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Preface

These notes correspond to a course of about fifteen lectives gt
the Tata Institute of Fundamental Research Centre, Indistitute of
Science, Bangalore in January and February 1977.

The main goal of this course and of the corresponding notés is
provide an introduction to the study of Nonlinear VariagbRroblems;
they do not have pretention to cover all the aspects of thisiwgportant
subject, since for example the Navier—Stokes equationgdattonian
incompressible viscous flows have not been considered hereefer
for this last problem to, e.g., TEMAM [1] and GIRAULT-RAVIAR
[1]).

Some questions pertinent to the main subject of these natesrtot
been treated here since they have been considered in th&kTllecture
Notes of P.G. CIARLET [1] and J.CEA [2].

Chapterg]l anfl 2 are concerned wéiliptic Variational Inequali-
tites (E.V.l.) more precisely with their approximation (mostly bnite
element methods) and also their iterative solution. Séws@mples,
coming from Mechanics illustrate the methods which are iilesd in
these two chapters.

The following Chaptefl3 is only an introduction to the appnox-
tion of Parabolic Variational Inequalities (P.V.1.); wedeghowever stud-
ied with some details a particular P.V.1. related to the eagdy flow of
some viscous plastic media (Bingham fluids) in a cylindrjugk.

In Chaptel® we show how Variational Inequalities conceptd a
methods may be useful to study some Nonlinear Variationah&ons.

In Chaptelb we discuss the iterative solution of some \ianat

\Y



Vi 0. Preface

Problems with a very specific structure allowing their solutby de-
composition - coordination methods via augmented lagearggiseveral
iterative methods are described and illustrated by exasnpiestly from
Mechanics.

In Chaptefb, which unlike the previous chapters is largelyristi-
cal, we show how some of the tools of the Chapters -1V may bd us
solve numerically a diicult and important nonlinear problem of Fluid
Dynamics: namely the steady transonic potential flow of amsaid
compressible fluid. This last chapter is obviously just d@romfuction to
this very important and flicult subject.

I would like to thank all the people who make my stay in India a
most enjoyable experience and more particularly Profeskds. RA-
MANATHAN, K. BALAGANGADHARAN and M.K.V. MURTHY.

These Notes were taken by M. ADIMURTHI and M.G. VIJAYA-
SUNDARAM; | would like to thank them for their devotedferts.

I would like to thank also S. KESAVAN and L. REINHART for their
careful reading of the proofs and the various improvemerayg have
suggested. Eventually | would like to express all my ackrealgements
to Mrs. F. WEBER for her beautiful typing of these Notes andviio
M. Bazot who did all the artwork.

R. Glowinski
Rocquencourt, France
November, 1979
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Chapter 1

Generalities On Elliptic
Variational Inequalities And
On Their Approximation

1 Introduction

An important and very useful class of non-linear problenisirag from 1
mechanics, physics etc. consists of the so-called Vanatimequali-
ties. We mainly consider the following two types of variatib inequal-
ities, namely

1. Elliptic Variational Inequalities (EVI),
2. Parabolic Variational Inequalities (PVI).

In this chapter (following LIONS-STAMPACCHIAIL) we shall +e
strict our attention to the study of the existence, unigeeraad approx-
imation of the solutions of EVI.

2 Functional Context

In this section we consider two classes of EVI, namely EVIhef first
kind and EVI of the second kind.

1



2 1. Generalities On Elliptic Variational...

2.1 Notations

e V : real Hilbert space with scalar product-j and associated
normy| - |.

e V*: the dual space of.

e a(-,") : VXV — Ris a bilinear, continuous and -elliptic form
onV xV.

A bilinear forma(, -) is said to bé/ -elliptic if there exists a positive
constantr such thag(v,v) > a || V| Vv e V.

In general we do not assunag, -) to be symmetric, since in some
applications non-symmetric bilinear forms may occur reityr(see for
instance COMINCIOLI[L]).

e L :V — R continuous, linear functional.
e K is a closed, convex, non-empty subseVof

e j():V—o R = RU{co} is a convex, lower semi -continuous (I.s.c.
) and proper functional

(j(-) is proper ifj(v) > —co Vv e Vandj # ).

2.2 EVI of first kind

To find ue V such that u is a solution of the problem

o {< D2 Ly- ek
ue K.

2.3 EVI of second kind

To find ue V such that u is a solution of the problem

a(u,v—u) + j(v) — jlu) = L(v-u)vVv e,
(Pz){
ueV.
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2.4 Remarks:

REMARK 2.1. The cases above considered are the simplest and most

important. LIONS and BENSOUSSAN [1] considered some ghreera
tion of problem(P;) called Quasi Variational Inequalitie@QVI) which
arises for instance from Decision Sciences. A typical mobbf QVI is

To findu € V such that

a(u,v—u) > L(v—u) Vv e K(u),
ue K(u)

where v— K(V) is a family of closed, convex non-empty subsets of V.

REMARK 2.2. If K = V and j= 0 then the problem$P;) and (P,)
reduce to the classical variational equation

a(u,v) = L(V) YveV,

ue V.

REMARK 2.3. The distinction betweefP,) and (P») is artificial, for 3
(P1) can be considered as a particular case(Bp) by replacing (-) in
(P») by the indicator functiond of K defined by

W) = OifveK
KW booifv g K.

Even though 1) is a particular case of%) it is worthwhile con-
sidering P,) separately because it arises in a natural way and we will
get geometrical insight into the problem.

Exercise 2.1.Prove that k is a convex, |.s.c. and proper functional.

Exercise 2.2. Show that(P;) is equivalent to the problem of finding
ue V suchthat &u,v—u) + Ig(v) — Ix(u) > L(v-u)Yve V.



4 1. Generalities On Elliptic Variational...

3 Existence And Uniqueness Results For EVI of
First Kind
3.1 A Theorem of existence and uniqueness

THEOREM 3.1. (LIONS-STAMPACCHIAI1)The problem P;) has
one and only one solution

Proof. (I)Uniqueness:
Let u; andu, be solutions of ;). We have then

a(u,v—up) = L(v—up) Yve K, u; € K, (3.1)
a(uz,V—W) > L(v—w) Yve K, up € K. (3.2)
i

Puttingu, for vin @) andu; for vin 82) and adding we get, by
using theV -ellipticity of a(., -),

2
allup—ugf<a(up —ug,up—ug) <0

which provesu; = up sincea > 0.

(2) Existence

We use a generalization of the proof used by CLARLET [1] for
proving the Lax-Milgram Lemma, i. e. we will reduce the prerol (P1)
to afixed pointproblem.

By the Riesz representation theorem for Hilbert space tegist
Ae Z(V,V)(A=Aif a(-,-) is symmetric) and € V such that

(Au V) = a(u,v) Yu,veVandL(v) =({,v) YveV. (3.3)
Then the problemR;) is equivalent to findingi € V such that

(U-p(Au-¢) —u,v—u) <0 YveK,
(3.4)
ueK,p>0.
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This is equivalent to finding such that
u = Pg(u-p(Au-?¢)), for somep > 0, (3.5)

wherePy denotes the projection operator franto K in the|| - || norm.
Consider the majy, : V — V defined by

W, (V) = Pk (V- p(Av - ¢)). (3.6)
Letvy, V2 € V. Then sincePk is a contraction we have

I W, (V1) — W, (v2) I1P<]l v2 = vy |12 +02 || A(v2 — vy |I?

—2pa(Vo — V1, Vo — V1).
Hence we have
I Wo(va) = W(v2) IP< (1 - 200 + p? | AIP) I V2 -1 IP . (3.7)
2a

| Al
p in this range we have a unique solution for the fixed point |enob

which implies the existence of a solution fdt].

ThusW, is a strict contraction mapping if & p < By taking

3.2 Remarks

REMARK 3.1. IfK =V, Theoreniz3]1 reduces to Lax-Milgram Lemnsa
(see CIARLET)).

REMARK 3.2. If a(-,-) is symmetric then TheordmB.1 can be proved
using optimization methods (see CEA [1]).

LetJ:V — R be defined by
1
J(v) = Ea(v, V) — L(V). (3.8)

Then
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() lim JW) = +oo

[IV]| =+
. 1 a ’
sinceJ(v) = Ea(v, v) — L(v) > > VIS =1Ll v

(i) Jis strictly convex.

Sincel is linear, to prove the strict convexity af it suffices to
prove that
v — a(v,v)

is strictly convex. Let O< t < 1 andu, v € Vwithu # v;
O<alv—u,v—u) = a(u,u) + a(v,v) — 2a(u, v). Hence we have

2a(u, v) < a(u, u) + a(v, v). (3.9)
Using [39) we have

atu+ (L -tv,tu+ (1 -t)v) =
t2a(u, u) + 2t(1 — t)a(u, v) + (1 — t)2a(v,v) <

< ta(u,u) + (1 - t)a(v, v).
(3.10)
Thereforea(v, V) is strictly convex.

(iii) Sincea(-,-) andL are continuous) is continuous.

From these properties dfand standard results of Optimization The-
ory (cf. CEA [)]) it follows that the minimization problem dinding u
such that

J(u) < J(v) YveK,

()
ueK
has one and only one solution. Thereforki§ equivalent to the problem
of finding u such that
(J(u),v—u) >0 VYveK,
(3.11)
ueK,
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where J'(u) is the Gateaux derivativeof J at u. Since (’'(u),v) =
a(u,v) — L(v) we see thatF;) and @) are equivalent ifa(-, -) is sym-
metric.

Exercise 3.1.Prove that(J’(u),Vv) = a(u,v) — L(v) Yu, ve V and hence
deduce that Ju) = Au~ ¢ Yue V.

REMARK 3.3. The proof of Theoreri—3.1 given a natural a natural
algorithm for solving(P;) since v— Pk (v — p(Av - ¢)) is acontraction

mapping for0 < p < T Aallz' Hence we can use the following algorithm
to find u:
LetP eV, (3.12)
U™t = P (U - p(AU" - 0)). (3.13)

Thenu" — u strongly inV whereu is the solution of P1). In
practice it is not easy to calculateand A unlessV = V*. To project
overK may be as diicult as solving P1). In general this method cannot
be used for computing the solution d?4) if K # V (at least not so
directly).

We observe that i&(-, -) is symmetric therd’(u) = Au- ¢ and hence 7

@BI3) becomes
u™?l = P (U = p(3'(UM). (3.13)

This method is know as th@8radient -Projectiormethod.

4 Existence And Uniqueness Results For EVI of
Second Kind

THEOREM 4.1. (LIONS-STAMPACCHIA]1]) ProblertP,) has one
only one solution.

Proof. As in TheorenZ3]1 we shall first prove uniqueness and then ex-
istence

(1) Uniqueness.Let u; andu, be two solutions ofR2). Then we
have

aun,v—u) + j(v) - j(u) 2 Liv-u) YweV.up €V, (4.1
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a(uz,v—u2) + j(v) — j(p) 2 L(v-w) VVeVlp €V, (4.2)
O

Sincej(:) is a proper map there existg € V such that-co < j(vp) <
co. Hence fori =1, 2

— oo < j(U) < j(vo) — L(vo — W) + a(Ui, Vo — ). (4.3)

This shows thaj(u;) is finite fori = 1, 2. Hence by substituting,
for vin (@) andu; for vin @3) and adding we obtain

@l up — Uz < a(z—Uz, Up — Up) < 0. (4.4)

Henceu; = w,.

(2) Existence. For eachu € V andp > 0 we associate a problem
() of type (P2) defined as below :

To find we V such that

(W, v—w) +pj(V) - pj(w)
u > (U, v—w) +pL(v—w) —pa(u,v—w) YVeYV,
()
weV.
(4.5)
The advantage of considering this problem over the problesh (
is that the bilinear form associated with) is the inner product o¥/
which is symmetric.
Let us first assume that) has a unique solution for all € V and
p > 0. For eaclp define the mad, : V — V by f,(u) = wwherew is
the unique solution ofr(;).
We shall show thaf,, is a uniformly strict contraction mapping for
suitable chosep.
Letug, ux € Vandw; = f,(u), i = 1, 2. Sincej(-) is proper we have
j(w) finite which can be proved as in.(#.3). Therefore we have

(W1, W2 — Wy) + pj(Wo) — pj(wy)
> (ug, Wo — Wy) + pL(W2 — wq) — pa(ug, wo — wy), (4.6)



4. Existence And Uniqueness Results... 9

(W2, W1 —W2) + pj(Wr) — pj(Wp)
> (U, W1 — W) + pL (W1 — W) — pa(Up, Wy — Wa). (4.7)

Adding these inequalities we obtain

Il f,(u) = f,(U2) 117 =l wa — wy |12

=< ((I = pA)(u2 — ug), Wo — Wy) (4.8)

=<[[ I =pAll lluz—urll [lwz—-wyll.

Hence
Il fo(un) = fo(u2) NI T = pATlL 11 Uz — U |

. 2

It is easy to show thdt | — pA ||< 1 when 0< p < i Aa||2' This
proves thatf, is uniformly a strict contracting mapping and hence has
a unique fixed poinu. Thisu turns out to be the solution oPg) since
f,(u) = uimplies U,v—u) + pj(v) — pj(u) > (u,v—u) + pL(v-u) -
pa(u,v—u) Yv e V. Therefore

au,v—u)+ j(v) — jluy = L(v—-u) Yve V. (4.9)

Hence P,) has a unique solution.
The existence and uniqueness of the problej follows from the
following

Lemma4.1. Letbh: V xV — R be a symmetric continuous, bilinear, \o
-elliptic form with V -elliptic constang. LetLe V*and j: V — Rbe a

. 1 ,
convex, l.s.c. proper functional. Lefw = Eb(v, V) + j(v) = L(v). Then

the minimization problenfr):
To find u such that

Ju) < JV)YveV,
(m)

ueV
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has a unique solution which is characterised by
b(uv—u) + j(v) — j(u) = L(v—u) VveYV,
(4.10)
ueV.

Proof. (i) Existence and uniqueness of u

Sinceb(-, -) is strictly convex,j is convex and. is linear, we havel
strictly convex. J is I.s.c. becausb(.,-) andL are continuous anglis
l.s.c. m]

Sincej is convex, l.s.c. and proper, there exidte V* andu € R
such that

j(v) > A(V) + u (cf. EKLAND - TEMAM [1]) ,

therefore
IV) =EUVIE- ANV =L v+
(4.11)
([ || v - QARILD \[ ) (||A||+||L||)2
Hence
J(V) - +c0as || V|- +oo. (4.12)

Hence (cf. CEAIL] ) there exists a unique solution for theroj#a-
tion problem f).

Characterisation of u: We show that the problenx) is equivalent
to (4.10) and thus get a characterisatioruof

(2) Necessity off@1I0) : Let O< t < 1. Letu be the solution ofx).
Then for allv € V we have

J(u) < J(u +t(v-u)). (4.13)
SetJy(V) = %b(v, V) — L(v), then [£1IB) becomes

0 < J(u+tiv—uw) - Jo(u) + jlu+tiv—u) — j(u)
(4.14)
< JoU+t(v—uw) — Jo(uw) +t[j(V) — j(u)] VveV
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got by using convexity of. Dividing by t in #@I4) and taking the limit
ast — 0 we get

0 < (J(U),v—U) + j(v) - j(u) YVeV. (4.15)
Sinceb(-, -) is symmetric we have
(35(v), W) = b(v,w) — L(w) Yv,we V. (4.16)
From [415) an@4.16 we obtain
b(u,v —u) + j(V) — ju) > L(v—U) Yve V.

This proves the necessity.
(3) Suficiency of (@.10). Letu be a solution of[{410) ; fov € V

JV) — J(u) = %[b(v, V) —b(u,w] + j(v) — j(uy - L(v—u). (4.17)
But

b(v,v) =b(u+v-uu+v-u)

= b(u,u) + 2b(u,v—u) + b(u - v,u-v).
Therefore 11
JV)-J() = b(u,v-u)+ j(V) - j(u) - L(v—u) + %b(v— u,v—u). (4.18)
Sinceu s a solution of [4.710) and(v — u, v — u) > 0 we get
J(v) = J(u) = 0. (4.19)

Henceu is a solution of £).

By takingb(, -) to be the inner product iW and replacingj(v) and
L(v) in LemmalZ1 byj(v) and {,V) + pL(V) — pa(u, V), respectively,
we get the solution for).
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REMARK 4.1. From the proof of Theorefn 4.1 we get an algorithm for
solving(P>). This algorithm is given by

(1) uoe\/,0<p<ﬁ2,
2) ELv-u"h) +pj(v) - pjuh) = (U, v -t
+pL(v—u™) — pa(u",v-u™l) vveV,

(4.20)

3) u™tev

Then one can easily see thgt— u stronglyin V andu will be the
solution of P,). Difficulties may arise in using this scheme whén
is not assumed to be féigrentiable. At each iteration the problem we
have to solve is also a problem of the same order fiicdity as that of
the original problem (actually conditioning can be bettevidedp has
been conveniently chosen).df:, -) is not symmetric the fact that €) is
symmetric can also give some simplification.

5 -Internal Approximation of EVI of First Kind

5.1 Introduction

In this chapter we shall study the approximation of EVI of fingt kind
from an abstract, axiomatic point of view.

5.2 The continuous problem

The assumptions ov, K, L anda(-, -) are as in sectiofl 2. We are inter-
ested in the approximation of

a(u,v—u) > L(v—u) YveK,
(P1)
ueKk,

which has one and only solution by TheorEm 3.1.
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5.3 The approximate problem
5.3.1 The approximation ofV and K

We are given a parametkiconverging to 0 and a familyw,), of closed
subspaces of. (In practiceVy, are finite dimensional and the parameter
h varies over a sequence). We are also given a fariily(of closed,
convex, non-empty subsets\éfwith Ky c Vi, Vh (in general we do not
assumeK;, c K) such that Kp), satisfies the following two conditions :

() If (vn)nis such thaty, € K, Yhand (4)y is bounded irV then the
weakcluster points of\,), belong toK.

(i) Assume there exist c V, y = K andry : y — K; such that
rI1im0rhv = v strongly inV, Vv € y.
REMARK 5.1. If Ky c K Yh then (i) is trivially satisfied because K is

weakly closed.

REMARK 5.2. QKh c K.

REMARK 5.3. A useful variant of condition (ii) foryis (ii)’ Assume
there exists a subsgtc V such thaly = K and r, : y — Vj with the
property that for each ¢ y, there exists fi= hp(v) with r,v € Ky, for all

h < hp(v) and rI1i_r’[10rhv = v stronglyin V.

5.3.2 Approximation of (P4):
The problem P) is approximated by

a(Un, Vh — Un) > L(Vh — Un) YVh € Ky,
(P1n)
Uh € Kp.

THEOREM 5.1. (Py) has a unique solution. 13

Proof. In Theoren31l takiny/ to beV;, andK to beK; we have the
result. O
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REMARK 5.4. In most of the cases it will be necessary to replager
and L by a(.,.) and L, (usually defined - in practical cases - frori,a)

and L by a Numerical Integration procedure). Since there daghimg

very new on that matter compared to the classical linear caseshall
say nothing about this problem for which we refer to CIARLETGhap.
8].

5.4 Convergence results

THEOREM 5.2. With the above assumptions on K &), we have
Lir% Il uh — u |lv= 0 with w, the solution of(P;;) and u the solution of

(Po).

Proof. In this kind of convergence we usually divide the proof iteee
parts. First we obtain a priori estimates fag),, then weak convergence
of (up) and finally with the help of weak convergence, we will prove
strong convergence. i

(1) Estimation for up,.
We will now show that there exist constarig andC, independent
of hsuch that
Il Un [I°< Ca || Uy | +C2, Yh. (5.1)

Sinceuy is the solution of P1) we have

a(Up, Vh — Up) = L(Vh — Un)YVh € Ky (5.2)

a(Un, Un) < a(Un, Vh) — L(vh — Un).
By V -ellipticity we get
@ llun P<IHAT - Tun - I -+ ITL Vel + T u=h1) Yvh € K.
(5.3)
Let vy € y andvy, = rpvg € Kp. By condition (ii) onKy, we have
rhVo — Vo strongly inV and hencd| v;, || is uniformly bounded by a
constanim. Hence[[5.B) can be written as

1
Il un 11%< ;{(m IAT+ILM Tun i+ 1Ll mp=Callun |l +Co,
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1 . .
whereC; = a(m |All+]|IL]J)andC; = g I L |I; then [B) implies 14
Ilup |l< C Vh.

(2) Weak convergence ofun), : Relation [B1l) givess, is uniformly
bounded. Hence there exists a subsequencg¢ugaysuch thatu, con-
verges tas* weakly inV. By condition (i) on Kp)n we haveu* € K. We
will prove thatu* is a solution for P1). We have

a(Un, Uy) < a(un, Vi) — L(Vh, Un) YV € Ky (5.4)
Letv e y andvy, = riv. Then [E3) becomes
a(un,, U;) < a(Un, 'y V) = LMV = Up,). (5.5)

Sincerp v converges strongly to anduy, converges tar* weakly as
hi — 0 taking the limit in [&5) we get

"H] ircw)f a(un,up) < a(u’,v) —L(v-u") Yvey. (5.6)

Also we have
0 < a(uy — u*, up, — U*) < a(un, Up) — alup, u*) —a(u*, uy) + a(u*, u”)

i. e.
a(un, u*) + a(u”, uy) — a(u*, u”) < a(un,, up,).

By taking the limit we obtain
a(u*,u’) < Iim_iEf a(Un,, Un,). (5.7)
From [5.6) and[(5]7) we get
a(u*,u’) < Iimirgf a(un, Uy) < a(u’,v) — L(v-u’) Vv e y.
Therefore we have, 15

a(u,v—u*) = L(v-u*) Yvey,
(5.8)
u € K.
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Sincey is dense irkK anda(., -), L are continuous, we get frorai(5.8)

(5.9)

a(u,v—u‘) = L(v—u*) YveK,
u* e K.

Henceu* is a solution of P;). By Theoreni 311, the solution foP()
is unique and hence® = u is the unique solution. Henaeis the only
cluster point offun}, in the weak topology of. Hence the wholéun}n
converges ta weakly.

(3) Strong convergenceWe have by —ellipticity of a(-, -)

0 < @ || up—u|[2< a(up—u, Uy—U) = a(up, un)—a(un, u)—a(u, un)+a(u, u)

(5.10)
whereuy is the solution of P1,) andu is the solution of P1). Sinceun
is the solution of P1) andrpv € Ky, for anyv € y, we get by Pip)

a(Un, Un) < a(un, rpv) — L(rev —up) Vv e y. (5.11)

Since Ilrguh = uweaklyin Vand Imgrhv v stronglyin V (by condition

(i)) we obtain, from [5.1D),[(531) and after taking the JithatVv € y
we have:

0 < eliminf || uy — u|?< elimsup|| un — u ||?< a(u, v — u) — L(v — u).
(5.12)

By densityandcontinuity, (5.12) also hold&/v € K; then takingv = u
in (&12) we obtain that

lim ||uy—u|?’=0
fim |ty —u |

i.e. the strong convergence.

REMARK5.5. Error estimates for the EVI of the first kind can be found

in FALK [M], [2], [8], STRANG-MOSCOI[MIL], STRANdT1], GLOWIN-
SKI-LIONS-TREMOLIERES (G.L.TQI[1]][2], CIARLEM[1], BREI
[d, FALK-MERCIER [A], GLOWINSKI[L]. But like in many nomiear
problems the methods used to obtain these estimates anficpethe
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particular problem under consideration (as we shall sedimfollowing
sections).

This remark still holds for the approximation of EVI of theeged
kind which is the subject of Section 6.

REMARK 5.6. If for a given problem, several approximations are
available, and if computations are needed, the choice ofafiy@oxi-
mations to be used is not obvious. We have to take into acootonly
the convergence properties of the method, but also the c@atigru in-
volved in that method. Some iterative methods are bestdsoitly for
some problems. Some methods are easier to program tharsother

6 Internal Approximation of EVI of Second Kind

6.1 The Continuous Problem

The assumptions o¥, a(:,), L j(-) being as in Sectioi 2.1, we shall
consider the approximation of
auv-u)+ jv)—jluy=Lv-u) VYveV,
(P2)
ueV

which has one and only one solution by Theofem 4.1.

6.2 Definition of the approximate problem

Preliminary remark : We assume in the sequel that: V — R is
continuous. We can prove the same sort of results as in thitose
under less restrictions (see Chajifler 4, Seéfion 2).

6.2.1 Approximation of V

Given a real parametdr converging to 0 and a familyw);, of closed 17
subspaces df (in practice we will takevy, to be finite dimensional and
hto vary over a sequence), we assume tkig)(satisfies
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() there existdJ c V such thatU = V and for eacth, a mapry, :
U — Vj such tha'%lir(l)Thv = vstrongly inV, Yve U.

6.2.2 Approximation of j(-)

We approximate the functiong(-) by (jn)» where for each, ji
satisfies

jh . Vh - I@
(6.1)
jnis convex, |.s.c. and uniformly proper in h

The family (jn)n is said to beuniformly proper in hif there exist
A€ V*andu € R such that

h(vh) > A(Vh) + 1 YVh € Vp, Yh. (6.2)
Furthermore we assume thag), satisfies
(i) if vo — v weaklyin V then
liminf jn(vn) > j(v)
(iii) Iri]m0 jh(rnv) = j(v) Yve U.

REMARK 6.1. In all the applications we know, if(-) is a continuous
functional then it is always possible to construct contimsig, satisfying
(i) and (iii).

REMARK 6.2. In some cases we are fortunate enough to haie)j =
i(vn)¥Vh, Yh, and then (ii) and (iii) are trivially satisfied.

6.2.3 Approximation of (Py)

We approximateR,) by

a(Un, Vh = Un) + jn(Vh) = jr(un) = L(Vh — Un) VVh € Vp,
(P2n)
Uh € Vh.
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THEOREM 6.1. Problem P2,) has one only one solution.

Proof. In Theorem[ 411 taking/ to beVy, j(-) to be jn(-) we get the
result. O

REMARK 6.3. Remar{ 5.l of Sectidn 5 still holds f(®,) and (Pon).

6.3 Convergence results

THEOREM 6.2. Under the above assumptions @), and (jh)n we
have
lim || up —ull=0,
-0 . (6.3)
{ngno in(un) = j(u).

Proof. As in the proof of Theorem 5.2 we divide the proof into three
parts. m|

(1) Estimation for u,. We will show that there exist positive con-
stantsC; andC, independent ol such that

Itn IP< Ca [l un [ +C2 Vh. (6.4)
Sinceu, is the solution of Po,) we have
a(un, Un) + jn(un) < a(Un, Vh) + jn(Vh) — L(Vh — Un) YVn € Vh.  (6.5)
By using relation[[612) we get

@l Un IP<I AN 1 un -+ =+ AT Tun v
+1in(va)l+ TL AR [T+ T un ). (6.6)

Letvg € U andwy, = rpVp. By using condition (i) and (iii) there exists
a constantm, independent oh such that| v, ||< mand|js(vh)] < m.
Therefore[[6J6) can be written as

lun < 2QUAT+ LA M L) [ 2+ (L) + Y

=Cylun |l +C2
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where 19

1 m ||
Co==(I A+ All-mt I LI) and G = —(1+ | L [}) + =
a a a
and [&%) implies
|| un |I< C YhwhereC is a constant

(2) Weak convergence ofi,: Relation [6&4) gives thaty is uni-
formly bounded. Therefore there exists a subsequemgh, (such that
Un — Up weakly inV.

Sinceu is the solution of Py) andryv € V, YhandVYv € U we get
aUn, Un) + jn (Un) < a(Un, V) + jo(ravi) — LV —uy).  (6.7)
By condition (iii) and weak convergence @, } we get
Iirmgf[a(uhi,uhi) + jn (un)] < a(u,v) + j(v) - L(v—u’) Yve U. (6.8)
As in (&) and using condition (i), we get
a(u', u) + j(U7) < liminf[aln, tp) + in (). (6.9)
From [&3), [EP) and using the densityldfwe have

alu,v—u)+ j(v) — j(u) = L(v—u*) YveV,

ueV.

This impliesu* is a solution of P,). Henceu* = uis the unigue solution
of (P,) and this shows thatif) converges to weakly

(3) Strong convergence ofun)n: We have by -ellipticity of a(-, -)
and by Pzn)

allun—ul? +jn(up) < aUn— U Uy — U) + jn(un) =

= a(up, Up) — a(u, up) — alun, U) + a(u, u) + jh(up) <
< a(up, r —hv) + ju(rpv) — L(rpv — up) — a(u, un)

—a(up, u) + a(u, u) Yv e U.

(6.10)
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The right hand side of inequalitf{6110) tendsafo, v — u) + j(v) —
L(v—u) ash — OYv € U. Therefore we have

liminfpoo jn(un) < liminfpsofa |l Uy — U ll? +jn(un)] <

<limsup,_ola | uy —ul? +jn(up)] < (6.11)

<auv-u+ jv) - Liv-u)¥YveU.

By density ofU, (€11) holdsv¥v € V. Replacingv by u in (&I1) and
using condition (i) we obtain

J(u) < liminf ja(un) < lim suple || u— un 117 +in(un)] < j(u).

h—0

This implies that

IIm jn(un) = j(u) and

lim ||uy,—ull= 0.
lim Jl up —u |

This proves the theorem.

7 References

For generalities on variational inequalities from a thédoe¢ point of 21
view see Lions-Stampacchid [1], Liori3 [1], Ekeland-TemBln [

For generalities on the approximation of variational ireddiesfrom
the numerical point of view see Fall [1], Glowinski-Lionsemolieres
[, [A, Strang [1], Brezzi-Hager-Raviaffl[1].






Chapter 2

Application of The Finite
Element Method To The
Approximation of Some
Second Order EVI

1 Introduction

In this chapter we consider some examples of EVI of the firdtsec- 22
ond kinds. These EVI are related to second order partiéréintial
operators (for fourth order problems see GLOWINSHKI [2]).€TRhys-
ical Interpretation and some properties of the solutiongaren. Finite
element approximations of these EVI are considered andecgexice
results are proved. In some particular cases we prove estionages.

Some of the results in this chapter may be found in G.ILIT[EL],
For the approximation of the EVI of first kind by the finite elent meth-
ods we refer also to FALKJ1], STRANd]1], MOSCO-STRANG [1],
CIARLET [, BREZZI-HAGER-RAVIART [1].

We also deal with iterative methods for solving the corresiiag
approximate problems (cf. CEAI[1], G.L.TI[1[1[2]).

23
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2. Application of The Finite Element Method To...

2 An Example of EVI of The First Kind: The Ob-
stacle Problem

Notations 1. All the properties of Sobolev spaces used in this chapter

are proved in LIONS[JR], NECAZ]1]. Usually we shall have

Q: a bounded domain 22
I':oQ
X = {X1, X2} @ generic point of)

(9 9
B (9X1 ’ (9X2

Cm(ﬁ): space of m -times continuouslyfdrentiable real valued
functions for which all the derivatives up to order m are dout
ous inQ,

CI(Q) = {ve C™(Q) : Suppy) is a compact subset 6f).

IV limpo= | lz | DV [ILpoy for v e CM(Q) wherea = (a1, @p);
a|l<m

o
G

a1, @z hon-negative integer$y| = a1 + ap and D* =
WMP(Q) : completion of ¢(Q) in the norm defined above.
WMP(Q): completion of G(Q) is the above norm

H™(Q) = WM%(Q),

HE(Q) = W),

2(Q) = C3(Q).
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2.1 The continuous problem:
Let

V = H}(Q) = {ve HY(Q) : VT = trace de v suF = 0}
(cf. LIONS 2], NECAS[)).

a(u,v) = f Vu.Vvdx
Q

where
u v ou v

- (9X18_X1 * (9X25_X2.’

L(v) = (f,v) for f € V* = H™1(Q) andv € V. Let¥ € H(Q) n C%(Q)
and¥|r < 0. DefineK = {ve H3(Q) : v> Ya.e onQ}.

Then the obstacle problem is By problem defined by :

Find u such that

Vu.Vv

{a(u,v —u)>Lv-uVvveKk, 2.1)

ue K.

The physical interpretation of this problem is the follogirlet an
elastic membrane occupy a regi@nin the X1, X, plane; this membrane
is fixed along the boundaidy of Q. When there is no obstacle, from the
theory of elasticity the vertical displacemantobtained by applying a
vertical forceF, is given by the Dirichlet problem

{—Au: fin Q, 2.2)

ur=0

wheref = F/t, t being the tension. 24
When there is an obstacle, we have a free boundary problem and

the displacement satisfies the variational inequalitiy {2.1) with be-

ing the height of the obstacle. Similar EVI also occur, somes$ with

non-symmetric bilinear forms, in mathematical models fierfollowing

problems:

e Lubrication phenomena (cf. CRYERI[1]).
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e Filtration of liquids in porous media (cf. BAIOCCHI1], COM
INCIOLI [@),

e Two dimensional, irrotational flows of perfect fluids (cf. BRIS
STAMPACCHIA [I], BREZIS [1], CLAVLDINI-TOURNEMINE

().
e Wake problems (cf. BOURGAT- DUVAUTLL)).

2.2 Existence and uniqueness results:

For proving the existence and uniqueness of the prodIen), (2elneed
the following lemmas stated below without proof (for prodtioe lem-
mas, see for instance LIONH [1], NECAS [1], STAMPACCHIA [1])

Lemma 2.1. LetQ be a bounded domain iRN. Then the semi-norm

on HY(Q)
1/2
V- (f |VV|2dx)
Q

is a norm on I-S(Q) and it is equivalent to the norm onélfn) induced
from HY(Q).

The above Lemm@aZ.1 is known as Poincare-Friedrichs lemma.

Lemma 2.2(STAMPACCHIA []). Let f: R — R be uniformly Lips-
chitz continuous (i.edk > O such that f(t) — f(t")| < kit - t'|Vt, ' € R)
and such f has a finite number of points of discontinuity. Then the in-
duced map fon HY(Q) defined by u— f(u) is a continuous map into
H(Q). Similar results holds for F{€2) when ever 0) = 0.

COROLLARY 2.1. If vt and v denote the positive and the negative
parts of v for ve HY(Q) (respectively E(Q)) then the map v {v*,v"}

is continuous from Q) — H(Q) x HY(Q) (respectively B(Q) —
H3(Q) x H3()). Also v— |v] is continuous.

THEOREM 2.1. Problem[[Z]l) has a unique solution



2. An Example of EVI of The First Kind.... 27

Proof. In order to apply Theoreiii 3.1 of Chapiér 1 we have to prove that
(.,.) is V-elliptic and thatK is a closed, convex, hon-empty set.

TheV-ellipticity of a(., .) follows from LemmdZ1l and the convexity

of K is trivial; then

(1)

)

K is hon-emptyWe have
¥ e HY{(Q) n C%(Q) with ¥ < 0 onT..

Hence, by Corollanf 211%* € H(Q). Since¥|r < 0 we have
Y*|r = 0. This implies¥* € H3(Q); then

¥Y* = max¥,0} > ¥
Thus¥* € K. HenceK is non-empty.

K is closed. Let v, — v strongly in Hé(Q) wherev, € K and
v € H}(Q). Hencev, — v strongly inL?(Q). Therefore we can
extract a subsequende,} such thatv, — v a.e. onQ. Then
vp, = ¥ a.e. onQ implies that

v>Ya.e. onQ;

thereforev € K.

Hence, by Theoreriz3.1 of Chapfdr 1, We have a unigue solution
for (Z1).

2.3 Interpretation of (2.1) as a free boundary problem

For the solutioru of 1) we define 26

Q" = {x:xeQ, u(X) > ¥(x)}
Q0% = {x: xe Q,u(x) = ¥(x)}
y =00+ N Q% ut = uUlg+; W0 = Ulgo.
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Classically the problen{2.1) has been formulated as thblgmo of
finding y (the free boundaryandu such that

- Au= fonQ", (2.3)
u="¥onQ° (2.4)
u=0onT, (2.5)
utl, = Wy, (2.6)

The physical interpretation of these relations is the foitg: (Z.3)
means that of®2* the membrane is strictly over the obstad€;](2.4) means
that onQ° the membrane is in contact with the obstadgz(2.6) is trans-
mission relation at the free boundary.

Actually (Z3)-{Z6) are not sficient to characteristia since there
are an infinity of solutions fol{213)E(2.6). Therefore itniscessary to
add other transmission properties: for instanc& is smooth enough
(say¥ € H?(Q)), we require the continuity oVu aty (we may ask
Vu e HY(Q) x HY{(Q)).

REMARK 2.1. This kind of free boundary interpretation holds for sev-
eral problems modelled by EVI of first kind and second kind.

2.4 Regularity of solutions

We state without proof the following regularity theorem foe problem

&)

THEOREM 2.2. (BREZIS- STAMPACCHIAT1]). L& be a bounded
domain inR? with a smooth boundary. If

L(v) = f fvdxwith fe LP(Q),1< p< 2.7)
Q

and
¥ e W2P(Q), (2.8)

then the solution of the proble@l) is in W>P(Q).



2. An Example of EVI of The First Kind.... 29

REMARK 2.2. LetQ c RN have a smooth boundary. We know that

WSP(Q) c CX@Q) if s > % +k (2.9)

(cf. NECASIL]). It follows that the solution u ¢&-1) will be in C1(Q)
if f € LP(Q), ¥ € WP2, p(Q) with p> 2 (take s=2, N =2 k=1in
.9).

The proof of this regularity result will be given in the folling
simple case:

L(v) = f fvdx f € L%(Q), (2.10)
Q
Y =0o0nQ. (2.11)

Before proving thatlZ0)[TZI11) imply € H%(Q), we shall recall a
classical lemma (also very useful in the analysis of fourtteo prob-
lems).

Lemma 2.3. Let Q be a bounded domain &N with a boundaryl’
syficiently smooth. ThelAv [| 2y defines a norm on HO) N H3(Q)
which is equivalent to the norm induced by th&®)- norm.

Exercise 2.1.Prove the above LemriaP.3 using the following regularity
result due to AGMON-NIRENBER@Q [1]:
If w e L2(Q) and ifT" is smooth then the Dirichlet problem

—-Av=winQ,
vir =0,

has a unique solution in &(Q) NH2(Q) (this regularity result also holds

if Qis a convex domain with Lipschitz continuous) .

We shall now apply the LemrhaR.3 to prove the following thmore
using a method of BREZIS-STAMPACCHIA [2].

THEOREM 2.3. If I' is smooth enoughy = 0 and L(v) = [ fvdx 28
with f € L%(Q) then the solution u of the proble@]) satisfies

{u e K N H2(Q),

(2.12)
Il Au ll2)=<Il T llL2(qy -
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Proof. From Theoreni_Z]1 it follows that probleri(R.1) has a unique
solutionu, with L and¥ as above. Let> 0, consider the following
Dirichlet problem

—€Au.+ U, =UINQ,
{ ce (2.13)

Ucr = 0.

Problem [ZIB) has a unique squtionHté(Q) and the smoothness
of I assures that, belongs toH?(Q). Sinceu > 0 a.e. onQ, by the
maximum principle for second order ellipticfiiirential operators, (cf.

MECAS [1]) we haveu, > 0. Hence o
ue € K. (2.14)
From [ZI#) and{Z]1) we obtain
a(u,ue —u) > L(u. —u) = f f(ue — u)dx (2.15)
Q

The V-ellipticity of a(.,.) implies

a(Ue, Ue — U) = a(u, — U, U — U) + a(u, ue — u) > a(u, u, — ),

so that,

a(Ue, Ue — U) > f f(ue — u)dx (2.16)

Q
By (Z.I3) and[(Z16) we obtain
EfVuE.V(AUE)dX2€f fAu. dx

Q Q
so that,

fVuE.V(Aue)dxzfAuedx (2.17)

Q Q

By Green'’s formula,[[Z7) implies

—f(Aue)zdxzf f Aucdx
o Q
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Thus
Il Ae [z <Il f llL2(y), (2.18)

usingSchwarz inequalityn L?(Q). By LemmaZB and relations{2113),
13) we obtain

lim u, = uweaklyin H?(Q), (2.19)
€

(which implies that linue = u strongly inH3(Q), for everys < 2 (cf.
NECAS [1])), so thau € H2(Q) with

Il Au ll 2=l  llL2qy - (2.20)

2.5 Finite Element Approximations of (2.1)

Henceforth we shall assume thatis a polygonal domain dk?. Con-
sider a “ classical” triangulatio#}, of Q, i.e. % is afinite set of triangles
T such that

TcvTew+h | JT=0 (2.21)
Te%h
TINTI=¥VT,Toe%h and Ty # To. (2.22)

MoreoverVT,, T, € %, and T, # To, exactly one of the following
conditions must hold

(l) TiNTr =¥
(2) Ty andT, have only one common vertex (2.23)
(3) T, andT, have only a whole common edge

30
As usualh will be the length of the largest edge of the triangles in
the triangulation.
From now on we restrict ourselves to piecewise linear anckpiese
quadratic finite element approximations.
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2.5.1 Approximation of V and K.

e Py: space of polynomials ir; andx, of degree less than or equal
to k.

h={PeQ:Pisavertex ofl € %)
o X0={PeXy:Pgll}.

¥ = {PeQ: Pis the mid point of an edge df € %}).

30={Pex :Pgl)

3t =Zhands? = T, U .

Figure 2.1 illustrates some further notations associatitil an ar-
bitrary triangleT. we havemir € X[, Mit € Z,. The centroid of the
triangleT is denoted byGr.

m3ar
maor mir
Gr
T
mit msar mar
Figure 2.1:
31 The spacey = Hcl)(Q) is approximated by the family of subspaces

(V¥)p with k = 1 or 2 where
h

Vi = {vh € C%Q) : | = 0 and w|; € P VT € %} k=12
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It is clear that\/r'f are finite dimensional (cf. CIARLET [1]). Itis then
quite natural to approximaté by

KK = {vh € VK : w(P) > W(p) VP e Zf} k= 1,2

Proposition 2.1. The Iﬁj for kK = 1, 2 are closed, convex, hon-empty
subsets of Y/

Exercise 2.2.Prove Proposition 2]1.

2.5.2 The approximate problems

Fork = 1, 2 the approximate problems are defined by

(P ){a(uﬁ,vh — UK) > L(Vh — UX) Vv, € K,
1h

K K
Un € Kh.

From Theoreni:3]11 of Chapter 1 and Proposifion 2.1, it folltwet
Proposition 2.2. (P';h) has a unique solution for ¥ 1 and 2.

REMARK 2.3. If the bilinear form &, -) is symmetric(P, ) is actu-
ally equivalent to (cf. Chajil 1, Remdrk13.2) tgadratic programming
problem

min la(vh,vh) - L(w)|. (2.24)

VhEKL( 2

2.6 Convergence results

In other to simplify the convergence proof we shall assunti@srsection
that

¥ e C%(Q) nH! and ¥ <0 inaneighbourhood ofl.  (2.25)

Before proving the convergence results we shall give twaoitgmt 32
numerical quadrature schemes which will be used to provedheer-
gence theorem.
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Exercise 2.3.With notations as in Fig.211, prove the following identtie
for any triangle T

meag(T) 3

fdex= — ; wW(Mit) Yw € Py. (2.26)
meagy(T) 3

ﬁwdx: — ;W(rm-)\/we P.. (2.27)

Formula[Z2Zb) is called thErapezoidal Ruland [Z.2F) is known as
Simpson’s Integral formulaThese formulae, not only have theoretical
importance but also practical utility.

We have the following results about the convergenaa{; ¢$olutions
of the problem P¥)) ash — 0.

THEOREM 2.4. Suppose that the angles of the triangleszifare
uniformly bounded below s > 0 as h— 0; then for k=1, 2

. k _
fim [ g = U llya)= 0 (2.28)

where Lﬁ and u are respectively the solutions c[fnland (1)}

Proof. In this proof we shall use the followingensityresult to be
proved later:

2(Q)NK = K. (2.29)

O

To prove [Z2ZB) we shall use Theoréml5.2 of Clidp. 1. To do this w
have to verify that the following two properties hold (foe 1, 2):

(@) If (vp)nis such thawy € K,'j Yhand converges weakly toash — 0,
thenv e K.

(i) There existsy,y = K andrk : y — KK such thathﬂrgn'jv =v
=strongly in V Vv € y.
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Verification of (i). Using the notations of Fig.d.1 and consideripge
2(Q) with ¢ > 0, we defineg, by ¢ = >, #(GyyT Wherey is the
Te%h

characteristic functiorof T andGr is the centroid off . It is easy to see
from the uniform continuity of that

rI1im0 = ¢ strongly in L°(Q). (2.30)

Then we approximat® by ¥y, such that

P eCoﬁ,‘I’ e PVT € %,
h (Q), Phir : h (2.31)
h(P) = Y(P) VP € Z.
This function¥;, satisfies
rI1im0‘I‘h =W strongly in L°(Q). (2.32)

Let us consider a sequeno&)q, Vh € Kr'j Vh such that
Lirr})vh =v weaklyin V

Then hIimv,1 = v strongly in L?(Q), (cf. NECAS [1]) which, using
—0
30) and[[Z32), implies that

lim f(vh - ¥)¥hdx = f(v - P)pdx, (2.33)
h—0 Jo Q
(actually sincepn, — ¢ stronglyin L*(Q2) the weak convergence @f in

L2(Q) is enough to prové (Z.B3)).
We have

[ n=anemdx= 3 0@ [n-wax @34

Tech

From [Z.26).[[ZA7) and the definition ¥, we obtain for allT € ..

3
[ o= wya= TS i) - (Ml it k= 1. 2.39)
i=1
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3
[ n=rax= 22D Y puyme) - (me)lif k=2, 230
i=1

34

@38), [Z3b) it follows from[[Z34) that
f(Vh —Y)on dx > 0Ve € 2(Q), ¢ > 0,
Q

sothatah —» 0

Using the fact thap, > 0, the definition ofKr'j and the relations

f(v— W)pdx = 0V € D(Q), 6 > 0
Q

which in turn impliesv > ¥ a.e. inQ. Hence (i) is verified.

Verification of (ii). From [Z29) it is natural to take = 2 N K. We
definerf : H3(Q) N C%(Q) — VK as the * linear " interpolation operator
whenk = 1 and “ quadratic” interpolation operator whke: 1, i.e.

k k o)
{rhv € VKWV e HY(Q) n CO(Q), (2.37)

(rfv)(p) = V(p) VP € 3p¢ for k=1,2.

On the one hand it is known (cf. for instance CIARLHET [1]} [2] ,
STRANG-FIX [I]) that under the assumptions madedyin statement
of TheorenZM we have

TV =V Iv< C MYV ey YV e 2(Q), k= 1,2.
with C independent ofi andv . This implies that
rI1i£n>0 I rfv—Vy=0V € x,k=1,2
On the other hand it is obvious that
rkv e KKvv e K nCoQ).

so that
rlve Kkwwey, for k=12
In conclusion with the abovg andrr'j, (i) is satisfied. Hence we
have proved the TheoremP.4 modulo the proof of the densgyltre

(2.29).
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Lemma 2.4. Under the assumption&23)we haveZ2(Q) N K = K.

Proof. Let us prove the Lemma in two steps. m]
Step 1. Let us show that

K ={ve KnCQ) : vcompact support i} (2.38)
is dense in K.

Letve K,K c Hcl)(Q) implies that exists a sequeng}n in Z2(Q)
such that
r!im ¢n =V strongly in V

Definev,, by

so that
1
Vn = 5[(\1’ +¢n) + ¥ = ¢nll.
Sincev € K, from CorollaryfZ1 and relationE{2139) i follows that

r!im Vh = %[(\P +V) + |¥ - V]] = max@®,v) = v strongly in V (2.40)

From [Z25) and{2:39) it follows that
each y, has a compact support i, (2.41)
vn € K N COQ). (2.42)
From [Z40) -[Z.4R) we obtail {Z138)
Step 2. Let us show that
2(Q) N xisdensex’ . (2.43)

This proves from Stefdl 1, tha#(Q) N K is dense irK. Letp, be a
sequence of mollifiers, i.e.

on € 2(R?), pn > 0,
f2on(y)dy =1 (2.44)

(9]

(M Suppon = {0}, {Suppon}is a decreasing sequence
n=1
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Letv e 7. LetV extension ofv defined by

W(x) = v(_x) if Xxe Q,
Oif x¢ Q,

thenv e HY(R?). LetV, = V= pp i.e.

9 = [_pnlx= )y (2.45)
then
\7n € ‘@(Rz)a
Suppvp € Suppv + Suppe;, (2.46)
lim ¥, = ¥ strongly inHL(R?).

Hence from[[Z211) and{Z.16) we have
Suppi) c Q for nlarge enough (2.47)

We also have (since Suppi§ bounded)

lim ¥, = ¥ strongly in  1*°(R?). (2.48)

Definevy, = nq, then [2.4B)-HZ.48) imply
Vh € 2(Q) 2 49
lim vy = v strongly in H(Q) n C(Q); (2.49)

v e # and¥ < 0in a neighbourhood df imply that there exists a
6 > 0 such that
v=0,% <0on Qs (2.50)

whereQ;s = {x€ Q : d(x,I) < 6}.
From [2.48) and{Z.30) it follows that > 0O, there exists ang =
No(€) such thatyn > ng(€)

{v(x)— e<Vn(X) < (X)+ € VXxe Q- Q52 (2.51)

Vn(X) = V(X) = 0 for x € Qg2
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SinceQ — Q /2 is a compact subset 61 there exists a functions (cf.
for instanceH. CARTAN [M]) such that

Q in Q
e 2(Q),0 29 in (2.52)
H(X) =1Vxe Q- Qg/z
Finally definews, = v+ € 6.
Then from [2.2B),[(Z.81) an@(252) we have
Wi € 2(9)
lim WS = v strongly in - H(<Q),
€—
Mr0(e)
with wg(x) > v(X) > W(X) VX € Q, so that Stepl2, is proved. 38

REMARK 2.4. Analysing the verification (i) in the proof @heoreniZI4
we observe that if for k 2 we use, instead ofﬁ&the following convex
set

0
(Vi € V2 ia(p) = W(P) VP € > 1)

then the convergence oﬁ to u still holds providedst, obeys the same
assumptions as in the statement of Thedrein 2.4.

Exercise 2.4.Extend the previous analysis¢¥ is not a polygonal do-
main.

Exercise 2.5.LetQ be a bounded domain & andy a “nice” subset
of T, see Fig. 2.2. Define V by ¥ {v e HY(Q) : V[, = 0}. Taking the
bilinear form &, -) like in Z1), and Le V*, study the following EVI

aluv—u) > L(v-uVveKkK,
uek,

whereK = {ve V:v>¥a.e. inQ}and¥ € COQ)NHYQ), ¥ <0
in a neighbourhood dfy. Also study the finite element approximation
of the above EVI.
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Hint. Use the fact that if” andIo are smooth enough thefi = V
where (see Fog. 2.2¥ = {v e C*(Q) : v = 0 in a neighbourhood of
ol

Ty
Figure 2.2:

2.7 Comments on the error estimates

We do not emphasize too much on this subject since it has hmenid
detail in CIARLET [3], Chap.9, at least for piecewise lin@gproxima-
tions.

2.7.1 Piecewise linear approximation

Using piecewise linear finite elements and assuming tha¥, u €
H2(Q), 0(h) estimates folf u-un llh1) have been obtained by FALK[1],
[, [B], STRANG [], STRANG-MOSCOIL]. We also refer to CLAR
LET [@ Chap. 9], in which the Falk analysis is given.

2.7.2 Piecewise quadratic approximation

Assuming more regularity fof, ¥, u that in the previous case, assum-
ing also some smoothness hypotheses for the free bounda§y’4 <)
estimate forl| up - u |lHe1@) has been obtained by BREZZI-HAGER-
RAVIART [[], BREZZI-SACCHI [ for an approximation by piez
wise guadratic finite elements, similar to the describedaati®nZ.6.
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2.8 lterative solution of the approximation problem

Once the continuous problem has been approximated and tvereo
gence proved, it remains to comput@eetively the approximate solu-
tion. In the case of the discrete obstacle problem this casiobe eas-
ily by using anover- relaxation method with projecticas described in
CEA[2].

Let us justify the use of this method. It follows from Rem@tH 2
that the discrete problem is of the following type

mln[ (AV, V) — (b, v)] (2.53)

where (, -) denotes the usual inner product®Y andv = {vi,...,Vn}
and
=(&j),1<i<N1<j<N (2.54)

is a symmetric, positive definitd x N andC is the set given by
C={veRN:vi>W¥,1<i<N}. (2.55)

SinceC is the product of closed intervals &f, the over-relaxation 40
method with projection o€ can be used. Let us describe it in detail:

uw e C, U° arbitrarily chosen in C

(W = {¥1,...,¥,} may be agood guess (2.56)
Then & being known, we computé&d, component by component using
fori=1,2...N
_n+1 bI Z a” n+1 Z a” J (257)
j=i+l
u,n+l Pi(ul + w(u ™t — uM) (2.58)
where
Pi(X) = max(x, ¥;) Yx € R. (2.59)

It follows from CEA [@] (see also CEA-GLOWINSKI[]1], G.L.T.
[1] )that
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Proposition 2.3. Let (u") be defined byZ58}2.59) Then for every
u® € C andV¥0 < w < 2, we havelim u" = u where u is the unique

n—oo
solution of (Z53)

REMARK 2.5. In the case of the discrete obstacle problem the compo-
nents of u will be the values taken by the approximation &woiLdt the

0
0 0 ’
nodes of} if k = 1and ) U Z if k — 2. Similarly ¥; will be the values
h h
h

taken by¥ at the nodes stated above, assuming these nodes have been
ordered from 1 to N.

REMARK 2.6. The optimal choice fow is a critical but nontrivial
point. However it has been observed from numerical expetisninat
the so-calledroung methodor obtaining the optimal value @b during
the iterative process itself, leads to a valuawivith good convergence
properties. The convergence of this method has been provdiddar
eqguations and requires special properties for the matrixhef system
(see YOUNGI], VARGAT1]). However, empirical justificatiof its
success for the obstacle problem can be made, but will not/ea dere.

REMARK 2.7. From numerical experiments it is found that the optimal
value ofw is always strictly greater than one.

3 A Second Example of EVI of The First Kind: The
Elasto-Plastic Torsion Problem

3.1 Formulation. Preliminary results

Let Q be a bounded domain &2 with a smooth boundary. With
the same definition fo¥, a(-,-), L(.) as in Sed2Z]1 of this Chapter, we
consider the following EVI of the first kind

{a(u,v —u) > L(v-uVveKkK, (3.1)

uek,

where
K ={ve H}Q): V\| < lae in Q). (3.2)
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THEOREM 3.1. Problem(@) has a unique solution.

Proof. In order to apply Theoreri—3.1 of Chapter I, we only have to
verify thatK is anon- empty, closed, conyesubset oV. O

K is non-empty because & K, and the convexity oK is obvious.
To prove thaK is closed, consider a sequerigg} in K such that, — v
strongly inV. Then there exists a subsequeig} such that

lim Vv, = Vva.e.

|—00

Since|Vvy| < 1 a.e. we gefvy| < 1 a.e. therefore € K. HenceK
is closed.
The following Proposition gives a very useful propertykaf

Proposition 3.1. K is compact in @(ﬁ) and

V(X)| < d(x,T)¥x e Qand Yv e K, (3.3)
where dx,I') is the distance from x tb.
Exercise 3.1.Prove Propositiofi-3]1 42

REMARK 3.1. Let us define y and u.., by

Uso(X) = d(x,T)
U_oo(X) = =d(x, T).

Thenu,, andu_. to K. We observe that,, is themaximalelement
of K andu_, is theminimalelement ofK.

REMARK 3.2. Since &, -) is symmetricthe solution u of31)is char-
acterised (see Secti@nB.2 of ChEp. 1) as the unique solafitre min-
imization problem

{J(u) <Jv) WeK, (3.4)

ueKkK,

with J(v) = %a(v, V) — L(V).
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3.2 Physical motivation

Let us consider an infinitely long cylindrical bar of crogszson Q
whereQ is simply connectedAssume that this is made up of &otro-
pic, elastic, perfectly plastimaterial whose plasticity yield is given by
the Von Misses Criterion. (For a general discussion of jaigtprob-
lems, see KOITER]1], DUVAUT-LIONSH, Chap. 5]). Startingpfn
azero stress initial statean increasingorsionmoment is applied to the
bar. The torsion is characterised 8ywhich is defined as thtorsion
angle per unit length Then for allC, it follows from the Harr- Kar-
man Principlethat the determination of theress fields equivalent (in
a convenient system of physical units) to the solution offdtiewing
variational problem:

min5f|vv|2dx—cfvdx (3.5)
veK 2 Ie) [e)
This is a particular case df (3.1) &r{(B.4) with
L(v) = Cfvdx (3.6)
Q

Thestress vectorr in a cross - section is related tidoy o- = Vu, so
thatu is aStress potentiahnd we obtainr- once the solution of{35) is
known.

Proposition 3.2. Let us denote bydithe solution of@.3) and let, as
before Y, = d(x,T") thenCIim Uc = U strongly in I—%(Q) N CYQ).

Proof. Sinceuc is the solution of[(315), it is characterised by

(3.7)

J;, Vuc . V(v = uc)dx > C [ (v—uc)dx¥v € K,
uc € K.

Sinceu,, € K, from (3.1) we have

f Ve V(U — Ue)dx > C f (Ueo — Uc)dX. (3.8)
Q Q



3. A Second Example of EVI of The... 45

ie.
oo — 2dx < o. V
[Chie s ks b g
From [33B) we have,, — uc > 0 so that[[3P) implies
Il Uso = U ll1(q)< C(measn).
Which in turn implies
c”—r>noo Il Uso = Uc [lL1()= 0. (3.10)

Form the definition oK and from the Propositioi—3.1 we get that
K is bounded and weakly closed Vhand hence weakly compact in
FurtherK is compact irC°(Q).

Relation [3ID) implies

lim uc = us strongly in @(Q),
e : (3.11)
CI|m Uc = U, WeaklyinV

It follows from (3.8) that 44

{fg Voo V(Uso — Uc) = [, IV (Uso — Uc)IPdX+ C [ (Ueo — Uc)dX

=|| U = Uoo [IZ +C || Uso — Uc lli2(0) -
(3.12)

It follows easily from [3111) and(3.12) that
C|IH’IOOC ” Uso — UC |||_1(Q): 0,
C“_r)nw Il Uso = Uc [lv= 0.
REMARK 3.3. In the case of multiply connected cross section, the

variational formulation of the torsion problem has to redefil (see
LANCHON [1], GLOWINSKI - LANCHONJ1], GLOWINSKI[1, Chap

4]).
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3.3 Regularity properties and exact solutions

3.3.1 Regularity results

THEOREM 3.2. (BREZIS-STAMPACCHIA [2]). Let u be a solution of
@)or B2)and L(v) = [, fvdx.

(1) LetQ be a bounded convex domaink#f with I' Lipschitz continu-
ous and fe LP(Q) with 1 < p < c0. Then we have

ue W2P(Q). (3.13)

(2) If Qis a bounded domain @? with a smooth boundar¥; if f
LP(Q) with 1 < p < o then ue W2P(Q) .

REMARK 3.4. It will be seen in the next section that, in general, there
is a limit for theregularityof the solution of (3) even ifl" and f are
very smooth.

REMARK 3.5. It has been proved by H. BREZIS that, under quite re-
strictive smoothness assumptionsioand f we may have

ue W2>(Q).

3.3.2 Exact solutions

In this section we are going to give some examples of prob{Eni$ for
which exact solutions are known.

Example 1. We takeQ = {x : 0 < x < 1} and (V) = Cfolv dx with
c>0.
Then the explicit forn@31) is

{fol U(v - w)dx= ¢ f[(v-udxvv e K, (3.14)

ueK,
dv

where K= {ve H}(Q) : V| < la.e. onQ} and V = I
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The exact solutions oE(314) is given by

mm:%ml—mvxﬁcsz (3.15)
Ifc>2
xifo<x<i-1
u(¥) =<S[xA-x-(3-2)if $ -3 <x<3+3 (3.16)

1-xif $+2<x<1

Example 2. In this example we consider a two dimensional problem.
We take

Q={x:%+x <R,

L(v) = cf vdx with ¢> 0.
Q

Then setting = (X2 + x3)'/2 the solutionu of @) is given by 46

_c 2y 2
ux) = Z(Rz—r )if ¢ < = (3.17)
ifc>%then
R—rif (—2: <r<R
0 {ﬁ[(Rz—fZ) -(R-2)?ifo <r<&. (3.18)

These examples illustrate Rem&rkl3.4. We see that farge enough
we have
ue W22(Q) n H3(Q),u ¢ H3(Q). (3.19)
In fact we have .
ue HQ)Vs< >

Exercise 3.2.Verify that u given in the above two examples are exact
solutions of the corresponding problems.
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3.4 An equivalent variational formulation

In H. BREZIS-M, SIBONY [1] it is proved that if2 is a bounded do-
main of R? with a smooth boundary and if

L(v) = cfgv(x) dx(c > Ofor instancg,

a(u,Y—U)ZCf(V—U)dXVVE K, (3.20)
ue K = {ve H}(Q), Mx)| < d(x,INael.
The above probleni{3:20) is very similar to the obstacle lerob
considered in Sefl 2 of this Chapter. Siafe-) is symmetric,[[3.20) is
also equivalent to
Ju) < J(v) YweK
{ (W) <) Wek, 3.21)
ue K,
with 1
JV) = za(v,v) - cf v(X)dx
2 Q

The numerical solutions of{3:20) arld (3.21) is considene@ .iL.T [1,
Chap. 3] (see also CEA[2, Chap. 4]).

Exercise 3.3.Study the numerical analysis §.21)

Exercise 3.4.Assume c> 0 in 820) Then prove that the solution
u of 320)is also the solution of the EVI obtained by replacing K by
{ve HJ(Q) : v(x) < d(x,INae} in E20)

3.5 Finite Element Approximations of (3.1).

We consider in this section an approximation[of)(3. 1jitst order finite
elements From the view point of applications in mechanics (in which
f = c) it seems that, given the equivalence Bf13.1) dnd {3.20} it
suficient to approximatd{3.20) (using essentially the saménoakeas

in Sec[2). However, in view of other possible applicatioihseems
to us that it would be interesting to consider the numerioalt®n of
@) working directly withK instead ofK. For the numerical analy-
sis of [3:22D) by Finite Oferences sec G.L.T. [1. Chap. 3] and CEA-
GLOWINSKI-NEDELEC [1].
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3.5.1 Approximation of V and K.

We use the notation of SEC.P.5 of this Chap. We assumethata
polygonal domain oR? (see Remark33l8 below for the non polygonal
case) and we consider a triangulatignof Q satisfying [Z.211)-£Z.23).
ThenV andK are respectively approximated by

Vh = {Vh € CO(Q) : vh = 0 onT, Vit € PLVT € ),
Kh = KNV

Then one can easily prove
Proposition 3.3. Ky, is a closed, convex, hon-empty subsetpf V 48

REMARK 3.6. If v, € V thenVy, is a constant vector on everyd .

3.5.2 The approximate problem

The approximate problem is defined by :

{ Find u,, € Ky, such that (3.22)

a(Un, Vh — Un) = L(Vh — Up) YVh € K.
One can easily prove

Proposition 3.4. The approximate probler8.22) has a unique solu-
tion.

One may find in SeEl7. of this chapter practical formulae eelat
to finite element approximation. Using these formul&e. gBahd the
equivalent problen{323) can be expressed in a form motaldeifor
computation.

REMARK 3.7. Since &,-) is symmetric,[3:22) is equivalent to the
non-linear programming problem

min :—2La(vh,vh)— L(vh)]. (3.23)

VheKp
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The natural variables i {3.23) are the values takewpgver the

0
set)’ of the interior nodes ofy,. Then the number of variables I {3123)
h

0
is Card (). The number of constraints is the number of triangles i.e.

h
Card () and each constraint is quadratic w.r.t. the variablesesinc
IVVh| < 1iff [Vwh|? < 1 over T. (3.24)

REMARK 3.8. If Q is not polygonal, it is always possible to approx-
imate Q by a polygonal domaif2, in such a way that all vertices of
I'h, = 0Qn belong tol'. Then instead of definin@@.22) over Q we define

it over Q.

3.5.3 Remarks on the use of higher order finite elements

In these notes only an approximation Bf{3.1) by first ordetefiel-
ements has been considered. That fact is justified by thécares
of a regularity limitation for the solution of [3), which implies that
even very smooth data one may have V n H3(Q) (see examples of
Sec[33D.

We refer to G.L.T. [1, Chap. 3] and GLOWINSKI[1, Chap . 4. Sec.
3.5.3] for further discussions on the use of finite elemehteder> 2.

3.6 Convergence results . General case

In this sections we takk(v) =< f,v >, for f e H1(Q) = V.

3.6.1 A density Lemma

In order to apply the general results of Chlp. 1, the follgadlensity
lemma will be very useful

Lemma 3.1. We have
2(Q) NK =K. (3.25)
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Proof. We use the notation of LemniaP.4. et K ande> 0; define
Ve by
Ve = (V=€) = (v+ €)". (3.26)

O

Then we haver, € HY(Q) with | vv, < 1 a.e. inQ. From the
inclusionK c K = {ve V: v(X)| <d(xT) a.e. inQ} it follows that

=0i <
{Kje(()g)l sodlzx(,ji");’—r)e_iz’lsewhere (3:27)
so that from[[327) it follows that
V. € Kand has a compact support €. (3.28)
From Corollary(ZIl we have
L@ovf =V strongly in V (3.29)

From [3Z8) and(3.29) it follows that if#” = {v € K : v has a compact
support inQ}, then.z” = K.

Thus to prove the lemma it fiices to prove that any € ¢ can
be approximated by a sequenag)f of functions in2(Q) n K. Let
pn be a mollifying sequence as defined in Lemima 2.4 of this chapse
Letv e .#. Denote byv'extension ofv to R? putting outsideQ. Then
Ve H(R?).

Let Vi, = V= pp, so that

Un(x) = f pa(x— Y)UY)dy, (3.30)
RZ
Vn(X) = fR on(x=y) 7 Uy)dy (3.31)

Then
U € 2(R?)and lim ¥, = ¥ strongly in H(R?). (3.32)
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Since Supp T Q, from (3.30) we get
Suppvi € Q for n syficiently large. (3.33)

Definevy, = Wylo for n suficiently large. Then[(3:332) an@(3133)
imply

Vn € Z(9), (3.34)
r!im Vp = V strongly inV '

From [331) pn > 0, [ pndy = 1 and|V¥(y)| < a.e. oriR?, we obtain
R2

Pl = 9891 < [ FUQlon(x - y)dy < Lvxe 0, (3:35)
R
which completes the proof of the Lemma.

3.6.2 A convergence theorem

THEOREM 3.3. Suppose that the angles of the triangleszafare
uniformly bounded by > 0 as h— 0. Then

rI1im0 Up = u strongly inV n C°(Q), (3.36)

where u and gl are respectively the solutions @&.1) and (3.22)

Proof. To prove the strong convergence\ih we use Theorerfi 3.2 of
Chap[1, Sedl5. To do this one has to verify the following props

(@) If (Vh)n, Vh € Kn Yh, convergenceveaklyto v thenv € K.
(i) There existsy andry with the following properties:

(1) x =K,

(2) rh:x = KpVvh

(3) For eachv € y we can findhy = hp(V) such that for alh < hg(v),
rhv € Ky andhlingrhv = v strongly inV.
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Verification of (i). SinceKy c K andK is weakly closed (i) is obvious.

Verification of (ii). Let us defingy by
xY={ve Q) :|IVVX)| <1V¥xe Q}.

Then by Lemmd&3]1 and froT Ilim: v strongly in \V, Yv € V, it
follows thaty = K.

Definerp, : V N CO(Q) — Vj by
veVpvveVn Co(ﬁ),

0 (3.37)
(mV)(P) = V(P) VP € 3.

Thenrpv is the “linear” interpolate of on %,. From the assumption on
%n we have (cf. STRANG-FIXI], CIARLETIL],OR])

[V(rav = V)| < Ch| V [lwe~(q) a.e.Vve 2(Q), (3.38)
with C independent ofi andv.
This implies
rI1im0 || rhv—Vv]|y=0VVvEe y. (3.39)
[VIav(X)| < [VV(X)| + Ch| V [lwzs (o) & (3.40)

52

Sincev € y it follows from (340) that we havivrpv(X)| < 1 a.e. for
h < ho(V).

This impliesrpv € K.

This completes the Verification of (lijand hence by Theoreim®.2 of
Chap[d, we have thgtrong convergencef u, touin V.

The strong convergence of, to u in the L*- norm follows from
the convergence iv and from the compactness &f in C°(Q) (see
PropositiorZ311).
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3.7 Error estimates

From now on we assume thate LP for somep > 2.

In Sec[3711 we consider a one-dimensional problem (3riLjhis
case iff € L%(Q) we derive aro(h) error estimate in th&-norm. In
Sec[37P we consider a two-dimensional case WithLP, p > 2 and
Q convex, then we derive ant@(?-1/P) error estimate in th¥-norm.

3.7.1 One-dimensional case

We assume her@ = {x € R : 0 < x < 1} and thatf € L%(Q). Then
problem [311) can be written

fau(av_du
dx\dx dx

1
)dxsz(v—u)deve K,
° ° (3.41)

ue K{iveV: ‘d_v‘ <1 a.e.in Q}.
dx

LetN be a positive integer arful= % Letx =ihfori=0,1,...,N
and
& =[%-1,%li=12...,N.
Let Vi = {vh € C%(Q) : vn(0) = Vi = 0, Vhlg € P, i=1,2,..., N},

Kh=KNVh={Vh € Vy: |Vh(Xi) - Vh(Xi_1)|h fori=1,2,...,N}
The approximate probleiis defined by

o dx \dx

. 1
du, (th _ %_L::)dxz Jo f(vh = un)dx¥vi € Kp, (3.42)
Uh € K. |

Obviously this problem has a unique solution. Now we are gam
prove

THEOREM 3.4. Letu and y be the respective solutions @.41)and
@2Z2) If f € L2(Q) then we have

Il up — u [ly= 0(h).
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Proof. Sinceu, € K ¢ K we have from[(3.41)

1
a(u,up — u) > f f(un — u)dx (3.43)
0
Adding (3.42) and[(3.43) we obtain
1
a(uh—u, up—u) < a(vh—u, uh—u)+a(u,vh—u)—f f(vh—u)dxvv, € Ky,
0

which in turn implies

ldu/dw, du
dx dx

1 2 1 2
— — < — — —
2||Uh ullg=< 2||Vh U||v+£ dx
1
—f f(vh —U)dX¥vh € Kyt (3.44)
0

sinceu € K N H?(0,1) we get

ldud 11 d2u d2u
——(vh—U)dx:f0 ( )(Vh—u)dXSH a2 ll2ll Va — Ul 2 .

o dxdx Cde X
But we have
d?u
Il 2 l2<Il fll.2 . (3.45)

Therefore[(3.24) becomes

1 1
5 llun—u l12< S liva—u 124211 T ll2ll Vo = U llL2 YVh € Kn. (3.46)

O
Letv € K. Then the usual linear interpolatgv is defined by
\Y/
Ve Vh . (3.47)
(rv)(%) =v(x)i=0,1,...,N

we have

d 1) — V(%
= (Wl = v(x) hV(>q 1)
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1 % dv
= —dx
h Jx_, dx
Hence we obtain
d ) dv )
ld_x(rhv)la <1 smcelal <la.e.inQ. (3.48)

Thusrpv € Kj,.
Let us replacer, by rpuin 348). Then

1 1
Euw—uﬁséumu—uﬁ+znﬂm@mmu—umm». (3.49)
Since
Il rhu—ullv< Chl U llhzy< Chl f Iz, (3.50)
Il Th = U= Ul 2)< CIP Il U llzy< CHP 1| f [l 20 (3.51)

whereC denotes constants independenuafnd h; combining [3:4B)—

B51) we get
Il un — ully=0(h).

This proves the result.

Exercise 3.5.:Prove ([3.45)

3.7.2 Two-dimensional case

We shall assume in this subsection tkais a convex, bounded, polyg-
onal domain inR? and thatf € LP(Q) with p > 2. The last assumption
is quite reasonable since in practical applications in raps we have
f = constant.

THEOREM 3.5. Suppose that the angles@f are uniformly bounded
bydy > 0as h— 0, the with the above assumptions@Qrand f we have

| up — u [ly= O(hY/Z"1/P),

where u and g are respectively the solutions 1) and (2.22)
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Proof. : Sincef € LP(Q) with p > 2 andQ is bounded, from Theorem
B2 of this chapter we have

ue W2P(Q).
Then as in proof of Theorel=3.4 and usikg c K we obtain

3l un = U lZ< 3 1l vh = ullg +au, v = u) = [, f(vn - u)dx
< % | v —u |l —fQ(—Au — f)(vh — u)dxVvj, € Kj,.

(3.52)
Then using Holder’s inequality it follows froni (3162) that
S un—ull2< 3 I v —ullZ +{ll Aulie) + 11 f llLe (Q)}
[| vau ||Lp’(Q) YVh € Kh (3.53)
w11
with —p + F =1
O

Let 1 < q < c0. Assumés, satisfies the hypothesis of TheorEml 3.5
and thatp > 2. If W2P(T) c WLY(T) it follows from CLARLET [2]
and theSobolev imbedding Theorgiw?P(T) ¢ W-*(T) c CO(T)) that
VT € %, and¥Yv e W2P(T) we have

__é)

1+2(%
| V(v = 71V) llLaemyxeam< Chy % P71V [lweer) (3.54)

In G52)rrvis the linear interpolate of at the three vertices af, 56
hr is the diameter oT andC is a constant independent Bfandv.
Letv e W2P(Q) and letry, : V N CY(Q) — Vi, be defined by

mveVh  Yve HYQ) nCo@),
(mVv)(P) = V(P)VPeX}.

Sincep > 2 impliesW2P(Q) c C%(Q), one may definer,v, but
unlike the one dimensional case, usually

TV ¢ Ky, for ve W2P(Q) N K.
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SinceW2P(Q) c WL>(Q) for p > 2, it follows from (3.53) that a.e.
V(v =) < T8 [V sy YV € WAP(Q)
which in turn implies that a.e.
VGOl < 1+ thY 5 ||V [lweagay, YV e K NWAP(Q).  (3.55)

The constant occurring in [35b) is independent gfandh. Let us
define

_ ThV (3.56)
1+ th¥=2/P ||V [lwes(q)

It follows from (3.5%) and[(3.36) that
rpv € Kn Yv e W2P(Q) N K. (3.57)

m:vn Wz’p(Q) — Vj by
v

Sinceu € WZP(Q) n K, It follows from (Z5T) that we take: ryu in
B53) so that

1 2 1 2
5 Tn = Ully= Sl U= Un [+l Aulie + | fllee} Il U = Ul ) -

(3.58)
We have
U — U — rth2/P || U [lwzp(qy .U
fry—u=
! 1+ rh=2/P || u [z
which implies
Il U — U [lv<l pu = u [ly +rh*2P | U flesll U [y, (3.59)

Il 'Th = UllLw @<l U = U llp gy 2P (U eyl ULy - (3.60)

Sincep > 2 we havelLP(Q) c LP(Q) inclusion and from standard
approximation results (see STRANG-FIX [1], CIARLHT [1]]j]2t fol-
lows that under the above assumptiongjwe have

| 7u = U [lv< Chl U [lweeg) (3.61)

Il 70U = U [l )< CHP |1 U llwzp(ey, (3.62)

with C independent oh andu. Then the 0¢/>~YP) error estimate of
the statement of Theorem B.5 follows directly frdm (3.58)6R).
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REMARK 3.9. It follows from Theorerfi 315 that if £ constant (which
correspond to application in mechanics) anddis a convex polygonal
domain, we have "practically” ard(vh) error estimate.

REMARK 3.10. One may find in FALKJIL] an analysis of the error
estimate for piecewise linear approximations @) whenQ is not
polygonal.

REMARK 3.11. We may find in FALK-MERCIERI[1] a flerent piece-
wise linear approximation of3.l).Under appropriate assumptions this
approximation leads to a@(h) error estimate fot| u, — u ||y. However
this approximation seems less suitable for computatioas the ap- 58
proximations we have studied in this section (see also G[L, Thap.

3)).

3.8 A dual iterative method for solving (3.1) and (3.2)

There are several iterative methods for solvigl(3.LLABand the
reader who is interested in this direction of the problem roagsult
G.L.T [1, Chap. 3] (see also CEA-GLOWINSKI-NEDELEQ [1]). In
this section we shall use the material of CEA[2, Chap, 5,i8ed] to
describe an algorithm of Uzawa type which has been sucdiyssfied
to solve the elasto-plastic torsion problem. Another metwidl be de-
scribed in Chafl]5, S€c.®.2.

3.8.1 The Continuous case
Following CEA [2] we observe th& can also be written as
K={veV:|VW-|<0a.e.l.

Hence it is quite natural to associate[fal 3.1 the followingraagian
functional.# defined orH}(Q) x L*(Q) by

LV, p) = %fglelzdx— < f,v> +% fgu(IVVIZ — 1)dx

It follows from CEA [2] that if # has a saddle poifit, 1} € HJ(Q)x
LY@Q)(LP(Q) = {g e L*(Q) : g < 0 a.e}) thenu is a solution of [311).
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ThusA appears as an infinite dimensional multiplier Fof John-Kuhn-
Tucker type) for[[311). The existence of such a multiplieL{hhas been
probed by H. BREZISR] in thehysical casdi.e. f,, = constant), but
in more general cases the existence of such a multiplief’{e2) is still
anopen problem

Following CEA [2], it is then natural to use, for solving_{]3.Ja
saddle point solvelike the following algorithm of Uzawa’s type:

A% € L2(Q), arbitrarily given (for example® = 0), (3.63)

then by induction assuminyj’ known we obtain uand A™* by

n n n 1
2N, A" < Z(v, ") Vv € Hy(Q), (3.64)
u" € H! +4 (Q).
AL = A" 4 p(IVU"? - 1)]* with p > 0. (3.65)

Let us analyse[{3.64) in detail; actually(3.64) is a lineandblet
problem, the explicit form of which is given (in the divergenform) by

{—V-((l +AMVU") = fin Q (3.66)

Un|r =0.
The problem[(386) has a unique solutionHp(Q) wheneverl" e

L (€2). Since we do not know in general about the existence of a-mult
plier in L$(€2), the above algorithm in general is purely formal.

3.8.2 The discrete case

In this section we shall follow G.L.T. [1, Chap.3, Sec. 9RgfineVy,
andKj, as in section 3.5.1 of this Chapter. Defing(approximation of
L(€2)) andAp (approximation ol) by

Lh ={uel®Q)u= Z UTXT,HT € R},
Te%h

and whereet is thecharacteristic functionof T, and

Ah={uelny:u>0a.e. inQ}.
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Clearly it follows that forw, € Vi, Vv, € L X Ly, and forw, € Ky,
1—|Vwpl? € Ap.
Define the Lagrangiar¥’ on Vj, x Ly, as sectioi3.8l1, then we have

Proposition 3.5. The LagrangianZ has a saddle poirfun, An} in V, x
Ap with

U, is solution of (3:22) (3.67)
An(Vupl> = 1) = 0. (3.68)

Proof. SinceVy andLy, are finite dimensional{3.67) arld (3168) will fol60
low from CEA[2. Chap. 5] (cf. also ROCKAFELLAR[1, Chap. 28if

we can prove that there exists an element¥pin the neighbourhood of
which the constraints are strictly satisfied. Let us showttere exists

a neighbourhood\,, of zero inVy, such that'v,, € Ny, |Vvh2|2 -1<0.1In
order to show this, observe that the functional givervipys [Vv,2 - 1

is C* and at zero it is equal tel, Hence the assertion follows. 0O

To conclude this Sectidd 3, let us describe an algorithm @fidvs
type which is the discrete version @i {31 63)=(3.65)

AP € Ay arbitrarily chosen (for instancé = 0), (3.69)

then by induction oncgf is known, we obtain/liand A7** by

LU AN < Z(vh, ANV, € Vi,
{n(“ ) < 2 (vh, DYV € Vi (3.70)
Uh € Vh,
AL = A0 + p(IVUl? - 1] with p > O. (3.71)

We observe that iftf) is known thenup is the unique solution of the
following approximate Dirichlet problem (given in variatial form)

1+ AMVU - VvhdXx =< f, vy > YV, € Vp,
{fg( hVUy - VWhdX =<,V > ¥V € Vi (3.72)

UE € Vh.

It follows from CEA [2, Chap. 5] and G.L.T. [1, Chap. 2] thatfo
p > 0 and stficiently small we haven limip = uy, whereu - h is the

solution of [32R).
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REMARK 3.12. The computations we have done seem to prove that
the optimal choice fop, is almost independent of h for a given prob-
lem. Similarly the number of iterations of Uzawa'’s algonitfior a given
problem is almost independent of h.

4 A Third Example of EVI of The First Kind: A
Simplified Signorini Problem

Most of the material in this section can be found in G.L.T.Gbap. 4]

4.1 The continuous problem

Existence and uniqueness resuls usual letQ be a bounded domain
of R? with a smooth boundary. We define

V = HY{(Q), (4.1)

a(u,v) = f Vu- Vvdx+ f uvdx 4.2)
Q Q

L(v) =< f,v>, f e V7, (4.3)

K ={ve HY(Q) :yv>0a.e. o}, (4.4)

whereyv denotes théraceof vonT'. We have then the following
THEOREM 4.1. The variational inequality

alu,v—u) > L(v-u)VveK, . .
{ ( ) ( ) has a unique solution. (4.5)

ue K

Proof. : Since the bilinear forna(:,-) is the usual scalar product in
H1(Q) andL is continuous, from Theoref3.1 of Chagikr 1 we get that
@3) has a unique solution provided we show tas a closed. convex,
non-empty subset of.

Since Oe K (actually Hé(Q) c K), K is non-empty. The convexity
of K is obvious. If {,)n c K andv,, — vin HY(Q) thenyv,, — yv, since
y 1 HY(Q) — L) is continuous. Since, € K, yv, > 0 a.e. or.
Thereforeyv > 0 a.e. orT". Hencev € K which showsK is closed.

This proves the theorem. m|



4. A Third Example of EVI of The... 63

REMARK 4.1. Since &, -) is symmetric, the solution u @.3)is char-
acterised (see Chafl 1, SEC]3.2) as the unique solutiore shihimisa-
tion problem

{J(u) < JV) Vv eK, @7

uek,
1
where Jv) = Ea(v, V) — L(V). 62

REMARK 4.2. Actually @3)or @1)is a simplified version of a prob-
lem, occurring in elasticity, called the Signorini probldior which we
refer to DUVAUT-LIONS [1, Chap. 3] and to the references direr We
refer also to DUVAUT-LIONS, loc. cit.,, Chap. 1, Chap. 2 fohexnt
physical and mechanical interpretations @3) and @4).

REMARK 4.3. Assuming thaf) is bounded (at least in one direction
of R?) we consider

V = {ve HY(Q);v = 0a.e.onlp}. (4.8)

a(u,v) = f Vu - Vvdx (4.9)
Q

L(v) =< f,v> with f € ()", (4.10)

[K] ={veV:yv>ga.e. oy}, (4.11)

wherel'p andT'; are “good” subsets of” such thatl'y NI'g = ¢,T =
I'h UT (see fig. 4.1)

Io

Figure 4.1:
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Assuming that measure @% is positive and thag is suficiently
smooth, it can be proved that the following variant[of4.5)

{é(u,v —u) 2 Lv-u ek, (4.12)

uek,
has a unique solution.

In the proof of this result one uses the fact th@t V) defined a norm
onV which is equivalent to the norm induced Bi}(Q).

Exercise 4.1.Prove that 4v, V) defines a norm equivalent to the norm
induced by H(Q).
4.2 Regularity of the solution

THEOREM 4.2. (H BREZIS [3]) LetQ be a bounded domain @2
with a smooth boundary (or Q is a convex, polygonal domain). If
L(v) = [, fvdx with fe L%(Q) then the solution u o@B)is in HX(Q).

4.3 Interpretation of (4.5) as a free boundary problem
Let us recall some definitions and results related to cones.

DEFINITION 2.1. Let X be avector space, € X and xe C,thenC is
called a cone with vertex x if for allg C, t > O implies x+t(y—x) € C.

Lemma 4.1. Let H be a real Hilbert space,(h-) a bilinear form on
H x H; A alinear form on H and C a convex cone contained in H with
vertex at 0. Then every solution of

{b(u, v—u) > A(v-u)¥veC, (4.13)
ueC
is a solution of

b(u,v) > A(V)YveC,

b(u, u) = A(u), (4.14)

ueC,

and conversely.
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Exercise 4.2.Prove Lemm&4]1

Proposition 4.1. Assume that

L(v):Lfvdx+£mvdl“ (4.15)

with f and g syiciently smooth. Then the solution u @3)is charac-
terised by
-Au+u= fa.e.inQ,
yu>0,% > ae. o, (4.16)
yu(3 - g) =0a.e. or.

Proof. (1) First we will prove that[{4]5) implie$ (4.1.6)
SinceK is a convex cone with vertex at O it follows from Lemmal4.1
that

a(u,v) > L(V)Yv e K, (4.17)
a(u, u) = L(u). (4.18)

Since2(Q) c K we have from[(417) that

fVu - Vodx + f updx = f fpdxV¢ € 2(Q). (4.19)
Q Q Q
It follows from (4.I9) that
- Au+u=fae. inQ. (4.20)
m|

Letv € K. Multiplying (@20) byv and usingGreen’s formulait
follows that

a(u,v):f fvdx+fyv@dl"\7’ve K. (4.21)
o) r- on
From [41Y¥) and{4.21) we obtain

ﬁ(% - g)yvdF >0V¥veK. (4.22)
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Since the congK is dense in2(I') = {ve L?() : v> Oa.e. onl}it 65
follows from (£.22) that

ou
an g>0a.e.o. (4.23)
Takingv = uin (#2Z1) and usind{4.18) we obtain
ou
— —g|dr=o. 4.24
Jrl-g)ar-o 020

Sinceyu > 0 and using[{4.23) we obtaifu(% - g) =0a.e. o.
This shows thai{{415) implieE{4116).

(1) Letus show thaf{4.16) implies(4.5). Starting frdm_(3).2nd us-
ing Green’s formula one can easily profie{4.17) &nd{4.1Bgs€

two relations in turn imply, from Lemnia34.1, thats the solution
of @3).
REMARK 4.4. Similar results may be proved for that varia@12) of
#3) (see Remari@d.3).

REMARK 4.5. From the equivalent formulatio@.18) of (.3)it ap-
pears that the solution u d.8)is the solution of a free boundary prob-
lem namely

Find a stificiently smooth functiom and two subsetgy andI', such
that

FO U r+ = r, rom N r+ = ¢, (4.25)
-Au+u=finQ,
yu=0o0nTo, & > gonTy, (4.26)

yu>oonl,, % =gonT,.

4.4 Finite element approximation of (4.5)

We consider in this section the approximation[ofi4.5) byceieise lin-
ear and piecewise quadratic finite elements. We assum&tbéis a
bounded polygonal domain &? and we consider a triangulatic, of
Q obeying [Z211)-HZ.23) (see JecI2.5., Chap. 2) ; we use tiatioobf
Sec[Z.51 and 3.6 of this chapter.
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4.4.1 Approximation of V and K
The space/ = H1(Q) may be approximated by the spaﬁ%&.where

V¢ = {v, € CO%Q) : vhlt € P, VT € Ghl k= 1,2,
Defineyn = {P € Zh N T} = = - X0,
y,={Pex Nl}=% -3

yhifk=1
YUy if k=2

K
n

Then we approximat& by
KK = Vi € VK : vn(P) > OVP € y<fork = 1, 2).
We have then the obvious

Proposition 4.2. For k = 1,2 the I{j are closed, convex, non-empty
subsets of {and K! c K vh.

4.4.2 The approximate problem

Fork = 1, 2 the approximate problems are defined by
Ky [ AU, v — UK) > L(vh — uk) Vv € KK,
(Plh) k Kk
us € K{.

Then one can easily prove,
Proposition 4.3. The problen(P'ih)(k = 1, 2) has a unique solution.
REMARK 4.6. Since #,-) is symmetric,(PX) is equivalent (See 67
ChapIl, Sed_3 2) to the quadratic programming Problem

min
VhEKlﬁ

%a(vh,vh) - L(Vh)] :

REMARK 4.7. Using the formula of SeEl 7 One may expr@8) and
the equivalent quadratic problem in a form more suitabledomputa-
tion.
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4.5 Convergence results. (General case)
4.5.1 A density Lemma

To prove the convergence results of the following $ec. We2shall
use the following

Lemma 4.2. Under the above assumptions Qrwe have
K NC>(Q) = K.

Proof. Sincer is Lipschitz continuous we have (see NECAS [1])

HY(Q) = C~(Q);

Using the standard decomposition= v* — v~ it follows from Corol-
lary[Z] that
veK & Vv e H}(w). (4.27)

O

SinceZ7Q) = H3(Q) in the HY(©)- topology, it follows from [Z217)
that we have only to prove

KNC=(Q) =K, (2.1)

whereK = {ve HY(Q),v>0a.e. inQ}.
Sincerl is Lipschitz continuousQ has (see LIONS [2], NECAS
[1]), the so-called 1-extension property which implies
{VV e HY(Q), 3v € HL(R?) such that (4.29)

Vo=V

Letv € K and letv'e H(R?) be an extension of obeying [Z.2D).
It follows, fromv > o a.e. inQ and Corollany[Z11, thaff is also an
extension ofv obeying [Z2P). Therefore if € K, it has always an
extensionv™> 0 a.e. obeying[{4.29). Consider such a non-negative
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extensionv and a mollifying sequence, (like in Lemma 2.4 of this
Chap.). Define/y by

we have

Un € 2(R?),

Uh € 7(E) _ , (4.31)

lim %, = ¥ strongly inH(R?).

Fromp, > 0 andv'> 0 a.e. we obtain fronf{4.B0) that
Un(X) > 0Vx € R?. (4.32)
Definev, by
Vi = Vnlg;

from @31) and[{4.32) it follows that
Vi € C¥(Q), lim vy = v stronglyinH(Q), v, > 0 a.e. inQ.

This proves the Lemma.

4.5.2 Convergence theorem

THEOREM 4.3. Suppose that the angles@f are uniformly bounded
below bydy > 0as h— 0, then

lim uk = u strongly inH(<), (4.33)

where uuﬁ are respectively the solutions @ (#.5) a{'le(h) fork=1,2

Proof. To prove [4.3B) we use Theordm1.2 of Chap. 1. To do this we
only have to verify that the following two properties hold:

(i) If (Vi)n, v € KX, convergesveaklyto vthenv € K. 69

(i) There existy c K andr : y — K¢ such thaf = K andhli_>nolr,‘§v =v
strongly in V, Vv € y.
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Verification of (i). If k=1, then (i) is trivially satisfied, sinclﬁﬁ c K.

A1i+1/2 Mi71/2
Mitq

M;_y

Figure 4.2:

If k = 2, using the notation of Fig. 4.2. we considere Co(I),
¢ > 0, and we definey, by

¢h = Zidg(Mis12)xi+1/2 (4.34)

whereyi.1/2 denotes theharacteristic functionof the open segment

¢n = 0a.e. o,
. (4.35)
lim || ¢h = ¢ llL>@)= 0.
h—0
Let us consider a sequencg)q, Vh € Kﬁ Vh, such that
lim v, = vweaklyinV. (4.36)
70 It follows from (€.36) (see NECAS]1]) thaht I(i)mvh =yv strongly

in L2(). This implies in turn that

lim f YWhondl = f yvodr'. (4.37)
h—>0 T T
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It follows from Simpson’s rule that

J-rvigndl = EZiIMiMi,1l¢(Mis1/2)
[Vh(Mi) + 4vn(Miy1/2) + Vh(Miy1)] 2 0 (4.38)
Yh € K2, V¢ € CO(IN), ¢ > 0.

We obtain from[[4.37) and{4.B8) that
f wpdl' > 0¥¢ € CO(I), ¢ > 0,
r

which impliesyv > 0 a.e. ol
This proves (i).
Verification of (ii). From Lemme 412, it is natural to take = K N
C>(€). Definerf; HY(Q) N C%(Q) — VK by
rkv e V¥ Vv e HY(Q) N CO(Q), (4.39)
rkv(P) = v(P) VP e =K k = 1,2. '

On one hand, under the assumptions madesprwe have (see
STRANG-FIX [])

I kv = VIlv< CHE | V[l YV e CO(Q).k=1,2. (4.40)

with C independent oh andv.
This implies

lim | rkv—viy=0We y, k=12 (4.41)
On the other hand it is obvious thejv € KX Vv e K n C%(QY), so that

rkve Kkvv e v, k=1,2.
In conclusion, with the above andrr'j, (ii) is satisfied.

REMARK 4.8. For error estimates in the approximation @.3) by 71
piecewise linear finite elements, it has been shown by BREBAAER-
RAVIART[1] that we have

[l Up — U llgaiy= O(h),

assuming reasonable smoothness hypothesis forti on
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4.6 Iterative methods for solving the discrete problem

We shall briefly describe two types of methods which seem tayipeo-
priate for solving the approximate problem of Jecl 4.4.

4.6.1 Solution by an over-relaxation method

The approximate problerrP{h) are, fork = 1,2, equivalent to the
guadratic programming problems described in Rerhatk 4.6viBye

of the properties oKt'j (see Sec. 4.4.1.) we can use, for the solution
of (P‘Ih), the over-relaxation method with projection, which hasadly
been used in Sec. 2.8 to solve the approximate obstaclegonadohd is
described in CEA [2, Chap. 4]. From the properties of our fgwbthe
method will converge provided @ w < 2.

4.6.2 Solution by a duality method

We first consider theontinuous casd.et us define a Lagrangia®’ by
Z(v,q) = %a(v, V)~ L(v) - f qyvdr. (4.42)
r

and leta be thepositive conef L?(I), i.e.
A={qel?I):q>0a.e. o}
Then we have

THEOREM4.4. LetL(v) = [ fvdx+ [ gyvdr with f and g sgficiently

smooth. Suppose that the solution @H)and @4) belongs to H(Q);
then{u, g—ﬁ — g} is the unique saddle point ¢¥ over H'(Q) x A.

Proof. We divide the proof into two parts. In the first part we will sho
that{u, g—ﬁ — g} is a saddle point afZ overH(Q) x 1 and in the second
part we will prove the uniqueness.

(1) Letp= % — g. From the definition of a saddle point we have to
prove that
{ﬂu, o) < Z(u,p) < LV, PV, ) € VX A,

{u,p} € V xA. (4.43)
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O

Sinceu € H?(Q) we haved! € HY2(I') c L2(I) (see LIONS -
MAGENES [1]). Then ifg is smooth enough we have = g—ﬁ -ge
L2(I). From PropositiofiL4l1 we have

_u_
{p =% _g>0o0nr, 4.44)

p-yu=0a.e.om.

This implies that we havéu, p} € HY(Q) x A and [ p- yudr" = 0.
Sinceyu > 0 onI" we have

fq -yudl’ > 0Vq € A. (4.45)
r
It follows from (Z.44) and[(4.45) that

Z(u.6) = 3a(u.u) = L) - [q-yudl < Fa(u.u) - L(u) =
= %a(U,U)— L(U)—J];p'YUdr :f(u, p)VQEA

which proves the first inequality of {4143).
To prove the second inequality ¢f{4143) we observe thatdhgien
u* of the minimisation problem

{g(u*, p) <.Z(v, p) YV € HY(Q), (4.46)

u* e HY(Q),

is unique and is actually the solution of the linear variadiloequation 73

{a(u*,v) = L(v) + . pyval' Vv € HY(Q), (4.47)

u* e HY(Q).

SinceL(v) = [, fvdx+ [ gyvdr, u* is actually the solution of the Neu-
mann problem

—AU* + U = finQ,
{ R, (4.48)

o _ _ du
m—p+g—m0nr,
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Since from Propositiofi4l.1 we obviously have

{—Au+u:finQ,

u _ au
an = an onl,

it follows from the uniqueness property of the Neumann pob(4.48)
thatu = u*. Using [4.46) andi = u*, we obtain the second inequality in
(@Z3). This proves thdu, p} is a saddle point afZ overH(Q) x A.
Uniqueness.Let {u*, p*} be a saddle point af” over HY(Q) x A.
We will show thatu* = u, p* =. It follows from (£.42) and[{4.43) that

f(p —Q)yudl’ < 0vYq e A. (4.49)
r

We have similarly,
f (p", @yyudl’ < 0vVg e A, (4.50)
r

Takingq = p* (respectivelyq = p) in @49) (respectively[{4.50)) we
obtain

fr (p" = p)y(u* — u)dr < 0, (4.51)

It follows from the second inequality df {41 3) thats the solution of

{a(u, V)1: L(v) + [ p-yvdl Vv € HY(Q), (4.52)
ue HY(Q).
ans similarly
{a(u*, V)1= L) + J p - vl Vv € HY(Q), (4.53)
u € HY(Q).

Takingv = u* — u (respectivelyv = u — u*) in @52) (respectively
#53)) we obtain

au* —u,u" —u) = j; (p" = p)y(u* — u)dr. (4.54)
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Using theV-ellipticity of a(-, ‘) it follows then from [4.511)-H4.34) that
u* =uand
[ = Povar = 0ve Hie),
r
which implies thatp* = p.
Hence{u, p} is the unique saddle point ¢ overH(Q) x A.
It follows from Theoren’4M that we can apply Uzawa’s aldorit

to solve [45) (see CEAT2, Chap. 5], G.L.I [1, Chap.Bl, [ap. 4,
Sed3.]). In the present case this algorithm is written Hevfis:

p° € A is arbitrarily chosen (for instange® = 0). (4.55)
By induction, after knowingpwe computéu”, p*1} by

2", p" < Z(v, p") Vv e HY(Q), u" e HY(Q), (4.56)
Pt = PA(p" - pyu"), (4.57)
where P, is projection operatorfrom L%(I') to A in the L?() norm 75

andp > 0. It follows from {£.56) thau" is in fact the solution of the
Neumann problem

_ A0 n_ fi
au%u + un finQ, (4.58)
il =p"+0
The projectionP, is given by
PA(Q) = g" Vg € LA(T). (4.59)

Sincey : HY(Q) — L%(I) is a continuous linear map we have
IV Dz <l y 1L 1V gy YV € HY(Q). (4.60)
It follows then from CEA, G.L.T., loc. cit., that

lim u" = u strongly inHY(Q), (4.61)

Nn—oo

whereu is the solution of the probleni{4.5) provided that ® < “y%
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Let us give a direct proof for this convergence result. Thisop
will use the characterisatiof(4.5) given in Proposifiah @ven ifa(-, -)
is not symmetric the same result follows). It will be conaniito take

#.58), [4.58) in the following equivalent form:

{a(u”,v) = L(v) + [ pMyvdl vy € HY(Q),

u" e HY(Q). (4.62)

Let u be the solution of[[415) angp = & — g. It follows from
Propositio 41 that

a(u,v) = L(V) + [ pyvdl' V.2 € HY{(Q), 4.63)
ue HY(Q),
f(q — p)yyudr > 0¥qe A, peA. (4.64)
r
Relation [4.6K) can also be written as
[@=pip-pru-par<ovaenp>o
which is classically equivalent to
p = Pa(p - pyu). (4.65)
Let consider:
Un:un_u’—pn: pn_p
SinceP, is a contraction , we have frof {4157) aihd (4.65)
1™ eIl P = pyA” llizgry - (4.66)

It follows from (4.66) that
1P 12l B llizny> 20 fr YUPE — p? 17T [IEypy - (4.67)
Takingv = T" #62) and[[£.63) we obtain

a@", ") = f pyu'dr. (4.68)
r
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It follows then from [4.6)7) and{4.68) that
1" 22y = 1P o= p@ =2 Iy ) IO Iy - (4.69)

IfO<p< “# we observe that the sequen({i&” ”fZ(r)}” is decreasing
and hence converges. Therefore we have

lim (1" 2y = 1P Iy = 0

so that
lim ] " [lyye= 0.

Sincet” = u" — u, we have proved the convergence.

Similarly we can solve the approximate probleﬁ’lih(), k =12,
using the discrete version of algorithin (4.55)={%.57). Wallslimit
ourselves tk = 1, since the extension hereka= 2 is almost trivial.

We use here the notations of SEC]4.1. AssumeyhatXy, — Zﬂ has
been ordered.

Letyn = {Mi}i.

We approximateA and.# by

AL = (G : g = (G}, G > 0} and

{Zhl(vh, Gn) = 3a(Vh, Vh) — L(Vh) 2.2)

= 3% MiMisal[ G V(M) + GiraVh(Miz)].

We can prove thaﬁhl has a unique saddle poift,, pn} wherepy, is
a F. John-Kuhn-Tucker vector foPf,) overV{ x Al anduy is precisely
the solution of P}, ). The discrete analogue ¢f{4159)=(4.57) is then

pd e A (4.71)

{z#(uﬂ, PR) < 2 (V. PR)Yvh € V. @72

n 1
uhth.

pt = [p! - pul(M)]* Vi, p > O. (4.73)
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One can prove that if & p < 8, 8 small enough, theQ limup = un
—+00

whereu, is the solution of Pih). One may find in G.L.T. [2, Chap.4] nu-
merical applications of the above iterative methods foc@igse linear
and piecewise quadratic approximations[of](4.5).

Exercise 4.3.Extend the above considerations(gg, ).

5 An Example of EVI of The Second Kind: A Sim-
plified Friction Problem

5.1 The continuous problem. Existence and Uniqueness re-
sults

Let Q be a bounded domain @2 with a smooth boundary = 4Q.
Using the same notations as in 9dc. 4 we define

V = ht(Q), (5.1)
a(u,v) = f Vu- Vvdx+ f uvdx (5.2)
Q Q
L(v) =< f,v>,f e V", (5.3)
j(v) = gflyvldl", whereg > 0. (5.4)
r

We have then the following

THEOREM 5.1. The variational inequality

uevV. -9

{a(u,v— w+j(v)— jlu)y = Liv-u)VYve V.
has a unique solution.

Proof. In order to apply Theorein 4.1 of Chdp. 1, it is enough to verify
that j(-) is convex, proper and l.s.c. Actuall)f-) is a seminorm on
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V. Therefore using Schwartz inequality irf(I') and the fact thay
Z(HYQ), LA(I") we have

i) — JW)I < 1ju=V)| < g(meas D)2 || y(v-u) llzy< Cllu=V v,
(5.6)
for some constartt. m|

Hencej(:) is Lipschitz continuous oW, so thatd(:) is I.s.c ; j(}) is
obviously convex and proper. Hence the Theorem is proved.

REMARK 5.1. If g = 0, it is easy to prove thae.g) reduce to the
variational equation

a(u,v) = L(V)Yv eV,
ueV.

This is related to the variational formulation of the Neumamoblem.

REMARK 5.2. Since &,-) is symmetric,. the solution u of@H)is 79
characterised, using Lemnia®.1 of Chhp. 1, as the uniqudicolof
the minimization problem

(5.7)

J(u) < J(v), YV e,
uevy,

where Jv) = :—2La(v, V) + j(V) = L(V).

REMARK 5.3. The problem&.3) (and (&4)) is the simplified version
of afriction problem occurring irelasticity. For this types of problems
we refer to DUVAUTLIONS [1]and the bibliography therein.

Exercise 5.1.Let us denote bygthe solution of(&5). Then prove that

lim ug = U strongly in H(Q),

g—+o0

where( is the unique solution of

a(0,v) = L(v) Yv € Hi(w),
0 Hi(Q).
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5.2 Regularity of the solution

THEOREM 5.2. (H. BREZIS[[B]). IfQ is a bounded domain with
a smooth boundary and if(l) = fQ fvdx with f € L%(Q), then the
solution u of &8)is in H3(Q).

5.3 Existence of a multiplier

Let us defineA by
A={uel?D): X)) <1la. e.inl}.
Then we have

THEOREM 5.3. The solution u of{&8) is characterised by the exis-
tence of1 such that

{a(u, V) +g L ayvdl = L)YV eV, 5.8)
uev,
{/l €A, . (5.9)
Ayu = |yul a. e. inl.
Proof. We will prove first that[[5F) implied(5.8) and (5.9).
Takingv = 0 andv = 2uin (&8) we have
a(u, u) + j(u) = L(u). (5.10)
It follows then from [&.5),[(5.0) that
L(v) —a(u,v) < j(v)VveV,
which implies
IL(V) —a(u, V)] < j(v) = gflyvldl“ YveV. (5.12)
r

O
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We haveH!(Q) = H3(Q) @ [H3(Q)]+ where H3(Q)]* is the orthog-
onal complement of}(Q)in HY(Q).
Sincey : [H3(Q)]+ — HYA(I') is an isomorphism, it follows from

&13) that
L(v) —a(u,v) = £(yv) Vv eV, (5.12)

where((-) is a continuous linear functional da%/("). It follows then

from (&11), [51PR) that
@) < g1l Iy Vi € HYA(D). (5.13)

SinceHY2(I") ¢ LY(I) it follows from (&.I3) that, we can apply to
£(-), the Hanh-Banach Theorem (see for instance YOSIDA [1]}taio
the existence of € L*(IN), |A(X)| < 1 a.e. inl" such that

) =g f Audl Vi € HY?(D). (5.14)
r
Therefore it follows from[[5.12) and{5.114) that 81
a(u,v) + gf/lyvdr =L(V)VYveV,
r

which proves[(518).
Takingv = uin (&8) we obtain

a(u, u) + gfrxlyudl" = L(u).

Using [5.10) and the above equation we obtain

fl:(lyul — Ayu)dr’ = 0. (5.15)
Since|l| < 1 a.e. we have
[yu — Ayu >0 a.e. (5.16)
It follows from (5.1%) and[(5.16) that

lyul = Ayu ae.
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This completes the proof of(3.8) arld (5.9). Assumingl(5r8) &.9)

we will show that[[5.b) holds.

Let {u, A} be a solution of[{5]8)[{519). It follows froni(%.8) that

a(u,v—u)+gf/ly(v—u)dl": Liv—u)VYveV,
r

which can also be written as

a(u,v—u)+gf/1yvdr—gf/lyudrzL(v—u)VveV.
r r

From [59) and[{5.17) we obtain

a(u,v—u) + gﬁ&wdl“—gﬁbﬂdl‘ =L(v-u)VYveV.
But sincedyv < |yv| a.e. inT, it follows from (&I8) that
au,v—u)+ jV) - jluy = L(v-uVYve V.
This proves the characterization.

REMARK 5.4. Assuming that

L(v) = f fovdx+ f fiyvdr,
Q r
with fy, f1 syficiently smooth, we can expre@s8) by

-Au+u= fpinQ,
A t+gi=fra e onl.

It follows from(&.19)that A is unique.

Exercise 5.2.Prove thatd is uniqueYL € V*.

5.4 Finite element approximation of (5.5)

(5.17)

(5.18)

(5.19)

Let Q be a bounded domain &%. The notation used here is mostly the

same as in SeE4.4 of this Chapter.
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5.4.1 Approximation of V

We use the piecewise linear and piecewise quadratic appatixins of
V = HY(Q) described in SectidnZ.3.1 of this chapter.

5.4.2 Approximation ofj(-)
We use the notation of Figure 4.2. Then we approxinjédey

) = 2 " MM 2l (MOI+ M) Yon € Vi, (5.20)
i

{iﬁ(vh) = 350 MM 1l (7 V(M) + 4y (M2 (5.21)

+yVh(Mis1)]) YV € VE.
In (2.20) and[(5.21) we havel; € y, andMi. 12 € vy,
REMARK 5.5. Clearly (&20) (&21) are respectively obtained from

j() by using Trapezoidal and Simpson’s numerical integratiamiJ-
lae.

5.4.3 The approximate problem
Fork = 1, 2 the problem[{5]5) is approximated by 83

) {a(uﬁ,vh — U) + (Vi) = J(UE) > L(vh — UK) YV € Vi,
2h

K K
uhth.

Then,
Proposition 5.1. The problen(P'gh) has a unique solution.

REMARK5.6. Since &,-)is symmetric(P'gh) is equivalent to the non-
linear programing problem
1 .
min | Za(vh, ) + jK(vh) = L(vh)|. (5.22)

k
Vh EVh

REMARK 5.7. Using (&20), (&21)and (ZA)(Z.3) of Sectioil? of this
chapter, we may expreiﬁ";h) and (&.22) in a form more suitable for

computations.
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5.5 Convergence results

THEOREM 5.4. Suppose that the angles @ are uniformly bounded
below byy > 0as h— 0, then

lim uk = u strongly in H(Q), (5.23)

where u and ﬁlare respectively the solutions @.3) and (Pgh) fork =
1,2

Proof. To prove [5.2ZB) it is enough to verify the following (see Theo
rem[6.B of Chaptdrl1)

(i) There existdJ c V,U =V and
rk: U — V¢ such that
lim rkv = v strongly inV Vv e U,
(i) If Vh —» v weaklyin V then
. . .k .
Ilrp_lgf In(vh) = j(v).
(i) tim_ (k) = () Vv e U.
O

Verification of (i). Sincel is Lipschitz continuous we have (see NECAS

()

C(Q) = HY(Q). (5.24)

Therefore it is natural to takel = C®(Q). Definerﬁ by (£39)
if Theorem[4.B, chaffl]2; under the above assumptiofsipit follows
from STRANG-FIX [1] that

| rr'jv— Vlv< Ch v lhkaq) YVEV, (5.25)

whereC is a constant independent lofindv. This implies (i).

Verification of (ii).
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(1) Case k= 1. We use again the notation of Figure 4. 2. Since the
trace ofw, restricted to M;, M;,1] is affine it follows that

— T
YWh(M) = i IMMisahyVa(Mi) + IMMilyvi(Misa)),
Yvh € V2, VM e [M;, Mi 1]

(5.26)
T —
IMMisal | IMM;]
— i
IMiMisal  IMiMiq]
the convexity oft — |£] implies

Since

=1,

—
Wh(M)| £ ==—(IMMi1]lyVva(M)]
IMi M1 (5.27)
+IMiM| Vh(Mis1)]) Yvh € Vi, VM € [M;, Mial.
Interesting [5.27) oM, ; we obtain

M Misal
f  pywldr < MMl M1+ M)
Mi M1 2

which implies that/vi, € Vi we have

j(Wh) = g - hywpldl = 9; v, byvnldI <
< § MMM + bV(Me1))
= j5(vh)-
Thus we have proved 85
j(Vh) < jh(vn) Vv € V2 (5.28)

Let v, — v weaklyin V. Thenhlir’gy(vh) = (V) stronglyin L%(I),
which implies
im j(vn) = j(v). (5.29)
It follows then from [5.2B) and (5.29) thﬁt !)iinf jt(vn) > j(v), which
proves (ii) ifk = 1.
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(2) case k= 2. Let us defineMi,1/& Mi.5/6 by (see Figure 5.1)

— l—n — 5—
MiMi,1/6 = éMiMHl, MiMi,s/6 = éMiMi+1-

M;_ 10

Miys/6
Mt

Figure 5.1:

86 Then we defingy, : CO(I') + L™(I') by

Oh(u) = 2 w(m)Xi+ X ,,,U(Mi+1/2)xi+1/2
Mieyn M % S5 (530)
Vu € COIN).

where X; ( respectively Xl/z)/i\s the characteristic function of
Mi_eM;Mi,1/6 (respectivelyM;,1,6Mii5/6). We have then the follow-
ing obvious properties :

Lir% Onh(u) = u strongly inL™(I") Yu € C°(I), (5.31)

ja(vh) = QIIQh)’VhIdF = g1l Oyl YV € VA, (5.32)
r

C1 [l Wh llzny <l GV Nl < C2 1l YW llizry Yvn € V. (5.33)

where in [5.3B)C; andC; are positive constants independentvgfh
andr (values forC, andC, may be found in G. L. T. [2, Chap. 4]).
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Now takingu € CO(I'), we defines,(u) by
Sh(w) € L¥(Q),
ShE)limi Mol = #(Misay2).

Then
rI1imO Sh(u) = u strongly inL™(y),

and from Simpson’s integration formula we have

[ s = [ sigamndr Vi e (0. vy < V2
r T

Letvy, — vweakly inV, vy € V2 Vh, then
lim yv = yv strongly in L2(I).
On the one hand it follows froni.{5.B83) that

Il Ghyvi llzny< C,

whereC is independent ofi.

On the other hand(5.B1L (5]139)=(3.38) imply that
im [ siGommdr = [ v e o),
— r r

In turn (5:38) and{5.39) imply that

Lir% OnyVh = v weakly in L2(T).

87

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

87

Since the functional: —|| p Iy is convex and continuous on

LL(I) it follows from (&.40) that

“T_i[,‘f Il Vil 2l v iy

(5.41)

Combining [&:411) with[[5.32) we obtainhlirg irjﬁ(vh) > j(v) which

proves (i) wherk = 2.
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Verification of (iii). Letv e U = C®(Q). From [5.25) and from the
uniform continuity ofyv onT it follows almost immediately that

lim ji(rive) = j(v). k= 1.2
Since the condition (i), (ii) and (iii) are satisfied the stgoconver-
gence ofuy to u follows from the Theorerfii8l2 of Chdd. 1.

REMARK 5.8. Itis proved in G. L. T. [2, Chap. 4] thatyv— v weakly
inv,v/2 e VX impliesrLimOjﬁ(vh) =jv), k=12

Since the proof of this result is rather technical we have irséhese
notes a simpler approach from which it follows that

lim in JK(vh) = j(v), k=1,2.

As we have seen before this result wagfisient for proving Theo-
rem[=2.4.

. . k
5.6 Iterative methods for solving(P%, ).
In this section we briefly describe some iterative methodskvimay be
useful for solving the approximate problenfz?kr().

5.6.1 Solution of(P'gh) by relaxation methods

It follows from (5.20){5.2PR) (see Remdrkb.6) thﬁg(), k=12, are

particular cases of

min f(v), (5.42)
veRN
where, withv = (vy, ..., V),
1 N
V) = Z(AVWY) - (V) + Y ailuil. (5.43)
2 i=1

In &23), ¢, ) denotes the usual inner product®f, Ais aN x N
symmetric positive definite matrix and >0 Vi =1,...,N.
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It follows then from CEA [2, Chap. 4], CEA-GLOWINSKI [1], G.
L. T.[1, Chap, 2] that we can use a relaxation method for agiVE.42).
Actually from the computation parameter w > 1, will increase the
speed of convergence.

Finally the algorithm we used is the following :

w arbitrarily given inRN, (5.44)

thenfori=1,2,...,N,

1 1, -n+l
fu™, .. ooyl ) <

fu, . ou v, Ut ) Y e R, (5.45)
utt = U+ o™t - u). (5.46)

If w =1, (&434)1(5.36) reduces to a relaxation method. Numesiaial
tions of [&5) using{5.44)E(5.16) are given in G. L. T. [2,aph4].

REMARK 5.9. If ¢ > 0O, ui‘n+l is the solution of aone variable, non
differentiable minimization problemvhich can be exactly computed by
hand calculation.

Exercise 5.3.Express p*! as a function of A, b,y u™?.

5.6.2 Solution of(P, by duality method)

We first examine the continuous case. Define a LagrangfierH(Q)x 89
L) — R by

LV, u) = %a(v, V) — L(v) + gfrm/vdl“. (5.47)

Then using the notation of Séc.b.3 it follows from Theofehthat

THEOREM 5.5. Let{u, A} be a solution of(&.8), &9) ; then{u, 1} is
the unique saddle point a¥ over H'(Q) x A

Exercise 5.4.Prove Theorerfi Gl5.
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From TheorenfLhl5 it follows that to sol{&H) we can use the fol-
lowing Uzawa’s algorithm,

A% € A arbitrarily chosen (for instanca® = 0), (5.48)

then by induction, knowing” we compute iand A" by

n jn n 1
{.i:(u AN < L(v, AN Yy € HY(Q), (5.49)
u" ey,
{amt = PA(" + pgyu), p > 0. (5.50)

The minimization problem{5.49) is actually equivalenthe Neu-
mann variational problem

(5.51)

a(u",v) = L(v) — g JL A"yvdl Vv € HY(Q),
u" e HY(Q).

In &80). P, is the projection operator froi?(I’) to A in theL?— norm,
then

Pa(u) = sup(1,inf(1, u)) Yu € LA(I). (5.52)
Using CEA [2], G. L. T. [1, Chap. 2] it follows that for & p < gZTZyIIZ'
we have

n—oo

u solution of [&5),[(517)

Like in SectionfZ.6 a direct proof of the convergence[ofi@%-
(E50) can be given : it will however use the results of ThedEe3.

{Iim u" = u strongly inH(Q),

Exercise 5.5.Using Theoren 5]3, given a direct proof of the conver-

gence of(5.48)-(E.50)

The adaptation off5.48)(5.50) to the discrete probler(P'gh), k =
1,2, is straightforward (see G. L.T. [2, Chap, 4]), since it is imple
variant of the discrete algorithm described in secfion?.6.

Exercise 5.6.Study the discrete analogues @.48)-(5.50) related to
(Pk). k=12



6. A Second Example of EVI of The... 91

6 A Second Example of EVI of The Second Kind:
The Flow of A Viscous, Plastic Fluid in A Pipe

Most of the material in this section can be found in G.L.T.Chap. 5]
and in GLOWINSKI [1], [3].

6.1 The continuous problem. Existence and uniqueness re-
sults
Let Q be a bounded domain &f with a smooth boundarly. We define
V = H}(Q).
a(u,v) = fQVu - Vvdx
L(V) =< f,v>,feV"
j(v) = [, IVvidx

Let u, g be two positive parameters ; then

THEOREM 6.1. The variational inequality

{ua(u,v— u) +gj(v) - gj(u) = L(v—u) YveV, 6.1

ueV

has a unique solution. 91

Proof. In order to apply Theorein 4.1 of Chap. 1, we only have to verify
that j(-) is convex, proper and |.s.c.
It is obvious thatj(-) is convex and proper, L&t v € V; then

[j(v) = j(Wl > VmeasQ || u—V |y, (6.2)

hencej(:) is I.s.c.
This proves the Theorem. O

Exercise 6.1.Prove that {-) isanormon V.
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REMARK 6.1. If we take g= 0 in @&1) we recover the variational
formulation of the Dirichlet problem

—uAu = finQ,
u=0onT.

REMARK 6.2. Since &, -) is symmetric, the solution u &1)is char-
acterized, using Lemnia$.1 of Ché@p. 1, as the unique solatiache
minimization problem

(6.3)

J(u) < J(v) Yve,
ueV,

where Jv) = 5a(v, V) + gj(v) — L(v).

6.2 Physical motivation

If L(v) = Cvadx(for instanceC > 0), itis proved in DUVAUT-LIANS
[1, Chap. 6] thatl{6]1) models th@minar, stationary flowof aBingham
fluid in a cylindrical pipe of cross - sectiaf?, u(x) being the velocity
at x € Q (We refer to PRAGERI]1], GERMAIN[J1] and DUVAUT -
LIONS [1, Chap. 6] for the definition of Bingham fluid). The «tant
Cis the linear decay of pressurandy, g are respectively theviscosity
and plasticity yield of the fluid. The above medium behaves like a
viscous fluid (of viscosity) in Q* = {x € Q : [Vu(x)| > 0} and like a
rigid medium inQ° = {x € Q : Vu(x) = 0}. We refer to MOSSOLOV-
MIASNIKOV [L], [Z], [8] for a detailed study of the propertseof Q*
andQC. We observe thal{8.1) appears also &ga boundary problem.

6.3 Regularity properties

THEOREM 6.2. (H. BREZISI#)). If v) = [, fvdx f € L%(Q) then
the solution u of@@.]) satisfies

ueVnHQ)

and if Q is convex, we have

Q
U 2= % Il f e (6.4)
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6.4 Further properties

Let us denote by the following quantity

o 10

veHé(Q) “ \ ||L1(Q)
v£0

(6.5)

Thena > 0.
We derive from this the following

Proposition 6.1. Let u be the solution of{8.1) and ¢ L*(Q), then
u=0if

| fllLo@)< ga. (6.6)

Proof. By takingv = 0,v = 2uin (&) we obtain

pa(u, u) + g(u) = fg fudx (6.7)
m]

It follows then from [E5) and fronfQ fudx <[l f llLo@ll U llL2 (o),
that

pau, u) + (ga— I f llLs@) Il ullygy< 0. (6.8)
If f obeys[[6.b) it follows then froni{d.8) that= 0. We also have

Proposition 6.2. Let u be the solution ofed) and f € LP(Q), p > 1.
Then if f> 0, we have u> 0.

Exercise 6.2.Prove Propositiofi 6]2.

Proposition 6.3. Let u be the solution of6.d) and f = ¢, a constant.

Thenu=0 < c<gandu=0ifc > ge.

Exercise 6.3.Prove Propositiofi 613

93
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Proposition 6.4. Let u be the solution of6.d) and f € L%(w); then
u=0if

I llLz)< 96, (6.9)
where )
_ iV
veH(@) Il V Iz
v#£0

Proof. It follows from a result of L. NIRENBERG and M. STRAUSS
(cf. STRAUSS [1]) thaB > O.
By takingv = 0 andv = uin (&) we obtain

,ua(u,u)+gj(u)=f9fudx (6.10)

Using [, fudx<|l f [l zq)ll U ll 2(q) andB > O we obtain

pa(u, u) + (g8 Il f liLzq)) Il U lliz)< O. (6.11)
Hence if f satisfies[(619) we have froh(6]11) thefti, u) = 0. This
impliesu = 0, hence the Proposition.
6.5 Exact solutions
6.5.1

Example 1. We takew =]0, 1[ and f = ¢, ¢ a positive constant. In this
case the solution of

yfol u(v' — u)dx+ gfol V|dx — gfol |u'|dx >
cfol(v — u)dx Vv, H3(), (6.12)
ue H}(Q),

(where v = %’() is given by

u=0ifg> =. (6.13)

NIl O
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c
lfgszthen

u(x) = zX(1-x) - |f0<xs%—%

0~ $G -2 -Tens]o? 010

u(x) = g x(1- X)—,%(l—x)lf%+%sxsl.

We observe that iff < § thenu € H}(Q) N W2*(w), butu ¢ H3(Q).

6.5.2

Example 2. Letw = {x: X2 + X5 < R?}, f = C, C a positive constant.

Then the solution of&.d)is given by

u=0ifg> %? (6.15)

If g < SF then
u(x)—(R—f)[C(RH) 20 ifR" <r <R, (6.16)
u) = (BX)ISR+R)-2glifo<r <R

(= g R =2

We observe also that i < SF thenu e H}(Q) n W2(Q) but
u¢ H3(Q) (we have actually € H(Q), s < 2).

Exercise 6.4.Verify that@13) (€I12)and €I3) €I8)are solutions
of @&12)and (&1) respectively.

where

6.6 Existence of multipliers
Let us defineA by
={0:qe LX(Q) x L¥(Q).lq(¥)l < 1 a.e}

la(x)| = /a2(X) + g2(x); then we have

95
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THEOREM 6.3. The solution u of{&1]) is characterised by the exis-
tence of p such that

a(u,v) + Vvdx=< f,v> Yvey,
{ﬁe(v) 9P 6.17)
{p-Vu = [Vuja.e, (6.18)
peA.

Proof. There are classical proofs of the above Theorem using Mir-Ma
of Hahn-Banach Theorems (see for instance dBA [2, Chap. 9], T

[@M, Chap. 1], EKELAND- TEMAM [1]). In the sequel following Q..

T. [@, Chap. 5] we shall give an “almost constructive " procdiking
use of a regularisation technique.

(1) We first prove that@.1I17), [6IB)mply (€1). It follows from [&1F)
that

pa(u,v—u)+g [, p- V(v-u)dx= pa(v-u)
+9 [, P Vvdx—g [, p- Vudx= (6.19)
=< f,y—u> YveV.

It follows from (€18) that

fp'Vudx:flvwdx, (6.20)
Q o)
and from the definition oA\ that
fp'Vvdxsflpl-leldxsf|Vv|dx Yve V. (6.21)
Q Q Q
m|

Then from [6.117) [[6.19)E(6.21) we obtain that

pa(u,v—u) +gjlu) >< f,y—u> Vvey,
ueV.
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Thus [6.1F) and{6.18) implieE(6.1).

(2) Necessity ofg.11)and 6.18). Takingu = 0 andv = 2u in &1) we
obtain
ua(u,u) + gjlu) =< f,u>. (6.22)

Lete> 0. Regularisej(*) by jc()) defined byj(v) = [, V€2 +v2dx.
Sincej.(-) is convex and continuous A the regularised problem

{,ua(ug,v ~Ue) +gje(Ue) = L(v-u) Vv eV, (6.23)

UeV,

has auniquesolution. Let us show that Ig)mE = u strongly in V.
€—
From [€1) and[{6.23) it follows that

/la(UE, u-— ue) + g]s(u) - gje(us) 2 L(U - us),
pa(u, Ue — U) + gj(ue) — gj(u) > L(ue —u).

Adding these inequalities we obtain

pa(Ue — U, Ue — U) + 9(je(Ue) = j(Ue)) < 9(je(U) — j(u).  (6.24)

> 7 — 2 . _
From O< Vt2+ €2t Neara <e Vt € Rit follows thatua(u,, U,
u) < g € meas. ), so that

U = U flv< \/meas(Q)(g. )2 (6.25)

From [6&.25) we obtain

Iim0 Ue = ustrongly inV. (6.26)
€e—

Since (') is differentiable orV, the problem[(6.23) is equivalent (see
CEA [)) to the following non-linear variational equation:

{ﬂa(uf,v) +g < juu),v>= L) VveV, (6.27)

Ue €V,

with 97
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Vw‘Vv

< ji(w),v>= dxvv,w e V. (6.28)
€2 4|Vw|2
If we define ) by
P (6.29)
Ve2 +|Vu|?
then
P € A. (6.30)
From [627)-{6.30) we obtain
{ya(uf\,/v) +9 [, Pe - Vudx = L(V) YV eV, (6.31)
u. € V.

Since A is a bounded, closed, convex subsetLd{Q) x L%(Q) it is
weakly compact so that from p.). we can extract a subsequence, still
denoted by ). such that

{Iime_@ pe = pweakly inL%(Q) x LA(Q), (6.32)

peA.

Actually we havep, — pin L®(Q) x L*(Q) weakly *.
Taking the limit as=— 0 in (&31) we have fron{{6.26) and (6132)

{,ua(u, V) +gJ, p- Vvdx=L(v) Vv eV,

6.33
uev. (6.33)

so that[[&.717) is proved.
To complete the proof of the Theorem we have only to prove that
p-Vu=|Vu a.e. (6.34)

Takingv = uin (&33) and comparing with.{(6.22) we obtain
f |[Vuldx — f p-Vudx= f(|Vu| - p-Vu)dx=0. (6.35)
Q Q Q

Sincep € A, it follows from Schwartz inequality iR? that

p-Vu<|Vuae
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Combining [6.3b) and this inequality we obtain
p-Vu=|Vuae.
This proves[(6.118) and hence the Theorem.

REMARK 6.3. The function p occurring ife.17) (€I8)is not unique
if Q € R?; this is shown in G. L. T[J2, Chap. 5].

REMARK 6.4. Relation@@.I7)implies

(6.36)

—uAu—gVv-p=finQ,
U|r:O.

6.7 Finite element approximation of (6. 1)

In this section we follow G. L. T[J2, Chap. 5]. For the sakeiafiglicity
we shall assume thal is a polygonal domain ofR?.

6.7.1 Definition of the approximate problem

Let ¢}, be as in Sedl?2 of this chapter. We approximatey
Vi = {Vh € CO(Q) : Vi, = 0 onT, vlt € PL VT € %}
and [61) by

pa(Un, Vh — Un) + gj(vh) — gj(un) =< f,vh — Up > ¥Vh € Vh,
Un € Vh.
(6.37)
Then 99

THEOREM 6.4. The approximate problerf©.37) has a unique solu-
tion.

REMARK 6.5. In these notes, only an approximation by piecewise lin-
ear finite elements has been considered. This fact is justifjethe ex-
istence of a regularity limitation for the solutions @) which implies
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that even with very smooth data we may have 3(Q) (see Sed_Gl5.
Nevertheless one may find in FORTIN [1], BRISTEAU [1], G. L. T.
[@ Chap. 5], BRISTEAU-GLOWINSKI[1], applications of péwse
guadratic finite elements, straight or isoparametric, fatving ©1).
The numerical results which have been obtained, seem te pina for
the samenumber of degrees of freedatime accuracies at the nodes are
of the same order for the finite elements of order 1 and 2. Fiogn t
above works it appears also that the second order finite aeitsrare
much more costly to use (storage, computational time e¥g. have
also to notice that when using first order finite elemeﬁgs,Vvhldx can
be expressedxactlywith respect to the values of &t the nodes ok,
while with second order finite elements we need a numeritegiiation
procedure.

REMARK 6.6. From the symmetry of(a-), €31)is equivalent to the
minimization problem

J <J V|
{ (Un) < I(Vh) YVh € Vh, (6.38)
Un € Vh,
where
J(vn) = '%a(vh,vh) + gf [VWhldx= < f, vy > . (6.39)
Q

6.7.2 Convergence of the approximate solutions. (Generaase).

We use the notations of the previous sections.

THEOREM 6.5. If, as h — 0, the angles ofé}, are bounded below
uniformly in h, bygg then

im || Up —ulv=0, (6.40)

100 where u and g are respectively the solutions @.1) and (€31)

Proof. In order to prove[(6.40) we use Theoréml 6.3 of Clidp. 1. Here,
we have to verify that the following three properties hold:
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() There existU c V, U =V andrp : U — V;, such thathﬂrgrhv =v
strongly in V, Yv € U.
(i) If vy —» vweakly inV ash — 0 then, liminfju(vy) > j(V).
(iii) Iri1r_r>10 jn(rav) = j(v)Yv e U.
mi
Verification of (i). We takeU = 2(Q). ThenU = Hé(Q) = V. Define
rnv by

rmv e Vi Vv € HY(Q) N CO(Q),
(rv)(P) = Vv(P) VP e ;.

Then sincerpv is the linear interpolate of on %, it follows from

CIARLET [M], [2], STRANG-FIX [] that under the above assutions

on%h we have
| TV = V [I41g)< Ch [ V [lwes (o) - (6.42)
Then from [6.2R) we obtaiQ Ig)mnv = v strongly in H3(Q) Vv € U.

Verification of (ii). Since jh(Vh) = j(Vh) YVh € Vp, (ii) is trivially satis-
fied.
Verification of (iii). Since jn(wn) = j(wn) YVh € V} and from the conti-
nuity of j(-) onV, (iii) is trivially satisfied .

Hence form (i), (ii) and (iii) it follows thaty, — u strongly in V.

6.7.3 Convergence of the approximate solutiongf € L2(Q))

From the regularity Theorem®.2 of this chapter we have 101
Q
Il Ullhz)< rol€) Il fllL2q) (6.43)

if Q is convex and” is suficiently smooth. This property still holds if
Q is a convex polygonal set.

In this section we always assurfieto be a convex polygonal do-
main. We have the following
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THEOREM 6.6. The assumptions ot being those of Theorem ®.5
we have then

Il un = U lv= 0(h*/?). (6.44)
Proof. It follows from &1) and[(6.37) thata(u, un—u)+g j(un)—gj(u) >
(f, Un—U), pa(Un, Vh—Un) +9j(vn) =9 j(Un) > (f,Vh—Un) ¥Vh € Vi, Which
imply, by addition,

pa(Un — U, Up — U) < pa(un — U, vy — U) + gj(vn) — gj(u)
+pa(u, vh —u) — (f,va —u),  (6.45)
YVh € Vh.
O

Sincej(-) is a norm orV, using Schwartz inequality i and [6.4b)
we obtain

’% | up—ui2< ’% | Vo= U 5 +Qj(Vh — U) + pa(u, viy — u) — (f, Vi — U) YV, € Vi
(6.46)
Sinceu € H}(Q) N H?(Q) we have

a(u,v) = - fg Auvdxvv e V.
Hence from[(6.46) we have
Clun =l 5= ull +gitvn - u) + fg(—/mu— F)(vh — u)dx Yvy €V,
so that

Ellun—ulB< 5l v —uliZ +gj(va — u)

+( Au 2y + Il f llz) I Vi = Ulllz(q) (6.47)
YVh € Vh.
102
Since|| Au [l 2 is a norm equivalent to thel?(Q)— norm over

H2(Q) N H3(©Q), it follows from (6.2), [6.4B) and(6.37) that

Ellun—ullZ <51va—ulld +gy/meqsQ) [l vh —ully +
+(1+y0() Il f llz@)ll Vo — UllL2(q) YVh € Vh.
(6.48)
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Sincel is Lipschitz continuous, we have (cf. NECAS [HA(Q) c
C%Q). The solutionsi of @) € H3(Q) and using the above inclusion,
we can definenu by

ru € Vh
(rhw)(P) = v(P) VP € gh.

From the above assumptions @h we have (cf. CIARLETIL], 2],
STRANG-FLIX [I])

Il rhu = ullv< yah Il U llyzq)s (6.49)
Il U = U llL2g) < ¥2h | U Tk, (6.50)

wherey; andy-, are constants independenttodndu.

Taking vy, = rpuin &438) it follows from [6.4B),[(6.49) and (6560)
that

2
(22 + @+ 9072 I £z 0+ gy M@yt
(6.51)
with yo = y0(Q) andM(Q2) = meaqQ2). Hence from[[&.31) we have

Yo Il T lliz)

H 2
> I uh —ulg=

Il un — u [|= O(h'/?).

This proves the theorem.

6.8 The case of a circular domain with £ constant

In this section we consider a particular case of the geneoblegm [61) 103

by taking
Q={xeR?: 2 +x <R, (6.52)

L(v) = st;vdxc > 0. (6.53)
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6.8.1 Exact solutions and regularity properties

The solution of [&11) corresponding {0 (6.52), (6.53) ieegivn sed P of
this Chap. We recall that, if < <F then

{u eV NnW22(Q), (6.54)

ug VnH3Q).

CR
In the sequel we assume thpk =7,

6.8.2 Approximation by finite element of order 1

Let ¢}, be a finite triangulation of2 satisfying [Z2R) [[Z.23) of Sec. 2.5,
Chap[2 and
VT € T C Q. (6.55)

DefineQy andTy, by

Q= U T.Th = 0Qn.
Te%h

ThenQy, c Q and in the sequel we assume thgisatisfies
all the vertices of', belongs td". (6.56)
Then we approximat¥ by
Vh = {Vh € CO(Qn) : Vi = 0 onTh, Vil € P VT € ).

Now V}, can be considered as a subspac# pbbtained by extending
Vh € Vh to Q by taking zero im2 — Q. Itis then possible to approximate

1) by
pa(Un, Vi — Un) + g j(vn) — gj(Un) = C [, (Vh — Un)dX ¥V € Vi,
Un € Vh.

(6.57)
This is a finite dimensional problem which has a unique sotuti
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6.8.3 Error estimate

In this section we will obtain an error estimate of ortief—logh. The
three following lemmas play an important role in obtainihg &above
error estimate.

Lemma 6.1. Let[B],[G] € R2 - {{0}. Then
B_4d|_,Mm-d
IR (©59)
Proof. We have
B d [l [Pl
mm»(ﬁﬁ) @+ (58 - )
But
[q| 2 . @R-78-8 =8-3R
l_m‘ﬁ_d =[BP+d*-2p-d =18 -d"
Consequently,
Wl)‘ﬁ_ﬂ <2 -1l
which obviously implies[[6.38). ]

REMARK 6.7. In (6.58) 2 is the best possible constant (t3&e= — ).
Moreover(@.58)is also true inRN, VN

Lemma 6.2. Let u and y be the solutions offe.]) and (6.51) respec-
tively.

Let p satisfy [6.1V),[6.78); then we have

pa(un — U, Uy — U) < pa(un — U, v — U)
+9 fQ(ph - p) - V(Vh — u)dxVv, € Vp, (6.59)
and Y pn € A such thatpy, - Vv, = [V a.e
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Proof. We shall prove[(6.39) with € V*.
From [6.45) we have

pa(Un — U, up —U) < pa(Un — U, Vh — U) + gj(vh)
—gj(u) + pau, v — u)
- < f,yh—uU> YV, =€ V.

Taking account of[{6.17) we obtain

pa(Un — U, Up — U) < pa(un — U,V — U) + gj(vn) — gj(u)

-9 Jo, P+ V(vh — u)dX (6.60)
YVh € Vh.

Let vy € Vi andpp € A such thatpy, - Vv, = |Vwla.e; such apy always
exists. Substituting this ifi{6.50) and using the follownetations

j(vn) = j; Pn - VvhdX, (6.61)
j(u):fqu|dxzfph-Vudx (6.62)
Q Q
we obtain [6.59).

This proves the Lemma.
Let u be the solution of[{6]1) anél> 0. DefineQ? c Q by

Q% = {xeQ:|Vu(X)| > 6}.

In the case of the problei(®.1) associated Vifh {6.52)3@&ssuming
g < &F) we have

Lemma 6.3. We have the following identity

dx _dmu| 2. (p_29), 2[R 29) - 2 )pq 2
fQMVul_ c [ C6+(R C)+ClogR c CIochS.
(6.63)

105
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Proof. We obtain from[[6.116)

%‘:%(%—g) if%grgR,
so that 5 gy . r
~— =2 ,
L [Vul jé(p&ﬂ}) g-g
which implies [6.6B). O 106

From the above Lemmas we shall deduce

THEOREM 6.7. Let u be the solution of the problef@.1) associated

with @52) (&53) Let u, be the solution of the proble@.57)with ¢,
satisfying(@53) (@58) Assume that as k> 0 the angles of¢}, are
bounded from below uniformly in h I8y > 0. Then we have

| Uh — u |ly= O(h+/—logh). (6.64)
Proof. Starting from Lemm§&&l2, we obtain frofn (6159)

Sllun—ulZ< 51l rau—ull +g [ 1pn — pl- IV(rau— u)ldx/pn € A
such thatpy, - Vrpu = |Vriul,
(6.65)
whererpu is defined by

ru € Vh
(raW)(P) = u(p) YP € vertex of%;.

We havernu = 0 onQ - Q;, so that

| ThU = U [lv= f IV(rpu-)[2dx = f IVuPdx+ | [V(rhu— u)dx
Q Q-Qp Qn

(6.66)
O

Let us define

X =& f IVuidx
2 Q-0
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X1== | |V(rau-u)Pdx
2 Ja,

It is easily shown that 107
meas(Q — Qp) < Z—Tlhz. (6.67)
Furthermore[(6.16) implies that

C 29
[Vu(x)| < Z (R— E) ¥Xx e Q. (6.68)

It follows from (€61) and[{6.88) that

29
2
—C?|R-=)| h .
X1 < 22-C ( C) (6.69)

Sinceu € W2*(Q), on each triangld@ € %}, we have (cf. CIARLET
- WAGSHAL [d)

V(U — W(X)! < Iz—hg 1 p(D20) [l . (6.70)

whereD»u(x) is the Hessian matriof u at x, defined by

200 a9
D2u(x) = 52u 9 u
(9)21(9X2 (X) y (X)
andp(D2u(x)) is thespectral radiusof Dou(x)
We have 5
Dou(x) = 0if0 <r < Eg (6.71)
so thato(Dou(x)) = 0 and it is easily verified that
o(Dou(x)) = % if % <r<R (6.72)

Then [&7D)-HE.42) imply

s h 2
X> < =R(R—- == + h)C? ) 7
zﬁlu( C+)c (sme) (6.73)
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So it remains to estimate ih{6165) the tetgr]ﬁ2 Iph = Pl - [V(rhu — u)idx
We have

6
a=|Ja, (6.74)
i=3
where
Q3 =Q - Qy,
Q4:{erh:r>%+h},
2 2
Q5:{erh:Eg—h<r<Eg+h},

Qez{erh:0§r<%—h}.

Let us definefor X i <6

X =0 | Ion— pi- V(- e (6.75)
We haverpu = 0 overQ — Q, so that in[[6.65) we can take
pn = 0 overQ — Q.. (6.76)
From [6.67),[[6.88) [{6.70) angle A it follows that
Xa<g | IVuldx < %QC(R— %)hz. (6.77)

From [6.70)-H{6.742) and singe pr € A we have
C h

X5 < 29— Q) ——,

s < 20 measQs) -

so that )
167 , h
X5 < —g°——.
1 = SIinfp
From the definition oth(h = maximal length of the edges of €
%h) we haverpu = u = constant ovefg, so that

(6.78)

Xg = 0. (6.79)
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It remains to estimat&. Since the equipotential af in Q4 are 109
circular, forh suficiently small we have fron{{6.16) that

rult # constant VT € %, T C Qq, so that (6.80)
Vrpulr # 0 VT € %h, T C Qu. '
Taking account of[{6.80) it follows froni.{6.65) that
e ) e T (6.81)
Furthermore we observe thBf(8.16) implies that
Ch
IVu(x)| > 2 > 0VXx e Qq. (6.82)

This in turn implies that
_ Vu(X)
IVu(X)|
It follows from ©.80)-{€.8PR), applying Lemnia®.1. to theirp@rnu,

V,} and Lemm&sbl3 witls = %‘ that

VX € Qq.

d
Xs < gl V(rpu — u) IIi,f X

g IVul + [Vraul’

where
I Vv lleo=Il Vv [lL=(@)xL(@) -

It follows from (&.70) and[(6.82) that

Cc2( ch \? dx
X‘*fgﬁ(smeo) fmw

which implies, using[{6.63), that

4n h \ 29\ . 29 29\ 29
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or more simply

A h \? g. _h
Xy < —gC(SIm) (R——Iog ) (6.83)

Taking into account{6.65), the estimafie (6.64) is obtaimgaddi-
tion of theX;,i = 1,...,6. More precisely, for dticiently smallh,

I uh—UI|v<4 \/_ —logh. (6.84)

6.8.4 Generalization

From the numerical experiments, we have done, it seemsrilzagieat
of cases (important from the point of view of application wavé the
following properties fow:

(1) ueVnW2>(Q),

(2) Qo = {x: Vu(x) = 0} is a compact subset ¢f with smooth bound-
ary,

(3) Qg has a finite number of connected components.

Moreover it seems that in the above cases we can conjecaitrfoth
6 > 0 we still have

dx
fm |V(x)| 0(-log o). (6.85)

With these properties we can easily prove the following reesti-

mate:
Il uh = ully=0(h+/~logh).

REMARK 6.8. Using an equivalent formulation dg.1) (less suitable
for computations) FALK-MERCIHT1] have obtained ath) estimate
for || un — U |lq) for the piecewise linear approximation.
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6.9 Iterative solution of the continuous and approximate pob-
lems by Uzawa’s algorithm

We begin with the continuous problem{p.1). Let us defifie VxH —
R by
2V, Q) = ’%a(v,v) —L(W) + gf q- Vvdxvv eV, vq e H,
Q
whereH = L%(Q) x L2(Q).
111 Let {u, p} be the solution of[{6.17)[{6.118). Then we have

THEOREM 6.8. The pair{u, p} is a saddle point ofZ over VXA —
{u, p} satisfiesfe.11)and ©.13)

Exercise 6.5.Prove the Theorein@.8.
It follows from CEAI[R2, Chap. 5] (see also G.LI.[2, Chap. 8jat
to solve[[&]1) we can use the following Uzawa’s algorithm.

p° € A arbitrarily chosen (for example g 0), (6.86)

then by induction knowing"pve compute tiand g™+ by

{ya(u”,v) =< f,v>-g[,p" VvdxiveV, (6.87)
u eV,
P = PA(P" + pgvu?), (6.88)
where B, : H — A is the projection operator in the H-norm, defined by
q
Pa(Q) = —————.
= Sopia)
Sinceu" is a solution of [&87)y" is actually the unique solution in
V of
—uAu" = f V. p"
pAUE=T+gv-p (6.89)
Unlr =0.

We shall give a direct proof for the convergence [Of (b.96BH4p
based on the theorem®.3 of SEC] 6.6
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THEOREM 6.9. Let U' be the solution of6.81) Then if

O<p< %, (6.90)
g
we have
lim Jlun —ullv="0, (6.91)

where u is the solution of6.1).
Proof. Let{u, p} satisfies[[6.117) and{6118). Thdn(d.18) implies
p = Pa(p + pgVu). (6.92)

We defineu™ = u" —u, p™" = p" — p. Using the fact thaP, is a
contraction mapping and frori (6189}, {6.92) we obtain

P ™2 < |p P + 2pgf!2 p™" - Vu"dx + p°g? L IVu™"Pdx  (6.93)

where
al = g [l.2@)xL2@) -

It follows from (&11), [6.8I7) that

pa(u™", V) + gf p ".Vvdx=0Qvv eV, (6.94)
Q

Replacingv by u™ in (£94) we obtain

pau™ u"+g f p"-vwdx=0. (6.95)
Q
From [6.98) and(6.95) we have
PP = 1P > p(2u — pg?) U IS (6.96)

IfO<p< % then using a standard reasoning, we obtain that
lim || u™ [lv=0,
N—o0

which proves the Theorem. O

112
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Let us describe the adaptation 6 (8.86)=(6.88) to the aqmiate
problem [6.3F7). We defink, c L?(Q) x L?(Q) by

Ln={0h:Gh= ) drXrqr e R2VT € %p)
Te%h

113  whereXs is the characteristic function df.
It is then clear that'v, € Vy, VW, € Lh. We also define\y by
An = A N Ly We can easily prove that

Pan(0h) = Pa(0h) Y0h € L.

Then [6.86)-H{6.88) is approximated by

p2 € A arbitrarily chosen (6.97)

by induction knowing jppwe obtain {} and m*l by

pa(ul, vi) = L(vh) — g [, PR - Vi, dX YV € Vi, (6.98)
Uﬂ € Vi, '
Pt = PA(pR + pgVup). (6.99)
Then for O< p < % we obtain the convergence gff to un.

Exercise 6.6.Study the convergence @.971)6.99)

REMARK 6.9. The above methods have been numerically applied for
solving () in CEA-GLOWINSKI[R], BRISTEAU]1], BRISTEAU-
GLOWINSKI[1], G. L. T.[[2, Chap. 5]. They appear to be veff-e
cient and particularly well suited to take into account ndifferentiable
functionals like [, [VyldX.

7 On Some Useful Formulae

Let T be the triangle of Figured.1. We denotedMyT) the measure of
T.
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M3y Mo3
M, Mo Mo
Figure 7.1:
Letv be a function defined of. We definev; andvj by 114

Vi = (M), Vik = (Mjk).

Then we have the following formulae

f uvdx= M{(ul + Up)(V1 + Vo) + (Uz + Ug)(V2 + V3)
T 12

+ (U +W)(vzs +v)ivu,ve Py, (7.1)

—_— —_— —_—
IV = 72 {IMaM3lAV2 + [MaM /A3 + [M1 M2[?v2

T AM(T)?
+2M2M3 . M3|\/|1V1V2

(7.2)
+2M1 M5 - M2M3V3V1 + 2M3M1 . M1M2V2V3},
Yv e Py,
- Ivdx

M(T
= MO (L2 +V2 +V2) + B (v, + V25 +V2,) — Z5(ViVa + VoV + Vavy)
+ 15 (V12V23 + VaaVa1 + Va1Vig) — F(VaVas + VaVa1 + Vavao)}, YV € Py,

(7.3)
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Ji 9VPPdx = gy IviM2M3 = va2M3Mi + V3MiMj

IVIRVIE
+2(v12 + Vo3 — Va1) MaM;|

.
+[viM2M3 + VoM3M1 — vsM1 M2 + 2(V23 + Vi3 — V12) M1 Mo+

+| - V1|\/|2|\/|3 + V2M3M1 + V3M1|\/|2 + 2(V31 + V12 — V23)
—_—
MoMs3l¢} Vv € Po.}

(7.4)
115
The above formulae may be useful to express the approxingatib
the problems of this chapter, in a from suitable for compoitet



Chapter 3

On The Approximation of
Parabolic Variational
Inequalities

1 Introduction References

In this chapter we would like to give some indications on theraxima- 116
tion of Parabolic Variational InequalitiegPVI) (mostly without proof).

For a detailed treatment see G. L.[Il. [2 Chap. 6], TREMOLIERHS
and for further reference see FORTMI [1], BRISTEAU [1], BREAU-
GLOWINSKI [, C. JOHNSONI] and A. BERGEHT]1]. See also
LASCAUX [M for the numerical analysis dfme dependent equations.

2 Formulation And Statement of The Main Results

Let H andV be two real Hilbert spaces thetc H, V = H. Assuming
thatH = H* we have thetV c H c V*.

The scalar product ifl (resp. . inV) and the corresponding norms
are denoted by-(-),| - | (resp. . ((.)), 1l - I). Moreover we also use,()
for the duality betweeiv* andV.

We now introduce:

117
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e Atimeinterval [Q T]with0 < T < oo, abilinear froma: VxV —
R, continuous ancklliptic in the following sense3a > 0 and
A > 0 such that

a(v, v) + Avi? > |Vl YveV,

feL?(0,T; V), W € H,
(for the definition ofL%(0, T; X)) see LIONS [1], [3])

e K: closed, convex, non-empty subset\gf

e j:V — R convex, proper, |.s.c
We consider then the following two families of PVI:

Find u(t) such that

(%—‘t",v— u) +a(u,v-u) > (f,v—u) YveK, ae te€]o,T[, (2.1)

ut) e Kae t€]0, T[,u(0) = up,
117 and

Find u(t) such that
A v-u)+auv-u)+j\V) - ju>(f,yv-u)YveV, aete0,T],
u(t) e Vaetel0, T[,u(0) = up.
(2.2)
REMARK 2.1. If K =V and J= 0 then@1) and Z2) reduce to the
standard parabolic variational equation

{ v +a(uv) = (f,v) WeV, ae intelo,T[,

(2.3)
ut) e Vaetelo, T[,u(0) = ug.

Under appropriate assumptions of K and j(-) it is proved that
@), [Z2) have unique solutions I?(0, T;V) N C°([0, T], H). For
the proof of this we refer to BREZIS][4][[5]; LIONS][1],DUVAT
LIONS[].

In the following sections of this chapter we would like to gisome
discretisation schemes fdr_(R.1]_(2.2) and then in sec. u@ysthe
asymptotic properties in time of a specific example, for thetinuous
and discrete cases.
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3 Numerical Schemes For Parabolic Linear Equa-
tions

Let us assume that andH have been approximated (as— 0) by the
same family ¥)n of closed subspaces 9f(in practice thev, are finite
dimensional). We also approximate-), a(-,-) by (-, )n, an(-,-) is such a
way that ellipticity, symmetry etc. are preserves. We assuee thaitly
is approximated byugh)n such thatug, € Vi anthLn(}UOh = Up Strongly
in H.

We now introduce aime stepAt; then denotinglif the approxima-
tion of u at timet = nAt(n = 0,1,2,...,), we approximate{2]3) using
the classical step by step numerical schemes (i.e. we besaow to
computeuf*t) if u? andut~* are known).

1. Explicit scheme. 118

UH+1— n

B Vidh + 8n(Ul Vi) = (£ Vi YVh € Vi,
n=01,..., (3.1)

u® = ugn.

Stability. (see LASCAUK [1]) for the terminology¥onditional.
Accuracy. O(At) (we just consider the influence of the time dis-
cretisation).

2. Ordinary implicit scheme.

UH+1_ n

(B2 ).+ e ) = (772 v Vo < Vi
h
n=012..., (32)
u® = ugn.
Stability. Unconditional

Time accuracy. Qft)
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3. Cranck-Nicholson scheme.

n+l_,n n+l, . n n+1 n
(U“A—tu“,vh)h + ah(u“ 2+uh,vh) = (fh 2+f“ ,vh)h YVh € Vj
or = (fr?+1/2,vh)h YVh € Vh
n=0,12...,;u = U
(3.3)
Stability. Unconditional

Time accuracy. QAt?).

4. Two steps implicit scheme.

At

ymi_gyng 1yn-1
(2" Vidh + an(Uit, vie) = (%, vn)n YV € Vi,
{n =1,2,...,u] = Ug, Ut given.

(3.4)

Stability. Unconditional

Time accuracy. QAt?).

Unlike the three previous schemes, this latter scheme nejthe
use of astarting procedureto obtain uﬁ from uﬂ = Ugp; to compute
ut we can use for example one of the schefel (31} (3.20r (38);
recommend[{313) since it is also anA?)-scheme. Similarly the gen-
eralisations of schemE(3.4) discussed in Bdd. 4, 5 willirede use of
a starting procedure which can be the corresponding géretiah of

schemed(311)[(3.2) dr(3.4).

REMARK 3.1. The vector f (or /%) occurring in the right hand
sides of @) [@B.34)is a convenient approximation of f att nAt (or
t=(n+ 3)At).

In some cases it may be defined as follows (we just consjt&inde
the technique described below is also applicable¥6"f).

First we definef" € V*, by

f" = f(nAt) if f e CO[0, T;V*].
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In the general case, it is defined by

At

2 2
foz—f f(t)dt,
At s (1)

1 (n+1)At _
f”:—f FO)dtif n> 1.
At Jn-1)at

Then since (), is a scalar product o, one may defind, by
(f", ) = (3, Vi)h YVh € Vi, ' € Vi
In some cases we have to use more sophisticated methodsrte tlefi

REMARK 3.2. Ateach stefin+ 1) we have to solve a linear system to
compute ﬂ*l; however if we can use a scalar produet-), leading to

a diagonal matrixwith regard to the variables defining,hen the use
explicit scheme will only require to sohane variable linear equations
at each step.

REMARK 3.3. We can also use nonconstant time staps

REMARK 3.4. If we are interested in the numerical integration af20
“Stift” phenomenoror in long range integratiowe can briefly say that

e Schemeq3.1), (32) are too dissipative, moreover the stability
condition in(@J) may be a serious drawback.

e SchemdZ33)is, in some sensept suficiently dissipative

e Schemdf3.4) avoids the above inconveniences and is highly rec-
ommended for “Sff” problems and long range integration. In
most cases the extra storage it requires is not a serious loaatu

REMARK 3.5. There are many works related to the numerical analysis
of parabolic equations via finite gierences in time and finite elements in
space approximations. We refer to RAVIARIT [L], [2], CROUXHII,
STRANG-FIX[L], ODEN-REDDY]1, CHAP. 9] and the bibliogragé
therein.
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4 Approximation of PVI of The First Kind

We assume th& in (Z) has been approximated W), Ky, ¢ Vhvh,
like in the elliptic case (see Chdg. 1). We also suppose tieabitinear
form a is possibly dependent on the titand has been approximated
by a(t; un, V).

1. Explicit scheme.

(uﬂit_uﬂ Vi — uﬂ*l)h + an(NAL; U, vy — Uut*t)
> (f" v, — UE+1)h YVh € Ky, 4.1)
UEH' € Kp,
n=012,. uh = Ugh.
Stability. Conditional(see G.L.T [2, Chap 6]). This scheme is
almost never used in practice since it is conditional stainie
that the computation otﬂﬂ*l will require in general, the use of
an iterative methoavenif the matrix corresponding to,()y is
diagonal

2. Ordinary implicit scheme.

n+1
(uh -up Vh — UR+1) +an((n + DAt Un+1,Vh _ UR+1)
2 (fr:Hl, h — UE+1) YVh € K, (4.2)
un+1 e Kh,
n=0,12,. u = Ugh.
Stability. Unconditional
At each step we have to solve an EVI of the first kindkip to
computeuﬂ*l. This scheme is very much used in practice.
3. Crank-Nicholson scheme.
( —Llh V _ un+l/2)h + ah((n+ )At un+1/2’ UE+1/2)
> fn+l/2,Vh n+1/2) YV, E Kh,

U2 e Ko, UMt ? = “h+u“ ,An=0,1,2,...,10 = ugn.
(4.3)

n+1
Yn
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Stability. Unconditional.

U+l _gn un+1/2 —un
: h h _ Yh h
Since At = AL , we observe that atach stepwe
2

have to solve an EVI of thérst kind to computeu!™/?. We ob-
serve also that possiblyy ¢ K,. We do not recommend this
scheme if the regularity in time of the continuous solutispaor.

4. Two steps implicit schemes.

3

Sur+d-—2ul

. ,Vh = U h, + an((n+ 1AL Ul vy — ulth

> (fr?Jrl,Vh — UE+1)h YVh € Kp, Uﬂ”‘ € Kp,
— 0 _ 1 i
n= 1,2,...,uh = Uon, Uy, given

1,1
+5Uy

(4.4)

Stability. Unconditional We have to solve at each step an EVI of
the first kind inKy, to computeuﬂ*l. RemarZ3 ¥ applies to this
scheme also.

5 Approximation of PVI of The Second Kind

1. Explicit scheme 122

(28 v = WD) + an(NAL WD, Vi — W) + () (U >
> 7, Vh — UP) Vv € Vi, Uttt € Vi,n=0,1,2,...,u? = ugh.
(5.1)
Stability. Conditional.

This scheme is also almost never used in practice since dinis ¢
ditionally stable and the the computationuﬁf1 will require the
solution of an EVI of thesecond kindn V,, (in general by an itera-
tive method) even if the matrix corresponding 1), is diagonal
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. Implicit scheme.

un+1_u 1 1 1
( S, Vh —u”*) +ap((n+ DAL up™, vy — up*

+jh(vh) = jn(up™) (5.2)
> (fn+1 Vh — UR+1) YVh € Vp, UR+1 € Vh,

n=012,. uh_uor1

Stability.Unconditional.

At eachstepwe have to solve an EVI of theecond kindn Vj, to
computeuf*t.

. Cranck-Nicholson scheme.

un+1 n n+1/2
(h_’ h —

)+ an(n+ 2)At
1/2
U2 + (V) = jn(u
n+1
> fr:Hl/z L‘|n+l/2)h VVh c Vh» n+1/2 c V L‘In+1/2 Uh+2U ,

n=O,1,2,...,uh_u0h.

n+1/2)

(5.3)
Stability. Unconditional.
N e U At
Since A = = we observe that atach stepwe

2
have to solve an EVI of theecond kindo computeu™/2. If the

regularity in time of the solution is poor we do not recommend
this scheme.

. Two steps implicit scheme.

3 +1
5u 2uh+ uh

T Vi = UMD + (Vi) — ja(ultt)
+an((n+ L)AL UL, vy — ultt)
> (fn+1 Vh — UE+1) YVh € Vp,
n=0,12,. ..,,uh = uOh,uhglven

(5.4)

We use one of above schemEsK5[I}(5.3) to comptitstarting
from u® = ugn. Stability. Unconditional.
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We have to solvet each ste@mn EVI of thesecond kindn Vj, to
computeuﬂ*l. Remark 3.4 applies for this scheme also.

Comments The properties of stability and convergence of the var-

ious schemes of Sdd.[A, 5 are studied in the references giveeci 1.
In some cases error estimates also have been obtained.

In FORTIN [], G.L.T [@, Chap. 6], applications to more cornpl
cated PVI than[(Z]11)[(2A.2) are also given. For the numeraaalysis
of hyperbolic variational inequalities see G.LLIT[2, Clgp TREMO-
LIERES [].

6 Application to a Specific Example: Time Depen-
dent Flow of a Bingham Fluid in a Cylindrical
Pipe

Following GLOWINSKI [], we consider the time dependent lgieam

associated to the EVI of Chdg.[2. 6, and study its asymptotipgaties.

6.1 Formulation of the problem. Existence and unigueness

Theorem

Let Q be a bounded domain & with a smooth boundaryy. We con-
sider:

o V=HJQH = L%Q), V* = H}(Q),

a(u,v) = [, AVu.AVvdx

Atimeinterval [QT],0< T < oo,

feL?0,T;V"), ueH,

i) = f, I7vidx

e 1>0,9>0.

We have then the following

124
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THEOREM 6.1. The PVI

ot

N y—u)+pa(u,v—u) +gjv) > (f,y-u)YveVaete]o,T],
u(x, 0) = uo(x),

(6.1)
has a unique solution u such that
ue L0, T;V) nCo[0, T]; H),
& eL?0,T. V)

and thisVup € H, Vf e L?(0, T;V*). For a proof of this see LIONS-
DUVAUT [I, Chap.8].

6.2 The asymptotic behaviour of the continuous solution.

Assume that iff is independent of and thatf € L%(Q). We consider
the following stationary problem

(6.2)

pau,v—uw +gjiv) —gjlu) = (f,y—u)¥veV,
ueV.

Itis proved in LIONS-DUVAUT [1, Chap.6] (see also Chap.2¢$e
of these notes), that

u=0if g8 > |IfIL%(Q), (6.3)
where
_inf M 6.4)
veV |[Vl[2(q)

125 Then we can prove the following
THEOREM 6.2. Assume that &£ L2(Q) with I1fllL2) < Bg, then if u
is the solution of@@.1), we have

1 ol 2
u(t) =0fort> —log(l+ Agu—7— 6.5
© T OO0 g O

whereg is the smallest eigenvalue i\ in Hé(Q)(/lo > 0).



6. Application to a Specific Example.... 127

Proof. We use| - | for the L3(Q) -norm and]| - || for the Hcl)(Q)-norm.
Sincef € L*(R*, L?(Q)) it follows from Theorem 6.1 that the solution
of €1) is defined on the whole &f*. m|

We observe now that 38 > |f| the zero is the unique solution of
&32); if follows then from Theorerdn 8.1 thatufty) = O for sometp > 0
then

u(t) = OVt > to. (6.6)

Takingv = 0 andv = 2u in (&) we obtain

(%, u + ua(u,u) + gj(u) = (f,u) ae int. (6.7)
But sincev € L?(0, T; V), V' € L%(0, T, V*) implies (this is a general
result) that — |v(t)[? is absolutely continuousith &vi2 = 2(%, v); we
obtain from [&F) that
BEIUP +pau ) i) =(fw) 6.8)
<|fl-|luaeint.

Sincea(v, V) > Aglvi? Vv e V, andj(Vv) > SVl Yv € V (from(G.2)), we
obtain from [E.B) that

1d .

5d—t|u|2 + pdolu® + (g8 — |f|)lul ae int e R*. (6.9)
Assume thati(t) £ O¥t > O; sincet — |u(t)|? is absolutely continu-

ous with|u(t)] > 0 it follows that— |u(t)| is also absolutely continuous.

Therefore[[G9) we obtain

dgt|u(t)| + udolu(t)| + (g8 — |f]) < Oaete R". (6.10)
It follows from (&10) that 126
d
=|u(t
L)l_m < -ulpaeteR”, (6.11)
()l + L=

HAo
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Definey by y = gB;IfI

@&713) that

, theny > 0. It follows then by integrating

u@)| + 7 < (ug| + y)e ot vt e R™; (6.12)
(€&712) is absurd fot large enough. Actually we havgt) = O if
—y = (Juo| + y)e ™,
i. e.
Aopl|Uoll 2
a8~ Ifllz)

Exercise 6.1.Let f € L?(Q) with possiblyf| > g- 8. Let us denote by
U the solution of(&.2); theorem prove that

> (6.13)

1
t>—Ilog(l+
Ao

JU(t) — Uso| < JUg — Uoole™" 0Kt

where ft) is the solution of{&.1).

6.3 On the asymptotic behaviour of the discrete solution.

We still assume thaf € L?(Q). To approximate[{Gl1) we proceed as
follows : assuming tha® is a polygonal domain, we use the same ap-
proximation with regard to the space variables as in Chhi5ez.[®
(i.e. by means of piecewise linear finite elements, see @hapeclb).
Hence we have

an(Un, Vh) = a(un, Vh) YUn, Vh € Vh,

jh(Vh) = j(Vh) YVh € W,

127 and from the formulae of Cha 2, SEE. 7 we can also take
(Un, Vi)h = (Un, Vh) YU, Vi € Vp.

Then we approximaté{d.1) by tlimplicit schemdB.2) and we ob-

tain
un-*—l_un A )
(P2 v — Ut + fQ Ut V(v — ut)dx+ j(vh) — jurtt)
> (fn, Vh = UV € Vi, ut € Viyn=0,1,2,...,; W2 = ugh.

(6.14)
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We assume thatgy, € V;, Yhand
rI1imO Ugh = U Strongly inL2(<). (6.15)

Similarly we assume that is approximated byfg), in such a way that
(fh, vn) can be computed easily and

Lir% fn = f strongly inL3(Q). (6.16)

THEOREM 6.3. Let|f| < gg. If (€13)and &I8)hold, then if h is
syficiently small we haveju= 0 for n large enough.

Proof. As in the proof of Theorei 8.2, taking = 0 andvi, = 2ut** in
(€&12) we obtain

1
uﬂ+ B uﬂ n+1 n+12 n+lqy _ n+1 .
—— U+ | IVUuRTfdXx+ g | [VupTdx= | faupTdxVn > 0O;

At Q o o

using Schwarz inequality ih?(Q), if follows from ©11) that o0
|Uﬂ+1|At— il UM + wAolul™ % + (g8 — I fa)lul < 0Vn > 0. (6.18)
mi
Sincefy, — f strongly in L?(Q) we have
g6 — | fn| > O for h suficiently small. (6.19)
It follows then from [€1B),[(6.19) that
U = 0= up = 0forn> ng if his small enough (6.20)
Assume thaty # O¥n; then [E1B) implies
MqﬂlA—t_lum + udolul Y + g8 — |fyl < OVNn > 0. (6.21)

We definey,, by vy, = g8 — | fi| then,
vn > 0 for h small enough anq] Iionyh =vy=08-|f| (6.22)

128
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It follows follows from (6.21) that

(|u”+1| + )(1+ AguAt) < |uh| + -— Vn >0

Aou

which implies that

Yh - Yh
lu |+—)< 1+ AguAt (|U |+—) 6.23
[+ 22 < @ a8+ ). (623)

Sinceyy > 0 for h small enough,[[6.23) is impossible farlarge
enough. More precisely we shall hawg= 0 if

Ih > (1+ /10,11At)_ (|Uh| + ﬁ) >
i Aou
which implies:
ul
log(1+ Agu™)
oh ! h th f oy 7w’ .24
is small enough, thea) = 0 if n > log(1 + AguAt). ©29

Relation [6.2B) makes the statement of Theorem 6.3 morésprec
Moreover in terms ofime, (6.24) implies thaty is equal to zero if

10g(1+ dou h')

We observe that
lim At

h—0 lo
At—0 9

0
log(1+ /lopls—gl) |
_ (1 + AouAt = — Iog(l + /10;1)—)
129
Hence taking the limit in[{6.25) we obtain another proof (@sig
thatu? converges tal in some topology) of the estimate (6.5) given in
the statement of Theorem b5.2.

Exercise 6.2.Let i be the solution of the time independent problem
associated tof possibly with fy| > 8- g, then prove that

up — Ul < (1 + 2uloA) ™20 —u®l n>0.
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6.4 Remarks

REMARK 6.1. We can generalize Theorem 5.1 to the case of a Bing-
ham flow in a 2-dimensional bounded cavity.

REMARK 6.2. In GLOWINSKI 5], BRISTEAU1], BEGIE[1], numer-
ical verification of the above asymptotic properties haverbgerformed
and found to be consistent with the theoretical predictions

REMARK 6.3. One may find in H.BREZIZI[5], many results on the
asymptotic behaviour of various PVI as+t .






Chapter 4

Applications of elliptic
variational Inequality
methods to the solution of
some nonlinear elliptic
equations

1 Introduction

For solving some non-linear elliptic equations it may bewvewent, 130
from the theoretical and numerical points of view, to seetlas EVI's.

We shall consider in this chapter two examples of such $itnst
(1) A family of mildly non-linear elliptic equations,

(2) A non-linear elliptic equation modelling the subsonmaflof a per-
fect compressible fluid.

133
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2 Theoretical and Numerical Analysis of Some
Mildly Non-Linear Elliptic Equations

2.1 Formulation of the continuous problem

Let Q be a bounded domain &N(N > 2) with a smooth boundary.
We consider

o V=H}(Q),

o L(v) =< f,v>, f e V' =H(Q);

e a:V xV — Rbhilinear, continuous antf-elliptic with « > 0 as
ellipticity constanta(-, -) is possibly not symmetric;

e ¢ :R — R, ¢ e COR), non-decreasing with(0) = 0.

We then consider the following non-linear elliptic equati®) de-
fined by :
Find u e V such that
a(u,v)+ < ¢(u),v>=L(V) Yve Y, )
o(u) € LY(Q) n H Q).

It follows from the Riesz representation Theordtmt there exists
A e Z(V,V*) such thaia(u,v) =< Au,v > Yu,v € V. Therefore P) is
equivalent to

Au+ ¢(u) = f,
uev, (2.1)
#(u) € L1(Q) n H Q).

Example 1. Let us consider a functiorgae L*(Q2) such that
a(X) > a > 0a. e. inQ. (2.2)
Define a(-, ) by

a(u,v):fgao(x)Vu-Vvdx+ fgﬁ-Vuvdx (2.3)

whereg is aconstantvector inRN.
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From the definition ofy(-) and using the fact tha}gﬂ - Vwvdx =
0VYv € H}(Q), we clearly have

a(v,v) = a| V5. (2.4)
From [Z.3) we obtain
Au= -V - (agVu) + 8- V,. (2.5)

Hence, in this particular cas€._{R.1) becomes

(2.6)

-V - (agVu) + 8- Vu+ ¢(u) = f,
ueV, ¢ e LY(Q).

REMARK 2.1. If N = 1, we have B(Q) c C°(Q). Because of this in-
clusion there is no great fliculty in the study of one-dimensional prob-
lems of typgP). If N > 2 the main djficulty is precisely related to the
fact that I—%(Q) is not contained in &(Q).

REMARK 2.2. The analysis given below may be extended to problems
in which either V= H(Q) or V is a convenient closed subspace of
Hi(Q).

2.2 A variational inequality related to (P)

2.2.1 Definition of the variational inequality
132

Let

t
o(t) = j; ¢(7)dr, (2.7)
D(®) = {ve V: V) € LY{(Q)}. (4.1)

The functionalj : L%(Q) — R is defined by

i(v) = fg DdW)dxif D) € LY(Q), j(V) = +oo if DV) ¢ LLQ). (4.2)
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Instead of studying the probler®) directly, it is natural to associate to
(P) the following EVI of the second kind:

(n)

au,v—u)+ jV) - jluy=Lv-u) YveV,
ueV.

If a(-,-) is symmetric, a standard method to stué is to consider
it as theformal Euler equatiorof the following minimization problem
encountered in the Calculus of Variations

{J(u) < V) VeV, (2.10)

uev,
whereJ(v) = za(v.V) + [, D(V)dx— L(v).

Exercise 2.1.Prove that O®) is a convex, non-empty subset of V.

2.2.2 Properties ofj(-).

Since¢ : R — R is non-decreasing and continuous witfd) = 0, we
have

® € CY(R), ® convex, ®(0) = 0; d(t) > 0Vt € R. (2.12)
The properties of(-) are given by the following
Lemma 2.1. The functional () is convex, proper and 1.s.c. ovef(R).

Proof. Sincej(v) > 0V e L?(Q) it following that j(-) is proper. The
convexity of j(-) is obvious from the fact thab is convex.
Let us prove thaj(-) is |.s.c. Let ¢n)n, Vn € L?(Q) be such that

lim v, = v strongly inL2(Q).
n—oo

Then we have to prove that

liminf j(vn) > (). (2.13)
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If Iirr1]1 inf j(vy) = +oo the property is proved. Therefore assume that
IiLn inf j(vn) = £ < c0. Hence we can extract a subsequengg)(x such
that

klmo i(vn) = ¢, (2.14)
Vp, — Va. e. inQ. (2.15)
Since® e C'(R), ZI8) implies
klmo O(Vp,) = D(v) a.e. (2.16)
Moreover®(v) > 0 a.e andl{Z4) implies that
{®(Vn, )}k is bounded irL}(Q). (2.17)

Hence by Fatou’s Lemma, frorh (2]16) ahd(2.17), we have

{CD(V) e LYQ), 218

Iirklliorgf fQ O(Vp, )dXx > fQ d(v)dx
From [ZI#) and{Z18) we obtain{2113). This proves the lamm
COROLLARY 2.1. Thefunctional () restricted to V is convex, proper,
l,s.c.
2.2.3 Existence and unigueness results fér) :

THEOREM 2.1. Under the above hypothesis on \(;,a, L(-), #(-) the 134
problem(r) has a unique solution in YA D(¢).

Proof. SinceV, a(.,-), L(-), j(-) have the properties (cf. CorollafyP.1)
required to apply Theoref 4.1 of Chép. 1, $éc. 4, the EVI ofdwend
kind (), has a unique solutionin V. O

Let us show thati € D(®). Takingv = 0 in () we obtain

a(u, u) + j(u) < L(u) < (1]l - llullv. (4.3)
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Sincej(u) = 0, using the ellipticity ofa(-, -) we obtain
Il

lully < —, (2.20)
a
which implies
: 112
juy < —. (2.21)
a

This impliesu € D(®).
REMARK 2.3. Ifa(.,-) is symmetric(n) is equivalent taZ10)

2.3 Equivalence betweertP) and (i)

In this section we shall prove thaPY and () are equivalent. First we
prove that the unique solution of)(is also a solution offf). In order to
prove this result we need to prove thgt) andug(u) belong toL1(Q).

Proposition 2.1. Let u be the solution dfr). Then w(u) and ¢(u) be-
long to LY(Q).

Proof. Here we use &uncationtechnique. Leh be a positive integer.
Define
Kn{ive V : V(X)| < nael}.

SincekK, is a closed, convex, non-empty subseYothe following vari-
ational inequality

(7tn)

au",v—u") + j(v) — ju") > L(v—u") Vv € Kp,
u" e K,
has a unigue solution (in order to apply Theolen 4.1 of Chdlhtave
need to replacg by j + I, wherely is theindicator functionalof Kp).
Now we prove tha‘r[] limu, = u weaklyin V, whereu is the solution

of (7). Since Oe K, takingv = 0 in (m,) we obtain as in Theore@ 2.1
of this chapter that

llunllv < M (2.22)
a
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It follows from (Z22) that there exists a subsequefigg} of (Un)n
andau‘ € V such that

I(Iim Un, = U" weakly inV. (2.24)

Moreover, from the compactness of the canonical injecniomﬂ-|(1,(Q)
to L%(Q) and form [Z22K), it follows that

lim up, = u strongly inL2(Q). (2.25)

Relation [Z2b) implies that we can extract a subsequetidejenoted
by (Un,)n., such that

kIim Un, = U a. e. inQ. (2.26)
Now letv e V N L*(Q); then, largek, havev € K, and
a(Un,, Un) + j(Un,) < a(un,, V) + j(v) — L(v —up,). (2.27)

Since I|m mfa(unk,unk) > a(u*,u*) and I|m|an(unk) > j(u") it follows

from QZE) and[(Z27) that

a(ut,u’) + jlu) < (U, V) + j(v) = L(v-u") Yve L®(Q) NV,
u*ev,

which can also be written as

(2.28)

a(u,v—u) + j(v) - j(u*) = -L(v-u*) Vv e V N L*(Q),
u e V.

Forn > 0, definer, : V — K, by

Vv = inf(n, Supfn, v))( see Figur&Z]1) (2.29)

136
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/ TV

TnU

N

v

Figure 2.1:

Then the CorollarfZ]1 of Chafal 2, SEC]2.2, we have

lim v = v strongly inV,
oo : (2.30)
nI|_r)r;o TV =Vin Q.
Moreover, we obviously have,
ITaV(X)] < [V(X)| a.e., (2.31)
V(X) - TaV(X) > 0 a.e. (2.32)
137 It follows then from [Z3D){Z.32) and from the various pedes of
that
D(Tpv) < O(V) a.e., (2.33)
r!im O(Thv) = O(V) a.e. (2.34)

Sinceryv € L¥(Q) N V it follows form (Z28) that

{a(u*, TaV = U) + j(tnV) — j(U7) > L(rav - U) YV € V, (2.35)

u*eV.
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If v ¢ D(®), then by Fatou’s lemma
r!im j(tnV) = +co.

If v e D(®), it follows from ({Z33) and[[Z34) by applying Lebesgue’s
dominated convergence theorem that

lim “j(mav) = j(V)-

From these convergence properties and filam12.30), itvfal]dy taking
the limit in (Z3%), that

{a(u*, V-Uu) +jv) - ju) 2 Lv-u) Wve, (2.36)

u eV
Thenu* is a solution of £) and from the uniqueness property we
haveu* = u. This proves thar'g limu, = u weaklyin V.

Let us know thaip(u), up(u) € LY(Q). Letv € K. Thenu, + t(v —
un) € Kp ¥t €]0, 1]. Replacingv by u, +t(v—up) in 7, and dividing both 138
sides of the inequality byywe obtain

a(Un, v — Up) + f DUy + v _tu”)) = ) g > L(V — Un) YV € Kp.
Q

(2.37)

Since® € CY(R) andd’ = ¢ we have

lim D(Un + t(V — Un)) — O(Up)

t—0 t
t>0

= ¢(Un) - (v—up) a.e. (2.38)

Moreover sinceb is convex, we also havét €]0, 1],

#(Un + (v — Un)) — ¢(un)
t

$(un)(V —Up) < < (V) — O(u,) a.e. (2.39)

From [2.38), [[2.39) and usingebesgue’s dominated convergence
Theoremin (Z37), we obtain

a(up,V—Uup) + f dUn)(V—up)dx>L(v—u,) VYveK, (2.40)
Q
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Then takingv = 0 in (Z40) we have

a(un, Un) + f é(Un)updx < L(up),
Q
which implies, usingl{Z]2),
2
f $(Un)undx < g (2.41)
Q [0

But ¢(V)v > OVv € V. Henceg(un)u, is bounded inL1(€2). Moreover
for some subsequencey()n, of (un)n we have

¢(unk)unk - ¢(Uua. e. inQ.

Then by Fatou’s lemma we obtaim(u) € L1(Q) and this completes
the proof of the Proposition sinag(u) € LY(Q) implies obviously that
#(u) € LY(Q). O

Incidentally, when proving the convergence of) to u, we have
proved the following useful

Lemma 2.2. The solutionu of () is characterised by

{a(u,v— ) +jv) - j(U) 2 L(v-u) Vv e VN L=(Q), (2.42)

ueV,du) e LY(Q).

In view of proving that(r) implies (P) we also need the following
two lemmas:

Lemma 2.3. The solutionu of (r) is characterised by

(2.43)

u eV, up(u) € LY(Q).

Proof. (r) implies@.43).
Letv e L®(Q) nV. Thenv € D(®) and sinceD(®) is convex we

haveu + t(v — u) € D(®) ¥t €]0,1]. Replacingv by u+ t(v — u) in (7)

and dividing byt we obtainVvt €]0, 1]

{a(u, V—u)+ fQ p(W)(v—-u)dx=>L(v-u)YveL®(Q)NYV,

a(u,v—u) + f Pu+ t(v—tu)) — q)(u)dxz L(v—u), YV e L*(Q) N V.
“ (2.44)
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Since® e C! and is convex, we have
. Ou+t(v—u)) -o(u
iy 2= 1) - 0

>0
(U + t(v—u)) — d(u)
PV - U) < t

= ¢(u)(v-u) a.e., (2.45)

< O(V) — O(u). (2.46)
m|

By Propositior.ZI1 we hawg(u), up(u) € L1(Q). Hencep(u)(v-u) €
LY(Q) and®d(v), d(u) € LY(Q), Vv € L®(Q)NV. Then using the lebesgue
dominated convergence Theorem it follows frdm (P.45) andd@pthat

m)j; (D(u+t(v—tu))—<D(u)dX:L¢(u)(v_u)dx

Using the above relation and(2144) we obt&in (P.43). Thizes that 140

(m) = (Z43).
(2) We will now prove thatl{Z43} (n).
Letu be a solution of[{Z.43). Since is convex it follows that

—®(u) = ©(0) — D(u) = ¢(U)(0 - u) = —¢(u)u.

This implies 0< ®(u) < up(u) andd(u) € LY(Q). Letv e L®(Q) N V.
Then from the inequality.

d(U)(v—U) < DV) — Dd(U) a. e. inQ,

we obtain by integration
f dp(U)(v—u)dx < j(v) - juYveVnL>Q),
Q

which combined with[[Z:43) and(u) € L1(Q) implies [Z42). Hence
from LemmdZ.R we obtain thdi{Z]43) implies) (

Lemma 2.4. Let u be the solution ofx). Thenu is characterised by

{a(u, V) + [o p(uvdx= L(V) Vv e L2(Q) NV, (2.47)

ueV, o) e LY(Q).
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Proof. (1) (r) implies [Z47Y).

Letv e VNL®(Q). If uis the solution of£) thenuis also the unique
solution of [Z4B). Letr, be defined by[{Z2:29). Theryu € V N L*(Q).
Replacingv by ryu + vin (Z43) we obtain

a(u,v) + [, #(U)vdx+a(u, Tou— ) + [, ¢(U)(Tnt — U)dx
> L(V) + L(Thu — u), (2.48)
YV e VN Le(Q).

It follows from (Z.29)-12.3R) that

{Iim a(u, Tou — U) = 0,

n—co (2.49)

nI|_r)13o L’(thu—u) = 0,

n'l‘l, ¢(W)(thu—u) =0a.e., (2.50)

0 < ¢(u)(u — Thu) < ug(u) ae. (2.51)
i

Then by the Lebesgue dominated convergence Theorenfal),(2.5
Z31) we obtain

lim ¢(u)(rnu — ) = 0 strongly inLY(Q). (2.52)
Then [Z48),[[Z.49) and(Z52) imply
a(u,v) + fgq&(u)vdxz L(v) Vv e V N LT(Q).
Since the above relation also holds forwe have
a(u, v) + L p(Uvdx=L(v) VYveVNL>Q), (2.53)

By Proposition[Zll we have(u) € LY(Q); combining this with
Z53) we obtain[[Z47). This proves tha) & (Z41).
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(2) Z47) implies f).

We have
a(u, v) + f o(Wvdx=L(v) Yve V N L7(Q).
Q
then

a(u, Tpu) + f d(Wroudx = L(Thu) ¥n. (2.54)
Q

Sincerpu — u stronglyin V, {fQ ¢(UWrhudX, isbounded Butg(u)rhu > 142
0 a.e. Hence we obtain thafu)r,u is bounded in_1(Q). We also have
limn_0 ThUg(U) = Ugp(u) a.e. ; hence by Fatou’s lemma we have

up(u) € L1(Q). (2.55)
But now we observe that
0 < p(U)Tl < UB(U).

Hence by the Lebesgue dominated convergence theorem

lim f¢(u)rnudx:f¢(u)udx
n=co Jo Q
which along with [Z.54) gives

a(u, u)+f¢(u)udx: L(u). (2.56)
Q

Then by subtractind{2.56) frori{Z147) we obtain

{a(u, V=) + foU)(v - udx= L(v-u) Yv e V N LY(Q), (2.57)

u e V,up(u) € LY(Q),

and obviously [[Z37) implied(2Z#3) . This completes theopwf the
lemma.

COROLLARY 2.2. If uis the solution ofr) then u is also a solution
of (P).
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Proof. We recall thav* = H™1(Q) c 2’(Q) and tha@(u, v) =< Au,v >
Yu,veVandL(v) =< f,v>.

Let u be a solution of £). Thenu is characterised by (ZK7) and
since2(Q2) c V we obtain

<Auv> + f dp(uvdx=< f,v> Yve 2(Q) (2.58)
Q

From [Z58) it follows that
Au+ ¢(u) = f in 2(Q), (2.59)

sinceAuand f € V*, we havap(u) € V*. Hencep(u) € L1(Q) n HY(Q)
and from [Z.5B) we obtain thatis a solution of P). o

If we try to summarise what we have proved until now, we observ
that the unique solution oftf is also a solution of). Now we prove
the reciprocal property ; that is, every solution Bj {s a solution of £)
and hencePR) has a unique solution.

In order to prove this we shall use the following density leanm

Lemma 2.5. 2(Q) is dense in \©h L=(Q), V N L*(Q) being equipped
with the strong topology of V and the weak * topology 8{Q).

. ——HYQ )
Proof. Letv e VNL*®(Q). SinceZ(Q) @ _y there exists a sequence
{Vn}n, Vn € 2(Q), such that

r!im Vi, = v strongly inV. (2.60)

Let us definew, by (see Fig. 2.2)

Wp = min(v", vii) — min(v_, ;) (2.61)
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Figure 2.2:
Then 144
Wn has a compact support (&, (2.62)
WnllL=(@) < IMIL=() (2.63)

and it follows from Chad.]2, Corollafy 3.1, that
lim w, = v strongly inV. (2.64)

n—oo

O

From [2Z.68) and[{Z.64) we obtain thr?t limy, = v for the weak*
topologyof L*(Q).
Thus we have proved that
U ={velL®(Q)NV :vhas compact support i}

is dense inL*(Q) n V for the topology given in the statement of the
Lemma.
Letv e  and pn)n be a mollifying sequence (see Chep. 2, Lemma
Z4). Definevj by
v(x) if xeQ,
U(x) = (4.4)
0 if x¢ Q,



145

148 4. Applications of elliptic variational Inequality...

\7n = pPn* \7, (266)
thenvi, € 2(RN), lim ¥, = ¥ strongly inHY(RN), (2.67)
Vn has a compact support §& for n large enough (2.68)

Let v, = Vnlq then forn large enougtv, € 2(Q) andnlim Vh =V
stronglyonV.
Sincel[¥l| sy = [IVllL= () it follows from (Z68) that

N1 < [ palc- DNy < Moy (269
R
From this it follows that

IVnllL=(@) < IMIL=(@) (2.70)

Summarising the above information we have proved at L= (Q) N
V, there exists a sequencg )y, Va € Z(Q) ¥n, such that

lim v, = vstrongly inV, (2.71)

n—oo

IVallL=(@) < [IVIlL=@) YN (2.72)
Hence from[[Z71) and(ZJ72) we obtain thgt— v in L*(Q) weak*.
This completes the proof of the Lemma.

THEOREM 2.2. Under the above hypothesis on \{;,g, L(-), ¢(),
problems(ir) and(P) are equivalent.

Proof. We have already proved that)(implies (P). We need only to
prove that P) implies ).
From the definition of IP) we have

a(u,v)+ < ¢(u),v>=L(V) YVeV,

(2.73)
ueV,¢(u) e HY(Q) N LY(Q).
It follows from (Z73) that
a(u,v) + f o(uyvdx = L(V) Yve 2(Q). (2.74)
Q

O
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If v.e VnL®Q) we know from Lemmd2]5 that there exists a
sequencevg)n, Vn € 2(Q), such that

r!im Vi, = vstrongly inV, (2.75)
r!im Vh = vin L®(Q) weak = . (2.76)
Sincev, € 2(Q) we have, from(Z_44), 146
a(u,vp) + f d(U)VhdX = L(vp). (2.77)
Q

It follows from (Z1) thatn lima(u, v) = a(u, v), r!im L(vn) = L(v) and,
sinceg(u) € LY(Q), Z18) implies that

lim qu(u)vndx:fgb(u)vdx
n—c Jo Q

Thus taking the limit in[[Z47), we obtain
a(u,v) + f $(u)vdx= L(v) Yv e V N L™(Q).
Q

Therefore P) implies [Z4Y) which implies in turna). This completes
the proof of the Theorem.

Exercise 2.2.Find in R?, a function v such that ¢ H-1(Q) n LY(Q),
v¢ LP(Q)Vp > 1, whereQ is some bounded open sefRiA.

Exercise 2.3.Prove that if u> 0 a.e. themp(u)v € LY(Q) Vv € V, where
u is the solution of the probleli®).

2.4 Some comments on the continuous problem

We have studiedR) and ) with rather weak hypotheses, namelys
COR) and nondecreasing, arfde V*. The proof we have given for
the equivalence betweel) and {r) can be made shorter using more
sophisticated tools of Convex Analysis and from the thedéi@anotone
Operators (see LIONE][1] and the bibliography therein). keesy our
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proof is very elementary and some of the lemmas we have @utain
will be useful in the numerical analysis of the probleR).(Regularity
resultsfor problems little more complicated tha&)and (r) are given in
BREZIS-CRANDALL-PAZY [ ; in particular forf e L2(Q) and with
convenient smoothness assumptionspthe H?(Q)-regularity ofu is
proved.

2.5 Finite element approximation of(x) and (P)

2.5.1 Definition of the approximate problem
147

Let Q be a boundegolygonaldomain ofR? and %, be a triangulation
of Q satisfying [Z.211)-[[Z.23) of Chap. 2. We approximstéy

Vh = {Vh € CO(Q) : Vhlr = O, vl € PL VT € %hl.
Then it is natural to approximat®) and () respectively by

a(Un, Vh) + [, #(vn)Vhdx = L(Vh) YV € V,
(Pp)
Un € Vh
and

a(Un, Vh — Un) + J(vh) = J(Un) = L(Vh — Un) YV € Vh,
(mr)

Un € Vh

with
i = d
j(vh) fg #(Vh)dx

Obviously P;) and () are equivalent. From a computational point of
view we cannot use in generd®) and ) directly since they involve
the computation of integrals which cannot be done exactlyr this
reason we shall have to modify) and @) using somewhere some
numerical integration proceduresActually we shall have to approxi-
matea(-, ), L(-) and j(-). Since the approximation &f-,-) andL(-) is
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studied in CIARLET [1, Chap. 8] we shall assume that we stidrkv
with a(-, -) andL(-) but we shall approximatg-).

To approximatej(-) we shall use théwo dimensional trapezoidal
method Hence using the notation of Figure 2.3 below we approximate

i() by

3
. meas (T
) = ) TS M) e ve (278)
Te%h i=1
M3zr
T
My Mar
Figure 2.3:

Actually jn(vh) may be viewed as the exact integral of some piecas
wise constant functions.

Using the notation of Chafll 2, SEC.]2.5, assume that the,sefthe
nodes oféh, has been ordered by= 1,2,. .., N, wheren, = Card(>)-
Let M; € Y. We define a domai; by joining, as in Figure 2.4,
the centroids of the triangles, admittiddy as a common vertex, to the
midpoint of the edges admittinlgl; as a common extremity (if4; is a
boundary point the modification of Figure 2.4 is trivial to)do
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(4444477,
2
i

Figure 2.4:

Let us define the space of piecewise functions :

Nh
Lh = {un: un = Zi = Luiyi,ui €eR,i=21,2,...,Np}, (2.79)

149  wherey; is the characteristic function 6%;.
We then definey, : CO(Q) N H3(©) — L, by

Nh

ahv =) V(M) (2.80)

=1

Then it follows from [Z/P) and(Z.80) that

jh(vh) = f O(ghVh)dXVYVh € Vh. (2.81)
Q

We also have
in(Vh) = j(AnVh) YVh € Vh. (2.82)

Then we approximateR) and (r) by

a(Un, Vh) + |, #(GhUn)GhVhdX = L(Vh) Yvh € Vi,
(Pn)
Un € Vh

and



2. Theoretical and Numerical Analysis of... 153

a(Un, Vh — Un) + jh(vh) = jn(un) = L(Vh — Un) YVh € Vp,
(7th)
Un € Vh.
Then

THEOREM 2.3. Problem (Py) and (r,) are equivalent and have a
unigue solution.

Exercise 2.4.Prove Theoreri 213.

2.5.2 Convergence of the approximate solutions

THEOREM 2.4. If as h— 0 the angles ofé}, are uniformly bounded
below byd, > 0 then
Iim flun = ullv = 0,

where u and g are respectively the solutions @F) and (Py,).

Proof. Since j(-) is not continuouson V, the result of Chap. 1, Seci150
6 on the approximation of EVI of the second kind cannot beiadpl
directly. However the proof of the convergence follows thee lines

as in Theoreri 612 of Chap. 1. m|

(1) A priori estimates for u,. Takingv, = 0 in (m,) we obtain

llunllv < w (2.83)
@

2
Osfd>(qhuh)dxs & (2.84)
Q a

(2) Weak convergence ofy. It follows from (Z.83) and from the com-
pactness of the injection &f in L2(Q), that we can extract from
(un)h a subsequence, still denoted ly)g, such that

up — U* weakly inV, (2.85)
Up — U* strongly inL2(<Q), (2.86)
u, = U a.e. inQ. (2.87)
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Admitting for the moment the following inequality

2h .
lghVh — VhllLr@) < §IIVV||Lp(Q)><Lp(Q) YVh € Vh, YpWwith 1 < p < oo,
(2.88)
it follows from (Z.83) and[(Z.86) that

OhUn — U* strongly inL?(Q). (2.89)
Then, modulo another extraction of a subsequence, we have
OhUp — U" a.e. inQ, (2.90)
from which it follows that
®(gnhun) — O(u) a.e. inQ. (2.91)

Then takingv € 2(Q), it follows from CIARLET [], [@], STRA-
NG-FIX [ that under the assumptions @, of the statement of the
Theorem we have

lIrhV = Vilwes (@) < ChiVlwes ) YV € Z2(Q), (2.92)
eV = VllLe(@) < CHVlwzs () YV € 2(Q), (2.93)

whereC is a constant independent wandh and wheray, is the usual
linear interpolation operator ovéf,,. Moreover [Z.8B) withp = +oo,

92) and[[Z2.93) imply that
Pl'limO”thhV — VL@ = 0Vve 2(Q). (2.94)

TakingVvi, = rpvin (7n) we obtain
a(un, Un) + fg ®(gnhun)dx < a(un, rpv)
+ L DO(ghrpv)dX — L(rnv — un) YV € 2(Q). (2.95)
From [Z.85),[[Z.89) and Lemnia®.1 we have

a(u*,u*)+fgd>(u*)dxsIiminf(a(uh,uh)+L@(qhuh)dx).
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Moreover
rI1i£1>10\£2(I)(thhv)dx: Ld)(v)dx: J(VVV e 2(Q).
Then in the limit in [Z9b) we obtain
au,u) + ju) <a(u,v)+ j(v) - L(v-u)Yve 2(Q). (2.96)
From Fatou’s lemma applied 16 (2184) abd (2.91) we obtain
o) € LY(Q). (2.97)
Then it follows from [Z.96) and{Z.97) that satisfies

a(u*, v—u) + j(v) — j(u) < L(v—u*) YV € 2(Q),u" € V, p(u*) € LYQ).
(2.98)
We now takev € V N L®(Q), it follows from LemmdZb that there1s2
exists a sequence)n, Vn € Z(Q) such that

r!im Vp = v strongly inV, (2.99)
r!im Vph = vin L*(Q) weak™. (2.100)

We have from[(2.98) that

a(u®, vp — U") + j(un) — ju*) > L(vy — UF) VN, u* € V, d(u*) € LY(Q).
(2.101)
We obviously have fronT{Z.99)

r!im a(u*, v, — u") = a(u*,v—-u"),
lim L(v, — u*) = L(v-u).
n—oo
Sincev,, — vin the weak * topology oL.*(Q2) we have a constant

C such that
IVnllL=() < CVn. (2.102)

Moreover, for some subsequende, (2.99) implies that

lim v, = va.e. inQ. (2.103)

n—oo
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From [Z.I0B) we obtain that
d(vy) » O(V) a.e. inQ.

From [ZI0PR) and[{ZI03) one can easily see that the Lebeabgue
inated convergence theorem can be appliedPioi((h)),. Hence we
obtain

lim j(vp) = lim fd)(vn)dx:fcb(v)dx: j(v).
n—oo n—oo Q Q
Therefore taking the limit if(ZI01) we obtain

a(u,v—u) + j(v) - j(u) = L(v-u)*)Vve VNL(Q),

u* eV, d(u*) e LY(Q).
(2.104)
Since from Lemm#&2]12 we know thdf(Z.104) is equivalentsip (
we have proved thai* = u whereu is the solution of £). From the
uniqueness of the solution of)it follows that the whole sequenceayjy,
converges ta.

(3) Strong convergence ofun) : From theV-ellipticity of a(-, -) and
from the variational inequality satisfied loy we obtain

lun — Ull? + ja(un) < a(Un — U, Un — U) + jr(Un)
< —a(uh, u) + a(u, u) + a(un, U)
—a(u, up) + jn(up) < —a(up, u) + a(u, u) + a(un, rpv)
+]jn(rnv) — L(rnvV — Un)
—a(u,uy) Yve 2(Q).

(2.105)

Using the various convergence results of Part (2) we obtam {Z.105)
that

j(u) < liminf ju(un) < liminf(allun — ull? + jn(un))
< lim sup@|lun — Ul® + jn(Un)) (2.106)
<a(uv-u)+ j(v) - L(v—u) Yve 2(Q).
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Using as in Part (2) the density 6f(Q) in L*(Q) NV (for the strong
topology ofV and the weak * topology df*(2)), we obtain thaf{{Z.106)
also holds for alv € V N L*(Q). Then

j(u) < liminf jn(un) < liminf(allun — U2 + jn(un))
< limsup@llun — Ul + jn(un)) (2.107)
<a(u,Tpv—-u) + j(tnv) — L(thv—V) Yve V.

Using the properties of,v, it follows then from [ZZI07), by taking the
limit asn — oo, that [Z.10b) also holds for all € V. Hence by taking
V = U we obtain

j(W  <liminf jp(uy) < liminf(e|lu, — ull? + jn(un))
< lim sup@llun — ull? + jr(un)) < j(u),

which implies 154
im jn(un) = j(u),
im lun = ullv = 0.

This proves the Theorem modulo the proof B (2.88). We nowe@ro
Z.88).
Lemma 2.6. We have
2
VP, 1< p<oo,||ghvh — VhllLr) < éh”VVh”LP(Q)xLP(Q)

where @, W, are as before.
Proof. We use the notation of Sdc. 2.5.1 O

Figure 2.5:
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We have (see Figufe2.5)
IVh(M) = GhVh(M)[ = V(M) = Va(M)|YM € Qi N T. (2.108)
But sincevy|t € P, we have
e
Vh(M) = vpy(Mj) + MiM - Vv VM e QN T,
from which it follows, combined with{Z.T08), that

—_
[0hVh(M) = Va(M)| < IMiM[|[VVh| YM € Qi N T.

i —— 2
But from the definition oth we have|M;M| < §h YT so that we

, 2 . .
finally have|gavh(X) — Vh(X)| < §h|Vvh(x)| a.e. inQ, Ywy € V. This
implies
2
[10hVh — VhllLp(q) < §h”VVh||LP(Q)><LP(Q)-

This proves the lemma.

REMARK 2.4. We have not considered the problem of error estimates.
This problem will be discussed in GLOWINSKII [4].

REMARK 2.5. The numerical analysis of problem liK&) but with
much stronger hypotheses ofi,a, ¢, f is considered in CIARLET -
SCHULTZ - VARGA1].

2.6 Iterative methods for solving the discrete problem
2.6.1 Introduction

In this section we briefly describe sonterative methodsvhich may

be useful for computing the solution d?{) (and @n)). Actually most

of these methods can be extended to other non-linear prebigiany of

the methods to be described here can be found in ORTEGA-
RHEINBOLDT []. A method based oduality techniques will be de-
scribed in ChafLl5.
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2.6.2 Formulation of the discrete problem

Here we are using the notation of the continuous problem.infa&s
unknowns the values af, at the interior nodes o}, the problem Py,)
reduces to the finite dimensional non-linear problem

Au+Dg¢(u) =f, (2.109)
where Ais aN x N positive definite matrix, bOs a diagonal matrix
with positive diagonal elementys and where u= {uy,...,Un} € RN,

fe RN, ¢(u) € RN with (@(u)i = ¢(ui). Clearly from the properties of
A, D, ¢, f we can see that the problem{Z.1109) has a unique solution.

2.6.3 Gradient Methods

The basic algorithm with constant step (see CEA [1]) is glvgn 156
U e RN given, (2.110)
W= U—pSHA U + DU — f),p > O. (2.111)

In (ZI11), Sis asymmetric, positive definite matrixa canonical
choice is S= Identity. But in most problems it will give alow speed
of convergencelf Ais symmetric, the natural choice isSA and, if

A+A

A # A we can take S
For the convergence of‘mo u (where uis the solution of[[Z.109)) it

is suficient to havep smooth enough (for example,locally Lipschitz
continuous). Then lim" = u if p is suficiently small. Obviously the

n—oo ~

closer {§ is to u, the faster is the convergence.
REMARK 2.6. If A = A, thenA v + D ¢(v) — f is the gradient at of

N
the functional {v) = %(Av, V) + Y, did(v;) — (f, V), where(., ) denotes
< I ] 2

the usual inner product &N and ®(t) = fot ¢(r)dr.
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REMARK 2.7. In each specific case has to be determined ; this can
be done theoretically, experimentally or by using an autieradjust-
ment procedure which will not be described here.

REMARK 2.8. Let us defing" by

g"=AU" +Das") -f.

Instead of using a constant paramejewe can use a familyop), of
positive parameters i@€111) ThereforeZIT1)can be written as

-1
u™t = u"—pn S (2.112)

Supposeé\ = A; then if we usdZ110) (ZI12)with p, defined by

-1 -1
JU'—pn Sg) < JU"-p Sg") VpeR,
N N (2.113)

pHERv

the resulting algorithm is, for obvious reasons, callecepiest descent
method. This algorithm is convergent fpre C°(R). We observe that
at each iteration the determination pf requires the solution of a one-
dimensional problem; for the solution of such one dimeraiproblems
see HOUSEHOLDEHRT1], POLAK]1], BRENM[1].

REMARK 2.9. Ateach iteration ofZ110) (Z111)or (Z110) (Z112)

we have to solve a linear system reIatedSto SlnceS is symmetric
and positive deflnlte this system can be solved usmg Chotaskhod,
provided theS =L L factorization has been done. From a practical
point of view it is obvious that the factorization SleII be made in the

beginning once for all. Then at each iteration we just havedive two
triangular systems which is a trivial operation.
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2.6.4 Newton’s method

The Newton’s algorithm is given by (for flicient conditions of conver-
gence, see ORTEGA-RHEINBOLDI[1]) :

w e RN given, (2.114)

U= (A+DHU) TS W -DoW) 1) (2115)

whereg¢’ (v) denotes theiagonal matrix

¢'(v))~- O
¢'(V) =
0 ¢ (Vn)
Since¢ is nondecreasingy’ > 0. This implies that A+ D ¢’(v) is
positive definite? v e RN.

REMARK 2.10. At each iteration we have to solve a linear system.
Since the matriA + D ¢’(u") depends on n, this method may not be

convenient for large N.

REMARK 2.11. The choice of is very important when using New-
ton’s method.

2.6.5 Relaxation and over-relaxation methods

We use the following notation : 158
A = (ajj)1<i,j<N>
f={f1,f2.... fn}.

Since Ais positive definiteve havea; > 0Vi = 1,2,...,N. Here
we will describe three algorithms:
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Algorithm 1.
uw e RN given, (2.116)

then giveru", we compute™!, component by component, using

aiu n+1 + d ¢(U n+1) — f Z a” n+1 Z a”uT’ (2117)

j<i j>i

Ul = uin i w(ui—n+1 _ uin)’ i=212...,N. (2.118)

Sincea; > 0, ¢ € CO(R) and¢ is a nondecreasing function we can
always solve[[Z.117) and the solution is unique.
If w = 1, we recover arordinary relaxation methodsee CEA[L]).

IfA = A and sincep is C° and nondecreasing the solutlo’hof Z116)-
(]2]18) converges to the solutlomn ZI109).

If, in (2109), Ais not symmetrlc and # 1, there are certain suf-
ficient conditions for the convergence dTuD u, where lﬁ‘ is given by
Z118)[Z11B) and whereis the solution of[(2:|119) (see ORTEGA-
RHEINBOLDT [, S. SCHECHTERIN],[[Z40] [3)).

Algorithm 2. This algorithm is the variant ofZ116)- (ZZI18)obtained
by replacing@I1T)and ZII8)by

ai UMt + dig(ut = (1 - w)(@iu + dig(u))
+o(fi - 3 ajuftt - Ei ajj uj) (2.119)

j<i

fori=212...,N.

REMARK 2.12. If w = 1 andor ¢ is linear the two algorithms coin-
cide. In the general case the convergenc¢nl16) (Z119)seems to be
an open questionHowever from numerical experimentation’s it seems
that the second algorithm is mofebust” than the first, maybe because
it is moreimplicit. Furthermore it can be used evenyiis defined only
on a bounded or semi bounded interyal B[ of R such that(a) = —oo,
#(B) = +0 ; in such a case i € C°(Ja, B) and¢ is increasing (Z-109)
has still a unique solution but the use @I16)(Z1I8)with w > 1 may

be dangerous.
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REMARK 2.13. If ¢ € C}(R), an gficient method to compute i in
@IIT)and g+ in (ZII9)is theone dimensional Newton's method.

Let ge CL(R). In this case Newton’s algorithm to solve the equation
g(x) =0is

x° € R given, (2.120)

i1y 900 (2.121)
g'(x")
If in the computation of t** and J*! we useonly one iterationof
Newton’s method. starting fron{'uthen the resulting algorithms are
identical and we obtain

Algorithm 3.
uw e RN given, (2.122)
3 ajultt + 3 ajul + dig(u) — i
= g - P i=12...N
1 1 aii +di¢,(uin) 5 9 Ly o oo NG

(2.123)

In S. SCHECHTER]1],[1240],[0B] sflicient conditions for the conver-
gence of(Z122) (Z12Z3)are given.

REMARK 2.14. If w > 1 (resp.. w = 1, w < 1) the previous al-
gorithms areover-relaxation (resp. . relaxation, under relaxatialgp-
rithms.

REMARK 2.15. We can find in GLOWINSKI-MARROCCO [1]] [2] ap460
plications of relaxation methods for solving thenlinear elliptic equa-
tionsmodelling themagnetic state of electrical machines

2.6.6 Alternating Direction Methods

In this section we takp > 0. Here we will give two numerical methods

for solving [Z.10D).

First method.
uw e RN given, (2.124)
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knowingNU‘ we computeNEl*% by
pu™E + AU = pu" - Dg(U") +f, (2.125)
then we calculate't* by
p9n+1 + l?‘p(l;'ml) ZPHM% _ '6 lNJnJr%) + [ (2.126)

For the convergence di(Z124)-(Z.126) see R. B. KELLOG [1].
Second method.
weRrN given (2.127)

knowing U' we compute o3 by
U™ E £ AU™Z = pu — D p(U") + f, (2.128)
then we calculated! by

pun+1 + D¢(Un+l) — pUn —A un"'% +f. (2.129)

Using tlhe results of LIEUTAUDIL], it can be proved that, fdr a
p > 0, U™z and ' if we suppose that Aand¢ satisfy the hypotheses

given in Sec. 2.6.2.

REMARK 2.16. At each iteration we have to solve a linear system, the
matrix of which isconstant since we use aonstant step. This is an
advantage from the computational point of view (cf. Rerhdlk 2

We also have to solve a nonlinear system of N equations, but in
fact these equations are independent from each other anctestb N
nonlinear equations ilmne variablevhich can be solved easily.

2.6.7 Conjugate gradient methods

In this section we assume AA (if A # A we can also use methods of
conjugate gradient type). For a detailed study of these odstive refer
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to POLAK [, DANIEL [[[], CONCUS-GOLUB [1]. If the functionk
J defined in Remark2l6 is not quadratic (i.¢.is nonlinear), several
conjugate gradient methods can be used. Let us describeftihern,
the convergence of which is studied in POLARK [1]. LEbe given by

N
) = SAVY) + Y dow) - (V)
i=1

where®d(t) = fotqﬁ(T)dT, ® being a nondecreasing continuous function
onR with ®(0) = 0.

Let S be aN x N symmetric, positive definite matrix. First method.
(Fletcher-Reeves)

uw e RN given, (2.130)
1

¢’ = SAW +Dg(W’) - ), (2.131)

wP = go, (2.132)

Then assuming thatiand W are know we computed! by

umt = u" - pow", (2.133)

wherep,, is the solution of the one-dimensional minimization proble

JU" = ppwW") < J(U" - pW") Vp € R,

(2.134)
pon €R.
Then . 162
g™l = S(AU™Y) + D (U™ - 1), (2.135)
and compute~W1 by
1= g™l 4w, (2.136)
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where
(S gn+l gn+1)

=T Ee. o)

(2.137)

Second method. (Polak-Ribiere). This method is like theviptes
method except tha {Z.137) is replaced by

(§gn+l’ gn+1 _ gn)

(Sg".g")

An = (2.138)

REMARK 2.17. For the computation g, in (Z134) see Remark?2.8.

REMARK 2.18. It follows from POLAK [[1], that if¢ is syficiently
smooth then the convergence of the above algorithms is dnper i.e.
faster that the convergence of any geometric sequence.

REMARK 2.19. The above algorithms are very sensitive to roud o
errors; hence double precision may be required for some Iprab.
Moreover it may be convenient to take periodically = g".

REMARK 2.20. We have to solve at each iteration a linear system
related toS; RemarKZP still applies to this problem.

2.6.8 Comments

The methods of this Sec. 2.6 may be applied to more generéhean
systems thar[{Z.ID9). They can be applied of course to fimterd
sional systems obtained by discretization of elliptic peofs like

=V - (@()Vu) + B-Vu+ ¢(x,u) = fin Q,

+ suitable boundary conditions

where, for fixedx, the functiont — ¢(x,t) is continuous and nonde-
creasing orR.
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3 A Subsonic Flow Problem

3.1 Formulation of the continuous problem
163

Let Q be a domain oRN (in applications we havél = 1,2, 3) with a
suficiently smooth boundary. Then the flow of a perfect, compress-
ible, irrotational fluid (i.e.V x v = 0 where vis the velocity vector of

the flow) is described by

=V (o(¢)Ve) =0inQ, (3.1)
_ VP \1/6-1)
o(¢) = po(1 - er1—(_:2) ) (3.2)
=

with suitable boundary conditions. Here
e ¢ is a potential an@¢ is the velocity of the flow,
e p(¢) is the density of the flow,
e pp is the density aV¢ = 0; in the sequel we takey = 1,
e vy is the ratio of specific heats,
e C, is the critical velocity.

The flow under consideration is subsonic if
V| < C, everywhere inQ. (3.3)

If [Vg| > C, in some part of2, then the flow igransonic or super-
sonicand this leads to much more complicated problems (see Chap. 6
for an introduction to the study of such flows).

REMARK 3.1. Inthe case of a sunsonic flow past a convex, symmetric

airfoil and assuming (see Figufe_B.1) th@t is parallel to the x -axis

. . 0
(Q is the complement of the profile &? and a—ﬁh = 0), H. BREZIS-

STAMPACCHIAI[IL] have proved that the subsonic problem isvequ
lent to an EVI of the first kind in the hodograph plane (see BHRS



164

168 4. Applications of elliptic variational Inequality...

LANDAU-LIFCHITZ ] for the hodograph transform). This Eél re-
lated to a linear operator and the corresponding convex sé¢hé cone
of non-negative functions.

Voo
e

AN
A R R R

T T TR
\\\\§§§§§\\\\\\

T/

Figure 3.1:

In the remainder of Sec. 3 (and also in Chap. 6) we shall onlgkwo
in the physical plane since it seems more convenient fordhepatation
of non-symmetric arior transonic flows.

For the reader who is interested by the mathematical aspétis
flow mentioned above, see BERS [1], BREZIS-STAMPACCHIA [1].
For the Physical and Mechanical aspects see LANDAU-LIPSZHI
[1]. Additional references are given in Chap. 6.

3.2 Variational formulation of subsonic problems

Preliminary Remark: In the case of a hon symmetric flow past an
airfoil (see Figur¢_-312)

B

Figure 3.2:
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the velocity potential has to lmkscontinuous and a circulation conditioniés
is required to ensure the uniqueness (modulo a constartig afaiution
of @). If the airfoil has corners (like in Figufe™B.1) th#re circula-
tion condition is related to the so call&dtta-Joukowsky conditioitom
which it follows that for a physical flow, the velocity field é®ntinuous
at the (like 0 in Figurd_3]12). For more information about thetti-
Joukowsky condition, see LANDAU-LIPSCHITZ [1] (see alsodph
6).

For the sake of simplicity, we shall assume in the sequeldiaer
Q is simply connected, as it is the case for the nozzle of Fiiieor,
if Q is multiply connected, we shall assume (like in FHig.] 3.1} the
flow is physically and geometrically symmetric, since irstibase the
Kutta-Joukowsky condition is automatically satisfied.

!

Figure 3.3:

We assume in the sequel that the boundary condition assddiath

@), [32) are the following:

d
¢ = go overTy, ,Oa—zlrl =0 (3.4)

wherel'p, I'1 c T withToN Ty = ¢, ToUT; = I'. Then the variational
formulation for the flow probler{{31 1) (3.2 (B.3L(B.4) i
|, p(¢)Ve - Vvdx = frl givdl' Vv € Vo,
(3.5)
¢ € Vg,
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where

Vo = {ve HY(Q) : vir, = 0}, (3.6)
Vg, = {ve HY(Q) : Vir, = go}- (3.7)

If go, g1 are small enough, it can be proved tHatl(3.5) has a solution
such that
IV¢| < M < C, a.e..

When solving a practical flow problem we may not know a priori,
whether the flow will be purely subsonic or not. Thereforgeas of
solving [35) it may be convenient to consider (and solve)ftiiowing
problem:

JoP@)V V(v - @)dx2 [ gi(v-¢)dr Vv € K,
(3.8)
¢ €Ks,

where
Ks ={ve Vg, |V <0 <C,ael. (3.9)

The variational probleni{3.8)(3.9) is an EVI of the first djrbut
we have to observe that unlike the EVIs of Chap. 1 and 2, ithiesa
non-linear partial dierential operator, namek defined by

A@) = =V - (p($)V9).

REMARK 3.2. In practical applications we shall také as close as
possible to C.

REMARK 3.3. Problem(@8), (3.9) appears as a variant of the elasto-
plastic torsion problem of Chapl 2, S&t. 3.
3.3 Existence and uniqueness properties for the problem (@).

In this section we shall assume that Measuig ¢ 0. To prove that
@3) is well posed we will use the following
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2

Lemma 3.1. The functioné —» —|1-

yl/y-1
] is convex if¢ €

1
ZT
: [y+1 : .
[0,C,], concave if € [C,, ilc*] and strictly convex i € [0, C,[.
’y —

Exercise 3.1.Prove Lemm&3l1.
We can now prove

THEOREM 3.1. Assume thaf is bounded and thateg g; are syfi-
ciently smooth and small. Th¢B.8) has a unique solution.

Proof. SinceQ is bounded and ify is suficiently smooth and small,

we observe thakK; is a closed, convex, and honempty bounded subset

of H(Q) (consisting of uniformly Lipschitz continuous functigns
DefineJ(-) by

y/y-1
1 Vv?
v =Yt (i s [ guar. (3.10)
2y Q &102 I
Py %

O

It follows from Lemmd_31L thad(-) is strictly convex oveKs. Itis
easy to check thal(:) is continuous and Gateaufidirentiable oveK;
with

(J'(v),w) = fp(v)Vv- Vwdx— f gawdr'. (3.11)
Q Iy

SinceKjy is a closed, convex, nonempty subset{Q) and that
J() is continuous and strictly convex ovig, it follows from standard
optimization theory in Hilbert space (see CEA [1], [2]) thae mini-
mization problem

J(u) < J(V) YV € Kg,
(3.12)

ue Ks,

has a unique solution.
Moreover sincel(+) is differentiable the unique solution &I {3112) is68
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characterised (see CEA[1[1[2]) by
(J(u),v—u) > 0VYv e Ky,

ue Ks;
from @3.I1), this completes the proof of the Theorem.
REMARK 3.4. Let us assume thdly = ¢. Then defining Kby

Ks = {ve HY(Q) : WV < 6 < C.ae, V() = Vo}

with Xy € Q and v arbitrarily given, we can prove that i is bounded
and g is syficiently smooth then

JoP@)V$ - V(v —)dx> [Lgi(v—)dl' YV € K;
(3.13)

¢ € Ks,

has a unique solution (if is a solution of@@.I3)then¢ +C is the unique
solution of the similar problem obtained by replacingby w + C).

Exercise 3.2.Prove the statement of Rem&rkl3.4.

REMARK 3.5. In all the above arguments we assumed fas$ boun-
ded. We refer to CIAVALDINI-POGU-TOURNMINH [1] in which one
carefully studies the approximation of subsonic flow protden an un-
bounded domaif,, by problems on a familfQ)), of bounded domains
converging td., (actually they have obtained estimates ¢ar — ¢n).

The above EVI's will have a practical interest if we can prévat in
the cases where a purely subsonic solution exists, theildoge enough
it is the solution of [3B); actually this property is trueddollows from

THEOREM 3.2. Assuming the same hypothesis®ry, g; as in The-
orem31, and tha@34) has a unique solution in HQ) with

IVg| < 6o < C. a.e. (3.14)

then ¢ is a solution of 38), B9) V6 € [d0,C.[. Conversely if the
solution of 38), (9) is such thatjV¢| < 69 < ¢ a.e., theng is a

solution of @), (E2), E3).
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Proof. (1) Let¢ € HY(Q) satisfying (1), [312) [3B14) and(3114). If
v € Vg then using Green'’s formula it follows froi (8. 10}, (B.2.4B.
that

fp(qb)qu - Vvdx = f givdl' Vv € V. (3.15)
Q Iy

It follows from (3.3), [3.I5) and from the definition b, that
pr(¢)V¢ -V(v-¢)dx = fri g1(v—¢)dI' Vv € V. (3.16)
Sinceg € K5 € Vg, V6 € [do, C.[, it follows from (3.I8) that
Jop@)V - V(v —g)dx= [gi(v—g¢)dl Vv e K,

¢ € Ks,

if 6 € [0, C.[; thereforeg is the solution of the EVI(318)[(3.9)
V6 € [0, Cul.

(2) DefineU c Vg by

U = {ve C®(Q) : v = 0in a neighbourhood dfj}.

m|
Then, if we suppose thatis suficiently smooth, we have
0@ _ vy, (3.17)
We assume that fat < C,, (3.8) has a solution such that
[Vo| < 6o < 5 a.e.. (3.18)

170
ThenVv € U and fort > 0 suficiently smallg + tv € Ks. Then

replacingv by ¢ + tvin (3:8) and dividing byt obtain

fp(¢)v¢ - Vvdx > gvdl' Vv e U,
Q

Iy
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which implies
fp(d))Vd) - Vvdx= gyvdl' Vv e U. (3.19)
Q

Iy

SinceZ2(Q) c U it follows from (319) that

fp(qb)qu -Vvdx= 0Vv e 2(Q), (3.20)
Q

-V - (p(¢)V¢) =0
which proves|[(3l1).
Assuming[(311) and Green’s formula we obtain

fp(q&)Vq&-Vvdx: pa—¢VdFVV€ u. (3.21)
Q r; on

Using [31F) and comparing with{3]19) we obtain

0
f)%lrl = 01,

i.e. (33), which completes the proof of the Theorem.

REMARK 3.6. A similar Theorem can be proved for the problem men-
tioned in Remark3314.

3.4 Comments

The solution of subsonic flow problems via EVIs like{3 BI). is con-
sidered in CIAVALDINI-POGU-TOURNEMINEI[R] (using a stream
function approach) and in GLOWINSKI-MARROCC(Q [3].

Iterative methods for solving these EVIs may be found in theve
reference and also in Chdp. 5 of these notes.



Chapter 5

Decomposition—Coordination
methods by augmented

largrangian. Applications?!

1 Introduction

1.1 Motivation

A large number of problems in Mathematics, Physics, Mecatsrico- 171
nomics, etc... may be formulated as

r\zi\p{F(Bv) +G(v)} (P)

where

- V, H are topological vector spaces,

- Be Z(V,H),

- F:H > R, G:V — Rare convex, proper, |.s.c. functionals.

Let us give two examples taken from Chayfer 2.

1This Chapter follows FORTIN-GLOWINSKI [1].

175
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Example 2. It is the Bingham flow problenof Chapted®, Sedl 6; we
recall thatQ being a bounded domain BF, we consider the variational
problem

min {3f|Vv|2dx+ gfleldx—f fvdx (1.1)
veHi©@) 2 Jo Q Q

wherey and g arepositiveconstants. The ) is the particular prob-
lem (P) in which

-V = Hi@,

H = L2(Q) x L3(Q),

-B=V

F(Q) = % [, la”dx+g [ laldx (ol = /a2 + 03,

- G(v) = — [, fvdx.

172 Actually we can also take
- F(q) = g J, lqdx,
- G(V) = ngWvlzdx— J;, fvdx.

Example 3. It is elastic-plastic torsion problewf Chapter 2, Sec. 3D
being still bounded ifiR2, we consider

min{}f|Vv|2dx—f fvdx (1.2)
veK 2 Q Q

where
K = {ve H}(Q),IVV < lael).

Problem[I.R) is the particular problerR)(in which
- V = H}(Q), H = L¥(Q) x L3(%),

-B=V,
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- F(@ = 5 ladx+ ¢ (a)

- G(v) = — [, fvdx
wherely is theindicator functionalof the convex set

K ={geH,|q < lae},

OifgeK
k(@) =
+o0 if q ¢ K.
We can also take

- F(o) = Ig,
- G(v) = :—2Lf9|Vv|2—fQ fvdx

Orientation. Problems of typeH) have a special structure and in the
sequel we shall introduce iterative methods of solutionngkt into
account.

1.2 Principle of the methods

The decomposition-coordination methods to follow are basethe fol- 173
lowing obviousequivalenceesult:

THEOREM 1.1. (P) equivalent to

min (F(Q) + GW) (m

where
W={{v,q} e VxH,Bv-q=0}

We shall assume in the sequel tWaindH areHilbert spaceswith inner
products and norms respectively denoted by)j( |I.|| and ¢, ) and|.|.
We define then a Lagrangian function#l associated ton), by

Z(v,q,p) = F(q) + G(V) + (u, Bv—-0), (1.3)
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and forr > 0 anAugmented Lagrangiat¥; by
r
LV, G ) = L (v, Q) + 5BV, (1.4)

REMARK 1.1. Augmented Lagrangian methods for solving general
optimization problems have been introduced by HESTERNESQWV-
ELL [@]. Augmented Lagrangian methods for solving probléikes(P)
via () have been introduced by GLOWINSKI-MARROCCQO]237] and

also [3]- [[.

2 Properties of (P) And of The Saddle-Points of.Z
And %4

2.1 Existence and uniqueness properties for (P).
Let defined : V — R by
J(V) = F(BV) + G(v).

Then ) can also be written

Ju) < J(V) Vv eV, 2.1)
uevV. '
Let j : X — R; we define the so-calledomainof j(.) by
dom (j) = {x e X, j(X) € R}
Then, if
dom (F o B)n dom @G) # ¢, (2.2)

Jis convex, proper, |.s.cTherefore syficientconditions for P) to have
aunique solutiorare (cf. CEA[1], [2], EKELAND-TEMAM [I)):

~ lim F) = +oo,
[Vl —=+c0

— F strictly convex.

REMARK 2.1. If Bis an injection from V to H, with @) (= range of
B) closed in H, themB\ is a norm on V equivalent tiv|.
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2.2 Properties of the saddle-points ofZ and %

We have

THEOREM 2.1. Let{u, p, 1} be a saddle-point af# on VxH xH, then
{u, p, 1} is also a saddle-point af; ¥r > 0 and conversely. Moreover u
is solution of(P) and p= Bu.

Proof. (i) Let {u, p, 4} be a saddle-point ofZ, then.Z(u, p, 1) € R and

LU pu) <2, p, ) < LV, gAYV, qul €V xHxH,

{fupAeVxHxH.
(2.3)
m]

From the first inequality[{2]3) and frori{1.3) it follows that
(1, Bu—-p) < (4,Bu-p)Vv, e H,
which implies obviously that
Bu=p. (2.4)
From the second inequalit.(2.3) and from{1.BL1(2.4) ildek that 175
Ju) = Zu,p, ) <(v,q,)V{v,q e VxH (2.5)
Takingqg = Bvin (Z3), it follows from [L.B) that
Ju) < Z(v,Bv,2) = J(V)VveV: (2.6)
henceu is solution of P). SinceP = Buwe have
LU p.p) = 2, pp) = JU) Y € H; 2.7)
it follows then from [ZB),[[Z17) that

2, p,u) = 4U,p,A) < ZLV,q)Vv,qu € VXHXH. (2.8)
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Since.4 (v, q, 1) = Z(v,q, 1) + %|Bv— q/?, we obtain from[[ZI8) that

Zu,pp) < LU pA) < ZLV.q )YV, qul € VXHXH, (2.9)

which proves thatu, p, A} is also a saddle-point o#; onV x H x H.
To conclude this part of the proof we observe that fréml (2®)p} is
solution of

{.,Sf(u, p.A) <. Z(v,q, ) Y{v,q} € V x H, (2.10)

{u,pt eV xH,

from which it follows that{u, p} is characterized (see CEA [1], [2],
EKELAND - TEMAM [1])

{F(q) ~F(P-(Lg-p=0vgeH, (2.11)
peH,

G(V) - G(u) + (1, B(v—u)) > 0Vv eV,
(2.12)
ueV.
(i) Let {u, p, 2} be a saddle-point af4 with r > 0. Then as in part (i)

this implies thatp = Bu and thatu is solution of ). Moreover, since
{u, p, A} is solution of

Zu,p,A) < Z4(v,q ) VY{v,q} €V x tH,

(2.13)
{fu,p} eV xH,
it is characterized by
F(@)-F(p) +r(p-Buqg-p)-(4,9-p) >0vqeH,
(2.14)

peH,



3. Description of The Algorithms 181
G(v) - G(u) + r(Bu—p,B(v—u)) + (1,B(v—u)) > 0V¥v eV,

ue V.
(2.15)

But sinceBu- p = C, (ZI3), [Z1b) reduce t¢_(ZN 1] (2112) and this
fact implies thafu, p, A} satisfies[[Z0). It follows then frori(2.7) that

{u, p, 1} satisfies[[Z13) and this completes the proof of the theorem.
3 Description of The Algorithms

It follows from Theoren{Z]1 that a way of solving) is to solve the
saddle point problem

Zu,pu) < LU, p,A) <(V,g ) Y{Vv,qu} € VX HXH,
(3.1)
{u,p,} e VxHxH.

To do so we shall (See CEA [1], G.L.T [1, Ch. 2]) and algorithin o
Uzawa’s type and a variant of it.

3.1 First algorithm

We denote by ALG 1 the following algorithm: 177
A% € H given, (3.2)
thenA” known, we defineup", 11 by

LW, p",A") < A(v,q, A"V{v,q} € V X H,
(3.3)
{u", p"t eV xH,

AL = 2" 4 p(BU = p"), pn > O. (3.4)
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The problem[[313) is in fact equivalent to the following systoftwo
coupled variational inequalitieof the second kind):

G(v) - GU") + (A", B(v—u") + r(BU" - p",B(v—u")) > 0VYv e,

unev,
(3.5)
F(a) - F(p") - (A",q—p") +r(p" - Bu',q-p") > 0Vg e H,
p" € H.
(3.6)

The convergence of ALG 1 will be studied in SEE. 4.

3.2 Second algorithm

The main drawback of ALG 1 is that it requires at each intéoacthe
solution of the coupled EVI${3.5).(3.6). To overcome thif§alilty it
is natural to consider the following variant of ALG 1 (dersht@LG 2
in the following):

{p° A%} e H x H given, (3.7)
then{p™1, A"} known, we defineu", p", ™1} by

G(v) = G(U") + (A", B(v—u")) + r(Bu" — p™1, B(v—u") > 0VveV,

unev,
(3.8)
F(@ - F(P") - @"q-p") +r(p"-Bu,q-p") >0v¥geH,
p" € H,
(3.9)
178
AL = A" (BU' = p"), pn > O. (3.10)

The convergence of ALG 2 will be studied in Sec. 5.
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4 Convergence of Alg 1

4.1 General case

In this subsectiotv andH are possiblynfinite dimensionalwe assume
that of course

dom (F o B)n dom @G) # ¢, (4.1)
and also
B is an injection andR(B) is closed inH. 4.2)
We assume also that F(@ N s
lg—+e Q] ’ '
F = Fo + F1 with Fo, F1 convex , proper, |.s.c. (5.1)

Fq is Gateaux-dterentiable and uniformly convex on the
(4.5)
bounded sets dfl.

By definition we say thak is uniformly convexon the bounded sets of
H if the following property holds:

YM > 0,3 6pm : [0,2M] — R, continuous, strictly increasing with
om(0) = O, such thatvg, p € H with |p| < M, |ql £ M we have

(Fo(@ - Fo.a—p) = om(lg - pl).
(4.6)
whereF( v Fq is theG-derivative ofFo. From the above properties?)
has aunique solution wand we defing € H by p = Bu.

Exercise 4.1.Prove that(P) is well-posed if@1)-&.3) hold. 179
About the convergence of ALG 1 we have

THEOREM 4.1. We assume tha¥ has a saddle-poinfu, p, 4} € V x
H x H. Then under the above assumption on B, F, G and if

O<ap<pnfar<ar 4.7)
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the following convergence properties hold

u" — u strongly in V (4.8)
P" — P = Bustrongly in H (4.9)
AL A" - 0'strongly in H (4.10)
A" is bounded in H (4.11)

Moreover if A* is weak cluster point ofA"}, in H, then{u, p, 1"} is a
saddle-point of% over Vx H x H.

Proof. Since{u, p, 1} is a saddle-point af4; we have

Zu,p.A) < ZL(v,q)Viv,ql € VX H,
(4.12)
{u,p} e VxH.

Therefore{u, p} is characterized by

G(V) - G(U) + (4, B(v—u) + r(Bu- g, B(v—u))
>0Vvey, (4.13)
ueV,

(Fo(P).a—p) + Fa(a) - F1(p) - (1.9-p)
+r(p—Bug-p) >0VvVqeH, (4.14)
peH.

Moreover we have, from Theordm P Buy = p; therefore
A=A+ pn(Bu-p). (4.15)
180 Letus defina™, p™, A" by
u"=u"-up"=p"-pA"=2"- A
It follows then from [34),[[4.75) that

/l—n+1 =" +pn(Bu‘” _ p—n).
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which implies
AT = |7 + 20017 BUT — ) + pRlBUT — P
or, what will be more convenient,
T2 = ]2 4+ 200(A7", BUT - p ™M + p2BUT - p 2. (4.16)
since{u", p"} is solution of [3B) it is characterized by
G(v) - GU") + (A", B(v—u") + r(Bu" — p",B(v—u")) > 0Yv eV,
u eV,
(4.17)
(Fo(P").a - p") + Fa(a) - Fa(p") - (4", q - p")
+r(p" - Bu,q- p") > 0Vq e H, (4.18)
p" € H.

Takingv = u (resp. .v=u") in @I1) (resp. .0413)) angi= p (resp. .

q=p") in @IB) (resp. .[(414)) we obtain by addition
A" BuM+r(Bu"-p",Bu") <0, (4.19)

(Fo(P) = Fo(p), P = (" p ™) +r(p" -~ Bu™, p") <0, (4.20)

which imply, also by addition,
(A" BU = p") + (Fo(P") — Fo(p), P +11BU™ — p " <0,

i.e.

— (A", BU - p ") = (Fo(p") - Fo(p), p) +rBU™ - p "% (4.21)
Combining [£16) and{Z:21) we obtain
A=A 2 20n(Fo(p")=Fo(P) P")+on(2r —pn) BU"—p ™" > 0.

(4.22)

Assuming that[{Z17) holds it follows frori.{Z122) that

lim Bu"-p™" =0, (4.23)
N—+oco

181
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lim (Fo(p") - Fo(p).p" - p) =0, (4.24)
A" is bounded irH. (4.25)
Sincep = Buit follows from (4.23) that
lim |BU'-p" =0 (4.26)
N—+oo

SinceF is proper there existpg € H such that-(pg) € R; then from
the characterisatioli.{3.9) we have

F(po) — (4%, po) + r(p" - BU', po) > F(p") — (2", p) + r(p" — BU", p).
(4.27)
SinceA" andp" — Bu'are bounded[{4.27) implies

Bo = F(p") - Balp", (4.28)
wherefp, 1 are independent aof. It follows then from [4.B),[[4.28) that
p" is bounded irH, i.e. AM such thatP"| < M Vn. (4.29)

Then using theuniform convexityproperty [45),[[416) ofo we obtain
from (Z.29) (assumin@! > |p|) that

(Fo(P") = Fo(p). P" = p) > dm(Ip" - P,
182  which implies, combined witH{4.24), that
lim ou(Ip" - p) =0 lim |p"—pl=0. (4.30)
It follows then from [4.2b) [[4:30) that
ningoo BU' = P = Bustrongly inH. (4.31)

SinceB is an injection withR(B) closed inH, then [43]l) implies that

lim u" = ustrongly inV. (4.32)

N—+oo
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The convergence result{4110) follows clearly frdmi4.#28). Leta*
be a weak cluster point ofi{), in H. Then passing to the limit if{3.5),
@@38), and using the I.s.c. property BfandG, we have

G(V) + (1%, B(v—u)) + r(Bu— p, B(v—u))
> liminf G(U") > G(u)Yv eV,

uey,

F(@-(@q-p)+r(p-Bug-p)
> liminf F(p") > F(p)¥Yq € H,

peH

{ G(V) — G(U) + (1%, B(v— U)) + r(Bu— p, B(v—u)) > 0¥ e V,

uey,
(4.33)
F(@-F(p)-@.q-p) +r(p-Bu-p,Bv-u)=0v¥veV,
peH.
(4.34)
As noticed before (se€{ZI13)={2119)(4.33) is equivalent
{zr(u, p. ") (V. 0, ") V{v.q} € V X H, (4.35)
{fu,p} eV xH.
Since, fromp = Bu, we have
Z(up,u) = LU, pp) = IU)Vu € H,
We obtain
2 pp) = LU, p,A) Ve e H. (4.36)

It follows clearly from [4.3b),[[4.36) thdu, p, A*} is a saddle-point of 183
% this completes the proof of the theorem. O
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4.2 Finite dimensional case

If V andH are finite dimensional we have convergence of ALG 1 with
weaker assumption df, B, G than in Sec. 4.1. The reasons for this are
the following:

(1) Since the constrainBv— g = 0 is linear, if (p) has a solution then
% and.% have a saddle-point (see ROCKAFELLAR [1], CEA [1],

[2]).
(2) R(B) is always closed

(3) It follows from CEA-GLOWINSKI [1] thatFq satisfies theiniform
convexity propertyd.g), @8)if Fg is C' and strictly convex

(4) If Fq is Ct and strictly convex thefr| is C? andstrictly monotone
i.e.
(Fo(t2) — Fo(0), G2 — a) > O0V¥q;, G2 € H, t # G
Then if (P) has a solution, the property

F@ _
ld—+c0 |q]

+00

is not necessary. This is related to the following

Lemma4.1. Let H be finite dimensional and AH — H be continuous
and strictly monotone. Lgp"}n-0, p" € H ¥n, and pe H be such that

lim (A(p") - A(p), p" - p) = 0; (4.37)
then

lim p"=p. (4.38)

N—+oco

Proof. Assume thatl{4.38) does not hold. Then there existO and a
subsequence, denoted™),, such that

Ip™ - pl > sVm. (4.39)

O
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0\ gf i X
184 LetS(p, 5) = {q eH,lq-pl = 2}. We definez™ e S(p, 2) by
o p"-p
"=p+= ; 4.40
P* 2l p (4.40)
2" €]p, pP"[c H (see Fig[4N).
Zm
Figure 4.1:
We introducet™ = : then
2p™ - pl
"= p+t"(p" - p) (4.41)
and from [4.3D)
0<t"< % (4.42)

SinceA is strictly monotoneve have
(A(P™) A, P p) > (A(p+t(p™ - p))~A(p). p" - p) ¥t €]0, 1] (4.43)
Then, taking = t™ in [@43), we obtain
(A(P™) - A(p). P - p) > (A" - A(p). P" - ) > 0. (4.44)
It follows then from [4.411),[[4.42)[(4.34) that

(A(P™ — A(p), P" = p) > H(AEZ™ - A(p).Z" - p)
> 2(AZ") - A(p),Z" - p) > (4.45)
> (A@™ - A(p). 2"~ p) > 0.
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SinceS(p, g) is compactwe can extract fromz"), a subsequence- still185
denoted ™).~ such that

lim Z"=ze¢e S(p, é). (4.46)
mM—+oo 2
SinceA s continuous it follows from[{4.37)[{4.16) that
(A@ - A(p).z—p)=0. (4.47)
The strict monotonicityof A and [£4F) imply thaz = p which is

impossible sincgp-27 = g Therefore[[4.39) cannot hoid nIin+1 p" =
p. From the above properties we can easily prove the following

THEOREM 4.2. Assume that Vand H are finite dimensional and that
(P) has a solution u. We suppose that

- Bis aninjection ,
- G is convex, proper, l.s.c.,

- F = Fg + F1 with F, convex, proper, l.s.c. over H and,strictly
convex and Eover H.

Then(P) has a unique solution and if
O<ap<pn<a1<2r

holds, we have for ALG 1 the following convergence propgrtie

lim u" =u,

N—+o0

lim p" = Bu,

N—+o00

lim A" - A" =0,

N—+o0o0

A" is bounded in H

Moreover ifA is a cluster point of1"),, then{u, p, A} is saddle point of
Z overVx H x H.
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4.3 Comment on the use of ALG 1. Further remarks.

186 Assume that is fixed and what we use fixed valuep for p,. Then
from our computational experience it appears that the mstergence
is obtained fop = r. About the choice of it can be provedheoretically
that thelarger isr, thefasteris the convergenceractically the situation
is not so simple, for the following reasons:

The larger is r, the worst is the conditioning of the optimization
problem [3B) (or of the equivalent system{3.%).1(3.6)).efhsince
B3) isnumerically(and not exactly) solved, at each iterationearor
is made in the determination ¢d", p"}. The analysis of this error and
the dfect of it on the global behaviour of ALG 1 is a very complicated
problem since we have to take into account the conditioninBa),
the stopping criterion of the algorithms (usually iterajigolving [3:B),
round-df errors, etc. ..

Fortunately it seems that the combinétget of all these factors is an
algorithm which is not very sensitive to the choicerdsee GLOWIN-
SKI - MARROCCO [6], FORTIN-GLOWINSKI[1] for more details).

Form a numerical point of view the only non-trivial part irethse of
ALG 1 is the solution at each iteration of the above proble)(3Tak-
ing into account the particular structure 6143.3) it follevirom CEA-
GLOWINSKI [, and CEA [2] that a method very well-suited tioet
solution of [3B) is thévlock relaxationmethod described below:

All the problems[(3) are of the following type:

{z(u, pu) < LV, u) YV, ) € V X H,

4.4
{fupleVxH, (4.48)

whereu is given The minimization probleni{Z4.48) is equivalent to the
system

{ G(V) — G(U) + (i, B(v—u)) + r(Bu— p, B(v—U)) > OVv eV,

uey,
(4.49)
{ F@-F(P)-(q-p+r(p-Bug-p=0vaeH.
peH.
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187 Then ablock relaxation methotbr solving [4.29),[[4.350) is
{u, p° given (4.51)
then{u™, p™} known, we obtairiu™?, p™1} from

G(v) = GU™?) + (i, B(v — u™1))
+r(Bu™! — p™ B(v-u™1)>0vveV, (4.52)
um+l e V,

F(9) - F(p™?) - (w.q- p™?)
+r(p™! - BU™L, q- p™) >0vqe H, (4.53)

p™1e H.

Suficient conditions for the convergence &f(4.50)=(#.53) may b
found in CEA-GLOWINSKI and CEA, loc. cit. .

In practice, when using{4.b1)=(4153), a stopping test effttiow-
ing type will be used:

max(u™?* — uM, 1 p™* - pM) <€ . (4.54)

Another possibility is to stop after fixed numbeiof iterations. If
for instance we stop aftanly oneiteration of [£51) -[[4.33) an if at
iterationn of ALG 1 we initialise with{u"*, p"~1} the computation of

{u", p"} by (£51){4.5B), then we recover ALG 2.

REMARK 4.1. Other relaxation methods can also be used; moreover
it can be worthwhile to introduceverrelaxation parametets increase

the speed of convergence @&1)- @53)

REMARK 4.2. The choice = r may be motivated by the following

" 1 -
188 Proposition 4.1. Suppose that {g) = §|q|2 and that G is linear. Then

v1° € H we have for the sequen¢e”), of ALG1, convergence to the
solution u of(P) in less than three iterations if we ugg = p =1, r
given.
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Preliminary remark. In the above situation we hay¥®) equiva-
lent to
B'Bu= f (5.2)

where Qv) = ((f,v)) Yv € V. Therefore using ALG 1 for solvirngp)
has nopracticalinterest. But even in that trivial case we shall observe
that the behaviour of ALG 1 is “interesting” since the coryence of

u" in afinite numberof iterationsdoes not implya similar convergence
for p"anda".

Proof of proposition 5.1. It follows from@I1) @I3)that in the par-
ticular case that we are considering, ALG 1 reduces to

A° givenin H, (4.55)
rB'BU" = rB'p" — BIA" + f, (4.56)
p"=A"+r(BU" - p"), (4.57)
AL = A0 4 p(BU - p). (4.58)

We can easily prove that the unique saddle-poin#pbver Vx H x H
is {u, By, Bu}, i. e. p= Bu, 4 = Bu; using the notation W = u" - u,
p"=p"-p, A" =2" - 2aitfollows from@58)- @.58)that

BA" +rB{(Bu"-p™ =0 Vn>0, (4.59)
AL = p" = A ™ = g wn >0, (4.60)
pP"=A"+r(Bu"-p™") Vn>0. (4.61)
Multiplying (&) byB' and comparing witi{459) we obtain 189
B'p"=0 V¥n>0. (4.62)
Since [4.8D),[[281) imply
p ™= p "+ rBu™-p ™) vn>0 (4.63)

we obtain, multiplying byB! and taking account of{452), that

B'BU™'=0v¥n>0=Bu™!'=0vn>0. (4.64)
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SinceB\ is a norm oV, (@64) implies that" = u vn > 1. Hence
the convergence af” to u requires at most two iterations. Usig(4.63),
#5B2) we have

1
p M= mp‘” vn> 0. (4.65)

It follows from (4.65) that the larger isthe fasterp” converges t@ =
Bu, for more details on the convergence @' see FORTIN-
GLOWINSKI [d].

5 Convergence of ALG 2

5.1 Orientation
We shall prove in this section that under fairly general ag#ions on

. 5
F andGwe have convergence of ALG 2 ifQ p, = p < * \/_r. We

do not know if this result is optimal since in some cagedifear, for
example ) the upper bound of the interval of convergence id@ually
this question is rather academic since in the various exyis we have
done with ALG 2, the optimal choice seems tode r.

5.2 General case

We study the convergence of ALG 2 with the same hypothes&s Bf
G asin Sec[Z4]1. We have then

THEOREM 5.1. We suppose tha¥; has a saddle-pointu, p, 1} over
V x H x H. Then if the assumptions on B, F, G are those of[Sek. 4.1 and

if

1+ 5
2
190  we have the following convergence properties:

O<pn=p< r, (5.1)

u" — u strongly in V, (5.2)
p" — p strongly in H, (5.3)
AL _ A" - 0 strongly in H, (5.4)
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A" is bounded inH. (5.5)

Moreover if 1* is a weak cluster point of1"),, then{u, p, 1} is a
saddle-point of# over Vx H x H.

Proof. Let us still defineu™, p™", A" by

u"=u"-up"=p" -pa"=2"-A.

Since{u, p, A} is a saddle-point af4; overV x H x H. we have

G\V) -G+, Bv-u) +r(Bu-p,B(v-u)) >0 YveV, (5.6)

(Fo(p).a—p) + F1(@) - F1(p) - (1.9 p)
+r(p-Buqg-p) =0 vqeH. (5.7)
A=A+ p(Bu-p). (5.8)

Moreover, [3.B)3.10) imply
G(v) — G(U") + (A", B(v—u") + r(BU" — p" 1, B(v—u") > 0Vv eV,

(5.9)

(Fo(pM. - p") + F1(q) - Fy(p") = (A", a - p")
+r(p"-BU,q-p") > oVgeH, (5.10)
AL = A0 4 p(BU - p"). (5.11)

Takingv = u" (resp. .v = u) in (&8) (resp. .[[519) ) and = p" (resp. .

g = p) in &) (resp. .[[50)) we obtain by addition
r(BT" - oL, BU") + (1, BI") < O, (5.12)
(Fo(p") - Fo(p), P +r(p" - BT, B) - (1, p) <0 (5.13)
By addition of [5.IR),[[5.113) it follows that

(FL(PM)=F4(p), p"—p)+r BT - P+, BU"—p")+r(p"-p" %, BU") <.
(5.14)

191
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By subtracting[[518) froni{5.11) we obtain
R - ™R
It follows then from [E.IK) ,[[55) that
A2 = "2 > 20(Fy(p") - F(p). B)
+p(2r - p)BU" - B + 20r(p" - P, BU").  (5.16)

= —2p(BW", -p", 1) - p?IBT" - P"2. (5.15)

Starting from
Bu" = (BU" - Bu" ) + (BU" - p" ) + pt
we obtain
(BUn’ —pn _ —pn—l) — (BUn _ BUn—l’ En _ —pn—l)
+ (BUn—l’ _—pn—l _ 5”—1) + (ﬁn—l’ —pn _ —pn—l)‘ (517)
Since
el = —ne 1 _ . —n —n
(pn 1’ pn _ pn 1) — E(|pn|2 _ |pn 1|2 _ |pn _ pn 1|2).
it follows from (&.IT) that
2pr(BU " -P" ) = 2or(BU"-BU P -7
+2or(BU -PL P -+ (5.18)
pr(p"? - P2 - [p" - P HP).
Taking [5.ID) an - 1 instead oh, we have
(Fo(P™™h).q- p™1) + Fa() — Fo(p™ ) — ("L g - p" )+
+r(p™1-But g-p~H >0

(5.19)
192  Takingqg = p™tin (&I0) andy = p" in (&19) we obtain by addition

_ —n-1
(Fo(P) = Fo(p™ . " =P - (@ =17,

B =Y + 1P - Y- (5.20)
—r(Bt" - Bp" LB - p") <.
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But sinceF; is monotone, it follows from{5.20) that
PP, PP ) -r (BT B, PP < 0 (5.21)
We have (from[(3.70))
= 24 p(BUTPTY
which implies that
-2 = ppT - Y. (5.22)

It follows then from [&.211),[(5.22) that

r|—pn _ —pn—1|2 —p(BUn_l,_pn _ —pn—l) _ r(BU” _ BUn—l’—pn _ —pn—l) <0

i. e.

r(bu Bun 1 ) > r| p |2 —p(BUn_l _—pn—l _—pn —I_Dn_l),
(5.23)
It’ follows then from [R.I8) ,[5.23) that

2or(BU", " =" ) 2 pr(P"? - 0" P) + prp" - PP
+20(r —p)(BU” 1—6” LpThp -1,
(5.24)
Finally, combining [5.16) [(5.24) we obtain

. —n+1 . —
("2 + pr P 2R) — ("2 + pr[P") = 20(F4(P™) — F4(p), P+
+p(2r — p)IBT" — PP + pr[p” — PP

+20(r —p)(BU“‘1 -pLp-ph.
(5.25)

Using theSchwartz’s inequalityt follows from (5.2%) thatva > 0 we
have

("2 + pr[p™ ) = (™12 + pr[P"?) > 20(Fo(p") — Fo(p). P+
+p(2r - p)|BT" - P + pr[p" - P2 - plr — pl
(21BU" =P+ alp” - PP

(5.26)

193
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It p = ritis clear that using the same method as in the proof of Theore
4. 1. we havel(5]2) {{35). If & p < r, takinga = 1 and observing that
Ir = p| = r — p, we observe that we have froln{5.26)

(1" + pr[P™ 2 + p(r — p)BU™" - P12
(R + priB"2 + p(r - p)IBT" - FP)
> 2p(F{(p") — F4(p). ") + pr[BU" — "% + p?[P" — >0,
which implies clearly[[512) E(515).
If o > r we havelr — p| = p — r and then it follows from[(5.26) that

G2) -(55) holds, if we have < py where

{PM(Zr - pm) = 2pmlom - 1). (5.27)

pmr = apmlom —T1).
By elimination of« it follows from (&27) that
pﬁ,l —rom — r’=0
i. e. (sincepy > 0)

1+ 5

= r.
PM 2

Then using basically the same method as in the proof of The@td
we can easily prove, froni(3.2)-(5.5), that Bu, A*} is a saddle-point
of 4 overV x H x H if A* is a weak cluster point ofi(),.

5.3 Finite dimensional case

Using a variant of the proof of Theoreimb.1, and Lenima 4.1, are ¢
easily prove

THEOREM 5.2. Assume that the assumptions on V, H, F, B, G are
those of the statement of Theodem 4.2. Then if

1+ 5
2

the conclusions of the statement of Thedrerh 4.2 still hold.

O<pn=p< r
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5.4 Comments on the choice gf and r
5.4.1 Some remarks

REMARK 5.1. If G is linear it has been proved by GABAY-MERCIER
[1] that ALG 2 converges if

O<pn=p<ar.

The proof of this result is rather technical and an open (ues to
decide if it can be extended to the more general cases we bagae
ered in these notes.

REMARK 5.2. If G is is linear we observe that the sth8) of ALG 2

is a linear problem related to the self adjoint operatbBB Therefore in
the finite dimensional case, assuming B injective, it wilcbavenient
to factorize(by a Cholesky method, for example) the synumnputsitive
definite matrixBB once and for all, before starting the iterations of ALG
2.

5.4.2 On the choice op andr

If r is given our computational experience seems to indicatahbdest
choice forp is p = r. The choice of is not clear and ALG 2 appears
to bemore sensitiveo the choice of than ALG 1. By the way, ALG
1 seems to be more robust wery stjf problem than ALG 2; we mean
that the choice of the parameter is less critical and thatahgputational
timewith ALG 1 may becomenuch shortethan with ALG 2.

. 1
REMARK 5.3. We have seen in Remdrk}4.2 that {fF = §|q|2 and G 195

is linear, the sequend@"}, related to ALG 1 converges in two iterations
(at most) if we usp = r. If we use ALG 2 with the same hypotheses on
F, G then we have convergence{df}, in two iterations at most, only if

p =r = 1(for any choice ofp°, A1}). This fact also confirms the greater
robustness of ALG 1.
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6 Applications

6.1 Bingham flow in a cylindrical pipe

It is the problem considered in CH. 2, Sec. 6 and also in Sed. df.
this Chapter (we recall th& is aboundeddomain ofR?):

min {3f|Vv|2dx+gf|Vv|dx—f fvdx}. (6.1)
veHi@ (2 Ja Q Q

Then [31) is a particulai) problem corresponding to

V = H}(Q),H = LAQ) x L¥Q),B=, (6.2)
F@ = [ 1o dx+g [ fdx (6.3
Q Q
G(v) = —f fvdx (6.4)
Q
Moreover we havé = Fg + F1 with
Fold) = 3 [ Iadx Fo(@) =, (65)
Fi(@ = | laidx (6.6)

it follows then from [G.R) {(6)6) that the various assumpsiaequired
to apply Theoreni4l1 arid%.1 are satisfied. Therefore we dae so
&1) by ALG 1 and ALG 2. Moreover sindg is linear the GABAY-
MERCIER[] result holds (see Remdrkd.1) and ALG 2 conveiifies
0 < pn = p < 2r. The augmented Lagrangiart to be used in this case
is given by

{.zr(v,q,u) =3 JolaPdx+g f, fvdx+ [, - (Vv —gdx

6.7
+5 [, IVv—q?dx 6.7)

Solution of (&1)by ALG 1.
When applying ALG 1 to the solution df(8.1) it follows frof.2B-

@3), [6T) that we have
A% € L2(Q) x L%(Q), arbitrarily given, (6.8)
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then for n> 0,

— n = 1L .y
{nrAu f+V-A"-rv.ponQ, 6.9)
u'lr =0,
p"(x) = 0(ifg > |A"9X) + rvu(X)|,
A"(X) + rvu"(x) g
(gl — —
p(x¥) = — 1 00 + Vo] elsewhere,
(6.10)
{amt = 2"+ po(Vu" - pN). (6.11)
Solution of @1) by ALG
We have to replac€é(d.8) by
{p°, AL}arbitrarily given in(3(Q))? x (L2(Q))?, (6.12)
and [6.9) by
— n_— 1L n-1
{ nrAu f+V-A"-rvp"onQ. (6.13)
ulr = 0.

REMARK 6.1. In practice @8)©11) and &12) €I3) ©I0)

@.13) will be applied tofinite elementor finite differenceapproxima-

tions of (€1). It follows then from(©&3), (€I3)that it is easy to use
either ALG 1 (combined with thiglock relaxation methodf Sec[Z13)
or ALG 2, once we have at our disposal gficent program for solving
approximate Dirichlet problems forA.

Bibliographical comments. Numerical solutions of[{6l1) by ALG 1197

and ALG 2 may be found in GABAY-MERCIER]J1, GLOWINSKI-
MARROCCO [3]; we can also find in FORTINI[2] and iterative meth
of solution of [621), close to ALG 2 but obtained by #@dient approach.
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6.2 Elastic-plastic torsion of a cylindrical bar

It is the problem of Chajil2, Sdd. 3, also considered in Séqlis a
bounded domain dk? in the sequel):

min[:—L |Vv|2dx—ffvd>q, (6.14)
vekK = 2 O [e)

where K = {vv € H3(Q),|VV < lae}; €I2) is a particularR)
problem corresponding to

V = H}(Q),H = L¥(Q) x L¥Q),B =V, (6.15)
G(V) = —L fvdx (6.16)
F=Fo+Fy, (6.17)
where
Fol@ = 5 [ Iadx= Fi(a) =a. (6.18)
Fa(a) = Lg(0) (6.19)

with K = {q € H, |g| < la.e} and k; theindicator functionalof K i.e.

0 if qeK,

. . (6.20)
+o0 if q¢ K.

Lk (@) ={

Here too, it follows from [[6.15) [(6.20) that the various @sptions
required to apply Theore 4.1 andl5.1 are satisfied. Therefercan
solve [6.14) by ALG 1 and ALG 2. Moreover from the linearity @f
we have the convergence of ALG 2 ifOpp = p < 2r. In the present
case is given by

1
.,%(v,q,,l)z§L|q|2dx+lk(q)—fg;fvdx

+fu-(Vv—q)dx+1f|Vv—q|2dx (6.21)
Q 2 Jo



6. Applications 203

198

Solution of @) by ALG 1.
It follows from @32){3%), [621) that when applying ALGta
(&12) we obtain

Aarbitrarily given in(2(Q))?, (6.22)

then for n> 0,

—AU"=f+A-A"—rV.p"onQ,
{u”l . * P (6.23)
r = )
AN+ rvu"
N = 24
P SUP(L + 1, |A" + run)’ (6.24)
AL = 2" 4 pn (VU = p). (6.25)

Solution of @1) by ALG

We have to replacd (6.22) by (6121) ahd (6.23) by (6.13). SoH
plies to [6I4) and numerical solutions of (6. ) by ALG 1, ALGray

be found in GLOWINSKI-MARROCCOB], GABAY-MERCIERT1].
6.3 A nonlinear Dirichlet problem

We follow in this section GLOWINKSKI-MARROCCQ]6]; Let us co
sider 1< s < 400 and

W5, (@) = ZE@WH(Q) = (v e WHQ). vir = 0}

whereQ is aboundeddomain ofRN.
Then we consider of the following nonlinear Dirichlet problem:

{—v -(IVu2vu) = f, (6.26)

ur =0,

wheref € V/ = W(Q)(1+2 = 1= § = 5;). itcan be proved (see 199
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for instance GLOWINKSI-MARROCC]6]) thaf(6.P6) has a umiq
solution which is also the solution of

rn1 in
\S
veW;S(Q)

:—Lf|Vv|sdx—< f,v>]. (6.27)
SJa

We observe thawé’s(Q) is not an Hilbert spacéf s # 2, therefore we
cannot apply Theorems 4.1 and 5.1 to the iterative solutfofE.24).
Nevertheless onc€{6127) has been approximated by a cemdimite
element or finite dierence method it is possible to apply the above theo-
rems (or TheorenlS4.E.%.2) to the iterative solution of fhgreaximate
problem. For the sake of simplicity we shall confine our sttalyhe
continuous problem, since it has simpler notation. We have

V=Wy%Q).H = (L@)".H = LY (@)".B=V,
F(A = Fo(@ = [ 0% F'(a) = dia*™
G(v) =< f,v>.

We observe that

F(@) _

lals—+c0 |lls

+00,

where
lals = ( fQ 101°dX)® = llall sicy-

We also have/p, g € H:

(F'(@-F'(p).g-p) > alg-plg if s>2, (6.28)
lg-p2 .

F’ —-F(p),g-p)>a———ifl <s<2 6.29
(F'(@-F(p.a-p) R T (6.29)
IF"(@) - F'(P)ls = B(Ipls+ldls)*21q - plsif s<2, (6.30)
IF'(@ - F'(p)ls >Blg-piStifl <s<2 (6.31)

wherea, 8 are independent g, g and are strictly positive.

Exercise 6.1.Prove (©.28)- €.31)
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We refer to GLOWINSKI - MARROCCJ6] for a detailed analysis,
including error estimates, of a finite element approxinratd (€.26),
&21) (see also CIARLET]2)).

From our numerical experience it appears that soNIng1j6 &21)
if sisclose to 1 (say k s < 1.3) or large (says > 5) is a very dif-
ficult task if one uses standard iterative methods; to ounkedge the
only very dficient methods are ALG 1 and ALG 2 (or closely related al-
gorithms; see GLOWINSKI-MARROCCO, loc. cit., for more di&ta
The augmented Lagrangia#; to used for solving[{6.26)[{6.27) is de-
fined by

Zua) = ¢ [ lade < fvs+ [ [u-glaxs [ (Tu-a
SJa 2 Jo Q
(6.32)
Solution of @1) by ALG 1.
It follows from 32)1{3%), [6:32) that when applying ALGta

€&38), [62F) we obtain
2% e (LS @)V, (6.33)

then for n> 0

AU =f+V-A"—rV.p"inQ,
A=t P (6.34)
u'lr =0,
Ip"52p" + rp" = rvu" + A", (6.35)
AL = A0 4 p (VU = p"). (6.36)

The nonlinear systenl {6134)[[{6135) can be solved by thekbielax-

ation method of Se€. 4.3 and we observe that iindA" are known (or
estimated) in[(6.35) the computation pt is an easy task sind@"| is

solution of the single variable nonlinear equation

175 + 1" = rvu” + A7) (6.37)

which can be easily solved by various methods; dp€es known, we 201
obtain p” by solving a trivial linear equation (irLe(Q))N).
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Solution of €286) €21)by ALG 2.
We have to replacé {6.83) by

(P A e Hx H’ (6.38)

and [6.34) by

—AU"=f +V-A"—rV.p1
{ =t P (6.39)

Un|r =0.

Remark Gl still applies td_(6.R6), (6127) and sii@&es linear we
can take O< p, = p < 2r if we are using ALG 2. For more details and
comparisons with other methods see GLOWINSKI-MARROCCD [3]

6. [El.

REMARK 6.2. ALG 1 and ALG 2 have also been successfully applied
to the iterative solution of magneto-static problems (s&©O®INSKI-
MARROCCOIF]). They have also been applied by GLOWINSKI-
MARROCCOI[B] to the solution of the subsonic flow problem diesd
in Ch.[4. Sed13; in this last case using ALG 1 and ALG 2 we oletasy

variants of (€.33) (©.38) and €.38) €39) €.33) ©.38)

6.4 Application to the solution of mildly nonlinear systems

Let A beN x N symmetric, positive definite matrix B diagonal, posi-

tive semi-definite matrix, and € R". Let¢ : R — R be aC? and non-

decreasing functions (we can always supposed({@t= 0). Using the
same notation as in Chaplér 4, Séc. 2., we associate tww, ... vy} €

RN the vectorp(v) € RN defined by

(@) = ) ¥i=1,...N. (6.40)
Then we consider theonlinear system

AUDOW = 1. (641
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In Chaptel ¥, Sed._2.6, various methods for solving{6.41 Hzeen
given, but in this section we would like to show thf (6.41) edso be
solved by ALG1, ALG2, once a convenient augmented Lagrankyé&s
been introduced.

REMARK 6.3. The methods to be described later are easily general-
ized to the case whe#k is not symmetric but still positive definite.

Let us define

t
o(t) = fo o(x)dk.

Sinceg is C° and nondecreasing we have thés C! andconvex It
follows then from the symmetry @4 that solving [6.211) is equivalent to
solving the minimization problem

N N
{J(g) <JWV)YveRY,ueR™ (6.42)
ueRN
In ®42) we have
N
) = 5BV + Y dow) - (V). (6.43)
i=1

where (,-) denotes the usual inner-product®¥ and|| - || the corre-
sponding norm and where

d 0

0 " dy
From the above properties of & and® it follows from e. g. CEA
[, [A] that (E41), [6.4PR) has anique solution.

REMARK 6.4. If fact (6:41)has a unique solution i is positive def-

inite, possibly not symmetrj¢he assumption o# and D remaining the
same.
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The problem[(6.42) is a particular problef)(corresponding to 203

V=H=RV,B=1, (6.44)
N

G(v) = ), dd(w) - (f.v), (6.45)
i=1

F@=Fold) = 5(Aq0) = Fi@ =Ad.  (6.46)

From these properties we can solze (6.40), (6.42) by usinG Aland
ALG 2 (we observe that unlike in the above examgkeis nonlinear).

REMARK 6.5. Instead of using G and F defined {®:44), (€43) we
can use

N
GWV) = ) did(w),

i=1
F@=5(A00 - (1.9

The augmented Lagrangian to be associated Withl(6 448)(&4

N
£.00) = 2(AGA) + D dd) ~ (1) + DIV-aIP + (v -0
: 19+ 2, I+ (v =g

(6.47)
Since the constraint,\g = 0 is linear we know that% has a saddle-

point overRN x RN x RN; actually this saddle-point is unique and is
equal tofu, u, A u}.
Solution of (&41)by ALG 1

It follows from (32)-[3#), [6.417) that when applying ALG tb

©&41), [64R) we obtain
40 eRN, (6.48)

then for n> 0,

ru"+ Do) =f +rp" - 2", (6.49)
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(r1+A)p" =ru"+2" (6.50)
AL = A0 4 pp(u - p"). (6.51)

The nonlinear systeni {6M49], (6150) can be solved bybtbek relax- 204
ation method of Sec[C413 and we observe that"ifgmd A" are known
(or estimated) in[{6.49) the computation dfia easy since it is reduced

to the solution oN independent, single variable nonlinear equatiofs
the following type

ré + da(€) = b (with d > 0). (6.52)

Sincer > 0 andg is C° and non decreasind,(6]52) has a unique solution
which can be computed by various standard method (seeHOY SE-
HOLDER [], BRENT[1]). Similarly if u® andA" are known is[{6.30)

we obtain P by solving a linear system whose matrix is independent

of nit is very convenient to prefactorizel + A (by Cholesky or Gauss
methods).
Solution of @) by ALG 2.

We have to replacé {6.18) by

{8, 31} e RN x RN (6.53)
and [6.2D) by
ri+Dg(l) = +rp —2". (6.54)
It follows from Theoreni 512 that we hav~e convergencd of (p.E854),
E30), [650) i1 0< pn = p < 220,

REMARK 6.6. Suppose that, = p = rin ALG 2; we have then
rU+D o) = f+rp A",
rB+AB=rﬂ+/l”, (6.55)

AL = 0 4 r(l- ).
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It follows from (&55) that

™= Ap, (6.56)

Then from [6.5b),[{6.36) we obtain
ri+Dol) +A"D =1+, (6.57)
rp+AP+De(l) =1+ (6.58)

Therefore, ifon = p = r, ALG 2 reduces (with dferent notation) to the
Alternating Direction methodescribed on Cii] 4, Sdc.216.6.

REMARK 6.7. From the numerical experiment done in CHAN-GLOW-
INSKI ], ALG 1 combined with thblock relaxatiormethod of Se€ 4.3
is more robust that ALG 2; it is the case if, for instance, whasa
finite element (or finite gierence) approximation of the mildly nonlinear
elliptic problem

—Au+Uus2=fonQ,
{ +uld (6.59)

ur = 0.

withl<s< 2.

In CHAN - GLOWINSKI, loc. cit., we can find various numerical
results and also comparisons with other methods.

6.5 Solution of Elliptic Variational Inequalities on inter sec-
tions of convex sets

6.5.1 Formulation of the problem

Let V be a real Hilbert space arad: V x V — R be a bilinear form,
continuous, symmetric and- elliptic. LetK be a closed, convex, non-
empty subset o¥ such that

K =nl,Ki, (6.60)
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where,Vi = 1,...,N, K; is aclosed convex subsef V. We consider
then theEV | problem

(6.61)

aluv—u) > L(v-uVvYveKkK,
ue K

wherelL : V — Ris linear and continuous. Sine€, -) is symmetric we
know from Chap. 1 that the unique solution Bf(8.61) is algodblution
of

{J(u > (V)VveK, (6.62)
uek,
where 1 206
J(V)Ea(v, V) — L(v). (6.63)
6.5.2 Decomposition of6.61) ©.62)
let us define (withg = {q1,...,an))
W={(v,q) eVxVNv—q =0Vi=1---N} (6.64)
and
H={(v,q) eWg eKVi=1...,N}. (6.65)
It is clear that[[6.62) is equivalent to
omin, j(v.9) (6.66)
where
1 N
i) = 5 2, @) - L) (6.67)

REMARK 6.8. We have to observe that many other decompositions are
possible, as, for instance,

W={V,q) eVXVNv-—op=0,Gs1-G=0¥i=1...,N-1}



207

212 5. Decomposition—Coordination methods by augmented...

with j and._#" still defined by [6.617) [{6.85). We can also use
W={v,q)eVxVNtv_qg=0vi=1...N-1

with
K ={(v,q) eWveKy,qgeKi1Vi=1...N-1}
and
_ 1 1"
jv.q) = ﬁa(v, V) = L(v) + 2N - a(g, g)-

i=1
We suppose that in the sequel we use the decomposition ddfined

€582){6.8l); therl{6.66) is particular probleR) €orresponding to

H=VN.Bv={v,...,v}, (6.68)
G(V) = —L(v), (6.69)
1 N
Fo= 5= ), ad.a) (6.70)
72N ;
N
Fa@ =) Ik (@) (6.71)

i=1
with

Ik, indicator function ofK;.
It is easily shown that from the properties®fG, F, we can apply ALG
1 and ALG 2 to solve[[6.62), vid(6.66), provided that thedaling
augmented Lagrangian

N N
L0040 = F@+ 60 5y D av=av=a) ) v =)

(6.72)
has a saddle-point ovétx VN x VN, Such a saddle-point existsHf is
finite dimensionalsince the constraints— g = 0 arelinear.

6.5.3 Solution of 662)by ALG 1

It follows from (32) - [33), [6.7R) that when applying ALG4 (6.62)
we obtain

A% € VNgiven (6.73)
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then for n> 0

(6.74)

ra(u’,v) = ra(: o phv) - (F 2 AN V) + L) Vv eV,
uev,

(1+na(p’, g - p") >ra",q - p') + (A", q - p;‘ti € K;,
p! € K
(6.75)
fori=12,...N; 208
A=A 4 po(u - pM) (6.76)

i=1,...N.

The system[{6.14)[{6.12) is faf' given a system of coupleBV s, a
very convenient method to solve it is théock overrelaxation method
with projection described in CEA-GLOWINSKI[]1] and in CEAT2].
This method will reduce the solution df{6162) to a sequerfcE\ds
Ki,i=1,...N.

6.5.4 Solution of @62)by ALG 2

It follows from (31)-[31D), [6742) that to solvE(6162) B.G 2 we
have to use the variant of (6]73)-(6.76) obtained by reptpdb.7B),
©.72) by

{p° a1} e VN x VN given (6.77)
19 19
n\) =ral = -1yl = N
ra(u",v) = ra[N ; p; ,v] [N ; A ,v}+ L(V)VYveV,
u" e V.
(6.78)

REMARK 6.9. The two above algorithms are well- suited to the use
of multiprocessor computers, since many operations mayone ¢
parallel; this is particularly clear with algorithn{e.71), €78) @&.73)
€&78)
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REMARK 6.10. Using djferent augmented Lagrangians, other than
% defined by 72) we can solve.62) by algorithms better suited
to sequential computinghan to parallel computing. We leave to the
reader, as exercises, the task of describing such algosthm

REMARK 6.11. The two algorithms described above can be extended
to EVIs where &, -) is not symmetric. Moreover they have the advan-
tage of reducing the solution q6.62)to the solution of a sequence of
simpler EV s of the same type, to be solved oyer K 1,... N, instead

of K.

7 General Comments

As mentioned several times the methods described in thistehenay
be extended to variational problesmhich are not equivalertb optimiza-
tion problem. These methods have been applied by BEGIS-GEOW
NSKI [ to the solution of 4 order nonlinear problems in Fluid Me-
chanics (see also BEGIE[1]).

From a conceptual point of view they are related to variouthous,
described in BENSOUSSAN-LIONS -TEMAM [1], and usimigcom-
position-coordinatiorprinciples.

From an historical point of view, the use of augmented Lagjiam
for solving -via ALG 1 and ALG 2 -nonlinear variational preihs of
type P) (see [[11l)) seems to be due to GLOWINSKI - MARROCCO
[B34], @], [@]). For more details and other applications $2&BAY-
MERCIER [], FORTIN-GLOWINSKI[], 2], GLOWINSKI-MARR-
OCCO, loc, cit., etc.....

To conclude this chapter we have to mention that using sosudtse
due to OPIAL [1] we have in fact in Theorem ¥[1.15.1 (redp.] B.2)
the weak convergenéeesp. . theconvergenceof the whole sequence
{A"}s to aA* such that{u, p, A*} is a saddle-point of” (and.%;) over
V x H x H. We refer to GLOWINSKI-LIONS -TREMOLIEREH]3,
Appendix 2] for a proof of the above results in a more genevatext.



Chapter 6

On the Computation of
Transonic Flows

1 Introduction

We have considered in Chapkér 4, Secfibn 3, the non-lingptiekqua- 210
tion describing thesubsonic flowsf aninviscid compressible fluid.

In this chapter, following closely GLOWINSKI - PIRONNEAU1
we would like to give some brief indications on the compuataibf tran-
sonic flows for similar fluids. Given the importance and thenptexity
of the problem to be described in a moment, we would like tapout
that the following considerations are just an introductiorthe subject
and that many methods, using verffdient approaches, exist in the spe-
cialized literature (see the following references ). Mesrpwe would
like to mention that from a mathematical point of view, thethoels to
be described in the following sections are widely heurgticA large
number of bibliographical references are given in the skeque

2 Generalities

The theoretical and numerical studiegminsonic flows for inviscid flu-
ids have always been very important questions. But these prabf@ave

215
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become even more important in recent years in relation tdesgn and
development ofarge subsonic economical aircrafts

From the theoretical point of view a lot of open questiond st
mains, with their counterparts in the numerical methodgpldde difi-
culties are quite considerable for the following reasons:

(1) The problems argonlinear,
(2) Shocksmnay exist in the flow;

(3) One has to include antropy conditionsin one way or another, to
avoid non-physical solutions.

From thetheoretical point of view we have to mention the work of
BERS [1], C. MORAVETZ[1]. At the present moment the more com-
monly used numerical methods have originated from MURMARKE

[ and we shall mention BAUER-GARABEDIAN-KORNI1], BAUER-
GARABEDIAN - KORN JAMESON [1], JAMESONIL], [2], [[B], [
and the bibliographies therein (see also HEWITT-ILLINGWHRand
co-editors[[]).

These above numerical methods use the key idea of Murman and
Cole which consists in the use offiite diference scheme, centered
in the subsonigart of the flow,backward(in the direction of the flow)
in the supersonic part The switching between these two schemes is
automatically done via truncation operatoronly active in thesuper-
sonic part of the flow (see JAMESON, loc. cit., for more details). A
relaxation method is then used to solve the resulting nonlinear system
(actually,over-relaxationis used in the subsonic part of the flamder-
relaxationin the supersonic part).

We shall describe a fierent approach -very convenient forzzles,
and flows subsonic at infinity around airfoitsin which the transonic
flow problem is formulated as @onlinear least square problenirhis
last problem is then viewed as aptimal control problenwhich is ap-
proximated by dinite elemenmethod. Since the entropy condition is
formulated by alinear inequality constrainta convenient method to
handle it is to usgenaltyandor duality methods (see CEAT1]2]),
using anaugmented Lagrangiaif penalty and duality are combined.
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Then the approximate problem is solveditgrationsof conjugate gra-
dienttype. Our approach is strongly motivated by the two follagvin
points of view and the corresponding methodologies:

(1) Optimal control of distributed parameter systdsee LIONS [[#],
CEA [, &),

(2) Variational inequalities and their numerical solutigeee GLOWI-
NSKI-LION-TREMOLIERES [1], [2], [3] and Chapters 1 to 5 of
these notes).

3 Mathematical Model For The Transonic
Flow Problem

3.1 Basic assumptions and generalities

We assume that the fluid under consideratiomv$scid andcompress- 212
ible and that the flow of such a fluid is entropicandirrotational (i.e.
potential) These assumptions are not true in general, since through a
shock there is aariation of entropyand anirrotational flow becomes
rotational, therefore the validity of the model to follow is assumed ¢o b
correct only in the case of‘aveak shock’”.

In the case of a flow pastsharp airfoil we shall suppose that there
is no wake behind the trailing edge

3.2 Equations of the flow

Let Q be the domain of the flow and its boundary; then the flow is
modelled by

_ V[[l _ Ivep ]7_ V@] -0inQ, (3.1)

pas Yo
y—lc*

where

- @ is theflow potentia] VO theflow velocity
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- C, is thecritical velocity,

- v is the ratio of specific heaty & 1. 4 for air).

We have to add tb(3.1)

e Boundary conditions (of Dirichlet afior Neumann type, for ex-
ample);

e Kutta-Joukowskygondition in the case of the flow around a lifting
body (see LANDAU - LIFCHITZ[1, Sec. 46]); some indications
are also given in Sec. 5.1, Remark 5. 1.

e An entropy conditiorin order to eliminate the non-physical solu-
tions of [31); this point will be discussed in Sec. 3.3

REMARK 3.1. It can happen that on some part of the boundaby,

oD . . : "
and an have to be given simultaneously to ensure uniquenesshitis t

case, for instance, for the divergent nozzle of Figure 3thefvelocity
at the entrance is supersonic. Typical boundary conditimmesD given

O . :
onI'1, I's and an given onl'y, I'1, I'y; if the flow at the entrance (i.e.
I'1) is subsonic we require fewer boundary conditions.

Iy
T, v I's

Iy

Figure 3.1:
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Figure 3.2:
REMARK 3.2. Inthe case of the flow around a multipiece airfoil, (like13
in Fig. B2 each piece requires a Kutta-Joukowsky condition

Exercise 3.1. Verify that @) is elliptic if |[V¢| < C, (subsonic zone),
hyperbolic ifV¢| > C, (supersonic zone).

3.3 Formulation of the entropy condition

It follows from LANDAU-LIFCHITZ [[] Ch. 9] that theentropy condi-
tion can be formulated as follows

In the direction of the flow, once cannot have a subsonic-
. . (3.2)
supersonic transition through a shock.
Forone dimensionaflow, (33) implies
d?®
W < 400, (33)

2

i. e. d—(f is ameasure bounded from above; wéakd more precise)

formulations of [3.B) are There exists a constant M, such that either
do d¢

- R &&dXS M L¢dx Vo € @4_(9) (34)

or

f¢d2—¢dx< Mfdx Yo € 7.(Q) (3.5)
o d2 T Jg ’
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where
2:(Q) ={p € 9(Q),¢ > 0} (3.6)

In the case of awo or three dimensional flovwe shall suppose that
@32) can be formulated as

AD < +00 (3.7
or in aweak fromeither by
- LV@ -Vgpdx < M L¢dxv¢ € 72.(Q) (3.8)
or by
L@Aqﬁdxs M L¢dx Vo € 7.(Q). (3.9)

The numerical results that we have obtainedtfar-dimensionafiows,
using discrete analogs di_(B.7), seem to justify the abouadéations
of the entropy condition.

4 Reduction to an Optimal Control Problem

If we suppose that the density on the fluid is on EV® = 0, then the

codficient of VO in 3) appears as thaensityof the fluid. We shall

use the notation .

2 Pt
p(#) = [1 - 'Z%'cf] 6.1)

y-1
The idea of the method to follows, is tiecouplethe density and the
potential®. To do so we introduce a new potentiatthe control po-
tential -and try to recouplé and® by minimizing somecost function
of least square typeWe may use for instance the following formulation
(for the formulation see BRISTEAUWJ[2], BRISTEAU - GLOWINSKI
PERIAUX - PERRIER - PIRONNEAU]N], BRISTEAU - GLOWINSKI
- PERIAUX - PERRIER - PIRONNEAU - POIRIERT1])

min fg PUEIV(@ - &)Pdx £ € X (4.2)
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where, in [ZR)D is a function of¢ via thestate equation

{—V - (0(£)V®D) = 0 overQ (4.3)

+ boundary conditions fo® onT.

In @32) the parametet is either 0 of 1 andX is aconvexset “conve- 215

niently” chosen. Since(#(X)) = 0 iff [V(X)| = (z—j)l/z C., and that

for air we havey = 1.4 which implies(g—j)l/2 = V6 ~ 2.45, it appears
that in the transonic range (s = |V¢| < 1.5C,) we have

0< 6 < p(p(X) < la.e onQ. (4.4)

it follows from (&34) that [4B) is arelliptic problemfor appropriate
boundary conditions. In the case of flows around liftingaiisf, Kutta-
Joukowsky conditionare also required in order to obtain, with the other
boundary conditions, a physical solution of probldm](4r8pdulo a
constant if one has only Neumann conditions on the boundary)

. - () .
REMARK 4.1. If in the original problem® and (;_n have to be simul-

taneously prescribed on some paripthe previous approach with two-
potentials is very convenient since the boundary conditican be split
betweenb and£. However, if one wishes to use the same boundary con-
ditions for® and¢ it is always possible to take into account the extra
boundary conditions (assumed to be of Dirichlet type) byirgitb the
cost functionfd.2) a quantity proportional to eithefrd |® — Og|2dr, or

frd |® — dg|? (or to a linear combination of both), whefg is the part

of I where one require®|r, = ®4. A similar idea is used in BEGIS-
GLOWINSKI [2] to solve some free boundary problem.

REMARK 4.2. To state the entropgonditions [(37)or its weak for-
mulations(3.8), (3.9)) we have the choice betwekmnd¢ (actually we
can also use these two potentials simultaneously). If oredufresp.
®) we have aconstraint on the contr@tesp. constraint on the state

REMARK 4.3. We observe that the class of flows we are considering,
is physically such that

IMleo = IV®llo < +o0.
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216 It follows from this remark that the convex set occurringZi@) will be
taken as a convex subset o¥(Q2). We observe also that to stay in the
transonic range it may be convenient to introduce followdogstraints
(if y = 1.4):

V& < vy < VBC, (4.5)

or
IVO| < vy < V6C,. (4.6)

Actually, the computations we have done proved that for aiphiy
well - posed travsonic problem it is not necessary to intced.3) or

E@.8).

REMARK 4.4. If the transonic problem has a solution and if X is
“large enough” the control problem will have a solution sutimat the
cost function will be equal to zerthis last property will give us (for the
approximate problem) indications to check the quality & ¢omputed
solution.

5 Approximation

We assume thad c R2.

5.1 Generalities

The above control problem will be approximated byirdte element
method since compared thinite djferencemethods it give us the pos-
sibility of handling problems posed on rather complicatergetry.
Moreover thevariational foundationf finite element formulations are
very appropriate to the problem under consideration. kivélin partic-
ular easy to approximate the weak formulations of the egtoogmdition
()}

If Q is unboundedt will be replaced by ébounded domain still
denoted byQ- as large as possible. To approximate the above contin-
uous problems we introduce a standardngulation %}, of Q (we can
also usequadrilateral finite elementdefined over a “quadrangulation”
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of Q). Then the functiong and® are approximated by piecewise poly-
nomial functions belonging to the following subspaggof HY(Q).

Vi = {@n € COQ), nlr € PYT € %h) (5.1)
with Px = the space of polynomials of degreek.

REMARK 5.1. In the case of difting body, to take into account the217
Kutta - Joukowsky conditionone usually introduces (see Fig5.1) an
arc y between the leading edge of the profile and the external tarynd
This arcy supports aconstant jump (a priori unknowrgf ® (and &)

and this jump has to be adjusted in such a way t%%){ (and %) is

“continuous” when crossingy. Since® is discontinuous along, we
cannot work anymore with HQ), but introducingQ = o one can use
—Y

Ol

H%(Q) and define \ over a triangulation of.

In Sec[¥, results of computations for such airfoils are miveow-
ever for the sake of simplicity the numerical treatment a Kutta-
Joukowsky condition will not be discussed here and we sikallime in
the sequel that one works directly ower

REMARK 5.2. If ® andé have to satisfy onlileumann boundary con-
ditions the subspace ofiMo be used will be Yitself. On the contrary if
@ and/or ¢ have satisfyDirichlet boundary conditionsomewhere over
I" then we shall have to use subspacesp$tvictly included in \4.

Figure 5.1:
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REMARK 5.3. We have tacitly assumed th@tis a polygonal domain

of R? or has been approximated by such a domain. However in the
case of a curved boundary, it is always possible to use (atssxtra
computational costyurved finite elementéSee, for instance CIARLET-
RAVIARTIL], STRANG - FIX]1, Ch. 3], CIARLEM[1[][3]).

REMARK 5.4. It follows from(&J)that we are using €- conforming
finite elements. Since the regularity of the solution istkahiit seems
that it would be unrealistic to use ¥ 3. Therefore onlyLagrange el-
ementswill be considered. One may also use that ndh @nforming
element of Figuré€hl2 in which, withyt € P71, one only requires the
continuity of¢y, at the mid-point of each side of thed %;,. The num-
ber of unknowns, when using this element is much in higher wWigen
using &) with k= 1.

Figure 5.2:

5.2 Approximation of the state equation and of the cost func-
tion

218 To simplify the presentation we shall assume that we onlye iNeu-
mann boundary conditionise.

o0 =gonTl (5.2)

(it is the case for the very important application of flowsiard airfoils,
subsonic at infinity, It follows from the above sections that we can take
thesame boundary conditiorfer £ and®. We shall also assume that if
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g(x) # 0, x e T, then the corresponding value @fs known and that

fr pgdr = 0, (5.3)

Then thestate equatiorfd.3) has the followingariational formulation

|, PV - Vedx = [ pgedl ¥ € HY(Q), (5.4)
® e HY{(Q) '
which is approximated by
Jo,pE)VO - Vondx = [ (og)ngndl Vepn, € Vi, 5.5)
o € Vi, .

where pg), is a convenient approximation pfy overI'. Since® and

@y, are only defined modulo an additive constant, we shall pitestne
value of® and®y, (andé andé&y) at some point of. The cost function 219
in @32) is approximated by

fg P (ENIV(Dn - &P (5.6)

denotedly (&) in the following.

REMARK 5.5. If one uses the piecewise linear approximation (i.e. k
1), then the integrals occurring ie.3), (5.8) are easy to compute since
Vé&n beingpiecewise constantve have a similar property fqo(&n). If

k = 2 a numerical integration procedure has to be usedB), and
also in(@&8)if o = 1.

5.3 Approximation of the entropy condition

To avoid non physical shocks (i.e. shocks for which the gytrondi-
tion is not satisfied) we have several possibilities; welstesdcribe two
of them (for other approaches see GLOWINSKI - PIRONNEAU [1])
We still assume that we only have Neumann boundary conditiiée

G.2).
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5.3.1 A regularization method

We use the notation of the continuous problem; the idea isda@the
cost functional in[[412) the following functional, with> 0, either

c f (AD)*2dx (5.7)
Q

or
+2
€ fg I(A&)*Pdx (5.8)

(or alinear combination of both). IB(®.7].(5.8)is a “small” parameter
and

(A¢)" = sup(QAg). (5.9)
We can make this approach more sophisticated by using,aihsté
&), [53), regularization functionals like

f €()|(AD)* Pdx (resp f €I Y, (5.10)
Q Q

wheree(X) is a “small” non-negativaeveight function possibly equal to
zero over some part k. To use the above methodology for the approx-
imate problem it is necessary to have an approximatiakdgfespAé).
We shall use and approximation suggestediixed finite element meth-
ods for the biharmonic educatiofsee GLOWINSKI [6], CIARLET-
RAVIART [E], GLOWINSKI- PIRONNEAU [, BRIZZI - RAVIART
().

Let us assume that is suficiently smooth, then from Green'’s for-
mula we have

f Aypdx = a—%dr - f Vi - Vgdx V¢ € HL(Q). (5.11)
Q ron Q
Using this idea we shall define an approximatigy®y, of A® as follows:

{fg An@ngndX = [ gngndl — [, Vén - VndX ¥V € Vi, (5.12)

An®h € Vh.

We use the same method to defihg;,. In (12),gh is an approxima-
tion of the functiong of (&.2).
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REMARK 5.6. If we also have Dirichlet boundary conditions over
some part off’, the same method can be used with some slight com-
plications.

REMARK 5.7. To obtainAn®y from (512) we have to solve hnear
systemwhose matrix issymmetric, positive definite, spartskut not
diagonal(this matrix is an approximation of the operator I). IE1 one
can approximatg(Q An®hondX, using thewo- dimensional trapezoidal,
numerical integration methodDoing so we obtaim\,®y, by solving a
linear system with a@iagonalmatrix.

If k = 2 the above regularization method is technically more com-
plicated to use.

OnceA has been approximated we add to the cost funciijp(cf.
(&.9)) the functional

f en(NI(An®p)[* dX(resp f en(QI(Anén)* dx) (5.13)
Q Q

with e, “small” and > 0. In fact we use approximations &f(5113) ob-
tained via anumerical integratiorprocedure.

We have to mention that the optimal choice tgris still an open 221
question. Numerical results obtained with piecewise lirsg@proxima-
tions k = 1) are given in Se€]7.

5.3.2 A method using 3.7

Let us describe first this method for thentinuous problem

We suppose that the entropy condition can be formulated D). (3
Let M(X) be a stficiently smooth upper bound &f® (M is estimated
or guessed ). Replacing(B.7) by

AD < M(x), (5.14)

aweak formulatiorof (5.12) is

-qu>.V¢dxgfM(x)de¢e@+(Q). (5.15)
Q Q
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Instead of usingM it is very convenient to introduce the solution (de-
fined up to an arbitrary constant if we only have Neumann baopnd
conditions) of

. (5.16)

APy = M overQ,
= goverl’

on

then [5.I6) has the following variational formulation

_ 1
J;, Vo - Vedx = — [, M(x)¢dx+ [ gedl" V¢ € HY(Q), (5.17)
dg € Hl(w).
It follows from (&1T) that[[5.15) can also be written
- f V(P — Dg) - Vpdx < 0 Vo € Z,(Q). (5.18)
Q
We observe that 5
—(® - dg) = 0. A
(@00 =0 (5.19)
222 Concerning the discrete problem, the obvious strategy séerbe
the following: First we approximat@®g by @qy, a solution of
Jo, Voh - Véndx= = [, Mn(X)gndx+ [ ghgndl Ve € Vi, (5.20)
$oh € Vh,

where My, is a convenient approximation ®fl. Then we approximate
H3(Q) (and 2(Q)) by

Voh = {¢n € Vh, dnlr = 0},

and 7, (Q) by
V2, = {éh € Von, ¢ > 0 0nQ}. (5.21)

Finally we approximatd{5.18) by
- f V(D — Dop) - Vpdx < 0 Vop € V). (5.22)
Q

In fact the above “obvious” strategy has to be modified forfttiewing
reasons:
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(1) If k =1, Vg, can be generated by the canonical basis functions of
Voh. But it is not the case fdt = 2.

(2) Computations usind(5.P2) a done wih= 1 have shown that
the approximation of the solution is not good close to thentsoi
at whichsonic linestouchT".

To overcome these filiculties we may proceed as followsk = 1,
let 3}, be the set of the vertices @f,, numbered from 1 tiN,,, where
Np = dim(Vy). Let By be the canonical basis bf,, i.e.

Bn = twi)y (5.23)

with
Wi € Vh,Wi(Pj) = 0jj YPi € Z (5.24)
h

We observe that; > 0 over(, Vi, and that the positive cor\é; of Vhis 223
generated by,. Then instead of using (5.P2) to formulate the discrete
entropy condition, one takes

- f V(®p — Dop) - Vordx < 0 Ve € Vﬁ' (5.25)
Q

which is equivalent to the set of th, following linear inequality con-
straints

—fV(CDh—CI)oh)-VWidxs OVi=1. .Np  (5.26)
Q

If & is used, instead of{5.26) we have
- f V(& — Don) - VWidx < OVi=1,... Np. (5.27)
Q

Computations done witk = 1 and using[[5.27) have produced good
results.

If k =2, the situation is more complicated and we refer to GLOWI-
N-SKI-PIRONNEAU [1] for a discussion of this case.
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REMARK 5.8. (It holds for k = 1, 2). If some Dirichlet boundary
conditions are prescribed somewhere oVethe positive cone used to
define the discrete entropy condition will be related to thbspace of
Vj, consisting of those functions vanishing at the boundaryeaadrre-
sponding to the (discrete) Dirichlet condition.

REMARK5.9. The optimal choice for the bounding function M (of)M
may not be an easy task, specially for airfoil computatidtewever for
the approximate problem an almost natural choice is

Mn(X) = C(h(x))?,0< B < 1, (5.28)

where, in(&28), C is a positive constant and¥) is directly related to
the local size of the finite element mesh. It follows f@GE3)that

lim Mn(X) = +c0 ¥x € Q,
but slower thai{h(x))™*.

5.4 Approximation of X

If we do not take into accounE{4.5[ (#.6) thip is essentially deter-
mined by the discrete entropy condition. Then if one usesdgealar-
ization method of Se¢.5.3.1 we haXg = V. If one uses the meth-
ods described in Sec. 5. 3.2 th¥p is defined by the linear inequal-
ity constraints formulating the discrete entropy conditidiscussed in
Sec[R.3P.

6 Iterative Solution of The Approximate Problems

6.1 Preliminary statements, generalities

Since we cannot discuss in detail the iterative solutionlldha various
approximate problems described in Séc. 5, we shall restiicattention
to the following situation:
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- Q is boundedand we only have Neumann boundary conditions. We
assume also that Kutta-Joukowsky conditions are not reduiheir
treatment is not specific to transonic flows).

- We do not take into accourlt(4.5), (4.6).

- We suppose that = 1 in (£2) and that an entropy condition is for-
mulated using the method discussed in §€c.15.3.2 with theulation
(&Z1) (controls constraint).

- We finally assume that we work with piecewise linear finiteneénts
(k = 1).

Since we do not take into accouni{4.5),14)§)js theclosed convex
set ofV,, defined by[[5.27). Therefore the approximate control proble
is anonlinear (andnon-convex programming problenm which the in-
dependent variable &,. To solve this problem, our strategy is to ue
scent method@ike gradient, conjugate gradient) taking into accoust th
linear inequality constraint§ (57). To handle these taimgs one can
use separately eithgrenalty methodsr dual iterative methodsising
the Kuhn - Tucker multiplierselated to the linear inequality constraints
&Z1). Actually a good strategy is to combine both methoslagia
convenientaugmented Lagrangiatcf. HESTENESIL], POWELLIL],
etc...).

6.2 A saddle - point formulation of the approximate problem.
Augmented lagra ngian

We use the notation of Sc. 513.2. Let us define &ethe following

approximate B(Q)- scalar product 225
Nn
(Un, Vh)h = Z Myun(Pi)Vh(Pi). Pi € X Vi, (6.1)
i=1
where

m = measureQ;), Q; = Q; where
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Q; = union of T € %; such thafP; is a vertex ofT;

the correspondemormis denoted by-|,. Then we definé; : Vi — Vj
by
(A;¢h,vh)h =— L Von - vadX YWy € Vh. (6.2)

Therefore it follows from[(612) thal{5.27) can also be venitt

(AR (& — Don), dn)h < 0 Ve € Vpr, (6.3)

which is equivalent to

A (En = Don), (P) <OVP € ). (6.4)
h

The augmented Lagrangiar : Vi, x Vi, — R to be used is then defined
by

L (Enan) = 5 Joy PER)(@n — £n)2dX+ 5I(A7 (éh — Don))*I2-
— Joy Vin - V(én — Don)dx,
(6.5)
where in [E65), ¢n)* does notdenote the positive part afy but the
approximation of it defined by

{V¢h € Vi, (¢n)* € Vn and (6.6)

(¢n)*(Pi) = max(Q ¢n(Pi)) YPi € 3.

In &3), @y is a function ofé, through the state equati@.3).
Since the constraints alieear inequality constraintsve have

Proposition 6.1. If the approximate control problem has a solution then
% has a saddle- pointé,, 4n} over \f, x V; with &, solution of the
approximate control problem.

REMARK 6.1. The functiont,, € V; is theKuhn - Tuckermultiplier
of the problem. Its existence follows from the fact that weeha finite
dimensional problem with linear constraints. Then the texise of a
solution implies the existence of a Kuhn-Tucker multiplier
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6.3 Iterative solution of the approximate problem via.%;
6.3.1 Description of the algorithm

To solve the approximate problem we shall use an algorithbizafva’s
type (see CEAN], G.L.TO41, Ch. 2]) which will compute a s&ald
point of Z; overVy x V. This algorithm is the following

2 e Vi, arbitrarily given@® = 0 for example ) (6.7)

A known we computgdl), &1} € Vi, x Vi and A7t by

L&A < Li(én, Ap) Yén € Vn,
(6.8)
& € Vh,
& gives@p through [55) (6.9)
Jo VAR V(un — A0 = [, VAR - V(un — A dx- (6.10)
—p Jo, VN — Don) - V(AP )dxVun € Vi, apt e Vi

6.3.2 Solution of (6.10)

The problem[(&.70) is finite dimensional variational inequality Vj,.
This problem is very close to thabstacle problenof ChaptefR, Seél 2;
therefore it can be solved by awerrelaxation method with projection

6.3.3 Solution of (6.8)

The problem[(618) is a finite dimensional control problem. kése
solved this problem using tHeolak - Ribiereversion of the non-linear
conjugate gradient method (see POLAK [1, Ch. 2, pp. 53 -55iiciv
seems morefeective (for our problem ) than th&letcher- Reevesger-

sion (we recall that in Chapt€l 4, SEC.216.7 these two methoel de-
scribed, when applied to the solution of a specific problehme scalar 227
product used in this algorithm is the scalar product indumgdi(Q)

over V. Therefore a very important step in the solution f¥6.8) by
the above conjugate gradient algorithm is the computatichepartial

. 0L : L : :
gradlent?(gh, Ap); this point is discussed in the next section.
h
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4

) 0
6.3.4 Computation of
P Oén

. o 7 . .
Owing to the practical importance 95? we shall discuss its compu-
h

tation in some detail: we have

{fr(fh,,uh) = 3 Jo PE)IV(Pn — En)PdX+ 5I(A; (€n — on)) 12—

— |5, Vitn - V(én — Don)dx
(6.11)
where, in [611) Dy andé&y, are related by[(515). It follows fronfi{G.111)
that

{%‘?j o ttn) - 660 = 3 [, 60EIV(@h — En)PAX+ [ p(En) V(@ — )

XVS(®n — &n)dX+ (A} (én — Don)) > Andén)n — [, Viun - Voéndx
(6.12)

We have no diiculty to compute the last two terms of the right hand
side of [6.IR). About the second term, we obtain bijedentiation of

E5)
fg 5p(én)V@h - Vondx = — fg P(En)VEDh - VrdX Vo € V. (6.13)
Taking¢n = @y — &, in (@©I3) we obtain

{fg PEV(Ph — &) - VO(Pn — &n)dx = — [, p(En)V(Ph — &) - Voéndx—

~ [, 5p(En)V D - V(@h — &n)dx
(6.14)

It follows from (€12) that the sum of the first two of the righand side
of €12) is

1
- fg Pén)V(Ph — &n) - Vocndx— 5 fg Sp(En)V(Ph — &) - V(P + En)dx
(6.15)
Since

2—

[1 . |V§h|2|]y
2 1
(y + 1)Cs rce

<

i

Véh - Voéh,

(6.16)

1 ~1ldp _
§5P(§h) = Ed_fh(é:h) < 0éh =
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the second term of{@.5) is easily computed and, by addititmtive last
two terms of the right hand side df{6112), we obt%’?(gh,ph) - 6h.
h

REMARK 6.2. If instead of takingr = 1in (58)one takesr = 0, then
the computation of,ﬁ will require the use of amdjoint state equation

(see LIONSI4], CEATL], [2)).

6.4 Computational considerations

When solving [&B) by the non-linear conjugate gradienthoetdis-
cussed above we have to solve at each iteration the statéce(@3).
Since the bilinear form occurring i_(%.5) is positive deténfonce the
value of®y, in onepoint of Q has been prescribed) we can use to solve
(&3) eitheriterative methoddike conjugate gradient, overrelaxation
etc., (cf., e,g., POLAK[L], CONCUS GOLUHTJ1], AXELSSONI[1],
VARGA [, YOUNG [M) or direct methods like Cholesky’s. Al
the choice of andp in .4 and [6) -[6.1I0) we can say that tlaeger

isr themore ill - conditioneds (6.8). However the larger isthe faster
will be the global convergence df{®.7)-{6110) for a “coniegm choice”

of p(round - gf errors being neglected). Onaehas been chosen , theo-
retical considerations indicate thahas to be chosen of the same order
asr.

7 A Numerical Experiment

We limit the presentation to only one example ; for more eXaspee
GLOWINSKI - PIRONNEAU [1]. The example we have considered is
the two piece airfoil of Figure—Zl Kutta - Joukowsky conditiorfzave to
be imposed on both profiles. The position of the piece malefutimel
slightly convergent. The main airfoil is af 5f incidence and the Mach
number at infinity isM = 0.55. Piecewise linear finite elements<£ 1)
were used with 2936 triangles and 1555 nodes.

The regularization method of Sdc.5]3.1 has been used ané-the
sults, showing Mach - lines, of Figufel.1 were obtainedr&eeitera-
tions of conjugate gradient. We observe that no non-phlysieacks are
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present and that the Mach number on the exit of the funneleisigaly
equal to one, which it should be.

The precision can be guessed by measuvi(ily, — &,)l; atn = 0 its
value is 35 x 10° atn = 50 it is 2. On each triangle it varies from 10
229 in the subsonic region to 1®in the supersonic.
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8 Comments Conclusion

The methods that we have described above séfgutee for computing
transonic flows on complicated domains since finite elemappsoxi-

mations are used. Moreover the non-linear programmingoaghrthat
we have used (based on an optimal control formulation) giwash flex-

ibility for taking into account theentropy conditionand for the choice
of the iterative methods for solving the approximate probl&Ve have
to observe that regularization method of §ec.$.3.1 is Hgtaanethod

for computing those solutions such that

(AD)*" € L2(Q). (8.1)
If one wishes to approximatE(B.7), i.e.
(AD)* € L*(Q), (8.2)

one may use a regularization functional like

fg & (9I(A¢)*|Pdx, p“large”. (8.3)

All these methods can be extended to 3-dimensional compusatout
one of the main dficulties is then the treatment of the Kutta - Joukowsky
condition. For more details and numerical experiments,aiher meth-
ods for treating the entropy condition we refer to GLOWINSRIRON-
NEAU [, BRISTEAU [], BRISTEAU -GLOWINSKI-PERIAUX-
PERRIER-PIRONNEAU-POIRIER]1],02], BRISTEAU - GLOWIN-
SKI- PERIAUX-PERRIER-PIRONNEAUTL].

In CEA-GEYMONAT [d] one may find results on the solution of
nonlinear boundary value problems via optimal control.

Let us mention to conclude that various methods for treativarks
in fluid mechanic problems can be found in LASCAUX [1] and tlie-b
liography therein.
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