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Preface

These notes are based on six-week lectures given at T.I.F.R.Centre, In-
dian Institute of Science, Bangalore, during February to April, 1983.
My main purpose in these lectures was to study solutions of stochastic
differential equations as Wiener functionals and apply to them some infi-
nite dimensional functional analysis. This idea was due to P. Malliavin.
In the first part, I gave a calculus for Wiener functionals, which may
be of some independent interest. In the second part, an application of
this calculus to solutions of stochastic differential equations is given, the
main results of which are due to Malliavin, Kusuoka and Stroock. I had
no time to consider another approach due to Bismut, in which more ap-
plications to filtering theory and the regularity of boundary semigroups
of diffusions are discussed.

I would like to thank M. Gopalan Nair and B. Rajeev for their efforts
in completing these notes. Also I would like to express my gratitude to
Professor K.G. Ramanathan and T.I.F.R. for giving me this opportunity
to visit India.

S. Watanabe
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Introduction

Let Wr
o be the space of all continuous functionsw = (wk(t))r

k=1 from 1

[o,T] to Rr , which vanish at zero. Under the supremum norm,Wr
o is a

Banach space. LetP be ther-dimensional Wiener measure onWr
o. The

pair (Wr
o,P) is usually called (r-dimensional) Wiener space.

Let A be a second order differential operator onRd of the following
form:

A =
1
2

d∑

i, j=1

ai j (x)
∂2

∂xi∂x j
+

d∑

i=1

bi(x)
∂

∂xi
+ c(x). (0.1)

whereai j (x)) ≥ 0, i.e., non-negative definite and symmetric.
Now, let

ai j (x) =
r∑

k=1

σi
k(x)σ j

k(x)

and consider the stochastic differential equation

dχi (t) =
r∑

k=1

σi
k(X(t))dWk(t) + bi(X(t)dt, i = 1, 2, . . . , d, (0.2)

X(o) = x, xǫRd.

We know if the coefficients are sufficiently smooth, a unique solution
exists for the aboveS DEand a global solution exists if the coefficients
have bounded derivative.

Let X(t, x,w) be the solution of (0.2). Thent → X(t, x,w) is a
sample path ofAo-diffusion process, whereAo = A − c(x). The map
x → X(t, x,w), for fixed t and w from Rd to Rd is a diffeomorphism
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viii Introduction

(stochastic flow of diffeomorphisms), if the coefficient are sufficiently 2

smooth. And the mapw → X(t, x,w), for fixed t and x, is a Wiener
functional, i.e., a measurable function fromWr

o to Rd.
Consider the following integral on the Wiener space:

u(t, x) = E

[

exp

{∫ T

o
c(X(s, x,w))ds

}

. f (X(t, x,w))

]

(0.3)

where bothf andc are smooth functions onRd with polynomial growth
order andc(x) ≤ M < ∞. Thenu(t, x) satisfies

∂u
∂t
= Au (0.4)

u|t=0 = f

and any solution of this initial value problem (0.4) with polynomial
growth order coincides withu(t, x) given by (0.3).

Suppose we take formallyf (x) = δy(x), the Diracδ-function atyǫRd

and set

p(t, x, y) = E




exp






t∫

o

c(X(s, x,w))ds






δy(X(t, x,w))




; (0.5)

then we would have

u(t, x) =
∫

Rd

p(t, x, y) f (y)dy

andp(t, x, y) would be the fundamental solution of (0.4). (0.5) is thus a
formal expression for the fundamental solution of (0.4), often used in-
tuitively, but δy(X(t, x,w)) has no meaning as a Wiener functional. The
purpose of these lectures is to give a correct mathematical meaning to
the formal expressionδy(t, x,w)) by using concepts like ‘integration by3

parts on Wiener space’, so that the existence and smoothnessof the fun-
damental solution, or the transition probability density for (0.3), can be
assured through (0.5). This is a way of presentingMalliavin’s calcu-
lus, an infinite dimensional differential calculus, introduced by Malli-
avin with the purpose of applications to problems of partialdifferential
equations like (0.4).
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Chapter 1

Calculus of Wiener
Functionals

1.1 Abstract Wiener Space

Let W be a separable Banach space and letB(W) be the Borel field, i.e., 5

topologicalσ-field. Let
∗
W be the dual ofW.

Definition 1.1. A probability measureµ on (W, B(W)) is said to be a
Gaussian measureif the following is satisfied:

For every n andℓ1, ℓ2, . . . , ℓn in
∗

W, ℓ1(W), ℓ2(W), . . . , ℓn(w), as ran-
dom variables on (W, B(W), µ) are Gaussian distributed i.e.,∃ V =
(vi j )n

i , j = 1 and mǫRn such that(vi j ) ≥ 0 and symmetric and for ev-
ery c= (c1, c2, . . . , cn)ǫRn,

∫

W

exp






d∑

i=1

√
−1ciℓi(w)





µ(dw) = exp

{√
−1 < m, c > −1

2
< Vc, c >

}

where< ., . > denotes theRn -inner product.

We say thatµ is amean zero Gaussian measureif m= 0, or equiva-
lently,

∫

W

ℓ(w)µ(dw) = 0 for every ℓǫ
∗

W.

1



2 1. Calculus of Wiener Functionals

Let S(µ) denote the support ofµ. For Gaussian measure,S(µ) is a
closed linear subspace ofW and hence without loss of generality, we
can assumeS(µ) =W (otherwise, we can restrict the analysis toS(µ)).

Theorem 1.1. Given a mean zero Gaussian measureµ on (W, B(W)),6

there exists a unique separable Hilbert space H⊂ W such that the
inclusion map i: H→W is continuous, i(H) is dense in W and

∫

W

e
√
−1ℓ(w)µ(dw) = e−

1
2 |ℓ|2H (1.1)

where|.|H denotes the Hilbert space H-norm.

Remark 1. H ⊂ W implies
∗
W ⊂ H∗ = H and for hǫH, ℓǫ

∗
W, ℓ(h) is

given byℓ(h) =< ℓ, h >H.

Remark 2. Condition (1.1) is equivalent to
∫

W

ℓ(w)ℓ′(w)µ(dw) =< ℓ, ℓ′ >H for everyℓ, ℓ′ǫ
∗

W. (1.1)′

Remark 3. The triple (W,H, µ) is called anabstract Wiener space.

Sketch of proof of Theorem 1.1:Uniqueness follows from the the fact
thatH = W̄∗

|.|H .

Existence: By definition of Gaussian measure,
∗

W ⊂ L2(µ). Let H̃ be

the completion of
∗

W underL2-norm. Let j :
∗

W3ℓ → ℓ(w)ǫH̃; then j
is one-one linear, continuous and has dense range. The continuity of j
follows from the fact that (Fernique’s theorem): there existsα > o such
that ∫

W

eα||w||
2
µ(dw) < ∞.

Now considerj∗, the dual map ofj,

j∗ : H̃∗ = H̃ →W∗∗ ⊃W.



1.1. Abstract Wiener Space 3

It can be shown thatj∗(H̃) ⊂ ω. TakeH = j∗(H̃) and for f̄ , h̄ in H,7

define

< f̄ , h̄ >=< f , h > where f̄ = j∗( f ), h̄ = j∗(h).

Example 1.1 (Wiener space). Let W = Wr
o and µ : r- dimensional

Wiener measure.
H = {h = (hi(t))r

i=1ǫW
r
o : hi(t) are absolutely continuous on [o,T]

with square integrable derivativėhi(t), 1 ≤ i ≤ r}
Forh = (hi (t))r

i=1, g = (gi(t))r
i=1, define the inner product

< h, g >=
r∑

i=1

T∫

o

ḣi(s)ġi(s)ds.

Then H is a separable Hilbert space and (W,H, µ) is an abstract
Wiener space which is calledr-dimensional Wiener space.

Example 1.2.Let I be a compact interval inRd and

K(x, y) = (ki j (x, y))r
i, j=1

whereki j (x, y)ǫC2m(I × I ), and satisfies the following conditions:

(i) ki j (x, y) = ki j (y, x) ∀ x, yǫI 1 ≤ i, j ≤ r.

(ii) For any cikǫR, i = 1, w, · · · , r, k = 1, 2, . . . , n, nǫN,
n∑

k,ℓ=1

r∑

i, j=1
ki j

(xk, xℓ)cikc jℓ ≥ 0,∀ xkǫI , k = 1, 2, . . . , n.

(iii) for |α| = m, there existso < δ ≤ 1 andc > o such that

r∑

i=1

[

k(α)ii (x, x) + k(α)ii (y, y) − 2k(α)ii (x, y)
]

≤ c|x− y|2δ

where k(α)i j (xy) = Dα
xDα

yki j (x, y).

8



4 1. Calculus of Wiener Functionals

(As usual,α = (α1, α2, . . . , αd) is a multi-index,|α| = α1 + · · · + αd

and

Dα
x =

∂|α|
α1
∂αx1 ···

αd
∂αxd

.

Now, for f ǫCm(I → Rr), f = ( f 1, f 1, . . . , f r), define

|| f ||m,ǫ =
r∑

i=1

∑

|α|≤m

||Dα f i ||ǫ ,

where

|| f i ||ǫ = max
xǫ I
| f i(x)| + sup

x,y
x,yǫ I

| f i(x) − f i(y)|
|x− y|ǫ

Let

Cm,ǫ(I → Rr) = {wǫCm(I → Rr) : ||w||m,ǫ < ∞}.

W = (Cm,ǫ , ||.||m,ǫ) is a Banach space.

Fact. For anyǫ, o ≤ ǫ < δ,∃ a mean zero Gaussian measure on W such
that ∫

W

wi(x)w j(x)µ(dw) = ki j (x, y)i, j = 1, 2, . . . , r.

Then by theorem 1.1 it follows that there exists a Hilbert spaceH ⊂
W such that (W,H, µ) is an abstract Wiener space. In this case,H is the
reproducing kernel Hilbert space associated with the kernel K, which is
defined as follows:

For x = (x1, x2, . . . , xn) , xkǫI , λ = (λ1, λ2, . . . , λn),9

λk =
(

λi
k

)r

i=1
ǫRr , defineW[x,λ](y) = (Wi

[x,λ](y))r
i=1

by Wi
[x,λ](y) =

r∑

j=1

n∑

k=1

ki j (y, xk).λ
i
k,

and let S =
{

W[x,λ] : x = (x1, x2, . . . , xn), xkǫI , λ = (λ1, . . . , λn),

λk = (λi
k)

r
r=1ǫR

r andnǫN
}

.



1.2. Einstein-Uhlenbeck Operators and Semigroups 5

For W[x,λ] ,Wy,νǫS, when x = (x1, x2, . . . , xn1), λ = (λ1, . . . , λn1),
y = (y1, . . . , yn2), ν = (ν, . . . , νn2), define the inner product by

< W[x,λ] ,Wx,ν >=

n1∑

k=1

n2∑

ℓ=1

r∑

i, j=1

ki j (xk, yℓ)λ
i
kν

j
ℓ
;

then (S, < ., . >) is an inner product space and the reproducing kernel
Hilbert spaceH is the completion ofS under this inner product.

1.2 Einstein-Uhlenbeck Operators and Semigroups

Let (W,H, µ) be an abstract Wiener space and (S, B(S)) a measurable
space. A mapx : W → S is called anS -valued Wiener functional, if
it is B(W)|B(S)-measurable. TwoS-valued Wiener functionalsx, y are
said to be equal and denoted byx = y if x(w) = y(w) a.a.w (µ). For the
moment, we consider mainly the caseS = R.

Notation Lp = Lp(W, B(W), µ), 1 ≤ p < ∞. 10

Definition 1.2. F : W → R is a polynomial, if∃ nǫN and ℓ1, ℓ2, . . . ,

ℓnǫ
∗

W and p(x1, . . . , xn), a realpolynomialin n variables such that

F(w) = p(ℓ1(w), ℓ2(w), . . . , ℓn(w)) ∀ wǫW.

In this expression ofF, we can always assume that{ℓi}ni=1 is anONS
in the sense defined below. We define degree (F) = degree (P) which is
clearly independent of the choice of{ℓi}. We denote byP the set of such
polynomial and byPn the set of polynomial of degree≤ n.

Fact.P ⊂ Lp, 1 ≤ p < ∞ and the inclusion is dense

Definition 1.3. A finite or infinite collection{ℓi} of elements in
∗
W is said

to be anorthonormal system (ONS) if < ℓi , ℓ j >H= δi j . It is said to be
an orthonormal basis (ONB) if it is an ONS and L(ℓ1, ℓ2, . . .)|.|H = H,
where L(ℓ1, ℓ2, . . .) is the linear span of(ℓ1, ℓ2, . . .).



6 1. Calculus of Wiener Functionals

Decomposition ofL2: We now representL2 as an infinite direct sum of
subspaces and this decomposition is called theWiener-Chaos decompo-
sition or theWiener-Ito decomposition.

Let Co = { constants}
SupposeCo,C1, . . . ,Cn−1 are defined. Then we defineCn as follows:

Cn = P̄|| ||L2
n ⊖ [Co ⊕C1 ⊕ · · · ⊕Cn−1]

i.e., Cn is the orthogonal complement ofCo ⊕ · · · ⊕ Cn−1 in P̄n|| ||L2.11

SinceP is dense inL2, it follows that

L2 = Co ⊕C1 · · · ⊕Cn ⊕ · · ·

Hermite Polynomials: The Hermite polynomials are defined as

Hn(x) =
(−1)n

n!
ex2/2 dn

dxn (e−x2/2), n = 0, 1, 2, . . .

They have the following properties:

1. Ho(x) = 1

2.
∞∑

n=o
tnHn(x) = e−(t2/2)+tx

3.
d
dx

Hn(x) = Hn−1(x)

4.
∫

R

Hn(x)Hm(x)
1
√

(2π)
e−x2/2dx=

1
n!
δn,m.

Let Λ = {a = (a1, a2, . . . )|ai ǫz+, ai = 0 expect for a finite numbers
of i′s}.

ForaǫΛ, a! ,
∏

i
(ai !), |a| ,

∑

i
ai . Let us fix anONB(ℓ1, ℓ2, . . .) in

∗
W.

Then foraǫΛ, we define

Ha(w) ,
∞∏

i=1

Hai (ℓi(w)).

SinceHo(x) ≡ 1 andai = 0 expect for a finite number ofi′s, the
above product is well defined. We note thatHa(.)ǫPn if |a| ≤ n.
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Proposition 1.2. (i)
{√

a!Ha(w) : aǫΛ
}

is an ONB in L2.12

(ii)
{√

a!Ha(w) : aǫΛ, |a| = n
}

is an ONB in Cn.

Proof. Since {ℓi} is an ONB in
∗

W, {ℓi(w)} are N(0.1), i.i.d. random
variables onW. Therefore,

∫

W

Ha(w)Hb(w)µ(dw) =
∞∏

i=1

∫

W

Hai (ℓi(w))Hbi (ℓi(w))µ(dw)

=

∞∏

i=1

∫

R

Hai (x)Hbi (x)
1
√

(2π)
e−x2/2dx

=
∏

i

1
ai !
δai ,bi =

1
a!
δa,b.

SinceP is dense inL2, the system
{√

a!Ha(w); aǫΛ
}

is complete inL2.
�

Let Jn denote the orthogonal projection fromL2 to Cn. Then for
FǫL2, we haveF =

∑

n
JnF. In particular, ifFǫP, then the above sum is

finite andJnFǫP, ∀ n.

Definition 1.4. The function F: W → R is said to be a smooth func-

tional, if ∃ nǫN, ℓ1ℓ2, . . . , ℓnǫ
∗

W, and fǫC∞(Rn), with polynomial growth
order of all derivatives of f , such that

F(w) = f (ℓ1(w), ℓ2(w), . . . ℓn(w)) ∀ wǫW.

We denote byS the class of all smooth functionals onW.

Definition 1.5. For F(w)ǫS and t≥ o, We define(TtF)(w) as follows: 13

(TtF)(w) ,
∫

W

F(e−tw+
√

(1− e−2t)u)µ(du) (1.2)



8 1. Calculus of Wiener Functionals

Note (i): If FǫS is given by

F(w) = f (ℓ1(w), . . . ℓn(w)), f ǫC∞(Rn)

for someONS {ℓ1, ℓ2, . . . ℓn} ⊂
∗

W, then

(TtF)(w) =
∫

Rn

f (e−tξ +
√

(1− e−2t)η)
1

(
√

2π)n
e−(|η|2)/2dη (1.3)

whereξ = (ℓ1(w), . . . , ℓn(w))ǫRn.

Note (ii): The above definition can be also be used to defineTtF when
FǫLp.

Properties of TtF:

(i) FǫS⇒ TtFǫS

(ii) FǫP ⇒ TtFǫP

(iii) For f , GǫS
∫

W

(TtF)(w)G(w)µ(dw) =
∫

W

F(w)(TtG)(w)µ(dw)

(iv) Tt+sF(w) = Tt(TsF)(w)

(v) If FǫS, F =
∑

n
JnF, then

TtF =
∑

n

e−nt(JnF)

(vi) Tt is a contraction onLp, 1 ≤ p < ∞.

Proof. (i) and (ii) are trivial and (iii) and (iv) follow easily from(v).14

Hence we prove only (v) and (vi). �
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Proof of (v): Let ℓ ∈
∗

W and

F(w) = E
√
−1ℓ(w) +

1
2
|ℓ|2H .

Then

TtF(w) =
∫

W

exp

[√
−1e−tℓ(w) +

√
−1
√

(1− e−2t)ℓ(u) +
1
2
|ℓ|2H

]

µ(du)

= e
√
−1e−tℓ(w) +

1
2
|ℓ|2H

∫

W

e
√
−1√(1− e−2t)ℓ(u)µ(du)

= e
√
−1e−tℓ(w) +

1
2

ee2t |ℓ|2H .

Let

λ = (λ1, λ2, . . . , λN) ∈ R∨,N ∈ N
ℓ = λ1ℓ1 + · · · + λNℓN, {ℓi}Ni=1 an ONS.

Let

F(w) = e
√
−1ℓ(w) +

1
2
|ℓ|2H .

Then

F(w) =
N∏

i=1

e
√
−1λiℓi(w) − 1

2
(
√
−1λi)

2

=

∞∑

m1,...,mN=0

(
√
−1λ1)m1 · · · (

√
−1λN)mN × Hm1(ℓ1(w)) · · ·HmN(ℓN(w)).

Applying Tt to both sides of the above equation, we have

e
√
−1e−tℓ(w) +

1
2

e2t|ℓ|2H = TtF(w) =
∞∑

m1,...mN=0

(
√
−1λ1)m1 . . . (

√
−1λN)mN

× Tt





mN∏

i=1

Hmi (ℓi(.))



 (w).



10 1. Calculus of Wiener Functionals

15

Hence

Tt





N∏

i=1

Hmi (ℓi(.))




(w) =

N∏

i=1

e−tmi Hmi (ℓi(w))

= e−t
N∑

i=1

mi

N∏

i=1

Hmi (ℓi)(w))

implies
(TtHa)(w) = e−|a|tHa(w).

If PǫP, thenF =
∑

n JnF whereJnFǫCn. Then since
{√

a!Ha(w) : aǫ∧, |a| = n
}

is anONBfor Cn, we finally have

(TtF)(w) =
∑

n

e−nt(JnF)(w).

Proof of (vi): Let Pt(w, du) denote the image measureµ ◦ φ−1
t,w of the

mapφt,w : W→W

φt,w(u) = e−tw+
√

(1− e−2t)u.

Then

(TtF)(w) =
∫

Pt(w, du)F(u), FǫLp.

First letF be a bounded Borel function onW. ThenF ∈ Lp and16

||TtF ||pLp
=






∫

W

|
∫

W

Pt(w, du)F(u)|Pµ (dw)






≤






∫

W

|
∫

W

Pt(w, du)F(u)|Pµ (dw)






=< 1,Tt(|F |P) >L2
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=< 1, |F |P >L2 (∵ Tt1 = 1)

= ||F ||pP.

Hence||TtF ||Lp ≤ ||F ||Lp holds for any bounded Borel functionF.
In the general case, for anyF ∈ Lp, we chooseFn, bounded Borel
functions, such thatFn→ F in Lp. Then

||TtFn||Lp ≤ ||Fn||Lp ∀ n,

=> ||TtF ||Lp ≤ ||F ||Lp.

Actually Tt has a stronger contraction known ashyper-contractivity:

Theorem 1.3(Nelson). Let1 ≤ p < ∞, t > 0 and q(t) = e2t(p−1)+1 >
p. Then for FǫLq(t),

||TtF ||q(t) ≤ ||F ||p.

Remark. The semigroup{Tt : t ≥ o} is called theOrnstein - Uhlenbeck
Semigroup.

Some Consequence of the Hyper-Contractivity: 17

1) Jn : L2→ Cn is a bounded operator onLp, 1 < p < ∞.

Proof. Let p > 2. Chooset such thate2t+1 = p.Then by Nelson’s
theorem, we have

||TtF ||p ≤ ||F ||2.

In particular

||TtJnF ||p ≤ ||JnF ||2 ≤ ||F ||2 ≤ ||F ||p.

But
||Tt JnF ||p = e−nt||JnF ||p;

hence
||JnF ||p ≤ ent||F ||p.
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For 1 < p < 2, Considering the dual mapJ∗n of Jn and applying
the previous case, we get

||J∗nF ||p ≤ ent||F ||p.

�

But, for F ∈ P, J∗n = Jn. Hence, by denseness ofp, the results
follows.

2) LetVn = C0⊕ . . .C1⊕Cn(Vn are calledWiener chaos of order n).
Then, for every 1≤ p, q < ∞, ||.||p and||.||p are equivalent onVn,
i.e., for everyF ∈ Vn,∃ Cp,q,n > 0 such that

||F ||q ≤ Cp,q,n||F ||p.

In particular, forF ∈ Vn, ||F ||p < ∞, 1 < p < ∞.18

Proof. Easy and omitted. �

Definition 1.6 (Ornstein-Uhlenbeck Operator). We define the generator
L of the semigroup Tt, which is called Ornstein-Uhlenbeck Operator, as
follows:

For FǫP, define

L(F) =
d
dt

TtF |t=0 =
∑

n

(−n)JnF.

Note thatL maps polynomials into polynomials.L can also be ex-
tended, as an operator onLP, as the infinitesimal generator of a contrac-
tion semigroup onLP. The extension ofL will be given in later sections.
In particular, forL2, let

D(L) =





FǫL2 :

∑

n

||JnF ||22 < ∞





and forFǫD(L), define

L(F) =
∑

n

(−n)JnF.

In it easily seen thatL is a self-adjoint operator onL2.
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Definition 1.7 (Fréchet derivative). For FǫP and wǫW, define

DF(w)(u) =
∂F
∂t

(w+ tu)|t=o ∀ u ǫ W.

For eachwǫW,DF(w), which is called theFréchet derivative of F at
w, is a continuous linear functional onW i.e.,

DF(w)ǫ
∗

W. More precisely,DF(w) is given as follows: 19

Let {ℓi} be an ONS is
∗
W andF = p(ℓ1(w), . . . , ℓn(w)), then

DF(w)(u) =
n∑

i=1

∂i p(ℓ1(w), . . . , ℓn(w)).ℓi(u),

which we can also write as

DF(w) =
n∑

i=1

∂i p(ℓ1(w), . . . , ℓn(w)).ℓi .

For FǫP, the Fréchet derivative atw of orderk > 1 is defined as

DkF(w)(u1, u2, . . . , uk) =
∂k

∂t1..∂tk
F(w+ t1u1 + · · · + tkuk)|t1=..=tk=0

for uiǫW, 1 ≤ i ≤ k.

Explicitly, if F(w) = p(ℓ1(w), . . . , ℓn(w))), then

DkF(w) =
n∑

i1=1

..

n∑

ik=1

∂i1, ∂i2 · · · ∂ikP(ℓ1(w), ℓ2(w), . . . , ℓn(w))). × ℓℓi1 ⊗ .. ⊗ ℓik

where
ℓi1 ⊗ .. ⊗ ℓik(u1, u2, . . . , uk)

∆
= ℓi1(u1), . . . , ℓik(uk).

Note that for eachw,DkF(w)ǫ
∗
W⊗ · · · ⊗

∗
W

︸         ︷︷         ︸

k times

where

∗
W⊗ · · · ⊗

∗
W

︸         ︷︷         ︸

k times

∆
=






V : Wx· · · xW
︸      ︷︷      ︸

k times

→ R|V is multilinear and continuous






.
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20

Definition 1.8 (Trace Operator). Let{hi} be an ONB in H. For Vǫ
∗

W⊗
∗

W
we define the trace of V with respect to H, denoted as traceHV by

traceHV =
∞∑

i=1

V(hi , hi).

Note that the definition is independent of the choice ofONB and

for Vǫ
∗

W ⊗
∗
W, traceHV exists and traceH(.) is a continuous function on

∗
W⊗

∗
W.

Remark. For ℓ1, ℓ2ǫ
∗

W,

traceHℓ1 ⊗ ℓ2 =
∑

i

ℓ1(hi )ℓ2(hi ) =
∑

i

< ℓ1, hi >H< ℓ2, hi >H

=< ℓ1, ℓ2 >H .

Theorem 1.4. If FǫP, then

LF(w) = traceHD2F (w) − DF (w) (w), for w ǫ W. (1.3)

Proof. Let {ℓ1, ℓ2, . . . , ℓn} be anONS in
∗
W and

F(w) = p(ℓ1(w), ℓ2(w), . . . , ℓn(w)). �

By the remark, we see that

RHS of (1.3) =
n∑

i=1

∂i∂i p(ℓ1(w), . . . , ℓn(w))

−
n∑

i=1

∂i p(ℓ1(w), . . . , ℓn(w)).ℓi(w).

Now let ξ = (ℓ1(w), . . . , ℓn(w)), then

d
dt

TtF(w) =
d
dt

∫

Rn

p(e−tξ +
√

(1− e−2t)n)(2π)−n/2e
−|η|2

2 dη
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= −
∫

Rn

n∑

i=1

e−tξi∂i p(e−tξ +
√

(1− e−2t)n)(2π)−n/2e
−|η|2

2 dη

+

∫

Rn

n∑

i=1

∂i p(e−tξ +
√

(1− e−2t)n)
ηie−2t(2π)−n/2

√
(1− e−2t)

e
−|η|2

2 dη

−
∫

Rn

n∑

i=1

e−tξi∂i p(e−tξ +
√

(1− e−2t)n)(2π)−n/2e
−|η|2

2 dη

−
∫

Rn

n∑

i=1

∂i p(e−tξ +
√

(1− e−2t)n)
e−2t(2π)−n/2

√
(1− e−2t)

× ∂i(e
−|η|2

2 )dη.

21

Integrating the second expression by parts, we get

d
dt

TtF(w) = −
n∑

i=1

ξie
−tTt(∂i p)(ξ) +

n∑

i=1

e−2tTt(∂
2
i p)ξ.

Hence we have

LF(w) = lim
t→0

d
dt

TtF(w) = RHS.

�

Definition 1.9 (Operatorδ). Let P∗
W

be the totality of functions F(w) :

W→
∗

W which can be expressed in the form

F(w) =
n∑

i=1

Fi(w)ℓi

for some nǫN, ℓiǫi
∗
W and Fi(w)ǫp, i = 1, 2, . . . , n. FǫP ∗

W
is called a

∗
W-

valued polynomial. The linear operatorδ : P ∗
W
→ PW is defined as

follows:

Let ℓ1, ℓ2, . . . , ℓn, ℓ ǫ
∗
W and

F(w) = p(ℓ1(w), . . . , ℓn(w))ℓ.
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Define 22

δF(w) =
n∑

i=1

∂i p(ℓ(w), . . . , ℓn(w)) < ℓi , ℓ >H −p(ℓ1(w), . . . , ℓn(w))ℓ(w)

and extend the definition to everyFǫPW∗ by linearity.

Proposition 1.5. (i) For every Fǫp, δ(DF) = LF. More generally if
F1, F2ǫp, then

δ(F1.DF2) =< DF1,DF2 >H +F1.L(F2). (1.4)

(ii) (Formula for integration by parts)

In FǫP and GǫPW∗, then
∫

W

< G,DF >H (w)µ(dw) = −
∫

W

δG(w)F(w)µ(dw) (1.5)

which says thatδ = −D∗.
Proof. (i) follows easily from definitions. (ii) We may assume

G(w) = p(ℓ1(w), . . . , ℓn(w))ℓ F(w) = q(ℓ1(w), . . . , ℓn(w))

where{ℓi} is ONS in
∗

W. Then

< G,DF >H =

n∑

i=1

(∂i q)p < ℓi , ℓ >H

δG.F =
n∑

i=1

(∂i p).q < ℓi , ℓ >H −p.qℓ(w). �

So we have to prove that23

∫

R

∑

i=1

n(∂iq(ξ)).p(ξ) < ℓi , ℓ >H e
−|ξ|2

2 dξ

= −
∫

Rn

n∑

i=1

[

(∂i p(ξ))q(ξ) < ℓi , ℓ >H −p(ξ)q(ξ) < ℓi , ℓ > ξi
]

e
−|ξ|2

2 dξ

which follows immediately by integrating theLHS by parts
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Proposition 1.6 (Chain rule). Let P(t1, . . . , tn) be a polynomial and
FiǫP, for i = 1, 2, . . . , n. Let F= P(F1, F2 . . . Fn)ǫP. Then

DF(w) =
n∑

i=1

∂iP(F1(w), F2(w), . . . , Fn(w)).DFi(w)

and

LF(w) =
n∑

i, j=1

∂i∂ jP(F1(w), . . . , Fn(w)). < DFiDF j >H

+

n∑

i=1

∂iP(F1(w)m. . . , Fn(w)) × LFi(w).

Proof. Easy. �

1.3 Sobolev Spaces over the Wiener Space

Definition 1.10. Let Fǫp, 1 < p < ∞,−∞ < s< ∞. Then

||F ||p,s
∆
= ||(I − L)s/2F ||p

where

(I − L)s/2F
∆
=

∞∑

n=0

(1+ n)s/2JnFǫP.

Proposition 1.7. (i) If p ≤ p′ and s≤ s′, then 24

||F ||p,s ≤ ||F ||p′s′ ∀ Fǫp.

(ii) ∀ 1 < p < ∞,−∞ < s< ∞, ||.||p,s are compatible in the sense that
if, for any(p, s), (p′, s′) and Fnǫp, n = 0, 1, 2, . . . , ||Fn||p,s→ 0 and
||Fn − Fm||p′,s′ → 0 as n,m→ ∞, then||Fn||p′,s′ → 0 as n→ ∞

Proof. (i) Since, for fixeds, ||F ||p,s ≤ ||F ||p′,s′ if p′ > p, it is enough
to prove

||F ||p,s ≤ ||F ||p,s′ for s′ ≥ s.
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To prove this, it is sufficient to show that forα > o,

||(I − L)−αF ||p ≤ ||F ||p ∀ FǫP.

We know that||TtF ||p ≤ ||F ||p. From the Wiener-Chaos represen-
tation forTtF and (I − L)−αF, we have

(I − L)−αF =
1
Γ(α)

∞∫

o

e−ttα−1TtFdt.

Hence

||(I − L)−αF ||p ≤
1
Γ(α)

∞∫

o

e−ttα−1||TtF ||pdt

≤ ||F ||p

which proves the result.

(ii) Let Gn = (I − L)s′/2FnǫP. Therefore||Gn −Gm||p′ → 0 asn,m→25

∞. Therefore,∃GǫLp, such that||Gn −G||p′ → 0. But

||Fn||p,s→ 0⇒ ||(I − L)1/2(s−s′)Gn||p→ 0.

Enough to showG = 0. Let HǫP. Then (I − L)1/2(s′−s)HǫP.
Noting thatP ⊂ Lq for every 1< q < ∞, we have

∫

W

G.Hdµ = lim
n→∞

∫

W

GnHdµ

= lim
n→∞

∫

W

(I − L)1/2(s−s′)Gn(I − L)1/2(s′−s)Hdµ

= 0.

SinceP is hence inLp ∀ q,G = 0.
�
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Definition 1.11. Let 1 < p < ∞,−∞ < s < ∞. DefineDp,s = the
completion ofP by the norm|| ||p,s.

Fact. 1) Dp,o = Lp.

2) Dp′,s′ ֒→ Dp,s if p ≤ p′, s≤ s′.

Hence we have the following inclusions:

Let o< α < β, o < p < q < ∞. Then

Dp,β
	

֒→ Dp,α
	

֒→ Dp,o = Lp ֒→ Dp,−α
	

֒→ Dp,−β
	

Dq,β ֒→ Dq,α ֒→ Dq,o = Lq ֒→ Dq,−α ֒→ Dq,−β

3) Dual of Dp,s ≡ D′p,s = Dq,−s where
1
p
+

1
q
= 1, under the standard 26

identification(L2)′ = L2.

This follows from the following facts:
Let A = (I − L)−s/2. Then the following maps are isometric isomor-

phisms:

A :Lp→ Dp,s

A :Dq,−s→ Lq

and hence
∗
A : (Dp,s)

′ → Lq

is also an isometric isomorphism if
1
p
+

1
q
= 1.

Also, from the relation

∫

w

F(w)G(w)µ(dw) =
∫

W

(I − L)s/2F(w)(I − L)−s/2G(w)µ(dw),

it is easy to see thatDq,−s ⊂ (Dp,s)′, isometrically.
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Definition 1.12.

D∞ =
⋂

p,s

Dp,s

D−∞ = Up,sDp,s

(Hence D
′
∞ = UD′p,s = D−∞.)

ThusD∞ is a complete countably normed space andD−∞ is its dual.

Remark. Let S(Rd) be the Schwartz space of rapidly decreasingC∞−
functions, Hp,s the (classical) Sobolev space obtained by completing27

S(Rd) by the norm

|| f ||p,s = ||(|x|2 − △)s/2 f ||p, f ǫS(Rd)

where△ denotes the Laplacian. Then it is well-known that
⋂

p,s

Hp,s = =
⋂

s

H2,s

Up,s Hp,s = = Us H2,s.

Thus every element in
⋂

p,s
Hp,s has a continuous modification, actu-

ally a C∞ - modification. But in our case, the analogous results are not
true.

First, in our case,
⋂

sD2,s , D∞. Secondly,∃ FǫD∞ which has no
continuous modification onW, as the following example shows.

Example 1.3.Let W = W2
o =

{

wǫC([0, 1] → R2),w(0) = 0
}

µ = P ≡
2− dim. Wiener measure. Let, forw = (w1,w2)ǫW,

F(w) =
1
2






1∫

o

w1(s)dw2(s) −
1∫

o

w2(s)dw1(s)






(stochastic area of Levy) where the integrals are in the sense of Itô’s
stochastic integrals.
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ThenFǫC2 ⊂ D∞. But F has no continuous modification: suppose
∃ F̂(w), continuous and such thatF̂(w) = F(w) a.a.w(p). Let

ˆ̂F(w) =
1
2





1∫

o

(w1(s)ẇ2(s) − w2(s)ẇ1(s))ds





for wǫC2
o([0, 1] → R2). Note that ˆ̂F has no continuous extension toW2

o. 28

On the other hand, we have the following fact: Forδ > o,

P
{

|F(w) − ˆ̂F(φ)| < δ|||w− φ|| < ǫ
}

→ 1

as ǫ ↓ o, ∀ φǫC2
o([0, 1] → R2).

Hence

F̂ ≡ ˆ̂F onC2
o([0, 1] → R2), a contradiction.

Definition 1.13. Let FǫP. Then

DkF(w)ǫ W∗ ⊗ · · · ⊗W∗
︸            ︷︷            ︸

K times

and we define the Hilbert-Schmidt norm of DkF(w) as

|DkF(w)|2HS =

∞∑

i1,...,ik=o

{

DkF(w)
[
hi1, . . . , hik

]}2

where{hi}∞i=1 is an ONB in H.

Remark. 1) The definition is independent of theONBchosen.

2) If k = 1, then|DF(w)|2HS = |DF[w]|2H.

Theorem 1.8(Meyer). For 1 < p < ∞, kǫZ+, there exist Ap,k > ap,k > 0
such that

ap,k|||DkF |HS||p ≤ ||F ||p,k ≤ Ap,k(||F ||p + |||DkF |HS||p) (1.5)

for every FǫP.
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Before proving this result, let us consider the analogous result in 29

classical analysis, which can be stated as:
For 1< p < ∞, there existsap > 0 such that

ap||
∂2 f
∂xi∂x j

||p ≤ ||∆ f ||p, ∀ f ǫS(Rd), (1.6)

whereS(Rd) denotes the Schwartz class ofC∞ - rapidly decreasing
functions.

Proof of (1.6): Let p = 2, then

|| ∂
2 f

∂xi∂x j
||2 = ||ξiξ j f̂ (ξ)||2, where f̂ (ξ) =

∫

Rd

e
√
−1ξ.x f (x)dx

≤ Cp|||ξ|2 f̂ (ξ)||22
= Cp||△ f ||2.

For the general case, we need Calderon-Zygmund theory of sin-
gular integrals or Littlewood-Paley inequalities. We hereconsider the
Littlewood-Paley inequalities.

Consider the semigroupsPt andQt defined as follows:

Pt = et△,

i.e., (Pt f )̂(ξ) = e−t|ξ|2 f̂ (ξ), f ǫS(Rd)

and Qt = e−t(−△)1/2

i.e., (Qt f )̂(ξ) = e−t|ξ| f̂ (ξ), f ǫS(Rd)

where f̂ (ξ) =
∫

Rd

e
√
−1ξ.x f (x)dx.

The transition fromPt to Qt is calledsubordination of Bochnerand30

is given by

Qt =

∞∫

o

Psµt(ds)
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whereµt is defined as

∞∫

o

e−λsµt(ds) = e−
√
λt.

Note thatQt can also be expressed as

Qt f (x) =
∫

Rd

cnt

(t2 + |x− y|2)(d+1)/2
f (y)dy

where c−1
n =

∫

Rd

1

(1+ |y|2)(d+1)/2
dy.

Now, we defineLittlewood-Paley functions Gf andG f →, f ǫS(Rd)
as:

G f (x) =





∞∫

o

t





| ∂
∂t

Qt f (x)|2 +
d∑

i=1

Qt f (x)|2




dt





1/2

and G f→(x) =





∞∫

o

{

t| ∂
∂t

Qt f (x)|2
}

dt





1/2

.

Fact . (Littlewood-Paley Inequalities):For 1 < p < ∞,∃o < ap < Ap

such that

ap||G f (x)||p ≤ || f ||p ≤ Ap||G f→(x)||p, ∀ f ǫS(Rd). (1.7)

Define the operatorRj by 31

(Rj f )̂(ξ) =
ξ j

|ξ| f̂ (ξ)

Rj is called theRiesz transformation. In particular, whend = 1, it is
calledHilbert transform. It is clear that

∂2

∂x j∂x j
f (x) = RiRj△ f (x).
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Fact. For 1 < p < ∞,∃o < ap < ∞ such that

ap||Rj f ||p ≤ || f ||p. (1.8)

Note that (1.6) follows from (1.8). Hence we prove (1.8). We have

(RjQt f )̂(ξ) =
ξ j

|ξ|e
−t|ξ| f̂ (ξ)

= (QtRj f )̂(ξ).

Also √
−1

∂

∂t
Rj(Qt f )(x) =

∂

∂x j
Qt f (x).

Hence we get
G →

Rj f
≤ G f ,

which gives (1.8), by using (1.7). Now, we come to Meyer’s theorem.

Proof of theorem 1.8.

Step 1. Using the0− U semigroup Tt, we define Qt by

Qt =

∞∫

o

Tsµt(ds)

where

∞∫

o

e−λsµt(ds) = e−
√
λt.

32
Note that

Qt =

∞∑

n=o

e−
√

ntJn.

FǫP, we defineGF andψF as follows:

GF(w) =





∞∫

o

t(
∂

∂t
QtF(w))2dt





1/2
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and ψF(w) =





∞∫

0

{

Tt(< DTtF,DTtF >
1/2
H )(w)

}2
dt





1/2

.

Then the following are true:
For 1< p < ∞,∃o < cp < Cp < ∞ such that

cp||F ||p ≤ ||GF ||p ≤ Cp||F ||p,
cp||F ||p ≤ ||ψF ||p ≤ Cp||F ||p, ∀ FǫP such thatJoF = 0. (1.9)

Proof. Omitted. �

Step 2(An Lp-multiplier theorem). A linear operator Tφ : P → P is
said to be given by a multiplierφ = (φ(n)), if

TφF =
∞∑

n=1

φ(n)JnF, ∀ FǫP.

Note that the operators Tt,Qt and L are given by the multipliers33

ent, e−
√

nt and(−n) respectively.

Fact. (Meyer-Shigekawa):If φ(n) =
∞∑

k=o
ak

(

1
nα

)k

, α ≥ o for n ≥ no for

some no and
∞∑

k=o
|ak|

(

1
nαo

)k

< ∞, then∃ cp such that

||TφF ||p ≤ cp||F ||p, ∀ FǫP. (1.10)

Note that the hypothesis in the above fact is equivalent to: there
existsh(x) analytic, i.e.,h(x) =

∑

akxk, near zero such that

φ(n) = h

(

1
nα

)

for n ≥ no.

Proof of (1.10): First, we consider the caseα = 1. We have

Tφ =
no−1∑

n=o

φ(n)Jn +

∞∑

n=no

φ(n)Jn
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= T(1)
φ
+ T(2)

φ
.

We know thatT(1)
φ

is Lp-bounded as a consequence of hyper con-
tractivity, i.e.,

||T(1)F ||p ≤ cp||F ||p.

Hence it is enough to show that

||T(2)
φ

F || ≤ cp||F ||p.

Claim: ||Tt(I − Jo − J1 − · · · − Jno−1)F ||p ≤ Ce−not ||F ||p. (1.11)

Let p > 2. Chooseto such thatp = e2to + 1. Then by Nelson’s
theorem,

||TtoTt(I − Jo − J1 − · · · − Jno−1)F ||2p
≤ ||Tt(I − Jo − J1 − · · · − Jno−1)F ||22

= ||
∞∑

n=no

e−ntJnF ||22

=

∞∑

n=no

e−2not ||JnF ||22

≤ e−2not ||F ||2p.

34

Therefore

||Tt(I − Jo − J1 − · · · − Jno−1)F ||p ≤ Ce−not||F ||p

whereC = enoto.
For 1< p < 2, the result (1.11) follows by duality. Define

Rno =

∞∫

o

Tt(I − Jo − J1 − · · · − Jno−1)dt.
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From (1.11), we get

||RnoF ||p ≤ C
1
no
||F ||p

and it is clear that

R2
no

F =

∞∫

o

∞∫

o

Tt(I − Jo − J1 − · · · − Jno−1)Ts(I − Jo − · · · − Jno−1)Fdtds

=

∞∫

o

∞∫

o

Tt+s(I − Jo − J1 − · · · − Jno−1)Fdtds.

Hence

||R2
no

F ||p ≤ C.
1

n2
o
||F ||p

and repeating this, we get

||Rk
no

F ||p ≤ C.
1

nk
o
||F ||p.

Also, note that ifFǫCn, n ≥ no 35

RnoF =

∞∫

o

TtJnFdt

=
1
n

JnF

and

Rk
no

F =
1

nk
JnF.

Therefore

T(2)
φ

F =
∞∑

n=no

∞∑

k=o

akR
k
no

JnF =
∞∑

k=1

akR
k
no

F.

Hence

||T(2)
φ

F ||p ≤ U





∑

k

|ak|
(

1
no

)k



||F ||p
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which gives the result.
For the general case, i.e.,o < α < 1, define

Qα
t =

∑

e−nαtJnF =

∞∫

o

Tsµ
(α)
t (ds)

where
∞∫

o

e−λsµ
(α)
t (ds) = e−λ

αt.

As in the caseα = 1, write

Tφ = T(1)
φ
+ T(2)

φ
.

In this case also, we see thatT(1)
φ

is Lp - bounded. Using (1.11),

||Q(α)
t (I − Jo − J1 − · · · − Jno−1)F ||p

≤ C

∞∫

o

||F ||pe−nosµ
(α)
t (ds)

= Ce−nαo t ||F ||p.

Define36

Rno =

∞∫

o

Q(α)
t (I − Jo − J1 − · · · − Jno−1)dt

and proceeding as in the caseα = 1, we get thatT(2)
φ

is also Lp -
bounded. Hence the proof of (1.10).

Remark. (Application ofLp - Multiplier Theorem)

Consider the semigroup{Qt}t≥o. ForFǫP, we have

QtF =
∞∑

n=o

e−
√

ntJnF.
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The generatorC of this semigroup is given by

CF =
∞∑

n=o

(−
√

n)JnF, FǫP.

If we define|||.|||p,s for FǫP by

|||F |||p,s = ||(I −C)sF ||ṗ, 1 < p < ∞,−∞ < s< ∞

where (I −C)sF =
∑∞

n=o(I +
√

n)sJnF, then|| ||p,s is equivalent to|||.|||p,s,
∀ 1 < p < ∞,−∞ < s < ∞. i.e.,∃ ap,s, Ap,s, o < ap,s < Ap,s < ∞ ∋
ap,s|||F |||p,s ≤ ||F ||p,s ≤ Ap,s|||F |||p,s.

Proof. Let TφF =
∞∑

n=o
φ(n)JnF, FǫP, where

φ(n) =

(

1+
√

n
√

1+ n

)s

,−∞ < s< ∞

= h





(

1
n

)1/2


with h(x) =

(

1+x√
(1+x2)

)s

which is analytic near the origin. �

Note thatT−1
φ = Tφ−1 whereφ−1(n) =

1
φ(n)

= h−1





(

1
n

)1/2
 with

h−1(x) =
1

h(x)
also analytic near the origin. Thus bothTφ andT−1

φ are 37

bounded operators onLp. Further,

(I −C)sF = (I − L)s/2TφF = Tφ(I − L)s/2F

and (I − L)s/2F = T−1
φ (I −C)sF = Tφ−1(I −C)sF.

Hence our result follows easily from the fact that

||TφF ||p ≤ Cp||F ||p and||Tφ−1F ||p ≤ Cp||F ||p.

To proceed further, we need the following inequality of Kchinchine.
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Kchinchine’s Inequality: Let (Ω, F, p) be a probability space. Let
{γm(ω)}∞m=1 be a sequence of i.i.d. random variables onΩ with P(γm =

1) = P(γm = −1) = 1/2, i.e.,{γm(ω)} is a coin tossing sequence.

a) If {am} is a sequence of real numbers, then,∀ 1 < p < ∞,∃o < cp <

Cp < ∞ independent of{am} such that

cp





∞∑

m=1

|am|2




p/2

≤ E



|
∞∑

m=1

amγm(ω)|p




≤ Cp





∞∑

m=1

|am|2




p/2

. (1.12)

b) If {am,m′} is a (double) sequence of real numbers, then,∀ 1 < p <

∞,∃ o < cp < Cp < ∞ independent of{am,m′} such that

cp





∞∑

m,m′
|am,m′ |2





p/2

≤ E










∞∑

m′=1

(
∞∑

m′=1

am′,mγm(ω))2






p/2


≤ Cp





∞∑

m,m=1

|a2
m,m′ |





p/2

. (1.13)

c) Let ((amm′ )) ≥ o i.e., for any finitem1 < m2 < · · · < mn, the matrix38

((amimj ))1≤i, j≤n is positive definite. Then,∀ 1 < p < ∞,∃o < Cp <

cp < ∞ independence of (amm′) such that

cp





∑

i

aii





p/2

≤ E









∑

i, j

ai jγi(ω)γ j(ω)





p/2


≤ Cp





∑

i

aii





p/2

. (1.14)

Step 3. (Extension of L-P inequalities to sequence of functionals).
Let Fn ∈ P, n = 1, 2, . . . with JoFn = 0. Then

||√




∞∑

n=1

(Fn)2



 ||p ≤ A′p||
√





∞∑

n=1

G2
Fn



 ||p, ∀ 1 < p < ∞.



1.3. Sobolev Spaces over the Wiener Space 31

Proof. Let {γi(ω)} be a coin tossing sequence on a probability space
(Ω, F,P). �

Let χ(ω,w) =
∑

i γ(ω)Fi(w), ω ∈ Ω1,wǫW.
We first consider the case whenFn ≡ 0, ∀ n ≥ N. (Hence the

above sum is finite). Then the general case can be obtained by alimiting
argument. By Kchinchine’s inequality,∃ constantscp,Cp independent
of w such that

cp





∑

i

Fi(W)2





p/2

≤ E|X(ω,w)|p

≤ Cp





∑

i

Fi(W)2





p/2

∀ = wǫW.

Integrating w.r.t.µ, we get

cp||




∑

i

F2
i





1/2

||pp ≤ E
{

||X(ω,W)||pp
}

(1.15)

≤ Cp||




∑

i

F2
i





1/2

||pp.

But by step 1, we have 39

||χ(ω, .)||p ≤ Ap||GX(ω, .)||p ∀ ωǫΩ. (1.16)

Now

(Gρ(ω,.))
2 =





∞∫

o

t





d
dt

Qt





∑

i

γi(ω)Fi(.)









2

dt





=
∑

i, j

γi(ω)γ j(ω)ai j ,

where

ai j =

∞∫

o

t

(

d
dt

QtFi

) (

d
dt

QtF j

)

dt.
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Also

∑

i

ai j =
∑

i

t∫

o

t

(

d
dt

QtFi

)2

dt

=
∑

i

G2
Fi
.

Then Kchinchine’s inequality (c) implies

cp





∑

i

GFi (W)2





p/2

≤ E|GX(.,w)|p

≤ Cp





∑

i

GFi (W)2





p/2

whereo < cp < Cp < ∞.
Integrating overµ, we get

cp||
√





∑

i

G2
Fi



 ||
p
p ≤ E||Gχ(.,.)||pp ≤ Cp||

√




∑

i

G2
Fi



 ||
p
p. (1.17)

(1.15), (1.16) and (1.17) together prove step 3.

Step 4(Commutation relations involvingD). Let {ℓi}∞i=1 ⊂
∗
W ⊂ H, {ℓi}

an ONB in H. Let DiF =< DF, ℓi >, for FǫP. Then DiFǫP, ∀ i.
Further,

< DF,DF >H=
∑

i

(DiF)2 = |DF|2HS.

40

In fact,

|DkF |2HS =
∑

i1,...,ik

(Di1(Di2(· · · · · · (Dik(F)) · · · ))2.

Let

Tφ =
∞∑

n=o

φ(n)Jn,



1.3. Sobolev Spaces over the Wiener Space 33

Tφ+ =
∞∑

n=o

φ(n+ 1)Jn.

Fact.∀ i = 1, 2, . . . ,DiTφ = Tφ + Di .

Proof. We have seen that the set
{√

aHa(w), aǫA
}

is an ONB in L2.
Therefore it suffices to prove

DiTφHa = Tφ + DiHa, ∀ aǫΛ. �

If a = (a1, a2, . . . ..) with ai > o, then leta(i) = (a1, a2, . . . , ai−1, ai −
1, ai+1, . . .). FromHa(w) =

∏

i
Hai (ℓi(w)), it can be easily seen that

DiHa =






Ha(i) if ai > o

0 if ai = o

Note that, if|a| = n,

TφHa = φ(n)Ha (∴ HaǫCn)

implies
DiTφHa = φ(n)Di Ha.

If ai > o, thenDiHa = Ha(i) where|a(i)| = n− 1. Therefore 41

DiTφHa = φ(n)Ha(i).

= Tφ+Ha(i) = Tφ + DiHa.

If ai = 0, this relation still holds since both sides are zero.

Corollary. TtDiF = etDiTtF, ∀ i and hence

QiDiF = Di

∞∫

0

µt(ds)esTsF, ∀ i, ∀ FǫP.

Step 5. Now we use the previous steps to get the final conclusion.
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In the followingcp, Cp, ap, Ap are all positive constants which may
change in some cases, but which are all independent of the function F.

1 < p < ∞ is given and fixed. First we shall prove

cp|| < DF,DF >
1/2
H ||p ≤ ||CF||p ≤ Cp|| < DF,DF >

1/2
H ||p (1.18)

where

C = lim
t→o

Qt − I
t

i.e., C f =
∑

n

(

−
√

n
)

JnF.

From corollary of step 4, we have

TtDiF = etDiTtF, ∀ FǫP.

Tt










∑

i

f 2
i





1/2



≥





∑

i

(Tt fi)
1/2



 , ∀ fiǫP

implies

Tt










∑

i

(DiF)2





1/2



≥





∑

i

(TtDiF)2





1/2

≥ et





∑

i

(DtTiF)2





1/2

i.e Tt
√

(< DF,DF >H) ≥ et√(< DTtF,DTtF >H).

ChangingF by TtF,42

Tt(
√

(< DTtF,DTtF >H)) ≥ et√(< DT2tF,DT2tF >H).

Now

ψF
∆
=





∞∫

o

{
Tt(
√

(< DTtF,DTtF >H))
}2 dt





1/2

≥






∞∫

o

e2t < DT2tF,DT2tF >H dt






1/2
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= const.






∞∫

o

et < DTtF,DTtF >H dt






1/2

.

Therefore, by the Littlewood-Paley inequality (Step 1),

||F ||p ≥ Cp||






∞∫

o

et < DTtF,DTtF >H dt






1/2

||p. (1.19)

SubstitutingTuF for F in (1.19),

eu/2||TuF ||p ≥ Cp||






∞∫

o

es < DTsF,DTsF >H ds






1/2

||p.

Therefore
∞∫

o

eu||TuF||pdu≥ Cp

∞∫

o

eu/2||






∞∫

u

es < DTsF, DTsF >H ds






1/2

||pdu

≥ Cp||
∞∫

o

eu/2






∞∫

u

es < DTsF,DTsF >H ds






1/2

du||p

≥ Cp||






∞∫

o

ds

[∫ ∞

o
eu/2T{u≤s}du× es/2√(< DTsF,DTsF >H)

]2





1/2

||p

= Cp||






∞∫

o

[

2(es − es/2)
√

(< DTsF,DTsF >H)
]2

ds






1/2

||p

≥ 2Cp||





∞∫

o

e2s < DTsF,DTsF >H ds





1/2

||p

− 2Cp||





∞∫

o

es < DTsF, DTsF >H ds





1/2

||p.

Hence by (1.19), 43

||





∞∫

o

e2s < DTsF,DTsF >H ds





1/2

||p ≤ dp||F ||p + Ap

∞∫

o

eu||TuF ||pdu.



36 1. Calculus of Wiener Functionals

By step 2, we know that if||(Jo + J1)F || = 0, then

||TuF ||p ≤ Cpe−2u||F ||p.

Therefore, if (Jo + J1)F = 0,

||F ||p ≥ Cp||






∞∫

o

e2s < DTsF,DTsF >H ds






1/2

||p. (1.20)

SupposeFǫP satisfies (Jo + J1)F = 0. By step 3,

|| < DF,DF >
1/2
H ||p = ||






∞∑

i=1

(DiF)2






1/2

||p

≤ Cp||





∞∑

i=1

(GDi F)2






1/2

||p

= Cp||






∞∑

i=1

∞∫

o

t(
d
dt

QtDiF)2dt






1/2

||p. (*)

By step 4,
QtDiF = DiQ̃tF whereQ̃tF =

∑

n
e−
√

(n−1)t Jn implying

d
dt

QtDiF = Di

(

d
dt

Q̃t

)

= DiQ̃t CRF

where RF =
∞∑

n=1

√
(1− 1

n
)JnF.

Hence

(∗) = Cp||






∞∫

o

t < DQ̃tCRF,DQ̃tCRF>H dt






1/2

||p (∗∗)
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since44

Q̃t =

∞∫

o

µt(ds)esTs,

< DQ̃tCRF,DQ̃tCRF>1/2
H

≤
∞∫

o

µt(ds)es < DTsCRF,DTsCRF>1/2
H ds

≤





∞∫

o

µt(ds)e2s < DTsCRF,DTsCRF>H ds





1/2

.

Since

∞∫

o

tµt(ds)dt = ds




follows from

∞∫

o

∞∫

o

te−λsµt(ds)dt =
1
λ




,

we have

(∗∗) ≤ Cp||






∞∫

o

e2s < DTsCRF,DTsCRF>H ds






1/2

||p

≤ Cp||CRF||p ≤ Cp||CF||p
(by (1.20) and sinceRC= CRand||R||p < ∞.)

Hence we have obtained

|| < DF,DF >H ||p ≤ Cp||CF||p if ( Jo + J1)F = 0.

For FǫCo ⊕C1, it is easy to verify directly that

|| < DF,DF >
1/2
H ||p ≤ Cp||CF||p.

Hence we have proved

|| < DF,DF >
1/2
H ||p ≤ Cp||CF||p, ∀ FǫP. (1.21)
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The converse inequality of (1.21) can be proved by the following
duality arguments: we have forF, GǫP,

|
∫

W

CF.Gdµ| = |
∫

CF(I − Jo)Gdµ|




∵

∫

W

CFdµ = 0





= |
∫

W

CF.CG̃dµ|
[

G̃ = C−1(I − Jo)G
]

= |
∫

C2F.G̃dµ| = |
∫

< LF, G̃ > dµ|

= |
∫

< DF, G̃ >H dµ|




∵< DF, G̃ >H

=
1
2

{

L(FG̃) − LF.G̃− F.LG̃
}

and
∫

W

LF = 0 ∀ FǫP





≤
∫

|DF|H |DG̃|Hdµ

≤ || |DF|H ||p|| |DG̃|H ||q
(

1
p
+

1
q
= 1

)

≤ Cq|| |DF|H ||p|| |CG̃||q by (1.21)

= Cq|| |DF|H ||p||(I − Jo)G||q
≤ aq|| |DF|H ||p||G||q.

45

Hence taking the supremum w.r.t.||G||q ≤ 1, we have||CF||p ≤
ap|| |DF|H ||p. The proof of (1.18) is complete.

Now we shall prove that

|| |DkF |HS||p ≤ Cp||CkF ||p ∀ FǫP (1.22)

|| |DkF |HS||p ≤ C′p||CkF ||p ∀ FǫP if ( Jo + J1 + · · · Jk−1)F = 0 (1.23)

Then, since

Cp||(I −C)sF ||p ≤ C′p||(I − L)s/2F ||p ≤ C′′p ||(I −C)sF ||p
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and ap||CkF ||p ≤ ||(I −C)kF ||p + ||F ||p,

Theorem 1.8 follows at once.

Proof of (1.22): (By induction). Suppose (1.22) holds for 1, 2, . . . k. Let 46

{γm(w)}mǫNk be coin tossing sequence indexed bym= (i1, i2, . . . , ik)ǫNk

on some probability space (Ω, F,P). Let Dm = Di1Di2 · · ·Dik. Then

|DkF |2HS =
∑

mǫNk

{DmF}2 .

Set
X(ω) =

∑

mǫNk

γm(ω)DmF.

Then

Diχ(ω) =
∑

mǫNk

γm(ω)DiDmF

and Cχ(ω) =
∑

mǫNk

γm(ω)CDmF.

we know that, by (i),

||√




∞∑

i=1

|DiX(ω)|2


 ||p ≤ Cp||CX(ω)||p ∀ ω.

Therefore

E





||√





∞∑

i=1

|DiX(ω)|2


 ||
p
p





≤ CpE||CX(ω)||pp. (1.24)

Therefore, by step 3,

E





||
∑

i

(DiX(ω))2||pp





≥ ap||

√




∑

i,m

(DiDmF)2




||pp (1.25)

= ap|| |Dk+1F |HS||pp.
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On the other hand, by step 3,

E||CX(ω)||pp = E||
∑

mǫNk

γm(ω)(CDmF)||pp

≤ Cp||






∑

mǫNk

(CDmF)2






1/2

||pp

= Cp||






∑

mǫNk

(DmCRkF)2






1/2

||pp

( by step 4, where)RkF =
∞∑

n=k

√
(1− k

n
)JnF

= Cp|| |DkCRkF |HS||pp
≤ Ap||Ck+1RkF ||pp (by induction hypothesis)

≤ A′p||Ck+1F ||pp (∴ ||Rk||p ≤ ap by step 2).

47

This together with (1.24) and (1.25) proves that

|| |Dk+1F |HS||p ≤ Cp||Ck+1F ||p
i.e., (1.22) holds fork+1 and the proof of (1.22) is complete. (1.23) can
be proved in a similar manner.

Corollary to Theorem 1.8. Let FǫDp,k, 1 < p < ∞, kǫZ+; then
DℓFǫL2(W→ H⊗ℓ) are defined forℓ = 0, 1, . . . k, where

H⊗ℓ = H ⊗ · · · ⊗ H
︸        ︷︷        ︸

ℓ−times

is the Hilbert space of all continuousℓ-multilinear forms on H⊗ · · · ⊗ H
︸        ︷︷        ︸

ℓ−times

with Hilbert-Schmidt norm. Note that H⊗o = R and H⊗1 = H.

Proof. For FǫDp,k,∃ FnǫP ∋ ||Fn − F ||p,k → 0 which implies{Fn} is48

Cauchy inDp,k. Hence using Meyer’s theorem, we get

|| |DℓFn − DℓFm|HS|| ≤ C||Fn − Fm||p,k → 0

which gives the result. �
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Recall that ifFǫP ∗
W

then

F(w) =
n∑

i=1
Fi(w)ℓi for somen, ℓiǫ

∗
W andFiǫP.

For

F(W)
n∑

i=1

Fi(w)ℓiǫP ∗w,

define LF(w) =
n∑

i=1

LFi(w)ℓi

and (1− L)s/2F(w) =
n∑

i=1

(1− L)s/2Fi(w)ℓi .

For 1< p < ∞ and−∞, s< ∞, define the norms||.||Hp,s onP ∗
W

by

||F ||Hp,s = || |(I − L)s/2Fi(w)|H ||p.

LetDH p, sdenote completion ofP ∗
W

w.r.t. the norm||.||Hp,s. It is clear

thatDH
p,s ⊂ Lp(W→ H) for s≥ 0 and in factDH

p,o = Lp(W→ H).

Proposition 1.9. The operator D : P → P ∗
W

can be extended as a

continuous operator fromDp,s+1 toDH
p,s for every1 < p < ∞,−∞ < s<

∞.

Proof. Let {ℓi} ⊂
∗

W be aONB in H andFǫP. Now 49

|(I − L)s/2DF|H =




∞∑

i=1

[

(I − L)s/2DiF
]2




1/2

. �

Using step 4 above, we get

|(I − L)s/2DF |H =




∞∑

i=1

{

DiR(I − L)s/2F
}2




1/2

whereR=
∞∑

i=1

( n
n+ 1

)s/2
Jn

= |DR(I − L)s/2F |H.
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Therefore

|| |(I − L)s/2DF|H ||p = || |DRI − L)s/2F |H ||p
≤ Cp||R(I − L)(s+1)/2F ||p (by Meyer’s theorem)

≤ C′p||(I − L)(s+1)/2F ||p (by Lp multiplier theorem)

= C′p||F ||p,s+1.

i.e., ||DF||Hp,s ≤ C′p||F ||p,s+1

from which the result follows by a limiting argument. �

From the above proposition, it follows that we can define the dual
mapD∗ of D, as a continuous operator

D∗ : (DH
p,s)
′ → (Dp,s+1)′

i.e., D∗ : DH
p,s+1→ Dp,s, 1 < p < ∞,−∞ < s< ∞.

And we know that forFǫP, D∗F = −δF. Hence we have the fol-50

lowing corollary.

Corollary. δ : P ∗
W
→ P can be extended as a continuous operator from

D
H
P,s+1→ DP,s for every1 < p < ∞, −∞ < s< ∞.

Proposition 1.10. Let FǫDP,k,GǫDq,k(DH
q,k) for kǫZ+, 1 < p, q < ∞ and

let 1 < r < ∞, such that
1
p
+

1
q
=

1
r

. Then FGǫDr,k (resp. DH
r,k) and

∃ Cp,q,k > 0 such that

||FG||r,k ≤ Cp,q,k||F ||p,k||G||q,k
( resp. ||FG||Hr,k ≤ Cp,q,k||F ||p,k||G||Hq,k).

Proof. Let F,GǫP; then we have

D(FG) = F.DG+G.DF

Therefore
|D[FG]|H ≤ |F ||DG|H + |G||DF|H .
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Similarly

D2FG = FD2G+ 2DF ⊗ DG+G.D2F

and |D2FG|HS ≤ |F ||D2G|HS + 2|DF|H |DG|H + |G||D2F |HS. �

In this way, we obtain for everyk = 1, 2, . . .,

k∑

ℓ=o

|Dl(FG)|HS ≤ Ck





k∑

ℓ=o

|DlF |HS









k∑

ℓ=o

|DℓG|HS




.

�

Applying Hölder’s inequality, we get

||
k∑

ℓ=o

|Dℓ(FG)|HS||r ≤ Ck||
k∑

ℓ=o

|DℓF |HS||p.||
k∑

ℓ=o

|DℓG|HS||q.

Then the result follows by using Meyer’s theorem. And the caseGǫDH
q,k 51

follows by similar arguments.

Corollary. (i) D∞ is an algebra and the map

D∞ × D∞∃ (F,G)→ FGǫD∞

is continuous.

(ii) If FǫD∞,GǫDH
∞ =

⋂

p,s
D

H
p,s, then FGǫDH

∞ and the map(F,G) →
FG is continuous.

Hence we see thatD∞ is a nice space in the sense that

L : D∞ → D∞ is continuous

D : D∞ → DH
∞ is continuous

δ : DH
∞ → D∞ is continuous.

Proposition 1.11. (i) Suppose fǫC∞(Rn), tempered and F1, F2,

. . . , Fn ǫD∞; then F= f (F1, F2, . . . , Fn)ǫD∞ and
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(a) DF =
n∑

i=1
∂i f (F1, F2, . . . , Fn).DFi

(b) LF =
n∑

i, j=1
∂i∂ j f (F1, F2, . . . , Fn) < DFi ,DF j >H

+
n∑

i=1
∂i f (F1, F2, . . . , Fn).L(Fi).

(ii) For F,GǫD∞,

< DF,DG >H=
1
2
{L(FG) − LF.G− F.LG}

and hence < DF,DG >H ǫD∞.

(iii) If F,G, JǫD∞, then52

< D < DF,DF >H ,DJ >H=< D2F,DG⊗ DJ >HS

+ < D2G,DF ⊗ DJ >HS .

(iv) If FǫD∞,GǫDH
∞, then

δ(FG) =< DF,G >H +F.δG.

In particular, ifF,GǫD∞ then

δ(F.DG) =< DF,DG >H +F.LG.

These formulas are easily proved first for polynomials and then gen-
eralized as above by standard limiting arguments.

1.4 Composites of Wiener Functionals and
Schwartz Distributions

For F = (F1, F2, . . . , Fd) : W→ Rd, we state two conditions which we
shall refer to frequently.

F iǫD∞, i = 1, 2, . . . d (A.1)
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Setting

σi j =< DF i ,DF j >H ǫD∞,

∫

(detσ)−p(w)dµ(w) < ∞ ∀ 1 < p < ∞.
(A.2)

We note that ((σi j )) ≥ 0.

Lemma 1. Let F : W→ Rd satisfy (A.1) and (A.2). Thenγ = σ−1ǫD∞
and

Dγi j = −
d∑

k,ℓ=1

γikγ jℓDσkℓ.

Proof. Let ǫ > 0. Let
σ

i j
ǫ (w) = σi j (w)+ǫδi j > 0 (i.e., positive definite). �

Then it can be easily seen that ifγǫ = σ−1
ǫ , then∃ f ǫC∞(Rd2

) ∋ 53

γ
i j
ǫ (w) = f (σi j

ǫ (w)).
Then by proposition (1.11), sinceσi j

ǫ ǫD∞, γ
i j
ǫ ǫD∞. Further, it fol-

lows from the dominated convergence theorem thatγ
i j
ǫ → γi j in Lp ∀ 1 <

p < ∞.
Next we show thatDkγi j ǫLp(W → H⊗k) ∀ 1 < p < ∞. Hence, by

Meyer’s theorem,γǫDp,k ∀ 1 < p < ∞ and∀ kǫZ+ implying γǫD∞. We
have

∑

j

γ
i j
ǫ σ

ik
ǫ = δ

ik.

Therefore
∑

j

γ
i j
ǫ Dσ jk

ǫ +
∑

j

σ
jk
ǫ Dγi j

ǫ = 0

implies Dγi j
ǫ = −

d∑

k,l=1

γik
ǫ γ

jl
ǫ Dσkl

ǫ .

Similarly, we get

Dkγ
i j
ǫ = −

∑

γǫ .γǫ · · · γǫDm1σǫ ⊗ · · · ⊗ Dmkσǫ
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wherem1+ · · ·+mk = k and we have omitted superscripts inσi j
ǫ , γ

kl
ǫ etc.

for simplicity. Therefore, since

γ
i j
ǫ → γi j in Lp,

Dkγ
i j
ǫ →

∑

γ.γ · · · γDm1σ ⊗ . . . ⊗ Dmkσ

in Lp(w→ H⊗k), ∀ 1 < p < ∞
implies

Dkγi j
∑

γ.γ · · · γDm1σ ⊗ · · · ⊗ DmkσǫLp(W→ H⊗k).∀ 1 < p < ∞.

Lemma 2. Let F : W→ Rd satisfy (A.1) and (A.2).54

1) Then,∀ GǫD∞ and∀ i = 1, 2, . . . d.∃ l i(G)ǫD∞ which depends lin-
early on G and satisfies

∫

W

(∂iφoF).Gµ(dw) =
∫

W

φoF).l i(G)dµ, (1.26)

∀ ǫS(Rd). Furthermore, for any1 ≤ r < q < ∞,

sup
||G||q,1≤1

||l i(G)||r < ∞. (1.27)

Hence (1.26) and (1.27) hold for every GǫDq,1.

2) Similarly, for any GǫD∞, and 1 ≤ i1, i2, . . . ik ≤ d, kǫN,∃ l i1...ik
(G)ǫD∞ which depends linearly on G∋

∫

W

(∂i1 . . . ∂i1φoF).Gdµ =
∫

W

φoFli1 . . .ik (G)dµ, ∀ φǫS(Rd)

(1.26)′

and for1 ≤ r < q < ∞,

sup
||G||q,k≤1

||l i1...ik(G)||r < ∞. (1.27)′

Hence again(1.26)′ and(1.27)′ hold for every GǫDq,k.
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Proof. Note thatφoFǫD∞ and

D(φoF) =
d∑

i=1

∂iφoF · DF i .

Therefore

< D(φoF),DF j >H=

d∑

i=1

∂iφoF · σi j

and ∂iφoF =
d∑

j=1

< DφoF,DF j >H γi j . �

�

Hence 55

∫

W

∂iφoF.Gdµ =
d∑

j=1

∫

W

< DφoF, γi j GDF j >H dµ

= −
d∑

j=1

∫

W

(φoF)δ(γi j GDF j)dµ

Let

ℓi(G) = −
d∑

j=1

δ(γi j GDF j)

= −
d∑

j=1

[< D(γi j G),DF j >H +γ
i jG.LF j ]

= −
d∑

j=1










−
d∑

k,ℓ=1

Gγikγ jℓ < Dσkℓ,DF j > +γi j < DG,DF j >H






+ γi jGLF j




.
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Therefore

|ℓi(G)| ≤
d∑

j=1










d∑

k,ℓ=1

|γikγ jℓ ||Dσkℓ|H .|G||DF j |H






+ |γi j ||DF j |H |DG|H + |γi j ||LF j |.|G|




.

Hence ifp is such that
1
r
=

1
p
+

1
q

, then

||l i(G)||r ≤
d∑

j=1










d∑

k,ℓ=1

||γikγ jℓ ||DF j |H |Dσkℓ|H ||p.||G||q






+|| |γi j ||DF j |H ||p|| |DG|H ||q + || |γi j ||LF j | ||p.||G||q




.

Now taking supremum over||G||q + || |DG|H ||q ≤ 1, we get (1.27).
2) The proof is similar to that of (1) and we note that

ℓi1...ik(G) = ℓik[. . . [ℓi2[ℓi1(G)]] . . .].

Let φǫS = S(Rd),−∞ < k < ∞, wherek is an integer. Let56

||φ||T2K = ||(1+ |x|2 − ∆)kφ||∞
where || f ||∞ = sup

xǫRd
| f (x)|.

Let

S̄||.||T2k = T2k.

Facts.(1) S ⊂ . . . ⊂ T2k ⊂ . . . ⊂ T2 ⊂ To = { f cont ., f → 0 as
|x| → ∞}

⊂ T−2 ⊂ . . .T−2k.

(2)
⋂

k
Tk = S



1.4. Composites of Wiener Functionals... 49

(3)
⋃

k
Tk = S′.

Theorem 1.12. Let F : W → Rd satisfy (A.1) and (A.2). LetφǫS ⇔
φoFǫD∞). Then,∀ kǫN and ∀ 1 < p < ∞,∃ Ck,p > 0 such that
||φoF||p,−2k ≤ Cp,k||φ||T−2k for all φǫS .

Proof. Letψ = (1+ |x|2 −∆)−kφǫS. Then forGǫD∞,∃ η2k(G)ǫD∞ such
that

∫

W

[

(1+ |x|2 − ∆)kψoF
]

.Gµ(dw) =
∫

W

ψoF
[
η2k(G)

]
µ(dw)

i.e.,
∫

W

φoF.Gdµ =
∫

W

(1+ |x|2 − ∆)−kφoF.η2k(G)dµ. �

Therefore 57

|
∫

W

φoF.Gdµ| ≤ ||φ||T−2k ||η2k(G)||1.

Let
K = sup

||G||q,2k≤1
||η2k(G)||1 < ∞,

which follows easily from Lemma 2. Note thatη2k(G) has a similar ex-
pression asℓi1...ik(G) only with some more polynomials ofF multiplied.

Then taking supremum over||G||q,2k ≤ 1 in the above inequality, we
get

||φoF ||p,−2k ≤ K.||φ||T−2k.

Since we can take anyq such that
1
r
= 1 <

1
q
< ∞ and

1
p
+

1
q
=

1, p(1 < p < ∞) can also be chosen arbitrarily.

Corollary . We can uniquely extendφǫS(Rd) → φoFǫD∞ as a con-
tinuous linear mapping TǫT−2k → T(F)ǫDp,−2k for every kǫZ+ and
1 < p < ∞.

Indeed, the extension is given as follows:
TǫT−2k implies∃ φnS(Rd) such that||φn−T ||T−2k → 0 which implies

{φn} is Cauchy inT−2k and hence, by Theorem 1.12,{φnoF} is Cauchy
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in Dp,−2k, 1 < p < ∞ and hence we letT(F) = lim
n→∞

φnoF, limit being

takenw.r.t. the norm|| ||p,−2k. Note thatT(F) is uniquely determined.

Definition 1.14. T(F) is called thecompositeof TǫT−2k and F satisfy-58

ing (A.1) and (A.2). Note that, since k is arbitrary, we have defined the
composite T(F) for every TǫS′(Rd) as an element inD−∞.

Proposition 1.13. If T = f ǫĈ(Rd) = To ⊂ S′(Rd), then f(F) = f oF;
the usual composite of f and F.

Proof. TǫTo implies there existsφnǫS such that

||φn − f ||To → 0.

Obviously, we get||φnoF− f oF||p → 0 for 1< p < ∞. Hence the result
follows by definition of f (F). �

1.5 The Smoothness of Probability Laws

Lemma 1. Letδy be the Diracδ- function at yǫRd.

(i) δyǫT−2m if and only if m>
d
2

.

(ii) if m >
d
2

, then the map yǫRd → δyǫT−2m is continuous.

(iii) if m =

[

d
2

]

+ 1, kǫZ+, then yǫRd → δyǫT−2m−2k is 2k times contin-

uously differentiable.

Equivalently,

yǫRd → DαδyǫT−2m−2k, αǫN
d|α| ≤ 2k

is continuous.

Proof. Omitted. �59
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Corollary . Let F satisfy (A.1) and (A.2) and m=

[

d
2

]

+ 1, kǫZ+; then

y → δy(F)ǫDp,−2m−2k is 2k times continuously differentiable for every
1 < p < ∞. In particular, we have the following:

For every GǫDq,2m+2k

< δy(F),G > ǫC2k(Rd), where < δy(F),G >

denote the canonical bilinear form which we may write roughly as Eµ

(δy(F).G).

Lemma 2. Let m=

[

d
2

]

+ 1 and1 < q < ∞. If f ǫC(Rd) with compact

support, then
∫

R

f (y) < δyF,G > dy= Eµ( f oF.G)

for every GǫDq,2m.

Proof. Let

i = (i1, i2, . . . id),∆(n)
i =

[

i1
2n ,

i1 + 1
2n

]

× . . . ×
[

id
2n ,

id + 1
2n

]

and x(n)
i =

( i1
2n ,

i2
2n , . . .

id
2n

)

where ikǫZ. �

Note that|∆(n)
i | =

(
1
2n

)d
, where|.| denote the Lebesgue measure. For

f ǫC(Rd) with compact support, we have

∑

i

f
(

x(n)
i

)

|∆(n)
i |δxi (n) →

∫

Rd

f (x)δxdx= f .

Note that the above integral isT−2m-valued and the integration is in60

the sense of Bochner and hence the convergence is inT−2m. Therefore,
we have ∑

i

f
(

x(n)
i

)

|∆(n)
i |δxi (F)→ f oF in Dp,2m
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for 1 < p < ∞. In particular,

<
∑

i

f
(

x(n)
i

)

|∆(n)
i |δxi (F),G >→ E( f oF.G) for every GǫDq,−2m.

But

<
∑

i

f
(

x(n)
i

)

|∆(n)
i |δxi (F),G >→

∫

Rd

f (x) < δxF,G > dx; .

hence the result. �

Theorem 1.14. Let F = (F1, F2, . . . , Fd) satisfy the conditions (A.1)
and (A.2). Let m=

[
d
2

]

+ 1, kǫZ+ and 1 < q < ∞. Set, for every
GǫDq,2m+2k

µF
G(dx) = Eµ(G(w) : F(w)ǫdx).

ThenµF
G(x) has a density PFG(x)ǫC2k(Rd) and PF

G(x) =< δx(F),G >.

Proof. Easily follows from Lemma 1 and Lemma 2. �

Remark. By the above theorem, we see that ifG

GǫDq,∞ =
∞⋂

k=o

Dq,k1 < q < ∞,

thenµF
G(dx) has aC∞- density. Further, ifG ≡ 1ǫD∞, then the probabil-

ity law of F:
µF

1 (dx) = µ{w : F(x)ǫdx}

has aC∞-density. But we have61

µF
G(dx) = Eµ(G|F = x)µG

1 (dx).

Hence
pF

G(x) = Eµ(G|F = x)pF
1 (x).



Chapter 2

Applications to Stochastic
Differential Equations

2.1 Solutions of Stochastic Differential Equations as
Wiener Functionals

From now on, we choose, as our basic abstract Wiener space (W,H, µ), 62

the followingr-dimensional Wiener space (cf. Ex. 1.1).
Let

W =Wr
o =

{
wǫC[0,T] → Rr),w(0) = 0

}

µ = P, ther-dimensional Wiener measure.

H =






hǫWr
o; h = (hα(t))r

α=1,

hα absolutely continuous and

T∫

o

ḣα(S)2ds< ∞, α = 1, 2 . . . r






.

53



54 2. Applications to Stochastic Differential Equations

We define an inner product inH as follows:

< h, h′ >H=

r∑

α=1

T∫

o

ḣα(t)ḣ′α(t)dt, h′, hǫH.

With this inner product,H ⊂ W is a Hilbert space. Further
∗
W ⊂

H∗ = H ⊂W is given as follows:

∗
W =






ℓǫH : ℓ = (ℓα(t))r
α=1, ℓ

α(t) =

t∫

o

ℓ̇α(t)ds






andℓ̇α is a right continuous function of bounded variation on [0,T] such
that ℓ̇α(T) = 0, α = 1, . . . r}.

If ℓǫ
∗

W,wǫW, then63

ℓ(w) = −
r∑

α=1

T∫

o

wα(t)dℓ̇α(t)

and forℓǫ
∗

W, hǫH,

ℓ(h) = −
r∑

α=1

T∫

o

hα(t)dℓ̇α(t)

=

r∑

α=1

T∫

o

ḣα(t)ℓ̇α(t)dt =< h, ℓ >H −.

Let Bt(Wr
o) = the completion of theσ-algebras onWr

o generated by
(wα(s)), 0≤ s≤ t.

Stochastic Integrals: Let φα(t,w) be jointly measurable in (t,w), Bt

adapted and
T∫

o

φα(t,w)dt < ∞ a.s.
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Then it is well known that the stochastic integral

t∫

o

φα(s,w)dWα
s , (W

α
t (w) = wα(t), α = 1, 2, . . . , r)

is a continuous local martingale.

It ô process:A continuousBt-adapted process of the form

ξt = ξo +

r∑

α=1

t∫

o

φα(s,w)dWα
s +

t∫

0

φo(s,w)ds

where

i) φα(t,w) is Bt-adapted, jointly measurable with

T∫

o

φ2
α(t,w)dt < ∞ a.s.

ii) φo(t,w) is Bt-adapted, jointly measurable with

T∫

o

|φ0(s,w)|ds< ∞ a.s.

is called an Itô process. 64

Straton ovitch Integral: Let φα(t,w) be an Itô process. Thenφα is of
the form

φα(t,w) = φα(o,w) +
r∑

β=1

t∫

o

Ξα,β(s,w)dWβ
s +

t∫

o

Ξα,o(s,w)ds.

Then the Stratonovitch integral ofφα w.r.t Wα, denoted by

t∫

o

φα(s,w)odWα
s
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is defined as follows:

t∫

o

φα(s,w)odWα
s ,

t∫

o

φα(s,w)dWα
s +

1
2

t∫

o

Ξα,α(s,w)ds.

It ô Formula: Let ξt = (ξ′t , . . . , ξ
d
t ) be ad-dimensional Itô process,

i.e., ξi
t = ξ

i
o +

γ∑

α=1

t∫

o

φi
α(s,w)dWα

s +

t∫

o

φi
o(s,w)ds, 1 ≤ i ≤ d.

1) Let f : Rd → Rd be aC2 function. Thenf (ξt) is an Itô process we
have the Itô formula:

f (ξt) = f (ξo) +
d∑

i=1

r∑

α=1

t∫

o

∂i f (ξs)φ
i
α(s,w)dWα

s

+

d∑

i=1

t∫

o

∂i f (ξs)φ
i
o(s,w)ds

+
1
2

r∑

α=1

d∑

i, j=1

t∫

o

∂2
i, j f (ξs)(φ

α
i φ

α
j )(s,w)ds

2) Suppose further thatφi
α(t,w), 1 ≤ i ≤ d, 1 ≤ α ≤ r are Itô processes65

and set

ηi
t = η

i
o +

r∑

α=1

t∫

o

∂i
o(s,w)osWα

s +

t∫

o

φi
o(s,w)ds, 1 ≤ i ≤ d.

Then, if f : Rd → R is C3, we have

f (ηt) − f (ηo) =
d∑

i=1

r∑

α=1

t∫

o

∂i f (ηs)φ
i
α(s,w)odWα

s
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+

r∑

α=1

t∫

o

∂i f (ηs)φ
i
o(s,w)ds.

Stochastic Differential Equations: Let σi
α(x), bi (x) be functions ofRd

for i = 1, 2, . . . d, α = 1, . . . r satisfying the following assumptions:

i) σi
α, b

iǫC∞(Rd → R) ∀ i = 1, . . . d, α = 1, . . . r.

ii) ∀ kǫN, ∂i1∂i2 · · · ∂ikσ
i
α, ∂i1 . . . ∂ikb

i

are bounded onRd.
Then

|σi
α(x)| ≤ K(1+ |x|), ∀ i = 1, . . . d, α = 1, . . . r,

|bi(x)| ≤ K(1+ |x|), ∀ i = 1, . . . d.

Consider the followingS DE,

dXt = σα(Xt)dWα
t + b(Xt)dt,

Xo = xǫRd (2.1)

which is equivalent to saying

Xi
t = xi +

r∑

α=1

t∫

o

σi
α(Xs)dWα

s +

t∫

o

bi(Xs)ds, i = 1, . . . , d.

Then the following are true: There exists a unique solutionXt = 66

X(t, x,w) = X1
t , . . .X

d
t of (2.1) such that

1) (t, x)→ X(t, x,w) is continuous (a.a.w).

2) ∀ t ≥ 0, x→ X(t, x,w) is a diffeomorphism onRd(a.a.w).

3) ∀ t ≥ 0, xǫRd,X(t, x, .)ǫLp ∀ 1 < p < ∞.

Theorem 2.1. Let t> 0, xǫRd be fixed. Then

Xi
t = Xi(t, x,w)ǫD∞, ∀ i = 1, . . . , d.



58 2. Applications to Stochastic Differential Equations

To find an expression for< DXi
t ,DX j

t >H′ let

Yt = ((Yi
j(t))),Y

i
j(t) =

∂Xi(t, x,w)
∂x j

.

Let also

(∂σα)i
j =

∂σ
j
α(x)
∂x j

; (∂b)i
j =

∂bi

∂x j
(x).

Then it can be shown thatYt is given by the followingS DE:

dYt = ∂σα(Xt).YtdWα
t + ∂b(Xt).Ytdt

Yo = I (2.2)

i. e. Yi
j(t) = δ

i
j +

r∑

α=1

d∑

k=1

t∫

o

(∂kσ
i
α)(Xs)Y

k
j (t)dWα

s

+

d∑

k=1

t∫

o

(∂kb
i)(Xs)Y

k
j (s)ds, i, j = 1, . . . , d.

Fact. YtǫLp i.e., (
∑d

i, j=1(Yi
j(s))

2)1/2ǫLp ∀ 1 < p < ∞.

Also by considering theS DE

dZt = −Zt.∂σα(Xt)dWα
s − Zt[∂b(Xt) −

∑

α

(∂σα.∂σα)(Xt)]dt (2.3)

Zo = I

and using Itô’s formula, we can easily see thatd(ZtYt) = 0⇒ ZtYt ≡ I67

i.e., Zt = Y−1
t exists, ∀ t.

Fact. Y−1
t ǫLp

i.e.,





d∑

i, j=1

(

(Y−1(t))i
j

)2





1/2

ǫLp ∀ 1 < p < ∞,

since ZtǫLp.
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Theorem 2.2. For every t, 0 < t < T and i, j = 1, . . . d,

< DXi
t ,DX j

t >=

r∑

α=1

t∫

o

(YtY
−1
s σα(Xs))

i(YtY
−1
s σα(Xs))

jds

where (YtY
−1
s σα(Xs))

i =
∑

k, j

Yi
k(t)(Y

−1)k
j (s)σ

j
α(Xs).

Remark. The S.D.E (2.1) is given in the Stratonovitch form as

dXt = σα(Xt)odWα
t + b̃(Xt)dt (2.1)′

Xo = x

where

b̃i (x) = bi(x) − 1
2

d∑

k=1

r∑

α=1

∂kσ
i
α(x)σk

α(x)

and correspondingly, (2.2) and (2.3) are given equivalently as

dYt = ∂σα(Xt)YtodWα
t + ∂b̃(Xt)dt (2.2)′

dZt = −Zt∂σα(Xt)odWα
t + Zt∂b̃(Xt)dt. (2.3)′

For the proof if theorem 2.1 and theorem 2.2, we need the following: 68

Lemma 1. Let Xt be the solution of (2.1) and at = (ai
t) be a continuous

Bt adapted process. Suppose thatξt = (ξi
t) satisfies

dξt =

r∑

α=1

∂σα(Xt)ξtdWα
t + ∂b(Xt)ξtdt + atdt

ξo = 0. (2.4)

Then

ξt =

t∫

o

YtY
−1asds= Yt

t∫

o

Y−1
s asds,

whereYt is the solution of (2.2).
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Proof. It is enough to verify thatξt =

t∫

o
YtY−1

s asdssatisfies (2.4). Now

dξt = d(

t∫

o

YtY
−1asds)

= dYt.

t∫

o

Y−1
s asds+ YtY

−1
t atdt

= dYt

t∫

o

Y−1
s asds+ atdt. �

Using (2.2), we get

dξt = (∂σα(Xt).YtdWα
t + ∂b(Xt)Ytdt)

t∫

o

Y−1
s asds+ atdt

= ∂σα(Xt)ξtdWα
t + ∂b(Xt)ξtdt + atdt;

hence the lemma is proved. �

Formal Calculations:69

By definitions,

DXi
t[h] =

∂

∂ǫ
Xi(t, x,w+ ǫh)|ǫ=o′hǫH.

But

Xi(t, x,w+ ǫh) = x+
∑

α

t∫

o

σi
α(X(s, x,w+ ǫh))d(Wα

s + ǫh
α
s)

+

t∫

o

bi(X(s, x,w+ ǫh))ds
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Hence

DXi
t[h] =

r∑

α=1

d∑

k=1

t∫

o

∂kσ
i
α(Xs)DXk

s[h]dWα
s

+

r∑

α=1

t∫

o

σi
α(Xs)dhαs

+

d∑

k=1

t∫

o

∂kb
i(Xs)DXk

s[h]ds.

This is same as (2.4) with

ai
s =

r∑

α=1

σi
α(Xs)ḣ

α
s .

Hence formally we have

DXi
t[h] =

r∑

α=1

t∫

o

[

YtY
−1
s σα(Xs)

]i
ḣαsds.

Now, let for i = 1, 2, . . . d,

η̇i
t, α

(s) = [YtY
−1
s σα(Xs)]

i if s≤ t

= 0 if s> t.

For fixeds, 0 ≤ s≤ t ≤ T, η̇i,α
t , (s) satisfies the following:

η̇
i,α
t (s) =

∑

j

t∫

s

∂ jσ
i
α(Xu)η̇ j,α

u (s)dWα
u

+
∑

j

t∫

s

∂ jb
i (Xu)η̇ j,α

u (s)du+ σi
α(Xs). (2.5)

70
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Note that this is same as (2.2) with initial conditionσi
α(Xs). Now

DXi
t [h] =< ηi

t, h >H=
∑

α

T∫

o

η̇
i,α
t (s)ḣα(s)ds

where η
i,α
t (s) =

s∫

o

η̇
i,α
t (u)duǫ H.

Hence

< DXi
t ,DX j

t >H=

r∑

α=1

t∫

o

[YtY
−1
s σα(Xs)]

i [YtY
−1
s σα(Xs)]

jds.

A rigorous proof is given by using approximating arguments.Let

φn(s) =
k
2n , if

k
2n ≤ s<

k+ 1
2n , n = 1, 2 . . .

and ψn(s) =
k+ 1

2n , if
k
2n < s≤ k+ 1

2n , n = 0, 1, 2 . . .

Usingφn andψn, we write the corresponding approximating equa-
tions of (2.1), (2.2), (2.5) as

dX(n)
t = σα

(

X(n)
φn(t)

)

dWα
t + b

(

X(n)
φn(t)

)

dt (2.1)a

X(n)
o = x

dY(n)
t = ∂σα

(

X(n)
φn(t)

)

Y(n)
φn(t)dWα

t + ∂b
(

X(n)
φn(t)

)

Y(n)
φn(t)dt (2.2)a

Y(n)
o = I .

η̇
i,α,(n)
t (s) =

∑

α

∑

j

t∫

ψn(S)Λt

∂ jα
j
α

(

X(n)
Φn(u)

) ˙
η

j,α,(n)
Φn(u) (s)dWα

u

+
∑

j

t∫

ψn(S)Λt

∂ jb
i
(

X(n)
Φn(u)

) ˙
η

j,α,(n)
Φn(u) (s)du+ σi

α

(

X(n)
φn(s)

)

. (2.5)a

71
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It is easily seen that (2.1)a has a unique solutionX(n)
t ǫS: the space

of smooth functionals, and∂X(n)
t = Y(n)

t .
Further,

DX(n)
t [h] =

∑

α

t∫

o

η̇
i,α,(n)
t (S)ḣα(s)ds.

Then the theorem 2.2 follows from the approximating theorem.

Theorem 2.3. Suppose, for xǫRm, A(x) = (A j
α(x))ǫRm ⊗ Rr , B(x) =

(Bi(x))ǫRm satisfy

||A(x)|| + |B(x)| ≤ K(1+ |x|),
||A(x) − A(y)|| + |B(x) − B(y)| ≤ KN|x− y| ∀ |x|, |y| ≤ N.

Also,

(a) Supposeαn(t), α(t) beRm -valued continuousBt adapted processes
such that, for some 2≤ p < ∞,

Supn E

[

sup
o≤t≤T

|αn(t)|p+1
]

< ∞,

E

[

sup
o≤t≤T

|αn(t) − α(t)|p
]

→ 0 asn→ ∞

and let, fori = 1, . . . , n,

ξi(t) = αi(t) +
r∑

α=1

t∫

o

Ai
α(ξ(s))dWα(s) +

t∫

o

Bi(ξ(s))ds

and

ξi,(n)(t) = αi
n(t) +

r∑

α=1

t∫

o

Ai
α(ξ(n)(Φn(s)))dWα

s +

t∫

o

Bi(ξ(n)(Φn(s)))ds,

then 72

E

[

sup
o≤s≤T

|ξ(n)(s)|p
]

< ∞ and
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E

[

sup
o≤s≤T

|ξ(n)(s) − ξ(s)|p
]

→ 0 asn→ ∞.

(b) Supposeαn,ν(t), αν(t), tǫ[ν,T] areRm-valued continuousBt- adapted
processes such that, for some 2≤ p < ∞,

sup
n

sup
o≤ν≤T

E

[

sup
ν≤t≤T

|αn,ν(t)|p+1
]

< ∞,

sup
o≤ν≤T

E

[

sup
ν≤t≤T

|αn,ν(t) − αν(t)|p
]

→ asn→ ∞.

Let

ξi
ν(t) = α

i
ν(t) +

r∑

α=1

t∫

ν

Ai
α(ξν(s))dWα

s +

t∫

ν

Bi(ξν(s))ds

and

ξi,(n)
ν (t) = αi

n,ν(t) +
r∑

α=1

∫

ψn(ν)Λt

Ai
α(ξ(n)

ν (Φn(s)))dWα
s +

∫

ψn(ν)Λt

Bi(ξ(n)
ν (Φn(s)))ds.

Then

E

[

sup
ν≤s≤T

|ξ(n)
ν (s)|P

]

< ∞

and E

[

sup
ν≤s≤T

|ξ(n)
ν (s) − ξν(s)|p

]

→ 0

uniformly in ν asn→ ∞.
Let Xt = (Xi

t)
d
i=1 satisfy (2.1). Letσt = ((σi j (t))) where73

σi j (t) =< DXi
t ,DX j

t >H .

The problem now is to prove condition A.2, i.e.,

(detσt)
−1ǫLp ∀ 1 < p < ∞.

Let Yt satisfy (2.2). ThenYt can be considered as an element of
GL(d,R)- the group of real non-singulard × d matrices. Then (Xt,Yt) ∈
R

d ×GL(d,R). Let rt = (Xt,Yt), which is determine by (2.1) and (2.2).
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Definition 2.1. Let (ai (x))d
i=1 be smooth functions onRd and L=

∑d
i=1

ai(x) ∂
∂xi , the corresponding vector field onRd. Then for

r = (x, e)ǫRd ×GL(d,R)

we define fiL(r) ,
d∑

j=1

(e−1)i
ja

j(x)i = 1, 2, . . . d

and fL(r) = ( f i
L(r))d

i=1.

Let

Lα(x) =
d∑

i=1

σi
α(x)

∂

∂xi
α = 1, 2, . . . , r.

Lo(x) =
d∑

i=1

b̃i (x)
∂

∂xi

where b̄i(x) = bi − 1
2

∑

k

∑

α

∂kσ
i
α(x)σk

α(x).

Proposition 2.4. Let 74

L =
∑

i

ai(x)
∂

∂xi

be any smooth vector field onRd. Then. for i= 1, 2, . . . , d,

f i
L(rt) − f i

L(r0) =
r∑

α=1

t∫

0

f i
[Lα,L](rs)odWα

s +

t∫

o

f i
[Lo,L](rs)ds

=

r∑

α=1

t∫

o

f i
[Lα,L](rs)dWα

s

+

t∫

o

f i
{[Lo,L]+ 1

2
∑r
α=1[Lα,[Lα,L]]}(rs)ds,

where[L1, L2] = L1L2 − L2L1 is the commutator of L1 and L2.
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Proof. fiL(rt) = [Y−1
t a(Xt)] i and we know that

dY−1
t = −Y−1

t ∂σα(Xt)odWα
t − Y−1

t ∂b̃(Xt)dt

and da(Xt) = ∂a(Xt)σα(Xt)odWα
t + ∂a(Xt)b̃(Xt)dt

where ∂a(Xt) = ((
∂ai

∂x j
(Xt))).

The proof now follows easily from the Itô formula. �

Remark. fLα(rs) = Y−1
s σα(Xs). Therefore

σ
i j
t =< DXi

t ,DX j
t >H=

r∑

α=1

t∫

0

[Yt fLα(rs)]
i [Yt fLα(rs)]

jds.

Proposition 2.5. Let

σ̂
i j
t (w) =

r∑

α=1

t∫

0

f i
Lα(rs) f j

Lα
(rs)ds.

Then

(detσt)
−1ǫLP, ∀ 1 < P < ∞ iff (detσ̂t)

−1ǫLP ∀ 1 < p < ∞.

75

Proof. σt = Ytσ̂tY∗t implies detσt = (detYt)2(detσ̂t).
We know that||Yt ||, ||Y−1

t ||ǫLP ∀ 1 < p < ∞, where

||σ|| =





∑

i, j

|σi j |2




1/2

.

Hence, ifλ2
i , i = 1, 2, . . . , d are the eigenvalues ofYtY∗t then

(detYt)
2 = detYtY

∗
t = λ

2
1 · · ·λ

2
n

and

||Yt||2 =
∑

i

< YtY
∗
t ei , ei >
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= λ2
1 + · · · + λ

2
n

where (ei )d
i=1 is an orthonormal basis inRd. Therefore

(det Yt)
2 ≤ ||Yt ||2n.

Similarly
(det Y−1

t )2 ≤ ||Y−1
t ||2n.

Hence the result. �

2.2 Existence of moments for a class of Wiener
Functionals

Proposition 2.6. Letη > 0 be a random variable on(Ω, F,P). If, ∀ N =
2, 3, 4, . . . ,∃ constants c1, c2, c3 > 0 (independent of N) such that

P

[

η <
1

Nc1

]

= P
[

η−1 > NC1
]

≤ e−c2NC3
,

then E[η−P] < ∞,∀ p > 1.

Proof.

E
[

η−P
]

≤ 1+
∞∑

N=1

E
[

η−P : NC1 ≤ η−1 ≤ (N + 1)C1
]

≤ 1+ 2C1P +

∞∑

N=2

(N + 1)C1pe−C2NC3

< ∞.

� 76

Example 2.1.Let 0< t̄ ≤ T. Let

η =

t̄∫

0

|w(s)|γds; γ > 0.

Then we will prove thatE[η−P] < ∞,∀ 1 < P < ∞. To prove this,
we need a few lemmas.
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Lemma A . Let P be the Wiener measure on C([o,T] → Rr ). Then,
∀ ǫ > 0, 0 < t ≤ T∃ C1,C2 > 0 and independent ofǫ and t such that

P

[

sup
0≤s≤t

|w(s)| < ǫ
]

≤ C1e
−

tc2

ǫ2 .

Proof. For XǫRr , |x| < 1, let

u(t, x) = P
[

max
0≤s≤t

|w(s) + x| < 1
]

.

�

Then it well known that

∂u
∂t
=

1
2
△u in {|x| ≤ 1}

u|t=0 = 1

u||x|=1 = 0.

Therefore, ifλn, φn are the eigenvalues and eigenfunctions for the
corresponding eigenvalue problem, then

u(t, x) =
∑

n

e−λntφn(x)
∫

|y|≤1
φn(y)dy.

Also since{w(s)} ∼
{

ǫw
( s

ǫ2

)}

for everyǫ > 0,77

P

[

sup
0≤s≤t

|w(s)| < ǫ
]

= P




sup

0≤s≤ t
ǫ2

|w(s)| < 1





= u
( t

ǫ2
, 0

)

∼ φ1(0)
∫

|Y|≤1

φ1(y)dy× e−
λt
1
ǫ2

Lemma B. Let

ξ(t) =
r∑

α=1

t∫

0

φα(s,w)dWα
s +

t∫

0

ψ(s,w)ds.
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Let
r∑

α=1

|φα(s,w)|2 ≤ k, |ψ(s,w)| ≤ k.

Then,∀ a > 0 and 0< ǫ <
a
2k
,∃ c > 0, independent ofa, ǫ, andk

such that

P(τa < ǫ) ≤ e−
ca2
kǫ ,

where τa = inf {t : |ξ(t)| > a}.

Proof. We know that we can write

ξ(t) = B(A1(t)) + A2(t)

where

A1(t) =
r∑

α=1

t∫

0

|φα(s,w)|2ds,

A2(t) =

t∫

0

ψ(s,w)ds

andB(t) is a 1-dimensional Brownian motion withB(0) = 0. �

Hence

{|ξ(t)| > a} ⊂
{

|B(A1(t))| > a
2

}

U
{

|A2(t)| > a
2

}

.

Further|A1(t)| ≤ kt i = 1, 2, and if 78

σB
a/2 = inf

{

t : |B(t)| > a
2

}

,

then
{

|B(A1(t))| >
a
2

}

⊂
{

A1(t) > σB
a/2

}

⊂
{

kt > σB
a/2

}
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⇒ τa ≥
a
2k
ΛσB

a/2/k a.s.

Therefore, if

0 < ǫ <
a
2k
,

P [τa < ǫ] ≤ P
[

σB
a/2 < kǫ

]

≤ p
[

max
0≤s≤kǫ

|B(s)| > a
2

]

≤ 2P
[

max
0≤s≤kǫ

B(s) >
a
2

]

= 2
√ (

2
πkǫ

) ∞∫

a/2

e−(x2/kǫ)dx

≤ e− c.(a2/kǫ).

Ex. 2.1 (Solution): Let t̄ be such 0< t̄ ≤ T and forN = 2, 3, . . ., define

σ2/N(w) = inf

{

t : |w(t)| ≥ 2
N

}

and

σN
1 (w) = σ2/N(w)Λ

t̄
2
.

Let

W1 =

{

w : σ2/N(w) <
t̄
2

}

,

then, by lemma A, we haveP(wc
1) ≤ e−c1N2

, for some constantc1 inde-
pendent ofN. We denote the shifted path ofw(t) as

w+s (t) = w(t + s).

Define79

τ1/N(w) = inf

{

t : |w(t) − w(0)| ≥ 1
N

}
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and let W2 =

{

W : τ1/N(w+
σN

1
) ≥ t̄

N3

}

.

Note that ifwǫW1∩W2 thenσN
1 = σ2/N. By strong Markov property

of Brownian motion, we get

P(WC
2 ) = P

(

τ1/N <
t̄

N3

)

≤ e−C3N (by lemma B).

Define

σN
2 (w) = σN

1 + τ1/N(w+
σN

1
)Λ

t̄

N3
.

From the definition, it follows that onW2,

σN
2 = σ

N
1 +

t̄

N3
.

Clearly, if tǫ
[

σN
1 , σ

N
2

]

, then |w(t)| ≤ 3
N

and if wǫW1 ∩ W2, then

1
N
≤ |w(t)| ≤ 3

N
. Hence we have. forwǫW1 ∩W2,

n(w) =

t̄∫

0

|w(s)|γds≥
σN

2∫

σN
1

|w(t)|γdt

≥ t̄

N3
.

1
NY
=

t̄

N3+y
.

Now
P(WC

1 UWC
2 ) ≤ e−C4N

Hence

P

(

η <
t̄

N3+y

)

≤ e−C4N,N = 2, 3, . . .

which gives, by proposition 2.4, thatE(η−p) < ∞ for everyp > 1. 80
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Example 2.1(a):Let

η(w) =

t̄∫

0

e
−

1
|w(s)|γ ds, 0 < t̄ ≤ T, γ > 0;

thenE(η−p) < ∞ for all 1 < p < ∞ whenγ < 2, and forγ ≥ 2 there
existsp such thatE[η−p] = ∞.

Proof. Exercise. �

Example 2.2.Let

η(w) =

t̄∫

0





t∫

0

|w(s)|γdW(s)





2

dt, for 0 < t̄ ≤ T

fixed, thenE[η−p] < ∞, for every 1< p < ∞.

Proof. In example 2.1, we have seen stopping timesσN
1 andσN

2 satisfy-

ing; 0≤ σN
1 < σN

2 ≤ t̄, σN
2 − σ

N
1 =

t̄

N3
and

|w(u)| ≤ 3
N
, if uǫ

[

σN
1 , σ

N
2

]

.

Now, let

W1 =

{

σN
2 − σ

N
1 =

t̄

N3

}

,

W2 =






W :

σN
2∫

σN
1

|w(u)|2γdu>
t̄

N2γ+3






.

�

By lemma B,
P(WC

1 ) ≤ e−C1NC2
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and we have seen thatP(WC
2 ) ≤ e−C1NC2 . Let

θ(s) =

s∫

0

|w(u)|2γdu.

Then by representation theorem for martingales, there exists one- 81

dimensional BrownianB(t) such that

t∫

0

|w(s)|γdWs = B(θ(t)).

ForwǫW1 ∩W2,

η =

t̄∫

0

|B(θ(t))|2dt ≥
σN

2∫

σN
1

|B(θ(t))|2dt

=

θ(σN
2 )

∫

θ(σN
1 )

|B(s)|2dθ−1(s) changing the variablesθ(t)→ s

=

θ(σN
2 )

∫

θ(σN
1 )

|B(s)|2

|w(θ−1(s))|2γds
s=

s∫

o

d(θ(u))

|w(u)|2γ

≥
θ(σN

2 )
∫

θ(σN
1 )

|B(s)|2
(N

3

)2γ
ds θ−1(s) =

θ−1(s)∫

o

dθ(u)

|w(u)|2γ

≥
(N

3

)2γ
θ(σN

1 )+
t̄

N2γ+3
∫

θ(σN
1 )

|B(s)|2ds =

s∫

o

du

|w(θ−1(u))|2γ

i.e., η ≥
(N

3

)2γ
θ(σN

1 )+ t̄
N2γ+3

∫

θ(σN
1 )

|B(s)|2ds. (2.6)
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To proceed further, we need the following lemma whose proof will
be given later.

Let I = [a, b] and for f ǫL2(I ) define

f̄ =
1

b− a

∫

I

f (x)dx

and

VI ( f ) =
1

b− a

∫

I

( f (x) − f̄ 2)dx

VI has following properties:82

(i) VI ( f ) ≥ 0 ∀ f ǫ L2(I )

(ii) V1/2
I ( f + g) ≤ V1/2

I ( f ) + V1/2
I (g)

(iii) VI ( f ) ≤ 1
b− a

∫

I

( f (x) − k)2dx for any constantk.

Lemma C . Let B(t) be any one-dimensional Brownian motion on I=
[0, a]. Then the random variable V[0,a](B) satisfies:

P
[

V[0,a](B) < ǫ2
]

≤
√

2e
−

a

27ǫ2 , for everyǫ, a > 0.

From (2.6), using the property (iii) ofVI , we get

η ≥
(N

3

)2γ
V[

θ(σN
1 ),θ(σN

1 )+t̄/(N2γ+3)
](B)

t̄

N2γ+3
.

Now let

W3 =

{

w :
t̄

32γN3
V[θ(σN

1 ),θ(σN
1 )+t/(N2γ+3)](B) >

t̄
Nm

}

Then by lemma C, we have, for sufficiently largem,

P(WC
3 ) ≤ e−C3N(m−3)−(2γ+3)

≤ e−C3NC4
.
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Hence onW1 ∩W2 ∩W3, n ≥ t̄
Nm ≥

1
NC5

. Now

P((W1 ∩W2 ∩W3)c) ≤ P(Wc
1) + P(Wc

2) + P(Wc
3)

≤ e−cNC7
6 .

Hence by proposition 2.4, it follows that

E[η−p] < ∞, ∀ 1 < p < ∞.

Proof of Lemma C: Using the scaling property of Brownian motion,83

we have
aV[◦,1](B) ∼ V[◦,a](B).

Therefore, it is enough to prove that

p
[

V[◦,1](B) < ǫ2
]

≤
√

2e−1(27ǫ2).

For tǫ[◦, 1], we can write

B(t) = tξ0 +
√

2
∞∑

k=1

[

ξk

{

cos(2πkt) − 1
2πk

}

+ ηk
sin 2πkt

2πk

]

where{ξk}, {ηk} arei.i.d.N(◦, 1) random variables. Therefore

B(t) −
1∫

0

B(s)ds=

(

t − 1
2

)

ξ0 +
√

2
∞∑

k=1

[

ξk
cos 2πkt

2πk
+ ηk

sin 2πkt
2πk

]

.

Note that the functions
{

t − 1
2 , sin 2πkt

}

are orthogonal to{cos 2πkt}
in L2[◦, 1]. Therefore

V = V[◦,1](B) ≥
∞∑

k=1

ξ2
k ×

1

(2πk)2
.

Hence

E(e−2z2V) ≤ E




e−2z2

∑

k

ξ2
k/(2πk)2
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=
∏

k

E
(

e−Z2ξ2
k/2π

2k2)

=
∏

k

(

1+
Z2

π2k2

)−1/2

=
√ ( Z

sinh z

)

≤ √2e−z/4.

Therefore

P(V < ǫ2) ≤ e2z2ǫ2
E(e−2z2v)

≤ √2e2z2ǫ2− Z
4 , ∀ z.

Takingz=
1

16ǫ2
, we get84

P(V[0,1](B) < ǫ2) ≤ √2e−1/(27ǫ2).

Example 2.3.Let

ξ(t) = ξ(0)+
γ∑

α=1

t∫

0

ξα(s)dWα
s +

t∫

0

ξ0(s)ds

and suppose∃ a sequence of stopping timesσN
1 , σ

N
2 ,

N = 2, 3, . . ., such that 0≤ σN
1 ≤ σ

N
2 ≤ t̄ and

(i) σN
2 − σ

N
1 ≤

t̄

N3
.

(ii)
γ∑

α=1
|ξα(s)|2 + |ξ0(s)| ≤ c1, ∀ sǫ

[

σN
1 , σ

N
2

]

,

(iii) P

[

σN
2 − σ

N
1 <

t̄

N3

]

≤ e−c2NC3

(iv) P





σ2N∫

σN
1

|ξ(t)|2dt ≤ 1

NC
4




≤ e−c2Nc3
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whereci > 0, i = 1, 2, 3, 4 are all independent ofN. Let

η(t) = η(0)+

t∫

0

ξ(s)ds

and η =

t̄∫

0

|η(s)|2ds(≥
σN

2∫

σN
1

|η(s)|2ds).

Thenη−1ǫLP, ∀ 1 < p < ∞. This follows from the estimate∃ c5 >

0, c6 > 0, c7 > 0 (all independent ofN) such that

P





σN
2∫

σN
1

|η(t)|2dt ≤ 1
NC5





≤ e−c6Nc7
.

To prove this, we need a few lemmas:

Lemma D. Let 85

ξ(t) = ξ0 +

γ∑

α=1

t∫

0

ξα(s)dWα
s +

t∫

0

ξ0(s)ds.

Let
sup

t1<s≤t2

∑

α

|ξα(s)|2 + |ξ0(s)| ≤ c.

Then∀ 0 < γ < 1
2,∃ c1 > 0, c2 > 0 such that

P



 sup
s,t,ǫ[t1,t2]

|ξ(t) − ξ(s)|
|t − s|γ > N



 ≤ e−c1Nc2
,N = 2, 3, . . .

Proof. Since we can always write

ξ(t) = ξ(0)+ B





t∫

0

∑

α

(s)2ds




+

t∫

0

ξ0(s)ds
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whereB(t) is a 1-dimensional Wiener process, it is enough to prove the
Lemma whenξ(t) = B(t). ForwǫWr

0, let

||w||γ = sup
s,tǫ[0,T]

|w(t) − w(s)|
|t − s|γ .

�

Let
Wγ =

{

wǫWr
0 : ||w||γ < ∞

}

.

ThenWγ ⊂ Wr
0 is a Banach space and if 0< γ < 1/2, using the

Kolmogorov-Prohorov theorem, it can be shown thatP can be consid-
ered as a probability measure onWγ (cf. Ex. 1.2 withk(t, s) = tΛs).
Therefore by Fernique’s theorem,

E(eα||w||
2
γ ) < ∞

for someα > 0⇒ E(e||w||γ )<∞. Therefore

P(||w||γ > N) ≤ e−NE[e||w||γ ]

≤ e−c1Nc2

Lemma E. Let f(s) be continuous on [a, b] and let86

| f (t) − f (s)|
|t − s|1/3

≤ k

and

b∫

a

| f (t)|2dt > ǫ2 whereǫ3 ≤ 22k3(b− a)5/2.

Let

g(t) = g(a) +

t∫

a

f (s)ds.

Then

(b− a)V[a,b](g) ≥ 1
29.48

ǫ11

k9(b− a)1+9/2
.
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Proof. ∃ toǫ[a, b] such that| f (to)| > ǫ

(b− a)1/2
.

Therefore| f (s)| ≥ | f (to)| − | f (to) − f (s)| implies

| f (s)| ≥ ǫ

2(b− a)1/2
if |to − s| ≤ ǫ3

k323(b− a)3/2
.

We denote byI the interval of length

|I | = ǫ3

k323(b− a)3/2

which is contained in [a, b] and is of the form [to, to + |I |] or [to − |I |, to].
SuchI exists, since

ǫ3

k323(b− a)3/2
≤ b− a

2
.

Note thatf (s) has constant sign inI . Therefore

(b− a)V[a,b](g) =

b∫

a

(g(s) − ḡ)2ds

≥
∫

I

(g(s) − ḡ)2ds

≥
∫

I

(g(s) − ḡ|I )2ds.

But we can always findt1ǫI with ḡ|I = g(t1). Therefore 87

(b− a)V[a,b](g) ≥
∫

I





s∫

t1

f (u)du





2

ds

≥ ǫ2

4(b− a)

∫

I

(s− t1)2ds

≥ ǫ2

4(b− a)

β∫

α

(

s− α + β
2

)2

dswhereI = (α, β)
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=
1
48

ǫ2

(b− a)
|I |3.

�

Proof of ex. 2.3:Let

W1 =

{

σN
2 − σ

N
1 =

t̄

N3

}

.

W2 =






sup
s,tǫ[σN

1 ,σ
N
2 ]

|ξ(t) − ξ(s)|
|t − s|1/3

≤ N






W3 =






σN
2∫

σN
1

|ξ(t)|2dt ≥ 1
Nc4






.

Then by Lemma D and assumptions (iii) and (iv), we get

P
(

wc
1 ∪wc

2 ∪Wc
3

)

≤ e−a1Na2
, a1 > 0, a2 > 0.

Hence, ifwǫW1 ∩W2 ∩W3, by Lemma E, we can choosec5 > 0
such that

(

σN
1 − σ

N
1

)

V[σN
1 ,σ

N
2 ](η) >

1
Nc5

and since

V[σN
1 ,σ

N
2 ](η) ≤

1

σN
2 − σ

N
1

σN
2∫

σN
1

|η(t)|2dt

we have

P





σN
2∫

σN
1

|η(t)|2dt ≤ 1
Nc5





≤ e−a1Na2
.

Key Lemma: Let η(t) = η(0)+Σr
α=1

t∫

o
ηα(s)dWα

s +

t∫

o
ηo(s)dswhereηo(t)88
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is also an Itô process given by

ηo(t) = ηo(0)+
r∑

β=1

t∫

o

ηoβ(s)dWβ
s +

t∫

o

ηoo(s)ds.

Suppose we have sequences of stopping times{σN
1 }, {σ

N
2 } such that

0 ≤ σN
1 < σN

2 ≤ t̄ for 0 < t̄ ≤ T,N = 2, 3, . . . and satisfying

(i) σN
2 − σ

N
1 ≤

t̄

N3
,

(ii) P

(

σN
2 − σ

N
1 <

t̄

N3

)

≤ e−c1Nc2
,∃ for someC1, c2 > 0

(iii) ∃ c3 > 0 such that for a.a.w

|η(t)| +
r∑

α=o

|ηα(t)| +
r∑

β=o

|ηoβ(t)| ≤ c3

for everytǫ
[

σN
1 , σ

N
2

]

.

Then for any givenc4 > o,∃ c5, c6, c7 > o (which depend only on
c1, c2, c3, c4) such that

P





σN
2∫

σN
1

|η(t)|2dt ≤ 1
Nc5

,

r∑

α=o

σN
2∫

σN
1

|ηα(t)|2dt >
1

Nc4





≤ e−c6Nc7
,N = 2, 3, . . . .

Proof. For simplicity, we takēt = 1. Let

W1 =

[

σN
2 − σ

N
1 =

1

N3

]

W2 =




sup

s,tǫ[σN
1 ,σ

N
2 ]

|ηo(t) − ηo(s)|
|t − s|1/3

≤ N
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then, by the hypothesis (ii), (iii) and Lemma D,∃ constantsd1, d2 > 0 89

such that
P(Wc

1 ∪Wc
2) ≤ e−d1Nd2

. (2.7)

Now, by representation theorem, on [σN
1 , σ

N
2 ], η(t) can be written as

η(t) = η(σN
1 ) + B(A(t)) + g(t) (2.8)

where

A(t) =

t∫

σN
1

r∑

α=1

|ηα(s)|2ds, g(t) =

t∫

σN
1

ηo(s)ds

andB(t) is one-dimensional Brownian motion withB(0) = 0. �

In Ex. 2.3, we obtained that, for everya1 > 0,∃ a2 > 0 such that

[

V[σN
1 ,σ

N
2 ](g) ≤ 1

Na2

]

⊂Wc
1 ∪Wc

2 ∪





σN
2∫

σN
1

|ηo(t)|2dt <
1

2Na1





. (2.9)

Let

W3 =





r∑

α=o

σN
2∫

σN
1

|ηα(t)|2dt ≥ 1
Nc4





.

Choosea3 such thata3 > c4 + 1, which implies

1
2Nc4

>
1

Na3
,N = 2, 3, . . .

Therefore

W3 ⊂





σN
2∫

σN
1

|ηo(t)|2dt ≥ 1
2Nc4





∪
[

A
(

σN
2

)

≥ 1
2Nc4

]

⊂W3,1 ∪W3,2
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where

W3,1 =





σN
2∫

σN
1

|ηo(t)|2dt >
1

2Nc4
,A

(

σN
2

)

<
1

Na3





W3,2 =

[

A
(

σN
2

)

≥ 1
Na3

]

90

In (2.9), takinga1 = c4, we get,∃ a2 > 0 such that





V[σN
1 ,σ

N
2 ](g) ≤ 1

Na2
,

σN
2∫

σN
1

|ηo(t)|2dt >
1

2Nc4





⊂Wc
1 ∪Wc

2.

So, in particular,

W3,1 ∩
[

V[σN
1 ,σ

N
2 ](g) ≤ 1

Na2

]

⊂Wc
1 ∪Wc

2. (2.10)

Let

W4 =





σN
2∫

σN
1

|η(t)|2dt <
1

Na4





,

wherea4 is some constant which will be chosen later. Then, forwǫW4∩
W1,

V[σN
1 ,σ

N
2 ](η) ≤

1
(

σN
2 − σ

N
1

)

σN
2∫

σN
1

|η(t)|2dt ≤ N3

Na4

i.e.

V[σN
1 ,σ

N
2 ](η) ≤

1
Nas

if a4 ≥ a5 + 3. (2.11)

Let

W5 =



 sup
0≤u≤1/(Na3)

|B(u)| ≤ 1
Na5
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then, by Lemma A,

P(Wc
5) ≤ d3e−N, if a3 > 2a5 + 1. (2.12)

Now, for wǫW3,1 ∩W4 ∩W1 ∩W5, by (2.8),91

V1/2
[σN

1 ,σ
N
2 ]

(g) ≤ V1/2
σN

1 ,σ2N(η) + V1/2
[σN

1 ,σ
N
2 ]

(B(A(t)))

≤ 1

Na5/2
+

1

Na5/2

(by (2.11) and definition ofW5and since, on

[σN
1 , σ

N
2 ], 0 ≤ A(t) ≤ 1

Na3
)

=
2

Na5/2
.

Now choosea5 such that 2
Na5/2

≤ 1
Na2 ; then

V[σN
1 ,σ

N
2 ](g) ≤ 1

Na2
.

Hence

W3,1 ∩W4 ∩W1 ∩W5 ⊂
[

V[σN
1 ,σ

N
2 ](g) ≤ 1

Na2

]

which implies by (2.10) that

W3,1 ∩W4 ∩W1 ∩W5 ⊂Wc
1 ∪Wc

2.

Therefore
W3,1 ∩W4 ⊂Wc

1 ∪Wc
2 ∪Wc

5.

So choosinga3 ≥ c4+1, a3 > 2a5+1, a5 > 2(a2+1) anda4 ≥ a5+3,
we can conclude form (2.7) and (2.12) that

P
[

Wc
1 ∪Wc

2 ∪Wc
5

]

≤ e−d4Nd5
, ∀ N = 2, 3, . . . .

for some constantsd4 > 0 andd5 > 0 and therefore

P
[
W3,1 ∩W4

] ≤ e−d4Nd5
, ∀ N = 2, 3, . . . . (2.13)
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Next we prove thatW3,2 ∩ W4 is also contained in a set which is92

exponentially small, i.e.,

P(W3,2 ∩W4) ≤−d6Nd7

for somed6 > 0, d7 > 0.

For wǫW1, we divide
[

σN
1 , σ

N
2

]

=

[

σN
1 , σ

N
1 +

1

N3

]

into Nm subinter-

vals of the same length viz.

Ik =

[

σN
1 +

k

N3+m
, σN

1 +
k+ 1

N3+m

]

, k = 0, 1, . . .Nm − 1.

Also, we choosem> a3. Then
∫

Ik

|η(t)|2dt =
∫

Ik

|η(σN
1 ) + B(A(t)) + g(t)|2dt (2.14)

=

∫

A(Ik)

|η(σN
1 ) + B(s) + g(A−1(s))|2dA−1(s)

(

whereA(Ik) =

[

A

(

σN
1 +

k

N3+m

)

,A

(

σN
1 +

k+ 1

N3+m

)])

≥ 1
c

∫

A(Ik)

|η(σN
1 ) + B(s) + g(A−1(s))|2ds

(sinceA(t) =

t∫

σN
1

a(s)ds⇒ dA−1(s) =
ds

a(A−1(s))

anda(s) =
r∑

α=1

|ηα(s)|2 ≤ c).

Let

Jk =

[

A(σN
1 +

k

N3+m
),A(σN

1 +
k

N3+m
) +

1
Na3+m

]

.

Note thatJ′ksare of constant length. Then

W1∩
[

|A(Ik)| ≥
1

Na3+m

]

⊂W1 ∩ [A(Ik) ⊃ Jk]
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⊂W1∩





∫

Ik

|η(t)|2dt ≥ 1
c

∫

Jk

|η(σN
1 ) + B(s) + g(A−1(s))|2ds





by 2.14

⊂W1∩





∫

Ik

|η(t)|2dt ≥ |Jk|
c

VJk(B(.) + g̃)





(whereg̃ = g(A−1))

⊂W1∩
[∫

Ik

|η(t)|2dt ≥ |Jk|
c

(

V1/2
jk

(B) − V1/2
Jk

(g̃)
)2

]

. (2.15)

Since93

g =

t∫

o

ηo(s)dsand|ηo(s)| ≤ c on
[

σN
1 , σ

N
2

]

,

|g̃(t) − g̃(s)| ≤ c|A−1(t) − A−1(s)|.

Therefore with

to = A

(

σN
1 +

k

N3+m

)

,

VJk(g̃) ≤ 1
|Jk|

∫

Jk

|g̃(t) − g̃(to)|2dt

≤ c2

|Jk|

∫

Jk

(A−1(t) − A−1(to))2ds

≤ c2
[

A−1
{

A

(

σN
1 +

k

N3+m

)

+
1

Na3+m

}

−
(

σN
1 +

k

N3+m

)]2

≤ c2[σN
1 +

k+ 1

N3+m
− (σN

1 +
k

N3+m
)]2( sinceJk ⊂ A(Ik))

=
c2

N6+2m
. (2.16)

Hence

W1 ∩
[

J1/2
k (B) >

2c

N3+m
, |A(Ik)| ≥

1
Na3+m

]

(2.17)
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⊂W1 ∩




∫

Ik

|(η)|2dt ≥
[

c
1

N3+m

]2 N|Jk|
c



 by 2.15 and 2.16

=W1 ∩





∫

Ik

|η(t)2dt ≥ c

N6+3m+a3





.

94

Let

W6 =

Nm−1⋂

k=o

[

V1/2
Jk

(B) ≥ 2c

N3+m

]

.

Since

A(σN
2 ) =

Nm−1∑

k=0

|A(Ik)|,wǫW1 ∩W3,2

⇒ ∃ k ∋ |A(Ik)| ≥
1

Na3+m

⇒W1 ∩W3,2 ⊂ ∪Nm−1
k=0

{

|A(Ik)| >
1

Na3+m

}

.

Therefore

W1 ∩W6 ∩W3,2 ⊂
Nm−1⋃

k=0

{[

|A(Ik)| >
1

Na3+m

]

,V1/2
Jk

(B) ≥ 2c

N3+m

}

∩W1

⊂
Nm−1⋃

k=0





∫

Ik

|η(t)|2dt ≥ c

N6+3m+a3





∩W1 by 2.17

⊂





σN
2∫

σN
1

|η(t)|2dt ≥ c

N6+3m+a3





∩W1. (2.18)

Therefore, if we choosea4 such that

1
Na4

<
c

N6+3m+a3
, ∀ N = 2, 3, . . . ,
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then (2.18) impliesW1∩W6∩W3,2∩W4 = φ, which impliesW3,2∩W4 ⊂
Wc

1 ∪Wc
6.

P(Wc
6) ≤

∑

k

P

[

V1/2
Jk

(B) <
2c

N3+m

]

≤ Nme−d8|Jk|\(2c\(N3+m))2 ∀ k (by Lemma (C))

= Nme−d9N6+2m−a3−m

≤ Nmed9N6
(sincem> a3)

≤ e−d10Nd11 (2.19)

Choosingc5 = a4, (2.13) and (2.19) give us the required result95

2.3 Regularity of Transition Probabilities

We are now going to obtain a sufficient condition for (A.2) to be satisfied
in the case ofXt which is the solution to (2.1).

We recall that

Lα(x) =
d∑

i=1

σi
α(x)

∂

∂xi
, α = 1, 2 . . . , r

Lo(x) =
d∑

i=1

b̃i(x)
∂

∂xi

where

d̃i (x) = bi(x) − 1
2

∑

k,α

∂kσ
i
α(x)σk

α(x).

Let

Σ0 = {L1, L2, . . . , Lr}
Σ1 = {[Lα, L] : LǫΣo, α = 0, 1, . . . , r}
· · · · · · · · · · · ·
Σn = {[Lα, L] : LǫΣn−1, α = 0, 1, . . . , r} .
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Therefore96

Lǫ
∑

n

⇒ ∃ αoǫ{1, 2, . . . r}, αiǫ{0, . . . r}, i = 1 . . . n

such that
L = [Lαn[. . . [Lα2[Lα1, Lαo]] . . .].

Let

(Lα, L) := [Lα, L], α = 1, 2 . . . r

(L0, L) := [Lo, L] +
1
2

r∑

β=1

[Lβ, [Lβ, L]] .

Then we have

f i
L(rt) − f i

L(ro) =
r∑

α=1

t∫

0

f i
(Lα,L)(rs)dWα

s +

t∫

o

f i
(L0,L)(rs)ds

where f i
L, rt etc. are as in proposition 2.3. Let

Σ′o = Σo

· · · · · ·
Σ′n = {(Lα, L) : LǫΣ′n−1};

then

Lǫ
′∑

n

implies

L = (Lαn, (Lαn−1 · · · (Lα1, Lαo)) · · · )
= Lαo, α1 · · ·αn

for some
αoǫ{1, 2, . . . , r}, αiǫ{0, . . . , r}, i = 1, . . . , n.

Let

Σ̂′m = Σ
′
o ∪ Σ′1 ∪ · · · ∪ Σ′m,

Σ̂m = Σo ∪ Σ1 ∪ · · · ∪ Σm

It is easy to see that the following two statements are equivalent: 97
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(i) at xǫRd,∃ M and A1,A2 . . . ,AdǫΣ̂M′ such thatA1(x),A2(x) . . .
Ad(x) are linearly independent.

(ii) at xǫRd,∃M andA1,A2 . . . ,AdǫΣ̂M such thatA1(x),A2(x) . . . Ad(x)
are linearly independent.

Theorem 2.7. Suppose for xǫRd, ∃ M > 0 and A1,A2, . . . ,AdǫΣ̂M′ such
that A1(x),A2(x), . . . ,Ad(x) are independent. Then, for every t> 0,

Xt = (X1(t, x,w),X2(t, x,w), . . . ,Xd(t, x,w)),

which is the solution of (2.1), satisfies (A.2) and hence the probability
law ofχ(t, x,w) has C∞-density p(t, x, y).

Remark 1. p(t, x, y) is the fundamental solution of

∂u
∂t
=





1
2

r∑

α=1

L2
α + Lo




u

u|t=o = f

i.e., u(t, x) =
∫

Rd p(t, x, y) f (y)dy.

Remark 2. The general equation

∂u
∂t
=





1
2

r∑

α=1

L2
α + Lo + c(.)




u, where cǫC∞b (Rd)

has alsoC∞-fundamental solution and is given by

p(t, x, y) =< ∆y(X(t, x,w)),G(w) >

where98

G(w) = e
∫ t
o c(X(t,x,w))dsǫD∞.

Remark 3. The hypothesis in the theorem 2.6 is equivalent to the fol-
lowing: ForxǫDd,∃ M > 0 such that

inf
ℓǫSd−1

∑

Aǫ ˆ∑
M′

< A(x), ℓ >2> 0 (2.20)

where
Sd−1 = {lǫDd : |ℓ| = 1}.
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Proof of theorem 2.7.By (2.20),∃ ǫo > 0 and bounded neighbourhood
U(x) of x in Rd,U(Id) in GL(d,R) such that

inf
ℓǫSd−1

∑

Aǫ ˆ∑
M′

< (e−1A)(y), ℓ >2≥ ǫo (2.21)

for every yǫU(x) and eǫU(Id). Let lǫSd−1 and A be any vector field.
Define

f (l)
A (r) =< fA(r), ℓ >,

(cf. definition 2.1) where<, > is the inner product inRd; then we have
the corresponding Itô formula as

f (ℓ)
A (rt) − f (ℓ)

A (ro) =
r∑

α=1

t∫

o

f (ℓ)
(Lα,A)(rs)dWα

s +

t∫

o

f (ℓ)
(Lo,A)(rs)ds.

wherert = (Yt,Yt),Xt,Yt being the solution of (2.1), (2.2) respectively.99

Recall that

Ôi j
t =

r∑

α=1

t∫

o

f i
Lα

(rs) f j
Lα

(rs)ds

and by proposition 2.5, to prove the theorem, it is enough to prove that
(detΣ̂−1

t ǫ)ǫLp for 1 < p < ∞. Now

< σ̂tℓ, ℓ > =

d∑

i, j=1

Σ̂
i, j
t ℓ

iℓ j , ℓ = (ℓ1, ℓ2, . . . , ℓd)

=

r∑

α=1

t∫

o

[ f (ℓ)
Lα

(rs)]
2ds.

Let Aǫ ˆ∑
M′ . Note thatAǫ ˆ∑

M′ implies ∃ n, 0 ≤ n ≤ M andαiǫ

{0, 1, 2, . . . , r}, 0 ≤ i ≤ n, αo , 0, such that

A = Lαo,α1,...,αn.
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Also note that the number of elements inˆ
∑

M′ is

M∑

n=o

r(r + 1)n = k(M)( say ).

Define the stopping timeσ by

σ = inf {t : (Xt,Yt) < U(x) × U(Id)}

By lemma B, fort̄ > 0, we have

P

(

σ <
t̄

N3

)

≤ e−c1N3
.

Now in the Key lemma, set forN = 2, 3, . . . , σN
1 = 0 and

σN
2 = σΛ

t̄
N3

.

Then the following are satisfied:
100

(i) 0 ≤ σN
1 < σN

2 ≤ t̄, σN
2 − σN

1 ≤
t̄

N3.

(ii) P(σN
2 − σ

N
1 < t̄

N3) ≤ ec1N3
,

(iii) If we set

C = sup
lǫSd−1

sup
rǫU(x)×U(Id)

∑

AǫΣ̂M′+1

[

f (l)
A (r)

]2
,

then for
tǫ

[

σN
1 , σ

N
2

]

,
∑

AǫΣ̂M′+1

[

f (l)
A (r)

]2 ≤ C < ∞.

For

wǫW1 =

{

σN
2 − σ

N
1 =

t̄
N3

}

,

by choiceU(x) × U(Id) and (2.21), we have
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inf
|ℓ|=1

σN
2∫

σN
1

∑

AǫΣ̂M′

[ f (ℓ)
A (rs)]

2ds≥ ǫo
t̄

N3
(2.22)

Chooseγ > 0 such that

1
k(M)

ǫot̄

N3
≥ 1

Nγ
.

For A = Lαo,α1,...,αnǫ
ˆ∑

M′ andℓǫSd−1, define

WA,ℓ
k =

σN
2∫

σN
1

[

f (ℓ)Lαo,α1,...,αk−1(rs)
]2

ds<
1

NCk−1
,

r∑

α=0

σN
2∫

σN
1

[

f (ℓ)Lαo,α1,...,αk−1α(rs)
]2

ds≥ 1
NCk

, k = 1, 2, 3, . . . , n,

whereCn,Cn−1, . . .Co are obtained applying Key Lemma successively101

as follows:
Let Cn = γ > 0. Then by Key Lemma,∃ Cn−1, an, bn such that

P(WA,ℓ
n ) ≤ e−anNbn

.

Now again by Key Lemma, for givenCn−1,∃ Cn−2, an−1, bn−1 such
that

P(WA,ℓ
n−1) ≤ e−an−1Nbn−1

.

And proceeding like this, we see that givenC1,∃Co, a1, b1 such that

P(WA,ℓ
1 ) ≤ e−a1Nb1

.

Hence we see that

P(WA,ℓ
n ) ≤ e−aNb,k=1,2,...,n,

where a = min{ai}1≤i≤n, b = min{bi}1≤i≤n.
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Note thatCn,Cn−1, . . .Co anda, b are independent ofℓ since they
depend only onγ,C andc1. Let

WA,ℓ =

n⋃

k=1

WA,ℓ
k . ThenP(WA,ℓ) ≤ e−a′Nb′

and
P(W(ℓ)) ≤ e−a′′Nb′′

whereW(ℓ) =
⋃

AǫΣ̂M′

WA,ℓ. (2.23)

From (2.22), forwǫW1, we get102

σN
2∫

σN
1

∑

AǫΣ̂M′

[ f (l)
A (rs)]

2ds≥ ǫo

N3
t̄ ≤ k(M)

1
Nγ

.

Hence∃ AǫΣ̂M′ such that

σN
2∫

σN
1

[

f (l)
A (rs)

]2
ds≥ 1

Nγ
.

Hence ifA = Lαo,α1,...,αn,

r∑

α=o

σN
2∫

σN
1

[

f (ℓ)
Lαo,α1,...,αn−1α

(rs)
]2

ds≥ 1
Nγ

. (2.24)

Now supposewǫW1∩W(l)c which impliesw <WA,ℓ
k for everyAǫ ˆ∑

M

andk = 1, 2, . . . , n. Then by definition ofWA,ℓ
k and by (2.24), it follows

that
σN

2∫

σN
1

[

f (ℓ)
Lαo,α1,...,αn−1α

(rs)
]2

ds≥ 1
NCn−1
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and consequently

r∑

α=o

σN
2∫

σN
1

[

f (ℓ)
Lα◦,α1,...,αn−1,α

(rs)
]2

ds≥ 1
NCn−1

. (2.25)

And w <WA,ℓ
n−1 together with (2.25) gives

σN
2∫

σN
1

[

f (ℓ)
Lαo,α1,...,αn−2,

(rs)
]2

ds≥ 1
NCn−2

.

Continuing like this, we get

σN
2∫

σN
1

[

f (ℓ)
Lαo

(rs)
]2

ds≥ 1
NCo

.

103

Now, let c̄ = max
{

Co = Co(A) : Aǫ ˆ∑
M′

}

. Then we have
∑r
α=1

σN
2∫

σN
1

[

f (ℓ)
Lαo

(rs)
]2

ds≥ 1
Nc̄ . Hence we have proved that forℓǫsd−1 andwǫW1 ∩

W(ℓ)c,∃ c̄ > o (independent ofℓ) such that

r∑

α=1

σN
2∫

σN
1

[

f (ℓ)
Lα

(rs)
]2

ds≥ 1
Nc̄
. (2.26)

We have

σ
i j
t̄ =

r∑

α=1

t̄∫

o

f i
Lα(r) f j

Lα
(rs)ds.

Now let

qi j =
r∑

α=1

σN
2∫

σN
1

f i
Lα

(rs) f j
Lα

(rs)ds.
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Note that

r∑

α=1

σN
2∫

σN
1

[

f (ℓ)
Lα

(rs)
]2

ds=
d∑

i, j=1

qi j ℓiℓ j = Q(ℓ) ( say).

Also, detσt̄ ≥ detq ≥ λd
1 whereλ1 = inf

|l|=1
Q(l), the smallest eigen-

value of q. Hence to prove thatσ−1
t ǫLp,it is sufficient to prove that

λ−1
t ǫLp, ∀ p.

By definition ofqi j , we see that∃ c′ such that|qi j | ≤ c′

N3 . Therefore

|Q(ℓ) − Q(l′)| ≤ c′′

N3
|ℓ − ℓ′|. (2.27)

Hence∃ l1, l2, . . . lm such that

m⋃

k=1

B

(

ℓk;
N3

2c′′ Nc̄

)

= Sd−1,

whereB(x, s) denotes ball aroundx with radiuss.
Also it can be seen thatm ≤ c′′′Nc̄−3)d. Then,ℓǫSd−1 implies∃ ℓk104

such that|ℓ − ℓk| ≤ N3

2c′′ Nc̄. Hence by (2.27)

|Q(l) − Q(lk)| ≤
1

2Nc̄ .

But for wǫW1 ∩ (∩W(ℓk)c),Q(ℓk) ≥ 1
2Nc̄ . Hence for

wǫW1 ∩ (∩W(ℓk)
c),Q(ℓ) ≥ 1

2Nc̄ .

So

inf
|ℓ|=1

Q(l) ≤ 1
2Nc̄ on W1





m⋂

k=1

W(ℓk)
c





i.e., λ1 ≥ 1
2Nc̄ on W1

⋂(⋂m
k=1 W(lk)c

)

.
But we have

P(Wc
1UW(ℓ)) ≤ e−āNb̄
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and hence

P




WC

1

⋃




m⋃

k=1

W(lk)








≤ c′′′N(c̄−3)de−āNb̄

.

i.e., P




WC

1

⋃




m⋃

k=1

W(lk)








≤ e−āNb̄1

which gives the result.
A more general result is given below whose proof is similar tothat

of theorem 2.7.

Theorem 2.8. Let 105

UM(x) = inf
|l|=1

∑

AǫΣ̂M′

< A(x), ℓ >2 .

Suppose for xǫRd, ∃ M > 0 and U(x), neighbourhood of x such that for
everyt̄ > 0

P

[

UM(Xt) <
1
N

for all tǫ[0, t̄ΛτU(x)]

]

= 0

(

1
Nk

)

as N→ ∞ for all k > 0

( whereτU(x) = inf {t : Xt 6 ǫU(x)}).

Then the same conclusion of theorem 2.7 holds.
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NOTES ON REFERENCES

Malliavin calculus, a stochastic calculus of variation forWiener106

functionals, has been introduced by Malliavin [7]. It has been applied to
regularity problem of heat equations in Malliavin [8], Ikeda-Watanabe
[3], Stroock [16], [17], [18]. The main material in Chapter 2is an in-
troduction to the recent result of Kusuoka and Stroock on this line. In
Chapter 1, we develop the Malliavin calculus following the line devel-
oped by Shigekawa [13] and Meyer [10].

Chapter 1:

1.1. (a) For the theory of Gaussian measures on Banach spaces, Fer-
nique’s theorem and abstract Wiener spaces, cf Kuo [5].

(b) That the support of a Gaussian measure on Banach space is
a linear space can be found in Itô [4].

(c) For the details of Ex. 1.2, cf. Baxendale [1].

1.2. (a) An interesting exposition on Ornstein Uhlenbeck semigroups
and related topics can be found in Meyer [10].

(b) The hyper-contractivity of Ornstein Uhlenbeck semigroup
(Theorem 1.3) was obtained by Nelson [11]. Cf. also Simon
[14] and, for an interesting and simple probabilistic proof,
Neveu [12].

(c) For the fact stated in Def. 1.8, we refer to Kuo [5].107

1.3. (a) For a general theory of countably normed linear spaces and
their duals, we refer to Gelfand-Silov [2].

(b) For Ex. 1.3, details can be found in Ikeda-Watanabe [3],
Chap.VI, Sections 6 and 8. Cf. also Stroock [19].

(c) Littlewood-Paley inequalities for a class of symmetricdiffu-
sion semigroups have been obtained by Meyer [9] as an ap-
plication of Burkholder’s inequalities for martingales, which
include the inequalities (1.7) and (1.9) as special cases. Cf.
also Meyer [10]. An analytical approach to Littlewood-
Paley theory can be seen in E.M. Stein [15]
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(d) Lp multiplier theorem in Step 2 was given by Meyer. Proof
here based on the hyper-contractivity is due to Shigekawa
(in an unpublished note).

(e) The proof of Theorem 1.9 given here is based on the hand-
written manuscript of Meyer distributed in the seminars at
Paris and Kyoto, cf, also Meyer [10].

(f) The spaces of Sobolev-type for Wiener functionals were in-
troduced by Shigekawa [13] and Stroock [16], cf. also [3].
By using the results of Meyer, they are more naturally and
simply defined as we did in this lecture.

1.4. (a) The composite of Wiener functionals and Schwartz distribu- 108

tions was discussed in [21] for the purpose of justifying what
is called “Donsker’sδ - functions”, cf. also Kuo [5], [6].

1.5. (a) The result on the regularity of probability laws was firstob-
tained by Malliavin [8].

Chapter 2:

2.1. (a) For the general theory of stochastic calculus; stochastic inte-
grals, Itô processes and SDE’s we refer to Ikeda-Watanabe
[3], Stroock [19] and Varadhan [20].

(b) For the proof of approximation theorem 2.3, we refer to [3],
chapter V, Lemma 2.1.

2.2. The key lemma was first obtained, in a weaker form, by Malliavin
[8]. Cf. also [3]. The Key lemma in this form is due to Kusuoka
and Stroock (cf. [18]) where the idea in Ex. 2.3 plays an important
role.
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[13] I. Shigekawa : Derivatives of Wiener functionals and absolute con-
tinuity of induced measures,J. Math. Kyoto Univ. 20, 1980, 263-
289.

[14] B. Simon : The P(φ)2 Euclidean (quantum) field theory, Princeton
Univ. Press., 1974.

[15] E.M. Stein : Topics in harmonic analysis, related to Littlewood-
Paley theory,Annals of Math. Studies, 63, Princeton Univ. Press,
1970.

[16] D.W. Stroock : The Malliavin calculus and its applications to sec-
ond order parabolic differential operators, I, II,Math. System The-
ory 14, 1981, 25-65, 141-171.

[17] D.W. Stroock : The Malliavin calculus and its applications,
Lect.Notes in math. Vol.851, Springer, 1981,394-432.

[18] D.W. Stroock : Some applications of stochastic calculus to partial
differential equations,Ecole d’ete de Probabilite de Saint Flour,
to appear in Lect. Notes in Math. 1983.

[19] D.W. Stroock : Topics in stochastic differential equations, Tata
Institute of Fundamental Research, 1982.



BIBLIOGRAPHY 103

[20] S.R.S. Varadhan :Diffusion problems and partial differential111

equations, Tata Institute of Fundamental Research, 1980.

[21] S. Watanabe : Malliavin’s calculus in terms of generalized Wiener
functionals, to appear inProc. Int. Workshops on Random Fields
at Bangalore(1982), Lect. Notes in Control and Inf. Sci. 49,
Springer, 1983.


	Introduction
	Calculus of Wiener Functionals
	Abstract Wiener Space
	Einstein-Uhlenbeck Operators and Semigroups
	Sobolev Spaces over the Wiener Space
	Composites of Wiener Functionals...
	The Smoothness of Probability Laws

	Applications to Stochastic Differential Equations
	Solutions of Stochastic Differential Equations....
	Existence of moments for a class of Wiener Functionals
	Regularity of Transition Probabilities


