Lectures on
 Stochastic Differential Equations and Malliavin Calculus

By

S. Watanabe

Tata Institute of Fundamental Research Bombay
 1984

Lectures on
 Stochastic Differential Equations and Malliavin Calculus

By

S. Watanabe

Lectures delivered at the
Indian Institute of Science, Bangalore
under the

T.I.F.R.-I.I.Sc. Programme in Applications of Mathematics

Notes by
M. Gopalan Nair and B. Rajeev

Published for the
Tata Institute of Fundamental Research
Springer-Verlag
Berlin Heidelberg New York Tokyo

Author

S. Watanabe
Faculty of Science
Kyoto University
Kitashirakawa
Kyoto 606
Japan

© Tata Institute of Fundamental Research, 1984

ISBN 3-540-12897-2 Springer-Verlag. Berlin. Heidelberg.
New York. Tokyo
ISBN 0-387-12897-2 Springer-Verlag. New York. Heidelberg. Berlin. Tokyo

No part of this book may be reproduced in any form by print, microfilm or any other means without written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 400005

Printed by M. N. Joshi at The Book Centre Limited, Sion East, Bombay 400022 and published by H. Goetze, Springer-Verlag, Heidelberg, West Germany

Printed in India

Preface

These notes are based on six-week lectures given at T.I.F.R. Centre, Indian Institute of Science, Bangalore, during February to April, 1983. My main purpose in these lectures was to study solutions of stochastic differential equations as Wiener functionals and apply to them some infinite dimensional functional analysis. This idea was due to P. Malliavin. In the first part, I gave a calculus for Wiener functionals, which may be of some independent interest. In the second part, an application of this calculus to solutions of stochastic differential equations is given, the main results of which are due to Malliavin, Kusuoka and Stroock. I had no time to consider another approach due to Bismut, in which more applications to filtering theory and the regularity of boundary semigroups of diffusions are discussed.

I would like to thank M. Gopalan Nair and B. Rajeev for their efforts in completing these notes. Also I would like to express my gratitude to Professor K.G. Ramanathan and T.I.F.R. for giving me this opportunity to visit India.

S. Watanabe

Introduction

Let W_{o}^{r} be the space of all continuous functions $w=\left(w^{k}(t)\right)_{k=1}^{r}$ from $\mathbf{1}$ $[o, T]$ to \mathbb{R}^{r}, which vanish at zero. Under the supremum norm, W_{o}^{r} is a Banach space. Let P be the r-dimensional Wiener measure on W_{o}^{r}. The pair $\left(W_{o}^{r}, P\right)$ is usually called (r-dimensional) Wiener space.

Let A be a second order differential operator on \mathbb{R}^{d} of the following form:

$$
\begin{equation*}
A=\frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(x) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{d} b^{i}(x) \frac{\partial}{\partial x^{i}}+c(x) \tag{0.1}
\end{equation*}
$$

where $\left.a^{i j}(x)\right) \geq 0$, i.e., non-negative definite and symmetric.
Now, let

$$
a^{i j}(x)=\sum_{k=1}^{r} \sigma_{k}^{i}(x) \sigma_{k}^{j}(x)
$$

and consider the stochastic differential equation

$$
\begin{align*}
d \chi^{i}(t) & =\sum_{k=1}^{r} \sigma_{k}^{i}(X(t)) d W^{k}(t)+b^{i}(X(t) d t, i=1,2, \ldots, d \tag{0.2}\\
X(o) & =x, x \in \mathbb{R}^{d}
\end{align*}
$$

We know if the coefficients are sufficiently smooth, a unique solution exists for the above $S D E$ and a global solution exists if the coefficients have bounded derivative.

Let $X(t, x, w)$ be the solution of (0.2). Then $t \rightarrow X(t, x, w)$ is a sample path of A_{o}-diffusion process, where $A_{o}=A-c(x)$. The map $x \rightarrow X(t, x, w)$, for fixed t and w from \mathbb{R}^{d} to \mathbb{R}^{d} is a diffeomorphism
(stochastic flow of diffeomorphisms), if the coefficient are sufficiently smooth. And the map $w \rightarrow X(t, x, w)$, for fixed t and x, is a Wiener functional, i.e., a measurable function from W_{o}^{r} to \mathbb{R}^{d}.

Consider the following integral on the Wiener space:

$$
\begin{equation*}
u(t, x)=E\left[\exp \left\{\int_{o}^{T} c(X(s, x, w)) d s\right\} \cdot f(X(t, x, w))\right] \tag{0.3}
\end{equation*}
$$

where both f and c are smooth functions on \mathbb{R}^{d} with polynomial growth order and $c(x) \leq M<\infty$. Then $u(t, x)$ satisfies

$$
\begin{align*}
& \frac{\partial u}{\partial t}=A u \tag{0.4}\\
& \left.u\right|_{t=0}=f
\end{align*}
$$

and any solution of this initial value problem (0.4) with polynomial growth order coincides with $u(t, x)$ given by (0.3).

Suppose we take formally $f(x)=\delta_{y}(x)$, the Dirac δ-function at $y \in \mathbb{R}^{d}$ and set

$$
\begin{equation*}
p(t, x, y)=E\left[\exp \left\{\int_{o}^{t} c(X(s, x, w)) d s\right\} \delta_{y}(X(t, x, w))\right] \tag{0.5}
\end{equation*}
$$

then we would have

$$
u(t, x)=\int_{\mathbb{R}^{d}} p(t, x, y) f(y) d y
$$

and $p(t, x, y)$ would be the fundamental solution of (0.4). 0.5) is thus a formal expression for the fundamental solution of (0.4), often used intuitively, but $\delta_{y}(X(t, x, w))$ has no meaning as a Wiener functional. The purpose of these lectures is to give a correct mathematical meaning to the formal expression $\delta_{y}(t, x, w)$) by using concepts like 'integration by parts on Wiener space', so that the existence and smoothness of the fundamental solution, or the transition probability density for 0.3), can be assured through (0.5). This is a way of presenting Malliavin's calculus, an infinite dimensional differential calculus, introduced by Malliavin with the purpose of applications to problems of partial differential equations like (0.4).

Contents

Introduction vii
1 Calculus of Wiener Functionals 1
1.1 Abstract Wiener Space 1
1.2 Einstein-Uhlenbeck Operators and Semigroups 5
1.3 Sobolev Spaces over the Wiener Space 17
1.4 Composites of Wiener Functionals... 44
1.5 The Smoothness of Probability Laws 50
2 Applications to Stochastic Differential Equations 53
2.1 Solutions of Stochastic Differential Equations. 53
2.2 Existence of moments for a class of Wiener Functionals 67
2.3 Regularity of Transition Probabilities 88

Chapter 1

Calculus of Wiener Functionals

1.1 Abstract Wiener Space

Let W be a separable Banach space and let $B(W)$ be the Borel field, i.e., 5 topological σ-field. Let ${ }^{*}$ be the dual of W.

Definition 1.1. A probability measure μ on $(W, B(W))$ is said to be a Gaussian measure if the following is satisfied:

For every n and $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ in $\stackrel{*}{W}, \ell_{1}(W), \ell_{2}(W), \ldots, \ell_{n}(w)$, as random variables on $(W, B(W), \mu)$ are Gaussian distributed i.e., $\exists V=$ $\left(v_{i j}\right)_{i}^{n}, j=1$ and $m \in \mathbb{R}^{n}$ such that $\left(v_{i j}\right) \geq 0$ and symmetric and for ev ery $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$,

$$
\int_{W} \exp \left\{\sum_{i=1}^{d} \sqrt{-1} c_{i} \ell_{i}(w)\right\} \mu(d w)=\exp \left\{\sqrt{-1}<m, c>-\frac{1}{2}<V c, c>\right\}
$$

where $<., .>$ denotes the \mathbb{R}^{n}-inner product.
We say that μ is a mean zero Gaussian measure if $m=0$, or equivalently,

$$
\int_{W} \ell(w) \mu(d w)=0 \quad \text { for every } \quad \ell \in \stackrel{*}{W} .
$$

Let $S(\mu)$ denote the support of μ. For Gaussian measure, $S(\mu)$ is a closed linear subspace of W and hence without loss of generality, we can assume $S(\mu)=W$ (otherwise, we can restrict the analysis to $S(\mu)$).

6 Theorem 1.1. Given a mean zero Gaussian measure μ on $(W, B(W))$, there exists a unique separable Hilbert space $H \subset W$ such that the inclusion map $i: H \rightarrow W$ is continuous, $i(H)$ is dense in W and

$$
\begin{equation*}
\int_{W} e^{\sqrt{-1} \ell(w)} \mu(d w)=e^{-\frac{1}{2}|\ell|_{H}^{2}} \tag{1.1}
\end{equation*}
$$

where $|.|_{H}$ denotes the Hilbert space H-norm.
Remark 1. $H \subset W$ implies ${ }_{W}^{*} \subset H^{*}=H$ and for $h \epsilon H, \ell \in \stackrel{*}{W}, \ell(h)$ is given by $\ell(h)=<\ell, h>_{H}$.

Remark 2. Condition (1.1) is equivalent to

$$
\begin{equation*}
\int_{W} \ell(w) \ell^{\prime}(w) \mu(d w)=<\ell, \ell^{\prime}>_{H} \text { for every } \ell, \ell^{\prime} \epsilon \stackrel{*}{W} \tag{1.1}
\end{equation*}
$$

Remark 3. The triple (W, H, μ) is called an abstract Wiener space.

Sketch of proof of Theorem 1.1: Uniqueness follows from the the fact that $H=\bar{W}^{* \cdot \mid t h}$.

Existence: By definition of Gaussian measure, ${ }_{W}^{*} \subset L_{2}(\mu)$. Let \tilde{H} be the completion of $\stackrel{*}{W}$ under L_{2}-norm. Let $j: \stackrel{*}{W} 3 \ell \rightarrow \ell(w) \epsilon \tilde{H}$; then j is one-one linear, continuous and has dense range. The continuity of j follows from the fact that (Fernique's theorem): there exists $\alpha>o$ such that

$$
\int_{W} e^{\alpha\|w\|^{2}} \mu(d w)<\infty
$$

Now consider j^{*}, the dual map of j,

$$
j^{*}: \tilde{H}^{*}=\tilde{H} \rightarrow W^{* *} \supset W
$$

7 It can be shown that $j^{*}(\tilde{H}) \subset \omega$. Take $H=j^{*}(\tilde{H})$ and for \bar{f}, \bar{h} in H, define

$$
<\bar{f}, \bar{h}>=<f, h>\text { where } \bar{f}=j^{*}(f), \bar{h}=j^{*}(h)
$$

Example 1.1 (Wiener space). Let $W=W_{o}^{r}$ and $\mu: r$ - dimensional Wiener measure.
$H=\left\{h=\left(h^{i}(t)\right)_{i=1}^{r} \epsilon W_{o}^{r}: h^{i}(t)\right.$ are absolutely continuous on [o,T] with square integrable derivative $\left.\dot{h}^{i}(t), 1 \leq i \leq r\right\}$

For $h=\left(h^{i}(t)\right)_{i=1}^{r}, g=\left(g^{i}(t)\right)_{i=1}^{r}$, define the inner product

$$
<h, g>=\sum_{i=1}^{r} \int_{o}^{T} \dot{h}^{i}(s) \dot{g}^{i}(s) d s
$$

Then H is a separable Hilbert space and (W, H, μ) is an abstract Wiener space which is called r-dimensional Wiener space.

Example 1.2. Let I be a compact interval in \mathbb{R}^{d} and

$$
K(x, y)=\left(k^{i j}(x, y)\right)_{i, j=1}^{r}
$$

where $k^{i j}(x, y) \epsilon C^{2 m}(I \times I)$, and satisfies the following conditions:
(i) $k^{i j}(x, y)=k^{i j}(y, x) \forall x, y \in I 1 \leq i, j \leq r$.
(ii) For any $c_{i k} \in \mathbb{R}, i=1, w, \cdots, r, k=1,2, \ldots, n, n \in N, \sum_{k, \ell=1}^{n} \sum_{i, j=1}^{r} k^{i j}$ $\left(x_{k}, x_{\ell}\right) c_{i k} c_{j \ell} \geq 0, \forall x_{k} \epsilon I, k=1,2, \ldots, n$.
(iii) for $|\alpha|=m$, there exists $o<\delta \leq 1$ and $c>o$ such that

$$
\begin{aligned}
& \qquad \sum_{i=1}^{r}\left[k^{(\alpha) i i}(x, x)+k^{(\alpha) i i}(y, y)-2 k^{(\alpha) i i}(x, y)\right] \leq c|x-y|^{2 \delta} \\
& \text { where } \quad k^{(\alpha) i j}(x y)=D_{x}^{\alpha} D_{y}^{\alpha} k^{i j}(x, y)
\end{aligned}
$$

(As usual, $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right)$ is a multi-index, $|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$ and

$$
D_{x}^{\alpha}=\frac{\partial|\alpha|}{\frac{\alpha_{d}}{\alpha_{1}} \cdots} .
$$

Now, for $f \epsilon C^{m}\left(I \rightarrow R^{r}\right), f=\left(f^{1}, f^{1}, \ldots, f^{r}\right)$, define

$$
\|f\|_{m, \epsilon}=\sum_{i=1}^{r} \sum_{|\alpha| \leq m}\left\|D^{\alpha} f^{i}\right\|_{\epsilon},
$$

where

$$
\left\|f^{i}\right\|_{\epsilon}=\max _{x \in I}\left|f^{i}(x)\right|+\sup _{\substack{x \neq y \\ x, y \in I}} \frac{\left|f^{i}(x)-f^{i}(y)\right|}{|x-y|^{\epsilon}}
$$

Let

$$
C^{m, \epsilon}\left(I \rightarrow \mathbb{R}^{r}\right)=\left\{w \epsilon C^{m}\left(I \rightarrow \mathbb{R}^{r}\right):\|w\|_{m, \epsilon}<\infty\right\} .
$$

$W=\left(C^{m, \epsilon},\|.\|_{m, \epsilon}\right)$ is a Banach space.
Fact. For any $\epsilon, o \leq \epsilon<\delta, \exists$ a mean zero Gaussian measure on W such that

$$
\int_{W} w^{i}(x) w^{j}(x) \mu(d w)=k^{i j}(x, y) i, j=1,2, \ldots, r
$$

Then by theorem 1.1 it follows that there exists a Hilbert space $H \subset$ W such that (W, H, μ) is an abstract Wiener space. In this case, H is the reproducing kernel Hilbert space associated with the kernel K, which is defined as follows:

$$
\text { For } x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{k} \in I, \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \text {, }
$$

$$
\lambda_{k}=\left(\lambda_{k}^{i}\right)_{i=1}^{r} \epsilon \mathbb{R}^{r} \text {, define } W_{[x, \lambda]}(y)=\left(W_{[x, \lambda]}^{i}(y)\right)_{i=1}^{r}
$$

by

$$
W_{[x, \lambda]}^{i}(y)=\sum_{j=1}^{r} \sum_{k=1}^{n} k^{i j}\left(y, x_{k}\right) \cdot \lambda_{k}^{i},
$$

and let

$$
\begin{gathered}
S=\left\{W_{[x, \lambda]}: x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{k} \epsilon I, \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right),\right. \\
\left.\lambda_{k}=\left(\lambda_{k}^{i}\right)_{r=1}^{r} \epsilon \mathbb{R}^{r} \text { and } n \in \mathbb{N}\right\} .
\end{gathered}
$$

For $W_{[x, \lambda]}, W_{y, v} \epsilon S$, when $x=\left(x_{1}, x_{2}, \ldots, x_{n_{1}}\right), \lambda=\left(\lambda_{1}, \ldots, \lambda_{n_{1}}\right)$, $y=\left(y_{1}, \ldots, y_{n_{2}}\right), v=\left(v, \ldots, v_{n_{2}}\right)$, define the inner product by

$$
<W_{[x, \lambda]}, W_{x, v}>=\sum_{k=1}^{n_{1}} \sum_{\ell=1}^{n_{2}} \sum_{i, j=1}^{r} k^{i j}\left(x_{k}, y_{\ell}\right) \lambda_{k}^{i} v_{\ell}^{j}
$$

then $(S,<, .>)$ is an inner product space and the reproducing kernel Hilbert space H is the completion of S under this inner product.

1.2 Einstein-Uhlenbeck Operators and Semigroups

Let (W, H, μ) be an abstract Wiener space and $(S, B(S))$ a measurable space. A map $x: W \rightarrow S$ is called an S-valued Wiener functional, if it is $B(W) \mid B(S)$-measurable. Two S-valued Wiener functionals x, y are said to be equal and denoted by $x=y$ if $x(w)=y(w)$ a.a.w (μ). For the moment, we consider mainly the case $S=\mathbb{R}$.

Notation $L_{p}=L_{p}(W, B(W), \mu), 1 \leq p<\infty$.
Definition 1.2. $F: W \rightarrow \mathbb{R}$ is a polynomial, if $\exists n \in \mathbb{N}$ and $\ell_{1}, \ell_{2}, \ldots$, $\ell_{n} \epsilon \stackrel{*}{W}$ and $p\left(x_{1}, \ldots, x_{n}\right)$, a real polynomial in n variables such that

$$
F(w)=p\left(\ell_{1}(w), \ell_{2}(w), \ldots, \ell_{n}(w)\right) \forall w \in W .
$$

In this expression of F, we can always assume that $\left\{\ell_{i}\right\}_{i=1}^{n}$ is an $O N S$ in the sense defined below. We define degree $(F)=$ degree (P) which is clearly independent of the choice of $\left\{\ell_{i}\right\}$. We denote by \mathcal{P} the set of such polynomial and by \mathcal{P}_{n} the set of polynomial of degree $\leq n$.

Fact. $\mathcal{P} \subset L_{p}, 1 \leq p<\infty$ and the inclusion is dense

Definition 1.3. A finite or infinite collection $\left\{\ell_{i}\right\}$ of elements in ${ }_{W}^{W}$ is said to be an orthonormal system $(O N S)$ if $<\ell_{i}, \ell_{j}>_{H}=\delta_{i j}$. It is said to be an orthonormal basis $(O N B)$ if it is an ONS and $L\left(\ell_{1}, \ell_{2}, \ldots\right)^{!\cdot \|_{H}}=H$, where $L\left(\ell_{1}, \ell_{2}, \ldots\right)$ is the linear span of $\left(\ell_{1}, \ell_{2}, \ldots\right)$.

Decomposition of L_{2} : We now represent L_{2} as an infinite direct sum of subspaces and this decomposition is called the Wiener-Chaos decomposition or the Wiener-Ito decomposition.

Let $C_{o}=\{$ constants $\}$
Suppose $C_{o}, C_{1}, \ldots, C_{n-1}$ are defined. Then we define C_{n} as follows:

$$
C_{n}=\overline{\mathcal{P}}_{n}^{\|} \| L_{2} \ominus\left[C_{o} \oplus C_{1} \oplus \cdots \oplus C_{n-1}\right]
$$

i.e., C_{n} is the orthogonal complement of $C_{o} \oplus \cdots \oplus C_{n-1}$ in $\overline{\mathcal{P}}_{n}\| \| L_{2}$. Since \mathcal{P} is dense in L_{2}, it follows that

$$
L_{2}=C_{o} \oplus C_{1} \cdots \oplus C_{n} \oplus \cdots
$$

Hermite Polynomials: The Hermite polynomials are defined as

$$
H_{n}(x)=\frac{(-1)^{n}}{n!} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2} / 2}\right), n=0,1,2, \ldots
$$

They have the following properties:

1. $H_{o}(x)=1$
2. $\sum_{n=o}^{\infty} t^{n} H_{n}(x)=e^{-\left(t^{2} / 2\right)+t x}$
3. $\frac{d}{d x} H_{n}(x)=H_{n-1}(x)$
4. $\int_{\mathbb{R}} H_{n}(x) H_{m}(x) \frac{1}{\sqrt{(2 \pi)}} e^{-x^{2} / 2} d x=\frac{1}{n!} \delta_{n, m}$.

Let $\Lambda=\left\{a=\left(a_{1}, a_{2}, \ldots\right) \mid a_{i} \epsilon z^{+}, a_{i}=0\right.$ expect for a finite numbers of $\left.i^{\prime} s\right\}$.

For $a \in \Lambda, a!\triangleq \prod_{i}\left(a_{i}!\right),|a| \triangleq \sum_{i} a_{i}$. Let us fix an $\operatorname{ONB}\left(\ell_{1}, \ell_{2}, \ldots\right)$ in $\stackrel{*}{W}$. Then for $a \epsilon \Lambda$, we define

$$
H_{a}(w) \triangleq \prod_{i=1}^{\infty} H_{a_{i}}\left(\ell_{i}(w)\right)
$$

Since $H_{o}(x) \equiv 1$ and $a_{i}=0$ expect for a finite number of $i^{\prime} s$, the above product is well defined. We note that $H_{a}(.) \in \mathcal{P}_{n}$ if $|a| \leq n$.

Proposition 1.2. (i) $\left\{\sqrt{a!} H_{a}(w): a \in \Lambda\right\}$ is an $O N B$ in L_{2}.
(ii) $\left\{\sqrt{a!} H_{a}(w): a \in \Lambda,|a|=n\right\}$ is an $O N B$ in C_{n}.

Proof. Since $\left\{\ell_{i}\right\}$ is an $O N B$ in $\stackrel{*}{W},\left\{\ell_{i}(w)\right\}$ are $N(0.1)$, i.i.d. random variables on W. Therefore,

$$
\begin{aligned}
\int_{W} H_{a}(w) H_{b}(w) \mu(d w) & =\prod_{i=1}^{\infty} \int_{W} H_{a_{i}}\left(\ell_{i}(w)\right) H_{b_{i}}\left(\ell_{i}(w)\right) \mu(d w) \\
& =\prod_{i=1}^{\infty} \int_{\mathbb{R}} H_{a_{i}}(x) H_{b_{i}}(x) \frac{1}{\sqrt{(2 \pi)}} e^{-x^{2} / 2} d x \\
& =\prod_{i} \frac{1}{a_{i}!} \delta_{a_{i}, b_{i}}=\frac{1}{a!} \delta_{a, b} .
\end{aligned}
$$

Since \mathcal{P} is dense in L_{2}, the system $\left\{\sqrt{a!} H_{a}(w) ; a \in \Lambda\right\}$ is complete in L_{2}.

Let J_{n} denote the orthogonal projection from L_{2} to C_{n}. Then for $F \epsilon L_{2}$, we have $F=\sum_{n} J_{n} F$. In particular, if $F \epsilon \mathcal{P}$, then the above sum is finite and $J_{n} F \epsilon \mathcal{P}, \forall n$.

Definition 1.4. The function $F: W \rightarrow \mathbb{R}$ is said to be a smooth functional, if $\exists n \in \mathbb{N}, \ell_{1} \ell_{2}, \ldots, \ell_{n} \epsilon W^{*}$, and $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$, with polynomial growth order of all derivatives of f, such that

$$
F(w)=f\left(\ell_{1}(w), \ell_{2}(w), \ldots \ell_{n}(w)\right) \forall w \epsilon W .
$$

We denote by S the class of all smooth functionals on W.

Definition 1.5. For $F(w) \epsilon S$ and $t \geq o$, We define $\left(T_{t} F\right)(w)$ as follows:

$$
\begin{equation*}
\left(T_{t} F\right)(w) \triangleq \int_{W} F\left(e^{-t} w+\sqrt{ }\left(1-e^{-2 t}\right) u\right) \mu(d u) \tag{1.2}
\end{equation*}
$$

Note (i): If $F \epsilon S$ is given by

$$
F(w)=f\left(\ell_{1}(w), \ldots \ell_{n}(w)\right), f \epsilon C^{\infty}\left(\mathbb{R}^{n}\right)
$$

for some $O N S\left\{\ell_{1}, \ell_{2}, \ldots \ell_{n}\right\} \subset{ }_{W}^{W}$, then

$$
\begin{equation*}
\left(T_{t} F\right)(w)=\int_{\mathbb{R}^{n}} f\left(e^{-t} \xi+\sqrt{ }\left(1-e^{-2 t}\right) \eta\right) \frac{1}{(\sqrt{2 \pi})^{n}} e^{-\left(|\eta|^{2}\right) / 2} d \eta \tag{1.3}
\end{equation*}
$$

where $\xi=\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right) \in \mathbb{R}^{n}$.
Note (ii): The above definition can be also be used to define $T_{t} F$ when $F \epsilon L_{p}$.

Properties of $T_{t} F$:

(i) $F \epsilon S \Rightarrow T_{t} F \epsilon \mathcal{S}$
(ii) $F \epsilon \mathcal{P} \Rightarrow T_{t} F \epsilon \mathcal{P}$
(iii) For $f, G \epsilon \mathcal{S}$

$$
\int_{W}\left(T_{t} F\right)(w) G(w) \mu(d w)=\int_{W} F(w)\left(T_{t} G\right)(w) \mu(d w)
$$

(iv) $T_{t+s} F(w)=T_{t}\left(T_{s} F\right)(w)$
(v) If $F \epsilon \mathcal{S}, F=\sum_{n} J_{n} F$, then

$$
T_{t} F=\sum_{n} e^{-n t}\left(J_{n} F\right)
$$

(vi) T_{t} is a contraction on $L_{p}, 1 \leq p<\infty$.

Proof. (i) and (ii) are trivial and (iii) and (iv) follow easily from (v). Hence we prove only (v) and (vi).

Proof of (v): Let $\ell \in \stackrel{*}{W}$ and

$$
F(w)=E^{\sqrt{-1}} \ell(w)+\frac{1}{2}|\ell|_{H}^{2} .
$$

Then

$$
\begin{aligned}
T_{t} F(w) & =\int_{W} \exp \left[\sqrt{-1} e^{-t} \ell(w)+\sqrt{-1} \sqrt{ }\left(1-e^{-2 t}\right) \ell(u)+\frac{1}{2}|\ell|_{H}^{2}\right] \mu(d u) \\
& =e^{\sqrt{-1}} e^{-t} \ell(w)+\frac{1}{2}|\ell|_{H}^{2} \int_{W} e^{\sqrt{-1}} \sqrt{ }\left(1-e^{-2 t}\right) \ell(u)_{\mu(d u)} \\
& =e^{\sqrt{-1}} e^{-t} \ell(w)+\frac{1}{2} e^{e^{2 t}|\ell|_{H}^{2}}
\end{aligned}
$$

Let

$$
\begin{aligned}
& \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{\vee}, N \in \mathbb{N} \\
& \ell=\lambda_{1} \ell_{1}+\cdots+\lambda_{N} \ell_{N},\left\{\ell_{i}\right\}_{i=1}^{N} \text { an ONS } .
\end{aligned}
$$

Let

$$
F(w)=e^{\sqrt{-1}} \ell(w)+\frac{1}{2}|\ell|_{H}^{2} .
$$

Then

$$
\begin{aligned}
& F(w)=\prod_{i=1}^{N} e^{\sqrt{-1}} \lambda_{i} \ell_{i}(w)-\frac{1}{2}\left(\sqrt{-1} \lambda_{i}\right)^{2} \\
& =\sum_{m_{1}, \ldots, m_{N}=0}^{\infty}\left(\sqrt{-1} \lambda_{1}\right)^{m_{1}} \cdots\left(\sqrt{-1} \lambda_{N}\right)^{m_{N}} \times H_{m_{1}}\left(\ell_{1}(w)\right) \cdots H_{m_{N}}\left(\ell_{N}(w)\right) .
\end{aligned}
$$

Applying T_{t} to both sides of the above equation, we have

$$
\begin{aligned}
e^{\sqrt{-1}} e^{-t} \ell(w)+\frac{1}{2} e^{2 t}|\ell|_{H}^{2}=T_{t} F(w)=\sum_{m_{1}, \ldots m_{N}=0}^{\infty}(\sqrt{-1} & \left.\lambda_{1}\right)^{m_{1}} \ldots\left(\sqrt{-1} \lambda_{N}\right)^{m_{N}} \\
& \times T_{t}\left(\prod_{i=1}^{m_{N}} H_{m_{i}}\left(\ell_{i}(.)\right)\right)(w)
\end{aligned}
$$

Hence

$$
\begin{gathered}
T_{t}\left(\prod_{i=1}^{N} H_{m_{i}}\left(\ell_{i}(.)\right)\right)(w)=\prod_{i=1}^{N} e^{-t m_{i}} H_{m_{i}}\left(\ell_{i}(w)\right) \\
\left.=e^{-t} \sum_{i=1}^{N} m_{i} \prod_{i=1}^{N} H_{m_{i}}\left(\ell_{i}\right)(w)\right)
\end{gathered}
$$

implies

$$
\left(T_{t} H_{a}\right)(w)=e^{-|a| t} H_{a}(w)
$$

If $P \epsilon P$, then $F=\sum_{n} J_{n} F$ where $J_{n} F \epsilon C_{n}$. Then since

$$
\left\{\sqrt{a!} H_{a}(w): a \in \wedge,|a|=n\right\}
$$

is an $O N B$ for C_{n}, we finally have

$$
\left(T_{t} F\right)(w)=\sum_{n} e^{-n t}\left(J_{n} F\right)(w)
$$

Proof of (vi): Let $P_{t}(w, d u)$ denote the image measure $\mu \circ \phi_{t, w}^{-1}$ of the $\operatorname{map} \phi_{t, w}: W \rightarrow W$

$$
\phi_{t, w}(u)=e^{-t} w+\sqrt{ }\left(1-e^{-2 t}\right) u
$$

Then

$$
\left(T_{t} F\right)(w)=\int P_{t}(w, d u) F(u), F \epsilon L_{p}
$$

First let F be a bounded Borel function on W. Then $F \in L_{p}$ and

$$
\begin{aligned}
\left\|T_{t} F\right\|_{L_{p}}^{p} & =\left\{\int_{W}\left|\int_{W} P_{t}(w, d u) F(u)\right|_{\mu}^{P}(d w)\right\} \\
& \leq\left\{\int_{W}\left|\int_{W} P_{t}(w, d u) F(u)\right|_{\mu}^{P}(d w)\right\} \\
& =<1, T_{t}\left(|F|^{P}\right)>_{L_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =<1,|F|^{P}>_{L_{2}}\left(\because T_{t} 1=1\right) \\
& =\|F\|_{P}^{p}
\end{aligned}
$$

Hence $\left\|T_{t} F\right\|_{L_{p}} \leq\|F\|_{L_{p}}$ holds for any bounded Borel function F. In the general case, for any $F \in L_{p}$, we choose F_{n}, bounded Borel functions, such that $F_{n} \rightarrow F$ in L_{p}. Then

$$
\begin{gathered}
\left\|T_{t} F_{n}\right\|_{L_{p}} \leq\left\|F_{n}\right\|_{L_{p}} \forall n, \\
=>\left\|T_{t} F\right\|_{L_{p}} \leq\|F\|_{L_{p}} .
\end{gathered}
$$

Actually T_{t} has a stronger contraction known as hyper-contractivity:
Theorem 1.3 (Nelson). Let $1 \leq p<\infty, t>0$ and $q(t)=e^{2 t}(p-1)+1>$ p. Then for $F \epsilon L_{q(t)}$,

$$
\left\|T_{t} F\right\|_{q(t)} \leq\|F\|_{p}
$$

Remark. The semigroup $\left\{T_{t}: t \geq o\right\}$ is called the Ornstein-Uhlenbeck Semigroup.

Some Consequence of the Hyper-Contractivity:

1) $J_{n}: L_{2} \rightarrow C_{n}$ is a bounded operator on $L_{p}, 1<p<\infty$.

Proof. Let $p>2$. Choose t such that $e^{2 t}+1=p$.Then by Nelson's theorem, we have

$$
\left\|T_{t} F\right\|_{p} \leq\|F\|_{2}
$$

In particular

$$
\left\|T_{t} J_{n} F\right\|_{p} \leq\left\|J_{n} F\right\|_{2} \leq\|F\|_{2} \leq\|F\|_{p} .
$$

But

$$
\left\|T_{t} J_{n} F\right\|_{p}=e^{-n t}\left\|J_{n} F\right\|_{p}
$$

hence

$$
\left\|J_{n} F\right\|_{p} \leq e^{n t}\|F\|_{p}
$$

For $1<p<2$, Considering the dual map J_{n}^{*} of J_{n} and applying the previous case, we get

$$
\left\|J_{n}^{*} F\right\|_{p} \leq e^{n t}\|F\|_{p}
$$

But, for $F \in P, J_{n}^{*}=J_{n}$. Hence, by denseness of p, the results follows.
2) Let $V_{n}=C_{0} \oplus \ldots C_{1} \oplus C_{n}\left(V_{n}\right.$ are called Wiener chaos of order $\left.n\right)$. Then, for every $1 \leq p, q<\infty,\|\cdot\|_{p}$ and $\|.\|_{p}$ are equivalent on V_{n}, i.e., for every $F \in V_{n}, \exists C_{p, q, n}>0$ such that

$$
\|F\|_{q} \leq C_{p, q, n}\|F\|_{p}
$$

In particular, for $F \in V_{n},\|F\|_{p}<\infty, 1<p<\infty$.
Proof. Easy and omitted.
Definition 1.6 (Ornstein-Uhlenbeck Operator). We define the generator L of the semigroup T_{t}, which is called Ornstein-Uhlenbeck Operator, as follows:

For $F \epsilon P$, define

$$
L(F)=\left.\frac{d}{d t} T_{t} F\right|_{t=0}=\sum_{n}(-n) J_{n} F
$$

Note that L maps polynomials into polynomials. L can also be extended, as an operator on L_{P}, as the infinitesimal generator of a contraction semigroup on L_{P}. The extension of L will be given in later sections. In particular, for L_{2}, let

$$
D(L)=\left\{F \epsilon L_{2}: \sum_{n}\left\|J_{n} F\right\|_{2}^{2}<\infty\right\}
$$

and for $F \epsilon D(L)$, define

$$
L(F)=\sum_{n}(-n) J_{n} F
$$

In it easily seen that L is a self-adjoint operator on L_{2}.

Definition 1.7 (Fréchet derivative). For $F \epsilon P$ and $w \epsilon W$, define

$$
D F(w)(u)=\left.\frac{\partial F}{\partial t}(w+t u)\right|_{t=o} \forall u \in W
$$

For each $w \epsilon W, D F(w)$, which is called the Fréchet derivative of F at w, is a continuous linear functional on W i.e.,
$D F(w) \epsilon \stackrel{*}{W}$. More precisely, $D F(w)$ is given as follows:
Let $\left\{\ell_{i}\right\}$ be an ONS is $\stackrel{*}{W}$ and $F=p\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right)$, then

$$
D F(w)(u)=\sum_{i=1}^{n} \partial_{i} p\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right) \cdot \ell_{i}(u)
$$

which we can also write as

$$
D F(w)=\sum_{i=1}^{n} \partial_{i} p\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right) \cdot \ell_{i}
$$

For $F \epsilon P$, the Fréchet derivative at w of order $k>1$ is defined as

$$
\begin{gathered}
D^{k} F(w)\left(u_{1}, u_{2}, \ldots, u_{k}\right)=\left.\frac{\partial^{k}}{\partial t_{1} . . \partial t_{k}} F\left(w+t_{1} u_{1}+\cdots+t_{k} u_{k}\right)\right|_{t_{1}=. .=t_{k}=0} \\
\text { for } u_{i} \epsilon W, 1 \leq i \leq k .
\end{gathered}
$$

Explicitly, if $\left.F(w)=p\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right)\right)$, then

$$
\left.D^{k} F(w)=\sum_{i_{1}=1}^{n} . . \sum_{i_{k}=1}^{n} \partial_{i_{1}}, \partial_{i_{2}} \cdots \partial_{i_{k}} P\left(\ell_{1}(w), \ell_{2}(w), \ldots, \ell_{n}(w)\right)\right) . \times \ell_{i_{1}}^{\ell} \otimes . . \otimes \ell_{i_{k}}
$$

where

$$
\ell_{i_{1}} \otimes \ldots \otimes \ell_{i_{k}}\left(u_{1}, u_{2}, \ldots, u_{k}\right) \stackrel{\Delta}{=} \ell_{i_{1}}\left(u_{1}\right), \ldots, \ell_{i_{k}}\left(u_{k}\right)
$$

Note that for each $w, D^{k} F(w) \epsilon \underbrace{\stackrel{*}{W} \otimes \cdots \otimes W^{*}}_{k \text { times }}$ where
$\underbrace{\stackrel{*}{W} \otimes \cdots \otimes \stackrel{*}{W}}_{k \text { times }} \triangleq\{V: \underbrace{W x \cdots x W}_{k \text { times }} \rightarrow \mathbb{R} \mid V$ is multilinear and continuous $\}$.

Definition 1.8 (Trace Operator). Let $\left\{h_{i}\right\}$ be an ONB in H. For $V \epsilon \stackrel{*}{W} \otimes \stackrel{*}{W}$ we define the trace of V with respect to H, denoted as trace $H_{H} V$ by

$$
\text { trace }_{H} V=\sum_{i=1}^{\infty} V\left(h_{i}, h_{i}\right) .
$$

Note that the definition is independent of the choice of $O N B$ and for $V \epsilon \stackrel{*}{W} \otimes \stackrel{*}{W}$, $\operatorname{trace}_{H} V$ exists and $\operatorname{trace}_{H}($.$) is a continuous function on$ $\stackrel{*}{W} \otimes \stackrel{*}{W}$.

Remark. For $\ell_{1}, \ell_{2} \epsilon \stackrel{*}{W}$,

$$
\begin{aligned}
\operatorname{trace}_{H} \ell_{1} \otimes \ell_{2} & =\sum_{i} \ell_{1}\left(h_{i}\right) \ell_{2}\left(h_{i}\right)=\sum_{i}<\ell_{1}, h_{i}>_{H}<\ell_{2}, h_{i}>_{H} \\
& =<\ell_{1}, \ell_{2}>_{H}
\end{aligned}
$$

Theorem 1.4. If $F \epsilon P$, then

$$
\begin{equation*}
L F(w)=\operatorname{trace}_{H} D^{2} F(w)-D F(w)(w), \text { for } w \in W . \tag{1.3}
\end{equation*}
$$

Proof. Let $\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right\}$ be an $O N S$ in $\stackrel{*}{W}$ and

$$
F(w)=p\left(\ell_{1}(w), \ell_{2}(w), \ldots, \ell_{n}(w)\right) .
$$

By the remark, we see that

$$
\begin{aligned}
& \text { RHS of (1.3) }=\sum_{i=1}^{n} \partial_{i} \partial_{i} p\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right) \\
&-\sum_{i=1}^{n} \partial_{i} p\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right) \cdot \ell_{i}(w) .
\end{aligned}
$$

Now let $\xi=\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right)$, then

$$
\frac{d}{d t} T_{t} F(w)=\frac{d}{d t} \int_{\mathbb{R}^{n}} p\left(e^{-t} \xi+\sqrt{ }\left(1-e^{-2 t}\right) n\right)(2 \pi)^{-n / 2} e^{\frac{-|\eta|^{2}}{2}} d \eta
$$

$$
\begin{aligned}
& =-\int_{\mathbb{R}^{n}} \sum_{i=1}^{n} e^{-t} \xi_{i} \partial_{i} p\left(e^{-t} \xi+\sqrt{ }\left(1-e^{-2 t}\right) n\right)(2 \pi)^{-n / 2} e^{\frac{-|\eta|^{2}}{2}} d \eta \\
& +\int_{\mathbb{R}^{n}} \sum_{i=1}^{n} \partial_{i} p\left(e^{-t} \xi+\sqrt{ }\left(1-e^{-2 t}\right) n\right) \frac{\eta_{i} e^{-2 t}(2 \pi)^{-n / 2}}{\sqrt{ }\left(1-e^{-2 t}\right)} e^{\frac{-|\eta|^{2}}{2}} d \eta \\
& -\int_{\mathbb{R}^{n}} \sum_{i=1}^{n} e^{-t} \xi_{i} \partial_{i} p\left(e^{-t} \xi+\sqrt{ }\left(1-e^{-2 t}\right) n\right)(2 \pi)^{-n / 2} e^{\frac{-|\eta|^{2}}{2}} d \eta \\
& -\int_{\mathbb{R}^{n}} \sum_{i=1}^{n} \partial_{i} p\left(e^{-t} \xi+\sqrt{ }\left(1-e^{-2 t}\right) n\right) \frac{e^{-2 t}(2 \pi)^{-n / 2}}{\sqrt{ }\left(1-e^{-2 t}\right)} \times \partial_{i}\left(e^{\frac{-|\eta|^{2}}{2}}\right) d \eta .
\end{aligned}
$$

Integrating the second expression by parts, we get

$$
\frac{d}{d t} T_{t} F(w)=-\sum_{i=1}^{n} \xi_{i} e^{-t} T_{t}\left(\partial_{i} p\right)(\xi)+\sum_{i=1}^{n} e^{-2 t} T_{t}\left(\partial_{i}^{2} p\right) \xi
$$

Hence we have

$$
L F(w)=\lim _{t \rightarrow 0} \frac{d}{d t} T_{t} F(w)=R H S
$$

Definition 1.9 (Operator δ). Let P_{W}^{*} be the totality of functions $F(w)$: $W \rightarrow \stackrel{*}{W}$ which can be expressed in the form

$$
F(w)=\sum_{i=1}^{n} F_{i}(w) \ell_{i}
$$

for some $n \epsilon \mathbb{N}, \ell_{i} \epsilon_{i} \stackrel{*}{W}$ and $F_{i}(w) \epsilon p, i=1,2, \ldots, n . F \epsilon P_{\stackrel{*}{W}}$ is called a $\stackrel{*}{W}$ valued polynomial. The linear operator $\delta: P_{W}^{*} \rightarrow P_{W}$ is defined as follows:

$$
\begin{aligned}
& \text { Let } \ell_{1}, \ell_{2}, \ldots, \ell_{n}, \ell \in \stackrel{*}{W} \text { and } \\
& F(w)=p\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right) \ell
\end{aligned}
$$

$\delta F(w)=\sum_{i=1}^{n} \partial_{i} p\left(\ell(w), \ldots, \ell_{n}(w)\right)<\ell_{i}, \ell>_{H}-p\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right) \ell(w)$
and extend the definition to every $F \epsilon P_{W} *$ by linearity.
Proposition 1.5. (i) For every $F \epsilon p, \delta(D F)=L F$. More generally if $F_{1}, F_{2} \epsilon p$, then

$$
\begin{equation*}
\delta\left(F_{1} \cdot D F_{2}\right)=<D F_{1}, D F_{2}>_{H}+F_{1} \cdot L\left(F_{2}\right) \tag{1.4}
\end{equation*}
$$

(ii) (Formula for integration by parts)

In $F \epsilon P$ and $G \epsilon P_{W^{*}}$, then

$$
\begin{equation*}
\int_{W}<G, D F>_{H}(w) \mu(d w)=-\int_{W} \delta G(w) F(w) \mu(d w) \tag{1.5}
\end{equation*}
$$

which says that $\delta=-D *$.
Proof. (i) follows easily from definitions. (ii) We may assume

$$
G(w)=p\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right) \ell \quad F(w)=q\left(\ell_{1}(w), \ldots, \ell_{n}(w)\right)
$$

where $\left\{\ell_{i}\right\}$ is ONS in $\stackrel{*}{W}$. Then

$$
\begin{aligned}
<G, D F>_{H} & =\sum_{i=1}^{n}\left(\partial_{i} q\right) p<\ell_{i}, \ell>_{H} \\
\delta G \cdot F & =\sum_{i=1}^{n}\left(\partial_{i} p\right) \cdot q<\ell_{i}, \ell>_{H}-p \cdot q \ell(w) .
\end{aligned}
$$

So we have to prove that

$$
\begin{aligned}
& \int_{\mathbb{R}} \sum_{i=1} n\left(\partial_{i} q(\xi)\right) \cdot p(\xi)<\ell_{i}, \ell>_{H} e^{\frac{-|\xi|^{2}}{2}} d \xi \\
& =-\int_{\mathbb{R}^{n}} \sum_{i=1}^{n}\left[\left(\partial_{i} p(\xi)\right) q(\xi)<\ell_{i}, \ell>_{H}-p(\xi) q(\xi)<\ell_{i}, \ell>\xi_{i}\right] e^{\frac{-|\xi|^{2}}{2}} d \xi
\end{aligned}
$$

which follows immediately by integrating the $L H S$ by parts

Proposition 1.6 (Chain rule). Let $P\left(t_{1}, \ldots, t_{n}\right)$ be a polynomial and $F_{i} \epsilon P$, for $i=1,2, \ldots, n$. Let $F=P\left(F_{1}, F_{2} \ldots F_{n}\right) \epsilon P$. Then

$$
D F(w)=\sum_{i=1}^{n} \partial_{i} P\left(F_{1}(w), F_{2}(w), \ldots, F_{n}(w)\right) \cdot D F_{i}(w)
$$

and

$$
\begin{aligned}
& L F(w)=\sum_{i, j=1}^{n} \partial_{i} \partial_{j} P\left(F_{1}(w), \ldots, F_{n}(w)\right) .<D F_{i} D F_{j}>_{H} \\
&+\sum_{i=1}^{n} \partial_{i} P\left(F_{1}(w) m \ldots, F_{n}(w)\right) \times L F_{i}(w) .
\end{aligned}
$$

Proof. Easy.

1.3 Sobolev Spaces over the Wiener Space

Definition 1.10. Let $F \epsilon p, 1<p<\infty,-\infty<s<\infty$. Then

$$
\|F\|_{p, s} \stackrel{\Delta}{=}\left\|(I-L)^{s / 2} F\right\|_{p}
$$

where

$$
(I-L)^{s / 2} F \triangleq \sum_{n=0}^{\infty}(1+n)^{s / 2} J_{n} F \epsilon P
$$

Proposition 1.7. (i) If $p \leq p^{\prime}$ and $s \leq s^{\prime}$, then

$$
\|F\|_{p, s} \leq\|F\|_{p^{\prime} s^{\prime}} \forall F \epsilon p .
$$

(ii) $\forall 1<p<\infty,-\infty<s<\infty,\|\cdot\|_{p, s}$ are compatible in the sense that if, for any $(p, s),\left(p^{\prime}, s^{\prime}\right)$ and $F_{n} \epsilon p, n=0,1,2, \ldots,\left\|F_{n}\right\|_{p, s} \rightarrow 0$ and $\left\|F_{n}-F_{m}\right\|_{p^{\prime}, s^{\prime}} \rightarrow 0$ as $n, m \rightarrow \infty$, then $\left\|F_{n}\right\|_{p^{\prime}, s^{\prime}} \rightarrow 0$ as $n \rightarrow \infty$

Proof. (i) Since, for fixed $s,\|F\|_{p, s} \leq\|F\|_{p^{\prime}, s^{\prime}}$ if $p^{\prime}>p$, it is enough to prove

$$
\|F\|_{p, s} \leq\|F\|_{p, s^{\prime}} \text { for } s^{\prime} \geq s
$$

To prove this, it is sufficient to show that for $\alpha>o$,

$$
\left\|(I-L)^{-\alpha} F\right\|_{p} \leq\|F\|_{p} \forall F \epsilon P
$$

We know that $\left\|T_{t} F\right\|_{p} \leq\|F\|_{p}$. From the Wiener-Chaos representation for $T_{t} F$ and $(I-L)^{-\alpha} F$, we have

$$
(I-L)^{-\alpha} F=\frac{1}{\Gamma(\alpha)} \int_{o}^{\infty} e^{-t} t^{\alpha-1} T_{t} F d t
$$

Hence

$$
\begin{aligned}
\left\|(I-L)^{-\alpha} F\right\|_{p} & \leq \frac{1}{\Gamma(\alpha)} \int_{o}^{\infty} e^{-t} t^{\alpha-1}\left\|T_{t} F\right\|_{p} d t \\
& \leq\|F\|_{p}
\end{aligned}
$$

which proves the result.
(ii) Let $G_{n}=(I-L)^{s^{\prime} / 2} F_{n} \epsilon \mathcal{P}$. Therefore $\left\|G_{n}-G_{m}\right\|_{p^{\prime}} \rightarrow 0$ as $n, m \rightarrow$ ∞. Therefore, $\exists G \epsilon L_{p}$, such that $\left\|G_{n}-G\right\|_{p^{\prime}} \rightarrow 0$. But

$$
\left\|F_{n}\right\|_{p, s} \rightarrow 0 \Rightarrow\left\|(I-L)^{1 / 2\left(s-s^{\prime}\right)} G_{n}\right\|_{p} \rightarrow 0
$$

Enough to show $G=0$. Let $H \epsilon P$. Then $(I-L)^{1 / 2\left(s^{\prime}-s\right)} H \epsilon P$.
Noting that $P \subset L_{q}$ for every $1<q<\infty$, we have

$$
\begin{aligned}
\int_{W} G \cdot H d \mu & =\lim _{n \rightarrow \infty} \int_{W} G_{n} H d \mu \\
& =\lim _{n \rightarrow \infty} \int_{W}(I-L)^{1 / 2\left(s-s^{\prime}\right)} G_{n}(I-L)^{1 / 2\left(s^{\prime}-s\right)} H d \mu \\
& =0 .
\end{aligned}
$$

Since \mathcal{P} is hence in $L_{p} \forall q, G=0$.

Definition 1.11. Let $1<p<\infty,-\infty<s<\infty$. Define $\mathbb{D}_{p, s}=$ the completion of \mathcal{P} by the norm $\left\|\|_{p, s}\right.$.

Fact. 1) $\mathbb{D}_{p, o}=L_{p}$.
2) $\mathbb{D}_{p^{\prime}, s^{\prime}} \hookrightarrow \mathbb{D}_{p, s}$ if $p \leq p^{\prime}, s \leq s^{\prime}$.

Hence we have the following inclusions:
Let $o<\alpha<\beta, o<p<q<\infty$. Then

$$
\begin{aligned}
& \mathbb{D}_{p, \beta} \hookrightarrow \mathbb{D}_{p, \alpha} \hookrightarrow \mathbb{D}_{p, o}=L_{p} \hookrightarrow \mathbb{D}_{p,-\alpha} \hookrightarrow \mathbb{D}_{p,-\beta} \\
& \mathbb{D}_{q, \beta} \hookrightarrow \mathbb{D}_{q, \alpha} \hookrightarrow \mathbb{D}_{q, o}=L_{q} \hookrightarrow \mathbb{D}_{q,-\alpha} \hookrightarrow \mathbb{D}_{q,-\beta}
\end{aligned}
$$

3) Dual of $D_{p, s} \equiv D_{p, s}^{\prime}=D_{q,-s}$ where $\frac{1}{p}+\frac{1}{q}=1$, under the standard 26 identification $\left(L_{2}\right)^{\prime}=L_{2}$.

This follows from the following facts:
Let $A=(I-L)^{-s / 2}$. Then the following maps are isometric isomorphisms:

$$
\begin{aligned}
& A: L_{p} \rightarrow \mathbb{D}_{p, s} \\
& A: \mathbb{D}_{q,-s} \rightarrow L_{q}
\end{aligned}
$$

and hence

$$
\stackrel{*}{A}:\left(\mathbb{D}_{p, s}\right)^{\prime} \rightarrow L_{q}
$$

is also an isometric isomorphism if $\frac{1}{p}+\frac{1}{q}=1$.
Also, from the relation

$$
\int_{w} F(w) G(w) \mu(d w)=\int_{W}(I-L)^{s / 2} F(w)(I-L)^{-s / 2} G(w) \mu(d w)
$$

it is easy to see that $\mathbb{D}_{q,-s} \subset\left(\mathbb{D}_{p, s}\right)^{\prime}$, isometrically.

Definition 1.12.

$$
\begin{aligned}
\mathbb{D}_{\infty} & =\bigcap_{p, s} \mathbb{D}_{p, s} \\
\mathbb{D}_{-\infty} & =U_{p, s} \mathbb{D}_{p, s} \\
\text { (Hence } \quad \mathbb{D}_{\infty}^{\prime} & =U \mathbb{D}_{p, s}^{\prime}=\mathbb{D}_{-\infty} . \text {) }
\end{aligned}
$$

Thus \mathbb{D}_{∞} is a complete countably normed space and $\mathbb{D}_{-\infty}$ is its dual.
Remark. Let $S\left(\mathbb{R}^{d}\right)$ be the Schwartz space of rapidly decreasing C^{∞} functions, $H_{p, s}$ the (classical) Sobolev space obtained by completing $S\left(\mathbb{R}^{d}\right)$ by the norm

$$
\|f\|_{p, s}=\left\|\left(|x|^{2}-\Delta\right)^{s / 2} f\right\|_{p}, f \in S\left(\mathbb{R}^{d}\right)
$$

where Δ denotes the Laplacian. Then it is well-known that

$$
\begin{aligned}
\bigcap_{p, s} H_{p, s} & =\bigcap_{s} H_{2, s} \\
U_{p, s} H_{p, s} & =U_{s} H_{2, s}
\end{aligned}
$$

Thus every element in $\bigcap_{p, s} H_{p, s}$ has a continuous modification, actually $a C^{\infty}$ - modification. But in our case, the analogous results are not true.

First, in our case, $\bigcap_{s} \mathbb{D}_{2, s} \neq \mathbb{D}_{\infty}$. Secondly, $\exists F \epsilon \mathbb{D}_{\infty}$ which has no continuous modification on W, as the following example shows.

Example 1.3. Let $W=W_{o}^{2}=\left\{w \epsilon C\left([0,1] \rightarrow \mathbb{R}^{2}\right), w(0)=0\right\} \mu=P \equiv$ $2-\operatorname{dim}$. Wiener measure. Let, for $w=\left(w_{1}, w_{2}\right) \epsilon W$,

$$
F(w)=\frac{1}{2}\left\{\int_{0}^{1} w_{1}(s) d w_{2}(s)-\int_{o}^{1} w_{2}(s) d w_{1}(s)\right\}
$$

(stochastic area of Levy) where the integrals are in the sense of Itô's stochastic integrals.

Then $F \epsilon C_{2} \subset \mathbb{D}_{\infty}$. But F has no continuous modification: suppose $\exists \hat{F}(w)$, continuous and such that $\hat{F}(w)=F(w) a . a . w(p)$. Let

$$
\hat{\hat{F}}(w)=\frac{1}{2}\left[\int_{o}^{1}\left(w_{1}(s) \dot{w}_{2}(s)-w_{2}(s) \dot{w}_{1}(s)\right) d s\right]
$$

for $w \epsilon C_{o}^{2}\left([0,1] \rightarrow \mathbb{R}^{2}\right)$. Note that $\hat{\hat{F}}$ has no continuous extension to W_{o}^{2}. On the other hand, we have the following fact: For $\delta>o$,
as

$$
\begin{gathered}
P\{|F(w)-\hat{\hat{F}}(\phi)|<\delta\| \| w-\phi \|<\epsilon\} \rightarrow 1 \\
\epsilon \downarrow o, \forall \phi \epsilon C_{o}^{2}\left([0,1] \rightarrow \mathbb{R}^{2}\right) .
\end{gathered}
$$

Hence

$$
\hat{F} \equiv \hat{\hat{F}} \text { on } C_{o}^{2}\left([0,1] \rightarrow \mathbb{R}^{2}\right), \text { a contradiction. }
$$

Definition 1.13. Let $F \in P$. Then

$$
D^{k} F(w) \epsilon \underbrace{W^{*} \otimes \cdots \otimes W^{*}}_{K \text { times }}
$$

and we define the Hilbert-Schmidt norm of $D^{k} F(w)$ as

$$
\left|D^{k} F(w)\right|_{H S}^{2}=\sum_{i_{1}, \ldots, i_{k}=o}^{\infty}\left\{D^{k} F(w)\left[h_{i_{1}}, \ldots, h_{i_{k}}\right]\right\}^{2}
$$

where $\left\{h_{i}\right\}_{i=1}^{\infty}$ is an ONB in H.
Remark. 1) The definition is independent of the $O N B$ chosen.
2) If $k=1$, then $|D F(w)|_{H S}^{2}=|D F[w]|_{H}^{2}$.

Theorem 1.8 (Meyer). For $1<p<\infty, k \in Z^{+}$, there exist $A_{p, k}>a_{p, k}>0$ such that

$$
\begin{equation*}
a_{p, k}\left\|\left|D^{k} F\right|_{H S}\right\|_{p} \leq\|F\|_{p, k} \leq A_{p, k}\left(\|F\|_{p}+\left.\| \| D^{k} F\right|_{H S} \|_{p}\right) \tag{1.5}
\end{equation*}
$$

for every $F \in \mathcal{P}$.

Before proving this result, let us consider the analogous result in classical analysis, which can be stated as:

For $1<p<\infty$, there exists $a_{p}>0$ such that

$$
\begin{equation*}
a_{p}\left\|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right\|_{p} \leq\|\Delta f\|_{p}, \forall f \in \mathcal{S}\left(\mathbb{R}^{d}\right) \tag{1.6}
\end{equation*}
$$

where $\mathcal{S}\left(\mathbb{R}^{d}\right)$ denotes the Schwartz class of C^{∞} - rapidly decreasing functions.

Proof of (1.6): Let $p=2$, then

$$
\begin{aligned}
\left\|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right\|_{2} & =\left\|\xi_{i} \xi_{j} \hat{f}(\xi)\right\|_{2}, \text { where } \hat{f}(\xi)=\int_{\mathbb{R}^{d}} e^{\sqrt{-1} \xi \cdot x} f(x) d x \\
& \leq C_{p}\left\|\left.\xi\right|^{2} \hat{f}(\xi)\right\|_{2}^{2} \\
& =C_{p}\|\Delta f\|_{2} .
\end{aligned}
$$

For the general case, we need Calderon-Zygmund theory of singular integrals or Littlewood-Paley inequalities. We here consider the Littlewood-Paley inequalities.

Consider the semigroups P_{t} and Q_{t} defined as follows:
i.e.,

$$
\begin{gathered}
P_{t}=e^{t \Delta}, \\
\left(P_{t} f\right)(\xi)=e^{-t|\xi|^{2}} \hat{f}(\xi), f \epsilon \mathcal{S}\left(\mathbb{R}^{d}\right) \\
Q_{t}=e^{-t(-\Delta)^{1 / 2}} \\
\left(Q_{t} f\right)(\xi)=e^{-t|\xi|} \hat{f}(\xi), f \epsilon \mathcal{S}\left(\mathbb{R}^{d}\right) \\
\hat{f}(\xi)=\int_{\mathbb{R}^{d}} e^{\sqrt{-1} \xi \cdot x} f(x) d x .
\end{gathered}
$$

i.e.,

The transition from P_{t} to Q_{t} is called subordination of Bochner and is given by

$$
Q_{t}=\int_{o}^{\infty} P_{s} \mu_{t}(d s)
$$

where μ_{t} is defined as

$$
\int_{o}^{\infty} e^{-\lambda s} \mu_{t}(d s)=e^{-\sqrt{\lambda t}}
$$

Note that Q_{t} can also be expressed as
where

$$
Q_{t} f(x)=\int_{\mathbb{R}^{d}} \frac{c_{n} t}{\left(t^{2}+|x-y|^{2}\right)^{(d+1) / 2}} f(y) d y
$$

$$
c_{n}^{-1}=\int_{\mathbb{R}^{d}} \frac{1}{\left(1+|y|^{2}\right)^{(d+1) / 2}} d y
$$

Now, we define Littlewood-Paley functions G_{f} and $G_{f} \rightarrow, f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ as:

$$
G_{f}(x)=\left[\int_{o}^{\infty} t\left\{\left|\frac{\partial}{\partial t} Q_{t} f(x)\right|^{2}+\left.\sum_{i=1}^{d} Q_{t} f(x)\right|^{2}\right\} d t\right]^{1 / 2}
$$

and

$$
G_{f^{\rightarrow}}(x)=\left[\int_{0}^{\infty}\left\{t\left|\frac{\partial}{\partial t} Q_{t} f(x)\right|^{2}\right\} d t\right]^{1 / 2}
$$

Fact. (Littlewood-Paley Inequalities): For $1<p<\infty, \exists o<a_{p}<A_{p}$ such that

$$
\begin{equation*}
a_{p}\left\|G_{f}(x)\right\|_{p} \leq\|f\|_{p} \leq A_{p}\left\|G_{f \rightarrow}(x)\right\|_{p}, \forall f \in \mathcal{S}\left(\mathbb{R}^{d}\right) \tag{1.7}
\end{equation*}
$$

Define the operator R_{j} by

$$
\left(R_{j} f\right)(\xi)=\frac{\xi_{j}}{|\xi|} \hat{f}(\xi)
$$

R_{j} is called the Riesz transformation. In particular, when $d=1$, it is called Hilbert transform. It is clear that

$$
\frac{\partial^{2}}{\partial x_{j} \partial x_{j}} f(x)=R_{i} R_{j} \Delta f(x)
$$

Fact. For $1<p<\infty, \exists o<a_{p}<\infty$ such that

$$
\begin{equation*}
a_{p}\left\|R_{j} f\right\|_{p} \leq\|f\|_{p} \tag{1.8}
\end{equation*}
$$

Note that (1.6) follows from (1.8). Hence we prove (1.8). We have

$$
\begin{aligned}
\left(R_{j} Q_{t} f\right)(\xi) & =\frac{\xi_{j}}{|\xi|} e^{-t|\xi|} \hat{f}(\xi) \\
& =\left(Q_{t} R_{j} f\right)(\xi)
\end{aligned}
$$

Also

$$
\sqrt{-1} \frac{\partial}{\partial t} R_{j}\left(Q_{t} f\right)(x)=\frac{\partial}{\partial x_{j}} Q_{t} f(x)
$$

Hence we get

$$
\overrightarrow{R_{j} f}, \quad \leq G_{f},
$$

which gives (1.8), by using (1.7). Now, we come to Meyer's theorem.

Proof of theorem 1.8.

Step 1. Using the $0-U$ semigroup T_{t}, we define Q_{t} by

$$
Q_{t}=\int_{o}^{\infty} T_{s} \mu_{t}(d s)
$$

where

$$
\int_{o}^{\infty} e^{-\lambda s} \mu_{t}(d s)=e^{-\sqrt{\lambda} t}
$$

Note that

$$
Q_{t}=\sum_{n=o}^{\infty} e^{-\sqrt{n} t} J_{n}
$$

$F \epsilon \mathcal{P}$, we define G_{F} and ψ_{F} as follows:

$$
G_{F}(w)=\left[\int_{o}^{\infty} t\left(\frac{\partial}{\partial t} Q_{t} F(w)\right)^{2} d t\right]^{1 / 2}
$$

and $\quad \psi_{F}(w)=\left[\int_{0}^{\infty}\left\{T_{t}\left(<D T_{t} F, D T_{t} F>_{H}^{1 / 2}\right)(w)\right\}^{2} d t\right]^{1 / 2}$.
Then the following are true:
For $1<p<\infty, \exists o<c_{p}<C_{p}<\infty$ such that

$$
\begin{gather*}
c_{p}\|F\|_{p} \leq\left\|G_{F}\right\|_{p} \leq C_{p}\|F\|_{p} \\
c_{p}\|F\|_{p} \leq\left\|\psi_{F}\right\|_{p} \leq C_{p}\|F\|_{p}, \forall F \epsilon \mathcal{P} \text { such that } J_{o} F=0 \tag{1.9}
\end{gather*}
$$

Proof. Omitted.
Step 2 (An L_{p}-multiplier theorem). A linear operator $T_{\phi}: \mathcal{P} \rightarrow \mathcal{P}$ is said to be given by a multiplier $\phi=(\phi(n))$, if

$$
T_{\phi} F=\sum_{n=1}^{\infty} \phi(n) J_{n} F, \forall F \epsilon \mathcal{P}
$$

Note that the operators T_{t}, Q_{t} and L are given by the multipliers $e^{n t}, e^{-\sqrt{n} t}$ and $(-n)$ respectively.

Fact. (Meyer-Shigekawa): If $\phi(n)=\sum_{k=o}^{\infty} a_{k}\left(\frac{1}{n^{\alpha}}\right)^{k}, \alpha \geq$ ofor $n \geq n_{o}$ for some n_{o} and $\sum_{k=o}^{\infty}\left|a_{k}\right|\left(\frac{1}{n_{o}^{\alpha}}\right)^{k}<\infty$, then $\exists c_{p}$ such that

$$
\begin{equation*}
\left\|T_{\phi} F\right\|_{p} \leq c_{p}\|F\|_{p}, \forall F \epsilon \mathcal{P} . \tag{1.10}
\end{equation*}
$$

Note that the hypothesis in the above fact is equivalent to: there exists $h(x)$ analytic, i.e., $h(x)=\sum a_{k} x^{k}$, near zero such that

$$
\phi(n)=h\left(\frac{1}{n^{\alpha}}\right) \text { for } n \geq n_{o} .
$$

Proof of (1.10): First, we consider the case $\alpha=1$. We have

$$
T_{\phi}=\sum_{n=o}^{n_{o}-1} \phi(n) J_{n}+\sum_{n=n_{o}}^{\infty} \phi(n) J_{n}
$$

$$
=T_{\phi}^{(1)}+T_{\phi}^{(2)}
$$

We know that $T_{\phi}^{(1)}$ is L_{p}-bounded as a consequence of hyper contractivity, i.e.,

$$
\left\|T^{(1)} F\right\|_{p} \leq c_{p}\|F\|_{p}
$$

Hence it is enough to show that

$$
\left\|T_{\phi}^{(2)} F\right\| \leq c_{p}\|F\|_{p}
$$

Claim: $\quad\left\|T_{t}\left(I-J_{o}-J_{1}-\cdots-J_{n_{o}-1}\right) F\right\|_{p} \leq C e^{-n_{o} t}\|F\|_{p}$.
Let $p>2$. Choose t_{o} such that $p=e^{2_{t}}+1$. Then by Nelson's theorem,

$$
\begin{aligned}
\| T_{t_{o}} T_{t}(I- & \left.J_{o}-J_{1}-\cdots-J_{n_{o}-1}\right) F \|_{p}^{2} \\
& \leq\left\|T_{t}\left(I-J_{o}-J_{1}-\cdots-J_{n_{o}-1}\right) F\right\|_{2}^{2} \\
& =\left\|\sum_{n=n_{o}}^{\infty} e^{-n t} J_{n} F\right\|_{2}^{2} \\
& =\sum_{n=n_{o}}^{\infty} e^{-2 n_{o} t}\left\|J_{n} F\right\|_{2}^{2} \\
& \leq e^{-2 n_{o} t}\|F\|_{p}^{2}
\end{aligned}
$$

Therefore

$$
\left\|T_{t}\left(I-J_{o}-J_{1}-\cdots-J_{n_{o}-1}\right) F\right\|_{p} \leq C e^{-n_{o} t}\|F\|_{p}
$$

where $C=e^{n_{o} t_{o}}$.
For $1<p<2$, the result (1.11) follows by duality. Define

$$
R_{n_{o}}=\int_{o}^{\infty} T_{t}\left(I-J_{o}-J_{1}-\cdots-J_{n_{o}-1}\right) d t
$$

From (1.11, we get

$$
\left\|R_{n_{o}} F\right\|_{p} \leq C \frac{1}{n_{o}}\|F\|_{p}
$$

and it is clear that

$$
\begin{aligned}
R_{n_{o}}^{2} F & =\int_{o}^{\infty} \int_{o}^{\infty} T_{t}\left(I-J_{o}-J_{1}-\cdots-J_{n_{o}-1}\right) T_{s}\left(I-J_{o}-\cdots-J_{n_{o}-1}\right) F d t d s \\
& =\int_{o}^{\infty} \int_{o}^{\infty} T_{t+s}\left(I-J_{o}-J_{1}-\cdots-J_{n_{o}-1}\right) F d t d s
\end{aligned}
$$

Hence

$$
\left\|R_{n_{o}}^{2} F\right\|_{p} \leq C \cdot \frac{1}{n_{o}^{2}}\|F\|_{p}
$$

and repeating this, we get

$$
\left\|R_{n_{o}}^{k} F\right\|_{p} \leq C \cdot \frac{1}{n_{o}^{k}}\|F\|_{p}
$$

Also, note that if $F \epsilon C_{n}, n \geq n_{o}$

$$
\begin{aligned}
R_{n_{o}} F & =\int_{o}^{\infty} T_{t} J_{n} F d t \\
& =\frac{1}{n} J_{n} F
\end{aligned}
$$

and

$$
R_{n_{o}}^{k} F=\frac{1}{n^{k}} J_{n} F
$$

Therefore

$$
T_{\phi}^{(2)} F=\sum_{n=n_{o}}^{\infty} \sum_{k=o}^{\infty} a_{k} R_{n_{o}}^{k} J_{n} F=\sum_{k=1}^{\infty} a_{k} R_{n_{o}}^{k} F .
$$

Hence

$$
\left\|T_{\phi}^{(2)} F\right\|_{p} \leq U\left(\sum_{k}\left|a_{k}\right|\left(\frac{1}{n_{o}}\right)^{k}\right)\|F\|_{p}
$$

which gives the result.
For the general case, i.e., $o<\alpha<1$, define

$$
Q_{t}^{\alpha}=\sum e^{-n^{\alpha} t} J_{n} F=\int_{o}^{\infty} T_{s} \mu_{t}^{(\alpha)}(d s)
$$

where

$$
\int_{o}^{\infty} e^{-\lambda s} \mu_{t}^{(\alpha)}(d s)=e^{-\lambda^{\alpha} t}
$$

As in the case $\alpha=1$, write

$$
T_{\phi}=T_{\phi}^{(1)}+T_{\phi}^{(2)}
$$

In this case also, we see that $T_{\phi}^{(1)}$ is L_{p} - bounded. Using (1.11),

$$
\begin{aligned}
\| Q_{t}^{(\alpha)}\left(I-J_{o}\right. & \left.-J_{1}-\cdots-J_{n_{o}-1}\right) F \|_{p} \\
& \leq C \int_{o}^{\infty}\|F\|_{p} e^{-n_{o} s} \mu_{t}^{(\alpha)}(d s) \\
& =C e^{-n_{o}^{\alpha} t}\|F\|_{p}
\end{aligned}
$$

Define

$$
R_{n_{o}}=\int_{o}^{\infty} Q_{t}^{(\alpha)}\left(I-J_{o}-J_{1}-\cdots-J_{n_{o}-1}\right) d t
$$

and proceeding as in the case $\alpha=1$, we get that $T_{\phi}^{(2)}$ is also L_{p} bounded. Hence the proof of (1.10).

Remark. (Application of L_{p} - Multiplier Theorem)
Consider the semigroup $\left\{Q_{t}\right\}_{t \geq o}$. For $F \epsilon \mathcal{P}$, we have

$$
Q_{t} F=\sum_{n=o}^{\infty} e^{-\sqrt{n} t} J_{n} F
$$

The generator C of this semigroup is given by

$$
C F=\sum_{n=o}^{\infty}(-\sqrt{n}) J_{n} F, F \epsilon \mathcal{P}
$$

If we define $\left\|\left||.| \|_{p, s}\right.\right.$ for $F \epsilon \mathcal{P}$ by

$$
\|\|F\|\|_{p, s}=\left\|(I-C)^{s} F\right\|_{\dot{p}}, 1<p<\infty,-\infty<s<\infty
$$

where $(I-C)^{s} F=\sum_{n=o}^{\infty}(I+\sqrt{n})^{s} J_{n} F$, then $\left\|\|_{p, s}\right.$ is equivalent to $\||\cdot| \|_{p, s}$, $\forall 1<p<\infty,-\infty<s<\infty$. i.e., ヨ $a_{p, s}, A_{p, s}, o<a_{p, s}<A_{p, s}<\infty \ni$ $a_{p, s}\|F\|_{p, s} \leq\|F\|_{p, s} \leq A_{p, s}\|F\|_{p, s}$.

Proof. Let $T_{\phi} F=\sum_{n=o}^{\infty} \phi(n) J_{n} F, F \epsilon \mathcal{P}$, where

$$
\begin{aligned}
\phi(n) & =\left(\frac{1+\sqrt{ } n}{\sqrt{1+n}}\right)^{s},-\infty<s<\infty \\
& =h\left(\left(\frac{1}{n}\right)^{1 / 2}\right)
\end{aligned}
$$

with $h(x)=\left(\frac{1+x}{\sqrt{\left(1+x^{2}\right)}}\right)^{s}$ which is analytic near the origin.
Note that $T_{\phi}^{-1}=T_{\phi^{-1}}$ where $\phi^{-1}(n)=\frac{1}{\phi(n)}=h^{-1}\left(\left(\frac{1}{n}\right)^{1 / 2}\right)$ with $h^{-1}(x)=\frac{1}{h(x)}$ also analytic near the origin. Thus both $T \phi$ and T_{ϕ}^{-1} are 37 bounded operators on L_{p}. Further,
and

$$
\begin{aligned}
& (I-C)^{s} F=(I-L)^{s / 2} T_{\phi} F=T_{\phi}(I-L)^{s / 2} F \\
& (I-L)^{s / 2} F=T_{\phi}^{-1}(I-C)^{s} F=T_{\phi^{-1}}(I-C)^{s} F
\end{aligned}
$$

Hence our result follows easily from the fact that

$$
\left\|T_{\phi} F\right\|_{p} \leq C_{p}\|F\|_{p} \text { and }\left\|T_{\phi^{-1}} F\right\|_{p} \leq C_{p}\|F\|_{p}
$$

To proceed further, we need the following inequality of Kchinchine.

Kchinchine's Inequality: Let (Ω, F, p) be a probability space. Let $\left\{\gamma_{m}(\omega)\right\}_{m=1}^{\infty}$ be a sequence of i.i.d. random variables on Ω with $P\left(\gamma_{m}=\right.$ $1)=P\left(\gamma_{m}=-1\right)=1 / 2$, i.e., $\left\{\gamma_{m}(\omega)\right\}$ is a coin tossing sequence.
a) If $\left\{a_{m}\right\}$ is a sequence of real numbers, then, $\forall 1<p<\infty, \exists o<c_{p}<$ $C_{p}<\infty$ independent of $\left\{a_{m}\right\}$ such that

$$
\begin{align*}
c_{p}\left(\sum_{m=1}^{\infty}\left|a_{m}\right|^{2}\right)^{p / 2} & \leq E\left(\left|\sum_{m=1}^{\infty} a_{m} \gamma_{m}(\omega)\right|^{p}\right) \\
& \leq C_{p}\left(\sum_{m=1}^{\infty}\left|a_{m}\right|^{2}\right)^{p / 2} \tag{1.12}
\end{align*}
$$

b) If $\left\{a_{m, m^{\prime}}\right\}$ is a (double) sequence of real numbers, then, $\forall 1<p<$ $\infty, \exists o<c_{p}<C_{p}<\infty$ independent of $\left\{a_{m, m^{\prime}}\right\}$ such that

$$
\begin{align*}
c_{p}\left(\sum_{m, m^{\prime}}^{\infty}\left|a_{m, m^{\prime}}\right|^{2}\right)^{p / 2} & \leq E\left[\left\{\sum_{m^{\prime}=1}^{\infty}\left(\sum_{m^{\prime}=1}^{\infty} a_{m^{\prime}, m} \gamma_{m}(\omega)\right)^{2}\right\}^{p / 2}\right] \\
& \leq C_{p}\left(\sum_{m, m=1}^{\infty}\left|a_{m, m^{\prime}}^{2}\right|\right)^{p / 2} \tag{1.13}
\end{align*}
$$

38 c) Let $\left(\left(a_{m m^{\prime}}\right)\right) \geq o$ i.e., for any finite $m_{1}<m_{2}<\cdots<m_{n}$, the matrix $\left(\left(a_{m_{i} m_{j}}\right)\right)_{1 \leq i, j \leq n}$ is positive definite. Then, $\forall 1<p<\infty, \exists o<C_{p}<$ $c_{p}<\infty$ independence of $\left(a_{m m^{\prime}}\right)$ such that

$$
\begin{align*}
c_{p}\left(\sum_{i} a_{i i}\right)^{p / 2} & \leq E\left[\left(\sum_{i, j} a_{i j} \gamma_{i}(\omega) \gamma_{j}(\omega)\right)^{p / 2}\right] \\
& \leq C_{p}\left(\sum_{i} a_{i i}\right)^{p / 2} \tag{1.14}
\end{align*}
$$

Step 3. (Extension of L-P inequalities to sequence of functionals).
Let $F_{n} \in \mathcal{P}, n=1,2, \ldots$ with $J_{o} F_{n}=0$. Then

$$
\left\|\sqrt{ }\left(\sum_{n=1}^{\infty}\left(F_{n}\right)^{2}\right)\right\|_{p} \leq A_{p}^{\prime}\left\|\sqrt{ }\left(\sum_{n=1}^{\infty} G_{F_{n}}^{2}\right)\right\|_{p}, \forall 1<p<\infty .
$$

Proof. Let $\left\{\gamma_{i}(\omega)\right\}$ be a coin tossing sequence on a probability space (Ω, F, P).

Let $\chi(\omega, w)=\sum_{i} \gamma(\omega) F_{i}(w), \omega \in \Omega_{1}, w \epsilon W$.
We first consider the case when $F_{n} \equiv 0, \forall n \geq N$. (Hence the above sum is finite). Then the general case can be obtained by a limiting argument. By Kchinchine's inequality, \exists constants c_{p}, C_{p} independent of w such that

$$
\begin{aligned}
c_{p}\left(\sum_{i} F_{i}(W)^{2}\right)^{p / 2} & \leq E|X(\omega, w)|^{p} \\
& \leq C_{p}\left(\sum_{i} F_{i}(W)^{2}\right)^{p / 2} \forall=w \epsilon W
\end{aligned}
$$

Integrating w.r.t. μ, we get

$$
\begin{align*}
c_{p}\left\|\left(\sum_{i} F_{i}^{2}\right)^{1 / 2}\right\|_{p}^{p} & \leq E\left\{\|X(\omega, W)\|_{p}^{p}\right\} \tag{1.15}\\
& \leq C_{p}\left\|\left(\sum_{i} F_{i}^{2}\right)^{1 / 2}\right\|_{p}^{p}
\end{align*}
$$

But by step 1 we have

$$
\begin{equation*}
\|\chi(\omega, .)\|_{p} \leq A_{p}\left\|G_{X}(\omega, .)\right\|_{p} \forall \omega \epsilon \Omega \tag{1.16}
\end{equation*}
$$

Now

$$
\begin{aligned}
\left(G_{\rho(\omega, .)}\right)^{2} & =\left[\int_{o}^{\infty} t\left[\frac{d}{d t} Q_{t}\left(\sum_{i} \gamma_{i}(\omega) F_{i}(.)\right)\right]^{2} d t\right] \\
& =\sum_{i, j} \gamma_{i}(\omega) \gamma_{j}(\omega) a_{i j}
\end{aligned}
$$

where

$$
a_{i j}=\int_{o}^{\infty} t\left(\frac{d}{d t} Q_{t} F_{i}\right)\left(\frac{d}{d t} Q_{t} F_{j}\right) d t
$$

Also

$$
\begin{aligned}
\sum_{i} a_{i j} & =\sum_{i} \int_{o}^{t} t\left(\frac{d}{d t} Q_{t} F_{i}\right)^{2} d t \\
& =\sum_{i} G_{F_{i}}^{2}
\end{aligned}
$$

Then Kchinchine's inequality (c) implies

$$
\begin{aligned}
c_{p}\left(\sum_{i} G_{F_{i}}(W)^{2}\right)^{p / 2} & \leq E\left|G_{X(., w)}\right|^{p} \\
& \leq C_{p}\left(\sum_{i} G_{F_{i}}(W)^{2}\right)^{p / 2}
\end{aligned}
$$

where $o<c_{p}<C_{p}<\infty$.
Integrating over μ, we get

$$
\begin{equation*}
c_{p}\left\|\sqrt{ }\left(\sum_{i} G_{F_{i}}^{2}\right)\right\|_{p}^{p} \leq E\left\|G_{\chi(.,)}\right\|_{p}^{p} \leq C_{p}\left\|\sqrt{ }\left(\sum_{i} G_{F_{i}}^{2}\right)\right\|_{p}^{p} \tag{1.17}
\end{equation*}
$$

(1.15), 1.16) and (1.17) together prove step 3

Step 4 (Commutation relations involving D). Let $\left\{\ell_{i}\right\}_{i=1}^{\infty} \subset{ }_{W}^{W} \subset H,\left\{\ell_{i}\right\}$ an $O N B$ in H. Let $D_{i} F=<D F, \ell_{i}>$, for $F \epsilon \mathcal{P}$. Then $D_{i} F \epsilon \mathcal{P}, \forall i$. Further,

$$
<D F, D F>_{H}=\sum_{i}\left(D_{i} F\right)^{2}=|D F|_{H S}^{2}
$$

In fact,

$$
\left|D^{k} F\right|_{H S}^{2}=\sum_{i_{1}, \ldots, i_{k}}\left(D_{i_{1}}\left(D_{i_{2}}\left(\cdots \cdots\left(D_{i_{k}}(F)\right) \cdots\right)\right)^{2}\right.
$$

Let

$$
T_{\phi}=\sum_{n=o}^{\infty} \phi(n) J_{n}
$$

$$
T_{\phi+}=\sum_{n=o}^{\infty} \phi(n+1) J_{n}
$$

Fact. $\forall i=1,2, \ldots, D_{i} T_{\phi}=T_{\phi}+D_{i}$.
Proof. We have seen that the set $\left\{\sqrt{a} H_{a}(w), a \in A\right\}$ is an $O N B$ in L_{2}. Therefore it suffices to prove

$$
D_{i} T_{\phi} H_{a}=T_{\phi}+D_{i} H_{a}, \forall a \in \Lambda .
$$

If $a=\left(a_{1}, a_{2}, \ldots ..\right)$ with $a_{i}>o$, then let $a(i)=\left(a_{1}, a_{2}, \ldots, a_{i-1}, a_{i}-\right.$ $\left.1, a_{i+1}, \ldots\right)$. From $H_{a}(w)=\prod_{i} H_{a_{i}}\left(\ell_{i}(w)\right)$, it can be easily seen that

$$
D_{i} H_{a}= \begin{cases}H_{a(i)} & \text { if } a_{i}>o \\ 0 & \text { if } a_{i}=o\end{cases}
$$

Note that, if $|a|=n$,

$$
T_{\phi} H_{a}=\phi(n) H_{a}\left(\therefore H_{a} \epsilon C_{n}\right)
$$

implies

$$
D_{i} T_{\phi} H_{a}=\phi(n) D_{i} H_{a} .
$$

If $a_{i}>o$, then $D_{i} H_{a}=H_{a(i)}$ where $|a(i)|=n-1$. Therefore

$$
\begin{aligned}
D_{i} T_{\phi} H_{a} & =\phi(n) H_{a(i)} . \\
& =T_{\phi+} H_{a(i)}=T_{\phi}+D_{i} H_{a} .
\end{aligned}
$$

If $a_{i}=0$, this relation still holds since both sides are zero.
Corollary. $T_{t} D_{i} F=e^{t} D_{i} T_{t} F, \forall i$ and hence

$$
Q_{i} D_{i} F=D_{i} \int_{0}^{\infty} \mu_{t}(d s) e^{s} T_{s} F, \forall i, \forall F \epsilon \mathcal{P}
$$

Step 5. Now we use the previous steps to get the final conclusion.

In the following $c_{p}, C_{p}, a_{p}, A_{p}$ are all positive constants which may change in some cases, but which are all independent of the function F.
$1<p<\infty$ is given and fixed. First we shall prove

$$
\begin{equation*}
c_{p}\left\|<D F, D F>_{H}^{1 / 2}\right\|_{p} \leq\|C F\|_{p} \leq C_{p}\left\|<D F, D F>_{H}^{1 / 2}\right\|_{p} \tag{1.18}
\end{equation*}
$$

where

$$
C=\lim _{t \rightarrow 0} \frac{Q_{t}-I}{t} \text { i.e., } \quad C f=\sum_{n}(-\sqrt{n}) J_{n} F .
$$

From corollary of step 4, we have

$$
\begin{gathered}
T_{t} D_{i} F=e^{t} D_{i} T_{t} F, \forall F \epsilon \mathcal{P} . \\
T_{t}\left\{\left(\sum_{i} f_{i}^{2}\right)^{1 / 2}\right\} \geq\left[\sum_{i}\left(T_{t} f_{i}\right)^{1 / 2}\right], \forall f_{i} \in \mathcal{P}
\end{gathered}
$$

implies

$$
\begin{aligned}
& T_{t}\left\{\left(\sum_{i}\left(D_{i} F\right)^{2}\right)^{1 / 2}\right\} \geq\left[\sum_{i}\left(T_{t} D_{i} F\right)^{2}\right]^{1 / 2} \\
& \geq e^{t}\left[\sum_{i}\left(D_{t} T_{i} F\right)^{2}\right]^{1 / 2} \\
& \text { i.e } \quad T_{t} \sqrt{ }\left(<D F, D F>_{H}\right) \geq e^{t} \sqrt{ }\left(<D T_{t} F, D T_{t} F>_{H}\right) \text {. }
\end{aligned}
$$

Changing F by $T_{t} F$,

$$
T_{t}\left(\sqrt{ }\left(<D T_{t} F, D T_{t} F>_{H}\right)\right) \geq e^{t} \sqrt{ }\left(<D T_{2 t} F, D T_{2 t} F>_{H}\right)
$$

Now

$$
\begin{aligned}
\psi_{F} & =\left[\int_{0}^{\infty}\left\{T_{t}\left(\sqrt{ }\left(<D T_{t} F, D T_{t} F>_{H}\right)\right)\right\}^{2} d t\right]^{1 / 2} \\
& \geq\left\{\int_{0}^{\infty} e^{2 t}<D T_{2 t} F, D T_{2 t} F>_{H} d t\right\}^{1 / 2}
\end{aligned}
$$

$$
=\text { const. }\left\{\int_{o}^{\infty} e^{t}<D T_{t} F, D T_{t} F>_{H} d t\right\}^{1 / 2}
$$

Therefore, by the Littlewood-Paley inequality (Step 11),

$$
\begin{equation*}
\|F\|_{p} \geq C_{p}\left\|\left\{\int_{o}^{\infty} e^{t}<D T_{t} F, D T_{t} F>_{H} d t\right\}^{1 / 2}\right\|_{p} \tag{1.19}
\end{equation*}
$$

Substituting $T_{u} F$ for F in (1.19,

$$
e^{u / 2}\left\|T_{u} F\right\|_{p} \geq C_{p}\left\|\left\{\int_{o}^{\infty} e^{s}<D T_{s} F, D T_{s} F>_{H} d s\right\}^{1 / 2}\right\|_{p}
$$

Therefore

$$
\begin{aligned}
& \int_{o}^{\infty} e^{u}\left\|T_{u} F\right\|_{p} d u \geq C_{p} \int_{0}^{\infty} e^{u / 2}\left\|\left\{\int_{u}^{\infty} e^{s}<D T_{s} F, D T_{s} F>_{H} d s\right\}^{1 / 2}\right\|_{p} d u \\
& \geq C_{p}\left\|\int_{0}^{\infty} e^{u / 2}\left\{\int_{u}^{\infty} e^{s}<D T_{s} F, D T_{s} F>_{H} d s\right\}^{1 / 2} d u\right\|_{p} \\
& \geq C_{p}\left\|\left\{\int_{o}^{\infty} d s\left[\int_{0}^{\infty} e^{u / 2} T_{|u \leq s|} d u \times e^{s / 2} \sqrt{ }\left(<D T_{s} F, D T_{s} F>_{H}\right)\right]^{2}\right\}^{1 / 2}\right\|_{p} \\
&=C_{p}\left\|\left\{\int_{o}^{\infty}\left[2\left(e^{s}-e^{s / 2}\right) \sqrt{ }\left(<D T_{s} F, D T_{s} F>_{H}\right)\right]^{2} d s\right\}^{1 / 2}\right\|_{p} \\
& \geq 2 C_{p}\left\|\left[\int_{0}^{\infty} e^{2 s}<D T_{s} F, D T_{s} F>_{H} d s\right]^{1 / 2}\right\|_{p} \\
&-2 C_{p}\left\|\left[\int_{o}^{\infty} e^{s}<D T_{s} F, D T_{s} F>_{H} d s\right]^{1 / 2}\right\|_{p}
\end{aligned}
$$

Hence by (1.19,

$$
\left\|\left[\int_{o}^{\infty} e^{2 s}<D T_{s} F, D T_{s} F>_{H} d s\right]^{1 / 2}\right\|_{p} \leq d_{p}\|F\|_{p}+A_{p} \int_{o}^{\infty} e^{u}\left\|T_{u} F\right\|_{p} d u
$$

By step 2 we know that if $\left\|\left(J_{o}+J_{1}\right) F\right\|=0$, then

$$
\left\|T_{u} F\right\|_{p} \leq C_{p} e^{-2 u}\|F\|_{p}
$$

Therefore, if $\left(J_{o}+J_{1}\right) F=0$,

$$
\begin{equation*}
\|F\|_{p} \geq C_{p}\left\|\left\{\int_{o}^{\infty} e^{2 s}<D T_{s} F, D T_{s} F>_{H} d s\right\}^{1 / 2}\right\|_{p} \tag{1.20}
\end{equation*}
$$

Suppose $F \in \mathcal{P}$ satisfies $\left(J_{o}+J_{1}\right) F=0$. By step 3,

$$
\begin{align*}
\| & <D F, D F>_{H}^{1 / 2}\left\|_{p}=\right\|\left\{\sum_{i=1}^{\infty}\left(D_{i} F\right)^{2}\right\}^{1 / 2} \|_{p} \\
& \leq C_{p}\left\|\left\{\sum_{i=1}^{\infty}\left(G_{D_{i}} F\right)^{2}\right\}^{1 / 2}\right\|_{p} \\
& =C_{p}\left\|\left\{\sum_{i=1}^{\infty} \int_{o}^{\infty} t\left(\frac{d}{d t} Q_{t} D_{i} F\right)^{2} d t\right\}^{1 / 2}\right\|_{p} . \tag{*}
\end{align*}
$$

By step 4
$Q_{t} D_{i} F=D_{i} \tilde{Q}_{t} F$ where $\tilde{Q}_{t} F=\sum_{n} e^{-\sqrt{ }(n-1) t} J_{n}$ implying

$$
\begin{gathered}
\frac{d}{d t} Q_{t} D_{i} F=D_{i}\left(\frac{d}{d t} \tilde{Q}_{t}\right)=D_{i} \tilde{Q}_{t} \mathrm{CRF} \\
R F=\sum_{n=1}^{\infty} \sqrt{ }\left(1-\frac{1}{n}\right) J_{n} F
\end{gathered}
$$

where

Hence
$(*) \quad=C_{p}\left\|\left\{\int_{o}^{\infty} t<D \tilde{Q}_{t} C R F, D \tilde{Q}_{t} C R F>_{H} d t\right\}^{1 / 2}\right\|_{p}$
since

$$
\begin{aligned}
\tilde{Q}_{t} & =\int_{o}^{\infty} \mu_{t}(d s) e^{s} T_{s} \\
& <D \tilde{Q}_{t} C R F, D \tilde{Q}_{t} C R F>_{H}^{1 / 2} \\
& \leq \int_{o}^{\infty} \mu_{t}(d s) e^{s}<D T_{s} C R F, D T_{s} C R F>_{H}^{1 / 2} d s \\
& \leq\left[\int_{o}^{\infty} \mu_{t}(d s) e^{2 s}<D T_{s} C R F, D T_{s} C R F>_{H} d s\right]^{1 / 2}
\end{aligned}
$$

Since

$$
\int_{o}^{\infty} t \mu_{t}(d s) d t=d s\left(\text { follows from } \int_{o}^{\infty} \int_{o}^{\infty} t e^{-\lambda s} \mu_{t}(d s) d t=\frac{1}{\lambda}\right)
$$

we have

$$
\begin{aligned}
&(* *) \leq C_{p}\left\|\left\{\int_{o}^{\infty} e^{2 s}<D T_{s} C R F, D T_{s} C R F>_{H} d s\right\}^{1 / 2}\right\|_{p} \\
& \leq C_{p}\|C R F\|_{p} \leq C_{p}\|C F\|_{p} \\
& \quad\left(\text { by (1.20) and since } R C=C R \text { and }\|R\|_{p}<\infty .\right)
\end{aligned}
$$

Hence we have obtained

$$
\left\|<D F, D F>_{H}\right\|_{p} \leq C_{p}\|C F\|_{p} \text { if }\left(J_{o}+J_{1}\right) F=0 .
$$

For $F \epsilon C_{o} \oplus C_{1}$, it is easy to verify directly that

$$
\left\|<D F, D F>_{H}^{1 / 2}\right\|_{p} \leq C_{p}\|C F\|_{p}
$$

Hence we have proved

$$
\begin{equation*}
\left\|<D F, D F>_{H}^{1 / 2}\right\|_{p} \leq C_{p}\|C F\|_{p}, \forall F \epsilon \mathcal{P} \tag{1.21}
\end{equation*}
$$

The converse inequality of 1.21 can be proved by the following duality arguments: we have for $F, G \epsilon \mathcal{P}$,

$$
\begin{aligned}
\left|\int_{W} C F . G d \mu\right| & =\left|\int_{W} C F\left(I-J_{o}\right) G d \mu\right|\left(\because \int_{W} C F d \mu=0\right) \\
& =\left|\int_{W} C F . C \tilde{G} d \mu\right|\left[\tilde{G}=C^{-1}\left(I-J_{o}\right) G\right] \\
& =\left|\int C^{2} F . \tilde{G} d \mu\right|=\left|\int<L F, \tilde{G}>d \mu\right| \\
& =\left|\int<D F, \tilde{G}>_{H} d \mu\right|\left[\because<D F, \tilde{G}>_{H}\right. \\
& \left.=\frac{1}{2}\{L(F \tilde{G})-L F . \tilde{G}-F . L \tilde{G}\} \text { and } \int_{W} L F=0 \forall F \epsilon \mathcal{P}\right] \\
& \leq \int|D F|_{H}|D \tilde{G}|_{H} d \mu \\
& \leq\left\||D F|_{H}\right\|_{p}\left\||D \tilde{G}|_{H}\right\|_{q}\left(\frac{1}{p}+\frac{1}{q}=1\right) \\
& \leq C_{q}\left\||D F|_{H}\right\|_{p}\|\mid C \tilde{G}\|_{q} \text { by }(1.21) \\
& =C_{q}\left\||D F|_{H}\right\|_{p}\left\|\left(I-J_{o}\right) G\right\|_{q} \\
& \leq a_{q}\left\||D F|_{H}\right\|_{p}\|G\|_{q} .
\end{aligned}
$$

Hence taking the supremum w.r.t. $\|G\|_{q} \leq 1$, we have $\|C F\|_{p} \leq$ $a_{p}\left\||D F|_{H}\right\|_{p}$. The proof of (1.18) is complete.

Now we shall prove that

$$
\begin{gather*}
\left\|\left|D^{k} F\right|_{H S}\right\|_{p} \leq C_{p}\left\|C^{k} F\right\|_{p} \forall F \epsilon \mathcal{P} \tag{1.22}\\
\left\|\left|D^{k} F\right|_{H S}\right\|_{p} \leq C_{p}^{\prime}\left\|C^{k} F\right\|_{p} \forall F \epsilon \mathcal{P} \text { if }\left(J_{o}+J_{1}+\cdots J_{k-1}\right) F=0 \tag{1.23}
\end{gather*}
$$

Then, since

$$
C_{p}\left\|(I-C)^{s} F\right\|_{p} \leq C_{p}^{\prime}\left\|(I-L)^{s / 2} F\right\|_{p} \leq C_{p}^{\prime \prime}\left\|(I-C)^{s} F\right\|_{p}
$$

and

$$
a_{p}\left\|C^{k} F\right\|_{p} \leq\left\|(I-C)^{k} F\right\|_{p}+\|F\|_{p},
$$

Theorem 1.8 follows at once.
Proof of (1.22): (By induction). Suppose (1.22) holds for 1, 2, ...k. Let 46 $\left\{\gamma_{m}(w)\right\}_{m \in N^{k}}$ be coin tossing sequence indexed by $m=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in \mathbb{N}^{k}$ on some probability space (Ω, F, P). Let $D_{m}=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}$. Then

$$
\left|D^{k} F\right|_{H S}^{2}=\sum_{m \in \mathbb{N}^{k}}\left\{D_{m} F\right\}^{2}
$$

Set

$$
X(\omega)=\sum_{m \in \mathbb{N}^{k}} \gamma_{m}(\omega) D_{m} F
$$

Then
and

$$
\begin{array}{r}
D_{i} \chi(\omega)=\sum_{m \in \mathbb{N}^{k}} \gamma_{m}(\omega) D_{i} D_{m} F \\
C \chi(\omega)=\sum_{m \in \mathbb{N}^{k}} \gamma_{m}(\omega) C D_{m} F .
\end{array}
$$

we know that, by (i),

$$
\left\|\sqrt{ }\left(\sum_{i=1}^{\infty}\left|D_{i} X(\omega)\right|^{2}\right)\right\|_{p} \leq C_{p}\|C X(\omega)\|_{p} \forall \omega .
$$

Therefore

$$
\begin{equation*}
E\left\{\left\|\sqrt{ }\left(\sum_{i=1}^{\infty}\left|D_{i} X(\omega)\right|^{2}\right)\right\|_{p}^{p}\right\} \leq C_{p} E\|C X(\omega)\|_{p}^{p} \tag{1.24}
\end{equation*}
$$

Therefore, by step 3

$$
\begin{align*}
E\left\{\left\|\sum_{i}\left(D_{i} X(\omega)\right)^{2}\right\|_{p}^{p}\right\} & \geq a_{p}\left\|\sqrt{ }\left(\sum_{i, m}\left(D_{i} D_{m} F\right)^{2}\right)\right\|_{p}^{p} \tag{1.25}\\
& =a_{p}\left\|\left|D^{k+1} F\right|_{H S}\right\|_{p}^{p}
\end{align*}
$$

On the other hand, by step 3

$$
\begin{aligned}
& E\|C X(\omega)\|_{p}^{p}=E\left\|\sum_{m \in \mathbb{N}^{k}} \gamma_{m}(\omega)\left(C D_{m} F\right)\right\|_{p}^{p} \\
& \leq C_{p}\left\|\left\{\sum_{m \in \mathbb{N}^{k}}\left(C D_{m} F\right)^{2}\right\}^{1 / 2}\right\|_{p}^{p} \\
&=C_{p}\left\|\left\{\sum_{m \in \mathbb{N}^{k}}\left(D_{m} C R_{k} F\right)^{2}\right\}^{1 / 2}\right\|_{p}^{p} \\
& \quad(\text { by step4 where }) R_{k} F=\sum_{n=k}^{\infty} \sqrt{ }\left(1-\frac{k}{n}\right) J_{n} F \\
&=C_{p}\left\|\left|D^{k} C R_{k} F\right|_{H S}\right\|_{p}^{p} \\
& \leq A_{p}\left\|C^{k+1} R_{k} F\right\|_{p}^{p}(\text { by induction hypothesis }) \\
& \leq A_{p}^{\prime}\left\|C^{k+1} F\right\|_{p}^{p}\left(\therefore\left\|R_{k}\right\|_{p} \leq a_{p} \text { by stepZ } .\right.
\end{aligned}
$$

47
This together with (1.24) and (1.25) proves that

$$
\left\|\left|D^{k+1} F\right|_{H S}\right\|_{p} \leq C_{p}\left\|C^{k+1} F\right\|_{p}
$$

i.e., (1.22) holds for $k+1$ and the proof of (1.22) is complete. (1.23) can be proved in a similar manner.

Corollary to Theorem 1.8. Let $F \epsilon D_{p, k}, 1<p<\infty, k \epsilon \mathbb{Z}^{+}$; then $D^{\ell} F \epsilon L_{2}\left(W \rightarrow H^{\otimes \ell}\right)$ are defined for $\ell=0,1, \ldots k$, where

$$
H^{\otimes \ell}=\underbrace{H \otimes \cdots \otimes H}_{\ell \text {-times }}
$$

is the Hilbert space of all continuous ℓ-multilinear forms on $\underbrace{H \otimes \cdots \otimes H}_{\ell \text {-times }}$ with Hilbert-Schmidt norm. Note that $H^{\otimes o}=\mathbb{R}$ and $H^{\otimes 1}=H$.

48 Proof. For $F \epsilon D_{p, k}, \exists F_{n} \epsilon \mathcal{P} \ni\left\|F_{n}-F\right\|_{p, k} \rightarrow 0$ which implies $\left\{F_{n}\right\}$ is Cauchy in $\mathbb{D}_{p, k}$. Hence using Meyer's theorem, we get

$$
\left\|\left|D^{\ell} F_{n}-D^{\ell} F_{m}\right|_{H S}\right\| \leq C\left\|F_{n}-F_{m}\right\|_{p, k} \rightarrow 0
$$

which gives the result.

Recall that if $F \epsilon \mathcal{P}_{W}^{*}$ then
$F(w)=\sum_{i=1}^{n} F_{i}(w) \ell_{i}$ for some $n, \ell_{i} \epsilon W^{*}$ and $F_{i} \epsilon \mathcal{P}$.
For
define

$$
F(W) \sum_{i=1}^{n} F_{i}(w) \ell_{i} \epsilon \mathcal{P}_{w}^{*},
$$

$$
L F(w)=\sum_{i=1}^{n} L F_{i}(w) \ell_{i}
$$

and

$$
(1-L)^{s / 2} F(w)=\sum_{i=1}^{n}(1-L)^{s / 2} F_{i}(w) \ell_{i} .
$$

For $1<p<\infty$ and $-\infty, s<\infty$, define the norms $\|.\|_{p, s}^{H}$ on \mathcal{P}_{W}^{*} by

$$
\|F\|_{p, s}^{H}=\left\|\left|(I-L)^{s / 2} F_{i}(w)\right|_{H}\right\|_{p} .
$$

Let $\mathbb{D}^{H} p, s$ denote completion of \mathcal{P}_{W}^{*} w.r.t. the norm $\|.\|_{p, s}^{H}$. It is clear that $\mathbb{D}_{p, s}^{H} \subset L_{p}(W \rightarrow H)$ for $s \geq 0$ and in fact $\mathbb{D}_{p, o}^{H}=L_{p}(W \rightarrow H)$.

Proposition 1.9. The operator $D: \mathcal{P} \rightarrow \mathcal{P}_{W}^{*}$ can be extended as a continuous operator from $\mathbb{D}_{p, s+1}$ to $\mathbb{D}_{p, s}^{H}$ for every $1<p<\infty,-\infty<s<$ ∞.

Proof. Let $\left\{\ell_{i}\right\} \subset \stackrel{*}{W}$ be a $O N B$ in H and $F \epsilon \mathcal{P}$. Now

$$
\left|(I-L)^{s / 2} D F\right|_{H}=\left(\sum_{i=1}^{\infty}\left[(I-L)^{s / 2} D_{i} F\right]^{2}\right)^{1 / 2}
$$

Using step 4 above, we get

$$
\begin{aligned}
\left|(I-L)^{s / 2} D F\right|_{H} & =\left(\sum_{i=1}^{\infty}\left\{D_{i} R(I-L)^{s / 2} F\right\}^{2}\right)^{1 / 2} \text { where } R=\sum_{i=1}^{\infty}\left(\frac{n}{n+1}\right)^{s / 2} J_{n} \\
& =\left|D R(I-L)^{s / 2} F\right|_{H} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left\|\left|(I-L)^{s / 2} D F\right|_{H}\right\|_{p} & =\| \mid D R I-L)\left.^{s / 2} F\right|_{H} \|_{p} \\
& \leq C_{p}\left\|R(I-L)^{(s+1) / 2} F\right\|_{p}(\text { by Meyer's theorem }) \\
& \leq C_{p}^{\prime}\left\|(I-L)^{(s+1) / 2} F\right\|_{p} \quad\left(\text { by } L_{p} \text { multiplier theorem }\right) \\
& =C_{p}^{\prime}\|F\|_{p, s+1}
\end{aligned}
$$

i.e.,

$$
\|D F\|_{p, s}^{H} \leq C_{p}^{\prime}\|F\|_{p, s+1}
$$

from which the result follows by a limiting argument.
From the above proposition, it follows that we can define the dual map D^{*} of D, as a continuous operator

$$
\begin{aligned}
& D^{*}:\left(\mathbb{D}_{p, s}^{H}\right)^{\prime} \rightarrow\left(\mathbb{D}_{p, s+1}\right)^{\prime} \\
& \text { i.e., } \quad D^{*}: \mathbb{D}_{p, s+1}^{H} \rightarrow \mathbb{D}_{p, s}, 1<p<\infty,-\infty<s<\infty .
\end{aligned}
$$

And we know that for $F \epsilon \mathcal{P}, D^{*} F=-\delta F$. Hence we have the following corollary.

Corollary. $\delta: \mathcal{P}_{*}^{*} \rightarrow \mathcal{P}$ can be extended as a continuous operator from $\mathbb{D}_{P, s+1}^{H} \rightarrow \mathbb{D}_{P, s}$ for every $1<p<\infty,-\infty<s<\infty$.

Proposition 1.10. Let $F \in \mathbb{D}_{P, k}, G \in \mathbb{D}_{q, k}\left(\mathbb{D}_{q, k}^{H}\right)$ for $k \in Z^{+}, 1<p, q<\infty$ and let $1<r<\infty$, such that $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Then $F G \in \mathbb{D}_{r, k}\left(\operatorname{resp} . \mathbb{D}_{r, k}^{H}\right)$ and $\exists C_{p, q, k}>0$ such that

$$
\begin{gathered}
\|F G\|_{r, k} \leq C_{p, q, k}\|F\|_{p, k}\|G\|_{q, k} \\
\left(\operatorname{resp} .\|F G\|_{r, k}^{H} \leq C_{p, q, k}\|F\|_{p, k}\|G\|_{q, k}^{H}\right)
\end{gathered}
$$

Proof. Let $F, G \epsilon \mathcal{P}$; then we have

$$
D(F G)=F \cdot D G+G . D F
$$

Therefore

$$
|D[F G]|_{H} \leq|F||D G|_{H}+|G||D F|_{H}
$$

Similarly
$D^{2} F G=F D^{2} G+2 D F \otimes D G+G \cdot D^{2} F$
and $\quad\left|D^{2} F G\right|_{H S} \leq|F|\left|D^{2} G\right|_{H S}+2|D F|_{H}|D G|_{H}+\left|G \| D^{2} F\right|_{H S}$.
In this way, we obtain for every $k=1,2, \ldots$,

$$
\sum_{\ell=o}^{k}\left|D^{l}(F G)\right|_{H S} \leq C_{k}\left(\sum_{\ell=o}^{k}\left|D^{l} F\right|_{H S}\right)\left(\sum_{\ell=o}^{k}\left|D^{\ell} G\right|_{H S}\right)
$$

Applying Hölder's inequality, we get

$$
\left\|\sum_{\ell=o}^{k}\left|D^{\ell}(F G)\right|_{H S}\right\|_{r} \leq C_{k}\left\|\sum_{\ell=o}^{k}\left|D^{\ell} F\right|_{H S}\right\|_{p} .\left\|\sum_{\ell=o}^{k}\left|D^{\ell} G\right|_{H S}\right\|_{q} .
$$

Then the result follows by using Meyer's theorem. And the case $G \epsilon \mathbb{D}_{q, k}^{H} \quad \mathbf{5 1}$ follows by similar arguments.

Corollary. (i) \mathbb{D}_{∞} is an algebra and the map

$$
\mathbb{D}_{\infty} \times \mathbb{D}_{\infty} \exists(F, G) \rightarrow F G \epsilon \mathbb{D}_{\infty}
$$

is continuous.
(ii) If $F \in \mathbb{D}_{\infty}, G \in \mathbb{D}_{\infty}^{H}=\bigcap_{p, s} \mathbb{D}_{p, s}^{H}$, then $F G \in \mathbb{D}_{\infty}^{H}$ and the map $(F, G) \rightarrow$ $F G$ is continuous.

Hence we see that \mathbb{D}_{∞} is a nice space in the sense that

$$
\begin{aligned}
L: \mathbb{D}_{\infty} & \rightarrow \mathbb{D}_{\infty} \text { is continuous } \\
D: \mathbb{D}_{\infty} & \rightarrow \mathbb{D}_{\infty}^{H} \text { is continuous } \\
\delta: \mathbb{D}_{\infty}^{H} & \rightarrow \mathbb{D}_{\infty} \text { is continuous } .
\end{aligned}
$$

Proposition 1.11. (i) Suppose $f \epsilon C^{\infty}\left(\mathbb{R}^{n}\right)$, tempered and F_{1}, F_{2}, $\ldots, F_{n} \in \mathbb{D}_{\infty}$; then $F=f\left(F_{1}, F_{2}, \ldots, F_{n}\right) \in \mathbb{D}_{\infty}$ and
(a) $D F=\sum_{i=1}^{n} \partial_{i} f\left(F_{1}, F_{2}, \ldots, F_{n}\right) \cdot D F_{i}$
(b) $L F=\sum_{i, j=1}^{n} \partial_{i} \partial_{j} f\left(F_{1}, F_{2}, \ldots, F_{n}\right)<D F_{i}, D F_{j}>_{H}$

$$
+\sum_{i=1}^{n} \partial_{i} f\left(F_{1}, F_{2}, \ldots, F_{n}\right) \cdot L\left(F_{i}\right) .
$$

(ii) For $F, G \epsilon \mathbb{D}_{\infty}$,

$$
\begin{aligned}
<D F, D G>_{H}= & \frac{1}{2}\{L(F G)-L F . G-F . L G\} \\
\text { and hence } & <D F, D G>_{H} \epsilon \mathbb{D}_{\infty} .
\end{aligned}
$$

(iii) If $F, G, J \in \mathbb{D}_{\infty}$, then

$$
\begin{array}{rl}
<D<D F, D F>_{H}, D J>_{H}=<D^{2} & F, D G \otimes D J>_{H S} \\
& +<D^{2} G, D F \otimes D J>_{H S}
\end{array}
$$

(iv) If $F \in \mathbb{D}_{\infty}, G \in \mathbb{D}_{\infty}^{H}$, then

$$
\delta(F G)=<D F, G>_{H}+F . \delta G .
$$

In particular, if $F, G \epsilon \mathbb{D}_{\infty}$ then

$$
\delta(F . D G)=<D F, D G>_{H}+F . L G .
$$

These formulas are easily proved first for polynomials and then generalized as above by standard limiting arguments.

1.4 Composites of Wiener Functionals and Schwartz Distributions

For $F=\left(F^{1}, F^{2}, \ldots, F^{d}\right): W \rightarrow \mathbb{R}^{d}$, we state two conditions which we shall refer to frequently.

$$
\begin{equation*}
F^{i} \epsilon \mathbb{D}_{\infty}, i=1,2, \ldots d \tag{A.1}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\sigma^{i j}=<D F^{i}, D F^{j}>_{H} \in \mathbb{D}_{\infty}, \int(\operatorname{det} \sigma)^{-p}(w) d \mu(w)<\infty \forall 1<p<\infty \tag{A.2}
\end{equation*}
$$

We note that $\left(\left(\sigma_{i j}\right)\right) \geq 0$.
Lemma 1. Let $F: W \rightarrow \mathbb{R}^{d}$ satisfy (A.1) and (A.2). Then $\gamma=\sigma^{-1} \epsilon \mathbb{D}_{\infty}$ and

$$
D \gamma^{i j}=-\sum_{k, \ell=1}^{d} \gamma^{i k} \gamma^{j \ell} D \sigma^{k \ell}
$$

Proof. Let $\epsilon>0$. Let

$$
\sigma_{\epsilon}^{i j}(w)=\sigma^{i j}(w)+\epsilon \delta_{i j}>0 \quad \text { (i.e., positive definite). }
$$

Then it can be easily seen that if $\gamma_{\epsilon}=\sigma_{\epsilon}^{-1}$, then $\exists f \epsilon C^{\infty}\left(\mathbb{R}^{d^{2}}\right) \ni \mathbf{5 3}$ $\gamma_{\epsilon}^{i j}(w)=f\left(\sigma_{\epsilon}^{i j}(w)\right)$.

Then by proposition (1.11, since $\sigma_{\epsilon}^{i j} \epsilon \mathbb{D}_{\infty}, \gamma_{\epsilon}^{i j} \in \mathbb{D}_{\infty}$. Further, it follows from the dominated convergence theorem that $\gamma_{\epsilon}^{i j} \rightarrow \gamma^{i j}$ in $L_{p} \forall 1<$ $p<\infty$.

Next we show that $D^{k} \gamma^{i j} \epsilon L_{p}\left(W \rightarrow H^{\otimes k}\right) \forall 1<p<\infty$. Hence, by Meyer's theorem, $\gamma \in \mathbb{D}_{p, k} \forall 1<p<\infty$ and $\forall k \in Z^{+}$implying $\gamma \epsilon \mathbb{D}_{\infty}$. We have

$$
\sum_{j} \gamma_{\epsilon}^{i j} \sigma_{\epsilon}^{i k}=\delta^{i k}
$$

Therefore
implies

$$
\begin{array}{r}
\sum_{j} \gamma_{\epsilon}^{i j} D \sigma_{\epsilon}^{j k}+\sum_{j} \sigma_{\epsilon}^{j k} D \gamma_{\epsilon}^{i j}=0 \\
D \gamma_{\epsilon}^{i j}=-\sum_{k, l=1}^{d} \gamma_{\epsilon}^{i k} \gamma_{\epsilon}^{j l} D \sigma_{\epsilon}^{k l}
\end{array}
$$

Similarly, we get

$$
D^{k} \gamma_{\epsilon}^{i j}=-\sum \gamma_{\epsilon} \cdot \gamma_{\epsilon} \cdots \gamma_{\epsilon} D^{m_{1}} \sigma_{\epsilon} \otimes \cdots \otimes D^{m_{k}} \sigma_{\epsilon}
$$

where $m_{1}+\cdots+m_{k}=k$ and we have omitted superscripts in $\sigma_{\epsilon}^{i j}, \gamma_{\epsilon}^{k l}$ etc. for simplicity. Therefore, since
in

$$
\begin{gathered}
\gamma_{\epsilon}^{i j} \rightarrow \gamma^{i j} \text { in } L_{p}, \\
D^{k} \gamma_{\epsilon}^{i j} \rightarrow \sum \gamma \cdot \gamma \cdots \gamma D^{m_{1}} \sigma \otimes \ldots \otimes D^{m_{k}} \sigma
\end{gathered}
$$

implies

$$
D^{k} \gamma^{i j} \sum \gamma \cdot \gamma \cdots \gamma D^{m_{1}} \sigma \otimes \cdots \otimes D^{m_{k}} \sigma \epsilon L_{p}\left(W \rightarrow H^{\otimes k}\right) . \forall 1<p<\infty
$$

Lemma 2. Let $F: W \rightarrow \mathbb{R}^{d}$ satisfy (A.1) and (A.2).

1) Then, $\forall G \in \mathbb{D}_{\infty}$ and $\forall i=1,2, \ldots d . \exists l_{i}(G) \in \mathbb{D}_{\infty}$ which depends linearly on G and satisfies

$$
\begin{equation*}
\left.\int_{W}\left(\partial_{i} \phi_{o} F\right) \cdot G \mu(d w)=\int_{W} \phi_{o} F\right) \cdot l_{i}(G) d \mu, \tag{1.26}
\end{equation*}
$$

$\forall \epsilon S\left(\mathbb{R}^{d}\right)$. Furthermore, for any $1 \leq r<q<\infty$,

$$
\begin{equation*}
\sup _{\|G\|_{q, 1} \leq 1}\left\|l_{i}(G)\right\|_{r}<\infty \tag{1.27}
\end{equation*}
$$

Hence (1.26) and (1.27) hold for every $G \in \mathbb{D}_{q, 1}$.
2) Similarly, for any $G \in \mathbb{D}_{\infty}$, and $1 \leq i_{1}, i_{2}, \ldots i_{k} \leq d, k \in \mathbb{N}, \exists l_{i_{1} \ldots i_{k}}$ $(G) \in \mathbb{D}_{\infty}$ which depends linearly on $G \ni$

$$
\begin{equation*}
\int_{W}\left(\partial_{i_{1}} \ldots \partial_{i_{1}} \phi o F\right) \cdot G d \mu=\int_{W} \phi o F l_{i_{1}} \ldots i_{k}(G) d \mu, \forall \quad \phi \in S\left(\mathbb{R}^{d}\right) \tag{1.26}
\end{equation*}
$$

and for $1 \leq r<q<\infty$,

$$
\begin{equation*}
\sup _{\|G\|_{q, k} \leq 1}\left\|l_{i_{1} \ldots i_{k}}(G)\right\|_{r}<\infty \tag{1.27}
\end{equation*}
$$

Hence again (1.26)' and (1.27)' hold for every $G \in \mathbb{D}_{q, k}$.

Proof. Note that $\phi o F \in \mathbb{D}_{\infty}$ and

$$
D(\phi o F)=\sum_{i=1}^{d} \partial_{i} \phi o F \cdot D F^{i}
$$

Therefore

$$
\begin{gathered}
<D(\phi o F), D F^{j}>_{H}=\sum_{i=1}^{d} \partial_{i} \phi o F \cdot \sigma^{i j} \\
\partial_{i} \phi o F=\sum_{j=1}^{d}<D \phi o F, D F^{j}>_{H} \gamma^{i j} .
\end{gathered}
$$

and

Hence

$$
\begin{aligned}
\int_{W} \partial_{i} \phi o F . G d \mu & =\sum_{j=1}^{d} \int_{W}<D \phi o F, \gamma^{i j} G D F^{j}>_{H} d \mu \\
& =-\sum_{j=1}^{d} \int_{W}(\phi o F) \delta\left(\gamma^{i j} G D F^{j}\right) d \mu
\end{aligned}
$$

Let

$$
\left.\begin{array}{rl}
\ell_{i}(G) & =-\sum_{j=1}^{d} \delta\left(\gamma^{i j} G D F^{j}\right) \\
& =-\sum_{j=1}^{d}\left[<D\left(\gamma^{i j} G\right), D F^{j}>_{H}+\gamma^{i j} G \cdot L F^{j}\right] \\
& =-\sum_{j=1}^{d}\left[\left\{-\sum_{k, \ell=1}^{d} G \gamma^{i k} \gamma^{j \ell}<D \sigma^{k \ell}, D F^{j}>+\gamma^{i j}<D G, D F^{j}>_{H}\right\}\right.
\end{array}\right\}
$$

Therefore

$$
\begin{aligned}
\left|\ell_{i}(G)\right| \leq \sum_{j=1}^{d} & {\left[\left\{\sum_{k, \ell=1}^{d}\left|\gamma^{i k} \gamma^{j \ell}\right|\left|D \sigma^{k \ell}\right|_{H} \cdot|G|\left|D F^{j}\right|_{H}\right\}\right.} \\
& +\left|\gamma^{i j}\left\|\left.D F^{j}\right|_{H}|D G|_{H}+\left|\gamma^{i j} \| L F^{j}\right| \cdot|G|\right]\right.
\end{aligned}
$$

Hence if p is such that $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$, then

$$
\begin{aligned}
\left\|l_{i}(G)\right\|_{r} & \leq \sum_{j=1}^{d}\left[\left\{\left.\sum_{k, \ell=1}^{d}\left\|\gamma^{i k} \gamma^{j \ell}\right\| D F^{j}\right|_{H}\left|D \sigma^{k \ell}\right|_{H}\left\|_{p} .\right\| G \|_{q}\right\}\right. \\
& +\left\|\left|\gamma^{i j}\left\|\left.D F^{j}\right|_{H}\right\|_{p}\left\||D G|_{H}\right\|_{q}+\left\|\left|\gamma^{i j}\left\|L F^{j} \mid\right\|_{p} .\|G\|_{q}\right] .\right.\right.\right.
\end{aligned}
$$

Now taking supremum over $\|G\|_{q}+\left\||D G|_{H}\right\|_{q} \leq 1$, we get (1.27).
2) The proof is similar to that of (1) and we note that

$$
\ell_{i_{1} \ldots i_{k}}(G)=\ell_{i_{k}}\left[\ldots\left[\ell_{i_{2}}\left[\ell_{i_{1}}(G)\right]\right] \ldots\right]
$$

Let $\phi \epsilon S=S\left(\mathbb{R}^{d}\right),-\infty<k<\infty$, where k is an integer. Let
where

$$
\|\phi\|_{T_{2 K}}=\left\|\left(1+|x|^{2}-\Delta\right)^{k} \phi\right\|_{\infty}
$$

Let

$$
\bar{S}\|\cdot\|_{T_{2 k}}=T_{2 k} .
$$

Facts. (1) $S \subset \ldots \subset T_{2 k} \subset \ldots \subset T_{2} \subset T_{o}=\{f$ cont.,$f \rightarrow 0$ as $|x| \rightarrow \infty\}$

$$
\subset T_{-2} \subset \ldots T_{-2 k}
$$

(2) $\bigcap_{k} T_{k}=S$
(3) $\bigcup_{k} T_{k}=S^{\prime}$.

Theorem 1.12. Let $F: W \rightarrow \mathbb{R}^{d}$ satisfy (A.1) and (A.2). Let $\phi \in S \Leftrightarrow$ $\phi o F \in \mathbb{D}_{\infty}$). Then, $\forall k \in \mathbb{N}$ and $\forall 1<p<\infty, \exists C_{k, p}>0$ such that $\|\phi o F\|_{p,-2 k} \leq C_{p, k}\|\phi\|_{T_{-2 k}}$ for all $\phi \epsilon S$.

Proof. Let $\psi=\left(1+|x|^{2}-\Delta\right)^{-k} \phi \epsilon S$. Then for $G \epsilon \mathbb{D}_{\infty}, \exists \eta_{2 k}(G) \epsilon \mathbb{D}_{\infty}$ such that

$$
\int_{W}\left[\left(1+|x|^{2}-\Delta\right)^{k} \psi o F\right] \cdot G \mu(d w)=\int_{W} \psi o F[\eta 2 k(G)] \mu(d w)
$$

i.e., $\quad \int_{W} \phi o F . G d \mu=\int_{W}\left(1+|x|^{2}-\Delta\right)^{-k} \phi o F . \eta_{2 k}(G) d \mu$.

Therefore

$$
\left|\int_{W} \phi o F . G d \mu\right| \leq\|\phi\|_{T_{-2 k}}\left\|\eta_{2 k}(G)\right\|_{1}
$$

Let

$$
K=\sup _{\|G\|_{q, 2 k} \leq 1}\left\|\eta_{2 k}(G)\right\|_{1}<\infty
$$

which follows easily from Lemma 2 Note that $\eta_{2 k}(G)$ has a similar expression as $\ell_{i_{1} \ldots i_{k}}(G)$ only with some more polynomials of F multiplied.

Then taking supremum over $\|G\|_{q, 2 k} \leq 1$ in the above inequality, we get

$$
\left\|\phi_{o} F\right\|_{p,-2 k} \leq K .\|\phi\|_{T_{-2 k}} .
$$

Since we can take any q such that $\frac{1}{r}=1<\frac{1}{q}<\infty$ and $\frac{1}{p}+\frac{1}{q}=$ $1, p(1<p<\infty)$ can also be chosen arbitrarily.

Corollary. We can uniquely extend $\phi \in S\left(\mathbb{R}^{d}\right) \rightarrow \phi o F \in \mathbb{D}_{\infty}$ as a continuous linear mapping $T \epsilon T_{-2 k} \rightarrow T(F) \epsilon \mathbb{D}_{p,-2 k}$ for every $k \epsilon Z^{+}$and $1<p<\infty$.

Indeed, the extension is given as follows:
$T \epsilon T_{-2 k}$ implies $\exists \phi_{n} S\left(\mathbb{R}^{d}\right)$ such that $\left\|\phi_{n}-T\right\|_{T_{-2 k}} \rightarrow 0$ which implies $\left\{\phi_{n}\right\}$ is Cauchy in $T_{-2 k}$ and hence, by Theorem 1.12, $\left\{\phi_{n} o F\right\}$ is Cauchy
in $\mathbb{D}_{p,-2 k}, 1<p<\infty$ and hence we let $T(F)=\lim _{n \rightarrow \infty} \phi n o F$, limit being taken w.r.t. the norm \| $\|_{p,-2 k}$. Note that $T(F)$ is uniquely determined.

58 Definition 1.14. $T(F)$ is called the composite of $T \epsilon T_{-2 k}$ and F satisfying (A.1) and (A.2). Note that, since k is arbitrary, we have defined the composite $T(F)$ for every $T \epsilon S^{\prime}\left(\mathbb{R}^{d}\right)$ as an element in $\mathbb{D}_{-\infty}$.

Proposition 1.13. If $T=f \epsilon \hat{C}\left(\mathbb{R}^{d}\right)=T_{o} \subset S^{\prime}\left(\mathbb{R}^{d}\right)$, then $f(F)=f o F$; the usual composite of f and F.

Proof. $T \epsilon T_{o}$ implies there exists $\phi_{n} \epsilon S$ such that

$$
\left\|\phi_{n}-f\right\|_{T_{o}} \rightarrow 0
$$

Obviously, we get $\left\|\phi_{n} o F-f o F\right\|_{p} \rightarrow 0$ for $1<p<\infty$. Hence the result follows by definition of $f(F)$.

1.5 The Smoothness of Probability Laws

Lemma 1. Let δ_{y} be the Dirac δ - function at $y \in \mathbb{R}^{d}$.
(i) $\delta_{y} \epsilon T_{-2 m}$ if and only if $m>\frac{d}{2}$.
(ii) if $m>\frac{d}{2}$, then the map $y \in \mathbb{R}^{d} \rightarrow \delta_{y} \epsilon T_{-2 m}$ is continuous.
(iii) if $m=\left[\frac{d}{2}\right]+1, k \in Z^{+}$, then $y \in \mathbb{R}^{d} \rightarrow \delta_{y} \in T_{-2 m-2 k}$ is $2 k$ times continuously differentiable.

Equivalently,

$$
y \in \mathbb{R}^{d} \rightarrow D^{\alpha} \delta_{y} \epsilon T_{-2 m-2 k}, \alpha \in \mathbb{N}^{d}|\alpha| \leq 2 k
$$

is continuous.

Corollary. Let F satisfy (A.1) and (A.2) and $m=\left[\frac{d}{2}\right]+1, k \in Z^{+}$; then $y \rightarrow \delta_{y}(F) \in \mathbb{D}_{p,-2 m-2 k}$ is $2 k$ times continuously differentiable for every $1<p<\infty$. In particular, we have the following:

For every $G \in \mathbb{D}_{q, 2 m+2 k}$

$$
<\delta_{y}(F), G>\epsilon C^{2 k}\left(\mathbb{R}^{d}\right), \text { where }<\delta_{y}(F), G>
$$

denote the canonical bilinear form which we may write roughly as E^{μ} $\left(\delta_{y}(F) . G\right)$.

Lemma 2. Let $m=\left[\frac{d}{2}\right]+1$ and $1<q<\infty$. If $f \in C\left(\mathbb{R}^{d}\right)$ with compact support, then

$$
\int_{\mathbb{R}} f(y)<\delta_{y} F, G>d y=E^{\mu}(f o F . G)
$$

for every $G \in \mathbb{D}_{q, 2 m}$.
Proof. Let

$$
i=\left(i_{1}, i_{2}, \ldots i_{d}\right), \Delta_{i}^{(n)}=\left[\frac{i_{1}}{2^{n}}, \frac{i_{1}+1}{2^{n}}\right] \times \ldots \times\left[\frac{i_{d}}{2^{n}}, \frac{i_{d}+1}{2^{n}}\right]
$$

and

$$
x_{i}^{(n)}=\left(\frac{i_{1}}{2^{n}}, \frac{i_{2}}{2^{n}}, \ldots \frac{i_{d}}{2^{n}}\right) \quad \text { where } \quad i_{k} \in Z
$$

Note that $\left|\Delta_{i}^{(n)}\right|=\left(\frac{1}{2^{n}}\right)^{d}$, where $|$.$| denote the Lebesgue measure. For$ $f \in C\left(\mathbb{R}^{d}\right)$ with compact support, we have

$$
\sum_{i} f\left(x_{i}^{(n)}\right)\left|\Delta_{i}^{(n)}\right| \delta_{x_{i}(n)} \rightarrow \int_{\mathbb{R}^{d}} f(x) \delta_{x} d x=f
$$

Note that the above integral is $T_{-2 m}$-valued and the integration is in the sense of Bochner and hence the convergence is in $T_{-2 m}$. Therefore, we have

$$
\sum_{i} f\left(x_{i}^{(n)}\right)\left|\Delta_{i}^{(n)}\right| \delta_{x_{i}}(F) \rightarrow \text { foF in } \mathbb{D}_{p, 2 m}
$$

for $1<p<\infty$. In particular,
$<\sum_{i} f\left(x_{i}^{(n)}\right)\left|\Delta_{i}^{(n)}\right| \delta_{x_{i}}(F), G>\rightarrow E($ foF. $G)$ for every $G \in \mathbb{D}_{q,-2 m}$.
But

$$
<\sum_{i} f\left(x_{i}^{(n)}\right)\left|\Delta_{i}^{(n)}\right| \delta_{x_{i}}(F), G>\rightarrow \int_{\mathbb{R}^{d}} f(x)<\delta_{x} F, G>d x ;
$$

hence the result.
Theorem 1.14. Let $F=\left(F^{1}, F^{2}, \ldots, F^{d}\right)$ satisfy the conditions (A.I) and (A.2). Let $m=\left[\frac{d}{2}\right]+1, k \in Z^{+}$and $1<q<\infty$. Set, for every $G \epsilon \mathbb{D}_{q, 2 m+2 k}$

$$
\mu_{G}^{F}(d x)=E^{\mu}(G(w): F(w) \epsilon d x)
$$

Then $\mu_{G}^{F}(x)$ has a density $P_{G}^{F}(x) \epsilon C^{2 k}\left(\mathbb{R}^{d}\right)$ and $P_{G}^{F}(x)=\left\langle\delta_{x}(F), G\right\rangle$.
Proof. Easily follows from Lemmanand Lemma 2
Remark. By the above theorem, we see that if G

$$
G \in \mathbb{D}_{q, \infty}=\bigcap_{k=o}^{\infty} \mathbb{D}_{q, k} 1<q<\infty,
$$

then $\mu_{G}^{F}(d x)$ has a C^{∞} - density. Further, if $G \equiv 1 \epsilon \mathbb{D}_{\infty}$, then the probability law of F :

$$
\mu_{1}^{F}(d x)=\mu\{w: F(x) \epsilon d x\}
$$

has a C^{∞}-density. But we have

$$
\mu_{G}^{F}(d x)=E^{\mu}(G \mid F=x) \mu_{1}^{G}(d x) .
$$

Hence

$$
p_{G}^{F}(x)=E^{\mu}(G \mid F=x) p_{1}^{F}(x) .
$$

Chapter 2

Applications to Stochastic Differential Equations

2.1 Solutions of Stochastic Differential Equations as
 Wiener Functionals

From now on, we choose, as our basic abstract Wiener space $(W, H, \mu), 62$ the following r-dimensional Wiener space (cf. Ex. 1.1).

Let

$$
\left.W=W_{o}^{r}=\left\{w \epsilon C[0, T] \rightarrow \mathbb{R}^{r}\right), w(0)=0\right\}
$$

$\mu=P$, the r-dimensional Wiener measure.

$$
H=\left\{h \epsilon W_{o}^{r} ; h=\left(h^{\alpha}(t)\right)_{\alpha=1}^{r},\right.
$$

h^{α} absolutely continuous and

$$
\left.\int_{o}^{T} \dot{h}^{\alpha}(S)^{2} d s<\infty, \alpha=1,2 \ldots r\right\} .
$$

We define an inner product in H as follows:

$$
<h, h^{\prime}>_{H}=\sum_{\alpha=1}^{r} \int_{o}^{T} \dot{h}^{\alpha}(t) \dot{h}^{\alpha \alpha}(t) d t, h^{\prime}, h \in H
$$

With this inner product, $H \subset W$ is a Hilbert space. Further $\stackrel{*}{W} \subset$ $H^{*}=H \subset W$ is given as follows:

$$
\stackrel{*}{W}=\left\{\ell \epsilon H: \ell=\left(\ell^{\alpha}(t)\right)_{\alpha=1}^{r}, \ell^{\alpha}(t)=\int_{o}^{t} \dot{\ell}^{\alpha}(t) d s\right\}
$$

and $\dot{\ell}^{\alpha}$ is a right continuous function of bounded variation on $[0, T]$ such that $\left.\dot{\ell}^{\alpha}(T)_{*}=0, \alpha=1, \ldots r\right\}$.

If $\ell \epsilon \stackrel{*}{W}, w \epsilon W$, then

$$
\ell(w)=-\sum_{\alpha=1}^{r} \int_{o}^{T} w^{\alpha}(t) d \dot{\ell}_{\alpha}(t)
$$

and for $\ell \in \stackrel{*}{W}, h \epsilon H$,

$$
\begin{aligned}
\ell(h) & =-\sum_{\alpha=1}^{r} \int_{o}^{T} h^{\alpha}(t) d \dot{\ell}_{\alpha}(t) \\
& =\sum_{\alpha=1}^{r} \int_{o}^{T} \dot{h}^{\alpha}(t) \dot{\ell}_{\alpha}(t) d t=<h, \ell>_{H}-
\end{aligned}
$$

Let $B_{t}\left(W_{o}^{r}\right)=$ the completion of the σ-algebras on W_{o}^{r} generated by ($\left.w^{\alpha}(s)\right), 0 \leq s \leq t$.

Stochastic Integrals: Let $\phi_{\alpha}(t, w)$ be jointly measurable in $(t, w), B_{t}$ adapted and

$$
\int_{o}^{T} \phi_{\alpha}(t, w) d t<\infty \text { a.s. }
$$

Then it is well known that the stochastic integral

$$
\int_{o}^{t} \phi_{\alpha}(s, w) d W_{s}^{\alpha},\left(W_{t}^{\alpha}(w)=w^{\alpha}(t), \alpha=1,2, \ldots, r\right)
$$

is a continuous local martingale.
Itô process: A continuous B_{t}-adapted process of the form

$$
\xi_{t}=\xi_{o}+\sum_{\alpha=1}^{r} \int_{o}^{t} \phi_{\alpha}(s, w) d W_{s}^{\alpha}+\int_{0}^{t} \phi_{o}(s, w) d s
$$

where
i) $\phi_{\alpha}(t, w)$ is B_{t}-adapted, jointly measurable with

$$
\int_{o}^{T} \phi_{\alpha}^{2}(t, w) d t<\infty \text { a.s. }
$$

ii) $\phi_{o}(t, w)$ is B_{t}-adapted, jointly measurable with

$$
\int_{o}^{T}\left|\phi_{0}(s, w)\right| d s<\infty \text { a.s. }
$$

is called an Itô process.
Straton ovitch Integral: Let $\phi_{\alpha}(t, w)$ be an Itô process. Then ϕ_{α} is of the form

$$
\phi_{\alpha}(t, w)=\phi_{\alpha}(o, w)+\sum_{\beta=1}^{r} \int_{o}^{t} \Xi_{\alpha, \beta}(s, w) d W_{s}^{\beta}+\int_{o}^{t} \Xi_{\alpha, o}(s, w) d s
$$

Then the Stratonovitch integral of ϕ_{α} w.r.t W^{α}, denoted by

$$
\int_{o}^{t} \phi_{\alpha}(s, w) o d W_{s}^{\alpha}
$$

is defined as follows:

$$
\int_{o}^{t} \phi_{\alpha}(s, w) o d W_{s}^{\alpha} \triangleq \int_{o}^{t} \phi_{\alpha}(s, w) d W_{s}^{\alpha}+\frac{1}{2} \int_{o}^{t} \Xi_{\alpha, \alpha}(s, w) d s
$$

Itô Formula: Let $\xi_{t}=\left(\xi_{t}^{\prime}, \ldots, \xi_{t}^{d}\right)$ be a d-dimensional Itô process,
i.e., $\quad \xi_{t}^{i}=\xi_{o}^{i}+\sum_{\alpha=1}^{\gamma} \int_{o}^{t} \phi_{\alpha}^{i}(s, w) d W_{s}^{\alpha}+\int_{o}^{t} \phi_{o}^{i}(s, w) d s, 1 \leq i \leq d$.

1) Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a C^{2} function. Then $f\left(\xi_{t}\right)$ is an Itô process we have the Itô formula:

$$
\begin{aligned}
f\left(\xi_{t}\right) & =f\left(\xi_{o}\right)+\sum_{i=1}^{d} \sum_{\alpha=1}^{r} \int_{o}^{t} \partial_{i} f\left(\xi_{s}\right) \phi_{\alpha}^{i}(s, w) d W_{s}^{\alpha} \\
& +\sum_{i=1}^{d} \int_{o}^{t} \partial_{i} f\left(\xi_{s}\right) \phi_{o}^{i}(s, w) d s \\
& +\frac{1}{2} \sum_{\alpha=1}^{r} \sum_{i, j=1}^{d} \int_{o}^{t} \partial_{i, j}^{2} f\left(\xi_{s}\right)\left(\phi_{i}^{\alpha} \phi_{j}^{\alpha}\right)(s, w) d s
\end{aligned}
$$

65 2) Suppose further that $\phi_{\alpha}^{i}(t, w), 1 \leq i \leq d, 1 \leq \alpha \leq r$ are Itô processes and set

$$
\eta_{t}^{i}=\eta_{o}^{i}+\sum_{\alpha=1}^{r} \int_{o}^{t} \partial_{o}^{i}(s, w) o s W_{s}^{\alpha}+\int_{o}^{t} \phi_{o}^{i}(s, w) d s, 1 \leq i \leq d
$$

Then, if $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is C^{3}, we have

$$
f\left(\eta_{t}\right)-f\left(\eta_{o}\right)=\sum_{i=1}^{d} \sum_{\alpha=1}^{r} \int_{o}^{t} \partial_{i} f\left(\eta_{s}\right) \phi_{\alpha}^{i}(s, w) o d W_{s}^{\alpha}
$$

$$
+\sum_{\alpha=1}^{r} \int_{o}^{t} \partial_{i} f\left(\eta_{s}\right) \phi_{o}^{i}(s, w) d s
$$

Stochastic Differential Equations: Let $\sigma_{\alpha}^{i}(x), b^{i}(x)$ be functions of \mathbb{R}^{d} for $i=1,2, \ldots d, \alpha=1, \ldots r$ satisfying the following assumptions:
i) $\sigma_{\alpha}^{i}, b^{i} \epsilon C^{\infty}\left(\mathbb{R}^{d} \rightarrow \mathbb{R}\right) \forall i=1, \ldots d, \alpha=1, \ldots r$.
ii) $\forall k \in N, \partial_{i_{1}} \partial_{i_{2}} \cdots \partial_{i_{k}} \sigma_{\alpha}^{i}, \partial_{i_{1}} \ldots \partial_{i_{k}} b^{i}$
are bounded on \mathbb{R}^{d}.
Then

$$
\begin{aligned}
\left|\sigma_{\alpha}^{i}(x)\right| & \leq K(1+|x|), \forall i=1, \ldots d, \alpha=1, \ldots r \\
\left|b^{i}(x)\right| & \leq K(1+|x|), \forall i=1, \ldots d
\end{aligned}
$$

Consider the following $S D E$,

$$
\begin{align*}
d X_{t} & =\sigma_{\alpha}\left(X_{t}\right) d W_{t}^{\alpha}+b\left(X_{t}\right) d t \\
X_{o} & =x \in \mathbb{R}^{d} \tag{2.1}
\end{align*}
$$

which is equivalent to saying

$$
X_{t}^{i}=x^{i}+\sum_{\alpha=1}^{r} \int_{o}^{t} \sigma_{\alpha}^{i}\left(X_{s}\right) d W_{s}^{\alpha}+\int_{o}^{t} b^{i}\left(X_{s}\right) d s, i=1, \ldots, d
$$

Then the following are true: There exists a unique solution $X_{t}=\mathbf{6 6}$ $X(t, x, w)=X_{t}^{1}, \ldots X_{t}^{d}$ of (2.1) such that

1) $(t, x) \rightarrow X(t, x, w)$ is continuous (a.a.w).
2) $\forall t \geq 0, x \rightarrow X(t, x, w)$ is a diffeomorphism on $\mathbb{R}^{d}(a . a . w)$.
3) $\forall t \geq 0, x \in \mathbb{R}^{d}, X(t, x,.) \epsilon L^{p} \forall 1<p<\infty$.

Theorem 2.1. Let $t>0, x \in \mathbb{R}^{d}$ be fixed. Then

$$
X_{t}^{i}=X^{i}(t, x, w) \in \mathbb{D}_{\infty}, \forall i=1, \ldots, d
$$

To find an expression for $<D X_{t}^{i}, D X_{t}^{j}>_{H^{\prime}}$ let

$$
Y_{t}=\left(\left(Y_{j}^{i}(t)\right)\right), Y_{j}^{i}(t)=\frac{\partial X^{i}(t, x, w)}{\partial x^{j}}
$$

Let also

$$
\left(\partial \sigma_{\alpha}\right)_{j}^{i}=\frac{\partial \sigma_{\alpha}^{j}(x)}{\partial x^{j}} ;(\partial b)_{j}^{i}=\frac{\partial b^{i}}{\partial x^{j}}(x)
$$

Then it can be shown that Y_{t} is given by the following $S D E$:

$$
\begin{align*}
d Y_{t} & =\partial \sigma_{\alpha}\left(X_{t}\right) \cdot Y_{t} d W_{t}^{\alpha}+\partial b\left(X_{t}\right) \cdot Y_{t} d t \\
Y_{o} & =I \tag{2.2}
\end{align*}
$$

i. e. $\quad Y_{j}^{i}(t)=\delta_{j}^{i}+\sum_{\alpha=1}^{r} \sum_{k=1}^{d} \int_{o}^{t}\left(\partial_{k} \sigma_{\alpha}^{i}\right)\left(X_{s}\right) Y_{j}^{k}(t) d W_{s}^{\alpha}$

$$
+\sum_{k=1}^{d} \int_{o}^{t}\left(\partial_{k} b^{i}\right)\left(X_{s}\right) Y_{j}^{k}(s) d s, i, j=1, \ldots, d
$$

Fact. $Y_{t} \epsilon L_{p}$ i.e., $\left(\sum_{i, j=1}^{d}\left(Y_{j}^{i}(s)\right)^{2}\right)^{1 / 2} \epsilon L_{p} \forall 1<p<\infty$.
Also by considering the $S D E$

$$
\begin{aligned}
d Z_{t} & =-Z_{t} \cdot \partial \sigma_{\alpha}\left(X_{t}\right) d W_{s}^{\alpha}-Z_{t}\left[\partial b\left(X_{t}\right)-\sum_{\alpha}\left(\partial \sigma_{\alpha} \cdot \partial \sigma_{\alpha}\right)\left(X_{t}\right)\right] d t \\
Z_{o} & =I
\end{aligned}
$$

67 and using Itô's formula, we can easily see that $d\left(Z_{t} Y_{t}\right)=0 \Rightarrow Z_{t} Y_{t} \equiv I$
i.e.,

$$
Z_{t}=Y_{t}^{-1} \text { exists }, \forall t
$$

Fact. $Y_{t}^{-1} \epsilon L_{p}$

$$
\text { i.e., } \quad\left(\sum_{i, j=1}^{d}\left(\left(Y^{-1}(t)\right)_{j}^{i}\right)^{2}\right)^{1 / 2} \epsilon L_{p} \forall 1<p<\infty \text {, }
$$

since $Z_{t} \epsilon L_{p}$.

Theorem 2.2. For every $t, 0<t<T$ and $i, j=1, \ldots d$,
where

$$
\begin{gathered}
<D X_{t}^{i}, D X_{t}^{j}>=\sum_{\alpha=1}^{r} \int_{o}^{t}\left(Y_{t} Y_{s}^{-1} \sigma_{\alpha}\left(X_{s}\right)\right)^{i}\left(Y_{t} Y_{s}^{-1} \sigma_{\alpha}\left(X_{s}\right)\right)^{j} d s \\
\left(Y_{t} Y_{s}^{-1} \sigma_{\alpha}\left(X_{s}\right)\right)^{i}=\sum_{k, j} Y_{k}^{i}(t)\left(Y^{-1}\right)_{j}^{k}(s) \sigma_{\alpha}^{j}\left(X_{s}\right) .
\end{gathered}
$$

Remark. The S.D.E (2.1) is given in the Stratonovitch form as

$$
\begin{align*}
d X_{t} & =\sigma_{\alpha}\left(X_{t}\right) o d W_{t}^{\alpha}+\tilde{b}\left(X_{t}\right) d t \tag{2.1}\\
X_{o} & =x
\end{align*}
$$

where

$$
\tilde{b}^{i}(x)=b^{i}(x)-\frac{1}{2} \sum_{k=1}^{d} \sum_{\alpha=1}^{r} \partial_{k} \sigma_{\alpha}^{i}(x) \sigma_{\alpha}^{k}(x)
$$

and correspondingly, (2.2) and (2.3) are given equivalently as

$$
\begin{align*}
d Y_{t} & =\partial \sigma_{\alpha}\left(X_{t}\right) Y_{t} o d W_{t}^{\alpha}+\partial \tilde{b}\left(X_{t}\right) d t \tag{2.2}\\
d Z_{t} & =-Z_{t} \partial \sigma_{\alpha}\left(X_{t}\right) o d W_{t}^{\alpha}+Z_{t} \partial \tilde{b}\left(X_{t}\right) d t \tag{2.3}
\end{align*}
$$

For the proof if theorem 2.1] and theorem 2.2, we need the following: 68
Lemma 1. Let X_{t} be the solution of (2.1) and $a_{t}=\left(a_{t}^{i}\right)$ be a continuous B_{t} adapted process. Suppose that $\xi_{t}=\left(\xi_{t}^{i}\right)$ satisfies

$$
\begin{align*}
d \xi_{t} & =\sum_{\alpha=1}^{r} \partial \sigma_{\alpha}\left(X_{t}\right) \xi_{t} d W_{t}^{\alpha}+\partial b\left(X_{t}\right) \xi_{t} d t+a_{t} d t \\
\xi_{o} & =0 \tag{2.4}
\end{align*}
$$

Then

$$
\xi_{t}=\int_{o}^{t} Y_{t} Y^{-1} a_{s} d s=Y_{t} \int_{o}^{t} Y_{s}^{-1} a_{s} d s
$$

where Y_{t} is the solution of (2.2).

Proof. It is enough to verify that $\xi_{t}=\int_{o}^{t} Y_{t} Y_{s}^{-1} a_{s} d s$ satisfies (2.4). Now

$$
\begin{aligned}
d \xi_{t} & =d\left(\int_{o}^{t} Y_{t} Y^{-1} a_{s} d s\right) \\
& =d Y_{t} \cdot \int_{o}^{t} Y_{s}^{-1} a_{s} d s+Y_{t} Y_{t}^{-1} a_{t} d t \\
& =d Y_{t} \int_{o}^{t} Y_{s}^{-1} a_{s} d s+a_{t} d t
\end{aligned}
$$

Using (2.2), we get

$$
\begin{aligned}
d \xi_{t} & =\left(\partial \sigma_{\alpha}\left(X_{t}\right) \cdot Y_{t} d W_{t}^{\alpha}+\partial b\left(X_{t}\right) Y_{t} d t\right) \int_{o}^{t} Y_{s}^{-1} a_{s} d s+a_{t} d t \\
& =\partial \sigma_{\alpha}\left(X_{t}\right) \xi_{t} d W_{t}^{\alpha}+\partial b\left(X_{t}\right) \xi_{t} d t+a_{t} d t
\end{aligned}
$$

hence the lemma is proved.

Formal Calculations:

By definitions,

$$
D X_{t}^{i}[h]=\left.\frac{\partial}{\partial \epsilon} X^{i}(t, x, w+\epsilon h)\right|_{\epsilon=o^{\prime}} h \epsilon H
$$

But

$$
\begin{aligned}
X^{i}(t, x, w+\epsilon h)=x+\sum_{\alpha} \int_{o}^{t} \sigma_{\alpha}^{i}(X(s, x, w & +\epsilon h)) d\left(W_{s}^{\alpha}+\epsilon h_{s}^{\alpha}\right) \\
& +\int_{o}^{t} b^{i}(X(s, x, w+\epsilon h)) d s
\end{aligned}
$$

Hence

$$
\begin{aligned}
D X_{t}^{i}[h] & =\sum_{\alpha=1}^{r} \sum_{k=1}^{d} \int_{o}^{t} \partial_{k} \sigma_{\alpha}^{i}\left(X_{s}\right) D X_{s}^{k}[h] d W_{s}^{\alpha} \\
& +\sum_{\alpha=1}^{r} \int_{o}^{t} \sigma_{\alpha}^{i}\left(X_{s}\right) d h_{s}^{\alpha} \\
& +\sum_{k=1}^{d} \int_{o}^{t} \partial_{k} b^{i}\left(X_{s}\right) D X_{s}^{k}[h] d s .
\end{aligned}
$$

This is same as (2.4) with

$$
a_{s}^{i}=\sum_{\alpha=1}^{r} \sigma_{\alpha}^{i}\left(X_{s}\right) \dot{h}_{s}^{\alpha}
$$

Hence formally we have

$$
D X_{t}^{i}[h]=\sum_{\alpha=1}^{r} \int_{o}^{t}\left[Y_{t} Y_{s}^{-1} \sigma_{\alpha}\left(X_{s}\right)\right]^{i} \dot{h}_{s}^{\alpha} d s
$$

Now, let for $i=1,2, \ldots d$,

$$
\begin{aligned}
\dot{\eta}_{t}^{i}, \alpha^{(s)} & =\left[Y_{t} Y_{s}^{-1} \sigma_{\alpha}\left(X_{s}\right)\right]^{i} & & \text { if } s \leq t \\
& =0 & & \text { if } s>t
\end{aligned}
$$

For fixed $s, 0 \leq s \leq t \leq T, \dot{\eta}_{t}^{i, \alpha},(s)$ satisfies the following:

$$
\begin{align*}
\dot{\eta}_{t}^{i, \alpha}(s)= & \sum_{j} \int_{s}^{t} \partial_{j} \sigma_{\alpha}^{i}\left(X_{u}\right) \dot{\eta}_{u}^{j, \alpha}(s) d W_{u}^{\alpha} \\
& +\sum_{j} \int_{s}^{t} \partial_{j} b^{i}\left(X_{u}\right) \dot{\eta}_{u}^{j, \alpha}(s) d u+\sigma_{\alpha}^{i}\left(X_{s}\right) . \tag{2.5}
\end{align*}
$$

Note that this is same as (2.2) with initial condition $\sigma_{\alpha}^{i}\left(X_{s}\right)$. Now

$$
D X_{t}^{i}[h]=<\eta_{t}^{i}, h>_{H}=\sum_{\alpha} \int_{o}^{T} \dot{\eta}_{t}^{i, \alpha}(s) \dot{h}^{\alpha}(s) d s
$$

where

$$
\eta_{t}^{i, \alpha}(s)=\int_{o}^{s} \dot{\eta}_{t}^{i, \alpha}(u) d u \epsilon H
$$

Hence

$$
<D X_{t}^{i}, D X_{t}^{j}>_{H}=\sum_{\alpha=1}^{r} \int_{o}^{t}\left[Y_{t} Y_{s}^{-1} \sigma_{\alpha}\left(X_{s}\right)\right]^{i}\left[Y_{t} Y_{s}^{-1} \sigma_{\alpha}\left(X_{s}\right)\right]^{j} d s
$$

A rigorous proof is given by using approximating arguments. Let
and

$$
\begin{aligned}
& \phi_{n}(s)=\frac{k}{2^{n}}, \text { if } \frac{k}{2^{n}} \leq s<\frac{k+1}{2^{n}}, n=1,2 \ldots \\
& \psi_{n}(s)=\frac{k+1}{2^{n}}, \text { if } \frac{k}{2^{n}}<s \leq \frac{k+1}{2^{n}}, n=0,1,2 \ldots
\end{aligned}
$$

Using ϕ_{n} and ψ_{n}, we write the corresponding approximating equations of (2.1), (2.2), 2.5) as

$$
\begin{align*}
d X_{t}^{(n)} & =\sigma_{\alpha}\left(X_{\phi_{n}(t)}^{(n)}\right) d W_{t}^{\alpha}+b\left(X_{\phi_{n}(t)}^{(n)}\right) d t \tag{2.1}\\
X_{o}^{(n)} & =x \\
d Y_{t}^{(n)} & =\partial \sigma_{\alpha}\left(X_{\phi_{n}(t)}^{(n)}\right) Y_{\phi_{n}(t)}^{(n)} d W_{t}^{\alpha}+\partial b\left(X_{\phi_{n}(t)}^{(n)}\right) Y_{\phi_{n}(t)}^{(n)} d t \tag{2.2}\\
Y_{o}^{(n)} & =I . \\
\dot{\eta}_{t}^{i, \alpha,(n)}(s) & =\sum_{\alpha} \sum_{j} \int_{\psi_{n}(S) \Lambda t}^{t} \partial_{j} \alpha_{\alpha}^{j}\left(X_{\Phi_{n}(u)}^{(n)}\right) \eta_{\Phi_{n}(u)}^{j, \dot{\alpha,(n)}}(s) d W_{u}^{\alpha} \\
& +\sum_{j} \int_{\psi_{n}(S) \Lambda t}^{t} \partial_{j} b^{i}\left(X_{\Phi_{n}(u)}^{(n)}\right) \eta_{\Phi_{n}(u)}^{j, \dot{\alpha},(n)}(s) d u+\sigma_{\alpha}^{i}\left(X_{\phi_{n}(s)}^{(n)}\right) \tag{2.5}
\end{align*}
$$

It is easily seen that (2.1)a has a unique solution $X_{t}^{(n)} \epsilon \mathcal{S}$: the space of smooth functionals, and $\partial X_{t}^{(n)}=Y_{t}^{(n)}$.

Further,

$$
D X_{t}^{(n)}[h]=\sum_{\alpha} \int_{o}^{t} \dot{\eta}_{t}^{i, \alpha,(n)}(S) \dot{h}^{\alpha}(s) d s
$$

Then the theorem 2.2 follows from the approximating theorem.
Theorem 2.3. Suppose, for $x \in \mathbb{R}^{m}, A(x)=\left(A_{\alpha}^{j}(x)\right) \in \mathbb{R}^{m} \otimes \mathbb{R}^{r}, B(x)=$ $\left(B^{i}(x)\right) \in \mathbb{R}^{m}$ satisfy

$$
\begin{aligned}
& \|A(x)\|+|B(x)| \leq K(1+|x|) \\
& \|A(x)-A(y)\|+|B(x)-B(y)| \leq K_{N}|x-y| \forall|x|,|y| \leq N .
\end{aligned}
$$

Also,
(a) Suppose $\alpha_{n}(t), \alpha(t)$ be \mathbb{R}^{m}-valued continuous B_{t} adapted processes such that, for some $2 \leq p<\infty$,

$$
\begin{aligned}
& \operatorname{Sup}_{n} E\left[\sup _{o \leq t \leq T}\left|\alpha_{n}(t)\right|^{p+1}\right]<\infty, \\
& E\left[\sup _{o \leq t \leq T}\left|\alpha_{n}(t)-\alpha(t)\right|^{p}\right] \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

and let, for $i=1, \ldots, n$,

$$
\xi^{i}(t)=\alpha^{i}(t)+\sum_{\alpha=1}^{r} \int_{o}^{t} A_{\alpha}^{i}(\xi(s)) d W^{\alpha}(s)+\int_{o}^{t} B^{i}(\xi(s)) d s
$$

and
$\xi^{i,(n)}(t)=\alpha_{n}^{i}(t)+\sum_{\alpha=1}^{r} \int_{o}^{t} A_{\alpha}^{i}\left(\xi^{(n)}\left(\Phi_{n}(s)\right)\right) d W_{s}^{\alpha}+\int_{o}^{t} B^{i}\left(\xi^{(n)}\left(\Phi_{n}(s)\right)\right) d s$,
then

$$
E\left[\sup _{o \leq s \leq T}\left|\xi^{(n)}(s)\right|^{p}\right]<\infty \text { and }
$$

$$
E\left[\sup _{o \leq s \leq T}\left|\xi^{(n)}(s)-\xi(s)\right|^{p}\right] \rightarrow 0 \text { as } n \rightarrow \infty .
$$

(b) Suppose $\alpha_{n, v}(t), \alpha_{v}(t), t \epsilon[v, T]$ are \mathbb{R}^{m}-valued continuous $B_{t^{-}}$adapted processes such that, for some $2 \leq p<\infty$,

$$
\begin{aligned}
& \sup _{n} \sup _{o \leq v \leq T} E\left[\sup _{v \leq \leq \leq T}\left|\alpha_{n, v}(t)\right|^{p+1}\right]<\infty, \\
& \quad \sup _{o \leq v \leq T} E\left[\sup _{v \leq \leq \leq T}\left|\alpha_{n, v}(t)-\alpha_{\nu}(t)\right|^{p}\right] \rightarrow \text { as } n \rightarrow \infty .
\end{aligned}
$$

Let

$$
\xi_{v}^{i}(t)=\alpha_{v}^{i}(t)+\sum_{\alpha=1}^{r} \int_{v}^{t} A_{\alpha}^{i}\left(\xi_{v}(s)\right) d W_{s}^{\alpha}+\int_{v}^{t} B^{i}\left(\xi_{\nu}(s)\right) d s
$$

and

$$
\xi_{v}^{i(n)}(t)=\alpha_{n, v}^{i}(t)+\sum_{\alpha=1}^{r} \int_{\psi_{n}(v) \Delta t} A_{\alpha}^{i}\left(\xi_{v}^{(n)}\left(\Phi_{n}(s)\right)\right) d W_{s}^{\alpha}+\int_{\psi_{n}(v) \Delta t} B^{i}\left(\xi_{v}^{(n)}\left(\Phi_{n}(s)\right)\right) d s .
$$

Then

$$
E\left[\sup _{v \leq s \leq T}\left|\xi_{v}^{(n)}(s)\right|^{P}\right]<\infty
$$

and

$$
E\left[\sup _{v \leq s \leq T}\left|\xi_{v}^{(n)}(s)-\xi_{v}(s)\right|^{p}\right] \rightarrow 0
$$

uniformly in v as $n \rightarrow \infty$.
Let $X_{t}=\left(X_{t}^{i}\right)_{i=1}^{d}$ satisfy (2.1). Let $\sigma_{t}=\left(\left(\sigma_{i j}(t)\right)\right)$ where

$$
\sigma_{i j}(t)=\left\langle D X_{t}^{i}, D X_{t}^{j}>_{H} .\right.
$$

The problem now is to prove condition A.2, i.e.,

$$
\left(\operatorname{det} \sigma_{t}\right)^{-1} \epsilon L_{p} \forall 1<p<\infty .
$$

Let Y_{t} satisfy (2.2). Then Y_{t} can be considered as an element of $G L(d, \mathbb{R})$ - the group of real non-singular $d \times d$ matrices. Then $\left(X_{t}, Y_{t}\right) \in$ $\mathbb{R}^{d} \times G L(d, \mathbb{R})$. Let $r_{t}=\left(X_{t}, Y_{t}\right)$, which is determine by (2.1) and (2.2).

Definition 2.1. Let $\left(a^{i}(x)\right)_{i=1}^{d}$ be smooth functions on \mathbb{R}^{d} and $L=\sum_{i=1}^{d}$ $a^{i}(x) \frac{\partial}{\partial x^{i}}$, the corresponding vector field on \mathbb{R}^{d}. Then for
we define

$$
r=(x, e) \in \mathbb{R}^{d} \times G L(d, \mathbb{R})
$$

$$
\begin{gathered}
f_{L}^{i}(r) \triangleq \sum_{j=1}^{d}\left(e^{-1}\right)_{j}^{i} a^{j}(x) i=1,2, \ldots d \\
f_{L}(r)=\left(f_{L}^{i}(r)\right)_{i=1}^{d}
\end{gathered}
$$

and

Let
where

$$
\begin{aligned}
L_{\alpha}(x) & =\sum_{i=1}^{d} \sigma_{\alpha}^{i}(x) \frac{\partial}{\partial x^{i}} \alpha=1,2, \ldots, r . \\
L_{o}(x) & =\sum_{i=1}^{d} \tilde{b}_{i}(x) \frac{\partial}{\partial x^{i}} \\
\bar{b}_{i}(x) & =b^{i}-\frac{1}{2} \sum_{k} \sum_{\alpha} \partial_{k} \sigma_{\alpha}^{i}(x) \sigma_{\alpha}^{k}(x) .
\end{aligned}
$$

Proposition 2.4. Let

$$
L=\sum_{i} a^{i}(x) \frac{\partial}{\partial x^{i}}
$$

be any smooth vector field on \mathbb{R}^{d}. Then. for $i=1,2, \ldots, d$,

$$
\begin{aligned}
f_{L}^{i}\left(r_{t}\right)-f_{L}^{i}\left(r_{0}\right)= & \sum_{\alpha=1}^{r} \int_{0}^{t} f_{\left[L_{\alpha}, L\right]}^{i}\left(r_{s}\right) o d W_{s}^{\alpha}+\int_{o}^{t} f_{\left[L_{o}, L\right]}^{i}\left(r_{s}\right) d s \\
= & \sum_{\alpha=1}^{r} \int_{o}^{t} f_{\left[L_{\alpha}, L\right]}^{i}\left(r_{s}\right) d W_{s}^{\alpha} \\
& +\int_{o}^{t} f_{\left\{\left[L_{o}, L\right]+\frac{1}{2} \sum_{\alpha=1}^{r}\left[L_{\alpha},\left[L_{\alpha}, L\right]\right]\right\}}^{i}\left(r_{s}\right) d s,
\end{aligned}
$$

where $\left[L_{1}, L_{2}\right]=L_{1} L_{2}-L_{2} L_{1}$ is the commutator of L_{1} and L_{2}.

Proof. $f_{L}^{i}\left(r_{t}\right)=\left[Y_{t}^{-1} a\left(X_{t}\right)\right]^{i}$ and we know that
and

$$
\begin{gathered}
d Y_{t}^{-1}=-Y_{t}^{-1} \partial \sigma_{\alpha}\left(X_{t}\right) o d W_{t}^{\alpha}-Y_{t}^{-1} \partial \tilde{b}\left(X_{t}\right) d t \\
d a\left(X_{t}\right)=\partial a\left(X_{t}\right) \sigma_{\alpha}\left(X_{t}\right) o d W_{t}^{\alpha}+\partial a\left(X_{t}\right) \tilde{b}\left(X_{t}\right) d t \\
\partial a\left(X_{t}\right)=\left(\left(\frac{\partial a^{i}}{\partial x^{j}}\left(X_{t}\right)\right)\right)
\end{gathered}
$$

where
The proof now follows easily from the Itô formula.
Remark. $f_{L_{\alpha}}\left(r_{s}\right)=Y_{s}^{-1} \sigma_{\alpha}\left(X_{s}\right)$. Therefore

$$
\sigma_{t}^{i j}=<D X_{t}^{i}, D X_{t}^{j}>_{H}=\sum_{\alpha=1}^{r} \int_{0}^{t}\left[Y_{t} f_{L_{\alpha}}\left(r_{s}\right)\right]^{i}\left[Y_{t} f_{L_{\alpha}}\left(r_{s}\right)\right]^{j} d s
$$

Proposition 2.5. Let

$$
\hat{\sigma}_{t}^{i j}(w)=\sum_{\alpha=1}^{r} \int_{0}^{t} f_{L_{\alpha}}^{i}\left(r_{s}\right) f_{L_{\alpha}}^{j}\left(r_{s}\right) d s
$$

Then

$$
\left(\operatorname{det} \sigma_{t}\right)^{-1} \epsilon L_{P}, \forall 1<P<\infty \text { iff }\left(\operatorname{det} \hat{\sigma}_{t}\right)^{-1} \epsilon L_{P} \forall 1<p<\infty .
$$

Proof. $\sigma_{t}=Y_{t} \hat{\sigma}_{t} Y_{t}^{*}$ implies det $\sigma_{t}=\left(\operatorname{det} Y_{t}\right)^{2}\left(\operatorname{det} \hat{\sigma}_{t}\right)$.
We know that $\left\|Y_{t}\right\|,\left\|Y_{t}^{-1}\right\| \epsilon L_{P} \forall 1<p<\infty$, where

$$
\|\sigma\|=\left(\sum_{i, j}\left|\sigma_{i j}\right|^{2}\right)^{1 / 2}
$$

Hence, if $\lambda_{i}^{2}, i=1,2, \ldots, d$ are the eigenvalues of $Y_{t} Y_{t}^{*}$ then

$$
\left(\operatorname{det} Y_{t}\right)^{2}=\operatorname{det} Y_{t} Y_{t}^{*}=\lambda_{1}^{2} \cdots \lambda_{n}^{2}
$$

and

$$
\left\|Y_{t}\right\|^{2}=\sum_{i}<Y_{t} Y_{t}^{*} e_{i}, e_{i}>
$$

$$
=\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}
$$

where $\left(e_{i}\right)_{i=1}^{d}$ is an orthonormal basis in \mathbb{R}^{d}. Therefore

$$
\left(\operatorname{det} Y_{t}\right)^{2} \leq\left\|Y_{t}\right\|^{2 n}
$$

Similarly

$$
\left(\operatorname{det} Y_{t}^{-1}\right)^{2} \leq\left\|Y_{t}^{-1}\right\|^{2 n}
$$

Hence the result.

2.2 Existence of moments for a class of Wiener Functionals

Proposition 2.6. Let $\eta>0$ be a random variable on (Ω, F, P). If, $\forall N=$ $2,3,4, \ldots, \exists$ constants $c_{1}, c_{2}, c_{3}>0$ (independent of N) such that

$$
P\left[\eta<\frac{1}{N^{c_{1}}}\right]=P\left[\eta^{-1}>N^{C_{1}}\right] \leq e^{-c_{2} N^{C_{3}}}
$$

then $E\left[\eta^{-P}\right]<\infty, \forall p>1$.
Proof.

$$
\begin{aligned}
E\left[\eta^{-P}\right] & \leq 1+\sum_{N=1}^{\infty} E\left[\eta^{-P}: N^{C_{1}} \leq \eta^{-1} \leq(N+1)^{C_{1}}\right] \\
& \leq 1+2^{C_{1} P}+\sum_{N=2}^{\infty}(N+1)^{C_{1} p} e^{-C_{2} N^{C_{3}}} \\
& <\infty
\end{aligned}
$$

Example 2.1. Let $0<\bar{t} \leq T$. Let

$$
\eta=\int_{0}^{\bar{\tau}}|w(s)|^{\gamma} d s ; \gamma>0 .
$$

Then we will prove that $E\left[\eta^{-P}\right]<\infty, \forall 1<P<\infty$. To prove this, we need a few lemmas.

Lemma A. Let P be the Wiener measure on $C\left([o, T] \rightarrow \mathbb{R}^{r}\right)$. Then, $\forall \epsilon>0,0<t \leq T \exists C_{1}, C_{2}>0$ and independent of ϵ and t such that

$$
P\left[\sup _{0 \leq s \leq t}|w(s)|<\epsilon\right] \leq C_{1} e^{-\frac{t c_{2}}{\epsilon^{2}}}
$$

Proof. For $X \in \mathbb{R}^{r},|x|<1$, let

$$
u(t, x)=P\left[\max _{0 \leq s \leq t}|w(s)+x|<1\right]
$$

Then it well known that

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{1}{2} \Delta u \text { in }\{|x| \leq 1\} \\
\left.u\right|_{t=0} & =1 \\
\left.u\right|_{|x|=1} & =0
\end{aligned}
$$

Therefore, if λ_{n}, ϕ_{n} are the eigenvalues and eigenfunctions for the corresponding eigenvalue problem, then

$$
u(t, x)=\sum_{n} e^{-\lambda_{n} t} \phi_{n}(x) \int_{|y| \leq 1} \phi_{n}(y) d y .
$$

77
Also since $\{w(s)\} \sim\left\{\epsilon w\left(\frac{s}{\epsilon^{2}}\right)\right\}$ for every $\epsilon>0$,

$$
\begin{aligned}
P\left[\sup _{0 \leq s \leq t}|w(s)|<\epsilon\right] & =P\left[\sup _{0 \leq s \leq \frac{t}{\epsilon^{2}}}|w(s)|<1\right] \\
& =u\left(\frac{t}{\epsilon^{2}}, 0\right) \sim \phi_{1}(0) \int_{|Y| \leq 1} \phi_{1}(y) d y \times e^{-\frac{\lambda_{1}^{t}}{\epsilon^{2}}}
\end{aligned}
$$

Lemma B. Let

$$
\xi(t)=\sum_{\alpha=1}^{r} \int_{0}^{t} \phi_{\alpha}(s, w) d W_{s}^{\alpha}+\int_{0}^{t} \psi(s, w) d s
$$

Let

$$
\sum_{\alpha=1}^{r}\left|\phi_{\alpha}(s, w)\right|^{2} \leq k,|\psi(s, w)| \leq k
$$

Then, $\forall a>0$ and $0<\epsilon<\frac{a}{2 k}, \exists c>0$, independent of a, ϵ, and k such that
where

$$
P\left(\tau_{a}<\epsilon\right) \leq e^{-\frac{c a^{2}}{k \epsilon}}
$$

Proof. We know that we can write

$$
\xi(t)=B\left(A_{1}(t)\right)+A_{2}(t)
$$

where

$$
\begin{aligned}
& A_{1}(t)=\sum_{\alpha=1}^{r} \int_{0}^{t}\left|\phi_{\alpha}(s, w)\right|^{2} d s, \\
& A_{2}(t)=\int_{0}^{t} \psi(s, w) d s
\end{aligned}
$$

and $B(t)$ is a 1-dimensional Brownian motion with $B(0)=0$.
Hence

$$
\{|\xi(t)|>a\} \subset\left\{\left|B\left(A_{1}(t)\right)\right|>\frac{a}{2}\right\} U\left\{\left|A_{2}(t)\right|>\frac{a}{2}\right\}
$$

Further $\left|A_{1}(t)\right| \leq k t i=1,2$, and if

$$
\sigma_{a / 2}^{B}=\inf \left\{t:|B(t)|>\frac{a}{2}\right\},
$$

then

$$
\begin{aligned}
\left\{\left|B\left(A_{1}(t)\right)\right|>\frac{a}{2}\right\} & \subset\left\{A_{1}(t)>\sigma_{a / 2}^{B}\right\} \\
& \subset\left\{k t>\sigma_{a / 2}^{B}\right\}
\end{aligned}
$$

$$
\Rightarrow \tau_{a} \geq \frac{a}{2 k} \Lambda \sigma_{a / 2}^{B} / k \text { a.s. }
$$

Therefore, if

$$
\begin{aligned}
0<\epsilon<\frac{a}{2 k}, & \\
P\left[\tau_{a}<\epsilon\right] & \leq P\left[\sigma_{a / 2}^{B}<k \epsilon\right] \\
& \leq p\left[\max _{0 \leq s \leq k \epsilon}|B(s)|>\frac{a}{2}\right] \\
& \leq 2 P\left[\max _{0 \leq s \leq k \epsilon} B(s)>\frac{a}{2}\right] \\
& =2 \sqrt{ }\left(\frac{2}{\pi k \epsilon}\right) \int_{a / 2}^{\infty} e^{-\left(x^{2} / k \epsilon\right)} d x \\
& \leq e-c \cdot\left(a^{2} / k \epsilon\right) .
\end{aligned}
$$

Ex. 2.1(Solution): Let \bar{t} be such $0<\bar{t} \leq T$ and for $N=2,3, \ldots$, define

$$
\sigma_{2 / N}(w)=\inf \left\{t:|w(t)| \geq \frac{2}{N}\right\}
$$

and

$$
\sigma_{1}^{N}(w)=\sigma_{2 / N}(w) \Lambda \frac{\bar{t}}{2}
$$

Let

$$
W_{1}=\left\{w: \sigma_{2 / N}(w)<\frac{\bar{t}}{2}\right\},
$$

then, by lemma we have $P\left(w_{1}^{c}\right) \leq e^{-c_{1} N^{2}}$, for some constant c_{1} independent of N. We denote the shifted path of $w(t)$ as

$$
w_{s}^{+}(t)=w(t+s)
$$

Define

$$
\tau_{1 / N}(w)=\inf \left\{t:|w(t)-w(0)| \geq \frac{1}{N}\right\}
$$

and let

$$
W_{2}=\left\{W: \tau_{1 / N}\left(w_{\sigma_{1}^{N}}^{+}\right) \geq \frac{\bar{t}}{N^{3}}\right\} .
$$

Note that if $w \epsilon W_{1} \cap W_{2}$ then $\sigma_{1}^{N}=\sigma_{2 / N}$. By strong Markov property of Brownian motion, we get

$$
\begin{aligned}
P\left(W_{2}^{C}\right) & =P\left(\tau_{1 / N}<\frac{\bar{t}}{N^{3}}\right) \\
& \leq e^{-C_{3} N} \quad \text { (by lemma B } .
\end{aligned}
$$

Define

$$
\sigma_{2}^{N}(w)=\sigma_{1}^{N}+\tau_{1 / N}\left(w_{\sigma_{1}^{N}}^{+}\right) \Lambda \frac{\bar{t}}{N^{3}} .
$$

From the definition, it follows that on W_{2},

$$
\sigma_{2}^{N}=\sigma_{1}^{N}+\frac{\bar{t}}{N^{3}} .
$$

Clearly, if $t \epsilon\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]$, then $|w(t)| \leq \frac{3}{N}$ and if $w \epsilon W_{1} \cap W_{2}$, then $\frac{1}{N} \leq|w(t)| \leq \frac{3}{N}$. Hence we have. for $w \epsilon W_{1} \cap W_{2}$,

$$
\begin{aligned}
n(w)=\int_{0}^{\bar{t}}|w(s)|^{\gamma} d s & \geq \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|w(t)|^{\gamma} d t \\
& \geq \frac{\bar{t}}{N^{3}} \cdot \frac{1}{N^{Y}}=\frac{\bar{t}}{N^{3+y}} .
\end{aligned}
$$

Now

$$
P\left(W_{1}^{C} U W_{2}^{C}\right) \leq e^{-C_{4} N}
$$

Hence

$$
P\left(\eta<\frac{\bar{t}}{N^{3+y}}\right) \leq e^{-C_{4} N}, N=2,3, \ldots
$$

which gives, by proposition 2.4 that $E\left(\eta^{-p}\right)<\infty$ for every $p>1$.

Example 2.1 a): Let

$$
\eta(w)=\int_{0}^{\bar{t}} e^{-\frac{1}{|w(s)|^{\gamma}}} d s, 0<\bar{t} \leq T, \gamma>0
$$

then $E\left(\eta^{-p}\right)<\infty$ for all $1<p<\infty$ when $\gamma<2$, and for $\gamma \geq 2$ there exists p such that $E\left[\eta^{-p}\right]=\infty$.

Proof. Exercise.

Example 2.2. Let

$$
\eta(w)=\int_{0}^{\bar{t}}\left[\int_{0}^{t}|w(s)|^{\gamma} d W(s)\right]^{2} d t, \text { for } 0<\bar{t} \leq T
$$

fixed, then $E\left[\eta^{-p}\right]<\infty$, for every $1<p<\infty$.
Proof. In example 2.1, we have seen stopping times σ_{1}^{N} and σ_{2}^{N} satisfying; $0 \leq \sigma_{1}^{N}<\sigma_{2}^{N} \leq \bar{t}, \sigma_{2}^{N}-\sigma_{1}^{N}=\frac{\bar{t}}{N^{3}}$ and

$$
|w(u)| \leq \frac{3}{N}, \text { if } u \epsilon\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right] .
$$

Now, let

$$
\begin{aligned}
& W_{1}=\left\{\sigma_{2}^{N}-\sigma_{1}^{N}=\frac{\bar{t}}{N^{3}}\right\}, \\
& W_{2}=\left\{W: \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|w(u)|^{2 \gamma} d u>\frac{\bar{t}}{N^{2 \gamma+3}}\right\} .
\end{aligned}
$$

By lemma B

$$
P\left(W_{1}^{C}\right) \leq e^{-C_{1} N^{C_{2}}}
$$

and we have seen that $P\left(W_{2}^{C}\right) \leq e^{-C_{1} N^{C_{2}}}$. Let

$$
\theta(s)=\int_{0}^{s}|w(u)|^{2 \gamma} d u .
$$

Then by representation theorem for martingales, there exists one- $\mathbf{8 1}$ dimensional Brownian $B(t)$ such that

$$
\int_{0}^{t}|w(s)|^{\gamma} d W_{s}=B(\theta(t))
$$

For $w \epsilon W_{1} \cap W_{2}$,

$$
\begin{align*}
& \eta=\int_{0}^{\bar{t}}|B(\theta(t))|^{2} d t \geq \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|B(\theta(t))|^{2} d t \\
&=\int_{\theta\left(\sigma_{1}^{N}\right)}^{\theta\left(\sigma_{2}^{N}\right)}|B(s)|^{2} d \theta^{-1}(s) \text { changing the variables } \theta(t) \rightarrow s \\
&=\int_{\theta\left(\sigma_{1}^{N}\right)}^{\theta\left(\sigma_{2}^{N}\right)} \frac{|B(s)|^{2}}{\left|w\left(\theta^{-1}(s)\right)\right|^{2_{\gamma}} d s} \quad s=\int_{o}^{s} \frac{d(\theta(u))}{|w(u)|^{2_{\gamma}}} \\
& \geq \int_{\theta\left(\sigma_{1}^{N}\right)}^{\theta\left(\sigma_{2}^{N}\right)}|B(s)|^{2}\left(\frac{N}{3}\right)^{2_{\gamma}} d s \\
& \geq\left(\frac{N}{3}\right)^{2_{\gamma}} \theta^{-1}\left(s\left(\sigma_{1}^{N}\right)+\frac{\bar{t}}{N^{2}+3} \int_{o}^{\theta^{-1}(s)} \frac{d \theta(u)}{|w(u)|^{2 \gamma}}\right. \\
& i\left(\sigma_{1}^{N}\right) \tag{2.6}\\
& i . e ., \quad \eta \geq\left(\frac{N}{3}\right)^{2 \gamma} \int_{\theta\left(\sigma_{1}^{N}\right)+\frac{\bar{t}}{N^{2 \gamma+3}}}^{\int_{\theta\left(\sigma_{1}^{N}\right)}^{s}}|B(s)|^{2} d s .
\end{align*}
$$

To proceed further, we need the following lemma whose proof will be given later.

Let $I=[a, b]$ and for $f \epsilon L^{2}(I)$ define

$$
\bar{f}=\frac{1}{b-a} \int_{I} f(x) d x
$$

and

$$
V_{I}(f)=\frac{1}{b-a} \int_{I}\left(f(x)-\bar{f}^{2}\right) d x
$$

$82 \quad V_{I}$ has following properties:
(i) $V_{I}(f) \geq 0 \forall f \in L^{2}(I)$
(ii) $V_{I}^{1 / 2}(f+g) \leq V_{I}^{1 / 2}(f)+V_{I}^{1 / 2}(g)$
(iii) $V_{I}(f) \leq \frac{1}{b-a} \int_{I}(f(x)-k)^{2} d x$ for any constant k.

Lemma C. Let $B(t)$ be any one-dimensional Brownian motion on $I=$ $[0, a]$. Then the random variable $V_{[0, a]}(B)$ satisfies:

$$
P\left[V_{[0, a]}(B)<\epsilon^{2}\right] \leq \sqrt{2} e^{-\frac{a}{2^{7} \epsilon^{2}}}, \text { for every } \epsilon, a>0
$$

From (2.6), using the property (iii) of V_{I}, we get

$$
\eta \geq\left(\frac{N}{3}\right)^{2_{\gamma}} V_{\left[\theta\left(\sigma_{1}^{N}\right), \theta\left(\sigma_{1}^{N}\right)+\bar{t} /\left(N^{2 \gamma+3}\right)\right]}(B) \frac{\bar{t}}{N^{2}+3} .
$$

Now let

$$
W_{3}=\left\{w: \frac{\bar{t}}{3^{2 \gamma} N^{3}} V_{\left[\theta\left(\sigma_{1}^{N}\right), \theta\left(\sigma_{1}^{N}\right)+t /\left(N^{2 \gamma+3}\right)\right]}(B)>\frac{\bar{t}}{N^{m}}\right\}
$$

Then by lemma C we have, for sufficiently large m,

$$
\begin{aligned}
P\left(W_{3}^{C}\right) & \leq e^{-C_{3} N^{(m-3)-(2 \gamma+3)}} \\
& \leq e^{-C_{3} N^{C_{4}}}
\end{aligned}
$$

Hence on $W_{1} \cap W_{2} \cap W_{3}, n \geq \frac{\bar{t}}{N^{m}} \geq \frac{1}{N^{C_{5}}}$. Now

$$
\begin{aligned}
P\left(\left(W_{1} \cap W_{2} \cap W_{3}\right)^{c}\right) & \leq P\left(W_{1}^{c}\right)+P\left(W_{2}^{c}\right)+P\left(W_{3}^{c}\right) \\
& \leq e^{-c_{6}^{c^{c}}} .
\end{aligned}
$$

Hence by proposition 2.4 it follows that

$$
E\left[\eta^{-p}\right]<\infty, \forall \quad 1<p<\infty .
$$

Proof of Lemma C Using the scaling property of Brownian motion, $\mathbf{8 3}$ we have

$$
a V_{[0,1]}(B) \sim V_{[\circ, a]}(B) .
$$

Therefore, it is enough to prove that

$$
p\left[V_{[0,1]}(B)<\epsilon^{2}\right] \leq \sqrt{2} e^{-1\left(2^{7} \epsilon^{2}\right)}
$$

For $t \epsilon[0,1]$, we can write

$$
B(t)=t \xi_{0}+\sqrt{ } 2 \sum_{k=1}^{\infty}\left[\xi_{k}\left\{\frac{\cos (2 \pi k t)-1}{2 \pi k}\right\}+\eta_{k} \frac{\sin 2 \pi k t}{2 \pi k}\right]
$$

where $\left\{\xi_{k}\right\},\left\{\eta_{k}\right\}$ are i.i.d. $N(\circ, 1)$ random variables. Therefore

$$
B(t)-\int_{0}^{1} B(s) d s=\left(t-\frac{1}{2}\right) \xi_{0}+\sqrt{ } 2 \sum_{k=1}^{\infty}\left[\xi_{k} \frac{\cos 2 \pi k t}{2 \pi k}+\eta_{k} \frac{\sin 2 \pi k t}{2 \pi k}\right] .
$$

Note that the functions $\left\{t-\frac{1}{2}, \sin 2 \pi k t\right\}$ are orthogonal to $\{\cos 2 \pi k t\}$ in $L^{2}[o, 1]$. Therefore

$$
V=V_{[0,1]}(B) \geq \sum_{k=1}^{\infty} \xi_{k}^{2} \times \frac{1}{(2 \pi k)^{2}}
$$

Hence

$$
E\left(e^{-2 z^{2} V}\right) \leq E\left(e^{-2 z^{2}} \sum_{k} \xi_{k}^{2} /(2 \pi k)^{2}\right)
$$

$$
\begin{aligned}
& =\prod_{k} E\left(e^{-Z^{2} \xi_{k}^{2} / 2 \pi^{2} k^{2}}\right) \\
& =\prod_{k}\left(1+\frac{Z^{2}}{\pi^{2} k^{2}}\right)^{-1 / 2}=\sqrt{ }\left(\frac{Z}{\sin h z}\right) \\
& \leq \sqrt{ } 2 e^{-z / 4}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
P\left(V<\epsilon^{2}\right) & \leq e^{2 z^{2} \epsilon^{2}} E\left(e^{-2 z^{2} v}\right) \\
& \leq \sqrt{ } 2 e^{2 z^{2} \epsilon^{2}-\frac{Z}{4}}, \forall z
\end{aligned}
$$

$84 \quad$ Taking $z=\frac{1}{16 \epsilon^{2}}$, we get

$$
P\left(V_{[0,1]}(B)<\epsilon^{2}\right) \leq \sqrt{ } 2 e^{-1 /\left(2^{7} \epsilon^{2}\right)}
$$

Example 2.3. Let

$$
\xi(t)=\xi(0)+\sum_{\alpha=1}^{\gamma} \int_{0}^{t} \xi_{\alpha}(s) d W_{s}^{\alpha}+\int_{0}^{t} \xi_{0}(s) d s
$$

and suppose \exists a sequence of stopping times $\sigma_{1}^{N}, \sigma_{2}^{N}$,

$$
N=2,3, \ldots, \text { such that } 0 \leq \sigma_{1}^{N} \leq \sigma_{2}^{N} \leq \bar{t} \text { and }
$$

(i) $\sigma_{2}^{N}-\sigma_{1}^{N} \leq \frac{\bar{t}}{N^{3}}$.
(ii) $\sum_{\alpha=1}^{\gamma}\left|\xi_{\alpha}(s)\right|^{2}+\left|\xi_{0}(s)\right| \leq c_{1}, \forall s \epsilon\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]$,
(iii) $P\left[\sigma_{2}^{N}-\sigma_{1}^{N}<\frac{\bar{t}}{N^{3}}\right] \leq e^{-c_{2} N^{C_{3}}}$
(iv) $P\left[\int_{\sigma_{1}^{N}}^{\sigma_{2^{N}}}|\xi(t)|^{2} d t \leq \frac{1}{N_{4}^{C}}\right] \leq e^{-c_{2} N^{c_{3}}}$
where $c_{i}>0, i=1,2,3,4$ are all independent of N. Let
and

$$
\begin{gathered}
\eta(t)=\eta(0)+\int_{0}^{t} \xi(s) d s \\
\eta=\int_{0}^{\bar{t}}|\eta(s)|^{2} d s\left(\geq \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|\eta(s)|^{2} d s\right) .
\end{gathered}
$$

Then $\eta^{-1} \epsilon L_{P}, \forall 1<p<\infty$. This follows from the estimate $\exists c_{5}>$ $0, c_{6}>0, c_{7}>0$ (all independent of N) such that

$$
P\left[\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|\eta(t)|^{2} d t \leq \frac{1}{N^{C_{5}}}\right] \leq e^{-c_{6} N^{c_{7}}}
$$

To prove this, we need a few lemmas:
Lemma D. Let

$$
\xi(t)=\xi_{0}+\sum_{\alpha=1}^{\gamma} \int_{0}^{t} \xi_{\alpha}(s) d W_{s}^{\alpha}+\int_{0}^{t} \xi_{0}(s) d s
$$

Let

$$
\sup _{t_{1}<s \leq t_{2}} \sum_{\alpha}\left|\xi_{\alpha}(s)\right|^{2}+\left|\xi_{0}(s)\right| \leq c
$$

Then $\forall 0<\gamma<\frac{1}{2}, \exists c_{1}>0, c_{2}>0$ such that

$$
P\left[\sup _{s, t, \in\left[t_{1}, t_{2}\right]} \frac{|\xi(t)-\xi(s)|}{|t-s|^{\gamma}}>N\right] \leq e^{-c_{1} N^{c_{2}}}, N=2,3, \ldots
$$

Proof. Since we can always write

$$
\xi(t)=\xi(0)+B\left(\int_{0}^{t} \sum_{\alpha}(s)^{2} d s\right)+\int_{0}^{t} \xi_{0}(s) d s
$$

where $B(t)$ is a 1-dimensional Wiener process, it is enough to prove the Lemma when $\xi(t)=B(t)$. For $w \epsilon W_{0}^{r}$, let

$$
\|w\|_{\gamma}=\sup _{s, t \in[0, T]} \frac{|w(t)-w(s)|}{|t-s|^{\gamma}} .
$$

Let

$$
W_{\gamma}=\left\{w \epsilon W_{0}^{r}:\|w\|_{\gamma}<\infty\right\} .
$$

Then $W_{\gamma} \subset W_{0}^{r}$ is a Banach space and if $0<\gamma<1 / 2$, using the Kolmogorov-Prohorov theorem, it can be shown that P can be considered as a probability measure on $W_{\gamma}(\mathrm{cf}$. Ex. 1.2 with $k(t, s)=t \Lambda s)$. Therefore by Fernique's theorem,

$$
E\left(e^{\alpha\|w\|_{\gamma}^{2}}\right)<\infty
$$

for some $\alpha>0 \Rightarrow E\left(e^{\left.\|w\|_{\gamma}\right)<\infty}\right.$. Therefore

$$
\begin{aligned}
P\left(\|w\|_{\gamma}>N\right) & \leq e^{-N} E\left[e^{\|w\|_{\gamma}}\right] \\
& \leq e^{-c_{1} N^{c_{2}}}
\end{aligned}
$$

Lemma E. Let $f(s)$ be continuous on $[a, b]$ and let

$$
\begin{gathered}
\frac{|f(t)-f(s)|}{|t-s|^{1 / 3}} \leq k \\
\int_{a}^{b}|f(t)|^{2} d t>\epsilon^{2} \text { where } \epsilon^{3} \leq 2^{2} k^{3}(b-a)^{5 / 2}
\end{gathered}
$$

and

Let

$$
g(t)=g(a)+\int_{a}^{t} f(s) d s
$$

Then

$$
(b-a) V_{[a, b]}(g) \geq \frac{1}{2^{9} .48} \frac{\epsilon^{11}}{k^{9}(b-a)^{1+9 / 2}} .
$$

Proof. $\exists t_{o} \in[a, b]$ such that $\left|f\left(t_{o}\right)\right|>\frac{\epsilon}{(b-a)^{1 / 2}}$.
Therefore $|f(s)| \geq\left|f\left(t_{o}\right)\right|-\left|f\left(t_{o}\right)-f(s)\right|$ implies

$$
|f(s)| \geq \frac{\epsilon}{2(b-a)^{1 / 2}} \text { if }\left|t_{o}-s\right| \leq \frac{\epsilon^{3}}{k^{3} 2^{3}(b-a)^{3 / 2}}
$$

We denote by I the interval of length

$$
|I|=\frac{\epsilon^{3}}{k^{3} 2^{3}(b-a)^{3 / 2}}
$$

which is contained in $[a, b]$ and is of the form $\left[t_{o}, t_{o}+|I|\right]$ or $\left[t_{o}-|I|, t_{o}\right]$. Such I exists, since

$$
\frac{\epsilon^{3}}{k^{3} 2^{3}(b-a)^{3 / 2}} \leq \frac{b-a}{2}
$$

Note that $f(s)$ has constant sign in I. Therefore

$$
\begin{aligned}
(b-a) V_{[a, b]}(g) & =\int_{a}^{b}(g(s)-\bar{g})^{2} d s \\
& \geq \int_{I}(g(s)-\bar{g})^{2} d s \\
& \geq \int_{I}\left(g(s)-\left.\bar{g}\right|_{I}\right)^{2} d s
\end{aligned}
$$

But we can always find $t_{1} \epsilon I$ with $\bar{g} \mid I=g\left(t_{1}\right)$. Therefore

$$
\begin{aligned}
(b-a) V_{[a, b]}(g) & \geq \int_{I}\left(\int_{t_{1}}^{s} f(u) d u\right)^{2} d s \\
& \geq \frac{\epsilon^{2}}{4(b-a)} \int_{I}\left(s-t_{1}\right)^{2} d s \\
& \geq \frac{\epsilon^{2}}{4(b-a)} \int_{\alpha}^{\beta}\left(s-\frac{\alpha+\beta}{2}\right)^{2} d s \text { where } I=(\alpha, \beta)
\end{aligned}
$$

$$
=\frac{1}{48} \frac{\epsilon^{2}}{(b-a)}|I|^{3} .
$$

Proof of ex. 2.3: Let

$$
\begin{aligned}
& W_{1}=\left\{\sigma_{2}^{N}-\sigma_{1}^{N}=\frac{\bar{t}}{N^{3}}\right\} . \\
& W_{2}=\left\{\sup _{s, t \in\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]} \frac{|\xi(t)-\xi(s)|}{\left.|t-s|^{1 / 3} \leq N\right\}}\right. \\
& W_{3}=\left\{\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|\xi(t)|^{2} d t \geq \frac{1}{N^{c_{4}}}\right\} .
\end{aligned}
$$

Then by Lemma D and assumptions (iii) and (iv), we get

$$
P\left(w_{1}^{c} \cup w_{2}^{c} \cup W_{3}^{c}\right) \leq e^{-a_{1} N^{a_{2}}}, a_{1}>0, a_{2}>0
$$

Hence, if $w \epsilon W_{1} \cap W_{2} \cap W_{3}$, by Lemma we can choose $c_{5}>0$ such that

$$
\left(\sigma_{1}^{N}-\sigma_{1}^{N}\right) V_{\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]}(\eta)>\frac{1}{N^{c_{5}}}
$$

and since

$$
V_{\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]}(\eta) \leq \frac{1}{\sigma_{2}^{N}-\sigma_{1}^{N}} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|\eta(t)|^{2} d t
$$

we have

$$
P\left[\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|\eta(t)|^{2} d t \leq \frac{1}{N^{c_{5}}}\right] \leq e^{-a_{1} N^{a_{2}}}
$$

Key Lemma: Let $\eta(t)=\eta(0)+\Sigma_{\alpha=1}^{r} \int_{o}^{t} \eta_{\alpha}(s) d W_{s}^{\alpha}+\int_{o}^{t} \eta_{o}(s) d s$ where $\eta_{o}(t)$
is also an Itô process given by

$$
\eta_{o}(t)=\eta_{o}(0)+\sum_{\beta=1}^{r} \int_{o}^{t} \eta_{o \beta}(s) d W_{s}^{\beta}+\int_{o}^{t} \eta_{o o}(s) d s .
$$

Suppose we have sequences of stopping times $\left\{\sigma_{1}^{N}\right\},\left\{\sigma_{2}^{N}\right\}$ such that $0 \leq \sigma_{1}^{N}<\sigma_{2}^{N} \leq \bar{t}$ for $0<\bar{t} \leq T, N=2,3, \ldots$ and satisfying
(i) $\sigma_{2}^{N}-\sigma_{1}^{N} \leq \frac{\bar{t}}{N^{3}}$,
(ii) $P\left(\sigma_{2}^{N}-\sigma_{1}^{N}<\frac{\bar{t}}{N^{3}}\right) \leq e^{-c_{1} N^{c_{2}}}, \exists$ for some $C_{1}, c_{2}>0$
(iii) $\exists c_{3}>0$ such that for a.a.w

$$
|\eta(t)|+\sum_{\alpha=o}^{r}\left|\eta_{\alpha}(t)\right|+\sum_{\beta=o}^{r}\left|\eta_{o \beta}(t)\right| \leq c_{3}
$$

for every $t \epsilon\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]$.
Then for any given $c_{4}>o, \exists c_{5}, c_{6}, c_{7}>o$ (which depend only on $\left.c_{1}, c_{2}, c_{3}, c_{4}\right)$ such that

$$
\begin{aligned}
P\left[\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|\eta(t)|^{2} d t\right. & \left.\leq \frac{1}{N^{c_{5}}}, \sum_{\alpha=o}^{r} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left|\eta_{\alpha}(t)\right|^{2} d t>\frac{1}{N^{c_{4}}}\right] \\
& \leq e^{-c_{6} N^{c_{7}}}, N=2,3, \ldots
\end{aligned}
$$

Proof. For simplicity, we take $\bar{t}=1$. Let

$$
\begin{aligned}
& W_{1}=\left[\sigma_{2}^{N}-\sigma_{1}^{N}=\frac{1}{N^{3}}\right] \\
& W_{2}=\left[\sup _{s, t \in\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]} \frac{\left|\eta_{o}(t)-\eta_{o}(s)\right|}{|t-s|^{1 / 3}} \leq N\right]
\end{aligned}
$$

then, by the hypothesis (ii), (iii) and Lemma \exists constants $d_{1}, d_{2}>0 \quad \mathbf{8 9}$ such that

$$
\begin{equation*}
P\left(W_{1}^{c} \cup W_{2}^{c}\right) \leq e^{-d_{1} N^{d_{2}}} \tag{2.7}
\end{equation*}
$$

Now, by representation theorem, on $\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right], \eta(t)$ can be written as

$$
\begin{equation*}
\eta(t)=\eta\left(\sigma_{1}^{N}\right)+B(A(t))+g(t) \tag{2.8}
\end{equation*}
$$

where

$$
A(t)=\int_{\sigma_{1}^{N}}^{t} \sum_{\alpha=1}^{r}\left|\eta_{\alpha}(s)\right|^{2} d s, g(t)=\int_{\sigma_{1}^{N}}^{t} \eta_{o}(s) d s
$$

and $B(t)$ is one-dimensional Brownian motion with $B(0)=0$.
In Ex. 2.3, we obtained that, for every $a_{1}>0, \exists a_{2}>0$ such that

$$
\begin{equation*}
\left[V_{\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]}(g) \leq \frac{1}{N^{a_{2}}}\right] \subset W_{1}^{c} \cup W_{2}^{c} \cup\left[\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left|\eta_{o}(t)\right|^{2} d t<\frac{1}{2 N^{a_{1}}}\right] \tag{2.9}
\end{equation*}
$$

Let

$$
W_{3}=\left[\sum_{\alpha=o}^{r} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left|\eta_{\alpha}(t)\right|^{2} d t \geq \frac{1}{N^{c_{4}}}\right]
$$

Choose a_{3} such that $a_{3}>c_{4}+1$, which implies

$$
\frac{1}{2 N^{c_{4}}}>\frac{1}{N^{a_{3}}}, N=2,3, \ldots
$$

Therefore

$$
\begin{aligned}
W_{3} & \subset\left[\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left|\eta_{o}(t)\right|^{2} d t \geq \frac{1}{2 N^{c_{4}}}\right] \cup\left[A\left(\sigma_{2}^{N}\right) \geq \frac{1}{2 N^{c_{4}}}\right] \\
& \subset W_{3,1} \cup W_{3,2}
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{3,1}=\left[\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left|\eta_{o}(t)\right|^{2} d t>\frac{1}{2 N^{c_{4}}}, A\left(\sigma_{2}^{N}\right)<\frac{1}{N^{a_{3}}}\right] \\
& W_{3,2}=\left[A\left(\sigma_{2}^{N}\right) \geq \frac{1}{N^{a_{3}}}\right]
\end{aligned}
$$

In (2.9), taking $a_{1}=c_{4}$, we get, $\exists a_{2}>0$ such that

$$
\left[V_{\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]}(g) \leq \frac{1}{N^{a_{2}}}, \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left|\eta_{o}(t)\right|^{2} d t>\frac{1}{2 N^{c_{4}}}\right] \subset W_{1}^{c} \cup W_{2}^{c}
$$

So, in particular,

$$
\begin{equation*}
W_{3,1} \cap\left[V_{\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]}(g) \leq \frac{1}{N^{a_{2}}}\right] \subset W_{1}^{c} \cup W_{2}^{c} \tag{2.10}
\end{equation*}
$$

Let

$$
W_{4}=\left[\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|\eta(t)|^{2} d t<\frac{1}{N^{a_{4}}}\right],
$$

where a_{4} is some constant which will be chosen later. Then, for $w \in W_{4} \cap$ W_{1},

$$
V_{\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]}(\eta) \leq \frac{1}{\left(\sigma_{2}^{N}-\sigma_{1}^{N}\right)} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|\eta(t)|^{2} d t \leq \frac{N^{3}}{N^{a_{4}}}
$$

i.e.

$$
\begin{equation*}
V_{\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]}(\eta) \leq \frac{1}{N^{a_{s}}} \text { if } a_{4} \geq a_{5}+3 \tag{2.11}
\end{equation*}
$$

Let

$$
W_{5}=\left[\sup _{0 \leq u \leq 1 /\left(N^{a_{3}}\right)}|B(u)| \leq \frac{1}{N^{a_{5}}}\right]
$$

then, by Lemma

$$
\begin{equation*}
P\left(W_{5}^{c}\right) \leq d_{3} e^{-N}, \text { if } a_{3}>2 a_{5}+1 \tag{2.12}
\end{equation*}
$$

Now, for $w \epsilon W_{3,1} \cap W_{4} \cap W_{1} \cap W_{5}$, by (2.8),

$$
\begin{aligned}
V_{\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]}^{1 / 2}(g) & \leq V_{\sigma_{1}^{N}, \sigma^{2}}^{1 / 2}(\eta)+V_{\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]}^{1 / 2}(B(A(t))) \\
& \leq \frac{1}{N^{a_{5} / 2}}+\frac{1}{N^{a_{5} / 2}}
\end{aligned}
$$

(by (2.11) and definition of W_{5} and since, on

$$
\left.\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right], 0 \leq A(t) \leq \frac{1}{N^{a_{3}}}\right)
$$

$$
=\frac{2}{N^{a_{5} / 2}}
$$

Now choose a_{5} such that $\frac{2}{N^{a_{5} / 2}} \leq \frac{1}{N^{a_{2}}}$; then

$$
V_{\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]}(g) \leq \frac{1}{N^{a_{2}}}
$$

Hence

$$
W_{3,1} \cap W_{4} \cap W_{1} \cap W_{5} \subset\left[V_{\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]}(g) \leq \frac{1}{N^{a_{2}}}\right]
$$

which implies by (2.10) that

$$
W_{3,1} \cap W_{4} \cap W_{1} \cap W_{5} \subset W_{1}^{c} \cup W_{2}^{c}
$$

Therefore

$$
W_{3,1} \cap W_{4} \subset W_{1}^{c} \cup W_{2}^{c} \cup W_{5}^{c}
$$

So choosing $a_{3} \geq c_{4}+1, a_{3}>2 a_{5}+1, a_{5}>2\left(a_{2}+1\right)$ and $a_{4} \geq a_{5}+3$, we can conclude form (2.7) and (2.12) that

$$
P\left[W_{1}^{c} \cup W_{2}^{c} \cup W_{5}^{c}\right] \leq e^{-d_{4} N^{d_{5}}}, \forall N=2,3, \ldots
$$

for some constants $d_{4}>0$ and $d_{5}>0$ and therefore

$$
\begin{equation*}
P\left[W_{3,1} \cap W_{4}\right] \leq e^{-d_{4} N^{d_{5}}}, \forall N=2,3, \ldots \tag{2.13}
\end{equation*}
$$

Next we prove that $W_{3,2} \cap W_{4}$ is also contained in a set which is exponentially small, i.e.,

$$
P\left(W_{3,2} \cap W_{4}\right) \leq^{-d_{6} N^{d 7}}
$$

for some $d_{6}>0, d_{7}>0$.
For $w \epsilon W_{1}$, we divide $\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right]=\left[\sigma_{1}^{N}, \sigma_{1}^{N}+\frac{1}{N^{3}}\right]$ into N^{m} subintervals of the same length viz.

$$
I_{k}=\left[\sigma_{1}^{N}+\frac{k}{N^{3+m}}, \sigma_{1}^{N}+\frac{k+1}{N^{3+m}}\right], k=0,1, \ldots N^{m}-1
$$

Also, we choose $m>a_{3}$. Then

$$
\begin{aligned}
& \begin{aligned}
\int_{I_{k}}|\eta(t)|^{2} d t & =\int_{I_{k}}\left|\eta\left(\sigma_{1}^{N}\right)+B(A(t))+g(t)\right|^{2} d t \\
& =\int_{A\left(I_{k}\right)}\left|\eta\left(\sigma_{1}^{N}\right)+B(s)+g\left(A^{-1}(s)\right)\right|^{2} d A^{-1}(s) \\
& \left(\text { where } A\left(I_{k}\right)=\left[A\left(\sigma_{1}^{N}+\frac{k}{N^{3+m}}\right), A\left(\sigma_{1}^{N}+\frac{k+1}{N^{3+m}}\right)\right]\right) \\
& \geq \frac{1}{c} \int_{A\left(I_{k}\right)}\left|\eta\left(\sigma_{1}^{N}\right)+B(s)+g\left(A^{-1}(s)\right)\right|^{2} d s
\end{aligned} \\
& \text { (since } A(t)=\int_{\sigma_{1}^{N}}^{t} a(s) d s \Rightarrow d A^{-1}(s)=\frac{d s}{a\left(A^{-1}(s)\right)} \\
& \text { and } a(s)\left.=\sum_{\alpha=1}^{r}\left|\eta_{\alpha}(s)\right|^{2} \leq c\right) .
\end{aligned}
$$

Let

$$
J_{k}=\left[A\left(\sigma_{1}^{N}+\frac{k}{N^{3+m}}\right), A\left(\sigma_{1}^{N}+\frac{k}{N^{3+m}}\right)+\frac{1}{N^{a_{3}+m}}\right]
$$

Note that $J_{k}^{\prime} s$ are of constant length. Then

$$
W_{1} \cap\left[\left|A\left(I_{k}\right)\right| \geq \frac{1}{N^{a_{3}+m}}\right] \subset W_{1} \cap\left[A\left(I_{k}\right) \supset J_{k}\right]
$$

$$
\begin{align*}
& \subset W_{1} \cap\left[\int_{I_{k}}|\eta(t)|^{2} d t \geq \frac{1}{c} \int_{J_{k}}\left|\eta\left(\sigma_{1}^{N}\right)+B(s)+g\left(A^{-1}(s)\right)\right|^{2} d s\right] \text { by } 2.14 \\
& \left.\subset W_{1} \cap\left[\int_{I_{k}}|\eta(t)|^{2} d t \geq \frac{\left|J_{k}\right|}{c} V_{J_{k}}(B(.)+\tilde{g})\right] \quad \text { (where } \tilde{g}=g\left(A^{-1}\right)\right) \\
& \subset W_{1} \cap\left[\int_{I_{k}}|\eta(t)|^{2} d t \geq \frac{\left|J_{k}\right|}{c}\left(V_{j_{k}}^{1 / 2}(B)-V_{J_{k}}^{1 / 2}(\tilde{g})\right)^{2}\right] \tag{2.15}
\end{align*}
$$

Since

$$
\begin{aligned}
g=\int_{o}^{t} \eta_{o}(s) d s \text { and }\left|\eta_{o}(s)\right| \leq c \text { on } & {\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right] } \\
& |\tilde{g}(t)-\tilde{g}(s)| \leq c\left|A^{-1}(t)-A^{-1}(s)\right|
\end{aligned}
$$

$$
\begin{align*}
& \text { Therefore with } \\
& \qquad \begin{aligned}
& V_{J_{k}}(\tilde{g}) \leq \frac{1}{\left|J_{k}\right|} \int_{J_{k}}\left|\tilde{g}(t)-\tilde{g}\left(\sigma_{1}^{N}\right)\right|^{2} d t \\
& \\
& \leq \frac{c^{2}}{\left|J_{k}\right|} \int_{J_{k}}\left(A^{-1}(t)-A^{-1}\left(t_{o}\right)\right)^{2} d s \\
& \leq c^{2}\left[A^{-1}\left\{A\left(\sigma_{1}^{N}+\frac{k}{N^{3+m}}\right)+\frac{1}{N^{a_{3}+m}}\right\}-\left(\sigma_{1}^{N}+\frac{k}{N^{3+m}}\right)\right]^{2} \\
& \leq c^{2}\left[\sigma_{1}^{N}+\frac{k+1}{N^{3+m}}-\left(\sigma_{1}^{N}+\frac{k}{N^{3+m}}\right)\right] 2\left(\text { since } J_{k} \subset A\left(I_{k}\right)\right) \\
&=\frac{c^{2}}{N^{6+2 m}}
\end{aligned}
\end{align*}
$$

Hence

$$
\begin{equation*}
W_{1} \cap\left[J_{k}^{1 / 2}(B)>\frac{2 c}{N^{3+m}},\left|A\left(I_{k}\right)\right| \geq \frac{1}{N^{a_{3}+m}}\right] \tag{2.17}
\end{equation*}
$$

$$
\begin{aligned}
& \subset W_{1} \cap\left[\int_{I_{k}}|(\eta)|^{2} d t \geq\left[c \frac{1}{N^{3+m}}\right]^{2} \frac{N_{\left|J_{k}\right|}}{c}\right] \text { by } 2.15 \text { and } 2.16 \\
& =W_{1} \cap\left[\int_{I_{k}} \left\lvert\, \eta(t)^{2} d t \geq \frac{c}{N^{6+3 m+a 3}}\right.\right]
\end{aligned}
$$

Let

$$
W_{6}=\bigcap_{k=o}^{N^{m}-1}\left[V_{J_{k}}^{1 / 2}(B) \geq \frac{2 c}{N^{3+m}}\right]
$$

Since

$$
\begin{aligned}
A\left(\sigma_{2}^{N}\right) & =\sum_{k=0}^{N^{m}-1}\left|A\left(I_{k}\right)\right|, w \epsilon W_{1} \cap W_{3,2} \\
& \Rightarrow \exists k \ni\left|A\left(I_{k}\right)\right| \geq \frac{1}{N^{a_{3}+m}} \\
& \Rightarrow W_{1} \cap W_{3,2} \subset \cup_{k=0}^{N^{m}-1}\left\{\left|A\left(I_{k}\right)\right|>\frac{1}{N^{a_{3}+m}}\right\} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
W_{1} \cap W_{6} \cap W_{3,2} & \subset \bigcup_{k=0}^{N^{m}-1}\left\{\left[\left|A\left(I_{k}\right)\right|>\frac{1}{N^{a_{3}+m}}\right], V_{J_{k}}^{1 / 2}(B) \geq \frac{2 c}{N^{3+m}}\right\} \cap W_{1} \\
& \subset \bigcup_{k=0}^{N^{m}-1}\left[\int_{I_{k}}|\eta(t)|^{2} d t \geq \frac{c}{N^{6+3 m+a_{3}}}\right] \cap W_{1} \text { by } 2.17 \\
& \subset\left[\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}|\eta(t)|^{2} d t \geq \frac{c}{N^{6+3 m+a_{3}}}\right] \cap W_{1} . \tag{2.18}
\end{align*}
$$

Therefore, if we choose a_{4} such that

$$
\frac{1}{N^{a_{4}}}<\frac{c}{N^{6+3 m+a_{3}}}, \forall N=2,3, \ldots
$$

then (2.18) implies $W_{1} \cap W_{6} \cap W_{3,2} \cap W_{4}=\phi$, which implies $W_{3,2} \cap W_{4} \subset$ $W_{1}^{c} \cup W_{6}^{c}$.

$$
\begin{align*}
P\left(W_{6}^{c}\right) & \leq \sum_{k} P\left[V_{J_{k}}^{1 / 2}(B)<\frac{2 c}{N^{3+m}}\right] \\
& \leq N^{m} e^{-d_{8}\left|J_{k}\right|\left(2 c \backslash\left(N^{3+m}\right)\right)^{2}} \forall k(\text { by Lemma (C) }) \\
& =N^{m} e^{-d_{9} N^{6+2 m-a_{3}-m}} \\
& \leq N^{m} e^{d_{9} N^{6}}\left(\text { since } m>a_{3}\right) \\
& \leq e^{-d_{10} N^{d_{11}}} \tag{2.19}
\end{align*}
$$

95 Choosing $c_{5}=a_{4}, 2.13$ and (2.19) give us the required result

2.3 Regularity of Transition Probabilities

We are now going to obtain a sufficient condition for A.2 to be satisfied in the case of X_{t} which is the solution to 2.1).

We recall that

$$
\begin{aligned}
L_{\alpha}(x) & =\sum_{i=1}^{d} \sigma_{\alpha}^{i}(x) \frac{\partial}{\partial x^{i}}, \alpha=1,2 \ldots, r \\
L_{o}(x) & =\sum_{i=1}^{d} \tilde{b} i(x) \frac{\partial}{\partial x^{i}}
\end{aligned}
$$

where

$$
\tilde{d}^{i}(x)=b^{i}(x)-\frac{1}{2} \sum_{k, \alpha} \partial_{k} \sigma_{\alpha}^{i}(x) \sigma_{\alpha}^{k}(x)
$$

Let

$$
\begin{aligned}
& \Sigma_{0}=\left\{L_{1}, L_{2}, \ldots, L_{r}\right\} \\
& \Sigma_{1}=\left\{\left[L_{\alpha}, L\right]: L \epsilon \Sigma_{o}, \alpha=0,1, \ldots, r\right\} \\
& \ldots \quad \cdots \quad \cdots \quad \ldots \\
& \Sigma_{n}=\left\{\left[L_{\alpha}, L\right]: L \epsilon \Sigma_{n-1}, \alpha=0,1, \ldots, r\right\} .
\end{aligned}
$$

$$
L \epsilon \sum_{n} \Rightarrow \exists \alpha_{o} \epsilon\{1,2, \ldots r\}, \alpha_{i} \epsilon\{0, \ldots r\}, i=1 \ldots n
$$

such that

$$
L=\left[L_{\alpha_{n}}\left[\ldots\left[L_{\alpha_{2}}\left[L_{\alpha_{1}}, L_{\alpha_{o}}\right]\right] \ldots\right] .\right.
$$

Let

$$
\begin{aligned}
& \left(L_{\alpha}, L\right):=\left[L_{\alpha}, L\right], \alpha=1,2 \ldots r \\
& \left(L_{0}, L\right):=\left[L_{o}, L\right]+\frac{1}{2} \sum_{\beta=1}^{r}\left[L_{\beta},\left[L_{\beta}, L\right]\right] .
\end{aligned}
$$

Then we have

$$
f_{L}^{i}\left(r_{t}\right)-f_{L}^{i}\left(r_{o}\right)=\sum_{\alpha=1}^{r} \int_{0}^{t} f_{\left(L_{\alpha}, L\right)}^{i}\left(r_{s}\right) d W_{s}^{\alpha}+\int_{o}^{t} f_{\left(L_{0}, L\right)}^{i}\left(r_{s}\right) d s
$$

where f_{L}^{i}, r_{t} etc. are as in proposition 2.3. Let

$$
\begin{aligned}
& \Sigma_{o}^{\prime}=\Sigma_{o} \\
& \cdots \cdots \\
& \Sigma_{n}^{\prime}=\left\{\left(L_{\alpha}, L\right): L \epsilon \Sigma_{n-1}^{\prime}\right\}
\end{aligned}
$$

then

$$
\begin{aligned}
& L \epsilon \sum_{n}^{\prime} \text { implies } \\
& \begin{aligned}
L & =\left(L_{\alpha_{n}},\left(L_{\alpha_{n-1}} \cdots\left(L_{\alpha_{1}}, L_{\alpha_{o}}\right)\right) \cdots\right) \\
& =L_{\alpha_{o}}, \alpha_{1} \cdots \alpha_{n}
\end{aligned}
\end{aligned}
$$

for some

$$
\alpha_{o} \epsilon\{1,2, \ldots, r\}, \alpha_{i} \in\{0, \ldots, r\}, i=1, \ldots, n .
$$

Let

$$
\begin{gathered}
\hat{\Sigma}_{m}^{\prime}=\Sigma_{o}^{\prime} \cup \Sigma_{1}^{\prime} \cup \cdots \cup \Sigma_{m}^{\prime} \\
\hat{\Sigma}_{m}=\Sigma_{o} \cup \Sigma_{1} \cup \cdots \cup \Sigma_{m}
\end{gathered}
$$

It is easy to see that the following two statements are equivalent:
(i) at $x \in R^{d}, \exists M$ and $A_{1}, A_{2} \ldots, A_{d} \epsilon \hat{\Sigma}_{M^{\prime}}$ such that $A_{1}(x), A_{2}(x) \ldots$ $A_{d}(x)$ are linearly independent.
(ii) at $x \in R^{d}, \exists M$ and $A_{1}, A_{2} \ldots, A_{d} \epsilon \hat{\Sigma}_{M}$ such that $A_{1}(x), A_{2}(x) \ldots A_{d}(x)$ are linearly independent.
Theorem 2.7. Suppose for $x \in \mathbb{R}^{d}, \exists M>0$ and $A_{1}, A_{2}, \ldots, A_{d} \in \hat{\Sigma}_{M^{\prime}}$ such that $A_{1}(x), A_{2}(x), \ldots, A_{d}(x)$ are independent. Then, for every $t>0$,

$$
X_{t}=\left(X_{1}(t, x, w), X_{2}(t, x, w), \ldots, X_{d}(t, x, w)\right)
$$

which is the solution of (2.1), satisfies (4.2) and hence the probability law of $\chi(t, x, w)$ has C^{∞}-density $p(t, x, y)$.

Remark 1. $p(t, x, y)$ is the fundamental solution of

$$
\begin{array}{r}
\qquad \begin{array}{r}
\frac{\partial u}{\partial t}=\left[\frac{1}{2} \sum_{\alpha=1}^{r} L_{\alpha}^{2}+L_{o}\right] u \\
\left.u\right|_{t=o}=f \\
\text { i.e., } u(t, x)=\int_{\mathbb{R}^{d}} p(t, x, y) f(y) d y
\end{array} .
\end{array}
$$

Remark 2. The general equation

$$
\frac{\partial u}{\partial t}=\left[\frac{1}{2} \sum_{\alpha=1}^{r} L_{\alpha}^{2}+L_{o}+c(.)\right] u, \text { where } c \epsilon C_{b}^{\infty}\left(\mathbb{R}^{d}\right)
$$

has also C^{∞}-fundamental solution and is given by

$$
p(t, x, y)=<\Delta_{y}(X(t, x, w)), G(w)>
$$

where

$$
G(w)=e^{\int_{o}^{t} c(X(t, x, w)) d s} \epsilon \mathbb{D}_{\infty}
$$

Remark 3. The hypothesis in the theorem 2.6 is equivalent to the following: For $x \in \mathbb{D}^{d}, \exists M>0$ such that

$$
\begin{equation*}
\inf _{\ell \in S^{d-1}} \sum_{A \in \hat{\Sigma}_{M^{\prime}}}<A(x), \ell>^{2}>0 \tag{2.20}
\end{equation*}
$$

where

$$
S^{d-1}=\left\{l \epsilon \mathbb{D}^{d}:|\ell|=1\right\}
$$

Proof of theorem 2.7. By (2.20), $\exists \epsilon_{o}>0$ and bounded neighbourhood $U(x)$ of x in $\mathbb{R}^{d}, U\left(I_{d}\right)$ in $G L(d, \mathbb{R})$ such that

$$
\begin{equation*}
\inf _{\ell \in S^{d-1}} \sum_{A \in \hat{\Sigma}_{M^{\prime}}}<\left(e^{-1} A\right)(y), \ell>^{2} \geq \epsilon_{o} \tag{2.21}
\end{equation*}
$$

for every $y \epsilon U(x)$ and $e \epsilon U\left(I_{d}\right)$. Let $l \epsilon S^{d-1}$ and A be any vector field. Define

$$
f_{A}^{(l)}(r)=<f_{A}(r), \ell>,
$$

(cf. definition 2.1) where $<,>$ is the inner product in \mathbb{R}^{d}; then we have the corresponding Itô formula as

$$
f_{A}^{(\ell)}\left(r_{t}\right)-f_{A}^{(\ell)}\left(r_{o}\right)=\sum_{\alpha=1}^{r} \int_{o}^{t} f_{\left(L_{\alpha}, A\right)}^{(\ell)}\left(r_{s}\right) d W_{s}^{\alpha}+\int_{o}^{t} f_{\left(L_{o}, A\right)}^{(\ell)}\left(r_{s}\right) d s
$$

where $r_{t}=\left(Y_{t}, Y_{t}\right), X_{t}, Y_{t}$ being the solution of (2.1), (2.2) respectively.
Recall that

$$
\hat{O}_{t}^{i j}=\sum_{\alpha=1}^{r} \int_{o}^{t} f_{L_{\alpha}}^{i}\left(r_{s}\right) f_{L_{\alpha}}^{j}\left(r_{s}\right) d s
$$

and by proposition [2.5] to prove the theorem, it is enough to prove that $\left(\operatorname{det} \hat{\Sigma}_{t}^{-1} \epsilon\right) \epsilon L_{p}$ for $1<p<\infty$. Now

$$
\begin{aligned}
<\hat{\sigma}_{t} \ell, \ell> & =\sum_{i, j=1}^{d} \hat{\Sigma}_{t}^{i, j} \ell^{i} \ell^{j}, \ell=\left(\ell^{1}, \ell^{2}, \ldots, \ell^{d}\right) \\
& =\sum_{\alpha=1}^{r} \int_{o}^{t}\left[f_{L_{\alpha}}^{(\ell)}\left(r_{s}\right)\right]^{2} d s
\end{aligned}
$$

Let $A \epsilon \hat{\sum}_{M^{\prime}}$. Note that $A \epsilon \hat{\sum}_{M^{\prime}}$ implies $\exists n, 0 \leq n \leq M$ and $\alpha_{i} \epsilon$ $\{0,1,2, \ldots, r\}, 0 \leq i \leq n, \alpha_{o} \neq 0$, such that

$$
A=L_{\alpha_{o}, \alpha_{1}, \ldots, \alpha_{n}}
$$

Also note that the number of elements in $\hat{\Sigma}_{M^{\prime}}$ is

$$
\sum_{n=o}^{M} r(r+1)^{n}=k(M)(\text { say })
$$

Define the stopping time σ by

$$
\sigma=\inf \left\{t:\left(X_{t}, Y_{t}\right) \notin U(x) \times U\left(I_{d}\right)\right\}
$$

By lemma for $\bar{t}>0$, we have

$$
P\left(\sigma<\frac{\bar{t}}{N 3}\right) \leq e^{-c_{1} N^{3}}
$$

Now in the Key lemma, set for $N=2,3, \ldots, \sigma_{1}^{N}=0$ and

$$
\sigma_{2}^{N}=\sigma \Lambda \frac{\bar{t}}{N 3}
$$

100
Then the following are satisfied:
(i) $0 \leq \sigma_{1}^{N}<\sigma_{2}^{N} \leq \bar{t}, \sigma_{2}^{N}-\sigma_{1}^{N} \leq \frac{\bar{t}}{N 3}$.
(ii) $P\left(\sigma_{2}^{N}-\sigma_{1}^{N}<\frac{\bar{t}}{N 3}\right) \leq e^{c_{1} N^{3}}$,
(iii) If we set

$$
C=\sup _{l \in S^{d-1}} \sup _{r \in U(x) \times U\left(I_{d}\right)} \sum_{A \in \hat{\Sigma}_{M^{\prime}+1}}\left[f_{A}^{(l)}(r)\right]^{2}
$$

then for

$$
t \epsilon\left[\sigma_{1}^{N}, \sigma_{2}^{N}\right], \sum_{A \epsilon \hat{\Sigma}_{M^{\prime}+1}}\left[f_{A}^{(l)}(r)\right]^{2} \leq C<\infty .
$$

For

$$
w \epsilon W_{1}=\left\{\sigma_{2}^{N}-\sigma_{1}^{N}=\frac{\bar{t}}{N 3}\right\}
$$

by choice $U(x) \times U\left(I_{d}\right)$ and (2.21, we have

$$
\begin{equation*}
\inf _{||| |=1} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}} \sum_{A \epsilon \hat{\Sigma}_{M^{\prime}}}\left[f_{A}^{(\ell)}\left(r_{s}\right)\right]^{2} d s \geq \epsilon_{o} \frac{\bar{t}}{N^{3}} \tag{2.22}
\end{equation*}
$$

Choose $\gamma>0$ such that

$$
\frac{1}{k(M)} \frac{\epsilon_{o} \bar{t}}{N^{3}} \geq \frac{1}{N^{\gamma}} .
$$

For $A=L_{\alpha_{o}, \alpha_{1}, \ldots, \alpha_{n}} \epsilon \hat{\Sigma}_{M^{\prime}}$ and $\ell \in S^{d-1}$, define

$$
\begin{aligned}
W_{k}^{A, \ell}= & \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left[f^{(\ell)} L_{\alpha_{o}, \alpha_{1}, \ldots, \alpha_{k-1}}\left(r_{s}\right)\right]^{2} d s<\frac{1}{N^{C_{k-1}}}, \\
& \sum_{\alpha=0}^{r} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left[f^{(\ell)} L_{\alpha_{o}, \alpha_{1}, \ldots, \alpha_{k-1} \alpha}\left(r_{s}\right)\right]^{2} d s \geq \frac{1}{N^{C_{k}}}, k=1,2,3, \ldots, n,
\end{aligned}
$$

where $C_{n}, C_{n-1}, \ldots C_{o}$ are obtained applying Key Lemma successively as follows:

Let $C_{n}=\gamma>0$. Then by Key Lemma, $\exists C_{n-1}, a_{n}, b_{n}$ such that

$$
P\left(W_{n}^{A, \ell}\right) \leq e^{-a_{n} N^{D_{n}}} .
$$

Now again by Key Lemma, for given $C_{n-1}, \exists C_{n-2}, a_{n-1}, b_{n-1}$ such that

$$
P\left(W_{n-1}^{A, \ell}\right) \leq e^{-a_{n-1} N^{b_{n-1}}} .
$$

And proceeding like this, we see that given $C_{1}, \exists C_{o}, a_{1}, b_{1}$ such that

$$
P\left(W_{1}^{A, \ell}\right) \leq e^{-a_{1} N^{b_{1}}} .
$$

Hence we see that

$$
P\left(W_{n}^{A, \ell}\right) \leq e^{-a N^{b}, k=1,2, \ldots, n,}
$$

where

$$
a=\min \left\{a_{i}\right\}_{1 \leq i \leq n}, b=\min \left\{b_{i}\right\}_{1 \leq i \leq n} .
$$

Note that $C_{n}, C_{n-1}, \ldots C_{o}$ and a, b are independent of ℓ since they depend only on γ, C and c_{1}. Let

$$
W^{A, \ell}=\bigcup_{k=1}^{n} W_{k}^{A, \ell} . \text { Then } P\left(W^{A, \ell}\right) \leq e^{-a^{\prime} N^{b^{\prime}}}
$$

and

$$
\begin{equation*}
P(W(\ell)) \leq e^{-a^{\prime \prime} N^{b^{\prime \prime}}} \text { where } W(\ell)=\bigcup_{A \in \hat{\Sigma}_{M^{\prime}}} W^{A, \ell} \tag{2.23}
\end{equation*}
$$

102
From (2.22, for $w \epsilon W_{1}$, we get

$$
\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}} \sum_{A \in \hat{\hat{\Sigma}}_{M^{\prime}}}\left[f_{A}^{(l)}\left(r_{s}\right)\right]^{2} d s \geq \frac{\epsilon_{O}}{N^{3}} \bar{t} \leq k(M) \frac{1}{N^{\gamma}}
$$

Hence $\exists A \in \hat{\Sigma}_{M^{\prime}}$ such that

$$
\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left[f_{A}^{(l)}\left(r_{s}\right)\right]^{2} d s \geq \frac{1}{N^{\gamma}}
$$

Hence if $A=L_{\alpha_{o}, \alpha_{1}, \ldots, \alpha_{n}}$,

$$
\begin{equation*}
\sum_{\alpha=o}^{r} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left[f_{L_{\alpha_{o}, \alpha_{1}, \ldots, \alpha_{n-1} \alpha}^{()}}^{(\ell)}\left(r_{s}\right)\right]^{2} d s \geq \frac{1}{N^{\gamma}} \tag{2.24}
\end{equation*}
$$

Now suppose $w \epsilon W_{1} \cap W(l)^{c}$ which implies $w \notin W_{k}^{A, \ell}$ for every $A \epsilon \hat{\Sigma}_{M}$ and $k=1,2, \ldots, n$. Then by definition of $W_{k}^{A, \ell}$ and by (2.24), it follows that

$$
\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left[f_{L_{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}}^{(\ell)}}^{(\ell)}\left(r_{s}\right)\right]^{2} d s \geq \frac{1}{N^{C_{n-1}}}
$$

and consequently

$$
\begin{equation*}
\sum_{\alpha=0}^{r} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left[f_{L_{\alpha, \alpha_{1}, \ldots, \alpha_{n-1}, \alpha}^{(\ell)}}^{(\ell)}\left(r_{s}\right)\right]^{2} d s \geq \frac{1}{N^{C_{n-1}}} \tag{2.25}
\end{equation*}
$$

And $w \notin W_{n-1}^{A, \ell}$ together with 2.25 gives

$$
\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left[f_{L_{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-2}},}^{(\ell)}\left(r_{s}\right)\right]^{2} d s \geq \frac{1}{N^{C_{n-2}}} .
$$

Continuing like this, we get

$$
\int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left[f_{L_{\alpha_{o}}}^{(\ell)}\left(r_{s}\right)\right]^{2} d s \geq \frac{1}{N^{C_{o}}}
$$

Now, let $\bar{c}=\max \left\{C_{o}=C_{o}(A): A \epsilon \hat{\sum}_{M^{\prime}}\right\}$. Then we have $\sum_{\alpha=1}^{r} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}$
$\left[f_{L_{\alpha_{0}}}^{(\ell)}\left(r_{s}\right)\right]^{2} d s \geq \frac{1}{N^{c}}$. Hence we have proved that for $\ell \epsilon s^{d-1}$ and $w \epsilon W_{1} \cap$ $W(\ell)^{c}, \exists \bar{c}>o$ (independent of ℓ) such that

$$
\begin{equation*}
\sum_{\alpha=1}^{r} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left[f_{L_{\alpha}}^{(\ell)}\left(r_{s}\right)\right]^{2} d s \geq \frac{1}{N^{\bar{c}}} \tag{2.26}
\end{equation*}
$$

We have

$$
\sigma_{\bar{t}}^{i j}=\sum_{\alpha=1}^{r} \int_{o}^{\bar{t}} f_{L_{\alpha}}^{i}(r) f_{L_{\alpha}}^{j}\left(r_{s}\right) d s
$$

Now let

$$
q^{i} j=\sum_{\alpha=1}^{r} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}} f_{L_{\alpha}}^{i}\left(r_{s}\right) f_{L_{\alpha}}^{j}\left(r_{s}\right) d s
$$

Note that

$$
\sum_{\alpha=1}^{r} \int_{\sigma_{1}^{N}}^{\sigma_{2}^{N}}\left[f_{L_{\alpha}}^{(\ell)}\left(r_{s}\right)\right]^{2} d s=\sum_{i, j=1}^{d} q^{i j} \ell^{i} \ell^{j}=Q(\ell) \quad(\text { say })
$$

Also, $\operatorname{det}_{\sigma \bar{t}} \geq \operatorname{det} q \geq \lambda_{1}^{d}$ where $\lambda_{1}=\inf _{|| |=1} Q(l)$, the smallest eigenvalue of q. Hence to prove that $\sigma_{t}^{-1} \epsilon L_{p}$, it is sufficient to prove that $\lambda_{t}^{-1} \epsilon L_{p}, \forall p$.

By definition of $q^{i j}$, we see that $\exists c^{\prime}$ such that $\left|q^{i j}\right| \leq \frac{c^{\prime}}{N^{3}}$. Therefore

$$
\begin{equation*}
\left|Q(\ell)-Q\left(l^{\prime}\right)\right| \leq \frac{c^{\prime \prime}}{N^{3}}\left|\ell-\ell^{\prime}\right| \tag{2.27}
\end{equation*}
$$

Hence $\exists l_{1}, l_{2}, \ldots l_{m}$ such that

$$
\bigcup_{k=1}^{m} B\left(\ell_{k} ;{\frac{N^{3}}{2 c^{\prime \prime}}}_{N^{\bar{c}}}\right)=S^{d-1}
$$

where $B(x, s)$ denotes ball around x with radius s.
Also it can be seen that $m \leq c^{\prime \prime \prime} N^{\bar{c}-3) d}$. Then, $\ell \in S^{d-1}$ implies $\exists \ell_{k}$ such that $\left|\ell-\ell_{k}\right| \leq \frac{N^{3}}{2 c^{\prime \prime}}{ }_{N} \bar{c}$. Hence by (2.27)

$$
\left|Q(l)-Q\left(l_{k}\right)\right| \leq \frac{1}{2 N^{\bar{c}}}
$$

But for $w \epsilon W_{1} \cap\left(\cap W\left(\ell_{k}\right)^{c}\right), Q\left(\ell_{k}\right) \geq \frac{1}{2 N^{\bar{c}}}$. Hence for

$$
w \epsilon W_{1} \cap\left(\cap W\left(\ell_{k}\right)^{c}\right), Q(\ell) \geq \frac{1}{2 N^{\bar{c}}}
$$

So

$$
\inf _{|\ell|=1} Q(l) \leq \frac{1}{2 N^{\bar{c}}} \text { on } W_{1}\left(\bigcap_{k=1}^{m} W\left(\ell_{k}\right)^{c}\right)
$$

i.e., $\quad \lambda_{1} \geq \frac{1}{2 N^{c}}$ on $W_{1} \cap\left(\bigcap_{k=1}^{m} W\left(l_{k}\right)^{c}\right)$.

But we have

$$
P\left(W_{1}^{c} U W(\ell)\right) \leq e^{-\bar{a} N^{\bar{b}}}
$$

and hence

$$
\begin{array}{ll}
& P\left[W_{1}^{C} \bigcup\left(\bigcup_{k=1}^{m} W\left(l_{k}\right)\right)\right] \leq c^{\prime \prime \prime} N^{(\bar{c}-3) d} e^{-\bar{a} N^{\bar{b}}} . \\
\text { i.e., } & P\left[W_{1}^{C} \bigcup\left(\bigcup_{k=1}^{m} W\left(l_{k}\right)\right)\right] \leq e^{-\bar{a} N^{\bar{b}_{1}}}
\end{array}
$$

which gives the result.
A more general result is given below whose proof is similar to that of theorem 2.7

Theorem 2.8. Let

$$
U_{M}(x)=\inf _{|l|=1} \sum_{A \in \hat{\Sigma}_{M^{\prime}}}<A(x), \ell>^{2} .
$$

Suppose for $x \in \mathbb{R}^{d}, \exists M>0$ and $U(x)$, neighbourhood of x such that for every $\bar{t}>0$

$$
\begin{gathered}
P\left[U_{M}(X t)<\frac{1}{N} \text { for all } t \in\left[0, \bar{t} \Lambda \tau_{U(x)}\right]\right]=0\left(\frac{1}{N^{k}}\right) \text { as } N \rightarrow \infty \text { for all } k>0 \\
\left(\text { where } \tau_{U(x)}=\inf \left\{t: X_{t} \mid \epsilon U(x)\right\}\right) .
\end{gathered}
$$

Then the same conclusion of theorem 2.7 holds.

NOTES ON REFERENCES

Malliavin calculus, a stochastic calculus of variation for Wiener functionals, has been introduced by Malliavin [7]. It has been applied to regularity problem of heat equations in Malliavin [8], Ikeda-Watanabe [3], Stroock [16], [17], [18]. The main material in Chapter 2 is an introduction to the recent result of Kusuoka and Stroock on this line. In Chapter 1, we develop the Malliavin calculus following the line developed by Shigekawa [13] and Meyer [10].

Chapter 1;

1.1. (a) For the theory of Gaussian measures on Banach spaces, Fernique's theorem and abstract Wiener spaces, cf Kuo [5].
(b) That the support of a Gaussian measure on Banach space is a linear space can be found in Itô [4].
(c) For the details of Ex. 1.2, cf. Baxendale [1].
1.2. (a) An interesting exposition on Ornstein Uhlenbeck semigroups and related topics can be found in Meyer [10].
(b) The hyper-contractivity of Ornstein Uhlenbeck semigroup (Theorem 1.3) was obtained by Nelson [11]. Cf. also Simon [14] and, for an interesting and simple probabilistic proof, Neveu [12].
(c) For the fact stated in Def. 1.8, we refer to Kuo [5].
1.3. (a) For a general theory of countably normed linear spaces and their duals, we refer to Gelfand-Silov [2].
(b) For Ex. 1.3 details can be found in Ikeda-Watanabe [3], Chap.VI, Sections 6 and 8. Cf. also Stroock [19].
(c) Littlewood-Paley inequalities for a class of symmetric diffusion semigroups have been obtained by Meyer [9] as an application of Burkholder's inequalities for martingales, which include the inequalities (1.7) and (1.9) as special cases. Cf. also Meyer [10]. An analytical approach to LittlewoodPaley theory can be seen in E.M. Stein [15]
(d) L_{p} multiplier theorem in Step 2 was given by Meyer. Proof here based on the hyper-contractivity is due to Shigekawa (in an unpublished note).
(e) The proof of Theorem 1.9 given here is based on the handwritten manuscript of Meyer distributed in the seminars at Paris and Kyoto, cf, also Meyer [10].
(f) The spaces of Sobolev-type for Wiener functionals were introduced by Shigekawa [13] and Stroock [16], cf. also [3]. By using the results of Meyer, they are more naturally and simply defined as we did in this lecture.
1.4. (a) The composite of Wiener functionals and Schwartz distributions was discussed in [21] for the purpose of justifying what is called "Donsker's δ - functions", cf. also Kuo [5], [6].
1.5. (a) The result on the regularity of probability laws was first obtained by Malliavin [8].

Chapter 2;

2.1. (a) For the general theory of stochastic calculus; stochastic integrals, Itô processes and SDE's we refer to Ikeda-Watanabe [3], Stroock [19] and Varadhan [20].
(b) For the proof of approximation theorem 2.3] we refer to [3], chapter V, Lemma 2.1.
2.2. The key lemma was first obtained, in a weaker form, by Malliavin [8]. Cf. also [3]. The Key lemma in this form is due to Kusuoka and Stroock (cf. [18]) where the idea in Ex. 2.3]plays an important role.

Bibliography

[1] P. Baxendale : Gaussian measures on function spaces, Amer. J. 109 Math. 98(4), 891-952, (1976).
[2] I.M.Gelfand and G.E. Silov: Generalized functions, Vol.2, Function and generalized function spaces, Academic Press, 1966.
[3] N. Ikeda and S. Watanabe : Stochastic differential equations and diffusion processes, North-Holland/Kodansha, 1981.
[4] Itô : The topolgical support of Gauss measure on Hilbert space, Nagoya Math. J. Vol. 38 (1970), 181-183.
[5] H.H.Kuo : Gaussian measures in Banach spaces, Lect. Notes in Math. Vol.463, Springer, 1975.
[6] H.H Kuo : DOnsker's delta function as a generalized Brownian functional and its application, to appear in Proc. Int. Workshops on Random Fields at Bangalore (1982), Lect. Notes in Control and Inf.Sci. 49, Springer, 1983.
[7] P. Malliavin : Stochastic calculus of variation and hypoelliptic operators, Proc. Int. Symp. S.D.E. Kyoto, (1976), Kinokuniya, 1978, 195-263.
[8] P.Malliavin : C^{k} - hypoellipticity with degeneracy, Stochastic Analysis, Academic Press, 1978, 199-214, 327-340.
[9] P.A.Meyer : Démonstration probabiliste de certaines inegalités de Lettlewood-Paley Seminaire de Prob. X, Lect. Notes in Math. Vol.511, Springer, 1976.
[10] P.A. Meyer : Notes sur les processus d'Ornstein-Unhlenbeck, Séminaire de Prob., XVI, Lect. Notes in Math. Vol.920, Springer, 1982, 95-133.
[11] E. Nelson : The free Markov field, J.Funot.Anal. 12 (1973), 211227.
[12] J. Neveu: Sur ℓ 'espérance conditionnelle par rapport a un mouvement brownien, Ann. Inst. H. Poincaré (B) XII, 1976, 105-110.
[13] I. Shigekawa : Derivatives of Wiener functionals and absolute continuity of induced measures, J. Math. Kyoto Univ. 20, 1980, 263289.
[14] B. Simon : The $P(\phi)_{2}$ Euclidean (quantum) field theory, Princeton Univ. Press., 1974.
[15] E.M. Stein : Topics in harmonic analysis, related to LittlewoodPaley theory, Annals of Math. Studies, 63, Princeton Univ. Press, 1970.
[16] D.W. Stroock : The Malliavin calculus and its applications to second order parabolic differential operators, I, II, Math. System Theory 14, 1981, 25-65, 141-171.
[17] D.W. Stroock : The Malliavin calculus and its applications, Lect.Notes in math. Vol.851, Springer, 1981,394-432.
[18] D.W. Stroock : Some applications of stochastic calculus to partial differential equations, Ecole d'ete de Probabilite de Saint Flour, to appear in Lect. Notes in Math. 1983.
[19] D.W. Stroock : Topics in stochastic differential equations, Tata Institute of Fundamental Research, 1982.

111 [20] S.R.S. Varadhan : Diffusion problems and partial differential equations, Tata Institute of Fundamental Research, 1980.
[21] S. Watanabe : Malliavin's calculus in terms of generalized Wiener functionals, to appear in Proc. Int. Workshops on Random Fields at Bangalore (1982), Lect. Notes in Control and Inf. Sci. 49, Springer, 1983.

