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Introduction

These notes are based on a series of lectures given at the TataInstitute
in November and December, 1982. The lectures are centered about my
joint work with Jürgen Stückrad [85] on an algebraic approach to the
intersection theory. More-over, chapterII and III also contain new re-
sults.

Today, we have the remarkable theory of W.Fulton and R. Mac-
person on defining algebraic intersections:

SupposeV andW are subvarieties of dimensionv andw of a non-
singular algebraic varietyX of dimensionn. Then the equivalence class
V ·W of algebraicv+w− n cycles which represents the algebraic inter-
section ofV andW is defined up to rational equivalence inX. This inter-
section theory produces subvarietiesYi of V∩W, cycle classesαi onYi,
positive integersmi, with

∑
miαi representingV ·W, and degαi ≥ degYi

even in the case dim(V ∩W) , v+ w− n.

Our object here is to give an algebraic approach to the intersection
theory by studying a formula for deg(V). deg(W) in terms of algebraic
data, ifV andW are Gubvarieties ofX = Pn

K.

The basis of our formula is a method for expressing the intersec-
tion multiplicity of two properly intersecting varieties as the length of a
certain primary ideal associated to them in a canonical way.Using the
geometry of the join construction inP2n+1 over a field extension ofK,
we may apply this method even if dim(V ∩W) > dimV + dimW − n.
More precisely, we will prove the following statement in Chapter II:

Let X,Y be pure dimensional projective subvarieties ofPn
K. There

is a collection{Ci} of subvarieties ofX ∩ Y (one of which may beφ),

v
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including all irreducible components ofX∩Y, and intersection numbers,
say j(X,Y; Ci) ≥ 1, of X andY alongCi given by the length of primary
ideals, such that

deg(X) · deg(Y) =
∑

Ci

j(X,Y; Ci) · deg(Ci),

where we put deg(φ) = 1.
The key is that our approach does provide an explicit description of

the subvarietiesCi ⊂ P
n counted with multiplicitiesj(X,Y; Ci), which

are canonically determined over a field extension ofK.
In case dim(X∩Y) = dimX+dimY−n, then our collection{Ci} only

consists of the irreducible componentsC of X∩Y and the multiplicities
j(X,Y; C) coincide with Weil’s intersection numbers; that is, our state-
ment also provides the classical theorem of Bezout. Furthermore, by
combining our approach with the properties of reduced system of pa-
rameters, we open the way to a deeper study of Serre’s observations on
“multiplicity” and “length” (see: J.-P.Serre [72], p.V-20).

In 1982, W. Fulton asked me how imbedded components contribute
to intersection theory. Using our approach, we are able to study some
pathologies in chapter III. (One construction is due to R. Achilles). Of
course, it would be very interesting to say something about how imbed-
ded components contribute to intersection multiplicities. Also, it ap-
pears hard to give reasonably sharp estimates on the error term between
deg (X). deg(Y) and

∑
j(X,Y; C j). deg(C j) or even

∑
deg(C j) whereC j

runs through all irreducible components ofX ∩ Y. Therefore, we will
discuss some examples, applications and problems in chapter III.

I wish to express my gratitude to the Tata Institute of Fundamental
Research of Bombay, in particular to Balwant Singh, for the kind in-
vitation to visit the School of Mathematics. Dilip P. Patil has written
these notes and it is a pleasure for me to thank him for his efficiency,
his remarks and for the time- consuming and relatively thankless task of
writing up these lecture notes. I am also grateful for the many insight-
ful comments and suggestions made by persons attending the lectures,
including R.C. Cowsik, N. Mohan Kumar, M.P. Murthy, Dilip P.Patil,
Balwant singh, Uwe Storch and J.-L. Verdier. The typists of the School
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of Mathematics have typed these manuscripts with care and I thank them
very much.

Finally I am deeply grateful to R.Sridharan for showing me collected
poems and plays of Rabindranath Tagore.

Let me finish with an example from “Stray birds”:
The bird wishes it were a cloud.
The cloud wishes it were a bird.
However, all errors which now appear are due to myself.

Wolfgang Vogel

NOTATION

The following notation will be used in the sequel.
We denote the set of natural numbers (respectively, non-negative in-

tegers, integers, rational numbers) byN(resp. .Z+,Z,Q. Forn ∈ N, we
write “n >> 1′′ for “all sufficiently large integersn′′. By a ring, we
shall always mean a commutative ring with identity. All ringhomo-
morphisms considered are supposed to be unitary and, in particular, all
modules considered are unitary. IfA is a ring, Spec (A) denotes the set
of all prime ideals ofA. For any idealI ⊂ A and any A-moduleM, if
N ⊂ M is an A-submodule then (N :

M
I ) := {m ∈ M|I ·m⊂ N}.

For any fieldK, K̄ denotes the algebraic closure ofK andPn
K denotes

the projective n-space overK.
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Chapter 0

Historical Introduction

A. The Classical Case

The simplest case of Bezout’s theorem over an algebraicallyclosed field 1

is the following very simple theorem.

(0.1) Fundamental Principle

The number of roots of a polynomialf (x) in one variable, counted with
their multiplicities, equals the degree off (x).

This so-called fundamental theorem of algebra was conjectured by
Girard (from the Netherlands) in 1629. In 1799, C.F. Gauss provided
the first proof of this statement. M.Kneser [40] produced a very simple
proof of this fundamental principle in 1981. This proof alsoyields a
constructive aspect of the fundamental theorem of algebra.

The definition of this multiplicity is well-known and clear.Nowa-
days, the problem of determining the multiplicity of polynomial root by
machine computation is also considered (see e.g. [101]).

The second simple case to consider is that of plane curves. The
problem of intersection of two algebraic plane curves is already tackled
by Newton; he and Leibnitz had a clear idea of ’elimination’ process
expressing the fact that two algebraic equations in one variable have a
common root, and using such a process, Newton observed in [53] that 2

1



2 0. Historical Introduction

the abscissas (for instance) of the intersection points of two curves of
respective degreesm, n are given by an equation of degree≤ m.n. This
result was gradually improved during the 18th century, until Bezout, us-
ing a refined elimination process, was able to prove that, in general, the
equation giving the intersections had exactly the degreem. n; however,
no general attempt was made during that period to attach an integer mea-
suring the ‘multiplicity’ of the intersection to each intersection point in
such a way that the sum of multiplicities should always bem.n (see also
[14]). Therefore the classical theorem of Bezout states that two plane
curves of degreem andn, intersect in atmostm.n different points, un-
less they have infinitely many points in common. In this form,however,
the theorem was also stated by Maclaurin in his ’Geometrica Organ-
ica’, published in 1720 (see [48, p. 67/68]); nevertheless the first correct
proof was given by Bezout. An interesting fact, usually not mentioned
in the literature, is that: In 1764, Bezout not only proved the above men-
tioned theorem, but also the following n-dimensional version:

(0.2)

Let X be an algebraic projective sub-variety of a projectiven-space. If
X is a complete intersection of dimension zero the degree ofX is equal
to the product of the degrees of the polynomials definingX.

The proof can be found in the paper [4], [5] and [6]. In his book“on3

algebraic equations”, published in 1770, [7], a statement of this theorem
can be found already in the foreword. We quote from pageXII :

‘Le degré de ℓ′ équation finale r´esultante d’unnombre quelcoque
d’équations compl´etes renfermant un pareil nombre d’inconnues, and
de degrés quelconques, est ´egal au produit des exposants des degr´es de
ceséquations. Th´eoréme dontℓa veritén’etait connue et d´emontrée que
pout deuxéquations seulement.’

The theorem appears again on page 32 as theorem 47. The special
casesn = 2, 3 are interpreted geometrically on page 33 in section 30 and
it is mentioned there, that these results are already known from Geome-
try. (For these historical remarks, see also ([61]).

Let us look at projective plane curvesC defined by the equation
F(X0,X1,X2) = 0 andD defined by the equationG(X0,X1,X2) = 0 of
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degreen andm, respectively, without common components. Then we
get

(0.3) BEZOUT’S Theorem.

m.n =
∑
P

i(C,D; P) where the sum is over all common pointsP of C and

D and where the positive integeri(C,D; P) is the intersection multiplic-
ity of C andD at P. 4

We wish to show that this multiplicity is defined, for instance, in
terms of a resultant:

GivenP, we may choose our coordinates so that atP we haveX2 = 1
andXO = X1 = 0. By the Preparation Theorem of Weierstrass [102]
(after a suitable change of coordinates ) we can write

F(X0,X1, 1) = f ′(X0,X1) · f̄ (X0,X1)

and G(X0,X1, 1) = g′(X0,X1) · ḡ(X0,X1)

where f ′(X0,X1) andg′(X0,X1) are power series inX0 andX1 such that
f ′(0, 0) , 0 , g′(0, 0) and where

f̄ (X0,X1) = Xe
1 + V1(X0)Xe−1

1 + · · · + Ve(X0)

and ḡ(X0,X1) = Xℓ1 +W1(X0)Xℓ−1
1 + · · · +Wℓ(X0)

whereVi(X0) and Wj(X0) are power series withVi(0) = Wj(0) = 0.
Following Sylvester [86], we define theX1 resultant off̄ andḡ, denoted
by ResX1( f̄ , ḡ), to the (e+ ℓ) × (e+ ℓ) determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 V1 · · ·Ve

1V1 · · ·Ve

· · · · · · · · · · · ·

1V1 · · ·Ve

1 W1 · · ·Wℓ
1W1 · · ·Wℓ
· · · · · · · · · · · ·

1W1 · · ·Wℓ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



4 0. Historical Introduction

with zero in all blank spaces. 5

The application of the Preparation Theorem of Weirstrass, enables
us to get, from the Resultant Theorem (see e.g. [92]), thatResX( f̄ , ḡ) =
0. NowResX1( f̄ , ḡ) is a power series inX0 and we define

i(C,D; P) = X0 − order of ResX1( f̄ , ḡ).

It is also possible to define the above multiplicity by using the theory
of infinitely near singularities (see, for instance, [1], ch. VI).

However, Poncelet, as a consequence of his general vaque ‘Princi-
ple of continuity’ given in 1822, had already proposed to defined the
intersection multiplicity at one point of two subvarietiesU,V of com-
plementary dimensions (see definition below) by havingV (for instance)
vary continuously in such a way that for some positionV′ of V all the
intersection points withU should be simple, and counting the number
of these points which collapses to the given point whenV′ tended toV,
in such a way the total number of intersections (counted withmultiplic-
ities) would remain constant(‘principle of conservation of number’);
and it is thus that Poncelet proved Bezout’s Theorem, by observing that
a curveC in a plane belongs to the continuous family of all curves of the
same degreem, and that in that family there exist curves which degener-
ate into a system of straight lines, each meeting a fixed curveΓ of degree6

n in n distinct points. Many mathematicians in the 19th century had ex-
tensively used such arguments, and in 1912, Severi had convincingly
argued for their essential correctness, see [73].

In view of our exposition below, we wish to mention that the starting
point of C. Chevalley’s considerations [11], [12] has been the observa-
tion that the intersection multiplicity at the origin 0 of two affine curves
f (X,Y) = 0, g(X,Y) = 0, may be defined to be the degree of the field
extensionK((X,Y)) | K(( f , g)), whereK((x, y)) is the field of quotients
of the ring of power series inX,Y with coefficients in the base fieldK,
and whereK(( f , g)) is the field of quotients of the ring of those power
series inX,Y which can be expressed as power series inf andg. From
thereC. Chevalley was led to the definition of multiplicity of a local ring
with respect to a system of parameters, and then to the general notion of
intersection multiplicity.
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The ideal generalization of these observations would be thewell-
known theorem of Bezout. First we note that the degree of an alge-
braic projective subvarietyV of a projective n-spacePn

k (K algebraically
closed field), denoted by deg (V), is the number of points in which al-
most all linear subspacesL ⊂ Pn

k of dimensionn− d meetX, whered is
the dimension ofV. Let V1,V2 be unmixed varieties of dimensionsr, s 7

and degreesd, e in Pn
k, respectively. Assume that all irreducible compo-

nentsV1∩V2 have dimension= r + s−n, and suppose thatr + s−n ≥ 0.
For each irreducible componentC of V1∩V2, define intersection multi-
plicity i(V1,V2; C) of V1 andV2 alongC. Then we should have

∑

C

i(V1,V2; C).deg(C) = d.e,

where the sum is taken over all irreducible components ofV1 ∩ V2. The
hardest part of this generalization is the correct definition of the inter-
section multiplicity and, by way, historically it took may attempts before
a satisfactory treatment was given byA. Weil [103] in 1946. Therefore
the proof of Bezout’s Theorem has taken three centuries and alot of
work to master it.

To get equality in the above equation, one may follow different ap-
proaches to arrive at several different multiplicity theories. At the be-
ginning of this century, one investigated the notion of the length of a
primary ideal in order to define intersection multiplicities. This multi-
plicity is defined as follows:

Let V1 = V(I1),V2 = V(I2) = V(I2) ⊂ Pn
k be projective varieties

defined by homogeneous idealsI1, I2 ⊂ K[X0, . . . ,Xn]. Let C be an
irreducible component ofV1 ∩ V2. Denote byA(Vi ; C) the local ring of
Vi atC. Then we set

ℓ(V1,V2; C) = the length ofA(V1; C)/I2.A(V1; C).

For instance, this multiplicity yields the intersection multiplicity as 8

set forth in the beginning for projective plane curves. Furthermore, this
length provides the “right” intersection number for unmixed subvarieties
V1,V2 ⊂ P

n
k with n ≤ 3 and dim(V1∩V2) = dimV1+dimV2−n (see, e.g.,

W. Gröbner [26]). Therefore prior to 1928 most mathematicians hoped
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that this multiplicity yield for Bezout’s Theorem the correct intersection
multiplicity for the irreducible components of two projective varieties
of arbitrary dimensions (see, e.g. Lasker [44], Macaulay [49]). And, by
the way, we want to mention that Grobner’s papers [26], [29] are a plea
for adoptions of the notion of intersection multiplicity which is based
on this length of primary ideals. He also posed the followingproblem:

(0.4) Problem. What are some of the deeper lying reasons that the so-
called generalized Bezout’s Theorem

deg(V2 ∩ V2) = deg(V1) · deg(V2)

is not true under certain circumstances ?

In 1928, B.L.Van der Waerden [90] studied the space curve given
parametrically by

{
s4, s3t, s3, t4

}
to show that the length does not yield

the correct multiplicity, in order for Bezout’s Theorem to be valid in
projective spacePn

k with n ≥ 4 and he has written in [89, p. 770]:9

“In these cases we must reject the notion of length and try to find
another definition of multiplicity” (see also [64, p. 100].

We will study this example (see also [26], [50] or [32]). The lead-
ing coefficient of the Hilbert polynomial of a homogeneous idealI ⊂
K[X0, . . ., Xn] will be denoted byh0(I ). Let V = V(I ) be a projective
variety defined by a homogeneous idealI ⊂ K[X0, . . . ,Xn]. Then we
have deg(V) = h0(I ).

(0.5) Example. Let V1,V2 be the subvarieties of projective spaceP4
k

with defining prime ideals:

Y1 = (X0X3 − X1X2,X
3
1 − X2

0X2,X0X2
2 − X2

1X X3,X1X2
3 − X3

2)

Y2 = (X0,X3)

Then V1 ∩ V2 = C with the defining prime idealY : I (C) =
(X0,X1,X2,X3). It is easy to see that (see, e.g. (1.42) , (iii)h0(Y1) =
4, h0(Y2) = 1, h0(Y ) = 1 and thereforei(V1,V2; C) = 4. SinceY1 +

Y2 = (X0,X3,X1X2,X3
1,X

3
2) ⊂ (X0,X3,X1X2,X2

1,X
3
2) ⊂ (X0,X3,X1,

X X3
2, ) ⊂ (X0,X3,X1,X2

2, ) ⊂ (X0,X1,X2,X3), we haveℓ(V1,V2; C) = 5.
Therefore we obtain
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deg(V1). deg(V2) = i(V1,V2; C). deg(C) , ℓ(V1,V2; C) deg(C)
Nowadays it is well-known that

ℓ(V1,V2; C) = i(V1,V2; C)

if and only if the local ringsA(V1,C) of V1 at C and A(V2,C) of V2 10

at C are Cohen - Macaulay rings for all irreducible componentsC of
V1 ∩ V2 where dim(V1 ∩ V2) = dimV1 + dimV2 − n (see [72], p. V-
20; see also (3.25)). We assume again that dim(V1 ∩ V2) = dimV1 +

dimV2−n. Without loss of generality, we may suppose, by applying our
observations of §2 of chapterI , that one of the two intersecting varieties
V1 andV2 is complete intersection, sayV1.

Having this assumption, we get that

ℓ(V1,V2; C) ≥ i(V1,V2; C)

for every irreducible componentC (see also (3.18)). LetV2 be a com-
plete intersection. Then there arises another problem posed by D.A.
Buchsbaum [9] in 1965.

(0.6) Problem. Is it true thatℓ(V1,V2; C) − i(V1,V2; C) is independent
of V2, that is, does there exist an invariantI (A), of the local ringA :=
A(V1; C) of V1 atC such that

ℓ(V1,V2; C) − i(V1,V2; C) = I (A)?

This is not the case, however. The first counter - example is given
in [95]. The theory of local Buchsbaum rings started from this negative
answer to the problem of D.A. Buchsbaum. The concept of Buchsbaum
rings was introduced in [82] and [83], and the theory is now developing
rapidly. The basic underlying idea of a Buchsbaum ring continues the 11

well-known concept Cohen-Macaulay ring, its necessity being created
by open questions in Commutative algebra and Algebraic geometry. For
instance, such a necessity to investigate generalized Cohen Macaulay
structure arose while classifying algebraic curves inP3

k or while studying
singularities of algebraic varieties. Furthermore, it wasshown by Shiro
Goto (Nihon University, Tokyo) and his colleagues that interesting and
extensive classes of Buchsbaum rings do exist (see, e.g. [23]).
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However, our observations from the ChapterII yield the intersection
multiplicities by the length of well - defined primary ideals. Hence these
considerations again provide the connection between the different view
points which are treated in the work Lasker - Macaulay - Gröbner and
Severi - van der Waerden - Weil concerning the multiplicity theory in the
classical case, that is, in case dim(V! ∩ V2) = dimV1 + dimV2 − n. We
want to end this section with some remarks on Buchsbaum’s problem.
First we give the following definition:

(0.7) Definition. Let A be a local ring with maximal idealM. A se-
quence{a1, . . . , ar } of elements of is aM is a weak A- sequenceif for
eachi = 1, . . . , r

M · [(a1, . . . , ai−1) : ai ] ⊆ (a1, . . . , ai−1)

for i = 1 we set (a1, . . . , ai−1) = (0) in A).

If every system of parameters ofA is a weak A- sequence, we say12

thatA is aBuchsbaum ring.
Note that Buchsbaum rings yields a generalization if Cohen Macau-

lay rings.
In connection with Buchsbaum’s problem and with our observations

concerning the theory of multiplicities in the paper [82], we get an im-
portant theorem (see [82]).

(0.8) Theorem. A local ring A is a Buchsbaum ring if and only if the
difference between the length and the multiplicity of any ideal qgener-
ated by a system of parameters is independent of q.

In order to construct simple Buchsbaum rings and examples which
show that the above problem is not true in general, we have to state the
following lemma (see [82], [87], or [97]).

(0.9) Lemma. Let A be a local ring. First we assume thatdim(A) = 1.
The following statements are equivalent:

(i) A is a Buchsbaum ring.

(ii) MU((0)) = (0), where U((0)) is the intersection of all minimal
primary zero ideals belonging to the ideal(0) in A. Now, suppose
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that dim(A) > depth(A) ≥ 1 then the following statements are
equivalent:

(iii) A is a Buchsbaum ring.

(iv) There exists a non-zero - divisor x∈ M2 such that A/(x) is a Buchs- 13

baum ring.

(v) For every non-zero - divisor x∈ M2, the ring A/(x) is a Buchs-
baum ring.

Applying the statements (i), (ii) of the lemma, we get the following
simple examples.

(0.10) Example. Let K be any field

(1) We setA := K[[X,Y]]/(X) ∩ (X2,Y) then it is not difficult to show
thatA is Buchsbaum non - Cohen - Macaulay ring.

(2) We setA := K[[X,Y]]/(X)∩(X3,Y) thenA is not a Buchsbaum ring.

For the view point of the theory of intersection multiplicities, we
can construct the following examples by using the statements (iii),
(iv) of the lemma.

(3) Take the curveV ⊂ P3
k given parametrically by{S5,S4t,S t4, t5}.

Let A be the local ring of the affine cone overV at the vertex,
that is,A = K[X0,X1,X2,X3](X0,X1,X2,X3)/YV whereYV = (X0X3 −

X1X2,X3
0X2 − X4

1,X
2
0X2

2 − X3
1X3,X0X3

2 − X2
1X2

3,X
4
2 − X1X3

3). Then
A is not a Buchsbaum ring (see [62]). We get again this statement
from the following explicit calculations:

Consider the coneC(V) ⊂ P4
k with defining idealYV and the sur-

facesW andW′ defined by the equationsX0 = X3 = 0 andX1 = 14

X2
0 + X2

3 = 0, respectively. It is easy to see thatC(V) ∩ W =

C(V) ∩W′ = C, whereC is given byX0 = X2 = X3 = X4 = 0.
Some simple calculations yield:

ℓ(C(V),W; C) = 7, i(C(V),W; C) = 5 andℓ(C(V),W′; C) = 13,

i(C(V),W′; C) = 10 and hence
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ℓ(C(V),W; C) − i(C(V),W′; C) , ℓ(C(V),W′; C) − i(C(V),W′; C).

Therefore this example shows that the answer to the above problem
of D.A. Buchsbaum is negative.

(4) Take the curveV ⊂ P3
K given parametrically by{s4, s3t, st3, t4}. Let

A be the local ring of the affine cone overV at the vertex, that isA =
K[X0,X1,X2,X3](X0,X1,X2,X3)YV, whereYV = (X0X3 − X1X2,X2

0X2 −

X3
1,X0X2

2 −X2
1X3,X1X2

3 − X3
2). ThenA is a Buchsbaum ring (see e.g

[83]).

(0.11) Remark. This last example has an interesting history. This curve
was discovered by G. Salmon ([[67], p. 40]) already in 1849 and a little
later in 1857 by J.Steiner ([[79], p. 138]) by using the theory of residual
intersections. This curve was used by F.S.Macaulay ([[49],p. 98]) in
1916. His purpose was to show that not every prime ideal in a polyno-
mial ring is perfect. In 1928, B.L. Van der Waerden [90] studied this
example to show that the length of a primary ideal does not yield the
correct local intersection multiplicity in order Bezout’stheorem to be15

valid in projective spacePn
k with n ≥ 4, and he has written (as cited

already); “In these cases we must reject the notion of lengthand try to
find another definition of multiplicity”. As a result, the notion of inter-
section multiplicity of two algebraic varieties was put on asolid base by
Van der Waerden for the first time, (see e.g. [88], [91], [92]). We know
now that this prime ideal ofF.S. Macaulay is not a Cohen-Macaulay
ideal, but a Buchsbaum ideal (i.e., the local ring ofA of example (4) is
not a Cohen-Macaulay ring, but is a Buchsbaum ring). This fact moti-
vated us to create a foundation for the theory of Buchsbaum rings. (For
more specific information on Buchsbaum rings, see also the forthcom-
ing book byW. Vogel with J. Stückrad.)

B. The Non-classical Case

Let V1,V2 ⊂ P
n
k be algebraic projective varieties. The projective di-

mension theorem states that every irreducible component ofV1 ∩ V2

has dimension≥ dimV1 + dimv2 − n. Knowing the dimensions of the
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irreducible components ofV1 ∩ V2, we can ask for more precise in-
formation about the geometry ofV1 ∩ V2. The classical case in the
first section works in case of dimV1 ∩ V2 = dimV1 + dimV2 − n.
The purpose of this section is to study the non-classical case, that is
dimV1∩V2 > dimV1+dimV2−n If V1,V2 are irreducible varieties, what16

can one say about the geometry ofV1 ∩ V2?. A typical question in this
direction was asked by 5. Kleiman: Is the number of irreducible compo-
nents ofV1 ∩ V2 bounded by the Bezout’s number deg(V1) · deg(V2)? A
special case of this question was studied by C.G.J. Jacobi [36] already
in 1836. But we want to mention that Jacobi’s observations relies on
a modification of an idea of Euler [16] from 1748. We would liketo
describe Jacobi’s observation.

(0.12) JACOBI’S Example

Let F1, F2, F3 be three hypersurfaces inP3
K. Assume that the intersec-

tion F1∩F2∩F3 is given by one irreducible curve, sayC and a finite set

of isolated points, sayP1, . . . ,Pr . Then
3∏

i=1
deg(Fi) − deg(C) ≥ number

of isolated points ofF1 ∩ F2∩ F3. The first section of this example was
given by Salmon and Fielder [68] in their book on geometry, published
in 1874, by studying the intersection ofr hypersurfaces inPn

k. The as-
sumption is again that this intersection is given by one irreducible curve
and a finite set of isolated points. In 1891, M, Pieri [59] studied the in-
tersection of two subvarieties, say M. Pieri [59] studied the intersection
of two subvarieties, sayV1,V2 of Pn

K assuming thatV1 ∩ V2 is given by
one irreducible component of dimension dimV1 ∩ V2 and a finite set of
isolated points. Also, it seems that a starting point of an intersection
theory in the non-classical case was discovered by M.Pieri.In 1947, 56 17

years after M. Pieri, F. Severi [78] suggested a beautiful solution to the
decomposition of Bezout’s number deg(V1) ·deg(V2) for any irreducible
subvarietiesV1,V2 of Pn

k. Unfortunately, Sever i’s solution is not true.
The first counter- example was given byR. Lazarfeld [45] in 1981. But
Lazarfeld also shows how Severi’s procedure can be modified so that it
does yield a solution to the stated problem.

Nowadays, we have a remarkable theory of W. Fulton and R. Mac-
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Pherson on defining algebraic intersection (see, e.g. [18],[19]). Sup-
poseV1 andV2 are subvarieties of dimensionr ands of a non-singular
algebraic varietyX of dimensionn. Then the equivalence classV1 · V2

of algebraicr + s− n cycles which represents the algebraic intersection
of V1 andV2 is defined upto rational equivalence inX. This intersection
theory produces subvarietiesWi of V1 ∩ V2, cycle classesαi on Wi pos-
itive integersmi with

∑
miαi representingV1 · V2 and degαi ≥ degWi

even in the case dimV1 ∩ V2 , r + s− n.
Our object here is to describe the algebraic approach of [85](see

also [56]) to the intersection theory by studying a formula for deg(V1) ·
deg(V2) in terms of algebraic data, ifV1 andV2 are pure dimensional
subvarieties ofPn

k. The basis of this formula is a method (see [8], [98])
for expressing the intersection multiplicity of two properly intersecting18

varieties as the length of a certain primary ideal associated to them in
a canonical way. Using the geometry of the join constructionin P2n+1

K̄
over a field extension̄K of K we may apply this method even if dim(V1∩

V2) > dimV1+dimV2−n. The key is that algebraic approach provides an
explicit description of the subvarietiesCi and the intersection numbers
j(V1,V2; Ci) which are canonically determined over a field extension of
K.



Chapter 1

Preliminary Results

A. Preliminary Definitions and Remarks

(1.1)

Let R be a noetherian ring andI be an ideal inR. The Krull-dimension, 19

K − dim(I ) of I is the Krull-dimension of the ringR/I . Suppose that
I = q1∩· · ·∩qr is a primary decomposition ofI , whereqi is Yi-primary,
Yi ∈ Spec(R) for 1 ≤ i ≤ r. We say thatqi is aYi-primary component
of I any Yi is an associated prime of R/I . We write Ass(R/I ) =
Y1, . . . ,Yr . Suppose thatK−dim(I ) = K−dim(qi) for 1 ≤ i ≤ s≤ r. We

setU(I ) :=
s⋂

i=1
qi . This ideal is well defined and is called theunmixed

part of I. It is clear thatI ⊂ U(I ) andkdimU(I ). An ideal I ⊂ R is
calledunmixedif and only if I = U(I ). A ring R is calledunmixedif the
zero ideal (0) inR is unmixed.

Let Y ∈ Spec(R) andq be aY -primary ideal. The length of the
Artinian local ring (R/q)Y is called the length of qand we will denote
it by ℓR(q). It is easy to see that the length ofq is the number of terms
in a composition series,q = q1 ⊂ q2 ⊂ · · · ⊂ qℓ = Y for q, where
q1, · · · , qr areY -primary ideals.

Remark . (see [[106], Corollary 2 onp. 237, vol. 1]) LetM ⊂ R be 20

a maximal ideal ofR andq ⊂ R be aM primary ideal. Ifq = q1 ⊂

13
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q2 ⊂ · · · ⊂ qℓ = M is a composition series forq, whereq1, . . . , qℓ are
M-primary ideals. Then there existai ∈ qi , 2 ≤ i ≤ ℓ, such that

(i) ai 6< qi−1

(ii) qi = (qi−1, ai)

(iii) Mqi ⊂ qi−1 for all 2 ≤ i ≤ ℓ.

Proof. (i) and (ii) are easy to prove.
(iii) ReplacingRby R/q we may assume thatq = 0 andR is Artinian

local. SupposeMqi 1 qi−1 for some 2≤ i ≤ ℓ. Then we getqi−1 (

(qi−1 +Mqi) = qi = (qi−1, ai). Therefore we can writeai = q+mai for

someq ∈ qi−1 andm ∈ M. Thenai =
1

(1−m)
· q ∈ qi−1 which is a

contradiction to (i). �

Let R be a semi-local noetherian ring and rad(R) be the Jacobson
radical ofR. An idealq ⊂ R is called anideal of definitionif ( rad(R))n ⊂

q ⊂ rad(R) for somen ∈ N.

(1.2) The Hilbert-samuel Function

Let R be a semilocal noetherian ring andq ⊂ R be an ideal of defini-
tion. Let M be any finitely generatedR-module. The numerical func-
tion H1

M(q,−) : Z+ → Z+ given by H1
M(q, n) = ℓ(M/qn+1M) < ∞ is

called the Hilbert-Samuel function of qon M. If M = R we say that
H1(q,−) := H1

R(q,−) is the Hilbert-Samuel function ofq. If (R,M ) is a21

local ring thenH1
R(−) := H1(M,−) is calledthe Hilbert-Samuel function

of R.
The following theorem is well known(for proof, see [72] or [106]).

Hilbert-samuel Theorem.

Let Rbe a semilocal noetherian ring andq ⊂ Rbe an ideal of definition.
Let M be any finitely generatedR-module. ThenH1

M(q,−) is, for n >>
1, a polynomialPM(q,−) in n, with coefficients inQ. The degree of
PM(q,−) is δ whereδ = Krull dimension ofM(:= k− dimR/annR)(m)).
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We will write this polynomial in the following form:

PM(q, n) = e0

(
n+ d

d

)
+ e1

(
n+ d − 1

d − 1

)
+ · · · + ed

wheree0(≥ 0).e1, . . . , ed are integers andd = K − dim(r). The mul-
tiplicity of q on M, e0(q; M), is defined bye0(q; M) := e0. Note that
e0(q; M) := 0 if and only if K − dim(M) < K − dim(R). The positive
integere0(q; R) is called the multiplicity ofq. If R is local andq =M is
the maximal ideal ofR thene0(R) := e0(M ; R) is called the multiplicity
of R.

Remark.
(i) Let (A,M ) → (B,N ) be a flat local homomorphism of local

rings. Assume thatM B = N . Then for everyM -primary idealq of A
we have

e0(q; A) = e0(qB; B)

Proof. It is easy to see (see, e.g. [[34], (1.28)] that,H1
B(qB, t) = ℓB 22

(B/qtB) = ℓB(A/qt ⊗A B) = ℓA(A/qt)ℓB(B/MB) = ℓA(A/qt) = H1
A(q, t)

for all t ≥ 0. Thereforee0(qB; B) = e0(q; A). �

Let A = ⊕
n≥0

An be a graded ring such thatA0 is artinian andA is

generated as anA0-algebra byr elements ¯x, . . . , x̄r . of A1. Let N =
⊕

n≥0
Nn be a finitely generated gradedA-module. The numerical function

H1
A(N,−) : Z+ → Z+ defined byH1

A(N, n) = ℓA0(N/Nn+1) is called
the Hilbert function of N. The following is a well-known theorem (for
proof, see [55] or [72]).

Theorem HILBERT. The function H1A(N,−) is, for n >> 1, a polyno-
mial PA(N,−) in n with coefficients in Q. The degree of PA(N,−) is ≤ r.

We will write this polynomial in the following form:

PA(N, n) = h0

(
n+ r

r

)
+ h1

(
n+ r − 1

r − 1

)
+ · · · + hr ,

where h0(≥ 0), h1, . . . , hr are integers.
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Note that

H0
A(N, n) = ℓA0(Nn) = h0

(
n+ r − 1

r − 1

)
+ h′1

(
n+ r − 2

r − 2

)
+ · · · + h′r−l ,

whereh′1, . . . , h
′
r are integers.

Remark.

(ii) From the exact sequence23

0→
(
0 :

N
X̄1

)
→ N

X̄
−→ N → N/X̄1→ 0

of graded modules, it follows that

H1
A/X̄1

(M/X̄1N, n) − H1
A/X̄1

((
0 :

N
X̄1

)
, n− 1

)

= H0
A(N, n) for all n ≥ 0.

Therefore we haveh0(N/X̄1N) − h0

(
(0 :

N
X̄1)

)
= h0(N).

(iiii) Let R be a semi-local ring andq = (x1, . . . , xd) ⊂ R be an ideal
of definition generated by a system of parametersx1, . . . , xd for
R. Let M be any finitely generatedR-module.

ThenH1
M(q, n) = H1

grq
(grq(M), n) for all n. ThereforePM(q, n)

= Pgrq(R)(grq(M), n) for all n ande0(q; M) = h0(grq(m)), where
grq(R) = ⊕

n≥0
qn/qn+1 andgrq(M) = ⊕

n≥0
qnM/qn+1M.

B. The General Multiplicity Symbol

Let R be a noetherian ring andM be any finitely generatedR-module.
Let x1, . . . , xd be a system of parameters forR. We shall now define the
general multiplicity symbol,eR(x1, . . . , xd|M), of x1, . . . , xd on M.

(1.3) Definition. Let R be a noetherian ring andM be any finitely gen-
eratedR-module. Letx1, . . . , xd be a system of parameters forR. We
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shall defineeR(x1, . . . , xd|M), by induction ond. If d = 0, then de-24

fine eR(·|M) = ℓR(M) < ∞. Assume thatd ≥ 1 and the multiplicity
symbol has been defined fors ≤ d − 1 elements and all modules. De-
fineeR(x1, . . . , xd|M) = eR/x1(x2, . . . , xd|M/x1M)− eR/x1(x2, . . . , xd|(0 :

M
x1)). It is clear thateR(x1, . . . , xd|M) is an integer (in fact, non-negative,
see (1.9) ).

(1.4) Remarks. (i) By induction on d, it follows that eR(x1, . . . ,

xd|M)) = ℓ(M/qM)−ℓ((qd−1M :
M

xd)/qd−1M)−
d−1∑
k=1

eR/qk(xk+1, . . . ,

xd|(qk−1M :
M

xk)/qk−1M) whereqk = (x1, · · · , xK)R, 0 ≤ k ≤

d − 1, q = (x1, · · · , xd).

(ii) Assume thatd ≥ 2 and 1≤ m< d. Then

eR(x1, . . . , xd|M) =
∑

ν

ενeR/qm−1(xm, . . . , xd|Mν)

where∈ν= ±1 andMν are uniquely determined byM andx1, . . . ,

xm−1.

Some Properties of the General Multiplicity Symbol

(1.5) The additive property

Let 0 → M′ → M′′ → 0 be an exact sequence of finitely generated
R-modules and x1, . . . , xd be a system of parameters for R. Then

eR(x1, . . . , xd|M) = eR(x1, . . . , xd|M
′) + eR(x1, . . . , xd|M

′′).

(1.6) Corollary. Let o→ Mp → Mp−1 → · · · → M1 → M0 → 0 be 25

an exact sequence of finitely generated R-modules and x1, · · · , xd be a
system of parameters for R. Then

p∑

i=0

(−1)ieR(x1, . . . , xd|Mi) = 0.
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Proof. It is convenient to prove (1.5) and (1.6) simultaneously. Proof
by induction ond. If d = 0 then

p∑

i=0

(−1)ieR(·|Mi) =
p∑

i=0

(−1)iℓ(Mi) = 0.

Now suppose thatd = s+ 1, s≥ 0 and that (1.5) and (1.6) holds for
d = s. We have an exact sequence

0→ (0 :
M′

x1)→ (0 :
M

x1)→ (0 :
M′′

x1)→ M′/x1M′

→ M/x1M → M′′/x1M′′ → 0

Therefore by induction hypothesis, we have

eR/x1(x2, . . . , xd|M/x1M) − eR/x1(x2, . . . , xd|(0 :
M′

x1))

= eR/x1(x2, . . . , xd|M
′/x1M′) − eR/x1(x2, . . . , xd|(0 :

M′
x1))

+ eR/x1(x2, . . . , xd|M
′′/x1M′′) − eR/x1(x2, . . . , xd)|(0 :

M′′
x1))

HenceeR(x1, · · · , xd|M) = eR(x1, · · · , xd|M′) + eR(x1, · · · , xd|M”). �

(1.7) The Exchange Property

Let M be any finitely generatedR-module andx1, . . . , xd be a system of
parameters forR. Then

eR(x1, . . . , xd|M) = eR(xi1, . . . , xid |M)

for every permutation (i1, . . . , id) of (1, . . . , d).26

Proof. By remark (1.4) (ii), it is enough to prove that,

eR(x1, . . . , xd|M) = eR(x2, x1, . . . , xd|M).

Let K be any finitely generatedR/(x1, x2) -module. Then we denote
eR/(x1,x2)(x3, . . . , xd|K) by [K]. �
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Now, we have

eR(x1, . . . , xd|M) = [M/(x1, x2)M] − [(0 :
M/x1M

x2)]

−[(0 :
M

x1)/x2(0 :
M

x1)] + [(0 :
M

x2)] = [a] − [b] − [c] + [d],

where

[a] = [M/(x1, x2)M], [b] = [(0 :
M/x1M

x2)], [c] = [(0 :
M

x1)/x2(0 :
M

x1)]

and [d] = [(0 :
M1

x2)], with Mi := (0 :
M

xi) for i = 1, 2.

Now,

(0 :
M/x1M

x2)
∼
−→ (x1M : x2)/x1M, (0 :

M1

x2) = (0 :
M

x1) ∩ (0 :
M

x2)

Therefore, [a] and [d] are symmetric inx1 andx2. Thus it is enough
to prove that [b] + [c] is also symmetric inx1 and x2. Sincex1M ⊂

x1M + (0 :
M

x2) ∩ (x1M :
M

x2) we get by (1.5) ,

[b] = [x1M + (0 :
M

Mx2)/x1M] + [(x1M :
M

x2)/x1M + (0 :
M

x2)]

= [(0 :
M

x2)/x1M ∩ (0 :
M

x2)] + [x1M ∩ x2M/x1x2M] = [e] + [ f ]

where [e] = [(0 : x2)
M
/x1M ∩ (0 : x2)

M
] and [f ] = [x1M ∩ x2M/x1x2M]. 27

Clearly [f ] is symmetric inx1 and x2. Now consider [c] + [e]. Since
x1M ∩ (0 : x2)

M
= x1(0 : x1x2)

M
andx2(0 : x2)

M
⊂ x2(0 : x1x2)

M
⊂ x1(0 : x2)

M
we get by (1.5) , [e] + [c]

= [x2(0 :
M

x1x2)/x2(0x
: 1

)] + [(0 :
M

x1)/x2(0 :
M

x1x2)]

+ [(0 :
M

x2)/x1(0 :
M

x1x2)]

= [g] + [h]

where

[g] = [x2[(0 : x1x2)
M

/x2(0 : x1)
M

] and
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[h] = [(0 : x1)
M
/x2(0 : x1x2)

M
] + [(0 : x2)

M
/x1(0 : x1x2)

M
].

Clearly [h] is symmetric inx1 andx2 and since (0 :x1x2)
M

/(0 : x1)
M
+

(0 : x2)
M

x2
∼

−−→ x2(0 : x1x2)
M

/x2(0 : x1)
M
, [g] = [(0 : x1x2)

M
/x2(0 : x1)

M
+ (0 : x2)

M
] is also symmetric inx1 andx2. ThereforeeR(x1, . . . , xd|M) =

[a] + [d] − [ f ] − [g] − [h] is symmetric inx1 andx2. This completes the
proof.

(1.8)

Let M be any finitely generatedR-module andx1, . . . , xd be a system of
parameters forR. Supposexm

i M = 0 for some 1≤ i ≤ d andm ∈ N.
TheneR(x1, . . . , xd|M) = 0.

Proof. By (1.7) we may assume thei = 1. Proof by induction onm. If
m= 1 thenM = M/x1M and (0 :x1)

M
= M and henceeR(x1, . . . , xd|M) =

eR/x1(x2, . . . , xd|M)−eR/x1(x2, . . . , xd|M)−eR/x1(x2, . . . , xd|M) = 0. �

Now suppose thatd = s+ 1, s ≥ 0 and the result holds ford = s.
We have by (1.5) ,

eR(x1, . . . , xd|M) = eR(x1, . . . , xd|x1M) + eR(x1, . . . , xd|M/x1M).

Sincexm−1
1 (x1M) = x1(M/x1M) = 0, by induction the result follows.28

(1.9)

Let M be any finitely generatedR-module andx1, . . . , xd be a system of
parameters forR. Then

0 ≤ eR(x1, . . . , xd|M) ≤ ℓ(M/(x1, . . . , xd)M) < ∞.

Proof. First, by induction ond, we showeR(x1, . . . , xd|M) ≤ 0. If d = 0
theneR(·|M) = ℓR(M) ≥ 0. Now suppose thatd = s+ 1, s > 0 and the
result holds ford = s. �
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PutN = M/(0 : xm
1 )

M
. If M >> 1, then it is easy to see that (0 :xm

1 )
N

=

0. From (1.5) and (1.8) , we geteR(x1, . . . , xd|M) = eR(X1, . . . , xd|N) =
eR(x2, . . . , xd|N/x1N) and hence, by induction, it follows thateR(x1, . . .,
xd/M) ≥ 0. The second inequality follows from (1.4) (i).

(1.10) Corollary. If (x1, . . . , xd)M = M, then eR(x1, . . . , xd|M) = 0.

(1.11) Proposition . Let M be any finitely generated R-module. Let
x1, . . . , xd−1, x and x1, . . . , xd−1, y be two systems of parameters for R.
Then we have eR(x1, . . . , xd−1, xy|M) = eR(x1, . . . , x|M) + eR(x1, . . . ,
xd−1, y|M).

Proof. By induction ond. Supposed = 1. Then we have exact se-
quences

0→ (xyM : y)
M

/xM→ M/xM
y
−→ M/xyM→ M/yM→ 0

0→ (0 : x)
M
→ (0 : xy)

M

x
−→ (0 : x)

M
→ (0 : x)

M
/(0 : xy)

M
→ 0

29

Therefore we get

ℓ(M/yM) + ℓ(M/xM) = ℓ(M/xyM) + ℓ((xyM : y)/xM)
M

,

and ℓ((0 : y))
M

+ ℓ((0 : x))
M

= ℓ((0 : xy))
M

+ ℓ((0 : y))
M

((0 : xy))
M

.

�

Now, it is easy to see that (0 :y)
M
/(0 : xy)

M

∼
−→ (xyM :

M
y)/xM is an

isomorphism. Therefore we get that

eR(x|M) + eR(y|M) = ℓ(M/xM) − ℓ (
M

(0 : x)) + ℓ(M/yM) − ℓ (
M

(0 : y))

= ℓ(M/xyM) − ℓ (
M

(0 : xy)) = eR(xy|M).

Now suppose thatd = s+ 1, s ≥ 1 and the result holds ford = s.
Let q = (x1, . . . , xd−1). Then, by induction, we have

eR(x1, . . . , xd−1, xy|M) = eR/x1(x2, . . . , xd−1, xy|M/x1M)
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− eR/x1(x2, . . . , xd, xy|(0 : x1)
M

eR/x1(x2, . . . , xd−1, xy|M) = eR/x1(x2, . . . , xd−1, xy|M/x1M)

− eR/x1(x2, . . . , xd−l , x|(0 : x1)
M

− eR/x1(x2, . . . , xd−l , y|(0 : x1)
M

=eR(x1, . . . , xd−l , x|M) + eR(x1, . . . , xd−1, y|M).

(1.12) Corollary. For any positive integers n1, . . . , nd, we have

(i) eR(xn1
1 , . . . , x

nd
d M) = n1 . . .ndeR(x1, . . . , xd|M)30

(ii) 0 ≤ eR(x1, . . . , xd|M) ≤
ℓ(M/(xn1

1 , . . . , x
nd
d )M)

n1 . . . nd

Proof. (i) follows from ((1.7) ) and (1.11). (ii) follows from (i) and (1.9)
. �

(1.13) Corollary . If xmM
i ⊂ (x1, . . . , xi−1, xi+1, . . . , xd)M for some i≤

i ≤ d and m∈ N, then eR(x1, . . . , xd|M) = 0.

Proof. By (1.7) , we may assume thati = 1. If n > m, then (xn
1, x2, . . . ,

xd) M = (x2, . . . , xd)M and so, by (1.12), we get, 0≤ eR(x1, . . . , xd|M) ≤
ℓ(M/(x2,...,xd)M)

n → 0 asn→ ∞. HenceeR(x1, . . . , xd|M) = 0. �

(1.14) Proposition . Let M be any finitely generated R-module and
x1, . . . , xd be a system of parameters for R contained in rad(R). Then
er (x1, . . . , xd|M) = ℓ(M/(x1, . . . , xd)M) if and only if x1, . . . , xd is an M-
sequence, that is,((x1, . . . , xi−1)M : xi

M
) = (x1, . . . , xi−1)M for 1 ≤ i ≤ d.

Proof. (<=) This implication follows from 1.14 (i) (=>) Proof by in-
duction ond. Supposed = 1. Then we haveℓ(M/x1M) = eR(x1|M) =
ℓR(M/x1M) − ℓR((0 : x1))

M
. Therefore, we getℓR((0 : x1))

M
= 0, that is,

(0 : x1)
M

= 0 �

Now suppose thatd = s+ 1 and the result holds ford = s.
Let n1, . . . , nd be arbitrary positive integers. Then by (1.9) and31
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(1.12) (i) we have

eR(xn1
1 , . . . , x

nd

d ) ≤ l(M/(xn1
1 , . . . , x

nd

d )M) ≤ n1 . . . . . .ndl

(M/(x1, . . . , xd)M) = n1 . . . . . .ndeR(x1, . . . , xd|M) = eR(xn1
1 , . . . , x

nd

d )|M).

PutN = M/(0 : x1
M

). Then by (1. 8) we have

ℓ(M/(xn1

1 , . . . , x
nd

d )M = eR(xn1

1 , . . . , x
nd

d )|M) = eR(xn1

1 , . . . , x
nd

d )|N)

≤ l(N/(xn1
1 , . . . , x

nd

d )N) = l(M/(0 : x1
M

) + (xn1
1 , . . . , x

nd

d )M)

and hence (0 :x1
M

) ⊂ (xn1
1 , . . . , x

nd
d )M for arbitrary positive integers

n1, . . . , nd. Then we get that (0 :
M

x1) ⊂
⋂
n≥0

(xn1
1 , . . . , x

nd)M ⊂
⋂
n≥0

qnM =

0 by Krull’s Intersection Theorem, whereq = (x1, . . . , xd).
Now,

eR/x1(x2, . . . , xd|M/x1M) = eR(x1, . . . , xd|M) = l

(M/(x1, . . . , xd)M) = l(M/x1M/(x2, . . . , xd)M/x1M).

Therefore, by induction, we get that{x2, . . . , xd} is M/x1M-seque-
nce.

This completes the proof.

(1.15) Corollary. (i) Let (R,M ) be a noetherian local ring. Then R
is a Cohen-Macaulay ring if and only if there exists a system of pa-
rameters {x1, . . . , xd} for R such that eR(x1, . . . , xd|R) = 32

l(R/(x1, . . . , xd)).

(ii) Let (R,M ) be a noetherian local ring. Then R is a Cohen-Macau-
lay ring if and only if for every system of parameters x1, . . . , xd for
R, we have eR(x1, . . . , xd|R) = l(R/(x1, . . . , xd)).

Proof. (i) Clear. (ii) Follows from [71, Theorem 2, VI-20] and (1.14).
�
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(1.16) The limit formula of Lech:

Let M be any finitely generatedR-module andx1, . . . , xd be a system of
parameters forR. Let n1, . . . , nd be positive integers. Then

min
lim
(ni)→ ∞

l(M/(xn1
1 , . . . , x

nd
d )M)

n1 · · · · ·nd
= eR(x1 . . . xd|M).

Proof. Proof by induction ond. Supposed = 1. Then, for anyn > 0,
we haveeR(xn|M) = l(M/xnM) − l((0 :

M
xn)). Choose an integerm > 0

such that (0 :
M

xn) = (0 :
M

xm) for all n ≥ m. Therefore, by (1.12)(i), we

haveeR(xn|M) = neR(x|M) = ℓ(M|xnM) − l((0 :
M

xm)) for n ≥ m. Thus

eR(x|M) = ℓ(M/x
nM)

n + C/n, whereC is independent ofn. In particular,
we get

lim
n→∞

l(M/xnM)
n

= eR(x|M).

Now suppose thatd = s+ 1, s≥ 1 and the result holds ford = s.
Using (1.5) and (1.8) and replacingM by N := M/(0 :

M
xm

1 ),m>>33

1, we may assume that (0 :
M

x1) = 0. Note thateR(x1, . . . , xd|M) =

eR(x1, . . . , xd|N) and

0 ≤ ℓR(M/(xn1
1 , . . . , x

nd
d )M) − ℓR(N/(xn1

1 , . . . , x
nd
d )N)

= l((0 : xm
1 ) + (xn1

ℓ
, . . . , xnd

d )M/(xn1
1 , . . . , x

nd
d )M = ℓ((0 :

M
xm

1 )/(0 : xm
1 )

∩ (xn1
1 , . . . , x

nd
d )M) ≤ l((0 : xm

1
M

)/(xn2
2 , . . . , x

nd
d )(0 : xm

1
M

))

≤ n2 · · · ndl(((0 : xm
1

M
)/(x2, . . . , xd).(0 :

M
xm

1 )) = n2 . . . ndC,

whereC is a positive integer which is independent ofn1, . . . , nd.
Thus we get

0 ≤
l(M/(xn1

1 , . . . , x
nd
d )M) − l(N/(xn1

1 , . . . , x
nd
d )N)

n1n2 · · ·nd
≤ C/n1

i.e., lim
min(ni )→∞

l(M/(xn1
1 , . . . , x

nd
d )M) = lim

min(ni )→∞
l(N/(xn1

1 , . . . , x
nd
d )N).
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This shows that we may assume (0 :
M

x1) = 0. Now by (1.12),

0 ≤ n1 · · ·ndeR(x1, . . . , xd|M) ≤ l(M/(xn1
1 , . . . , x

nd
d )M)

≤ n1l(M/(x1, x
n2
2 , . . . , x

nd
d )M)

= n1l(M̄/xn2
2 , . . . , x

nd
d )M̄)

whereM̄ = M/x1M. Therefore, by induction, it follows that

eR(x1, . . . , xd|M)

≤ lim
min(ni )→∞

ℓ(M/(xn1
1 , . . . , x

nd
d )M)

n1n2 · · · · ·nd

≤ lim
min(ni )→∞

ℓ(M̄/(xn2
2 , . . . , x

nd
d )M)

n2 · · · · ·nd
= eR/x1(x2, . . . , xd|M̄)

= eR(x1, . . . , xd|M), since

(0 : x1)
M
= 0. Thus we get 34

lim
min(ni )→∞

ℓ(M/(xn1
1 , . . . , x

nd
d )M)

n1 · · · · ·nd
= eR(x1, . . . , xd|M).

In the next proposition, we will prove that the general multiplicity
symbol is nothing but the multiplicity defined in (1.2) .Now onwards,
we assume that R is semilocal noetherian. �

(1.17) The Limit Formula of Samuel

Let M be any finitely generatedR-module andx1, . . . , xd be a system of
parameters forR.

Assume thatq = (x1, . . . , xd) is an ideal of definition inR. Then

e0(q; M) = lim
n→∞

l(M|qnM)

nd/d!
= eR(x1, . . . , xd|M).

For the proof of this formula, we need the following lemma.

(1.18) Lemma . Let M be any finitely generated R-module and q=
(x1, . . . , xd be an ideal of definition generated by a system of parameters
{x1, . . . , xd} for R. Then

e0(q; M) = egrq(R)(x̄1, . . . , x̄d|grq(M)),
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wherex̄1, . . . , x̄d are images of x1, . . . , xd in q/q2.35

Proof. We putA := grq(R),N := grq(M). By induction ond we shall
prove thath0(N) = eA(x̄1, . . . , x̄d|N). Supposed = 0, thenq = 0, A = R,
N = M and h0(N) = lR(M) = ℓA(N) = eA(·|N). Now suppose that
d = s + 1, s ≥ 0 and the result holds ford = s. Then we have by
induction

eA(x̄1, . . . , x̄d|N) = eA/x̄1(x̄2, . . . , x̄d|N/x̄1N) − eA/x̄1(x̄2, . . . , x̄d|(0 :
N

x̄1))

= h0(N/x̄1N) − h0((0 :
N

x̄1)) = h0(N),

see remark (ii) in (1.2) . Also, it follows from the same remark (iii) that
e0(q; M) = h0(grg(M))) = egrq(R)(x̄1, . . . , x̄d|grq(M)). �

Proof of (1.17)First, we prove that

lim
n→∞

l(M|qnM)

nd/d!
≤ eR(x1, . . . , xd|M).

If d = 0 thenq = 0 and lim
n→∞

ℓ(M|qnM)

nd/d!
= ℓ(M) = eR(x1, . . . , xd|M).

Now suppose thatd ≥ 1 and putM̄ = M/x1M, R̄= R/x1, q̄ = q/x1.
The we haveM̄/q̄nM̄ = M/(x1M + qnM)

ℓR̄(M̄/q̄nM) = ℓR̄(M/qnM) − ℓ(x1M + qnM/qnM)

= ℓ(M/qnM) − ℓ(x1M/x1M ∩ qnM)

Now, it is easy to see thatx1M/x1M∩qnM = x1M/x1(qnM :
M

x1)
x1
←−−
≈

M/(qnM :
M

x1) is an isomorphism. Therefore we get

ℓR̄(M̄/q̄nM̄) = l(M/qnM) − l(M/(qnM : x1
M

)) ≥ l(M/qnM) − l(M/qn−1M)

= H0
grq(R)(grq(M), n− 1) for all n.

36

Thus

e0(q̄; M̄) = lim
n→∞

ℓ(M̄/q̄nM)

nd−1/(d − 1)!
≥ e0(q; M)
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If d ≥ 2, replacingM by M̄, Rby R̄, q by q̄, we get

e0(q; M) ≤ e0(q/x1; M/x1M) ≤ e0(q/(x1, x2),M/(x1, x2)M) ≤ · · ·

≤ e0((0); M/qM) = ℓ(M/qM).

i.e., lim
n→∞

ℓ(M/qnM)

nd/d!
≤ ℓ(M/(x1, . . . , xd)M).

Now, replacingx1, . . . , xd by xp
1, . . . , x

p
d, we get

lim
n→∞

ℓ(M/qnpM)

(np)d/d!
≤ lim

n→∞

ℓ(M/(xp
1, . . . , x

p
d)nM)

(np)d/d!

≤
l(M/(xp

1, . . . , x
p
d)nM)

pd
for all p ≥ 0.

Hencee0(q; M) ≤ lim
p→∞

ℓ(M/(xp
1, . . . , x

p
d)M)

pd
= eR(x1, . . . , xd|M) by

(1.16) . It remains to prove the reverse inequality. Letn1, . . . , nd be
positive integers. PutA = grq(R),N = grq(M) and x̄1, . . . , x̄d be the
image ofx1, . . . , xd in q/q2. SetF := (xn1

1 , . . . , x
nd
d )M,K := ⊗

n≥0
qnM ∩

(qn+1M + F)/qn+1M andL = (x̄n1
1 , . . . , x̄

nd
d )N. Then it is clear thatK, L

are gradedA-submodules ofN, L ⊂ K and 37

N/K = ⊕
n≥0

qnM/qnM ∩ (qn+1M + F) = ⊕
n≥0

qnM + F/qn+1M + F.

Forn ≥ n1 + · · · + nd, we haveqnM ⊂ F. Therefore we get

ℓR(M(xn1
1 , . . . , x

nd
d )M) =

∑

n≥0

ℓR(qnM + F/qn+1M + F)

= ℓR(N/K) ≤ ℓR(N/L) = ℓR(N/(x̄n1
1 , . . . , x̄

nd
d )N).

If ℓR(N/(x̄n1
1 , . . . , x̄

nd
d )N) = ℓA(N/x̄n1

1 , . . . , x̄
nd
d ).N), then we getℓR

(M/(xn1
1 , . . . , x

nd
d )M) ≤ ℓA(N/(x̄n1

1 , . . . , x̄
nd
d )N) for arbitrary positive inte-

gersn1, . . . , nd. Therefore, by (1.16) , we get

eR(x1, . . . , xd|M) = lim
min(ni )→∞

lR(M/(xn1
1 , . . . , x

nd
d )M)

n1 · · · · ·nd
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≤ lim
min(ni )→∞

ℓA(N/(x̄n1
1 , . . . , x̄

nd
d )N)

n1 · · · · ·nd

= eA(x̄1, . . . , x̄d|N) = e0(q; M)

by1.18.
Thus it is enough to prove that

ℓR(N/x̄n1
1 , . . . , x̄

nd
d )N) = ℓA(N/x̄n1

1 , . . . , x̄
nd
d )M).

Put I = (x̄1, . . . , x̄d) · A. Since everyA-module is alsoR-module, it
follows that ℓA(N/x̄n1

1 , . . . , x̄
nd
d )N) ≤ lR(N/x̄n1

1 , . . . , x̄
nd
d )N) and

lA ((N/x̄n1
1 , . . . , x̄

nd
d )N/InN) ≤ lR((x̄n1

1 , . . . , x̄
nd
d )N/InN), wheren ≥ n1 +

· · · nd.
Therefore it is enough to prove that38

ℓR(N/InN) = ℓA(N/InN).

Sincex̄1, . . . , x̄d annihilatesI iN/I i+1N, it follows thatlR(I iN/I i+1N)

= lA(I iN/I i+1N) for all i ≥ 0. Therefore we getlR(N/InN) =
n−1∑
i=0

lR

(I iN/I i+1N) =
n−1∑
i=0
ℓA(I i N/I i+1N) = ℓA(N/InN).

This completes the proof of (1.17) .

(1.19) Corollary . Let M be any finitely generated R-module and-
(x1, . . . , xd) = q ⊂ R be an ideal of definition generated by a system of
parameters for R. Then

eR(x1, . . . , xd|M) = 0⇐⇒ K − dim(M) < dim(R) = d.

In particular,eR(x1, . . . , xd|R) > 0.

(1.20) Corollary . Let M be any finitely generated R-module and q=
(x1, . . . , xd), q′ = (x′1, . . . , x

′
d) be ideals of definitions generated by sys-

tems of parameters for R. Then

(i) If q′ ⊂ q, then eR(x1, . . . , xd|M) ≤ eR(x′1, . . . , x
′
d|M) and

(ii) If q ′ = q, then eR(x1, . . . , xd|M) = eR(x′1, . . . , x
′
d|M).
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(1.21) Corollary . Let M be any finitely generated R-module and q=
(x1, . . . , xd) be an ideal of definition generated by a system of parameters
for R. Then

e0(q; M) = l(M/qM) − ℓ((qd−1M :
M

xd)/qd−1M)

−

d−1∑

k=l

e0(q/qk, (qk−10 :
M

xk)/qk−l M)

where qk = (x1, . . . , xk), 0 ≤ k ≤ d − 1. 39

Proof. This follows from remark (1.4)(i) and ((1.17) ). �

(1.22) Corollary . Let M be any finitely generated R-module and q=
(x1, . . . , xd) ⊂ R be any ideal of definition generated by a system of
parameters{x1, . . . , xd} for R. Then e0(q; M) = ℓ(M/qM)− ℓ((qd−1 : xd)

M
qd−1M) if and only if xk is not in any prime idealY belonging to Ass
(M/qk−1M) such that K−dimR/Y ≥ d−k, where qk = (x1, . . . , xk), 0 ≤
k ≤ d − 1.

Proof. It is easy to see that

Ass ((qk−1 : xk)
M
/qk−1M) = Ass (M/qk−1M) ∩ V((xk)).

Therefore we get

K − dim(qk−1M :
M

xk)/qk−1M) = SupK − dimR/Yi
Yi∈Ass(M/qk−1M)∩V((xk))

< d − k

if and only if xk < Y for all Y ∈ Ass(M/qk−1M) with K − dimR/Y ≥

d − k. �

Therefore by (1.19), we gete0(q/qk; (qk−1M : xk)/qk−1M) = 0 if and
only if xk < Y for all Y ∈ Ass(M/qk−1M) with K − dimR/Y ≥ d − k.
Now (1.22) follows from (1.21).

(1.23) Definition. (see [2]). LetM be a finitely generatedR-module. A
set of elementsx1, . . . , xd ∈ Rad(R) is said to be a reducing system of
parameters with respect toM if
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(a) {x1, . . . , xd} is system of parameters forR

(b) e0(q; M) = ℓ(M/qM)−ℓ((qd−1M :M xd)/qd−1M) whereq = (x1, . . .,
xd) andqd−1 = (x1, . . ., xd−1).

40

The following propositions are useful for the computation of the
multiplicity

(1.24) Proposition . Let M be any finitely generated R-module and
(x1, . . . , xd) = q ⊂ R be an ideal generated by a system of parame-
ters x1, . . . , xd for R. Then q can be generated by a reducing system of
parameters with respect to M.

Proof. By (1.22), it is enough to prove thatxk < Y for all Y ∈ Ass
(M/qk−1M) such thatK−dimR/Y ≥ d−k, whereqk = (x1, . . . , xk), 0 ≤
k ≤ d − 1. �

Let i be an integer with 1≤ i ≤ d. Suppose that there exist elements
y1, . . . , yi−l such thatq = (y1, . . . , yi−l , xi , . . . , xd) and y j < Y for all
Y ∈ Ass (M/(y1, . . . , y j−l)M) with K − dimR/Y ≥ d − j, for any j =
1, . . . , i − 1.

We setq = (y1, . . . , yi−l , xi+1, . . . , xd). It is clear thatq ⊂ mq+ qi ,
wherem= rad (R). Hence there is an elementyi ∈ q such thatyi < mq+qi

andyi < Y for anyY ∈Ass (M/(y1, . . . , yi−1)M) with R/Y ≥ d−i Since
y1, . . . , yi−1, xi+1, . . . , xd are linearly independent modm, q, Nakayama’s
lemma impliesq = (y1, . . . , yi , xi+1, . . . , xd).

(1.25) Proposition . Let (R,M ) be a noetherian local ring and q=
(x1, . . . , xd) ⊂ R be an ideal generated by a system of parameters(x1,41

. . . , xd) for R. Then we putO0 := (0) andOk := U(Ok−1) + (xk) for any
0 < k < d. Then e0(q; R) = l(R/Od).

Proof. From the proof of ((1.9) ), we have

e0(q; R) = e0(q/x1; R/((x1) + (0 : xn
1)))

for largen. Proof by induction ond. Let d = 1. Then it is clear that42
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(0 : xn
1) = U(0) for largen ande0((x1); R) = ℓ(R/((x1) + (0 : xn

1))) =
ℓ(R/((x1) + U(0))) = ℓ(R/U ).

Now suppose thatd = s+ 1, s ≥ 1 and the result holds ford = s.
First we shall show thatU((x1) + (0 : xn

1)) = U((x1) +U(0)) for largen.
Let Y ∈ V((x1)) be such thatK − dimR/Y = d − 1. Then it is easy to
see that, for largen

Y ∈ Ass (R/((x1) + (0 : xn
1)))⇐⇒ Y ∈ Ass (R/((x1) + U(0)))

Moreover, ((x1) + (0 : xn
1))Y = ((x1) + U(0))Y for anyY ∈ Ass

(R/((x1) + (0 : xn
1))) = Ass (R/((x1) + U(0))) with K − dimR/Y =

d − 1. �

ThereforeU((x1) + (0 : xn
1)) = U((x1) + U(0)) for largern

PutR′ := R/(x1) + (0 : xn
1) for largen,O1 = (0) andOk = (xk) +

U(Ok−1 for any 1 < k ≤ d. Then by induction we gete0(q; R) =
e0(q′; R′) = ℓ(R′/U). Now, sinceO = U(0)+ (x1), it follows that

U(O) = U(U(0) + U((x1) + (0 : xn
1) andO′d = Od/((x1) + (0 : xn

1))
for largen. Thereforee0(q; R) = e0(q′; R′) = ℓ(R′/O′d) = ℓ(R/Od).

(1.26) Example. Take the classical example from [[90], §11] ( see also
[[26], p. 180] and [[50], p. 126]).

Let V1,V2 andC be the subvarieties ofP4
k with defining prime ide-

als:

Yv1 = (X1X4 − X2X3,X
2
1X3 − X3

2,X1X2
3 − X2

2X4,X2X2
4 − X3

3),

Yv1 = (X1,X4) andYC = (X1,X2,X3,X4).

We putA(V1; C) := A := (K[(X0,X1,X2,X3,X4]/Yv1)Yc.
Then Yv2.A = (X1,X4)A is generated by a system of parameters

X1,X4 for A and

Yv2 + (X1) = (X1,X2X3,X
2
2,X2X2

4 − X3
3) ∩ (X1,X

3
2,X3,X4)

is a primary decomposition ofYv1+(X1) in A. ThereforeU(Yv2+(X1)) =
(X1,X2X3,X2

2,X2X2
4 − X3

3). It follows from (1.25) that

e0(Yv2A; A) = ℓ(A/(x4) + U(Yv1 + (X1)))
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= ℓ(A/(X1,X4,X
2
2,X2X3,X

2
3)A) = 4.

Also, ℓ(A/Yv2) = ℓ(A(X1,X4,X2X3,X3
2,X

3
3)A) = 5. Therefore in this

example the inequality in (1.9) is a strict inequality, i.e., e0(A/Yv2A; A)
< l(A/(Yv2).

C. The HILBERT Function and the Degree

(1.27) Notation. The following notation will be used in sequel.43

Let K be a field andR := K[XO, . . . ,Xn] be the polynomial ring
in (n + 1)-variables overK. Let V(n + 1, t) denote theK-vector space
consisting all forms of degreet in XO, . . . ,Xn. It is easy to see that

dimK V(n+ 1, t) = (
t+n
n ), for all t ≥ 0, n ≥ 0.

Let I ⊂ Rbe a homogeneous ideal. LetV(I , t) be theK-vector space
consisting of all forms inV(n+ 1, t) which are contained inI .

(1.28) Definition. The numerical functionH(I ,−) : Z+ → Z+ defined
by H(I , t) = dimK V(n+1, t)−dimK V(I , t) is called theHilbert function
of I.

General properties of the HILBERT function

Let I , J ⊂ Rbe two homogeneous ideals.

(1.29)

(i) If I ⊂ J thenH(I , t) ≥ H(J, t) for all t ≥ 0.

(ii) H(I + J, t) = H(I , t) + H(J, t) − H(I ∩ J, t) for all t ≥ 0.

Proof. SinceV(I , t) ≤ V(J, t) if I ⊂ J andV(I + J, t) = V(I , t)+V(J, t)−
V(I ∩ J, t) for all t ≥ 0, (i) and (ii) are clear. �

Let ϕεRbe a form of degreer. Then
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(1.30)

(i)
H(ϕR, t) = H((0), t) − H((0), t − r)

= (t+n
n ) − (t−r+n

n ) for t ≥ r − n

= (t+n
n ) for 0 ≤ t ≤ r − n
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(ii)
H(I ∩ ϕR, t) = H(ϕR, t) + H(I : ϕ), t − r).

= H(ϕR, t) + H(I , t − r) if ( I : ϕ) = I .

(iii)
H(I + ϕR, t) = H(I , t) − H(I : ϕ), t − r).

= H(I , t) − H(I : t − r) if ( I : ϕ) = I .

In particular, H((0), t) =
(
t+n
n

)

H((1), t) = 0 for all t ≥ 0.

Proof. It is easy to see thatI ∩ ϕR= (I : ϕ) · ϕR. Therefore we get

dimK V(I ∩ ϕR, t) = dimK V(I : ϕ, t − r)

In particular (takeI = R), dimK V(IϕR, t) = dimK(R, t − r). From this
and (1.29) all (i),(ii), (iii) are clear. �

(1.31)

Let Y ⊂ R be a homogeneous prime ideal withK − dimR/Y = 1 If K
is algebraically closed, thenY is generated byn linear forms and

(i) H(Y , t) = 1 for all t ≥ 0

(ii) For any r > 0,H(Y r , t) = 1+
(
n
l

)
+

(
n+1

2

)
+ · · · +

(
n+r−2

r−1

)
=

(
n+r−2

r−1

)

Proof. We may assume thatX0 < Y . Consider the idealY∗ = { f∗| f (1, 45

X1/X0, . . . ,Xn/X0), f ∈ Y } ⊂ K[X1/X0, . . . ,Xn/X0]. It is easy to see
that this is a maximal ideal inK[X1/X0, . . . ,Xn/X0]. Therefore, by
Hilbert’s Nullstellensatz, there exista1, . . . , an ∈ K such thatY∗ =
(X1/X0 − a1, . . . ,Xn/X0 − an). Now it is easy to see thatY = (X1 −

a1X0, . . . ,Xn − anX0). To calculateH(Y , t) andH(Y r , t), we may as-
sume thatY = (X1, . . . ,Xn) Then it is clear thatH(Y , t) = 1 for all
t ≥ 0 and sinceY r is generated by forms of degreer in X1, . . . ,Xn it
follows that �
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H(Y r , t) =
r−1∑

k=0

(forms of degreek in x1, . . . , xn)

=

r−1∑

k=0

(
n+ k− 1

k

)
=

(
n+ r − 1

r − 1

)

The following is a well-known theorem (for proof see [26], [55] or
[72]).

(1.32) HILBERT-SAMUEL Theorem

Let I ⊂ R be a homogeneous ideal. The Hilbert functionH(I , t), for
large t is a polynomialP(I , t) in t with coefficients inQ. The degree
d(0 ≤ d ≤ n) of this polynomialP(I , t) is called the projective dimension
or dimension ofI and we will denote it by dim(I ). It is well-known that
dim(I ) = K − dim(I ) − 1. We will write the polynomialP(I , t) in the
following form:

P(I , t) = h0(I )(t
d) + h1(t

d−1) + · · · + hd,

whereh0(I ) > 0, h1, . . . , hd are integers.46

(1.33) Definition. (a) Let I ⊂ R be a homogeneous ideal. The positive
integerh0(I ) is calledthe degreeof I .

(b) LetV = V(I ) ⊂ Pn
K be a projective variety inPn

K defined by a homo-
geneous idealI ⊂ R. ThenK − dim(I )(resp. dim(I ), degree of I) is
called the Krull-dimension of V (resp. The dimension of V, the de-
gree of V) and we denote it byK − dim(V)(resp. dim(V), deg(V)).
V is called pure dimensional or unmixedif I is unmixed.

(1.34) Remark. In general, the degree ofV is to be the number of
points in which almost all linear subspacesLn−dim(V) ⊂ Pn

K meetV. By
combining this geometric definition with a variant of the Hilbert poly-
nomial, we can give our purely algebraic definition of deg(V) and open
the way to the deeper study of this properties (see [50, Theorem (6.25)
on p. 112]).
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Some properties of the degree.

(1.35)

Let ϕ1, . . . , ϕs ∈ R be forms of degreesr1, . . . , rs, respectively. If
((ϕ1, . . . , ϕi−1) : ϕi) = (ϕ1, . . . , ϕi−1) for any 1≤ i ≤ s then

h0((ϕ1, . . . , ϕs)) = r1 . . . ..rs.

Proof. Proof by induction ons. Supposes = 1. Then by (1.30) (i) we
haveH((ϕ1), t) =

(
t+n
n

)
−

(
n+r−n

n1

)
= r1

(
t

n−1

)
) + · · · for all t ≥ r1 − n. �

Thereforeh0((ϕ1)) = r1. Now supposes = p + 1, p ≥ 1 and result 47

holds forr = p. Since ((ϕ1, . . . , ϕs−1) : ϕs) = (ϕ1, . . . , ϕs−1) by (1.30)
(iii) we have

H((ϕ1, . . . , ϕs), t) = H((ϕ1, . . . , ϕs−1), t) − H((ϕ1, . . . , ϕs−1), t − rs)

= h0((ϕ1, . . . , ϕs−1))

(
t

n− s+ 1

)
+ · · · − h0((ϕ1, . . . , ϕs−1))

(
t − rs

n− s+ 1

)
· · ·

= rs − h0((ϕ1, . . . , ϕs−1))( t
n−s

) + · · · for all t ≥ rs − n.

Therefore, by induction, we geth0((ϕ1, . . . , ϕs)) = rs·h0(ϕ1, . . . , ϕs−1) =
r1, . . . rs.

(1.36)

Let I ⊂ R be a homogeneous ideal andϕ ∈ R be a form of degreer.
Then

(i) If dim( I , ϕ) = dim(I ) = dim(I : ϕ) thenh0(I , ϕ) = h0(I ) − h0(I :
ϕ)).

(ii) If dim( I , ϕ) = dim(I ) > dim(I : ϕ) thenh0(I , ϕ) = h0(I ).

(iii) If ( I : ϕ) = I , thenh0(I , ϕ) = r.h0(I ).

Proof. This follows from (1.30) �
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(1.37)

Let I ⊂ Rbe a homogeneous ideal. Then

h0(I ) = h0(U(I ))

Proof. Suppose dim(I ) = d. We may assume thatI *⊂ U(I ). Then we
haveI = U(I ) ∩ J whereJ ⊂ R is a homogeneous ideal with dim(J) <
dim(U) = dim(I ) = d. Therefore from (1.29) (ii), we geth0(I ) =
h0(U(I )). �

(1.38)

Let Y ⊂ Rbe a homogeneous prime ideal andq ⊂ Rbe a homogeneous48

Y -primary ideal. Then

h0(q) = l(q).h0(Y ).

Proof. Let q = q1 ⊂ q2 ⊂ · · · ⊂ qℓ = Y be a composition series forq.
It is enough to prove that

h0(qi) = h0(qi+1) + h0(Y ) for any 1≤ i ≤ ℓ − 2.

�

We assumei = 1. There exist formsϕ1, . . . , ϕs such thatq2 =

(q1, ϕ1, . . ., ϕs). By using remark in (1.1) to theY RY - primary ideal
qRY ⊂ RY , it follows theY ϕi ⊂ q1 for all i= 1, . . . , s and there exist
formsαi andβi , 2 ≤ i ≤ r such that

(i) βi < Y for all 2 ≤ i ≤ s.

(ii) αiϕi − βiϕ1 ∈ q1 for all 2 ≤ i ≤ s

Therefore (q1 : ϕ1) = Y and sinceY ⊂
+

((q1ϕ1, . . . , ϕi) : ϕi+1) the

homogeneous ideals ((q1ϕ1, . . . , ϕi) : ϕi+1) have dimension< d, for any
1 ≤ i ≤ s− 1. Therefore from (1.36) (i), (1.36) (ii), we geth0(q2) =
h0((q1ϕ1, . . . , ϕs−1) = h0((q1ϕ1, . . . , ϕs−2) = · · · = h0(q1) − h0(Y ).
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(1.39)

Let Y1 , Y2 be two homogeneous ideals inR and letqi be two ho-
mogeneousYi- primary ideals fori = 1, 2 If dim q1 = dimq2 then
h0(q1 ∩ q2) = h0(q1) + h0(q2).

Proof. SinceY1 , Y2, it follows that dim(q1 + q2) < dimq1 = dimq2.
Therefore, from (1.29) (ii), we have

h0(q1 ∩ q2) = h0(q1) + h0(q2).

�

(1.40)

Let I ⊂ Rbe a homogeneous ideal. Then 49

h0(I ) = h0(U(I )) =
∑

l(q).h0(Y ).

whereq runs through allY -primary components ofI with dim(q) =
dim(I ).

Proof. This follows from (1.37) . (1.39) and (1.38) . �

(1.41)

Let Ī ⊂ K[X0, . . . ,Xn−1] be a homogeneous ideal of dimensiond with
the Hilbert functionH(Ī , t) = h0(t

d)+h1(t
d−1)+ · · ·hd for t >> 1. Let I ∗ ⊂

K[X0, . . . ,Xn] be the homogeneous ideal generated byĪ Then dim(I ∗) =
dim(I ) + 1 = d + 1 and the Hilbert function ofI ∗ is given by

H(I ∗, t) = h0(t
d+1) + (h0 + h1)(t

d) + · · · + (hd + hd + 1) for t >> 1.

Proof. Every formϕ ∈ I ∗ of degreet can be written uniquely in the
form

ϕ = ϕt + ϕt−1Xn + · · · + Xt
n

whereϕt, ϕt−1, . . . are forms of degreest, t − 1, . . . in Ī .

ThereforeV(I ∗, t) =
t∑

k=0
V(Ī , k) and hence �
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H(I ∗, t) =

(
t + n

n

)
−

t∑

k=0

[

(
t + n
n− 1

)
) − H(Ī , k)].

=

t∑

k=0

H(Ī , k), since
t∑

k=0

(
t + n
n− 1

)
) =

(
t + n

n

)

= h0

t∑

k=0

(
k
d

)
+ h1

t∑

k=0

(
k

d − 1

)
+ · · · + hd

t∑

k=0

(
k
0

)

= h0

(
t + l
d + l

)
+ h1

(
t + 1

d

)
+ · · · + hd

(
t + 1

l

)

= h0

(
t

d + 1

)
+ (h0 + h1)

(
t
d

)
+ · · · + (hd−1 + hd)

(
t
l

)
+ (hd + hd+1)

(1.42)

Let I ⊂ K[X0, . . . ,Xn] be a homogeneous ideal of dimensiond(0 ≤ d ≤50

n− 1). PutĪ = I ∩ K[X0, . . . ,Xn−1]
I1 = {ϕ ∈ K[X0, . . . ,Xn−1]|ϕi is a form such thatϕ0 + ϕ1Xn ∈ I for

some formϕ ∈ K[X0, . . . ,Xn−1]}
I1 = {ϕi ∈ K[X0, . . . ,Xn−1]|ϕi is a form andϕ0+ϕ1Xn+ · · ·+ϕiXi

n ∈ I
for some formsϕ0, . . . , ϕi−1 ∈ K[X0, . . . ,Xn−1]} for i ≥ 1.

Then it is clear that

Ī ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ir = Ir+1 = . . . for somer ≥ 1.

Therefore, we get

dimV(I , t) = dimV(I , t) +
t∑

k=1

dimV(Ik, t − k) for all t ≥ 0

and hence

H(I ,T) =

(
t + n

n

)
−

(
t + n− 1

n− 1

)
+ H(Ī , t) −

t∑

k=1

[(t+n−1
n−1 ) − H(Ik, t − k)]
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= H(Ī , t) −
t∑

k=1

H(Ik, t − k) for all t ≥ 0.

51

(1.43) Example. (i) Let Y be the prime ideal

(X0X2 − X2
1,X1X2 − X0X3,X2

2 − X1X3) ⊂ K[X0,X1,X2,X3].

Following the notation of (1.42) , it is easy to see that

Ȳ = (X0X2 − X2
1)

Y1 = Y2 = . . . (X0,X1).

Therefore, by (1.35) , we get

H(Ȳ , t) = 2t + 1 andH(Y1, t) = H(Y2, t) = · · · = 1 for all t ≥ 0.

Hence by (1.42)

H(Y , t) = H(Ȳ , t) +
t∑

k=0

H(Yk, t − k) = 3t + 1.

Thereforeh0(Y ) = 3

(ii) Let Y be the prime ideal (X0X2 − X2
1,X

2
2 − X0X3) ⊂ K[X0,X1,

X2,X3]. ThenȲ = (X0X2 − X2
1),H(Ȳ , t) = 2t + 1, for all t ≥ 0.

Y1 = Y2 = . . . = (X0,X2
1),

H(Y1, t) = H(Y2, t) =


1 for t = 0

2 for all t ≥ 1

Therefore, by (1.42) , we get

H(Y , t) = H(Ȳ , t) +
t∑

k=0

H(Yk, t − k) =


1 for t = 0

4t for all t ≥ 1.

Henceh0(Y ) = 4. 52
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(iii) Let Y be the prime ideal (X2
0X2 − X3

1,X0X3 − X1X2,X0X2
2X2

1X3,

X1X3
2 − X3

2) ⊂ K[X0,X1,X2,X3]

Then

Ȳ = (X2
0X2 − X3

1),H(Ȳ ) =


1 for t = 0

3t for all t ≥ 1.

Y1 = (X0X2
1),H(Y1, t) =


1 for t = 0

2 for all t ≥ 1.

Y2 = Y3 = · · · = (X0,X1),H(Y2, t) = H(Y3, t) = . . . = 1 for all
t ≥ 0. Therefore, by (1.42) , we get

H(Y , t) = H(Ȳ , t) +
t∑

k=0

H(Yk, t − k) =



1 for t = 0

4 for t ≥ 1.

4t + t for t =≥ 2.

HenceH0(Y ) = 4.

(iv) Let Y ⊂ K[X0,X1,X2,X3] = R be the prime ideal in example (iii)
above andY = (X1,X4) ⊂ K[X0,X1,X2,X3].

Thenq := (Y + Y ′) = (X0,X3,X1,X2,X3
1,X

3
2) is (X0,X1,X2,X3)-

primary ideal and it is easy to see thatl(R/q) = 5. Therefore, by (1.38) ,
we haveh0(q) = ℓ(R/q) · h0((X0,X1,X2,X3)) = 5 and from example (iii)
h0(Y ) = 4. This shows that

5 = h0(q) , h0(Y ) · h0(Y ′) = 4.

D. Miscellaneous Results

Now we collect some results which will be used in the next sections.53

Let K be a field.

(1.44) Proposition . Let A be a finitely generated K-algebra. Then
U = {Y ∈ Spec(A)|AY is Cohen-Macaulay} is a non-empty Zariski-
open subset ofSpec(A).
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For the proof of this proposition, we need the following lemma.

(1.45) Lemma . Let A be a finitely generated K-alegbra andY ∈

Spec(A) If AY is Chone-Macaulay, then there exists a maximal ideal
m of A containingY such that AM is Chone-Macaulay.

Proof. Proof by induction ond := dim(A). �

Case(i): ht Y = 0. In this case,Y is a minimal prime ideal ofA. If
d = K − dim A = o, then there is nothing to prove. Now suppose that
d = s+ 1, s ≥ 0 and the result holds ford = s. ReplacingA by Af for
some f < Y , we may assume that Ass (A) = {Y } andK − dimA > O.
Then depth (A) > 0. Let x ∈ A be a non-zero- divisor inA andq be a
minimal prime ideal ofx A. Then by Krull’s PID ht q = 1 and hence
Y ⊂ q.

Put A′ = A/(x) and q′ = qA. Then A′p is Cohen Macaulay and
h t q′ = 0. Therefore,by induction, there exists a maximal idealM ′ of
A′ with q′ ⊂M ′ andA′m is Cohen-Macaulay. ThenM =M ′ ∩ A is a 54

maximal ideal ofA containingq ⊃ Y andAm is Cohen-Macaulay.
Case (ii): ht Y = r > 0.

SinceAY is Cohen-Macaulay of dimensionr there existx1, . . . xr in
Y such that{x1, . . . xr}is anAY - sequence.

By replacing A by Af for some f < Y , we may assume that
{x1, . . . xr } is an A-sequence andY is a minimal prime ideal of
(x1, . . . xr). Put A′ = A/(x1, . . . xr ) andY ′ = Y A′. Then htY ′ = 0
andA′

Y ′ is Cohen-Macaulay; therefore, by case(i), there exists a maxi-
mal idealm′ of A′ such thatm′ ⊃ Y ′ andAm′ is Cohen-Macaulay. Then
m= m′ ∩ A is a maximal ideal ofA with m⊃ Y and since{x1, . . . xr} is
an A-sequence, it follows thatAM is Cohen-Macaulay.

Proof of Proposition (1.44). Clearly U , φ. Let Y ∈ U shall show
that there existsf < Y such thatD( f ) = {q ∈ Spec (A)| f < q} ⊂
U, that is, Af is Cohen-Macaulay for somef < Y . By (1.45), we
may assume thatY = M is a maximal ideal ofA. ReplacingA by
Af for some f < M we may assume that Ass (A) = Y1, . . . ,Yr with
Yi ⊂ m, i ≤ i ≤ r. SinceAm is Cohen- Macaulay, we haved :=ht
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m= dim Am = dim(A/Yi)m for all 1 ≤ i ≤ r. Therefore

dim A = sup
1≤i≤r

dimA/Yi = sup
1≤i≤r

dim(A/Yi)M = d

and there existx1, . . . , xd ∈ m such that{x1, . . . , xd} is anAm-sequence.55

Further, replacingA by Af for somef < m, we may assume that{x1, . . .,
xd} is anA-sequence. This shows thatA is Cohen-Macaulay.

(1.46) Proposition.

1. Let L|K be a field extension. Let I⊂ K0[X0, . . . ,Xn] =: R be a homo-
geneous ideal. Put̄R= L[X0, . . . ,Xn]. Then h0(I ) = h0(I R̄).

2. Let A be a finitely generated K-algebra and I⊂ A be an unmixed
ideal. Let x∈ A be such that K− dim(A/(I , x)) = K − dim(A/I ) − 1.
Then

Rad(U((I , x))) = Rad(I , x).

3. Let V = V(I ) ⊂ Pn
K be a projective variety defined by the homoge-

neous ideal I⊂ K[X0, . . . ,Xn] =: R. Let C be an irreducible subva-
riety of V with the defining prime idealY . Let A = (R/I )Y be the
local ring of V at C. If V is pure dimensional, then

K − dim(A) = K − dim(V) − K − dim(C).

Proof. 1. Clear.

2. Put d := K − dim(A/I ). It is enough to prove that, for every
minimal prime idealq of (I , x)

K − dim(A/q) = d − 1.

SinceI is unmixedd = K − dim(A/I ) = K − dim (A/Y ) for every56

Y ∈ Ass (A/I ). Let (I , x) ⊂ q ⊂ A be a minimal prime ideal
of (I , x). Then there exists a minimal prime idealY of I such
that Y ( q and by Krull’s Principal Ideal Theorem, we have ht
q/Y = 1. Therefore; sinceA is a finitely generatedK-algebra,
we get

K − dim A/q = K − dim A/Y − htq/Y = d − 1.
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3. Let I ⊂ q ⊂ R be a minimal prime ideal ofI such thatK − dim
(R/q)Y = K − dim (A). Then, sinceI is unmixed andR/q is a
finitely generatedK-algebra, we get

K − dim(V) = K − dimR/I = K − dimR/q = K − dim(R/Y )

+ K − dim(R/q)Y = K − dim(C) + K − dim(A).

�

(1.47) Proposition . Assume that K is algebraically closed. Let L|K
and L′|K be field extensions and A, B be finitely generated K-algebras.
Then

(i) (a) L ⊗
K

L′ is an integral domain.

(b) K − dim (A⊗
K

B)= K-dim (A)+ K-dim (B) and if A and B are

integral domain then A⊗
K

B is an integral domain.

(c) Put AL := L ⊗
K

A. Then K-dim AL =K-dim A and if A is an

integral domain then AL is an integral domain.

(ii) There is a one-one correspondence between the isolatedprime ide-
als of A and the isolated prime ideals of AL = L⊗

K
A which preserves 57

K-dimensions.

(iii) (a) If A is unmixed then AL = L ⊗
K

A is unmixed.

(b) If A and B are unmixed then A⊗
K

B is unmixed.

(iv) (a) If A and B are Cohen-Macaulay then A⊗
K

B is Cohen-Macaulay.

(b) LetY ∈ Spec(A) and q∈ Spec(B). If AY and Bq are Cohen-
Macaulay then AY ⊗

K
Bq is Cohen-Macaulay.

Proof. (i) (a) We may assume thatL is finitely generated overK. Let
{x1, . . . , xn} ⊂ L be a separating transcendence basis ofL|K (since
K is algebraically closed it exists). PutL1 := K(x1, . . . , xn). Then
L|L1 is separable and henceL = L1(α) = L1[x]/( f (x)), where
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f (x) is the irreducible polynomial of overL1. Sine L1 ⊗
K

L′ ≃

S−1 (L′[x1, . . . , xn]), whereS = K [x1, . . . , xn] - 0, L1 ⊗
K

L′ is an

integral domain with quotient fieldE = L′(x1, . . . , xn). Now, note
that sinceK is algebraically closed inL′, it is easy to see that
L1 = E(x1, . . . , xn) is algebraically closed inE. ThenL ⊗

K
L′ =

L ⊗
L1

L1L1 ⊗
L1

L′ ⊃ L ⊗
L1

E = L1[x]/( f (x)) ⊗
L1

E = E[x]/( f (x)) is an

integral domain.

(b) By Normalization Lemma, we have58

K − dim(A⊗
K

B) = K − dim(A) + K − dim(B).

Let L (resp.L′) be the quotient field ofA (resp.B).

ThenA⊗
K

B ⊂ L ⊗
K

L′ which is an integral domain by (a).

(c) Similar to (b).

(ii) Let Y ∈ Spec(A). Then by (i) (c) Y AL ∈ Spec(AL) and K −
dim(Y ) = K − dim(Y AL). It is easy to see thatY is isolated if
and only ifY AL is isolated. ThereforeY ↔ Y AL is, as required
a1− 1 correspondence.

(iii) (a) Let Y ∈ Ass (A). Then by (i)(c)K −dimY AL = K −dimY =

K − dimA = K − dim AL. Therefore it is enough to prove that Ass
(AL) = {Y AL|Y ∈ Ass (A)}, which follows from (ii ).

(b) LetY ∈ Ass (A) andq ∈ Ass (B). Then by (ii ) (b) (Y , q) is a
prime ideal inA ⊗

K
B =: C andK − dim(Y , q)C = K − dimY +

K − dimq = K − dimA+ K − dim B = K − dim(A⊗
K

B).

Therefore it is enough to prove that

Ass(C) = {(Y , q).C|Y ∈ Ass(A), q ∈ (B)}.

Let P ∈ Ass (C). Then sinceC is flat overA andB it follows that
P∩ A = Y ∈ Ass (A) andP∩ B = q ∈ Ass (B).
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By replacingA by AY we may assume thatA is local with max-59

imal idealY ∈ Ass (A). SinceA is unmixedAY is unmixed and
thereforeAY is artinian.

Now there exists a coefficient fieldL of A containingK andL ⊗
K

B→ A⊗
K

B is an integral extension. It follows from (a) thatBL :=

L ⊗
K

B is unmixed and by (ii ) qBLε Ass (BL). If (Y , q) C ( P) then

qBL ( P∩ BL becauseBL → A⊗
K

B is an integral extension.

SinceA⊗
K

B is a freeBL-module it follows thatP∩ BL ∈ Ass (BL).

This contradicts the fact thatBL is unmixed. ThereforeP = (Y , q)
·C.

(iv) (a) Let K-dim A = r and K-dim B = s. Then we have K-
dim A ⊗

K
B = K-dim A + K − dim B = r + s. Let {a1, . . . , ar }

(resp.{b1, . . . , bs}) be anA-sequence (resp.B-sequence). Then,
sinceK is a field, it is easy to see that{a1 ⊗ 1, . . . , ar ⊗ 1,⊗b1, . . .,
1⊗ bs} is an (A⊗

K
B)-sequence of lengthr + s. ThereforeA⊗

K
B is

Cohen-Macaulay.

(b) It is easy to see thatAY ⊗
K

Bq
∼
−→ S−1(A ⊗

K
B), whereS is the

multiplicative set (A − Y ) ⊗
K

(B − q) in A ⊗
K

B. By (1.44) there

exist f ∈ A − Y andg ∈ B − q such thatAf andBf are Cohen-
Macaulay. Therefore by (a) Af ⊗

K
Bg is Cohen-Macaulay. Since

AY ⊗
K

Bg
∼
−→ S−1 ⊗

K
B) is a localization ofAf ⊗

K
Bg it follows that

AY ⊗
K

Bg is Cohen-Macaulay.
�





Chapter 2

The Main Theorem

IN THIS CHAPTER, we state and prove the Main Theorem.Through- 60

out this chapter K denotes an algebraically closed field andPn
K the pro-

jective n-space over K.

A. The Statement of the Main Theorem

(2.1) Main theorem

Let V1 = V(I1) andV2 = V(I2) be two pure dimensional subvarieties
in Pn

K defined by homogeneous idealsI1 andI2 in K[X0, . . . ,Xn]. There
exists a collection{Ci} of irreducible subvarieties ofV1 ∩ V2 (one of
which may beφ) such that

(i) For every Ci ∈ {Ci} there are intersection numbers, sayj(V1,

V2; Ci) ≥ 1 of V1 andV2 alongCi given by the lengths of certain
well-defined primary ideals such that

deg(V1) · deg(V2) =
∑

Ci∈{Ci ]}

j(V1,V2; Ci) · deg(Ci),

where we put deg(φ) = 1.

(ii) If C ⊂ V1 ∩ V2 is an irreducible component ofV1 ∩ V2 thenCi ∈

{Ci}.

47
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(iii) For everyCi ∈ {Ci}

dim(Ci) ≥ dim(V1) + dim(V2) − n.

In order to prove the main theorem (2.1) we need some preliminary61

results.

B. The Join-procedure

The following notation will be used in the sequel.

(2.2)

Let V1 = V(I1) andV2 = V(I2) be two pure dimensional subvarieties in
Pn

K defined by homogeneous idealsI1 andI2 ⊂ R0 := K[X0, . . . , ].
We introduce two copiesRi := K[Xi0, . . . ,Xin], i = 1, 2 of R0 and

denoteI ′i the homogeneous ideal inRi corresponding toI i , i = 1, 2.
Put N := 2(n + 1) − 1,R := K[Xi j |i = 1, 2; 0 ≤ n] and τ := the

diagonal ideal inRgenerated by{Xi j − X2 j |0 ≤ j ≤ n}.
We introduce new independent variablesUk j overK, 0 ≤ j, k ≤ n.

Let K̄ be the algebraic closure ofK(Uk j|0 ≤ j, k ≤ n). PutR̄ := K̄[Xi j |i =
1, 2; 0 ≤ j ≤ n]. Then we introduce so calledgeneric linear forms
ℓo, . . . , ℓn :

ℓk :=
n∑

j=0

Uk j(X1 j − X2 j), for 0 ≤ k ≤ n in R̄.

Note that sinceτR̄ is generated by (n+1) - elements andℓ0, . . . , ℓn ∈
R̄, it is clear thatτR̄= (ℓ0, . . . , ℓn)R̄.

Let J(V1,V2) be the join-variety defined by (I ′1 + I ′2)R̄ in PN
K̄

.

(2.3) Lemma. 1. The ideal(I ′1 + I ′2)R̄ is unmixed and hence U((I ′1 +62

I ′2)R̄= (I ′1 + I ′2)R̄.

2. K − dim(J(V1,V2)) = K − dim(I ′1 + I ′2)R̄

= K − dim(I1) + K − dim(I2) = dim(V1) + dim(V2) + 2.

K − dim((I ′1 + I ′2)R̄+ τR̄) = K − dim(I1 + I2) = dimV1 ∩ V2 + 1.
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3. There is a one-one correspondence between the isolated prime ideals
of (I1 + I2) in R0 and the isolated prime ideals of(I ′1 + I ′2)R̄+ τR̄ in R̄
and that this correspondence preserves dimensions and degrees.

4. For every irreducible component C of V1 ∩ V2

dimC ≥ dimV1 + dimV2 − n.

5. deg(V1). deg(V2) = h0(I1).h0(I2) = h0((I ′1 + I ′2)R̄)

= h0((I ′1 + I ′2)R̄.h0(τR).

Proof.

1. Follows from (1.47).

2. Follows from (1.47).

3. We have a ring homomorphism

ϕ : R̄→ R̄0 : K̄[X0, . . . ,Xn]

given by Xi j → X j for i = 1, 2 and every 0≤ j ≤ n. It is
easy to see that Kerϕ = τR̄, ϕ−1(Y ) = (Y ′ + τ)R̄. whereY ′

is the prime ideal inR̄1 corresponding to the prime idealY of 63

R̄◦ andϕ−1((I1 + I2)R̄◦) = (I ′1 + I ′2)R̄ + τR̄. ThereforeR̄/(I ′1 +

I ′2)R̄+ τR̄
∼
→= R̄0/(I1 + I2)R̄0 andY ↔ Y ′ + τR̄ gives 1− 1

correspondence between the isolated prime ideals of (I1 + I2)R̄0

and the isolated prime ideals of (I ′1+ I ′2)R̄+τR̄ in R̄. It is clear that
this correspondence preserves the dimension and degree. Now
(iii) follows from (1.47).

4. This follows from (iii) and the fact that, every isolated prime ideal
of (I ′1 + I ′2)R̄ has Krull dimensionK − dim(I ′1) + K − dim(I ′2) =
dimV1 + dimV2 + 2 (see (i) and (ii)).

Therefore it follows that every isolated prime ideals of (I ′1+ I ′2)R̄+ 64

τR̄ has Krull dimension≥ dim(V1) + dim(V2) + 2 − (n + 1) =
dimV1 + dimV2 − n+ 1.
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5. We haveh0(τR̄) = 1 by (1.34). Therefore we only have to prove
h0(I1).h0(I2) = h0((I ′1 + I ′2)R̄). We haveR̄/(I ′1 + I ′2)R̄

∼
→ R̄1/I ′1 ⊗K

R̄2/I ′2 ≃ R̄0/I1⊗
K

R̄0/I2. ThereforeH((I ′1+I ′2)R̄, t) =
∑

i+ j=t
H(I1R̄0, i).

H(I2R̄0, j) for all t ≥ 0. Choose an integerr such that the Hilbert
functionsH(I1R̄0, i) =: Hi andH(I2R̄0, i) =: H′i are given by poly-
nomialshi andh′1, respectively fori > r. Then

i=0∑

t

Hi ·H
′
t−i =

t∑

i=0

hi · h
′
t−i +

r∑

i=0

(Hi − hi) · h
′
t−i +

t∑

i=t−r

hi(H
′
t−i − h′t−i)

for n >> 0(n > 2r).

�

Therefore it follows from (1.32) that

t∑

i=0

Hi · H
′
t−i = h0(I1R̄0) · h0(I2R̄0) · [

t∑

i=0

(
i

d1

)(
t − i
d2

)
] + (other terms)

= h0(I1R̄0) · h0(I2R̄0)

(
t

d1 + d2 + 1

)

+ terms with degree (in t)≤ d1 + d2.

Therefore we get

h0((I ′1 + I ′2)R) = h0(I1R̄0).h0(I2R̄0)

= h0(I1).h0(I2)

by 1.46.
It is clear that Lemma (2.3), the Join-Procedure inPN

K̄
, reduces our

considerations to the case that one variety is a complete intersection of
degree 1.

To calculateh0((I ′1+ I ′2)R̄), we will study the sum ideal (I ′1+ I ′2)R̄+τR̄
and the radical (denoted by Rad(· · · )) of this ideal.
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(2.4) Notation. The following notation will be used in the sequel:

δ : = K − dim((I ′1 + I ′2)R̄) = dimV1 + dimV2 + 2

d : = K − dim((I ′1 + I ′2)R̄+ τR̄= K − dim((I1 + I2)R0)

= dim(V1 ∩ V2) + 1.

Let Yi, j be the minimal prime ideals of (I ′1 + I ′2)R̄ + τR̄ of Krull
dimensionj, 0 ≤ t ≤ j ≤ d ≤ δ. We thus put:

(*) Rad((I ′1+ I ′2)R̄+ τR̄) = Y1,d∩ . . .∩Ymd,d∩ . . .∩Y1,t ∩ . . .∩Ymt,t,

wheremd ≥ 1,md−1, . . . ,mt ≥ 0 are integers, and where we setmj = 0 65

for an integert ≤ j ≤ d − 1 if (∗) has no prime ideal of Krull dimension
j.

(2.5) Remark. From 2.3 (iii) it follows that the prime idealsYi, j in (∗)
of 2.4 are in 1− 1 correspondence with the irreducible components of
V1 ∩ V2 and that this correspondence preserves the dimension and the
degree.

(2.6) Lemma. Let C be an irreducible component of V1 ∩ V2 andYi, j

be the prime ideal corresponding to C in (∗) of 2.4. PutĀ = (R̄/(I ′1 +
I ′2)R̄)Yi, j , the local ring of the join-variety J(V1,V2) at Yi, j. Then

(i) K − dim(Ā) = K − dim(R̄/(I ′1 + I ′2)R̄) − K − dim(Yi, j) = δ − j.

(ii) Let Y ⊂ R̄ be a prime ideal. Then

Y ∈ Ass(R̄/(I ′1 + I ′2)R̄+ (ℓ0, . . . , ℓk)R̄) with Y ⊂ Yi j and K− dim(Y )
= ℓ if and only ifY Ā ∈ Ass(Ā/(ℓ0, . . . , ℓk)Ā) and K− dim(Y Ā) = ℓ− j.

Proof. Follows from 2.3 (i) and 1.45. �

(2.7) Proposition. (i) For anyδ− d generic linear forms, sayℓ0, . . . ,
ℓδ−d−1 we have

K − dim((I ′1 + I ′2)R̄+ (ℓ0, . . . , ℓδ−d−1)R̄= d

(if δ = d then we set(ℓ0, . . . , ℓδ−d−1)R̄= (0)).
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(ii) δ − t − 1 ≤ n and equality holds if and only if t= dim(V1) + 66

dim(V2) − n+ 1.

Proof. (i) Assume that there existsk such that 0≤ k ≤ δ − d − 1 and
ℓk ∈ Y for someY ∈ Ass (R̄/(I ′1 + I ′2)R̄+ (ell0, . . . , ℓk−1)R̄) with
K − dim(Y = δ − K). Let k + 1 ≤ m ≤ n. Let ϕm be te automor-
phism ofK̄ over K given byϕm(Ukℓ) = Umℓ, ϕm(Umℓ) = Ukℓ and
ϕm(Upℓ) = Upℓ for all 0 ≤ p(, k,m) ≤ n and 0≤ ℓ ≤ n. Now,
sinceY is defined overK1 = K(Up j|0 ≤ p ≤ k− 1, o ≤ j ≤ n) and
ϕm(K1) ⊂ K1, we getϕm(ℓk) = ℓm ∈ Y and therefore (I ′1 + I ′2)R̄+
(ℓ0, . . . , ℓn)R̄⊂ Y . Therefore we getd = K−dim((I ′1+I ′2)R̄+τR̄) ≥
K − dim(Y ) = δ− k, that is,δ− d− 1 ≥ k ≥ δ− d which is absurd.
This proves (i).

(ii) From 2.3 (i) and 2.5 we gett ≥ dim(V1)+dim(V2)−n+1 ≥ δ−n−1.
Thereforeδ − t − 1 ≤ n and equality holds if and only if

t = dim(V1) + dim(V2) − n+ 1.

�

(2.8) Proposition. Let C be an irreducible component of V1 ∩ V2 and
Yi, j be the prime ideal corresponding to C in (∗) of 2.4. LetĀ = (R̄/(I ′1+
I ′2)R̄)Yi, j be the local ring of the join-variety J(V1,V2) at Yi, j. Then
{ℓ0, . . . , ℓδ− j−1} is a reducing system of parameters forĀ.

Proof. In view of 2.6 (ii) it is enough to prove: �67

(i) For every 1≤ k ≤ δ − j − 1,

ℓk−1 , Y for all Y ∈ Ass (R̄/(I ′1 + I ′2)R̄+ (ℓ0, . . . , ℓk−2)R̄) with
Y ⊂ Yi, j andk− dim(Y ) ≥ δ − k.

(ii) ℓδ− j−1 < Y for all Y ∈ Ass(R̄/(I ′1 + I ′2)R̄+ (ℓ0, . . . , ℓδ− j−2)R̄) with
Y ⊂ Yi, j andk− dim(Y ) = K − dim((I ′1 + I ′2)R̄(ℓ0, . . . , ℓδ− j−2)R̄)

Proof of (i) : Suppose for some 1≤ k ≤ δ − j − 1, ℓk−1 ∈ Y for some
Y ∈ Ass (R̄/(I ′1 + I ′2)R̄) with Y ⊂ Yi, j andK − dim(Y ) ≥ δ − k. Then
from the proof of 2.7(i) we get

(I ′1 + I ′2)R̄+ τ ⊂ R̄⊂ Y ⊂ Yi, j .
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ThereforeY = Yi, j andK − dim(Y ) = j ≥ δ − k. This shows that
j ≥ δ − k ≥ δ − δ + j + 1 = j + 1 which is absurd.
Proof of (ii) : From (i) we get

K − dim(I ′1 + I ′2)R̄+ (ℓ0, . . . , ℓδ− j−2R̄) = δ − (δ − j − 1) = j + 1. If
lδ− j−1 ∈ Y for sameY ∈ Ass(R̄/(I ′1 + I ′2)R̄+ (ℓo, . . . , ℓδ− j−2)R̄) with
Y ⊂ Yi, j. Then by the same argument in (i) above we getY = Yi, j.
ThereforeK − dim(Y ) = j. This proves (ii).

C. Step I of the Proof

Step I. In this step, we define the intersection numbers j(V1,V2; C) of
V1 and V2 along C, where C is an irreducible component of V1

⋂
V2

with dim(C) = dim(V1
⋂

V2).

The following notation will be used in the sequel. 68

[(I ′1 + I ′2)R̄]−1 := (I ′1 + I ′2)R̄

[(I ′1 + I ′2)R̄]k := ∪([(I ′1 + I ′2)R̄]k−1) + ℓkR̄

for any 0≤ k ≤ δ − d − 1.

(2.9) Remarks. (i) (I ′1+I ′2)R̄⊂ (I ′1+I ′2)R̄+(ℓ0, . . . , ℓk)R̄⊂ [(I ′1+I ′2)R̄]k

for every 0≤ k ≤ δ − d − 1.

(ii) It follows from the lemma 2.7 (i) and the repeated application of
1.46(ii) that

Rad(∪([(I ′1 + I ′2)k−1) = Rad(∪(∪([I ′1 + I ′2]) + lk−2R̄)

= Rad(∪([I ′1 + I ′2]k−2) + lk−1R̄)

= . . .

= Rad(I ′1 + I ′2)R̄+ (ℓ0, . . . , ℓk−1)R̄

for every 0≤ k ≤ δ − d.

(iii) From (ii), we get

(∪([(I ′1 + I ′2)R̄]k−l ) : ℓk) = ∪([(I ′1 + I ′2)R̄]k−l)

for every 0≤ k ≤ δ − d − 1.
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Now we study the primary decomposition of∪([(I ′1 + I ′2)R̄]δ−d−l) in
the following lemma.

(2.10) Lemma. (i) The primary decomposition of

U ∪ ([(I ′1 + I ′2)R̄]δ−d−1)

is given by69

∪([(I ′1 + I ′2)R̄]δ−d−l ) = ql,d

⋂
. . . qmd , d

⋂
O1

where qi,d are primary ideals belonging to the prime idealsYi,d

in (∗) of (2.4) 1 ≤ i ≤ md and O is the intersection of all other
primary component of∪([I ′1 + I ′2)R̄]δ−d−1).

(ii) deg(V1) · deg(V2) = ho((I ′1 + I ′2)R̄) = ho(∪([I ′1 + I ′2)R̄]δ−d−1))

=

md∑

i=1

(length ofqi,d) · ho(Yi,d) + ho(O)

(iii) Every prime idealsYi, j in (∗) of (2.4) with t≤ j ≤ d − 1 contains
O1. In particular, if V1∩V2 has an irreducible component of Krull
dimension≤ d − 1 thenO1 , R̄.

(iv) Every associated prime idealY of O1 has Krull dimension d.

(v) The diagonal idealτR̄ is not contained in any associated prime of
O1.

Proof. (i) From (2.7)(i) and (2.9)(ii), we have

K − dim(∪([I ′1 + I ′2)R̄]δ−d−1)) =

K − dim(I ′1 + I ′2)R̄+ (l0, · · · , lδ−d−1)R̄) = d

and

Rad (∪([I ′1 + I ′2)R̄]δ−d−1)) =

Rad ((I ′1 + I ′2)R̄+ (ℓ0, . . . , ℓδ−d−1)R̄) ⊂ Yi,d

for every 1 ≤ i ≤ md. ThereforeYi,d is associated to∪([I ′1 +
I ′2)R̄]δ−d−1) for every 1≤ i ≤ md.
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(ii) From (1.40) and (2.9)(iii), (1.36) (iii), we get70

ho(∪([I ′1 + I ′2)R̄]δ−d−1)) = ho([I ′1 + I ′2)R̄]δ−d−2) + ℓδ−d−1R̄))

= h0(U([I ′1 + I ′2)R̄]δ−d−2))

= . . . = h0(I ′1 + I ′2)R̄) = deg(V1) · deg(V2)

(iii) We have from the proof of (i) that

Rad (∪([I ′1 + I ′2)R̄]δ−d−1)) = Y1,d ∩ · · · ∩ Ymd,d ∩ Rad(O) ⊂ Yi, j

for every t ≤ j ≤ d − 1 and for all i. Therefore we getO1 ⊂

Rad(O1) ⊂ Yi, j for everyt ≤ j ≤ d − 1 and for alli.

(iv) Clear.

(v) If τR̄ ⊂ Y for someY ∈ Ass(R̄/O1) then (I ′1 + I ′2)R̄ + τR̄ ⊂
Rad((I ′1 + I ′2)R̄)R̄+ τR̄) ⊂ Y . ThereforeY = Y ′

i,d becauseK −
dim(Y ) = d (from (iv)). This is contradiction!

�

(2.11) Definition. Let C ⊂ V1 ∩ V2 be an irreducible component with
dimC = dim(V1 ∩ V2) = d − 1. Let Yi,d be the prime ideal in (∗) of
(2.4) correspondingC (see (2.5)). We define theintersection number
j(V1,V2; C) of V1 and V2 along Cto be the length of the corresponding
Yi,d-primary componentqi,d−1 of ∪([(I ′1 + I ′2)R̄]δ−d−l ).

From (2.10)(i) it is clear that, for every irreducible componentC of
V1∩V2 with dim(C) = dim(V1∩V2) the intersection numberj(V1,V2; C)
of V1 andV2 alongC is defined andj(V1,V2; C) ≥ l.

(2.12) Remarks. (i) It follows (2.10)(ii) and the definition (2.11) that71

deg(V1) · deg(V2) =
∑

C

j(V1,V2; C) · deg(C) + h0(O1),

whereC runs through all irreducible components ofV1 ∩ V2 with
dim(C) = dim(V1 ∩ V2).
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(ii) If t = d, then our algorithm stops.

Assume thatt < d, that is,V1
⋂

V2 has irreducible components of
Krull dimension≤ d − 1. Therefore by (2.10) (iii)O 6, R̄. In the
next step we apply modified procedure to studyh0(O1).

D. Step II of the Proof

Step II. In the step, we define the intersection numbers j(V1,V2; C) of
V1 and V2 along C in the following two cases:

(i) If C is an irreducible component of V1 ∩ V2 of Krull dimension
≤ d − 1.

(ii) Certain imbedded irreducible subvarieties C of V1 ∩ V2 with t ≤
K − dim(C) ≤ d − 1.

(2.13)

From (2.10)(ii) we have (lδ−d, . . . , ln)R̄ 1 Y for every prime idealY ∈

Ass(R̄/O1). It follows from the proof of the proposition (2.7)(i) that
ℓr < Y for everyY ∈ Ass(R̄/O1) with n ≥ r ≥ δ − d. Considerlδ−d, we
have

ThereforeK − dim(O1 + lδ−dR̄) = K − dim(O1) − 1 = d − 1 and
(O1 : lδ−d′) = O172

Now we study the primary decomposition of the idealU(O1+lδ−d′R̄).
Every primary componentq of U(Oℓ+ ℓδ−d′R̄) belongs to one of the fol-
lowing three cases:

Case(1). q is Y - primary such that there is a prime idealYi, j in (∗) of
(2.4), t ≤ j ≤ d − 1 with Y = Yi, j .

Case(2) . q is Y -primary such that there is a prime idealYi j in (∗) of
(2.4) withYi, j ⊂ Y .

Case(3). q is Y -primary such thatYi, j 1 Y for all prime idealsYi, j in
(∗) of (2.4)
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Let∪(Oℓ + lδ−d′R̄) =
⋂

q1 ∩
⋂

q2 ∩
⋂

q3 be the primary decompo-
sition of U(O1 + ℓδ−d′R̄), whereq1, q2 andq3 run through the primary
components ofU(O1 + ℓδ−d′R̄) which appear in case (1), case (2) and
case (3), respectively. If there is no primary component in case (1), case
(2) or case (3) then we set

⋂
qi = R̄ for i = 1, 2 or 3. We putO2 :=

⋂
q3.

We then have

(2.14) Lemma. (i) If V1 ∩ V2 has irreducible components of Krull
dimension d− 1, thenY1 runs through prime idealsYi,d−1 1 ≤ i ≤
md−1 in (∗) of (2.4).

(ii) h0(O1) =
∑
q1

(length of q1)·h0(Y1)+
∑
q2

(length of q2)h0(Y2)+ho(O2).

(iii) Every prime idealYi, j in (∗) of (2.4) with t≤ j ≤ d − 2 contains 73

O2. In particular, if V1∩V2 has an irreducible component of Krull
dimension≤ d − 2 thenO2 , R̄.

(iv) Every associated prime idealY of O2 has Krull dimension d− 1.

(v) The diagonal idealτR̄ is not contained in any associated prime
ideal ofO2.

Proof. (i) From (2.10)(iv) and (2.10)(iii), we haveO1 ⊂ Yi,d−1 for
every 1≤ i ≤ md−1. Therefore (O1 + ℓδ−dR̄) ⊂ Yi,d−1 for every 74

1 ≤ i ≤ md−1. SinceK−dim(O1+ lδ−dR̄) = d−1 = K−dim(Yi,d−1)
it follows thatYi,d−1 is associated to (O1+ lδ−dR̄) for every 1≤ i ≤
md−1.

(ii) From (1.36) (iii) and (1.40) , we get

h0(O1) = h0(O1 + lδ−dR̄) = h0(U(O1 + lδ−dR̄))

=
∑

q1

(length ofq1)h0(Y1) +
∑

q2

(length ofq2) · h0(Y2) + h0(O2)

(iii) From (2.10) (iii), we have (O1) ⊂ Yi, j for every t ≤ j ≤ d − 2.
Therefore (O1 + ℓδ−dR̄) ⊂ Yi, j for every t ≤ j ≤ d − 2. Now it
follows from (1.45) (ii) that
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Rad(∪(O1 + lδ−dR̄))

= Yi,d−1

⋂
· · ·

⋂
Ymd−l ,d−l

⋂
∩Y2

⋂
Rad(O2)

= Rad(O1 + lδ−dR̄) ⊂ Yi, j for everyt ≤ j ≤ d − 2

ThereforeO2 ⊂ Rad(O2) ⊂ Yi, j for everyt ≤ j ≤ d − 2.

(iv) Clear.

(v) If τR̄ ⊂ Y for someY ∈ Ass(R̄/O2) then (I ′1 + I ′2) + τ ⊂ Y .
ThereforeYi, j ⊂ Y for somet ≤ j ≤ d and somei. This is a
contradiction (see (i)).

�

(2.15) Definition. (a) Let C ⊂ V1 ∩ V2 be an irreducible component
with K − dim(C) = d − 1. Let Yi,d−1 be the prime ideal in (∗)
of (2.4) corresponding toC (see (2.5)). We definethe intersection
number J(V1,V2; C) of V1 and V2 along C to be the length of the75

correspondingYi,d−1-primary componentqi,d−1 of ∪(O1 + lλ−dR̄)
(see (2.14)(i)).

From (2.14)(i), it is clear that, for every irreducible componentC of
V1

⋂
V2 with K−dim(C) = d−1 the intersection numberj(V1,V2; C)

of V1 andV2 alongC is defined andj(V1,V2; C) ≥ 1.

From (2.3)(iii), it follows that the prime idealsY2 which appear
in case (2) of (2.13) corresponds to certain imbedded irreducible
subvariety ofV1 ∩ V2.

(b) Let C ⊂ V1 ∩ V2 be an irreducible subvarieties ofV1 ∩ V2 corre-
sponding to the prime idealY2 which appear in case (2) of (2.13) .
We definethe intersection number j(V1,V2; C) of V1 and V2 along
C to be the length of the correspondingY2 -primary component q2
of U(O1 + lδ−dR̄) (see (2.13) ). It is clear that j(V1,V2; C) ≥ 1.

(2.16) Remarks. (i) Put c1 :=
∑
q2

(length ofq2)h0(Y2), whereq2 runs

through all primary components ofU(O1 + lδ−dR̄) which appears
in case (2) of (2.13) . Then it follows from (2.12)(i) and (2.14)(ii)
that
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deg(V1). deg(V2) =
∑
C

j(V1,V2; C). deg(C) + c1 + h0(O2).

whereC runs through all irreducible components ofV1
⋂

V2 with
d − 1 ≤ K − dim(C) ≤ d.

(ii) If t = d − 1, then our algorithm of step II stops.

(2.17)

Assume thatt < d − 1, that isV1
⋂

V2 has irreducible component
of Krull dimension≤ d−2. Therefore by (2.14)(iii),O2 , R̄. Then
we again apply the above procedure to the idealO. In general, the
application of our algorithm to the idealOs ≤ s≤ d− t is given by
the following considerations.

Suppose the idealsO2, · · · ,Os, 2 ≤ s ≤ d − t are already defined.
Consider the ideal (Oslδ−d+s−1R̄). Then we have

(i) K − dim(Os + ℓδ−d+s−1R̄) = K − dim(Os + lδ−d+s−1R̄) = d − s and
(Os : ℓδ−d+s−1) = Os

Let (Os+ ℓδ−d+s−1R̄) =
⋂

q1∩
⋂

q2∩
⋂

q3 be the primary decom-
position ofU(Os + ℓδ−d+s−1R̄), which appear in case (1), case (2)76

and case (3) of (2.13) , respectively. We putOs+1 :=
⋂

q3. Then
we have

(ii) If V1
⋂

V2 has irreducible components ofK-dimensiond − s then
Y1 runs through the prime idealsYi,d−s in (∗) of (2.4).

(iii) h0(Os) = h0(Os + lδ−d+s−1R̄) = h0(U(Os + lδ−d+s−1R̄))

=
∑

q1

(length of (q1) · h0(Y1)

+
∑

q2

(length of (q2).h0(Y2) + h0(Os+1).

We putcs =
∑
q2

( length of (q2).h0(Y2), whereq2 runs through all

primary components ofU(Os + ℓδ−d+s−1R̄) which appear in case
(2) of (2.13) .
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(iv) Every prime ideali, j in (∗) of (2.4) with t ≤ j ≤ d − s− 1 con-
tains Os+1. In particular, if V1

⋂
V2 has an irreducible of Krull

dimension≤ d − s− 1 thenOs+1 , R̄.

(v) Every associated primeY of Os+1 has Krull dimensiond − s.

(vi) The diagonal idealτR̄ is not contained in any associated prime
ideal ofOs+1

In any case, our algorithm of Step II stops if we have constructed
the idealOd−t+1. We obtain this ideal by studying the primary77

decomposition ofU(Od−t + ℓδ−t−1R̄). Therefore the last step yields
the following result:

h0(Od−t) = h0(Od−t + ℓδ−t−1R̄) = h0(∪(Od−t + ℓδ−t−1R̄))

=

mt∑

i=0

(length ofqi,t)h0(Yi,t) + cd−t + h0(Od−t+1)

whereqi,t is theYi,t-primary component ofU(Od−t + ℓδ−t−1R̄) for
all 1 ≤ i ≤ mt andcd−t =

∑
q2

(length ofq2) h0(Y2), whereq2 runs

through all primary components ofU(Od−t+ℓδ−t−1R̄) which appear
in case (2) of (2.13) .

Summarizing all these we have:

(2.18)

(i) For every irreducible componentC of V1
⋂

V2 we have defined the
intersection numberj(V1,V2; C) of V1 andV2 alongC. Moreover,
j(V1,V2; C) ≥ 1 and j(V1,V2; C) is the length of the corresponding
Yi, j-primary componentqi, j of ∪(Od−t + ℓδ−t−1R̄), t ≤ j ≤ d (see
(2.17) (ii)).

(ii) We have collected certain imbedded irreducible subvarieties of
V1

⋂
V2 corresponding to the primary components of∪(Od−t +

ℓδ−t−1R̄), 1 ≤ s ≤ d − t which appear in case (2) of (2.13) . For
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every imbedded irreducible subvarietyC of V1
⋂

V2 in this collec-
tion we have defined the intersection numberj(V1,V2; C) of V1

and V2 along C. Moreover, j(V1,V2; C) ≥ 1 and j(V2,V2; C)
is the length of the correspondingY2-primary componentq2 of 78

U(Od−t + lδ−t−1R̄), 1 ≤ s≤ d− t which appear in case (2) of (2.13)
.

(iii) It follows from (2.16)(i) and (2.17) (iii),(vii) that

deg(V1) · deg(V2)

=
∑

C

j(V1,V2; C) deg(C) + c1 + c2 + · · · cd−t + h0(Od−t+1),

whereC runs through all irreducible components ofV1
⋂

V2. We
put c(V1,V2) := c1 + c2 + · · · cd−t + h0(Od−t+1). This c(V1,V2) is
called thecorrection term.

(iv) If δ − t − 1 = n thenOd−t+1 = R̄.

Proof. If δ − t − 1 = n then (I ′1 + I ′2)R̄+ τR̄ ⊂ Od−t+1. Therefore, if
Od−t+1 , R̄ then for every associated some prime idealY of Od−t+l

contains some prime idealYi, j in (∗) of (2.4). This is a contradiction
(see (2.17) ). �

We note the following important observation from Step II.

(2.19) Lemma . Let C be an irreducible component of V1
⋂

V2. Let
Yi, j be the prime ideal corresponding to C in(∗) of (2.4). LetĀ =
(R̄/(I ′1, I

′
2)R̄)Yi, j be the local ring of the join-variety J(V1,V2) at Yi, j.

Then we have

(i) Ok+1Ā = U(Ok + ℓδ−d+k−1Ā) for every0 ≤ k ≤ d − j − 1, where
O := U([(I ′1, I

′
2)]δ−d−1).

(ii) (Od− j + lδ− j−1)Ā = U(Od− j + lδ− j−1)Ā = qi, j Ā where qi, j is the
Yi, j-primary component of U(Od− j + lδ− j−1R̄)

(iii) Ud− j+1Ā = Ā.
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Proof. (i) From (2.17) (i), we have 79

K − dimU(Ok + ℓδ−d+k−1R̄) = K − dim(Ok+1) = d − k and

Y ∈ Ass(Ok+1 ⇐⇒ Y ∈ Ass(U(Ok+ℓδ−d+k−1R̄)) andYp,ℓ * Y

for all p andt ≤ ℓ ≤ d.

Therefore,Y ∈ Ass(Ok+1) andY ⊂ Yi, j ⇐⇒ Y ∈ Ass(U(Ok +

ℓδ−d+k−1R̄)) and Y ⊂
+

Yi, j. This shows thatOk+1Ā = U(Ok +

ℓδ−d+k−1)Ā for every 0≤ k ≤ d − j − 1.

(ii) It follows from (2.17) )(i) and (2.17) (ii) thatK − dim(Od− j +

ℓδ− j−1R̄)) = j andYi, j ∈ Ass(U(Od− j + ℓδ− j−1R̄)) ⊂ Ass(d− j +

ℓδ− j−1R̄. ThereforeOd− j + ℓδ− j−1)Ā = U(Od− j + ℓδ− j−1)Ā = qi, j Ā,
whereqi, j is theYi, j-primary component ofU(Od− j + ℓδ− j−1R̄).

(iii) Since K − dim(Od− j+1) = j = K − dim(Yi, j), it follows from the
proof of (i) that Ass(Od− j+1Ā = φ. ThereforeOd− j+1Ā = Ā.

�

(2.20) Corollary.

e0((ℓ0, . . . , ℓδ− j−1)Ā; Ā = ℓ(Ā/(Od− j + ℓδ− j−1)Ā) = j(V1,V2; C)

Proof. This follows from (2.9), (2.19)(i) and (ii), (1.25) and (2.18) (i).
�

E. Step III of the Proof

Step III. In this step we collect certain imbedded irreducible subvari-
eties of V1∩V2 with t− s≤ K − dim(C) < t, where s= n− δ+ t + 1 ≥ 080

(see (2.7)(ii)).

(2.21)

From (2.7)(ii), we haveδ − t − 1 ≤ n. If δ − t − 1 = n thenOd−t+1 = R̄
(see (2.18) (iv)) and our algorithm stops.
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Assume thatδ−t−1 < n andOd−t+1 , R̄. Putδ−t−1+s= n for some
s > 0. To calculateh0(Od−t+1), we study the primary decomposition of
the idealU(Od−t+1 + ℓδ−tR̄). Every primary componentq of U(Od−t+1 +

ℓδ−tR̄ belongs to one of the following two cases:

Case(1). q is Y -primary such that there is a prime idealYi, j in (∗) of
(2.4) such thatYi, j ⊂

+
Y .

Case(2). q is Y -primary such that theYi, j 1 Y for all prime idealsYi, j

in (*) of (2.4).

Let U(Od−t+1+ℓδ−tR̄) = ∩q1∩
⋂

q2 be the primary decomposition of
U(Od−t+1+ℓδ−tR̄), whereq1 andq2 run through the primary components
of U(Od−t+1 + ℓδ−tR̄which appear in case (1) and case (2), respectively.
We putOd−t+2 ≔ ∩q2. Then we have

h0(Od−t+1) = h0(Od−t+1 + ℓδ−tR̄)

=
∑

q1

( length ofq1)h0(Y1) + h0(Od−t+2).

whereq1 runs through the primary components ofU(Od−t+1 + ℓδ−tR̄)
which appear in case (1).

From (2.3)(iii), it follows that the prime idealsY1 which appear in 81

case (2) corresponds to certain imbedded irreducible subvarieties ofV1∩

V2.

(2.22) Definition. Let C ⊂ V1 ∩ V2 be an irreducible subvariety of
V1∩V2 corresponding to the prime idealY1 which appear in case (1) of
((2.21) ). We definethe intersection number j(V1,V2; C) of V1 and
V2 along C to be the length of the correspondingY1-primary compo-
nentq1 of U(Od−t+1+ℓδ−tR̄) (see (2.21) ). It is clear thatj(V1,V2; C) ≥ 1.
AssumeOd−t+2 = R̄; then our algorithm of step III stops.

(2.23)

If Od−t+2 , R̄, then we repeat the above procedure to the idealOd−t+2

by usingℓδ−t+1.
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In general, the application of our algorithm to the idealOd−t+k, 1 ≤
k ≤ s= n− δ + t + 1 is given by the following considerations:

Suppose the idealsOd−t+2, . . . ,Od−t+k are already defined for 2≤
k ≤ s. Then consider the ideal (Od−t+k + ℓδ−t+k−1R̄). Then we have

K − dim(Od−t+k + ℓδ−t+k−1R̄) = K − dimU(Od−t+k + ℓδ−t+k−1) = t − k

and (Od−t+k : ℓδ−t+k−1) = Od−t+k.
LetU(Od−t+k+ℓδ−t+k−1R̄) = ∩q1∩∩q2 be the primary decomposition

of U(Od−t+k + ℓδ−t+k−1R̄), whereq1 andq2 are the primary components
of U(Od−t+k + ℓδ−t+k−1R̄) which appear in case (1) and case (2) of (2.21)82

, respectively. We putOd−t+k+1 = ∩q2. Then we have

h0(Od−t+k = h0(Od−t+k + ℓδ−t+k−1R̄) = h0(U(Od−t+k + ℓδ−t+k−1R̄))

=
∑

q1

length ofq1) h0(Y1) + h0(Od−t+k+1) for 2 ≤ k ≤ s.

In any case, our algorithm stops if we have used all generic linear
forms ℓ0, . . . , ℓn. ThereforeOd−t+s+1 = R̄, wheres = n − δ + t + 1.
Therefore the last step yields:

h0(Od−t+s) = h0(Od−t+s + ℓnR̄= h0(U(Od−t+s + ℓnR̄))

=
∑

q1

( length ofq1).h0(Y1)

whereq1 runs through allY1-primary components ofU(Od−t+s + ℓnR̄
(Note that all primary components ofU(Od−t+s+ℓnR̄) appear in case (1)
of (2.21) ).

(2.24) Remark. Note thatK − dimOd−t+k = t − k for every 1≤ k ≤ s.
Therefore, in this step, we have collected certain imbeddedirreducible
subvarietiesC of V1 ∩ V2 corresponding to the primary components of
U(Od−t+k + ℓδ−t+k−1R̄), 1 ≤ k ≤ s, which appear in case (1) of (2.21)
. For every imbedded irreducible subvarietyC of V1 ∩ V2 in this col-
lection, we have defined the intersection numberj(V1,V2; C) of V1 and
V2 alongC. Moreover, j(V1,V2; C) ≥ 1, j(V1,V2; C) is the length of
the correspondingY1-primary componentq1 of U(Od−t+k + ℓδ−t+k−1R̄),
1 ≤ k ≤ s= n− δ + t − 1 which appear in case (1) of (2.21) .
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Proof of the Main Theorem(2.1).

(i) Let {Ci} be the collection of irreducible subvarieties ofV1 ∩ V2 83

consisting of irreducible subvarieties ofV1 ∩ V2 which are col-
lected in (2.18) (i), (2.18) (ii) and (2.23) . Then the intersection
numbersj(V1,V2; Ci) ≥ 1 of V1 andV2 alongCi are defined and
j(V1,V2; Ci) are the lengths of certain well-defined primary ideals.
It follows from (2.18) (iii) and (2.23) that

deg(V1). deg(V2) =
∑

Ci

j(V1,V2; Ci) deg(Ci)

(ii) It is clear from (2.18) (i) that every irreducible component ofV1∩

V2 belongs to our collection{Ci}.

(iii) Let Ci ∈ {Ci}. Then it follows (2.18) (ii) and (2.23) that

K − dim(Ci) ≥ t − s= t − (n− δ + t + 1) = δ − n− 1

that is, dim(Ci) ≥ dim(V1) + dim(V2) − n.

This completes the proof of the main theorem (2.1) .
We have the following generalization of the main theorem (2.1) .

(2.25) The General Main Theorem

Let V1 = V(I1), . . . ,Vr = V(Ir ), r ≥ 2 be pure dimensional projective va-
rieties inPn

K defined by homogeneous idealsI1, . . . , Ir ⊂ K[X0, . . . ,Xn].
There exists a collection{Ci} of irreducible subvarieties ofV1∩ · · · ∩Vr

(one of which may beφ) such that

(i) For everyCi ∈ {Ci} there are intersection number, sayj(V1, . . . ,Vr ; 84

Ci) ≥ 1, ofV1, . . . ,Vr alongCi given by the lengths of certain well-
defined primary ideals such that

r∏

i=1

deg(Vi) =
∑

Ci∈{Ci }

j(V1, . . . ,Vr ; Ci). deg(Ci),

where we put deg (φ) = 1.
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(ii) If C ⊂ V1 ∩ · · · ∩ Vr is an irreducible component ofV1 ∩ · · · ∩ Vr

thenCi ∈ {Ci}.

(iii) For everyCi ∈ {Ci},

dim(Ci) ≥
r∑

i=1

dim(Vi) − (r − 1).n.

Proof. Proof of this theorem is very similar to the proof of that in case
r = 2 (see (2.1) ). Therefore we omit the proof. (For details, seePatil-
Vogel [56, Main theorem (1.2) ]). �

F. Consequences

In the following, we list some immediate consequences of themain the-
orem some of which are already known.

A typical classical result in this direction says that ifV1, . . . ,Vr , r ≥

2 are pure dimensional subvarieties inPn
K, and

r∑
i=1

dim(Vi) = (r − 1).n,

and
r⋂

i=1
Vi is finite set of isolated points, then

r⋂
i=1

Vi contains atmost

r∏
i=1

deg(Vi) points. The following corollary (2.26) strengthens this to

allow arbitrary intersections.

(2.26) Corollary (Refined Bezout’s Theorem)

Let V1, . . ., Vr ⊂ P
n
K, r ≥ 2 be pure dimensional projective varieties in85

Pn
K. Let Z1, . . . ,Zm be the irreducible components of

r⋂
i=1

Vr . Then

r∏

i=1

deg(Vi) ≥
m∑

i=1

deg(Zi) ≥ m.

This refined Bezout’s theorem was developed by W.Fulton and
R.MacPherson (see [19], [18]) to give an affirmative answer the fol-
lowing question asked by S.Kleiman in 1979.



F. Consequences 67

(2.27) Corollary (Kleiman’s Question)

Let V1, . . . ,Vr ⊂ P
n
K, r ≥ 2 be pure dimensional projective varieties in

Pn
K. Then the number of irreducible components of

r⋂
i=1

Vi is bounded by

the Bezout’s number
r∏

i=1
deg(Vi).

The first proof is given in [17, §7.6] (see also [18]). A secondproof
(see [17]) was suggested by a construction of Deligne used toreduce
another intersection question in projective space to an intersection with
a linear factor (see also the method used in [98 Lemma on p.127] and
(2.3) (v)). A new interpretation of the refined Bezout’s theorem was
given by R.Lazarsfeld [45].

The following Corollary (2.28) strengthens the refined Bezout’s the-
orem (2.26) .

(2.28) Corollary . Let V1, . . . ,Vr ⊂ P
n
K , r ≥ 2 be pure dimensional

projective varieties inPn
K. Then 86

r∏

i=1

deg(Vi) ≥
∑

C

j(V1, . . . ,Vr ; C) deg(C)

where C runs through all irreducible components of V1 ∩ · · · ∩ Vr .

The following corollary (2.29) gives a generalization ofC.G.Jacobi’s
observation (see the Historical Introduction, [36], [16] and [60]).

(2.29) Corollary . Let F1, . . . , Fn be any hypersurfaces inPn
K of de-

grees d1, . . . , dn, respectively. Assume that
n⋂

i=1
Fi contains a finite set of

isolated points,say P1, . . . ,Ps. Then we get

n∏

i=1

di −
∑

C

deg(C) ≥
n∏

i=1

di −
∑

C

j(F1, . . . , Fn; C). deg(C) ≥ s.

where C runs through all irreducible components of V≔
n⋂

i=1
Fi with

dim(C) ≥ 1.
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(2.30)

Analyzing these results and their proofs, one might be tempted to ask
the following question:

Let V1 = V(I1) andV2 = V(I2) be pure dimensional projective vari-
eties inPn

K defined by homogeneous idealsI1, andI2 ⊂ K[Xn, . . . ,Xn].
We consider a primary decomposition of

I1 + I2 = q1 ∩ · · · ∩ qm∩ qm+1 ∩ · · · ∩ qℓ

whereqi is Yi-primary andY1, . . . ,Ym are the minimal prime ideals of
I1 + I2. Then

Question 1..If dim(V1 ∩ V2) = dim(V1) + dim(V2) − n is then deg(V1).87

deg(V2) ≥ ℓ − 1?

Question 2..If dim(V1 ∩ V2) > dim(V1) + dim(V2) − n is then deg(V1).
deg(V2) ≥ ℓ?

Question 3..If deg(V1) deg (V2) > m, is then deg(V1) deg(V2) ≥ ℓ?

However, these questions have negative answers, as we will show
by examples (3.14) in the next chapter.



Chapter 3

Examples, Applications and
Problems

A. Examples

In this section, we shall illustrate the proof of the main theorem (2.1) 88

by describing some examples.
First, we would like to make the following definitions.

We preserve the notation of Chapter II

(3.1) Definition. Let V1 = V(I1) andV2 = V(I2) be two pure dimen-
sional projective varieties inPn

K defined by homogeneous idealsI1 and
I2 ⊂ R0 ≔ K[K0, . . . ,Xn].

(a) An irreducible subvarietyC ⊂ V1 ∩ V2 is said to be animbedded
component of V1 ∩ V2, if the defining prime idealY (C) = Y of C
is an imbedded prime ideal of (I1 + I2).

(b) An irreducible subvarietyC ⊂ V1 ∩ V2 is called ageometric imbed-
ded component of V1 ∩ V2, if

(i) the defining prime idealY (C) = Y of C is not associated to
I1 + I2 and

69
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(ii) C does yield a contribution to Bezout’s number deg(V1) · deg
(V2), that is,C belongs to our collection{Ci} of the main the-
orem (2.1) .

In the following examples, we use the notation of ChapterII .
For simplicity, we putX1 j = X j andX2 j = Yj for all 0 ≤ j ≤ n.

(3.1) Example. Let V1 andV2 be two hypersurfaces inP2
K defined by89

F1 ≔ X2
2(X2 − X0) = 0 andF2 ≔ X1X2 = 0. Put I1 = (F1) and

I2 = (F2)(⊂ K[X0,X1,X2]). It is easy to see that:

(i) The primary decomposition ofI1 + I2 is given byI1 + I2 = (X2) ∩
(X1,X2−X0)∩(X1,X2

2) and therefore Rad(I1+I2) = (X2)∩(X1,X2−

X0).

(ii) (a) Theset-theoretic intersection V1∩V2 of V1 andV2 is precisely
the lineℓ : X2 = 0 and the isolated pointp : X1 = X2−X0 = 0.

(b) The ideal-theoretic intersection of V1 andV2 is precisely the
line ℓ : X2 = 0, the isolated pointP : X1 = X2 − X0 = 0 and
the imbedded pointQ1 : X1 = X2 = 0.

(c) Thegeometric intersection of V1 andV2 is precisely the line
ℓ : X2 = 0, the isolated pointP : X1 = X2 − X0 = 0 and two
imbedded pointsQ1 : X1 = X2 = 0,Q2 : X0 = X2 = 0.
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(a) Set-theoretic (b) Ideal-theoretic (c) Geometric

(iii) 90Rad((I ′1 + I ′2)R̄+ τR̄) = (X2,Y2,X0 − Y0,X1 − Y1)

∩ (X2 − X0,X1,Y1,X0 − Y0,X2 − Y2)

= Y1,2 ∩ Y1,1

where Y1,2 ≔ (X2,Y2,X0 − Y0,X1 − Y1)

and Y1,1 = (X2 − X0,X1,Y1,X0 − Y0,X2−2).

δ = dim(V1) + dim(V2) + 2 = 1+ 1+ 2 = 4

d = dim(V1 ∩ V2) + 1 = 1+ 1 = 2

t = 1. Thereforeδ − d − 1 = 1.

Following the proof of Step I in Chapter II, we get:

(iv) U([(I ′1 + I ′2)R̄]1) = (I ′1 + I ′2)R̄+ (ℓ0, ℓ1)R̄

= q1,2 ∩O1

whereq1,2 = (X2
2,Y2, ℓ0, ℓ1) is the Y1,2- primary component of

U([(I ′1 + I ′2)R̄]1) and

O1 = (X2 − X0,Y1, ℓ0, ℓ1) ∩ (X2
2,Y1, ℓ0, ℓ1) ∩ (X2 − X0,Y2, ℓ0, ℓ1).

(v) Let C1 be the irreducible component ofV1 ∩ V2 corresponding
to the prime idealY1,2. Then the defining prime ideal ofC is 91
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Y (C) = (X2) ⊂ K[X0,X1,X2] and

j(V1,V2; C) = length ofq1,2 = ℓ((R/q1,2)Y 1,2) = 2

Note thatt < d; thereforeO1 , R̄.

Now following the proof of step II in Chapter II, we get:

(vi) U(O1, ℓ2) = q1,1∩q2∩q′2 whereq1,1 = (X2−X0,Y1, ℓ0, ℓ1, ℓ3) is the
Y1,1-primary component ofU(O1, ℓ2) andq2 = (X2

2,Y1, ℓ0, ℓ1, ℓ2)
(resp.q′2 = (X2 − X0,Y2, ℓ0, ℓ1, ℓ2) is Y2 = (X1,Y1,X2,Y2,X0 −

Y0) (resp.Y ′
2 = (X0,Y0,X2,Y2,X1,−Y1)) -primary component of

U(O1, ℓ2)

(vii) Let C2 be the irreducible component ofV1 ∩ V2 corresponding to
the prime idealO1,1 and letC3,C4 be irreducible subvarieties of
V1 ∩ V2 corresponding to the prime idealsY2,Y

′
2 , respectively.

Then the defining prime ideals ofC2,C3 andC4 are (X2 − X0,X1),
(X1,X2

2) and (X2 − X0,X2) respectively and

j(V1,V2; C2) = length ofq1,1 = 1

j(V1,V2; C3) = lent ofq2 = 2

j(V1,V2; C4) = Lent of q′3 = 1

Note thatOd−t+1 = O2 = R̄and therefore there is no step III in this
example

(viii) (a) The required collection{Ci} of irreducible subvarieties ofV1 ∩

V2 is:

C1 : X2 = 0 the lineℓ with j(V1,V2; C1) = 2.

C2 : X1 = X2 − X0 = 0(the isolated point P) withj(V1,V2; C2) = 1.

C3 : X1 = X2 = 0(the imbedded pointQ1) with j(V1,V2; C3) = 2.

C4 : X0 = X2 = 0(the geometric imbedded pointQ2)with

j(V1,V2; C4) = 1.

(b) From (1.35) , we have deg(V1) = 3, deg(V2) = 2 and deg(Ci) =92
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1 for all i = 1, . . . , 4. therefore we get

6 = deg(V1). deg(V2) =
4∑

i=1

j(V1,V2; Ci) deg(Ci) = 6.

(3.3) Example. Let V be the non-singular curve inP3
K, parametrically

given by{s4, s3t, st3, t4} ( see [[26], p.180], [[50], p.126]; [[90], §11] and
(0.5))

It is easy to see that the prime ideal ofV is

I = (X0X3 − X1X2,X
2
0X2 − X3

1,X1X2
3 − X2

3,X0X2
2 − X2

1X3)

⊂ K[X0,X1,X2,X3].

Let V1 ⊂ P
3
K be the defined byX0 = X1 = 0. ThenI1 = (X0,X1) ⊂

K[X0,X1,X2,X3] is the prime ideal ofV1. It is easy to see that:

(i) (I + I1) = (X0,X1,X3
2) is Y = (X0,X1,X2, ) -primary; therefore the

intersectionV ∩ V1 has precisely one isolated pointp : X0 = X1 =

X2 = 0.

(ii) Rad((I ′ + I ′1)R̄+ τR̄) = Y1,1, where

Y1,1 = (X0,X1,X2,Y0,Y1,Y2,X3 − Y3)

δ = dimV + dimV1 + 2 = 1+ 1+ 2 = 4

d = dim(V ∩V1)+ 1 = 1, t = 1. Thereforet = d andδ− d− 1 = 2. 93

Following the proof of Step I in Chapter II, we get:

(iii) U([I ′+ I ′1)R̄]2 = q1,1∩O1 whereq1,1 is Y1,1 primary component of
U([I ′+I ′1)R̄]2) and ((I ′+I ′)R̄+(ℓ0, ℓ1, ℓ2)R̄)Y1,1 = U([I ′+I ′1)R̄]2)Y1,1.
Therefore (q1,1)Y1,1 = (X0,X1,X3

2,Y0,Y1,X2 − Y2,X3 − Y3)R̄Y1,1

(iv) Let C1 be the irreducible component ofV ∩ V1 corresponding
to the prime idealY1,1. Then the defining prime ideal ofC1 is
(X0,X1,X2) = Y and

j(V,V1; C1) length (q1,1) = 3
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Note thatt = d = 1 therefore their is no Step II in this exam-
ple. Following Step III in Chapter II, we getK − dimU(O1, ℓ3) =
K dim(O1, ℓ3) = K − dim(O1) − 1 = 0 Thereforeq := U(O1, ℓ3) =
(O1, ℓ3) is primary ideal corresponding to the homogeneous max-
imal ideal (X0,Y0,X1,Y1,X2,Y2,X3, Y3) ⊂ R̄ This primary idealq
gives the empty subvarietyφ in our collection.

(v) (a) The required collection{Ci} of irreducible subvarieties ofV ∩
V1 is:
C1 : X0 = X1 = X2 = 0 (the isolated pointP) with j(V,V1,C1)
= 3, φ: the empty subvariety withj(V,V1;φ) = length of (q)

(b) From (1.43) (iii) and (1.35) ), we have deg(V) = 4 and deg(V1)94

= 1, deg(C1) = 1.

(c) Therefor, from the main theorem (2.1) we get

4 = deg(V). deg(V1) = j(V,V1; C1) degC1 + j(V,V1, φ). deg(φ)

= 3+ j(V,V1, φ).

This shows thatj(V,V1, φ) = length of (q) = 1, so thatq = (O1, ℓ3)
is the homogeneous maximal ideal (X0,X1,X2,X3,Y0,Y1Y2,Y3).

The lineV1 is a tangent line toV atP whose intersection multiplicity
with V at P is 3. In general, the non-singular curvesCd ⊂ P

3
K defined

parametrically by
{
sd, sd−1t, std−1, td

}
, d ≥ 4,

are of degreed and have a tangent line with a contact of orderd − 1

(3.4) Remark. The empty subvarietyφ is geometric imbedded compo-
nent ofV ∩ V1 in example (3.3).

(3.5) Example. Let V ⊂ P3
K be the non-singular curve of example (3.3)

andV2 ⊂ P
3
K be the line defined byX0 = X2 = 0. ThenI2 = (X0,X2) ⊂

K[X0,X1,X2,X3] be the prime ideal ofV2. It is easy to see that:

(i) The primary decomposition ofI+I2 is given byI+I2 = (X0,X1,X2)
∩ (X0,X1,X3

1,X
2
3,X

2
1X3) and therefore Rad(I + I2) = (X0,X1,X2).95
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(ii) The set-theoretic intersectionV∩V2 of V andV2 has precisely one
isolated point.

(iii) Rad((I ′ + I ′2)R̄+ τR̄) = Y1,1 where

Y1,1 = (X0,X1,X2,Y0,Y1,Y2,X3 − Y3).

δ = dimV + dimV2 + 2 = 1+ 1+ 2 = 4

d = dim(V ∩V2)+ 1 = 1, t = 1. Thereforet = d andδ− d− 1 = 2.

Following the proof of step I is Chapter II, we get:

U([(I ′ + I ′2)R̄]2) = q1,1 ∩O1

whereq1,1 is Y1,1 -primary component ofU([(I ′ + I ′2)R̄]2) and

(q1,1)Y 1,1U([(I ′ + I ′2)R̄]2)Y1,1 = (I ′ + I ′2)R̄+ (ℓ0, ℓ1, ℓ2)R̄Y1,1

= (X0,X1,X2,Y0,Y1,Y2,X3 − Y3).

(iv) Let C1 be the irreducible component ofV1 ∩ V2 corresponding
to the prime idealY1,1. Then the defining prime ideal ofC1 is
(X0,X1,X2) = Y and j(V,V2; C1) = length ofq1,1 = 1 Note that
t = d = 1; therefore there is no Step II in this example. Following
Step III in Chapter II, we get

K − dim(O1, ℓ3) = K − dimU(O1, ℓ3) = K − dim(O1) − 1 = 0.

Thereforeq := U(O1, ℓ3) = (O1, ℓ3) is primary ideal correspond-
ing to the homogeneous maximal ideal (X0,X1,X2,X3,Y0,Y1,Y2,
Y3) ⊂ R̄. This primary idealq gives empty subvarietyφ in our
collection

(v) (a) The required collection{Ci} of irreducible subvarieties ofV∩V2 96

is:

C1 : X0 = X1 = X2 = 0 (the isolated pointP) with j(V,V2; C1) = 1.
φ: the empty subvariety withj(V,V2;φ) = length ofq

(b) We have from example(3.3) deg(V) = 4 and from (1.35)

deg(V2) = 1, deg(C1) = 1
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(c) Therefore from the main theorem we get

4 = deg(V). deg(V2) = j(V,V1,V2; C1) deg(C1)

+ j(V,V1,V2;φ) deg(φ)

= 1+ j(V,V1,V2;φ)

This shows thatj(V,V1,V2;φ) = length ofq = 3.

(3.6) Remark. The empty subvarietyφ is imbedded component ofV ∩
V2 in example (3.5)

(3.7) Example. Let V1 andV2 be two hypersurfaces inP2
K defined by

F1 := X0X1(X0−2X1) = 0 andF2 := X0X1(X1−2X0) = 0. putI1 = (F1)
andI2 = (F2)(⊂ K[X0,X1,X2]). It is easy to see that:

(i) The primary decomposition ofI1 + I2 is given byI1 + I2 = (X0) ∩
(X1) ∩ (X2

0,X
2
1) and therefore Rad(I1 + I2) = (x0) ∩ (X1).

(ii) (a) The set-theoretic intersectionV1∩V2 of V1 andV2 is precisely
the two linesℓ0 : X0 = 0 andℓ1 : X1 = 0.

(b) The ideal-theoretic intersection ofV1 andV2 is precisely the97

two linesℓ0 : X0 = 0ℓ1 : X1 = 0 and the imbedded pointP : X0 =

X1 = 0

(iii) Rad((I ′1 + I ′2)R̄+ τR̄) = Y1,2 ∩ Y2,2 ∩ Y1,1 where

Y1,2 = (X0,Y0,X1 − Y1,X2 − Y2),Y2,2 = (X1,Y1,X0 − Y0,X2 − Y2)
and

Y1,1 = (X0,X1,Y0 − Y1,X2 − Y2).

δ = dimV1 + dimV2 + 2 = 1+ 1+ 2 = 4

d = dim(V1 ∩ V2) + 1 = 2, t = 1 thereforeδ − d − 1 = 1

Following the proof of Step I in Chapter II, we get:

(iv) ∪([(I ′1 + I ′2)R̄]1) = q1,2 ∩ q2,2 ∩ O1, whereq1,2(resp.q2,2) is
Y1,2 -(Y2,2)- primary component ofU([(I ′1 + I ′2)R̄]1) In fact,q1,2 =

(X0,Y0, ℓ0, ℓ1), q2,2 = (X1,Y1, ℓ0, ℓ1)



A. Examples 77

(iv) Let C1 andC2 be irreducible components ofV1∩V2 corresponding
to the prime idealsY1,2 andY2,2. Then the defining prime ideals
of C1 andC2 are (X0) and (X1),respectively andj(V1,V2; C1) =
length ofq1,2 = 1, j(V1,V2; C2) = length ofq2,2 = 1,,

Note thatt < d: thereforeO1 , R̄.

Following the proof of step II is Chapter II we get:

(v) q := U(O1, ℓ2) = (O1, ℓ2) is Y1,1 - primary ideal. LetC3 be
the irreducible component ofV1 ∩ V2 corresponding to the prime
ideal Y1,1. Then the defining prime ideal ofC3 is (X0,X1) and
j(V1,V2; C3) = length of (q).

(vi) (a) The required collection{Ci} is: 98

C1 : X0 = 0 (the lineℓ0) with j(V1,V2; C1) = 1

C2 : X1 = 0 (the lineℓ1) with j(V1,V2; C2) = 1

C3 : X0 = X1 = 0(the imbedded point P ) withj(V1,V2; C3) = ℓ(q)

(b) From (1.35) , we have deg(V1) = deg(V2) = 3 and degCi = 1 99

for all i = 1, 2, 3.

(c) from the main theorem (2.1) , we get 9= deg(V1) · deg(V2) =
3∑

i=1
j(V1,V2; Ci) deg(Ci) = 2+ j(V1,V2; C3).

Thereforeℓ(q) = j(V1,V2; C3) = 7
This example was also studied byW. Fulton andR. MacPherson in

[[19], p.10]

(3.8) Example. Let V1 = V(I1) andV2 = V(I2) be two projective va-
rieties inPn

K defined by homogeneous idealsI1 = (X4,X3
3 − X1X2(X2 −

2X1)) andI2 = (X3,X3
4 − X1X2(X1 − 2X2)) ⊂ K[X0,X1,X2,X3,X4]. Fol-

lowing the proof of the main theorem (2.1) it is easy to see that:
(a)The required collection{Ci} is given by:.

C1 : X1 = X3 = X4 = 0 (the line) with j(V1,V2; C1) = 1

C2 : X1 = X3 = X4 = 0 (the line) with j(V1,V2; C2) = 1
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C3 : X1 = X2 = X3 = X4 = 0 (the imbedded point) withj(V1,V2; C3) = 7.

(b) From (1.35) we have deg(V1) = deg(V2) = 3 and deg(Ci) =
1for i = 1, 2, 3. Therefore

9 = deg(V1) deg(V2) =
3∑

i=1

j(V1,V2; Ci) deg(Ci).

(3.9) Remark. The example (3.8) was also studied byW. Fulton and
R. MacPherson, (see [[19],p.10]) This example illuminates our problem
6 below as follows:

Use the diagram forX := V1 andY := V2

X ∩ Y //

��

∆

��

X × Y // P4 × P4

the originP is a so-called distinguished variety in the theory of Fulton
and MacPherson, its contribution to the multiplicity is 3, each line also
contributes 3 to the Bezout’s number deg(X). deg(Y) = 9.

In view of the problem 6 below, we want to consider another dia-
gram. Using the diagram

X ∩ Y //

��

X × Y

��

∆P4 //
P4 × P4

then we get the intersection numbers 7,1,1 (7 at the pointP) by apply-
ing the theory of Fulton and MacPherson. Our method also assigns the100

multiplicity 7 to the originP and 1 to each line.
A simpler example inP2

K is the following: LetX andY be given by
X1X2 = 0 andX1 = 0,resp. ThenX∩Y is the lineX1 = 0. Applying again
the theory of Fulton and MacPherson, we will construct intersection
from the diagram

X ∩ Y //

��

Y

��

X // P2
K
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Then onlyY is a distinguished variety and counts twice. Construct in-
tersection from the diagram

X ∩ Y //

��

X × Y

��

∆P2 // P2 × P2

ThenY and the origin are distinguished varieties each contributes 1. In
our theory, the origin is also a so-called distinguished variety and its
contribution to the multiplicity is 1, the lineX1 = 0 also contributes 1 to
the Bezout’s number deg(X) deg(Y) = 2.

Therefore we want to study the following example:

(3.10) Example. Let V1 andV2 be two hypersurfaces inP2
K defined by 101

F1 := X1X2 andF2 := Xn
1 = 0

Following the proof of the main theorem (2.1) , it is easy to see that:

(a) The required collection{Ci} is:

C1 : X1 = 0(the line) with j(V1,V2; C1) = n

C2 : X1 = X2 = 0(the imbedded points) withj(V1,V2; C2) = n

(b) From ((1.35) ), we have deg(V1) = 2, deg(V2) = n and deg(Ci) = 1
for i = 1, 2.

Therefore 2n = deg(V1). deg(V2) =
2∑

i=1
j(V1,V2; Ci) deg(Ci)

(3.11) Example. Let V1 = V(I1) andV2 = V(I2) be two subvarieties
in Pn

K with V1 ∩ V2 = φ (for example,the linesℓ0 : X0 = X1 = 0 and
ℓ1 : X2 = X3 = 0 in P3

K). Following the proof of the main theorem (2.1)
, it is easy to see that:d = 0, δ−d−1 = δ−1 ≤ n andU([I ′1+ I ′2]δ−1) = q
is primary for the homogeneous maximal ideal (X0, . . . ,Xn,Y0, . . . ,Yn).
Therefore the required collection{Ci} is just the empty subvarietyφ and
by the main Theorem (2.1) ), we get

j(V1,V2;φ) = deg(V1) · deg(V2).
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(3.12) Remark. Let V1andV2 be as in example (3.11). LetC(V1) (resp.
C(V2)) be the projective cone overV1 (resp. overV2) in Pn+1

k . Then
C(V1) ∩ C(V2) is given by one point sayP : X0 = · · · = Xn = 0. It is
possible to show that

j(V1,V2;φ) = j(C(V1),C(V2); P).

which does provided a geometrical interpretation of the intersection102

number j(V1,V2;φ).

(3.13)

Let V1,V2 andV3 ⊂ P
3
K be three hypersurfaces defined byF1 := X0X1,

F2 : X0X2 andF3 : X0X3, respectively. PutI1 = (F1), I2 = (F2) and
I3 = (F3)(⊂ K[X0,X1,X2,X3]). It is easy to see that:

(i) The primary decomposition ofI1+ I2+ I3 is given byI1+ I2+ I3 =

(X0) ∩ (X1,X2,X3) and Rad(I1 + I2 + I3) = (X0) ∩ (X1,X2,X3).
Therefore the intersectionV1 ∩ V2 ∩ V3 is precisely one surface
C : X0 = 0 and the isolated pointP : X1 = X2 = X3 = 0.

Note that we cannot apply the main theorem (2.1) to this exam-
ple but we can apply the general main theorem (2.25) . We pre-
serve the notation of [56]. For simplicity, putXi j = X j ,X2 j =

YjandX3 j = Z j for j = 0, . . . , 3.

(ii) Rad((I ′1+I ′2+I ′3)R̄+τR̄) = Y1,3∩Y1,1 whereY1,3 = (X0,Y0,Z0,X1−

Y1,X1 − Z1,X2 − Z2,X3 − Y3,X3,−Z3) and

Y1,1 = (X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X0,−Y0,X0,−Z0) and

δ = dimV1 + dimV2 + dimV3 + 3 = 2+ 2+ 2+ 3 = 9,

δ = dim(V1 ∩ V2 ∩ V3) + 1 = 3, t = 1. Thereforeδ − d − 1 =
9− 3− 1 = 5

Following the proof of Step I of [[56], (2.1) ], we get:

(iii) U([(I ′1+ I ′2+ I ′3)R̄]5) = q1,3∩O1 whereq1,3 = (X0,Y0,Z0, ℓ0, . . . , ℓ5)
is theO1,3 primary component ofU([(I ′1 + I ′2 + I ′3)R̄]5)
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(iv) Let C1 be the irreducible component ofV1∩V2∩V3 corresponding103

to the prime idealO1,3. Then the defining prime ideal ofC1 is (X0)
and j(V1,V2,V3; c1) = length ofq1,3 = 1. Following the proof of
Step II of [56], (2.1) , we get:

(v) ∪(O1, ℓ6) = q1
1∩q2

1∩q3
1∩O2 whereq1

1 (resp.q2
1, q

3
1) is (X1,Y0,Z0)+

τR̄(resp. (X0,Y2,Y0)+τR̄(X0,Y0,Z3)+τR̄)-primary components of
U(O1, ℓ6). LetC2,C3andC4 be irreducible subvarieties ofV1∩V2∩

V3 corresponding to the prime ideals (X1,Y0,Z0)+τR̄(X0,Y2,Z0)+
τR̄ and (X0,Y0,Z3) + τR̄ respectively. Then the defining prime
ideals ofC2,C3 andC4 are (X0,X1), (X0,X2) and (X0,X3), respec-
tively and j(V1,V2,Ci) = 1 for i = 2, 3, 4.

(vi) ∪(O2, ℓ7) = q1
1 ∩ q2

1 ∩ q3
1 ∩ q4

1 where

q1
1 = (X0,Y2,Z3) + τR̄q2

1 = (X1,Y0,Z3) + τR̄q3
1 = (X0,Y2,Z0) + τR̄

and

q4
1 = (X0,Y2,Z3) + τR̄

Note thatd − t + 1 = 3 andOd−t+1 = O3 = R̄. Let C5,C6,C7

andC8 be irreducible. subvarieties ofV1 ∩ V2 ∩ V3 corresponding
to q1

1, q
2
1, q

3
1 andq4

1, respectively. Then the defining prime ideals
of C5,C6,C7 andC8 are (X0,X2,X3), (X0,X1,X3), (X0,X1,X2), and
(X1,X2,X3) respectively andj(V1,V2,V3,Ci) = 1 for i = 5, 6, 7, 8.

(vii) (a) The required collection{Ci} is:

C1 : X0 = 0 (the surface)

C2 : X0 = X1 = 0

C3 : X0 = X2 = 0

C4 : X0 = X3 = 0

C5 : X0 = X2 = X3 = 0

C6 : X0 = X1 = X3 = 0

C7 : X0 = X1 = X2 = 0

C8 : X1 = X2 = X3 = 0 (the isolated point)

and j(V1,V2; Ci) = 1 for all i = 1, . . . , 8. 104
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(b) From (1.35) , we have

deg(Vi) = 2 for all i = 1, 2, 3 and deg(Ci) = 1 for all i = 1, . . . , 8.

Therefore we get 8=
3∏

i=1
deg(Vi) =

8∑
i=1

j(V1,V2; Ci) deg(Ci).

(3.14) Examples. (i) Let V1 = V(I1) andV2 = V(I2) ⊂ P7
K be defined

by I1 = (X0,X1) ∩ (X2,X3) ∩ (X4,X5) ∩ (X6,X7) and I2 = (X0 +

X2,X4 + X6). Then the primary decomposition ofI1 + I2 is given
by

I1 + I2 = (X0,X1,X2,X4 + X6) ∩ (X0,X2,X3,X4 + X6)

∩ (X4,X5,X6,X0 + X2) ∩ (X4,X6,X7,X0 + X2)

∩ (X2
0,X

2
2,X0 + X2,X1,X3,X4 + X6)(X2

4,X
2
6,X4 + X6,X5,X7,X0,+X2).

Using the notation of (2.30) we have

m= 4, ℓ = 6.

We also have 3= dim(V1 ∩ V2) = dim(V1) + dim(V2) − 7 = 5 +
5 − 7 = 3 and from (1.40) and (1.35) deg(V1) = 4, deg(V2) = 1.105

Therefore 4= deg(V1) deg(V2) 6≥ ℓ − 1 = 5. This example shows
that Question 1 of (2.30) is not true in general.

(ii) Let V1 = V(I1) andV2 = V(I2) ⊂ P4
K be defined byI1 = (X0,X1)∩

(X2,X3) ∩ (X0 + X2,X4) and I2 = (X0 + X2). Then the primary
decomposition ofI1 + I2 is given by

I1 + I2 = (X0 + X2,X4) ∩ (X0,X1,X2) ∩ (X0,X2,X3)

∩ (X2
0,X

2
2,X0 + X2,X1,X3).

Thereforem= 1 andℓ = 4

Also 2 = dim(V1 ∩ V2) > dimV1 + dimV2 − 4 = 2 + 3 − 4 = 1
and deg(V1) = 3, deg(V2) = 1 by (1.39) and (1.34). Therefore
3 = deg(V1) deg(V2) 6≥ ℓ = 4.

This example shows that Question 2 of (2.30) is not true in gen-
eral.
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(iii) Let V1 = V(I1) andV2 = V(I2) ⊂ P7
K be defined byI1 = (X2

0,X1)∩
(X2,X3) ∩ (X4,X5) ∩ (X6,X7) and i2 = (X0 + X2,X4 + X6). The
primary decomposition ofI1 + I2 is given by

I1 + I2 = (X2
0,X1,X0 + X2,X4 + X6) ∩ (X0,X2,X3,X4 + X6)

∩ (X4,X5,X6,X0 + X2) ∩ (X4,X6,X7,X0 + X2)∩

(X3
0,X

3
0,X1,X3,X0 + X2,X4,+X6) ∩ (X3

4,X
2
6,X5,X7,X0 + X2,X4 + X6)

Thereforem = 4 andℓ = 6. From (1.40) and (1.35) we have
deg(V1) = 5, deg(V2) = 1. Therefore deg(V1) · deg(V2) > m but
deg(V1) · deg(V2) 6≥ ℓ. This example shows that Question 3 of (2.30)
is not true in general.

B. Applications of the Main Theorem

The purpose of this section is to show that the main theorem (2.1) also 106

yields Bezout’s Theorem.
We preserve the notation of Chapter II. In addition, the following

notation will be used in sequel.

(3.15) Notation. Let V1 = V(I1) andV2 = V(I2) be two pure dimen-
sional projective varieties inPn

K defined by homogeneous idealsI1 and
I2 in R0 := K[X0, . . . ,Xn]. Let C be an irreducible component ofV1∩V2

with the defining prime idealY (C) = Y . Let q(C) = q be the primary
component ofI1 + I2. we put:

ℓ(V1,V2; C) := length ofq = ℓ((R0/I1 + I2)Y ) and

e(V1,V2; C) := e0(q(R0)Y ; (R0)Y ).

Using (2.3) (iii), we get the isolated prime idealP(resp. P̄) of (I ′1 +
I ′2 + τ) R(resp. (I ′1 + I ′2 + τ)R̄)− Let Q (resp. Q̄) be theP (resp. P̄)−
primary component of (I ′1 + I ′2 + τ) R(resp. (I ′1 + I ′2 + τ)R̄). Let A =
(R/(I ′1 + I ′2))P (resp. Ā = (R̄/(I ′1 + I ′2))P̄ be the local ring of the join-
variety J(V1,V2) (resp. J̄(V1,V2)) at P (resp. P̄).

(3.16) Remarks. (i) Note thatP̄ = Yi, j for some prime idealYi, j in
(∗) of (2.4), wherej = K − dim(C).
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(ii) e0(τA; A) = e0(QA; A) and

e0(τĀ; Ā) = e0(Q̄Ā; A)

(iii) e0(τA; A) = e0(τĀ; Ā) and

e0(QA; A) = e0(Q̄ · Ā; Ā)

Proof. (ii) We have (QA)n = ((I ′1 + I ′2 + τ)A)n = (τA)n for all n ≥ 1,107

so thatℓ(A/(QA)n) = ℓ(A/(τA)n) for all n ≥ 1. ThereforeE0(QA,A) =
e0(τA,A). Similarly, e0(Q̄.Ā; Ā) = e0(τĀ; Ā).

(iii) This follows from the remark (i) of (1.2) . �

(3.17) Remark. If C is a proper component ofV1 ∩ V2, that is,C is
irreducible and dim(C) = dim(V1) + dim(V2) − n,then theWeil’s inter-
section multiplicity symbol i(V1,V2; C) of V1 andV2 alongC is given
by

i(V1,V2; C) = e0(τA; A)

Proof. See [[69] ; ch. II, §5, a] �

(3.18) Lemma . Let V1 = V(I1) and V2 = V(I2) be two pure dimen-
sional projective varieties inPn

K defined by homogeneous ideals I1 and
I2 in R0 := K[X0, . . . ,Xn]. Let C be an irreducible component of V1 ∩

V2. Then j(V1,V2; C) = e0((ℓ0, . . . , ℓδ− j−1)Ā; Ā) = ℓ0, . . . , ℓδ− j−1)Ā) −

ℓ(
(ℓ0, . . . , ℓδ− j−2) : ℓδ− j−1

(ℓ0, . . . , ℓδ− j−2)Ā
) where j= K − dim(C).

Proof. This follows from (2.20), (2.8) and (1.23). �

(3.19) Corollary.

J(V1,V2; C) = ℓ(V1,V2; C) + ℓ(τĀ/(ℓ0, . . . , ℓδ− j−1)Ā)

− ℓ(
(ℓ0, . . . , ℓδ− j−2) : ℓδ− j−1

(ℓ0, . . . , ℓδ− j−2)Ā
)

Proof. We haveℓ(V1,V2; C) = ℓ(Ā/τĀ). Therefore this corollary fol-108

lows from (3.18). �
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We put

K1 := ℓ(τĀ/(ℓ0, . . . ℓδ− j−1)A)

and K2 :=
((ℓ0, . . . , ℓδ− j−2) : ℓδ− j−1)Ā

(ℓ0, . . . , ℓδ− j−2)Ā

(3.20) Corollary. (i) Suppose that the local rings A(Vi; C) of Vi at C
are Cohen-Macaulay for i= 1, 2. Then j(V1,V2; C) ≥ ℓ(V1,V2; C)
and equality holds if and only ifτĀ ⊂ (ℓ0, . . . , ℓδ− j−1)Ā

(ii) If τĀ ⊂ (ℓ0, . . . , ℓδ− j−1)Ā then j(V1,V2; C) ≤ ℓ(V1,V2; C) and
equality holds if and only if A(V1; C) and A(V2; C) are Cohen-
Macaulay. (Note thatτĀ ⊂ (ℓ0, . . . , ℓδ− j−1)Ā whendimC = dim
V1 + dimV2 − n).

Proof. (i) From the proposition (3.21) below, it follows that̄A is Co-
hen -Macaulay. Therefore (i) results from (3.19).

(ii) Follows from (3.19) and the following proposition (3.21).
We study the connecting between the Cohen -Macaulay properties

of A(Vi; C) andĀ in the following proposition. �

(3.21) Proposition. The notations being the same as (2.2) and (3.18).
The following conditions are equivalent:

(i) A(V1; C) and A(V2; C) are Cohen -Macaulay 109

(ii) Ā is Cohen-Macaulay.

(iii) (K̄[X10, . . . ,X1n,X20, . . . ,X2n]/(I ′1+I ′2))Y (C)′+Y (C)′′ is Cohen-Mac-
aulay, whereY (C)′; and Y (C)′′ are prime ideals in R1 and R2,
respectively corresponding toY (C).

Proof. (ii) ⇒ (iii). SinceY (C)′ +Y (C)′′ ⊂ Y + τ, the local ring of (iii)
is a localization ofĀ and hence Cohen -Macaulay.

(iii) ⇒ (i). This is proved byR. Achilles. This proof is not so easy,
since he uses Samuel’s techniques on the extension of fields of definition
(see [[69], ch. II, §1, No. 3 and 4]). Therefore, for the proof, see the
forthcoming thesis (PromotionB) of R. Achilles.
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(i) ⇒ (ii). By (1.44), there exist elementsf ∈ A(V1) g ∈ A(V2) such
that A(V1) f andA(V2)g are Cohen-Macaulay (A(Vi) denote the coordi-
nates ring ofVi , i = 1, 2). It follows immediately from (1.47) (iv)(a)
that

2 A(V1) f ⊗
K

A(V2)g is Cohen -Macaulay.

Now, putS = { f n ⊗
K

gm|n,m ∈ �}. ThenS is a multiplicative set in

A(V1) ⊗
K

A(V2) and it is easy to see thatS−1(A(V1) ⊗
K

A(V2))→̃A(V1) f ⊗
K

A(V2)g. Therefore

K̄ ⊗
K

A(V1)) f ⊗
K̄

(K̄ ⊗
K

A(V2))g→̃(K̄[X10, . . . ,X1n]/I ′1) f⊗
K̄

(K̄[X20, . . . ,X2n])/I ′2)g→̃(K̄[X10, . . . ,X1n, x20, . . . ,X2n]/(I ′1 + I ′2)) f g

is Cohen-Macaulay. Note thatf .g < Y (C)+ τ, thereforeĀ is a localiza-110

tion of (K̄[X10, . . . ,X1n,X20, . . . ,X2n]/I ′1 + I ′2) f g and henceĀ is Cohen
-Macaulay.

(3.22) Proposition. Let V1 = V(I1) and V2 = V(I2) be two pure dimen-
sional projective varieties inPn

K defined by homogeneous ideals I1 and
I2 in R0 = K[X0, . . . ,Xn]. Let C be an irreducible component of V1∩V2.
Then

j(V1,V2; C) = e0(τĀ, Ā) = e0(Q̄.Ā; Ā).

In particular, if C is a proper component of V1 ∩ V2, that is,dim(C) =
dim(V1) + dim(V2) − n, then

j(V1,V2; C) = e0(τĀ, Ā) = i(V1,V2; C).

Proof. In view of (3.16) (ii) and (3.18), it is enough to prove that :
e0((ℓ0, . . . , ℓδ− j−1)Ā; Ā) = e0(τĀ; Ā). Sinceℓ0, . . . , ℓδ− j−1 are generic
linear forms we see from the proof of [[51], Theorem [69]] that ℓ0, . . . ,
ℓδ− j−1 is a “superficial sequence” of order 1 forτĀ = (ℓ0, . . . , ℓn)Ā.
Therefore from [[51], Theorem [71]] we get

2 e0((ℓ0, . . . , ℓδ− j−1)Ā; Ā) = e0((ℓ0, . . . , ℓn)Ā; Ā) = e0(τĀ; Ā).
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(3.23) Remark. Proposition (3.22) does yield a connection between
our definition of intersection multiplicity and Samuel’s observations on
improper components given in his thesis (see:J. Math.Pures Appl. (9),
30 (1951)-274 in particular chapterV, section 2), see also [[69], ch. II,
§5, No. 9].

(3.24) Proposition . Let V1 = V(I1) and V2 = V(I2) be two pure
dimensional projective varieties in�n

K defined by homogeneous ide-
als I1 and I2 in R0 := K[X0, . . . ,Xn]. Suppose thatdim(V1 ∩ V2) = 111

dim(V1)+ dim(V2)− n. Thendeg(V1) · deg(V2) =
∑
C

j(V1,V2; C) deg(C),

where C runs through all irreducible components of V1 ∩ V2.

For the proof of this proposition, we need the following lemma.

(3.25) Lemma . Let V1 = V(I1) and V2 = V(I2) be two pure di-
mensional projective varieties in�n

K defined by homogeneous ideals I1

and I2 in R0 := K[X0, . . . ,Xn]. Then the following conditions are
equivalent:

(i) dim(V1 ∩ V2) = dim(V1) + dim(V2) − n

(ii) Every irreducible component of V1∩V2 has dimensiondimV1+

dimV2 − n.

(iii) dim((I ′1 + I ′2 + τR̄) = dim((I ′1 + I ′2)R̄) − (n+ 1).

Proof. We prove (i)⇒ (iii) ⇒ (ii) �

From (i) we have dim((I ′1 + I ′2 + τ)R̄) = dim(V1 ∩ V2) = dim(V1) +
dim(V2) − n = dim((I ′1 + I ′2)R̄− 1− n, that is, we have (iii).

(iii) ⇒ (ii) Follows from the fact that (I ′1 + I ′2)R̄ is unmixed (see
(2.3)(i)) and (1.46) (ii). (ii)⇒ (i) is trivial.

Proof of Proposition (3.24). From Lemma (3.25), we havet = d and
δ − d − 1 = n. Hence we get from the Step I of our proof of the main112

theorem (2.1) that

∪([(I ′1 + I ′2)R̄]n) = q1,d ∩ · · · ∩ qmd,d ∩O1.
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Therefore, sinceO1 1i,d for any 1≤ i ≤ md, we getO = R̄. Hence
{C|C an irreducible component ofV1 ∩ V2} is the required collection in
the main theorem (2.1) . Then (3.24) follows from the main theorem
(2.1) .

The following proposition yields a new and simple proof of the well-
known Bezout’s theorem.

(3.26) Proposition (Bezout’s Theorem)

Let V1 = V(I1) and V2 = V(I2) be two pure dimensional projective
varieties in�n

K defined by homogeneous idealsI1 and I2 in R0 := K
[X0, . . . ,Xn]. Suppose that dim(V1 ∩V2) = dim(V1+ dim(V2) − n. Then
deg(V1). deg(V2) =

∑
C

i(V1,V2; C) · deg(C) whereC runs through all irreducible components
of V1 ∩ V2.

Proof. Follows from (3.24) and (3.22). �

(3.27) Remark. In [72] Serre gave an elegant formula for the in-
tersection multiplicity with correction terms to the naiveguess which
takes only the length of primary ideals (see our discussion of chapter
0, sectionA). In a sense this Tor-formula of Serre explains why the
naive guess fails. Another explanation is given byW. Fulton andR.
MacPherson in [[19], §4]. Also, our approach does give the reason for
this phenomenon. Our correction term is given byK2 (See the notation
after the proof of Corollary (3.19)). Roughly speaking, ourconstruction
shows that we have to drop the imbedded components. Furthermore, we113

open the way to deeper study by applying our results (3.19) and (3.22).
For example, it follows immediately from Corollary (3.20) (ii) the well-
known fact that

deg(V1) · deg(V2) ≤ deg(V1 ∩ V2)

when dim(V1 ∩ V2) = dimV1 + dimV2 − n. In case dim(V1 ∩ V2) >
dimV1 + dimV2 − n, we obtain the following results.
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(3.28) Proposition . Let V1 = V(I1) and V2 = V(I2) be two pure di-
mensional projective varieties inPn

K defined by homogeneous ideals I1

and I2 in R0 := K[X0, . . . ,Xn]. Assume that the local rings A(V1; C)
and A(V2; C) of V1 and V2 at C are Cohen -Macaulay for all irreducible
components C of V1 ∩ V2 with dimC = dim(V1 ∩ V2). Then

deg(V1) · deg(V2) ≥ deg(V1 ∩ V2)

Proof. From the main theorem (2.1) , we get:

deg(V1) · deg(V2) =
∑

Ci

j(V1,V2; C1) · deg(Ci)

≥
∑

C

j(V1,V2; C) deg(C)

≥
∑

C

ℓ(V1,V2; C) deg(C) by (3.20) (i)

= deg(V1 ∩ V2) by (1.40)

whereC runs through all irreducible components ofV1 ∩ V2. with 114

dim(C) = dim(V1 ∩ V2). �

(3.29) Corollary . With the same assumption as in (3.28), we have
deg(V1) · deg(V2) − deg(V1 ∩ V2) ≥

∑
C

deg(C) ≥ number of irreducible

components of V1 ∩ V2 with dimC < dim(V1 ∩ V2).

(3.30) Proposition . Let V1 = V(I1) and V2 = V(I2) be two pure di-
mensional projective varieties inPn

k defined by homogeneous ideals I1

and I2 in R0 := K[X0, . . . ,Xn]. Assume that the local rings A(V1; C) and
A(V2; C) of V1 and V2 at C are Cohen-Macaulay for all irreducible com-
ponents C of V1 ∩ V2. Thendeg(V1) · deg(V2) ≥

∑
C
ℓ(V1,V2, ; C) deg(C),

where C runs through all irreducible components of V1∩V2, and equal-
ity holds if and only if j(V1,V2; C) = ℓ(V1,V2 : C) for all irreducible
components C of V1 ∩ V2 and {Ci} = {C|C an irreducible component of
V1 ∩ V2}.

(3.31) Corollary . With the same assumption as in (3.30), we have
deg(V1) · deg(V2)− deg(V1∩V2) ≥

∑
ℓ(V1,V2; C) deg(C), where C runs
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through all irreducible components of V1 ∩ V2 with dim(C) < dim(V1 ∩

V2).

C. Problems

Let V1 = V(I1) and V2 = V)I2) be two pure dimensional projective
varieties in Pn

K defined by homogeneous idealsI1 and I2 in
R0 := K[X0, . . . ,Xn].

(3.32) The Main Problem

Analyzing the proof of the main theorem (2.1) and the example(3.14),115

one might be tempted to ask the following question:
Let C ⊂ V1 ∩ V2 be an irreducible subvariety corresponding to an

imbedded prime idealY belonging toI1 + I2. If dim C ≥ dimV1 +

dimV2 − n, thenC belongs to our collection{Ci} of the main theorem
(2.1) . However, this is not so, as we will show by the following exam-
ple:

The construction is due toR. Achilles.
Let V1 andV2 ve two surfaces inP4

K given by the following ideals

I1 = (X0,X1) ∩ (X0,X2) ∩ (X2,X3) and

I2 = (X1,X4) ∩ (X2
0,X0 + X2).

Then we have the following primary decomposition ofI1 + I2 : I1 +

I2 = (X0,X2) ∩ (X0,X1,X4) ∩ (X1,X2,X3,X4) ∩ (X0X2,X0 + X2,X1,X3).
Applying proposition (1.46), (ii) it is not too difficult to show that

the collection{Ci} of irreducible subvarieties ofV1 ∩ V2 is given by:

C1 : X0 = X2 = 0 with j(V1,V2; C1) = 2

C2 : X0 = X1 = X4 = 0 with j(V1,V2; C2) = 1

C3 : X0 = X1 = X2 = 0 with j(V1,V2; C3) = 2

C4 : X0 = X2 = X3 = 0 with j(V1,V2; C4) = 2

C5 : X0 = X1 = X2 = X4 = 0 with j(V1,V2; C5) = 1

C6 : X1 = X2 = X3 = X4 = 0 with j(V1,V2; C6) = 1
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Therefore, the imbedded pointX0 = X1 = X2 = X3 = 0 of V1 ∩ V2 116

is not an element of{Ci}.
Note that, the correction termc(V1,V2) > 0 (See notation of (2.8),

(ii)).
Of course, it would be very interesting to say something about how

imbedded components contribute to the Bezout’s number deg(V1) · deg
(V2). This is our main problem.

(3.33) Problem 1. Give reasonably sharp estimate between deg(V1) ·
deg(V2) and

∑
C

j(V1,V2; C) deg(C) whereC runs through all irreducible

components ofV1 ∩ V2

(3.34) Remark. It seems to us a rather hard question to give reason-
ably sharp estimates on the error term between deg(V1) deg(V2) and∑
C

j(V1,V2; C) deg(C) or even
∑
C

deg(C).

In 1982, Lazarsfeld was able to show that if one intersects a linear
spaceL in Pn

K with a subvarietyV ⊂ Pn
K(V is irreducible and non- de-

generate) andC1, . . . ,Cr are the irreducible components ofL ∩ V, then

r∑

i=1

degCi ≤ deg(V) − e

wheree= dim(L ∩ V) − dimV+ codimL.
His proof is rather complicated. Therefore we want to pose our 117

second problem.

(3.35) Problem 2. Would our methods yield similar results as in (3.34)?

(3.36) Problem 3. (a) If c(V1,V2) > 0 then is it true that: deg(V1) ·
deg(V2) ≥ number of associated primes ofI1 + I2?

(b) Assume thatV1 andV2 are reduced. If deg(V1)d ·deg(V2) > number
of irreducible components ofV1 ∩ V2 then is it true that:

deg(V1) · deg(V2) ≥ number of associated primes ofI1 + I2?
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(3.37) Remark. The assumption “reduced” is necessary in Problem
3(b) (see example (3.14) (iii)).

(3.38) Problem 4. Let C be an irreducible component ofV1 ∩ V2 with
K − dim(C) = j, t ≤ j ≤ d. Give geometric (or algebraic ) interpretation
of the property:

τĀ ⊂ (ℓ0, . . . , ℓδ− j−1)Ā.

In connection with Corollary (3.20), we want to pose the following prob-
lem:

(3.39) Problem 5. Let C be an irreducible component ofV1 ∩ V2. If
j(V1,V2; C) ≥ ℓ(V1,V2; C) or j(V1,V2; C) ≤ ℓ(V1,V2; C),then describe
the structure of the local ringsA(V1; C) andA(V2; C) of V1 andV2 atC.

(3.40) Remarks. (i) If A(V1,C) andA(V2; C) are Cohen -Macaulay.118

then j(V1,V2; C) ≥ ℓ(V1,V2; C).

(ii) If dim V1 ∩ V2 = dim(V1) + dim(V2) − n, then j(V1,V2; C) =
ℓ(V1,V2; C) if and only if A(V1; C) andA(V2; C) are Cohen-Macau-
lay.

(3.41) Problem 6. Give the connection between our approach and func-
tion’s approach to the intersection theory in [18] or [19] (see our remark
on example (3.8)).

(3.42) Problem 7. Is it possible to give an extension of our approach to
the intersection theory for pure dimensional subvarietiesV1, . . . ,Vr , r ≥
2 of an ambient smooth varietyZ?

(3.43) Problem 8. (David Buchsbaum) Describe all intersection num-
bers ofV1 andV2 alongC as Euler -Poincare Characteristic.

(3.44) Problem 9. (David Eisenbud) Assume thatV1 andV2 are irre-
ducible subvarieties ofPn

K . Suppose thatV1 ⊆ V2. Then describe all
elements of the collection{Ci} of the main theorem (2.1) .

In connection with this problem, we want to study the following
example.
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(3.45) Example. Let V1 = V2 be defined by the equationX2
1+X2

2−X2
0 = 119

0 in P2
K. Then it is not hard to show that our collection{Ci} of the main

theorem (2.1) is given by:
C1 : X2

1 + X2
2 − X2

0 = 0 and two imbedded points, sayC2 andC3,
which are defined over̄K.

Therefore we get

4 = deg(V1) deg(V2) =
3∑

i=1

j(V1,V2; C1) deg(Ci).

Hence j(V1,V2; C1) = 1 for all i = 1, 2, 3.

(3.46) Proposition. Let V1,V2,V3 be pure dimensional varieties inPn
K.

Then

3∏

i=1

deg(Vi) =
∑

D⊂V1∩V2V3

j(V1,V2,V3; D) deg(D)

=
∑

C⊂V1∩V2

 j(V1,V2; C)
∑

E⊂V3

j(C,V3; E) deg(E)



where D runs through the collection{Di} of the general main theorem
(2.25) , C runs through the collection{Ci} of the main theorem (2.1) for
V1 andV2 and E runs through the collection{Ei} of the main theorem
(2.1) for C and V3.

Proof. Immediate from main theorem (2.1) and (2.25) . �

(3.47) Problem 10. Let V1, . . . ,Vs be pure dimensional subvarieties of
Pn

K. Let C an irreducible component ofV1 · · ·VS, s ≥ 1. Then is it true
that

j(V1, . . . ,VS; C) ≥
s∏

i=1

J(Vi ,C; C)?

Also give a characterization for the equality. 120
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(3.48) Remark. In 1937, 0. Zariski proved the following statement
(see: Trans. Amer. Math. Soc. 41(1937), 249-265): if the origin is an
mi-fold point of n hypersurfacesF1, . . . , Fn of Pn

k and it is an isolated
point of intersection of thesen varieties, then the intersection multiplic-
ity at the origin is not less thanm1m2 · · ·mn, by assuming that the hyper-
surfacesF1, . . . , Fn have only a finite number of common points. Other
proofs have been given, for example, by 0. Perron (see:Bayer. Akad.
Wiss. Math. Natur.K1. Sitzungsber. Jahrgang 1954, 179-199) or by H.
Gigl (see: Monatsh. math. 60(1956), 198-204). Also Zariski’s theorem
is a special case of a theorem given by D.G. Northcott (see: Quart. j.
math. Oxford Ser. (2)4 (1953), 67-80) or by W. Vogel (see: Monatsh.
math. 71(1967), 238-247) as an illustration of the general theory which
was developed in these papers. Studying our problem (3.47),we want to
give an extension of these observations. In the meanwhile, R. Achilles
proved the above inequality. The characterization of the equality is yet
open. We want to conclude these notes with the following conjecture:

Conjecture. Let X and Y be two pure dimensional subschemes ofPn
K

given by the ideals I(X) and I(Y). Thendeg(X). deg(Y) ≥ number of
prime idealsY belonging to I(X) + I (Y) such thatdimY ≥ dim X +
dimY − n.
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