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Preface

This book consists of the notes for a course | gave at the.R.IEenter
in Bangalore from September 20 to November 20, 1981. Theggerp
of the course was to introduce the students in the Programmepli-
cation of Mathematics to the applications of Fourier ariahzy which |
mean the study of convolution operators as well as the Fowaiesform
itself-to partial diferential equations. Faced with the problem of cover-
ing a reasonably broad spectrum of material in such a sioet fihad to
be selective in the choice of topics. | could not develop amy subject
in a really thorough manner; rather, my aim was to presen¢$sential
features of some techniques that are well worth knowing ardktive
a few interesting results which are illustrative of thesghteques. This
does not mean that | have dealt only with general machinegjeed,
the emphasis in Chapter 2 is on very concrete calculation avétribu-
tions and Fourier transforms-because the methods of perigrsuch
calculations are also well worth knowing.

If these notes dier from the defect of incompleteness, they posses
the corresponding virtue of brevity. They may therefore beatue to
the reader who wishes to be introduced to some useful idet®wti
having to plough through a systematic treatise. More datailccounts
of the subjects discussed here can be found in the books laiEdLL],
Stein [2], Taylor [3], and Treves [4].

No specific knowledge of partial fierential equations or Fourier
Analysis is presupposed in these notes, although somegmipiittance
with the former is desirable. The main prerequisite is a famity with
the subjects usually gathered under the rubic “real arsilysneasure
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Vi

and integration, and the elements of point set topology andtional
analysis. In addition, the reader is expected to be acqhiwith the
basic facts about distributions as presented, for exaripkudin [7].

| wish to express my gratitude to professor K.G. Ramanatban f
inviting me to Bangalore, and to professor S.Raghavan amdttf of
the T.I.F.R. Center for making my visit there a most enjogaibie. | also
wish to thank Mr S. Thangavelu and Mr K.T. Joseph for theinptk-
ing job of writing up the notes.
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Chapter 1

Preliminaries

IN THIS CHAPTER, we will study some basic results about cdmvo 1
tion and the Fourier transform.

1 General Theorems About Convolutions

We will begin with a theorem about integral operators.

Theorem 1.1. Let K be a measurable function &% x R" such that, for
some ¢ 0,
[IK(x.y)dy < c, [IK(x,y)ldx < c, for every xy inR".

If1 < p < oandf e LP(R"), then the functionT f, defined by
Tf(x) = [K(xy)f(y)dy for almost everyx in R", belongs toLP(R")
and further,

IT filp < cllfllp.

Proof. If p = o, the hypothesisflK(x, y)ldx < cis superfluous and

the conclusion of the theorem is obvious. pif< oo, let g denote the
conjugate exponent. Then, by Holder ’s inequality,

1/q 1/p
|Tf(x)|s{ [ |K(x,y)|dy} { [ |K(x,y)||f(y)|pdy}

1



2 1. Preliminaries

1/p
< b { f |K(x,y)||f(y)|pdy} .

From this we have,
| T 0Pdxs 0P [ e it Payelx
< et [[|1g)Pdx=ctPa
Therefore||T f||, < cllf[lp.
Next, we define the convolution of two locally integrable dtions.
Definition 1.2. Let f and g be two locally integrable functions. The

convolutionof f and g, denoted by f g, is define by

(f + 9)(x) = f f(x - y)aty)dy = f Fy)g(x— y)dy = (@ * F)(x).

provided that the integrals in question exist.

The basic theorem on convolution is the following theoreailed
Young’s inequality

Theorem 1.3(Young's Inequality) Let f € LY(R") and ge LP(R"), for
1< p<oo. Then fxge LP(R") and

If = dllp < lgllpll Fll1.

Proof. TakeK(x,y) = f(x-y) in TheorenZIll. TheK(x, y) satisfies all
the conditions of Theoref1.1. and the conclusion followsediately.
i

The next theorem underlies one of the most important usesref ¢
volution. Before coming to the theorem, let us prove theofeihg

Lemma 1.4. For a function f defined o®" and x inR", we define a
function * by fX(y) = f(y—x). If f e LP,1 < p < oo, thenlir%”fx -
X—
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Proof. If gis a compactly supported continuous function, tgés uni-
formly continuous, and sg* converges tay uniformly asx tends to
0. O

Further, for|x < 1,g* andg are supported in a common compact
set. Therefore, IiéiﬂgX —gllp = 0. Givenf € LP, we can find a function
X—

gwhich is continuous and compactly supported such|that|, <€ /3
for e> 0. But then||g* — f*||, <€ /3 also holds. Therefore

1= fllp < 1T = glp + Ig" = dllp + 119 = fllp
<2¢€/3+(g" - dllp-

Since limx — 0|g* - gll, = 0, we can choose close to 0 so that
lg* - gllp <€ /3. Then||fX - f|| <e and this proves the lemme sineés
arbitrary.

Remark 1.5.The above lemma is false when=p~. Indeed, t* — f
in L*” means precisely that is uniformly continuous.

Let us now makawo important observations about convolutions
which we shall use without comment later on.

i) Supp(f = g) c Suppf + Suppg, where

A+B={x+1:xeAyeB}

i) If fis of classCk andd*(le| < k) andg satisfy appropriate condi-
tions so that dferentiation under the integral sign is justified, then
f « gis of classC* anda?(f = g) = (°f) = g.

Theorem 1.6.Let ge LY(R") andfg(x)dx: a. Letg(x) =" g(x/ €) 4
for e> 0. Then, we have the following:

i) If f eLP(RM), p< oo, f*geconverges to af inLase tends to 0.

ii) If fis bounded and continuous, theadk converge to af uniformly
on compact sets astends to O.
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Proof. By the change of variablge —€ X, we see thaf e (X)dx = afor
all e> 0. Now

(1 + g0 - af(9 = [ F(x- g0y~ [ F(99-G)dy
_ f [F(x—¥) - F(0)] ge(y)dy
_ f [F(x- e y) - F()]gW)dy
= f [FYY(¥) - f(X)]a(y)dy.

O

If f e LPandp < oo, we apply Minkoswski’s inequality for integrals
to obtain

I # ge —afllp < fnfey— fllola()ldy:

The functiony — [|f<Y— f]|, is bounded by pf||, and tends to 0 as
tends to O for eacl, by lemmdTl. Therefore, we can apply Lebesgue
Dominated Convergence theorem to get the desired result.

On the other hand, suppo$ds bounded and continuous. Liétbe
any compact subset &". Givens > 0, choose a compact $8tR" such
that

f la(y)ldy < 6.

R"-G

Then
SUB(l * 8)(X) — af(¥)] < 261/l
+ SURyyekne [T (X — €)= F(X) f gldy.
G

Since f is uniformly continuous on the compact g€tthe second
term tends to 0 asto 0. Since’ is arbitrary, we see that

supx € K|(f «g.)(X) —af(x)| » 0ase — O.

Hence the theorem is proved.
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Corollary 1.7. The space §(R") is dense in B(R™) for 1 < p < co.
Proof. Let
#(x) = e V@) for |x < 1

=0 for|x] <1

ThengeC3(R") andfqb(x)dx =1/a > 0. If feLP and has compact
support, thera(f  ¢.)eC3 (R") and by theore Il &(f « ¢.) converges
to f in LP ase tends to 0. Sinc&P functions with compact support are
dense irLP, this completes the proof. O

Proposition 1.8. Suppose Kc R" is compact and2 > K be an open
subset oR". Then there exists agCfunction¢ such thaty(x) = 1 for
xeK and Suppg c Q.

Proof. LetV = {x e Q : d(x,K) < %6} wheres = d(K,R™"\ Q). Choose 6

a¢oeCS such that Supp, C B(O, %6) and [ ¢o(x)dx = 1. Define

609 = [ o= 3)dy = (0 X)X
\%
Theng(x) is a function with the required properties. ]

2 The Fourier Transform

In this section, we will give a rapid introduction to the tine@f the
Fourier transform.

For a functionfeL1(R"), the Fourier transformof the functionf,
denoted byf, is defined by

fle) = f &2 £ () dx, £eRN,

Remark 1.9.0ur definition of f differs from some other in the place-
ment of the factor of 2.
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BASIC PROPERTIES OF THE FOURIER TRANSFORM
For

(1.10) fel™, || fllo < IIflly.
The proof of this is trivial.
For

(1.11) f.ge LY (fxg) (¢) = ()3
Indeed,

(= 0)(®) = [[ €™ 1(y)g(x - y)dydx
= || eV Eg(x— y)er 24 f (y)dydx
- [[ezeonzge-yax [ 10)e 2 dy
= f©a).

Let us now consider the Fourier transform in the SchwartzsSa=
S(R").

Proposition 1.12. For f € S, we have the following:
) feC®(R") andd®f = § where gx) = (-27ix)? f(x).
i) (6P1)(¢) = (2rigy f(¢).

Proof. i) Differentiation under the integral sign proves this.

ii) For this, we use integration by parts.

@) = f &2 ) ()
= (-1)¥ f dple”Z ™€ £ (x)dx

= (-1)P/(—2rig)’ f e 2% £ (x)dx
= (2rigPf ().
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Corollary 1.13. If f€S, thenf € S also.
Proof. For multi-indicesa andp, using propositioi_L.12, we have
£(P 1)) = £°((-2rixP 1 (X)) ()
= (2ni) 1[0 ((=27ix)’ () ()]
= (-DP2ri)P1(6* (L £(9)) (£)

Since feS, 5" (% f(X))eL' and hence & (¢ f(x))) eL*. Thus &
(081) is bounded. Since andp are arbitrary, this proves th&tS. o

Corollary 1.14 (RIEMANN-LEBESGUE LEMMA). If fel !, thenf is
continuous and vanishes at.

Proof. By Corollary[LIB, this is true fofeS. SinceS is dense int
and||f]l» < |If]l1, the same in true for allelL. o

Let us now compute the Fourier transform of the Gaussian.

Theorem 1.15. Let f(x) = e™¥ Re a> 0. Then, f(¢) = a2
e_a71ﬂ|§|2.

Proof.

f(e) = f g 2rixé ganX? gy

ie. f(e) = ]_[

n
=1

(o)
i £ —amXe
fe_Z’f'lele X dx;.
—00

Thus it sufices to consider the case= 1. Further, we can take
a =1 by making the change of variabke— a~/?x. o

Thus we are assuminfi(x) = e xeR. Observe thatf’(x) +
2rxf(X) = 0. Taking the Fourier transform, we obtain

2nief(e) +if ' =o.

Hence _
f7(£)/1(&) = -2n¢
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which, on integration, give$(¢) = ce‘”‘fz, ¢ being a constant.
The constant is given by

(o)

c=f(0)= fe‘”xzdx: 1.

—00

Thereforef (¢) = e which completes the proof.

We now derive théourier inversion formula for the Schwartz class
S.

Let us definefV(¢) = [ € f(x)dx = f(-¢).

Theorem 1.16(Fouries Inversion Theorem}-or f:s(fA)v = f.

Proof. First, observe that fof, geL, [ fg = [ fg. In fact,

f f09g0dx = [[ €2 1(y)gxdydx

- f [ f e‘z”iy'xg(x)dx] f(y)dy

- f o) Fy)dy.

Givene > 0 andx in R", take the functionp defined by
¢(§) — e—2ﬂ'iX~§—7‘rEZ|§|2‘
Now
(z(y) — fe—27riy-§e—27rix-§—ﬂ52|§|2d§
:fe‘zm(y—x)'fe—ﬂ€2|§|2d§
. e—ne‘2|x—y|2.

If we takeg(X) = e ™ and defineg.(x) = e "g(x/e), then

oY) = ge(x - y).
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Therefore
f 2K () el g = f f(e)p(&)de
- [ 1020y
:tffWMAX—wdy
= (f % ge)(¥)

But ase tends to 0, { = g.) converges tof, by Theoren{_116 and10

clearly
[etaerita [ fgennn
Therefore ) = f.

Corollary 1.17. The Fourier transform is an isomorphism of S onto S.
Next, we prove thePlancherel Theorem

Theorem 1.18. The Fourier transform uniquely extends to a unitary
map of 12(R") onto itself.

Proof. For feS, definef(x) = f(-x). Then it is easily checked that
f = f, so that

115 = f|f(x)|2dx

:ff(x)f(—x)dx
= (f = f)(0)
- [t.h e

=f%ﬁmf
=vfﬂaﬂa%=um§
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Therefore, the Fourier transform extends continuouslyntisam-
etry of L2. It is a unitary transformation, since its images dense in
L2. o

Let us observe how the Fourier transform interacts withsliations,
rotations and dilations.
11 (1.19) The Fourier transform and translatiorf f*(y)f(y— x) then

() = f eV Ef(y - x)dy
_ f @£ (dz ( by putting y — X = 2)

- [ et

(1.20)  The Fourier transform and rotations (orthogonal transfor-
mations):
LetT : R" —» R" be an orthogonal transformation. Then

(foT)(#) = f e 2 (foT)(x)dx
= [ T tay (by putting y = T
_ f &2V TEE () dy
= (T&) = (foT)(&).

Thus, (foT) = foT i.e. ~ commutes with rotations.
(1.21) The Fourier transform and dilatianLet f.(x) = r"f(x/r).
Then

fi(&) = f e XN (x/r)dx
_ f e 2V Ef (Y dy = f(r8).

The last equation suggests, roughly: the more spread @jtthe
more f will be concentrated at the origin and vice versa. This motio
can be put in a precise form as follows.
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(1.22)  HEISENBERG INEQUALIT¥ = 1: For feS(R), we have
XTIl T2 = (1/4m)F113.
Proof. Observe that
%((xf(x)) - x%((x) + £(X).
Thus
|M%fﬁﬂ@w
_ fﬂ[%(xf(x))—x%((x)]dx
- —fxf(x)g—fx_(x)dx— fx%((x)f_(x)dx
= —2Refxf(x)g—:((x)dx
< 2||xf(x)||2||3—5|2 (by Cauchy-Schwarz)
ie., |wkmﬂww%m

But B
df ~ PN
() = 21 f().
Therefore,
1115 < 227X F (X111 (£)II2

or

IX QN2 F @l = (1747 112

12
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A GENERALISATIONTO nVARIABLES

d 0
We replacex by x;, i by v Also for anya;, bjeR, we can re-
i

0 0 .
placex; and% by x; — a; and% - bj respectively. The same proof
i

then yields:

(1.23) (x5 - a) NI = by F@ll2 = (X/4n)lIfI13.

Let us now takg|f|l, = 1 andA = (a,ap,...,an)eR". Let f be
small outside a small nighbourhood Af

In this case||(xj — a;) f(X)[l2 will be small. Consequently, the other
factor on the left in[[1.23) has to be large. That is, if the snakf is
concentrated near one point, the mas$ ofinnot be concentrated near
any point.

Remark 1.24.1f we take
m=fmmm%xm=famg%a

then inequality [1.23) is the mathematical formulationta# fposition-
momentum uncertainty relatiom Quantum Mechanics.

3 Some Results From the Theory of Distributions

In this section, let us recall briefly some results from theotly of dis-
tributions. (For a more detailed treatment, see, for exarfyjlor [&]).

In the sequel?’ (2) will denote the space of distributionson the
open sel2 c R" which is the dual space &3 (Q2). WhenQ = R", we
will simply write 9 instead ofD’(R"). In the same ways’ = S’/(R")
will denote the space of tempered distributions with and £ E’(R")
will stand for thespace of distributions with compact support

The value of a distributione?D’ at a functionpeCg’ will be denoted
by < u,¢ >. If uis a locally integrable function, thandefines a distri-
bution by< u,¢ >= fu(x)gb(x)dx It will sometimes be convenient to
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write f u(x)¢(X)dx for < u, ¢ >, whenu is an arbitrary distribution.
The convergence i’ is theweak convergenceefined by the fol-
lowing:

Un, UeD’,Up — inmeans < up, ¢ >—>< U,¢ > forevery ¢ in CJ.

Let us now recall brieflycertain operations on distributions.
(1.25) We can multiply a distributione?’ by aC* function ¢ to
get another distributiopu which is defined by

< U >=< U, Y >

A C* function y is said to betemperedif, for every multiindex
a,0%¢ grows at most polynomially ab. We can multiply aru, eS’ by
atempered function to get another tempered distributidre definition
is same as in the previous case.

(1.26) If ueD’ and feCy’, we define the convolution u« f by
(usx f)(X) =< u, fx > wherefy(x) = f(x-y).

The functionu = f is C* and wherueE, u = f is in C3’. The convo-
lution « : D’ x C3® — C* can be extended to a map frabi x E’ to D’".
Namely, ifueD’, veE’ and¢eCg’, < U Vv, ¢ >=< U,V x ¢ > wherev'is
defined by< ¥,y >= f v(X)y(—X)dx. The associative law

U (V= w) — (u=*w) = w holds foru, v, weD’

provided that at most one of them does not have compact sugpar 15
ueS’ and feS,u = f can also defined in the same way and f is a
temperedC® function.

(2.27) Since the Fourier transform is an isomorphisngainto
S. and [ f§ = [ fg, the Fourier transform extends by duality to an
isomorphism ofS’ onto S'.

ForueE’ c S/, we haveu(¢) =< u,e ()¢ > which is an entire
analytic function.






Chapter 2

Partial Differential
Operators with Constant
Codificients

1 Local Solvability and Fundamental Solution

For the sake of convenience in taking the Fourier transfpfrom now 16
onwards, we will use the fierential monomials
DY = (27i)3?. Thus 0%)(¢) = £°(&).
By apartial differential operator with constant c@iigientsye mean
a differential operatoL of the form
L= > a,D" aeC
lal<k

Further, we assume tha} |a,| # 0. In this case, we say that the
lal<k

operatorL is of orderk. If we write P(¢) = 3, a,£%, then we have
k

lal<
L = P(D).
For ueS, taking the Fourier transform, we see that

(D)) = > a,£"0(#) = PE)I(E).

lal<k

15
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Let us now consider the following problem:

Givenf in C*, we want to find a distribution such thaP(D)u = f.

We say that the dlierential operatol. is locally solvable at xeR",
if there is a solution of the above problem in some neighboodhof the
point X, for any f in C*.

Remark 2.1.We can assume thdthas compact support. To see this,
we can take any in C3° such thatp = 1 in some nighbourhood of the
point X,. If solve the problenP(D)u = f¢ nearx,, thenu is a solution
of our original problem since we hav@ = f in a neighbourhood af,.

In the following theorem we give arffamative answer to the ques-
tion of local solvability ofL = P(D). The simple proof exhibited here is
due toL. Nirenberg.

Theorem 2.2. Let L = } a,D® be a djfferential operator with con-
lar|<k

stant cogficients. If wCy’, there is a C° function u satisfying Lu= f
onR".

Proof. Taking the Fourier transform of the equatibon = P(D)u = f,
we see thaP(¢£)0(¢) = f(£). Itis natural to try to define by the formula

u(x) = f 7 {(&) IP(E)E.

In general,P will have many zeros: so there will be a problem in ap-
plying the inverse Fourier transform fg/P. But things are not so bad.
Since feC, f is an entire function ofeC" andP is obviously entire.
Hence we can deform the contour of integration to avoid theszef

P(&). O

To make this precise, let us choose a unit vegteo that 3, a,n* #
lar|<k

0. By a rotation of coordinates, we can assume #hat(0,0,...,0,1).
Multiplying by a constant, we can also assume that = 1 where
ao = (0,0,...,0,k). Then we haveP(¢) = é<+(lower order terms in

én). Denotet = (&, &) with ¢ = (é1,...,&n-1) IN R



1. Local Solvability and Fundamental Solution 17

ConsiderP(¢) = P(¢,&,) as a polynomial in the last variabig in
C for & in R™L. Let A(¢"),..., (¢’) be the roots oP(¢,&,) = 0
arranged so that if< j.

JAi(€’) < T2j(¢) and Rex;(¢) < Reqi(¢) whend A (€) = 34;(¢).

Since the roots of a polynomial depends continuously on tied-c
ficients we see that;(¢’) are continuous ig’. To proceed further, we
need the help of two Lemmas.

Lemma 2.3. There is a measurable functign: R — [-k— 1,k + 1]
such that for all” in R"1 lm,ink{|¢(§’) = Im2; (&} = 1.
<j<

Proof. Left as an exercise to the reader : (cf. G.B. Follérd [1]).
(The ideais that at least one of tke 1 intervals Fk—1, k+1], [-k—

1,k+1]...,[-k-1, k+1] must contain none of thepoints ImA;(¢’), j =

12....K. O

Lemma 2.4. Let P(¢) = £<+( lower order terms) and let (P) be the set
{CeC" : P(2) = 0}. Let d&, N(P)). Then, we have

IP)l > (d(£)/2)~.

Proof. Take ¢ in R" such thatP(¢) # 0. Letnp = (0,0,...0,1) and
defineg(2) = P(¢+zn) for zin C. Thisgis a polynomial in one complex
variablez. Let A4, 1o, ..., A be the zeros of the polynomigl Then 19

92 =c(z— A1)~ (z2— A)

so that
99, _ _z
50 = ]_[| |
Since¢ +1jn e N(P) |4;] > d(£) so that wheng < d(£), |g(( ))| < 2k, Also
® oy 1K iy < K 190N s, g
0= [ a0 < 5 R 2o
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i.e. |g®(0) < k!|g(0)12¥d(£)~%. But g(0) = P(¢) and

19 (0)l = a—kP(f) =Kkl
TON= a9 =

Therefore,
k! < Kllg(0)2“d(¢) ™
or
IPE)l = (d(€)/2)
Hence the lemma is proved. m|

Returning to the proof of the theorem, consider the function

U =f f I (f(2)P(&))dénde.
RM-1 IM&n=0(¢")

By LemmadZB and 2.4 we have

IP(©)| > (d()/2)¢ > 2% alongImé, = $(&).

20 Since feC®, f(£) is rapidly decreasing dRe| tends towo as along
as|Imé| stays bounded, so the integral converges absolutely and uni
formly together with all derivatives definingGt® functionu.

Finally, by Cauchy’s theorem,

P(D)u(x)=f f IE () P(&))dénde”
R-1 IMé&n=0(¢")

_ fR (e = (x).

This completes the proof of TheordmI2.2.

Let us now consider the local solvability &f = P(D) in the case
when f is a distribution.

As before, we remark that it flices to takefeE’. Further, it is
enough to consider the case whére §. Indeed, ifK satisfieP(D)K =
6, then we have for anyeE’, P(D)(K = f) = P(D)K =« f =5« f = f.
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Definition 2.5. A distribution K satisfying FD)K = ¢ is called a fun-
damental solution or elementary solution of thgatential operator
L = P(D).

A remarkable theorem due to MALGRANGE AND EHRENPREIS
states that every fierential operatoP(D) with constant coicients has
a fundamental solution. In fact, we can prove this result snaple
extension of the preceding argument.

Theorem 2.6. Every partial diferential operatoP(D) with constant co- 21
efficients has a fundamental solution.

Proof. Proceeding as in the previous theorem, we try to define

K(x)=f f X () Ldéndl.
RM-1 Imén=¢(¢’)

Here, however, the integral may diverge at infinity. So, wesider
the polynomial

PN(E) = PE(L+4I12 Y )N
j=1
whereN is a large positive integer. Let
S I B GV

R™1 Imén=¢(&’)

whereg is chosen appropriately for the polynomRy,.Then on the re-
gion of integration, we have

IPn(E)] > (1 + )N,

so the integral will converge whed > n/2. We claim thaPy(D)Ky =
0. m]

To see this, takeéeCy and observe that the transposeRaf(D) is
Pn(=D). Thus

< Pn(D)Kn, ¢ > =< Ky, Pn(-D)¢ >
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Q2Mixé (Pn(=D)#)(X)

- Pu)  Cendedx

R" R-1 Imép=¢(¢’)
- f f (Pr(©) dénde f 4Py (~D)g(x)dx
R Imé=¢(£7) R"
=f f (-E)dende’

R™1 Imén=¢(£’)

- f H(-E)de = $(0) =< 5.6 > .
J

Thus,
6 = Pn(D)Kn = P(D)(1 - A)VKn

so if we putk = (1 - -A)NKy we haveP(D)K = 6. ThuskK is a
fundamental solution d?(D).

2 Regularity Properties of Differential Operators

Definition 2.7. The singular support of a distributioneD’ is defined to
be the complement of the largest open set on which f i& &u@ction.
The singular support of f will be denoted by ssuppf.

Definition 2.8. Let L = >, a,(X)D* where aeC* be a dfferential
lal<K
operator. L is said to be hypoelliptic, if and only if, for ang?’, sing

suppu c sing supp Lu. In other words, L is hypoelliptic if and only
if for any open sef2 ¢ R" and any u?’(Q2), “LueC*®(Q) implies
ueC*(Q)".

Remark 2.9. The operatot is said to beelliptic at xeR" if

Z a,(X)E* # 0 for every & in eR"\{0}.
lal=k

L is said to beelliptic if L is elliptic at everyxeR". Elliptic operators
are hypoelliptic, as we shall prove later. This accountstifier name
hypoelliptic.



2. Regularity Properties of Berential Operators 21

We know that an ordinary ffierential operator witlc™ codficients
is hypoelliptic as long as the top order ¢é@&ent is non-zero. But this is
not the case with partial fierential operators as seen from the following
(92
Example 2.10.Take the operatdr = EVEY in R2. The general solution
of the equatiorLu = 0 is given byu(x,y) = f(X) + g(y) wheref andg
are arbitraryC? functions. This shows that is not hypoelliptic.

We observe that it is hypoelliptic, then every fundamental solution
of L is aC* function inR™\{0}.

In the case of partial fierential operators with constant ¢heients,
this is also sfficient for hypoellipticity. Indeed, we have the following

Theorem 2.11. Let L be a partial dferential operator with constant
codficients. Then the following are equivalent:

a) L is hypoelliptic.
b) Every fundamental solution of L is*0OnR?\{0}.
c) At least one fundamental solution of L is*@ R?\{0}.

Proof. That (a) simple (b) follows from the above observation arat th
(b) implies (c) is completely trivial. The only nontriviabpt we need to
prove is that (c) implies (a). To prove this implication, weed O

Lemma 2.12. Suppose &7 is such that f is € in R"\{0} and gcE’. 24
Then singsupp( * g) C suppg.

Proof. Supposex ¢ suppg. We will show thatf = g is C* in a neigh-
bourhood ofx. O

Sincex ¢ suppg, there exists aa > 0 such thaB(x, €)Nsuppg = ¢.
ChoosepeCy’(B(0, €/2)) such thap = 1 onB(0,€/4). Now, f + g =
(pf)xg+ (1 —9¢)f = g. Since (1- ¢)f is aC™ function, (1- ¢)f = gis
C>. Also

Supp@f = g) c Suppsf + Suppg
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c {y: d(y,suppg) < €/2}

which does not interse®(x, €/2). Therefore, iB(x,e/2), f xg=(1 -
¢)f = G which isC*.

Proof of theorem 2.11.Let K be a fundamental solution &fsuch that
K is C® in R"\{0}. Supposeaue?’ and LueC*(Q) whereQ c R" is
open.

For xeQ, pick e > 0 small enough so tha(x,e) c Q. Choose
#eCy’ (B(X, €)) so thatyp = 1 onB(x, €/2). ThenL(¢u) = ¢Lu + v where
v = 0 onB(x, €/2) and also outsid8(x, €). We write

K L(gu) = K ¢lLu+ K * V.

¢Luis aCy function so thaK = Lu is aC™ function. AlsoK x vis
aC® function on the balB(x, €/2) by LemmdZT12.

ThereforeK = L(¢u) is aC* function onB(x, €/2). ButK = L(¢u) =
LK % ¢u = § * ¢pu = ¢u. Thus,¢u is aC* function onB(x, €/2). Since
¢ = 1onB(x €/2),uis aC* function onB(x, €/2). Sincex is arbitrary,
this completes the proof.

3 Basic Operators in Mathematical Physics

In this section, we introduce the three basic operators ithibtaatical
Physics. In the following sections, we shall compute funedatal so-
lutions for these operators and show how they can be applisdive
boundary value problems and to yield other information.

2

n
() LAPLACE OPERATORA = % in R". If u(x) represents
j=1 0%

electromagnetic potential (or gravitational potentialnda de-
notes the charge (resp. mass) density, then they are cednggt
the equatiomu = —4np. If the region contains no charge, i.e., if
p = 0,Au = 0. This equation is called tHeomogeneous Laplace
equation and its solutions are calldthrmonic functions
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N 0 :
(il HEAT OPERATORL = i A in R™1, If u(x,t) represents the
temperature of a homogeneous body at the positiand timet,

- .ou .
thenu satisfies the heat equatleéctr —Au=0inR™?,

8? .

(i) WAVE OPERATORI = prele Ain R™1,If u(x, t) represents the
amplitude of an electromagnetic wave in vacuum at positiand
timet, thenu satisfies thevave equatiommu = 0 in R™*. 26

The equatiorou = 0 can also be used to describe other types of wave
phenomena although in most cases, it is only an approximatitid for
small amplitudes. More generally, the equatimn= f describes waves
subject to a driving forcd.

The Laplace operatak is an ingredient in all the above examples.
The reason for this is that the basic laws of Physics are ismviaun-
der translation and rotation of coordinates which severedyricts the
differential operators which can occur in them. Indeed, we have

Theorem 2.13.Let L be a diferential operator which is invariant under
rotations and translations. Then there exists a polynor@ain one
variable with constant cggcients such that = Q(A).

Proof. LetL = P(D) = Y a,D“. SinceP(D) is invariant under trans-
lel<K

lations,a, are constants. L&t be any rotation. We have

P(T&)P(TE) = (P(D)g)(TE)
=(P(D)g o TY(£)
= (P(D)g o T))(€)
= P(&)@(TE), for everyg.

ThusP(T¢) = P(¢) so thatP is rotation - invariant. O

k
Write P(¢) = }. Pj(&) whereP;(¢) is the part ofP which is ho- 27
j=0

mogeneous of degree We claim that eacl; is rotation - invariant.
Indeed, ift is any real number,
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P(té) = i tij(Tg). For a rotationT, sinceP(¢) = P(T¢), we have
j=0

k
P(te) = ) UP;(T&)
j=0
k _ J
so that D H(Pi(TE) - Pi) = 0.

=0

This being true for alt, it follows thatPj o T = Pj. But the only
rotation-invariant functions which are homogeneous ofreleg are of
the formP;j(¢) = c; L wherec; are constants.

Indeed, sincé®; is rotation-invariantPj(¢) depends only of¢| and
thus, for|é| # 0,

5) -7 i) - o
P: = P; 2 =1eP. | =] = cilel.

Sincel¢|! is not a polynomial wherj is odd,c; = 0 in that case.
Therefore, _

PE) = ) cjléP.

Taking Q(X) = ¥(czj/(—4r2))x}, we getP(D) = Q(A).
Remark 2.14.This theorem applies to scalaridirential operators. If
one considers operators on vector or tensor functionsg tuer first or-
der operators which are translation - and rotation - inveirisamely, the

familiar operators grad, curl, div of 3-dimensional vecamalysis and
their n-dimensional generalisations.

Definition 2.15. A function KHX) is said to be radial , if there is a
function f of one variable such that(i) = f(|x|) = f(r),r = |X.

WhenF is radial andFeL1(R"), we have

(9]

f F(X)dx = f f f(rr"tdo(x)dr

R" 0 |x=1
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wheredo(X) is the surface measure &1, the unit sphere iiR".

Thus
fF(x)dx:wnff(r)r”‘ldr
0

IRI’]

wherew, is the area o8"1.
Let us now calculate),. We have

f e Pdx = 1.

(o0

2 2
fe‘”'x' dXanfe_’" r"Ldr

0

(o)
wWn
2r

0

Now

e 3(s/n)V? ds s = ar?

(o)

-y [esaas
zﬂ.n/z

0
= wnl(n/2)/(22"?).

Therefore
wn = 27"2/T(n/2).

4 Laplace Operator

First, let us find a fundamental solution af i.e., we want to find a 29
distributionK such thatAK = ¢.

SinceA commute with rotations anél has the same property, we
observe that ifu is a fundamental solution of and T is a rotation,
thenuo T is also a fundamental solution. We therefore expect to find a
fundamental solutioik which is radial.
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Let us tarry a little to compute the Laplacian of a radial fimt F.
LetF(x) = f(r),r = |X. Then,

n

AF(X) = Z— [£/(r)x;/r]
J

j=1

S [k 1010

j=1

f7(r) + ((n - 1)/r) £ (r).

Now setK(x) = f(r). If K is to be a fundamental solution af we
must have

f7(r) + (n—=1)/r)f’(r) = 0 on (Q ).

From this equation
f7(r)/£7(r) = =(n=1)/r.

Integrating, we get
f/(r) = cort™"

with a constant,. One more integration yields

f(r) = car?™" + c; whenn # 2
= ¢ logr + ¢, whenn = 2.

30
Since constants are solutions of the homogeneous Laplaeti@u,
we may assume thap = 0. Thus if we sefF(X) = [X?"(n # 2) or
F(X) = log|x/(n = 2), we expect to find thakF = cs for somec # 0,
and therK = ¢ *F will be our fundamental solution.
In fact, we have

Theorem 2.16.If F(x) = |x> ™" on R"(n # 2), thenAF = (2 — n)wyd,
wherewy, is the area of the unit sphere R",
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Proof. Fore > 0, we defineF(x) = (€2 + |X9)©@ /2. ThenF, is a
C® function onRR", and an application of Lebesgue’s Dominated Con-
vergence Theorem reveals tHat converges td= ase tends to 0, in
the sense of distributions. Therefak&, converges ta\F, in the same
sense. Let us now computd-..

n
_ d 2 2\-n/2,,.
AF(X) = ; o {@-n(x? + )™2x}
n
= Z {2-n)(x2 + )™2 + (2= n)(-n)(x? + )TV}
=1
= (2-n)(IX? + &)V 1Ine?,
Thus we see thaaF.eL(R"). A simple computation shows that
AF(X) = € "AF1(x/€); so, by Theoreri . TI6AF, tends to ngFl)cS as
e tends to 0. ThereforaF = (fAFl)é, and we need only to compute
[ AFL.

f AF1=n(2-n) f L+ 1}A)EVD-1dx
= n(2 - N)wp f(l +r2)CV2-1n-1qy,
0

Puttingr? + 1 = s, we see that 31

1 (o)
f AF1 = 5n(2 - nwn f sl 1)-Dizgg
1

(o)

1 _ 1. (2)
= 5n(2- n)a)nfs 2(1- E)WZ) lds
1

(o9

= 1'n(2 — N)wn f(l - )V o, o = 1
2 S
0

= %n(z —Nwn(2/n) = (2 - N)wn
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which completes the proof. m|

Exercise.Show that if FX) = log|x| onR?, thenAF = 276.

el
Corollary 2.17. Let K(X) = (2 - n)wn
5+ log|x(n = 2)
Then K is a fundamental solution of the Laplacian.

(n#2)

Corollary 2.18. A is hypoelliptic.
Proof. Follows from Theoreri 2.11. m]

Itis also instructive to compute the fundamental solutiba by the
Fourier transform method.
If K is a fundamental solution @, we haveA(k f) = AK = f = f.

Since 0g)'(¢) = ~47%¢1°8(¢), we get
-4 kPROf© = 1),
so that, at least formally,
R(&) = ~1/(4n*eP).

We observe that when > 2, the function—1/(47%|£?) is locally
integrable and so defines a tempered distribution. We wastidas that
its inverse Fourier transform is our fundamental solution For that
purpose, we will prove a more general theorem.

Theorem 2.19.For 0 < a < n, let F, be the locally integrable function
Fo(é) = 167" Then

Fu(x) = (F (%(n - a)) /T (%a)) V2|,

Before proving this theorem, let us pause a minute to obdbatet
implies
Fy(x) = T((n/2) - Dr* 2% " = (T(n/2)/(n/2 = 1))n "2|x> "
= (—472/((2 - Nwn))IXZ™", so that(-F2/47%)" = K

as desired.
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Proof of theorem 2.19.The idea of the proof is to expres$s, as a
weighted average of Gaussian functions, whose Fouriesfvtans we
can compute.

To begin with,
fe‘”t"‘ldt = fe‘sé"lr“’ds: r*I(a),(r > 0,a > 0).
0 0
In other words, for any > 0 anda > 0, 33

l (o9
= f et ldt.
()
0

Takingr =« | £ |? and replacingr by a/2, then

ﬂa/z r 2t 2)-1
| €% —— fe—”'f' t@/2-1qt
I'a/2
(a/2) J

which is the promised formula fdf, as a weighted average of Gaus-
sians. Formally, we can write

a/2

[(a /2)

fe2nix.§ | é; |—a df _ f62nlxge—n|§|ztta/2 ldtdf
RN

f (ezrlflz‘)v(x)t(a/Z)—ldt

(9]

f —7r(|x|2)/t =12 j@/2-14¢
0

" T(e/2)

F(a/Z

a/2

_ e—nIXIZSg(n—a) /2-1g4g
[(a/2)
0

_ 7 I((n-a)/2)
" [(e/2) n0-a)/2

| X|(1/—I"I .
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In this computation, the change of order of the integratsarifor-
tunately not justified, because the double integral is neblaibely con-
vergent. This is not surprising, sin€g, is not anL! function; instead,
we must use the definition of the Fourier transform for disttions.

For everygeS,

2% A 2t\n
< g7l "¢ > =< @ 7Kl t)ad) >

ie. fe_”lflaa)(f)df: ft—n/Ze—(n/t)lx|2¢(X)dX
Rn

Rn
34
Now multiply both sides by®/2-1 dt and integrate from O te.

f f e—rrlrflztt(a/Z)—lg,(g)dg dt = f f e—ﬂ/tIXIZt(a—n)/Z—ld,(X)dX dt
0 RN 0 RO

The change of order in the integral is permitted now and natiég,
we obtain,

[(@/2) (- o @)/2) a-n
Wﬂj#@w|d§——mm¢qu 40 dx
Rn

NW(W@amﬁan
(C(a/2)

ie., < Ed>=<

¢ > .

This shows that

M- )/2) oy
I'(a/2)

Fa(¥) = | x|
as desired.

This analysis does not fice to explain-(472 | £ [%)~1 as (in some
sense) the Fourier transform of«{2*log | x | in the casen = 2. One
way to proceed is to defin@,(£) = (27 | £ [)™® and to study the be-
haviour of G, andG, asa tends to 2. This analysis can be carried out
just as easily im dimensions where the problem is to stu@y andG},
asa tends ton.
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LetR, = G} for 0 < a < n. (R, called theRiesz potential of order
@). By the preceding theorem, we have

_ (0 -a)/2) an
Re() = 2021 (r/ 2) ]

35
Moreover, if feS,

(-A)"?(f % R,) = f,

in the sense that 2| ¢ )*(f * R,) (&) = f(&).

As a tends ton, the I'-function in R, blows up. However, since
(27 | £ D% = 0, we see that{A)*/?1 = 0; so we can replaci, by
R, — ¢, c being a constant, still having

(=8)"2(f xRy — ) = f.

If we choosec = ¢, appropriately, we can arrange tht — ¢, will
have a limit asy tends ton. In fact, let us take

_ T((n-a)/2) . e
Y = —2“71”/2F(a/2) and defineR, = R, — C,.
Then
CT((0=0)/2) ;  n
R:y(x) - Zan/ZF(a/z) (| X| l)
_2A((n-a)/2)+1 (Ix)r"-1
© 2972 (er/2) n-a

Letting « tend ton, we get in the limiting case
1-n

R0 = n”/_zl"(n/Z)

log| x| .
whenn = 2, —R’z(x)% log | x| andA(f = (-R;)) = f, so we recover our

fundamental solution for the cage= 2.
It remains to relate the functioB,(£) = (27 | ¢ |)™" to the Fourier 36
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transform of the tempered distributidff,. One way to maké&, into a
distribution is the following.
Define a functionaF on S by

¢(€) —¢(0) de + f : 9

F =
B> ) ey 2rle e

lg1<1

Note that the first integral converges, since, in view of theam
value theorem| ¢(£) — ¢(0) |< ¢ | £ |. Itis easy to see tha is
indeed a tempered distribution. Further, we observe thanw{D) = 0,
<F, ¢ >= [¢()Gn(é)d¢, i.e.,F agrees wittG, onR"\{0}.

Just asR}, was obtained froniR, by subtracting & an infinite con-
stant,F is obtained fronG,, by subtracting & an infinite multiple of the
¢ function. This suggests thé&t is essentially the Fourier transform of
R;,. In fact, one has the following

Exercise.Show that F- (R},)'is a multiple ofs.

We now examine a few of the basic properties of harmonicifumst
i.e., functions satisfyingu = 0. We shall need the following results from
advanced calculus.

Theorem 2.20(DIVERGENCE THEOREM) LetQ be a bounded open
set inR" with smooth boundarydQ. Let v be the unit outward normal
vector on Q. Let F : R" — R" be a C! function onQ, the closure of

Q. Then we have

F
fdeo- deVFdX fZajd

CONSEQUENCES OF THEOREM 2.20

(2.21) When we tak& = gradu, F.v = gradu.v = g—: the normal
derivative ofu, and divF = div gradu = Au. Therefore

@do- fAu dx
ov Q
0
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(2.22) When we také& = ugradv — v gradu, div F = UAv — VAU.

Therefore 5
v
f(ua—v—v—v)do- f(uAv VAU)dx.
0Q

This formula is known a&reen’s formula.
For harmonic functions, we have the followimgean value theorem

Theorem 2.23. Let u be harmonic inB(Xg, r). Thenfor anyp < r, we

have 1
u(xg) = o T f u(x)do(x).

[X—Xol=p
That is u(xp) is the mean value af on any sphere centred &

Proof. Without loss of generality, assume thaf = 0. SinceAu =
0 andA is hypoelliptic,u is a C* function. Now formally,

u(0)=<é6,u>

= f S(xyu(x)dx

[Xi<p

= f AK(X)u(x)dx

IXI<p

= f(uAK — KAu)dx

[Xi<p

oK du
_ f(uE—Ka )do- by (222),

IX=p

O 38

Of course, we are cheating here by applying Green’s fornwthe
non-smooth functiolk. Nonetheless the result is correct, and we leave it
as an exercise for the reader to justify it rigorously (eitlyeproximate
K by C* functions as in the proof of Theoreim 2116 or apply Green’s
formula to the regior <| X |< p and lete tend to 0.)
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. . ou
On the circle|] x |= p,K is a constant and sof K— do =
IX=p
ou
Const [ —do =Const [ Audo=0.
ooV
[Xi=p [Xi<p

Further on x |= p.a% = g the radial derivative. Therefore
oK _
= = W™ on | x|=p.

Thus we have

u(O):% f u(xX)do- as desired
WP
[X=p

As a corollary to the mean value theorem, we can derivarthgi-
mum principle for harmonic functions.

39  Theorem 2.24.Supposé& is a connected open setlitY. Let u be a real-
valued function harmonic if. If A = supu(x), then either (X) < A for
Q

all xeQ or u(x) = A onQ.

Proof. Suppose thati(xg) = A for somexpeQ. From the mean value
theorem

wa) = —— [ uder)
IX=Xol=p
wherep is small enough so thdk :| X — X, |< p} € Q. By our as-
sumption, the integral does not excegdIf u(x;) < A for some point
of B(Xg, p) thenu(x) < A in some neighbourhood of; by continuity.
Takingr =| X3 — Xg |< p, we have

u(xo) = # f u(x)do(x) < A,

IX=Xo|=r
a contradiction. Therefore, if we s& = {xeQ : u(x) = A}, thenQ; is
an open subset @ andQ1 # ¢. FurtherQ, = {xeQ : u(x) < A} is also

on open subset @ andQ1 U Q, = Q. The connectedness 9fand the
non-emptiness a2, force Q, to be empty. Thusi(x) = AonQ. O
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Corollary 2.25. If Q is a bounded open set iR", UEC(ﬁ) and Au =
0in Q, then

sup| u(x) |= sup| u(x) | .
Q oQ

Proof. Since the functionu is continuous on the compact €| ux) |
attains its supremum of2 at some pointxg. By multiplying u by a
constant, we may assume th#éky) =| u(xp) |- O

If X0edQ), the corollary is proved. Otherwis@eQ and by the previ- 40
ous theorem, on the connected component of contairin®e u(x) =
u(xo) and hence Inu(x) = 0. Sinceu is continuous o, u(x) = u(Xo)
for all xedQ. Thus sug u(x) |= sup| u(x) |.

Q 0Q

Corollary 2.26. If uand v are in Qf_z), Q is boundedAu = Av = 0 on
Q and u= v onoQ, then u= v everywhere.

Proof. Apply the previous corollary to — v. O

The following boundary value problem for Laplace’s equatio
known as theDirichlet problem is of fundamental importance: given
a function f on 0Q, find a functionu such thatAu = 0 onQ andu =
f on9Q.

When Q is bounded and eC(9Q2) the uniqueness of the solution,
if it exists at all, is assured by corollafy 2126. The problefiproving
the existence of solution of the Dirichlet problem is highigntrivial.
We shall solve a special case, namely, wkkis a half-space and then
indicate how similar ideas can be applied for other regions.

First of all a word about notation: we will repla@' by R™* with

coordinatesXy, Xo, . . ., Xn, t). Our Laplacian irR™?* will be denoted by
2

0 n g iy .
atz + A whered; = p andA = v Now our Dirichlet Problemis
j=1 0Xj

the following :
given a functionf onR", find a functionu such that

(2.27) (02 + A)u(x,t) = 0,xeR", t > 0
u(x, 0) = f(x), xeR".
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41
Since the half space is unbounded, the uniqueness arguiwent g
above does not apply. Indeed, without some assumption otehe
haviour ofu at oo, uniqueness does not hold. For exampley(i, t)
is a solution, so isi(x, t) + t. However, we have

Theorem 2.28.Let u be a continuous function @& x [0, o) satisfying
) (A+02)u=00nR"x (0, ),
ii) u(x,0) =0for xeR", and

iif) u vanishes ato.

Then U= 00onR" x [0, ).

Proof. Applying the maximum principle fou on B(O,R) x (0, T), we
see that maximum dfu | on B(0O, R) x (O, T) tends to zero aR, T tend
oo, Henceu = 0. o

Remark 2.29.Hypothesis (iii) in TheorefiZ.28 can be replaced by (jii):
uis bounded oR" x [0, c0). But this requires a deeper argument (See
Folland [1]).

To solve the Dirichelt problem, we apply the Fourier transfan
the variablex. We denote by, t) the Fourier transform

f(e,t) = f e 7™ Ey(x, t)dx
42 If we take Fourier transform of{Z.P7), we obtain

(3% - 4n® | £ P)U(, 1) = 0 onR" x (0, o)
ti(g, 0) = f(¢) onR".

The general solution of the ordinaryfiidirential equation @DE)
(02 — 4n2 | £ 12 T(£,1) = O is given byu(é, t) = a(¢)e It + b(£)e?rkit
and the initial condition i(¢) + b(£) = f(¢).

This formula ford'will define a tempered distribution iy provided
that ag £ | tends tooo, | a(é) | grows at most polynomially andb(¢) |
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decreases faster than exponentially. We remove the nogquemnéss by
requiring thatu should satisfy good estimates in termsfofvhich are
uniform in t-for example, that should be bounded if is bounded. This
clearly forcesh(¢) = 0, sincee?™ ! blows up ag tends toco. Thus we
takeU(&, t) = f(£)e2lt. Taking the inverse Fourier transform in the
variableg, u(x, t) = (f = Py)(x) wherePy(x) = [€2()]V(x) is thePoisson
Kernel for R" x [0, o).
We now computd®; explicitly. Whenn = 1, this is easy:

0 o0
Pi(X) = f el + f e 2l de
—00 0

_ 1 -1 TSI P R N
_er[(t+lx) + (t—ix) ]_ﬂ(x +t9)7

To computeP;(X) for the casen > 1, as in the proof of Theorem
219, the idea is to express?!t as a weighted average of Gaussians.

Here’s how! 43
=~ e—se—ﬁ2/4s
Lemma 2.30. Wheng > 0, = [ ———ds.
o V@9

Proof. First, observe that

1 ( €
ehf == f dr.
nJ ?+1

—00

O

This can be proved by using the residue theorem or by appthieg
L . 1
Fourier inversion theorem t@;(x) = =(1 + x°)~ onR!. We also have
T

(o9

1 — fe_(T2+1)st
241
0
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Therefore,

oF =1 f f g2re (P sy o,
T

—c 0

Puttingr = 270~ and changing the order of integration,

eF = 1 f f dZroBgsg s s
T

0_

(o)

|e, e_ﬂ - 2[6—2(471_8)—1/2632/45(15
0
—seé’ /4s
\/(ﬂS)

which is the required expression.
Returning to the computation & (x), we have

Pi(X) = f s g2kt e,

44 TakingB = 2r | £ | tin the lemma, we get

Pi(X) = f f gZixé ie(4ﬂ2|§|2t2)/4sd sdt
Vrs
f f &2 (PP e g s
=

_ - (n+D)/24n f o SLHP/P) 112 g g
0

) n/2e" )/ gs
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_ aMD2r(n + 1)/2
1+ (n+1/2)

Thus we have
(231) Pt(X) = F((n + 1)/2)7T(n+1)/2t/(t2+ | X |2)(n+l)/2

In particular, we see th&@eL! N L™, so thatf = P, is well defined if,
for example,feLP,1 < p < co. That (A + 92)P; = O follows by taking
the Fourier transform, and hence

(A+02)(f P = f % (A + %P, = 0 for any .
Further note that
Pi(X) = t™"P1(x/t) and f P1(X)dx = P1(0) = 1.

Therefore, by Theorein 1.6, wheémlLP,1 < p < oo, f x P, tends to
f in the LP norm and wherf is bounded and continuous+ P; tends to
f uniformly on compact sets as¢ends to 0.

If we take f continuous and bounded, then fax, t) = P; = f, we
havetirglu(x, t) = u(x,0) = f(X). Thus the functioru(x,t) = (f = P)(X) 45
is a solution of the Dirichlet Problem for the half space.

Remark 2.32.The Poisson Kernd®; is closely related to the fundamen-
tal solutionKp,1 of the Laplacian irR™?. Indeed

1
K X,t - X2 + t2 -((n-1)/2)
n+l( ) (1 _ n)(,l)n+1 (l | )
and hence
Pt(X) = 26tKn+l(X, t).

Exercise.Check the above equation using the Fourier transform. (Star
with (62 + A)Kns1 = 6(X)8(t) and take the Fourier transform in the vari-
able x to obtain

(0F — 4n%1¢l7)Rns1 = O(1).
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Solve this equation to obtain

eIt

lZn+l(§:’t): Arlé] .

Then
% 1 —2rlé|t 5 1.
O0rKns1 = > ,t > 0,s0 thatd;Kn,q = Ept)'

Our formula [Z311) folP; makes sense even whier 0 and we have
P_+(X) = —P¢(X), so thatt Iignf x Py = =f. We further observe that

f *(x) P = f(X)5(t) *(x )2 ath_l(X, t)

wherex(x) andx ) mean convolution oR" andR"*! respectively.
46 Therefore,

f g Pr= F(Q)0 (1) *xt) 2Knsa (X, 1)
ie., u(x, t) = 2F(X)8" () *( X, )Knpa(X t).
Form this, we
(62 + A)u(x, 1) = 2f ()8 (t) * S(S(t) = 2f () (t).
Exercise.Show directly that if
) (A+02)u=0 on R™N\R" x {0}
i) u(x, —t) = —u(x,t)
i) tIi_r)rcl)i u(x, t) = = f(x), then u is a distribution solution b2 + A)u =
2f(X)0’ (t).

[To avoid technicalities, assumg is suficiently smooth so that

tIirg % exists; e.g.feC? is suficient ].
‘We now indicate, without giving any proof, how these ideas loa

used to solve the Dirichlet Problem in a bounded opefsetR?. We
assume that the boundad2 of Q is of classC?.
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We know that the solution of the Dirichlet Problem in the ca$®en
Q =R x (0, ) is given byu = f = Za (the convolution is iR"1).

oK . ) o
we note thatﬂ is the inward normal derivative df. For bounded?

with C? boundary let us consider
0
u) =2 [ 16) 5 K(x-3)dr().
y
BT

Hereo(y) is the surface measure on the boundarig the unit out- 47

ward normal ordQ, and%b(x, y) = Evj-j—j. The minus sign ik (x-y)
y

i

compensates the switch from inward to outward normal.
SinceAK(x-Yy) = §(x—y) we see thatu = 0 in Q. What about the

behaviour ofu on9Q? It turns out that iliis defined as above, then

ueC(Q) andulgg = f + T f

whereT is a compact integral operator a3(9Q) or C(9Q). Hence if
we can findp in C(0Q) such thatp + T¢ = f, and we set

U = 2 f <z><y)aivy K(x— y)do(y)
oQ

thenu satisfiesAu = 0 in Q and furtherulsggo = ¢ + T¢ = f. Hence
the Dirichlet problem is reduced to solving the equatjon T¢ = f,
and for this purpose, the classidakdholm - Riesz theorg available.
The upshot is that a solution to the Dirichlet problem alweayists (pro-
vided, as we have assumed, th&t is of classC?). See Folland]1] for
a detailed treatment.

5 The Heat Operator

The Heat operatoris given byd; — A. We want to find a distribution 48
K such that §; — A)K = §(X)6(t). Taking the Fourier transform in both
variables we have

(2.33) K(& 1) = (2ri + 4n?¢?) 2
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Exercise.Show thatK is locally integrable near the origin, and hence
defines a tempered distribution.

K is not globally integrable, however; so computing its ipeeFou-
rier transform directly is a bit tricky. Instead, if we takieet Fourier
transform in the variable only,

(0 + 4n%IER) R(E,1) = o(b).
we can solve thi©DE get
. a()e ¥kt t>0
K(,t) =
(é: ) {b(é‘:)e_“'ﬂzlflzt’ t < O

with a(¢) — b(¢) = 1.

As in the previous section, there is some latitude in theaghofa
andb, but the most natural choice is the one which makesmpered
intas well ast, namelya=1,b = 0. So,

~ e Pt {5 0
K(&,1) = o
(9 0 otherwise
49 Taking the inverse Fourier transform,

(4nt) V26?40 5 0

K(x t) =
(%9 {0, t>0.

This is a fundamental solution of the heat operator.

Remark 2.34.If we take the Fourier transform d&€(&, t) in thet vari-
able, we obtain

K&, 1) = fo K (&, t)e¥ trdt

— foo e—t(4ﬂ2|§|2+ﬂi‘r)dt
0

= (478 + 27it) 72,

thus recovering formuld{Z.B3).
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Exercise .Show that this really works, i.e., the iterated Fourier tsan
form of K first in x, then in t, is the distribution Fourier traform of K
in all variables.

OBSERVATIONS: From the formula folK, we get

(1) K(x,t) vanishes to infinite order astends to 0 wherx # 0 and
hence i<C® on R™1\{(0, 0)}. Therefore by Theorem 2.18; — A is
hypoelliptic.

) K(x t) = 2K (%‘ 1). Thus if we seK (x, 1) = ¢(x), thenK (x, €2)
= e "p(X/€) = ¢(X); SO, as tends to OK(x, t) tends tas, Theorem
[L.8. From this, we infer 50

(3) If feLP and if we seu(x, t) = f ) K(x t), then

(@-Au=0fort>0
u(x,0) = f(x).

i.e., ast tends to Q|u(.,t) — f|lp converges to 0. Thus we have
solved the initial value problem for the homogeneous heaaton,
when felP. Actually, sinceK(x,t) decreases so rapidly p$tends
to oo, this works for much wider classes 6fs. The convolution

f xx K(.t) make sense, for example, [f(x)] < Ce¥". If f is
also continuous, it is not hard to see ttia{y) K(.,t) converges td
uniformly on compact sets agends to 0.

It is now a simple matter to solve the inhomogeneous init@le
problem:

Ay —A)u=F onR" x (0, ),
u(x,0) = f(x) onR".

If we takeu; = F #(xy K and

Uy = (f - Ul(., 0)) *(x) K,



52

44 2. Partial Diterential Operators with Constant Gbeients

then we see that
(0t — A)ug = F on R" x (0,00),(0r —A)up, =0

onR" x (0, ), and (1 + up)(x,0) = f(X). Thusu = u; + uy solves the 51
problem.

As another application of the fundamental solutibrwe can derive
the Weierstrass approximation theorem

Theorem 2.35. (WEIERSTRASS)If f is continuous with compact
support onR", then, for any compad® c R", there exists a sequence
(Prm) of polynomials such thaP,, converges to f uniformly o

Proof. Let u(x,t) = (f x K(,1))(X). Thenu(xt) converges tof (x)
uniformly ast tends to 0. Moreover, for arty> 0,

n
- 2 (x-y)? /A

u(x,t) = f f(y)(4rt) V2 = dy

is an entire holomorphic function ofe C". Sou(.,t) can be uniformly
approximated on any compact set by partial sums of its Tadoies.
O

6 The Wave Operator
If we take the Fourier transform of the equation

(82 = AK = §(x)6(1)
in both variables< andt, we have, formally
(2.36) K(£,7) = (4n%¢? - an’r?) L.

This functionK is not locally integrable, so it is not clear how to
interpret it as a distribution. Again, it is better to take #ourier trans-
form in thex variable obtaining

(02 + 4r%IEP)K (€, 1) = 6(1).
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Solving thisODE,
K(& D) = a. ()" + b, (£)e > for t/It] = +1
and the cofficientsa,, b, must be determined so that
K(£,0+) = K(£,0-), K (€,0+) - 9K(£,0 =) = 1

This gives two equations in four unknowns. In contrast tosihiea-
tion with the Dirichlet problem and the heat operator, thieneo way to
narrow down the choices further by imposing growth restitt onK
as|t| tends toco. Rather, it is a characteristic feature of the wave opera-
tor that one can adapt the choice of fundamental solutionegtoblem
at hand. The two which we shall use, callkéd andK are the ones sup-
ported in the half - spade> 0 andt < 0. K, andK_ are thus determined
by the requirementa_ = b_ = 0 anda, = b, = 0 respectively, from
which one easily sees that

~ sin 2|t
K+ 5 :H
(€. = HOZ5
~ in 27|&(t ~
() = ~H-0 52 = Rufe

whereH is the Heaviside functioni.e., the characteristic function of3
[0, ). Let us compute the Fourier transformskof andK_ in t to see
how to make sense out ¢f{2136.. andK_ are not integrable of but

it is easy to approximate them in the distribution topologyiriiegrable
functions whose Fourier transforms we can calculate.lddéeve set

sin 2r|ét

KE(&,1) = e Z*UH(1) o] €

>0,
thenKi is an integrable function aﬂﬁi converges td, is S’ ase tends

to 0. ThereforeK, = lim K¢ where
€

Rulen) = [ ereerir ey
0
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(o9

- [ O T,
0 Ari¢]

= (4% g - (c - i)

Exercise.Prove thatk_ = lim K¢ in S’ where

e—0
K@ 7) = (4n) (P - (r + i)™

Thus we have two distinct ways of making the functionqd¢|> —
72)]7t into a tempered distribution. TheffrenceK, — K_ is of course
a distribution supported on the colgée= |7].

We now propose to use the fundamental solutiBnsand K_ to
solve thelnitial Value Problem or Cauchy Problenfor the operator:

(0> - A)u = f onR"™?!
(2.37) u(x, 0) = Uo(X),
9u(x, 0) = w(x),
whereup, Uz, f are given functions.
For the moment, we assume thgtu;eS and feC*(RY)) ( That is,

t — f(.,t) is aC* function with values ir5(R")).
Taking the Fourier transform in the variabten 2:31),

(OF + 4n21e) U, 1) = (&)
0(£, 0) = Uo(¢)
0t(¢, 0) = To(£).
Whenf = 0, the general solution of tHeDE is
(&, t) = A(€) sin 2t + B(£) cos Ziélt,

A = 52 and B9 = To(e).

whenug = u; = 0, the solution is

sin(2riél(t - 9)

t
e = [ fle 9=y
0
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55 (This may be derived by variation of parameters; in any cage i
easy to check that thisis in fact the solution). Therefore, the solution
for the general case is given by

0(&, 1) = 0g(&) cos Zrlé|t + 2;(3 sin 2r|é|t+
t
f Sln(2zr|§|(t N ys
B

0

Fort > 0, we can rewrite this as
t
U, 1) = @KL (E D) + Q@)K (. 1) + f f(&, 9f(& 9K, (& t-9ds
0

SinceK, (£,t—s)=0fort< s,

t
U 1) = 0K E D) + W(E)FK, (&, 1) + f f(£, 9 9K (&, t - 9ds
0

Take the inverse Fourier transform:
U(X, t) = (Up *(x) Ki) + Up #(x) 0tKy) + (HE) Ty Ko).
Likewise, fort < 0
u(x,t) = —(ug *(x) K-) = Ug #(x) 9tK_) + (H(=1) f) %ty K2).
So, for arbitrary t, our solution u can be expressed as

u(X, t) = (ug *(x) (K = Ky + Ug *x 0t(Ky — K2)
(2.38) + (H@®) T *p Ki) + (H(E) T 200 K).
So far, we have avoided the question of computiagand K_ ex- 56

plicitly. Indeed, sinceK, andK_ are notL! functions, it is not an easy
matter to calculate their inverse Fourier transform,
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However, for the caske = 1, we can findK, andK_ by solving the
wave wave equation directly. We have

82— A =02 -2

If we make the change of variablés= x+t,n = x—t, then the wave

2 2
operator become® - 92 = —4%. The general solution (g% =0
n n

u(g, n) = £(£) +9(m)
wheref andg are arbitrary functions. Therefore

is given by

u(x,t) = fF(x+t) + g(x—1).

To solve 67 — 62)u = 0,u(x,0) = Up(X), dru(x, 0) = uz(X) we must
have

Uo(¥) = F(X) +9(x)
w(¥) = (9 - g

From these equations, we have
’ 1 7
(%) = 5Up(x) + wr(x)
/ 1 7
g (%) = S(Up() — ux(¥).

Thusu(x, t) is given by

X+t

u(x,t) = %(uo(x +1t) + Up(X— 1)) + % ful(s)ds

x-t

Comparing with the previous formula{Z]38), we find that
1 1
Ki(x1) = EH(t = Ix)), K_(x,1) = EH(_t = |X)).

Exercise.ComputeK, directly from these formulas.
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It turns out that, fon = 2,

1
Ke(X 1) = ————=H(£t - |x)),
27 V2 — x2

and, forn = 3,
+1
4rt
Forn = 1,2, K., K_ are functions; fon = 3,K,, K_ are not func-
tions but they are measures. For 3,K,, K_ are neither functions nor
measures; they are more singular distributions. The exawifla for
K. is rather messy and we shall not write it out; it may be refidrom
Theoreni 5.3 arld 5114 of Follarid [1] in view of our formUl&3@). The
most important qualitative feature of .Khowever,s that it is always
supported in the light confx, t) : +t > |x|} and we shall now prove this
as a consequence of the following result.

Ki(xt) = (=t — |X)).

Theorem 2.39. Suppose u is a €function on{(x,t) : t > o} such that 58
(02—2)u=0fort > 0and u= du= 0onthe set B= {(x,0) : |X—Xo| <
to}. Them u vanishes dd = {(x,t) : 0 <t < tg, |[X— Xo| < to — t}.

Proof. Assumeu is real valued; otherwise, we can consider the real and
imaginary parts separately. Let

Br = {X: |X— Xo| < tg—t} andE(t) = %fl grad, u’dx
Bt

n 2
ie. E(t):%Ll(@tu)HZ(g—):) ldx O
1
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(The second term comes from the change in the reBjotf this is
not clear, write the derivative as a limit offtBrence quotients and work
it our).

Since

Z ou Pu + Fudu_ div u radcu
ax; axgot L gz ot - v\ a9ty
]

applying the divergence theorem and usiég<{ A)u = 0, we obtain

dE duou 1 5
a9t I[EE - §| grad,,ul

0B

do

wherev is the unit normal td3; in R". Now

dudu 1{odu, adu,
|6t8v|<2[|6t| +|8v|]

1{du, 2 1 2
< 2[' ol +loradu” = Sl grad.u ]

. . " E
Thus we see that the integrand is non-positive, and hoI & 0.

t
Also E(0) = 0 sinceu = diu = 0 on By, sOE(t) < 0. ButE(t) > 0 by
definition, soE(t) = 0. This implies that gragu = 0onQ = | Brand

t<to
sinceu = 0 on By, we conclude thatt = 0 onQ.

Corollary 2.40. Suppose ¢C? onR" x [0, ), (02 — a)u = O for t >
0, u(x, 0) = Uo(X), 9t u(x, 0) = u(X). If Qo = (suppuo) U (suppua), then
suppu C Q = {(x, 1) : d(x, Qo) < t}.

(The setQ is the union of the forward light cones with vertices
Qo).

n

Proof. SupposeX, to) ¢ Q. Then for some > 0, the set

Bo = {x: d(x, Xo) < tg + €} is disjoint fromQy.
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Therefore, by Theorefn 2.38,= 0 on the cone
{(X): X=X <tg+e—-t,0<t <tg+ €}

In particular,u = 0 on a neighbourhood okg, tp), i.e., (X, tp) iS not in
the support ofl. O

Corollary 2.41.

SupiK, c {(x.1) 1t =[x}
SupiK, c {(x.1) 1 —t > [x]}.

60

Proof. Pick ageCg(B(0, 1)) such thatf ¢ = 1. Put

$e(X) = € "p(e 1X). Let Us(X, 1) = pe # Ky, t > 0.

Then ¢? — A)u = 0,u(x, 0) = 0,8 u(x, 0) = ¢(x) andu, is C.
By the previous corollary

suppue C {(X,t) : X <t+ e}
Now u, converges t, in S’, ase tends to 0. Therefore,
suppKy c{(x.t) : X < t}.
The result fork_ follows then since&K_(x, t) = K, (x, —t).

Remarks 2.42. (i) One could also deduce the above result from our
formulas forK.. by using thePaley-Wiener theorem

(i) Actually for n = 3,5,7,..., it turns out that supi. = {(x1) :
X = +t}. This is known as théluygens principle See Folland

.



52 2. Partial Diterential Operators with Constant Gbeients

(iii) The distributionsK, are smooth functions df (except at = 0)
with values inE’(R"). Therefore, we now see that our formula
(Z38) for the solution of the Cauchy problem makes sense eve
whenug, uz, eD’(R") and f eC(R;, D’(RY)), and it is easily checkeds61
that u thus defined still solves the Cauchy problem in the sense
of distributions. Corollar{_2.40 remains valid in this m@eneral
setting, as can seen by an approximation argument as indoé pr
of Corollary[Z41.

EXERCISE If (82—a)u= f onR™?, u(x, 0) = up(x), andd; u(x, 0)
= uy(X), figure out how supp is related to supp, suppug and supp;.



Chapter 3

L2 Soholev Spaces

THERE ARE MANY ways of measuring smoothness properties nffu 62
tions in terms of various norms. Often it is convenient to LS@orms,
sinceL? interacts nicely with the Fourier transforms. In this cleapive
set up a precise theory bf differentiability and use it to prove Horman-
der’s theorem on the hypoellipticity of constant fiagent diterential
operators.

1 General Theory of L? Sobolev Spaces

Definition 3.1. For a non-negative integer k, t@obolev spacély is
defined to be the space of all tempered distributions all afsetderiva-
tives of order less than or equal to k are i.L

Thus
Hy = {feS’ : D? feL>(RM) for 0 < |a] < k).

From the definition, we note thdteHy if and only if £ f(¢)el2 for
0<lal <k

Proposition 3.2. feHy if and only if (1+ [¢[2)¥/2fel 2.
Proof. First assume that (& |¢[2)¥/2feL2. Since, fori¢| > 1,

€ < € < (1 +1¢2)9? for all o] < k

53
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and for|é] < 1, 63
€% <1< 1+ 22 forall o] <k,

we have | f(§)| <(1+ |§|2)k/2 fA(g)

and hence £ feL? for |a| < k which implies f eHy. 0

O

n
Conversely, assume th&tH,. Sincel¢* and Y, |§j|k are homoge-
j=1
neous of degrek and nonvanishing faf # 0, we have

(1+16)? < co(1+ 1) < co[l vy |§j|k]

=1
n

so that 1L + 122 iz < coll il + coc Y 105 Fllz
=1

which shows that (3 |£[2)¥/2 fel2.

The characterisation dfl given in the above proposition immedi-
ately suggests a generalisation to non-integral valudsvdiich turns
out to be very useful.

Definition 3.3. For R, we define the operataks: S — S by

(ASTNE) = (L + €221 (9).

s/

A \S/2 .
In other wordsAS = (I — — ] . Clearly ASmaps S continuously

2
onto itself. We can therefore extend continuously from Sonto itself.

The Sobolev space of orderis defined by
Hs = {feS’ : ASfel?).

We equipHs with the normi|f||s) = [[ASf]]2. If Sis a positive integer,
the proof of Propositiof=312 shows that || is equivalent to the norm

Il = Zo<ial<slID” fll2.
PROPERTIES OF K
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(i) Hsis a Hilbert space with the scalar product definedloy)s =
(ASu, ASV). Here the scalar product on the right is thatf The
Fourier transform is a unitary isomorphism betwdégnand the
space of functions which are square integrable with redpettte
measure (¥ [£]%)3dé.

(i) ForeveryseR, S is dense irHs.

(iii) If s> t,Hs c H; with continuous imbedding. In fact, fareHs,
lully < llullg). In particular,Hs ¢ L2 for s> 0.

(iv) D*is a bounded operator frofs into Hs_j,SeR. 65
(v) If feH_g, thenf as a linear functional o8 extends continuously

to Hs and||f[|g is the norm off in (Hs)*. So we can identify
(Hs)" with H(_g. For feH_s, geHs the pairing is given by

< f,g>=< A~f,ASg >= f fg.
(If s= 0, this identification oHg = L? with its dual is the complex

conjugate of the usual one).

(vi) The norm||.||(s)_is trgnslation invariant. Indeed,dg{x) = f(x— Xp),
theng(¢) = ¢ £(¢) and henceflis) = llglls-

Proposition 3.4. For s> n/2, we havejeH_s.

Proof. (1 + |£€2)7%25 = (1 + |€2)~%/2¢L2, whenevers > n/2. This is a
consequence of the following observation : O

J@+1€P)75de ~ 1+ [r725"1dr < oo if and only if s> n/2.
1

As an immediate consequence of this proposition, we have

Corollary 3.5. For s> n/2+ |a|, D¥5eH_s.
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n
Theorem 3.6 (SOBOLEV IMBEDDING THEOREM) For s > E + 66
k, Hs c CX. Further, we have

(3.7) > suplD* | < Calflls-
jot<k RN

Proof. SinceS is dense irHg, it suffices to provel(317) fofeS. Let oy

denote the Dirac measurexatFor|a| < k, sinces > 3 + |a|, D¥OxeH_s.
m|

Since
< D%y, f >= (—1)"’| < Oy, D¥f >= (—1)'“'(D“f)(x)

and||D%6«l|-s) is independent o,

Z sup|D*f(x)| = Z sunp|D“6X, f>|

joj<k ®" jal<k ®
< ), supID"5xll-sl ik = Csul il

lal<k

Now, givenueHs, choose a sequence;) in S such thatju — uil|s
converges to 0, agtends toco. The above inequality with = u; — u;
shows thatD“u;) is a Cauchy sequence in the uniform norm|égr< k;
S0 its limit D*u is continuous.

Corollary 3.8. If ueHs for all seR, then kC* i.e.,( Hs c C*.
S

. L, N
This argument can be extended to show that i — + k, then

elements oH; and their derivatives of order less than or equdt tve
not merely continuous but actually Holder continuous.

. n
Proposition 3.9. 1f 0 < @ < 1 and s= ~ + a, then||dx — dyllg <
N 2
Ca|X—Y|

Proof. We have

I6x — 8ylit_g = f &7 2E — @ WXL+ 1¢7) " dz.
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Let Rbe a positive number, to be fixed later. WHehn< Rwe use
the estimatge 2"*¢ —e2V4| < 2ré||x—y| (by the mean value theorem)
and wheri¢| > R, we usde 2"*¢ — e-27iy.£| < 2. Then we have

I6x = ylIf-g < 4n°Ix = yi? f €7(L + 1617) %0 + 4 f (1+16%) ¢

I€1<R l€>R
R R
< Cl|x—y|2 f(1+ r2)~Sr™idr + fr‘zs”“ldr
0 0
’ 2p—2s+n+2 —25+N n n
sc[lx—y|R +R ]as§<s<§+1
_ [IX— yIZRE2 4 R—za]
When we takeR = |x — y|~* we get our result. O

Exercise .Show that the above argument does not work wien 1.
Instead, we geltdy — dyll—s < cIx - ylllog|x — yII*/2 when x is near y.
What happens whan > 1?

Corollary 3.10. Let0 < @ < 1 and A, = bounded functions g sup 68
X’y

19(x) — g(y)!

oy < ls= g +a+land feHs, then D feA, for |B] < k.

Remark 3.11.We shall obtain an analogue of this result fét norms
in Chaptefb.
The following lemma will be used in several arguments héeeaf

Lemma 3.12. For all £, neR" and &R, we have
S

2
LI 2801 4 1 — 2y,

1+ g2
Proof. |£| < || + |€ — | gives
€17 < 2(inl* + I£ - nl?) so that
L+ EP) < 2(1+ ) + € = 7).
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If s> 0, then raise both sides to tis& power. Ifs < 0, interchange
£ andn and raise to the-s" power.

Proposition 3.13. If ¢€S, then the operatof — ¢f is bounded for all
S.

Proof. The operatorf — ¢f is bounded orHs if and only if the opera-
tor of g — ASpA~Sgis bounded on.?, as one sees by m]

69 settingg = ASf. But
(A56750)" (@) = (1 + 67926 A 0)(©)
= (1+1€P)¥?[9() * (A 9) ()]
- @+ 1) [ ae - n)a+ P3G
- [ atkcenan

where
K(&.n) = (L+ 1)L+ 1£€7)*¢(& - n).
By lemma 3R,

IKE n)l < 292(1 + |¢ - n2)921p(& - n)l.

Therefore, sincé is rapidly decreasing ab,

f|K(§, n)ld¢ < cfor everyneR",
f|K(§, n)ldn < cfor everyneR".

Thus from Theorerfi Il 1, the operator with kerieis bounded on
L2. Hence our proposition is proved.

The space#is are defined oR" globally by means of the Fourier
transform. Frequently, it is more appropriate to consitierfollowing
versions of these spaces.
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Definition 3.14. If Q c R"is open and &R, we define I?CQ = {feD
(Q) : VQ' € Q, A gq, eHs such that

go = fonQ'}.
Proposition 3.15. feH!°¢(Q) if and only if¢ f eHs for $eC3'(Q). 70

Proof. If feH!°%(Q) and¢eCy'(Q), then there existgeHs such thatf =
g on suppg. Thereforep f = ¢pgeHs by propositior-3.113. O

Conversely, if¢feHs for all ¢eC7(Q), and Q" e Q, choose
¢eCy’(c0) with ¢ = 1 onQ'. ThengfeHsandf = ¢f on Q.

Corollary 3.16. If L = Y a.(X)D* with a.eC*(Q), then L maps

oc]<k

HLC(Q) into HI% (Q) for all seR.

It is a consequence of the Arzela-Ascoli theorem thauj (s a
sequence o€ functions such thau;| and|o”uj|(je| < k) are bounded
on compact set uniformly in, there exists a subsequencg) (of (u;)
such that §*v;) converges uniformly on compact set faf < k- 1. In
particular, if theu]s are supported in a common compact set, théw;}
converges uniformly.

There is an analogue of this result fdg spaces.

Lemma 3.17. Supposduy) is a sequence of ©unctions supported in
a fixed compact se® such thatsup|lugis < oo. Then there exists a
k

subsequence which converges in thenbim for all t < s.

Proof. Pick a¢eCy such thatp = 1 onQ so thatux = ¢ux and hence 71
Ok = (z*ﬂk. Then

(1 +1EP)¥208) = (1 + 16D)7 f 3(& - m)Ou(m)
< f 1B — IO+ D)L + 1 - nP)S2dn
< 299 g|lisllull < € —1 independent ok.

Likewise, we have

(L +1€P)%210;0k(€)l < 2921276 (Nigllulicy < 2
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independently ok. Therefore, by the Arzela-Ascoli theorem there ex-
ists a subsequence] of (Ox) which converges uniformly on compact
sets. Fot < s,

v — W2, = f (1 + ), — e

=fu+m%m—w%a+fu+me—m%§

I¢1<R l€>R
< (1+ R)MEO) sup|;(¢) - W(&)? f dé+
[¢1<R
[éI<R

+ (L4 RS f [(L + 1£P)%0,(&) - 9(@)Pde]

lEI>R

< ol + RR)™H SupIvi(6) - i@ + (1 + R)lv) - Wiify.

O

Givene > 0, chooseR large enough so that the second term is less
thane/2 for all j andk. This is possible sincgv; — vl < ¢ and
t — s < 0. Then forj andk large enough the first term is less thgi2,
since (i) converges uniformly on compact sets. Thus we see that (
is a Cauchy sequence Ity and sinceH; is complete we are done.

Remark 3.12.Lemmd 3.V is false, if we do not assume that allupe
have support in a fixed compact set. For exampleué@;’ and xceR"
with |xy| tending toco, defineug(X) = u(x—xy). Then the invariance dfg
norms shows thaluy/|s) = [lullig). But no subsequence afy) converges,
in anyHs. For, if a subsequencey] of (ux) converges, it must converge
to 0, sinceu, converges to 0 it%’. But then lim||vi|lx) = O which is not
the case.

Theorem 3.20(RELLICH THEOREM). Let HY(Q) be the closure of
C5(Q) in Hs. If Qis bounded and & s, the inclusion (Q) — Hy is
compact, i.e., bounded sets iif() are relatively compact in H

Proof. Let (us) be a sequence iH2(Q). To eachk, find aweCy(Q)
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such thatflux — Vil < % Then we havélvllg < lludig +1 < €
(independent ok.) Therefore, by lemmB31L7, a subsequengg Of
(W) exists such thatw) converges irH;. If (uy) is the subsequence of
(uy) corresponding to the sequeneg), we have 73

llul = Willey < Nluf = Willgy + Wi — Wil + Iwj — Ul

11 -
<T+T+||Wi—Wj||(t)—>0aS||I,j—>oo.

Hence (1) converges irH;. O

| the proof of the next theorem, we will use the technique ofiptex
interpolation, which is based on the following result frotereentary
complex analysis calledThree lines lemma’

Lemma 3.20. Suppose B) is analytic in o< ReZ< 1, continuous and
bounded o) < ReZ< 1. If [F(1 +it)|] < cg and|F(l + it)] < cq, then
F(s+it) < cjsc5, for0< s< 1.

Proof. If € > 0, the function
6@ = e 1)

satisfies the hypotheses with andc; replaced by 1, and alsg.(2)|
converges to 0 admz — oo for 0 < ReZ < 1. From the maximum
modulus principle, it follows thag(z)| < 1 for 0 < Rez< 1 and letting
e tend to O, we obtain the desired result. m]

Theorem 3.21. Suppose thatoo < 59 < 51 < o0 and T is a bounded
linear operator Hy, such that THg, is bounded on k. Then THs is
bounded on Hfor all swith § < s< 5.

Proof. Our hypothesis means that 74
ADT AT and AT TATY
are bounded operators &A. For 0< Rez< 1 we define

s=(1-2s+zgandT, = AST A%,
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Then what we wish to prove is th@t is bounded o2 for 0 < z <
1. Observe that whew = x + iy, AW, AXAY and
(AYE)(€) = (1 +1¢P)Y/?£%(#) so that
(WY Y(©) = 1 @)

ThusAY is unitary onHs for all s.
For ¢, yeS, we define

F(2 = f(TZ¢>)¢ =< AT A % ¢, > .
Then

IF@I =< AT A" ¢,y > |
= <TAZ G, A2 > |
<IT AT llsoll A~ ¥l(—so)
<ol A2 dllsll A% Ml(-s0)

< cl|¢ll(sp-s1)Re A¥l(s1-s0)Rez
< cligllo)lllls;-so

75  F(2) is clearly an analytic function affor 0 < Re z< 1. Further, by our
hypothesis o, whenRez= 0, we have

IF(2) < collgllo)llllo)
and wherRez= 1, we have
IF@I < ciligliollvlio).
Therefore, by the Three lines lemma
IF@) < cg “cGligllo)lvll) for 0 < z< 1.
Finally, by the self duality oHg = L?, this gives
IT20ll < 5 cGliglio)

which completes the proof.
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Remark 3.22.The same proof also yields the followimgore general
result:

Supposex < § < § < o0 < tg < t; < co. If T is a bounded
linear operator fronHs, to Hy, whose restriction téis, to Hy,, then the
restriction ofT to H, is bounded fromHy, to H;, for 0 < 6 < 1 where
s = (1-0)s + 05 andty = (1 — )ty + 6t1.

As a consequence of this result, we obtain an easy proof—li,ﬁ‘éts
invariant under smooth coordinate changes.

Theorem 3.23. Supposé? andQ)’ are open subsets &" and¢ : Q —
Q' is a C* diffeomorphism. Then the mapping— fog maps HS(Q'). 76
continuously onto I¢(Q).

Proof. The statement of the theorem is equivalent to the assehiin t
for any ¢peC(Q'), the mapl f = (¢f) o ¢ is bounded orHs for seR. If
s=0,1,2,..., this follows from the chain rule and the fact tHd =
{f : D*felL?for | « | < s}. By Theoreni3.A1, it is true for al > 0. But
the adjoint ofT is another map of the same form : O

T*g = (yg).w Wherey = 671 andy = ¢|J| o @, J being the Jacobian
determinant ofb~1. HenceT* is bounded orHs for all s > 0 and by
duality of Hg andH_g, this yields the boundednessbn H for s < 0.

Finally, we ask to what extend thés spaces include all distribu-
tions. Globally they do not, since, ffeHs, thenf is tempered and is
a function. But locally they do, as we see from the followiegult.

Proposition 3.24. Every distribution with compact support lies in some
Hs ie., B c U Hs.
s€R

Proof. If feE’, then it is a continuous linear functional @%. There-
fore, there exists a constant> 0, a compact sef, and a nonnegative
integerk such that

< f,¢g>|<cC Z sup|D*¢| for all peC*™,

loc|<k

ie,|<f,¢p>|<c X supD¥| for all peC™. 77
lal<lk RN
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By the Sobolev imbedding theorem,

2, SUPID“9| < Cl1gllr g+ for € > .

locl<k

Therefore| < f,¢ > | < C”||(k+g+e) for all ¢S sinceS is dense in
H(k+3+¢), this shows thatf is a continuous linear functional d#y,, s, ).
HencefeH_%_k_E. O

Corollary 3.25. If feD’(Q2) andQ)’ has compact closure €2 then there
exists s irR such that £H°°(Q").

2 Hypoelliptic Operators With Constant
Codfficients

We now apply the machinery of Sobolev spaces to derive aioritéor
the hypoellipticity of constant cdicient ditferential operators. First,
we have a few preliminaries.

Definition 3.26. Let P be a polynomial in n variables. For a multi-index
oc, P will ne defined by P)(¢) = ((%)“P(g).

Proposition 3.27. LEIBNIZ RULE When £C*,geD’ and RD) is a
constant-coficient partial diferential operator of order k, we have

PID)(fa) = ) —(PO(D)QD* ).

locl<k
The proof of this proposition is left as an exercise to theleza

Definition 3.28. We say that a polynomial P satisfies conditigt) if
there exists & > 0 such that

PO
1P
Theorem 3.29HORMANDER). If P satisfies conditiofH), then RD)
is hypoelliptic. More precisely, if f is in )and RD) ngck&(Q),
wheres is as in condition(H) and k is the degree of P.

=0 (&%) as|s] — oo,V o .
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Proof. We first observe that the second assertion implies the fitsesi
C®(Q) = N HP¢(Q) by Corollary[3B. O
seR

Suppose therefore th&(D) feH!°°(Q), feD’(Q). Given ¢peC(Q)
we have to prove thapfeHsks. Let Q’, be an open set such that
Q' e Q and supp c Q'. By Corollary[3.Zb, therefore existsin R
such thatfeH{°°(Q’). By decreasing, we can some thdt= s+ k —

1 — ms for assume positive integen. Set¢m, = ¢ and then choose

$m-1, dm-2, . . ., p0, $—1 in C3°(Q’) such thaipj = 1 on suppb;,1.
Theng;P(D)feHs C Hi_si1+js for 0 < j < mandg¢_1 feH;. Now

P(D)(é0f) = 40P(D)T + 3 —P*(D)(¢_1F)D"*
o0

sinced_1 = 1 on the support ofg. So,P(D)(¢of)eH;_k 1. This means
that

f (L + D) PE) (@0 ) (©)IPde < oo

By condition (H) 79
f (1 + €12+l P (&) (9o F) €)PdE < o0

This implies that@(D)(¢. f)eH; — k + | + 61].
Next,

1
P(D)(1f) = $:1P(D)f + Y = p(D)(do)D*(¢11)
o0
sincegp = 1 on the support ap, SOP(D)(¢1 f)eHi_ks145. By the same

argument same argument as above,

PO (1 f)eHerkert 14/ -

Continuing inductively, we obtaifP(D)(¢; f)eHi_k.1+js, which im-
plies that
POYD) (@ F)eH-ketas(j+1c) -
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For j = m, we above

PE)(D)(¢mf)eHtkitssmi(s) = Hsrolo-

PE) = ) as,

loc|<k

choosex with | o | = k such thata. # 0. ThenP*(¢) =«la,. # 0.
whencepf = ¢ feHs ks and we are done.

Remark 3.30.The condition (H) is equivalent to the following appar-
ently weaker condition

o)
M) re

Condition {H’) is in turn equivalent to

— 0 as|¢] — oo for <z 0.

(H”) 1 lIm{] — oo, in the set{ceC" : P(¢) = 0}.

The converse of Hormander's theorem is also true, i.e oéNiptic-
ity implies condition (H).

The proofs of these assertions can be found in HormahdeiT [&3
logical order of the proofs is

(H) = hypoellipticity= (H”) = (H") = (H).

The implication H’) = (H) requires the use of some results from
(semi) algebraic geometry.
Definition 3.31. P(¢) = Y, a.£~is called elliptic if ), a.&™ # Ofor
everyé # 0. = a

EXERCISES

1. Prove thaP is elliptic if and only if [P(£)| > c,|¢[K for largel].

2. Prove thaP is elliptic if and only if P satisfies conditionH) with
6 =1
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3. Prove that ndP satisfies conditionH) with § > 1. (Hint: If
| o< | = k, P®) is a constant).

4. LetP be elliptic and real valued. Defir@ onR™* by Q(¢,7) =
2rit + P(¢), so thatQ(Dy, Dy) = d; + P(Dx). Show thatQ satisfies
condition H) with 6 = 1/k wherek is the degree oP and that
1/kis the best possible value 6f

(Hint : Consider the regiongl® < || and|7| < |£¢ separately).






Chapter 4

Basic Theory of Pseudo
Differential Operators

1 Representation of Pseudo dierential Operators

LetL = 3 a,(X)D” be a partial dferential operator witlC® codfi- 82
lar|<k

cients onQ. Using the Fourier transform, we can write

(WK = Y 209 [ S

la|<k

- f &7 p(x, £)0(€) e

wherep(x, &) = 3, a,(X)&%. This representation suggests tipéx, £)
l|<k

can be replaced 6y more general functions. So, we make tlosviod
definition.

Definition 4.1. For an open se€2 c R" and a real number m we define
S™(Q), the class of symbols of order m @ by

S™Q) = {peC*(QAXR") : Y, B,VQ' C Q, €= Coper
such thatsup.o, DXDZ p(x, £)| < (1 + €)™},

69
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We note thaS™(Q) c S™ whenevem < ', and we seB*(Q) =
N S™().
meR
Examples

() Let p(x,&) = 3 a,(X)&” with a,eC™(Q). ThenpeSK(Q).

lal<k
83 (i) Let p(x, &) = Z aj(x) fj(¢) whereaseC®(Q) and f;eC*(R") is
homogeneous of degree largeé : that is,

fi(ré) = rMf(é) for |¢l > c,r > 1.
In this case peS™(€2), wherem = max{m;}.
1<j<N

(iii) Let p(x, &) = (1 + |¢]2)%2. This p belongs taSS(RM).

(iv) Let p(x &) = ¢(&) sinlog|é] with eC*, ¢ = 0 near the origin and
¢ = 1 when|¢| > 1. ThenpeS°(R").

Remark 4.2.We observe that whepeS™(Q), DﬁDg peS™ll(Q).

Further, if peS™(Q) andgeS™(Q2),thenp + qeS™(Q2), wherem =
maxmy, M} and pgeS™ ™ (Q).

Remark 4.3.0ur symbol classeS™(Q2) are special cases of Horman-
der's classe§25(g). Namely, for 0< 6 < p < 1, andmeR,

Sp5(Q) = {peC(Q X R") : Va, B,V € Q,C = Coper
such that SURDRDE p(x, )| < c(1 + [¢]) ™oy,
XeQY
In this terminology,S™(2) = ST(<2).

Definition 4.4. For peS™(Q), we define the operator(pD) on the do-
main G’ (2) by

p(x, D) U(X) = f X D(x, £) 0(E)dE, UeC ().
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(Sometimes, we shall denof#x, D) by p). Operators of the form
p(x, D) with peS™(Q2) are calledoseudo dferential operators of order
mon Q.

The set of all pseudo fierential operators of orden on Q will de-
noted by?™(Q2). For brevity, we will sometimes write?DO” instead
of “pseudo diferential operators”.

The next theorem states thpx, D) is a continuous linear map of
Co’(Q) into C*(Q which extends tdE’(2). For the proof, we need a
result which depends on

Lemma 4.5. Let peS™(Q2) and ¢eCg’(€2). Then, for each positive inte-
ger N, there existsye> 0 such that for allé, 7 in R",

| f (%, £)p()dXN < en(L + E)™(L + ).

Proof. For anys andn in R",
™ [ €™ p(x, £)$(x)dx

iy f DI p(x, £)p(x)dIX.

Integrating by parts, we have
i [ e picAsadn =1 [ D p(x o)
< Co(1 + €)™ for all .

Therefore

b [ B 09X < (1 + )" or all N

lal<N

Since (1+ )N < ¢ Y |57, the required result follows.

lal<N
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Corollary 4.6. If peS™(Q) and¢eC3’(€2), then the function

oe) = f X p(x, £)p(X)dlx

is rapidly decreasing as tends toco.
Proof. Set¢ = n in the lemma. o

Theorem 4.7. If peS™(Q), then [x, D) is a continuous linear map of
Co'(Q) into C*(Q2) which can be extended as a linear map frong¢<g
into D’'(Q).

Proof. ForueCy (),

p(X, D)U(X) = f &4 p(x, £)0(E)de.

The integral converges absolutely and uniformly on compaty, as
do the integrals

f DY(€¥¢ p(x, &) 0(&)dk for all o
sincepeS™ andueS. m]
This proves thaip(x, D)ueC*(2), and continuity ofp(x, D) from
Co () to C*(Q) is an easy exercise.
To prove the rest of the theorem, we will make use of Corofafly

For ueE’(Q2), we definep(x, D)u as a functional orCg’(2) as fol-
lows:

< PO DU ¢ > = [ p(x £)A(E)F™p(x)dxck
- [ e

where

oe) = f 7 p(x, £)p(x)dx, Tor geC ().
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By Corollary[4®,9(¢) is rapidly decreasing, whila i of polyno-
mial growth; so the last integral is absolutely convergert the func-
tional onCy’ thus defined is easily seen to be continuous. Moreover, if
ueCy’, the double integral is absolutely convergent, and by ahi@ng-
ing the order of integration, we see that this definitiorpof, D)u coin-
cides with the original one. Hence we have extenged D) to a map
from E’(Q) to D(Q).

Remark 4.8.1t follows easily from the above argument tha(tx, D) is
sequentially fronE’(Q) to D(Q), i.e., if ug converges ta in E’(Q), then
p(x, D)ux converges tq(x, D)u in 2(Q). Actually, p(x, D) is contin-
uous fromE’(Q) to D’'(Q) : this follows from the fact (which we shall
prove later) that the transpose of a pseudtedential operator is again
a pseudo dferential operator. Thug(x, D)! : CZ(Q) — C*(Q) is con-
tinuous, and so, by duality(x, D) = (p(x, D)})! : E'(Q) — D'(Q) is
continuous.

2 Distribution Kernels and the Pseudo Local Prop-
erty
Definition 4.9. Let T be an operator from £(Q2) to C*(Q). If there
exists a distribution K o x Q such that
<Tuv>=<kveu> foru,veC3 (Q),
we say that K is thdistribution kernebf the operator T.

In this definition,vau is defined by y®u)(x, y) = v(X)u(y). Formally,
this definition says that.

Tux) = f K (xy)u@)dy.

K is uniquely determined since linear combinations of fuoreti of the 87
formv® u are dense i€ (Q x Q).

If peS™(Q), it is easy to compute the distribution kernelpf, D).
In fact,

< p(x,D)u,v > = ff p(x, £)0(£)eF™ ¢ v(x)déd x
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= || px£)e¥™4 (v e Uy (x, £)dédx

where ¢ ® u)AZ(x, £) means the Fourier transform in the second variable.
It follows immediately from the definition df that

<K,w> = fj e p(x, E)W, (X, £)déd X, YWeCT (Q x Q).
or <K,w> = fj 0N Ep(x £)w(x, y)dy de dx

From this it is easy to see th{(x,y) = pj(x, x—Y) wherep}(x, .) is
the inverse Fourier transform of the tempered distribupifn.). In par-
ticular, this shows thgp is uniquely determined by the operafu, D).
If Pe¥™(Q2), we shall sometimes denote the unique&s™(Q2) such that

p = p(x, D) by op.
The following theorem gives precise results on the keiebf

p(x, D).

Theorem 4.10. The distribution kernel K of [, D) with peS™(Q) is in
C® on(QxQ)/A whereA{(X, X) : xeQ} is the diagonal. More precisely,
if || > M +n+ j for a positive integer |, thefix—y)*K(x, y)eC! (Q x Q).

Proof. ForweCg’(Q x Q), let us computes (X — y)*K, w >.
<(X=Y'K,w>=<K, (X-y)*W>
= [ @™ p(x )(x + De)Wy(x, £)dé dx
= [ Wo(x O)x - Do) (€74 plx, £)1k dix

Using the Leibniz formula, it is easily seen that
(X — D)™ {74 p(x, £)} = (—Dg)" p(x, £).€4
Therefore
< (=" Kew> = [ O (-Dg plx.£)c dx
= [ woey)e 04Dy pix. )y e dix
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From the above expression, we infer that
(c=9K(y) = [ 0NED pix de

Since|(-Dg)?p(x, £)| < ¢(1 + [¢))™ !, the integral converges abso-
lutely and uniformly on compact sets whenever |a| < —n. Also
we can diferentiate with respect wandy | times under the integral
sign providedm—|a| + j < —norlal > m+ n+ j. Thus, we see that
(x—Y)*KeCl(Q x Q).

Corollary 4.11 (PSEUDO LOCAL PROPERTY O®DO). If Pey¥™
(Q), then, for all LE’(Q), singsuppPu is contained in singuppu.

Proof. LetueE” and letV be an arbitrary neighbourhood of sing supp
Take apeCZ’(V) such that = 1 on sing supp.. Thenu = gu+(1-¢)u =
up + Up; Uz is aCy’ function and suppiieV. O

Therefore,Pu = Pu; + P and Pw, is aC® function. Moreover,
whenx, ¢ V, 89

PU(x) = fv K(x y)uyv)dy

is also aC* function in a neighbourhood o, sinceu; (y) = 0 fory near
Xo. This implies that sing supPu c V. SinceV is any neighbourhood
of sing suppu, the corollary is proved.

Corollary 4.12. If peS~(Q), then the distribution kernel K of(g, D)
isin C*(Q x Q).

Proof. Follows from the theorem if we take| = O. O

Corollary 4.13. If peS™(QY), then (fx, D), maps E(Q2) continuously
into C*(Q).

Proof. If ueE’(Q2), in view of Corollary 4.12, it is easily seen that
p(x, D)u is a smooth function defined by

P(x, D)u(x) = fK(x, yuly)dy =< u, K(x,.) >,

whence the result follows. m]
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Definition 4.14. A smoothing operator is a linear operator T which
maps E(Q) continuously into ().
If KeC*(Q x Q), then the operator T defined by

(THX) =< K(x,.), f >= fK(x,y)f(y)dy

is a smoothing operator. Conversely, every smoothing dper can
be given in the above form with(K y) = (T6y)(X).

As we have already remarked feS™*, then the corresponding
YDO is smoothing. However, not every smoothing operator¥4x0.
For example, we have

Proposition 4.15. Suppose {x,.) is a C* function of x with values in
E’. Then (§x, D) (defined in the same way as in the case«8'H(Q)) is
a smoothing operator.

Proof. The distribution kerneK of p(x, D) is given by

K(xy) = f 0N p(x, £)dke
=< p(x,.), N0 >

and hence&K(x, y)eC>. ThusK defines a smoothing operator. m|

Remark 4.16.Sometimes, it is convenient to enlarge the class of
pseudo-dierential operators of orden by including operators of the
form P + S wherePe?™(Q) andS is smoothing. However, the general
philosophy is the following:

1. On the level of operators, smoothing operators are riblglig

2. On the level of symbols, what counts is the asymptotic \ieha
at oo, so that symbols of orderco are negligible.
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3 Asymptotic Expansions of Symbols

Definition 4.17. Suppose g1> M > mp > ---mM;jeR, m; tends to—co,

and peS™(Q), peS™(Q). We say that p- 3, pjif p— X pjeS™(Q)
j=0 j<k

for all k.

Proposition 4.18. Suppose fqtends to-co and gesmi(gz). Then there

exists a p in 8¢(Q) such that p~ § j = 0p;j. This p is unique modulo
S™(Q).

Proof. Let (Qn) be an increasing sequence of compact subse@ of
whose union i€2. Fix ¢eC® with ¢ = 1 for|¢] > 1 > and¢ = 0

for ¢ < 1 O
<35
Claim There exists a sequencg)(tj > 0 andt; tending toco so 91
rapidly that we have

(4.19)
IDRDZ (B(€/4) P (% ) < 27 (L+I&)™+71*! for xeQi, andjal+|Bl+i < .

Granted this, we define
POCE) = D" BE/)Pj(%.€).
=0
Note that for eachx and &, the sum is finite. Using{4.19), it is
straightforward to show thgteS™(Q) andp ~ }, pj. Moreover, sup-
j=0

pose thaeS™(Q) andq ~ § pj. Then
j=0

P-a=(p- ) P)-(a- ), p)eS™@)forallk
j<k j<k

Hencep — qeS™.
we now briefly indicate the steps involved in proving therlai

i) First observe thaDy¢(¢/t))| < clé|™ uniformly in j.
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i) Hence we hav¢D§Dg(¢(§/tj)pj(X, ) < ¢j(1 + lgN™i~lal for xeQ,
la| + 8]+ <.

iii) Finally, pick t; so large that ] > tj/2 > ¢j(1 + [¢[)™ ™1 < 271"
Details are left to the reader.
The following theorem provides a useful criterion for thgraptotic
relationp ~ 3 p; to hold.
j=0

Theorem 4.20. Suppose gS™, m; tends to—co, and EC™(Q x R")
satisfies following conditions:

i) forall @ andp and allQ’ € Q, there exists ¢ 0, ueRsuch that

IDEDEP(x. &)l < c(1 + €]}, xeQ, and

ii) there exists a sequendgy),ux tending to—co so that|p(x, &) —
Y Pi(% &) < Cq, (1 + [£y* for xeQ'. Then @S™(Q) and p ~
j<k

2 bj.
j=0
To prove this theorem, we need the following

Lemma 4.21. LetQ; andQ, be two compact subsetskfsuch that2;
is contained in the interior a2,. Then there exists constants:e 0 and
¢, > O'such that for all £C?(Q,),

Supy, 10 fI” < cu(Supy, If1%) + c2(Sumy, | f)(Sup,, 197 ).

Proof. It suffices to assume that= 1 andf is real valued. With this
reduction, the proof becomes an exercise in elementarylaslc This
idea is roughly as follows: We wish to show that|iff ||, and|| f" ||
are both small, then so is f’ || is small and|f’(xo)| is large, then
|f/] will be large in some sizable intervad,[b] containingx,. But then
|f(b) — f(a)l and hencd f ||, is large. We leave it to the reader to work
out the quantitative details of this argument. m|
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Proof of the theorem .By Propositio 418, there exists q if"Ssuch
that g~ 3 pj; so, it will syfice to show that p-qeS™. First,
j=0

IP(%.£) = A% &) = I(p(6 &) = > Pi(x.£) = (@(x.€) = D" Pi(x &)

j<k j<k

For

O cc QIp06€) - ) Pi(x &)l < o, (1+ 6", xeQ'.
j<k

Also g~ ioj pj. These show that, for any N,
j=0

IP(%, &) — A(X, )| < Cnar (1 + €)™V, xeQ'.

We want to prove such an estimate DﬁD“(p — @) also. To this
end, we will apply Lemm&Z.21 to the functior, ) — (p— Q)(x, & +
n) consideringé as a parameter, and takifgy = Q' x 0 andQ, a
small neighbourhood af2;. If |a] + |8] = 1, we use the estimate just
established fomp — g, together with the hypothesis (i) on the second
order derivatives op; the lemma implies thalDﬁDg(p — q) is rapidly
decreasing fofa| + |8] = 1. Combining this with the hypothesis (i) on
the third order derivatives g, we see thaD’iDg is rapidly decreasing
for || +|8] = 2. Proceeding by induction da| + |3| we get the required
result.

4 Properly Supported Operators

Since pseudo dlierential operators ma@;’ to C* rather thenCg’, it

is generally not possible to compose two of them. The probiesy
be remedied by considering a more restricted class of aperahe so
called “properly supported” ones.

Definition 4.22. A subset K of2 x Q is said to beproperif, for any 94
compact sef’ c Q, botha;1(€') N K andr,*(Q") N K are compact.
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Herer; andr, are projections of2 x Q onto the first and second
factors.

For example the diagondl = {(x, X) : xeQ} is proper. Most of the
proper subsets we will be considering are neighbourhoodsilidets of
the diagonal.

Figure 4.1: A proper set

Definition 4.23. An operator T: C3’(Q2) — C*(Q) is said to be prop-
erly supported, if its distribution kernel K has proper sopp

Exercise.Let T = } a,(X)D® be a dfferential operator orf2. Computer
the distribution kernel K of T and show that supp K is a sub$¢h®
diagonal. Thus T is properly supported.

If T is properly supported then it magy’ into itself, since supp
Tu cC nl(ngl(suppu) N suppK), as is easily seen from the formula
Tux) = fK(x, y)u(y)dy. More generally, for anf2’ cc Q, there exists
Q" cc Q such that the values dfuon )’ depend only on the values of
uonQ” namely,Q” = mo(7~1(Q’) N suppK). From this it follows that
T can be extended to a map frdd*(Q) to itself. In fact, if ueC*(Q)
andQ’, Q" are as above, we define Tu & by

Tuo = T(oula,

wheregeC>®(Q) and¢ = 1 onQ”. This definition is independent of the
choice ofg and gives the same result on the intersection of @& so
Tuis well defined on all of2.

If T is a properly supported pseuddtdrential operator, so that
extends to a map fro’(Q2) to D’(Q2), the same arguments show tfiat
mapsE’(Q) into itself and extends further to a mapof(Q) to itself.

SupposeT andS are properly supported operators Gff(Q) with
distribution kernelK andL which areC* off the diagonal. The' S
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is an operator oilC*(Q2) with distribution kernelM formally given by
M(x,y) = fK(x, 2L(zy)dz In fact, if x # y, sinceK(x,.) andL(.,Y)
are smooth except atandy, the producK(x, .)L(., Y) is a well defined
element ofe’, and the formula(x, y) =< K(x, .)L(.,¥), 1 > displaysM
as aC* function df the diagonal.

Proposition 4.24. SuppM is proper. Thus, TS is properly supported.

Proof. Clearly,

SuppM c {(xY) : ma(r;*(x) N suppK) N 71 (m5(y) N suppl) # ¢}
SupposeA c Q is compact and s& = nz(aql(A) N suppK), thenB is
compact and

771 (A) NsuppM  Ax fy : BNy (m; () N suppl) # ¢}

=AXx {y - 17 (B) Nyt (y) N suppl # ¢>}
= Ax mp(n;(B) N suppL)

which is compact. Likewisegl(A) N suppM is also compact. O

Exercise .Suppose Ac (Q x Q) is proper. Show that there exists as
properly supporte@eC*(QxQ) such thayp = 1on A. (Hint: Let{¢;} C

C(Q x Q) be a partition of unity o x Qandletp = Y = ¢%).
ANsUppg;

5 ydd's Defined by Multiple Symbols

We have arranged our definition of pseudfietiential operators to agree
with the usual convention for fierential operators, according to which
differentiations are performed first, followed by multiplicatiby the
codficients. However, in some situations (for example, comgudid-
joints), it is convenient to have a more flexible setup whilbbmas mul-
tiplication operators both before and aftefféientiations. We there-
fore, introduce the following apparently more general £lafsoperators
(which, however, turns out to coincide with the class/@fO, modulo
smoothing operators).
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Definition 4.25. For Q open inR" and m real, we define thelass of
multiple symbols of ordemon Q,

ST x Q) ={acCT(QxR"x Q) : Ya,B,YQ cc Q,3c = Cypr
such that sup [DiyD2a(x, £, y)| < (1 + l¢))™ /)
X.yeQY )
WhenaeS™(Q x Q) we define the operatdk = a(x, D, y) by

Aux) = [] @70 a(x £ y)uly)dyek

Here the integral must be interpreted as an iterated irtegpfain-
tegration performed first igthen ing as it is not absolutely convergent
as a double integral.

We observe that i(x, &,y) = a(x &) is independent of, then
A = a(x, D); thus this class of operators include thBO’s. We also
observe that dierenta’s may give rise to same operator. For example,
if a(x, &,y) = s(X)y(y) with ¥, peC3(Q2) and supg N suppy = ¢, then
aes’(Q x Q) anda(x, D,y) = 0.

Definition 4.26. Given a&aS™(Q x Q) we define

Z = {(X,Y)eQ x Q : (X, &,Y)e supp a for someceR"}.

a

Proposition 4.27. Let a&aS™(Q x Q) and let K be the distribution kernel
of A= a(x,D,y). Then

i) SuppK c >4, and

ii) if the support of K is proper, then there exista@™(QxQ) such that
a(x,&,y) = a(x &, y) when(x,y) is near the diagonal if2 x Q, 5
is proper and &x, D,y) = &(x, D, y).

Proof. The kerneK is given by

<Kow>= [[[ N eal g yw(x yydydedx

From this, we see that K,w > . = 0 whenever supp N >, = ¢.
Therefore, supi c 5. This proves (i). m|
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To prove (i), choose a properly support@eC>(Q x Q) with ¢ = 1
on A U suppK, A being the diagonal. Sei(x,&,y) = ¢(x y)ax &, y).
Then} ,, c suppy and hence,, is proper. Alsca’(x,&,Y) = a(x, &,y)
when (&, y) is near the diagonal. Now,

<a(x,D,y)u,v>=<K veu>
=< ¢K,veu>
=< K,¢(veu) >

= fjf 10N Ea(x, £, y)(X, ) X V(X)u(y)dyddx
= [[J @0 4al (x £ y)uly)dydedx

=< a(x,D,y)u,v>.

98
Sincev is arbitrary, we hava(x, D,y) = &(x, D, y).

Theorem 4.28. Suppose é8™(Q x Q) and A = a(x,D,y) is prop-

erly supported. Let (x,&) = e Z*¢A(04)(x). Then gS™(Q) and
p(x, D) = A. Further,

1
P(X.&) ~ ) —0EDJaX £ Y)ly-x.

a

Proof. For uinCg3’(R2), we have
u(x) = f 4 0(£)de.
Therefore, by linearity and continuity &,
A = [ A4 9uE)ds
- [ @ px ey = pix D)ux.
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By the proposition above, we can modify a so thatis proper with-
out dfecting A or the behaviour of a along the diagonak y (which
is what enters into the asymptotic expansionpdf Setb(x,&,y) =
a(x, &, x +Yy). Then as a function of, b has compact support. Indeed9
for fixed x and¢, if ye{y' : b(x,&,y) # O} thenx + yera(n1(X) N Ta)
which is compact. Now,

px7) = &2 [[ 0N Ep(x £,y — )™ Tdyde
— @ rix.n J:[ eZﬂiZ.fb(X’ gz)ez”i(Z”)'”dzcE
_ f Ba(x.£.£ — n)dé = f ba(x.£ + 1. )dé,

where bs is the Fourier transform ob in the third variable. Since
b(x, &,.) is in C3, this calculation is justified anﬂg(x, n, &) is rapidly
decreasing in the variable

More precisely, sincaeS™(Q x Q), we have

(4.29) IDRD2Ds(X, 17, )| < Capn(L+ )™ (L + )™,

Since

1+|n|)S S ol ,
— | <@A+|E- , takingn + € instead o
(1+|§| (L+16 - 7). takingy + £ B

we have (I+ |& + n])S < (1 + [€))3(1 + |n))'S. If we use this in
IDRD2D(X, & + 17, &)] < Capn(L + I + 7)™ 1L + g™
we get
IDRDED(X, € + 17, €)] < €y (L + €))L+ )1l
If we takeN so that-N + m - |¢| < —n we have

(430)  IDEDIp(xn)l = | f DEDEbs(x £ + 1, £)04

< Cap(L + )Ml
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100 On the other hand, taking the Taylor expansiorﬁg{ﬁ(,g +n,£)in
the middle argument about the point@.29) gives

Bs(x & +m.8) - " dba(x 0851

la|<k

< CleK sup |09bs(x. 7 + t,£)]
octe1

< Cplé Sup(L+ I + )™ (L + )N,
<t<
Whenj¢| < 3], takingN = k we get
o +1.6) = Y. bk n. O < at+ g™

la|<k

When|é| > %lnl, we have
ot + 7.8~ . 0balxn )| < On(L+ )™M,
la|<k @:

(Actually, the exponent of (% |£])) can be taken asn— N when
m- k > 0 and wherm - k < 0). Also we have

[ oBatx s =D [ ™ <aBatn. )deiv-o
= D{a,b(x, 7. Y)lv=0
= DYy a(x, n, y)ly=x-
So finally

1
IP(.7) = D, D§aa(x .y) el

la|<k

. 1 .
~1 [ Batxe s o= ) o [ abaten. e

la|<k
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<G f (L+ )™ *dz + Cy f (1 + )™ Nele.
1< RS

Now 101

f Cu(L + Inl)™ ¥ d¢ = CL(L + Inl)™ M < CL(L + )™ "
i<

In the second integral, we také> n + m+ k so that

f Cu(L+ E)™Nde < Cy(L+ )™,
e

by the usual integration in polar coordinates. TherefdreedN > k we
obtain

1
IP(n) = D7 —Dyoyalx i Yyl < C(L + P

lal<k ~°

with g = m—Kk+n.
Combining this with[[£:30), we see that all the conditiong béo-
rem[4.2D are satisfied, so we are done.

Corollary 4.31. If Pey™, there exists a @™ such that Q is properly
supported and P- Q is smoothing.

Proof. If P = p(x, D) choosegpeC*(Q2 x Q) which is properly sup-
ported ands = 1 near the diagonal. Seafx, &,y) = ¢(x, y)p(x, £). Then
aeS™(Q x Q) and by constructior}, is proper. Sa(x, D,y) = Qey™.
If Kp andKq denote the distribution kernels 8fandQ then it is eas-
ily seen thatKq = ¢Kp. This shows thaKg — K, vanishes near the
diagonal: so, by Theorem 4118 — K, is C*. Therefore,Q — p is
smoothing. m)

Remark 4.32.The idea of multiple symbols can clearly be generalised.
For example, iBeC®(Q x R" x Q x R") satisfies estimates of the form

102 |D‘£yDgD§a(X, £Y,m)| < C(+n)™ (1 + €)™ one can define an
operatorA = a(x, D, y, D) by
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AUX) = [ entevemagy gy, n)a)didyde

which agree with our previous definitions, if a is indeperiddrihe last
one or two variables. As one would expect, under reasonabteation
on supp, it turns out thatAey™*™(Q). The reader may wish to amuse
himself by working this out and computing the symbolfof

6 Products and Adjoint of yDO’'S

We are now in a position to compute products and adjoinig@®’S.
First we clarify our terminology. LefT S be linear operators from
C(Q) into C*(Q). We say thatS = T'if < Tuv >=< u,Su >

for u, veC3’(Q2) and we say thaS = T* if < Tuv >=< u,Sv > for
u, veCg’ (Q).

Remark 4.33.1f T is properly supported, theRt andT* are also prop-
erly supported. Indeed, K is the distribution kernel of , then the dis-
tribution kernel of Tt is K! and that ofT* is K* whereK!(x, y) = K(y, X)
andK*(x,y) = K(Y, X).

We recall that ifPeyy™(Q2), we denote the corresponding symbol in
S™(Q) by op.
Theorem 4.34. If Pey™(Q) is properly supported, then'P*ey™(Q)
—1)
andergt(x.&) ~ % T geDgerp(x —8),

a!

1 _
op (%) ~ ) —EDLT(%.).

a

Proof. Foru, veC3’(€2), we have 103
<Puv> = ﬂ 2% p(x, £)U(€)V(X)ded x
([ eZ”‘X’fp(x,g)v(x)dx) 0(e)ae
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- f 96)0E)de

where

o(e) = f &% p(x, EV(X)dx

By Corollary[Z®,g us a rapidly decreasing function. Thus

<Pu,v>:fgﬂ=fug:<u,Pf,>

(4.35)  P(Y) =00) = || e p(x Hv(x)dxck
= [ 094 p(x, —v(x)dxck
= a(x, D, y)u(y)

so that

wherea(x, &y) = p(y. — &). Therefore, by Theorein 428,
t_,m d (_1)|a| a
Pley™(Q) andop (% €) ~ ¢ D5op(% ~¢).
a

The assertions abo®& follows along similar lines

Theorem 4.36. If Pey™(Q) and Q™ (Q) are properly supported,
then QRy™*™(Q3) and

1 (07 (04
T ) ~ ), 1ok Dpx£).
104  Proof. SinceP = (P)!, we have

(PUMX) = [f 10D eoh(y, -)uly)dye
by @35). O
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In other words
(PU@ = [ €2 <on(y-xus)dy
Therefore,
(QPUK) = [[ 0D aq(x E)omy, ~xi)u(y)dyc
= a(x, D, y)u(x)
wherea(x, £,y) = oo(X &)api(y, —£). ClearlyaeS™*™(Q x Q) which

implies QPey/™*™(Q)). Moreover

1
rQp(x.€) ~ 3 — D5 (T Q% )T (Y. ~)y-x

a

~ Z = Z 7y |<980'Q(X §)0;DYopi(X, =)

B+v=a

o]
- Z Z (Iﬂll)él aBO'Q(X é_u)Dﬂ+v+58v+56v+5 (X, _é;)

o]
- Z[ Z Vlﬁll)él ]ﬁ| deorq(x, §)D€+23§o-p(x, )

B \vio=1

But ¥ & 1)‘()' = (X0 — xo)* with xg = (1,1,..., 1)
A

f1ifa=0
loifa=£0
1
Thereforerop(x, &) ~ %Eﬁng(x, E)Drorp(%, &).

Corollary 4.37 (PRODUCT RULES FOR/DO’'S).
If Q = q(x, D)ey™(1) and feC*(Q), then for any positive integer N,105

q(x, D)(fu) = X iD”f[(c?"q)(x D)u] + Tnu where Rey™ N(Q).

la|<N
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Corollary 4.38. The correspondence  p(x,D) and P — o, are *
homomorphisms modulo lower order term i.e., éiSp"(Q2) and g:S™
(©), then(pa)(x, D)~ p(x, D)q(x, D)ey™+™1(Q2) and (x, D)*~p(x, D)
ey™~1 and also, if Ry™(Q) and Q™ (Q), then opg — opoq
eSMHM-1 () op, — & + peS™ Q).

Corollary 4.39. If Pey™(Q) and Q™ (Q2), then[P, Q] = PQ- QP
e y™™L(Q) andop g - Sloe, ooleS™™1(Q) where{ f, g} stands
for the Poisson bracket defined by

(200 ot og
(f.a) = Z(@fj (9Xj (9Xj ag,-)'

Following the philosophy that smoothing operators are igéxé
it is a trivial matter to extend these results to non-propstpported
operators.

SupposePey™(Q) is not properly supported. By corollafy 4131, we
can writeP = P, + swhereP; is properly supported arlis smoothing.
ThenP' = P! + S whereP} is given by Theoreri 234 arfsf is again
smoothing (c.f. Remark”4B3). Likewise f&®*. If Q is a properly
supportedyDO, the productQ and QP are well defined as operators
from C3°(Q2) to C*(Q2). Again, we havePQ = P1Q + SQandQP =
QP; + Qs P1:Q andQP; are described by Theordm 4136, wHi€)and
QS are smoothing.

7 A Continuity Theorem for ¢ Do on Sobolev
Spaces

We now state and prove a continuity theorem for pseudedmtial
operators acting on Sobolev spaces. We are indebted to DERKdnth
for simplifying our original argument.

Theorem 4.40. Suppose P p(x, D)ey™(Q2). Then

i) P:Hs— H9 (Q) continuous for all gR.
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i) If P is properly supported, P H¢(Q) — H!°¢ (Q) continuously
for all seR

Proof. To established (i), we must show that the map— ¢Pu is
bounded fromHs — Hs ., for any ¢eC3’(Q2). Replacingp(x, &) by
d(X)p(x, £) we must show: m]

(4.41) if pes™(R) and p(x, &) = O for x outside a compact set, then
p = p(x, D) is bounded fronHs andHs_r, for everysin R.

Suppose then thaicHs. ThenpueE’, and from the definition oP
on distributions, we see that

(PU)(n) =< Pu, e 2) >
= || enp(x, e dxck
- [ bur- .06

and hence, iVeS,

<Pu¥> = [ (Pu= [[ K. f@F0dec

where f(&) = 1+ €%)%%0()
a(m) = (L + InP)™9/29(z)
andK(n, &) = Pi(n — £ &)L+ 1E2) 521 + Inl?)(sm/2, 107

We wish to estimateK(n,£). For any multi-indexa, since
p(.,£)eCy’, we have

I Pac. )l = f (DY 2% p(x, £)dx

iy f & 210 (D2 p(x, £)dX
< Co(L+ D™,

so that for any positive integé,

1P1(Z, )l < Cn(L + €)™ + Iy ™
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and hence

IK(,€)l < Cn(L+1€)™ (1 + Il)* (L + ¢ — )N
< Cn(L+ fgpyms-N

If we takeN > n+ |m- g, we see that

[ keenen <c. [ Ko <c
Therefore by Theoreinl.1 and the Schwarz inequality,
| < Puv>| < Clfl2lldllz = CllullglIMIm-g-

From this, it follows that|Puls-m < Cllull(s for ueHs which estab-
lishes (4.41) and hence (i).

Now supposeP is properly supported angeH!°°(Q). If peCZ(Q)
there exist9)’ € Q such that the values of Pu on suppepend only
the values olion Q. Thus if we pick¢’eC3’(Q2) with ¢" = 1 onQ’, we
havegPu = ¢P(¢’u). But ¢’ueHs and (4.41)P is bounded fromHs to
Hs_m. This establishes (ii) and completes the proof.

8 Elliptic Pseudo Differential Operators

Definition 4.42. Pey™(Q) is said to be elliptic of order m jfrp(x, &) >
Cq, [£&)™ for large €], for all xeQY’, Q" € Q.

Definition 4.43. If Pey™(Q), a left (resp. right ) parametrix ofP is a
wDOQ such that QR I(resp. PQ -I) is smoothing.

Theorem 4.44.1f Pey™ is elliptic of orderm and properly supported,
then there exists a properly support@ds—™ which is a two-sided para-
metrix for P.

Proof. Let P = p(x, D). We will obtain Q = q(x, D) with g ~ f o]
j=0

where theq]s are defined recursively. L&fx, &) be aC*® function such
thatZ(x, &) = 1 for largeé andZ(x, &) = 0 in a neighbourhood of the
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zeros ofp. Defineqo(x, &) = M Thengoes™. Let Qo = qo(X, D).

p(x, &)’
We have

oQp = gy modSt=1 modSt=1+r; with r;eS™

Letqg; = Lplg Q1 = qu(x, D). Then

T(Qu+Qu)P = Tl + oQp = l+ry-riZ mod S

=1+ry with rzés_z.

Letoy = etc. Having determinedy, g, . .. gj so that
T (Qo+Qu+-Q))P = 1 + 41, rjs1eS~0+D
—Tj+16
set Qivy = .
+ D

109
Let Q be a properly supported operator with symiook 3 q;.
j=0
Thenogp = 1 modS™, i.e., QP — | is smoothing. Thu®) is a left

parametrix. In the same way, we can construct a right paramet.
ThenifS = QP-1 andS’ = PQ - |, we have

QPQ =SQ+Q =Q5+Q

S0Q - Q = SQ - QS is smoothing. Hence&) is a two sided
parametrix.

Exercise.What happens if P is not properly supported? (cf. the remarks
at the end of[86).

The left parametrices are used to prove regularity theomamishe
right parametrices are used to prove existence theorems.
Indeed, we have:
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Corollary 4.45 (ELLIPTIC REGUIARITY THEOREM) If P is elliptic
of order mue? (Q), PueH!°°(Q) implies wH!%, (Q). In particular, P is
hypoelliptic.

Proof. Let Q be a left parametrix and s&t= QP —|. Thenu = QPu—
Su SincePueH!°c(Q) and Q is properly supportedQey™™ we have
QPuH¢ (Q) by TheorenTZ40. Als® wC*™ sinceS is smoothing.
HenceueH!% (Q). O

Theorem 4.46. Every elliptic djfferential operator is locally solvable.
In fact, if P is elliptic onQ, feD’(Q) and %eQ, there exists &’ (Q)
such that Pu= f in a neighbourhood of x (Of course, if €C*, then
ueC®™ near %, by the previous corollary).

Proof. BY cutting f off away fromx,, we can assume thdE’ and
hencefeHs for somes. Let Q be a properly supported parametrix for
and letS = PQ - I. ThenS is also properly supported. 2, cc Qs
a neighbourhood ok, then there exist§2, cc Q such that the values
of Su onQ; depend only on the values afon Qj. Pick ¢1, ¢2eC3 ()
such thapj = 1 onQ;j, j = 1,2 and sefl u = ¢1S(¢2u). O

Now observe the following :
i) Tu=suonQ;j.
i) T:H®— Cg(suupgi) continuously.

From (ii) and the Arzela -Ascoli theorem, it follows that ifi
is a bounded sequence iy (T ) has a convergent subsequence in
Co'(suupg¢1) and hence irHs. Therefore, T is compact onHs. So
the equationT + I)u = f can be solved iff is orthogonal (with respect
to the pairing ofHs andH_g) to the spacdN = {g: (T* + |)g = 0}. This
spaceN is a finite dimensional space 6f° functions so we can always
make this happen by modifyinfoutside a small neighbourhood xy.
Indeed, pick a basig, g, . . ., g, for N and pick a neighbourhodd
of X, so small thay;, ..., g, are linearly independent as functionals on
Co’(Q\U). (Such &J exists; otherwise, by a limiting argument using the
local compactness &, we could find a nontrivial linear combination of
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Oi,...,0, supported atxy}, which is absurd). Then we can makeL N
by adding tof a function inC3’(©2\U). But then

PQu=(1+Su=(l+TuonQ,and( +T)u=f

in a neighbourhood of,. SoQu solves the problem.

9 Wavefront Sets

We now introduce the notion of wavefront sets, which prosid@recise
way of describing the singularities of distributions: iesffies not only
the points at which a distribution is not smooth but the dices in
which it is not smooth.

111

All pseudo diferential operators encountered in this section will be

presumed to be properly supported, and BDO” we shall always
mean “properly supportegDO".

Definition 4.47. (i) Let Q be an open set ilR". Then we define
T°Q = Q x (RM{0}). (In coordinate - invariant terms, 2 is
the cotangent bundle @t with the zero section removed).

(i) AsetSc T°Q s calledconic if (X, £)eS = (X, ré)eS, Vr > 0

(iii) Suppose P p(x, D)ey™(Q). Then(xo, &)eT°Q s said to be non-
characteristic for P iflp(x, &)| > cl&™ for |£] large and(x, &) in
some conic neighbourhood 06, &).

(iv) The characteristic variety of P, denoted by char P, is defimgd
char P={(x,&)eT°Q : (x, &) is characteristic for p.

(V) LetueD’(Q). The wavefront set of u, denoted by YMHs defined
by
WF(U) = n{ charP: Pey/(Q), PueC*(Q)}.

The restrictionPey°(Q) in the definition ofW F(u) is merely a con- 112

venient normalisation. We could allowDO of arbitrary order with-
out changing anything, for iPey™(Q) and Qeyy™(Q) is elliptic, then
QPey°(Q), char QP) = char P)(by TheorenTZ.36), an@PuC* if

and only ifPueC* (by Corollarie 2111 and Z.15).
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Exercise.When p= Y a,(X)&* show that the characteristic variety
la]=<m

of the djferential operator p= P(x, D) is

char P={(x.€): > a,(X&" =0},

lal=m

The motivation folW F(u) is as follows. IfueE’, to say thau is not
smooth in the directiog, should mean that iS not rapidly decreasing
on the throught,. On the other hand, iPueCg’ then (Pu) should be
rapidly decreasing everywhere.

If these conditions both hold, thefg must be characteristic fd?.
Localising these ideas, we arrive\&tF(u).

Thus &.&0)eW F(u) means roughly thait fails to beC* at x, in the
direction&,. For another interpretation of this statement, see Theorem
below. For the present, we show the(u) is related to sing
suppu as it should be. We denote the projectib2 ontoQ by .

Theorem 4.48. For ue?’ (Q), singsuppu = (W F(u)).

Proof. Supposexy ¢ singsuppu. Then there existgeCg’ with ¢ = 1
nearx, and¢ueCy’ . But multiplication by¢ is ayDO of order 0. Call
it Ps. Then chaP, = 771(¢71(0)). Sincegy = 1 nearx,, 7~1(¢1(0))
is disjoint fromz~1(x,). Therefore r (%) N WF(U) = ¢, i.e., X ¢
r(WF(u)). m|

Conversely, suppose, ¢ n7(WF(u)). Then for eacl¥ with |¢| = 1,
there existPey°(Q) with PueC®(Q) and (o, &) ¢ charP.

Each chalP is a closed conic set; so, by the compactness of the unit
sphere, there exists a finite numbeg®@O’s say,P1, . . . Pney(Q) with
PjueC>(€2) and

N N
[ﬂ char Pj] N (%) = ¢. Set P = Z P]-kPj.
j=1 =1

ThenP is elliptic nearx, and PueC*(Q2). Therefore by Corollary
B438,uis C*® nearx,, i.e., X, € Singsuppu.



9. Wavefront Sets 97

Definition 4.49. Let P = p(x, D)ey™(2) and U be an open conic set in
T°Q. We say that P has orderco on U, if, for all closed conic sets
K c U with 7(K) compact for every positive integer N and multi-indices
a andg, there exist constants,gikn such that

IDXDZ PO &)l < Caprn(L+ 167N, (. £)eK.

The essential supporbf P is defined to be the smallest closed conic
set outside of whiclP has orderco.

Exercise .If P is a djferential operator whose cgicients do not all
vanish at any point of2, show that the essential support of P iQT

Proposition 4.50. Ess.suppPQ c Ess.suppPn Ess.suppQ. 114

Proof. This follows immediately from the expansion
O opo ~ Z i(9“0' DSo
PQ ol £V PYx C-

Lemma 4.51. Let (Xo, £0)eT°Q and U be any conic neighbourhood of
(X0, &0). Then there exists adp®(Q) such that(x,, &) ¢ char P but Ess.
suppP c U.

Proof. Choosep,(£)eC*™ with the following properties:
1) Po(é) = 1foré& nearéy, po(¢) = 0 outside(¢ : (X¢)eU} and

i) po is homogeneous of degree 0 for laige

O

Then takepeC>((U)) with ¢ = 1 nearx, and putp(x, &) = po(€)
#(X). This will do the job.
The following theorem and its corollary are refinements ofdGo

lary 411 (pseudo local property ¢fDO) and CorollaryZ4.45 (elliptic
regularity theorem).

Theorem 4.52.1f Pey™(Q) and kD’ (Q2), then WRPuU) c WF(u)n Ess.
suppP.
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Proof. If (%o, &) ¢ Ess. supf®, by LemmdZ31, we can find @ey°
such that X,, &) ¢ charQ and Ess. suppn Ess. sup® = ¢ Then
QPey~ by Propositio’4.30, so tha@PeC>. But this implies that
(X0, é0) ¢ WF(PuU). O

Suppose now thatx§, &) ¢ WF(U). Then there existéey® with
AueC* and o, &) ¢ charA.

Claim. There exist operators ,Bey® with (xo, &) ¢ char B and BP=
CA mody~.

Granted thisBPu= CAu+ (C* function) eC* which implies that
(X0, €0) € WF(Pu).

To prove the claim, leA, be elliptic withoa = oa 0On a conic
neighbourhoodJ of (X0, &,). Then Ess. supg(— A;) N U = ¢. By
LemmalZ.5lL, choosB with (X, &,) ¢ charB and Ess. supp c U.
Let E, be a parametrix foA, and selC = BPE,.ThenCA = BPEA =
BPE,(A— A,) + BPEyA,. SinceEoA, = | mody = andBPEy(A - Ay)
also belongs tg~ (by Propositio4.30 again; A = BP mod y~.
This completes the proof.

Corollary 4.53. If P is elliptic, then WKu) = WF(Pu)).
Proof. By the theoremW F(Pu) c WF(u). If E is a parametrix for

P, thenWF(u) = WF(EPu+ C* function)
= WF(EPU c WF(Pu), by the theorem again
Hence WF(u) = WF(Pu). O

Theorem 4.56.Let keD’ (D). Then(x,, &) ¢ WF(U) if and only if there
existspeCZ (R") such thatp(x,) = 1 and (¢u) is rapidly decreasing on
a conic neighbourhood af,.

Proof. (Sufficiency) If such ag exists, choosgeSP, p(x, &) = p(&)
with p(¢) = 1 nearé, and p(¢) = 0 outside the region where\) is
rapidly decreasing. Thep(¢u)eS and hence(D)(¢u)eS wherep(D) =
p(x, D). The operatoPu = ¢p(D)(¢u) is a pseudo dierential operator
of order 0 with symbob(X)?p(¢) moduloS™, so (X, &) ¢ charP. This
implies that &, &) ¢ WF(u). m|
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(Necessity Suppose X, &) ¢ WF(U). Then there exists a neigh-
bourhoodU of X, in Q such that X,, &) ¢ WF(u) for all xeU. Choose
$eCZ(U) such thatp(X,) = 1. Then &, &) ¢ WF(¢u) for all xeR". Let

Z = {& 1 (X &)eW F(¢u) for somex.

This . does not contaig, and is a closed conic set. There exists
p(©)eSY, p = 1 on a conic neighbourhood &§ andp = 0 on a neigh-
bourhood ofy}, say},. Sincep(£) = 0 onY.,, Esssuppp(D) N (R" x
o) and hence Ess. supfD) N WF(¢u) = ¢. But this gives Ess.
suppp(D)pu) = ¢. So p(D)pueC™. We now claim that p(D)@ueS.

Accepting this, we see thate¢u)eS and in particular,§u) is rapidly
decreasing neak. To prove theclaim, observe that

DA(¢7 p(é)) = O(L + ) PleL 2 if |al - 18] < _g.

So if we putk(X) = P(X), DK (X)eL? if |a| - |B] < —3. An application
of Leibniz’s rule and the the Sobolev imbedding theorem shdvat
XDK(X)eL™ if |8 — o] > =3 + 2. HenceK and all its derivatives are
rapidly decreasing ab and sincepueE’, the same is true gb(D)¢u =
ou = K.

10 Some Further Applications of Pseudo Dieren-
tial Operators

We conclude our discussion of pseuddeliential operators by giving117
brief and informal descriptions of some further applicatio We recall
that anm" order ordinary dierential equatioru™ = F(x,u,u®, ...
u™-1) can be reduced to the first order system

Ug Uo
d|Ww us
dx ) :

Um F(X,Ug,...,Uy)

simply by introducing the derivatives af of order< m as new vari-
ables, and this reduction is frequently a useful techniesia®. To do
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something similar fom™ order partial diferential equations, however,
is more problematical. If one simply introduces all partiativatives of
u of order< mas new variables and writes down the first ordéiedéen-
tial relations they satisfy, one usually obtains more equatthan there
are unknowns, because of the equality of the mixed partidéseover,
such a reduction usually does not preserve the charactbe afriginal
equation. For example take the Laplace equation in two imsa

d%u  H4u
e S
X2 0y?

puttingu; = U, U = % Uz = %we have a X 3 system given by

% -uw=0
aa—L;l -uz=0
% + aa—lf = f.
The original equation is elliptic. But consider the matrixtioe top

order symbols of the & 3 system obtained above. The matrix is given

by
_[g 0 0]
2nilp 0 O
0 &7
which is not invertible. This means that the first order syste not
elliptic.

There is, however, a method, due to A.P. CALDERON, of redyicin
anm order linear partial dferential equation to am x m system of
first order pseudo flierential equations which preserves the character-
istic variety of the equation in a sense which we shall makeipe be-
low. In this method, one of the variables is singled out ty @apecial
role, so we shall suppose that we are workingRdht with coordinates

(X19 X27 R ] Xrl?t)
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Let L be a partial dferential operator of orden on R™? such that
the codficient of 9" is nowhere vanishing. Dividing throughout by this
codficient, we can assume thiais of the following form:

m-1 )
L=0"= ) Anj(xtD0d.
=0

119

HereAn_j is a diferential operator of order m- j in the x variable
with codficients depending onh
We want to reduce the equatiduv = f to a first order system. To
this end we proceed as follows:
Using the familiar operatoras with symbol (1+ |£)¥2 (acting in
the x variables ) we put
u =A™y
Uy = A"antv

uz = A™39%v

Um = O v,

For j < m, we observe thaku; = Auj,1. Therefore,

m-1 ]
Oum = f + Z Am-j(%,t, DY)d{v
ic0

m-1 )
=+ )" An (6t DA™
j=0

m
= f+ 3 Anj(x t, DA™y,
i=1

SetBj(x t,Dy) = Am-j+1(X t, Dx)AI™™. This B; is a¥DO of order
1 in the variablex. Then the equatiohv = f is equivalent to

du=Ku+ f
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whereu = (uy,...,un)t, f = (0,0,..., f)t. (Here ¢--)! denotes the 120
transpose of the row vector-()) andK is the matrix given by

0O A 0---0
0 0 A---0

K: .« .
0 0 O0-A

B, B, Bz Bm

This K is a matrix of first order pseudo filerential operators i,
with codficients depending on

Let us now make a little digression to fix on some notationsctvhi
will be used in the further development. FopeS™, a function pm(X, &)
homogeneous of degram in £ is said to be thePrincipal symbolof
p(x, D) if p— pm agrees with an element ™! for large |¢]. We
remark that not al’DO’s have a principal symbol; but most of them
that arise in practice do. Moreover, the principal symbfal, éxists, is
clearly unique.

Examples
(i) If pis a polynomial,

POCE) = ) (e,
lal<m
then

(%) = Y 2 (€.

lal=m

121 (i) If p(x &) = (1+ €352, ps(x, &) = €15,

Returning to our discussion, lek(x,t,&) be the principal symbol
of Ax(x, t,dy) (Here we are considerindy as an operator of ordds so
if it happens to be of lower order, its principal symbol is@erThen
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the principal symbol ofB; is bj(x,t¢) = am-j+1(X t,&)€-™ and the
principal symbol ok is the matrixK,

0O ¢ 0 0 --- O

0O 0 g 0 --- 0

0 0 0 [ 0

K]_(X,t,f):

0O 0 0 0 --- |4

by b by by --- bpy

The principal symbol of, on the other hand, is
m-1 )
Lin(% t,€,7) = (21i7)" = )" 8 j(x 1, £)(2ri7)

j=0

The characteristic variety df, i.e., the set of zeros df;,,, can easily
be read € from the matrixK as follows:

Proposition 4.57. The eigenvalues of {x, t, &) are precisely2rity, .. .,
2ritn wherery, 1o, . .., Tmy are the roots of the polynomiall(x, t, €, .).

Proof. The characteristic polynomigl(1) of K1 is the determinant of

1 -4 0 - 0
0 A4 - - o0
0O 0 0 - -

b1 -by -bs B - bm
122
Expanding in minors along the last row, we get

m-1
p(1) = >~ (~1)™ I (=bATH=IE)™ T + ™2 — brn)
j=1
m-1 )
M ﬂm_lbm _ Z bj |§|m—1/11—1
=1
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m m-1
=A"- Z am-js At =AM~ Z am-jA!
=1 j=0

= Lm(% 1, &, (2ri) 1A,

This proves the proposition. o

It is also easy to incorporate boundary conditions into sislseme.
Suppose we want to solve the equatlon= f with the boundary con-
ditions BjVl—o = 9j, 1,2,...,v where

m
Bj = ) b(xt, Dx)ak, bt is of orderm; — kandm; < m- 1.
k=0
If we set

Bf = A™ ™ i (X, 0, D) AN ™,
¢j — Am—mj—lgj

then withu; = Am‘jatj_lv as above and‘j’(x) = uj(x, 0), the boundary
conditions will become

mj+1
Y BW=¢,j=12...v
k=1

123
This is a system of zeroth order pseudfietiential equations.
The above method of reduction is useful, for example, in otlevi-
ing two important problems

(1) Cauchy Problem for Hyperbolic Equations

Lv=f, 0o =gj,j=0,1,....,m-1.

Here the equation is said to hgperbolicwhen the eigenvalues of the
matrix Ky (i.e., the principal symbol oK occurring in the linear system

corresponding ta.v = f) are purely imaginary.Equivalently, the roots
of Lin(X t,&,.) are real.
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(2) Elliptic Boundary Value Prob Lems

Lu= fonQ,Bju=g; on dQ

wherelL is elliptic of order Znand j = 1,2,...m. Here one works
locally near a poinkpedQ2 and makes a change of coordinates sodkat
becomes a hyperplane ne@r One then can apply Calderon’s reduction
technique, taking as the variable normal Q. (See Michael Taylor
[3D).

We shall now sketch an example of a somewhfedint technique
for applyingyyDO’S to elliptic boundary value problems.

Let Q be a bounded open setRf with C* boundarydQ Consider
the problem

Au=0inQ,dxu+ au = gonaQ, acC(9Q).

Here X is a real a vector field on the boundary which is nowhetres4
tangent to the boundary aéglu = gradu.y.

If vis the unit outward normal t&Q, by normalising we can assume
that y = v + v wheret is tangent to9Q. We want to use’DO to
reduce this to the Dirichlet problem. Pretend for the montieatoQ) =

R™1x(0} andQ = {X : X, < 0} so thatd, = %

142

If Au = 0 thend?u = —r'] i% = —ApU, Ap being the Laplacian on

21 0%

the boundary. So formallg,u = i_r\/(Abu). Indeed, if we compare this
with our discussion of the Poisson kernel in Chapter 2(@kiocount
of the fact thaQ is now the lower rather than the upper half space), we
see that the equatiahu = +/(—Ap)u is correct if interpreted in terms of
the Fourier transform in the variables= (xq, ... Xn-1);

0V, Xn) = 2" |UE", Xn)-

It turns out that something similar works for our originaha@in Q.
Namely, ifu is smooth o2 andAu = 0 onQ thend,ulso = P(Ulsq)
whereP is a pseudo dierential operator of order 1 @2 which equals
v/(=Ap) modulo terms of ordex 0 whereAy, is the Laplace -Beltrami
operator ordQ. In particular,P is elliptic and has real principal symbol.
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The boundary conditions becor®® + |0,V + av = g,V = Ulgq. This
is a first order pseudo filerential equation for. It is elliptic (because
d. has imaginary symbol). So it can be solved modulo smoothpeg-o
ators. SincéQ is compact. smoothing operators @ are compact, so
our boundary equation can be solved provigdd orthogonal to some
finite dimensional space of smooth functions.

Having done this, we have reduced our original problem tdfahe
miliar Dirichlet problemAu = 0 in Q andulso = v which has a unique
solution.



Chapter 5

LP and Lipschitz Estimates

OUR AIM IN this chapter is to study how to measure the smoa@himn26
properties of pseudo flierential operators of non positive order in terms
of various important function spaces. Most of the interggtiesults
are obtained by considering operators of orddrwith 0 < 4 < n.
Indeed, ifPe¥~* with 2 > n andK(x,y) is the distribution kernel of

P then, by TheoreniZ.10 we know thK&CIQ x Q) whenj < 1 —

n. So these operators can be studied by elementary methodst Wh
is more, whernPe?—, D*Pe¥~*l?l, So, by a proper choice of, we

can make 0< A — |a] < n and then studyD?P rather thanP itself.
Actually, we shall restrict attention to operators of orddrwhere 0<

A < n. The transitional casé = nrequires a separate treatment to obtain
sharp results; however, for many purpose, ffises to make the trite
observation that an operator of ordem can be regarded as an operator
of order —n + €. Further, we restrict our attention t8BDO’s whose
symbols have asymptotic expansions

pOGE) ~ > pi(xé)
j=0

whereP; is homogeneous of degred — j. (Thesep’ sno longer belong

to our symbol classes, being singulagat 0, but we can still consider
the operatorg;j(x, D).) By the preceding remarks, it will fice to con-
sider the operators corresponding to the individual termthé series 127
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2. pj whose degrees of homogeneity are between 0-amd hus we are
looking atp(x, D) wherep(x, &) is C*® onR"x R™\{0} and homogeneous
of degree-1in £ where 0< A4 < n.

Sinced < n, for eachx, p(x,.) is locally integrable at the origin
and hence defines a tempered distribution. Denoting theseveourier
transform of this distributionp (x, .) we then have

p(X, D)U(X) = f &4 p(x, £)0(€) e
= (BY(%.) * U)X
- f By (% X — y)u(y)dy.

Thus we see that the distribution kernelpgk, D) is given byK (X, y)
= py(X X —Y).

Let us digress a little to make some remarks on homogenests di
tributions.

Definition 5.1. A distribution feS’ is said to benomogeneous of degree
wif < f,¢p >=r# < f,¢ > for all peS wherayp, is the function defined

by ¢r(X) = r="g(x/r).
Exercise.

1. Show that the above definition agrees with the usual diefindf
homogeneity wher is a locally integrable function.

2. Show that iffeS’ is homogeneous of degree thenD*f is ho-
mogeneous of degree— |a/.

128 3. Show thaD*§ is homogeneous of degre@ — |a| (whereé is the
Dirac measure at 0).

Let us now prove a proposition concerning the Fourier tramsfof
homogeneous distributions. It turns out that the Fouriandform of
such a distribution is also a homogeneous one. Preciseljawe the
following
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Proposition 5.2. If f is a tempered distribution, homogeneous of degree
. thenf is homogeneous of degre@ — n. If f is also C° away from
the origin, then the same is true of

Proof If f is homogeneous of degrgethen forgeS
< f, > =<1, (¢)>=< fr "y >=r " < f,¢6>
0 =r* "< fg>.

This proves the first assertion. To prove the second assectimose
¢eCZ with ¢ = 1 in a neighbourhood of the origin and wrife= ¢f +
(1 - ¢)f. SincepfeE’,(¢pf)is C* everywhere. On the other hand,
(1 - ¢)f is C* and homogeneous of degrador large &, and hence
lies in S#(R"). Let p(x,&) = (1 - ¢)(&) f(&). The distribution kernel of
p(x, D) is given by

K(xy) = f e ZI0NE(L _ g)(&) f (&)

=((1-9) iy - %).

SinceK is C* away from the diagonal, we see that {#)f)fis C®
away from the origin. Hencé is C® onR"\{0}.

Returning to our operatony(x, D) with p(x, £) homogeneous of de-129
gree—1in £,0 < A < n, by the proposition above, we have

p(x, D)U = f K(x X - y)u@y)dy

whereK = Py is C* onR" x R"\{0} and homogeneous of degree- n
in the second variable.

Finally, we restrict attention to constant ¢eient case, i.eK (X, x—
y) = K(X-Y). The essential ideas are already present in this case and
the results we shall obtain can be generalised to the var@isficient
case in a rather routine fashion. Let us give a name to thetshjee are
finally going to study.

Definition 5.3. A tempered distribution K which is homogeneous of de-
greed — n and C° away from the origin is called a kernel of tyge If

K is a kernel of typel, the operator T f= K « f is called an operator of
typeA.



110 5. LP and Lipschitz Estimates

We now classify the kernels of type> 0.

Proposition 5.4. Supposel > 0 and feC*(R"\{0}) is homogeneous of
degreed — n in the sense of functions. Then f is locally integrable and
defines a distribution F which is a kernel of type

Conversely, if F is a kernel of typeand f is the function with which
F agrees oR"\{0},then< F, ¢ >= f fo foreveryp in S.

Proof. Sincea > 0, f is locally integrable and of (at most ) polynomial

growth atoo, so f defines arF in S’. It is easy to check thaf is
130 homogeneous in the sense defined above; Feg, >=r*™" < F, ¢ >,

and soF is a kernel of typel. m|

For the converse, defi® by < G,¢ >=< F,¢ > - [ f$,4 € S.
ThenG is a distribution supported at 0 and hence we lave Y’ c,D%6.
Therefore,

<G, ¢ >= Z Cot (DY) (0) = O(r™), asr — oo.
On the other hand,
<G, >=r""<G,¢>

and this is noO(r~") asr tends toco unless< G, ¢ >= 0. HenceG = 0
and this completes the proof.

Suppose thafeC*(R"\{0}) is homogeneous of degrea. Thenf
is not locally integrable near 0 and so does not define aloligtoin in a
trivial way. However, let us define

it = f F()dor(x).
IX=1

If us = O there is a canonical distribution associated Withhich is
calledprincipal value of f, PV(f), defined by

< PV(f), ¢ >= Iing)ff(X)dx

|X|>€
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To see that this limit exists, we observe that

1
f()dx = g fr‘ldr =0.

e<|x<1
Hence
<PV(D.o>=lim [ 109009 - sO)dx+ [ F((9x
e<|x<1 [X|>1

where the last integrals are absolutely convergent, since 131
lp(X) —#(0) < c/x,  sothat
[ 11001009 - s0)ax < ¢ [ i< e

[x]<1 [x]<1

Further, the estimate a#(x) — ¢(0) depends only on the first deriva-
tives of ¢ via the mean value theorem, so it is easily verified that the
functional PV(f) is continuous org. Finally, we observe that

<PV(f).9 > = lim f FOOr " (x/r)dx
|X|>€
— tim [ fo)r ey
IyI>(e/r)
r" < PV(f),¢>.

ThusPV(f) is homogeneous of degreeand so is a kernel of type
0.
The following theorem gives a sort of converse to the abossalte

Theorem 5.5. Suppose F is a kernel of typeand f is the function with
which F agrees oR"\{0}. Thenus = 0and F = PV(f) + cg, for some
constant c.
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Proof. Define the functionals on S by

0 <Gg>= f F(X@() - (B0)dx+ f F(p(x)dx

[X<1 IX>1

By the same argument as abo@js a tempered distribution and
G = F onR"/{0}. ThereforeG-F = c,D%. Now,< F, ¢, >=1r" <
P, ¢ > so that

<G, >—1"<G,¢p>=<G-F¢py > 1 "<G-F,¢p>=00")

asr tends toco. On the other hand, far> 1,

<G, >-1"<G,¢p>= f r " f(X)(¢(X) — ¢(0))dx

IX<1/r
+ f r‘”f(x)¢(x)dx—r‘”ff(x)(¢(x)—¢(0))dx—r‘”
IX>1/r Ix<1
f f(X)ep(X)dx
Ix>1
=r1""¢(0) f f(xX)dx =r"¢(0)logrus for every ¢.
Ir<ix<l

This is not 0¢™") asr tends toco unlessus = 0. Finally, F — PV(f)
is a kernel of type 0 which is supported at the origin and hésce
multiple of 6.

To study the boundedness of operators of typmn LP spaces, we
need some concepts from measure theory.

Definition 5.6. Let F be a measurable function defined®h Then the
distribution function of f is the functiosis : (0, ) — [0, o] given by
o¢(t) = |E¢|, where E = {x: |f(X)| > t}.

From the distribution function of, we can get a large amount of
information regarding. For example, we have

(o0

f|f(x)|pdx=—ftpd6f(t)

0
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(To see this, observe that the Riemann sums for the Stigitiegral on
the right are approximating sums for the Lebesque integrahe left).
If tP5¢(t) converges to O astends to 0 and tends toco, we can

integrate by parts to obtaifi| f(X)|Pdx = p [tP~25¢(t)dt.

0
Using the concept of distribution functions, we will now defiwveak 133
LP spaces.

Definition 5.7. For 1 < p < oo we define weakfLas{f : §¢(t) < (c/t)P
for some constantjc For fe weak LP, the smallest such constant ¢ will
be denoted bjf]p. Thus, if feweak LP, we have

o1 () < ([f]p/DP.
Forp = o, we set weal.™ = L*.

Proposition 5.8. CHEBYSHEV 'S INEQUALITY)PLc weak P and
[flp < IIfllp.

Proof. For felP, if E; = {x: |f(X)| > t},
i11g= [1taPax= [ 1rax: oy
RN E¢

i.e., [El<(IflP/H)p.
From this, it follows thatfe weakLP and [f], < |[f]lp. O

Remark 5.9.1t is not true thatL? = weakLP for 1 < p < o. For
example,f(x) = |x P belongs to weakP but notLP.

Remark 5.10.The functionf — [f], satisfies ¢ ], = [cI[ f]p.

But it fails to satisfy triangle inequality and hence is noh@m.
However, since

{If +dl >t} c{Ifit/2} U{lgl > t/2},

we have
St4g(t) < 61 (t/2) + 64(t/2)
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which gives, wherf andg are in weal_, 134

S1+g(t) < (2P[f]5 + 2P[g]b)/tP so that
[f +dlp < 2([f15 + [l )P < 2([f1° + [g]p).

The functional [, thus defines a topology on we&k which will
turn it into a (non-locally convex) topological vector spac

Definition 5.11. A linear operator T defined on a space of functions is
said to be ofweak type 0,0),1 < p,q < oo, if T is a bounded linear
operator from IP into weak 19, i.e. for every &LP,[T f]q < cl/f]|, for
some constant ¢ independent of f.

We will now state the Marcinkiewicz interpolation theorend aise
it to prove generalisations of Young's inequality (TheofER).

Theorem 5.12(J. Marcinkiewicz) Suppose T is of weak typ&%, Qo)
and (p1, 1) With 1 < pj < G < oo, pp < P1,Co # G, i-€,,[Tf]% <
Cllfllp fori =0,1. Then, if

1/py=(1-6)/po+(0/pr).1/0p = (1-6)/q0 + (0/q1).0< 6 < 1,

T is bounded from ¥ to L% i.e.,||T fllq, < cyllfllp, Wherethe constant
¢y depends only oo, Go. P1. G1. Co. C1 ande.

For the proof of this theorepseeA. Zygmund [5] or E.M.Stein]2].

Theorem 5.13(GENERAL FROM OF YOUNG'S INEQUALITY) If
Q/p)+(1/g9)—1=1/r,1 < p,qg,r < oo, Then, for £LP,gel9f x geL"
and we havdl f = gllr < cpgll fllplldllg-

(In fact, cpq < 1 for all p, g, although our proof does not yield this
estimate).

Proof. Fixing feLP, consider the convolution operatgr— Tq = f * g.
We know that forgelL!, T geLP and|[Tdlp < lIfllpliglle. Further if p/

is the conjugate op, then, by Holder’s inequalityT gl < l19llp, I fllp
for geL?. Thus we see that the operafbris of weak types (1p) and
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(p’, ). Therefore, by the Marcinkiewicz interpolation theorédhmaps
LP boundedly intd_% for every 0< 6 < 1 with

(L/pg) =1-60+(0/p) =1-(0/p) and Yy = (1/p) - 6/p.
O

Givenr with (1/p) + (1/9) — 1 = (1/r), setgy=r. Then (¥py) =
1+ (1/r) - (1/p) = (1/9). Hence we get the required result.

Theorem 5.14WEAK TYPE YOUNG'S INEQUALITY). Letl < p<
g< oo, (1/p) +(1/q9) > 1and(1/p) + (1/9) — 1 = (1/r). Suppose 4LP
and g weak 9. Then, we have

a) fxgexists a.e. and is in weak,land
[f*d]r < cpqllfliplalq

b) If p> 1, then fxgeL" and||f = g||; < Coqll fllp[dlq-

Proof. a) It sufices to assume thif||, = [g]p, = 1 and to show that

M = (a/Z)p’/(p'_Q)(p’/(p’ _ q)—l/(p’—Q)
wherep’ is as usual the conjugate pf Define

g1(x) = 9(x), if [g(¥)| > M
0 otherwise

a(x) — g1(X). Then

and (X

Ot1g(@) < Otagy (@/2) + O4gy(@/2)

and we shall estimate the quantities on the right separatBly
Holder's inequality,

I = Galleo < [IFllpllG2lly = lIG2llp-

136
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Since (¥q) — (1/p’) = 1/r > 0, we see thap’ — g > 0, and hence

p/
gzl

p’ f tP~15g, (t)dt
0

M
o f P 1(54(t) — 5(M))clt
0

IA

M
p [ i = (o - M = (a2
0

Thus (f = g2)(X) exists at all points anfif = gzl < /2.
Consequentlyt.q,(a/2) = 0. Next consider

o0 M o0
lIgallL = f g, (H)dt = f Sg(M)dt + f g(t)dt
0 0 M
M o0
< f M9t + f t9dt.
0 M

(o)

The integral f t~9dt converges sincg > 1, and we obtain
M

lgalls < M9+ M¥9/(q - 1) = (a/(q - )M,

Also, by Chebyshev inequality,

a\ _ (IIf =l
ora3)s (a—/z p) P
p

< (2/a”)(a/( - DP(e/2)7 " (o - @) 53
= Cpg '

,

137
Hence §) is proved.
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b) The operatorf — f * g is of weak type (1q) by (a). Also, if
we choosep > p with (1/p) + (1/g) > 1 and put () = (1/p) +
(1/9) —1then by &), f — f «gis of weak type f,r). Therefore, by
Marcinkiewicz, f — f x gis bounded fronLP into L% with

1/py=1-60+(8/p), (1/0) = (1 - 6)/q) + (/7).

Puttinggy = r we getpg = p. HenceT mapsLP continuously to.'
and||f = gllr < cpqll fllp[dlq- o

Corollary 5.15. If T is an operator of typel,0 < 1 < n, then T is
bounded from Rinto LY, whenevell. < p < g < o0 andl/q = 1/p-4/n.
Also, T is of weak typél, n/(n — 1)).

Proof. If K is a kernel of typet, we have
KO = XK /M) < elx ™,

which implies thak e weakL™ (") Therefore, by Theoref@5l4(b), if
feLP andT f = K = f thenT felL9 where

(1/9) = (1/p) + (N = A(/n) - 1 = (1/p) — (4/n) and|[T fllq < c[ f]p < cllf]lp.
m

Also we see thal is of weak type (In/(n — 1)) by Theoren 514
(a).

The limiting case of this result with = 0 is also true, but this is a138
much deeper theorem:

Theorem 5.16. (Calderon - Zygmund) Operators of type 0 are bounded
onlP, 1< p< .

Proof. Let T be an operator of type O with kerniéli.e., T f = K« f. To
begin with, we can regar@l as a map frontg’ to ¢ and we shall show
that||T f||, < cpllfllp for fecy, 1 < p < oo, so thatT extends uniquely
to a bounded operator darP. O

We haveK = PV(K) + ¢ so thatT f = PV(k) = f + cf. Since the
identity operator is continuous, we shall assume ¢hatO and also we
shall identifyK with k. The proof now proceed in several steps.
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Step 1.T is bounded orL2. Indeed, we haveT(f}t = kf.k is smooth
away from 0 and homogeneous of degree 0, hence is bound&d on
Therefore,

IT fll2 = 1T £ N2 < [IKlleoll Fll2 = IKlleoll Fl2.

Step 2.Fix a radial functionpecy with ¢(x) = 1 for|x < % andg(x) =0
for [x| > 1. Fore > 0, we definek (X) = K(X)(1-¢(X/€)) andTf = kexf.
Then we claim thaT, is bounded on.2 uniformly in e. To see this, we
observe that
(Tefy = fke = f(k - ke(x/e)f
= fk— f(k = (¢(x/€)))

which gives

ITefllz = 1(Te M2 < I fllallklleof1 + € f |p(e&)|d¢}
= | fll2llKllo (1 + [1l]2}

139 Step 3.T. is of weak type (1,1) uniformly im. The proof of this is more
involved and will be given later.

Step 4.By step$P anfl3, using Marcinkiewicz, we get thats bounded
onLPfor 1< p< 2uniformly ine.

Step 5.T, is bounded om.P, for 2 < p < oo, uniformly ine. Indeed, for
f,geCy,
[an e de= [ 109 (F) 0o x
with Teg = k. =g, k. = k(=% = k(=X)(1 — #(x/€)). Sincek. satisfies
the same conditions &s, we see thal . is bounded o9 for 1 < q < 2
uniformly ine. Soif (1/p) + (1/9) =1,1<qg< 2,
T f T,

|[(Thg _ <up Medla

ITefllp = <
geCq ||g||q geCy ||g||q

Ifllp = cllfllp.
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Step 6.If feC3, Tef converges ta f in the LP norm, 1< p < « ase
tends to 0. Since is radial andux = 0,

f d(x/e)k(X)do(X) = ¢ f k(X)do(X) = O;

[X=r [X=r

so, fore < 1, we have

(TeH)(®) = f (f(x=y) = f(x)) k(Y)(1-¢(y/€))dy+ f f(x-y) k(y)dy

<1 yi>1

and hence T f)(x) - (T f)(x) = ff(X—y)—f(X)k(y)qﬁ(y/é)dy-

Iyi<e
140

Now suppTf — T f) c {x: d(x, suppf) < €} c A, a fixed compact
set. Since, on compact sets, the uniform norm dominatdsPaibrms,
it suffices to show thafT. f — T f) converges to 0 uniformly oA. But

IT.f = flle < llgradfi f cylyi"dy < ¢l| gradfl..
lyl<e

€

frl‘”r”‘ldr =c’'e > 0, ase — 0.
0

Step 7.If feLP andn > 0, choosaeCy with [lg — fllp < 7.

Then|Tef = Tsfllp < ITe(f = Qllp + ITeg — Tsallp + ITs(g = )llp <
2cn +1ITeg — Tsdllp-

Sincen is arbitrary and|T.g - Ts9l|p converges to 0 as ¢ tend to O
by steld®, we see that{f) is Cauchy in the_P norm. Setting

Tf= IirTE)TEf, IT fllp < cllfllp.
€—

Thus the theorem is proved modulo Sfép 3.
Let us now proceed to the proof of Stdp 3. First, we need a lemma
which will be used in the proof.
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Lemma 5.17. Suppose EL',F > 0 ande > 0. Then there exists a
sequencéQy) of closed cubes with sides parallel to the coordinate axest
and disjoint interiors such that

a) a<—fF<2”aforaIIk
1QKl &,

b)”Q=©QmmmMMsummHm

c) F(X) < afora.e. x¢ Q.

Proof. Letr = (||F|l¢/a)Y" and forj=1,2,... let 2; be the collection
of closed cubes of side lengtti2! and vertices inr/2))Z". Our se-
guence will be constructed in the following way. Put thoskeae.2

in the sequence which satisfy< 6 f F. Then
Q

qu @WM_QWWMWM—Z

so that the first condition is satisfied. O

Put those cube®e.2; into the sequence which are not contained in
one of the previously accepted cubes and satisfy

1
a < — F.

IQI

Inductively, put thoseQe2; which are not contained in one of the

. . 1 .
previously accepted cubes and satisfix @fF If QeZj is in the
Q

sequence an@’ is the cube in2;_; containingQ then

[e] f ~1Ql f IQ’I

SinceQ c Q’, Q' cannot be in the sequence and hence
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1
I

| fF < a which then yieldsla fF < 2"a.
Q Q

Thus the conditiond) is satisfied. Also,

% 1
Q1= )14 < [ F<@alFls: so ) follows.
1
Qk

Finally, by the Lebesgue filerentiation theorem,
. 1
lim —fF = F(x) fora.e.x.
XeQeLj—o0 |Q| 5

1
— f F < a for all thoseQ’ s and hencé&(x) < a a.e.

So, ifx ¢ Q,
Qg

onRMQ.
Coming back to the proof of Stép 3, givéalL! anda > 0, let (Qx)
be the sequence of cubes as in the lemma with|f|. We write

f=g+ > bewith
k=1

f(x) - lQilef f(y)dy, for xeQx
k

b(X) =
0, otherwise
1 [ f(y)dy, for xeQq
and g(x) = 1l

f(x), for x ¢ Q.
Now me make the following observations :

a) Suppy ¢ Qx, [bx=0and

618)  Ylbds< 2 [Ifl <2 20iQd < 2"ty
1 1 1
Q«

143
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b) 1g(X)| < 2" for xeQ and|g(X)| < a for a.e.x ¢ Q.
Therefore|g(X)| < 2"« a.e. and

(5.19) gl = f g + f 9P
Q

R"-Q

< (200 + o f T

R"-Q
< (22 + Dl |1

We putf} by = bsothatT.f =T.g+ Tcband
1

{ITefl > e}l < {ITedl > a/2}| + [{ITcbl > @/2).

We shall show that both terms on the right are dominatetfifi}y,
uniformly in e.

To estimate the first term on the right, we use Chebyshev alitgu
Sted2 and the estimafe{8l 19) obtaining

(ITedl > @/2)] < (2/)|Tedll2)? < c(llgll2/@)? < ca(llfllra).

To estimate the second term, gtbe the center of the culigx and
Qx be the cube centred @t but with length side 2/n times that ofQx.

We put( ) O = &. Then
1

01< 3 1Gd = (2vA)" " 1Qd < (2VA) lIflle/e = (Il /a).
1 1

So (ITebl > @/2) < Q] + [{[Tchl > a/20\Q)
< o(lIflls/@) + |{ITbl > a/21\Q,

144 and it sdfices to estimatf|T,| > a/2}/Q. Sincef b=0,
Qk

T.b(x) = f k(X — y)b(y)dy
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Ke(X = y)b(y)dy

o

(ke(x —y) — ke(x = yi))b(y)dy

)
)

O

Kk

Therefore, we have
(I Tebl > a/20\Q
< ©2/a) f T.bdx

RM\Q

<@, [ [ikx-y-kx-w)ibo)dy dx

! RMO Qk

<(2/a)Z | f (e (x =) = ke(x = y)Ib)Idx dy

b RMQk

We nowclaim that
f [(ke(X—Y) — ke(X—Yyk))IdX < cindependent ok ande for yeQ.
RM Qk
Accepting this claim, by the estima{e{5.18), we have

1T > @208l < @rae Y, [ 1b6)dy < 22l /o)
1

Thus|{|Tbl > a}| < co(Ifll1/a@) which completes the proof of Step
B

Returning to theclaim, we observe that ikeR™ Qy andyeQy, then
IX = Yl = 2ly = Y-

So, if we setz = X — yi, W = y — Yk we must show that 145

f (ke(z— W) - k@)ldz< ¢

2> 2w

independent ofv ande.
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.y oL
Uk
Qr

)

N __
Qr

First consider the case = 1. Nowk;(2) is aC®™ function which
is homogeneous of degreen for large z Therefore,|gradk (2)| <
¢’|2~"1. By the mean value theorem,

lky(z— W) — k(2] < '] sup |z— tw] ™"
O<t<1

< /w2 for|Z > 2wi.
So

(k1(z—w) - ki(2))ldz
1Z>2w]

< f wiid ™ 1dz
|Z>2/w

(o]
< c”’|w|fr‘2dr =c
2w

Now for generak,
ke(2) = (1 - ¢(z/€))k(z/e)e™ by the homogeneity ok.
Therefore, if we sef = e 1zandw = ¢ 1w, we see that
f (ke(z— W) - k(@)Idz = f (a(Z — W) - ke(2))dZ
12> 2w iZ[>2w|

which is bounded by a constant, by the resultder 1. Hence thelaim
above is proved.
146 To complete the picture, we should observe that operatotgpef
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0 are not bounded oh! (and hence, by duality, not bounded bf3).
Indeed, ifT is an operator of type 0 with kernk) (T f)" = kf. Sincef
is homogeneous of degree 0, it has a discontinuity at O (siklescs).
Thus if feLL, (T f}is not continuous at 0 whenevé(0) # 0 and this
implies thatT f is notinL™.

This reflects the fact that if f = (0) # 0, thenT f will not be
integrable nearo, because is itself not integrable ato. However,
there are also problems with the local integrabilityTof caused by the
singularity ofk at the origin. In fact, lepeCy’ be a radial function such
that¢ = 1 near 0, and seB f = f = (¢k). Then the argument used to
prove Theoren 5.16 shows tHatis bounded on.P for 1 < p < . In
this case¢k)” = ¢ = kis in C, but still S is not bounded on.’.

This follows from the following general fact.

Proposition 5.20. If keS’ and the operator - kx f is bounded on t,
then Kk is necessarily a finite Borel measure.

Proof. ChoosegeCy with [¢ = 1 and putp(x) = e "¢(x/e). Then
llpella is independent o€, soll¢. = Kl|l1 < c. Therefore there exists a
sequencey tending to 0 such thag, = k converges to a finite Borel
measure: in the weak* topology of measures and hetigek converges
tou in S’ also. On the other hand, singg,) is an approximate identity,
de * K converges td in S’. m]

Henceu = k and the proposition is proved. 147

It is easy to see that kernels of type 0 are not measures even wh
truncated away from the origin, as their total variationriy aeighbour-
hood of 0 is infinite. One can also see directly that they dodadine
bounded functionals o@,.

Exercise .Let kx) = 1/x onR and let f be a continuous compactly

supported function such tha(x) = (logx)~* for 0 < x < % and f(x) =
0for x < 0. Show that

fim ( + PV(IR)() = co.
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Generalise this to kernels of type 0 RA, n > 1.

This example also shows that operators of type 0 do not map con
tinuous functions into continuous functions. Howeverytte preserve
Lipschitz or Holder continuity, as we shall now see.

[f(x+y) - f(Xl

Definition 5.21. For 0 < a < 1, we defingf|, = sup,y T

Ao ={f 1 1Iflla, =211 flleo +1Fla < oo},
A, is calledLipschitz clasof ordera.

Remark 5.22.The definition makes perfectly good sense dor= 1
(Whena > 1itis an easy exercise to show thatfif, < o thenf is
constant ). However, we shall not use this definitiondot 1, because
the theorems we wish to prove are false in this case.

We are going to prove, essentially, that operators of type ®aun-
ded onA,. However, ifk is a kernel of type 0 andeA,, the integral
definingk = f will usually divergef need not decay ab. Consequently,
we shall work instead witih® N LP(1 < p < o), concerning which we
have the following useful result.

Proposition 5.23. If feLP,1 < p < o and|f|, < oo, then feA, and
Iflle < c(lIfllp + Ifl). Consequently, LN A, is a Banach space with
norm||flp + [f],.

Proof. Let

Ay = (2|f|a) for xeR".

Then|f(y)| > |f(X)|/2 for all y such thatx — y| < Ay. So
f |f(y)IPdy > f [f(y)IPdy > | f(X)|P2 P’ Al

[X-YI<Ax
— CN| f(x)|p+(n/a/)| f|;n/a

or |f(X)|l+(n/ozp) < C’H”f”plflg/alphap. O
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Since this is true for alk, settingd = n/pa we have
[Ifllo < C'"”f||%)/(1+9)|f|3/(l+0)

< c(lIfllp +1fle)-

Theorem 5.24. Operators of typé are bounded o\, N LP(0 < a <
L<1l<p< o).

Proof. LetT : f — K = f be an operator of type 0. Since we know that
IT fllp < cpllfllp, by propositio5.23, it will sfiice to showT f|, <
Colfly for 0 < @ < 1, feLP N Agpha. As in the proof of Theorefl 516,149
we may assume th#t = PV(k) and identifyK with k. O

GivenyeR"\{0} and feLP N A, define

g(x) = f k(2 f(x - 2)dz

[ZI<3y1

h(x) = k(2 f(x - 2)dz
Iﬂ<£;/|

so thatT f = g + h. Sinceyy = 0, we have
g9l = | f K@(F(x - 2) - F(x)d
|Z<3lyl

< fCIZI‘”IfIQIZI“dZSCllflaIYI“-
<3y

Since this is true for alk,
l9(x +y) — 9(X)| < 2¢1|flaIV".
Next

h(x+y) = lim f k(2(f(x+y-2 - f(x)dz
n—m3|yl<lzl<n
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= lim f k(z+y)(f(x-2) — f(x))dz

T]—)C)O

3yi<iz+yl<n

Therefore,

h(x+y)—h(x) = Jmo f K(z+y) —k@)(f(x—=2) - f(X))dz+ €1 + &
3lyi<lz<n

wheree; ande, are errors coming from fiierence between the regions
of integration.
€1 is the error coming from the flerence between the regiogs< n
and|z+y| < n.
150 The symmetric dference between these two regions is contained in
the annulugy — |yl < |2 < n + |yl

If zis in this region and > |y| then|Z ~ |z+ Y| ~ n so that

lel < ¢ f 20 "Mflleodz < "™ lleo ((m + V)" = (7 = IYD")
n-lyl<lz<n+¥
=00 1) - 0aspy - .
The terme, comes from the symmetricfiigrence of the regiong >
3lyl and|z +y| > 3y] which is contained in the annulug/R< |2 < 4ly|.

In this region|z+ Y| =~ |Z ~ |yl
Therefore

leol < f lyi" |l dz=
2lyl<|z<4yl
= Gl Flo Y™™ ((4Iy)" — (2¥1)")
= Gl flo V™.
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Finally coming to the main term, we have

k(z+y) - k@I <yl Os?ril gradk(z + ty)|

-n-1

< |yl supz+tyl
O<t<1

< Golylld™* for |2 > 3)yi.

Hence, sincer < 1 sothat-n— 1+ a < —n, 151

| f (k(z+y) - k(2)(f(x-2) - f(x))d2

3lyl<lz<n
< Co f V2" fl,12"dz
3lyl<lz<n

< Co f ilZ ™" fl,dz
3lyi<lz
< Calyll Flaly®™* = calyi®| fla-

Therefore,

Tf(x+y)—Tf(X)
Iyl

< ¢/ f|,and consequentlif f|, < ¢|f],.

For kernels of positive type, we have the following result.

Theorem 5.25. Supposed < 1 < n, 1 < p < n/1 < g < Q where
Q=wif21<1,Q=n/(1-1),if A < 1 Letl/r = (1/p) - (1/n) and
a=1-(n/q9).(Thus r< co and0 < a < 1). Thus operators of type
are bounded from BN L% into L' N A,,.

Proof. LetT f = k« f be an operator of type. By Corollary[5.I5T is
bounded fronlLPto L", so by propositiofi 523, it is enough to show that
T floe < cllfllg.

We have T f)(x) = f f(x - 2k(2dz
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(TH(X+Y) :ff(x+y—z)k(z)dz
:ff(x—z)k(z+y)dz,

so that
(THX+Y) -TH(X = f f(x—2(k(z+y) — k(2)dz
= f f(x=2(k(z+y) — k(2))dz
[Z2<2ly|

+ f f(x-2)(k(z+y) — k(2)dz
[Z>2y]
152 i

If g is the conjugate exponent qf

| f f(x— 2(kz+Y) - k(2)d2

[4<2iyi
1/q o
< |Ifllq f k(W)q,dW] +[ f k(z)q’dz]

Wi<3\yi |2<2ly|
1/q
< 2flq f |k(z)‘*’dz]
|Z<3lyl
1/d
sclfq[ f m“”"*’dz]
|Z<3y{

< I llghy VD = 1 fllgIyle,

by the definition ofx
For the second integral, we estimé{e+y) — k(z) by the mean value
theorem:
k(z+Y) — k(@I < Iyl sup|grack(z+ ty)|

O<t<1
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< ayllz*""tor 1z > 2lyl.

Thus

| f f(x - 2)(kz+Y) - k(2)d2

|Z>2ly]
1/d
< dlIfllg f (i) dz
[z>21y]
< Sl fllgyilyl* (V) since @ —n - 1)q < —-n
= &I fllglyi®.
Hence 153

[Tf(x+y) =T (X

e < c|f]lq which gives|T f|, < c||fllg.

Remark 5.26.As in the preceding theorem, the reason for taking the
domain ofT to beLP n L% instead of just.9 is that the integral defining
T f will usually diverge wherf is merely inL9.

Nonetheless, the point of these theorems is that operatdypa 0
are in essence, bounded frdrfi to A, (for appropriateq anda). To
make this precise without losing simplicity, one can obsehat opera-
tors of type 0 map\, N E’ into A, while operators of typd > 0 map
L9N E’ into A,,.

We now introduce spaces of functions whose derivatives aoter-
tain order are ir.P or A,,.

Definition 5.27. Supposel < p < o and k is a positive integer. We
define
Lp = {f : D’feLPfor0 < |B] < k).
We equipL} with the norm|f[lp = w|z<k||Dﬁf||p. (ThusL2 = Hyin
the notation of Chaptél 3).
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Definition 5.28. Suppose k is a positive integer andkr < k+ 1. We
define
Ag = {f : DPfeA,_for0 < 8] < k}.

We equipA, with the norml| flla, = Sz 1D flla, -

Remarks 5.29.
154 (i) feA, if and only if D?f is bounded and continuous for<Q|| < k
andDA feA,_ for |8] = k. Indeed, if|j3] < k, for |y < 1,

D169 - DTN DT S oy
e i M=i+1

(by the mean value theorem) and for

DA f(x+Yy) — DPF(X)|

= < 2D .

v > 1,

This shows thaD? feA,_x for 0 < |8 < ki.e., feA,.
(i) If k<a <k+1thenLy N A, is a Banach space with the norm

D UDP Hllp + 1DP o).
IBI<k

This follows from the corresponding fact tHat N A, is a Banach space
(PropositioT5.23).

Theorem 5.30.Supposd < A <n, 1< p<n/al/r=(1/p) - (1/n)
and k=0,1,2,.... Then we have:

a) Operators of typa are bounded from lf_into L.

b) If Aisanintegerdi =0,1,2,... and k< a < k+ 1, then operators of
type are bounded from £.n A, to Lf, , N Agqa.

Proof. a) This is an easy consequence of Corol[ary]5.15 and Theorem
B8, since convolution commutes witHfdirentiation. In the same way
(b) follows Theoreni’5.24 when = 0. o
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We now proceed by induction oh Therefore, assume that> 1.
SupposefeLf N A,. Thendj(f «k) = f « djk anddjk is a kernel of
typed —1. So, if /s= (1/p) — (1 — 1)/n, by our induction hypothesis
0j(f + KeLg, ;1 N Agra-1. Sinces <r < oo, L3N L* c L', sod(f *

K)eLi, , ; N Agsi-1. Also f « kel N C*, hence inA,., provided it is
bounded. Bub(f = k) € Ay+a-1 implies thatdj(f + k) is bounded. By

the mean value theorem, we then have

(f + Rx+y) ~ (F« KM _
IVl

This together withf = keL" implies thatf is bounded (by definition
B.27). Hencef + kel|, , N Agsa.

The above theorem can be generalised. For examplegiflO< n
one can show that operators of typenapA, N E’ into Ayy,.

Also generalisations of theP Sobolev spacelsl‘(’ can be given for
non-integral values ok. In fact, a theorem due to CALDERON says
that for 1< p < oo, feL! if and only if AKfeLP. (HereA = (1 - A)Y/2).

Therefore, we can definel for any reals by

LE = {f : ASfeLP} with the norm| fllsp = [ASF]|p.

Then part (b) of the above theorem is still true foxkOl < n, A not
necessarily an integer in this case.

Refer to E.M. Stein([2].

We will now prove the Sobolev imbedding theorem foP LSobolev
spaces E with positive integral kThis theorem can also be generaliseide
to LY for sinR.

Theorem 5.31(SOBOLEV IMBEDDING THEOREM) Supposel <
p < o and k a positive integer. If k n/p, then l,f c L" for 1/r =
(1/p) — (k/n) (Hence also Eﬂ. C LE for any j). If k> n/p, anda =

k - n/p s not integer, then f.c A,.

Proof. Let N be the fundamental solution afgiven by
(x=) (2 - n)Lw x> " forn # 2
" 1(2r)tlog|x forn = 2.

ThenK;(x) = djN(X) = wnXj|XI™" (true for alln) is a kernel of type
1. |
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Now, if f € L{ N E’
f—f*é—f*AN_f*Zﬁk—Z(é)f*k)

Supposek = 1. If1 < n/p, 0j feLp = 0;f x KjeL" where Ir =
(1/p) - (1/n), by Theoren 525 and heno‘arLr If1 > n/p,o;f
KieA1-(n/p) by Theoren 525 which implies thdteA1(p). Thus the
theorem is true fok = 1.

Fork > 1, we proceed by induction. Now

feLf NE’ = f andd;f areinLy , N E’.

Therefore, ifp < n/(k—1) and ¥q = (1/p) — (k- 1)/n, we havef,
0jfeld,ie., fe L‘j, while if p > n/(k - 1), we havef, 9 feAx-1-n/p),
i.e., feAx_(n/p- Inthe second case, we are done, and in the first case, we

157 apply the result fok = 1 to see thaf is in the required space. Finally,
it is easy to check that if we keep track of the norm inequedithat are
implicit in the above arguments, we obtain

£l < cllfllicp or lIflla, < cliflicp,

as appropriate, fofeLf N E’. SinceL} N E’ is clearly dense ih.g, the
desired result follows immediately.

We can summarise these theorems in an elegant way usinglthe fo
lowing picture.

For-n < a < 0 we definex, = L™ and whene > 0, @ not an
integer, we define, = A,.

LA3 2 L* N1j2 N3/2

—-n 0 1 2 3 @
(The small circle represent missing spaces)
In this terminology, we have

Theorem 5.32. Operators of typel map % N E’ into x,.,0<A<n.

Theorem 5.33(SOBOLEV IMBEDDING THEOREM) If DA fex, for
0 < |8l <k, then fe Xyik-



135

We now indicate how to fill the gaps in this picturenat 0, 1,2, ...
Fora = 1, we define
Ay = {f : fis continuous, bounded and

sup'f(x+y) + f(x-y) - 2f(x)| <
Xy 1yl

Fork = 2,3,4,... we defineAx = {f : DffeAq for || < k-1}. The 158
sudden jump from first dierences in the definition of,, for @ < 1 to
the second diierences atr = 1 is less mysterious than it seems at first,
because it can be shown that ikOa < 2 thenfeA, if and only if f is
bounded, continuous and satisfies

quplfOCH )+ Fx=y) - 2F91
Xy [yl

co}.

To fill the gap ate = 0 we use the space BMO (“ bounded mean
oscillation”) first introduced by F. JOHN and L. NIRENBERG1861,
which is defined as follows.

For feLL (R"), we denote byne f mean value off over a measur-

loc
1
mef = Eff
E

able see c R", that is,
Let Q denote the collection of all cubes Rf' with sides parallel to
the axes.

Definition 5.34. BMO = {feL (R") : supmg(lf — mof]) < oo}.
Qe2

Clearly L c BMO, for, feL* = |mgf| < |/f|l« for every G2
and consequently
mo(If — mofl) < 2ifll.

It can be shown thaBMO c L} _for everyq < .

If we definex, = A, fora =1,2,...andXy = BMOthen Theorem
remains valid for alk.(—n, o0), except that the Sobolev imbedding
theorem fore = 0 must be slightly modified as follows:

If DAf is in the closure of BMONE’ in BMO for || < kthenfeAy. 159
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WARNING. BMO is not an interpolation space betweehdndA, i.e.,
it is not true that if T is a linear operator which is bounded bp for
some p< oo and onA, somex > 0, then T is bounded on BMO.

For proofs of the foregoing assertions, see E.M. Stein [&] @Bso
the following papers :

() E.M Stein and A. Zygmund: Boundedness of translatioraiiav
ant operators on Holder spaces dol spaces, Ann. Math 85
(11967)337-349, and

(i) C. Fefferman and E.M. SteinHP spaces of several variables Acta
Math. 129, (1972), 137-193.

As we indicated at the beginning of this chapter, the argusnee
have developed can be extended in a fairly straightforwaag W give
estimates foryDO with variable coéicients. We conclude by sum-
marising the result in

Theorem 5.35.[Let] P = p(x, D) ba a properly supporte¢yDO of
order -1 onQ, whered > 0and p~ 3, p; with pj(x,£) homogeneous
j=0

of degreel - j for large ¢|. Then P maps }(Q, loc)into L, (€, loc) for
1 < p < o0, and in the terminology of Theordm5.32 P map&X loc)
into X,.2(Q, loc) for —-n < a < .
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