F(w) \leq F\left(w_{0}\right)+\delta$ and by lower semi-continuity of I,

$$
I(w) \geq I\left(w_{0}\right)-\delta, \forall w \in N\left(w_{0}\right)
$$

By regularity, there exists an open set $G_{w_{0}}$ containing w_{0} such that $G_{w_{0}} \bar{G}_{w_{0}} N\left(w_{0}\right)$. Therefore

$$
\int_{\bar{G}_{w_{0}}} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \exp \left(\frac{F\left(w_{0}\right)+\delta}{\epsilon}\right) P_{\epsilon}\left(\bar{G}_{w_{0}}\right) .
$$

Therefore

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} \sup \in \log \int_{\overline{G_{w_{0}}}} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \leq F\left(w_{0}\right)+\delta+\epsilon \varlimsup_{\epsilon \rightarrow 0} P_{\epsilon}\left(\bar{G}_{w_{0}}\right) \\
& \quad \leq F\left(w_{0}\right)+\delta-\inf _{w \in \bar{G}_{w_{0}}} I(w) \\
& \quad F\left(w_{0}\right)+\delta-I\left(w_{0}\right)+\delta \\
& \quad \leq L+2 \delta .
\end{aligned}
$$

Let $K_{\ell}=\{w: I(w) \leq \ell\}$. By assumption, K_{ℓ} is compact. Therefore, for each $\delta>0$, there exists an open set G_{δ} containing $K_{\ell} \cap C$ such that

$$
\lim _{\epsilon \rightarrow 0} \sup \in \log \int_{G_{\delta}} e^{\frac{F(w)}{\epsilon}} d P_{\epsilon} \leq L+2 \delta .
$$

Therefore

$$
\begin{gathered}
\lim _{\epsilon \rightarrow 0} \sup \in \log \int_{G_{\delta} \cap C} e^{\frac{F(w)}{\epsilon}} d P_{\epsilon} \leq L+2 \delta, \\
\int_{G_{\delta}^{C} \cap C} e^{\frac{F(w)}{\epsilon}} d P_{\epsilon} \leq e^{M / \epsilon} P\left(C \cap G_{\delta}^{c}\right) .
\end{gathered}
$$

Therefore

$$
\begin{gathered}
\lim _{\epsilon \rightarrow 0} \sup \in \log \int_{G_{\delta}^{c} \cap C} e^{\frac{F(w)}{\epsilon}} d P_{\epsilon} \leq M+\lim _{\epsilon \rightarrow 0} \sup \epsilon \log P_{\epsilon}\left(C_{\delta}^{c} \cap C\right) \\
\leq M-\inf _{w \in C \cap G_{\delta}^{c}} I(w) .
\end{gathered}
$$

Now

$$
G_{\delta}^{c} \subset K_{\ell}^{c} \cap C^{c} .
$$

Therefore

$$
C \cap G_{\delta}^{c} \subset C \cap K_{\ell}^{c}
$$

if $w \in C \cap G_{\delta}^{c}, w \notin K_{\ell}$. Therefore $I(w)>\ell$. Thus

$$
\lim _{\epsilon \rightarrow 0} \sup \in \log \int_{G_{\delta}^{\tau} \cap C} e^{F(w) / \epsilon} d P_{\epsilon} \leq M-\ell \leq L \leq L+2 \delta .
$$

This proves that

$$
\lim _{\epsilon \rightarrow 0} \sup \in \log \int_{C} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \leq L+2 \delta .
$$

Since C is compact there exists a finite number of points w_{1}, \ldots, w_{n} in C such that

$$
C \subset \bigcup_{i=1}^{n} G_{w_{i}}
$$

Therefore

$$
\begin{gathered}
\overline{\lim } \in \log \int_{C} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \leq \overline{\lim } \epsilon \log \int_{\bigcup_{i=1}^{n} G_{w_{i}}} e^{F(w) / \epsilon} d P_{\epsilon} \\
\left.\leq \overline{\lim \left(\epsilon \log n \operatorname{Max}_{1 \leq i \leq}\right.} \int_{G_{w_{i}}} \exp \frac{F(w)}{\epsilon} d P_{\epsilon}\right) \\
\leq L+2 \delta .
\end{gathered}
$$

Since δ is arbitrary.

$$
\overline{\lim } \in \log \int_{C} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \leq \sup _{w \in C}(F(w)-I(w)) .
$$

The above proof shows that given a compact set C, and $\delta>0$ there exists an open set G containing C such that

$$
\overline{\lim } \in \log \int_{G} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \leq L+2 \delta .
$$

Step 2. Let C be any arbitrary closed set in Ω. Let

$$
L=\sup _{w \in C}(F(w)-I(w)) .
$$

Since F is bounded there exists an M such that $|F(w)| \leq M$ for all w. Choose ℓ so large that $M-\ell \leq L$. Since δ is arbitrary

$$
\lim _{\epsilon \rightarrow 0} \sup \in \log \int_{C} \exp \frac{F(w)}{\epsilon} d P_{\epsilon} \leq \sup _{w \in C}(F(w)-I(w))
$$

We now prove the above theorem when P_{ϵ} is replaced by Q_{x}^{ϵ}. Let P_{x}^{ϵ} be the Brownian motion starting at time $t=0$ at the space point x corresponding to the scaling ϵ. Precisely stated, if

$$
\tau_{\epsilon}: C\left([0, \infty) ; \mathbb{R}^{d}\right) \rightarrow C\left([0, \infty) ; \mathbb{R}^{d}\right)
$$

is the map given by $\left(\tau_{\epsilon} w\right)(t)=w(\epsilon t)$, then $P_{x}^{\epsilon}=P_{x} \tau_{\epsilon}^{-1}$. Note $T_{1}^{\prime \prime} \tau_{\epsilon}=T_{\epsilon}$ and T_{ϵ} is given by

$$
T_{\epsilon} w=y \text { where } y(t)=w(\epsilon t)+\int_{0}^{t} b(y(s)) d s
$$

Hence

$$
P_{x} T_{\epsilon}^{-1}=P_{x}\left(T_{1}, \tau_{\epsilon}\right)^{-1}=P_{x} \tau_{\epsilon}^{-1} T_{1}^{-1}=P_{x}^{\epsilon} T_{1}^{-1}
$$

either of these probability measures is denoted by Q_{x}^{ϵ}.
Theorem. Let $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be bounded measurable and locally Lipschitz. Define

$$
I(w): \frac{1}{2} \int_{0}^{1}|X(t)-b(X(t))|^{2} d t
$$

If $w \in C\left([0, \infty) ; \mathbb{R}^{d}\right), w(0)=x$ and x absolutely continuous. Put $I(w)=\infty$ otherwise. If C is closed in $C\left[(0,1] ; \mathbb{R}^{d}\right)$, then

$$
\varlimsup_{\epsilon \rightarrow 0} \in \log Q_{x}^{\epsilon}(C) \leq-\inf _{w \in C} I(w)
$$

If G is open in $C\left([0,1] ; \mathbb{R}^{d}\right)$, then

$$
\varliminf_{\epsilon \rightarrow 0} \in \log Q_{x}^{\epsilon}(G) \geq-\inf _{w \in G} I(w) .
$$

As usual $Q_{x}^{\epsilon}(C)=Q_{x}^{\epsilon} \pi^{-1}(C)$ where

$$
\pi: C\left([0, \infty) ; \mathbb{R}^{d}\right) \rightarrow C\left([0,1] ; \mathbb{R}^{d}\right)
$$

is the canonical projection.
Remark. If $b=0$ we have the previous case.
Proof. Let T be the map $x(\cdot) \rightarrow y(\cdot)$ where

$$
y(t)=x(t)+\int_{0}^{t} b(y(s)) d s
$$

Then

$$
Q_{x}^{\epsilon}=P_{x}^{\epsilon}\left(T^{-1}\right) .
$$

If C is closed

$$
Q_{x}^{\epsilon}(C)=P_{x}^{\epsilon}\left(T^{-1} C\right)
$$

The map T is continuous. Therefore $T^{-1}(C)$ is closed. Thus

$$
\lim _{\epsilon \rightarrow 0} \sup \in \log Q_{x}(C)=\lim _{\epsilon \rightarrow 0} \sup \in \log P_{x}^{\epsilon}\left(T^{-1} C\right)
$$

$$
\leq-\inf _{w \in T^{-1}(C)} \frac{1}{2} \int_{0}^{1}|X|^{2} d t \quad \text { (see Exercise } \text { below) }
$$

$$
=-\inf _{w \in C} \frac{1}{2} \int_{0}^{1}\left|T^{-1} w\right|^{2} d t .
$$

Now

$$
y(\cdot) \xrightarrow{T^{-1}} y(t)-\int_{0}^{t} b(y(s)) d s .
$$

Therefore

$$
\left(T^{-1} y\right)=y-b(y(s))
$$

Therefore

$$
\lim _{\epsilon \rightarrow 0} \sup \in \log Q_{x}^{\epsilon}(C) \leq-\inf _{w \in C} I(w)
$$

The proof when G is one is similar.
Exercise 1. Replace P_{ϵ} by P_{x}^{ϵ} and I by I_{x} where

$$
\begin{aligned}
I_{x}(w) & =\frac{1}{2} \int_{0}^{1}|w|^{2}, w(0)=x, w \text { absolutely continuous } \\
& =\infty \text { otherwise. }
\end{aligned}
$$

Check that $\left({ }^{*}\right)$ holds, i.e.

$$
\lim _{\epsilon \rightarrow 0} \sup \in \log P_{x}^{\epsilon}(C) \leq-\inf _{w \in C} I_{x}(w), \text { if } C \text { is closed }
$$

and

$$
\lim _{\epsilon \rightarrow 0} \inf \in \log P_{x}^{\epsilon}(G) \geq-\inf _{w \in G} I_{x}(w)
$$

Let G be a bounded open set in \mathbb{R}^{n}, with a smooth boundary $\Gamma=\partial G$. Let $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a smooth C^{∞} function such that
(i) $\langle b(x), n(x)\rangle 0, \forall x \in \partial G$ where $n(x)$ is the unit inward normal.
(ii) there exists a point $x_{0} \in G$ with $b\left(x_{0}\right)=0$ and $|b(x)|>0, \forall x$ in $G-\left\{x_{0}\right\}$.
(iii) for any x in G the solution

$$
\xi(t)=x+\int_{0}^{t} b(\xi(s)) d s
$$

of the vector field starting from x converges to x_{0} as $t \rightarrow+\infty$.
Remark. (a) (iii) is usually interpreted by saying that " x_{0} is stable".
(b) By (i) and (ii) every solution of (iii) takes all its values in G and ultimately stays close to x_{0}.
Let $\epsilon>0$ be given; $f: \partial G \rightarrow \mathbb{R}$ be any continuous bounded function. Consider the system

$$
\begin{gathered}
L_{\epsilon} u_{\epsilon}=\frac{1}{2} \Delta u_{\epsilon}+b(x) \cdot \Delta u_{\epsilon}=0 \text { in } G \\
u_{\epsilon}=f \text { on } \partial G .
\end{gathered}
$$

We want to study $\lim _{\epsilon \rightarrow 0} u_{\epsilon}(x)$. Define

$$
I_{0}^{T}(X(t))=\frac{1}{2} \int_{0}^{T}|X(t)-b(X(t))|^{2} d t ; X:[0, T] \rightarrow \mathbb{R}^{d}
$$

whenever X is absolutely continuous, $=\infty$ otherwise.
Remark. Any solution of (iii) is called an integral curve. For any curve X on $[0, T], I_{0}^{T}$ gives a measure of the deviation of X from being an integral curve. Let

$$
V_{T}(x, y)=\inf \left\{I_{0}^{T}(X): X(0)=x ; X(T)=y\right\}
$$

and

$$
V(x, y)=\inf \left\{V_{T}(x, y): T>0\right\}
$$

V has the following properties.
(i) $V(x, y) \leq V(x, z)+V(z, y) \forall x, y, z$.
(ii) Given any $x, \exists \delta \rightarrow 0$ and $C>0$ such that for all y with $|x-y| \leq \delta$.

$$
V(x, y) \leq C|x-y|
$$

Proof. Let $X(t)=\frac{t(y-x)}{|y-x|}+x$.
Put

$$
T=|y-x|, X(0)=x, X(T)=y
$$

$$
I_{0}^{T}(X(t))=\frac{1}{2} \int_{0}^{T}\left|\frac{y-x}{T}-b\left(X+\frac{S}{T}(y-x)\right)\right|^{2} d s
$$

Then

$$
I_{0}^{T} \leq \frac{1}{2} \int_{0}^{T} 2\left(\frac{|y-x|^{2}}{T^{2}}+\|b\|_{\infty}^{2}\right) d s
$$

where

$$
\|b\|_{\infty}=\sup _{|\lambda-x| \leq|y-x|} b(\lambda)
$$

or,

$$
I_{0}^{T} \leq\left(1+\|b\|_{\infty}^{2}\right)|y-x|
$$

As a consequence of (ii) we conclude that

$$
V(x, y) \leq\left(1+\sup _{|\lambda-x \leq|y-x|}|b(\lambda)|^{2}\right)|y-x|
$$

i.e. V is locally Lipschitz.

The answer to the problem raised is given by the following.

Theorem .

$$
\lim _{\epsilon \rightarrow 0} u_{\epsilon}(x)=f\left(y_{0}\right)
$$

where y_{0} is assumed to be such that $y_{0} \in \partial G$ and

$$
V\left(x_{0}, y_{0}\right)<V(x, y), \forall y \in \partial G, y \neq y_{0}
$$

We first proceed to get an equivalent statement of the theorem. Let P_{x}^{ϵ} be the Brownian measure corresponding to the starting point x, and corresponding to the scaling ϵ. Then there exists a probability measure Q_{x}^{ϵ} such that

$$
\left.\frac{d Q_{x}^{\epsilon}}{d P_{x}^{\epsilon}}\right|_{\mathscr{F}_{t}}=Z(t)
$$

where

$$
Z(t, \cdot)=\exp \int_{0}^{t}\left\langle b^{*}(X(s)), d X(s)\right\rangle-\frac{1}{2} \int_{0}^{t} b^{*}(X(s)) d s
$$

b^{*} is any bounded smooth function such that $b^{*}=b$ on G. Further we have the integral representation

$$
u_{\epsilon}(x)=\int_{\partial G} f(X(\tau)) d Q_{x}^{\epsilon}
$$

where τ is the exit time of G, i.e.

$$
\begin{gathered}
\tau(w)=\inf \{t: w(t) \notin G\} . \\
\left|u_{\epsilon}(x)-f\left(y_{0}\right)\right|=\left|\int_{\partial G}\left(f(X(\tau))-f\left(y_{0}\right)\right) d Q_{x}^{\epsilon}\right| \\
\leq\left|\int_{N \cap \partial G}\left(f(X(\tau))-f\left(Y_{0}\right)\right) d Q_{x}^{\epsilon}\right|+ \\
+\left|\int_{N^{c} \cap \partial G}\left(f(X(\tau))-f\left(Y_{0}\right)\right) d Q_{x}^{\epsilon}\right| \\
\leq Q_{x}^{\epsilon}(X(\tau) \in N \cap \partial G) \sup _{\lambda \in N \cap a G}\left|f(\lambda)-f\left(y_{0}\right)\right|+ \\
\quad+2\|f\|_{\infty} Q_{x}^{\epsilon}\left(X(\tau) \in N^{c} \cap \partial G\right) .
\end{gathered}
$$

Since f is continuous, to prove the theorem it is sufficient to prove the

Theorem .

$$
\lim _{\epsilon \rightarrow 0} Q_{x}\left(X(\tau) \in N^{c} \cap \partial G\right)=0
$$

for every neighbourhood N of y_{0}.

Let N be any neighbourhood of y_{0}. Let

$$
V=V\left(x_{0}, y_{0}\right), V^{\prime}=\inf _{y \in N^{c} \cap \partial G} V(x, y) .
$$

By definition of y_{0} and the fact that $N^{c} \cap \partial G$ is compact, we conclude that $V^{\prime}>V$. Choose $\eta=\eta(N)>0$ such that $V^{\prime}=V+\eta$. For any $\delta>0$ let $D=S\left(x_{0} ; \delta\right)=\left\{y:\left|y-x_{0}\right|<\delta\right\}, \partial D=\left\{y:\left|y-x_{0}\right|=\delta\right\}$.

Claim. We can choose a δ_{2} such that
(i) $V(x, y) \geq V+\frac{3 \eta}{4}, \forall x \in \partial D_{2}, y \in N^{c} \partial G$.
(ii) $V\left(x, y_{0}\right) \leq V+\frac{\eta}{4}, \forall x \in \partial D_{2}$.

Proof.
(i) $V\left(x_{0}, y\right) \geq V+\eta, \forall y \in N^{c} \partial G$. Therefore

$$
\begin{aligned}
& V+\eta \leq V\left(x_{0}, y\right) \leq V\left(x_{0}, x\right)+V(x, y) \\
& \leq C\left|x-x_{0}\right|+V(x, y)
\end{aligned}
$$

Choose C such that $C\left|x-x_{0}\right| \leq \frac{\eta}{4}$. Thus

$$
V+\frac{3 \eta}{4} \leq V(x, y) \text { if } C\left|x-x_{0}\right| \leq \frac{\eta}{4}, \forall y \in N^{c} \partial G
$$

C depends only on x_{0}. This proves (i).
(ii) $\left|V\left(x_{0}, y_{0}\right)-V\left(x, y_{0}\right)\right| \leq V\left(x_{0}, x\right) \leq C\left|x_{0}-x\right| \leq \frac{\eta}{4}$ if x is close to x_{0}.

Thus

$$
V\left(x, y_{0}\right) \leq V\left(x_{0}, y_{0}\right)+\frac{\eta}{4}=V+\frac{\eta}{4}
$$

if x is close to x_{0}. This can be achieved by choosing δ_{2} very small.

Claim (iii). We can choose $\delta_{1}<\delta_{2}$ such that for points x_{1}, x_{2} in ∂D_{1} there is a path $X(\cdot)$ joining x_{1}, x_{2} with $X(\cdot) \in D_{2}-D_{1}$, i.e. it never penetrates D_{1}; and

$$
I(X) \leq \frac{\eta}{8}
$$

Proof. Let $C=\sup \left\{|b(\lambda)|^{2}:\left|\lambda-x_{0}\right| \leq \delta_{2}\right\}$. Choose $X(\cdot)$ to be any path on $[0, T]$, taking values in D_{2} with $X(0)=x_{1} ; X(T)=x_{2}$ and such that $|X|=1$ (i.e. the path has unit speed). Then

$$
\begin{gathered}
I_{0}^{T}(X) \leq \int_{0}^{T}\left(|X|^{2}+C\right) d t \leq C T+\int_{0}^{T}|X| d t \\
\quad=(c+1) T=(C+1)\left|x_{2}-x_{1}\right|
\end{gathered}
$$

Choose δ_{1} small such that $(C+1)\left|x_{2}-x_{1}\right| \leq \frac{\eta}{8}$.
Let $\Omega \delta_{1}=\left\{w: w(t) \in \bar{G}-D_{1}, \forall t \geq 0\right\}$, i.e. $\Omega \delta_{1}$ consists of all trajectories in \bar{G} that avoid D_{1}.

Claim (iv)

$$
\begin{gathered}
\inf _{T>0} \inf _{X \in \Omega_{\delta_{1}}, X(0) \in \partial D_{2}} I_{0}^{T}(X(\cdot)) \geq V+\frac{3 \eta}{4} \\
X(T) \in N^{c} \cap \partial G
\end{gathered}
$$

Proof. Follows from Claim (i) and (ii).

Claim (v).

$$
\inf _{T>0} \inf _{\substack{X \in \Omega_{\delta_{1}}, X(0) \in \partial D_{2} \\ X(T)=y_{0}}} I_{0}^{T}(X(\cdot)) \leq V+\frac{3 \eta}{8} .
$$

Proof. By (ii) $V\left(x, y_{0}\right) \leq V+\frac{\eta}{4} \forall x \in \partial D_{2}$, i.e.

$$
\inf _{T>0} \inf _{X(0)=x, X(T)=y_{0}} I_{0}^{T}(X(\cdot)) \leq V+\frac{\eta}{4}
$$

Let $\epsilon>0$ be arbitrary. Choose T and $X(\cdot)$ such that $I_{0}^{T}(X) \leq V+\frac{\eta}{4}+\epsilon$ with $X(0)=x, X(T)=y_{0}, X(\cdot) \in \bar{G}$. If $X \in \Omega_{\delta_{1}}$ define $Y=X$. If $X \notin \Omega_{\delta_{1}}$ define Y as follows:

Let t_{1} be the first time that X enters D_{1} and t_{2} the last time that it gets out of D_{1}. Then $0<t_{1} \leq t_{2}<T$. Let X^{*} be a path on $[0, s]$ such that (by Claim (iii)) $I_{0}^{s}\left(X^{*}\right) \leq \frac{\eta}{8}$ with $X^{*}(0)=X\left(t_{1}\right)$ and $X^{*}(s)=X\left(t_{2}\right)$. Define Y on $\left[0, T-\left(t_{2}-t_{1}\right)+s\right]\left[T-\left(t_{2}-t_{1}\right)+s, \infty\right)$ by

$$
\begin{aligned}
Y(t) & =X(t) \text { on }\left[0, t_{1}\right]=X^{*}\left(t-t_{1}\right) \text { on }\left[t_{1}, t_{1}+s\right] \\
& =X\left(t-t_{1}-s+t_{1}\right), \text { on }\left[t_{1}+s, T-\left(t_{2}-t_{1}\right)+s\right] \\
& =X\left(t_{2}\right), \text { for } t \geq T-\left(t_{2}-t_{1}\right)+s .
\end{aligned}
$$

Then

$$
\begin{gathered}
I_{0}^{T-t_{2}+t_{1}+s}=\frac{1}{2} \int_{0}^{t_{1}}|X-b(X(s))|^{2} d s+\frac{1}{2} \int_{0}^{s}\left|X^{*}-b\left(X^{*}(s)\right)\right|^{2} d s \\
+\frac{1}{2} \int_{t_{2}}^{T}|X(s)-b(X(s))|^{2} d s \\
\leq V+\frac{\eta}{4}+\epsilon+\frac{\eta}{8}
\end{gathered}
$$

by choice of X and X^{*}. As $Y \in \Omega_{\delta_{1}}$, we have shown that

$$
\inf _{T>0} \inf _{\substack{X \in \Omega_{\delta_{1}}, X(0) \in \partial D_{1} \\ X(T)=y_{0}}} I_{0}^{T}(X(\cdot)) \leq V+\frac{3 \eta}{8}+\epsilon
$$

Since ϵ is arbitrary we have proved (v).
Lemma . I_{0}^{T} is lower semi-continuous for every finite T.
Proof. This is left as an exercise as it involves a repetiti on of an argument used earlier.

Lemma. Let $X_{n} \in \Omega_{\delta_{1}}$. If $T_{n} \rightarrow \infty$ then $I_{0}^{T_{n}}\left(X_{n}\right) \rightarrow \infty$.
This result says that we cannot have a trajectory which starts outside of a deleted ball for which I remains finite for arbitrary long lengths of time.

Proof. Assume the contrary. Then there exists a constant M such that $I_{0}^{T_{n}}\left(X_{0}\right) \leq M, \forall n$. Let $T<\infty$, so that $M_{T}=\sup _{n} I_{0}^{T}\left(X_{n}\right)<\infty$.

Define $X_{n}^{T}=\left.X_{n}\right|_{[0, T]}$.
Claim. $\left\{X_{n}^{T}\right\}_{n=1}$ is an equicontinuous family.
Proof.

$$
\begin{aligned}
& \left|X_{n}^{T}\left(x_{2}\right)-X_{n}^{T}\left(x_{1}\right)\right|^{2}=\left|\int_{x_{1}}^{x_{2}} X_{n}^{T}(t) d t\right|^{2} \\
& \leq\left|x_{2}-x_{1}\right|^{2} \int_{x_{1}}^{x_{2}}\left|X_{n}^{T}\right|^{2} d t \\
& \left.\leq 2\left|x_{2}-x_{1}\right|^{2} \int^{x_{2}}\left|X_{n}^{T}-b\left(X_{n}^{T}\right)\right|^{2} d s+\int_{0}^{T} b\left(X_{n}^{T}\right)^{2} d s\right] \\
& \leq 2\left|x_{2}-x_{1}\right|^{2}\left[2 M_{T}+T\|b\|_{\infty}^{2}\right] .
\end{aligned}
$$

Thus, $\left\{X_{n}^{T}\right\}_{n}$ is an equicontinuous family. Since \bar{G} is bounded, $\left\{X_{n}^{T}\right\}_{n}$ is uniformly bounded. By Arzela-Ascoli theorem and a "diagonal procedure" there exists a subsequence $X_{n_{k}}$ and a continuous function to X uniformly on compact subsets of $[0, \infty)$. As $X_{n_{k}}(\cdot) \in \bar{G}-D_{1}, X \in \bar{G}-D_{1}$. Let $m \geq n . I_{0}^{T_{n}}\left(X_{m}\right) \leq M . X_{n} \rightarrow X$ uniformly on $\left[0, T_{n}\right]$. By lower semicontinuity $I_{0}^{T}(X) \leq M$. Since this is true for every T we get on letting T tend to ∞, that

$$
\frac{1}{2} \int_{0}^{\infty}|X-b(X(s))|^{2} d s \leq M
$$

Thus we can find a sequence $a_{1}<b_{1}<a_{2}<b_{2}<\ldots$ such that

$$
I_{a_{n}}^{b_{n}}(X(\cdot))=\frac{1}{2} \int_{a_{n}}^{b_{n}}|X(t)-b(X(t))|^{2} d t
$$

converges to zero with $b_{n}-a_{n} \rightarrow \infty$. Let $Y_{n}(t)=X\left(t+a_{n}\right)$. Then

$$
I_{0}^{b_{n}-a_{n}}\left(Y_{n}\right) \rightarrow 0 \quad \text { with } \quad b_{n}-a_{n} \rightarrow+\infty, \quad Y_{n} \in \Omega_{\delta_{1}} .
$$

$178 \quad$ Just as X was constructed from X_{n}, we can construct Y from Y_{n} such that $Y_{n} \rightarrow Y$ uniformly on compact subsets of $[0, \infty)$.

$$
I_{0}^{b_{n}-a_{n}}(Y) \leq \inf _{m \geq n} I_{0}^{b_{n}-a_{n}}\left(Y_{m}\right)=0
$$

(by lower semi-confirmity of I_{0}^{T}). Thus $I_{0}^{b_{n}-a_{n}}(Y)=0, \forall n$, showing that

$$
\int_{0}^{\infty} Y(t)-\left.b(Y(t))\right|^{2} d t=0
$$

Thus Y satisfies $Y(\cdot)=x+\int_{0}^{t} b(Y(s)) d s$ with $Y(t) \in \bar{G}-\partial D_{1}, \forall t$.
Case (i). $Y\left(t_{0}\right) \in G$ for some t_{0}. Let $Z(t)=Y\left(t+t_{0}\right)$ so that Z is an integral curve starting at a point of G and remaining away from D_{1} contradicting the stability condition.
Case (ii). $Y\left(t_{0}\right) \notin G$ for any t_{0}, i.e. $Y(t) \in \partial G$ for all t. Since $Y(t)=$ $b(Y(t))\langle Y(t), n(Y(t))\rangle$ is strictly positive. But $Y(t) \in \partial G$ and hence $\langle Y(t), n(Y(t))\rangle=0$ which leads to a contradiction. Thus our assumption is incorrect and hence the lemma follows.

Lemma. Let $x \in \partial D_{2}$ and define

$$
\begin{aligned}
& E=\left\{X(t) \text { exits from } G \text { before hitting } D_{1} \text { and it exits from } N\right\} \\
& F=\left\{X(t) \text { exists from } G \text { before hitting } D_{1} \text { and it exits from } N^{c}\right\}
\end{aligned}
$$

Then

$$
\frac{Q_{x}^{\epsilon}(F)}{Q_{x}^{\epsilon}(E)} \leq \exp \left(-\frac{3 \eta}{8 \epsilon}+0\left(\frac{1}{\epsilon}\right)\right) \rightarrow 0 \text { uniformly in } x\left(x \in \partial D_{2}\right)
$$

179 Significance. $Q_{x}^{\epsilon}(E)$ and $Q_{x}^{\epsilon}(F)$ are both small because diffusion is small and the drift is large. The lemma says that $Q_{x}^{\epsilon}(E)$ is relatively much larger than $Q_{x}^{\epsilon}(F)$.

Proof. $Q_{x}^{\epsilon}(E) \geq Q_{x}^{\epsilon}\left\{X(t)\right.$ exists from G before hitting D_{1}, and exists in N before time $T\},=Q_{x}(B) \geq \exp \left[-\frac{1}{\epsilon} \inf I_{0}^{T}(X(\cdot))\right]$ where the infimum is taken over the interior of B,

$$
\geq \exp \left[-\frac{1}{\epsilon}\left(V+\frac{3 \eta}{8}\right)+0\left(\frac{1}{\epsilon}\right)\right] .
$$

Similarly,

$$
Q_{x}^{\epsilon}(F) \leq \exp \left[-\frac{1}{\epsilon}\left(V+\frac{3 \eta}{4}\right)+0\left(\frac{1}{\epsilon}\right)\right]
$$

Therefore

$$
\frac{Q_{x}^{\epsilon}(F)}{Q_{x}^{\epsilon}(E)} \leq \exp \left[-\frac{3 \eta}{8 \epsilon}+0\left(\frac{1}{\epsilon}\right)\right] \rightarrow 0 \quad \text { as } \quad \epsilon \rightarrow 0
$$

We now proceed to prove the main theorem. Let

$$
\begin{gathered}
\tau_{0}=0, \\
\tau_{1}=\text { first time } \partial D_{1} \text { is hit, }, \\
\tau_{2}=\text { next time } \partial D_{2} \text { is hit, } \\
\tau_{3}=\text { next time } \partial D_{1} \text { is hit, }
\end{gathered}
$$

and so on. Observe that the particle can get out of G only between the time intervals $\tau_{2 n}$ and $\tau_{2 n+1}$. Let $E_{n}=\left\{\right.$ between $\tau_{2 n}$ and $\tau_{2 n+1}$ the path exits from G for the first time and that it exits in $N\}, F_{n}=\left\{\right.$ between $\tau_{2 n}$ and $\tau_{2 n+1}$ the path exits from G for the first time and that it exists in $\left.N^{c}\right\}$.

$$
Q_{x}^{\epsilon}(X(\tau) \in N)+Q_{x}\left(X(\tau) \in N^{c}\right)=1
$$

Also

$$
\begin{aligned}
& Q_{x}^{\epsilon}\left(X(\tau) \in N^{c}\right)=\sum_{n=1}^{\infty} Q_{x}^{\epsilon}\left(F_{n}\right), \\
& Q_{x}^{\epsilon}(X(\tau) \in N)=\sum_{n=1}^{\infty} Q_{x}^{\epsilon}\left(E_{n}\right),
\end{aligned}
$$

$$
\begin{gathered}
\sum_{n=1}^{\infty} Q_{x}^{\epsilon}\left(F_{n}\right)=\sum_{n=1}^{\infty} E^{Q_{x}^{\epsilon}}\left(Q_{x}^{\epsilon}\left(F_{n} \mid \mathscr{F}_{\tau_{2 n}}\right)\right) \\
\leq \sum_{n=1} E^{Q_{x}^{\epsilon}}\left[\chi_{\left(\tau>\tau_{2 n}\right)} \sup _{x \in \partial D_{2}} Q_{x}^{\epsilon}(F)\right] \quad \text { (by the Strong Markov property) } \\
\left.\leq 0(\epsilon) \sum_{n=1}^{\infty} E^{Q_{x}^{\epsilon}}\left[\chi_{\left(\tau>\tau_{2 n}\right)} \inf _{x \in \partial D_{2}} Q_{x}^{\epsilon}(E)\right] \quad \text { as } \frac{Q_{x}^{\epsilon}(F)}{Q_{x}^{\epsilon}(E)} \rightarrow 0\right) \\
\leq 0(\epsilon) \sum_{n=1}^{\infty} Q_{x}^{\epsilon}\left(E_{n}\right)=0(\epsilon) Q_{x}\left(X(\tau) \in N^{c}\right)
\end{gathered}
$$

Therefore

$$
Q_{x}^{\epsilon}(\chi(\tau) \in N) \rightarrow 1, \quad Q_{x}\left(X(\tau) \in N^{c}\right) \rightarrow 0
$$

Exercise. Suppose $b(x)=\nabla u(x)$ for some $u \in C^{1}(G \cup \partial G, R)$. Assume that $u\left(x_{0}\right)=0$ and $u(x)<0$ for $x \neq x_{0}$. Show that

$$
V\left(x_{0}, y\right)=-2 u(y)
$$

[Hint: For any trajectory X with $X(0)=x_{0}$,

$$
X(T)=y, I_{0}^{T}(X)=\frac{1}{2} \int_{0}^{T}|X+\nabla u(X)|^{2} d t-2 \int_{0}^{T} \nabla u(X) \cdot X(t) d t \geq-2 u(y)
$$

so that $V\left(x_{0}, y\right) \geq-2 u(y)$. For the other inequality, let u be a solution of $X(t)+\nabla u\left(X(t)=0\right.$ on $[0, \infty)$ with $X(0)=y$. Show that because $\frac{d u X(s)}{d s} 0$ for $X(s) \neq 0$ and x_{0} is the only zero of $u, \operatorname{limit}_{t \rightarrow \infty} X(t)=x_{0}$. Now conclude that $\left.V\left(x_{0}, y\right) \leq-u(y)\right]$.

23. Stochastic Integral for a Wider Class of Functions

WE SHALL NOW define the stochastic integral for a wider class of $\mathbf{1 8 2}$ functions.

Let $\theta:[0,) \times \Omega \rightarrow \mathbb{R}^{d}$ be any progressively measurable function such that for every t

$$
\int_{0}^{t}|\theta(s, w)|^{2} d s<\infty, \quad \text { a.e. }
$$

Define, for every finite $L \geq 0$,

$$
\theta_{L}(s, w)= \begin{cases}\theta(s, w), & \text { if } \int_{0}^{s}|\theta(t, w)|^{2} d t<L<\infty \\ 0, & \text { if } \int_{0}^{s}|\theta(t, w)|^{2} d t \geq L\end{cases}
$$

We can write $\theta_{L}(s, w)=\theta(s, w) \chi_{[0, L)}(\phi(s, w))$ where

$$
\phi(s, w)=\int_{0}^{s}|\theta(t, w)|^{2} d t
$$

is progressively measurable. Hence $\theta_{L}(s, w)$ is progressively measur-
able. It is clear that $\int_{0}^{T}\left|\theta_{L}(s, w)\right|^{2} d s \leq L$, a.e. $\forall T$. Therefore

$$
E\left(\int_{0}^{T}\left|\theta_{L}(s, w)\right|^{2} d s\right) \leq L
$$

Thus the stochastic integral $\xi_{L}(t, w)=\int_{0}^{t}\left\langle\theta_{L}(s, w), d X(s, w)\right\rangle$ is well defined.

The proofs of the next three lemmas follow closely the treatment of Stochastic integration given earlier.

Lemma 1. Let τ be a bounded, progressively measurable, continuous
183 function. Let τ be any finite stopping time. If $\theta(s, w)=0, \forall(s, w)$ such that $0 \leq s \leq \tau(w)$ then $\int_{0}^{t}\langle\theta(s, w), d X(s, w)\rangle=0$ for $0 \leq t \leq \tau(w)$.

Proof. Define $\theta_{n}(s, w)=\theta\left(\frac{[n s]}{n}, w\right)$. θ_{n} is progressively measurable and by definition of the stochastic integral of θ_{n},

$$
\int_{0}^{t}\left\langle\theta_{n}(s, w), d X(s, w)\right\rangle=0, \quad \forall t, \quad 0 \leq t \leq \tau(w)
$$

Now

$$
\begin{gathered}
E\left(\int_{0}^{t}\left|\theta_{n}(s, w)-\theta(s, w)\right|^{2} d s\right) \\
=E\left(\int_{0}^{t}\left|\theta\left(\frac{[n s]}{n} w\right)-\theta(s, w)\right|^{2} d s\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{gathered}
$$

and

$$
\int_{0}^{t}\left\langle\theta_{n}(s, w), d X(s, w)\right\rangle \rightarrow \int_{0}^{t}\langle\theta(s, w), d X(s, w)\rangle
$$

in probability. Therefore

$$
\int_{0}^{t}\langle\theta, d X\rangle=0 \text { if } 0 \leq t \leq \tau(w)
$$

Lemma 2. If θ is progressively measurable and bounded the assertion of Lemma \square still holds.

Proof. Let

$$
\theta_{n}(t, w)=\frac{1}{n} \int_{(t-1 / n) V_{0}}^{t} \theta(s, w) d s
$$

Then

$$
E\left(\int_{0}^{T}\left|\theta_{n}(t, w)-\theta(t, w)\right|^{2} d t\right) \rightarrow 0 \quad \text { (Lebesgue's theorem). }
$$

θ_{n} is continuous and boundd, $\theta_{n}(t, w)=0$ for $0 \leq t \leq \tau(w)$. By lemma 184

$$
\int_{0}^{t}\left\langle\theta_{n}(s, w), d X(s, w)\right\rangle=0
$$

if $0 \leq t \leq \tau(w)$. This proves the result.
Lemma 3. Let θ be progressively measurable such that, for all t,

$$
E\left(\int_{0}^{t}|\theta(s, w)|^{2} d s\right)<\infty
$$

If $\theta(s, w)=0$ for $0 \leq s \leq \tau(w)$, then

$$
\int_{0}^{t}\langle\theta(s, w), d X(s, w)\rangle=0 \quad \text { for } \quad 0 \leq t \leq \tau(w)
$$

Proof. Define

$$
\theta_{n}= \begin{cases}\theta, & \text { if }|\theta| \leq n \\ 0, & \text { if }|\theta|>n\end{cases}
$$

Then

$$
\int_{0}^{c}\left\langle\theta_{n}, d X\right\rangle=0, \text { if } 0 \leq t \leq \tau(w), \quad(\text { Lemma2) and }
$$

$E\left(\int_{0}^{t}\left|\theta_{n}-\theta\right|^{2} d s\right) \rightarrow 0$. The result follows.
Lemma 4. Let θ be progressively measurable such that $\forall t$,

$$
\int_{0}^{t}|\theta(s, w)|^{2} d s<\infty \quad \text { a.e. }
$$

Then $\underset{L \rightarrow \infty}{\operatorname{Lt}} \xi_{L}(t, w)$ exists a.e.
Proof. Define

$$
\tau_{L}(w)=\inf \left\{s: \int_{0}^{s}|\theta(\sigma, w)|^{2} d \sigma \geq L\right\}
$$

clearly τ_{L} is a stopping time. If $L_{1} \leq L_{2}, \tau_{L_{1}}(w) \leq \tau_{L_{2}}(w)$ and by assumptions of the lemma $\tau_{L} \uparrow \infty$ as $L \uparrow \infty$. If

$$
L_{1} \leq L_{2}, \quad \theta_{L_{1}}(s, w)=\theta_{L_{2}}(s, w) \quad \text { for } \quad 0 \leq s \leq \tau_{L_{1}}(w)
$$

Therefore by Lemma 3

$$
\xi_{L_{2}}(t, w)=\xi_{L_{1}}(t, w)
$$

if $0 \leq t \leq \tau_{L_{1}}(w)$. Therefore as soon as L is large enough such that $t \leq \tau_{L}(w), \xi_{L}(t, w)$ remains constant (as a function of L). Therefore $\underset{L \rightarrow \infty}{\operatorname{Lt}} \xi_{L}(t, w)$ exists a.e.

Definition. The stochastic integral of θ is defined by

$$
\int_{0}^{t}\langle\theta(s, w), d X(s, w)\rangle=\operatorname{Lt}_{L \rightarrow \infty} \xi_{L}(t, w)
$$

Exercise. Check that the definition of the stochastic integral given above coincides with the previous definition in case

$$
E\left(\int_{0}^{t}|\theta(s, w)|^{2} d s\right)<\infty, \forall t
$$

Lemma. Let θ be a progressively measurable function, such that

$$
\int_{0}^{t}|\theta(s, w)|^{2} d s<\infty, \forall t
$$

If $\xi(t, w)$ denotes the stochastic integral of θ, then

$$
P\left(\sup _{0 \leq t \leq T}|\xi(t, \cdot)| \geq \epsilon\right) \leq P\left(\int_{0}^{T}|\theta|^{2} d s \geq L\right)+\frac{L^{2}}{\epsilon^{2}}
$$

Proof. Let $\tau_{L}=\inf \left\{t: \int_{0}^{t}|\theta|^{2} d s \geq L\right\}$. If $T<\tau_{L}(w)$, then $\theta_{L}(s, w)=$ $\theta(s, w)$. Also

$$
\xi_{L}(t, w)=\xi(t, w) \quad \text { for } \quad 0 \leq t \leq T
$$

Claim.

$$
\begin{aligned}
& \left\{w: \sup _{0 \leq t \leq T}|\xi(t, w)| \geq \epsilon\right\} \\
& \left\{w: \sup _{0 \leq t \leq T}\left|\xi_{L}(t, w)\right| \geq \epsilon\right\} \cup\left\{w: \tau_{L}(w) \leq T\right\}
\end{aligned}
$$

For, if w is not contained in the right side, then

$$
\sup _{0 \leq t \leq T}\left|\xi_{L}(t, w)\right|^{2}<\epsilon \quad \text { and } \quad\left|\tau_{L}(w)\right|>T
$$

If $\tau_{L}>T, \xi_{L}(t, w)=\xi(t, w) \forall t \leq T$. Therefore

$$
\sup _{0 \leq t \leq T}\left|\xi_{L}(t, w)\right|=\sup _{0 \leq t \leq T}|\xi(t, w)|
$$

Therefore $w \notin$ left side. Since

$$
\left\{w: \tau_{L}(w)>T\right\}=\left\{w: \int_{0}^{T}|\theta|^{2} d s \geq L\right\}
$$

we get

$$
\begin{aligned}
& P\left(\sup _{0 \leq t \leq T}|\xi(t, \cdot)| \geq \epsilon\right) \\
& \leq P\left(\int_{0}^{T}|\theta|^{2} d s \geq L\right)+P\left(\sup _{0 \leq t \leq T}\left|\xi_{L}(t, \cdot)\right| \geq \epsilon\right) \\
& \leq P\left(\int_{0}^{T}|\theta|^{2} d s \geq L\right)+\frac{L^{2}}{\epsilon^{2}}
\end{aligned}
$$

187 by Kolmogorov's inequality. This proves the result.
Corollary . Let θ_{n} and θ be progressively measurable functions such that
(a) $\int_{0}^{t}\left|\theta_{n}(s, w)\right|^{2} d s<\infty, \int_{0}^{t}|\theta(s, w)|^{2} d s<\infty, \forall t ;$
(b) $\underset{n \rightarrow \infty}{\operatorname{Lt}} \int_{0}^{t}\left|\theta_{n}(s, w)-\theta(s, w)\right|^{2} d s=0$ in probability.

If $\xi_{n}(t, w)$ and $\xi(t, w)$ denote, respectively the stochastic integrals of θ_{n} and θ, then $\sup _{0 \leq t \leq T}\left|\xi_{n}(t, w)-\xi(t, w)\right|$ converges to zero in probability.

Proof. Let $\tau_{n, L}(w)=\inf \left\{t: \int_{0}^{t}\left|\theta_{n}\right|^{2} d s \geq L\right\}$; replacing θ by $\theta_{n}-\theta$ and ξ by $\xi_{n}-\xi$ in the previous lemma, we get

$$
\begin{aligned}
& P\left(\sup _{0 \leq t \leq T}\left|\xi_{n}(t, \cdot)-\xi(t, \cdot)\right| \geq \epsilon\right) \\
& \leq \frac{L^{2}}{\epsilon^{2}}+P\left(\int_{0}^{T}\left|\theta_{n}(s, \cdot)-\theta(s, \cdot)\right|^{2} d s \geq L\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get

$$
\lim _{n \rightarrow \infty} P\left(\sup _{0 \leq t \leq T}\left|\xi_{n}(t, \cdot)-\xi(t, \cdot)\right| \geq \epsilon\right) \frac{L^{2}}{\epsilon^{2}}
$$

As L is arbitrary we get the desired result.
Proposition. Let θ be progressively measurable such that

$$
\int_{0}^{t}|\theta(s, w)|^{2} d s<\infty, \quad \forall t \text { and } \forall w .
$$

Then
$\left({ }^{*}\right) \quad Z(t, \cdot)=\exp \left[\int_{0}^{t}\langle\theta(s, \cdot), d X(s, \cdot)\rangle-\frac{1}{2} \int_{0}^{t}|\theta(s, \cdot)|^{2} d s\right]$
is a super martingale satisfying
(a) $E(Z(t, \cdot)) \leq 1$;
(b) $\underset{t \rightarrow 0}{\operatorname{Lt}} E(Z(t, \cdot))=1$.

Proof. Let $\left(\theta_{n}\right)$ be a sequence of bounded progressively measurable functions such that

$$
\int_{0}^{t}\left|\theta_{n}-\theta\right|^{2} d s \rightarrow 0 \forall t, \quad \forall w
$$

(For example we may take $\theta_{n}=\theta$ if $|\theta|<n,=0$ otherwise). Then $(*)$ is a martingale when θ is replaced by θ_{n}. This martingale satisfies $E\left(Z_{n}(t, \cdot)\right)=1$, and $Z_{n}(t, \cdot) \rightarrow Z(t, \cdot)$ pointwise (a) now follows from Fatou's lemma:

$$
\begin{aligned}
\lim _{t \rightarrow 0} E(Z(t, \cdot)) & \geq E\left(\underline{\lim }_{t \rightarrow 0} Z(t, \cdot)\right) \\
& =E(1)=1
\end{aligned}
$$

Therefore $\operatorname{Lt}_{t \rightarrow 0} E(Z(t, \cdot))=1$. This proves (b).

24. Explosions

Exercise. Let $R>0$ be given. Put $b_{R}=b \phi_{R}$ where $\phi_{R}=1$ on $|x| \geq R$, $\phi_{R}=0$ if $|x| \geq R+1 ; \phi_{R}$ is C^{∞}. Show that $b_{R}=b$ on $|x| \leq R, b_{R}$ is bounded on \mathbb{R}^{d} and b_{R} is globally Lipschitz.

Let $\Omega_{T}=\{w \in \Omega: B(w)>T\}$. Let $S^{T}=\Omega_{T} \rightarrow C[0, T]$ be the map $S^{T} w=y(\cdot)$ where $y(t)=w(t)+\int_{0}^{t} b(y(s)) d s$ on [0,T]. Unless otherwise specifie $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is assumed to be locally Lipschitz. Define the measure Q_{x}^{T} on (Ω, T) by

$$
Q_{x}^{T}(A)=P_{x}\left\{w: S^{T} w \in A, B(w)>T\right\}
$$

where P_{x} is the probability measure corresponding to Brownian motion.

Theorem .

$$
Q_{x}^{T}(A)=\int_{A} Z(T, \cdot) d P_{x}, \quad \forall A \in \mathscr{F}_{T}
$$

where

$$
Z(T, \cdot)=\exp \left[\int_{0}^{T}\langle b, d X\rangle-\frac{1}{2} \int_{0}^{T}|b(X(s, \cdot))|^{2} d s\right]
$$

Remark. If b is bounded or if b satisfies a global Lipschitz condition then $B(w)=\infty$, so that $\Omega_{T}=\Omega$ and Q_{x}^{T} are probability measures.
Proof. Let $0 \leq R<\infty$. For any w in Ω, let y be given by

$$
y(t)=w(t)+\int_{0}^{t} b(y(\sigma)) d \sigma
$$

Define $\sigma_{R}(w)=\inf \left\{t:|y(t)| \geq R\right.$ and let b_{R} be as in the Exercise. Then the equation

$$
y_{R}(t)=w(t)+\int_{0}^{t} b_{R}\left(y_{R}(\sigma)\right) d \sigma
$$

190 has a global solution. Denote by $S_{R}: \Omega \rightarrow \Omega$ the map $w \rightarrow y_{R}$. If $Q_{R, x}$ is the measure induced by S_{R}, then

$$
\frac{d Q_{R, x}}{d P_{x}} \left\lvert\, \mathscr{F}_{t}=Z_{r}(t)=\exp \left(\int_{0}^{t}\left\langle b_{R}, d X\right\rangle-\frac{1}{2} \int_{0}^{t}\left|b_{R}\right|^{2} d s\right) .\right.
$$

Let $\tau_{R}(w)=\inf \{t:|w(t)|>R\} . \tau_{R}$ is a stopping time satisfying $\tau_{R} S_{R}=\sigma_{R}$. By the optional stopping theorem.

$$
\begin{equation*}
\left.\frac{d Q_{R, x}}{d P_{x}} \right\rvert\, \mathscr{F}_{\tau_{R} \wedge T}=Z_{R}\left(\tau_{R} \wedge T\right)=Z\left(\tau_{R} \wedge T\right) \tag{1}
\end{equation*}
$$

Claim. $Q_{R, x}\left(\left(\tau_{R}>T\right) \cap A\right)=Q_{x}^{T}\left(\left(\tau_{R}>T\right) \cap A\right), \forall A$ in \mathscr{F}_{T}.
Proof.

$$
\begin{aligned}
\text { Right side }= & P_{x}\left\{w: B(w)>T, S^{T}(w) \in A \cap\left(\tau_{R}>T\right)\right\} \\
= & P_{x}\left\{w: B(w)>T, y \in A, \sup _{0 \leq \leq \leq T}|y(t)|<R\right\} \\
= & P_{x}\{w: y \text { is defined at least upto time } T, \\
& \left.y \in A, \sup _{0 \leq t \leq T}|y(t)|>R\right\} \\
= & P_{x}\left\{w: y_{R} \in A, \sup _{0 \leq t \leq T}\left|y_{R}(t)\right|<R\right\} \\
= & P_{x}\left\{w: S_{R}(w) \in A, \tau_{R} S_{R}(w)>T\right\} \\
= & Q_{R, x}\left\{\left(\tau_{R}>T\right) \cap A\right\}
\end{aligned}
$$

(by definition). As Ω is an increasing union of $\left\{\tau_{R}>T\right\}$ for R increasing,

$$
Q_{x}^{T}(A)=\operatorname{lt}_{R \rightarrow+\infty} Q_{x}^{T}\left(\left(\tau_{R}>T\right) \cap A\right), \forall A \text { in } \mathscr{F}_{T},
$$

$$
\begin{aligned}
& =\operatorname{lt}_{R \rightarrow \infty} Q_{R, x}\left(\left(\tau_{R}>T\right) \cap A\right) \quad \text { (by claim) } \\
& =\operatorname{lt}_{R \rightarrow \infty} \int_{\left(\tau_{R} \wedge T\right) \cap A} \exp \left(\int_{0}^{\tau_{R} \wedge T}\langle b, d X\rangle-\frac{1}{2} \int_{0}^{\tau_{R} \wedge T}|b|^{2} d s\right) d P_{x} \quad \text { (by (1)) } \\
& =\int_{A} \exp \left(\int_{0}^{T}\langle b, d X\rangle-\frac{1}{2} \int_{0}^{T}|b|^{2} d s\right) d P_{x} \\
& =\int_{A} Z(T) d P_{x}
\end{aligned}
$$

Theorem . Suppose $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is locally Lipschitz; let $L=\frac{\Delta}{2}+b . \nabla$.
(i) If there exists a smooth function $u: \mathbb{R}^{d} \rightarrow(0, \infty)$ such that $u(x) \rightarrow$ ∞ as $|x| \rightarrow \infty$ and $L u \leq$ cu for some $c>0$ then $P_{x}\{w: B(w)<$ $\infty\}=0$, i.e. for almost all w there is no explosion.
(ii) If there exists a smooth bounded function $u: \mathbb{R}^{d} \rightarrow(0, \infty)$ such that $L u \geq$ cu for some $c>0$, then $P_{x}\{w: B(w)<\infty\}>0$, i.e. there is explosion.

Corollary . Suppose, in particular, b satisfies $|\langle b(x), x\rangle| \leq A+B|x|^{2}$ for some constants A and B; then $P_{x}(w: B(w)<\infty)=0$.

Proof. Take $u(x)=1+|x|^{2}$ and use part (1) of the theorem.
Proof of theorem. Let b_{R} be as in the Exercise and let $L_{R}=\frac{\Delta}{2}+b_{R} \cdot \nabla$; then $L_{R} u(x) \leq c u(x)$ if $|x| \leq R$.

Claim. $u(X(t)) e^{-c t}$ is a supermartingale upto time τ_{R} relative to Q_{x}^{R},

$$
d\left(u(X(t)) e^{-c t} \exp \left(\int_{0}^{t}\left\langle b_{R}, d X\right\rangle-\frac{1}{2} \int_{0}^{t}\left|b_{R}\right|^{2} d s\right)\right)
$$

$$
\begin{gathered}
e^{-c t \int_{0}^{t}\left\langle b_{R}, d X\right\rangle-\frac{1}{2} \int_{0}^{t}\left|b_{R}\right|^{2} d s} \times \\
\times\left\{-c u d t+\langle\nabla u, d X\rangle+u(x)\left[\left\langle b_{R}, d X\right\rangle-\frac{\left|b_{R}\right|^{2}}{2} d t\right]+b_{R} u d t+\frac{1}{2}\left|b_{R}\right|^{2} u d t\right\} \\
=\exp \left(-c t+\int_{0}^{t}\left\langle b_{R}, d X\right\rangle-\frac{1}{2} \int_{0}^{t}\left|b_{R}\right|^{2} d s\right) \\
\left.\cdot\left[L_{R}-c\right) u+\langle\nabla u, d X\rangle+u\left\langle b_{R}, d X\right\rangle\right] .
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& u(X(t)) e^{-c t} E \int_{e^{0}}^{t}\left\langle b_{R}, d X\right\rangle-\frac{1}{2} \int_{0}^{t}\left|b_{R}\right|^{2} d s \\
& -\int_{0}^{t} \exp \left(-c s+\int_{0}^{s}\left\langle b_{R}, d X\right\rangle-\int_{0}^{s}\left|b_{R}\right|^{2} d s\right) \cdot\left(L_{R}-c\right) u(X(s)) d s
\end{aligned}
$$

is a Brownian stochastic integral. Therefore

$$
\begin{aligned}
& u\left(X\left(\tau_{R} \wedge t\right)\right) \exp \left(-c\left(\tau_{R} \wedge t\right)+\int_{0}^{\tau_{R} \wedge t}\left\langle b_{R}, d X\right\rangle-\frac{1}{2} \int_{0}^{\tau_{R} \wedge t}\left|b_{R}\right|^{2} d s\right)- \\
& -\int_{0}^{\tau_{R} \wedge t} \exp \left(-c s+\int_{0}^{s}\left\langle b_{R}, d X\right\rangle-\frac{1}{2} \int_{0}^{s}\left|b_{R}\right|^{2} d s\right)\left(L_{R}-c\right) u(X(s)) d s
\end{aligned}
$$

is a martingale relative to $P_{x}, \mathscr{F}_{\tau_{R} \wedge t}$. But $b_{R}(x)=b(x)$ if $|x| \leq R$. Therefore

$$
\begin{aligned}
& u\left(X\left(\tau_{R} \wedge t\right)\right) \exp \left(-c\left(\tau_{R} \wedge t\right)+\int_{0}^{\tau_{R} \wedge t}\langle b, d X\rangle-\frac{1}{2} \int_{0}^{\tau_{R} \wedge t}|b|^{2} d s\right)- \\
& -\int_{0}^{\tau_{R} \wedge t} \exp \left(-c s+\int^{s}\langle b, d X\rangle-\int_{0}^{s}|b|^{2} d s\right)\left(L_{R}-c\right) u(X(s)) d s
\end{aligned}
$$

is a martingale relative to $\mathscr{F}_{\tau_{R} \wedge t}$. But $\left(L_{R}-c\right) u \leq 0$ in $\left[0, \tau_{R}\right]$.
Therefore

$$
u\left(X\left(\tau_{R} \wedge t\right)\right) \exp \left(-c\left(\tau_{R} \wedge t\right)+\int_{0}^{\tau_{R} \wedge t}\langle b, d X\rangle-\frac{1}{2} \int_{0}^{\tau_{R} \wedge t}|b|^{2} d s\right)
$$

is a supermartingale relative to $\mathscr{F}_{\tau_{R} \wedge t}, P_{x}$. Therefore $u\left(X\left(\tau_{R} \wedge t\right) e^{-c\left(\tau_{R} \wedge t\right)}\right.$ is a supermartingale relative to Q_{x}^{R} (optional sampling theorem). Therefore

$$
E^{Q_{x}^{R}}\left(u\left(X\left(t_{R} \wedge t\right)\right) e^{-c\left(\tau_{R} \wedge t\right)} \leq u(x)\right.
$$

letting $t \rightarrow \infty$, we get, using Fatou's lemma,

$$
E_{x}^{Q^{R}}\left(u\left(X\left(\tau_{R}\right) e^{-c \tau_{R}}\right) \leq u(x)\right.
$$

Therefore

$$
E^{Q_{x}^{R}}\left(e^{-c \tau_{R}}\right) \leq \frac{u(x)}{\inf _{|y|=R}|u(y)|}
$$

Thus

$$
E^{P_{x}}\left(e^{-c \sigma_{R}}\right) \leq \frac{u(x)}{\inf _{|y|=R}|u(y)|}
$$

(by change of variable). Let $R \rightarrow \infty$ to get $\operatorname{Lt}_{R \rightarrow \infty} \int e^{-c \sigma_{R}} d P_{x}=0$, i.e. $P_{x}\{w: B(w)<\infty\}=0$.

Sketch of proof for Part (ii).

By using the same technique as for Part (i), show that $u(X(t)) e^{-c t}$ is a submartingale upto time τ_{R} relative to Q_{x}^{R}, so that

$$
E^{P_{x}}\left(e^{-c \sigma_{R}}\right) \geq \frac{u(x)}{\sup _{|y|=R}|u(y)|} \geq \frac{u(x)}{\|u\|_{\infty}}>0
$$

let $R \rightarrow \infty$ to get the result.
Exercise. Show that if $L=\frac{1}{2} \frac{\partial^{2}}{\partial x}+x^{3} \frac{\partial}{\partial x}$, there is explosion. (Hint: take $u=e^{\tan ^{-1}\left(x^{2}\right)}$ and show that $\left.L u \geq u\right)$.

25. Construction of a Diffusion Process

Problem. Given $a:[0, \infty) \times \mathbb{R}^{d} \rightarrow S_{d}^{+}$, bounded measurable and b : $[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ bounded measurable, to find $\left(\Omega, \mathscr{F}_{t}, P, X\right)$ where Ω is a space, $\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$ an increasing family of σ-algebras on Ω, P a probability measure on the smallest σ-algebra containing all the \mathscr{F}_{t} 's. and X : $[0, t) \times \Omega \rightarrow \mathbb{R}^{d}$, a progressively measurable function such that $X(t, w) \in$ $I\left[b\left(t, X_{t}\right), a\left(t, X_{t}\right)\right]$.

Let $\left.\Omega=C[0, \infty) ; \mathbb{R}^{n}\right), \beta(t, \cdot)=n$-dimensional Brownian motion, $\mathscr{F}_{t}=\sigma\{\beta(s): 0 \leq s \leq t\}, P$ the Brownian measure on Ω and a and b as given in the problem. We shall show that thee problem has a solution, under some special conditions on a and b.

Theorem . Assume that there exists $\sigma:[0, \infty) \times \mathbb{R}^{d} \rightarrow M_{d \times n}\left(M_{d \times n}=\right.$ set of all $d \times n$ matrices over the reals) such that $\sigma \sigma^{*}=a$. Further let

$$
\begin{aligned}
& \sum_{i, j}\left|\sigma_{i j}(t, x)\right| \leq C, \quad \sum_{j}\left|b_{j}(t, x)\right| \leq C \\
& \sum_{i, j}\left|\sigma_{i j}\left(t, x_{1}\right)-\sigma_{i j}\left(t, x_{2}\right)\right| \leq A\left|x_{1}-x_{2}\right|, \\
& \sum_{j}\left|b_{j}\left(t, x_{1}\right)-b_{j}\left(t, x_{2}\right)\right| \leq A\left|x_{1}-x_{2}\right|
\end{aligned}
$$

Then the equation

$$
\begin{equation*}
\xi(t, \cdot)=x+\int_{0}^{t}\langle\sigma(s, \xi(s, \cdot)), d \beta(s, \cdot)\rangle+\int_{0}^{t} b(s, \xi(s, \cdot)) d s \tag{1}
\end{equation*}
$$

196 has a solution. The solution $\xi(t, w):[0, \infty) \times \Omega \rightarrow \mathbb{R}^{d}$ can be taken to be such that $\xi(t, \cdot)$ is progressively measurable and such that $\xi(t, \cdot)$ is continuous for a, a.e. If ξ, η are progressively measurable, continuous (for a.a.e) solutions of equation (l), then $\xi=n$ for a.a.w.

Proof. The proof proceeds in several steps.
Lemma 1. Let Ω be any space with $\left(\mathscr{F}_{t}\right)_{t \geq 0}$ an increasing family of σ algebras. If $0 \leq T \leq \infty$ then there exists a σ-algebra $\mathscr{A}_{0} \subset \mathscr{A}=$ $\mathscr{B}[0, T) \times \mathscr{F}_{T}$ such that a function $f:[0, T] \times \Omega \rightarrow \mathbb{R}$ is progressively measurable if and only if f is measurable with respect to \mathscr{A}_{0}.

Proof. Let $\mathscr{A}_{0}=\left\{A \in \mathscr{A}: \chi_{A}\right.$ is progressively measurable $\}$. Clearly $[0, T] \times \Omega \in \mathscr{A}_{0}$, and if $A \in \mathscr{A}_{0}, A^{c} \in \mathscr{A}_{c}$. Thus \mathscr{A}_{0} is an algebra. As increasing limits (decreasing limits) of progressively measurable functions are progressively measurable, \mathscr{A}_{0} is a monotone class and hence a σ-algebra.

Let $f:[0, T] \times \Omega \rightarrow \mathbb{R}$ be progressively measurable; in fact, $f^{+}=$ $\frac{f+1=f \mid}{2}, f^{-}=\frac{f-|f|}{2}$. Let $g=f^{+}$. Then

$$
g_{n}=\sum_{i=1}^{n 2^{n}} \frac{i-1}{2^{n}} \chi_{g^{-1}\left[\frac{i-1}{2^{n}}, \frac{i}{2^{n}}\right)}+n \chi_{g^{-1}[n,)}
$$

is progressively measurable. Hence $n V g_{n}$ is progressively measurable, i.e. $n \chi_{g^{-1}[n, \infty)}$ is progressively measurable. Similarly $\phi_{g^{-1}\left[\frac{i-1}{2^{n}}, \frac{i}{2^{n}}\right)}$ is progressively measurable, etc. Therefore, by definition, g_{n} is measurable with respect to \mathscr{A}_{0}. As $g=f^{+}$is the pointwise limit of g_{n}, f^{+}is measurable with respect to \mathscr{A}_{0}. Similarly f^{-}is \mathscr{A}_{0}-measurable. Thus f is \mathscr{A}_{0}-measurable.

Let $f:[0, T] \times \Omega \rightarrow \mathbb{R}$ be measurable with respect to \mathscr{A}_{0}. Again, if $g=f^{+}$

$$
g_{n}=\sum_{i=1}^{n 2^{n}} \frac{i-1}{2^{n}} \chi_{g^{-1}\left[\frac{i-1}{2^{n}}, \frac{i}{2^{n}}\right)}+n \chi_{g^{-1}[n, \infty)}
$$

is \mathscr{A}_{0}-measurable. Since $g^{-1}[n, \infty), \ldots g^{-1}\left[\frac{i-1}{2^{n}}, \frac{i}{2^{n}}\right) \in \mathscr{A}_{0}$. So g_{n} is progressively measurable. Therefore g is progressively measurable. Hence f is progressively measurable. This completes the proof of the Lemma.

To solve (1) we use the standard iteration technique.
Step 1. Let $\xi_{0}(t, w)=x$,

$$
\xi_{n}(t, w)=x+\int_{0}^{t}\left\langle\sigma\left(s, \xi_{n-1}(s, w)\right), d \beta(s, w)\right\rangle+\int_{0}^{t} b\left(s, \xi_{n-1}(s, w)\right) d s
$$

By induction, it follows that $\xi_{n}(t, w)$ is progressively measurable.
Step 2. Let $\Delta_{n}(t)=E\left(\left|\xi_{n+1}(t)-\xi_{n}(t)\right|^{2}\right)$. If $0 \leq t \leq T, \Delta_{n}(t) \leq C^{*} \int_{0}^{t} \Delta_{n-1}$ $(s) d s$ and $\Delta_{0}(t) \leq C^{*} t$, where C^{*} is a constant depending only on T.

Proof.

$$
\begin{aligned}
\Delta_{0}(t) & =E\left(|\xi(t)-x|^{2}\right) \\
& =E\left(\left|\int_{0}^{t}\langle(s, x), d \beta(s, x)\rangle+\int_{0}^{t} b(s, x) d s\right|^{2}\right) \\
& \leq 2 E\left(\left|\int_{0}^{t}\langle\sigma(s, x), d \beta(s, x)\rangle\right|^{2}\right)+ \\
& +2 E\left(\left|\int_{0}^{t} b(s, x) d s\right|^{2}\right) \quad \text { (use the fact that }|x+y|^{2} \\
& \left.\leq 2\left(|x|^{2}+|y|^{2}\right) \forall x, y \in \mathbb{R}^{d}\right)
\end{aligned}
$$

$$
=2 E\left(\int_{0}^{t} \operatorname{Tr} \sigma \sigma^{*} d s\right)=2 E\left(\left|\int_{0}^{t} b(s, x) d s\right|^{2}\right)
$$

198 or

$$
\begin{aligned}
& \Delta_{0}(t) \leq 2 E\left(\int_{0}^{t} \operatorname{tr} \sigma \sigma^{*} d s\right)+2 E\left(t \int_{0}^{t}|b(s, x)|^{2} d s\right) \\
& \leq 2 n d C^{2}(1+T) t . \\
& \Delta_{n}(t)=E\left(\left|\xi_{n+1}(t)-\xi_{n}(t)\right|^{2}\right) \\
&=E\left(\mid \int_{0}^{t}\left\langle\sigma\left(s, \xi_{n}(s, w)\right)-\sigma\left(s, \xi_{n-1}(s, w)\right) d \beta\right\rangle+\right. \\
&\left.+\int_{0}^{t} b\left(s, \xi_{n}(s, w)\right)-\left.b\left(s, \xi_{n-1}(s, w)\right) d s\right|^{2}\right) \\
& \leq 2 E\left(\left|\int_{0}^{t}\left\langle\sigma\left(s, \xi_{n}(s, w)\right)-\left(s, \xi_{n-1}(s, w)\right), d \beta(s, w)\right\rangle\right|^{2}\right)+ \\
&+2 E\left(\mid \int_{0}^{t}\left(b\left(s, \xi_{n}(s, w)\right)-\left.b\left(s, \xi_{n-1}(s, w)\right) d s\right|^{2}\right)\right. \\
& \leq 2 E\left(\int _ { 0 } ^ { t } \operatorname { t r } \left[\left(\sigma\left(s, \xi_{n}(s, w)\right)-\sigma\left(s, \xi_{n-1}(s, w)\right)\right] \times\right.\right. \\
&\left.\times\left[\sigma^{*}\left(s, \xi_{n}(s, w)\right)-\sigma^{*}\left(s, \xi_{n-1}(s, w)\right)\right] d s\right]+ \\
&+ 2 E\left(t \int_{0}^{t}\left|b\left(s, \xi_{n}(s, w)\right)-b\left(s, \xi_{n-1}(s, w)\right)\right|^{2} d s\right) \\
& \leq 2 d n A^{2} \int_{0}^{t} \Delta_{n-1}(s) d s+2 t A^{2} n \int_{0}^{t} \Delta_{n-1}(s) d s \\
&
\end{aligned}
$$

$$
\leq 2 d n A^{2}(1+T) \int_{0}^{T} \Delta_{n-1}(s) d s
$$

This proves the result.
Step 3. $\Delta_{n}(t) \leq \frac{\left(C^{*} t\right)^{n+1}}{(n+1)!} \forall n$ in $0 \leq t \leq T$, where

$$
C^{*}=\max \left\{2 n d C^{2}(1+T), \quad \text { and } \quad A^{2}(1+T)\right\}
$$

Proof follows by induction on n.
Step 4. $\left.\xi_{n}\right|_{[0, T] \times \Omega}$ is Cauchy in $L^{2}([0, T] \times \Omega, B([0, T] \times \Omega), \mu \times P)$, where μ is the Lebesgue measure on $[0, T]$.

Proof. $\Delta_{n}(t) \leq \frac{\left(C^{*} t\right)^{n+1}}{(n+1)!}$ implies that

$$
\left\|\xi_{n+1}-\xi_{n}\right\|_{2}^{2} \leq \frac{\left(C^{*} T\right)^{n+2}}{(n+2)!}
$$

Here $\|\cdot\|_{2}$ is the norm in $L^{2}([0, T] \times \Omega)$. Thus

$$
\sum_{n=1}^{\infty}\left\|\xi_{n+1}-\xi_{n}\right\|_{2}<\infty, \quad \text { proving Step }(4)
$$

Step 5. (4) implies that $\left.\xi_{n}\right|_{[0, T] \times \Omega}$ is Cauchy in $L^{2}\left([0, T] \times \Omega, \mathscr{A}_{0}, \mu \times\right.$ P) where \mathscr{A}_{0} is as in Lemma 1. Thus $\left.\xi_{n}\right|_{[0, T] \times \Omega}$ converges to $\bar{\xi}_{T}$ in $L^{2}([0, T] \times \Omega)$ where $\bar{\xi}_{T}$ is progressively measurable.

Step 6. If $\left.\xi_{n}\right|_{\left[0, T_{2}\right] \times \Omega} \bar{\xi}_{T_{2}}$ in $L^{2}\left(\left[0, T_{2}\right] \times \Omega\right)$ and

$$
\left.\xi_{n}\right|_{\left[0, T_{1}\right] \times \Omega} \bar{\xi}_{T_{1}} \quad \text { in } \quad L^{2}\left(\left[0, T_{1}\right] \times \Omega\right),
$$

then $\bar{\xi}_{T_{2}\left|0, T_{1}\right| \times \Omega}=\bar{\xi}_{T_{1}}$ a.e. on $\left[0, T_{1}\right] \times \Omega, T_{1}<T_{2}$.
This follows from the fact that if $\xi_{n} \rightarrow \xi$ in L^{2}, a subsequence of $\left(\xi_{n}\right)$ converges pointwise a.e. to ξ.

Step 7. Let $\bar{\xi}$ be defined on $[0, \infty) \times \Omega$ by $\left.\bar{\xi}\right|_{[0, T] \times \Omega}=\bar{\xi}_{T}$. We now show that

$$
\bar{\xi}(t, w)=x+\int_{0}^{t}\langle\sigma(s, \bar{\xi}(s, \cdot)), d \beta(s, \cdot)\rangle+\int_{0}^{t} b(s, \bar{\xi}(s, \cdot)) d s
$$

Proof. Let $0 \leq t \leq T$. By definition,

$$
\begin{aligned}
& \xi_{n}(t, w)=x+\int_{0}^{t}\left\langle\sigma\left(s, \xi_{n-1}(s, \cdot)\right), d \beta(s, \cdot)\right\rangle+\int_{0}^{t} b\left(s, \xi_{n-1}(s, \cdot)\right) d s \\
& E\left[\left(\int_{0}^{t}\left\langle\left(\sigma\left(s, \xi_{n}(s, \cdot)\right)-\sigma(s, \bar{\xi}(s, w))\right), d \beta(s, w)\right\rangle\right)^{2}\right] \\
& =E\left(\int _ { 0 } ^ { T } \operatorname { t r } \left[\left(\sigma\left(s, \xi_{n}(s, w)\right)-\sigma(s, \bar{\xi}(s, w))\right)\left(\sigma\left(s, \xi_{n}(s, w)\right)-\sigma(s, \bar{\xi}(s, w))\right)^{*} d s\right.\right. \\
& \leq d n A \int_{0}^{T} \int_{\Omega}\left|\xi_{n}(s, w)-\bar{\xi}(s, w)\right|^{2} d s \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

(by Lipschitz condition on σ).
Therefore

$$
\int_{0}^{t}\left\langle\sigma\left(s, \xi_{n-1}(s, w), d \beta(s, w)\right\rangle \rightarrow \int_{0}^{t}\langle\sigma(s, \bar{\xi}(s, w)), d \beta(s, w)\rangle\right.
$$

in $L^{2}(\Omega, P)$. Similarly,

$$
\int_{0}^{t} b\left(s, \xi_{n}(s, w)\right) d s \rightarrow \int_{0}^{t} b(s, \bar{\xi}(s, w)) d s, \quad \text { in } \quad L^{2}
$$

Thus we get
(*)

$$
\bar{\xi}(t, w)=x+\int_{0}^{t}\langle\sigma(s, \bar{\xi}(s, w)), d \beta(s, w)\rangle+
$$

$$
+\int_{0}^{t} b(s, \bar{\xi}(s, w)) d s \quad \text { a.e. in } \quad t, w .
$$

Step 8. Let $\xi(t, w) \equiv$ the right hand side of $(*)$ above. Then $\xi(t, w)$ is almost surely continuous because the stochastic integral of a bounded progressively measurable function is almost surely continuous. The result follows by noting that $[0, \infty)=\bigcup_{n=1}^{\infty}[0, n]$ and a function on $[0, \infty)$ is continuous iff it is continuous on $[0, n], \forall n$.

Step 9. Replacing $\bar{\xi}$ by ξ in the right side of (*) we get a solution

$$
\xi(t, w)=x+\int_{0}^{t}\langle\sigma(s, \xi), d \beta\rangle+\int_{0}^{t} b(s, \xi(s, w)) d s
$$

that is a.s. continuous $\forall t$ and a.e.
Uniqueness. Let ξ and η be two progressively measurable a.s. continuous functions satisfying (1). As in Step 3,

$$
\begin{aligned}
E\left(|\xi(t, w)-x|^{2}\right) & \leq 2\left(E\left(\int_{0}^{t} \operatorname{tr} \sigma \sigma^{*} d s\right)+2 E\left(\left.t \int_{0}^{t} b\right|^{2} d s\right)\right. \\
& \leq 2 E\left(\int_{0}^{T} \operatorname{tr} \sigma \sigma^{*} d s+2 E\left(T \int_{0}^{T}|b|^{2} d s\right), \quad \text { if } \quad 0 \leq t \leq T\right. \\
& <\infty
\end{aligned}
$$

Thus $E\left(|\xi(t, w)|^{2}\right)$ is bounded in $0 \leq t \leq T$. Therefore

$$
\begin{aligned}
\phi(t) & =E\left(|\xi(t, w)-\eta(t, w)|^{2}\right) \\
& \leq 2 E\left(|\xi(t, w)|^{2}\right)+2 E\left(|\eta(t, w)|^{2}\right)
\end{aligned}
$$

and so $\phi(t)$ is bounded in $0 \leq t \leq T$. But

$$
\phi(t) \leq 2 d n A^{2}(1+T) \int_{0}^{t} \phi(s) d s
$$

as in Step 2; using boundedness of $\phi(t)$ in $0 \leq t \leq T$ we can find a constant C such that

$$
\phi(t) \leq C t \quad \text { and } \quad \phi(t) \leq C \int_{0}^{t} \phi(s) d s, \quad 0 \leq t \leq T
$$

By iteration $\phi(t) \leq \frac{(C t)^{n}}{n!} \leq \frac{(C T)^{n}}{n!}$. Therefore

$$
\phi=0 \quad \text { on } \quad[0, T],
$$

i.e. $\xi(t, w)=\eta(t, w)$ a.e. in $[0, T]$. But rationals being dense in \mathbb{R} we have

$$
\xi=\eta \quad \text { a.e. and } \quad \forall t .
$$

It is now clear that $\xi \in I[b, a]$.
Remark. The above theorem is valid for the equation

$$
\xi(t, w)=x_{0}+\int_{t_{0}}^{t}\langle\sigma(s,), d \beta\rangle+\int_{t_{0}}^{t} b(s, \xi) d s, \quad \forall t \geq t_{0}
$$

This solution will be denoted by $\xi_{t_{0}, x_{0}}$.
203 Proposition. Let $\phi: C\left[(0, \infty) ; \mathbb{R}^{n}\right) \rightarrow C\left(\left[t_{0}, \infty\right) ; \mathbb{R}^{d}\right)$ be the map sending w to $\xi_{t_{0}, x_{0}}$, P the Brownian measure on $C\left([0, \infty) ; \mathbb{R}^{n}\right)$. Let $P_{t_{0}, x_{0}}=$ $P \phi^{-1}$ be the measure induced on $C\left(\left[t_{0}, \infty\right) ; \mathbb{R}^{d}\right)$. Define $X:\left[t_{0}, \infty\right) \times$ $\left.C)\left[t_{0}, \infty\right) ; \mathbb{R}^{d}\right)$ by $X(t, w)=w(t)$. Then X is an Itö process relative to $\left(C\left(\left[t_{0}, \infty\right) ; \mathbb{R}^{d}\right), t_{0}, P_{t_{0}, x_{0}}\right)$ with parameters

$$
\left[b\left(t, X_{t}\right), a\left(t, X_{t}\right)\right]
$$

The proof of the proposition follows from

Exercise. Let $\left(\bar{\Omega}, \overline{\mathscr{F}}_{t}, \bar{P}\right),\left(\Omega, \mathscr{F}_{t}, P\right)$ be any two measure spaces with X, Y progressively measurable on $\Omega, \bar{\Omega}$ respectively. Suppose $\lambda: \bar{\Omega} \rightarrow \Omega$ is such that λ is $\left(\overline{\mathscr{F}}_{t}, \mathscr{F}_{t}\right)$-measurable for all t, and $\bar{P} \lambda^{-1}=P$. Let $X(t, \bar{w})=Y(t, \lambda w), \forall \bar{w} \in \bar{\Omega}$. Show that
(a) If X is a martingale, so is Y.
(b) If $X \in I\left[b\left(t, X_{t}\right), a\left(t, X_{t}\right)\right]$ then
$Y \in I\left[b\left(t, Y_{t}\right), a\left(t, Y_{t}\right)\right]$.
Lemma. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be (Ω, P)-measurable, \sum a sub- σ-algebra of \mathscr{F}. Let $X: \Omega \rightarrow \mathbb{R}$ and $Y: \Omega \rightarrow \mathbb{R}$ be such that X is \sum-measurable and Y is \sum-independent. If $g(w)=f(X(w), Y(w))$ with $E(g(w))<\infty$, then

$$
E\left(g \mid \sum\right)(w)=E\left(\left.f(x, Y)\right|_{x=X(w)},\right.
$$

i.e.

$$
E\left(\left.f(X, Y)\right|_{\Sigma}\right)(w)=\int_{\Omega} f\left(X(w), Y\left(w^{\prime}\right)\right) d P\left(w^{\prime}\right)
$$

Proof. Let A and B be measurable subsets in \mathbb{R}. The result is trivially verified if $f=X_{A \times B}$. The set

$$
\mathscr{A}=\left\{F \in \mathbb{R}: \text { the result is true for } X_{F}\right\}
$$

is a monotone class containing all measurable rectangles. Thus the Lemma is true for all characteristic functions. The general result follows by limiting procedures.

26. Uniqueness of Diffusion Process

IN THE LAST section we proved that

$$
\xi(t, w)=x_{0}+\int_{t_{0}}^{t}\left\langle\sigma(s, \xi(s, w)), d \beta(s, w)+\int_{t_{0}}^{t} b(s,(s, w) d s\right.
$$

has a solution under certain conditions on b and σ where $\sigma \sigma^{*}=a$. The measure $P_{t_{0}, x_{0}}=P \xi_{t_{0}, x_{0}}^{-1}$ was constructed on $\left(C\left(\left[t_{0}, \infty\right) ; \mathbb{R}^{d}\right), \mathscr{F}_{t_{0}}\right)$ so that the map $X(t, w)=w(t)$ is an Itô process with parameters b and a. We now settle the uniqueness question, about the diffusion process.

Theorem. Let

(i) $a:[0, \infty) \times \mathbb{R}^{d} \rightarrow S_{d}^{+}$and $b:[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be bounded measurable functions;
(ii) $\Omega=C\left([0,) ; \mathbb{R}^{d}\right)$;
(iii) $X:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{d}$ be defined by $X(t, w)=w(t)$;
(iv) $X_{t}=\sigma\{X(s): 0 \leq s \leq t\}$;
(v) P be any probability measure on

$$
=\sigma\left(\bigcup_{t \geq 0} X_{t}\right)
$$

such that $P\left\{X(0)=x_{0}\right\}=1$ and X is an Itô process relative to $\left(\Omega, X_{t}, P\right)$ with parameters $b\left(t, X_{t}\right)$ and $a\left(t, X_{t}\right)$;
(vi) $\sigma:[0, \infty) \times \mathbb{R}^{d} \rightarrow M_{d \times n}$ be a bounded measurable map into the set of all real $d \times n$ matrices such that $\sigma \sigma^{*}=a$ on $[0, \infty) \times \mathbb{R}^{d}$.

Then there exists a generalised n-dimensional Brownian motion β on $\left(\bar{\Omega}, \sum_{t}, Q\right)$ and a progressively measurable a.s. continuous map ξ : $[0, \infty) \times \bar{\Omega} \rightarrow \mathbb{R}^{d}$ satisfying the equation
(1) $\xi(t, \bar{w})=x_{0}+\int_{0}^{t}\left\langle\sigma\left(s, \int(s, \bar{w})\right), d \beta(s, \bar{w})\right\rangle+\int_{0}^{t} b(s, \xi(s, \bar{w})) d s$
with $Q \xi^{-1}=P$, where $\xi: \bar{\Omega} \rightarrow \Omega$ is given by $(\xi(\bar{w}))(t)=\xi(t, \bar{w})$.
Roughly speaking, any Itô process can be realised by means of a diffusion process governed by equation (1) with $\sigma \sigma^{*}=a$.

Proof. Case (i). Assume that there exist constants $m, M>0$ such that $m I \leq a(t, x) \leq M I$ and σ is a $d \times d$ matrix satisfying $\sigma \sigma^{*}=a$. In this case we can identify $\left(\bar{\Omega}, \sum_{t}, Q\right)$ with $\left(\Omega, \mathscr{F}_{t}, P\right)$. Since $D(t, \cdot)$ is an Itô process,

$$
\exp \langle\theta, X(t)\rangle-\int_{0}^{t}\langle\theta, b(s, X(s, \cdot))\rangle d s-\frac{1}{2} \int_{0}^{t}\langle\theta, a(s, X(s, \cdot)) \theta\rangle d s
$$

is a $\left(\Omega, \mathscr{F}_{t}, P\right)$-martingale. Put

$$
Y(t, w)=X(t, w)-\int_{0}^{t} b(s, X(s, w)) d s-x_{0}
$$

Clearly $Y(t, w)$ is an Itô process corresponding to the parameters

$$
\left[0, a\left(s, X_{s}\right)\right]
$$

so that

$$
\exp \langle\theta, Y(t, w)\rangle-\frac{1}{2} \int_{0}^{t}\langle\theta, a(s, X(s, \cdot)) \theta\rangle d s
$$

is a $\left(\Omega, \mathscr{F}_{t}, P\right)$-martingale. The conditions $m \leq a \leq M$ imply that σ^{-1} exists and is bounded. Let

$$
\eta(t)=\int_{0}^{t} \sigma^{-1} d Y=\int_{0}^{t} \sigma^{-1}(s, X(s, \cdot)) d Y(s, \cdot)
$$

so that (by definition of a stochastic integral) η is a $\left(\Omega, \mathscr{F}_{t}, P\right)$-Itô process with parameters zero and $\sigma^{-1} a\left(\sigma^{-1}\right)^{*}=1$. Thus η is a Brownian motion relative to (Ω, \mathscr{F}, P). Now by change of variable formula for stochastic integrals,

$$
\begin{aligned}
& \int_{0}^{t} \sigma d \eta=\int_{0}^{t} \sigma \sigma^{-1} d Y \\
& =Y(t)-Y(0)=Y((t)
\end{aligned}
$$

since $Y(0)=0$. Thus

$$
X(t)=x_{0}+\int_{0}^{t} \sigma(s, X(s, \cdot)) d+\int_{0}^{t} b(s, X(s, \cdot)) d s
$$

Taking $Q=P$ we get the result.
Case (ii). $a=0, b=0, x_{0}=0, \sigma=0$ where $\sigma \in M_{d \times n}$. Let $\left(\Omega^{*}, \mathscr{F}_{t}^{*}, P^{*}\right)$ be an n-dimensional Brownian motion. Define

$$
\left(\bar{\Omega}, \sum_{t}, Q\right)=\left(\Omega \times \Omega^{*}, \mathscr{F}_{t} \times \mathscr{F}_{t}^{*}, P \times P^{*}\right)
$$

If β is the n-dimensional Brownian motion on $\left(\Omega^{*}, \mathscr{F}_{t}^{*}, P^{*}\right)$, we define $\bar{\beta}$ on $\bar{\Omega}$ by $\bar{\beta}\left(t, w, w^{*}\right)=\beta\left(t, w^{*}\right)$. It is easy to verify that $\bar{\beta}$ is an n-dimensional Brownian motion on $\left(\bar{\Omega}, \sum_{t}, Q\right)$. Taking $\xi\left(t, w, w^{*}\right)=x_{0}$ we get the result.

Before we take up the general case we prove a few Lemmas.
Lemma 1. Let $\sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ be linear $\sigma \sigma^{*}=a: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$; then there exists a linear map which we denote by $\sigma^{-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ such that $\sigma^{-1} a \sigma^{-1 *}=\pi_{N_{\sigma}^{\perp}}$, where π denotes the projection and N_{σ} null space of σ.

Proof. Let $R_{\sigma}=$ range of σ. Clearly $\sigma: N_{\sigma}^{\perp} \rightarrow R$ is an isomorphism. Let $\tau: R_{\sigma} \rightarrow N_{\sigma}^{\perp}$ be the inverse. We put

$$
\sigma^{-1}=\tau \oplus 0: R_{\sigma} \oplus R_{\sigma}^{\perp} \rightarrow N_{\sigma}^{\perp} \oplus N_{\sigma}
$$

Lemma 2. Let X, Y be martingales relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$ and $\left(\bar{\Omega}, \overline{\mathscr{F}}_{t}, \bar{P}\right)$ respectively. Then Z given by

$$
Z(t, w, \bar{w})=X(t, w) Y(t, \bar{w})
$$

is a martingale relative to

$$
\left(\Omega \times \bar{\Omega}, \mathscr{F}_{t} \times \overline{\mathscr{F}}_{t}, P \times \bar{P}\right) .
$$

Proof. From the definition it is clear that for every $t>s$

$$
\left.\int_{A \times \bar{A}} Z(t, w, \bar{w}) d(P \times \bar{P})\right|_{\mathscr{F}_{s} \times \overline{\mathscr{F}_{s}}}=\int_{A \times \bar{A}} Z(s, w, \bar{w}) d(P \times \bar{P})
$$

if $A \in \mathscr{F}_{s}$ and $\bar{A} \in \overline{\mathscr{F}}_{s}$. The general case follows easily.
As a corrollary to Lemman we have
Lemma 3. Let X be a d-dimensional Itô process with parameters b and a relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$ and let Y be a \bar{d}-dimensional Itô process relative to $\left(\bar{\Omega}, \overline{\mathscr{F}}_{t}, \bar{P}\right)$ relative to \bar{b} and \bar{a}. Then $Z(t, w, \bar{w})=(X(t, w), Y(t, \bar{w}))$ is a $(d+d)$-dimensional Itô process with parameters $B=(b, \bar{b}), A=\left[\begin{array}{ll}a & 0 \\ 0 & \frac{a}{a}\end{array}\right]$ relative to $\left(\Omega \times \bar{\Omega}, \mathscr{F}_{t} \times \overline{\mathscr{F}}_{t}, P \times \bar{P}\right)$.

209 Lemma 4. Let X be an Itô process relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$ with parameters 0 and a. If θ is progressively measurable such that $E\left(\int_{0}^{t}|\theta|^{2}, d s\right)<$ $\infty, \forall t$ and $\theta a \theta^{*}$ is bounded, then $\int_{0}^{t}\langle\theta, d X\rangle \in I\left[0, \theta a \theta^{*}\right]$.
Proof. Let θ_{n} be defined by

$$
\theta_{n}^{i}= \begin{cases}\theta^{i}, & \text { if }|\theta| \leq n \\ 0, & \text { otherwise }\end{cases}
$$

Then $\int_{0}^{t}\left\langle\theta_{n}, d X\right\rangle \in I\left[0, \theta_{n} a \theta_{n}^{*}\right]$. Therefore

$$
X_{n}(t)=\exp \left(\lambda \int_{0}^{t}\left\langle\theta_{n}, d X\right\rangle-\frac{\lambda^{2}}{2} \int_{0}^{t}\left\langle\theta_{n}, a \theta_{n}\right\rangle d s\right.
$$

is a martingale converging pointwise to

$$
X(t)=\exp \left(\lambda \int_{0}^{t}\langle\theta, d X\rangle-\frac{\lambda^{2}}{2} \int_{0}^{t}\langle\theta, a \theta\rangle d s\right)
$$

To prove that $\int_{0}^{t}\langle\theta, d X\rangle$ is an Itô process we have only to show that $X_{n}(t)$ is uniformly integrable. Without loss of generality we may assume that $\lambda=1$. Let $[0, T]$ be given

$$
\begin{aligned}
E\left(X_{n}^{2}(t, w)\right)= & E\left(\exp \left[2 \int_{0}^{t}\left\langle\theta_{n}, d X\right\rangle-\int_{0}^{t}\left\langle\theta_{n}, a \theta_{n}\right\rangle d s\right]\right) \\
= & E\left(\operatorname { e x p } \left[2 \int_{0}^{t}\left\langle\theta_{n}, d X\right\rangle-2 \int_{0}^{t}\left\langle\theta_{n}, a \theta_{n}\right\rangle d s\right.\right. \\
& \left.\left.+\int_{0}^{t}\left\langle\theta_{n}, a \theta_{n}\right\rangle d s\right]\right)
\end{aligned}
$$

$$
\leq e^{T} \sup _{0 \leq \leq \leq T}\left\langle\theta_{n}, a \theta_{n}\right\rangle
$$

$210 \quad$ But $\left\langle\theta, a \theta^{*}\right\rangle$ is bounded and therefore $\left\langle\theta_{n}, a \theta_{n}\right\rangle$ is uniformly bounded in n. Therefore (X_{n}) are uniformly integrable. Thus $X(t, \cdot)$ is a martingale.
Case (iii). Take $d=1$, and assume that

$$
\int_{0}^{t} a^{-1} \chi_{(a>0)} d s<\infty, \forall t
$$

with $a>0$; let $\sigma=+$ ve squareroot of a. Define $1 / \sigma=1 / \sigma$ if $\sigma>0$, and $1 / \sigma=0$ if $\sigma=0$. Let

$$
Y(t)=X(t)-x_{0}-\int_{0}^{t} b(s, X(s)) d s
$$

Denote by Z the one-dimensional Brownian motion on $\left(\Omega^{*}, \mathscr{F}_{t}^{*}, P^{*}\right)$ where $\Omega^{*}=C([0, \infty), R)$. Now

$$
Y \in I[0, a(s, X(s, \cdot))], Z \in I[0,1] .
$$

By Lemma 3

$$
(Y, Z) \in I\left((0,0) ;\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\right)
$$

If

$$
\eta\left(t, w, w^{*}\right)=\int_{0}^{t}\left\langle\left(\frac{1}{\sigma(s, X(s, \cdot)} \chi_{(\sigma>0),} \chi_{\sigma=0}, d(Y, Z)\right\rangle\right)
$$

then Lemma 4 shows that

$$
\eta \in I[0,1] .
$$

Therefore η is a one-dimensional Brownian motion on $\bar{\Omega}=(\Omega \times$ $\left.\Omega^{*}, \mathscr{F}_{t} \times \mathscr{F}_{t}^{*}, P \times P^{*}\right)$. Put

$$
\bar{Y}\left(t, w, w^{*}\right)=Y(t, w) \quad \text { and } \quad \bar{X}\left(t, w, w^{*}\right)=X(t, w) ;
$$

211 then

$$
\begin{aligned}
\int_{0}^{t} \sigma d \eta & =\int_{0}^{t} \sigma \frac{1}{\sigma} \chi_{(\sigma>0)} d Y+\int_{0}^{t} \sigma \chi_{(\sigma=0)} d Z \\
& =\int_{0}^{t} \chi(\sigma>0) d Y
\end{aligned}
$$

Since

$$
E\left(\left(\int_{0}^{t} \chi_{(\sigma=0)} d Y\right)^{2}\right)=E\left(\int_{0}^{t} \sigma^{2} \chi_{(\sigma=0)} d s\right)=0
$$

it follows that

$$
\int_{0}^{t} \sigma d \eta=\int_{0}^{t} d Y=Y(t)=\bar{Y}\left(t, w, w^{*}\right)
$$

Thus,

$$
\begin{aligned}
\bar{X}\left(t, w, w^{*}\right)=x_{0} & +\int_{0}^{t} \sigma\left(s, \bar{X}\left(s, w, w^{*}\right) d \eta+\right. \\
& +\int_{0}^{t} b\left(s, \bar{X}\left(s, w, w^{*}\right) d s\right.
\end{aligned}
$$

with $\bar{X}\left(t, w, w^{*}\right)=X(t, w)$. Now

$$
\left(P \times P^{*}\right) \bar{X}^{-1}(A)=\left(P \times P^{*}\right)\left(A \times \Omega^{*}\right)=P(A)
$$

Therefore

$$
\left(P \times P^{*}\right) \bar{X}^{-1}=P \quad \text { or } \quad Q \bar{X}^{-1}=P
$$

Case (iv). (General Case). Define

$$
Y(t, \cdot)=X(t, \cdot)-x_{0}-\int_{0}^{t} b(s, X(s, \cdot)) d s
$$

Therefore $Y \in I[0, a(s, X(s, \cdot))]$ relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$. Let Z be the n-dimensional Brownian motion on $\left(\Omega^{*}, \mathscr{F}_{t}^{*}, P^{*}\right)$ where

$$
\begin{gathered}
\Omega^{*}=C\left([0, \infty) ; \mathbb{R}_{n}\right) \\
(Y, Z) \quad I\left[(0,0) ;\left[\begin{array}{cc}
a\left(s, X_{s}\right), & 0 \\
0 & I
\end{array}\right]\right]
\end{gathered}
$$

Let σ be a $d \times n$ matrix such that $\sigma \sigma^{*}=a$ on $[0, \infty) \times \mathbb{R}^{d}$. Let

$$
\begin{aligned}
\eta\left(t, w, w^{*}\right) & =\int_{0}^{t} \sigma^{-1}(s, X(s, w)) d Y(s, w)+\int_{0}^{t} r_{N_{\sigma}}\left(s, Z\left(s, w^{*}\right)\right) d Z\left(s, w^{*}\right) \\
& =\int_{0}^{t}\left\langle\left(\sigma^{-1}(s, X(s, w)), \pi_{N_{\sigma}}\left(s, Z\left(s, w^{*}\right)\right)\right), d(Y, Z)\right\rangle
\end{aligned}
$$

Therefore η is an Ito process with parameters zero and

$$
\begin{aligned}
A & =\left(\sigma^{-1}, \pi_{N}\right)\left(\begin{array}{ll}
a & 0 \\
0 & I
\end{array}\right)\binom{\sigma^{-1^{*}}}{\pi_{N_{\sigma}^{*}}} \\
& =\sigma^{-1} a\left(\sigma^{-1}\right)^{*}+\pi_{N_{\sigma}} \pi_{N_{\sigma}^{*}} . \\
& =\pi_{N_{\sigma}}+\pi_{N_{\sigma}} \quad\left(\text { for any projection } P P^{*}=P P=P\right) \\
& =I_{\mathbb{R}^{n}} .
\end{aligned}
$$

Therefore η is n-dimensional Brownian motion on

$$
\begin{gathered}
\left(\bar{\Omega}, \overline{\mathscr{F}}_{t}, \bar{P}\right)=\left(\Omega \times \Omega^{*}, \mathscr{F}_{t} \times \mathscr{F}_{t}^{*}, P \times P^{*}\right) . \\
\int_{0}^{t} \sigma(s, X(s, w)) d \eta\left(s, w, w^{*}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =\int_{0}^{t} \sigma\left(s, \bar{X}\left(s, w, w^{*}\right)\right) d \eta\left(s, w, w^{*}\right), \text { where } \bar{X}\left(s, w, w^{*}\right)=X(s, w) \\
& =\int_{0}^{t} \sigma \sigma^{-1} d Y+\int_{0}^{t} \sigma \pi_{N_{\sigma}} d Z \\
& =\int_{0}^{t} \pi_{R_{\sigma}} d Y, \text { since } \sigma \sigma^{-1}=\pi_{R_{\sigma}} \text { and } \sigma \pi_{N_{\sigma}}=0 \\
& =\int_{0}^{t}\left(1-\pi_{R_{\sigma}}\right) d Y
\end{aligned}
$$

Claim. $\int_{0}^{t} \pi_{R_{\sigma}} d Y=0$.
For

$$
\begin{aligned}
E\left[\left(\int_{0}^{t} \pi_{R_{\sigma}} d Y\right)^{2}\right] & =\int_{0}^{t} a \pi_{R_{\sigma}} d s=\int_{0}^{t} \sigma \sigma^{*} \pi_{R_{\sigma}} d s \\
& =\int_{0}^{t} \sigma(0) d s=0
\end{aligned}
$$

Therefore we obtain

$$
\int_{0}^{t} \sigma(s, X(s, w)) d \eta\left(s, w, w^{*}\right)=\int_{0}^{t} d Y=Y(t)-Y(0)=Y(t)
$$

putting $\bar{Y}\left(t, w, w^{*}\right)=Y(t, w)$, one gets

$$
\bar{X}\left(t, w, w^{*}\right)=x_{0}+\int_{0}^{t} \sigma\left(s, \bar{X}\left(s, w, w^{*}\right)\right) d \eta\left(s, w, w^{*}\right)
$$

$$
+\int_{0}^{t} b\left(s, \bar{X}\left(s, w, w^{*}\right)\right) d s
$$

As in Case (iii) one shows easily that

$$
\left(P \times P^{*}\right) \bar{X}^{-1}=P
$$

This completes the proof of the theorem.
Corollary. Let $a:[0, \infty) \times \mathbb{R}^{d} \rightarrow S_{d}^{+}$, and $b:[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be bounded, progressively measurable functions. If for some choice of a Lipschitz function $\sigma:[0, \infty) \times \mathbb{R}^{d} \rightarrow M_{d \times n}, \sigma \sigma^{*}=a$ then the Ito process corresponding to $[b, a)$ is unique.

To state the result precisely, let P_{1} and P_{2} be two probability measures on $C\left([0, \infty) ; \mathbb{R}^{d}\right)$ such that $X(t, w)=w(t)$ is an Itô process with parameters b and a. Then $P_{1}=P_{2}$.

Proof. By the theorem, there exists a generalised n-dimensional Brownian motion β_{i} on $\left(\Omega_{i}, \Sigma_{t}^{i}, Q_{i}\right)$ and a map $\xi_{i}: \Omega_{i} \rightarrow \Omega$ satisfying (for $i=1,2$)

$$
i^{(t, w)}=x_{0}+\int_{0}^{t} \sigma\left(s, \xi_{i}(s, w)\right) d \beta_{i}(s, w)+\int_{0}^{t} b\left(s, \xi_{i}(s, w)\right) d s
$$

and $P_{i}=Q_{i} \xi_{i}^{-1}$.
Now σ is Lipschitz so that ξ_{i} is unique but we know that the iterations converge to a solution. As the solution is unique the iterations converge to ξ_{i}. Each iteration is progressively measurable with respect to

$$
{ }_{t}^{i}=\sigma\left\{\beta_{i}(s) ; 0 \leq s \leq t\right\} \text { so that } \xi_{i} \text { is also progressively }
$$

measurable with respect to \mathscr{F}_{t}^{i}. Thus we can restate the result as follows: There exists $\left(\Omega_{i}, \mathscr{F}_{t}^{i}, Q_{i}\right)$ and a map $\xi_{i}: \Omega_{i} \rightarrow \Omega$ satisfying

$$
\xi_{i}(t, w)=x_{0}+\int_{0}^{t} \sigma\left(s, \xi_{i}(s, w)\right) d \beta_{i}(s, w)
$$

$$
+\int_{0}^{t} b\left(s, \xi_{i}(s, w)\right) d s
$$

and $P_{i}=Q_{i} \xi_{i}^{-1}$.
($\Omega_{i}, \mathscr{F}_{t}^{i}, Q_{i}, \beta_{i}$) can be identified with the standard Brownian motion $\left(\Omega^{*}, \mathscr{F}_{t}^{*}, Q, \beta\right)$. Thus $P_{1}=Q \xi^{-1}=P_{2}$, completing the proof.

27. On Lipschitz Square Roots

Lemma. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f(x) \geq 0, f(x) \in C^{2}$ and $\left|f^{\prime \prime}(x)\right| \leq 215$ A on $(-\infty, \infty)$; then

$$
\left|f^{\prime}(x)\right| \leq \sqrt{f(x)} \sqrt{2 A}
$$

Proof.

$$
\begin{aligned}
0 & \leq f(y)=f(x)+(y-x) f^{\prime}(x)+\frac{(y-x)^{2}}{2} f^{\prime \prime}(\xi) \\
& \leq f(x)+Z f^{\prime}(x)+\frac{Z^{2}}{2} f^{\prime \prime}(\xi)
\end{aligned}
$$

where $Z=y-x$, or $f(y) \leq f(x)+Z f^{\prime}(x)+\frac{A Z^{2}}{2}$. Therefore

$$
\begin{gathered}
\frac{A Z^{2}}{2}+Z f^{\prime}(x)+f(x) \geq 0, \quad \forall Z \in \mathbb{R} \\
\left|f^{\prime}(x)\right|^{2} \leq 2 A f(x)
\end{gathered}
$$

So

$$
\left|f^{\prime}(x)\right| \leq \sqrt{2 A} f(x)
$$

Note. If we take $f(x)=x^{2}$, we note that the constant is the best possible.
Corollary. If $f \geq 0,\left|f^{\prime \prime}\right| \leq A$, then

$$
\left|\sqrt{ }\left(f\left(x_{1}\right)\right)-\sqrt{ }\left(f\left(x_{2}\right)\right) \leq \sqrt{ }(A / 2)\right| x_{1}-x_{2} \mid
$$

Proof. Let $\epsilon>0$, then $\sqrt{ }(f(x)+\epsilon)$ is a smooth function.

$$
(\sqrt{ }(f(x)+\epsilon))^{\prime}=\frac{f^{\prime}(x)}{2 \sqrt{ }(f(x)+\epsilon)}=\frac{(f(x)+\epsilon)^{\prime}}{2 \sqrt{ }(f(x)+\epsilon)}
$$

Therefore

$$
\left|(\sqrt{ }(f(x)+\epsilon))^{\prime}\right| \leq \sqrt{ }(2 A / 2) \leq \sqrt{ }(A / 2)
$$

or

$$
\left|\sqrt{ }\left(f\left(x_{1}\right)+\epsilon\right)-\sqrt{ }\left(f\left(x_{2}\right)+\epsilon\right)\right| \leq \sqrt{ }(A / 2)\left|x_{1}-x_{2}\right| .
$$

Let $\epsilon \rightarrow 0$ to get the result.
We now consider the general case and give conditions on the matrix a so that σ defined by $\sigma \sigma^{*}=a$ is Lipschitz.

Theorem. Let $a: \mathbb{R}^{n} \rightarrow S_{d}^{+}$be continuous and bounded C^{2}-function such that the second derivative is uniformly bounded, i.e. $\left\|D_{s} D_{r} a_{i j}\right\| \leq$ M, where M is independent of $i, j, r, s ;\left(D_{r} \equiv \frac{d}{d x_{r}}\right)$. If $\sigma: \mathbb{R}^{n} \rightarrow S_{d}^{+}$is the unique positive square root of a, then

$$
\left\|\sigma\left(x_{1}\right)-\sigma\left(x_{2}\right)\right\| \leq A\left|x_{1}-x_{2}\right|, \forall x_{1}, x_{2}, A=A(M, d)
$$

Proof.
Step 1. Let $A \in S_{d}^{+}$be strictly positive such that $\|I-A\|<1$. Then

$$
\begin{aligned}
\sqrt{ } A & =\sqrt{ }(I-(I-A)) \\
& =\sum_{r=0}^{\infty} \frac{C_{r}}{r!}(I-A)^{r}
\end{aligned}
$$

so that on the set $\{A:\|I-A\|<1\}$ the map $A \rightarrow \sqrt{ } A$ is C^{∞} (in fact analytic).

Now assume that A is any positive definite matrix. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigen values so that $\lambda_{j}>0, j=1,2 \ldots n$. Therefore $I-\epsilon A$ is
aymmetric with eigen values $1-\epsilon \lambda_{j}$. By choosing ϵ sufficiently small we can make

$$
\|I-\epsilon A\|=\max \left\{1-\epsilon \lambda_{1}, \ldots, 1-\epsilon \lambda_{n}\right\}<1 .
$$

Fixing such an ϵ we observe that

$$
\sqrt{ } A=\frac{1}{\sqrt{ } \epsilon} \sqrt{ }(\epsilon A)=\frac{1}{\sqrt{ } \epsilon} \sqrt{ }(I-(I-\epsilon A))
$$

So the map $A \rightarrow \sqrt{ } A$ is smooth on the set of symmetric positive definite matrices.

Step 2. Let $n=1, \sigma\left(t_{0}\right)=\sqrt{ }\left(a\left(t_{0}\right)\right.$ where $a\left(t_{0}\right)$ is positive definite. Assume $a\left(t_{0}\right)$ to be diagonal so that $\sigma\left(t_{0}\right)$ is also diagonal.

$$
\sum_{j} \sigma_{i j}(t) \sigma_{j k}(t)=a_{i k}(t)
$$

Differentiating with respect to t at $t=t_{0}$ we get

$$
\sum_{j} \sigma_{i j}\left(t_{0}\right) \sigma_{j k}^{\prime}\left(t_{0}\right)+\sum_{j} \sigma_{i j}^{\prime}\left(t_{0}\right) \sigma_{j k}\left(t_{0}\right)=a_{i k}^{\prime}\left(t_{0}\right)
$$

or

$$
\sqrt{ } a_{i i}\left(t_{0}\right) \sigma_{i k}^{\prime}\left(t_{0}\right)+\sqrt{ } a_{k k}\left(t_{0}\right) \sigma_{i k}^{\prime}\left(t_{0}\right)=a_{i k}^{\prime}\left(t_{0}\right)
$$

or

$$
\sigma_{i k}^{\prime}\left(t_{0}\right)=\frac{a_{i k}^{\prime}\left(t_{0}\right)}{\sqrt{ }\left(a_{i i}\left(t_{0}\right)\right)+\sqrt{ }\left(a_{k k}\left(t_{0}\right)\right)}
$$

Since the second derivatives are bounded by $4 M$ and $a_{i i}-2 a_{i j}+a_{j j} \geq$ 0 , we get

$$
\begin{aligned}
\left|a_{i i}^{\prime}(t)+2 a_{i j}^{\prime}(t)+a_{j j}^{\prime}(t)\right| & \leq \sqrt{ }(8 M) \sqrt{ }\left(a_{i i}(t)+2 a_{i j}(t)+a_{j j}(t)\right) \\
& \leq \sqrt{ }(8 M) \sqrt{ } 2 \sqrt{ }\left(a_{i i}+a_{j j}\right)(t)
\end{aligned}
$$

or

$$
\begin{equation*}
\left|a_{i i}^{\prime}(t)+2 a_{i j}^{\prime}(t)+a_{j j}^{\prime}(t)\right| \leq 4 \sqrt{ } M\left(\sqrt{ } a_{i i}+\sqrt{ } a_{j j}\right) \tag{1}
\end{equation*}
$$

Since a is non-negative definite,

$$
\left|a_{i i}^{\prime}(t)\right| \leq \sqrt{ }(2 M) \sqrt{ }\left(a_{i i}(t)\right), \forall i .
$$

substituting this in (1), we get

$$
\left|a_{i j}^{\prime}(t)\right| \leq 4 \sqrt{ } M\left(\sqrt{ } a_{i i}+\sqrt{ } a_{j j}\right)
$$

and hence

$$
\left|\sigma_{i j}^{\prime}\left(t_{0}\right)\right| \leq 4 \sqrt{ } M
$$

Step 3. Let $a\left(t_{0}\right)$ be positive definite and σ its positive definite square root. There exists a constant unitary matrix α such that $\alpha a\left(t_{0}\right) \alpha^{-1}=b\left(t_{0}\right)$ is a diagonal positive definite matrix. Let $\lambda\left(t_{0}\right)$ be the positive square root of $b\left(t_{0}\right)$ so that

$$
\lambda\left(t_{0}\right)=\alpha \sigma\left(t_{0}\right) \alpha^{-1} .
$$

Therefore $\sigma^{\prime}\left(t_{0}\right)=\left(\alpha^{-1} \lambda^{\prime} \alpha\right)\left(t_{0}\right)$ where $\left(\sigma^{\prime}\left(t_{0}\right)\right)_{i j}=\sigma_{i j}^{\prime}\left(t_{0}\right)$ and

$$
a^{\prime \prime}\left(t_{0}\right)=\left(\alpha^{-1} b^{\prime \prime} \alpha\right)\left(t_{0}\right) .
$$

Since α is unitary.

$$
\|\lambda\|=\|\sigma\|,\left\|a^{\prime \prime}\right\|=\left\|b^{\prime \prime}\right\|,\left\|\lambda^{\prime}\right\|=\left\|\sigma^{\prime}\right\| .
$$

By hypothesis, $\left\|b^{\prime \prime}\right\|=\left\|a^{\prime \prime}\right\| \leq C(d) \cdot M$. Therefore

$$
\left\|\lambda^{\prime}\right\| \leq 4 \sqrt{ }(M C(d))
$$

i.e.

$$
\left\|\sigma^{\prime}\right\| \leq 4 \sqrt{ }(M C(d))
$$

Thus $\left\|\sigma\left(t_{1}\right)-\sigma\left(t_{2}\right)\right\| \leq\left|t_{1}-t_{2}\right| C(M, d)$.
Step 4. Let $a: \mathbb{R} \rightarrow S_{d}^{+}$and σ be the unique non-negative definite square root of a. For each $\epsilon>0$ let $a_{\epsilon}=a+\epsilon I, \sigma_{\epsilon}=$ unique positive square root of a_{ϵ}. Then by step 3 ,

$$
\left\|\sigma_{\epsilon}\left(t_{1}\right)-\sigma_{\epsilon}\left(t_{2}\right)\right\| \leq C(M, d)\left|t_{1}-t_{2}\right| .
$$

If a is diagonal then it is obvious that $\sigma_{\epsilon} \rightarrow \sigma$ as $\epsilon \rightarrow 0$. In the general case reduce a to the diagonal form and conclude that $\sigma_{\epsilon} \rightarrow \sigma$.

Thus

$$
\left\|\sigma\left(t_{1}\right)-\sigma\left(t_{2}\right)\right\| \leq C(M, d)\left|t_{1}-t_{2}\right| .
$$

Step 5. Let $a: \mathbb{R}^{n} \rightarrow S_{d}^{+}$and $\sigma^{2}=a$, with $\left\|D_{r} D_{s} a_{i j}\right\| \leq M, \forall x, i, j ; r$, $s \times \in \mathbb{R}^{n}$. Choose $x_{1}, x_{2} \in \mathbb{R}^{n}$. Let $x_{1}=y_{1}, y_{2}, \ldots, y_{n+1}=x_{2}$ be $(n+1)$ points such that y_{i} and y_{i+1} differ almost in one coordinate. By Step 4, we have

$$
\begin{equation*}
\left\|\sigma\left(y_{i}\right)-\sigma\left(y_{i+1}\right)\right\| \leq C\left|y_{i}-y_{i+1}\right| . \tag{*}
\end{equation*}
$$

The result follows easily from the fact that

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \quad \text { and } \quad\|x\|_{2}=\left(x_{1}+\cdots+x_{n}\right)^{1 / 2}
$$

are equivalent norms.
This completes the proof of the theorem.

28. Random Time Changes

LET

$$
L=\frac{1}{2} \sum_{i, j} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j} b_{j} \frac{\partial}{\partial x_{j}}
$$

with $a: \mathbb{R}^{b} \rightarrow S_{d}^{+}$and $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ bounded measurable funcitons. Let $X(t, \cdot)$, given by $X(t, w)=w(t)$ for (t, w) in $[0, \infty) \times C\left([0, \infty): \mathbb{R}^{d}\right)$ be an Itô process corresponding to $\left(\Omega, \mathscr{F}_{t}, Q\right)$ with parameters b and a where $\Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right)$. For every constant $c>0$ define

$$
L_{c} \equiv c\left[\frac{1}{2} \sum_{i, j} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j} b_{j} \frac{\partial}{\partial x_{j}}\right]
$$

Define Q_{c} by $Q_{c}=P T_{c}^{-1}$ where $\left(T_{c} w\right)(t)=w(c t)$. Then one can show that X is an Itô process corresponding to $\left(\Omega, \mathscr{F}_{t}, Q_{c}\right)$ with parameters $c b$ and $c a$ [Note: We have done this in the case where $a_{i j}=\delta_{i j}$].

Consider the equation

$$
\frac{\partial u}{\partial t}=L_{c} u \quad \text { with } \quad u(0, x)=f(x)
$$

This can be written as $\frac{\partial u}{\partial \tau}=L u$ with $u(0, x)=f(x)$ when $\tau=c t$. Thus changing time in the differential equation is equivalent to stretching time in probablistic language.

So far we have assumed that c is a constant. Now we shall allow c to be a function of x.

Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be any bounded measurable function such that

$$
0<C_{1} \leq \phi(x)<C_{2}<\infty, \quad \forall x \in \mathbb{R}^{d}
$$

and suitable constants C_{1} and C_{2}. If

$$
L \equiv\left[\frac{1}{2} \sum a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum b_{j} \frac{\partial}{\partial x_{j}}\right]
$$

we define

$$
L_{\phi}=\phi L \equiv \phi\left[\frac{1}{2} \sum a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum b_{j} \frac{\partial}{\partial x_{j}}\right]
$$

In this case we can say that the manner which time changes depends on the position of the particle.

Define $T_{\phi}: \Omega \rightarrow \Omega$ by

$$
\left(T_{\phi} w\right)(t)=w\left(\tau_{t}(w)\right)
$$

where $\tau_{t}(w)$ is the solution of the equation

$$
\int_{0}^{\tau_{t}} \frac{d s}{\phi(w(s))}=t
$$

As $C_{1} \leq \phi \leq C_{2}$ it is clear that $\tau_{t} \frac{1}{C_{1}} \leq t \leq \tau_{t} \frac{1}{C_{2}}$. When $\phi \equiv c$ a constant, then $\tau_{t}=c t$ and T_{ϕ} coincides with T_{c}.

As

$$
0<C_{1} \leq \phi \leq C_{2}<\infty, \quad \int_{0}^{\lambda} \frac{1}{\phi(w(s))} d s
$$

is continuous and increases strictly from 0 to ∞ as λ increases, so that τ_{t} exists, is unique, and is a continuous function of t for each fixed w.
Some properties of T_{ϕ}.
(i) If l is the constant function taking the value 1 then it is clear that $T_{l}=$ identity.
(ii) Let ϕ and ψ be two measurable funcitons such that $0<a \leq \phi(x)$, $\psi(x) \leq b<\infty, \forall x \in \mathbb{R}^{d}$. Then $T_{\phi} \circ T=T_{\phi \psi}=T_{\psi} \circ T_{\phi}$.

Proof. Fix w. Let τ_{t} be given by

$$
\int_{0}^{\tau_{t}} \frac{1}{\phi(w(s))} d s=t
$$

Let $w^{*}(t)=w\left(\tau_{t}\right)$ and let σ_{t} be given by

$$
\int_{0}^{\sigma_{t}} \frac{1}{\phi\left(w^{*}(s)\right)} d s=t
$$

Let $w^{* *}(t)=w^{*}\left(\sigma_{t}\right)=w\left(\tau_{\sigma_{t}}\right)$. Therefore

$$
\begin{aligned}
\left(\left(T_{\psi} \circ T_{\phi}\right) w\right)(t) & =\left(T_{\phi} w^{*}\right)(t)=w^{*}\left(\sigma_{t}\right) \\
& =w^{* *}(t)=w\left(\tau_{\sigma_{t}}\right) .
\end{aligned}
$$

Hence to prove the property (ii) we need only show that

$$
\int_{0}^{\tau_{\sigma_{t}}} \frac{1}{\phi(w(s))} \frac{1}{\psi(w(s))} d s=t
$$

Since

$$
\int_{0}^{\tau_{t}} \frac{1}{\phi(w(s))} d s=t, \quad \frac{d t}{d \tau_{t}}=\frac{1}{\phi\left(w\left(\tau_{t}\right)\right)}
$$

and

$$
\frac{d t}{d \sigma_{t}}=\frac{1}{\psi\left(w^{*}\left(\sigma_{t}\right)\right)}=\frac{1}{\psi\left(w\left(\tau_{\sigma_{t}}\right)\right)}
$$

Therefore

$$
\begin{aligned}
\frac{d \tau_{\sigma_{t}}}{d t}=\frac{d \tau_{\sigma_{t}}}{d \sigma_{t}}-\frac{d_{\sigma_{t}}}{d t} & =\phi\left(w\left(\tau_{\sigma_{t}}\right)\right) \phi\left(w^{*}\left(\sigma_{t}\right)\right) \\
& =\phi\left(w\left(\tau_{\sigma_{t}}\right) \psi\left(w\left(\tau_{\sigma_{t}}\right)\right)\right.
\end{aligned}
$$

$$
=(\phi \psi)\left(w\left(\tau_{\sigma_{t}}\right)\right)
$$

Thus

$$
\int_{0}^{\tau_{\sigma_{t}}} \frac{1}{(\phi \psi)(w(s))} d s=t
$$

This completes the proof.
(iii) From (i) and (ii) it is clear that $T_{\phi}^{-1}=T_{\phi-1}$ where $\phi^{-1}=\frac{1}{\phi}$.
(iv) $\left(\tau_{t}\right)$ is a stopping time relative to τ_{t}. i.e.

$$
\left\{w: \int_{0}^{\lambda} \frac{1}{\phi(w(s))} d s \geq r\right\} \in \lambda \text { for each } \lambda \geq 0
$$

(v) $T_{\phi}(w)(t)=w\left(\tau_{t} w\right)=X_{\tau_{t}}(w)$.

Thus T_{ϕ} is $\left(\mathscr{F}_{t}-\mathscr{F}_{\tau_{t}}\right)$-measurable, i.e. $T_{\phi}^{-1}\left(\mathscr{F}_{t}\right) \subset \mathscr{F}_{\tau_{t}}$.
Since $X(t)$ is an Itô process, with parameters $b, a, \forall f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, $f(X(t))-\int_{0}^{t}(L f)(X(s)) d s$ is a martingale relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$. By the optional sampling theorem

$$
f\left(X_{\tau_{t}}\right)-\int_{0}^{\tau_{t}}(L f)(X(s)) d s
$$

is a martingale relative to $\left(\Omega, \mathscr{F}_{\tau_{t}}, P\right)$, i.e.

$$
f\left(X_{\tau_{t}}\right)-\int_{0}^{t}(L f)\left(X\left(\tau_{s}\right)\right) d \tau_{s}
$$

is a martingale relative to $\left(\Omega, \mathscr{F}_{\tau_{t}}, P\right)$. But $\frac{d \tau_{s}}{d t}=\phi$. Therefore

$$
f\left(X\left(\tau_{t}\right)\right)-\int_{0}^{t}(L f)\left(X_{\tau_{s}}\right) \phi\left(X_{\tau_{s}}\right) d s
$$

is a martingale.
Put $Y(t)=X_{\tau_{t}}$ and appeal to the definition of L_{ϕ} to conclude that

$$
f(Y(t))-\int_{0}^{t}\left(L_{\phi} f\right)(Y(s)) d s
$$

is a martingale. $Y(t, w)=X_{\tau_{t}}(w)=\left(T_{\phi} w\right)(t)$. Let $\overline{\mathscr{F}}_{t}=\sigma\{Y(s): 0 \leq s \leq$ $t\}$. Then $\overline{\mathscr{F}}_{t}=T_{\phi}^{-1}\left(\mathscr{F}_{t}\right) \subset \mathscr{F}_{\tau_{t}}$. Thus

$$
f(Y(t))-\int_{0}^{t}\left(L_{\phi} f\right)(Y(s)) d s
$$

is a martingale relative to $\left(\Omega, \overline{\mathscr{F}}_{t}, P\right)$. Define $Q=P T_{\phi}^{-1}$ so that

$$
f(X(t))-\int_{0}^{t}\left(L_{\phi} f\right)(X(s)) d s
$$

is an $\left(\Omega, \mathscr{F}_{t}, Q\right)$-martingale, i.e. Q is an Itô process that corresponds to the operator ϕL. Or, $P T_{\phi}^{-1}$ is an Itô process that corresponds to the operator ϕL.

We have now proved the following theorem.
Theorem. Let $\Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right) ; X(t, w)=w(t) ;$

$$
L=\frac{1}{2} \sum_{i, j} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum b_{j} \frac{\partial}{\partial x_{j}}
$$

Suppose that $X(t)$ is an Itô process relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$ that corresponds to the operator L. Let $0 \leq C_{1} \leq \phi \leq C_{2}$ where $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is measurable. If $Q=P T_{\phi}^{-1}$, then $X(t)$ is an Itô process relative to $\left(\Omega, \mathscr{F}_{t}, Q\right)$ that corresponds to the operator ϕL.

As $0<C_{1} \leq \phi \leq C_{2}$, we get $0<1 / C_{2} \leq 1 / \phi<1 / C_{1}$ with $T_{\phi-1} \circ T_{\phi}=I$. We have thus an obvious corollary.
Corollary . There exists a probability measure P on Ω such that X is an Itô process relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$ that corresponds to the operator L if and only if there exists a probability measure Q on Ω such that X is an Ito process relative to $\left(\Omega, \mathscr{F}_{t}, Q\right)$ that corresponds to the operator ϕL.
Remark. If $C_{2} \geq \phi \geq C_{1}>0$ then we have shown that existence and uniqueness of an Itô process for the operator L guarantees existence and uniqueness of the Itô process for the operator ϕL. The solution is no longer unique if we relax the strict positivity on C_{1} as is illustrated by the following example.

Let $\phi \equiv a(x)=|x|^{\alpha} \wedge 1$ where $0<\alpha<1$ and let $L=\frac{1}{2} a \frac{\partial^{2}}{\partial x}$. Define δ_{0} on $\{C([0, \infty) ; \mathbb{R})\}$ by

$$
\delta_{0}(A)= \begin{cases}1, & \text { if } \quad \theta \in A, \forall A \epsilon \\ 0, & \text { if } \quad \theta \notin A\end{cases}
$$

where θ is the zero function on $[0, \infty)$.
Claim. δ_{0} is an Itô process with parameters 0 and a. For this it is enough to show that, $\forall f \in C_{0}^{\infty}(\mathbb{R})$

$$
f(X(t))-\int_{0}^{t}(L f)(X(s)) d s
$$

226 is a martingale, using $a(0)=0$, it follows easily that

$$
\int_{A} \int_{0}^{t}(L f)(X(\sigma)) d \sigma d \delta_{0}=0
$$

\forall Borel set A of $C([0, \infty) ; \mathbb{R})$ and $\int_{A} f(X(t)) d \delta_{0}=0$ if $\theta \notin A$ and

$$
\int_{A} f(X(t)) d \delta_{0}=f(0)
$$

if $\theta \in A$, and this is true $\forall t$, showing that $X(t, w)=w(t)$ is an Itô process relative to δ_{0} corresponding to the operator L.

Next we shall define T_{a} (as in the theorem); we note that T_{a} cannot be defined everywhere (for example $T_{a}(\theta)$ is not defined). However T_{a} is defined a.e. P where $P=P_{0}$ is the Brownian motion.

$$
E^{P}\left(\int_{0}^{t} \frac{1}{|X(s)|^{\alpha}} d s\right)=\int_{0}^{t} \int_{0}^{\infty} \frac{1}{y^{\alpha}} \frac{1}{\sqrt{ }(2 \pi s)} e^{\frac{-y}{2 s}} d y d s<\infty
$$

since $0<\alpha<1$. Thus by Fubini's theorem,

$$
\int_{0}^{t} \frac{1}{|w(s)|^{\alpha}} d s<\infty \quad \text { a.e. }
$$

Taking $t=1,2,3 \ldots$, there exists a set Ω^{*} such that $P\left(\Omega^{*}\right)=1$ and

$$
\int_{0}^{t} \frac{1}{|w(s)|^{\alpha}} d s<\infty, \quad \forall t, \quad \forall w \in \Omega^{*}
$$

Observe that

$$
\int_{0}^{t} \frac{1}{|w(s)|^{\alpha}} d s<\infty
$$

implies that

$$
\int_{0}^{t} \frac{1}{|w(s)|^{\alpha} \wedge 1} d s<\infty
$$

for

$$
\begin{gathered}
\int_{0}^{t} \frac{d s}{|w(s)|^{\alpha} \wedge 1}= \\
=\int_{\left.\left.[0, t]| | w(s)\right|^{\alpha}>1\right\}} \frac{d s}{|w(s)|^{\alpha} \wedge 1}+\int_{\left\{|w(s)|^{\alpha} \leq 1\right\}[0, t]} \frac{d s}{|w(s)|^{\alpha}}, \ldots
\end{gathered}
$$

$$
\begin{gathered}
\leq m\left\{\left(|w(s)|^{\alpha}>1\right)[0, t]\right\}+\int_{0}^{t} \frac{1}{|w(s)|^{\alpha}} d s<\infty \\
(m=\text { Lebesgue measure })
\end{gathered}
$$

Thus T_{a} is defined on the whole of Ω^{*}. Using the same argument as in the theorem, it can now be proved that X is an Itô process relative to Q corresponding to the operator L. Finally, we show that $Q\{\theta\}=0$. $Q\{\theta\}=P T_{a}^{-1}\{\theta\}$. Now: $T_{a}^{-1}\{\theta\}=$ empty. For, let $w \in T_{a}^{-1}\{\theta\}$. Then $w\left(\tau_{t}\right)=0, \forall t, w \in \Omega^{*}$. Since $\left|\tau_{t}-\tau_{s}\right| \leq|t-s|$, one finds that τ_{t} is a continuous function of t. Further $\tau_{1}>0$, and $w=0$ on $\left[0, \tau_{1}\right]$ gives

$$
\int_{0}^{\tau_{1}} \frac{1}{|w(s)|^{\alpha} \wedge 1} d s=\infty
$$

This is false unless $T_{a}^{-1}\{\theta\}=$ empty. Thus $Q\{\theta\}=0$ and Q is different from δ_{0}.

29. Cameron - Martin Girsanov Formula

LET US REVIEW what we did in Brownian motion with drift.
Let $\left(\Omega, \mathscr{F}_{t}, P\right)$ be a d-dimensional Brownian motion with

$$
P\{w: w(0)=x\}=1
$$

Let $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a bounded measurable function and define

$$
Z(t)=\exp \left(\int_{0}^{t}\langle b, d x\rangle-\frac{1}{2} \int_{0}^{t}|b|^{2} d s\right)
$$

Then we see that $Z(t, \cdot)$ is an $\left(\Omega, \mathscr{F}_{t}, P\right)$-martingale. We then had a probability measure Q given by the formula

$$
\left.\frac{d Q}{d P}\right|_{\mathscr{F}_{t}}=Z(t, \cdot)
$$

We leave it as an exercise to check that in effect X is an Itô process relative to Q with parameters b and I. In other words we had made a transition from the operator $\Delta / 2$ to $\Delta / 2+b \cdot \nabla$. We now see whether such a relation also exists for the more general operator L.

Theorem. Let $a: \mathbb{R}^{d} \rightarrow S_{d}^{+}$be bounded and measurable such that $a \geq C I$ for some $C>0$. Let $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be bounded, $\Omega=\left([0, \infty) ; \mathbb{R}^{d}\right)$, $X(t, w)=w(t), P$ any probability measure on Ω such that X is an Itô
process relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$ with parameters $[0, a]$. Define Q^{t} on \mathscr{F}_{t} by the rule

$$
\left.\frac{d Q^{t}}{d P}\right|_{\mathscr{F}_{t}}=Z(t, \cdot)=\exp \left[\int_{0}^{t}\left\langle a^{-1} b, d X\right\rangle-\frac{1}{2} \int_{0}^{t}\left\langle b, a^{-1} b\right\rangle d s\right]
$$

229

Then

(i) $\left\{0^{t}\right\} t \geq 0$ is a consistent family.
(ii) there exists a measure Q on $\sigma\left(\| \mathscr{F}_{t}\right)$:

$$
\left.Q\right|_{\mathscr{F}_{t}}=Q^{t}
$$

(iii) $X(t)$ is an Itô process relative to $\left(\Omega, \mathscr{F}_{t}, Q\right)$ with parameters $[b, a]$, i.e. it corresponds to the operator

$$
\frac{1}{2} \sum_{i, j} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j} b_{j} \frac{\partial}{\partial x_{j}}
$$

Proof. (i) Let $A(t)=\int_{0}^{t}\left\langle a^{-1} b, d X\right\rangle$. Then $A \in I\left[0,\left\langle b, a^{-1} b\right\rangle\right]$.
Therefore $Z(t)$ is a martingale relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$ hence $\left\{Q^{t}\right\}_{t \geq 0}$ is a consistent family.
(ii) Proof as in the case of Brownian motion.
(iii) We have to show that

$$
\exp \left[\langle\theta, X(t, \cdot)\rangle-\left\langle\theta, \int_{0}^{t} b d s\right\rangle-\frac{1}{2} \int_{0}^{t}\langle\theta, a \theta\rangle d s\right]
$$

is a martingale relative to $\left(\Omega, \mathscr{F}_{t}, Q\right)$.

Now for any function θ which is progressively measurable and bounded

$$
\exp \left[\int_{0}^{t}\langle\theta, d X\rangle-\frac{1}{2} \int_{0}^{t}\langle\theta, a \theta\rangle d s\right]
$$

230 is an $\left(\Omega, \mathscr{F}_{t}, P\right)$-martingale. Replace θ by $\theta(w)=\theta+\left(a^{-1} b\right)(\chi(s, w))$, where θ now is a constant vector. Then

$$
\exp \left[\int_{0}^{t}\left\langle\theta+a^{-1} b, d X\right\rangle-\frac{1}{2} \int_{0}^{t}\left\langle\theta+a^{-1} b, a \theta\right\rangle d s\right.
$$

is an $\left(\Omega, \mathscr{F}_{t}, P\right)$-martingale, i.e.

$$
\exp \left[\langle\theta, X(t)\rangle-\frac{1}{2} \int_{0}^{t}\langle\theta, a \theta\rangle d s-\frac{1}{2} \int_{0}^{t}\left\langle a^{-1} b, a \theta\right\rangle-\frac{1}{2} \int_{0}^{t}\langle\theta, b\rangle\right]
$$

is an $\left(\Omega, \mathscr{F}_{t}, Q\right)$-martingale, and

$$
\begin{aligned}
\left\langle a^{-1} b, a \theta\right\rangle & =\left\langle a^{*} a^{-1} b, \theta\right\rangle \\
& =\left\langle a a^{-1} b, \theta\right\rangle \quad\left(\text { since } a=a^{*}\right) \\
& =\langle b, \theta\rangle
\end{aligned}
$$

Thus

$$
\exp \left[\langle\theta, X(t)\rangle-\frac{1}{2} \int_{0}^{t}\langle\theta, a \theta\rangle d s-\int_{0}^{t}\langle\theta, b\rangle d s\right]
$$

is an $\left(\Omega, \mathscr{F}_{t}, Q\right)$-martingale, i.e. X is an Itô process relative to $\left(\Omega, \mathscr{F}_{t}, Q\right)$ with parameters $[b, a]$. This proves the theorem.

We now prove the converse part.
Theorem. Let

$$
L_{1}=\frac{1}{2} \sum i, j a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}
$$

and

$$
L_{2} \equiv \frac{1}{2} \sum_{i, j} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j} b_{j} \frac{\partial}{\partial x_{j}}
$$

where $a: \mathbb{R}^{d} \rightarrow S_{d}^{+}$is bounded measurable such that $a \geq C I$ for some $C>0 ; b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is bounded and measurable. Let $\Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right)$ with \mathscr{F}_{t} as usual. Let θ be a probability measure on $\sigma\left(\cup \mathscr{F}_{t}\right)$ and X a progressively measurable function such that X is an Itô process relative to (Ω, \mathscr{F}, Q) with parameters $[b, a]$ i.e. X corresponds to the operator L2. Let

$$
Z(t)=\exp \left[-\int_{0}^{t}\left\langle a^{-1} b, d X\right\rangle+\frac{1}{2} \int_{0}^{t}\left\langle b, a^{-1} b\right\rangle d s\right] .
$$

Then
(i) $Z(t)$ is an $\left(\Omega, \mathscr{F}_{t}, Q\right)$-martingale.
(ii) If P^{t} is defined on \mathscr{F}_{t} by

$$
\left.\frac{d P^{t}}{d Q}\right|_{\mathscr{F}_{t}}=Z(t)
$$

Then there exists a probability measure P on $\sigma\left(\cup \mathscr{F}_{t}\right)$ such that

$$
\left.P\right|_{\mathscr{F}_{t}}=P^{t}
$$

(iii) X is an Itô process relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$ corresponding to parameters $[0, a]$, i.e. X corresponds to the operator L_{1}.

Proof. (i) Let

$$
A(t)=\int_{0}^{t}\left\langle-a^{-1} b, d X\right\rangle
$$

Then $A(t)$ is an Itô process with parameters $\left[\left\langle-a^{-1} b, b\right\rangle,\left\langle a^{-1} b, b\right\rangle\right]$.

Thus

$$
\exp \left[A(t)-\int_{0}^{t}\left\langle-a^{-1} b, b\right\rangle d s-\frac{1}{2} \int_{0}^{t}\left\langle a^{-1} b, b\right\rangle d s\right]
$$

is an $\left(\Omega, \mathscr{F}_{t}, Q\right)$-martingale, i.e. $Z(t)$ is an $\left(\Omega, \mathscr{F}_{t}, Q\right)$ martingale.
(ii) By (i), P^{t} is a consistent family. The proof that there exists a 232 probability measure P is same as before.
Since X is an Itô process relative to Q with parameters b and a,

$$
\exp \left[\int_{0}^{t}\langle\theta, d X\rangle-\int_{0}^{t}\langle\theta, b\rangle d s-\frac{1}{2} \int_{0}^{t}\langle\theta, a \theta\rangle d s\right]
$$

is a martingale relative to Q for every bounded measurable θ. Replace θ by $\theta(w)=\theta-\left(a^{-1} b\right)(X(s, w))$ where θ now is a constant vector to get

$$
\begin{aligned}
\exp [\langle\theta, X(t)\rangle- & \int_{0}^{t}\left\langle a^{-1} b, d X\right\rangle-\int_{0}^{t}\langle\theta, b\rangle+\int_{0}^{t}\left\langle a^{-1} b, b\right\rangle d s- \\
& \left.-\frac{1}{2} \int_{0}^{t}\left\langle\theta-a^{-1} b, a \theta-b\right\rangle d s\right]
\end{aligned}
$$

is an $\left(\Omega, \mathscr{F}_{t}, Q\right)$ martingale, i.e.

$$
\begin{aligned}
& \exp \left[\langle\theta, X\rangle-\int_{0}^{t}\left\langle a^{-1} b, d X\right\rangle-\int_{0}^{t}\langle\theta, b\rangle d s+\int_{0}^{t}\left\langle a^{-1} b, b\right\rangle d s-\right. \\
&-\frac{1}{2} \int_{0}^{t}\langle\theta, a \theta\rangle d s-\frac{1}{2} \int_{0}^{t}\left\langle a^{-1} b, b\right\rangle d s+\frac{1}{2} \int_{0}^{t}\langle\theta, b\rangle d s+ \\
&\left.+\int_{0}^{t}\left\langle a^{-1} b, a \theta\right\rangle d s\right]
\end{aligned}
$$

is an $\left(\Omega, \mathscr{F}_{t}, Q\right)$ martingale. Let $\theta \in \mathbb{R}^{d}$, so that

$$
\exp \left[\langle\theta, X\rangle-\frac{1}{2} \int_{0}^{t}\langle\theta, b\rangle d s-\frac{1}{2} \int_{0}^{t}\langle\theta, a \theta\rangle d s+\frac{1}{2} \int_{0}^{t}\left\langle a^{-1} b, a \theta\right\rangle d s\right] Z(t)
$$

is an $\left(\Omega, \mathscr{F}_{t}, Q\right)$-matringale and

$$
\left\langle a^{-1} b, a\right\rangle=\langle b, \theta\rangle \quad\left(\text { since } a=a^{*}\right)
$$

Therefore

$$
\exp \left[\langle\theta, X\rangle-\frac{1}{2} \int_{0}^{t}\langle\theta, a \theta\rangle d s\right] Z(t)
$$

is an $\left(\Omega, \mathscr{F}_{t}, Q\right)$ martingale.
Using the fact that $\left.\frac{d P}{d Q}\right|_{\mathscr{F}_{t}}=Z(t)$, we conclude that

$$
\exp \left[\langle\theta, X\rangle-\frac{1}{2} \int_{0}^{t}\langle\theta, a \theta\rangle d s\right]
$$

is a martingale relative to $\left(\Omega, \mathscr{F}_{t}, P\right)$, i.e. $X \in I[0, a]$ relative to

$$
\left(\Omega, \mathscr{F}_{t}, P\right)
$$

This proves the theorem.
Summary. We have the following situation

$$
L_{1}, \Omega, \mathscr{F}_{t}, \Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right), L_{2}, \Omega, \mathscr{F}_{t}
$$

$\left.\begin{array}{l}P \text { a probability measure } \\ \text { such that } X \text { is an Itô Pro- } \\ \text { cess relative to } P \text { corre- } \\ \text { sponding to the operator } \\ L_{1} .\end{array}\right) \Longrightarrow\left(\begin{array}{l}X \text { is an Itô process relative } \\ \text { to a probability measure } Q \\ \text { corresponding to } L_{2} . Q \text { is } \\ \text { given by }\left.\frac{d Q}{d P}\right|_{\mathscr{F}_{t}}=Z(t, \cdot)\end{array}\right.$
$\left.\begin{array}{l}X \text { is an Itô process relative } \\ \text { to } P \text { corresponding to } L_{1} \\ \text { where }\left.\frac{d P}{d Q}\right|_{\mathscr{F}_{t}}=\frac{1}{Z(t, \cdot)}\end{array}\right) \Longleftarrow\left(\begin{array}{l}X \text { is an Itô process relative } \\ \text { to } Q \text { corresponding to } L_{2} .\end{array}\right.$

Thus existence and uniqueness for any system guarantees the existence and uniqueness for the other system.

Application. (Exercise).

Take $d=1, a: \mathbb{R} \rightarrow \mathbb{R}$ bounded and measurable with $0<C_{1} \leq$ $a<C_{2}<\infty$. Let $L=\frac{a}{2} \frac{\partial^{2}}{\partial x^{2}}+b \frac{\partial}{\partial x}$. Show that there exists a unique probability masure P on $\Omega=C([0, \infty) ; \mathbb{R})$ such that $X(t)$ is Itô relative to P corresponding to L. $(X(t, w) \equiv w(t))$ for any given starting point.

30. Behaviour of Diffusions for Large Times

LET $L_{2}=\Delta / 2+b \cdot \nabla$ WITH $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ measurable and bounded on each compact set. We assume that there is no explosion. If P_{x} is the d-dimensional Brownian measure on $\Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right)$ we know that there exists a probability measure Q_{x} on Ω such that

$$
\left.\frac{d Q_{x}}{d P_{x}}\right|_{t}=\exp \left[\int_{0}^{t}\langle b, d X\rangle-\frac{1}{2} \int_{0}^{t}|b|^{2} d s\right]
$$

Let K be any compact set in \mathbb{R}^{d} with non-empty interior. We are interested in finding out how often the trajectories visit K and whether this 'frequency' depends on the starting point of the trajectory and the compact set K.
Theorem. Let K be any compact set in \mathbb{R}^{d} having a non-empty interior. Let

$$
\begin{aligned}
E_{\infty}^{K}= & \{w: w \text { revisits } K \text { for arbitrarily large times }\} \\
= & \left\{w: \text { there exists a sequence } t_{1}<t_{2}<\cdot<\infty\right. \\
& \text { with } \left.t_{n} \rightarrow \infty \text { such that } w\left(t_{n}\right) \in K\right\}
\end{aligned}
$$

Then,
either $Q_{x}\left(E_{\infty}^{K}\right)=0, \forall x$, and $\forall K$,
or $\quad Q_{x}\left(E_{\infty}^{K}\right)=1, \forall x$, and $\forall K$.

Remark. 1. In the first case $\lim _{t \rightarrow+\infty}|X(t)|=+\infty$ a.e. $Q_{x}, \forall x$, i.e. almost all trajectories stay within K only for a short period.
These trajectories are called transient. In the second case almost all trajectories visit K for arbitrary large times. Such trajectories are called recurrent.
2. If $b=0$ then $Q_{x}=P_{x}$. For the case $d=1$ or $d=2$ we know that the trajectories are recurrent. If $d \geq 3$ the trajectories are transient.

Proof.
Step 1. We introduce the following sets.

$$
\begin{aligned}
& E_{0}^{K}=\{w: X(t, w) \in K \text { for some } t \geq 0\}, \\
& E_{t_{0}}^{K}=\left\{w: X(t, w) \in K \text { for some } t \geq t_{0}\right\}, 0 \leq t_{0}<\infty .
\end{aligned}
$$

Then clearly

$$
E_{\infty}^{K}=\bigcap_{n=1}^{\infty} E_{n}^{K}=\bigcap_{t_{0} \geq 0} E_{t_{0}}^{K}
$$

Let

$$
\begin{aligned}
\psi(x) & =Q_{x}\left(E_{\infty}^{K}\right), F=\chi_{E_{\infty}^{K}} . \\
E^{Q_{x}}\left(F \mid \mathscr{F}_{t}\right) & =E^{Q_{x}}\left(\chi_{E_{\infty}^{K}} \mid \mathscr{F}_{t}\right)=Q_{X(t)}\left(E_{\infty}^{K}\right)
\end{aligned}
$$

by the Markov property,

$$
=\psi(X(t)) \text { a.e. } Q_{x}
$$

Next we show that $\psi(X(t))$ is a martingale relative to Q_{x}. For, if $s<t$,

$$
\begin{aligned}
& E^{Q_{x}}\left(\psi(X(t)) \mid \mathscr{F}_{s}\right) \\
& =E^{Q_{x}}\left(E^{Q_{x}}\left(F \mid \mathscr{F}_{t}\right) \mid \mathscr{F}_{s}\right) \\
& =E^{Q_{x}}\left(F \mid \mathscr{F}_{s}\right) \\
& =\psi(X(s)) .
\end{aligned}
$$

Equating the expectations at time $t=0$ and time t one gets

$$
\begin{aligned}
\psi(x) & =\int_{\Omega} \psi(X(t)) d Q_{x} \\
& =\int \psi(y) q(t, x, y) d y
\end{aligned}
$$

where $q(t, x, A)=Q_{x}\left(X_{t} \in A\right), \forall A$ Borel in \mathbb{R}^{d}.
We assume for the present that $\psi(x)$ is continuous (This will be shown in Lemma 4 in the next section). By definition $0 \leq \psi \leq 1$.

Step 2. $\psi(x)=1, \forall x$ or $\psi(x)=0, \forall x$.
Suppose that $\psi\left(x_{0}\right)=0$ for some x_{0}. Then

$$
0=\psi\left(x_{0}\right)=\int \psi(y) q\left(t, x_{0}, y\right) d y
$$

As $q>0$ a.e. and $\psi \geq 0$ we conclude that $\psi(y)=0$ a.e. (with respect to Lebesgue measure). Since ψ is continuous ψ must vanish identically.

If $\psi\left(x_{0}\right)=1$ for some x_{0}, we apply the above argument to $1-\psi$ to conclude that $\psi=1, \forall x$. We now show that the third possibility $0<\psi(x)<1$ can never occur.

Since K is compact and ψ is continuous,

$$
0<a=\inf _{y \in K} \psi(y) \leq \sup _{y \in K} \psi(y)=b<1 .
$$

From an Exercise in the section on martingales it follows that

$$
\psi(X(t)) \rightarrow \chi_{E_{\infty}^{K}} \quad \text { a.e. } \quad Q_{x} \quad \text { as } \quad t \rightarrow+\infty .
$$

Therefore $\lim _{t \rightarrow \infty} \psi(X(t))(1-\psi(X(t)))=0$ a.e. Q_{x}. Now

$$
\begin{aligned}
\psi\left(x_{0}\right)=Q_{x_{0}}\left(E_{\infty}^{K}\right) & =Q_{x_{0}}\{w: w(t) \in K \text { for arbitrary large time }\} \\
& \leq Q_{x_{0}}\{w: a \leq \psi(X(t, w)) \leq b \text { for arbitrarily large times }\} \\
& \leq Q_{x_{0}}\{w:(1-b) a \leq \psi(X(t))[1-\psi(X(t)] \leq b(1-a)
\end{aligned}
$$

$$
\text { for arbitrarily large times\} }
$$

$$
=0
$$

Thus $\psi(x)=0$ identically, which is a contradiction. Thus for the given compact set K,

$$
\begin{array}{ll}
\text { either } & Q_{x}\left(E_{\infty}^{K}\right)=0, \forall x \\
\text { or } & Q_{x}\left(E_{\infty}^{K}\right)=1, \forall x
\end{array}
$$

Step 3. If $Q_{x}\left(E_{\infty}^{K_{0}}\right)=1$ for some compact set $K_{0}\left(\stackrel{\circ}{K}_{0} \neq \emptyset\right)$ and $\forall x$, then $Q_{x}\left(E_{\infty}^{K}\right)=1, \forall$ compact set K with non-empty interior.

We first given an intuitive argument. Suppose $Q_{x}\left(E_{\infty}^{K_{0}}\right)=1$, i.e. almost all trajectories visit K_{0} for arbitrarily large times. Each time a trajectory hits K_{0}, it has some chance of hitting K. Since the trajectory visits K_{0} for arbitrarily large times it will visit K for arbitrarily large times. We now give a precise arguent. Let

$$
\begin{aligned}
& \tau_{0}=\inf \left\{t: X(t) \in K_{0}\right\} \\
& \tau_{1}=\inf \left\{t \geq t_{0}+1 \quad X(t) \in K_{0}\right\} \\
& \ldots \quad \ldots \quad \cdots \quad \ldots \\
& \tau_{n}=\inf \left\{t \geq t_{n-1}+1: X(t) \in K_{0}\right\} \\
& \cdots \quad \cdots \quad \cdots \quad \cdots
\end{aligned}
$$

Clearly $\tau_{0}<\tau_{1}<\ldots<$ and $\tau_{n} \geq n$.

$$
\begin{aligned}
Q_{x}\left(E_{n}^{K}\right) & \geq Q_{x}\left\{X(t) \in K \text { for } t \geq \tau_{n}\right\} \\
& \geq Q_{x}\left\{X(t) \in K \text { for } t \in \bigcup_{j=n}^{\infty}\left[\tau_{j}, \tau_{j}+1\right]\right\} \\
& =1-Q_{x}\left\{\bigcap_{j \geq n} X(t) \notin K \text { for } t \in\left[\tau_{j}, \tau_{j}+1\right]\right\} \\
& \geq 1-Q_{x}\left\{\bigcap_{j \geq n} X\left(\tau_{j}+1\right) \in K\right\}
\end{aligned}
$$

We claim that

$$
Q_{x}\left(\bigcap_{j \geq n} X\left(\tau_{j}+1\right) \notin K\right)=0,
$$

so that $Q_{x}\left(E_{n}^{K}\right)=1$ for every n and hence $Q_{x}\left(E_{\infty}^{K}\right)=1$, completing the proof of the theorem.

Now

$$
q(1, x, K) \geq q(1, x, \stackrel{\circ}{K})>0, \quad \forall x, \stackrel{\circ}{K} \quad \text { interior of } \quad K .
$$

It is clear that if $x_{n} \rightarrow x$, then

$$
\underline{\lim } q\left(1, x_{n}, \stackrel{\circ}{K}\right) \geq q(1, x, \stackrel{\circ}{K})
$$

Let $d=\inf _{x \in K_{0}} q(1, x, \stackrel{\circ}{K})$. Then there exists a sequence x_{n} in K_{0} such that $d=\operatorname{Lt}_{n \rightarrow \infty} q\left(1, x_{n}, K\right) . K_{0}$ being compact, there exists a subsequence y_{n} of x_{n} with $y_{n} \rightarrow x$ in K_{0}, so that

$$
d=\lim _{n \rightarrow \infty} q(1, x, \stackrel{\circ}{K})=\underline{\lim } q\left(1, y_{n}, \stackrel{\circ}{K}\right) \geq q(1, x, \stackrel{\circ}{K})>0 .
$$

Thus

$$
\inf _{x \in K_{0}} q(1, x, K) \geq d>0 .
$$

Now

$$
\begin{aligned}
& Q_{x}\left(\prod_{j=n}^{N} X\left(\tau_{j}+1\right) \notin K \mid \mathscr{F}_{\tau_{N}}\right) \\
& =\prod_{j=n}^{N-1} \chi\left(X\left(\tau_{j}+1\right) \notin K\right) Q_{x}\left(X\left(\tau_{N}+1\right) \in K \mid \mathscr{F}_{\tau_{N}}\right) \quad \text { because } \\
& \tau_{j}+1 \leq \tau_{N} \quad \text { for } \quad j<N, \\
& =\prod_{j=n}^{N-1}\left(\chi_{X\left(\tau_{j}+1\right)} \notin K\right) Q_{X\left(\tau_{N}\right)}(X(1) \notin K) \quad \text { by the strong }
\end{aligned}
$$

Markov property,

$$
=\prod_{j=1}^{N-1} q\left(1, X\left(\tau_{N}\right), K^{c}\right) \chi_{\left(X\left(\tau_{j}+1\right) \notin K\right)} .
$$

Therefore

$$
\begin{aligned}
& Q_{x}\left(\bigcap_{j=n}^{N} X\left(\tau_{j}+1\right) \notin K\right) \\
& \left.=E^{Q_{x}}\left(Q_{x}\left(\left.\bigcap_{j=n}^{N} X\left(\tau_{j}+1\right) \notin K\right|_{\tau_{N}}\right)\right)\right) \\
& =E^{Q_{x}}\left(\prod_{j=n}^{N-1}\left(\chi_{\left[X\left(\tau_{j}+1\right) \notin K\right]}\right) q\left(1, X\left(\tau_{N}\right), K^{c}\right)\right)
\end{aligned}
$$

Since K_{0} is compact and $X\left(\tau_{N}\right) \in K_{0}$,

$$
q\left(1, X\left(\tau_{N}\right), K^{c}\right)=1-q\left(1, X\left(\tau_{N}\right), K\right) \leq 1-d
$$

Hence

$$
Q_{x}\left(\bigcap_{j=n}^{N} X\left(\tau_{j}+1\right) \notin K\right) \leq(1-d) Q_{x}\left(\bigcap_{j=n}^{N-1} X\left(\tau_{j}+1\right) \notin K\right)
$$

Iterating, we get

$$
Q_{x}\left(\bigcap_{j=n}^{N} X\left(\tau_{j}+1\right) \notin K\right) \leq(1-d)^{N-n+1}, \forall N .
$$

$241 \quad$ Let $N \rightarrow \infty$ to get

$$
Q_{x}\left(\bigcap_{j=n} X\left(\tau_{j}+1\right) \notin K\right)=0,
$$

since $0 \leq 1-d<1$. Thus the claim is proved and so is the theorem.

Corollary . Let K be compact, $\stackrel{\circ}{K} \neq \emptyset$. Then $Q_{x}\left(E_{\infty}^{K}\right)=1$ if and only if $Q_{x}\left(E_{0}^{K}\right)=1, \forall x$.

Proof. Suppose $Q_{x}\left(E_{\infty}^{K}\right)=1$; then $Q_{x}\left(E_{0}^{K}\right)=1$ because $E_{\infty}^{K} E_{0}^{K}$. Suppose $Q_{x}\left(E_{0}^{K}\right)=1$, then

$$
\begin{aligned}
Q_{x}\left(E_{n}^{K}\right) & =E^{Q_{x}}\left(E^{Q_{x}}\left(\chi_{E_{n}^{K}} \mid \mathscr{F}_{n}\right)\right) \\
& =E^{Q_{x}}\left(Q_{X(n)}\left(E_{0}^{K}\right)\right) \\
& =E^{Q_{x}}(1) \\
& =1, \forall n .
\end{aligned}
$$

Therefore $Q_{x}\left(E_{\infty}^{K}\right)=1$.
Remark. If $Q_{x}\left(E_{\infty}^{K}\right)=0$ then it need not imply that

$$
Q_{x}\left(E_{0}^{K}\right)=0
$$

Example. Take $b=0$ and $d=3$. LEt $K=S_{1}=\left\{x \in \mathbb{R}^{3}\right.$ such that $|x| \leq 1\}$. Define

$$
\psi(n)=\left\{\begin{array}{lll}
1, & \text { for } & |x| \leq 1 \\
\frac{1}{|x|}, & \text { for } & |x| \geq 1
\end{array}\right.
$$

$P_{x}\left(E_{0}^{K}\right) \neq$ constant but $P_{x}\left(E_{\infty}^{K}\right)=0$. In fact, $P_{x}\left(E_{0}^{K}\right)=\psi(x)$ (Refer Dirichlet Problem).

31. Invariant Probability Distributions

Definition. Let $\left\{P_{x}\right\}_{x \in \mathbb{R}^{d}}$ be a family of Markov process on

$$
\Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right)
$$

indexed by the starting points x, with homogeneous transition probability $p(t, x, A)=P_{x}\left(X_{t} \in A\right)$ for every Borel set A in \mathbb{R}^{d}. A probability measure μ on the Borel field of \mathbb{R}^{d} is called an invariant distribution if, $\forall A$ Borel in \mathbb{R}^{d}.

$$
\int_{\mathbb{R}^{d}} p(t, x, A) d \mu(x)=\mu(A)
$$

We shall denote $d p(t, x, y)$ by $p(t, x, d y)$ or $p(t, x, y) d y$ if it has a density.

Proposition. Let $L_{2}=\Delta / 2+b \cdot \nabla$ with no explosion. Let Q_{x} be the associated measure. If $\left\{Q_{x}\right\}$ has an invariant measure μ then the process is recurrent.

Proof. It is enough to show that if K is a compact set with non-empty interior then

$$
Q_{x}\left(E_{\infty}^{K}\right)=1
$$

for some x. Also $Q_{x}\left(E_{t}^{K}\right) \geq Q_{x}\left(X_{t} \in K\right)=q(t, x, K)$. Therefore

$$
\mu(K)=\int q(t, x, K) d \mu(x) \leq \int Q_{x}\left(E_{t}^{K}\right) d \mu(x)
$$

Now, $0 \leq Q_{x}\left(E_{t}^{K}\right) \leq 1$ and $Q_{x}\left(E_{t}^{K}\right)$ decreases to $Q_{x}\left(E_{\infty}^{K}\right)$ as $t \rightarrow \infty$. Therefore by the dominated convergence theorem

$$
\mu(K) \leq \int Q_{x}\left(E_{\infty}^{K}\right) d \mu(x)
$$

If the process were transient, then $Q_{x}\left(E_{\infty}^{S_{n}}\right)=0, \forall n$, where $S_{n}=$ $\left\{x \in \mathbb{R}^{d}:|x| \leq n\right\}$, i.e. $\mu\left(S_{n}\right)=0, \forall n$. Therefore $\mu\left(\mathbb{R}^{d}\right)=0$, which is false. Thus the process is recurrent.

The converse of this proposition is not true as is seen by the following example.

Let $L=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}$ so that we are in a one-dimensional situation (Brownian motion). Then

$$
p(t, x, K)=\int_{K} \frac{1}{\sqrt{ }(2 \pi t)} e^{\frac{-(x-y)^{2}}{2 t}} d y \leq \frac{1}{\sqrt{ }(2 \pi t)} \lambda(K),
$$

where λ denotes the Lebesgue measure on \mathbb{R}. If there exists an invariant distribution μ, then

$$
\mu(K)=\int p(t, x, K) d \mu(x) \leq \frac{1}{\sqrt{ }(2 \pi t)} \lambda(K) \int d \mu(x)=\frac{\lambda(K)}{\sqrt{(2 \pi t)}}
$$

Letting $t \rightarrow \infty$, we get $\mu(K)=0 \forall$ compact K, giving $\mu=0$, which is false.

Theorem. Let $L=\Delta / 2+b \cdot \nabla$ with no explosion. Assume b to be C^{∞}. Define the formal adjoint L^{*} of L by $L^{*}=\Delta / 2-\nabla \cdot b$ (i.e. $L^{*} u=$ $\left.\frac{1}{2} \Delta u-\nabla \cdot(b u)\right)$. Suppose there exists a smooth function $\phi\left(C^{2}-\right.$ would do) such that $L^{*} \phi=0, \phi \geq 0, \inf \phi d x=1$. If one defines μ by the rule $\mu(A)=\int_{A} \phi(y) d y$, then μ is an invariant distribution relative to the family $\left\{Q_{x}\right\}$.

244 Proof. We assume the following result from the theory of partial differential equations.

If $f \in C_{0}^{\infty}(G)$ where G is a bounded open set with a smooth boundary ∂G and $f \geq 0$, then there exists a smooth function $U_{G}:[0, \infty) \times \bar{G} \rightarrow$ $[0, \infty)$ such that

$$
\begin{aligned}
& \frac{\partial U_{G}}{\partial t}=L U_{G} \quad \text { on } \quad(0, \infty) \times G \\
& U_{G}(0, x)=f(x) \quad \text { on } \quad\{0\} \times \bar{G} \\
& U_{G}(t, x)=0, \quad \forall x \in G
\end{aligned}
$$

Let $t>0$. As U_{G}, ϕ are smooth and G is bounded, we have

$$
\frac{\partial}{\partial t} \int_{G} U_{G}(t, x) \phi(x) d x=\int_{G} \frac{\partial}{\partial t} U_{G} \phi d s=\int_{G} \phi L U_{G} d x
$$

Using Green's formula this can be written as

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{G} U_{G}(t, x) \phi(x) d x= & \int_{G} U_{G} L^{*} \phi-\frac{1}{2} \int_{\partial G}\left[\phi \frac{\partial U_{G}}{\partial n}-U_{G} \frac{\partial}{\partial n}\right] d S+ \\
& +\int_{\partial G}\langle b \cdot n\rangle U_{G}(t, x) \phi(x) d S
\end{aligned}
$$

Here n is assumed to be the inward normal to ∂G. So,

$$
\frac{\partial}{\partial t} \int_{G} U_{G}(t, x) \phi(x) d x=-\frac{1}{2} \int_{\partial G}(x) \frac{\partial U_{G}}{\partial n}(t, x) d S
$$

(Use the equation satisfied by ϕ and the conditions on U_{G}). Now $U_{G}(t, x)$ $\geq 0, \forall x \in G, U_{G}(t, x)=0, \forall x$ in ∂G, so that

$$
\frac{\partial U_{G}}{\partial n}(t, x) \geq 0
$$

This means that

$$
\frac{\partial}{\partial t} \int_{G} U_{G}(t, x) \phi(x) d x \leq 0, \forall t>0
$$

i.e. $\int_{G} U_{G}(t, x) \phi(x) d x$ is a monotonically decresing function of t. Therefore

$$
\begin{aligned}
\int_{G} U_{G}(t, x) \phi(x) d x & \leq \int_{G} U_{G}(0, x) \phi(x) d x \\
& =\int_{G} f(x) \phi(x) d x \\
& =\int_{\mathbb{R}^{d}} f(x) \phi(x) d x
\end{aligned}
$$

Next we prove that if $U:[0, \infty) \times \mathbb{R}^{d} \rightarrow[0, \infty)$ is such that $\frac{\partial U}{\partial t}=L U$, $\forall t>0$ and $U(0, x)=f(x)$, then

$$
\int_{\mathbb{R}^{d}} U(t, x) \phi(x) d x \leq \int_{\mathbb{R}^{d}} f(x) \phi(x) d x
$$

The solution $U_{G}(t, x)$ can be obtained by using Itô calculus and is given by

$$
U_{G}(t, x)=\int f(X(t)) \chi_{\left\{\tau_{G>t}\right\}} d Q_{x}
$$

We already know that

$$
U(t, x)=\int f(X(t)) d Q_{x}
$$

Therefore

$$
\int U(t, x) \phi(x) d x=\iint f(X(t)) \phi(x) D Q_{x} d x
$$

Now

$$
\begin{aligned}
& \iint f(X(t)) \chi_{\left\{\tau_{G}>t\right\}} d Q_{x} \phi(x) d x \\
& \quad \int U_{G}(t, x) \phi(x) d x \leq \int_{\mathbb{R}^{d}} f(x) \phi(x) d x
\end{aligned}
$$

Letting G increase to \mathbb{R}^{d} and using Fatou's lemma, we get

$$
\iint f(X(t)) \phi(x) d Q_{x} d x \leq \int f(x) \phi(x) d x
$$

This proves the assertion made above.
Let

$$
\begin{gathered}
\mu(A)=\int_{A} \phi(X) d x, \\
v(A)=\int Q_{x}\left(X_{t} \in A\right) d \mu(x)=\int q(t, x, A) d \mu(x) .
\end{gathered}
$$

Let $f \in C_{0}^{\infty}(G), f \geq 0$, where G is a bounded open set with smooth boundary. Now

$$
\begin{aligned}
\int f(y) d v(y) & =\iint f(y) q(t, x, y) d \mu(x) d y \\
& =\iint f(X(t)) d Q_{x} d \mu(x) \\
& =\int U(t, x) d \mu(x) \\
& =\int U(t, x) \phi(x) d x \\
& \leq \int f(x) \phi(x) d x=\int f(x) d \mu(x) .
\end{aligned}
$$

Thus, $\forall f \geq 0$ such that $f \in C_{0}^{\infty}$,

$$
\int f(x) d v(x) \leq \int f(x) d \mu(x) .
$$

This implies that $v(A) \leq \mu(A)$ for every Borel set A. (Use mollifier for χ_{A} when A is bounded). Therefore $v\left(A^{c}\right) \leq \mu\left(A^{c}\right)$, or $1-\mu(A) \leq 1-$
$\mu(A)$, since μ, v are both probability measures. This gives $\mu(A)=v(A)$, i.e.

$$
\mu(A)=\int q(t, x, A) d \mu(x), \quad \forall t
$$

i.e. μ is an invariant distribution.

We now see whether the converse result is true or not. Suppose there exists a probability measure μ on \mathbb{R}^{d} such that

$$
\int Q_{x}\left(X_{t} \in A\right) d \mu(x)=\mu(A), \quad \forall A \text { Borel in } \mathbb{R}^{d} \text { and } \forall t
$$

The question we have in mind is whether $\mu(A)=\int_{A} \phi d x$ for some smooth ϕ satisfying $L^{*} \phi=0, \phi \geq 0, \int \phi(x) d x=1$. To answer this we proceed as follows.

By definition $\mu(A)=\int q(t, x, A) d \mu(x)$. Therefore

$$
\begin{gather*}
\iint f(X(t)) d Q_{x} d \mu(x) \\
=\iint f(y) q(t, x, y) d y d \mu(x) \\
=\int f(y) d \mu(y) \forall f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)\|f\|_{\infty} \leq 1 . \tag{1}
\end{gather*}
$$

Since X is an Itô process relative to Q_{x} with parameters b and I,

$$
f(X(t))-\int_{0}^{t}(L f)(X(s)) d s
$$

248 is a martingale. Equating the expectations at time $t=0$ and time t we obtain

$$
E^{Q_{x}}\left(f(X(t))=f(x)+E^{Q_{x}}\left(\int_{0}^{t}(L f)(X(s)) d s\right)\right.
$$

Integrating this expression with respect to μ gives

$$
\iint f(X(t)) d Q_{x} d \mu(x)=\int f(x) d \mu(x) \iint_{\mathbb{R}^{d}} \int_{0}^{t}(L f)(X(s)) d s d Q_{x} d \mu
$$

Using (1), we get

$$
0=\int_{\mathbb{R}^{d}} \int_{\Omega} \int_{0}^{t}(L f)(X(s)) d Q_{x} d s d \mu(x)
$$

Applying equation (1) to the function $L f$ we then get

$$
\begin{aligned}
0 & =\int_{\mathbb{R}^{d}} \int_{0}^{t}(L f)(y) d \mu(y) d s \\
& =t \int_{\mathbb{R}^{d}}(L f)(y) d \mu(y), \quad \forall t>0
\end{aligned}
$$

Thus

$$
0=\int_{\mathbb{R}^{d}}(L f)(y) d \mu(y), \quad \forall f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)
$$

In the language of distributions this just means that $L^{*} \mu=0$.
From the theory of partial differential equations it then follows that there exists a smooth function ϕ such that $\forall A$ Borel in \mathbb{R}^{d},

$$
\mu(A)=\int_{A} \phi(y) d y
$$

with $L^{*} \phi=0$. As $\mu \geq 0, \phi \geq 0$ and since

$$
\mu\left(\mathbb{R}^{d}\right)=1, \quad \int_{\mathbb{R}^{d}} \phi(x) d x=1
$$

We have thus proved the following (converse of the previous) theorem.

Theorem. Let μ be an invariant distribution with respect to the family $\left\{Q_{x}\right\}$ with $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ being C^{∞}. Then there exists $a \phi \in L^{\prime}\left(\mathbb{R}^{d}\right), \phi \geq 0$, ϕ smooth such that

$$
L^{*} \phi=0, \quad \int \phi(y) d y=1
$$

and such that

$$
\mu(A)=\int_{A} \phi(y) d y, \quad \forall A \quad \text { Borel in } \quad \mathbb{R}^{d}
$$

Theorem (Uniqueness). Let ϕ_{1}, ϕ_{2} be smooth on \mathbb{R}^{d} such that

$$
\phi_{1}, \phi_{2} \geq 0,1=\int_{\mathbb{R}^{d}} \phi_{1} d y=\int_{\mathbb{R}^{d}} \phi_{2} d y, L^{*} \phi_{1}=0=L^{*} \phi_{2}
$$

Then $\phi_{1}=\phi_{2}$.
Proof. Let $f(x)=\phi_{1}(x)-\phi_{2}(x)$,

$$
\mu_{i}(A)=\int_{A} \phi_{i}(x) d x, \quad i=1,2
$$

Then μ_{1}, and μ_{2} are invariant distributions. Therefore

$$
\begin{aligned}
\int q(t, x, y) \phi_{i}(x) d x & =\int q(t, x, y) d \mu_{i}(x) \\
& =\phi_{i}(y), \quad(\text { a.e. }), \quad i=1,2
\end{aligned}
$$

Taking the difference we obtain

$$
\int q(t, x, y) f(x) d x=f(y), \quad \text { a.e. }
$$

Now

$$
\begin{aligned}
\int \mid f(y) d y & =\int\left|\int q(t, x, y) f(x) d x\right| d y \\
& \leq \iint q(t, x, y)|f(x)| d x d y \\
& =\int|f(x)| d x \int q(t, x, y) d y \\
& =\int|f(\underline{x})| d x
\end{aligned}
$$

Thus
(*) $\iint|f(x)| q(t, x, y) d x d y=\int\left|\int q(t, x, y) f(x) d x\right| d y \forall t$.
We show that f does not change sign, i.e. $f \geq 0$ a.e. or $f \leq 0$ a.e.
The result then follows from the fact that $\int f(x) d x=0$. Now

$$
\left|\int q(1, x, y) f(x) d x\right| \leq \int q(1, x, y)|f(x)| d x
$$

and (*) above gives

$$
\int\left|\int q(1, x, y) f(x) d x\right| d y=\iint q(1, x, y)|f(x)| d x d y
$$

Thus

$$
\left|\int q(1, x, y) f(x) d x\right|=\int q(1, x, y)|f(x)| d x \text { a.e. } y
$$

i.e.

$$
\begin{aligned}
& \left|\int_{E^{-}} q(1, x, y) f(x) d x+\int_{E^{-}} q(1, x, y) f(x) d x\right| \\
& \quad=\int_{E^{+}} q(1, x, y) f(x) d x-\int_{E^{-}} q(1, x, y) f(x) d x \text { a.e. } y
\end{aligned}
$$

where

$$
E^{+}=\{x: f(x)>0\}, \quad E^{-}=\{x: f(x)<0\}, \quad E^{0}=\{x: f(x)=0\} .
$$

Squaring both sides of the above equality, we obtain
$\left({ }^{* *}\right) \quad\left(\int_{E^{+}} q(1, x, y) f(x) d x\right)\left(\int_{E^{-}} q(1, x, y) f(x) d x\right)=0, \quad$ a.e. $\quad y$.

Let A be a set of positive Lebesgue measure; then $p(1, x, A)=$ $P_{x}(X(1) \in A)>0$. Since Q_{x} is equivalent to P_{x} on Ω we have $Q_{x}(X(1) \in$ $A)=q(1, x, A)>0$. Therefore $q(1, x, y)>0$ a.e. y for each x. By Fubini's theorem $q(1, x, y)>0$ a.e. x, y. Therefore for almost all y, $q(1, x, y)>0$ for almost all x. Now pick a y such that $(* *)$ holds for which $q(1, x, y)>0$ a.e. x.

We therefore conclude from $(* *)$ that either

$$
\int_{E^{+}} q(1, x, y) f(x) d x=0, \quad \text { in which case } \quad f \leq 0 \quad \text { a.e., }
$$

or

$$
\int_{E^{-}} q(1, x, y) f(x) d x=0, \quad \text { in which case } \quad f \geq 0 \quad \text { a.e. }
$$

Thus f does not change its sign, which completes the proof.

Remark. The only property of the operator L we used was to conclude $q>0$. We may therefore expect a similar result for more general operators.

Theorem. Let $L^{*} \phi=0$ where $\phi \geq 0$ is smooth and $\int \phi(x) d x=1$. Let K be any compact set. Then

$$
\sup _{x \in K} \int|q(t, x, y)-\phi(y)| d y \rightarrow 0 \quad \text { as } \quad t \rightarrow+\infty
$$

Lemma 1. Let b be bounded and smooth. For every $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ that is bounded and measurable let $u(t, x)=E^{Q_{x}}(f(X(t))$. Then for every fixed $t, u(t, x)$ is a continuous function of x. Further, for $t \geq \epsilon>0$,

$$
\begin{gathered}
\left|u(t, x)-\int u(t-\epsilon, y) \frac{1}{\sqrt{ }(2 \pi \epsilon)^{d}} \exp -\frac{|x-y|^{2}}{2 \epsilon} d y\right| \\
\leq\|f\|_{\infty} \sqrt{ }\left(e^{c t}\left(e^{c \epsilon}-1\right)\right)
\end{gathered}
$$

where c is a constant depending only on $\|b\|_{\infty}$.

Proof. Let

$$
\begin{align*}
\left(T_{t} f\right)(x)= & E^{Q_{x}}\left(f(X(t))=E^{P_{x}}(f(X(t)) Z(\epsilon, t))+\right. \\
& +E^{P_{x}}(f(X(t))(Z(t)-Z(\epsilon, t))) \tag{1}
\end{align*}
$$

where

$$
\begin{gathered}
Z(t)=\exp \left[\int_{0}^{t}\left\langle b^{2}, d x\right\rangle-\frac{1}{2} \int_{0}^{t}|b|^{2} d s\right], \\
Z(\epsilon, t)=\exp \left[\int_{\epsilon}^{t}\langle b, d x\rangle-\frac{1}{2} \int_{\epsilon}^{t}|b(X(s))|^{2} d s\right] . \\
\begin{aligned}
E^{P_{x}}(f(X(t)) Z(\epsilon, t)) & =E^{P_{x}}\left(E^{P_{X}}\left(\left.f(X(t)) Z(\epsilon, t)\right|_{\epsilon}\right)\right) \\
& \left.=E^{P_{x}}\left(E^{P_{X}} \epsilon\right)(f(X(t-\epsilon)) Z(t-\epsilon))\right) \\
& (\text { by Markov property }), \\
& =E^{P_{x}}(u(t-\epsilon, X(\epsilon)) .
\end{aligned}
\end{gathered}
$$

(2)

$$
=\int u(t-\epsilon, y) \frac{1}{(\sqrt{ }(2 \pi \epsilon))^{d}} \exp \left[-\frac{|(x-y)|^{2}}{2 \epsilon}\right] d y
$$

Now

$$
\begin{aligned}
& \left(E^{P_{x}}(|Z(t)-Z(\epsilon, t)|)\right)= \\
& \left.\quad=E^{P_{x}}(|Z(\epsilon) Z(\epsilon, t)-Z(\epsilon, t)|)\right)^{2} \\
& \left.\quad=E^{P_{x}}(Z(\epsilon, t) Z(\epsilon)-1 \mid)\right)^{2} \\
& \quad \leq\left(E^{P_{x}}\left((Z(\epsilon)-1)^{2}\right)\right)\left(E^{P_{x}}\left(Z^{2}(\epsilon, t)\right)\right) \\
& \quad \quad \quad(\text { by Cauchy Schwarz inequality }), \\
& \leq
\end{aligned} \quad E^{P_{x}}\left(Z^{2}(\epsilon)-2 Z(\epsilon)+1\right) E^{P_{x}}\left(Z^{2}(\epsilon, t)\right) .
$$

$$
\leq E^{P_{x}}\left(Z^{2}(\epsilon)-1\right) e^{c t}
$$

253 using Cauchy Schwarz inequality and the fact that

$$
E^{P_{x}}\left(\exp \left(2 \int_{\epsilon}^{t}\langle b, d X\rangle-\frac{2^{2}}{2} \int_{\epsilon}^{t}|b|^{2} d s\right)\right)=1
$$

Thus

$$
E^{P_{x}}\left(\|Z(t)-Z(\epsilon, t)\|^{2} \leq\left(e^{c \epsilon}-1\right) e^{c t}\right.
$$

where c depends only on $\|b\|_{\infty}$. Hence

$$
\begin{align*}
& \mid E^{P_{x}}\left(f(X(t))(Z(t)-Z(\epsilon, t)) \mid \leq\|f\|_{\infty} E^{P_{x}}(|Z(t)-Z(\epsilon, t)|)\right. \\
& \quad \leq\|f\|_{\infty} \sqrt{ }\left(\left(e^{c \epsilon}-1\right) e^{c t}\right) . \tag{3}
\end{align*}
$$

Substituting (2) and (3) in (1) we get

$$
\begin{gathered}
\left\lvert\, u(t, x)-\int u(t-\epsilon y) \cdot \frac{1}{\left(\sqrt{ }(2 \pi \epsilon)^{d}\right)} \exp \left[\frac{-|x-y|^{2}}{2 \epsilon}\right] d y\right. \\
\leq\|f\|_{\infty} \sqrt{ }\left(\left(e^{\epsilon \epsilon}-1\right) e^{c t}\right)
\end{gathered}
$$

Note that the right hand side is independent of x and as $\epsilon \rightarrow 0$ the right hand side converges to 0 . Thus to show that $u(t, x)$ is a continuous function of x (t fixed), it is enough to show that

$$
\int u(t-\epsilon, y) \frac{1}{\left(\sqrt{ }(2 \pi \epsilon)^{d}\right.} \exp \left[\frac{-|x-y|^{2}}{2 \epsilon}\right] d y
$$

254 is a continuous function of x; but this is clear since u is bounded. Thus for any fixed $t u(t, x)$ is continuous.
Lemma 2. For any compact set $K \subset R^{d}$, for r large enough so that

$$
K \subset\{x:|x|<r\}, \quad x \rightarrow Q_{x}\left(\tau_{r} \leq t\right)
$$

is continuous on K for each $t \geq 0$, where

$$
\tau_{r}(w)=\inf \{s:|w(s)| \geq r\}
$$

Proof. $Q_{x}\left(\tau_{r} \leq t\right)$ depends only on the coefficient $b(x)$ on $|x| \leq r$. So modifying, if necessary, outside $|x| \leq r$, we can very well assume that $|b(x)| \leq M$ for all x. Let

$$
\begin{aligned}
\tau_{r}^{\epsilon}= & \inf \{s: s \geq \epsilon,|w(s)| \geq r\} \\
& Q_{x}\left(\tau_{r}^{\epsilon} \leq t\right)=E^{Q_{x}}(u(X(\epsilon)))
\end{aligned}
$$

where

$$
u(x)=Q_{x}\left(\tau_{r} \leq t-\epsilon\right)
$$

As b and u are bounded, for every fixed $\epsilon>0$, by Lemma $1 Q_{x}\left(\tau_{r} \leq\right.$ t) is a continuous function of x. As

$$
\left|Q_{x}\left(\tau_{r}^{\epsilon} \leq t\right)-Q_{x}\left(\tau_{r} \leq t\right)\right| \leq Q_{x}\left(\tau_{r} \leq \epsilon\right)
$$

to prove the lemma we have only to show that

$$
\operatorname{limit}_{\epsilon \rightarrow 0} \sup _{x \in K} Q_{x}\left(\tau_{r} \leq \epsilon\right)=0
$$

Now

$$
\begin{aligned}
& Q_{x}\left(\tau_{r} \leq \epsilon\right)=\int_{\left\{\tau_{r} \leq \epsilon\right\}} Z() d P_{x} \\
& \leq\left(\int(Z(\epsilon))^{2} d P_{x}\right)^{1 / 2} \cdot \sqrt{ } P_{x}\left(\tau_{r} \leq \epsilon\right),
\end{aligned}
$$

by Cauchy-Schwarz inequality. The first factor is bounded because b is bounded. The second factor tends to zero uniformly on K because

$$
\sup _{x \in K} P_{x}\left(\tau_{r} \leq \epsilon\right) \leq P\left(\sup _{0 \leq s \leq \epsilon}|w(s)|>\delta\right)
$$

where

$$
\delta=\inf _{\substack{y \in K \\|x|=r .}}|(x-y)| .
$$

Lemma 3. Let K be compact in \mathbb{R}^{d}. Then for fixed $t, Q_{x}\left(\tau_{r} \leq t\right)$ monotically decreses to zero as $r \rightarrow \infty$ and the convergence is uniform on K.

Proof. Let $f_{r}(x)=Q_{x}\left(\tau_{r} \leq t\right)$. As $\left\{\tau_{r} \leq t\right\}$ decreases to the null set, $f_{r}(x)$ decreases to zero. As K is compact, there exists an r_{0} such that for $r \geq$ $r_{0}, f_{r}(x)$ is continuous on K, by Lemma Lemma 3 is a consequence of Dini's theorem.

Lemma 4. Let $b: \mathbb{R}^{r} \rightarrow \mathbb{R}^{d}$ be smooth (not necessarily bounded). Then $E^{Q_{x}}(f(X(t)))$ is continuous in x for every fixed t, f being any bounded measurable function.

Proof. Let b_{r} be any bounded smooth function on R^{d} such that $b_{r} \equiv b$ on $|x| \leq r$ and Q_{x}^{r} the measure corresponding to b_{r}. Then by Lemma 1 $E^{Q_{x}}(f(X(t)))$ is continuous in x for all r. Further,

$$
\left|E^{Q_{x}^{r}}(f(X(t)))-E^{Q_{x}}(f(X(t)))\right| \leq 2\|f\|_{\infty} \cdot Q_{x}\left(\tau_{r} \leq t\right)
$$

The result follows by Lemma 3
Lemma 5. With the hypothesis as the same as in Lemma $\quad\left(S_{1}\right)$ is an equicontinuous family, where

$$
S_{1}=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f \text { bounded measurable, }\|f\|_{\infty} \leq 1\right\}
$$

Proof. For any f in S_{1}, let $U(x)=U(t, x) \equiv E^{Q_{x}}(f(X(t)))$ and

$$
U_{\epsilon}(x)=U_{\epsilon}(t, x)=\int U(t-\epsilon, y) \frac{1}{\left(\sqrt{ }(2 \pi \epsilon)^{d}\right)} \exp \left[\frac{-|x-y|^{2}}{2 \epsilon}\right] d y
$$

By Lemma 1

$$
\begin{aligned}
&\left|U(x)-U_{\epsilon}(x)\right| \leq\left(\left(\left(e^{c \epsilon}-1\right) \epsilon^{c t}\right)\right)^{1 / 2} \\
&|U(x)-U(y)| \leq\left|U(x)-U_{\epsilon}(x)\right|+\left|U_{\epsilon}(y)-U(y)\right|+\left|U_{\epsilon}(x)-U_{\epsilon}(y)\right| \\
& \leq 2 \sqrt{ }\left(\left(e^{c \epsilon}-1\right) e^{c t}\right)+\left|U_{\epsilon}(x)-U_{\epsilon}(y)\right|
\end{aligned}
$$

The family $\left\{U_{\epsilon}: f \in S_{1}\right\}$ is equicontinuous because every U occuring in the expression for U_{ϵ} is bounded by 1 , and the exponential factor is uniformly continuous. Thus the right hand side is very small if ϵ is small and $|x-y|$ is small. This proves the lemma.

Lemma 6. Let b be smooth and assume that there is no explosion (b is not necessarily bounded). Then $\left(S_{1}\right)$ is an equi-continuous family $\forall t>0$.

Proof. Let $r>0$ be given. Define $b_{r} \in C^{\infty}$ such that $b_{r}=0$ on $|x|>r+1$, $b_{r}=b$ on $|x| \leq r, b_{r}: \mathbb{R}^{d} \rightarrow \mathbb{R}$. By Lemma we have that

$$
\left\{E^{Q_{x}^{r}}(f(X(t))): f \in S_{1}\right\}
$$

is equicontinuous, where Q_{x}^{r} is the probability measure corresponding $\mathbf{2 5 7}$ to the function b_{r}.

$$
\begin{equation*}
E^{Q_{x}}\left(f(X(t)) \chi_{\left\{\tau_{r}>t\right\}}\right) E^{Q_{x}^{r}}\left(f(X(t)) \chi_{\left\{\tau_{r}>t\right\}}\right) \tag{1}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& \mid E^{Q_{x}}(f(X(t)))-E^{Q_{x}^{r}}(f(X(t)) \mid \\
= & \mid E^{Q_{x}}\left(f(X(t)) \chi_{\left\{\tau_{r}>t\right\}}\right)+E^{Q_{x}}\left(f(X(t)) \chi_{\left\{\tau_{r} \leq t\right\}}\right) \\
- & \left.E^{Q_{x}^{r}}\left(f(X(t)) \chi_{\left\{\tau_{r}>t\right\}}\right)-E^{Q_{x}^{r}}(f(X(t))) \chi_{\left\{\tau_{r} \leq t\right\}}\right) \\
= & \mid E^{Q_{x}}\left(f\left(X(t) \chi_{\left\{\tau_{r} \leq t\right\}}\right)-E^{Q_{x}^{r}}\left(f(X(t)) \chi_{\left\{\tau_{r} \leq t\right\}}\right) \mid\right. \\
\leq & \|f\|_{\infty}\left(E^{Q_{x}}\left(\chi_{\left\{\tau_{r} \leq t\right\}}\right)+E^{Q_{x}^{r}}\left(\chi_{\left\{\tau_{r} \leq t\right\}}\right)\right. \\
\leq & l\left[E^{Q_{x}}\left(\chi_{\left(\tau_{r} \leq t\right)}\right)+E^{Q_{x}}\left(\chi_{\left(\tau_{r} \leq t\right)}\right)\right](\text { use (1) with } f=1) \\
= & 2 E^{Q_{x}}\left(\chi_{\left(\tau_{r} \leq t\right)}\right) .
\end{aligned}
$$

Thus

$$
\sup _{x \in K} \sup _{\|f\|_{\infty} \leq 1} \mid E^{Q_{x}}\left(f(X(t))-E^{Q_{x}^{r}}\left(f(X(t)) \mid \leq 2 \sup _{x \in K}\left(\chi_{\left\{\tau_{r} \leq t\right\}}\right) .\right.\right.
$$

By Lemma 3

$$
\sup _{x \in K} E^{0_{x}}\left(\tau_{r} \leq t\right) \rightarrow 0
$$

for every compact set K as $n \rightarrow \infty$, for every fixed t.
The equicontinuity of the family $\left(S_{1}\right)$ now follows easily. For fixed258
x_{0}, put $u_{r}(x)=E^{Q_{x}^{r}}(f(X(t)))$ and $u(x)=E^{Q_{x}}(f(X(t)))$ and let $K=$ $S\left[x_{0}, 1\right]=\left\{x:\left|x-x_{0}\right| \leq 1\right\}$. Then

$$
\left|u(x)-u\left(x_{0}\right)\right| \leq\left|u(x)-u_{r}(x)\right|+\left|u\left(x_{0}\right)-u_{r}\left(x_{0}\right)\right|+\left|u_{r}(x)-u_{r}\left(x_{0}\right)\right|
$$

$$
\leq 2 \sup _{y \in K} E^{Q_{y}}\left(\chi_{\left(\tau_{r} \leq \mid t\right)}\right)+\left|u_{r}(x)-u_{r}\left(x_{0}\right)\right|
$$

By the previous lemma $\left\{u_{r}\right\}$ is an equicontinuous family and since $\sup _{y \in K} E^{Q_{y}}\left(\chi_{\left(\tau_{r} \leq 1\right)}\right) \rightarrow 0,\left\{u:\|f\|_{\infty} \leq 1\right\}$ is equicontinuous at x_{0}. This $y \in K$ proves the Lemma.

Lemma 7. $T_{r} \circ T_{s}=T_{t+s}, \forall s, t \geq 0$.
Remark. This property is called the semigroup property.
Proof.

$$
\begin{aligned}
& T_{r}\left(T_{s} f\right)(x) \\
& =\iint f(z) q(s, y, z) q(t, x, y) d y d z
\end{aligned}
$$

Thus we have only to show that

$$
\begin{aligned}
& \int q(t, x, y) q(s, y, A) d y=q(t+s, x, A) \\
& q(t+s, x, A)= E^{Q_{x}}(X(t+s) \in A) \\
&\left.=E^{Q_{x}}\left(\left.X(t+s) \in A\right|_{t}\right)\right) \\
&\left.=E^{Q_{x}}\left(E^{Q_{x}} X(t)(X(s) \in A)\right)\right), \\
& \quad \text { by Markov property } \\
&=E^{Q_{x}}(q(s, X(t), A)) \\
&=\int q(t, x, y) q(s, y, A) d y
\end{aligned}
$$

which proves the result.
As a trivial consequence we have the following.
Lemma 8. Let $\epsilon>0$ and let S_{1} be the unit ball in $B\left(\mathbb{R}^{d}\right)$. Then $\bigcup_{t \geq \epsilon} T_{t}\left(S_{1}\right)$ is equicontinuous.

Proof. $\bigcup_{t \geq \epsilon>0} T_{t}\left(S_{1}\right)=T\left(\bigcup_{t \geq 0} T_{t}\left(S_{1}\right)\right)$ (by Lemma(7) $T_{\epsilon}\left(S_{1}\right)$.
The result follows by Lemma6
Lemma 9. Let $u(t t x)=E^{Q_{x}}(f(X(t)))$ with $\|f\|_{\infty} \leq 1$. Let $\epsilon>0$ be given and K any compact set. Then there exists a $T_{0}=T_{0}(\epsilon, K)$ such that $\forall T \geq T_{0}$ and $\forall x_{1}, x_{2} \in K$,

$$
\left|u\left(T, x_{1}\right)-u\left(T, x_{2}\right)\right| \leq \epsilon
$$

Proof. Define $q^{*}\left(t, x_{1}, x_{2}, y_{1}, y_{2}\right)=q\left(t, x_{1}, y_{1}\right) q\left(t, x_{2}, y_{2}\right)$ and let $Q_{\left(x_{1}, x_{2}\right)}$ be the measure corresponding to the operator

$$
L=\frac{1}{2}\left(\Delta_{x_{1}}+\Delta_{x_{2}}\right)+b\left(x_{1}\right) \cdot \nabla_{x_{1}}+b\left(x_{2}\right) \cdot \nabla_{x_{2}}
$$

i.e., for any $u: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
L u=\frac{1}{2} & \sum_{i=1}^{2 d} \frac{\partial^{2} u}{\partial x_{i}^{2}}+\sum_{i=1}^{t} b_{i}\left(x_{1}, \ldots, x_{d}\right) \frac{\partial u}{\partial x_{i}^{2}}+ \\
& +\sum_{i=1}^{d} b_{i}\left(x_{d+1, \ldots, x_{2 d}}\right) \frac{\partial u}{\partial x_{i+d}}
\end{aligned}
$$

Then $Q_{\left(x_{1}, x_{2}\right)}$ will be a measure on $C\left([0, \infty) ; \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$. We claim that $Q_{\left(x_{1}, x_{2}\right)}=Q_{x_{1}} \times Q_{x_{2}}$. Note that

$$
C\left([0, \infty) ; \mathbb{R}^{d} \times \mathbb{R}^{d}\right)=C\left([0, \infty) ; \mathbb{R}^{d}\right) \times C\left[(0, \infty) ; \mathbb{R}^{d}\right)
$$

and since $C\left([0, \infty) ; \mathbb{R}^{d}\right)$ is a second countable metric space, the Borel field of $C\left([0, \infty) \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ is the σ-algebra generated by

$$
\mathscr{B}=\left(C\left([0, \infty) ; \mathbb{R}^{d}\right)\right) \times \mathscr{B}\left(C[0, \infty) ; \mathbb{R}^{d}\right)
$$

By going to the finite-dimensional distributions one can check that $P_{\left(x_{1}, x_{2}\right)}=P_{x_{1}} \times P_{x_{2}}$.

$$
\left.\frac{d Q_{\left(x_{1}, x_{2}\right)}}{d P_{\left(x_{1}, x_{2}\right)}}\right|_{\mathscr{F}_{t}}=\exp \left[\int_{0}^{t}\left\langle b^{(1)}, d X_{1}\right\rangle-\frac{1}{2} \int_{0}^{t}\left|b^{(1)}\right|^{2} d s\right] \times
$$

$$
\times \exp \left[\int_{0}^{t}\left\langle b^{(2)}, d X_{2}\right\rangle-\frac{1}{2} \int_{0}^{t}\left|b^{(2)}\right|^{2} d s\right]
$$

where

$$
b^{(1)}\left(x_{1} \ldots x_{d}\right)=b\left(x_{1} \ldots, x_{d}\right) \cdot b^{(2)}\left(x_{d+1} \ldots x_{2 d}\right)=b\left(x_{d+1}, \ldots, x_{2 d}\right)
$$

so that $Q_{\left(x_{1}, x_{2}\right)}=Q_{x_{1}} \times Q_{x_{2}}$.
It is clear that if ϕ defined an invariant measure for the process Q_{x}, i.e.

$$
\int_{A} \phi(x) d x=\int \phi(y) Q y\left(X_{t} \in A\right) d y
$$

then $\phi\left(y_{1}\right) \phi\left(y_{2}\right)$ defines an invariant measure for the process $Q_{\left(x_{1}, x_{2}\right)}$. Thus the process $Q_{\left(x_{1}, x_{2}\right)}$ is recurrent.

Next we show that $u\left(T-t, X_{1}(t)\right)$ is a martingale $(0 \leq t \leq T)$ for any fixed T on $C\left([0, T] ; \mathbb{R}^{d}\right)$.

$$
\begin{aligned}
& E^{Q_{x}}\left(u\left(T-t, X(t) \mid \mathscr{F}_{s}\right)\right) \\
& =\left[\int u(T-t, y) q(t-s, x, d y)\right]_{x=X(s)} \\
& =\left[\iint f(z) q(T-t, y, d z) q(t-s, x, d y)\right]_{x=X(s)} \\
& =\left[\int f(z) q(T-s, x, d z)\right]_{x=X(s)} \\
& =u(T-s, X(s)), \quad s<t .
\end{aligned}
$$

It now follows that $u\left(T-t, X_{1}(t)\right)$ is a martingale on $C\left([0, \infty) ; \mathbb{R}^{d}\right) \times$ $C\left([0, \infty) ; \mathbb{R}^{d}\right)$. Hence $u\left(T-t, X_{1}(t)\right)-u\left(T-t, X_{2}(t)\right)$ is a martingale relative to $Q_{\left(X_{1}, x_{2}\right)}$.

Let $V=S(0, \delta / 2) \subset \mathbb{R}^{d} \times \mathbb{R}^{d}$ with $\delta<1 / 4$. If $\left(x_{1}, x_{2}\right) \in V$, then

$$
\left|x_{1}-x_{2}\right| \leq\left|\left(x_{1}, 0\right)-(0,0)\right|+\left|(0,0)-\left(0, x_{2}\right)\right|<\delta .
$$

Claim 1. $Q_{\left(x_{1}, x_{2}\right)}\left(\tau_{V} \leq T\right) \rightarrow 1$ as $T \rightarrow \infty$, where τ_{V} is the exit time from $R^{d}-V$.

Proof. If w is any trajectory starting at some point in V, then $\tau_{V}=$ $0 \leq T, \forall T$. If w starts at some point outside V then, by the recurrence property, w has to visit a ball with centre 0 and radius $\delta / 2$; hence it must get into V at some finite time. Thus $\left\{\tau_{V} \leq T\right\} \uparrow$ to the whole space as $T \uparrow \infty$. Next we show that the convergence is uniform on compact sets.

If $x_{1}, x_{2} \in K,\left(x_{1}, x_{2}\right) \in K \times K$ (a compact set). Put $g_{T}\left(x_{1}, x_{2}\right)=$ $Q_{\left(x_{1}, x_{2}\right)}\left(\tau_{V} \leq T\right)$. Then $g_{T}\left(x_{1}, x_{2}\right) \geq 0$ and $g_{T}\left(x_{1}, x_{2}\right)$ increases to 1 as T tends to ∞.

$$
\begin{gathered}
g_{T}\left(x_{1}, x_{2}\right)=Q_{\left(x_{1}, x_{2}\right)}\left(\tau_{V} \leq T\right) \\
Q_{\left(x_{1}, x_{2}\right)}\left(\tau_{V}^{1} \leq T\right)
\end{gathered}
$$

where

$$
\tau_{V}^{1}=\inf \left\{t \geq 1:\left(x_{1}, x_{2}\right) \in V\right\}
$$

Therefore

$$
\begin{aligned}
g_{T}\left(x_{1}, x_{2}\right) & \geq E^{Q}\left(x_{1}, x_{2}\right)\left(E^{Q}\left(x_{1}, x_{2}\right)\left(\left.\left(\tau_{V}^{1} \leq T\right)\right|_{1}\right)\right) \\
& \left.=E^{Q}\left(x_{1}, x_{2}\right)\left(Q_{\left(x_{1}(1), X_{2}(1)\right)}\left\{\tau_{V}^{1} \leq T\right)\right\}\right) \\
& =E^{Q}\left(x_{1}, x_{2}\right)\left(\psi_{T}\left(X_{1}(1), X_{2}(1)\right)\right),
\end{aligned}
$$

where ψ_{T} is a bounded non-negative function. Thus, if

$$
\begin{aligned}
h_{T}\left(x_{1}, x_{2}\right) & =Q_{\left(x_{1}, x_{2}\right)}\left(\tau_{V}^{1} \leq T\right)= \\
& =E^{Q}\left(x_{1}, x_{2}\right)\left(\psi_{T}\left(X_{1}(1), X_{2}(1)\right)\right)
\end{aligned}
$$

then by Lemma4 h_{T} is continuous for each $T, g_{T} \geq h_{T}$ and h_{T} increases to 1 as $T \rightarrow \infty$. Therefore, h_{T} converges uniformly (and so does g_{T}) on compact sets.

Thus given $\epsilon>0$ chose $T_{0}=T_{0}(\epsilon, K)$ such that if $T \geq T_{0}$,

$$
\sup _{x_{2} \in K} \sup _{x_{1} \in K} Q_{\left(x_{1}, x_{2}\right)}\left(\tau_{V} \geq T-1\right) \leq \epsilon
$$

By Doob's optional stopping theorem and the fact that

$$
u\left(T-t, X_{1}(t)\right)-u\left(t-t, X_{2}(t)\right)
$$

is a martingale, we get, on equating expectations,

$$
\begin{aligned}
& \mid u(T,\left.x_{1}\right)-u\left(T, x_{2}\right) \mid \\
& \quad= \mid E^{Q_{\left(x_{1}, x_{2}\right)}}\left[u \left(T-0, X_{1}(0)-u\left(T-0, X_{2}(0)\right] \mid\right.\right. \\
& \quad= \mid E^{Q_{\left(x_{1}, x_{2}\right)}}\left[u \left(T-\left(\tau_{v} \wedge(T-1)\right), X_{1}\left(T-\left(\tau_{v} \wedge(T-1)\right)-\right.\right.\right. \\
&-u\left(T-\left(\tau_{v} \wedge T(-1)\right), X_{2}\left(T-\left(\tau_{v} \wedge(T-1)\right] \mid\right.\right. \\
& \quad \mid \int_{\left\{\tau_{v} \geq T-1\right\}}\left[u\left(1, X_{1}(1)\right)-u\left(1, X_{2}(1)\right)\right] d Q_{\left(x_{1}, x_{2}\right)}+ \\
& \quad+\int_{\left\{\tau_{v}<(T-1)\right\}}\left[u\left(T-\tau_{v}, X_{1}\left(T-\tau_{v}\right)\right)-u\left(T-\tau_{v}\right), X_{2}\left(T-\tau_{v}\right)\right) d Q_{\left(x_{1}, x_{2}\right)} \mid .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left|u\left(T, x_{1}\right)-u\left(T, x_{2}\right)\right| \\
& \leq \int_{\left\{\tau_{v} \geq(T-1)\right\}}\left|\left[u\left(1, X_{1}(1)\right)-u\left(1, X_{2}(1)\right)\right]\right| d Q_{\left(x_{1}, x_{2}\right)}+ \\
& +\mid \int_{\left\{\tau_{v}<(T-1)\right\}}\left[u\left(T-\tau_{v}, X_{1}\left(T-\tau_{v}\right)\right)-u\left(T-\tau_{v}, X_{2}\left(T-\tau_{v}\right)\right) d Q_{\left(x_{1}, x_{2}\right)} \mid\right. \\
& \leq 2 \epsilon+\left|\int_{\left\{\tau_{v}<(T-1)\right\}}\left[u\left(T-\tau_{v}, X_{1}\left(T-\tau_{v}\right)\right)-u\left(T-\tau_{v}, X_{2}\left(T-\tau_{v}\right)\right)\right] d Q_{\left(x_{1}, x_{2}\right)}\right|,
\end{aligned}
$$

since u is bounded by 1 .
The second integration is to be carried out on the set $\{T-v \geq 1\}$. Since $\bigcup_{t \geq 1} T_{t}\left(S_{1}\right)$ is equicontinuous we can choose a $\delta>0$ such that whenever $x_{1}, x_{2} \in K$ such that $\left|x_{1}-x_{2}\right|<\delta$

$$
\left|u\left(t, x_{1}\right)-u\left(t, x_{2}\right)\right| \leq \epsilon, \quad \forall t \geq 1
$$

264
Thus $\left|u\left(T, x_{1}\right)-u\left(T, x_{2}\right)\right| \leq 3 \epsilon$ whenever $x_{1}, x_{2} \in K$ and $T \geq T_{0}$. This proves the Lemma.

Corollary to Lemma $9 \sup _{x_{1}, x_{2} \in K} \int\left|q\left(t, x_{1}, y\right)\right|$ dy converges to 0 as $t \rightarrow \infty$.
Proof. Since the dual of L^{1} is L^{∞}, we have

$$
\begin{gathered}
\int\left|q\left(t, x_{1}, y\right)-q\left(t, x_{2}, y\right)\right| d y \\
=\sup _{\|f\|_{\infty} \leq 1}\left|\int\left[q\left(t, x_{1}, y\right)-q\left(t, x_{2}, y\right)\right] f(y) d y\right|
\end{gathered}
$$

and the right side converges to 0 as $t \rightarrow \infty$, by Lemma 9
We now come to the proof of the main theorem stated before Lemma 1. Now

$$
\begin{aligned}
& \int|q(t, x, y)-\phi(y)| d y \\
&= \int\left|q(t, x, y)-\int \phi\left(x^{1}\right) q\left(t, x^{1}, y\right) d x^{1}\right| d y \\
&(\text { by invariance property) }
\end{aligned} \quad \begin{aligned}
& \\
= & \int\left|\int q(t, x, y) \phi\left(x^{1}\right) d x^{1}-\int \phi\left(x^{1}\right) q\left(t, x^{1}, y\right) d x^{1}\right| d y \\
\leq & \iint\left|q(t, x, y)-q\left(t, x^{1}, y\right)\right| \phi\left(x^{1}\right) d x^{1} d y \quad(\text { since } \phi \geq 0) \\
= & \int \phi\left(x^{1}\right) d x^{1} \int\left|q(t, x, y)-q\left(t, x^{1}, y\right)\right| d y
\end{aligned}
$$

Since

$$
\int \phi\left(x^{1}\right) d x^{1}=\underset{n \rightarrow \infty}{\operatorname{Lt}} \int_{\left|x^{1}\right| \leq n} \phi\left(x^{1}\right) d x^{1}
$$

choose a compact set $L K$ such that $\int_{\mathbb{R}^{d}-L} \phi\left(x^{1}\right) d x^{1}<\epsilon$. Then

$$
\int \phi\left(x^{1}\right) d x^{1} \int\left|q(t, x, y)-q\left(t, x^{1}, y\right)\right| d y
$$

$$
\begin{aligned}
& =\int_{L} \phi\left(x^{1}\right) d x^{1} \int\left|q(t, x, y)-q\left(t, x^{1}, y\right)\right| d y+ \\
& +\int_{\mathbb{R}^{d}-L} \phi\left(x^{1}\right) d x^{1} \int\left|q(t, x, y)-q\left(t, x^{1}, y\right)\right| d y \\
& \leq \iint_{L} \phi\left(x^{1}\right) d x^{1} \int\left|q(t, x, y)-q\left(t, x^{1}, y\right)\right| d v+2 \epsilon .
\end{aligned}
$$

Chose t_{0} such that whenever $t \geq t_{0}$,

$$
\int\left|q(t, x, y)-q\left(t, x^{1}, y\right)\right| d y \leq \frac{\epsilon}{1+\int_{L} \phi\left(x^{1}\right) d x^{1}}
$$

$\forall x, x_{1}$ in L. (Corollary to Lemma 9). Then

$$
\int|q(t, x, y)-\phi(y)| d y \leq 3 \epsilon
$$

if $t \geq t_{0} \forall x \in K$ completing the proof of the theorem.

32. Ergodic Theorem

Theorem . Let $f: \mathbb{R}^{d} \rightarrow R$ be bounded and measurable with $\|f\|_{\infty} \leq 1.266$ If ϕ is an invariant distribution for the family $\left\{Q_{x}\right\}, x \in \mathbb{R}^{d}$ then

$$
\lim _{\substack{t_{1} \rightarrow \infty \\ 0 \leq t_{2}-t_{1} \rightarrow \infty}} E^{Q_{x}}\left(f\left(X\left(t_{1}\right)\right) f\left(X\left(t_{2}\right)\right)\right)=\left[\int f(y) \phi(y) d y\right]^{2}
$$

Proof.

$$
\begin{aligned}
& E^{Q_{x}}\left[\left(f\left(X\left(t_{1}\right) f\left(X\left(t_{2}\right)\right)\right]\right.\right. \\
& =E^{Q_{x}}\left(E^{Q_{x}}\left[f\left(X\left(t_{1}\right)\right) f\left(X\left(t_{2}\right)\right) \mid \mathscr{F}_{t_{1}}\right]\right) \\
& =E^{Q_{x}}\left(f\left(X\left(t_{1}\right)\right)\left(E^{Q_{x}}\left[f\left(X\left(t_{2}\right)\right) \mid \mathscr{F}_{t_{1}}\right]\right)\right) \\
& \left.=E^{Q_{x}}\left(f\left(X\left(t_{1}\right)\right) \int f(y) q\left(t_{2}-t_{1}, X\left(t_{1}\right), y\right)\right) d y\right), t_{2}>t_{1}
\end{aligned}
$$

(by Markov property),
(1) $=\int f(z) q\left(t_{1}, x, z\right) d z \int f(y) q\left(t_{2}-t_{1}, z, y\right) d y$
does any bounded an measurable f. By theorem of $\S 31$

$$
\sup _{x \in K}\left|\int f(y)[q(t, x, y)-\phi(y)] d y\right| \rightarrow 0
$$

as $t \rightarrow+\infty$. We can therefore write (1) in the form

$$
\begin{aligned}
& E^{Q_{x}}\left[\left(f\left(X\left(t_{1}\right)\right) f\left(X\left(t_{2}\right)\right)\right]=\right. \\
& \quad=\left(\int f(z) q\left(t_{1}, x, x\right) d z\right) \int f \phi+\int f(z) q\left(t_{1}, x, z\right) A\left(t_{2}-t_{1}, z\right) d z
\end{aligned}
$$

where $A\left(t_{2}-t_{1}, z\right)$ converges to 0 (uniformly on compact sets as) $t_{2}-t_{1} \rightarrow$ $+\infty$.

To prove the theorem we have therefore only to show that

$$
\int f(z) q\left(t_{1}, x, z\right) A\left(t_{2}-t_{1}, z\right) d z \rightarrow 0
$$

as $t_{1} \rightarrow+\infty$ and $t_{2}-t_{1} \rightarrow \infty$ (because $\left.\int f(z) q\left(t_{1}, x, z\right) d z \rightarrow \int f \phi\right)$. Now
(2)

$$
\begin{aligned}
& \left|\int f(z) q\left(t_{1}, x, z\right) A\left(t_{2}-t_{1}, z\right) d z\right| \\
& \leq\|f\|_{\infty} \int q\left(t_{1}, x, z\right)\left|A\left(t_{2}-t_{1}, z\right)\right| d z \\
& \leq \int q\left(t_{1}, x, z\right)\left|A\left(t_{2}-t_{1}, z\right)\right| d z
\end{aligned}
$$

Let K be any compact set, then

$$
\int_{K} q\left(t_{1}, x, z\right) d z=\int \chi_{K} q\left(t_{1}, x, z\right) d z \rightarrow \int \chi_{K} \phi(z) d z
$$

at $t_{1} \rightarrow \infty$. Given $\epsilon>0$, let K be compact so that

$$
\left|\int \chi_{K^{c}} \phi(z) d z\right| \leq \epsilon
$$

then $\left|\int \chi_{K^{c}} q\left(t_{1}, x, z\right) d z\right| \leq 2 \epsilon$ if $t_{1} \gg 0$. Using (2) we therefore get

$$
\begin{aligned}
& \left|\int_{K} f(z) q\left(t_{1} x, z\right) A\left(t_{2}-t_{1}, z\right) d z\right| \\
& \leq \int_{K} q\left(t_{1}, x, z\right)\left|A\left(t_{2}-t_{1}, z\right)\right| d z+\int_{K^{c}} q\left(t_{1}, x, z\right)\left|A\left(t_{2}-t_{1}, z\right)\right| d z \\
& \leq \int_{K} q\left(t_{1}, x, z\right)\left|A\left(t_{2}-t_{1}, z\right)\right| d z+2 \int_{K^{c}} q\left(t_{1}, x, z\right) d z \\
& \quad \text { since }\left|A\left(t_{2}-t_{1}, z\right)\right| \leq 2, \\
& \leq \int_{K} q\left(t_{1}, x, z\right)\left|A\left(t_{2}-t_{1}, z\right)\right| d z+2 \epsilon, \text { if } t_{1} \gg 0
\end{aligned}
$$

The theorem now follows from the fact that

$$
\lim _{t_{2}-t_{1} \rightarrow \infty} \sup _{z \in K} \mid A\left(t_{2}-t_{1}, z\right)=0
$$

Weak Ergodic Theorem.

$$
\lim _{t \rightarrow \infty} E^{Q_{x}}\left[\left|\frac{1}{t} \int_{0}^{t} f(X(s)) d s-f(x) \phi(x) d x\right|>\epsilon\right]=0
$$

Proof.

$$
\begin{aligned}
& E^{Q_{x}}\left[\left|\frac{1}{t} \int_{0}^{t} f(X(s)) d s-\int f(x) \phi(x) d x\right|>\epsilon\right] \\
& \leq \frac{1}{\epsilon^{2}} E^{Q_{x}}\left[\left|\frac{1}{t} \int_{0}^{t} f(X(s)) d s-\int f(y) \phi(y) d y\right|^{2}\right]
\end{aligned}
$$

by Tchebychev's inequality. We show that the right side $\rightarrow 0$ as $t \rightarrow \infty$. Now

$$
\begin{aligned}
& E^{Q_{x}}\left[\left|\frac{1}{t} \int_{0}^{t} f(X(s)) d s-\int f \phi\right|^{2}\right] \\
& =E^{Q_{x}}\left[\left\lvert\, \frac{1}{t^{2}} \int_{0}^{t} \int_{0}^{t} f\left(X\left(\sigma_{1}\right)\right) f\left(X\left(\sigma_{2}\right)\right) d \sigma_{1} d \sigma_{2}+\left(\int f \phi d y\right)\right.\right. \\
& \left.\quad-2 \frac{1}{t} \int_{0}^{t} f(X(\sigma)) d \sigma \int f \phi d y\right]
\end{aligned}
$$

Also

$$
\sup _{x \in K}\left|E^{Q_{x}}\left[f(X(t))-\int f(y) \phi(y) d y\right]\right|
$$

$$
\begin{aligned}
& =\sup _{x \in K}\left|\int q(t, x, y) f(y) d y-\int f(y) \phi(y) d y\right| \\
& \leq\|f\|_{\infty} \sup _{x \in K} \int|q(t, x, y)-\phi(y)| d y
\end{aligned}
$$

269 the right hand side tends to 0 as t tends to $+\infty$. Consider

$$
\begin{aligned}
& \quad\left|E^{Q_{x}}\left(\frac{1}{t} \int_{0}^{t} f(X(\sigma)) d \sigma-\int f(y) \phi(y) d y\right)\right| \\
& =\left\lvert\, E^{Q_{x}}\left(\frac{1}{t} \int_{0}^{T} f(X(\sigma)) d \sigma-\int f(y) \phi(y) d y+\frac{1}{t} \int_{0}^{t} f(X(\sigma)) d \sigma\right)\right., 0 \leq T \leq t \\
& \leq \frac{1}{t}\left|\int_{0}^{T} E^{Q_{x}} f(X(\sigma)) d \sigma-T \int f(y) \phi(y) d y\right|+ \\
& \quad+\left|E^{Q_{x}}\left(\frac{1}{t} \int_{T}^{t} f(X(\sigma)) d \sigma-\left(\frac{t-T}{t}\right) \int f(y) \phi(y) d y\right)\right|
\end{aligned}
$$

Given $\epsilon>0$ choose T large so that

$$
\mid E^{Q_{x}}\left(f(X(\sigma))-\int f(y) \phi(y) d y \mid \leq \epsilon, \quad(\sigma \geq T)\right.
$$

Then

$$
\begin{aligned}
& \left\lvert\, E^{Q_{x}}\left(\left.\frac{1}{t} \int_{0}^{t} f(X(\sigma)) d \sigma-\int f(y) \phi(y) d y \right\rvert\, \leq\right.\right. \\
& \left.\leq \left\lvert\, \frac{1}{t} \int_{0}^{T} E^{Q_{x}}[f(X(\sigma))]-\frac{T}{t} \int f(y) \phi(y) d y\right.\right] \left\lvert\,+\frac{t-T}{t} \epsilon\right. \\
& \leq 2 \epsilon
\end{aligned}
$$

provided t is large. Thus

$$
\lim _{t \rightarrow+\infty} E^{Q_{x}}\left[\frac{1}{t} \int_{0}^{t} f(X(\sigma)) d \sigma\right]=\int f \phi d y
$$

To prove the result we have therefore only to show that

$$
\lim _{t \rightarrow+\infty} E^{Q_{x}}\left(\frac{1}{t^{2}} \int_{0}^{t} \int_{0}^{t} f\left(X\left(\sigma_{1}\right)\right) f\left(X\left(\sigma_{2}\right)\right) d \sigma_{1} d \sigma_{2}\right)=\left[\int f(y) \phi(y) d y\right]^{2}
$$

POR is the region $\sigma_{2} \geq t_{0}, \sigma_{1}-\sigma_{2} \geq t_{0}$.
Let I

$$
\begin{aligned}
& =E^{Q_{x}}\left(\frac{1}{t} \int_{0}^{t} \int_{0}^{t} f\left(X\left(\sigma_{1}\right)\right) f\left(X\left(\sigma_{2}\right)\right) d \sigma_{1} d \sigma_{2}\right)-\left(\int f \phi d y\right) \\
& =\frac{2}{t^{2}} \int\left[E^{Q_{x}}\left(f\left(X\left(\sigma_{1}\right)\right) f\left(X\left(\sigma_{2}\right)\right)\right)-\left(\int f(y) \phi(y) d y\right)^{2}\right] d \sigma_{1} d \sigma_{2} \\
& 0 \leq \sigma_{2} \leq \sigma_{1} \leq t
\end{aligned}
$$

Then
$|I| \leq \frac{2}{t^{2}} \int_{\Delta P Q R}\left|E^{Q_{x}}\left(f\left(X\left(\sigma_{1}\right)\right) f\left(X\left(\sigma_{2}\right)\right)\right)-\left(\int f(y) \phi(y) d y\right)^{2}\right| d \sigma_{1} d \sigma_{2}$

$$
+\frac{2}{t^{2}} \cdot 2\|f\|_{\infty}^{2} \quad[\text { area of } O A B-\text { area of } P Q R]
$$

By the Ergodic theorem the integrand of the first term on the right can be made less than $\epsilon / 2$ provided t_{0} is large (see diagram). Therefore

$$
\begin{aligned}
|I| & \leq \frac{\epsilon}{2} \cdot \frac{2}{t^{2}} \text { area of } P Q R+\frac{4}{t^{2}}\|f\|_{\infty}^{2}\left[\frac{t^{2}}{2}-\left(\frac{\left(t-2 t_{0}\right)}{2}\right)^{2}\right] \\
& \leq \frac{\epsilon}{2}+\frac{2\|f\|_{\infty}^{2}}{t^{2}}\left[4 t t_{0}-4 t_{0}^{2}\right] . \\
& <\epsilon
\end{aligned}
$$

271 if t is large. This completes the proof of the theorem.

33. Application of Stochastic Integral

LET b BE A bounded function. For every Brownian measure P_{x} on 272 $\Omega=C\left([0, \infty) ; \mathbb{R}^{d}\right)$ we have a probability measure Q_{x} on (Ω, \mathscr{F}).

Problem. Let $q(t, x, A)=Q_{x}\left(X_{t} \in A\right) \cdot q(t, x, \cdot)$ is a probability measure on \mathbb{R}^{d}. We would like to know if $q(t, x, \cdot)$ is given by a density function on \mathbb{R}^{d} and study its properties.

Step (i). $q(t, x, \cdot)$ is absolutely continuous with respect to the Lebesgue measure.

For, $p(t, x, A)=P_{x}(X(t) \in A)$ is given by a density function. Therefore $p(t, x, \cdot) \gg m_{d}$ (Lebesgue measure). Since

$$
\begin{aligned}
& Q_{x} \ll P_{x} \text { on } \mathscr{F}_{t}, \\
& q(t, z, \cdot) \leq M_{d} \text { on } \mathscr{F}_{t} .
\end{aligned}
$$

Step (ii). Let $q(t, x, y) \geq 0$ be the density function of $q(t, x, \cdot)$ and write $p(t, x, y)$ for the density of $p(t, x, \cdot)$. Let $1<\alpha<\infty$. Put

$$
\begin{aligned}
r(t, x, y) & =\frac{q(t, x, y)}{p(t, x, y)} \\
\int_{\mathbb{R}^{d}} q^{\alpha} d y & =\int r^{\alpha} p^{\alpha} d y \\
& =\int r^{\alpha} p^{1 / \alpha} P^{\frac{\alpha-1}{\alpha}} d y \leq\left(\int r^{\alpha^{2}} p d y\right)^{1 / \alpha} \times
\end{aligned}
$$

$$
\times\left(\int p^{\alpha+1} d y\right)^{\alpha-1 / \alpha}
$$

273 Step (iii).

$$
\begin{aligned}
Q_{x}(X(t) \in A) & =\int q(t, x, y) d y \\
& =\int r(t, x, y) p(t, x, y) d y \\
& =\int r(t, x, y) P_{x}\left(X_{t} \in d y\right)
\end{aligned}
$$

Therefore

$$
\left.\frac{d Q_{x}}{d P_{x}}\right|_{t} ^{t}=r(t, x, y)
$$

Therefore

$$
\begin{aligned}
& \left(\int r^{\alpha^{2}} p d y\right)^{1 / \alpha}=\left\|\left.\frac{d Q_{x}}{d P_{x}}\right|_{t}\right\|_{\alpha^{2}, P_{x}}^{\alpha} \\
& \leq\left\|\left.\frac{d Q_{x}}{d P_{x}}\right|_{t}\right\|_{\alpha^{2}, P_{x}}^{\alpha}, \quad \text { since } \mathscr{F}_{t}^{t} \subset \mathscr{F}_{t}, \\
& \quad\left\{E^{P_{x}}\left[Z(t)^{\alpha^{2}}\right]\right\}^{1 / \alpha} \\
& =\left\{E^{P_{x}}\left[\exp \left(\alpha^{2} \int_{0}^{t}\langle b, d X\rangle-\frac{\alpha^{2}}{2} \int_{0}^{t}|b|^{2} d s\right)\right]\right\}^{1 / \alpha} \\
& =\left\{E^{P_{x}}\left[\exp \left(\alpha^{2} \int_{0}^{t}\langle b, d X\rangle-\frac{\alpha^{4}}{2} \int_{0}^{t}|b|^{2} d s+\frac{\alpha^{4}-\alpha^{2}}{2} \int_{0}^{t}|b|^{2} d s\right)\right]\right\}^{1 / \alpha},
\end{aligned}
$$

i.e.,

$$
\left(\int r^{\alpha^{2}} p d y\right)^{1 / \alpha} \leq\left\{E^{P_{x}}\left[\exp \left(\frac{\alpha^{4}-a^{2}}{2} c t+\alpha^{2} \int_{0}^{t}\langle b, d X\rangle-\frac{\alpha^{4}}{2} \int_{0}^{t}|b|^{2} d s\right)\right]\right\}^{1 / \alpha}
$$

where c is such that $|b|^{2} \leq c$. Using Schwarz inequality we then get

$$
\left(\int r^{\alpha^{2}} p d y\right)^{1 / \alpha} \leq\left[\exp \left(\frac{\alpha^{4}-\alpha^{2}}{2} c t\right)\right]^{1 / \alpha}
$$

$$
\int q^{\alpha} d y \leq\left(\exp \left[\frac{\alpha^{4}-\alpha^{2}}{2} c t\right]\right)^{1 / \alpha}\left(\int P^{\alpha+1} d y\right)^{\alpha-1 / \alpha}
$$

Significance. Pure analytical objects like $q(t, x, y)$ can be studied using stochastic integrals.

Appendix

Language of Probability

275 Definition. A probability space is a measure space (Ω, \mathscr{B}, P) with $P(\Omega)$ $=1 . P$ is called a probability measure or simply a probability. Elements of \mathscr{B} are called events. A measurable function $X:(\Omega, \mathscr{B}) \rightarrow R^{d}$ is called d-dimensional random variable. Given the random variable X, define $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
F\left(\left(a_{1}, \ldots a_{n}\right)\right)=P\left\{w: X_{i}(w)<a_{i}, \text { for } i=1,2, \ldots, d\right\}
$$

where $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$. Then F is called the distribution function of the random variable X. For any random variable $X, \int X d P=$ $\left(\int X_{1} d P, \ldots, \int X_{d} d P\right)$, if it exists, is called mean of X or expectation of X and is denoted by $E(X)$. Thus $E(X)=\int X d P=\mu . E\left(X^{n}\right)$, where $X^{n}=\left(X_{1}^{n}, X_{2}^{n}, \ldots, X_{d}^{n}\right)$ is called the $n^{\text {th }}$ moment about zero. $E\left((X-\mu)^{n}\right)$ is called the $n^{\text {th }}$ central moment. The 2 nd central moment is called variance and is denoted by σ^{2} we have the following.

Tchebyshev's Inequality.

Let X be a one-dimensional random variable with mean and variance μ. Then for every $\epsilon>0, P\{w:|X(w)-\mu| \geq \epsilon\} \leq \sigma^{2} / \epsilon^{2}$.

Generalised Tchebyshev's Inequality. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be measurable such that $f(u)=f(-u), f$ is strictly positive and increasing on $(0, \infty)$. Then for any random variable $X: \Omega \rightarrow R$,

$$
P(w:|X(w)|>\epsilon) \leq \frac{E(f(X))}{f(\epsilon)}
$$

for every $\epsilon>0$.
For any random variable $X: \Omega \rightarrow R^{d}, \phi(t)=E\left(e^{i t X}\right): R^{d} \rightarrow C$ is called the characteristic function of X. Here $t=\left(t_{1}, \ldots, t_{d}\right)$ and $t X=$ $t_{1} X_{1}+t_{2} X_{2}+\cdots+t_{d} X_{d}$.

Independence. Events E_{1}, \ldots, E_{n} are called independent if for every $\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, n\}$ we have

$$
P\left(E_{i_{1}} \cap \ldots \cap E_{i_{k}}\right)=P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{k}}\right) .
$$

An arbitrary collection of events $\left\{E_{\alpha}: \alpha \in I\right\}$ is called independent if every finite sub-collection is independent. Let $\left\{\mathscr{F}_{\alpha}: \alpha \in I\right\}$ be a collection of sub- σ-algebras of \mathscr{B}. This collection is said to be independent if for every collection $\left\{E_{\alpha}: \alpha \in I\right\}$, where $E_{\alpha} \in \mathscr{F}_{\alpha}$, of events is independent. A collection of random variables $\left\{X_{\alpha}: \alpha \in I\right\}$ is said to be independent if $\left\{\sigma\left(X_{\alpha}\right): \alpha \in I\right\}$ is independent where $\sigma\left(X_{\alpha}\right)$ is the σ-algebra generated by X_{α}.

Theorem . Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables with $F_{X_{1}}, \ldots, F_{X_{n}}$ as their distribution functions and let F be distribution function of $X=$ $\left(X_{1}, \ldots, X_{n}\right), \phi_{X_{1}}, \ldots, \phi_{X_{n}}$ the characteristic functions of X_{1}, \ldots, X_{n} and ϕ that of $X=\left(X_{1}, \ldots, X_{n}\right) . X_{1}, \ldots, X_{n}$ are independent if and only if $F\left(\left(a_{1}, \ldots, a_{n}\right)\right)=F_{X_{1}}\left(a_{1}\right) \ldots F_{X_{n}}\left(a_{n}\right)$ for all a_{1}, \ldots, a_{n}, iff $\phi\left(\left(t_{1}, \ldots, t_{n}\right)\right)$ $=\phi_{X_{1}}\left(t_{1}\right) \ldots \phi_{X_{n}}\left(t_{n}\right)$ for all t_{1}, \ldots, t_{n}.

Conditioning.

Theorem. Let $X:(\Omega, \mathscr{B}, P) \rightarrow \mathbb{R}^{d}$ be a random variable, with $E(X)$ finite, i.e. if $X=\left(X_{1}, \ldots, X_{d}\right), E\left(X_{i}\right)$ is finite for each i. Let \mathscr{C} be a sub-σ-algebra of \mathscr{B}. Then there exists a random variable $Y:(\Omega, \mathscr{C}) \rightarrow \mathbb{R}^{d}$ such that $\int_{C} Y d P=\int_{C} X d P$ for every C in \mathscr{C}.

If Z is any random variable with the same properties then $Y=Z$ almost everywhere (P).

Definition. Any such Y is called the conditional expectation of X with respect to \mathscr{C} and is denoted by $E(X \mid \mathscr{C})$.

If $X=\chi_{A}$, the characteristic function of A in \mathscr{B}, then $E\left(\chi_{A} \mid \mathscr{C}\right)$ is also denoted by $P(A \mid \mathscr{C})$.

Properties of conditional expectation.

1. $E(1 \mid \mathscr{C})=1$.
2. $E(a X+b Y \mid \mathscr{C})=a E(X \mid \mathscr{C})+b E(Y \mid \mathscr{C})$ for all real numbers a, b and random variables X, Y.
3. If X is a one-dimensional random variable and $X \geq 0$, then $E(X \mid \mathscr{C}) \geq 0$.
4. If Y is a bounded \mathscr{C}-measurable real valued random variable and X is a one-dimensional random variable, then

$$
E(Y X \mid \mathscr{C})=Y E(X \mid \mathscr{C}) .
$$

5. If $\mathscr{D} \subset \mathscr{C} \subset \mathscr{B}$ are σ-algebras, then

$$
E(E(X \mid \mathscr{C}) \mid \mathscr{D})=E(X \mid \mathscr{D}) .
$$

6. $\int_{\Omega}|E(X \mid \mathscr{D})| d(P \mid \mathscr{D}) \leq \int_{\Omega} E(X \mid \mathscr{C}) d(P \mid \mathscr{C})$.

Exercise 1. Let (Ω, \mathscr{B}, P) be a probability space, \mathscr{C} a sub- σ-algebra of \mathscr{B}. Let $X(t, \cdot) Y(t, \cdot): \Omega \rightarrow R$ be measurable with respect to \mathscr{B} and \mathscr{C} respectively where t ranges over the real line. Further let $E(X(t, r) \mid \mathscr{C})=$ $Y(t, \cdot)$ for each t. If f is a simple \mathscr{C}-measurable function then show that

$$
\int_{C} X(f(w), w) d(P \mid \mathscr{C})=\int_{C} Y(f(w) w) d P
$$

for every C in \mathscr{C}.
[Hint. Let A_{1}, \ldots, A_{n} be a \mathscr{C}-measurable partition such that f is constant on each A_{i}. Verify the equality when C is replaced by $C \cap A_{i}$.]

Exercise 2. Give conditions on X, Y such that exercise \square is valid for all bounded \mathscr{C}-measurable functions and prove your claim.

The next lemma exhibits conditioning as a projection on a Hilbert space.

Lemma. Let (Ω, \mathscr{B}, P) be any probability space \mathscr{C} a sub- σ-algebra of \mathscr{B}. Then
(a) $L^{2}(\Omega, \mathscr{C}, P)$ is a closed subspace of $L^{2}(\Omega, \mathscr{B}, P)$.
(b) If $\pi: L^{2}(\Omega, \mathscr{B}, P) \rightarrow L^{2}(\Omega, \mathscr{C}, P)$ is the projection, then $\pi(f)=$ $E(f \mid \mathscr{C})$.

Proof. (a) is clear, because for any $f \in L^{1}(\Omega, \mathscr{C}, P)$

$$
\int_{\Omega} f d(P \mid \mathscr{C})=\int_{\Omega} f d P
$$

(use simple function $0 \leq s_{1} \leq \ldots \leq f$, if $f \geq 0$) and $L^{2}(\Omega, \mathscr{C}, P) \quad 279$ is complete.
(b) To prove this it is enough to verify it for characteristic functions because both π and $f \rightarrow E(f \mid \mathscr{C})$ are linear and continuous.
Let $A \in \mathscr{B}, C \in \mathscr{C}$ then $\pi\left(\chi_{C}\right)=\chi_{C}$. As π is a projection

$$
\int \pi\left(\chi_{A}\right) \bar{\chi}_{C} d(P \mid \mathscr{B})=\int \chi_{A} \overline{\pi\left(\chi_{C}\right)} d(P \mid \mathscr{B}),
$$

i.e.

$$
\int_{C} \pi\left(\chi_{A}\right) d(P \mid \mathscr{B})=\int_{C} X_{A} d(P \mid \mathscr{B}) .
$$

Since $\pi\left(\chi_{A}\right)$ is \mathscr{C}-measurable,

$$
\int_{C} \pi\left(\chi_{A}\right) d(P \mid \mathscr{B})=\int_{C} \pi\left(\chi_{A}\right) d(P \mid \mathscr{C})
$$

Therefore

$$
\int_{C} \pi\left(\chi_{A}\right) d(P \mid \mathscr{C})=\int_{C} \chi_{A} d(P \mid \mathscr{B}), \forall C \text { in } \mathscr{C} .
$$

Hence

$$
\pi\left(\chi_{A}\right)=E\left(\chi_{A} \mid \mathscr{C}\right)
$$

Kolmogorov's Theorem.

Statement. Let A be any nonempty set and for each finite ordered subset $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ of A [i.e. $\left(t_{1}, \ldots, t_{n}\right)$ an ordered n-tuple with t_{i} in A], let $P_{\left(t_{1}, \ldots, t_{n}\right)}$ be a probability on the Borel sets in $R^{d n}=R^{d} \times R^{d} \times \cdots R^{d}$. Assume that the family $P_{\left(t_{1}, \ldots, t_{n}\right)}$ satisfies the following two conditions
(i) Let $\tau:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ be any permutation and f_{τ} : $R^{d n} \rightarrow R^{d n}$ be given by

$$
f_{\tau}\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)
$$

We have

$$
P_{\left(t_{\tau(1)}, \ldots, t_{\tau(n)}\right)}^{(E)_{\left(t_{1}, \ldots, t_{n}\right)}}\left(f_{\tau}^{-1}(E)\right)
$$

for every Borel set E of $R^{d n}$. In short, we write this condition as $P_{\tau t}=P_{t} \tau^{-1}$.
(ii) $\underset{\left(t_{1}, \ldots, t_{n}\right)}{(E)}=P_{\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n+1}, \ldots . t_{n+m}\right)}\left(E \times R^{d m}\right)$ for all Borel sets E of $R^{d n}$ and this is true for all $t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+m}$ of A.

Then, there exists a probability space (Ω, \mathscr{B}, P) and a collection of random variable $\left\{X_{t}: t \in A\right\}:(\Omega, \mathscr{B}) \rightarrow R^{d}$ such that

$$
P \underset{\left(t_{1}, \ldots, t_{n}\right)}{(E)}=P\left\{w:\left(X_{t_{1}}(w), \ldots, X_{t_{n}}(w)\right) \in E\right\}
$$

for all Borel sets E of $R^{d n}$.
Proof. Let $\Omega=\pi\left\{R_{t}^{d}: t \in A\right\}$ where $R_{t}^{d}=R^{d}$ for each t. Define $X_{t}: \Omega \rightarrow R^{d}$ to be the projection given by $X_{t}(w)=w(t)$. Let \mathscr{B}_{0} be the algebra generated by $\left\{X_{t}: t \in A\right\}$ and \mathscr{B} the σ-algebra generated by $\left\{X_{t}: t \in A\right\}$. Having got Ω and \mathscr{B} we have to construct a probability P on (Ω, \mathscr{B}) satisfying the conditions of the theorem.

Given t_{1}, \ldots, t_{n} define

$$
\pi_{\left(t_{1}, \ldots ., t_{n}\right)}: \Omega \rightarrow R^{d} \times R^{d} \times \cdots \times R^{d}(n \text { times })
$$

by

$$
\pi_{\left(t_{1}, \ldots, t_{n}\right)}(w)=\left(w\left(t_{1}\right), \ldots, w\left(t_{n}\right)\right)
$$

It is easy to see that every element of \mathscr{B}_{0} is $\pi_{\left(t_{1}, \ldots, t_{n}\right)}^{-1}(E)$ for suitable t_{1}, \ldots, t_{n} in A and a suitable Borel set E of $R^{d n}$. Define P on \mathscr{B}_{0} by $P\left(\pi_{\left(t_{1}, \ldots, t_{n}\right)}^{-1}(E)\right)=P_{\left(t_{1}, \ldots, t_{n}\right)}(E)$. Conditions (1) and (2) ensure that P is a well-defined function on \mathscr{B}_{0} and that, as $P_{\left(t_{1}, \ldots, t_{n}\right)}$ are measures, P is finitely additive on \mathscr{B}_{0}.

Claim. Let $C_{1} \supset C_{2} \supset \ldots \supset C_{n} \supset \ldots$ be a decreasing sequence in \mathscr{B}_{0} with $\operatorname{limit}_{n \rightarrow \infty} P\left(C_{n}\right) \geq \delta>0$. Then $\cap C_{n}$ is non-empty. Once the claim is proved, by Kolmogorov's theorem on extension of measures, the finitely additive set function P can be extended to a measure P on \mathscr{B}. One easily sees that P is a required probability measure.

Proof of the Claim. As $C_{n} \in \mathscr{B}_{0}$, we have

$$
C_{n}=\pi_{\left(t_{1}^{(n)}, \ldots, t_{k(n)}^{(n)}\right)}^{-1}\left(E_{n}\right) \text { for suitable } t_{i}^{(n)} \text { in } A
$$

and Borel set E_{n} in $R^{d k(n)}$. Let

$$
T_{n}=\left(t_{1}^{(n)}, \ldots, t_{k(n)}^{(n)}\right) \quad \text { and } \quad A_{n}=\left\{t^{(n)}, \ldots, t_{k(n)}^{(n)}\right\} .
$$

We can very well assume that A_{n} is increasing with n. Choose a compact 282 subset E_{n}^{\prime} of E_{n} such that

$$
P_{T_{n}}\left(E_{n}-E_{n}^{\prime}\right) \leq \delta / 2^{n+1}
$$

If $C_{n}^{\prime}=\pi_{T_{n}}^{-1}\left(E_{n}^{\prime}\right)$, then $P\left(C_{n}-C_{n}^{\prime}\right) \leq \delta / 2^{n+1}$. If $C_{n}^{\prime \prime}=C_{1}^{\prime} \cap C_{2}^{\prime} \cap \ldots \cap C_{n}^{\prime}$ then $C_{n}^{\prime \prime} \subset C_{n}^{\prime} \subset C_{n}, C_{n}^{\prime \prime}$ is decreasing and

$$
P\left(C_{n}^{\prime \prime}\right) \geq P\left(C_{n}\right)-\sum_{i=1}^{n} P\left(C_{i}-C_{i}^{\prime}\right) \geq \delta / 2
$$

We prove $\cap C_{n}^{\prime \prime}$ is not empty, which proves the claim.
Choose w_{n} in $C_{n}^{\prime \prime}$. As $\pi_{T_{1}}\left(w_{n}\right)$ is in the compact set E_{1} for all n, choose a subsequence

$$
n_{1}^{(1)}, n_{2}^{(1)}, \ldots \text { of } 1,2, \ldots \text { such that } \pi_{T_{1}}\left(w_{n_{k}}(1)\right)
$$

converges as $k \rightarrow \infty$. But for finitely many $n_{k}^{(1)}$'s, $\pi_{T_{2}}\left(\omega_{n_{m}}(1)\right)$ is in the compact set E_{2}^{\prime}. As before choose a subsequence $n_{k}^{(2)}$ of $n_{k}^{(1)}$ such that $\pi_{T_{1}}\left(\omega_{n_{k}}(2)\right)$ converges as $k \rightarrow \infty$. By the diagonal process obtain a subsequence, w_{n}^{*} of w_{n} such that $\pi_{T_{m}}\left(w_{n}^{*}\right)$ converges as $n \rightarrow \infty$ for all m. Thus, if t is in

$$
\bigcup_{m=1}^{\infty} A_{m}, \quad \text { then } \quad \operatorname{limit}_{n \rightarrow \infty} w_{n}^{*}(t)=x_{t}
$$

exists. Define w by $w(t)=0$ if $t \in A \bigcup_{m=1}^{\infty} A_{m}, w(t)=x_{t}$ if $t \in \bigcup_{m=1}^{\infty} A_{m}$. One easily sees that $w \in \bigcap_{n=1}^{\infty} C_{n}^{\prime \prime}$, completing the proof of the theorem.

283 Martingales.

Definition. Let (Ω, \mathscr{F}, P) be a probability space, (T, \leq) a totally ordered set. Let $\left(\mathscr{F}_{t}\right)_{t \in T}$ be an increasing family of sub- σ-algebras of \mathscr{F}. A collection $\left(X_{t}\right)_{t \in T}$ of random variables on Ω is called a martingale with respect to the family $\left(\mathscr{F}_{t}\right)_{t \in T}$ if
(i) $E\left(\left|X_{t}\right|\right)<\infty, \forall t \in T$;
(ii) X_{t} is \mathscr{F}_{t}-measurable for each $t \in T$;
(iii) $E\left(X_{t} \mid \mathscr{F}_{s}\right)=X_{s}$ a.s. for each s, t in T with $t \geq s$. (Markov property).
If instead of (iii) one has
(iii) $)^{\prime} E\left(X_{t} \mid \mathscr{F}_{s}\right) \geq(\leq) X_{s}$ a.s.,
then $\left(X_{t}\right)_{t \in T}$ is called a submartingale (respectively supermartingale).
From the definition it is clear that $\left(X_{t}\right)_{t \in T}$ is a submartingale if and only if $\left(-X_{t}\right)_{t \in T}$ is a supermartingale, hence it is sufficient to study the properties of only one of these. T is usually any one of the following sets

$$
[0, \infty), N, Z,\{1,2, \ldots, n\},[0, \infty] \quad \text { or } \quad N \cup\{\infty\} .
$$

Examples. (1) Let $\left(X_{n}\right)_{n=1,2 \ldots .}$ be a sequence of independent random variables with

$$
E\left(X_{n}\right)=0
$$

Then $Y_{n}=X_{1}+\cdots+X_{n}$ is a martingale with respect to $\left(\mathscr{F}_{n}\right)_{n=1,2, \ldots} \quad 284$ where

$$
\mathscr{F}_{n}=\sigma\left\{Y_{1}, \ldots, Y_{n}\right\}=\sigma\left\{X_{1}, \ldots, X_{n}\right\} .
$$

Proof. By definition, each Y_{n} is \mathscr{F}_{n}-measurable.

$$
\begin{aligned}
& E\left(Y_{n}\right)=0 \\
& E\left(\left(X_{1}+\cdots+X_{n}+X_{n+1}+\cdots+X_{n+m}\right) \mid \sigma\left\{X_{1}, \ldots, X_{n}\right\}\right) \\
& =X_{1}+\cdots+X_{n}+E\left(\left(X_{n+1}+\cdots+X_{n+m}\right) \mid \sigma\left\{X_{1}, \ldots, X_{n}\right\}\right) \\
& =Y_{n}+E\left(X_{n+1}+\cdots+X_{n+m}\right)=Y_{n}
\end{aligned}
$$

(2) Let (Ω, \mathscr{F}, P) be a probability space, Y a random variable with $E(|Y|)<\infty$. Let $\mathscr{F}_{t} \subset \mathscr{F}$ be a σ-algebra such that $\forall t \in[0, \infty)$

$$
\mathscr{F}_{t} \subset \mathscr{F}_{s} \quad \text { if } \quad t \leq s
$$

If $X_{t}=E\left(Y \mid \mathscr{F}_{t}\right), X_{t}$ is a martingale with respect to $\left(\mathscr{F}_{t}\right)$.
Proof. (i) By definition, X_{t} is \mathscr{F}_{t}-measurable.
(ii) $E\left(X_{t}\right)=E(Y)($ by definition $)<\infty$.
(iii) if $t \geq s$,

$$
E\left(X_{t} \mid \mathscr{F}_{s}\right)=E\left(E\left(Y \mid \mathscr{F}_{t}\right) \mid \mathscr{F}_{s}\right)=E\left(Y \mid \mathscr{F}_{s}\right)=X_{s}
$$

Exercise 1. $\Omega=[0,1], \mathscr{F}=\sigma$-algebra of all Borel sub sets of $\Omega, P=$ Lebesgue measure.

Let $\mathscr{F}_{n}=$-algebra generated by the sets

$$
\left[0, \frac{1}{2^{n}}\right)\left[\frac{1}{2^{n}}, \frac{2}{2^{n}}\right) ; \ldots,\left[\frac{2^{n}-1}{2^{n}}, 1\right]
$$

Let $f \in L^{\prime}[0,1]$ and define

$$
X_{n}(w)=2^{n}\left(\sum_{j=1}^{2^{n}-1} \chi_{\left[\frac{j-1}{2^{n}}, \frac{j}{2^{n}}\right)} \int_{j-1 / 2^{n}}^{j / 2^{n}} f d y+\chi_{\left[\frac{2^{n-1}}{\left.2^{n}, 1\right]}\right.} \int_{2^{n}-1 / 2^{n}}^{1} f d y\right)
$$

Show that $\left(X_{n}\right)$ is a martingale relative to $\left(\mathscr{F}_{n}\right)$.
Exercise. Show that a submartingale or a supermartingale $\left\{X_{s}\right\}$ is a martingale iff $E\left(X_{s}\right)=$ constant.
Theorem. If $\left(X_{t}\right)_{t \in T},\left(Y_{t}\right)_{t \in T}$ are supermartingales then
(i) $\left(a X_{t}+b Y_{t}\right)_{t \in T}$ is a supermartingale, $\forall a, b \in \mathbb{R}^{+}=[0, \infty)$.
(ii) $\left(X_{t} \wedge Y_{t}\right)_{t \in T}$ is a supermartingale.

Proof. (i) Clearly $Z_{t}=a X_{t}+b Y_{t}$ is \mathscr{F}_{t}-measurable and $E\left(\left|Z_{t}\right|\right) \leq$ $a E\left(\left|X_{t}\right|\right)+b E\left(\left|Y_{t}\right|\right)<\infty$.

$$
\begin{aligned}
E\left(a X_{t}+b Y_{t} \mid \mathscr{F}_{s}\right) & =a E\left(X_{t} \mid \mathscr{F}_{s}\right)+b E\left(Y_{t} \mid \mathscr{F}_{s}\right) \\
& \leq a X_{s}+b Y_{s}=Z_{s}, \quad \text { if } \quad t \geq s
\end{aligned}
$$

(ii) Again $X_{t} \wedge Y_{t}$ is \mathscr{F}_{t}-measurable and $E\left(\left|X_{t} \wedge Y_{t}\right|\right)<\infty$,

$$
E\left(X_{t} \wedge Y_{t} \mid \mathscr{F}_{s}\right) \leq E\left(X_{t} \mid \mathscr{F}_{s}\right) \leq X_{s}
$$

Similarly

$$
E\left(X_{t} \wedge Y_{t} \mid \mathscr{F}_{s}\right) \leq E\left(Y_{t} \mid \mathscr{F}_{s}\right) \leq Y_{s}, \quad \text { if } \quad t \geq s
$$

Therefore

$$
E\left(X_{t} \wedge Y_{t} \mid \mathscr{F}_{s}\right) \leq X_{s} \wedge Y_{s}
$$

Jensen's Inequality. Let X be a random variable in (Ω, \mathscr{B}, P) with $E(|X|)<\infty$ and let $\phi(x)$ be a convex function defined on the real line such that $E\left(\left|\phi_{0} X\right|\right)<\infty$. Then

$$
\phi(E(X \mid \mathscr{C})) \leq E\left(\phi_{0} X \mid \mathscr{C}\right) \quad \text { a.e. }
$$

where \mathscr{C} is any sub- σ-algebra of \mathscr{B}.

Proof. The function ϕ being convex, there exist sequences $a_{1}, a_{2}, \ldots a_{n}$, $\ldots, b_{1}, b_{2}, \ldots$ of real numbers such that $\phi(x)=\sup \left(a_{n} x+b_{n}\right)$ for each x. Let $L_{n}(x)=a_{n} x+b_{n}$. Then

$$
L_{n}(E(X \mid \mathscr{C}))=E\left(L_{n}(X) \mid \mathscr{C}\right) \leq E(\phi(X) \mid \mathscr{C})
$$

for all n so that

$$
\phi(E(X \mid \mathscr{C})) \leq E(\phi(X) \mid \mathscr{C}) .
$$

Exercise. (a) If $\left\{X_{t}: t \in T\right\}$ is a martingale with respect to $\left\{\mathscr{F}_{t}: t \in\right.$ $T\}$ and ϕ is a convex function on the real line such that $E\left(\left|\phi\left(X_{t}\right)\right|\right)<$ ∞ for every t, then $\left\{\phi\left(X_{t}\right)\right\}$ is a sub martingale.
(b) If $\left(X_{t}\right)_{t \in T}$ is a submartingale and $\phi(x)$ is a convex function and nondecreasing and if $E\left(\left|\phi_{0} X_{t}\right|\right)<\infty, \forall t$ then $\left\{\phi\left(X_{t}\right)\right\}$ is a submartingale. (Hint: Use Jensen's inequality).

Definition. Let (Ω, \mathscr{B}, P) be a probability space and $\left(\mathscr{F}_{t}\right)_{t \in[0, \infty)}$ an increasing family of sub- σ-algebras of \mathscr{F}. Let $\left(X_{t}\right)_{t \in[0, \infty)}$ be a family of random variables on Ω such that X_{t} is \mathscr{F}_{t}-measurable for each $t \geq 0$. $\left(X_{t}\right)$ is said to be progressively measurable if

$$
X:[0, t] \times \Omega \rightarrow \mathbb{R} \quad \text { defined by } \quad X(s, w)=X_{s}(w)
$$

is measurable with respect to the σ-algebra $\mathscr{B}[0, t] \times \mathscr{F}_{t}$ for every t.
Stopping times. Let us suppose we are playing a game of chance, say, tossing a coin. The two possible outcomes of a toss are H (Heads) and T (Tails). We assume that the coin is unbiased so that the probability of getting a head is the same as the probability of getting a tail. Further suppose that we gain +1 for every head and lose 1 for every tail. A game of chance of this sort has the following features.

1. A person starts playing with an initial amount N and finishes with a certain amount M.
2. Certain rules are specified which allow one to decide when to stop playing the game. For example, a person may not have sufficient money to play all the games, in which case he may decide to play only a certain number of games.

It is obvious that such a game of chance is fair in that it is neither advantageous nor disadvantageous to play such a game and on the average M will equal N, the initial amount. Furthermore, the stopping rules that are permissible have to be reasonable. The following type of stopping rule is obviously unreasonable.

Rule. If the first toss is a tail the person quits at time 0 and if the first toss is a head the person quits at time $t=1$.

This rule is unreasonable because the decision to quit is made on the basis of a future event, whereas if the game is fair this decision should depend only on the events that have already occured. Suppose, for example, 10 games are played, then the quitting times can be 0 , $1,2, \ldots, 10$. If $\xi_{1}, \ldots, \xi_{10}$ are the outcomes $\left(\xi_{i}=+1\right.$ for $H, \xi_{i}=-1$ for T) then the quitting time at the 5th stage (say) should depend only on ξ_{1}, \ldots, ξ_{4} and not any of $\xi_{5}, \ldots, \xi_{10}$. If we denote $\xi=\left(\xi_{1}, \ldots, \xi_{10}\right)$ and the quitting time τ as a function of ξ then we can say that $\{\xi: \tau=5$ depends only $\left.\xi_{1}, \ldots, \xi_{4}\right\}$. This leads us to the notion of stopping times.

Definition. Let (Ω, \mathscr{F}, P) be a probability space, $\left(\mathscr{F}_{t}\right)_{t \in[0, \infty)}$ an increasing family of sub- σ-algebras of $\mathscr{F} . \tau: \Omega \rightarrow[0, \infty]$ is called a stopping time or Markov time (or a random variable independent of the future) if

$$
\{w: \tau(w) \leq t\} \in \mathscr{F}_{t} \quad \text { for each } \quad t \geq 0 .
$$

Observe that a stopping time is a measurable function with respect to $\sigma\left(\cup \mathscr{F}_{t}\right) \subset \mathscr{F}$.

Examples. 1. $\tau=$ constant is a stopping time.
2. For a Brownian motion $\left(X_{t}\right)$, the hitting time of a closed set is stopping time.

Exercise 2. Let $\mathscr{F}_{t+} \equiv \bigcap_{\operatorname{Def} s>t} \mathscr{F}_{s} \equiv \mathscr{F}_{t}$.
[If this is satisfied for every $t \geq 0, \mathscr{F}_{t}$ is said to be right continuous]. If $\{\tau<t\} \in \mathscr{F}_{t}$ for each $t \geq 0$, then τ is a stopping time. (Hint: $\{\tau \leq t=$ $\bigcap_{n=k}^{\infty}\{\tau<t+1 / n\}$ for every k).

We shall denote by \mathscr{F}_{∞} the σ-algebra generated by $\bigcup_{t \in T} \mathscr{F}_{t}$. If τ is a stopping time, we define

$$
\mathscr{F}_{\tau}=\left\{A \in \mathscr{F}_{\infty}: A \cap\{\tau \leq t\} \in \mathscr{F}_{t}, \forall t \geq 0\right\}
$$

Exercise 3. (a) Show that \mathscr{F}_{τ} is a σ-algebra. (If $A \in \mathscr{F}_{\tau}$,

$$
\left.A^{c} \cap\{\tau \leq t\}=\{t \leq t\}-A \cap\{\tau \leq t\}\right)
$$

(b) If $\tau=t$ (constant) show that $\mathscr{F}_{\tau}=\mathscr{F}_{t}$.

Theorem. Let τ and σ be stopping times. Then
(i) $\tau+\sigma, \tau v \sigma, \tau \wedge \sigma$ are all stopping times.
(ii) If $\sigma \leq \tau$, then $\mathscr{F}_{\sigma} \subset \mathscr{F}_{\tau}$.
(iii) τ is \mathscr{F}_{τ}-measurable.
(iv) If $A \in \mathscr{F}_{\sigma}$, then $A \cap\{\sigma=\tau\}$ and $A \cap\{\sigma \leq \tau\}$ are in $\mathscr{F}_{\sigma \wedge \tau} \subset$ $\mathscr{F}_{\sigma} \cap \mathscr{F}_{\tau}$. In particular, $\{\tau<\sigma\},\{\tau=\sigma\}$, $\{\tau>\sigma\}$ are all in $\mathscr{F}_{\tau} \cap \mathscr{F}_{\sigma}$.
(v) If τ^{\prime} is \mathscr{F}_{τ}-measurable and $\tau^{\prime} \geq \tau$, then τ^{\prime} is a stopping time.
(vi) If $\left\{\tau_{n}\right\}$ is a sequence of stopping times, then $\underline{\lim } \tau_{n} . \overline{\lim } \tau_{n}$ are also stopping times provided that $\mathscr{F}_{t+}=\mathscr{F}_{t}, \forall t \geq 0$.
(vii) If $\tau_{n} \downarrow \tau$, then $\mathscr{F}_{\tau}=\bigcap_{n=1}^{\infty} \mathscr{F}_{\tau_{n}}$ provided that $\mathscr{F}_{t+}=\mathscr{F}_{t}, \forall t \geq 0$.

Proof. (i)

$$
\begin{aligned}
\{\sigma+\tau\}>t\}= & \{\sigma+\tau>t, \tau \leq t, \sigma \leq t\} \cup\{\tau>t\} \cup\{\sigma>t\} \\
& \{\sigma+\tau>t, \sigma \leq t\}=\tau \leq \mathscr{A}
\end{aligned}
$$

$$
\begin{gathered}
=\bigcup_{\substack{r \in \mathcal{Q} \\
0 \leq r \leq t}}\{\sigma>r>t-\tau, \tau \leq t, \sigma \leq t\} \\
(\mathscr{Q}=\text { set of rationals }) \\
\{\sigma>r>t-\tau, \tau \leq t, \sigma \leq t\}=\{t \geq \sigma>r\} \cap\{t \geq \tau>t-r\} \\
=\{\sigma \leq t\} \cap\{\sigma \leq r\}^{c} \cap\{\tau \leq t\} \cap\{\tau \leq t-r\}^{c} .
\end{gathered}
$$

The right side is in \mathscr{F}_{t}. Therefore $\sigma+\tau$ is a scopping time.

$$
\begin{aligned}
& \{\tau V \sigma \leq t\}=\{\tau \leq t\} \cap\{\sigma \leq t\} \\
& \{\tau \wedge \sigma>t\}=\{\tau>t\} \cap\{\sigma>t\}
\end{aligned}
$$

(ii) Follows from (iv).
(iii) $\{\tau \leq t\}\{\tau \leq s\}=\{\tau \leq t \wedge s\} \in \mathscr{F}_{t \wedge s} \subset \mathscr{F}_{s}, \forall s \geq 0$.
(iv) $A \cap\{\sigma<\tau\} \cap\{\sigma \wedge \tau \leq t\}=[A \cap\{\sigma \leq t<\tau\}]$
$U[A \cap \underset{\substack{r \in \mathcal{Q} \\ 0 \leq r \leq t}}{U}\{\sigma \leq<\tau\} \cap\{\tau \leq t\}] \in \mathscr{F}_{t}$.
$A \cap\{\sigma \leq \tau\} \cap\{\sigma \wedge \tau \leq t\}=A \cap\{\sigma \leq \tau\} \cap\{\sigma \leq t\}$.
It is now enough to show that $(\sigma \leq \tau) \in \mathscr{F}_{\sigma}$; but this is obvious because $(\tau<\sigma)=(\sigma \leq \tau)^{c}$ is in $\mathscr{F}_{\sigma \wedge \tau} \subset \mathscr{F}_{\sigma}$. Therefore $A \cap\{\sigma \leq$ $\tau\} \in \mathscr{F}_{\sigma \wedge \tau}$ and (iv) is proved.
(v) $\left\{\tau^{\prime} \leq t\right\}=\left\{\tau^{\prime} \leq t\right\} \cap\{\tau \leq t\} \in \mathscr{F}_{t}$ as $\left(\tau^{\prime} \leq t\right) \in \mathscr{F}_{\tau}$. Therefore τ^{\prime} is a stopping time.
(vi) $\underline{\lim } \tau_{n} \equiv \sup _{n} \inf _{k \geq n} \tau_{k}$

$$
=\sup _{n} \inf _{\ell} \inf \left\{\tau_{n}, \tau_{n+1}, \ldots, \tau_{n+\ell}\right\} .
$$

By (i), $\inf \left\{\tau_{n}, \tau_{n+1}, \ldots, \tau_{n+\ell}\right\}$ is a stopping time. Thus we have only to prove that if $\tau_{n} \uparrow \tau$ or $\tau_{n} \downarrow \tau$ where τ_{n} are stopping times, then τ is a stopping time. Let $\tau_{n} \uparrow \tau$. Then $\{\tau \leq t\}=\bigcap_{n=1}^{\infty}\left\{\tau_{n} \leq t\right\}$ so that τ is a stopping time. Let $\tau_{n} \downarrow \tau$. Then

$$
\{\tau \geq t\}=\bigcap_{n=1}^{\infty}\left\{\tau_{n} \geq t\right\} .
$$

By Exercise $3, \tau$ is a stopping time. That $\overline{\lim } \tau_{n}$ is a stopping time is proved similarly.
(vii) Since $\tau \leq \tau_{n}, \forall n, \mathscr{F}_{\tau} \subset \bigcap_{n=1}^{\infty} \mathscr{F}_{\tau_{n}}$. Let $A \in \bigcap_{n=1}^{\infty} \mathscr{F}_{\tau_{n}}$. Therefore $A \cap\left(\tau_{n}<t\right) \in \mathscr{F}_{t}, \forall n . A \cap(\tau<t)=\bigcap_{m=1}^{\infty}\left(A \cap\left(\tau_{m}<t\right)\right) \in \mathscr{F}_{t}$. Therefore $A \in \mathscr{F}_{\tau}$.

Optional Sampling Theorem. (Discrete case). Let $\left\{X_{1}, \ldots, X_{k}\right\}$ be a martingale relative to $\left\{\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}\right\}$. Let $\left\{\tau_{1}, \ldots, \tau_{p}\right\}$ be a collection of stopping times relative to $\left\{\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}\right\}$ such that $\tau_{1} \leq \tau_{2} \leq \ldots \leq \tau_{p}$292 a.s. and each τ_{i} takes values in $\{1,2, \ldots, k\}$. Then $\left\{X_{\tau_{1}}, \ldots, X_{\tau_{p}}\right\}$ is a martingale relative to $\left\{\mathscr{F}_{\tau_{1}}, \ldots, \mathscr{F}_{\tau_{p}}\right\}$ where for any stopping time τ, $X_{\tau}(\omega)=X_{\tau(w)}(\omega)$.

Proof. It is easy to see that each $X_{\tau_{i}}$ is a random variable. In fact $X_{\tau_{m}}=$ $\sum_{i=1}^{k} X_{i} \chi_{\left\{\tau_{m}=i\right\}}$. Let $\tau \in\{1,2, \ldots, k\}$. Then

$$
E\left(\left|X_{\tau}\right|\right) \leq \sum_{j=1}^{k} \int\left|X_{j}\right| d P<\infty
$$

Consider

$$
\left(X_{\tau_{j}} \leq t\right) \cap\left(\tau_{j} \leq s\right)=\bigcap_{\ell \leq s}\left(X_{\ell} \leq t\right) \in \mathscr{F}_{s} .
$$

Then $\left(X_{\tau_{j}} \leq t\right)$ is in $\mathscr{F}_{\tau_{j}}$, i.e. $X_{\tau_{j}}$ is $\mathscr{F}_{\tau_{j}}$-measurable. Next we show that

$$
\begin{equation*}
E\left(X_{\tau_{j}} \mid \mathscr{F}_{\tau_{k}}\right) \leq X_{\tau_{k}}, \quad \text { if } \quad j \geq k . \tag{*}
\end{equation*}
$$

(*) is true if and only if

$$
\int_{A} X_{\tau_{j}} d P \leq \int_{A} X_{\tau_{k}} d P \quad \text { for every } \quad A \in \mathscr{F}_{\tau_{k}}
$$

The theorem is therefore a consequence of the following

Lemma. Let $\left\{X_{1}, \ldots, X_{k}\right\}$ be a supermartingale relative to

$$
\left\{\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}\right\}
$$

If τ and σ are stopping times relative to $\left\{\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}\right\}$ taking values in $\{1,2, \ldots, k\}$ such that $\tau \leq \sigma$ then

$$
\int_{A} X_{\tau} d P \geq \int_{A} X_{\sigma} d P \quad \text { for every } \quad A \in \mathscr{F}_{\tau}
$$

293 Proof. Assume first that $\sigma-\tau \leq 1$. Then

$$
\begin{aligned}
\int_{A}\left(X_{\tau}-X_{\sigma}\right) d P & =\sum_{j=1}^{k} \int_{[A \cap(\tau=j) \cap(\tau<\sigma)]}\left(X_{\tau}-X_{\sigma}\right) d P \\
& =\sum_{j=1}^{k} \int_{[A \cap(\tau=j)]}\left(X_{j}-X_{j+1}\right) d P
\end{aligned}
$$

$A \in \mathscr{F}_{i}$. Therefore $A \cap(\tau=j) \in \mathscr{F}_{j}$. By supermartingale property

$$
\int_{[A \cap(\tau=j)]}\left(X_{j}-X_{j+1}\right) d P \geq 0
$$

Therefore

$$
\int_{A}\left(X_{\tau}-X_{\sigma}\right) d P \geq 0
$$

Consider now the general case $\tau \leq \sigma$. Define $\tau_{n}=\sigma \wedge(\tau+n)$. Therefore $\tau_{n} \geq \tau . \tau_{n}$ is a stopping time taking values in $\{1,2, \ldots, k\}$,

$$
\tau_{n+1} \geq \tau_{n}, \quad \tau_{n+1}-\tau_{n} \leq 1, \quad \tau_{k}=\sigma
$$

Therefore $\int_{A} X_{\tau_{n}} d P \geq \int_{A} X_{\tau_{n+1}} d P, \forall A \in \mathscr{F}_{\tau_{n}}$. If $A \in \mathscr{F}_{\tau}$ then $A \in$ $\mathscr{F}_{\tau_{n}}, \forall n$. Therefore

$$
\int_{A} X_{\tau_{1}} d P \geq \int_{A} X_{\tau_{2}} d P \geq \ldots \geq \int_{A} X_{\tau_{k}} d P, \quad \forall A \in \mathscr{F}_{\tau}
$$

Now $\tau_{1}-\tau \leq 1 . \tau \leq \tau_{1}$. Therefore

$$
\int_{A} X_{\tau} d P \geq \int_{A} X_{\tau_{1}} d P \geq \int_{A} X_{\sigma} d P
$$

This completes the proof.
N.B. The equality in (*) follows by applying the argument to

$$
\left\{-X_{1}, \ldots,-X_{k}\right\}
$$

Corollary 1. Let $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ be a super-martingale relative to

$$
\left\{\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}\right\} .
$$

If τ is any stopping time, then

$$
E\left(X_{k}\right) \leq E\left(X_{\tau}\right) \leq E\left(X_{1}\right)
$$

Proof. Follows from the fact that $\left\{X_{1}, X_{\tau}, X_{k}\right\}$ is a supermartingale relative to $\left\{\mathscr{F}_{1}, \mathscr{F}_{\tau}, \mathscr{F}_{k}\right\}$.

Corollary 2. If $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ is a super-martingale relative to

$$
\left\{\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}\right\}
$$

and τ is any stopping time, then

$$
E\left(X_{\tau}\right) \leq E\left(\left|X_{1}\right|\right)+2 E\left(X_{k}^{-}\right) \leq 3 \sup _{1 \leq n \leq k} E\left(\left|X_{n}\right|\right)
$$

where for any real $x, x^{-}=\frac{|x|-x}{2}$.
Proof. $X_{k}^{-}=\frac{\left|X_{k}\right|-X_{k}}{2}$, so $2 E\left(X_{k}^{-}\right)=E\left(\left|X_{k}\right|\right)-E\left(X_{k}\right)$.
By theorem $\left\{X_{\tau} \wedge 0, X_{k} \wedge 0\right\}$ is a super-martingale relative to $\left\{\mathscr{F}_{\tau}, \mathscr{F}_{k}\right\}$.
Therefore $E\left(X_{k} \wedge 0 \mid \mathscr{F}_{\tau}\right) \leq E\left(X_{\tau} \wedge 0\right)$. Hence

$$
E\left(X_{k}^{-}\right) \geq E\left(X_{\tau}^{-}\right)=\frac{E\left(\left|X_{\tau}\right|\right)-E\left(X_{\tau}\right)}{2}
$$

Therefore

$$
\begin{aligned}
E\left(\left|X_{\tau}\right|\right) & \leq 2 E\left(X_{k}^{-}\right)+E\left(X_{\tau}\right) \\
& \leq 2 E\left(X_{k}^{-}\right)+E\left(X_{1}\right) \leq 3 \sup _{1 \leq n \leq k} E\left(\left|X_{n}\right|\right)
\end{aligned}
$$

Theorem. Let (Ω, \mathscr{F}, P) be a probability space and $\left(\mathscr{F}_{t}\right)_{t \geq 0}$ on increasing family of sub- σ-algebras of \mathscr{F}. Let τ be a finite stopping time, and $\left(X_{t}\right)_{t \geq 0}$ a progressively measurable family (i.e. $X:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ defined by $X(t, w)=X_{t}(w)$ is progressively measurable). If $X_{\tau}(w)=$ $X_{\tau(w)}(w)$, then X_{τ} is \mathscr{F}_{τ}-measurable.

Proof. We show that $\{w: X(\tau(w), w) \leq t, \tau(w) \leq s\} \in \mathscr{F}_{t}$ for every t. Let $\Omega_{s}=\{w: \tau(w) \leq s\} ; \Omega_{s} \in \mathscr{F}_{s}$ and hence the σ-algebra induced by \mathscr{F}_{s} on Ω_{s} is precisely

$$
\left\{A \cap \Omega_{s}: A \in \mathscr{F}_{s}\right\}=\left\{A \in \mathscr{F}_{s}: A \subset \Omega_{s}\right\}
$$

Since $\tau(w)$ is measurable,

$$
w \rightarrow(\tau(w), w) \quad \text { of } \quad \Omega_{s} \rightarrow[0, s] \times \Omega_{s}
$$

is $\left(\mathscr{F}_{s}, \mathscr{B}[0, s] \times \mathscr{F}_{s}\right)$-measurable. Since X is progressively measurable,

$$
[0, s] \times \Omega_{s} \xrightarrow{X} \mathbb{R} \quad \text { is measurable. }
$$

Therefore $\{w: X(\tau(w), w) \leq t, \tau(w) \leq s\} \in \sigma$-algebra on Ω_{s}. Therefore X_{τ} is \mathscr{F}_{τ} measurable.

The next theorem gives a condition under which $\left(X_{t}\right)_{t \geq 0}$ is progressively measurable.

Theorem. If X_{t} is right continuous in $t, \forall w$ and X_{t} is \mathscr{F}_{t}-measurable, $\forall t \geq 0$ then $\left(X_{t}\right)_{t \geq 0}$ is progressively measurable.

Proof. Define

$$
X_{n}(t, w)=X\left(\frac{[n t]+1}{n}, w\right) \cdot \frac{[n t]+1}{n} \downarrow t .
$$

Then

$$
\operatorname{Lt}_{n \rightarrow \infty} X_{n}(t, w)=X(t, w) \quad(\text { by right continuity })
$$

Step 1. Suppose T is rational, $T=m / n$ where $m \geq 0$ is an integer. Then

$$
\begin{aligned}
& \left\{(t, w): 0 \leq t<T, X_{n}(t, w) \leq \alpha\right\} \\
= & \bigcup_{0 \leq i \leq m-1}\left\{\left[\frac{i}{n}, \frac{i+1}{n}\right) X \frac{X_{i+1}^{-1}}{n}(-\infty, \alpha]\right\}
\end{aligned}
$$

Thus if $T=m / n,\left.X_{n}\right|_{[0, T) \times \Omega}$ is $\mathscr{B}[0, T] \times \mathscr{F}_{T}$-measurable. Now $T=\frac{k m}{k n}$. Letting $k \rightarrow \infty$, by right continuity of $X(t)$ one gets $\left.X\right|_{[0,) \times \Omega}$ is $[0, T] \times \mathscr{F}_{T}$-measurable. As $X(T)$ is \mathscr{F}_{T}-measurable, one gets $\left.X\right|_{[0, T] \times \Omega}$ is $[0, T] \times \mathscr{F}_{T}$-measurable.

Step 2. Let T be irrational. Choose a sequence of rationals S_{n} increasing to T.

$$
\begin{aligned}
& \{(t, w): 0 \leq t \leq T, X(t, w) \leq \alpha\} \\
& =\bigcup_{n=1}^{\infty}\left\{(t, w): 0 \leq t \leq S_{n}, X(t, w) \leq \alpha\right\} \cup\{T\} \times X_{T}^{-1}(-\infty, \alpha]
\end{aligned}
$$

The countable union is in $\mathscr{B}[0, T] \times \mathscr{F}_{T}$ by Step 1 . The second member is also in $\mathscr{B}[0, T] \times \mathscr{F}_{T}$ as $X(T)$ is \mathscr{F}_{T}-measurable. Thus $\left.X\right|_{[0, T] \times \Omega}$ is $\mathscr{B}_{[0, T]} \times \mathscr{F}_{T}$-measurable when T is irrational also.

Remark. The technique used above is similar to the one used for proving that a right continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable.

Theorem. Let $\left\{X_{1}, \ldots, X_{k}\right\}$ be a supermartingale and $\lambda \geq 0$. Then
(1) $\lambda P\left(\sup _{1 \leq n \leq k} X_{n} \geq \lambda\right) \leq E\left(X_{1}\right)-\int_{\left\{\begin{array}{c}\sup X_{n}<\lambda \\ 1 \leq n \leq k\end{array}\right\}} X_{k} d P$

$$
\leq E\left(X_{1}\right)+E\left(X_{k}^{-}\right)
$$

(2) $\lambda P\left(\inf _{1 \leq n \leq k} X_{n} \leq-\lambda\right) \leq-\int_{\left\{\inf X_{n} \leq-\lambda\right\}} X_{k} d P$

$$
\leq E\left(X_{k}^{-}\right)
$$

Proof. Define

$$
\begin{aligned}
\tau(w) & =\inf \left\{n: X_{n} \geq \lambda\right\} \quad \text { if } \quad \sup X_{n} \geq \lambda \\
& =k, \quad \text { if } \quad \sup _{n} X_{n}<\lambda
\end{aligned}
$$

Clearly $\tau \geq 0$ and τ is a stopping time. If $\tau<k$, then $X_{\tau}(w) \geq \lambda$ for each w.

$$
\begin{aligned}
E\left(X_{\tau}\right) & =\int_{\left(\sup X_{n} \geq \lambda\right)} X_{\tau} d P+\int_{\left(\sup X_{n}<\lambda\right)} X_{\tau} d P \\
& \geq \lambda P\left(\sup X_{n} \geq \lambda\right)+\int_{\left(\sup X_{n}<\lambda\right)} X_{k} d P
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& E\left(X_{1}\right) \geq \lambda P\left(\sup X_{n} \geq \lambda\right)+\int_{\left(\sup X_{n}<\lambda\right)} X_{k} d P \\
& \lambda P\left(\sup X_{n} \geq \lambda\right) \leq E\left(X_{1}\right)-\int_{\left(\sup X_{n}<\lambda\right)} X_{k} d P \leq E\left(X_{1}\right)+E\left(X_{k}^{-}\right)
\end{aligned}
$$

The proof of (2) is similar if we define

$$
\tau(w)= \begin{cases}\inf \left\{n: X_{n} \leq-\lambda\right\}, & \text { if } \inf X_{n} \leq-\lambda \\ k, & \text { if } \quad \inf X_{n}>-\lambda\end{cases}
$$

298 Kolmogorov's Inequality (Discrete Case). Let $\left\{X_{1}, \ldots, X_{k}\right\}$ be a finite sequence of independent random variables with mean 0 . Then

$$
P\left(\sup _{1 \leq n \leq k}\left(\left|X_{1}+\cdots+X_{n}\right| \geq \lambda\right) \leq \frac{1}{\lambda^{2}} E\left(\left(X_{1}+X_{2}+\cdots+X_{k}\right)^{2}\right)\right)
$$

Proof. If $S_{n}=X_{1}+\cdots+X_{n}, n=1,2, \ldots, k$, then $\left\{S_{1}, \ldots, S_{k}\right\}$ is a martingale with respect to $\left\{\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}\right\}$ where $\mathscr{F}_{n}=\sigma\left\{X_{1}, \ldots, X_{n}\right\}$. Therefore $S_{1}^{2}, \ldots, S_{k}^{2}$ is a submartingale (since $x \rightarrow x^{2}$ is convex). By the previous theorem,

$$
\lambda^{2} P\left\{\inf -S_{n}^{2} \leq-\lambda^{2}\right\} \leq E\left(\left(-S_{K}^{2}\right)^{-}\right)
$$

Therefore

$$
\begin{gathered}
P\left\{\sup \left|S_{n}\right| \geq \lambda\right\} \leq \frac{E\left(\left(-S_{k}^{2}\right)^{-}\right)}{\lambda^{2}}=\frac{E\left(S_{k}^{2}\right)}{\lambda^{2}} \\
=\frac{1}{\lambda^{2}} E\left(\left(X_{1}+X_{2}+\cdots+X_{k}\right)^{2}\right)
\end{gathered}
$$

Kolmogorov's Inequality (Continuous case). Let $\{X(t): t \geq 0\}$ be a continuous martingale with $E(X(0))=0$. If $0<T<\infty$, then for any $\epsilon>0$

$$
P\left\{w: \sup _{0 \leq s \leq T}|X(s, w)| \geq \epsilon\right) \leq \frac{1}{\epsilon^{1}} E\left((X(T))^{2}\right)
$$

Proof. For any positive integer k define $Y_{0}=X(0)$,

$$
\begin{aligned}
Y_{1} & =X\left(\frac{T}{2^{k}}\right)-X(0), Y_{2}=X\left(\frac{2 T}{2^{k}}\right)-X\left(\frac{T}{2^{k}}\right), \ldots, Y_{2} k \\
& =X\left(\frac{2^{k} T}{2^{k}}\right)-X\left(\frac{\left(2^{k}-1\right)}{2^{k}} T\right)
\end{aligned}
$$

By Kolmogorov inequality for the discrete case, for any $\delta>0$.

$$
P\left(\sup _{0 \leq n \leq 2^{k}}\left|X\left(\frac{n T}{2^{k}}\right)\right|>\delta\right) \leq \frac{1}{\delta^{2}} E\left((X(T))^{2}\right)
$$

By continuity of $X(t), A_{k}=\left\{w: \sup _{0 \leq n \leq 2^{k}}\left|X\left(\frac{n T}{2^{k}}\right)\right|>\delta\right\}$ increases to 299 $\left\{\sup _{0 \leq s \leq T}|X(s)|>\delta\right\}$ so that one gets

$$
\begin{equation*}
P\left(\sup _{0 \leq s \leq T}|X(s)|>\delta\right) \leq \frac{1}{\delta^{2}} E\left((X(T))^{2}\right) \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
P\left(\sup _{0 \leq s \leq T}|X(s)| \geq \epsilon\right) & \leq \operatorname{limit}_{m \rightarrow \infty} P\left(\sup _{0 \leq s \leq T}|X(s)|>\epsilon-\frac{1}{m}\right) \\
& \leq \operatorname{limit}_{m \rightarrow \infty} \frac{1}{(\epsilon-1 / m)^{2}} E\left((X(T))^{2}\right) \quad \text { by }(1) \\
& =1 / \epsilon^{2} E\left((X(T))^{2}\right)
\end{aligned}
$$

This completes the proof.
Optional Sampling Theorem (Countable case). Let $\left\{X_{n}: n \geq 1\right\}$ be a supermartingale relative to $\left\{\mathscr{F}_{n}: n \geq 1\right\}$. Assume that for some $X_{\infty} \in L^{1}, X_{n} \geq E\left(X_{\infty} \mid \mathscr{F}_{n}\right)$. Let σ, τ be stopping times taking values in $N \cup\{\infty\}$, with $\sigma \leq \tau$. Define $X_{\tau}=X_{\infty}$ on $\{\sigma=\infty\}$ and $X_{\tau}=X_{\infty}$ on $\{\sigma=\infty\}$. Then $E\left(X_{\tau} \mid \mathscr{F}_{\sigma}\right) \leq X_{\sigma}$.

Proof. We prove the theorem in three steps.
Step 1. Let $X_{\infty}=0$ so that $X_{n} \geq 0$. Let $\tau_{k}=\tau \wedge k, \sigma_{k}=\tau \wedge k$. By optional sampling theorem for discrete case $E\left(X_{\tau_{k}}\right) \leq E\left(X_{k}\right) \leq E\left(X_{1}\right)$. By Fatou's lemma, $E\left(X_{\tau}\right)<\infty$. Again by optional sampling theorem for the discrete case,

$$
E\left(X_{\tau_{k}} \mid \mathscr{F}_{\sigma_{k}}\right) \leq X_{\sigma_{k}} \ldots,(0)
$$

$300 \quad$ Let $A \in \mathscr{F}_{\sigma}$. Then $A \cap\{\sigma \leq k\} \in \mathscr{F}_{\sigma_{k}}$, and by (0)

$$
\int_{A \cap\{\tau \leq k\}} X_{\tau} d P \leq \int_{A \cap(\tau \leq k)} X_{\tau_{k}} d P \leq \int_{A \cap(\sigma \leq k)} X_{\sigma_{k}} d P \leq \int_{A \cap(\sigma \leq k)} X_{\sigma} d P
$$

Letting $k \rightarrow \infty$,
(1)

$$
\int_{A \cap(\tau \neq \infty)} X_{\tau} d P \leq \int_{A \cap(\sigma \neq \infty)} X_{\sigma} d P
$$

Clearly
(2)

$$
\int_{A \cap(\tau=\infty)} X_{\tau} d P=\int_{A} X_{\infty} d P=\int_{A \cap(\sigma=\infty)} X_{\sigma} d P
$$

By (1) and (2), $\inf _{A} X d P \leq \int_{A} X_{\sigma} d P$, proving that

$$
E\left(X_{\tau} \mid \mathscr{F}_{\sigma}\right) \leq X_{\sigma}
$$

Step 2. Suppose $X_{n}=E\left(X_{\infty} \mid \mathscr{F}_{n}\right)$. In this case we show that $X_{\tau}=$ $E\left(X_{\infty} \mid \mathscr{F}_{\tau}\right)$ for every stopping time so that $E\left(X_{\tau} \mid \mathscr{F}_{\sigma}\right)=X_{\sigma}$. If $A \in \mathscr{F}_{\tau}$, then

$$
\int_{(\tau \leq k)} X_{\tau} d P=\int_{A \cap(\tau \leq K)} X_{\infty} d P \quad \text { for every } k
$$

Letting $k \rightarrow \infty$,
(1)

$$
\int_{A \cap(\tau \neq \infty)} X_{\tau} d P=\int_{A \cap(\tau \neq \infty)} X_{\infty} d P
$$

(2)

$$
\int_{A \cap(\tau=\infty)} X_{\tau} d P=\int_{A} X_{\infty} d P=\int_{A \cap(\tau=\infty)} X_{\infty} d P
$$

The assertion follows from (1) and (2).
Step 3. Let X_{n} be general. Then

$$
X_{n}=X_{n}-E\left(X_{\infty} \mid \mathscr{F}_{n}\right)+E\left(X_{\infty} \mid \mathscr{F}_{n}\right)
$$

Apply Step (1) to $Y_{n}=X_{n}-E\left(X_{\infty} \mid \mathscr{F}_{n}\right)$ and Step (2) to

$$
Z_{n}=E\left(X_{\infty} \mid \mathscr{F}_{n}\right)
$$

to complete the proof.

Uniform Integrability.

Definition. Let (Ω, \mathscr{B}, P) be any probability space, $L^{1}=L^{1}(\Omega, \mathscr{B}, P)$. A family $H \subset L^{1}$ is called uniformly integrable if for every $\epsilon>0$ there exists a $\delta>0$ such that $\int_{(|X| \geq \delta)}|X| d P<\epsilon$ for all X in H.

Note. Every uniformly integrable family is a bounded family.
Proposition. Let X_{n} be a sequence in L^{1} and let $X_{n} \rightarrow X$ a.e. Then $X_{n} \rightarrow X$ in L^{1} iff $\left\{X_{n}: n \geq 1\right\}$ is uniformly integrable.

Proof. is left as an exercise.
As $\left\{X_{n}: n \geq 1\right\}$ is a bounded family, by Fatou's lemma $X \in L^{1}$. Let $\epsilon>0$ be given. By Egoroff's theorem there exists a set F such that $P(F)<\epsilon$ and $X_{n} \rightarrow X$ uniformly on F.

$$
\begin{aligned}
& \int\left|X_{n}-X\right| d P \leq\left\|X_{n}-X\right\|_{\infty, \Omega-F^{+}} \int_{F}\left|X_{n}-X\right| d P \\
& \leq\left\|X_{n}-X\right\|_{\infty, \Omega-F}+\int_{F}\left|X_{n}\right| d P+\int_{F}|X| d P \\
& \leq\left\|X_{n}-X\right\|_{\infty, \Omega-F}+\int_{F \cap\left(\left|X_{n}\right| \geq \delta\right)}\left|X_{n}\right| d P+\int_{F \cap(|X| \geq \delta)}|X| d P+ \\
& \quad+\int_{\left.F \cap| | X_{n} \mid \leq \delta\right\}} X_{\left|X_{n}\right| d P}+\int_{F \cap(|X| \leq \delta)} X d P \\
& \leq\left\|X_{n}-X\right\|_{\infty, \Omega-F}+\int_{\left(\left|X_{n}\right| \geq \delta\right)}\left|X_{n}\right| d P+\int_{(|X| \geq \delta)}|X| d P+2 \delta \epsilon
\end{aligned}
$$

The result follows by uniform integrability of $\left\{X, X_{n}: n \geq 1\right\}$.
Corollary . Let \mathscr{C} be any sub- σ-algebra of \mathscr{B}. If $X_{n} \rightarrow X$ a.e. and X_{n} is uniformly integrable, then $E\left(X_{n} \mid \mathscr{C}\right) \rightarrow E(X \mid \mathscr{C})$ in $L^{1}(\Omega, \mathscr{C}, P)$.

Proposition. Let $H \subset L^{1}$. Suppose there exists an increasing convex function $G:[0, \infty) \rightarrow[0, \infty)$ such that

$$
\operatorname{limit}_{t \rightarrow \infty} \frac{G(t)}{t}=\infty \quad \text { and } \quad \sup _{X \in H} E(G(|X|))<\infty .
$$

Then the family H is uniformly integrable.

Example. $G(t)=t^{2}$ is a function satisfying the conditions of the theorem.

Proof. (of the proposition). Let

$$
M=\sup _{X \in H} E(G(|X|)) .
$$

Let $\epsilon>0$ be given. Choose $\delta>0$ such that

$$
\frac{G(t)}{t} \geq \frac{M}{\epsilon} \quad \text { for } \quad t \geq \delta
$$

Then for X in H

$$
\int_{(|X| \geq \delta)}|X| d P \leq \frac{\epsilon}{M} \int_{(|X| \geq \delta)} G(|X|) d P \leq \frac{\epsilon}{M} \int_{G} G(|X|) d P \leq \epsilon
$$

Remark. The converse of the theorem is also true.
Exercise. Let H be a bounded set in L^{∞}, i.e. there exists a constant M such that $\|X\|_{\infty} \leq M$ for all X in H. Then H is uniformly integrable.

Up Crossings and Down Crossings.

Definition. Let $a<b$ be real numbers; let $s_{1}, s_{2}, \ldots, s_{k}$ be also given reals. Define $i_{1}, i_{2}, \ldots, i_{k}$ as follows.

$$
\begin{aligned}
& i_{1}=\left\{\begin{array}{l}
\inf \left\{n: s_{n}<a\right\}, \\
k, \text { if no } s_{i}<a ;
\end{array}\right. \\
& i_{2}=\left\{\begin{array}{l}
\inf \left\{n>i_{1}: s_{n}>b\right\}, \\
k, \text { if } s_{n} \leq b \text { for each } n>i_{1} ;
\end{array}\right. \\
& i_{3}=\left\{\begin{array}{l}
\inf \left\{n>i_{2}: s_{n}<a\right\}, \\
k, \text { if } s_{n} \geq a \text { for each } n>i_{2} ;
\end{array}\right.
\end{aligned}
$$

and so on

Let $t_{1}=s_{i_{1}}, t_{2}=s_{i_{2}}, \ldots$. If $\left(t_{1}, t_{2}\right),\left(t_{3}, t_{4}\right), \ldots,\left(t_{2 p-1}, t_{2 p}\right)$ are the only non-empty intervals and $\left(t_{2 p+1}, t_{2 p+2}\right), \ldots$ are all empty, then p is
 is denoted by $U\left(s_{1}, \ldots, s_{k} ;[a, b]\right)$.

Note. U (the up crossing) always takes values in $\{0,1,2,3, \ldots\}$.
Definition. For any subset S of reals define

$$
U(S ;[a, b])=\sup \{U(F ;[a, b]): F \text { is a finite subset of } S\}
$$

The number of down crossings is defined by

$$
D(S ;[a, b])=U(-S ;[-b,-a])
$$

For any real valued function f on any set S we define

$$
U(f, S,[a, b])=U(f(S),[a, b])
$$

If the domain of S is known, we usually suppress it.
304 Proposition. Let a_{1}, a_{2}, \ldots be any sequence of real numbers and $S=$ $\left\{a_{1}, a_{2}, \ldots\right\}$. If $U(S,[a, b])<\infty$ for all $a<b$, then these sequence $\left\{a_{n}\right\}$ is a convergent sequence.

Proof. It is clear that if $T \subset S$ then $U(T,[a, b]) \leq U(S,[a, b])$. If the sequence were not convergent, then we can find a and b such that $\lim \inf a_{n}<a<b<\lim \sup a_{n}$. Choose $n_{1}<n_{2}<n_{3} \ldots ; m_{1}<m_{2}<$ \ldots such that $a_{n_{i}}<a$ and $a_{m_{i}}>b$ for all i. If $T=\left\{a_{n_{1}}, a_{m_{1}}, a_{n_{2}}, a_{m_{2}}, \ldots\right\}$, then $U(S ;[a, b]) \geq U(T ;[a, b])=\infty ;$ a contradiction.

Remark. The converse of the proposition is also true.
Theorem . (Doob's inequalities for up crossings and down crossings).
Let $\left\{X_{1}, \ldots, X_{k}\right\}$ be a submartingale relative to $\left\{\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}\right\} a<b$. Define $U(w,[a, b])=U\left(X_{1}(w), \ldots, X_{k}(w) ;[a, b]\right)$ and similarly define $D(w,[a, b])$. Then
(i) U, D are measurable functions;
(ii) $E(U(\cdot,[a, b])) \leq \frac{E\left(\left(X_{k}-a\right)+1\right)-E\left(\left(X_{1}-a\right)^{+}\right)}{b-a}$;
(iii) $E(D(\cdot,[a \cdot b])) \leq E\left(\left(X_{k}-b\right)^{+}\right) /(b-a)$.

Proof. (i) is left as an exercise.
(ii) Define $Y_{n}=\left(X_{n}-a\right)^{+}$; there are submartingales. Then clearly $Y_{n} \leq 0$ if and only if $X_{n} \leq a$ and $Y_{n} \geq b-a$ iff $X_{n} \geq b$, so that

$$
\left.U Y_{1}(w), \ldots, Y_{k}(w) ;[0, b-a]\right)=U\left(X_{1}(w), \ldots, X_{k}(w) ;[a, b]\right)
$$

Define

$$
\begin{aligned}
\tau_{1} & =1 \\
\tau_{2} & =\left\{\begin{array}{l}
\inf \left\{n: Y_{n}=0\right\} \\
k, \text { if each } Y_{n}=0
\end{array}\right. \\
\tau_{3} & =\left\{\begin{array}{l}
\inf \left\{n>\tau_{2}: Y_{n}>b-a,\right. \\
k, \text { if } Y_{n}<b-a \text { for each } n>\tau_{2} ;
\end{array}\right. \\
\tau_{k+1} & =k .
\end{aligned}
$$

As $\left\{Y_{1}, \ldots, Y_{k}\right\}$ is a submartingale, by optional sampling theorem $Y_{\tau_{1}}, \ldots, Y_{\tau_{k+1}}$ is also a submartingale. Thus

$$
\begin{equation*}
E\left(Y_{\tau_{2}}-Y_{\tau_{1}}\right)+E\left(Y_{\tau_{4}}-Y_{\tau_{3}}\right)+\cdots \geq 0 \tag{1}
\end{equation*}
$$

Clearly

$$
\begin{gathered}
{\left[\left(Y_{\tau_{3}}-Y_{\tau_{2}}\right)+\left(Y_{\tau_{5}}-Y_{\tau_{4}}\right)+\cdots\right](w) \geq(b-a) \cup\left(Y_{1}(w), \ldots Y_{k}(w) ;\right.} \\
[0, b-a])=(b-a) \cup(w,[a, b]) .
\end{gathered}
$$

Therefore
(2) $E\left(Y_{\tau_{3}}-Y_{\tau_{2}}\right)+E\left(Y_{\tau_{5}}-Y_{\tau_{4}}\right)+\cdots \geq(b-a) E(U(\cdot,[a, b]))$.

By (1) and (2),

$$
E\left(Y_{k}-Y_{1}\right) \geq(b-a) E(U(\cdot,[a, b]))
$$

giving the result.
(iii) Let $Y_{n}=\left(X_{n}-a\right)^{+}$so that

$$
D\left(Y_{1}(w), \ldots Y_{k}(w) ;[0, b-a]\right)=D\left(X_{1}(w), \ldots, X_{k}(w) ;[a, b]\right)
$$

306
Define

$$
\begin{aligned}
\tau_{1} & =1 \\
\tau_{2} & =\left\{\begin{array}{l}
\inf \left\{n: Y_{n} \geq b-a\right\} \\
k, \text { if each } Y_{n}<b-a
\end{array}\right. \\
\tau_{3} & =\left\{\begin{array}{l}
\inf \left\{n>\tau_{2}: Y_{n}=0\right\} \\
k, \text { if each } Y_{n}>0 \text { for each } n>\tau_{2}
\end{array}\right. \\
\tau_{k+1} & =k
\end{aligned}
$$

By optional sampling theorem we get

$$
0 \geq E\left(Y_{\tau_{2}}-Y_{\tau_{3}}\right)+E\left(Y_{\tau_{4}}-Y_{\tau_{5}}\right)+\cdots
$$

Therefore

$$
0 \geq(b-a) E\left(D\left(Y_{1}, \ldots, Y_{k} ;[0, b-a]\right)\right)+E\left((b-a)-Y_{k}\right)
$$

Hence

$$
\begin{aligned}
& E(D(\cdot,[a, b])) \leq E\left(\left(X_{k}-a\right)^{+}-(b-a)\right) /(b-a) \\
& \leq \frac{E\left(\left(X_{k}-b\right)^{+}\right)}{(b-a)}, \text { for }(c-a)^{+}-(b-a) \leq(c-b)^{+} \\
& \quad \text { for all } c .
\end{aligned}
$$

Corollary . Let $\left\{X_{1}, \ldots, X_{k}\right\}$ be a supermartingale. U, D as in theorem. Then
(i) $E(D(\cdot,[a, b])) \leq \frac{E\left(X_{1} \wedge b\right)-E\left(X_{k} \wedge b\right)}{b-a}$.
(ii) $E(U(\cdot,[a, b])) \leq \frac{E\left(\left(X_{k}-b\right)^{-}\right)}{b-a}$.

Proof. (i) $E(D(\cdot,[a, b]))=E\left(U\left(-X_{1}(w), \ldots,-X_{k}(w),[-b,-a]\right)\right.$ $\leq \frac{E\left(\left(-X_{k}+b\right)^{+}-\left(-X_{1}+b\right)^{+}\right)}{b-a}, \quad$ by above theorem, $\leq \frac{E\left(\left(b \wedge X_{k}\right)-\left(b \wedge X_{1}\right)\right)}{b-a}, \quad$ since for since for all $a, b, c,(b-c)^{+}-(b-a)^{+} \leq(b \wedge a)-(b \wedge c)$.
(ii) $E(U(\cdot,[a, b]))=$
$=E\left(D\left(-X_{1}(w), \ldots,-X_{k}(w) ;[-b,-a]\right)\right)$
$\leq \frac{E\left(\left(-X_{k}+a\right)^{+}\right)}{b-a}, \quad$ by theorem,
$\leq \frac{E\left(\left(X_{k}-b\right)^{-}\right)}{b-a}$,
(since $\left(-X_{k}+a\right)^{+} \leq\left(X_{k}-b\right)^{-}$,

Theorem. Let $\left\{X_{n}: n=1,2, \ldots\right\}$ be a supermartingale relative to $\left\{\mathscr{F}_{n}\right.$: $n=1,2, \ldots\}$. Let (Ω, \mathscr{F}, P) be complete .
(i) If $\sup E\left(X_{n}^{-}\right)<\infty$, then X_{n} converges a.e. to a random variable denoted by X_{∞}.
(ii) if $\left\{X_{n}: n \geq 1\right\}$ is uniformly integrable, then also X_{∞} exists. Further, $\left\{X_{n}: n=1,2, \ldots, n=\infty\right\}$ is a supermartingale with the natural order.
(iii) if $\left\{X_{n}: n \geq 1\right\}$ is a martingale, then $\left\{X_{n}: n \geq 1, n=\infty\right\}$ is a martingale.

Proof. (i) Let $U(w[a, b])=U\left(X_{1}(w), X_{2}(w), \ldots,[a, b]\right)$. By the corollary to Doob's inequalities theorem,

$$
E\left(U(\cdot,[a, b]) \leq \sup _{n} E\left(\left(X_{n}-b\right)^{-}\right)<\infty\right.
$$

for all $a<b$. Allowing a, b to vary over the rationals alone we find that the sequence X_{n} is convergent a.e.
(ii) $\operatorname{Sup} E\left(X_{n}^{-}\right) \leq \sup E\left(\left|X_{n}\right|\right)<\infty$ so that X_{∞} exists. As $X_{n} \rightarrow X_{\infty}$ in L^{n} we get that ${ }^{n}\left\{X_{n}: n \geq 1, n=\infty\right\}$ is a supermartingale.
(iii) follows from (ii).

Proposition. Let $\left\{X_{t}: t \geq 0\right\}$ be a supermartingale relative to $\left\{\mathscr{F}_{t}: t \geq\right.$ $0\} . I=[r, s], a<b$ and S any countable dense subset. Let $U(w, S \cap$ $I,[a, b])=U\left(\cdot,\left\{X_{t}(w): t \in S \cap I\right\},[a, b]\right)$. Then

$$
E\left(U(\cdot, S \cap I,[a, b)) \leq \frac{E\left(\left(X_{s}-b\right)^{-}\right)}{b-a}\right.
$$

Proof. Let $S \cap I$ be an increasing union of finite sets F_{n} : then

$$
E\left(U\left(\cdot, F_{n},[a, b]\right)\right) \leq \frac{E\left(\left(X_{\max F_{n}}-b\right)^{-}\right)}{b-a} \leq \frac{E\left(\left(X_{s}-b\right)^{-}\right)}{b-a}
$$

The result follows by Fatou's lemma.
Exercise. If further X_{t} is continuous i.e. $t \rightarrow X_{t}(w)$ is continuous for each w, then prove that

$$
E(U(\cdot, I,[a, b])) \leq \frac{E\left(\left(X_{s}-b\right)^{-}\right)}{b-a}
$$

Theorem. Let (Ω, \mathscr{F}, P) be complete and $\left\{X_{t}: t \geq 0\right\}$ a continuous supermartingale.
(i) If $\sup _{t \geq 0} E\left(X_{t}^{-}\right)<\infty$, then X_{t} converges a.e. to a random variable X_{∞}.
(ii) If $\left\{X_{t}: t \geq 0\right\}$ is uniformly integrable then also X_{∞} exists and $\left\{X_{t}: t \geq 0, t=\infty\right\}$ is a supermartingale.

Proof. (i) $E(U(\cdot,[0, n],[a, b])) \leq E\left(\left(X_{n}-b\right)^{-}\right) /(b-a)$ so that

$$
\operatorname{limit}_{n \rightarrow \infty} E(U(\cdot,[0, n],[a, b])) \leq \sup _{0 \leq s} \frac{E\left(\left(X_{s}-b\right)^{-}\right)}{b-a}
$$

for all $a<b$. Thus $\left\{X_{t}(w): t>0\right\}$ converges a.e. whose limit in denoted by X_{∞} which is measurable.
(ii) As $E\left(X_{t}^{-}\right) \leq E\left(\left|X_{t}\right|\right)$ by (i) X_{∞} exists, the other assertion is a consequence of uniform integrability.

Corollary. Let $\left\{X_{t}: t \geq 0\right\}$ be a continuous uniformly integrable martingale. Then $\left\{X_{t}: 0 \leq t \leq \infty\right\}$ is also a martingale.

Exercise. Let $\left\{X_{t}: t \geq 0\right\}$ be a continuous martingale such that for some Y with $0 \leq Y \leq 1 E\left(Y \mid \mathscr{F}_{t}\right)=X_{t}$ show that $X_{t} \rightarrow Y$ a.e.

Lemma. Let (Ω, \mathscr{F}, P) be a probability space, $\mathscr{F}_{1} \supset \mathscr{F}_{2} \supset \mathscr{F}_{3} \ldots$ be sub- σ-algebras. Let X_{1}, X_{2}, \ldots be a real valued functions measurable with respect to $\mathscr{F}_{1}, \ldots, \mathscr{F}_{n}, \ldots$ respectively. Let
(i) $E\left(X_{n-1} \mid \mathscr{F}_{n}\right) \leq X_{n}$
(ii) $\sup _{n} E\left(X_{n}\right)<\infty$.

Then $\left\{X_{n}: n \geq 1\right\}$ is uniformly integrable.
Proof. By (i) $E\left(X_{n}\right)$ is increasing. By (ii) given $\epsilon>0$, we can find n_{0} such that if $n \geq n_{0}$ then $E\left(X_{n}\right) \leq E\left(X_{n_{0}}\right)+\epsilon$. For and $\delta>0$,

$$
\begin{gathered}
n \geq n_{0} \int_{\left(\mid X_{n} \geq \delta\right)}\left|X_{n}\right| d P \\
=E\left(X_{n}\right)+\int_{\left(X_{n} \leq-\delta\right)}-X_{n} d P-\int_{\left(X_{n}<\delta\right)} X_{n} d P
\end{gathered}
$$

$$
\begin{gathered}
\leq \int_{\left(X_{n} \leq-\delta\right)}-X_{n_{0}} d P-\int_{\left(X_{n}<\delta\right)} X_{n_{0}} d P+E\left(X_{n}\right) \quad \text { by (i) } \\
\leq \epsilon+\int_{\left(X_{n} \geq \delta\right)} X_{n_{0}} d P-\int_{\left(X_{n} \leq-\delta\right)} X_{n_{0}} d P \quad\left(\text { because } E\left(X_{n}\right) \leq E\left(X_{n_{0}}\right)+\epsilon\right) \\
\leq \epsilon+\int_{\left(\left|X_{n}\right| \geq \delta\right)}\left|X_{n_{0}}\right| d P
\end{gathered}
$$

Thus to show uniform integrability we have only to show $P\left(\left|X_{n}\right| \geq\right.$ $\delta) \rightarrow 0$ uniformly in n as $\delta \rightarrow \infty$. Now

$$
\begin{aligned}
E\left(\left|X_{n}\right|\right) & =E\left(X_{n}+2 X_{n}^{-}\right) \\
& \leq E\left(X_{n}\right)+2 E\left(\left|X_{1}\right|\right) \quad \text { by (i) } \\
& \leq M<\infty \text { for all } n \text { by (ii) }
\end{aligned}
$$

The result follows as $P\left(\left|X_{n}\right| \geq \delta\right) \leq M / \delta$.
Optional Sampling Theorem. (Continuous case).
Let $\left\{X_{t}: t \geq 0\right\}$ be a right continuous supermartingale relative to $\left\{\mathscr{F}_{t}: t \geq 0\right\}$. Assume there exists an $X_{\infty} \in L^{\prime}(\Omega, \mathscr{F}, P)$ such that $X_{t} \geq$
$311 E\left(X_{\infty} \mid \mathscr{F}_{t}\right)$ for $t \geq 0$. For any stopping time τ taking values in $[0, \infty]$, let $X_{\tau}=X_{\infty}$ on $\{\tau=\infty\}$. Then
(i) X_{τ} is integrable.
(ii) If $\sigma \leq \tau$ are stopping times, then

$$
E\left(X_{\tau} \mid \mathscr{F}_{\sigma}\right) \leq X_{\sigma}
$$

Proof. Define

$$
\sigma_{n}=\frac{\left[2^{n} \sigma\right]+1}{2^{n}}, \quad \tau_{n}=\frac{\left[2^{n} \sigma\right]+1}{2^{n}} .
$$

Then σ_{n}, τ_{n} are stopping times, $\sigma_{n} \leq \tau_{n}, \sigma \leq \sigma_{n}, \tau \leq \tau_{n} . \sigma_{n}$, τ_{n} take values in $D_{n}=\left\{\infty, 0,1 / 2^{n}, 2 / 2^{n}, \ldots, 1 / 2^{n}, \ldots\right\}$ so that we have $E\left(X_{\tau_{n}} \mid \mathscr{F}_{\sigma_{n}}\right) \leq X_{\sigma_{n}}$. Thus if, $A \in \mathscr{F}_{\sigma} \subset \mathscr{F}_{\sigma_{n}}$, then

$$
\begin{equation*}
\int_{A} X_{\tau_{n}} d P \leq \int_{A} X_{\sigma_{n}} d P \tag{*}
\end{equation*}
$$

As $\sigma_{1} \geq \sigma_{2} \geq \ldots$, by optional sampling theorem for the countable case, we have

$$
E\left(X_{\sigma_{n-1}} \mid \mathscr{F}_{\sigma_{n}}\right) \leq X_{\sigma_{n}}
$$

Further

$$
\mathscr{F}_{\sigma_{1}} \supset \mathscr{F}_{\sigma_{2}} \supset \ldots ; \quad E\left(X_{\sigma_{n}} \mid \mathscr{F}_{0}\right) \leq X_{0}
$$

By the lemma $\left\{X_{\sigma_{n}}\right\},\left\{X_{\tau_{n}}\right\}$ are uniformly integrable families. By right continuity $X_{\sigma_{n}} \rightarrow X_{\sigma}$ pointwise and $X_{\tau_{n}} \rightarrow X_{\tau}$ pointwise. Letting $n \rightarrow \infty$ in (*) we get the required result.

Lemma (Integration by Parts). Let $M(t, \cdot)$ be a continuous progres-
sively measurable martingale and $A(t, w):[0, \infty) \times \Omega \rightarrow \mathbb{R}$ be of bounded variation for each w. Further, assume that $A(t, w)$ is \mathscr{F}_{t}-measurable for each t. Then

$$
Y(t, \cdot)=M(t, \cdot) A(t, \cdot)=\int_{0}^{t} M(s, \cdot) d A(s, \cdot)
$$

is a martingale if

$$
E\left(\sup _{0 \leq s \leq t}|M(s, \cdot)|\|A(\cdot)\|_{t}\right)<\infty
$$

for each t, where $\|A(w)\|_{t}$ is the total variation of $A(s, w)$ in $[0, t]$.
Proof. By hypothesis,

$$
\sum_{i=0}^{n} M(s, \cdot)\left(A\left(s_{i+1}, \cdot\right)-A\left(s_{i}, \cdot\right)\right)
$$

converges to

$$
\int_{s}^{t} M(u, \cdot) d A(u, \cdot) \text { in } L^{1} \text { as } n \rightarrow \infty
$$

and as the norm of the partition $s=s_{0}<s_{1}<\ldots<s_{n+1}=t$ converges to zero. Hence it is enough to show that

$$
E\left(\left[M(t, \cdot) A(t, \cdot)-\sum_{i=0}^{n} M\left(s_{i+1}, \cdot\right)\left(A\left(s_{i+1}, \cdot\right)-A\left(s_{i}, \cdot\right)\right)\right] \mid \mathscr{F}_{s}\right)
$$

$$
=M(s, \cdot) A(s, \cdot)
$$

But the left side $=E\left(M\left(s_{n+1}, \cdot\right) A\left(s_{n+1}, \cdot\right)-\right.$

$$
\begin{aligned}
& \left.-\sum_{i=0}^{n} M\left(s_{i+1}, \cdot\right)\left(A\left(s_{i+1}, \cdot\right)-A\left(s_{i}, \cdot\right)\right) \mid \mathscr{F}_{s}\right) \\
& =M(s, \cdot) A(s, \cdot)
\end{aligned}
$$

313 Taking limits as $n \rightarrow \infty$ and observing that

$$
\sup _{0 \leq i \leq n}\left|\left(s_{i+1}-s_{i}\right)\right| \rightarrow 0
$$

we get

$$
\begin{aligned}
& E\left(M(t, \cdot) A(t, \cdot)-\int_{0}^{t} M(u, \cdot) d A(u, \cdot) \mid \mathscr{F}_{s}\right) \\
& \quad=M(s, \cdot) A(s, \cdot)-\int_{0}^{s} M(u, \cdot) d A(u, \cdot)
\end{aligned}
$$

Bibliography

[1] BILLINGSLEY, P. Convergence of probability measures, John Wi314 ley, New York, (1968).
[2] DOOB, J.L. Stochastic Processes, John Wiley, New York (1952).
[3] DYNKIN, E.B. Markov Processes and Problems in Analysis, Proc. Int. Cong of Math. Stockholm, (1962) 36-58.
[4] DYNKIN, E.B. Markov Processes, Vols. 1, 2, Springer-Verlag, Berlin (1965).
[5] FRIEDMAN, AVNER. Stochastic Differential Equations and Applications, vols. 1, 2, Academic Press, New York (1976).
[6] FRIEDMAN, AVNER. Partial Differential Equations of Parabolic type, Prentice Hall, Englewood Cliffs (1964).
[7] GIHMAN, I.I. and A.V. SKOROHOD. Stochastic Differential Equations, Springer-Verlag, New York (1973).
[8] ITÔ, K. On Stochastic Differential Equations, Memoirs Amer. Math. Soc. 4 (1951).
[9] ITÔ, K. and H.P. McKEAN, Jr. Diffusion Processes and their sample paths, Springer-Verlag, Berlin (1965).
[10] KUNITA, H. and S. WATANABE. On Square Integrable Martingales, Nagoya Math. Journal. 30 (1967) 209-245.
[11] LÉVY, P. Processus Stochastic et Mouvement Brownien, GaulhierVillars, Paris (1948).

315 [12] MEYER, P.A. Probability and Potentials, Blaisdell, Wallham (1966).
[13] NEVEU, J. Discrete Parameter Martingales, North Holland, Amsterdam (1975).
[14] PARTHASARATHY, K.R. Probability Measures on Metric Spaces, Academic Press, New York (1967).
[15] PROTTER, M.H. and H.F. WEINBERGET. Maximum Principles in Differential Equations, Printice Hall, Englewood Cliffs (1967).
[16] STROOCK, D.W. and S.R.S. VARADHAN. Diffusion Process in Several Dimension, Springer-Verlag, New York (to appear)
[17] WILLIAMS, D. Brownian motions and diffusions as Markov Processes. Bull. Lond. Math. Soc. 6 (1974) 257-303.

