
Lectures on
Partial Differential Equations

By

G.B. Folland

Tata Institute of Fundamental Research
Bombay

1983



Lectures on
Partial Differential Equations

By

G.B. Folland

Lectures delivered at the

Indian Institute of Science, Bangalore

under the

T.I.F.R. – I.I.Sc. Programme in Applications of

Mathematics

Notes by

K.T. Joseph and S. Thangavelu

Published for the
Tata Institute of Fundamental Research Bombay

Springer-Verlag
Berlin Heidelberg New York

1983



Author

G.B. Folland

University of Washington

Seattle, Washington 98175

U.S.A.

©Tata Institute of Fundamental Research, 1983

ISBN 3-540-12280-X Springer-Verlag, Berlin, Heidelberg.New York
ISBN 0-387-12280-X Springer-Verlag, New York. Heidelberg. Berlin

No part of this book may be reproduced in any
form by print, microfilm or any other means with-
out written permission from the Tata Institute of
Fundamental Research, Colaba, Bombay 400 005

Printed by N.S. Ray at The Book Center Limited,
Sion East, Bombay 400 022 and published by H. Goetze,

Springer-Verlag, Heidelberg, West Germany

Printed in India





Preface

This book consists of the notes for a course I gave at the T.I.F.R. Center
in Bangalore from September 20 to November 20, 1981. The purpose
of the course was to introduce the students in the Programme in Appli-
cation of Mathematics to the applications of Fourier analysis-by which I
mean the study of convolution operators as well as the Fourier transform
itself-to partial differential equations. Faced with the problem of cover-
ing a reasonably broad spectrum of material in such a short time, I had to
be selective in the choice of topics. I could not develop any one subject
in a really thorough manner; rather, my aim was to present theessential
features of some techniques that are well worth knowing and to derive
a few interesting results which are illustrative of these techniques. This
does not mean that I have dealt only with general machinery; indeed,
the emphasis in Chapter 2 is on very concrete calculation with distribu-
tions and Fourier transforms-because the methods of performing such
calculations are also well worth knowing.

If these notes suffer from the defect of incompleteness, they posses
the corresponding virtue of brevity. They may therefore be of value to
the reader who wishes to be introduced to some useful ideas without
having to plough through a systematic treatise. More detailed accounts
of the subjects discussed here can be found in the books of Folland [1],
Stein [2], Taylor [3], and Treves [4].

No specific knowledge of partial differential equations or Fourier
Analysis is presupposed in these notes, although some prioracquittance
with the former is desirable. The main prerequisite is a familiarity with
the subjects usually gathered under the rubic “real analysis”: measure
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and integration, and the elements of point set topology and functional
analysis. In addition, the reader is expected to be acquainted with the
basic facts about distributions as presented, for example,in Rudin [7].

I wish to express my gratitude to professor K.G. Ramanathan for
inviting me to Bangalore, and to professor S.Raghavan and the staff of
the T.I.F.R. Center for making my visit there a most enjoyable one. I also
wish to thank Mr S. Thangavelu and Mr K.T. Joseph for their painstak-
ing job of writing up the notes.



Contents

Preface v

1 Preliminaries 1
1 General Theorems About Convolutions . . . . . . . . . 1
2 The Fourier Transform . . . . . . . . . . . . . . . . . . 5
3 Some Results From the Theory of Distributions . . . . . 12

2 Partial Differential Operators with Constant Coefficients 15
1 Local Solvability and Fundamental Solution . . . . . . . 15
2 Regularity Properties of Differential Operators . . . . . . 20
3 Basic Operators in Mathematical Physics . . . . . . . . 22
4 Laplace Operator . . . . . . . . . . . . . . . . . . . . . 25
5 The Heat Operator . . . . . . . . . . . . . . . . . . . . 41
6 The Wave Operator . . . . . . . . . . . . . . . . . . . . 44

3 L2 Sobolev Spaces 53
1 General Theory ofL2 Sobolev Spaces . . . . . . . . . . 53
2 Hypoelliptic Operators With Constant Coefficients . . . 64

4 Basic Theory of Pseudo Differential Operators 69
1 Representation of Pseudo differential Operators . . . . . 69
2 Distribution Kernels and the Pseudo Local Property . . . 73
3 Asymptotic Expansions of Symbols . . . . . . . . . . . 77
4 Properly Supported Operators . . . . . . . . . . . . . . 79
5 ψdo′sDefined by Multiple Symbols . . . . . . . . . . . 81

vii



viii Contents

6 Products and Adjoint ofψDO′S . . . . . . . . . . . . . 87
7 A Continuity Theorem forψ Do on Sobolev Spaces . . . 90
8 Elliptic Pseudo Differential Operators . . . . . . . . . . 92
9 Wavefront Sets . . . . . . . . . . . . . . . . . . . . . . 95
10 Some Further Applications... . . . . . . . . . . . . . . . 99

5 LP and Lipschitz Estimates 107



Chapter 1

Preliminaries

IN THIS CHAPTER, we will study some basic results about convolu- 1

tion and the Fourier transform.

1 General Theorems About Convolutions

We will begin with a theorem about integral operators.

Theorem 1.1. Let K be a measurable function onRn×Rn such that, for
some c> 0,

∫

|K(x, y)|dy ≤ c,
∫

|K(x, y)|dx ≤ c, for every x, y inRn.

If 1 ≤ p ≤ ∞ and f ∈ Lp(Rn), then the functionT f , defined by
T f(x) =

∫

K(x, y) f (y)dy for almost everyx in Rn, belongs toLp(Rn)
and further,

||T f ||p ≤ c|| f ||p.

Proof. If p = ∞, the hypothesis
∫

|K(x, y)|dx ≤ c is superfluous and
the conclusion of the theorem is obvious. Ifp < ∞, let q denote the
conjugate exponent. Then, by Hölder ’s inequality,

|T f(x)| ≤
{∫

|K(x, y)|dy

}1/q {∫

|K(x, y)| | f (y)|pdy

}1/p

1



2 1. Preliminaries

≤ c1/q
{∫

|K(x, y)| | f (y)|pdy

}1/p

.

�

From this we have,
∫

|T f(x)|pdx≤ cp/q
x
|K(x, y)|| f (y)|pdydx

≤ c1+p/q
∫

| f (y)|pdx= c1+p/q|| f ||pp.

Therefore||T f ||p ≤ c|| f ||p.2

Next, we define the convolution of two locally integrable functions.

Definition 1.2. Let f and g be two locally integrable functions. The
convolutionof f and g, denoted by f∗ g, is define by

( f ∗ g)(x) =
∫

f (x− y)g(y)dy =
∫

f (y)g(x− y)dy = (g ∗ f )(x),

provided that the integrals in question exist.

The basic theorem on convolution is the following theorem, called
Young’s inequality.

Theorem 1.3(Young’s Inequality). Let f ∈ L1(Rn) and g∈ Lp(Rn), for
1 ≤ p ≤ ∞. Then f∗ g ∈ Lp(Rn) and

|| f ∗ g||p ≤ ||g||p|| f ||1.

Proof. TakeK(x, y) = f (x−y) in Theorem 1.1. ThenK(x, y) satisfies all
the conditions of Theorem 1.1. and the conclusion follows immediately.

�

The next theorem underlies one of the most important uses of con-
volution. Before coming to the theorem, let us prove the following

Lemma 1.4. For a function f defined onRn and x inRn, we define a
function fx by fx(y) = f (y − x). If f ∈ Lp, 1 ≤ p < ∞, then lim

x→O
|| f x −

f ||p = 0.
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Proof. If g is a compactly supported continuous function, theng is uni-3

formly continuous, and sogx converges tog uniformly as x tends to
0. �

Further, for|x| ≤ 1, gx andg are supported in a common compact
set. Therefore, lim

x→0
||gx − g||p = 0. Given f ∈ Lp, we can find a function

g which is continuous and compactly supported such that|| f −g||p <∈ /3
for ∈> 0. But then||gx − f x||p <∈ /3 also holds. Therefore

|| f x − f ||p ≤ || f x − gx||p + ||gx − g||p + ||g− f ||p
≤ 2 ∈ /3+ ||gx − g||p.

Since limx→ 0||gx − g||p = 0, we can choosex close to 0 so that
||gx− g||p <∈ /3. Then|| f x− f || <∈ and this proves the lemme since∈ is
arbitrary.

Remark 1.5.The above lemma is false when p= ∞. Indeed, “f x → f
in L∞” means precisely thatf is uniformly continuous.

Let us now maketwo important observations about convolutions
which we shall use without comment later on.

i) Supp(f ∗ g) ⊂ Suppf + Suppg, where

A+ B = {x+ 1 : x ∈ A, y ∈ B}.

ii) If f is of classCk and∂α(|α| ≤ k) andg satisfy appropriate condi-
tions so that differentiation under the integral sign is justified, then
f ∗ g is of classCk and∂α( f ∗ g) = (∂α f ) ∗ g.

Theorem 1.6.Let g∈ L1(Rn) and
∫

g(x)dx = a. Let g∈(x) =∈−n g(x/ ∈) 4

for ∈> 0. Then, we have the following:

i) If f ∈ Lp(Rn), p < ∞, f ∗ g∈ converges to a f in Lp as∈ tends to 0.

ii) If f is bounded and continuous, then f∗g∈ converge to a f uniformly
on compact sets as∈ tends to 0.
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Proof. By the change of variablex→∈ x, we see that
∫

g∈(x)dx= a for
all ∈> 0. Now

( f ∗ g∈)(x) − a f(x) =
∫

f (x− y)g∈(y)dy−
∫

f (x)g∈(y)dy

=

∫

[ f (x− y) − f (x)] g∈(y)dy

=

∫

[ f (x− ∈ y) − f (x)]g(y)dy

=

∫

[ f ∈y(x) − f (x)]g(y)dy.

�

If f ∈ Lp andp < ∞, we apply Minkoswski’s inequality for integrals
to obtain

|| f ∗ g∈ − a f ||p ≤
∫

|| f ∈y − f ||p|g(y)|dy.

The functiony→ || f ∈y− f ||p is bounded by 2|| f ||p and tends to 0 as∈
tends to 0 for eachy, by lemma 1.4. Therefore, we can apply Lebesgue
Dominated Convergence theorem to get the desired result.

On the other hand, supposef is bounded and continuous. LetK be
any compact subset ofRn. Givenδ > 0, choose a compact setGRn such
that

∫

Rn−G

|g(y)|dy < δ.

5

Then

Supx∈k(| f ∗ gǫ )(x) − a f(x)| ≤ 2δ|| f ||∞

+ Sup(x,y)ǫK×G | f (x− ǫy) − f (x)|
∫

G

|g|dy.

Since f is uniformly continuous on the compact setK the second
term tends to 0 as∈ to 0. Sinceδ is arbitrary, we see that

supx ∈ K|( f ∗ gǫ)(x) − a f(x)| → 0 asǫ → 0.

Hence the theorem is proved.
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Corollary 1.7. The space C∞o (Rn) is dense in Lp(R⋉) for 1 ≤ p < ∞.

Proof. Let

φ(x) = e−1/(1−|x|2) for |x| < 1

= 0 for |x| ≤ 1

ThenφǫC∞o (Rn) and
∫

φ(x)dx = 1/a > 0. If f ǫLp and has compact
support, thena( f ∗ φǫ)ǫC∞o (Rn) and by theorem 1.6,a( f ∗ φǫ) converges
to f in Lp asǫ tends to 0. SinceLp functions with compact support are
dense inLp, this completes the proof. �

Proposition 1.8. Suppose K⊂ Rn is compact andΩ ⊃ K be an open
subset ofRn. Then there exists a C∞o functionφ such thatφ(x) = 1 for
xǫK andSuppφ ⊂ Ω.

Proof. Let V = {x ∈ Ω : d(x,K) ≤ 1
2
δ} whereδ = d(K,Rn\Ω). Choose 6

aφoǫC∞o such that Suppφo ⊂ B

(

0,
1
2
δ

)

and
∫

φo(x)dx= 1. Define

φ(x) =
∫

V

φo(x− y)dy= (φ0 ∗ XV)(x).

Thenφ(x) is a function with the required properties. �

2 The Fourier Transform

In this section, we will give a rapid introduction to the theory of the
Fourier transform.

For a function f ǫL1(Rn), the Fourier transformof the function f ,
denoted byf̂ , is defined by

f̂ (ξ) =
∫

e−2πix.ξ f (x)dx, ξǫRn.

Remark 1.9.Our definition of f̂ differs from some other in the place-
ment of the factor of 2π.
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BASIC PROPERTIES OF THE FOURIER TRANSFORM
For

(1.10) f ǫL1, || f̂ ||∞ ≤ || f ||1.

The proof of this is trivial.
For

(1.11) f , g ∈ L1, ( f ∗ g) ˆ (ξ) = f̂ (ξ)ĝ(ξ).

Indeed,

( f ∗ g)̂(ξ) =
x

e−2πix.ξ f (y)g(x− y)dydx

=

x
e−2πi(x−y)·ξg(x− y)e−2πiY.ξ f (y)dydx

=

∫

e−2πi(x−y)·ξg(x− y)dx
∫

f (y)e−2πiy.ξdy

= f̂ (ξ)ĝ(ξ).

Let us now consider the Fourier transform in the Schwartz classS =7

S(Rn).

Proposition 1.12. For f ∈ S , we have the following:

i) f̂ ǫC∞(Rn) and∂β f̂ = ĝ where g(x) = (−2πix)β f (x).

ii) (∂β f )̂(ξ) = (2πiξ)β f̂ (ξ).

Proof. i) Differentiation under the integral sign proves this.

ii) For this, we use integration by parts.

(∂β f )̂(ξ) =
∫

e−2πix.ξ(∂β f )(x)dx

= (−1)|β|
∫

∂β[e
−2πix.ξ ] f (x)dx

= (−1)|β|(−2πiξ)β
∫

e−2πix·ξ f (x)dx

= (2πiξ)β f̂ (ξ).

�
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Corollary 1.13. If f ǫS , thenf̂ ∈ S also.

Proof. For multi-indicesα andβ, using proposition 1.12, we have

ξα(∂β f̂ )(ξ) = ξα((−2πix)β f (x))ˆ(ξ)

= (2πi)−|α|[∂α((−2πix)β f (x))̂(ξ)]

= (−1)|β|(2πi)|β|−|α|(∂α(xβ f (x)))ˆ(ξ)

Since f ǫS, ∂α(xβ f (x))ǫL1 and hence (∂α(xβ f (x)))ˆǫL∞. Thus ξα

(∂β f̂ ) is bounded. Sinceα andβ are arbitrary, this proves that̂f ǫS. �

Corollary 1.14 (RIEMANN-LEBESGUE LEMMA). If f ǫL1, then f̂ is
continuous and vanishes at∞.

Proof. By Corollary 1.13, this is true forf ǫS. SinceS is dense inL1 8

and|| f̂ ||∞ ≤ || f ||1, the same in true for allf ǫL1. �

Let us now compute the Fourier transform of the Gaussian.

Theorem 1.15. Let f(x) = e−πa|x|2, Re a > 0. Then, f̂ (ξ) = a−n/2

e−a−1
π|ξ|2.

Proof.

f̂ (ξ) =
∫

e−2πix.ξe−aπ|x|2dx

i.e., f̂ (ξ) =
n

∏

j=1

∞
∫

−∞

e−2πix j ξ j e−aπx2
j dxj .

Thus it suffices to consider the casen = 1. Further, we can take
a = 1 by making the change of variablex→ a−1/2x. �

Thus we are assumingf (x) = e−πx2
, xǫR. Observe thatf ′(x) +

2πx f(x) = 0. Taking the Fourier transform, we obtain

2πiξ f̂ (ξ) + i f̂ ′
′
(ξ) = 0.

Hence
f̂ ′
′
(ξ)/ f (ξ) = −2πξ
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which, on integration, givesf (ξ) = ce−πξ
2
, c being a constant.

The constantc is given by

c = f̂ (0) =

∞
∫

−∞

e−πx2
dx= 1.

Thereforef̂ (ξ) = e−πξ
2
, which completes the proof.

We now derive theFourier inversion formula for the Schwartz class
S.

Let us definef V(ξ) =
∫

e2πix·ξ f (x)dx= f̂ (−ξ).9

Theorem 1.16(Fouries Inversion Theorem). For f ǫ( f̂ )∨ = f .

Proof. First, observe that forf , gǫL1,
∫

f ĝ =
∫

f̂ g. In fact,
∫

f̂ (x)g(x)dx =
x

e−2πiy·x f (y)g(x)dydx

=

∫ [∫

e−2πiy·xg(x)dx

]

f (y)dy

=

∫

ĝ(y) f (y)dy.

�

Givenǫ > 0 andx in Rn, take the functionφ defined by

φ(ξ) = e−2πix·ξ−πǫ2|ξ|2.

Now

φ̂(y) =
∫

e−2πiy·ξe−2πix·ξ−πǫ2|ξ|2dξ

=

∫

e−2πi(y−x)·ξe−πǫ2|ξ|2dξ

=∈−n e−π∈
−2|x−y|2 .

If we takeg(x) = e−π|x|
2

and definegǫ(x) = ǫ−ng(x/ǫ), then

φ̂(y) = gǫ(x− y).
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Therefore
∫

e2πix·ξ f̂ (ξ)e−πǫ
2|ξ|2dξ =

∫

f̂ (ǫ)φ(ξ)dξ

=

∫

f (y)φ̂(y)dy

=

∫

f (y)gǫ (x− y)dy

= ( f ∗ gǫ )(x)

But asǫ tends to 0, (f ∗ gǫ) converges tof , by Theorem 1.6 and10

clearly
∫

e2πi·xξ f̂ (ξ)e−πǫ
2|ξ|2dξ →

∫

f̂ (ξ)e2πi·x.ξdξ

Therefore (̂f )v
= f .

Corollary 1.17. The Fourier transform is an isomorphism of S onto S .

Next, we prove thePlancherel Theorem.

Theorem 1.18. The Fourier transform uniquely extends to a unitary
map of L2(Rn) onto itself.

Proof. For f ǫS, define f̃ (x) = f (−x). Then it is easily checked that
ˆ̃f = ¯̂f , so that

|| f ||22 =
∫

| f (x)|2dx

=

∫

f (x) f̃ (−x)dx

= ( f ∗ f̃ )(0)

=

∫

( f∗ f̃ )ˆ(ξ)dξ

=

∫

f̂ (ξ) ˆ̃f (ξ)dξ

=

∫

f̂ (ξ) ¯̂f (ξ)dξ = || f̂ ||22.
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Therefore, the Fourier transform extends continuously to an isom-
etry of L2. It is a unitary transformation, since its imageS is dense in
L2. �

Let us observe how the Fourier transform interacts with translations,
rotations and dilations.
(1.19) The Fourier transform and translation: If f x(y) f (y− x) then11

f̂ x(ξ) =
∫

e2πiy·ξ f (y− x)dy

=

∫

e2πi(z+x)·ξ f (z)dz ( by putting y− x = z)

=

∫

e2πix·ξ f̂ (ξ).

(1.20) The Fourier transform and rotations (orthogonal transfor-
mations):

Let T : �n→ �n be an orthogonal transformation. Then

( f ◦ T)ˆ(ξ) =
∫

e−2πix·ξ( f oT)(x)dx

=

∫

e−2πiT−1y·ξ f (y)dy ( by putting y = T x)

=

∫

e−2πiy·Tξ f (y)dy

= f̂ (Tξ) = ( f̂ oT)(ξ).

Thus, (f oT)ˆ
= f̂ oT i.e. ˆ commutes with rotations.

(1.21) The Fourier transform and dilation: Let fr(x) = r−n f (x/r).
Then

f̂r(ξ) =
∫

e−2πix·ξr−n f (x/r)dx

=

∫

e−2πiy·ξ f (y)dy= f̂ (rξ).

The last equation suggests, roughly: the more spread outf is, the
more f̂ will be concentrated at the origin and vice versa. This notion
can be put in a precise form as follows.
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(1.22) HEISENBERG INEQUALITY(n = 1: For f ǫS(R), we have

||x f(x)||2||ξ f̂ (ξ)||2 ≥ (1/4π)|| f ||22.

Proof. Observe that 12

d
dx

(x f(x)) = x
d f
dx

(x) + f (x).

Thus

|| f ||22 =
∫

f (x) f (x)dx

=

∫

f (x)

[

d
dx

(x f(x)) − x
d f
dx

(x)

]

dx

= −
∫

x f(x)
d f̄
dx

(x)dx−
∫

x
d f
dx

(x) f̄ (x)dx

= −2Re
∫

x f(x)
d f̄
dx

(x)dx.

≤ 2||x f(x)||2||
d f̄
dx
||2 (by Cauchy-Schwarz)

i.e., || f ||22 ≤ 2||x f(x)||2||
d f
dx
||2.

But

(
d f̄
dx

)ˆ(ξ) = 2πiξ f̂ (ξ).

Therefore,

|| f ||22 ≤ 2.2π||x f(x)||2||ξ f̂ (ξ)||2

or

||x f(x)||2||ξ f (ξ)||2 ≥ (1/4π)|| f ||22.

�
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A GENERALISATION TO n VARIABLES

We replacex by x j ,
d
dx

by
∂

∂x j
. Also for anya j , b jǫ�, we can re-

placex j and
∂

∂x j
by x j − a j and

∂

∂x j
− b j respectively. The same proof

then yields:

(1.23) ||(x j − a j) f (x)||2||(ξ j − b j) f̂ (ξ)||2 ≥ (1/4π)|| f ||22.

13

Let us now take|| f ||2 = 1 andA = (a1, a2, . . . , an)ǫ�n. Let f be
small outside a small nighbourhood ofA.

In this case,||(x j − a j) f (x)||2 will be small. Consequently, the other
factor on the left in (1.23) has to be large. That is, if the mass of f is
concentrated near one point, the mass off̂ cannot be concentrated near
any point.

Remark 1.24.If we take

a j =

∫

xi | f (x)|2dx, b j =

∫

ξ j | f̂ (ξ)|2dξ,

then inequality (1.23) is the mathematical formulation of the position-
momentum uncertainty relationin Quantum Mechanics.

3 Some Results From the Theory of Distributions

In this section, let us recall briefly some results from the theory of dis-
tributions. (For a more detailed treatment, see, for example [7] or [8]).

In the sequel,D′(Ω) will denote the space of distributionson the
open setΩ ⊂ Rn which is the dual space ofC∞o (Ω). WhenΩ = �n, we
will simply write D′ instead ofD′(�n). In the same way,S′ = S′(Rn)
will denote the space of tempered distributions with and E′ = E′(�n)
will stand for thespace of distributions with compact support.

The value of a distributionuǫD′ at a functionφǫC∞o will be denoted
by < u, φ >. If u is a locally integrable function, thenu defines a distri-
bution by< u, φ >=

∫

u(x)φ(x)dx. It will sometimes be convenient to14
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write
∫

u(x)φ(x)dx for < u, φ >, whenu is an arbitrary distribution.
The convergence inD′ is theweak convergencedefined by the fol-

lowing:

un, uǫD′, un→ in means < un, φ >→< u, φ > for every φ in C∞o .

Let us now recall brieflycertain operations on distributions.
(1.25) We can multiply a distributionuǫD′ by aC∞ functionφ to
get another distributionφu which is defined by

< φu, ψ >=< u, φψ >

A C∞ function ψ is said to betemperedif, for every multiindex
α, ∂αφ grows at most polynomially at∞. We can multiply anu, ǫS′ by
a tempered function to get another tempered distribution. The definition
is same as in the previous case.
(1.26) If uǫD′ and f ǫC∞o , we define the convolution u∗ f by
(u ∗ f )(x) =< u, fx > where fx(x) = f (x− y).

The functionu ∗ f is C∞ and whenuǫE, u ∗ f is in C∞o . The convo-
lution ∗ : D′ ×C∞o → C∞ can be extended to a map fromD′ ×E′ toD′.
Namely, if uǫD′, vǫE′ andφǫC∞o , < u ∗ v, φ >=< u, ṽ ∗ φ > whereṽ is
defined by< ṽ, ψ >=

∫

v(x)ψ(−x)dx. The associative law

u ∗ (v ∗ w) − (u ∗ w) ∗ w holds foru, v,wǫD′

provided that at most one of them does not have compact support. For 15

uǫS′ and f ǫS, u ∗ f can also defined in the same way andu ∗ f is a
temperedC∞ function.

(1.27) Since the Fourier transform is an isomorphism ofS onto
S. and

∫

f ĝ =
∫

f̂ g, the Fourier transform extends by duality to an
isomorphism ofS′ ontoS′.

For uǫE′ ⊂ S′, we have ˆu(ξ) =< u, e−2πi(·)·ξ > which is an entire
analytic function.





Chapter 2

Partial Differential
Operators with Constant
Coefficients

1 Local Solvability and Fundamental Solution

For the sake of convenience in taking the Fourier transforms, from now 16

onwards, we will use the differential monomials

Dα
= (2πi)|α|∂α. Thus (Dα)ˆ(ξ) = ξα f̂ (ξ).

By apartial differential operator with constant coefficients,we mean
a differential operatorL of the form

L =
∑

|α|≤k

aαDα, aαǫ�

Further, we assume that
∑

|α|≤k
|aα| , 0. In this case, we say that the

operatorL is of orderk. If we write P(ξ) =
∑

|α|≤k
aαξα, then we have

L = P(D).
ForuǫS, taking the Fourier transform, we see that

(P(D)u)ˆ(ξ) =
∑

|α|≤k

aαξ
αû(ξ) = P(ξ)û(ξ).

15
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Let us now consider the following problem:
Given f in C∞, we want to find a distributionu such thatP(D)u = f .
We say that the differential operatorL is locally solvable at x◦ǫ�n,

if there is a solution of the above problem in some neighbourhood of the
point x◦ for any f in C∞.

Remark 2.1.We can assume thatf has compact support. To see this,17

we can take anyφ in C∞o such thatφ = 1 in some nighbourhood of the
point xo. If solve the problemP(D)u = fφ nearx◦, thenu is a solution
of our original problem since we havefφ = f in a neighbourhood ofxo.

In the following theorem we give an affirmative answer to the ques-
tion of local solvability ofL = P(D). The simple proof exhibited here is
due toL. Nirenberg.

Theorem 2.2. Let L =
∑

|α|≤k
aαDα be a differential operator with con-

stant coefficients. If uǫC∞o , there is a C∞ function u satisfying Lu= f
on�n.

Proof. Taking the Fourier transform of the equationLu = P(D)u = f ,
we see thatP(ξ)û(ξ) = f̂ (ξ). It is natural to try to defineu by the formula

u(x) =
∫

e2πix·ξ f̂ (ξ)/P(ξ)ξ.

In general,P will have many zeros: so there will be a problem in ap-
plying the inverse Fourier transform tôf /P. But things are not so bad.
Since f ǫC∞◦ , f̂ is an entire function ofξǫ�n andP is obviously entire.
Hence we can deform the contour of integration to avoid the zeros of
P(ξ). �

To make this precise, let us choose a unit vectorη so that
∑

|α|≤k
aαηα ,

0. By a rotation of coordinates, we can assume thatη = (0, 0, . . . , 0, 1).
Multiplying by a constant, we can also assume thataα0 = 1 where18

αo = (0, 0, . . . , 0, k). Then we haveP(ξ) = ξk
n+(lower order terms in

ξn). Denoteξ = (ξ′, ξn) with ξ′ = (ξ1, . . . , ξn−1) in �n−1.
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ConsiderP(ξ) = P(ξ′, ξn) as a polynomial in the last variableξn in
C for ξ′ in Rn−1. Let λ1(ξ′), . . . , λk(ξ′) be the roots ofP(ξ′, ξn) = 0
arranged so that ifi ≤ j.
ℑλi(ξ′) ≤ ℑλ j(ξ′) and Reλi(ξ′) ≤Reλi(ξ′) whenℑλi(ξ′) = ℑλ j(ξ′).
Since the roots of a polynomial depends continuously on the coef-

ficients we see thatλ j(ξ′) are continuous inξ′. To proceed further, we
need the help of two Lemmas.

Lemma 2.3. There is a measurable functionφ : �n−1→ [−k− 1, k+ 1]
such that for allξ′ in �n−1 min

1≤ j≤k
{|φ(ξ′) − Imλ j(ξ′)|} ≥ 1.

Proof. Left as an exercise to the reader : (cf. G.B. Folland [1]).
(The idea is that at least one of thek+1 intervals [−k−1, k+1], [−k−

1, k+1] . . . , [−k−1, k+1] must contain none of thek points Imλ j(ξ′), j =
1, 2, . . . , k). �

Lemma 2.4. Let P(ξ) = ξk
n+( lower order terms) and let N(P) be the set

{ζǫ�n : P(ζ) = 0}. Let d(ξ,N(P)). Then, we have

|P(ξ)| ≥ (d(ξ)/2)k.

Proof. Take ξ in Rn such thatP(ξ) , 0. Let η = (0, 0, . . . 0, 1) and
defineg(z) = P(ξ+zη) for z in C. Thisg is a polynomial in one complex
variablez. Let λ1, λ2, . . . , λk be the zeros of the polynomialg. Then 19

g(z) = c(z− λ1) · · · (z− λk)

so that

|g(z)
g(0)
| =

k
∏

j=1

|1− z
λ j
|.

Sinceξ+λ jη ǫ N(P) |λ j | ≥ d(ξ) so that when|z| ≤ d(ξ), |g(z)
g(0)
| ≤ 2k. Also

|g(k)(0)| = | k!
2πi

∫

|ζ |=d(ξ)
q(ζ)ζ−k−1dζ | ≤ k!

2
|g(0)|

d(ξ)k+1
2k2πd(ξ)
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i.e. |g(k)(0)| ≤ k!|g(0)|2kd(ξ)−k. But g(0) = P(ξ) and

|g(k)(0)| = ∂k

∂ξk
n
P(ξ) = k!

Therefore,
k! ≤ k!|g(0)|2kd(ξ)−k

or
|P(ξ)| ≥ (d(ξ)/2)k

Hence the lemma is proved. �

Returning to the proof of the theorem, consider the function

u(x) =
∫

Rn−1

∫

IMξn=φ(ξ′)

e2φix·ξ( f̂ (ξ)/P(ξ))dξndξ.

By Lemmas 2.3 and 2.4 we have

|P(ξ)| ≥ (d(ξ)/2)k ≥ 2−k alongImξn = φ(ξ′).

Since f ǫC∞◦ , f̂ (ξ) is rapidly decreasing as|Reξ| tends to∞ as along20

as |Imξ| stays bounded, so the integral converges absolutely and uni-
formly together with all derivatives defining aC∞ functionu.

Finally, by Cauchy’s theorem,

P(D)u(x) =
∫

Rn−1

∫

IMξn=φ(ξ′)

e2φix·ξ( f̂ (ξ)/P(ξ))dξndξ′

=

∫

Rn
e2φix·ξ( f̂ (ξ)dξ = f (x).

This completes the proof of Theorem 2.2.
Let us now consider the local solvability ofL = P(D) in the case

when f is a distribution.
As before, we remark that it suffices to takef ǫE′. Further, it is

enough to consider the case wheref = δ. Indeed, ifK satisfiesP(D)K =
δ, then we have for anyf ǫE′,P(D)(K ∗ f ) = P(D)K ∗ f = δ ∗ f = f .
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Definition 2.5. A distribution K satisfying P(D)K = δ is called a fun-
damental solution or elementary solution of the differential operator
L = P(D).

A remarkable theorem due to MALGRANGE AND EHRENPREIS
states that every differential operatorP(D) with constant coefficients has
a fundamental solution. In fact, we can prove this result by asimple
extension of the preceding argument.

Theorem 2.6.Every partial differential operatorP(D) with constant co- 21

efficients has a fundamental solution.

Proof. Proceeding as in the previous theorem, we try to define

K(x) =
∫

�n−1

∫

Imξn=φ(ξ′)

e2Πix·ξ(p(ξ))−1dξndξ′.

Here, however, the integral may diverge at infinity. So, we consider
the polynomial

PN(ξ) = P(ξ)(1+ 4Π2
n

∑

j=1

ξ2
j )N

whereN is a large positive integer. Let

KN(x) =
∫

�n−1

∫

Imξn=φ(ξ′)

e2Πix·ξ(PN(ξ))−1dξndξ′

whereφ is chosen appropriately for the polynomialPN.Then on the re-
gion of integration, we have

|PN(ξ)| ≥ c(1+ |ξ|2)N;

so the integral will converge whenN > n/2. We claim thatPN(D)KN =

δ. �

To see this, takeφǫC∞o and observe that the transpose ofPN(D) is
PN(−D). Thus

< PN(D)KN, φ > =< KN,PN(−D)φ >
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=

∫

�n

∫

�n−1

∫

Imξn=φ(ξ′)

e2Πix·ξ (PN(−D)φ)(x)
PN(ξ)

dξndξ′dx

=

∫

�n−1

∫

Imξn=φ(ξ′)

(PN(ξ))−1dξndξ′
∫

�n

e2Πix·ξPN(−D)φ(x)dx

=

∫

�n−1

∫

Imξn=φ(ξ′)

φ̂(−ξ)dξndξ′

=

∫

�n

φ̂(−ξ)dξ = φ(0) =< δ, φ > .

22

Thus,
δ = PN(D)KN = P(D)(1− ∆)NKN

so if we put K = (1 − ·∆)NKN we haveP(D)K = δ. Thus K is a
fundamental solution ofP(D).

2 Regularity Properties of Differential Operators

Definition 2.7. The singular support of a distribution fǫD′ is defined to
be the complement of the largest open set on which f is a C∞ function.
The singular support of f will be denoted by singsuppf .

Definition 2.8. Let L =
∑

|α|≤K
aα(x)Dα where aαǫC∞ be a differential

operator. L is said to be hypoelliptic, if and only if, for anyuǫD′, sing
suppu ⊂ sing supp Lu. In other words, L is hypoelliptic if and only
if for any open setΩ ⊂ �n and any uǫD′(Ω), “LuǫC∞(Ω) implies
uǫC∞(Ω)” .

Remark 2.9.The operatorL is said to beelliptic at xǫ�n if
∑

|α|=k

aα(x)ξα , 0 for every ξ in ǫ�n\{0}.

L is said to beelliptic if L is elliptic at everyxǫ�n. Elliptic operators
are hypoelliptic, as we shall prove later. This accounts forthe name23

hypoelliptic.
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We know that an ordinary differential operator withC∞ coefficients
is hypoelliptic as long as the top order coefficient is non-zero. But this is
not the case with partial differential operators as seen from the following

Example 2.10.Take the operatorL =
∂2

∂x∂y
in �2. The general solution

of the equationLu = 0 is given byu(x, y) = f (x) + g(y) where f andg
are arbitraryC1 functions. This shows thatL is not hypoelliptic.

We observe that ifL is hypoelliptic, then every fundamental solution
of L is aC∞ function in�n\{0}.

In the case of partial differential operators with constant coefficients,
this is also sufficient for hypoellipticity. Indeed, we have the following

Theorem 2.11. Let L be a partial differential operator with constant
coefficients. Then the following are equivalent:

a) L is hypoelliptic.

b) Every fundamental solution of L is C∞ in�2\{0}.

c) At least one fundamental solution of L is C∞ in �2\{0}.

Proof. That (a) simple (b) follows from the above observation and that
(b) implies (c) is completely trivial. The only nontrivial part we need to
prove is that (c) implies (a). To prove this implication, we need �

Lemma 2.12. Suppose fǫD′ is such that f is C∞ in �n\{0} and gǫE′. 24

Then singsupp(f ∗ g) ⊂ suppg.

Proof. Supposex < suppg. We will show that f ∗ g is C∞ in a neigh-
bourhood ofx. �

Sincex < suppg, there exists anǫ > 0 such thatB(x, ǫ)∩suppg = φ.
ChooseφǫC∞0 (B(0, ǫ/2)) such thatφ = 1 on B(0, ǫ/4). Now, f ∗ g =
(φ f ) ∗ g+ (1− φ) f ∗ g. Since (1− φ) f is aC∞ function, (1− φ) f ∗ g is
C∞. Also

Supp(φ f ∗ g) ⊂ Suppφ f + Suppg
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⊂ {y : d(y, suppg) ≤ ǫ/2}

which does not intersectB(x, ǫ/2). Therefore, inB(x, ǫ/2), f ∗ g = (1−
φ) f ∗G which isC∞.

Proof of theorem 2.11.Let K be a fundamental solution ofL such that
K is C∞ in �n\{0}. SupposeuǫD′ and LuǫC∞(Ω) whereΩ ⊂ �n is
open.

For xǫΩ, pick ǫ > 0 small enough so that̄B(x, ǫ) ⊂ Ω. Choose
φǫC∞o (B(x, ǫ)) so thatφ = 1 onB(x, ǫ/2). ThenL(φu) = φLu+ v where
v = 0 onB(x, ǫ/2) and also outsideB(x, ǫ). We write

K ∗ L(φu) = K ∗ φLu+ K ∗ v.

φLu is aC∞o function so thatK ∗ Lu is aC∞ function. AlsoK ∗ v is
aC∞ function on the ballB(x, ǫ/2) by Lemma 2.12.

ThereforeK ∗ L(φu) is aC∞ function onB(x, ǫ/2). ButK ∗ L(φu) =25

LK ∗ φu = δ ∗ φu = φu. Thus,φu is aC∞ function onB(x, ǫ/2). Since
φ = 1 onB(x, ǫ/2), u is aC∞ function onB(x, ǫ/2). Sincex is arbitrary,
this completes the proof.

3 Basic Operators in Mathematical Physics

In this section, we introduce the three basic operators in Mathematical
Physics. In the following sections, we shall compute fundamental so-
lutions for these operators and show how they can be applied to solve
boundary value problems and to yield other information.

(i) LAPLACE OPERATOR: ∆ =
n
∑

j=1

∂2

∂x2
j

in �n. If u(x) represents

electromagnetic potential (or gravitational potential ) and ρ de-
notes the charge (resp. mass) density, then they are connected by
the equation∆u = −4πρ. If the region contains no charge, i.e., if
ρ = 0,∆u = 0. This equation is called thehomogeneous Laplace
equation, and its solutions are calledharmonic functions.
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(ii) HEAT OPERATOR: L =
∂

∂t
− ∆ in �n+1. If u(x, t) represents the

temperature of a homogeneous body at the positionx and timet,

thenu satisfies the heat equation
∂u
∂t
− ∆u = 0 in�n+1.

(iii) WAVE OPERATOR: @ =
∂2

∂t2
− ∆ in �n+1. If u(x, t) represents the

amplitude of an electromagnetic wave in vacuum at positionx and
time t, thenu satisfies thewave equation@u = 0 in�n+1. 26

The equation�u = 0 can also be used to describe other types of wave
phenomena although in most cases, it is only an approximation valid for
small amplitudes. More generally, the equation�u = f describes waves
subject to a driving forcef .

The Laplace operator∆ is an ingredient in all the above examples.
The reason for this is that the basic laws of Physics are invariant un-
der translation and rotation of coordinates which severelyrestricts the
differential operators which can occur in them. Indeed, we have

Theorem 2.13.Let L be a differential operator which is invariant under
rotations and translations. Then there exists a polynomialQ in one
variable with constant coefficients such that L= Q(∆).

Proof. Let L = P(D) =
∑

|α|≤K
aαDα. SinceP(D) is invariant under trans-

lations,aα are constants. LetT be any rotation. We have

P(Tξ)φ̂(Tξ) = (P(D)φ)ˆ(Tξ)

= (P(D)φ ◦ T)ˆ(ξ)

= (P(D)φ ◦ T))ˆ(ξ)

= P(ξ)φ̂(Tξ), for everyφ.

ThusP(Tξ) = P(ξ) so thatP is rotation - invariant. �

Write P(ξ) =
k
∑

j=0
P j(ξ) whereP j(ξ) is the part ofP which is ho- 27

mogeneous of degreej. We claim that eachP j is rotation - invariant.
Indeed, ift is any real number,
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P(tξ) =
k
∑

j=0
t jP j(Tξ). For a rotationT, sinceP(ξ) = P(Tξ), we have

P(tξ) =
k

∑

j=0

t jP j(Tξ)

so that
k

∑

j=0

t j(P j(Tξ) − P j(ξ)) = 0.

This being true for allt, it follows that P j ◦ T = P j. But the only
rotation-invariant functions which are homogeneous of degree j are of
the formP j(ξ) = c j |ξ| j wherec j are constants.

Indeed, sinceP j is rotation-invariant,P j(ξ) depends only on|ξ| and
thus, for|ξ| , 0,

P j(ξ) = P j

(

|ξ| ξ|ξ|

)

= |ξ| jP j

(

ξ

|ξ|

)

= c j |ξ| j .

Since |ξ| j is not a polynomial whenj is odd,c j = 0 in that case.
Therefore,

P(ξ) =
∑

c2 j|ξ|2 j .

TakingQ(x) =
∑

(c2 j/(−4π2) j)x j , we getP(D) = Q(∆).

Remark 2.14.This theorem applies to scalar differential operators. If
one considers operators on vector or tensor functions, there are first or-
der operators which are translation - and rotation - invariant, namely, the28

familiar operators grad, curl, div of 3-dimensional vectoranalysis and
their n-dimensional generalisations.

Definition 2.15. A function F(x) is said to be radial , if there is a
function f of one variable such that F(x) = f (|x|) = f (r), r = |x|.

WhenF is radial andFǫL1(�n), we have

∫

�n

F(x)dx=

∞
∫

0

∫

|x|=1

f (r)rn−1dσ(x)dr
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wheredσ(x) is the surface measure onSn−1, the unit sphere in�n.
Thus

∫

�n

F(x)dx= ωn

∞
∫

0

f (r)rn−1dr

whereωn is the area ofSn−1.
Let us now calculateωn. We have

∫

e−π|x|
2
dx= 1.

Now

∫

e−π|x|
2
dx= ωn

∞
∫

0

e−πr2
rn−1dr

=
ωn

2π

∞
∫

0

e−s(s/π)n/2−1ds, s= πr2

=
ωn

2πn/2

∞
∫

0

e−ssn/2−1ds

= ωnΓ(n/2)/(2πn/2).

Therefore
ωn = 2πn/2/Γ(n/2).

4 Laplace Operator

First, let us find a fundamental solution of∆, i.e., we want to find a 29

distributionK such that∆K = δ.
Since∆ commute with rotations andδ has the same property, we

observe that ifu is a fundamental solution of∆ and T is a rotation,
thenu ◦ T is also a fundamental solution. We therefore expect to find a
fundamental solutionK which is radial.
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Let us tarry a little to compute the Laplacian of a radial function F.
LetF(x) = f (r), r = |x|. Then,

∆F(x) =
n

∑

j=1

∂

∂x j
[ f ′(r)x j/r]

=

n
∑

j=1

















f ′′(r)
x2

j

r2
+

f ′(r)
r
− f ′(r)

r3
x2

j

















= f ′′(r) + ((n− 1)/r) f ′(r).

Now setK(x) = f (r). If K is to be a fundamental solution of∆, we
must have

f ′′(r) + ((n− 1)/r) f ′(r) = 0 on (0,∞).

From this equation

f ′′(r)/ f ′′(r) = −(n− 1)/r.

Integrating, we get

f ′(r) = c◦r
1−n

with a constantc◦. One more integration yields

f (r) = c1r2−n
+ c2 whenn , 2

= c1 log r + c2 whenn = 2.

30

Since constants are solutions of the homogeneous Laplace equation,
we may assume thatc2 = 0. Thus if we setF(x) = |x|2−n(n , 2) or
F(x) = log |x|(n = 2), we expect to find that∆F = cδ for somec , 0,
and thenK = c−1F will be our fundamental solution.

In fact, we have

Theorem 2.16. If F (x) = |x|2−n on�n(n , 2), then∆F = (2 − n)ωnδ,
whereωn is the area of the unit sphere in�n,
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Proof. For ǫ > 0, we defineFǫ(x) = (ǫ2
+ |x|2)(2−n)/2. ThenFǫ is a

C∞ function on�n, and an application of Lebesgue’s Dominated Con-
vergence Theorem reveals thatFǫ converges toF as ǫ tends to 0, in
the sense of distributions. Therefore∆Fǫ converges to∆F, in the same
sense. Let us now compute∆Fǫ .

∆Fǫ(x) =
n

∑

j=1

∂

∂x j

{

(2− n)(|x|2 + ǫ2)−n/2x j

}

=

n
∑

j=1

{

(2− n)(|x|2 + ǫ2)−n/2
+ (2− n)(−n)(|x|2 + ǫ2)(−n/2)−1x2

j

}

= (2− n)(|x|2 + ǫ2)(−n/2)−1nǫ2.

Thus we see that∆FǫǫL1(�n). A simple computation shows that
∆Fǫ(x) = ǫ−n

∆F1(x/ǫ); so, by Theorem 1.6,∆Fǫ tends to (
∫

∆F1)δ as
ǫ tends to 0. Therefore∆F = (

∫

∆F1)δ, and we need only to compute
∫

∆F1.
∫

∆F1 = n(2− n)
∫

(1+ |x|2)(−n/2)−1dx

= n(2− n)ωn

∞
∫

0

(1+ r2)(−n/2)−1rn−1dr.

Puttingr2
+ 1 = s, we see that 31

∫

∆F1 =
1
2

n(2− n)ωn

∞
∫

1

s(−n/2)−1(s− 1)(n−1)/2ds

=
1
2

n(2− n)ωn

∞
∫

1

s−2(1− 1
s
)(n/2)−1ds

=
1
2

n(2− n)ωn

∞
∫

0

(1− σ)(n/2)−1dσ,σ =
1
s

=
1
2

n(2− n)ωn(2/n) = (2− n)ωn
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which completes the proof. �

Exercise.Show that if F(x) = log |x| on�2, then∆F = 2πδ.

Corollary 2.17. Let K(x) =























|x|2−n

(2− n)ωn
(n , 2)

1
2π log |x|(n = 2)

Then K is a fundamental solution of the Laplacian.

Corollary 2.18. ∆ is hypoelliptic.

Proof. Follows from Theorem 2.11. �

It is also instructive to compute the fundamental solution of ∆ by the
Fourier transform method.

If K is a fundamental solution of∆, we have∆(k∗ f ) = ∆K ∗ f = f .
Since (∆g)ˆ(ξ) = −4π2|ξ|2ĝ(ξ), we get

−4π2|ξ|2K̂(ξ) f̂ (ξ) = f̂ (ξ),

so that, at least formally,32

K̂(ξ) = −1/(4π2|ξ|2).

We observe that whenn > 2, the function−1/(4π2|ξ|2) is locally
integrable and so defines a tempered distribution. We want toshow that
its inverse Fourier transform is our fundamental solutionK. For that
purpose, we will prove a more general theorem.

Theorem 2.19.For 0 < α < n, let Fα be the locally integrable function
Fα(ξ) = |ξ|−α. Then

F∨α (x) =

(

Γ

(

1
2

(n− α)

)

/Γ

(

1
2
α

))

πα−n/2|x|α−n.

Before proving this theorem, let us pause a minute to observethat it
implies

F∨2 (x) = Γ((n/2)− 1)π2−n/2|x|2−n
= (Γ(n/2)/(n/2 − 1))π2−n/2|x|2−n

= (−4π2/((2− n)ωn))|x|2−n, so that(−F2/4π
2))∨ = K

as desired.
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Proof of theorem 2.19.The idea of the proof is to expressFα as a
weighted average of Gaussian functions, whose Fourier transforms we
can compute.

To begin with,

∞
∫

0

e−rt tα−1dt =

∞
∫

0

e−ssα−1r−αds= r−αΓ(α), (r > 0, α > 0).

In other words, for anyr > 0 andα > 0, 33

r−α =
1
Γ(α)

∞
∫

0

e−rt tα−1dt.

Takingr = π | ξ |2 and replacingα by α/2, then

| ξ |−α= πα/2

Γ(α/2)

∞
∫

0

e−π|ξ|
2t

t(α/2)−1dt

which is the promised formula forFα as a weighted average of Gaus-
sians. Formally, we can write

∫

Rn

e2πix.ξ | ξ |−α dξ =
πα/2

Γ(α/2)

∫

Rn

∞
∫

0

e2πix.ξe−π|ξ|2t
tα/2−1dtdξ

=
πα/2

Γ(α/2)

∞
∫

0

(eπ|ξ|
2t

)v(x)t(α/2)−1dt

=
πα/2

Γ(α/2)

∞
∫

0

e−π(|x|2)/t t−n/2 tα/2−1dt

=
πα/2

Γ(α/2)

∞
∫

0

e−π|x|
2SS(n−α)/2−1ds

=
πα/2

Γ(α/2)
Γ((n− α)/2)

n(n−α)/2
| x |α−n .
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In this computation, the change of order of the integration is unfor-
tunately not justified, because the double integral is not absolutely con-
vergent. This is not surprising, sinceFα is not anL1 function; instead,
we must use the definition of the Fourier transform for distributions.

For everyφǫS,

< e−π|ξ|
2t
, φ̂ > =< e−π|ξ|

2t
),̂φ >,

i.e.,
∫

Rn

e−π|ξ|
2t
φ̂(ξ)dξ =

∫

Rn

t−n/2e−(π/t)|x|2φ(x)dx.
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Now multiply both sides byt(α/2)−1 dt and integrate from 0 to∞.

∞
∫

0

∫

Rn

e−π|ξ|
2t

t(α/2)−1φ̂(ξ)dξ dt =

∞
∫

0

∫

Rn

e−π/t|x|
2
t(α−n)/2−1φ(x)dx dt.

The change of order in the integral is permitted now and integrating,
we obtain,

Γ(α/2)

πα/2

∫

Rn

φ̂(ξ) | ξ |−α dξ =
Γ((n− α)/2)

π(n−α)/2

∫

Rn

| x |α−n φ(x) dx

i.e., <| ξ |−α, φ̂ > =< Γ((n− α)/2)
(Γ(α/2)

πα−n/2 | x |α−n, φ > .

This shows that

F∨α (x) =
Γ((n− α)/2)
Γ(α/2)

πα−n/2 | x |α−n

as desired.
This analysis does not suffice to explain−(4π2 | ξ |2)−1 as (in some

sense) the Fourier transform of (2π)−1 log | x | in the casen = 2. One
way to proceed is to defineGα(ξ) = (2π | ξ |)−α and to study the be-
haviour ofGα andG∨α asα tends to 2. This analysis can be carried out
just as easily inn dimensions where the problem is to studyGα andGv

α

asα tends ton.
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Let Rα = G∨α for 0 < α < n. (Rα called theRiesz potential of order
α). By the preceding theorem, we have

Rα(x) =
(Γ((n− α)/2)

2απn/2Γ(α/2)
| x |α−n .

35

Moreover, if f ǫS,

(−∆)α/2( f ∗ Rα) = f ,

in the sense that (2π | ξ |)α( f ∗ Rα)ˆ(ξ) = f̂ (ξ).
As α tends ton, the Γ-function in Rα blows up. However, since

(2π | ξ |)αδ = 0, we see that (−∆)α/21 = 0; so we can replaceRα by
Rα − c, c being a constant, still having

(−∆)α/2( f ∗ (Rα − c)) = f .

If we choosec = cα appropriately, we can arrange thatRα − cα will
have a limit asα tends ton. In fact, let us take

cα =
Γ((n− α)/2)

2απn/2Γ(α/2)
and defineR′α = Rα − cα.

Then

R′α(x) =
Γ((n− α)/2)

2αnn/2Γ(a/2)
(| x |α−n −1)

=
2Γ((n− α)/2)+ 1

2απn/2Γ(α/2)

(| x |)α−n − 1
n− α .

Lettingα tend ton, we get in the limiting case

R′n(x) =
−21−n

πn/2Γ(n/2)
log | x | .

whenn = 2,−R′2(x)
1
2π

log | x | and∆( f ∗ (−R′2)) = f , so we recover our

fundamental solution for the casen = 2.
It remains to relate the functionGn(ξ) = (2π | ξ |)−n to the Fourier 36
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transform of the tempered distributionF′n. One way to makeGn into a
distribution is the following.

Define a functionalF onS by

< F, φ >=
∫

|ξ|≤1

φ(ξ) − φ(0)
(2π | ξ |)n dξ +

∫

|ξ|>1

φ(ξ)
(2π | ξ |)n dξ.

Note that the first integral converges, since, in view of the mean
value theorem,| φ(ξ) − φ(0) |≤ c | ξ |. It is easy to see thatF is
indeed a tempered distribution. Further, we observe that whenφ(0) = 0,
< F, φ >=

∫

φ(ξ)Gn(ξ)dξ, i.e.,F agrees withGn onRn\{0}.
Just asR′n was obtained fromRn by subtracting off an infinite con-

stant,F is obtained fromGn by subtracting off an infinite multiple of the
δ function. This suggests thatF is essentially the Fourier transform of
R′n. In fact, one has the following

Exercise.Show that F− (R′n)̂ is a multiple ofδ.
We now examine a few of the basic properties of harmonic functions,

i.e., functions satisfying∆u = 0. We shall need the following results from
advanced calculus.

Theorem 2.20(DIVERGENCE THEOREM). LetΩ be a bounded open
set inRn with smooth boundary∂Ω. Let v be the unit outward normal
vector on ∂Ω. Let F : Rn → Rn be a C1 function onΩ̄, the closure of
Ω. Then we have

∫

∂Ω

F. v dσ =
∫

Ω

div F dx=
∫

Ω

n
∑

j=1

∂F j

∂x j
dx.

37

CONSEQUENCES OF THEOREM 2.20

(2.21) When we takeF = gradu, F.v = gradu.v =
∂u
∂v

, the normal

derivative ofu, and divF = div gradu = ∆u. Therefore
∫

∂Ω

∂u
∂v

dσ =
∫

Ω

∆u dx.



4. Laplace Operator 33

(2.22) When we takeF = u gradv − v gradu, div F = u∆v − v∆u.
Therefore

∫

∂Ω

(

u
∂v
∂v
− v

∂u
∂v

)

dσ =
∫

Ω

(u∆v− v∆u)dx.

This formula is known asGreen’s formula.
For harmonic functions, we have the followingmean value theorem.

Theorem 2.23. Let u be harmonic inB(x0, r). Then,for anyρ < r, we
have

u(x0) =
1

ωnρn−1

∫

|x−x0|=ρ

u(x)dσ(x).

That is, u(x0) is the mean value ofu on any sphere centred atx0

Proof. Without loss of generality, assume thatx0 = 0. Since∆u =
0 and∆ is hypoelliptic,u is a C∞ function. Now formally,

u(0) =< δ, u >

=

∫

|x|<ρ

δ(x)u(x)dx

=

∫

|x|<ρ

∆K(x)u(x)dx

=

∫

|x|<ρ

(u∆K − K∆u)dx

=

∫

|x|=ρ

(

u
∂K
∂v
− K

∂u
∂v

)

dσ, by (2.22).

� 38

Of course, we are cheating here by applying Green’s formula to the
non-smooth functionK. Nonetheless the result is correct, and we leave it
as an exercise for the reader to justify it rigorously (either approximate
K by C∞ functions as in the proof of Theorem 2.16 or apply Green’s
formula to the regionǫ <| x |< ρ and letǫ tend to 0.)
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On the circle | x |= ρ,K is a constant and so
∫

|x|=ρ
K
∂u
∂v

dσ =

Const
∫

|x|=ρ

∂u
∂v

dσ = Const.
∫

|x|≤ρ
∆ u dσ = 0.

Further on| x |= ρ. ∂
∂v
=
∂

∂r
, the radial derivative. Therefore

∂K
∂v
= 1/(ωnρ

n−1) on | x |= ρ.

Thus we have

u(0) =
1

ωnρn−1

∫

|x|=ρ

u(x)dσ as desired.

As a corollary to the mean value theorem, we can derive themaxi-
mum principle for harmonic functions.

Theorem 2.24.SupposeΩ is a connected open set inRn. Let u be a real-39

valued function harmonic inΩ. If A = sup
Ω

u(x), then either u(x) < A for

all xǫΩ or u(x) ≡ A onΩ.

Proof. Suppose thatu(x0) = A for somex0ǫΩ. From the mean value
theorem

u(x0) =
1

ωnρ
n−1

∫

|x−x0|=ρ

u(x)dσ(x)

whereρ is small enough so that{x :| x − xo |≤ ρ} ⊂ Ω. By our as-
sumption, the integral does not exceedA. If u(x1) < A for some point
of B(x0, ρ) thenu(x) < A in some neighbourhood ofx1 by continuity.
Takingr =| x1 − x0 |< ρ, we have

u(x0) =
1

ωnrn−1

∫

|x−xo |=r

u(x)dσ(x) < A,

a contradiction. Therefore, if we setΩ1 = {xǫΩ : u(x) = A}, thenΩ1 is
an open subset ofΩ andΩ1 , φ. FurtherΩ2 = {xǫΩ : u(x) < A} is also
on open subset ofΩ andΩ1 ∪Ω2 = Ω. The connectedness ofΩ and the
non-emptiness ofΩ1 forceΩ2 to be empty. Thusu(x) ≡ A onΩ. �
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Corollary 2.25. If Ω is a bounded open set inRn, uǫC(Ω̄) and∆u =
0 in Ω, then

sup
Ω

| u(x) |= sup
∂Ω

| u(x) | .

Proof. Since the functionu is continuous on the compact setΩ̄, | u(x) |
attains its supremum on̄Ω at some pointx0. By multiplying u by a
constant, we may assume thatu(x0) =| u(x0) |. �

If x0ǫ∂Ω, the corollary is proved. Otherwisex0ǫΩ and by the previ- 40

ous theorem, on the connected component of containingx0, Reu(x) =
u(x0) and hence Imu(x) = 0. Sinceu is continuous on̄Ω, u(x) = u(x0)
for all xǫ∂Ω. Thus sup

Ω

| u(x) |= sup
∂Ω

| u(x) |.

Corollary 2.26. If u and v are in C(Ω̄),Ω is bounded∆u = ∆v = 0 on
Ω and u= v on∂Ω, then u= v everywhere.

Proof. Apply the previous corollary tou− v. �

The following boundary value problem for Laplace’s equation,
known as theDirichlet problem, is of fundamental importance: given
a function f on ∂Ω, find a functionu such that∆u = 0 onΩ andu =
f on∂Ω.

WhenΩ is bounded andf ǫC(∂Ω) the uniqueness of the solution,
if it exists at all, is assured by corollary 2.26. The problemof proving
the existence of solution of the Dirichlet problem is highlynontrivial.
We shall solve a special case, namely, whenΩ is a half-space and then
indicate how similar ideas can be applied for other regions.

First of all a word about notation: we will replaceRn by Rn+1 with
coordinates (x1, x2, . . . , xn, t). Our Laplacian inRn+1 will be denoted by

∂2
t + ∆ where∂t =

∂

∂t
and∆ =

n
∑

j=1

∂2

∂x j
. Now ourDirichlet Problemis

the following :
given a functionf onRn, find a functionu such that

(∂2
t + ∆) u(x, t) = 0, xǫRn, t > 0(2.27)

u(x, o) = f (x), xǫRn.
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41

Since the half space is unbounded, the uniqueness argument given
above does not apply. Indeed, without some assumption on thebe-
haviour of u at ∞, uniqueness does not hold. For example, ifu(x, t)
is a solution, so isu(x, t) + t. However, we have

Theorem 2.28.Let u be a continuous function onRn× [0,∞) satisfying

i) (∆ + ∂2
t )u = 0 onRn × (0,∞),

ii) u(x, o) = 0 for xǫRn, and

iii) u vanishes at∞.

Then U≡ 0 onRn × [0,∞).

Proof. Applying the maximum principle foru on B(0,R) × (0,T), we
see that maximum of| u | on B(0,R) × (0,T) tends to zero asR,T tend
∞. Henceu ≡ 0. �

Remark 2.29.Hypothesis (iii) in Theorem 2.28 can be replaced by (iii):
u is bounded onRn × [0,∞). But this requires a deeper argument (See
Folland [1]).

To solve the Dirichelt problem, we apply the Fourier transform in
the variablex. We denote by ˜u(ξ, t) the Fourier transform

ũ(ξ, t) =
∫

e−2πix.ξu(x, t)dx.

If we take Fourier transform of (2.27), we obtain42

(∂2
t − 4π2 | ξ |2)ũ(ξ, t) = o onRn × (0,∞)

ũ(ξ, o) = f̂ (ξ) onRn.

The general solution of the ordinary differential equation (ODE)
(∂2

t − 4π2 | ξ |2) ũ(ξ, t) = 0 is given byũ(ξ, t) = a(ξ)e−2π|ξ|t
+ b(ξ)e2π|ξ|t

and the initial condition isa(ξ) + b(ξ) = f̂ (ξ).
This formula forũ will define a tempered distribution inξ, provided

that as| ξ | tends to∞, | a(ξ) | grows at most polynomially and| b(ξ) |
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decreases faster than exponentially. We remove the non- uniqueness by
requiring thatu should satisfy good estimates in terms off which are
uniform in t-for example, thatu should be bounded iff is bounded. This
clearly forcesb(ξ) = 0, sincee2π|ξ|t blows up ast tends to∞. Thus we
take ũ(ξ, t) = f̂ (ξ)e−2π|ξ|t. Taking the inverse Fourier transform in the
variableξ, u(x, t) = ( f ∗Pt)(x) wherePt(x) = [e2πt(|.|)]∨(x) is thePoisson
Kernel for Rn × [0,∞).

We now computePt explicitly. Whenn = 1, this is easy:

Pt(x) =

0
∫

−∞

e2πixξe2πξtdξ +

∞
∫

0

e2πixξe−2πξtdξ

=
1
2π

[(t + ix)−1
+ (t − ix)−1] =

t
π

(x2
+ t2)−1.

To computePt(x) for the casen > 1, as in the proof of Theorem
2.19, the idea is to expresse−2π|ξ|t as a weighted average of Gaussians.

Here’s how! 43

Lemma 2.30. Whenβ > 0, e−β =
∞
∫

0

e−se−β
2/4s

√
(πs)

ds.

Proof. First, observe that

e−β =
1
π

∞
∫

−∞

eiβτ

τ2 + 1
dτ.

�

This can be proved by using the residue theorem or by applyingthe

Fourier inversion theorem toP1(x) =
1
π

(1+ x2)−1 onR1. We also have

1
τ2 + 1

=

∞
∫

0

e−(τ2
+1)sds.
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Therefore,

e−β
′
=

1
π

∞
∫

−∞

∞
∫

0

ei2πτe−(τ2
+1)sds dτ.

Puttingτ = 2πσ and changing the order of integration,

e=β =
1
π

∞
∫

0

∞
∫

−∞

ei2πσβe−se−4π2σ2sdσ ds

i.e., e−β = 2

∞
∫

0

e−2(4πs)−1/2eβ
2/4sds

=

∞
∫

0

e−seβ
2/4s

√
(πs)

ds

which is the required expression.
Returning to the computation ofPt(x), we have

Pt(x) =
∫

e2πix.ξe−2π|ξ|tdξ.

Takingβ = 2π | ξ | t in the lemma, we get44

Pt(x) =
∫

∞
∫

0

e2πix.ξ e−s

√
πs

e(4π2|ξ|2t2)/4sdsdξ

=

∞
∫

0

e−s

√
πs

∫

e2πixξe−(π2|ξ|2t2)/Sdξ.ds

=

∞
∫

0

e−s

√
πs

(

πt2

s

)

− n/2e−(s|x|2)/t2ds

= π−(n+1)/2t−n

∞
∫

0

e−s(1+(|x|2/t2))s(n−1)/2 ds
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=
π−(n+1)/2t−n

Γ(n+ 1)/2
(

1+ |x|
2

t2

)

(n+ 1/2)
.

Thus we have

(2.31) Pt(x) = Γ((n+ 1)/2)π(n+1)/2t/(t2+ | x |2)(n+1)/2

In particular, we see thatPtǫL1∩L∞, so thatf ∗Pt is well defined if,
for example,f ǫLp, 1 ≤ p ≤ ∞. That (∆ + ∂2

t )Pt = 0 follows by taking
the Fourier transform, and hence

(∆ + ∂2
t )( f ∗ Pt) = f ∗ (∆ + ∂2

t )Pt = 0 for any f .

Further note that

Pt(x) = t−nP1(x/t) and
∫

P1(x)dx= P̂1(0) = 1.

Therefore, by Theorem 1.6, whenf ǫLp, 1 ≤ p < ∞, f ∗ Pt tends to
f in theLp norm and whenf is bounded and continuousf ∗ Pt tends to
f uniformly on compact sets ast tends to 0.

If we take f continuous and bounded, then foru(x, t) = Pt ∗ f , we
have lim

t→0
u(x, t) = u(x, 0) = f (x). Thus the functionu(x, t) = ( f ∗ Pt)(x) 45

is a solution of the Dirichlet Problem for the half space.

Remark 2.32.The Poisson KernelPt is closely related to the fundamen-
tal solutionKn+1 of the Laplacian inRn+1. Indeed

Kn+1(x, t) =
1

(1− n)ωn+1
(|x|2 + t2)−((n−1)/2)

and hence
Pt(x) = 2∂tKn+1(x, t).

Exercise.Check the above equation using the Fourier transform. (Start
with (∂2

t +∆)Kn+1 = δ(x)δ(t) and take the Fourier transform in the vari-
able x to obtain

(∂2
t − 4π2|ξ|2)K̃n+1 = δ(t).
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Solve this equation to obtain

K̃n+1(ξ, t) =
e2π|ξ||t|
4π|ξ| .

Then

∂tK̃n+1 =
1
2

e−2π|ξ|t, t > 0, so that∂tK̃n+1 =
1
2

P̂t).

Our formula (2.31) forPt makes sense even whent < 0 and we have
P−t(x) = −Pt(x), so that lim

t→o±
f ∗ Pt = ± f . We further observe that

f ∗(x) Pt = f (x)δ(t) ∗(x,t)2 ∂tKn+1(x, t)

where∗(x) and∗(x,t) mean convolution onRn andRn+1 respectively.
Therefore,46

f ∗(x) Pt = f (x)δ′(t) ∗(x,t) 2Kn+1(x, t)

i.e., u(x, t) = 2 f (x)δ′(t) ∗( x, t)Kn+1(x, t).

Form this, we

(δ2
t + ∆)u(x, t) = 2 f (x)δ′(t) ∗ δ(x)δ(t) = 2 f (x)δ′(t).

Exercise.Show directly that if

i) (∆ + ∂2
t )u = 0 on Rn+1\Rn × {0}

ii) u(x,−t) = −u(x, t)

iii) lim
t→0±

u(x, t) = ± f (x), then u is a distribution solution of(∂2
t +∆)u =

2 f (x)δ′(t).

[To avoid technicalities, assumef is sufficiently smooth so that

lim
t→0±

∂u
∂t

exists; e.g.f ǫC2 is sufficient ].

We now indicate, without giving any proof, how these ideas can be
used to solve the Dirichlet Problem in a bounded open setΩ in R2. We
assume that the boundary∂Ω of Ω is of classC2.
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We know that the solution of the Dirichlet Problem in the casewhen

Ω = R
n−1× (0,∞) is given byu = f ∗ 2

∂K
∂xn

(the convolution is inRn−1).

we note that
∂K
∂xn

is the inward normal derivative ofK. For boundedΩ

with C2 boundary let us consider

u(x) = 2
∫

∂Ω

f (y)
∂

∂vy
K(x− y)dσ(y).

Hereσ(y) is the surface measure on the boundary,ν is the unit out- 47

ward normal on∂Ω, and
∂φ

∂νy
(x, y) = Σν j

∂φ

∂y j
. The minus sign inK(x−y)

compensates the switch from inward to outward normal.
Since∆K(x− y) = δ(x− y) we see that∆u = 0 inΩ. What about the

behaviour ofu on∂Ω? It turns out that ifu is defined as above, then

uǫC ¯(Ω) andu|∂Ω = f + T f

whereT is a compact integral operator onL2(∂Ω) or C(∂Ω). Hence if
we can findφ in C(∂Ω) such thatφ + Tφ = f , and we set

u(x) = 2
∫

∂Ω

φ(y)
∂

∂νy
K(x− y)dσ(y)

thenu satisfies∆u = 0 in Ω and furtheru|∂Ω = φ + Tφ = f . Hence
the Dirichlet problem is reduced to solving the equationφ + Tφ = f ,
and for this purpose, the classicalFredholm - Riesz theoryis available.
The upshot is that a solution to the Dirichlet problem alwaysexists (pro-
vided, as we have assumed, that∂Ω is of classC2). See Folland [1] for
a detailed treatment.

5 The Heat Operator

The Heat operatoris given by∂t − ∆. We want to find a distribution 48

K such that (∂t − ∆)K = δ(x)δ(t). Taking the Fourier transform in both
variables we have

(2.33) K̂(ξ, τ) = (2πi + 4π2|ξ|2)−1.
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Exercise.Show thatK̂ is locally integrable near the origin, and hence
defines a tempered distribution.

K̂ is not globally integrable, however; so computing its inverse Fou-
rier transform directly is a bit tricky. Instead, if we take the Fourier
transform in the variablex only,

(∂t + 4π2|ξ|2) K̃(ξ, t) = δ(t).

we can solve thisODE get

K̃(ξ, t) =















a(ξ)e−4π2|ξ|2t, t > 0

b(ξ)e−4π2|ξ|2t, t < 0

with a(ξ) − b(ξ) = 1.
As in the previous section, there is some latitude in the choice ofa

andb, but the most natural choice is the one which makesK̃ tempered
in t as well asξ, namelya = 1, b = 0. So,

K̃(ξ, t) =















e−4π2|ξ|2t, t > 0

0 otherwise.

Taking the inverse Fourier transform,49

K(x, t) =















(4πt)−n/2e(|x|2/4t), t > 0

0, t > 0.

This is a fundamental solution of the heat operator.

Remark 2.34.If we take the Fourier transform of̃K(ξ, t) in the t vari-
able, we obtain

K̃(ξ, τ) =
∫ ∞

−∞
K̃(ξ, t)e2π i t τdt

=

∫ ∞

0
e−t(4π2|ξ|2+π i τ)dt

= (4π2|ξ|2 + 2πiτ)−1,

thus recovering formula (2.33).
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Exercise .Show that this really works, i.e., the iterated Fourier trans-
form of K first in x, then in t, is the distribution Fourier transform of K
in all variables.

OBSERVATIONS: From the formula forK, we get

(1) K(x, t) vanishes to infinite order ast tends to 0 whenx , 0 and
hence isC∞ onRn+1\{(0, 0)}. Therefore by Theorem 2.11,∂t − ∆ is
hypoelliptic.

(2) K(x, t) = t−n/2K
( x

t
, 1

)

. Thus if we setK(x, 1) = φ(x), thenK(x, ǫ2)

= ǫ−nφ(x/ǫ) = φǫ(x); so, ast tends to 0,K(x, t) tends toδ, Theorem
1.6. From this, we infer 50

(3) If f ǫLp and if we setu(x, t) = f ∗(x) K(x, t), then

(∂ − ∆)u = 0 for t > 0

u(x, 0) = f (x).

i.e., ast tends to 0, ||u(., t) − f ||P converges to 0. Thus we have
solved the initial value problem for the homogeneous heat equation,
when f ǫLp. Actually, sinceK(x, t) decreases so rapidly as|x| tends
to ∞, this works for much wider classes off ′s. The convolution
f ∗(x) K(., t) make sense, for example, if| f (x)| < Ce|x|

2−ǫ
. If f is

also continuous, it is not hard to see thatf ∗(x) K(., t) converges tof
uniformly on compact sets ast tends to 0.

It is now a simple matter to solve the inhomogeneous initial value
problem:

(∂t − ∆)u = F onRn × (0,∞),

u(x, 0) = f (x) onRn.

If we takeu1 = F ∗(x,t) K and

u2 = ( f − u1(., 0)) ∗(x) K,
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then we see that

(∂t − ∆)u1 = F onRn × (0,∞), (∂t − ∆)u2 = 0

onRn × (0,∞), and (u1 + u2)(x, 0) = f (x). Thusu = u1 + u2 solves the 51

problem.
As another application of the fundamental solutionK, we can derive

theWeierstrass approximation theorem.

Theorem 2.35. (WEIERSTRASS)If f is continuous with compact
support onRn, then, for any compactΩ ⊂ Rn, there exists a sequence
(Pm) of polynomials such thatPm converges to f uniformly onΩ

Proof. Let u(x, t) = ( f ∗(x) K(., t))(x). Thenu(x, t) converges tof (x)
uniformly ast tends to 0. Moreover, for anyt > 0,

u(x, t) =
∫

f (y)(4πt)−n/2e
−

n
∑

j=1
(xj−yj )2/4t

dy

is an entire holomorphic function ofx ∈ �n. Sou(., t) can be uniformly
approximated on any compact set by partial sums of its Taylorseries.

�

6 The Wave Operator

If we take the Fourier transform of the equation

(∂2
t − ∆)K = δ(x)δ(t)

in both variablesx andt, we have, formally

(2.36) K̂(ξ, τ) = (4π2|ξ|2 − 4π2τ2)−1.

This function K̂ is not locally integrable, so it is not clear how to52

interpret it as a distribution. Again, it is better to take the Fourier trans-
form in thex variable obtaining

(∂2
t + 4π2|ξ|2)K̃(ξ, t) = δ(t).
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Solving thisODE,

K̃(ξ, t) = a±(ξ)e
2πi|ξ|t

+ b±(ξ)e
−2πi|ξ|t for t/|t| = ±1

and the coefficientsa±, b± must be determined so that

K̃(ξ, 0+) = K̃(ξ, 0−), ∂tK̃(ξ, 0+) − ∂tK(ξ, 0 =) = 1.

This gives two equations in four unknowns. In contrast to thesitua-
tion with the Dirichlet problem and the heat operator, thereis no way to
narrow down the choices further by imposing growth restrictions onK
as|t| tends to∞. Rather, it is a characteristic feature of the wave opera-
tor that one can adapt the choice of fundamental solution to the problem
at hand. The two which we shall use, calledK+ andK,are the ones sup-
ported in the half - spacet ≥ 0 andt ≤ 0. K+ andK− are thus determined
by the requirementsa− = b− = 0 anda+ = b+ = 0 respectively, from
which one easily sees that

K̃+(ξ, t) = H(t)
sin 2π|ξ|t

2π|ξ|

K̃−(ξ, t) = −H(−t)
sin 2π|ξ|t

2π|ξ| = K̃+(ξ,−t)

whereH is the Heaviside function, i.e., the characteristic function of53

[0,∞). Let us compute the Fourier transforms ofK̃+ andK̃− in t to see
how to make sense out of (2.36).K̃+ andK̃− are not integrable ont, but
it is easy to approximate them in the distribution topology by integrable
functions whose Fourier transforms we can calculate.Indeed, if we set

K̃ǫ
+
(ξ, t) = e−2πǫtH(t)

sin 2π|ξ|t
2π|ξ| , ǫ > 0,

thenK̃ǫ
+

is an integrable function and̃Kǫ
+

converges tõK+ is S′ asǫ tends
to 0. ThereforeK̃+ = lim

ǫ→0
K̃ǫ
+

where

K̂+(ξ, τ) =

∞
∫

0

e2πǫt−2π it τ sin 2π|ξ|t
2π|ξ| dt
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=

∞
∫

0

e2πǫt−2π it τ (eπi|ξ|t − eπi|ξ|t)
4πi|ξ| dt

= (4π2)−1(|ξ|2 − (τ − iǫ)2)−1.

Exercise.Prove thatK̂− = lim
ǫ→0

K̂ǫ
− in S′ where

K̂ǫ
−(ξ, τ) = (4π2)−1(|ξ|2 − (τ + iǫ)2)−1.

Thus we have two distinct ways of making the function [4π2(|ξ|2 −
τ2)]−1 into a tempered distribution. The differenceK̃+ − K̃− is of course
a distribution supported on the cone|ξ| = |τ|.

We now propose to use the fundamental solutionsK+ and K− to54

solve theInitial Value Problem or Cauchy Problem, for the operator:

(2.37)

(∂2
t − ∆)u = f onRn+1

u(x, o) = uo(x),

∂tu(x, 0) = u1(x),

whereu0, u1, f are given functions.
For the moment, we assume thatu0, u1ǫS and f ǫC∞(Rn

x)) ( That is,
t → f (., t) is aC∞ function with values inS(Rn)).

Taking the Fourier transform in the variablex in (2.37),

(∂2
t + 4π2|ξ|2) ũ(ξ, t) = f̃ (ξ, t)

ũ(ξ, 0) = ũ0(ξ)

∂tũ(ξ, 0) = ũ0(ξ).

When f = 0, the general solution of theODE is

ũ(ξ, t) = A(ξ) sin 2π|ξ|t + B(ξ) cos 2π|ξ|t,

A(ξ) =
û1(ξ)
2π|ξ| and B(ξ) = ũ0(ξ).

whenu0 = u1 = 0, the solution is

ũ(ξ, t) =

t
∫

0

f̃ (ξ, s)
sin(2π|ξ|(t − s))

2π|ξ| ds
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(This may be derived by variation of parameters; in any case it is55

easy to check that thisu is in fact the solution). Therefore, the solution
for the general case is given by

ũ(ξ, t) = û0(ξ) cos 2π|ξ|t + û1(ξ)
2π|ξ| sin 2π|ξ|t+

+

t
∫

0

f̃ (ξ, s)
sin(2π|ξ|(t − s))

2π|ξ| ds.

For t > 0, we can rewrite this as

ũ(ξ, t) = û1(ξ)K̃+(ξ, t)+ û0(ξ)∂tK̃+(ξ, t)+

t
∫

0

f̃ (ξ, s) f̃ (ξ, s)K+(ξ, t − s)ds.

SinceK+(ξ, t − s) = 0 for t < s,

ũ(ξ, t) = û1(ξ)K̃+(ξ, t)+ û0(ξ)∂tK̃+(ξ, t)+

t
∫

0

f̃ (ξ, s) f̃ (ξ, s)K+(ξ, t − s)ds.

Take the inverse Fourier transform:

u(x, t) = (u1 ∗(x) K+) + u0 ∗(x) ∂tK+) + (H(t) f ∗(x,t) K+).

Likewise, fort < 0

u(x, t) = −(u1 ∗(x) K−) − u0 ∗(x) ∂tK−) + ((H(−t) f ) ∗(x,t) K−).

So, for arbitrary t, our solution u can be expressed as

u(x, t) = (u1 ∗(x) (K+ − K) + u0 ∗(x) ∂t(K+ − K−)

+ (H(t) f ∗(x,t) K+) + (H(−t) f ∗(x,t) K)).(2.38)

So far, we have avoided the question of computingK+ andK− ex- 56

plicitly. Indeed, sinceK̃+ andK̃− are notL1 functions, it is not an easy
matter to calculate their inverse Fourier transform,
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However, for the casen = 1, we can findK+ andK− by solving the
wave wave equation directly. We have

∂2
t − ∆ = ∂2

t − ∂2
x.

If we make the change of variablesξ = x+ t, n = x− t, then the wave

operator becomes∂2
t − ∂2

x = −4
∂2

∂ξ∂η
. The general solution of

∂2u
∂ξ∂η

= 0

is given by
u(ξ, n) = f (ξ) + g(η)

where f andg are arbitrary functions. Therefore

u(x, t) = f (x+ t) + g(x− t).

To solve (∂2
t − ∂2

x)u = 0, u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) we must
have

u0(x) = f (x) + g(x)

u1(x) = f ′(x) − g′(x).

From these equations, we have

f ′(x) =
1
2

(u′0(x) + u1(x))

g′(x) =
1
2

(u′0(x) − u1(x)).

Thusu(x, t) is given by57

u(x, t) =
1
2

(u0(x+ t) + u0(x− t)) +
1
2

x+t
∫

x−t

u1(s)ds.

Comparing with the previous formula (2.38), we find that

K+(x, t) =
1
2

H(t − |x|),K−(x, t) =
1
2

H(−t − |x|).

Exercise.ComputeK̃± directly from these formulas.



6. The Wave Operator 49

It turns out that, forn = 2,

K±(x, t) =
1

2π
√

t2 − x2
H(±t − |x|),

and, forn = 3,

K±(x, t) =
±1
4πt

δ(±t − |x|).

For n = 1, 2,K+,K− are functions; forn = 3,K+,K− are not func-
tions but they are measures. Forn > 3,K+,K− are neither functions nor
measures; they are more singular distributions. The exact formula for
K± is rather messy and we shall not write it out; it may be read off from
Theorem 5.13 and 5.14 of Folland [1] in view of our formula (2.38). The
most important qualitative feature of K±, however,is that it is always
supported in the light cone{(x, t) : ±t > |x|} and we shall now prove this
as a consequence of the following result.

Theorem 2.39. Suppose u is a C2 function on{(x, t) : t ≥ o} such that 58

(∂2
t −△)u = 0 for t > 0 and u= ∂tu = 0 on the set B0 = {(x, 0) : |x−x0| ≤

t0}. Them u vanishes onΩ = {(x, t) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}.

Proof. Assumeu is real valued; otherwise, we can consider the real and
imaginary parts separately. Let

Bt = {x : |x− x0| ≤ t0 − t} andE(t) =
1
2

∫

Bt

| gradx,tu|2dx

i.e., E(t) =
1
2

∫

Bt















(∂tu)2
+

n
∑

1

(

∂u
∂x j

)2












dx. 2

Then

dE
dt
=

1
2

∫

Bt

2















∂u
∂t
.
∂2u

∂2
t

+

n
∑

1

∂u
∂x j

∂2u
∂x j∂t















dx−

− 1
2

∫

∂Bt















(

∂u
∂t

)2

+

n
∑

1

(

∂u
∂x j

)2












dσ(x).
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(The second term comes from the change in the regionBt. If this is
not clear, write the derivative as a limit of difference quotients and work
it our).

Since

∑ ∂u
∂x j

∂2u
∂x j∂t

+

∑ ∂2u
∂x2

j

∂u
∂t
= div

(

∂u
∂t

gradxu

)

,

applying the divergence theorem and using (∂2
t − △)u = 0, we obtain

dE
dt
=

∫

∂Bt

[

∂u
∂t
∂u
∂ν
− 1

2
| gradx,tu|2

]

dσ

whereν is the unit normal toBt in Rn. Now59

|∂u
∂t
∂u
∂ν
| < 1

2

[

|∂u
∂t
|2 + |∂u

∂ν
|2
]

<
1
2

[

|∂u
∂t
|2 + | gradxu|2 =

1
2
| gradx,tu|2

]

.

Thus we see that the integrand is non-positive, and hence
dE
dt
≤ 0.

Also E(0) = 0 sinceu = ∂tu = 0 on B0, soE(t) ≤ 0. But E(t) ≥ 0 by
definition, soE(t) = 0. This implies that gradx,t u = 0 onΩ =

⋃

t≤t0
Bt and

sinceu = 0 onB0, we conclude thatu = 0 onΩ.

Corollary 2.40. Suppose uǫC2 on Rn × [0,∞), (∂2
t − △)u = 0 for t >

0, u(x, 0) = u0(x), ∂t u(x, 0) = u1(x). If Ω0 = (suppu0) ∪ (suppu1), then
suppu ⊂ Ω = {(x, t) : d(x,Ω0) ≤ t}.

(The setΩ is the union of the forward light cones with vertices in
Ω0).

Proof. Suppose (x, t0) < Ω. Then for someǫ > 0, the set

B0 = {x : d(x, x0) ≤ t0 + ǫ} is disjoint fromΩ0.
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Therefore, by Theorem 2.39,u = 0 on the cone

{(x, t) : |x− x0| ≤ t0 + ǫ − t, 0 ≤ t ≤ t0 + ǫ}.

In particular,u = 0 on a neighbourhood of (x0, t0), i.e., (x0, t0) is not in
the support ofu. �

Corollary 2.41.

SuppK+ ⊂ {(x, t) : t ≥ |x|}
SuppK+ ⊂ {(x, t) : −t ≥ |x|}.

60

Proof. PickaφǫCα
0 (B(0, 1)) such that

∫

φ = 1. Put

φǫ(x) = ǫ−nφ(ǫ−1x). Let uǫ (x, t) = φǫ ∗(x) K+, t > 0.

�

Then (∂2
t − △)uǫ = 0, u(x, 0) = 0, ∂t u(x, 0) = φǫ(x) anduǫ is Cα.

By the previous corollary

suppuǫ ⊂ {(x, t) : |x| ≤ t + ǫ}.

Now uǫ converges toK+ in S′, asǫ tends to 0. Therefore,

suppK+ ⊂ {(x, t) : |x| ≤ t}.

The result forK− follows then sinceK−(x, t) = K+(x,−t).

Remarks 2.42. (i) One could also deduce the above result from our
formulas forK̃± by using thePaley-Wiener theorem.

(ii) Actually for n = 3, 5, 7, . . ., it turns out that suppK± = {(x, t) :
|x| = ±t}. This is known as theHuygens principle. See Folland
[1].
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(iii) The distributionsK± are smooth functions oft (except att = 0)
with values inE′(Rn). Therefore, we now see that our formula
(2.38) for the solution of the Cauchy problem makes sense even
whenu0, u1, ǫD′(Rn) and f ǫC(Rt,D′(Rn

x)), and it is easily checked61

that u thus defined still solves the Cauchy problem in the sense
of distributions. Corollary 2.40 remains valid in this moregeneral
setting, as can seen by an approximation argument as in the proof
of Corollary 2.41.

EXERCISE If (∂2
t −△)u = f onRn+1, u(x, 0) = u0(x), and∂t u(x, 0)

= u1(x), figure out how suppu is related to suppf , suppu0 and suppu1.



Chapter 3

L2 Sobolev Spaces

THERE ARE MANY ways of measuring smoothness properties of func- 62

tions in terms of various norms. Often it is convenient to useL2 norms,
sinceL2 interacts nicely with the Fourier transforms. In this chapter, we
set up a precise theory ofL2 differentiability and use it to prove Horman-
der’s theorem on the hypoellipticity of constant coefficient differential
operators.

1 General Theory ofL2 Sobolev Spaces

Definition 3.1. For a non-negative integer k, theSobolev spaceHk is
defined to be the space of all tempered distributions all of whose deriva-
tives of order less than or equal to k are in L2.

Thus
Hk = { f ǫS′ : Dα f ǫL2(Rn) for 0 ≤ |α| ≤ k}.

From the definition, we note thatf ǫHk if and only if ξα f̂ (ξ)ǫL2 for
0 ≤ |α| ≤ k.

Proposition 3.2. f ǫHk if and only if (1+ |ξ|2)k/2 f̂ ǫL2.

Proof. First assume that (1+ |ξ|2)k/2 f̂ ǫL2. Since, for|ξ| ≥ 1,

|ξα| ≤ |ξ|k ≤ (1+ |ξ|2)k/2 for all |α| ≤ k

53
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and for|ξ| < 1, 63

|ξα| ≤ 1 ≤ (1+ |ξ|2)k/2 for all |α| ≤ k,

we have |ξα f̂ (ξ)| ≤ (1+ |ξ|2)k/2 f̂ (ξ)

and hence ξα f̂ ǫL2 for |α| ≤ k which implies f ǫHk. 2

�

Conversely, assume thatf ǫHk. Since|ξ|k and
n
∑

j=1
|ξ j |k are homoge-

neous of degreek and nonvanishing forξ , 0, we have

(1+ |ξ|2)k/2 ≤ c0(1+ |ξ|k) ≤ c0



















1+ c
n

∑

j=1

|ξ j |k


















so that ||(1+ |ξ|2)k/2 f̂ ||2 ≤ c0|| f ||2 + c0c
n

∑

j=1

||∂k
j f ||2

which shows that (1+ |ξ|2)k/2 f̂ ǫL2.
The characterisation ofHk given in the above proposition immedi-

ately suggests a generalisation to non-integral values ofk which turns
out to be very useful.

Definition 3.3. For sǫR, we define the operatorΛs : S→ S by

(Λs f )̂(ξ) = (1+ |ξ|2)s/2 f̂ (ξ).

In other words,Λs
=

(

I − △
4π2

)s/2
. ClearlyΛs maps S continuously64

onto itself. We can therefore extendΛs continuously from S′ onto itself.

TheSobolev space of order sis defined by

Hs = { f ǫS′ : Λs f ǫL2}.

We equipHs with the norm|| f ||(s) = ||Λs f ||2. If s is a positive integer,
the proof of Proposition 3.2 shows that|| ||(s) is equivalent to the norm

|| f || = Σ0≤|α|≤s||Dα f ||2.

PROPERTIES OF Hs



1. General Theory ofL2 Sobolev Spaces 55

(i) Hs is a Hilbert space with the scalar product defined by (u, v)(s) =

(Λsu,Λsv). Here the scalar product on the right is that inL2. The
Fourier transform is a unitary isomorphism betweenHs and the
space of functions which are square integrable with respectto the
measure (1+ |ξ|2)sdξ.

(ii) For everysǫR,S is dense inHs.

(iii) If s > t,Hs ⊂ Ht with continuous imbedding. In fact, foruǫHs,
||u||(t) ≤ ||u||(s). In particular,Hs ⊂ L2 for s> 0.

(iv) Dα is a bounded operator fromHs into Hs−|α|sǫR. 65

(v) If f ǫH−s, then f as a linear functional onS extends continuously
to Hs and || f ||(−s) is the norm of f in (Hs)∗. So we can identify
(Hs)∗ with H(−s). For f ǫH−s, gǫHs the pairing is given by

< f , g >=< Λ−s f ,Λsg >=
∫

f̂ ĝ.

(If s= 0, this identification ofH0 = L2 with its dual is the complex
conjugate of the usual one).

(vi) The norm||.||(s) is translation invariant. Indeed, ifg(x) = f (x− x0),
thenĝ(ξ) = e2πix0.ξ f̂ (ξ) and hence|| f ||(s) = ||g||(s).

Proposition 3.4. For s> n/2, we haveδǫH−s.

Proof. (1 + |ξ|2)−s/2 δ̂ = (1 + |ξ|2)−s/2ǫL2, whenevers > n/2. This is a
consequence of the following observation : �

∫

(1+ |ξ|2)−sdξ ∼ 1+
∞
∫

1

r−2srn−1dr < ∞ if and only if s> n/2.

As an immediate consequence of this proposition, we have

Corollary 3.5. For s> n/2+ |α|,DαδǫH−s.
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Theorem 3.6 (SOBOLEV IMBEDDING THEOREM). For s >
n
2
+ 66

k,Hs ⊂ Ck. Further, we have

(3.7)
∑

|α|≤k

sup
RN
|Dα f | ≤ Csk|| f ||(s).

Proof. SinceS is dense inHs, it suffices to prove (3.7) forf ǫS. Let δx

denote the Dirac measure atx. For |α| ≤ k, sinces>
n
2
+ |α|,DαδxǫH−s.

�

Since

< Dαδx, f >= (−1)|α| < δx,D
α f >= (−1)|α|(Dα f )(x)

and||Dαδx||(−s) is independent ofx,
∑

|α|≤k

sup
Rn
|Dα f (x)| =

∑

|α|≤k

sup
Rn
|Dαδx, f > |

≤
∑

|α|≤k

sup
Rn
|Dαδx||(−s)|| f ||(s) = Csk|| f ||(s)

Now, givenuǫHs, choose a sequence (u j ) in S such that||u − u j ||(s)
converges to 0, asj tends to∞. The above inequality withf = ui − u j

shows that (Dαu j) is a Cauchy sequence in the uniform norm for|α| ≤ k;
so its limit Dαu is continuous.

Corollary 3.8. If uǫHs for all sǫR, then uǫC∞ i.e.,
⋂

s
Hs ⊂ C∞.

This argument can be extended to show that ifs >
n
2
+ k, then

elements ofHs and their derivatives of order less than or equal tok are67

not merely continuous but actually Hölder continuous.

Proposition 3.9. If 0 < α < 1 and s=
n
2
+ α, then ||δx − δy||(−s) ≤

Cα|x− y|α

Proof. We have

||δx − δy||2(−s) =

∫

|e−2πix.ξ − e−2πiy.ξ |2(1+ |ξ|2)−sdξ.
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Let R be a positive number, to be fixed later. When|ξ| ≤ R we use
the estimate|e−2πix.ξ−e−2πiy.ξ | ≤ 2π|ξ||x−y| (by the mean value theorem)
and when|ξ| > R, we use|e−2πix.ξ − e−2πiy.ξ| ≤ 2. Then we have

||δx − δy||2(−s) ≤ 4π2|x− y|2
∫

|ξ|≤R

|ξ|2(1+ |ξ|2)−sdξ + 4
∫

|ξ|>R

(1+ |ξ|2)−sdξ

≤ c





















|x− y|2
R

∫

0

(1+ r2)−srn+1dr +

R
∫

0

r−2s+n−1dr





















≤ c′
[

|x− y|2R−2s+n+2
+ R−2s+n

]

as
n
2
< s<

n
2
+ 1

= c′
[

|x− y|2R2−2α
+ R−2α

]

When we takeR= |x− y|−1 we get our result. �

Exercise .Show that the above argument does not work whenα = 1.
Instead, we get||δx − δy||(−s) ≤ c|x − y|| log |x − y||1/2 when x is near y.
What happens whenα > 1?

Corollary 3.10. Let 0 < α < 1 andΛα = bounded functions g: sup
x,y

68

|g(x) − g(y)|
|x− y|α < ∞. If s=

n
2
+ α + l and fǫHs, then Dβ f ǫΛα for |β| ≤ k.

Remark 3.11.We shall obtain an analogue of this result forLp norms
in Chapter 5.

The following lemma will be used in several arguments hereafter.

Lemma 3.12. For all ξ, nǫRn and sǫR, we have
[

1+ |ξ|2
1+ |η|2

]s

< 2|s|(1+ |ξ − η|2)|s|.

Proof. |ξ| ≤ |η| + |ξ − η| gives

|ξ|2 < 2(|η|2 + |ξ − η|2) so that

(1+ |ξ|2) < 2(1+ |η|2)(1+ |ξ − η|2).

�
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If s> 0, then raise both sides to thesth power. If s< 0, interchange
ξ andη and raise to the−sth power.

Proposition 3.13. If φǫS, then the operatorf → φ f is bounded for all
s.

Proof. The operatorf → φ f is bounded onHs if and only if the opera-
tor of g→ ΛsφΛ−sg is bounded onL2, as one sees by �

settingg = ∧s f . But69

(∧sφ−sg)∧(ξ) = (1+ |ξ|2)s/2(φ ∧−s g)ˆ(ξ)

= (1+ |ξ|2)s/2
[

φ̂(ξ) ∗ (∧−sg)̂(ξ)
]

= (1+ |ξ|2)s/2
∫

φ̂(ξ − η)(1+ |η|2)ĝ(η)dη

=

∫

ĝ(η)K(ξ, η)dη

where
K(ξ, η) = (1+ η|2)−s/2(1+ |ξ|2)s/2φ̂(ξ − η).

By lemma 3.12,

|K(ξ, η)| < 2|s|/2(1+ |ξ − η|2)|s|/2|φ̂(ξ − η)|.

Therefore, sincêφ is rapidly decreasing at∞,

∫

|K(ξ, η)|dξ ≤ c for everyηǫRn,

∫

|K(ξ, η)|dη ≤ c for everyηǫRn.

Thus from Theorem 1.1, the operator with kernelK is bounded on
L2. Hence our proposition is proved.

The spacesHs are defined onRn globally by means of the Fourier
transform. Frequently, it is more appropriate to consider the following
versions of these spaces.
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Definition 3.14. If Ω ⊂ Rn is open and sǫR, we define Hloc
s Ω = { f ǫD′

(Ω) : ∀Ω′ ⋐ Ω, ∃ gΩ, ǫHs such that

gΩ′ = f onΩ′}.

Proposition 3.15. f ǫHloc
s (Ω) if and only ifφ f ǫHs for φǫC∞0 (Ω). 70

Proof. If f ǫHloc
s (Ω) andφǫC∞0 (Ω), then there existsgǫHs such thatf =

g on suppφ. Thereforeφ f = φgǫHs by proposition 3.13. �

Conversely, ifφ f ǫHs for all φǫC∞0 (Ω′), and Ω′ ⋐ Ω, choose
φǫC∞0 (∞) with φ ≡ 1 onΩ′. Thenφ f ǫHs and f = φ f onΩ′.

Corollary 3.16. If L =
∑

|∝|≤k
a∝(x)D∝ with a∝ǫC∞(Ω), then L maps

Hloc
s (Ω) into Hloc

s−k(Ω) for all sǫR.

It is a consequence of the Arzela-Ascoli theorem that if (u j) is a
sequence ofCk functions such that|u j | and |∂αu j |(|α| ≤ k) are bounded
on compact set uniformly inj, there exists a subsequence (v j ) of (u j )
such that (∂αv j) converges uniformly on compact set for|α| ≤ k − 1. In
particular, if theu′js are supported in a common compact set, then (∂αv j)
converges uniformly.

There is an analogue of this result forHs spaces.

Lemma 3.17. Suppose(uk) is a sequence of C∞functions supported in
a fixed compact setΩ such thatsup

k
||uk||(s) < ∞. Then there exists a

subsequence which converges in the Ht norm for all t< s.

Proof. Pick aφǫC∞0 such thatφ = 1 onΩ so thatuk = φuk and hence 71

ûk = φ̂∗ûk. Then

(1+ |ξ|2)s/2|ûk(ξ)| = (1+ |ξ|2)s/2|
∫

φ̂(ξ − η)ûk(η)dη|

≤
∫

|φ̂(ξ − η)||ûk(η)|2|s|/2(1+ |η|2)s/2(1+ |ξ − η|2)|s|/2dη

≤ 2|s|/2||φ||(|s|)||uk||(s) ≤ c−1 independent ofk.

Likewise, we have

(1+ |ξ|2)s/2|∂ jûk(ξ)| ≤ 2|s|/2||2πx jφ(x)|||s|||uk||(s) ≤ c2
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independently ofk. Therefore, by the Arzela-Ascoli theorem there ex-
ists a subsequence (ˆvk) of (ûk) which converges uniformly on compact
sets. Fort ≤ s,

||v j − vk||2(t) =
∫

(1+ |ξ|2)t |v̂ j − v̂k|2dξ

=

∫

|ξ|≤R

(1+ |ξ|2)t |v̂ j − v̂k|2dξ +
∫

|ξ|>R

(1+ |ξ|2)t |v̂ j − v̂k|2dξ

< (1+ R2)max(t,0) sup
|ξ|≤R
|v̂ j (ξ) − v̂k(ξ)|2

∫

|ξ|≤R

dξ+

+ (1+ R2)t−s
∫

|ξ|>R
[(1 + |ξ|2)s|v̂ j(ξ) − v̂k(ξ)|2dξ]

≤ c(l + R2)n+|t| sup
|ξ|≤R
|v̂ j(ξ) − v̂ j(ξ)|2 + (1+ R2)t−s||v j − vk||2(s).

�

Given ǫ > 0, chooseR large enough so that the second term is less
than ǫ/2 for all j and k. This is possible since||v j − vk||(s) ≤ c and72

t − s < 0. Then for j andk large enough the first term is less thanǫ/2,
since (v̂k) converges uniformly on compact sets. Thus we see that (vk)
is a Cauchy sequence inHt′ and sinceHt is complete we are done.

Remark 3.12.Lemma 3.17 is false, if we do not assume that all theu′ks
have support in a fixed compact set. For example, foruǫC∞0 andxkǫR

n

with |xk| tending to∞, defineuk(x) = u(x−xk). Then the invariance ofHs

norms shows that||uk||(s) = ||u||(s). But no subsequence of (uk) converges,
in anyHt. For, if a subsequence (vk) of (uk) converges, it must converge
to 0, sinceuk converges to 0 inS′. But then lim||vk||(t) = 0 which is not
the case.

Theorem 3.20(RELLICH THEOREM). Let H0
s(Ω) be the closure of

C∞0 (Ω) in Hs. If Ω is bounded and t< s, the inclusion H0s(Ω) ֒→ Ht is
compact, i.e., bounded sets in H0

s(Ω) are relatively compact in Ht.

Proof. Let (uk) be a sequence inH0
s(Ω). To eachk, find a vkǫC∞0 (Ω)
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such that||uk − vk||(s) ≤
1
k

. Then we have||vk||(s) ≤ ||uk||(s) + | ≤ c

(independent ofk.) Therefore, by lemma 3.17, a subsequence (wk) of
(vk) exists such that (wk) converges inHt. If (u′k) is the subsequence of
(uk) corresponding to the sequence (wk), we have 73

||u′i − u′j ||(t) < ||u′i − wi ||(t) + ||wi − w j ||(t) + ||w j − u′j ||(t)

<
1
i
+

1
j
+ ||wi − w j ||(t) → 0 as ||i, j → ∞.

Hence (u′k) converges inHt. �

I the proof of the next theorem, we will use the technique of complex
interpolation, which is based on the following result from elementary
complex analysis called‘Three lines lemma’.

Lemma 3.20. Suppose F(z) is analytic in o< ReZ< 1, continuous and
bounded on0 ≤ ReZ≤ 1. If |F(1 + it)| ≤ c0 and |F(l + it)| ≤ c1, then
F(s+ it) ≤ c1−s

0 cs
1, for 0 < s< 1.

Proof. If ǫ > 0, the function

gǫ (z) = cz−1
0 cz−1

1 eǫ(z
2−z) f (z)

satisfies the hypotheses withc0 and c1 replaced by 1, and also|gǫ (z)|
converges to 0 as|Imz| → ∞ for 0 ≤ ReZ ≤ 1. From the maximum
modulus principle, it follows that|g(z)| ≤ 1 for 0 ≤ Rez≤ 1 and letting
ǫ tend to 0, we obtain the desired result. �

Theorem 3.21. Suppose that−∞ < s0 < s1 < ∞ and T is a bounded
linear operator Hs0 such that T|Hs1 is bounded on Hs1. Then T|Hs is
bounded on Hs for all s with s0 ≤ s≤ s1.

Proof. Our hypothesis means that 74

∧s0T ∧−s0 and ∧s1 T∧−s1

are bounded operators onL2. For 0≤ Rez≤ 1 we define

sz = (l − z)s0 + zs1 andTz = ∧szT ∧−sz .

�
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Then what we wish to prove is thatTz is bounded onL2 for 0 ≤ z≤
1. Observe that whenw = x+ iy,∧w,∧x∧iy and

(∧iy f )ˆ(ξ) = (1+ |ξ|2)iy/2 f̂ 2(ξ) so that

|(∧iy f )ˆ(ξ) = | f̂ (ξ)|.

Thus∧iy is unitary onHs for all s.
Forφ, ψǫS, we define

F(z) =
∫

(Tzφ)ψ =< ∧szT ∧−sz φ, ψ > .

Then

|F(z)| = | < ∧szT ∧−sz φ, ψ > |
= | < T ∧sz φ,∧−szψ > |
≤ ||T ∧−sz φ||(s0)|| ∧−sz ψ||(−s0)

≤ c|| ∧−sz φ||s0 || ∧sz ||(−s0)

≤ c||φ||(s0−s1)Re z||ψ||(s1−s0)Rez

≤ c||φ||(0)||ψ||s1−s0

F(z) is clearly an analytic function ofz for 0 < Re z< 1. Further, by our75

hypothesis onT, whenRez= 0, we have

|F(z)| ≤ c0||φ||(0)||ψ||(0)

and whenRez= 1, we have

|F(z)| ≤ c1||φ||(0)||ψ||(0).

Therefore, by the Three lines lemma

|F(z)| ≤ c1−z
0 cz

0||φ||(0)||ψ||(0) for 0 < z< 1.

Finally, by the self duality ofH0 = L2, this gives

||Tzφ|| ≤ c1−z
0 cz

0||φ||(0)

which completes the proof.
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Remark 3.22.The same proof also yields the followingmore general
result:

Suppose∞ < s0 < s1 < ∞ < t0 < t1 < ∞. If T is a bounded
linear operator fromHs0 to Ht0 whose restriction toHs1 to Ht1, then the
restriction ofT to Htθ is bounded fromHtθ to Htθ for 0 < θ < 1 where
sθ = (1− θ)s0 + θs1 andtθ = (1− θ)t0 + θt1.

As a consequence of this result, we obtain an easy proof thatHloc
s is

invariant under smooth coordinate changes.

Theorem 3.23.SupposeΩ andΩ′ are open subsets ofRn andφ : Ω→
Ω
′ is a C∞ diffeomorphism. Then the mapping f→ f oφ maps Hloc

s (Ω′). 76

continuously onto Hloc
s (Ω).

Proof. The statement of the theorem is equivalent to the assertion that
for anyφǫC∞0 (Ω′), the mapT f = (φ f ) ◦ φ is bounded onHs for sǫR. If
s = 0, 1, 2, . . . , this follows from the chain rule and the fact thatHs =

{ f : D∝ f ǫL2 for | ∝ | ≤ s}. By Theorem 3.21, it is true for alls≥ 0. But
the adjoint ofT is another map of the same form : �

T∗g = (ψg)◦ψ whereψ = θ−1 andψ = φ|J| ◦Φ, J being the Jacobian
determinant ofΦ−1. HenceT∗ is bounded onHs for all s ≥ 0 and by
duality ofHs andH−s, this yields the boundedness ofT on Hs for s< 0.

Finally, we ask to what extend theHs spaces include all distribu-
tions. Globally they do not, since, iff ǫHs, then f is tempered and̂f is
a function. But locally they do, as we see from the following result.

Proposition 3.24. Every distribution with compact support lies in some
Hs: i.e., E′ ⊂ ⋃

s∈R
Hs.

Proof. If f ǫE′, then it is a continuous linear functional onC∞. There-
fore, there exists a constantc > 0, a compact setK, and a nonnegative
integerk such that

| < f , φ > | ≤ c
∑

|∝|≤k

sup
k
|D∝φ| for all φǫC∞,

i.e., | < f , φ > | ≤ c
∑

|α|≤|k
sup
Rn
|Dαφ| for all φǫC∞. 77
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By the Sobolev imbedding theorem,
∑

|∝|≤k

sup
Rn
|Dαφ| ≤ c′||φ||(k+ n

2+ǫ)
for ǫ > 0.

Therefore,| < f , φ > | ≤ c′′||(k+ n
2+ǫ) for all φǫS sinceS is dense in

H(k+ n
2+ǫ)

, this shows thatf is a continuous linear functional onH(k+ n
2+ǫ).

Hencef ǫH− n
2−k−ǫ . �

Corollary 3.25. If f ǫD′(Ω) andΩ′ has compact closure inΩ then there
exists s inR such that fǫHloc

s (Ω′).

2 Hypoelliptic Operators With Constant
Coefficients

We now apply the machinery of Sobolev spaces to derive a criterion for
the hypoellipticity of constant coefficient differential operators. First,
we have a few preliminaries.

Definition 3.26. Let P be a polynomial in n variables. For a multi-index

∝,P(∝) will ne defined by P(∝)(ξ) = (
∂

∂ξ
)∝P(ξ).

Proposition 3.27. LEIBNIZ RULE When fǫC∞, gǫD′ and P(D) is a
constant-coefficient partial differential operator of order k, we have

P(D)( f g) =
∑

|∝|≤k

1
∝!

(P(∝)(D)g)D∝ f ).

The proof of this proposition is left as an exercise to the reader.

Definition 3.28. We say that a polynomial P satisfies condition(H) if78

there exists aδ > 0 such that

|P(∝)(ξ)|
|P(ξ)| = 0 (|ξ|−δ|α|) as |δ| → ∞,∀ ∝ .

Theorem 3.29(HÖRMANDER). If P satisfies condition(H), then P(D)
is hypoelliptic. More precisely, if f is in D′Ω)and P(D) f Hloc

s+kδ(Ω),
whereδ is as in condition(H) and k is the degree of P.



2. Hypoelliptic Operators With Constant Coefficients 65

Proof. We first observe that the second assertion implies the first since
C∞(Ω) =

⋂

sǫR
Hloc

s (Ω) by Corollary 3.8. �

Suppose therefore thatP(D) f ǫHloc
s (Ω), f ǫD′(Ω). GivenφǫC∞◦ (Ω)

we have to prove thatφ f ǫHs+kδ. Let Ω′, be an open set such that
Ω
′
⋐ Ω and suppφ ⊂ Ω′. By Corollary 3.25, therefore existst in R

such thatf ǫHloc
t (Ω′). By decreasingt, we can some thatt = s+ k −

1 − mδ for assume positive integerm. Setφm = φ and then choose
φm−1, φm−2, . . . , φ0, φ−1 in C∞0 (Ω′) such thatφ j = 1 on suppφ j+1.

Thenφ jP(D) f ǫHS ⊂ Ht−k+l+ jδ for 0 ≤ j ≤ mandφ−1 f ǫHt. Now

P(D)(φ0 f ) = φ0P(D) f +
∑

∝,0

1
∝!

P∝(D)(φ−1 f )D∝φ0

sinceθ−1 = 1 on the support ofφ0. So,P(D)(φ0 f )ǫHr−k+1. This means
that

∫

(1+ |ξ|2)t−k+1|P(ξ)(φ0 f )ˆ(ξ)|2dξ < ∞.

By condition (H) 79

∫

(1+ |ξ|2)t−k+l+δ|δ| |P∝|(ξ)(φ0 f )(ξ)|2dξ < ∞

This implies thatP(α)(D)(φ◦ f )ǫHt − k+ l + δ|δ|.
Next,

P(D)(φ1 f ) = φ1P(D) f +
∑

∝,0

1
∝!

p(∝)(D)(φo f )D∝(φ1 f )

sinceφ0 = 1 on the support ofφ1, soP(D)(φ1 f )ǫHt−k+1+δ . By the same
argument same argument as above,

P(D)(φ1 f )ǫHt+k+l+δ(1+|∝|) .

Continuing inductively, we obtainP(D)(φ j f )ǫHt−k+l+ jδ , which im-
plies that

P(∝)(D)(φ j f )ǫHt−k+l+δ( j+|∝|) .
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For j = m, we above

P(∝)(D)(φm f )ǫHt−k+l+δ(m+(δ)) = Hs+δ|∝|.

If
P(ξ) =

∑

|∝|≤k

a∝ξ
∝,

choose∝ with | ∝ | = k such thata∝ , 0. ThenP∝(ξ) =∝!a∝ , 0.
whenceφ f = φm f ǫHs+kδ and we are done.

Remark 3.30.The condition (H) is equivalent to the following appar-80

ently weaker condition

(H′) :
|p(∝)(ξ) |
|P(ξ)| → 0 as|ξ| → ∞ for ∝, 0.

Condition (H′) is in turn equivalent to

(H′′) : |Imζ | → ∞, in the set {ζǫ�n : P(ζ) = 0}.

The converse of Hörmander’s theorem is also true, i.e., hypoelliptic-
ity implies condition (H).

The proofs of these assertions can be found in Hörmander [6]. The
logical order of the proofs is

(H)⇒ hypoellipticity⇒ (H′′)⇒ (H′)⇒ (H).

The implication (H′) ⇒ (H) requires the use of some results from
(semi) algebraic geometry.

Definition 3.31. P(ξ) =
∑

|∝|≤k
a∝ξ∝ is called elliptic if

∑

|∝|=k
a∝ξ∝ , 0 for

everyξ , 0.

EXERCISES

1. Prove thatP is elliptic if and only if |P(ξ)| ≥ c◦|ξ|k for large|ξ|.

2. Prove thatP is elliptic if and only ifP satisfies condition (H) with
δ = 1.
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3. Prove that noP satisfies condition (H) with δ > 1. (Hint: If
| ∝ | = k,P(∝) is a constant).

4. Let P be elliptic and real valued. DefineQ onRn+1 by Q(ξ, τ) =81

2πiτ+P(ξ), so thatQ(Dx,Dt) = ∂t +P(Dx). Show thatQ satisfies
condition (H) with δ = 1/k wherek is the degree ofP and that
1/k is the best possible value ofδ.

(Hint : Consider the regions|ξ|k ≤ |τ| and|τ| ≤ |ξ|k separately).





Chapter 4

Basic Theory of Pseudo
Differential Operators

1 Representation of Pseudo differential Operators

Let L =
∑

|α|≤k
aα(x)Dα be a partial differential operator withC∞ coeffi- 82

cients onΩ. Using the Fourier transform, we can write

(Lu)(x) =
∑

|α|≤k

aα(x)
∫

e2πix.ξ û(ξ)ξαdξ

=

∫

e2πix.ξp(x, ξ)û(ξ)dξ

wherep(x, ξ) =
∑

|α|≤k
aα(x)ξα. This representation suggests thatp(x, ξ)

can be replaced by more general functions. So, we make the following
definition.

Definition 4.1. For an open setΩ ⊂ Rn and a real number m we define
Sm(Ω), the class of symbols of order m onΩ, by

Sm(Ω) = {pǫC∞(Ω × Rn) : ∀α, β,VΩ′ ⊂ Ω, c = cαβΩ′

such thatsupxǫΩ′ |D
β
xDα

ξ
p(x, ξ)| ≤ c(1+ |ξ|)m−|α|}.

69
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We note thatSm(Ω) ⊂ Sm wheneverm < m′, and we setS−∞(Ω) =
⋂

mǫR
Sm(Ω).

Examples

(i) Let p(x, ξ) =
∑

|α|≤k
aα(x)ξα with aαǫC∞(Ω). ThenpǫSk(Ω).

(ii) Let p(x, ξ) =
N
∑

j=1
a j(x) f j(ξ) whereaf ǫC∞(Ω) and f jǫC∞(Rn) is83

homogeneous of degreemj largeξ : that is,

fi(rξ) = rmj f j(ξ) for |ξ| ≥ c, r ≥ 1.

In this case,pǫSm(Ω), wherem= max
1≤ j≤N

{mj}.

(iii) Let p(x, ξ) = (1+ |ξ|2)s/2. This p belongs toSs(Rn).

(iv) Let p(x, ξ) = φ(ξ) sin log|ξ| with φǫC∞, φ = 0 near the origin and
φ = 1 when|ξ| ≥ 1. ThenpǫSo(Rn).

Remark 4.2.We observe that whenpǫSm(Ω),Dβ
xD

α
ξ

pǫSm−|α|(Ω).

Further, if pǫSm1(Ω) andqǫSm2(Ω),thenp + qǫSm(Ω), wherem =
max{m1,m2} andpqǫSm1+m2(Ω).

Remark 4.3.Our symbol classesSm(Ω) are special cases of Horman-
der’s classesSm

ρ,δ
(Ω). Namely, for 0≤ δ ≤ ρ ≤ 1, andmǫR,

Sm
ρ,δ(Ω) = {pǫC∞(Ω × Rn) : ∀α, β,VΩ′ ⋐ Ω, c = cαβΩ′

such that sup
xǫΩ′
|Dβ

xDα
ξ p(x, ξ)| ≤ c(1+ |ξ|)m−ρ|α|+δ|β|}.

In this terminology,Sm(Ω) = Sm
1,0(Ω).

Definition 4.4. For pǫSm(Ω), we define the operator p(x.D) on the do-
main C∞o (Ω) by

p(x,D) u(x) =
∫

e2πix.ξp(x, ξ) û(ξ)dξ, uǫC∞o (Ω).
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(Sometimes, we shall denotep(x,D) by p). Operators of the form
p(x,D) with pǫSm(Ω) are calledpseudo differential operators of order84

monΩ.
The set of all pseudo differential operators of orderm onΩ will de-

noted byΨm(Ω). For brevity, we will sometimes write “ΨDO′′ instead
of “pseudo differential operators”.

The next theorem states thatp(x,D) is a continuous linear map of
C∞o (Ω) into C∞(Ω which extends toE′(Ω). For the proof, we need a
result which depends on

Lemma 4.5. Let pǫSm(Ω) andφǫC∞o (Ω). Then, for each positive inte-
ger N, there exists cN > 0 such that for allξ, η in Rn,

|
∫

e2πix.ηp(x, ξ)φ(x)dx| ≤ cN(1+ |ξ|)m(1+ |η|)−N.

Proof. For anyξ andη in Rn,
|ηα

∫

e2πix.ηp(x, ξ)φ(x)dx|

= |
∫

Dα
xe2πix.ηp(x, ξ)φ(x)dx|.

�

Integrating by parts, we have

|ηα
∫

e2πix.ξp(x, ξ)φ(x)dx| = |
∫

e2πix.ηDα
x(p(x, ξ)φ(x))dx|

≤ Cα(1+ |ξ|)m for all α.

Therefore

∑

|α|≤N

|ηα
∫

e2πix.ηp(x, ξ)φ(x)dx| ≤ c′N(1+ |ξ|)m for all N.

Since (1+ |η)N ≤ c
∑

|α|≤N
|ηα|, the required result follows. 85
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Corollary 4.6. If pǫSm(Ω) andφǫC∞o (Ω), then the function

g(ξ) =
∫

e2πix.ξp(x, ξ)φ(x)dx

is rapidly decreasing asξ tends to∞.

Proof. Setξ = η in the lemma. �

Theorem 4.7. If pǫSm(Ω), then p(x,D) is a continuous linear map of
C∞o (Ω) into C∞(Ω) which can be extended as a linear map from E′(Ω)
into D′(Ω).

Proof. For uǫC∞o (Ω),

p(x,D)u(x) =
∫

e2πix.ξp(x, ξ)û(ξ)dξ.

The integral converges absolutely and uniformly on compactsets, as
do the integrals

∫

Dα
x(e2πix.ξp(x, ξ) û(ξ)dξ for all α,

sincepǫSm andûǫS. �

This proves thatp(x,D)uǫC∞(Ω), and continuity ofp(x,D) from
C∞o (Ω) to C∞(Ω) is an easy exercise.

To prove the rest of the theorem, we will make use of Corollary4.6.
For uǫE′(Ω), we definep(x,D)u as a functional onC∞o (Ω) as fol-

lows:

< p(x,D)u, φ > =
x

p(x, ξ)û(ξ)e2πix.ξφ(x)dxdξ

=

∫

g(ξ)û(ξ)dξ

where86

g(ξ) =
∫

e2πix.ξp(x, ξ)φ(x)dx, for φǫC∞o (Ω).



2. Distribution Kernels and the Pseudo Local Property 73

By Corollary 4.6,g(ξ) is rapidly decreasing, while ˆu is of polyno-
mial growth; so the last integral is absolutely convergent and the func-
tional onC∞o thus defined is easily seen to be continuous. Moreover, if
uǫC∞o , the double integral is absolutely convergent, and by interchang-
ing the order of integration, we see that this definition ofp(x,D)u coin-
cides with the original one. Hence we have extendedp(x,D) to a map
from E′(Ω) toD(Ω).

Remark 4.8. It follows easily from the above argument thatp(x,D) is
sequentially fromE′(Ω) toD(Ω), i.e., if uk converges tou in E′(Ω), then
p(x,D)uk converges top(x,D)u in D′(Ω). Actually, p(x,D) is contin-
uous fromE′(Ω) toD′(Ω) : this follows from the fact (which we shall
prove later) that the transpose of a pseudo differential operator is again
a pseudo differential operator. Thusp(x,D)t : C∞o (Ω)→ C∞(Ω) is con-
tinuous, and so, by duality,p(x,D) = (p(x,D)t)t : E′(Ω) → D′(Ω) is
continuous.

2 Distribution Kernels and the Pseudo Local Prop-
erty

Definition 4.9. Let T be an operator from C∞o (Ω) to C∞(Ω). If there
exists a distribution K onΩ ×Ω such that

< Tu, v >=< k, v⊗ u > for u, vǫC∞o (Ω),

we say that K is thedistribution kernelof the operator T.

In this definition,v⊗u is defined by (v⊗u)(x, y) = v(x)u(y). Formally,
this definition says that.

Tu(x) =
∫

K(x.y)u(y)dy.

K is uniquely determined since linear combinations of functions of the 87

form v⊗ u are dense inC∞o (Ω ×Ω).
If pǫSm(Ω), it is easy to compute the distribution kernel ofp(x,D).

In fact,

< p(x,D)u, v > =
x

p(x, ξ)û(ξ)e2πix.ξv(x)dξdx
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=

x
p(x, ξ)e2πix.ξ(v⊗ u)̂2(x, ξ)dξdx

where (v⊗ u)̂2(x, ξ) means the Fourier transform in the second variable.
It follows immediately from the definition ofK that

< K,w > =
x

e2πix.ξp(x, ξ)ŵ2(x, ξ)dξdx,∀wǫC∞o (Ω ×Ω).

or < K,w > =
y

e2πi(x−y).ξp(x, ξ)w(x, y)dy dξ dx.

From this it is easy to see thatK(x, y) = pv
2(x, x− y) wherepv

2(x, .) is
the inverse Fourier transform of the tempered distributionp(x, .). In par-
ticular, this shows thatp is uniquely determined by the operatorp(x,D).
If PǫΨm(Ω), we shall sometimes denote the uniquepǫSm(Ω) such that
p = p(x,D) byσp.

The following theorem gives precise results on the kernelK of
p(x,D).

Theorem 4.10.The distribution kernel K of p(x,D) with pǫSm(Ω) is in
C∞ on (Ω×Ω)/∆ where∆{(x, x) : xǫΩ} is the diagonal. More precisely,
if |α| > M+n+ j for a positive integer j, then(x−y)αK(x, y)ǫC j (Ω×Ω).

Proof. For wǫC∞o (Ω ×Ω), let us compute< (x− y)αK,w >.88

< (x− y)αK,w > =< K, (x− y)αw >

=

x
e2πix.ξp(x, ξ)(x+ Dξ)

αŵ2(x, ξ)dξ dx

=

x
wˆ

2(x, ξ)(x− Dξ)
α{e2πix.ξp(x, ξ)}dξ dx.

�

Using the Leibniz formula, it is easily seen that

(x− Dξ)
α{e2πix.ξp(x, ξ)} = (−Dξ)

αp(x, ξ).e2πix.ξ

Therefore

< (x− y)αK,w > =
x

wˆ
2(x, ξ)e2πix.ξ(−Dξ)

αp(x, ξ)dξ dx

=

y
w(x, y)e2πi(x−y).ξ(−Dξ)

αp(x, ξ)dy dξ dx.
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From the above expression, we infer that

(x− y)αK(x, y) =
∫

e2πi(x−y).ξ(−Dξ)
αp(x, ξ)dξ.

Since|(−Dξ)αp(x, ξ)| ≤ c(1 + |ξ|)m−|α|, the integral converges abso-
lutely and uniformly on compact sets wheneverm − |α| < −n. Also
we can differentiate with respect tox andy j times under the integral
sign providedm− |α| + j < −n or |α| > m+ n + j. Thus, we see that
(x− y)αKǫC j (Ω ×Ω).

Corollary 4.11 (PSEUDO LOCAL PROPERTY OFΨDO). If PǫΨm

(Ω), then, for all uǫE′(Ω), singsuppPu is contained in singsuppu.

Proof. Let uǫE′ and letV be an arbitrary neighbourhood of sing suppu.
Take aφǫC∞o (V) such thatφ = 1 on sing suppu. Thenu = φu+(1−φ)u =
u1 + u2; u2 is aC∞o function and suppu1ǫV. �

Therefore,Pu = Pu1 + Pu2 andPu2 is aC∞ function. Moreover,
whenxo < V, 89

Pu1(x) =
∫

V
K(x, y)u1(y)dy

is also aC∞ function in a neighbourhood ofxo sinceu1(y) = 0 for y near
xo. This implies that sing suppPu ⊂ V. SinceV is any neighbourhood
of sing suppu, the corollary is proved.

Corollary 4.12. If pǫS−∞(Ω), then the distribution kernel K of p(x,D)
is in C∞(Ω ×Ω).

Proof. Follows from the theorem if we take|α| = 0. �

Corollary 4.13. If pǫS−∞(Ω), then p(x,D), maps E′(Ω) continuously
into C∞(Ω).

Proof. If uǫE′(Ω), in view of Corollary 4.12, it is easily seen that
p(x,D)u is a smooth function defined by

P(x,D)u(x) =
∫

K(x, y)u(y)dy =< u,K(x, .) >,

whence the result follows. �



76 4. Basic Theory of Pseudo Differential Operators

Definition 4.14. A smoothing operator is a linear operator T which
maps E′(Ω) continuously into C∞(Ω).

If KǫC∞(Ω ×Ω), then the operator T defined by

(T f)(x) =< K(x, .), f >=
∫

K(x, y) f (y)dy

is a smoothing operator. Conversely, every smoothing operator T can
be given in the above form with K(x, y) = (Tδy)(x).

As we have already remarked ifpǫS−∞, then the corresponding
ΨDO is smoothing. However, not every smoothing operator is aΨDO.
For example, we have

Proposition 4.15. Suppose p(x, .) is a C∞ function of x with values in90

E′. Then p(x,D) (defined in the same way as in the case of pǫSm(Ω)) is
a smoothing operator.

Proof. The distribution kernelK of p(x,D) is given by

K(x, y) =
∫

e2πi(x−y).ξ p(x, ξ)dξ

=< p(x, .), e2πi(x−y).(.) >

and henceK(x, y)ǫC∞. ThusK defines a smoothing operator. �

Remark 4.16.Sometimes, it is convenient to enlarge the class of
pseudo-differential operators of orderm by including operators of the
form P+ S wherePǫΨm(Ω) andS is smoothing. However, the general
philosophy is the following:

1. On the level of operators, smoothing operators are negligible.

2. On the level of symbols, what counts is the asymptotic behaviour
at∞, so that symbols of order−∞ are negligible.
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3 Asymptotic Expansions of Symbols

Definition 4.17. Suppose m0 > m1 > m2 > · · ·mjǫR,mj tends to−∞,

and pjǫSmj (Ω), pǫSmo(Ω). We say that p∼
∞
∑

j=0
p j if p − ∑

j<k
p jǫSmk(Ω)

for all k.

Proposition 4.18. Suppose mj tends to−∞ and pjǫSm j(Ω). Then there

exists a p in Smo(Ω) such that p∼
∞
∑

j = 0p j . This p is unique modulo
S−∞(Ω).

Proof. Let (Ωn) be an increasing sequence of compact subsets ofΩ

whose union isΩ. Fix φǫC∞ with φ = 1 for |ξ| ≥ 1 > andφ = 0

for |ξ| ≤ 1
2

. �

Claim There exists a sequence (t j),t j ≥ 0 andt j tending to∞ so 91

rapidly that we have
(4.19)
|Dβ

xDα
ξ (φ(ξ/t j)p j(x, ξ))| ≤ 2− j(1+|ξ|)mj−1−|α| for xǫΩi , and|α|+|β|+i ≤ j.

Granted this, we define

p(x, ξ) =
∞
∑

j=0

φ(ξ/t j)p j(x, ξ).

Note that for eachx and ξ, the sum is finite. Using (4.19), it is

straightforward to show thatpǫSmo(Ω) and p ∼
∞
∑

j=0
p j . Moreover, sup-

pose thatqǫSmo(Ω) andq ∼
∞
∑

j=0
p j . Then

p− q = (p−
∑

j<k

p j) − (q−
∑

j<k

p j)ǫS
mk(Ω) for all k.

Hencep− qǫS−∞.
we now briefly indicate the steps involved in proving the claim :

i) First observe that|Dν
ξ
φ(ξ/t j)| ≤ c|ξ|−|ν| uniformly in j.
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ii) Hence we have|Dβ
xDα

ξ
(φ(ξ/t j)p j(x, ξ))| ≤ c j(1+ |ξ|)mj−|α| for xǫΩi ,

|α| + |β| + i ≤ j.

iii) Finally, pick t j so large that “|ξ| ≥ t j/2 ≥ c j(1 + |ξ|)mj−mj−1 ≤ 2− j”
Details are left to the reader.

The following theorem provides a useful criterion for the asymptotic

relationp ∼
∞
∑

j=0
p j to hold.

Theorem 4.20. Suppose pjǫSmj ,mj tends to−∞, and pǫC∞(Ω × Rn)92

satisfies following conditions:

i) for all α andβ and allΩ′ ⋐ Ω, there exists c> 0, µǫRsuch that

|Dβ
xDα

ξ p(x, ξ)| ≤ c(1+ |ξ|)µ, xǫΩ, and

ii) there exists a sequence(µk), µk tending to−∞ so that |p(x, ξ) −
∑

j<k
p j(x, ξ)| ≤ CΩ, (1 + |ξ|)µk for xǫΩ′. Then pǫSmo(Ω) and p ∼

∞
∑

j=0
p j .

To prove this theorem, we need the following

Lemma 4.21. LetΩ1 andΩ2 be two compact subsets ofRnsuch thatΩ1

is contained in the interior ofΩ2. Then there exists constants c1 > 0 and
c2 > 0 such that for all fǫC2(Ω2),

Sup
Ω1
|∂ j f |2 ≤ c1(Sup

Ω2
| f |2) + c2(Sup

Ω2
| f |)(Sup

Ω2
|∂2

j f |).

Proof. It suffices to assume thatn = 1 and f is real valued. With this
reduction, the proof becomes an exercise in elementary calculus. This
idea is roughly as follows: We wish to show that if‖ f ‖∞ and‖ f ′′ ‖∞
are both small, then so is‖ f ′ ‖∞ is small and| f ′(xo)| is large, then
| f ′| will be large in some sizable interval [a, b] containingxo. But then
| f (b) − f (a)| and hence‖ f ‖∞ is large. We leave it to the reader to work
out the quantitative details of this argument. �
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Proof of the theorem.By Proposition 4.18, there exists q in Smo such93

that q∼
∞
∑

j=0
p j; so, it will suffice to show that p− qǫS−∞. First,

|p(x, ξ) − q(x, ξ)| = |(p(x, ξ) −
∑

j<k

p j(x, ξ)) − (q(x, ξ) −
∑

j<k

p j(x, ξ))|.

For

Ω
′ ⊂⊂ Ω, |p(x, ξ) −

∑

j<k

p j(x, ξ)| ≤ cΩ, (1+ |ξ|)µk, xǫΩ′.

Also q∼
∞
∑

j=0
p j . These show that, for any N,

|p(x, ξ)| − q(x, ξ)| ≤ CNΩ′(1+ |ξ|)−N, xǫΩ′.

We want to prove such an estimate forDβ
xDα

ξ
(p − q) also. To this

end, we will apply Lemma 4.21 to the function (x, η) → (p − q)(x, ξ +
η) consideringξ as a parameter, and takingΩ1 = Ω

′ × 0 andΩ2 a
small neighbourhood ofΩ1. If |α| + |β| = 1, we use the estimate just
established forp − q, together with the hypothesis (i) on the second
order derivatives ofp; the lemma implies thatDβ

xDα
ξ
(p − q) is rapidly

decreasing for|α| + |β| = 1. Combining this with the hypothesis (i) on
the third order derivatives ofp, we see thatDβ

xDα
ξ

is rapidly decreasing
for |α|+ |β| = 2. Proceeding by induction on|α|+ |β| we get the required
result.

4 Properly Supported Operators

Since pseudo differential operators mapC∞o to C∞ rather thenC∞o , it
is generally not possible to compose two of them. The problemmay
be remedied by considering a more restricted class of operators, the so
called “properly supported” ones.

Definition 4.22. A subset K ofΩ × Ω is said to beproper if, for any 94

compact setΩ′ ⊂ Ω, bothπ−1
1 (Ω′) ∩ K andπ−1

2 (Ω′) ∩ K are compact.
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Hereπ1 andπ2 are projections ofΩ × Ω onto the first and second
factors.

For example the diagonal∆ = {(x, x) : xǫΩ} is proper. Most of the
proper subsets we will be considering are neighbourhoods ofsubsets of
the diagonal.

Figure 4.1: A proper set

Definition 4.23. An operator T: C∞o (Ω) → C∞(Ω) is said to be prop-
erly supported, if its distribution kernel K has proper support.

Exercise.Let T =
∑

aα(x)Dα be a differential operator onΩ. Computer
the distribution kernel K of T and show that supp K is a subset of the
diagonal. Thus T is properly supported.

If T is properly supported then it mapsC∞o into itself, since supp
Tu ⊂ π1(π−1

2 (suppu) ∩ suppK), as is easily seen from the formula
Tu(x) =

∫

K(x, y)u(y)dy. More generally, for anyΩ′ ⊂⊂ Ω, there exists
Ω
′′ ⊂⊂ Ω such that the values ofTuonΩ′ depend only on the values of

u onΩ′′ namely,Ω′′ = π2(π−1(Ω′) ∩ suppK). From this it follows that
T can be extended to a map fromC∞(Ω) to itself. In fact, ifuǫC∞(Ω)
andΩ′,Ω′′ are as above, we define Tu onΩ′ by

Tu|Ω′ = T(φu)|Ω,

whereφǫC∞(Ω) andφ = 1 onΩ′′. This definition is independent of the95

choice ofφ and gives the same result on the intersection of twoΩ′s; so
Tu is well defined on all ofΩ.

If T is a properly supported pseudo differential operator, so thatT
extends to a map fromE′(Ω) toD′(Ω), the same arguments show thatT
mapsE′(Ω) into itself and extends further to a map ofD′(Ω) to itself.

SupposeT andS are properly supported operators onC∞(Ω) with
distribution kernelsK andL which areC∞ off the diagonal. ThenTS
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is an operator onC∞(Ω) with distribution kernelM formally given by
M(x, y) =

∫

K(x, z)L(z, y)dz. In fact, if x , y, sinceK(x, .) andL(.,Y)
are smooth except atx andy, the productK(x, .)L(.,Y) is a well defined
element ofE′, and the formulaM(x, y) =< K(x, .)L(., y), 1 > displaysM
as aC∞ function off the diagonal.

Proposition 4.24. SuppM is proper. Thus, TS is properly supported.

Proof. Clearly,
SuppM ⊂ {(x, y) : π2(π−1

1 (x) ∩ suppK) ∩ π1(π−1
2 (y) ∩ suppL) , φ}

SupposeA ⊂ Ω is compact and setB = π2(π−1
1 (A) ∩ suppK), thenB is

compact and

π−1
1 (A) ∩ suppM ⊂ A×

{

y : B∩ π1(π−1
2 (y) ∩ suppL) , φ

}

= A×
{

y : π−1
1 (B) ∩ π−1

2 (y) ∩ suppL , φ
}

= A× π2(π−1
1 (B) ∩ suppL)

which is compact. Likewiseπ−1
2 (A) ∩ suppM is also compact. �

Exercise .Suppose A⊂ (Ω × Ω) is proper. Show that there exists a96

properly supportedφǫC∞(Ω×Ω) such thatφ = 1 on A. (Hint: Let{φ j} ⊂
C∞o (Ω ×Ω) be a partition of unity onΩ×Ω and letφ =

∑

A∩suppφ j

= φφ j ).

5 ψdo′sDefined by Multiple Symbols

We have arranged our definition of pseudo differential operators to agree
with the usual convention for differential operators, according to which
differentiations are performed first, followed by multiplication by the
coefficients. However, in some situations (for example, computing ad-
joints), it is convenient to have a more flexible setup which allows mul-
tiplication operators both before and after differentiations. We there-
fore, introduce the following apparently more general class of operators
(which, however, turns out to coincide with the class ofψDO, modulo
smoothing operators).
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Definition 4.25. For Ω open inRn and m real, we define theclass of
multiple symbols of ordermonΩ,

Sm(Ω ×Ω) = {aǫC∞(Ω × Rn ×Ω) : ∀α, β,∀Ω′ ⊂⊂ Ω,∃c = cαβΩ′

such that sup
x,yǫΩ′

|Dβ
x,yDα

ξ
a(x, ξ, y)| ≤ c(1+ |ξ|)m−|α|}

WhenaǫSm(Ω ×Ω) we define the operatorA = a(x,D, y) by

Au(x) =
x

e2πi(x−y).ξa(x, ξ, y)u(y)dydξ

Here the integral must be interpreted as an iterated integral with in-
tegration performed first iny then inξ as it is not absolutely convergent
as a double integral.

We observe that ifa(x, ξ, y) = a(x, ξ) is independent ofy, then97

A = a(x,D); thus this class of operators include theψDO′s. We also
observe that differenta′s may give rise to same operator. For example,
if a(x, ξ, y) = φ(x)ψ(y) with ψ, φǫC∞o (Ω) and suppψ ∩ suppφ = φ, then
aǫso(Ω ×Ω) anda(x,D, y) = 0.

Definition 4.26. Given aǫSm(Ω ×Ω) we define
∑

a

= {(x, y)ǫΩ ×Ω : (x, ξ, y)ǫ supp a for someξǫRn}.

Proposition 4.27. Let aǫSm(Ω×Ω) and let K be the distribution kernel
of A= a(x,D, y). Then

i) SuppK ⊂ ∑

a, and

ii) if the support of K is proper, then there exists a′ǫSm(Ω×Ω) such that
a′(x, ξ, y) = a(x, ξ, y) when(x, y) is near the diagonal inΩ ×Ω,∑a,

is proper and a(x,D, y) = a′(x,D, y).

Proof. The kernelK is given by

< K,w >=
y

e2πi(x−y).ξa(x, ξ, y)w(x, y)dydξdx.

From this, we see that< K,w > . = 0 whenever suppw ∩ ∑

a = φ.
Therefore, suppK ⊂ ∑

a. This proves (i). �
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To prove (ii), choose a properly supportedφǫC∞(Ω ×Ω) with φ = 1
on ∆ ∪ suppK, ∆ being the diagonal. Seta(x, ξ, y) = φ(x, y)a(x, ξ, y).
Then

∑

a,⊂ suppφ and hence
∑

a, is proper. Alsoa′(x, ξ, y) = a(x, ξ, y)
when (x, y) is near the diagonal. Now,

< a(x,D, y)u, v > =< K, v⊗ u >

=< φK, v⊗ u >

=< K, φ(v⊗ u) >

=

y
e2πi(x−y)·ξa(x, ξ, y)φ(x, y) × v(x)u(y)dydξdx

=

y
e2πi(x−y).ξa′(x, ξ, y)u(y)dydξdx

=< a′(x,D, y)u, v > .

98

Sincev is arbitrary, we havea(x,D, y) = a′(x,D, y).

Theorem 4.28. Suppose aǫSm(Ω × Ω) and A = a(x,D, y) is prop-
erly supported. Let p(x, ξ) = e−2πix.ξA(e2πi(.).ξ)(x). Then pǫSm(Ω) and
p(x,D) = A. Further,

p(x, ξ) ∼
∑

a

1
α!
∂αξDα

ya(x, ξ, y)|y=x.

Proof. For u inC∞o (Ω), we have

u(x) =
∫

e2πix.ξ û(ξ)dξ.

Therefore, by linearity and continuity ofA,

Au(x) =
∫

A(e2πi(.).ξ)(x)û(ξ)dξ

=

∫

e2πix.ξp(x, ξ)û(ξ)dξ = p(x,D)u(x).

�
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By the proposition above, we can modify a so that
∑

a is proper with-
out affectingA or the behaviour of a along the diagonalx = y (which
is what enters into the asymptotic expansion ofp). Set b(x, ξ, y) =
a(x, ξ, x + y). Then as a function ofy, b has compact support. Indeed,99

for fixed x andξ, if yǫ{y′ : b(x, ξ, y′) , 0} then x + yǫπ2(π−1
1 (x) ∩ ∑

a)
which is compact. Now,

p(x, η) = e−2πix.η
x

e2πi(x−y).ξb(x, ξ, y− x)e2πiy.ηdydξ

= e−2πix.η
x

e2πiz.ξb(x, ξz)e2πi(z+x).ηdzdξ

=

∫

b̂3(x, ξ, ξ − η)dξ =
∫

b̂3(x, ξ + η, ξ)dξ,

where b̂3 is the Fourier transform ofb in the third variable. Since
b(x, ξ, .) is in C∞o , this calculation is justified and̂b3(x, η, ξ) is rapidly
decreasing in the variableξ.

More precisely, sinceaǫSm(Ω ×Ω), we have

(4.29) |Dβ
xDα

η b̂3(x, η, ξ)| ≤ cαβN(1+ |η|)m−|α|(1+ |ξ|)−N.

Since
(

1+ |η|
1+ |ξ|

)s

≤ (1+ |ξ − η|)|s|, takingη + ξ instead ofη

we have (1+ |ξ + η|)s ≤ (1+ |ξ|)s(1+ |η|)|s|. If we use this in

|Dβ
xDα

η b̂3(x, ξ + η, ξ)| ≤ cαβN(1+ |ξ + η|)m−|α|(1+ |ξ|)−N

we get

|Dβ
xDα

η b̂3(x, ξ + η, ξ)| ≤ c′αβN(1+ |ξ|)−N+m−|α|(1+ |η|)|m|+|α|.

If we takeN so that−N +m− |α| < −n we have

|Dβ
xDα

η p(x, η)| = |
∫

Dβ
xDα

η b̂3(x, ξ + η, ξ)dξ|(4.30)

≤ cαβ(1+ |η|)|m|+|α|
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On the other hand, taking the Taylor expansion ofb̂3(x, ξ + η, ξ) in100

the middle argument about the pointη, (4.29) gives

|b̂3(x, ξ + η, ξ) −
∑

|α|<k

∂αη b̂3(x, η, ξ)
ξα

α!
|

≤ C|ξ|k sup
|α|=k
0≤t≤1

|∂αη b̂3(x, η + tξ, ξ)|

≤ CN|ξ|k sup
0≤t≤1

(1+ |η + tξ|)m−k(1+ |ξ|)−N.

When|ξ| < 1
2 |η|, takingN = k we get

|b̂3(x, ξ + η, ξ) −
∑

|α|<k

∂αη b̂3(x, η, ξ)
ξα

α!
| ≤ ck(1+ |η|)m−k.

When|ξ| ≥ 1
2
|η|, we have

|b̂3(x, ξ + η, ξ) −
∑

|α|<k

∂αη b̂3(x, η, ξ)
ξα

α!
| ≤ CN(1+ |ξ|)m+k−N.

(Actually, the exponent of (1+ |ξ|)) can be taken asm− N when
m− k ≥ 0 and whenm− k < 0). Also we have

∫

∂αη b̂3(x, η, ξ)ξαdξ = Dα
Y

∫

e2πiY·ξ∂αη b̂3(x, η, ξ)dξ|Y=0

= Dα
Y∂

α
ηb(x, η, y)|Y=0

= Dα
Y∂

α
ηa(x, η, y)|y=x.

So finally

|p(x, η) −
∑

|α|<k

Dα
y∂

α
ηa(x, η, y)

1
α!
|y=x|

= |
∫

b̂3(x, ξ + η, ξ)dξ −
∑

|α|<k

1
α!

∫

∂αη b̂3(x, η, ξ)ξαdξ|
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≤ Ck

∫

|ξ|< |η|2

(1+ |η|)m−kdξ +CN

∫

|ξ|≥ |η|2

(1+ |ξ|)m+k−Ndξ.

Now 101
∫

|ξ|< |η|2

Ck(1+ |η|)m−kdξ = C′k(1+ |η|)m−k|η|n ≤ C′k(1+ |η|)m−k+n

In the second integral, we takeN > n+m+ k so that
∫

|ξ|≥ |η|2

CN(1+ |ξ|)m−Ndξ ≤ C′N(1+ |η|)m−N+n,

by the usual integration in polar coordinates. Therefore, sinceN ≥ k we
obtain

|p(x, η) −
∑

|α|<k

1
α!

Dα
yσ

α
ηa(x, η, y)|x=y| ≤ Ck(1+ |η|)|µk

with µk = m− k+ n.
Combining this with (4.30), we see that all the conditions ofTheo-

rem 4.20 are satisfied, so we are done.

Corollary 4.31. If Pǫψm, there exists a Qǫψm such that Q is properly
supported and P− Q is smoothing.

Proof. If P = p(x,D) chooseφǫC∞(Ω × Ω) which is properly sup-
ported andφ = 1 near the diagonal. Seta(x, ξ, y) = φ(x, y)p(x, ξ). Then
aǫSm(Ω × Ω) and by construction

∑

a is proper. Soa(x,D, y) = Qǫψm.
If Kp andKQ denote the distribution kernels ofP andQ then it is eas-
ily seen thatKQ = φKp. This shows thatKQ − Kp vanishes near the
diagonal: so, by Theorem 4.10,KQ − Kp is C∞. Therefore,Q − p is
smoothing. �

Remark 4.32.The idea of multiple symbols can clearly be generalised.
For example, ifaǫC∞(Ω × Rn × Ω × Rn) satisfies estimates of the form
|Dv

x,yD
α
ξ
Dβ
ηa(x, ξ, y, η)| ≤ C(1 + η|)m2−|β|(1+ |ξ|)m1−|α|, one can define an102

operatorA = a(x,D, y,D) by
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Au(x) =
y

e2πi(x.ξ−y.ξ+y.η)a(x, ξ, y, η)û(η)dηdydξ

which agree with our previous definitions, if a is independent of the last
one or two variables. As one would expect, under reasonable restriction
on suppa, it turns out thatAǫψm1+m2(Ω). The reader may wish to amuse
himself by working this out and computing the symbol ofA.

6 Products and Adjoint of ψDO′S

We are now in a position to compute products and adjoints ofψDO′S.
First we clarify our terminology. LetT S be linear operators from
C∞o (Ω) into C∞(Ω). We say thatS = Tt if < Tu, v >=< u,S u >

for u, vǫC∞o (Ω) and we say thatS = T∗ if < Tu, v̄ >=< u, S̄ v > for
u, vǫC∞o (Ω).

Remark 4.33.If T is properly supported, thenTt andT∗ are also prop-
erly supported. Indeed, ifK is the distribution kernel ofT, then the dis-
tribution kernel ofTt is Kt and that ofT∗ is K∗ whereKt(x, y) = K(y, x)
andK∗(x, y) = K(y, x).

We recall that ifPǫψm(Ω), we denote the corresponding symbol in
Sm(Ω) byσp.

Theorem 4.34. If Pǫψm(Ω) is properly supported, then Pt,P∗ǫψm(Ω)

andσpt(x, ξ) ∼ ∑

α

(−1)|α|

α!
∂α
ξ
Dα

xσp(x,−ξ),

σp∗(x, ξ) ∼
∑

a

1
α!
∂αξ Dα

xσ̄p(x, ξ).

Proof. Foru, vǫC∞o (Ω), we have 103

< Pu, v > =
x

e2πix,ξp(x, ξ)û(ξ)v(x)dξdx

=

∫ (∫

e2πix,ξp(x, ξ)v(x)dx

)

û(ξ)dξ
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=

∫

g(ξ)û(ξ)dξ

where

g(ξ) =
∫

e2πix,ξp(x, ξ)v(x)dx.

�

By Corollary 4.6,g us a rapidly decreasing function. Thus

< Pu, v >=
∫

gû =
∫

uĝ =< u,Pt
v >

so that

Ptv(y) = ĝ(y) =
x

e2πi(x−y).ξ p(x, ξ)v(x)dxdξ(4.35)

=

x
e2πi(y−x).ξ p(x,−ξ)v(x)dxdξ

= a(x,D, y)v(y)

wherea(x, ξy) = p(y. − ξ). Therefore, by Theorem 4.28,

Ptǫψm(Ω) andσPt(x, ξ) ∼
∑

a

(−1)|α|

α!
∂αξDα

xσP(x,−ξ).

The assertions aboutP∗ follows along similar lines

Theorem 4.36. If Pǫψm1(Ω) and Qǫψm2(Ω) are properly supported,
then QPǫψm1+m2(Ω) and

σQP(x, ξ) ∼
∑

α

1
α!
∂αξσQ(x, ξ)Dα

xσp(x, ξ).

Proof. SinceP = (Pt)t, we have104

(Pu)(x) =
x

e2πi(x−y)·ξσt
P(y,−ξ)u(y)dydξ

by (4.35). �
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In other words

(Pu)ˆ(ξ) =
∫

e−2πiy·ξσPt(y,−xi)u(y)dy.

Therefore,

(QP)u(x) =
x

e2πi(x−y)·ξσQ(x, ξ)σPt(y,−xi)u(y)dydξ

= a(x,D, y)u(x)

wherea(x, ξ, y) = σQ(x, ξ)σPt(y,−ξ). ClearlyaǫSm1+m2(Ω × Ω) which
impliesQPǫψm1+m2(Ω). Moreover

σQP(x, ξ) ∼
∑

α

1
α!
∂αξDα

y (σQ(x, ξ)σpt (y,−ξ))|y=x

∼
∑

α

1
α!

∑

β+ν=α

α

β!ν!
∂
β

ξ
σQ(x, ξ)∂νξD

α
YσPt(x,−ξ)

∼
∑

α,ν

∑

δ

(−1)|δ|

ν!β!δ!
∂
β

ξ
σQ(x, ξ)Dβ+ν+δ∂ν+δx ∂ν+δξ σP(x,−ξ)

∼
∑

β,λ















∑

ν+δ=λ

(−1)|δ|

ν!β!δ!















1
β!
∂
β

ξ
σQ(x, ξ)Dβ+λ

x ∂λξσp(x, ξ)

But
∑

v+δ=λ

(−1)|δ|

v!δ! = (x0 − x0)λ with x0 = (1, 1, . . . , 1)

=















1 if λ = 0

0 if λ , 0

ThereforeσQP(x, ξ) ∼ ∑

β

1
β!
∂
β

ξ
σQ(x, ξ)Dβ

xσp(x, ξ).

Corollary 4.37 (PRODUCT RULES FORψDO′S).
If Q = q(x,D)ǫψm(λ) and fǫC∞(Ω), then for any positive integer N,105

q(x,D)( f u) =
∑

|α|<N

1
α!

Dα f [(∂α
ξ
q)(x,D)u] + TNu where TNǫψm−N(Ω).
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Corollary 4.38. The correspondence p→ p(x,D) and P→ σp are *
homomorphisms modulo lower order term i.e., if pǫSm1(Ω) and qǫSm2

(Ω), then(pq)(x,D)−p(x,D)q(x,D)ǫψm1+m2−1(Ω) and p(x,D)∗− p̄(x,D)
ǫψm1−1 and also, if Pǫψm1(Ω) and Qǫψm2(Ω), then σPQ − σPσQ

ǫSm1+m2−1 (Ω), σP∗ − σ̄ + pǫSm1−1(Ω).

Corollary 4.39. If Pǫψm1(Ω) and Qǫψm2 (Ω), then[P,Q] = PQ− QP

ǫ ψm1m2−1(Ω) andσ[P,Q] −
1

2πi
{σP, σQ}ǫSm1m2−1(Ω) where{ f , q} stands

for the Poisson bracket defined by

{ f , q} =
∑

(

∂ f
∂ξ j

∂g
∂x j
− ∂ f
∂x j

∂g
∂ξ j

)

.

Following the philosophy that smoothing operators are negligible
it is a trivial matter to extend these results to non-properly supported
operators.

SupposePǫψm(Ω) is not properly supported. By corollary 4.31, we
can writeP = P1+swhereP1 is properly supported andS is smoothing.
ThenPt

= Pt
1 + S wherePt

1 is given by Theorem 4.34 andSt is again
smoothing (c.f. Remark 4.33). Likewise forP∗. If Q is a properly
supportedψDO, the productsPQ andQP are well defined as operators
from C∞o (Ω) to C∞(Ω). Again, we havePQ = P1Q + S QandQP =
QP1+Qs; P1Q andQP1 are described by Theorem 4.36, whileS Qand
QS are smoothing.

7 A Continuity Theorem for ψ Do on Sobolev
Spaces

We now state and prove a continuity theorem for pseudo defferential106

operators acting on Sobolev spaces. We are indebted to Dr P.N. Srikanth
for simplifying our original argument.

Theorem 4.40.Suppose P= p(x,D)ǫψm(Ω). Then

i) P : Hs→ Hloc
s−m(Ω) continuous for all sǫR.
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ii) If P is properly supported, P: Hloc
s (Ω) → Hloc

s−m(Ω) continuously
for all sǫR

Proof. To established (i), we must show that the mapu → φPu is
bounded fromHs → Hs−m for any φǫC∞o (Ω). Replacingp(x, ξ) by
φ(x)p(x, ξ) we must show: �

(4.41) if pǫsm(R) and p(x, ξ) = 0 for x outside a compact set, then
p = p(x,D) is bounded fromHs andHs−m for everys in R.

Suppose then thatuǫHs. ThenpuǫE′, and from the definition ofP
on distributions, we see that

(Pu)̂(η) =< Pu, e−2πiη.(.) >

=

x
e2πi(ξ−η).xp(x, ξ)û(ξ)dxdξ

=

∫

p̂1(η − ξ, ξ)û(ξ)dξ

and hence, ifVǫS,

< Pu, v̄ > =
∫

(Pu)̂v̂ =
x

K(η, ξ) f (ξ)ḡ(η)dξdη

where f (ξ) = (1+ |ξ|2)s/2û(ξ)

g(η) = (1+ |η|2)(m−s)/2v̂(η)

andK(η, ξ) = p̂1(η − ξ, ξ)(1+ |ξ|2)−s/2(1+ |η|2)(s−m)/2. 107

We wish to estimateK(η, ξ). For any multi-indexα, since
p(., ξ)ǫC∞o , we have

|ζα p̂1(ζ, ξ)| = |
∫

(Dα
xe−2πix.ζ) p(x, ξ)dx|

= |
∫

e−2πix.ζ)(Dα
x p(x, ξ)dx|

≤ Cα(1+ |ξ|)m,

so that for any positive integerN,

|p̂1(ζ, ξ)| ≤ CN(1+ |ξ|)m(1+ |ζ |)−N
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and hence

|K(η, ξ)| ≤ CN(1+ |ξ|)m−s(1+ |η|)s−m(1+ |ξ − η|)N

≤ CN(1+ |ξ|)|m−s|−N

If we takeN > n+ |m− s|, we see that
∫

|K(η, ξ)|dη ≤ C,
∫

|K(η, ξ)|dξ ≤ C.

Therefore by Theorem 1.1 and the Schwarz inequality,

| < Pu, v̄ > | ≤ C|| f ||2||g||2 = C||u||(s) ||v||(m−s).

From this, it follows that||Pu||(s−m) ≤ C||u||(s) for uǫHs which estab-
lishes (4.41) and hence (i).

Now supposeP is properly supported anduǫHloc
s (Ω). If φǫC∞o (Ω)

there existsΩ′ ⋐ Ω such that the values of Pu on suppφ depend only
the values ofu onΩ. Thus if we pickφ′ǫC∞o (Ω) with φ′ = 1 onΩ′, we
haveφPu = φP(φ′u). But φ′uǫHs and (4.41)φP is bounded fromHs to108

Hs−m. This establishes (ii) and completes the proof.

8 Elliptic Pseudo Differential Operators

Definition 4.42. Pǫψm(Ω) is said to be elliptic of order m if|σP(x, ξ)| ≥
CΩ, |ξ|m for large |ξ|, for all xǫΩ′,Ω′ ⋐ Ω.

Definition 4.43. If Pǫψm(Ω), a left (resp. right ) parametrix ofP is a
ψDOQ such that QP− I(resp. PQ -I) is smoothing.

Theorem 4.44. If Pǫψm is elliptic of orderm and properly supported,
then there exists a properly supportedQǫψ−m which is a two-sided para-
metrix for P.

Proof. Let P = p(x,D). We will obtain Q = q(x,D) with q ∼
∞
∑

j=0
q j

where theq′js are defined recursively. Letζ(x, ξ) be aC∞ function such
that ζ(x, ξ) = 1 for largeξ andζ(x, ξ) = 0 in a neighbourhood of the
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zeros ofp. Defineqo(x, ξ) =
ζ(x, ξ)
p(x, ξ)

. Thenqoǫs−m. Let Qo = qo(x,D).

We have

σQp
O
= qp

0 mod S−1
= 1 modS−1

= 1+ r1 with r1ǫS
−1.

�

Let q1 =
−r1ζ

p
,Q1 = q1(x,D). Then

σ(Q0+Q1)P = σQp
O
+ σQp

1
= 1+ r1 − r1ζ mod S−2

= 1+ r2 with r2ǫS
−2.

Let q1 =

−r2ζ

p
etc. Having determinedq1, q2, . . .q j so that

σ(Q0+Q1+···Q j )P = 1+ r j+1, r j+1ǫS
−( j+1)

set q j+1 =
−r j+1ζ

p
.

109

Let Q be a properly supported operator with symbolq ∼
∞
∑

j=0
q j .

ThenσQP = 1 modS−∞, i.e., QP− I is smoothing. ThusQ is a left
parametrix. In the same way, we can construct a right parametrix Q′.
Then ifS = QP− I andS′ = PQ′ − I , we have

QPQ′ = S Q′ + Q′ = QS′ + Q.

So Q − Q′ = S Q′ − QS’ is smoothing. HenceQ is a two sided
parametrix.

Exercise.What happens if P is not properly supported? (cf. the remarks
at the end of §6).

The left parametrices are used to prove regularity theoremsand the
right parametrices are used to prove existence theorems.

Indeed, we have:
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Corollary 4.45 (ELLIPTIC REGUIARITY THEOREM). If P is elliptic
of order m, uǫD′(Ω),PuǫHloc

s (Ω) implies uǫHloc
s+m(Ω). In particular, P is

hypoelliptic.

Proof. Let Q be a left parametrix and setS = QP− I . Thenu = QPu−
S u. SincePuǫHloc

s (Ω) and Q is properly supported,Qǫψ−m we have
QPuǫHloc

s+m(Ω) by Theorem 4.40. AlsoS uǫC∞ sinceS is smoothing.
HenceuǫHloc

s+m(Ω). �

Theorem 4.46. Every elliptic differential operator is locally solvable.
In fact, if P is elliptic onΩ, f ǫD′(Ω) and xoǫΩ, there exists uǫD′(Ω)110

such that Pu= f in a neighbourhood of xo. (Of course, if fǫC∞, then
uǫC∞ near xo, by the previous corollary).

Proof. BY cutting f off away fromxo, we can assume thatf ǫE′ and
hencef ǫHs for somes. Let Q be a properly supported parametrix forP
and letS = PQ− I . ThenS is also properly supported. IfΩ1 ⊂⊂ Ω is
a neighbourhood ofxo then there existsΩ2 ⊂⊂ Ω such that the values
of Su onΩ1 depend only on the values ofu onΩ2. Pickφ1, φ2ǫC∞o (Ω)
such thatφ j ≡ 1 onΩ j , j = 1, 2 and setTu= φ1S(φ2u). �

Now observe the following :

i) Tu= suonΩ1.

ii) T : Hs→ C∞o (suupφ1) continuously.

From (ii) and the Arzela -Ascoli theorem, it follows that if (uk)
is a bounded sequence inHs′(Tuk) has a convergent subsequence in
C∞o (suupφ1) and hence inHs. Therefore,T is compact onHs. So
the equation (T + I )u = f can be solved iff is orthogonal (with respect
to the pairing ofHs andH−s) to the spaceN = {g : (T∗ + I )g = 0}. This
spaceN is a finite dimensional space ofC∞ functions so we can always
make this happen by modifyingf outside a small neighbourhood ofxo.

Indeed, pick a basisg1, g2, . . . , gν for N and pick a neighbourhoodU
of xo so small thatg1, . . . , gν are linearly independent as functionals on
C∞o (Ω\U). (Such aU exists; otherwise, by a limiting argument using the
local compactness ofN, we could find a nontrivial linear combination of
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g1, . . . , gν supported at{xo}, which is absurd). Then we can makef ⊥ N
by adding tof a function inC∞o (Ω\U). But then

PQu= (I + S)u = (I + T)u onΩ1 and (I + T)u = f

in a neighbourhood ofxo. SoQu solves the problem. 111

9 Wavefront Sets

We now introduce the notion of wavefront sets, which provides a precise
way of describing the singularities of distributions: it specifies not only
the points at which a distribution is not smooth but the directions in
which it is not smooth.

All pseudo differential operators encountered in this section will be
presumed to be properly supported, and by “ψDO” we shall always
mean “properly supportedψDO”.

Definition 4.47. (i) Let Ω be an open set inRn. Then we define
To
Ω = Ω × (Rn\{0}). (In coordinate - invariant terms, ToΩ is

the cotangent bundle ofΩ with the zero section removed).

(ii) A set S⊂ To
Ω is calledconic if (x, ξ)ǫS⇒ (x, rξ)ǫS,∀r > 0

(iii) Suppose P= p(x,D)ǫψm(Ω). Then(xo, ξo)ǫTo
Ω is said to be non-

characteristic for P if|p(x, ξ)| ≥ c|ξ|m for |ξ| large and(x, ξ) in
some conic neighbourhood of(xo, ξo).

(iv) The characteristic variety of P, denoted by char P, is definedby
char P= {(x, ξ)ǫTo

Ω : (x, ξ) is characteristic for p}.

(v) Let uǫD′(Ω). The wavefront set of u, denoted by WF(u) is defined
by

WF(U) = ∩{ charP : Pǫψ(Ω),PuǫC∞(Ω)}.
The restrictionPǫψ0(Ω) in the definition ofWF(u) is merely a con- 112

venient normalisation. We could allowψDO of arbitrary order with-
out changing anything, for ifPǫψm(Ω) andQǫψ−m(Ω) is elliptic, then
QPǫψ0(Ω), char (QP) = char (P)(by Theorem 4.36), andQPuǫC∞ if
and only ifPuǫC∞ (by Corollaries 4.11 and 4.45).
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Exercise.When p=
∑

|α|=≤m
aα(x)ξα show that the characteristic variety

of the differential operator p= P(x,D) is

char P= {(x, ξ) :
∑

|α|=m

aα(x)ξα = 0}.

The motivation forWF(u) is as follows. IfuǫE′, to say thatu is not
smooth in the directionξo should mean that ˆu is not rapidly decreasing
on the throughξo. On the other hand, ifPuǫC∞o then (Pu)̂ should be
rapidly decreasing everywhere.

If these conditions both hold, thenξo must be characteristic forP.
Localising these ideas, we arrive atWF(u).

Thus (xoξo)ǫWF(u) means roughly thatu fails to beC∞ at xo in the
directionξo. For another interpretation of this statement, see Theorem
4.56 below. For the present, we show thatWF(u) is related to sing
suppu as it should be. We denote the projectionTo

Ω ontoΩ by π.

Theorem 4.48.For uǫD′(Ω), singsuppu = π(WF(u)).

Proof. Supposex0 < singsuppu. Then there existsφǫC∞o with φ = 1
nearxo andφuǫC∞o . But multiplication byφ is aψDO of order 0. Call113

it Pφ. Then charPφ = π−1(φ−1(0)). Sinceφ = 1 nearxo, π
−1(φ−1(0))

is disjoint fromπ−1(xo). Therefore,π−1(xo) ∩ WF(u) = φ, i.e., xo <

π(WF(u)). �

Conversely, supposexo < π(WF(u)). Then for eachξ with |ξ| = 1,
there existsPǫψ0(Ω) with PuǫC∞(Ω) and (xo, ξ) < charP.

Each charP is a closed conic set; so, by the compactness of the unit
sphere, there exists a finite number ofψDO′s say,P1, . . .PNǫψ

0(Ω) with
P juǫC∞(Ω) and



















N
⋂

j=1

char P j



















∩ π−1(xo) = φ. Set P =
N

∑

j=1

P∗j P j .

ThenP is elliptic nearxo andPuǫC∞(Ω). Therefore by Corollary
4.45,u is C∞ nearxo, i.e., xo < singsuppu.
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Definition 4.49. Let P= p(x,D)ǫψm(Ω) and U be an open conic set in
To
Ω. We say that P has order−∞ on U, if, for all closed conic sets

K ⊂ U with π(K) compact for every positive integer N and multi-indices
α andβ, there exist constants CαβKN such that

|Dβ
xDα

ξ p(x, ξ)| ≤ CαβKN(1+ |ξ|)−N, (x, ξ)ǫK.

The essential supportof P is defined to be the smallest closed conic
set outside of whichP has order−∞.

Exercise .If P is a differential operator whose coefficients do not all
vanish at any point ofΩ, show that the essential support of P is TΩ.

Proposition 4.50. Ess.suppPQ⊂ Ess.suppP∩ Ess.suppQ. 114

Proof. This follows immediately from the expansion

2 σPQ ∼
∑ 1

α!
∂αξσPDα

xσC.

Lemma 4.51. Let (xo, ξo)ǫTo
Ω and U be any conic neighbourhood of

(xo, ξo). Then there exists a Pǫψ0(Ω) such that(xo, ξo) < char P but Ess.
suppP ⊂ U.

Proof. Choosepo(ξ)ǫC∞ with the following properties:

i) po(ξ) = 1 for ξ nearξo, po(ξ) = 0 outside{ξ : (xoξ)ǫU} and

ii) po is homogeneous of degree 0 for large|ξ|.

�

Then takeφǫC∞(π(U)) with φ = 1 nearxo and putp(x, ξ) = po(ξ)
φ(x). This will do the job.

The following theorem and its corollary are refinements of Corol-
lary 4.11 (pseudo local property ofψDO) and Corollary 4.45 (elliptic
regularity theorem).

Theorem 4.52. If Pǫψm(Ω) and uǫD′(Ω), then WF(Pu) ⊂WF(u)∩ Ess.
suppP.
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Proof. If ( xo, ξo) < Ess. suppP, by Lemma 4.51, we can find aQǫψ0

such that (xo, ξo) < char Q and Ess. suppP∩ Ess. suppQ = φ Then
QPǫψ−∞ by Proposition 4.50, so thatQPǫC∞. But this implies that
(xo, ξo) <WF(Pu). �

Suppose now that (xo, ξo) < WF(u). Then there existsAǫψ0 with
AuǫC∞ and (xo, ξo) < charA.

Claim. There exist operators B,Cǫψ0 with (xo, ξo) < char B and BP=115

CA modψ−∞.

Granted this,BPu= CAu+ (C∞ function) ǫC∞ which implies that
(xo, ξo) <WF(Pu).

To prove the claim, letAo be elliptic with σA = σA on a conic
neighbourhoodU of (xo, ξo). Then Ess. supp(A − Ao) ∩ U = φ. By
Lemma 4.51, chooseB with (xo, ξo) < char B and Ess. suppB ⊂ U.
Let Eo be a parametrix forAo and setC = BPEo.ThenCA = BPEoA =
BPEo(A− Ao) + BPEoAo. SinceEoAo = I modψ−∞ andBPEo(A− Ao)
also belongs toψ−∞ (by Proposition 4.50 again),CA = BP modψ−∞.
This completes the proof.

Corollary 4.53. If P is elliptic, then WF(u) =WF(Pu)).

Proof. By the theorem,WF(Pu) ⊂WF(u). If E is a parametrix for

P, thenWF(u) =WF(EPu+C∞ function)
=WF(EPu) ⊂WF(Pu), by the theorem again

Hence WF(u) =WF(Pu). 2

Theorem 4.56.Let uǫD′(D). Then(xo, ξo) <WF(u) if and only if there
existsφǫC∞o (Rn) such thatφ(xo) = 1 and (φu)̂ is rapidly decreasing on
a conic neighbourhood ofξo.

Proof. (Sufficiency) If such aφ exists, choosepǫS0, p(x, ξ) = p(ξ)
with p(ξ) = 1 nearξo and p(ξ) = 0 outside the region where (φu)̂ is
rapidly decreasing. Thenp(φu)̂ǫS and hencep(D)(φu)ǫS wherep(D) =
p(x,D). The operatorPu = φp(D)(φu) is a pseudo differential operator116

of order 0 with symbolφ(x)2p(ξ) moduloS−1, so (xo, ξo) < charP. This
implies that (xo, ξo) <WF(u). �
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(Necessity) Suppose (xo, ξo) < WF(u). Then there exists a neigh-
bourhoodU of xo in Ω such that (xo, ξo) < WF(u) for all xǫU. Choose
φǫC∞o (U) such thatφ(xo) = 1. Then (xo, ξo) <WF(φu) for all xǫRn. Let

∑

= {ξ : (x, ξ)ǫWF(φu) for somex}.

This
∑

does not containξo and is a closed conic set. There exists
p(ξ)ǫS0, p = 1 on a conic neighbourhood ofξo and p = 0 on a neigh-
bourhood of

∑

, say
∑

o. Sincep(ξ) = 0 on
∑

o,Ess. suppp(D) ∩ (Rn ×
∑

o)c and hence Ess. suppp(D) ∩ WF(φu) = φ. But this gives Ess.
supp(p(D)φu) = φ. Sop(D)φuǫC∞. We now claim that p(D)φuǫS.

Accepting this, we see thatp(φu)̂ǫS and in particular, (φu)ˆ is rapidly
decreasing nearξo. To prove theclaim, observe that

Dβ(ξαp(ξ)) = 0(1+ |ξ|)|α|−|β|ǫL2 if |α| − |β| < −n
2
.

So if we putK(x) = p̃(x), xβDαK(x)ǫL2 if |α| − |β| < −n
2. An application

of Leibniz’s rule and the the Sobolev imbedding theorem shows that
xβDαK(x)ǫL∞ if |β| − |α| > −3n

2 + 2. HenceK and all its derivatives are
rapidly decreasing at∞ and sinceφuǫE′, the same is true ofp(D)φu =
φu ∗ K.

10 Some Further Applications of Pseudo Defferen-
tial Operators

We conclude our discussion of pseudo differential operators by giving117

brief and informal descriptions of some further applications. We recall
that anmth order ordinary differential equationu(m)

= F(x, u, u(1), . . .

u(m−1)) can be reduced to the first order system

d
dx



































u1

u2
...

um



































=



































u2

u3
...

F(x, u1, . . . , um)



































simply by introducing the derivatives ofu of order< m as new vari-
ables, and this reduction is frequently a useful technical device. To do
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something similar formth order partial differential equations, however,
is more problematical. If one simply introduces all partialderivatives of
u of order< mas new variables and writes down the first order differen-
tial relations they satisfy, one usually obtains more equations than there
are unknowns, because of the equality of the mixed partials.Moreover,
such a reduction usually does not preserve the character of the original
equation. For example take the Laplace equation in two variables :

∂2u

∂x2
+
∂2u

∂y2
= f .

puttingu1 = u, u2 =
∂u
∂x
, u3 =

∂

∂y
we have a 3× 3 system given by

∂u1

∂x
− u2 = 0

∂u1

∂y
− u3 = 0

∂u2

∂x
+
∂u3

∂y
= f .

118

The original equation is elliptic. But consider the matrix of the top
order symbols of the 3× 3 system obtained above. The matrix is given
by

2πi





















ξ 0 0
η 0 0
0 ξ η





















which is not invertible. This means that the first order system is not
elliptic.

There is, however, a method, due to A.P. CALDERON, of reducing
an mth order linear partial differential equation to anm× m system of
first order pseudo differential equations which preserves the character-
istic variety of the equation in a sense which we shall make precise be-
low. In this method, one of the variables is singled out to play a special
role, so we shall suppose that we are working onRn+1 with coordinates
(x1, x2, . . . , xn, t).
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Let L be a partial differential operator of orderm onRn+1 such that
the coefficient of∂m

t is nowhere vanishing. Dividing throughout by this
coefficient, we can assume thatL is of the following form:

L = ∂m
t −

m−1
∑

j=0

Am− j(x, t,Dx)∂
j
t .

119

HereAm− j is a differential operator of order≤ m− j in thex variable
with coefficients depending ont.

We want to reduce the equationLv = f to a first order system. To
this end we proceed as follows:

Using the familiar operatorsΛs with symbol (1+ |ξ|)s/2 (acting in
thex variables ) we put

u1 = Λ
m−1v

u2 = Λ
m−2∂tv

u3 = Λ
m−3∂2

t v

...

um = ∂
m−1
t v.

For j < m, we observe that∂tu j = Λu j+1. Therefore,

∂tum = f +
m−1
∑

j=0

Am− j(x, t,Dx)∂
j
t v

= f +
m−1
∑

j=0

Am− j(x, t,Dx)Λ
j−m+1u j+1

= f +
m

∑

j=1

Am− j(x, t,Dx)Λ
j−mu j

SetB j(x, t,Dx) = Am− j+1(x, t,Dx)Λ j−m. This B j is aΨDO of order
1 in the variablex. Then the equationLv = f is equivalent to

∂tu = Ku+ f̃
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whereu = (u1, . . . , um)t, f̃ = (0, 0, . . . , f )t. (Here (· · · )t denotes the 120

transpose of the row vector (· · · )) andK is the matrix given by

K =





















































0 Λ 0 · · · 0
0 0 Λ · · ·0
. . · · ·
. . · · ·
0 0 0· · ·Λ
B1 B2 B3 · · · Bm





















































This K is a matrix of first order pseudo differential operators inx,
with coefficients depending ont.

Let us now make a little digression to fix on some notations which
will be used in the further development. For apǫSm, a function pm(x, ξ)
homogeneous of degreem in ξ is said to be thePrincipal symbolof
p(x,D) if p − pm agrees with an element ofSm−1 for large |ξ|. We
remark that not allΨDO′s have a principal symbol; but most of them
that arise in practice do. Moreover, the principal symbol, if it exists, is
clearly unique.

Examples

(i) If p is a polynomial,

p(x, ξ) =
∑

|α|≤m

aα(x)ξα,

then

pm(x, ξ) =
∑

|α|=m

aα(x)ξα.

(ii) If p(x, ξ) = (1+ |ξ|2)s/2, ps(x, ξ) = |ξ|s.121

Returning to our discussion, letak(x, t, ξ) be the principal symbol
of Ak(x, t, dx) (Here we are consideringAk as an operator of orderk, so
if it happens to be of lower order, its principal symbol is zero). Then
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the principal symbol ofB j is b j(x, t ξ) = am− j+1(x, t, ξ)|ξ| j−m and the
principal symbol ofk is the matrixK1

K1(x, t, ξ) =











































































0 |ξ| 0 0 · · · 0
0 0 |ξ| 0 · · · 0
0 0 0 |ξ| · · · 0
. . . · · ·
. . . · · ·
. . . · · ·
0 0 0 0 · · · |ξ|
b1 b2 b3 b4 · · · bm











































































The principal symbol ofL, on the other hand, is

Lm(x, t, ξ, τ) = (2πiτ)m −
m−1
∑

j=0

am− j(x, t, ξ)(2πiτ) j

The characteristic variety ofL, i.e., the set of zeros ofLm, can easily
be read off from the matrixK as follows:

Proposition 4.57. The eigenvalues of K1(x, t, ξ) are precisely2πiτ1, . . .,
2πiτm whereτ1, τ2, . . . , τm are the roots of the polynomial Lm(x, t, ξ, .).

Proof. The characteristic polynomialp(λ) of K1 is the determinant of














































λ −|ξ| 0 · · · 0
0 λ −|ξ| · · · 0
...

0 0 0 · · · −|ξ|
−b1 −b2 −b3 ˙̇ λ − bm














































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Expanding in minors along the last row, we get

p(λ) =
m−1
∑

j=1

(−1)m+ j (−b j)λ
j−1(−|ξ|)m− j

+ λm−1(λ − bm)

= λm − λm−1bm −
m−1
∑

j=1

b j |ξ|m−1λ j−1
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= λm−
m

∑

j=1

am− j+1λ
j−1
= λm−

m−1
∑

j=0

am− jλ
j

= Lm(x, t, ξ, (2πi)−1λλ.

This proves the proposition. �

It is also easy to incorporate boundary conditions into thisscheme.
Suppose we want to solve the equationLv = f with the boundary con-
ditionsB jv|t=0 = g j , 1, 2, . . . , ν where

B j =

mj
∑

k=0

bk
j (x, t,Dx)∂

k
t , b

k
j is of ordermj − k andmj ≤ m− 1.

If we set

Bk
j = Λ

m−mj−1bk−1
j (x, 0,Dx)Λ

k−m,

φ j = Λ
m−mj−1g j

then withu j = Λ
m− j∂

j−1
t v as above andu0

j (x) = u j(x, 0), the boundary
conditions will become

mj+1
∑

k=1

Bk
ju

0
k = φ j , j = 1, 2, . . . ν.

123

This is a system of zeroth order pseudo differential equations.
The above method of reduction is useful, for example, in the follow-

ing two important problems.

(1) Cauchy Problem for Hyperbolic Equations

Lv = f , ∂ j
t v|t=0 = g j , j = 0, 1, . . . ,m− 1.

Here the equation is said to behyperbolicwhen the eigenvalues of the
matrix K1 (i.e., the principal symbol ofK occurring in the linear system
corresponding toLv = f ) are purely imaginary.Equivalently, the roots
of Lm(x, t, ξ, .) are real.
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(2) Elliptic Boundary Value Prob Lems

Lu = f onΩ, B ju = g j on ∂Ω

whereL is elliptic of order 2m and j = 1, 2, . . .m. Here one works
locally near a pointx0ǫ∂Ω and makes a change of coordinates so that∂Ω

becomes a hyperplane nearxo. One then can apply Calderon’s reduction
technique, takingt as the variable normal to∂Ω. (See Michael Taylor
[3]).

We shall now sketch an example of a somewhat different technique
for applyingψDO′S to elliptic boundary value problems.

LetΩ be a bounded open set ofRn with C∞ boundary∂Ω Consider
the problem

∆u = 0 inΩ, ∂Xu+ au= g on∂Ω, aǫC∞(∂Ω).

Here X is a real a vector field on the boundary which is nowhere124

tangent to the boundary and∂Xu = gradu.χ.
If ν is the unit outward normal to∂Ω, by normalising we can assume

that χ = ν + τ whereτ is tangent to∂Ω. We want to useΨDO to
reduce this to the Dirichlet problem. Pretend for the momentthat∂Ω =

R
n−1x{0} andΩ = {x : xn < 0} so that∂ν =

∂

∂xn
.

If ∆u = 0 then∂2
νu = −

n−1
∑

j=1

∂2u

∂x2
j

= −∆bu,∆b being the Laplacian on

the boundary. So formally∂νu = ±
√

(∆bu). Indeed, if we compare this
with our discussion of the Poisson kernel in Chapter 2(taking account
of the fact thatΩ is now the lower rather than the upper half space), we
see that the equation∂νu =

√
(−∆b)u is correct if interpreted in terms of

the Fourier transform in the variablesx′ = (x1, . . . xn−1);

∂νũ(ξ′, xn) = 2π|ξ′|ũ(ξ′, xn).

It turns out that something similar works for our original domainΩ.
Namely, if u is smooth onΩ̄ and∆u = 0 onΩ then∂νu|∂Ω = P(u|∂Ω)
whereP is a pseudo differential operator of order 1 on∂Ω which equals√

(−∆b) modulo terms of order≤ 0 where∆b is the Laplace -Beltrami
operator on∂Ω. In particular,P is elliptic and has real principal symbol.
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The boundary conditions becomePv+ |∂tv+ av= g, v = u|∂Ω. This
is a first order pseudo differential equation forν. It is elliptic (because
∂τ has imaginary symbol). So it can be solved modulo smoothing oper-
ators. Since∂Ω is compact. smoothing operators on∂Ω are compact, so125

our boundary equation can be solved providedg is orthogonal to some
finite dimensional space of smooth functions.

Having done this, we have reduced our original problem to thefa-
miliar Dirichlet problem∆u = 0 in Ω andu|∂Ω = ν which has a unique
solution.
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LP and Lipschitz Estimates

OUR AIM IN this chapter is to study how to measure the smoothing 126

properties of pseudo differential operators of non positive order in terms
of various important function spaces. Most of the interesting results
are obtained by considering operators of order−λ with 0 ≤ λ ≤ n.
Indeed, ifPǫΨ−λ with λ > n and K(x, y) is the distribution kernel of
P then, by Theorem 4.10 we know thatKǫC j

Ω × Ω) when j < λ −
n. So these operators can be studied by elementary methods. What
is more, whenPǫΨ−λ,DαPǫΨ−λ+|α|. So, by a proper choice ofα, we
can make 0≤ λ − |α| ≤ n and then studyDαP rather thanP itself.
Actually, we shall restrict attention to operators of order−λ where 0≤
λ < n. The transitional caseλ = n requires a separate treatment to obtain
sharp results; however, for many purpose, it suffices to make the trite
observation that an operator of order−n can be regarded as an operator
of order−n + ǫ. Further, we restrict our attention toΨDO′s whose
symbols have asymptotic expansions

p(x, ξ) ∼
∞
∑

j=0

p j(x, ξ)

whereP j is homogeneous of degree−λ− j. (Thesep′j sno longer belong
to our symbol classes, being singular atξ = 0, but we can still consider
the operatorsp j(x,D).) By the preceding remarks, it will suffice to con-
sider the operators corresponding to the individual terms in the series 127

107
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∑

p j whose degrees of homogeneity are between 0 and−n. Thus we are
looking atp(x,D) wherep(x, ξ) is C∞ onRn×Rn\{0} and homogeneous
of degree−λ in ξ where 0≤ λ < n.

Sinceλ < n, for eachx, p(x, .) is locally integrable at the origin
and hence defines a tempered distribution. Denoting the inverse Fourier
transform of this distributionp∨2 (x, .) we then have

p(x,D)u(x) =
∫

e2πix.ξp(x, ξ)û(ξ)dξ

= (p∨2 (x, .) ∗ u)(x)

=

∫

p∨2 (x, x− y)u(y)dy.

Thus we see that the distribution kernel ofp(x,D) is given byK(x, y)
= pv

2(x, x− y).
Let us digress a little to make some remarks on homogeneous dis-

tributions.

Definition 5.1. A distribution fǫS′ is said to behomogeneous of degree
µ, i f < f , φr >= rµ < f , φ > for all φǫS whereφr is the function defined
byφr(x) = r−nφ(x/r).

Exercise.

1. Show that the above definition agrees with the usual definition of
homogeneity whenf is a locally integrable function.

2. Show that if f ǫS′ is homogeneous of degreeµ, thenDα f is ho-
mogeneous of degreeµ − |α|.

3. Show thatDαδ is homogeneous of degree−n− |α| (whereδ is the128

Dirac measure at 0).

Let us now prove a proposition concerning the Fourier transform of
homogeneous distributions. It turns out that the Fourier transform of
such a distribution is also a homogeneous one. Precisely, wehave the
following
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Proposition 5.2. If f is a tempered distribution, homogeneous of degree
µ, then f̂ is homogeneous of degree−µ − n. If f is also C∞ away from
the origin, then the same is true off̂ .

Proof If f is homogeneous of degreeµ, then forφǫS

< f̂ , φr > =< f , (φr )̂ >=< f , r−nφ̂1/r >= r−n−µ < f , φ̂ >

= r−µ−n < f̂ , φ > .2

This proves the first assertion. To prove the second assertion, choose
φǫC∞0 with φ = 1 in a neighbourhood of the origin and writef = φ f +
(1 − φ) f . Sinceφ f ǫE′, (φ f )̂ is C∞ everywhere. On the other hand,
(1 − φ) f is C∞ and homogeneous of degreeµ for large ξ, and hence
lies in Sµ(Rn). Let p(x, ξ) = (1 − φ)(ξ) f (ξ). The distribution kernel of
p(x,D) is given by

K(x, y) =
∫

e−2πi(y−x),ξ(1− φ)(ξ) f (ξ)dξ

= ((1− φ) f )̂(y− x).

SinceK is C∞ away from the diagonal, we see that ((1− φ) f )̂ is C∞

away from the origin. Hencêf is C∞ onRn\{0}.
Returning to our operatorsp(x,D) with p(x, ξ) homogeneous of de-129

gree−λ in ξ, 0 ≤ λ < n, by the proposition above, we have

p(x,D)u =
∫

K(x, x− y)u(y)dy

whereK = P∨2 is C∞ onRn × Rn\{0} and homogeneous of degreeλ − n
in the second variable.

Finally, we restrict attention to constant coefficient case, i.e.,K(x, x−
y) = K(x − y). The essential ideas are already present in this case and
the results we shall obtain can be generalised to the variable coefficient
case in a rather routine fashion. Let us give a name to the objects we are
finally going to study.

Definition 5.3. A tempered distribution K which is homogeneous of de-
greeλ − n and C∞ away from the origin is called a kernel of typeλ. If
K is a kernel of typeλ, the operator T f= K ∗ f is called an operator of
typeλ.
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We now classify the kernels of typeλ ≥ 0.

Proposition 5.4. Supposeλ > 0 and fǫC∞(Rn\{0}) is homogeneous of
degreeλ − n in the sense of functions. Then f is locally integrable and
defines a distribution F which is a kernel of typeλ.

Conversely, if F is a kernel of typeλ and f is the function with which
F agrees onRn\{0},then< F, φ >=

∫

fφ for everyφ in S .

Proof. Sinceλ > 0, f is locally integrable and of (at most ) polynomial
growth at∞, so f defines anF in S′. It is easy to check thatF is
homogeneous in the sense defined above, i.e.< F, φr >= rλ−n < F, φ >,130

and soF is a kernel of typeλ. �

For the converse, defineG by < G, φ >=< F, φ > −
∫

fφ, φ ∈ S.
ThenG is a distribution supported at 0 and hence we haveG =

∑

cαDαδ.
Therefore,

< G, φr >=
∑

cαr−n−|α|(Dαφ)(0) = O(r−n), asr → ∞.

On the other hand,

< G, φr >= r−n−λ < G, φ >

and this is notO(r−n) asr tends to∞ unless< G, φ >= 0. HenceG = 0
and this completes the proof.

Suppose thatf ǫC∞(Rn\{0}) is homogeneous of degree−n. Then f
is not locally integrable near 0 and so does not define a distribution in a
trivial way. However, let us define

µ f =

∫

|x|=1

f (x)dσ(x).

If µ f = 0 there is a canonical distribution associated withf which is
calledprincipal value of f ,PV( f ), defined by

< PV( f ), φ >= lim
ǫ→0

∫

|x|>ǫ

f (X)dx.
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To see that this limit exists, we observe that

∫

ǫ<|x|<1

f (x)dx= µ f

1
∫

ǫ

r−1dr = 0.

Hence

< PV( f ), φ >= lim
ǫ→0

∫

ǫ<|x|<1

f (x)(φ(x) − φ(0))dx+
∫

|x|≥1

f (x)φ(x)dx,

where the last integrals are absolutely convergent, since 131

|φ(x) − φ(0)| ≤ c|x|, so that
∫

|x|<1

| f (x)||φ(x) − φ(0)|dx ≤ c
∫

|x|<1

|x|−n+1dx< ∞.

Further, the estimate onφ(x)−φ(0) depends only on the first deriva-
tives of φ via the mean value theorem, so it is easily verified that the
functionalPV( f ) is continuous onS. Finally, we observe that

< PV( f ), φr > = lim
ǫ→0

∫

|x|>ǫ

f (x)r−nφ(x/r)dx

= lim
ǫ→0

∫

|y|>(ǫ/r)

f (y)r−nφ(y)dy

= r−n < PV( f ), φ > .

ThusPV( f ) is homogeneous of degree -n and so is a kernel of type
0.

The following theorem gives a sort of converse to the above results.

Theorem 5.5. Suppose F is a kernel of type0 and f is the function with
which F agrees onRn\{0}. Thenµ f = 0 and F = PV( f ) + cδ, for some
constant c.
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Proof. Define the functionalG on S by

2 < G, φ >=
∫

|x|≤1

f (x)(φ(x) − (φ(0))dx+
∫

|x|>1

f (x)φ(x)dx.

By the same argument as above,G is a tempered distribution and
G = F onRn/{0}. Therefore,G−F =

∑

cαDαδ. Now,< F, φr >= r−n <

P, φ > so that

< G, φr > −r−n < G, φ >=< G− Fφr > −r−n < G− F, φ >= 0(r−n)

asr tends to∞. On the other hand, forr > 1,132

< G, φr > − r−n < G, φ >=
∫

|x|≤1/r

r−n f (x)(φ(x) − φ(0))dx

+

∫

|x|>1/r

r−n f (x)φ(x)dx− r−n
∫

|x|≤1

f (x)(φ(x) − φ(0))dx− r−n

∫

|x|>1

f (x)φ(x)dx

= r−nφ(0)
∫

1r≤|x|≤1

f (x)dx = r−nφ(0) logrµ f ′ for every φ.

This is not 0(r−n) asr tends to∞ unlessµ f = 0. Finally,F − PV( f )
is a kernel of type 0 which is supported at the origin and henceis a
multiple ofδ.

To study the boundedness of operators of typeλ on Lp spaces, we
need some concepts from measure theory.

Definition 5.6. Let F be a measurable function defined onRn. Then the
distribution function of f is the functionδ f : (0,∞) → [0,∞] given by
δ f (t) = |Et |, where Et = {x : | f (x)| > t}.

From the distribution function off , we can get a large amount of
information regardingf . For example, we have

∫

| f (x)|pdx= −
∞

∫

0

tpdδ f (t)
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(To see this, observe that the Riemann sums for the Stieltjesintegral on
the right are approximating sums for the Lebesque integral on the left).

If tpδ f (t) converges to 0 ast tends to 0 andt tends to∞, we can

integrate by parts to obtain
∫

| f (x)|pdx= p
∞
∫

0

tp−1δ f (t)dt.

Using the concept of distribution functions, we will now define weak 133

Lp spaces.

Definition 5.7. For 1 ≤ p < ∞ we define weak Lp as{ f : δ f (t) ≤ (c/t)p

for some constant c}. For fǫ weak Lp, the smallest such constant c will
be denoted by[ f ]p. Thus, if fǫweak Lp, we have

δ f (t) ≤ ([ f ]p/t)
p.

For p = ∞, we set weakL∞ = L∞.

Proposition 5.8. CHEBYSHEV ’S INEQUALITY) Lp ⊂ weak Lp and
[ f ]p ≤ || f ||p.

Proof. For f ǫLp, if Et = {x : | f (x)| > t},

|| f ||pp =
∫

Rn

| f (x)|pdx≥
∫

Et

| f (x)|pdx≥ tp|Et |

i.e., |Et | ≤ (|| f ||p/t)p.
From this, it follows thatf ǫ weakLp and [f ]p ≤ || f ||p. �

Remark 5.9. It is not true thatLp
= weak Lp for 1 ≤ p < ∞. For

example,f (x) = |x|−n/p belongs to weakLp but notLp.

Remark 5.10.The function f → [ f ]p satisfies [c f ]p = |c|[ f ]p.

But it fails to satisfy triangle inequality and hence is not anorm.
However, since

{| f + g| > t} ⊂ {| f |t/2} ∪ {|g| > t/2},

we have
δ f+g(t) ≤ δ f (t/2)+ δg(t/2)



114 5. LP and Lipschitz Estimates

which gives, whenf andg are in weakLp, 134

δ f+g(t) ≤ (2p[ f ]p
p + 2p[g]p

p)/tp so that

[ f + g]p ≤ 2([ f ]p
p + [g]p

p)1/p ≤ 2([ f ]p
+ [g]p).

The functional [.]p thus defines a topology on weakLp which will
turn it into a (non-locally convex) topological vector space.

Definition 5.11. A linear operator T defined on a space of functions is
said to be ofweak type (p, q), 1 ≤ p, q ≤ ∞, if T is a bounded linear
operator from Lp into weak Lq, i.e. for every fǫLp, [T f ]q ≤ c|| f ||p for
some constant c independent of f .

We will now state the Marcinkiewicz interpolation theorem and use
it to prove generalisations of Young’s inequality (Theorem1.3).

Theorem 5.12(J. Marcinkiewicz). Suppose T is of weak types(po, qo)
and (p1, q1) with 1 ≤ pi ≤ qi ≤ ∞, p0 < p1, q0 , q1, i.e., [′Γ f ]qi ≤
ci || f ||pi for i = 0, 1. Then, if

1/pθ = (1− θ)/p0 + (θ/p1), 1/qθ = (1− θ)/q0 + (θ/q1), 0 < θ < 1,

T is bounded from Lpθ to Lqθ i.e., ||T f ||qθ ≤ cθ || f ||pθ wherethe constant
cθ depends only onp0, q0, p1, q1, c0, c1 andθ.

For the proof of this theorem, seeA. Zygmund [5] or E.M.Stein [2].

Theorem 5.13(GENERAL FROM OF YOUNG’S INEQUALITY). If
(1/p) + (1/q) − 1 = 1/r, 1 ≤ p, q, r < ∞, Then, for fǫLp, gǫLq f ∗ gǫLr

and we have|| f ∗ g||r ≤ cpq|| f ||p||g||q.

(In fact, cpq ≤ 1 for all p, q, although our proof does not yield this135

estimate).

Proof. Fixing f ǫLp, consider the convolution operatorg→ Tq = f ∗ g.
We know that forgǫL1,TgǫLp and ||Tg||p ≤ || f ||p||g||1. Further if p′

is the conjugate ofp, then, by Hölder’s inequality||Tg||∞ ≤ ||g||p, || f ||p
for gǫLp′ . Thus we see that the operatorT is of weak types (1, p) and
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(p′,∞). Therefore, by the Marcinkiewicz interpolation theorem,T maps
Lpθ boundedly intoLqθ for every 0< θ < 1 with

(1/pθ) = 1− θ + (θ/p′) = 1− (θ/p) and 1/qθ = (1/p) − θ/p.

�

Given r with (1/p) + (1/q) − 1 = (1/r), setqθ=r . Then (1/pθ) =
1+ (1/r) − (1/p) = (1/q). Hence we get the required result.

Theorem 5.14(WEAK TYPE YOUNG’S INEQUALITY). Let1 ≤ p <
q < ∞, (1/p) + (1/q) > 1 and (1/p) + (1/q) − 1 = (1/r). Suppose fǫLp

and gǫ weak Lq. Then, we have

a) f ∗ g exists a.e. and is in weak Lr , and

[ f ∗ g]r ≤ cpq|| f ||p[g]q

b) If p > 1, then f∗ gǫLr and || f ∗ g||r ≤ c′pq|| f ||p[g]q.

Proof. a) It suffices to assume that|| f ||p = [g]p = 1 and to show that
[ f ∗ g]r ≤ cpq. Givenα > 0, let

M = (α/2)p′/(p′−q)(p′/(p′ − q)−1/(p′−q)

wherep′ is as usual the conjugate ofp. Define

g1(x) = g(x), if |g(x)| > M

= 0 otherwise

and g2(x) = g(x) − g1(x). Then

136

δ f ∗g(α) ≤ δ f ∗g1(α/2)+ δ f ∗g2(α/2)

and we shall estimate the quantities on the right separately. By
Holder’s inequality,

|| f ∗ g2||∞ ≤ || f ||p||g2||p′ = ||g2||p′ .
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Since (1/q) − (1/p′) = 1/r > 0, we see thatp′ − q > 0, and hence

||g2||p
′

p′ = p′
∞

∫

0

tp′−1δg2(t)dt

= p′
M

∫

0

tp′−1(δg(t) − δg(M))dt

≤ p′
M

∫

0

tp′−1t−qdt = (p′/(p′ − q))Mp′−q
= (α/2)p′ .

Thus (f ∗ g2)(x) exists at all points and|| f ∗ g2||∞ ≤ α/2.

Consequentlyδ f ∗g2(α/2) = 0. Next consider

||g1||1 =
∞

∫

0

δg1(t)dt =

M
∫

0

δg(M)dt +

∞
∫

M

δg(t)dt

≤
M

∫

0

M−qdt +

∞
∫

M

t−qdt.

The integral
∞
∫

M

t−qdt converges sinceq > 1, and we obtain

||g1||1 ≤ M1−q
+ M1−q/(q− 1) = (q/(q− 1))M1−q.

Also, by Chebyshev inequality,

δ f ∗g1

(

α

1

)

≤
( || f ∗ g1||

α/2
p

)

p

≤ (2p/αp)(q/(q− 1))p(α/2)
p′

p′−q p(1−q)(p′/(p′ − q))−
p(1−q)
p′−q

= cpqα
−r

137

Hence (a) is proved.
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b) The operatorf → f ∗ g is of weak type (1, q) by (a). Also, if
we choose ¯p > p with (1/p̄) + (1/q) > 1 and put (1¯r) = (1/p̄) +
(1/q)− 1 then by (a), f → f ∗ g is of weak type ( ¯p, r̄). Therefore, by
Marcinkiewicz, f → f ∗ g is bounded fromLp into Lqθ with

1/pθ = 1− θ + (θ/p̄), (1/qθ) = ((1− θ)/q) + (θ/r̄).

Puttingqθ = r we getpθ = p. HenceT mapsLp continuously toLr

and|| f ∗ g||r ≤ c′pq|| f ||p[g]q. �

Corollary 5.15. If T is an operator of typeλ, 0 < λ < n, then T is
bounded from Lp into Lq, whenever1 < p < q < ∞ and1/q = 1/p−λ/n.
Also, T is of weak type(1, n/(n− λ)).

Proof. If K is a kernel of typeλ, we have

|K(x)| = |x|λ−nK(x/|x|)| ≤ c|x|λ−n,

which implies thatKǫ weakLn/(n−λ). Therefore, by Theorem 5.14(b), if
f ǫLp andT f = K ∗ f thenT fǫLq where

(1/q) = (1/p) + ((n− λ(/n) − 1 = (1/p) − (λ/n) and||T f ||q ≤ c[ f ]p ≤ c|| f ||p.

�

Also we see thatT is of weak type (1, n/(n − λ)) by Theorem 5.14
(a).

The limiting case of this result withλ = 0 is also true, but this is a138

much deeper theorem:

Theorem 5.16. (Calderon - Zygmund) Operators of type 0 are bounded
on Lp, 1 < p < ∞.

Proof. Let T be an operator of type 0 with kernelK i.e.,T f = K ∗ f . To
begin with, we can regardT as a map fromc∞o to c∞ and we shall show
that ||T f ||p ≤ cp|| f ||p for f ǫc∞o , 1 < p < ∞, so thatT extends uniquely
to a bounded operator onLp. �

We haveK = PV(k) + cδ so thatT f = PV(k) ∗ f + c f . Since the
identity operator is continuous, we shall assume thatc = 0 and also we
shall identifyK with k. The proof now proceed in several steps.
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Step 1.T is bounded onL2. Indeed, we have (T f )̂t = k̂ f̂ .k̂ is smooth
away from 0 and homogeneous of degree 0, hence is bounded onR

n

Therefore,

||T f ||2 = ||(T f)ˆ||2 ≤ ||k̂||∞|| f̂ ||2 = ||k̂||∞|| f ||2.

Step 2.Fix a radial functionφǫc∞o with φ(x) = 1 for |x| ≤ 1
2

andφ(x) = 0

for |x| ≥ 1. Forǫ > 0, we definekǫ(x) = k(x)(1−φ(x/ǫ)) andTǫ f = kǫ∗ f .
Then we claim thatTǫ is bounded onL2 uniformly in ǫ. To see this, we
observe that

(Tǫ f )̂ = f̂ k̂ǫ = f̂ (k− kφ(x/ǫ))̂

= f̂ k̂− f̂ (k̂ ∗ (φ(x/ǫ))̂)

which gives

||Tǫ f ||2 = ||(Tǫ f )̂||2 ≤ || f̂ ||2||k̂||∞{1+ ǫn
∫

|φ̂(ǫξ)|dξ}

= || f ||2||k̂||∞{1+ ||φ̂||1}

Step 3.Tǫ is of weak type (1,1) uniformly inǫ. The proof of this is more139

involved and will be given later.

Step 4.By steps 2 and 3, using Marcinkiewicz, we get thatTǫ is bounded
on Lp for 1 < p < 2 uniformly in ǫ.

Step 5.Tǫ is bounded onLp, for 2< p < ∞, uniformly in ǫ. Indeed, for
f , gǫC∞o ,

∫

(Tǫ f ) (x) g(x) dx=
∫

f (x) (T̃ǫg) (x) dx

with T̃ǫg = k̃ǫ ∗ g, k̃ǫ = kǫ(−x) = k(−x)(1 − φ(x/ǫ)). Sincek̃ǫ satisfies
the same conditions askǫ , we see that̃Tǫ is bounded onLq for 1 < q < 2
uniformly in ǫ. So if (1/p) + (1/q) = 1, 1< q < 2,

||Tǫ f ||p = sup
g ǫ C∞o

|
∫

(Tǫ f )g|
||g||q

≤ sup
gǫC∞o

||T̃ǫg||q
||g||q

|| f ||p = c|| f ||p.
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Step 6.If f ǫC∞o , Tǫ f converges toT f in the Lp norm, 1≤ p ≤ ∞ asǫ
tends to 0. Sinceφ is radial andµk = 0,

∫

|x|=r

φ(x/ǫ)k(x)dσ(x) = c
∫

|x|=r

k(x)dσ(x) = 0;

so, forǫ ≤ 1, we have

(Tǫ f )(x) =
∫

|y|≤1

( f (x−y)− f (x)) k(y)(1−φ(y/ǫ))dy+
∫

|y|>1

f (x−y) k(y)dy

and hence (Tǫ f )(x) − (T f)(x) =
∫

|y|≤ǫ

f (x− y) − f (x)k(y)φ(y/ǫ)dy.

140

Now supp(Tǫ f − T f) ⊂ {x : d(x, suppf ) ≤ ǫ} ⊂ A, a fixed compact
set. Since, on compact sets, the uniform norm dominates allLp norms,
it suffices to show that (Tǫ f − T f) converges to 0 uniformly onA. But

||Tǫ f − f ||∞ ≤ ||grad f ||∞
∫

|y|≤ǫ

c|y||y|−ndy≤ c′||grad f ||∞

ǫ
∫

0

r1−nrn−1dr = c′′ǫ → 0, asǫ → 0.

Step 7.If f ǫLp andη > 0, choosegǫC∞o with ||g− f ||p < η.

Then||Tǫ f − Tδ f ||p ≤ ||Tǫ ( f − g)||p + ||Tǫg− Tδg||p + ||Tδ(g− f )||p ≤
2cη + ||Tǫg− Tδg||p.

Sinceη is arbitrary and||Tǫg−Tδg||p converges to 0 asǫ, δ tend to 0
by step 6, we see that (Tǫ f ) is Cauchy in theLp norm. Setting

T f = lim
ǫ→0

Tǫ f , ||T f ||p ≤ c|| f ||p.

Thus the theorem is proved modulo Step 3.
Let us now proceed to the proof of Step 3. First, we need a lemma

which will be used in the proof.
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Lemma 5.17. Suppose FǫL1, F ≥ 0 and α > 0. Then there exists a
sequence(Qk) of closed cubes with sides parallel to the coordinate axes141

and disjoint interiors such that

a) α <
1
|Qk|

∫

Qk

F ≤ 2nα for all k,

b) If Ω =
∞
⋃

1
Qk, then|Ω| ≤ (1/α)||F ||1,

c) F(x) ≤ α for a.e. x< Ω.

Proof. Let r = (||F ||1/α)1/n and for j = 1, 2, . . . let Q j be the collection
of closed cubes of side lengthr/2 j and vertices in (r/2 j )Zn. Our se-
quence will be constructed in the following way. Put those cubesQǫQ1

in the sequence which satisfyα <
1
|Q|

∫

Q

F. Then

1
|Q|

∫

Q

F ≤ 1
|Q| ||F ||1 = (2nα/||F ||1)||F ||1 = 2nα

so that the first condition is satisfied. �

Put those cubesQǫQ2 into the sequence which are not contained in
one of the previously accepted cubes and satisfy

α <
1
|Q|

∫

Q

F.

Inductively, put thoseQǫQ j which are not contained in one of the

previously accepted cubes and satisfyα <
1
|Q|

∫

Q

F. If QǫQ j is in the

sequence andQ′ is the cube inQ j−1 containingQ then

1
|Q|

∫

Q

F ≤ 1
|Q|

∫

Q

, F =
2n

|Q′|

∫

Q′

F.

SinceQ ⊂ Q′, Q′ cannot be in the sequence and hence142
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1
|Q′|

∫

Q′

F ≤ α which then yields
1
|Q|

∫

Q

F ≤ 2nα.

Thus the condition (a) is satisfied. Also,

|Ω| =
∞
∑

1

|Qk| ≤
1
α

∫

Qk

F ≤ (1/α)||F ||1; so (b) follows .

Finally, by the Lebesgue differentiation theorem,

lim
xǫQǫQ j→∞

1
|Q|

∫

Q

F = F(x) for a.e.x.

So, if x < Ω,
1
|Q|

∫

Q

F ≤ α for all thoseQ′ s and henceF(x) ≤ α a.e.

onRn\Ω.
Coming back to the proof of Step 3, givenf ǫL1 andα > 0, let (Qk)

be the sequence of cubes as in the lemma withF = | f |. We write

f = g+
∞
∑

k=1

bk with

bk(x) =























f (x) − 1
|Qk|

∫

Qk

f (y)dy, for xǫQk

0, otherwise

and g(x) =























1
|Qk|

∫

Qk

f (y)dy, for xǫQk

f (x), for x < Ω.

Now me make the following observations :

a) Suppbk ⊂ Qk,
∫

bk = 0 and

(5.18)
∞
∑

1

||bk||1 ≤
∞
∑

1

2
∫

Qk

| f | ≤ 2
∞
∑

1

2nα|Qk| ≤ 2n+1|| f ||1

143
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b) |g(x)| ≤ 2nα for xǫΩ and|g(x)| ≤ α for a.e.x < Ω.

Therefore,|g(x)| ≤ 2nα a.e. and

||g||22 =
∫

Ω

|g|2 +
∫

Rn−Ω

|g|2(5.19)

≤ (2nα)2|Ω| + α
∫

Rn−Ω

|| f ||

≤ (22n
+ 1)α|| f ||1.

We put
∞
∑

1
bk = b so thatTǫ f = Tǫg+ Tǫb and

|{|Tǫ f | > α}| ≤ |{|Tǫg| > α/2}| + |{|Tǫb| > α/2}|.

We shall show that both terms on the right are dominated by|| f ||1/α
uniformly in ǫ.

To estimate the first term on the right, we use Chebyshev inequality,
Step 2 and the estimate (5.19) obtaining

|{|Tǫg| > α/2}| ≤ (2/α)||Tǫg||2)2 ≤ c(||g||2/α)2 ≤ c1(|| f ||1α).

To estimate the second term, letyk be the center of the cubeQk and
Q̃k be the cube centred atyk but with length side 2

√
n times that ofQk.

We put
∞
⋃

1
Q̃k = Ω̃. Then

|Ω̃| ≤
∞
∑

1

|Q̃k| =
(

2
√

n
)n
∞
∑

1

|Qk| ≤
(

2
√

n
)n || f ||1/α = c(|| f ||1/α).

So |{|Tǫb| > α/2} ≤ |Ω̃| + |{|Tǫb| > α/2}\Ω̃|
≤ c(|| f ||1/α) + |{|Tǫb| > α/2}\Ω̃|,

and it suffices to estimate|{|Tǫ | > α/2}/Ω̃. Since
∫

Qk

b = 0,144

Tǫb(x) =
∫

kǫ (x− y)b(y)dy
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=

∞
∑

1

∫

Qk

kǫ (x− y)b(y)dy

=

∞
∑

1

∫

Qk

(kǫ (x− y) − kǫ (x− yk))b(y)dy

Therefore, we have

|{|Tǫb| > α/2}\Ω̃|

≤ (2/α)
∫

Rn\Ω̃

|Tǫb|dx

≤ (2/α)
∞
∑

1

∫

Rn\Ω̃

∫

Qk

|(kǫ (x− y) − kǫ(x− yk))||b(y)|dy dx

≤ (2/α)
∞
∑

1

∫

Qk

∫

Rn\Q̃k

|(kǫ(x− y) − kǫ(x− yk))||b(y)|dx dy

We nowclaim that
∫

Rn\Q̃k

|(kǫ (x− y)− kǫ(x− yk))|dx≤ c independent ofk andǫ for yǫQk.

Accepting this claim, by the estimate (5.18), we have

|{|Tǫ | > α/2}\Ω̃| ≤ (2/α)c
∞
∑

1

∫

Qk

|b(y)|dy ≤ 2n+2c(|| f ||1/α).

Thus |{|Tǫb| > α}| ≤ co(|| f ||1/α) which completes the proof of Step
3.

Returning to theclaim, we observe that ifxǫRn\Q̃k andyǫQk, then
|x− yk| ≥ 2|y− yk|.

So, if we setz= x− yk,w = y− yk we must show that 145
∫

|z|>2|w|

|(kǫ(z− w) − kǫ (z))|dz≤ c

independent ofw andǫ.
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First consider the caseǫ = 1. Now k1(z) is a C∞ function which
is homogeneous of degree−n for large z. Therefore,|gradk1(z)| ≤
c′′|z|−n−1. By the mean value theorem,

|k1(z− w) − k1(z)| ≤ c′|w| sup
0<t<1

|z− tw|−n−1

≤ c′′|w||z|−n−1for|z| > 2|w|.

So
∫

|z|>2|w|

|(k1(z− w) − k1(z))|dz

≤ c′′
∫

|z|>2|w|

|w||z|−n−1dz

≤ c′′′|w|
∞

∫

2|w|

r−2dr = c.

Now for generalǫ,

kǫ(z) = (1− φ(z/ǫ))k(z/ǫ)ǫ−n by the homogeneity ofk.

Therefore, if we setz′ = ǫ−1zandw′ = ǫ−1w, we see that
∫

|z|>2|w|

|(kǫ (z− w) − kǫ(z))|dz=
∫

|z′ |>2|w′ |

|(k1(z′ − w′) − k1(z′))|dz′

which is bounded by a constant, by the result forǫ = 1. Hence theclaim
above is proved.

To complete the picture, we should observe that operators oftype146
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0 are not bounded onL1 (and hence, by duality, not bounded onL∞).
Indeed, ifT is an operator of type 0 with kernelk, (T f)ˆ = k̂ f̂ . Since f̂
is homogeneous of degree 0, it has a discontinuity at 0 (unless k = cδ).
Thus if f ǫL1, (T f )̂ is not continuous at 0 whenever̂f (0) , 0 and this
implies thatT f is not inL1.

This reflects the fact that if
∫

f = f̂ (0) , 0, thenT f will not be
integrable near∞, becausek is itself not integrable at∞. However,
there are also problems with the local integrability ofT f caused by the
singularity ofk at the origin. In fact, letφǫC∞o be a radial function such
thatφ = 1 near 0, and setS f = f ∗ (φk). Then the argument used to
prove Theorem 5.16 shows thatS is bounded onLp for 1 < p < ∞. In
this case (φk)ˆ = φ̂ ∗ k̂ is in C∞, but still S is not bounded onL1.

This follows from the following general fact.

Proposition 5.20. If kǫS′ and the operator f→ k∗ f is bounded on L1,
then k is necessarily a finite Borel measure.

Proof. ChooseφǫC∞o with
∫

φ = 1 and putφǫ(x) = ǫ−nφ(x/ǫ). Then
||φǫ ||1 is independent ofǫ, so ||φǫ ∗ k||1 ≤ c. Therefore there exists a
sequenceǫk tending to 0 such thatφǫk ∗ k converges to a finite Borel
measureµ in the weak* topology of measures and henceφǫk∗k converges
to µ in S′ also. On the other hand, since (φǫk) is an approximate identity,
φǫk ∗ k converges tok in S′. �

Henceµ = k and the proposition is proved. 147

It is easy to see that kernels of type 0 are not measures even when
truncated away from the origin, as their total variation in any neighbour-
hood of 0 is infinite. One can also see directly that they do notdefine
bounded functionals onCo.

Exercise .Let k(x) = 1/x on R and let f be a continuous compactly

supported function such that f(x) = (log x)−1 for 0 < x <
1
2

and f(x) =

0 for x ≤ 0. Show that

lim
x→0−

( f ∗ PV(k))(x) = ∞.
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Generalise this to kernels of type 0 onRn, n > 1.
This example also shows that operators of type 0 do not map con-

tinuous functions into continuous functions. However, they do preserve
Lipschitz or Hölder continuity, as we shall now see.

Definition 5.21. For 0 < α < 1, we define| f |α = supx,y
| f (x+ y) − f (x)|

|y|α

Λα = { f : || f ||Λα =de f || f ||∞ + | f |α < ∞}.

Λα is calledLipschitz classof orderα.

Remark 5.22.The definition makes perfectly good sense forα = 1
(Whenα > 1 it is an easy exercise to show that if| f |α < ∞ then f is
constant ). However, we shall not use this definition forα = 1, because
the theorems we wish to prove are false in this case.

We are going to prove, essentially, that operators of type 0 are boun-
ded onΛα. However, ifk is a kernel of type 0 andf ǫΛα, the integral148

definingk∗ f will usually divergef need not decay at∞. Consequently,
we shall work instead withΛα ∩ Lp(1 < p < ∞), concerning which we
have the following useful result.

Proposition 5.23. If f ǫLp, 1 ≤ p < ∞ and | f |α < ∞, then fǫΛα and
|| f ||∞ ≤ c(|| f ||p + | f |α). Consequently, Lp ∩ Λα is a Banach space with
norm || f ||p + | f |α.

Proof. Let

Ax = (
| f (x)|
2| f |α

)1/α for xǫRn.

Then| f (y)| ≥ | f (x)|/2 for all y such that|x− y| ≤ Ax. So
∫

| f (y)|pdy≥
∫

|x−y|≤Ax

| f (y)|pdy≥ | f (x)|p2−pc′An
x

= c′′| f (x)|p+(n/α) | f |−n/α
α

or | f (x)|1+(n/αp) ≤ c′′′|| f ||p| f |n/alphap
α . 2
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Since this is true for allx, settingθ = n/pα we have

|| f ||∞ ≤ c′′′|| f ||1/(1+θ)p | f |θ/(1+θ)α

≤ c(|| f ||p + | f |α).

Theorem 5.24. Operators of type0 are bounded onΛα ∩ Lp(0 < α <

1, < 1 < p < ∞).

Proof. Let T : f → K ∗ f be an operator of type 0. Since we know that
||T f ||p ≤ cp|| f ||p, by proposition 5.23, it will suffice to show|T f |α ≤
cα| f |α for 0 < α < 1, f ǫLp ∩ Λalpha. As in the proof of Theorem 5.16,149

we may assume thatK = PV(k) and identifyK with k. �

GivenyǫRn\{0} and f ǫLp ∩ Λα define

g(x) =
∫

|z|≤3|y|

k(z) f (x− z)dz

h(x) =
∫

|z|≤3|y|

k(z) f (x− z)dz

so thatT f = g+ h. Sinceµk = 0, we have

|g(x)| = |
∫

|z|≤3|y|

k(z)( f (x− z) − f (x))dz|

≤
∫

|z|≤3|y|

c|z|−n| f |α|z|αdz≤ c1| f |α|y|α.

Since this is true for allx,

|g(x+ y) − g(x)| ≤ 2c1| f |α|y|α.

Next

h(x+ y) = lim
η→∞

∫

3|y|<|z|<η

k(z)( f (x+ y− z) − f (x))dz
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= lim
η→∞

∫

3|y|<|z+y|<η

k(z+ y)( f (x− z) − f (x))dz.

Therefore,

h(x+ y)− h(x) = lim
η→∞

∫

3|y|<|z|<η

(k(z+ y)− k(z))( f (x− z)− f (x))dz+ ǫ1 + ǫ2

whereǫ1 andǫ2 are errors coming from difference between the regions
of integration.

ǫ1 is the error coming from the difference between the regions|z| < η
and|z+ y| < η.

The symmetric difference between these two regions is contained in150

the annulusη − |y| < |z| < η + |y|.

If z is in this region andη≫ |y| then|z| ≈ |z+ y| ≈ η so that

|ǫ1| ≤ c′
∫

η−|y|<|z|<η+|y|

2η−n|| f ||∞dz≤ c′′η−n|| f ||∞((η + |y|)n − (η − |y|)n)

= 0(η−1)→ 0 asη→ ∞.

The termǫ2 comes from the symmetric difference of the regions|z| >
3|y| and|z+ y| > 3|y| which is contained in the annulus 2|y| < |z| < 4|y|.

In this region|z+ y| ≈ |z| ≈ |y|.
Therefore

|ǫ2| ≤ c′′′
∫

2|y|<|z|<4|y|

|y|−n+α | f |αdz=

= c′2| f |α |y|−n+α((4|y|)n − (2|y|)n)

= c2| f |α |y|α.
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Finally coming to the main term, we have

|k(z+ y) − k(z)| ≤ |y| sup
0<t<1

| gradk(z+ ty)|

≤ |y| sup
0<t<1

|z+ ty|−n−1

≤ co|y||z|−n−1 for |z| ≥ 3|y|.

Hence, sinceα < 1 so that−n− 1+ α < −n, 151

|
∫

3|y|<|z|<η

(k(z+ y) − k(z))( f (x− z) − f (x))dz|

≤ co

∫

3|y|<|z|<η

|y||z|−n−1| f |α|z|αdz

≤ co

∫

3|y|<|z|

|y||z|−n−1+α | f |αdz

≤ c3|y|| f |α |y|α−1
= c3|y|α | f |α.

Therefore,

|T f(x+ y) − T f(x)|
|y|α ≤ c| f |αand consequently|T f |α ≤ c| f |α.

For kernels of positive type, we have the following result.

Theorem 5.25. Suppose0 < λ < n, 1 < p < n/λ < q < Q where
Q = ∞ if λ ≤ 1,Q = n/(λ − 1), if λ < 1. Let 1/r = (1/p) − (λ/n) and
α = λ − (n/q).(Thus r< ∞ and 0 < α < 1). Thus operators of typeλ
are bounded from Lp ∩ Lq into Lr ∩Λα.

Proof. Let T f = k ∗ f be an operator of typeλ. By Corollary 5.15,T is
bounded fromLp to Lr , so by proposition 5.23, it is enough to show that
|T f |α ≤ c|| f ||q.

We have (T f)(x) =
∫

f (x− z)k(z)dz
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(T f)(x+ y) =
∫

f (x+ y− z)k(z)dz

=

∫

f (x− z)k(z+ y)dz,

so that

(T f)(x+ y) − T f(x) =
∫

f (x− z)(k(z+ y) − k(z))dz

=

∫

|z|≤2|y|

f (x− z)(k(z+ y) − k(z))dz

+

∫

|z|>2|y|

f (x− z)(k(z+ y) − k(z))dz.

�152

If q′ is the conjugate exponent ofq,

|
∫

|z|≤2|y|

f (x− z)(k(z+ y) − k(z))dz|

≤ || f ||q













































∫

|w|≤3|y|

|k(w)q′dw























1/q′

+























∫

|z|≤2|y|

|k(z)q′dz























1/q′




















≤ 2|| f ||q























∫

|z|≤3|y|

|k(z)|q′dz























1/q′

≤ c1|| f ||q























∫

|z|≤3|y|

|z|(λ−n)q′dz























1/q′

≤ c′1|| f ||q|y|−n+λ+(n/q′ )
= c′1|| f ||q|y|α,

by the definition ofα
For the second integral, we estimatek(z+y)−k(z) by the mean value

theorem:

|k(z+ y) − k(z)| ≤ |y| sup
0<t<1

|gradk(z+ ty)|
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≤ c|y||z|λ−n−1for |z| ≥ 2|y|.

Thus

|
∫

|z|>2|y|

f (x− z)(k(z+ y) − k(z))dz|

≤ c|| f ||q























∫

|z|>2|y|

(

|y||z|λ−n−1
)q′

dz























1/q′

≤ c′2|| f ||q|y||y|λ−n−1+(n/q′ ) since (λ − n− 1)q′ < −n

= c′2|| f ||q|y|α.

Hence 153

|T f(x+ y) − T f(x)|
|y|α ≤ c|| f ||q which gives|T f |α ≤ c|| f ||q.

Remark 5.26.As in the preceding theorem, the reason for taking the
domain ofT to beLp ∩ Lq instead of justLq is that the integral defining
T f will usually diverge whenf is merely inLq.

Nonetheless, the point of these theorems is that operators of type 0
are in essence, bounded fromLq to Λα (for appropriateq andα). To
make this precise without losing simplicity, one can observe that opera-
tors of type 0 mapΛα ∩ E′ into Λα while operators of typeλ > 0 map
Lq ∩ E′ intoΛα.

We now introduce spaces of functions whose derivatives uptoa cer-
tain order are inLp orΛα.

Definition 5.27. Suppose1 ≤ p ≤ ∞ and k is a positive integer. We
define

Lp
k = { f : Dβ f ǫLpfor0 ≤ |β| ≤ k}.

We equipLp
k with the norm|| f ||k,p =

∑

|β|≤k
||Dβ f ||p. (ThusL2

k = Hk in

the notation of Chapter 3).
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Definition 5.28. Suppose k is a positive integer and k< α < k + 1. We
define

Λα = { f : Dβ f ǫΛα−kfor0 ≤ |β| ≤ k}.

We equipΛα with the norm|| f ||Λα =
∑

|β|≤k ||Dβ f ||Λα−k.

Remarks 5.29.
(i) f ǫΛα if and only if Dβ f is bounded and continuous for 0≤ |β| ≤ k154

andDβ f ǫΛα−k for |β| = k. Indeed, if|β| < k, for |y| ≤ 1,

|Dβ f (x+ y) − Dβ f (x)|
|y|α−k

≤ |D
β f (x+ y) − Dβ f (x)|

|y| ≤ c
∑

|v|=|β|+1

||Dv f ||∞

(by the mean value theorem) and for

|y| > 1,
|Dβ f (x+ y) − Dβ f (x)|

|y|α−k
≤ 2||Dβ f ||∞.

This shows thatDβ f ǫΛα−k for 0 ≤ |β| ≤ k i.e., f ǫΛα.
(ii) If k < α < k + 1 thenLp

k ∩Λα is a Banach space with the norm

∑

|β|≤k

(||Dβ f ||p + |Dβ f |α−k).

This follows from the corresponding fact thatLp∩Λα is a Banach space
(Proposition 5.23).

Theorem 5.30. Suppose0 ≤ λ < n, 1 < p < n/λ, 1/r = (1/p) − (λ/n)
and k= 0, 1, 2, . . .. Then we have:

a) Operators of typeλ are bounded from Lpk into Lr
k.

b) If λ is an integer,λ = 0, 1, 2, . . . and k< α < k+ 1, then operators of
typeλ are bounded from Lpk ∩Λα to Lr

k+λ ∩ Λα+λ.

Proof. a) This is an easy consequence of Corollary 5.15 and Theorem
5.16, since convolution commutes with differentiation. In the same way
(b) follows Theorem 5.24 whenλ = 0. �
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We now proceed by induction onλ. Therefore, assume thatλ ≥ 1.
Supposef ǫLp

k ∩ Λα. Then∂ j( f ∗ k) = f ∗ ∂ jk and∂ jk is a kernel of155

typeλ − 1. So, if 1/s = (1/p) − (λ − 1)/n, by our induction hypothesis
∂ j( f ∗ k)ǫLs

k+λ−1 ∩ Λα+λ−1. Sinces < r < ∞, Ls ∩ L∞ ⊂ Lr , so∂ j( f ∗
k)ǫLr

k+λ−1 ∩ Λα+λ−1. Also f ∗ kǫLr ∩ C1, hence inΛα+λ provided it is
bounded. But∂ j( f ∗ k) ∈ Λα+λ−1 implies that∂ j( f ∗ k) is bounded. By
the mean value theorem, we then have

|( f ∗ k)(x+ y) − ( f ∗ k)(x)|
|y| ≤ c.

This together withf ∗ kǫLr implies thatf is bounded (by definition
5.21). Hencef ∗ kǫLr

k+λ ∩ Λα+λ.
The above theorem can be generalised. For example, if 0≤ λ < n

one can show that operators of typeλ mapΛα ∩ E′ in toΛα+λ.
Also generalisations of theLp Sobolev spacesLp

k can be given for
non-integral values ofk. In fact, a theorem due to CALDERON says
that for 1< p < ∞, f ǫLp

k if and only ifΛk f ǫLp. (HereΛ = (1− ∆)1/2).
Therefore, we can defineLp

s for any realsby
Lp

s = { f : Λs f ǫLp} with the norm|| f ||s,p = ||Λs f ||p.
Then part (b) of the above theorem is still true for 0≤ λ < n, λ not

necessarily an integer in this case.
Refer to E.M. Stein [2].
We will now prove theSobolev imbedding theorem for Lp Sobolev

spaces Lpk with positive integral k. This theorem can also be generalised156

to Lp
s for s in R.

Theorem 5.31(SOBOLEV IMBEDDING THEOREM). Suppose1 <

p < ∞ and k a positive integer. If k< n/p, then Lpk ⊂ Lr for 1/r =
(1/p) − (k/n) (Hence also Lpk+ j ⊂ Lr

j for any j). If k > n/p, andα =

k− n/p is not integer, then Lpk ⊂ Λα.

Proof. Let N be the fundamental solution of∆ given by

N(x =)















(2− n)−1ω−1
n |x|2−n for n , 2

(2π)−1 log |x| for n = 2.

ThenK j(x) = ∂ jN(x) = ωnx j |x|−n ( true for all n) is a kernel of type
1. �
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Now, if f ∈ Lp
k ∩ E′

f = f ∗ δ = f ∗ ∆N = f ∗
n
∑

j=1
∂ jk j =

n
∑

j=1
(∂ j f ∗ k j).

Supposek = 1. If 1 < n/p, ∂ j f ǫLp ⇒ ∂ j f ∗ k jǫLr where 1/r =
(1/p) − (1/n), by Theorem 5.25 and hencef ǫLr . If 1 > n/p, ∂ j f ∗
k jǫΛ1−(n/p) by Theorem 5.25 which implies thatf ǫΛ1(n/p). Thus the
theorem is true fork = 1.

For k > 1, we proceed by induction. Now
f ǫLp

k ∩ E′ ⇒ f and∂ j f are inLp
k−1 ∩ E′.

Therefore, ifp < n/(k − 1) and 1/q = (1/p) − (k− 1)/n, we havef ,
∂ j f ǫLq, i.e., f ∈ Lq

1, while if p > n/(k − 1), we havef , ∂ j f ǫΛk−1−(n/p),
i.e., f ǫΛk−(n/p). In the second case, we are done, and in the first case, we
apply the result fork = 1 to see thatf is in the required space. Finally,157

it is easy to check that if we keep track of the norm inequalities that are
implicit in the above arguments, we obtain

|| f ||r ≤ c|| f ||k,p or || f ||Λα ≤ c|| f ||k,p,

as appropriate, forf ǫLp
k ∩ E′. SinceLp

k ∩ E′ is clearly dense inLp
k , the

desired result follows immediately.
We can summarise these theorems in an elegant way using the fol-

lowing picture.
For −n < α < 0 we definexα = Ln/|α| and whenα > 0, α not an

integer, we definexα = Λα.

0 1 2 3

(The small circle represent missing spaces)
In this terminology, we have

Theorem 5.32.Operators of typeλ map xα ∩ E′ into xα+λo ≤ λ < n.

Theorem 5.33(SOBOLEV IMBEDDING THEOREM). If Dβ f ǫxα for
0 ≤ |β| ≤ k, then f∈ xα+k.
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We now indicate how to fill the gaps in this picture atα = 0, 1, 2, . . .
Forα = 1, we define
Λ1 = { f : f is continuous, bounded and

sup
x,y

| f (x+ y) + f (x− y) − 2 f (x)|
|y| < ∞}.

Fork = 2, 3, 4, . . . we defineΛk = { f : Dβ f ǫΛ1 for |β| ≤ k− 1}. The 158

sudden jump from first differences in the definition ofΛα for α < 1 to
the second differences atα = 1 is less mysterious than it seems at first,
because it can be shown that if 0< α < 2 then f ǫΛα if and only if f is
bounded, continuous and satisfies

sup
x,y

| f (x+ y) + f (x− y) − 2 f (x)|
|y|α < ∞.

To fill the gap atα = 0 we use the space BMO (“ bounded mean
oscillation”) first introduced by F. JOHN and L. NIRENBERG in1961,
which is defined as follows.

For f ǫL1
loc(R

n), we denote bymE f mean value off over a measur-
able setE ⊂ Rn, that is,

mE f =
1
|E|

∫

E

f .

Let Q denote the collection of all cubes inRn with sides parallel to
the axes.

Definition 5.34. BMO= { f ǫL1
loc(R

n) : sup
QǫQ

mQ(| f −mQ f |) < ∞}.

Clearly L∞ ⊂ BMO, for, fǫL∞ ⇒ |mQ f | ≤ || f ||∞ for every QǫQ
and consequently

mQ(| f −mQ f |) ≤ 2|| f ||∞.

It can be shown thatBMO⊂ Lq
loc for everyq < ∞.

If we definexα = Λα for α = 1, 2, . . . andX0 = BMO then Theorem
5.32 remains valid for allαǫ(−n,∞), except that the Sobolev imbedding
theorem forα = 0 must be slightly modified as follows:

If Dβ f is in the closure of BMO∩E′ in BMO for |β| ≤ k then f ǫΛk. 159
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WARNING. BMO is not an interpolation space between Lp andΛα i.e.,
it is not true that if T is a linear operator which is bounded onLp for
some p< ∞ and onΛα someα > 0, then T is bounded on BMO.

For proofs of the foregoing assertions, see E.M. Stein [2] and also
the following papers :

(i) E.M Stein and A. Zygmund: Boundedness of translation invari-
ant operators on Holder spaces andLp spaces, Ann. Math 85
(11967)337-349, and

(ii) C. Fefferman and E.M. Stein :Hp spaces of several variables Acta
Math. 129, (1972), 137-193.

As we indicated at the beginning of this chapter, the arguments we
have developed can be extended in a fairly straightforward way to give
estimates forψDO with variable coefficients. We conclude by sum-
marising the result in

Theorem 5.35. [Let] P = p(x,D) ba a properly supportedψDO of

order−λ onΩ, whereλ ≥ 0 and p∼
∞
∑

j=0
p j with pj(x, ξ) homogeneous

of degreeλ− j for large |ξ|. Then P maps Lpk(Ω, loc) into Lp
k+λ(Ω, loc) for

1 < p < ∞, and in the terminology of Theorem 5.32 P maps xα(Ω, loc)
into xα+λ(Ω, loc) for −n < α < ∞.
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