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Introduction

These notes are based on some lectures given at TIFR dunogrya
and February 1980. The object of the lectures was to consirpeo-

jective moduli space for stable curves of gegus 2 using Mumford’s
geometric invariant theory.

The general plan of the notes is as follows: Chapler O cansist
preliminaries. In particular, fom >> 0, we review how to attach to
each space curv€ c P" a point in some projective space called the
m" Hilbert point of C. We then consider the question of the stability
of them™ Hilbert point in the sense of geometric invariant theory.r Ou
first main result in Chaptdi 1 is that@ is smooth andl > 20(g - 1),
then them™ Hilbert point of C is stable. Our second main result in
Chaptefll is that if the'” Hilbert point is semi-stable, then the curve is
semi-stable as a curve. In Chagdikr 2, we use the results git€fihto
give an indirect proof that the-canonical embedding of a stable curve
is stable ifn > 10, and to construct the projective moduli space for
stable curves. As corollaries, we obtain proofs of the stabtluction
theorem for curves, and of the irreducibility of the modyase for
smooth curves.

Historically speaking, Mumford used his theory to constauquasi-
projective moduli space for smooth curves by studying thbikty of
the Chow points of spaces curves. Mumford and Delighe [tpdiced
the concept of stable curve in their proof of the irredudipibf the
moduli space of curves of gengs> 2, and later F.Knudsen established
the existence of a projective moduli space for stable curkesl974,
Mumford and | realized that the n-canonical model of a stabtge was
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stable in the invariant theory sensenif>> 0. Mumford then showed
that the Chow point of the n-canonical model of a stable ciggable

if n > 5, [4]. Our treatment here parallels that of Mumford, exdept
technical points arising from theffierence between Chow and Hilbert
points. (I believe one could use Hilbert point methods indagen > 5).

I wish to thank D.R. Gokhale, who filled in many gaps in the iordd)
lectures. | also wish to thank TIFR for inviting me for a mosjayable
visit and my audience, especially C.S. Seshadri, for thmmmmoents and
patience.
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Notation

Vii

The following notations will be used without further comrhen

K
K*

AN
PN
GL(N + 1)
SLN+1)
PGL(N + 1)

PGL(N + 1)(R)

1- pst

H(X, F)
h (X, F)
x(F)
#S

a fixed algebraically closed field
multiplicative group of non-zero elements in
K

affine N-space oveK

projectiveN-space oveK

group of invertible N + 1) x (N + 1) matrices
overK.

group of elements iGL(N + 1) with determi-
nant 1.

GL(N+1)/scalar multiples of the Identity ma-
trix.

group of invertible N + 1) x (N + 1) matrices
over a ringR/scalar multiples of the Identity
matrix.

One parameter subgroup of an algebraic
group LetX be a projective scheme and let
F be a coherentyomodule.

it cohomology ofX with coeficients inF
dimH! (X, F)

S(-1'h(XF)

cardinality of a seSB.






Contents

17

69






Chapter O

Preliminaries

In this introductory Chapter we recall, 1

A) some basic definitions and standard results in Geomaetviariant
Theory;

B) the definition of a Hilbert point of a curve;
C) the definition of a Hilbert scheme;
D) the definition and simple properties of a stable curve;

E) some basic definitions and standard results in Deformétieory.

A) Geometric Invariant Theory

Let G be a reductive algebraic group acting on an algebraic scheme
X. Itis natural to ask whethet has a quotient b, which is reasonably
good, say, in the sense of the following definition.

Definition 0.0.0. In the above situation good quotienbf X by G is a
morphism f: X — Y of algebraic schemes, satisfying,

i) f is surjective, #ine and G-invariant (i.e. @@x) = f(X) for all
geG, xe X);

i) f.(Ox)® = Oy, (f.(Ox) is the direct image of @ and £(Ox)C is
the sheaf of G-invariants in.{Ox));

1



2 Preliminaries

i) if F is a G-invariant closed subset of X ther(F) is closed in Y 2
and if F; and F, are G-invariant closed subsets of X such that
FiNnFy = ¢then f(Fy) N f(F) = ¢.

Definition 0.0.1. With the same notations as abovegeometric quo-
tient of X by G is a morphism f. X — Y of algebraic schemes,
satisfying,

i) fisagood quotient of X by G;

ii) for everyyinY the fibre fi(y) is exactly one orbit. (In particular
the orbits are closed).

It is easy to see that a quotient (good or geometric) is uniguto
isomorphism (if it exists).

Example 0.0.2.Consider the natural action GfL(N) on &fine N-space
AN, Clearly AN — {0} is a single orbit inAN which is not closed. Hence
a geometric quotient o&N by GL(N) does not exists.

Now suppose thaX c PN is a projective algebraic scheme a@d
is a reductive algebraic group acting ®rvia a representation : G —
GL(N + 1).

Definition 0.0.3. In the above situation a point & X is calledsemi-
stableif there exists a hon constant G-invariant homogeneousnoely
mial F such Kx) # 0.

Put X33 = {x € X|x is semistablg¢. Clearly X%is open in X.

Definition 0.0.4. With the same notation as above, a poinExX is
called stable, if,

i) dimO(x) = dimG, (0(xX) denotes the orbit of x);

i) there exists a non constant G-invariant homogeneous poliaid-
such that Kx) # 0 and for every yin Xg = {y € X|F(y) # O}, 0(yo)
is closed in X%.

Put X° = {x € X|x is stable}. Note that the seftx € X|dim(0(x)) =
dimG} is open X becaus#im(0(X)) is a lower semicontinuous function
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of x. Now it is immediate that s open in X. Both X and X can
be empty, however in the case when they are non empty we have th
following theorem.

Theorem 0.0.5. There exists a projective algebraic scheme Y and a
morphism {5 : X35 — Y such that s is a good quotient of ¥ by G.
Further there exists an open subset U of Y such tga() = XS and
fs 1 X5 — U is a geometric quotient of %y G.

There is a test for semistability using one parameter sulyggo

Definition 0.0.6. Let G be an algebraic group. Ane parameter sub-
groupA (abbreviated as 1psi) of G is defined to be a nontrivial homo-
morphismi : G, — G of algebraic groups. 4

Let G be a reductive algebraic group acting on a projectivgeal
braic scheme X PN via a representationp : G — GL(N + 1). Given
al- pstof G, there is an induced action dfon the gine (N + 1)-
spaceAN*L. This action can be diagonalized, i.e., there exists a basis
€, €1,...,ey of (the vector spacethN*! such that the action of on
AN*Lis given byi(t)g = te, t € K*, rj € Z, (0 < i < N). Let

N

X = Y x& be a point inAN*L — (0}, (x € K,0 < i < N). Clearly
i=0

N

A)x = Y x&. The point xe AN*1 — {0} represents a point, say, in
i=0

PN

Definition 0.0.7. With 2 and x as above we defingx, 1) = — max
{rilxi # 0}.

It can be shown thai(x, 1) is independent of the basig, e, ..., en
and the point x, so that the above definition makes sense.

Definition 0.0.8. With the same notations as above a paing X is
called A-semistable (respectively -stable)if u(x, 1) < 0 (respectively
u(x, ) < Q).

Semistability (respectively stability) antdsemistability (respecti-
vely A-stability) of a pointx are related by the following theorem.

Theorem 0.0.9. With the same notations as abowds semistable— 5
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X is 1-semistable for every— psi of G, andx is stable— X is A-stable
for everyl — pst of G.

It follows from the above theorem that to show that a paiatX is
not semistable it gfices to find a singlé — psi of G such thai is not
A-semistable.

The proofs of the results in this section can be foundlin [5].

B) Hilbert point of a curve

Let X c PN be a complete curve. Létbe the restriction 0Opn (1)
to X. Recall thaty(L™) = h°(X, L™ — h'(X, L™ is a polynomial inm,
sayP(m).

By Serre’s vanishing theorem there exists an integesuch that all
integersm > Y, H'(H, L™) = 0 and the restriction

om : HO@N, Opn(m)) — HO(X, L™ is surjective

Assume now thai > Y. Taking theP(m) exterior powers, we

get,
P(m) P(m) P(m)
Aom: A HO(IP’N,OPN(m)) — A HX L") =K,

P(m)
a point in the projective spad®( A H°(PN, Opn(m))). (For a vector
spaceV, P(V) denotes the projective space associatéd, tim the sense
of Grothendieck i.eP(V) is the space consisting of equivalence classes
of nonzero linear forms oX.)
Definition 0.1.0. In the above situation the point

P(m) P(m) . . . :
A @om e P( A HO(PN, Opn(m))) is defined to be the fhHilbert point of

acurveX.

Choose a basis ¢XX1,..., Xy of H°(PN, O pn(1)). Consider the
action of GI(N+1) (and hence of S(IN+1)) on H°(PN, Opn(1)), defined
by,

N
[aij]-Xp = Z apjXj,[aj] eGL(N+1), (0<p<N).
j=0

P(m)
We have an induced action of @\_+ 1) on P( A H°(PN, Opn(m))
described as follows.
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Recall that F(PN, Opn(m)) has the basis B = {M1, Ma, ..., M, }
consisting of monomials of degree m ig, X1, ..., Xn, (@m = h°(PN,
Opn(M)). SN + 1) acts on H(PN, Opn(m)), with the action given by,

g.x())’oxl)’l . X,)\’IN — HgoHI)’I .. HKN’

XX X € Bm,g € SUN +1),Hp = g.Xp, 0< p< N).

P(m)
Hence there is an action of M + 1) on A HO(PN, Opn(M)), as
follows. Recall that MAMi,A - -- AMip ) (1 <ip<iz<-- <ipm) <

P(m)
am) is a basis of A HO(PN, Opn(m)). The action of S(N + 1) on this
space is given by, 7

g (M, AM,A ... AMig,)) = M, AGM,A L. AgMig ), (9 € SLN+1)).

P(m)
Take the dual actionA H°(PN, Opn(m))* which naturally gives an
P(m)
action of SI(N + 1) onP( A HO(PN, Opn (m))).

Letd be al - psof SKN + 1). When is the point H(X) € IP(P/(r\n)
HO(PN, On(m)))A - semistable? We try to answer this question.

There exists a basisgmv, ..., wy of HO(PN, Opn(1)) and integers
ro,f1,...,rn such that the action of on H(PN, Opn(1)) is given by

Aw; = t"wi, te K*, (0<i<N).

Let B, = (M7, M,..., M, } be a basis of (PN, Opn (M) consist-
ing of monomials of degree m ingwvy, ..., wy. In this situation we
make the following definition.

Definition 0.1.1. For a monomial M= W(V)0 W{l, ..., wy', define its1-

N
weightw, (M), by wy(M) = '20 viti and definetotal A-weight of mono-
=l

t
mialsM;’, M%, ..., M{’ to beé}o wi(M).

P(m)
The vector spaceA HO(PN, Opn(m)) has the following basic, 8
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{'V'i’ AM A AM }
1 2 P(m) (I<iyi<iz<..ipm < am)

Let {M{| A M, A...A M"Y <iy <iz < .. ipgn < o) D€ the basis of
P(m) . P(m
A HO(PN, Opn(m))* dual to the above basis ah HO(PN, Opn(M)).
P(m)
The action oft on A HO(PN, Opn(m))* is given by,

AL (MAM A AN Y=t (MAM AL AMY ),

ip(m) IP(m)
P(m)

t e K* 0= Z wy(M)).
=1

Write Hy(X) as a linear combination of the vectors in the above
P(m)
basis of A HO(PN, Opn(m))*.

P(m)
Ha(X) = > A (M AL AM Y (M A M A LA M)

ip(m) IP(m)

By definition

Hm(X) is A-semistable (respectively+stable)
& u(Hm(X), 1) < 0 (respectivelyx 0)
& —max. {— ZT:(T) wﬁ(Mi’j)} < 0 (respectively 0),

where the maximum is taken over ail (2, ...,ipm) With 1 < i1 <

P(m)
2 <...<lipm < am, suchthatA ¢m (Mi’1 AM{ZA...A Mi’P(m)) # 0.
Clearly

P(m) P(m)
— max. {- > wy (M;j)} = min. {Z WA(M{J_)}.

=1 =1
Thus we have the following criterion.

() In the above situatio,(X) is A-semistable (respectively-
stable)< There exist monomialMi’l, Mi’z,..., Mi’P(m), l<ip<ip<
... <lipm < am), in By, such that,am(Mi’l), gpm(l\/li'z), oem(M!_ Yisa

IP(m)

P(m)
basis ofH°(X, L™ and Y, w, (Mi’j) < 0 (respectively 0).
=1



Preliminaries 7

Let A be a 1- psof GL(N + 1). There exists a basfgn, wy, ..., wn}
of HO(PN, Ogn(1)) and integersg, ry, . .., ry such that the induced ac-
tion of 1 on HO(PN, Opn(1)) is given by,

A w =tw;, te K,0<i<N).

N

Put ) ri =r. Define a - pst’ of SL(N + 1) so that the action of’ on
i=0

HO(PN, Opn(1)) is given by

(tw = tiw,t € K1l =(N+21)r—r, (0<i<N).

Definition 0.1.2. In the above situation the— pst” of SN +1)is said 10
to be thel — ps of SI(N + 1) associated to th& — pst of GL(N + 1).

We want to rewrite the conditiox) for A’—semistability (respectively
A-stability) of Hy(X) in terms ofi—weights of the monomials.

Note that for a monomiaM € HO(PN, Opn(m)), wy (M) = (N +
Dw, (M) — rm. It follows that,

P(m)
Z wﬁ/(Mi’j) < (respectively< 0)
j=1
—
P(m)
(N+1) > wy(M/) - P(m) rm < 0 ( respectively< 0)
=1

=
< mAm) "~ N+ 1 P NI

Thus we have the following criterion
(+x) With the same notations as above,
P(m)
Hm(X) € P( A HO(PN, Opn(m))) is A’ -semistable (respectively

-stable)s there exist monomialMi’l, Mi’2 Mi’P(m), Ql<ii<ia<
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-+ < ip(m) < am) in By, such thafem(M; ). em(MY). . . ,¢m(M;P(m))} is a
P(m)
2w (M)

; ) m i=1
basis ofH°(X, L™) and A < N+ T

( respectively<

r
N + 1)'
C) Hilbert Scheme

Consider the projective spa® over Spe@. Look at all closed
subschemes @, flat overz, with a fixed Hilbert polynomial sa(m).
A fundamental existence theorem says that there existsearsghpro-
jective over Speg, parametrizing all these closed subschemeB™of
In fact we have the following stronger version of the thearem

Let Sch denote the category of locally noetherian schemeén®
a functor HillgN form Sch to the category of sets as follows.

For S in Sch, Hilth(S) = The set of all closed subschem@ékof
PN x S, flat overS such that for evens € S the induced closed sub-

scheman; of Pl':‘(s) has Hilbert polynomiaP(m).

Theorem 0.1.3.The functon—lilb]PPW is representable and is represented
by a scheme projective over spgéc

Let H denote the scheme representing the functorgﬁiiIbThus
for all S in Sch, Hillf(S) ~ Hom(S, H). In particular Hild, (H) =
Hom(H, H). Let Z be the closed subscheme BY x H which cor-
responds to the identity morphisme Hom(H, H), under the above
isomorphism. We calk, the universal closed subscheme. It has the
following universal property.

Given a schem& in Sch and a schemé e HiIb;N (S), there exists
a unique morphisnf : S — H such that (& f)*Z ~ Y.

A proof of the above theorem and other details can be fond]in [2

6.

D) Stable Curves (in the sense of Delignhe - Mumford (1))

Definition 0.1.4. Let S be any schem@ stable (respectively semista-
ble) curve of genug > 2 over S s a proper flat morphism: X —» S
such that for all s= S the fibre X of 7 over s, satisfies,
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i) Xsis areduced, connected scheme of dim 1 wixh Ox.) =0;
ii) each singular point of Xis an ordinary double point;

iii) if E is an irreducible component of g§6uch E=~ P! then E meets the
other component of Xn at least 3 points, (respectively 2 points).

We now quote some results on stable curves which will be reede
in the sequel.

Theorem 0.1.5.1f 7 : C — SpedK is a stable curve then HC, w(”:/K) =
Oforn>2 andwg/K is very ample for re 3, (wc/k denotes the dualiz-
ing sheaf of X).

We have the following consequences of the above theorem.
Letn : X — S be a stable curve of gengs> 2. It follows from 13
the above theorem that for al € S and forn > 2, HY(X,, w;}/s ®

Ox,) = 0. This implies thair*(wQ/S) is locally free and there are natural
isomorphisms

(Wl s ®K(S) = H(Xs, wh /s ® Ox,), (cf. EGA, Chapter 3§7).

Hence forn > 3 the relatively very ample line bundha;‘(/S gives an
embedding oK into the projective bundI@(n*w;‘(/s) overS, associated
to the locally sheafr*(wQ/S) onS. ThusX can be realized as a family
of curvesC in P"2-2-9 with the Hilbert polynomial ofC given by
P(m) =n(2g - 2m-g+ 1.

Letp: X —» Sandq: Y — S be two stable curves. Define a functor
Isomg (X, Y) form the category 08- schemes, Sc8, to the category of
sets, as follows.

Isoms (X, Y)(S’) = The set ofS’- isomorphisms betweeK X S’ and

YxS.
S

Theorem 0.1.6. The functorlsomg(X,Y) is represented by a scheme
Isomg (X, Y), quasiprojective over S. (ct.][3]).
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K
Letn : C —» SpeK be a stable curve. Lt : Spec% -
&

Isomk (C, C) be a tangent vector at a poiBte Isomk(C, C). By def-
inition t corresponds to an automorphism ©fx Spec—z'S which is
&

canonically identified with a vector field defined on the whole oX.
Now note the following lemma.

Lemma 0.1.7.1f 7 : C’ — SpedK is a stale curve then a vector field
defined on the whole of'Gs zero.

Before we go to the proof of the lemma we deduce the following
result. The lemma says that the tangent spacisdoy (C, C) at the
point P is zero. SinceP was an arbitrary point ofsomk (C, C) we see
thatlsomy (C, C) is finite. Thus we have the following theorem.

Theorem 0.1.8.1f r : C — SpedK is a stable curve then the group of
automorphisms of C is finite.

Proof of the Lemma 0.1.7 Let D be a vector field defined on the whole
of C’. LetC’ be the normalization of’. Since the only singularities
of C’ are ordinary double pointd) naturally corresponds to a vector
field D onC’, such thaD vanishes at all points &’ which lie over the
double points of’. It follows that if E is an irreducible component of
C’ such thatE, the normalization oE, has genug: 2 thenD vanishes
on E and hencé vanishes or.

Now consider the componenBof C’ such thatE has genus 1.
We have the following possibilities fdg.

i) Eis anonsingular curve of genus 0.

i) E has one double poinE,_has genus 0.
iii) E has at least two double poiné,has genus 0.
iv) E is a nonsingular curve of genus 1.

v) E has at least one double poifthas genus 1.
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_Inthe cases wheE has genus OD has at least 3 zeroes and when
E has genus,D has at least one zero. It follows tHatmust be zero on
E in each of the above cases. This proves the lemma.

For the proofs of the results in this section we refeiio [1].

E) Deformation Theory
In this section we consider complete curvesuch that,

i) Xisreduced, connected;

i) if P € X is a singular point ofX then P is necessarily ordinary
K[ v
_ (xy)
of the local ringOx p of X atP).

double point, i.e.Oxp =~ , (Ox p denotes the completion

It is clear that such a curv€ is a local complete intersection.

Definition 0.1.9. A (flat) deformation of X over a complete local K-
algebra A is a flat morphism : X — SpecA such that the special fibre
of ¢ (i.e., the fibre over the closed point of Spec A) is isomorfuhiX.

Recall that the set of first order deformation)¢f{i.e. deformations
over Spec@) is canonically identified with Ex{Q%, Ox), (Q is the
&

sheaf of Kaheer dferentials orX).
Note the following lemma. 16

Lemma 0.2.0. Ext}(QL, Ox) = 0.
Proof. The result follows from the following observations.
i) We have the following spectral sequence.
HP(X, Ext%(Q}, Ox)) = ExtP*4(Q}, Ox).
Since dimX = 1, H2(X, Ext°(Q}, Ox)) = 0. SinceQ, is locally

free except at a finite number of points, (@}, Ox) has support
at only finitely many points and hen¢¢'(X, Ext'(Q%, Ox)) = 0.
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i) Locally X can be embedded in affiaeN-spaceAN. Let| be be the
ideal sheaf defining in AN. Q)l( has the following free resolution.

I
O—>|—2—>QXN®OX—>Q}(—>O

It follows that Exf(QL, Ox)) = 0.

Now it is immediate that EX{QL, Ox)) = 0. Thus there are no ob-

: - : A .
structions to lifting deformations over Specto deformations of over

SpecA (A denotes an Artin local ring with residue fiekd, J an ideal
in A). Equivalently the functor of deformations ®fover an Artin local
K-algebra is formally smooth. We have the following theorem. o

Theorem 0.2.1. There exists a formal scherXeand a proper flat mor-
phismp : X — SpedK|[[ts,ta,....t]] = T, (r = dimExt{(Q2, Ox)),
such that the special fibre af is isomorphic to X. Further the mor-
phismz has the following properties.

i) Given a deformationX — SpecA of X over an Artin local K-
algebra A, there exists a morphism: SpecA — T such that
X — SpecA is obtained formy : X — T by the base change
p SpecA—-T.

Klw]
w2
the tangent space of T at the closed point is canonically aphic

to Ext'(QL, Ox).

ii) Inthe case when A the above morphismis unique so that

n: X - T is called a versal deformation space for X.

In the case when EXQL, Ox) = 0,57 : X — T is universal i.e. the
morphismp is always unique. Thus X is a stable curve then a versal
deformation is universal (cf. lemnia0ll.7 pdgé 10). Furdiece the
invertible sheatvy 1 is relatively ampleX is the formal completion of a
unigue scheme, proper and flat oWerWe have the following theorem.

Theorem 0.2.2.1f X is a stable curve then the versal deformatipn
X — T is universal and algebraizable.
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Another fact aboug : X — T (X a stable curve) is that generic fibre
of n is nonsingular.

F) In this section we prove some results and make a few defisiti 18
which will be needed in the sequel. We first proveffolid’s theorem for
areduced curve with ordinary double points. The proof ia fgnerality

is due to Gieseker and Morrison.

Theorem 0.2.3(Clifford’s theorem) Let X be a reduced curve with only
nodes and let L be a a line bundle on X generated by globalcsectif
HL(X, L) # 0, there is a curve G- X so that

deg- L
2

Proof. SinceH(X,L) # 0, HO(X,L™* ® wx) # 0, (wx is the dualiz-

ing sheaf ofX). So there is a non-zerp : L — wp. We can find

a curveC c X so thaty is not identically zero on each component

of C, but ¢ vanishes at all point€ N X-C = {P4,...,Py}. Since

we = wx(—P1... - Py), we actually obtain

+1

ho(C,L) <

¢ Lc > wc.

Choose abasis, ..., s of Hom(Lc, wc) so thaty = s;. We can choose
abasid; ...ty of H°(Lc) so thatt; does not vanish at the zerossafnor
any singular point o€. Suppose

a[sy, t1] + ap[sy, to] + -+ = bp[ S, t1] + b3[s3, 1] + - - -
where B, t] is in H°(C, wc). Then 19
[s1,t] = [s ]

wheret € H°(C, Lc) andsis a linear combination of,, . .., .. Hencet
is a multiple ofty, sincet vanishes wherg does. Hence is a multiple
of 1, contradicting the independence of tfe. So

h°(Lc) - h°(Let @ we) < g+1

and
h°(Lc) + h°(Le* ® we) < dege(L) +1-g.

Adding gives the desired result. O
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Lemma 0.2.4. Fix two integers g= 2, d > 20(g — 1) and put N= d —g.

There exists a constaat> 0 such that for all integers not all zerog
N

ri<---<rn, 2 r=0andforallintegerdd =g <e; <--- < ey =d,
i=0

satisfying,

i) ifej>29—-2theng>i+g,
ii) ife; <2g-2then g > 2i,

there exists a sequence of integbrs i; < iy < --- < ix = N, making
the following inequality true.

k-1

€. T 6
> ) B e e 10 ®
t=1

Proof. We use the following combinatorial lemma proved by Morrison
i

Fix integers 0= g < €1 < --- < ey. Define a function

: +a+)
T(rOa r]_, RN rN) = . mln Z(r|t r.|t+1) e

O=i1<-<ig=N

N
= 0 are numbers withy, rj = 1. Then
i=0

whererg > r; > ...

[\

. . 1
maximum value ofl iS Tmax= = max
2 ie(d,.. N}

Z €
We modify inequality[ﬂl) as follows.

’

r
Letr/ =ri+|ro|,R= Zr _(N+1)|ro|,r”— ,(0 <i < N). Inequal-

ity (@) can be easily seen to be equivalent to the followireginality

N (at+1 a) ’” 1 ’7
Z( TS > e - ) e
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N
Here 0= rg Sry << X =1 Transferring we get,
i=0
+ g .
enry — Z(rlm— r’) a‘” G . NJ':'l—erl’\], ie
k-1
’ n(EN-8,+ten—8) en
Z(rim— ) ‘12 . <N &
t=1

ForO<i < N, lete = ey —ex-j andr{” = r{_,. Thus we have

0
Also it follows from conditions i) and ii) that,

N
OI%SGG_S"'SEKN:CI, r”’zri”z...zr;\’l”Zri’”:l
i=0

i) if & <d-(2g- 2) thene/ <1,
ii) if & >d— (29— 2) thene < g+ 2i -

The last inequality can be written as,

x~

-1
(r/// 1" )e(N—iHl + e(N—it EN ”

Neitr — TN > “N+1 -1ty

—
1l
=

It follows from Morrison’s combinatorial lemma that thergists
i €{1,2...,N}and a sequence of integers=ON —ix < N — i1 <
-+ < N —i; = N such that the following inequality is true.

1244 IN ( N—it+1 + EIN—it) 1 éI2
Z(rN i1 'N- |t 2 < E i—1
ief — 3 eg
=1

Thus to prove the lemma it fiices to prove that there exists an- 0
such that for any sequence of integers @) < €; < --- < e =das
above and for all ki <N,

1 qz d

1 “N+1
Zé
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This can be easily checked using the bounde{pa’ N

p
Let X = | X; be a curve, X; is an irreducible component & 1 <

i=1 _ _
i < p). Letn : Xreg = Xireq b€ the normalization oXjeg and letX be

— p —
the disjoint unionX = | J Xjreq. We have closed immersions (inclusions)

N Xieg — X. Letn’ : X — Xired b€ the morphism such that the
restriction of the morphismr = nor’ to Xieq is the morphismy;or;,
A<i<p).

Definition 0.2.5. The morphisnx : X — X is defined to be the normal-
ization of X.

Let V be a vector space of dimensiarand let
ocVicVoc---cV, =V, A
be afiltration ofV. Putn = dimV,;, (1 <i <r).

Definition 0.2.6. In the above situation a basis,wy,...,vy of V is
said to be a basis relative to the filtration (F) if Wy, . .., vy, is a basis
of Vi; Vi, Vo, ..., Viny, Ving,qs - - - » Vin, IS @ basis of Y, etc.



Chapter 1

Stability of Curves

Fix a polynomialP(m) = dm- g + 1 whereg andd are integers with 23
g > 2andd > 20(g - 1). PutN = d — g. In this chapter we prove
that there exists an integen, such that ifX is a connected nonsin-
gular (nondegenerate) curve it with Hilbert polynomial P(m) then

P(my)
the mi" Hilbert point of X, Hy, (X) € P( A )HO(PN, Opn(my)) (cf. def-
inition pagdl4) is stable for the natural actionSdfiN + 1) on

P(mo)
P( A HO(PN, Opn(my))) (cf. definition[0H pagEl 2). We prove further
that if X is a connected curve iflN, with Hilbert polynomialP(m) such

P(mo)
that themi! Hilbert point of X, Hy (X) € P( A HO(PN, Opn(My))) is
semistable, theX is semistable in the sense of definition0.1.4 (ddge 8).
Recall that all curveX in PN, such that the Hilbert polynomial of

is P(m), are parametrized by a projective algebraic schemeHséof.
inclusion

Hilbert scheme, pad@ 8). L&t——— PN x H be the universal closed
subscheme and 1& > H be the composite

inclusion projection

Z—L5PNxH

Z 2, H can be viewed as a family of curves parametrizedHoguch

that for all geometric pointe € H the fibreXy, of Z ™, Hoverhis a

curve inIPl'(\{h) andP(m) is the polynomial ofX;,.

Notation:

17
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24 i) By “a curve in the familyZy —5 H” we mean the fibre oZy —s
H over a closed point dfl, which is connected.

ii) X denotes a curve in the famiBj, LNy

iii) Ix denotes the ideal sheaf of nilpotentsOR.
iv) 7: X — X denotes the normalization f

v) L denotes the restrictions Qfpn (1) to X.

vi) L’ denotes the line bundle'L on X.

vii) ¢m denotes the natural restriction,

om : HO(PN, Oan(m)) — HO(X, L™), me Z.

viii) By a nondegenerate curve in the famiy, ™, H we mean a curve
in the family Zy LR H, which is a nondegenerate curveril.

Note the following assertions. There exists positive iategY, m’”,
m”, gi, Oz, O3, p1, 2 With m” > nm?, m” > 2, g3 > g, u1 > p2 such
that for every curveX in the family Z LR H, the following is true:

i) For all integersm > nv, HY(X, L™ = 0 = HY(X, L'™).
i) 15 =0.
25 i) h°(X,1x) < qp.
iv) For every complete subcun@ of X, h°(C, O¢) < qs.

, , . O
v) For every pointP € X and for all integers > O, dim—=F <

X,P
uar + uz, (Oxp is the local ringX at P and my p is the maximal
ideal inOx p).

vi) Forevery subcurv€ of X, for every pointP € C and for all integers
m’,m>r>m’, HY(C, 1™ LY = 0, (I is the ideal subsheaf of
Oc defining the poinP € C).
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vii) For a geometric poinh € H let X, denotes the fibre o LN

P(m)
overh e H. Form > nt let Y, : H — P( A )HO(PN, OpN(m))) be
the morphism defined hy,(h) = Hyn(X;). For all integem > m'”’,
Ymis a closed immersion.

We do not try prove these assertions as these can be proveéaby s
dard arguments.

Fix a basisXg, X1, ..., Xy Of HO(PN,OPN(:L)). Consider the action
of GL(N + 1) (and hencé& L(N + 1)) onHO(PN, Opn(1)), defined by

N
[j].Xp = > ap;Xj, [&j] € GLIN+1), (0<p<N).

=0

The above action o8 L(N + 1) onH°(PN, Opn(1)) induces an action of

P(m)
SL(N + 1) onP( A YHO(PN, Opn(my)), (cf. pagd®).
In the above situation we have the following theorem.

Theorem 1.0.0. There exists an integergm» max {m”’,dq(3d + m” + 26
5)} such that for every nondegenerate nonsingular curve X itficthnély

Zy 2% H, the nf Hilbert point of X,
P(mo)
Hm, (X) € P( A HO(PN, Opn(my))) is stable

Remark. It will follow from the proof that there exist infinitely many
integersm > max.{m’"”’, dq(3d + m’’ + 5)} such that for every nondegen-
erate nonsingular curv¥ in the family Zy L H, them™ Hilbert point
of X,

P(my) _
Hm(X) € P( A HO(PN, Oan(m))) is stable.

Proof. It suffices tn prove that there exists an integgr> max.{m”’,
dq(3d + m” + 5)}, such that, for every nondegenerate nonsingular curve

X in the family Zy P, H and for every I- pst of SYN + 1), them!

P(mo)
Hilbert point of X, Hn (X) € P( A HO(PN, Opn(my))) is A-stable, (cf.
theoren0.0)9 padé 3). O
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Let X be a nondegenerate nonsingular curve in the faﬁu'lypi> H
and let1 be a I-psof S L(N+1). There exists a basis BIP(PN, Opn (1)),
N

say,Wo, Wy, ..., Wy, and integersg < ry <--- <ry, 2, ri = 0, such that
i=0

the action oft on HO(PN, Opn(1)) is given by,
Aw; =twi, te K", (0<i<N)

It is easily seen that the natural restriction mgap: HO(PN, Opn (1)) —
HO(X, L) is an isomorphism. Let;(wi) = w/,0<i < N. LetF;_; be the
invertible subsheaf df generated by, wy, ... ,W'j_l, degFj_1 = €j_1,
1 < j < N+ 1. Note that the integeisy, e1, . . ., ey satisfy,
i) if e >2g9—-2thenej > j+g,
i) if ej <2g-2thene; > 2j.
This is immediate by the Riemann-Roch theorem anéf@d’s the-
orem.
It follows from the combinatorial lemma0.2.4 (pegéd 14) ttrere

exists a constart > 0 such that for all integers, 8 € <€ <<
ey =d, satisfying conditions i) and ii) and for all integer§ < ry <

=T Z rl = 0; there exist integers § iy < iz < --- <ix,= N such

that the foIIowmg inequality holds

|t+l + d't) ’ ’ ’
Z( P o) > ey +e(ry = 1)

In particular, there exist integer8i; < i, < --- <ix = N, such that,
Z(rIt+1 a“' S > ryen + &(rn — o).

Recall that for all positive integens andn, H(PN, Opn((p + 1)N))
has a basiBpp.1n = (M1, Mg, .. ., Ma<p+1)n} consisting of monomials for
degree p + 1)nin Wo, Wi, .. ., W, (@(p+1)n) = h°(PN, Opn(p + 1)N).
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Let V;, be the subspace &f°(PN, Opn (1)), generated by
Si, = {wWo,ws,...,w,}, (1<t<K). Forallintegerds,ty, swith 1 <
tt < tb < kand 0 < s < p let (\/i'fl_S . Vifz - VN)" be the
subspace of°(PN, Opn((p + 1)n)) generated by elementsof the type
W = ViVo...Vn, Wherev,(1 <r < n)is as follows.

Fors=0,Vr = X X, ... X%, (X, € Si,, 1< <Pz eS);
for0< s<p, Vi =X, Xy - Xe(p-9 Y11 Vrp - - - YroZr
(%; €S, 1<j<p-Sy €S, ,1<|<S; z €S));
fors=p,vi =YV, Y1,z O € Siy,, 1< ] < p % €Sj)
These subspaces define the following filtratiotd8{PN, Opn ((p+1)")).

0c (V- VR - W) c (V- VE- V)" e e (V- VI V)"
(VP VE V) (VP VE ) e
CVP- VR V)" C (VP Vi - V)T e (VT VR W) e

Ite1 Ite1 It

c (VP Ve V) e (VP VE V) e e (VE VP vy)"

i1 ik i1 i1

C (V2 - V- V)" = HOEN, Opn((p + 1)n)), (F)
Assume now thatf{ + 1)n > m’ so that the natural restriction map

@+n - HOEN, Opn((p + 1n)) — HO(X,LP*DN) is surjective. For 29

integer O< s< pand 1<t <k let (VP™°- V2 - V)" = (VP>

VS - V)" c HO(X, LD We have the following filtration oH°(X,

it+l

L(p+1)n).

0c (VP V2 V)" c (VP Vi - W) e (VP2 Ve V) e

lt+1
(VR , - VP - V)" = Ho(X, LP*Dn) (F)
Rewrite the basi8.1), as
Bpron = {ML Mz ... Mp o1y Mppiaynye - - - Méypany) SO that
M3, M., .. Mpy .1y 1S @ basis oH(X, L(P+Dn) relative to the fil-
tration (F) andMp . 13,1 - - - Mgy, @re the rest of the monomials in
B(p+1)n In some order.

Let X’ be a nondegenerate nonsingular curve in the faz}hlyp—H>
H,L’ be the restriction opn(1) to X', X, X],..., X{, be a basis of
HO@N, Opn(1)). LetFi_1 be the invertible subsheaf af generated by
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the images ob(é, X .,Xjf_l under the natural restrictiap, : Ho(PN,
Opn(l)) —» HO(X,L),(2 < j < N+ 1). We claim that there exists
an integemy such that for all integera > n’, 0 < t; <t < N for

. . . PH . .
all nonsingular curveX’ in the familyzy — H and for all invertible
sheaves , F{,L’ as above,

(VP2 V- V)N = HO(X, (FP S e Ffe L)),

(VP V(S Vy )" is defined in the same way ag °- V§ - \7N)”].
_Indeed,F;""* and F{* are generated by the sections\iff° and
Vi;, and the linear systerd] is very ample. Thus the linear system
W = VP V(5. vy, is very ample and generatbb= F" *@ FS® L'
Lety : X’ — P(W) be the projective embedding derived fraMand
let | be the ideal ofy(X’). Forn >> 0, HY(P(W), I (n)) = 0. For such,
the map fromW" to H°(X’, M") is onto. Our claim follows provided we
can pickn’ independent oK’ and integers, t,. This can be done using
standard techniques. Thus for integers@; <t < N, 0 < s < p,

n > n" we have

(VO™ Ve - V)" = HO(X, (FE @ FS @ L)").

2d+1

Choose integerg, and ny such thatp, > max.{d + g, }, Ng >
&

max.{po, '} andmy, = (po + 1)ng > max.{m’”’, dg(3d + m"” + 5)}. It then

follows by the Riemann-Roch theorem that

dim(VP™S- V2 V)™ = no((po — 98, + S8, + en) —g+ 1,
(0O<s<p, 1<t<k).

We now estimate,

P(mo)
total 1-weight of M/, Mé,...,M};(mo) = _21 W (M),
1=

(cf. definition[@IL pagEl5). Note that a mononiidle (Vi’:"‘s- S

V)" — (VP VL. V) hasa-weightwa(M) < no((po — 9)ri, +
Sfi,, +IN)-



P(mo) L
D Wa(M7) < No(Poriy + N)(dim VI - V2 - Vi)™

i=1

+ No((Po — 1)y + Tiy + (@AM V- V)™ — (dim VI - V) - Vi)™
+No((Po — 2)ri, + 2ri, + r,\l)(dim(\/i'fl’o‘2 -VZ - Vn)"™ — (dim Vi'[l’o‘1 VL V)"™)

+ No((Po = i + St + MN)(AIMVP™ - VE V)™ — dim(VP~s" . VEL. vy))

It+l
.
+ No((Pori + )MV, - VI - V)™ = (dim Vit - VP~ Vi)™
= No(Pofi; + 'N)(No(Po€l;, +en) — g+ 1)
+12((Po = )iy + iy + IN)(8;, — &) + N3((Po — 2)riy + T, + IN)(E;, — €)
+ -+ M5((Po = iy + Shiyy + IN)(Ey — &) + -+ + M5(Poliy + IN)(E, — &, ;)

sannD Jo Aligers

€e
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= ngporileN + nngeN + No(Pori; +n)(1 - Q)

Po
+13 (o= iy + ST, + Tn)(8, —8,) + -

s=1

Po
+ 13 Z((p0 — iy + Sl +IN)(Es —6) + -
1

Po
#1833 ((Po = iy + ST +TN)(8, — €,).
s=1

(@, = & = 0) < NgrNen + NoPofi, (1 — 0)
o[ (Po = 1)Poli, + Po(Po + 1)ri,

" ng (po z)porh " pO(pO '; )r|t+1 + porN](aul _ at) + ...
- — 1par; + 2)r;
N ng (Po 2)po her po(p02 i + porN](ak -e,,)

iy =ro<0, ry(1-9) <0)
= n2rnen + NoPoriy (1 - 9)
n3pg

T

[(riz + ril)(az - al) +-+ (rit+1 + rit)(aul - at) +--

2
+ (rik + rik—l)(ak - ak—1)] + %[(riz - ril)(az - al) +--

+ (rit,l - rit)(am) +-ot (rik - rik,l)(ak - Qk,l)
k-1

+2ry Z(aH—l - at)]
t=1

S (Bus — &)
= nngeN + noporil(l - g)ngpg Z(riHl + rlt)%
t=1
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mm &)

+ nopo(Z«.M ) + (e, - 6y))

< norNeN +n2 p0 ril(l— 0)

S +€‘|
+ngp§[rNeN Z(r|t+1 t ( = )]

k-1
(Fi — in)e
+n§po[; lie 5 SEALL +rNak],
(=g, - ril)ak <0, g, =6-=0)
ST +Q
< ngpg[rNeN - Z:(rml ) ( " )]

r
&(f “‘2 ") +INE, + ] +n5(rnen + riy (1 - g))

(- pongt <1, ri,(1-g) > 0)
d(rn —ro)
2

(This follows from the lemma (page 27) and the facts that ro,
8, =en =d,ri =rn).

+ ngpo[

< 8] - oty ~ To)PR + puf +dng) +dy +1o(1- )|

d dr dr ro(1-9)
2 B B 2 a N N o
<n<2)(rN—ro)[—€p§+3dTpo+d+g_l]
o In ro(1-0)
('ETE<L_KT§<9 1)
3d d+ 1
= BP0t — o) — e + 5 + ]
Po
2d+1

<0,(. po>max.{d+g,

H

34
It is immediate from the above estimate and criterien(pagel®)

P(my)
that the pointHm (X) € P( A HO(PN, Opn(my))) is A-stable. Further,
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by our choice of the numbers p, and (o + 1)ng = My it is clear
from the above calculation that for every nonsingular cuXven the

family Zy B, H, for every 1- pst’ of SL(N + 1), the pointH (X’) €

P(my)
P( A HO(PN, Opn(my))) is A’-stable. This proves the result.
Now consider the closed immersion (cf. pdgé 19y : H —

P(my)
P( A HO(PN, Opn(mp))) wheremy, is the integer fixed in the above theo-
P(my)
rem [LOD. LetP( A HO(PN, Opn(mp)))SS be the open subset of

P(mo)
P( A HO(PN, Opn(my))) consisting of semistable points andVebe the
inverse image of this open set by the morphigr). LetZy = pﬁl(V).

By restricting the morphisnpy to Zy we obtain a familyzy »,ov

P(my)
of curvesX, such that them})h Hilbert point of X, Hyn (X) € P( A
HO(PN, On(my))) is semistable. The above theorEBm 1.0.0. asserts that
. pv . .
the familyZzy — V contains all the nondegenerate nonsingular curves
in the family Zy LLNITY
We are now ready to state the main theorem of these is lecbtes.n

Theorem 1.0.1.Every curve X in the family\Zi V is semistable
in the sense of definitidn_0.1.4. (pdde 8). Further trace eflthear
systemD| on X is complete,|D| is the complete linear system &
corresponding to the line bundlez(1) onPN).

Idea of the proof: The proof of the above theorem is divided in the
following proposition§”1.0]1Z,1.0.3., .,[L.0.9. The proofs of the propo-
sitions[LOP[1.013.,. ., [I.0.®. are on the same lines as follows. As-
sume that the proposition is not true, i.e., Xebe a curve in the family
Zy ®, v which does not have the property stated in the proposition.
Using this assumption we are able to produce-adst’ of SL(N + 1)

such that then{!" Hilbert point of X, Hy, (X) € P(P(/r{b)HO(IPN, Opn(My)))

is notA’-semistable.

In particular it follows thatHm (X) is not semistable, (cf. theordm010.9
pagdB). This contradiction then proves the proposition.
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In propositio_L.OJ7 we prove an important inequality (okquality
(+), propositionL.0J7, pade b5) which follows from the inegyan
criterion (<) (pagdl), used in the case of a particulapbl’ of S L(N +
1) and the integem,. Proposition§1.018 ald_1.D.9 are proved using the
above inequality.

Proposition 1.0.2. Every curve X in the family\Zi V is a nonde-
generate curve if?N i.e. X is not contained in any hyperplaneRH.

Proof. Suppose that the result is not true i.e. suppose that thests ex

curve X in the family zZy, ®, v such thatX c PN is a degenerate curve3sé
We will show that this leads to the contradiction that thg Hilbert

P(my)
point of X, Hy (X) € P( A HO(PN, Opn(my))) is not semistable. This
contradiction will then prove the result. O

That X is a degenerate curve il means that the restriction map
@1 @ HO(BN, Opn(1)) — HO(Xrea Lx,,) has nontrivial kernel, saW,.
Let dimW, = No. Choose a basis &y = HO(PN, Oxn(1)) relative to
the filtration 0c Wy, € Wi, sayWo, Wy, ..., WN,-1, - - ., WN, (Cf. defini-
tion[0.2Z.6 pag€16).

Let A be a 1- psof GL(N + 1) such that the induced action &bn
W, is given by,

Awi =w;, teK*, (0<i<Ny-1),
Aw =w;, teK*, (No<i<N).

Let A’ be the - psof S L(N + 1) associated to the-dpst of GL(N + 1),
(cf. definition[QLP, paggl 7). The rest of the proof considtshowing
thatHm, (X) is notA’-semistable.

Assume now thatn > v so thatH*(X, L™) = 0 and the restriction

om : HO@N, Opn (M) — HO(X, L™) surjective.

Let By = {M1, Ma, ..., M, } be a basis oH°(PN, Oun(m)) consisting

of monomials of degreen in wo, Wy, ..., Wy, (@m = h°(PN, On(m))). 37
Recall that we have chosen the integersuch thatl ;‘(1 = 0 wherelx
denotes the ideal sheaf of nilpotents0g, (cf. pagd_IB).
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ForO< s< g —1<mletWs* W™ be the subspace of

HOo®N, Opn(m)) generated by elemenisof the type
Xi € W, 1<i<th-s

W=X1X>-+Xy _ eV
1X2 -+ Xg, -sY1Y2 - - - Ym-qu+s yie W, 1<i<m-gu+s

PutWg.Wi" = HO(PN, Opn(m)). We have the following filtration of
HO®™, Opn(m)),
0c th m—Ch Wﬁh 1 m—Q1+1 th 2 m—Q1+2 c
..Wé.WI”‘ WS.WT = °(PN,0PN(m)), (F)

For< s< g1 < mlet,

qu S m—q1+s (qu S m—q1+s)
< HO(X, L™), dimWg S W %*S = g

These subspaces define the following filtratioHS{X, L™).

0= W WI™% ¢ WaL Wi ¢ a2 Wi

CWLWIT  WOWI = HO(X, L™), ()

Rewrite the basi®m asBm = {M}, M, ..., Mg 0. Mg o MG )
such that{om(M?), gom(l\/lé) .,gam(MP(m)) is a basis oH°(X, L™ reI-

ative to the filtration(F) and MP(m e M};(m)ﬂ, M, are the rest of
the monomials iBy, in some order. We now estimate totalveight

of M, MJ, ..., Mbm) = Z WA(M) (cf. definition[0. Tl pagd 5). It fol-

lows from the deflnmon of/l, that a monomiaM € Wg' > w;" **° —

\/\/gl‘S”,Wi‘”‘qﬁs‘l hasA-weightW,(m) =m—-qg; + s, (1 < s< ).

P(m)

D wa(M) = m(Bg, — Boy-1) + (M= 1)(Bg; -1 — Boy-2)+
i=1

.. +(m—q1+ l)ﬂl
qi-1

=MBg, — Y fs = m(dm-g+1) - (da - 1)(dm-g+1)
s=1
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(-Bs<h° (X, L™ =dm-g+1,1<s<q-1)

Thuspg) Wy (M) > (M- +1)([dm-g+1), (E1)
i=1

N
total A-weight ofwg, w1, ..., Wn = > Wi(w;)
i=0

= dimW, — dimW,, (Follows from the definition oft )
=d-g+1-dmW,<d-g, (- dimW, > 1)

Thusgj wy(w)<d-g, (E2)
i20

We are now ready to get the contradiction thatri§&Hilbert point

of X, Hm,(X) is not semistable.

If Hn(X) is " semistable then there exists monomisisM; ...

29

bl

M/ inBy(l <i1 <iz <--- <ipm < am), such thai{gom(l\/li'l),gom

IP(m)

(M), ....em(M/, )}is abasis oH°(X, L™) and

IP(m)

P(m) N
2 wWa(M7) 2 wa(wi)
mP(m) = d-g+1

(cf. criterion (**) pagdY).
Observe thatz Wy(M) < _2 W,l(l\/l ) Note the following.

T 3 wiw)

i=1

(dm—g+1)s d-g+1

Hm(X) is A’ — semistable=

(m-gi +1)dm-g+1) __d-g
m(dm-g+ 1) “d-g+1
h—1 < d-g 1 _G-1
m d- g+1 d-g+1~ m
=>m<(d-g+1)m-1)=m<m

=1-

(Follows from €;), (E2))

39
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(-d-g+ D -1) <my)

ThusHp, (X) is notA’-semistable. In particular it follows théty, (X) is
not semistable. (cf. theordm 0.0.9 p&@ie 3. This contradigiroves the
result.

The above proof can be considered as the prototype of thésppbo

the next propositions_1.0.8. 1.0 A TI0[5.1.0.6.

Proposition 1.0.3. Every curve X in the family\Zi V is generically

reduced i.e. the local ring of X, at each generic point of Xeduced.

Proof. Assume the contrary. LeX be a curve in the familyzy o,
p

V such thatX is not generically reduced. Writd = [J X, (X, an

i=1
irreducible component oX, 1 < i < p) so that the local ring oK at

the generic point o; is not reduced. We will show that this leads

P(my)
to the contradiction that the! Hilbert point of X, Hm,(X) € P( A
(PN, Opn(my))) is not semistable. This contradiction will then prove th
result. m]

Letdeg, ,L =&, 1<i < p. Itiseasy to see that dég= d =

p
2. kig for some positive integets;, ko, . . ., kp, with ky > 2. LetW, be
i=1

the kernel of the natural restriction map

@1 - HO(PN, Opn (1)) = HO(Xireds L oy)-
Claim : Wy # 0.
Proof of the Claim: Look at the exact sequence,
0 — Oxyeq — Lxyes — Ob, — 0,

whereD1 is a divisor onXyeq, corresponding to the line bundle, .,
on Xired, Such thaD; has support in the smooth locusX{. It follows
from the corresponding long exact cohomology sequence that

h°(Xireds Lxeq) < h°(Xired, Op,) + h°(Xired, Oxe) = €1 + 1.
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Now note the following.

Wo=0=d-g+1=h(PN Opn(1)) < h°(Xired, Lx,oq) < €1+ 1

p p
sd-g<e=kd-9+ ) ke <kien+ ) ke =d
i=2 i=2

p
_ (k1 — 1)d
i(kl—l)dsklg—;masklgi <9

ki—1
ke

2

NI

:gsgumzz; )

d<2g.

It is immediate from the above contradiction th&f # 0. Also
in view of the Propositiol_L.0.2 (pa§iel27) it follows thatcannot be
irreducible.

Let dimW, = No. Choose a basis &, = HO(PN, Opn(1)) relative
to the filtration Oc W, ¢ W, say{Wo, Wi, . .., Wn,-1, WN, - - - » WN}, (CF.
Definition[0.Z.6 pagE116).

Let A be a 1- psof GL(N + 1) such that the action of on W is given
by

A0wi =w;, t e K (0<i<Ng-1),
Awi =tw, t e K (No<i<N).

Let A’ be the + psof SL(N + 1) associated to the-1psA of GL(N + 1),
(cf. definition[0 P pagEl 7). The rest of the proof consi$tshmwing
thatHy, (X) is notA” -semistable.
Assume now thain > nv so thatH(X, L™) = 0 and the restriction 42
om : (HO®N, Opn(m)) — HO(X,L™) is surjective. Recall thait|®
(P, Opn(m)) has a basi8m = {M1, My, ..., M, } consisting of monomi-
als lof degreenin wo, ws, ..., Wy, (@m = h°(PN, Opn(m))).
For 0 < r < m, let Wg™".W] be the subspace ¢f°(P, Opn(m))

generated by elemenigof the following type.
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Forr =0,
W= X1Xo,...,Xm, (Xj€Wo, 1<j<m),
forO<r <m,

W= X1X27---’Xm—ry1y27---,y“
(XjeWo, 1< j<m-r;yjeW,1<j<r),

forr =m,

W=VYi¥o,....¥m (YjEWL, 1<j<m).
We have the following filtration oH°(P, Opn(mM)).

0c WIWP c Wit Wi c W2 w2 c -
c WE WS c Wet Wt oL WW = HO(P, Opn (M),
(F)

Let W™ WE = om(WITWE) c HO(X, L™), dimWI" WL = f;,0 <
r<m.
These subspaces define the following filtratiorH8{X, L™).

0c WIWE WL Wi c W2 w2 -

o — 01— _ _

cWIW e W W - c WOWT = HO(X L), (F)
Rewrite the basisBn = {M],Mj,....Mp,..... Mg } such that
{em(M), p(M)), ... ,gam(M,;(m))} is a basis oH°(X, L™) relative to the
filtrati(_)n (F)and M};(m), M,’,(m)+1, ..M, are the rest of the monomials
in By in some order.

Let C be the closure oK — X; in X. SinceX is connected, there
exists a (closed) point, s&X; N C.

Claim. C can be given the structure of a closed subscheme of X such
that the kernal of the restriction magy, : H°(X,L™ — H°(C,LY)
intersectsW(™".W] in the null space i.e. Wg"".W] N kernelgp, = 0,
O<r<m-aq.
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The proof of the above claim is somewhat technical. Heneiras
ing the claim we will prove the proposition and then we will gothe
proof of the claim.

Let | denote the ideal subsheaf©f defining the poinP € C.

Oc
I m-r

The exact sequence0 I "L — LT —
the following long exact sequence.

®Ld — 0, given

o)
0— H°(C,I™" @ L) - H°(C, L) - Ho(C, == L)

I m-r

- HY{C, 1™ L] —»0

44
Now make the following observations.

) h°(C,LY) = x(LY) = deg: L™ + x(Oc) < (d - 2e1)m+h°(C,Oc) <
(d-2e;)m+qz (cf. assertion iv, pageL8).

e ) .
i) Since —< & LE has support only at the poifte C,

Im—r
Oc . Ocp
h°(C—®Lm)=d|m[ : ]zm—r
> m-r C mg\g ’

(Ocp is the local ring ofC at P andmcp is the maximal ideal in
Oc.p)-

O .10
iii) Note that h°(C, |mE:r ® LM = dlm[mrci’_:r] < pa(m—=r) + po (cf.

assertionv, page[IB). Hence it follows from the above long exact
cohomology sequence that(C, ™" ® LT) < ua(m—r) + up, 0 <
r<m’-1.

iv) Form” <r < m—qy, HY(C, I™"®LY) = 0 (cf. assertiowi pagdIB).

v) By definition the image oI "W, c H°(X, L™ under the restric-
tion ¢p, is contained in the subspatf(C, ™" ® L) of H(C, LY).

It follows that, 45

Br = dim(WI™" W} < hO(C, 1™ @ L)
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= h°(C.LT) - h°(C Oc

> m-r

® L) +h'(C, 1™ o LT

<(d-2e)m+gz+r—-m+ui(m-r)+us, (O<r<m’-1)
Br<(d-2e)m+agz+r-m (M’ <r<m-oay)
fr<dm-g+1, (M-h+1<r<m-1)

(For the last inequality note tha; < h°(X,L™) = dm-g+ 1).

P(m)
We now estimate total-weight of M7, M7, .. M.’:(m) = WA(M ).

Note that a monomiaM e Wi"W, — Wg~"+wi- = has/l -weight
Wy (M) =r.

P(m) m m-1
D) = 3.1~ = = 3
- m’-1 - m-q ”
= MBm — Br — Br = Z Br
=0 r=m’ r=m-q+1
m-0u

>mdm-g+1)- Z [(d—Zel)m+q3+r—m]
r=0
m’-1 m-1

[,u(m—r)+y2] - Z [dm—g+ 1]

r=0 r=m-g;+1
= dn? + (- g) - [(m- g1 + 1)(d - Ze)m+ (M- 6 + 1)as

. (m—ql)(r121—q1+ 1) —(m—q1+1)m]

’

-1
[t = 0 T | - (@ - DEmM- g+ 1)

= (2e1 + %)mz—m[(l—ql)(d—zel)+q3+ % -0 — (1 - o) +pam”

gu(az - 1) N i’ (m” - 1)

+S( - 1)+g-1]+ (1 - 1)gzs - 5 >

—p2m’ +(qu - 1)@-1)

> 20+ - m] (@~ 1@+ D+ (@ -00) +pamt +9- 5

(2e1+ )m2 ms
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(5= - D@81+ 1)+ (@ - 0+t .9~ 3]

Thus, 46

R(m)

D wi(M) = (261 + )P - mS E)
i=1

Clearly,
N

> wWy(w) = dimW; — dimW,, (Follows from the definition oft)
i=0

< hO(XIred, LX|red) = el + 19 (E2)

We are now ready to get the contradiction thét Hilbert point of X,
Hm, (X) is notA’— semistable.
If Hn(X) is 2’— semistable i > m’) then there exists monomi-

als Mi’l,Mi’z,...,Mi’Pm(l < iy <ip < -+ < lipm < am) such that
{em(M)), em(M)), - .., gom(Mi’P(m))} is a basis oHy(X, L™ and
P(m)

Z WA(Mi’j g: WJ(Wi)
=1 i=0

m(dm-g+ 1) < d-g+1’
(cf. criterion ¢=) pag€dY). It is easy to see that

P(m)

Dowa(M) < " Pmw (M),
i=1

=1

Thus,
Hm(X) is 2’—semistablerfi > n)

P(m) N
XowaM) 5 wiw)

= <
mdm-g+1) " d-g+1
e+ 3P -ms e +1

mdm—g+ 1) < d_g+1 (Follows from E;) and E>))

47
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LCat3)-5 e+l
d “d-g+1

:>(d—g+1)(261+%)—w<d(el+l)
::’d(el_%)_(g_l)(zel"'%)ﬁw:ls W’

(- der— 3) - (@~ )21+ 3) 2 1)
>m<Sd-g+1)=m<my, (-mp>S(d-g+1))

This proves that them})h Hilbert point of X, Hy, (X) is not A’'—
semistable. In particular, it follows thaty, (X) is not semistable, (cf.
theoren{0.0]9 padé 3). This contradiction proves the result

It remains to prove the claim. L&, P», ..., P; be all the associated
(closed) points ok, (a pointQ € X is called an associated point Xf
if the maximal ideal in the local ringy( of X at P is associated to the
zero ideal). Choose a finitdfae open covefU;} of X such that any of
the pointsPy, P, ..., Py belongs to exactly one of thd/sin {U;} and
further Ly, is trivial for everyU; in {U;}.

Let U; ~ SpecA; and letU; N Uk =~ SpecAi. In the ring A let

N
(0) = X qj be a primary decomposition of the zero ideal with,
=1

pij—primary for some prime idead;j in A;, (1 < j < n;). We can assume
without loss of generality that in thoddy such thatU; (| X1 # 0, Xy red
is defined by the prime idea];.

Define an ideal subshedfof Ox as follows. IfU; (N X1 # 0, then

N
in Uj, Jis defined by q;. If Uy Xy = 0 thenJ is defined by
j=2

N
2. 0Gij = (0). In Speddx = UiNU(i # K) there is no associated
=1

(closed) point ofX hence all the primary ideals in a primary decom-
position of the zero ideal ik are minimal and hence are uniquely
determined. Thus the above construction indeed defineseahstieaf.
Let C be the closed subscheme Xfdefined by the ideal. Let, ¢y, :
HO(X,L™) — Ho(C, LY) be the natural restriction. We now proceed to
prove thatWg™" - W] N Kernelgy, = 0, (0<r <m-qy).
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Let s € W™ - W™ () Kernel ¢f,,. It suffices to prove that for ev-
ery open setJ; in the coverU;, the restrictions of sto U; is zero.
Lety; be the isomorphisnhy, ~ A, Letyi(s) = g. If Uy Xy = 0 49
sinces e Kernel ¢y, means thas = 0. If Ui\ Xy # ¢ write & =
biby - - -bmrCiCo- - - ¢ whereby, by, ..., by are the images of the sec-
tions inW, andcg, ¢, . .., ¢ are the images of the sections\W, under
the isomorphismy, ~ A,. Sincem—-r > q, a € p?ll It is easy to

n
see that sincej@l pij)% = 0 andpiy is a minimal prime,piqll C 0.

N
Thusa; € g1. Now s € Kernel gy, henceg; € (1 g;. It follows that
n=2
N
g € (1 gj =0i.e.5 = 0. This completes the proof of the claim.
j=1

Now we want to prove that for every cur¥ein the familyzy B, V,
only singularities ofX;eq are ordinary double points. This will follow
from the next three propositiobs_ 0. T105.1.0.6.

Proposition 1.0.4. Let X be a curve in the faminVZi V. Every
singular point of Xeqis a double point.

Proof. Assume the contrary i.e. assume that there exists a pooft
multiplicity > 3 onXeg. We will show that this leads to the contradiction

P(my)
that them{ Hilbert point of X, Hy, (X) € P( A Ho(PN, Op(My))) is not
semistable and then the result will follow by the contraditct O

Let ¢ : HO(PN, Opn(1)) — k(P) be the evaluation map, whekéP)
is the residue field at the poiRt€ X. It is clear thatW, = kernely has 50
dimensionN. Choose a basis &/, saywg, W, ..., Wn_1 and extend it
to a basis oV, = HO(PN, Opn (1)) by adding a vector, sayy.
Let A be a 1- psof SL(N + 1) such that the induced action .obn
W, is given by,

AW, =w,te K, (0<i<N-1)
/l(t)WN =twy,t e K*.

The rest of the proof consists of showing titl, (X) is not- semista-
ble.



51

38 Stability of Curves

Let 7 : X — X be the normalization oKX (cf. definition[.Z.b
pagddb) and ldt” = 7*L. Assume now than > nv, so thatH(x, L") =
0 = HY(X, L'™) and the restriction

om - HO(PN, Oon(m)) — HO(X, L™) is surjective. Recall that°(PN,
Opn(M)) has a basi8m = {M1, My, ..., M, } consisting of monomials
of degreemin wg, Wy, ..., Wn.

For 0 < r < mlet Wi™"W! be the subspace of°(PV,
Opn(M)) generated by elementsof the following type.

Forr =0,

W = X1X2 - -+ Xm, (Xj € Wo,i < | <m);
forO<r <m,
W= X1 X2 XmrY1Y2 - Yro (Xj € Wo, 1 < j<m-r;y; e Wi, 1< j <);
forr = m,
W=Y1¥2: - ¥Ym, (Yj€Wp,1<j<m).

We have the following filtration oH°(PN, Opn (m)).

0c WIW2 c WMLt W] c - c WOWI = HO(BN, Oan(m)),  (F)
ForO<r <mlet,

W' WE = om(WITWE) € HO(X, L™), 8 = dimWS™" W'
These subspaces define the following filtratiorH8{X, L™).

0CcW WO c WIWE - cWS-W = HOX,L™),  (F)

Rewrite the basi8m asBm = {M], M3,.... Mp ). My 1o MG )
such thatem(M3), ¢m(M)), .. .,gom(MI’:,(m))} is a basis oH°(X, L™) rela-
tive to the filtration F (cf. definition [0.25 pagé 16) an¥y, ;.
Mbmys2 - - - » Mg, are the rest of the monomials By, in some order.
SinceP is a point of multiplicity> 3 on Xeg, We have the following

cases.

i) There exists exactly one component®fy, sayXy, passing through
P;
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i) There exist exactly two components ¥f.q, sayX; andX,, passing
throughP;

iil) There exist at least three componentsXafy, sayXi, Xp, X3, pass-
ing throughP.

In the first case choose three points, ayP,, Pz (not necessarily dis-52
tinct), from the fibrer~1(P) of = over P. In the second case note that
at least one of the componen¥s and X,, say X1, has degree= 3 in

PN andP e X; is a singular point ofX;. Choose three points, say
P1, P2, P3 from the fibrex~1(P) with P1, P> € X1 (not necessarily dis-
tinct), Pz € X, (X! denotes the normalization of; etc.). In the third
case choose 3 points, s#, P>, P3 from the fibrer—(P) with P, € Xy,

P2 € Xz, P3 € X3. In each of the above cases [2tdenote the divisor
P, + P,Pson X. _

We have homomorphismsg,, : H°(X,L™) — H°(X,L™). By def-
inition the image o™ - W] ¢ H°(X, L™) under the homomorphism
mm. is contained in the subspa¢¢®(X, L™((r — m)D)) of HO(X,L'™),

(0 <r <m-1). It follows that for O<r < m-1,

Br =dimWI" W! < h°(X, L"™((r — m)D)) + dim(kernelry, )
=dm+3r-m) —-gx+1+ hl()?, L"™((r — m)D)) + dim(kernelbry,,)
(The last equality follows from the Riemann-Roch theorem).
Claim. i) dim(kernebrm.) < qp,
(0 is the integer given in assertion iii) pagel18).

i) h'(X,L'™(r —mD)) <3(m-r), (O<r<q=2g9-2).

iy h1(X,L'™(r —-m)D)) =0, (q+1<r<m-1).
Proof of the Claim: 53

i) Recall that the morphism : X — X has the following factoriza-
tion.
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This gives the following commutative diagram.

HO(X le) O(X Lm)

\/

H (Xred,

Since the homomorphisw,,, is injective, kernelry,. = kernelip,..

Let Ix be the ideal sheaf of nilpotents @. |x has finite support,

X being generically reduced (cf. Proposition_110.3. dage B&-
call thath®(X, Ix) < go. Consider the cohomology exact sequence,
given by the following exact sequence.

0= IxeLl"->L"— L%ed—>0

It follows that kernelry,. = kernelin, = HO(X, Ix ® L™) and hence
dim(kernelry.) = h°(X, Ix ® L™) = h°(X, Ix) < Qp.

i) In view of the fact thatHl()?, L’™ = 0, this is immediate from the
long exact cohomology sequence associated to the exaarszgu

0-L""™((r-mD)) - L' — Om-np — 0
54

iii) This follows from the following general fact. LeT be an integral
nonsingular curve of genug and letM be a line bundle o€ of
degree> 2gc — 1. ThenH(C, M) =0

It follows from the claim and the last inequality that
Br = dimWI™" W) < dm+3( —m) —gg + 1+ 3(M-r) + g, (0< T <),
Br = dim(VT/O‘r.\K/{) <dm+3r-m-gx+1+q, (@+1<r<m-1)

P(m)
We now estimate total-weight of M7, MJ, ..., M/

P = & 2 Wa(M)).
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Note that a monomiall € Wi+ . Wi — Wi"*2. W~ hasi-weightr.

R(m)

ZWJ(M )= Zr(ﬁr Br-1) = MBrm Zﬁr

m-1

>mdm-g+1)- Z(dm+3(r m)—0gx+1+0q) - ZS(m—r)

3n? +1
=—--mg- gx+3q+—+q)+q(q2 )
3m? 3
> T_ms (SZ(Q—QX+3Q+§+Q2))~
P(m)
3P
Thus Z‘ wi(M) > == -ms (Ev)
N
Clearly, total1-weight ofwg, w1, ..., wy = X Wy(wi) = 1, (E2).
i=0

We are now ready to get the contradiction that nt{ Hilbert point of
X, Hn(X) is not semistable.

If Hn(X) is A-semistable, o > nY), then there exist monomialsss
Mi’l, Mi’z,...,Mi’P(m) iNn Bm, (1 < iy <i2 < -+ < ipm) < am) such that
{em(M]), em(M)), ..., em(M{_ )} is a basis oH°(X, L™ and

P(m)

_Z wa (M) ,_Eowﬂ(wi)

Ip(m)

mP(m) = d-g+1’
(cf. criterion ¢=) pag€dY). It is easily seen that

P(m) P(m)

Z W,I(MI,) < Z W/I(M(J)
i=1 j=1

Now note the following.
Hm(X) is A-semistable, i > ),

S M) B wa(w)
m(dm-g+ 1) d-g+1
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3 _ms 1
2 < (Follows from €1) and €2))
“mdm-g+1) d-g+1
3_S
-3 1 s Std-g+1)
ZTq Sdoge1 09T =d
1 S(d-g+1) 25(d-g+1)
=>2(d 3g+3)< m =M= d-3g+3 <45,
N .4d-g+1
(:d220Q-1) " gpm3 <2

=>m<m, (- mp > 4S).

It follows that Hy, (X) is not A-semistable and hendéy, (X) is not
semistable. (cf. theorem 0.D.9. pdde 3). This contradigiimves that
the only singularities 0K¢q are double points.

Thus we have proved that X is a curve in the familyzy LNV
andP € Xgqis a singular point, the® is necessarily a double point.
The singular poinP is either a cusp or a tacnode or an ordinary double
point. The next two propositions will exclude the first twospibilities
and this will prove that ifX is a curve in the familyzy », v then only
singularities ofX,eq are ordinary double points.

Proposition 1.0.5. If X is a curve in the family ¢ v then Xgqcan
not have a cusp singularity.

Proof. If the result were not true then there exists a curve, Xaijn

the family Zy ®, Vanda pointQ € Xeq such thatQ is a cusp. Let
Y be the unique irreducible componentXfpassing through the point
Q € X. LetC be the closure oK — Y in X. Letr : X — X be the
normalization ofX. By definition, X is a disjoint union offreq andCre.
Choose a poinP € Yeq such thatr(P) = Q. Since the poinQQ € X
is a cusp. the morphism is ramified at the poinP € X. We will
show that this leads to the contradiction that ni Hilbert point of X,

P(mo)
Hm (X) € P( A H°(@N, Opn(mp))) is not semistable. The result will
then follow by the contradiction. m|

Since the morphism is ramified at the poinP € Yyeq C X, Yied is
singular and hence degL > 3, (an integral curve of degree2 in PN
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is either a line or a conic and hence nonsingular). SinceudheeX is 57
not contained in any hyperplane iy (cf. propositiol’.OR. padeR7),
we think of W3 = HO(PN, Opn(1)) as a subspace 6f°(X, L). Let,

W, = {s € Ws|r.svanishes to order 3 atP}, dimW, = N,
W, = {s e Ws|r.svanishes to order 2 atP}, dimW; = Nj.

Choose a basis &3, relative to the filtration & W, ¢ Wy ¢ W3, say,
{wWi,Wo, ..., WNgys WNg+15 + + + > WNy > WNy+15 - - - W1} (Cf definition[0.Z.6
pagd1b). Left be a 1- psof GL(N + 1) such that the action afon W3

is given by,

Aw; =wj,te K, (1 <i < Np),
A0w; = twj,t e K, (Ng +1<i <Ny
Atw; = tBwi, t e K, (Np +1<i <N+1).
There exists a + pst’ of SL(N + 1), associated to the-1 psi of

GL(N + 1) (cf. definition[@.IT.R padd 7). The rest of the proof cossidt
showing that then{!" Hilbert point of X, X,

Pimo)
Hm,(X) e P( A H™(P™, Opn(my)))

is notA’-semistable.

Assume now than > nv so thatH(X,L™) = 0 = H(X,L'™) and
the restrictiongy, : HO(PN, Opn (M) — HO(X, L™) is surjective. Recall
thatHO(PN, O.n(m)) has a basis consisting of monomials of degrga
W1, Wa, . .., WNs1, SAYBm = (M1, Mo, ..., My}, (@m = h°(PN, Opn (m))).
Let Q™ be the subspace &f°(PN, Opn(m)) spanned by

{M e Byw(M) <i}, (0<i<3m).
We have the following filtration oH°(PN, Opn(m)). 58
0cONcQlc---cQF =HPN, Opn(m)), (F)

Let QM = on(Q™) c HO(X, L™, 8 = dimQ™ (0 < i < 3m).
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The above subspaces give the following filtratiorH3{(X, L™).
0c§{,"c§’1"c...c§g‘m=H°(x,L"‘), (F)

Rewrite the basiBy as Bm = {M],M,,..., M,;(m), ME(;@H’---’
Mg} so that{em(M?) gm(M2), . . .,gom(M,’,(m))} is a basis oH°(X, L™
relative to the filtration ) andMg ) 1. My 0. - - - My, are the rest
of the monomials irBy, in some order.

The morphisnr gives homomorphisms
A+ HOOG L™) — HO(X, L'™).
Claim. The image oﬁi’“ under the homomorphism,. is contained in

the subspace H{X, L'™((-3 + i)P)) of H°(X, L'™), (0 < i < 3m).

Proof of the claim: First observe that far= 0 the claim follows from
definition. Now it suifices to prove that iM is a monomial inBy, such
thatM € QM- Q™ thenaim.(M) € HO(X, L'™((=3m+i)P), (1 < i < 3m).

LetM e Q{"—Qi"_‘l. Suppose thatl hasig factors from{wy, wo, .. .,
W}, 11 factors from{wi,+1, Wng+2, - - . Wy, } @andis factors fromf{wy, ;.1,
W, 12, - - - » W, . It follows that,

io+i1+i3:mandi1+3i3:i.

By definition rm.(M) € HO(X, L"™((=3ip — 2i1)P)). Now note that
3m—i=3(p+i1+i3) — (i1 + 3izg) = 3ip + 2i;. This proves the claim.

It follows from the above claim and the Riemann-Roch theotigai
forO<i<3m-1.

Bi = dim ﬁim < hO(X, L'™((=3m +i)P)) + dim(kernel m.)
=dim-3m+i—-gg+1+ hl()Z, L'™((-=3m + i)P)) + dim(kernel )
Claim.
i) dim(kernebry.) < Qp.
i) h%(X,L'"™((-3m+i)D)) <3m—i, (0<i<q=2g-2).
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i) h1(X,L'™((-3m+i)D)) =0, (q+1<i<3m-1).

(D denotes the divisor oX, supported at R X, with multiplicity one).

Proof of the claim:

i) Since the curveX is generically reduced,
dim(kernelry,.) = h°(X, Ix) < g, (cf. pagd_3P).

ii) In view of the fact thatH(X, L’™) = 0, this follows from the long

exact cohomology sequence associated to the followingt eseac
quence

0 — L'"((-8m+i)D) — L' —— O@m-iyp — O

iii) Use the following general fact. I€ is an integral smooth curve ofso

genusgc and if M is a line bundle o€ with degM > 2gc — 1 then
HY(C,M) =0.

Hence,

Bi =dimQM <dm-3m+i-gg+1+3m—i+aq,.(0<i<aq),
Bi :dimﬁ{“gdm—Sm+i—g;+ 1+, (@+1<i<3m-1).

We now estimate, total-weight of

P(m)
ML M5, Mpgy = > Wa(M)).
i=1

Note that a monomiaMl € Q" — Q™" , hasi-weightw,(M) = i.

P(m) 3m 3m-1

Z w(M/) = Z 1(Bi — Bi-1) = 3MBam — Z Bi

i=1 i=1 i=0
3m-1 q

> 3m(dm-g+1)— ) (dm-3m+i-gx+1+0)- » (3m-i)
i=0 i=0
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o’ 1
27—3m(9—9>?+(12+q+—)

9
= T—mS(S 30-0x+ o2 +0q+ ))
P(m)
Thus, Z wWy(M/) > % -mS§ (E1)

i=0

N+1
Next we estimate, total-weight ofwy, Wo, ..., W41 = Z w,(w). Re-

call that we have agreed to views = HO(PN, Opn (1)) as a subspace of
W; W,
H°(X,L). Now observe that dlrw <1and d|mW < 1. To see this

note that the image Ay (respectlvelyvvl) under the homomorphism

 HO(X, L) — H°(X, L") is contained in the subspat(X, L’(-3p))
(respectlverHO(X L’(-=2P))) of H°(X,L’). Now use the assumption
thatr is ramified atP and use the following exact sequences

00— L'(-P)— L —k(P)— 0
0— L'(-3P) — L'(-2P) — k(P) — 0

(k(P)) = the residue field at the poift e X.

It follows that dimxvﬁ <1, dim% < 1. The above considerations im-

1 0
N-+1

ply that total1-weight ofwy, W, ..., Wni1 = D, Wa(w) < 4, (E2).
i=1
We are now ready to get the contradiction thatm!géHilbert point

of X, Hm,(X) € P(P(/r{b)HO(PN, Opn(My))) is notA’— semistable.

If Hn(X) is A’-semistable o > nY), then there exist monomials
Mi’l, Mi’z,...,Mi’Pm, (1 <iyp <ip < ... <ipm £ am), such that
{em(M]), ¢m, (lvli’z), . ..,gpm(l\/llp( )) is a basis ofH°(X, L™ relative to

the filtration ¢) and

2D wa (M ) _ EN wiw)

AT < d T (cf. criterion (**) pag€dY)

P(m) P(m)
It is easily seen thaty, w,(M/) < X W,l(Mi,j). Thus,
i=1 j=1
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N+1
Z W/I(M,) z W (W)
=1

Hm(X) is A’-semistabl _
m(X) is A’-semistable= (dm g+1) d—g+1

9n12 -ms
m(dm g+1)
9_s

5= 4 9(d—g+1) (d-g+1)S
= d Sd—g+1:> 2 - m <4d
1 (d-g+1)S 2d-g+1)S
=>2(d Qg+9)s—m :>m§—d_99+9
d-g+1 2)
d-9g+ 9_

1 (Follows from the estimategy), (E>))

=>m<4S (-d>20@-1)..
>m<m, (. m>4S).

It follows that Hm, (X) is not A’-semistable and hendéy, (X) is not 62
semistable (cf. theorel 0.D.9. pdde 3). The result nowvallby the
contradiction.

Proposition 1.0.6.Let X be a curve in the familyVZi V. XegCannot
have a tacnode singularity.

Proof. Assume the contrary i.e. &t be a curve in the familyy v
such thatX,eq has a tacnode singularity at a poisay. O

p
Let X = |J X; be the decomposition df in to irreducible compo-
i=1

nents. Letr : X — X be the normalization oX so thatX = U XI red (Cf.
definition[0.Z5 pagE116) and Iet = z*L. ThatP is a tacnode means,

) p>1;

ii) there exist component¥; and X;(i # j) of X and pointsQ; €
Xired» Q2 € Xjred Such thatr(Qy) = P = 7(Q2);

i) Xjreq andXjreq have a common tangent @t 63
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Since X is not contained in any hyperplane Y (cf. Proposition
[LO2. pagéd7), we can think 8%, = H°(PN, Opn(1)) as a subspace
HO(X, L). Define two subspaces @f, as follows.

Wp = {s € Wy, s vanishes to order 2 atQ; andQ,}
W; = {s e Wy, s vanishes to order 1 atQ; andQ,}

Note that sinceP is a double point 0¥eq and X req and Xj req have
a common tangent &,

n.S(s€ Wh) vanishes to order> 2 atQ;
i=1
n.S(s€ Wh) vanishes to order> 2 atQ,.

Let dimWy = Ng, dimW; = N;. Choose a basis &, relative to the
filtration 0 c W ¢ Wy ¢ Wh, say
{wy,Wo, ..., WNgs WNg+15 + + + s WNy> WNy+15 - - - W1} (Cf definition[0.Z.b
pageIb).

Let 1 be a 1- psof GL(N + 1) such that the action of on W, is
given by,

AW =wi,t e K*, (1 <i < Np),
AW, =twi,t € K, (Ng+ 1 <i <Ny,
AW = tPwi,te K (N +1<i<N+1)

There exists adpst’ of SL(N+1) associated to the-Jpst of GL(N+1),
(cf. definition[0 TR paggl 7). We will show that th@. Hilbert point of
X, Hm,(X) is not A’-semistable. In particular it will follow thaitim, (X)
is not semistable, (cf. theorem 010.9. page 3), and thetregiikhen
follow by the contradiction.

Assume now than > v so thatH(X, L™) = 0 = H(X, L'™) and
the restrictiongy, : HO(PN, Opn(m)) — HO(X, L™) is surjective. Recall
that HO(PN, Opn(m)) has a basisy, = {M1, Ma,..., M, } consisting
of monomials of degreen in wy,Wo,...,Wny1. FOr0O < r < mlet
W{".W] be the subspace of°(PN, Opn (M) generated by elements
of the following type.
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Forr =0,
W= X1X2...Xm, (Xs € Wp, 1 < s<m);
forO<r <m,
W=X1X2... XmrY1Y2 ... ¥r, Xs € W, L £ s<m-r,ys e Wy, 1 < s<r);

forr =m
W=Y¥1Y2...¥Ym (Ys€Wp,1<s<m)

Similarly, for 0 < r < m, let W™".W; be the subspace e1o(PN,
Opn(mM)) generated by elements of the following type.
Forr =0,
W = X% X, (Xs € Wi, 1 < s<m);

forO<r <m, 65

w =X'1X/2---X;n—r)/1)/2“')/f’

(XseW1l<s<m-ry;eW,,1<s<r);
forr = m,
W =VYYo...¥m (Vs € Wo,1<s<m).
We have the following filtration oH°(PN, Opn(m));
0c WIW? c WPt WL c - c WO.W = W WG c WMt W) ¢ -
WEWG" = HOB™, Opn(m)) F)
Let

L WG = p(WETTWG) € HO(X L™, dim WG W =
W™ W5 = om(W . Wh) € HO(X, L™), dimW™ W5 = 5, (0 < T < m).

These subspace define the following filtratiorH(X, L™)

0c WIWP c WML WL - - c WO.WA™ = WIRWE « WML wij ...
W2WI = HO(X, L™) (F)

Rewrite the basiBy, as
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Brm = (M}, Mj. ... Mpgy. My

Som(M]_) Som(Mz) > om(M
filtration (F) (cf. defmltlon[QfZEB

P(m +1, ..» Mg, }so that
is a basis oH°(x, L™) relative to the
page-16) and

M,’,(m)+1, M,’,(m)+2, . Mg, are the rest of the monomials By, in some
order.
66 For the rest of the proof we consider the following cases.

Case 1. dey;;red L>2, deg(jred L>2.
Case 2. dey;;red L=1, deg(jred L>2.
Case 3. dey;;red L>2, deg(jred L=1.

(Since the poinP € X is a tacnode, these are the only possibilities).
We will give proofs in cases 1) and 2) and then case 3) wilbfelfrom
case 2), by interchanging the rolesi@nd j.

Case 1. The morphismr : X — X gives homomorphismsp,. :
HO(X, L™ — HO(X,L'™). Let D denote the divisoQ; + Q2 on X. By
definition, the image oW”“‘r.Wr (respectivelyW™ " Wi) ¢ HO(X,L™)
under the homomorphismm*_is contained in the subspa¢’(X, L'™
((r —2m)D)) (respectivelyH°(X, L'™((r —m)D)) of H°(X,L'™), (0 <r <
m-—1).

It follows from the Riemann-Roch theorem that fok@ <m-1
yr = dim(WI" W) < ho(X, L"™((r — 2m)D)) + dim(kernelbry,)

=dm+2r-4m-gg+1+ h*(X, L'™((r — 2m)D) + dim(kernebrm,)

and
Br = dim(W™ W5 < h°(X, L"™((r — m)D) + dim(kernebrm.)
=dm+2r-2m-gx+1+ hl()?, L"™((r — m)D) + dim(kernelr,)
Claim:
67 i) dim(kernelrmn,) < g,

i) hi(X,L’"™((r — 2m)D) <4m—2r, (0<r <q=2g - 2),
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i) XX, L'™(r —2m)D) =0, (@+1<r <m-1),

iv) hL(X,L’"™((r —m)D) =0, (0<r <m-1).

Proof of the Claim:

i) Since the curveX is generically reduced, (cf. propositién_1]0.3.
page3D), for all integers, dim(kernelry,.) = h°(X, Ix) < g, (cf.
page3P).

ii) In view of the fact thatH1(X, L'™ = 0, this is immediate from the
long exact cohomology sequence associated to the folloasagt
sequence,

0— L"™(r —2m)D) - L' - Ogm-np — 0.

iii) Recallthatdeg, L >2< deg(j .4 L @nd use the following general
fact. If C is an integral smooth curve of gengs and if M is a line
bundle ofC with degM > 2gc — 1 thenH(C, M) = 0.

iv) This follows from the same reasoning as above.

It follows from these considerations that,

ve<dm+2r—-4m-gg+1+4m-2r+q, (0<r<qg=29-2),
v <dm+2r—4dm-gg+1+, (@+1<r<m-1),
Br<dm+2r—-2m-gg+1+, (O<r<m-1)

P(m)
We now estimate total-weight of M1, My, ..., Mg = > Wa(MY). 68
i=1

Note that a monomiaM € WJ" W, — WL Wi~ has 1-weight
w,(M) = r and a monomial

M’ e WTW5 — W WEt hasa — weight wa(M) = m+.
P(m) m m

D wa(MY) = > M+ 1B = Br1) + ) Tl = ¥r-1)
i=1 r=1

r=1
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m-1 m-1
= ngm_Zﬂr _Z)’r
r=0 r=0

m-1

>2m(dm-g+1) - Z(dm+ 2r—2m-gx+ 1+ Q)
r=0
m-1 q
- Z(dm+ 2r—4Am-gx+1+ Q) - Z(4m— 2r)
r=0 r=0
m-1
=2m(dm-g+1)- Z(de+ 4r — 6m — 2gx + 2 + 20p)
r=0

-4dm(q+1)+q9(g+1)

> 4m? —mS (S = 2(g - gx + 02 + 29 + 1)).
P(m)

Thus, Z W, (M) > 4n? — mS, (E1)
i=1

N+1
We now estimate totak-weight of wy,Wp, ..., Wny1 = 3 Wa(M)).
_ i=1
The morphismr : X — X gives a homomorphism= : H°(X,L) —
HO(X,L"). Recall that we have agreed to via, = HO(PN, Opn(1))
as a subspace ®1°(X,L). ClearlyW, N kernelr, = 0. By definition
the image oM/ (respectivelyW;) under the homomorphism, is con-
tained in the subspadd®(X, L’(-2Q;)) (respectivelyH°(X, L'(-Q1)))
of HO(X, L").
Now it is immediate from the following exact sequences that
dim% <1, dim% <1
Wo W,
0— L'(-2Q1) = L'(-Q1) = k(Q1) = 0
0-L'(-Q1) =L - k(Q1)—0

(k(Qy) = the residue field the poir®; € X).

N-+1
It follows that 3 w,(w;) < 3, (E2)

We are now ready to get the contradiction thatmhgéHilbert point
of X, Hm, (X) is notA’-semistable.
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If Hn(X) is semistablerfi > nt) then there exist monomialsrli’l,
M7 ..., Mi  In Bm such that
{em(M)), em(M)), - ..,gom(l\/llp( )) is a basis oH°(X, L™)

> P wy (M ) SN (w
and =22 P(m) < Zd = gi( ) (cf. criterion ) pagel¥).

Observe thatz Wy(M) < Z W,l(l\/l )

Hence,

ZP(m) (M/) g N+1W,1(W|)
m(dm-g+ 1) d-g+1

Hm(X) is A’ — semistablefh > m') =

4P - mS 3
= mdm—g+1) < d-g+1 (Follows from Ey), (E2))
4-3 3 d-g+1)S
= d sd_g+1:>d—4g+4s—m
(d-g+1)S d-g+1
TS aagea < (207D G <Y

= m<m, (. my>2S)

70
ThusHpm, (X) is notA’—semistable and hent#y, (X) is not semista-
ble (cf. theoreniZ0.019. padié 3). This contradiction prowesréesult in
case 1).

Case 2. The proof in this case is on the same lines. Recall that we
have homomorphismsgy, : HO(X,L™) — H(X,L'™),(m > n), x, :
HO(X,L) — HO°(X,L’) and that we have agreed to vieW°(PN,
Op::(1)) = W, as a subspace 6f°(X, L). LetY be the closure oK — X;

in X. Clearly a sectiomr, s(s € W) vanishes orX;eq. Hence the image

of Wg™".W], (0 < r < m-1), under the homomorphism,. is contained

in the subspace _ _

H°(Yred, L%r";d(r -2m)Qz)) € HO(X,L'™), (Yreq is the normalization of
Yied).

It follows that, for O<r <m-1

= dim(Wg"™" - W) < h*(Vrea, Ly )(( — 2m)Qy)) + (kernelrm.)
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= (d = 1)m+r —2m- gy + 1+ h'(Yreq, LT )(( - 2M)Q2))
+ dim(kernelry,)

Recall that,
Br = dim(W™" . Wh) < ho(X, L'™((r — m)D)) + dim(kernelrp,).
=dm+2r-2m-gxg+1+ h'(X, L"™((r — m)d)) + dim(kernebry,).
As before we have,
i) dim(kernelrm.) < Q2
71 i) PY, L ((F-2m)Qp) =0, (0<r<q=29-2).

i) hi(Y, L (r-2mQ2)) =0, (@+1<r<m-1).

iv) h'(X,L'™((r —-m)D)) <2m-2r, (0<r<q=29-2).

v) hY(X,L'™(r —-m)D)) =0, (@+1<r<m-1).
Thus,

Y <d=-1m+r-2m-gy+1+2m-r+cp, (0<r<q),
Ye<@-1m+r-2m-gy+1+c, (Q+1<r<m-1),
Br<dm+2r -2m—-gg+1+2m-2r+qx, (0<r<q),
Br<dm+2r—-2m-gg+1+q, (Q+1<r<m-1)

P(m)
We want to estimate}, w;(M/). Recall that, a monomial
i=1

M e W' - Wi — Wir+L. Wi~ hasi-weightr, a monomial
M e W - WE — Wi+ Wit hasa-weightm + r

P(m) m m
DlwaM) = (M 0)B - Bra) + Y rlre = 1)
i=1 r=1 r=1

m-1 m-1
= 2MBm — Z,Br - Z)’r-
r=0 =0
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m-1
>2mdm-g+1)- Z(dm+ 2r-2m-gg+1+0Q)
r=0

q m-1
- Z(Zm— 2r) — Z((d —1m+r-2m-gy+ 1+ )
r=0 r=0

g
e 3
_ Z(zm_ r > - - m(2g — gx — Oy + 202 + 4q — 5)'
r=0

3 .
Put (33— gx — gy + 202 + 49 — E) = S. Thus we have the following 72
estimate.

P(m)
W TP
D waM) > —--ms (ED)
i=1 2
We have already seen that tofialweight of
N-+1
W1, Wa, ..., WN1 = Z wy(wi) < 3, (E2)
i=1
7
= - mS
5 m

As in case 1) we havei(X) is I’—semistable—s —— <
) m(X) m(dm- g+ 1)

d——:gg+l (Follows as in the previous case from criterion)((pag€e¥)
and the estimate€s() and E>))
7_S
-2 3 1 (d-g+1)S
2d-g+1)S N _qy . 9-9+1
m< =gy <4S(.d>20g-1).. d 797 <2).

Sincem, > 4S, the above inequality implies thadm, (X) is not
semistable. This contradiction concludes the proof asse da

The next step in the proof of Theorém 1]0.1. is to prove an napd
inequality which will be needed for the proof of the theorem.

Proposition 1.0.7. Let X be a curve in the familyVZi V such that X
has at least two irreducible components. Let C be a reduaathected,
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complete subcurve of(® # X) and let Y be the closure of XC in

X, with the reduced structure. Recall that: X — X denotes the 73
normalization of X. It follows from definitidi0.2.5 (pdge) teat X is a
disjoint union ofC (normalization of C) and (normalization of Y). Let
¢} HO(PY, Op(1)) — HO(C, Ic) be the natural restriction map and let
Wo = kernely .

If there exist pointy, Py, ..., Py on Y, satisfying
) 7(P)eYNC, (L<i<Kk),
ii) for every irreducible component; of Y
degyj(LQF(—D)) >0,

k _
(D denotes the divisod, P; onY, L’ = n*L), then the following
i=1
inequality holds,

h°(C.Le) _ &+
d-g+1 d ’

(e = deg. L) )

Proof. Let dimW, = N,. Choose a basis o, = HO(PY, Oui(1))
relative to the filtration - W, c W, say

Wo, W1, . . ., WN,—1, WN,, - - ., WN. Letd be a 1- psof GL(N + 1) such that
the action oft on W, is given by,

Aw; =w;,te K, (0<i <Ny —1),
A)w; = twj,t € K*,(Ng <i < N).

Let A’ be the 1- psof SN + 1) associated to the 4 psi of
GL(N+1), (cf. definitior[@TR padd 7). Since th' Hilbert point of X,

P
Hm, (X) € P( (Xb)HO(PN,OPN(rrb))) is A’—semistable, (cf. theorem 0.0.9.
pag€eB), criterion«x) (pagdY) is satisfied. The required inequality will
follow from the inequality in the above mentioned criterion m|

Let By, = {M1, Ma,... M, } be a basis oH°(PN, Opn(mp)) con-
sisting of monomials of degresy, in wo, Wy, ..., WN, (@m, = ho(PN,
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Opi(My))). For 0< r < mletws*™" - wi be the subspace ¢1°(PN,
Opir(My)) generated by elementsof the following type.

W= X1X2 - Xmg—rY1Y2 - Y, (Xj EWo, 1< j<mp—r;y; e Wy, 1< j<r)

As before, forr = 0, w is a product ofx only and forr = my,
w is a product ofy’Js only. We have the foIIowmg filtrationK) of

HO(EN, Opr (M),
0cWa°- WP c Wob™h Wi c - c WS- W = HO(EN, O (M), (F)

Note that ifW, = 0, thenWg™" - W] = 0(0<r <m-1). Let

WP WE = g (WIo" Wf) c H°(X L™), dimWyb~"-WE = 5, (0 <
r< mo)
These subspaces define the following filtratiéf 6f HO(X, L™),

0cWJP - WP c W™ Wi - c WS- W™ = HO(X, L™),  (F)

75
Rewrite the basiBy,, as By, = {M,MJ,..., M};(mo), Ml;(mo)ﬂ,...,
Me ) such that{gm,(M3), ¢m,(M?), _..,gonb(l\/lp(%)) is a basis of
H°(X L™) relative to the filtration F) and MP(mo)+1’ M,’,(%)+2,...,
M., are the rest of the monomials By, in some order.

The morphismr : X — X gives a homomorphismy,. : HO(X,
L™) — HO(X, L™). SinceX is a disjoint union ofY (normalization of
Y) andC (normalization ofC), HO(X, L™) = HO(Y, L’"’O)@HO(C LZ®)-
By definition the section IVT%*(Wm "-W])(0 < r <my—1) vanish orC
and also vanish to order m, —r at the pointd,, P,, .. ., Py, therefore

T (W™ - W) € HO(Y, LE((r — mp)D)) € HO(X, L'™)
k —
(D denotes the divisop, P; onY). It follows that
i=1
Br = dimW™ - Wi < h°(Y, LT*((r - my)D)) + dim(kernebry,.)
= (d— @mo + k(r — my) — gy + 1+ h'(Y, LT°((r — mo)D))
+ dim(kernelrpm,.)

Claim:
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i) dim(kernel rm..) < O,
i) (Y, LEo((r - mp)D)) < k(mo—r), (0<r<q=29-2),
iiiy h'(Y,LZ°((r-mp)D)) =0, @+1<r<my—1)
76 i) We have seen this (cf. pafi€l39).
ii) The exact sequence
0-— L/gb((r - my)D) — L/%Tb — O(my-rp = 0
gives the long exact cohomology sequence

-+ = HO(Y, O, ryp) — H(Y, LF((r - mo)D))
- Hl(Y_,L:?O) — .-

sincem, > n', HY(Y, L) = 0. Hence
(Y, LE*((r = mo)D)) < h(Y, Ogm,-r)p) = k(Mo — ).

iii) Recall the condition ii) (pagé®$6) and use the followiggneral
fact. If C’ is an integral, smooth curve of gengs and if M is a
line bundle orC’ with degM > 2gc — 1 thenH(C’, M) = 0.

Hence,
Br <(d —e)mo + K(r —mp) — gy + L+ k(mp — ) + G, (0O<r<q)
Br <(d—emy + k(r —mp) —gy + 1+ O, (g+1<r<m-1)

We make of following estimate.
total 1— weight of

e,
3

(o)

1l
iy

e

r(8, — Br-1), (- @ monomial

_,
Il
i
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M e (WI™"Wi — Wi +wi Y
hasi — weightr)

me—1
= mO,BfTb - Z Br
r=0
my—1
> my(dmy - g+ 1) = > (Mo(d - &) + k(r - m)
r=0

q
—gy+1+ ) - > Kmp—r)
r=0

k k
=(e+§)ﬁ€—%(g—gv+qz+§+kq)

q(q+1)

T3

77
PutS = (g - gy + 02 + 5 + ko). Thus we get,

P(m) k
2 Wa(M) > (e + 5)mE — myS, (E)
i=1

Note that the above inequality is true eveNf = 0. Clearly, total
N

A-weight ofwg, wy, ..., wn = X Wy(w)
i=0

=dimW; - dimW, < h°(C, LC)_, (Follows from the definition oft)

N
Thus we getZ w; (W) < h°(C, Le), (E2)
0

If W # 0 then?” : G, = SL(N + 1) is a nontrivial homomorphism
i.e.al-psof SN +1).

Since them! Hilbert point of X.

P(mo) . . .
Hm,(X) € P( A HOPN, Opn (M) is A’ —semistable, there exist mono-

mials Mi’l, M(Z,...,M{P(%)(l <ip<iz<...<lipmy) < @m,) in By, such
that{ganb(Mi'l),gonb(Mi’z), <o om (M)} is a basis oH°(X, L™) and

IP(mo)
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P(mo) , N
;1 W/I(Mij) Z Wa(wi)
j= - +1’ (cf. criterion =), page).

<
mP(my) — d-g
. P(m) P(m,)
Itis easy to see thaty, w;(M/) < X WA(I\/Ii’j).
i=1 j=1
P(Mo) , N
2 wa(M) _ZOW/I(Wi)
1=

78 It follows that, -==

mP(my) - d-g+ 1’
(e+5m-mS ro(C,Lc)
me(dmy-g+1) d-g+1’
e+3-m _MCLo)

d d-g+1
Even if W, = 0, we have, usingH;) and E>)

P(mo) ,

(e+ 5)m - myS & VM) . °(C Le)
me(@my —g+1) ~ mo(P(mp) - d-g+1

k
e+§—

(Follows from E1) and E2)),

-

S
m, _ IP(C.Lc)

— T d d—g+1

k
e+ = o
We claim that the above inequality implies tha{—d 2 < —:I (Cg’] I:rci

k
e+ =
. : . ho(C, L
fact if the claim were not true i.e. ¥—2 < CLo) then we get a
d d-g+1

contradiction as follows.
First note that
K
e+3 h°(C, Lc)
>
d d-g+1
Now,

= (d-g+1)(e+ g) —d(h°(C, L)) >

NI =

Lk S
2 _m _h(CLc)
d “d-g+1’

e

(proved)
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= (d-g+1)(e+ l%)—d(ho(C, Le)) < w
:%ngmoszsw—gu).

By our choice of the integamny, this is a contradiction. This proves th&9
k

hC Ll °3

required inequality,d —gr1> d

Proposition 1.0.8. Every curve X in the family\zi V is reduced.

Proof. Let X be a curve in the familyy L V and letlx be the ideal
sheaf of nilpotents i®x. We want to show thdty = 0. For the moment
consider the closed subschedgq of X defined byl x. O

Claim: H(Xred, Lred) = 0, (Lred = Lx.)- First note that since the only
singularities ofX;eq are ordinary double points (cf. propositibn—110.4.,
[0.3.[1.06) Xeq has a dualizing sheaf, say. If the claim were not
true then we havel®(Xeq, w®L 1) ~ H(Xeq, Lred) # 0. So there exists
anonzero sectioae HO(X, w®Lr‘e1d) and a complete connected subcurve
C of X;eq such thatsis not identically zero on any of the components of
C but svanishes at all points i N X — C. Observe tha€ # P!, hence
deg-L=e>1.

It follows from the proof of theorein 0.2.3. (palgd 13) th&(C, Lc)—

1< g . Using the inequality«(") (cf. propositiol_L.0J7 padeb5), we get,

e+3 _hCly __§+1
d " d-g+1 d-g+1

=>de+g+(1—g)(e+:—2L)sd?e+d:> de-1)

_, 206~ ;)(e— 1)

— 10e-10< e+:—2L (-g=2)

~D g1y

<(g-1)e+ %) (- d > 20— 1)
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1
= %e< 10+§ = e<l

But we have already observed tleat 1. This contradiction proves
the claim.
Now consider the following exact sequence.

0-Ix®L—>L > Leg—0, Q)
We have the long exact cohomology sequence
= HY(X Ix @ L) = HY(X, L) = HY(X, Lred — 0).

Sincely has finite support (cf. propositidi_LD.3., page 3M(X, Ix ®
L) = 0. We have seen thad'(Xeq, Lred) = 0. Hence we conclude
from the above cohomology sequence tHA(X, L) = 0. Recall that the
restriction

@ © HO(PN, Opn(1)) = HO(Xred: Lred) is injective, (cf. proposition
[CO2., pagEA7).
Thus

d-g+1=hPN, Op(1)) < h°(X, Lred)
=h°(X,L) - h°(X,Ix® L) (Follows from (1))
=d-g+1-h°X,Ix®L) (- h°(X,L)=x(L)=d-g+1)
- hO(X, Ix ® L) =0.

Sincelx ® L has finite support, it follows thdk = 0 i.e. X is reduced.

It follows from the above proof that iK is a curve in the family

Zy v thenH(X, L) = 0. Itis now immediate that trace of the linear
system|D| on X is complete. D] is the complete linear system B
corresponding to the line bund@;~ (1) onPN).

Proposition 1.0.9. Let X be a curve in the family\zﬂ V and letY
be a nonsingular rational component of X i.e=YP!, then Y meets the
other components of X in at least two points.

Proof. Let C be the closure oK - Y in X with the reduced structure and
let gc be the genus dE (i.e. gc = h'(C, Oc)). O
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Assume that the result is not true, i.e. assume YhateetsC in
exactly one pointP say. SinceX is connected, the above assumption
implies thatC is connected.

Claim: gc =g.

Proof of the Claim: Since the curveX is reduced and the only singu-
larities of X are ordinary double points (cf. propositidns I10[8.1,0.4
[[03.[1.056.), we have the following exact sequence,

0-5>0x—>0y®0Oc » K —0.

Take the Euler characteristics.

x(Ov) +x(Oc) = x(Ox) + 1
= 1+1-h}C,0c) =1-h'(X,0x) + L, (Y = P* . y(Oy) = 1)
= gc = h’(C,Oc) = h'(X,0x) = g.

82
Now apply the inequality«() of proposition”T.0J7 (padeb5) ©

1

h°(C Lc) _ e+ 3 .

d-g+1 d

olm

We have seen in the proof of the last proposition tHa(X,L) = 0.
HenceH!(C, Lc) = 0. Sincey(LY) = em—gc + 1, it follows from the
above inequality that

e—gC+1_ hO(C,Lc) >E
d-g+1 d-g+1°d
=eg-1)>dlgc-1)=e>d (- gc=922)

= de+d(1-gc) > de+e(l-g)

This contradiction concludes the proof.
Theoren_L.OJ1. is now completely proved. Since every caedec

curve in the familyzy, ™, vis reduced, it can be easily seen that there
exists an open (and closed) subschdthef V parametrizing all the

connected curves in the famiB, ®, Vie. ifh € V such that the



83

84

64 Stability of Curves

fibre X, of py overh is connected theh € U c V. By restricting the

morphismpy to py*(U) we get a familyzy ™, U of connected curves.

Let C be a complete, connected subcurve of a citwe the family
Zy 2 U . LetC’ be the closure oK — Cin X. Letr : X - X
be the normalization oK and letP,, P,, ..., Pk be all the points o’
(normalization ofC’) such thatr(P;)) e Cn C’.

Assume that the following condition is satisfied.
i) For every irreducible compone; of C,
deg: L’ >#(CJ {P1,P2,...,Pd}).

In this situation we proved the following inequality (cf.gea57).

h(C,Le) _ &+ 3
d-g+1~ d

(ec = deg; L) +)

Note that ifC = X then the above inequality is trivially satisfied.

We want to prove that the above inequality) (holds for every com-
plete, connected subcur@of every curveX in the family Zy, L U,
even if condition i) above is not satisfied. We prove the telsylcon-
tradiction. So letX be a curve in the familyZy ™, U and letC be a
complete connected subcurve Xffor which the inequality £) is not
satisfied. Hence,

ec-ge+l_HM(Cle) &+3

d-g+1 d-g+1 d @)

(ec =deg: L, k=#(C nC’), C is the closure oK — C in X)

We may assume th&t is maximal in the sense that for every complete,

connected subcurv@’ of X, with C & C’ c X the inequality ¢’) holds.
Since the inequality«() does not hold folC, condition i) above is
not satisfied i.e., for some irreducible componéntof C’, deg, L <
#CnNCj) ={¢. ThenY =CuU C’ is connected and the mequalltyx
holds forY
YLy e tE
d-g+1~ d ’
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(eC] = degsi L,k =#(Y nY’), Y is the closure oK — Y in X)
ecte —gy+l ecteg+s
>
d-g+1 - d
(- x(LY) = (ec + &c)m- gy + L andHY(Y, Ly) = 0)

=

ec+te—0gc—gc — ' +2 ec+ec<+'§‘+%
N ] J > ] (2)
d-g+1 - d
(K’ = #(C] NY), ' =#(C mC]))

The last inequality follows from the following formula

gy =gc +9c; +#CNCj) -1

Multiply the inequality [1) by-1 and add it to the inequalit{Zl(2).

& —gc — ' +1 ec;+%

d-g+1 g d

®3)

, d-g+1 K — ¢
=g Gy~ +1>(— )& +—
k—€)>1_9(ec{+k—f

2 20" i 2

)
)

=1~ L e +

(- d>20@g- 1))

, k’ — ¢
= ZO(GC] - gC] - +1)> 19(ec] + 5 )

1 1%” 19 19
- Q;] + 2%0] + >0+ 2%0] + 7'(”

2 2
(e <t)
={ =2, g(;] =0,k" =0, ( > 2)

= 20>

Sinceeq; < ¢ it follows thates = 1.

85

Then the injequality{]B) reads a&h), a contradiction! This proves that

the inequality £) holds forC. It is easy to see that the inequality )
holds forC even ifC is not connected.
Thus we have the following proposition.
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Proposition 1.0.10. Let X be a curve in the familyZ—% U, C be a
complete, subcurve of X. Letk#(C n C’) (C’ is the closure of X- C
in X). Then the following inequality holds.

h°(C.Lc) _ &c+3
d-g+1~ d °~’

(ec =deg- L)
The above result can also be stated in the following form.

Proposition 1.0.11.Let X be a curve in the faminUZp—U> U. Letwy be

the dualizing sheaf of X. Pt= %. For every complete subcurve
wx

C of X, we have,
|deg: L — Bdeg wx| < g (")
(k=#(CnC), C isthe closure of X- C in X).
86  Proof. Since the inequality:{) holds forC, simplifying we get,

d k., k d k
de%'——eczm(gc—“‘z)—z—zg—_l(ZQC—2+k)—§
=,3deg:wx—|§( (‘.'deg;cux=29c—2+k)
ideg:L—ﬁdeg:wxz—g. (1)
Since the inequality«{) holds forC’, we get, as above

ded:- L — pded: wx > —g

:de&L—ﬂde&wxsg (2)

(- deq. L — pded: wx = pdeg wx — deg- L)
The result follows from[{lL) and2). i

Next proposition is an easy consequence of propodifioda.0.
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Proposition 1.0.12. Let X be a curve in the faminLZp—U> U and let

C’ ¢ X be a connected chain of smooth rational curves meeting C
(closure of X— C’ in X) in two points. Then, i) Cis irreducible, ii)
de¢t L =1

Proof. In view of propositiol”_ .00 (padel66) we have the following
inequality.

ec—gc+l_h°(C,Lc)>eC+1

d-g+1 d-g+1~ d °’
= dec —dge +d > dec +d + (1 - g)x(ec + 1)
=S>dge<(@-1)(c+l)=>d<ec+1l (rg-l=gc=1)
= e =0-1=deg L=1= C'isirreducible

(ec =deg- L)

87
Now we make the following observation. L¥tbe a curve in the family

Zy ™, U and letwy be the dualizing sheaf &f. wy is a line bundle X
being Gorenstein) andi gives a morphismy, : X — P'. The above
proposition implies that the imag¢ of X undery, is a stable curve
and the fibreX, of ¥, over a pointx’ € X is either a point oX, =~ P!
and Xy meets the rest of the curve in two poink§.is thus obtained by
replacing each smooth rational componenKpfneeting the rest of the
curve in two points, by a node. O






Chapter 2

The Moduli Space of Curves

In this chapter we construct the Deligne-Mumford Moduliapaf sta- 88
ble curves. We prove that it is a reduced and irreducibleraehgrojec-
tive over Spe.

We keep the same notations as in Chaflter 1. 12hqupi> Uisa
family of connected curves of gengs> 2 and degreel > 20(g — 1)
in PN, (N = d - g), such that theri!' Hilbert point of X, Hm, (X) €

P
P( (/To )HO(IPN, Opn(My))) is semistable for the natural action®t(N+1)
P
onP( (/r\100 )HO(IPN, Opn(Mp))). Assume now onwards thdt= n(2g — 2)
wheren is an integern > 10.

For a geometric poirth € U let X}, be the fibre oz LNy overh,
L be the restriction 0Opn(1) to Xy, wy, be the dualizing sheaf ofp.
It is easily seen that the sblc = {h € U|Ly = th} is constructable.
We want to prove thallc is a closed subscheme bf parametrizing

all curvesX in the family Z LN U such thatL,, ~ w;‘(h. The next
proposition proves thadtlc is a closed subset &f.

Proposition 2.0.0. U¢ is a closed subset of U.

Proof. It suffices to prove the following. For every morphism SEE&
U, (Radiscrete valuation ring), if the image of the generic poifrpec
Ris in Uc then the image of the special point of Sitis also inUc. O

69
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Make the base change 4 LNy by SpecR 5u,

Ip— 2y

S

SpecR U

The relatively very ample line bundf@z, (1) onZy induces a line bun-
dle Oz,(1) onZgr. Let wz,r be the relative dualizing sheaf &. Let
ho andh; be respectively, the special point and the generic poirtiape
point of specR and letXy, and Xy, be the special and generic fibres.

Write Xy, = U Ci whereC; is an irreducible component &4,,. The re-

strictions ofOzR(l) anda)z to X, are isomorphic. This follows from
the definition ofUc. To prove thate(hy) € Uc is equivalent to show-
ing that the restrictions of the line bundle§ andOgz,(1) to Xy, are
isomorphic.

Write Oz, (1) = w; ® M, whereM is a Iine bundle orZg which

on Zg — {nodes ofXp, } is of the formOgz, (- 2 riCi). Lett be the uni-

formizing parameter oR. TensoringOz,(1) W|th the trivial line bundle
associated to the principal d|V|spE((t”“”(r )) we can assume that> 0,
min(r;) = 0 i.e. we can assume thit is an ideal sheaf.

Letd= | G, = | Ci. If gisthe local equation dfl theng # O
ri>0 ri=0
in any component o’ andg(x) = 0 for all x € Jn J'. Hence #J n
J’) < ded; M. However, we have,ded; M| = |ded; L — nded wx, | <
#(J nJ)

2

(cf. proposition[L.01, padel66). This forcéds= X, i.e. M is
trivial. This proves the result.

Recall thatUc is precisely the set of points € U such that the

restriction of the line bundle)g u ® Oz, (-1) to the fibre ofzy LNy
over h is trivial. Now using standard arguments (¢fl [4], page B9Q)
is given the structure of a closed subschemb pfhaving the following

properties,
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i) There exists a line bundi®’ on Uc such that the restriction of
‘“;U/u ® Og, (—1) to.ZUC Xy Zy is isomorphic topy; (M), (puc
denotes the projectiofiy. — Uc);

i) If f:W — U isany morphism such that for some line bunt¥é€
onW the line bundles (Xk f)*(cugu/U X Oz,(-1)) andp{,(M”) on
ij Zy are isomorphic theri can be factored a4/ — Uc — U.

Theorem 2.0.1.Uc is nonsingular.

Proof. Leth e Uc be a closed point and le¢, be the fibre ofZy, pu—°>
Uc overh. Let X be the universal formal deformation ¥foverT =
Speclli, ta, ..., )], (s = dimExt(Qx,/k,Ox,)), (cf. theoremTZ12,
page IP). o

Letn : S = Spe@uqh — Uc be the natural map. We have the
following commutative diagram.

Zyc, — 2y,

S———Uc

91
It follows from theoreni.0.2]12. (padiell2) that there existgigue mor-
phismf : S — T suchthafZ, ~ S>T<X and the isomorphism restricted

to the closed fibres is the identity morphism.

Claim: f:S — T isformally smooth, i.e.

CA)UC’h ~ [[ty,to, ..., ts, tsi1, . . ., tsrs]] fOr SOme nonnegative integer
s.

Note that if we prove the claim, the result will follow. Ch@oan
isomorphismP(r, (w 1)) = P"?4-29 x T, (cf. stable curves, pagel10).
By the universal property dflc we have a unique morphissn: T —
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Uc such that the following diagram is commutative.

X — Zuc

|

Y—Uc

Clearlyy has a factorization

TLshc andy’ is a section off.
Recall thatG = PGL(N + 1) acts onVc. Let Sy, be the stabilizer
of h € Uc. ThenSy is finite and reduced. In fact if it were not then

Kle

Sy would have a nonzero tangent vector i.e. there would
E
valued point ofG centered at the identity which gives an automorphism
Kle Kle

of Xp x [2] Pn(29-2)-9 « L hence a vector field defined on the
whole oth We have already seen that such a vector field is necessarlly
zero (cf. lemma&0.Il7. pa@ell0). Thus the automorphisi,of —= 2 Kle]
must be identity and further sin¢g, is connected and nondegenerate in

" K
PN (cf. propositionC.OR. padeR7) the automorphiBm @ must

&

be identity. It follows thatS,, is finite and reduced and hence the action
of G on S is formally free which amounts to saying thatis formally
a principal fibre bundle oveF with groupG. ThereforeS is formally
smooth oveiT .

FurtherUc is contained in the open subsetldf parametrizing sta-
ble curves. To see this late U such that the fibre, of Z LN U over
his semistable but not stable i.¢is a smooth rational component X
which meets the other componentsfin exactly two points. But then
the restriction otu” to Y is very ample and de,gux = ndeg, wx, =
n(degwy + #(Y N Y’) =
(Y’ is the closure oKy — Y in Xp).

This contradiction proves tha4, is necessarily a stable curve.

P(mo)
Recall that the morphisd — P( A HO(PN, Opn(mp)))SS defined
by ¥m,(h) = Hm,(Xn)(h € U) is a closed immersion and also it iGa

P(my)
morphism. By Theorefi0.0.5 (page®) A HO(PN, Opn(mp)))SShas a
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good quotient byG which is projective. Then it is easy to see thit
has a good quotient b§ (denoted byUc/G) which is projective. We
are now ready to state the main theorem of this chapter.

Theorem 2.0.2.Uc /G is a coarse moduli space of isomorphism classes
of stable curves of genus g. Furtheg 5 is reduced and irreducible.

Proof. We first prove that every stable curve (in the sense of Defini-
tion[0.1.3. pagEl8) is representedia/G. m|

Let X be a stable curve of gengs Lety : X” — Spe® be a defor-
mation ofX to a connected, smooth curve wh&s a discrete valuation
such thatKj, the residue field oR is algebraically closed. Lé{, be
the quotient field oR. Note X’ — SpecR s a stable curve and hence
can be realized as a family of curvesBif?-2-9 (cf. Stable curves,
pagd®). Then by the universal property of the Hilbert scheiwee get
a morphisnp : SpecR — H. Since the generic fibr)§,’<2 of y is smooth,
the image of Spek, c SpecR lies in the locally closed subscherbe
of H (cf. Theoren_I.0I0 pade119). Sintk/G is complete, (cf. Defi-
nition 4.1. page 52€110]) there exists a morphishn SpedR —» Uc 94
such that ifX” — SpedRis the base change @f;. — Uc by the mor-
phismp’ : SpedRk — Uc then the generic fibrﬁg2 of X” — SpedRis
isomorphicX;(Z. Now note the following lemma.

Lemma 2.0.3. Let Y and Y’ be two stable curves over a discrete
valuation ring R with algebraically closed residue field. t ¥ be the
generic point ofSpedR and assume that the generic fibresand Y/
are smooth. Then any isomorphism betweéraid ¥/ extends to an
isomorphism between dnd Y’. (cf. Lemma 1.12(]1])

In view of the above lemma, it follows that the isomorphism be
tweenX(  andXi can be extended to an isomorphism>éfand X"
over Spe®. Observe that the isomorphism betwedp and X[ is in-
duced by an automorphism #f?-2-9, Thus in the Hilbert scheme
H, the two points representing the curJés and XK, lie in the same
G-orbit. Now it is immediate that the morphismn SpedRk — H factors
as Spe®kR —» Uc — H.
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Thus every stable curve is representedlin SinceG acts onUc
with finite isotropy (cf. Theoreri 0.1.8. pafel 10) and withseld or-
bits (cf. LemmdZ0I3) the good quotiddt /G of Uc by G is a coarse
moduli space for isomorphism classes of stable curves.

It remains to prove thdtc /G is reduced and irreducible. We know
this to be true when characteristic of the ground figl zero, [11]. So
assume now that characteristickofis positive.

Let R be a discrete valuation ring such that the quotient fieltR bfas
characteristic zero and is the residue field oR.

ConstructUc over Spe® and call itUcr (Note that the method
of our proof works over the base Spgeccf. [9]). Let Gg be the group
PGL(N + 1)(R). SinceUcRr/Gr is projective and the generic fibre of
Ucr/Gr — SpeR is connected, Zariski's connectedness theorem
shows thatUc r/Gr® K is connected. Note thélcr/GrR®K = Ucr®
K/G is just the orbit space, hentk r® K = Uc is connected. We have
already seen thdlc is smooth. ThudJc is reduced and irreducible.
Recall that the structure sheaf 0 /G is the sheaf of invariants in the
structure sheaf dflc. HenceU¢/G is reduced and irreducible.



Appendix

Let X’ be a reduced, complete, connected curve which has at mést ead
n

nary double points. WritX” = [J X/ (X' an irreducible component of
i=1

1=

X’). LetL’ be aline bundle oX’ and letdy, As,.. ., A, be positive ra-
tional numbers withy, 4; = 1. Following Oda-Seshadiil[8] we say that
the line bundleL’ is (1;)-semistable, if for every complete, connected

Ll

subcurveC of X/, X((L?)) >x >4, where the summation is taken over
X ' cC

all i such thatx/ c C.

Now let X be a stable curve in the famiBy 2, U, (Notation as in
n
ChaptefdL, cf. padeb4). Writé = |J Xi, (X; an irreducible component
i=1

. deg wx . .
of X). Letwx be the dualizing sheaf &f. Let4; = —((1<i<n).
degwx

Let L be the very ample line bundle ot
Proposition. Al. The line bundle L i¢1;)-semistable.

Proof. For every complete, connected subcu@ref X, we have

k
ec-gc+tl Xlc) %73
d-g+1  X(UL) = d

(ec = deg: L, k = #C n C’), C’ is the closure ofX — C in X), (cf.
Propositio_I.0.710., pad€l66).

dk K
= dec+d(1—gc)zdec+7+(1—g)(ec+§)
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(ec + g)(g -1)2d(gc-1+ g) = g(ch _ 24k = ddedex)

2
k
€c+3 _degwx '
d - 2g-2 ‘Xizc;f'
X(Lc)
> ) 2
X(L) ch;; '

For a complete subcurvé of X, we apply the above inequality to

each connected componéhbf X and by adding we get the result.o
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