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Preface
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of 1977. Starting from Brownian Motion, the lectures quickly got into
the areas of Stochastic Differential Equations and Diffusion Theory. An
attempt was made to introduce to the students diverse aspects of the
theory. The last section on Martingales is based on some additional
lectures given by K. Ramamurthy of the Indian Institute of Science. The
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Nanda and PL. Muthuramalingam whose dedication and perseverance
has made these notes possible.

S.R.S. Varadhan



1. The Heat Equation

LET US CONSIDER the equation 1

(1) ut −
1
2
∆u = 0

which describes (in a suitable system of units) the temperature distribu-
tion of a certain homogeneous, isotropic body in the absenceof any heat
sources within the body. Here

u ≡ u(x1, . . . , xd, t); ut ≡
∂u
∂t

; ∆u =
d∑

i=1

∂2u

∂x2
i

,

t represents the time ranging over [0,∞) or [0,T] and x ≡ (x1 . . . xd)
belongs toRd.

We first consider the initial value problem. It consists in integrating
equation (1) subject to the initial condition

(2) u(0, x) = f (x).

The relation (2) is to be understood in the sense that

Lt
t→0

u(t, x) = f (x).

Physically (2) means that the distribution of temperature throughout
the body is known at the initial moment of time.

We assume that the solutionu has continuous derivatives, in the
space coordinates upto second order inclusive and first order derivative
in time.

1



2 1. The Heat Equation

It is easily verified that

(3) u(t, x) =
1

(2πt)d/2
exp

(
−|x|

2

2t

)
; |x|2 =

d∑

i=1

x2
i ,

satisfies (1) and2

(4) u(0, x) = Lt
t→0

u(t, x) = δ(x)

Equation (4) gives us a very nice physical interpretation. The so-
lution (3) can be interpreted as the temperature distribution within the
body due to a unit sourse of head specified att = 0 at the space point
x = 0. The linearity of the equation (1) now tells us that (by superpo-
sition) the solution of the initial value problem may be expected in the
form

(5) u(t, x) =
∫

Rd

f (y)p(t, x− y)dy,

where

p(t, x) =
1

(2πt)d/2
exp−|x|

2

2t
.

Exercise 1.Let f (x) be any bounded continuous function. Verify that
p(t, x) satisfies (1) and show that

(a)
∫

p(t, x)dx = 1,∀t > 0;

(b) Lt
t→0+

∫
p(t, x) f (x)dx = f (0);

(c) using (b) justify (4). Also show that (5) solves the initial value
problem.

(Hints: For (a) use
∞∫
−∞

e−x2
dx =

√
π. For part (b) make the substitution

y =
x
√
π

and apply Lebesgue dominated convergence theorem).
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Since equation (1) is linear with constant coefficients it is invariant
under time as well as space translations. This means that translates of
solutions are also solutions. Further, fors≥ 0, t > 0 andy ∈ Rd,3

(6) u(t, x) =
1

[2π(t + s)]d/2
exp− |x− y|2

2(t + s)

and fort > s, y ∈ Rd,

(7) u(t, x) =
1

[2π(t − s)]d/2
exp− |x− y|2

2(t − s)

are also solutions of the heat equation (1).
The above method of solving the initial value problem is a sort of

trial method, viz. we pick out a solution and verify that it satisfies (1).
But one may ask, how does one obtain the solution? A partial clue to this
is provided by the method of Fourier transforms. We pretend as if our
solutionu(t, x) is going to be very well behaved and allow all operations
performed onu to be legitimate.

Put v(t, x) = û(t, x) wherêstands for the Fourier transform in the
space variables only (in this case), i.e.

v(t, x) =
∫

Rd

u(t, y)ei x−ydy.

Using equation (1), one easily verifies that

(8) vt(t, x) =
1
2
|x|2v(t, x)

with

(9) v(0, x) = f̂ (x).

The solution of equation (8) is given by

(10) v(t, x) = f̂ (x)e−t|x|2/2.

We have used (9) in obtaining (10).



4 1. The Heat Equation

Exercise 2.Verify that 4

p̂(t, x) = exp−
(
t|x|2

2

)
.

Using Exercise 2, (10) can be written as

(11) v(t, x) = û(t, x) = f̂ (x)p̂(t, x).

The right hand side above is the product of two Fourier transforms
and we know that the Fourier transform of the convolution of two fun-
tions is given by the product of the Fourier transforms. Hence u(t, x) is
expected to be of the form (5).

Observe that iff is non-negative, thenu is nonnegative and iff
is bounded byM then u is also bounded byM in view of part (a) of
Exercise 1.

The Inhomogeneous Equation.Consider the equation

vt −
∆v
2
= g, with v(0, x) = 0,

which describes the temperature within a homogeneous isotropic body
in the presence of heat sources, specified as a function of time and space
by g(t, x). For t > s,

u(t, x) =
1

[2π(t − s)]d/2
exp− |x− y|2

2(t − s)

is a solution ofut(t, x) − 1
2
∆u(t, x) = 0 corresponding to a unit source at

t = s, x = y. Consequently, a solution of the inhomogeneous problem is
obtained by superposition.

Let

v(t, x) =
∫

Rd

t∫

0

g(s, y)
1

[2π(t − s)]d/2
exp

(
− |x− y|2

2(t − s)

)
dy ds

i.e.5
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v(t, x) =

t∫

0

w(t, x, s)ds

where

w(t, x, s) =
∫

Rd

g(s, y)
1

[2π(t, s)]d/2
exp

(
− |x− y|2

2(t − s)

)
dy.

Exercise 3.Show thatv(t, x) defined above solves the inhomogeneous
heat equation and satisfiesv(0, x) = 0. Assume thatg is sufficiently

smooth and has compact support.vt −
1
2
∆v = Lt

s→t
w(t, x, s) and now use

part (b) of Exercise (1).

Remark 1. We can assumeg has compact support because in evaluating

vt −
1
2
∆v the contribution to the integral is mainly from a small neigh-

bourhood of the point (t, x). Outside this neighbourhood

1

[2π(t − s)]d/2
exp

(
− |x− y|2

2(t − s)

)

satisfies

ut −
1
2
∆u = 0.

2. If we putg(s, y) = 0 for s < 0, we recognize thatv(t, x) = g ∗ p.
Taking spatial Fourier transforms this can be written as

v(t, ξ) =

t∫

0

g(s, ξ) exp−1
2

(t − s)|ξ|2dξ,

or
∂v̂
∂t
=
∂v
∂t
= g(t, ξ) +

1
2
∆v =

(
g(t, ξ) +

1
2
∆v

)
.

Therefore
∂v
∂t
− 1

2
∆v = g.



6 1. The Heat Equation

Exercise 4.Solvewt −
1
2
∆w = g on [0,∞) × Rd with w = f on {0} ×Rd 6

(Cauchy problem for the heat equation).

Uniqueness.The solution of the Cauchy problem is unique provided the
class of solutions is suitably restricted. The uniqueness of the solution
is a consequence of the Maximum Principle.

Maximum Principle. Let u be smooth and bounded on[0,T] × Rd sat-
isfying

ut −
∆u
2
≥ 0 in (0,T] × Rd and u(0, x) ≥ 0, ∀x ∈ Rd.

Then
u(t, x) ≥ 0 ∀, t ∈ [0,T] and ∀x ∈ Rd.

Proof. The idea is to find minima foru or for an auxillary function.

Step 1.Let v beany function satisfying

vt −
∆v
2
> 0 in (0,T] × Rd.

Claim . v cannot attain a minimum fort0 ∈ (0,T]. Assume (to get a
contradiction) thatv(t0, x0) ≤ v(t, x) for somet0 > 0 and for all t ∈
[0,T], ∀x ∈ Rd. At a minimumvt(t0, x0) ≤ 0, (sincet0 , 0) ∆v(t0, x0) ≥
0. Therefore (

vt −
∆v
2

)
(t0, x0) ≤ 0.

Thus, ifv has any minimum it should occur att0 = 0.

Step 2.Let ǫ > 0 be arbitrary. Chooseα such that

h(t, x) = |x|2 + αt

satisfies7

ht −
∆h
2
= α − d > 0 (sayα = 2d).
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Putvǫ = u+ ǫh. Then

∂vǫ
∂t
− 1

2
∆vǫ > 0.

As u is bounded,vǫ → +∞ as|x| → +∞, vǫ must attain a minimum.
This minimum occurs att = 0 by Step 1. Therefore,

vǫ(t, x) ≥ vǫ(0, x0) for some x0 ∈ Rd,

i.e.
vǫ(t, x) ≥ u(0, x0) + ǫ|x0|2 > 0,

i.e.
u(t, x) + ǫh(t, x) > 0, ∀ǫ.

This gives
u(t, x) ≥ 0.

This completes the proof. �

Exercise 5. (a) LetL be a linear differential operator satisfyingLu =
g onΩ (open inRd) andu = f on ∂Ω. Show thatu is uniquely
determined byf andg if and only if Lu = 0 onΩ andu = 0 on
∂Ω imply u = 0 onΩ.

(b) Let u be a bounded solution of the heat equationut −
1
2
∆u = g

with u(0, x) = f (x). Use the maximum principle and part (a) to
show thatu is unique in the class of all bounded functions.

(c) Let

g(t) =


e−1/t2 , if t > 0,

0, if t ≤ 0,

u(t, x) =
∞∑

k=0

g(k)(t/2)x2k

(2k)!
, on R× R.

8



8 1. The Heat Equation

Then

u(0, x) = 0, ut =
∆u
2
, u . 0,

i.e. u satisfies

ut −
1
2
∂2u

∂x2
= 0, with u(0, x) = 0.

This example shows that the solution is not unique because,u is
not bounded. (This example is due to Tychonoff).

Lemma 1. Let p(t, x) =
1

(2πt)d/2
exp−|x|

2

2t
for t > 0. Then

p(t, ·) ∗ p(s, ·) = p(t + s, ·).

Proof. Let f be any bounded continuous function and put

u(t, x) =
∫

Rd

f (y)p(t, x− y)dy.

Thenu satisfies

ut −
1
2
∆u = 0, u(0, x) = f (x).

Let
v(t, x) = u(t + s, x).

Then

vt −
1
2
∆v = 0, v(0, x) = u(s, x).

This has the unique solution

v(t, x) =
∫

u(s, y)p(t, x− y)dy.

Thus
∫

Rd

f (y)p(t + s, x− y)dy=
"

f (z)p(s, y− z)p(t, x− y)dz dy.
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9

This is true for all f bounded and continuous. We conclude, there-
fore, that

p(t, ·) ∗ p(s, ·) = p(t + s, ·).
�

Exercise 6.Prove Lemma 1 directly using Fourier transforms.

It will be convenient to make a small change in notation whichwill
be useful later on. We shall writep(s, x, t, y) = p(t−s, y−x) for everyx, y
andt > s. p(s, x, t, y) is called thetransition probability, in dealing with
Brownian motion. It represents the probability density that a “Brownian
particle” located at space pointx at timesmoves to the space pointy at
a later timet.

Note .We use the same symbolp for the transition probability; it is
function of four variables and there will not be any ambiguity in using
the same symbolp.

Exercise 7.Verify that
∫

Rd

p(s, x, t, y)p(t, y, σ, z)dy = p(s, x, σ, z), s< t < σ.

(Use Exercise 6).

Remark . The significance of this result is obvious. The probability
that the particle goes fromx at time s to z at timeσ is the sum total
of the probabilities, that the particle moves fromx at s to y at some
intermediate timet and then tozat timeσ.



10 1. The Heat Equation

10
In this section we have introduced Brownian Motion corresponding

to the operator
1
2
∆. Later on we shall introduce a more general diffusion

process which corresponds to the operator
1
2

∑
ai j

∂2

∂xi∂x j
+

∑
b j

∂

∂x j
.



2. Kolmogorov’s Theorem

Definition. LET (Ω,B,P) BE A probability space. A stochastic process11

in Rd is a collection{Xt : t ∈ I } of Rd-valued random variables defined
on (Ω,B).

Note 1.I will always denote a subset ofR+ = [0,∞).

2. Xt is also denoted byX(t).
Let {Xt : t ∈ I } be a stochastic process. For any collectiont1,

t2, . . . , tk such thatti ∈ I and 0 ≤ t1 < t2 < . . . < tk and any Borel
setΛ, in Rd × Rd × · · · × Rd (k times),. define

Ft1 . . . tk(Λ) = P(w ∈ Ω : (Xt1(w), . . . ,Xtk(w)) ∈ Λ).

If
{t1, . . . , tk} ⊂ {s1, . . . , sℓ} ⊂ I , with l ≥ k

such that

s(0)
1 < . . . < s(0)

n0
< t1 < s(1)

1 . . . < s(1)
n < t2 . . . < tk < s(k)

1 . . . < s(k)
nk
,

let then

π : Rd × · · · × Rd(1 times)→ Rd × · · · × Rd(k times)

be the canonical projection. IfEti ⊂ Rd is any Borel set inRd, i =
1, 2, . . . , k, then

π−1(Et1 × · · · × Etk) = R
d × · · · × Et1 × Rd × · · · × Et2 × · · · × Rd

11



12 2. Kolmogorov’s Theorem

(l times). The following condition always holds.

(*) Et1 . . . tk(Et1 × · · · × Etk) = Fs1 . . . s1(Π−1(Et1 × · · · × Etk)).

If (∗) holds for an arbitrary collection{Ft1 . . . tk : 0 ≤ t1 < t2 . . . < tk} 12

(k = 1, 2, 3 . . .) of distributions then it is said to satisfy theconsistency
condition.

Exercise 1. (a) Verify thatFt1 . . . tk is a probability measure onRd ×
· · · × Rd (k times).

(b) Verify (∗). (If Bm denotes the Borelσ field of Rm, Bm+n = Bm ×
Bn).

The following theorem is a converse of Exercise 1 and is oftenused
to identify a stochastic process with a family of distributions satisfying
the consistency condition.

Kolmogorov’s Theorem.

Let {Ft1,t2,...tk0 ≤ t1 < t2 < . . . < tk < ∞} be a family of probability
distributions (onRd × · · · × Rd, k times, k= 1, 2, . . .) satisfying the
consistency condition. Then there exists a measurable space (Ωk,B),
a unique probability measure P an(Ωk,B) and a stochastic process
{Xt : 0 ≤ t < ∞} such that the family of probability measures associated
with it is precisely

{Ft1,t2,...tk : 0 ≤ t1 < t2 < . . . < tk < ∞}, k = 1, 2, . . . .

A proof can be found in the APPENDIX. We mention a few points
about the proof which prove to be very useful and should be observed
carefully.

1. The spaceΩk is the set of allRd-valued functions defined on13

[0,∞):
ΩK =

∏

t∈[0,∞)

Rd

2. The random variableXt is thetth-projection ofΩK ontoRd
t .
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3. B is the smallestσ-algebra with respect to which all the projec-
tions are measurable.

4. P given by

P(w : Xt1(w) ∈ A1, . . .Xtk(w) ∈ Ak) = Ft1...tk(A1 × · · · × Ak)

whereAi is a Borel set inRd, is a measure on the algebra generated
by {Xt1, . . .Xtk}(k = 1, 2, 3 . . .) and extends uniquely toB.

Remark . Although the proof of Kolmogorov’s theorem is very con-
structive the spaceΩK is too “large” and theσ-algebraB too “small”
for practical purposes. In applications one needs a “nice” collection
of Rd-valued functions (for example continuous, or differentiable func-
tions), a “large”σ-algebra on this collection and a probability measure
concentrated on this family.





3. The One Dimensional
Random Walk

BEFORE WE TAKE up Brownian motion, we describe a one dimen-14

sional random walk which in a certain limiting case possesses the prop-
erties of Brownian motion.

Imagine a person at the positionx = 0 at timet = 0. Assume that at
equal intervals of timet = τ he takes a steph either along the positive
x axis or the negativex axis and reaches the pointx(t) = x(t − τ) + h or
x(t) = x(t − τ) − h respectively. The probability that he takes a step in
either direction is assumed to be 1/2. Denote byf (x, t) the probability
that after the timet = nτ (n intervals of timeτ) he reaches the positionx.
If he takesm steps to the right (positivex-axis) in reachingx then there
arenCm possible ways in which he can achieve thesemsteps. Therefore,

the probability f (x, t) is nCm(
1
2

)n.

f (x, t) satisfies the difference equation

(1) f (x, t + τ) =
1
2

f (x− h, t) +
1
2

f (x+ h, t)

and

(2) x = h(m− (n−m)) = (2m− n)h.

To see this one need only observe that to reach (x, t + τ) there are
two ways possible, viz. (x−h, t)→ (x, t+ τ) or (x+h, t)→ (x, t+ τ) and
the probability for each one of these is 1/2. Also note that by definition

15



16 3. The One Dimensional Random Walk

of f ,

(3) f (h, τ) =
1
2
= f (−h, τ),

so that15

(4) f (x, t + τ) = f (h, τ) f (x− h, t) + f (−h, τ) f (x+ h, t).

The reader can identify (4) as a “discrete version” of convolution.
By our assumption,

(5) f (0, 0) = 1, f (x, 0) = 0 if x , 0.

We examine equation (1) in the limith → 0, τ → 0. To obtain
reasonable results we cannot leth andτ tend to zero arbitratily. Instead
we assume that

(6)
h
τ
→ 1 as h→ 0 and τ→ 0.

The physical nature of the problem suggests that (6) should hold. To
see this we argue as follows. Since the person is equally likely to go in
either direction the average value ofx will be 0. Therefore a reasonable
measure of the “progress” made by the person is either|x| or x2. Indeed,
sincex is a random variable (sincem is one) one gets, using (2),

E(x) = 2E(m) − n = 0, E(x2) = h2E((2m− n)2) = h2n.

(Use
n∑

m=0
mnCm

(
1
2

)n

=
n
2

,
n∑

m=0

nCm

(
1
2

)n

=
n(n+ 1)

4
)

Thus

E

{
x2

t

}
=

1
t
E(x2) =

h2n
nτ
=

h2

τ
,

and ast becomes large we expect that the average distance covered per
unit time remains constant. (This constant is chosen to be 1 for reasons16

that will become apparent later). This justifies (6). In fact, a simple

argument shows that if
h2

τ
→ 0 or+∞, x may approach+∞ in a finite

time which is physically untenable.
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(1) now gives

f (x, t + τ) − f (x, t) =
1
2
{ f (x− h, t) − f (x, t) + f (x, h, t) − f (x, t)}.

Assuming sufficient smoothness onf , we get in the limit ash, τ→ 0
and in view of (6),

(7)
∂ f
∂t
=

1
2
∂2 f

∂x2

(to get the factor 1/2 we choose
h2

τ
→ 1). This is the equation satisfied

by the probability densityf . The particle in this limit performs what is
known asBrownian motionto which we now turn our attention.

References.

[1] GNEDENKO:The theory of probability, Ch. 10.
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4. Construction of Wiener
Measure

ONE EXAMPLE WHERE the Kolmogorov construction yields a proba- 17

bility measure concentrated on a “nice” classΩ is the Brownian motion.

Definition . A Brownian motion with starting pointx is anRd-valued
stochastic process{X(t) : 0 ≤ t < ∞} where

(i) X(0) = x = constant;

(ii) the family of distribution is specified by

Ft1 . . . tk(A) =
∫

A

p(0, x, t1, x1)p(t1, x1, t2, x2) . . .

p(tk−1, xk−1, tk, xk)dx1 . . . dxk

for every Borel setA in Rd × · · ·Rd (k times).

N.B. The stochastic process appearing in the definition above is the one
given by the Kolmogorov construction.

It may be useful to have the following picture of a Brownian motion.
The spaceΩk may be thought of as representing particles performing
Brownian movement;{Xt : 0 ≤ t < ∞} then represents the trajectories
of these particles in the spaceRd as functions of time andB can be con-
sidered as a representation of the observations made on these particles.

Exercise 2. (a) Show thatFt1...tk defined above is a probability mea-
sure onRd × · · · × Rd (k times).

19



20 4. Construction of Wiener Measure

(b) {Ft1...tk : 0 ≤ t1 < t2 < . . . tk < ∞} satisfies the consistency
condition. (Use Fubini’s theorem).

(c) Xt1 − x, Xt2 −Xt1, . . . ,Xtk −Xtk−1 are independent random variables18

and if t > s, thenXt − Xs is a random variable whose distribution
density is given by

p(t − s, y) =
1

[2π(t − s)]d/2
exp

(
−1

2
(t − s)−1|y|2

)
.

(Hint: Try to show thatXt1 − x, Xt2 − Xt1, . . . ,Xtk − Xtk−1 have a
joint distribution given by a product measure. For this letφ be
any bounded real measurable function onRd × · · · ×Rd (k times).
Then

E(φ(Z1, . . . ,Zk))
Xt1−x,Xt2−Xt1 ,...,Xtk−Xtk−1

= E
Xt1,...,Xtk

(φ(Z1 − x, . . . ,Zk − Zk−1))

where E(φ)
Xt1...Xtk

is the expectation ofφ with respect to the joint dis-

tribution of (Xt1 . . . ,Xtk). You may also require the change of vari-
able formula).

Problem. Given a Brownian motion with starting pointx our aim is to
find a probabilityPx on the spaceΩ = C([0,∞);Rd) of all continuous
funcitons from [0,∞) → Rd which induces the Brownian motion. We
will thus have acontinuous realisationto Brownian motion. To achieve
this goal we will work with the collection{Ft1,...,tk : 0 ≤ t1 < t2 < . . . <

tk} whereti ∈ D, a countable dense subset of [0,∞).

Step 1.The first step is to find a probability measure on a “smaller”19

space and lift it toC([0,∞);Rd). Let

Ω = C([0,∞);Rd),

D a countable dense subset of [0,∞); Ω(D) = {F : D → Rd} where f
is uniformly continuous on [0,N] ∩ D for N = 1, 2, . . .. We equipΩ
with the topology of uniform convergence on compact sets andΩ(D)
with the topology of uniform convergence on sets of the formD ∩ K
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whereK ⊂ [0,∞) is compact;Ω andΩ(D) are separable metric spaces
isometric to each other.

Exercise 3.Let

pn( f , g) = sup
0≤t≤n

| f (t) − g(t)| for f , g ∈ Ω

and
pn,D( f , g) = sup

0≤t≤n
t∈D

| f (t) − g(t)| for f , g ∈ Ω(D).

Define

ρ( f , g) =
∞∑

n=1

1
2n

pn( f , g)
1+ pn( f , g)

, ∀ f , g ∈ Ω,

ρD( f , g) =
∞∑

n=1

1
2n

pn,D( f , g)

1+ pn,D( f , g)
, ∀ f , g ∈ Ω(D).

Show that

(i) { fn} ⊂ Ω converges tof if and only if fn → f uniformly on
compact subsets of [0,∞);

(ii) { fn} ⊂ Ω(D) converges tof if and only if fn|D∩K → f|D∩K| uni-
formly for every compact subsetK of [0,∞);

(iii) {(P1, . . . ,Pd)} wherePi is a polynomial with rational coefficients 20

is a countable dense subset ofΩ;

(iv) {(P1D, . . . ,PdD)} is a countable dense subset ofΩ(D);

(v) τ : Ω → Ω(D) whereτ( f ) = f|D is a (ρ, ρD)-isometry ofΩ onto
Ω(D);

(vi) if V( f , ǫ, n) = {g ∈ Ω : pn( f , g) < ǫ} for f ∈ Ω, ǫ > 0 and

VD( f , ǫ, n) = {g ∈ Ω(D) : pn,D( f , g) < ǫ} for f ∈ Ω(D), ǫ > 0,

then
{V( f , ǫ, n) : f ∈ Ω, ǫ > 0, n = 1, 2 . . .}
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is a base for the topology ofΩ and

{VD( f , ǫ, n) : f ∈ Ω(D), ǫ > 0, n = 1, 2, . . .}

is a base for the topology ofΩ(D).

Remark. By Exercise 3(v) any Borel probability measure onΩ(D) can
be lifted to a Borel probability measure onΩ.

2nd Step.Define the modulus of continuity∆T,δ
D ( f ) of a function f on

D in the interval [0,T] by

∆
T,δ
D ( f ) = sup{| f (t) − f (s)| : |t − s| < δt, s∈ D ∩ [0,T]}

As D is countable one has

Exercise 4. (a) Show thatf : ∆
N, 1j
D ( f ) ≤ 1

k} is measurable in theσ-
algebra generated by the projections

πt : π{Rd
t : t ∈ D} → Rd

t

Proof. The lemma is equivalent to showing thatB = σ(E ). As each of21

the projectionπt1...tk is continuous,σ(E ) ⊂ B. To show thatB ⊂ σ(E ),
it is enough to show thatVD( f , ǫ, n) ∈ E becauseΩ(D) is separable. (Cf.
Exercise 3(iv) and 3(vi)). By definition

VD( f , ǫ, n) = {g ∈ Ω(D) : Pn,D( f , g) < ǫ}

=

∞⋃

m=1

{
g ∈ Ω(D) : pn,D( f , g) ≤ ǫ − 1

m

}

=

∞⋃

m=1

{g ∈ Ω(D) : |g(ti ) − f (ti )| ≤ ǫ −
1
m
, ∀ti ∈ D ∩ [0, n]}.

The result follows if one observes that eachπti is continuous. �

Remark 1. The lemma together with Exercise 4(b) signifies that the
Kolmogorov probabilityPx on π{Rd

t : t ∈ D} is defined on the topo-
logical Borelσ-field ofΩ(D).

2. The proof of the lemma goes through ifΩ(D) is replaced byΩ.
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Step 3.We want to show thatPx(Ω(D)) = 1. By Exercise 4(b) this is
equivalent to showing that Lt

j→∞
P(∆N,1/ j

D ( f ) ≤ 1
k) = 1 for all N andk.

The lemmas which follow will give the desired result.

Lemma (Lévy).Let X1, . . .Xn be independent random variables,ǫ > 0
andδ > 0 arbitrary. If

P(|Xr + Xr+1 + · · · + Xℓ| ≥ δ) ≤ ǫ

∀ r, ℓ such that1 ≤ r ≤ ℓ ≤ n, then

P( sup
1≤ j≤n

|X1 + · · · + X j | ≥ 2δ) ≤ 2ǫ.

(see Kolmogorov’s theorem) for every j= 1, 2, . . . , for every N = 22

1, 2, . . . and for every k= 1, 2, . . .. (Hint: Use the fact that the pro-
jections are continuous).

(b) Show thatΩ(D) =
∞⋂

N=1

∞⋂
k=1

∞⋃
j=1
{∆

N, 1j
D ( f ) ≤ 1

k } and henceΩ(D) is

measurable inπ{Rd
t : t ∈ D}.

Let πt1...tk : Ω(D) → Rd × Rd × · · ·Rd (k times) be the projections
and let

Et1...tk = π
−1
t1...tk(B(Rd)× · · · ×

k times
B(Rd)).

Put

E = ∪{Et1...tk : 0 ≦ t1 < t2 < . . . < tk < ∞; ti ∈ D}.

Then, as
Et1...tk ∪ Es1...s1 ⊂ Eτ1...τm,

where
{t1 . . . tk, s1 . . . s1} ⊂ {τ1 . . . τm},

E is an algebra. Letσ(E ) be theσ-algebra generated byE .

Lemma . Let B be the (topological) Borelσ-field ofΩ(D). ThenB is
theσ-algebra generated by all the projections

{πti ...tk : 0 ≤ t1 < t2 < . . . < tk, ti ∈ D}.
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Remark. By subadditivity it is clear that 23

P

 sup
1≤ j≤n

|X1 + · · · + X j | ≥ 2δ

 ≤ nǫ.

Ultimately, we shall letn→ ∞ and this estimate is of no utility. The
importance of the lemma is that it gives an estimate independent ofn.

Proof. Let S j = X1 + · · · + X j , E = { sup
1≤ j≤n

|S j | ≥ 2δ}. Put

E1 = {|S1| ≥ 2δ},
E2 = {|S1| < 2δ, |S2| ≥ 2δ},
. . . . . . . . . . . .

. . . . . . . . . . . .

En = {|S j | < 2δ, 1 ≤ j ≤ n− 1, |Sn| ≥ 2δ}.

Then

E =
n⋃

j=1

E j , E j ∩ Ei = φ if j , i;

P{E ∩ (|Sn| ≤ δ) = P


n⋃

j=1

(E j ∩ (|Sn| ≤ δ))



≤ P
{⋃

(Ei ∩ (|Sn − S j | ≥ δ))
}

≤
n∑

j=1

P(E j)P(|Sn − S j | ≥ δ) (by independence)

≤ ǫP(E) (by data).

= P{E ∩ (|Sn| > δ)} ≤ P(|Sn| > δ) ≤ ǫ (by data).

Combining the two estimates above, we get

P(E) ≤ ǫ + ǫP(E).

If ǫ >
1
2

, 2ǫ > 1. If ǫ <
1
2

,
ǫ

1− ǫ
≤ 2ǫ. In either caseP(E) ≤ 2ǫ. �24
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Lemma . Let {X(t)} be a Brownian motion, I⊂ [0,∞) be a finite inter-
val, F ⊂ I ∩ D be finite. Then

Px

(
Sup
t,σ∈F
|X(t) − X(σ)| ≥ 4δ

)
≤ C(d)

|I |2

δ4
,

where|I | is the length of the interval and C(d) a constant depending only
on d.

Remark. Observe that the estimate is independent of the finite setF.

Proof. Let F = {ti : 0 ≤ t1 < t2 < . . . < tk < ∞}.
Put

X1 = X(t2) − X(t1), . . . ,Xk−1 = X(tk) − X(tk−1).

ThenX1 . . .Xk−1 are independent (Cf. Exercise 2(c)). Let

ǫ = sup
1≤r≤1≤k−1

Px(|Xr + Xr+1 + · · · + X1| ≥ δ).

Note that

Px(|Xr + · · · + X1| ≥ δ) = P(|X(t′) − X(t′′)| ≥ δ) for somet′, t′′ in F

≤ E(|X(t′) − X(t′′)|4)
δ4

(see Tchebyshey’s inequality in Appendix)

≤ C′(t′′ − t′)
δ4

(C′′ = constant)

≤ C′|I |2

δ4
.

(*)

Thereforeǫ ≤ C′|I |2

δ4
. Now

Px( sup
t,σ∈P
|X(t) − X(σ)| ≥ 4δ)

Px( sup
1≤i≤k

|X(ti) − X(t1)| ≥ 2δ)

= Px( sup
i≤ j≤k−1

|X1 + · · · + X j | ≥ 2) ≤ 2ǫ (by previous lemma)

2C′|I |2

δ4
=

C|I |2

δ4
.

� 25
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Exercise 5.Verify (∗).
(Hint: Use the density function obtained in Exercise 2(c) toevaluate the
expectation and go over to “popular” coordinates. (The value of C′ is
d(2d + 1))).

Lemma .

Px


sup
|t−s|≤h

t,s∈[0,t]∩D

|X(t) − X(s)| > ρ


= Px(∆

T,h
D > ρ)

≤ φ(T, ρ, h) = C
h

ρ4

([T
h

]
+ 1

)
.

Note thatφ(T, ρ, h)→ 0 as h→ 0 for every fixed T andρ.

Proof. Define the intervalsI1, I2, . . . by

Ik = [(k − 1)h, (k + 1)h] ∩ (0,T], k = 1, 2, . . . .

Let I1, I2, . . . Ir be those intervals for which

I j ∩ [0,T] , φ ( j = 1, 2, . . . , r).

Clearly there are [Th ]+1 of them. If|t− s| ≤ h thent, s∈ I j for some26

j, 1≤ j ≤ r. Write D =
∞⋃

n=1
Fn whereFn ⊂ Fn+1 andFn is finite. Then

Px


sup
|t−s|≤h

t,s∈[0,T]∩D

|X(t) − X(s)| > ρ


= Px



∞⋃

n=1


sup
|t−s|≤h

t,s∈D∩Fn

|X(t) − X(s)| > ρ





= sup
n

Px

sup
j

sup
t,s∈Fn

(|XI j (t) − X(s)| > ρ)
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≤ sup
n

r∑

j=1

Px

(
sup

t,s∈Fn

(|XI j (t) − X(s)| > ρ)

)

sup
n

([T
h

]
+ 1

) C(2h)2

(ρ/4)4
by the last lemma

≤ φ(T, ρ, h).

�

Theorem .Px(Ω(D)) = 1.

Proof. It is enough to show that

Lt
j→∞

Px

(
∆

N, 1j
D ( f ) ≤ 1

k

)
= 1 (See Exercise 4(b)).

But this is guaranteed by the previous lemma. �

Remark. 1. It can be shown that the outer measure ofΩ is 1.

2. Ω is not measurable in
∏
t≥0
Rd

t .

Let P̃x be the measure onΩ induced byPx onΩ(D). We have al- 27

ready remarked thatPx is defined on the (topological Borelσ field of
Ω(D). As Px is a probability measure,̃Px is also a probability mea-
sure. It should now be verified thatP̃x is really the probability measure
consistent with the given distribution.

Theorem . P̃x is a required probability measure for a continuous real-
ization of the Brownian motion.

Proof. We have to show that

Ft1...tk = P̃xπ
−1
t1...tk for all t1, t2 . . . tk in [0,∞).

Step 1.Let t1, . . . , tk ∈ D. Then

Px(π
−1
t1...tk(A1 × · · · × Ak)) = Px(τπt1...tk(A1 × · · · × Ak))

for everyAi Borel inRd. The right side above is

Px(π
−1
t1...tk(A1 × · · · × Ak)) = Ft1...tk(A1 × · · · × Ak)

(by definition ofPx).
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Step 2.We know thatTt1,t2...tk = P̃xπt1,t2,...,tk provided thatt1, t2, . . . , tk ∈
D. Let us pickt(n)

1 , . . . , t(n)
k , such that eacht(n)

i ∈ D and t(n)
k → tk as

n → ∞. For eachn and for each fixedf : Rd → R which is bounded
and continuous,

EF(n)
1 ,...t(n)

k [ f (x1, . . . , xk)] = EP̃x[ f (x(t(n)
1 , . . . , x(t(n)

k )))].

Letting n→ ∞ we see that28

EFt1,...,tk [ f (x1, . . . , xk)] = EPx[ f (x(t1), . . . , x(tk))]

for all t1, . . . , tk. This completes the proof. �

The definition of the Brownian motion given earlier has a built-in
constraint that all “trajectories” start fromX(0) = x. This result is given
by

Theorem . P̃0{ f : f (0) = 0} = 1.

Proof. Obvious; becauseEP̃x[φ(x(0))] = φ(x). �

Note. In future P̃x will be replaced byPx andP̃0 = P0 will be denoted
by P.

Let Tx : Ω → Ω be the map given by (Tx f )(t) = x + f (t). Tx

translates every ‘trajectory’ through the vectorx.

Time

Let us conceive a real Brownian motion of a system of particles. The
operationTx means that the system is translated in space (along with
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everything else that affects it) through a vectorx. The symmetry of the
physicl laws governing this motion tells us that any property exhibited29

by the first process should be exhibited by the second processand vice
versa. Mathematically this is expressed by

Theorem .Px = PT−1
x .

Proof. It is enough to show that

Px(Txπ
−1
t1...tk(A1 × · · · × Ak)) = P(π−1

t1...tk(A1 × · · · × Ak))

for everyAi Borel inRd. Clearly,

Txπ
−1
t1...tk(A1 × · · · × Ak) = π

−1
t1...tk(A1 − x× · · · × Ak − x).

Thus we have only to show that
∫

A1−x

∫
. . .

∫

Ak−x
p(0, x, t1, x1) . . . p(tk−1, xk−1, tk, xk)dx1 . . . dxk

=

∫

A1

. . .

∫

Ak

p(0, 0, t1, x1) . . . p(tk−1, xk−1, tk, xk)dx1 . . . dxk,

which is obvious. �

Exercise. (a) If β(t, ·) is a Brownian motions tarting at (0, 0) then
1
√
ǫ
β(ǫt) is a Brownian motion starting at (0, 0) for everyǫ > 0.

(b) If X is ad-dimensional Brownian motion andY is ad′-dimensio-
nal Brownian motion then (X,Y) is ad+d′ dimensional Brownian
motion provided thatX andY are independent.

(c) If Xt = (X1
t , . . . ,X

d
t ) is ad-dimensional Brownian motion, thenX j

t
is a one-dimensional Brownian motion. (j = 1, 2, . . . d).

τ(w) = inf {t : |Xt(w)| ≥ +1}
= inf {t : |w(t)| ≥ 1}

τ(w) is the first time the particle hits either of the horizontal lines 30
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+1 or−1.

6.4

2. Let{Xt} be ad-dimensional Brownian motion,G any closed set in
Rd. Define

τ(w) = inf {t : w(t) ∈ G}.

This is a generalization of Example 1. To see thatτ is a stopping
time use

{τ ≤ s} =
∞⋂

n=1

lim
θ∈[0,s]
θ rational

{w : w(θ) ∈ Gn},

where

Gn =

{
x ∈ Rd : d(x,G) ≤ 1

n

}
.

3. Let (Xt) be ad-dimensional Brownian motion,C andD disjoint
closed sets inRd. Define

τ(w) = inf {t; w(t) ∈ C and for somes≤ t,w(s) ∈ D}.

τ(w) is the first time thatw hitsC after visitingD.



5. Generalised Brownian
Motion

LET Ω BE ANY space,F aσ-field and (Ft) an increasing family of 31

subσ-fields such thatσ(∪Ft) = F . Let P be a measure on (Ω,F ).

X(t,w) : [0,w) ×Ω→ Rd

is called aBrownian motion relative to(Ω,Ft,P) if

(i) X(t,w) is progressively measurable with respect toFt;

(ii) X(t,w) is a.e. continuous int;

(iii) X(t,w) − X(s,w) for t > s is independent ofFs and is distributed
normally with mean 0 and variancet − s, i.e.

P(X(t, ·) − X(s, ·) ∈ A|Fs) =
∫

A

1

[2π(t − s)]d/s
exp− |y|2

2(t − s)
dy.

Note. 1. The Brownian motion constructed previously was concen-
trated onΩ = C([0,∞);Rd), F was the Borel field ofΩ, X(t,w) =
w(t) andFt = σ{X(s) : 0 ≤ s≤ t}. The measureP so obtained is
often called theWiener measure.

2. The above definition is more general because

σ{X(s) : 0 ≤ s≤ t} ⊂ Ft.

31
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Exercise.(Brownian motion starting at times). LetΩ = C([s,∞);Rd),
B =Borel field ofΩ. Show that for eachx ∈ Rd ∃ a probability measure
Ps

x onΩ such that

(i) Ps
x{w : w(s) = x} = 1;32

(ii) Ps
x(Xt1 ∈ A1, . . . ,Xtk ∈ Ak)

=

∫

A1

∫

A2

. . .

∫

Ak

p(s, x, t1, x1)p(t1, x1, t2, x2) . . .

. . . p(tk−1xk−1, tk, xk)dx1 . . .dxk,

∀ s< t1 < . . . < tk.

For reasons which will become clear later, we would like to shift the
measurePs

x to a measure onC([0,∞);Rd). To do this we define

T : C([s,∞);Rd)→ C([0,∞);Rd)

by

(Tw)(t) =


w(t), if t ≥ s,

w(s), if t ≤ s.

Clearly,T is continuous. Put

Ps,x = Ps
xT
−1.

Then

(i) Ps,x is a probability measure on the Borel field ofC([0,∞);Rd);

(ii) Ps,x{w : w(s) = x} = 1.



6. Markov Properties of
Brownian Motion

Notation. 1. A random variable of a stochastic process{X(t)}t∈I shall 33

be denoted byXt or X(t). 0≤ t < ∞.

2. Fs will denote theσ-algebra generated by{Xt : 0 ≤ t ≤ s};
Fs+ = {Fa : a > s}; Fs− will be theσ-algebra generated by
∪{Fa : a < s}s> 0. It is clear that{Ft} is an increasing family.

3. For the Brownian motion,B = theσ-algebra generated by∪{Ft :
t < ∞} will be denoted byF .

Theorem .Let {Xt : 0 ≤ t < ∞} be a Brownian motion. Then Xt − Xs is
independent ofFs.

Proof. Let
0 ≤ t1 < t2 < t3 < . . . < tk ≤ s.

Then theσ-algebra generated byXt1, . . . ,Xtk is the same as theσ-
algebra generated by

Xt1,Xt2 − Xt1, . . . ,Xtk − Xtk−1.

SinceXt − Xs is independent of these increments, it is independent
of σ{Xt1, . . . ,Xtk}. This is true for every finite sett1, . . . , tk and therefore
Xt − Xs is independent ofFs.

Let us carry out the following calculation veryformally.

P[Xt ∈ A | Fs](w) = P[Xt − Xs ∈ B | Fs](w), B = A− Xs(w),

33
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= P[Xt − Xs ∈ B], by independence,

i.e.34

P[Xt ∈ A | Fs](w) =
∫

A

1

(2πt)d/2
exp−|y− Xs(w)|2

2(t − s)
dy.

�

This formal calculation leads us to

Theorem .

P[Xt ∈ A | Fs](w) =
∫

A

1

(2πt)d/2
exp−|y− Xs(w)|2

2(t − s)
dy.

where A is Borel inRd, t > s.

Remark. It may be useful to note thatp(s,Xs(w), t, y) can be thought of
as a conditional probability density.

Proof. (i) We show that

fA(w) =
∫

A

1

(2πt)d/2
exp−|y− Xs(w)|2

2(t − s)
dy

is FS-measurable. Assume first thatA is bounded and Borel in
Rd. If ωn → ω, then fA(ωn) → fA(ω), i.e. fA is continuous and
henceFs-measurable. The general case follows if we note that
any Borel set can be got as an increasing union of a countable
number of bounded Borel sets.

(ii) For anyC ∈ Fs we show that

(*)
∫ X

C
X−1

t (A)dP(ω) =
∫

C

∫

A

exp−|y− Xs(ω)|2

(2π(t − s))d/2
dy dP(ω).

It is enough to verify (∗) for C of the form

C =
{
ω : (Xt1(ω), . . . ,Xtk(ω)) ∈ A1 × · · · × Ak; 0 ≤ t1 < . . . < tk ≤ s

}
,
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whereAi is Borel inRd for i = 1, 2 . . . k. The left side of (∗) is
then

∫

Ai×···×Ak×A

p(0, 0, t1, xt1)p(t1, xt1, t2, xt2) . . . p(tk, xtk , t, xt)dxt1 . . .dxt.

35

To compute the right side define

f : R(k+1)d → B

by
f (u1, . . . , uk, u) = XA1(u1) . . .XAk(uk)p(s, u, t, y).

Clearly f is Borel measurable. An application of Fubini’s theorem
to the right side of (∗) yields

∫

A

dy
∫

Ω

XA1(Xt1(ω)) . . . XAk(Xtk(ω))p(s,Xs(ω), t, y)dP(ω)

=

∫

A

dy
∫

Rd×···×Rd

(k+1) times

f (x1 . . . xk, xs)dFt1...tk, s

=

∫

A

dy
∫

A1×···×Ak×Rd

p(0, 0, t1, x1) . . . p(tk−1, tk, xk)

p(tk, xk, s, xs)p(s, xs, t, y)dx1 . . . dxkdxs

=

∫

A1×···×Ak×A

p(0, 0, t1, x1) . . . p(tk−1, xk−1, tk, xk)p(tk, xk, t, y)

dx1 . . . , dxkdy

(by the convolution rule)

= left side.

�

Examples of Stopping Times.
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1. Let (Xt) be a one-dimensional Brownian motion. Defineτ by

{τ ≤ s} =
∞⋂

n=1

lim
θ1,θ2

θ1,θ2 rational in [0,s]

{w : w(θ1) ∈ Dn,w(θ2) ∈ Cn},

where36

Dn =

{
x ∈ Rd : d(x,D) ≤ 1

n

}
,Cn =

{
x ∈ Rd : d(x,C) ≤ 1

n

}

Exercise 1.Let τ be as in Example 1.

(a) If A = {w : X1(w) ≤ τ} show thatA < Fτ.

(Hint: A∩ {τ ≤ 0} < F0). This shows thatFτ $ F0.

(b) P0{w : τ(w) = ∞} = 0.

(Hint: P0{w : |w(t)| < 1} ≤
∫

|y|≤t−1/2

e−1/2|y|2dy∀t).

Theorem . (Strong Markov Property of Brownian Motion). Letτ be any
finite stopping time, i.e.τ < ∞ a.e. Let Yt = Xτ+t − Xτ. Then

1. P[(Yt1 ∈ A1, . . . ,Ytk ∈ Ak) ∩ A] = P(Xt1 ∈ A1, . . .Xtk ∈ Ak) · P(A),
∀ A ∈ Fτ and for every Ai Borel inRd. Consequently,

2. (Yt) is a Brownian motion.

3. (Yt) is independent ofFτ.

The assertion is that a Brownian motion starts afresh at every stop-
ping time.

Proof.

Step 1.Let τ take only countably many values, says1, s2, s3 . . .. Put
E j = τ

−1{sj}. Then eachE j is Fτ-measure and

Ω =

∞⋃

j=1

E j , E j ∩ Ei = ∅ j , i.
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Fix A ∈ Fτ.

P[(Yt1 ∈ A1, . . . ,Ytk ∈ Ak) ∩ A]

=

∞∑

j=1

P[(Yt1 ∈ A1, . . . ,Ytk ∈ Ak) ∩ A∩ E j]

=

∞∑

j=1

P[(Xt1+sj − Xsj ) ∈ A1, . . . ,Xtk+sj − Xsj ∈ Ak) ∩ A∩ E j ]

=

∞∑

j=1

P[(Xt1 ∈ A1), . . . , (Xtk ∈ Ak)]P(A∩ E j)

(by the Markov property)

= P(Xt1 ∈ A1, . . . ,Xtk ∈ Ak) · P(A)

Step 2.Let τ be any stopping time; putτn =
[nτ] + 1

n
. A simple cal-

culation shows thatτn is a stopping time taking only countably many
values. Asτn � τ, Fτ ⊂ Fτn∀n. Let Y(n)

t = Xτn+t − Xτn.

By Step 1,

P[(Y(n)
t1 < x1, . . . ,Y

(n)
tk < xk) ∩ A]

= P(Xt1 < x1, . . . ,Xtk < xk) · P(A)

(wherex < y meansxi < yi i = 1, 2, . . . , d) for everyA ∈ Fτ. As all
the Brownian paths are continuous,Y(n)

t → Yt a.e. Thus, ifx1, . . . , xk is
a point of continuity of the joint distribution ofXt1, . . . ,Xtk, we have

P[(Yt1 < x1, . . . ,Ytk < xk) ∩ A] = P(Xt1 < x1, . . . ,Xtk < xk)P(A)

∀ A ∈ Fτ. Now assertion (1) follows easily. 38

For (2), putA = Ω in (1), and (3) is a consequence of (1) and (2).�





7. Reflection Principle

LET (Xt) BE A one-dimensional Brownian motion. ThenP( sup
0≤s≤t

Xs ≥ 39

a) = 2P(Xt ≥ a) with a > 0. This gives us the probability of a Brownian
particle hitting the linex = a some time less than or equal tot. The
intuitive idea of the proof is as follows.

Time,

Among all the paths that hita before timet exactly half of them end
up belowa at timet. This is due to the reflection symmetry. IfXs = a
for somes < t, reflection about the horizontal line ata gives a one -
one correspondence between paths withXt > a and paths withXt < a.
Therefore

P
{
max
0≤s≤t

Xs ≥ a,Xt > a
}
=

{
max
0≤s≤t

Xs ≥ a,Xt < a
}

39
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SinceP{Xt = a} = 0, we obtain

P

{
sup

0≤s≤t
Xs ≥ a

}
= P

{
sup

0≤s≤t
Xs ≥ a,Xt > a

}
+ P

{
sup

0≤s≤t
Xs ≥ a,Xt > a

}

= 2P{Xt ≥ a}

We shall now give a precise argument. We need a few elementary40

results.

Lemma 1. Let Xn =
n∑

k=1
Yk where the Yk are independent random vari-

ables such that P{Yk ∈ B} = P{−Yk ∈ B}∀ Borel set B⊂ R (i.e. Yk are
symmetric). Then for any real number a,

P
{
max
1≤i≤n

Xi > a
}
≤ 2P{Xn > a}

Proof. It is easy to verify that a random variable is symmetric if and
only if its characteristic function is real. Define

Ai = {X1 ≤ a, . . .Xi−1 ≤ a,Xi > a}, i = 1, 2, . . . , n;

B = {Xn > a}

ThenAi ∩ A j = ∅ if i , j. Now,

P(Ai ∩ B) ≥ P(Ai ∩ {Xn ≥ Xi})
= P(Ai)P(Xn ≥ Xi), by independence.

= P(Ai)P(Yi+1 + · · · + Yn ≥ 0).

As Yi+1, . . . ,Yn are independent, the characteristic function ofYi+1+

· · · + Yn is the product of the characteristic functions ofYi+1 + · · · + Yn,
so thatYi+1 + · · · + Yn is symmetric. Therefore

P(Yi+1 + · · · + Yn ≥ 0) ≥ 1
2
.

ThusP(Ai ∩ B) ≥ 1
2

P(Ai) and

P(B) ≥
n∑

i=1

P(Ai ∩ B) ≥ 1
2

∑
P(Ai) ≥

1
2

P


n⋃

i=1

Ai

 ,
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i.e.41

2P(B) ≥ P


n⋃

i=1

Ai

 ,

or
P

{
max
1≤i≤n

Xi > a
}
≤ 2P{Xn > a}

�

Lemma 2. Let Yi , . . . ,Yn be independent random variables. Put Xn =
n∑

k=1
Yk and letτ = min{i : Xi > a}, a > 0 andτ = ∞ if there is no such i.

Then for eachǫ > 0,

(a) P{τ ≤ n−1,Xn−Xτ ≤ −ǫ} ≤ P{τ ≤ n−1,Xn ≤ a}+
n−1∑
j=1

P(Yj > ǫ).

(b) P{τ ≤ n−1,Xn > a+2ǫ} ≤ P{τ ≤ n−1,Xn−Xτ > ǫ}+
n−1∑
j=1

P{Yj > ǫ}

(c) P{Xn > a+ 2ǫ} ≤ P{τ ≤ n− 1,Xn > a+ 2ǫ} + P{Yn > 2ǫ}.
If, further, Y1, . . . ,Yn are symmetric, then

(d) P{max
1≤i≤n

Xi > a,Xn ≤ a} ≥ P{Xn > a + 2ǫ} − P{Yn ≥ 2ǫ} −

2
n−1∑
j=1

P{Yj > ǫ}

(e) P{max
1≤i≤n

Xi > a} ≥ 2P{Xn > a+ 2ǫ} − 2
n∑

j=1
P{Yj > ǫ}

Proof. (a) Supposew ∈ {τ ≤ n − 1,Xn − Xτ ≤ −ǫ} andw ∈ {τ ≤
n − 1,Xn ≤ a}. ThenXn(w) > a and Xn(w) + ǫ ≤ Xτ(w)(w) or,
Xτ(w)(w) > a+ ǫ.

By definition ofτ(w), Xτ(w)−1(w) ≤ a and therefore,

Yτ(w)(w) = Xτ(w)(w) − Xτ(w)−1(w) > a+ ǫ − a = ǫ

if τ(w) > 1; if τ(w) = 1, Yτ(w)(w) = Xτ(w)(w) > a+ ǫ > ǫ.

ThusYj(w) > ǫ for some j ≤ n− 1, i.e. 42
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w ∈
n−1⋃

j=1

{Yj > ǫ}.

Therefore

{τ ≤ n− 1,Xn − Xτ ≤ −ǫ} ⊂ {τ ≤ n− 1,Xn ≤ a}
n−1⋃

j=1

{Yj > ǫ}

and (q) follows.

(b) Supposew ∈ {τ ≤ n−1,Xn > a+2ǫ} butw ∈ {τ ≤ n−1,Xn−Xτ >
ǫ}. Then

Xn(w) − Xτ(w)(w) ≤ ǫ,

or, Xτ(w)(w) > a+ ǫ so thatYτ(w)(w) > ǫ as in (a); henceYj(w) > ǫ
for some j ≤ n− 1. This proves (b).

(c) If w ∈ {Xn > a + 2ǫ}, thenτ(w) ≤ n; if w < {τ ≤ n − 1,Xn >

a + 2ǫ}, thenτ(w) = n so thatXn−1(w) ≤ a; thereforeYn(w) =
Xn(w) − Xn−1(w) > 2ǫ. i.e.w ∈ {Yn > 2ǫ}. Therefore

{Xn > a+ 2ǫ} ⊂ {τ ≤ n− 1,Xn > a+ 2ǫ} ∪ {Yn > 2ǫ}.

This establishes (c).

(d) P{max
1≤i≤n

Xi > a,Xn ≤ a} = P{τ ≤ n− 1,Xn ≤ a}

≥ P{τ ≤ n− 1,Xn − Xτ ≤ −ǫ} −
n−1∑
j=1

P(Yj > ǫ), by (a),

P

[
n−1⋃
k=1
{τ = k,Xn − Xk ≤ −ǫ}

]
−

n−1∑
j=1

P(Yj > ǫ)

=

n−1∑
k=1

P{τ = k,Xn − Xk ≤ −ǫ} −
n−1∑
j=1

P(Yj > ǫ)

=

n−1∑
k=1

P{τ = k}P{Xn − Xk ≤ −ǫ} −
n−1∑
j=1

P(Yj > ǫ)

(by independence)
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=

n∑
k=1

P{τ = k}P{Xn − Xk > ǫ} −
n−1∑
j=1

P(Yj > ǫ) (by symmetry)

= P{τ ≤ n− 1,Xn − Xτ ≥ ǫ} −
n−1∑
j=1

P(Yj > ǫ)

≥ P{τ ≤ n− 1,Xn − Xτ > ǫ} −
n−1∑
j=1

P(Yj > ǫ)

≥ P{τ ≤ n− 1,Xn > a+ 2ǫ} − 2
n−1∑
j=1

P{Yj > ǫ} (by (b))

≥ P{Xn > a+ 2ǫ} − P{Yn > 2ǫ} − 2
n−1∑
j=1

P{Yj > ǫ} (by (c)) 43

This proves (d).

(e) P{max
1≤i≤n

Xi > a} = P{max
1≤i≤n

Xi > a,Xn ≤ a} + P{max
1≤i≤n

Xi > a,Xn > a}

= P{max
1≤i≤n

Xi > a,Xn ≤ a} + P{Xn > a}

= P{Xn > a+ 2ǫ} − P{Yn > 2ǫ} + P{Xn > a}

− 2
n−1∑
j=1

P{Yj > ǫ} (by (d))

SinceP{Xn > a+ 2ǫ} ≤ P{Xn > a} and

P{Yn > 2ǫ} ≤ P{Yn > ǫ} ≤ 2P{Yn > ǫ},

we get

P{max
1≤i≤n

Xi > a} ≥ 2P{Xn > a+ 2ǫ} − 2
n∑

j=1

P(Yj > ǫ)

This completes the proof. 44

�

Proof of the reflection principle.

By Lemma 1

p = P

{
max
1≤ j≤n

X
( jt

n

)
>

}
≤ 2P(X(t) > a).
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By Lemma 2(e),

p ≥ 2P(X(t) > a+ 2ǫ) − 2
n∑

j=1

P

{(
X

( jt
n

)
− X

(
( j − 1)t

n

))
> ǫ

}
.

SinceX
( jt

n

)
−X

(
( j − 1)t

n

)
are independent and identically distribu-

ted normal random variables with mean zero and variance
t
n

(in partic-

ular they are symmetric),

P

((
X

( jt
n

)
− X

(
( j − 1)t

n

))
> ǫ

)
= P

((
X

( t
n

)
− X(0)

)
> ǫ

)

= P
(
X

( t
n

)
> ǫ

)
.

Therefore

p ≥ 2P(X(t) > a+ 2ǫ) − 2n P
(
X

( t
n

)
> ǫ

)
.

P(X(t/n) > ǫ) =

∞∫

ǫ

1
√

(2t/n)
e−x2/ 2t

n dx

=

∞∫

ǫ
√

n/
√

(2t)

e−x2

√
x

dx≤ ǫ
√

n/
√

(2t)
√
π

−1∞∫

ǫ
√

n/
√

(2t)

xe−x2
dx

or

P(X(t/n) > ǫ) ≤ 1

2
√
π

e−ǫ
2n/2t ·

√
(2t)

ǫ
√

n
.

Therefore

nP(X(t/n) > ǫ) ≤ n
2ǫ
√

(2t)/
√

(πn)e−ǫ
2n/2t → 0 as n→ +∞.

45

By continuity,

P
{
max
1≤≤n

X( jt/n) > a
}
→ P

{
max
0≤s≤t

X(s) > a
}
.
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We letn tend to∞ through values 2, 22, 23, . . . so that we get

2P{X(t) > a+ 2ǫ} − 2n P{X(t/n) > ǫ}

≤P

{
max
1≤ j≤n

X(t/n) > a

}
≤ 2P{X(t) > a},

or

2P{X(t) > a} ≤ 2P{X(t) ≥ a} ≤P
{
max
0≤s≤t

X(t) > a
}

2P{X(t) > a},

on lettingn→ +∞ first and then lettingǫ → 0. Therefore,

P
{
max
0≤s≤t

X(s) > a
}
= 2P{X(t) > a}

= 2

∞∫

a

1/
√

(2πt)e−x2/2tdx.

AN APPLICATION. Consider a one-dimensional Brownian motion. A
particle starts at 0. What can we say about the behaviour of the particle
in a small interval of time [0, ǫ)? The answer is given by the following
result.

P(A) ≡ P{w : ∀ǫ > 0,∃ t, s in [0, ǫ) such thatXt(w) > 0 and

Xs(w) < 0} = 1.

INTERPRETATION. Near zero all the particles oscillate about their46

starting point. Let

A+ = {w : ∀ ∈> 0∃ t ∈ [0, ǫ) such thatXt(w) > 0},
A− = {w : ∀ǫ > 0∃ s ∈ [0, ǫ) such thatXs(w) < 0}.

We show thatP(A+) = P(A−) = 1 and thereforeP(A) = P(A+ ∩
A−) = 1.

A+ ⊃
∞⋂

n=1

 sup
0≤t≤1/n

w > 0

 =
∞⋂

n=1

∞⋃

m=1

 sup
0≤t≤1/n

w(t) ≥ 1/m
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Therefore

P(A+) ≥ Lt
n→∞

sup
m→∞

P

 sup
0≤t≤1/n

w(t) ≥ 1/m



≥ 2 Lt
n→∞m→∞

supP(w(1/n) ≥ 1/m) (by the reflection principle)

≥ 1.

Similarly P(A−) = 1.

Theorem .Let{Xt} be a one-dimensional Brownian motion, A⊂ (−∞, a)
(a > 0) and Borel subset ofR. Then

P0{Xt ∈ A,Xs < a ∀s such that0 ≤ s≤ t}

=

∫

A

1/
√

(2πt)e−y2/2tdy−
∫

A

1/
√

(2πt)e−(2a−y)2/2tdy

Proof. Let τ(w) = inf {t : w(t) ≥ a}. By the strong Markov property of
Brownian motion,

P0{B(X(τ + s) − X(τ) ∈ A)} = P0(B)P0(X(s) ∈ A)

for every setB in Ft. This can be written as

E(X(X(τ+s)−X(τ)∈A)|Fτ) = P0(X(s) ∈ A)

Therefore47

E(X(X(τ+ℓ(w))−X(τ)∈A)|Fτ) = P0(X(ℓ(w)) ∈ A)

for every functionℓ(w) which isFτ-measurable. Therefore,

P0((τ ≤ t) ∩ ((X(τ + ℓ(w)) − X(τ)) ∈ A) =
∫

{τ≤t}

P0(X(ℓ(w)) ∈ A)dP(w)

In particular, takeℓ(w) = t − τ(w), clearly ℓ(w) is Fτ-measurable.
Therefore,

P0((τ ≤ t)((X(t) − X(τ)) ∈ A)) =
∫

{τ≤t}

P0(X(ℓ(w) ∈ A)dP(w)).
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Now X(τ(w)) = a. ReplaceA by A− a to get

(*) P0((τ ≤ t) ∩ (X(t) ∈ A)) =
∫

{τ≤t}

P0(X(ℓ(w) ∈ A− a)dP(w))

Consider now

P2a(X(t) ∈ A) = P0(X(t) ∈ A− 2a)

= P0(X(t) ∈ 2a− A) (by symmetry ofx)

= P0((τ ≤ t) ∩ (X(t) ∈ 2a− A)).

The last step follows from the face thatA ⊂ (−∞, a) and the conti-
nuity of the Brownina paths. Therefore

P2a(X(t) ∈ A) =
∫

{τ≤t}

P0(X(ℓ(w)) ∈ a− A)dP(w), (using∗)

= P0((τ ≤ t) ∩ (X(t) ∈ A)).

Now the required probability

P0{Xt ∈ A,Xs < a∀s ∈ 0 ≤ s≤ t} = P0{Xt ∈ A} − P0{(τ ≤ t) ∩ (Xt ∈ A)}

=

∫

A

1/
√

(2πt)e−y2/2tdy−
∫

A

1/
√

(2πt)e−(2a−y)2/2tdy.

The intuitive idea of the previous theorem is quite clear. Toobtain 48

the paths that reachA at timet without hitting the horizontal linex = a,
we consider all paths that reachA at timet and subtract those paths that
hit the horizontal linex = a before timet and then reachA at timet. To
see exactly which paths reachA at timet after hittingx = a we consider
a typical pathX(w).
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�

The reflection principle (or the strong Markov property) allows us
to replace this path by the dotted path (see Fig.). The symmetry of the
Brownian motion can then be used to reflect this path about theline
x = a and obtain the path shown in dark. Thus we have the following
result:

the probability that a Brownian particle starts from x= 0 at t = 0
and reaches A at time t after it has hit x= a at some timeτ ≤ t is the
same as if the particle started at time t= 0 at x = 2a and reached A at
time t. (The continuity of the path ensures that at some timeτ ≤ t, this
particle has to hit x= a).

We shall use the intuitive approach in what follows, the mathemati-49

cal analysis being clear, thorugh lengthy.

Theorem .Let X(t) be a one-dimensional Brownian motion, A⊂ (−1, 1)
any Borel subset ofR. Then

P0

[
sup

0≤s≤t
|X(s)| < 1,X(t) ∈ A

]
=

∫

A

φ(t, y)dy,

where

φ(t, y) =
∞∑

n=−∞
(−1)n/

√
(2πt)e−(y−2n)2/2t.
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Proof.

Let En be the set of those trajections which (i) start atx = 0 at time
t = 0 (ii) hit x = +1 at some timeτ1 < t (iii) hit x = −1 at some later
timeτ2 < t (iv) hit x = 1 again at a later timeτ3 < t . . . and finally reach
A at timet. The number ofτ’s should be equal ton at least, i.e.

En = {w : there exists a sequenceτ1, . . . τn of

stopping times such that 0< τ1 < τ2 < . . . < tτn < t, X(τ j) = (−1) j−1,
X(t) ∈ A}. Similarly, let

Fn = {w : there exists a sequenceτ1, . . . , τn of stopping times

0 < τ1 < τ2 < . . . < τn < t,X(τ j) = (−1) j ,X(t) ∈ A}

Note that 50

E1 ⊃ E2 ⊃ E3 ⊃ . . . ,
F1 ⊃ F2 ⊃ F3 ⊃ . . . ,
Fn ⊃ En+1; En ⊃ Fn+1,

En ∩ Fn = En+1 ∪ Fn+1.

Let

φ(t,A) = P

[
sup

0≤s≤t
|X(s)| < 1,X(t) ∈ A

]
.

Therefore

φ(t,A) = P[X(t) ∈ A] − P

[
sup

0≤s≤t
|X(s)| ≥ 1,X(t) ∈ A

]
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=

∫

A

1/
√

(2πt)e−y2/2tdy− P[(E1 ∪ F1) ∩ A0],

where

A0 = {X(t) ∈ A} =
∫

A

1/
√

(2πt)e−y2/2tdy− P[(E1 ∩ A0) ∪ (F1 ∩ A0)].

Use the fact thatP[A∪ B] = P(A) + P(B) − P(A∩ B) to get

φ(t,A) =
∫

A

1/
√

(2πt)e−y2/2tdy−P[E1∩A0]−P[F1∩A0]+P[E1∩F1∩A0],

asE1 ∩ F1 = E2 ∪ F2. Proceeding successively we finally get

φ(t,A) =
∫

A

1/
√

(2πt)e−y2/2tdy+
∞∑

n=1

(−1)nP[En∩A0]+
∞∑

n=1

(−1)nP[Fn∩A0]

We shall obtain the expression forP(E1 ∩ A0) andP[E2 ∩ A0], the
other terms can be obtained similarly.

E1 ∩ A0 consists of those trajectries that hitx = ±1 at some time
τ ≤ t and then reachA at time t. Thus P[E1 ∩ A0] is given by the
previous theorem by

∫

A

1/
√

(2πt)e−(y−2)2/2tdy.

E2 ∩ A0 consists of those trajectories that hitx = ±1 at timeτ1, hit51

x = −1 at timeτ2 and reachA at timet(τ1 < τ2 < t).
According to the previous theorem we can reflect the trajectory upto

τ2 aboutx = −1 so thatP(E2 ∩ A0) is the same as if the particle starts at
x = −2 at timet = 0, hits x = −3 at timeτ1 and ends up inA at timet.
We can now reflect the trajectory
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upto timeτ1 (the dotted curve should be reflected) aboutx = −3 to
obtain the required probability as if the trajectory started at x = −4.
Thus,

P(E2 ∩ A0) =
∫

A

e−(y+4)2/2t/
√

(2πt)dy.

Thus

φ(t,A) =
∞∑

n=−∞
(−1)n

∫

A

1/
√

2πte−(y−2n)2/2tdy

=

∫

A

φ(t, y)dy.

The previous theorem leads to an interesting result: 52

P

[
sup

0≤s≤t
|X(s)| < 1

]
=

1∫

−1

φ(t, y)dy

Therefore

P

[
sup

0≤s≤t
|X(s)| ≥ 1

]
= 1− P

[
sup

0≤s≤t
|X(s)| < 1

]
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= −1−
1∫

−1

φ(t, y)dy,

φ(t, y) =
∞∑

n=−∞
(−1)n/

√
(2πt)e−(y−2n)2/2t

Case (i).t is very small.

In this case it is enough to consider the terms correspondingto n = 0,
±1 (the higher order terms are very small). Asy varies from−1 to 1,

φ(t, y) ≃ 1/
√

(2πt)
[
e−y2/2t − e−(y−2)2/2t − e−(y+2)2/2t

]
.

Therefore
1∫

−1

φ(t, y)dy≃ 4/
√

(2πt)e−1/2t.

Case (ii). t is large. In this case we use Poisson’s summation formula
for φ(t, y):

φ(t, y) =
∞∑

k=0

e−(2k+1)2π2t/8Cos{(k+ 1)/2πy},

to get
1∫

−1

φ(t, y)dy≃ 4/πe−π
2t/8

for larget. Thus,P(τ > t) = 4/πe−π
2t/8.53

This result says that for large values oft the probability of paths
which stay between−1 and+1 is very very small and the decay rate is
governed by the factore−π

2t/8. This is connected with the solution of a
certain differential equation as shall be seen later on. �



8. Blumenthal’s Zero-One
Law

LET Xt BE A d-dimensional Brownian motion. IfA ∈ F0+ =
⋂
t>0

Ft, 54

thenP(A) = 0 or P(A) = 1.

Interpretation. If an event is observable in every interval [0, t] of time
then either it always happens or it never happens.

We shall need the following two lemmas.

Lemma 1. Let (Ω,B,P) be any probability space,Ca sub-algebra of
B. Then

(a) L2(Ω,C ,P) is a closed subspace of L2(Ω,B,P).

(b) If π : L2(Ω,B,P)→ L2(Ω,C ,P) is the projection map thenπ f =
E( f |C ).

Proof. Refer appendix. �

Lemma 2. LetΩ = C([0,∞);Rd), P0 the probability corresponding to
the Brownian motion. Then the set{φ(πt1, . . . , tk) ∈ φ is continuous,
bounded onRd × · · · ×Rd (k times),πt1, . . . , tk the canonical projection)
is dense in L2(Ω,B,P).

Proof. Functions of the formφ(x(t1), . . . , x(tk) whereφ runs over con-
tinuous functions is clearly dense inL2(Ω,Ft1,t2,...,tk ,P) and

⋃

k

⋃

t1,...,tk

L2(Ω,Ft1,...,tk,P)

53
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is clearly dense inL2(Ω,B,P). �

Proof of zero-one law.Let55

Ht = L2(Ω,Ft,P),H = L2(Ω,B,P),H0+ =

⋂

t>0

Ht.

ClearlyH0+ = L2(Ω,F0+,P).
Let πt : H → Ht be the projection. Thenπt f → π0+ f ∀ f in H.

To prove the law it is enough to show thatH0+ contains only constants,
which is equivalent toπ0+ f = constant∀ f in H. As π0+ is continuous
and linear it is enough to show thatπ0+φ = const∀φ of the Lemma 2:

π0+φ = Lt
t→0

πtφ = Lt
t→0

E(φ|t) by Lemma 1,

= Lt
t→0

E(φ(t1, . . . , tk)|Ft).

We can assume without loss of generality thatt < t1 < t2 < . . . < tk.

E(φ(t1, . . . , tk)|Ft) =
∫

φ(y1, . . . , yk)1/
√

(2π(t1 − t))e−|y1−Xt(w)|2/2(t1−t) . . .

. . .1/
√

(2π(tk − tk−1))e
−|yk−yk−1 |2
2(tk−tk−1) dy1 . . .dyk.

SinceX0(w) = 0 we get, ast → 0,

π0+φ = constant.

This completes the proof.

APPLICATION. Let α ≥ 1A = {w :
1∫

0

|w(t)|/tα < ∞}. ThenA ∈ F0+.

For, if 0 < s< 1, then
1∫

s
|w(t)|/tα < ∞. Thereforew ∈ A or not according

as
s∫

0

|w(t)|/tαdt converges or not. But this convergence can be asserted56
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by knowing the history ofw upto times. HenceA ∈ Fs. Blumenthal’s
law implies that

1∫

0

|w(t)|/tαdt < ∞ a.e.w., or,

1∫

0

|w(t)|/tαdt = ∞ a.e.w.

A precise argument can be given along the following lines. If0 <

s< 1,

A = {w :

s∫

0

|w(t)|/tα < ∞}

= {w : supIn,s(w) < ∞}

whereIn,s(w) is the lower Riemannian sum of|w(t)n|/tα corresponding
to the partition{0, s/n, . . . , s} and eachIn,s ∈ Fs.





9. Properties of Brownian
Motion in One Dimension

WE NOW PROVE the following. 57

Lemma . Let (Xt) be a one-dimensional Brownian motion. Then

(a) P(lim Xt = ∞) = 1; consequently P(lim Xt < ∞) = 0.

(b) P(lim Xt = −∞) = 1; consequently P(lim Xt > −∞) = 0.

(c) P(lim Xt = −∞); lim Xt = ∞) = 1.

SIGNIFICANCE. By (c) almost every Brownian path assumes each
value infinitely often.

Proof.

{lim Xt = ∞} =
∞⋂

n=1

(lim Xt > n)

=

∞⋂

n=1

( lim
θ rational

Xθ > n) (by continuity of Brownian paths)

First, note that

P0

[
sup

0≤s≤t
X(s) ≤ n

]
= 1− P0

[
sup

0≤s≤t
X(s) > n

]

57
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= 1− 21/
√

(2πt)

∞∫

n

e−y2/2tdy

=
√

(2/πt)

n∫

0

e−y2/2tdy.

Therefore, for anyx0 andt,

P

[
sup

t0≤s≤t
X(s) ≥ n|X(t0) = x0

]
= P0

 sup
0≤s≤t−t0

X(s) ≥ n− x0



(independent increments) which tends to 1 ast → ∞. Consequently,

P0

[
sup
t≥t0

X(t) ≥ n

]
= EP

[
sup
t≥t0

X(t) ≥ n|X(t0)

]

= E1 = 1.

58

In other words,

P0

[
lim sup

t→∞
X(t) ≥ n

]
= 1

for everyn. Thus
P(lim Xt = ∞) = 1.

(b) is clear if one notes thatw→ −w leaves the probability invariant.

(c) P(lim Xt =∞, lim Xt = −∞)

= P(lim Xt = ∞) − P(lim Xt > −∞, lim Xt = ∞).

≥ 1− P(lim Xt > −∞)

= 1.

�

Corollary . Let (Xt) be a d-dimensional Brownian motion. Then

P(lim |Xt | = ∞) = 1.
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Remark . If d ≥ 3 we shall see later thatP( Lt
t→∞
|Xt| = ∞) = 1. i.e.

almost every Brownian path “wanders” off to∞.

Theorem .Almost all Brownian paths are of unbounded variation in
any interval.

Proof. Let I be any interval [a, b] with a < b. Forn = 1, 2, . . . define

Vn(wQn) =
n∑

i=1

|w(ti) − w(ti−1)| (ti = a+ (b− a)i/n, i = 0, 1, 2, . . . n),

The variation corresponding to the partioinQn dividing [a, b] into n 59

equal parts. Let

Un(w,Qn) =
n∑

i=1

|(w(ti ) − w(ti−1)|2.

If
An(w,Qn) sup

1≤i≤n
|w(ti) − w(ti−1)|,

then
An(w,Qn)Vn(w,Qn) ≥ Un(w,Qn).

By continuity Lt
n→∞

An(w,Qn) = 0. �

Claim. Lt
n→∞

E[(Un(w,Qn) − (b− a))2] = 0.

Proof.

E[(Un − (b− a))2]

= E



n∑

j=1

[(Xt j − Xt j−1)
2 − (b− a/n)]



2

E[(
∑

(Z2
j − b− a/n))2], Z j = Xt j − Xt j−1,

= nE[(Z2
1 − b− a/n)2]
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(becauseZ j are independent and identically distributed).

= n[E(Z4
1) − (b− a/n)2] = 2(b− a/n)2 → 0.

Thus a subsequenceUni → b−a almost everywhere. SinceAni → 0
it follows thatVni (w,Qn) → ∞ almost everywhere. This completes the
proof. �

Note . {w : w is of bounded variation on [a, b]} can be shown to be60

measurable if one proves

Exercise.Let f be continuous on [a, b] and defineVn( f ,Qn) as above.
Show thatf is of bounded variation on [a, b] iff sup

n=1,2,...
Vn( f ,Qn) < ∞.

Theorem .Let t be any fixed real number in[0,∞), Dt = {w : w is
differentiable at t}. Then P(Dt) = 0.

Proof. The measurability ofDt follows from the following observation:
if f is continuous thenf is differentiable att if and only if

Lt
r→0

r rational

f (t + r) − f (t)
r

.

exists. Now

Dt =

∞⋃

m=1

w : |w(t + h) − w(t)
h

| ≤ M, for all h , 0, rational}

and

P
{
w : |Xt+h − Xt

h
| ≤ M ∀h ∈ Q, h , 0

}
≤ 2 inf

h

M
√

h∫

0

1√
(2π)

e−|y|
2/2

dy= 0

�

Remark. A stronger result holds:

P


⋃

t≥0

Dt

 = 0.
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Hint:
⋃

0≤t≤1

Dt

⋃

=1

⋃

m=1

n+2⋃

n−m i=1 k=i+1,i+2,i+3

{
w : w

(
k
n

)
− w

(
k− 1

n

)
| ≤ 71

n

}

and

P


n+2⋃

i=1 k=i+1,...,i+3

{
w : w

(
k
n

)
− w

(
k− 1

n

)
| ≤ 71

n

}
const/

√
n



This construction is due to A. Dvoretski, P. Erdos & S. Kakutani.





10. Dirichlet Problem and
Brownian Motion

LET G BE ANY bounded open set inRd. Define the exit timeτG(w) as 61

follows:
τG(w) = {inf t : w(t) < G}.

If w(0) ∈ G, τG(w) = 0; if w(0) ∈ G, τG(w) is the first timew escapes
G or, equivalently, it is the first time thatw hits the boundary∂G of G.
Clearly τG(w) is a stopping time. By definitionXτG(w) ∈ ∂G, ∀w and
XτG is a random variable. We can define a Borel probability measure on
∂G by

πG(x, Γ) = Px(XτG ∈ Γ)
= probability thatw hitsΓ.

If f is a bounded, real-valued measurable funciton defined on∂G,
we define

u(x) = Ex( f (XτG)) =
∫

∂G

f (y)πG(x, dy)

where
Ex = EPx.

In caseG is a sphere centred aroundx, the exact form ofπG(x, Γ) is
computable.

Theorem .Let S= S(0; r) = {y ∈ Rd : |y| < r}. Then

πS(0, r) =
surface area ofΓ
surface area of S

.

63



64 10. Dirichlet Problem and Brownian Motion

Proof. The distributions{Ft1,...,tk} defining Brownian motion are invari-62

ant under rotations. ThusπS(0, ·) is a rotationally invariant probability
measure. The result follows from the fact that the only probability mea-
sure (on the surface of a sphere) that is invariant under rotations is the
normalised surface area. �

Theorem .Let G be any bounded region, f a bounded measurable real
valued function defined on∂G. Define u(x) = Ex( f (XτG)). Then

(i) u is measurable and bounded;

(ii) u has the mean value property; consequently,

(iii) u is harmonic in G.

Proof. (i) To prove this, it is enough to show that the mappingx→
Px(A) is measurable for every Borel setA.

Let C = {A ∈ B : x→ Px(A) is measurable}
It is clear thatπ−1

t1,...,tk(B) ∈ C , ∀ Borel setB in Rd × · · · × Rd. As
C is a monotone classC = B.

(ii) Let S be any sphere with centre atx, andS ⊂ G. Let τ = τS

denote the exit time throughS. Clearly τ ≤ τG. By the strong
Markov property,

u(Xτ) = E( f (XτG)|Fτ).

Now

u(x) = Ex( f (XτG)) = Ex(E( f (XτG))|Fτ)

= Ex(u(Xτ)) =
∫

∂S

u(y)πS(x, dy)

=
1
|S|

∫

∂S

u(y)dS; |S| = surface area ofS.

63
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(iii) is a consequence of (i) and (ii). (See exercise below).
�

Exercise′. Let u be a bounded measurable function in a regionG satis-
fying the mean value property, i.e.

u(x) =
1
|S|

∫

∂S

u(y)dS

for every sphereS G. Then

(i) u(x) =
1

v ∈ lS

∫

S

u(y)dy.

(ii) Using (i) show thatu is continuous.

(iii) Using (i) and (ii) show thatu is harmonic.

We shall now solve the boundary value problem under suitablecon-
ditions on the regionG.

Theorem .Let G, f , u be as in the previous theorem. Further suppose
that

(i) f is continuous;

(ii) G satisfies the exterior cone condition at every point of∂G, i.e.
for each y∈ ∂G there exists a cone Ch with vertex at the point y
of height h and such that Ch − {y} ⊂ exterior of G. Then

lim
x→y,x∈G

u(x) = f (y), ∀y ∈ ∂G.

64

Proof.

Step 1.Py{w : w(0) = y,w remains inG for some positive time} = 0.
Let An = {w : w(0) = y,w(s) ∈ G for 0 ≤ s≤ 1/n},
Bn = Ω − An, A =

∞⋃
n=1

An, B =
∞⋂

n=1
Bn.
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As An’s are increasing,Bn’s are decreasing andBn ∈ F1/n; so that
B ∈ F0+. We show thatP(B) > 0, so that by Bluementhal’s zero-one
law, P(B) = 1, i.e.P(A) = 0.

Py(B) = lim
n→∞

Py(Bn) ≥ lim
n→∞

Py{w : w(0) = y,w(
1
2n

) ∈ Ch − {y}}

Thus

Py(b) ≥ lim
∫

Ch−{y}

1/
√

(2π/2n)d exp(−|z− y|2/2/2n)dz

=

∫

C∞

1/
√

(2π)e−|y|
2/2dy,

whereC∞ is the cone of infinite height obtained fromCh. ThusPy(B) >
0.

Step 2.If C is closed then the mappingx → Px(C) is upper semi-
continuous.

For, denote byXC the indicator function ofC. As C is closed (in
a metric space)∃ a sequence of continuous functionsfn decreasing to
XC such that 0≤ fn ≤ 1. ThusEx( fn) decreases toEx(XC) = Px(C).
Clearly x→ Ex(Fn) is continuous. The result follows from the fact that
the infimum of any collection of continuous functions is upper semi-
continuous.

Step 3.Let δ > 0,65

N(y; δ) = {z∈ ∂G : |z− y| < δ},
Bδ = {w : w(0) ∈ G,XτG(w) ∈ ∂G− N(y; δ)},

i.e. Bδ consists of trajectories which start at a point ofG and escape for
the first time through∂G at a point not inN(y; δ). If Cδ = Bδ, then

Cδ ∩ {w : w(0) = y} ⊂ A∩ {w : w(0) = y}

whereA is as in Step 1.
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For, supposew ∈ Cδ∩{w : w(0) = y}. Then there existswn ∈ Bδ such
thatwn→ w uniformaly on compact sets. Ifw < A∩{w : w(0) = y} there
existsǫ > 0 such thatw(t) ∈ G∀t in (0, ǫ]. Let δ∗ = inf

0≤t≤ǫ
d(w(t),G −

N(y, δ)). Thenδ∗ > 0. If tn = τG(wn) and tn does not converge to 0,
then there exists a subsequence, again denoted bytn, such thattn ≥ kǫ >
0 for somek ∈ (0, 1). Sincewn(kǫ) ∈ G and wn(kǫ), w(kǫ) ∈ G, a
contradiction. Thus we can assume thattn converges to 0 and also that
ǫ ≥ tn∀n, But then

(*) |wn(tn) − w(tn)| ≥ δ∗.

However, aswn converges tow uniformly on [0, ǫ],

wn(tn) − w(tn)→ w(0)− w(0) = 0

contradicting (*). Thusw ∈ A{w : w(0) = y}.

Step 4. lim
x→y,x∈G

Px(Bδ) = 0.

For, 66

lim
x→y

Px(Bδ) ≤ lim
x→y

Px(Cδ) ≤ Py(Cδ) (by Step 2)

= Py(Cδ ∩ {w : w(0) = y})
≤ Py(A) (by Step 3)

= 0.

Step 5.

|u(x) − f (y)| = |
∫

Ω

f (XτG(w))dPx(w) −
∫

Ω

f (y)dPx(w)|

≤
∫

Ω−Bδ

| f (XτG(w)) − f (y)|dPx(w) + |
∫

Bδ

( f (XτG(w)) − f (y))dPx(w)|

≤
∫

Ω−Bδ

| f (XτG(w)) − f (y)|dPx(w) + 2|| f ||∞Px(Bδ)

and the right hand side converges to 0 asx→ y (by Step 4 and the fact
that f is continuous). This proves the theorem.
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�

Remark. The theorem is local.

Theorem .Let G = {y ∈ Rd : δ < |y| < R}, f any continuous function
on ∂G = {|y| = δ} ∩ {|y| = R}. If u is any harmonic function in G with
boundary values f , then u(x) = Ex( f (XτG)).

Proof. ClearlyG has the exterior cone property. Thus, if

v(x) = Ex( f (XτG)),

then v is harmonic inG and has boundary valuesf (by the previous
theorem). The result follows from the uniqueness of the solution of the
Dirichlet problem for the Laplacian operator.

The function f = 0 on |y| = R and f = 1 on |y| = δ is of spe-
cial interest. Denote by∪R,0

δ,1 the corresponding solution of the Dirichlet
problem. �

Exercise. (i) If d = 2 then67

UR,0
δ,1 (x) =

logR− log |x|
logR− logδ

, ∀x ∈ G.

(ii) If d ≥ 3 then

UR,0
δ,1 (x) =

|x|−n+2 − R−n+2

δ−n+2 − R−n+2
.

Case (i):d = 2. Then

logR− log |x|
logR− logδ

= UR,0
δ,1 (x).

Now,

Ex( f (XτG)) =
∫

|y|=δ

πG(x, dy) = Px(|XτG | = δ),

i.e.

logR− log |x|
logR− logδ

= Px(|XτG | = δ)
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Px (the particle hits|y| = δ before it hits|y| = R).

Fix R and letδ → 0; then 0= Px (the particle hits 0 before hitting
|y| = R).

Let R take values 1, 2, 3, . . ., then 0= Px (the particle hits 0 before
hitting any of the circles|y| = N). Recalling that

Px(lim |Xt | = ∞) = 1,

we get

Proposition . A two-dimensional Brownian motion does not visit a
point.

Next, keepδ fixed and let R→ ∞, then,

1 = Px(|w(t)| = δ for some time t> 0).

Since any time t can be taken as the starting time for the Brownian 68

motion, we have

Proposition . Two-dimensional Brownian motion has the recurrence
property.

Case (ii): d ≥ 3. In this case

Px(w : w hits |y| = δ before it hits|y| = R)

= (1/|x|n−2 − 1/Rn−2)/(1/δn−2 − 1/Rn−2).

Letting R→ ∞ we get

Px(w : w hits |y| = δ) = (δ/|x|)n−2

which lies strictly between 0 and 1. Fixingδ and letting|x| → ∞, we
have

Proposition . If the particle start at a point for away from0 then it has
very little chance of hitting the circle|y| = δ.

If |x| ≤ δ, then

P(w hits Sδ) = 1 where Sδ = {y ∈ Rd : |y| = δ}.
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Let
Vδ(x) = (δ/|x|)n−2 for |x| ≥ δ.

In view of the above result it is natural to extend Vδ to all space
by putting Vδ(x) = 1 for |x| ≤ δ. As Brownian motion has the Markov
property

Px{w : w hits Sδ after time t}

=

∫
Vδ(y)1/

√
(2πt)d exp−|y|2/2t dy→ 0 as t→ +∞.

ThusP(w hits Sδ for arbitrarily larget) = 0. In other words,P(w :69

lim
t→∞
|w(t)| ≥ δ) = 1. As this is true∀δ > 0, we get the following

important result.

Proposition . P( lim
t→∞
|w(t)| = ∞) = 1,

i.e. for d≥ 3, the Brownian particle wander away to+∞.



11. Stochastic Integration

LET {Xt : t ≥ 0} BE A one-dimensional Brownian motion. We want70

first to define integrals of the type
∞∫

0

f (s)dX(s) for real functions f ∈

L1[0,∞). If X(s,w) is of bounded variation almost everywhere then we

can give a meaning to
∞∫

0

f (s)dX(s,w) = g(w). However, sinceX(s,w)

is not bounded variation almost everywhere,g(w) is not defined in the
usual sense.

In order to defineg(w) =
∞∫

0

f (s)dX(s,w) proceed as follows.

Let f be a step function of the following type:

f =
n∑

i=1

aiX[ti ,ti+1), 0 ≤ t1 < t2 < . . . < tn+1.

We naturally define

g(w) =

∞∫

0

f (s)dX(s,w) =
n∑

i=1

ai(Xti+1(w) − Xti (w))

=

n∑

i=1

ai(w(ti+1) − w(ti)).

g satisfies the following properties:

(i) g is a random variable;

71
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(ii) E(g) = 0; E(g2) =
∑

a2
i (ti+1 − ti) = || f ||2.

This follows from the facts that (a)Xti+1 − Xti is a normal random
variable with mean 0 and variance (ti+1 − ti) and (b)Xti+1 − Xti are inde-
pendent increments, i.e. we have

E



∞∫

0

f dX

 = 0, E

|
∞∫

0

f dX|2
 = || f ||

2
2.

71

Exercise 1.If

f =
n∑

i=1

aiX[ti ,ti+1), 0 ≤ t1 < . . . < tn+1,

g =
m∑

i=1

biX[si ,si+1), 0 ≤ s1 < . . . < sm+1,

Show that

∞∫

0

( f + g)dX(s,w) =

∞∫

0

f dX(s,w) +

∞∫

0

gdX(s,w)

and
∞∫

0

(α f )dX(s,w) = α

∞∫

0

f dX(s,w), ∀α ∈ R.

Remark. The mappingf →
∞∫

0

f dX is therefore a linearL2
R
-isometry of

the spaceS of all simple functions of the type

n∑

i=1

aiX[ti ,ti+1), (0 ≤ t1 < . . . < tn+1)

into L2(Ω,B,P).
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Exercise 2.Show thatS is a dense subspace ofL2[0,∞).
Hint: Cc[0,∞), i.e. the set of all continuous functions with compact sup-
port, is dense inL2[0,∞). Show thatS contains the closure ofCc[0,∞).

Remark . The mappingf →
∞∫

0

f dX can now be uniquely extended as

an isometry ofL2[0,∞) into L2(Ω,B,P).
Next we define integrals fo the type 72

g(w) =

t∫

0

X(s,w)dX(s,w)

Put t = 1 (the general case can be dealt with similarly). It seems
natural to define

(*)

1∫

0

X(s,w)dX(s) = Lt
sup|t j−t j−1|→0

n∑

j=1

X(ξ j)(X(t j) − X(t j−1))

where 0= t0 < t1 < . . . < tn = 1 is a partion of [0, 1] with t j−1 ≤ ξ j ≤ t j .
In general the limit on the right hand side may not exist. Evenif it
exists it may happen that depending on the choice ofξ j, we may obtain
different limits. To consider an example we chooseξ j = t j and then
ξ j = t j−1 and compute the right hand side of (∗). If ξ j = t j−1,

n∑

j=1

Xξ j (Xt j − Xt j−1) =
n∑

j=1

Xt j−1 − (Xt j − Xt j−1)

=
1
2

n∑

j=1

(Xt j ) − (Xt j−1) −
1
2

n∑

j=1

(Xt j − Xt j−1)

1
2

[X2(1)− X2(0)] − 1
2

asn→ ∞, and sup|t j − t j−1| → 0,

arguing as in the proof of the result that Brownian motion is not of
bounded variation. Ifξ j = t j ,

Lt
n→∞

Sup|t j−t j−1|→0

n∑

j=1

Xt j (Xt j − Xt j−1) = 1/2X(1)− 1/2X(0)+ 1/2.
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Thus we get different answers depending on the choice ofξ j and73

hence one has to be very careful in defining the integral. It turns out
that the choice ofξ j = t j−1 is more appropriate in the definition of the
integral and gives better results.

Remark. The limit in (∗) should be understood in the sense of conver-
gence probability.

Exercise 3.Let 0 ≤ a < b. Show that the “left integral” (ξ j = t j−1) is
given by

L

b∫

a

X(s)dX(s) =
X2(b) − X2(a) − (b− a)

2

and the “right integral” (ξ j = t j) is given by

R

b∫

s

X(s)dX(s) =
X2(b) − X2(a) + (b− a)

2
.

We now take up the general theory of stochastic integration.To
motivate the definitions which follow let us consider ad-dimensional
Brownian motion{β(t) : t ≥ 0}. We have

E[β(t + s) − β(t) ∈ A|Ft] =
∫

A

1/
√

(2πs)e−|y|
2/2sdy.

Thus

E( f (β(t + s) − β(t))|Ft] =
∫

f (y)1/
√

(2πs)e−|y|
2/2s

dy.

In particular, if f (x) = eix.u,

E[eiu(β(t + s) − β(t))|Ft] =
∫

eiu.y1/
√

(2πs)e−|y|
2/2sdy

= e
−s|u|2

2 .

Thus74
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E[eiu.β(t+s) |Ft] = eiu.β(t)e−s|u|2/2,

or,
E[eiu.β(t+s)+(t+s)|u|2/2|Ft] = eiu.β(t)+t|u|2/2.

Replacingiu by θ we get

E[eθ.β(s)−|sθ|2/2 | Ft] = eθ.β(t)−t|θ|2/2 , s> t,∀θ.

It is clear thateθ.β(t)−t|θ|2/2 is Ft-measurable and a simple calculation
gives

E(eθ.β(t)−|θ|2t/2|) < ∞ ∀θ.

We thus have

Theorem . If {β(t) : t ≥ 0} is a d-dimensional Brownian motion then
exp[θ.β(t)− |θ|2t/2] is a Martingale relative toFt, theσ-algebra gener-
ated by(β(s) : s≤ t).

Definition. Let (Ω,B,P) be a probability space (Ft)t≥0 and increasing
family of sub-σ-algebras ofF with F = σ(

⋃
t≥0

Ft).

Let

(i) a : [0,∞)×Ω → [0,∞) be bounded and progressively measurable;

(ii) b : [0,∞) ×Ω→ R be bounded and progressively measurable;

(iii) X : [0,∞)×Ω→ R be progressively measurable, right continuous
on [0,∞), ∀ w ∈ Ω, and continous on [0,∞) almost everywhere
onΩ;

(iv) Zt(w) = e
θX(t,w)−θ

t∫

0
b(s,w)ds− θ22

t∫

0
a(s,w)ds

75

be a Martingale relative to (Ft)t≥0.

ThenX(t,w) is called an Ito process corresponding to the parameters
b anda and we writeXt ∈ I [b, a].

N.B. The progressive measurability ofX⇒ Xt is Ft-measurable.
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Example . If {β(t) : t ≥ 0} is a Brownian motion, thenX(t,w) = βt(w)
is an Ito process corresponding to parameters 0 and 1. (i) and(ii) are
obvious. (iii) follows by right continuity ofβt and measurability ofβt

relative toFt and (iv) is proved in the previous theorem.

Exercise 4.Show thatZt(w) defined in (iv) isFt-measurable and pro-
gressively measurable.

[Hint:

(i) Zt is right continuous.

(ii) Use Fubini’s theorem to prove measurability].

Remark . If we put Y(t,w) = X(t,w) −
t∫

0

b(s,w)ds thenY(t,w) is pro-

gressively measurable andY(t,w) is an Ito process corresponding to
the parameters 0,a. Thus we need only consider integrals of the type
t∫

0

f (s,w)dY(s,w) anddefine

t∫

0

f (s,w)dX(s,w) =

t∫

0

f (s,w)dY(s,w) +

t∫

0

f (s,w)b(s,w)ds.

(Note thatformally we havedY= dX− dbt).

Lemma . If Y(t,w) ∈ I [0, a], then76

Y(t,w) and Y2(t,w) −
t∫

0

a(s,w)ds

are Martingales relative to(Ft).

Proof. To motivate the arguments which follow, we first give a formal
proof. Let

Yθ(t) = e
θY(t,w)− θ22

t∫

0

a(s,w)ds
.
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ThenYθ(t) is a martingale,∀θ. Therefore
Yθ − 1
θ

is a Martingale,∀θ.
Hence (formally),

lim
θ→0

Yθ − 1
θ
= Y′θ|θ=0

is a Martingale.

Step 1.Y(t, ·) ∈ Lk(Ω,F ,P), k = 0, 1, 2, . . . and∀t. In fact, for every
realθ, Yθ(t) is a Martingale and henceE(Yθ) < ∞. Sincea is bounded
this means that

E(eθY(t,·)) < ∞, ∀θ.

Taking θ = 1 and−1 we conclude thatE(e|Y|) < ∞ and hence
E(|Y|k) < ∞, ∀k = 0, 1, 2, . . .. SinceY is an Ito process we also get

sup
|θ|≤α

E



e
Y(t,·)− θ22

t∫

0
ads



k
< ∞

∀k and for everyα > 0.

Step 2.Let Xθ(t) = [Y(t, ·) − θ
t∫

0

ads]Y(t) =
d
dθ

Yθ(t, ·). 77

Define

φA(θ) =
∫

A

(Xθ(t, ·) − Xθ(s, ·))dP(w)

wheret > s, A ∈ Fs. Then

θ2∫

θ1

φA(θ)dθ =

θ2∫

θ1

∫

A

[Xθ(t, ·) − Xθ(S, ·)]dP(w)dθ.

Sincea is bounded, sup
|θ|≤α

E([Yθ(t, ·)]k) < ∞, andE(|Y|k) < ∞, ∀k; we

can use Fubini’s theorem to get

θ2∫

θ1

φA(θ)dθ =
∫

A

θ2∫

θ1

[Xθ(t, ·) − Xθ(s, ·)]dθ dP(w).
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or

θ2∫

θ1

φA(θ)dθ =
∫

A

Yθ2(t, ·) − Yθ1(t, ·)dP(w) −
∫

A

Yθ1(s, ·) − Yθ1(s, ·)dP(w).

Let A ∈ Fs andt > s; then, sinceY is a Martingale,

θ2∫

θ1

φA(θ)dθ = 0.

This is true∀θ1 < θ2 and sinceφA(θ) is a continuous function ofθ,
we conclude that

φA(θ) = 0, ∀θ.

In particular,φA(θ) = 0 which means that

∫

A

Y(t, ·)dP(w) =
∫

A

Y(s, ·)dP(w), ∀A ∈ Fs, t > s,

i.e.,Y(t) is a Martingale relative to (Ω,Ft,P).78

To prove the second part we put

Zθ(t, ·) =
d2

dθ2
Yθ(t)

and

ψA(θ) =
∫

A

{Zθ(t, ·) − Zθ(s, ·)}dP(w).

Then, by Fubini,

θ2∫

θ1

ψA(θ)dθ =
∫

A

θ2∫

θ1

Zθ(t, ·) − Zθ(s, ·)dθ dP(w).
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or,

θ2∫

θ1

ψA(θ)dθ = φA(θ2) − φA(θ1)

= 0 if A ∈ Fs, t > s.

Therefore
ψA(θ) = 0, ∀θ.

In particular,ψA(θ) = 0 implies that

Y2(t,w) −
t∫

0

a(s,w)ds

is an (Ω,Ft,P) Martingale. This completes the proof of lemma 1.�

Definition. A function θ : [0,∞)×Ω→ R is called simple if there exist
realss0, s1, . . . , sn, . . .

0 ≤ s0 < s1 < . . . < sn . . . < ∞,

sn increasing to+∞ and

θ(s,w) = θ j(w)

if s∈ [sj , sj+1), whereθ j(w) is Fsj -measurable and bounded. 79

Definition. Let θ : [0,∞) × Ω → R be a simple function andY(t,w) ∈
I [0, a]. We define the stochastic integral ofθ with respect toY, denoted

t∫

0

θ(s,w)dY(s,w)),

by

ξ(t,w) =

t∫

0

θ(s,w)dY(s,w)
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=

k∑

j=1

θ j−1(w)[Y(sj ,w) − Y(sj−1,w)] + θk(w)[Y(t,w) − Y(sk,w)].

Lemma 2. Letσ : [0,∞) × Ω → R be a simple function and Y(t,w) ∈
I [0, a]. Then

ξ(t,w) =

t∫

0

σ(s,w)dY(s,w) ∈ I [0, aσ2].

Proof. (i) By definition, σ is right continuous andσ(t,w) is Ft-
measurable; hence it is progressively measurable. Sincea is pro-
gressively measurable and bounded

aσ2 : [0,∞) ×Ω→ [0,∞)

is progressively measurable and bounded.

(ii) From the definition ofξ it is clear thatξ(t, ·) is right continuous,80

continous almost everywhere andFt-measurable thereforeξ is
progressively measurable.

(iii) Zt(w) = e
[θξ(t,w)− θ22

t∫

0
aσ2ds]

is clearlyFt-measurable∀θ. We show that

E(Zt) < ∞, ∀t andE(Zt2 |Ft1) = Zt1 if t1 < t2.

We can assume without loss of generality thatθ = 1 (if θ , 1 we
replaceσ by θσ). Therefore

Zt(w) = e
[ξ(t,w)−

t∫

0

aσ2ds]
.
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Sincea andσ are bounded uniformly on [0, t], it is enough to show that
E(eξ(t,w)) < ∞. By definition,

ξ(t,w) =
k∑

j=1

θ j−1(w)[Y(sj ,w) − Y(sj−1,w)] + θk(w)(Y(t,w) − Y(sk,w)).

The resultE(eξ(t,w)) < ∞ will follow from the generalised Holder’s in-
equality provided we show that

E(eθ(w)[Y(t,w)−Y(s,w)] ) < ∞

for every bounded functionθ which isFs-measurable. Now

E(eθ[Y(t,·)−Y(s,·)] |Fs) =

constant for every constantθ, sinceY ∈ I [0, a]. Therefore

E(eθ(w)[Y(t,·)−Y(s,·)] |Fs) = constant

for everyθ which is bounded andFs-measurable. Thus 81

E(eθ(w)[Y(t,·)−Y(s,·)]) < ∞.

This proves thatE(Zt(w)) ∈ ∞.
Finally we show that

E(Zt2 |Ft1) = Zt1(w), if t1 < t2.

Consider first the case whent1 andt2 are in the same interval

[sk, sk+1).

Then

ξ(t2,w) = ξ(t1,w) + σk(w)[Y(t2,w) − Y(t1,w)] (see definition),
t2∫

0

aσ2(s,w)ds=

t1∫

0

aσ2(s,w)ds+

t2∫

t1

aσ2(s,w)ds.
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Therefore

E(Zt2(w)|Ft1) = Zt1(w)E(exp[θσk(w)[Y(t2,w) − Y(t1,w)] − θ
2

2

t2∫

t1

aσ2ds)|Ft1)

asY ∈ I [0, a].

(*) E(exp[θ(Y(t2,w) − T(t1,w)) − θ
2

2

t2∫

t1

a(s,w)ds]|Ft1) = 1

and sinceσk(w) is Ft1-measurable (∗) remains valid ifθ is replaced by
θσk. Thus

E(Zt2 |Ft1) = Zt1(w).

The general case follows if we use the identity

E(E(X|C1)|C2) = E(X|C2) for C2 ⊂ C1.

ThusZt is a Martingale andξ(t,w) ∈ I [0, aσ2]. �

Corollary . (i) ξ(t,w) is a martingale; E(ξ(t,w)) = 0;82

(ii) ξ2(t,w) −
t∫

0

aσ2ds

is a Martingale with

E(ξ2(t,w)) = E(

t∫

0

aσ2(s,w)ds.

Proof. Follows from Lemma 1. �

Lemma 3. Letσ(s,w) be progressively measurable such that for each
t,

E(

t∫

0

σ2(s,w)ds) < ∞.
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Then there exists a sequenceσn(s,w) of simple functions such that

lim
n→∞

E



t∫

0

|σn(s,w) − σ(s,w)|2ds

 = 0.

Proof. We may assume thatσ is bounded, for ifσN = σ for |σ| ≤ N
and 0 if |σ| > N, thenσn→ σ, ∀(s,w) ∈ [0, t] ×Ω. σN is progressively
measurable and|σn − σ|2 ≤ 4|σ|2. By hypothesisσ ∈ L([0, t] : Ω).

ThereforeE(
t∫

0

|σn−σ|ds)→ 0, by dominated convergence. Further,

we can also assume thatσ is continuous. For, ifσ is bounded, define

σh(t,w) = 1/h

t∫

(t−h)v0

σ(s,w)ds.

σn is continuous int andFt-measurable and hence progressively mea-
surable. Also by Lebesgue’s theorem

σh(t,w)→ σ(t,w), as h→ 0,∀t,w.

Sinceσ is bounded byC, σh is also bounded byC. Thus 83

E(

t∫

0

|σh(s,w) − σ(s,w)|2ds) → 0.

(by dominated convergence). Ifσ is continuous, bounded and progres-
sively measurable, then

σn(s,w) = σ

(
[ns]

n
,w

)

is progressively measurable, bounded and simple. But

Lt
n→∞

σn(s,w) = σ(s,w).
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Thus by dominated convergence

E



t∫

0

|σn − σ|2ds

→ 0 as n→ ∞.

�

Theorem .Letσ(s,w) be progressively measurable, such that

E(

t∫

0

σ2(s,w)ds) < ∞

for each t> 0. Let (σn) be simple approximations toσ as in Lemma 3.
Put

ξn(t,w) =

t∫

0

σn(s,w)dY(s,w)

where Y∈ I [0, a]. Then

(i) Lt
n→∞

ξn(t,w) exists uniformly in probability, i.e. there exists an al-

most surely continuousξ(t,w) such that

Lt
n→∞

P

(
sup

0≤t≤T
|ξn(t,w) − ξ(t,w)| ≥ ǫ

)
= 0

for eachǫ > 0 and for each T. Moreover,ξ is independent of the
sequence(σ0).

(ii) The mapσ→ ξ is linear.84

(iii) ξ(t,w) andξ2(t,w) −
t∫

0

aσ2ds are Martingales.

(iv) If σ is bounded,ξ ∈ I [0, aσ2].
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Proof. (i) It is easily seen that for simple functions the stochastic
integral is linear. Therefore

(ξn − ξm)(t,w) =

t∫

0

(σn − σm)(s,w)dY(s,w).

Sinceξn − ξm is an almost surely continuous martingale

P

(
sup

0≤t≤T
|ξn(t,w) − ξm(t,w)| ≥ ǫ

)
≤ 1
ǫ2

E[(ξn − ξm)2(T,w)].

This is a consequence of Kolmogorov inequality (See Appendix).
Since

(ξn − ξm)2 −
t∫

0

a(σn − σm)2ds

is a Martingale, anda is bounded,

E[(ξn − ξm)2(T,w)] = E



T∫

0

(σn − σm)2a ds

 .(*)

≤ const
1

ǫ2
E



T∫

0

(σn − σm)2ds

 .

Therefore
Lt

n,m→∞
E[(ξn − ξm)2(T,w)] = 0.

Thus (ξn−ξm) is uniformly Cauchy in probability. Therefore there
exists a progressively measurableξ such that

Lt
n→∞

P

(
sup

0≤t≤T
|ξn(t,w) − ξ(t,w)| ≥ ǫ

)
= 0, ∀ǫ > 0, ∀T.

It can be shown thatξ is almost surely continuous.
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If (σn) and (σ′n) are two sequences of simple functions approxi-85

matingσ, then (∗) shows that

E[(ξn − ξ′n)2(T,w)] → 0.

Thus
Lt
n
ξn = Lt

n
ξ′n,

i.e. ξ is independent of (σn).

(ii) is obvious.

(iii) (*) shows thatξn→ ξ in L and thereforeξn(t, ·)→ ξ(t, ·) in L1 for
each fixedt. Sinceξn(t,w) is a martingale for eachn, ξ(t,w) is a
martingale.

(iv) ξ2
n(t,w) −

t∫

0

aσ2
n is a martingale for eachn.

Sinceξn(t,w)→ ξ(t,w) in L2 for each fixedt and

ξ2
n(t,w)→ ξ2(t,w) in L1 for each fixedt.

For ξ2
n(t,w) − ξ2(t,w) = (ξn − ξ)(ξn + ξ) and using Hölder’s in-

equality, we get the result.

Similarly, since

σn→ σ in L2([0, t] ×Ω),

σ2
n→ σ2 in L1([0, t] ×Ω),

and becausea is boundedaσ2
n→ aσ2 in L1([0, t]×Ω). This shows

thatξ2
n(t,w) −

t∫

0

aσ2
ndsconverges to

ξ2(t,w) −
t∫

0

aσ2ds
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for eacht in L1. Therefore

ξ2(t,w) −
t∫

0

aσ2ds

is a martingale. 86

(v) Letσ be bounded. To show thatξ ∈ I [0, σ2] it is enough to show
that

e
θξ(t,w)− θ22

t∫

0
aσ2ds

is a martingale for eachθ, the other conditions being trivially sat-
isfied. Let

Zn(t,w) = e
θξn(t,w)− θ22

t∫

0
aσ2

nds

We can assume that|σn| ≤ C if |σ| ≤ C (see the proof of Lemma
3).

Zn = exp

2θξn(t,w) − (2θ)2

2

t∫

0

aσ2
nds+ θ2

t∫

0

aσ2
nds

 .

Thus

(**) E(Zn) ≤ constE

e
2θξn(t,w)− (2θ)2

2

t∫

0
aσ2

nds
 = const

sinceZn is a martingale for eachθ. A subsequenceZni converges
to

e
θξ(t,w)− θ22

t∫

0
aσ2ds

almost everywhere (P). This together with (**) ensures uniform
integrability of (Zn) and therefore

e
θξ(t,w)− θ22

t∫

0

aσ2ds



88 11. Stochastic Integration

is a martingale. Thusξ is an Ito process,ξ ∈ I [0, aσ2].
�

Definition . With the hypothesis as in the above theorem we define the
stochastic integral

ξ(t,w) =

t∫

0

σ(s,w)dY(s,w).

87

Exercise.Show thatd(X + Y) = dX+ dY.

Remark . If σ is bounded, thenξ satisfies the hypothesis of the previ-
ous theorem and so one can define the integral ofξ with respect toY.
Further, sinceξ itself is Itô, we can also define stochastic integrals with
respect to.

Examples. 1. Let{β(t) : t ≥ 0} be a Brownian motion; thenβ(t,w) is
progressively measurable (being continuous andFt-measurable).
Also,

∫

Ω

t∫

0

β2(s)ds dP=

t∫

0

∫

Ω

β2(s)dP ds=

t∫

0

sds=
t
2

Hence
t∫

0

β(s,w)dβ(s,w)

is well defined.

2. Similarly
t∫

0

β(s/2)dβ(s) is well defined.

3. However
t∫

0

β(2s)dβ(s)

is not well defined, the reason being thatβ(2s) is not progressively
measurable.
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Exercise 5.Show thatβ(2s) is not progressively measurable. 88

(Hint: Try to show thatβ(2s) is notFs-measurable for everys. To show
this prove thatFs , F2s).

Exercise 6.Show that for a Brownian motionβ(t), the stochastic integral

1∫

0

β(s, ·)dβ(s, ·)

is the same as the left integral

L

1∫

0

β(s, ·)dβ(s, ·)

defined earlier.





12. Change of Variable
Formula

WE SHALL PROVE the 89

Theorem .Let σ be any bounded progressively measurable function
and Y be an Ito process. Ifλ is any progressively measurable function
such that

E



t∫

0

λ2ds

 < ∞, ∀t,

then

(*)

t∫

0

λdξ(s,w) =

t∫

0

λ(s,w)σ(s,w)dY(s,w),

where

ξ(t,w) =

t∫

0

σ(s,w)dY(s,w).

Proof.

Step 1.Let λ andσ be both simple, withλ bounded. By a refinement
of the partition, if necessary, we may assume that there exist reals 0=
s0, s1, . . . , sn, . . . increasing to+∞ such thatλ andσ are constant on
[sj , sj+1), sayλ = λ j(w), σ = σ j(w), whereλ j(w) andσ j(w) areFsj -
measurable. In this case (*) is a direct consequence of the definition.

91
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Step 2.Let λ be simple and bounded. Let (σn) be a sequence of simple
bounded functions as in Lemma 3. Put

ξn(t,w) =

t∫

0

σn(s,w)dY(s,w)

By Step 1,

(**)

t∫

0

λdξn =

t∫

0

λσndY(s,w).

90

Sinceλ is bounded,λσn converges toλσ in L2([0, t] × Ω). Hence,

by definition,
t∫

0

λσndY(s,w) converges to
t∫

0

λσdY in probability.

Further,
t∫

0

λdξn(s,w) = λ(s0,w)[ξn(s1,w) − ξn(s0,w)] + · · ·

+ · · · + λ(sk,w)[ξn(t,w) − ξn(sk−1,w)],

wheres0 < s1 < . . . . . . is a partition forλ, andξn(t,w) converges to
ξ(t,w) in probability for everyt. Therefore

t∫

0

λdξn(s,w)

converges in probability to

t∫

0

λdξ(s,w).

Taking limit asn→ ∞ in (**) we get

t∫

0

λdξ(s,w) =

t∫

0

λσdY(s,w).
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Step 3.Let λ be any progressively measurable function with

E(

t∫

0

λ2ds) < ∞, ∀t.

Letλn be a simple approximation toλ as in Lemma 3. Then, by Step
2,

(***)

t∫

0

λn(s,w)dξ(s,w) =

t∫

0

λn(s,w)σ(s,w)dY(s,w).

By definition, the left side above converges to

t∫

0

λ(s,w)dξ(s,w)

in probability. Asσ is boundedλnσ converges toλσ in L2([0, t] × Ω). 91

Therefore

P

 sup
0≤t≤T

|
t∫

0

λnσdY(s,w) −
t∫

0

λσ dy(s,w)| ≥ ǫ



||a||∞1/ǫ2E



t∫

0

(λnσ − λσ)2ds



(see proof of the main theorem leading to the definition of thestochastic
integral). Thus

t∫

0

λnσdY(s,w)

converges to
t∫

0

λσ dY(s,w)

in probability. Letn tend to+ in (***) to conclude the proof.
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�



13. Extension to
Vector-Valued It ô Processes

Definition. Let (Ω,F ,P) be a probability space and (Ft) an increasing 92

family of subσ-algebras ofF . Suppose further that

(i) a : [0,∞) ×Ω→ Sd
+

is a probability measurable, bounded function taking values in the class
of all symmetric positive semi-definited× d matrices, with real entries;

(ii) b : [0,∞) ×Ω→ Rd

is a progressively measurable, bounded function;

(iii) X : [0,∞) ×Ω→ Rd

is progressively measurable, right continuous for everyw and continu-
ous almost everywhere (P);

Z(t, ·) = exp[〈θ,X(t, ·)〉 −
t∫

0

〈θ, b(s, ·)〉ds

− 1
2

t∫

0

〈θ, a(s, ·)θ〉ds](iv)

is a martingale for eachθ ∈ Rd, where

〈x, y〉 = x1y1 + · · · + xdyd, x, y ∈ Rd.
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ThenX is called an Itô process corresponding to the parametersb
anda, and we writeX ∈ I [b, a]

Note. 1. Z(t,w) is a real valued function.

2. b is progressively measurable if and only if eachbi is progres-
sively measurable.

3. a is progressively measurable if and only if eachai j is so.93

Exercise 1.If X ∈ I [b, a], then show that

Xi ∈ I [bi , aii ],(i)

Y =
d∑

i=1

θiXi ∈ I [〈θ, b〉, 〈θ, aθ〉],(ii)

where
θ = (θ1, . . . , θd).

(Hint: (ii) (i). To prove (ii) appeal to the definition).

Remark . If X has a multivariate normal distribution with meanµ and
covariance (ρi j ), thenY = 〈θ,X〉 has also a normal distribution with
mean〈θ, µ〉 and variance〈θ, ρθ〉. Note the analogy with the above exer-
cise. This analogy explains why at timesb is referred to as the “mean”
anda as the “covariance”.

Exercise 2.If {β(t) : t ≥ 0} is ad-dimensional Brownian motion, then
β(t,w) ∈ I [0, I ] whereI = d × d identity matrix.

As before one can show thatY(t, ·) = X(t, ·) −
t∫

0

b(s,w)ds is an Itô

process with parameters 0 anda.

Definition . Let X be ad-dimensional Ito process.σ = (σ1, . . . , σd) a
d-dimensional progressively measurable function such that

E



t∫

0

〈σ(s, ·), σ(s, ·)〉 > ds
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is finite or, equivalently,

E



t∫

0

σ2
i (s, ·)ds

 < ∞, (i = 1, 2, . . . d).

94

Then by definition

t∫

0

〈σ(s, ·), dX(s, ·)〉 =
d∑

i=1

t∫

0

σi(s, ·)dXi (s, ·).

Proposition . Let X be a d-dimensional Itô process X∈ I [b, a] and let
σ be progressively measurable and bounded. If

ξi(t, ·) =
t∫

0

σidXi (s, ·),

then
ξ = (ξ1, . . . , ξd) ∈ I [B,A],

where
B = (σ1b1, . . . , σdbd) and Ai j = σiσ jai j .

Proof. (i) Clearly Ai j is progressively measurable and bounded.

Sincea ∈ Sd
+, A ∈ Sd

+.

(ii) Again B is progressively measurable and bounded.

(iii) Sinceσ is bounded, eachξi(t, ·) is an Itô process; henceξ is pro-
gressively measurable, right continuous, continuous almost ev-
erywhere (P). It only remains to verify the martingale condition.

Step 1.Let θ = (θ1, . . . , θd) ∈ Rd. By hypothesis,

E(exp[(θ1X1 + · · · + θdXd)|ts · · ·
t∫

s

(θ1b1 + · · · + θdbd)du(*)
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− 1
2

t∫

0

∑
θiθ jai j ds]|Fs) = 1.

Assume that eachσi is constant on [s, t], σi = σi(w) and Fs-95

measurable. Then (*) remains true ifθi are replaced byθiθi(w) and since
σi ’s are constant over [s, t], we get

E(exp[

t∫

0

d∑

i=1

θiσi(s, ·)dXi(s, ·) −
t∫

0

θibiσi(s, ·)ds

− 1
2

t∫

0

∑
θiθ jσi(s, ·)σ j(s, ·)ai j ds]|s)

exp



s∫

0

d∑

i=1

θiσi(s, ·)dXi (s, ·) −
s∫

0

〈θ, B〉du− 1

s∫

0

〈θ,Aθ〉du

 .

Step 2.Let eachσi be a simple function.

By considering finer partitions we may assume that eachσi is a step
function,

finest partition

i.e. there exist pointss0, s1, s2, . . . , sn, s = s0 < s1 < . . . < sn+1 = t,
such that on [sj , sj+1) eachσi is a constant andsj -measurable. Then (**)
holds if we use the fact that ifC1 ⊃ C2.

E(E( f |C1)|C2) = E( f |C2).
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Step 3.Let σ be bounded,|σ| ≤ C. Let (σ(n)) be a sequence of sim-
ple functions approximatingσ as in Lemma 3. (**) is true ifσi is re-96

placed byσ(n)
i for eachn. A simple verification shows that the expres-

sionZn(t, ·), in the parenthes is on the left side of (**) withσi replaced
byσ(n)

i , converges to

Z(t, ·) =

= Exp
( t∫

0

∑

i

θiσi(s, ·)ds−
t∫

0

∑

i

θibiσi(s, ·)ds−

−1
2

t∫

0

∑

i, j

θiθ jσiσ jai j ds
)

asn→ ∞ in probability. SinceZn(t, ·) is a martingale and the functions
σi, σ j , a are all bounded,

sup
n

E(Zn(t, ·)) < ∞.

This proves thatZ(t, ·) is a martingale. �

Corollary . With the hypothesis as in the above proposition define

Z(t) =

t∫

0

〈σ(s, ·), dX(s, ·)〉.

Then
Z(t, ·) ∈ I [〈σ, b〉, σaσ∗]

whereσ∗ is the transpose ofσ.

Proof. Z(t, ·) = ξ1(t, ·) + · · · + ξd(t, ·). �

Definition. Let σ(s,w) = (σi j (s,w)) be an× d matrix of progressively
measurable functions with

E



t∫

0

σ2
i j (s, ·)ds

 < ∞.
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If X is ad-dimensional Itô process, we define 97



t∫

0

σ(s, ·)dX(s, ·)


i

=

d∑

j=1

t∫

0

σi j (s, ·)dXj (s, ·).

Exercise 3.Let

Z(t,w) =

t∫

0

σ(s, ·)dY(s, ·),

whereY ∈ I [0, a] is ad-dimensional Itô process andσ is as in the above
definition. Show that

Z(t, ·) ∈ I [0, σaσ∗]

is ann-dimensional Ito process, (assume thatσ is bounded).

Exercise 4.Verify that

E(|Z(t)|2) = E



t∫

0

tr(σaσ∗)ds

 .

Exercise 5.Do exercise 3 with the assumption thatσaσ∗ is bounded.

Exercise 6.State and prove a change of variable formula for stochastic
integrals in the case of several dimensions.
(Hint: For the proof, use the change of variable formula in the one di-
mensional case andd(X + Y) = dX+ dY).



14. Brownian Motion as a
Gaussian Process

SO FAR WE have been considering Brownian motion as a Markov pro- 98

cess. We shall now show that Brownian motion can be considered as a
Gaussian process.

Definition. Let X ≡ (X1, . . . ,XN) be anN-dimensional random variable.
It is called anN-variate normal (or Gaussian) distribution with mean
µ ≡ (µ1, . . . , µN) and covarianceA if the density function is

1

(2π)N/2

1

(detA)1/2
exp

(
−1

2
[(X − µ)A−1(X − µ)∗]

)

whereA is anN × N positive definite symmetric matrix.

Note. 1. E(Xi) = µi.

2. Cov(Xi ,X j) = (A)i j .

Theorem .X ≡ (X1, . . . ,XN) is a multivariate normal distribution if and
only if for everyθ ∈ RN, 〈θ,X〉 is a one-dimensional Gaussian random
variable.

We omit the proof.

Definition. A stochastic process{Xt : t ∈ I } is called a Gaussian process
if ∀t1, t2, . . . , tN ∈ I , (Xt1, . . . ,XtN) is anN-variate normal distribution.

101
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Exercise 1.Let {Xt : t ≥ 0} be a one dimensional Brownian motion.
Then show that

(a) Xt is a Gaussian process. 99

(Hint: Use the previous theorem and the fact that incrementsare
independent)

(b) E(Xt) = 0,∀t, E(X(t)X(s)) = s∧ t.

Let ρ : [0, 1] = [0, 1] → R be defined by

ρ(s, t) = s∧ t.

DefineK : L2
R
[0, 1] → L2

R
[0, 1] by

K f (s) =

1∫

0

ρ(s, t) f (t)dt.

Theorem .K is a symmetric, compact operator. It has only a countable
number of eigenvalues and has a complete set of eigenvectors.

We omit the proof.

Exercise 2.Letλ be any eigenvalue ofK and f an eigenvector belonging
to λ. Show that

(a) λ f ′′ + f = 0 with λ f (0) = 0 = λ f ′(1).

(b) Using (a) deduce that the eigenvalues are given byλn = 4/(2n +
1)2π2 and the corresponding eigenvectors are given by

fn =
√

2 Sin 1/2[(2n + 1)πt]n = 0, 1, 2, . . . .

Let Z0, Z1, . . . ,Zn . . . be identically distributed, independent, normal
random variables with mean 0 and variance 1. Then we have

Proposition . Y(t,w) =
∞∑

n=0
Zn(w) fn(t)

√
λn

converges in mean for every real t.
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Proof. Let Ym(t,w) =
m∑

i=0
Zi(w) fi(t)

√
λi . Therefore100

E{(Yn+m(t, ·) − Yn(t, ·))2} =
n+m∑

n+1

f 2
i (t)λi ,

E(||Yn+m(·) − Yn(·)||2 ≤
n+m∑

n+1

λi → 0.

�

Remark. As eachYn(t, ·) is a normal random variable with mean 0 and

variance
n∑

i=0
λi f 2

i (t), Y(t, ·) is also a normal random variable with mean

zero and variance
∞∑
i=0
λi f 2

i . To see this one need only observe that the

limit of a sequence of normal random variables is a normal random vari-
able.

Theorem (Mercer).

ρ(s, t) =
∞∑

i=0

λi fi(t) fi(s), (s, t) ∈ [0, 1] × [0, 1].

The convergence is uniform.

We omit the proof.

Exercise 3.Using Mercer’s theorem show that{Xt : 0 ≤ t ≤ 1} is a
Brownian motion, where

X(t,w) =
∞∑

n=0

Zn(w) fn(t)
√
λn.

This exercise now implies that

1∫

0

X2(s,w)ds= (L2 − norm ofX)2
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=

∑
λnZ2

n(w),

since fn(t) are orthonormal. Therefore 101

E(e
−λ

1∫

0
X2(s,·)ds

) = E(e
−λ

∞∑
n=0

λnZ2
n(w)

) =
∞∏

n=0

E(e−λλnZ2
n )

(by independence ofZn)

=

∞∏

n=0

E(e−λλnZ2
0 )

asZ0, Zn . . . are identically distributed. Therefore

E(e
−λ

1∫

0
X2(s,·)ds

) =
∞∏

n=0

1/
√

(1+ 2λλn)

=

∞∏

n=0

1/
√

(
1+

8 8λ

(2n+ 1)2Π2

)

= 1/
√

(cosh)
√

(2λ).

APPLICATION. If F(a) = P(
1∫

0

X2(s)ds< a), then

∞∫

0

e−λadF(a) =

∞∫

−∞

e−λadF(a)

= E(e−λ
∫ 1
0

X2(s)ds) = 1/
√

(cosh)
√

(2λ).



15. Equivalent For of Itô
Process

LET (Ω,F ,P) BE A probability space with (Ft)t≥0 and increasing fam- 102

ily of subσ-algebras ofF such thatσ(U Ft
t≥0

) = F . Let

(i) a : [0,∞)×Ω→ S+d be a progressively measurable, bounded func-
tion taking values inS+d , the class of alld×d positive semidefinite
matrices with real entries;

(ii) b : [0,∞) × Ω → Rd be a bounded, progressively measurable
function;

(iii) X : [0,∞) ×Ω → Rd be progressively measurable, right continu-
ous and continuous a.s.∀(s,w) ∈ [0,∞) ×Ω.

For (s,w) ∈ [0,∞) ×Ω define the operator

Ls,w =
1
2

d∑

i, j=1

ai j (s,w)
∂2

∂xi∂x j
+

d∑

j=1

b j(s,w)
∂

∂x j
.

For f , u, h belonging toC∞0 (Rd), C∞0 ([0,∞) ×Rd) andC1,2
b ([0,∞) ×

Rd) respectively we defineYf (t,w), Zu(t,w), Ph(t,w) as follows:

Yf (t,w) = f (X(t,w)) −
t∫

0

(Ls,w( f )(X(s,w))ds,
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106 15. Equivalent For of Itô Process

Zu(t,w) = u(t,X(t,w)) −
t∫

0

(
∂u
∂s
+ Ls,wu

)
(s,X(s,w))ds,

Ph(t,w) = exp[h(t,X(t,w)) −
t∫

0

(
∂h
∂s
+ Ls,wh

)
(s,X(s,w)ds−

− 1
2

∫ t

0
〈a(s,w)∇xh(s,X(s,w)),∇xh(s,X(s,w))〉ds].

Theorem .The following conditions are equivalent.103

(i) Xθ(t,w) = exp[〈θ,X(t,w)〉 −
t∫

0

〈θ, b(s,w)〉ds−
t∫

0

〈θ, a(s,w)θ〉ds]

is a martingale relative to(Ω,Ft,P), ∀θ ∈ Rd.

(ii) Xλ(t,w) is a martingale∀λ in Rd. In particular Xiθ(t,w) is a mar-
tingale∀θ ∈ Rd.

(iii) Yf (t,w) is a martingale for every f∈ C∞0 (Rd)

(iv) Zu(t,w) is a martingale for every u∈ C∞0 ([0,∞) × Rd).

(v) Ph(t,w) is a martingale for every h∈ C1,2
b [(0,∞) × Rd).

(vi) The result (v) is true for functions h∈ C1,2([0,∞) × Rd) with
linear growth, i.e. there exist constants A and B such that|h(x)| ≤
A|x| + B.

The functions
∂h
∂t

,
∂h
∂xi

, and− ∂2h
∂xi∂x j

which occur under the integral

sign in the exponent also grow linearly.

Remark. The above theorem enables one to replace the martingale con-
dition in the definition of an Itô process by any of the six equivalent
conditions given above.

Proof. (i) (ii). Xλ(t, ·) is Ft-measurable because it is progressively mea-
surable. ThatE(|Xλ(t,w)|) < ∞ is a consequence of (i) and the fact that
a is bounded.
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The functionλ
φ
−→ Xλ(t,w)

Xλ(s,w)
is continuous for fixedt, s, w, (t > s).

Morera’s theorem shows thatφ is analytic. LetA ∈ Fs. Then
∫

A

Xλ(t,w)
Xλ(s,w)

dP(w)

is analytic. By hypothesis, 104
∫

A

Xλ(t,w)
Xλ(s,w)

dP(w) = 1, ∀λ ∈ Rd.

Thus
∫

A

Xλ(t,w)
Xλ(s,w)

dP(w) = 1,∀ complexλ. Therefore

E(Xλ(t,w)|Fs) = Xλ(s,w),

proving (ii). (ii)⇒ (iii). Let

A(t,w) = exp

−i

t∫

0

〈θ, b(s,w)〉ds+
1
2

t∫

0

〈θ, a(s,w)θ〉ds

 , θ ∈ R
d.

By definition, A is progressively measurable and continuous. Also

|dA
dt

(t,w)| is bounded on every compact set inR and the bound is in-

dependent ofw. ThereforeA(t,w) is of bounded variation on every in-
terval [0,T] with the variation ||A||[0,T] bounded uniformly inw. Let
M(t,w) = Xiθ(t,w). Therefore

sup
0≤t≤T

|M(t,w)| ≤ e1/2 T sup
0≤t≤T

|〈θ, aθ〉|.

By (ii) M(t, ·) is a martingale and since

E

(
sup

0≤t≤T
|M(t,w)| ||A||[0,T](w)

)
< ∞,∀T,

M(t, ·)A(t, ·) − 1
2

t∫

0

M(s, ·)dA(s, ·)
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is a martingale (for a proof see Appendix), i.e.Yf (t,w) is a martingale
when f (x) = ei〈θ,x〉.

Let f ∈ C∞0 (Rd). Then f ∈ F (Rd) the Schwartz-space. Therefore
by the Fourier inversion theorem

f (x) =
∫

Rd

f̂ (θ)ei〈θ,x〉dθ.

105

On simplification we get

Yf (t,w) =
∫

Rd

f̂ (θ)Yθ(t,w)dθ

whereYθ ≡ Yei〈θ, x〉. Clearly Yf (t, ·) is progressively measurable and
henceFt-measurable.

Using the fact that

E(|Yθ(t,w)|) ≤ 1+ t d|θ| ||b||∞ +
d2

2
|θ|2 ||a||∞,

the fact thatF (Rd) ⊂ L1(Rd) and thatF (Rd) is closed under multi-
plication by polynomials, we getE(|Yf (t,w)|) < ∞. An application of
Fubini’s theorem givesE(Yf (t,w)|Fs) = Yf (s,w), if t > s. This proves
(iii).

(iii) ⇒ (iv). Let u ∈ C0([0,∞) × Rd).

ClearlyZu(t, ·) is progressively measurable. SinceZu(t,w) is boun-
ded for everyw, E(|Zu(t,w)|) < ∞. Let t > s. Then

E(Zu(t,w) − Zu(s,w)|Fs) =

= E(u(t,X(t,w) − u(s,X(s,w)|Fs) − E(

t∫

s

(
∂u
∂σ
+ Lσ,wu)(σ,X(σ,w)dσ|Fs)

= E(u(t,X(t,w) − u(t,X(s,w))|Fs) + E(u(t,X(s,w) − u(s,X(s,w))|Fs)−

− E(

t∫

s

(
∂u
∂σ
+ Lσuw)(σ,X(σ,w))dσ|Fs)
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= E(

t∫

s

(Lσ,wu)(t,X(σ,w))dσ|Fs)+

+ E(

t∫

s

(
∂u
∂σ

(σ,X(s,w))dσ|Fs)−

− E(

t∫

s

(
∂u
∂σ
+ Lσu,w)(σ,X(σ,w))dσ|Fs), by (iii)

= E(

t∫

s

[Lσ,wu(t,X(σ,w)) − Lσ,wu(σ,X(σ,w))]dσ|Fs)

+ E(

t∫

s

[
∂u
∂σ

(σ,X(s,w)) − ∂u
∂σ

(σ,X(σ,w))]dσ|Fs)

= E(

t∫

s

(Lσ,wu(t,X(σ,w)) − Lσ,wu(σ,X(σ,w))]dσ|Fs)

− E(

t∫

s

dσ

σ∫

s

Lρ,w
∂u
∂σ

(σ,X(ρ,w))dρ|Fs)

106

The last step follows from (iii) (the fact thatσ > s gives a minus
sign).

= E(

t∫

0

dσ

t∫

σ

∂

∂ρ
Lσ,wu(ρ,X(σ,w))dρ|Fs)

− E(

t∫

s

dσ

σ∫

s

Lρ,w
∂u
∂σ

(σ,X(ρ,w))dρ|Fs)

= 0

(by Fubini). ThereforeZu(t,w) is a martingale.
Before proving (iv)⇒ (v) we show that (iv) is true ifu ∈ C1,2

b ([0,∞)

× Rd. Let u ∈ C1,2
b .
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(*) Assume that there exists a sequence (un) ∈ C∞0 [[0,∞)×Rd] such
that

un→ u,
∂un

∂t
→ ∂u

∂t
,
∂un

∂xi
→ ∂u

∂xi
,
∂un

∂xi∂x j
→ ∂2u

∂xi∂x j

uniformly on compact sets.107

ThenZun → Zu pointwise and sup
n

(|Zun(t,w)|) < ∞.

ThereforeZu is a martingale. Hence it is enough to justify (*).
For everyu ∈ C1,2

b ([0,∞) × Rd) we construct au ∈ C1,2
b ((−∞,∞) ×

Rd) ≡ C1,2
b (R × Rd) as follows. Put

u(t, x) =


u(t, x), if t ≥ 0,

C1u(−t, x) +C2u(− t
2, x), if t < 0;

matching
∂ũ
∂t

,
∂u
∂t

at t = 0 andû(t, x) andu(t, x) at t = 0 andũ(t, x) and

u(t, x) at t = 0 yields the desired constantsC1 andC2. In factC1 = −3,
C2 = 4. (*) will be proved if we obtain an approximating sequence for
ũ. Let S : R be anyC function such that if|x| ≤ 1,

S(x) =


1, if |x| ≤ 1,

0, if |x| ≥ 2.

Let Sn(x) = S

(
|x|2

n

)
where|x|2 = x2

1 + · · · + x2
d+1. Purun = Snũ.

This satisfies (*).
(iv) ⇒ (v). Let

h ∈ C1,2
b ([0,∞) × Rd).

Putu = exp(h(t, x)) in (iv) to conclude that

M(t,w) = eh(t,X(t,w)) −
t∫

0

eh(s,X(s,w))
[
∂h
∂s
+ Ls,wh+

1
2
〈∇xh, a∇xh〉ds

]

is a martingale.
Put108
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A(t,w) = exp−



t∫

0

∂h
∂s

(s,w) + Ls,w − (s,w) +
1
2
〈a(s,w)∇xh,∇xh〉ds

 .

A((t,w)) is progressively measurable, continuous everywhere and

||A||[0,T](w) ≤ C1 ∈ C2T

whereC1 andC2 are constants. This follows from the fact that|dA
dt
| is

uniformly bounded inw. Also sup
0≤t≤T

|M(t,w)| is uniformly bounded in

w. Therefore
E( sup

0≤t≤T
|M(t,w)| ||A||[0,T](w)) < ∞.

HenceM(t, ·)A−
t∫

0

M(s, ·)dA(s, ·) is a martingale. Now

dA(s,w)
A(s,w)

= −
[
∂h
∂s

(s,w) + Ls,wh(s,w) +
1
2
〈a∇xh,∇xh〉

]

Therefore

M(t,w) = eh(t,X(t,w))
+

t∫

0

eh(s,X(s,w)) dA(s,w)
A(s,w)

.

M(t,w)A(t,w) = Ph(t,w) + A(t,w)

t∫

0

eh(s,X(s,w)) dA(s,w)
A(s,w)

t∫

0

M(s, ·)dA(s, ·) =
t∫

0

eh(s,X(s,w))dA(s,w)

+

t∫

0

dA(s,w)

s∫

0

eh(σ,X(σ,w)) dA(σ,w)
A(σ,w)

Use Fubini’s theorem to evaluate the second integral on the right
above and conclude thatPh(t,w) is a martingale.
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(vi) ⇒ (i) is clear if we takeh(t, x) = 〈θ, x〉. It only remains to prove
that (v)⇒ (vi).

(v)⇒ (vi). The technique used to prove this is an important one and
we shall have occasion to use it again.

Step 1.0 Let h(t, x) = θ1x1 + θ2x2 + · · · θdxd = 〈θ, x〉 for every (t, x) ∈109

[0,∞) × Rd, θ is some fixed element ofRd. Let

Z(t) = exp

〈θ,Xt〉 −
t∫

0

〈θ, b〉ds− 1
2

t∫

0

〈θ, aθ〉ds



We claim thatZ(t, ·) is a supermartingale.

Let f : R → R be aC∞ function with compact support such that
f (x) = x in |x| ≤ 1/2 and| f (x)| ≤ 1,∀x. Put fn(x) = n f(x/n). Therefore
| fn(x)| ≤ C|x| for someC independent ofn andx and fn(x) converges to
x.

Let hn(x) =
d∑

i=1
θi fn(xi). Thenhn(x) converges to〈θ, x〉 and|hn(x)| ≤

C′|x| whereC is also independent ofn andx. By (v),

Zn(t) = exp

hn(t,Xt) −
t∫

0

(
∂hn

∂s
+ Ls,wh

)
ds− 1

2

t∫

0

〈a∇xhn,∇xhn〉ds



is a martingale. Ashn(x) converges to〈θ, x〉, Zn(t, ·) converges toZ(t, ·)
pointwise. Consequently

E(Z(t)) = E(lim Zn(t)) ≤ lim E(Zn(t)) = 1

andZ(t) is a supermartingale.

Step 2.E(expB sup
0≤s≤t
|X(s,w)|) < ∞ for eacht andB. For, letY(w) =

sup
0≤s≤t

|X(s,w)|, Yi(w) = sup
0≤s≤t
|Xi(s,w)| whereX = (X1, . . . ,Xd). Clearly

Y ≤ Y1 + · · · + Yd. Therefore

E(eBY) ≤ E(eBY1eBY2 . . . eBYd).
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The right hand side above is finite providedE(eBYi) < ∞ for eachi110

as can be seen by the generalised Holder’s inequality. Thus to prove the
assertion it is enough to showE(eBYi) < ∞ for eachi = 1, 2, . . . d with
aB′ different fromB; more specifically forB′ bounded.

Putθ2 = 0 = θ3 = . . . = θd in Step 1 to get

u(t) = exp[θ1X1(t) −
t∫

0

θ1b1(s, ·)ds− 1
2
θ2

1

t∫

0

a11(s, ·)ds]

is a supermartingale. Therefore

P

(
sup

0≤s≤t
u(s, ·) ≥ λ

)
≤ 1
λ

E(u(t)) =
1
λ
, ∀λ > 0.

(Refer section on Martingales). Letc be a common bound for bothb1

anda11 and letθ1 > 0. Then (∗) reads

P

(
sup

0≤s≤t
expθ1X1(s) ≥ λexp(θ1ct+

1
2
θ2

1ct)

)
≤ 1
λ
.

Replacingλ by
eλθ1e−ctθ1−1/2ctθ2

1

we get

P

(
sup

0≤s≤t
expθ1X1(s) ≥ expλθ1

)
≤ e−λθ1+θ1ct+1/2θ2

1ct,

i.e.

P

(
sup

0≤s≤t
X1(s) ≥ λ

)
≤ e−λθ1+θ1ct+1/2θ2

1ct, ∀θ1 > 0.

Similarly

P

(
sup

0≤s≤t
−X1(s) ≥ λ

)
≤ e−λθ1+θ1ct+1/2θ2

1tc, ∀θ1 > 0.

As

{Y1(w) ≥ λ}
{

sup
0≤s≤t

X1(s) ≥ λ
}
∪

{
sup

0≤s≤t
−X1(s) ≥ λ

}
,
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we get 111

P{Y1 ≥ λ} ≤ 2e−λθ1+θ1ct+1/2θ2
1ct, ∀θ1 > 0.

Now we get

E(expBY1) =
1
B

∞∫

0

exp(Bx)P(Y1 ≥ x)dx (sinceY1 ≥ 0)

≤ 2
B

∞∫

0

exp(Bx− xθ1 + θ1ct+
1
2
θ2

1ct)dx

< ∞, if B < θ1

This completes the proof of step 2.

Step 3.Z(t,w) is a martingale. For

|Zn(t,w)| = Zn(t,w)

= exp

hn(Xt) −
t∫

0

(
∂hn

∂s
+ Ls,whn

)
dx− 1

2

t∫

0

〈a∇xhn, ∇xhn〉ds



≤ exp

hn(Xt) −
t∫

0

Ls,whn



(sincea is positive semidefinite and∂hn/∂s= 0).

Therefore |Zn(t,w)| ≤ Aexp(Bsup
0 s t
|X(s,w)|) (use the fact that

|hn(s)| ≤ C|x| and
∂hn

∂xi
,
∂2hn

∂xi∂x j
are bounded by the same constant). The

result now follows from the dominated convergence theorem and Step
2. �

Remark. In Steps 1, 2 and 3 we have proved that (v)⇒ (i). The idea of
the proof was to expressZ(t, ·) as a limit of a sequence of martingales112

proving first thatZ(t, ·) is a supermartingale. Using the supermartingale
inequality it was then shown that (Zn) is a uniformly integrable family
proving thereby thatZ(t, ·) is a martingale.
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Step 4.Let h(t, x) ∈ C1,2([0,∞)×Rd) such thath(t, x),
∂h
∂s

(t, x),
∂h
∂xi

(t, x),

∂2h
∂xi∂x j

(t, x) are all dominated byα|x|+β for some suitable scalarsα and

β. Let φn be a sequence of real valuedC∞ functions defined onRd such
that

φn =


1 on |x| ≤ n

0 on |x| ≥ 2n

and suppose there exists a common boundC for

φn,
∂φn

∂xi
,
∂2φn

∂xi∂x j
(∀n).

Let hn(t, x) = h(t, x)φn(x). By (v) Zhn(t,w) is a martingale. The
conditions on the functionh andφn’s show that

|Zhn(t,w)| ≤ Aexp

(
B sup

0≤s≤t
|X(s,w)|

)

whereA andB are constants. By Step 2, (Zhn) are uniformly integrable.
Also Zhn(t, ·) converges pointwise toPh(t, ·) (sincehn → h pointwise).
By the dominated convergence theoremPh(t, ·) is a martingale, proving
(vi).





16. Itô’s Formula

Motivation. Let β(t) be a one-dimensional Brownian motion. We have113

seen that the left integral

(*) L

2
t∫

0

β(s, ·)dβ

 = [β2(t, ·) − β2(0, ·) − t]

Formally (*) can be written as

dβ2(t) = 2β(t)dβ(t) + dt.

For, on integrating we recover (*).
Newtonian calculus gives the result:

d f(β(t)) = f ′(β(t))dβ(t) +
1
2

f ′′(β(t))dβ2(t) + · · ·

for reasonably smooth functionsf andβ. If β is of bounded variation,
only the first term contributes something if we integrate theabove equa-
tion. This is because

∑
dβ2
= 0 for a function of bounded variation.

For the Brownian motion we have seen that
∑

dβ2 → a non zero value,
but one can prove that

∑
dβ3, . . . converge to 0. We therefore expect the

following result to hold:

d f(β(t)) ≈ f ′(β(t))dβ(t) +
1
2

f ′′(β(t))d2β(t).

We show that for a one-dimensional Brownian motion
∑

(dβ)3, sup(dβ)4, . . .

117
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all vanish.

E(
∑

(dβ)3) = E


n∑

i=0

[β(ti+1) − β(ti )]
3

 =
∑

i=0

E[(β(ti+1) − β(ti)]
3

=

n∑

i=1

0 = 0,

becauseβ(ti+1) − β(ti) is a normal random variable with mean zero and114

varianceti+1 − ti. Similarly the higher odd moments vanish. Even mo-
ments of a normal random variable with mean 0 and varianceσ2 are
connected by the formula

µ2k+2 = σ
2(2k + 1)µ2k, k > 1.

So ∑
(dβ)4

=

n∑

i=0

(β(ti+1) − β(ti))
4.

Therefore

E(
∑

(dβ)4) =
n∑

i=0

E([β(ti+1) − β(ti))
4]

= 3
n∑

i=0

(ti+1 − ti)
2;

the right hand side converges to 0 as the mesh of the partitiongoes to 0.
Similarly the higher order even moments vanish.

More generally, ifβ(t, ·) is a d-dimensional Brownian motion then
we expect

d f(β(t)) ≈ ∇ f (β(t)) · dβ(t) +
1
2

∑

i, j

∂2 f
∂xi∂x j

dβidβ j .
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However
∑

dβidβ j = 0 if i , j (see exercise below). Therefore

d f(β(t)) ≈ ∇ f (β(t)) · dβ(t) +
1
2
∆ f (β(t))dβ2(t).

The appearance of∆ on the right side above is related to the heat
equation.

Exercise 4.Check thatdβidβ j = δi j dt. 115

(Hint: For i = j, the result was proved earlier. Ifi , j, consider a
partition 0= t0 < t1 < . . . < tn = t. Let∆kβi = βi(tk) − βi(tk−1). Then

E


n∑

k=1

∆kβi∆kβ j


2

=

∑

k

E(∆2
kβi∆

2
kβ j) + 2

∑

k,l

E[(∆kβi)(∆1β j)];

the right side converges to 0 asn→ ∞ because∆kβi and∆ℓβ j are inde-
pendent fork , ℓ).

Before stating Itô’s formula, we prove a few preliminary results.

Lemma 1. Let X(t, ·) ∈ I [b, 0] be a one-dimensional Itô process. Then

X(t, ·) − X(0, ·) =
t∫

0

b(s, ·)ds a.e.

Proof. exp[θX(t, ·) − θX(0, ·) − θ
t∫

0

b(s, ·)ds] is a martingale for eachθ.

Therefore

E(exp[θ(X(t, ·) − X(0, ·)) − θ
t∫

0

b(s, ·)ds]) = constant= 1, ∀t.

Let

W(t, ·) = X(t, ·) − X(0, ·) −
t∫

0

b(s, ·)ds.

Then

E(expθW(t, ·)) = Moment generating function ofw = 1, ∀t.

Thereforeθ(t, ·) = 0 a.e. �
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Remark . If X(t, ·) ∈ I [0, 0] then X(t, ·) = X(0, ·) a.e.; i.e.X(t, ·) is a116

trivial process.

We now state a theorem, which is a particular case of the theorem
on page 103.

Theorem . If h ∈ C1,2([0,∞) × Rd) such that(i) |h(x)| ≤ A|x| + B,

∀x ∈ [0,∞) × Rd, for constants A and B(ii)
∂h
∂t

,
∂h
∂xi

,
∂2h
∂xi∂x j

also grow

linearly, then

exp[h(t, β(t, ·) −
t∫

0

(
∂h
∂s
+

1
2
∆h

)
(s, β(s, ·) − 1

2

t∫

0

|∇h|2(s, β(s, ·))ds]

is a martingale.

Ito’s Formula. Let f ∈ C1,2
0 ([0,∞)×Rd) and letβ(t, ·) be ad-dimensio-

nal Brownian motion. Then

f (t, β(t)) − f (0, β(0)) =

t∫

0

∂ f
∂s

(s, β(s, ·))ds+

+

t∫

0

〈∇ f (s, β(s, ·)), dβ(s, ·)〉 + 1
2

t∫

0

∆ f (s, β(s, ·))ds.

where

∆ ≡ ∂2

∂x2
1

+ · · · + ∂2

∂x2
d

.

Proof.

Step 1.Consider a (d + 1)-dimensional process defined by

X0(t, ·) = f (t, β(t, ·)),
X j(t, ·) = β j(t, ·).
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We claim thatX(t, ·) ≡ (X0,X1, . . . ,Xd) is a (d+ 1)-dimensional Itô-
process with parameters

b =

[(
∂ f
∂s
+

1
2
∆ f

)
(s, β(s, ·)), 0, 0, . . . 0

]
d terms

and 117

a =



a00 a01 . . . a0d

a10
. . . Id×d

ad0



where

a00 = |∇x f |2(s, β(s, ·)),

a0 j =

(
∂

∂x j
f

)
(s, β(s, ·)),

a j0 = a0 j .

For, puth = λ f (t, x) + 〈θ, x〉, x = (x1, . . . , xd) ∈ Rd, in the previous
theorem. Then

∂h
∂s
= λ

∂ f
∂s
,∆h = λ∆ f ,

∂h
∂x j
= λ

∂ f
∂x j
+ θ j .

Therefore we seen that

exp[λ f (t, β(t, ·)) + 〈θ, β(t, ·)〉 − λ
t∫

0

(
∂ f
∂s
+

1
2
∆x f

)
(s, β(s, ·)ds

− 1
2
λ2

t∫

0

|∇ f |2(s, β(s, ·))ds− 1
2
|θ|2t − λ〈θ,

t∫

0

∇( f (s, β(s, ·)))ds〉]

is a martingale.
Consider (λ, θ)a

(
λ
θ

)
. We have

a

[
λ

θ

]
=

[
a00λ +

∑d
j=1 a0 jθ j

ρ + θ

]
, ρ = λ



a10
. . .

ad0


.
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Therefore

(λ, θ)a

[
λ

θ

]
= a00λ

2
+ λ

d∑

j=1

a0 jθ j +

d∑

j=1

a0 jθ j+

= λ2|∇ f |2 + 2λ
∂ f
∂x j

θ j + |θ|2.

118

Thus (*) reads

exp[λ f (t, β(t, ·) + 〈θ, β(t, ·)〉 − λ
t∫

0

b0(s, ·)ds− 1
2

t∫

0

〈α, aα〉ds]

is a martingale whereα = (λ, θ) ∈ Rd+1. This proves the claim made
above.

Step 2.Derineσ(s, ·) = (1,−∇x f (s, β(s, ·))) and let

Z(t, ·) =
t∫

0

〈σ(s, ·), dX(s, ·)〉 whereX ≈ (X0,X1, . . . ,Xd)

is the (d+1)-dimensional Itô process obtained in Step 1. Sincef ∈ C1,2
b ,

Z(t, ·) is an Itô process with parameters〈σ, b〉 andσaσ∗:

〈σ, b〉 = ∂ f
∂s
+

1
2
∆ f ,

aσ∗ =

[
a00 ρ

ρ∗ I

] [
1
−∇x f

]

=

[
a00− 〈ρ,∇x f 〉
ρ∗ − ∇x f

]
=



0
0
...

0



Thereforeσaσ∗ = 0. Hence by Lemma 1,

Z(t, ·) − Z(0, ·) −
t∫

0

〈σ, b〉ds= 0(a.e.),
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Z(t, ·) =
t∫

0

dX0(s) −
t∫

0

〈∇ f (s, β(s, ·)), dβ(s, ·)〉

= f (t, β(t)) − f (0, β(0)) −
t∫

0

〈∇ f ( f , β(s, ·)), dβ(s, ·)〉

119

HenceZ(0) = 0. Thus

f (t, β(t)) − f (0, β(0)) −
t∫

0

〈∇ f (s, β(s, ·))dβ(s, ·)〉−

−
t∫

0

(
∂ f
∂s
+

1
2
∆x f

)
(s, β(s, ·))ds= 0 a.e.

This estabilished Itô’s formula.

�

Exercise.(Itô’s formula for the general case). Let

φ(t, x) ∈ C1,2
b ([0,∞) × Rd).

If X(t, ·) is ad-dimensional Itô process corresponding to the param-
etersb anda, then the following formula holds:

φ(t,X(t,w)) − φ(0,X(0,w))

=

t∫

0

∂φ

∂s
(s,X(s, x))ds+

t∫

0

〈∇xφ, dX〉 + 1
2

t∫

0

∑
ai j

∂2

∂xi∂x j
ds.

This is also written as

dφ(s,X(s,w)) = φsds+ 〈∇xφ, dX〉 + 1
2

∑
ai j

∂2φ

∂xi∂x j
dx.

To prove this formula proceed as follows.
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(i) Takeh(t, x) = λφ(t, x) + 〈θ, x〉 in (vi) of the theorem on the equiv-
alence of Itô process to conclude that

Y(t, ·) = (φ(t,X(t, ·)),X(t, ·))

is a (d + 1)-dimensional Ito process with parameters

b′ =

(
∂φ

∂t
+ Ls,wφ, b

)

and120

A =

∣∣∣∣∣∣∣∣∣∣∣

〈a∇xφ,∇xφ〉, a∇xφ

1× 1 1× d
a∇xφ a
d × 1 d × d

∣∣∣∣∣∣∣∣∣∣∣

(ii) Let σ(t, x) = (1,−∇xφ(t, x)) and

Z(t, ·) =
t∫

0

〈σ(s,X(s, ·)), dY(s, ·)〉.

The assumptions onφ imply thatZ is an Itô process corresponding
to

(〈σ, b′〉, σAσ∗) ≡
(
∂φ

∂t
+

1
2

∑
ai j

∂2φ

∂xi∂x j
, 0

)
.

(iii) Use (ii) to conclude that

Z(t, ·) =
t∫

0

〈σ, b′〉ds a.e.

This is Itô’s formula.

(iv) (Exercise) Verify that Itô’s formula agrees with the formula ob-
tained for the case of Brownian motion.

Note.Observe that Itô’s formula does not depend onb.
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Examples. 1. Letβ(t) be a one-dimensional Brownian motion. Then

d(etφ(β(t)) = etdφ(β(t)) + φ(β(t))d(et)

= etφ′(β(t))dβ(t) + φ(β(t))etdt+

+
1
2
φ′′(β(t))etdt.

2. To evaluated(e
∫ t
e V(β(s,·))dsu(t, β(t))) whereV is a smooth function, 121

put

X2(t, ·) =
t∫

0

V(β(s, ·))ds, b =

[
0

V((t, ·))

]
=

[
b1

b2

]

a =

[
1 0
0 0

]
. Let X1(t, ·) = β(t, ·),X = (X1,X2).

Then

exp[θ1X1(t, ·) − θ2X2(t, ·) − θ1

t∫

0

b1(X(s, ·))ds

− θ2

t∫

0

b2(X(s, ·))ds− 1
2

t∫

0

〈aθ, θ〉ds]

exp[θ1X1(t, ·) −
θ2

12

2
t];

the right side is a martingale. Therefore (X1,X2) is a 2-dimensio-
nal Itô process with parametersb and a and one can use Itô’s
formula to write

d
(
e
∫ t
0 V(β(s,·))dsu(t, β(t))

)
= d

(
eX2(t)u(t, β(t))

)

= e
∫ t
0

V(β(s,·)) ∂

∂t
u(t, β(t))dt+

+e
∫ t
0 V(β(s,·))dt ∂

∂x
u(t, β(t))d(t) + e

∫ t
0 V(β(s,·))dsu(t, β(t))dX2
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+
1
2

e
∫ t
0 V(β(s,·))ds ∂

∂t
u(t, β(t))dt

= e
∫ t
0 V(β(s,·))dt ∂

∂t
u(t, β(t))dt +

∂

∂t
u(t, β(s))d(t) +

1
2
∂2

∂x2
u(t, β(t))dt

+u(t, β(t))V(β(t, ·)dt].

3. Letσi, fi, i = 1, 2, . . . k be bounded and progressively measurable122

relative to a one-dimensional Brownian motion (Ω,Ft,P). Write

Xi(t, ·) =
t∫

0

σi(s, ·)dβ(s, ·) +
t∫

0

fi(s, ·)ds.

ThenXi(t, ·) is an Itô process with parameters (
t∫

0

fi(s, ·)ds, σ2
i ) and

(X1, . . . ,Xk) is an Itô process with parameters

B =



t∫

0

f1(s, ·)ds, . . . ,

t∫

0

fk(s, ·)ds

 ,

A = (Ai j ) whereAi j = σiσ jδi j .

If φ ≡ φ(t,X1(t) . . . ,Xk(t)), then by Itô’s formula

dφ =
∂φ

∂s
ds+

∂φ

∂x1
dX1 + · · · +

∂φ

∂xk
dXk

+
1
2

∑
σiσ jδi j

∂2φ

∂xi∂x j
ds

=
∂φ

∂s
ds+

∂φ

∂x1
dX1 + · · · +

∂φ

∂xk
dXk

+
1
2

k∑

i=1

σ2
i
∂φ

∂xi
ds

Exercise.Takeσ1 = 1,σ2 = 0, f1 = f2 = 0 above and verify that if

φ = eX2(t,·)u(t, β(t)),

then one gets the result obtained in Example 2 above.
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We give below a set of rules which can be used to calculatedφ in
practice, whereφ is as in Example 3 above.

1. With eachdβ associate a term
√

(dt)

2. If φ = φ(t,X1, . . . ,Xk), formally differentiateφ using ordinary 123

calculus retaining terms upto the second order to get

(*) dφ =
∂φ

∂t
dt +

∂φ

∂x1
dX1 + · · · +

∂φ

∂xk
Xk +

1
2

∑ ∂2φ

∂xi∂x j
dXidXj

3. Formally writedXi = fidt + αidβi , dXj = σ jdβ j + f jdt.

4. Multiply dXidXj and retain only the first order term indt., For
dβidβ j substituteδi j dt. Substitute in (*) to get the desired formula.

Illustration of the use of It ô Calculus.We refer the reader to the sec-
tion on Dirichlet problem. There it was shown that

u(x) =
∫

G

u(y)π(x, dy) = E(u(X(τ)))

satisfies∆u = 0 in a regionG with u = u(X(τ)) on the boundry ofG
(hereτ is the first hitting time).

The form of the solution is given directly by Itô’s formula (without
having recourse to the mean value property). Ifu = u(X(t)) satisfies
∆u = 0 then by Itô’s formula

du(X(t)) = 〈∇u, dX〉.
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Therefore

u(X(t)) = u(X(0))+

t∫

0

〈∇u(X(s)), dX(s)〉

124

Assuming∇u to be bounded, we see thatu(X(t)) is a martingale. By
the optional stopping theorem

E(u(X(τ)) = u(X(0)) = u(x).

Thus Itô’s formula connects solutions of certain differential equa-
tions with the hitting probabilities.



17. Solution of Poisson’s
Equations

LET X(t, ·) BE A d-dimensional Brownian motion with (Ω,Ft,P) as 125

usual. Letu(x) : Rd → R be such that
1
2
∆u = f . Assumeu ∈ C2

b(Rd).

ThenLs,wu ≡ 1
2
∆u = f and we know thatu(X(t, ·)) −

t∫

0

f (X(s, ·))ds is

a (Ω,Ft,P)-martingale. Suppose now thatu(x) is defined only on an

open subsetG ⊂ Rd and
1
2
∆u = f onG. We would like to consider

Z(t, ·) = u(X(t, ·)) −
t∫

0

f (X(s, ·))ds

and ask whetherZ(t, ·) is still a martingale relative to (Ω,Ft,P). Let
τ(w) = inf {t,X(t,w) ∈ ∂G}. Put this way, the question is not well-posed
becauseZ(t, ·) is defined only upto timeτ(w) for u is not defined outside
G. Even if at a timet > τ(w)X(t,w) ∈ G, one needs to know the values
of f for t > τ(w) to compute the integral.

To answer the question we therefore proceed as follows. LetAt =

[w : τ(w) > t]. As t increases,At have decreasing measures. We shall
give a meaning to the statement ‘Z(t, ·) is a martingale onAt’. Define

Z(t, ·) = u(X(τ ∧ t, ·)) −
τ∧t∫

0

f (X(s, ·))ds.

129
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Therefore

Z(t, ·) =

Z(t), on At

Z(τ, ·), on (At)c.

SinceZ(t, ·) is progressively measurable upto timeτ, Z(t, ·) is Ft-126

measurable.

Theorem .Z(t, ·) is a martingale.

Proof. Let Gn be a sequence of compact sets increasing toG such that
Gn ⊂ G0

n+1. Choose aC∞ function φn such thatφn = 1 on Gn and

supportφn ⊂ G. Putun = φnu and fn =
1
2
∆un. Then

Zn(t, ·) = un(X(t, ·)) −
t∫

0

fn(X(s, ·))ds

is a martingale for eachn. Put

τn = inf {t : X(t, ·) < Gn}

ThenZn(τn ∧ t, ·) is also a martingale (See exercise below). But

Zn(τn ∧ t) = Z(τn ∧ t).

ThereforeMn(t, ·) = Z(τn ∧ t, ·) is a martingale. Observe thatτn ≤
τn+1 and sinceGn � G we haveτn � τ. ThereforeZ(τn∧t)→ Z(τ∧t) (by
continuity); also|Mn(t, ·)| ≤ ||u||∞ + || f ||∞t. ThereforeZ(τ ∧ t) = Z(t, ·)
is a martingale. �

Exercise.If M(t, ·) is a (Ω,Ft,P)-martingale, show that for my stopping
time τ, M(τ ∧ t, ·) is also a martingale relative to (Ft).
[Hint: One has to show that ift2 > t1,

∫

A

M(τ ∧ t2,w)dP(w) =
∫

A

M(τ ∧ t1,w)dP(w),∀A ∈ Ft1.
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The right side=
∫

A∩(τ>t1)

M(t1,w)dP(w) +
∫

A∩(τ<t1)

M(τ,w)dP(w).

The left side127

=

∫

A∩(τ>t1)

M(t2,w)dP(w) +
∫

A∩(τ<t1)

M(τ,w)dP(w).

Now use optional stopping theorem].

Lemma . Let G be a bounded region andτ be as above. Then Ex(τ) <
∞, ∀x ∈ G, where Ex = EPx.

Proof. Without loss of generality we assume thatG is a sphere of radius

R. The functionu(x) =
R2 − |x|2

d
≥ 0 and satisfies

1
2
∆u = −1 in G. By

the previous theorem

u(X(τ ∧ t, ·) +
τ∧t∫

0

ds

is a martingale. Therefore

Ex(u(X(τ ∧ t, ·))) + Ex(τ ∧ t) = u(X(0)) = u(x).

ThereforeEx(τ ∧ t) ≤ u(x) (sinceu ≥ 0). By Fatou’s lemma, on
letting t → ∞, we obtainEx(τ) ≤ u(x) < ∞. Thus the mere existence of

au satisfying
1
2
∆u = 1 helps in concluding thatEx(τ) < ∞. �

Theorem .Let u∈ C2
b(G) and suppose that u satisfies

1
2
∆u = f in G,(*)

u = g on∂G.

Then u(x) = Ex[g] − Ex[
τ∫

0

f (X(s, ·))ds] solves (*).
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Remark . The first part of the solutinu(x) is the solution of the homo-
geneous equation, and the second part accounts for the inhomogeneous
term.

Proof. DefineZ(t, ·) = u(X(τ ∧ t)) −
τ∧t∫

0

f (X(s, ·))ds. ThenZ is a mar-128

tingale. Also|Z| ≤ ||u||∞ + τ|| f ||∞. Therefore, by the previous Lemma,
Z(t, ·) is a uniformly integrable martingale. Therefore we can equate the
expectations at timet = 0 and at timet = ∞ to get

u(x) = Ex(g) − Ex[

τ∫

0

f (X(s, ·))ds].

�



18. The Feynman-Kac
Formula

WE NOW CONSIDER the modified heat equation 129

(*)
∂u
∂t
+

1
2
∆u+ V(x)u(t, x) = 0, 0 ≤ t ≤ T,

whereu(T, x) = f (x). The Feynman-Kac formula says that the solution
for s≤ T is given by

(**) u(s, x) = Es,x(e
∫ T

s
V(X(s))dS f (X(T))).

Observe that the solution at times depends on the expectation with
respect to the process starting at times.

Note . (**) is to be understood in the following sense. If (*) admitsa
smooth solution then it must be given by (**). We shall not go into the
conditions under which the solution exists. Let

Z(t, ·) = u(t,X(t, ·))e
∫ t

s V(X(σ,·)dσ), t ≥ s.

By Ito’s formula (see Example 2 of section 16), we get

Z(t, ·) = Z(s, ·) +
t∫

s

e
∫ t

s
V(X(σ,·)dσ)〈∇u(λ,X(λ)), dX(λ)〉,

provided thatu satisfies (*). Assume tentatively thatV and ∇u are
bounded and progressively measurable. ThenZ(t, ·) is a martingale.
Therefore

Es,x(Z(T, ·)) = Ez,x(Z(s, ·)),

133



134 18. The Feynman-Kac Formula

or
Es,x(u(T,X(T)))e

∫ T
s

V(X(σ,·))dσ
= u(s, x).

This proves the result.

We shall now remove the condition∇u is bounded and prove the130

uniqueness of the solution corresponding to (*) under the assumption
thatV is bounded above and

|u(t, x)| ≤ eA+|x|α , α < 2, on [s,T).

In particular, the Feynman-Kac formula extends the uniqueness the-
orem for the heat equation to the class of unbounded functions satisfying
a growth condition of the form given above.

Letφ be aC∞ function such thatφ = 1 on|X| ≤ R, andφ = 0 outside
|x| > R+ 1. PutuR(t, x) = u(t, x)φ,

ZR(t, x) = uR(t, x)e
∫ t

s V(X(σ)dσ).

By what we have already proved,ZR(t, ·) is a martingale. Let

τR(ω) = inf {t : t ≥ sω(t) ∈ S(0;R) = {|x| ≤ R}}.

ThenZR(t ∧ τR, ·)) is also a martingale, i.e.

uR(t ∧ τR,X(t ∧ τR, ·))e
∫ t∧τR

s V(X(σ))dσ

is a martingale. Equating the expectations at timet = s and timet = T
and using the fact that

uR(t ∧ τR,X(t ∧ τR, ·)) = u(t ∧ τR,X(t ∧ τR, ·))),

we conclude that

u(s, x) = Es,x[u(τR ∧ T,X(τR ∧ T, ·))e
∫ τR∧T

s
V(X(s))ds]

= Es,x[X(τR∧T) f (X(T))e
∫ T

s V(X(s))ds]+

+ Es,x[X(τR≤T)u(τR,X(τR)e

τR∫

s
V(X(s))ds

]
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Consider the second term on the right:

|Es,x[X(τR≤T)u(τR,X(τR))e
∫ τR

s
V(X(s))ds]|

≤ A′eRαP[R ≤ T]

(whereA′ is a constant given in terms of the constantsA andT and the
bound ofV)

= A′eRαP[ sup
s≤σ≤T

|X(σ)| ≥ R].

P[ sup
s≤σ≤T

|X(σ)| ≥ R] is of the order ofe−c(T)R2
and sinceα < 2, the

second term on the right side above tends to 0 asR → ∞. Hence, on
letting R→ +∞, we get, by the bounded convergence theorem,

u(s, x) = Es,x[ f (X(T))e
∫ T

s
V(X(s))ds]

Application. Let β(t, ·) be a one-dimensional Brownian motion. Recall

(Cf. Reflection principle) thatP{ sup
0≤s≤t

|β(s)| ≤ 1} is of the order of
4
π

e−

π2t
8

. The Feynman-Kac formula will be used to explain the occurance

of the factor
π2

8
in the exponent. First observe that

π2

8
=
λ2

2
whereλ is

the first positive root of Cosλ = 0. Let

τ(w) = inf {t : |β(t)| ≥ 1}.

Then
P{ sup

0≤s≤t
|β(s, ·)| ≤ 1} = P{τ ≥ t}.

Let φ(x) = Ex[eλτ], λ < 0. We claim thatφ satisfies 132

1
2
φ′′ + λφ = 0, |x| < 1,

φ = 1, |x| = 1.
(*)
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Assumeφ to be sufficiently smooth. Using Itô’s formula we get

d(eλtφ(β(t)) = eλtφ′(β(t))dβ(t) + [λφ(β(t)) +
1
2
φ′′(β(t))]eλtdt.

Therefore

eλtφ(β(t)) − φ(β(0)) =

t∫

0

eλsφ′(β(s))dβ(s)+

+

t∫

0

[λφ(β(s)) +
1
2
φ′′(β(s))]eλsds,

i.e.

eλtφ(β(t)) − φ(β(0))−
t∫

0

[λφ(β(s)) +
1
2
φ′′(β(s))]eλsds

is a martingale. By Doob’s optional sampling theorem we can stop this
martingale at timeτ, i.e.

eλ(t∧τ)φ(β(t ∧ τ)) − φ(β(0))−
t∧τ∫

0

[λφ(β(s)) +
1
2
φ′′(β(s))]eλsds

is also a martingale. But fors≤ t ∧ τ,

λφ +
1
2
φ′′ = 0.

Thus we conclude thatφ(β(t ∧ τ))eλ(τ∧t) is a martingale. Sinceλ <
0 andφ(β(t ∧ τ)) is bounded, this martingale is uniformly integrable.
Therefore equating the expectation att = 0 andt = ∞ we get (since
φ(β(τ)) = 1)

φ(x) = Ex[e
λτ].

By uniqueness property this must be the solution. However (*) has133

a solution given by

(x) =
Cos(
√

(2λx))

Cos(
√

(2λ))
.
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Therefore

(1) E0[eλτ] =
1

Cos(
√

(2λ))
(λ < 0),

If F(t) = P(τ ≥ t), then

∞∫

0

eλtdF(t) = E0(eλτ).

A theorem on Laplace transforms now tells us that (1) is validtill

we cross the first singularity of
1

Cos(
√

(2λ))
. This occurs atλ =

π2

8
. By

the monotone convergence theorem

E0[eτπ
2/8] = +∞

Hence
∞∫

0

eλtdF(t) converges forλ <
π2

8
and diverges forλ ≥ π2

8
.

Thus
π2

8
is the supremum ofλ for which

∞∫

0

eλtdF(t) converges, i.e. sup

[λ : E0(eλτ)] exists, i.e. the decay rate is connected to the existence or
the non existence of the solution of the system (*). This is a general
feature and prevails even in higher dimensions.





19. An Application of the
Feynman-Kac Formula. The
Arc Sine Law.

LET β(t, ·) BE THE one-dimensional Brownian motion withβ(0, ·) = 0. 134

Define

ξt(w) =
1
t

t∫

0

X[0,∞)(β(s,w))ds.

ξt(w) is a random variable and denotes the fraction of the time that a
Brownian particle stays above thex-axis during the time interval [0, t].
We shall calculate

P[w : ξt(w) ≤ a] = Ft(a)

Brownian Scaling. Let Xt(s) =
1
√

t
β(ts). ThenXt is also a Brownian

motion with same distribution as that ofβ(s). We can write

ξt(w) =

1∫

0

X[0,∞)(Xt(s,w))ds.

The ξt(w) = time spent above thex-axis by the Brownian motion
Xt(s) in [0, 1]. HenceFt(a) is independent oft and is therefore denoted

139
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by F(a). Suppose we succeed in solving forF(a); if, now,

ξ∗t (w) =

t∫

0

X[0,∞)(β(s))ds= tξt,

then the amount of timeβ(s, ·) > 0 in [0, t] is t (amount of timeXt(s) > 0
in [0, 1]). Hence we can solve forP[ξ∗t (w) ≤ a] = Gt(a). Clearly the
solution ofGt is given by

Gt(a) = F(a/t).

It is clear that135

F(a) =


0 if a ≤ 0,

1 if a ≥ 1.

Hence it is enough to solve forF(a) in 0 ≤ a ≤ 1. Let

uλ(t, x) = Ex[e
−(λ

∫ t
0

X[0,∞)(β(s,w))ds)]

Then

u1(t, 0) = E[e−ξ(w))] =

1∫

0

e−txdF(x).

Also note thatuλ(t, x) is bounded by 1, ifλ ≥ 0. By the Feynman-

Kac formula (appropriately modified in case
1
2
∆ is replaced by−1

2
∆)

u1(t, x) satisfies

∂u
∂t
=

1
2
∂2u

∂x2
− u, x > 0,

=
1
2
∂2u

∂x2
, x < 0,

(*)

andu(0, x) = 1. Let

φα(x) = α

∞∫

0

u(t, x)e−αtdt, α > 0, where u = u1,
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=

∞∫

0

u(t, x)(−de−αt).

A simple integration by parts together with (*) gives the following
system of ordinary differential equations forφα:

− 1
2
φ′′α + (α + 1)φα = α, x > 0,

− 1
2
φ′′α + αφα = α, x < 0.

These have a solution

φα(x) =
α

α + 1
+ Aex

√
(2(α+1))

+ Be−x
√

(2(α+1)), x > 0,

= 1+Cex
√

(2α)
+ De−x

√
(2α), x < 0.

136

Howeveru is bounded by 1 (see definition ofuλ(t, x)). Thereforeφα
is also bounded by 1. This forcesA = D = 0. We demand thatφα and
dφα
dx

should match atx = 0. (Some justification for this will be given

later on).
Lt

x→0+
φα(x) = Lt

x→0−
φα(x)

gives
α

1+ α
+ B = C + 1.

Similarly we get−B
√

(2(α+ 1)) = C
√

(2α) by matching
dφα
dx

. Solv-

ing for B andC we get

B =

√
α

(1+ α)(
√
α +
√

(α + 1))
,

C =
1√

(1+ α)(
√
α +
√

(α + 1))
.

Therefore

φα(0) =
α

α + 1
+ B =

√
α

√
(α + 1)

,
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i.e.
∞∫

0

E[e−tξtαe−αt]dt =

√
α

√
(α + 1)

.

Using Fubini’s theorem this gives

E[
α

α + ξ
] =
√

(
α

α + 1
),

or

E[
1

1+ ξ/a
] =
√

(
1

1+ (1/α)
), i.e.

1∫

0

dF(x)
1+ γx

=
1√

(1+ γ)
.

137

This can be inverted to get

dF(x) =
2
π

dx√
(x(1− x))

.

(Refer tables on transforms or check directly that

2
π

1∫

0

1
1+ βx

dx√
(x(1− x))

=
1√

(1+ β)

by expanding the left side in powers of (β). Therefore

F(a) =
2
π

arcsin (
√

a), 0 ≤ a ≤ 1.

HenceGt(a) = 2
π

arcsin (
√

(a
t )), 0 ≤ a ≤ t, i.e.

P[ξt ≤ a] =
2
π

arcsin (
√

(
a
t
)), 0 ≤ a ≤ t.

This result goes by the name ofarc sine lawfor obvious reasons.
We now give some justification regarding the matching conditions

used above.
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The equation we solved was

αφ − 1
2
φ′′ + Vφ = f

whereφ was boundedV ≥ 0. Suppose we formally use Itô’s formula to
calculate

d
(
φ(β(t)e−

∫ t
0
(α+V)(β(s)ds))

= e−
∫ t
0

(α+V)(β(s,·))ds[− f (β(s, ·))dt +
dφ
dX

(β(t))dβ(t)]

(see Example 2 of Itô’s formula). Therefore

(Z(t, ·) = φ(β(t, ·))e−
∫ t
0 (α+V)(β(s,·))ds

+

∫ t

0
fβ(s, ·) exp(−

s∫

0

(α + V)dσ)ds

is a martingale. Sinceφ, f are bounded andV ≥ 0, 138

|Z(t, ·)| ≤ ||φ||∞ + || f ||∞
∞∫

0

e−αsds≤ ||φ||∞ +C|| f ||∞.

ThereforeZ(t, ·) is uniformly integrable. Equating the expectations
at time 0 and∞ gives

(*) φ(0) = E0

∞∫

0

[ f (β(s, ·))e−αs−
∫ s

0 V(β(σ)dσ)]ds.

This is exactly the form obtained by solving the differential equa-
tions. In order to use Itô’s formula one has to justify it. Ifwe show
that Itô’s formula is valid for functions having a discontinuity in the
second derivative, (*) will be a legitimate solution and in general there
is no reason why the second derivatives (or higher derivatives) should be

matched. This partially explains the need for matchingφ and
dφ
dx

only.
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Proposition . Let β(t, ·) denote a one-dimensional Brownian motion.
Supposeφ ∈ C1

b and satisfied

αφ − 1
2
φ′′ + Vφ = f ,

Then

φ(β(t)) −
t∫

0

f (β(s))ds

is a martingale.

Proof. Let (φǫ) ∈ C2
b such thatαφǫ − 1

2φ
′′
ǫ + Vφǫ + Vφǫ = fǫ and such

that (i)φǫ converges toφ uniformly on compact sets, (ii)φ′ǫ converges to
φ′ uniformly on compact sets, (iii)φ′′ǫ converges pointwise toφ′′ except
at 0. We may suppose that the convergence is bounded. �

Claim.
t∫

0

fǫ(β(s))ds converges to
t∫

0

f (β(s))ds a.e.As fǫ(β(s)) converges139

to f (β(s)) except whenβ(s) = 0, it is enough to prove that
(*) P[w: Lebesgue measure (s : β(s) = 0) > 0]= 0. Let X{0} denote

the indicator function of{0}. Then

E

t∫

0

X{0}(β(s))ds=

t∫

0

EX{0}(β(s))ds= 0.

Thus (*) holds and establishes the claim. Now

φǫ(β(t)) −
t∫

0

fǫ(β(s))ds

is a uniformly bounded martingale converging to

φ(β(t)) −
t∫

0

f (β(s))ds.
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Therefore

φ(β(t)) −
t∫

0

f (β(s))ds

is a martingale.





20. Brownian Motion with
Drift

LET Ω = C[0,∞;Rd], F = BORELσ-FIELD of Ω, {X(t, ·)} ≡ Brow- 140

nian motion,Ft = σ[X(s, ·) : 0 ≤ s ≤ t], Px ≡ probability measure
on Ω corresponding to the Brownian motion starting at time 0 atx.
F = σ(U

t≥0
Ft). Let b : Rd → Rd be any bounded measurable funci-

ton. Then the map (s,w)| → b(w(s)) is progressively measurable and

Z(t, ·) = exp[

t∫

0

〈b(X(s, ·)), dX(s, ·)〉 − 1
2

t∫

0

|b(X(s, ·))|2ds]

is a martingale relative to (Ω,Ft,Px). DefineQt
x onFt by

Qt
x(A) =

∫

A

Z(t, ·)dPx,

i.e. Z(t, ·) is the Radon-Nikodym derivative ofQt
x with respect toPx on

Ft.

Proposition . (i) Qt
x is a probability measure.

(ii) {Qt
x : t ≥ 0} is a consistent family on∪

t≥0
Ft, i.e. if A ∈ Ft1 and

t2 ≥ t1 then Qt
x1(A) = Qt

x2(A).

Proof. Qt
x being an indefinite integral, is a measure. SinceZ(t, ·) ≥ 0,

Qt
x is a positive measure.Qt

x(Ω) = Ex(Z(t, ·)) = Ex(Z(0, ·)) = 1. This
proves (i). (ii) follows from the fact thatZ(t, ·) is a martingale.
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If A ∈ Ft, we define

Qx(A) = Qt(A)
x .

The above proposition shows thatQx is well defined and since (Ft)141

is an increasing family,Qx is finitely additive on
⋃
t≥0

Ft. �

Exercise.Show thatQx is countably additive on the algebra
⋃
t≥0

Ft.

Then Qx extends as a measure toF = σ(
⋃
t≥0

Ft). Thus we get a

family of measures{Qx : x ∈ Rd} defined on (Ω,F ).

Proposition . If s < t then

Qx(Xt ∈ A|Fs) = QX(s)(X(t − s) ∈ A) a.e.

Definition . If a family of measures{Qx} satisfies the above property it
is called a homogeneous Markov family.

Proof. Let B ∈ Fs. ThereforeB∩ X−1
t (A) ∈ Ft and by definition,

Qx((X(t) ∈ A) ∩ B)) =
∫

B∩X−1
t (A)

Z(t, ·)dPx

EPx(Z(t, ·)χ(w)
B χA(X(t, ·)))

= EPx(EPx(
Z(t, ·)
Z(s, ·)Z(s, ·)χ(w)

B χA(X(t, ·))|Fs)

= EPx([χBZ(s, ·))EPx(
Z(t, ·)
Z(s, ·)χA(χ(t, ·))]|Fs)

(sinceB ∈ Fs andZ(s, ·) is Fs-measurable)

= EQx[χBEPx(
Z(t, ·)
Z(s, ·)χA(χ(t, ·))|Fs)] . . .(1)

= EQx[χBEPx(exp[

t∫

s

〈b, dX〉 − 1
2

t∫

0

|b|2]χA(X(t, ·))|Fs)]
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= EQx[χBEPX(s) (exp[

t−s∫

0

〈b, dX〉1
2

t−s∫

0

|b|2]XA(X(t − s))]

(by Markov property of Brownian motion)

= EQx(χBEQt−s
X(s) (χA(χ(t − s))) (since

dQt−s
X(s)

dPX(s)
= Z(t − s, ·)

= EQx(XBEQX(s)χA(X(t − s, ·))

� 142

The result follows from definition.
Let b : [0,∞] × Rd → Rd be a bounded measurable function,Ps,x

the probability measure corresponding to the Brownian motion starting
at timesat the pointx. Define, fort ≥ s,

Zs,t(w) = exp[

t∫

s

〈b(σ,X(σ,w)), dX(σ,w)〉

− 1
2

t∫

s

|b(σ,X(σ,w))|2dσ]

Exercise. (i) Zs,t is a martingale relative to (F s
t ,Ps,x).

(ii) Define Qt
s,x by Qt

s,x(A) =
∫

A

Zs,tdPs,x, ∀A ∈ F s
t .

Show thatQt
s,x is a probability measure onF s

t .

(iii) Qt
s,x is a consistent family.

(iv) Qs,x defined onU
t≥s

F s
t by Qs,x|F s

t = Qt
s,x is a finitely additive set

function which is countably additive.

(v) The family {Qs,x : 0 ≤ s < ∞, x ∈ Rd} is an inhomogeneous
Markov family, i.e.

Qs,x(X(t, ·) ∈ A|F s
σ) = Qσ,X(σ,·)(X(t, ·) ∈ A),∀s< σ < t,A ∈ F

s
t .
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[Hint: Repeat the arguments of the previous section with obvious 143

modifications].

Proposition . Letτ be a stopping time,τ ≥ s. Then

Qs,x[X(t, ·) ∈ A|F s
τ ] = Qτ,Xτ(·)(X(t, ·) ∈ A) on τ(w) < t,

= χA(X(t, ·)) onτ(w) ≥ t.

Proof. Let B ∈ F s
τ andB ⊂ {τ < t} so thatB ∈ F s

t .

EQs,x(χBχA(Xt)) = EPs,x(Zs,tχBχA(Xt))

= EPs,x[EPs,x(Zτ,tZs,τχBχA(Xt)|F s
τ )]

(sinceZ satisfies the multiplicative property)

= EPs,x(Zs,τχBEPs,x(Zτ,tχA(Xt)|F s
τ )]

(sinceZs,τ is F s
τ -measurable)

(*) = EPs,x[Zs,τXBEPτ,Xτ(Zτ,tχA(Xt))]

(by strong Markov property).
Now

dQs,x

dPs,x

∣∣∣∣
F s

t

= Zs,t.

so that the optional stopping theorem,

dQs,x

dPs,x

∣∣∣∣
F s
τ

= Zs, on {τ < t}, ∀x.

Putting this in (*) we get144

EQs,x [XBχA(Xt)] = EPs,x[Zs,τχBEQτ,Xτ (χAXt)].

Observe that
χBEQτ,Xτ (χA(Xt))

is F s
τ -measurable to conclude the first part of the proof. For part (ii)

observe that
X−1

t (A) ∩ {τ ≥ t} ∩ {τ ≤ k}
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is in F s
k if k > s, so that

X−1
t (A) ∩ {τ ≥ t} ∈ F

s
τ .

Therefore

EQs,x(Xt ∈ A∩ (τ ≥ t))|F s
τ ) = χA(Xt)χ{τ≥t},

or
EQs,x[(Xt ∈ A)|F s

τ ] = χA(Xt) if τ ≥ t.

�

Proposition . Let b : [0,∞) × Rd → Rd be a bounded measurable func-
tion, f : Rd → R any continuous bounded function. If

∂u
∂s
+

1
2
∆u+ 〈b(s, x),∆u〉 = 0, 0 ≤ s≤ t,

u(t, x) = f (x)

has a solution u, then

u(s, x) =
∫

Ω

f (Xt)dQs,x.

Remark . b is called thedrift. If b = 0 ands = 0 then we recover the145

result obtained earlier. With the presence of the drift term, the result is
the same except that instead ofPs,x one has to useQs,x to evaluate the
expectation.

Proof. Let

Y(σ, ·) =
σ∫

s

〈b(θ,X(θ, ·)), dX(θ, ·)〉 − 1
2

σ∫

s

|b(θ,X(θ, ·)|2dθ.

Step 1.(X(σ, ·)−X(s, ·),Y(σ, ·)) is a (d+1)-dimensional Itô process with
parameters

(0, 0, . . . , 0,−1
2
|b(σ,X(σ, ·))|2) and
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d terms

a =

[
Id×d bd×1

b∗1×d b

]

Let λ = (λ1, . . . , λd). We have to show that

exp[µY+
µ

2

σ∫

s

|b(σ,X(σ, ·)|2dσ + 〈λ,X(σ, ·) − X(s, ·)〉−

− 1
2

σ∫

s

〈λ, λ〉 + 2µ〈λ, b+ µ2|b(σ, ·)|2dσ]

is a martingale, i.e. that

exp[〈λ,X(σ, ·) − X(s, ·)〉 + µ
σ∫

s

〈b, dX〉 − 1
2

σ∫

s

|λ + bµ|2dρ].

is a martingale; in other words that

exp[

σ∫

s

〈λ + bµ, dX〉 − 1
2

σ∫

s

|λ + bµ|2dρ]

is a martingale. But this is obvious because146

Z(σ, ·) =
σ∫

s

〈λ + µb, dX〉

is a stochastic integral and hence an Itô process with parameters (0, |λ +
µb|2). (Refer to the section on vector-valued Itô process).

Step 2.Putφ(σ,X(σ, ·),Y(σ, ·)) = u(σ,X(σ, ·))eY(σ,·). By Itô formula,

dφ = eY∂u
∂t

dt + eY〈∇u, dX〉 + ueYdY+
1
2

∑
ai j

π2φ

∂zi∂zj
,

wherez= (x, y), or

dφ = eY[
∂u
∂t

dt + 〈∇u, dX〉 + u〈b, dX〉 − µ
2
|b|2dt +

1
2
∇udt+ 〈b,∇u〉dt+



153

+
1
2

u|b|2dt]

= eY[〈∇u, dX〉 + u〈b, dX〉].

Thereforeφ is an Itô process and hence a martingale. Therefore

E(φ(t, ·)) = E(φ(s, ·))

u(s, x) = EPs,x[( f (X(t))e

∫ t
s
〈b,dX〉− 1

2

t∫

0

|b|2dθ
]

= EQs,x[ f (X(t))],

which proves the theorem.

�

Alternate Proof. 147

Exercise .Let Y(σ, ·) be progressively measurable forσ ≥ s. Then
Y(σ, ·) is a martingale relative to (Qs,x,F

s
t ) if and only if Y(σ)Zs,σ is

a martingale relative to (Ps,x,F
s
t ).

Now for any functionθwhich is progressively measurable and boun-
ded,

exp[

t∫

s

〈θ, dX〉 − 1
2

t∫

s

|θ|2dσ]

is a martingale relative to (Ω,F s
t ,Ps,x). In particular letθ be replaced

by θ + b(σ,w(σ)). After some rearrangement one finds thatXt is an Itô
process with parametersb, I relative toQs,x. Therefore

u(t,Xt) −
t∫

s

(
∂u
∂σ
+ 〈b,∇u〉 + 1

2
∇u

)
dσ

is a martingale relative toQs,x. But

∂u
∂σ
+ 〈b,∇u〉 + 1

2
∇u = 0.
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Therefore
EQs,x(u(t,X(t)) = u(s,X).

We have definedQs,x by using the notion of the Radon-Nikodym
derivative. We give one more relation betweenP andQ.

Theorem .Let T : C([s,∞),Rd)→ C([s,∞),Rd) be given by

TX = Y where Y(t) = X(t) −
t∫

s

b(σ,X(σ))dσ.

(b is as before). Then
Qs,xT

−1
= Ps,x.

Proof. DefineY(t,w) = X(t,Tw) whereX is a Brownian motion. We148

prove thatY is a Brownian motion with respect toQs,x. Clearly Y is
progressively measurable becauseT is (Ft −Ft)-measurable for every
t, i.e.T−1(Ft) ⊂ Ft andX is progressively measurable. ClearlyY(t,w)
is continuous∀ w. We have only to show thatY(t2) − Y(t1) is Qs,x-
independent ofF s

t1 and has distributionN(0; (t2 − t1)I ) for eacht2 >

t1 ≥ s. But we have checked that

exp[〈θ,Xt − x〉 − 1
2
|θ|2(t − s) −

t∫

s

〈θ, b〉dσ]

is a martingale relative toQs,x. Therefore

EQs,x(exp〈θ,Yt2 − Yt1〉|F s
t1) = exp(

1
2
|θ|2(t2 − t1)),

showing thatYt2 −Yt1 is independent ofF s
t1 and has normal distribution

N(0; (t2− t1)I ). ThusY is a Brownian motion relative toQs,x. Therefore

Qs,xT
−1
= Ps,x.

�
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Definition . A function b : Rd → Rd is said to be locally Lipschitz if 149

given anyx0 ∈ Rd there exists an open setU0 containingx0 such that
b|U0 is Lipschitz.

Exercise 1.b is locally Lipschitz iff b|K is Lipschitz for every compact
setK i.e. iff b|K is Lipschitz for every closed sphereK.

Exercise 2.Every locally Lipschitz function is continuous.

Theorem .Let b : Rd → Rd be locally Lipschitz and X: [0,∞) → Rd

continuous. Then

(i) the equation

Y(t) = X(t) +

t∫

0

b(Y(s))ds (∗)

has a continuous solution near0, i.e. there exists anǫ > 0 and a
continuous function Y: [0, ǫ] → Rd such that the above equation
is satisfied for all t in[0, ǫ].

(ii) (Uniqueness) If Y1, Y2 are continuous solutions of the above equa-
tion in [0,T], then

Y1 = Y2 on [0,T].

Proof. (ii) (Uniqueness) Letf (t) = |Y1(t) − Y2(t)|. As Y1, Y2 are con-
tinuous, there exists ak > 0 such that|Y1(t)|, |Y2(t)| ≤ k for all t in

155
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[0,T]. ChooseC such that|b(x) − b(y)| ≤ C|x − y| for |x|, |y| ≤ k and

C sup
0≤t≤T

f (t). Then f (t) ≤ C and f (t) ≤ C
t∫

0

f (s)dsso thatf (t) ≤ (ct)n

n! for150

all n = 1, 2, 3, . . .. ThusY1(t) = Y2(t), proving uniqueness.
(i) (Existence) We can very well assume thatX(0) = 0. Let a =

inf {t : |X(t)| ≥ 1},

M > sup{|b(x)| : |x| ≤ 2}, α = inf {a, 1
M
},

C , 0, a Lipschitz constant, so that|b(x) − b(y)| ≤ C|x − y| for all |x|,
|y| ≤ 2. Define the iterationsY0,Y1, . . . by

Y0(t) = X(t), Yn+1(t) = X(t) +

t∫

0

b(Yn(s))ds

for all t ≥ 0. By induction, eachYn is continuous. By induction again,
|Yn(t) − X(t)| ≤ Mt for all n, 0 ≤ t ≤ α. Again, by induction|Yn+1(t) −
Yn(t)| ≤ M

C
(Ct)n+1

(n+1)! for 0 ≤ t ≤ α. Again, by induciton|Yn+1(t) − Yn(t)| ≤
M
C

(Ct)n+1

(n+1)! for 0 ≤ t ≤ α. ThusYn(t) converges uniformly on [0, α] to a
continuous functionY(t) which is seen to satisfy the integral equation.

�

Remark . Let X : [−δ,∞) → Rd be continuous whereδ > 0. Then a
similar proof guarantees that the equation (*) has a solution in [−ǫ, ǫ]
for someǫ > 0.

Define B(X) = sup{t : (∗) has a solution in [0, t]}. The theorem
above implies that 0< B(X) ≤ ∞. B(X) is called theexploding time.

Remark . If b is, in addition, either bounded or globally Lipschitz,
B(X) = ∞ for every continuousX : [0,∞)→ Rd.

Example.Let b(y) = y2, X(t) = 0. The equation151

Y(t) = x0 +

t∫

0

b(y(s))ds
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with x0 > 0 has a solution

Y(t) =
1

1
x0
− t

, ∀t < 1
x0

;

the solution explodes att = x−1
0 .

Proposition . If

B(w) < ∞, then Lt
t↑B(w)

|y(t)| = +∞.

Proof. Suppose that lim
t→B(w)

|y| = R < ∞. Let (tn) be a sequence increas-

ing to B(w) such that|y(tn)| ≤ R+ 1,∀n. Let

τn = inf {t ≥ tn : |y(t) − y(−n)| ≥ 1}.

Then

1 = |y(τn) − y(tn)|
≤ w(τn) − w(tn)| + (τn − tn) sup|b(λ)| . . . , (1)

λ ∈ S(y(tn), 1).

Since (tn) is bounded, we can choose a constantM such that

|w(tn) − w(t)| < 1
2

if |t − tn| ≤ M.

Then using (1),

τn − tn ≥ inf {M, (2 sup|b(λ)|)−1 where λ ∈ S(Y(tn); 1)

Therefore

τn − tn ≥ inf(M, (2 sup|b(λ)|)−1, λ ∈ S(0;R+ 2)) = α(say)∀ n.

152
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Chosen such thatτn > B(w) > tn. Theny is bounded in [tn, B(w)]
and hence it is bounded in [0, B(w)). From the equation

y(t) = X(t) +

t∫

0

b(y(s))ds

one then gets that Lt
t→B(w)

y(t) exists. But this is clearly a contradiction

since in such a case the solution exists in [0, B(w) + ǫ) for suitableǫ,
contradicting the definition ofB(w). Thus

lim
t→B(w)

|y(t)| = +∞

and hence
lim

t→B(w)
|y(t)| = +∞.

�

Corollary . If b is locally Lipschitz and bounded, then B(X) = ∞ for all
X in C([0,∞),Rd).

Proof. Left as an exercise. �

Proposition . Let b : Rd → Rd be locally Lipschitz and bounded. Define
T : C([0,∞),Rd)→ C([0,∞),Rd) by TX= Y where

Y(t) = X(t) +

t∫

0

b(Y(s))ds.

Then T is continuous.

Proof. Let X, X∗ : [0,∞) → Rd be continuous,K > 0 be given.
Let Y0,Y1, . . . ,Y∗0,Y

∗
1, . . . be the iterations forX, X∗ respectively. Then

|Yn(t) − X(t)| ≤ K||b||∞ for 0 ≤ t ≤ K, n = 0, 1, 2, 3, . . ., so that we can
find R such that|Yn(t)|, Y∗n(t)| ≤ R for 0 ≤ t ≤ k, n = 0, 1, 2, . . ., Let153

C ≥ 1 be any Lipschitz constant for the functionb on |x| ≤ R. Then

|Yn(t) − Y∗n(t)| ≤ sup
0≤t≤K

|X(t) − X∗(t)| · (1+Ct+
(Ct)2

2!
+
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+ · · · + (Ct)n

n!
) for 0 ≤ t ≤ K, n = 0, 1, 2, 3, . . . .

A b is bounded,Yn converges uniformly toY on [0,K]. Letting
n→ ∞, we get

sup
0≤t≤K

|(TX)t − TX∗)t| ≤ eck sup
0≤t≤K

|X(t) − X∗(t)|, . . . (2)

wherec depends on sup
0≤t≤K

|X(t)|, sup
0≤t≤K

|X∗(t)|. The proof follows by (2).

�





22. Large Deviations

LET Pǫ BE THE Brownian motion starting from zero scaled to Brown-154

ian motion corresponding to the operatorǫ
∆

2
. More precisely, let

Pǫ(A) = P

(
A
√
ǫ

)

whereP is the Brownian motion starting at time 0 at the point 0.

Interpretation 1. Let {Xt : t ≥ 0} be Brownian motion withX(0) = x.
Let Y(t) = X(ǫt), ∀t ≥ 0. ThenPǫ is the measure induced by the process
Y(t). This amounts to stretching the time or scaling time.

Interpretation 2. Let Y(t, ·) =
√
ǫX(t, ·). In this case alsoPǫ is the

measure induced by the processY(t, ·). This amounts to ‘looking at the
process from a distance’ or scaling the length.

Exercise.Make the interpretations given above precise.
(Hint: Calculate (i) the probability thatX(ǫt) ∈ A, and (ii) the probability
that
√
ǫX(t, ) ∈ A).

Problem. Let

I (w) =
1
2

1∫

0

|ẇ(t)|2dt

if w(0) = 0, w absolutely continuous on [0, 1]. Put I (w) = ∞ otherwise.

161
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We would like to evaluate
∫

Ω

e
F(w)
ǫ dPǫ(w)

for small values ofǫ. HereF(w) : C[0, 1] → R is assumed to the a155

bounded and continuous function.

Theorem .Let C be any closed set in C[0, 1] and let G be any open set
in C[0, 1]. Then

lim sup
ǫ→0

∈ log Pǫ(C) ≤ −
∫

w∈C

I (w),

lim inf
ǫ→0

ǫ logPǫ(G) ≥ − inf
w∈G

I (w).

Here Pǫ(G) = Pǫ(π−1G) whereπ : C[0,∞)→ C[0, 1] is the canoni-
cal projection.

Significance of the theorem. If

1.
dPǫ = e

−I (w)
ǫ ,

then

Pǫ(A) =

∫

A

e
−I (w)
ǫ dPǫ

is asymptotically equivalent to

exp[−1
ǫ

inf
w∈A

I (w)].

2. If A is any set such that

inf
w∈A0

I (w) = inf
w∈A

I (w),

then by the theorem

Lt
ǫ→0

logPǫ(A) = inf
w∈A

I (w).
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Proof of the theorem.156

Lemma 1. Let w0 ∈ Ω with I(w0) = ℓ < ∞. If S = S(w0; δ) is any
sphere of radiusδ with centre at w0 then lim

ǫ→0
∈ log Pǫ(S) ≥ −I (w0).

Proof.

P(S) =
∫

χ
(w)
S(w0,δ)

dPǫ

=

∫
χ

(w−w0)
S(0;) dPǫ

=

∫
χS(0;δ)(λw)dP

(
w
√
ǫ

)
, where λ(w) = w− w0,

=

∫
χS(0;δ)(λ(

√
ǫw))dP(w)

=

∫
χS(0,δ)(

√
ǫw) exp



1∫

0

〈w0, dX〉 − 1
2

1∫

0

|ẇ0|2dσ

 dP(w)

=

∫
χS(0;δ)(

√
ǫw) exp



1∫

0

〈ẇ0, dX〉 − I (w0)

 dP(w)

=

∫
χS(0;δ)(w) exp

−
1
ǫ

1∫

0

〈ẇ0, dX〉 − 1
ǫ

I (w0)

 dPǫ (w)

= e
−I (w0)

ǫ Pǫ(S(0;δ))
1

Pǫ (S(0;δ))

∫

S(0;δ)

exp

−
1
ǫ

1∫

0

〈ẇ0, dX〉

 dPǫ

≥ e
−I (w0)

ǫ Pǫ(S(0;δ))e

−
1
ǫ

1
Pǫ(S(0;δ))

∫

S(0;δ)

1∫

0

〈ẇ0, dX〉dPǫ



by Jensen’s inequality,

= e
−I (w0)

ǫ Pǫ(S(0, δ))e0(usePǫ(w) = Pǫ(−w) if w ∈ S(0;δ))

= e
−I (w0)

ǫ Pǫ(S(0, δ)).
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157

Therefore

Pǫ(S(w0; δ)) ≥ e
−I (w0)

ǫ P(S(0;
δ
√
ǫ

))

or,

ǫ log Pǫ(S(w0; δ)) ≥ −I (w0) + ǫ log P(S(0;
δ
√
ǫ

));

let ǫ → 0 to get the result. Note that the Lemma is trivially satisfiedif
I (w0) = +∞. �

Proof of Part 2 of the theorem.
Let G be open,w0 ∈ G; then there existsδ > 0 with S(w0, δ) ⊂ G.

By Lemma 1

lim
ǫ→0
∈ logPǫ(G) ≥ lim

ǫ→0
∈ logPǫ(S(w0; δ)) ≥ −I (w0).

Sincew0 is arbitrary, we get

lim ∈ logPǫ(G) ≥ − inf {I (w0) : w0 ∈ G}.

For part 1 we need some more preliminaries.

Lemma 2. Let (wn) ∈ C[0, 1] be such that wn → w uniformly on[0, 1],
I (wn) ≤ α < ∞. Then I(w) < α, i.e. I is lower semi-continuous.

Proof.

Step 1.w is absolutely continuous. Let{(x′i , x
′′
i )}ni=1 be a collection of

mutually disjoint intervals in [0, 1]. Then

n∑

i=1

|wm(x′i ) − wm(x′′i )| ≤
n∑

i=1|
|x′′i − x′i |

1/2[

x′′i∫

x′i

|wm|2]1/2

(by Hölder’s inequality)
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≤



n∑

i=1

x′′i∫

x′i

|wm|2



1/2 
n∑

i=1

|x′′i − x′i |


1/2

(again by Hölder)

≤
√

(2α)(
∑
|x′′i − x′i |)

1/2.

158

Letting m→ ∞ we get the result.

Step 2.Observe thatwm(0) = 0S0w(0) = 0. Therefore

|wn(x+ h) − wn(x)
h

|2 = |1
h

x+h∫

x

wndt|2 ≤ 1

h2



x+h∫

x

|wn|dt



2

≤ 1
h

x+h∫

x

|wn|2dt.

Hence

1−h∫

0

|wn(x+ h) − wn(x)
h

|2dx≤ 1
h

1−h∫

0

dx

h∫

0

|(ẇn(x+ t))|2dt

≤ 1
h

h∫

0

dt

1−h∫

0

|ẇn(x+ t)|2dx

≤ 1
2

2

h∫

0

dt = 2α

letting n→ ∞, we get

1−h∫

0

|w(x+ h) − w(x)
h

|2dx≤ 2α.

Let h→ 0 to getI (w) ≤ α, completing the proof.
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�

Lemma 3. Let C be closed and put Cδ =
⋃

w∈C
S(w; δ); then159

lim
δ→0

( inf
w∈Cδ

I (w)) = inf
w∈C

I (w).

Proof. If δ1 < δ2, thenCδ1 ⊂ Cδ2 so that inf
w∈Cδ

I (w) is decreasing. As

Cδ ⊃ C for eachδ,

lim
δ→0

( inf
w∈Cδ

I (w)) ≤ inf
w∈C

I (w)

Let ℓ = lim
δ→0

( inf
w∈Cδ

I (w)). Then there existswδ ∈ Cδ such thatI (wδ)→
ℓ, and therefore (I (wδ)) is a bounded set bounded byα (say).

Claim.

|wδ(t1) − wδ(t2)| = |
t2∫

t1

wδdt| ≤
√
|(|t1 − t2|)(

∫
|wδ|2)1/2

≤
√

(2α|t1 − t2|).

The family (wδ) is therefore equicontinuous which, in view of the
fact thatwδ(0) = 0, implies that it is uniformly bounded and the claim
follows from Ascoli’s theorem. Hence every subfamily of (wδ) is equi-
continuous. By Ascoli’s theorem there exists a sequenceδn → 0 such
that wδn → w uniformly on [0, 1]. It is clear thatw ∈ C. By lower
semicontinuity ofI (w),

lim
δ→0

inf
w∈Cδ

I (w) ≥ inf
w∈C

completing the proof.

�

Proof of Part 1 of the theorem.Let X be continuous in [0, 1]. For each160

n let Xn be a piecewise linear version ofX based onn equal intervals, i.e.
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Xn is a polygonal function joining the points (0,X(0)), (1/n,X(1/n)), . . . ,
(1,X(1)).

Pǫ(||Xn − X|| ≥ δ), (|| · || = || · ||∞)

≤ P


⋃

n

sup
i≤ j≤n
· sup

j−1
n ≤t≤ j

n

|Xr (t) − Xr

(
j − 1

n

)
| ≥ δ

2
√

d

 ,

where X = (X1, . . . ,Xd).

≤ ndPǫ ( sup
0≤t≤1/n

|X(t) − X(0)| ≥ δ

2
√

d
(Markov property; hereX is one-

dimensional).

≤ ndPǫ

 sup
0≤t≤1/n

|Xt | ≥
δ

2
√

d

 (sinceX(0) = 0)

≤ 2nd Pǫ( sup
0≤t≤1/n

Xt ≥
δ

2
√

d
)

= 2dn P( sup
0≤t≤1/n

Xt ≥
δ

2
√
ǫd

)

= 4dn P(X(1/n) ≥ δ

2
√
ǫd

) (by the reflection principle)

= 4dn

∞∫

δ
√

n/2
√
ǫd

1√
2π/n

e−ny2/2dy

= 4d

∞∫

δ
√

n/2
√
ǫd

1√
2π

e−x2/2dx

Now, for everya > 0,

a

∞∫

a

e−x2/2dx≤
∞∫

a

xe−x2/2dx= e−a2/2.

Thus 161
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Pǫ(||Xn − X|| ≥ δ) ≤ 4dn e−nδ2/(8∈d)

δ
√

n/2
√
ǫd
= C1(n)

√
ǫ
√
δ

e−nδ2/(8∈d),

whereC1 depends only onn. We have now

Pǫ(Xn ∈ Cδ) ≤ Pǫ(I (Xn) ≥ ℓδ) whereℓδ = inf {I (w)w ∈ Cδ}.

= P


1
2

n−1∑

j=0

n|X
(

j + 1
n

)
− X

( j
n

)
|2 ≥ ℓδ



= P

(
Y2

1 + Y2
2 + · · · + Y2

nd ≥
2ℓδ
ǫ

)
,

whereY1 =
√

n(X1(1/n) − X1(0)) etc. areindependentnormal random
variables with mean 0 and variance 1. Therefore,

P(Y2
1 + · · · + Y2

nd ≥
2ℓδ
ǫ

)

=

∫

y2
1+···+y2

nd

2ℓδ
ǫ

e−(y2
1+···+y2

nd)1/2
dy1 . . . dynd.

= C(n)

∞∫

√
(2ℓδ/ǫ)

e−r2/2rnd−1dr,

using polar coordinates, i.e.

P(Y2
1 + Y2

2 + · · · + Y2
nd ≥

2ℓδ
ǫ

) = C′(n)

∞∫

(ℓδ/ǫ)

e−ss
nd
2 −1ds

(change the variable fromr to s=
r2

2
). An integration by parts gives

∞∫

α

e−sskds= e−α(αk
+

k!
(k− 1)!

αk−2
+ · · · ).

Using this estimate (forn even) we get

P((Y2
1 + · · · + Y2

nd) ≥
2ℓδ
ǫ

) ≤ C2(n)e−ℓδ/ǫ (
ℓδ

ǫ
)

nd
2 −1,
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whereC2 depends only onn. Thus,

Pǫ(C) ≤ Pǫ(||Xn − X|| ≥ δ) + Pǫ(Xn < Cδ)

≤ C1(n)
√ (

ǫ

δ

)
e−nδ2/(8∈d)

+C2(n)e−ℓδ/ǫ
(
ℓδ

ǫ

) nd
2 −1

≤ 2 max[C1(n)
√ (

ǫ

δ

)
e−nδ2/(8∈d),C2(n)e−ℓδ/ǫ

(
ℓδ

ǫ

) nd
2 −1

∈ logPǫ(C) ≤ ǫ log 2+ ǫ max[log(C1(n)
√ (

ǫ

δ

)
e−nδ2/(8∈d)

logC2(n)e−ℓδ/ǫ(
ℓδ

ǫ
)

nd
2 −1]
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Let ǫ → 0 to get

lim ∈ log Pǫ(C) ≤ max

{
−nδ2

8d
,
−ℓδ
1

}
.

Fix δ and letn→ ∞ through even values to get

lim ∈ logPǫ(C) ≤ −ℓδ.

Now let δ→ 0 and use the previous lemma to get

lim
ǫ→0
∈ log Pǫ(C) ≤ −

∫

w∈C

I (w).

Proposition . Let ℓ be finite; then{w : I (w) ≤ ℓ} is compact inΩ.

Proof. Let (wn) be any sequence,I (wn) ≤ ℓ. Then

|wn(t1) − wn(t2)| ≤
√

(ℓ|t1 − t2|)

and sincewn(0) = 0, we conclude that{wn} is equicontinuous and uni-
formly bounded. �

Assumptions.LetΩ be any separable metric space,F = Borelσ-field
onΩ. For everyǫ > 0 let Pǫ be a probability measure. LetI : Ω →
[0,∞] be any function such that
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(i) I is lower semi-continuous.

(ii) ∀ finite ℓ, {w : I (w) ≤ ℓ} is compact. 163

(iii) For every closed setC in Ω,

lim
ǫ→0

sup∈ logPǫ(C) ≤ − inf
w∈C

I (w).

(iv) For every open setG in Ω

lim
ǫ→0

inf ∈ logPǫ(G) ≥ − inf
w∈G

I (w).

Remark. Let Ω = C[0, 1], Pǫ the Brownian measure corresponding to

the scalingǫ. If I (w) =
1
2

1∫

0

|w|2dt if w(0) = 0 and∞ otherwise, then all

the above assumptions are satisfied.

Theorem .Let F : Ω → R be bounded and continuous. Under the
above assumptions the following results hold.

(i) For every closed set C inΩ

lim
ǫ→0

supǫ log
∫

C

exp
F(w)
ǫ

dPǫ ≤ sup
w∈C

(F(w) − I (w)).

(ii) For every open set G inΩ

lim
ǫ→0

inf ∈ log
∫

G

exp
F(w)
ǫ

dPǫ ≥ sup
w∈G

(F(w) − I (w)).

In particular, if G = Ω = C, then

lim
ǫ→0
∈ log

∫

Ω

exp
F(w)
ǫ

dPǫ = sup
w∈Ω

(F(w) − I (w)).
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Proof. Let G be open,w0 ∈ G. Let δ → 0 be given. Then there exists a
neighbourhoodN of w0, F(w) ≥ F(w0) − δ, ∀w in N. Therefore

∫

G

exp
F(w)
ǫ

dPǫ ≥
∫

N

exp
F(w)
ǫ

dPǫ ≥ e
F(w0)−δ

ǫ Pǫ(N).
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Therefore

ǫ log
∫

G

exp
F(w)
ǫ

dPǫ ≥ F(w0) − δ + ǫ logPǫ(N).

Thus

lim log
∫

G

exp
F(w)
ǫ

dPǫ ≥ F(w0) − δ + lim ǫ log Pǫ(N).

≥ F(w0) − δ − inf
w∈N

I (w) ≥ F(w0) − I (w0) − δ.

Sinceδ andw0 are arbitrary (w0 ∈ G) we get

lim ∈ log
∫

G

exp
F(w)
ǫ

dPǫ ≥ sup
w∈G

(F(w) − I (w)).

This proves Part (ii) of the theorem. �

Proof of Part (i).

Step 1.Let C be compact;L = sup
w∈G

(F(w) − I (w)). If L = −∞ it follows

easily that

lim
ǫ→0

sup∈ log
∫

C

eF/ǫdPǫ ≤ −∞.

(Use the fact thatF is bounded). Thus without any loss, we may assume
L to be finite. Letw0 ∈ C; then there exists a neighbourhoodN of w0

such thatF(w) ≤ F(w0) + δ and by lower semi-continuity ofI ,

I (w) ≥ I (w0) − δ, ∀w ∈ N(w0).
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By regularity, there exists an open setGw0 containingw0 such that
Gw0Gw0N(w0). Therefore 165

∫

Gw0

exp
F(w)
ǫ

dPǫ exp

(
F(w0) + δ

ǫ

)
Pǫ(Gw0).

Therefore

lim
ǫ→0

sup∈ log
∫

Gw0

exp
F(w)
ǫ

dPǫ ≤ F(w0) + δ + ǫ lim
ǫ→0

Pǫ(Gw0)

≤ F(w0) + δ − inf
w∈Gw0

I (w)

F(w0) + δ − I (w0) + δ

≤ L + 2δ.

Let Kℓ = {w : I (w) ≤ ℓ}. By assumption,Kℓ is compact. Therefore,
for eachδ > 0, there exists an open setGδ containingKℓ ∩C such that

lim
ǫ→0

sup∈ log
∫

Gδ

e
F(w)
ǫ dPǫ ≤ L + 2δ.

Therefore

lim
ǫ→0

sup∈ log
∫

Gδ∩C

e
F(w)
ǫ dPǫ ≤ L + 2δ,

∫

Gc
δ
∩C

e
F(w)
ǫ dPǫ ≤ eM/ǫP(C ∩Gc

δ).

Therefore

lim
ǫ→0

sup∈ log
∫

Gc
δ
∩C

e
F(w)
ǫ dPǫ ≤ M + lim

ǫ→0
supǫ log Pǫ(C

c
δ ∩C)

≤ M − inf
w∈C∩Gc

δ

I (w).
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Now166

Gc
δ ⊂ Kc

ℓ ∩Cc.

Therefore
C ∩Gc

δ ⊂ C ∩ Kc
ℓ

if w ∈ C ∩Gc
δ
, w < Kℓ. ThereforeI (w) > ℓ. Thus

lim
ǫ→0

sup∈ log
∫

Gc
δ
∩C

eF(w)/ǫdPǫ ≤ M − ℓ ≤ L ≤ L + 2δ.

This proves that

lim
ǫ→0

sup∈ log
∫

C

exp
F(w)
ǫ

dPǫ ≤ L + 2δ.

SinceC is compact there exists a finite number of pointsw1, . . . ,wn

in C such that

C ⊂
n⋃

i=1

Gwi

Therefore

lim ∈ log
∫

C

exp
F(w)
ǫ

dPǫ ≤ lim ǫ log
∫

⋃n
i=1 Gwi

eF(w)/ǫdPǫ

≤ lim(ǫ lognMax
1≤i≤

∫

Gwi

exp
F(w)
ǫ

dPǫ )

≤ L + 2δ.

Sinceδ is arbitrary.

lim ∈ log
∫

C

exp
F(w)
ǫ

dPǫ ≤ sup
w∈C

(F(w) − I (w)).

The above proof shows that given a compact setC, andδ > 0 there 167

exists an open setG containingC such that

lim ∈ log
∫

G

exp
F(w)
ǫ

dPǫ ≤ L + 2δ.
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Step 2.Let C be any arbitrary closed set inΩ. Let

L = sup
w∈C

(F(w) − I (w)).

SinceF is bounded there exists anM such that|F(w)| ≤ M for all
w. Chooseℓ so large thatM − ℓ ≤ L. Sinceδ is arbitrary

lim
ǫ→0

sup∈ log
∫

C

exp
F(w)
ǫ

dPǫ ≤ sup
w∈C

(F(w) − I (w))

We now prove the above theorem whenPǫ is replaced byQǫ
x. Let

Pǫx be the Brownian motion starting at timet = 0 at the space pointx
corresponding to the scalingǫ. Precisely stated, if

τǫ : C([0,∞);Rd)→ C([0,∞);Rd)

is the map given by (τǫw)(t) = w(ǫt), thenPǫx=
def

Pxτ
−1
ǫ . NoteT′′1 τǫ = Tǫ

andTǫ is given by

Tǫw = y wherey(t) = w(ǫt) +

t∫

0

b(y(s))ds.

Hence

PxT
−1
ǫ = Px(T1, τǫ)

−1
= Pxτ

−1
ǫ T−1

1 = PǫxT
−1
1 ;

either of these probability measures is denoted byQǫ
x.

Theorem .Let b : Rd → Rd be bounded measurable and locally Lips-
chitz. Define

I (w) :
1
2

1∫

0

|X(t) − b(X(t))|2dt

168

If w ∈ C([0,∞);Rd), w(0) = x and x absolutely continuous. Put
I (w) = ∞ otherwise. If C is closed in C[(0, 1];Rd), then

lim
ǫ→0
∈ logQǫ

x(C) ≤ − inf
w∈C

I (w).
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If G is open in C([0, 1];Rd), then

lim
ǫ→0
∈ logQǫ

x(G) ≥ − inf
w∈G

I (w).

As usual Qǫx(C) = Qǫ
xπ
−1(C) where

π : C([0,∞);Rd)→ C([0, 1];Rd)

is the canonical projection.

Remark. If b = 0 we have the previous case.

Proof. Let T be the mapx(·)→ y(·) where

y(t) = x(t) +

t∫

0

b(y(s))ds.

Then
Qǫ

x = Pǫx(T
−1).

If C is closed
Qǫ

x(C) = Pǫx(T
−1C).

The mapT is continuous. ThereforeT−1(C) is closed. Thus

lim
ǫ→0

sup∈ logQx(C) = lim
ǫ→0

sup∈ logPǫx(T
−1C)

≤ − inf
w∈T−1(C)

1
2

1∫

0

|X|2dt (see Exercise 1 below)

= − inf
w∈C

1
2

1∫

0

|T−1w|2dt.

(*)

Now 169

y(·) T−1

−−−→ y(t) −
t∫

0

b(y(s))ds.
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Therefore
(T−1y) = y− b(y(s)).

Therefore
lim
ǫ→0

sup∈ logQǫ
x(C) ≤ − inf

w∈C
I (w).

The proof whenG is one is similar. �

Exercise 1.ReplacePǫ by Pǫx andI by Ix where

Ix(w) =
1
2

1∫

0

|w|2, w(0) = x,w absolutely continuous,

= ∞ otherwise.

Check that (*) holds, i.e.

lim
ǫ→0

sup∈ logPǫx(C) ≤ − inf
w∈C

Ix(w), if C is closed,

and
lim
ǫ→0

inf ∈ logPǫx(G) ≥ − inf
w∈G

Ix(w).

LetG be a bounded open set inRn, with a smooth boundaryΓ = ∂G.
Let b : Rd → Rd be a smoothC∞ function such that

(i) 〈b(x), n(x)〉0, ∀x ∈ ∂G wheren(x) is the unit inward normal.

(ii) there exists a pointx0 ∈ G with b(x0) = 0 and|b(x)| > 0, ∀x in
G− {x0}.

(iii) for any x in G the solution170

ξ(t) = x+

t∫

0

b(ξ(s))ds,

of the vector field starting fromx converges tox0 ast → +∞.

Remark. (a) (iii) is usually interpreted by saying that “x0 is stable”.



177

(b) By (i) and (ii) every solution of (iii) takes all its values in G and
ultimately stays close tox0.

Let ǫ > 0 be given;f : ∂G → R be any continuous bounded func-
tion. Consider the system

Lǫuǫ =
1
2
∆uǫ + b(x) · ∆uǫ = 0 in G

uǫ = f on∂G.

We want to study lim
ǫ→0

uǫ (x). Define

IT
0 (X(t)) =

1
2

T∫

0

|X(t) − b(X(t))|2dt; X : [0,T] → Rd

wheneverX is absolutely continuous,= ∞ otherwise.

Remark. Any solution of (iii) is called an integral curve. For any curve
X on [0,T], IT

0 gives a measure of the deviation ofX from being an
integral curve. Let

VT(x, y) = inf {IT
0 (X) : X(0) = x; X(T) = y}

and
V(x, y) = inf {VT(x, y) : T > 0}.

V has the following properties.

(i) V(x, y) ≤ V(x, z) + V(z, y) ∀x, y, z. 171

(ii) Given anyx, ∃δ→ 0 andC > 0 such that for ally with |x−y| ≤ δ.

V(x, y) ≤ C|x− y|

Proof. Let X(t) =
t(y− x)
|y− x|

+ x.

Put

T = |y− x|, X(0) = x, X(T) = y,
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IT
0 (X(t)) =

1
2

T∫

0

∣∣∣∣∣
y− x

T
− b(X +

S
T

(y− x))
∣∣∣∣∣
2

ds.

Then

IT
0 ≤

1
2

T∫

0

2

(
|y− x|2

T2
+ ||b||2∞

)
ds,

where
||b||∞ = sup

|λ−x|≤|y−x|
b(λ),

or,
IT
0 ≤ (1+ ||b||2∞)|y− x|.

As a consequence of (ii) we conclude that

V(x, y) ≤
1+ sup

|λ−x≤|y−x|
|b(λ)|2

 |y− x|,

i.e. V is locally Lipschitz.
The answer to the problem raised is given by the following. �

Theorem .
lim
ǫ→0

uǫ(x) = f (y0)

where y0 is assumed to be such that y0 ∈ ∂G and

V(x0, y0) < V(x, y), ∀y ∈ ∂G, y , y0.

172

We first proceed to get an equivalent statement of the theorem. Let
Pǫx be the Brownian measure corresponding to the starting pointx, and
corresponding to the scalingǫ. Then there exists a probability measure
Qǫ

x such that
dQǫ

x

dPǫx

∣∣∣∣Ft = Z(t)
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where

Z(t, ·) = exp

t∫

0

〈b∗(X(s)), dX(s)〉 − 1
2

t∫

0

b∗(X(s))ds;

b∗ is any bounded smooth function such thatb∗ = b on G. Further we
have the integral representation

uǫ (x) =
∫

∂G

f (X(τ))dQǫ
x

whereτ is the exit time ofG, i.e.

τ(w) = inf {t : w(t) < G}.

|uǫ (x) − f (y0)| = |
∫

∂G

( f (X(τ)) − f (y0))dQǫ
x|

≤ |
∫

N∩∂G

( f (X(τ)) − f (Y0))dQǫ
x|+

+|
∫

Nc∩∂G

( f (X(τ)) − f (Y0))dQǫ
x|

(N is any neighbourhood ofy0).

≤ Qǫ
x(X(τ) ∈ N ∩ ∂G) sup

λ∈N∩∂G
| f (λ) − f (y0)|+

+2|| f ||∞Qǫ
x(X(τ) ∈ Nc ∩ ∂G).

173

Since f is continuous, to prove the theorem it is sufficient to prove
the

Theorem .
lim
ǫ→0

Qx(X(τ) ∈ Nc ∩ ∂G) = 0

for every neighbourhood N of y0.
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Let N be any neighbourhood ofy0. Let

V = V(x0, y0),V′ = inf
y∈Nc∩∂G

V(x, y).

By definition ofy0 and the fact thatNc∩∂G is compact, we conclude
thatV′ > V. Chooseη = η(N) > 0 such thatV′ = V + η. For anyδ > 0
let D = S(x0; δ) = {y : |y− x0| < δ}, ∂D = {y : |y− x0| = δ}.

Claim. We can choose aδ2 such that

(i) V(x, y) ≥ V +
3η
4

, ∀x ∈ ∂D2, y ∈ Nc ∂G.

(ii) V(x, y0) ≤ V +
η

4
, ∀x ∈ ∂D2.

Proof. (i) V(x0, y) ≥ V + η, ∀y ∈ Nc ∂G. Therefore

V + η ≤ V(x0, y) ≤ V(x0, x) + V(x, y)

≤ C|x− x0| + V(x, y).

ChooseC such thatC|x− x0| ≤
η

4
. Thus

V +
3η
4
≤ V(x, y) if C|x− x0| ≤

η

4
, ∀y ∈ Nc ∂G.

C depends only onx0. This proves (i).174

(ii) |V(x0, y0)−V(x, y0)| ≤ V(x0, x) ≤ C|x0− x| ≤ η

4
if x is close tox0.

Thus
V(x, y0) ≤ V(x0, y0) +

η

4
= V +

η

4
if x is close tox0. This can be achieved by choosingδ2 very small.

�

Claim (iii). We can chooseδ1 < δ2 such that for pointsx1, x2 in ∂D1

there is a pathX(·) joining x1, x2 with X(·) ∈ D2 − D1, i.e. it never
penetratesD1; and

I (X) ≤ η

8
.
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Proof. Let C = sup{|b(λ)|2 : |λ − x0| ≤ δ2}. ChooseX(·) to be any path
on [0,T], taking values inD2 with X(0) = x1; X(T) = x2 and such that
|X| = 1 (i.e. the path has unit speed). Then

IT
0 (X) ≤

T∫

0

(|X|2 +C)dt ≤ CT +

T∫

0

|X|dt

= (c+ 1)T = (C + 1)|x2 − x1|.

Chooseδ1 small such that (C + 1)|x2 − x1| ≤
η

8
.

Let Ωδ1 = {w : w(t) ∈ G − D1,∀t ≥ 0}, i.e.Ωδ1 consists of all
trajectories inG that avoidD1. �

Claim (iv).

inf
T>0

inf
X∈Ωδ1 ,X(0)∈∂D2

IT
0 (X(·)) ≥ V +

3η
4

X(T) ∈ Nc ∩ ∂G

175

Proof. Follows from Claim (i) and (ii). �

Claim (v).

inf
T>0

inf
X∈Ωδ1 ,X(0)∈∂D2

X(T)=y0

IT
0 (X(·)) ≤ V +

3η
8
.

Proof. By (ii) V(x, y0) ≤ V +
η

4
∀x ∈ ∂D2, i.e.

inf
T>0

inf
X(0)=x,X(T)=y0

IT
0 (X(·)) ≤ V +

η

4
.

Let ǫ > 0 be arbitrary. ChooseT andX(·) such thatIT
0 (X) ≤ V+

η

4
+ǫ

with X(0) = x, X(T) = y0, X(·) ∈ G. If X ∈ Ωδ1 defineY = X. If X < Ωδ1

defineY as follows:
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Let t1 be the first time thatX entersD1 and t2 the last time that it
gets out ofD1. Then 0< t1 ≤ t2 < T. Let X∗ be a path on [0, s] such

that (by Claim (iii)) I s
0(X∗) ≤ η

8
with X∗(0) = X(t1) andX∗(s) = X(t2).

DefineY on [0,T − (t2 − t1) + s] [T − (t2 − t1) + s,∞) by

Y(t) = X(t) on [0, t1] = X∗(t − t1) on [t1, t1 + s]

= X(t − t1 − s+ t1), on [t1 + s,T − (t2 − t1) + s]

= X(t2), for t ≥ T − (t2 − t1) + s.

Then

IT−t2+t1+s
0 =

1
2

t1∫

0

|X − b(X(s))|2ds+
1
2

s∫

0

|X∗ − b(X∗(s))|2ds

+
1
2

T∫

t2

|X(s) − b(X(s))|2ds

≤ V +
η

4
+ ǫ +

η

8

by choice ofX andX∗. As Y ∈ Ωδ1, we have shown that176

inf
T>0

inf
X∈Ωδ1,X(0)∈∂D1

X(T)=y0

IT
0 (X(·)) ≤ V +

3η
8
+ ǫ.

Sinceǫ is arbitrary we have proved (v). �

Lemma . IT
0 is lower semi-continuous for every finite T.

Proof. This is left as an exercise as it involves a repetiti on of an argu-
ment used earlier. �

Lemma . Let Xn ∈ Ωδ1. If Tn→ ∞ then ITn
0 (Xn)→ ∞.

This result says that we cannot have a trajectory which starts outside
of a deleted ball for whichI remains finite for arbitrary long lengths of
time.
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Proof. Assume the contrary. Then there exists a constantM such that
ITn
0 (X0) ≤ M, ∀n. Let T < ∞, so thatMT = sup

n
IT
0 (Xn) < ∞.

DefineXT
n = Xn|[0,T]. �

Claim. {XT
n }n=1 is an equicontinuous family. 177

Proof.

|XT
n (x2) − XT

n (x1)|2 = |
x2∫

x1

XT
n (t)dt|2

≤ |x2 − x1|2
x2∫

x1

|XT
n |2dt

≤ 2|x2 − x1|2
x2∫
|XT

n − b(XT
n )|2ds+

T∫

0

b(XT
n )2ds]

≤ 2|x2 − x1|2[2MT + T ||b||2∞].

Thus,{XT
n }n is an equicontinuous family. SinceG is bounded,{XT

n }n
is uniformly bounded. By Arzela-Ascoli theorem and a “diagonal pro-
cedure” there exists a subsequenceXnk and a continuous function toX
uniformly on compact subsets of [0,∞). As Xnk(·) ∈ G−D1, X ∈ G−D1.
Let m≥ n. ITn

0 (Xm) ≤ M. Xn→ X uniformly on [0,Tn]. By lower semi-
continuity IT

0 (X) ≤ M. Since this is true for everyT we get on lettingT
tend to∞, that

1
2

∞∫

0

|X − b(X(s))|2ds≤ M.

Thus we can find a sequencea1 < b1 < a2 < b2 < . . . such that

Ibn
an (X(·)) = 1

2

bn∫

an

|X(t) − b(X(t))|2dt
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converges to zero withbn − an→ ∞. Let Yn(t) = X(t + an). Then

Ibn−an
0 (Yn)→ 0 with bn − an→ +∞, Yn ∈ Ωδ1.

Just asX was constructed fromXn, we can constructY from Yn such178

thatYn→ Y uniformly on compact subsets of [0,∞).

Ibn−an
0 (Y) ≤ inf

m≥n
Ibn−an
0 (Ym) = 0

(by lower semi-confirmity ofIT
0 ). ThusIbn−an

0 (Y) = 0,∀n, showing that

∞∫

0

Y(t) − b(Y(t))|2dt = 0

ThusY satisfiesY(·) = x+
t∫

0

b(Y(s))dswith Y(t) ∈ G− ∂D1, ∀t.

Case (i).Y(t0) ∈ G for somet0. LetZ(t) = Y(t+t0) so thatZ is an integral
curve starting at a point ofG and remaining away fromD1 contradicting
the stability condition.

Case (ii). Y(t0) < G for any t0, i.e. Y(t) ∈ ∂G for all t. SinceY(t) =
b(Y(t))〈Y(t), n(Y(t))〉 is strictly positive. ButY(t) ∈ ∂G and hence
〈Y(t), n(Y(t))〉 = 0 which leads to a contradiction. Thus our assump-
tion is incorrect and hence the lemma follows. �

Lemma . Let x∈ ∂D2 and define

E = {X(t) exits from G before hitting D1 and it exits from N}
F = {X(t) exists from G before hitting D1 and it exits from Nc}

Then

Qǫ
x(F)

Qǫ
x(E)

≤ exp

(
−3η

8ǫ
+ 0

(
1
ǫ

))
→ 0 uniformly in x(x ∈ ∂D2).

Significance.Qǫ
x(E) andQǫ

x(F) are both small because diffusion is small179

and the drift is large. The lemma says thatQǫ
x(E) is relatively much

larger thanQǫ
x(F).
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Proof. Qǫx(E) ≥ Qǫ
x{X(t) exists fromG before hittingD1, and exists in

N before timeT}, = Qx(B) ≥ exp[−1
ǫ

inf IT
0 (X(·))] where the infimum

is taken over the interior ofB,

≥ exp

[
−1
ǫ

(
V +

3η
8

)
+ 0

(
1
ǫ

)]
.

Similarly,

Qǫ
x(F) ≤ exp

[
−1
ǫ

(
V +

3η
4

)
+ 0

(
1
ǫ

)]
.

Therefore

Qǫ
x(F)

Qǫ
x(E)

≤ exp

[
−3η

8ǫ
+ 0

(
1
ǫ

)]
→ 0 as ǫ → 0.

We now proceed to prove the main theorem. Let

τ0 = 0,

τ1 = first time∂D1 is hit,

τ2 = next time∂D2 is hit,

τ3 = next time∂D1 is hit,

. . . . . . . . . . . . . . . . . .

and so on. Observe that the particle can get out ofG only between the
time intervalsτ2n andτ2n+1. Let En = {betweenτ2n andτ2n+1 the path
exits fromG for the first time and that it exits inN}, Fn = {betweenτ2n 180

andτ2n+1 the path exits fromG for the first time and that it exists inNc}.

Qǫ
x(X(τ) ∈ N) + Qx(X(τ) ∈ Nc) = 1.

Also

Qǫ
x(X(τ) ∈ Nc) =

∞∑

n=1

Qǫ
x(Fn),

Qǫ
x(X(τ) ∈ N) =

∞∑

n=1

Qǫ
x(En),
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∞∑

n=1

Qǫ
x(Fn) =

∞∑

n=1

EQǫ
x(Qǫ

x(Fn|Fτ2n))

≤
∑

n=1

EQǫ
x[χ(τ>τ2n) sup

x∈∂D2

Qǫ
x(F)] (by the Strong Markov property)

≤ 0(ǫ)
∞∑

n=1

EQǫ
x[χ(τ>τ2n) inf

x∈∂D2

Qǫ
x(E)] (as

Qǫ
x(F)

Qǫ
x(E)

→ 0)

≤ 0(ǫ)
∞∑

n=1

Qǫ
x(En) = 0(ǫ)Qx(X(τ) ∈ Nc).

Therefore

Qǫ
x(χ(τ) ∈ N)→ 1, Qx(X(τ) ∈ Nc)→ 0.

�

Exercise.Supposeb(x) = ∇u(x) for someu ∈ C1(G ∪ ∂G,R). Assume
thatu(x0) = 0 andu(x) < 0 for x , x0. Show that

V(x0, y) = −2u(y).

[Hint: For any trajectoryX with X(0) = x0,

X(T) = y, IT
0 (X) =

1
2

T∫

0

|X + ∇u(X)|2dt − 2

T∫

0

∇u(X) · X(t)dt ≥ −2u(y)

so thatV(x0, y) ≥ −2u(y). For the other inequality, letu be a solution of181

X(t)+∇u(X(t) = 0 on [0,∞) with X(0) = y. Show that because
duX(s)

ds
0

for X(s) , 0 andx0 is the only zero ofu, limit
t→∞

X(t) = x0. Now conclude

thatV(x0, y) ≤ −u(y)].



23. Stochastic Integral for a
Wider Class of Functions

WE SHALL NOW define the stochastic integral for a wider class of 182

functions.
Let θ : [0, ) × Ω → Rd be any progressively measurable function

such that for everyt

t∫

0

|θ(s,w)|2ds< ∞, a.e.

Define, for every finiteL ≥ 0,

θL(s,w) =



θ(s,w), if
s∫

0

|θ(t,w)|2dt < L < ∞,

0, if
s∫

0

|θ(t,w)|2dt ≥ L.

We can writeθL(s,w) = θ(s,w)χ[0,L)(φ(s,w)) where

φ(s,w) =

s∫

0

|θ(t,w)|2dt

is progressively measurable. HenceθL(s,w) is progressively measur-

187
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able. It is clear that
T∫

0

|θL(s,w)|2ds≤ L, a.e.∀T. Therefore

E(

T∫

0

|θL(s,w)|2ds) ≤ L.

Thus the stochastic integralξL(t,w) =
t∫

0

〈θL(s,w), dX(s,w)〉 is well de-

fined.
The proofs of the next three lemmas follow closely the treatment of

Stochastic integration given earlier.

Lemma 1. Let τ be a bounded, progressively measurable, continuous
function. Letτ be any finite stopping time. Ifθ(s,w) = 0, ∀(s,w) such183

that 0 ≤ s≤ τ(w) then
t∫

0

〈θ(s,w), dX(s,w)〉 = 0 for 0 ≤ t ≤ τ(w).

Proof. Defineθn(s,w) = θ( [ns]
n ,w). θn is progressively measurable and

by definition of the stochastic integral ofθn,

t∫

0

〈θn(s,w), dX(s,w)〉 = 0, ∀t, 0 ≤ t ≤ τ(w).

Now

E



t∫

0

|θn(s,w) − θ(s,w)|2ds



= E



t∫

0

|θ
(
[ns]
n

w

)
− θ(s,w)|2ds

→ 0 asn→∞

and
t∫

0

〈θn(s,w), dX(s,w)〉 →
t∫

0

〈θ(s,w), dX(s,w)〉
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in probability. Therefore

t∫

0

〈θ, dX〉 = 0 if 0 ≤ t ≤ τ(w).

�

Lemma 2. If θ is progressively measurable and bounded the assertion
of Lemma 1 still holds.

Proof. Let

θn(t,w) =
1
n

t∫

(t−1/n)V0

θ(s,w)ds.

Then

E



T∫

0

|θn(t,w) − θ(t,w)|2dt

→ 0 (Lebesgue’s theorem).

θn is continuous and boundd,θn(t,w) = 0 for 0≤ t ≤ τ(w). By lemma 1 184

t∫

0

〈θn(s,w), dX(s,w)〉 = 0

if 0 ≤ t ≤ τ(w). This proves the result. �

Lemma 3. Let θ be progressively measurable such that, for all t,

E



t∫

0

|θ(s,w)|2ds

 < ∞.

If θ(s,w) = 0 for 0 ≤ s≤ τ(w), then

t∫

0

〈θ(s,w), dX(s,w)〉 = 0 for 0 ≤ t ≤ τ(w).



190 23. Stochastic Integral for a Wider Class of Functions

Proof. Define

θn =


θ, if |θ| ≤ n,

0, if |θ| > n.

Then

c∫

0

〈θn, dX〉 = 0, if 0 ≤ t ≤ τ(w), (Lemma 2) and

E(
t∫

0

|θn − θ|2ds)→ 0. The result follows. �

Lemma 4. Let θ be progressively measurable such that∀t,

t∫

0

|θ(s,w)|2ds< ∞ a.e.

Then Lt
L→∞

ξL(t,w) exists a.e.

Proof. Define185

τL(w) = inf


s :

s∫

0

|θ(σ,w)|2dσ ≥ L


;

clearly τL is a stopping time. IfL1 ≤ L2, τL1(w) ≤ τL2(w) and by
assumptions of the lemmaτL ↑ ∞ asL ↑ ∞. If

L1 ≤ L2, θL1(s,w) = θL2(s,w) for 0 ≤ s≤ τL1(w).

Therefore by Lemma 3,

ξL2(t,w) = ξL1(t,w)

if 0 ≤ t ≤ τL1(w). Therefore as soon asL is large enough such that
t ≤ τL(w), ξL(t,w) remains constant (as a function ofL). Therefore
Lt

L→∞
ξL(t,w) exists a.e. �
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Definition. The stochastic integral ofθ is defined by

t∫

0

〈θ(s,w), dX(s,w)〉 = Lt
L→∞

ξL(t,w).

Exercise.Check that the definition of the stochastic integral given above
coincides with the previous definition in case

E



t∫

0

|θ(s,w)|2ds

 < ∞, ∀t.

Lemma . Let θ be a progressively measurable function, such that

t∫

0

|θ(s,w)|2ds< ∞, ∀t.

If ξ(t,w) denotes the stochastic integral ofθ, then 186

P

(
sup

0≤t≤T
|ξ(t, ·)| ≥ ǫ

)
≤ P



T∫

0

|θ|2ds≥ L

 +
L2

ǫ2
.

Proof. Let τL = inf {t :
t∫

0

|θ|2ds ≥ L}. If T < τL(w), thenθL(s,w) =

θ(s,w). Also
ξL(t,w) = ξ(t,w) for 0 ≤ t ≤ T.

�

Claim.
{

w : sup
0≤t≤T

|ξ(t,w)| ≥ ǫ
}

{
w : sup

0≤t≤T
|ξL(t,w)| ≥ ǫ

}
∪ {w : τL(w) ≤ T}
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For, if w is not contained in the right side, then

sup
0≤t≤T

|ξL(t,w)|2 < ǫ and |τL(w)| > T.

If τL > T, ξL(t,w) = ξ(t,w) ∀t ≤ T. Therefore

sup
0≤t≤T

|ξL(t,w)| = sup
0≤t≤T

|ξ(t,w)|

Thereforew < left side. Since

{w : τL(w) > T} =


w :

T∫

0

|θ|2ds≥ L



we get

P

(
sup

0≤t≤T
|ξ(t, ·)| ≥ ǫ

)

≤ P



T∫

0

|θ|2ds≥ L

 + P

(
sup

0≤t≤T
|ξL(t, ·)| ≥ ǫ

)

≤ P



T∫

0

|θ|2ds≥ L

 +
L2

ǫ2
,

by Kolmogorov’s inequality. This proves the result.187

Corollary . Let θn and θ be progressively measurable functions such
that

(a)
t∫

0

|θn(s,w)|2ds< ∞,
t∫

0

|θ(s,w)|2ds< ∞, ∀t;

(b) Lt
n→∞

t∫

0

|θn(s,w) − θ(s,w)|2ds= 0 in probability.

If ξn(t,w) andξ(t,w) denote, respectively the stochastic integrals of
θn andθ, then sup

0≤t≤T
|ξn(t,w) − ξ(t,w)| converges to zero in probability.
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Proof. Let τn,L(w) = inf {t :
t∫

0

|θn|2ds≥ L}; replacingθ by θn − θ andξ

by ξn − ξ in the previous lemma, we get

P

(
sup

0≤t≤T
|ξn(t, ·) − ξ(t, ·)| ≥ ǫ

)

≤ L2

ǫ2
+ P



T∫

0

|θn(s, ·) − θ(s, ·)|2ds≥ L

 .

Letting n→ ∞, we get

lim
n→∞

P

(
sup

0≤t≤T
|ξn(t, ·) − ξ(t, ·)| ≥ ǫ

)
L2

ǫ2
.

As L is arbitrary we get the desired result. �

Proposition . Let θ be progressively measurable such that

t∫

0

|θ(s,w)|2ds< ∞, ∀t and∀ w.

Then 188

(*) Z(t, ·) = exp



t∫

0

〈θ(s, ·), dX(s, ·)〉 − 1
2

t∫

0

|θ(s, ·)|2ds



is a super martingale satisfying

(a) E(Z(t, ·)) ≤ 1;

(b) Lt
t→0

E(Z(t, ·)) = 1.

Proof. Let (θn) be a sequence of bounded progressively measurable
functions such that

t∫

0

|θn − θ|2ds→ 0 ∀t, ∀w.
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(For example we may takeθn = θ if |θ| < n, = 0 otherwise). Then
(∗) is a martingale whenθ is replaced byθn. This martingale satisfies
E(Zn(t, ·)) = 1, andZn(t, ·) → Z(t, ·) pointwise (a) now follows from
Fatou’s lemma:

lim
t→0

E(Z(t, ·)) ≥ E

(
lim
t→0

Z(t, ·)
)

= E(1) = 1.

Therefore Lt
t→0

E(Z(t, ·)) = 1. This proves (b). �
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Exercise.Let R > 0 be given. PutbR = bφR whereφR = 1 on |x| ≥ R, 189

φR = 0 if |x| ≥ R+ 1; φR is C∞. Show thatbR = b on |x| ≤ R, bR is
bounded onRd andbR is globally Lipschitz.

LetΩT = {w ∈ Ω : B(w) > T}. Let ST
= ΩT → C[0,T] be the map

STw = y(·) wherey(t) = w(t) +
t∫

0

b(y(s))dson [0,T]. Unless otherwise

specifieb : Rd → Rd is assumed to be locally Lipschitz. Define the
measureQT

x on (Ω,T) by

QT
x (A) = Px{w : STw ∈ A, B(w) > T},

wherePx is the probability measure corresponding to Brownian motion.

Theorem .

QT
x (A) =

∫

A

Z(T, ·)dPx, ∀A ∈ FT ,

where

Z(T, ·) = exp



T∫

0

〈b, dX〉 − 1
2

T∫

0

|b(X(s, ·))|2ds

 .

Remark . If b is bounded or ifb satisfies a global Lipschitz condition
thenB(w) = ∞, so thatΩT = Ω andQT

x are probability measures.

Proof. Let 0≤ R< ∞. For anyw in Ω, let y be given by

y(t) = w(t) +

t∫

0

b(y(σ))dσ.

195
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DefineσR(w) = inf {t : |y(t)| ≥ R and letbR be as in the Exercise.
Then the equation

yR(t) = w(t) +

t∫

0

bR(yR(σ))dσ

has a global solution. Denote bySR : Ω → Ω the mapw→ yR. If QR,x190

is the measure induced bySR, then

dQR,x

dPx

∣∣∣∣Ft = Zr (t) = exp



t∫

0

〈bR, dX〉 − 1
2

t∫

0

|bR|2ds

 .

Let τR(w) = inf {t : |w(t)| > R}. τR is a stopping time satisfying
τRSR = σR. By the optional stopping theorem.

(1)
dQR,x

dPx

∣∣∣∣FτR∧T = ZR(τR∧ T) = Z(τR∧ T).

�

Claim. QR,x((τR > T) ∩ A) = QT
x ((τR > T) ∩ A), ∀A in FT .

Proof.

Right side = Px{w : B(w) > T,ST(w) ∈ A∩ (τR > T)}
= Px{w : B(w) > T, y ∈ A, sup

0≤t≤T
|y(t)| < R}

= Px{w : y is defined at least upto timeT,

y ∈ A, sup
0≤t≤T

|y(t)| > R}

= Px{w : yR ∈ A, sup
0≤t≤T

|yR(t)| < R}

= Px{w : SR(w) ∈ A, τRSR(w) > T}
= QR,x{(τR > T) ∩ A}

(by definition). AsΩ is an increasing union of{τR > T} for R increasing,

QT
x (A) = lt

R→+∞
QT

x ((τR > T) ∩ A), ∀A in FT ,
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= lt
R→∞

QR,x((τR > T) ∩ A) (by claim)

= lt
R→∞

∫

(τR∧T)∩A

exp



τR∧T∫

0

〈b, dX〉 − 1
2

τR∧T∫

0

|b|2ds

 dPx (by (1))

=

∫

A

exp



T∫

0

〈b, dX〉 − 1
2

T∫

0

|b|2ds

 dPx

=

∫

A

Z(T)dPx.

� 191

Theorem .Suppose b: Rd → Rd is locally Lipschitz; let L=
∆

2
+ b.∇.

(i) If there exists a smooth function u: Rd → (0,∞) such that u(x)→
∞ as |x| → ∞ and Lu≤ cu for some c> 0 then Px{w : B(w) <
∞} = 0, i.e. for almost all w there is no explosion.

(ii) If there exists a smooth bounded function u: Rd → (0,∞) such
that Lu ≥ cu for some c> 0, then Px{w : B(w) < ∞} > 0, i.e.
there is explosion.

Corollary . Suppose, in particular, b satisfies|〈b(x), x〉| ≤ A+ B|x|2 for
some constants A and B; then Px(w : B(w) < ∞) = 0.

Proof. Takeu(x) = 1+ |x|2 and use part (1) of the theorem. �

Proof of theorem.Let bR be as in the Exercise and letLR =
∆

2
+ bR · ∇;

thenLRu(x) ≤ cu(x) if |x| ≤ R.

Claim. u(X(t))e−ct is a supermartingale upto timeτR relative toQR
x ,

d

u(X(t))e−ct exp



t∫

0

〈bR, dX〉 − 1
2

t∫

0

|bR|2ds
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e
−ct

t∫

0
〈bR,dX〉− 1

2

t∫

0
|bR|2ds

×

×{−cudt+ 〈∇u, dX〉 + u(x)[〈bR, dX〉 − |bR|2

2
dt] + bRudt+

1
2
|bR|2udt}

= exp(−ct +

t∫

0

〈bR, dX〉 − 1
2

t∫

0

|bR|2ds)

·[LR− c)u+ 〈∇u, dX〉 + u〈bR, dX〉].
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Therefore

u(X(t))e−ctE

t∫

e0

〈bR,dX〉− 1
2

t∫

0

|bR|2ds

−
t∫

0

exp

−cs+

s∫

0

〈bR, dX〉 −
s∫

0

|bR|2ds

 · (LR− c)u(X(s))ds

is a Brownian stochastic integral. Therefore

u(X(τR∧ t)) exp

−c(τR ∧ t) +

τR∧t∫

0

〈bR, dX〉 − 1
2

τR∧t∫

0

|bR|2ds

−

−
τR∧t∫

0

exp

−cs+

s∫

0

〈bR, dX〉 − 1
2

s∫

0

|bR|2ds

 (LR− c)u(X(s))ds

is a martingale relative toPx, FτR∧t. But bR(x) = b(x) if |x| ≤ R. There-
fore

u(X(τR∧ t)) exp

−c(τR ∧ t) +

τR∧t∫

0

〈b, dX〉 − 1
2

τR∧t∫

0

|b|2ds

−

−
τR∧t∫

0

exp

−cs+

s∫
〈b, dX〉 −

s∫

0

|b|2ds

 (LR− c)u(X(s))ds
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is a martingale relative toFτR∧t. But (LR− c)u ≤ 0 in [0, τR].
Therefore193

u(X(τR ∧ t)) exp(−c(τR∧ t) +

τR∧t∫

0

〈b, dX〉 − 1
2

τR∧t∫

0

|b|2ds)

is a supermartingale relative toFτR∧t,Px. Thereforeu(X(τR∧ t)e−c(τR∧t)

is a supermartingale relative toQR
x (optional sampling theorem). There-

fore
EQR

x (u(X(tR ∧ t))e−c(τR∧t) ≤ u(x);

letting t → ∞, we get, using Fatou’s lemma,

EQR

x (u(X(τR)e−cτR) ≤ u(x).

Therefore

EQR
x (e−cτR) ≤ u(x)

inf
|y|=R
|u(y)| .

Thus

EPx(e−cσR) ≤ u(x)
inf
|y|=R
|u(y)|

(by change of variable). LetR → ∞ to get Lt
R→∞

∫
e−cσRdPx = 0, i.e.

Px{w : B(w) < ∞} = 0.

Sketch of proof for Part (ii).

By using the same technique as for Part (i), show thatu(X(t))e−ct is
a submartingale upto timeτR relative toQR

x , so that

EPx(e−cσR) ≥ u(x)
sup
|y|=R
|u(y)| ≥

u(x)
||u||∞

> 0;

let R→ ∞ to get the result. 194

Exercise.Show that ifL =
1
2
∂2

∂x
+ x3 ∂

∂x
, there is explosion. (Hint: take

u = etan−1(x2) and show thatLu ≥ u).





25. Construction of a
Diffusion Process

Problem . Given a : [0,∞) × Rd → S+d , bounded measurable andb : 195

[0,∞) ×Rd → Rd bounded measurable, to find (Ω,Ft,P,X) whereΩ is
a space,{Ft}t≥0 an increasing family ofσ-algebras onΩ, P a probability
measure on the smallestσ-algebra containing all theFt’s. and X :
[0, t)×Ω → Rd, a progressively measurable function such thatX(t,w) ∈
I [b(t,Xt), a(t,Xt)].

Let Ω = C[0,∞);Rn), β(t, ·) = n-dimensional Brownian motion,
Ft = σ{β(s) : 0 ≤ s≤ t}, P the Brownian measure onΩ anda andb as
given in the problem. We shall show that thee problem has a solution,
under some special conditions ona andb.

Theorem .Assume that there existsσ : [0,∞) × Rd → Md×n (Md×n=

set of all d× n matrices over the reals) such thatσσ∗ = a. Further let

∑

i, j

|σi j (t, x)| ≤ C,
∑

j

|b j (t, x)| ≤ C,

∑

i, j

|σi j (t, x1) − σi j (t, x2)| ≤ A|x1 − x2|,

∑

j

|b j (t, x1) − b j(t, x2)| ≤ A|x1 − x2|.

201
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Then the equation

(1) ξ(t, ·) = x+

t∫

0

〈σ(s, ξ(s, ·)), dβ(s, ·)〉 +
t∫

0

b(s, ξ(s, ·))ds

has a solution. The solutionξ(t,w) : [0,∞) × Ω → Rd can be taken196

to be such thatξ(t, ·) is progressively measurable and such thatξ(t, ·) is
continuous for a, a.e. Ifξ, η are progressively measurable, continuous
(for a.a.e) solutions of equation (l), thenξ = n for a.a.w.

Proof. The proof proceeds in several steps. �

Lemma 1. LetΩ be any space with(Ft)t≥0 an increasing family ofσ-
algebras. If0 ≤ T ≤ ∞ then there exists aσ-algebra A0 ⊂ A =

B[0,T) ×FT such that a function f: [0,T] × Ω → R is progressively
measurable if and only if f is measurable with respect toA0.

Proof. Let A0 = {A ∈ A : χA is progressively measurable}. Clearly
[0,T] × Ω ∈ A0, and if A ∈ A0, Ac ∈ Ac. ThusA0 is an algebra. As
increasing limits (decreasing limits) of progressively measurable func-
tions are progressively measurable,A0 is a monotone class and hence a
σ-algebra. �

Let f : [0,T] × Ω → R be progressively measurable; in fact,f + =
f + 1 = f |

2
, f − =

f − | f |
2

. Let g = f +. Then

gn =

n2n∑

i=1

i − 1
2n χg−1[ i−1

2n ,
i

2n ) + nχg−1[n,)

is progressively measurable. HencenVgn is progressively measurable,
i.e. nχg−1[n,∞) is progressively measurable. Similarlyφg−1[ i−1

2n ,
i

2n ) is pro-197

gressively measurable, etc. Therefore, by definition,gn is measurable
with respect toA0. As g = f + is the pointwise limit ofgn, f + is mea-
surable with respect toA0. Similarly f − is A0-measurable. Thusf is
A0-measurable.
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Let f : [0,T] ×Ω→ R be measurable with respect toA0. Again, if
g = f +

gn =

n2n∑

i=1

i − 1
2n χg−1[ i−1

2n ,
i

2n ) + nχg−1[n,∞)

is A0-measurable. Sinceg−1[n,∞), . . . g−1[
i − 1
2n ,

i
2n ) ∈ A0. So gn

is progressively measurable. Thereforeg is progressively measurable.
Hence f is progressively measurable. This completes the proof of the
Lemma.

To solve (1) we use the standard iteration technique.

Step 1.Let ξ0(t,w) = x,

ξn(t,w) = x+

t∫

0

〈σ(s, ξn−1(s,w)), dβ(s,w)〉 +
t∫

0

b(s, ξn−1(s,w))ds.

By induction, it follows thatξn(t,w) is progressively measurable.

Step 2.Let∆n(t) = E(|ξn+1(t) − ξn(t)|2). If 0 ≤ t ≤ T, ∆n(t) ≤ C∗
t∫

0

∆n−1

(s)dsand∆0(t) ≤ C∗t, whereC∗ is a constant depending only onT.

Proof.

∆0(t) = E(|ξ(t) − x|2)

= E

|
t∫

0

〈(s, x), dβ(s, x)〉 +
t∫

0

b(s, x)ds|2


≤ 2E

|
t∫

0

〈σ(s, x), dβ(s, x)〉|2
+

+ 2E

|
t∫

0

b(s, x)ds|2
 (use the fact that|x+ y|2

≤ 2(|x|2 + |y|2) ∀x, y ∈ Rd)



204 25. Construction of a Diffusion Process

= 2E



t∫

0

Tr σσ∗ds

 = 2E

|
t∫

0

b(s, x)ds|2
 .

or198

∆0(t) ≤ 2E



t∫

0

trσσ∗ds

 + 2E

t
t∫

0

|b(s, x)|2ds



(Cauchy-Schwarz inequality)

≤ 2nd C2(1+ T)t.

∆n(t) = E(|ξn+1(t) − ξn(t)|2)

= E

|
t∫

0

〈σ(s, ξn(s,w)) − σ(s, ξn−1(s,w))dβ〉+

+

t∫

0

b(s, ξn(s,w)) − b(s, ξn−1(s,w))ds|2


≤ 2E

|
t∫

0

〈σ(s, ξn(s,w)) − (s, ξn−1(s,w)), dβ(s,w)〉|2
+

+ 2E(|
t∫

0

(b(s, ξn(s,w)) − b(s, ξn−1(s,w))ds|2)

≤ 2E(

t∫

0

tr[(σ(s, ξn(s,w)) − σ(s, ξn−1(s,w))]×

× [σ∗(s, ξn(s,w)) − σ∗(s, ξn−1(s,w))]ds]+

+ 2E

t
t∫

0

|b(s, ξn(s,w)) − b(s, ξn−1(s,w))|2ds



≤ 2dn A2

t∫

0

∆n−1(s)ds+ 2tA2n

t∫

0

∆n−1(s)ds



205

≤ 2dn A2(1+ T)

T∫

0

∆n−1(s)ds.

199

This proves the result. �

Step 3.∆n(t) ≤ (C∗t)n+1

(n+ 1)!
∀n in 0 ≤ t ≤ T, where

C∗ = max{2nd C2(1+ T), and A2(1+ T)}.

Proof follows by induction onn.

Step 4.ξn|[0,T]×Ω is Cauchy inL2([0,T]×Ω, B([0,T]×Ω), µ×P), where
µ is the Lebesgue measure on [0,T].

Proof. ∆n(t) ≤ (C∗t)n+1

(n+ 1)!
implies that

||ξn+1 − ξn||22 ≤
(C∗T)n+2

(n+ 2)!
.

Here|| · ||2 is the norm inL2([0,T] ×Ω). Thus

∞∑

n=1

||ξn+1 − ξn||2 < ∞, proving Step (4).

�

Step 5.(4) implies thatξn|[0,T]×Ω is Cauchy inL2([0,T] × Ω,A0, µ ×
P) whereA0 is as in Lemma 1. Thusξn|[0,T]×Ω converges toξT in
L2([0,T] ×Ω) whereξT is progressively measurable.

Step 6.If ξn|[0,T2]×ΩξT2
in L2([0,T2] ×Ω) and 200

ξn|[0,T1]×ΩξT1
in L2([0,T1] ×Ω),

thenξT2|[0,T1]×Ω = ξT1
a.e. on [0,T1] ×Ω, T1 < T2.

This follows from the fact that ifξn → ξ in L2, a subsequence of
(ξn) converges pointwise a.e. toξ.
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Step 7.Let ξ be defined on [0,∞) ×Ω by ξ|[0,T]×Ω = ξT . We now show
that

ξ(t,w) = x+

t∫

0

〈σ(s, ξ(s, ·)), dβ(s, ·)〉 +
t∫

0

b(s, ξ(s, ·))ds.

Proof. Let 0≤ t ≤ T. By definition,

ξn(t,w) = x+

t∫

0

〈σ(s, ξn−1(s, ·)), dβ(s, ·)〉 +
t∫

0

b(s, ξn−1(s, ·))ds.

E





t∫

0

〈(σ(s, ξn(s, ·)) − σ(s, ξ(s,w))), dβ(s,w)〉



2

= E(

T∫

0

tr[(σ(s, ξn(s,w)) − σ(s, ξ(s,w)))(σ(s, ξn(s,w)) − σ(s, ξ(s,w)))∗ds

≤ dn A

T∫

0

∫

Ω

|ξn(s,w) − ξ(s,w)|2ds→ 0 as n→ ∞

(by Lipschitz condition onσ).
Therefore

t∫

0

〈σ(s, ξn−1(s,w), dβ(s,w)〉 →
t∫

0

〈σ(s, ξ(s,w)), dβ(s,w)〉

in L2(Ω,P). Similarly,201

t∫

0

b(s, ξn(s,w))ds→
t∫

0

b(s, ξ(s,w))ds, in L2.

Thus we get

ξ(t,w) = x+

t∫

0

〈σ(s, ξ(s,w)), dβ(s,w)〉 +(*)
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+

t∫

0

b(s, ξ(s,w))ds a.e. in t,w.

�

Step 8.Let ξ(t,w) ≡ the right hand side of (∗) above. Thenξ(t,w) is
almost surely continuous because the stochastic integral of a bounded
progressively measurable function is almost surely continuous. The re-

sult follows by noting that [0,∞) =
∞⋃

n=1
[0, n] and a function on [0,∞) is

continuous iff it is continuous on [0, n], ∀n.

Step 9.Replacingξ by ξ in the right side of (∗) we get a solution

ξ(t,w) = x+

t∫

0

〈σ(s, ξ), dβ〉 +
t∫

0

b(s, ξ(s,w))ds

that is a.s. continuous∀t and a.e.

Uniqueness.Let ξ andη be two progressively measurable a.s. continu-
ous functions satisfying (1). As in Step 3,

E(|ξ(t,w) − x|2) ≤ 2(E(

t∫

0

trσσ∗ds) + 2E(t

t∫

0

b|2ds)

≤ 2E(

T∫

0

trσσ∗ds+ 2E(T

T∫

0

|b|2ds), if 0 ≤ t ≤ T

< ∞.

202

ThusE(|ξ(t,w)|2) is bounded in 0≤ t ≤ T. Therefore

φ(t) = E(|ξ(t,w) − η(t,w)|2)

≤ 2E(|ξ(t,w)|2) + 2E(|η(t,w)|2)
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and soφ(t) is bounded in 0≤ t ≤ T. But

φ(t) ≤ 2dn A2(1+ T)

t∫

0

φ(s)ds

as in Step 2; using boundedness ofφ(t) in 0 ≤ t ≤ T we can find a
constantC such that

φ(t) ≤ Ct and φ(t) ≤ C

t∫

0

φ(s)ds, 0 ≤ t ≤ T.

By iterationφ(t) ≤ (Ct)n

n!
≤ (CT)n

n!
. Therefore

φ = 0 on [0,T],

i.e. ξ(t,w) = η(t,w) a.e. in [0,T]. But rationals being dense inR we
have

ξ = η a.e. and ∀t.

It is now clear thatξ ∈ I [b, a].

Remark. The above theorem is valid for the equation

ξ(t,w) = x0 +

t∫

t0

〈σ(s, ), dβ〉 +
t∫

t0

b(s, ξ)ds, ∀t ≥ t0.

This solution will be denoted byξt0,x0.

Proposition . Let φ : C[(0,∞);Rn) → C([t0,∞);Rd) be the map send-203

ing w to ξt0,x0,P the Brownian measure on C([0,∞);Rn). Let Pt0,x0 =

Pφ−1 be the measure induced on C([t0,∞);Rd). Define X : [t0,∞) ×
C)[t0,∞);Rd) by X(t,w) = w(t). Then X is an Itö process relative to
(C([t0,∞);Rd), t0,Pt0,x0) with parameters

[b(t,Xt), a(t,Xt)].

The proof of the proposition follows from
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Exercise.Let (Ω,F t,P), (Ω,Ft,P) be any two measure spaces withX,
Y progressively measurable onΩ, Ω respectively. Supposeλ : Ω → Ω
is such thatλ is (F t,Ft)-measurable for allt, and Pλ−1

= P. Let
X(t,w) = Y(t, λw), ∀w ∈ Ω. Show that

(a) If X is a martingale, so isY.

(b) If X ∈ I [b(t,Xt), a(t,Xt)] then

Y ∈ I [b(t,Yt), a(t,Yt)].

Lemma . Let f : R2 → R be (Ω,P)-measurable,
∑

a sub -σ - algebra
of F . Let X : Ω → R and Y : Ω → R be such that X is

∑
-measurable

and Y is
∑

-independent. If g(w) = f (X(w),Y(w)) with E(g(w)) < ∞,
then

E(g|
∑

)(w) = E( f (x,Y)|x=X(w),

i.e.

E( f (X,Y)|∑)(w) =
∫

Ω

f (X(w),Y(w′))dP(w′).

Proof. Let A andB be measurable subsets inR. The result is trivially 204

verified if f = XA×B. The set

A = {F ∈ R : the result is true forXF}

is a monotone class containing all measurable rectangles. Thus the
Lemma is true for all characteristic functions. The generalresult fol-
lows by limiting procedures. �





26. Uniqueness of Diffusion
Process

IN THE LAST section we proved that 205

ξ(t,w) = x0 +

t∫

t0

〈σ(s, ξ(s,w)), dβ(s,w) +

t∫

t0

b(s, (s,w)ds

has a solution under certain conditions onb andσ whereσσ∗ = a. The
measurePt0,x0 = Pξ−1

t0,x0
was constructed on (C([t0,∞);Rd),Ft0) so that

the mapX(t,w) = w(t) is an Itô process with parametersb anda. We
now settle the uniqueness question, about the diffusion process.

Theorem .Let

(i) a : [0,∞) × Rd → S+d and b : [0,∞) × Rd → Rd be bounded
measurable functions;

(ii) Ω = C([0, );Rd);

(iii) X : [0,∞) ×Ω→ Rd be defined by X(t,w) = w(t);

(iv) Xt = σ{X(s) : 0 ≤ s≤ t};

(v) P be any probability measure on

= σ


⋃

t≥0

Xt



211
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such that P{X(0) = x0} = 1 and X is an Itô process relative to
(Ω,Xt,P) with parameters b(t,Xt) and a(t,Xt);

(vi) σ : [0,∞) × Rd → Md×n be a bounded measurable map into the
set of all real d× n matrices such thatσσ∗ = a on[0,∞) × Rd.

Then there exists a generalised n-dimensional Brownian motion β206

on (Ω,
∑

t,Q) and a progressively measurable a.s. continuous mapξ :
[0,∞) ×Ω→ Rd satisfying the equation

(1) ξ(t,w) = x0 +

t∫

0

〈σ(s,
∫

(s,w)), dβ(s,w)〉 +
t∫

0

b(s, ξ(s,w))ds

with Qξ−1
= P, whereξ : Ω→ Ω is given by(ξ(w))(t) = ξ(t,w).

Roughly speaking, any Itô process can be realised by means of a
diffusion process governed by equation (1) withσσ∗ = a.

Proof. Case (i).Assume that there exist constantsm, M > 0 such that
mI ≤ a(t, x) ≤ MI andσ is ad × d matrix satisfyingσσ∗ = a. In this
case we can identify (Ω,

∑
t,Q) with (Ω,Ft,P). SinceD(t, ·) is an Itô

process,

exp〈θ,X(t)〉 −
t∫

0

〈θ, b(s,X(s, ·))〉ds− 1
2

t∫

0

〈θ, a(s,X(s, ·))θ〉ds

is a (Ω,Ft,P)-martingale. Put

Y(t,w) = X(t,w) −
t∫

0

b(s,X(s,w))ds− x0.

ClearlyY(t,w) is an Itô process corresponding to the parameters

[0, a(s,Xs)],
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so that

exp〈θ,Y(t,w)〉 − 1
2

t∫

0

〈θ, a(s,X(s, ·))θ〉ds

is a (Ω,Ft,P)-martingale. The conditionsm ≤ a ≤ M imply thatσ−1

exists and is bounded. Let

η(t) =

t∫

0

σ−1dY =

t∫

0

σ−1(s,X(s, ·))dY(s, ·),

so that (by definition of a stochastic integral)η is a (Ω,Ft,P)-Itô pro- 207

cess with parameters zero andσ−1a(σ−1)∗ = 1. Thusη is a Brownian
motion relative to (Ω,Ft,P). Now by change of variable formula for
stochastic integrals,

t∫

0

σdη =

t∫

0

σσ−1dY

= Y(t) − Y(0) = Y((t),

sinceY(0) = 0. Thus

X(t) = x0 +

t∫

0

σ(s,X(s, ·))d +
t∫

0

b(s,X(s, ·))ds.

TakingQ = P we get the result.

Case (ii).a = 0,b = 0, x0 = 0,σ = 0 whereσ ∈ Md×n. Let (Ω∗,F ∗
t ,P

∗)
be ann-dimensional Brownian motion. Define

(Ω,
∑

t

,Q) = (Ω ×Ω∗,Ft ×F
∗
t ,P× P∗).

If β is then-dimensional Brownian motion on (Ω∗,F ∗
t ,P

∗), we de-
fine β on Ω by β(t,w,w∗) = β(t,w∗). It is easy to verify thatβ is an
n-dimensional Brownian motion on (Ω,

∑
t,Q). Takingξ(t,w,w∗) = x0

we get the result. �
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Before we take up the general case we prove a few Lemmas.

Lemma 1. Let σ : Rn → Rd be linearσσ∗ = a : Rd → Rd; then 208

there exists a linear map which we denote byσ−1 : Rd → Rn such that
σ−1aσ−1∗

= πN⊥σ , whereπ denotes the projection and Nσ null space of
σ.

Proof. Let Rσ = range ofσ. Clearlyσ : N⊥σ → R is an isomorphism.
Let τ : Rσ → N⊥σ be the inverse. We put

σ−1
= τ ⊕ 0 : Rσ ⊕ R⊥σ → N⊥σ ⊕ Nσ.

�

Lemma 2. Let X, Y be martingales relative to(Ω,Ft,P) and(Ω,F t,P)
respectively. Then Z given by

Z(t,w,w) = X(t,w)Y(t,w)

is a martingale relative to

(Ω ×Ω,Ft ×F t,P× P).

Proof. From the definition it is clear that for everyt > s

∫

A×A

Z(t,w,w)d(P × P)|
Fs×Fs

=

∫

A×A

Z(s,w,w)d(P× P)

if A ∈ Fs andA ∈ F s. The general case follows easily. �

As a corrollary to Lemma 2, we have

Lemma 3. Let X be a d-dimensional Itô process with parameters b and
a relative to(Ω,Ft,P) and let Y be ad-dimensional Itô process relative
to (Ω,F t,P) relative tob anda. Then Z(t,w,w) = (X(t,w),Y(t,w)) is a
(d + d)-dimensional Itô process with parameters B= (b, b), A =

[
a 0
0 a

]

relative to(Ω ×Ω,Ft ×F t,P× P).
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Lemma 4. Let X be an Itô process relative to(Ω,Ft,P) with parame-209

ters0 and a. Ifθ is progressively measurable such that E(
t∫

0

|θ|2, ds) <

∞, ∀t andθaθ∗ is bounded, then
t∫

0

〈θ, dX〉 ∈ I [0, θaθ∗].

Proof. Let θn be defined by

θi
n =


θi , if |θ| ≤ n,

0, otherwise;

Then
t∫

0

〈θn, dX〉 ∈ I [0, θnaθ∗n]. Therefore

Xn(t) = exp(λ

t∫

0

〈θn, dX〉 − λ
2

2

t∫

0

〈θn, aθn〉ds

is a martingale converging pointwise to

X(t) = exp

λ
t∫

0

〈θ, dX〉 − λ
2

2

t∫

0

〈θ, aθ〉ds

 .

To prove that
t∫

0

〈θ, dX〉 is an Itô process we have only to show that

Xn(t) is uniformly integrable. Without loss of generality we mayassume
thatλ = 1. Let [0,T] be given

E(X2
n(t,w)) = E

exp

2
t∫

0

〈θn, dX〉 −
t∫

0

〈θn, aθn〉ds





= E

exp

2
t∫

0

〈θn, dX〉 − 2

t∫

0

〈θn, aθn〉ds

+

t∫

0

〈θn, aθn〉ds



 .
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≤ eT sup
0≤t≤T

〈θn, aθn〉.

But 〈θ, aθ∗〉 is bounded and therefore〈θn, aθn〉 is uniformly bounded210

in n. Therefore (Xn) are uniformly integrable. ThusX(t, ·) is a martin-
gale.

Case (iii).Taked = 1, and assume that

t∫

0

a−1χ(a>0)ds< ∞,∀t

with a > 0; letσ = +ve squareroot ofa. Define 1/σ = 1/σ if σ > 0,
and 1/σ = 0 if σ = 0. Let

Y(t) = X(t) − x0 −
t∫

0

b(s,X(s))ds.

Denote byZ the one-dimensional Brownian motion on (Ω∗,F ∗
t ,P

∗)
whereΩ∗ = C([0,∞),R). Now

Y ∈ I [0, a(s,X(s, ·))], Z ∈ I [0, 1].

By Lemma 3,

(Y,Z) ∈ I

(
(0, 0);

(
a 0
0 1

))
.

If

η(t,w,w∗) =

t∫

0

〈
(

1
σ(s,X(s, ·))χ(σ>0), χσ=0, d(Y,Z)〉

)

then Lemma 4 shows that

η ∈ I [0, 1].

Thereforeη is a one-dimensional Brownian motion onΩ = (Ω ×
Ω
∗,Ft ×F ∗

t ,P× P∗). Put

Y(t,w,w∗) = Y(t,w) and X(t,w,w∗) = X(t,w);
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then211

t∫

0

σdη =

t∫

0

σ
1
σ
χ(σ>0)dY+

t∫

0

σχ(σ=0)dZ

=

t∫

0

χ(σ>0)dY.

Since

E





t∫

0

χ(σ=0)dY



2 = E



t∫

0

σ2χ(σ=0)ds

 = 0,

it follows that

t∫

0

σdη =

t∫

0

dY= Y(t) = Y(t,w,w∗).

Thus,

X(t,w,w∗) = x0 +

t∫

0

σ(s,X(s,w,w∗)dη+

+

t∫

0

b(s,X(s,w,w∗)ds

with X(t,w,w∗) = X(t,w). Now

(P× P∗)X
−1

(A) = (P× P∗)(A×Ω∗) = P(A).

Therefore

(P× P∗)X
−1
= P or QX

−1
= P.
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Case (iv).(General Case). Define

Y(t, ·) = X(t, ·) − x0 −
t∫

0

b(s,X(s, ·))ds.

ThereforeY ∈ I [0, a(s,X(s, ·))] relative to (Ω,Ft,P). Let Z be the 212

n-dimensional Brownian motion on (Ω∗,F ∗
t ,P

∗) where

Ω
∗
= C([0,∞);Rn).

(Y,Z) I

[
(0, 0);

[
a(s,Xs), 0

0 I

]]

Letσ be ad × n matrix such thatσσ∗ = a on [0,∞) × Rd. Let

η(t,w,w∗) =

t∫

0

σ−1(s,X(s,w))dY(s,w) +

t∫

0

rNσ
(s,Z(s,w∗))dZ(s,w∗)

=

t∫

0

〈(σ−1(s,X(s,w)), πNσ
(s,Z(s,w∗))), d(Y,Z)〉.

Thereforeη is an Ito process with parameters zero and

A = (σ−1, πN)

(
a 0
0 I

) (
σ−1∗

πN∗σ

)

= σ−1a(σ−1)∗ + πNσ
πN∗σ .

= πNσ
+ πNσ

(for any projectionPP∗ = PP= P)

= IRn.

Thereforeη is n-dimensional Brownian motion on

(Ω,Ft,P) = (Ω ×Ω∗,Ft ×F
∗
t ,P× P∗).

t∫

0

σ(s,X(s,w))dη(s,w,w∗)
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=

t∫

0

σ(s,X(s,w,w∗))dη(s,w,w∗), whereX(s,w,w∗) = X(s,w),

=

t∫

0

σσ−1dY+

t∫

0

σπNσ
dZ.

=

t∫

0

πRσdY, sinceσσ−1
= πRσ andσπNσ

= 0,

=

t∫

0

(1− πRσ)dY.

� 213

Claim.
t∫

0

πRσdY = 0.

For

E





t∫

0

πRσdY



2 =
t∫

0

aπRσds=

t∫

0

σσ∗πRσds

=

t∫

0

σ(0)ds= 0.

Therefore we obtain

t∫

0

σ(s,X(s,w))dη(s,w,w∗) =

t∫

0

dY = Y(t) − Y(0) = Y(t)

puttingY(t,w,w∗) = Y(t,w), one gets

X(t,w,w∗) = x0 +

t∫

0

σ(s,X(s,w,w∗))dη(s,w,w∗)



220 26. Uniqueness of Diffusion Process

+

t∫

0

b(s,X(s,w,w∗))ds.

As in Case (iii) one shows easily that

(P× P∗)X
−1
= P.

This completes the proof of the theorem.

Corollary . Let a : [0,∞) × Rd → S+d , and b : [0,∞) × Rd → Rd

be bounded, progressively measurable functions. If for some choice of
a Lipschitz functionσ : [0,∞) × Rd → Md×n, σσ∗ = a then the Itô
process corresponding to[b, a) is unique.

To state the result precisely, letP1 andP2 be two probability mea-214

sures onC([0,∞);Rd) such thatX(t,w) = w(t) is an Itô process with
parametersb anda. ThenP1 = P2.

Proof. By the theorem, there exists a generalisedn-dimensional Brow-
nian motionβi on (Ωi ,

∑i
t,Qi) and a mapξi : Ωi → Ω satisfying (for

i = 1, 2)

i(t,w)
= x0 +

t∫

0

σ(s, ξi(s,w))dβi (s,w) +

t∫

0

b(s, ξi(s,w))ds.

andPi = Qiξ
−1
i .

Now σ is Lipschitz so thatξi is unique but we know that the iter-
ations converge to a solution. As the solution is unique the iterations
converge toξi . Each iteration is progressively measurable with respect
to

i
t = σ{βi(s); 0 ≤ s≤ t} so thatξi is also progressively

measurable with respect toF i
t . Thus we can restate the result as follows:

There exists (Ωi ,F
i
t ,Qi) and a mapξi : Ωi → Ω satisfying

ξi(t,w) = x0 +

t∫

0

σ(s, ξi(s,w))dβi(s,w)
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+

t∫

0

b(s, ξi(s,w))ds,

andPi = Qiξ
−1
i .

(Ωi ,F
i
t ,Qi , βi) can be identified with the standard Brownian motion

(Ω∗,F ∗
t ,Q, β). ThusP1 = Qξ−1

= P2, completing the proof. �





27. On Lipschitz Square
Roots

Lemma . Let f : R→ R be such that f(x) ≥ 0, f (x) ∈ C2 and | f ′′(x)| ≤ 215

A on(−∞,∞); then
| f ′(x)| ≤

√
f (x)
√

2A.

Proof.

0 ≤ f (y) = f (x) + (y− x) f ′(x) +
(y− x)2

2
f ′′(ξ)

≤ f (x) + Z f ′(x) +
Z2

2
f ′′(ξ)

whereZ = y− x, or f (y) ≤ f (x) + Z f ′(x) +
AZ2

2
. Therefore

AZ2

2
+ Z f ′(x) + f (x) ≥ 0, ∀Z ∈ R

| f ′(x)|2 ≤ 2A f(x).

So
| f ′(x)| ≤

√
2A f(x).

�

Note.If we take f (x) = x2, we note that the constant is the best possible.

Corollary . If f ≥ 0, | f ′′| ≤ A, then

|
√

( f (x1)) −
√

( f (x2)) ≤
√

(A/2)|x1 − x2|.

223
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Proof. Let ǫ > 0, then
√

( f (x) + ǫ) is a smooth function.

(
√

( f (x) + ǫ))′ =
f ′(x)

2
√

( f (x) + ǫ)
=

( f (x) + ǫ)′

2
√

( f (x) + ǫ)
.

Therefore

|(
√

( f (x) + ǫ))′ | ≤
√

(2A/2) ≤
√

(A/2),

or
|
√

( f (x1) + ǫ) −
√

( f (x2) + ǫ)| ≤
√

(A/2)|x1 − x2|.

216

Let ǫ → 0 to get the result.
We now consider the general case and give conditions on the matrix

a so thatσ defined byσσ∗ = a is Lipschitz. �

Theorem .Let a : Rn → S+d be continuous and bounded C2-function
such that the second derivative is uniformly bounded, i.e.||DsDrai j || ≤

M, where M is independent of i, j, r, s;(Dr ≡
d

dxr
). If σ : Rn → S+d is

the unique positive square root of a, then

||σ(x1) − σ(x2)|| ≤ A|x1 − x2|, ∀x1, x2,A = A(M, d).

Proof.

Step 1.Let A ∈ S+d be strictly positive such that||I − A|| < 1. Then

√
A =
√

(I − (I − A))

=

∞∑

r=0

Cr

r!
(I − A)r ,

so that on the set{A : ||I − A|| < 1} the mapA →
√

A is C∞ (in fact
analytic).

Now assume thatA is any positive definite matrix. Letλ1, . . . , λn

be the eigen values so thatλ j > 0, j = 1, 2 . . . n. ThereforeI − ǫA is
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aymmetric with eigen values 1− ǫλ j . By choosingǫ sufficiently small
we can make

||I − ǫA|| = max{1− ǫλ1, . . . , 1− ǫλn} < 1.

Fixing such anǫ we observe that

√
A =

1√
ǫ

√
(ǫA) =

1√
ǫ

√
(I − (I − ǫA)).

217

So the mapA →
√

A is smooth on the set of symmetric positive
definite matrices.

Step 2.Let n = 1, σ(t0) =
√

(a(t0) wherea(t0) is positive definite. As-
sumea(t0) to be diagonal so thatσ(t0) is also diagonal.

∑

j

σi j (t)σ jk(t) = aik(t).

Differentiating with respect tot at t = t0 we get
∑

j

σi j (t0)σ′jk(t0) +
∑

j

σ′i j (t0)σ jk(t0) = a′ik(t0)

or √
aii (t0)σ′ik(t0) +

√
akk(t0)σ′ik(t0) = a′ik(t0)

or

σ′ik(t0) =
a′ik(t0)

√
(aii (t0)) +

√
(akk(t0))

.

Since the second derivatives are bounded by 4M andaii −2ai j +a j j ≥
0, we get

|a′ii (t) + 2a′i j (t) + a′j j (t)| ≤
√

(8M)
√

(aii (t) + 2ai j (t) + a j j (t))

≤
√

(8M)
√

2
√

(aii + a j j )(t)

or

(1) |a′ii (t) + 2a′i j (t) + a′j j (t)| ≤ 4
√

M(
√

aii +
√

a j j ).
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Sincea is non-negative definite,

|a′ii (t)| ≤
√

(2M)
√

(aii (t)), ∀i.

substituting this in (1), we get 218

|a′i j (t)| ≤ 4
√

M(
√

aii +
√

a j j ),

and hence
|σ′i j (t0)| ≤ 4

√
M.

Step 3.Let a(t0) be positive definite andσ its positive definite square
root. There exists a constant unitary matrixα such thatαa(t0)α−1

= b(t0)
is a diagonal positive definite matrix. Letλ(t0) be the positive square
root of b(t0) so that

λ(t0) = ασ(t0)α−1.

Thereforeσ′(t0) = (α−1λ′α)(t0) where (σ′(t0))i j = σ
′
i j (t0) and

a′′(t0) = (α−1b′′α)(t0).

Sinceα is unitary.

||λ|| = ||σ||, ||a′′|| = ||b′′||, ||λ′|| = ||σ′||.

By hypothesis,||b′′|| = ||a′′|| ≤ C(d) · M. Therefore

||λ′|| ≤ 4
√

(MC(d)),

i.e.
||σ′|| ≤ 4

√
(MC(d)).

Thus||σ(t1) − σ(t2)|| ≤ |t1 − t2|C(M, d).

Step 4.Let a : R → S+d andσ be the unique non-negative definite
square root ofa. For eachǫ > 0 let aǫ = a + ǫI , σǫ = unique positive
square root ofaǫ . Then by step 3,

||σǫ(t1) − σǫ(t2)|| ≤ C(M, d)|t1 − t2|.
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If a is diagonal then it is obvious thatσǫ → σ asǫ → 0. In the
general case reducea to the diagonal form and conclude thatσǫ → σ.

Thus219

||σ(t1) − σ(t2)|| ≤ C(M, d)|t1 − t2|.

Step 5.Let a : Rn → S+d andσ2
= a, with ||DrDsai j || ≤ M, ∀x, i, j; r,

s× ǫRn. Choosex1, x2 ∈ Rn. Let x1 = y1, y2, . . . , yn+1 = x2 be (n+ 1)
points such thatyi andyi+1 differ almost in one coordinate. By Step 4,
we have

(*) ||σ(yi) − σ(yi+1)|| ≤ C|yi − yi+1|.

The result follows easily from the fact that

||x||1 =
n∑

i=1

|xi | and ||x||2 = (x1 + · · · + xn)1/2

are equivalent norms.
This completes the proof of the theorem.

�





28. Random Time Changes

LET 220

L =
1
2

∑

i, j

ai j
∂2

∂xi∂x j
+

∑

j

b j
∂

∂x j

with a : Rb→ S+d andb : Rd → Rd bounded measurable funcitons. Let
X(t, ·), given byX(t,w) = w(t) for (t,w) in [0,∞) ×C([0,∞) : Rd) be an
Itô process corresponding to (Ω,Ft,Q) with parametersb anda where
Ω = C([0,∞);Rd). For every constantc > 0 define

Lc ≡ c


1
2

∑

i, j

ai j
∂2

∂xi∂x j
+

∑

j

b j
∂

∂x j



DefineQc by Qc = PT−1
c where (Tcw)(t) = w(ct). Then one can

show thatX is an Itô process corresponding to (Ω,Ft,Qc) with param-
eterscb andca [Note: We have done this in the case whereai j = δi j ].

Consider the equation

∂u
∂t
= Lcu with u(0, x) = f (x).

This can be written as
∂u
∂τ
= Lu with u(0, x) = f (x) whenτ = ct.

Thus changing time in the differential equation is equivalent to stretch-
ing time in probablistic language.

So far we have assumed thatc is a constant. Now we shall allowc
to be a function ofx.

229
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Let φ : Rd → R be any bounded measurable function such that

0 < C1 ≤ φ(x) < C2 < ∞, ∀x ∈ Rd

and suitable constantsC1 andC2. If

L ≡
[
1
2

∑
ai j

∂2

∂xi∂x j
+

∑
b j

∂

∂x j

]

we define221

Lφ = φL ≡ φ
[
1
2

∑
ai j

∂2

∂xi∂x j
+

∑
b j

∂

∂x j

]
.

In this case we can say that the manner which time changes depends
on the position of the particle.

DefineTφ : Ω→ Ω by

(Tφw)(t) = w(τt(w))

whereτt(w) is the solution of the equation

τt∫

0

ds
φ(w(s))

= t.

As C1 ≤ φ ≤ C2 it is clear thatτt
1

C1
≤ t ≤ τt

1
C2

. Whenφ ≡ c a

constant, thenτt = ct andTφ coincides withTc.
As

0 < C1 ≤ φ ≤ C2 < ∞,
λ∫

0

1
φ(w(s))

ds

is continuous and increases strictly from 0 to∞ asλ increases, so that
τt exists, is unique, and is a continuous function oft for each fixedw.

Some properties of Tφ.

(i) If l is the constant function taking the value 1 then it is clear that
Tl = identity.
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(ii) Let φ andψ be two measurable funcitons such that 0< a ≤ φ(x),222

ψ(x) ≤ b < ∞, ∀x ∈ Rd. ThenTφ ◦ T = Tφψ = Tψ ◦ Tφ.

Proof. Fix w. Let τt be given by

τt∫

0

1
φ(w(s))

ds= t.

Let w∗(t) = w(τt) and letσt be given by

σt∫

0

1
φ(w∗(s))

ds= t.

Let w∗∗(t) = w∗(σt) = w(τσt ). Therefore

((Tψ ◦ Tφ)w)(t) = (Tφw
∗)(t) = w∗(σt)

= w∗∗(t) = w(τσt ).

Hence to prove the property (ii) we need only show that

τσt∫

0

1
φ(w(s))

1
ψ(w(s))

ds= t.

Since
τt∫

0

1
φ(w(s))

ds= t,
dt
dτt
=

1
φ(w(τt))

and
dt

dσt
=

1
ψ(w∗(σt))

=
1

ψ(w(τσt ))

Therefore

dτσt

dt
=

dτσt

dσt
−

dσt

dt
= φ(w(τσt ))φ(w∗(σt))

= φ(w(τσt )ψ(w(τσt ))
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= (φψ)(w(τσt )).

223

Thus
τσt∫

0

1
(φψ)(w(s))

ds= t.

This completes the proof. �

(iii) From (i) and (ii) it is clear thatT−1
φ = Tφ−1 whereφ−1

=
1
φ

.

(iv) (τt) is a stopping time relative toτt. i.e.


w :

λ∫

0

1
φ(w(s))

ds≥ r


∈ λ for eachλ ≥ 0.

(v) Tφ(w)(t) = w(τtw) = Xτt (w).

ThusTφ is (Ft −Fτt )-measurable, i.e.T−1
φ (Ft) ⊂ Fτt .

SinceX(t) is an Itô process, with parametersb, a, ∀ f ∈ C∞0 (Rd),

f (X(t)) −
t∫

0

(L f )(X(s))ds is a martingale relative to (Ω,Ft,P). By the

optional sampling theorem

f (Xτt ) −
τt∫

0

(L f )(X(s))ds

is a martingale relative to (Ω,Fτt ,P), i.e.

f (Xτt ) −
t∫

0

(L f )(X(τs))dτs
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is a martingale relative to (Ω,Fτt ,P). But
dτs

dt
= φ. Therefore

f (X(τt)) −
t∫

0

(L f )(Xτs)φ(Xτs)ds

is a martingale. 224

PutY(t) = Xτt and appeal to the definition ofLφ to conclude that

f (Y(t)) −
t∫

0

(Lφ f )(Y(s))ds

is a martingale.Y(t,w) = Xτt (w) = (Tφw)(t). LetF t = σ{Y(s) : 0 ≤ s≤
t}. ThenF t = T−1

φ (Ft) ⊂ Fτt . Thus

f (Y(t)) −
t∫

0

(Lφ f )(Y(s))ds

is a martingale relative to (Ω,F t,P). DefineQ = PT−1
φ so that

f (X(t)) −
t∫

0

(Lφ f )(X(s))ds

is an (Ω,Ft,Q)-martingale, i.e.Q is an Itô process that corresponds
to the operatorφL. Or, PT−1

φ is an Itô process that corresponds to the
operatorφL.

We have now proved the following theorem.

Theorem .LetΩ = C([0,∞);Rd); X(t,w) = w(t);

L =
1
2

∑

i, j

ai j
∂2

∂xi∂x j
+

∑
b j

∂

∂x j
.

Suppose that X(t) is an Itô process relative to(Ω,Ft,P) that corre-
sponds to the operator L. Let0 ≤ C1 ≤ φ ≤ C2 whereφ : Rd → R 225

is measurable. If Q= PT−1
φ , then X(t) is an Itô process relative to

(Ω,Ft,Q) that corresponds to the operatorφL.
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As 0 < C1 ≤ φ ≤ C2, we get 0< 1/C2 ≤ 1/φ < 1/C1 with
Tφ−1 ◦ Tφ = I . We have thus an obvious corollary.

Corollary . There exists a probability measure P onΩ such that X is an
Itô process relative to(Ω,Ft,P) that corresponds to the operator L if
and only if there exists a probability measure Q onΩ such that X is an
Ito process relative to(Ω,Ft,Q) that corresponds to the operatorφL.

Remark . If C2 ≥ φ ≥ C1 > 0 then we have shown that existence and
uniqueness of an Itô process for the operatorL guarantees existence and
uniqueness of the Itô process for the operatorφL. The solution is no
longer unique if we relax the strict positivity onC1 as is illustrated by
the following example.

Let φ ≡ a(x) = |x|α ∧ 1 where 0< α < 1 and letL =
1
2

a
∂2

∂x
. Define

δ0 on {C([0,∞);R)} by

δ0(A) =


1, if θ ∈ A, ∀Aǫ,

0, if θ < A,

whereθ is the zero function on [0,∞).

Claim. δ0 is an Itô process with parameters 0 anda. For this it is enough
to show that,∀ f ∈ C∞0 (R)

f (X(t)) −
t∫

0

(L f )(X(s))ds

is a martingale, usinga(0) = 0, it follows easily that226

∫

A

t∫

0

(L f )(X(σ))dσdδ0 = 0

∀ Borel setA of C([0,∞);R) and
∫

A

f (X(t))dδ0 = 0 if θ < A and

∫

A

f (X(t))dδ0 = f (0)
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if θ ∈ A, and this is true∀t, showing thatX(t,w) = w(t) is an Itô process
relative toδ0 corresponding to the operatorL.

Next we shall defineTa (as in the theorem); we note thatTa cannot
be defined everywhere (for exampleTa(θ) is not defined). HoweverTa

is defined a.e.P whereP = P0 is the Brownian motion.

EP



t∫

0

1
|X(s)|αds

 =
t∫

0

∞∫

0

1
yα

1√
(2πs)

e
−y
2s dy ds< ∞

since 0< α < 1. Thus by Fubini’s theorem,

t∫

0

1
|w(s)|αds< ∞ a.e.

Taking t = 1, 2, 3 . . ., there exists a setΩ∗ such thatP(Ω∗) = 1 and

t∫

0

1
|w(s)|α

ds< ∞, ∀t, ∀w ∈ Ω∗

Observe that
t∫

0

1
|w(s)|α

ds< ∞

implies that
t∫

0

1
|w(s)|α ∧ 1

ds< ∞,

for 227

t∫

0

ds
|w(s)|α ∧ 1

=

=

∫

[0,t]{|w(s)|α>1}

ds
|w(s)|α ∧ 1

+

∫

{|w(s)|α≤1}[0,t]

ds
|w(s)|α

, . . .
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≤ m{(|w(s)|α > 1)[0, t]} +
t∫

0

1
|w(s)|αds< ∞

(m= Lebesgue measure)

ThusTa is defined on the whole ofΩ∗. Using the same argument
as in the theorem, it can now be proved thatX is an Itô process relative
to Q corresponding to the operatorL. Finally, we show thatQ{θ} = 0.
Q{θ} = PT−1

a {θ}. Now: T−1
a {θ} = empty. For, letw ∈ T−1

a {θ}. Then
w(τt) = 0, ∀t, w ∈ Ω∗. Since|τt − τs| ≤ |t − s|, one finds thatτt is a
continuous function oft. Furtherτ1 > 0, andw = 0 on [0, τ1] gives

τ1∫

0

1
|w(s)|α ∧ 1

ds= ∞.

This is false unlessT−1
a {θ} = empty. ThusQ{θ} = 0 andQ is differ-

ent fromδ0.



29. Cameron - Martin -
Girsanov Formula

LET US REVIEW what we did in Brownian motion with drift. 228

Let (Ω,Ft,P) be ad-dimensional Brownian motion with

P{w : w(0) = x} = 1.

Let b : Rd → Rd be a bounded measurable function and define

Z(t) = exp



t∫

0

〈b, dx〉 − 1
2

t∫

0

|b|2ds

 .

Then we see thatZ(t, ·) is an (Ω,Ft,P)-martingale. We then had a
probability measureQ given by the formula

dQ
dP

∣∣∣∣
Ft
= Z(t, ·).

We leave it as an exercise to check that in effectX is an Itô process
relative toQ with parametersb and I . In other words we had made a
transition from the operator∆/2 to ∆/2 + b · ∇. We now see whether
such a relation also exists for the more general operatorL.

Theorem .Let a : Rd → S+d be bounded and measurable such that
a ≥ CI for some C> 0. Let b : Rd → Rd be bounded,Ω = ([0,∞);Rd),
X(t,w) = w(t), P any probability measure onΩ such that X is an Itô

237
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process relative to(Ω,Ft,P) with parameters[0, a]. Define Qt on Ft

by the rule

dQt

dP

∣∣∣∣
Ft
= Z(t, ·) = exp



t∫

0

〈a−1b, dX〉 − 1
2

t∫

0

〈b, a−1b〉ds

 .

229

Then

(i) {0t}t ≥ 0 is a consistent family.

(ii) there exists a measure Q onσ(||Ft):

Q
∣∣∣∣
Ft
= Qt.

(iii) X(t) is an Itô process relative to(Ω,Ft,Q) with parameters[b, a],
i.e. it corresponds to the operator

1
2

∑

i, j

ai j
∂2

∂xi∂x j
+

∑

j

b j
∂

∂x j
.

Proof. (i) Let A(t) =
t∫

0

〈a−1b, dX〉. ThenA ∈ I [0, 〈b, a−1b〉].

ThereforeZ(t) is a martingale relative to (Ω,Ft,P) hence{Qt}t≥0

is a consistent family.

(ii) Proof as in the case of Brownian motion.

(iii) We have to show that

exp[〈θ,X(t, ·)〉 − 〈θ,
t∫

0

bds〉 − 1
2

t∫

0

〈θ, aθ〉ds]

is a martingale relative to (Ω,Ft,Q).
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Now for any functionθwhich is progressively measurable and boun-
ded

exp[

t∫

0

〈θ, dX〉 − 1
2

t∫

0

〈θ, aθ〉ds]

is an (Ω,Ft,P)-martingale. Replaceθ by θ(w) = θ + (a−1b)(χ(s,w)),230

whereθ now is a constant vector. Then

exp[

t∫

0

〈θ + a−1b, dX〉 − 1
2

t∫

0

〈θ + a−1b, aθ〉ds

is an (Ω,Ft,P)-martingale, i.e.

exp[〈θ,X(t)〉 − 1
2

t∫

0

〈θ, aθ〉ds− 1
2

t∫

0

〈a−1b, aθ〉 − 1
2

t∫

0

〈θ, b〉]

is an (Ω,Ft,Q)-martingale, and

〈a−1b, aθ〉 = 〈a∗a−1b, θ〉
= 〈aa−1b, θ〉 (sincea = a∗)

= 〈b, θ〉.

Thus

exp[〈θ,X(t)〉 − 1
2

t∫

0

〈θ, aθ〉ds−
t∫

0

〈θ, b〉ds]

is an (Ω,Ft,Q)-martingale, i.e.X is an Itô process relative to (Ω,Ft,Q)
with parameters [b, a]. This proves the theorem. �

We now prove the converse part.

Theorem .Let

L1 =
1
2

∑
i, jai j

∂2

∂xi∂x j
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and

L2 ≡
1
2

∑

i, j

ai j
∂2

∂xi∂x j
+

∑

j

b j
∂

∂x j
,

where a: Rd → S+d is bounded measurable such that a≥ CI for some
C > 0; b : Rd → Rd is bounded and measurable. LetΩ = C([0,∞);Rd)
with Ft as usual. Letθ be a probability measure onσ(∪Ft) and X a231

progressively measurable function such that X is an Itô process relative
to (Ω,Ft,Q) with parameters[b, a] i.e. X corresponds to the operator
L2. Let

Z(t) = exp[−
t∫

0

〈a−1b, dX〉 + 1
2

t∫

0

〈b, a−1b〉ds].

Then

(i) Z(t) is an(Ω,Ft,Q)-martingale.

(ii) If Pt is defined onFt by

dPt

dQ

∣∣∣∣
Ft
= Z(t),

Then there exists a probability measure P onσ(∪Ft) such that

P
∣∣∣∣
Ft
= Pt

(iii) X is an Itô process relative to(Ω,Ft,P) corresponding to param-
eters[0, a], i.e. X corresponds to the operator L1.

Proof. (i) Let

A(t) =

t∫

0

〈−a−1b, dX〉.

ThenA(t) is an Itô process with parameters [〈−a−1b, b〉, 〈a−1b, b〉].
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Thus

exp[A(t) −
t∫

0

〈−a−1b, b〉ds− 1
2

t∫

0

〈a−1b, b〉ds]

is an (Ω,Ft,Q)-martingale, i.e.Z(t) is an (Ω,Ft,Q) martingale.

(ii) By (i), Pt is a consistent family. The proof that there exists a232

probability measureP is same as before.
SinceX is an Itô process relative toQ with parametersb anda,

exp[

t∫

0

〈θ, dX〉 −
t∫

0

〈θ, b〉ds− 1
2

t∫

0

〈θ, aθ〉ds]

is a martingale relative toQ for every bounded measurableθ. Replaceθ
by θ(w) = θ − (a−1b)(X(s,w)) whereθ now is a constant vector to get

exp[〈θ,X(t)〉 −
t∫

0

〈a−1b, dX〉 −
t∫

0

〈θ, b〉 +
t∫

0

〈a−1b, b〉ds−

−1
2

t∫

0

〈θ − a−1b, aθ − b〉ds]

is an (Ω,Ft,Q) martingale, i.e.

exp[〈θ,X〉 −
t∫

0

〈a−1b, dX〉 −
t∫

0

〈θ, b〉ds+

t∫

0

〈a−1b, b〉ds−

−1
2

t∫

0

〈θ, aθ〉ds− 1
2

t∫

0

〈a−1b, b〉ds+
1
2

t∫

0

〈θ, b〉ds+

+

t∫

0

〈a−1b, aθ〉ds]
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is an (Ω,Ft,Q) martingale. Letθ ∈ Rd, so that

exp[〈θ,X〉 − 1
2

t∫

0

〈θ, b〉ds− 1
2

t∫

0

〈θ, aθ〉ds+
1
2

t∫

0

〈a−1b, aθ〉ds]Z(t)

is an (Ω,Ft,Q)-matringale and

〈a−1b, a〉 = 〈b, θ〉 (sincea = a∗).

Therefore233

exp[〈θ,X〉 − 1
2

t∫

0

〈θ, aθ〉ds]Z(t)

is an (Ω,Ft,Q) martingale.

Using the fact that
dP
dQ

∣∣∣∣
Ft
= Z(t), we conclude that

exp[〈θ,X〉 − 1
2

t∫

0

〈θ, aθ〉ds]

is a martingale relative to (Ω,Ft,P), i.e.X ∈ I [0, a] relative to

(Ω,Ft,P).

This proves the theorem. �

Summary. We have the following situation

L1,Ω,Ft, Ω = C([0,∞);Rd), L2, Ω, Ft.

P a probability measure
such thatX is an Itô Pro-
cess relative toP corre-
sponding to the operator
L1.



=⇒



X is an Itô process relative
to a probability measureQ
corresponding toL2. Q is

given by
dQ
dP

∣∣∣∣
Ft
= Z(t, ·)

X is an Itô process relative
to P corresponding toL1

where
dP
dQ

∣∣∣∣
Ft
=

1
Z(t, ·)


⇐=



X is an Itô process relative
to Q corresponding toL2.
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Thus existence and uniqueness for any system guarantees theexis-
tence and uniqueness for the other system.

Application. (Exercise). 234

Taked = 1, a : R → R bounded and measurable with 0< C1 ≤

a < C2 < ∞. Let L =
a
2
∂2

∂x2
+ b

∂

∂x
. Show that there exists a unique

probability masureP onΩ = C([0,∞);R) such thatX(t) is Itô relative
to P corresponding toL. (X(t,w) ≡ w(t)) for any given starting point.





30. Behaviour of Diffusions
for Large Times

LET L2 = ∆/2 + b · ∇ WITH b : Rd → Rd measurable and bounded235

on each compact set. We assume that there is no explosion. IfPx is the
d-dimensional Brownian measure onΩ = C([0,∞);Rd) we know that
there exists a probability measureQx onΩ such that

dQx

dPx

∣∣∣∣
t
= exp



t∫

0

〈b, dX〉 − 1
2

t∫

0

|b|2ds



Let K be any compact set inRd with non-empty interior. We are
interested in finding out how often the trajectories visitK and whether
this ‘frequency’ depends on the starting point of the trajectory and the
compact setK.

Theorem .Let K be any compact set inRd having a non-empty interior.
Let

EK
∞ = {w : w revisits K for arbitrarily large times}
= {w : there exists a sequence t1 < t2 < · < ∞

with tn→ ∞ such that w(tn) ∈ K}

Then,

either Qx(E
K
∞) = 0, ∀x, and∀K,

or Qx(E
K
∞) = 1, ∀x, and∀K.

245
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Remark. 1. In the first case lim
t→+∞

|X(t)| = +∞ a.e.Qx,∀x, i.e. almost

all trajectories stay withinK only for a short period.

These trajectories are calledtransient. In the second case almost236

all trajectories visitK for arbitrary large times. Such trajectories
are calledrecurrent.

2. If b = 0 thenQx = Px. For the cased = 1 or d = 2 we know
that the trajectories are recurrent. Ifd ≥ 3 the trajectories are
transient.

Proof.

Step 1.We introduce the following sets.

EK
0 = {w : X(t,w) ∈ K for somet ≥ 0},

EK
t0 = {w : X(t,w) ∈ K for somet ≥ t0}, 0 ≤ t0 < ∞.

Then clearly

EK
∞ =

∞⋂

n=1

EK
n =

⋂

t0≥0

EK
t0 .

Let

ψ(x) = Qx(E
K
∞), F = χEK

∞
.

EQx(F |Ft) = EQx(χEK
∞
|Ft) = QX(t)(E

K
∞)

by the Markov property,

= ψ(X(t)) a.e.Qx.

Next we show thatψ(X(t)) is a martingale relative toQx. For, if
s< t,

EQx(ψ(X(t))|Fs)

= EQx(EQx(F |Ft)|Fs)

= EQx(F |Fs)

= ψ(X(s)).
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Equating the expectations at timet = 0 and timet one gets237

ψ(x) =
∫

Ω

ψ(X(t))dQx

=

∫
ψ(y)q(t, x, y)dy,

whereq(t, x,A) = Qx(Xt ∈ A), ∀A Borel inRd.
We assume for the present thatψ(x) is continuous (This will be

shown in Lemma 4 in the next section). By definition 0≤ ψ ≤ 1.

Step 2.ψ(x) = 1,∀x or ψ(x) = 0,∀x.
Suppose thatψ(x0) = 0 for somex0. Then

0 = ψ(x0) =
∫

ψ(y)q(t, x0, y)dy.

As q > 0 a.e. andψ ≥ 0 we conclude thatψ(y) = 0 a.e. (with respect to
Lebesgue measure). Sinceψ is continuousψ must vanish identically.

If ψ(x0) = 1 for somex0, we apply the above argument to 1− ψ
to conclude thatψ = 1, ∀x. We now show that the third possibility
0 < ψ(x) < 1 can never occur.

SinceK is compact andψ is continuous,

0 < a = inf
y∈K

ψ(y) ≤ sup
y∈K

ψ(y) = b < 1.

From an Exercise in the section on martingales it follows that

ψ(X(t))→ χEK
∞

a.e. Qx as t → +∞.

Therefore lim
t→∞

ψ(X(t))(1− ψ(X(t))) = 0 a.e.Qx. Now

ψ(x0) = Qx0(E
K
∞) = Qx0{w : w(t) ∈ K for arbitrary large time}
≤ Qx0{w : a ≤ ψ(X(t,w)) ≤ b for arbitrarily large times}
≤ Qx0{w : (1− b)a ≤ ψ(X(t))[1 − ψ(X(t)] ≤ b(1− a)

for arbitrarily large times}
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= 0.

238

Thusψ(x) = 0 identically, which is a contradiction. Thus for the
given compact setK,

either Qx(E
K
∞) = 0, ∀x,

or Qx(E
K
∞) = 1, ∀x.

Step 3.If Qx(E
K0
∞ ) = 1 for some compact setK0(

◦
K0 , ∅) and∀x, then

Qx(EK
∞) = 1,∀ compact setK with non-empty interior.

We first given an intuitive argument. SupposeQx(E
K0
∞ ) = 1, i.e.

almost all trajectories visitK0 for arbitrarily large times. Each time a
trajectory hitsK0, it has some chance of hittingK. Since the trajectory
visits K0 for arbitrarily large times it will visitK for arbitrarily large
times. We now give a precise arguent. Let

τ0 = inf {t : X(t) ∈ K0}
τ1 = inf {t ≥ t0 + 1 X(t) ∈ K0}
. . . . . . . . . . . .

τn = inf {t ≥ tn−1 + 1 : X(t) ∈ K0}
. . . . . . . . . . . .

Clearlyτ0 < τ1 < . . . < andτn ≥ n.

Qx(E
K
n ) ≥ Qx{X(t) ∈ K for t ≥ τn}

≥ Qx{X(t) ∈ K for t ∈
∞⋃

j=n

[τ j , τ j + 1]}

= 1− Qx


⋂

j≥n

X(t) < K for t ∈ [τ j , τ j + 1]



≥ 1− Qx


⋂

j≥n

X(τ j + 1) ∈ K
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We claim that

Qx(
⋂

j≥n

X(τ j + 1) < K) = 0,

so thatQx(EK
n ) = 1 for everyn and henceQx(EK

∞) = 1, completing the
proof of the theorem.

Now

q(1, x,K) ≥ q(1, x,
◦
K) > 0, ∀x,

◦
K interior of K.

It is clear that ifxn→ x, then

lim q(1, xn,
◦
K) ≥ q(1, x,

◦
K).

Let d = inf
x∈K0

q(1, x,
◦
K). Then there exists a sequencexn in K0 such

thatd = Lt
n→∞

q(1, xn,
◦
K). K0 being compact, there exists a subsequence

yn of xn with yn→ x in K0, so that

d = lim
n→∞

q(1, x,
◦
K) = lim q(1, yn,

◦
K) ≥ q(1, x,

◦
K) > 0.

Thus
inf
x∈K0

q(1, x,K) ≥ d > 0.

Now

Qx


N∏

j=n

X(τ j + 1) < K|FτN



=

N−1∏

j=n

χ(X(τ j + 1) < K)Qx(X(τN + 1) ∈ K|FτN ) because

τ j + 1 ≤ τN for j < N,

=

N−1∏

j=n

(χX(τ j+1) < K)QX(τN)(X(1) < K) by the strong
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Markov property,

=

N−1∏

j=1

q(1,X(τN),Kc)χ(X(τ j+1)<K).

240

Therefore

Qx


N⋂

j=n

X(τ j + 1) < K



= EQx(Qx(
N⋂

j=n

X(τ j + 1) < K|τN)))

= EQx


N−1∏

j=n

(χ[X(τ j+1)<K])q(1,X(τN),Kc)



SinceK0 is compact andX(τN) ∈ K0,

q(1,X(τN),Kc) = 1− q(1,X(τN),K) ≤ 1− d

Hence

Qx


N⋂

j=n

X(τ j + 1) < K

 ≤ (1− d)Qx


N−1⋂

j=n

X(τ j + 1) < K

 .

Iterating, we get

Qx


N⋂

j=n

X(τ j + 1) < K

 ≤ (1− d)N−n+1, ∀N.

Let N → ∞ to get241

Qx


⋂

j=n

X(τ j + 1) < K

 = 0,

since 0≤ 1− d < 1. Thus the claim is proved and so is the theorem.�
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Corollary . Let K be compact,
◦
K , ∅. Then Qx(EK

∞) = 1 if and only if
Qx(EK

0 ) = 1, ∀x.

Proof. SupposeQx(EK
∞) = 1; thenQx(EK

0 ) = 1 becauseEK
∞EK

0 . Sup-
poseQx(EK

0 ) = 1, then

Qx(E
K
n ) = EQx(EQx(χEK

n
|Fn))

= EQx(QX(n)(E
K
0 ))

= EQx(1)

= 1, ∀n.

ThereforeQx(EK
∞) = 1. �

Remark. If Qx(EK
∞) = 0 then it need not imply that

Qx(E
K
0 ) = 0.

Example .Takeb = 0 andd = 3. LEt K = S1 = {x ∈ R3 such that
|x| ≤ 1}. Define

ψ(n) =


1, for |x| ≤ 1,
1
|x| , for |x| ≥ 1.

Px(EK
0 ) , constant butPx(EK

∞) = 0. In fact, Px(EK
0 ) = ψ(x) (Refer

Dirichlet Problem).





31. Invariant Probability
Distributions

Definition. Let {Px}x∈Rd be a family of Markov process on 242

Ω = C([0,∞);Rd)

indexed by the starting pointsx, with homogeneous transition probabil-
ity p(t, x,A) = Px(Xt ∈ A) for every Borel setA in Rd. A probability
measureµ on the Borel field ofRd is called aninvariant distributionif,
∀A Borel inRd. ∫

Rd

p(t, x,A)dµ(x) = µ(A).

We shall denotedp(t, x, y) by p(t, x, dy) or p(t, x, y)dy if it has a den-
sity.

Proposition . Let L2 = ∆/2 + b · ∇ with no explosion. Let Qx be the
associated measure. If{Qx} has an invariant measureµ then the process
is recurrent.

Proof. It is enough to show that ifK is a compact set with non-empty
interior then

Qx(E
K
∞) = 1

for somex. Also Qx(EK
t ) ≥ Qx(Xt ∈ K) = q(t, x,K). Therefore

µ(K) =
∫

q(t, x,K)dµ(x) ≤
∫

Qx(E
K
t )dµ(x).

253
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Now, 0≤ Qx(EK
t ) ≤ 1 andQx(EK

t ) decreases toQx(EK
∞) ast → ∞.

Therefore by the dominated convergence theorem

µ(K) ≤
∫

Qx(E
K
∞)dµ(x).

243

If the process were transient, thenQx(E
Sn
∞ ) = 0, ∀n, whereSn =

{x ∈ Rd : |x| ≤ n}, i.e. µ(Sn) = 0, ∀n. Thereforeµ(Rd) = 0, which is
false. Thus the process is recurrent.

The converse of this proposition isnot true as is seen by the follow-
ing example.

Let L =
1
2
∂2

∂x2
so that we are in a one-dimensional situation (Brow-

nian motion). Then

p(t, x,K) =
∫

K

1√
(2πt)

e
−(x−y)2

2t dy≤ 1√
(2πt)

λ(K),

whereλ denotes the Lebesgue measure onR. If there exists an invariant
distributionµ, then

µ(K) =
∫

p(t, x,K)dµ(x) ≤ 1√
(2πt)

λ(K)
∫

dµ(x) =
λ(K)√
(2πt)

Letting t → ∞, we getµ(K) = 0 ∀ compactK, giving µ = 0, which
is false. �

Theorem .Let L = ∆/2 + b · ∇ with no explosion. Assume b to be
C∞. Define the formal adjoint L∗ of L by L∗ = ∆/2 − ∇ · b (i.e. L∗u =
1
2
∆u − ∇ · (bu)). Suppose there exists a smooth functionφ(C2 - would

do) such that L∗φ = 0, φ ≥ 0, inf φdx = 1. If one definesµ by the rule
µ(A) =

∫

A

φ(y)dy, thenµ is an invariant distribution relative to the family

{Qx}.

Proof. We assume the following result from the theory of partial differ-244

ential equations.
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If f ∈ C∞0 (G) whereG is a bounded open set with a smooth bound-
ary∂G and f ≥ 0, then there exists a smooth functionUG : [0,∞)×G→
[0,∞) such that

∂UG

∂t
= LUG on (0,∞) ×G,

UG(0, x) = f (x) on {0} ×G,

UG(t, x) = 0, ∀x ∈ G.

Let t > 0. AsUG, φ are smooth andG is bounded, we have

∂

∂t

∫

G

UG(t, x)φ(x)dx =
∫

G

∂

∂t
UGφds=

∫

G

φLUGdx

Using Green’s formula this can be written as

∂

∂t

∫

G

UG(t, x)φ(x)dx =
∫

G

UGL∗φ − 1
2

∫

∂G

[
φ
∂UG

∂n
− UG

∂

∂n

]
dS+

+

∫

∂G

〈b · n〉UG(t, x)φ(x)dS

Heren is assumed to be the inward normal to∂G. So,

∂

∂t

∫

G

UG(t, x)φ(x)dx = −1
2

∫

∂G

(x)
∂UG

∂n
(t, x)dS

(Use the equation satisfied byφ and the conditions onUG). NowUG(t, x)
≥ 0,∀x ∈ G, UG(t, x) = 0,∀x in ∂G, so that

∂UG

∂n
(t, x) ≥ 0.

This means that 245

∂

∂t

∫

G

UG(t, x)φ(x)dx≤ 0, ∀t > 0,
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i.e.
∫

G

UG(t, x)φ(x)dx is a monotonically decresing function oft. There-

fore
∫

G

UG(t, x)φ(x)dx≤
∫

G

UG(0, x)φ(x)dx

=

∫

G

f (x)φ(x)dx

=

∫

Rd

f (x)φ(x)dx.

Next we prove that ifU : [0,∞)×Rd → [0,∞) is such that∂U
∂t = LU,

∀t > 0 andU(0, x) = f (x), then
∫

Rd

U(t, x)φ(x)dx≤
∫

Rd

f (x)φ(x)dx.

The solutionUG(t, x) can be obtained by using Itô calculus and is
given by

UG(t, x) =
∫

f (X(t))χ{τG>t }dQx.

We already know that

U(t, x) =
∫

f (X(t))dQx.

Therefore
∫

U(t, x)φ(x)dx=
"

f (X(t))φ(x)DQxdx.

Now "
f (X(t))χ{τG>t}dQxφ(x)dx
∫

UG(t, x)φ(x)dx ≤
∫

Rd

f (x)φ(x)dx.
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LettingG increase toRd and using Fatou’s lemma, we get
"

f (X(t))φ(x)dQxdx≤
∫

f (x)φ(x)dx

�

This proves the assertion made above.
Let

µ(A) =
∫

A

φ(X)dx,

ν(A) =
∫

Qx(Xt ∈ A)dµ(x) =
∫

q(t, x,A)dµ(x).

Let f ∈ C∞0 (G), f ≥ 0, whereG is a bounded open set with smooth
boundary. Now

∫
f (y)dν(y) =

"
f (y)q(t, x, y)dµ(x)dy

=

"
f (X(t))dQxdµ(x)

=

∫
U(t, x)dµ(x)

=

∫
U(t, x)φ(x)dx

≤
∫

f (x)φ(x)dx =
∫

f (x)dµ(x).

Thus,∀ f ≥ 0 such thatf ∈ C∞0 ,

∫
f (x)dν(x) ≤

∫
f (x)dµ(x).

This implies thatν(A) ≤ µ(A) for every Borel setA. (Use mollifier 247

sand the dominated convergence theorem to prove the above inequality
for χA whenA is bounded). Thereforeν(Ac) ≤ µ(Ac), or 1− µ(A) ≤ 1−
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µ(A), sinceµ, ν are both probability measures. This givesµ(A) = ν(A),
i.e.

µ(A) =
∫

q(t, x,A)dµ(x), ∀t,

i.e.µ is an invariant distribution.
We now see whether the converse result is true or not. Supposethere

exists a probability measureµ onRd such that
∫

Qx(Xt ∈ A)dµ(x) = µ(A), ∀A Borel inRd and∀t.

The question we have in mind is whetherµ(A) =
∫

A

φdx for some

smoothφ satisfyingL∗φ = 0, φ ≥ 0,
∫
φ(x)dx = 1. To answer this we

proceed as follows.
By definitionµ(A) =

∫
q(t, x,A)dµ(x). Therefore
"

f (X(t))dQxdµ(x)

=

"
f (y)q(t, x, y)dy dµ(x)

=

∫
f (y)dµ(y)∀ f ∈ C∞0 (Rd)|| f ||∞ ≤ 1.(1)

SinceX is an Itô process relative toQx with parametersb andI ,

f (X(t)) −
t∫

0

(L f )(X(s))ds

is a martingale. Equating the expectations at timet = 0 and timet we248

obtain

EQx( f (X(t)) = f (x) + EQx



t∫

0

(L f )(X(s))ds



Integrating this expression with respect toµ gives

"
f (X(t))dQxdµ(x) =

∫
f (x)dµ(x)

"

Rd

t∫

0

(L f )(X(s))ds dQxdµ.
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Using (1), we get

0 =
∫

Rd

∫

Ω

t∫

0

(L f )(X(s))dQxds dµ(x)

Applying equation (1) to the functionL f we then get

0 =
∫

Rd

t∫

0

(L f )(y)dµ(y)ds

= t
∫

Rd

(L f )(y)dµ(y), ∀t > 0.

Thus

0 =
∫

Rd

(L f )(y)dµ(y), ∀ f ∈ C∞0 (Rd).

In the language of distributions this just means thatL∗µ = 0.
From the theory of partial differential equations it then follows that

there exists a smooth functionφ such that∀A Borel inRd,

µ(A) =
∫

A

φ(y)dy

with L∗φ = 0. Asµ ≥ 0, φ ≥ 0 and since

µ(Rd) = 1,
∫

Rd

φ(x)dx= 1.

249

We have thus proved the following (converse of the previous)theo-
rem.

Theorem .Letµ be an invariant distribution with respect to the family
{Qx} with b : Rd → Rd being C∞. Then there exists aφ ∈ L′(Rd), φ ≥ 0,
φ smooth such that

L∗φ = 0,
∫

φ(y)dy= 1
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and such that

µ(A) =
∫

A

φ(y)dy, ∀A Borel in Rd.

Theorem (Uniqueness).Letφ1, φ2 be smooth onRd such that

φ1, φ2 ≥ 0, 1 =
∫

Rd

φ1dy=
∫

Rd

φ2dy, L∗φ1 = 0 = L∗φ2.

Thenφ1 = φ2.

Proof. Let f (x) = φ1(x) − φ2(x),

µi(A) =
∫

A

φi(x)dx, i = 1, 2.

Thenµ1, andµ2 are invariant distributions. Therefore
∫

q(t, x, y)φi (x)dx=
∫

q(t, x, y)dµi (x)

= φi(y), (a.e.), i = 1, 2.

Taking the difference we obtain
∫

q(t, x, y) f (x)dx = f (y), a.e.

Now
∫
| f (y) dy=

∫
|
∫

q(t, x, y) f (x)dx|dy

≤
"

q(t, x, y)| f (x)|dx dy

=

∫
| f (x)|dx

∫
q(t, x, y)dy

=

∫
| f (x)|dx.
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Thus

(*)
"
| f (x)|q(t, x, y)dx dy=

∫
|
∫

q(t, x, y) f (x)dx|dy ∀t.

We show thatf does not change sign, i.e.f ≥ 0 a.e. orf ≤ 0 a.e.
The result then follows from the fact that

∫
f (x)dx = 0. Now

|
∫

q(1, x, y) f (x)dx| ≤
∫

q(1, x, y)| f (x)|dx

and (∗) above gives
∫
|
∫

q(1, x, y) f (x)dx|dy =
"

q(1, x, y)| f (x)|dx dy.

Thus

|
∫

q(1, x, y) f (x)dx| =
∫

q(1, x, y)| f (x)|dx a.e.y,

i.e.

|
∫

E−

q(1, x, y) f (x)dx+
∫

E−

q(1, x, y) f (x)dx|

=

∫

E+

q(1, x, y) f (x)dx−
∫

E−

q(1, x, y) f (x)dx a.e.y,

where

E+ = {x : f (x) > 0}, E− = {x : f (x) < 0}, E0
= {x : f (x) = 0}.

Squaring both sides of the above equality, we obtain

(**)



∫

E+

q(1, x, y) f (x)dx





∫

E−

q(1, x, y) f (x)dx

 = 0, a.e. y.

251
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Let A be a set of positive Lebesgue measure; thenp(1, x,A) =
Px(X(1) ∈ A) > 0. SinceQx is equivalent toPx onΩ we haveQx(X(1) ∈
A) = q(1, x,A) > 0. Thereforeq(1, x, y) > 0 a.e.y for eachx. By
Fubini’s theoremq(1, x, y) > 0 a.e.x, y. Therefore for almost ally,
q(1, x, y) > 0 for almost allx. Now pick ay such that (∗∗) holds for
which q(1, x, y) > 0 a.e.x.

We therefore conclude from (∗∗) that either

∫

E+

q(1, x, y) f (x)dx = 0, in which case f ≤ 0 a.e.,

or ∫

E−

q(1, x, y) f (x)dx = 0, in which case f ≥ 0 a.e.

Thus f does not change its sign, which completes the proof. �

Remark. The only property of the operatorL we used was to conclude
q > 0. We may therefore expect a similar result for more general opera-
tors.

Theorem .Let L∗φ = 0 whereφ ≥ 0 is smooth and
∫
φ(x)dx= 1. Let K

be any compact set. Then

sup
x∈K

∫
|q(t, x, y) − φ(y)|dy→ 0 as t→ +∞.

Lemma 1. Let b be bounded and smooth. For every f: Rd → Rd that is
bounded and measurable let u(t, x) = EQx( f (X(t)). Then for every fixed
t, u(t, x) is a continuous function of x. Further, for t≥ ǫ > 0,

|u(t, x) −
∫

u(t − ǫ, y)
1

√
(2πǫ)d

exp−|x− y|2

2ǫ
dy|

≤ || f ||∞
√

(ect(ecǫ − 1)),

where c is a constant depending only on||b||∞.252



263

Proof. Let

(Tt f )(x) = EQx( f (X(t)) = EPx( f (X(t))Z(ǫ, t))+

+ EPx( f (X(t))(Z(t) − Z(ǫ, t))),
(1)

where

Z(t) = exp



t∫

0

〈b2, dx〉 − 1
2

t∫

0

|b|2ds

 ,

Z(ǫ, t) = exp



t∫

ǫ

〈b, dx〉 − 1
2

t∫

ǫ

|b(X(s))|2ds

 .

EPx( f (X(t))Z(ǫ, t)) = EPx(EPX( f (X(t))Z(ǫ, t)|ǫ ))
= EPx(EPXǫ)( f (X(t − ǫ))Z(t − ǫ)))

(by Markov property),

= EPx(u(t − ǫ,X(ǫ)).

(2) =

∫
u(t − ǫ, y)

1

(
√

(2πǫ))d
exp

[
−|(x− y)|2

2ǫ

]
dy.

Now

(EPx(|Z(t) − Z(ǫ, t)|)) =
= EPx(|Z(ǫ)Z(ǫ, t) − Z(ǫ, t)|))2

= EPx(Z(ǫ, t)Z(ǫ) − 1|))2

≤ (EPx((Z(ǫ) − 1)2))(EPx(Z2(ǫ, t)))

(by Cauchy Schwarz inequality),

≤ EPx(Z2(ǫ) − 2Z(ǫ) + 1)EPx(Z2(ǫ, t))

≤ EPx(Z2(ǫ) − 1)EPx(Z2(ǫ, t)), (sinceEPx(Z(ǫ)) = 1),

≤ EPx(Z2(ǫ) − 1)EPx(exp(2

t∫

ǫ

〈b, dX〉 − 2
2

t∫

ǫ

|b|2ds+

t∫

ǫ

|b|2ds))
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≤ EPx(Z2(ǫ) − 1)ect,

using Cauchy Schwarz inequality and the fact that253

EPx(exp(2

t∫

ǫ

〈b, dX〉 − 22

2

t∫

ǫ

|b|2ds)) = 1.

Thus
EPx(|Z(t) − Z(ǫ, t)||2 ≤ (ecǫ − 1)ect

wherec depends only on||b||∞. Hence

|EPx( f (X(t))(Z(t) − Z(ǫ, t))| ≤ || f ||∞EPx(|Z(t) − Z(ǫ, t)|)
≤ || f ||∞

√
((ecǫ − 1)ect).(3)

Substituting (2) and (3) in (1) we get

|u(t, x) −
∫

u(t − ǫy) · 1

(
√

(2πǫ)d)
exp

[
−|x− y|2

2ǫ

]
dy

≤ || f ||∞
√

((ecǫ − 1)ect)

Note that the right hand side is independent ofx and asǫ → 0 the
right hand side converges to 0. Thus to show thatu(t, x) is a continuous
function ofx (t fixed), it is enough to show that

∫
u(t − ǫ, y)

1

(
√

(2πǫ)d
exp

[
−|x− y|2

2ǫ

]
dy

is a continuous function ofx; but this is clear sinceu is bounded. Thus254

for any fixedtu(t, x) is continuous. �

Lemma 2. For any compact set K⊂ Rd, for r large enough so that

K ⊂ {x : |x| < r}, x→ Qx(τr ≤ t)

is continuous on K for each t≥ 0, where

τr (w) = inf {s : |w(s)| ≥ r}.
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Proof. Qx(τr ≤ t) depends only on the coefficient b(x) on |x| ≤ r. So
modifying, if necessary, outside|x| ≤ r, we can very well assume that
|b(x)| ≤ M for all x. Let

τǫr = inf {s : s≥ ǫ, |w(s)| ≥ r}.
Qx(τ

ǫ
r ≤ t) = EQx(u(X(ǫ))),

where
u(x) = Qx(τr ≤ t − ǫ)

As b andu are bounded, for every fixedǫ > 0, by Lemma 1,Qx(τr ≤
t) is a continuous function ofx. As

|Qx(τ
ǫ
r ≤ t) − Qx(τr ≤ t)| ≤ Qx(τr ≤ ǫ),

to prove the lemma we have only to show that

limit
ǫ→0

sup
x∈K

Qx(τr ≤ ǫ) = 0

Now

Qx(τr ≤ ǫ) =
∫

{τr≤ǫ}

Z()dPx

≤ (
∫

(Z(ǫ))2dPx)
1/2 ·
√

Px(τr ≤ ǫ),

by Cauchy-Schwarz inequality. The first factor is bounded becauseb is 255

bounded. The second factor tends to zero uniformly onK because

sup
x∈K

Px(τr ≤ ǫ) ≤ P( sup
0≤s≤ǫ

|w(s)| > δ)

where
δ = inf

y∈K
|x|=r.

|(x− y)|.

�

Lemma 3. Let K be compact inRd. Then for fixed t, Qx(τr ≤ t) monot-
ically decreses to zero as r→ ∞ and the convergence is uniform on
K.
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Proof. Let fr(x) = Qx(τr ≤ t). As {τr ≤ t} decreases to the null set,fr (x)
decreases to zero. AsK is compact, there exists anr0 such that forr ≥
r0, fr (x) is continuous onK, by Lemma 2. Lemma 3 is a consequence
of Dini’s theorem. �

Lemma 4. Let b : Rr → Rd be smooth (not necessarily bounded). Then
EQx( f (X(t))) is continuous in x for every fixed t, f being any bounded
measurable function.

Proof. Let br be any bounded smooth function onRd such thatbr ≡ b
on |x| ≤ r andQr

x the measure corresponding tobr . Then by Lemma 1,
EQx( f (X(t))) is continuous inx for all r. Further,

|EQr
x( f (X(t))) − EQx( f (X(t)))| ≤ 2|| f ||∞ · Qx(τr ≤ t).

The result follows by Lemma 3. �256

Lemma 5. With the hypothesis as the same as in Lemma 1,(S1) is an
equicontinuous family, where

S1 = { f : Rd → R, f bounded measurable,|| f ||∞ ≤ 1}

Proof. For any f in S1, let U(x) = U(t, x) ≡ EQx( f (X(t))) and

Uǫ(x) = Uǫ(t, x) =
∫

U(t − ǫ, y)
1

(
√

(2πǫ)d)
exp

[
−|x− y|2

2ǫ

]
dy.

By Lemma 1,

|U(x) − Uǫ(x)| ≤ (((ecǫ − 1)ǫct))1/2

|U(x) − U(y)| ≤ |U(x) − Uǫ(x)| + |Uǫ(y) − U(y)| + |Uǫ(x) − Uǫ(y)|
≤ 2
√

((ecǫ − 1)ect) + |Uǫ(x) − Uǫ(y)|.

The family {Uǫ : f ∈ S1} is equicontinuous because everyU occur-
ing in the expression forUǫ is bounded by 1, and the exponential factor
is uniformly continuous. Thus the right hand side is very small if ǫ is
small and|x− y| is small. This proves the lemma. �
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Lemma 6. Let b be smooth and assume that there is no explosion (b
is not necessarily bounded). Then(S1) is an equi-continuous family
∀t > 0.

Proof. Let r > 0 be given. Definebr ∈ C∞ such thatbr = 0 on|x| > r+1,
br = b on |x| ≤ r, br : Rd → R. By Lemma 2, we have that

{EQr
x( f (X(t))) : f ∈ S1}

is equicontinuous, whereQr
x is the probability measure corresponding257

to the functionbr .

(1) EQx( f (X(t))χ{τr>t})E
Qr

x( f (X(t))χ{τr>t}).

Therefore

|EQx( f (X(t))) − EQr
x( f (X(t))|

= |EQx( f (X(t))χ{τr>t}) + EQx( f (X(t))χ{τr≤t})

− EQr
x( f (X(t))χ{τr>t}) − EQr

x( f (X(t)))χ{τr≤t})

= |EQx( f (X(t)χ{τr≤t}) − EQr
x( f (X(t))χ{τr≤t})|

≤ || f ||∞(EQx(χ{τr≤t}) + EQr
x(χ{τr≤t})

≤ l[EQx(χ(τr≤t)) + EQx(χ(τr≤t))](use (1) with f = 1)

= 2EQx(χ(τr≤t)).

Thus

sup
x∈K

sup
|| f ||∞≤1

|EQx( f (X(t)) − EQr
x( f (X(t))| ≤ 2 sup

x∈K
(χ{τr≤t}).

By Lemma 3,
sup
x∈K

E0x(τr ≤ t)→ 0

for every compact setK asn→ ∞, for every fixedt.
The equicontinuity of the family (S1) now follows easily. For fixed 258

x0, put ur (x) = EQr
x( f (X(t))) and u(x) = EQx( f (X(t))) and let K =

s[x0, 1] = {x : |x− x0| ≤ 1}. Then

|u(x) − u(x0)| ≤ |u(x) − ur (x)| + |u(x0) − ur (x0)| + |ur (x) − ur (x0)|
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≤ 2 sup
y∈K

EQy(χ(τr≤|t)) + |ur (x) − ur (x0)|

By the previous lemma{ur } is an equicontinuous family and since
sup
y∈K

EQy(χ(τr≤1)) → 0, {u : || f ||∞ ≤ 1} is equicontinuous atx0. This

proves the Lemma. �

Lemma 7. Tr ◦ Ts = Tt+s, ∀s, t≥ 0.

Remark. This property is called thesemigroup property.

Proof.

Tr (Ts f )(x)

=

"
f (z)q(s, y, z)q(t, x, y)dy dz.

Thus we have only to show that
∫

q(t, x, y)q(s, y,A)dy = q(t + s, x,A).

q(t + s, x,A) = EQx(X(t + s) ∈ A)

= EQx(X(t + s) ∈ A|t))
= EQx(EQxX(t)(X(s) ∈ A))),

by Markov property

= EQx(q(s,X(t),A))

=

∫
q(t, x, y)q(s, y,A)dy,

which proves the result.
As a trivial consequence we have the following. �259

Lemma 8. Letǫ > 0 and let S1 be the unit ball in B(Rd). Then
⋃
t≥ǫ

Tt(S1)

is equicontinuous.
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Proof.
⋃

t≥ǫ>0
Tt(S1) = T(

⋃
t≥0

Tt(S1)) (by Lemma 7)Tǫ (S1).

The result follows by Lemma 6. �

Lemma 9. Let u(ttx) = EQx( f (X(t))) with || f ||∞ ≤ 1. Letǫ > 0 be given
and K any compact set. Then there exists a T0 = T0(ǫ,K) such that
∀T ≥ T0 and∀x1, x2 ∈ K,

|u(T, x1) − u(T, x2)| ≤ ǫ.

Proof. Defineq∗(t, x1, x2, y1, y2) = q(t, x1, y1)q(t, x2, y2) and letQ(x1,x2)

be the measure corresponding to the operator

L =
1
2

(∆x1 + ∆x2) + b(x1) · ∇x1 + b(x2) · ∇x2

i.e., for anyu : Rd × Rd → R,

Lu =
1
2

2d∑

i=1

∂2u

∂x2
i

+

t∑

i=1

bi(x1, . . . , xd)
∂u

∂x2
i

+

+

d∑

i=1

bi(xd+1,...,x2d)
∂u
∂xi+d

.

ThenQ(x1,x2) will be a measure onC([0,∞);Rd×Rd). We claim that
Q(x1,x2) = Qx1 × Qx2. Note that

C([0,∞);Rd × Rd) = C([0,∞);Rd) ×C[(0,∞);Rd)

and sinceC([0,∞);Rd) is a second countable metric space, the Borel260

field of C([0,∞)Rd × Rd) is theσ-algebra generated by

B = (C([0,∞);Rd)) ×B(C[0,∞);Rd).

By going to the finite-dimensional distributions one can check that
P(x1,x2) = Px1 × Px2.

dQ(x1,x2)

dP(x1,x2)

∣∣∣∣
Ft
= exp



t∫

0

〈b(1), dX1〉 −
1
2

t∫

0

|b(1)|2ds

×
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× exp



t∫

0

〈b(2), dX2〉 −
1
2

t∫

0

|b(2)|2ds

 ,

where

b(1)(x1 . . . xd) = b(x1 . . . , xd) · b(2)(xd+1 . . . x2d) = b(xd+1, . . . , x2d),

so thatQ(x1,x2) = Qx1 × Qx2.
It is clear that ifφ defined an invariant measure for the processQx,

i.e. ∫

A

φ(x)dx=
∫

φ(y)Qy(Xt ∈ A)dy,

then φ(y1)φ(y2) defines an invariant measure for the processQ(x1,x2).
Thus the processQ(x1,x2) is recurrent.

Next we show thatu(T − t,X1(t)) is a martingale (0≤ t ≤ T) for any
fixedT onC([0,T]; Rd).

EQx(u(T − t,X(t)|Fs))

= [
∫

u(T − t, y)q(t − s, x, dy)]x=X(s)

= [
"

f (z)q(T − t, y, dz)q(t − s, x, dy)]x=X(s)

= [
∫

f (z)q(T − s, x, dz)]x=X(s)

= u(T − s,X(s)), s< t.

261

It now follows thatu(T − t,X1(t)) is a martingale onC([0,∞);Rd)×
C([0,∞);Rd). Henceu(T − t,X1(t)) − u(T − t,X2(t)) is a martingale
relative toQ(X1,x2).

Let V = S(0, δ/2) ⊂ Rd × Rd with δ < 1/4. If (x1, x2) ∈ V, then

|x1 − x2| ≤ |(x1, 0)− (0, 0)| + |(0, 0)− (0, x2)| < δ.

�
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Claim 1. Q(x1,x2)(τV ≤ T) → 1 asT → ∞, whereτV is the exit time
from Rd − V.

Proof. If w is any trajectory starting at some point inV, then τV =

0 ≤ T, ∀T. If w starts at some point outsideV then, by the recurrence
property,w has to visit a ball with centre 0 and radiusδ/2; hence it must
get intoV at some finite time. Thus{τV ≤ T} ↑ to the whole space as
T ↑ ∞. Next we show that the convergence is uniform on compact sets.

If x1, x2 ∈ K, (x1, x2) ∈ K × K (a compact set). PutgT (x1, x2) =
Q(x1,x2)(τV ≤ T). ThengT (x1, x2) ≥ 0 andgT (x1, x2) increases to 1 asT
tends to∞.

gT (x1, x2) = Q(x1,x2)(τV ≤ T)

Q(x1,x2)(τ
1
V ≤ T),

where 262

τ1
V = inf {t ≥ 1 : (x1, x2) ∈ V}.

Therefore

gT (x1, x2) ≥ EQ(x1, x2)(EQ(x1, x2)((τ1
V ≤ T)|1))

= EQ(x1, x2)(Q(X1(1),X2(1)){τ1
V ≤ T)})

= EQ(x1, x2)(ψT(X1(1),X2(1))),

whereψT is a bounded non-negative function. Thus, if

hT(x1, x2) = Q(x1,x2)(τ
1
V ≤ T) =

= EQ(x1, x2)(ψT (X1(1),X2(1))),

then by Lemma 4,hT is continuous for eachT, gT ≥ hT andhT increases
to 1 asT → ∞. Therefore,hT converges uniformly (and so doesgT) on
compact sets.

Thus givenǫ > 0 choseT0 = T0(ǫ,K) such that ifT ≥ T0,

sup
x2∈K

sup
x1∈K

Q(x1,x2)(τV ≥ T − 1) ≤ ǫ.
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By Doob’s optional stopping theorem and the fact that

u(T − t,X1(t)) − u(t − t,X2(t))

is a martingale, we get, on equating expectations,

|u(T, x1) − u(T, x2)|
= |EQ(x1,x2) [u(T − 0,X1(0)− u(T − 0,X2(0)]|
= |EQ(x1,x2) [u(T − (τv ∧ (T − 1)),X1(T − (τv ∧ (T − 1))−
− u(T − (τv ∧ T(−1)),X2(T − (τv ∧ (T − 1)]|

|
∫

{τv≥T−1}

[u(1,X1(1))− u(1,X2(1))]dQ(x1,x2)+

+

∫

{τv<(T−1)}

[u(T − τv,X1(T − τv)) − u(T − τv),X2(T − τv))dQ(x1,x2)|.

263
Therefore

|u(T, x1) − u(T, x2)|

≤
∫

{τv≥(T−1)}

|[u(1,X1(1))− u(1,X2(1))]|dQ(x1,x2)+

+ |
∫

{τv<(T−1)}

[u(T − τv,X1(T − τv)) − u(T − τv,X2(T − τv))dQ(x1,x2)|

≤ 2ǫ + |
∫

{τv<(T−1)}

[u(T − τv,X1(T − τv)) − u(T − τv,X2(T − τv))]dQ(x1,x2)|,

sinceu is bounded by 1.
The second integration is to be carried out on the set{T − v ≥ 1}.

Since
⋃
t≥1

Tt(S1) is equicontinuous we can choose aδ > 0 such that

wheneverx1, x2 ∈ K such that|x1 − x2| < δ

|u(t, x1) − u(t, x2)| ≤ ǫ, ∀t ≥ 1.
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Thus |u(T, x1) − u(T, x2)| ≤ 3ǫ wheneverx1, x2 ∈ K andT ≥ T0.
This proves the Lemma. �
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Corollary to Lemma 9. sup
x1,x2∈K

∫
|q(t, x1, y)|dy converges to0 as t→ ∞.

Proof. Since the dual ofL1 is L∞, we have
∫
|q(t, x1, y) − q(t, x2, y)|dy

= sup
|| f ||∞≤1

|
∫

[q(t, x1, y) − q(t, x2, y)] f (y)dy|

and the right side converges to 0 ast → ∞, by Lemma 9.
We now come to the proof of the main theorem stated before Lemma

1. Now
∫
|q(t, x, y) − φ(y)|dy

=

∫
|q(t, x, y) −

∫
φ(x1)q(t, x1, y)dx1|dy

(by invariance property)

=

∫
|
∫

q(t, x, y)φ(x1)dx1 −
∫

φ(x1)q(t, x1, y)dx1|dy

(since
∫

φ(x1)dx1
= 1)

≤
"
|q(t, x, y) − q(t, x1, y)|φ(x1)dx1dy (sinceφ ≥ 0)

=

∫
φ(x1)dx1

∫
|q(t, x, y) − q(t, x1, y)|dy

Since ∫
φ(x1)dx1

= Lt
n→∞

∫

|x1|≤n

φ(x1)dx1,

choose a compact setL K such that
∫

Rd−L

φ(x1)dx1 < ǫ. Then 265

∫
φ(x1)dx1

∫
|q(t, x, y) − q(t, x1, y)|dy
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=

∫

L

φ(x1)dx1
∫
|q(t, x, y) − q(t, x1, y)|dy+

+

∫

Rd−L

φ(x1)dx1
∫
|q(t, x, y) − q(t, x1, y)|dy

≤
"

L

φ(x1)dx1
∫
|q(t, x, y) − q(t, x1, y)|dv+ 2ǫ.

Choset0 such that whenevert ≥ t0,
∫
|q(t, x, y) − q(t, x1, y)|dy ≤ ǫ

1+
∫

L

φ(x1)dx1

∀x, x1 in L. (Corollary to Lemma 9). Then
∫
|q(t, x, y) − φ(y)|dy ≤ 3ǫ,

if t ≥ t0∀x ∈ K completing the proof of the theorem. �
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Theorem .Let f : Rd → R be bounded and measurable with|| f ||∞ ≤ 1. 266

If φ is an invariant distribution for the family{Qx}, x ∈ Rd then

lim
t1→∞

0≤t2−t1→∞

EQx( f (X(t1)) f (X(t2))) = [
∫

f (y)φ(y)dy]2

Proof.

EQx[( f (X(t1) f (X(t2))]

= EQx(EQx[ f (X(t1)) f (X(t2))|Ft1])

= EQx( f (X(t1))(EQx[ f (X(t2))|Ft1]))

= EQx( f (X(t1))
∫

f (y)q(t2 − t1,X(t1), y))dy), t2 > t1

(by Markov property),

=

∫
f (z)q(t1, x, z)dz

∫
f (y)q(t2 − t1, z, y)dy(1)

does any bounded an measurablef . By theorem of§ 31,

sup
x∈K
|
∫

f (y)[q(t, x, y) − φ(y)]dy| → 0

ast → +∞. We can therefore write (1) in the form

EQx[( f (X(t1)) f (X(t2))] =

= (
∫

f (z)q(t1, x, x)dz)
∫

fφ +
∫

f (z)q(t1, x, z)A(t2 − t1, z)dz,

275
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whereA(t2−t1, z) converges to 0 (uniformly on compact sets as)t2−t1→
+∞.

To prove the theorem we have therefore only to show that267
∫

f (z)q(t1, x, z)A(t2 − t1, z)dz→ 0

ast1→ +∞ andt2− t1→∞ (because
∫

f (z)q(t1, x, z)dz→
∫

fφ). Now

|
∫

f (z)q(t1, x, z)A(t2 − t1, z)dz|

≤ || f ||∞
∫

q(t1, x, z)|A(t2 − t1, z)|dz

≤
∫

q(t1, x, z)|A(t2 − t1, z)|dz(2)

Let K be any compact set, then
∫

K

q(t1, x, z)dz=
∫

χKq(t1, x, z)dz→
∫

χKφ(z)dz

at t1→ ∞. Givenǫ > 0, let K be compact so that

|
∫

χKcφ(z)dz| ≤ ǫ;

then|
∫
χKcq(t1, x, z)dz| ≤ 2ǫ if t1 ≫ 0. Using (2) we therefore get

|
∫

f (z)q(t1x, z)A(t2 − t1, z)dz|

≤
∫

K

q(t1, x, z)|A(t2 − t1, z)|dz+
∫

Kc

q(t1, x, z)|A(t2 − t1, z)|dz

≤
∫

K

q(t1, x, z)|A(t2 − t1, z)|dz+ 2
∫

Kc

q(t1, x, z)dz,

since|A(t2 − t1, z)| ≤ 2,

≤
∫

K

q(t1, x, z)|A(t2 − t1, z)|dz+ 2ǫ, if t1 ≫ 0.
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The theorem now follows from the fact that268

lim
t2−t1→∞

sup
z∈K
|A(t2 − t1, z) = 0.

�

Weak Ergodic Theorem.

lim
t→∞

EQx

|
1
t

t∫

0

f (X(s))ds− f (x)φ(x)dx| > ǫ

 = 0.

Proof.

EQx

|
1
t

t∫

0

f (X(s))ds−
∫

f (x)φ(x)dx| > ǫ



≤ 1

ǫ2
EQx

|
1
t

t∫

0

f (X(s))ds−
∫

f (y)φ(y)dy|2
 ,

by Tchebychev’s inequality. We show that the right side→ 0 ast → ∞.
Now

EQx

|
1
t

t∫

0

f (X(s))ds−
∫

fφ|2


= EQx[| 1
t2

t∫

0

t∫

0

f (X(σ1)) f (X(σ2))dσ1 dσ2 + (
∫

fφdy)

− 2
1
t

t∫

0

f (X(σ))dσ
∫

fφdy]

Also

sup
x∈K
|EQx[ f (X(t)) −

∫
f (y)φ(y)dy]|
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= sup
x∈K
|
∫

q(t, x, y) f (y)dy−
∫

f (y)φ(y)dy|

≤ || f ||∞ sup
x∈K

∫
|q(t, x, y) − φ(y)|dy;

the right hand side tends to 0 ast tends to+∞. Consider269

|EQx(
1
t

t∫

0

f (X(σ))dσ −
∫

f (y)φ(y)dy)|

= |EQx


1
t

T∫

0

f (X(σ))dσ −
∫

f (y)φ(y)dy+
1
t

t∫

0

f (X(σ))dσ

 , 0 ≤ T ≤ t,

≤ 1
t
|

T∫

0

EQx f (X(σ))dσ − T
∫

f (y)φ(y)dy|+

+ |EQx


1
t

t∫

T

f (X(σ))dσ −
( t − T

t

) ∫
f (y)φ(y)dy

 |.

Givenǫ > 0 chooseT large so that

|EQx( f (X(σ)) −
∫

f (y)φ(y)dy| ≤ ǫ, (σ ≥ T).

Then

|EQx
(1

t

t∫

0

f (X(σ))dσ −
∫

f (y)φ(y)dy| ≤

≤ |1
t

T∫

0

EQx[ f (X(σ))] − T
t

∫
f (y)φ(y)dy]| + t − T

t
ǫ

≤ 2ǫ

providedt is large. Thus

lim
t→+∞

EQx[
1
t

t∫

0

f (X(σ))dσ] =
∫

fφdy.
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To prove the result we have therefore only to show that

lim
t→+∞

EQx


1
t2

t∫

0

t∫

0

f (X(σ1)) f (X(σ2))dσ1dσ2

 =
[∫

f (y)φ(y)dy

]2

270

POR is the regionσ2 ≥ t0, σ1 − σ2 ≥ t0.
Let I

= EQx


1
t

t∫

0

t∫

0

f (X(σ1)) f (X(σ2))dσ1dσ2

 −
(∫

fφdy

)

=
2

t2

∫ EQx( f (X(σ1)) f (X(σ2))) −
(∫

f (y)φ(y)dy

)2 dσ1dσ2

0 ≤ σ2 ≤ σ1 ≤ t.

Then

|I | ≤ 2

t2

∫

∆PQR

|EQx( f (X(σ1)) f (X(σ2))) −
(∫

f (y)φ(y)dy

)2

|dσ1dσ2
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+
2

t2
· 2|| f ||2∞ [area ofOAB− area ofPQR]

By the Ergodic theorem the integrand of the first term on the right
can be made less thanǫ/2 providedt0 is large (see diagram). Therefore

|I | ≤ ǫ

2
· 2

t2
area ofPQR+

4

t2
|| f ||2∞


t2

2
−

(
(t − 2t0)

2

)2

≤ ǫ

2
+

2|| f ||2∞
t2

[4tt0 − 4t20].

< ǫ

if t is large. This completes the proof of the theorem. �271



33. Application of Stochastic
Integral

LET b BE A bounded function. For every Brownian measurePx on 272

Ω = C([0,∞);Rd) we have a probability measureQx on (Ω,F ).

Problem. Let q(t, x,A) = Qx(Xt ∈ A) · q(t, x, ·) is a probability measure
onRd. We would like to know ifq(t, x, ·) is given by a density function
onRd and study its properties.

Step (i). q(t, x, ·) is absolutely continuous with respect to the Lebesgue
measure.

For, p(t, x,A) = Px(X(t) ∈ A) is given by a density function. There-
fore p(t, x, ·)≫ md (Lebesgue measure). Since

Qx ≪ Px onFt,

q(t, z, ·) ≤ Md onFt.

Step (ii). Let q(t, x, y) ≥ 0 be the density function ofq(t, x, ·) and write
p(t, x, y) for the density ofp(t, x, ·). Let 1< α < ∞. Put

r(t, x, y) =
q(t, x, y)
p(t, x, y)

.

∫

Rd

qαdy=
∫

rαpαdy

=

∫
rαp1/αP

α−1
α dy≤

(∫
rα

2
pdy

)1/α

×

281
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×
(∫

pα+1dy

)α−1/α

Step (iii).273

Qx(X(t) ∈ A) =
∫

q(t, x, y)dy

=

∫
r(t, x, y)p(t, x, y)dy

=

∫
r(t, x, y)Px(Xt ∈ dy).

Therefore
dQx

dPx

∣∣∣∣
t

t
= r(t, x, y)

Therefore
(∫

rα
2
pdy

)1/α

=

∣∣∣∣∣
∣∣∣∣∣
dQx

dPx

∣∣∣∣
t

t

∣∣∣∣∣
∣∣∣∣∣
α

α2,Px

≤
∣∣∣∣∣
∣∣∣∣∣
dQx

dPx

∣∣∣∣
t

∣∣∣∣∣
∣∣∣∣∣
α

α2,Px

, since F
t
t ⊂ Ft,

{EPx[Z(t)α
2
]}1/α

= {EPx[exp(α2

t∫

0

〈b, dX〉 − α
2

2

t∫

0

|b|2ds)]}1/α

= {EPx[exp(α2

t∫

0

〈b, dX〉 − α
4

2

t∫

0

|b|2ds+
α4 − α2

2

t∫

0

|b|2ds)]}1/α,

i.e.,

(∫
rα

2
pdy

)1/α

≤


EPx

exp


α4 − a2

2
ct+ α2

t∫

0

〈b, dX〉 − α
4

2

t∫

0

|b|2ds







1/α

wherec is such that|b|2 ≤ c. Using Schwarz inequality we then get
(∫

rα
2
pdy

)1/α

≤
[
exp

(
α4 − α2

2
ct

)]1/α

.
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Hence274

∫
qαdy≤

(
exp

[
α4 − α2

2
ct

])1/α (∫
Pα+1dy

)α−1/α

Significance.Pure analytical objects likeq(t, x, y) can be studied using
stochastic integrals.
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Appendix
Language of Probability

Definition. A probability space is a measure space (Ω,B,P) with P(Ω)275

= 1. P is called aprobability measureor simply aprobability. Elements
of B are calledevents. A measurable functionX : (Ω,B) → Rd is
calledd-dimensionalrandom variable. Given the random variableX,
defineF : Rd → R by

F((a1, . . .an)) = P{w : Xi(w) < ai , for i = 1, 2, . . . , d}

where X = (X1,X2, . . . ,Xd). Then F is called thedistribution func-
tion of the random variableX. For any random variableX,

∫
X dP =

(
∫

X1dP, . . . ,
∫

XddP), if it exists, is calledmeanof X or expectationof
X and is denoted byE(X). ThusE(X) =

∫
XdP = µ. E(Xn), where

Xn
= (Xn

1,X
n
2, . . . ,X

n
d) is called thenth momentabout zero.E((X − µ)n)

is called thenth central moment. The 2nd central moment is calledvari-
anceand is denoted byσ2 we have the following.

Tchebyshev’s Inequality.

Let X be a one-dimensional random variable with mean and variance
µ. Then for everyǫ > 0, P{w : |X(w) − µ| ≥ ǫ} ≤ σ2/ǫ2.

Generalised Tchebyshev’s Inequality.Let f : R → R be measurable
such thatf (u) = f (−u), f is strictly positive and increasing on (0,∞).276

Then for any random variableX : Ω→ R,

P(w : |X(w)| > ǫ) ≤ E( f (X))
f (ǫ)

for everyǫ > 0.
For any random variableX : Ω → Rd, φ(t) = E(eitX ) : Rd → C is

called thecharacteristic functionof X. Heret = (t1, . . . , td) and tX =
t1X1 + t2X2 + · · · + tdXd.
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Independence.EventsE1, . . . ,En are calledindependentif for every
{i1, . . . , ik} ⊂ {1, 2, . . . , n} we have

P(Ei1 ∩ . . . ∩ Eik) = P(Ei1)P(Ei2) . . .P(Eik).

An arbitrary collection of events{Eα : α ∈ I } is called independent
if every finite sub-collection is independent. Let{Fα : α ∈ I } be a
collection of sub-σ-algebras ofB. This collection is said to be inde-
pendent if for every collection{Eα : α ∈ I }, whereEα ∈ Fα, of events
is independent. A collection of random variables{Xα : α ∈ I } is said
to be independent if{σ(Xα) : α ∈ I } is independent whereσ(Xα) is the
σ-algebra generated byXα.

Theorem .Let X1, X2, . . . ,Xn be random variables with FX1, . . . , FXn

as their distribution functions and let F be distribution function of X=
(X1, . . . ,Xn), φX1, . . . , φXn the characteristic functions of X1, . . . ,Xn and
φ that of X = (X1, . . . ,Xn). X1, . . . ,Xn are independent if and only if
F((a1, . . . , an)) = FX1(a1) . . . FXn(an) for all a1, . . . , an, iff φ((t1, . . . , tn))
= φX1(t1) . . . φXn(tn) for all t1, . . . , tn. 277

Conditioning.

Theorem .Let X : (Ω,B,P) → Rd be a random variable, with E(X)
finite, i.e. if X= (X1, . . . ,Xd), E(Xi) is finite for each i. LetC be a sub-
σ-algebra ofB. Then there exists a random variable Y: (Ω,C ) → Rd

such that
∫

C

YdP=
∫

C

XdP for every C inC .

If Z is any random variable with the same properties then Y= Z
almost everywhere(P).

Definition . Any suchY is called theconditional expectation of X with
respect toC and is denoted byE(X|C ).

If X = χA, the characteristic function ofA in B, thenE(χA|C ) is
also denoted byP(A|C ).

Properties of conditional expectation.

1. E(1|C ) = 1.
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2. E(aX+bY|C ) = aE(X|C )+bE(Y|C ) for all real numbersa, b and
random variablesX, Y.

3. If X is a one-dimensional random variable andX ≥ 0, then
E(X|C ) ≥ 0.

4. If Y is a boundedC -measurable real valued random variable and
X is a one-dimensional random variable, then

E(YX|C ) = YE(X|C ).

5. If D ⊂ C ⊂ B areσ-algebras, then

E(E(X|C )|D) = E(X|D).

6.
∫

Ω

|E(X|D)|d(P|D) ≤
∫

Ω

E(X|C )d(P|C ).278

Exercise 1.Let (Ω,B,P) be a probability space,C a sub-σ-algebra of
B. Let X(t, ·)Y(t, ·) : Ω → R be measurable with respect toB andC

respectively wheret ranges over the real line. Further letE(X(t, ·)|C ) =
Y(t, ·) for eacht. If f is a simpleC -measurable function then show that

∫

C

X( f (w),w)d(P|C ) =
∫

C

Y( f (w)w)dP

for everyC in C .

[Hint. Let A1, . . . ,An be aC -measurable partition such thatf is con-
stant on eachAi. Verify the equality whenC is replaced byC ∩ Ai .]

Exercise 2.Give conditions onX, Y such that exercise 1 is valid for all
boundedC -measurable functions and prove your claim.

The next lemma exhibits conditioning as a projection on a Hilbert
space.

Lemma . Let (Ω,B,P) be any probability spaceC a sub-σ-algebra of
B. Then
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(a) L2(Ω,C ,P) is a closed subspace of L2(Ω,B,P).

(b) If π : L2(Ω,B,P) → L2(Ω,C ,P) is the projection,thenπ( f ) =
E( f |C ).

Proof. (a) is clear, because for anyf ∈ L1(Ω,C ,P)
∫

Ω

f d(P|C ) =
∫

Ω

f dP

(use simple function 0≤ s1 ≤ . . . ≤ f , if f ≥ 0) andL2(Ω,C ,P) 279

is complete.

(b) To prove this it is enough to verify it for characteristicfunctions
because bothπ and f → E( f |C ) are linear and continuous.

Let A ∈ B, C ∈ C thenπ(χC) = χC. As π is a projection
∫

π(χA)χCd(P|B) =
∫

χAπ(χC)d(P|B),

i.e. ∫

C

π(χA)d(P|B) =
∫

C

XAd(P|B).

Sinceπ(χA) is C -measurable,
∫

C

π(χA)d(P|B) =
∫

C

π(χA)d(P|C )

Therefore
∫

C

π(χA)d(P|C ) =
∫

C

χAd(P|B), ∀C in C .

Hence
π(χA) = E(χA|C ).

�
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Kolmogorov’s Theorem.

Statement.Let A be any nonempty set and for each finite ordered subset
(t1, t2, . . . , tn) of A [i.e. (t1, . . . , tn) an orderedn-tuple with ti in A], let
P(t1,...,tn) be a probability on the Borel sets inRdn

= Rd × Rd × · · ·Rd.280

Assume that the familyP(t1,...,tn) satisfies the following two conditions

(i) Let τ : {1, 2, . . . , n} → {1, 2, . . . , n} be any permutation andfτ :
Rdn→ Rdn be given by

fτ((x1, . . . , xn)) = (xτ(1), . . . , xτ(n)).

We have
P (E)

(tτ(1),...,tτ(n))
= P(t1,...,tn)( f −1

τ (E))

for every Borel setE of Rdn. In short, we write this condition as
Pτt = Ptτ

−1.

(ii) P (E)
(t1,...,tn)

= P(t1,t2,...,tn,tn+1,...tn+m)(E × Rdm) for all Borel setsE of Rdn

and this is true for allt1, . . . , tn, tn+1, . . . , tn+m of A.

Then, there exists a probability space (Ω,B,P) and a collection of
random variable{Xt : t ∈ A} : (Ω,B)→ Rd such that

P (E)
(t1,...,tn)

= P{w : (Xt1(w), . . . ,Xtn(w)) ∈ E}

for all Borel setsE of Rdn.

Proof. Let Ω = π{Rd
t : t ∈ A} whereRd

t = Rd for eacht. Define
Xt : Ω → Rd to be the projection given byXt(w) = w(t). Let B0 be
the algebra generated by{Xt : t ∈ A} andB theσ-algebra generated by
{Xt : t ∈ A}. Having gotΩ andB we have to construct a probabilityP
on (Ω,B) satisfying the conditions of the theorem.

Given t1, . . . , tn define281

π(t1,...,tn) : Ω→ Rd × Rd × · · · × Rd(n times)



289

by
π(t1,...,tn)(w) = (w(t1), . . . ,w(tn)).

It is easy to see that every element ofB0 is π−1
(t1,...,tn)(E) for suitable

t1, . . . , tn in A and a suitable Borel setE of Rdn. DefineP on B0 by
P(π−1

(t1,...,tn)(E)) = P(t1,...,tn)(E). Conditions (1) and (2) ensure thatP is
a well-defined function onB0 and that, asP(t1,...,tn) are measures,P is
finitely additive onB0. �

Claim. Let C1 ⊃ C2 ⊃ . . . ⊃ Cn ⊃ . . . be a decreasing sequence inB0

with limit
n→∞

P(Cn) ≥ δ > 0. Then∩Cn is non-empty. Once the claim is

proved, by Kolmogorov’s theorem on extension of measures, the finitely
additive set functionP can be extended to a measureP onB. One easily
sees thatP is a required probability measure.

Proof of the Claim. As Cn ∈ B0, we have

Cn = π
−1
(t(n)

1 ,...,t(n)
k(n))

(En) for suitablet(n)
i in A

and Borel setEn in Rdk(n). Let

Tn = (t(n)
1 , . . . , t(n)

k(n)) and An = {t(n), . . . , t(n)
k(n)}.

We can very well assume thatAn is increasing withn. Choose a compact282

subsetE′n of En such that

PTn(En − E′n) ≤ δ/2n+1.

If C′n = π
−1
Tn

(E′n), thenP(Cn−C′n) ≤ δ/2n+1. If C′′n = C′1∩C′2∩. . .∩C′n
thenC′′n ⊂ C′n ⊂ Cn, C′′n is decreasing and

P(C′′n ) ≥ P(Cn) −
n∑

i=1

P(Ci −C′i ) ≥ δ/2.

We prove∩C′′n is not empty, which proves the claim.
Choosewn in C′′n . As πT1(wn) is in the compact setE1 for all n,

choose a subsequence

n(1)
1 , n(1)

2 , . . . of 1, 2, . . . such thatπT1(wnk(1))



290 33. Application of Stochastic Integral

converges ask → ∞. But for finitely manyn(1)
k ’s, πT2(ωnm(1)) is in

the compact setE′2. As before choose a subsequencen(2)
k of n(1)

k such
thatπT1(ωnk(2)) converges ask→ ∞. By the diagonal process obtain a
subsequence,w∗n of wn such thatπTm(w∗n) converges asn→ ∞ for all m.
Thus, if t is in

∞⋃

m=1

Am, then limit
n→∞

w∗n(t) = xt

exists. Definew by w(t) = 0 if t ∈ A
∞⋃

m=1
Am, w(t) = xt if t ∈

∞⋃
m=1

Am. One

easily sees thatw ∈
∞⋂

n=1
C′′n , completing the proof of the theorem.

Martingales.283

Definition. Let (Ω,F ,P) be a probability space, (T,≤) a totally ordered
set. Let (Ft)t∈T be an increasing family of sub-σ-algebras ofF . A
collection (Xt)t∈T of random variables onΩ is called amartingalewith
respect to the family (Ft)t∈T if

(i) E(|Xt |) < ∞, ∀t ∈ T;

(ii) Xt is Ft-measurable for eacht ∈ T;

(iii) E(Xt |Fs) = Xs a.s. for eachs, t in T with t ≥ s. (Markov prop-
erty).

If instead of (iii) one has

(iii) ′ E(Xt |Fs) ≥ (≤)Xs a.s.,

then (Xt)t∈T is called asubmartingale(respectivelysupermartin-
gale).

From the definition it is clear that (Xt)t∈T is a submartingale if
and only if (−Xt)t∈T is a supermartingale, hence it is sufficient to
study the properties of only one of these.T is usually any one of
the following sets

[0,∞),N,Z, {1, 2, . . . , n}, [0,∞] or N ∪ {∞}.
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Examples. (1) Let (Xn)n=1,2... be a sequence of independent random
variables with

E(Xn) = 0.

ThenYn = X1+ · · ·+Xn is a martingale with respect to (Fn)n=1,2,... 284

where
Fn = σ{Y1, . . . ,Yn} = σ{X1, . . . ,Xn}.

Proof. By definition, eachYn is Fn-measurable.

E(Yn) = 0.

E((X1 + · · · + Xn + Xn+1 + · · · + Xn+m)|σ{X1, . . . ,Xn})
= X1 + · · · + Xn + E((Xn+1 + · · · + Xn+m)|σ{X1, . . . ,Xn})
= Yn + E(Xn+1 + · · · + Xn+m) = Yn.

�

(2) Let (Ω,F ,P) be a probability space,Y a random variable with
E(|Y|) < ∞. Let Ft ⊂ F be aσ-algebra such that∀t ∈ [0,∞)

Ft ⊂ Fs if t ≤ s.

If Xt = E(Y|Ft), Xt is a martingale with respect to (Ft).

Proof. (i) By definition, Xt is Ft-measurable.

(ii) E(Xt) = E(Y) (by definition)< ∞.

(iii) if t ≥ s,

E(Xt |Fs) = E(E(Y|Ft)|Fs) = E(Y|Fs) = Xs

�

Exercise 1.Ω = [0, 1], F = σ-algebra of all Borel sub sets ofΩ, P =
Lebesgue measure.

Let Fn =-algebra generated by the sets

[
0,

1
2n

)[ 1
2n ,

2
2n

)
; . . . ,

[2n − 1
2n , 1

]
.
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Let f ∈ L′[0, 1] and define 285

Xn(w) = 2n



2n−1∑

j=1

χ[ j−1
2n ,

j
2n )

j/2n∫

j−1/2n

f dy+ χ[ 2n−1
2n ,1]

1∫

2n−1/2n

f dy



Show that (Xn) is a martingale relative to (Fn).

Exercise.Show that a submartingale or a supermartingale{Xs} is a mar-
tingale iff E(Xs) = constant.

Theorem . If (Xt)t∈T , (Yt)t∈T are supermartingales then

(i) (aXt + bYt)t∈T is a supermartingale,∀a, b∈ R+ = [0,∞).

(ii) (Xt ∧ Yt)t∈T is a supermartingale.

Proof. (i) Clearly Zt = aXt + bYt is Ft-measurable andE(|Zt |) ≤
aE(|Xt |) + bE(|Yt |) < ∞.

E(aXt + bYt|Fs) = aE(Xt |Fs) + bE(Yt |Fs)

≤ aXs + bYs = Zs, if t ≥ s.

(ii) Again Xt ∧ Yt is Ft-measurable andE(|Xt ∧ Yt |) < ∞,

E(Xt ∧ Yt |Fs) ≤ E(Xt |Fs) ≤ Xs.

Similarly286

E(Xt ∧ Yt |Fs) ≤ E(Yt |Fs) ≤ Ys, if t ≥ s.

Therefore
E(Xt ∧ Yt |Fs) ≤ Xs∧ Ys.

�

Jensen’s Inequality. Let X be a random variable in (Ω,B,P) with
E(|X|) < ∞ and letφ(x) be a convex function defined on the real line
such thatE(|φ0X|) < ∞. Then

φ(E(X|C )) ≤ E(φ0X|C ) a.e.

whereC is any sub-σ-algebra ofB.
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Proof. The functionφ being convex, there exist sequencesa1, a2, . . . an,

. . . , b1, b2, . . . of real numbers such thatφ(x) = sup
n

(anx+bn) for eachx.

Let Ln(x) = anx+ bn. Then

Ln(E(X|C )) = E(Ln(X)|C ) ≤ E(φ(X)|C )

for all n so that
φ(E(X|C )) ≤ E(φ(X)|C ).

�

Exercise. (a) If {Xt : t ∈ T} is a martingale with respect to{Ft : t ∈
T} andφ is a convex function on the real line such thatE(|φ(Xt)|) <
∞ for everyt, then{φ(Xt)} is a sub martingale.

(b) If (Xt)t∈T is a submartingale andφ(x) is a convex function and
nondecreasing and ifE(|φ0Xt|) < ∞, ∀t then {φ(Xt)} is a sub-
martingale. (Hint: Use Jensen’s inequality).

Definition . Let (Ω,B,P) be a probability space and (Ft)t∈[0,∞) an in- 287

creasing family of sub-σ-algebras ofF . Let (Xt)t∈[0,∞) be a family of
random variables onΩ such thatXt is Ft-measurable for eacht ≥ 0.
(Xt) is said to beprogressively measurableif

X : [0, t] ×Ω→ R defined by X(s,w) = Xs(w)

is measurable with respect to theσ-algebraB[0, t] ×Ft for everyt.

Stopping times.Let us suppose we are playing a game of chance, say,
tossing a coin. The two possible outcomes of a toss areH (Heads) and
T (Tails). We assume that the coin is unbiased so that the probability
of getting a head is the same as the probability of getting a tail. Further
suppose that we gain+1 for every head and lose 1 for every tail. A game
of chance of this sort has the following features.

1. A person starts playing with an initial amountN and finishes with
a certain amountM.
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2. Certain rules are specified which allow one to decide when to stop
playing the game. For example, a person may not have sufficient
money to play all the games, in which case he may decide to play
only a certain number of games.

It is obvious that such a game of chance is fair in that it is neither ad-
vantageous nor disadvantageous to play such a game and on theaverage288

M will equal N, the initial amount. Furthermore, the stopping rules that
are permissible have to be reasonable. The following type ofstopping
rule is obviously unreasonable.

Rule. If the first toss is a tail the person quits at time 0 and if the first
toss is a head the person quits at timet = 1.

This rule is unreasonable because the decision to quit is made on
the basis of a future event, whereas if the game is fair this decision
should depend only on the events that have already occured. Suppose,
for example, 10 games are played, then the quitting times canbe 0,
1, 2, . . . , 10. If ξ1, . . . , ξ10 are the outcomes (ξi = +1 for H, ξi = −1 for
T) then the quitting time at the 5th stage (say) should depend only on
ξ1, . . . , ξ4 and not any ofξ5, . . . , ξ10. If we denoteξ = (ξ1, . . . , ξ10) and
the quitting timeτ as a function ofξ then we can say that{ξ : τ = 5
depends onlyξ1, . . . , ξ4}. This leads us to the notion of stopping times.

Definition. Let (Ω,F ,P) be a probability space, (Ft)t∈[0,∞) an increas-
ing family of sub-σ-algebras ofF . τ : Ω → [0,∞] is called astopping
timeor Markov time(or a random variable independent of the future) if

{w : τ(w) ≤ t} ∈ Ft for each t ≥ 0.

Observe that a stopping time is a measurable function with respect
toσ(∪Ft) ⊂ F .

Examples. 1. τ = constant is a stopping time.289

2. For a Brownian motion (Xt), the hitting time of a closed set is
stopping time.

Exercise 2.Let Ft+ ≡
⋂

Def s>t
Fs ≡ Ft.
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[If this is satisfied for everyt ≥ 0, Ft is said to beright continuous]. If
{τ < t} ∈ Ft for eacht ≥ 0, thenτ is a stopping time. (Hint:{τ ≤ t =
∞⋂

n=k
{τ < t + 1/n} for everyk).

We shall denote byF∞ theσ-algebra generated by
⋃
t∈T

Ft. If τ is a

stopping time, we define

Fτ = {A ∈ F∞ : A∩ {τ ≤ t} ∈ Ft,∀t ≥ 0}

Exercise 3. (a) Show thatFτ is aσ-algebra. (IfA ∈ Fτ,

Ac ∩ {τ ≤ t} = {t ≤ t} − A∩ {τ ≤ t}).

(b) If τ = t (constant) show thatFτ = Ft.

Theorem .Letτ andσ be stopping times. Then

(i) τ + σ, τvσ, τ ∧ σ are all stopping times.

(ii) If σ ≤ τ, thenFσ ⊂ Fτ.

(iii) τ is Fτ-measurable.

(iv) If A ∈ Fσ, then A∩ {σ = τ} and A∩ {σ ≤ τ} are in Fσ∧τ ⊂
Fσ ∩ Fτ. In particular, {τ < σ}, {τ = σ}, {τ > σ} are all in 290

Fτ ∩Fσ.

(v) If τ′ is Fτ-measurable andτ′ ≥ τ, thenτ′ is a stopping time.

(vi) If {τn} is a sequence of stopping times, thenlim τn. lim τn are also
stopping times provided thatFt+ = Ft, ∀t ≥ 0.

(vii) If τn ↓ τ, thenFτ =

∞⋂
n=1

Fτn provided thatFt+ = Ft, ∀t ≥ 0.

Proof. (i)

{σ + τ} > t} = {σ + τ > t, τ ≤ t, σ ≤ t} ∪ {τ > t} ∪ {σ > t};
{σ + τ > t, σ ≤ t} = τ ≤ A
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=

⋃

r∈Q
0≤r≤t

{σ > r > t − τ, τ ≤ t, σ ≤ t}

(Q = set of rationals)

{σ > r > t − τ, τ ≤ t, σ ≤ t} = {t ≥ σ > r} ∩ {t ≥ τ > t − r}
= {σ ≤ t} ∩ {σ ≤ r}c ∩ {τ ≤ t} ∩ {τ ≤ t − r}c.

The right side is inFt. Thereforeσ + τ is a scopping time.

{τVσ ≤ t} = {τ ≤ t} ∩ {σ ≤ t}
{τ ∧ σ > t} = {τ > t} ∩ {σ > t}

(ii) Follows from (iv).

(iii) {τ ≤ t}{τ ≤ s} = {τ ≤ t ∧ s} ∈ Ft∧s ⊂ Fs, ∀s≥ 0.

(iv) A∩ {σ < τ} ∩ {σ ∧ τ ≤ t} = [A∩ {σ ≤ t < τ}]
U[A∩ U

r∈Q
0≤r≤t

{σ ≤< τ} ∩ {τ ≤ t}] ∈ Ft.

A∩ {σ ≤ τ} ∩ {σ ∧ τ ≤ t} = A∩ {σ ≤ τ} ∩ {σ ≤ t}.291

It is now enough to show that (σ ≤ τ) ∈ Fσ; but this is obvious
because (τ < σ) = (σ ≤ τ)c is in Fσ∧τ ⊂ Fσ. ThereforeA∩{σ ≤
τ} ∈ Fσ∧τ and (iv) is proved.

(v) {τ′ ≤ t} = {τ′ ≤ t} ∩ {τ ≤ t} ∈ Ft as (τ′ ≤ t) ∈ Fτ. Thereforeτ′ is
a stopping time.

(vi) lim τn ≡ sup
n

inf
k≥n

τk

= sup
n

inf
ℓ

inf {τn, τn+1, . . . , τn+ℓ}.

By (i), inf {τn, τn+1, . . . , τn+ℓ} is a stopping time. Thus we have
only to prove that ifτn ↑ τ or τn ↓ τ whereτn are stopping times,

thenτ is a stopping time. Letτn ↑ τ. Then{τ ≤ t} =
∞⋂

n=1
{τn ≤ t}

so thatτ is a stopping time. Letτn ↓ τ. Then

{τ ≥ t} =
∞⋂

n=1

{τn ≥ t}.
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By Exercise 3,τ is a stopping time. Thatlim τn is a stopping time
is proved similarly.

(vii) Since τ ≤ τn, ∀n, Fτ ⊂
∞⋂

n=1
Fτn. Let A ∈

∞⋂
n=1

Fτn. Therefore

A ∩ (τn < t) ∈ Ft, ∀n. A ∩ (τ < t) =
∞⋂

m=1
(A ∩ (τm < t)) ∈ Ft.

ThereforeA ∈ Fτ.
�

Optional Sampling Theorem. (Discrete case).Let {X1, . . . ,Xk} be a
martingale relative to{F1, . . . ,Fk}. Let {τ1, . . . , τp} be a collection of
stopping times relative to{F1, . . . ,Fk} such thatτ1 ≤ τ2 ≤ . . . ≤ τp 292

a.s. and eachτi takes values in{1, 2, . . . , k}. Then{Xτ1, . . . ,Xτp} is a
martingale relative to{Fτ1, . . . ,Fτp} where for any stopping timeτ,
Xτ(ω) = Xτ(w)(ω).

Proof. It is easy to see that eachXτi is a random variable. In factXτm =

k∑
i=1

Xiχ{τm=i}. Let τ ∈ {1, 2, . . . , k}. Then

E(|Xτ|) ≤
k∑

j=1

∫
|X j |dP< ∞.

Consider

(Xτ j ≤ t) ∩ (τ j ≤ s) =
⋂

ℓ≤s

(Xℓ ≤ t) ∈ Fs.

Then (Xτ j ≤ t) is in Fτ j , i.e. Xτ j is Fτ j -measurable. Next we show
that

(*) E(Xτ j |Fτk) ≤ Xτk , if j ≥ k.

(*) is true if and only if
∫

A

Xτ j dP≤
∫

A

XτkdP for every A ∈ Fτk .

The theorem is therefore a consequence of the following �
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Lemma . Let {X1, . . . ,Xk} be a supermartingale relative to

{F1, . . . ,Fk}.

If τ andσ are stopping times relative to{F1, . . . ,Fk} taking values in
{1, 2, . . . , k} such thatτ ≤ σ then

∫

A

XτdP≥
∫

A

XσdP for every A∈ Fτ.

Proof. Assume first thatσ − τ ≤ 1. Then293

∫

A

(Xτ − Xσ)dP=
k∑

j=1

∫

[A∩(τ= j)∩(τ<σ)]

(Xτ − Xσ)dP

=

k∑

j=1

∫

[A∩(τ= j)]

(X j − X j+1)dP

A ∈ Fi . ThereforeA∩ (τ = j) ∈ F j . By supermartingale property
∫

[A∩(τ= j)]

(X j − X j+1)dP≥ 0.

Therefore ∫

A

(Xτ − Xσ)dP≥ 0.

Consider now the general caseτ ≤ σ. Defineτn = σ ∧ (τ + n).
Thereforeτn ≥ τ. τn is a stopping time taking values in{1, 2, . . . , k},

τn+1 ≥ τn, τn+1 − τn ≤ 1, τk = σ.

Therefore
∫

A

XτndP ≥
∫

A

Xτn+1dP, ∀A ∈ Fτn. If A ∈ Fτ then A ∈

Fτn, ∀n. Therefore
∫

A

Xτ1dP≥
∫

A

Xτ2dP≥ . . . ≥
∫

A

XτkdP, ∀A ∈ Fτ.
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Now τ1 − τ ≤ 1. τ ≤ τ1. Therefore
∫

A

XτdP≥
∫

A

Xτ1dP≥
∫

A

XσdP.

This completes the proof. �

N.B. The equality in (*) follows by applying the argument to 294

{−X1, . . . ,−Xk}.

Corollary 1. Let {X1,X2, . . . ,Xk} be a super-martingale relative to

{F1, . . . ,Fk}.

If τ is any stopping time, then

E(Xk) ≤ E(Xτ) ≤ E(X1).

Proof. Follows from the fact that{X1,Xτ,Xk} is a supermartingale rela-
tive to {F1,Fτ,Fk}. �

Corollary 2. If {X1,X2, . . . ,Xk} is a super-martingale relative to

{F1, . . . ,Fk}

andτ is any stopping time, then

E(Xτ) ≤ E(|X1|) + 2E(X−k ) ≤ 3 sup
1≤n≤k

E(|Xn|)

where for any real x, x− =
|x| − x

2
.

Proof. X−k =
|Xk| − Xk

2
, so 2E(X−k ) = E(|Xk|) − E(Xk).

By theorem{Xτ∧0,Xk∧0} is a super-martingale relative to{Fτ,Fk}.
ThereforeE(Xk ∧ 0|Fτ) ≤ E(Xτ ∧ 0). Hence

E(X−k ) ≥ E(X−τ ) =
E(|Xτ|) − E(Xτ)

2
.
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Therefore

E(|Xτ|) ≤ 2E(X−k ) + E(Xτ)

≤ 2E(X−k ) + E(X1) ≤ 3 sup
1≤n≤k

E(|Xn|).

�

Theorem .Let (Ω,F ,P) be a probability space and(Ft)t≥0 on increas-
ing family of sub-σ-algebras ofF . Letτ be a finite stopping time, and295

(Xt)t≥0 a progressively measurable family (i.e. X: [0,∞) × Ω → R
defined by X(t,w) = Xt(w) is progressively measurable). If Xτ(w) =
Xτ(w)(w), then Xτ is Fτ-measurable.

Proof. We show that{w : X(τ(w),w) ≤ t, τ(w) ≤ s} ∈ Ft for every t.
LetΩs = {w : τ(w) ≤ s}; Ωs ∈ Fs and hence theσ-algebra induced by
Fs onΩs is precisely

{A∩Ωs : A ∈ Fs} = {A ∈ Fs : A ⊂ Ωs}.

Sinceτ(w) is measurable,

w→ (τ(w),w) of Ωs→ [0, s] ×Ωs

is (Fs,B[0, s] ×Fs)-measurable. SinceX is progressively measurable,

[0, s] ×Ωs
X−→ R is measurable.

Therefore{w : X(τ(w),w) ≤ t, τ(w) ≤ s} ∈ σ-algebra onΩs. There-
fore Xτ is Fτ measurable.

The next theorem gives a condition under which (Xt)t≥0 is progres-
sively measurable. �

Theorem . If Xt is right continuous in t,∀w and Xt is Ft-measurable,
∀t ≥ 0 then(Xt)t≥0 is progressively measurable.

Proof. Define

Xn(t,w) = X

(
[nt] + 1

n
,w

)
· [nt] + 1

n
↓ t.
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Then

Lt
n→∞

Xn(t,w) = X(t,w) (by right continuity)

296

Step 1.SupposeT is rational,T = m/n wherem≥ 0 is an integer. Then

{(t,w) : 0 ≤ t < T, Xn(t,w) ≤ α}

=

⋃

0≤i≤m−1


[ i
n
,
i + 1

n

)
X

X−1
i+1

n
(−∞, α]



Thus if T = m/n, Xn|[0,T)×Ω is B[0,T] × FT -measurable. Now

T =
km
kn

. Lettingk→ ∞, by right continuity ofX(t) one getsX|[0,)×Ω is

[0,T] ×FT-measurable. AsX(T) is FT-measurable, one getsX|[0,T]×Ω
is [0,T] ×FT -measurable.

Step 2.LetT be irrational. Choose a sequence of rationalsSn increasing
to T.

{(t,w) : 0 ≤ t ≤ T, X(t,w) ≤ α}

=

∞⋃

n=1

{(t,w) : 0 ≤ t ≤ Sn,X(t,w) ≤ α} ∪ {T} × X−1
T (−∞, α]

The countable union is inB[0,T]×FT by Step 1. The second mem-
ber is also inB[0,T] ×FT asX(T) is FT-measurable. ThusX|[0,T]×Ω
is B[0,T] ×FT-measurable whenT is irrational also.

�

Remark. The technique used above is similar to the one used for prov-
ing that a right continuous functionf : R→ R is Borel measurable.

Theorem .Let {X1, . . . ,Xk} be a supermartingale andλ ≥ 0. Then 297

(1) λP( sup
1≤n≤k

Xn ≥ λ) ≤ E(X1) −
∫

{
supXn<λ
1≤n≤k

}
XkdP

≤ E(X1) + E(X−k ).
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(2) λP( inf
1≤n≤k

Xn ≤ −λ) ≤ −
∫

{inf Xn≤−λ}
XkdP

≤ E(X−k ).

Proof. Define

τ(w) = inf {n : Xn ≥ λ} if supXn ≥ λ,
= k, if sup

n
Xn < λ.

Clearlyτ ≥ 0 andτ is a stopping time. Ifτ < k, thenXτ(w) ≥ λ for
eachw.

E(Xτ) =
∫

(supXn≥λ)

XτdP+
∫

(supXn<λ)

XτdP

≥ λP(supXn ≥ λ) +
∫

(supXn<λ)

XkdP.

Therefore

E(X1) ≥ λP(supXn ≥ λ) +
∫

(supXn<λ)

XkdP,

λP(supXn ≥ λ) ≤ E(X1) −
∫

(supXn<λ)

XkdP≤ E(X1) + E(X−k )

The proof of (2) is similar if we define

τ(w) =


inf {n : Xn ≤ −λ}, if inf Xn ≤ −λ,
k, if inf Xn > −λ.

�

Kolmogorov’s Inequality (Discrete Case).Let {X1, . . . ,Xk} be a finite298

sequence of independent random variables with mean0. Then

P

(
sup

1≤n≤k
(|X1 + · · · + Xn| ≥ λ) ≤ 1

λ2
E((X1 + X2 + · · · + Xk)

2)

)
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Proof. If Sn = X1 + · · · + Xn, n = 1, 2, . . . , k, then {S1, . . . ,Sk} is a
martingale with respect to{F1, . . . ,Fk} whereFn = σ{X1, . . . ,Xn}.
ThereforeS2

1, . . . ,S
2
k is a submartingale (sincex → x2 is convex). By

the previous theorem,

λ2P{inf −S2
n ≤ −λ2} ≤ E((−S2

K)−)

Therefore

P{sup|Sn| ≥ λ} ≤
E((−S2

k)−)

λ2
=

E(S2
k)

λ2

=
1
λ2

E((X1 + X2 + · · · + Xk)
2).

�

Kolmogorov’s Inequality (Continuous case).Let {X(t) : t ≥ 0} be a
continuous martingale with E(X(0)) = 0. If 0 < T < ∞, then for any
ǫ > 0

P
{
w : sup

0≤s≤T
|X(s,w)| ≥ ǫ

)
≤ 1
ǫ1

E((X(T))2).

Proof. For any positive integerk defineY0 = X(0),

Y1 = X
( T

2k

)
− X(0), Y2 = X

(
2T

2k

)
− X

( T

2k

)
, . . . ,Y2k

= X

(
2kT

2k

)
− X

(
(2k − 1)

2k
T

)
.

By Kolmogorov inequality for the discrete case, for anyδ > 0.

P

 sup
0≤n≤2k

|X
(nT

2k

)
| > δ

 ≤
1
δ2

E((X(T))2).

By continuity of X(t), Ak = {w : sup
0≤n≤2k

|X
(nT

2k

)
| > δ} increases to 299

{ sup
0≤s≤T

|X(s)| > δ} so that one gets

(1) P

(
sup

0≤s≤T
|X(s)| > δ

)
≤ 1

δ2
E((X(T))2).
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Now

P

(
sup

0≤s≤T
|X(s)| ≥ ǫ

)
≤ limit

m→∞
P

(
sup

0≤s≤T
|X(s)| > ǫ − 1

m

)

≤ limit
m→∞

1

(ǫ − 1/m)2
E((X(T))2), by (1).

= 1/ǫ2E((X(T))2).

This completes the proof. �

Optional Sampling Theorem (Countable case).Let {Xn : n ≥ 1} be
a supermartingale relative to{Fn : n ≥ 1}. Assume that for some
X∞ ∈ L1, Xn ≥ E(X∞|Fn). Letσ, τ be stopping times taking values in
N ∪ {∞}, with σ ≤ τ. Define Xτ = X∞ on {σ = ∞} and Xτ = X∞ on
{σ = ∞}. Then E(Xτ|Fσ) ≤ Xσ.

Proof. We prove the theorem in three steps.

Step 1.Let X∞ = 0 so thatXn ≥ 0. Let τk = τ ∧ k, σk = τ ∧ k. By
optional sampling theorem for discrete caseE(Xτk) ≤ E(Xk) ≤ E(X1).
By Fatou’s lemma,E(Xτ) < ∞. Again by optional sampling theorem
for the discrete case,

E(Xτk |Fσk) ≤ Xσk . . . , (0).

Let A ∈ Fσ. ThenA∩ {σ ≤ k} ∈ Fσk, and by (0)300
∫

A∩{τ≤k}

XτdP≤
∫

A∩(τ≤k)

XτkdP≤
∫

A∩(σ≤k)

XσkdP≤
∫

A∩(σ≤k)

XσdP.

Letting k→ ∞,

(1)
∫

A∩(τ,∞)

XτdP≤
∫

A∩(σ,∞)

XσdP.

Clearly

(2)
∫

A∩(τ=∞)

XτdP=
∫

A

X∞dP=
∫

A∩(σ=∞)

XσdP
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By (1) and (2), inf
A

X dP≤
∫

A

XσdP, proving that

E(Xτ|Fσ) ≤ Xσ.

Step 2.SupposeXn = E(X∞|Fn). In this case we show thatXτ =
E(X∞|Fτ) for every stopping time so thatE(Xτ|Fσ) = Xσ. If A ∈ Fτ,
then ∫

(τ≤k)

XτdP=
∫

A∩(τ≤K)

X∞dP for every k.

Letting k→ ∞,
∫

A∩(τ,∞)

XτdP=
∫

A∩(τ,∞)

X∞dP,(1)

∫

A∩(τ=∞)

XτdP=
∫

A

X∞dP=
∫

A∩(τ=∞)

X∞dP(2)

The assertion follows from (1) and (2).

Step 3.Let Xn be general. Then 301

Xn = Xn − E(X∞|Fn) + E(X∞|Fn).

Apply Step (1) toYn = Xn − E(X∞|Fn) and Step (2) to

Zn = E(X∞|Fn)

to complete the proof.

�

Uniform Integrability.

Definition . Let (Ω,B,P) be any probability space,L1
= L1(Ω,B,P).

A family H ⊂ L1 is calleduniformly integrableif for every ǫ > 0 there
exists aδ > 0 such that

∫

(|X|≥δ)
|X|dP< ǫ for all X in H.
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Note.Every uniformly integrable family is a bounded family.

Proposition . Let Xn be a sequence in L1 and let Xn → X a.e. Then
Xn→ X in L1 iff {Xn : n ≥ 1} is uniformly integrable.

Proof. is left as an exercise. �

As {Xn : n ≥ 1} is a bounded family, by Fatou’s lemmaX ∈ L1.
Let ǫ > 0 be given. By Egoroff’s theorem there exists a setF such that
P(F) < ǫ andXn→ X uniformly onF.

∫
|Xn − X|dP≤ ||Xn − X||∞,Ω−F+

∫

F

|Xn − X|dP

≤ ||Xn − X||∞,Ω−F +

∫

F

|Xn|dP+
∫

F

|X|dP

≤ ||Xn − X||∞,Ω−F +

∫

F∩(|Xn|≥δ)

|Xn|dP+
∫

F∩(|X|≥δ)

|X|dP+

+

∫

F∩{|Xn|≤δ}

|Xn|dP+
∫

F∩(|X|≤δ)

XdP

≤ ||Xn − X||∞,Ω−F +

∫

(|Xn|≥δ)

|Xn|dP+
∫

(|X|≥δ)

|X|dP+ 2δǫ
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The result follows by uniform integrability of{X,Xn : n ≥ 1}.

Corollary . LetC be any sub-σ-algebra ofB. If Xn→ X a.e. and Xn is
uniformly integrable, then E(Xn|C )→ E(X|C ) in L1(Ω,C ,P).

Proposition . Let H ⊂ L1. Suppose there exists an increasing convex
function G: [0,∞)→ [0,∞) such that

limit
t→∞

G(t)
t
= ∞ and sup

X∈H
E(G(|X|)) < ∞.

Then the family H is uniformly integrable.
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Example.G(t) = t2 is a function satisfying the conditions of the theo-
rem.

Proof. (of the proposition). Let

M = sup
X∈H

E(G(|X|)).

Let ǫ > 0 be given. Chooseδ > 0 such that

G(t)
t
≥ M

ǫ
for t ≥ δ.

Then forX in H
∫

(|X|≥δ)

|X|dP≤ ǫ

M

∫

(|X|≥δ)

G(|X|)dP≤ ǫ

M

∫

G

G(|X|)dP≤ ǫ

�

Remark. The converse of the theorem is also true.

Exercise.Let H be a bounded set inL∞, i.e. there exists a constantM
such that||X||∞ ≤ M for all X in H. ThenH is uniformly integrable.

Up Crossings and Down Crossings. 303

Definition . Let a < b be real numbers; lets1, s2, . . . , sk be also given
reals. Definei1, i2, . . . , ik as follows.

i1 =


inf {n : sn < a},
k, if no si < a;

i2 =


inf {n > i1 : sn > b},
k, if sn ≤ b for eachn > i1;

i3 =


inf {n > i2 : sn < a},
k, if sn ≥ a for eachn > i2;

and so on
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Let t1 = si1, t2 = si2, . . .. If (t1, t2), (t3, t4), . . ., (t2p−1, t2p) are the
only non-empty intervals and (t2p+1, t2p+2), . . . are all empty, thenp is
called the ******** of the sequences1, . . . , sk for the interval [a, b] and
is denoted byU(s1, . . . , sk; [a, b]).

Note.U (the up crossing) always takes values in{0, 1, 2, 3, . . .}.

Definition. For any subsetS of reals define

U(S; [a, b]) = sup{U(F; [a, b]) : F is a finite subset ofS}

The number of down crossings is defined by

D(S; [a, b]) = U(−S; [−b,−a]).

For any real valued functionf on any setS we define

U( f ,S, [a, b]) = U( f (S), [a, b]).

If the domain ofS is known, we usually suppress it.

Proposition . Let a1, a2, . . . be any sequence of real numbers and S=304

{a1, a2, . . .}. If U(S, [a, b]) < ∞ for all a < b, then these sequence{an}
is a convergent sequence.

Proof. It is clear that ifT ⊂ S then U(T, [a, b]) ≤ U(S, [a, b]). If
the sequence were not convergent, then we can finda andb such that
lim inf an < a < b < lim supan. Choosen1 < n2 < n3 . . .; m1 < m2 <

. . . such thatani < a andami > b for all i. If T = {an1, am1, an2, am2, . . .},
thenU(S; [a, b]) ≥ U(T; [a, b]) = ∞; a contradiction. �

Remark. The converse of the proposition is also true.

Theorem . (Doob’s inequalities for up crossings and down crossings).
Let {X1, . . . ,Xk} be a submartingale relative to{F1, . . . ,Fk} a < b.
Define U(w, [a, b]) = U(X1(w), . . . ,Xk(w); [a, b]) and similarly define
D(w, [a, b]). Then

(i) U, D are measurable functions;
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(ii) E(U(·, [a, b])) ≤ E((Xk − a) + 1)− E((X1 − a)+)
b− a

;

(iii) E(D(·, [a · b])) ≤ E((Xk − b)+)/(b− a).

Proof. (i) is left as an exercise.

(ii) Define Yn = (Xn − a)+; there are submartingales. Then clearly
Yn ≤ 0 if and only if Xn ≤ a andYn ≥ b− a iff Xn ≥ b, so that

UY1(w), . . . ,Yk(w); [0, b− a]) = U(X1(w), . . . ,Xk(w); [a, b])

305

Define

τ1 = 1

τ2 =


inf {n : Yn = 0}
k, if eachYn = 0

τ3 =


inf {n > τ2 : Yn > b− a,

k, if Yn < b− a for eachn > τ2;

τk+1 = k.

As {Y1, . . . ,Yk} is a submartingale, by optional sampling theorem
Yτ1, . . . ,Yτk+1 is also a submartingale. Thus

(1) E(Yτ2 − Yτ1) + E(Yτ4 − Yτ3) + · · · ≥ 0.

Clearly

[(Yτ3 − Yτ2) + (Yτ5 − Yτ4) + · · · ](w) ≥ (b− a) ∪ (Y1(w), . . .Yk(w);

[0, b− a]) = (b− a) ∪ (w, [a, b]).

Therefore

(2) E(Yτ3 − Yτ2) + E(Yτ5 − Yτ4) + · · · ≥ (b− a)E(U(·, [a, b])).
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By (1) and (2),

E(Yk − Y1) ≥ (b− a)E(U(·, [a, b]))

giving the result.

(iii) Let Yn = (Xn − a)+ so that

D(Y1(w), . . .Yk(w); [0, b− a]) = D(X1(w), . . . ,Xk(w); [a, b])

Define306

τ1 = 1;

τ2 =


inf {n : Yn ≥ b− a},
k, if eachYn < b− a;

τ3 =


inf {n > τ2 : Yn = 0},
k, if eachYn > 0 for eachn > τ2;

τk+1 = k.

By optional sampling theorem we get

0 ≥ E(Yτ2 − Yτ3) + E(Yτ4 − Yτ5) + · · · .

Therefore

0 ≥ (b− a)E(D(Y1, . . . ,Yk; [0, b− a])) + E((b− a) − Yk).

Hence

E(D(·, [a, b])) ≤ E((Xk − a)+ − (b− a))/(b− a)

≤ E((Xk − b)+)
(b− a)

, for (c− a)+ − (b− a) ≤ (c− b)+

for all c.

�
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Corollary . Let {X1, . . . ,Xk} be a supermartingale. U, D as in theorem.
Then

(i) E(D(·, [a, b])) ≤ E(X1 ∧ b) − E(Xk ∧ b)
b− a

.

(ii) E(U(·, [a, b])) ≤ E((Xk − b)−)
b− a

.

Proof. (i) E(D(·, [a, b])) = E(U(−X1(w), . . . ,−Xk(w), [−b,−a])

≤ E((−Xk + b)+ − (−X1 + b)+)
b− a

, by above theorem,

≤ E((b∧ Xk) − (b∧ X1))
b− a

, since for

since for alla, b, c, (b− c)+ − (b− a)+ ≤ (b∧ a) − (b∧ c).

(ii) E(U(·, [a, b])) =

= E(D(−X1(w), . . . ,−Xk(w); [−b,−a]))

≤ E((−Xk + a)+)
b− a

, by theorem,

≤ E((Xk − b)−)
b− a

, 307

(since (−Xk + a)+ ≤ (Xk − b)−,
�

Theorem .Let {Xn : n = 1, 2, . . .} be a supermartingale relative to{Fn :
n = 1, 2, . . .}. Let (Ω,F ,P) be complete.

(i) If sup
n

E(X−n ) < ∞, then Xn converges a.e. to a random variable

denoted by X∞.

(ii) if {Xn : n ≥ 1} is uniformly integrable, then also X∞ exists. Fur-
ther, {Xn : n = 1, 2, . . . , n = ∞} is a supermartingale with the
natural order.

(iii) if {Xn : n ≥ 1} is a martingale, then{Xn : n ≥ 1, n = ∞} is a
martingale.
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Proof. (i) Let U(w[a, b]) = U(X1(w),X2(w), . . . , [a, b]). By the coro-
llary to Doob’s inequalities theorem,

E(U(·, [a, b]) ≤ sup
n

E((Xn − b)−) < ∞

for all a < b. Allowing a, b to vary over the rationals alone we308

find that the sequenceXn is convergent a.e.

(ii) Sup
n

E(X−n ) ≤ sup
n

E(|Xn|) < ∞ so thatX∞ exists. AsXn → X∞ in

L1 we get that{Xn : n ≥ 1, n = ∞} is a supermartingale.

(iii) follows from (ii).
�

Proposition . Let {Xt : t ≥ 0} be a supermartingale relative to{Ft : t ≥
0}. I = [r, s], a < b and S any countable dense subset. Let U(w,S ∩
I , [a, b]) = U(·, {Xt(w) : t ∈ S ∩ I }, [a, b]). Then

E(U(·,S ∩ I , [a, b)) ≤ E((Xs − b)−)
b− a

.

Proof. Let S ∩ I be an increasing union of finite setsFn: then

E(U(·, Fn, [a, b])) ≤
E((XmaxFn − b)−)

b− a
≤ E((Xs − b)−)

b− a
.

The result follows by Fatou’s lemma. �

Exercise .If further Xt is continuous i.e.t → Xt(w) is continuous for
eachw, then prove that

E(U(·, I , [a, b])) ≤ E((Xs − b)−)
b− a

Theorem .Let (Ω,F ,P) be complete and{Xt : t ≥ 0} a continuous
supermartingale.

(i) If sup
t≥0

E(X−t ) < ∞, then Xt converges a.e. to a random variable309

X∞.
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(ii) If {Xt : t ≥ 0} is uniformly integrable then also X∞ exists and
{Xt : t ≥ 0, t = ∞} is a supermartingale.

Proof. (i) E(U(·, [0, n], [a, b])) ≤ E((Xn − b)−)/(b− a) so that

limit
n→∞

E(U(·, [0, n], [a, b])) ≤ sup
0≤s

E((Xs − b)−)
b− a

for all a < b. Thus{Xt(w) : t > 0} converges a.e. whose limit in
denoted byX∞ which is measurable.

(ii) As E(X−t ) ≤ E(|Xt |) by (i) X∞ exists, the other assertion is a con-
sequence of uniform integrability.

�

Corollary . Let {Xt : t ≥ 0} be a continuous uniformly integrable mar-
tingale. Then{Xt : 0 ≤ t ≤ ∞} is also a martingale.

Exercise.Let {Xt : t ≥ 0} be a continuous martingale such that for some
Y with 0 ≤ Y ≤ 1 E(Y|Ft) = Xt show thatXt → Y a.e.

Lemma . Let (Ω,F ,P) be a probability space,F1 ⊃ F2 ⊃ F3 . . . be
sub-σ-algebras. Let X1,X2, . . . be a real valued functions measurable
with respect toF1, . . . ,Fn, . . . respectively. Let

(i) E(Xn−1|Fn) ≤ Xn

(ii) sup
n

E(Xn) < ∞.

Then{Xn : n ≥ 1} is uniformly integrable. 310

Proof. By (i) E(Xn) is increasing. By (ii) givenǫ > 0, we can findn0

such that ifn ≥ n0 thenE(Xn) ≤ E(Xn0) + ǫ. For andδ > 0,

n ≥ n0

∫

(|Xn|≥δ)

|Xn|dP

= E(Xn) +
∫

(Xn≤−δ)

−XndP−
∫

(Xn<δ)

XndP
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≤
∫

(Xn≤−δ)

−Xn0dP−
∫

(Xn<δ)

Xn0dP+ E(Xn) by (i)

≤ ǫ +
∫

(Xn≥δ)

Xn0dP−
∫

(Xn≤−δ)

Xn0dP (becauseE(Xn) ≤ E(Xn0) + ǫ)

≤ ǫ +
∫

(|Xn|≥δ)

|Xn0 |dP

Thus to show uniform integrability we have only to showP(|Xn| ≥
δ)→ 0 uniformly in n asδ→ ∞. Now

E(|Xn|) = E(Xn + 2X−n )

≤ E(Xn) + 2E(|X1|) by (i)

≤ M < ∞ for all n by (ii)

The result follows asP(|Xn| ≥ δ) ≤ M/δ. �

Optional Sampling Theorem.(Continuous case).

Let {Xt : t ≥ 0} be a right continuous supermartingale relative to
{Ft : t ≥ 0}. Assume there exists an X∞ ∈ L′(Ω,F ,P) such that Xt ≥
E(X∞|Ft) for t ≥ 0. For any stopping timeτ taking values in[0,∞], let311

Xτ = X∞ on {τ = ∞}. Then

(i) Xτ is integrable.

(ii) If σ ≤ τ are stopping times, then

E(Xτ|Fσ) ≤ Xσ.

Proof. Define

σn =
[2nσ] + 1

2n , τn =
[2nσ] + 1

2n .

Thenσn, τn are stopping times,σn ≤ τn, σ ≤ σn, τ ≤ τn. σn,
τn take values inDn = {∞, 0, 1/2n, 2/2n, . . . , 1/2n, . . .} so that we have
E(Xτn |Fσn) ≤ Xσn. Thus if,A ∈ Fσ ⊂ Fσn, then

(*)
∫

A

XτndP≤
∫

A

XσndP
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As σ1 ≥ σ2 ≥ . . ., by optional sampling theorem for the countable
case, we have

E(Xσn−1|Fσn) ≤ Xσn.

Further
Fσ1 ⊃ Fσ2 ⊃ . . . ; E(Xσn |F0) ≤ X0.

By the lemma{Xσn}, {Xτn} are uniformly integrable families. By
right continuityXσn → Xσ pointwise andXτn → Xτ pointwise. Letting
n→ ∞ in (*) we get the required result. �

Lemma (Integration by Parts). Let M(t, ·) be a continuous progres-312

sively measurable martingale and A(t,w) : [0,∞) × Ω → R be of
bounded variation for each w. Further, assume that A(t,w) isFt-measu-
rable for each t. Then

Y(t, ·) = M(t, ·)A(t, ·) =
t∫

0

M(s, ·)dA(s, ·)

is a martingale if

E( sup
0≤s≤t

|M(s, ·)| ||A(·)||t) < ∞

for each t, where||A(w)||t is the total variation of A(s,w) in [0, t].

Proof. By hypothesis,

n∑

i=0

M(s, ·)(A(si+1, ·) − A(si , ·))

converges to
t∫

s

M(u, ·)dA(u, ·) in L1 asn→ ∞

and as the norm of the partitions = s0 < s1 < . . . < sn+1 = t converges
to zero. Hence it is enough to show that

E([M(t, ·)A(t, ·) −
n∑

i=0

M(si+1, ·)(A(si+1, ·) − A(si , ·))]|Fs)
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= M(s, ·)A(s, ·).

But the left side= E(M(sn+1, ·)A(sn+1, ·)−

−
n∑

i=0

M(si+1, ·)(A(si+1, ·) − A(si , ·))|Fs)

= M(s, ·)A(s, ·).

Taking limits asn→ ∞ and observing that313

sup
0≤i≤n

|(si+1 − si)| → 0,

we get

E(M(t, ·)A(t, ·) −
t∫

0

M(u, ·)dA(u, ·)|Fs)

= M(s, ·)A(s, ·) −
s∫

0

M(u, ·)dA(u, ·).

�



Bibliography

[1] BILLINGSLEY, P. Convergence of probability measures,John Wi- 314

ley, New York, (1968).

[2] DOOB, J.L.Stochastic Processes,John Wiley, New York (1952).

[3] DYNKIN, E.B. Markov Processes and Problems in Analysis,Proc.
Int. Cong of Math. Stockholm,(1962) 36 - 58.

[4] DYNKIN, E.B. Markov Processes,Vols. 1, 2, Springer-Verlag,
Berlin (1965).

[5] FRIEDMAN, AVNER. Stochastic Differential Equations and Ap-
plications,vols. 1, 2, Academic Press, New York (1976).

[6] FRIEDMAN, AVNER. Partial Differential Equations of Parabolic
type, Prentice Hall, Englewood Cliffs (1964).

[7] GIHMAN, I.I. and A.V. SKOROHOD. Stochastic Differential
Equations, Springer-Verlag, New York (1973).
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[11] LÉVY, P.Processus Stochastic et Mouvement Brownien,Gaulhier-
Villars, Paris (1948).

[12] MEYER, P.A. Probability and Potentials,Blaisdell, Wallham315

(1966).

[13] NEVEU, J.Discrete Parameter Martingales,North Holland, Am-
sterdam (1975).

[14] PARTHASARATHY, K.R. Probability Measures on Metric
Spaces,Academic Press, New York (1967).

[15] PROTTER, M.H. and H.F. WEINBERGET.Maximum Principles
in Differential Equations,Printice Hall, Englewood Cliffs (1967).

[16] STROOCK, D.W. and S.R.S. VARADHAN.Diffusion Process in
Several Dimension,Springer-Verlag, New York (to appear)

[17] WILLIAMS, D. Brownian motions and diffusions as Markov Pro-
cesses.Bull. Lond. Math. Soc.6 (1974) 257 - 303.


	The Heat Equation
	Kolmogorov's Theorem
	The One Dimensional Random Walk
	Construction of Wiener Measure
	Generalised Brownian Motion
	Markov Properties of Brownian Motion
	Reflection Principle
	Blumenthal's Zero-One Law
	Properties of Brownian Motion in One Dimension
	Dirichlet Problem and Brownian Motion
	Stochastic Integration
	Change of Variable Formula
	Extension to Vector-Valued Itô Processes
	Brownian Motion as a Gaussian Process
	Equivalent For of Itô Process
	Itô's Formula
	Solution of Poisson's Equations
	The Feynman-Kac Formula
	An Application of the Feynman-Kac Formula....
	Brownian Motion with Drift
	Integral Equations
	Large Deviations
	Stochastic Integral for a Wider Class of Functions
	Explosions
	Construction of a Diffusion Process
	Uniqueness of Diffusion Process
	On Lipschitz Square Roots
	Random Time Changes
	Cameron - Martin - Girsanov Formula
	Behaviour of Diffusions for Large Times
	Invariant Probability Distributions
	Ergodic Theorem
	Application of Stochastic Integral
	Appendix
	Language of Probability
	Kolmogorovs Theorem
	Martingales
	Uniform Integrability
	Up Crossings and Down Crossings
	Bibliography

