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Preface

THESE NOTES are based on five weeks of lectures given during De-
cember 1980 and January 1981 at T.I.F.R. in Bangalore. My purpose in
these lectures was to provide some insight into the properties of solu-
tions to stochastic differential equations. In order to read these notes,
one need only know the basic Itô theoryof stochastic integrals. For
example, H.P. McKean’sStochastic Integrals(Academic Press, 1969)
contains all the background material.

After developing a little technical machinery, I have devoted Chapter
I to the study of solutions of S.D.E.’s as a function of the initial point.
This topic has been discussed by several authors; the treatment given
here is based on a recent paper by H. Kunita (to appear in the Proceed-
ings of the 1980 L.M.S. conference at Durham). In fact, the only way in
which the present treatment differs from this is that I have been a little
more careful about the integrability estimates.

Chapter II is devoted to the study of solutions as a function of time.
A large part of this material is adapted from my work with S.R.S. Varad-
han (“On the support of diffusion processes with applications to the
strong maximum principle”, Proc. 6th Berkeley Symp. on Math. Stat.
and Prob., Vol.III (1970)). The presentation of this material has been
greatly aided by the incorporation of ideas introduced by Y.Takahashi
and S. Watanabe in their paper “The probability functionalsof diffusion
processes” (to appear in the Proceedings of the 1980 L.M.S. conference
at Durham). To intorduce the reader to their work, in the lastsection
of Chapter II, I have derived a very special case of the general result
derived in the paper by Takahashi and Watanabe.
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Chapter 1

Solutions to Stochastic
Differential Equations as a
Function of the Starting
Point

1 Basic Inequalities of Martingale Theory
1

The most important inequality in the martingale theory is the Doob’s in-
equality which states that if (X(t), Ft,P) is a right continuous, integrable
sub-martingale, then

P(Supo≤t≤T X(t) ≥ λ) <
1
λ

E[X(T),Supo≤t≤T X(T) ≥ λ], λ > 0 (1.1)

for all T > 0.
As a consequence of (1.1), one has, assuming thatX(.) ≥ 0:

E
[

Supo≤t≤T X(t)p
]1/p
≤

p
p− 1

E[X(T)p]1/p, 1 < p < ∞. (1.2)

The passage from (1.1) to (1.2) goes as follows:

1



2 1. Solutions to Stochastic Differential Equations....

Let X(T)∗ = Sup0≤t≤T X(t). Then using (1.1) we have

E[(X(T)∗)p] = p

∞
∫

0

λp−1P(X(T)∗ ≥ λ)dλ

≤ p

∞
∫

0

λp−2E[x(T),X(T)∗ ≥ λ]dλ

= p

∞
∫

0

λp−2dλ

∞
∫

0

P(X(T) ≥ µ,X(T)∗ ≥ λ)dµ.

=
p

p− 1

∞
∫

0

E[X(T)∗)p−1,X(T)] ≥ µ]dµ.

=
p

p− 1
E[(X(T)∗)p−1,X(T)]

≤
p

p− 1
E[(X(T)∗)p]1−1/p,E[(X(T))p]1/p

where we have used Hölder’s inequality to obtain the last line. Now
dividing both sides byE[(X(T)∗)p]1−1/p, we get the required result.

The basic source of continuous martingales is stochastic integrals.2

Let (βt, Ft,P) be a l-dimensional Brownian motion andθ(.) be aF.-
progressively measurableR-valued function satisfying

E





















T
∫

0

|θ(t)|2dt





















< ∞

for all T > 0. Set

X(t) =

t
∫

0

θ(s)dβ(s).

Then (X(t), Ft,P), and (X2(t)−
t
∫

0

θ(s)2ds, Ft,P) are continuous mar-
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tingales. In particular,

E[X2(T)] = E





















t
∫

0

θ(t)2dt





















for all T > 0.

By (1.2), this means that

E[(X(T)∗)2] ≤ 2E[

T
∫

0

θ(t)2dt]1/2.

The following theorem contains an important generalization of this
observation.

Theorem 1.3(Burkholder). Let (β(t), Ft,P) be a 1-dimensional Brow-
nian motion andσ(.) be a F.-progressively measurable Rn × Rd-valued
function satisfying

E





















T
∫

0

Trace a(t)dt





















< ∞,T > 0

where a(.) = σ(.)σ(.)∗. Set X(t) =
t
∫

0

σ(s)dβ(s). Then for2 ≤ p < ∞

and T> 0,

E[Supo≤t≤T |X(t)|p]1/p ≤ CpE[

T
∫

0

Trace a(t)dt)p/2]1/p

where 3

Cp =

(

pp+1

2(p− 1)p−1

)

Proof. By Ito’s formula:

|X(t)p| = p

t
∫

0

|X(s)|p−2σ(s)X(s)dβ(s)
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+
1
2

t
∫

0

p|X(s)|p−2(Tracea(s) + (p− 2)
< X(s), a(s)X(s) >

|X(s)|2
ds

Thus,

E[|X(T)|p] =
1
2

E[

T
∫

0

p|X(t)|p−2 Tracea(t) + (p− 2)
< X(t), a(t)X(t) >

|X(t)|2
dt]

≤
p(p− 1)

2
E[

T
∫

0

p|X(t)|p−2 Tracea(t)dt]

≤
p(p− 1)

2
E[Sup0≤t≤T |X(t)|p−2

T
∫

0

Tracea(t)dt]

≤
p(p− 1)

2
E[Sup0≤t≤T |X(t)|p]1−2/pE[(

T
∫

0

Tracea(t)dt)p/2]2/p

and soE[Sup0≤t≤T |X(t)|p] < (
p

p− 1
)E[|X(T)|p]

≤
pp+1

2(p− 1)p−1
E[Sup0≤t≤T |X(t)|p]1−2/pE[(

T
∫

0

Tracea(t)p/2]2/p

Now dividing both sides byE[Sup0≤t≤T |X(t)|p]1−2/p we get the re-
quired result. �

2 Solutions to Stochastic Differential Equation as a
Function of (t, x)

Let σ : Rn → Rn × Rd and b : Rn → Rn be measurable functions4

satisfying
||σ(x) − σ(y)||H.S. ≤ L|x− y|, x, y ∈ Rn

|b(x) − b(y)| ≤ L|x− y|, x, y ∈ Rn (2.1)

whereL < ∞ and||.||H.S. denotes the Hilbert Schmidt norm1.
1||A||H.S. is the Hilbert-Schmidt norm of the matrixA. That is,||A||2H.S. = TraceAA∗.
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Also assume that (β(t), Ft(p) is ad−dimensional Brownian motion

Theorem 2.2. For each x∈ Rn there exists a unique solutionξ(., x) to

ξ(t, x) = x+

t
∫

0

σ(ξ(s, x))dβ(s) +

t
∫

0

b(ξ(s, x))ds, t ≥ 0. (2.3)

In fact, for each2 ≤ p < ∞ and T > 0 there are Ap(T) < ∞ such
that

E[Sup0≤t≤T |ξ(t, x) − ξ(t, y)|p] ≤ Ap(T)(|x− y|p) (2.4)

Proof. The existence of solution is proved by the Picard iteration.De-
fine ξ0(.) = x and

ξn+1(t) = x+

t
∫

0

σ(ξn(s))dβ(s) +

t
∫

0

b(ξn)(s)ds

Then for 2≤ p < ∞,

E[Sup0≤t≤T |ξn+1(t) − ξn(t)|p]1/p

≤ E[|

t
∫

0

b(ξn(t)) − b(ξn−1(t)dt|p]1/p

+ E[|

T
∫

0

(σ(ξn(s)) − σ(ξn−1(s)))dβ(s)|p]1/p

≤ L

T
∫

0

E[|ξn(t) − ξn−1(t)|p]1/pdt

+CPLE[(

T
∫

0

|ξn(t) − ξn−1(t)|2dt)p/2]1/p

≤ L

T
∫

0

E[|ξn(t) − ξn−1(t)|p]1/pdt
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+CPLT(P−2)/(2P)E[

T
∫

0

|ξn(t) − ξn−1(t)|pdt]1/p

and so5

E[Sup0≤t≤T |ξn(t) − ξn−1(t)|p]

≤ 2p−1Lp(Tp−1
+Cp

pTp−1/2)

T
∫

0

E[Sup0≤t≤T |ξn(s) − ξn−1(s)|p]dt.

From this, it follows by induction that

E[Sup0≤t≤T |ξn+1(t) − ξn(t)|p] <
Bp(T)

n!

whereBp(T) < ∞. Henceξn(.) converges uniformly on finite intervals
and clearly the limit satisfies (2.3). In fact, we have shown that there is
a solutionξ(.) such that

E[Sup0≤t≤T |ξ(t)|
p] < ∞

for all T > 0 and 1≤ p < ∞.
To prove uniqueness, note that ifη(.) is a second solution andτR =6

inf {t ≥ 0 : |η(.) − x| ≥ R}, then

E[|η(tΛτR) − ξ(tΛτR)|2]

≤ 2L2E[

tΛτR
∫

0

|η(s) − ξ(s)|2ds] + 2L2tE[

tΛτR
∫

0

|η(s) − ξ(s)|2ds]

and soη(tΛτR) = ξ(tΛτR) (a.s.,P) for all t andR. Sinceη(.) andξ(.)
areP − a.s. continuous andP(Sup0≤t≤T |ξ(t)| < ∞) = 1 for all T > 0,
uniqueness is now obvious.

Finally,
E[Sup0≤t≤T |ξ(t, y) − ξ(t, x)|p]1/p

≤ |x− y| +CPLE[

T
∫

0

|ξ(t, y) − ξ(t, x)|2dt)p/2]1/p
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+ L

T
∫

0

E[|ξ(t, y) − ξ(t, x)|p]1/p dt

and so

E[Sup0≤t≤T |ξ(t, y) − ξ(t, x)|p] ≤ 3p−1|x− y|p + 3p−1Lp(Cp
pTp−1/p)

T
∫

0

E[Sup0≤t≤T |ξ(s, y) − ξ(s, x)|p] dt

Therefore

E[Sup0≤t≤T |ξ(t, y)−ξ(t, x)|p] ≤ 3p−1|x−y|p exp(3p−1Lp

T
∫

0

(Cp
pt(p−1)/2

++tp−1) dt).

This proves our theorem.
The importance of (2.4) is that it allows us to find a version ofξ(t, x)

which is a.s. continuous with respect to (t, x). To see how this is done,
we need the following real-variable lemma. �

Lemma 2.5. Let P andψ be strictly increasing continuous function on7
[0,∞] such that P(0) = ψ(0) = 0 andψ(∞) = ∞. Also suppose that L
is a normed linear space and that f: Rd → L is strongly continuous on
B(a, r)(≡ {x ∈ Rd : |x− a| < r}). Then

∫

B(a,r)

∫

B(a,r)

ψ

(

|| f (x) − f (y)||
P(|x− y|)

)

dx dy≤ B

implies that

|| f (x) − f (y)|| ≤ 8

|x−y|
∫

0

ψ−1
(

4d+2

γ2u2d

)

P(du), x, y ∈ B(a, r)

where

γ = inf
x∈B(a,r)

inf
1<ρ≤2

|B(x, ρ) ∩ B(a, 1)|

ρd
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Proof. Define

I (x) =
∫

B(a,r)

ψ

(

|| f (x) − f (y)||
P(|x− y|)

)

dy.

Given distinct pointsx, y ∈ B(a, r), setρ = |x − y| and choosec ∈

B(
x+ y

2
,
ρ

2
) ∩ B(a, r) so that

I (c) ≤ 2d+1 B

γρd
.

This is possible because
∫

B(a,r)

I (c)dc ≤ B. Setxo = yo = c. Now we

choosexn andyn for n ≥ 1 as follows. Givenxn−1 andyn−1′ definedn−1

anden−1 by

P(dn−1) =
1
2

P(2|xn−1 − x|) andP(en−1) =
1
2

P(2|yn−1 − y|).

Now choosexn ∈ B(x,
1
2

dn−1)∩B(a, r) andyn ∈ B(y,
1
2

en−1)∩B(a, r)8

so that

I (xn) ≤
2d+1B

γdd
n−1

andψ

(

|| f (xn) − f (xn−1)||
P(|xn − xn−1|)

)

≤
2d+1I (xo− 1)

γdd
n−1

I (yn) ≤
2d+1B

γed
n−1

andψ

(

|| f (yn) − f (yn−1)||
P(|yn − yn−1|)

)

≤
2d+1I (yn−1)

γed
n−1

This is possible by the same reasoning as that used to findc.

Note thatP(dn) =
1
2

P(2|xn − x|) ≤
1
2

P(dn−1). Thusdn decreases to

zero. Also, forn ≥ 1:

|| f (xn) − f (xn−1)|| ≤ ψ−1
(

4d+2B

γ2dd
n−1dd

n−2

)

P(|xn − xn−1|)

≤ ψ−1
(

4d+2B

γ2d2d
n−1

)

P(|xn − xn−1|)

whered−1 = ρ. Since 2P(dn−1) = P(2|xn−1 − x|), dn−1 < 2|xn−1 − x|.
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Thus

P(|xn − xn−1|) ≤ P(2|xn − xn−1|) = 2P(dn−1)

= 4(P(dn−1) −
1
2

P(dn−1))

≤ 4(P(dn−1) − P(dn)).

We therefore have:

|| f (xn) − f (xn−1)|| ≤ 4ψ−1
(

4d+2B

γ2d2d
n−1

)

(P(dn−1) − P(dn))

≤ 4

dn−1
∫

dn

ψ−1
(

4d+2B

γ2u2d

)

P(du)

and so 9

|| f (x) − f (c)|| ≤ 4

ρ
∫

0

ψ−1
(

4d+2B

γ2u2d

)

P(du).

The same argument yields

|| f (x) − f (c)|| ≤ 4

ρ
∫

0

ψ−1
(

4d+2B

γ2u2d

)

P(du)

This proves our lemma. �

Lemma 2.6. Let X(x), x ∈ Rd, be a family of Banach space valued
random variables with the properties that for someα > 0 and p≥ d+α

E[||X(x) − X(y)||p] ≤ C|x− y|d+α, x, y ∈ Rd. (2.7)

Then there is a familỹX(x), ∈ Rd such thatX̃(x) = X(x) a.s. for each
x ∈ Rd and x→ X̃(x) is a.s. strongly continuous.

Proof. For eachN ≥ 0, let X(N)(.) denote the multi linear extension of
the restriction ofX(.) to the lattice{k/2N : k ∈ Zd}. Then it is not hard
to check that is aC′(depending onC, p andα) such that

E[||X(N)(x) − X(N)(y)||p] ≤ C′|x− y|d+α (2.8)
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Now letρ = (2d + α/2)p. Then, by (2.8):

SupN E[
∫

B(0,r)

∫

B(0,r)

]

(

||X(N)(x) − X(N)(y)||
|x− y|ρ

)p

dx dy≤ C” r2d

whereC′′ < ∞ depends onC′ andd. By (2.5), this means that forL > 0

SupN P(||X(N)(x) − X(N)(y)|| ≤ KL1/p|x− y|α/2p, x, y ∈ B(0, r))

≥ 1−
C′′r2d

L
,

whereK depends ond, p andα. Notice that10

Supx,y∈B(0,R)
x,y

||X(N)(x) − X(N)(y)||

|x− y|α/2p

is a non-decreasing function ofN. Hence

P

(

SupN Supx,y∈B(0,R)
x,y

||X(N)(x) − X(N)(y)||

|x− y|α/2p
≤ KL1/p

)

≥ 1−
C” r2d

L
.

SinceX(n)
[ k
2n

]

= X
[ k
2n

]

for all N ≥ 0 andk ∈ Z d, x(N)(.) converges

a.s., uniformly onB(0, r) to a continuous functioñX(.) which coincides
with X(x) at x = k/2N ∈ B(0, r). Since

E[||X(x) − X(y)||p] → 0 as|x− y| → 0,

it is clear thatX̃(x) = X(x) a.s. for allx ∈ B(0, r). Finally, sincer was
arbitrary, the proof is complete. �

Exercise 2.9.Let f(x) = xVa. Then f′(x) = χ[a,∞](x) and f′′(x) = δa(x)
(Dirac’s δ−function). Thus by “It̂o’s formula”, if (βt, Ft,P) is a one-
dimensional Brownian motion:

1
2

t
∫

0

δa(β(s))ds= β(t)Va−

t
∫

0

χ[a,∞](β(s))dβ(s)
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That is, we would suspect that

lim
ε↓0

1
4ε

t
∫

0

χ[a−ε,a+ε](β(s))ds= β(t)Va−

t
∫

0

χ[a,∞](β(s))dβ(s).

To check this, define 11

ℓa(t) = β(t)Va−

t
∫

0

X[a,∞](β(s))dβ(s).

By the technique which we have been using, show that there is a
version La(t) of ℓa(t) which is a.s. continuous in(t, x)a[0,∞] ×R. Check
that for fεC∞0 (R)

∫

R

f (a)La(t)ds= F(β(t)) −

t
∫

0

F(β(s))dβ(s)

where F(x) =
∫

(xVa) f (a)da.
From this conclude that

∫

R

f (a)La(t)da=
1
2

t
∫

0

f (β(s))ds

for all such f′s. The identification of La(t) as

lim
ε↓0

1
4ε

∫

X[a−ε,a+ε](β(s))ds

is now easy

Exercise 2.10.Again let (βt, Ft,P) be a 1-dimensional Brownian mo-
tion. Given t> 0 andε > 0, let Nε(t) be the number of times that|β(.)|
goes fromε to 0 during[0, t]. (That is, Nε ≥ n if and only if there exist
0 < u1 < v1 · · · < un < vn ≤ t such that|β(u j )| = ε and |β(v j)| = 0 for
1 ≤ j ≤ n). Show that

Nε(t)→ 2L0(t) a. s.ε ↓ 0.
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The idea is the following: First show that

|β(t)| =

t
∫

0

sgnβ(s)dβ(s) + 2L0(t).

Next defineτ0 = 0 and for n≥ 112

σn = inf {t ≥ τn−1 : |β(t)| = ε}

τn = inf {t ≥ σn : |β(t)| = 0}.

Then

∞
∑

1

(

|β(τnΛt)| − |β(σnΛt)|
)

= −εNε(t) + (|β(t)| − ε)
∞
∑

1

X[σn,τn](t).

At the same time:

∞
∑

1

(

|β(τnΛt)| − |β(σnΛt)|
)

= |β(t)| −
∞
∑

1

σnΛt
∫

τn−1Λt

sgnβ(s)dβ(s) − 2L0(t).

Thus

εNε(t) − 2L0(t) = −|β(t)|
∞
∑

1

X[τn−1,σn](t) −
∞
∑

1

X[σn,τn](t)

+

∞
∑

1

σnΛt
∫

τn−1Λt

sgnβ(s)dβ(s).

From this check that

E[|εNε(t) − 2L0(t)|2] ≤ ctε, 0 < ε ≤ 1;

and therefore that

1

n2
N1/n2(t)→ 2L0(t) a.s as n→ ∞.
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Finally, note that if1/(n+ 1)2 ≤ ε < 1/n2, then

1

(n+ 1)2
N1/n2(t) ≤ εNε(t) ≤ 1/n2N1/(n+1)2(t),

and soεNε(t)→ 2L0(t) a.s. asε ↓ 0.

Lemma 2.11. Let (β(t), Ft,P) be a d−dimensional Brownian motion13

and suppose thatσ(.) and b(.) are as in (2.1). Then there is a choice of
ξ(t, x) solving (2.3) such that

(t, x)→ ξ(t, x)

From now on,ξ(t, x) refers to the map in (2.11). We next want to
discuss the mappingx→ ξ(t, x) for fixed t > o. We will first show that
a.s. the mapsx→ ξ(t, x) are 1-1 and continuous for allt ≥ 0.

Lemma 2.12. Let T > 0 and p R be given. Then there is a Cp(T) < ∞
such that

E[|ξ(t, x) − ξ(t, y)|p] ≥ Cp(T)|x− p|p, t ∈ [0, t] and x, yεRn. (2.13)

Proof. Set f (z) = |z|p for z∈ Rn − {0}. Then

∂ f
∂zi
= p|z|p−2zi

and
∂2 f
∂zi∂zj

= p(p− 2)|z|p−4zizj + δi j p|z|
p−2

Now let x , y be given and for 0<∈< |x− y| let

ζ = inf {t ≥ 0 : |ξ(t, x) − ξ(t, y)| ≤∈}

and define
z∈(t) = ξ(tΛζ, x) − ξ(tΛζ∈, y).

Now by Itô′s formula: 14
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|z∈(t)|
p −

n
∑

i=1

tΛζ∈
∫

0

(bi(ξ(s, x)) − bi(ξ(s, y)))
δ f
δxi

(z∈(s))ds

−
1
2

n
∑

i=1

tΛζ∈
∫

o

(
d

∑

l=1

σi
l(ξ(s, x) − ξ(s, y))σ j

l (ξ(s, x) − ξ(s, y)))

∂2 f
∂xi∂x j

(zε(s))ds

is a martingale. Notice that for 0≤ s≤ ζ∈:

|

n
∑

i=1

(bi (ξ(s, x)) − bi(ξ(s, y)))
∂ f
∂xi

(zε(s))|

≤ |p|L|zε|
p−1

n
∑

i=1

|zε,i(s)| ≤
1/2 L|P||zε(s)|

p.

Also for 0≤ s≤ ζ∈:

n
∑

i, j=1

d
∑

ℓ=1

(σi
ℓ(ξ(s, x)) − σi

ℓ(ξ(s, y)))(σi
ℓ(ξ(s, x))) − σ j

ℓ
(ξ(s, y))

∂2 f
∂xi∂x j

(zε(s))

≤ dL2p(p− 2)|zε(s)|
p−2

n
∑

i, j=1

zε,i(s)zε, j(s) + dL2p|zε(s)|
p

≤ (dnL2p(p− 2)+ dL2p)|zε(s)|
p.

Thus

E[|zε(t)|
p.] ≤ |x− y|p + Ad,n(p)

t
∫

o

E[|zε(t)|
p]ds,

and so
E[|ξ(tΛζ∈, x) − ξ(tΛζ∈, y)|p] ≤ |x− y|peAd,n(p)t

Letting∈↓ 0, we see that

E[|ξ(tΛζε, x) − ξ(tΛζ∈, y)|p] ≤ |x− y|peAd,n(p)t
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whereζ = inf {t > o : ξ(t, x) = ξ(t, y)}. Taking p = −1, we conclude that15

P(ζ < ∞) = 0 and therefore that (2.13) holds. Lemma (2.12) show that
for eachx , y : ξ(t, x) , ξ(t, y), t > 0 a.s. We now have to show that
exceptional set does not depend onx andy. �

Lemma 2.14. Let

η(t, x, y) =
1

|ξ(t, x) − ξ(t, y)|
, t > o and x, y.

Thenη is a.s. a continuous function of(t, x, y) for t > 0 and x, y.

Proof. In view of (2.6) and the fact thatη is a.s. continuous on{(t, x, y) :
ξ(t, x) , ξ(t, y)}, we need only to show that for somep > 2(2n+ 1), one
has

E[|η(t, x, y)−η(t′ , x′, y′)|p] ≤ Cp,T(δ)(|x−x′ |p+|y−y′ |p+|t−t′|p/2) (2.15)

for all T > 0, δ > 0, 0≤ t, t′ ≤ T and|x− x′|Λ|y− y′| ≥ δ.
But

|η(t, x, y) − η(t′, x′, y′)|p

= |
|ξ(t, x) − ξ(t, y)| − |ξ(t′, x′) − ξ(t′, y′)|
|ξ(t, x) − ξ(t, y)| |ξ(t′, x′) − ξ(t′, y′)|

|p

≤ 2p−1|η(t, x, y)|p|η(t′, x′, y′)|p(|ξ(t, x) − ξ(t′, x′)|p)+

+ |ξ(t, y) − ξ(t′, y′)|p).

Thus

E[|η(t, x, y) − η(t′, x′, y′)|p]

≤ 2p−1E[|η(t, x, y)|4p]1/4E[|η(t′, x′, y′)|4p]1/4

× (E[|ξ(t, x, ) − ξ(t′, x′, )|2p]1/2
+ [|ξ(t, y) − ξ(t′, y′)|2p]1/2)

The first factors are easily estimated by (2.7), so along as|x−x′|Λ|y− 16

y′| ≥ δ.
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Moreover, by the argument used to derive (2.4), it is easy to check
that

E[|ξ(s, x) − ξ(t, y)|2p] ≤ Cp(T)(|s− t|p) + |x− y|2p),

0 ≤ s, t ≤ T, x, y ∈ Rn. (2.16)

Thus (2.15) has been proved. �

Exercise 2.17.Prove (2.16) for all1 ≤ p < ∞.
We now want to show that a.s. the map x→ ξ(t, x) is onto for all

t ≥ 0. The idea is that this is certainly true when t= 0 and that the map
ξ(t, .) is homotopically connected toξ(0, .). In order to take advantage
of these facts, we must show that they continue to hold on the one-point
compactification of Rn.

Lemma 2.18. For each T> 0 and p ∈ R there is a Cp(T) < ∞ such
that

E[(1 + |ξ(t, x)|2)p] ≤ Cp(T)(1+ |x|2)p, 0 ≤ t ≤ T.

Proof. Let f (z) = (1+ |z|2)p. Then

∂ f /∂zi = 2p(1+ |z|2)p−1zi
and

∂2 f
∂zi∂zj

= 2p(p− 1)(1+ |z|2)p−2zizj + 2pδi j (1+ |z|
2)p−1.

Hence

E[(1 + |ξ(t, x)|2)p] − (1+ |x|2)p

= E[

t
∫

o

n
∑

i=1

bi(ξ(s, x)
∂ f
∂zi

(ξ(s, x))ds] +
1
2

E[

t
∫

o

n
∑

i, j=1

∑

ℓ

σi
ℓ(ξ(s, x))

σ
j
ℓ
(ξ(s, x)

∂2 f
∂zi∂zj

(ξ(s, x))ds]

≤ C

t
∫

o

E[(1 + |ξ(s, x)|2)p]ds,
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since17

max
1≤i≤n

|bi (z)| < max
1≤i≤n

|bi(0)| + L|z| < 2 max
1≤i≤n

|bi(0)|VL(1+ |z|2)1/2

and similarly

max
1≤i≤n
1≤ℓ≤n

|σi
ℓ(z)| < 2 max

1≤i≤n
1≤ℓ≤n

|σi
ℓ(0)|VL(1+ |z|2)1/2.

Hence the desired result follows by Gronwall’s inequality. �

Lemma 2.19. Let R̄n
= Rn∪ {∞} denote the one-point compactification

of Rn. Define

η(t, x) =















1
1+|ξ(t,x)| , x ∈ Rn

.
0 , x = ∞.

Thenη is a.s. continuous on[0,∞] × R̄n into R1.

Proof. Sinceη is a.s. continuous on [0,∞] ×Rn, if suffices to show that
for eachT > 0 andε > 0 there is a.s. anR > 0 such thatη(t, x) < ε if
|x| ≥ Rand 0≤ t ≤ T. Choosep > 2(2n+ 1). Then

|η(t, y) − η(s, x)|p ≤ |η(t, y)|p|η(s, x)|p|ξ(t, y) − ξ(s, x)|p

and so 18

E[|η(t, y) − η(s, x)p|] ≤ E[|η(t, y)|4p]1/4E[|η(s, x)|4p]1/4E[|ξ(t, y) − ξ(s, x)|2p]1/2

Since (1+ |x|) ≥ (1+ |x|2)1/2 ≥
1
2

(1+ |x|), we see from (2.15) that

E[|η(t, y)|4p]1/4E[|η(s, x)|4p]1/4 ≤ Kp(T)(1+ |x|)−p(1+ |y|)−p

On the other hand, by (2.15),

E[|ξ(t, x) − ξ(s, y)|2p]1/2 ≤ K′p(T)(|t − s|p/2 + |x− y|p)

for 0 ≤ s, t ≤ T. Thus

E[|η(s, x) − η(t, y)p|] ≤ K′′p (T)(
|x− y|

(1+ |x|)(1+ |y|)
)p
+

|t − s|p/2

(1+ |x|)(1+ |y|)p ]
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We now define

η̂(t, x) = η(t, x/|x|2) for x , 0,

and
η̂(t, 0) = 0.

Sinceη is a.s. continuous on [0,∞] × Rn, we will be done once we
show that ˆη admits an a.s. continuous version. Noting that if|y| ≥ |x| >
0:

| x
|x|2
−

y
|y|2
|

(1+ |x|
|x| )(1+

|y|
|y| )
=

1
|y|2
|
y
x |

2x− y|

1
|x||y| (1+ |x|)(1+ |y|)

=

∣

∣

∣

∣

x
y

∣

∣

∣

∣

|

∣

∣

∣

∣

y2

x

∣

∣

∣

∣

x− x| +
∣

∣

∣

∣

x
y

∣

∣

∣

∣

|x− y|

(1+ |x|)(1+ |y|)

=

∣

∣

∣

∣

x
y

∣

∣

∣

∣

2 (

∣

∣

∣

y
x

∣

∣

∣

2
− 1

)

+

∣

∣

∣

∣

x
y

∣

∣

∣

∣

|x− y|

(1+ |x|)(1+ |y|)

=

1
|y| (|y| − |x|)(|y| + |x|) +

∣

∣

∣

∣

x
y

∣

∣

∣

∣
|x− y|

(1+ |x|)(1+ |y|)

≤ 3|x− y|.

19

We see that

E[|η̂(s, x) − η̂(t, y)|p] ≤ K′′p (T).[|x− y|p + |t − s|p/2]

if 0 ≤ s, t ≤ T andx, y , 0. Since by (2.18)
η(u, z) → 0 in Lp for eachu > 0 as|z| → ∞, this inequality con-

tinuous to hold even whenx or y is 0. This, by (2.6), ˆη admits an a.s.
continuous version. This proves the lemma. �

Theorem 2.20. Let σ(.) and b(.) be as in (2.1) and letξ(t, x) be as in
(2.11). Then a.s.ξ(t, .) is a homeomorphism of Rn onto Rn for all t ≥ 0.
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Proof. We have seen that a.s.ξ(t.) determines a one-to-one continuous
map ξ̄(t, .) of R̄n into itself for all t ≥ 0. Moreover, ¯ξ(0, .) is certainly
onto. Thus, by standard homotopy theory, a.s.ξ̄(t, .) is onto all t ≥ 0.
Also, by the invariance domain theorem̄ξ(t, .)−1 must be continuous.

Finally, since a.s.̄ξ(t,∞) = ∞ for all t ≥ 0, we see that a.s.̄ξ(t, .) is
a homomorphism ofRn ontoRn for all t ≥ 0. �

3 Differentiation with respect to x

We now want to differentiateξ̄(t, x) with respect tox. 20

Lemma 3.1. Let γ(t,X), t ≥ 0 and X ∈ RD, be an a.s. continuous
RM−valued process such thatγ(.,X) is F−progressively measurable for
each X∈ RD. Further assume that for T> 0, R > 0 and 2 ≤ p ≤ ∞
there is a Cp(T,R) < ∞ such that

E[Sup0≤t≤T |γ(t,X)|p] < Cp(T,R)(1+ |X|)p, |X| ≤ R,

and

E[Sup0≤t≤T |γ(t,X) − γ(t,Y)|p] ≤ Cp(T,R)|X − Y|p, |X|V|Y| ≤ R.

Let σ̂ : RM × RN → RN ⊗ Rd and b̂ : RM × RN → RN be C∞−
functions satisfying

Sup(λ,η) RM×RN ||
∂σ̂

∂ηi

(

γ, η
)

||H.S.V|
∂b̂
∂η j

(

γ, η
)

| < ∞,

for 1 ≤ j ≤ N, and assume that̂σ(γ, 0) andb̂(γ, 0) and all their deriva-
tion slowly increasing. Finally, let f: RD → RN be a smooth function
with bounded first derivatives. Then for each X∈ RD the equation

η(t,X) = f (X) +

t
∫

o

σ̂(γ(s,X), η(s,X))dβ(s)+

t
∫

o

b̂(γ(s,X), η(s,X))ds, t ≥ 0

has precisely one solutionη(.,X). Moreover, for T, R> 0 and2 ≤ p ≤
∞ there exists C′p(T,R) < ∞ such that

E[Sup0≤t≤T |η(t,X)|p] ≤ C′p(T,R)(1+ |X|)p, |X| ≤ R,
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and

E[Sup0≤t≤T |η(t,X) − η(t − Y)|p] < C′p(T,R)|X − Y|p, |X|V|Y| ≤ R.

21

In particular, η admits a version which is a.s. continuous in(t,X).

Proof. The techniques used to prove this lemma are similar to those
introduced in section 2. The details are left as an exercise. �

Lemma 3.2. Let everything be as in lemma (3.1). Assume, in addition,
that a.s. γ(t, .) ∈ C1(RD) for all t ≥ 0 and that for all T , R> 0 and
2 ≤ p ≤ ∞

max
1≤ℓ≤D

E[Sup0≤t≤T |
∂γ

∂Xℓ
(t,X)|p] ≤ Cp(T,R)(1+ |X|)p, |X| ≤ R,

and

max
1≤ℓ≤D

E[Sup0≤tℓT |
∂γ

∂Xℓ
(t,X) −

∂γ

∂Xℓ
(t,X)|p] ≤ Cp(T,R)|x− y|p, |X|V|Y| ≤ R.

Then a.s. η(t, .) ∈ C1(Rn) for all t ≥ 0 and for T, R> 0 and
2 ≤ p ≤ ∞ there exists C′p(T,R) such that

max
1≤ℓD

E[Sup1≤ℓT |
∂η

∂X ℓ
|p] ≤ C′p(T,R)(1+ |X|)p, |X| ≤ R,

and

max
1≤ℓ≤D

E[Sup0≤tℓT |
∂η

∂Xℓ
(t,X) −

∂η

∂Xℓ
(t,Y)|p] ≤ C′p(T,R)|x− y|p, |X|V|Y| ≤ R.

In particular, for each1 ≤ ℓ ≤ D,
∂η

∂Xℓ
admits an a.s. continuous

version.

Proof. Choose and fix 1≤ ℓ ≤ D and leteℓ denote the unit vector in the
ℓ-th direction. Forh ∈ R\{0}, define

∆hη(t,X) = η(t,X + heℓ) − η(t,X),
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∆hγ(t,X) = γ(t,X + heℓ) − γ(t,X)

and22

∆h f (X) = f (X + heℓ) − f (X).

Then∆hη(.,X) is determined by the equation:

∆h(t,X) = ∆h f (X)

+

t
∫

o

M
∑

i=1

(

1
∫

o

∂σ̂

∂γi
(γ(s,X) + θ∆hγ(s,X), η(s,X)

+ θ∆hη(s,X))dθ)∆hγ
i(s,X)dβ(s)

+

t
∫

o

N
∑

i=1

(

1
∫

o

∂σ̂

∂η j
(γ(s,X) + θ∆hγ(s,X), η(s,X)

+ θ∆θη(s,X))dη)∆hη
j(s,X)dβ(s)

+

t
∫

o

M
∑

i=1

(

1
∫

o

∂b̂
∂γ j

(γ(s,X) + θ∆hγ(s,X), η(s,X)

+ θ∆hη(s,X))dθ)∆hγ
i(s,X)ds

+

t
∫

o

N
∑

j=1

(

t
∫

o

∂b̂
∂η j

(γ(s,X) + θ∆hγ(s,X), η(s,X)

+ θ∆hη(s,X))dη)∆hη
j(s,X)ds

Thus if

γ̃(t,X, h) =











































γ̃(0)(t, x, h)
γ̃(1)(t, x, h)
γ̃(2)(t, x, h)
γ̃(3)(t, x, h)
γ̃(4)(t, x, h)











































=











































γ(t,X)
∆hγ(t,X)
1
h∆hγ(t,X)
η(t,X)
∆hη(t,X)










































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where
1
h
∆hγt,X) ≡

∂γ

∂Xℓ
(t,X) for h = 0, and

σ̃(γ̃, η̃) =
M
∑

i=1

1
∫

o

∂σ

∂γi
(γ̃(0) + θγ̃(1), γ̃(3) + θγ̃(4))dθγ̃

i
(2)

+

N
∑

i=1

1
∫

o

∂σ̂

∂η j
((γ̃(0) + θγ̃(1), γ̃(3) + θγ̃(4))dθη̃

j )

andb̃(γ̃, η̃) is defined analogously, then the process ˜η(t,X, h) determined
by

η̃(t,X, h) =
∆h f

h
(X) +

t
∫

o

σ̃(γ̃(s,X, h), η̃(s,X, h))dβ(s)

+

t
∫

o

b̃(γ̃(s,X, h), η̃(s,X, h))ds,

where∆h f /h(X) ≡ ∂ f
∂Xℓ

(X) if h = 0, has the property that23

η̃(.,X, h) = ∆hη(.,X)/h a.s.

for eachh ∈ R\{0} andX ∈ RD.
Since, by (3.1), ˆη has an a.s. continuous version, we conclude that

∂η/∂Xℓ exists a.s. and has an a.s. continuous version. Also, by (3.1),
∂η/∂Xℓ satisfies the asserted moment inequalities. �

Theorem 3.3. Letσ : Rn→ Rn⊗Rd and b: Rn→ Rn be C∞−functions
such that(∂|α|σ/∂xα) and (∂|α|b/∂xα) are bounded for each|α| ≥ 1. Let
ξ(t, x) be an a.s. continuous version of the solution of the solutionto
(2.3). Then a.s.ξ(t, .) ∈ C∞(Rn) for all t ≥ 0 and (∂|α|ξ/∂xα) is a.s.
continuous in(t, x) for all α. Moreover, for each T, R> 0, m ≥ 0 and
2 ≤ p < ∞, there is a Cp(T,R,m) such that

Sup
|X|≤R

∑

|α|≤m

E[ Sup
0≤t≤T

|
∂|α|ξ

∂xα
(t, x)|p]Cp(T,R,m). (3.4)
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Finally, for givenm≥ 1, letλ(., x) denote
{

|
∂|α|ξ

∂xα
(., x) : |α| ≤ m− 1

}

and letη(., x) denote
{

|
∂|α|ξ

∂xα
(., x) : |α| = m

}

. Thenη(., x) is related

to γ(., x) by a stochastic differential equation of the sort described in
lemma (3.2).

In particular, if 24

J(t, x) = ((
∂ξi

∂x j
(t, x)))1≤i, j≤n (3.5)

thenJ(t, x) is determined by the equation

J(t, x) = I +
d

∑

k=1

t
∫

o

S(k)(ξ(s, x))J(s, x))dβk(s)

+

t
∫

o

B(ξ(s, x))J(s, x)ds, t ≥ 0, (3.6)

where

S(k) = ((
∂σi

k

∂x j
))1≤i, j≤n andB = ((

∂bi

∂x j
))1≤i, j≤n.

Proof. The facts that a.s.ξ(t, .) ∈ C∞(Rn) for all t ≥ 0 and that (∂|α|ξ)/
(∂xα) is a.s. continuous for allα is derived by induction on|α|, using
(3.2) at each stage. The induction procedure entails showing at each
stage that derivatives of orderm are related to those of order≤ m− 1
by an equation of the sort described in lemma (2.3), and and sothe
described equation are a consequence of (3.2). �

Lemma 3.7. Suppose thatΛ(.),Sk(.)(1 < k < d), and B(.) are
F− progressively measurable RN × RN−valued functions such that

max
1<k<d

||Sk(.)||H.S.V||B(.)||

is uniformly bounded and A(.) is an a.s. continuous solution to

A(t) = A0 +

d
∑

k=1

t
∫

o

Sk(u)A(u)dβk(u) +

t
∫

o

B(u)A(u)du, t ≥ 0,
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where Ao ∈ RN × RN is invertible. Then a.s. A(t) is invertible for all25

t ≥ 0 and A−1(.) satisfies

A−1(t) = A−1
0 −

d
∑

k=1

t
∫

o

A−1(u)Sk(u)dβk(u)

+

t
∫

o

(
d

∑

k=1

A−1(u)S2
k(u) − A−1(u)B(u))du t ≥ 0.

Proof. The theorem is proved by definingM(.) by the equation which
A−1(.) is supposed to satisfy and then using It ˆo’s formula to check that

d(M(t)) A(t)) = d(A(t) M(t)) = 0.

�

Exercise 3.8. In order to see how one can guess the equation satisfied
by A−1(.), suppose that A−1(.) exists and denote it by M(.). Assume that

dM(t) =
d

∑

k=1

M(t)S̃k(t)dβ
k(t) + M(.)B̃(.)dt

and use Itô’s formula to find out what̃Sk(.) andB̃(.) must be.

Theorem 3.9. Let everything be as in theorem (3.3). Then a.s. J(t, x) is
invertible for all (t, x) ∈ [0,∞] × Rn and J−1(., x) determined by

J−1(t, x) = I −
d

∑

k=1

t
∫

o

J−1(s, x)Sk(ξ(s, x))dβk(s) (3.10)

+

t
∫

o

(
d

∑

k=1

J−1(s, x)S2
k(ξ(s, x)) − J−1(s, x)B(ξ(s, x)))ds.

In particular, a.s.ξ(t, .) is a C∞−diffeomorphism of Rn onto Rn.26
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4 An application to Partial Differential Equations

Let ξ(t, x) be as in section (2). Then it is well-known (c f . Chapter 4
of [S&V]) that ξ(t, x) is strong Markov in the sense that ifτ is a finite
F.-stopping time andf ∈ B(Rn) (the bounded measurable functions on
Rn) then for allx ∈ Rn:

E[ f (ξ(τ + t, x))|Fτ] = uf (t, ξ(τ, x)) a.s., t ≥ 0 (4.1)

where
uf (t, x) = E[ f (ξ(t, x))], (t, x) ∈ [0,∞] × Rn. (4.2)

Lemma 4.3. Given x ∈ Rn and R> 0 there exist A1(x,R) < ∞ and
0 < A2(x,R) < ∞ depending only on n,Supy∈B(x,R) ‖ σ(y) ‖H.S. and
Supy∈B(x,R) |b(y)| such that

P(τr ≤ h) ≤ A1(x,R) exp(−A2(x,R)r2/h)

for 0 ≤ r ≤ R and h> 0, where

τr = inf {t ≥ 0 : |ξ(t, x) − x| ≥ r}.

Proof. Givenθ ∈ Rn, define

Xθ(t) = exp[< θ, ξ(t, x) − x−

t
∫

o

b(ξ(s, x)ds>

−
1
2

t
∫

o

< θ, σσ∗(ξ(s, x)θ > ds]

Then byItô’s formula, (Xθ(tΛτR), Ft, p) is a martingale for allR> 0.
set

bR = Supy∈B(x,R) |b(y)|, aR Supy∈B(x,R) ‖ σσ
∗(y) ‖H.S

and definehR = bR/2. Forθ ∈ Sn−1 (the unit sphere inRn−1,) λ > 0, 27

0 < r ≤ Rand 0< h ≤ hR:

P(Sup0≤t≤h < θ, ξ(t, x) − x >≥ r) < P(Sup0≤t≤h < θ, ξ(tΛτR, x)
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− x−

tΛτR
∫

o

b(ξ(s, x))ds) ≥
r
2

)

< P(Sup0≤t≤h Xλθ(tΛτR) ≥ exp(
λr
2
−
λ2h
2

aR))

≤ exp(
λr
2
+
λ2h
2

aR)

Takingλ = r/(2haR), we obtain

P(Sup0≤t≤h < θ, ξ(t, x) − x >≥ r) ≤ exp(−r2/(8haR))

and so by choosingθ successively to point alongn coordinate axes:

P(Sup0≤t≤h max
1≤i≤n

|ξi(t, x) − xi | ≥ r) ≤ 2nexp(−r2/8haR)

Clearly the required estimate follows from this. �

Lemma 4.4. Letσ(.) and b(.) be as in theorem (3.3) and defineξ(t, x)
accordingly. Given f∈ C∞

↑
(Rn) (the C∞-functions f such that the Dα f

are slowly increasing for allα), define uf (t, x) by (4.1). Then uf ∈
C∞([0,∞)×Rn) and for each T, R> 0 and m≥ 0 there is a C(T,R,m) <
∞ such that

max
2ℓ+|α≤|m

Sup0≤t≤T
|α|≤R

|
∂ℓ

∂tα
∂|α|uf

∂xα
(t, x)| ≤ C(T,R,m) max

|α|≤m
‖
∂|α| f
∂xα

‖u (4.5)

Finally, uf is the unique u∈ C↑([0,∞)×Rn)∩C1,2((0,∞)×Rn) such
that

∂u
∂t
= Lu, t ≥ 0 (4.6)

lim
t↓0

u(t., ) = f (.)

where28

L =
1
2

n
∑

i, j=1

(σσ∗)i j (x)
2

∂xi∂x j
+

n
∑

i=1

bi(x)
∂

∂xi
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Proof. DifferentiatingE[ f (ξ(t, x))] with respect tox, one sees by induc-
tion that

∂|α|uf

∂xα
(t, x) =

∑

β≤α

E

[

∂|β| f

∂xβ
(ξ(t, x)))Pα,β(≡(|α|) (t, x))

]

, (4.7)

in
{

∂|β|ξ

∂xβ
(t, x) : |β| ≤ |α|

}

. Using Itô′s formula and the fact that
{

∂|β|ξ

∂xβ
(., x) : |β| ≤ |α|

}

satisfies a stochastic differential equation with

coefficients inC∞
↑

, one sees that

∂ℓ

∂tℓ
∂|α|uf

∂xα
(t, x) =

∑

|β|≤|α|+2

E

[

∂|β| f

∂xβ
(t, x)Φ(σ,β,ℓ)(≡(|α|) (t, x))

]

, (4.8)

where theφα,β,ℓεC∞
↑

(RD|α|). From (4.8) and moment estimates in (3.3),
it is clear thatuf ∈ C∞([0,∞) × Rn) and that (4.5) holds. �

We next show thatuf satisfies (4.6). Clearly

lim
t↓0

uf (t., ) = f (.).

Moreover, by (4.1)

uf (t + h, x) = E[ f (ξ(h+ t, x))] = E[uf (t, ξ(h, x))].

Let τ = inf {s≥ 0 : |ξ(s, x) − x| ≥ 1|}. Then

E[uf (t, ξ(h, x))] = E[uf (t, ξ(hΛτ, x))]

+ E[uf (t, ξ(h, x)), τ ≤ h].

29

Sinceuf (t, .) is slowly increasing, it follows from (4.3) that

1/hE[uf (t, ξ(h, x)), τ ≤ h] → 0 ash ↓ 0.

On the other hand, by Itˆo′s formula

1
h

E[uf (t, ξ(hΛτ, x))] − u(t, x)
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=
1
h

E[

hΛτ
∫

0

Luf (t, ξ(s, x))ds]

→ Luf (t, x) ash ↓ 0

sinceP(τ > 0) = 1. Thus we have proved that

∂uf

∂t
= Luf , t ≥ 0.

Finally, we must show that ifu ∈ C↑([0,∞)×Rn)∩C1,2((0,∞)×Rn

satisfies (4.6). Thenu = uf . To this end, let

τR = inf {t ≥ 0 : |ξ(t, x) − x| ≥ R}.

Then byItô′s formula for fixedT > 0 we know that

(u(T − tΛτR, ξ(tΛτR, x)), Ft,P)

is a martingale, 0≤ t ≤ T. In particular,

u(T, x) = E[u(T − TΛτR, ξ(TΛτR, x)].

sinceτR ↑ ∞ asR ↓ ∞ andu is slowly increasing,

E[u(T − TΛτR, ξ(TΛτR, x)] → E[ f (t, (x(T))] asR ↑ ∞.

Exercise 4.9.Under the condition of theorem (3.3), show that for each30

m ≥ 0 and 2 ≤ p < ∞ there exist Am,p, Bm,p < ∞ and λm,p > 0
(depending on m, p, n and the bounds onσ and b and their derivatives)
such that

E

∣

∣

∣

∣

∣

∣

∣

∣

Sup0≤t≤m

[

∑

|α|≤m

|
∂|α|ξ

∂xα
(t, x)|2

]p/2
∣

∣

∣

∣

∣

∣

∣

∣

≤ Am,pe
Bm,pT(1+ |x|)λm,p. (4.10)

Calculate from this that iff ∈ C∞
↑

(Rn), thenuf ∈ C∞
↑

([o,T] × Rn)
for all T > o. Check also that for a givenm ≥ 1 and 2≤ p < ∞, λm,p

does not depend onσ(.) andb(.) while Am,p andBm,p depend only on
the bounds on

∂|α|σ

∂xα
(.) and

∂|α|b
∂xα

(.) for |α| ≤ m.



Chapter 2

The Trajectories of Solutions
to Stochastic Differential
Equations

1 The Martingale Problem
31

In Chapter 1 we have discussed diffusion’s from Itô′s point of view,
that is as solutions to stochastic differential equations. For the purpose
of certain applications it is useful to adopt a slightly different point of
view.

Let Ω = C([0,∞),Rn] and think ofΩ as a Polish space with the
metric of uniform convergence on compact sets. Denote byM the Borel
field overΩ. Given t > o andω ∈ Ω, let x(t, ω) be the position inRn

of ω at time t and setMt = σ(x(s) : 0 ≤ s ≤ t). If L is a differential
operator of the from

L =
1
2

n
∑

i, j=1

ai j (x)
∂2

∂xi∂x j
+

n
∑

i=1

bi(x)
∂

∂xi
, (1.1)

wherea(.) andb(.) are continuous functions with values inSn (the set of
symmetric, non-negative definite realn×n matrices) andRn respectively
and if x ∈ Rn, we say thatP solves the martingaleproblem forL starting

29



30 2. The Trajectories of Solutions to Stochastic....

from x (NotationP ∼ L at x) if P is a probability measure on (Ω,M),
P(x(o) = x) = 1 and for all f ∈ C∞0 (Rn) : (Xf (t),Mt,P) is a martingale,
where

Xf (t) ≡ f (x(t)) −

t
∫

0

L f (x(s))ds.

If for each x ∈ Rn there is precisely one suchP, we say that the
martingale problem for L is well-posed.

Theorem 1.2. Let σ(.) and b(.) be as in (I, 3.3) and let L be gives as32

(1.1) with a(.) = σσ∗(.). Then the martingale problem for L is well-
posed. In fact, for each x∈ Rn , the unique Px ∼ L at x coincides with
the distribution ofξ(., x) is the solution to (I, 2.3).

Proof. The first step is the simple remark that, by Itˆo′s formula, if ξ(., x)
is given by (I, 2.3), thenP ∼ L at x, whereP denotes the distribution
of ξ(., x). Thus for eachx ∈ Rn the martingale problem forL admits a
solution. �

The next step is to show that ifP ∼ L at x and if f ∈ C∞([o,T)×Rn)
for someT > o, then

( f (tΛT, x(t)) −

tΛT
∫

o

(∂/∂s+ L) f (s, x(s))ds, µt,P)

is a martingale. The proof of this fact runs as follows: Giveno ≤ s <
t ≤ T andN ≥ 1, letuk = s+ k/N(t − s). Then forA ∈ µs,

Ep[ f (t,x(t)) − f (s, x(s)),A]

=

n−1
∑

k=0

EP[ f (uk+1, x(uk+1)) − f (uk, x(uk)),A]

= Ep[1/n
n−1
∑

k=0

∂ f
∂u

(uk, x(uk+1)) +
n−1
∑

k=0

uk+1
∫

uk

L f (uk, x(v))dv,A] + 0

(

1
N

)

→ Ep[

t
∫

s

(∂/∂u+ L) f (u, x(u))du,A] asn→ ∞.
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Having proved the preceding, the identification ofP ∼ L at x is quite33

easy. Namely, letf ∈ C∞0 (Rn) and defineuf (t, x) = E[ f (ξ(t, x))] as in (I,
4.1). Thenuf ∈ Cb([0,∞) × Rn) ∩ C∞([0,∞) × Rn) anduf satisfies (I,
4.6). GivenR > o, chooseηR ∈ C∞0 (B(0, 2R)) so that 0≤ ηR ≤ 1 and

ηR ≡ 1 onB(o,R). Then the function

FR(t, y) = ηR(y)uf (T − t, y) ∈ C∞0 ([0,T] × Rn)

for anyT > 0. Hence

(FR(tΛT, x(tΛT)) −

t
∫

o

(∂/∂s+ L)FR(s, x(s))ds, µt,P)

is a martingale. Thus by Doob’s stopping time theorem,

(uf (T − tΛτRΛT, x(tΛτRΛT)), µt,P)

is a martingale, where

τR
= inf {t ≥ o : |x(t) − x(o)| ≥ R}.

SinceτR ↑ ∞ asR ↑ ∞ anduf is bounded, it follows that

(uf (T − tΛT, x(tΛT)), µt,P)

is a martingale. In particular, if 0≤ s≤ T then

Ep[ f (x(T))|µs] = Ep[uf (o, x(T))|µs]

= uf (T − s, x(s)) (a.s.,P).

working by induction onN, it follows easily that if 0≤ t1 < · · · tN and 34

f1, . . . , fN ∈ C(Rn), then

Ep[ f1(x(t1)) . . . fN(x(tN))] = E[ f1(ξ(t1, x)) . . . fN(ξ(tN, x))]

Clearly this identifiesP as the distribution ofξ(., x).
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Exercise 1.3.Using exercise (I, 4.9), show that theorem (1.2) continues
to hold if σ(.), b(.) ∈ C3(Rn) and (∂|α|σ/∂xα)(.) and (∂|α|b/∂xα)(.) are
bounded for1 ≤ |α| ≤ 3. The point is that under these conditions, one
can show that the uf defined by (I, 4.1) is in C1,2([0,∞] × Rn) and still
satisfies (I, 4.5). Actually, theorem (1.2) is true even ifσ(.) and b(.)
just satisfy (I, 2.1); however, the proof in this case is quite different (cf.
chapter 5 and 6 of [S& V]).

Exercise 1.4.Let{σm(.)}∞m=1 and{bm(.)}∞m=1 be sequences of co-efficients
satisfying the hypotheses of theorem (I, 3.3). Assume thatσm(.) → σ(.)
and that bm(.) → b(.) uniformly on compact sets whereσ(.) and b(.)
again satisfy the hypotheses of (I, 3.3). For m≥ 1 and x ∈ Rn let
Pm

x ∼ Lm at x, where Lm is defined forσm(.) and bm(.); and for x ∈ Rn

let Px ∼ L at x where L is defined forσ(.) and b(.). Show that if xm→ x,
then Pm

xm
⇒ px onΩ, where “⇒” means convergence in the sense of

weak convergence of measures. The idea is the following.
In the first place one can easily check that35

Supm≥1 EPm
xm[|x(t) − x(s)|4] ≤ C(T)|t − s|2, 0 ≤ s≤ t ≤ T

for each T> o.
Combining this with the fact that{xm}

∞
1 is relatively compact, one

can use (I, 2.7) to see that for eachε > 0 there is a compact Kε ⊆ Ω
such that Pmx−m(K) ≥ 1 − ε for all m ≥ 1. By Prohorov’s theorem (cf.
Chapter 1 of [S& V]) this means that{Pm

xm
}∞m=1 is relatively compact

in the weak topology. Finally, one can easily check that if{Pm′
x′m
} is any

weakly convergent subsequence of{Pm
xm
} and Pm′

x′m
⇒ P, then P∼ L at x;

and so Pmxm
⇒ Px.

2 Approximating Diffusions by Random Evolutions

We start with an example:
Let τ1, τ2, . . . , τn . . . be independent unit exponential random vari-

ables on some probability space (i.e.P(τ1 > s1, . . . , τn > sn) = exp

(−
n
∑

j=1
sj) for all (s1, . . . , sn) [0,∞)n). DefineTo ≡ o, andTn =

n
∑

j=1
τ j ,
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n ≥ 1; and considerN(t) = max{n ≥ 0 : Tn ≤ t}. SinceP((∃n > 1) :
τn = o) = o, it is clear that a.s. the patht → N(t) is right continuous,
non-decreasing, piecewise constant and jumps by 1 when it jumps.

Lemma 2.1. For 0 ≤ s< t and m≥ 0:

P(N(t) − N(s) = m|σ(N(u), u ≤ s)) =
(t − s)m

m!
e−(t−s)a.s. (2.2)

That is, N(t) − N(s) is independent ofσ(N(u) : 0 ≤ u ≤ s) and is a
Poisson random variable with intensity(t − s).

Proof. Note that ift ≥ 0 andh > 0, 36

P(N(t + h) − N(t) ≥ 1/σ(N(u) : u ≤ t))

= P(N(t + h) − N(t) ≥ 1/σ(T1, . . . ,TN(t),N(t)))

= P(τN(t)+1 ≤ t + h− TN(t)/σ(T1, . . . ,TN(t),N(t)))

= P(τN(t)+1 ≤ t + h− TN(t)/τN(t)+1 > t − TN(t))

= 1− P(τN(t)+1 > t + h− TN(t)/τN(t)+1 > t − TN(t))

= 1− e−h

= h+ φ(h)

Similarly

P(N(t + h) − N(t) ≥ 2/σ(N(u) : u ≤ t))

= P(τN(t)+1 + τN(t)+2 ≤ t + h− TN(t)/τN+1 > t − TN(t))

=

h
∫

0

e−u(1− e−(h−u))du= Ψ(h).

Because of the structure of the pathsN(.), if o ≤ s < t andun,k ≡

s+
k
n

(t− s)(n ≥ 1 and 0≤ k ≤ n), then we now see thatP(N(t)−N(s) =

m|σ(N(u) : u ≤ s))

= lim
n→∞

∑

A⊂{1,...,n}
|A|=m

P(N(un,k) − N(un,k−1) = XA(k), 1 ≤ k ≤ n|σ(N(u) : u ≤ s))
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= lim
n→∞

(n
m)(hn + φ(hn) −Ψ(hn))m(1− hn − φ(hn))

n−m

=
(t − s)m

m!
e−(t−s)

where we have usedhn ≡
t − s

n
Next defineθ(t) = (−1)N(t), t ≥ 0. Clearlyθ(.) is right continuous,37

piece -wise constant andθ(t) , θ(t−) impliesθ(t) = −θ(t−). �

Lemma 2.3. If f : R1 × {−1, 1} → R1 is a function such that f(., θ) ∈
C1

b(R′), θ{−1, 1}, then

( f (

t
∫

0

θ(u)du, θ(t)) −

t
∫

0

[θ(s) f ′(

t
∫

0

θ(u)du, θ(s))

+ K f (

s
∫

0

θ(u)du, θ(s))]ds, Ft , p)

is a martingale, where Ft = σ(θ(u) : 0 ≤ u ≤ t), f ′(x, θ) =
d
dx

f (x, θ)

and K f(x, θ) = f (x,−θ) − f (x, θ).

Proof. If we can prove the result whenf does not depend onx, then the
general case follows immediately by the argument given in the second
step of the proof of theorem (II, 4.2). But from (2.2) it is easy to see that

d
dt

E[ f (θ(t))|Fs = E[K f (θ(t))|Fs, 0 ≤ s≤ t,

and so the result holds forf not depending onx.
Consider the process

xε(t) = ε

t
∫

0

θ(s)ds, (2.4)

whereε > 0, and define

Xε(t) = xε(t) +
ε

2
θ(t). (2.5)

�
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Lemma 2.6. If φ ∈ C∞0 (R1), then there is an F.−progressively measur-
able process Lφ,ε(.) such that|Lφ,ε(.)| < C||φ||C3

b
(R1) and

(φ(x∈(t)) −
∈2

2

t
∫

0

φ′′(x∈(s))ds− ∈3

t
∫

0

Lφ,∈(s)ds, Ft,P

is a martingale. 38

Proof. By (2.3) with f (x, θ) = φ(εx+
ε

2
θ):

(φ(Xε(t)) − ε

t
∫

0

θ(s)φ′(Xε(s))ds

−

t
∫

0

(φ′(Xε(s)) − εθ(s))(Xε(s)))ds, Ft ,P)

is a martingale. By Taylor’s theorem

φ(Xε(s) − εθ(s)) − φ(Xε(s))

= εθ(s)φ′(Xε(s)) +
ε2

2
φ′′(Xε(s)) −

ε2

6
φ′′(Xε(s) − δ(s)θ(s)

where 0< δ(s) < ε. Thus we can take

Lφ,ε = −
1
6

′′

(Xε(s) − δ(s)θ(s)).

We now see that forφ ∈ C0(R1):

(φ(Xε(
t

ε2
)) −

1
2

t
∫

0

φ′′(Xε(
2
ε2

))ds− ε

t
∫

0

Lφ,ε(
s

ε2
)ds, Ft/ε2 ,P)

is a martingale. Thus if we letpε be the distribution onΩ(n = 1) of
Xε(./ε2), then, since|Xε(./ε2) − Xε(./ε2)| ≤ ε/2, it is reasonable to
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suppose thatPε ⇒ ω asε ↓ 0, whereω ∼
1
2

d2

dx2
at 0 (i.e. ω is 1-

dimensional Wiener measure), in the weak topology. If we know that
{Pε : ε > 0} were compact, then this convergence would follow imme-
diately from the observation that ifεn ↓ 0 andPεn ⇒ P, then

(φ(x(t)) −
1
2

t
∫

0

φ′′(x(s))ds, µt ,P)

is a martingale for allφ ∈ C∞0 (R1).
In order to handle the compactness question, we state the following39

theorem. �

Theorem 2.7. Let {Pε : ε > 0} be a family of probability measures
on (Ω, µ) and let A(φ), φεC∞0 (Rn), be a non-negative number such that
A(φ) < C||φ||Ck(Rn) for some C< ∞ and k≥ 0. Assume that for eachε >
0 there is a M.-progressively measurable function Xε : [0,∞)×Ω → Rn

such that

(i) lim
R↑∞

Supε>0 Pε(|Xε(0)| ≥ R) = 0

(ii) Xε(.) is right continuous and has left limits (Pε− a.s.),

(iii) lim
ε

Pε(Sup0≤t≤T |x(t) − Xε(t)| ≥ δ) = 0 for each T> 0 andδ > 0,

(iv) (φ(Xε(t)) + A(φ)t, µt,Pε) is a submartingale for eachε > 0.

If {εn}
∞
1 is any sequence of positive numbers tending to zero, then

{Pεn : n ≥ 1} has a weakly convergent sub-sequence.

Comment on the proof: We will not give the proof here because it
is somewhat involved. However, in the case whenXε(.) = x(.) for all
ε > 0, the proof is given in Chapter 1 of [S&V] (cf. Theorem 1.4.6) and
the proof of the general case can be easily accomplished by modifying
the lemma 1.4.1 given there. The modification is the following.
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Lemma. Let t1 and t2 be any pair of points in [0, T]. such that|t2− t1| <
δω(ρ). Then

|X(t2, ω) − X(t1, ω)| ≤ ρ + Sup0≤t≤T |Xε(t, ω) − xε(t, ω)|

and so 40

Sup{|X(t2, ω) − X(t1, ω)| : 0 ≤ t1 ≤ t2 ≤ T and |t2 − t1| < δ(ρ)}

< ρ + 2 Sup0≤t≤T |Xε(t, ω) − xε(t, ω)|

The notation is the same as that in lemma 1.1.4.1 of [S&V]. We
now see that the measuresPε discussed in the paragraph preceding (2.7)
converge weakly, asε ↓ 0, to ω. Notice that this convergence result
provides some insight into the structure of Brownian paths.Indeed, the
paths ofxε(./ε2) are rather simple; they all have speed 1/ε and the times
at which they change directions are distributed like sums ofindependent
exponential random variables having meanε2. In the limit, this constant
speed property is reflected by the a.s. constancy of the square variation
of Brownian paths over a given time interval.

We now want to generalize the preceding in order to get analogous
approximations of more general diffusions. To this end, letG = S O(d)
and letλ denote normalized Haar measure onG. By expanding the orig-
inal probability space on which theτ j ’s were defined, we may assume
that there existG−valued random variablesg1, g2, . . . , gn . . . which are
independent ofτ j ’s and independent of one another, and each have dis-
tribution λ. Let θ0 ∈ Sd−1 be fixed and defineθ(t) = gN(t)gN(t)−1 · · · g1θ0

(≡ θ0 if N(t) = 0). SetFt = σ(θ(u) : 0 ≤ u ≤ t). By the same argument
as that used to prove (2.3), one can prove that if

A(t) =

t
∫

0

γ(s) ds

whereγ(.) is a bounded, right continuous ,RN− valued,F− progres- 41

sively measurable function and iff ∈ C1,0
b (RN × Sd−1), then

( f (A(t), θ(t)) −

t
∫

0

[< γ(s), gradx f (Λ(s), θ(s)) >
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+ K f (A(s), θ(s))]ds, FtP) (2.8)

is a martingale; where

K f (x, θ) =
∫

Sd−1

( f (x, η) − f (x, θ))dη

anddη denotes normalized uniform measure onSd−1

Lemma 2.9. For eachε > 0, let γε(.) be a right continuous RN-valued,
F.-progressively measurable function such that

|γ(.)| ≤ ρ(ε)

whereρ(ε) ↓ 0 asε ↓ 0. Set

Aε(t) =

t
∫

0

γε(s)ds.

Then for any h∈ C1,0(RN × Sd−1),T > 0 andδ > 0:

lim
ε↓0

P(
∫

Sup0≤t≤T |ε

t/ε
∫

0

(h(Aε(s), θ(s)) − h̄(Aε(s)))ds≥ δ|) = 0

whereh̄(x) ≡
∫

Sd−1

h(x, η)dη.

Proof. Clearly we may assume thath(0, θ0) = 0. Set

∆ε(t) = ε

t
∫

0

(h(Aε(s), θ(s)) − h̄(Aε(s)))ds

and ∆̃ε(t) = ∆ε(t) + εh(Aε(t), θ(t)).

Clearly it suffices to prove that42

Sup0≤t≤T |∆̃ε(t/ε)| → 0 in probability, asε ↓ 0.
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Thus it is enough to check that ifφ ∈ C2
b(R1) andφ(0) = 0, then

E[Sup0≤t≤T φ(∆̃ε(t/ε)] → 0 asε ↓ 0.

To this end, note that by (2.8)

Mε,φ(t) ≡ φ(∆̃ε(t)) − ε

t
∫

0

(h− h̄)(Aε(s), θ(s))φ
′(∆̃ε(s))ds

− ε

t
∫

0

< γε(s), gradxh(Aε(s), θ(s)) > φ
′(∆̃ε(s))ds

−

t
∫

0

(
∫

Sd−1

[φ(∆ε(s) + h(Aε(s), η)) − φ(∆ε(s) + εh(Aε(s), θ(s))]dη)ds

is anF.- martingale with respect toP.
By Taylor’s theorem

∫

Sd−1

[φ(x+ εh(Aε(s), η)) − φ(x+ εh(Aε(s), θ(s)))]dη

= εφ′(x)
∫

Sd−1

[h(Aε(s), η) − h(Aε(s), θ(s))]dη

+ ε2/2
∫

Sd−1

Rε(x, h(Aε(s), η), h(Aε(s), θ(s))dη

where|Rε(.)| < C||φ||C2
b(R1). Thus

Sup0≤t≤T |φ(∆̃ε(t/ε)) − Mε,φ(t/ε)| ≤ C(φ)(ε + δ(ε))T

and so we need only to show thatE[Sup0≤t≤T M2
ε,φ(t/ε)] → 0 asε ↓ 0.

But E[Sup0≤t≤T M2
ε,φ(t/ε)] ≤ 4E[M2

ε,φ(T/ε)], and

M2
ε,φ(T/ε) ≤ 2φ2(∆̃ε(T/ε)) + 2(C(φ))2(ε + δ(ε))2T2.
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43

Thus it suffices to show thatE[φ2(∆̃ε(T/ε))] → 0 asε ↓ 0. Finally,

|φ2(∆̃ε(T/ε)) − M2
ε,φ2(T/ε)| ≤ C(φ2)(ε + δ(ε))T,

and so
E[φ2(∆̃ε(T/ε)) ≤ C(φ2)(ε + δ(ε))T,

since
E[Mε,φ2(T/ε)] = E[Mε,φ2(0)] = 0.

�

Theorem 2.10.Let F : Rn × Sd−1→ Rn be a smooth bounded function
having bounded derivatives and satisfying

∫

Sd−1

F(x, η)dη = 0 for all x ∈ Rn.

Let b : Rn → Rn be a smooth bounded function having bounded
derivatives. Define

ai j (x) =
∫

Sd−1

∫

Sd−1

(F i(x, η) − F i(x, ξ))(F j(x, η) − F j(x, ξ))dξdη

and

ci(x) =
∫

Sd−1

n
∑

j=1

F j(x, η)
∂F i

∂x j
(x, η)dη;

and define xε(., x) by

xε(t, x) = x+ ε

t
∫

0

F(xε(s, x), θ(s))ds+ ε2

t
∫

0

b(xε(s, x), θ(s))ds, t ≥ 0,

for ε > 0 and x∈ Rn.
Let P(ε)

x on (Ω, µ) be the distribution of xε(./ε2) and set44
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L =
1
2

n
∑

i, j=1

ai j (x)
∂2

∂xi∂x j
+

n
∑

i=1

(bi
+ ci)(x)

∂

∂xi

Then{P(ε)
x : 0 < ε ≤ 1} is relatively compact in the weak topology

and if P(εn)
x ⇒ P whereεn ↓ 0 then P∼ L at x.

Proof. Without loss of generality, we will assume thatx = 0 and for
convenience we will usexε(.) in place ofxε(., 0).

Define
Xε(t) = xε(t) + εF(xε(t), θ(t)).

Givenφ ∈ C∞0 (Rn), set

φ̃(x, θ) = φ(x+ εF(x, θ)).

Then by (2.8):

φ(xε(t)) −

t
∫

0

< εF(xε(s), θ(s)) + ε
2b(xε(s)), gradxφ̃(xε(s), θ(s)) > ds

−

t
∫

0

(
∫

Sd−1

[φ̃(xε(s), η) − φ̃ε(xε(s), θ(s))]dη)ds

is anF martingale with respect toP. Note that

∂φ̃

∂xi
(x, θ) =

∂φ

∂xi
(x+ εF(x, θ)) + ε

n
∑

j=1

∂φ

∂xi
(x+ εF(x, θ))

∂F j

∂xi
(x, θ).

Next, observe that by Taylor’s theorem
∫

Sd−1

[φ̃ε(x, η) − φ̃ε(x, θ)]dη

= ε

∫

Sd−1

< F(x, η) − F(x, θ), gradxφ(x+ εF(x, θ)) > dη

+
ε2

2

n
∑

i, j=1

∫

Sd−1

(F i(x, η) − F i(x, θ))(F j(x, η) − F j(x, θ))dη
∂2φ

∂xi∂x j
(x+ εF(x, θ))
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+ ε3Rε,φ(x, θ)

where 45

|Rε,φ(x, θ)| ≤ C||φ||C3
b(Rn)

Thus if

ai j (x, θ) =
∫

Sd−1

(F i (x, η)F i(x, θ))(F j (x, η) − F j(x, θ))dη

and

βi(x, θ) = bi(x) +
n

∑

j=1

(F j ∂F i

∂x j
)(x, θ),

then, since
∫

F(x, η)dη = 0,

φ(Xε(t)) − ε
2

t
∫

0

< β(xε(s), θ(s)), gradxφ(Xε(s)) > ds

−
ε2

2

t
∫

0

n
∑

i, j=1

ai j (xε(s), θ(s))
∂2φ

∂xi∂x j
(Xε(s))ds

− ε3

t
∫

0

Lε,φ(xε(s), θ(s))ds

is anF.- martingale with respect toP, where46

|Lε,φ(x, θ)| ≤ C′||φ||C3
b(Rn)

By (2.7) this proves that{Pε : ε > 0} is relatively compact. Also, it
shows that there is añLε,φ(x, θ) satisfying

|L̃ε,φ(x, θ)| ≤ C′′||φ||C3
b(Rn)
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such that

φ(xε(t)) − ε
2

t
∫

0

< β(xε(s), θ(s)), gradxφ(Xε(s)) > ds

−
ε2

2

t
∫

0

n
∑

i, j=1

ai j (xε(s), θ(s))
∂2φ

∂xi∂x j
(xε(s))ds

− ε3

t
∫

0

L̃ε,φ(xε(s), θ(s))ds+ (φ(Xε(t)) − φ(xε(t)))

is anF-martingale with respect toP. Since

|φ(Xε(t)) − φ(xε(t))| ≤ C′′ε

and, by (2.8), we know that

Sup0≤t≤T |ε
2

t/ε2
∫

0

[Lφ(xε(s))− < β(xε(s)), θ(s)), gradxφ(xε(s)) >

−
1
2

n
∑

i, j=1

ai j (xε(s), φ(s))
∂2φ

∂xi∂x j
(xε(s))]ds|

→ 0 in probability, it is now clear thatεn ↓ 0 andPεn ⇒ P, thenP ∼ L
at 0. �

Corollary 2.11. Letσ : Rn → Rn ⊗ Rd and b : RN → Rn be bounded
smooth functions having bounded derivatives of all orders and define

L =
1
2

d
∑

k=1

(
n

∑

i=1

σi
k(x)

∂

∂xi
)2
+

n
∑

i=1

bi(x)
∂

∂xi
. (2.12)

For ε > 0 and x∈ Rn, let xε(., x) be the process determined by

xε(t, x) = x+

(

d
2

)1/2

ε

t
∫

0

σ(xε(s, x))θ(s)ds+ ε2

t
∫

0

b(xε(s, x))ds, t ≥ 0,

(2.13)
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and denote by Pεx the distribution on (Ω,) of xε(./ε2, x). Then asε ↓ 0,Pεx
converges weakly to the unique Px ∼ L at x. In particular, ifS (x;σ, b)
denotes the set of pathsφψ(.) of the form

φψ(t) = x+

t
∫

0

(φψ(s))ψ(s)ds+

t
∫

0

b(φψ(s))ds, (2.14)

whereψ : [0,∞] → Rd is a locally bounded, right continuous function47

possessing left limits, then

Supp(Px) ⊆ S (x;σ, b)

Proof. The second part follows immediately from the first, since (2.13)
shows explicitly that

Supp(Pεx) ⊆ S (x;σ, b)

for eachε > 0.
To prove the convergence result, first observe that, by (1.2), the mar-

tingale problem forL well-posed. Next, define

F i(x, θ) = (d/2)1/2
d

∑

k=1

σi
k(x)θk, 1 ≤ i ≤ n.

ThenF(x, θ) satisfies the hypotheses of theorem (2.10). Moreover,
∫

Sd−1

(F i(x, θ) − F i(x, η))(F j (x, θ) − F j(x, η))dη

=
d
2

∑

k,ℓ

σi
k(x)σ j

ℓ
(x)

∫

Sd−1

(θk − ηk)(θℓ − ηℓ)dη

=
d
2

∑

k,ℓ

σi
k(x)σ j

ℓ
(x)(θkθℓ +

1
d
δk,ℓ).

Thus in the notation of (2.10):

ai j (x) =
∑

ℓ

σi
ℓ(x)σ j

ℓ
(x).
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Next:48

∫

Sd−1

n
∑

j=1

F i(x, η)
∂F i

∂x j
(x, η)dη

=
d
2

n
∑

j=1

d
∑

k,ℓ=1

σ
j
k(x)

∂σi
ℓ

∂x j
(x)

∫

Sd−1

ηkηℓdη

=
1
2

n
∑

j=1

d
∑

k=1

σ
j
k(x)

∂σi
k

∂x j
(x)

Thus in the notation of (2.10)

ci(x) =
1
2

d
∑

k=1

n
∑

j=1

σ
j
k(x)

∂σi
k

∂x j
(x)

But this means that

1
2

n
∑

i, j=1

ai j (x)
∂2

∂xi∂x j
+

n
∑

i=1

ci(x)
∂

∂xi
=

1
2

d
∑

k=1

(
n

∑

i=1

σ
j
k(x)

∂

∂x j
)2,

and so theL is given in (2.12) is the one associated withF(x, θ) and
b(x, θ) via the prescription given in (2.10). �

Exercise 2.15.Letσ(.) and b(.) be as in the preceding and suppose that
σ̄(.) and b̄(.) are a second pair of such functions. Assume that Range
(σ̄(x)) ⊆ Range(σ(x)) for all x ∈ Rn and thatb̄(x) − b(x) ∈ Range
(σ(x)) for all x ∈ Rn. Show that

S (x; σ̄, b̄) ⊆ S (x;σ, b)

for all x ∈ Rn

Remark 2.16.An alternative description ofS (x;σ, b) can be obtained
as follows:

Let 49
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Xk =

n
∑

i=1

σi
k(x)

∂

∂xi
, 1 < k < d,

and denote by Lie (X1, . . . ,Xd) the Lie algebra of vector fields generated
by {X1, . . . ,Xd}. ThenS (x;σ, b) is the closure of the integral curves,
starting atx, of vector fieldsZ+Y, whereZ ∈ Lie {X1, . . . ,Xd} andY =
n
∑

i=1
bi(x)

∂

∂xi
. The derivation of this identification rests on the elementary

facts about how integral curves change under the Lie bracketoperation
and linear combinations.

3 Characterization of Supp(px), the non-degenerate
case

In Corollary (2.11), we showed that ifL is given by (2.12) andPx ∼ L
at x, then Supp(Px) ⊆ S (x;σ, b). In the case whenσσ∗(.) > 0, this
inclusion does not provide any information. What we will show in the
present section is that, in fact, ifσσ∗(.) > 0, then Supp (Px) = Ωx ≡

{w ∈ Ω : x(0,w) = 0}. Actually, we are going to derive a somewhat
more general result.

Lemma 3.1. Givenε > 0, define

uε(t, x) =
∞
∑

n=−∞

∫ ε

−ε

[γt(x− y− 4nε) − γt(x− y− (4n+ 2)ε)]dy (3.2)

for t > 0 and x∈ (−ε, ε), where

γt(z) =
1

(2πt)1/2
e−z2/2t.

Then

uε ∈ C∞((0,∞) × R1),
σuε
σt
=

1
2
σ2uε
∂x2

in(0,∞) × R1,

lim
t↓0

uε(t, x) = 1 for x ∈ (−ε, ε), uε(t, x) > 0 for (t, x) ∈ (o,∞) × (−ε, ε),50

u(t,±ε) = 0 for t > 0 and
∂2uε
dx2

(t, x) ≤ 0 for (t, x) ≤ (0,∞) × (−ε, ε).
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Finally, if (β(t), Ft,P) is a one dimensional Brownian motion, T> 0 and
x ∈ (−ε, ε), then

uε(T, x) = P(x+ β(t)) ∈ (−ε, ε) for t ∈ [0,T]). (3.3)

Proof. Let
S = U((4n− 1)ε, (4n+ 1)ε)

and
S′ = 2ε + S = {2ε + z : z ∈ S}.

Then

uε(t, x) =
∫

S

γt(x− y)dy−
∫

S′

γt(x− y)dy.

This proves that
uε ∈ C∞((0,∞) × R1)

and that
∂uε
∂t
=

1
2
∂2uε
∂x2

for t > 0. Also, if x ∈ (−ε, ε), thenx ∈ S andx < S̄′.
Hence

lim
t↓0

∫

S

γt(x− y)dy= 1 and lim
t↓0

∫

S′

γt(x− y)dy = 0.

Thus

lim
ε↓0

∫

S

uε(t, x) = 1 for x ∈ (−ε, ε).

Next observe that 51

uε(t, ε) =
∫

S+ε

γt(y)dy−
∫

S+ε

γt(y)dy = 0.

Sinceuε(t, .) is clearly even, this shown thatuε(t,±ε) = 0 for t > 0.
We next prove (3.3). To this end, let

τx = inf {t ≥ 0 : x+ β(t) < (−ε, ε)}.
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Then, by Itô′s formula applied touε(T − t, x):

uε(T, x) = E[uε(T − τxΛT, x+ β(τxΛT)

= P(τx > T) = P(x+ β(t) ∈ (−ε, ε) for t ∈ [0,T]).

From (3.3) it is clear that

∂uε
∂t

(t, x) ≤ 0,

and so
∂2uε
∂x2

= 2
∂uε
∂t
≤ 0.

Finally, we must show thatuε(t, x) > 0 for all t > 0 andx ∈ (−ε, ε).
To this end, Suppose thatxo ∈ (−ε, ε) and thatuε(T, xo) = 0 for some
T > 0. Then we would have that

E[ezτxo ]

is an entire function ofz ∈ C. On the other hand a given 0< λ <

π/23/2ε, consider the function

φλ(x) =
cos(21/2λx)

cos(21/2λε)
.

Applying Itô′s formula toeλ
2t
φλ(x), one sees that52

φλ(x) = E[eλ
2τxo

]

and so
lim

λ↑π/23/2ε
E[eλ

2τxo
] = ∞,

which clearly is a contradiction. �

Lemma 3.4. Let (E, F,P) be a probability space,{Ft : t ≥ 0} a non-
decreasing family of subσ−algebras of F andη : [0,∞) × E → R a
P−a.s. continuous F.-progressively measurable function. Assume that
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there exists bounded F.-progressively measurable functions a: [0,∞) ×
E→ [0,∞) and b: [0,∞) × E→ R such that

( f (t, η(t)) −

t
∫

0

(
∂ f
∂s
+

1
2

a(s)
∂2 f

∂x2
+ b(s)

∂ f
∂x

)(s, η(s))ds, Ft ,P)

is a martingale for all f ∈ C1,2
b ([0,∞) × R1). Letσ be an F.-stopping

time and givenε > 0 define

τε = inf {t ≥ σ : |η(t) − η(σ)| ≥ ε}.

If b(s) ≡ 0 for σΛT ≤ s≤ TΛτε and a(s) ≤ A forσΛT ≤ s≤ TΛτε
then

P(τε ≤ T) ≤ (1− uε(AT, 0))P(σ ≤ T).

Proof. Let F : [0,∞) × R1 × E → R1 have the properties that for
each (t, x) ∈ [0,∞) × R1F(t, x) is Ft−measurable and for eachq ∈ E,
F(t, x, q) ∈ C1,2

b ([0,∞)×R1. Then by Doob’s stopping time theorem plus53

elementary properties of conditional expectations (cf 1.5.7 in [S&V]),

E[F(TΛτε, η(TΛτε)) − F(σΛT, η(σΛT))|Fσ]

= E[

τε Λ T
∫

σΛT

(
∂F
∂s
+

1
2

a(s)
∂2F

∂x2
)(s, η(s)ds|Fσ]

(a.s.,P) on {σ < ∞}

In particular, withF(t, x) = uε(A(T −TΛt), x−η(σ))(≡ 0 if σ = ∞),
we have

P(τε > T, σ ≤ T) = E[uε(A(T − TΛτε), η(τεΛT) − η(σ)), σ ≤ T]

= E[F(TΛτε, η(TΛτε)), σ ≤ T]

= E[F(σΛT, η(σΛT)), σ ≤ T]

+ E[

TΛτε
∫

σΛT

(
∂F
∂s
+

1
2

a(s)
∂2F
∂x

(s, η(s))ds, σ ≤ T].
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sinceF(σΛT, η(σΛT)) = uε(A(T − σ), 0) ≥ uε(AT, 0) on{σ ≤ T} and

(
∂F
∂s
+

a(s)
2

∂2F

∂x2
)(s, η(s))

= (−A
∂uε
∂s
+

a(s)
2

∂uε
∂x2

)(A(T − s), η(s) − η(σ))

= −
1
2

(A− a(s))
∂2uε
∂x2

(A(T − s), η(s) − η(σ)) ≥ 0

for σΛT ≤ s≤ TΛτε, we see that

P(τε > T, σ ≤ T) ≥ uε(AT, 0)P(σ ≤ T).

Hence

P(τε ≤ T) = P(σ ≤ T, τε ≤ T)

= P(σ ≤ T) − P(σ ≤ T, τε > T)

< (1− uε(AT, 0))P(σ ≤ T).

�54

Lemma 3.5. Let (β(t), Ft,P) be a d-dimensional brownian motion,α(.)
a bound F.-progressively measurable Rn ⊗ Rd− valued function, b(.)
a bounded F.-progressively measurable Rn- valued function and c(.) a
bound F.-progressively measurable Rd-valued function such that c(t) ≡
0 for t ≥ T. Define

R= exp[

∞
∫

0

< c(s), dβ(s) > −
1
2

∞
∫

0

|c(s)|2ds]. (3.6)

Then R> 0 (a.s., P) Ep[R] = 1 and if dQ = RdP, then for every
f ∈ C1,2

b ([0,∞),Rn)

( f (t, ξ(t))) −

t
∫

0

(
∂ f
∂s
+ Ls f+ < α(s)c(s), grad f >)(s, ξ(s))ds, Ft,Q)



3. Characterization of Supp(px), the non-degenerate case 51

is a martingale, where

Ls ≡
1
2

n
∑

i, j=1

(αα∗(s))i j ∂2

∂xi∂x j
+

n
∑

i=1

bi(s)
∂

∂xi
.

Proof. It is clear thatR> 0 (a.s.,P). Furthermore, by Itˆo’s formula, if

R(t) = exp[

t
∫

0

< c(s), dβ(s) > −
1
2

t
∫

0

|c(s)|2ds].

then

R(t) = 1+

t
∫

0

R(s) < c(s), dβ(s) >, t ≥ 0. (3.7)

ThusEP[R] = EP[R(T)] = 1. Finally, another application of Itˆo’s 55
formula shows that

(R(t) f (t, ξ(t)) −

t
∫

0

(R(s)(
∂ f
∂s
+ Ls f+ < α(s)c(s), grad f >)(s, ξ(s))ds, Ft,P)

is a martingale. Since, from (3.7)

EP[R|Ft] = R(t) (a, s.,P)

for all t ≥ 0, it follows immediately that

( f (t, ξ(t)) −

t
∫

0

(
∂ f
∂s
+ Ls f+ < α(s)c(s), grad f >)(s, ξ(s))ds, Ft,Q)

is a martingale. �

Theorem 3.8.Let(β(t), Ft,P) be a d-dimensional Brownian motion and
let α(.) be a bounded F.-progressively measurable Rn⊗Rd-valued func-
tion andγ(.) a bounded F.-progressively measurable Rd-valued func-
tion. Set

ξ(t) =

t
∫

0

α(s)dβ(s) +

t
∫

0

α(s)γ(s)ds
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and assume that

Traceαα∗(s)
|α(s) (s)|

χ[ε,∞)(|ξ(s)|)(≡ 0 if α(s) = 0)

is uniformly bounded for eachε > 0. Then for each T> 0 andε > 0,

P(Sup0≤t≤T |ξ(t)| < ε) > 0.

Proof. Setη(t) = |ξ(t)|2 and define

σ = inf {t ≥ 0 : |η(t)| ≥ 2ε}

and56

τ = inf {t ≥ 0 : |η(t) − η(σ)| ≥ ε}.

Then

P(Sup0≤t≤T |ξ(t)| ≥ (3ε)1/2) = P(Sup0≤t≤T |η(t)| ≥ 3ε) ≤ P(τε ≤ T).

Thus we must show thatP(τε ≤ T) < 1. Without loss of generality,
we will assume thatα(S) ≡ 0 if

|ξ(s)| ≥ (3ε)1/2.

To prove thatP(τε ≤ T) < 1, first note that

η(t) = 2

t
∫

0

< α∗(s)ξ(s), dβ(s) > +

t
∫

0

Traceαα∗(s)ds

+ 2

t
∫

0

< α∗(s)ξ(s), γ(s) > ds

Now define

c(s) = −γ(s) −
1
2

(
Traceαα∗(s)

|α∗(s)ξ(s)|2
α∗(s)ξ(s))χ[0,T](s)χ[−ε/2,∞](η(s)).
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Thenc(.) is uniformly bounded andc(s) ≡ 0 for s≥ T. Set

R= exp[

∞
∫

0

< c(s), dβ(s) > −
1
2

∞
∫

0

|c(s)|2ds]

anddQ= RdP. SinceQ andP are mutually absolutely continuous

Q(τε ≤ T) < 1 iff P(τε ≤ T) < 1.

But, by (3.5),

( f (t, η(t)) −

t
∫

0

(
∂ f
∂s
+

1
2

a(s)
∂2 f

∂x2
+ b(s)

∂ f
∂x

) (s, η(s)ds, Ft,Q)

is a martingale for allf ∈ C1,2
b ([0,∞) × R1), where 57

a(s) = 4|α∗(s)ξ(s)|2

andb(s) =Traceαα∗(s) + 2 < α∗ξ(s), c(s) > + < α∗(s)ξ(s), γ(s) >. In
particular,a(.) andb(.) are bounded andb(s) = 0 for σΛT ≤ s≤ τεΛT.
Thus, by (3.4),Q(τε ≤ T) < 1. �

Corollary 3.9. Let (β(t), Ft,P) be a d-dimensional Brownian motion,
α(.) a bounded F.−progressively measurable Rn ⊗ Rd-valued function
and v(.) a bounded F.−progressively measurable Rn-valued function.
Assume thatαα∗(.) ≥ λI for someλ > 0. set

ξ(t) = x+

t
∫

0

α(s) dβ(s) +

t
∫

0

v(s)ds, t ≥ 0.

Then for everyφ ∈ C1
b[0,∞),Rn) satisfyingφ(0) = x, everyε > 0

and every T> 0:

P(Sup0≤t≤T |ξ(t) − φ(t)| < ε) > 0.
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Proof. Givenφ(.), set
ξφ(t) = ξ(t) − φ(t)

Then

ξφ(t) =

t
∫

0

α(s)d (s) +

t
∫

0

α(s)γ(s)ds

where
γ(s) = α∗(s) (αα∗(s))−1(v(s) − φ′(s)).

Note that58

|α∗(s)ξ(s)|2 =< ξ(s), αα∗(s)ξ(s) >≥ λ|ξ(s)|2,

and so
Traceαα∗(s)
|α∗(s) ξ(s)|

χ[ε,∞](|ξ(s)|)

is uniformly bounded for eachε > 0.
Thus, by theorem (3.8),

P(Sup0≤t≤T |ξφ(t)| < ε) > 0

for eachε > 0 andT > 0. �

Corollary 3.10. Letσ : Rn→ Rn⊗Rd and b: Rn→ Rn be C∞b -functions
and set

L =
1
2

n
∑

i, j=1

(σσ∗)i, j(x)
∂2

∂xi∂x j
+

n
∑

i=1

bi(x)
∂

∂xi
.

Assume thatσσ∗(x) > 0 for each x∈ Rn, let Px ∼ L at x. Then

Supp(PX) = {φ ∈ C([0,∞),Rn) : φ(0) = X}

Proof. As we already know,Px is the distribution of the processξ(., x)
given by

ξ(t, x) = x+

t
∫

0

σ(ξ(s, x))sβ(s) +

t
∫

0

b(ξ(s, x))ds
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where (β(t), Ft,P) is anyd-dimensional Brownian motion. In particular,
we may assume that

β(, ) = (β̄1(.), . . . , β̄d(.))

where (̄β(t), Ft,P) is a (d + n)−dimensional Brownian motion. Now let59

φ ∈ C1
b([0,∞),Rn) with φ(0) = x be given. Set

K = Sup0≤t≤T |φ(t)| + 2ε

and define

ξ̄(t) = x+

t
∫

0

σ̄(ξ(s, x))dβ̄(s) +

t
∫

0

b(ξ(s, x))ds, t ≥ 0.

whereσ̄ : Rn→ Rn ⊗ Rd+n is given by

σ̄(y) = (σ(y), χ[K,∞)(y)I ).

Then ξ̄(t) = ξ(t, x) for 0 ≤ t ≤ τK ≡ inf {s ≥ 0 : |ξ(s, x)| ≤ K}. In
particular

P(Sup0<t<T |ξ(t, x) − φ(t)| < ε) = P(Sup0≤t≤T |ξ(t, x) − φ(t)| < ε, τK > T)

= P(Sup0≤t≤T |ξ̄(t) − φ(t)| < ε, τK > T)

= P(Sup0≤t≤T |ξ̄(t) − φ(t)| < ε).

But σ̄σ̄∗(y) = σσ∗(y) + χ(K,∞)(Y)I ≥ λI where

λ = inf {< θ, σσ∗(Y)θ > /|θ|2 : |Y| ≤ K andθ ∈ Rn\{0}} > 0}

Thus, by corollary (3.9),

P(Sup0≤t≤T |ξ̄(t) − φ(t)| < ε) > 0.

We have therefore proved that

{φ ∈ C1
b([0,∞) : Rn);φ(0) = X} ⊆ Sup(Px).

60

Since Sup(PX) is closed inΩ, this completes the proof. �
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Corollary 3.11 (The Strong Maximum Principle). Let L be as in (3.10)
and let G be an open subset of R1×Rn. Suppose that u∈ C1,2(G) satisfies

∂u
∂t
+ Lu ≥ 0

in G and that(t0, x) ∈ G has the property that u(t0, x) ≥ u(t, x) for all
(t, x) ∈ G. Then u(t1, x1) = u(t0, x) for all (t1, x1) ∈ G(t0, x0). where
G(t0, x0) is the closure of the points(t1, φ(t1 − t0)) such that t1 ≥ t0,
φ ∈ C([0,∞) : Rn), θ(0) = x0 and (t, φ(t − t0) ∈ G for t0 ≤ t ≤ t1. In
particular, if U is a connected open set in Rn and u∈ C2(U) satisfies
Lu ≥ 0 inU, then u is constant inU if u attains its maximum inU.

Proof. By replacingG by {(t−t0, x) : (t, x) ∈ G} andu(t, x) by u(t−t0, x).
We will assume thatt0 = 0. Furthermore, by approximatingG from
inside with relatively compact open regions, we will assumethat u ∈
C1,2

b (G).
Note that by Itō’s formula and Doob’s stopping time theorem

EP0
x[u(tΛτ,×(tΛτ))] − u(0, x0)

= EP0
x[

tΛτ
∫

0

(
∂u
∂s
+ Lu)(s, x(s))ds] ≥ 0,

wherePx0 ∼ L at x0 andτ = inf {t ≥ 0 : (t, x(t) < G)}
Thus61

EPx0 [u(tΛτ,X(tΛτ)) − u(0, x0)] ≥ 0, t ≥ 0.

Now suppose thatφ ∈ C([0,∞) : Rn, φ(0) = x and (t, φ(t)) ∈ G for
0 ≤ t ≤ t1. If u(t1, φ(t1)) < u(0, x0). Then we could find anε > 0 such
that dist. ((s, φ(s)),GC) > ε for all 0 ≤ s ≤ t andu(t1, x) ≤ u(0, x) − ε
for |x− φ(t1)| < ε. Thus we would have

EP0
x[u(t1Λτ, x(t1Λτ)) − u(0, x0)]

≤ −εPx0(Sup0≤t≤t1 |x(t) − φ(t)| < ε) < 0,

which is a contradiction �
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Remark 3.12.The preceding result can be extended in the following
way:

Let a = R1 × Rn → Rn ⊗ Rn andb : R1 × Rn → Rn be measurable
functions such thata is symmetric and uniformly positive definite on
compact sets anda andb are bounded on compact sets. Set

Lt =
1
2

n
∑

i, j=1

ai j (t, x)
∂2

∂xi∂x j
+

n
∑

i=1

bi(t, x)
∂

∂xi
.

If u ∈ C1,2(G) satisfies

∂u
∂t
+ Lu ≥ 0

in G andu attains its maximum at (t0, x0) ∈ G, thenu(t1, x1) = u(t0, x0) 62

for all (t1, x1) ∈ G(t0, x). The proof can be constructed along the same
lines as we have just used, the only missing ingredient is a more sophis-
ticated treatment of the existence theory for solutions to the martingale
problem (cf [Berk. Symp.] for the details).

4 The Support of Px ∼ L, the Degenerate case

We are going to show that if

L =
1
2

d
∑

ℓ=1

(
∑

σi
ℓ(x)

∂

∂xi
)2
+

n
∑

i=1

bi(x)
∂

∂xi
, (4.1)

and if Px ∼ L at x, then

supp(Px) = S (x;σ, b). (4.2)

Since we already know that supp (Px) ≥ S (x;σ, b), it suffices to
show that if

φ(t) = x+

t
∫

0

σ(φ(s))ψ̇(s)ds+

t
∫

0

b(φ(s))ds, t ≥ 0, (4.3)
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whereψ ∈ C2
0((0,∞); Rd), then

Px(Supo≤t≤T | x(t) − φ(t) |≤ ε) > 0 (4.4)

for all ε > 0 andT > 0. Actually, what we are going to prove is slightly
more refined result than (4.4). Namely, suppose that (β(t), Ft,P) is a
d−dimensional Brownian motion and that

ξ(t, x) = x+

t
∫

0

σ(ξ(s, x))dβ(s) +

t
∫

0

b̃(ξ(s, x))ds, t ≥ 0, (4.5)

where

b̃(x) = b(x) +
1
2

n
∑

j=1

d
∑

ℓ=1

σ
j
ℓ
(x)

∂σℓ
∂x j

(x). (4.6)

63

ThenPx is the distribution ofξ(., x). We will show that

lim
δ↓0

P(Sup0≤t≤T |≥ ε | Sup0≤t≤T | β(t) − ψ(t) |≤ δ) = 1 (4.7)

for all ε > 0 andT > 0. Since

P(Sup0≤t≤T | β(t) − ψ(t) |≤ δ) > 0

for δ > 0 andT > 0, this will certainly prove (4.4). The proof of (4.7)
relies on a few facts about Brownian motion.

Lemma 4.8. Let (β(t), Ft,P) be a d-dimensional Brownian motion.
Then there exist A> 0 and B> 0, depending on d, such that

P(Sup0≤t≤T | β(t) |< δ) ≥ Aexp
(

−
BT

δ2

)

,T > 0 andδ > 0. (4.9)

Proof. First note that if

Φ(T, δ) = P(Sup 0≤ t ≤ T | β(t) |< δ,

then
Φ(T, δ) = Φ(T/δ2, 1).
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The reason for this is that for anyλ > 0, λβ(.) has the same distri-
bution asβ(λ2, .) (cf. exercise (4.11) below). Thus we need only check
that

Φ(t, 1) ≥ Ae−Bt, t > 0.

Next observe that

P(Sup0≤t≤T | β(t) |< δ) ≥ P(Sup0≤t≤T max 1≤ ℓ ≤ d | βℓ(t) |< δ/d1/2)

= P(Sup0≤t≤T | β
1(t) |< δ/d1/2)d

since theβℓ(.)′sare mutually independent and each has the same distri-64

bution. Thus we will restrict our attention to the case whend = 1.
To prove thatΦ(T, 1) ≥ Ae−Bt whend = 1, we will show that if

f ∈ C([−1, 1])

E[ f (x+ β(T)),Sup0≤t≤T | x+ β(t) |< 1]

=

∞
∑

m=0

am( f )e(−m2π2/8)T sin(mπ/2)(x+ 1)), (4.10)

T > 0 andx ∈ (−1, 1),

where

am( f ) =

1
∫

0

f (y) sin(mπ/2)(y+ 1))dy/

1
∫

0

sin2((mπ/2)(y+ 1))dy.

Given (4.10), we will have

P(Sup0≤t≤T | β(t) |< 1) = a1(1)e(−π2/8)T
+

∞
∑

m=1

a2m+1(1)(−1)m+1e(−(2m+1)2π2/8)T

Sincea1(1) > 0 and| am(1) |≤ 1 for all m, it is clear form this that

lim
T↑∞

e(π2/8)T P(Sup0≤t≤T | β(t) |< 1) = a1(1) > 0,

and so estimate will be established. To prove (4.10), first note that
{

sin
mπ
2

(x+ 1) : m≥ 1
}
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is an orthonormal basis inL2((−1, 1)) (cf. exercise (4.11) below).
Next observe that for,f ∈ C∞0 ((−1, 1)), 65

∞
∑

m=0

am( f ) sin(mπ/2(x+ 1))

is uniformly and absolutely convergent tof and that ifu(T, x) is given
by the right hand side of (4.10) then

∂u
∂T
=

1
2
∂2u

∂x2
,T > 0 andx ∈ R1

lim
T↓0

u(T, x) = f ,−1 < x < 1

u(T,±1) = 0.

Hence, (u(T − tΛT, x+ β(t)), Ft,P) is a martingale and so

u(T, x) = E[ f (x) + β(T)), τx > T]

whereτx = inf {t ≥ 0 :| x + β(t) |≥ 1}. Thus (4.10) holds forf ∈
C∞0 ((−1, 1)). Using obvious limit procedure, it is now easy ot see that
(4.10) continues to hold for allf ∈ ([−1, 1]) so long asT > 0. �

Exercise 4.11.Fill the missing details in the preceding proof. In partic-
ular, use the martingale problem characterization of Brownian motion
to check thatλβ(./λ2) has the same distribution asβ(.) for anyλ ∈ R/{0}.
Second, show that

{sin(
mπ
2

(x+ 1) :,m≥ 1}

is an orthogonal basis in L2((−1, 1)), that

Supm | am( f ) |≥ c || f ||L2((−1,1)),

and that66
∞
∑

m=1

am( f ) sin(
mπ
2

(x+ 1))

is absolutely and uniformly convergent to f if f∈ C∞0 ((−1, 1)). All these
facts are easy consequences of the elementary theory of Fourier series.
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Lemma 4.12. Let (B(t), Ft,P) be a 1-dimensional Brownian motion.
Then P−a.s., there is precisely one solution to the equation

ξ(t) = 2

t
∫

0

| ξ(s) |1/2 dB(s) + 2t, t ≥ 0.

Moreover, the unique solutionξ(.) is non-negative and B(.)-measu-
rable.

Proof. For 0< ε ≤ 1 andn ≥ 1, consider the equation

ξn(t, ε) = ε + 2

t
∫

0

σn(ξn(s, ε))dB(s) + 2t,

where{σn}
∞
1 ⊆ c∞(R1), Supn≥1 Sup|x|≤1 | σn(x) |≤ 1 andσn(x) =| x |1/2

for | x |≥ ε/n. Sinceσn(.) is uniformly Lipschitz continuous,ξn(., ε) is
uniformly determined andB(.)-measurable. Moreover, if

τn = inf {t ≥ 0 : ξn(t, ε) ≥ ε/n},

thenξn+1(t, ε) = ξb(t, ε), 0 ≤ t ≤ τn (a.s.,P). Next note thatτn ↑ ∞ (a.s.,
P) asn→ ∞. To see this, define

ζn,R = inf {t ≥ 0 :| ξn(t, ε) |≥ R}

for R> ε. Then

lim
n→∞

P(τn ≤ ζn,R) = 0 for all R> 0

67

Indeed, chooseu ∈ C2
b(R1) so that

u(x) = log(nx/ε)2/ log(nR/ε)2

for ε/n ≤ x ≤ R. Then, by It’ôs formula

P(τn > ζn,R) = E[u(ξn(τnΛζn,R))] = u(ε)
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= log(n2)/ log(nR/ε)2→ 1

asn→ ∞. Next note that by Doob’s inequality, for anyT > 0

PSup0≤t≤T | ξn(t, ε) − ε − 2t |≥ R)

≤
1
2

E[| ξn(T, ε) − ε − 2T |]

≤
c(T)

R

wherec(T) is independent ofn. Hence

Supn≥1 P(ζn,R ≤ T)→ 0

asR→ ∞, and so we conclude that

lim P(τn ≤ T) = 0

for all T > 0.
We have now proved that there is for eachε > 0, P-a.s. a unique

continuousξ(., ε) such thatξ(t, ε) = ξn(t, ε), 0 ≤ t ≤ τn, and thatτn ↑ ∞

(a.s.,P) asn→ ∞. Clearlyξ(., ε) is B(.)-measurable and non-negative
(a.s.,P). Also

ξ(t, ε) = ε + 2
∫

| (ξ(s, ε)) |1/2 dB(s) + 2t, t ≥ 0.

68

We next show that

P(Sup0≤t≤T | ξ(t, ε) − ξ(t − ε
′) |≥ λ)→ 0

asε, ε′ → 0 for eachT > 0 andλ > 0. To this end, note that

0 < ρ(δ) = Supx,y≤1
|x−y|≤δ

(| x |1/2 −|y|1/2) ≤ C(δ1/2
Λδ), δ > 0.

Thus we can find{αk} ⊆ (0, 1) so that

αk−1
∫

αk

1

ρ2(λ)
dλ = k.
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Choose{φ′′k } ⊆ C∞0 ((αk, αk−1)) so that 0≤ φ′′k (.) ≤
2

kρ2(.)
and

∞
∫

0

φ′′k (λ)dλ = 1.

Set

φk(λ) =

|λ|
∫

0

dt

t
∫

0

φ′′k (s)ds.

Then, by Itô’s formula:

E[φk(ξ(T, ε) − ξ(T, ε
′))]

≤ φk(ε − ε
′) +

1
2

E[

T
∫

0

ρ2(| ξ(t, ε) − ξ(t, ε′) |)φ′′k (ξ(t, ε) − ξ(t, ε′))dt]

≤| ε − ε′ | +T/k.

Sinceφk(x) ↑| x | ask ↑ ∞, we now see that

E[| ξ(T, ε) − ξ(T, ε′) |] ≤| ε − ε′ | .

But (ξ(t, ε) − ξ(t, ε′), Ft,P) is a martingale; and so, by Doob’s in-69

equality

P(Sup0≤t≤T | ξ(t, ε) − ξ(t, ε
′) |≥ λ) ≤

| ε − ε′ |

λ
→ 0.

We now see that there existεn ↓ 0 such thatξ(., εn) → ξ(.) (a.s.,
P) uniformly on finite intervals. Clearlyξ(.) is B(.)-measurable,P - a.s.
non-negative and satisfies

ξ(t) = 2

t
∫

0

| ξ(s) |1/2 dB(s) + 2t, t ≥ 0
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(cf. Exercise (4.13) below). Finally, ifη(t) were a second process satis-
fying the same equation, then, using the functionsφk constructed above,
we would find that

η(T) = ξ(T) (a.s.,P)

for all T > 0. �

Exercise 4.13.Show that in factξ(., ε) ≤ ξ(., ε′) (a.s., P) if0 ≤ ε < ε′.
The idea is to employ a variation on the ideas used prove

P
(

Sup0≤t≤T | ξ(t, ε) − ξ(t, ε
′) |≥ λ

)

→ 0 asε, ε′ → 0.

Lemma 4.14. Let (β(t), Ft,P) be a d− dimensional Brownian motion
where d≥ 2. Given1 ≤ i , j ≤ d, define

Li j (t) =

t
∫

0

βi

(β2
i + β

2
j )

1/2
dβ j −

t
∫

0

βi

(β2
i + β

2
j )

1/2
dβi

















here we take
βi

(β2
i + β

2
j )

1/2
=

β j

(β2
i + β

2
j )

1/2
= 0 if β2

i + β
2
j = 0

















70

Then Li j (t), Ft,P is a 1-dimensional Brownian motion and the pro-
cess Li j (.) is independent of the processβ2

i (.) + β2
j (.).

In particular, if θ(.) is a bounded F.-progressively measurable
R-valued process, then for M≥ 1 andδ > 0:

P(Sup0≤t≤T |

t
∫

0

θ(u) | β(u) | dLi j (u) |> Mδ | Sup0≤t≤T | β(t) |< δ)

≤ 2 exp

(

−
M2

2T || θ ||2u

)

(4.15)

Proof. Without loss of generality, we will assume thati = 1 and j = 2.
Let L(t) = L12(t). To see that (L(t), Ft,P) is a 1-dimensional Brownian
motion, note that by Itô’s formula

( f (L(t)) −

t
∫

0

1
2

f ′′(L(s))ds, Ft ,P)
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is a martingale for allf ∈ C2
b(R1).

(Remember thatP(
∞
∫

0

χ{0}(β2
1(s) + β2

2(s))ds= 0) = 0 since

E





















T
∫

ε

χ{0}(β
2
1(s) + β2

2(s))ds





















=

T
∫

ε

dt
∫

{0}

1
2πt

e−y2/2tdy= 0

for all 0 < ε < T < ∞.)
We next show thatL(.) is independent ofβ2

1(.) +β2
2(.). Define

B(t) =

t
∫

0

β1

β2
1 + β

2
2

dβ1 +

t
∫

0

β2

β2
1 + β

2
2

dβ2

(with the same convention whenβ2
1 + β

2
2 = 0).

Again use Itô’s formula to show that 71

( f (L(t), B(t)) −
1
2

t
∫

0

∆ f (L(s), B(s)ds, Ft ,P)

is a martingale for allf ∈ C2
b(R2). Thus ((L(t), B(t)), Ft,P) is a 2-

dimensional Brownian motion, and soL(.) is independent ofB(.).
Finally, by Itô′s formula, if ξ(t) = β2

1(t) +β2
2(t) then

ξ(t) = 2

t
∫

0

(β1(s)dβ1(s) + β2(s)dβ2(s)) + 2t

= 2

t
∫

0

| ξ(s) |1/2 dB(s) + 2t

and so, by (4.12),ξ(.) is B(.)-measurable. HenceL(.) is independent of
β2

1(.) + β2
2(.).
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Finally, sinceL(.) is independent ofξ(.) and they both are indepen-

dent of
d
∑

3
β2

j (.), we can argue as in (I. 4.3) to prove that

P





















Sup0≤t≤T |

t
∫

0

θ(s) | β(s) | dL(s) |≥ λ | β(.) |





















≤ 2 exp









































−
λ2

2 || θ ||2u
T
∫

0

| β(s) |2









































where|| ||u denotes the uniform norm.
In particular72

P





















Sup0≤t≤T |

t
∫

0

θ(s) | β(s) | dL(s) | ≥ MδSup0≤t≤T | β(t) |≤ δ
)

≤ 2 exp
(

−M2/2T || θ ||2u
)

�

Exercise 4.16.Let (β(t), Ft,P) be a 2-dimensional Brownian motion.
Prove that for eachε > 0, P(| β(tVτε) |> 0, t ≥ 0) = 1, whereτε =
inf {t ≥ 0 : β(t) |≥ ε}. Next show that P(τε ↓ 0 asε ↓ 0) = 1. Conclude
that P(| β(t) |> 0 for all t > 0) = 1. Thus P-a.s.,θ(t) = argβ(t) is
well defined for all t> 0). In order to studyθ(t), t > 0, write z(t) =
β1(t) + iβ2(t). Given an analytic function f onC show that d f(z(t)) =
f ′(z(t))dz(t).

In particular, show that for fixed t0 > 0

logz(t) − logz(t0) =

t
∫

t0

1
| z(s) |

dB(s) +

t
∫

t0

dL(s)
| z(s) |

, t ≥ t0,
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where B(.) and L(.) are defined as in (4.14). Hence

θ(t) − θ(t0) =

t
∫

t0

dL(s)
| z(s) |

, t ≥ 0.

The conditional distribution ofθ(.Vt0)−θ(t0) given| z(.) | is the same

as the distribution of̃B(
.Vt0
∫

t0

| z(s) |−2 ds, whereB̃(.) is a 1-dimensional

Brownian motion.

Notation 4.17.If θ : [0,∞) × RN andT > 0, we will use|| θ(.) ||0T to 73

denote Sup0≤t≤T | θ(t) |.

Lemma 4.18. Let (β(t), Ft,P) be a d−dimensional Brownian motion
and suppose thatθ(.) is an P -a.s. continuous F.-progressively measur-
able Rd - valued function with the property that for someα > 1

lim
M→∞

Sup0<δ<1 P(|| θ(.) ||0T≥ Mδα| || β(.) ||0T≤ δ) = 0.

Then

lim
δ↓0

P(||

·
∫

0

< θ(u), dβ(u) >||0T> ε ||| β(.) ||0T≤ δ)

is 0 for all ε > 0.

Proof. Let 0< δ < 1 andM ≥ 1 be given and define

ζ = inf {t ≥ 0 : | θ(t) |≥ Mδα}.

Then

P(||

.
∫

0

< θ(u), dβ(u) >||0T ,≥ ε, || β(.) ||0T≤ δ)

≤ P(||

.
∫

0

< θ(u), dβ(u) >||0T≥ ε, || θ(.) ||
0
T≤ Mδα)
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+ P(|| θ(.) ||0T≥ Mδα, || β(.) ||0T≤ δ)

≤ P(||

.
∫

0

< θ(uΛζ), dβ(u) >||0T ,≥ ε)

+ P(|| θ(.) ||0T≥ Mδα, || β(.) ||0T≤ δ).

By the argument used to prove (I. 4.3):

P(||

.
∫

0

< θ(uΛ ζ), dβ(u) >||0T≥ ε) ≤ 2 exp(−
ε2

M2δ2αT
).

Thus, by (4.9):74

P(||

.
∫

o

< θ(u), dβ(u) > ||0T ≥ ε||β(.)||0T ≤ δ)

≤
2
A

exp(−
ε2

M2δ2αT
+

BT

δ2
) + P(||θ(.)||0T ≥ Mδα||β(.)||0T ≤ δ)

By assumption, givenλ > 0 we can chooseMλ < ∞ so that the
second term is less thanλ/2 for 0 < δ < 1. We can then choose 0<
δλ < 1 so that the first term is less thanλ/2 for this choice ofMλ. �

Lemma 4.19. Let (β(t), Ft,P) be a d−dimensional Brownian motion
and letξ(., x) be given by (4.5). Then for anyε > 0, T > 0, f ∈ C∞b (Rn)
and1 ≤ k ≤ d or 1 ≤ k , ℓ ≤ d:

lim
δ↓0

P(|

.
∫

0

f (ξ(u, x))d(βk(u))2||0T ≥ ε||β(.)||0T < δ) = 0

and

lim
δ↓0)

P(||
∫

f (ξ(u, x))βk(u)dβℓ(u)||0T ≥ ε||β(.)||0T < δ) = 0.

Proof. Setξ(.) = ξ(., x). Then for 1≤ k, ℓ ≤ d, we see, by Itˆo′s formula,
that

t
∫

0

f (ξ(u))d(βkβℓ(u)) = βkβℓ(t) f (ξ)(t))
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−

t
∫

0

βkβℓ(u) < σ∗(ξ(u)) grad f (ξ(u)), dβ(u) >

−

t
∫

0

βkβℓ(u)L f (ξ(u))du

−

t
∫

0

[βk(u)(σ∗(ξ(u)) grad f (ξ(u))ℓ + β
ℓ(u)(σ∗(ξ(u)) grad f (ξ(u))k]du.

All except the second term on the right clearly tend to zero as||β(.)||0T 75

→ 0. Moreover, the second term is covered by (4.18) withα = 2. Thus

lim
δ↓0

P(||

.
∫

0

f (ξ(u))d(βkβℓ(u))||0T ≥ ε||β(.)||0T < δ) = 0

for all ε > 0 and 1≤ k, ℓ ≤ d. This proves our first assertion upon taking
k = ℓ.

To prove the second assertion, note that

t
∫

0

f (ξ(u))βk(u)dβℓ(u) =
1
2

∫

f (ξ(u))d(βk(u)βℓ(u)) +
1
2

t
∫

0

θ(u)|β(u)|dLk,ℓ(u),

whereLk,ℓ(.) is as in (4.14) and

θ(.) =
(βk(.)2

+ βℓ(.)2)1/2

|β(.)|
f (ξ(u)).

Thus the first term is of the sort just treated and the second one is
covered by (4.14). �

Theorem 4.20. Let (β(t), Ft,P) be a d−dimensional Brownian motion
and letξ(., x) be given by (4.5). Givenψ ∈ C2

0((0,∞); Rd), defineφ(.) by
(4.3). Then for eachε > 0 and T> 0:

lim
δ↓0

P(Sup0≤t≤T |ξ(t, x) − φ(t)| ≥ εSup0≤t≤T ||β(t) − ψ(t)| ≤ δ) = 1.



70 2. The Trajectories of Solutions to Stochastic....

In particular, if Px ∼ L at x, where L is defined by (4.1), then

supp(Px) = S (x;σ, b).

Proof. We first note that it suffices to handle the case whenψ ≡ 0 but76

b(.) may depend ont as well asx. Indeed, the general case reduces to this
one by considering the probability measureQ defined bydQ = RψdP,
where

Rψ = exp(

∞
∫

0

< ψ̇(s), dβ(s). −
1
2

∞
∫

0

|ψ̇(s)|2ds).

By Lemma (3.5), (βψ(t), Ft,Q) is ad-dimensional Brownian motion,
whereβψ(t) = β(t) − ψ(t), t ≥ 0 and clearly

ξ(t, x) = x+

t
∫

0

σ(ξ(s, x))dβψ(s) +

t
∫

0

b̃ψ(s, ξ(s, x)), t ≥ 0,

(a.s., Q), wherẽbψ(t, x) = b̃(x) + σ(x)ψ̇(t). Thus, assuming the case
whenψ ≡ 0, we have

lim
δ↓0

Q(||ξ(., x) − φ(.)||0T ≥ ε ||β(.) − ψ(.)||0T ≤ δ) = 1

and so

lim
δ↓0

P(||ξ(., x) − φ(.)||0T ≥ ε ||β(.) − ψ(.)||0T ≤ δ)

= lim
δ↓0

EP[χε,∞(||ξ(, .x) − φ(.)||0T)χ[0,δ](||β(.) − ψ(.)||0T )]

EP[Rψ(T)χ[ε,∞](||ξ(., x) − φ(.)||0T )χ[0,δ] ||β(.) − ψ(.)||0T)]
×

×
EP[Rψ(T)χ[o,δ](||β(.) − ψ(.)||0T)]

EP[χ0,δ(||β(.) − ψ(.)||0T )]

where

Rψ(T) = exp(

T
∫

0

< ψ̇(s), dβ(s) > −
1
2

T
∫

0

|ψ̇(s)|2ds]
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= exp(< ψ(T), β(T) > −

T
∫

0

< β(s), ψ̈(s) > ds−
1
2

T
∫

0

|ψ̇(s)|2ds).

77

Observe that the ratio in the first factor tends to

exp(−ψ̇(T)|2 +

t
∫

0

< ψ(s), ψ̈(s) > ds+
1
2

T
∫

0

|ψ̇(s)|2ds) asδ ↓ 0

while the ratio in the second factor tends to

exp(|ψ̇(T)|2 −

t
∫

0

< ψ(s),
. . . ψ(s), > ds−

1
2

T
∫

0

|ψ̇(s)|2ds;

and so the products tends to 1.
To handle the case whenψ ≡ 0 andb depends on (t, x), let ξ(t) =

ξ(t, x). Then

ξi(t) = xi
+ σi

ℓ(ξ(t))β
ℓ(t) −

t
∫

0

βℓ(s)σi
ℓ, j(ξ(s))σ

j
k(ξ(s))dβ

k(s)

−

t
∫

0

βℓ(s)(Lσi
ℓ)(ξ(s))ds−

1
2

t
∫

0

σi
ℓ, j(ξ(t))σ

j
ℓ
(ξ(s))ds

+

t
∫

0

bi(s, ξ(s))ds

= xi
+

t
∫

0

bi(s, ξ(s))ds− ∆i (t),

where

∆
i(t) = σi

ℓ(ξ(t))β
ℓ(t) −

∑

k,ℓ

t
∫

0

σi
ℓ, j , σ

j
k(ξ(s))β

ℓ(s)dβk(s)
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−
1
2

t
∫

0

σi
k, j , σ

i
k(ξ(s))d(βk(s))2 −

t
∫

0

βℓ(s)(Lσi)(ξ(s))ds.

We have used in these expressions the convention that repeated in-78

dices are summed and the notation

σi
k, j =

∂σi
k

∂x j

By Lemma (4.19),

P(||∆(.)||0T ≥ ε||β)(.)||0T ≤ δ)→ 0 asδ ↓ 0

for eachε > 0 andT > 0. Hence

lim
δ↓0

)P(||ξ(.) − x−

.
∫

0

b(s, ξ(s))ds||oT ≥ ε||β(.)||0T ≤ δ = 0

But, since|b(t, x) − b(t, y)| ≤ c|x− y|, it is easily seen from this that

lim
δ↓0

)P(||ξ(.) − φ(.)||oT ≥ ε ||β(.)||0T ≤ δ) = 0,

where

φ(t) = x+

t
∫

0

b(s, φ(s))ds, t ≥ 0.

�

Corollary 4.21. Let G be an open set in R× Rn and suppose that u∈
C1,2(G) satisfies

∂u
∂t
+ Lu ≥ 0

in G, where L is given by (4.1). If(t0, xo) ∈ G and u(t0, x0) = maxG u,
then u(t, x) = u(t0, xo) at all points(t, x) ∈ GL(t0, xo), where GL(t0, xo)
is the closure in G of the points(t1, φ(t1 − t0)), t1 ≥ t0, whereφ ∈
S (xo;σ, b) satisfies(t, φ(t − t0)) ∈ G for t0 ≤ t ≤ t1. In fact, if

u(t0, x) = max
GL(t0,xo)

u,

then u≡ u(t0, x) on GL(t0, xo).79
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Proof. Given (4.20), the proof is precisely the same as that of (3.11). �

Remark 4.22.WhenG = R× Rn, it is easy to show that if (t1, x1) <
GL(t0, xo) then there is au ∈ C1,2(G) whose maximum is achieved at
(t0, xo) and yetu(t1, x1) < u(t0, xo). If t1 < t0, this is easy: simply take

u(t, x) =



















− exp(− 1
t0−t ) if t < t0

0 if t ≥ t0

If t1 ≥ t0, choose an open setU ∋ (t1, x1) so thatU(∩GL(t1, x1) = φ
and let f ∈ C∞0 (U) be a non-positive function such thatf (t1, x1) < 0.
Set

u(t, x) = E[

∞
∫

0

f (s, ξ(s− t, x))ds].

Using (I, 4.6), one can easily show thatu ∈ Cb(R× Rn) and that

∂u
∂t
+ Lu = − f ≥ 0.

Moreover, by (4.20),u(t0, xo) = 0. Finally,u(t1, x1) < o.
In order to show thatGL(t0, xo) is maximalwhenG , R× Rn, one

must extend the notion of “∂u/∂t+ Lu ≥ 0” to functionsu which are not
necessarily smooth. This is done in the paper [Degen, Diff, s]. In that
same paper, it is also shown how to extend the characterization of supp 80

(Px) to Px ∼ L at x whenL cannot be written in the form (4.1).

5 The “Most Probable path” of a brownian motion
with drift

Let (β(t), Ft,P) be ad−dimensional Brownian motion and letb : Rd →

Rd be aC∞-vector field with bounded first derivatives. Defineξ(.) by

ξ(t) = β(t) = β(t) +

t
∫

0

b(ξ(s))ds, t ≥ 0. (5.1)
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We already know that foe anyφ ∈ C2([0,∞),Rd) with φ(0) = 0,

P(Sup0≤t≤T ||ξ(t) − φ(t)|| < ε) > 0

for all ε > 0 andT > 0. We now want to get an asymptotic estimate on
this probability asε ↓ 0.

Lemma 5.2. There is an orthonormal real basis

{φn}
∞
0 ⊆ C∞b (B(0, 1)) of L2(B(0, 1))

such that

lim
|x|↑1

φn(x) = 0

and

−
1
2
∆φn = λnφn, n ≥ 0

where0 < λ0 < λ1 ≤ λ2 < · · · ≥ λn ≤ · · · ↑ ∞. Furthermore,φ0 never
vanishes in B(0.1). Finally, there is an N= N(d) such that

∞
∑

0

1

λN
n
φn(x)φn(y)

converges absolutely and uniformly inB(0, 1) × B(0, 1) and if f ∈ Cb

(B(0, 1)) then

E[ f (x+ β(t)), τx > t] =
∑

e−λnt( f , φn)L2(B(0,1))φn(x), (5.3)

where81

τx = inf {t ≥ 1 : |x+ β(t)| ≥ 1}.

In particular,

P(Sup0≤t≤T |β(t)| < ε) ∼ Ce−λT/ε2
as T/ε2→ ∞,

where c= (φ0, 1)L2(B(0,1))φ0(0) andλ = λ0.
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Proof. The spectral properties of−
1
2
∆ with Dirichlet boundary condi-

tions in (B(0, 1)) are well-known. In particular, the facts that the spec-
trum is completely discrete and positive and thatλ0 is simple can be
found in elementary books on Partial Differential Equations. The abso-
lute and uniform convergence of

∞
∑

0

1

λN
n
φn(x)φn(y)

for someN is a consequence of Mercer’s theorem applied to theN-th
iterate of the Green’s functions. From this it is easy to check that if
u(t, x) is given by the right hand side of (5.3) withf ∈ C∞0 (B(0.1)) then

∂u
∂t
=

1
2
∆u to (0,∞) × B(0, 1),

lim
|x|↑1

u(t, x) = 0 for t ≥ 0, and

lim
t↓0

u(t, x) = f (x), x ∈ B(0, 1).

Hence by Itô′s formula, (5.3) holds forf ∈ C∞0 (B(0, 1)). The gen-
eral case in then proved by approximation.

Once one has (5.3), it is not hard to show thatφ0 never vanishes. 82

Indeed, from (5.3), it is clear that

0 ≤ eλ0tP(τx > t) = (φ0, 1)φ0(x) + 0(1) ast ↑ ∞.

Thus if (φ0, 1) > 0(< 0), thenφ0 ≥ 0(≤ 0). Form
1
2
∆φ0 = −λ0φ0

and the strong maximum principle, it follows thatφ0 > 0(0< 0). On the
other hand, if (φ0, 1) = 0, then from (5.3) withf = ||φ0||u + φ0:

0 ≤ eλ0tE[ f (x+ β(t)), τx > t] = φ0(x) + O(1),

which obviously contradicts (φ0, 1) = 0.
Finally, as we saw in (4.8),

P(Sup0≤t≤T |β(t)| < ε) = P(τ0 > T/ε2)
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and clearly the above considerations prove that

P(τ0 > t) ∼ Ce−λ0t

with
C = (φ0, 1)φ0(0) > 0.

�

Exercise 5.4.Let G be a bounded, connected open set in Rd. Given
x ∈ G, letτx = inf {t ≥ 0 : (x+ β(t)) < G}. Show that

P(τx > t) ∼ C(x)e−λt as t↑ ∞,

where C(x) > 0 andλ > 0 does not depend on x.

Now letφ ∈ C2
0([0,∞),Rd) andT > 0 be given and define

ψ(t) = φ(t) −

t
∫

0

b(φ(s))ds, t ≥ 0 (5.5)

b(t, x) = b(x+ φ(t)) − b(φ(t)), (t, x) ∈ [0,∞) × Rd, (5.6)

ξφ(t) = ξ(t) − φ(t), t ≥ 0, (5.7)

βψ(t) = β(t) − ψ(tΛT), t ≥ 0 (5.8)

and83

Rψ = exp[

T
∫

0

< ψ(s), dβ(s) > −
1
2

T
∫

0

|ψ(s)|2ds]. (5.9)

Observe that

ξφ(t) = βψ(t) +

t
∫

0

b(s, φ(s))ds, t ≥ 0; (5.10)

and that ifdQψ = RψdP, then (βψ(t), Ft,Qψ) as ad−dimensional Brow-
nian motion (cf. Lemma 3.5). Also

Rψ = exp[< ψ̇(T), β(T) > −

T
∫

0

< ψ̈(t), β(t) > dt −
1
2

T
∫

0

|ψ̇(t)|2dt]



5. The “Most Probable path” of a brownian motion with drift 77

= exp< ψ̇(T), (T) > −

T
∫

0

< ψ̈(t), ψ(t) > dt −
1
2

∫

|ψ̇(t)|2dt]

× exp[< ψ̇(T), βψ(T) > −

T
∫

0

< ψ̈(t), βψ(t) > dt]

→ exp[
1
2

T
∫

0

|ψ̇(t)|2dt]

uniformly and boundedly as||βψ(.)||T → 0.
Since

||βψ(.)||0T < (1+ LT)||ξφ(.)||
0
T ,

whereL = || grad b||u, we now have

lim
ε↓0

P(||ξφ(.)||0T < ε)

Qψ(||ξφ(.)||0T < ε)
= exp[−

1
2

T
∫

0

|φ(t) − b(φ(t))|2dt]

We now to the study ofQψ(||ξφ(.)||oT < ε). 84

Lemma 5.12. Referring to the notation in (5.5) - (5.9), we have

Qψ(||ξΦ(.)||oT < ε) = E[R(T) ||β(.)||0T < ε],

where

R(T) = exp[

T
∫

0

< b, β(s)), dβ(s) > −
1
2

T
∫

0

|b(s, β(s))|2ds]

Proof. First note that without loss of generality we may assume that
b ∈ C([0,∞) × Rn), since if this is not the case we can we can replace
b(s, x) by such a functionb′ which coincides withb on

[0; T] × B(0, ||φ(.)||0T + ε).
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Next observe that since (βψ(.), Ft,Qψ) is a Brownian motion andξφ(.)
is given by (5.10), the distribution ofξφ(.) underQψ is the same as the
distribution ofη(.) underP, where

η(t) = β(t) +

t
∫

0

b(s, η(s))ds, t > 0.

But, if dQ= R(T)dp, thenη(.ΛT) has the same distribution underP
asβ(.ΛT) has underQ. Hence

Qψ(||ξψ(.)||oT < ε) = P(||η(.)||oT < ε)

= EP[R(T)||β(.)||T < ε]. Q.E.D.

Since we already know the asymptotic ofP(||β(.)||T < ε) asε ↓ 0, it
remains only to compute

lim
ε↓0

EP[R(T)||β(.)||T < ε].

To this end, note that85

Ep[R(T), ||β(.)||0T < ε] = e0(ε)EP[exp[

T
∫

0

< b(s, β(s)), dβ(s) > ||β(.)||0T < ε]]

Next

T
∫

0

< b(s, β(s)), dβ(s) >=< β(T), b(T, β(T)) > −

T
∫

0

(
∂

∂s
+

1
2
∆)b(s, β(s))ds

−
∑

k,ℓ

T
∫

0

βk(s)b
k
′ℓ(β(s) + φ(s))dβℓ(s)

where

bk
′ℓ(x) ≡

∂bk

∂xℓ
(x).
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Finally,

∑

ℓ

T
∫

0

βk(s)b
k
′ℓ(β(s) + φ(s))dβℓ(s)

=
1
2

T
∫

0

div bβ(s) + φ(s))ds−
1
2

∑

k

T
∫

0

bk
′k(β(s) + φ(s))d(βk(s))2

−
∑

k,ℓ

T
∫

0

bk
′ℓ(β(s) + φ(s))βk(s)dβℓ(s).

Combining all these, we arrive at

Ep[R(T)||β(.)||0T < ε]

= eo(ε) exp(
1
2

T
∫

0

div b(φ(s))ds) × Ep exp(
∑

k

∆k(T) +
∑

k,,ℓ

(T))||β(.)||0T < ε]

where

∆k(T) = −
1
2

T
∫

0

bk
′k(β(s) + φ(s))d(βk(s))2

and

∆k,ℓ(T) =

T
∫

0

bk
,ℓ(β(s) + φ(s))βk(s)dβℓ(s).

86

To complete our programme, we must prove that

lim
ε↓0

Ep[exp(
∑

k

∆k(T) +
∑

k,ℓ

∆k,ℓ(T))||β(.)||0T < ε) = 1.

�

Lemma 5.13. Let f ∈ C∞b ([0,∞) ⊗ Rd; R1). Then for1 ≤ k ≤ d or
1 ≤ k , ℓ ≤ d

Sup0≤ε≤1 Ep[exp(
∫ T

0
f (u, β(u))d(βk(u))2)||β(.)||oT < ε] < ∞



80 2. The Trajectories of Solutions to Stochastic....

and

Sup0≤ε≤1 Ep[exp(
∫ T

o
f (u, β(u))βk(u)dβℓ(u))||β(.)||oT < ε] < ∞.

Proof. Let 1≤ k, ℓ ≤ d. Then

T
∫

o

f (u, β(u))d(βkβℓ(u)) = βkβℓ(T) f (T, β(T))

−

T
∫

0

βkβℓ(t) < gradx f (s, β(s)), dβ(s) >

−

T
∫

o

[βkβℓ(s)(
∂

∂s
+

1
2
∆) f + βk(s)

∂ f
∂xk
+ βℓ(s)

∂ f
∂xℓ

](s, β(s))ds.

Thus for 0≤ ε ≤ 1:

EP[exp(

T
∫

o

f (s, β(s))d(βk(u)βℓ(u)) ||β(.)||0T < ε]

≤ CEP[exp(−

T
∫

O

βkβℓ(s) < gradx f (s, β(s)), dβ(s) >) ||β(.)||oT < ε].

But, as in the proof of (I. 4.3)

P(−
∫ T

0
βkβℓ(s), gradx f (s, β(s)), dβ(s) >≥ R| ||β(.)||ot < ε)

≤ exp(−
R2

2Tε4||gradx f ||2u
),R> 0.

Thus for any 1≤ k, ℓ ≤ d:87

Sup0≤ε≤1 EP[exp(

T
∫

o

f (s, β(s))d(βkβℓ)(s))) ||β(.)||oT < ε], < ∞
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since
P(||β(.)||oT < ε) ≥ Ae−BT/ε2

.

This clearly proves the first assertion.
If 1 ≤ k , ℓ ≤ d, then

T
∫

0

f (s, ξ(s))βk(s)dβℓ(s) =
1
2

T
∫

0

f (s, ξ(s))d(βkβℓ(s))

+
1
2

T
∫

0

θ(s)|β(s)|dLk,ℓ(s),

whereLk,ℓ(.) is as in (4.14) and

θ(.) =
(βk(.)2

+ βℓ(.)2)1/2

|β(.)|
f (., ξ(.)).

By what we have just seen

Sup0≤ε≤1 EP[exp(λ

T
∫

o

f (s, ξ(s))d(βkβℓ(s)) ||β(.)||oT < ε] < ∞

for anyλ > 0. On the other hand, by (4.15);

P(||

.
∫

o

θ(s)|β(s)|dLk,ℓ(s)||
o
T ≥ R ||β(.)|oT < ε)

< 2 exp

(

−
R2

2T ||θ||2uε2

)

Thus 88

Sup0<ε≤1 E[exp(λ

T
∫

0

θ(s)|β(s)|dLk,ℓ(s)) ||β(.)||oT < ε] < ∞

for anyλ > 0. Clearly this completes the proof. �
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Theorem 5.14. Let (β(t), Ft,P) be a d−dimensional Brownian motion
and suppose thatξ(.) is given by (5.1), where b: Rd → Rd is C∞ and
has bounded first derivatives. Then forφ ∈ C2([0,∞),Rd) satisfying
φ(0) = 0:

lim
ε↓0

P(||ξ(.) − φ(.)||T < ε) ∼ C0e−λ0T/ε2
exp(

1
2

T
∫

0

|φ(t) − b(φ(t))|2dt

+
1
2

T
∫

0

div b(φ(t))dt)

asε ↑ 0, where C0 andλ0 are the numbers described in (5.2).

Proof. We have seen that

P(||ξ(.) − φ(.)||OT < ε ||β(.)||OT < ε)

= eO(ε) exp(−
1
2

T
∫

0

|φ̇(t) − b(φ(t))|2 +
1
2

T
∫

0

div b(φ(t)) dt)×

× Ep exp(
∑

k

∆k(T) +
∑

k,ℓ

∆k,ℓ(T))| ||β(.)||OT < ε].

By (4.19) (withx = 0) andξ(t, x) = β(t), we know

P(|∆k(T)| ≥ α| ||β(.)||0T < ε) andP(|∆k,ℓ(T)| ≥ α||β(.)||0T < ε)

tend to 0 asε ↓ 0 for eachα > 0. By (5.13), we know that for anyλ > 0.

lim
ε↓0

Ep[exp[λ(
∑

k

∆k(T) +
∑

k,ℓ

(T))]||β(.)||0T < ε]

is finite. Hence89

lim
ε↓0

Ep[exp[λ(
∑

k

∆k(T) +
∑

k,ℓ

(T))||β(.)||0T < ε = 1.

Therefore

lim
ε↓0

P(||ξ(.) − φ(.)||0T < ε||β(.)||0T < ε
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= exp(−
1
2

T
∫

0

|φ̇(t) − b(φ)(t)|2dt +
1
2

T
∫

0

div b(φ(t))dt).

The desired result therefore follows from (5.2). �

Remark 5.15.The result in (5.14) makes it possible to discuss the no-
tion of the “most probable path” of the processξ(.). Indeed, from
(5.14), one sees that most likely route followed byξ(.) in going from
0→ x ∈ Rd in timeT is the pathφ0(.) which minimizes.

1
2

T
∫

0

|φ̇(t) − b(φ(t))|2 =
1
2

T
∫

0

div b(φ(t)) dt

subjects toφ(0) = 0 andφ(T) = x. Using the usual techniques from
the calculus of variations, it is easy to develop the Euler equation for
this problem and thereby get and idea about whatφ0(.) looks like. In
particular, whenb ≡ 0, it is cleat that

φ0(t) =
t
T

x, 0 ≤ t ≤ T.

Next suppose thatd = 1. By the calculus variations : 90

φ̈0(t) − (b′.b) = φ0(t) +
1
2

b′′ · φ0(t) = 0.

In general, this equation of course cannot be solved explicitly. How-
ever, after multiplying through bẏφ0, one sees that

φ2
0(t) − b2 · φ0(t) + b · φ0(t) = constant.

Thus one can get some idea howφ0(.) looks by using the “phase
plane method”. That is, ifp = φ̇0(t) andq = φ0(t), then

p2 − b2(q) + b′(q) = constant.

In the special case whenb(x) = αx , one can solve forφ0(.) explic-
itly:

φ̈0 − α2φ0 = 0
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and so

φ0(t) = x
sinhαt
sinhαT

In this case

P(||ξ(.) − φ0(.)||0T < ε) ∼ Ce−λT/ε2
exp(−

αx2

2
e−2αT

l − e−2αT
+
α

2
T).
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