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Preface

These notes correspond to a course of about fifteen lectures given at
the Tata Institute of Fundamental Research Centre, Indian Institute of
Science, Bangalore in January and February 1977.

The main goal of this course and of the corresponding notes isto
provide an introduction to the study of Nonlinear Variational Problems;
they do not have pretention to cover all the aspects of this very important
subject, since for example the Navier–Stokes equations fornewtonian
incompressible viscous flows have not been considered here (we refer
for this last problem to, e.g., TEMAM [1] and GIRAULT-RAVIART
[1]).

Some questions pertinent to the main subject of these notes have not
been treated here since they have been considered in the T.I.F.R. Lecture
Notes of P.G. CIARLET [1] and J.CEA [2].

Chapters 1 and 2 are concerned withElliptic Variational Inequali-
tites (E.V.I.) more precisely with their approximation (mostly by finite
element methods) and also their iterative solution. Several examples,
coming from Mechanics illustrate the methods which are described in
these two chapters.

The following Chapter 3 is only an introduction to the approxima-
tion of Parabolic Variational Inequalities (P.V.I.); we have however stud-
ied with some details a particular P.V.I. related to the unsteady flow of
some viscous plastic media (Bingham fluids) in a cylindricalpipe.

In Chapter 4 we show how Variational Inequalities concepts and
methods may be useful to study some Nonlinear Variational equations.

In Chapter 5 we discuss the iterative solution of some Variational

v



vi 0. Preface

Problems with a very specific structure allowing their solution by de-
composition - coordination methods via augmented lagrangians; several
iterative methods are described and illustrated by examples, mostly from
Mechanics.

In Chapter 6, which unlike the previous chapters is largely heuristi-
cal, we show how some of the tools of the Chapters I–IV may be used to
solve numerically a difficult and important nonlinear problem of Fluid
Dynamics: namely the steady transonic potential flow of an inviscid
compressible fluid. This last chapter is obviously just an introduction to
this very important and difficult subject.

I would like to thank all the people who make my stay in India a
most enjoyable experience and more particularly Professors K.G. RA-
MANATHAN, K. BALAGANGADHARAN and M.K.V. MURTHY.

These Notes were taken by M. ADIMURTHI and M.G. VIJAYA-
SUNDARAM; I would like to thank them for their devoted efforts.

I would like to thank also S. KESAVAN and L. REINHART for their
careful reading of the proofs and the various improvements they have
suggested. Eventually I would like to express all my acknowledgements
to Mrs. F. WEBER for her beautiful typing of these Notes and toMr.
M. Bazot who did all the artwork.

R. Glowinski
Rocquencourt, France

November, 1979
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Chapter 1

Generalities On Elliptic
Variational Inequalities And
On Their Approximation

1 Introduction

An important and very useful class of non-linear problems arising from 1

mechanics, physics etc. consists of the so-called Variational Inequali-
ties. We mainly consider the following two types of variational inequal-
ities, namely

1. Elliptic Variational Inequalities (EVI),

2. Parabolic Variational Inequalities (PVI).

In this chapter (following LIONS-STAMPACCHIA 1) we shall re-
strict our attention to the study of the existence, uniqueness and approx-
imation of the solutions of EVI.

2 Functional Context

In this section we consider two classes of EVI, namely EVI of the first
kind and EVI of the second kind.

1



2 1. Generalities On Elliptic Variational...

2.1 Notations

• V : real Hilbert space with scalar product (·, ·) and associated
norm‖ · ‖.

• V∗ : the dual space ofV.

• a(·, ·) : V × V → R is a bilinear, continuous andV -elliptic form
on V × V.

A bilinear forma(·, ·) is said to beV -elliptic if there exists a positive
constantα such thata(v, v) ≥ α ‖ v ‖2 ∀v ∈ V.

In general we do not assumea(·, ·) to be symmetric, since in some
applications non-symmetric bilinear forms may occur naturally (see for
instance COMINCIOLI [1]).

• L : V → R continuous, linear functional.

• K is a closed, convex, non-empty subset ofV.

• j(·) : V → R̄ = R∪{∞} is a convex, lower semi -continuous (l.s.c.
) and proper functional

( j(·) is proper if j(v) > −∞∀v ∈ V and j . ∞).

2.2 EVI of first kind

To find u∈ V such that u is a solution of the problem2

(P1)


a(u, v− u) ≥ L(v− u),∀v ∈ K,

u ∈ K.

2.3 EVI of second kind

To find u∈ V such that u is a solution of the problem

(P2)


a(u, v− u) + j(v) − j(u) ≥ L(v− u)∀v ∈ V,

u ∈ V.
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2.4 Remarks:

REMARK 2.1. The cases above considered are the simplest and most
important. LIONS and BENSOUSSAN [1] considered some generaliza-
tion of problem(P1) called Quasi Variational Inequalities(QVI) which
arises for instance from Decision Sciences. A typical problem of QVI is
:

To findu ∈ V such that

a(u, v− u) ≥ L(v− u)∀v ∈ K(u),

u ∈ K(u)

where v→ K(v) is a family of closed, convex non-empty subsets of V.

REMARK 2.2. If K = V and j ≡ 0 then the problems(P1) and (P2)
reduce to the classical variational equation



a(u, v) = L(v) ∀v ∈ V,

u ∈ V.

REMARK 2.3. The distinction between(P1) and (P2) is artificial, for 3

(P1) can be considered as a particular case of(P2) by replacing j(·) in
(P2) by the indicator function IK of K defined by

IK(v) =


0 if v ∈ K

+∞ if v < K.

Even though (P1) is a particular case of (P2) it is worthwhile con-
sidering (P1) separately because it arises in a natural way and we will
get geometrical insight into the problem.

Exercise 2.1.Prove that IK is a convex, l.s.c. and proper functional.

Exercise 2.2. Show that(P1) is equivalent to the problem of finding
u ∈ V such that a(u, v− u) + IK(v) − IK(u) ≥ L(v− u)∀v ∈ V.
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3 Existence And Uniqueness Results For EVI of
First Kind

3.1 A Theorem of existence and uniqueness

THEOREM 3.1. (LIONS-STAMPACCHIA 1).The problem (P1) has
one and only one solution

Proof. (I)Uniqueness:
Let u1 andu2 be solutions of (P1). We have then

a(u1, v− u1) ≥ L(v− u1) ∀v ∈ K, u1 ∈ K, (3.1)

a(u2, v− u2) ≥ L(v− u2) ∀v ∈ K, u2 ∈ K. (3.2)

�

Puttingu2 for v in (3.1) andu1 for v in (3.2) and adding we get, by
using theV -ellipticity of a(·, ·),

α ‖ u2 − u1 ‖2≤ a(u2 − u1, u2 − u1) ≤ 0

which provesu1 = u2 sinceα > 0.
(2) Existence
We use a generalization of the proof used by CLARLET [1] for4

proving the Lax-Milgram Lemma, i. e. we will reduce the problem (P1)
to afixed pointproblem.

By the Riesz representation theorem for Hilbert space thereexist
A ∈ L (V,V)(A = At if a(·, ·) is symmetric) andℓ ∈ V such that

(Au, v) = a(u, v) ∀u, v ∈ V andL(v) = (ℓ, v) ∀v ∈ V. (3.3)

Then the problem (P1) is equivalent to findingu ∈ V such that



(u− ρ(Au− ℓ) − u, v− u) ≤ 0 ∀v ∈ K,

u ∈ K, ρ > 0.

(3.4)
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This is equivalent to findingu such that

u = PK(u− ρ(Au− ℓ)), for someρ > 0, (3.5)

wherePK denotes the projection operator fromV to K in the‖ · ‖ norm.
Consider the mapWρ : V → V defined by

Wρ(v) = PK(v− ρ(Av− ℓ)). (3.6)

Let v1, v2 ∈ V. Then sincePK is a contraction we have



‖Wρ(v1) −Wρ(v2) ‖2≤‖ v2 − v1 ‖2 +ρ2 ‖ A(v2 − v1 ‖2

−2ρa(v2 − v1, v2 − v1).

Hence we have

‖Wρ(v1) −Wρ(v2) ‖2≤ (1− 2ρα + ρ2 ‖ A ‖2) ‖ v2 − v1 ‖2 . (3.7)

ThusWρ is a strict contraction mapping if 0< ρ <
2α

‖ A ‖2
. By taking

ρ in this range we have a unique solution for the fixed point problem
which implies the existence of a solution for (P1).

3.2 Remarks

REMARK 3.1. If K = V, Theorem 3.1 reduces to Lax-Milgram Lemma5
(see CIARLET [1]).

REMARK 3.2. If a(·, ·) is symmetric then Theorem 3.1 can be proved
using optimization methods (see CEA [1]).

Let J : V → R be defined by

J(v) =
1
2

a(v, v) − L(v). (3.8)

Then
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(i) lim
‖v‖→+∞

J(v) = +∞

sinceJ(v) =
1
2

a(v, v) − L(v) ≥
α

2
‖ v ‖2 − ‖ L ‖‖ v ‖.

(ii) J is strictly convex.

SinceL is linear, to prove the strict convexity ofJ it suffices to
prove that

v→ a(v, v)

is strictly convex. Let 0< t < 1 andu, v ∈ V with u , v;
0 < a(v− u, v− u) = a(u, u) + a(v, v) − 2a(u, v). Hence we have

2a(u, v) < a(u, u) + a(v, v). (3.9)

Using (3.9) we have


a(tu+ (1− t)v, tu+ (1− t)v) =

t2a(u, u) + 2t(1− t)a(u, v) + (1− t)2a(v, v) <

< ta(u, u) + (1− t)a(v, v).
(3.10)

Thereforea(v, v) is strictly convex.

(iii) Since a(·, ·) andL are continuous,J is continuous.6

From these properties ofJ and standard results of Optimization The-
ory (cf. CEA [1]) it follows that the minimization problem offinding u
such that

(π)



J(u) ≤ J(v) ∀v ∈ K,

u ∈ K

has one and only one solution. Therefore (π) is equivalent to the problem
of finding u such that



(J′(u), v− u) ≥ 0 ∀v ∈ K,

u ∈ K,

(3.11)



4. Existence And Uniqueness Results... 7

where J′(u) is the Gateaux derivativeof J at u. Since (J′(u), v) =
a(u, v) − L(v) we see that (P1) and (π) are equivalent ifa(·, ·) is sym-
metric.

Exercise 3.1.Prove that(J′(u), v) = a(u, v)− L(v) ∀u, v∈ V and hence
deduce that J′(u) = Au∼ ℓ ∀u ∈ V.

REMARK 3.3. The proof of Theorem 3.1 given a natural a natural
algorithm for solving(P1) since v→ PK(v− ρ(Av− ℓ)) is acontraction

mapping for0 < ρ <
2α

‖ A ‖2
. Hence we can use the following algorithm

to find u:
Let u0 ∈ V, (3.12)

un+1 = PK(un − ρ(Aun − ℓ)). (3.13)

Then un → u strongly in V whereu is the solution of (P1). In
practice it is not easy to calculateℓ and A unlessV = V∗. To project
overK may be as difficult as solving (P1). In general this method cannot
be used for computing the solution of (P1) if K , V (at least not so
directly).

We observe that ifa(·, ·) is symmetric thenJ′(u) = Au− ℓ and hence 7

(3.13) becomes
un+1 = PK(un − ρ(J′(un)). (3.13’)

This method is know as theGradient -Projectionmethod.

4 Existence And Uniqueness Results For EVI of
Second Kind

THEOREM 4.1. (LIONS-STAMPACCHIA [1]) Problem(P2) has one
only one solution.

Proof. As in Theorem 3.1 we shall first prove uniqueness and then ex-
istence

(1) Uniqueness.Let u1 andu2 be two solutions of (P2). Then we
have

a(u1, v− u1) + j(v) − j(u1) ≥ L(v− u1) ∀v ∈ V, u1 ∈ V, (4.1)
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a(u2, v− u2) + j(v) − j(u2) ≥ L(v− u2) ∀v ∈ V, u2 ∈ V, (4.2)

�

Since j(·) is a proper map there existsv0 ∈ V such that−∞ < j(v0) <
∞. Hence fori = 1, 2

−∞ < j(ui) ≤ j(v0) − L(v0 − ui) + a(ui , v0 − ui). (4.3)

This shows thatj(ui ) is finite for i = 1, 2. Hence by substitutingu2

for v in (4.1) andu1 for v in (4.2) and adding we obtain

α ‖ u1 − u2 ‖2≤ a(1−u2, u1 − u2) ≤ 0. (4.4)

Henceu1 = u2.
(2) Existence. For eachu ∈ V andρ > 0 we associate a problem

(πu
ρ) of type (P2) defined as below :

To find w∈ V such that

(πu
ρ)



(w, v− w) + ρ j(v) − ρ j(w)

≥ (u, v− w) + ρL(v− w) − ρa(u, v− w) ∀v ∈ V,

w ∈ V.
(4.5)

The advantage of considering this problem over the problem (P2)8

is that the bilinear form associated with (πu
ρ) is the inner product ofV

which is symmetric.
Let us first assume that (πu

ρ) has a unique solution for allu ∈ V and
ρ > 0. For eachρ define the mapfρ : V → V by fρ(u) = w wherew is
the unique solution of (πu

ρ).
We shall show thatfρ is a uniformly strict contraction mapping for

suitable chosenρ.
Let u1, u2 ∈ V andwi = fρ(ui), i = 1, 2. Sincej(·) is proper we have

j(ui) finite which can be proved as in (4.3). Therefore we have

(w1,w2 − w1) + ρ j(w2) − ρ j(w1)

≥ (u1,w2 − w1) + ρL(w2 − w1) − ρa(u1,w2 − w1), (4.6)
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(w2,w1 − w2) + ρ j(w1) − ρ j(w2)

≥ (u2,w1 − w2) + ρL(w1 − w2) − ρa(u2,w1 − w2). (4.7)

Adding these inequalities we obtain



‖ fρ(u1) − fρ(u2) ‖2 =‖ w2 − w1 ‖2

=≤ ((I − ρA)(u2 − u1),w2 − w1)

=≤‖ I − ρA ‖ ‖ u2 − u1 ‖ ‖ w2 − w1 ‖ .

(4.8)

Hence
‖ fρ(u1) − fρ(u2) ‖≤‖ I − ρA ‖ ‖ u2 − u1 ‖

It is easy to show that‖ I − ρA ‖< 1 when 0< ρ <
2α
‖ A ‖2

. This

proves thatfρ is uniformly a strict contracting mapping and hence has
a unique fixed pointu. This u turns out to be the solution of (P2) since
fρ(u) = u implies (u, v − u) + ρ j(v) − ρ j(u) ≥ (u, v − u) + ρL(v − u) −
ρa(u, v− u) ∀v ∈ V. Therefore

a(u, v− u) + j(v) − j(u) ≥ L(v− u) ∀v ∈ V. (4.9)

Hence (P2) has a unique solution.
The existence and uniqueness of the problem (πu

ρ) follows from the
following

Lemma 4.1. Let b : V × V → R be a symmetric continuous, bilinear, V9

-elliptic form with V -elliptic constantβ. Let L∈ V∗ and j : V → R̄ be a

convex, l.s.c. proper functional. Let J(v) =
1
2

b(v, v) + j(v) − L(v). Then

the minimization problem(π):
To findu such that

(π)



J(u) ≤ J(v) ∀v ∈ V,

u ∈ V
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has a unique solution which is characterised by


b(u, v− u) + j(v) − j(u) ≥ L(v− u) ∀v ∈ V,

u ∈ V.

(4.10)

Proof. (i) Existence and uniqueness of u
Sinceb(·, ·) is strictly convex,j is convex andL is linear, we haveJ

strictly convex. J is l.s.c. becauseb(·, ·) andL are continuous andj is
l.s.c. �

Since j is convex, l.s.c. and proper, there existsλ ∈ V∗ andµ ∈ R
such that

j(v) ≥ λ(v) + µ (cf. EKLAND - TEMAM [1]) ,

therefore


J(v) ≥ β
2 ‖ v ‖2 − ‖ λ ‖‖ v ‖ − ‖ L ‖ ‖ v ‖ +µ

=

(√
β
2 ‖ v ‖ − (‖λ‖+‖L‖)

2

√
2
β

)2

+ µ − (‖λ‖+‖L‖)2

2β .

(4.11)

Hence
J(v)→ +∞ as ‖ v ‖→ +∞. (4.12)

Hence (cf. CEA [1] ) there exists a unique solution for the optimiza-10

tion problem (π).
Characterisation of u : We show that the problem (π) is equivalent

to (4.10) and thus get a characterisation ofu.
(2) Necessity of(4.10) : Let 0< t ≤ 1. Letu be the solution of (π).

Then for allv ∈ V we have

J(u) ≤ J(u+ t(v− u)). (4.13)

SetJ0(V) =
1
2

b(v, v) − L(v), then (4.13) becomes



0 ≤ J0(u+ t(v− u)) − J0(u) + j(u+ t(v− u)) − j(u)

≤ J0(u+ t(v− u)) − J0(u) + t[ j(v) − j(u)] ∀v ∈ V

(4.14)
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got by using convexity ofj. Dividing by t in (4.14) and taking the limit
ast → 0 we get

0 ≤ (J′0(u), v− u) + j(v) − j(u) ∀v ∈ V. (4.15)

Sinceb(·, ·) is symmetric we have

(J′0(v),w) = b(v,w) − L(w) ∀v,w ∈ V. (4.16)

From (4.15) and 4.16 we obtain

b(u, v− u) + j(v) − j(u) ≥ L(v− u) ∀v ∈ V.

This proves the necessity.
(3) Sufficiency of (4.10). Letu be a solution of (4.10) ; forv ∈ V

J(v) − J(u) =
1
2

[b(v, v) − b(u, u)] + j(v) − j(u) − L(v− u). (4.17)

But

b(v, v) = b(u+ v− u, u+ v− u)

= b(u, u) + 2b(u, v− u) + b(u− v, u− v).

Therefore 11

J(v)− J(u) = b(u, v−u)+ j(v)− j(u)−L(v−u)+
1
2

b(v−u, v−u). (4.18)

Sinceu is a solution of (4.10) andb(v− u, v− u) ≥ 0 we get

J(v) − J(u) ≥ 0. (4.19)

Henceu is a solution of (π).
By takingb(·, ·) to be the inner product inV and replacingj(v) and

L(v) in Lemma 4.1 byρ j(v) and (u, v) + ρL(v) − ρa(u, v), respectively,
we get the solution for (πu

ρ).
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REMARK 4.1. From the proof of Theorem 4.1 we get an algorithm for
solving(P2). This algorithm is given by



(1) u0 ∈ V, 0 < ρ < 2α
‖A‖

2
,

(2) (un+1, v− un+1) + ρ j(v) − ρ j(un+1) ≥ (un, v− un+1)

+ρL(v− un+1) − ρa(un, v− un+1) ∀v ∈ V,

(3) un+1 ∈ V.

(4.20)

Then one can easily see thatun → u stronglyin V andu will be the
solution of (P2). Difficulties may arise in using this scheme whenj(·)
is not assumed to be differentiable. At each iteration the problem we
have to solve is also a problem of the same order of difficulty as that of
the original problem (actually conditioning can be better providedρ has
been conveniently chosen). Ifa(·, ·) is not symmetric the fact that (·, ·) is
symmetric can also give some simplification.

5 -Internal Approximation of EVI of First Kind

5.1 Introduction

In this chapter we shall study the approximation of EVI of thefirst kind
from an abstract, axiomatic point of view.

5.2 The continuous problem

The assumptions onV, K, L anda(·, ·) are as in section 2. We are inter-12

ested in the approximation of

(P1)



a(u, v− u) ≥ L(v− u) ∀v ∈ K,

u ∈ K,

which has one and only solution by Theorem 3.1.
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5.3 The approximate problem

5.3.1 The approximation ofV and K

We are given a parameterh converging to 0 and a family (Vh)h of closed
subspaces ofV. (In practiceVh are finite dimensional and the parameter
h varies over a sequence). We are also given a family (Kh)h of closed,
convex, non-empty subsets ofV with Kh ⊂ Vh ∀h (in general we do not
assumeKh ⊂ K) such that (Kh)h satisfies the following two conditions :

(i) If ( vh)h is such thatvh ∈ Kh ∀h and (vh)H is bounded inV then the
weakcluster points of (vh)h belong toK.

(ii) Assume there existχ ⊂ V, χ̄ = K and rh : χ → Kh such that
lim
h→0

rhv = v strongly inV, ∀v ∈ χ.

REMARK 5.1. If Kh ⊂ K ∀h then (i) is trivially satisfied because K is
weakly closed.

REMARK 5.2. ∩
h
Kh ⊂ K.

REMARK 5.3. A useful variant of condition (ii) for rh is (ii)’ Assume
there exists a subsetχ ⊂ V such thatχ̄ = K and rh : χ → Vh with the
property that for each v∈ χ, there exists h0 = h0(v) with rhv ∈ Kh for all
h ≤ h0(v) and lim

h→0
rhv = v stronglyin V.

5.3.2 Approximation of (P1):

The problem (P1) is approximated by

(P1h)



a(uh, vh − uh) ≥ L(vh − uh) ∀vh ∈ Kh,

uh ∈ Kh.

THEOREM 5.1. (P1h) has a unique solution. 13

Proof. In Theorem 3.1 takingV to beVh andK to beKh we have the
result. �



14 1. Generalities On Elliptic Variational...

REMARK 5.4. In most of the cases it will be necessary to replace a(·, ·)
and L by ah(., .) and Lh (usually defined - in practical cases - from a(·, ·)
and L by a Numerical Integration procedure). Since there is nothing
very new on that matter compared to the classical linear case, we shall
say nothing about this problem for which we refer to CIARLET [1, Chap.
8].

5.4 Convergence results

THEOREM 5.2. With the above assumptions on K and(Kh)h we have
lim
h→0
‖ uh − u ‖V= 0 with uh the solution of(P1h) and u the solution of

(P1).

Proof. In this kind of convergence we usually divide the proof into three
parts. First we obtain a priori estimates for (uh)h, then weak convergence
of (uh)h and finally with the help of weak convergence, we will prove
strong convergence. �

(1) Estimation for uh.
We will now show that there exist constantsC1 andC2 independent

of h such that
‖ uh ‖2≤ C1 ‖ uh ‖ +C2,∀h. (5.1)

Sinceuh is the solution of (P1h) we have

a(uh, vh − uh) ≥ L(vh − uh)∀vh ∈ Kh (5.2)

i.e.
a(uh, uh) ≤ a(uh, vh) − L(vh − uh).

By V -ellipticity we get

α ‖ uh ‖2≤‖ A ‖ · ‖ uh ‖ · ‖ vh ‖ + ‖ L ‖ (‖ vh ‖ + ‖ u− h ‖) ∀vh ∈ Kh.

(5.3)
Let v0 ∈ χ andvh = rhv0 ∈ Kh. By condition (ii) onKh we have

rhv0 → v0 strongly inV and hence‖ vh ‖ is uniformly bounded by a
constantm. Hence (5.3) can be written as

‖ uh ‖2≤
1
α
{(m ‖ A ‖ + ‖ L ‖) ‖ uh ‖ + ‖ L ‖ m} = C1 ‖ uh ‖ +C2,
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whereC1 =
1
α

(m ‖ A ‖ + ‖ L ‖) andC2 =
m
α
‖ L ‖; then (5.1) implies 14

‖ uh ‖≤ C ∀h.

(2) Weak convergence of(uh)h : Relation (5.1) givesuh is uniformly
bounded. Hence there exists a subsequence say{uhi } such thatuhi con-
verges tou∗ weakly inV. By condition (i) on (Kh)h we haveu∗ ∈ K. We
will prove thatu∗ is a solution for (P1). We have

a(uhi , uhi ) ≤ a(uhi , vhi ) − L(vhi , uhi ) ∀vhi ∈ Khi . (5.4)

Let v ∈ χ andvhi = rhi v. Then (5.4) becomes

a(uhi , uhi ) ≤ a(uhi , rhi v) − L(rhi v− uhi ). (5.5)

Since rhi v converges strongly tov and uhi converges tou∗ weakly as
hi → 0 taking the limit in (5.5) we get

lim inf
hi→0

a(uhi , uhi ) ≤ a(u∗, v) − L(v− u∗) ∀v ∈ χ. (5.6)

Also we have

0 ≤ a(uhi − u∗, uhi − u∗) ≤ a(uhi , uhi ) − a(uhi , u
∗) − a(u∗, uhi ) + a(u∗, u∗)

i. e.
a(uhi , u

∗) + a(u∗, uhi ) − a(u∗, u∗) ≤ a(uhi , uhi ).

By taking the limit we obtain

a(u∗, u∗) ≤ lim inf
hi→0

a(uhi , uhi ). (5.7)

From (5.6) and (5.7) we get

a(u∗, u∗) ≤ lim inf
hi→0

a(uhi , uhi ) ≤ a(u∗, v) − L(v− u∗) ∀v ∈ χ.

Therefore we have, 15



a(u∗, v− u∗) ≥ L(v− u∗) ∀v ∈ χ,

u∗ ∈ K.

(5.8)
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Sinceχ is dense inK anda(·, ·), L are continuous, we get from (5.8)


a(u∗, v− u∗) ≥ L(v− u∗) ∀v ∈ K,

u∗ ∈ K.
(5.9)

Henceu∗ is a solution of (P1). By Theorem 3.1, the solution for (P1)
is unique and henceu∗ = u is the unique solution. Henceu is the only
cluster point of{uh}h in the weak topology ofV. Hence the whole{uh}h
converges tou weakly.

(3) Strong convergence: We have byV−ellipticity of a(·, ·)

0 ≤ α ‖ uh−u ‖2≤ a(uh−u, uh−u) = a(uh, uh)−a(uh, u)−a(u, uh)+a(u, u)
(5.10)

whereuh is the solution of (P1h) andu is the solution of (P1). Sinceuh

is the solution of (P1h) andrhv ∈ Kh for anyv ∈ χ, we get by (P1h)

a(uh, uh) ≤ a(uh, rhv) − L(rhv− uh) ∀v ∈ χ. (5.11)

Since lim
h→0

uh = u weaklyin V and lim
h→0

rhv = v stronglyin V (by condition

(ii)) we obtain, from (5.10), (5.11) and after taking the lim, that∀v ∈ χ
we have:

0 ≤ α lim inf ‖ uh − u ‖2≤ α lim sup ‖ uh − u ‖2≤ a(u, v− u) − L(v− u).
(5.12)

By densityandcontinuity, (5.12) also holds∀v ∈ K; then takingv = u
in (5.12) we obtain that

lim
h→0
‖ uh − u ‖2= 0

i.e. the strong convergence.

REMARK 5.5. Error estimates for the EVI of the first kind can be found16

in FALK [1], [2], [3], STRANG-MOSCO [1], STRANG [1], GLOWIN-
SKI-LIONS-TREMOLIERES (G.L.T.) [1], [2], CIARLET [1], BREZZI
[1], FALK-MERCIER [1], GLOWINSKI [1]. But like in many nonlinear
problems the methods used to obtain these estimates are specific to the
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particular problem under consideration (as we shall see in the following
sections).

This remark still holds for the approximation of EVI of the second
kind which is the subject of Section 6.

REMARK 5.6. If for a given problem, several approximations are
available, and if computations are needed, the choice of theapproxi-
mations to be used is not obvious. We have to take into accountnot only
the convergence properties of the method, but also the computation in-
volved in that method. Some iterative methods are best suited only for
some problems. Some methods are easier to program than others.

6 Internal Approximation of EVI of Second Kind

6.1 The Continuous Problem

The assumptions onV, a(·, ·), L j(·) being as in Section 2.1, we shall
consider the approximation of

(P2)



a(u, v− u) + j(v) − j(u) ≥ L(v− u) ∀v ∈ V,

u ∈ V

which has one and only one solution by Theorem 4.1.

6.2 Definition of the approximate problem

Preliminary remark : We assume in the sequel thatj : V → R is
continuous. We can prove the same sort of results as in this section
under less restrictions (see Chapter 4, Section 2).

6.2.1 Approximation of V

Given a real parameterh converging to 0 and a family (Vh)h of closed 17

subspaces ofV (in practice we will takeVh to be finite dimensional and
h to vary over a sequence), we assume that (Vh)h satisfies
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(i) there existsU ⊂ V such thatŪ = V and for eachh, a maprh :
U → Vh such that lim

h→0
rhv = v strongly inV, ∀v ∈ U.

6.2.2 Approximation of j(·)

We approximate the functionalj(·) by ( jh)h where for eachh, jh
satisfies



jh : Vh→ R̄

jhis convex, l.s.c. and uniformly proper in h.

(6.1)

The family (jh)h is said to beuniformly proper in hif there exist
λ ∈ V∗ andµ ∈ R such that

h(vh) ≥ λ(vh) + µ ∀vh ∈ Vh,∀h. (6.2)

Furthermore we assume that (jh)h satisfies

(ii) if vh→ v weaklyin V then

lim inf
h→0

jh(vh) ≥ j(v)

(iii) lim
h→0

jh(rhv) = j(v) ∀v ∈ U.

REMARK 6.1. In all the applications we know, if j(·) is a continuous
functional then it is always possible to construct continuous jh satisfying
(ii) and (iii).

REMARK 6.2. In some cases we are fortunate enough to have jh(vh) =
j(vh)∀vh, ∀h, and then (ii) and (iii) are trivially satisfied.

6.2.3 Approximation of (P2)

We approximate (P2) by18

(P2h)



a(uh, vh − uh) + jh(vh) − jh(uh) ≥ L(vh − uh) ∀vh ∈ Vh,

uh ∈ Vh.
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THEOREM 6.1. Problem (P2h) has one only one solution.

Proof. In Theorem 4.1 takingV to be Vh, j(·) to be jh(·) we get the
result. �

REMARK 6.3. Remark 5.4 of Section 5 still holds for(P2) and(P2h).

6.3 Convergence results

THEOREM 6.2. Under the above assumptions on(Vh)h and ( jh)h we
have 

lim
h→0
‖ uh − u ‖= 0,

lim
h→0

jh(uh) = j(u).
(6.3)

Proof. As in the proof of Theorem 5.2 we divide the proof into three
parts. �

(1) Estimation for uh. We will show that there exist positive con-
stantsC1 andC2 independent ofh such that

‖ uh ‖2≤ C1 ‖ uh ‖ +C2 ∀h. (6.4)

Sinceuh is the solution of (P2h) we have

a(uh, uh) + jh(uh) ≤ a(uh, vh) + jh(vh) − L(vh − uh) ∀vh ∈ Vh. (6.5)

By using relation (6.2) we get

α ‖ uh ‖2≤‖ λ ‖ ‖ uh ‖ + |µ|+ ‖ A ‖ ‖ uh ‖ ‖ vh ‖
+ | jh(vh)|+ ‖ L ‖ (‖ vh ‖ + ‖ uh ‖). (6.6)

Letv0 ∈ U andvh = rhv0. By using condition (i) and (iii) there exists
a constantm, independent ofh such that‖ vh ‖≤ m and | jh(vh)| ≤ m.
Therefore (6.6) can be written as



‖ uh ‖2 ≤ 1
α (‖ λ ‖ + ‖ A ‖ ·m+ ‖ L ‖) ‖ uh ‖ +m

α (1+ ‖ L ‖) + |µ|α

= C1 ‖ uh ‖ +C2
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where 19

C1 =
1
α

(‖ λ ‖ + ‖ A ‖ ·m+ ‖ L ‖) and C2 =
m
α

(1+ ‖ L ‖) +
|µ|
α

and (6.4) implies

‖ uh ‖≤ C ∀h whereC is a constant.

(2) Weak convergence ofuh: Relation (6.4) gives thatuh is uni-
formly bounded. Therefore there exists a subsequence (uhi )hi such that
uhi → uh weakly inV.

Sinceuh is the solution of (P1h) andrhv ∈ Vh ∀h and∀v ∈ U we get

a(uhi , uhi ) + jhi (uhi ) ≤ a(uhi , rhi v) + jhi (rhvi) − L(rhi v− uhi ). (6.7)

By condition (iii) and weak convergence of{uhi } we get

lim inf
h→0

[a(uhi , uhi )+ jhi (uhi )] ≤ a(u∗, v) + j(v) − L(v− u∗) ∀v ∈ U. (6.8)

As in (5.7) and using condition (ii), we get

a(u∗, u∗) + j(u∗) ≤ lim inf
h→0

[a(uhi , uhi ) + jhi (uhi )]. (6.9)

From (6.8), (6.9) and using the density ofU we have


a(u∗, v− u∗) + j(v) − j(u∗) ≥ L(v− u∗) ∀v ∈ V,

u∗ ∈ V.

This impliesu∗ is a solution of (P2). Henceu∗ = u is the unique solution
of (P2) and this shows that (uh) converges to uweakly.

(3) Strong convergence of(uh)h: We have byV -ellipticity of a(·, ·)20

and by (P2h)


α ‖ uh − u ‖2 + jh(uh) ≤ a(uh − u, uh − u) + jh(uh) =

= a(uh, uh) − a(u, uh) − a(uh, u) + a(u, u) + jh(uh) ≤
≤ a(uh, r − hv) + jh(rhv) − L(rhv− uh) − a(u, uh)

−a(uh, u) + a(u, u) ∀v ∈ U.
(6.10)
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The right hand side of inequality (6.10) tends toa(u, v− u) + j(v) −
L(v− u) ash→ 0∀v ∈ U. Therefore we have



lim inf h→0 jh(uh) ≤ lim inf h→0[α ‖ uh − u ‖2 + jh(uh)] ≤

≤ lim suph→0[α ‖ uh − u ‖2 + jh(uh)] ≤

≤ a(u, v− u) + j(v) − L(v− u)∀v ∈ U.

(6.11)

By density ofU, (6.11) holds∀v ∈ V. Replacingv by u in (6.11) and
using condition (ii) we obtain

j(u) ≤ lim inf
h→0

jh(uh) ≤ lim sup
h→0

[α ‖ u− uh ‖2 + jh(uh)] ≤ j(u).

This implies that

lim
h→0

jh(uh) = j(u) and

lim
h→0
‖ uh − u ‖= 0.

This proves the theorem.

7 References

For generalities on variational inequalities from a theoretical point of 21

view see Lions-Stampacchia [1], Lions [1], Ekeland-Temam [1].
For generalities on the approximation of variational inequalitiesfrom

the numerical point of view see Falk [1], Glowinski-Lions-Tremolieres
[1], [2], Strang [1], Brezzi-Hager-Raviart [1].





Chapter 2

Application of The Finite
Element Method To The
Approximation of Some
Second Order EVI

1 Introduction

In this chapter we consider some examples of EVI of the first and sec- 22

ond kinds. These EVI are related to second order partial differential
operators (for fourth order problems see GLOWINSKI [2]). The Phys-
ical Interpretation and some properties of the solution aregiven. Finite
element approximations of these EVI are considered and convergence
results are proved. In some particular cases we prove error estimates.

Some of the results in this chapter may be found in G.L.T. [1],[2].
For the approximation of the EVI of first kind by the finite element meth-
ods we refer also to FALK [1], STRANG [1], MOSCO-STRANG [1],
CIARLET [1], BREZZI-HAGER-RAVIART [1].

We also deal with iterative methods for solving the corresponding
approximate problems (cf. CEA [1], G.L.T. [1], [2]).

23
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2 An Example of EVI of The First Kind: The Ob-
stacle Problem

Notations 1. All the properties of Sobolev spaces used in this chapter
are proved in LIONS [2], NECAS [1]. Usually we shall have

• Ω: a bounded domain inR2

• Γ : ∂Ω

• x = {x1, x2} a generic point ofΩ

• ∇ = {
∂

∂x1
,
∂

∂x2
}

• Cm(Ω̄): space of m -times continuously differentiable real valued
functions for which all the derivatives up to order m are continu-
ous inΩ̄,

• Cm
0 (Ω̄) = {v ∈ Cm(Ω̄) : Supp(v) is a compact subset ofΩ}.

• ‖ v ‖m,p,Ω=
∑
|α|≤m

‖ Dαv ‖Lp(Ω) for v ∈ Cm(Ω) whereα = (α1, α2);23

α1, α2 non-negative integers,|α| = α1 + α2 and Dα =
∂|α|

∂xα1
1 ∂xα2

2

.

• Wm,p(Ω) : completion of Cm(Ω) in the norm defined above.

• Wm,p(Ω): completion of Cm0 (Ω) is the above norm

• Hm(Ω) =Wm,2(Ω),

• Hm
0 (Ω) =Wm,2(Ω),

D(Ω) = C∞0 (Ω).
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2.1 The continuous problem:

Let
V = H1

0(Ω) = {v ∈ H1(Ω) : v|Γ = trace de v surΓ = 0}

(cf. LIONS [2], NECAS[1]).

a(u, v) =
∫

Ω

∇u.∇vdx

where

∇u.∇v =
∂u
∂x1

∂v
∂x1
+
∂u
∂x2

∂v
∂x2

.,

L(v) = 〈 f , v〉 for f ∈ V∗ = H−1(Ω) andv ∈ V. LetΨ ∈ H1(Ω) ∩C0(Ω)
andΨ|Γ ≤ 0. DefineK = {v ∈ H1

0(Ω) : v ≥ Ψa.e. onΩ}.
Then the obstacle problem is a (P1) problem defined by :
Find u such that


a(u, v− u) ≥ L(v− u)∀v ∈ K,

u ∈ K.
(2.1)

The physical interpretation of this problem is the following: let an
elastic membrane occupy a regionΩ in the x1, x2 plane; this membrane
is fixed along the boundaryΓ of Ω. When there is no obstacle, from the
theory of elasticity the vertical displacementu, obtained by applying a
vertical forceF, is given by the Dirichlet problem


−∆u = f in Ω,

u|Γ = 0
(2.2)

where f = F/t, t being the tension. 24

When there is an obstacle, we have a free boundary problem and
the displacementu satisfies the variational inequality (2.1) withΨ be-
ing the height of the obstacle. Similar EVI also occur, sometimes with
non-symmetric bilinear forms, in mathematical models for the following
problems:

• Lubrication phenomena (cf. CRYER [1]).
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• Filtration of liquids in porous media (cf. BAIOCCHI [1], COM-
INCIOLI [1]),

• Two dimensional, irrotational flows of perfect fluids (cf. BREZIS
STAMPACCHIA [1], BREZIS [1], CLAVLDINI-TOURNEMINE
[1]).

• Wake problems (cf. BOURGAT- DUVAUT [1]).

2.2 Existence and uniqueness results:

For proving the existence and uniqueness of the problem (2.1), we need
the following lemmas stated below without proof (for proof of the lem-
mas, see for instance LIONS [1], NECAS [1], STAMPACCHIA [1]).

Lemma 2.1. LetΩ be a bounded domain inRN. Then the semi-norm
on H1(Ω)

v→
(∫

Ω

|∇v|2dx

)1/2

is a norm on H1
0(Ω) and it is equivalent to the norm on H10(Ω) induced

from H1(Ω).

The above Lemma 2.1 is known as Poincare-Friedrichs lemma.

Lemma 2.2(STAMPACCHIA [1]). Let f : R → R be uniformly Lips-
chitz continuous (i.e.∃k > 0 such that| f (t) − f (t′)| ≤ k|t − t′| ∀t, t′ ∈ R)
and such f′ has a finite number of points of discontinuity. Then the in-
duced map f∗ on H1(Ω) defined by u→ f (u) is a continuous map into
H1(Ω). Similar results holds for H10(Ω) when ever f(0) = 0.

COROLLARY 2.1. If v+ and v− denote the positive and the negative25

parts of v for v∈ H1(Ω) (respectively H10(Ω)) then the map v→ {v+, v−}
is continuous from H1(Ω) → H1(Ω) × H1(Ω) (respectively H10(Ω) →
H1

0(Ω) × H1
0(Ω)). Also v→ |v| is continuous.

THEOREM 2.1. Problem (2.1) has a unique solution.
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Proof. In order to apply Theorem 3.1 of Chapter 1 we have to prove that
(., .) is V-elliptic and thatK is a closed, convex, non-empty set.

TheV-ellipticity of a(., .) follows from Lemma 2.1 and the convexity
of K is trivial; then

(1) K is non-empty. We have

Ψ ∈ H1(Ω) ∩C0(Ω) with Ψ ≤ 0 onΓ.

Hence, by Corollary 2.1,Ψ+ ∈ H1(Ω). SinceΨ|Γ ≤ 0 we have
Ψ+|Γ = 0. This impliesΨ+ ∈ H1

0(Ω); then

Ψ+ = max{Ψ, 0} ≥ Ψ

ThusΨ+ ∈ K. HenceK is non-empty.

(2) K is closed. Let vn → v strongly in H1
0(Ω) wherevn ∈ K and

v ∈ H1
0(Ω). Hencevn → v strongly in L2(Ω). Therefore we can

extract a subsequence{vni } such thatvni → v a.e. onΩ. Then
vni ≥ Ψ a.e. onΩ implies that

v ≥ Ψ a.e. onΩ;

thereforev ∈ K.

Hence, by Theorem 3.1 of Chapter 1, We have a unique solution
for (2.1).

�

2.3 Interpretation of (2.1) as a free boundary problem

For the solutionu of (2.1) we define 26

Ω+ = {x : x ∈ Ω, u(x) > Ψ(x)}
Ω0 = {x : x ∈ Ω, u(x) = Ψ(x)}
γ = ∂Ω+ ∩ ∂Ω0; u+ = u|Ω+ ; u0 = u|Ω0.
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Classically the problem (2.1) has been formulated as the problem of
finding γ (the free boundary)andu such that

− ∆u = f onΩ+, (2.3)

u = Ψ onΩ0, (2.4)

u = 0 onΓ, (2.5)

u+|γ = u0|γ (2.6)

The physical interpretation of these relations is the following: (2.3)
means that onΩ+ the membrane is strictly over the obstacle; (2.4) means
that onΩ0 the membrane is in contact with the obstacle; (2.6) is trans-
mission relation at the free boundary.

Actually (2.3)–(2.6) are not sufficient to characteristicu since there
are an infinity of solutions for (2.3)–(2.6). Therefore it isnecessary to
add other transmission properties: for instance, ifΨ is smooth enough
(sayΨ ∈ H2(Ω)), we require the continuity of∇u at γ (we may ask
∇u ∈ H1(Ω) × H1(Ω)).

REMARK 2.1. This kind of free boundary interpretation holds for sev-
eral problems modelled by EVI of first kind and second kind.

2.4 Regularity of solutions

We state without proof the following regularity theorem forthe problem
(2.1).

THEOREM 2.2. (BREZIS- STAMPACCHIA [1]). LetΩ be a bounded
domain inR2 with a smooth boundary. If

L(v) =
∫

Ω

f v dx with f ∈ Lp(Ω), 1 < p < ∞ (2.7)

and
Ψ ∈W2,p(Ω), (2.8)

then the solution of the problem(2.1) is in W2,p(Ω).27
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REMARK 2.2. LetΩ ⊂ RN have a smooth boundary. We know that

Ws,p(Ω) ⊂ Ck(Ω) if s >
N
p
+ k (2.9)

(cf. NECAS [1]). It follows that the solution u of(2.1)will be in C1(Ω)
if f ∈ Lp(Ω), Ψ ∈ WP2, p(Ω) with p > 2 (take s= 2, N = 2, k = 1 in
(2.9)).

The proof of this regularity result will be given in the following
simple case:

L(v) =
∫

Ω

f vdx, f ∈ L2(Ω), (2.10)

Ψ = 0 onΩ. (2.11)

Before proving that (2.10), (2.11) implyu ∈ H2(Ω), we shall recall a
classical lemma (also very useful in the analysis of fourth order prob-
lems).

Lemma 2.3. Let Ω be a bounded domain ofRN with a boundaryΓ
sufficiently smooth. Then‖ ∆v ‖L2(Ω) defines a norm on H2(Ω) ∩ H1

0(Ω)
which is equivalent to the norm induced by the H2(Ω)- norm.

Exercise 2.1.Prove the above Lemma 2.3 using the following regularity
result due to AGMON-NIRENBERG [1]:

If w ∈ L2(Ω) and ifΓ is smooth then the Dirichlet problem

−∆v = w inΩ,

v|Γ = 0,

has a unique solution in H10(Ω)∩H2(Ω) (this regularity result also holds
if Ω is a convex domain withΓ Lipschitz continuous) .

We shall now apply the Lemma 2.3 to prove the following theorem
using a method of BREZIS-STAMPACCHIA [2].

THEOREM 2.3. If Γ is smooth enough,Ψ = 0 and L(v) =
∫
Ω

f vdx 28

with f ∈ L2(Ω) then the solution u of the problem(2.1)satisfies

u ∈ K ∩ H2(Ω),

‖ ∆u ‖L2(Ω)≤‖ f ‖L2(Ω) .
(2.12)
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Proof. From Theorem 2.1 it follows that problem (2.1) has a unique
solution u, with L andΨ as above. Let∈> 0, consider the following
Dirichlet problem


− ∈ ∆uǫ + uǫ = u in Ω,

uǫ |Γ = 0.
(2.13)

Problem (2.13) has a unique solution inH1
0(Ω) and the smoothness

of Γ assures thatuǫ belongs toH2(Ω). Sinceu ≥ 0 a.e. onΩ, by the
maximum principle for second order elliptic differential operators, (cf.
MECAS [1]) we haveuǫ ≥ 0. Hence �

uǫ ∈ K. (2.14)

From (2.14) and (2.1) we obtain

a(u, uǫ − u) ≥ L(uǫ − u) =
∫

Ω

f (uǫ − u)dx. (2.15)

TheV-ellipticity of a(., .) implies

a(uǫ , uǫ − u) = a(uǫ − u, uǫ − u) + a(u, uǫ − u) ≥ a(u, uǫ − u),

so that,

a(uǫ , uǫ − u) ≥
∫

Ω

f (uǫ − u)dx. (2.16)

By (2.13) and (2.16) we obtain

∈
∫

Ω

∇uǫ .∇(∆uǫ ) dx≥∈
∫

Ω

f∆uǫ dx

so that,29 ∫

Ω

∇uǫ .∇(∆u∈)dx≥
∫

Ω

∆uǫdx. (2.17)

By Green’s formula, (2.17) implies

−
∫

Ω

(∆uǫ )
2dx≥

∫

Ω

f∆uǫdx.
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Thus

‖ ∆u∈ ‖L2(Ω)≤‖ f ‖L2(Ω), (2.18)

usingSchwarz inequalityin L2(Ω). By Lemma 2.3 and relations (2.13),
(2.18) we obtain

lim
∈→0

uǫ = u weaklyinH2(Ω), (2.19)

(which implies that limuǫ = u strongly inHs(Ω), for everys < 2 (cf.
NECAS [1])), so thatu ∈ H2(Ω) with

‖ ∆u ‖L2(Ω)≤‖ f ‖L2(Ω) . (2.20)

2.5 Finite Element Approximations of (2.1)

Henceforth we shall assume thatΩ is a polygonal domain ofR2. Con-
sider a “ classical” triangulationCh ofΩ, i.e.Ch is a finite set of triangles
T such that

T ⊂ Ω∀T ∈ C + h,
⋃

T∈Ch

T = Ω. (2.21)

T0
1 ∩ T0

2 = Ψ∀T1,T2 ∈ Ch and T1 , T2. (2.22)

Moreover∀T1, T2 ∈ Ch and T1 , T2, exactly one of the following
conditions must hold



(1) T1 ∩ T2 = Ψ

(2) T1 andT2 have only one common vertex,

(3) T1 andT2 have only a whole common edge.

(2.23)

30

As usualh will be the length of the largest edge of the triangles in
the triangulation.

From now on we restrict ourselves to piecewise linear and piecewise
quadratic finite element approximations.
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2.5.1 Approximation of V and K.

• Pk: space of polynomials inx1 andx2 of degree less than or equal
to k.

• Σh = {P ∈ Ω : P is a vertex ofT ∈ Ch}

• Σ0
h = {P ∈ Σh : P < Γ}.

• Σ′h = {P ∈ Ω : P is the mid point of an edge ofT ∈ Ch}.

• Σ′0h = {P ∈ Σ
′
h : P < Γ}.

• Σ1
h = Σh andΣ2

h = Σh ∪ Σ′h.

Figure 2.1 illustrates some further notations associated with an ar-
bitrary triangleT. we havemiT ∈ Σ′h, MiT ∈ Σh. The centroid of the
triangleT is denoted byGT .

Figure 2.1:

The spacev = H1
0(Ω) is approximated by the family of subspaces31

(Vk
h)h with k = 1 or 2 where

Vk
h =

{
vh ∈ C0(Ω) : vh

∣∣∣
Γ
= 0 and vh

∣∣∣
T
∈ Pk ∀T ∈ Ch

}
.k = 1, 2.
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It is clear thatVk
h are finite dimensional (cf. CIARLET [1]). It is then

quite natural to approximateK by

Kk
h =

{
vh ∈ Vk

h : vh(P) ≥ Ψ(p) ∀P ∈ Σk
h

}
, k = 1, 2.

Proposition 2.1. The Kk
h for k = 1, 2 are closed, convex, non-empty

subsets of Vkh.

Exercise 2.2.Prove Proposition 2.1.

2.5.2 The approximate problems

Fork = 1, 2 the approximate problems are defined by

(Pk
1h)


a(uk

h, vh − uk
h) ≥ L(vh − uk

h)∀vh ∈ Kk
h,

uk
h ∈ Kk

h.

From Theorem 3.1 of Chapter 1 and Proposition 2.1, it followsthat

Proposition 2.2. (Pk
1h) has a unique solution for k= 1 and 2.

REMARK 2.3. If the bilinear form a(·, ·) is symmetric,(Pk
1h) is actu-

ally equivalent to (cf. Chap. 1, Remark 3.2) thequadratic programming
problem

min
vh∈Kk

h

[
1
2

a(vh, vh) − L(vh)

]
. (2.24)

2.6 Convergence results

In other to simplify the convergence proof we shall assume inthis section
that

Ψ ∈ C0(Ω) ∩ H1 and Ψ ≤ 0 in a neighbourhood ofΓ. (2.25)

Before proving the convergence results we shall give two important 32

numerical quadrature schemes which will be used to prove theconver-
gence theorem.
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Exercise 2.3.With notations as in Fig.2.1, prove the following identities
for any triangle T

∫

T
wdx=

meas.(T)
3

3∑

i=1

w(MiT )∀w ∈ P1. (2.26)

∫

T
wdx=

meas.(T)
3

3∑

i=1

w(miT )∀w ∈ P2. (2.27)

Formula (2.26) is called theTrapezoidal Ruleand (2.27) is known as
Simpson’s Integral formula. These formulae, not only have theoretical
importance but also practical utility.

We have the following results about the convergence ofuk
h (solutions

of the problem (Pk
h)) ash→ 0.

THEOREM 2.4. Suppose that the angles of the triangles ofCh are
uniformly bounded below byθ0 > 0 as h→ 0; then for k= 1, 2

lim
h→0
‖ uk

h − u ‖H1
0(Ω)= 0 (2.28)

where ukh and u are respectively the solutions of Pk
1h and (2.1).

Proof. In this proof we shall use the followingdensity result to be
proved later:

D(Ω) ∩ K = K. (2.29)

�

To prove (2.28) we shall use Theorem 5.2 of Chap. 1. To do this we
have to verify that the following two properties hold (fork = 1, 2):

(i) If ( vh)h is such thatvh ∈ Kk
h ∀hand converges weakly tovash→ 0,

thenv ∈ K.

(ii) There existsχ, χ = K and rk
h : χ → Kk

h such that lim
h→0

rk
hv = v

=strongly in V ∀v ∈ χ.
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Verification of (i).Using the notations of Fig.2.1 and consideringφ ∈33

D(Ω) with φ ≥ 0, we defineφh by φh =
∑

T∈Ch

φ(Gt)χT whereχT is the

characteristic functionof T andGT is the centroid ofT. It is easy to see
from the uniform continuity ofφ that

lim
h→0
= φ strongly in L∞(Ω). (2.30)

Then we approximateΨ byΨh such that

Ψh ∈ C0(Ω),Ψh|T ∈ Pk∀T ∈ Ch,

Ψh(P) = Ψ(P)∀P ∈ Σk
h.

(2.31)

This functionΨh satisfies

lim
h→0
Ψh = Ψ strongly in L∞(Ω). (2.32)

Let us consider a sequence (vh)h, vh ∈ Kk
h ∀h such that

lim
h→0

vh = v weakly in V.

Then lim
h→o

vh = v strongly in L2(Ω), (cf. NECAS [1]) which, using

(2.30) and (2.32), implies that

lim
h→0

∫

Ω

(vh − Ψh)Ψhdx=
∫

Ω

(v− Ψ)φdx, (2.33)

(actually sinceφh→ φ stronglyin L∞(Ω) the weak convergence ofvh in
L2(Ω) is enough to prove (2.33)).

We have
∫

Ω

(vh − φh)φhdx=
∑

T∈⊂h

φ(Gt)
∫

T
(vh − Ψh)dx. (2.34)

From (2.26). (2.27) and the definition ofΨh we obtain for allT ∈ Ch.

∫

T
(vh − Ψh)dx=

meas.(T)
3

3∑

i=1

[vh(MiT ) − Ψh(MiT )] if k = 1, (2.35)
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∫

T
(vh − Ψh)dx=

meas.(T)
3

3∑

i=1

[vh(miT ) − Ψh(miT )] if k = 2, (2.36)

34

Using the fact thatφh ≥ 0, the definition ofKk
h and the relations

(2.35), (2.36) it follows from (2.34) that
∫

Ω

(vh − Ψh)φh dx≥ 0∀φ ∈ D(Ω), φ ≥ 0,

so that ash→ 0 ∫

Ω

(v− Ψ)φdx≥ 0∀φ ∈ D(Ω), φ ≥ 0

which in turn impliesv ≥ Ψ a.e. inΩ. Hence (i) is verified.

Verification of (ii). From (2.29) it is natural to takeχ = D ∩ K. We
definerk

h : H1
0(Ω) ∩C0(Ω)→ Vk

h as the “ linear ” interpolation operator
whenk = 1 and “ quadratic” interpolation operator whenk = 1, i.e.


rk
hv ∈ Vk

h ∀v ∈ H1
0(Ω) ∩C0(Ω),

(rk
hv)(p) = v(p)∀P ∈

∑◦k
h for k = 1, 2.

(2.37)

On the one hand it is known (cf. for instance CIARLET [1], [2] ,
STRANG-FIX [1]) that under the assumptions made onCh in statement
of Theorem 2.4 we have

‖ rk
hv− v ‖v≤ C hk ‖ v ‖Hk+1(Ω) ∀v ∈ D(Ω), k = 1, 2.

with C independent ofh andv . This implies that

lim
h→0
‖ rk

hv− v ‖v= 0∀ ∈ χ, k = 1, 2.

On the other hand it is obvious that

rk
hv ∈ Kk

h ∀v ∈ K ∩C0(Ω).

so that35

rk
hv ∈ Kk

h ∀v ∈ χ, for k = 1, 2.

In conclusion with the aboveχ and rk
h, (ii) is satisfied. Hence we

have proved the Theorem 2.4 modulo the proof of the density result
(2.29).
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Lemma 2.4. Under the assumptions(2.25)we haveD(Ω) ∩ K = K.

Proof. Let us prove the Lemma in two steps. �

Step 1. Let us show that

K = {v ∈ K ∩C0(Ω) : vcompact support inΩ} (2.38)

is dense in K.

Let v ∈ K, K ⊂ H1
0(Ω) implies that exists a sequence{φn}n in D(Ω)

such that
lim
n→∞

φn = v strongly in V.

Definevn by
vn = max(ψ, φn) (2.39)

so that

vn =
1
2

[(Ψ + φn) + |Ψ − φn|].

Sincev ∈ K, from Corollary 2.1 and relations (2.39) i follows that

lim
n→∞

vn =
1
2

[(Ψ + v) + |Ψ − v|] = max(Ψ, v) = v strongly in V. (2.40)

From (2.25) and (2.39) it follows that

each vn has a compact support inΩ, (2.41)

vn ∈ K ∩C0(Ω). (2.42)

From (2.40) - (2.42) we obtain (2.38) 36

Step 2. Let us show that

D(Ω) ∩K is denseK . (2.43)

This proves from Step 1, thatD(Ω) ∩ K is dense inK. Let ρn be a
sequence of mollifiers, i.e.



ρn ∈ D(R2), ρn ≥ 0,∫
R2 ρn(y)dy = 1
∞⋂

n=1
Suppρn = {0}, {Suppρn}is a decreasing sequence.

(2.44)
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Let v ∈ K . Let ṽ extension ofv defined by

ṽ(x) =


v(x) if x ∈ Ω,
0 if x < Ω,

thenṽ ∈ H1(R2). Let ṽn = ṽ ∗ ρn i.e.

ṽn(x) =
∫

R2
ρn(x− y)ṽ(y)dy (2.45)

then 

ṽn ∈ D(R2),

Suppṽn ⊂ Suppv+ Suppρ′n
lim
n→∞

ṽn = ṽ strongly inH1(R2).

(2.46)

Hence from (2.41) and (2.46) we have

Supp(ṽn) ⊂ Ω for n large enough. (2.47)

We also have (since Supp(˜v)is bounded)37

lim ṽn = ṽ strongly in L∞(R2). (2.48)

Definevn = ṽn|Ω, then (2.46)–(2.48) imply


vn ∈ D(Ω)

lim
n→∞

vn = v strongly in H1
0(Ω) ∩C0(Ω);

(2.49)

v ∈ K andΨ ≤ 0 in a neighbourhood ofΓ imply that there exists a
δ > 0 such that

v = 0,Ψ ≤ 0 on Ωδ (2.50)

whereΩδ = {x ∈ Ω : d(x, Γ) < δ}.
From (2.48) and (2.50) it follows that∀ ∈> 0, there exists ann0 =

n0(∈) such that∀n ≥ n0(∈)

v(x)− ∈≤ vn(x) ≤ (x)+ ∈ ∀x ∈ Ω −Ωδ/2
vn(x) = v(x) = 0 for x ∈ Ωδ/2

(2.51)
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SinceΩ − Ωδ/2 is a compact subset ofΩ there exists a functionsθ (cf.
for instanceH. CARTAN [1]) such that


θ ∈ D(Ω), θ ≥ 0 in Ω

θ(x) = 1∀x ∈ Ω −Ωδ/2
(2.52)

Finally definewǫ
n = vn+ ∈ θ.

Then from (2.49), (2.51) and (2.52) we have

wǫ
n ∈ D(Ω)

lim
∈→0
n→∞

n≥n0(∈)

wǫ
n = v strongly in H1

0(Ω),

with wǫ
n(x) ≥ v(x) ≥ Ψ(x)∀x ∈ Ω, so that Step 2, is proved. 38

REMARK 2.4. Analysing the verification (i) in the proof ofTheorem 2.4,
we observe that if for k= 2 we use, instead of K2h, the following convex
set

{vh ∈ V2
h : vh(p) ≥ Ψ(p)∀P ∈

0∑
′
h}

then the convergence of u2
h to u still holds providedCh obeys the same

assumptions as in the statement of Theorem 2.4.

Exercise 2.4.Extend the previous analysis ifΩ is not a polygonal do-
main.

Exercise 2.5.LetΩ be a bounded domain ofR2 andΓ0 a “nice” subset
of Γ, see Fig. 2.2. Define V by V= {v ∈ H1(Ω) : v|Γ0 = 0}. Taking the
bilinear form a(·, ·) like in (2.1), and L∈ V∗, study the following EVI


a(u, v− u) ≥ L(v− u)∀v ∈ K,

u ∈ K,

whereK = {v ∈ V : v ≥ Ψ a.e. inΩ} andΨ ∈ C0(Ω)∩H1(Ω),Ψ ≤ 0
in a neighbourhood ofΓ0. Also study the finite element approximation
of the above EVI.
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Hint . Use the fact that ifΓ andΓ0 are smooth enough thenV = V
where (see Fog. 2.2)V = {v ∈ C∞(Ω) : v = 0 in a neighbourhood of
Γ0}.

Figure 2.2:

2.7 Comments on the error estimates

We do not emphasize too much on this subject since it has been done in39

detail in CIARLET [1], Chap.9, at least for piecewise linearapproxima-
tions.

2.7.1 Piecewise linear approximation

Using piecewise linear finite elements and assuming thatf , Ψ, u ∈
H2(Ω), 0(h) estimates for‖ u−uh ‖H1(Ω) have been obtained by FALK[1],
[2], [3], STRANG [1], STRANG-MOSCO [1]. We also refer to CLAR-
LET [1, Chap. 9], in which the Falk analysis is given.

2.7.2 Piecewise quadratic approximation

Assuming more regularity forf , Ψ, u that in the previous case, assum-
ing also some smoothness hypotheses for the free boundary, an 0(h3/2−ǫ )
estimate for‖ uh − u ‖H61(Ω) has been obtained by BREZZI-HAGER-
RAVIART [1], BREZZI-SACCHI [1] for an approximation by piece-
wise quadratic finite elements, similar to the described in Section 2.6.
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2.8 Iterative solution of the approximation problem

Once the continuous problem has been approximated and the conver-
gence proved, it remains to compute effectively the approximate solu-
tion. In the case of the discrete obstacle problem this can bedone eas-
ily by using anover- relaxation method with projectionas described in
CEA[2].

Let us justify the use of this method. It follows from Remark 2.3
that the discrete problem is of the following type

min
v∈C

[
1
2

(Av, v) − (b, v)

]
(2.53)

where (·, ·) denotes the usual inner product inRN andv = {v1, . . . , vn}
and

A = (ai j ), 1 ≤ i ≤ N, 1 ≤ j ≤ N (2.54)

is a symmetric, positive definiteN × N andC is the set given by

C = {v ∈ RN : vi ≥ Ψi , 1 ≤ i ≤ N}. (2.55)

SinceC is the product of closed intervals ofR, the over-relaxation 40

method with projection onC can be used. Let us describe it in detail:

u0 ∈ C, u0 arbitrarily chosen in C

(u0 = {Ψ1, . . . ,Ψn} may be a good guess). (2.56)

Then un being known, we compute un+1, component by component using
for i = 1, 2, . . .N

u−n+1
i =

1
aii

bi −
i−1∑

j=1

ai j u
n+1
j −

N∑

j=i+1

ai j u
n
j

 . (2.57)

un+1
i = Pi(u

n
i + w(u−n+1

i − un
i )) (2.58)

where
Pi(x) = max(x,Ψi)∀x ∈ R. (2.59)

It follows from CEA [2] (see also CEA-GLOWINSKI [1], G.L.T.
[1] )that



42 2. Application of The Finite Element Method To...

Proposition 2.3. Let (un) be defined by(2.56)–(2.59). Then for every
u0 ∈ C and∀0 < w < 2, we havelim

n→∞
un = u where u is the unique

solution of (2.53).

REMARK 2.5. In the case of the discrete obstacle problem the compo-
nents of u will be the values taken by the approximation solution at the

nodes of
0∑
h

if k = 1 and
0∑
h
∪

0∑′

h

if k − 2. SimilarlyΨi will be the values

taken byΨ at the nodes stated above, assuming these nodes have been
ordered from 1 to N.

REMARK 2.6. The optimal choice forω is a critical but nontrivial
point. However it has been observed from numerical experiments that
the so-calledYoung methodfor obtaining the optimal value ofω during
the iterative process itself, leads to a value ofω with good convergence
properties. The convergence of this method has been proved for linear
equations and requires special properties for the matrix ofthe system
(see YOUNG [1], VARGA [1]). However, empirical justification of its
success for the obstacle problem can be made, but will not be given here.

REMARK 2.7. From numerical experiments it is found that the optimal
value ofω is always strictly greater than one.

3 A Second Example of EVI of The First Kind: The
Elasto-Plastic Torsion Problem

3.1 Formulation. Preliminary results

Let Ω be a bounded domain ofR2 with a smooth boundaryΓ. With41

the same definition forV, a(·, ·), L(.) as in Sec. 2.1 of this Chapter, we
consider the following EVI of the first kind


a(u, v− u) ≥ L(v− u)∀v ∈ K,

u ∈ K,
(3.1)

where
K = {v ∈ H1

0(Ω) : |∇v| ≤ 1a.e. in Ω}. (3.2)
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THEOREM 3.1. Problem(3.1)has a unique solution.

Proof. In order to apply Theorem 3.1 of Chapter I, we only have to
verify thatK is anon- empty, closed, convex, subset ofV. �

K is non-empty because 0∈ K, and the convexity ofK is obvious.
To prove thatK is closed, consider a sequence{vn} in K such thatvn→ v
strongly inV. Then there exists a subsequence{vni } such that

lim
i→∞
∇vni = ∇v a.e.

Since|∇vn| ≤ 1 a.e. we get|∇v| ≤ 1 a.e. thereforev ∈ K. HenceK
is closed.

The following Proposition gives a very useful property ofK.

Proposition 3.1. K is compact in C0(Ω̄) and

|v(x)| ≤ ḋ(x, Γ)∀x ∈ Ω and ∀v ∈ K, (3.3)

where d(x, Γ) is the distance from x toΓ.

Exercise 3.1.Prove Proposition 3.1 42

REMARK 3.1. Let us define u∞ and u−∞ by

u∞(x) = d(x, Γ)

u−∞(x) = −d(x, Γ).

Thenu∞ andu−∞ to K. We observe thatu∞ is themaximalelement
of K andu−∞ is theminimalelement ofK.

REMARK 3.2. Since a(·, ·) is symmetricthe solution u of(3.1) is char-
acterised (see Section 3.2 of Chap. 1) as the unique solutionof the min-
imization problem 

J(u) ≤ J(v) ∀v ∈ K,

u ∈ K,
(3.4)

with J(v) =
1
2

a(v, v) − L(v).



44 2. Application of The Finite Element Method To...

3.2 Physical motivation

Let us consider an infinitely long cylindrical bar of cross-section Ω
whereΩ is simply connected. Assume that this is made up of anisotro-
pic, elastic, perfectly plasticmaterial whose plasticity yield is given by
the Von Misses Criterion. (For a general discussion of plasticity prob-
lems, see KOITER [1], DUVAUT-LIONS [1, Chap. 5]). Starting from
azero stress initial state, an increasingtorsionmoment is applied to the
bar. The torsion is characterised byC which is defined as thetorsion
angle per unit length. Then for allC, it follows from theHarr- Kar-
man Principlethat the determination of thestress fieldis equivalent (in
a convenient system of physical units) to the solution of thefollowing
variational problem:

min
v∈K

1
2

∫

Ω

|∇v|2dx−C
∫

Ω

vdx. (3.5)

This is a particular case of (3.1) or (3.4) with

L(v) = C
∫

Ω

vdx. (3.6)

Thestress vectorσ in a cross - section is related tou byσ = ∇u, so43

thatu is aStress potentialand we obtainσ once the solution of (3.5) is
known.

Proposition 3.2. Let us denote by uC the solution of(3.5) and let, as
before u∞ = d(x, Γ) then lim

C→∞
uC = u∞ strongly in H1

0(Ω) ∩C0(Ω).

Proof. SinceuC is the solution of (3.5), it is characterised by


∫
Ω
∇uC.∇(v− uC)dx≥ C

∫
Ω

(v− uC)dx∀v ∈ K,

uC ∈ K.
(3.7)

�

Sinceu∞ ∈ K, from (3.7) we have
∫

Ω

∇uC.∇(u∞ − uC)dx≥ C
∫

Ω

(u∞ − uC)dx, (3.8)
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i.e.

C

∫
Ω

(u∞ − uC)dx+
∫
Ω
|∇uC|2dx≤

∫
Ω
∇u∞. ▽ uCdx

≤
∫
Ω
|∇u∞|.∇uC|dx≤ ( meas.Ω).

(3.9)

From (3.3) we haveu∞ − uC ≥ 0 so that (3.9) implies

‖ u∞ − uC ‖L1(Ω)≤ C−1( meas.Ω).

Which in turn implies

lim
C→∞

‖ u∞ − uC ‖L1(Ω)= 0. (3.10)

Form the definition ofK and from the Proposition 3.1 we get that
K is bounded and weakly closed inV and hence weakly compact inV.
FurtherK is compact inC0(Ω).

Relation (3.10) implies


lim

C→∞
uC = u∞ strongly in C0(Ω),

lim
C→∞

uC = u∞ weakly in V.
(3.11)

It follows from (3.8) that 44



∫
Ω
∇u∞.∇(u∞ − uC) ≥

∫
Ω
|∇(u∞ − uC)|2dx+C

∫
Ω

(u∞ − uC)dx

=‖ uC − u∞ ‖2V +C ‖ u∞ − uC ‖L1(Ω) .

(3.12)
It follows easily from (3.11) and (3.12) that

lim
C→∞

C ‖ u∞ − uC ‖L1(Ω)= 0,

lim
C→∞

‖ u∞ − uC ‖V= 0.

REMARK 3.3. In the case of multiply connected cross section, the
variational formulation of the torsion problem has to redefined (see
LANCHON [1], GLOWINSKI - LANCHON [1], GLOWINSKI [1, Chap
4]).
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3.3 Regularity properties and exact solutions

3.3.1 Regularity results

THEOREM 3.2. (BREZIS-STAMPACCHIA [2]). Let u be a solution of
(3.1)or (3.4)and L(v) =

∫
Ω

f v dx.

(1) LetΩ be a bounded convex domain ofR2 with Γ Lipschitz continu-
ous and f∈ Lp(Ω) with 1 < p < ∞. Then we have

u ∈W2,p(Ω). (3.13)

(2) If Ω is a bounded domain ofR2 with a smooth boundaryΓ; if f ∈
Lp(Ω) with 1 < p < ∞ then u∈W2,p(Ω) .

REMARK 3.4. It will be seen in the next section that, in general, there45

is a limit for the regularityof thesolutionof (3.1) even ifΓ and f are
very smooth.

REMARK 3.5. It has been proved by H. BREZIS that, under quite re-
strictive smoothness assumptions onΓ and f we may have

u ∈W2,∞(Ω).

3.3.2 Exact solutions

In this section we are going to give some examples of problems(3.1) for
which exact solutions are known.

Example 1. We takeΩ = {x : 0 < x < 1} and L(v) = C
∫ 1

0
v dx with

c > 0.
Then the explicit form(3.1) is



∫ 1
0 u′(v′ − u′)dx≥ c

∫ 1
0 (v− u)dx∀v ∈ K,

u ∈ K,
(3.14)

where K= {v ∈ H1
0(Ω) : |v′| ≤ 1 a.e. onΩ} and v′ =

dv
dx

.
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The exact solutions of (3.14) is given by

u(x) =
c
2

x(1− x)∀x, if c ≤ 2. (3.15)

If c > 2

u(x) =



x if 0 ≤ x ≤ 1
2 −

1
c

c
2[x(1− x) − (1

2 −
1
c)] if 1

2 −
1
2 ≤ x ≤ 1

2 +
1
2,

1− x if 1
2 +

1
c ≤ x ≤ 1.

(3.16)

Example 2. In this example we consider a two dimensional problem.
We take

Ω = {x : x2
1 + x2

2 < R2},

L(v) = c
∫

Ω

vdx with c> 0.

Then settingr = (x2
1 + x2

2)1/2 the solutionu of (3.1) is given by 46

u(x) =
c
4

(R2 − r2) if c ≤
2
R
, (3.17)

if c >
2
R

then

u(x) =


R− r if 2

c ≤ r ≤ R,
c
4[(R2 − r2) − (R− 2

c)2] if 0 ≤ r ≤ c
2 .

(3.18)

These examples illustrate Remark 3.4. We see that forc large enough
we have

u ∈W2,∞(Ω) ∩ H1
0(Ω), u < H3(Ω). (3.19)

In fact we have

u ∈ Hs(Ω)∀s<
5
2
.

Exercise 3.2.Verify that u given in the above two examples are exact
solutions of the corresponding problems.
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3.4 An equivalent variational formulation

In H. BREZIS-M, SIBONY [1] it is proved that ifΩ is a bounded do-
main ofR2 with a smooth boundaryΓ and if

L(v) = c
∫

Ω

v(x) dx(c > 0 for instance),


a(u, v− u) ≥ c

∫
(v− u)dx∀v ∈ K̂,

u ∈ K̂ = {v ∈ H1
0(Ω), |v(x)| ≤ d(x, Γ)a.e.}.

(3.20)

The above problem (3.20) is very similar to the obstacle problem
considered in Sec. 2 of this Chapter. Sincea(·, ·) is symmetric, (3.20) is
also equivalent to 

J(u) ≤ J(v) ∀v ∈ K̂,

u ∈ K̂,
(3.21)

with47

J(v) =
1
2

a(v, v) − c
∫

Ω

v(x)dx.

The numerical solutions of (3.20) and (3.21) is considered in G.L.T [1,
Chap. 3] (see also CEA[2, Chap. 4]).

Exercise 3.3.Study the numerical analysis of(3.21).

Exercise 3.4.Assume c> 0 in (3.20). Then prove that the solution
u of (3.20) is also the solution of the EVI obtained by replacing K by
{v ∈ H1

0(Ω) : v(x) ≤ d(x, Γ)a.e.} in (3.20).

3.5 Finite Element Approximations of (3.1).

We consider in this section an approximation of (3.1) befirst order finite
elements. From the view point of applications in mechanics (in which
f = c) it seems that, given the equivalence of (3.1) and (3.20), itis
sufficient to approximate (3.20) (using essentially the same method as
in Sec. 2). However, in view of other possible applications,it seems
to us that it would be interesting to consider the numerical solution of
(3.1) working directly withK instead ofK̂. For the numerical analy-
sis of (3.20) by Finite Differences sec G.L.T. [1. Chap. 3] and CEA-
GLOWINSKI-NEDELEC [1].
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3.5.1 Approximation of V and K.

We use the notation of Sec. 2.5 of this Chap. We assume thatΩ is a
polygonal domain ofR2 (see Remark 3.8 below for the non polygonal
case) and we consider a triangulationτh of Ω satisfying (2.21)–(2.23).
ThenV andK are respectively approximated by

vh = {vh ∈ C0(Ω) : vh = 0 onΓ, vh|T ∈ P1∀T ∈ τh},
Kh = K ∩ Vh

Then one can easily prove

Proposition 3.3. Kh is a closed, convex, non-empty subset of Vh. 48

REMARK 3.6. If vh ∈ Vh then∇vh is a constant vector on every T∈ τh.

3.5.2 The approximate problem

The approximate problem is defined by :


Find uh ∈ Kh such that

a(uh, vh − uh) ≥ L(vh − uh)∀vh ∈ K.
(3.22)

One can easily prove

Proposition 3.4. The approximate problem(3.22) has a unique solu-
tion.

One may find in Sec 7. of this chapter practical formulae related
to finite element approximation. Using these formulae, (3.22) and the
equivalent problem (3.23) can be expressed in a form more suitable for
computation.

REMARK 3.7. Since a(·, ·) is symmetric,(3.22) is equivalent to the
non-linear programming problem

min
vh∈Kh

[
1
2

a(vh, vh) − L(vh)

]
. (3.23)
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The natural variables in (3.23) are the values taken byvh over the

set
0∑
h

of the interior nodes ofτh. Then the number of variables in (3.23)

is Card (
0∑
h

). The number of constraints is the number of triangles i.e.

Card (τh) and each constraint is quadratic w.r.t. the variables since

|∇vh| ≤ 1 iff |∇vh|2 ≤ 1 over T. (3.24)

REMARK 3.8. If Ω is not polygonal, it is always possible to approx-
imateΩ by a polygonal domainΩh in such a way that all vertices of
Γh = ∂Ωh belong toΓ. Then instead of defining(3.22)overΩ we define
it overΩh.

3.5.3 Remarks on the use of higher order finite elements

In these notes only an approximation of (3.1) by first order finite el-
ements has been considered. That fact is justified by the existence
of a regularity limitation for the solution of (3.2), which implies that
even very smooth data one may haveu < V ∩ H3(Ω) (see examples of
Sec. 3.3.2.

We refer to G.L.T. [1, Chap. 3] and GLOWINSKI [1, Chap . 4. Sec.49

3.5.3] for further discussions on the use of finite elements of order≥ 2.

3.6 Convergence results . General case

In this sections we takeL(v) =< f , v >, for f ∈ H−1(Ω) = V.

3.6.1 A density Lemma

In order to apply the general results of Chap. 1, the following density
lemma will be very useful

Lemma 3.1. We have

D(Ω) ∩ K = K. (3.25)
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Proof. We use the notation of Lemma 2.4. Letv ∈ K and∈> 0; define
vǫ by

vǫ = (v− ∈)+ − (v+ ∈)−. (3.26)

�

Then we havevǫ ∈ H1(Ω) with | ▽ vǫ | ≤ 1 a.e. inΩ. From the
inclusionK ⊂ K̂ = {v ∈ V : |v(x)| ≤ d(x, Γ) a.e. inΩ} it follows that


vǫ(x) = 0 if d(x, Γ) ≤∈,
|vǫ(x)| ≤ d(x, Γ)− ∈ elsewhere

(3.27)

so that from (3.27) it follows that

vǫ ∈ Kand has a compact support inΩ. (3.28)

From Corollary 2.1 we have

lim
∈→0

vǫ = v strongly in V. (3.29)

From (3.28) and (3.29) it follows that ifK = {v ∈ K : v has a compact
support inΩ}, thenK = K.

Thus to prove the lemma it suffices to prove that anyv ∈ K can
be approximated by a sequence (vn)n of functions inD(Ω) ∩ K. Let
ρn be a mollifying sequence as defined in Lemma 2.4 of this chapter. 50

Let v ∈ K . Denote by ˜v extension ofv to R2 putting outsideΩ. Then
ṽ ∈ H1(R2).

Let ṽn = ṽ ∗ ρn so that

ṽn(x) =
∫

R2

ρn(x− y)ṽ(y)dy, (3.30)

∇ṽn(x) =
∫

R2
ρn(x− y) ▽ ṽ(y)dy. (3.31)

Then
ṽn ∈ D(R2)and lim

n→∞
ṽn = ṽ strongly in H1(R2). (3.32)
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Since Supp ˜v ⊂ Ω, from (3.30) we get

Suppṽn ⊂ Ω for n sufficiently large. (3.33)

Define vn = ṽn|Ω for n sufficiently large. Then (3.32) and (3.33)
imply 

vn ∈ D(Ω),

lim
n→∞

vn = v strongly inV.
(3.34)

From (3.31),ρn ≥ 0,
∫

R2

ρndy= 1 and|∇ṽ(y)| ≤ a.e. onR2, we obtain

|∇vn(x)| = |∇ṽn(x)| ≤
∫

R2
|∇ṽ(y)|.ρn(x− y)dy≤ 1∀x ∈ Ω, (3.35)

which completes the proof of the Lemma.

3.6.2 A convergence theorem

THEOREM 3.3. Suppose that the angles of the triangles ofCh are
uniformly bounded byθ0 > 0 as h→ 0. Then

lim
h→0

uh = u strongly inV ∩C0(Ω), (3.36)

where u and uh are respectively the solutions of(3.1)and (3.22).51

Proof. To prove the strong convergence inV, we use Theorem 5.2 of
Chap. 1, Sec. 5. To do this one has to verify the following properties

(i) If ( vh)h, vh ∈ Kh ∀h, convergenceweaklyto v thenv ∈ K.

(ii) There existsχ andrh with the following properties:

(1) χ = K,

(2) rh : χ→ Kh∀h

(3) For eachv ∈ χ we can findh0 = h0(v) such that for allh ≤ h0(v),
rhv ∈ Kh and lim

h→0
rhv = v strongly inV.
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�

Verification of (i). SinceKh ⊂ K andK is weakly closed (i) is obvious.

Verification of (ii). Let us defineχ by

χ = {v ∈ D(Ω) : |∇v(x)| < 1∀x ∈ Ω}.

Then by Lemma 3.1 and from lim
λ→1
= v strongly in V, ∀v ∈ V, it

follows thatχ = K.
Definerh : V ∩C0(Ω)→ Vh by



rhv ∈ Vh∀v ∈ V ∩C0(Ω),

(rhv)(P) = v(P)∀P ∈
0∑
h
.

(3.37)

Thenrhv is the “linear” interpolate ofv onCh. From the assumption on
Ch we have (cf. STRANG-FIX [1], CIARLET [1], [2])

|∇(rhv− v)| ≤ Ch ‖ v ‖W2,∞(Ω) a.e.v ∈ D(Ω), (3.38)

with C independent ofh andv.
This implies

lim
h→0
‖ rhv− v ‖v= 0∀v ∈ χ. (3.39)

|∇rhv(x)| ≤ |∇v(x)| +Ch ‖ v ‖W2,∞(Ω) a.e. (3.40)

52

Sincev ∈ χ it follows from (3.40) that we have|∇rhv(x)| < 1 a.e. for
h < h0(v).

This impliesrhv ∈ Kh.
This completes the Verification of (ii)′ and hence by Theorem 5.2 of

Chap. 1, we have thestrong convergenceof uh to u in V.
The strong convergence ofuh to u in the L∞- norm follows from

the convergence inV and from the compactness ofK in C0(Ω) (see
Proposition 3.1).
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3.7 Error estimates

From now on we assume thatf ∈ Lp for somep ≥ 2.
In Sec. 3.7.1 we consider a one-dimensional problem (3.1). In this

case if f ∈ L2(Ω) we derive ano(h) error estimate in theV-norm. In
Sec. 3.7.2 we consider a two-dimensional case withf ∈ Lp, p > 2 and
Ω convex, then we derive an 0(h1/2−1/p) error estimate in theV-norm.

3.7.1 One-dimensional case

We assume hereΩ = {x ∈ R : 0 < x < 1} and thatf ∈ L2(Ω). Then
problem (3.1) can be written



1∫

0

du
dx

(
dv
dx
− du

dx

)
dx≥

1∫

0

f (v− u)dx∀v ∈ K,

u ∈ K{v ∈ V :
∣∣∣∣∣
dv
dx

∣∣∣∣∣ ≤ 1 a.e. in Ω}.

(3.41)

Let N be a positive integer andh =
1
N

. Let xi = ih for i = 0, 1, . . . ,N

and
ei = [xi−1, xi], i = 1, 2, . . . ,N.

Let Vh = {vh ∈ C0(Ω) : vh(0) = vh = 0, vh|ei ∈ P1, i = 1, 2, . . . ,N},

Kh = K ∩ Vh = {vh ∈ Vh : |vh(xi) − vh(xi−1)|h for i = 1, 2, . . . ,N}

The approximate problemis defined by


∫ 1

0
duh
dx

(
dvh
dx −

duh
dx

)
dx≥

∫ 1

0
f (vh − uh)dx∀vh ∈ Kh,

uh ∈ Kh.
(3.42)

Obviously this problem has a unique solution. Now we are going to53

prove

THEOREM 3.4. Let u and uh be the respective solutions of(3.41)and
(3.42). If f ∈ L2(Ω) then we have

‖ uh − u ‖v= 0(h).
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Proof. Sinceuh ∈ Kh ⊂ K we have from (3.41)

a(u, uh − u) ≥
∫ 1

0
f (uh − u)dx. (3.43)

Adding (3.42) and (3.43) we obtain

a(uh−u, uh−u) ≤ a(vh−u, uh−u)+a(u, vh−u)−
∫ 1

0
f (vh−u)dx∀vh ∈ Kh

which in turn implies

1
2
‖ uh − u ‖2V≤

1
2
‖ vh − u ‖2V +

∫ 1

0

du
dx

(
dvh

dx
−

du
dx

)

−
∫ 1

0
f (vh − u)dx∀vh ∈ Kh : (3.44)

sinceu ∈ K ∩ H2(0, 1) we get

∫ 1

0

du
dx

d
dx

(vh − u)dx=
∫ 1

0

(
−

d2u

dx2

)
(vh − u)dx ≤‖

d2u

dx2
‖L2‖ vh − u ‖L2 .

But we have

‖ d2u

dx2
‖L2≤‖ f ‖L2 . (3.45)

Therefore (3.44) becomes

1
2
‖ uh − u ‖2v≤

1
2
‖ vh − u ‖2v +2 ‖ f ‖L2‖ vh − u ‖L2 ∀vh ∈ Kh. (3.46)

�

Let v ∈ K. Then the usual linear interpolaterhv is defined by

rhv ∈ Vh,

(rhv)(xi ) = v(xi ) i = 0, 1, . . . ,N
(3.47)

we have 54

d
dx

(rhv)|ei =
v(xi) − v(xi−1)

h
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=
1
h

∫ xi

xi−1

dv
dx

dx.

Hence we obtain

|
d
dx

(rhv)|ei ≤ 1 since|
dv
dx
| ≤ 1 a.e. inΩ. (3.48)

Thusrhv ∈ Kh.
Let us replacevh by rhu in (3.46). Then

1
2
‖ uh − u ‖2v≤

1
2
‖ rhu− u ‖2v +2 ‖ f ‖L2(Ω)‖ rhu− u ‖L2(Ω) . (3.49)

Since

‖ rhu− u ‖V≤ Ch ‖ u ‖H2(Ω)≤ Ch ‖ f ‖L2(Ω), (3.50)

‖ rh − u− u ‖L2(Ω)≤ Ch2 ‖ u ‖H2(Ω)≤ Ch2 ‖ f ‖L2(Ω) (3.51)

whereC denotes constants independent ofu andh; combining (3.49)–
(3.51) we get

‖ uh − u ‖V= 0(h).

This proves the result.

Exercise 3.5.:Prove(3.45).

3.7.2 Two-dimensional case

We shall assume in this subsection thatΩ is a convex, bounded, polyg-55

onal domain inR2 and thatf ∈ Lp(Ω) with p > 2. The last assumption
is quite reasonable since in practical applications in mechanics we have
f = constant.

THEOREM 3.5. Suppose that the angles ofCh are uniformly bounded
byθ0 > 0 as h→ 0, the with the above assumptions onΩ and f we have

‖ uh − u ‖v= 0(h1/2−1/p),

where u and uh are respectively the solutions of(3.1)and (3.22).
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Proof. : Since f ∈ Lp(Ω) with p > 2 andΩ is bounded, from Theorem
3.2 of this chapter we have

u ∈W2,p(Ω).

Then as in proof of Theorem 3.4 and usingKh ⊂ K we obtain


1
2 ‖ uh − u ‖2v≤ 1

2 ‖ vh − u ‖2v +a(u, vh − u) −
∫
Ω

f (vh − u)dx,

≤ 1
2 ‖ vh − u ‖2v −

∫
Ω

(−∆u− f )(vh − u)dx∀vh ∈ Kh.

(3.52)
Then using Holder’s inequality it follows from (3.52) that



1
2 ‖ uh − u ‖2v≤ 1

2 ‖ vh − u ‖2V +{‖ ∆u ‖Lp(Ω) + ‖ f ‖Lp (Ω)}
‖ vhu ‖Lp′ (Ω) ∀vh ∈ Kh

with 1
p +

1
p′ = 1.

(3.53)

�

Let 1≤ q ≤ ∞. AssumeCh satisfies the hypothesis of Theorem 3.5
and thatp > 2. If W2,p(T) ⊂ W1,q(T) it follows from CLARLET [2]
and theSobolev imbedding Theorem(W2,p(T) ⊂W1,∞(T) ⊂ C0(T)) that
∀T ∈ Ch and∀v ∈W2,p(T) we have

‖ ∇(v− πTv) ‖Lq(T)×Lq(T)≤ Ch
1+2(1

q−
1
p)

T ‖ v ‖W2,p(T) (3.54)

In (3.54)πTv is the linear interpolate ofv at the three vertices ofT, 56

hT is the diameter ofT andC is a constant independent ofT andv.
Let v ∈W2,p(Ω) and letπh : V ∩C0(Ω)→ Vh be defined by


πhv ∈ Vh ∀v ∈ H1

0(Ω) ∩C0(Ω),

(πhv)(P) = v(P)∀P ∈
∑0

h .

Since p > 2 implies W2,p(Ω) ⊂ C0(Ω), one may defineπhv, but
unlike the one dimensional case, usually

πhv < Kh for v ∈W2,p(Ω) ∩ K.
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SinceW2,p(Ω) ⊂W1,∞(Ω) for p > 2, it follows from (3.54) that a.e.

|∇(πhv− v)(x)| ≤ rh1− 2
p ‖ v ‖W2,p(Ω) ∀v ∈W2,p(Ω)

which in turn implies that a.e.

|∇(πhv)(x)| ≤ 1+ rh1− 2
p ‖ v ‖W2,p(Ω), ∀v ∈ K ∩W2,p(Ω). (3.55)

The constantr occurring in (3.55) is independent ofv and h. Let us
define 

rh : V ∩W2,p(Ω)→ Vh by

rhv =
πhv

1+ rh1−2/p ‖ v ‖W2,p(Ω)
.

(3.56)

It follows from (3.55) and (3.56) that

rhv ∈ Kh ∀v ∈W2,p(Ω) ∩ K. (3.57)

Sinceu ∈ W2,p(Ω) ∩ K, It follows from (3.57) that we take= rhu in
(3.53) so that

1
2
‖ uh − u ‖2V≤

1
2
‖ rhu− uh ‖2V +{‖ ∆u ‖Lp + ‖ f ‖Lp} ‖ rhu− u ‖Lp′ (Ω) .

(3.58)
We have57

ru − u =
πhu− u− rh1−2/p ‖ u ‖W2,p(Ω) .u

1+ rh1−2/p ‖ u ‖W2,p(Ω)

which implies

‖ rhu− u ‖V≤‖ πhu− u ‖V +rh1−2/p ‖ u ‖W2,p‖ u ‖V, (3.59)

‖ rh − u ‖Lp′ (Ω)≤‖ πhu− u ‖Lp′ (Ω) +rh1−2/p ‖ u ‖W2,p(Ω)‖ u ‖Lp′ . (3.60)

Since p > 2 we haveLp(Ω) ⊂ Lp′(Ω) inclusion and from standard
approximation results (see STRANG-FIX [1], CIARLET [1], [2]) it fol-
lows that under the above assumption onCh we have

‖ πhu− u ‖V≤ Ch ‖ u ‖W2,p(Ω), (3.61)

‖ πhu− u ‖Lp′ (Ω)≤ Ch2 ‖ u ‖W2,p(Ω), (3.62)

with C independent ofh andu. Then the 0(h1/2−1/p) error estimate of
the statement of Theorem 3.5 follows directly from (3.58)–(3.62).
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REMARK 3.9. It follows from Theorem 3.5 that if f= constant (which
correspond to application in mechanics) and ifΩ is a convex polygonal
domain, we have ”practically” an0(

√
h) error estimate.

REMARK 3.10. One may find in FALK[1] an analysis of the error
estimate for piecewise linear approximations of(3.1) whenΩ is not
polygonal.

REMARK 3.11. We may find in FALK-MERCIER [1] a different piece-
wise linear approximation of(3.1).Under appropriate assumptions this
approximation leads to an0(h) error estimate for‖ uh − u ‖v. However
this approximation seems less suitable for computations than the ap- 58

proximations we have studied in this section (see also G.L.T. [1, chap.
3]).

3.8 A dual iterative method for solving (3.1) and (3.2)

There are several iterative methods for solving (3.1), (3.22) and the
reader who is interested in this direction of the problem mayconsult
G.L.T [1, Chap. 3] (see also CEA-GLOWINSKI-NEDELEC [1]). In
this section we shall use the material of CEA[2, Chap, 5, Section 5] to
describe an algorithm of Uzawa type which has been successfully used
to solve the elasto-plastic torsion problem. Another method will be de-
scribed in Chap. 5, Sec. 6.2.

3.8.1 The Continuous case

Following CEA [2] we observe thatK can also be written as

K = {v ∈ V : |∇v|2 − | ≤ 0 a.e.}.

Hence it is quite natural to associate to 3.1 the following Lagrangian
functionalL defined onH1

0(Ω) × L∞(Ω) by

L (v, µ) =
1
2

∫

Ω

|∇v|2dx− < f , v > +
1
2

∫

Ω

µ(|∇v|2 − 1)dx.

It follows from CEA [2] that ifL has a saddle point{u, λ} ∈ H1
0(Ω)×

L∞+ (Ω)(L∞+ (Ω) = {q ∈ L∞(Ω) : q ≤ 0 a.e.}) thenu is a solution of (3.1).
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Thusλ appears as an infinite dimensional multiplier (ofF. John-Kuhn-
Tucker type) for (3.1). The existence of such a multiplier inL∞+ has been
probed by H. BREZIS [2] in thephysical case(i.e. f∞ = constant), but
in more general cases the existence of such a multiplier inL∞+ (Ω) is still
anopen problem.

Following CEA [2], it is then natural to use, for solving (3.1), a
saddle point solverlike the following algorithm of Uzawa’s type:

λ0 ∈ L∞+ (Ω̇), arbitrarily given (for exampleλ0 = 0), (3.63)

then by induction assumingλn known we obtain un andλn+1 by

L (un, λn) ≤ L (v, λn)∀v ∈ H1

0(Ω),

un ∈ H1 +0 (Ω).
(3.64)

59

λn+1 = [λn + ρ(|∇un|2 − 1)]+ with ρ > 0. (3.65)

Let us analyse (3.64) in detail; actually (3.64) is a linear Dirichlet
problem, the explicit form of which is given (in the divergence form) by


−∇.((1+ λn)∇un) = f in Ω

un|Γ = 0.
(3.66)

The problem (3.66) has a unique solution inH1
0(Ω) wheneverλn ∈

L∞+ (Ω). Since we do not know in general about the existence of a multi-
plier in L∞+ (Ω), the above algorithm in general is purely formal.

3.8.2 The discrete case

In this section we shall follow G.L.T. [1, Chap.3, Sec. 9.2].DefineVh∞
andKh as in section 3.5.1 of this Chapter. DefineLh (approximation of
L(Ω)) andΛh (approximation ofL∞+ ) by

Lh = {µ ∈ L∞(Ω) : µ =
∑

T∈Ch

µTχT , µT ∈ R},

and whereχT is thecharacteristic functionof T, and

Λh = {µ ∈ Lh : µ ≥ 0 a.e. inΩ}.
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Clearly it follows that forvh ∈ Vh, ∇vh ∈ Lh × Lh and forvh ∈ Kh,
1− |∇vh|2 ∈ Λh.

Define the LagrangianL on Vh × Lh as section 3.8.1, then we have

Proposition 3.5. The LagrangianL has a saddle point{uh, λh} in Vh×
Λh with

un is solution of(3.22), (3.67)

λh(|∇uh|2 − 1) = 0. (3.68)

Proof. SinceVh andLh are finite dimensional (3.67) and (3.68) will fol-60

low from CEA [2. Chap. 5] (cf. also ROCKAFELLAR [1, Chap. 28]), if
we can prove that there exists an element ofVh in the neighbourhood of
which the constraints are strictly satisfied. Let us show that there exists
a neighbourhoodNh of zero inVh such that∀vh ∈ Nh, |∇vh2 |2−1 < 0. In
order to show this, observe that the functional given byvh → |∇vh|2 − 1
is C∞ and at zero it is equal to−1, Hence the assertion follows. �

To conclude this Section 3, let us describe an algorithm of Uzawa’s
type which is the discrete version of (3.63)–(3.65)

λ0
h ∈ Λh arbitrarily chosen (for instanceλ0

h = 0), (3.69)

then by induction onceλn
h is known, we obtain unh andλn+1

h by

L (un

h, λ
n
h) ≤ L (vh, λ

n
h)∀vh ∈ Vh,

un
h ∈ Vh,

(3.70)

λn+1
h = [λn

h + ρ(|∇un
h|

2 − 1)]+ with ρ > 0. (3.71)

We observe that ifλn
h is known thenun

h is the unique solution of the
following approximate Dirichlet problem (given in variational form)



∫
Ω

(1+ λn
h)∇un

h · ∇vhdx=< f , vh > ∀vh ∈ Vh,

un
h ∈ Vh.

(3.72)

It follows from CEA [2, Chap. 5] and G.L.T. [1, Chap. 2] that for
ρ > 0 and sufficiently small we have lim

n→∞
un

h = uh whereu − h is the

solution of (3.22).
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REMARK 3.12. The computations we have done seem to prove that
the optimal choice forρ, is almost independent of h for a given prob-
lem. Similarly the number of iterations of Uzawa’s algorithm for a given
problem is almost independent of h.

4 A Third Example of EVI of The First Kind: A
Simplified Signorini Problem

Most of the material in this section can be found in G.L.T. [1,Chap. 4]61

4.1 The continuous problem

Existence and uniqueness results.As usual letΩ be a bounded domain
of R2 with a smooth boundaryΓ. We define

V = H1(Ω), (4.1)

a(u, v) =
∫

Ω

∇u · ∇vdx+
∫

Ω

uvdx, (4.2)

L(v) =< f , v >, f ∈ V∗, (4.3)

K = {v ∈ H1(Ω) : γv ≥ 0 a.e. onΓ}, (4.4)

whereγv denotes thetraceof v onΓ. We have then the following

THEOREM 4.1. The variational inequality

a(u, v− u) ≥ L(v− u)∀v ∈ K,

u ∈ K
has a unique solution. (4.5)

Proof. : Since the bilinear forma(·, ·) is the usual scalar product in
H1(Ω) andL is continuous, from Theorem 3.1 of Chapter 1 we get that
(4.5) has a unique solution provided we show thatK is a closed. convex,
non-empty subset ofV.

Since 0∈ K (actuallyH1
0(Ω) ⊂ K), K is non-empty. The convexity

of K is obvious. If (vn)n ⊂ K andvn→ v in H1(Ω) thenγvn→ γv, since
γ : H1(Ω) → L2(Γ) is continuous. Sincevn ∈ K, γvn ≥ 0 a.e. onΓ.
Thereforeγv ≥ 0 a.e. onΓ. Hencev ∈ K which showsK is closed.

This proves the theorem. �
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REMARK 4.1. Since a(·, ·) is symmetric, the solution u of(4.5) is char-
acterised (see Chap. 1, Sec. 3.2) as the unique solution of the minimisa-
tion problem 

J(u) ≤ J(v)∀v ∈ K,

u ∈ K,
(4.7)

where J(v) =
1
2

a(v, v) − L(v). 62

REMARK 4.2. Actually(4.5)or (4.7) is a simplified version of a prob-
lem, occurring in elasticity, called the Signorini problemfor which we
refer to DUVAUT-LIONS [1, Chap. 3] and to the references therein. We
refer also to DUVAUT-LIONS, loc. cit., Chap. 1, Chap. 2 for other
physical and mechanical interpretations of(4.5)and (4.7).

REMARK 4.3. Assuming thatΩ is bounded (at least in one direction
ofR2) we consider

V̂ = {v ∈ H1(Ω); v = 0 a.e.onΓ0}. (4.8)

â(u, v) =
∫

Ω

∇u · ∇vdx, (4.9)

L̂(v) =< f , v > with f ∈ (v̂)∗, (4.10)

[K̂] = {v ∈ V : γv ≥ g a.e. onΓ1}, (4.11)

whereΓ0 and Γ1 are “good” subsets ofΓ such thatΓ1 ∩ Γ0 = φ, Γ =

Γ1 ∪ Γ0 (see fig. 4.1)

Figure 4.1:
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Assuming that measure ofΓ0 is positive and thatg is sufficiently63

smooth, it can be proved that the following variant of (4.5)


â(u, v− u) ≥ L̂(v− u)∀v ∈ K̂,

u ∈ K̂,
(4.12)

has a unique solution.
In the proof of this result one uses the fact that ˆa(v, v) defined a norm

on V which is equivalent to the norm induced byH1(Ω).

Exercise 4.1.Prove that a(v, v) defines a norm equivalent to the norm
induced by H1(Ω).

4.2 Regularity of the solution

THEOREM 4.2. (H BREZIS [3]) LetΩ be a bounded domain ofR2

with a smooth boundaryΓ (or Ω is a convex, polygonal domain). If
L(v) =

∫
Ω

f vdx with f ∈ L2(Ω) then the solution u of(4.5) is in H2(Ω).

4.3 Interpretation of (4.5) as a free boundary problem

Let us recall some definitions and results related to cones.

DEFINITION 2.1. Let X be a vector space, C⊂ X and x∈ C, then C is
called a cone with vertex x if for all y∈ C, t ≥ 0 implies x+ t(y− x) ∈ C.

Lemma 4.1. Let H be a real Hilbert space, b(·, ·) a bilinear form on
H × H; λ a linear form on H and C a convex cone contained in H with
vertex at 0. Then every solution of


b(u, v− u) ≥ λ(v− u)∀v ∈ C,

u ∈ C
(4.13)

is a solution of 

b(u, v) ≥ λ(v)∀v ∈ C,

b(u, u) = λ(u),

u ∈ C,

(4.14)

and conversely.64
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Exercise 4.2.Prove Lemma 4.1

Proposition 4.1. Assume that

L(v) =
∫

Ω

f vdx+
∫

Γ

gγvdΓ (4.15)

with f and g sufficiently smooth. Then the solution u of(4.5) is charac-
terised by 

−∆u+ u = f a.e. inΩ,

γu ≥ 0, ∂u
∂n ≥ a.e. onΓ,

γu(∂u
∂n − g) = 0 a.e. onΓ.

(4.16)

Proof. (1) First we will prove that (4.5) implies (4.16)
SinceK is a convex cone with vertex at 0 it follows from Lemma 4.1

that

a(u, v) ≥ L(v)∀v ∈ K, (4.17)

a(u, u) = L(u). (4.18)

SinceD(Ω) ⊂ K we have from (4.17) that
∫

Ω

∇u · ∇φdx+
∫

Ω

uφdx=
∫

Ω

fφdx∀φ ∈ D(Ω). (4.19)

It follows from (4.19) that

− ∆u+ u = f a.e. inΩ. (4.20)

�

Let v ∈ K. Multiplying (4.20) byv and usingGreen’s formulait
follows that

a(u, v) =
∫

Ω

f vdx+
∫

Γ

γv
∂u
∂n

dΓ∀v ∈ K. (4.21)

From (4.17) and (4.21) we obtain
∫

Γ

(
∂u
∂n
− g

)
γvdΓ ≥ 0∀v ∈ K. (4.22)



66 2. Application of The Finite Element Method To...

Since the coneγK is dense inL2
+(Γ) = {v ∈ L2(Γ) : v ≥ 0 a.e. onΓ} it 65

follows from (4.22) that

∂u
∂n
− g ≥ 0 a.e. onΓ. (4.23)

Takingv = u in (4.21) and using (4.18) we obtain
∫

Γ

γu

(
∂u
∂n
− g

)
dΓ = 0. (4.24)

Sinceγu ≥ 0 and using (4.23) we obtainγu

(
∂u
∂n
− g

)
= 0 a.e. onΓ.

This shows that (4.5) implies (4.16).

(1) Let us show that (4.16) implies (4.5). Starting from (4.20) and us-
ing Green’s formula one can easily prove (4.17) and (4.18). These
two relations in turn imply, from Lemma 4.1, thatu is the solution
of (4.5).

REMARK 4.4. Similar results may be proved for that variant(4.12)of
(4.5) (see Remark(4.3).

REMARK 4.5. From the equivalent formulation(4.16)of (4.5) it ap-
pears that the solution u of(4.5) is the solution of a free boundary prob-
lem namely

Find a sufficiently smooth functionuand two subsetsΓ0 andΓ+ such
that

Γ0 ∪ Γ+ = Γ, Γ0m∩ Γ+ = φ, (4.25)


−∆u+ u = f in Ω,

γu = 0 onΓ0,
∂u
∂n ≥ g onΓ0,

γu > o onΓ+, ∂u
∂n = g onΓ+.

(4.26)

4.4 Finite element approximation of (4.5)

We consider in this section the approximation of (4.5) by piecewise lin-66

ear and piecewise quadratic finite elements. We assume thatΩ of is a
bounded polygonal domain ofR2 and we consider a triangulationCh of
Ω obeying (2.21)–(2.23) (see Sec 2.5., Chap. 2) ; we use the notation of
Sec. 2.5.1 and 3.6 of this chapter.
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4.4.1 Approximation of V and K

The spaceV = H1(Ω) may be approximated by the spacesVk
h where

Vk
h = {vǫ ∈ C0(Ω) : vh|T ∈ Pk,∀T ∈ Ch}, k = 1, 2.

Defineγh = {P ∈ Σh ∩ Γ} = Σh − Σ0
h,

γ′h = {P ∈ Σ
′
h ∩ Γ} = Σ

′
h − Σ

′0
h ,

γk
h =


γh if k = 1

γh ∪ γ′h if k = 2.

Then we approximateK by

Kk
h = {vh ∈ Vk

h : vh(P) ≥ 0∀P ∈ γk
h for k = 1, 2}.

We have then the obvious

Proposition 4.2. For k = 1, 2 the Kk
h are closed, convex, non-empty

subsets of Vkh and K1
h ⊂ K ∀h.

4.4.2 The approximate problem

Fork = 1, 2 the approximate problems are defined by

(Pk
1h)


a(uk

h, vh − uk
h) ≥ L(vh − uk

h)∀vh ∈ Kk
h,

uk
h ∈ Kk

h.

Then one can easily prove,

Proposition 4.3. The problem(Pk
1h)(k = 1, 2) has a unique solution.

REMARK 4.6. Since a(·, ·) is symmetric,(Pk
1h) is equivalent (See 67

Chap. 1, Sec. 3.2) to the quadratic programming Problem

min
vh∈Kk

h

[
1
2

a(vh, vh) − L(vh)

]
.

REMARK 4.7. Using the formula of Sec. 7 One may express(4.5)and
the equivalent quadratic problem in a form more suitable forcomputa-
tion.
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4.5 Convergence results. (General case)

4.5.1 A density Lemma

To prove the convergence results of the following Sec. 4.5.2we shall
use the following

Lemma 4.2. Under the above assumptions onΩ we have

K ∩C∞(Ω) = K.

Proof. SinceΓ is Lipschitz continuous we have (see NECAS [1])

H1(Ω) = C∞(Ω);

Using the standard decompositionv = v+ − v− it follows from Corol-
lary 2.1 that

v ∈ K ⇐⇒ v− ∈ H1
0(ω). (4.27)

�

SinceDΩ) = H1
0(Ω) in theH1(Ω)− topology, it follows from (4.27)

that we have only to prove

K̂ ∩C∞(Ω) = K̂, (2.1)

whereK̂ = {v ∈ H1(Ω), v ≥ 0 a.e. inΩ }.
SinceΓ is Lipschitz continuous,Ω has (see LIONS [2], NECAS

[1]), the so-called 1-extension property which implies


∀v ∈ H1(Ω),∃ṽ ∈ H1(R2) such that

ṽ|Ω = v.
(4.29)

Let v ∈ K and letṽ ∈ H1(R2) be an extension ofv obeying (4.29).68

It follows, from v ≥ o a.e. inΩ and Corollary 2.1, that|ṽ| is also an
extension ofv obeying (4.29). Therefore ifv ∈ K̃, it has always an
extension ˜v ≥ 0 a.e. obeying (4.29). Consider such a non-negative
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extension ˜v and a mollifying sequenceρn (like in Lemma 2.4 of this
Chap.). Define ˜vn by

ṽn = ṽ ∗ ρn. (4.30)

we have 
ṽn ∈ D(R2),

lim ṽn = ṽ strongly inH1(R2).
(4.31)

Fromρn ≥ 0 andṽ ≥ 0 a.e. we obtain from (4.30) that

ṽn(x) ≥ 0∀x ∈ R2. (4.32)

Definevn by
vn = ṽn|Ω;

from (4.31) and (4.32) it follows that

vn ∈ C∞(Ω), lim
n→∞

vn = v stronglyinH1(Ω), vn ≥ 0 a.e. inΩ.

This proves the Lemma.

4.5.2 Convergence theorem

THEOREM 4.3. Suppose that the angles ofCh are uniformly bounded
below byθ0 > 0 as h→ 0, then

lim
h→0

uk
h = u strongly inH1(Ω), (4.33)

where u, uk
h are respectively the solutions of (4.5) and(Pk

1h) for k = 1, 2.

Proof. To prove (4.33) we use Theorem 5.2 of Chap. 1. To do this we
only have to verify that the following two properties hold:

(i) If ( vh)h, vh ∈ Kk
h, convergesweaklyto v thenv ∈ K. 69

(ii) There existχ ⊂ K andrk
h : χ→ Kk

h such thatχ = K and lim
h→0

rk
hv = v

strongly in V, ∀v ∈ χ.

�
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Verification of (i). If k = 1, then (i) is trivially satisfied, sinceK1
h ⊂ K.

Figure 4.2:

If k = 2, using the notation of Fig. 4.2. we considerφ ∈ C0(Γ),
φ ≥ 0, and we defineφh by

φh = Σiφ(Mi+1/2)χi+1/2 (4.34)

whereχi+1/2 denotes thecharacteristic functionof the open segment
]Mi ,Mi+1[. Then


φh ≥ 0 a.e. onΓ,

lim
h→0
‖ φh − φ ‖L∞(Γ)= 0.

(4.35)

Let us consider a sequence (vh)h, vh ∈ K2
h ∀h, such that

lim vh = v weakly inV. (4.36)

It follows from (4.36) (see NECAS [1]) that lim
h→0

γvh = γv strongly70

in L2(Γ). This implies in turn that

lim
h→0

∫

Γ

γvhφhdΓ =
∫

Γ

γvφdΓ. (4.37)
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It follows from Simpson’s rule that


∫
Γ
γvhφhdΓ = 1

6Σi |
−−−−−−→
Mi Mi+1|φ(Mi+1/2)

[vh(Mi) + 4vh(Mi+1/2) + vh(Mi+1)] ≥ 0

∀vh ∈ K2
h, ∀φ ∈ C0(Γ), φ ≥ 0.

(4.38)

We obtain from (4.37) and (4.38) that
∫

Γ

γvφdΓ ≥ 0∀φ ∈ C0(Γ), φ ≥ 0,

which impliesγv ≥ 0 a.e. onΓ.
This proves (i).

Verification of (ii). From Lemma 4.2, it is natural to takeχ = K ∩
C∞(Ω). Definerk

h; H1(Ω) ∩C0(Ω)→ Vk
h by


rk
hv ∈ Vk

h ∀v ∈ H1(Ω) ∩C0(Ω),

rk
hv(P) = v(P)∀P ∈ Σk

h, k = 1, 2.
(4.39)

On one hand, under the assumptions made onCh we have (see
STRANG-FIX [1])

‖ rk
hv− v ‖V≤ Chk ‖ v ‖Hk+1(ω) ∀v ∈ C∞(Ω), k = 1, 2. (4.40)

with C independent ofh andv.
This implies

lim
h→0
‖ rk

hv− v ‖v= 0∀v ∈ χ, k = 1, 2. (4.41)

On the other hand it is obvious thatrk
hv ∈ Kk

h ∀v ∈ K ∩ C0(Ω), so that
rk
hv ∈ Kk

h ∀v ∈ χ, k = 1, 2.
In conclusion, with the aboveχ andrk

h, (ii) is satisfied.

REMARK 4.8. For error estimates in the approximation of(4.5) by 71

piecewise linear finite elements, it has been shown by BREZZI-HAGER-
RAVIART [1] that we have

‖ uh − u ‖H1(Ω)= 0(h),

assuming reasonable smoothness hypothesis for u onΩ.
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4.6 Iterative methods for solving the discrete problem

We shall briefly describe two types of methods which seem to beappro-
priate for solving the approximate problem of Sec. 4.4.

4.6.1 Solution by an over-relaxation method

The approximate problem (Pk
1h) are, for k = 1, 2, equivalent to the

quadratic programming problems described in Remark 4.6. Byvirtue
of the properties ofKk

h (see Sec. 4.4.1.) we can use, for the solution
of (Pk

1h), the over-relaxation method with projection, which has already
been used in Sec. 2.8 to solve the approximate obstacle problem and is
described in CEA [2, Chap. 4]. From the properties of our problem the
method will converge provided 0< ω < 2.

4.6.2 Solution by a duality method

We first consider thecontinuous case.Let us define a LagrangianL by

L (v, q) =
1
2

a(v, v) − L(v) −
∫

Γ

qγvdΓ. (4.42)

and letλ be thepositive coneof L2(Γ), i.e.

Λ = {q ∈ L2(Γ) : q ≥ 0 a.e. onΓ}.

Then we have

THEOREM 4.4. Let L(v) =
∫
Ω

f vdx+
∫
Γ

gγvdΓwith f and g sufficiently
smooth. Suppose that the solution u of(4.5)and(4.7)belongs to H2(Ω);
then{u, ∂u

∂n − g} is the unique saddle point ofL over H1(Ω) × Λ.

Proof. We divide the proof into two parts. In the first part we will show72

that{u, ∂u
∂n − g} is a saddle point ofL overH1(Ω) × λ and in the second

part we will prove the uniqueness.

(1) Let p = ∂u
∂n − g. From the definition of a saddle point we have to

prove that

L (u, q) ≤ L (u, p) ≤ L (v, p)∀{v, q} ∈ V × Λ,
{u, p} ∈ V × Λ.

(4.43)
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Sinceu ∈ H2(Ω) we have∂u
∂n ∈ H1/2(Γ) ⊂ L2(Γ) (see LIONS -

MAGENES [1]). Then ifg is smooth enough we havep = ∂u
∂n − g ∈

L2(Γ). From Proposition 4.1 we have


p = ∂u

∂n − g ≥ 0 onΓ,

p− γu = 0 a.e. onΓ.
(4.44)

This implies that we have{u, p} ∈ H1(Ω) × Λ and
∫
Γ

p · γudΓ = 0.
Sinceγu ≥ 0 onΓ we have

∫

Γ

q · γudΓ ≥ 0∀q ∈ Λ. (4.45)

It follows from (4.44) and (4.45) that


L (u, q) = 1

2a(u, u) = L(u) −
∫
Γ

q · γudΓ ≤ 1
2a(u, u) − L(u) =

= 1
2a(u, u) − L(u) −

∫
Γ

p · γudΓ = L (u, p)∀q ∈ Λ

which proves the first inequality of (4.43).
To prove the second inequality of (4.43) we observe that the solution

u∗ of the minimisation problem


L (u∗, p) ≤ L (v, p)∀v ∈ H1(Ω),

u∗ ∈ H1(Ω),
(4.46)

is unique and is actually the solution of the linear variational equation 73


a(u∗, v) = L(v) +

∫
Γ

pγvdΓ∀v ∈ H1(Ω),

u∗ ∈ H1(Ω).
(4.47)

SinceL(v) =
∫
Ω

f vdx+
∫
Γ

gγvdΓ, u∗ is actually the solution of the Neu-
mann problem 

−∆u∗ + u∗ = f in Ω,
∂u∗
∂n = p+ g = ∂u

∂n onΓ,
(4.48)
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Since from Proposition 4.1 we obviously have


−∆u+ u = f in Ω,
∂u
∂n =

∂u∗
∂n onΓ,

it follows from the uniqueness property of the Neumann problem (4.48)
thatu = u∗. Using (4.46) andu = u∗, we obtain the second inequality in
(4.43). This proves that{u, p} is a saddle point ofL overH1(Ω) × Λ.

Uniqueness.Let {u∗, p∗} be a saddle point ofL over H1(Ω) × Λ.
We will show thatu∗ = u, p∗ =. It follows from (4.42) and (4.43) that

∫

Γ

(p− q)γudΓ ≤ 0∀q ∈ Λ. (4.49)

We have similarly,
∫

Γ

(p∗, q)γu∗dΓ ≤ 0∀q ∈ Λ. (4.50)

Taking q = p∗ (respectivelyq = p) in (4.49) (respectively (4.50)) we
obtain ∫

Γ

(p∗ − p)γ(u∗ − u)dΓ ≤ 0. (4.51)

It follows from the second inequality of (4.43) thatu is the solution of74


a(u, v) = L(v) +

∫
Γ

p · γvdΓ∀v ∈ H1(Ω),

u ∈ H1(Ω).
(4.52)

ans similarly


a(u∗, v) = L(v) +

∫
Γ

p∗ · γvdΓ∀v ∈ H1(Ω),

u∗ ∈ H1(Ω).
(4.53)

Taking v = u∗ − u (respectivelyv = u − u∗) in (4.52) (respectively
(4.53)) we obtain

a(u∗ − u, u∗ − u) =
∫

Γ

(p∗ − p)γ(u∗ − u)dΓ. (4.54)
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Using theV-ellipticity of a(·, ·) it follows then from (4.51)–(4.54) that
u∗ = u and ∫

Γ

(p∗ − p)γvdΓ = 0∀v ∈ H1(Ω),

which implies thatp∗ = p.
Hence{u, p} is the unique saddle point ofL overH1(Ω) × Λ.
It follows from Theorem 4.4 that we can apply Uzawa’s algorithm

to solve (4.5) (see CEA [2, Chap. 5], G.L.T. [1, Chap.2], [2, Chap. 4,
Sec 3.6]). In the present case this algorithm is written as follows:

p0 ∈ Λ is arbitrarily chosen (for instancep0 = 0). (4.55)

By induction, after knowing pn we compute{un, pn+1} by

L (un, pn) ≤ L (v, pn)∀v ∈ H1(Ω), un ∈ H1(Ω), (4.56)

pn+1 = PΛ(pn − ργun), (4.57)

wherePΛ is projection operatorfrom L2(Γ) to Λ in the L2(Γ) norm 75

andρ > 0. It follows from (4.56) thatun is in fact the solution of the
Neumann problem


−∆un + un = f in Ω,
∂un

∂n |Γ = pn + g.
(4.58)

The projectionPΛ is given by

PΛ(q) = q+ ∀q ∈ L2(Γ). (4.59)

Sinceγ : H1(Ω)→ L2(Γ) is a continuous linear map we have

‖ γv ‖L2(Γ)≤‖ γ ‖ · ‖ v ‖H1(Ω) ∀v ∈ H1(Ω). (4.60)

It follows then from CEA, G.L.T., loc. cit., that

lim
n→∞

un = u strongly inH1(Ω), (4.61)

whereu is the solution of the problem (4.5) provided that 0< ρ < 2
‖γ‖2 .
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Let us give a direct proof for this convergence result. This proof
will use the characterisation (4.5) given in Proposition 4.1 (even ifa(·, ·)
is not symmetric the same result follows). It will be convenient to take
(4.56), (4.58) in the following equivalent form:


a(un, v) = L(v) +

∫
Γ

pnγvdΓ∀v ∈ H1(Ω),

un ∈ H1(Ω).
(4.62)

Let u be the solution of (4.5) andp = ∂u
∂n − g. It follows from

Proposition 4.1 that


a(u, v) = L(v) +
∫
Γ

pγvdΓ∀L ∈ H1(Ω),

u ∈ H1(Ω),
(4.63)

∫

Γ

(q− p)γudΓ ≥ 0∀q ∈ Λ, p ∈ Λ. (4.64)

Relation (4.64) can also be written as76
∫

Γ

(q− p)(p− ργu− p)dΓ ≤ 0∀q ∈ Λ, ρ > 0.

which is classically equivalent to

p = PΛ(p− ργu). (4.65)

Let consider:
un
= un − u, pn

= pn − p.

SincePΛ is a contraction , we have from (4.57) and (4.65)

‖ pn+1 ‖L2(Γ)≤‖ pn − ργun ‖L2(Γ) . (4.66)

It follows from (4.66) that

‖ pn ‖2L2(Γ)‖ pn+1 ‖L2(Γ)≥ 2ρ
∫

Γ

γunpndΓ − ρ2 ‖ γun ‖2L2(Γ) . (4.67)

Takingv = un (4.62) and (4.63) we obtain

a(un, un) =
∫

Γ

pnγundΓ. (4.68)
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It follows then from (4.67) and (4.68) that

‖ pn ‖2L2(Γ) − ‖ pn+1 ‖2L2(Γ)≥ ρ(2− ρ ‖ γ ‖2) ‖ un ‖2H1(Ω) . (4.69)

If 0 < ρ < 2
‖γ‖2 we observe that the sequence{‖ pn ‖2

L2(Γ)
}n is decreasing

and hence converges. Therefore we have

lim
n→∞

(‖ pn ‖2L2(Γ) − ‖ pn+1 ‖2L2(Γ)) = 0

so that
lim
n→∞
‖ un ‖H1(Ω)= 0.

Sinceun
= un − u, we have proved the convergence. 77

Similarly we can solve the approximate problem (Pk
1h), k = 1, 2,

using the discrete version of algorithm (4.55)–(4.57). We shall limit
ourselves tok = 1, since the extension here tok = 2 is almost trivial.

We use here the notations of Sec. 4.1. Assume thatγh = Σh−Σ0
h has

been ordered.
Let γh = {Mi}i .
We approximateΛ andL by

Λ1
h = {qh : qh = {qi}i , qi ≥ 0} and


L 1

h (vh, qh) = 1
2a(vh, vh) − L(vh)

−1
2Σi |Mi Mi+1|[qivh(Mi) + qi+1vh(Mi+1)].

(2.2)

We can prove thatL 1
h has a unique saddle point{uh, ph} whereph is

a F. John-Kuhn-Tucker vector for (P1
1h) overV1

h ×Λ
1
h anduh is precisely

the solution of (P1
1h). The discrete analogue of (4.55)–(4.57) is then

p0
h ∈ Λ

1
h. (4.71)


L 1

h (un
h, p

n
h) ≤ L 1

h (vh, pn
h)∀vh ∈ V1

h ,

un
h ∈ V1

h .
(4.72)

pn+1
i = [pn

i − ρun
h(Mi)]

+ ∀i, ρ > 0. (4.73)
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One can prove that if 0< ρ < β, β small enough, then lim
n→+∞

un
h = uh

whereuh is the solution of (P1
1h). One may find in G.L.T. [2, Chap.4] nu-

merical applications of the above iterative methods for piecewise linear
and piecewise quadratic approximations of (4.5).

Exercise 4.3.Extend the above considerations to(P2
1h).

5 An Example of EVI of The Second Kind: A Sim-
plified Friction Problem

5.1 The continuous problem. Existence and Uniqueness re-
sults

78

Let Ω be a bounded domain ofR2 with a smooth boundaryΓ = ∂Ω.
Using the same notations as in Sec. 4 we define

V = h1(Ω), (5.1)

a(u, v) =
∫

Ω

∇u · ∇vdx+
∫

Ω

uvdx. (5.2)

L(v) =< f , v >, f ∈ V∗, (5.3)

j(v) = g
∫

Γ

|γv|dΓ, whereg > 0. (5.4)

We have then the following

THEOREM 5.1. The variational inequality


a(u, v− u) + j(v) − j(u) ≥ L(v− u)∀v ∈ V.

u ∈ V.
(5.5)

has a unique solution.

Proof. In order to apply Theorem 4.1 of Chap. 1, it is enough to verify
that j(·) is convex, proper and l.s.c. Actuallyj(·) is a seminorm on
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V. Therefore using Schwartz inequality inL2(Γ) and the fact thatγ ∈
L (H1(Ω), L2(Γ)) we have

| j(u) − j(v)| ≤ | j(u− v)| ≤ g(meas· Γ)1/2 ‖ γ(v− u) ‖L2(Γ)≤ C ‖ u− v ‖V,
(5.6)

for some constantC. �

Hence j(·) is Lipschitz continuous onV, so thatJ(·) is l.s.c ; j(·) is
obviously convex and proper. Hence the Theorem is proved.

REMARK 5.1. If g = 0, it is easy to prove that(5.5) reduce to the
variational equation


a(u, v) = L(v)∀v ∈ V,

u ∈ V.

This is related to the variational formulation of the Neumann problem.

REMARK 5.2. Since a(·, ·) is symmetric,. the solution u of a(5.5) is 79

characterised, using Lemma 4.1 of Chap. 1, as the unique solution of
the minimization problem


J(u) ≤ J(v), ∀v ∈ V,

u ∈ V,
(5.7)

where J(v) =
1
2

a(v, v) + j(v) − L(v).

REMARK 5.3. The problem(5.5) (and (5.7)) is the simplified version
of a friction problem occurring inelasticity. For this types of problems
we refer to DUVAUTLIONS [1]and the bibliography therein.

Exercise 5.1.Let us denote by ug the solution of(5.5). Then prove that

lim
g→+∞

ug = Û strongly in H1(Ω),

whereû is the unique solution of

a(û, v) = L(v)∀v ∈ H1

0(ω),

û ∈ H1
0(Ω).
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5.2 Regularity of the solution

THEOREM 5.2. (H. BREZIS [3]). IfΩ is a bounded domain with
a smooth boundary and if L(v) =

∫
Ω

f vdx with f ∈ L2(Ω), then the
solution u of(5.5) is in H2(Ω).

5.3 Existence of a multiplier

Let us defineΛ by

Λ = {µ ∈ L2(Γ) : |µ(x)| ≤ 1 a. e. inΓ}.

Then we have

THEOREM 5.3. The solution u of(5.5) is characterised by the exis-
tence ofλ such that


a(u, v) + g

∫
Γ
λγvdΓ = L(v)∀v ∈ V,

u ∈ V,
(5.8)


λ ∈ Λ,
λγu = |γu| a. e. inΓ.

(5.9)

80

Proof. We will prove first that (5.5) implies (5.8) and (5.9).
Takingv = 0 andv = 2u in (5.5) we have

a(u, u) + j(u) = L(u). (5.10)

It follows then from (5.5), (5.10) that

L(v) − a(u, v) ≤ j(v)∀v ∈ V,

which implies

|L(v) − a(u, v)| ≤ j(v) = g
∫

Γ

|γv|dΓ∀v ∈ V. (5.11)

�
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We haveH1(Ω) = H1
0(Ω)⊕ [H1

0(Ω)]⊥ where [H1
0(Ω)]⊥ is the orthog-

onal complement ofH1
0(Ω)in H1(Ω).

Sinceγ : [H1
0(Ω)]⊥ → H1/2(Γ) is an isomorphism, it follows from

(5.11) that
L(v) − a(u, v) = ℓ(γv)∀v ∈ V, (5.12)

whereℓ(·) is a continuous linear functional onH1/2(Γ). It follows then
from (5.11), (5.12) that

|ℓ(µ)| ≤ g ‖ µ ‖L1(Γ) ∀µ ∈ H1/2(Γ). (5.13)

SinceH1/2(Γ) ⊂ L1(Γ) it follows from (5.13) that, we can apply to
ℓ(·), the Hanh-Banach Theorem (see for instance YOSIDA [1]) to obtain
the existence ofλ ∈ L∞(Γ), |λ(x)| ≤ 1 a.e. inΓ such that

ℓ(µ) = g
∫

Γ

λµdΓ∀µ ∈ H1/2(Γ). (5.14)

Therefore it follows from (5.12) and (5.14) that 81

a(u, v) + g
∫

Γ

λγvdΓ = L(v)∀v ∈ V,

which proves (5.8).
Takingv = u in (5.8) we obtain

a(u, u) + g
∫

Γ

λγudΓ = L(u).

Using (5.10) and the above equation we obtain
∫

Γ

(|γu| − λγu)dΓ = 0. (5.15)

Since|λ| ≤ 1 a.e. we have

|γu| − λγu ≥ 0 a.e. (5.16)

It follows from (5.15) and (5.16) that

|γu| = λγu a.e.
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This completes the proof of (5.8) and (5.9). Assuming (5.8) and (5.9)
we will show that (5.5) holds.

Let {u, λ} be a solution of (5.8), (5.9). It follows from (5.8) that

a(u, v− u) + g
∫

Γ

λγ(v− u)dΓ = L(v− u)∀v ∈ V,

which can also be written as

a(u, v− u) + g
∫

Γ

λγvdΓ − g
∫

Γ

λγudΓ = L(v− u)∀v ∈ V. (5.17)

From (5.9) and (5.17) we obtain

a(u, v− u) + g
∫

Γ

λγvdΓ − g
∫

Γ

|γu|dΓ = L(v− u)∀v ∈ V. (5.18)

But sinceλγv ≤ |γv| a.e. inΓ, it follows from (5.18) that

a(u, v− u) + j(v) − j(u) ≥ L(v− u)∀v ∈ V.

This proves the characterization.82

REMARK 5.4. Assuming that

L(v) =
∫

Ω

f0vdx+
∫

Γ

f1γvdΓ,

with f0, f1 sufficiently smooth, we can express(5.8)by

−∆u+ u = f0 in Ω,
∂u
∂n + gλ = f1 a. e. onΓ.

(5.19)

It follows from(5.19)thatλ is unique.

Exercise 5.2.Prove thatλ is unique∀L ∈ V∗.

5.4 Finite element approximation of (5.5)

LetΩ be a bounded domain ofR2. The notation used here is mostly the
same as in Sec. 4.4 of this Chapter.
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5.4.1 Approximation of V

We use the piecewise linear and piecewise quadratic approximations of
V = H1(Ω) described in Section 4.4.1 of this chapter.

5.4.2 Approximation of j(·)

We use the notation of Figure 4.2. Then we approximatej(·) by

j1h(vh) =
g
2

∑

i

|−−−→Mi Mi+1|(|γvh(Mi)| + |γvh)Mi+1)|)∀vh ∈ V1
h , (5.20)


j2h(vh) =

g
6

∑
i |
−−−→
Mi Mi+1|(|γvh(Mi)| + 4|γvh(Mi+1/2|

+|γvh(Mi+1)|)∀vh ∈ V2
h .

(5.21)

In (5.20) and (5.21) we haveMi ∈ γh andMi+1/2 ∈ γ′h.

REMARK 5.5. Clearly (5.20), (5.21) are respectively obtained from
j(·) by using Trapezoidal and Simpson’s numerical integration formu-
lae.

5.4.3 The approximate problem

Fork = 1, 2 the problem (5.5) is approximated by 83

(Pk
2h)


a(uk

n, vh − uk
h) + jkh(vh) − jkh(uk

h) ≥ L(vh − uk
h)∀vh ∈ Vh,

uk
h ∈ Vk

h.

Then,

Proposition 5.1. The problem(Pk
2h) has a unique solution.

REMARK 5.6. Since a(·, ·) is symmetric,(Pk
2h) is equivalent to the non-

linear programing problem

min
vh∈Vk

h

[
1
2

a(vh, vh) + jkh(vh) − L(vh)

]
. (5.22)

REMARK 5.7. Using(5.20), (5.21)and (7.1)–(7.4)of Section 7 of this
chapter, we may express(Pk

2h) and (5.22) in a form more suitable for
computations.
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5.5 Convergence results

THEOREM 5.4. Suppose that the angles ofCh are uniformly bounded
below byθ > 0 as h→ 0, then

lim
h→0

uk
h = u strongly in H1(Ω), (5.23)

where u and ukh are respectively the solutions of(5.5) and (Pk
2h) for k =

1, 2.

Proof. To prove (5.23) it is enough to verify the following (see Theo-
rem 6.3 of Chapter 1)

(i) There existsU ⊂ V, U = V and

rk
h : U → Vk

h such that

lim
h→0

rk
hv = v strongly inV ∀v ∈ U,

(ii) If Vh→ v weakly in V then

lim inf
h→0

jkh(vh) ≥ j(v).

(iii) lim
h→0

jkh(rk
hv) = j(v)∀v ∈ U.84

�

Verification of (i). SinceΓ is Lipschitz continuous we have (see NECAS
[1])

C∞(Ω) = H1(Ω). (5.24)

Therefore it is natural to takeU = C∞(Ω). Define rk
h by (4.39)

if Theorem 4.3, chap. 2; under the above assumption onCh it follows
from STRANG-FIX [1] that

‖ rk
hv− v ‖V≤ Chk ‖ v ‖Hk+1(Ω) ∀v ∈ V, (5.25)

whereC is a constant independent ofh andv. This implies (i).

Verification of (ii).
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(1) Case k= 1. We use again the notation of Figure 4. 2. Since the
trace ofvh restricted to [Mi ,Mi+1] is affine it follows that


yvh(M) = 1

|Mi Mi+1| (|
−−−→
MMi+1|γvh(Mi) + |

−−−→
MMi |γvh(Mi+1)),

∀vh ∈ V1
h , ∀M ∈ [Mi ,Mi+1].

(5.26)

Since
|−−−→MMi+1|

|−−−→Mi Mi+1|
+
|−−−→MMi |

|−−−→Mi Mi+1|
= 1,

the convexity ofξ → |ξ| implies

|γvh(M)| ≤ 1

|−−−−→Mi M i+1|
(|−−−→MMi+1||γvh(Mi)|

+|−−−→Mi M| |γvh(Mi+1)|)∀vh ∈ V1
h , ∀M ∈ [Mi ,Mi+1].

(5.27)

Interesting (5.27) on̂Mi Mi+1 we obtain

∫

̂Mi Mi+1

|γvh|dΓ ≤
|−−−→Mi Mi+1|

2
(|γvh(Mi)| + |γvh(Mi+1)|)

which implies that∀vh ∈ V1
h we have



j(vh) = g
∫
Γ
|γvh|dΓ = g

∑
i

∫
̂Mi Mi+1
|γvh|dΓ ≤

≤ g
2

∑
i
|−−−→Mi Mi+1|(|γvh(Mi)| + |γvh(Mi+1)|)

= j1h(vh).

Thus we have proved 85

j(vh) ≤ j1h(vh)∀vh ∈ V1
h . (5.28)

Let vh → v weaklyin V. Then lim
h→0

γ(vh) = γ(v) strongly in L2(Γ),

which implies
lim
h→0

j(vh) = j(v). (5.29)

It follows then from (5.28) and (5.29) that lim
h→0

inf j1h(vh) ≥ j(v), which

proves (ii) ifk = 1.
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(2) case k= 2. Let us defineMi+1/6′Mi+5/6 by (see Figure 5.1)

−−−→
Mi Mi+1/6 =

1
6
−−−→
Mi Mi+1,

−−−→
Mi Mi+5/6 =

5
6
−−−→
Mi Mi+1.

Figure 5.1:

Then we defineqh : C0(Γ) + L∞(Γ) by86



qh(µ) =
∑

Mi∈γh

µ(mi)Xi +
∑

M i+1
2
∈γ′h
, µ(Mi+1/2)Xi+1/2

∀µ ∈ C0(Γ).
(5.30)

where Xi ( respectively Xi+1/2) is the characteristic function of
Mi−6Mi Mi+1/6 (respectively ̂Mi+1/6Mi+5/6). We have then the follow-
ing obvious properties :

lim
h→0

qh(µ) = µ strongly inL∞(Γ) ∀µ ∈ C◦(Γ), (5.31)

j2h(vh) = g
∫

Γ

|qhγvh|dΓ = g ‖ qhγvh ‖L1(Γ) ∀vh ∈ V2
h , (5.32)

C1 ‖ γvh ‖L2(Γ)≤‖ qhγvh ‖L2(Γ)≤ C2 ‖ γvh ‖L2(Γ) ∀vh ∈ V2
h , (5.33)

where in (5.33),C1 andC2 are positive constants independent ofvh, h
andΓ (values forC1 andC2 may be found in G. L. T. [2, Chap. 4]).
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Now takingµ ∈ C0(Γ), we definesh(µ) by


sh(µ) ∈ L∞(Ω),

sh(µ)|]Mi ,Mi+1[ = µ(Mi+1/2).
(5.34)

Then
lim
h→0

sh(µ) = µ strongly inL∞(γ), (5.35)

and from Simpson’s integration formula we have
∫

Γ

sh(µ)qhγhvhdΓ =
∫

Γ

sh(µ)γvhdΓ ∀µ ∈ C◦(Γ),∀vh ∈ V2
h . (5.36)

Let vh→ v weakly inV, vh ∈ V2
h ∀h, then

lim
h→0

γvh = γv strongly inL2(Γ). (5.37)

On the one hand it follows from (5.33) that 87

‖ qhγvh ‖L2(Γ)≤ C, (5.38)

whereC is independent ofh.
On the other hand (5.31), (5.35)–(5.38) imply that

lim
h→0

∫

Γ

sh(µ)qhγvhdΓ =
∫

Γ

µγvdΓ ∀µ ∈ C0(Γ). (5.39)

In turn (5.38) and (5.39) imply that

lim
h→0

qhγvh = v weakly inL2(Γ). (5.40)

Since the functionalµ →‖ µ ‖L1(Γ) is convex and continuous on
L1(Γ) it follows from (5.40) that

lim inf
h→0

‖ qhγvh ‖L1(Γ)≥‖ γv ‖L1(Γ) (5.41)

Combining (5.41) with (5.32) we obtain lim inf
h→0

j2h(vh) ≥ j(v) which

proves (ii) whenk = 2.
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Verification of (iii). Let v ∈ U = C∞(Ω). From (5.25) and from the
uniform continuity ofγv onΓ it follows almost immediately that

lim
h→0

jkh(rk
hvh) = j(v), k = 1, 2.

Since the condition (i), (ii) and (iii) are satisfied the strong conver-
gence ofuh to u follows from the Theorem 6.2 of Chap. 1.

REMARK 5.8. It is proved in G. L. T. [2, Chap. 4] that vh→ v weakly
in v, v/2 ∈ Vk

h, implieslim
h→0

jkh(vh) = j(v), k = 1, 2.

Since the proof of this result is rather technical we have used in these
notes a simpler approach from which it follows that

lim inf
h→0

jkh(vh) ≥ j(v), k = 1, 2.

As we have seen before this result was sufficient for proving Theo-
rem 5.4.

5.6 Iterative methods for solving(Pk
2h).

In this section we briefly describe some iterative methods which may be88

useful for solving the approximate problems (Pk
2h).

5.6.1 Solution of(Pk
2h) by relaxation methods

It follows from (5.20)–(5.22) (see Remark 5.6) that (Pk
2h), k = 1, 2, are

particular cases of
min
v∈RN

f (v), (5.42)

where, withv = (v1, . . . , vn),

f (v) =
1
2

(Av, v) − (b, v) +
N∑

i=1

αi |vi |. (5.43)

In (5.43), (·, ·) denotes the usual inner product ofRN, A is aN × N
symmetric positive definite matrix andαi ≥ 0 ∀i = 1, . . . ,N.
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It follows then from CEA [2, Chap. 4], CEA-GLOWINSKI [1], G.
L. T. [1, Chap, 2] that we can use a relaxation method for solving (5.42).
Actually from the computation parameterω, ω > 1, will increase the
speed of convergence.

Finally the algorithm we used is the following :

u0 arbitrarily given inRN, (5.44)

then fori = 1, 2, . . . ,N,

f (un+1
1 , . . . , un+1

i−1 , u
−n+1
i , un

i+1, . . .) ≤
f (un+1

1 , . . . , un+1
i−1 , vi , u

n+1
i+1 , . . .)∀vi ∈ R, (5.45)

un+1
i = un

i + ω(un+1
i − un

i ). (5.46)

If ω = 1, (5.44)–(5.46) reduces to a relaxation method. Numericalsolu-
tions of (5.5) using (5.44)–(5.46) are given in G. L. T. [2, Chap. 4].

REMARK 5.9. If αi > 0, u−n+1
i is the solution of aone variable, non

differentiable minimization problemwhich can be exactly computed by
hand calculation.

Exercise 5.3.Express u−n+1
i as a function of A, b, un, un+1.

5.6.2 Solution of(Pk
2h by duality method)

We first examine the continuous case. Define a LagrangienL : H1(Ω)× 89

L2(Γ)→ R by

L (v, µ) =
1
2

a(v, v) − L(v) + g
∫

Γ

µγvdΓ. (5.47)

Then using the notation of Sec. 5.3 it follows from Theorem 5.3 that

THEOREM 5.5. Let {u, λ} be a solution of(5.8), (5.9) ; then {u, λ} is
the unique saddle point ofL over H1(Ω) × Λ

Exercise 5.4.Prove Theorem 5.5.
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From Theorem 5.5 it follows that to solve(5.5) we can use the fol-
lowing Uzawa’s algorithm,

λ0 ∈ Λ arbitrarily chosen (for instanceλ0 = 0), (5.48)

then by induction, knowingλn we compute un andλn+1 by

L (un, λn) ≤ L (v, λn)∀v ∈ H1(Ω),

un ∈ V,
(5.49)

{
λn+1 = PΛ(λn + ρgγun), ρ > 0. (5.50)

The minimization problem (5.49) is actually equivalent to theNeu-
mann variational problem


a(un, v) = L(v) − g

∫
Γ
λnγvdΓ∀v ∈ H1(Ω),

un ∈ H1(Ω).
(5.51)

In (5.50).PΛ is the projection operator fromL2(Γ) toΛ in theL2− norm,
then

PΛ(µ) = sup(−1, inf(1, µ)) ∀µ ∈ L2(Γ). (5.52)

Using CEA [2], G. L. T. [1, Chap. 2] it follows that for 0< ρ < 2
g2‖γ‖2 .

we have 
lim
n→∞

un = u strongly inH1(Ω),

u solution of (5.5), (5.7).
90

Like in Section 4.6.2 a direct proof of the convergence of (5.48)–
(5.50) can be given : it will however use the results of Theorem 5.3.

Exercise 5.5.Using Theorem 5.3, given a direct proof of the conver-
gence of(5.48)–(5.50).

The adaptation of(5.48)–(5.50) to the discrete problem(Pk
2h), k =

1, 2, is straightforward (see G. L.T. [2, Chap, 4]), since it is a simple
variant of the discrete algorithm described in section 4.6.2.

Exercise 5.6.Study the discrete analogues of(5.48)–(5.50) related to
(Pk

2h), k = 1, 2.
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6 A Second Example of EVI of The Second Kind:
The Flow of A Viscous, Plastic Fluid in A Pipe

Most of the material in this section can be found in G.L.T. [1,Chap. 5]
and in GLOWINSKI [1], [3].

6.1 The continuous problem. Existence and uniqueness re-
sults

LetΩ be a bounded domain ofR2 with a smooth boundaryΓ. We define



V = H1
0(Ω).

a(u, v) =
∫
Ω
∇u · ∇vdx,

L(v) =< f , v >, f ∈ V∗

j(v) =
∫
Ω
|∇v|dx

Let µ, g be two positive parameters ; then

THEOREM 6.1. The variational inequality


µa(u, v− u) + g j(v) − g j(u) ≥ L(v− u) ∀v ∈ V,

u ∈ V
(6.1)

has a unique solution. 91

Proof. In order to apply Theorem 4.1 of Chap. 1, we only have to verify
that j(·) is convex, proper and l.s.c.

It is obvious thatj(·) is convex and proper, Letu, v ∈ V; then

| j(v) − j(u)| ≥
√

meas.Ω ‖ u− v ‖V, (6.2)

hencej(·) is l.s.c.
This proves the Theorem. �

Exercise 6.1.Prove that j(·) is a norm on V.
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REMARK 6.1. If we take g= 0 in (6.1) we recover the variational
formulation of the Dirichlet problem


−µ∆u = f in Ω,

u = 0 onΓ.

REMARK 6.2. Since a(·, ·) is symmetric, the solution u of(6.1)is char-
acterized, using Lemma 4.1 of Chap. 1, as the unique solutionof the
minimization problem


J(u) ≤ J(v) ∀v ∈ V,

u ∈ V,
(6.3)

where J(v) = µ
2a(v, v) + g j(v) − L(v).

6.2 Physical motivation

If L(v) = C
∫
Ω

vdx(for instanceC > 0), it is proved in DUVAUT-LIANS
[1, Chap. 6] that (6.1) models thelaminar, stationary flowof aBingham
fluid in a cylindrical pipe of cross - sectionΩ, u(x) being the velocity
at x ∈ Ω (We refer to PRAGER [1], GERMAIN [1] and DUVAUT -
LIONS [1, Chap. 6] for the definition of Bingham fluid). The constant
C is the linear decay of pressureandµ, g are respectively theviscosity
and plasticity yield of the fluid. The above medium behaves like a
viscous fluid (of viscosityµ) in Ω+ = {x ∈ Ω : |∇u(x)| > 0} and like a
rigid medium inΩ0 = {x ∈ Ω : ∇u(x) = 0}. We refer to MOSSOLOV-92

MIASNIKOV [1], [2], [3] for a detailed study of the properties ofΩ+

andΩ0. We observe that (6.1) appears also as afree boundary problem.

6.3 Regularity properties

THEOREM 6.2. (H. BREZIS [4]). If L(v) =
∫
Ω

f vdx, f ∈ L2(Ω) then
the solution u of(6.1)satisfies

u ∈ V ∩ H2(Ω)

and ifΩ is convex, we have

‖ u ‖H2(Ω)≤
γ(Ω)
µ
‖ f ‖L2(Ω) (6.4)
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6.4 Further properties

Let us denote byα the following quantity

α = inf
v∈H1

0(Ω)
v,0

j(v)
‖ v ‖L1(Ω)

(6.5)

Thenα > 0.

We derive from this the following

Proposition 6.1. Let u be the solution of (6.1) and f∈ L∞(Ω), then
u = 0 if

‖ f ‖L∞(Ω)≤ gα. (6.6)

Proof. By takingv = 0, v = 2u in (6.1) we obtain

µa(u, u) + g(u) =
∫

Ω

f udx. (6.7)

�

It follows then from (6.5) and from
∫
Ω

f udx ≤‖ f ‖L∞(Ω)‖ u ‖L1(Ω),
that

µa(u, u) + (gα− ‖ f ‖L∞(Ω)) ‖ u ‖L1(Ω)≤ 0. (6.8)

If f obeys (6.6) it follows then from (6.8) thatu = 0. We also have

Proposition 6.2. Let u be the solution of(6.1) and f ∈ Lp(Ω), p > 1. 93

Then if f ≥ 0, we have u≥ 0.

Exercise 6.2.Prove Proposition 6.2.

Proposition 6.3. Let u be the solution of(6.2) and f = c, a constant.
Then u= 0 ⇐⇒ c ≤ g and u, 0 if c > gα.

Exercise 6.3.Prove Proposition 6.3
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Proposition 6.4. Let u be the solution of(6.1) and f ∈ L2(ω); then
u = 0 if

‖ f ‖L2(ω)≤ gβ, (6.9)

where

β = inf
v∈H1

0(Ω)
v,0

j(v)
‖ v ‖L2(Ω)

.

Proof. It follows from a result of L. NIRENBERG and M. STRAUSS
(cf. STRAUSS [1]) thatβ > 0.

By takingv = 0 andv = u in (6.1) we obtain

µa(u, u) + g j(u) =
∫

Ω

f udx. (6.10)

�

Using
∫
Ω

f udx≤‖ f ‖L2(Ω)‖ u ‖L2(Ω) andβ > 0 we obtain

µa(u, u) + (gβ− ‖ f ‖L2(Ω)) ‖ u ‖L2(Ω)≤ 0. (6.11)

Hence if f satisfies (6.9) we have from (6.11) thata(u, u) = 0. This
impliesu = 0, hence the Proposition.

6.5 Exact solutions

6.5.1

Example 1. We takeω =]0, 1[ and f = c, c a positive constant. In this
case the solution of



µ
∫ 1
0 u(v′ − u′)dx+ g

∫ 1
0 |v

′|dx− g
∫ 1
0 |u

′|dx≥
c
∫ 1
0 (v− u)dx ∀v,H1

0(Ω),

u ∈ H1
0(Ω),

(6.12)

(where v′ =
dv
dx

) is given by94

u = 0 if g ≥
c
2
. (6.13)
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If g ≤
c
2

then



u(x) = c
2µ x(1− x) − gx

µ if 0 ≤ x ≤ 1
2 −

g
c

u(x) = c
2µ (1

2 −
g
c)2 if 1

2 −
g
c ≤ x ≤ 1

2 +
g
c ,

u(x) = c
eµ x(1− x) − g

µ (1− x) if 1
2 +

g
c ≤ x ≤ 1.

(6.14)

We observe that ifg < c
2 thenu ∈ H1

0(Ω)∩W2,∞(ω), butu < H3(Ω).

6.5.2

Example 2. Letω = {x : x2
1 + x2

2 < R2}, f = C, C a positive constant.
Then the solution of(6.1) is given by

u = 0 if g ≥ CR
2
, (6.15)



If g ≤ CR
2 then

u(x) = (R−r
2µ )[ C

2 (R+ r) − 2g] if R′ ≤ r ≤ R,

u(x) = (R−R′
2µ )[ C

2 (R+ R′) − 2g] if 0 ≤ r ≤ R,

(6.16)

where

r =
√

x2
1 + x2

2,R
′ =

2g
C

We observe also that ifg < CR
2 then u ∈ H1

0(Ω) ∩ W2,∞(Ω) but
u < H3(Ω) (we have actuallyu ∈ Hs(Ω), s< 5

2).

Exercise 6.4.Verify that(6.13), (6.14)and (6.15), (6.16)are solutions
of (6.12)and (6.1) respectively.

6.6 Existence of multipliers

Let us defineΛ by

Λ = {q : q ∈ L2(Ω) × L2(Ω), |q(x)| ≤ 1 a.e.}

|q(x)| =
√

q2
1(x) + q2

2(x); then we have

95
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THEOREM 6.3. The solution u of(6.1) is characterised by the exis-
tence of p such that


µa(u, v) + g

∫
Ω

p.∇vdx=< f , v > ∀v ∈ V,

u ∈ V,
(6.17)


p.∇u = |∇u|a.e.,
p ∈ Λ.

(6.18)

Proof. There are classical proofs of the above Theorem using Min-Max
of Hahn-Banach Theorems (see for instance CEA [2, Chap. 5], G. L. T/
[1 , Chap. 1], EKELAND- TEMAM [1]). In the sequel following G.L.
T. [2 , Chap. 5] we shall give an “almost constructive ” proof making
use of a regularisation technique.

(1) We first prove that(6.17), (6.18)imply (6.1). It follows from (6.17)
that



µa(u, v− u) + g
∫
Ω

p · ∇(v− u)dx= µa(v− u)

+g
∫
Ω

p · ∇vdx− g
∫
Ω

p · ∇udx=

=< f , v− u > ∀v ∈ V.

(6.19)

It follows from (6.18) that
∫

Ω

p.∇udx=
∫

Ω

|∇u|dx, (6.20)

and from the definition ofΛ that
∫

Ω

p.∇vdx≤
∫

Ω

|p| · |∇v|dx ≤
∫

Ω

|∇v|dx ∀v ∈ V. (6.21)

�

Then from (6.17), (6.19)–(6.21) we obtain that


µa(u, v− u) + g j(u) ≥< f , v− u > ∀v ∈ V,

u ∈ V.
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Thus (6.17) and (6.18) implies (6.1).

(2) Necessity of(6.17)and (6.18). Takingu = 0 andv = 2u in (6.1) we96

obtain
µa(u, u) + g j(u) =< f , u > . (6.22)

Let ∈> 0. Regularisej(·) by jǫ(·) defined byjǫ(v) =
∫
Ω

√
∈2 +v2dx.

Since jǫ(·) is convex and continuous onV, the regularised problem

µa(uǫ , v− uǫ ) + g jǫ (uǫ ) ≥ L(v− uǫ )∀v ∈ V,

uǫV,
(6.23)

has auniquesolution. Let us show that lim
∈→0

uǫ = u strongly in V.

From (6.1) and (6.23) it follows that

µa(uǫ , u− uǫ ) + g jǫ (u) − g jǫ(uǫ ) ≥ L(u− uǫ),

µa(u, uǫ − u) + g j(uǫ ) − g j(u) ≥ L(uǫ − u).

Adding these inequalities we obtain

µa(uǫ − u, uǫ − u) + g( jǫ (uǫ) − j(uǫ )) ≤ g( jǫ (u) − j(u)). (6.24)

From 0<
√

t2+ ∈2− |t| = ∈2
√
∈2+t2+|t|

≤∈ ∀t ∈ R it follows thatµa(uǫ , uǫ −
u) ≤ g ∈ meas. (Ω), so that

‖ uǫ − u ‖V≤
√

meas.(Ω)(
g
u
. ∈)1/2 (6.25)

From (6.25) we obtain

lim
∈→0

uǫ = u strongly inV. (6.26)

Since jǫ(·) is differentiable onV, the problem (6.23) is equivalent (see
CEA [1]) to the following non-linear variational equation:


µa(uǫ , v) + g < j′ǫ(u), v >= L(v)∀v ∈ V,

uǫ ∈ V,
(6.27)

with 97
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< j′ǫ(w), v >=
∫

Ω

∇w · ∇v√
∈2 +|∇w|2

dx∀v,w ∈ V. (6.28)

If we define (pǫ ) by

Pǫ =
∇uǫ√
∈2 +|∇uǫ |2

(6.29)

then
pǫ ∈ Λ. (6.30)

From (6.27)–(6.30) we obtain

µa(uǫ , v) + g

∫
Ω

pǫ · ∇vdx= L(v) ∀v ∈ V,

uǫ ∈ V.
(6.31)

SinceΛ is a bounded, closed, convex subset ofL2(Ω) × L2(Ω) it is
weakly compact, so that from (pǫ)ǫ we can extract a subsequence, still
denoted by (pǫ )ǫ such that


lim∈→0 pǫ = p weakly inL2(Ω) × L2(Ω),

p ∈ Λ.
(6.32)

Actually we havepǫ → p in L∞(Ω) × L∞(Ω) weakly *.
Taking the limit as∈→ 0 in (6.31) we have from (6.26) and (6.32)


µa(u, v) + g

∫
Ω

p · ∇vdx= L(v) ∀v ∈ V,

u ∈ V,
(6.33)

so that (6.17) is proved.
To complete the proof of the Theorem we have only to prove that98

p · ∇u = |∇u| a.e. (6.34)

Takingv = u in (6.33) and comparing with (6.22) we obtain
∫

Ω

|∇u|dx−
∫

Ω

p · ∇udx=
∫

Ω

(|∇u| − p · ∇u)dx= 0. (6.35)

Sincep ∈ Λ, it follows from Schwartz inequality inR2 that

p · ∇u ≤ |∇u|a.e.
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Combining (6.35) and this inequality we obtain

p · ∇u = |∇u|a.e.

This proves (6.18) and hence the Theorem.

REMARK 6.3. The function p occurring in(6.17), (6.18)is not unique
if Ω ∈ R2; this is shown in G. L. T. [2, Chap. 5].

REMARK 6.4. Relation(6.17) implies


−µ∆u− g∇ · p = f in Ω,

u|Γ = 0.
(6.36)

6.7 Finite element approximation of (6. 1)

In this section we follow G. L. T. [2, Chap. 5]. For the sake of simplicity
we shall assume thatΩ is a polygonal domain ofR2.

6.7.1 Definition of the approximate problem

Let Ch be as in Sec. 2 of this chapter. We approximateV by

Vh = {vh ∈ C0(Ω) : vh = 0 onΓ, vh|T ∈ P1∀T ∈ Ch}

and (6.1) by


µa(uh, vh − uh) + g j(vh) − g j(uh) ≥< f , vh − uh > ∀vh ∈ Vh,

uh ∈ Vh.

(6.37)
Then 99

THEOREM 6.4. The approximate problem(6.37) has a unique solu-
tion.

REMARK 6.5. In these notes, only an approximation by piecewise lin-
ear finite elements has been considered. This fact is justified by the ex-
istence of a regularity limitation for the solutions of(6.1)which implies
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that even with very smooth data we may have u< H3(Ω) (see Sec. 6.5.
Nevertheless one may find in FORTIN [1], BRISTEAU [1], G. L. T.
[1, Chap. 5], BRISTEAU-GLOWINSKI [1], applications of piecewise
quadratic finite elements, straight or isoparametric, for solving (6.1).
The numerical results which have been obtained, seem to prove that for
the samenumber of degrees of freedomthe accuracies at the nodes are
of the same order for the finite elements of order 1 and 2. From the
above works it appears also that the second order finite elements are
much more costly to use (storage, computational time etc.).We have
also to notice that when using first order finite elements,

∫
Ω
|∇vh|dx can

be expressedexactlywith respect to the values of vh at the nodes ofCh,
while with second order finite elements we need a numerical integration
procedure.

REMARK 6.6. From the symmetry of a(·, ·), (6.37)is equivalent to the
minimization problem


J(uh) ≤ J(vh) ∀vh ∈ Vh,

uh ∈ Vh,
(6.38)

where

J(vh) =
µ

2
a(vh, vh) + g

∫

Ω

|∇vh|dx− < f , vh > . (6.39)

6.7.2 Convergence of the approximate solutions. (General case).

We use the notations of the previous sections.

THEOREM 6.5. If, as h→ 0, the angles ofCh are bounded below
uniformly in h, byθ0 then

lim
h→0
‖ Uh − u ‖V= 0, (6.40)

where u and uh are respectively the solutions of(6.1)and (6.37).100

Proof. In order to prove (6.40) we use Theorem 6.3 of Chap. 1. Here,
we have to verify that the following three properties hold:



6. A Second Example of EVI of The... 101

(i) There existU ⊂ V, U = V andrh : U → Vh such that lim
h→0

rhv = v

strongly in V, ∀v ∈ U.

(ii) If vh→ v weakly inV ash→ 0 then, lim inf jh(vh) ≥ j(v).

(iii) lim
h→0

jh(rhv) = j(v)∀v ∈ U.

�

Verification of (i).We takeU = D(Ω). ThenU = H1
0(Ω) = V. Define

rhv by 
rhv ∈ Vh ∀v ∈ H1

0(Ω) ∩C0(Ω),

(rhv)(P) = v(P) ∀P ∈
∑0

h .
(6.41)

Then sincerhv is the linear interpolate ofv on Ch it follows from
CIARLET [1], [2], STRANG-FIX [1] that under the above assumptions
onCh we have

‖ rhv− v ‖H1(Ω)≤ Ch ‖ v ‖W2,∞(Ω) . (6.42)

Then from (6.42) we obtain lim
h→0

rhv = v strongly in H1
0(Ω)∀v ∈ U.

Verification of (ii). Since jh(vh) = j(vh)∀vh ∈ Vh, (ii) is trivially satis-
fied.

Verification of (iii). Since jh(vh) = j(vh) ∀vh ∈ Vh and from the conti-
nuity of j(·) onV, (iii) is trivially satisfied .

Hence form (i), (ii) and (iii) it follows thatuh→ u strongly in V.

6.7.3 Convergence of the approximate solutions.( f ∈ L2(Ω))

From the regularity Theorem 6.2 of this chapter we have 101

‖ u ‖H2(Ω)≤
γ0(Ω)
µ
‖ f ‖L2(Ω) (6.43)

if Ω is convex andΓ is sufficiently smooth. This property still holds if
Ω is a convex polygonal set.

In this section we always assumeΩ to be a convex polygonal do-
main. We have the following
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THEOREM 6.6. The assumptions onCh being those of Theorem 6.5
we have then

‖ uh − u ‖V= 0(h1/2). (6.44)

Proof. It follows from (6.1) and (6.37) thatµa(u, uh−u)+g j(uh)−g j(u) ≥
( f , uh−u), µa(uh, vh−uh)+g j(vh)−g j(uh) ≥ ( f , vh−uh) ∀vh ∈ Vh, which
imply, by addition,



µa(uh − u, uh − u) ≤ µa(uh − u, vh − u) + g j(vh) − g j(u)

+µa(u, vh − u) − ( f , vh − u),

∀vh ∈ Vh.

(6.45)

�

Since j(·) is a norm onV, using Schwartz inequality inV and (6.45)
we obtain
µ

2
‖ uh− u ‖2V≤

µ

2
‖ vh− u ‖2V +g j(vh− u)+ µa(u, vh− u)− ( f , vh− u)∀vh ∈ Vh.

(6.46)
Sinceu ∈ H1

0(Ω) ∩ H2(Ω) we have

a(u, v) = −
∫

Ω

∆uvdx∀v ∈ V.

Hence from (6.46) we have

µ

2
‖ uh − u ‖2V≤

µ

2
‖ vh − u ‖2V +g j(vh − u) +

∫

Ω

(−µ∆u− f )(vh − u)dx ∀vh ∈ V,

so that


µ
2 ‖ uh − u ‖2V≤

µ
2 ‖ vh − u ‖2V +g j(vh − u)

+(‖ ∆u ‖L2(Ω) + ‖ f ‖L2(Ω)) ‖ vh − u ‖L2(Ω)

∀vh ∈ Vh.

(6.47)

102

Since‖ ∆u ‖L2(Ω) is a norm equivalent to theH2(Ω)− norm over
H2(Ω) ∩ H1

0(Ω), it follows from (6.2), (6.43) and (6.47) that

µ
2 ‖ uh − u ‖2V ≤ µ

2 ‖ vh − u ‖2V +g
√

meqs.(Ω) ‖ vh − u ‖V +
+(1+ γ0(Ω)) ‖ f ‖L2(Ω)‖ vh − u ‖L2(Ω) ∀vh ∈ Vh.

(6.48)
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SinceΓ is Lipschitz continuous, we have (cf. NECAS [1])H2(Ω) ⊂
C0(Ω). The solutionsu of (6.1)∈ H2(Ω) and using the above inclusion,
we can definerhu by


rhu ∈ Vh

(rhu)(P) = v(P) ∀P ∈
0
Σh.

From the above assumptions onCh we have (cf. CIARLET [1], [2],
STRANG-FLIX [1])

‖ rhu− u ‖V≤ γ1h ‖ u ‖H2(Ω), (6.49)

‖ rhu− u ‖L2(Ω)≤ γ2h2 ‖ u ‖H2(Ω), (6.50)

whereγ1 andγ2 are constants independent ofh andu.
Taking vh = rhu in (6.48) it follows from (6.43), (6.49) and (6.50)

that

µ

2
‖ uh − u ‖2V≤

γ0 ‖ f ‖L2(Ω)

µ
[(
γ2

1γ0

2
+ (1+ γ0)γ2) ‖ f ‖L2 h2 + g

√
M(Ω)γ1h]

(6.51)
with γ0 = γ0(Ω) andM(Ω) = meas.(Ω). Hence from (6.51) we have

‖ uh − u ‖= 0(h1/2).

This proves the theorem.

6.8 The case of a circular domain with f= constant

In this section we consider a particular case of the general problem (6.1) 103

by taking

Ω = {x ∈ R2 :
√

x2
1 + x2

2 < R}, (6.52)

L(v) = C
∫

Ω

vdx,C > 0. (6.53)
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6.8.1 Exact solutions and regularity properties

The solution of (6.1) corresponding to (6.52), (6.53) is given in sec. 2 of
this Chap. We recall that, iff < CR

2 then


u ∈ V ∩W2,∞(Ω),

u < V ∩ H3(Ω).
(6.54)

In the sequel we assume thatg < CR
2 .

6.8.2 Approximation by finite element of order 1

Let Ch be a finite triangulation ofΩ satisfying (2.22), (2.23) of Sec. 2.5,
Chap. 2 and

∀T ∈ Ch,T ⊂ Ω. (6.55)

DefineΩh andΓh by

Ωh =
⋃

T∈Ch

T, Γh = ∂Ωh.

ThenΩh ⊂ Ω and in the sequel we assume thatΓh satisfies

all the vertices ofΓh belongs toΓ. (6.56)

Then we approximateV by

Vh = {vh ∈ C0(Ωh) : vh = 0 onΓh, vh|T ∈ P1 ∀T ∈ Ch}.

Now Vh can be considered as a subspace ofV, obtained by extending
vh ∈ Vh toΩ by taking zero inΩ−Ωh. It is then possible to approximate
(6.1) by


µa(uh, vh − uh) + g j(vh) − g j(uh) ≥ C

∫
Ω

(vh − uh)dx∀vh ∈ Vh,

uh ∈ Vh.

(6.57)
This is a finite dimensional problem which has a unique solution.104
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6.8.3 Error estimate

In this section we will obtain an error estimate of orderh
√
− logh. The

three following lemmas play an important role in obtaining the above
error estimate.

Lemma 6.1. Let [−→p], [−→q ] ∈ R2 − {{−→0}. Then

∣∣∣∣∣∣
−→p
|−→p |
−
−→q
|−→q |

∣∣∣∣∣∣ ≤ 2
|−→p − −→q |
|−→p | + |−→q |

. (6.58)

Proof. We have

(|−→p | + |−→q |)
( −→p
|−→q |
−
−→q
|−→q |

)
= (−→p − −→q ) +

(
|−→q |
|−→p |
−→p −

|−→p |
|−→q |
−→q

)
.

But ∣∣∣∣∣∣
|−→q |
|−→p |
−→p − |

−→p |
−→q
−→q

∣∣∣∣∣∣
2

= |−→p |2 + |−→q |2 − 2−→p · −→q = |−→p − −→q |2.

Consequently,

(|−→p | + |−→q |)
∣∣∣∣∣∣
−→p
|−→q |
−
−→q
|−→q |

∣∣∣∣∣∣ ≤ 2|−→p − −→q |

which obviously implies (6.58). �

REMARK 6.7. In (6.58), 2 is the best possible constant (take−→p = −−→q ).
Moreover(6.58)is also true inRN, ∀N

Lemma 6.2. Let u and uh be the solutions of(6.1) and (6.57) respec-
tively.

Let p satisfy (6.17), (6.18); then we have



µa(un − u, un − u) ≤ µa(un − u, vh − u)

+g
∫
Ω

(ph − p) · ∇(vh − u)dx∀vh ∈ Vh

and ∀ph ∈ Λ such thatph · ∇vh = |∇vh|a.e
(6.59)
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Proof. We shall prove (6.59) withf ∈ V∗. 105

From (6.45) we have



µa(uh − u, uh − u) ≤ µa(uh − u, vh − u) + g j(vh)

−g j(u) + µa(u, vh − u)

− < f , vh − u > ∀vh =∈ Vh.

�

Taking account of (6.17) we obtain



µa(uh − u, uh − u) ≤ µa(uh − u, vh − u) + g j(vh) − g j(u)

−g
∫
Ω

p · ∇(vh − u)dx

∀vh ∈ Vh.

(6.60)

Let vh ∈ Vh andph ∈ Λ such thatph · ∇vh = |∇vh|a.e.; such aph always
exists. Substituting this in (6.60) and using the followingrelations

j(vh) =
∫

Ω

ph · ∇vhdx, (6.61)

j(u) =
∫

Ω

|∇u|dx ≥
∫

Ω

ph · ∇udx, (6.62)

we obtain (6.59).
This proves the Lemma.
Let u be the solution of (6.1) andδ > 0. DefineΩδ ⊂ Ω by

Ωδ = {x ∈ Ω : |∇u(x)| > δ}.

In the case of the problem (6.1) associated with (6.52), (6.53) (assuming
g < CR

2 ) we have

Lemma 6.3. We have the following identity

∫

Ωδ

dx
|∇u|
=

4πµ
C

[
−

2µ
C
δ +

(
R−

2g
c

)
+

2g
C

log

(
R−

2g
C

)
−

2g
C

log
2µ
C
δ

]
.

(6.63)
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Proof. We obtain from (6.16)
∣∣∣∣∣
du
dr

∣∣∣∣∣ =
1
µ

(Cr
2
− g

)
if

2g
C
≤ r ≤ R,

so that ∫ δ

Ω

dx
|∇u|
= 2πµ

∫ R

2
C (µδ+g)

rdr
Cr
2 − g

,

which implies (6.63). � 106

From the above Lemmas we shall deduce

THEOREM 6.7. Let u be the solution of the problem(6.1) associated
with (6.52), (6.53). Let uh be the solution of the problem(6.57)with Ch

satisfying(6.55), (6.56). Assume that as h→ 0 the angles ofCh are
bounded from below uniformly in h byθ0 > 0. Then we have

‖ uh − u ‖V= 0(h
√
− logh). (6.64)

Proof. Starting from Lemma 6.2, we obtain from (6.59)

µ
2 ‖ uh − u ‖2V≤

µ
2 ‖ rhu− u ‖2V +g

∫
Ω
|ph − p| · |∇(rhu− u)|dx∀ph ∈ Λ

such thatph · ∇rhu = |∇rhu|,
(6.65)

whererhu is defined by

rhu ∈ Vh

(rhu)(P) = u(p)∀P ∈ vertex ofCh.

We haverhu = 0 onΩ −Ωh so that

‖ rhu− u ‖V=
∫

Ω

|∇(rhu−)|2dx=
∫

Ω−Ωh

|∇u|2dx+
∫

Ωh

|∇(rhu− u)|2dx.

(6.66)
�

Let us define

X1 =
µ

2

∫

Ω−Ωh

|∇u|2dx,
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X1 =
µ

2

∫

Ωh

|∇(rhu− u)|2dx.

It is easily shown that 107

meas.(Ω −Ωh) <
π

4
h2. (6.67)

Furthermore (6.16) implies that

|∇u(x)| ≤ C
2µ

(
R− 2g

C

)
∀x ∈ Ω. (6.68)

It follows from (6.67) and (6.68) that

X1 ≤
π

32µ
C2

(
R−

2g
C

)2

h2. (6.69)

Sinceu ∈W2,∞(Ω), on each triangleT ∈ Ch we have (cf. CIARLET
- WAGSHAL [1])

|∇(rhu− u)(x)| ≤ 2h
sinθ0

‖ ρ(D2u) ‖L∞(Ω) , (6.70)

whereD2u(x) is the Hessian matrixof u at x, defined by

D2u(x) =



∂2u
∂x2

1
(x) ∂2u

∂x1∂x2
(x)

∂2u
∂x1∂x2

(x) ∂2u
∂x2

2
(x)



andρ(D2u(x)) is thespectral radiusof D2u(x)
We have

D2u(x) = 0 if 0 < r <
2g
C

(6.71)

so thatρ(D2u(x)) = 0 and it is easily verified that

ρ(D2u(x)) =
C
2µ

if
2g
C

< r < R. (6.72)

Then (6.70)–(6.72) imply

X2 ≤
π

µ
R(R−

2g
C
+ h)C2

(
h

sinθ0

)2

. (6.73)
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So it remains to estimate in (6.65) the termg
∫
Ω
|ph − p| · |∇(rhu− u)|dx108

We have

Ω =

6⋃

i=3

Ωi , (6.74)

where

Ω3 = Ω −Ωh,

Ω4 = {x ∈ Ωh : r >
2g
C
+ h},

Ω5 = {x ∈ Ωh :
2g
C
− h < r <

2g
C
+ h},

Ω6 = {x ∈ Ωh : 0 ≤ r <
2g
C
− h}.

Let us define for 3≤ i ≤ 6

Xi = g
∫

Ωi

|ph − p| · |∇(rhu− u)|dx. (6.75)

We haverhu = 0 overΩ −Ωh so that in (6.65) we can take

ph = 0 overΩ −Ωh. (6.76)

From (6.67), (6.68), (6.70) andp ∈ Λ it follows that

X3 ≤ g
∫

Ω−Ωh

|∇u|dx ≤
π

8µ
gC(R−

2g
C

)h2. (6.77)

From (6.70)–(6.72) and sincep, ph ∈ Λ we have

X5 ≤ 2g
C
µ

meas.(Ω5)
h

sinθ0
,

so that

X5 ≤
16π
µ

g2 h2

sinθ0
. (6.78)

From the definition ofh(h = maximal length of the edges ofT ∈
Ch) we haverhu = u = constant overΩ6, so that

X6 = 0. (6.79)
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It remains to estimateX4. Since the equipotential ofu in Ω4 are 109

circular, forh sufficiently small we have from (6.16) that


rhu|T , constant ∀T ∈ Ch,T ⊂ Ω4, so that

∇rhu|T , 0 ∀T ∈ Ch,T ⊂ Ω4.
(6.80)

Taking account of (6.80) it follows from (6.65) that

ph|T =
∇rhu
|∇rhu|

∣∣∣∣∣
T
∀T ∈ Ch,T ⊂ Ω4. (6.81)

Furthermore we observe that (6.16) implies that

|∇u(x)| ≥ Ch
2µ

> 0∀x ∈ Ω4. (6.82)

This in turn implies that

p =
∇u(x)
|∇u(x)|

∀x ∈ Ω4.

It follows from (6.80)–(6.82), applying Lemma 6.1. to the pair {∇rhu,
∇u} and Lemma 6.3 withδ = Ch

2µ , that

X4 ≤ g ‖ ∇(rhu− u) ‖2∞
∫

Ω4

dx
|∇u| + |∇rhu|

,

where
‖ ∇v ‖∞=‖ ∇v ‖L∞(Ω)×L∞(Ω) .

It follows from (6.70) and (6.82) that

X4 ≤ g
C2

µ2

(
Ch

sinθ0

)2 ∫

Ω0

dx
|∇u|

,

which implies, using (6.63), that

X4 ≤
4π
µ

gC

(
h

sinθ0

)2 [
−h+

(
R−

2g
C

)
+

2g
C

log

(
R−

2g
C

)
2g
C

logh

]
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or more simply

X4 ≤
4π
µ

gC

(
h

sinθ0

)2 (
R− 2g

C
log

h
R

)
. (6.83)

110

Taking into account (6.65), the estimate (6.64) is obtainedby addi-
tion of theXi , i = 1, . . . , 6. More precisely, for sufficiently smallh,

‖ uh − u ‖V≤ 4
g
µ

√
π

h
sinθ0

√
− logh. (6.84)

6.8.4 Generalization

From the numerical experiments, we have done, it seems that in a great
of cases (important from the point of view of application we have the
following properties foru:

(1) u ∈ V ∩W2,∞(Ω),

(2) Ω0 = {x : ∇u(x) = 0} is a compact subset ofΩ with smooth bound-
ary,

(3) Ω0 has a finite number of connected components.

Moreover it seems that in the above cases we can conjecture that for
δ > 0 we still have ∫

Ωδ

dx
|∇(x)|

= 0(− logδ). (6.85)

With these properties we can easily prove the following error esti-
mate:

‖ uh − u ‖V= 0
(
h
√
− logh

)
.

REMARK 6.8. Using an equivalent formulation of(6.1) (less suitable
for computations) FALK-MERCIE [1] have obtained an0(h) estimate
for ‖ uh − u ‖H1(Ω) for the piecewise linear approximation.
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6.9 Iterative solution of the continuous and approximate prob-
lems by Uzawa’s algorithm

We begin with the continuous problem (6.1). Let us defineL : V×H →
R by

L (v, q) =
µ

2
a(v, v) − L(v) + g

∫

Ω

q · ∇vdx∀v ∈ V, ∀q ∈ H,

whereH = L2(Ω) × L2(Ω).
Let {u, p} be the solution of (6.17), (6.18). Then we have111

THEOREM 6.8. The pair{u, p} is a saddle point ofL over V×Λ ⇐⇒
{u, p} satisfies(6.17)and (6.18).

Exercise 6.5.Prove the Theorem 6.8.
It follows from CEA [2, Chap. 5] (see also G.L.T.[2, Chap. 5])that

to solve (6.1) we can use the following Uzawa’s algorithm.

p0 ∈ Λ arbitrarily chosen (for example p= 0 ), (6.86)

then by induction knowing pn we compute un and pn+1 by

µa(un, v) =< f , v > −g

∫
Ω

pn · ∇vdx∀v ∈ V,

un ∈ V,
(6.87)

pn+1 = PΛ(pn + ρg∇un), (6.88)

where PΛ : H → Λ is the projection operator in the H-norm, defined by

PΛ(q) =
q

sup(1, |q|)
.

Sinceun is a solution of (6.87),un is actually the unique solution in
V of 

−µ∆un = f + g∇ · pn,

un|Γ = 0.
(6.89)

We shall give a direct proof for the convergence of (6.86)–(6.88)
based on the theorem 6.3 of Sec. 6.6
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THEOREM 6.9. Let un be the solution of(6.87). Then if

0 < ρ <
2µ
g2
, (6.90)

we have
lim
n→∞
‖ un − u ‖V= 0, (6.91)

where u is the solution of(6.1). 112

Proof. Let {u, p} satisfies (6.17) and (6.18). Then (6.18) implies

p = PΛ(p+ ρg∇u). (6.92)

We defineu−n = un − u, p−n = pn − p. Using the fact thatPΛ is a
contraction mapping and from (6.88), (6.92) we obtain

|p−n+1|2 ≤ |p−n|2 + 2ρg
∫

Ω

p−n · ∇u−ndx+ ρ2g2
∫

Ω

|∇u−n|2dx, (6.93)

where
|q| =‖ q ‖L2(Ω)×L2(Ω) .

It follows from (6.17), (6.87) that

µa(u−n, v) + g
∫

Ω

p−n.∇vdx= 0∀v ∈ V, (6.94)

Replacingv by u−n in (6.94) we obtain

µa(u−n, u−n) + g
∫

Ω

p−n · ∇v−ndx= 0. (6.95)

From (6.93) and (6.95) we have

|p−n|2 − |p−n+1|2 ≥ ρ(2µ − ρg2) ‖ u−n ‖2V . (6.96)

If 0 < ρ <
2µ
g2 then using a standard reasoning, we obtain that

lim
n→∞
‖ u−n ‖V= 0,

which proves the Theorem. �
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Let us describe the adaptation of (6.86)–(6.88) to the approximate
problem (6.37). We defineLn ⊂ L2(Ω) × L2(Ω) by

Lh = {qh : qh =
∑

T∈Ch

qT XT , qT ∈ R2∀T ∈ Ch}

whereXT is the characteristic function ofT.113

It is then clear that∀vh ∈ Vh, ∇vh ∈ Lh. We also defineΛh by
Λh = Λ ∩ Lh. We can easily prove that

PΛh(qh) = PΛ(qh) ∀qh ∈ Lh.

Then (6.86)–(6.88) is approximated by

p0
h ∈ Λh arbitrarily chosen, (6.97)

by induction knowing pnh we obtain unh and pn+1
h by


µa(un

h, vh) = L(vh) − g
∫
Ω

pn
h · ∇vhdx∀vh ∈ Vh,

un
h ∈ Vh,

(6.98)

pn+1
h = PΛ(pn

h + ρg∇un
h). (6.99)

Then for 0< ρ <
2µ

g2
we obtain the convergence ofun

h to uh.

Exercise 6.6.Study the convergence of(6.97)–(6.99)

REMARK 6.9. The above methods have been numerically applied for
solving (6.1) in CEA-GLOWINSKI [2], BRISTEAU [1], BRISTEAU-
GLOWINSKI [1], G. L. T. [2, Chap. 5]. They appear to be very effi-
cient and particularly well suited to take into account non-differentiable
functionals like

∫
Ω
|∇v|dx.

7 On Some Useful Formulae

Let T be the triangle of Figure 7.1. We denoted byM(T) the measure of
T.
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Figure 7.1:

Let v be a function defined onT. We definevi andv jk by 114

vi = v(Mi), v jk = v(M jk).

Then we have the following formulae

∫

T
uvdx=

M(T)
12
{(u1 + u2)(v1 + v2) + (u2 + u3)(v2 + v3)

+ (u3 + u1)(v3 + v1)} ∀u, v ∈ P1, (7.1)



|∇v|2 = 1
4M(T)2 {|

−−−−−→
M2M3|2v2

1 + |
−−−−−→
M3M1|2v2

2 + |
−−−−−→
M1M2|2v2

3

+
−−−−−−→
2M2M3 ·

−−−−−→
M3M1v1v2

+
−−−−−−→
2M1M2 ·

−−−−−→
M2M3v3v1 +

−−−−−−→
2M3M1 ·

−−−−−→
M1M2v2v3},

∀v ∈ P1,

(7.2)



∫
T
|v|2dx

=
M(T)

3 {
1
10(v2

1 + v2
2 + v2

3) + 8
15(v2

22 + v2
23+ v2

31) −
1
30(v1v2 + v2v3 + v3v1)

+ 8
15(v12v23+ v23v31+ v31v12) − 2

15(v1v23 + v2v31+ v3v12)}, ∀v ∈ P2,

(7.3)
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

∫
T
|∇v|2dx= 1

12M(T) {|v1
−−−−−→
M2M3 − v2

−−−−−→
M3M1 + v3

−−−−−→
M1M2

+2(v12 + v23− v31)
−−−−−→
M3M1|2

+|v1
−−−−−→
M2M3 + v2

−−−−−→
M3M1 − v3

−−−−−→
M1M2 + 2(v23 + v13− v12)

−−−−−→
M1M2|2+

+| − v1
−−−−−→
M2M3 + v2

−−−−−→
M3M1 + v3

−−−−−→
M1M2 + 2(v31 + v12− v23)

−−−−−→
M2M3|2} ∀v ∈ P2.}

(7.4)
115

The above formulae may be useful to express the approximations of
the problems of this chapter, in a from suitable for computations.



Chapter 3

On The Approximation of
Parabolic Variational
Inequalities

1 Introduction References

In this chapter we would like to give some indications on the approxima- 116

tion of Parabolic Variational Inequalities(PVI) (mostly without proof).
For a detailed treatment see G. L. T. [2 Chap. 6], TREMOLIERES[1],
and for further reference see FORTIN [1], BRISTEAU [1], BRISTEAU-
GLOWINSKI [1], C. JOHNSON [1] and A. BERGER [1]. See also
LASCAUX [1] for the numerical analysis oftime dependent equations.

2 Formulation And Statement of The Main Results

Let H andV be two real Hilbert spaces thatV ⊂ H, V = H. Assuming
thatH = H∗ we have thenV ⊂ H ⊂ V∗.

The scalar product inH (resp. . inV) and the corresponding norms
are denoted by (·, ·),| · | (resp. . ((·, ·)), || · ||). Moreover we also use (·, ·)
for the duality betweenV∗ andV.

We now introduce:

117
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• A time interval [0,T] with 0 < T < ∞, a bilinear froma : V×V →
R, continuous andelliptic in the following sense :∃α > 0 and
λ ≥ 0 such that

a(v, v) + λ|v|2 ≥ α||v||2 ∀vεV,

•
fεL2(0,T; V), u0 ∈ H,

(for the definition ofL2(0,T; X)) see LIONS [1], [3])

• K : closed, convex, non-empty subset ofV,

• j : V → R convex, proper, l.s.c

We consider then the following two families of PVI:


Find u(t) such that(
∂u
∂t , v− u

)
+ a(u, v− u) ≥ ( f , v− u) ∀vεK, a.e. t ∈]0,T[,

u(t) ∈ K a.e. t ∈]0,T[, u(0) = u0,

(2.1)

and117 

Findu(t) such that

( ∂u
∂t , v− u) + a(u, v− u) + j(v) − j(u) ≥ ( f , v− u) ∀v ∈ V, a.e. t ∈]0,T[,

u(t) ∈ V a.e. t ∈]0,T[, u(0)= u0.

(2.2)

REMARK 2.1. If K = V and J≡ 0 then(2.1) and (2.2) reduce to the
standard parabolic variational equation


(∂u
∂t , v) + a(u, v) = ( f , v) ∀v ∈ V, a.e. in t ∈]0,T[,

u(t) ∈ V a.e. t ∈]0,T[, u(0) = u0.
(2.3)

Under appropriate assumptions onu0, K and j(·) it is proved that
(2.1), (2.2) have unique solutions inL2(0,T; V) ∩ C0([0,T],H). For
the proof of this we refer to BREZIS [4], [5]; LIONS [1],DUVAUT-
LIONS[1].

In the following sections of this chapter we would like to give some
discretisation schemes for (2.1), (2.2) and then in sec. 6 study the
asymptotic properties in time of a specific example, for the continuous
and discrete cases.
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3 Numerical Schemes For Parabolic Linear Equa-
tions

Let us assume thatV andH have been approximated (ash→ 0) by the
same family (Vh)h of closed subspaces ofV (in practice theVh are finite
dimensional). We also approximate (·, ·), a(·, ·) by (·, ·)h, ah(·, ·) is such a
way that ellipticity, symmetry etc. are preserves. We also assume thatu0

is approximated by (uoh)h such thatuoh ∈ Vh and lim
h→0

u0h = u0 strongly

in H.
We now introduce atime step∆t; then denotingun

h the approxima-
tion of u at timet = n∆t (n = 0, 1, 2, . . . , ), we approximate (2.3) using
the classical step by step numerical schemes (i.e. we describe how to
computeun+1

n ) if un
h andun−1

h are known).

1. Explicit scheme. 118



un+1
n −un

h
∆t , vh)h + ah(un

h, vh) = ( f n
h , vh)h ∀vh ∈ vh,

n = 0, 1, . . . ,

u0
h = u0h.

(3.1)

Stability. (see LASCAUK [1]) for the terminology)conditional.
Accuracy. 0(∆t) (we just consider the influence of the time dis-
cretisation).

2. Ordinary implicit scheme.



(
un+1

n −un
h

∆t , vh

)

h
+ ah(un+1

h , vh) = ( f n+1
h , vh)h ∀vh ∈ Vh,

n = 0, 1, 2, . . . ,

u0
h = u0h.

(3.2)

Stability. Unconditional.

Time accuracy. 0(∆t)
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3. Cranck-Nicholson scheme.



(
un+1

h −un
h

∆t , vh

)

h
+ ah

(
un+1

h +un
h

2 , vh

)
=

(
f n+1
h + f n

h
2 , vh

)

h
∀vh ∈ Vh

or = ( f n+1/2
h , vh)h ∀vh ∈ Vh

n = 0, 1, 2, . . . , ; u0
h = uoh.

(3.3)
Stability. Unconditional.

Time accuracy. 0(|∆t|2).

4. Two steps implicit scheme.


(

3
2un+1

h −2un
h+

1
2un−1

n

∆t , vh)h + ah(un+1
h , vh) = ( f n+1

h , vh)h ∀vh ∈ Vh,

n = 1, 2, . . . , u0
h = u0h, u1

h given .
(3.4)

Stability. Unconditional.119

Time accuracy. 0(|∆t|2).

Unlike the three previous schemes, this latter scheme requires the
use of astarting procedureto obtainu1

h from u0
h = u0h; to compute

u1
h we can use for example one of the scheme (3.1), (3.2) or (3.3);we

recommend (3.3) since it is also an 0(|∆t|2)-scheme. Similarly the gen-
eralisations of scheme (3.4) discussed in Sec. 4, 5 will require the use of
a starting procedure which can be the corresponding generalization of
schemes (3.1), (3.2) or (3.4).

REMARK 3.1. The vector fnh (or f n+1/2
h ) occurring in the right hand

sides of(3.1)- (3.4) is a convenient approximation of f at t= n∆t (or
t = (n+ 1

2)∆t).
In some cases it may be defined as follows (we just consider fn

h since

the technique described below is also applicable to fn+1/2
n ).

First we definef n ∈ V∗, by

f n = f (n∆t) if f ∈ C0[0,T; V∗].
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In the general case, it is defined by

f 0 =
2
∆t

∫ ∆t
2

0
f (t)dt,

f n =
1
∆t

∫ (n+ 1
2 )∆t

(n− 1
2)∆t

f (t)dt if n ≥ 1.

Then since (·, ·)h is a scalar product onVn one may definef n
h by

( f n, vh) = ( f n
h , vh)h ∀vh ∈ Vh, f n

h ∈ Vh.

In some cases we have to use more sophisticated methods to define f n
h .

REMARK 3.2. At each step(n+ 1) we have to solve a linear system to
compute un+1

h ; however if we can use a scalar product(·, ·)h leading to
a diagonal matrix, with regard to the variables defining vh, then the use
explicit scheme will only require to solveone variable linear equations
at each step.

REMARK 3.3. We can also use nonconstant time steps∆tn.

REMARK 3.4. If we are interested in the numerical integration of120

“Stiff” phenomenonor in long range integrationwe can briefly say that

• Schemes(3.1), (3.2) are too dissipative, moreover the stability
condition in(3.1)may be a serious drawback.

• Scheme(3.3) is, in some sense,not sufficiently dissipative.

• Scheme(3.4) avoids the above inconveniences and is highly rec-
ommended for “Stiff” problems and long range integration. In
most cases the extra storage it requires is not a serious drawback.

REMARK 3.5. There are many works related to the numerical analysis
of parabolic equations via finite differences in time and finite elements in
space approximations. We refer to RAVIART [1], [2], CROUZEIX [1],
STRANG-FIX [1], ODEN-REDDY [1, CHAP. 9] and the bibliographies
therein.
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4 Approximation of PVI of The First Kind

We assume thatK in (2.1) has been approximated by (Kh), Kh ⊂ Vh∀h ,
like in the elliptic case (see Chap. 1). We also suppose that the bilinear
form a is possibly dependent on the timet and has been approximated
by a(t; uh, vh).

1. Explicit scheme.


(
un+1

h −un
h

∆t , vh − un+1
h

)

h
+ ah(n∆t; un

h, vh − un+1
h )

≥ ( f n
h , vh − un+1

h )h ∀vh ∈ Kh,

un+1
h ∈ Kh,

n = 0, 1, 2, . . . , u0
h = u0h.

(4.1)

Stability. Conditional(see G.L.T [2, Chap 6]). This scheme is
almost never used in practice since it is conditional stableand
that the computation ofun+1

h will require in general, the use of
an iterative methodevenif the matrix corresponding to (·, ·)h is
diagonal.

2. Ordinary implicit scheme.121


(
un+1

h −un
h

∆t , vh − un+1
h

)

h
+ ah((n+ 1)∆t; un+1

h , vh − un+1
h )

≥ ( f n+1
h , vh − un+1

h ) ∀vh ∈ Kh,

un+1
h ∈ Kh,

n = 0, 1, 2, . . . , u0
h = uoh.

(4.2)

Stability. Unconditional.

At each step we have to solve an EVI of the first kind inKh to
computeun+1

h . This scheme is very much used in practice.

3. Crank-Nicholson scheme.


(
un+1

h −un
h

∆t , vh − un+1/2
h )h + ah((n+ 1

2)∆t; un+1/2
h , vh − un+1/2

h )

≥ f n+1/2
h , vh − un+1/2

h ) ∀vh ∈ Kh,

un+1/2
h ∈ Kh, u

n+1/2
h =

un
h+un+1

h
2 , nn= 0, 1, 2, . . . , u0

h = u0h.

(4.3)
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Stability. Unconditional.

Since
un+1

h − un
h

∆t
=

un+1/2
h − un

h

∆t
2

, we observe that ateach stepwe

have to solve an EVI of thefirst kind to computeun+1/2
h . We ob-

serve also that possiblyun
h < Kh. We do not recommend this

scheme if the regularity in time of the continuous solution is poor.

4. Two steps implicit schemes.



3
2un+1

h −2uh
h+

1
2un−1

h
∆t , vh − un+1

h )h + ah((n+ 1)∆t; un+1
h , vh − un+1

h )

≥ ( f n+1
h , vh − un+1

h )h ∀vh ∈ Kh, un+1
h ∈ Kh,

n = 1, 2, . . . , u0
h = u0h, u1

h given.
(4.4)

Stability. Unconditional.We have to solve at each step an EVI of
the first kind inKh to computeun+1

h . Remark 3.4 applies to this
scheme also.

5 Approximation of PVI of The Second Kind

1. Explicit scheme 122


(

un+1
h −un

h
∆t , vh − un+1

h )h + ah(n∆t; un
h, vh − un+1

h ) + jh(vh)(un+1
h ) ≥

≥ f n
h , vh − un+1

h ) ∀vh ∈ Vh, un+1
h ∈ Vh, n = 0, 1, 2, . . . , u0

h = u0h.

(5.1)
Stability. Conditional.

This scheme is also almost never used in practice since it is con-
ditionally stable and the the computation ofun+1

h will require the
solution of an EVI of thesecond kindin Vh (in general by an itera-
tive method) even if the matrix corresponding to (·, ·)h is diagonal.
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2. Implicit scheme.



(
un+1

h −un
h

∆t , vh − un+1
h

)

h
+ ah((n+ 1)∆t; un+1

h , vh − un+1
h )

+ jh(vh) − jh(un+1
h )

≥
(
f n+1
h , vh − un+1

h

)
∀vh ∈ Vh, un+1

h ∈ Vh,

n = 0, 1, 2, . . . , u0
h = u0h.

(5.2)

Stability.Unconditional.

At eachstepwe have to solve an EVI of thesecond kindin Vh to
computeun+1

h .

3. Cranck-Nicholson scheme.


(
un+1

h −un
h

∆t , vh − un+1/2
h )h + ah(n+ 1

2)∆t;

un+1/2
h + jh(vh) − jh(un+1/2

h )

≥ f n+1/2
h , vh − un+1/2)h ∀vh ∈ Vh, u

n+1/2
h ∈ Vh, u

n+1/2
h =

un
h+un+1

h
2 ,

n = 0, 1, 2, . . . , u0
h = u0h.

(5.3)
Stability. Unconditional.

Since
un+1

h − un
h

∆t
=

un+1/2
h − un

h
∆t
2

we observe that ateach stepwe123

have to solve an EVI of thesecond kindto computeun+1/2
h . If the

regularity in time of the solution is poor we do not recommend
this scheme.

4. Two steps implicit scheme.


3
2un+1

h −2un
h+

1
2un−1

h
∆t , vh − un+1

h )h + jh(vh) − jh(un+1
h )

+ah((n+ 1)∆t; un+1
h , vh − un+1

h )

≥ ( f n+1
h , vh − un+1

h ) ∀vh ∈ Vh,

n = 0, 1, 2, . . . , ; u0
h = u0h, u1

h given .

(5.4)

We use one of above schemes (5.1)-(5.3) to computeu1
h, starting

from u0
h = u0h. Stability. Unconditional.



6. Application to a Specific Example:... 125

We have to solveat each stepan EVI of thesecond kindin Vh to
computeun+1

h . Remark 3.4 applies for this scheme also.
Comments. The properties of stability and convergence of the var-

ious schemes of Sec. 4, 5 are studied in the references given in Sec. 1.
In some cases error estimates also have been obtained.

In FORTIN [1], G.L.T [2, Chap. 6], applications to more compli-
cated PVI than (2.1), (2.2) are also given. For the numericalanalysis
of hyperbolic variational inequalities see G.L.T[2, Chap.6], TREMO-
LIERES [1].

6 Application to a Specific Example: Time Depen-
dent Flow of a Bingham Fluid in a Cylindrical
Pipe

Following GLOWINSKI [4], we consider the time dependent problem
associated to the EVI of Chap. 2. 6, and study its asymptotic properties.

6.1 Formulation of the problem. Existence and uniqueness
Theorem

LetΩ be a bounded domain ofR2 with a smooth boundaryΓ. We con-
sider:

• V = H1
0(Ω)H = L2(Ω), V∗ = H−1(Ω),

• a(u, v) =
∫
Ω

, ∆∇u.∆∇vdx,

• A time interval [0,T], 0 < T < ∞, 124

• f ∈ L2(0,T; V∗), u0 ∈ H,

• j(v) =
∫
Ω
|∇v|dx,

• µ > 0, g > 0.

We have then the following
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THEOREM 6.1. The PVI

(∂u
∂t , v− u) + µa(u, v− u) + g j(v) ≥ ( f , v− u) ∀v ∈ V a.e t ∈]0,T[,

u(x, 0) = u0(x),
(6.1)

has a unique solution u such that

u ∈ L2(0,T; V) ∩C0([0,T]; H),
∂u
∂t ∈ L2(0,T,V∗)

and this∀u0 ∈ H, ∀ f ∈ L2(0,T; V∗). For a proof of this see LIONS-
DUVAUT [1, Chap.6].

6.2 The asymptotic behaviour of the continuous solution.

Assume that iff is independent oft and thatf ∈ L2(Ω). We consider
the following stationary problem


µa(u, v− u) + g j(v) − g j(u) ≥ ( f , v− u) ∀v ∈ V,

u ∈ V.
(6.2)

It is proved in LIONS-DUVAUT [1, Chap.6] (see also Chap.2, Sec.6
of these notes), that

u ≡ 0 if gβ ≥ || f ||L2(Ω), (6.3)

where

β = inf
vεV

j(v)
||v||L2(Ω)

. (6.4)

Then we can prove the following125

THEOREM 6.2. Assume that f∈ L2(Ω) with || f ||L2(Ω) < βg, then if u
is the solution of(6.1), we have

u(t) = 0 for t ≥ 1
λ0µ

log(1+ λ0µ
||u0||L2

βg− || f ||L2
) (6.5)

whereλ0 is the smallest eigenvalue of−∆ in H1
0(Ω)(λ0 > 0).
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Proof. We use| · | for the L2(Ω) -norm and|| · || for the H1
0(Ω)-norm.

Since f ∈ L∞(R+, L2(Ω)) it follows from Theorem 6.1 that the solution
of (6.1) is defined on the whole ofR+. �

We observe now that ifgβ > | f | the zero is the unique solution of
(6.2); if follows then from Theorem 6.1 that ifu(t0) = 0 for somet0 ≥ 0
then

u(t) = 0∀t ≥ t0. (6.6)

Takingv = 0 andv = 2u in (6.1) we obtain

(
∂u
∂t
, u) + µa(u, u) + g j(u) = ( f , u) a.e. in t. (6.7)

But sincev ∈ L2(0,T; V), v′ ∈ L2(0,T,V∗) implies (this is a general
result) thatt → |v(t)|2 is absolutely continuouswith d

dt |v|
2 = 2(dv

dt , v); we
obtain from (6.7) that


1
2

d
dt |u|

2 + µa(u, u) + g j(u) = ( f , u)

≤ | f | · |u| a.e in t.
(6.8)

Sincea(v, v) ≥ λ0|v|2 ∀v ∈ V, and j(v) ≥ β|v| ∀v ∈ V (from(6.4)), we
obtain from (6.8) that

1
2

d
dt
|u|2 + µλ0|u|2 + (gβ − | f |)|u| a.e in t ∈ R+. (6.9)

Assume thatu(t) , 0∀t ≥ 0; sincet → |u(t)|2 is absolutely continu-
ous with|u(t)| > 0 it follows that→ |u(t)| is also absolutely continuous.
Therefore (6.9) we obtain

d
dt
|u(t)| + µλ0|u(t)| + (gβ − | f |) ≤ 0 a.e t ∈ R+. (6.10)

It follows from (6.10) that 126

d
dt |u(t)|

|u(t)| + gβ−| f |
µλ0

≤ −µλ0 a.e. t ∈ R+. (6.11)
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Defineγ by γ =
gβ − | f |
µλ0

, thenγ > 0. It follows then by integrating

(6.11) that
|u(t)| + γ ≤ (|u0| + γ)e−µλ0t ∀t ∈ R+; (6.12)

(6.12) is absurd fort large enough. Actually we haveu(t) = 0 if

−γ ≥ (|u0| + γ)e−µλ0t,

i. e.

t ≥
1
λ0µ

log(1+
λ0µ||u0||L2(Ω)

gβ − || f ||L2(Ω))
. (6.13)

Exercise 6.1.Let f ∈ L2(Ω) with possibly| f | ≥ g · β. Let us denote by
u∞ the solution of(6.2); theorem prove that

|u(t) − u∞| ≤ |u0 − u∞|e−λ0µt

where u(t) is the solution of(6.1) .

6.3 On the asymptotic behaviour of the discrete solution.

We still assume thatf ∈ L2(Ω). To approximate (6.1) we proceed as
follows : assuming thatΩ is a polygonal domain, we use the same ap-
proximation with regard to the space variables as in Chap. 2,Sec. 6
(i.e. by means of piecewise linear finite elements, see Chap.2, Sec. 6).
Hence we have


ah(uh, vh) = a(uh, vh) ∀uh, vh ∈ Vh,

jh(vh) = j(vh) ∀vh ∈ Vh,

and from the formulae of Chap. 2, Sec. 7 we can also take127

(uh, vh)h = (uh, vh) ∀uh, vh ∈ Vh.

Then we approximate (6.1) by theimplicit scheme(5.2) and we ob-
tain

(

un+1
h −un

h
∆t , vh − un+1

h ) + µ
∫
Ω
∇un+1

h · ∇(vh − un+1
h )dx+ j(vh) − j(un+1

h )

≥ ( fh, vh − un+1
h )∀vh ∈ Vh, un+1

h ∈ Vh; n = 0, 1, 2, . . . , ; u0
h = u0h.

(6.14)
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We assume thatu0h ∈ Vh ∀h and

lim
h→0

u0h = uo strongly inL2(Ω). (6.15)

Similarly we assume thatf is approximated by (fh)h in such a way that
( fh, vh) can be computed easily and

lim
h→0

fh = f strongly inL2(Ω). (6.16)

THEOREM 6.3. Let | f | < βg. If (6.15) and (6.16) hold, then if h is
sufficiently small we have unh = 0 for n large enough.

Proof. As in the proof of Theorem 6.2, takingvh = 0 andvh = 2un+1
h in

(6.14) we obtain

un+1

h − un
h

∆t
, un+1

h

 + µ
∫

Ω

|∇un+1
h |

2dx+ g
∫

Ω

|∇un+1
h dx=

∫

Ω

fhun+1
h dx∀n ≥ 0;

(6.17)
using Schwarz inequality inL2(Ω), if follows from (6.17) that

|un+1
h | − |u

n
h|

∆t
|un+1

h | + µλ0|un+1
h |

2 + (gβ − | fh|)|un+1
h | ≤ 0 ∀n ≥ 0. (6.18)

�

Since fh→ f strongly in L2(Ω) we have

gβ − | fh| > 0 for h sufficiently small. (6.19)

It follows then from (6.18), (6.19) that

un0
h = 0⇒ un

h = 0 for n ≥ n0 if his small enough. (6.20)

Assume thatun
h , 0∀n; then (6.18) implies 128

|un+1
h | − |u

n
h|

∆t
+ µλ0|un+1

h | + gβ − | fh| ≤ 0∀n ≥ 0. (6.21)

We defineγh by γh = gβ − | fh| then,

γh > 0 for h small enough and lim
h→0

γh = γ = gβ − | f |. (6.22)
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It follows follows from (6.21) that
(
|un+1

h | +
γh

λ0µ

)
(1+ λ0µ∆t) ≤ |un

h| +
γh

λ0µ
∀n ≥ 0

which implies that
(
|un

h| +
γh

λ0µ

)
≤ (1+ λ0µ∆t)−n

(
|u0

h| +
γh

λ0µ

)
. (6.23)

Sinceγh > 0 for h small enough, (6.23) is impossible forn large
enough. More precisely we shall haveun

h = 0 if

γh

λ0µ
≥ (1+ λ0µ∆t)−n

(
|u0

h| +
γh

λ0µ

)
,

which implies:

If h is small enough, thenun
h = 0 if n ≥

log(1+ λ0µ
|u0

h|
γh

)

log(1+ λ0µ∆t).
(6.24)

Relation (6.24) makes the statement of Theorem 6.3 more precise.
Moreover in terms oftime, (6.24) implies thatun

h is equal to zero if

n∆t ≥ ∆t
log(1+ λ0µ

|u0
h|
γh

)

log(1+ λ0µ∆t)
. (6.25)

We observe that

lim
h→0
∆t→0

∆t
log(1+ λ0µ

|u0
h|
γh

)

log

(
1+ λ0µ∆t =

1
λ0µ

log(1+ λ0µ)
|u0|
γ

)

129

Hence taking the limit in (6.25) we obtain another proof (assuming
that un

h converges tou in some topology) of the estimate (6.5) given in
the statement of Theorem 6.2.

Exercise 6.2.Let u∞h be the solution of the time independent problem
associated to fh, possibly with| fh| ≥ β · g, then prove that

|un
h − u∞h | ≤ (1+ 2µλ0∆t)−n/2|u0

h − u∞h | n ≥ 0.
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6.4 Remarks

REMARK 6.1. We can generalize Theorem 5.1 to the case of a Bing-
ham flow in a 2-dimensional bounded cavity.

REMARK 6.2. In GLOWINSKI [5], BRISTEAU[1], BEGIS[1], numer-
ical verification of the above asymptotic properties have been performed
and found to be consistent with the theoretical predictions.

REMARK 6.3. One may find in H.BREZIS [5], many results on the
asymptotic behaviour of various PVI as t→ ∞.





Chapter 4

Applications of elliptic
variational Inequality
methods to the solution of
some nonlinear elliptic
equations

1 Introduction

For solving some non-linear elliptic equations it may be convenient, 130

from the theoretical and numerical points of view, to see them as EVI’s.

We shall consider in this chapter two examples of such situations:

(1) A family of mildly non-linear elliptic equations,

(2) A non-linear elliptic equation modelling the subsonic flow of a per-
fect compressible fluid.

133
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2 Theoretical and Numerical Analysis of Some
Mildly Non-Linear Elliptic Equations

2.1 Formulation of the continuous problem

Let Ω be a bounded domain ofRN(N ≥ 2) with a smooth boundaryΓ.
We consider

• V = H1
0(Ω),

• L(v) =< f , v >, f ∈ V∗ = H−1(Ω);

• a : V × V → R bilinear, continuous andV-elliptic with α > 0 as
ellipticity constant;a(·, ·) is possibly not symmetric;

• φ : R→ R, φ ∈ C0(R), non-decreasing withφ(0) = 0.

We then consider the following non-linear elliptic equation (P) de-
fined by :

Find u∈ V such that


a(u, v)+ < φ(u), v >= L(v) ∀v ∈ V,

φ(u) ∈ L1(Ω) ∩ H−1(Ω).
(P)

It follows from theRiesz representation Theoremthat there exists
A ∈ L (V,V∗) such thata(u, v) =< Au, v > ∀u, v ∈ V. Therefore (P) is
equivalent to 

Au+ φ(u) = f ,

u ∈ V,

φ(u) ∈ L1(Ω) ∩ H−1(Ω).

(2.1)

131

Example 1. Let us consider a function a0 ∈ L∞(Ω) such that

a0(x) ≥ α > 0 a. e. inΩ. (2.2)

Define a(·, ·) by

a(u, v) =
∫

Ω

a0(x)∇u · ∇vdx+
∫

Ω

β · ∇uvdx (2.3)

whereβ is aconstantvector inRN.
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From the definition ofa0(·) and using the fact that
∫
Ω
β · ∇vvdx =

0∀v ∈ H1
0(Ω), we clearly have

a(v, v) ≥ α||v||2V. (2.4)

From (2.3) we obtain

Au= −∇ · (a0∇u) + β · ∇u. (2.5)

Hence, in this particular case, (2.1) becomes


−∇ · (a0∇u) + β · ∇u+ φ(u) = f ,

u ∈ V, φ(u) ∈ L1(Ω).
(2.6)

REMARK 2.1. If N = 1, we have H10(Ω) ⊂ C0(Ω). Because of this in-
clusion there is no great difficulty in the study of one-dimensional prob-
lems of type(P). If N ≥ 2 the main difficulty is precisely related to the
fact that H1

0(Ω) is not contained in C0(Ω).

REMARK 2.2. The analysis given below may be extended to problems
in which either V = H1(Ω) or V is a convenient closed subspace of
H1(Ω).

2.2 A variational inequality related to (P)

2.2.1 Definition of the variational inequality
132

Let

Φ(t) =
∫ t

0
φ(τ)dτ, (2.7)

D(Φ) = {v ∈ V : Φ(v) ∈ L1(Ω)}. (4.1)

The functionalj : L2(Ω)→ R is defined by

j(v) =
∫

Ω

Φ(v)dx if Φ(v) ∈ L1(Ω), j(v) = +∞ if Φ(v) < L1(Ω). (4.2)
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Instead of studying the problem (P) directly, it is natural to associate to
(P) the following EVI of the second kind:


a(u, v− u) + j(v) − j(u) ≥ L(v− u) ∀v ∈ V,

u ∈ V.
(π)

If a(·, ·) is symmetric, a standard method to study (P) is to consider
it as theformal Euler equationof the following minimization problem
encountered in the Calculus of Variations


J(u) ≤ J(v) ∀v ∈ V,

u ∈ V,
(2.10)

whereJ(v) = 1
2a(v, v) +

∫
Ω
Φ(v)dx− L(v).

Exercise 2.1.Prove that D(Φ) is a convex, non-empty subset of V.

2.2.2 Properties of j(·).

Sinceφ : R → R is non-decreasing and continuous withφ(0) = 0, we
have

Φ ∈ C1(R),Φ convex,Φ(0) = 0;Φ(t) ≥ 0∀t ∈ R. (2.12)

The properties ofj(·) are given by the following

Lemma 2.1. The functional j(·) is convex, proper and 1.s.c. over L2(Ω).

Proof. Since j(v) ≥ 0∀ ∈ L2(Ω) it following that j(·) is proper. The133

convexity of j(·) is obvious from the fact thatΦ is convex.
Let us prove thatj(·) is l.s.c. Let (vn)n, vn ∈ L2(Ω) be such that

lim
n→∞

vn = v strongly inL2(Ω).

Then we have to prove that

lim inf
n→∞

j(vn) ≥ j(v). (2.13)

�
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If lim inf
n→∞

j(vn) = +∞ the property is proved. Therefore assume that

lim inf
n→∞

j(vn) = ℓ < ∞. Hence we can extract a subsequence (vnk)nk such

that

lim
k→∞

j(vnk) = ℓ, (2.14)

vnk → v a. e. inΩ. (2.15)

SinceΦ ∈ C1(R), (2.15) implies

lim
k→∞
Φ(vnk) = Φ(v) a.e.. (2.16)

MoreoverΦ(v) ≥ 0 a.e and (2.14) implies that

{Φ(vnk)}k is bounded inL1(Ω). (2.17)

Hence by Fatou’s Lemma, from (2.16) and (2.17), we have

Φ(v) ∈ L1(Ω),

lim inf
k→∞

∫
Ω
Φ(vnk)dx≥

∫
Ω
Φ(v)dx.

(2.18)

From (2.14) and (2.18) we obtain (2.13). This proves the lemma.

COROLLARY 2.1. The functional j(·) restricted to V is convex, proper,
l,s.c.

2.2.3 Existence and uniqueness results for(π) :

THEOREM 2.1. Under the above hypothesis on V, a(·, ·), L(·), φ(·) the 134

problem(π) has a unique solution in V∩ D(φ).

Proof. SinceV, a(·, ·), L(·), j(·) have the properties (cf. Corollary 2.1)
required to apply Theorem 4.1 of Chap. 1, Sec. 4, the EVI of thesecond
kind (π), has a unique solutionu in V. �

Let us show thatu ∈ D(Φ). Takingv = 0 in (π) we obtain

a(u, u) + j(u) ≤ L(u) ≤ || f || · ||u||V. (4.3)
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Since j(u) ≥ 0, using the ellipticity ofa(·, ·) we obtain

||u||V ≤
|| f ||
α
, (2.20)

which implies

j(u) ≤ || f ||
2

α
. (2.21)

This impliesu ∈ D(Φ).

REMARK 2.3. If a(·, ·) is symmetric,(π) is equivalent to(2.10).

2.3 Equivalence between(P) and (π)

In this section we shall prove that (P) and (π) are equivalent. First we
prove that the unique solution of (π) is also a solution of (P). In order to
prove this result we need to prove thatφ(u) anduφ(u) belong toL1(Ω).

Proposition 2.1. Let u be the solution of(π). Then uφ(u) andφ(u) be-
long to L1(Ω).

Proof. Here we use atruncationtechnique. Letn be a positive integer.
Define

Kn{v ∈ V : |v(x)| ≤ na.e.}.

SinceKn is a closed, convex, non-empty subset ofV, the following vari-
ational inequality


a(un, v− un) + j(v) − j(un) ≥ L(v− un) ∀v ∈ Kn,

un ∈ Kn
(πn)

has a unique solution (in order to apply Theorem 4.1 of Chapter 1, we135

need to replacej by j + Ikn whereIk is theindicator functionalof Kn).
Now we prove that lim

n→∞
un = u weaklyin V, whereu is the solution

of (π). Since 0∈ Kn, takingv = 0 in (πn) we obtain as in Theorem 2.1
of this chapter that

||un||V ≤
|| f ||
α
. (2.22)
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j(un) ≤ || f ||
2

α
. (2.23)

It follows from (2.22) that there exists a subsequence{unk} of (un)n

andau∗ ∈ V such that

lim
k→∞

unk = u∗ weakly inV. (2.24)

Moreover, from the compactness of the canonical injection from H1
0(Ω)

to L2(Ω) and form (2.24), it follows that

lim
k→∞

unk = u∗ strongly inL2(Ω). (2.25)

Relation (2.25) implies that we can extract a subsequence, still denoted
by (unk)nk, such that

lim
k→∞

unk = u∗ a. e. inΩ. (2.26)

Now let v ∈ V ∩ L∞(Ω); then, largek, havev ∈ Knk and

a(unk , unk) + j(unk) ≤ a(unk , v) + j(v) − L(v− unk). (2.27)

Since lim inf
k→∞

a(unk , unk) ≥ a(u∗, u∗) and lim inf
k→∞

j(unk) ≥ j(u∗) it follows

from (2.24) and (2.27) that 136


a(u∗, u∗) + j(u∗) ≤ (u∗, v) + j(v) − L(v− u∗) ∀v ∈ L∞(Ω) ∩ V,

u∗ ∈ V,

which can also be written as

a(u∗, v− u∗) + j(v) − j(u∗) ≥ −L(v− u∗) ∀v ∈ V ∩ L∞(Ω),

u∗ ∈ V.
(2.28)

Forn > 0, defineτn : V → Kn by

τnv = inf(n,Sup(−n, v))( see Figure 2.1) (2.29)
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Figure 2.1:

Then the Corollary 2.1 of Chap. 2, Sec. 2.2, we have


lim
n→∞

τnv = v strongly inV,

lim
n→∞

τnv = v in Ω.
(2.30)

Moreover, we obviously have,

|τnv(x)| ≤ |v(x)| a.e., (2.31)

v(x) · τnv(x) ≥ 0 a.e. (2.32)

It follows then from (2.30)-(2.32) and from the various properties of137

that

Φ(τnv) ≤ Φ(v) a.e., (2.33)

lim
n→∞
Φ(τnv) = Φ(v) a.e. (2.34)

Sinceτnv ∈ L∞(Ω) ∩ V it follows form (2.28) that


a(u∗, τnv− u∗) + j(τnv) − j(u∗) ≥ L(τnv− u∗) ∀v ∈ V,

u∗ ∈ V.
(2.35)



2. Theoretical and Numerical Analysis of... 141

If v < D(Φ), then by Fatou’s lemma

lim
n→∞

j(τnv) = +∞.

If v ∈ D(Φ), it follows from (2.33) and (2.34) by applying Lebesgue’s
dominated convergence theorem that

lim
n→∞

j(τnv) = j(v).

From these convergence properties and from (2.30), it follows, by taking
the limit in (2.35), that


a(u∗, v− u∗) + j(v) − j(u∗) ≥ L(v− u∗) ∀v ∈ V,

u∗ ∈ V.
(2.36)

Thenu∗ is a solution of (π) and from the uniqueness property we
haveu∗ = u. This proves that lim

n→∞
un = u weaklyin V.

Let us know thatφ(u), uφ(u) ∈ L1(Ω). Let v ∈ Kn. Thenun + t(v−
un) ∈ Kn∀t ∈]0, 1]. Replacingv by un+ t(v−un) in πn and dividing both 138

sides of the inequality byt we obtain

a(un, v− un) +
∫

Ω

Φ(un + t(v− un)) − Φ(un)
t

dx≥ L(v− un) ∀v ∈ Kn.

(2.37)
SinceΦ ∈ C1(R) andΦ′ = φ we have

lim
t→0
t>0

Φ(un + t(v− un)) − Φ(un)
t

= φ(un) · (v− un) a.e. (2.38)

Moreover sinceΦ is convex, we also have∀t ∈]0, 1],

φ(un)(v− un) ≤
φ(un + t(v− un)) − φ(un)

t
≤ Φ(v) − Φ(un) a.e. (2.39)

From (2.38), (2.39) and usingLebesgue’s dominated convergence
Theoremin (2.37), we obtain

a(un, v− un) +
∫

Ω

φ(un)(v− un)dx≥ L(v− un) ∀v ∈ Kn. (2.40)
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Then takingv = 0 in (2.40) we have

a(un, un) +
∫

Ω

φ(un)undx≤ L(un),

which implies, using (2.2),
∫

Ω

φ(un)undx≤ || f ||
2

α
. (2.41)

But φ(v)v ≥ 0∀v ∈ V. Henceφ(un)un is bounded inL1(Ω). Moreover
for some subsequence (unk)nk of (un)n we have

φ(unk)unk → φ(u)u a. e. inΩ.

Then by Fatou’s lemma we obtainuφ(u) ∈ L1(Ω) and this completes
the proof of the Proposition sinceuφ(u) ∈ L1(Ω) implies obviously that
φ(u) ∈ L1(Ω). �

Incidentally, when proving the convergence of (un)n to u, we have139

proved the following useful

Lemma 2.2. The solutionu of (π) is characterised by

a(u, v− u) + j(v) − j(u) ≥ L(v− u)∀v ∈ V ∩ L∞(Ω),

u ∈ V,Φ(u) ∈ L1(Ω).
(2.42)

In view of proving that(π) implies (P) we also need the following
two lemmas:

Lemma 2.3. The solutionu of (π) is characterised by

a(u, v− u) +

∫
Ω
φ(u)(v− u)dx≥ L(v− u)∀v ∈ L∞(Ω) ∩ V,

u ∈ V, uφ(u) ∈ L1(Ω).
(2.43)

Proof. (π) implies(2.43).
Let v ∈ L∞(Ω) ∩ V. Thenv ∈ D(Φ) and sinceD(Φ) is convex we

haveu + t(v − u) ∈ D(Φ)∀t ∈]0, 1]. Replacingv by u + t(v − u) in (π)
and dividing byt we obtain∀t ∈]0, 1]

a(u, v− u) +
∫

Ω

Φ(u+ t(v− u)) − Φ(u)
t

dx≥ L(v− u), ∀v ∈ L∞(Ω) ∩ V.

(2.44)
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SinceΦ ∈ C1 and is convex, we have

lim
t→0
t>0

Φ(u+ t(v− u)) − Φ(u)
t

= φ(u)(v− u) a.e., (2.45)

φ(u)(v− u) ≤ Φ(u+ t(v− u)) − Φ(u)
t

≤ Φ(v) − Φ(u). (2.46)

�

By Proposition 2.1 we haveφ(u), uφ(u) ∈ L1(Ω). Henceφ(u)(v−u) ∈
L1(Ω) andΦ(v),Φ(u) ∈ L1(Ω), ∀v ∈ L∞(Ω)∩V. Then using the lebesgue
dominated convergence Theorem it follows from (2.45) and (2.46) that

lim
t→0

∫

Ω

Φ(u+ t(v− u)) − Φ(u)
t

dx=
∫

Ω

φ(u)(v− u)dx.

Using the above relation and (2.44) we obtain (2.43). This proves that 140

(π)⇒ (2.43).
(2) We will now prove that (2.43)⇒ (π).
Let u be a solution of (2.43). SinceΦ is convex it follows that

−Φ(u) = Φ(0)− Φ(u) ≥ φ(u)(0− u) = −φ(u)u.

This implies 0≤ Φ(u) ≤ uφ(u) andΦ(u) ∈ L1(Ω). Let v ∈ L∞(Ω) ∩ V.
Then from the inequality.

φ(u)(v− u) ≤ Φ(v) − Φ(u) a. e. inΩ,

we obtain by integration
∫

Ω

φ(u)(v− u)dx≤ j(v) − ju ∀v ∈ V ∩ L∞(Ω),

which combined with (2.43) andΦ(u) ∈ L1(Ω) implies (2.42). Hence
from Lemma 2.2 we obtain that (2.43) implies (π).

Lemma 2.4. Let u be the solution of (π). Thenu is characterised by


a(u, v) +
∫
Ω
φ(u)vdx= L(v) ∀v ∈ L∞(Ω) ∩ V,

u ∈ V, φ(u) ∈ L1(Ω).
(2.47)
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Proof. (1) (π) implies (2.47).
Let v ∈ V∩L∞(Ω). If u is the solution of (π) thenu is also the unique

solution of (2.43). Letτn be defined by (2.29). Thenτnu ∈ V ∩ L∞(Ω).
Replacingv by τuu+ v in (2.43) we obtain



a(u, v) +
∫
Ω
φ(u)vdx+ a(u, τnu− u) +

∫
Ω
φ(u)(τnu− u)dx

≥ L(v) + L(τnu− u),

∀v ∈ V ∩ L∞(Ω).

(2.48)

It follows from (2.29)–(2.32) that141


lim
n→∞

a(u, τnu− u) = 0,

lim
n→∞

L′(τnu− u) = 0,
(2.49)

lim
n→∞

φ(u)(τnu− u) = 0 a.e., (2.50)

0 ≤ φ(u)(u− τnu) ≤ uφ(u) ae.. (2.51)

�

Then by the Lebesgue dominated convergence Theorem and (2.50),
(2.51) we obtain

lim
n→∞

φ(u)(τnu− u) = 0 strongly inL1(Ω). (2.52)

Then (2.48), (2.49) and (2.52) imply

a(u, v) +
∫

Ω

φ(u)vdx≥ L(v) ∀v ∈ V ∩ L∞(Ω).

Since the above relation also holds for−v we have

a(u, v) +
∫

Ω

φ(u)vdx= L(v) ∀v ∈ V ∩ L∞(Ω), (2.53)

By Proposition 2.1 we haveφ(u) ∈ L1(Ω); combining this with
(2.53) we obtain (2.47). This proves that (π)⇒ (2.47).
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(2) (2.47) implies (π).
We have

a(u, v) +
∫

Ω

φ(u)vdx= L(v) ∀v ∈ V ∩ L∞(Ω).

then

a(u, τnu) +
∫

Ω

φ(u)τnudx= L(τnu) ∀n. (2.54)

Sinceτnu→ u stronglyin V, {
∫
Ω
φ(u)τnudx}n isbounded. Butφ(u)τnu ≥ 142

0 a.e. Hence we obtain thatφ(u)τnu is bounded inL1(Ω). We also have
limn→∞ τnuφ(u) = uφ(u) a.e. ; hence by Fatou’s lemma we have

uφ(u) ∈ L1(Ω). (2.55)

But now we observe that

0 ≤ φ(u)τnu ≤ uφ(u).

Hence by the Lebesgue dominated convergence theorem

lim
n→∞

∫

Ω

φ(u)τnudx=
∫

Ω

φ(u)udx,

which along with (2.54) gives

a(u, u) +
∫

Ω

φ(u)udx= L(u). (2.56)

Then by subtracting (2.56) from (2.47) we obtain

a(u, v− u) +

∫
Ω
φ(u)(v− u)dx= L(v− u) ∀v ∈ V ∩ L∞(Ω),

u ∈ V, uφ(u) ∈ L1(Ω),
(2.57)

and obviously (2.57) implies (2.43) . This completes the proof of the
lemma.

COROLLARY 2.2. If u is the solution of(π) then u is also a solution
of (P).
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Proof. We recall thatV∗ = H−1(Ω) ⊂ D ′(Ω) and thata(u, v) =< Au, v >
∀u, v ∈ V andL(v) =< f , v >.

Let u be a solution of (π). Thenu is characterised by (2.47) and
sinceD(Ω) ⊂ V we obtain

< Au, v > +
∫

Ω

φ(u)vdx=< f , v > ∀v ∈ D(Ω) (2.58)

From (2.58) it follows that143

Au+ φ(u) = f in D(Ω), (2.59)

sinceAuand f ∈ V∗, we haveφ(u) ∈ V∗. Henceφ(u) ∈ L1(Ω)∩H−1(Ω)
and from (2.59) we obtain thatu is a solution of (P). �

If we try to summarise what we have proved until now, we observe
that the unique solution of (π) is also a solution of (P). Now we prove
the reciprocal property ; that is, every solution of (P) is a solution of (π)
and hence (P) has a unique solution.

In order to prove this we shall use the following density lemma :

Lemma 2.5. D(Ω) is dense in V∩ L∞(Ω), V ∩ L∞(Ω) being equipped
with the strong topology of V and the weak * topology of L∞(Ω).

Proof. Let v ∈ V∩L∞(Ω). SinceD(Ω)
H1(Ω)

= V there exists a sequence
{vn}n, vn ∈ D(Ω), such that

lim
n→∞

vn = v strongly inV. (2.60)

Let us definewn by (see Fig. 2.2)

wn = min(v+, v+n) −min(v−, v−n ) (2.61)
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Figure 2.2:

Then 144

wn has a compact support inΩ, (2.62)

||wn||L∞(Ω) ≤ ||v||L∞(Ω) (2.63)

and it follows from Chap. 2, Corollary 2.1, that

lim
n→∞

wn = v strongly inV. (2.64)

�

From (2.63) and (2.64) we obtain that lim
n→∞

wn = v for the weak*

topologyof L∞(Ω).
Thus we have proved that

U = {v ∈ L∞(Ω) ∩ V : v has compact support inΩ}

is dense inL∞(Ω) ∩ V for the topology given in the statement of the
Lemma.

Let v ∈ U and (ρn)n be a mollifying sequence (see Chap. 2, Lemma
2.4). Define ˜vn by

ṽ(x) =



v(x) if x ∈ Ω,

0 if x < Ω,

(4.4)



148 4. Applications of elliptic variational Inequality...

ṽn = ρn ∗ ṽ, (2.66)

thenṽn ∈ D(RN), lim
n→∞

ṽn = ṽ strongly inH1(RN), (2.67)

ṽn has a compact support inΩ for n large enough. (2.68)

Let vn = ṽn|Ω then forn large enoughvn ∈ D(Ω) and lim
n→∞

vn = v

stronglyonV.
Since||ṽ||L∞(RN) = ||v||L∞(Ω) it follows from (2.66) that

|vn(x)| ≤
∫

RN
ρn(x− y)|ṽ(y)|dy ≤ ||v||L∞(Ω) (2.69)

From this it follows that145

||vn||L∞(Ω) ≤ ||v||L∞(Ω) (2.70)

Summarising the above information we have proved that∀v ∈ L∞(Ω) ∩
V, there exists a sequence (vn)n, vn ∈ D(Ω)∀n, such that

lim
n→∞

vn = v strongly inV, (2.71)

||vn||L∞(Ω) ≤ ||v||L∞(Ω) ∀n. (2.72)

Hence from (2.71) and (2.72) we obtain thatvn → v in L∞(Ω) weak*.
This completes the proof of the Lemma.

THEOREM 2.2. Under the above hypothesis on V, a(·, ·), L(·), φ(·),
problems(π) and(P) are equivalent.

Proof. We have already proved that (π) implies (P). We need only to
prove that (P) implies (π).

From the definition of (P) we have


a(u, v)+ < φ(u), v >= L(v) ∀v ∈ V,

u ∈ V, φ(u) ∈ H−1(Ω) ∩ L1(Ω).

(2.73)

It follows from (2.73) that

a(u, v) +
∫

Ω

φ(u)vdx= L(v) ∀v ∈ D(Ω). (2.74)

�
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If v ∈ V ∩ L∞(Ω) we know from Lemma 2.5 that there exists a
sequence (vn)n, vn ∈ D(Ω), such that

lim
n→∞

vn = v strongly inV, (2.75)

lim
n→∞

vn = v in L∞(Ω) weak ∗ . (2.76)

Sincevn ∈ D(Ω) we have, from (2.74), 146

a(u, vn) +
∫

Ω

φ(u)vndx= L(vn). (2.77)

It follows from (2.77) that lim
n→∞

a(u, vn) = a(u, v), lim
n→∞

L(vn) = L(v) and,

sinceφ(u) ∈ L1(Ω), (2.76) implies that

lim
n→∞

∫

Ω

φ(u)vndx=
∫

Ω

φ(u)vdx.

Thus taking the limit in (2.77), we obtain

a(u, v) +
∫

Ω

φ(u)vdx= L(v) ∀v ∈ V ∩ L∞(Ω).

Therefore (P) implies (2.47) which implies in turn (π). This completes
the proof of the Theorem.

Exercise 2.2.Find in R2, a function v such that v< H−1(Ω) ∩ L1(Ω),
v < Lp(Ω)∀p > 1, whereΩ is some bounded open set inR2.

Exercise 2.3.Prove that if u≥ 0 a.e. thenφ(u)v ∈ L1(Ω) ∀v ∈ V, where
u is the solution of the problem(P).

2.4 Some comments on the continuous problem

We have studied (P) and (π) with rather weak hypotheses, namelyφ ∈
C0(R) and nondecreasing, andf ∈ V∗. The proof we have given for
the equivalence between (P) and (π) can be made shorter using more
sophisticated tools of Convex Analysis and from the theory of Monotone
Operators (see LIONS [1] and the bibliography therein). However our
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proof is very elementary and some of the lemmas we have obtained
will be useful in the numerical analysis of the problem (P). Regularity
resultsfor problems little more complicated that (P) and (π) are given in
BREZIS-CRANDALL-PAZY [1] ; in particular for f ∈ L2(Ω) and with
convenient smoothness assumptions forA, theH2(Ω)-regularity ofu is
proved.

2.5 Finite element approximation of(π) and (P)

2.5.1 Definition of the approximate problem
147

Let Ω be a boundedpolygonaldomain ofR2 andCh be a triangulation
of Ω satisfying (2.21)- (2.23) of Chap. 2. We approximateV by

Vh = {vh ∈ C0(Ω) : vh|Γ = 0, vh|T ∈ P1 ∀T ∈ Ch}.

Then it is natural to approximate (P) and (π) respectively by



a(uh, vh) +
∫
Ω
φ(vh)vhdx= L(vh)∀vh ∈ Vh,

uh ∈ Vh

(P∗h)

and


a(uh, vh − uh) + j(vh) − j(uh) ≥ L(vh − uh)∀vh ∈ Vh,

uh ∈ Vh

(π∗h)

with

j(vh) =
∫

Ω

φ(vh)dx.

Obviously (P∗h) and (π∗h) are equivalent. From a computational point of
view we cannot use in general (P∗h) and (π∗h) directly since they involve
the computation of integrals which cannot be done exactly. For this
reason we shall have to modify (π∗h) and (P∗h) using somewhere some
numerical integration procedures.Actually we shall have to approxi-
matea(·, ·), L(·) and j(·). Since the approximation ofa(·, ·) andL(·) is
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studied in CIARLET [1, Chap. 8] we shall assume that we still work
with a(·, ·) andL(·) but we shall approximatej(·).

To approximatej(·) we shall use thetwo dimensional trapezoidal
method. Hence using the notation of Figure 2.3 below we approximate
j(·) by

jh(vh) =
∑

T∈Ch

meas· (T)
3

3∑

i=1

Φ(vh(MiT ))∀vh ∈ Vh. (2.78)

Figure 2.3:

Actually jh(vh) may be viewed as the exact integral of some piece-148

wise constant functions.

Using the notation of Chap. 2, Sec. 2.5, assume that the set
∑

h of the
nodes ofCh has been ordered byi = 1, 2, . . . ,Nh wherenh = Card(

∑
h).

Let Mi ∈
∑

h. We define a domainΩi by joining, as in Figure 2.4,
the centroids of the triangles, admittingMi as a common vertex, to the
midpoint of the edges admittingMi as a common extremity (ifMi is a
boundary point the modification of Figure 2.4 is trivial to do).
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Figure 2.4:

Let us define the space of piecewise functions :

Lh = {µh : µh =

Nh∑
i = 1µiχi , µi ∈ R, i = 1, 2, . . . ,Nh}, (2.79)

whereχi is the characteristic function ofΩi .149

We then defineqh : C0(Ω) ∩ H1
0(Ω)→ Ln by

qhv =
Nh∑

i=1

v(Mi)χi . (2.80)

Then it follows from (2.79) and (2.80) that

jh(vh) =
∫

Ω

Φ(qhvh)dx∀vh ∈ Vh. (2.81)

We also have
jh(vh) = j(qhvh)∀vh ∈ Vh. (2.82)

Then we approximate (P) and (π) by



a(uh, vh) +
∫
Ω
φ(qhuh)qhvhdx= L(vh)∀vh ∈ Vh,

uh ∈ Vh

(Ph)

and
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

a(uh, vh − uh) + jh(vh) − jh(uh) ≥ L(vh − uh)∀vh ∈ Vh,

uh ∈ Vh.

(πh)

Then

THEOREM 2.3. Problem (Ph) and (πh) are equivalent and have a
unique solution.

Exercise 2.4.Prove Theorem 2.3.

2.5.2 Convergence of the approximate solutions

THEOREM 2.4. If as h→ 0 the angles ofCh are uniformly bounded
below byθ0 > 0 then

lim
h→0
||uh − u||V = 0,

where u and uh are respectively the solutions of(P) and(Ph).

Proof. Since j(·) is not continuouson V, the result of Chap. 1, Sec.150

6 on the approximation of EVI of the second kind cannot be applied
directly. However the proof of the convergence follows the same lines
as in Theorem 6.2 of Chap. 1. �

(1) A priori estimates for uh. Takingvh = 0 in (πh) we obtain

||uh||V ≤
|| f ||
α
. (2.83)

0 ≤
∫

Ω

Φ(qhuh)dx≤ || f ||
2

α
. (2.84)

(2) Weak convergence ofuh. It follows from (2.83) and from the com-
pactness of the injection ofV in L2(Ω), that we can extract from
(uh)h a subsequence, still denoted by (uh)h, such that

uh→ u∗ weakly inV, (2.85)

uh→ u∗ strongly inL2(Ω), (2.86)

uh→ u∗ a.e. inΩ. (2.87)
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Admitting for the moment the following inequality

||qhvh − vh||Lp(Ω) ≤
2h
3
||∇v||Lp(Ω)×Lp(Ω) ∀vh ∈ Vh, ∀p with 1 ≤ p ≤ ∞,

(2.88)
it follows from (2.83) and (2.86) that

qhuh→ u∗ strongly inL2(Ω). (2.89)

Then, modulo another extraction of a subsequence, we have

qhuh→ u∗ a.e. inΩ, (2.90)

from which it follows that

Φ(qhuh)→ Φ(u∗) a.e. inΩ. (2.91)

Then takingv ∈ D(Ω), it follows from CIARLET [1], [2], STRA-151

NG-FIX [1] that under the assumptions onCh of the statement of the
Theorem we have

||rhv− v||W1,∞(Ω) ≤ Ch||v||W2,∞(Ω) ∀v ∈ D(Ω), (2.92)

||rhv− v||L∞(Ω) ≤ Ch2||v||W2,∞(Ω) ∀v ∈ D(Ω), (2.93)

whereC is a constant independent ofv andh and whererh is the usual
linear interpolation operator overCh. Moreover (2.88) withp = +∞,
(2.92) and (2.93) imply that

lim
h→0
||qhrhv− v||L∞(Ω) = 0∀v ∈ D(Ω). (2.94)

Takingvh = rhv in (πh) we obtain

a(uh, uh) +
∫

Ω

Φ(qhuh)dx≤ a(uh, rhv)

+

∫

Ω

Φ(qhrhv)dx− L(rhv− uh)∀v ∈ D(Ω). (2.95)

From (2.85), (2.89) and Lemma 2.1 we have

a(u∗, u∗) +
∫

Ω

Φ(u∗)dx≤ lim inf(a(uh, uh) +
∫

Ω

Φ(qhuh)dx).
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Moreover

lim
h→0

∫

Ω

Φ(qhrhv)dx=
∫

Ω

Φ(v)dx = j(v)∀v ∈ D(Ω).

Then in the limit in (2.95) we obtain

a(u∗, u∗) + j(u∗) ≤ a(u∗, v) + j(v) − L(v− u∗)∀v ∈ D(Ω). (2.96)

From Fatou’s lemma applied to (2.84) and (2.91) we obtain

Φ(u∗) ∈ L1(Ω). (2.97)

Then it follows from (2.96) and (2.97) thatu∗ satisfies

a(u∗, v−u∗)+ j(v)− j(u∗) ≤ L(v−u∗)∀v ∈ D(Ω), u∗ ∈ V, φ(u∗) ∈ L1(Ω).
(2.98)

We now takev ∈ V ∩ L∞(Ω), it follows from Lemma 2.5 that there152

exists a sequence (vn)n, vn ∈ D(Ω) such that

lim
n→∞

vn = v strongly inV, (2.99)

lim
n→∞

vn = v in L∞(Ω) weak∗. (2.100)

We have from (2.98) that

a(u∗, vn − u∗) + j(un) − j(u∗) ≥ L(vn − u∗)∀n, u∗ ∈ V,Φ(u∗) ∈ L1(Ω).
(2.101)

We obviously have from (2.99)

lim
n→∞

a(u∗, vn − u∗) = a(u∗, v− u∗),

lim
n→∞

L(vn − u∗) = L(v− u).

Sincevn → v in the weak * topology ofL∞(Ω) we have a constant
C such that

||vn||L∞(Ω) ≤ C∀n. (2.102)

Moreover, for some subsequence, (2.99) implies that

lim
n→∞

vn = v a.e. inΩ. (2.103)
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From (2.103) we obtain that

Φ(vn)→ Φ(v) a.e. inΩ.

From (2.102) and (2.103) one can easily see that the Lebesguedom-
inated convergence theorem can be applied to (Phi(un))n. Hence we
obtain

lim
n→∞

j(vn) = lim
n→∞

∫

Ω

Φ(vn)dx=
∫

Ω

Φ(v)dx = j(v).

Therefore taking the limit in (2.101) we obtain153



a(u∗, v− u∗) + j(v) − j(u∗) ≥ L(v− u)∗)∀v ∈ V ∩ L∞(Ω),

u∗ ∈ V,Φ(u∗) ∈ L1(Ω).
(2.104)

Since from Lemma 2.2 we know that (2.104) is equivalent to (π)
we have proved thatu∗ = u whereu is the solution of (π). From the
uniqueness of the solution of (π) it follows that the whole sequence (uh)h

converges tou.

(3) Strong convergence of(uh)h : From theV-ellipticity of a(·, ·) and
from the variational inequality satisfied byuh we obtain



α||uh − u||2 + jh(uh) ≤ a(uh − u, uh − u) + jh(uh)

≤ −a(uh, u) + a(u, u) + a(uh, uh)

−a(u, uh) + jh(uh) ≤ −a(uh, u) + a(u, u) + a(uh, rhv)

+ jh(rhv) − L(rhv− uh)

−a(u, uh) ∀v ∈ D(Ω).
(2.105)

Using the various convergence results of Part (2) we obtain from (2.105)
that



j(u) ≤ lim inf jh(uh) ≤ lim inf(α||uh − u||2V + jh(uh))

≤ lim sup(α||uh − u||2 + jh(uh))

≤ a(u, v− u) + j(v) − L(v− u) ∀v ∈ D(Ω).

(2.106)



2. Theoretical and Numerical Analysis of... 157

Using as in Part (2) the density ofD(Ω) in L∞(Ω) ∩ V (for the strong
topology ofV and the weak * topology ofL∞(Ω)), we obtain that (2.106)
also holds for allv ∈ V ∩ L∞(Ω). Then



j(u) ≤ lim inf jh(uh) ≤ lim inf(α||uh − u||2V + jh(uh))

≤ lim sup(α||uh − u||2V + jh(uh))

≤ a(u, τnv− u) + j(τnv) − L(τnv− v) ∀v ∈ V.

(2.107)

Using the properties ofτnv, it follows then from (2.107), by taking the
limit as n → ∞, that (2.106) also holds for allv ∈ V. Hence by taking
v = u we obtain

j(u) ≤ lim inf jh(uh) ≤ lim inf(α||uh − u||2 + jh(uh))

≤ lim sup(α||uh − u||2 + jh(uh)) ≤ j(u),

which implies 154

lim
h→0

jh(uh) = j(u),

lim
h→0
||uh − u||V = 0.

This proves the Theorem modulo the proof of (2.88). We now prove
(2.88).

Lemma 2.6. We have

∀p, 1 ≤ p ≤ ∞, ||qhvh − vh||Lp(Ω) ≤
2
3

h||∇vh||Lp(Ω)×Lp(Ω)

where qh, vh are as before.

Proof. We use the notation of Sec. 2.5.1 �

Figure 2.5:
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We have (see Figure 2.5)

|vh(M) − qhvh(M)| = |vh(Mi) − vh(M)| ∀M ∈ Ωi ∩ T. (2.108)

But sincevh|T ∈ P1 we have

vh(M) = vh(Mi) +
−−−→
Mi M · ∇vh ∀M ∈ Ωi ∩ T,

from which it follows, combined with (2.108), that

|qhvh(M) − vh(M)| ≤ |
−−−−→
Mi M||∇vh| ∀M ∈ Ωi ∩ T.

But from the definition ofh we have|−−−→Mi M| ≤
2
3

h ∀T so that we155

finally have|qhvh(x) − vh(x)| ≤
2
3

h|∇vh(x)| a.e. inΩ, ∀vh ∈ Vh. This

implies

||qhvh − vh||Lp(Ω) ≤
2
3

h||∇vh||Lp(Ω)×Lp(Ω).

This proves the lemma.

REMARK 2.4. We have not considered the problem of error estimates.
This problem will be discussed in GLOWINSKI [4].

REMARK 2.5. The numerical analysis of problem like(P) but with
much stronger hypotheses on a(·, ·), φ, f is considered in CIARLET -
SCHULTZ - VARGA [1].

2.6 Iterative methods for solving the discrete problem

2.6.1 Introduction

In this section we briefly describe someiterative methodswhich may
be useful for computing the solution of (Ph) (and (πh)). Actually most
of these methods can be extended to other non-linear problems. Many of
the methods to be described here can be found in ORTEGA-
RHEINBOLDT [1]. A method based onduality techniques will be de-
scribed in Chap. 5.
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2.6.2 Formulation of the discrete problem

Here we are using the notation of the continuous problem. Taking as
unknowns the values ofuh at the interior nodes ofCh, the problem (Ph)
reduces to the finite dimensional non-linear problem

A
∼

u
∼
+D
∼
φ(u
∼
) = f

∼
, (2.109)

where A
∼

is a N × N positive definite matrix, D
∼

is a diagonal matrix

with positive diagonal elementsd′i s and where u
∼
= {u1, . . . , uN} ∈ RN,

f
∼
∈ RN, φ(u

∼
) ∈ RN with (φ(u

∼
))i = φ(ui ). Clearly from the properties of

A
∼

, D
∼

, φ, f
∼

we can see that the problem (2.109) has a unique solution.

2.6.3 Gradient Methods

The basic algorithm with constant step (see CEA [1]) is givenby 156

0
u
∼
∈ RN given , (2.110)

n+1
u
∼
=

n
u
∼
−ρS
∼
−1(A
∼

u
∼

n + D
∼
φ(u
∼

n) − f
∼
), ρ > 0. (2.111)

In (2.111), S
∼

is a symmetric, positive definite matrix: a canonical

choice is S
∼
= Identity. But in most problems it will give aslow speed

of convergence. If A is symmetric, the natural choice is S
∼
= A
∼

and, if

A
∼
,
∗
A
∼

, we can take S
∼
=

A
∼
+
∗
A
∼

2
.

For the convergence of u
∼

n to u
∼

(where u
∼

is the solution of (2.109)) it

is sufficient to haveφ smooth enough (for example,φ locally Lipschitz
continuous). Then lim

n→∞
u
∼

n = u
∼

if ρ is sufficiently small. Obviously the

closer u
∼

0 is to u
∼
, the faster is the convergence.

REMARK 2.6. If A
∼
=
∗
A
∼

, thenA
∼

v
∼
+D
∼
φ(v
∼
) − f

∼
is the gradient atv

∼
of

the functional j(v
∼
) =

1
2

(Av
∼
, v
∼
) +

N∑
i=1

diΦ(vi ) − (f
∼
, v
∼
), where(·, ·) denotes

the usual inner product ofRN andΦ(t) =
∫ t

0 φ(τ)dτ.
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REMARK 2.7. In each specific caseρ has to be determined ; this can
be done theoretically, experimentally or by using an automatic adjust-
ment procedure which will not be described here.

REMARK 2.8. Let us defineg
∼

n by

g
∼

n = A
∼

u
∼

n + D
∼
φ(u
∼

n) − f
∼
.

Instead of using a constant parameterρ we can use a family(ρn)n of
positive parameters in(2.111). Therefore(2.111)can be written as

u
∼

n+1 = u
∼

n − ρn

−1
S
∼

g
∼

n. (2.112)

SupposeA
∼
=
∗
A
∼

, then if we use(2.110), (2.112)with ρn defined by



J(u
∼

n − ρn

−1
S
∼

g
∼

n) ≤ J(u
∼

n − ρ
−1
S
∼

g
∼

n) ∀ρ ∈ R,

ρn ∈ R,

(2.113)

the resulting algorithm is, for obvious reasons, called steepest descent157

method. This algorithm is convergent forφ ∈ C0(R). We observe that
at each iteration the determination ofρn requires the solution of a one-
dimensional problem; for the solution of such one dimensional problems
see HOUSEHOLDER [1], POLAK [1], BRENT [1].

REMARK 2.9. At each iteration of(2.110), (2.111)or (2.110), (2.112)
we have to solve a linear system related toS

∼
. SinceS

∼
is symmetric

and positive definite this system can be solved using Cholesky method,

provided theS
∼
= L
∼

∗
L
∼

factorization has been done. From a practical

point of view it is obvious that the factorization ofS
∼

will be made in the

beginning once for all. Then at each iteration we just have tosolve two
triangular systems which is a trivial operation.
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2.6.4 Newton’s method

The Newton’s algorithm is given by (for sufficient conditions of conver-
gence, see ORTEGA-RHEINBOLDT [1]) :

u
∼

0 ∈ RN given , (2.114)

u
∼

n+1 = (A
∼
+D
∼
φ′(u
∼

n))−1(D
∼
φ′(u
∼

n)u
∼

n − D
∼
φ(u
∼

n) + f
∼
) (2.115)

whereφ′(v
∼
) denotes thediagonal matrix

φ′(v
∼
) =



φ′(v1)
. . . 0

. . .

0 φ′(vn)



Sinceφ is nondecreasing,φ′ ≥ 0. This implies that A
∼
+D
∼
φ′(v
∼
) is

positive definite∀ v
∼
∈ RN.

REMARK 2.10. At each iteration we have to solve a linear system.
Since the matrixA

∼
+D
∼
φ′(u
∼

n) depends on n, this method may not be

convenient for large N.

REMARK 2.11. The choice ofu
∼

0 is very important when using New-

ton’s method.

2.6.5 Relaxation and over-relaxation methods

We use the following notation : 158

A
∼
= (ai j )1≤i, j≤N,

f
∼
= { f1, f2, . . . , fN}.

Since A
∼

is positive definitewe haveaii > 0∀i = 1, 2, . . . ,N. Here

we will describe three algorithms:
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Algorithm 1.
u
∼

0 ∈ RN given, (2.116)

then givenu
∼

n, we computeu
∼

n+1, component by component, using

aii u
−n+1
i + diφ(u−n+1

i ) = fi −
∑

j<i

ai j u
n+1
j −

∑

j>i

ai j u
n
j , (2.117)

un+1
i = un

i + ω(u−n+1
i − un

i ), i = 1, 2, . . . ,N. (2.118)

Sinceaii > 0, φ ∈ C0(R) andφ is a nondecreasing function we can
always solve (2.117) and the solution is unique.

If ω = 1, we recover anordinary relaxation method(see CEA [1]).

If A
∼
=
∗
A
∼

and sinceφ isC0 and nondecreasing the solution u
∼

n of (2.116)-

(2.118) converges to the solution u
∼

of (2.109).

If, in (2.109), A
∼

is not symmetric andω , 1, there are certain suf-

ficient conditions for the convergence of u
∼

n to u
∼
, where u

∼
n is given by

(2.116)-(2.118) and where u
∼

is the solution of (2.109) (see ORTEGA-

RHEINBOLDT [1], S. SCHECHTER [1], [240], [3]).

Algorithm 2. This algorithm is the variant of(2.116)- (2.118)obtained
by replacing(2.117)and (2.118)by



aii un+1
i + diφ(un+1

i = (1− ω)(aii un
i + diφ(un

i ))

+ω( fi −
∑
j<i

ai j un+1
j −

∑
j>i

ai j un
j )

for i = 1, 2, . . . ,N.

(2.119)

REMARK 2.12. If ω = 1 and/or φ is linear the two algorithms coin-159

cide. In the general case the convergence of(2.116), (2.119)seems to be
an open question. However from numerical experimentation’s it seems
that the second algorithm is more“robust” than the first, maybe because
it is moreimplicit. Furthermore it can be used even ifφ is defined only
on a bounded or semi bounded interval]α, β[ ofR such thatφ(α) = −∞,
φ(β) = +∞ ; in such a case ifφ ∈ C0(]α, β[) andφ is increasing,(2.109)
has still a unique solution but the use of(2.116)-(2.118)withω > 1 may
be dangerous.
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REMARK 2.13. If φ ∈ C1(R), an efficient method to compute u−n+1
i in

(2.117)and un+1
i in (2.119)is theone dimensional Newton’s method.

Let g∈ C1(R). In this case Newton’s algorithm to solve the equation
g(x) = 0 is

x0 ∈ R given, (2.120)

xn+1 = xn − g(xn)
g′(xn)

. (2.121)

If in the computation of u−n+1
i and un+1

i we useonly one iterationof
Newton’s method. starting from un

i , then the resulting algorithms are
identical and we obtain

Algorithm 3.

u
∼

0 ∈ RN given, (2.122)

un+1
i = un

i −

∑
j<i

ai j un+1
j +

∑
j>i

ai j un
j + diφ(un

i ) − fi

aii + diφ′(un
i )

, i = 1, 2, . . .N.

(2.123)

In S. SCHECHTER [1], [240], [3] sufficient conditions for the conver-
gence of(2.122), (2.123)are given.

REMARK 2.14. If ω > 1 (resp. . ω = 1, ω < 1) the previous al-
gorithms areover-relaxation (resp. . relaxation, under relaxation)algo-
rithms.

REMARK 2.15. We can find in GLOWINSKI-MARROCCO [1], [2] ap-160

plications of relaxation methods for solving thenonlinear elliptic equa-
tionsmodelling themagnetic state of electrical machines.

2.6.6 Alternating Direction Methods

In this section we takeρ > 0. Here we will give two numerical methods
for solving (2.109).
First method.

u
∼

0 ∈ RN given , (2.124)
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knowing u
∼

n we compute u
∼

n+ 1
2 by

ρu
∼

n+ 1
2 + A u

∼
n+ 1

2 = ρu
∼

n − D
∼
φ(u
∼

n) + f
∼
, (2.125)

then we calculate u
∼

n+1 by

ρu
∼

n+1 + D
∼
φ(u
∼

n+1) = ρu
∼

n+ 1
2 − A

∼
u
∼

n+ 1
2 ) + f

∼
. (2.126)

For the convergence of (2.124)-(2.126) see R. B. KELLOG [1].
Second method.

u
∼

0ǫRN given, (2.127)

knowing u
∼

n we compute u
∼

n+ 1
2 by

ρu
∼

n+ 1
2 + A

∼
u
∼

n+ 1
2 = ρu

∼
n − D

∼
φ(u
∼

n) + f
∼
, (2.128)

then we calculate u
∼

n+1 by

ρu
∼

n+1 + D
∼
φ(u
∼

n+1) = ρu
∼

n − A
∼

u
∼

n+ 1
2 + f

∼
. (2.129)

Using the results of LIEUTAUD [1], it can be proved that, for all
ρ > 0, u

∼
n+ 1

2 and u
∼

n if we suppose that A
∼

andφ satisfy the hypotheses

given in Sec. 2.6.2.

REMARK 2.16. At each iteration we have to solve a linear system, the161

matrix of which isconstant, since we use aconstant stepρ. This is an
advantage from the computational point of view (cf. Remark 2.9).

We also have to solve a nonlinear system of N equations, but in
fact these equations are independent from each other and reduce to N
nonlinear equations inone variablewhich can be solved easily.

2.6.7 Conjugate gradient methods

In this section we assume A
∼
=
∗
A
∼

(if A
∼
,
∗
A
∼

we can also use methods of

conjugate gradient type). For a detailed study of these methods we refer
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to POLAK [1], DANIEL [1], CONCUS-GOLUB [1]. If the functional
J defined in Remark 2.6 is not quadratic (i.e.φ is nonlinear), several
conjugate gradient methods can be used. Let us describe two of them,
the convergence of which is studied in POLAK [1]. LetJ be given by

J(v
∼
) =

1
2

(Av
∼
, v
∼
) +

N∑

i=1

diΦ(vi) − (f
∼
, v
∼
),

whereΦ(t) =
∫ t

0
φ(τ)dτ, Φ being a nondecreasing continuous function

onR with Φ(0) = 0.
Let S be aN × N symmetric, positive definite matrix. First method.

(Fletcher-Reeves)

u
∼

0 ∈ RN given , (2.130)

g
∼

0 =
−1
S
∼

(A
∼

u
∼

0 + D
∼
φ(u
∼

0) − f
∼
), (2.131)

w
∼

0 = g
∼

0. (2.132)

Then assuming that u
∼

n and w
∼

n are know we compute u
∼

n+1 by

u
∼

n+1 = u
∼

n − ρnw
∼

n, (2.133)

whereρn is the solution of the one-dimensional minimization problem



J(u
∼

n − ρnw
∼

n) ≤ J(u
∼

n − ρw
∼

n)∀ρ ∈ R,

ρn ∈ R.
(2.134)

Then 162

g
∼

n+1 =
−1
S(A
∼

u
∼

n+1) + D
∼
φ(u
∼

n+1) − f
∼
), (2.135)

and compute w
∼

n+1 by

w
∼

n+1 = g
∼

n+1 + λnw
∼

n, (2.136)



166 4. Applications of elliptic variational Inequality...

where

λn =

(S
∼

g
∼

n+1, g
∼

n+1)

(S
∼

g
∼

n, g
∼

n)
. (2.137)

Second method. (Polak-Ribiere). This method is like the previous
method except that (2.137) is replaced by

λn =

(S
∼

g
∼

n+1, g
∼

n+1 − g
∼

n)

(S
∼

g
∼

n, g
∼

n)
. (2.138)

REMARK 2.17. For the computation ofρn in (2.134), see Remark 2.8.

REMARK 2.18. It follows from POLAK [1], that ifφ is sufficiently
smooth then the convergence of the above algorithms is superlinear i.e.
faster that the convergence of any geometric sequence.

REMARK 2.19. The above algorithms are very sensitive to round off
errors; hence double precision may be required for some problems.
Moreover it may be convenient to take periodicallyw

∼
n = g

∼
n.

REMARK 2.20. We have to solve at each iteration a linear system
related toS

∼
; Remark 2.9 still applies to this problem.

2.6.8 Comments

The methods of this Sec. 2.6 may be applied to more general nonlinear
systems than (2.109). They can be applied of course to finite dimen-
sional systems obtained by discretization of elliptic problems like



−∇ · (a0(x)∇u) + β · ∇u+ φ(x, u) = f in Ω,

+ suitable boundary conditions

where, for fixedx, the functiont → φ(x, t) is continuous and nonde-
creasing onR.
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3 A Subsonic Flow Problem

3.1 Formulation of the continuous problem
163

Let Ω be a domain ofRN (in applications we haveN = 1, 2, 3) with a
sufficiently smooth boundaryΓ. Then the flow of a perfect, compress-
ible, irrotational fluid (i.e.∇ × v

∼
= 0
∼

where v
∼

is the velocity vector of

the flow) is described by

− ∇ · (ρ(φ)∇φ) = 0 inΩ, (3.1)

ρ(φ) = ρ0(1− |∇φ|
2

γ+1
γ−1C2

∗
)1/(γ−1), (3.2)

with suitable boundary conditions. Here

• φ is a potential and∇φ is the velocity of the flow,

• ρ(φ) is the density of the flow,

• ρ0 is the density at∇φ = 0; in the sequel we takeρ0 = 1,

• γ is the ratio of specific heats,

• C∗ is the critical velocity.

The flow under consideration is subsonic if

|∇φ| < C∗ everywhere inΩ. (3.3)

If |∇φ| ≥ C∗ in some part ofΩ, then the flow istransonic or super-
sonicand this leads to much more complicated problems (see Chap. 6
for an introduction to the study of such flows).

REMARK 3.1. In the case of a sunsonic flow past a convex, symmetric
airfoil and assuming (see Figure 3.1) that~v∞ is parallel to the x -axis

(Ω is the complement of the profile inR2 and
∂φ

∂n
|Γ = 0), H. BREZIS-

STAMPACCHIA [1] have proved that the subsonic problem is equiva-
lent to an EVI of the first kind in the hodograph plane (see BERS[1],
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LANDAU-LIFCHITZ [1] for the hodograph transform). This EVIis re-
lated to a linear operator and the corresponding convex set is the cone
of non-negative functions.

Figure 3.1:

In the remainder of Sec. 3 (and also in Chap. 6) we shall only work164

in the physical plane since it seems more convenient for the computation
of non-symmetric and/or transonic flows.

For the reader who is interested by the mathematical aspectsof the
flow mentioned above, see BERS [1], BREZIS-STAMPACCHIA [1].
For the Physical and Mechanical aspects see LANDAU-LIPSCHITZ
[1]. Additional references are given in Chap. 6.

3.2 Variational formulation of subsonic problems

Preliminary Remark: In the case of a non symmetric flow past an
airfoil (see Figure 3.2)

Figure 3.2:
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the velocity potential has to bediscontinuous and a circulation condition165

is required to ensure the uniqueness (modulo a constant) of the solution
of (3.1). If the airfoil has corners (like in Figure 3.1) thenthe circula-
tion condition is related to the so calledKutta-Joukowsky conditionfrom
which it follows that for a physical flow, the velocity field iscontinuous
at the (like 0 in Figure 3.2). For more information about the Kutta-
Joukowsky condition, see LANDAU-LIPSCHITZ [1] (see also Chap.
6).

For the sake of simplicity, we shall assume in the sequel thateither
Ω is simply connected, as it is the case for the nozzle of Figure3.3, or,
if Ω is multiply connected, we shall assume (like in Fig. 3.1) that the
flow is physically and geometrically symmetric, since in this case the
Kutta-Joukowsky condition is automatically satisfied.

Figure 3.3:

We assume in the sequel that the boundary condition associated with
(3.1), (3.2) are the following:

φ = g0 overΓ0, ρ
∂φ

∂n
|Γ1 = g1 (3.4)

whereΓ0, Γ1 ⊂ Γ with Γ0 ∩ Γ1 = φ, Γ0 ∪ Γ1 = Γ. Then the variational
formulation for the flow problem (3.1), (3.2), (3.3), (3.4) is



∫
Ω
ρ(φ)∇φ · ∇vdx=

∫
Γ1

g1vdΓ∀v ∈ V0,

φ ∈ Vg0,

(3.5)
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where166

V0 = {v ∈ H1(Ω) : v|Γ0 = 0}, (3.6)

Vg0 = {v ∈ H1(Ω) : v|Γ0 = g0}. (3.7)

If g0, g1 are small enough, it can be proved that (3.5) has a solution
such that

|∇φ| ≤ M < C∗ a.e..

When solving a practical flow problem we may not know a priori,
whether the flow will be purely subsonic or not. Therefore instead of
solving (3.5) it may be convenient to consider (and solve) the following
problem:



∫
Ω
ρ(φ)∇φ · ∇(v− φ)dx≥

∫
Γ1

g1(v− φ)dΓ∀v ∈ Kδ,

φ ∈ Kδ,

(3.8)

where
Kδ = {v ∈ Vg0, |∇v| ≤ δ < C∗a.e.}. (3.9)

The variational problem (3.8), (3.9) is an EVI of the first kind, but
we have to observe that unlike the EVIs of Chap. 1 and 2, it involves a
non-linear partial differential operator, namelyA defined by

A(φ) = −∇ · (ρ(φ)∇φ).

REMARK 3.2. In practical applications we shall takeδ as close as
possible to C∗.

REMARK 3.3. Problem(3.8), (3.9)appears as a variant of the elasto-
plastic torsion problem of Chap. 2, Sec. 3.

3.3 Existence and uniqueness properties for the problem (3.8).

In this section we shall assume that Measure (Γ0) > 0. To prove that167

(3.8) is well posed we will use the following
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Lemma 3.1. The functionξ → −

1−
ξ2

γ+1
γ−1C2

∗



γ/γ−1

is convex ifξ ∈

[0,C∗], concave ifξ ∈ [C∗,

√
γ + 1
γ − 1

C∗] and strictly convex ifξ ∈ [0,C∗[.

Exercise 3.1.Prove Lemma 3.1.
We can now prove

THEOREM 3.1. Assume thatΩ is bounded and that g0, g1 are suffi-
ciently smooth and small. Then(3.8)has a unique solution.

Proof. SinceΩ is bounded and ifg0 is sufficiently smooth and small,
we observe thatKδ is a closed, convex, and nonempty bounded subset
of H1(Ω) (consisting of uniformly Lipschitz continuous functions).

DefineJ(·) by

J(v) = −γ + 1
2γ

C2
∗

∫

Ω

1−
|∇v|2
γ+1
γ−1C2

∗



γ/γ−1

dx−
∫

Γ1

g1vdΓ. (3.10)

�

It follows from Lemma 3.1 thatJ(·) is strictly convex overKδ. It is
easy to check thatJ(·) is continuous and Gateau-differentiable overKδ

with

(J′(v),w) =
∫

Ω

ρ(v)∇v · ∇wdx−
∫

Γ1

g1wdΓ. (3.11)

SinceKδ is a closed, convex, nonempty subset ofH1(Ω) and that
J(·) is continuous and strictly convex overKδ, it follows from standard
optimization theory in Hilbert space (see CEA [1], [2]) thatthe mini-
mization problem 

J(u) ≤ J(v)∀v ∈ Kδ,

u ∈ Kδ,

(3.12)

has a unique solution.
Moreover sinceJ(·) is differentiable the unique solution of (3.12) is168
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characterised (see CEA [1], [2]) by


(J′(u), v− u) ≥ 0∀v ∈ Kδ,

u ∈ Kδ;

from (3.11), this completes the proof of the Theorem.

REMARK 3.4. Let us assume thatΓ0 = φ. Then defining Kδ by

Kδ = {v ∈ H1(Ω) : |∇v| ≤ δ < C∗a.e., v(x0) = v0}

with x0 ∈ Ω and v0 arbitrarily given, we can prove that ifΩ is bounded
and g1 is sufficiently smooth then



∫
Ω
ρ(φ)∇φ · ∇(v− φ)dx≥

∫
Γ

g1(v− φ)dΓ∀v ∈ Kδ

φ ∈ Kδ,

(3.13)

has a unique solution (ifφ is a solution of(3.13)thenφ+C is the unique
solution of the similar problem obtained by replacing v0 by v0 +C).

Exercise 3.2.Prove the statement of Remark 3.4.

REMARK 3.5. In all the above arguments we assumed thatΩ is boun-
ded. We refer to CIAVALDINI-POGU-TOURNMINE [1] in which one
carefully studies the approximation of subsonic flow problems on an un-
bounded domainΩ∞ by problems on a family(Ωn)n of bounded domains
converging toΩ∞ (actually they have obtained estimates forφ∞ − φn).

The above EVI’s will have a practical interest if we can provethat in
the cases where a purely subsonic solution exists, then forδ large enough
it is the solution of (3.8); actually this property is true and follows from

THEOREM 3.2. Assuming the same hypothesis onΩ, g0, g1 as in The-169

orem 3.1, and that(3.4)has a unique solution in H1(Ω) with

|∇φ| ≤ δ0 < C∗ a.e. (3.14)

then φ is a solution of (3.8), (3.9) ∀δ ∈ [δ0,C∗[. Conversely if the
solution of (3.8), (3.9) is such that|∇φ| ≤ δ0 < δ a.e., thenφ is a
solution of (3.1), (3.2), (3.4).



3. A Subsonic Flow Problem 173

Proof. (1) Let φ ∈ H1(Ω) satisfying (3.1), (3.2), (3.4) and (3.14). If
v ∈ V0 then using Green’s formula it follows from (3.1), (3.2), (3.4)
that ∫

Ω

ρ(φ)∇φ · ∇vdx=
∫

Γ1

g1vdΓ∀v ∈ V0. (3.15)

It follows from (3.4), (3.15) and from the definition ofVg0 that
∫

Ω

ρ(φ)∇φ · ∇(v− φ)dx=
∫

Γ1

g1(v− φ)dΓ∀v ∈ Vg0. (3.16)

Sinceφ ∈ Kδ ⊂ Vg0 ∀δ ∈ [δ0,C∗[, it follows from (3.16) that



∫
Ω
ρ(φ)∇φ · ∇(v− φ)dx≥

∫
Γ

g1(v− φ)dΓ∀v ∈ Kδ,

φ ∈ Kδ,

if δ ∈ [δ0,C∗[; thereforeφ is the solution of the EVI (3.8), (3.9)
∀δ ∈ [δ0,C∗[.

(2) DefineU ⊂ V0 by

U = {v ∈ C∞(Ω) : v = 0 in a neighbourhood ofΓ0}.

�

Then, if we suppose thatΓ is sufficiently smooth, we have

U
H1(Ω)

= V0. (3.17)

We assume that forδ < C∗, (3.8) has a solution such that

|∇φ| ≤ δ0 < δ a.e.. (3.18)

170

Then∀v ∈ U and for t > 0 sufficiently smallφ + tv ∈ Kδ. Then
replacingv by φ + tv in (3.8) and dividing byt obtain

∫

Ω

ρ(φ)∇φ · ∇vdx≥
∫

Γ1

g1vdΓ∀v ∈ U,
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which implies
∫

Ω

ρ(φ)∇φ · ∇vdx=
∫

Γ1

g1vdΓ∀v ∈ U. (3.19)

SinceD(Ω) ⊂ U it follows from (3.19) that
∫

Ω

ρ(φ)∇φ · ∇vdx= 0∀v ∈ D(Ω), (3.20)

i.e.
−∇ · (ρ(φ)∇φ) = 0

which proves (3.1).
Assuming (3.1) and Green’s formula we obtain

∫

Ω

ρ(φ)∇φ · ∇vdx=
∫

Γ1

ρ
∂φ

∂n
vdΓ∀v ∈ U. (3.21)

Using (3.17) and comparing with (3.19) we obtain

ρ
∂φ

∂n
|Γ1 = g1,

i.e. (3.4), which completes the proof of the Theorem.

REMARK 3.6. A similar Theorem can be proved for the problem men-
tioned in Remark 3.4.

3.4 Comments

The solution of subsonic flow problems via EVIs like (3.8) (3.13) is con-
sidered in CIAVALDINI-POGU-TOURNEMINE [2] (using a stream
function approach) and in GLOWINSKI-MARROCCO [3].

Iterative methods for solving these EVIs may be found in the above
reference and also in Chap. 5 of these notes.



Chapter 5

Decomposition–Coordination
methods by augmented
largrangian. Applications1

1 Introduction

1.1 Motivation

A large number of problems in Mathematics, Physics, Mechanics, Eco- 171

nomics, etc... may be formulated as

min
v∈V
{F(Bv) +G(v)} (P)

where

- V, H are topological vector spaces,

- B ∈ L (V,H),

- F : H → R, G : V → R are convex, proper, l.s.c. functionals.

Let us give two examples taken from Chapter 2.

1This Chapter follows FORTIN-GLOWINSKI [1].

175
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Example 2. It is the Bingham flow problemof Chapter 2, Sec. 6; we
recall thatΩ being a bounded domain ofR2, we consider the variational
problem

min
v∈H1

0(Ω)
{ν
2

∫

Ω

|∇v|2dx+ g
∫

Ω

|∇v|dx−
∫

Ω

f vdx} (1.1)

whereν and g arepositiveconstants. Then(1.1) is the particular prob-
lem(P) in which

- V = H1
0(Ω),

- H = L2(Ω) × L2(Ω),

- B = ∇

- F(q) = ν
2

∫
Ω
|q|2dx+ g

∫
Ω
|q|dx, (|q| =

√
q2

1 + q2
2,

- G(v) = −
∫
Ω

f vdx.

Actually we can also take172

- F(q) = g
∫
Ω
|q|dx,

- G(v) =
ν

2

∫
Ω
|∇v|2dx−

∫
Ω

f vdx.

Example 3. It is elastic-plastic torsion problemof Chapter 2, Sec. 3;Ω
being still bounded inR2, we consider

min
v∈K
{1
2

∫

Ω

|∇v|2dx−
∫

Ω

f vdx} (1.2)

where
K = {v ∈ H1

0(Ω), |∇v| ≤ 1a.e.}.

Problem (1.2) is the particular problem (P) in which

- V = H1
0(Ω),H = L2(Ω) × L2(Ω),

- B = ∇,
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- F(q) =
1
2

∫
Ω
|q|2dx+ I K̂(q),

- G(v) = −
∫
Ω

f vdx,

whereI K̂ is theindicator functionalof the convex set

K̂ = {q ∈ H, |q| ≤ 1a.e.},

i.e.

I K̂(q) =



0 if q ∈ K

+∞ if q < K.

We can also take

- F(q) = I K̂ ,

- G(v) =
1
2

∫
Ω
|∇v|2 −

∫
Ω

f vdx.

Orientation. Problems of type (P) have a special structure and in the
sequel we shall introduce iterative methods of solution taking it into
account.

1.2 Principle of the methods

The decomposition-coordination methods to follow are based on the fol- 173

lowing obviousequivalenceresult:

THEOREM 1.1. (P) equivalent to

min
{v,q}∈W

{F(q) +G(v)} (Π)

where
W = {{v, q} ∈ V × H, Bv− q = 0}.

We shall assume in the sequel thatV andH areHilbert spaceswith inner
products and norms respectively denoted by ((·, ·)), ||.|| and (·, ·) and |.|.
We define then a Lagrangian functionalL associated to (π), by

L (v, q, µ) = F(q) +G(v) + (µ, Bv− q), (1.3)
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and forr ≥ 0 anAugmented LagrangianLr by

Lr (v, q, µ) = L (v, q, µ) +
r
2
|Bv− q|2. (1.4)

REMARK 1.1. Augmented Lagrangian methods for solving general
optimization problems have been introduced by HESTENES [1], POW-
ELL [1]. Augmented Lagrangian methods for solving problemslike (P)
via (π) have been introduced by GLOWINSKI-MARROCCO [237] and
also [5]- [7].

2 Properties of (P) And of The Saddle-Points ofL
And Lr

2.1 Existence and uniqueness properties for (P).

Let defineJ : V → R by

J(v) = F(Bv) +G(v).

Then (P) can also be written


J(u) ≤ J(v) ∀v ∈ V,

u ∈ V.
(2.1)

Let j : X→ R; we define the so-calleddomainof j(.) by174

dom (j) = {x ∈ X, j(x) ∈ R}

Then, if
dom (F ◦ B) ∩ dom (G) , φ, (2.2)

J is convex, proper, l.s.c.Therefore,sufficientconditions for (P) to have
aunique solutionare (cf. CEA [1], [2], EKELAND-TEMAM [1]):

− lim
||v||→+∞

F(v) = +∞,

− F strictly convex.

REMARK 2.1. If B is an injection from V to H, with R(B) (= range of
B) closed in H, then|Bv| is a norm on V equivalent to||v||.
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2.2 Properties of the saddle-points ofL and Lr

We have

THEOREM 2.1. Let{u, p, λ} be a saddle-point ofL on V×H×H, then
{u, p, λ} is also a saddle-point ofLr ∀r > 0 and conversely. Moreover u
is solution of(P) and p= Bu.

Proof. (i) Let {u, p, λ} be a saddle-point ofL , thenL (u, p, λ) ∈ R and



L (u, p, µ) ≤ L (u, p, λ) ≤ L (v, q, λ)∀{v, q, µ} ∈ V × H × H,

{u, p, λ} ∈ V × H × H.
(2.3)
�

From the first inequality (2.3) and from (1.3) it follows that

(µ, Bu− p) ≤ (λ, Bu− p)∀µ ∈ H,

which implies obviously that

Bu= p. (2.4)

From the second inequality (2.3) and from (1.3), (2.4) it follows that 175

J(u) = L (u, p, λ) ≤ (v, q, λ)∀{v, q} ∈ V × H (2.5)

Takingq = Bv in (2.5), it follows from (1.3) that

J(u) ≤ L (v, Bv, λ) = J(v)∀v ∈ V : (2.6)

henceu is solution of (P). SinceP = Buwe have

Lr (u, p, µ) = L (u, p, µ) = J(u)∀µ ∈ H; (2.7)

it follows then from (2.3), (2.7) that

Lr (u, p, µ) = Lr (u, p, λ) ≤ L (v, q, λ)∀{v, q, µ} ∈ V × H × H. (2.8)
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SinceLr (v, q, µ) = L (v, q, µ) +
r
2
|Bv− q|2, we obtain from (2.8) that

Lr (u, p, µ) ≤ Lr (u, p, λ) ≤ Lr (v, q, λ)∀{v, q, µ} ∈ V × H × H, (2.9)

which proves that{u, p, λ} is also a saddle-point ofLr on V × H × H.
To conclude this part of the proof we observe that from (2.3),{u, p} is
solution of


L (u, p, λ) ≤ L (v, q, λ)∀{v, q} ∈ V × H,

{u, p} ∈ V × H,
(2.10)

from which it follows that{u, p} is characterized (see CEA [1], [2],
EKELAND - TEMAM [1])


F(q) − F(p) − (λ, q− p) ≥ 0∀q ∈ H,

p ∈ H,
(2.11)



G(v) −G(u) + (λ, B(v− u)) ≥ 0∀v ∈ V,

u ∈ V.

(2.12)

(ii) Let {u, p, λ} be a saddle-point ofLr with r > 0. Then as in part (i)176

this implies thatp = Bu and thatu is solution of (P). Moreover, since
{u, p, λ} is solution of



Lr (u, p, λ) ≤ Lr (v, q, λ)∀{v, q} ∈ V × tH,

{u, p} ∈ V × H,

(2.13)

it is characterized by



F(q) − F(p) + r(p− Bu, q− p) − (λ, q− p) ≥ 0∀q ∈ H,

p ∈ H,

(2.14)
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

G(v) −G(u) + r(Bu− p, B(v− u)) + (λ, B(v− u)) ≥ 0∀v ∈ V,

u ∈ V.
(2.15)

But sinceBu− p = C, (2.14), (2.15) reduce to (2.11), (2.12) and this
fact implies that{u, p, λ} satisfies (2.10). It follows then from (2.7) that
{u, p, λ} satisfies (2.3) and this completes the proof of the theorem.

3 Description of The Algorithms

It follows from Theorem 2.1 that a way of solving (P) is to solve the
saddle point problem



Lr (u, p, µ) ≤ Lr (u, p, λ) ≤ (v, q, λ)∀{v, q, µ} ∈ V × H × H,

{u, p, λ} ∈ V × H × H.

(3.1)

To do so we shall (See CEA [1], G.L.T [1, Ch. 2]) and algorithm of
Uzawa’s type and a variant of it.

3.1 First algorithm

We denote by ALG 1 the following algorithm: 177

λ0 ∈ H given , (3.2)

thenλn known, we define un, pn, λn+1 by



Lr (un, pn, λn) ≤ Lr (v, q, λn)∀{v, q} ∈ V × H,

{un, pn} ∈ V × H,

(3.3)

λn+1 = λn + ρn(Bun − pn), ρn > 0. (3.4)
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The problem (3.3) is in fact equivalent to the following system of two
coupled variational inequalities(of the second kind):



G(v) −G(un) + (λn, B(v− un)) + r(Bun − pn, B(v− un)) ≥ 0∀v ∈ V,

un ∈ V,
(3.5)

F(q) − F(pn) − (λn, q− pn) + r(pn − Bun, q− pn) ≥ 0∀q ∈ H,

pn ∈ H.
(3.6)

The convergence of ALG 1 will be studied in Sec. 4.

3.2 Second algorithm

The main drawback of ALG 1 is that it requires at each interaction the
solution of the coupled EVIs (3.5), (3.6). To overcome thus difficulty it
is natural to consider the following variant of ALG 1 (denoted ALG 2
in the following):

{p0, λ1} ∈ H × H given , (3.7)

then{pn−1, λn} known, we define{un, pn, λn+1} by



G(v) −G(un) + (λn, B(v− un)) + r(Bun − pn−1, B(v− un)) ≥ 0∀v ∈ V,

un ∈ V,
(3.8)

F(q) − F(pn) − (λn, q− pn) + r(pn − Bun, q− pn) ≥ 0∀q ∈ H,

pn ∈ H,
(3.9)

178

λn+1 = λnρn(Bun − pn), ρn > 0. (3.10)

The convergence of ALG 2 will be studied in Sec. 5.
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4 Convergence of Alg 1

4.1 General case

In this subsectionV andH are possiblyinfinite dimensional; we assume
that of course

dom (F ◦ B) ∩ dom (G) , φ, (4.1)

and also
B is an injection andR(B) is closed inH. (4.2)

We assume also that

lim
|q|→+∞

F(q)
|q|
= +∞, (4.3)

F = F0 + F1 with F0, F1 convex , proper, l.s.c., (5.1)


F0 is Gateaux-differentiable and uniformly convex on the

bounded sets ofH.

(4.5)

By definition we say thatF0 is uniformly convexon the bounded sets of
H if the following property holds:



∀M > 0,∃ δM : [0, 2M] → R, continuous, strictly increasing with

δM(0) = 0, such that∀q, p ∈ H with |p| ≤ M, |q| ≤ M we have

(F′0(q) − F′0, q− p) ≥ δM(|q− p|),
(4.6)

whereF′0▽ F0 is theG-derivative ofF0. From the above properties, (P)
has aunique solution uand we definep ∈ H by p = Bu.

Exercise 4.1.Prove that(P) is well-posed if(4.1)–(4.5)hold. 179

About the convergence of ALG 1 we have

THEOREM 4.1. We assume thatL has a saddle-point{u, p, λ} ∈ V ×
H × H. Then under the above assumption on B, F, G and if

0 < α0 ≤ ρn ≤ α1 < 2r (4.7)
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the following convergence properties hold

un→ u strongly in V, (4.8)

Pn→ P = Bu strongly in H, (4.9)

λn+1 − λn→ 0 strongly in H, (4.10)

λn is bounded in H. (4.11)

Moreover ifλ∗ is weak cluster point of{λn}n in H, then {u, p, λ∗} is a
saddle-point ofLr over V× H × H.

Proof. Since{u, p, λ} is a saddle-point ofLr we have



Lr (u, p, λ) ≤ Lr (v, q, λ)∀{v, q} ∈ V × H,

{u, p} ∈ V × H.

(4.12)

Therefore{u, p} is characterized by



G(v) −G(u) + (λ, B(v− u)) + r(Bu− q, B(v− u))

≥ 0∀v ∈ V,

u ∈ V,

(4.13)



(F′0(p), q− p) + F1(q) − F1(p) − (λ, q− p)

+r(p− Bu, q− p) ≥ 0∀q ∈ H,

p ∈ H.

(4.14)

Moreover we have, from Theorem 2.1,Bu= p; therefore

λ = λ + ρn(Bu− p). (4.15)

Let us defineu−n, p−n, λ−n by180

u−n = un − u, p−n = pn − p, λ−n = λn − λ.

It follows then from (3.4), (4.15) that

λ−n+1 = λ−n + ρn(Bu−n − p−n).
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which implies

|λ−n+1|2 = |λ−n|2 + 2ρn(λ−n, Bu−n − p−n) + ρ2
n|Bu−n − p−n|2

or, what will be more convenient,

|λ−n+1|2 = |λ−n|2 + 2ρn(λ−n, Bu−n − p−n) + ρ2
n|Bu−n − p−n|2. (4.16)

since{un, pn} is solution of (3.3) it is characterized by


G(v) −G(un) + (λn, B(v− un)) + r(Bun − pn, B(v− un)) ≥ 0∀v ∈ V,

un ∈ V,
(4.17)

(F′0(pn), q− pn) + F1(q) − F1(pn) − (λn, q− pn)

+r(pn − Bun, q− pn) ≥ 0∀q ∈ H,

pn ∈ H.

(4.18)

Takingv = u (resp. .v = un) in (4.17) (resp. . (4.13)) andq = p (resp. .
q = pn) in (4.18) (resp. . (4.14)) we obtain by addition

(λ−n, Bu−n) + r(Bu−n − p−n, Bu−n) ≤ 0, (4.19)

(F′0(pn) − F′0(p), p−n) − (λ−n, p−n) + r(p−n − Bu−n, p−n) ≤ 0, (4.20)

which imply, also by addition,

(λ−n, Bu−n − p−n) + (F′0(pn) − F′0(p), p−n) + r |Bu−n − p−n|2 ≤ 0,

i.e.

− (λ−n, Bu−n − p−n) ≥ (F′0(pn) − F′0(p), p−n) + r |Bu−n − p−n|2. (4.21)

Combining (4.16) and (4.21) we obtain 181

|λ−n|2−|λ−n+1|2 ≥ 2ρn(F′0(pn)−F′0(p), p−n)+ρn(2r−ρn)|Bu−n−p−n|2 ≥ 0.
(4.22)

Assuming that (4.7) holds it follows from (4.22) that

lim
n→+∞

|Bu−n − p−n| = 0, (4.23)
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lim
n→+∞

(F′0(pn) − F′0(p).pn − p) = 0, (4.24)

λn is bounded inH. (4.25)

Sincep = Bu it follows from (4.23) that

lim
n→+∞

|Bun − pn| = 0 (4.26)

SinceF is proper there existsp0 ∈ H such thatF(p0) ∈ R; then from
the characterisation (3.9) we have

F(p0) − (λn, p0) + r(pn − Bun, p0) ≥ F(pn) − (λn, pn) + r(pn − Bun, pn).
(4.27)

Sinceλn andpn − Bunare bounded, (4.27) implies

β0 ≥ F(pn) − β1|pn|, (4.28)

whereβ0, β1 are independent ofn. It follows then from (4.3), (4.28) that

pn is bounded inH, i.e. ∃M such that|Pn| ≤ M ∀n. (4.29)

Then using theuniform convexityproperty (4.5), (4.6) ofF0 we obtain
from (4.29) (assumingM ≥ |p|) that

(F′0(pn) − F′0(p), pn − p) ≥ δM(|pn − p|),

which implies, combined with (4.24), that182

lim
n→+∞

δM(|pn − p|) = 0⇔ lim
n→+∞

|pn − p| = 0. (4.30)

It follows then from (4.26), (4.30) that

lim
n→+∞

Bun = P = Bustrongly inH. (4.31)

SinceB is an injection withR(B) closed inH, then (4.31) implies that

lim
n→+∞

un = u strongly inV. (4.32)
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The convergence result (4.10) follows clearly from (4.7). (4.26). Letλ∗

be a weak cluster point of (λn)n in H. Then passing to the limit in (3.5),
(3.6), and using the l.s.c. property ofF andG, we have



G(v) + (λ∗, B(v− u)) + r(Bu− p, B(v− u))

≥ lim inf G(un) ≥ G(u)∀v ∈ V,

u ∈ V,


F(q) − (λ∗, q− p) + r(p− Bu, q− p)

≥ lim inf F(pn) ≥ F(p)∀q ∈ H,

p ∈ H

i.e.


G(v) −G(u) + (λ∗, B(v− u)) + r(Bu− p, B(v− u)) ≥ 0∀v ∈ V,

u ∈ V,

(4.33)


F(q) − F(p) − (λ∗, q− p) + r(p− Bu− p, B(v− u)) ≥ 0∀v ∈ V,

p ∈ H.

(4.34)

As noticed before (see (2.13) - (2.15)) (4.33) is equivalentto

Lr (u, p, λ∗)Lr (v, q, λ∗)∀{v, q} ∈ V × H,

{u, p} ∈ V × H.
(4.35)

Since, fromp = Bu, we have

Lr (u, p, µ) = L (u, p, µ) = J(u)∀µ ∈ H,

We obtain
Lr (u, p, µ) = Lr (u, p, λ)∀µ ∈ H. (4.36)

It follows clearly from (4.35), (4.36) that{u, p, λ∗} is a saddle-point of 183

Lr ; this completes the proof of the theorem. �
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4.2 Finite dimensional case

If V andH are finite dimensional we have convergence of ALG 1 with
weaker assumption onF, B, G than in Sec. 4.1. The reasons for this are
the following:

(1) Since the constraintsBv− q = 0 is linear, if (p) has a solution then
L andLr have a saddle-point (see ROCKAFELLAR [1], CEA [1],
[2]).

(2) R(B) is always closed.

(3) It follows from CEA-GLOWINSKI [1] thatF0 satisfies theuniform
convexity property(4.5), (4.6) if F0 is C1 and strictly convex.

(4) If F0 is C1 and strictly convex thenF′0 is C0 andstrictly monotone
i.e.

(F′0(q2) − F′0(q1), q2 − q1) > 0∀q1, q2 ∈ H, q1 , q2.

Then if (P) has a solution, the property

lim
|q|→+∞

F(q)
|q|
= +∞

is not necessary. This is related to the following

Lemma 4.1. Let H be finite dimensional and A: H → H be continuous
and strictly monotone. Let{pn}n≥0, pn ∈ H ∀n, and p∈ H be such that

lim
n→+∞

(A(pn) − A(p), pn − p) = 0; (4.37)

then
lim

n→+∞
pn = p. (4.38)

Proof. Assume that (4.38) does not hold. Then there existδ > 0 and a
subsequence, denoted (pm)m, such that

|pm − p| ≥ δ∀m. (4.39)

�
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Let S
(
p;
δ

2

)
=

{
q ∈ H, |q− p| = δ

2

}
. We definezm ∈ S

(
p;
δ

2

)
by184

zm = p+
δ

2
pm − p
|pm − p|

; (4.40)

zm ∈]p, pm[⊂ H (see Fig. 4.1).

Figure 4.1:

We introducetm =
δ

2|pm − p|
; then

zm = p+ tm(pm − p) (4.41)

and from (4.39)

0 < tm ≤
1
2
. (4.42)

SinceA is strictly monotonewe have

(A(pm)−A, pm−p) > (A(p+t(pm−p))−A(p), pm−p) ∀t ∈]0, 1[ (4.43)

Then, takingt = tm in (4.43), we obtain

(A(pm) − A(p), pm − p) > (A(zm) − A(p), pm − p) > 0. (4.44)

It follows then from (4.41), (4.42), (4.44) that


(A(pm) − A(p), pm − p) > 1
tm (A(zm) − A(p), zm − p)

≥ 2(A(zm) − A(p), zm − p) >

> (A(zm) − A(p), zm − p) > 0.

(4.45)
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SinceS(p,
δ

2
) is compactwe can extract from (zm)m a subsequence- still185

denoted (zm)m- such that

lim
m→+∞

zm = z, ∈ S(p,
δ

2
). (4.46)

SinceA is continuous it follows from (4.37), (4.46) that

(A(z) − A(p), z− p) = 0. (4.47)

The strict monotonicityof A and (4.47) imply thatz = p which is

impossible since|p−z| = δ

2
. Therefore (4.39) cannot hold⇒ lim

n→+∞
pn =

p. From the above properties we can easily prove the following

THEOREM 4.2. Assume that Vand H are finite dimensional and that
(P) has a solution u. We suppose that

- B is an injection ,

- G is convex, proper, l.s.c.,

- F = F0 + F1 with F1 convex, proper, l.s.c. over H and F0 strictly
convex and C1 over H.

Then(P) has a unique solution and if

0 < α0 ≤ ρn ≤ α1 < 2r

holds, we have for ALG 1 the following convergence properties.

lim
n→+∞

un = u,

lim
n→+∞

pn = Bu,

lim
n→+∞

λn+1 − λn = 0,

λn is bounded in H.

Moreover ifλ is a cluster point of(λn)n, then{u, p, λ} is saddle point of
Lr over V× H × H.
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4.3 Comment on the use of ALG 1. Further remarks.

Assume thatr is fixed and what we use afixed valueρ for ρn. Then186

from our computational experience it appears that the best convergence
is obtained forρ = r. About the choice ofr it can be provedtheoretically
that thelarger is r, thefasteris the convergence;practically the situation
is not so simple, for the following reasons:

The larger is r, the worst is the conditioning of the optimization
problem (3.3) (or of the equivalent system (3.5), (3.6)). Then, since
(3.3) isnumerically(and not exactly) solved, at each iteration anerror
is made in the determination of{un, pn}. The analysis of this error and
the effect of it on the global behaviour of ALG 1 is a very complicated
problem since we have to take into account the conditioning of (3.3),
the stopping criterion of the algorithms (usually iterative) solving (3.3),
round-off errors, etc. . ..

Fortunately it seems that the combined effect of all these factors is an
algorithm which is not very sensitive to the choice ofr (see GLOWIN-
SKI - MARROCCO [6], FORTIN-GLOWINSKI [1] for more details).

Form a numerical point of view the only non-trivial part in the use of
ALG 1 is the solution at each iteration of the above problem (3.3). Tak-
ing into account the particular structure of (3.3) it follows from CEA-
GLOWINSKI [1], and CEA [2] that a method very well-suited to the
solution of (3.3) is theblock relaxationmethod described below:

All the problems (3.3) are of the following type:

Lr (u, p, µ) ≤ Lr (v, q, µ)∀{v, q} ∈ V × H,

{u, p} ∈ V × H,
(4.48)

whereµ is given. The minimization problem (4.48) is equivalent to the
system


G(v) −G(u) + (µ, B(v− u)) + r(Bu− p, B(v− u)) ≥ 0∀v ∈ V,

u ∈ V,

(4.49)


F(q) − F(p) − (µq− p) + r(p− Bu, q− p) ≥ 0∀q ∈ H,

p ∈ H.
(4.50)
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Then ablock relaxation methodfor solving (4.49), (4.50) is187

{u0, p0} given, (4.51)

then{um, pm} known, we obtain{um+1, pm+1} from



G(v) −G(um+1) + (µ, B(v− um+1))

+r(Bum+1 − pm, B(v− um+1)) ≥ 0∀v ∈ V,

um+1 ∈ V,

(4.52)



F(q) − F(pm+1) − (µ, q− pm+1)

+r(pm+1 − Bum+1, q− pm+1) ≥ 0∀q ∈ H,

pm+1 ∈ H.

(4.53)

Sufficient conditions for the convergence of (4.51)–(4.53) may be
found in CEA-GLOWINSKI and CEA, loc. cit. .

In practice, when using (4.51)–(4.53), a stopping test of the follow-
ing type will be used:

max(||um+1 − um||, |pm+1 − pm|) ≤∈ . (4.54)

Another possibility is to stop after afixed numberof iterations. If
for instance we stop afteronly oneiteration of (4.51) - (4.53) an if at
iterationn of ALG 1 we initialise with{un−1, pn−1} the computation of
{un, pn} by (4.51)-(4.53), then we recover ALG 2.

REMARK 4.1. Other relaxation methods can also be used; moreover
it can be worthwhile to introduceoverrelaxation parametersto increase
the speed of convergence of(4.51)- (4.53).

REMARK 4.2. The choiceρ = r may be motivated by the following

Proposition 4.1. Suppose that F(q) =
1
2
|q|2 and that G is linear. Then188

∀λ0 ∈ H we have for the sequence(un)n of ALG1, convergence to the
solution u of(P) in less than three iterations if we useρn = ρ = r, r
given.
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Preliminary remark. In the above situation we have(P) equiva-
lent to

BtBu= f (5.2)

where G(v) = (( f , v)) ∀v ∈ V. Therefore using ALG 1 for solving(p)
has nopracticalinterest. But even in that trivial case we shall observe
that the behaviour of ALG 1 is “interesting” since the convergence of
un in a finite numberof iterationsdoes not implya similar convergence
for pn andλn.

Proof of proposition 5.1. It follows from(4.17), (4.18)that in the par-
ticular case that we are considering, ALG 1 reduces to

λ0 given in H, (4.55)

rBtBun = rBt pn − Btλn + f , (4.56)

pn = λn + r(Bun − pn), (4.57)

λn+1 = λn + r(Bun − pn). (4.58)

We can easily prove that the unique saddle-point ofLr over V× H × H
is {u, Bu, Bu}, i. e. p= Bu, λ = Bu; using the notation u−n = un − u,
p−n = pn − p, λ−n = λn − λ it follows from(4.56)- (4.58)that

Btλ−n + rBt(Bu−n − p−n) = 0 ∀n ≥ 0, (4.59)

λn+1 = pn,⇒ λ−n+1 = p−n ∀n ≥ 0, (4.60)

p−n = λ−n + r(Bu−n − p−n) ∀n ≥ 0. (4.61)

Multiplying (4.61) byBt and comparing with (4.59) we obtain 189

Bt p−n = 0 ∀n ≥ 0. (4.62)

Since (4.60), (4.61) imply

p−n+1 = p−n + r(Bu−n+1 − p−n+1) ∀n ≥ 0 (4.63)

we obtain, multiplying byBt and taking account of (4.62), that

Bt Bu−n+1 = 0 ∀n ≥ 0⇒ Bu−n+1 = 0∀n ≥ 0. (4.64)
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Since|Bv| is a norm onV, (4.64) implies thatun = u ∀n ≥ 1. Hence
the convergence ofun to u requires at most two iterations. Using (4.63),
(4.64) we have

p−n+1 =
1

1+ r
p−n ∀n ≥ 0. (4.65)

It follows from (4.65) that the larger isr the fasterpn converges top =
Bu; for more details on the convergence ofpn see FORTIN-
GLOWINSKI [1].

5 Convergence of ALG 2

5.1 Orientation

We shall prove in this section that under fairly general assumptions on

F andGwe have convergence of ALG 2 if 0< ρn = ρ <
1+
√

5
2

r. We

do not know if this result is optimal since in some cases (G linear, for
example ) the upper bound of the interval of convergence is 2r. Actually
this question is rather academic since in the various experiments we have
done with ALG 2, the optimal choice seems to beρ = r.

5.2 General case

We study the convergence of ALG 2 with the same hypotheses ofB, F,
G as in Sec. 4.1. We have then

THEOREM 5.1. We suppose thatLr has a saddle-point{u, p, λ} over
V×H ×H. Then if the assumptions on B, F, G are those of Sec. 4.1 and
if

0 < ρn = ρ <
1+
√

5
2

r, (5.1)

we have the following convergence properties:190

un→ u strongly in V, (5.2)

pn→ p strongly in H, (5.3)

λn+1 − λn→ 0 strongly in H, (5.4)
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λn is bounded inH. (5.5)

Moreover ifλ∗ is a weak cluster point of(λn)n, then {u, p, λ} is a
saddle-point ofLr over V× H × H.

Proof. Let us still defineu−n, p−n, λ−n by

u−n = un − u, p−n = pn − p, λ−n = λn − λ.

�

Since{u, p, λ} is a saddle-point ofLr overV × H × H. we have

G(v) −G(u) + (λ, B(v− u)) + r(Bu− p, B(v− u)) ≥ 0 ∀v ∈ V, (5.6)

(F′0(p), q− p) + F1(q) − F1(p) − (λ, q− p)

+ r(p− Bu, q− p) ≥ 0 ∀q ∈ H. (5.7)

λ = λ + ρ(Bu− p). (5.8)

Moreover, (3.8)–(3.10) imply

G(v) −G(un) + (λn, B(v− un)) + r(Bun − pn−1, B(v− un)) ≥ 0∀v ∈ V,
(5.9)

(F′0(pn), q− pn) + F1(q) − F1(pn) − (λn, q− pn)

+ r(pn − Bun, q− pn) ≥ ◦∀q ∈ H, (5.10)

λn+1 = λn + ρ(Bun − pn). (5.11)

Takingv = un (resp. .v = u) in (5.6) (resp. . (5.9) ) andq = pn (resp. .
q = p) in (5.7) (resp. . (5.10)) we obtain by addition 191

r(Bun − pn−1, Bun) + (λ
n
, Bun) ≤ 0, (5.12)

(F′0(pn) − F′0(p), pn) + r(pn − Bun, pn) − (λ
n
, pn) ≤ 0. (5.13)

By addition of (5.12), (5.13) it follows that

(F′0(pn)−F′0(p), pn−p)+r |Bun−pn|2+(λ
n
, Bun−pn)+r(pn−pn−1, Bun) ≤ .

(5.14)
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By subtracting (5.8) from (5.11) we obtain

|λn|2 − |λn+1|2 = −2ρ(Bun,−pn, λ
n
) − ρ2|Bun − pn|2. (5.15)

It follows then from (5.14) , (5.15) that

|λn|2 − |λn+1|2 ≥ 2ρ(F′0(pn) − F′0(p), pn)

+ ρ(2r − ρ)|Bun − pn|2 + 2ρr(pn − pn, Bun). (5.16)

Starting from

Bun
= (Bun − Bun−1) + (Bun−1 − pn−1) + pn−1

we obtain

(Bun, pn − pn−1) = (Bun − Bun−1, pn − pn−1)

+ (Bun−1,−pn−1 − pn−1) + (pn−1, pn − pn−1). (5.17)

Since

(pn−1, pn − pn−1) =
1
2

(|pn|2 − |pn−1|2 − |pn − pn−1|2).

it follows from (5.17) that


2ρr(Bun, pn − pn−1) = 2ρr(Bun − Bun−1, pn − pn−1)

+2ρr(Bun−1 − pn−1, pn − pn−1)+

ρr(|pn|2 − |pn−1|2 − |pn − pn−1|2).

(5.18)

Taking (5.10) arn− 1 instead ofn, we have

(F′0(pn−1), q− pn−1) + F1(q) − F1(pn−1) − (λn−1, q− pn−1)+

+r(pn−1 − Bun−1, q− pn−1) ≥ 0.
(5.19)

Takingq = pn−1 in (5.10) andq = pn in (5.19) we obtain by addition192



(F′0(pn) − F′0(pn−1), pn − pn−1) − (λ
n − λn−1

,

−pn − pn−1) + r |pn − pn−1|2−
−r(Bun − Bpn−1, pn − pn−1) ≤ 0.

(5.20)
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But sinceF′0 is monotone, it follows from (5.20) that

r |pn−pn−1|2−(λ
n−λn−1

, pn−pn−1)−r(Bun−Bpn−1, pn−pn−1) ≤ 0 (5.21)

We have (from (3.10))

λn = λn−1 + ρ(Bun−1−pn−1
)

which implies that

λ
n − λn−1

= ρ(Bpn−1 − pn−1). (5.22)

It follows then from (5.21), (5.22) that

r |pn − pn−1|2 − ρ(Bun−1, pn − pn−1) − r(Bun − Bun−1, pn − pn−1) ≤ 0

i. e.

r(bu−n−Bun−1, pn− pn−1) ≥ r |pn− pn−1|2−ρ(Bun−1− pn−1− pn− pn−1).
(5.23)

It’ follows then from (5.18) , (5.23) that

2ρr(Bun, pn − pn−1) ≥ ρr(|pn|2 − |pn−1|2) + ρr |pn − pn−1|2

+2ρ(r − ρ)(Bun−1 − pn−1, pn−1, pn − pn−1).
(5.24)

Finally, combining (5.16), (5.24) we obtain



(|λ−n|2 + ρr |pn−1|2) − (|λn+1|2 + ρr |pn|2) ≥ 2ρ(F′0(Pn) − F′0(p), pn)+

+ρ(2r − ρ)|Bun − pn|2 + ρr |pn − pn−1|2

+2ρ(r − ρ)(Bun−1 − pn−1, pn − pn−1).
(5.25)

Using theSchwartz’s inequalityit follows from (5.25) that∀α > 0 we 193
have



(|λ−n|2 + ρr |pn−1|2) − (|λ−n+1|2 + ρr |pn|2) ≥ 2ρ(F′0(p
n) − F′0(p), pn)+

+ρ(2r − ρ)|Bun − pn|2 + ρr |pn − pn−1|2 − ρ|r − ρ|
( 1
α
|Bun−1 − pn−1|2 + α|pn − pn−1|2).

(5.26)
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It ρ = r it is clear that using the same method as in the proof of Theorem
4. 1. we have (5.2) - (5.5). If 0< ρ < r, takingα = 1 and observing that
|r = ρ| = r − ρ, we observe that we have from (5.26)



(|λn|2 + ρr |pn−1|2 + ρ(r − ρ)Bun−1 − pn−1|2)

−(|λn+1|2 + ρr |pn|2 + ρ(r − ρ)|Bun − pn|2)

≥ 2ρ(F′0(pn) − F′0(p), pn) + ρr |Bun − pn|2 + ρ2|pn − pn−1|2 ≥ 0.

which implies clearly (5.2) -(5.5).
If ρ > r we have|r − ρ| = ρ − r and then it follows from (5.26) that

(5.2) -(5.5) holds, if we haveρ < ρM where

ρM(2r − ρM) = 1

αρM(ρM − r).

ρMr = αρM(ρM − r).
(5.27)

By elimination ofα it follows from (5.27) that

ρ2
M − rρM − r2 = 0

i. e. (sinceρM > 0)

ρM =
1+
√

5
2

r.

Then using basically the same method as in the proof of Theorem 4.1
we can easily prove, from (5.2)-(5.5), that{u, Bu, λ∗} is a saddle-point
of Lr overV × H × H if λ∗ is a weak cluster point of (λn)n.

5.3 Finite dimensional case

Using a variant of the proof of Theorem 5.1, and Lemma 4.1, we can194

easily prove

THEOREM 5.2. Assume that the assumptions on V, H, F, B, G are
those of the statement of Theorem 4.2. Then if

0 < ρn = ρ <
1+
√

5
2

r

the conclusions of the statement of Theorem 4.2 still hold.
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5.4 Comments on the choice ofρ and r

5.4.1 Some remarks

REMARK 5.1. If G is linear it has been proved by GABAY-MERCIER
[1] that ALG 2 converges if

0 < ρn = ρ < 2r.

The proof of this result is rather technical and an open question is to
decide if it can be extended to the more general cases we have consid-
ered in these notes.

REMARK 5.2. If G is is linear we observe that the step(3.8)of ALG 2
is a linear problem related to the self adjoint operatorBtB. Therefore in
the finite dimensional case, assuming B injective, it will beconvenient
to factorize(by a Cholesky method, for example) the symmetric, positive
definite matrixBtB once and for all, before starting the iterations of ALG
2.

5.4.2 On the choice ofρ and r

If r is given our computational experience seems to indicate that the best
choice forρ is ρ = r. The choice ofr is not clear and ALG 2 appears
to bemore sensitiveto the choice ofr than ALG 1. By the way, ALG
1 seems to be more robust onvery stiff problem than ALG 2; we mean
that the choice of the parameter is less critical and that thecomputational
timewith ALG 1 may becomemuch shorterthan with ALG 2.

REMARK 5.3. We have seen in Remark 4.2 that if F(q) =
1
2
|q|2 and G 195

is linear, the sequence{un}n related to ALG 1 converges in two iterations
(at most) if we useρ = r. If we use ALG 2 with the same hypotheses on
F, G then we have convergence of{un}n in two iterations at most, only if
ρ = r = 1 (for any choice of{p0, λ1}). This fact also confirms the greater
robustness of ALG 1.



200 5. Decomposition–Coordination methods by augmented...

6 Applications

6.1 Bingham flow in a cylindrical pipe

It is the problem considered in CH. 2, Sec. 6 and also in Sec. 1.1 of
this Chapter (we recall thatΩ is aboundeddomain ofR2):

min
v∈H1

0(Ω)

{
ν

2

∫

Ω

|∇v|2dx+ g
∫

Ω

|∇v|dx−
∫

Ω

f vdx

}
. (6.1)

Then (3.1) is a particular (P) problem corresponding to

V = H1
0(Ω),H = L2(Ω) × L2(Ω), B = ∇, (6.2)

F(q) =
ν

2

∫

Ω

|q|2 dx+ g
∫

Ω

|q|dx, (6.3)

G(v) = −
∫

Ω

f v dx. (6.4)

Moreover we haveF = F0 + F1 with

F0(q) =
ν

2

∫

Ω

|q|2dx, F′0(q) = νq, (6.5)

F1(q) = g
∫

Ω

|q|dx. (6.6)

it follows then from (6.2) -(6.6) that the various assumptions required
to apply Theorem 4.1 and 5.1 are satisfied. Therefore we can solve
(6.1) by ALG 1 and ALG 2. Moreover sinceG is linear the GABAY-
MERCIER[1] result holds (see Remark 5.1) and ALG 2 convergesif
0 < ρn = ρ < 2r. The augmented LagrangianLr to be used in this case
is given by


Lr (v, q, µ) = ν

2

∫
Ω
|q|2dx+ g

∫
Ω

f vdx+
∫
Ω
µ · (∇v− q)dx

+ r
2

∫
Ω
|∇v− q|2dx.

(6.7)

Solution of (6.1)by ALG 1.196

When applying ALG 1 to the solution of (6.1) it follows from (3.2)-
(3.4), (6.7) that we have

λ0 ∈ L2(Ω) × L2(Ω), arbitrarily given, (6.8)
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then for n≥ 0,


−r∆un = f + ∇ · λn − r∇ · pnonΩ,

un|Γ = 0,
(6.9)



pn(x) = 0(ifg ≥ |λn9x) + r∇un(x)|,

pn(x) =
λn(x) + r∇un(x)

ν + r

(
1− g
|λn(x) + r∇un(x)|

)
elsewhere,

(6.10)

{
λn+1 = λn + ρn(∇un − pn). (6.11)

Solution of (6.1)by ALG
We have to replace (6.8) by

{p0, λ1}arbitrarily given in(L2(Ω))2 × (L2(Ω))2, (6.12)

and (6.9) by


−r∆un = f + ∇ · λn − r∇pn−1onΩ.

un|Γ = 0.
(6.13)

REMARK 6.1. In practice (6.8)–(6.11) and (6.12), (6.13), (6.10),
(6.11)will be applied tofinite elementor finite differenceapproxima-
tions of (6.1). It follows then from(6.9), (6.13) that it is easy to use
either ALG 1 (combined with theblock relaxation methodof Sec. 4.3)
or ALG 2, once we have at our disposal an efficient program for solving
approximate Dirichlet problems for−∆.

Bibliographical comments. Numerical solutions of (6.1) by ALG 1197

and ALG 2 may be found in GABAY-MERCIER [1, GLOWINSKI-
MARROCCO [3]; we can also find in FORTIN [2] and iterative method
of solution of (6.1), close to ALG 2 but obtained by a different approach.
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6.2 Elastic-plastic torsion of a cylindrical bar

It is the problem of Chap. 2, Sec. 3, also considered in Sec. 1.1 (Ω is a
bounded domain ofR2 in the sequel):

min
v∈K

[
1
2

∫

Ω

|∇v|2dx−
∫

Ω

f vdx], (6.14)

where K = {v|v ∈ H1
0(Ω), |∇v| ≤ 1a.e.}; (6.14) is a particular (P)

problem corresponding to

V = H1
0(Ω),H = L2(Ω) × L2(Ω), B = ∇, (6.15)

G(V) = −
∫

Ω

f v dx, (6.16)

F = F0 + F1, (6.17)

where

F0(q) =
1
2

∫

Ω

|q|2dx⇒ F′0(q) = q, (6.18)

F1(q) = LK̂(q) (6.19)

with K̂ = {q ∈ H, |q| ≤ 1a.e.} and ŁK̂ the indicator functionalof K̂ i.e.

LK̂(q) =


0 if q ∈ K̂,

+∞ if q < K̂.
(6.20)

Here too, it follows from (6.15) - (6.20) that the various assumptions
required to apply Theorem 4.1 and 5.1 are satisfied. Therefore we can
solve (6.14) by ALG 1 and ALG 2. Moreover from the linearity ofG
we have the convergence of ALG 2 if 0< ρn = ρ < 2r. In the present
caseLr is given by

Lr (v, q, µ) =
1
2

∫

Ω

|q|2dx+ I K̂(q) −
∫

Ω

f v dx

+

∫

Ω

µ · (∇v− q)dx+
r
2

∫

Ω

|∇v− q|2dx. (6.21)
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198

Solution of (6.1)by ALG 1.
It follows from (3.2)–(3.4), (6.21) that when applying ALG 1to

(6.14) we obtain

λ0arbitrarily given in(L2(Ω))2, (6.22)

then for n≥ 0,


−r∆un = f + ∆ · λn − r∇ · pn onΩ,

un|Γ = 0,
(6.23)

pn =
λn + r∇un

sup(1+ r, |λn + run|)
, (6.24)

λn+1 = λn + ρn(∇un − pn). (6.25)

Solution of (6.1)by ALG
We have to replace (6.22) by (6.21) and (6.23) by (6.13). Still ap-

plies to (6.14) and numerical solutions of (6. ) by ALG 1, ALG 2may
be found in GLOWINSKI-MARROCCO [3], GABAY-MERCIER [1].

6.3 A nonlinear Dirichlet problem

We follow in this section GLOWINKSKI-MARROCCO [6]; Let us con-
sider 1< s< +∞ and

W1,s
0 , (Ω) = D(Ω)W1,s(Ω) = {v ∈W1,s(Ω), v|Γ = 0},

whereΩ is aboundeddomain ofRN.
Then we consider onΩ the following nonlinear Dirichlet problem:


−∇ · (|∇u|s−2∇u) = f ,

u|Γ = 0,
(6.26)

wheref ∈ V′ =W−1,s′(Ω)(1
s+

1
s′ = 1⇒ s′ = s

s−1). it can be proved (see,199
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for instance GLOWINKSI-MARROCCO [6]) that (6.26) has a unique
solution which is also the solution of

min
v∈W1,s

0 (Ω)

[
1
s

∫

Ω

|∇v|sdx− < f , v >

]
. (6.27)

We observe thatW1,s
0 (Ω) is not an Hilbert spaceif s , 2, therefore we

cannot apply Theorems 4.1 and 5.1 to the iterative solution of (6.27).
Nevertheless once (6.27) has been approximated by a convenient finite
element or finite difference method it is possible to apply the above theo-
rems (or Theorems 4.2, 5.2) to the iterative solution of the approximate
problem. For the sake of simplicity we shall confine our studyto the
continuous problem, since it has simpler notation. We have

V =W1,s
0 (Ω),H = (Ls(Ω))N,H′ = (Ls′(Ω))N, B = ∇,

F(q) = F0(q) =
1
s

∫

Ω

|q|sdx, F′(q) = q|q|s−2,

G(v) =< f , v > .

We observe that

lim
|q|s→+∞

F(q)
|q|s
= +∞,

where

|q|s = (
∫

Ω

|q|sdx)1/s = ||q||N(Ls(Ω).

We also have∀p, q ∈ H:

(F′(q) − F′(p), q− p) ≥ α|q− p|ss if s≥ 2, (6.28)

(F′(q) − F′(p), q− p) ≥ α
|q− p|2s

(|p|s + |q|s)2−s
if 1 < s≤ 2, (6.29)

|F′(q) − F′(p)|s′ ≥ β(|p|s + |q|s)s−2|q− p|s if s≤ 2, (6.30)

|F′(q) − F′(p)|s′ ≥ β|q− p|s−1
s if 1 < s≤ 2, (6.31)

whereα, β are independent ofp, q and are strictly positive.

Exercise 6.1.Prove(6.28)- (6.31).200
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We refer to GLOWINSKI - MARROCCO [6] for a detailed analysis,
including error estimates, of a finite element approximation of (6.26),
(6.27) (see also CIARLET [2]).

From our numerical experience it appears that solving (6.26), (6.27)
if s is close to 1 (say 1< s < 1.3) or large (says > 5 ) is a very dif-
ficult task if one uses standard iterative methods; to our knowledge the
only very efficient methods are ALG 1 and ALG 2 (or closely related al-
gorithms; see GLOWINSKI-MARROCCO, loc. cit., for more details).
The augmented LagrangianLr to used for solving (6.26), (6.27) is de-
fined by

Lr (v, q, µ) =
1
s

∫

Ω

|q|sdx− < f , v > +
r
2

∫

Ω

|∇v−q|2dx+
∫

Ω

µ·(∇v−q)dx.

(6.32)
Solution of (6.1)by ALG 1.

It follows from (3.2)–(3.4), (6.32) that when applying ALG 1to
(6.6), (6.27) we obtain

λ0 ∈ (Ls′(Ω))N, (6.33)

then for n≥ 0


−r∆un = f + ∇ · λn − r∇ · pn in Ω,

un|Γ = 0,
(6.34)

|pn|s−2pn + rpn = r∇un + λn, (6.35)

λn+1 = λn + ρn(∇un − pn). (6.36)

The nonlinear system (6.34) , (6.35) can be solved by the block relax-
ation method of Sec. 4.3 and we observe that ifun andλn are known (or
estimated) in (6.35) the computation ofpn is an easy task since|pn| is
solution of the single variable nonlinear equation

|pn|s−1 + r |pn| = |r∇un + λn| (6.37)

which can be easily solved by various methods; once|pn| is known, we 201

obtainpn by solving a trivial linear equation (in (Ls(Ω))N).
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Solution of (6.26), (6.27)by ALG 2.
We have to replace (6.33) by

{p0, λ1} ∈ H × H′ (6.38)

and (6.34) by


−r∆un = f + ∇ · λn − r∇ · pn−1

un|Γ = 0.
(6.39)

Remark 6.1 still applies to (6.26), (6.27) and sinceG is linear we
can take 0< ρn = ρ < 2r if we are using ALG 2. For more details and
comparisons with other methods see GLOWINSKI-MARROCCO [3],
[6], [8].

REMARK 6.2. ALG 1 and ALG 2 have also been successfully applied
to the iterative solution of magneto-static problems (see GLOWINSKI-
MARROCCO [7]). They have also been applied by GLOWINSKI-
MARROCCO [3] to the solution of the subsonic flow problem described
in Ch. 4. Sec. 3; in this last case using ALG 1 and ALG 2 we obtaineasy
variants of (6.33)-(6.36)and (6.38), (6.39), (6.35), (6.36).

6.4 Application to the solution of mildly nonlinear systems

Let A
∼

beN × N symmetric, positive definite matrix D
∼

a diagonal, posi-

tive semi-definite matrix, and f
∼
∈ Rn. Let φ : R → R be aC0 and non-

decreasing functions (we can always suppose thatφ(0) = 0). Using the
same notation as in Chapter 4, Sec. 2., we associate to v

∼
= {v1v2 . . . vN} ∈

R
N the vectorφ(v

∼
) ∈ RN defined by

(φ(v
∼
))i = φ(vi )∀i = 1, . . . .N. (6.40)

Then we consider thenonlinear system202

A
∼

u
∼

D
∼
φ(u
∼
) = f

∼
. (6.41)
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In Chapter 4, Sec. 2.6, various methods for solving (6.41) have been
given, but in this section we would like to show that (6.41) can also be
solved by ALG1, ALG2, once a convenient augmented Lagrangian has
been introduced.

REMARK 6.3. The methods to be described later are easily general-
ized to the case whereA

∼
is not symmetric but still positive definite.

Let us define

φ(t) =
∫ t

0
φ(τ)dτ.

Sinceφ is C0 and nondecreasing we have thatφ is C1 andconvex. It
follows then from the symmetry ofA that solving (6.41) is equivalent to
solving the minimization problem


J(u
∼
) ≤ J(v

∼
)∀ v ∈ RN, u ∈ RN.

u ∈ RN
(6.42)

In (6.42) we have

J(v
∼
) =

1
2

(A
∼

v
∼
, v
∼
) +

N∑

i=1

diφ(vi) − (f
∼
, v
∼
), (6.43)

where (·, ·) denotes the usual inner-product ofRN and || · || the corre-
sponding norm and where

D
∼
=



d
1
. . .

0

d
i
. . .

0 dN



From the above properties of A
∼

, D
∼∼

andΦ it follows from e. g. CEA

[1], [2] that (6.41), (6.42) has aunique solution.

REMARK 6.4. If fact (6.41)has a unique solution ifA
∼

is positive def-

inite, possibly not symmetric, the assumption onφ andD
∼

remaining the
same.
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The problem (6.42) is a particular problem (P) corresponding to 203

V = H = RN, B = I , (6.44)

G(v
∼
) =

N∑

i=1

diΦ(vi) − (f
∼
, v
∼
), (6.45)

F(q
∼
) = F0(q

∼
) =

1
2

(A
∼

q
∼

q
∼
)⇒ F′0(q

∼
) = A

∼
q
∼
. (6.46)

From these properties we can solve (6.41), (6.42) by using ALG 1 and
ALG 2 (we observe that unlike in the above examplesG is nonlinear).

REMARK 6.5. Instead of using G and F defined by(6.44), (6.45), we
can use

G(v) =
N∑

i=1

diΦ(vi ),

F(q) =
1
2

(A
∼

q
∼
, q
∼
) − (f

∼
, q
∼
).

The augmented Lagrangian to be associated with (6.44)–(6.46) is

Lr (v∼
, q
∼

u
∼
) =

1
2

(A
∼

q
∼

q
∼
) +

N∑

i=1

diΦ(vi ) − (f
∼
, v
∼
) +

r
2
|| v
∼
− q
∼
||2 + (µ

∼
, v
∼
− q
∼
).

(6.47)
Since the constraint v

∼
, q
∼
= 0 is linear we know thatLr has a saddle-

point overRN × RN × RN; actually this saddle-point is unique and is
equal to{u

∼
, u
∼
,A
∼

u
∼
}.

Solution of (6.41)by ALG 1
It follows from (3.2)-(3.4), (6.47) that when applying ALG 1to

(6.41), (6.42) we obtain
λ
∼

0 ∈ RN, (6.48)

then for n≥ 0,

ru
∼

n + D
∼
φ(u
∼

n) = f
∼
+rp
∼

n − λ
∼

n, (6.49)
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(r I
∼
+A
∼

)p
∼

n = ru
∼

n + λ
∼

n, (6.50)

λ
∼

n+1 = λ
∼

n + ρn(u
∼

n − p
∼

n). (6.51)

The nonlinear system (6.49), (6.50) can be solved by theblock relax- 204

ation method of Sec. 4.3 and we observe that if p
∼

n andλ
∼

n are known

(or estimated) in (6.49) the computation of u
∼

n is easy since it is reduced

to the solution ofN independent, single variable nonlinear equationsof
the following type

rξ + dφ(ξ) = b ( with d ≥ 0). (6.52)

Sincer > 0 andφ is C0 and non decreasing, (6.52) has a unique solution
which can be computed by various standard method (see, e.g.,HOUSE-
HOLDER [1], BRENT[1]). Similarly if u

∼
n andλ

∼
n are known is (6.50)

we obtain p
∼

n by solving a linear system whose matrix isr is independent

of n it is very convenient to prefactorizer I
∼
+A
∼

(by Cholesky or Gauss

methods).
Solution of (6.1)by ALG 2.

We have to replace (6.48) by
{

0
p
∼
, λ
∼

1
}
∈ RN × RN (6.53)

and (6.49) by

r
n
u
∼
+D
∼
φ(

n
u
∼
) = f

∼
+r

n−1
p
∼
−λ
∼

n. (6.54)

It follows from Theorem 5.2 that we have convergence of (6.53), (6.54),

(6.50), (6.51) if 0< ρn = ρ <
1+
√

5
2

r.

REMARK 6.6. Suppose thatρn = ρ = r in ALG 2; we have then


r
n
u
∼
+D
∼
φ(

n
u
∼
) = f

∼
+r

n−1
p
∼
−λ
∼

n,

r
n
p
∼
+A
∼

n
p
∼
= r

n
u
∼
+λ
∼

n,

λ
∼

n+1 = λ
∼

n + r(
n
u
∼
− n

p
∼
).

(6.55)
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It follows from (6.55) that

λ
∼

n+1 = A
∼

n
p
∼
, (6.56)

Then from (6.55), (6.56) we obtain205

r
n
u
∼
+D
∼
φ(

n
u
∼
) + A

∼

n−1
p
∼
= f
∼
+r

n−1
p
∼
, (6.57)

r
n
p
∼
+A
∼

n
p
∼
+D
∼
φ(

n
u
∼
) = f

∼
+r

n−1
p
∼
. (6.58)

Therefore, ifρn = ρ = r, ALG 2 reduces (with different notation) to the
Alternating Direction methoddescribed on Ch. 4, Sec. 2.6.6.

REMARK 6.7. From the numerical experiment done in CHAN-GLOW-
INSKI [1], ALG 1 combined with theblock relaxationmethod of Sec. 4.3
is more robust that ALG 2; it is the case if, for instance, we solve a
finite element (or finite difference) approximation of the mildly nonlinear
elliptic problem 

−∆u+ u|u|s−2 = f onΩ,

u|Γ = 0.
(6.59)

with 1 < s< 2.

In CHAN - GLOWINSKI, loc. cit., we can find various numerical
results and also comparisons with other methods.

6.5 Solution of Elliptic Variational Inequalities on inter sec-
tions of convex sets

6.5.1 Formulation of the problem

Let V be a real Hilbert space anda : V × V → R be a bilinear form,
continuous, symmetric andV- elliptic. Let K be a closed, convex, non-
empty subset ofV such that

K = ∩N
i=1Ki , (6.60)
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where,∀i = 1, . . . ,N,Ki is a closed convex subsetof V. We consider
then theEVI problem


a(u, v− u) ≥ L(v− u)∀v ∈ K,

u ∈ K
(6.61)

whereL : V → R is linear and continuous. Sincea(·, ·) is symmetric we
know from Chap. 1 that the unique solution of (6.61) is also the solution
of 

J(u ≥ (v)∀v ∈ K,

u ∈ K,
(6.62)

where 206

J(v)
1
2

a(v, v) − L(v). (6.63)

6.5.2 Decomposition of(6.61), (6.62)

let us define (withq = {q1, . . . , qN})

W = {(v, q) ∈ V × VN, v− qi = 0∀i = 1 · · ·N} (6.64)

and
K = {(v, q) ∈W, qi ∈ Ki ∀i = 1, . . . ,N}. (6.65)

It is clear that (6.62) is equivalent to

min
(v,q)∈K

j(v, q) (6.66)

where

j(v, q) =
1

2N

N∑

i=1

a(qi, qi ) − L(v). (6.67)

REMARK 6.8. We have to observe that many other decompositions are
possible, as, for instance,

W = {(v, q) ∈ V × VN, v− q1 = 0, qi+1 − qi = 0∀i = 1, . . . ,N − 1}
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with j andK still defined by (6.67), (6.65). We can also use

W = {(v, q) ∈ V × VN−1, v− qi = 0∀i = 1, . . .N − 1}

with
K = {(v, q) ∈W, v ∈ K1, qi ∈ Ki+1 ∀i = 1, . . .N − 1}

and

j(v, q) =
1

2N
a(v, v) − L(v) +

1
2N

N−1∑

i=1

a(qi , qi).

We suppose that in the sequel we use the decomposition definedby207

(6.64)–(6.67); then (6.66) is particular problem (P) corresponding to

H = VN, Bv= {v, . . . , v}, (6.68)

G(v) = −L(v), (6.69)

F0 =
1

2N

N∑

i=1

a(qi , qi), (6.70)

F1(q) =
N∑

i=1

IKi (qi ) (6.71)

with
IKi : indicator function ofKi .

It is easily shown that from the properties ofB, G, F, we can apply ALG
1 and ALG 2 to solve (6.62), via (6.66), provided that the following
augmented Lagrangian

Lr (v, q, µ) = F(q) +G(v) +
r

2N

N∑

i=1

a(v− qi , v− qi) +
1
N

N∑

i=1

(µi , v− qi)

(6.72)
has a saddle-point overV × VN × VN. Such a saddle-point exists ifH is
finite dimensional, since the constraintsv− qi = 0 arelinear.

6.5.3 Solution of(6.62)by ALG 1

It follows from (3.2) - (3.4), (6.72) that when applying ALG 1to (6.62)
we obtain

λ0 ∈ VNgiven, (6.73)
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then for n≥ 0


ra(un, v) = ra( 1

N

∑N
i=1 pn

i , v) − ( 1
N

∑N
i=1 λ

n
i , v) + L(v)∀v ∈ V,

un ∈ V,
(6.74)


(1+ r)a(pn

i , qi − pn
i ) ≥ ra(un, qi − pn

i ) + (λn
i , qi − pn

) ∀qi ∈ Ki ,

pn
i ∈ Ki

(6.75)
for i = 1, 2, . . .N; 208

λn+1
i = λn

i + ρn(un − pn
i ) (6.76)

i = 1, . . .N.
The system (6.74), (6.72) is forλn given a system of coupledEVIs, a
very convenient method to solve it is theblock overrelaxation method
with projection described in CEA-GLOWINSK [1] and in CEA [2].
This method will reduce the solution of (6.62) to a sequence of EVIs
Ki, i = 1, . . .N.

6.5.4 Solution of(6.62)by ALG 2

It follows from (3.7)-(3.10), (6.72) that to solve (6.62) byALG 2 we
have to use the variant of (6.73)-(6.76) obtained by replacing (6.73),
(6.74) by {

p0, λ1
}
∈ VN × VN given, (6.77)



ra(un, v) = ra


1
N

N∑

i=1

pn−1
i , v

 −


1
N

N∑

i=1

λN
i , v

 + L(v)∀v ∈ V,

un ∈ V.
(6.78)

REMARK 6.9. The two above algorithms are well- suited to the use
of multiprocessor computers, since many operations may be done in
parallel; this is particularly clear with algorithm(6.77), (6.78), (6.75),
(6.76).
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REMARK 6.10. Using different augmented Lagrangians, other than
Lr defined by(6.72), we can solve(6.62) by algorithms better suited
to sequential computingthan to parallel computing. We leave to the
reader, as exercises, the task of describing such algorithms.

REMARK 6.11. The two algorithms described above can be extended
to EVIs where a(·, ·) is not symmetric. Moreover they have the advan-
tage of reducing the solution of(6.62) to the solution of a sequence of
simpler EVI s of the same type, to be solved over Ki , i = 1, . . .N, instead
of K.

7 General Comments

As mentioned several times the methods described in this chapter may209

be extended to variational problemwhich are not equivalentto optimiza-
tion problem. These methods have been applied by BEGIS-GLOWI-
NSKI [1] to the solution of 4th order nonlinear problems in Fluid Me-
chanics (see also BEGIS [1]).

From a conceptual point of view they are related to various methods,
described in BENSOUSSAN-LIONS -TEMAM [1], and usingdecom-
position-coordinationprinciples.

From an historical point of view, the use of augmented Lagrangian
for solving -via ALG 1 and ALG 2 -nonlinear variational problems of
type (P) (see (1.1)) seems to be due to GLOWINSKI - MARROCCO
[237], [5], [6]. For more details and other applications seeGABAY-
MERCIER [1], FORTIN-GLOWINSKI [1], [2], GLOWINSKI-MARR-
OCCO, loc, cit., etc.. . . .

To conclude this chapter we have to mention that using some results
due to OPIAL [1] we have in fact in Theorem 4.1, 5.1 (resp. . 4.2, 5.2)
the weak convergence(resp. . theconvergence) of the whole sequence
{λn}n to aλ∗ such that{u, p, λ∗} is a saddle-point ofL (andLr ) over
V × H × H. We refer to GLOWINSKI-LIONS -TREMOLIERES [3,
Appendix 2] for a proof of the above results in a more general context.



Chapter 6

On the Computation of
Transonic Flows

1 Introduction

We have considered in Chapter 4, Section 3, the non-linear elliptic equa- 210

tion describing thesubsonic flowsof an inviscid compressible fluid.
In this chapter, following closely GLOWINSKI - PIRONNEAU [1],

we would like to give some brief indications on the computation of tran-
sonic flows for similar fluids. Given the importance and the complexity
of the problem to be described in a moment, we would like to point out
that the following considerations are just an introductionto the subject
and that many methods, using very different approaches, exist in the spe-
cialized literature (see the following references ). Moreover, we would
like to mention that from a mathematical point of view, the methods to
be described in the following sections are widely heuristical. A large
number of bibliographical references are given in the sequel.

2 Generalities

The theoretical and numerical studies oftransonic flows for inviscid flu-
idshave always been very important questions. But these problems have

215
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become even more important in recent years in relation to thedesign and
development oflarge subsonic economical aircrafts.

From the theoretical point of view a lot of open questions still re-
mains, with their counterparts in the numerical methodology. The diffi-
culties are quite considerable for the following reasons:

(1) The problems arenonlinear;

(2) Shocksmay exist in the flow;

(3) One has to include anentropy conditions, in one way or another, to
avoid non-physical solutions.

From the theoretical point of view we have to mention the work of211

BERS [1], C. MORAVETZ [1]. At the present moment the more com-
monly used numerical methods have originated from MURMAN-COLE
[1] and we shall mention BAUER-GARABEDIAN-KORN[1], BAUER-
GARABEDIAN - KORN JAMESON [1], JAMESON [1], [2], [3], [4]
and the bibliographies therein (see also HEWITT-ILLINGWORTH and
co-editors [1]).

These above numerical methods use the key idea of Murman and
Cole which consists in the use of afinite difference scheme, centered
in thesubsonicpart of the flow,backward(in the direction of the flow)
in the supersonic part. The switching between these two schemes is
automatically done viaa truncation operatoronly active in thesuper-
sonicpart of the flow (see JAMESON, loc. cit., for more details). A
relaxationmethod is then used to solve the resulting nonlinear system
(actually,over-relaxationis used in the subsonic part of the flow,under-
relaxationin the supersonic part).

We shall describe a different approach -very convenient fornozzles,
and flows subsonic at infinity around airfoils- in which the transonic
flow problem is formulated as anonlinear least square problem. This
last problem is then viewed as anoptimal control problemwhich is ap-
proximated by afinite elementmethod. Since the entropy condition is
formulated by alinear inequality constraint, a convenient method to
handle it is to usepenaltyand/or duality methods (see CEA [1], [2]),
using anaugmented Lagrangianif penalty and duality are combined.
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Then the approximate problem is solved byiterationsof conjugate gra-
dient type. Our approach is strongly motivated by the two following
points of view and the corresponding methodologies:

(1) Optimal control of distributed parameter system(see LIONS [4],
CEA [1], [2]),

(2) Variational inequalities and their numerical solution(see GLOWI-
NSKI-LION-TREMOLIERES [1], [2], [3] and Chapters 1 to 5 of
these notes).

3 Mathematical Model For The Transonic
Flow Problem

3.1 Basic assumptions and generalities

We assume that the fluid under consideration isinviscid andcompress- 212

ible and that the flow of such a fluid isis entropicand irrotational (i.e.
potential). These assumptions are not true in general, since through a
shock there is avariation of entropyand anirrotational flow becomes
rotational; therefore the validity of the model to follow is assumed to be
correct only in the case of a“weak shock”.

In the case of a flow past asharp airfoil we shall suppose that there
is no wake behind the trailing edge.

3.2 Equations of the flow

Let Ω be the domain of the flow andΓ its boundary; then the flow is
modelled by

− ∇



1−
|∇Φ|2
γ+1
γ−1C2

∗



1
γ−1

∇Φ

 = 0 inΩ, (3.1)

where

- Φ is theflow potential, ∇Φ theflow velocity,
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- C∗ is thecritical velocity,

- γ is the ratio of specific heats (γ = 1. 4 for air).

We have to add to(3.1)

• Boundary conditions (of Dirichlet and/or Neumann type, for ex-
ample);

• Kutta-Joukowskycondition in the case of the flow around a lifting
body (see LANDAU - LIFCHITZ [1, Sec. 46]); some indications
are also given in Sec. 5.1, Remark 5. 1.

• An entropy conditionin order to eliminate the non-physical solu-
tions of (3.1); this point will be discussed in Sec. 3.3

REMARK 3.1. It can happen that on some part of the boundary,Φ

and
∂Φ

∂n
have to be given simultaneously to ensure uniqueness; it is the

case, for instance, for the divergent nozzle of Figure 3.1 ifthe velocity
at the entrance is supersonic. Typical boundary conditionsareΦ given

on Γ1, Γ3 and
∂Φ

∂n
given onΓ4, Γ1, Γ2; if the flow at the entrance (i.e.

Γ1) is subsonic we require fewer boundary conditions.

Figure 3.1:
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Figure 3.2:

REMARK 3.2. In the case of the flow around a multipiece airfoil, (like213

in Fig. 3.2 each piece requires a Kutta-Joukowsky condition.

Exercise 3.1.Verify that (3.1) is elliptic if |∇φ| < C∗ (subsonic zone),
hyperbolic if|∇φ| > C∗ (supersonic zone).

3.3 Formulation of the entropy condition

It follows from LANDAU-LIFCHITZ [1, Ch. 9] that theentropy condi-
tion can be formulated as follows


In the direction of the flow, once cannot have a subsonic-

supersonic transition through a shock.
(3.2)

Forone dimensionalflow, (3.2) implies

d2Φ

dx2
< +∞, (3.3)

i. e.
d2Φ

dx2
is a measure bounded from above; weak(and more precise)

formulations of (3.3) are :There exists a constant M, such that either

−
∫

Ω

dΦ
dx

dφ
dx

dx≤ M
∫

Ω

φdx ∀φ ∈ D+(Ω) (3.4)

or ∫

Ω

φ
d2φ

dx2
dx≤ M

∫

Ω

dx ∀φ ∈ D+(Ω) (3.5)
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where
D+(Ω) = {φ ∈ D(Ω), φ ≥ 0}. (3.6)

In the case of atwo or three dimensional flow, we shall suppose that214

(3.2) can be formulated as

△Φ < +∞ (3.7)

or in aweak fromeither by

−
∫

Ω

∇Φ · ∇φdx≤ M
∫

Ω

φdx∀φ ∈ D+(Ω) (3.8)

or by ∫

Ω

Φ△φdx≤ M
∫

Ω

φdx ∀φ ∈ D+(Ω). (3.9)

The numerical results that we have obtained fortwo-dimensionalflows,
using discrete analogs of (3.7), seem to justify the above formulations
of the entropy condition.

4 Reduction to an Optimal Control Problem

If we suppose that the density on the fluid is on if u
∼
= ∇Φ = 0, then the

coefficient of∇Φ in (3.1) appears as thedensityof the fluid. We shall
use the notation

ρ(φ) =

1−
|∇φ|2
γ+1
γ−1

C2
∗



1
γ−1

(6.1)

The idea of the method to follows, is todecouplethe density and the
potentialΦ. To do so we introduce a new potentialξ -the control po-
tential -and try to recoupleξ andΦ by minimizing somecost function
of least square type. We may use for instance the following formulation
(for the formulation see BRISTEAU [2], BRISTEAU - GLOWINSKI-
PERIAUX - PERRIER - PIRONNEAU [1], BRISTEAU - GLOWINSKI
- PERIAUX - PERRIER - PIRONNEAU - POIRIER [1])

min
ξ

∫

Ω

ρα(ξ)|∇(Φ − ξ)|2dx, ξ ∈ X (4.2)
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where, in (4.2)Φ is a function ofξ via thestate equation

−∇ · (ρ(ξ)∇Φ) = 0 overΩ

+ boundary conditions forΦ onΓ.
(4.3)

In (4.2) the parameterα is either 0 of 1 andX is aconvexset “conve- 215

niently” chosen. Sinceρ(φ(x)) = 0 iff |∇φ(x)| =
(
γ+1
γ−1

)1/2
C∗, and that

for air we haveγ = 1.4 which implies
(
γ+1
γ−1

)1/2
=
√

6 ≃ 2.45, it appears
that in the transonic range (say|~v| = |∇φ| ≤ 1.5C∗) we have

0 < δ < ρ(φ(x)) ≤ 1a.e. onΩ. (4.4)

it follows from (4.4) that (4.3) is anelliptic problem for appropriate
boundary conditions. In the case of flows around lifting airfoils, Kutta-
Joukowsky conditionsare also required in order to obtain, with the other
boundary conditions, a physical solution of problem (4.3) (modulo a
constant if one has only Neumann conditions on the boundary).

REMARK 4.1. If in the original problem,Φ and
∂Φ

∂n
have to be simul-

taneously prescribed on some part ofΓ, the previous approach with two-
potentials is very convenient since the boundary conditions can be split
betweenΦ andξ. However, if one wishes to use the same boundary con-
ditions forΦ and ξ it is always possible to take into account the extra
boundary conditions (assumed to be of Dirichlet type) by adding to the
cost function(4.2) a quantity proportional to either

∫
Γd
|Φ − Φd|2dΓ, or∫

Γd
|Φ − Φd|2 (or to a linear combination of both), whereΓd is the part

of Γ where one requiresΦ|Γd = Φd. A similar idea is used in BEGIS-
GLOWINSKI [2] to solve some free boundary problem.

REMARK 4.2. To state the entropyconditions (3.7)(or its weak for-
mulations(3.8), (3.9)) we have the choice betweenΦ andξ (actually we
can also use these two potentials simultaneously). If one usesξ (resp.
Φ) we have aconstraint on the control(resp.constraint on the state).

REMARK 4.3. We observe that the class of flows we are considering,
is physically such that

||~v||∞ = ||∇Φ||∞ < +∞.
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It follows from this remark that the convex set occurring in(4.2)will be216

taken as a convex subset of W1,∞(Ω). We observe also that to stay in the
transonic range it may be convenient to introduce followingconstraints
(if γ = 1.4):

|∇ξ| ≤ vM <
√

6C∗ (4.5)

or
|∇Φ| ≤ vM <

√
6C∗. (4.6)

Actually, the computations we have done proved that for a physically
well - posed travsonic problem it is not necessary to introduce (4.5) or
(4.6).

REMARK 4.4. If the transonic problem has a solution and if X is
“large enough” the control problem will have a solution suchthat the
cost function will be equal to zero; this last property will give us (for the
approximate problem) indications to check the quality of the computed
solution.

5 Approximation

We assume thatΩ ⊂ R
2.

5.1 Generalities

The above control problem will be approximated by afinite element
method, since compared tofinite differencemethods it give us the pos-
sibility of handling problems posed on rather complicated geometry.
Moreover thevariational foundationsof finite element formulations are
very appropriate to the problem under consideration. It will be in partic-
ular easy to approximate the weak formulations of the entropy condition
(3.7).

If Ω is unboundedit will be replaced by abounded domain- still
denoted byΩ- as large as possible. To approximate the above contin-
uous problems we introduce a standardtriangulation Ch of Ω (we can
also usequadrilateral finite elementsdefined over a “quadrangulation”
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of Ω). Then the functionsξ andΦ are approximated by piecewise poly-
nomial functions belonging to the following subspaceVh of H1(Ω).

Vh =
{
Φh ∈ C0(Ω),Φh|T ∈ Pk∀T ∈ Ch

}
, (5.1)

with Pk = the space of polynomials of degree≤ k.

REMARK 5.1. In the case of alifting body, to take into account the217

Kutta - Joukowsky condition, one usually introduces (see Fig. 5.1) an
arc γ between the leading edge of the profile and the external boundary.
This arcγ supports aconstant jump (a priori unknown)of Φ (and ξ)

and this jump has to be adjusted in such a way that
∂Φ

∂n
(and

∂ξ

∂n
) is

“continuous” when crossingγ. SinceΦ is discontinuous alongγ, we
cannot work anymore with H1(Ω), but introducingΩ̇ = ◦

Ω−γ
one can use

H1(Ω̇) and define Vh over a triangulation ofΩ.

In Sec. 7, results of computations for such airfoils are given; how-
ever for the sake of simplicity the numerical treatment of the Kutta-
Joukowsky condition will not be discussed here and we shall assume in
the sequel that one works directly overΩ.

REMARK 5.2. If Φ andξ have to satisfy onlyNeumann boundary con-
ditions, the subspace of Vh to be used will be Vh itself. On the contrary if
Φ and /or ξ have satisfyDirichlet boundary conditionssomewhere over
Γ then we shall have to use subspaces of Vh strictly included in Vh.

Figure 5.1:
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REMARK 5.3. We have tacitly assumed thatΩ is a polygonal domain
of R2 or has been approximated by such a domain. However in the
case of a curved boundary, it is always possible to use (at some extra
computational cost)curved finite elements(See, for instance CIARLET-
RAVIART [1], STRANG - FIX [1, Ch. 3], CIARLET [1], [3]).

REMARK 5.4. It follows from(5.1) that we are using C0 - conforming
finite elements. Since the regularity of the solution is limited it seems
that it would be unrealistic to use k≥ 3. Therefore onlyLagrange el-
ementswill be considered. One may also use that non C0- conforming
element of Figure 5.2 in which, withφh|T ∈ P1, one only requires the
continuity ofφh at the mid-point of each side of the T∈ Ch. The num-
ber of unknowns, when using this element is much in higher than when
using(5.1)with k= 1.

Figure 5.2:

5.2 Approximation of the state equation and of the cost func-
tion

To simplify the presentation we shall assume that we only have Neu-218

mann boundary conditionsi.e.

∂Φ

∂n
= g onΓ (5.2)

(it is the case for the very important application of flows around airfoils,
subsonic at infinity). It follows from the above sections that we can take
thesame boundary conditionsfor ξ andΦ. We shall also assume that if
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g(x) , 0, x ∈ Γ, then the corresponding value ofρ is known and that
∫

Γ

ρgdΓ = 0. (5.3)

Then thestate equation(4.3) has the followingvariational formulation:



∫
Ω
ρ(ξ)∇Φ · ∇φdx=

∫
Ω
ρgφdΓ ∀ ∈ H1(Ω),

Φ ∈ H1(Ω)
(5.4)

which is approximated by



∫
Ω
ρ(ξn)∇Φh · ∇φhdx=

∫
Γ
(ρg)hφhdΓ∀φh ∈ Vh,

Φh ∈ Vh,
(5.5)

where (ρg)h is a convenient approximation ofρg overΓ. SinceΦ and
Φh are only defined modulo an additive constant, we shall prescribe the
value ofΦ andΦh (andξ andξh) at some point ofΓ. The cost function 219

in (4.2) is approximated by
∫

Ω

ρα(ξh)|∇(Φh − ξh)|2dx, (5.6)

denotedJh(ξh) in the following.

REMARK 5.5. If one uses the piecewise linear approximation (i.e. k=
1), then the integrals occurring in(5.5), (5.6)are easy to compute since
∇ξh beingpiecewise constant, we have a similar property forρ(ξh). If
k = 2 a numerical integration procedure has to be used in(5.5), and
also in(5.6) if α = 1.

5.3 Approximation of the entropy condition

To avoid non physical shocks (i.e. shocks for which the entropy condi-
tion is not satisfied) we have several possibilities; we shall describe two
of them (for other approaches see GLOWINSKI - PIRONNEAU [1]).
We still assume that we only have Neumann boundary conditions like
(5.2).
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5.3.1 A regularization method

We use the notation of the continuous problem; the idea is to add to the
cost functional in (4.2) the following functional, withǫ > 0, either

ǫ

∫

Ω

|(∆Φ)+ |2dx, (5.7)

or

ǫ

∫

Ω

|(∆ξ)+|2dx (5.8)

(or a linear combination of both). In (5.7), (5.8),ǫ is a “small” parameter
and

(∆φ)+ = sup(0,∆φ). (5.9)

We can make this approach more sophisticated by using, instead of
(5.7), (5.8), regularization functionals like

∫

Ω

ǫ(x)|(∆Φ)+ |2dx, (resp.
∫

Ω

ǫ(x)|(∆ξ)+ |2dx), (5.10)

whereǫ(x) is a “small” non-negativeweight function, possibly equal to220

zero over some part ofΩ. To use the above methodology for the approx-
imate problem it is necessary to have an approximation of∆Φ(resp.∆ξ).
We shall use and approximation suggested bymixed finite element meth-
ods for the biharmonic education(see GLOWINSKI [6], CIARLET-
RAVIART [2], GLOWINSKI- PIRONNEAU [2], BRIZZI - RAVIART
[1]).

Let us assume thatψ is sufficiently smooth, then from Green’s for-
mula we have

∫

Ω

∆ψφdx=
∫

Γ

∂ψ

∂n
φdΓ −

∫

Ω

∇ψ · ∇φdx∀φ ∈ H1(Ω). (5.11)

Using this idea we shall define an approximation∆hΦh of ∆Φ as follows:


∫
Ω
∆hΦhφhdx=

∫
Γ

ghφhdΓ −
∫
Ω
∇φh · ∇φhdx∀φh ∈ Vh,

∆hΦh ∈ Vh.
(5.12)

We use the same method to define∆hξh. In (5.12),gh is an approxima-
tion of the functiong of (5.2).
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REMARK 5.6. If we also have Dirichlet boundary conditions over
some part ofΓ, the same method can be used with some slight com-
plications.

REMARK 5.7. To obtain∆hΦh from (5.12)we have to solve alinear
systemwhose matrix issymmetric, positive definite, spartse, but not
diagonal(this matrix is an approximation of the operator I). If k= 1 one
can approximate

∫
Ω
∆hΦhφhdx, using thetwo- dimensional trapezoidal,

numerical integration method. Doing so we obtain∆hΦh by solving a
linear system with adiagonalmatrix.

If k = 2 the above regularization method is technically more com-
plicated to use.

Once∆ has been approximated we add to the cost functionJh (cf.
(5.6)) the functional

∫

Ω

ǫh(x)|(∆hΦh)|+
2
dx(resp.

∫

Ω

ǫh(x)|(∆hξh)|+
2
dx) (5.13)

with ǫh “small” and≥ 0. In fact we use approximations of (5.13) ob-
tained via anumerical integrationprocedure.

We have to mention that the optimal choice forǫh is still an open 221

question. Numerical results obtained with piecewise linear approxima-
tions (k = 1) are given in Sec. 7.

5.3.2 A method using 3.7

Let us describe first this method for thecontinuous problem:
We suppose that the entropy condition can be formulated by (3.7).

Let M(x) be a sufficiently smooth upper bound of∆Φ (M is estimated
or guessed ). Replacing (3.7) by

∆Φ ≤ M(x), (5.14)

aweak formulationof (5.14) is

−
∫

Ω

∇Φ · ∇φdx≤
∫

Ω

M(x)dx∀φ ∈ D+(Ω). (5.15)
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Instead of usingM it is very convenient to introduce the solution (de-
fined up to an arbitrary constant if we only have Neumann boundary
conditions) of 

∆Φ0 = M overΩ,
∂Φ0
∂n = g overΓ

(5.16)

then (5.16) has the following variational formulation


∫
Ω
∇Φ0 · ∇φdx= −

∫
Ω

M(x)φdx+
∫
Γ

gφdΓ ∀φ ∈ H1(Ω),

Φ0 ∈ H1(ω).
(5.17)

It follows from (5.17) that (5.15) can also be written

−
∫

Ω

∇(Φ − Φ0) · ∇φdx≤ 0 ∀φ ∈ D+(Ω). (5.18)

We observe that
∂

∂n
(Φ − Φ0) = 0. (5.19)

Concerning the discrete problem, the obvious strategy seems to be222

the following: First we approximateΦ0 byΦoh, a solution of


∫
Ω
∇oh · ∇φhdx= −

∫
Ω

Mh(x)φhdx+
∫
Γ

ghφhdΓ ∀φh ∈ Vh,

φoh ∈ Vh,
(5.20)

whereMh is a convenient approximation ofM. Then we approximate
H1

0(Ω) (andD(Ω)) by

Voh = {φh ∈ Vh, φh|Γ = 0},

andD+(Ω) by
V+oh = {φh ∈ Voh, φh ≥ 0 onΩ}. (5.21)

Finally we approximate (5.18) by

−
∫

Ω

∇(Φh − Φoh) · ∇φdx≤ 0 ∀φh ∈ V+oh. (5.22)

In fact the above “obvious” strategy has to be modified for thefollowing
reasons:
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(1) If k = 1, V+oh can be generated by the canonical basis functions of
Voh. But it is not the case fork = 2.

(2) Computations using (5.22) a done withk = 1 have shown that
the approximation of the solution is not good close to the points
at whichsonic linestouchΓ.

To overcome these difficulties we may proceed as follows:If k = 1,
let

∑
h be the set of the vertices ofCh, numbered from 1 toNh, where

Nh = dim(Vh). Let βh be the canonical basis ofVh, i.e.

βh = {wi}Nh
i=1 (5.23)

with

wi ∈ Vh,wi(P j) = δi j ∀Pi ∈
∑

h

. (5.24)

We observe thatwi ≥ 0 overΩ, ∀i, and that the positive coneV+h of Vh is 223

generated byβh. Then instead of using (5.22) to formulate the discrete
entropy condition, one takes

−
∫

Ω

∇(Φh − Φoh) · ∇φhdx≤ 0 ∀φh ∈ V+h (5.25)

which is equivalent to the set of theNh following linear inequality con-
straints

−
∫

Ω

∇(Φh − Φoh) · ∇widx≤ 0 ∀i = 1, . . .Nh. (5.26)

If ξh is used, instead of (5.26) we have

−
∫

Ω

∇(ξh − Φoh) · ∇widx≤ 0 ∀i = 1, . . .Nh. (5.27)

Computations done withk = 1 and using (5.27) have produced good
results.

If k = 2, the situation is more complicated and we refer to GLOWI-
N-SKI-PIRONNEAU [1] for a discussion of this case.
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REMARK 5.8. (It holds for k = 1, 2). If some Dirichlet boundary
conditions are prescribed somewhere overΓ, the positive cone used to
define the discrete entropy condition will be related to the subspace of
Vh consisting of those functions vanishing at the boundary nodes corre-
sponding to the (discrete) Dirichlet condition.

REMARK 5.9. The optimal choice for the bounding function M (of Mh)
may not be an easy task, specially for airfoil computations.However for
the approximate problem an almost natural choice is

Mh(x) = C(h(x))−β, 0 < β < 1, (5.28)

where, in(5.28), C is a positive constant and h(x) is directly related to
the local size of the finite element mesh. It follows from(5.28)that

lim
h→0

Mh(x) = +∞ ∀x ∈ Ω,

but slower that(h(x))−1.224

5.4 Approximation of X

If we do not take into account (4.5), (4.6) thenXh is essentially deter-
mined by the discrete entropy condition. Then if one uses theregular-
ization method of Sec. 5.3.1 we haveXh = Vh. If one uses the meth-
ods described in Sec. 5. 3.2 thenXh is defined by the linear inequal-
ity constraints formulating the discrete entropy condition discussed in
Sec. 5.3.2.

6 Iterative Solution of The Approximate Problems

6.1 Preliminary statements, generalities

Since we cannot discuss in detail the iterative solution of all the various
approximate problems described in Sec. 5, we shall restrictour attention
to the following situation:
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- Ω is boundedand we only have Neumann boundary conditions. We
assume also that Kutta-Joukowsky conditions are not required (their
treatment is not specific to transonic flows).

- We do not take into account (4.5), (4.6).

- We suppose thatα = 1 in (4.2) and that an entropy condition is for-
mulated using the method discussed in Sec. 5.3.2 with the formulation
(5.27) (controls constraint).

- We finally assume that we work with piecewise linear finite elements
(k = 1).

Since we do not take into account (4.5), (4.6),Xh is theclosed convex
set ofVh defined by (5.27). Therefore the approximate control problem
is anonlinear (andnon-convex) programming problemin which the in-
dependent variable isξh. To solve this problem, our strategy is to usede-
scent methods(like gradient, conjugate gradient) taking into account the
linear inequality constraints (5.27). To handle these constraints one can
use separately eitherpenalty methodsor dual iterative methodsusing
theKuhn - Tucker multipliersrelated to the linear inequality constraints
(5.27). Actually a good strategy is to combine both methods using a
convenientaugmented Lagrangian(cf. HESTENES [1], POWELL [1],
etc . . . ).

6.2 A saddle - point formulation of the approximate problem.
Augmented lagra ngian

We use the notation of Sec. 5.3.2. Let us define overVh the following
approximate L2(Ω)− scalar product 225

(uh, vh)h =

Nh∑

i=1

miuh(Pi)vh(Pi),Pi ∈
∑

h ∀i, (6.1)

where

mi = measure (Ωi),Ωi = Ω̇i where
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Ωi = union ofT ∈ Ch such thatPi is a vertex ofT;

the correspondentnormis denoted by| · |h. Then we define∆∗h : Vh→ Vh

by

(∆∗hφh, vh)h = −
∫

Ω

∇φh · vhdx∀vh ∈ Vh. (6.2)

Therefore it follows from (6.2) that (5.27) can also be written

(∆∗h(ξh − Φoh), φh)h ≤ 0 ∀φh ∈ V+h , (6.3)

which is equivalent to

∆∗h(ξh − Φoh), (Pi) ≤ 0 ∀Pi ∈
∑

h

. (6.4)

The augmented LagrangianLr : Vh×Vh→ R to be used is then defined
by


Lr (ξh, µh) = 1

2

∫
Ω
ρ(ξh)(Φh − ξh)2dx+ r

2 |(∆
∗
h(ξh − Φoh))+|2h−

−
∫
Ω
∇µh · ∇(ξh − Φoh)dx,

(6.5)
where in (6.5), (φh)+ does notdenote the positive part ofφh but the
approximation of it defined by


∀φh ∈ Vh, (φh)+ ∈ Vh and

(φh)+(Pi) = max(0, φh(Pi)) ∀Pi ∈
∑

h .
(6.6)

In (6.5),Φh is a function ofξh through the state equation(5.5).
Since the constraints arelinear inequality constraintswe have226

Proposition 6.1. If the approximate control problem has a solution then
Lr has a saddle- point{ξh, λh} over Vh × V+h with ξh solution of the
approximate control problem.

REMARK 6.1. The functionλh ∈ V+h is theKuhn - Tuckermultiplier
of the problem. Its existence follows from the fact that we have a finite
dimensional problem with linear constraints. Then the existence of a
solution implies the existence of a Kuhn-Tucker multiplier.
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6.3 Iterative solution of the approximate problem viaLr

6.3.1 Description of the algorithm

To solve the approximate problem we shall use an algorithm ofUzawa’s
type (see CEA [1], G.L.T. [1, Ch. 2]) which will compute a saddle -
point ofLr overVh × V+h . This algorithm is the following

λ0
h ∈ V+h , arbitrarily given(λ0

h = 0 for example ), (6.7)

λn
h known we compute{Φn

h, ξ
n
h} ∈ Vh × Vh andλn+1

h by

Lr (ξn

h, λ
n
h) ≤ Lr (ξh, λ

n
h) ∀ξh ∈ Vh,

ξn
h ∈ Vh,

(6.8)

ξn
h givesΦn

h through (5.5) (6.9)


∫
Ω
∇λn+1

h · ∇(µh − λn+1
h ) ≥

∫
Ω
∇λn

h · ∇(µh − λn+1
h )dx−

−ρ
∫
Ω
∇(ξn

h − Φoh) · ∇(µ.λn+1
h )dx∀µh ∈ V+h , λ

n+1
h ∈ V+h .

(6.10)

6.3.2 Solution of (6.10)

The problem (6.10) is afinite dimensional variational inequalityin Vh.
This problem is very close to theobstacle problemof Chapter 2, Sec. 2;
therefore it can be solved by anoverrelaxation method with projection.

6.3.3 Solution of (6.8)

The problem (6.8) is a finite dimensional control problem. Wehave
solved this problem using thePolak - Ribiereversion of the non-linear
conjugate gradient method (see POLAK [1, Ch. 2, pp. 53 -55]) which
seems more effective (for our problem ) than theFletcher- Reevesver-
sion (we recall that in Chapter 4, Sec. 2.6.7 these two methods are de-
scribed, when applied to the solution of a specific problem).The scalar 227

product used in this algorithm is the scalar product inducedby H1(Ω)
over Vh. Therefore a very important step in the solution of (6.8) by
the above conjugate gradient algorithm is the computation of thepartial

gradient
∂Lr

∂ξh
(ξh, λ

n
h); this point is discussed in the next section.
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6.3.4 Computation of
∂Lr

∂ξh

Owing to the practical importance of
∂Lr

∂ξh
we shall discuss its compu-

tation in some detail: we have

Lr (ξh, µh) = 1

2

∫
Ω
ρ(ξh)|∇(Φh − ξh)|2dx+ r

2 |(∆
∗
h(ξh − Φoh))+|2h−

−
∫
Ω
∇µh · ∇(ξh − Φoh)dx,

(6.11)
where, in (6.11),Φh andξh are related by (5.5). It follows from (6.11)
that


∂Lr
∂ξh

(ξh, µh) · δξh =
1
2

∫
Ω
δρ(ξh)|∇(Φh − ξh)|2dx+

∫
Ω
ρ(ξh)∇(Φh − ξh)×

×∇δ(Φh − ξh)dx+ r((∆∗h(ξh − Φoh))+,∆hδξh)h −
∫
Ω
∇µh · ∇δξhdx.

(6.12)
We have no difficulty to compute the last two terms of the right hand

side of (6.12). About the second term, we obtain by differentiation of
(5.5)

∫

Ω

δρ(ξh)∇Φh · ∇φhdx= −
∫

Ω

ρ(ξh)∇δΦh · ∇φhdx∀φh ∈ Vh. (6.13)

Takingφh = Φh − ξh in (6.13) we obtain


∫
Ω
ρ(ξh)∇(Φh − ξh) · ∇δ(Φh − ξh)dx= −

∫
Ω
ρ(ξh)∇(Φh − ξh) · ∇δξhdx−

−
∫
Ω
δρ(ξh)∇Φh · ∇(Φh − ξh)dx.

(6.14)
It follows from (6.14) that the sum of the first two of the righthand side
of (6.12) is

−
∫

Ω

ρ(ξh)∇(Φh− ξh) · ∇δξhdx−
1
2

∫

Ω

δρ(ξh)∇(Φh − ξh) · ∇(Φh+ ξh)dx.

(6.15)
Since

1
2
δρ(ξh) =

1
2

dρ
dξh

(ξh) · δξh = −
1

(γ + 1)C2
∗

1−
|∇ξh|2|
γ+1
γ−1C2

∗



2−γ
γ−1

∇ξh · ∇δξh,

(6.16)
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the second term of (6.5) is easily computed and, by addition with the last228

two terms of the right hand side of (6.12), we obtain
∂Lr

∂ξh
(ξh, µh) · δξh.

REMARK 6.2. If instead of takingα = 1 in (5.6)one takesα = 0, then
the computation of∂Lr

∂ξh
will require the use of anadjoint state equation

(see LIONS [4], CEA [1], [2]).

6.4 Computational considerations

When solving (6.8) by the non-linear conjugate gradient method dis-
cussed above we have to solve at each iteration the state equation (5.5).
Since the bilinear form occurring in (5.5) is positive definite (once the
value ofΦh in onepoint ofΩ has been prescribed) we can use to solve
(5.5) eitheriterative methodslike conjugate gradient, overrelaxation
etc., (cf., e,g., POLAK [1], CONCUS GOLUB [1], AXELSSON [1],
VARGA [1], YOUNG [1]) or direct methods like Cholesky’s. About
the choice ofr andρ in Lr and (6.7) - (6.10) we can say that thelarger
is r themore ill - conditionedis (6.8). However the larger isr the faster
will be the global convergence of (6.7) - (6.10) for a “convenient choice”
of ρ(round - off errors being neglected). Oncer has been chosen , theo-
retical considerations indicate thatρ has to be chosen of the same order
asr.

7 A Numerical Experiment

We limit the presentation to only one example ; for more examples see
GLOWINSKI - PIRONNEAU [1]. The example we have considered is
the two piece airfoil of Figure 7.1;Kutta - Joukowsky conditionshave to
be imposed on both profiles. The position of the piece makes the funnel
slightly convergent. The main airfoil is at 50 of incidence and the Mach
number at infinity isM = 0.55. Piecewise linear finite elements (k = 1)
were used with 2936 triangles and 1555 nodes.

The regularization method of Sec. 5.3.1 has been used and there-
sults, showing Mach - lines, of Figure 7.1 were obtained after 50 itera-
tions of conjugate gradient. We observe that no non-physical shocks are
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present and that the Mach number on the exit of the funnel is precisely
equal to one, which it should be.

The precision can be guessed by measuring∇(Φh− ξh)||; atn = 0 its
value is 3.5× 103 at n = 50 it is 2. On each triangle it varies from 10−5

in the subsonic region to 10−2 in the supersonic.229
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8 Comments Conclusion

The methods that we have described above seem effective for computing230

transonic flows on complicated domains since finite elementsapproxi-
mations are used. Moreover the non-linear programming approach that
we have used (based on an optimal control formulation) givesmuch flex-
ibility for taking into account theentropy conditionand for the choice
of the iterative methods for solving the approximate problem. We have
to observe that regularization method of Sec. 5.3.1 is actually a method
for computing those solutions such that

(∆Φ)+ ∈ L2(Ω). (8.1)

If one wishes to approximate (3.7), i.e.

(∆Φ)+ ∈ L∞(Ω), (8.2)

one may use a regularization functional like
∫

Ω

∈ (x)|(∆φ)+ |pdx, p “large”. (8.3)

All these methods can be extended to 3-dimensional computations, but
one of the main difficulties is then the treatment of the Kutta - Joukowsky
condition. For more details and numerical experiments, andother meth-
ods for treating the entropy condition we refer to GLOWINSKI- PIRON-
NEAU [1], BRISTEAU [2], BRISTEAU -GLOWINSKI-PERIAUX-
PERRIER-PIRONNEAU-POIRIER [1], [2], BRISTEAU - GLOWIN-
SKI- PERIAUX-PERRIER-PIRONNEAU [1].

In CEA-GEYMONAT [1] one may find results on the solution of
nonlinear boundary value problems via optimal control.

Let us mention to conclude that various methods for treatingshocks
in fluid mechanic problems can be found in LASCAUX [1] and the bib-
liography therein.
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