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Introduction

These notes are based on some lectures given at TIFR during January
and February 1980. The object of the lectures was to construct a pro-
jective moduli space for stable curves of genusg ≥ 2 using Mumford’s
geometric invariant theory.

The general plan of the notes is as follows: Chapter 0 consists of
preliminaries. In particular, form >> 0, we review how to attach to
each space curveC ⊂ Pn a point in some projective space called the
mth Hilbert point of C. We then consider the question of the stability
of themth Hilbert point in the sense of geometric invariant theory. Our
first main result in Chapter 1 is that ifC is smooth andd ≥ 20(g − 1),
then themth Hilbert point of C is stable. Our second main result in
Chapter 1 is that if themth Hilbert point is semi-stable, then the curve is
semi-stable as a curve. In Chapter 2, we use the results of Chapter 1 to
give an indirect proof that then-canonical embedding of a stable curve
is stable ifn ≥ 10, and to construct the projective moduli space for
stable curves. As corollaries, we obtain proofs of the stable reduction
theorem for curves, and of the irreducibility of the moduli space for
smooth curves.

Historically speaking, Mumford used his theory to construct a quasi-
projective moduli space for smooth curves by studying the stability of
the Chow points of spaces curves. Mumford and Deligne [1] introduced
the concept of stable curve in their proof of the irreducibility of the
moduli space of curves of genusg ≥ 2, and later F.Knudsen established
the existence of a projective moduli space for stable curves. In 1974,
Mumford and I realized that the n-canonical model of a stablecurve was

v



vi Introduction

stable in the invariant theory sense ifn >> 0. Mumford then showed
that the Chow point of the n-canonical model of a stable curveis stable
if n ≥ 5, [7]. Our treatment here parallels that of Mumford, exceptfor
technical points arising from the difference between Chow and Hilbert
points. (I believe one could use Hilbert point methods in thecasen ≥ 5).

I wish to thank D.R. Gokhale, who filled in many gaps in the original
lectures. I also wish to thank TIFR for inviting me for a most enjoyable
visit and my audience, especially C.S. Seshadri, for their comments and
patience.
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Notation
The following notations will be used without further comment.

K a fixed algebraically closed field
K∗ multiplicative group of non-zero elements in

K
AN affineN-space overK
PN projectiveN-space overK
GL(N + 1) group of invertible (N + 1)× (N + 1) matrices

overK.
S L(N + 1) group of elements inGL(N+1) with determi-

nant 1.
PGL(N + 1) GL(N+1)/scalar multiples of the Identity ma-

trix.
PGL(N + 1)(R) group of invertible (N + 1)× (N + 1) matrices

over a ringR/scalar multiples of the Identity
matrix.

1− psλ One parameter subgroup of an algebraic
group LetX be a projective scheme and let
F be a coherent 0X module.

Hi(X, F) ith cohomology ofX with coefficients inF
hi(X, F) dim Hi(X, F)
χ(F)

∑

(−1)ihi(X, F)
#S cardinality of a setS.
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Chapter 0

Preliminaries

In this introductory Chapter we recall, 1

A) some basic definitions and standard results in Geometric Invariant
Theory;

B) the definition of a Hilbert point of a curve;

C) the definition of a Hilbert scheme;

D) the definition and simple properties of a stable curve;

E) some basic definitions and standard results in Deformation theory.

A) Geometric Invariant Theory
Let G be a reductive algebraic group acting on an algebraic scheme

X. It is natural to ask whetherX has a quotient byG, which is reasonably
good, say, in the sense of the following definition.

Definition 0.0.0. In the above situation agood quotientof X by G is a
morphism f: X→ Y of algebraic schemes, satisfying,

i) f is surjective, affine and G-invariant (i.e. f(gx) = f (x) for all
g ∈ G, x∈ X);

ii) f ∗(OX)G = OY, ( f∗(OX) is the direct image of OX and f∗(OX)G is
the sheaf of G-invariants in f∗(OX));

1



2 Preliminaries

iii) if F is a G-invariant closed subset of X then f(F) is closed in Y 2

and if F1 and F2 are G-invariant closed subsets of X such that
F1 ∩ F2 = φ then f(F1) ∩ f (F2) = φ.

Definition 0.0.1. With the same notations as above, ageometric quo-
tient of X by G is a morphism f: X → Y of algebraic schemes,
satisfying,

i) f is a good quotient of X by G;

ii) for every y in Y the fibre f−1(y) is exactly one orbit. (In particular
the orbits are closed).

It is easy to see that a quotient (good or geometric) is uniqueup to
isomorphism (if it exists).

Example 0.0.2.Consider the natural action ofGL(N) on affineN-space
AN. ClearlyAN − {0} is a single orbit inAN which is not closed. Hence
a geometric quotient ofAN by GL(N) does not exists.

Now suppose thatX ⊂ PN is a projective algebraic scheme andG
is a reductive algebraic group acting onX via a representationϕ : G→
GL(N + 1).

Definition 0.0.3. In the above situation a point x∈ X is calledsemi-
stable if there exists a non constant G-invariant homogeneous polyno-
mial F such F(x) , 0.

Put Xss= {x ∈ X|x is semistable}. Clearly Xss is open in X.3

Definition 0.0.4. With the same notation as above, a point x∈ X is
called stable, if,

i) dim 0(x) = dimG, (0(x) denotes the orbit of x);

ii) there exists a non constant G-invariant homogeneous polynomial F
such that F(x) , 0 and for every y0 in XF = {y ∈ X|F(y) , 0}, 0(y0)
is closed in XF.

Put Xs = {x ∈ X|x is stable}. Note that the set{x ∈ X|dim(0(x)) =
dimG} is open X becausedim(0(x)) is a lower semicontinuous function
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of x. Now it is immediate that Xs is open in X. Both Xss and Xs can
be empty, however in the case when they are non empty we have the
following theorem.

Theorem 0.0.5. There exists a projective algebraic scheme Y and a
morphism fss : Xss→ Y such that fss is a good quotient of Xss by G.
Further there exists an open subset U of Y such that f−1

ss (U) = Xs and
fs : Xs→ U is a geometric quotient of Xs by G.

There is a test for semistability using one parameter subgroups.

Definition 0.0.6. Let G be an algebraic group. Aone parameter sub-
groupλ (abbreviated as 1-psλ) of G is defined to be a nontrivial homo-
morphismλ : Gm→ G of algebraic groups. 4

Let G be a reductive algebraic group acting on a projective alge-
braic scheme X⊂ PN via a representationϕ : G → GL(N + 1). Given
a 1 − psλ of G, there is an induced action ofλ on the affine (N + 1)-
spaceAN+1. This action can be diagonalized, i.e., there exists a basis
e0, e1, . . . , eN of (the vector spacer)AN+1 such that the action ofλ on
AN+1 is given byλ(t)ei = tr i ei , t ∈ K∗, ri ∈ Z, (0 ≤ i ≤ N). Let

x =
N
∑

i=0
xiei be a point inAN+1 − {0}, (xi ∈ K, 0 ≤ i ≤ N). Clearly

λ(t)x =
N
∑

i=0
xiei . The point x∈ AN+1 − {0} represents a point, saȳx, in

PN

Definition 0.0.7. With λ and x as above we defineµ(x̄, λ) = −max.
{r i |xi , 0}.

It can be shown thatµ(x̄, λ) is independent of the basis e0, e1, . . . , eN

and the point x, so that the above definition makes sense.

Definition 0.0.8. With the same notations as above a pointx̄ ∈ X is
calledλ-semistable (respectivelyλ -stable)if µ(x̄, λ) ≤ 0 (respectively
µ(x̄, λ) < 0).

Semistability (respectively stability) andλ-semistability (respecti-
velyλ-stability) of a pointx̄ are related by the following theorem.

Theorem 0.0.9.With the same notations as above,x̄ is semistable⇐⇒ 5
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x̄ isλ-semistable for every1−psλ of G, andx̄ is stable⇐⇒ x̄ isλ-stable
for every1− psλ of G.

It follows from the above theorem that to show that a pointx̄ ∈ X is
not semistable it suffices to find a single1− psλ of G such that̄x is not
λ-semistable.

The proofs of the results in this section can be found in [5].

B) Hilbert point of a curve
Let X ⊂ PN be a complete curve. LetL be the restriction ofOPN(1)

to X. Recall thatχ(Lm) = ho(X, Lm) − hl(X, Lm) is a polynomial inm,
sayP(m).

By Serre’s vanishing theorem there exists an integerm′ such that all
integersm> m′, Hl(H, Lm) = 0 and the restriction

ϕm : Ho(PN,OPN(m))→ Ho(X, Lm) is surjective.

Assume now thatm > m′. Taking theP(m)th exterior powers, we
get,

P(m)
Λ ϕm :

P(m)
Λ Ho(PN,OPN(m))→

P(m)
Λ Ho(X, Lm) ≃ K,

a point in the projective spaceP(
P(m)
Λ Ho(PN,OPN(m))). (For a vector

spaceV, P(V) denotes the projective space associated toV, in the sense
of Grothendieck i.e.P(V) is the space consisting of equivalence classes
of nonzero linear forms onV.)

Definition 0.1.0. In the above situation the point6
P(m)
Λ ϕm ∈ P(

P(m)
Λ Ho(PN,OPN(m))) is defined to be the mth Hilbert point of

a curveX.
Choose a basis X0,X1, . . . ,XN of Ho(PN,O PN(1)). Consider the

action of GL(N+1) (and hence of S L(N+1)) on Ho(PN,OPN(1)), defined
by,

[ai j ].XP =

N
∑

j=0

ap jX j , [ai j ] ∈ GL(N + 1), (0 ≤ p ≤ N).

We have an induced action of S L(N + 1) on P(
P(m)
Λ Ho(PN,OPN(m))

described as follows.
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Recall that Ho(PN,OPN(m)) has the basis Bm = {M1,M2, . . . ,Mαm}

consisting of monomials of degree m in X0,X1, . . . ,XN, (αm = ho(PN,

OPN(m)). S L(N + 1) acts on Ho(PN,OPN(m)), with the action given by,

g.Xγo
o Xγ1

l · · ·X
γN
N = Hγo

o Hγl

l · · ·H
γN
N ,

(Xγo
o Xγl

l · · ·X
γN
N ∈ Bm, g ∈ S L(N + 1),Hp = g.Xp, 0 ≤ p ≤ N).

Hence there is an action of S L(N + l) on
P(m)
Λ Ho(PN,OPN(m)), as

follows. Recall that Mi1ΛMi2Λ · · ·ΛMiP(m) (1 ≤ i1 < i2 < · · · < iP(m) ≤

αm) is a basis of
P(m)
Λ Ho(PN,OPN(m)). The action of S L(N + l) on this

space is given by, 7

g·(Mi1ΛMi2Λ . . .ΛMiP(m)) = gMi1ΛgMi2Λ . . .ΛgMiP(m) , (g ∈ S L(N+1)).

Take the dual action
P(m)
Λ Ho(PN,OPN(m))∗ which naturally gives an

action of S L(N + 1) onP(
P(m)
Λ Ho(PN,OPN(m))).

Let λ be a1 − ps of S L(N + 1). When is the point Hm(X) ∈ P(
P(m)
Λ

Ho(PN,OPN(m)))λ - semistable? We try to answer this question.
There exists a basis w0,w1, . . . ,wN of Ho(PN,OPN(1)) and integers

r0, r1, . . . , rN such that the action ofλ on Ho(PN,OPN(1)) is given by

λ(t)wi = tr i wi , t ∈ K∗, (0 ≤ i ≤ N).

Let B′m = {M
′
1,M

′
2, . . . ,M

′
αm
} be a basis of Ho(PN,OPN(m)) consist-

ing of monomials of degree m in w0,w1, . . . ,wN. In this situation we
make the following definition.

Definition 0.1.1. For a monomial M= wγ0
0 wγ1

1 , . . . ,w
γN
N , define itsλ-

weightwλ(M), by wλ(M) =
N
∑

i=0
γir i and define,total λ-weight of mono-

mialsM′′1 ,M
′′
2 , . . . ,M

′′
t to be

t
∑

i=0
wλ(M′′i ).

The vector space
P(m)
Λ Ho(PN, OPN(m)) has the following basic, 8
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{

M′i1 Λ M′i2 Λ . . .Λ M′iP(m)

}

(1 ≤ i1 < i2 < ... iP(m) ≤ αm)

Let {M′i1 Λ M′i2 Λ . . .Λ M′∗iP(m)
}(1 ≤ i1 < i2 < ... iP(m) ≤ αm) be the basis of

P(m)
Λ Ho(PN, OPN(m))∗ dual to the above basis of

P(m)
Λ Ho(PN,OPN(m)).

The action ofλ on
P(m)
Λ Ho(PN, OPN(m))∗ is given by,

λ(t) (M′i1 Λ M′i2 Λ . . .Λ M′∗iP(m)
) = t−θ (M′i1 Λ M′i2 Λ . . .Λ M′∗iP(m)

),

t ∈ K∗, θ =
P(m)
∑

j=1

wλ(M
′
i j
).

Write Hm(X) as a linear combination of the vectors in the above

basis of
P(m)
Λ Ho(PN,OPN(m))∗.

Hm(X) =
∑ P(m)
Λ ϕ(M′i1 Λ . . .Λ M′iP(m)

) (M′i1 Λ M′i2 Λ . . . Λ M′∗iP(m)
)

By definition
Hm(X) is λ-semistable (respectivelyλ-stable)
⇐⇒ µ(Hm(X), λ) ≤ 0 (respectively< 0)

⇐⇒ −max.
{

−
∑P(m)

j=1 wλ(M′i j
)
}

≤ 0 (respectively< 0),

where the maximum is taken over all (i1, i2, . . . , iP(m)) with 1 ≤ i1 <9

i2 < . . . < iP(m) ≤ αm, such that
P(m)
Λ ϕm (M′i1 ΛM′i2Λ . . .Λ M′iP(m)

) , 0.
Clearly

−max.



















−

P(m)
∑

j=1

wλ (M′i j
)



















= min .



















P(m)
∑

j=1

wλ(M
′
i j
)



















.

Thus we have the following criterion.

(∗) In the above situationHm(X) is λ-semistable (respectivelyλ-
stable)⇐⇒ There exist monomialsM′i1,M

′
i2
, . . . ,M′iP(m)

, (1 ≤ i1 < i2 <
. . . < iP(m) ≤ αm), in B′m such thatϕm(M′i1), ϕm(M′i2), . . . , ϕm(M′iP(m)

) is a

basis ofHo(X, Lm) and
P(m)
∑

j=1
wλ (M′i j

) ≤ 0 (respectively< 0).
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Let λ be a 1− psof GL(N+1). There exists a basis{w0,w1, . . . ,wN}

of Ho(PN,OPN(1)) and integersr0, r1, . . . , rN such that the induced ac-
tion of λ on Ho(PN,OPN(1)) is given by,

λ(t) wi = tr i wi , t ∈ K∗, (0 ≤ i ≤ N).

Put
N
∑

i=0
r i = r. Define a 1− psλ′ of S L(N + 1) so that the action ofλ′ on

Ho(PN,OPN(1)) is given by

λ′(t)wi = tr
′
i wi , t ∈ K∗, r′i = (N + 1)r i − r, (0 ≤ i ≤ N).

Definition 0.1.2. In the above situation the1− psλ′ of S L(N+1) is said 10

to be the1 − ps of S L(N + 1) associated to the1 − psλ of GL(N + 1).
We want to rewrite the condition(∗) for λ′−semistability (respectively
λ-stability) of Hm(X) in terms ofλ−weights of the monomials.

Note that for a monomialM ∈ Ho(PN,OPN(m)), wλ′(M) = (N +
1)wλ(M) − rm. It follows that,

P(m)
∑

j=1

wλ′(M
′
i j
) ≤ ( respectively< 0)

⇐⇒

(N + 1)
P(m)
∑

j=1

wλ(M
′
i j
) − P(m) rm ≤ 0 ( respectively< 0)

⇐⇒

P(m)
∑

j=1

wλ′(M′i j
)

mP(m)
≤

r
N + 1

, ( respectively<
r

N + 1
)

Thus we have the following criterion

(∗∗) With the same notations as above,

Hm(X) ∈ P(
P(m)
Λ Ho(PN,OPN(m))) is λ′ -semistable (respectivelyλ′

-stable)⇔ there exist monomialsM′i1, M′i2 , . . . ,M
′
iP(m)

, (1 ≤ i1 < i2 <
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· · · < iP(m) ≤ αm) in B′m such that
{

ϕm(M′i1), ϕm(M′i2), . . . , ϕm(M′iP(m)
)
}

is a

basis ofHo(X, Lm) and

P(m)
∑

j=1
wλ′(M′i j

)

mP(m)
≤

r
N + 1

, ( respectively<
r

N + 1
).

C) Hilbert Scheme
Consider the projective spacePN over SpecZ. Look at all closed11

subschemes ofPN, flat overZ, with a fixed Hilbert polynomial sayP(m).
A fundamental existence theorem says that there exists a scheme, pro-
jective over SpecZ, parametrizing all these closed subschemes ofPN.
In fact we have the following stronger version of the theorem.

Let Sch denote the category of locally noetherian schemes. Define
a functor HilbP

PN form Sch to the category of sets as follows.
For S in Sch, HilbP

PN(S) = The set of all closed subschemesW of
PN × S, flat overS such that for everys ∈ S the induced closed sub-
schemeWs of PN

k(s) has Hilbert polynomialP(m).

Theorem 0.1.3.The functorHilbP
PN is representable and is represented

by a scheme projective over specZ.

Let H denote the scheme representing the functor HilbP
PN . Thus

for all S in Sch, HilbP
PN(S) ≃ Hom(S,H). In particular HilbP

PN(H) ≃
Hom(H,H). Let Z be the closed subscheme ofPN × H which cor-
responds to the identity morphismi ∈ Hom(H,H), under the above
isomorphism. We callZ, the universal closed subscheme. It has the
following universal property.

Given a schemeS in Sch and a schemeY ∈ HilbP
PN(S), there exists12

a unique morphismf : S→ H such that (1× f )∗ Z ≃ Y.
A proof of the above theorem and other details can be fond in [2],

[6].

D) Stable Curves (in the sense of Deligne - Mumford (1))

Definition 0.1.4. Let S be any scheme.A stable (respectively semista-
ble) curve of genusg ≥ 2 over S s a proper flat morphismπ : X → S
such that for all s∈ S the fibre Xs of π over s, satisfies,
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i) Xs is a reduced, connected scheme of dim 1 with h1(Xs,OXs) = g;

ii) each singular point of Xs is an ordinary double point;

iii) if E is an irreducible component of Xs such E≃ P1 then E meets the
other component of Xs in at least 3 points, (respectively 2 points).

We now quote some results on stable curves which will be needed
in the sequel.

Theorem 0.1.5.If π : C→ SpecK is a stable curve then H1(C, ωn
C/K) =

0 for n ≥ 2 andωn
C/K is very ample for n≥ 3, (ωC/K denotes the dualiz-

ing sheaf of X).

We have the following consequences of the above theorem.
Let π : X → S be a stable curve of genusg ≥ 2. It follows from 13

the above theorem that for alls ∈ S and for n ≥ 2, H1(Xs, ω
n
X/S ⊗

OXs) = 0. This implies thatπ∗(ωn
X/S) is locally free and there are natural

isomorphisms

π∗(ω
n
X/S ⊗ k(s) ≃ Ho(Xs, ω

n
X/S ⊗OXs), (cf. EGA, Chapter 3,§7).

Hence forn ≥ 3 the relatively very ample line bundleωn
X/S gives an

embedding ofX into the projective bundleP(π∗ωn
X/S) overS, associated

to the locally sheafπ∗(ωn
X/S) on S. ThusX can be realized as a family

of curvesC in Pn(2g−2)−g with the Hilbert polynomial ofC given by
P(m) = n(2g− 2)m− g+ 1.

Let p : X→ S andq : Y→ S be two stable curves. Define a functor
IsomS(X,Y) form the category ofS- schemes, SchS, to the category of
sets, as follows.
IsomS(X,Y)(S′) = The set ofS′- isomorphisms betweenX ×

S
S′ and

Y×
S

S′ .

Theorem 0.1.6. The functorIsomS(X,Y) is represented by a scheme
IsomS(X,Y), quasiprojective over S . (cf. [3]).
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Let π : C → SpecK be a stable curve. Lett : Spec
K[ε]

(ε2)
→

IsomK(C,C) be a tangent vector at a pointP ∈ IsomK(C,C). By def-

inition t corresponds to an automorphism ofC × Spec
K[ε]

(ε2)
which is

canonically identified with a vector fieldD defined on the whole ofX.
Now note the following lemma.

Lemma 0.1.7. If π : C′ → SpecK is a stale curve then a vector field14

defined on the whole of C′ is zero.

Before we go to the proof of the lemma we deduce the following
result. The lemma says that the tangent space toIsomK(C,C) at the
point P is zero. SinceP was an arbitrary point ofIsomK(C,C) we see
thatIsomK(C,C) is finite. Thus we have the following theorem.

Theorem 0.1.8. If π : C → SpecK is a stable curve then the group of
automorphisms of C is finite.

Proof of the Lemma 0.1.7.Let D be a vector field defined on the whole
of C′. Let C′ be the normalization ofC′. Since the only singularities
of C′ are ordinary double points,D naturally corresponds to a vector
field D̄ on C̄′, such thatD̄ vanishes at all points of̄C′ which lie over the
double points ofC′. It follows that if E is an irreducible component of
C′ such thatĒ, the normalization ofE, has genus≥ 2 thenD̄ vanishes
on Ē and henceD vanishes onE.

Now consider the componentsE of C′ such thatĒ has genus≤ 1.
We have the following possibilities forE.

i) E is a nonsingular curve of genus 0.

ii) E has one double point,̄E has genus 0.

iii) E has at least two double points,̄E has genus 0.

iv) E is a nonsingular curve of genus 1.

v) E has at least one double point,̄E has genus 1.
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In the cases whenE has genus 0,̄D has at least 3 zeroes and when15

Ē has genus 1, D̄ has at least one zero. It follows thatD̄ must be zero on
Ē in each of the above cases. This proves the lemma.

For the proofs of the results in this section we refer to [1].

E) Deformation Theory
In this section we consider complete curvesX such that,

i) X is reduced, connected;

ii) if P ∈ X is a singular point ofX then P is necessarily ordinary

double point, i.e.,ÔX,P ≃
K[[ x, y]]

(xy)
, (ÔX,P denotes the completion

of the local ringOX,P of X at P).

It is clear that such a curveX is a local complete intersection.

Definition 0.1.9. A (flat) deformation of X over a complete local K-
algebra A is a flat morphismϕ : X̄→ SpecA such that the special fibre
of ϕ (i.e., the fibre over the closed point of Spec A) is isomorphicto X.

Recall that the set of first order deformation ofX (i.e. deformations

over Spec
K[ϕ]

(ε2)
) is canonically identified with Ext1(Ω1

X,OX), (Ω1
X is the

sheaf of Kahler differentials onX).
Note the following lemma. 16

Lemma 0.2.0. Ext1(Ω1
X,OX) = 0.

Proof. The result follows from the following observations.

i) We have the following spectral sequence.

Hp(X,Extq(Ω1
X,OX))⇒ Extp+q(Ω1

X,OX).

Since dimX = 1, H2(X,Exto(Ω1
X,OX)) = 0. SinceΩ1

X is locally
free except at a finite number of points, (Ext1(Ω1

X,OX) has support
at only finitely many points and henceH1(X,Ext1(Ω1

X,OX)) = 0.
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ii) Locally X can be embedded in an affineN-spaceAN. Let I be be the
ideal sheaf definingX in AN. Ω1

X has the following free resolution.

0→
I

I2
→ Ω1

AN ⊗OX → Ω
1
X → 0

It follows that Ext2(Ω1
X,OX)) = 0.

Now it is immediate that Ext2(Ω1
X,OX)) = 0. Thus there are no ob-

structions to lifting deformations over Spec
A
J

to deformations of over

SpecA (A denotes an Artin local ring with residue fieldK, J an ideal
in A). Equivalently the functor of deformations ofX over an Artin local
K−algebra is formally smooth. We have the following theorem. �

Theorem 0.2.1.There exists a formal schemeX̃ and a proper flat mor-17

phismη : X̃ → SpecK[[ t1, t2, . . . , tr ]] = T, (r = dim Ext1(Ω1
X,OX)),

such that the special fibre ofη is isomorphic to X. Further the mor-
phismη has the following properties.

i) Given a deformationX̄ → SpecA of X over an Artin local K-
algebra A, there exists a morphismρ : SpecA → T such that
X̄ → SpecA is obtained formη : X̃ → T by the base change
ρ : SpecA→ T.

ii) In the case when A≃
K[ω]
(ω2)

the above morphismρ is unique so that

the tangent space of T at the closed point is canonically isomorphic
to Ext1(Ω1

X,OX).

η : X̃→ T is called a versal deformation space for X.

In the case when Exto(Ω1
X,OX) = 0, η : X̃ → T is universal i.e. the

morphismρ is always unique. Thus ifX is a stable curve then a versal
deformation is universal (cf. lemma 0.1.7 page 10). Furthersince the
invertible sheafωX̃/T is relatively ample,̃X is the formal completion of a
unique scheme, proper and flat overT. We have the following theorem.

Theorem 0.2.2. If X is a stable curve then the versal deformationη :
X̃→ T is universal and algebraizable.
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Another fact aboutη : X̃→ T (X a stable curve) is that generic fibre
of η is nonsingular.

F) In this section we prove some results and make a few definitions 18

which will be needed in the sequel. We first prove Clifford’s theorem for
a reduced curve with ordinary double points. The proof in this generality
is due to Gieseker and Morrison.

Theorem 0.2.3(Clifford’s theorem). Let X be a reduced curve with only
nodes and let L be a a line bundle on X generated by global sections. If
H1(X, L) , 0, there is a curve C⊂ X so that

ho(C, L) ≤
degC L

2
+ 1

Proof. SinceH1(X, L) , 0, Ho(X, L−1 ⊗ ωX) , 0, (ωX is the dualiz-
ing sheaf ofX). So there is a non-zeroϕ : L → ωD. We can find
a curveC ⊂ X so thatϕ is not identically zero on each component
of C, but ϕ vanishes at all pointsC ∩ X −C = {P1, . . . ,Pk}. Since
ωC = ωX(−P1 . . . − Pk), we actually obtain

ϕ : LC → ωC.

Choose a basiss1, . . . , sr of Hom(LC, ωC) so thatϕ = s1. We can choose
a basist1 . . . tp of Ho(LC) so thatt1 does not vanish at the zeros ofs1 nor
any singular point ofC. Suppose

a1[s1, t1] + a2[s1, t2] + · · · = b2[s2, t1] + b3[s3, t1] + · · ·

where [s, t] is in Ho(C, ωC). Then 19

[s1, t] = [s, t1]

wheret ∈ Ho(C, LC) ands is a linear combination ofs2, . . . , sr . Hencet
is a multiple oft1, sincet vanishes wheret1 does. Hences is a multiple
of s1, contradicting the independence of thes′i s. So

ho(LC) − ho(L−1
C ⊗ ωC) ≤ g+ 1

and
ho(LC) + ho(L−1

C ⊗ ωC) ≤ degC(L) + 1− g.

Adding gives the desired result. �
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Lemma 0.2.4.Fix two integers g≥ 2, d ≥ 20(g− 1) and put N= d− g.
There exists a constantε > 0 such that for all integers not all zero, r0 ≤

r1 ≤ · · · ≤ rN,
N
∑

i=0
r i = 0 and for all integers0 = e0 ≤ e1 ≤ · · · ≤ eN = d,

satisfying,

i) if ei > 2g− 2 then ei ≥ i + g,

ii) if e i ≤ 2g− 2 then ei ≥ 2i,

there exists a sequence of integers0 = i1 < i2 < · · · < ik = N, making
the following inequality true.

k−1
∑

t=1

(r it+1 − r it )
(eit+1 + eit )

2
> rNeN + ε(rN − r0) (1)

Proof. We use the following combinatorial lemma proved by Morrison.20

�

Fix integers 0= e0 ≤ e1 ≤ · · · ≤ eN. Define a function

T(r0, r1, . . . , rN) = min
0=i1<···<ik=N

















k−1
∑

t=1

(r it − r it+1)
(eit + eit+1)

2

















,

where r0 ≥ r1 ≥ . . . ≥ rN = 0 are numbers with
N
∑

i=0
r i = 1. Then

maximum value ofT is Tmax =
1
2

max
i∈{1,...N}

e2
i

iei −
i−1
∑

j=1
ej

We modify inequality (1) as follows.

Let r′i = r i+ | r0 |,R=
N
∑

i=0
r′i = (N+ 1)|r0|, r′′i =

r′i
R
, (0 ≤ i ≤ N). Inequal-

ity (1) can be easily seen to be equivalent to the following inequality

k−1
∑

t=1

(r′′it+1
− r′′it )

(eit+1 + eit )

2
> eN(r′′N −

1
N + 1

) + εr′′N.



Preliminaries 15

Here 0= r′′0 ≤ r′′1 ≤ · · · ≤ r′′N,
N
∑

i=0
r′′i = 1. Transferring we get,

eNr′′N −
k−1
∑

t=1

(r′′it+1
− r′′it )

eit+1 + eit

2
<

eN

N + 1
− ε r′′N, i.e.

k−1
∑

t=1

(r′′it+1
− r′′it )

(eN − eit+1 + eN − eit )

2
<

eN

N + 1
− ε r′′N.

For 0 < i < N, let e′i = eN − eN−i and r′′′i = r′′N−i . Thus we have

0 = e′0 ≤ e′1 ≤ · · · ≤ e′N = d, r′′′0 ≥ r′′′1 ≥ · · · ≥ r′′′N ,
N
∑

i=0
r′′′i = 1.

Also it follows from conditions i) and ii) that, 21

i) if e′i < d − (2g− 2) thene′i ≤ i,

ii) if e′i ≥ d − (2g− 2) thenei ≤ g+ 2i − N.

The last inequality can be written as,

k−1
∑

t=1

(r′′′N−it+1
− r′′′N−i t

)
e′N−it+1

+ e′N−i t

2
<

eN

N + 1
− tr′′N

It follows from Morrison’s combinatorial lemma that there exists
i ∈ {1, 2, . . . ,N} and a sequence of integers, 0= N − ik < N − ik−1 <

· · · < N − i1 = N such that the following inequality is true.

k−1
∑

t=1

(r′′′N−i t+1
− r′′′N−it )

(e′N−it+1
+ e′N−it

)

2
<

1
2

e′2i

ie′i −
i−1
∑

j=1
e′j

Thus to prove the lemma it suffices to prove that there exists anε > 0
such that for any sequence of integers 0= e′0 < e′1 < · · · < e′N = d as
above and for all 1≤ i ≤ N,

1
2

e′2i

ie′i −
i−1
∑

j=1
e′j

<
d

N + 1
− ε.
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This can be easily checked using the bounds one′0, e
′
1, . . . , e

′
N.

Let X =
p
⋃

i=1
Xi be a curve, (Xi is an irreducible component ofX 1 ≤

i ≤ p). Let πi : X̄red→ Xired be the normalization ofXired and letX̄ be22

the disjoint unionX̄ =
p
⋃

i=1
X̄ired. We have closed immersions (inclusions)

ηi : Xired → X. Let π′ : X̄ → Xired be the morphism such that the
restriction of the morphismπ = ηoπ′ to X̄ired is the morphismηioπi ,
(1 ≤ i ≤ p).

Definition 0.2.5. The morphismπ : X̄→ X is defined to be the normal-
ization of X.

Let V be a vector space of dimensionn and let

o ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr = V, (F)

be a filtration ofV. Putni = dimVi, (1 ≤ i ≤ r).

Definition 0.2.6. In the above situation a basis v1, v2, . . . , vn of V is
said to be a basis relative to the filtration (F) if v1, v2, . . . , vn1 is a basis
of V1; v1, v2, . . . , vn1, vn1+1, . . . , vn2 is a basis of V2, etc.



Chapter 1

Stability of Curves

Fix a polynomialP(m) = dm− g + 1 whereg andd are integers with 23

g ≥ 2 andd ≥ 20(g − 1). PutN = d − g. In this chapter we prove
that there exists an integermo such that ifX is a connected nonsin-
gular (nondegenerate) curve inPN with Hilbert polynomialP(m) then

themth
o Hilbert point ofX, Hmo(X) ∈ P(

P(mo)
Λ )Ho(PN,OPN(mo)) (cf. def-

inition 0.1.0 page 4) is stable for the natural action ofS L(N + 1) on

P(
P(mo)
Λ Ho(PN,OPN(mo))) (cf. definition 0.0.4 page 2). We prove further

that if X is a connected curve inPN, with Hilbert polynomialP(m) such

that themth
o Hilbert point of X, Hmo(X) ∈ P(

P(mo)
Λ Ho(PN,OPN(mo))) is

semistable, thenX is semistable in the sense of definition 0.1.4 (page 8).
Recall that all curveX in PN, such that the Hilbert polynomial ofX

is P(m), are parametrized by a projective algebraic scheme, sayH (cf.

Hilbert scheme, page 8). LetZ
inclusion
−−−−−−−→ PN ×H be the universal closed

subscheme and letZ
pH
−−→ H be the composite

Z
inclusion
−−−−−−−→ PN × H

projection
−−−−−−−−→ H.

Z
pH
−−→ H can be viewed as a family of curves parametrized byH such

that for all geometric pointsh ∈ H the fibreXh of Z
pH
−−→ H overh is a

curve inPN
k(h) andP(m) is the polynomial ofXh.

Notation:

17
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i) By “a curve in the familyZH
pH
−−→ H” we mean the fibre ofZH

pH
−−→24

H over a closed point ofH, which is connected.

ii) X denotes a curve in the familyZH
pH
−−→ H.

iii) IX denotes the ideal sheaf of nilpotents inOX.

iv) π : X̄→ X denotes the normalization ofX.

v) L denotes the restrictions ofOPN(1) to X.

vi) L′ denotes the line bundleπ∗L on X̄.

vii) ϕm denotes the natural restriction,

ϕm : Ho(PN,OPN(m))→ Ho(X, Lm), m ∈ Z.

viii) By a nondegenerate curve in the familyZH
pH
−−→ H we mean a curve

in the familyZH
pH
−−→ H, which is a nondegenerate curve inPN.

Note the following assertions. There exists positive integersm′, m′′,
m′′′, q1, q2, q3, µ1, µ2 with m′′′ > m′, m′′ > 2, q3 > q1, µ1 > µ2 such

that for every curveX in the familyZH
pH
−−→ H, the following is true:

i) For all integersm> m′, H1(X, Lm) = 0 = H1(X̄, L′m).

ii) Iq1
X = 0.

iii) ho(X, IX) ≤ q2.25

iv) For every complete subcurveC of X, ho(C,OC) ≤ q3.

v) For every pointP ∈ X and for all integersr ≥ 0, dim
OX,P

mr
X,P

≤

µ1r + µ2, (OX,p is the local ringX at P andmX,P is the maximal
ideal inOX,P).

vi) For every subcurveC of X, for every pointP ∈ C and for all integers
m′′,m > r ≥ m′′, H1(C, Im−r ⊗ Lm

C) = 0, (I is the ideal subsheaf of
OC defining the pointP ∈ C).
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vii) For a geometric pointh ∈ H let Xh denotes the fibre ofZ
pH
−−→ H

overh ∈ H. Form > m′ let ψm : H → P(
P(m)
Λ )Ho(PN,OPN(m))) be

the morphism defined byψm(h) = Hm(Xh). For all integerm≥ m′′′,
ψm is a closed immersion.

We do not try prove these assertions as these can be proved by stan-
dard arguments.

Fix a basisX0,X1, . . . ,XN of Ho(PN,OPN(1)). Consider the action
of GL(N + 1) (and henceS L(N + 1)) onHo(PN,OPN(1)), defined by

[ai j ].Xp =

N
∑

j=o

ap jX j , [ai j ] ∈ GL(N + 1), (0 ≤ p ≤ N).

The above action ofS L(N + 1) onHo(PN,OPN(1)) induces an action of

S L(N + 1) onP(
P(m)
Λ )Ho(PN,OPN(mo)), (cf. page 4).

In the above situation we have the following theorem.

Theorem 1.0.0.There exists an integer mo > max. {m′′′, dq̄(3d +m′′ + 26

5)} such that for every nondegenerate nonsingular curve X in thefamily

ZH
pH
−−→ H, the mth

o Hilbert point of X,

Hmo(X) ∈ P(
P(mo)
Λ Ho(PN,OPN(mo))) is stable

Remark . It will follow from the proof that there exist infinitely many
integersm> max.{m′′′, dq̄(3d+m′′ + 5)} such that for every nondegen-

erate nonsingular curveX in the familyZH
pH
−−→ H, themth Hilbert point

of X,

Hm(X) ∈ P(
P(mo)
Λ Ho(PN,OPN(m))) is stable.

Proof. It suffices tn prove that there exists an integermo > max.{m′′′,
dq̄(3d +m′′ + 5)}, such that, for every nondegenerate nonsingular curve

X in the familyZH
pH
−−→ H and for every 1− psλ of S L(N + 1), themth

o

Hilbert point of X, Hmo(X) ∈ P(
P(mo)
Λ Ho(PN,OPN(mo))) is λ-stable, (cf.

theorem 0.0.9 page 3). �
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Let X be a nondegenerate nonsingular curve in the familyZH
pH
−−→ H

and letλ be a 1−psof S L(N+1). There exists a basis ofHo(PN,OPN(1)),

say,w0,w1, . . . ,wN, and integersr0 ≤ r1 ≤ · · · ≤ rN,
N
∑

i=0
r i = 0, such that

the action ofλ on Ho(PN,OPN(1)) is given by,

λ(t)wi = tr i wi , t ∈ K∗, (0 ≤ i ≤ N)

It is easily seen that the natural restriction mapϕ1 : Ho(PN,OPN(1))→
Ho(X, L) is an isomorphism. Letϕ1(wi) = w′i , 0 ≤ i ≤ N. LetF j−1 be the27

invertible subsheaf ofL generated byw′o,w
′
1, . . . ,w

′
j−1, degF j−1 = ej−1,

1 ≤ j ≤ N + 1. Note that the integerse0, e1, . . . , eN satisfy,

i) if ej > 2g− 2 thenej ≥ j + g,

ii) if ej ≤ 2g− 2 thenej ≥ 2 j.

This is immediate by the Riemann-Roch theorem and Clifford’s the-
orem.

It follows from the combinatorial lemma 0.2.4 (page 14) thatthere
exists a constantε > 0 such that for all integers, 0= e′0 ≤ e′1 ≤ · · · ≤
e′N = d, satisfying conditions i) and ii) and for all integersr′0 ≤ r′1 ≤

· · · ≤ r′N,
N
∑

i=0
r′i = 0; there exist integers 0= i1 < i2 < · · · < ik,= N such

that the following inequality holds

k′−1
∑

t=1

(r′it+l
− r′it )

(e′it+1
+ e′it )

2
> r′Ne′N + ε(r

′
N − r′o).

In particular, there exist integer 0= i1 < i2 < · · · < ik = N, such that,

k−1
∑

t=1

(r it+1 − r it )
eit+l + eit

2
> rNeN + ε(rN − ro).

Recall that for all positive integersp andn, Ho(PN,OPN((p + 1)n))
has a basisB(p+1)n = {M1,M2, . . . ,Mα(p+1)n

} consisting of monomials for
degree (p+ 1)n in w0,w1, . . . ,wN, (α(p+1)n) = ho(PN,OPN(p+ 1)n).28
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Let Vit be the subspace ofHo(PN,OPN(1)), generated by
Sit = {w0,w1, . . . ,wit }, (1 ≤ t ≤ k). For all integerst1, t2, s with 1 ≤
t1 < t2 ≤ k and 0 ≤ s ≤ p let (Vp−s

it1
· Vs

it2
· VN)n be the

subspace ofHo(PN,OPN((p+ 1)n)) generated by elementsw of the type
w = v1v2 . . . vn, wherevr (1 ≤ r ≤ n) is as follows.

For s= 0, vr = xr1 xr2 . . . xrpzr , (xr j ∈ Sit1
, 1 ≤ j ≤ p, zr ∈ Sik);

for 0 ≤ s≤ p, vr = xr1 xr2, . . . xr(p−s)yr1yr2 . . . yrszr

(xr j ∈ Sitl
, 1 ≤ j < p− s, yr j ∈ Sit2

, 1 ≤ j ≤ S; zr ∈ Sik);
for s= p, vr = yr1yr2 . . . yrpzr (yr j ∈ Sit2

, 1 ≤ j ≤ p, zr ∈ Sik)
These subspaces define the following filtration ofHo(PN,OPN((p+1)n)).

0 ⊂ (Vp
i1
· Vo

i2
· VN)n ⊂ (Vp−1

i1
· V1

i2 · VN)n ⊂ · · · ⊂ (V1
i1 · V

p−1
i2
· Vn)n

⊂ (Vp
i2
· Vo

i3
· VN)n ⊂ (Vp−1

i2
· V1

i3
· VN)n ⊂ .. . . . . . .

⊂ (Vp
it
· Vo

it+1
· VN)n ⊂ (Vp−1

it
· V1

it+1
· VN)n ⊂ · · · ⊂ (Vp−s

it
· Vs

it+1
· VN)n ⊂ . . .

⊂ (Vp
ik−1
· Vo

ik
· VN)n ⊂ (Vp−1

ik−1
· V1

ik
· VN)n ⊂ . . . ⊂ (V1

ik−1
· Vp−1

ik
· VN)n

⊂ (Vo
ik−1
· Vp

ik
· VN)n = Ho(PN,OPN((p+ 1)n)), (F)

Assume now that (p + 1)n > m′ so that the natural restriction map
ϕ(p+1)n : Ho(PN,OPN((p + 1)n)) → Ho(X, L(p+1)n) is surjective. For 29

integer 0≤ s ≤ p and 1≤ t ≤ k, let (V̄p−s
it
· V̄s

it+1
· V̄N)n = ϕ(p+1)n(Vp−s

it
·

Vs
it+1
· VN)n ⊂ Ho(X, L(p+1)n). We have the following filtration ofHo(X,

L(p+1)n).

0 ⊂ (V̄p
i1
· V̄o

i2
· V̄N)n ⊂ (V̄p−1

i1
· V̄i2 · VN)n ⊂ · · · ⊂ (V̄p−s

it
· V̄s

it+1
· V̄n)n ⊂ . . .

(V̄o
ik−1
· V̄p

ik
· V̄N)n = Ho(X, L(p+1)n) (F̄)

Rewrite the basisB(p+1)n as
B(p+1)n = {M′1,M

′
2, . . . ,M

′
P((p+1)n),M

′
P((p+1)n)+1, . . .M

′
α(p+1)n

} so that

M′1,M
′
2, , . . .M

′
P((p+1)n)′ is a basis ofHo(X, L(p+1)n) relative to the fil-

tration (F̄) andM′P((p+1)n)+1, . . .M
′
α(p+1)n

are the rest of the monomials in
B(p+1)n in some order.

Let X′ be a nondegenerate nonsingular curve in the familyZH
pH
−−→

H, L′ be the restriction ofOPN(1) to X′, X′0,X
′
1, . . . ,X

′
N be a basis of

Ho(PN,OPN(1)). Let F′j−1 be the invertible subsheaf ofL′ generated by
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the images ofX′0,X
′
1, . . . ,X

′
j−1 under the natural restrictionϕ′1 : Ho(PN,

OPN(1)) → Ho(X′, L′), (1 ≤ j ≤ N + 1). We claim that there exists
an integern′ such that for all integersn > n′, 0 ≤ t1 < t2 ≤ N for

all nonsingular curvesX′ in the family zH
pH
−−→ H and for all invertible

sheavesF′t1, F
′
t2, L

′ as above,30

(V̄′p−s
t1 · V̄′st2 · V̄

′
N)n = Ho(X′, (F′p−s

t1 ⊗ F′st2 ⊗ L′)n),

[

(V̄′p−s
t1 · V̄′st2 · V̄

′
N)n is defined in the same way as (V̄p−s

t1 · V̄s
t2 · V̄N)n

]

.

Indeed,F′p−s
t1 and F′st2 are generated by the sections in̄V′p−s

t1 and
V̄′st2 , and the linear systemV′N is very ample. Thus the linear system
W = V̄′p−s

t1 · V̄′st2 · V̄
′
N is very ample and generatesM = F̄′p−s

t1 ⊗ F̄′st2 ⊗ L′.
Let ψ : X′ → P(W) be the projective embedding derived fromW and
let I be the ideal ofψ(X′). Forn >> 0, H1(P(W), I (n)) = 0. For suchn,
the map fromWn to Ho(X′,Mn) is onto. Our claim follows provided we
can pickn′ independent ofX′ and integerst1, t2. This can be done using
standard techniques. Thus for integers 0< t1 < t2 < N, 0 ≤ s ≤ p,
n > n′ we have

(V̄p−s
t1 · V̄s

t2 · V̄N)n = Ho(X, (Fp−s
t1 ⊗ Fs

t2 ⊗ L)n).

Choose integerspo andno such thatpo > max.{d + g,
2d + 1
ε
}, no >

max.{po, n′} andmo = (po+1)no > max.{m′′′, dḡ(3d+m′′+5)}. It then
follows by the Riemann-Roch theorem that

dim(V̄po−s
it
· V̄s

it+l
· V̄N)no = no((po − s)eit + seit+l + eN) − g+ 1,

(0 ≤ s≤ p, 1 ≤ t ≤ k).

We now estimate,31

total λ-weight of M′1,M
′
2, . . . ,M

′
P(mo) =

P(mo)
∑

i=1
wλ(M′i ),

(cf. definition 0.1.1 page 5). Note that a monomialM ∈ (Vp0−s
it
· Vs

it+1
·

VN)no − (Vpo−s+1 · Vs−1
it+1
· VN)no hasλ-weightwλ(M) ≤ no((po − s)r it +

srit+1 + rN).
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P(mo)
∑

i=1

wλ(M
′
i ) < no(por i1 + rN)(dim V̄po

i1
· V̄o

i2
· V̄N)no

+ no((po − 1)r i1 + r i2 + rN)(dim(V̄po−1
i1
· V̄1

i2 · V̄N)no − (dim V̄po
i1
· V̄0

i2
· V̄N)no

+ no((po − 2)r i1 + 2r i2 + rN)(dim(V̄po−2
i1
· V̄2

i2 · V̄N)no − (dim V̄po−1
i1
· V̄1

i2 · V̄N)no)

+ · · · · · · · · · · · · · · ·

+ no((po − s)r it + srit+1 + rN)(dim(V̄po−s
it
· V̄s

it+l
· V̄N)no − dim(V̄po−s+1

i1
· V̄s−1

it+1
· V̄N)no)

+ · · · · · · · · · · · · · · ·

+ no(por ik + rN)(dim(V̄o
ik−1
· V̄po

ik
· V̄N)no − (dim V̄1

ik−1
· V̄po−1

ik
· V̄N)no

= no(por i1 + rN)(no(poei1 + eN) − g+ 1)

+ n2
o((po − 1)r i1 + r i2 + rN)(ei2 − ei1) + n2

o((po − 2)r i1 + r i2 + rN)(ei2 − ei1)

+ · · · + n2
o((po − s)r it + srit+1 + rN)(eit+1 − eit ) + · · · + n2

o(por ik + rN)(eik − eik−1)
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32

= n2
opor i1eN + n2

orNeN + no(por i1 + rN)(1− g)

+ n2
o

po
∑

s=1

((po − s)r i1 + sri2 + rN)(ei2 − ei1) + · · · · · ·

+ n2
o

po
∑

s=1

((po − s)r it + srit+1 + rN)(eit+1 − eit ) + · · · · · ·

+ n2
o

po
∑

s=1

((po − s)r ik−1 + srik + rN)(eik − eik−1),

(∵ ei1 = eo = 0) < n2
orNeN + nopor i1(1− g)

+ n2
o

[ (po − 1)por i1

2
+

po(po + 1)r i2

2
+ porN

]

(ei2 − ei1) + · · ·

+ n2
o

[ (po − 1)por it

2
+

po(po + 1)r it+1

2
+ porN

]

(eit+1 − eit ) + · · ·

+ n2
o

[ (po − 1)por ik−1

2
+

po(po + 1)r ik

2
+ porN

]

(eik − eik−1)

∵ (r i1 = ro < 0, rN(1− g) < 0)

= n2
orNeN + nopor il (1− g)

+
n2

op2
o

2

[

(r i2 + r i1)(ei2 − ei1) + · · · + (r it+1 + r it )(eit+1 − eit ) + · · ·

+ (r ik + r ik−1)(eik − eik−1)
]

+
n2

opo

2

[

(r i2 − r i1)(ei2 − ei1) + · · ·

+ (r it−1 − r it )(eit+l ) + · · · + (r ik − r ik−1)(eik − eik−1)

+ 2rN

k−1
∑

t=1

(eit+1 − eit )
]

33

= n2
orNeN + nopor i1(1− g)n2

op2
o

k−1
∑

t=1

(r it+1 + r it )
(eit+1 − eit )

2
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+ n2
opo(

k−1
∑

t=1

(r it+1 − r it ))
(eit+1 − eit )

2
+ rN(eik − ei1))

< n2
orNeN + n2

opon−1
o r i1(1− g)

+ n2
op2

o

[

rNeN −

k−1
∑

t=1

(r it+1 − r it )
(eit+1 + eit )

2

]

+ n2
opo

[ k−1
∑

t=1

(r it+1 − r i1)eik

2
+ rNeik

]

,

(∵ −(r it+1 − r it )eik ≤ 0, ei1 = eo = 0)

< n2
op2

o

[

rNeN −

k−1
∑

t=1

(r it+1 − r it )
(eit+1 + eit )

2

]

+ n2
opo

[eik(r ik − r il )

2
+ rNeik +

]

+ n2
o(rNeN + r i1(1− g))

(∵ pon−1
o < 1, r i1(1− g) > 0)

< n2
o

[

− ε(rN − ro)p2
o + po(

d(rN − ro)
2

+ drN) + drN + ro(1− g)
]

(This follows from the lemma (page 27) and the facts thatr i1 = ro,
eik = eN = d, r ik = rN).

= n2
o(rN − ro)

[

− εp2
o + po(

d
2
+

drN

rN − ro
) +

drN

rN − ro
+

ro(1− g)
rN − ro

]

< n2
o(rN − ro)

[

− εp2
o +

3dpo

2
+ d + g− 1

]

(∵
rN

rN − ro
< 1,

ro(1− g)
rN − ro

< g− 1)

= n2
opo(rN − ro)

[

− εpo +
3d
2
+

d + g− 1
po

]

< 0, (∵ po > max.{d + g,
2d + 1
ε
})

34

It is immediate from the above estimate and criterion (∗) (page 6)

that the pointHmo(x) ∈ P(
P(mo)
Λ Ho(PN,OPN(mo))) is λ-stable. Further,
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by our choice of the numbersε, po and (po + 1)no = mo it is clear
from the above calculation that for every nonsingular curveX′ in the

family ZH
pH
−−→ H, for every 1− psλ′ of S L(N + 1), the pointHmo(X

′) ∈

P(
P(mo)
Λ Ho(PN,OPN(mo))) is λ′-stable. This proves the result.
Now consider the closed immersion (cf. page 19),ψmo : H →

P(
P(mo)
Λ Ho(PN,OPN(mo))) wheremo is the integer fixed in the above theo-

rem 1.0.0. LetP(
P(mo)
Λ Ho(PN,OPN(mo)))ss be the open subset of

P(
P(mo)
Λ Ho(PN,OPN(mo))) consisting of semistable points and letV be the

inverse image of this open set by the morphismψmo. Let ZV = p−1
H (V).

By restricting the morphismpH to ZV we obtain a familyZV
pV
−−→ V

of curvesX, such that themth
o Hilbert point of X, Hmo(X) ∈ P(

P(mo)
Λ

Ho(PN,OPN(mo))) is semistable. The above theorem 1.0.0. asserts that

the familyZV
pV
−−→ V contains all the nondegenerate nonsingular curves

in the familyZH
pH
−−→ H.

We are now ready to state the main theorem of these is lecture notes.

Theorem 1.0.1. Every curve X in the family ZV
pV
−−→ V is semistable35

in the sense of definition 0.1.4. (page 8). Further trace of the linear
system|D| on X is complete, (|D| is the complete linear system onPN

corresponding to the line bundle OPN(1) onPN).

Idea of the proof: The proof of the above theorem is divided in the
following propositions 1.0.2, 1.0.3.,. . ., 1.0.9. The proofs of the propo-
sitions 1.0.2, 1.0.3.,. . ., 1.0.6. are on the same lines as follows. As-
sume that the proposition is not true, i.e., letX be a curve in the family

ZV
pV
−−→ V which does not have the property stated in the proposition.

Using this assumption we are able to produce a 1− psλ′ of S L(N + 1)

such that themth
o Hilbert point ofX,Hmo(X) ∈ P(

P(mo)
Λ Ho(PN,OPN(mo)))

is notλ′-semistable.
In particular it follows thatHmo(X) is not semistable, (cf. theorem 0.0.9
page 3). This contradiction then proves the proposition.
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In proposition 1.0.7 we prove an important inequality (cf. inequality
(∗′), proposition 1.0.7, page 55) which follows from the inequality in
criterion (∗∗) (page 7), used in the case of a particular 1−psλ′ of S L(N+
1) and the integermo. Propositions 1.0.8 and 1.0.9 are proved using the
above inequality.

Proposition 1.0.2. Every curve X in the family ZV
pV
−−→ V is a nonde-

generate curve inPN i.e. X is not contained in any hyperplane inPN.

Proof. Suppose that the result is not true i.e. suppose that there exists a

curveX in the familyZV
pV
−−→ V such thatX ⊂ PN is a degenerate curve.36

We will show that this leads to the contradiction that themth
o Hilbert

point of X, Hmo(X) ∈ P(
P(mo)
Λ Ho(PN,OPN(mo))) is not semistable. This

contradiction will then prove the result. �

That X is a degenerate curve inPN means that the restriction map
ϕ̄1 : Ho(PN,OPN(1)) → Ho(Xred′ LXred) has nontrivial kernel, sayWo.
Let dimWo = No. Choose a basis ofW1 = Ho(PN,OPN(1)) relative to
the filtration 0⊂ Wo ⊂ W1, saywo,w1, . . . ,wNo−1, . . . ,wN, (cf. defini-
tion 0.2.6 page 16).

Let λ be a 1− psof GL(N + 1) such that the induced action ofλ on
W1 is given by,

λ(t)wi = wi , t ∈ K∗, (0 ≤ i ≤ No − 1),

λ(t)wi = wi , t ∈ K∗, (No ≤ i ≤ N).

Let λ′ be the 1− psof S L(N+1) associated to the 1− psλ of GL(N+1),
(cf. definition 0.1.2, page 7). The rest of the proof consistsof showing
thatHmo(X) is notλ′-semistable.

Assume now thatm> m′ so thatH1(X, Lm) = 0 and the restriction

ϕm : Ho(PN,OPN(m))→ Ho(X, Lm) surjective.

Let Bm = {M1,M2, . . . ,Mαm} be a basis ofHo(PN,OPN(m)) consisting
of monomials of degreem in w0,w1, . . . ,wN, (αm = ho(PN,OPN(m))). 37

Recall that we have chosen the integerq1 such thatIq1
X = 0 whereIX

denotes the ideal sheaf of nilpotents inOX, (cf. page 18).
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For 0 ≤ s ≤ q1 − 1 ≤ m let Wq1−s
o · Wm−q1+s

1 be the subspace of
Ho(PN,OPN(m)) generated by elementsw of the type

w = x1x2 · · · xq1−sy1y2 · · · ym−q1+s













xi ∈ Wo, 1 ≤ i ≤ q1 − s

yi ∈ W1, 1 ≤ i ≤ m− q1 + s

PutWo
o .W

m
1 = Ho(PN,OPN(m)). We have the following filtration of

Ho(PN,OPN(m)),

0 ⊂Wq1
o .W

m−q1
1 ⊂Wq1−1

o .Wm−q1+1
1 ⊂Wq1−2

o .Wm−q1+2
1 ⊂

. . .W1
o.W

m−1
1 ⊂Wo

o .W
m
1 = Ho(PN,OPN(m)), (F)

For≤ s≤ q1 < m let,

W̄q1−s
o .W̄m−q1+s

1 = ϕm(Wq1−s
o .Wm−q1+s

1 )

⊂ Ho(X, Lm), dimW̄q1−s
o .W̄m−q1+s

1 = βs.

These subspaces define the following filtration ofHo(X, Lm).

0 = W̄q1
o .W̄

m−q1
1 ⊂ W̄q1−1

o .W̄m−q1+1
1 ⊂ W̄q1−2

o .W̄m−q1+2
1 ⊂

. . . W̄1
o .W̄

m−1
1 ⊂ W̄o

o.W̄
m
1 = Ho(X, Lm), (F)

Rewrite the basisBm as Bm = {M′1,M
′
2, . . . ,M

′
P(m),M

′
P(m)+1, . . . ,M

′
αm
}

such that{ϕm(M′1), ϕm(M′2) . . . , ϕm(M′P(m))} is a basis ofHo(X, Lm) rel-
ative to the filtration ¯(F) andM′P(m)+1,M

′
P(m)+2, . . . ,M

′
αm

are the rest of
the monomials inBm in some order. We now estimate, totalλ-weight38

of M′1,M
′
2, . . . ,M

′
P(m) =

P(m)
∑

i=1
wλ(M′i ), (cf. definition 0.1.1 page 5). It fol-

lows from the definition ofλ, that a monomialM ∈ Wq1−s
o .Wm−q1+s

1 −

Wq1−s+1
o .Wm−q1+s−1

1 hasλ-weightWλ(m) = m− q1 + s, (1 ≤ s≤ q1).

P(m)
∑

i=1

wλ(M
′
i ) = m(βq1 − βq1−1) + (m− 1)(βq1−1 − βq1−2)+

. . . + (m− q1 + 1)β1

= mβq1 −

q1−1
∑

s=1

βs ≥ m(dm− g+ 1)− (q1 − 1)(dm− g+ 1)
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(∵ βs ≤ ho(X, Lm) = dm− g+ 1, 1 ≤ s≤ q1 − 1)

Thus
P(m)
∑

i=1
wλ(M′i ) ≥ (m− q1 + 1)(dm− g+ 1), (E1)

totalλ-weight ofwo,w1, . . . ,wN =
N
∑

i=0
wλ(wi)

= dimW1 − dimWo, (Follows from the definition ofλ )

= d − g+ 1− dimWo ≤ d − g, (∵ dimWo ≥ 1)

Thus
N
∑

i=0
wλ(wi) ≤ d − g, (E2)

We are now ready to get the contradiction that themth
o Hilbert point

of X,Hmo(X) is not semistable.
If Hm(X) is λ′ semistable then there exists monomialsM′i1 M′i2, . . . ,

M′iP(m)
in B′m(1 ≤ i1 < i2 < · · · < iP(m) ≤ αm), such that{ϕm(M′i1), ϕm

(M′i2), . . . , ϕm(M′iP(m)
)} is a basis ofHo(X, Lm) and

P(m)
∑

i=1
wλ(M′i j

)

mP(m)
≤

N
∑

i=0
wλ(wi)

d − g+ 1

(cf. criterion (∗∗) page 7).

Observe that
P(m)
∑

i=1
wλ(M′i ) ≤

P(m)
∑

j=1
wλ(M′i j

). Note the following. 39

Hm(X) is λ′ − semistable⇒

P(m)
∑

i=1
wλ(M′i j

)

m(dm− g+ 1)
≤

N
∑

i=0
wλ(wi)

d− g+ 1

⇒
(m− q1 + 1)(dm− g+ 1)

m(dm− g+ 1)
≤

d − g
d − g+ 1

(Follows from (E1), (E2))

⇒ 1−
q1 − 1

m
≤

d − g
d − g+ 1

⇒
1

d − g+ 1
≤

q1 − 1
m

⇒ m≤ (d − g+ 1)(q1 − 1)⇒ m< mo
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(∵ (d − g+ 1)(q1 − 1) < mo)

ThusHmo(X) is notλ′-semistable. In particular it follows thatHmo(X) is
not semistable. (cf. theorem 0.0.9 page 3. This contradiction proves the
result.

The above proof can be considered as the prototype of the proofs of
the next propositions 1.0.3., 1.0.4., 1.0.5., 1.0.6.

Proposition 1.0.3. Every curve X in the family ZV
pV
−−→ V is generically

reduced i.e. the local ring of X, at each generic point of X, isreduced.

Proof. Assume the contrary. LetX be a curve in the familyZV
pV
−−→

V such thatX is not generically reduced. WriteX =
p
⋃

i=1
Xi , (Xi , an

irreducible component ofX, 1 ≤ i ≤ p) so that the local ring ofX at
the generic point ofX1 is not reduced. We will show that this leads

to the contradiction that themth
o Hilbert point of X, Hmo(X) ∈ P(

P(mo)
Λ40

(PN,OPN(mo))) is not semistable. This contradiction will then prove the
result. �

Let degXired
L = ei , 1 ≤ i ≤ p. It is easy to see that degL = d =

p
∑

i=1
kiei for some positive integersk1, k2, . . . , kp, with k1 ≥ 2. Let Wo be

the kernel of the natural restriction map

ϕ̄1 : Ho(PN,OPN(1))→ Ho(Xlred, LXlred).

Claim : Wo , 0.

Proof of the Claim: Look at the exact sequence,

0 −→ 0Xlred −→ LXlred −→ OD1 → 0,

whereD1 is a divisor onXlred, corresponding to the line bundleLXlred

on Xlred, such thatD1 has support in the smooth locus ofX1. It follows
from the corresponding long exact cohomology sequence that

ho(Xlred, LXlred) ≤ ho(Xlred,OD1) + ho(Xlred,OXlred) = e1 + 1.
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Now note the following.41

Wo = 0⇒ d − g+ 1 = ho(PN,OPN(1)) ≤ ho(Xlred, LXlred) ≤ e1 + 1

⇒ d − g ≤ e1⇒ k1(d − g) +
p

∑

i=2

kiei ≤ k1e1 +

p
∑

i=2

kiei = d

⇒ (k1 − 1)d ≤ k1g−
p

∑

i=2

kiei ≤ k1g⇒
(k1 − 1)d

k1
≤ g

⇒
d
2
≤ g, (∵ k1 ≥ 2 ∴

k1 − 1
k1

≥
1
2

)

d ≤ 2g.

It is immediate from the above contradiction thatWo , 0. Also
in view of the Proposition 1.0.2 (page 27) it follows thatX cannot be
irreducible.

Let dimWo = No. Choose a basis ofW1 = Ho(PN,OPN(1)) relative
to the filtration 0⊂ Wo ⊂ W1, say{wo,w1, . . . ,wNo−1,wNo, . . . ,wN}, (cf.
Definition 0.2.6 page 16).
Let λ be a 1− psof GL(N + 1) such that the action ofλ on W1 is given
by,

λ(t)wi = wi , t ∈ K∗, (o ≤ i ≤ No − 1),

λ(t)wi = twi , t ∈ K∗, (No ≤ i ≤ N).

Let λ′ be the 1− psof S L(N+1) associated to the 1− psλ of GL(N+1),
(cf. definition 0.1.2 page 7). The rest of the proof consists of showing
thatHmo(X) is notλ′ -semistable.

Assume now thatm> m′ so thatH1(X, Lm) = 0 and the restriction 42

ϕm : (Ho(PN,OPN(m)) → Ho(X, Lm) is surjective. Recall thatHo

(P,OPN(m)) has a basisBm = {M1,M2, . . . ,Mαm} consisting of monomi-
als lof degreem in wo,w1, . . . ,wN, (αm = ho(PN,OPN(m))).

For 0 ≤ r ≤ m, let Wm−r
o .Wr

1 be the subspace ofHo(P,OPN(m))
generated by elementsw of the following type.
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For r = 0,

w = x1x2, . . . , xm, (x j ∈Wo, 1 ≤ j ≤ m),

for 0 < r < m,

w = x1x2, . . . , xm−ry1y2, . . . , yr ,

(x j ∈Wo, 1 ≤ j ≤ m− r; y j ∈W1, 1 ≤ j ≤ r),

for r = m,

w = y1y2, . . . , ym, (y j ∈W1, 1 ≤ j ≤ m).

We have the following filtration ofHo(P,OPN(m)).

0 ⊂Wm
o .W

o
1 ⊂Wm−1

o ·W1
1 ⊂Wm−2

o .W2
1 ⊂ · · ·

⊂Wq1
o .W

m−q1
1 ⊂Wq1−1

o .Wm−q1+1
1 ⊂ · · · ⊂Wo

o .W
m
1 = Ho(P,OPN(m)),

(F)

Let W̄m−r
o .W̄r

1 = ϕm(Wm−r
o .Wr

1) ⊂ Ho(X, Lm), dimW̄m−r
o .W̄r

1 = βr , 0 ≤
r ≤ m.
These subspaces define the following filtration ofHo(X, Lm).43

0 ⊂ W̄m
o .W̄

o
1.W̄

m−1
0 · W̄1

1 ⊂ W̄m−2
0 .W̄2

1 ⊂ · · ·

⊂ W̄q1
0 .W̄

m−q1
1 ⊂ W̄q1−1

0 .W̄m−q1
1 ⊂ · · · ⊂ W̄o

0.W̄
m
1 = Ho(X, Lm), (F̄)

Rewrite the basisBm = {M′1,M
′
2, . . . ,M

′
P(m), . . . ,M

′
αm
} such that

{ϕm(M′1), ϕ(M′2), . . . , ϕm(M′P(m))} is a basis ofHo(X, Lm) relative to the
filtration ¯(F) andM′P(m),M

′
P(m)+1, . . . ,M

′
αm

are the rest of the monomials
in Bm in some order.

Let C be the closure ofX − X1 in X. SinceX is connected, there
exists a (closed) point, sayPǫX1 ∩C.

Claim . C can be given the structure of a closed subscheme of X such
that the kernal of the restriction mapϕ′m : Ho(X, Lm) → Ho(C, Lm

C)
intersectsW̄m−r

o .W̄r
1 in the null space i.e.W̄m−r

o .W̄r
1 ∩ kernelϕ′m = 0,

0 ≤ r ≤ m− q1.
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The proof of the above claim is somewhat technical. Hence, assum-
ing the claim we will prove the proposition and then we will goto the
proof of the claim.

Let I denote the ideal subsheaf ofOC defining the pointP ∈ C.

The exact sequence 0→ Im−r ⊗ Lm
C → Lm

C →
OC

Im−r ⊗ Lm
C → 0, given

the following long exact sequence.

0→ Ho(C, Im−r ⊗ Lm
C)→ Ho(C, Lm

C)→ Ho(C,
OC

Im−r ⊗ Lm
C)

→ H1(C, Im−r ⊗ Lm
C)→ 0

44

Now make the following observations.

i) ho(C, Lm
C) = χ(Lm

C) = degC Lm+ χ(OC) ≤ (d− 2e1)m+ ho(C,OC) <
(d − 2e1)m+ q3 (cf. assertion iv, page 18).

ii) Since
OC

Im−r ⊗ Lm
C has support only at the pointP ∈ C,

ho(C,
OC

Im−r ⊗ Lm
C) = dim

[ OC,P

mm−r
C,P

]

≥ m− r,

(OC,P is the local ring ofC at P andmC,P is the maximal ideal in
OC,P).

iii) Note that ho(C,
OC

Im−r ⊗ Lm
C) = dim

[ OC,P

mm−r
C,P

]

≤ µ1(m− r) + µ2 (cf.

assertionv, page 18). Hence it follows from the above long exact
cohomology sequence thath1(C, Im−r ⊗ Lm

C) ≤ µ1(m− r) + µ2, 0 ≤
r ≤ m′′ − 1.

iv) For m′′ ≤ r ≤ m−q1, H1(C, Im−r⊗Lm
C) = 0 (cf. assertionvi page 18).

v) By definition the image of̄Wm−r
o .W̄r

1 ⊂ Ho(X, Lm) under the restric-
tion ϕ′m is contained in the subspaceHo(C, Im−r ⊗Lm

C) of Ho(C, Lm
C).

It follows that, 45

βr = dim(W̄m−r
o .W̄r

1) ≤ ho(C, Im−r ⊗ Lm
C)
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= ho(C, Lm
C) − ho(C,

OC

Im−r ⊗ Lm
C) + h1(C, Im−r ⊗ Lm

C)

≤ (d − 2e1)m+ q3 + r −m+ µ1(m− r) + µ2, (0 ≤ r ≤ m′′ − 1)

βr ≤ (d − 2e1)m+ q3 + r −m, (m′′ ≤ r ≤ m− q1)

βr ≤ dm− g+ 1, (m− q1 + 1 ≤ r ≤ m− 1)

(For the last inequality note that,βr ≤ ho(X, Lm) = dm− g+ 1).

We now estimate totalλ-weight ofM′1,M
′
2, . . . ,M

′
P(m) =

P(m)
∑

i=1
wλ(M′i ).

Note that a monomialM ∈ Wm−r
o Wr

1 − Wm−r+1
o Wr−1

1 has λ-weight
wλ(M) = r.

P(m)
∑

i=1

wλ(M
′
i ) =

m
∑

r=1

r(βr − βr−1) = mβm−

m−1
∑

r=0

βr

= mβm −

m′′−1
∑

r=0

βr −

m−q1
∑

r=m′′
βr −

m−1
∑

r=m−q1+1

βr

≥ m(dm− g+ 1)−
m−q1
∑

r=0

[

(d− 2e1)m+ q3 + r −m
]

−

m′′−1
∑

r=0

[

µ(m− r) + µ2

]

−

m−1
∑

r=m−q1+1

[

dm− g+ 1
]

= dm2 +m(1− g) −
[

(m− q1 + 1)(d− 2e1)m+ (m− q1 + 1)q3

+
(m− q1)(m− q1 + 1)

2
− (m− q1 + 1)m

]

−

[

µmm′′ − µ1
m′′ − 1

2
+ µ2m′′

]

− (q1 − 1)(dm− g+ 1)

= (2e1 +
1
2

)m2 −m

[

(1− q1)(d− 2e1) + q3 +
1
2
− q1 − (1− q1) + µ1m′′

+s(q1 − 1)+ g− 1
]

+ (q1 − 1)q3 −
q1(q1 − 1)

2
+
µ1m′′(m′′ − 1)

2
− µ2m′′ + (q1 − 1)(g− 1)

≥ (2e1 +
1
2

)m2 −m

[

(q1 − 1)(2e1 + 1)+ (q3 − q1) + µ1m′′ + g−
1
2

]

=

(

2e1 +
1
2

)

m2 −mS,
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(

S = (q1 − 1)(2e1 + 1)+ (q3 − q1) + µ1m′′ + g−
1
2

)

Thus, 46
P(m)
∑

i=1

wλ(M
′
i ) ≥ (2e1 +

1
2

)m2 −mS, (El)

Clearly,
N
∑

i=0
wλ(wi) = dimW1 − dimWo, (Follows from the definition ofλ)

≤ ho(Xlred, LXlred) = e1 + 1, (E2)

We are now ready to get the contradiction thatmth
o Hilbert point of X,

Hmo(X) is notλ′− semistable.
If Hm(X) is λ′− semistable (m > m′) then there exists monomi-

als M′i1,M
′
i2
, . . . ,M′iP(m)

(1 ≤ i1 < i2 < · · · < iP(m) ≤ αm) such that
{ϕm(M′i1), ϕm(M′i2), . . . , ϕm(M′iP(m)

)} is a basis ofHo(X, Lm) and

P(m)
∑

j=1
wλ(M′i j

)

m(dm− g+ 1)
<

N
∑

i=0
wλ(wi)

d − g+ 1
,

(cf. criterion (∗∗) page 7). It is easy to see that

P(m)
∑

i=1

wλ(M
′
i ) ≤

∑

j=1

P(m)wλ(M
′
i j
).

Thus, 47

Hm(X) is λ′−semistable (m> m′)

⇒

P(m)
∑

i=1
wλ(M′i )

m(dm− g+ 1)
≤

N
∑

i=0
wλ(wi)

d − g+ 1

⇒
(2e1 +

1
2)m2 −ms

m(dm− g+ 1)
≤

e1 + 1
d − g+ 1

, (Follows from (E1) and (E2))
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⇒
(2e1 +

1
2) − S

m

d
≤

e1 + 1
d − g+ 1

⇒(d − g+ 1)(2e1 +
1
2

) −
S(d − g+ 1)

m
< d(e1 + 1)

⇒ d(e1 −
1
2

) − (g− 1)(2e1 +
1
2

) ≤
S(d − g+ 1)

m
⇒ 1 ≤

S(d − g+ 1)
m

,

(∵ d(e1 −
1
2

) − (g− 1)(2e1 +
1
2

) ≥ 1)

⇒m≤ S(d − g+ 1)⇒ m< mo, (∵ mo > S(d − g+ 1))

This proves that themth
o Hilbert point of X,Hmo(X) is not λ′−

semistable. In particular, it follows thatHmo(X) is not semistable, (cf.
theorem 0.0.9 page 3). This contradiction proves the result.

It remains to prove the claim. LetP1,P2, . . . ,Pt be all the associated
(closed) points ofX, (a pointQ ∈ X is called an associated point ofX
if the maximal ideal in the local ring 0X,P of X at P is associated to the
zero ideal). Choose a finite affine open cover{Ui} of X such that any of
the pointsP1,P2, . . . ,Pt belongs to exactly one of theU′i s in {Ui} and48

furtherLUi is trivial for everyUi in {Ui}.
Let Ui ≃ SpecAi and letUi

⋂

Uk ≃ SpecAik. In the ring Ai let

(0) =
ni
∑

j=1
qi j be a primary decomposition of the zero ideal withqi j ,

pi j−primary for some prime idealpi j in Ai, (1 ≤ j ≤ ni). We can assume
without loss of generality that in thoseUi such thatUi

⋂

X1 , ∅, X1 red

is defined by the prime idealqi1.
Define an ideal subsheafJ of OX as follows. IfUi

⋂

X1 , ∅, then

in Ui , J is defined by
ni
⋂

j=2
qi j . If Ui

⋂

X1 = ∅ then J is defined by

ni
∑

j=1
qi j = (0). In SpecAik = Ui

⋂

Uk(i , k) there is no associated

(closed) point ofX hence all the primary ideals in a primary decom-
position of the zero ideal inAik are minimal and hence are uniquely
determined. Thus the above construction indeed defines an ideal sheaf.
Let C be the closed subscheme ofX defined by the idealJ. Let, ϕ′m :
Ho(X, Lm) → Ho(C, Lm

C) be the natural restriction. We now proceed to
prove thatW̄m−r

0 · W̄r
1

⋂

Kernelϕ′m = 0, (0≤ r ≤ m− q1).
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Let s ∈ W̄m−r
o · W̄−r

1

⋂

Kernelϕ′m. It suffices to prove that for ev-
ery open setUi in the coverUi , the restrictionsi of s to Ui is zero.
Let γi be the isomorphismLUi ≃ Ãi. Let γi(si) = qi . If Ui

⋂

X1 = ∅ 49

since si ∈ Kernel ϕ′m means thatsi = 0. If Ui
⋂

X1 , φ write ai =

b1b2 · · · bm−rc1c2 · · · cr whereb1, b2, . . . , bm−r are the images of the sec-
tions inWo andc1, c2, . . . , cr are the images of the sections inW1, under
the isomorphismIUi ≃ Ãi . Sincem− r ≥ q1, ai ∈ pq1

i1 . It is easy to

see that since (
ni
⋂

j=1
pi j )q1 = 0 and pi1 is a minimal prime,pq1

i1 ⊂ qi1.

Thusai ∈ qi1. Now si ∈ Kernelϕ′m, henceai ∈
ni
⋂

n=2
qi j . It follows that

ai ∈
ni
⋂

j=1
qi j = 0 i.e. si = 0. This completes the proof of the claim.

Now we want to prove that for every curveX in the familyZV
pV
−−→ V,

only singularities ofXred are ordinary double points. This will follow
from the next three propositions 1.0.4., 1.0.5., 1.0.6.

Proposition 1.0.4. Let X be a curve in the family ZV
pV
−−→ V. Every

singular point of Xred is a double point.

Proof. Assume the contrary i.e. assume that there exists a pointP of
multiplicity ≥ 3 onXred. We will show that this leads to the contradiction

that themth
o Hilbert point ofX, Hmo(X) ∈ P(

P(mo)
Λ Ho(PN,OPN(mo))) is not

semistable and then the result will follow by the contradiction. �

Let ϕ : Ho(PN,OPN(1)) → k(P) be the evaluation map, wherek(P)
is the residue field at the pointP ∈ X. It is clear thatWo = kernelϕ has 50

dimensionN. Choose a basis ofWo, sayw0,w1, . . . ,wN−1 and extend it
to a basis ofW1 = Ho(PN,OPN(1)) by adding a vector, saywN.

Let λ be a 1− psof S L(N + 1) such that the induced action ofλ on
W1 is given by,

λ(t)wi = wi , t ∈ K∗, (0 ≤ i ≤ N − 1)

λ(t)wN = twN, t ∈ K∗.

The rest of the proof consists of showing thatHmo(X) is notλ- semista-
ble.
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Let π : X̄ → X be the normalization ofX (cf. definition 0.2.5
page 16) and letL′ = π∗L. Assume now thatm> m′, so thatH1(x, Lm) =
0 = H1(X̄, L′m) and the restriction

ϕm : Ho(PN,OPN(m))→ Ho(X, Lm) is surjective. Recall thatHo(PN,

OPN(m)) has a basisBm = {M1,M2, . . . ,Mαm} consisting of monomials
of degreem in w0,w1, . . . ,wN.

For 0 ≤ r ≤ m let Wm−r
o .Wr

1 be the subspace ofHo(PN,

OPN(m)) generated by elementsw of the following type.
For r = 0,

w = x1x2 · · · xm, (x j ∈Wo, i ≤ j ≤ m);

for 0 < r < m,

w = x1x2 · · · xm−ry1y2 · · · yr , (x j ∈Wo, 1 ≤ j ≤ m−r; y j ∈W1, 1 ≤ j ≤ r);

for r = m,51

w = y1y2 · · · ym, (y j ∈W1, 1 ≤ j ≤ m).

We have the following filtration ofHo(PN,OPN(m)).

0 ⊂Wm
o .W

o
1 ⊂Wm−1

o .W1
1 ⊂ · · · ⊂Wo

o.W
m
1 = Ho(PN,OPN(m)), (F)

For 0≤ r ≤ m let,

W̄m−r
o .W̄r

1 = ϕm(Wm−r
o .Wr

1) ⊂ Ho(X, Lm), βr = dimW̄m−r
0 .W̄r .

These subspaces define the following filtration ofHo(X, Lm).

0 ⊂ W̄m
o · W̄

o
1 ⊂ W̄m

o .W̄
1
1 ⊂ · · · ⊂ W̄o

0 · W̄
m
1 = Ho(X, Lm), (F̄)

Rewrite the basisBm asBm = {M′1,M
′
2, . . . ,M

′
P(m), M′P(m)+1, . . . ,M

′
αm
}

such that{ϕm(M′1), ϕm(M′2), . . . , ϕm(M′P(m))} is a basis ofHo(X, Lm) rela-
tive to the filtration F̄ (cf. definition 0.2.6 page 16) andM′P(m)+1,

M′P(m)+2, . . . ,M
′
αm

are the rest of the monomials inBm in some order.
SinceP is a point of multiplicity≥ 3 onXred, we have the following

cases.

i) There exists exactly one component ofXred, sayX1, passing through
P;
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ii) There exist exactly two components ofXred, sayX1 andX2, passing
throughP;

iii) There exist at least three components ofXred, sayX1,X2,X3, pass-
ing throughP.

In the first case choose three points, sayP1,P2,P3 (not necessarily dis- 52

tinct), from the fibreπ−1(P) of π over P. In the second case note that
at least one of the componentsX1 and X2, sayX1, has degree≥ 3 in
PN and P ∈ X1 is a singular point ofX1. Choose three points, say
P1,P2,P3 from the fibreπ−1(P) with P1,P2 ∈ X̄1 (not necessarily dis-
tinct), P3 ∈ X̄2, (X̄1 denotes the normalization ofX1 etc.). In the third
case choose 3 points, say,P1,P2,P3 from the fibreπ−1(P) with P1 ∈ X̄1,
P2 ∈ X̄2, P3 ∈ X̄3. In each of the above cases letD denote the divisor
P1 + P2P3 on X̄.

We have homomorphisms,πm∗ : Ho(X, Lm) → Ho(X̄, Lm). By def-
inition the image ofW̄m−r

0 · W̄r
1 ⊂ Ho(X, Lm) under the homomorphism

πm∗ is contained in the subspaceHo(X̄, Lm((r − m)D)) of Ho(X̄, L′m),
(0 ≤ r ≤ m− 1). It follows that for 0≤ r ≤ m− 1,

βr = dimW̄m−r
0 .W̄r

1 ≤ ho(X̄, L′m((r −m)D)) + dim(kernelπm∗)

= dm+ 3(r −m) − gX̄ + 1+ h1(X̄, L′m((r −m)D)) + dim(kernelπm∗)

(The last equality follows from the Riemann-Roch theorem).

Claim. i) dim(kernelπm∗) < q2,

(q2 is the integer given in assertion iii) page 18).

ii) h1(X̄, L′m((r −m)D)) ≤ 3(m− r), (0 ≤ r ≤ q = 2g− 2).

iii) h1(X̄, L′m((r −m)D)) = 0, (q+ 1 ≤ r ≤ m− 1).

Proof of the Claim: 53

i) Recall that the morphismπ : X̄ → X has the following factoriza-
tion.

X̄
π //

π′

  B
BB

BB
BB

B X

Xred

i
>>||||||||
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This gives the following commutative diagram.

Ho(X̄, L′m) Ho(X, Lm)
im∗

wwoooooooooooo

πm∗oo

Ho(Xred, Lm
Xred

)

π′m∗

ggOOOOOOOOOOO

Since the homomorphismπ′m∗ is injective, kernelπm∗ = kernelim∗.
Let IX be the ideal sheaf of nilpotents inOX. IX has finite support,
X being generically reduced (cf. Proposition 1.0.3. page 30). Re-
call thatho(X, IX) < q2. Consider the cohomology exact sequence,
given by the following exact sequence.

0→ IX ⊗ Lm→ Lm→ Lm
Xred
→ 0

It follows that kernelπm∗ = kernelim∗ = Ho(X, IX ⊗ Lm) and hence
dim(kernelπm∗) = ho(X, IX ⊗ Lm) = ho(X, IX) < q2.

ii) In view of the fact thatH1(X̄, L′m) = 0, this is immediate from the
long exact cohomology sequence associated to the exact sequence

0→ L′m((r −m)D))→ L′m→ O(m−r)D → 0

54

iii) This follows from the following general fact. LetC be an integral
nonsingular curve of genusgC and letM be a line bundle onC of
degree≥ 2gC − 1. ThenH1(C,M) = 0.

It follows from the claim and the last inequality that

βr = dim(W̄m−r
0 .W̄r

1) ≤ dm+ 3(r −m) − gX̄ + 1+ 3(m− r) + q2, (0 ≤ r ≤ q),

βr = dim(W̄m−r
0 .W̄r

1) ≤ dm+ 3(r −m) − gX̄ + 1+ q2, (q+ 1 ≤ r ≤ m− 1).

We now estimate totalλ-weight ofM′1,M
′
2, . . . ,M

′
P(m) =

P(m)
∑

i=1
wλ(M′i ).
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Note that a monomialM ∈Wm−r
o .Wr

1 −Wm−r+1
o .Wr−1

1 hasλ-weight r.

P(m)
∑

i=1

wλ(M
′
i ) =

m
∑

r=1

r(βr − βr−1) = mβm−

m−1
∑

r=0

βr

≥ m(dm− g+ 1)−
m−1
∑

r=0

(dm+ 3(r −m) − gX̄ + 1+ q2) −
q

∑

r=0

3(m− r)

=
3m2

2
−m(g− gX̄ + 3q+

3
2
+ q2) +

q(q+ 1)
2

>
3m2

2
−mS, (S = (g− qX̄ + 3q+

3
2
+ q2)).

Thus
P(m)
∑

i=1

wλ(M
′
i ) >

3m2

2
−mS, (E1)

Clearly, totalλ-weight ofw0,w1, . . . ,wN =
N
∑

i=0
wλ(wi) = 1, (E2).

We are now ready to get the contradiction that themth
o Hilbert point of

X, Hm(X) is not semistable.
If Hm(X) is λ-semistable, (m > m′), then there exist monomials55

M′i1,M
′
i2
, . . . ,M′iP(m)

in Bm, (1 ≤ i1 < i2 < · · · < iP(m) ≤ αm) such that
{ϕm(M′i1), ϕm(M′i2), . . . , ϕm(M′iP(m)

)} is a basis ofHo(X, Lm) and

P(m)
∑

j=1
wλ(M′i j

)

mP(m)
≤

N
∑

i=0
wλ(wi)

d − g+ 1
,

(cf. criterion (∗∗) page 7). It is easily seen that

P(m)
∑

i=1

wλ(M
′
i ) ≤

P(m)
∑

j=1

wλ(M
′
i j
).

Now note the following.
Hm(X) is λ-semistable, (m> m′),

⇒

∑P(m)
i=1 wλ(M′i )

m(dm− g+ 1)
≤

∑N
i=0 wλ(wi)

d − g+ 1
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⇒

3m2

2 −mS

m(dm− g+ 1)
≤

1
d − g+ 1

(Follows from (E1) and (E2))

⇒

3
2 −

S
m

d
≤

1
d − g+ 1

⇒
3
2

(d − g+ 1)−
S(d − g+ 1)

m
≤ d

⇒
1
2

(d − 3g+ 3) ≤
S(d − g+ 1)

m
⇒ m≤

2S(d − g+ 1)
d − 3g+ 3

≤ 4S,

(∵ d ≥ 20(g− 1) ∴
d − g+ 1
d − 3g+ 3

≤ 2)

⇒m< mo, (∵ mo > 4S).

It follows that Hmo(X) is notλ-semistable and henceHmo(X) is not56

semistable. (cf. theorem 0.0.9. page 3). This contradiction proves that
the only singularities ofXred are double points.

Thus we have proved that ifX is a curve in the familyZV
pV
−−→ V

andP ∈ Xred is a singular point, thenP is necessarily a double point.
The singular pointP is either a cusp or a tacnode or an ordinary double
point. The next two propositions will exclude the first two possibilities

and this will prove that ifX is a curve in the familyZV
pV
−−→ V then only

singularities ofXred are ordinary double points.

Proposition 1.0.5. If X is a curve in the family ZV
pV
−−→ V then Xred can

not have a cusp singularity.

Proof. If the result were not true then there exists a curve, sayX, in

the family ZV
pV
−−→ V and a pointQ ∈ Xred such thatQ is a cusp. Let

Y be the unique irreducible component ofX passing through the point
Q ∈ X. Let C be the closure ofX − Y in X. Let π : X̄ → X be the
normalization ofX. By definition,X̄ is a disjoint union ofȲred andC̄red.
Choose a pointP ∈ Ȳred such thatπ(P) = Q. Since the pointQ ∈ X
is a cusp. the morphismπ is ramified at the pointP ∈ X̄. We will
show that this leads to the contradiction that themth

o Hilbert point ofX,

Hmo(X) ∈ P(
P(mo)
Λ Ho(PN,OPN(mo))) is not semistable. The result will

then follow by the contradiction. �

Since the morphismπ is ramified at the pointP ∈ Ȳred ⊂ X̄, Yred is
singular and hence degYredL ≥ 3, (an integral curve of degree≤ 2 in PN
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is either a line or a conic and hence nonsingular). Since the curve X is 57

not contained in any hyperplane inPN (cf. proposition 1.0.2. page 27),
we think ofW3 = Ho(PN,OPN(1)) as a subspace ofHo(X, L). Let,

Wo = {s∈W3|π∗svanishes to order≥ 3 atP}, dimWo = No,

W1 = {s∈W3|π∗svanishes to order≥ 2 atP}, dimW1 = N1.

Choose a basis ofW3, relative to the filtration 0⊂ Wo ⊂ W1 ⊂ W3, say,
{w1,w2, . . . ,wNo,wNo+1, . . . ,wN1,wN1+1, . . . ,wN+1} (cf. definition 0.2.6
page 16). Letλ be a 1− psof GL(N+1) such that the action ofλ onW3

is given by,

λ(t)wi = wi , t ∈ K∗, (1 ≤ i ≤ No),

λ(t)wi = twi , t ∈ K∗, (No + 1 ≤ i ≤ N1)

λ(t)wi = t3wi , t ∈ K∗, (N1 + 1 ≤ i ≤ N + 1).

There exists a 1− psλ′ of S L(N + 1), associated to the 1− psλ of
GL(N + 1) (cf. definition 0.1.2 page 7). The rest of the proof consists of
showing that themth

o Hilbert point ofX, X,

Hmo(X) ∈ P(
P(mo)
Λ Ho(PN,OPN(mo)))

is notλ′-semistable.
Assume now thatm > m′ so thatH1(X, Lm) = 0 = H1(X̄, L′m) and

the restrictionϕm : Ho(PN,OPN(m)) → Ho(X, Lm) is surjective. Recall
thatHo(PN,OPN(m)) has a basis consisting of monomials of degreem in
w1,w2, . . . ,wN+1, sayBm = {M1,M2, . . . ,Mαm}, (αm = ho(PN,OPN(m))).
LetΩm

i be the subspace ofHo(PN,OPN(m)) spanned by

{M ∈ Bm|wλ(M) ≤ i}, (0 ≤ i ≤ 3m).

We have the following filtration ofHo(PN,OPN(m)). 58

0 ⊂ Ωm
o ⊂ Ω

m
1 ⊂ · · · ⊂ Ω

m
3m = Ho(PN,OPN(m)), (F)

Let Ω̄m
i = ϕm(Ωm

i ) ⊂ Ho(X, Lm), βi = dim Ω̄m
i , (0 ≤ i ≤ 3m).
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The above subspaces give the following filtration ofHo(X, Lm).

0 ⊂ Ω̄m
0 ⊂ Ω̄

m
1 ⊂ . . . ⊂ Ω̄

m
3m = Ho(X, Lm), (F̄)

Rewrite the basisBm as Bm = {M′1,M
′
2, . . . ,M

′
P(m),M

′
P(m)+1, . . . ,

M′αm
} so that{ϕm(M′1)ϕm(M′2), . . . , ϕm(M′P(m))} is a basis ofHo(X, Lm)

relative to the filtration (̄F) andM′P(m)+1,M
′
P(m)+2, . . . ,M

′
αm

, are the rest
of the monomials inBm in some order.

The morphismπ gives homomorphisms

πm∗ : Ho(X, Lm) −→ Ho(X̄, L′m).

Claim. The image of̄Ωm
i under the homomorphismπm∗ is contained in

the subspace Ho(X̄, L′m((−3+ i)P)) of Ho(X̄, L′m), (0 ≤ i ≤ 3m).

Proof of the claim: First observe that fori = 0 the claim follows from
definition. Now it suffices to prove that ifM is a monomial inBm such
thatM ∈ Ωm

i −Ω
m
i−1 thenπm∗(M) ∈ Ho(X̄, L′m((−3m+ i)P), (1 ≤ i ≤ 3m).

Let M ∈ Ωm
i −Ω

m
i−1. Suppose thatM hasi0 factors from{w1,w2, . . . ,

wN0}, i1 factors from{wN0+1,wN0+2, . . . ,wN1} andi3 factors from{wN1+1,

wN1+2, . . . ,wN1}. It follows that,

i0 + i1 + i3 = m and i1 + 3i3 = i.

59

By definition πm∗(M) ∈ Ho(X̄, L′m((−3i0 − 2i1)P)). Now note that
3m− i = 3(i0 + i1 + i3) − (i1 + 3i3) = 3i0 + 2i1. This proves the claim.

It follows from the above claim and the Riemann-Roch theoremthat
for 0 ≤ i ≤ 3m− 1.

βi = dim Ω̄m
i ≤ ho(X̄, L′m((−3m+ i)P)) + dim(kernel πm∗)

= dim−3m+ i − gX̄ + 1+ h1(X̄, L′m((−3m+ i)P)) + dim(kernel πm∗)

Claim.

i) dim(kernelπm∗) < q2.

ii) h1(X̄, L′m((−3m+ i)D)) ≤ 3m− i, (0 ≤ i ≤ q = 2g− 2).
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iii) h1(X̄, L′m((−3m+ i)D)) = 0, (q+ 1 ≤ i ≤ 3m− 1).

(D denotes the divisor on̄X, supported at P∈ X̄, with multiplicity one).

Proof of the claim:

i) Since the curveX is generically reduced,

dim(kernelπm∗) = ho(X, IX) < q2, (cf. page 39).

ii) In view of the fact thatH1(X̄, L′m) = 0, this follows from the long
exact cohomology sequence associated to the following exact se-
quence

0 −→ L′m((−3m+ i)D) −→ L′m −→→ O(3m−i)D → 0

iii) Use the following general fact. IfC is an integral smooth curve of60

genusgC and if M is a line bundle onC with degM ≥ 2gC − 1 then
H1(C,M) = 0.

Hence,

βi = dim Ω̄m
i ≤ dm− 3m+ i − gX̄ + 1+ 3m− i + q2, (0 ≤ i ≤ q),

βi = dim Ω̄m
i ≤ dm− 3m+ i − gX̄ + 1+ q2, (q+ 1 ≤ i ≤ 3m− 1).

We now estimate, totalλ-weight of

M′1,M
′
2, . . . ,M

′
P(m) =

P(m)
∑

i=1

wλ(M
′
i ).

Note that a monomialM ∈ Ωm
i −Ω

m
i−1, hasλ−weightwλ(M) = i.

P(m)
∑

i=1

wλ(M
′
i ) =

3m
∑

i=1

i(βi − βi−1) = 3mβ3m −

3m−1
∑

i=0

βi

≥ 3m(dm− g+ 1)−
3m−1
∑

i=0

(dm− 3m+ i − gX̄ + 1+ q2) −
q

∑

i=0

(3m− i)
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≥
9m2

2
− 3m(g− gX̄ + q2 + q+

1
2

)

=
9m2

2
−mS, (S = 3(g− gX̄ + q2 + q+

1
2

))

Thus,
P(m)
∑

i=0

wλ(M
′
i ) ≥

9m2

2
−mS, (E1)

Next we estimate, totalλ-weight ofw1,w2, . . . ,wN+1 =
N+1
∑

i=1
wλ(wi). Re-

call that we have agreed to viewW3 = Ho(PN,OPN(1)) as a subspace of

Ho(X, L). Now observe that dim
W3

W1
≤ 1 and dim

W1

W0
≤ 1. To see this

note that the image ofW0 (respectivelyW1) under the homomorphism
π∗ : Ho(X, L) → Ho(X̄, L′) is contained in the subspaceHo(X̄, L′(−3p))
(respectivelyHo(X̄, L′(−2P))) of Ho(X̄, L′). Now use the assumption61

thatπ is ramified atP and use the following exact sequences

0 −→ L′(−P) −→ L′ −→ k(P) −→ 0

0 −→ L′(−3P) −→ L′(−2P) −→ k(P) −→ 0

(k(P)) = the residue field at the pointP ∈ X̄.

It follows that dim
W3

W1
≤ 1, dim

W1

W0
≤ 1. The above considerations im-

ply that totalλ-weight ofw1,w2, . . . ,wN+1 =
N+1
∑

i=1
wλ(wi) ≤ 4, (E2).

We are now ready to get the contradiction that themth
0 Hilbert point

of X, Hmo(X) ∈ P(
P(mo)
Λ Ho(PN,OPN(mo))) is notλ′− semistable.

If Hm(X) is λ′-semistable (m > m′), then there exist monomials
M′i1,M

′
i2
, . . . ,M′iP(m)

, (1 ≤ i1 < i2 < . . . < iP(m) ≤ αm), such that
{ϕm(M′i1), ϕm, (M′i2), . . . , ϕm(M′iP(m)

)} is a basis ofHo(X, Lm) relative to

the filtration (F̄) and
∑P(m)

j=1 wλ(M′i j
)

mP(m)
≤

∑N+1
i=1 wλ(w′i )

d − g+ 1
, (cf. criterion (**) page 7).

It is easily seen that
P(m)
∑

i=1
wλ(M′i ) ≤

P(m)
∑

j=1
wλ(M′i j

). Thus,



Stability of Curves 47

Hm(X) is λ′-semistable⇒

P(m)
∑

j=1
wλ(M′i )

m(dm− g+ 1)
≤

N+1
∑

i=1
wλ(w′i )

d − g+ 1

⇒

9m2

2 −mS

m(dm− g+ 1)
≤

4
d − g+ 1

, (Follows from the estimates(E1), (E2))

⇒

9
2 −

S
m

d
≤

4
d − g+ 1

⇒
9(d − g+ 1)

2
−

(d − g+ 1)S
m

≤ 4d

⇒
1
2

(d − 9g+ 9) ≤
(d − g+ 1)S

m
⇒ m≤

2(d − g+ 1)S
d − 9g+ 9

⇒m≤ 4S (∵ d ≥ 20(g− 1) ∴
d − g+ 1
d − 9g+ 9

≤ 2)

⇒m< mo (∵ mo > 4S).

It follows that Hmo(X) is not λ′-semistable and henceHmo(X) is not 62

semistable (cf. theorem 0.0.9. page 3). The result now follows by the
contradiction.

Proposition 1.0.6.Let X be a curve in the family ZV
pV
−−→ V. Xred cannot

have a tacnode singularity.

Proof. Assume the contrary i.e. letX be a curve in the familyZV
pV
−−→ V

such thatXred has a tacnode singularity at a pointP say. �

Let X =
p
⋃

i=1
Xi be the decomposition ofX in to irreducible compo-

nents. Letπ : X̄→ X be the normalization ofX so thatX̄ =
p
⋃

i=1
X̄i red (cf.

definition 0.2.5 page 16) and letL′ = π∗L. ThatP is a tacnode means,

i) p > 1 ;

ii) there exist components̄Xi and X̄ j(i , j) of X and pointsQ1 ∈

X̄i red,Q2 ∈ X̄ j red such thatπ(Q1) = P = π(Q2);

iii) Xi red andX j red have a common tangent atP. 63
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SinceX is not contained in any hyperplane inPN (cf. Proposition
1.0.2. page 27), we can think ofW2 = Ho(PN,OPN(1)) as a subspace
Ho(X, L). Define two subspaces ofW2 as follows.

W0 = {s∈W2|π∗s vanishes to order≥ 2 atQ1 andQ2}

W1 = {s∈W2|π∗s vanishes to order≥ 1 atQ1 andQ2}

Note that sinceP is a double point ofXred andXi red andX j red have
a common tangent atP,

π∗s(s∈W2) vanishes to order≥ 2 atQ1

⇔

π∗s(s ∈W2) vanishes to order≥ 2 atQ2.

Let dimW0 = N0, dimW1 = N1. Choose a basis ofW2 relative to the
filtration 0⊂W0 ⊂W1 ⊂W2, say
{w1,w2, . . . ,wN0,wN0+1, . . . ,wN1,wN1+1, . . . ,wN+1}, (cf. definition 0.2.6
page 16).

Let λ be a 1− psof GL(N + 1) such that the action ofλ on W2 is
given by,

λ(t)wi = wi , t ∈ K∗, (1 ≤ i ≤ N0),

λ(t)wi = twi , t ∈ K∗, (N0 + 1 ≤ i ≤ N1),

λ(t)wi = t2wi , t ∈ K∗, (N1 + 1 ≤ i ≤ N + 1).

There exists a 1−psλ′ of S L(N+1) associated to the 1−psλ of GL(N+1),64

(cf. definition 0.1.2 page 7). We will show that themth
0 . Hilbert point of

X, Hmo(X) is notλ′-semistable. In particular it will follow thatHmo(X)
is not semistable, (cf. theorem 0.0.9. page 3), and the result will then
follow by the contradiction.

Assume now thatm > m′ so thatH1(X, Lm) = 0 = H1(X̄, L′m) and
the restrictionϕm : Ho(PN,OPN(m)) → Ho(X, Lm) is surjective. Recall
that Ho(PN,OPN(m)) has a basisBm = {M1,M2, . . . ,Mαm} consisting
of monomials of degreem in w1,w2, . . . ,wN+1. For 0 ≤ r ≤ m let
Wm−r

0 .Wr
1 be the subspace ofHo(PN,OPN(m)) generated by elementsw

of the following type.
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For r = 0,
w = x1x2 . . . xm, (xs ∈W0, 1 ≤ s≤ m);

for 0 < r < m,

w = x1x2 . . . xm−ry1y2 . . . yr , (xs ∈W0, 1 ≤ s≤ m−r, ys ∈W1, 1 ≤ s≤ r);

for r = m
w = y1y2 . . . ym, (ys ∈W1, 1 ≤ s≤ m).

Similarly, for 0 ≤ r ≤ m, let Wm−r
1 .Wr

2 be the subspace ofHo(PN,

OPN(m)) generated by elementsw′ of the following type.
For r = 0,

w′ = x′1x′2 · · · x
′
m, (x

′
s ∈W1, 1 ≤ s≤ m);

for 0 < r < m, 65

w′ = x′1x′2 . . . x
′
m−ry

′
1y′2 . . . y

′
r ,

(x′s ∈W1, 1 ≤ s≤ m− r, y′s ∈W2, 1 ≤ s≤ r);

for r = m,

w′ = y′1y2 . . . y
′
m, (y′s ∈ W2, 1 ≤ s≤ m).

We have the following filtration ofHo(PN,OPN(m));

0 ⊂ Wm
0 .W

o
1 ⊂Wm−1

0 .W1
1 ⊂ · · · ⊂Wo

0 .W
m
1 = Wm

1 .W
o
2 ⊂Wm−1

1 .W1
2 ⊂ · · ·

Wo
1.W

m
2 = Ho(PN,OPN(m)) (F)

Let

W̄m−r
0 .W̄r

1 = ϕ(Wm−r
0 .Wr

1) ⊂ Ho(X, Lm), dimW̄m−r
0 .W̄r

1 = γr ,

W̄m−r
1 .W̄r

2 = ϕm(Wm−r
1 .Wr

2) ⊂ Ho(X, Lm), dimW̄m−r
1 .W̄r

2 = βr , (0 ≤ r ≤ m).

These subspace define the following filtration ofHo(X, Lm)

0 ⊂ W̄m
0 .W̄

o
1 ⊂ W̄m−1

0 .W̄1
1 ⊂ · · · ⊂ W̄o

0 .W̄
m
1 = W̄m

1 .W̄
o
2 ⊂ W̄m−1

1 .W̄1
2 ⊂ . . .

W̄o
1.W̄

m
2 = Ho(X, Lm) (F̄)

Rewrite the basisBm as
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Bm = {M′1,M
′
2, . . . ,M

′
P(m),M

′
P(m)+1, . . . ,M

′
αm
} so that

{ϕm(M′1), ϕm(M′2), . . . , ϕm(M′P(m))} is a basis ofHo(x, Lm) relative to the
filtration (F) (cf. definition 0.2.6 page 16) and
M′P(m)+1,M

′
P(m)+2, . . . ,M

′
αm

are the rest of the monomials inBm in some
order.

For the rest of the proof we consider the following cases.66

Case 1. degXi red
L ≥ 2, degX j red

L ≥ 2.

Case 2. degXi red
L = 1, degX j red

L ≥ 2.

Case 3. degXi red
L ≥ 2, degX j red

L = 1.

(Since the pointP ∈ X is a tacnode, these are the only possibilities).
We will give proofs in cases 1) and 2) and then case 3) will follow from
case 2), by interchanging the roles ofi and j.

Case 1. The morphismπ : X̄ → X gives homomorphismsπm∗ :
Ho(X, Lm) → Ho(X̄, L′m). Let D denote the divisorQ1 + Q2 on X̄. By
definition, the image of̄Wm−r

0 .W̄r
1 (respectivelyW̄m−r

1 .W̄r
2) ⊂ Ho(X, Lm)

under the homomorphismπm∗ is contained in the subspaceHo(X̄, L′m

((r −2m)D)) (respectivelyHo(X̄, L′m((r −m)D)) of Ho(X̄, L′m), (0 ≤ r ≤
m− 1).

It follows from the Riemann-Roch theorem that for 0≤ r ≤ m− 1

γr = dim(W̄m−r
0 .W̄r

1) ≤ ho(X̄, L′m((r − 2m)D)) + dim(kernelπm∗)

= dm+ 2r − 4m− gX̄ + 1+ h1(X̄, L′m((r − 2m)D) + dim(kernelπm∗)

and

βr = dim(W̄m−r
1 .W̄r

2) ≤ ho(X̄, L′m((r −m)D) + dim(kernelπm∗)

= dm+ 2r − 2m− gX̄ + 1+ h1(X̄, L′m((r −m)D) + dim(kernelπm∗)

Claim:

i) dim(kernelπm∗) < q2,67

ii) h1(X̄, L′m((r − 2m)D) ≤ 4m− 2r, (0 ≤ r ≤ q = 2g− 2),
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iii) h1(X̄, L′m((r − 2m)D) = 0, (q+ 1 ≤ r ≤ m− 1),

iv) h1(X̄, L′m((r −m)D) = 0, (0≤ r ≤ m− 1).

Proof of the Claim:

i) Since the curveX is generically reduced, (cf. proposition 1.0.3.
page 30), for all integersm, dim(kernelπm∗) = ho(X, IX) < q2, (cf.
page 39).

ii) In view of the fact thatH1(X̄, L′m) = 0, this is immediate from the
long exact cohomology sequence associated to the followingexact
sequence,

0→ L′m((r − 2m)D)→ L′m→ O(2m−r)D → 0.

iii) Recall that degXi red
L ≥ 2 ≤ degX j red

L and use the following general
fact. If C is an integral smooth curve of genusgC and if M is a line
bundle ofC with degM ≥ 2gC − 1 thenH1(C,M) = 0.

iv) This follows from the same reasoning as above.

It follows from these considerations that,

γr ≤ dm+ 2r − 4m− gX̄ + 1+ 4m− 2r + q2, (0 ≤ r ≤ q = 2g− 2),

γr ≤ dm+ 2r − 4m− gX̄ + 1+ q2, (q+ 1 ≤ r ≤ m− 1),

βr ≤ dm+ 2r − 2m− gX̄ + 1+ q2, (0 ≤ r ≤ m− 1).

We now estimate totalλ-weight of M′1,M
′
2, . . . ,M

′
P(m) =

P(m)
∑

i=1
wλ(M′i ). 68

Note that a monomialM ∈ Wm−r
0 .Wr

1 − Wm−r+1
0 .Wr−1

1 hasλ-weight
wλ(M) = r and a monomial

M′ ∈Wm−r
1 Wr

2 −Wm−r+1
1 Wr−1

2 hasλ − weight wλ(M
′) = m+ r.

P(m)
∑

i=1

wλ(M
′
i ) =

m
∑

r=1

(m+ r)(βr − βr−1) +
m

∑

r=1

r(γr − γr−1)
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= 2mβm−

m−1
∑

r=0

βr −

m−1
∑

r=0

γr

≥ 2m(dm− g+ 1)−
m−1
∑

r=0

(dm+ 2r − 2m− gX̄ + 1+ q2)

−

m−1
∑

r=0

(dm+ 2r − 4m− gX̄ + 1+ q2) −
q

∑

r=0

(4m− 2r)

= 2m(dm− g+ 1)−
m−1
∑

r=0

(2dm+ 4r − 6m− 2gX̄ + 2+ 2q2)

− 4m(q+ 1)+ q(q+ 1)

> 4m2 −mS, (S = 2(g− gX̄ + q2 + 2q+ 1)).

Thus,
P(m)
∑

i=1

wλ(M
′
i ) > 4m2 −mS, (E1)

We now estimate totalλ-weight of w1,w2, . . . ,wN+1 =
N+1
∑

i=1
wλ(M′i ).

The morphismπ : X̄ → X gives a homomorphismπ∗ : Ho(X, L) →
Ho(X̄, L′). Recall that we have agreed to viewW2 = Ho(PN,OPN(1))
as a subspace ofHo(X, L). Clearly W2

⋂

kernelπ∗ = 0. By definition
the image ofW0 (respectivelyW1) under the homomorphismπ∗ is con-
tained in the subspaceHo(X̄, L′(−2Q1)) (respectivelyHo(X̄, L′(−Q1)))
of Ho(X̄, L′).
Now it is immediate from the following exact sequences that69

dim
W1

W0
≤ 1, dim

W2

W1
≤ 1.

0→ L′(−2Q1)→ L′(−Q1)→ k(Q1)→ 0

0→ L′(−Q1)→ L′ → k(Q1)→ 0

(k(Q1) = the residue field the pointQ1 ∈ X̄).

It follows that
N+1
∑

i=1
wλ(wi) ≤ 3, (E2)

We are now ready to get the contradiction that themth
0 Hilbert point

of X, Hmo(X) is notλ′-semistable.
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If Hm(X) is semistable (m > m′) then there exist monomialsM′i1,
M′i2, . . . ,M

′
iP(m)

in Bm such that
{ϕm(M′i1), ϕm(M′i2), . . . , ϕm(M′iP(m)

)} is a basis ofHo(X, Lm)

and

∑P(m)
j=1 wλ(M′i j

)

mP(m)
≤

∑N+1
i=1 wλ(wi)

d − g+ 1
(cf. criterion (∗∗) page 7).

Observe that
P(m)
∑

i=1
wλ(M′i ) ≤

P(m)
∑

j=1
wλ(M′i j

).

Hence,

Hm(X) is λ′ − semistable (m> m′)⇒

∑P(m)
j=1 wλ(M′i )

m(dm− g+ 1)
≤

∑N+1
i=1 wλ(wi)

d − g+ 1

⇒
4m2 −mS

m(dm− g+ 1)
≤

3
d − g+ 1

(Follows from (E1), (E2))

⇒
4− S

m

d
≤

3
d − g+ 1

⇒ d − 4g+ 4 ≤
(d − g+ 1)S

m

=⇒ m≤
(d − g+ 1)S
(d − 4g+ 4)

≤ 2S (∵ d ≥ 20(g− 1) ∴
d − g+ 1
d − 4g+ 4

≤ 2)

=⇒ m< mo (∵ mo > 2S)

70

ThusHmo(X) is notλ′−semistable and henceHmo(X) is not semista-
ble (cf. theorem 0.0.9. page 3). This contradiction proves the result in
case 1).

Case 2. The proof in this case is on the same lines. Recall that we
have homomorphismsπm : Ho(X, Lm) → Ho(X̄, L′m), (m > m′), π∗ :
Ho(X, L) → Ho(X̄, L′) and that we have agreed to viewHo(PN,

OPN(1)) =W2 as a subspace ofHo(X, L). Let Y be the closure ofX − Xi

in X. Clearly a sectionπ∗s(s ∈ Wo) vanishes on̄Xi red. Hence the image
of W̄m−r

o .W̄r
1, (0 ≤ r ≤ m−1), under the homomorphismπm∗ is contained

in the subspace
Ho(Ȳred, L′mȲred

(r − 2m)Q2)) ⊂ Ho(X̄, L′m), (Ȳred is the normalization of
Yred).
It follows that, for 0≤ r ≤ m− 1

γr = dim(W̄m−r
o · W̄r

1) ≤ ho(Ȳred, L
′

Ȳred
)((r − 2m)Q2)) + (kernelπm∗)
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= (d − 1)m+ r − 2m− gȲ + 1+ h1(Ȳred, L
′m
Ȳred

)((r − 2m)Q2))

+ dim(kernelπm∗)

Recall that,

βr = dim(W̄m−r
1 · W̄r

2) ≤ ho(X̄, L′m((r −m)D)) + dim(kernelπm∗).

= dm+ 2r − 2m− gX̄ + 1+ h1(X̄, L′m((r −m)d)) + dim(kernelπm∗).

As before we have,

i) dim(kernelπm∗) < q2

ii) h1(Ȳ, L′m
Ȳred

((r − 2m)Q2)) = 0, (0≤ r ≤ q = 2q− 2).71

iii) h1(Ȳ, L′m
Ȳred

((r − 2m)Q2)) = 0, (q+ 1 ≤ r ≤ m− 1).

iv) h1(X̄, L′m((r −m)D)) ≤ 2m− 2r, (0 ≤ r ≤ q = 2g− 2).

v) h1(X̄, L′m((r −m)D)) = 0, (q+ 1 ≤ r ≤ m− 1).

Thus,

γr ≤ (d − 1)m+ r − 2m− gȲ + 1+ 2m− r + q2, (0 ≤ r ≤ q),

γr ≤ (d − 1)m+ r − 2m− gȲ + 1+ q2, (q+ 1 ≤ r ≤ m− 1),

βr ≤ dm+ 2r − 2m− gX̄ + 1+ 2m− 2r + q2, (0 ≤ r ≤ q),

βr ≤ dm+ 2r − 2m− gX̄ + 1+ q2, (q+ 1 ≤ r ≤ m− 1)

We want to estimate
P(m)
∑

i=1
wλ(M′i ). Recall that, a monomial

M ∈Wm−r
0 ·Wr

1 −Wm−r+1
0 .Wr−1

1 hasλ−weightr, a monomial
M ∈Wm−r

1 ·Wr
2 −Wm−r+1

1 .Wr−1
2 hasλ−weightm+ r

P(m)
∑

i=1

wλ(M
′

i ) =
m

∑

r=1

(m+ r)(βr − βr−1) +
m

∑

r=1

r(γr − γr−1)

= 2mβm −

m−1
∑

r=0

βr −

m−1
∑

r=0

γr .
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≥ 2m(dm− g+ 1)−
m−1
∑

r=0

(dm+ 2r − 2m− gX̄ + 1+ q2)

−

q
∑

r=0

(2m− 2r) −
m−1
∑

r=0

((d− 1)m+ r − 2m− gȲ + 1+ q2)

−

q
∑

r=0

(2m− r) >
7m2

2
−m(2g− gX̄ − gȲ + 2q2 + 4q−

3
2

).

Put (2g − gX̄ − gȲ + 2q2 + 4q −
3
2

) = S. Thus we have the following72

estimate.
P(m)
∑

i=1

wλ(M
′

i ) >
7m2

2
−mS, (E′1)

We have already seen that totalλ−weight of

w1,w2, . . . ,wN+1 =

N+1
∑

i=1

wλ(wi) ≤ 3, (E2)

As in case 1) we have,Hm(X) is λ′−semistable=⇒

7
2

m2 −mS

m(dm− g+ 1)
≤

3
d − g+ 1

(Follows as in the previous case from criterion (∗∗) (page 7)

and the estimates (E′1) and (E2))

=⇒

7
2 −

S
m

d
≤

3
d − g+ 1

=⇒
1
2

(d − 7g+ 7) ≤
(d − g+ 1)S

m

=⇒m≤
2(d − g+ 1)S

d − 7g+ 7
≤ 4S(∵ d ≥ 20(g− 1) ∴

d − g+ 1
d − 7g− 7

≤ 2).

Sincemo > 4S, the above inequality implies thatHmo(X) is not
semistable. This contradiction concludes the proof as in case 1.

The next step in the proof of Theorem 1.0.1. is to prove an important
inequality which will be needed for the proof of the theorem.

Proposition 1.0.7. Let X be a curve in the family ZV
pV
−−→ V such that X

has at least two irreducible components. Let C be a reduced, connected,
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complete subcurve of X(C , X) and let Y be the closure of X− C in
X, with the reduced structure. Recall thatπ : X̄ → X denotes the 73

normalization of X. It follows from definition 0.2.5 (page 16) that X̄ is a
disjoint union ofC̄ (normalization of C) and̄Y (normalization of Y). Let
ϕ′1 : Ho(PN,OPN(1))→ Ho(C, IC) be the natural restriction map and let
Wo = kernelϕ′1.

If there exist pointsP1,P2, . . . ,Pk on Ȳ, satisfying

i) π(Pi) ∈ Y∩C, (1 ≤ i ≤ k),

ii) for every irreducible component̄Yj of Ȳ

deḡYj
(L′

Ȳ
(−D)) ≥ 0,

(D denotes the divisor
k
∑

i=1
Pi on Ȳ, L′ = π∗L), then the following

inequality holds,

ho(C, LC)
d − g+ 1

≥
e+ k

2

d
, (e= degC L) (∗′)

Proof. Let dimWo = No. Choose a basis ofW1 = Ho(PN,OPN(1))
relative to the filtration 0⊂Wo ⊂W1, say
w0,w1, . . . ,wNo−1,wNo, . . . ,wN. Letλ be a 1− psof GL(N+1) such that
the action ofλ on W1 is given by,

λ(t)wi = wi , t ∈ K∗, (0 ≤ i ≤ No − 1),

λ(t)wi = twi , t ∈ K∗, (No ≤ i ≤ N).

Let λ′ be the 1− ps of S L(N + 1) associated to the 1− psλ of74

GL(N+1), (cf. definition 0.1.2 page 7). Since themth
o Hilbert point ofX,

Hmo(X) ∈ P(
P(mo)
∧ Ho(PN,OPN(mo))) is λ′−semistable, (cf. theorem 0.0.9.

page 3), criterion (∗∗) (page 7) is satisfied. The required inequality will
follow from the inequality in the above mentioned criterion. �

Let Bmo = {M1,M2, . . .Mαmo
} be a basis ofHo(PN,OPN(mo)) con-

sisting of monomials of degreemo in w0,w1, . . . ,wN, (αmo = ho(PN,
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OPN(mo))). For 0 ≤ r ≤ m let wmo−r
o · wr

1 be the subspace ofHo(PN,
OPN(mo)) generated by elementsw of the following type.

w = x1x2 · · · xmo−ry1y2 · · ·yr , (x j ∈Wo, 1 ≤ j ≤ mo − r; y j ∈W1, 1 ≤ j ≤ r)

As before, forr = 0, w is a product ofx′sj only and for r = mo,
w is a product ofy′sj only. We have the following filtration (F) of

Ho(PN,OPN(mo)),

0 ⊂Wmo
o ·W

o
1 ⊂Wmo−1

o ·W1
1 ⊂ · · · ⊂Wo

o ·W
mo
1 = Ho(PN,OPN(mo)), (F)

Note that ifWo = 0, thenWm−r
0 ·Wr

1 = 0(0≤ r ≤ m− 1). Let
W̄mo

0 ·W̄
r
1 = ϕmo(W

mo−r
0 ·Wr

1) ⊂ Ho(X, Lmo), dimW̄mo−r
0 ·W̄r

1 = βr , (0 ≤
r ≤ mo)
These subspaces define the following filtration (F̄) of Ho(X, Lmo),

0 ⊂ W̄mo
0 · W̄

o
1 ⊂ W̄mo−1

0 · W̄1
1 ⊂ · · · ⊂ W̄o

0 · W̄
mo
1 = Ho(X, Lmo), (F̄)
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Rewrite the basisBmo as Bmo = {M
′
1,M

′
2, . . . ,M

′
P(mo),M

′
P(mo)+1, . . . ,

M′αmo
} such that {ϕmo(M

′
1), ϕmo(M

′
2), . . . , ϕmo(M

′
P(mo))} is a basis of

Ho(X, Lmo) relative to the filtration (̄F) and M′P(mo)+1, M′P(mo)+2, . . . ,

M′αmo
are the rest of the monomials inBmo in some order.

The morphismπ : X̄ → X gives a homomorphismπmo∗ : Ho(X,
Lmo) → Ho(X̄, Lmo). SinceX̄ is a disjoint union ofȲ (normalization of
Y) andC̄ (normalization ofC), Ho(X̄, Lmo) = Ho(Ȳ, L′mo

Ȳ
)⊕Ho(C̄, L′mo

C̄
).

By definition the section inπmo∗(W̄
m−r
0 ·Wr

1)(0 ≤ r ≤ mo−1) vanish onC̄
and also vanish to order≥ mo − r at the pointsP1,P2, . . . ,Pk, therefore

πmo∗(W̄
m−r
0 · W̄r

1) ⊂ Ho(Ȳ, L′mo

Ȳ
((r −mo)D)) ⊂ Ho(X̄, L′mo)

(D denotes the divisor
k
∑

i=1
Pi on Ȳ). It follows that

βr = dimW̄mo−r
0 · W̄r

1 ≤ ho(Ȳ, L′mo

Ȳ
((r −mo)D)) + dim(kernelπmo∗)

= (d − e)mo + k(r −mo) − gȲ + 1+ h1(Ȳ, L′mo

Ȳ
((r −mo)D))

+ dim(kernelπmo∗)

Claim:
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i) dim(kernel πmo∗) < q2,

ii) h1(Ȳ, L′mo

Ȳ
((r −mo)D)) ≤ k(mo − r), (0 ≤ r ≤ q = 2g− 2),

iii) h1(Ȳ, L′mo

Ȳ
((r −mo)D)) = 0, (q+ 1 ≤ r ≤ mo − 1)

i) We have seen this (cf. page 39).76

ii) The exact sequence

0→ L
′mo

Ȳ
((r −mo)D)→ L

′mo

Ȳ
→ O(mo−r)D → 0

gives the long exact cohomology sequence

· · · → Ho(Ȳ,O(mo−r)D)→ H1(Ȳ, L′mo

Ȳ
((r −mo)D))

→ H1(Ȳ, Lmo

Ȳ
)→ · · ·

sincemo > m′,H1(Ȳ, L′mo

Ȳ
) = 0. Hence

h1(Ȳ, L′mo

Ȳ
((r −mo)D)) ≤ ho(Ȳ,O(mo−r)D) = k(mo − r).

iii) Recall the condition ii) (page 56) and use the followinggeneral
fact. If C′ is an integral, smooth curve of genusgC′ and if M is a
line bundle onC′ with degM ≥ 2gC′ − 1 thenH1(C′,M) = 0.

Hence,

βr ≤(d − e)mo + k(r −mo) − gȲ + 1+ k(mo − r) + q2, (0 ≤ r ≤ q)

βr ≤(d − e)mo + k(r −mo) − gȲ + 1+ q2, (q+ 1 ≤ r ≤ mo − 1).

We make of following estimate.
total λ− weight of

M′1,M
′
2, . . . ,M

′
(P(mo)) =

P(mo)
∑

i=1

wλ(M
′
i )

=

mo
∑

r=1

r(βr − βr−1), (∵ a monomial
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M ∈ (Wm−r
0 Wr

1 −Wm−r+1
0 Wr−1

1 )

hasλ − weightr)

= moβmo −

mo−1
∑

r=0

βr

≥ mo(dmo − g+ 1)−
mo−1
∑

r=0

(mo(d − e) + k(r −mo)

− gȲ + 1+ q2) −
q

∑

r=0

k(mo − r)

=

(

e+
k
2

)

m2
o −mo

(

g− gȲ + q2 +
k
2
+ kq

)

+
q(q+ 1)

2

77

PutS = (g− gȲ + q2 +
k
2 + kq). Thus we get,

P(m)
∑

i=1

wλ(M
′
i ) > (e+

k
2

)m2
o −moS, (E1)

Note that the above inequality is true even ifWo = 0. Clearly, total

λ−weight ofw0,w1, . . . ,wN =
N
∑

i=0
wλ(wi)

= dimW1 − dimWo < ho(C, LC), (Follows from the definition ofλ)

Thus we get
N

∑

i=0

wλ(wi) ≤ ho(C, LC), (E2)

If Wo , 0 thenλ′ : Gm→ S L(N + 1) is a nontrivial homomorphism
i.e. a 1− psof S L(N + 1).

Since themth
o Hilbert point ofX.

Hmo(X) ∈ P(
P(mo)
∧ HoPN,OPN(mo)) is λ′−semistable, there exist mono-

mials M′i1,M
′
i2
, . . . ,M′iP(mo)

(1 ≤ i1 < i2 < . . . < iP(mo) ≤ αmo) in Bmo such
that {ϕmo(M

′
i1

), ϕmo(M
′
i2

), . . . , ϕmo(M
′
iP(mo)

)} is a basis ofHo(X, Lmo) and
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P(mo)
∑

j=1
wλ(M′i j

)

moP(mo)
≤

N
∑

i=0
wλ(wi)

d − g+ 1
, (cf. criterion (∗∗), page 7).

It is easy to see that
P(mo)
∑

i=1
wλ(M′i ) ≤

P(mo)
∑

j=1
wλ(M′i j

).

It follows that,

P(mo)
∑

i=1
wλ(M′i j

)

moP(mo)
≤

N
∑

i=0
wλ(wi)

d − g+ 1
,78

=⇒
(e+ k

2)m2
o −moS

mo(dmo − g+ 1)
<

ho(C, LC)
d − g+ 1

, (Follows from (E1) and (E2)),

=⇒
e+ k

2 −
S
mo

d
<

ho(C, LC)
d − g+ 1

.

Even if Wo = 0, we have, using (E1) and (E2)

(e+ k
2)m2

o −moS

mo(dmo − g+ 1)
<

P(mo)
∑

j=1
wλ(M′i )

mo(P(mo))
= 1 <

ho(C, LC)
d − g+ 1

=⇒

e+ k
2 −

S
mo

d
<

ho(C, LC)
d − g+ 1

.

We claim that the above inequality implies that
e+

k
2

d
≤

ho(C, LC)
d − g+ 1

. In

fact if the claim were not true i.e. if
e+

k
2

d
≤

ho(C, LC)
d − g+ 1

then we get a

contradiction as follows.
First note that

e+ k
2

d
>

ho(C, LC)
d − g+ 1

=⇒ (d − g+ 1)(e+
k
2

) − d(ho(C, LC)) ≥
1
2
.

Now,

e+
k
2
−

S
mo

d
≤

ho(C, LC)
d − g+ 1

, (proved)
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=⇒ (d − g+ 1)(e+
k
2

) − d(ho(C, LC)) ≤
S(d − g+ 1)

mo

=⇒
1
2
≤

S(d − g+ 1)
mo

=⇒ mo ≤ 2S(d − g+ 1).

By our choice of the integermo, this is a contradiction. This proves the79

required inequality,
ho(C, LC)
d − g+ 1

≥

e+
k
2

d
.

Proposition 1.0.8. Every curve X in the family ZV
pV
−−→ V is reduced.

Proof. Let X be a curve in the familyZV
pV
−−→ V and letIX be the ideal

sheaf of nilpotents inOX. We want to show thatIX = 0. For the moment
consider the closed subschemeXred of X defined byIX. �

Claim: H1(Xred, Lred) = 0, (Lred = LXred). First note that since the only
singularities ofXred are ordinary double points (cf. proposition 1.0.4.,
1.0.5., 1.0.6),Xred has a dualizing sheaf, sayω. If the claim were not
true then we haveHo(Xred, ω⊗L−1

red) ≃ H1(Xred, Lred) , 0. So there exists
a nonzero sections∈ Ho(X, ω⊗L−1

red) and a complete connected subcurve
C of Xred such thats is not identically zero on any of the components of
C but svanishes at all points inC ∩ X −C. Observe thatC , P1, hence
degC L = e> 1.

It follows from the proof of theorem 0.2.3. (page 13) thatho(C, LC)−

1 ≤
e
2

. Using the inequality (∗′) (cf. proposition 1.0.7 page 55), we get,

e+ 1
2

d
≤

ho(C, LC)
d − g+ 1

≤

e
2 + 1

d − g+ 1

=⇒ de+
d
2
+ (1− g)(e+

1
2

) ≤
de
2
+ d =⇒

d(e− 1)
2

≤ (g− 1)(e+
1
2

)

=⇒
20(g− 1)(e− 1)

2
≤ (g− 1)(e+

1
2

) (∵ d ≥ 20(g− 1))

=⇒ 10e− 10< e+
1
2

(∵ g ≥ 2)
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=⇒ 9e< 10+
1
2
=⇒ e≤ 1.

80

But we have already observed thate > 1. This contradiction proves
the claim.

Now consider the following exact sequence.

0→ IX ⊗ L→ L→ Lred→ 0, (1)

We have the long exact cohomology sequence

· · · → H1(X, IX ⊗ L)→ H1(X, L)→ H1(X, Lred→ 0).

SinceIX has finite support (cf. proposition 1.0.3., page 30),H1(X, IX ⊗

L) = 0. We have seen thatH1(Xred, Lred) = 0. Hence we conclude
from the above cohomology sequence thatH1(X, L) = 0. Recall that the
restriction

ϕ̄ : Ho(PN,OPN(1)) → Ho(Xred, Lred) is injective, (cf. proposition
1.0.2., page 27).
Thus

d − g+ 1 = ho(PN,OPN(1)) ≤ ho(X, Lred)

= ho(X, L) − ho(X, IX ⊗ L) (Follows from (1))

= d − g+ 1− ho(X, IX ⊗ L) (∵ ho(X, L) = χ(L) = d − g+ 1)

=⇒ ho(X, IX ⊗ L) = 0.

SinceIX ⊗ L has finite support, it follows thatIX = 0 i.e. X is reduced.81

It follows from the above proof that ifX is a curve in the family

ZV
pV
−−→ V thenH1(X, L) = 0. It is now immediate that trace of the linear

system|D| on X is complete. (|D| is the complete linear system ofPN

corresponding to the line bundleOPN(1) onPN).

Proposition 1.0.9. Let X be a curve in the family ZV
pV
−−→ V and let Y

be a nonsingular rational component of X i.e. Y≃ P1, then Y meets the
other components of X in at least two points.

Proof. Let C be the closure ofX−Y in X with the reduced structure and
let gC be the genus ofC (i.e. gC = h1(C,OC)). �
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Assume that the result is not true, i.e. assume thatY meetsC in
exactly one point,P say. SinceX is connected, the above assumption
implies thatC is connected.

Claim: gC = g.

Proof of the Claim: Since the curveX is reduced and the only singu-
larities of X are ordinary double points (cf. propositions 1.0.8., 1.0.4.,
1.0.5., 1.0.6.), we have the following exact sequence,

0→ OX → OY ⊕OC → K → 0.

Take the Euler characteristics.

χ(OY) + χ(OC) = χ(OX) + 1

=⇒ 1+ 1− h1(C,OC) = 1− h1(X,OX) + 1, (∵ Y ≃ P1
∴ χ(OY) = 1)

⇒ gC = h1(C,OC) = h1(X,OX) = g.

82

Now apply the inequality (∗′) of proposition 1.0.7 (page 55) toC

ho(C, LC)
d − g+ 1

≥
e+ 1

2

d
>

e
d

We have seen in the proof of the last proposition thatH1(X, L) = 0.
HenceH1(C, LC) = 0. Sinceχ(Lm

C) = em− gC + 1, it follows from the
above inequality that

e− gC + 1
d − g+ 1

=
ho(C, LC)
d − g+ 1

>
e
d
⇒ de+ d(1− gC) > de+ e(1− g)

⇒ e(g− 1) > d(gC − 1)⇒ e> d, (∵ gC = g ≥ 2)

This contradiction concludes the proof.
Theorem 1.0.1. is now completely proved. Since every connected

curve in the familyZV
pV
−−→ V is reduced, it can be easily seen that there

exists an open (and closed) subschemeU of V parametrizing all the

connected curves in the familyZV
pV
−−→ V i.e. if h ∈ V such that the
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fibre Xh of pV overh is connected thenh ∈ U ⊂ V. By restricting the

morphismpV to p−1
V (U) we get a familyZU

pU
−−→ U of connected curves.

Let C be a complete, connected subcurve of a curveX in the family

ZU
pU
−−→ U . Let C′ be the closure ofX − C in X. Let π : X̄ → X

be the normalization ofX and letP1,P2, . . . ,Pk be all the points on̄C′

(normalization ofC′) such thatπ(Pi) ∈ C ∩C′.
Assume that the following condition is satisfied.83

i) For every irreducible componentC′j of C′,

degC̄ j
L′ ≥ #(C̄ j′ ∩ {P1,P2, . . . ,Pk}).

In this situation we proved the following inequality (cf. page 57).

ho(C, LC)
d − g+ 1

≥
eC +

k
2

d
(eC = degC L) (∗′)

Note that ifC = X then the above inequality is trivially satisfied.
We want to prove that the above inequality (∗′) holds for every com-

plete, connected subcurveC of every curveX in the familyZU
pU
−−→ U,

even if condition i) above is not satisfied. We prove the result by con-

tradiction. So letX be a curve in the familyZU
pU
−−→ U and letC be a

complete connected subcurve ofX for which the inequality (∗′) is not
satisfied. Hence,

eC − gC + 1
d − g+ 1

=
ho(C, LC)
d − g+ 1

<
eC +

k
2

d
(1)

(eC = degC L, k = #(C ∩C′), C′ is the closure ofX −C in X)
We may assume thatC is maximal in the sense that for every complete,
connected subcurveC′ of X, with C $ C′ ⊂ X the inequality (∗′) holds.

Since the inequality (∗′) does not hold forC, condition i) above is
not satisfied i.e., for some irreducible componentC̄′j of C̄′, degC̄ j

L <

#(C ∩ C j) = ℓ′. ThenY = C ∪ C′j is connected and the inequality (∗′)84

holds forY.
ho(Y, LY)
d − g+ 1

≥
eC + e′C j

+ k′

2

d
,



Stability of Curves 65

(eC′j
= degC′j L, k′ = #(Y ∩ Y′), Y′ is the closure ofX − Y in X)

⇒
eC + eC′j

− gY + 1

d − g+ 1
≥

eC + eC′j
+ k′

2

d

(∵ χ(Lm
Y) = (eC + eC′j

)m− gY + 1 andH1(Y, LY) = 0)

⇒
eC + eC′j

− gC − gC′j
− ℓ′ + 2

d − g+ 1
≥

eC + eC′j
+ k

2 +
k′′−ℓ′

2

d
(2)

(k′′ = #(C′j ∩ Y′), ℓ′ = #(C ∩C′j))

The last inequality follows from the following formula

gY = gC + gC′j
+ #(C ∩C′j) − 1

Multiply the inequality (1) by−1 and add it to the inequality (2).

eC′j
− gC′j

− ℓ′ + 1

d − g+ 1
>

eC′j
+ k′′−ℓ′

2

d
(3)

⇒ eC′j
− gC′j

− ℓ′ + 1 > (
d − g+ 1

d
)(eC′j

+
k′′ − ℓ′

2
)

= (1−
g− 1

d
)(eC′j

+
k′′ − ℓ′

2
) >

19
20

(eC′j
+

k′′ − ℓ′

2
)

(∵ d ≥ 20(g− 1))

⇒ 20(eC′j
− gC′j

− ℓ′ + 1) > 19(eC′j
+

k′′ − ℓ′

2
)

⇒ 20>
21ℓ′

2
− eC′j

+ 20gC′j
+

19k′′

2
>

19
2
ℓ′ + 20gC′j

+
19
2

k′′

(∵ eC′j
< ℓ′)

⇒ ℓ′ = 2, gC′j
= 0, k′′ = 0, (∵ ℓ′ ≥ 2)
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SinceeC′j
< ℓ′ it follows thateC′j

= 1.
Then the inequality (3) reads as 0> 0, a contradiction! This proves that
the inequality (∗′) holds forC. It is easy to see that the inequality (∗′)
holds forC even ifC is not connected.
Thus we have the following proposition.
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Proposition 1.0.10. Let X be a curve in the family ZU
pU
−−→ U, C be a

complete, subcurve of X. Let k= #(C ∩C′) (C′ is the closure of X−C
in X). Then the following inequality holds.

ho(C, LC)
d − g+ 1

≥
eC +

k
2

d
, (eC = degC L)

The above result can also be stated in the following form.

Proposition 1.0.11.Let X be a curve in the family ZU
pU
−−→ U. LetωX be

the dualizing sheaf of X. Putβ =
d

degωX
. For every complete subcurve

C of X, we have,

|degC L − βdegC ωX| ≤
k
2

(∗′′)

(k = #(C ∩C′), C′ is the closure of X−C in X).

Proof. Since the inequality (∗′) holds forC, simplifying we get,86

degC L = eC ≥
d

g− 1
(gC − 1+

k
2

) −
k
2
=

d
2g− 1

(2gC − 2+ k) −
k
2

= βdegC ωX −
k
2

(∵ degC ωX = 2gC − 2+ k)

⇒ degC L − βdegC ωX ≥ −
k
2
. (1)

Since the inequality (∗′) holds forC′, we get, as above

deg′C L − βdeg′C ωX ≥ −
k
2

⇒ degC L − βdegC ωX ≤
k
2

(2)

(∵ deg′C L − βdeg′C ωX = βdegC ωX − degC L)

The result follows from (1) and (2). �

Next proposition is an easy consequence of proposition 1.0.10.
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Proposition 1.0.12. Let X be a curve in the family ZU
pU
−−→ U and let

C′ $ X be a connected chain of smooth rational curves meeting C
(closure of X− C′ in X) in two points. Then, i) C′ is irreducible, ii)
deg′C L = 1.

Proof. In view of proposition 1.0.10 (page 66) we have the following
inequality.

eC − gC + 1
d − g+ 1

=
ho(C, LC)
d − g+ 1

≥
eC + 1

d
, (eC = degC L)

⇒ deC − dgC + d ≥ deC + d + (1− g)χ(eC + 1)

⇒ dgC ≤ (g− 1)(eC + 1)⇒ d ≤ eC + 1 (∵ g− 1 = gC ≥ 1)

⇒ eC = d − 1⇒ degC′ L = 1⇒ C′ is irreducible
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Now we make the following observation. LetX be a curve in the family

ZU
pU
−−→ U and letωX be the dualizing sheaf ofX. ωX is a line bundle (X

being Gorenstein) andω3
X gives a morphism,ψo : X → Pr . The above

proposition implies that the imageX′ of X underψo is a stable curve
and the fibreXx′ of ψo over a pointx′ ∈ X is either a point orXx′ ≃ P

1

andXx′ meets the rest of the curve in two points.X′ is thus obtained by
replacing each smooth rational component ofX, meeting the rest of the
curve in two points, by a node. �





Chapter 2

The Moduli Space of Curves

In this chapter we construct the Deligne-Mumford Moduli space of sta- 88

ble curves. We prove that it is a reduced and irreducible scheme projec-
tive over SpecK.

We keep the same notations as in Chapter 1. ThusZU
pU
−−→ U is a

family of connected curves of genusg ≥ 2 and degreed ≥ 20(g − 1)
in PN, (N = d − g), such that themth

o Hilbert point of X, Hmo(X) ∈

P(
P(mo)
∧ Ho(PN,OPN(mo))) is semistable for the natural action ofS L(N+1)

on P(
P(mo)
∧ Ho(PN,OPN(mo))). Assume now onwards thatd = n(2g − 2)

wheren is an integer,n ≥ 10.

For a geometric pointh ∈ U let Xh be the fibre ofZU
pU
−−→ U overh,

Lh be the restriction ofOPN(1) to Xh, ωXh be the dualizing sheaf ofXh.
It is easily seen that the setUC = {h ∈ U |Lh ≃ ωn

Xh
} is constructable.

We want to prove thatUC is a closed subscheme ofU parametrizing

all curvesXh in the family ZU
pU
−−→ U such thatLh ≃ ωn

Xh
. The next

proposition proves thatUC is a closed subset ofU.

Proposition 2.0.0. UC is a closed subset of U.

Proof. It suffices to prove the following. For every morphism SpecR
α
−→

U, (Ra discrete valuation ring), if the image of the generic pointof Spec
R is in UC then the image of the special point of SpecR is also inUC. �

69
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Make the base change ofZU
pU
−−→ U by SpecR

α
−→ U,89

ZR
//

pR

��

ZU

pU

��
SpecR α // U

The relatively very ample line bundleOZU (1) onZU induces a line bun-
dle OZR(1) onZR. Let ωZR/R be the relative dualizing sheaf onZR. Let
ho andh1 be respectively, the special point and the generic point special
point of specR, and letXho and Xh1 be the special and generic fibres.

Write Xho =
q′
⋃

i=1
Ci whereCi is an irreducible component ofXho. The re-

strictions ofOZR(1) andωn
ZR/R

to Xh1 are isomorphic. This follows from
the definition ofUC. To prove thatα(ho) ∈ UC is equivalent to show-
ing that the restrictions of the line bundlesωn

ZR/R
andOZR(1) to Xho are

isomorphic.
Write OZR(1) ≃ ωn

ZR/R
⊗ M, whereM is a line bundle onZR which

on ZR − {nodes ofXho} is of the formOZR(−
q′
∑

i=1
r iCi). Let t be the uni-

formizing parameter ofR. TensoringOZR(1) with the trivial line bundle
associated to the principal divisorp∗R((tmin(r i )) we can assume thatr i ≥ 0,
min(r i) = 0 i.e. we can assume thatM is an ideal sheaf.

Let J =
⋃

r i>0
Ci, J′ =

⋃

r i=0
Ci. If g is the local equation ofM theng . 0

in any component ofJ′ andg(x) = 0 for all x ∈ J ∩ J′. Hence #(J ∩
J′) ≤ deg′J M. However, we have,|deg′J M| = |deg′J L − ndeg′J ωXho

| ≤

#
(J ∩ J′)

2
,90

(cf. proposition 1.0.11, page 66). This forcesJ′ = Xho i.e. M is
trivial. This proves the result.

Recall thatUC is precisely the set of pointsh ∈ U such that the

restriction of the line bundleωn
ZU/U

⊗OZU (−1) to the fibre ofZU
pU
−−→ U

over h is trivial. Now using standard arguments (cf. [4], page 89)UC

is given the structure of a closed subscheme ofU, having the following
properties,
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i) There exists a line bundleM′ on UC such that the restriction of
ωn

ZU/U
⊗ OZU (−1) to ZUC ×U ZU is isomorphic top∗UC

(M′), (pUC

denotes the projectionZUC → UC);

ii) If f : W→ U is any morphism such that for some line bundleM′′

on W the line bundles (1× f )∗(ωn
ZU/U

×OZU (−1)) andp∗W(M′′) on
W×

U
ZU are isomorphic thenf can be factored asW→ UC → U.

Theorem 2.0.1.UC is nonsingular.

Proof. Let h ∈ UC be a closed point and letXh be the fibre ofZUC

pUC
−−−→

UC over h. Let X̃ be the universal formal deformation ofXhover T =
Spec[[t1, t2, . . . , t3]] , (s = dim Ext1(ΩXh/K ,OXh)), (cf. theorem 0.2.2,
page 12). �

Let η : S = SpecÔUC,h → UC be the natural map. We have the
following commutative diagram.

ZUC,h
//

��

ZUC

��
S

η
// UC
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It follows from theorem 0.2.2. (page 12) that there exists a unique mor-
phism f : S→ T such thatZUC,h ≃ S×

T
X̃ and the isomorphism restricted

to the closed fibres is the identity morphism.

Claim: f : S→ T is formally smooth , i.e.
ÔUC,h ≃ [[ t1, t2, . . . , ts, ts+1, . . . , ts+s]] for some nonnegative integer

s′.
Note that if we prove the claim, the result will follow. Choose an

isomorphismP(π∗(ωn
X/T)) ≃ Pn(2g−2)−g × T, (cf. stable curves, page 10).

By the universal property ofUC we have a unique morphismγ : T →
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UC such that the following diagram is commutative.

X̃ //

��

ZUC

��
Y

γ
// UC

Clearlyγ has a factorization

T
γ
−→ S

η
−→ C andγ′ is a section off .92

Recall thatG = PGL(N + 1) acts onVC. Let Sh be the stabilizer
of h ∈ UC. ThenSh is finite and reduced. In fact if it were not then

Sh would have a nonzero tangent vector i.e. there would be a
K[ε]
(ε2)

valued point ofG centered at the identity which gives an automorphism

of Xh ×
K[ε]
ε2
⊂ Pn(2g−2)−g ×

K[ε]
ε2

, hence a vector field defined on the

whole ofXh. We have already seen that such a vector field is necessarily

zero (cf. lemma 0.1.7. page 10). Thus the automorphism ofXh ×
K[ε]

(ε2)
must be identity and further sinceXh is connected and nondegenerate in

PN (cf. proposition 1.0.2. page 27) the automorphismP ×
K[ε]

(ε2)
must

be identity. It follows thatSh is finite and reduced and hence the action
of G on S is formally free which amounts to saying thatS is formally
a principal fibre bundle overT with groupG. ThereforeS is formally
smooth overT.

FurtherUC is contained in the open subset ofU, parametrizing sta-

ble curves. To see this leth ∈ UC such that the fibreXh of ZU
pU
−−→ U over

h is semistable but not stable i.e.Y is a smooth rational component ofXh

which meets the other components ofXh in exactly two points. But then
the restriction ofωn

Xh
to Y is very ample and degYω

n
Xh
= ndegYωXh =

n(degωY + #(Y
⋂

Y′) = 0,
(Y′ is the closure ofXh − Y in Xh).
This contradiction proves thatXh is necessarily a stable curve.93

Recall that the morphismU → P(
P(mo)
Λ Ho(PN,OPN(mo)))ss defined

by ψmo(h) = Hmo(Xh)(h ∈ U) is a closed immersion and also it is aG-

morphism. By Theorem 0.0.5 (page 3)P(
P(mo)
Λ Ho(PN,OPN(mo)))ss has a
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good quotient byG which is projective. Then it is easy to see thatUC

has a good quotient byG (denoted byUC/G) which is projective. We
are now ready to state the main theorem of this chapter.

Theorem 2.0.2.UC/G is a coarse moduli space of isomorphism classes
of stable curves of genus g. Further UC/G is reduced and irreducible.

Proof. We first prove that every stable curve (in the sense of Defini-
tion 0.1.4. page 8) is represented inUC/G. �

Let X be a stable curve of genusg. Let γ : X′ → SpecR be a defor-
mation ofX to a connected, smooth curve whereR is a discrete valuation
such that,K1, the residue field ofR is algebraically closed. LetK2 be
the quotient field ofR. NoteX′ → SpecR is a stable curve and hence
can be realized as a family of curves inPn(2g−2)−g (cf. Stable curves,
page 8). Then by the universal property of the Hilbert schemeH we get
a morphismρ : SpecR→ H. Since the generic fibreX′K2

of γ is smooth,
the image of SpecK2 ⊂ SpecR lies in the locally closed subschemeUC

of H (cf. Theorem 1.0.0 page 19). SinceUC/G is complete, (cf. Defi-
nition 4.1. page 526 [10]) there exists a morphismρ′ : SpecR→ UC 94

such that ifX′′ → SpecR is the base change ofZUC → UC by the mor-
phismρ′ : SpecR→ UC then the generic fibreX′′K2

of X′′ → SpecR is
isomorphicX′K2

. Now note the following lemma.

Lemma 2.0.3. Let Y′ and Y′′ be two stable curves over a discrete
valuation ring R with algebraically closed residue field. Let Y be the
generic point ofSpecR and assume that the generic fibres Y′

Y and Y′′Y
are smooth. Then any isomorphism between Y′

Y and Y′′Y extends to an
isomorphism between Y′ and Y′′. (cf. Lemma 1.12 [1])

In view of the above lemma, it follows that the isomorphism be-
tweenX′K2

and X′′K2
can be extended to an isomorphism ofX′ and X′′

over SpecR. Observe that the isomorphism betweenX′K1
andX′′K2

is in-
duced by an automorphism ofPn(2g−2)−g. Thus in the Hilbert scheme
H, the two points representing the curvesX′K1

andX′′K1
lie in the same

G-orbit. Now it is immediate that the morphismρ : SpecR→ H factors
as SpecR→ UC → H.
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Thus every stable curve is represented inUC. SinceG acts onUC

with finite isotropy (cf. Theorem 0.1.8. page 10) and with closed or-
bits (cf. Lemma 2.0.3) the good quotientUC/G of UC by G is a coarse
moduli space for isomorphism classes of stable curves.

It remains to prove thatUC/G is reduced and irreducible. We know
this to be true when characteristic of the ground fieldK is zero, [11]. So
assume now that characteristic ofK is positive.
Let R be a discrete valuation ring such that the quotient field ofR has95

characteristic zero andK is the residue field ofR.
ConstructUC over SpecR and call itUC,R′ (Note that the method

of our proof works over the base SpecR, cf. [9]). Let GR be the group
PGL(N + 1)(R). SinceUC,R/GR is projective and the generic fibre of
UC,R/GR → SpecR is connected, Zariski’s connectedness theorem
shows thatUC,R/GR⊗K is connected. Note thatUC,R/GR⊗K = UC,R⊗

K/G is just the orbit space, henceUC,R⊗K = UC is connected. We have
already seen thatUC is smooth. ThusUC is reduced and irreducible.
Recall that the structure sheaf ofUC/G is the sheaf of invariants in the
structure sheaf ofUC. HenceUC/G is reduced and irreducible.



Appendix

Let X′ be a reduced, complete, connected curve which has at most ordi- 96

nary double points. WriteX′ =
n
⋃

i=1
X′i (X′i an irreducible component of

X′). Let L′ be a line bundle onX′ and letλ1, λ2, . . . , λn be positive ra-
tional numbers with

∑

λi = 1. Following Oda-Seshadri [8] we say that
the line bundleL′ is (λi)-semistable, if for every complete, connected

subcurveC of X′,
χ(L′C)

χ(L′)
≥X′i

∑

⊂C
λi, where the summation is taken over

all i such thatX′i ⊂ C.

Now let X be a stable curve in the familyZU
PU
−−→ U, (Notation as in

Chapter 1, cf. page 64). WriteX =
n
⋃

i=1
Xi , (Xi an irreducible component

of X). LetωX be the dualizing sheaf ofX. Letλi =
degXi

ωX

degωX
(1 ≤ i ≤ n).

Let L be the very ample line bundle onX.

Proposition. Al. The line bundle L is(λi)-semistable.

Proof. For every complete, connected subcurveC of X, we have

eC − gC + 1
d − g+ 1

=
X(LC)
X(L)

≥

eC +
k
2

d

(eC = degC L, k = #(C ∩ C′), C′ is the closure ofX − C in X), (cf.
Proposition 1.0.10., page 66).

⇒ deC + d(1− gC) ≥ deC +
dk
2
+ (1− g)(eC +

k
2

)

75
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⇒ (eC +
k
2

)(g− 1) ≥ d(gC − 1+
k
2

) =
d
2

(2gC − 2+ k) =
d(degCωX)

2

⇒
eC +

k
2

d
≥

degCωX

2g− 2
=

∑

Xi⊂C

λi

⇒
X(LC)
X(L)

≥
∑

Xi⊂C

λi

97

For a complete subcurveY of X, we apply the above inequality to
each connected componentC of X and by adding we get the result.�
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