Lectures on
Topics in Stochastic Dfferential Equations

By
Daniel W. Stroock

Tata Institute of Fundamental Research
Bombay
1982



Lectures on
Topics in Stochastic Diferential Equations

By
Daniel W. Stroock

Lectures delivered at the
Indian Institute of Science, Bangalore
under the
T.I.LF.R.—L.1.SC. Programme in applications of
Mathematics

Notes by
Satyajit Karmakar

Published for the
Tata Institute of Fundamental Research, Bombay
Springer-Verlag
Berlin Heidelberg New York
1982



Author
Daniel W. Stroock

Department of Mathematics
University of Colorado
Boulder, Colorado 80309
U.S.A.

©OTata Institute of Fundamental Research, 1981

ISBN 3-540-11549-8 Springer-Verlag, Berlin. Heidelbekgw York
ISBN 0-387-11549-8 Springer-Verlag, New York. HeidelbeBgrlin

No part of this book may be reproduced in any
form by print, microfilm or any other means with-
out written permission from the Tata Institute of
Fundamental Research, Colaba, Bombay 400 005

Printed by N. S. Ray at the Book Centre Limited,
Sion East, Bombay 400 022 and published by H. Goetze,
Springer-Verlag, Heidelberg, West Germany

Printed in India






Preface

THESE NOTES are based on five weeks of lectures given during De
cember 1980 and January 1981 at T.l.F.R. in Bangalore. Myqserin
these lectures was to provide some insight into the pragsedf solu-
tions to stochastic lierential equations. In order to read these notes,
one need only know the basic Itd theoryof stochastic irtisgr For
example, H.P. McKean'Stochastic Integral§Academic Press, 1969)
contains all the background material.

After developing a little technical machinery, | have dexbChapter
| to the study of solutions of S.D.E.'s as a function of theiahipoint.
This topic has been discussed by several authors; the eaaigiven
here is based on a recent paper by H. Kunita (to appear in twéud-
ings of the 1980 L.M.S. conference at Durham). In fact, tHg ey in
which the present treatmentfidirs from this is that | have been a little
more careful about the integrability estimates.

Chapter Il is devoted to the study of solutions as a functiomae.

A large part of this material is adapted from my work with SRvarad-
han (“On the support of @usion processes with applications to the
strong maximum principle”, Proc. 6th Berkeley Symp. on Mé&fitat.
and Prob., Vol.lll (1970)). The presentation of this matkhas been
greatly aided by the incorporation of ideas introduced byakahashi
and S. Watanabe in their paper “The probability functiomdldiffusion
processes” (to appear in the Proceedings of the 1980 L.Mrfference
at Durham). To intorduce the reader to their work, in the $sttion
of Chapter I, | have derived a very special case of the gémesalt
derived in the paper by Takahashi and Watanabe.
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Chapter 1

Solutions to Stochastic
Differential Equations as a
Function of the Starting
Point

1 Basic Inequalities of Martingale Theory

1
The most important inequality in the martingale theory esfroob’s in-
equality which states that ii(t), F¢, P) is a right continuous, integrable
sub-martingale, then

P(Supycit X(t) > 1) < %E[X(T), Supt X(T) > 1,4>0 (1.1)

forall T > 0.
As a consequence df{1.1), one has, assumingXbat- 0:

p
p-1

E [Supacr X©°] 7 < =P EIX(T)PIVP 1< p<oo.  (1.2)

The passage froni{1.1) G (1.2) goes as follows:

1



2 1. Solutions to Stochastic Bérential Equations....

Let X(T)* = Sug<<1 X(t). Then using[(I]1) we have

E[(X(T)*)P] = p f APIP(X(T)* = A)dAa
<p f AP 2E[X(T), X(T)* > A]da

=p of AP2da Of P(X(T) > p, X(T)* > A)du.

o o1
= Of EIX(T)")PL, X(T)] 2 pld.
p%E[(xm )L X(T)]

'O
©

where we have used Holder’s inequality to obtain the lam. liNow
dividing both sides b¥E[(X(T)*)P]1~Y/P, we get the required result.

The basic source of continuous martingales is stochagggrals.
Let (8, Ft, P) be a I-dimensional Brownian motion amg.) be aF.-
progressively measurabRevalued function satisfying

.
E |9(t)|2dt‘ <o
/

t

X(t) = f 0(9d5(9).

0

forall T > 0. Set

t
Then X(t), Ft, P), and &2(t) - [ 6(s)?ds Fy, P) are continuous mar-
0



1. Basic Inequalities of Martingale Theory 3

tingales. In particular,

t

f 6(t)%dt

0

E[XXT)] =E forall T > 0.

By (C2), this means that

.
E[(X(T)*)?] < 2E] f 6(t)%df)2.
0

The following theorem contains an important generalizatib this
observation.

Theorem 1.3(Burkholder) Let (8(t), Ft, P) be a 1-dimensional Brow-
nian motion and-(.) be a F.-progressively measurablé R R3-valued
function satisfying

T

f Trace a(t)dt‘ <00, T>0

0

E

where 4.) = o()o()*. Set Xt) = ftcr(s)dﬁ(s). Then for2 < p < o
and T > 0O, °

.
E[SURsciet IXOIPTYP < CpE[f Trace 4t)dt)P/?)¥/P
0

where

_ pp+1
Cr= (Z(p . 1)p-1)

Proof. By Ito’s formula:

t
X@P| = p f IX(9IP2r(9X(HAB(S)
0



4 1. Solutions to Stochastic Bérential Equations....

< X(s),a(s)X(s) >

t
N % f pIX(9)|P~?(Tracea(s) + (p - 2)
0

XeP °
Thus,
1 X(1), a(t)X(t
E[IX(MIP] = EE[f pIX(t)[P2 Tracea(t) +(p—2)% i
0

.
< wE[ f pIX(t)|P~2 Tracea(t)d{]
0

T
< p(pz— 1)E[Sup)§tg|x(t)|p72 f Tracea(t)dt]
0

p(p—-1)
2

;
< E[Supy.7 IX®)IP1PE[( f Tracea(t)dt)P/2]%/P
0

and SoE[Supy.i<1 IX®)IP] < (

SO EIX(T]

pp+1

.
Y 1-2/ /212/
< S0p DL Lo R XOFTPEL f Tracea(t)”/?]?/P

0

Now dividing both sides b¥E[Sup...7 IX(1)IP]¥%P we get the re-
quired result. m|

2 Solutions to Stochastic Offerential Equation as a
Function of (t, X)

leto : R" > RRx R andb : R —» R be measurable functions
satisfying
lo(X) = cWlHs < LIX-y,xyeR"
Ib(x) - b(y)l < Lix-yl,xye R (2.1)
whereL < oo and||.||y s denotes the Hilbert Schmidt noﬂn

Y|Alls. is the Hilbert-Schmidt norm of the matrix Thatis,[|AI% ¢ = TraceAA".




2. Solutions to Stochastic Bérential Equation.... 5

Also assume thap(t), Fi(p) is ad—dimensional Brownian motion

Theorem 2.2. For each xe R" there exists a unique soluti@f., X) to

t t

£(tX) = X+ f o(E(s X)AB(S) + f bE(s)dst> 0. (2.3)
0

0

In fact, for each2 < p < co and T > O there are A(T) < oo such
that
E[Suppeier (L X) = £(6Y)IP] < Ap(T)(IX — YiP) (2.4)

Proof. The existence of solution is proved by the Picard iteratida-
fine&(.) = xand

t t

Eona(®) = X+ f (En(S)dBS + f b(é)(9)ds
0

0

Then for 2< p < oo,

E[SURy<tet€ns1(t) — En(D)IP]MP

t
<E]| f bén(t) - blen_1(dLPTYP
OT
+E[ f (En(9) - o En1(9))ABESPP
0

<L | E[lén(®) — En-a()IP1YPdt

og}_{

.
+ CpLE[( f [én(t) — En-a(D)Pdt)Pr2)HP
0

<L | E[lén(®) — En-a()IP1YPdt

og}_{
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.
+ CpLT(P-2/P)E] f én(t) — En-1(DIPd] P
0

and so
E[Suﬂ)gth l€n(t) — é:n—l(t)|p]

T
< 2p—1|_p(-|— P14 CST p—1/2) f E[Supy<it 1n(S) - én-1(9)P]dt.
0

From this, it follows by induction that

E[Suppcier [éna(t) = En(®)IP] < @

whereBy(T) < co. Henceép(.) converges uniformly on finite intervals
and clearly the limit satisfie§(2.3). In fact, we have shohat there is
a solution&(.) such that

E[Supycicr IED)IP] < oo

forall T > 0and 1< p < .
To prove uniqueness, note that)f) is a second solution ang; =
inf{t>0:|n(.) - X > R}, then

Elln(tATr) — E(tATR)]

tATR tATR

< 2L%] f n(s) - £(9)2dg + 2L2E] f In(9) - £(9Pd
0 0

and son(tAtr) = £(tAtR) (as, P) for all t andR. Sincen(.) and&(.)
areP — a.s. continuous andP(Sup .t I£(t)] < o) = 1 forall T > 0,
uniqueness is now obvious.

Finally,

E[Supyer £ Y) — £(t, X)IP1P

.
< |x -yl + CpLE[ f E(t,y) — £(t, X)[2d)P/2]HP
0
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.
L | E[lEty) — £t x)lp] P dt
/

and so

E[SUpy<iet (L Y) — £ X)IP] < 372 x - yIP + 3P LLP(CPTP1/P)
T

f E[SURyci.r (S Y) — (s )17] i

0

Therefore
E[Supy.iot 1€ V) —£(t, X)IP] < 372 |x—yIP exp(PLP f (ChtPD24 1P~ 1y dt).
0

This proves our theorem.

The importance of{214) is that it allows us to find a versiog(afx)
which is a.s. continuous with respect tpX). To see how this is done,
we need the following real-variable lemma. O

Lemma 2.5. Let P andy be strictly increasing continuous function on
[0, o] such that FO) = (0) = 0 andy(o0) = co. Also suppose that L
is a normed linear space and that: RY — L is strongly continuous on
B(ar)(= {xe R¢:|x—al <r}). Then

L AR

implies that

X_
ol d+2

() - f(y)ll < 8 f w‘l(;uz(,
0

)P(du), X,y € B(ar)

where

: . B(x,p) N B(a, 1
y= inf inf IB(x,p) N B(a, 1)
xeB(a,r) 1<p<2 pd
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B 11(x) — f(Y)l
') = f w( P(Ix - ) )dy
B(ar)

Given distinct pointsg,y € B(a,r), setp = |Xx —y| and choose& €
B(X—ery, g) N B(a, r) so that

Proof. Define

1(c) < 2d+1£d.
Yp

This is possible becausef I(c)dc < B. Setx, = Y, = ¢. Now we
B(ar)
choosex, andy, for n > 1 as follows. Giverx,_1 andy,_1 defined,_1

ande,_1 by
1 1
P(dnh-1) = EP(2|Xn—l - x|) andP(en-1) = EP(ZM_l - Y.

1 1
Now choosex, € B(x, Edn_l)m B(a, r) andy, € B(y, Een_l)mB(a, r)
so that

24+l I1f(%n) — f(xn_1)||) 291 (xo— 1)
| d
Oo) < g an ‘”( Pl —%ea) )~ ydd,
24+l I1f(Yn) — f(yn_1)||) 292 (Y1)
[(Yn) < —— and <
(y ) ’)/eﬁ_l l//( P(Wn - Yn—1|) ’)’eﬁ_l

This is possible by the same reasoning as that used ta.find
1 1
Note thatP(d,) = EP(2|Xn -X) < EP(dn_l). Thusd, decreases to
zero. Also, fom > 1:

d+2
(1 (%n) = F(Xn-2)Il < Ll’_l(—)P(lxn — Xn-1)
Vzdg—ldg—z
~ 4d+ZB
<y 1(W)P(lxn — Xn-1)
YU

whered_; = p. Since P(dn_1) = P(2%n-1 — X)), dn-1 < 2/%n-1 — X.



2. Solutions to Stochastic Bérential Equation.... 9

Thus
P(xn = Xn-1l) < P(2%n — Xn-1]) = 2P(dn-1)
= 4(P(dn 1) - 5P(ch- 1)
< 4(P(dn-1) — P(dn)).

We therefore have:

1 4d+ZB
1906) - 62 < 407 o |Ple-1) - PG
Y U1
dn—l
4d+ZB
-1
<4 f 1/ (yzuzd)P(du)
dn
and so ) 9
~ 4d+ZB
11 -t <4 v 1( P
0
The same argument yields
P
~ 4d+ZB
1169 - 101 <4 [ 28 pea
0
This proves our lemma. O

Lemma 2.6. Let X(x), x € RY, be a family of Banach space valued
random variables with the properties that for some Oand p> d+«

ENIX(X) — XW)IP] < Clx - yi*, x,y e R%. 2.7)

Then there is a familX(x), € R? such thatX(x) = X(x) a.s. for each
x e Rt and x— X(x) is a.s. strongly continuous.

Proof. For eachN > 0, let X(\)(.) denote the multi linear extension of
the restriction ofX(.) to the lattice(k/2N : k € Z9}. Then it is not hard
to check that is &’(depending orC, p anda) such that

ELIXM(x) - XM y)P] < C’|x - y%*e (2.8)
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Now letp = (2d + a/2)p. Then, by [ZB):

p
sun, et [ f](IIX(N)(x)—X(N)(y)II) dxdy< G

IX =y
B(O,r) B(O,r)

whereC” < « depends o€’ andd. By (Z18), this means that fdr > 0

Supy PUIXM(x) - XMN(y)|| < KLYP|x - y2/2P x y € B(O,r))
77.2d
o1 Cr

= ’

10 whereK depends owl, p anda. Naotice that

IXMN(x) — XN (y)]|
I — yla/2p

SUPyeB(OR)
XY

is a non-decreasing function bf. Hence

C'r2d

(N)(x) — X(N)
(IX*(x) = X (y)”SKLl/p)Zl— —.

X — y|a/2P

P( Supy SupyeB(O,R)
X£Y

Sincex(”)[z—kn] = X[Z—kn] forall N > 0 andk € 279, xN)(.) converges
a.s., uniformly onB(0, r) to a continuous functioiX(.) which coincides
with X(x) atx = k/2N € B(0, r). Since

E[IX(x) = XWIIP] — 0 as|x -yl — 0.

it is clear thatX(x) = X(X) a.s. for allx € B(O,r). Finally, sincer was
arbitrary, the proof is complete. m|

Exercise 2.9.Let f(x) = xVa. Then f(X) = x[a.«](X) and f"(X) = da(X)
(Dirac’s 6—function). Thus by “Id’s formula”, if (8, Ft, P) is a one-
dimensional Brownian motion:

t

t
f 5(B(9)ds = BHVa- f o) (B()IB(S
0

0

NI =
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That is, we would suspect that

t t

im o= [ avaraB(S)ds=OVa- [ xtacr ()L

0 0

To check this, define 11

t
£a() = BOVa- [ Koo (B,
0

By the technique which we have been using, show that there is a
version Ly(t) of £5(t) which is a.s. continuous it, X)a[0, o] x R. Check
that for feC;'(R)

t

f f(a)La(t)ds = F(A(1) - f F(B(9)d5(9
R

0

where RX) = [(xVaf(a)da.
From this conclude that

t
f f(a)La(t)da = % f f(8(9)ds
R 0

for all such f's. The identification of i(t) as

o1
I;?S ™ f Xa-s,a+¢1(B(9))ds

is now easy

Exercise 2.10.Again let(3:, Ft, P) be a 1-dimensional Brownian mo-
tion. Given t> O ande > 0, let N.(t) be the number of times thg(.)|
goes frome to 0 during[0, t]. (That is, N > n if and only if there exist
0< Uy <Vi-- < Up < Vy < tsuch that(uj)l = e and|B(v;)| = O for

1 < j < n). Show that

Ng(t) — 2Lg(t) a. s.e | 0.
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The idea is the following: First show that

t

B! = f SINB(9AB(S) + 2Lo(t).

0
12 Next defineg = 0 and for n> 1

o =inf{t > -1 1 |B(Y)] = &}
T = inf{t > o, 1 |B(t)] = O}.

Then

(o)

" (A0 - BenAD]) = ~eNe() + (501 - 2) S X0
1

1

At the same time:

onAt

3 (B0l - peonol) = 0= ) [ sana9as - 2Lof0.
1

1 Tno1 At

Thus

eNe(t) = 2Lo() = ~1BOI D, Xen 10l ® = > Xioprr O
1 1
onAt

+§':] f SanB(9IB(S).

Tno1At
From this check that
E[leN,(t) — 2Lo(t)°] < cie,0< & < 1;

and therefore that

1
ﬁNl/nz(t) — 2Lg(t) a.s as n— oo,



2. Solutions to Stochastic Bérential Equation.... 13

Finally, note that ifl/(n + 1)? < & < 1/n?, then

1
(n+ 1) Ny (®) < aNe(®) < 1/n*Ny o (D),

and soeN,(t) — 2Lo(t) a.s. ass | 0.

Lemma 2.11. Let (8(t), Ft, P) be a d-dimensional Brownian motion13
and suppose that(.) and k.) are as in[Z1l). Then there is a choice of
&(t, X) solving [Z.B) such that

(t, X) — &(t, X)

From now on&(t, X) refers to the map il (Z11). We next want to
discuss the mapping — £(t, x) for fixedt > 0. We will first show that
a.s. the maps — £(t, X) are 1-1 and continuous for dlb 0.

Lemma 2.12. Let T > O and p R be given. Then there is 3(T) < oo
such that

E[IE(t, x) — £(t.Y)IP] > Cp(T)Ix - plP,t € [0,] and xyeR".  (2.13)

Proof. Setf(2) = |4P for ze R" - {0}. Then

of
e
oz plZ™z

and
% f
(925 82,-

Now let x # y be given and for Ge< [x — Y] let

= p(p - 2)2*“*zz + & pl2P?

¢=inf{t > 0 :jg(t, x) — £(t,y)l <€}

and define
Ze(t) = £(tAL, X) — E(tALe, Y).

Now by It¢’ s formula: 14
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tALe

2P - ), [ Be(s ) - ) @@)ds
i:lO

tALe

n d '
- % Z f (Z TiE(s X) - £ ) (E(s ) - £(sY))
':10 1=1
& f
8mam

(z:(s))ds

is a martingale. Notice that for€ s < ¢:

DYCECIRIE y»)g—xfi(ze(s)n

n
< IpILiZAP > 12:i(9) <2 LIPlz:(3)”
i=1

Also for0< s< Z:

n d 2
T a9)

2, (e 1) = T ES YN HES ) — (el M g

1¢(=1

I’J
n
< dL2p(p - 2)z(IP2 > Zei(92.(9) + dL2pize(I°
i,j=1
< (dnl?p(p - 2) + dLZp)iz(s)I".
Thus

t
E[lz. O] < 1X=YiP + Aqn(P) f Ellz0)Plds

and so
E[|£(tALe, X) — E(ALe, V)IP] < X — y|PelenP)t

Letting €| 0, we see that

E[JE(tAL:, X) — E(ALe, Y)IP] < |x — yjPelen(Pt
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where/ = inf{t > 0: £(t, X) = £(t,y)}. Takingp = —1, we conclude that
P(¢ < o) = 0 and therefore thal{Z113) holds. Lemrha{P.12) show that
for eachx # y : £(t,X) # £(t,y), t > 0 a.s. We now have to show that
exceptional set does not depend>oandy. O

Lemma 2.14. Let

1
|‘§:(t’ X) - f(t, y)l '

Thenp is a.s. a continuous function @f x,y) for t > 0 and x# y.

n(t, x,y) = t>oand x£y.

Proof. In view of (Z8) and the fact thatis a.s. continuous oftt, x,y) :
&(t, X) # £(1, )}, we need only to show that for sonpe> 2(2n + 1), one
has

Elln(t, % y)-n(t’, X, Y)IP] < Cpr(8)(Ix=X [P+ly—y'|P+[t-t'|P%) (2.15)

forallT>0,6>0,0<t,t' <Tand|x—X|Aly—-Y|=6.
But
|77(t’ X, y) - U(t’, X,’ y)lp

(8, X) — £(t, y)I - lE(t, X') — £(t, YY)l P
6t X) — £y 16, x) — &, y)I

< 2Pt x Y)IPI(E, X, Y)IPER X) — £, X)P)+
+ &t y) - £ Y)IP).

Thus
Elln(t, x,y) — n(t’, X, y)IP]
< 2P E[n(t, x, YI*PIYEIn(, X, y)I P14
x (E[IEE %) — £, X,)PPTMZ + [€t y) - £, Y)IPP1Y?)

The first factors are easily estimated by12.7), so along-as|Aly— 16
yl>0.
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Moreover, by the argument used to derikel(2.4), it is easyhack
that

E[I6(s, X) — £(t,Y)IPP] < Co(T)(Is— tIP) + [x - y*P),
0<st<T,xyeR" (2.16)

Thus [Z.Ib) has been proved. i

Exercise 2.17.Prove [Z16) for alll < p < 0.

We now want to show that a.s. the map-x£(t, X) is onto for all
t > 0. The idea is that this is certainly true wher:t0 and that the map
&(t,.) is homotopically connected #(0,.). In order to take advantage
of these facts, we must show that they continue to hold onmiigooint
compactification of R

Lemma 2.18. For each T> O and pe R there is a G(T) < oo such
that
E[(1 + £t X)P)P] < Cp(T)(L + XD)P.0<t < T

Proof. Let f(2 = (1+]29P. Then
of 10z = 2p(1+|2°)P 'z

and
o2 f
82;82,-

= 2p(p - 1)(1+ 12%)P2zz; + 2psi; (1 + 12%)P .
Hence

E[(1 + If(t ¥)[2)P] = (1 + [x?)P

t n
_E| f Zb'(f(s,X)—(f(s,X))dSH el f 3

i,j=1

PAGERY)
l

g(f(s X) (§(s, x))dg

t
<C f E[(1 + &(s X)%)Plds
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since

max|b'(2)| < max|b'(0)| + L|Z < 2 max|b'(O)VL(L + |2?)*/?
1<i<n 1<i<n 1<i<n

and similarly

max|o (2| < 2 max|oL(0)VL(L + |22
1<i<n 1<i<n

1<f<n 1<f<n

Hence the desired result follows by Gronwall’s inequality. 0O

Lemma 2.19. LetR" = R" U {0} denote the one-point compactification
of R". Define

i xeR"

n(t, X) = { X
0 , X = 00,

Theny is a.s. continuous ofd, co] x R into RL.

Proof. Sincern is a.s. continuous on [6] x R", if suffices to show that
for eachT > 0 ande > 0O there is a.s. aR > 0 such thay(t, X) < ¢ if
Ix > Rand 0<t < T. Choosep > 2(2n + 1). Then

In(t.y) — n(s X)IP < In(t, V)IPIn(s, P Y) - £(s, X)P
and so 18
Elln(t.y) — n(s. X"l < Elln(t, YI*TY*ElIn(s. MI*PTYE[E(, y) — £(s X112

. 1
Since (1+ X)) > (1 + |x?)Y? > 5(1 + |X)), we see from[[Z15) that

Elln(t, )I*P1Y*Eln(s ¥)I*PT* < Kp(T)(L + X) P2+ y) P
On the other hand, by (Z115),
EIE(L %) - £(s YIPTY2 < KRM)(t = $P2 + x = yiP)
for0<st<T. Thus

XYy, -9P7
I+ +Y)" @+ D)L +IY)P

Elln(s. ¥) = n(t.y)P] < K§(T)( ]
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We now define
A(t, x) = n(t, x/1x?) for x # 0,

and
n(t,0)=0.

Sincer is a.s. continuous on [60] x R", we will be done once we
show that;"admits an a.s. continuous version. Noting thay|it |x| >

0:
X Y L1 ¥12x —
e —pel el
1+ %)(l + %) m(l + X)) (1 + )
x| ¥ X
IR X[ x -
@+ X)L+ Iv)
2 2
51 (1 - 1) 3] -

(L + XD +1yD)

(= Y+ 1) + [ 1x = o
B (1 + X)L + Iy

< 3X-Yl.

19
We see that

E[1A(s. ¥) - At YIP] < Ky (T).[Ix = yIP + [t — S/

if 0 < s t<Tandxy# 0. Since by[[Z8)

n(u,2) — 0 in LP for eachu > 0 as|g — , this inequality con-
tinuous to hold even wher or y is 0. This, by [Z6); admits an a.s.
continuous version. This proves the lemma. m|

Theorem 2.20. Leto(.) and H.) be as in[[Z1l) and lef(t, X) be as in
(Z13). Then a.s(t, .) is a homeomorphism of'Rnto R for all t > 0.
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Proof. We have seen that a.4(t.) determines a one-to-one continuous

mapé(t,.) of R into itself for allt > 0. Moreover,£(0, ) is certainly

onto. Thus, by standard homotopy theory, &4, .) is onto allt > 0.

Also, by the invariance domain theoreift, )~ must be continuous.
Finally, since a.s&(t, ) = oo for all t > 0, we see that a.g(t, .) is

a homomorphism oR" ontoR" for all t > 0. O

3 Differentiation with respect to x

We now want to dierentiate(t, x) with respect tox. 20

Lemma 3.1. Lety(t,X), t > 0 and X € RP, be an a.s. continuous
RM_valued process such tha(., X) is F—progressively measurable for
each Xe RP. Further assume that for B 0, R> 0and2 < p < o
there is a G(T, R) < oo such that

and
E[Supycicr Iy(t X) = ¥(t Y)IP] < Co(T, RIX = Y|P, IXIVIY| < R

Leté : R" xRV - RN@ R andb : RM x RN — RN be C°-
functions satisfying

Llia ab
su (7 1) Vig () < o
R,z RYxRN II(%7i Y. |llHs. I(%7j Y. n|l < oo

for 1 < j < N, and assume thak(y, 0) andb(y, 0) and all their deriva-
tion slowly increasing. Finally, let f R° — RN be a smooth function
with bounded first derivatives. Then for eacke)RP the equation

t t

7t X) = £(X) + f &(y(s. X). 1(s X))dB(S) + f By(s X). n(s X))ds t > 0

0

has precisely one solutiof(., X). Moreover, for T, R>0and2 < p <
oo there exists Q(T, R) < oo such that

E[Supycier In(t. X)IP] < CH(T,RI(@ + IXDP,IX| < R,
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and

E[Supster In(t, X) = n(t = Y)IP] < CL(T, RIX - Y|P, IXVIY| < R,

In particular, n admits a version which is a.s. continuougtinx).

Proof. The techniques used to prove this lemma are similar to those
introduced in sectiofl 2. The details are left as an exercise. m|

Lemma 3.2. Let everything be as in lemma{B.1). Assume, in addition,
that a.s. y(t,.) € CXRP) for all t > 0 and that for all T, R> 0 and
2<p<oo

max E[SungT | (t X)IP] < Cp(T,R)(A + IX)P,IXI < R,

and

max E[Supkml (t X) — ))(;(t, X)|"] < Co(T.R)IXx=yIP,IXIVIY| < R

Then a.s. 5(t,.) € CYR" for allt > 0 and for T, R> 0 and

2 < p < oo there exists G(T, R) such that
maxE[Supl<[T| Ip] < Cy(T,R(QL+ XN IXI < R
and
max E[Sunkm (69~ )'Zf(t, Y)IP] < Cy(T. R)Ix - yIP, XIVIY] < R

. 0 . .
In particular, for eachl < ¢ < D, % admits an a.s. continuous
version.

Proof. Choose and fix k ¢ < D and lete, denote the unit vector in the
¢-th direction. Foth € R\{0}, define

Ann(t, X) = n(t, X + hey) — n(t, X),
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Any(t, X) = y(t, X + her) — ¥(t, X)

22 and

Apf(X) = f(X + he) — f(X).
ThenAnn(., X) is determined by the equation:

An(t, X) = Ahf(X)

f Z( f 2 (0530 + (5 X).1(8.X)

+ 6AnT(S, X))dO)Any' (s, X)dB(9)

N
. f > f G 080+ 084(5 ). 7(5 )

i=1 o
+ 6Agn(s X))dn) A (s, X)dB(S)

UM
. f > f —(y(sxmAhy(sx) n(s X)

+ OAn(S. X))d6)Any' (s, X)ds

LN
3l JZ( f —(y(sxmAhy(sx) n(s X)

[o]

+ 0Am(s, X))dn)Ann' (s, X)ds

Thus if

’;(0)(1:7 X, h) ’)/(t’ X)
’;(1)(1:7 X, h) AhY(t’ X)
’?(L X, h) = 5/(2)(.[’ X, h) = %AhY(t’ X)
’;(3)(1:7 X, h) 77(t’ X)
:)7(4)(.[’ X, h) Ah’](t’ X)
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1 0
WhereHAhyt, X) = a—y(t, X) forh =0, and

1
M

G (y.1) = Z f -(V(0) + 67(), Y(3) + 67(4)d6Y ()
=)

N
Z f (Vo) + 07 (1), 713) + 67(4))d67))
3

andb(, 7)) is defined analogously, then the procgésX, h) determined
by

t
X = 2000 + f F((s X h). (s X, M)A

(o]
t

s f B(7(s X, ). /(s X, h)ds

whereAp f/h(X) = M(X) if h =0, has the property that
(., X,h) = Ann(., X)/h - a.s.

for eachh € R\{0} andX € RP.

Since, by [311)phas an a.s. continuous version, we conclude that
on/0X, exists a.s. and has an a.s. continuous version. Alsd Dy, (3.1
on/dX, satisfies the asserted moment inequalities. m|

Theorem 3.3. Leto : R" » R"@R% and b: R" — R be C°—functions
such that(d'lo-/9x*) and (8'*lb/9x*) are bounded for eacla| > 1. Let
&(t, X) be an a.s. continuous version of the solution of the solution
@3). Then a.s&(t,.) € C(R" for all t > 0 and (8'l¢/0x?) is a.s.
continuous in(t, x) for all «. Moreover, foreach T, B 0, m > 0 and
2 < p< oo, thereis a G(T, R m) such that

Sup > E[Sup|—(t X)IPICp(T, R m). (34)

|X|SR|(Z|<m O<t<T
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¢
ox®

Finally, for givenm > 1, let A(., X) denote{|

o]
and letn(., X) denote{@xf(.,x) Dl = m}. Thenn(., X) is related

to y(., X) by a stochastic dlierential equation of the sort described in

lemma [3.2).

In particular, if 24

(X o < m—l}

It.x) = «S—XJ_(t, X))1cijcn (3.5)

thenJ(t, X) is determined by the equation

d t
a9 =1+ Y [ Swles 9Is R
k=1 P

t

v f B¢(s. x)J(s Xds t = O, (3.6)
where 3] _
' ab
St = (st jon andB = (G N1t e

Proof. The facts that a.s4(t,.) € C*®(R" for all t > 0 and that §*'¢)/
(0x*) is a.s. continuous for alt is derived by induction of|, using
B2) at each stage. The induction procedure entails slyoatireach
stage that derivatives of order are related to those of orderm— 1
by an equation of the sort described in lemfal(2.3), and anitheso
described equation are a consequencgaf (3.2). O

Lemma 3.7. Suppose thatA(.),Sk()(1 < k < d), and B.) are
F— progressively measurabléR« RN—valued functions such that

max|ISi(JusVIBOI

is uniformly bounded and(A is an a.s. continuous solution to
t

d t
AQ=Ao+ ), [ SUOALGHW + [ BUAMuL> 0
k=11

(o]
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where A € RV x RV is invertible. Then a.s. @ is invertible for all
t > 0 and A1(.) satisfies

d t
A = At ) [ AMUSKUHW
k=173

Lod
+ !(é A‘l(u)Sﬁ(u) - A‘l(u)B(u))du t>0.

Proof. The theorem is proved by defining(.) by the equation which
A~Y() is supposed to satisfy and then using'$tformula to check that

d(M(1)) A(t)) = d(A®t) M(D) = 0.
O

Exercise 3.8.In order to see how one can guess the equation satisfied
by A1()), suppose that 2(.) exists and denote it by (). Assume that

d
dM(t) = Z M(©)Sk(t)dB*(t) + M()B()dt
k=1

and use 1©'s formula to find out wha$(.) and B(.) must be.

Theorem 3.9. Let everything be as in theoref@{[3.3). Then a(s.X) is
invertible for all (t, X) € [0, ] x R" and J1(., X) determined by

d t
I EIED Y R C CTCERLELC R CETY
k=119

L od
¢ ()37 983e(s 0) - 37(s 0Blels 9)ds
0 k=1

In particular, a.s.£(t,.) is a C*—diffeomorphism of Ronto R'.
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4 An application to Partial Differential Equations

Let £(t, X) be as in sectior]2). Then it is well-knownf( Chapter 4
of [S&V]) that &(t, X) is strong Markov in the sense thatifis a finite
F.-stopping time and € B(R") (the bounded measurable functions on
R") then for allx € R™

E[f((r +t,X)IF] = us(t,4(r, X)) as,t>0 (4.1)

where
us(t, X) = E[f(&(t, X)], (t, X) € [0, 0] x R". 4.2)

Lemma 4.3. Given xe€ R" and R > 0 there exist A(x,R) < o and
0 < Ax(X R) < co depending only on nSup.gg Il o(y) lIns. and
SuRepxR) IP(Y)I such that

P(rr < h) < Ag(x, R)exp(Az(x, R)r?/h)
for 0 <r < R and h> 0, where
T =inf{t > 0: (L, X) — X >r}.

Proof. Giveno € R", define

t
Xo(t) = expl< 6,£(t, ) — X f be(s X)ds >

t

- % f < 6,00 (£(s x)0 > dg

(o]

Then bylté's formula, X¢(tATR), Ft, p) is a martingale for alR > 0.
set

br = SUReg(xRr) DY), 8k SURepxR) Il 70" (Y) lIH.s

and definehg = br/2. Ford e S™1 (the unit sphere ilR™ 1) A > 0, 27
O<r<RandO< h< hg:

P(SURth < 0, €(t, X) = X>>T) < P(SURyctp < 0, E(tATR, X)
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tATR

Cx— f b(E(s 9)d9 = 5)

< P(Supy<t<h X (tATR) > exp8— - —aR))
< exp(% + TaR)
TakingA = r/(2hag), we obtain
P(SURy<tch < 6, £(t, X) — X >> 1) < exp(-r?/(8har))
and so by choosing successively to point alongcoordinate axes:

P(SUR<t<h {T;gﬁ(lgi(t, X) — X| > r) < 2nexp(-r?/8hag)

Clearly the required estimate follows from this. m|

Lemma 4.4. Leto(.) and K.) be as in theoren(3.3) and defisf, x)
accordingly. Given fe C;"(R”) (the C*-functions f such that the Tf
are slowly increasing for alky), define y(t,x) by {41). Then u €
C*([0, 0)xR" and for each T, R- 0and m> Othereisa GT,R, m) <
oo such that

ot 0ug ol f
(t, ¥)| < C(T, R, m)ymax|| lu (4.5)
lalsm  OX¥

max SUf<t<T |—
20+le<im Fl|)a< ote oxe

Finally, us is the unique e C;([0, o) x R") N C12((0, o) x R") such
that

ou
— =Lut>0 4.6
5 = LU (4.6)

imu(t..) = £()

where
n

2 L8
j+;b(x)a—xi

= % i (oo )”(X)
J:
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Proof. Differentiatingg][ f (£(t, X))] with respect tax, one sees by induc-
tion that

Ay P f "
FCLR) E| S P €)@

181
in {%(t, X) @ |68l < Ia/I}. Using I9's formula and the fact that

AP - - . . .
{a—xg(.,x) S8l < |a|} satisfies a stochasticftirential equation with
codficients inC;", one sees that

9t 0ug PR
ot axa X = > E[—Xﬁ(tx)@(“’ﬁ’f’(z(|a|) tx)|,  (4.8)
BI<|al+2

where thezz;“ﬁfsC;"(RD\o\). From [£38) and moment estimates []3.3),

it is clear thatus € C*([0, o) x R") and that[[45) holds. O
We next show thati; satisfies[(416). Clearly
Itilrg ui(t.,) = ().
Moreover, by [Z11)
ur(t +h,x) = E[f(£(h+1,X))] = E[u(t, £(h, X))].
Letr=inf{s>0:|&(s X)— X = 1]}. Then

Efus (t, &(h, X)] = E[us (t, £(hAT, X))]
+ E[ur(t.£(h, X)), T < h].

Sinceu(t, .) is slowly increasing, it follows fron{{413) that
1/hE[u¢ (t, £(h, X)), <h] - Oash | 0.

On the other hand, bydts formula

%E[uf (t,&(hAT, X))] = u(t, X)

29
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hAT

- %E[ f Lug(t, £(s X))dg
0

— Lug(t,x)ash | 0

sinceP(r > 0) = 1. Thus we have proved that

auf—Lu t>0
ot e

Finally, we must show that ifi € C;([0, o0) x R") N C12((0, 00) x R"
satisfies[(416). Then = us. To this end, let

Tr=INf{t > 0: £t X)— X = R}
Then byltd’s formula for fixedT > 0 we know that
(U(T = tATR, £E(tATR, X)), Ft, P)
is a martingale, & t < T. In particular,
u(T, x) = E[u(T — TATR, &(T AR, X)].
sincerrg T o0 asR | o andu is slowly increasing,

E[U(T — TATR, &(TATR, X)] — E[f(t,(X(T))] asR T co.

Exercise 4.9.Under the condition of theoreri (8.3), show that for each

m > 0and2 < p < oo there exist fyp, Bnp < o0 and Amp > 0
(depending on pp, n and the bounds oo and b and their derivatives)
such that

SUR)stgm[ Z @jf(ts X)|2]p/2

|al<m

Calculate from this that if € C%"’(R”), thenus € C¥([0, T] x R
for all T > o. Check also that for a givem > 1 and 2< p < oo, Amp
does not depend am(.) andb(.) while Ay, and By, depend only on
the bounds on

E

< Ampe®™T (1 + x)'me.  (4.10)

oo o'%p
pve () and g () for |a| <m.




Chapter 2

The Trajectories of Solutions
to Stochastic Dfferential
Equations

1 The Martingale Problem

31
In Chaptefdl we have discussedtdsion’s fromI1td’s point of view,

that is as solutions to stochastididrential equations. For the purpose
of certain applications it is useful to adopt a slightlyfeient point of
view.

Let Q@ = C([0, =), R"] and think of Q as a Polish space with the
metric of uniform convergence on compact sets. Denotielltlze Borel
field overQ. Givent > oandw € Q, let x(t, w) be the position iR"
of w at timet and setM; = o(x(s) : 0 < s < t). If L is a dtferential
operator of the from

SN
:EZ J(X)ax,axJJr.Z (X)ax. (1)

wherea(.) andb(.) are continuous functions with values3n (the set of
symmetric, non-negative definite reetn matrices) andR" respectively
and if x € R", we say thaP solves the martingalproblem forL starting

29
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from x (NotationP ~ L atx) if P is a probability measure o M),
P(x(0) = X) = 1 and for allf € CJ’(R") : (X¢(t), M, P) is a martingale,

where .

Xi(t) = f(x(t) — fo(x(s))ds
0
If for eachx € R" there is precisely one sudh we say that the
martingale problem for L is well-posed.

Theorem 1.2. Leto(.) and K.) be as in (I233B) and let L be gives as
@) with .) = oo*(). Then the martingale problem for L is well-
posed. In fact, for each & R", the unique R ~ L at x coincides with
the distribution of(., X) is the solution to (IZZ13).

Proof. The first step is the simple remark that, by #formula, if£(., X)
is given by (I,ZB), therP ~ L at x, whereP denotes the distribution
of £(., X). Thus for eachx € R" the martingale problem fdr admits a
solution. m]

The next step is to show thatff~ L atxand if f € C*([o, T) x R")
for someT > o, then

tAT
(FEAT. X(1)) - f 0105+ L) (s X(9)ds e, P)

(o]

is a martingale. The proof of this fact runs as follows: Giwer s <
t<TandN > 1, letux = s+ k/N(t — s). Then forA e us,

EPLf(t.x(1) - f(s X(5)). Al

= ) EP[f (U, X(Uken)) — T (Ui, X(W)), Al
0

=}
=

=
I

Ukr1

) n-1 6f n-1 1
=E [1/nkZ=:0 70 (e X(Uksn)) + ;0 f L (uy, x(v))dv, A] + O(N)

t
- Ep[f(6/6u + L) f(u, x(u))du, A] asn — .
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Having proved the preceding, the identificatiorPof L atxis quite
easy. Namely, lef € C3’(R") and definaus (t, x) = E[f(£(t, X))] as in (|,
). Thenus € Cp([0, ) x R") N C*=([0, ) x R") andu; satisfies (I,
E.d). GivenR > o, choosepr € C7(B(0, 2R)) so that 0< nr < 1 and
nr = 1 onB(o, R). Then the function

Fr(t.y) = nr(y)ur (T - t,y) € C5([0, T] x R")

foranyT > 0. Hence

t
(FRAT, X(tAT)) - f (0105 + L)Fr(s X(9)ds 1, P)

is a martingale. Thus by Doob’s stopping time theorem,
(us (T — tATRAT, X(IATRAT)), iz, P)
is a martingale, where
R =inf{t > 0: |X(t) — x(0)| > R}.
Sincerr T o0 asR T o andus is bounded, it follows that
(us (T — tAT, X(tAT)), ut, P)
is a martingale. In particular, if @ s< T then

EPLF(X(T)lus] = EP[ut (0, X(T))lus]
=u(T-sx(9) (as,P)

working by induction on\, it follows easily that if 0< t; < ---ty and 34
f]_, cees fN S C(Rn), then

EP[f1(X(t2)) . .. fn(X(tn))] = E[f1(&(t1, X)) - . . Tn(&(tn, X))]

Clearly this identified? as the distribution of(., X).
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Exercise 1.3.Using exercise ([-419), show that theordm1.2) continues
to hold if (), b(.) € C3(R") and (8“o/ax*)(.) and (9'b/ax¥)(.) are
bounded forl < |a| < 3. The point is that under these conditions, one
can show that the udefined by (ILZ11) is in E([0, o] x R") and still
satisfies (I[4J5). Actually, theorefi{IL.2) is true even(f) and K.)

just satisfy (ICZIL); however, the proof in this case is guliferent (cf.
chapter 5 and 6 of [S> V]).

Exercise 1.4.Let{om(.)};_; and{bm(.)}~_, be sequences of cgreients
satisfying the hypotheses of theoreni {J] 3.3). Assumerth@t — o(.)
and that b,(.) — b(.) uniformly on compact sets wheog.) and H.)
again satisfy the hypotheses of [[I.]13.3). Forml1 and x € R" let
PY ~ Ly at x, where , is defined forom(.) and by(.); and for xe R"

let Py ~ L at x where L is defined fer(.) and .). Show that if ¥ — X,
then B = px on Q, where “="” means convergence in the sense of
weak convergence of measures. The idea is the following.

In the first place one can easily check that

SUR EPm[IX(t) - X(91*] < C(Mit—s?, 0<s<t<T

foreach T> o.

Combining this with the fact thdxy}7’ is relatively compact, one
can use (I[ZI7) to see that for eaeh> 0 there is a compact KC Q
such that B! ,(K) > 1 - ¢ for all m > 1. By Prohorov's theorem (cf.
Chapter[1 of [S& V]) this means thatPg }> | is relatively compact
in the weak topology. Finally, one can easily check thaaPQ;} is any

weakly convergent subsequencé¢Ryf } and me = P, then P~ L at x;
andso B! = Py.

2 Approximating Diffusions by Random Evolutions

We start with an example:

Let r1,72,...,Tn... be independent unit exponential random vari-
ables on some probability space (i.B(r1 > Si,...,mTh > S) = exp

n n

(- X sp)forall (sg,...,sn) [0,00)"). DefineT, = 0, andTy = 3, 75,
j=1 j=1
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n > 1; and consideN(t) = maxn > 0 : T, < t}. SinceP((dn > 1) :
™ = 0) = 0, itis clear that a.s. the path— N(t) is right continuous,
non-decreasing, piecewise constant and jumps by 1 whemfigu

Lemma?2.1. ForO< s< tand m> O:

(t-9

PIN(®) = N(9) = mor(N(W). u < 9) = SRICE N (2.2)

That is, Nt) — N(s) is independent a#(N(u) : 0 <u < s)andis a
Poisson random variable with intensify— s).

Proof. Note that ift > 0 andh > 0, 36

P(N(t + h) = N(t) = 1/(N(u) : u <1))
= P(N(t + h) = N(t) > 1/0(T1,..., Tnw, N(1)))
= P(tn@w+1 S t+h=Tnw/o(Te, ..., Tngs N(1)))
= P(rng+1 S t+h=Tng/Tng+1 > = Tre)
=1-P(rnw+r > t+h=Tny/Tng+r > T Tg)
=1-¢"
= h+ ¢(h)

Similarly

P(N(t + h) — N(t) > 2/c(N(U) : u < t))

= P(tn+1 + T2 S t+h =T /Tne > t = Tg)
h

- f e Y1 — e MNdu = y(h).

0

Because of the structure of the pathg), if 0 < s < t anduyx =

S+ Iﬁ((t —9)(n> 1and 0< k < n), then we now see th&(N(t) — N(s) =
Mo (N(U) : u< 9)

= lim P(N(Unk) — N(unk-1) = Xa(k), 1 < k < nlo(N(u) : u < 5))
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= r!mc(nm)(hn + ¢(hn) — P (hn))™(1 — hy = $(hn))"™

= —(t _ S)me_(t_s)
m!

t—s
where we have usdg, = —

n
Next defined(t) = (-1)N®,t > 0. Clearly6(.) is right continuous,
piece -wise constant arift) # 0(t—) implieso(t) = —0(t-). m|

Lemma 2.3. If f : R x {-1,1}) — Rlis a function such that (f,6)
Ci(R),6{-1,1}, then

t t t
(f( f o(u)du, 6(1) — f B9 f'( f audu 6(9)
0 0 0

+K f(fe(u)du 6(s))lds Ft, p)
0

is a martingale, where F= o(f(u) : 0 < u < t), f'(x,0) = (;j—xf(x, 0)
and Kf(x,0) = f(x,—6) — f(x,0).
Proof. If we can prove the result wheihdoes not depend ax then the

general case follows immediately by the argument given énsircond
step of the proof of theorem (ll, 4.2). But froli{R.2) it is g&s see that

O%E[f(e(t))ms = E[Kf(8(t))IFs,0 < s<t,

and so the result holds fdrnot depending om.
Consider the process

t
x:(t) =¢ | 6(9)ds (2.4)
/
wheree > 0, and define
Xo(t) = Xo(t) + ge(t). (2.5)
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Lemma 2.6.1f ¢ € Cg"(Rl), then there is an Fprogressively measur-
able process }.(.) such thatflL, .(.)| < C||¢>||Cg(R1) and

t

t
2
@oe®) - 5 [ 0e@)ds € [ Lud9dsFip
0

0

is a martingale. 38
Proof. By (23) with f(x, 6) = ¢(ex + ge):

t

(BXe(t) & f 699 (Xe(9)ds

0

t
- f (@' (Xe(9)) — £0(9))(Xs(9)))ds Ft, P)
0

is a martingale. By Taylor’s theorem
P(Xe(9) — e6(3)) — ¢(Xs(9))
82 82
= £0(99"(X:(9)) + 58" (Xe(8)) — 58" (Xe(8) — 5(96(s)

where 0< §(s) < . Thus we can take
lN
Lo =5 (Xe(9) = 6(96(s)-

We now see that fap € Co(RY):

t

t
@) - 5 [0 0SNds= 2 [ LaS)ds Fya.P)
0

0

is a martingale. Thus if we lgh® be the distribution of2(n = 1) of
X:(./€2), then, sinceX.(./€?) — X.(./€?)| < €/2, it is reasonable to
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1 d? : :
suppose thaP® = w ase | 0, wherew ~ oy at0 (i.e. wis 1-
dimensional Wiener measure), in the weak topology. If wevkitivat
{P? : £ > 0} were compact, then this convergence would follow imme-
diately from the observation thatéf, | 0 andP*» = P, then

t
@) - 5 [ 0" (X P)
0

is a martingale for alp € C(RY).
In order to handle the compactness question, we state tloaviiog
theorem. m]

Theorem 2.7. Let {P? : ¢ > 0} be a family of probability measures
on (Q,u) and let Ag), ¢eC7’(R"), be a non-negative number such that
A(¢) < Cligllc,(rr) for some C< co and k> 0. Assume that for each>
Othere is a M.-progressively measurable functign: X0, ) x Q — R"
such that

() fim Sup.o P*(X.(0) 2 R) = 0

(iiy X(.) is right continuous and has left limits {P a.s.),
(i) ImP2(Supyi<t IX(t) — Xe(| = 6) = Ofor each T> 0ands > 0,

(iv) (P(X:(1)) + A(@)t, ut, P?) is a submartingale for each > 0.

If {en}]” is any sequence of positive numbers tending to zero, then
{P°: n > 1} has a weakly convergent sub-sequence.

Comment on the proof: We will not give the proof here because it
is somewhat involved. However, in the case whéf) = x(.) for all

& > 0, the proof is given in ChaptEl 1 o8& V] (cf. Theorem 1.4.6) and
the proof of the general case can be easily accomplished biyfyimy
the lemma 1.4.1 given there. The maodification is the follayvin
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Lemma. Let t; and & be any pair of points in [0, T]. such th#tp —t;] <
dw(p). Then

IX(t2, ) — X(t1, w)| < p + SUR ot Xe(t, w) — Xe(t, W)
and so 40

Su|X(ty, w) — X(t, w)| : 0<ty <t, < T and |ty — t1] < ()}
< P+ 2SUR et IXe(t, w) — Xo(t, W)l

The notation is the same as that in lemma 1.1.4.1S&f\]. We
now see that the measuresdiscussed in the paragraph precedngl (2.7)
converge weakly, as | 0, tow. Notice that this convergence result
provides some insight into the structure of Brownian pathdeed, the
paths ofx.(./£?) are rather simple; they all have speg@ &nd the times
at which they change directions are distributed like sunisddgpendent
exponential random variables having mednin the limit, this constant
speed property is reflected by the a.s. constancy of the sgaaation
of Brownian paths over a given time interval.

We now want to generalize the preceding in order to get anakog
approximations of more generalfiilisions. To this end, |66 = S Qd)
and let1 denote normalized Haar measure@mBy expanding the orig-
inal probability space on which thg’s were defined, we may assume
that there exisG—valued random variableg, o, . .., g ... Which are
independent of;'s and independent of one another, and each have dis-
tribution A. Letdg € S92 be fixed and definé(t) = OIN@HIN@®)-1 - - 9160
(= 6o if N(t) = 0). SetF = o(6(u) : 0 < u < t). By the same argument
as that used to provE{2.3), one can prove that if

t

At) = fy(s) ds

0

wherey(.) is a bounded, right continuousRN- valued, F— progres- 41
sively measurable function andfife C-%(RN x S%-1), then

t
(f(A®). 6(1)) - f [<¥(9), gradf(A(s), 6(9)) >
0
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+ KT (A(S), 6(9))]ds FP) (2.8)

is a martingale; where

K f(x.6) = f(f(x,n)— f(x.6))dly
Sd—l

anddn denotes normalized uniform measureSfh?

Lemma 2.9. For eache > 0, lety,(.) be a right continuous Rvalued,
F.-progressively measurable function such that

ly()l < p(e)
wherep(e) | Oase | 0. Set

t

&m=f%®m

0

Then for any ke CYO(RN x S1), T > 0andés > 0:

t/e

im P( [ Supccr of (N(A(9. 6(9) — N(A(9))ds ) = 0

whereh(x) = [ h(x, 7)dn.

Q-1

Proof. Clearly we may assume th{0, 69) = 0. Set

t
Ag(t) =€ f (h(A(9), (9) — h(Ac(9)))ds
0

and  A(t) = A() + eh(A(t), 6(L)).
Clearly it sufices to prove that

SURyi<t [A:(t/£)] — O in probability, as: | O.
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Thus it is enough to check thatdfe Cg(Rl) andg¢(0) = 0, then
E[SUperet $(As(t/€)] — 0 ase | 0.

To this end, note that by (2.8)

t

Meo(t) = ¢(Ac(D) - & f (h—h)(A(S), 6(9))¢' (A (9))ds
0
t

e f < 7.(9). gradh(A(9). 6(9) > ¢ (R.(9)ds
0
t

- f ( f [6(Ae(9) + h(ALD. 7)) — H(As(9) + eh(A(S). B(9)]dm)dls

0 gd-1

is anF.- martingale with respect tB.
By Taylor’s theorem

f [6(x+ eh(Ac(S). m)) — (X + eh(Ac(S). 6(9)))]dn
gd-1

= ¢’ (X) f [h(As(3). m) — h(Ac(s), 6(3))]dn

gd-1

+ 822 f Re(x h(A(9). 7). h(A(9). 6(9)dn
Sd—l

where|R:(.)| < C||¢>||C§(R1). Thus

SURt<T [B(Ac(t/€)) — Meg(t/e)l < C(g)(e + 6(e))T

and so we need only to show tHEakSupy 1 M§’¢(t/s)] — Qase | 0.
But E[Supy.icr MZ,(t/€)] < 4E[MZ (T /)], and

&,

M2 (T /) < 26°(A(T /) + 2(C(9))*( + 6(e))°T?.
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43
Thus it sufices to show thaE[¢2(A.(T/s))] — 0 ase | 0. Finally,

16?(Ae(T/€)) = M2 (T/e)l < C(#%)(e + 6(e))T,

£,¢2

and so )
E[¢°(As(T/&)) < C(#7)(e + 6())T,

since
E[M, 42(T/&)] = E[M, 4(0)] = 0.

O

Theorem 2.10.Let F : R” x S%1 — R be a smooth bounded function
having bounded derivatives and satisfying

f F(x,n)dn = Ofor all x e R".

Qd-1

Letb: R" - R" be a smooth bounded function having bounded
derivatives. Define

dl(x) = f f (Fl(x ) - F (% )(F(x ) — F(x.£))dédip

gd-1 gd-1
and ] _
i i oF!
i — j el .
¢t = [ 3 Floencenan
gd-1 =1
and define X, X) by

t t

X(t,X) = X+ & | F(x(s X),0(9)ds+&® | b(x(s, x),0(s))dst > 0,
/ /

for e > 0and xe R".
Let P(f) on (Q, ) be the distribution of X./£%) and set
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R
— J
2;1"" X 3%a

Then{PSf) : 0 < & < 1} is relatively compact in the weak topology
and if P* = P whereg, | 0then P~ L at x.

C i i 9
<t ;(b +)07

Proof. Without loss of generality, we will assume that= 0 and for
convenience we will us&.(.) in place ofx.(., 0).
Define
Xs(t) = Xe(t) + eF (X:(1), 6(1)).

Giveng € C5'(R"), set
B(x,0) = ¢(x + eF(x, 0)).

Then by [ZB):
t

P(x:(1)) — f < 8F(%(9), 0(9)) + £°b(x:(9)), grackd(x:(s), 6(s)) > ds

0

- f ( f [3%(9. 1) — 3. (%(9), 6(S)]dn)ds

0 Sg-1

is anF martingale with respect tB. Note that

n

g—i(x, 6) = S—Z(X+ sF( ) +e) a—(x+ eF (X 9)) (x 6).

i= 10

Next, observe that by Taylor’s theorem

f [Bu(x.7) — Go(x. O]y
Sd 1

f < F(x,n) — F(x,6), grado(x+ eF (X, 6)) > dn

Sd-1

%Z f (Fixn) - Fx )(F (1) = Fi(e )
=

(X + eF(x, 0))
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+ 3R, 4(x, 6)

where 45
IRe.s(% 0)] < Cligllcs gy

Thus if

al(x6) = f(Fi(X,n)Fi(X,9))(Fj(X,77)—Fj(X,G))dn
gd-1

and ] '
B(x6) =b(x) + J_Z;(Fig—;)(x, 6).

then, since

| Feenan o

$(X:() - 8 f < B(%:(9), 6(s)), grack(X(s)) > ds

0

t

82 n .. 62¢

_Z ij

2 Of 2, (9,09 7 049
t

— &% | Log(x:(9),6(9)ds
/

is anF.- martingale with respect tB, where
ILep(X 0)| < C,||¢||cg(Rn)

By ([24) this proves thaP? : ¢ > 0} is relatively compact. Also, it
shows that there is dn. 4(x, 6) satisfying

ICe(% 6)| < CN||¢||CS(Rn)
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such that

t
$(x:() - 8° f <B(x:(9). 6(9)). grad(Xe(s)) > ds
0

t
& i %¢
2 of i’JZ::la (X(9), 6(9)) axox (x:(9))ds

t

- & f Lep(%:(9), 6(8)ds+ (#(Xe(1)) — B(%e(1)
0

is anF-martingale with respect tB. Since

[p(Xe(D) — p(X:(1)| < C"e
and, by [ZB), we know that
t/e2

SURt<r I f [Lo(x:(9)— < B(%:(9)). 6(9)). gradp(x:(s)) >
0

2

i
——— (x(9)]d

SEPLICR P

i,j=1
— 0 in probability, it is now clear that, | 0 andP*» = P, thenP ~ L
at 0. O

Corollary 2.11. Leto : R" > R"@ Rl and b: RN — R" be bounded
smooth functions having bounded derivatives of all ordeis define

1 d n i 9 n i 9
L= >0 (rk(x)a—)q)2 + .; b (x)a—)q. (2.12)

k=1 i=1
For £ > 0 and xe R", let x.(., X) be the process determined by

12 t
Xe(t,X) = X+ (g) efcr(xg(s, X))0(s)ds+ ssz(xg(s, x))dst > 0,
0 0

(2.13)
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and denote by Pthe distribution ong,) of x.(./2, ). Thenas: | 0, P
converges weakly to the uniqug P L at x. In particular, if #(X; o, b)
denotes the set of patkg(.) of the form

t t
bu(t) = X+ f @u(9W(9ds+ f bou(9)ds  (2.14)
0 0

wherey : [0, 0] — Rl is a locally bounded, right continuous function
possessing left limits, then

SupPx) € .¥(X; o, b)

Proof. The second part follows immediately from the first, siCa82.
shows explicitly that

Suppfy) € (X 0, b)

for eache > 0.
To prove the convergence result, first observe thaf by, (th&)mar-
tingale problem folL well-posed. Next, define

d
Fi(x0) = @22 ) ol 1<i<n
k=1

ThenF(x, 6) satisfies the hypotheses of theorém (P.10). Moreover,
f(Fi(X, 6) — F'(x m)(F (x.6) = F1(x,m)dn
gd-1
d i i
= 52,0400l [ @c=moter - noc
kt i

do o 1
=3 D" a0 Ot + 59k0).
k.l

Thus in the notation of{210):
al() = > b (rhx).
¢
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Next:

[ X FeenTexman

gd-1 j=1 Xj
d n d ] ao_i
=52 D Al [ ma
=1 k(=1 g
1, & j 80':(
== T (XN—=—(X)
2 = é 0X;

k=1 j=1
But this means that
1¢ 2 N0 1SS0
= j iy 2 _ = ity 9 2
5 i,zzla M7, * Z; CX7c =3 kZ;Q; T 70"

and so thel is given in [ZIR) is the one associated Wi, §) and
b(x, 6) via the prescription given il {Z10). O

Exercise 2.15.Leto(.) and [.) be as in the preceding and suppose that
o(.) andb(.) are a second pair of such functions. Assume that Range
(0(¥)) € Range(o(x)) for all x € R" and thatb(x) — b(x) € Range
(o(x)) for all x € R". Show that

Z(x .b) € (X, b)
forall x e R

Remark 2.16.An alternative description of”(x; o, b) can be obtained
as follows:
Let 49
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n
Xy = Zo{((x)g,l <k<d,
i=1 X

and denote by LieX, ..., Xq) the Lie algebra of vector fields generated
by {X1,...,Xq}. Then.Z(x; o, b) is the closure of the integral curves,
starting atx, of vector fieldsZ + Y, whereZ € Lie {Xy,..., Xq} andY =

n .

D b'(x)aixi. The derivation of this identification rests on the eleminta

i=1
facts about how integral curves change under the Lie bramberation

and linear combinations.

3 Characterization of Supp(pyx), the non-degenerate
case

In Corollary [Z11), we showed that if is given by [ZIR) andP, ~ L

at x, then Sup®x) € (X, 0, b). In the case wheao*(.) > O, this
inclusion does not provide any information. What we will ghion the
present section is that, in fact,dfo*(.) > 0, then SuppRy) = Qyx =
{we Q: x(0,w) = 0}. Actually, we are going to derive a somewhat
more general result.

Lemma 3.1. Givene > 0, define

wt9= Y [ Dalx-y- ) - n(x-y-@n+ 2y @2)

fort > 0and xe (¢, €), where

1 2
Z) =
yt( ) (27Tt)1/2
Then )
1 .
Uy € C¥((0, 00) x RY), ‘Tfut - EO(;—;;ln(O, o) x R,
Ihrg Ug(t,X) = 1for X € (—&, &), U(t,X) > O for (t, X) € (0, ) X (¢, &),

d%u,
dx2

ut,+¢) = O0fort > 0 and (t,X) < Ofor (t,x) < (0, ) X (&, ¢&).
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Finally, if (3(t), F¢, P) is a one dimensional Brownian motion,>I'0 and
X € (&, ¢), then

U(T, X) = P(x+ B(t)) € (~&,&) fort € [0, T]). (3.3)
Proof. Let
S=U(@n-Le, (4n+ 1)e)
and
S'=2s+S={2s+272:2€S}.
Then

Us(t, %) = f (= y)dy f (- y)dy.
S S/
This proves that
us € C*((0, o) x RY)

and that
ou, }azug
ot~ 2 0x2
fort > 0. Also, if X € (—¢, £), thenx € Sandx ¢ S'.
Hence
im [ 7e(x=y)dy=Land Jim [ n(x-y)dy=0
S s
Thus

lim fus(t, X) = 1 for x € (—¢, €).
el0
S
Next observe that

Uslt, &) = f »@)dy - f »@)dy= 0.
S+e

S+e

Sinceu,(t, .) is clearly even, this shown tha(t, +¢) = 0 fort > 0.
We next provel(3]3). To this end, let

T =inf{t > 0: x+B(t) ¢ (-&, &)}
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Then, by 1t's formula applied tai, (T — t, X):

Uo(T, X) = E[Us(T — 74AT, X+ B(TxAT)
=P(ryx > T) = P(x+B() € (-¢,¢&) fort € [0, T]).

From [33B) it is clear that
oug

t,X) <0,
5 t.x
and so )
0°U, ou,
=2—<0.
OX? ot~

Finally, we must show thai.(t,x) > 0 for allt > 0 andx € (-¢, &).
To this end, Suppose that € (-¢, ) and thatu,(T, x°) = 0 for some
T > 0. Then we would have that

E[eZTXO ]

is an entire function ok € C. On the other hand a given @ 1 <
7/23/2¢, consider the function

cos(2/21x)

a9 = cos(3/2e)

Applying Ito’s formula toeﬂz‘@(x), one sees that

$1(x) = E[e" ]

and so ,
lim E[e’™] = oo,
N/ 232
which clearly is a contradiction. ]

Lemma 3.4. Let (E, F, P) be a probability space{F; : t > 0} a non-
decreasing family of sub—algebras of F and; : [0,0) XE — R a
P—a.s. continuous F.-progressively measurable functiorsufke that
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there exists bounded{progressively measurable functions fD, o) x
E — [0, ) and b: [0, ) x E — R such that

9% f

v b(S) )(& n(s)ds Fi, P)

(F(tn(t) - f ARV Ll

is a martingale for all fe C>%([0, ) x RY). Leto be an F-stopping
time and giverz > 0 define

7o = inf{t > o : In(t) — n(o)| = &}.

Ifb(s) = Ofor cAT < s< TAr.and ds) < AforocAT < s< TAt,
then
Pt <T) < (1-u(AT,0)P(c < T).

Proof. Let F : [0,0) x Rl x E — R! have the properties that for
each {,x) € [0, ) x RIF(t, X) is F;—measurable and for eache E,
F(t, x 6) € C2([0, c0)xRL. Then by Doob’s stopping time theorem plus3
elementary properties of conditional expectations (cf7lid [S&V]),

E[F(TA1:, n(TA7,)) — F(oAT, n(cAT))|F,]
T AT
e [ G+3 a9 0 )(s (91 )
oAT
(a.s.,P) on{o < oo}
In particular, withF(t, X) = u,(A(T = TAt), x—n(c))(= 0if oo = ),
we have

Pt > T, < T) = E[U(A(T — TAT,), n(t.AT) — (o)), o < T
= E[F(TAT:,n(TAT.)), 0 < T]
= E[F(cAT,n(cAT)),0 < T]
T/\Tg
cer [ ae s nops o <

oAT
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sinceF (o AT, n(cAT)) = U (A(T — 0),0) = U.(AT,0) on{o- < T} and

OF a(s) 9°F
(E T W)(S’ n(s))
= (A% BTy AT 9,009~ (o)

1 d°u,
= -5 (A-a(9)—— (AT - 9),n(s) —n(c)) =0
2 OX
for cAT < s< TArt,, we see that
Pt >T,0 <T) > U(AT,0)P(c- < T).
Hence

Pt < T) =Pl <T, 7. <T)
=Ploc<T)-Ploc<T,7.>T)
<(1-U(AT,0)P(c < T).

O

Lemma 3.5. Let (B(t), Ft, P) be a d-dimensional brownian motiodm(.)
a bound F.-progressively measurablé & RU— valued function, b)
a bounded F.-progressively measurablé Ralued function and(c) a
bound F.-progressively measurablé-Ralued function such tha(®) =
Ofort > T. Define

R= exp[f < c(s),dB(s) > —% f|c(s)|2d§. (3.6)
0 0

Then R> 0 (a.s., P) PP[R] = 1 and if dQ = RdP, then for every
f € CL([0, ), R")

t
(160 - [ (G + LsT+ < a(90(9). grad £>)(s (S)ds Fi. Q)
0
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is a martingale, where

62
0%i0X;

L= 5 D (aa (9]

=1

+;bi(s)aixi.

Proof. Itis clear thalR > 0 (a.s.,P). Furthermore, by &'s formula, if

t t
1
R(t) = exp[ | < c(9,dB(9) > —= | Ic(9)Pdd.

then
t

Rty =1+ fR(s) < c(s),dB(s) >, t > 0. 3.7)
0

ThusEP[R] = EP[R(T)] = 1. Finally, another application ofd§ 55
formula shows that

t
(RO T £(1) - f(R(S)(Z—; +Lsf+ < a(9)c(s), gradf >)(s &(s))ds Fi, P)
0

is a martingale. Since, frofi(3.7)
E’[RF] =R (as.P)

forallt > 0, it follows immediately that

t
f
(1(t.£0) - [ (G +Lot+ < a(90(9. grad {>)(s &9)ds Fi.Q)
0

is a martingale. O

Theorem 3.8. Let(B(t), F;, P) be a d-dimensional Brownian motion and
let o(.) be a bounded F.-progressively measurablesfRd-valued func-
tion andy(.) a bounded F.-progressively measurabl&\Rlued func-
tion. Set

t t
£(t) = f ASH(S + f o(y(9)ds
0 0
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and assume that

Traceaa™(9)

la(s) (s)

is uniformly bounded for each> 0. Then for each T> 0 ande > 0,

X[e.00)(E(S))(= O1f a(s) = 0)

P(Supyt1 1€(t) < €) > 0.
Proof. Setn(t) = |£(t)> and define
o =inf{t > 0 :|n(t)] > 2&}
56  and
T =inf{t >0 :n(t) — n(o)l = &}.
Then

P(SURyt<T €M) > (38)Y?) = P(Supyeict IM(M)| = 36) < P(re < T).

Thus we must show th&(r, < T) < 1. Without loss of generality,
we will assume that(S) = 0 if

(9] = (3)Y2.

To prove thatP(r, < T) < 1, first note that

t

t
n(t) =2 f < a*(9é&(s),dB(s) > + f Traceaa™(s)ds
0

0
t

12 f < 2" (9E(9).9(9) > ds

0
Now define

1 Traceaa’(s)

o9 =79~ 5o i MO -er209(1(9)
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Thenc(.) is uniformly bounded and(s) = 0 fors> T. Set
R=exp[| <c(s),dB(s) > -3 Ic(s)l“d
0 0

anddQ = RdP. SinceQ andP are mutually absolutely continuous
Qe <T) < 1liff P(r, <T) < 1L
But, by (35),

t
2
(f(t, n(t) - f (g—; + %a(s)g% + b(S)g—)f() (sn(9)ds Ft, Q)
0

is a martingale for alf € Cé’z([o, o0) x RY), where 57
a(s) = 4" (9¢(9)°

andb(s) =Traceaa™(s) + 2 < a*£(s),c(s) > + < a*(9&(9),y(9) >. In
particular,a(.) andb(.) are bounded ank(s) = O for AT < s< 1,AT.
Thus, by BW)Q(r- < T) < 1. m|

Corollary 3.9. Let (8(t), Ft, P) be a d-dimensional Brownian motion,
a(.) a bounded F-progressively measurable"® R%-valued function
and \.) a bounded F-progressively measurable"Ralued function.
Assume thata™(.) > Al for somet > 0. set

t

t
£() = x+ f (9 dB(S) + f v(s)dst > 0.
0

0

Then for everys € C}[0, ), R") satisfying¢(0) = X, everys > 0
and every T> 0:

P(Supyt 1€() — o(t)] < &) > 0.
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Proof. Giveng(.), set
Eo(t) = £(1) — o(V)

Then . .
&= [ 94+ [al9reds
0 0
where
¥(9) = a’(9) (@ (9) " (U(S) — ¢/ (9)).
Note that
" (E(SPP =< &(9), e (94(9) >= AUE(IP,
and so Traceaa™(s)
m)([&oo]ﬂf(s)l)

is uniformly bounded for each > 0.
Thus, by theoreni(3.8),

P(Supi<t I€5() <€) > 0
for eache > 0 andT > 0. O

Corollary 3.10. Leto : R" - R'@R{and b: R - R"be G’ -functions
and set

19 LB N
L=z il bl (%)~
zijzzll(‘m) S +i; 5%

Assume thatro*(x) > 0 for each xe R", let P, ~ L at x. Then
Supp(Px) = {¢ € C([0, =), R") : $(0) = X}
Proof. As we already knowPy is the distribution of the proceg¥., x)
given by

t t

£(tX) = X+ f o (E(s ) B(S + f be(s X)ds
0

0
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where (1), F;, P) is anyd-dimensional Brownian motion. In particular,
we may assume that

BG) = (Ba(), -, Ba()

where f(t), Fy, P) is a [ + n)—dimensional Brownian motion. Now lets9
¢ € CL([0, =), R") with ¢(0) = x be given. Set

K = Supyt lp(t)] + 2

and define
t t

Et) = x+ f (s X)) + f bé(s X)ds t > 0.
0

0
whereos: R" - R" @ R™*" is given by
a(y) = (@) X[k.e) M)

Then&(t) = &t X) for0 <t < 7« = inf{s > 0 : &(s X)| < K}. In
particular

P(Sup«r 16(t, ) — ¢(O)] < &) = P(SuRcier (L, X) — ¢(O)] < &, 76 > T)
= P(SUR)SIST |é:(t) -¢(M) <e1k >T)
= P(Supr (1) — (1)l < &).

Butaoo*(y) = co*(y) + x(k.«)(Y)! > Al where
A=inf{< 6,00 (Y)0 > /16)* : |Y| < K andd € R"\{0}} > O}
Thus, by corollary[(319),
P(SUR<i<T () — ¢(B)] < &) > 0.
We have therefore proved that
{¢ € Ci([0, ) : R"); ¢(0) = X} € Sup).

60
Since SupRy) is closed inQ, this completes the proof. O
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Corollary 3.11 (The Strong Maximum Principle)Let L be as in[(3.710)
and let G be an open subset dHR". Suppose that @ C1?(G) satisfies

ou

E +Lu>0
in G and that(tg, X) € G has the property that(tp, X) > u(t, X) for all
(t,X) € G. Then (t1, x}) = u(to, x) for all (t1, x') € G(to, X°). where
G(to, X°) is the closure of the pointdly, ¢(t1 — tg)) such that 1 > to,
¢ € C([0,) : RM, 6(0) = X0 and (t, ¢(t —tg) € G forty <t < t1. In
particular, if 2/ is a connected open set il And ue C?(U) satisfies
Lu> 0in U, then u is constant if{ if u attains its maximum ir{.

Proof. By replacingG by {(t—tg, X) : (t, X) € G} andu(t, X) by u(t—tg, X).
We will assume thaty = 0. Furthermore, by approximating from
inside with relatively compact open regions, we will assutimat u
CH2(G).

Note that by 10's formula and Doob’s stopping time theorem
EPYU(tAT, X(tAT))] = u(0, X°)

tAT

= Epg[f(g_l; + Lu)(s, x(s))dg > 0,
0

whereP,o ~ L atxX? andr = inf{t > 0 : (t, X(t) ¢ G)}
Thus
EPe[u(tAT, X(tAT)) — u(0, xX°)] > 0,t > 0.

Now suppose thap € C([0, ») : R", ¢(0) = x and ¢, ¢(t)) € G for
0 <t <ty If u(ty, ¢(t)) < u(0, x°). Then we could find ag > 0 such
that dist. (6 ¢(5)),G®) > eforall 0 < s < tandu(t;,x) < u(0,x) —
for X — ¢(t1)| < &. Thus we would have

EPX Ut AT, X(t1AT)) — u(0, x°)]
< —ePy(Supy«, IX(1) — o) < &) <0,

which is a contradiction O
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Remark 3.12.The preceding result can be extended in the following
way:

Leta=R!xR" - R"®@R"andb : R x R"” —» R" be measurable
functions such thah is symmetric and uniformly positive definite on
compact sets analandb are bounded on compact sets. Set

13 & L 0
L = = U, b'(t, X)—.
t 2.jZ:la( X)axiax,- +; ( X)a>q

If ue CL2(G) satisfies
% +Lu=0

in G andu attains its maximum atg, X°) € G, thenu(ty, x!) = u(tg, X°) 62
for all (t1, x') € G(to, X). The proof can be constructed along the same
lines as we have just used, the only missing ingredient isr& saphis-
ticated treatment of the existence theory for solutiondéorhartingale
problem (cf [Berk. Symp.] for the details).

4 The Support of P ~ L, the Degenerate case

We are going to show that if

d n
_1 (-2 y2 02
L=3 ;@ 970"+ Z; 0975 (4.1)
and if Py ~ L atx, then
suppPyx) = .7(X; o, b). (4.2)

Since we already know that suppy) > -7(x; o, b), it suffices to
show that if
t t
00 =x+ [o@ids+ [bo@dst=0. @3
0

0
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wherey € C3((0, o0); RY), then

Px(SUR<t<r | X(t) — ¢(t) I< £) > 0 (4.4)

for all e > 0 andT > 0. Actually, what we are going to prove is slightly
more refined result thah(4.4). Namely, suppose tB@),F:, P) is a
d—dimensional Brownian motion and that

t

t
£(tX) = X+ f o(e(s. X)dB(S) + f B X)dst> 0, (4.5)
0

0

where
n

d oo
> o5 ( (4.6)

b(x) = b(x) +
] 6xJ

NI

ThenPy is the distribution of(., X). We will show that
I(is?g P(SUR<t 1= € | SupT I BM) —u(t) I<0) =1 4.7)
forall e > 0 andT > 0. Since

P(Supyctr | B — (1) I<6) >0

for 6 > 0 andT > 0, this will certainly provel[4}4). The proof df{4.7)
relies on a few facts about Brownian motion.

Lemma 4.8. Let (8(t), Ft, P) be a d-dimensional Brownian motion.
Then there exist A 0and B> 0, depending on d, such that

.
P(SUR.cr |8 1< 6) > Aexp( B ) T>0ands>0. (4.9)
Proof. First note that if
®(T,6) = P(SupO< t < T | B(t) |< 6,

then
O(T, 8) = O(T/62,1).
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The reason for this is that for any> 0, 28(.) has the same distri-
bution as3(12,.) (cf. exercise[[Z11) below). Thus we need only check
that

O(t,1) > Ae Bt > 0.

Next observe that

P(SUR<1 | B(t) I< 8) = P(SURr Max 1< £ < d| (L) < 6/dY?)
= P(Supyeer | BY(D) < 6/d™2)°

since thes!(.)’ sare mutually independent and each has the same distri-
bution. Thus we will restrict our attention to the case when 1.

To prove that®d(T,1) > Ae B whend = 1, we will show that if
feC(-1 1)

E[f(x+B(T)). Supcrer | x+B(1) I< 1]
=5 am(HEC™TBT sinmr/2)(x + 1)), (4.10)

m=0

T >0andxe (-1,1),

where
1 1
am(f) = f f(y) sinmr/2)(y + 1))dy/ f sir((mvr/2)(y + 1))dy.
0 0
Given [41D), we will have
P(SURcr | B(L) I< 1) = ay(1)e ™37 + i Bomen (1)(—1)™ el OT
m=1

Sincea; (1) > 0 and| am(1) |< 1 for all m, it is clear form this that
fim ™A P(Suor | A1) < 1) = &g (1) > 0,
and so estimate will be established. To prdve{4.10), first tioat

sinm(x+ 1):m>1
2
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is an orthonormal basis i?((-1, 1)) (cf. exercise[[Z11) below).
Next observe that forf € C3((-1, 1)), 65

D am(f) sinmr/2(x+ 1))

m=0
is uniformly and absolutely convergent foand that ifu(T, X) is given
by the right hand side of{4.1L0) then

ou  16%u "
a_T = Eﬁ’T >0andxeR

IMmu(T,x)=f,-1<x<1
T.0

uT,+1)=0.

Hence, U(T — tAT, x + B(t)), Ft, P) is a martingale and so
u(T,x) = E[f(X) + B(T)), 7x > T]

wheretry = inf{t > 0 | x+ B(t) |> 1}. Thus [4ID) holds forf €
Cg5'((=1,1)). Using obvious limit procedure, it is now easy ot see that
#.710) continues to hold for afl € ([-1, 1]) so long asT > 0. i

Exercise 4.11.Fill the missing details in the preceding proof. In partic-
ular, use the martingale problem characterization of Braamnmotion
to check thafl3(./ 1) has the same distribution @#§.) for anyA € R/{0}.
Second, show that

{sin(% x+1);m>1}
is an orthogonal basis in4((-1, 1)), that
Supy [ am(f) IZ ¢l fllz-1,1),
and that -
> an(Dsin((x+ 1)
m=1

is absolutely and uniformly convergent to f i£fC7((—1, 1)). All these
facts are easy consequences of the elementary theory deFseries.
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Lemma 4.12. Let (B(t), Ft, P) be a 1-dimensional Brownian motion.
Then P-a.s., there is precisely one solution to the equation

t
§(t)=2f|§(s) Y2 dB(s) + 2t,t > O.
0

Moreover, the unigue solutiof(.) is non-negative and B-measu-
rable.

Proof. For 0< ¢ < 1 andn > 1, consider the equation
t

nlt.e) = o +2 [ aulen(s HABS + 2.
0

where{on} € ¢°(RY), Sups; Sufyer | on(X¥) 1< 1 andon(x) =| x V2
for | X |= g/n. Sinceoy(.) is uniformly Lipschitz continuousé,(., €) is
uniformly determined an®(.)-measurable. Moreover, if

= inf{t > 0:&4(t, &) > g/n},

thenén;1(t, &) = ép(t, ), 0 < t < 7y (a.s.,P). Next note that, T « (a.s.,
P) asn — 0. To see this, define

Lhr=iInf {t>0]&(te) >R}
for R> e. Then
Tim P(ry < o) = 0 for allR> 0

67
Indeed, choosa € CZ(R!) so that

u(x) = log(nx/e)?/ log(nR/e)?
for e/n < x < R. Then, by Itds formula

P(th > {nRr) = E[U(én(ThALnR))] = U(E)
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= log(n?)/ log(nR/e)? — 1
asn — oo. Next note that by Doob’s inequality, for aify> 0
PSuUper I én(t.e) e -2t 12 R)
< %E[I én(T,e)—e— 2T |]

o)
- R

wherec(T) is independent of. Hence
Sup,1 Phr<T) > 0
asR — oo, and so we conclude that

imP(r, <T)=0

forall T > 0.

We have now proved that there is for each» 0, P-a.s. a unique
continuouss(., €) such that(t, ) = &n(t, €), 0< t < 1, and thatr,, T
(a.s.,P) asn — . Clearly&(., €) is B(.)-measurable and non-negative
(a.s.,P). Also

f(t,s)=s+2f|(§(s,s)) Y2 dB(s) + 2t, t> 0.

We next show that

P(Sup«t | £(t ) —é(t-&)[22) - 0
ase, &’ — 0 for eachT > 0 andA > 0. To this end, note that

0 < p(6) = Supxy<1 (| X2 =y1*?) < C(67As), 6> 0.
|X-y|<6

Thus we can finday} < (0, 1) so that

k-1

1
fmd/l— k.

(13
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Choose{@)/} € C5 (k. @k-1)) SO that 0< ¢/(.) < —kpi() and

fwwmzx
0

Set
2] t

o= [ at [ 6(9ds
0

0
Then, by It6’s formula:

El¢k(é(T, ) - &(T. &)
1 T
< (e —€)+ EE[IPZ(I &t 8) - £(t,€) Nei (6t €) — £(t, &7)d]
0

<le-¢ | +T/k

Sincegi(X) T| x| ask T oo, we now see that
E[1§(T,e) - &(T. &)1 <le-¢"|.
But (&(t, &) — £(t, &), Ft, P) is a martingale; and so, by Doob’s in69
equality
le—¢|
A

P(SURcet | £(L8) — £t &) 2 A) < 0.

We now see that there exist | 0 such that(.,e,) — &() (a.s.,

P) uniformly on finite intervals. Clearly(.) is B(.)-measurableP - a.s.
non-negative and satisfies

t
f(t)=2f|§(3) Y2 dB(s) +2t, t>0
0
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(cf. Exercise[[4113) below). Finally, #f(t) were a second process satis-
fying the same equation, then, using the functippsonstructed above,
we would find that

n(T) =&(T) (as,P)
forall T > 0. O

Exercise 4.13.Show that in fack(., &) < £(.,&') (a.s., P)if0<e < &.
The idea is to employ a variation on the ideas used prove

P(SURier | £(t,2) — £(t,&) 12 2) — Oase, & — 0.

Lemma 4.14. Let (8(t), Ft, P) be a d- dimensional Brownian motion
where d> 2. Givenl <i # j < d, define

t t
B B _ Bi .
10~ [ G~ | e

B __ B
B+ B2 (B + BV

[here we take 0if g7 +p2=0

Then (), Ft, P is a 1-dimensional Brownian motion and the pro-
cess k() is independent of the proces¥..) +,BJ?(.).

In particular, if 6() is a bounded Fprogressively measurable
R-valued process, then for M1 andé§ > O:

t
P(Sup<i<t | f@(u) [ B(u) | dLjj(u) [> M6 | Supyit | B(H) I< 6)
0

MZ
< 2exp| -——— 4.15
5 p( 2T 16 ||3) (4.13)

Proof. Without loss of generality, we will assume that 1 andj = 2.
Let L(t) = L1o(t). To see thatl((t), F¢, P) is a 1-dimensional Brownian
motion, note that by Itd’s formula

t

(L) - [ 5 (LEMsFP)

0
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is a martingale for alf € C2(RY).

(Remember tha‘t’(f)({o}(ﬁf(s) +B5(9))ds = 0) = 0 since
0

T T
1
E fX{O}(ﬂ%(SHﬁ%(S))d% = fdtfﬁe‘yz/”dyzo

€ {0}

€

forall0<e<T <.
We next show thak (.) is independent g82(.) +45(.). Define

t
dﬁ1+f 2 ds.
0

t
B1
Bt:f
® ) B2+ B B2 + 35

(with the same convention whe + 85 = 0).
Again use Itd’s formula to show that 71

t

(L0 BO) - 5 [ AT(L(S. B Fi.P)

0

is a martingale for allf € CZ(R?). Thus (L(t), B(t)), Ft,P) is a 2-
dimensional Brownian motion, and &4.) is independent oB(.).
Finally, by 1td’s formula, if £(t) = B3(t) +85(t) then

t
£ = 2f(ﬂ1(3)d[31(3) + B2(9)dB2(9)) + 2t
0

t
=2 [ 1&(9 M2 dB(s) + 2t
/

and so, by[[412)(.) is B(.)-measurable. Hendg(.) is independent of
B5() + B5()-
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Finally, sinceL(.) is independent of(.) and they both are indepen-

dent of%ﬁf(.), we can argue as in (L_4.3) to prove that
3
t
P[SUR)«T | f 6(s) 1 B(s) 1 dL(s) 1= | B(.) |
0

/12

< 2exp|- =
201013 [18(s) 12
0

where|| ||, denotes the uniform norm.
72 In particular

t
P|Supr | f@(s) |B(3) 1 dL(S) | = M6 Supacr | B(1) 1< 6)

< 2exp(-M?/2T || 0|%)

O

Exercise 4.16.Let (3(t), Ft, P) be a 2-dimensional Brownian motion.
Prove that for eacte > 0, P(| B(tVz,) |> 0, t > 0) = 1, wherer, =
inf{t > 0 : B(t) |> &}. Next show that &, | Oase | 0) = 1. Conclude
that P(| B(t) |> Ofor allt > 0) = 1. Thus P-a.s.f(t) = argg(t) is
well defined for all t> 0). In order to studyd(t), t > 0, write At) =
B1(t) +iB2(t). Given an analytic function f o8 show that d {z(t)) =
f/(z(t))dzt).

In particular, show that for fixecht> O

dL(s)
log2(t) - log z(to) = f|z(s)| B(9) + f|z()| t> 1o,
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where R.) and L(.) are defined as i{4.14). Hence

~ dL(s) .
lz(s)|”

o(t) — 6(to) =

to

The conditional distribution of(.Vtp) —0(to) given| z(.) | is the same
~ Vto ~
as the distribution oB( f | Z(s) |72 ds, whereB(.) is a 1-dimensional
to

Brownian motion.

Notation 4.17.1f 6 : [0,00) x RN andT > 0, we will use|| 6(.) |3 to 73
denote Sug.1 | 6(t) |.

Lemma 4.18. Let (8(t), Ft, P) be a d-dimensional Brownian motion
and suppose thdt(.) is an P -a.s. continuous.fprogressively measur-
able R - valued function with the property that for some> 1

lim Supys1 P(I6C) li7= M&®l 1| () Il < 8) = O.

Then

lim P f < 6(u). dB(u) >lit> & Il () Iy < 6)
0

is O for alle > 0.
Proof. Let0< 6 <1 andM > 1 be given and define
C=inf{t>0: |6(t) |> Ms&?}.

Then

P f < 6(), dB(U) >12.> 8,11 B() 1< )
0

< P(l f < 6(u), dB(u) >I1> &, 11 6() [P < Ms®)
0
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+P(l 6() 19> M&®, 1 () 19< 6)
< P( f < 6(UAQ), () >, 2 &)
0

+ P> 60) 192 M8 11 B() IF < 9).
By the argument used to prove[[IL }1.3):

. 2
PUI [ < 6uA ). B 19> &) < 2exPE ).
0

74 Thus, by [4.D):
Pl f < 00U, dBU) > 10 > BOIC < )

P

Megzr © %) + PO = M&*IB()IR < 6)

<Eex (_
=2 p

By assumption, givem > O we can chooséM, < o so that the
second term is less thaty2 for 0 < § < 1. We can then choose ©
0, < 1 so that the first term is less than2 for this choice ofM,. O

Lemma 4.19. Let (8(t), Ft, P) be a d-dimensional Brownian motion
and leté(., X) be given byl(415). Then for amy> 0, T > 0, f € C;’(R")
andl<k<dorl<k#¢<d:

im P( f f(£(u, ))d(B*W)2I% > &llBO)I2 < 6) = 0
0
and

im PO1 [ e B WIS > &lBOIR <) =0

Proof. Seté(.) = &(.,X). Then for 1< k, ¢ < d, we see, by k"s formula,
that

t
f FE(U)AEBB (W) = B8 1) (O ®)
0
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t
- [ F50 < o () grad e ) >
0

t
- f BB UL (E(U)du
0

t
- f [84(U)(e" (€(u) grad f (£(u)e + B (U)(o" (£(W) grad f ()] du
0

All except the second term on the right clearly tend to zenwe)ﬂ? 75
— 0. Moreover, the second term is covered by (¥.18) with 2. Thus

lim P f f(£U)dEB B W)L > &lIB()IS < 6) =0
0

foralle > 0 and 1< k, ¢ < d. This proves our first assertion upon taking
k="{¢.
To prove the second assertion, note that

t

t
| flep s - 5 [ feaEuew + 5 [ oL,
0

0

whereLy,(.) is as in [£I¥) and

(B2 + B2
0() = f(£(u)).
() 0 (€(w)
Thus the first term is of the sort just treated and the secordon
covered by[[414). O

Theorem 4.20. Let (8(t), Ft, P) be a d-dimensional Brownian motion
and leté(., X) be given byl{Z15). Givep € C5((0, «0); RY), defineg(.) by
#&3). Then foreack > 0and T > O:

|§[g P(SURt< 6t X) — ¢(B)] = & Supa<r IIB() — ¥ (D) < 6) = L.
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In particular, if Py ~ L at x, where L is defined bz {4.1), then
supp(Py) = .7(x; o, b).

Proof. We first note that it sffices to handle the case whegn= 0 but

b(.) may depend ohas well ax. Indeed, the general case reduces to this
one by considering the probability meas@elefined bydQ = R,dP,
where

ro. 1.
R =exp([ < (9.95(9. - 5 [ li(9Pds,
0 0
By LemmalZb), £, (1), Ft, Q) is ad-dimensional Brownian motion,
wheregy (t) = () — ¥ (1), t > 0 and clearly

t t

£t = X+ f (E(s )89 + f By (s £(5 ).t 2 O,
0

0

(as., Q), wherdy,(t,X) = b(x) + c(X)y(t). Thus, assuming the case
wheny = 0, we have

lim QUEC. %) - QI = elBQ) —vIR <) =1
and so

@ P ¥) — OIC > & 11BC) — (IS < )

- EP oo (G -X) = dOIOx0,513B() — w(ID)] y
510 EP[R,(T el (. X) = OIS x0.11BC) = w(ID)]
y EPIR,(T x5 (1BC) — w()II9)]
EPlxos(1B() — v (OI)]

where

T T
R(T) =exp( [ < (9. ds(9) > -5 [ li(9Pds
0 0
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T T
- explc UMAM) > - [ <99 > ds— 5 [ 1iA92ds.
0 0

Observe that the ratio in the first factor tends to

t

)
ePCUTIE+ [ <u(9.0(9 > ds+ 5 [li(9Pdgass Lo
0

0

while the ratio in the second factor tends to

t

)
Pl - [ <u(9." w(9.> ds- 5 [li9ds
0

0

and so the products tends to 1.
To handle the case when = 0 andb depends ont(X), let £(t) =
&(t, X). Then

t
£(t) = X + o EmB () - f B (97, (9o (€(9)dBX(9)
0

t

t
- [FOLreas- ;5 [ o emelEsds
0

0

t
+ f b(s £(9)ds
: 0
- x + [ b(se@)ds- A,
/

where

t
Alt) = o (ED)B'M) - D | f AR GOACLAC)

k¢ 0
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t t
-5 [ ko9 - [Honeeas
0 0

We have used in these expressions the convention that eglpieat
dices are summed and the notation

i
o= e’
ki ™ f)Xj

By Lemma [4.ID),
PUIAQ)IR > lB)()I$ <) —» 0ass | 0

for eache > 0 andT > 0. Hence
im)P(EC) - x— [ b(s &) > cABOIR <60
0

But, sincelb(t, X) — b(t,y)| < cIx -y, itis easily seen from this that
IM)PAIC) = ¢OIR 2 IBO)IS < 6) =0,
where

t
o) = x+ f b(s ¢(9)ds t 3> 0.
0

O

Corollary 4.21. Let G be an open set in RR" and suppose that &
C2(G) satisfies )
u
ot +Lu=0

in G, where L is given by{4.1). (fo, x°) € G and to, xX°) = maxs u,
then ut, X) = u(to, X°) at all points(t, X) € Gy (tg, x°), where G (to, X°)
is the closure in G of the pointés, ¢(t; — tg)),t1 > to, whereg¢ €
Z(X°; o, b) satisfieqt, ¢(t — tp)) € G for tp <t < t;. In fact, if

u(to, X) = max u,
(to.x) = jmax,

then u= u(tp, X) on G (to, X°).
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Proof. Given [£2D), the proof is precisely the same as thdf of}j3.1th

Remark 4.22.WhenG = Rx R", it is easy to show that ift{, x!) ¢
G (to, X°) then there is a1 € CY%(G) whose maximum is achieved at
(to, X°) and yetu(ty, x1) < u(to, X°). If t1 < to, this is easy: simply take

1

u(t.¥) = —exp(—to—_t ift<tp
’ 0 if t > to

If t; > to, choose an open skt > (t1, x}) so thatU (NG (t1, x}) = ¢
and letf € C;(U) be a non-positive function such thét;, x) < 0.
Set

ut,x) = E[ | f(s&(s—t x)dg.
/

Using (1,[£%), one can easily show that Cp(R x R") and that

ou
a5 +Lu=-f>0.
Moreover, by [Z20)u(to, X°) = 0. Finally, u(t;, x!) < o.

In order to show thaG (tg, X°) is maximalwhenG # Rx R", one
must extend the notion obt/ot + Lu > 0” to functionsu which are not
necessarily smooth. This is done in the paper [Degefi, Bli In that
same paper, it is also shown how to extend the charactenzafisupp 80
(Py) to Py ~ L at x whenL cannot be written in the forni.{4.1).

5 The “Most Probable path” of a brownian motion
with drift

Let (3(t), Ft, P) be ad—dimensional Brownian motion and lbt: R% —
R be aC*®-vector field with bounded first derivatives. Defig) by

t
£(t) = (1) = Bt) + f bE(9)dst = 0. (5.1)
0
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We already know that foe anye C2([0, «), R%) with ¢(0) = 0,

P(SuRer 11€(t) — #(O)Il < £) > 0

forall e > 0 andT > 0. We now want to get an asymptotic estimate on
this probability as: | 0.

Lemma 5.2. There is an orthonormal real basis
{#nly € C(B(0, 1)) of L2(B(0, 1))

such that
ﬂﬂl ¢n(x) =0
and
1
_§A¢n = Andn,N >0

where0 < g < 13 £ Ap < --+ > A < --- T oo. Furthermore,¢g never
vanishes in [.1). Finally, there is an N= N(d) such that

(o0

> a0

0

converges absolutely and uniformly B{O, 1) x B(0,1) and if f € Cp
(B(0, 1)) then

ELf(x+B(1). 7> 1] = D € (f, )2z 0.0y (X): (5.3)

where
x = inf{t > 1:|x+p(t) > 1}.

In particular,
P(Supy«<r IBOI < &) ~ Ce T/ as T/&? - oo,

where c= (¢o, 1) 2(g(0,1))#0(0) and A = Ao.
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: T ,
Proof. The spectral properties efEA with Dirichlet boundary condi-

tions in B(0, 1)) are well-known. In particular, the facts that the spec-
trum is completely discrete and positive and thatis simple can be
found in elementary books on Partialff2irential Equations. The abso-
lute and uniform convergence of

(o)

1
— ?n(X)n(y)
o

for someN is a consequence of Mercer’s theorem applied toNk&
iterate of the Green’s functions. From this it is easy to &heéhat if
u(t, x) is given by the right hand side df(%.3) withe C7'(B(0.1)) then

ou 1
= = EAu to (0, ) x B(O, 1),

lim u(t,x) = 0fort > 0, and
X1
|H‘I(’)l u(t, x) = f(x), x e B(O, 1).
Hence by It"s formula, [53) holds forf € C7(B(0,1)). The gen-
eral case in then proved by approximation.

Once one had{3.3), it is not hard to show thatnever vanishes. 82
Indeed, from[(513), it is clear that

0 < e'P(1y > t) = (¢o, 1)po(X) + 0(1) ast T oo.

Thus if (¢, 1) > O(< 0), thengo > 0(< 0). Form :—2LA¢0 = —Aodo
and the strong maximum principle, it follows th&t > 0(0 < 0). On the
other hand, if ¢o, 1) = 0, then from [5B) withf = ||¢olly + ¢o:

0 < e'E[f(x + B(1)), 7x > t] = ¢o(X) + O(L),

which obviously contradictsgg, 1) = 0.
Finally, as we saw irf{418),

P(SUR<T IBM)| < &) = P(1o > T/&?)
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and clearly the above considerations prove that
P(To > t) ~ Ceg ot

with
C = (¢0, L)¢0(0) > 0.
O

Exercise 5.4.Let G be a bounded, connected open set9n Biven
X € G, letry = inf{t > 0 : (X+ B(1)) ¢ G}. Show that

P(rx > t) ~ C(X)e " as t1 oo,
where dx) > 0 andA > 0 does not depend on X.

Now let¢ € C3([0, o), RY) andT > 0 be given and define

t
w(t) = 6(t) - f b@(9)ds t > 0 (5.5)
0
b(t, X) = b(x + ¢(t)) — b(a(1)), (t, X) € [0, o) X Rd (5.6)
£4(1) = £(t) - B(1).t 2 O, (5.7)
Bu(t) = B — Y(EAT).t 2 0 (5.8)
83 and
T 1 T
Ro=exl[ <0999 > -5 [ W9Pds.  (59)
0 0
Observe that

t
£x(t) = Bu(t) + f bs #(9)ds t> O; (5.10)
0

and that ifdQ, = R,dP, then ,(t), Ft, Q,) as ad—dimensional Brow-
nian motion (cf. LemmpAz33l5). Also

T

.
Ry = expl i(D.AM) > - [ <060 > dt- 5 [y
0

0
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r 1
- exp< (MM > - [ <d®.w > dt- 5 [k
0
]
x expk T Bu(T) > = [ < F0.,(0 > d
0

.
eexp[% f () 2dt]
0

uniformly and boundedly ag, (.)llr — O.
Since
1By OIF < (L+ LTI

wherelL = || grad b|,, we now have

P& (NS < &) 3
im =
£l0 Qu(llEs(NIT < &)

)
expl-5 [ 16) - bOO)P
0

We now to the study oQy (/l£4()II$ < &). 84
Lemma 5.12. Referring to the notation if{9.5) E(3.9), we have
Qu(Ia ()it < &) = E[R(T) BT <&,

where
T . T
RT) = expl [ <bA).dB(9 >~ [ Ib(s AP
0 0

Proof. First note that without loss of generality we may assume that
b € C([0, ) x R"), since if this is not the case we can we can replace
b(s, X) by such a functio’ which coincides wittb on

[0; T] x B(O, llp( IS + €).
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Next observe that sincgg(.), Ft, Qy) is a Brownian motion and,(.)
is given by [5.ID), the distribution @f,(.) underQy, is the same as the
distribution ofn(.) underP, where

t
m0=ﬂ®+lstm9wst>0
0

But, if dQ = R(T)dp, thenn(.AT) has the same distribution under
asB(.AT) has undeR. Hence

QullE,OIF < €) = P(In()IY <€)
= EP[RMIBO)II < &l. Q.E.D.

Since we already know the asymptoticR{|B()|lT < &) ase | 0, it
remains only to compute

lim EPIRIBC)IT < &].
To this end, note that
N
EP[R(T). IBO)II? < &] = €@ EP[exp] f < b(s.8(9)). dB(S) > IBOIIT < £]]
0

Next

T T
| <bs.p(9). 889 =< MDA > - [ (5 + 500 BN
0 0

]
-3 [ Bdomee + o)
k,l 0

where y
ob
bk.(x) = @(x).
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Finally,

:
P ICLICERPOLEC
4
o 1 [ 1 r
=5 [ dvbse +oe)ds- 5 3 [ 56O + o))
0 K0

i
-3 [ a9 + s O o
0

€34
Combining all these, we arrive at

EPIR(MIBO)IIS < €]

’
- ¢ exp(; f div b(¢(9)d9 x EPexp(> AT) + > (T)IBOIL < e]
0 k

k#,0

where .
8dT) = =5 [ BB + 6B
0
and

.
Ake(T) = f by (B(9) + #(9)B(9dB"(9)-
0

To complete our programme, we must prove that

im Ep[exp(zk] AT + D" AeMIBOIR <2) = 1.

k£l
O

Lemma 5.13. Let f € C*([0,) ® R%; RY). Then forl < k < d or
1<k#¢<d

.
SuR.<1 EP[exp( fo (U BUNABUINBOIT < 8] < oo
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and

.
SuRy<.<1 EP[exp( j; f(u, BB (WAB" (UDIBOIF < ] < oo,

Proof. Let1<k,¢ < d. Then

)
f (L. BU)AEBAW) = BB (T)H(T.B(T))
° T
- f BB(t) < grack f(s.A(9). d(S) >
0

-
Ko 0 1 ko o Of o, Of
—f[ﬁﬂ (S)(a_s +58)f+p5 (S)a_xk +p (S)E](aﬂ(s»ds
Thus for0< g < 1:

.
E"[exp( f f(s ASAE WB W) IBOIT < &]

]
< CEPlexp(- f BB1(9) < grade (s B(9). dB(S) >) B < e].
(@)
But, as in the proof of ([Z413)

]
P(- fo B561(9). grady (s 8(9). dB(S) >= Rl IBQIP < &)
RZ

— __),R>0.
2T ¥ |gradk 13

< expl

87 Thus for any 1< k, ¢ < d:

.
SURyce<1 E"[exp( f f(SASABEBN))  IBOIS < ], < oo
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since ,
PB()IIG < &) = Ae®T/",

This clearly proves the first assertion.
If1 <k#¢<d,then

T T
[ fa 9o =5 [ He e s)
0 0

NI =

+

]
.fa$m9wq4a
0

whereLy(.) is as in [4.1IK4) and

B2 BOYY

o) B0

f(..£())-

By what we have just seen

.
&%@qﬁmmaf#mawwﬁﬂw IBOIR < ] < oo
(o]
for any A > 0. On the other hand, bfZ{4]15);

Hw[ﬂ@ﬂ@M%dwﬁzR BOIE < &)

w(——Bi—)
" 2T 012

Thus 88

T

SURscoc1 E[XPQ [ A9F(OIALA(S) 1BOIR <] <o

0

for any A > 0. Clearly this completes the proof. O
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Theorem 5.14. Let (8(t), Ft, P) be a d-dimensional Brownian motion
and suppose that() is given by[[511), where bR — R% is C* and
has bounded first derivatives. Then fpre C2([0, ), RY) satisfying

#(0) = 0:

)
im P(() - 0T < 2) ~ o™/ expG; [ 160 - aO)et
0

]
+% f div bg(t))d)
0

ase 7 0, where @ and Ag are the numbers described In{b.2).

Proof. We have seen that

PUIEC) — (I < & IBOIT < &)
T T
- D explt 160 - bo®)P+ = [ div b(o) dx
L/ ;]

x EPexp(> " Ak(T) + > Ake(T)IIBOIS < &].
k

k=t
By @19) (withx = 0) and&(t, x) = B(t), we know
P(AKT)I = al IBOIT < £) andP(lAk ()] = alB)IY < &)
tend to 0 ag | O for eache > 0. By (5I38), we know that for any > 0.

fim EP[expA() , A(T) + ) (TNIIBC)IR <]
k k¢
is finite. Hence
im EPlexpA() , A(T) + > (MIBOIF <e=1
k k£l

Therefore

im P(IE() - $0IR < lBOI <
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T T
— expl- [ 160 - bo)®Pdt+ 5 [ div bloo)a.
0 0

The desired result therefore follows from(5.2). ]

Remark 5.15.The result in[[514) makes it possible to discuss the no-
tion of the “most probable path” of the proces€). Indeed, from
(&.132), one sees that most likely route followeddgy) in going from

0 — xe RYintimeT is the pathpo(.) which minimizes.

T T

1. 1 ,

5 [ 160~ blo)P = 5 [ div byt
0 0

subjects tap(0) = 0 and@(T) = x. Using the usual techniques from
the calculus of variations, it is easy to develop the Eulara¢iqn for
this problem and thereby get and idea about wif) looks like. In
particular, wherb = 0, it is cleat that

t
do(t) = ?x,Os t<T.

Next suppose that = 1. By the calculus variations : 90

%m—wm=mm+;w%m:a

In general, this equation of course cannot be solved explitiow-
ever, after multiplying through byo, one sees that

¢3(t) — b% - go(t) + b - go(t) = constant

Thus one can get some idea hgg(.) looks by using the “phase
plane method”. That is, ip = ¢o(t) andq = ¢o(t), then

p? — b?(q) + b'(g) = constant.

In the special case whéfx) = ax, one can solve fopg(.) explic-
itly:
$o — az2¢o =0
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and so ot
sinha
Polt) = XSinhaT
In this case
2 —2aT
P(IE() - o0l < &) ~ Ce T exp - = —— 4 I,
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