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Introduction

These notes are based on a series of lectures given at thinttiate

in November and December, 1982. The lectures are centeoed aty

joint work with Jirgen Stiickrad [85] on an algebraic agmto to the
intersection theory. More-over, chaptérandlll also contain new re-
sults.

Today, we have the remarkable theory of W.Fulton and R. Mac-
person on defining algebraic intersections:

Suppose/ andW are subvarieties of dimensianandw of a non-
singular algebraic variet) of dimensionn. Then the equivalence class
V - W of algebraicv + w — n cycles which represents the algebraic inter-
section ofV andW is defined up to rational equivalenceXn This inter-
section theory produces subvarietéof V N W, cycle classeg; onY;,
positive integersn;, with 3’ mya; representing/ - W, and degy; > degy;
even in the case di(N W) # v+ w—n.

Our object here is to give an algebraic approach to the et&om
theory by studying a formula for ded). degV) in terms of algebraic
data, ifV andW are Gubvarieties ok = P.

The basis of our formula is a method for expressing the iaters
tion multiplicity of two properly intersecting varieties ghe length of a
certain primary ideal associated to them in a canonical wkyng the
geometry of the join construction iF?™* over a field extension ok,
we may apply this method even if divi(h W) > dimV + dimW - n.
More precisely, we will prove the following statement in @bex II:

Let X, Y be pure dimensional projective subvarietiesPft There
is a collection{C;} of subvarieties oX N'Y (one of which may b&),

\Y



Vi

including all irreducible components #NY, and intersection numbers,
say (X, Y;C) = 1, of X andY alongC; given by the length of primary
ideals, such that

deg) - degl¥) = > j(X,Y;C)) - degC),

Gi

where we put degf() = 1.

The key is that our approach does provide an explicit detsonif
the subvarietie€; c P" counted with multiplicitiesj(X, Y; C;), which
are canonically determined over a field extensio of

In case dimKnNY) = dim X+dimY —n, then our collectiodC;} only
consists of the irreducible compone@®f X N'Y and the multiplicities
j(X,Y; C) coincide with Weil's intersection numbers; that is, owatst
ment also provides the classical theorem of Bezout. Furthey, by
combining our approach with the properties of reduced aysi€pa-
rameters, we open the way to a deeper study of Serre’s oliseivan
“multiplicity” and “length” (see: J.-P.Serre [72], p.V-20

In 1982, W. Fulton asked me how imbedded components cotgribu
to intersection theory. Using our approach, we are ableudyssome
pathologies in chapter Ill. (One construction is due to Rhilkes). Of
course, it would be very interesting to say something abowtimbed-
ded components contribute to intersection multiplicitieslso, it ap-
pears hard to give reasonably sharp estimates on the emobttween
deg (X).deg({r) and}; j(X,Y;C;).deg(C;) or even}, degC;) whereC;
runs through all irreducible components %fn Y. Therefore, we will
discuss some examples, applications and problems in c¢hépte

| wish to express my gratitude to the Tata Institute of Funelatal
Research of Bombay, in particular to Balwant Singh, for tivedkn-
vitation to visit the School of Mathematics. Dilip P. Patdshwritten
these notes and it is a pleasure for me to thank him for fiisiency,
his remarks and for the time- consuming and relatively thesstask of
writing up these lecture notes. | am also grateful for the yriagight-
ful comments and suggestions made by persons attendingdhgds,
including R.C. Cowsik, N. Mohan Kumar, M.P. Murthy, Dilip Patil,
Balwant singh, Uwe Storch and J.-L. Verdier. The typistshef $chool
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of Mathematics have typed these manuscripts with care drahktthem
very much.

Finally | am deeply grateful to R.Sridharan for showing miamted
poems and plays of Rabindranath Tagore.

Let me finish with an example from “Stray birds”:

The bird wishes it were a cloud.

The cloud wishes it were a bird.

However, all errors which now appear are due to myself.

Wolfgang Vogel

NOTATION

The following notation will be used in the sequel.

We denote the set of natural numbers (respectively, noativegn-
tegers, integers, rational numbers)¥gresp .Z*,Z,Q. Forn € N, we
write “n >> 1” for “all sufficiently large integers’”. By a ring, we
shall always mean a commutative ring with identity. All rihgmo-
morphisms considered are supposed to be unitary and, icyart all
modules considered are unitary.Afis a ring, SpecA) denotes the set
of all prime ideals ofA. For any ideal c A and any A-moduleM, if
N c M is an A-submodule theri\(’\:/I ):={me M|l -mc N}.

For any fieldK, K denotes the algebraic closureloaindPy denotes
the projective n-space ové.
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Chapter O

Historical Introduction

A. The Classical Case

The simplest case of Bezout's theorem over an algebraicied field 1
is the following very simple theorem.

(0.1) Fundamental Principle

The number of roots of a polynomi&(x) in one variable, counted with
their multiplicities, equals the degree tfx).

This so-called fundamental theorem of algebra was conjedthy
Girard (from the Netherlands) in 1629. In 1799, C.F. Gauswiged
the first proof of this statement. M.KnesEr[40] produced iy wimple
proof of this fundamental principle in 1981. This proof algelds a
constructive aspect of the fundamental theorem of algebra.

The definition of this multiplicity is well-known and cleaNowa-
days, the problem of determining the multiplicity of polynial root by
machine computation is also considered (see e.g! [101]).

The second simple case to consider is that of plane curves. Th
problem of intersection of two algebraic plane curves isady tackled
by Newton; he and Leibnitz had a clear idea of ’eliminationbqess
expressing the fact that two algebraic equations in onabkihave a
common root, and using such a process, Newton observedljnias 2

1



2 0. Historical Introduction

the abscissas (for instance) of the intersection pointsvofdurves of
respective degreas, n are given by an equation of degrgem.n. This
result was gradually improved during the8entury, until Bezout, us-
ing a refined elimination process, was able to prove thateirecal, the
eqguation giving the intersections had exactly the degres; however,
no general attempt was made during that period to attachtegeinmea-
suring the ‘multiplicity’ of the intersection to each ingection point in
such a way that the sum of multiplicities should alwaysibe (see also
[14]). Therefore the classical theorem of Bezout statesttha plane
curves of degreen andn, intersect in atmostn.n different points, un-
less they have infinitely many points in common. In this fohowever,
the theorem was also stated by Maclaurin in his 'Geometricga®
ica’, published in 1720 (see [48, p. /68]); nevertheless the first correct
proof was given by Bezout. An interesting fact, usually n&mioned
in the literature, is that: In 1764, Bezout not only proveel divove men-
tioned theorem, but also the following n-dimensional \amsi

(0.2)

Let X be an algebraic projective sub-variety of a projectivepace. If
X is a complete intersection of dimension zero the degre¢isfequal
to the product of the degrees of the polynomials defiting

The proof can be found in the papEr [4], [5] abd [6]. In his book
algebraic equations”, published in 1770, [7], a statemétitie theorem
can be found already in the foreword. We quote from péfe

‘Le degr® de ¢’ équation finale eSultante d’'unnombre quelcoque
d’équations compdtes renfermant un pareil nombre d’'inconnues, and
de deges quelconques, esgal au produit des exposants des @sgté
ceseguations. Tloréme dontfa verig n'etait connue etehontree que
pout deuxequations seulement.’

The theorem appears again on page 32 as theorem 47. Thel specia
cased = 2, 3 are interpreted geometrically on page 33 in sectfarti
it is mentioned there, that these results are already knoevn Geome-
try. (For these historical remarks, see al$ol([61]).

Let us look at projective plane curvés defined by the equation
F(Xg, X1, X2) = 0 andD defined by the equatio®(Xg, X1, X2) = 0 of
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degreen andm, respectively, without common components. Then we
get

(0.3) BEZOUT'S Theorem.

m.n = > i(C, D; P) where the sum is over all common poift®f C and

D and \P/vhere the positive integdC, D; P) is the intersection multiplic-
ity of CandD atP. 4
We wish to show that this multiplicity is defined, for instandn
terms of a resultant:

GivenP, we may choose our coordinates so thd ate haveX; = 1
andXp = X; = 0. By the Preparation Theorem of Weierstreiss [102]
(after a suitable change of coordinates ) we can write

F(Xo, X1,1) = f'(Xo, X1) - f(Xo, X1)
and G(Xo, X1, 1) = g'(Xo, X1) - 9(Xo, X1)

wheref’(Xo, X1) andg’(Xg, X1) are power series iXy and X; such that
f/(0,0) # 0 # g'(0, 0) and where

f(Xo, X1) = X5 + Va(Xo)X§ ™ + - + Ve(Xo)
and 900, X1) = X{ + Wa(Xo)X{ ™ + - - + W(Xo)
where Vj(Xp) and W;(Xo) are power series witW;(0) = W;(0) = 0.

Following Sylvesteri[86], we define th¢ resultant off andg, denoted
by Reg, (f,Q), to the €+ ¢) x (e + ¢) determinant

1 Vi--Ve

1V; - Ve
Vi - Ve

1 Wp---W,

W, - - W,
W, - - W,
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with zero in all blank spaces. 5
The application of the Preparation Theorem of Weirstrasaplkes

us to get, from the Resultant Theorem (see &.d. [92]),Rles(f,0) =

0. NowRex, (f, g) is a power series iXy and we define

i(C,D; P) = Xo — order of Reg,(f,0).

Itis also possible to define the above multiplicity by using theory
of infinitely near singularities (see, for instandg, [1], &H).

However, Poncelet, as a consequence of his general vaguei-Pr
ple of continuity’ given in 1822, had already proposed to rudi the
intersection multiplicity at one point of two subvarietielsV of com-
plementary dimensions (see definition below) by hawr{@or instance)
vary continuously in such a way that for some positignof V all the
intersection points withd should be simple, and counting the number
of these points which collapses to the given point wkiétended tov,
in such a way the total number of intersections (counted maititiplic-
ities) would remain constar{tprinciple of conservation of number’)
and it is thus that Poncelet proved Bezout's Theorem, byralrggthat
a curveC in a plane belongs to the continuous family of all curves ef th
same degrem, and that in that family there exist curves which degener-
ate into a system of straight lines, each meeting a fixed duofelegree
nin ndistinct points. Many mathematicians in the 19th centuny é&e
tensively used such arguments, and in 1912, Severi hadrangly
argued for their essential correctness, 5ek [73].

In view of our exposition below, we wish to mention that thershg
point of C. Chevalley’s considerations_[11], 112] has been the olaserv
tion that the intersection multiplicity at the origin O ofaveffine curves
f(X,Y) = 0,9(X,Y) = 0, may be defined to be the degree of the field
extensionK((X,Y)) | K((f, g)), whereK((x,y)) is the field of quotients
of the ring of power series iX, Y with codficients in the base fielH,
and whereK((f, g)) is the field of quotients of the ring of those power
series inX, Y which can be expressed as power series amdg. From
thereC. Chevalley was led to the definition of multiplicity of a [decang
with respect to a system of parameters, and then to the demdien of
intersection multiplicity.
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The ideal generalization of these observations would benle
known theorem of Bezout. First we note that the degree of ge-al
braic projective subvariety of a projective n-spack] (K algebraically
closed field), denoted by de¥), is the number of points in which al-
most all linear subspacésc P} of dimensionn — d meetX, whered is
the dimension o¥. Let V1, Vo be unmixed varieties of dimensionss 7
and degreed, e in P}, respectively. Assume that all irreducible compo-
nentsVi NV, have dimensioi r + s—n, and suppose thatt s—n > 0.
For each irreducible compone@tof V; N V,, define intersection multi-
plicity i(V1, V; C) of V; andV5, alongC. Then we should have

Z i(V1, Vo; C).degC) = d.e,
C

where the sum is taken over all irreducible component¢,af V,. The
hardest part of this generalization is the correct definiti the inter-
section multiplicity and, by way, historically it took majtempts before
a satisfactory treatment was given By Weil [L03] in 1946. Therefore
the proof of Bezout’s Theorem has taken three centuries dot &t
work to master it.

To get equality in the above equation, one may follofetent ap-
proaches to arrive at severalfdrent multiplicity theories. At the be-
ginning of this century, one investigated the notion of thegth of a
primary ideal in order to define intersection multiplicitieThis multi-
plicity is defined as follows:

Let Vi = V(l1),V2 = V(I2) = V(l2) c Py be projective varieties
defined by homogeneous idedlsl, c K[Xo,...,X,]. Let C be an
irreducible component df; N V,. Denote byA(V;; C) the local ring of
V; atC. Then we set

t(V1,V2; C) = the length ofA(V1; C)/15.A(Vy; C).

For instance, this multiplicity yields the intersection Itiplicity as 8
set forth in the beginning for projective plane curves. Remnore, this
length provides the “right” intersection number for unnibaibvarieties
V1, V2 € By with n < 3and dim{1nVz) = dimVi+dimVz—n(see, e.g.,
W. Grobner|[26]). Therefore prior to 1928 most mathematisi hoped
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that this multiplicity yield for Bezout’s Theorem the cocténtersection
multiplicity for the irreducible components of two projeet varieties
of arbitrary dimensions (see, e.g. LasKer [44], Macall&]})[4And, by
the way, we want to mention that Grobner’s papkrs [26], [28]aaplea
for adoptions of the notion of intersection multiplicity wh is based
on this length of primary ideals. He also posed the followpngblem:

(0.4) Problem. What are some of the deeper lying reasons that the so-
called generalized Bezout's Theorem

degl{> N'Vy) = degy) - degl)

is not true under certain circumstances ?

In 1928, B.L.Van der Waerden [90] studied the space curvergiv
parametrically b){s“, s, &8, t4} to show that the length does not yield
the correct multiplicity, in order for Bezout’s Theorem te lalid in
projective spac@; with n > 4 and he has written in [89, p. 770]:

“In these cases we must reject the notion of length and tryntb fi
another definition of multiplicity” (see also [64, p. 100].

We will study this example (see aldo [2€], [50] 6r[32]). Tiead-
ing codficient of the Hilbert polynomial of a homogeneous ideat
K[Xo, ..., Xy] will be denoted byhy(l). LetV = V(I) be a projective
variety defined by a homogeneous idéat K[Xo,...,X,]. Then we
have degV) = ho(l).

(0.5) Example. Let V1, V> be the subvarieties of projective spd@ﬁa
with defining prime ideals:

P = (XoXa — XaXa, X3 — X3Xa, XoX3 — XX Xg, X1 XZ — X3)
%5 = (Xo, X3)

ThenVi NV, = C with the defining prime ideat? : [(C)
(Xo, X1, X2, X3). It is easy to see that (see, e[g. (T.42) , Gif#1)
4,ho(#%5) = 1,hog(#') = 1 and thereforeé(Vy, Vo; C) = 4. Since?; +
Py = (Xo. Xa X1Xo, X3, X3) © (Xo, Xa, X1 X2, X3, X5) < (Xo, X, X1,
XX3,) € (Xo. X3, X1, X3,) C (Xo, X1, X2, X3), we havet(Vy, Vz; C) = 5.
Therefore we obtain
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deg{1). deglz) = i(V1, V2; C). degC) # £(V1, V2; C) degC)
Nowadays it is well-known that

{(V1,V2;C) =i(V1,V2;C)

if and only if the local ringsA(V1,C) of Vi at C and A(V,,C) of Vo 10
at C are Cohen - Macaulay rings for all irreducible componebtsf
V1 N Vo where dim{/y N Vo) = dimVy + dimV, — n (see [/2], p. V-
20; see also (3.25)). We assume again that dinm(V,) = dimV; +
dimV,—n. Without loss of generality, we may suppose, by applying our
observations off82 of chaptérthat one of the two intersecting varieties
V1 andV; is complete intersection, saf.

Having this assumption, we get that

£(V1,V2; C) > i(V1, V2; C)

for every irreducible componei@ (see also[(3.18)). Le¥, be a com-
plete intersection. Then there arises another problemdpbgeD.A.
Buchsbaum[[9] in 1965.

(0.6) Problem. Is it true thatt(V1, Vo; C) — i(V1, V2; C) is independent
of V5, that is, does there exist an invaridif®\), of the local ringA =
A(Vy; C) of V1 atC such that

£(V1,V2; C) —i(V1, Vo; C) = I(A)?

This is not the case, however. The first counter - examplevisngi
in [95]. The theory of local Buchsbaum rings started frons tegative
answer to the problem of D.A. Buchsbaum. The concept of Baslns
rings was introduced in[82] and B3], and the theory is nowedigping
rapidly. The basic underlying idea of a Buchsbaum ring caras the 11
well-known concept Cohen-Macaulay ring, its necessitngaireated
by open questions in Commutative algebra and Algebraic g&gnor
instance, such a necessity to investigate generalized iCiglacaulay
structure arose while classifying algebraic curvd@inr while studying
singularities of algebraic varieties. Furthermore, it waswn by Shiro
Goto (Nihon University, Tokyo) and his colleagues thatiiesting and
extensive classes of Buchsbaum rings do exist (see[e]y. [23
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However, our observations from the Chagteyield the intersection
multiplicities by the length of well - defined primary idealdence these
considerations again provide the connection between therelit view
points which are treated in the work Lasker - Macaulay - @eitand
Severi - van der Waerden - Weil concerning the multipliditgdry in the
classical case, that is, in case din( V») = dimV; + dimV, — n. We
want to end this section with some remarks on Buchsbaumislgara
First we give the following definition:

(0.7) Definition. Let A be a local ring with maximal ideabt. A se-
quencelay, ..., a} of elements of is &t is a weak A- sequencd for
eachi=1,...,r

M-[(ag,....,a-1):a] < (ag,...,aq-1)
fori=1weseté,...,a_1) =(0)in A).

If every system of parameters éfis a weak A- sequence, we say
thatA is aBuchsbaum ring

Note that Buchsbaum rings yields a generalization if Cohacd-
lay rings.

In connection with Buchsbaum’s problem and with our obgioia
concerning the theory of multiplicities in the paper![82Fk wet an im-
portant theorem (seE182]).

(0.8) Theorem. A local ring A is a Buchsbaum ring if and only if the
difference between the length and the multiplicity of any idegeer-
ated by a system of parameters is independent of g.

In order to construct simple Buchsbaum rings and exampléshwh
show that the above problem is not true in general, we havéate the
following lemma (see [82][187], or[97]).

(0.9) Lemma. Let A be a local ring. First we assume tiditm(A) = 1.
The following statements are equivalent:

(i) Ais aBuchsbaum ring.

(i) MU((0)) = (0), where U(0)) is the intersection of all minimal
primary zero ideals belonging to the ide@) in A. Now, suppose
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that dim(A) > depth(A) > 1 then the following statements are
equivalent:

(i) Ais a Buchsbaum ring.

(iv) There exists a non-zero - divisord? such that A(X) is a Buchs- 13
baum ring.

(v) For every non-zero - divisor x 9i?, the ring A/(x) is a Buchs-
baum ring.

Applying the statements (i), (ii) of the lemma, we get thddaing
simple examples.

(0.10) Example. Let K be any field

(1) We setA := K[[X, Y]]/(X) n (X3, Y) then it is not dificult to show
thatA is Buchsbaum non - Cohen - Macaulay ring.

(2) We setA := K[[X, Y]]/(X)N(X3,Y) thenAis not a Buchsbaum ring.

For the view point of the theory of intersection multiplies, we
can construct the following examples by using the statesngii,
(iv) of the lemma.

(3) Take the curve/ c P2 given parametrically byS®, S, St,t°).
Let A be the local ring of the fine cone ovelV at the vertex,
that is,A = K[XQ,X]_, X27X3](X0,X1,X2,X3)/?K/ where?%, = (XOX3 -
X1 X2, X3Xo — XT, X3X3 — X3X3, XoX3 — X2X3, X3 — X1X3). Then
Ais not a Buchsbaum ring (see [62]). We get again this statemen
from the following explicit calculations:

Consider the con€(V) c P} with defining ideal?, and the sur-
facesW andW’ defined by the equation§y = X3 = 0 andX; = 14
X2 + X2 = 0, respectively. It is easy to see thafv) n W
C(V) nW = C, whereC is given byXg = Xp = X3 = X4 = 0.
Some simple calculations yield:

{(C(V),W;C) = 7,i(C(V),W;C) = 5 and{(C(V),W’; C) = 13,

i(C(V),W’;C) = 10 and hence
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£(C(V), W; C) — i(C(V), W’; C) # ¢(C(V), W’; C) — i(C(V), W’; C).

Therefore this example shows that the answer to the abowdepno
of D.A. Buchsbaum is negative.

(4) Take the curve/ c P given parametrically bys*, s, s, t4). Let
Abe the local ring of theféine cone ove¥ at the vertex, that i&\ =
K[Xo, X1, X2, X3l (o, x1.X0, %) 2/, WhereZK, = (XoXa — X1 Xp, X3X —
f(i”,f)(oxg — X2X3, X1 X5 — X3). ThenAis a Buchsbaum ring (see e.g
oJd|).

(0.11) Remark. This last example has an interesting history. This curve
was discovered by G. Salmon((I67], p. 40]) already in 184@ atittle
later in 1857 by J.Steiner [[[79], p. 138]) by using the thyeaf residual
intersections. This curve was used by F.S.Macaulayl([[¢49]98]) in
1916. His purpose was to show that not every prime ideal inlgnpe
mial ring is perfect. In 1928, B.L. Van der Waerdénl[90] sadlihis
example to show that the length of a primary ideal does nadd yhe
correct local intersection multiplicity in order Bezoutiseorem to be
valid in projective spacé} with n > 4, and he has written (as cited
already); “In these cases we must reject the notion of leagthtry to
find another definition of multiplicity”. As a result, the not of inter-
section multiplicity of two algebraic varieties was put osddid base by
Van der Waerden for the first time, (see elg.! [88]] [91]] [9%Ye know
now that this prime ideal oF.S. Macaulay is not a Cohen-Macaulay
ideal, but a Buchsbaum ideal (i.e., the local ringtodf example (4) is
not a Cohen-Macaulay ring, but is a Buchsbaum ring). Thit rfawti-
vated us to create a foundation for the theory of Buchsbangsri(For
more specific information on Buchsbaum rings, see also tiibdom-
ing book byW. Vogel with J. Stiickrad.)

B. The Non-classical Case
Let Vq,V2 c P} be algebraic projective varieties. The projective di-

mension theorem states that every irreducible componei of V,
has dimensior» dimV; + dimv, — n. Knowing the dimensions of the
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irreducible components df; N V,, we can ask for more precise in-
formation about the geometry &f; N V,. The classical case in the
first section works in case of divy NV, = dimV; + dmV, — n.
The purpose of this section is to study the non-classicat,ctimt is
dimVinVs > dimVi+dimV,—-nlf V4, V, are irreducible varieties, whatié
can one say about the geometnA\afn Vo?. A typical question in this
direction was asked by 5. Kleiman: Is the number of irredeatiompo-
nents ofV1 N Vo bounded by the Bezout's number degy- deg{/2)? A
special case of this question was studied by C.G.J. Jac6ba|Bady
in 1836. But we want to mention that Jacobi's observatiotliegen

a modification of an idea of Euler [16] from 1748. We would like
describe Jacobi’s observation.

(0.12) JACOBI'S Example

Let F1, Fo, F3 be three hypersurfaces Hﬁ Assume that the intersec-
tion F1NnF,NF3is given by one irreducible curve, s@yand a finite set

3
of isolated points, safy, ..., Pr. Then[] degfi) — degC) > number

of isolated points oF1 N F, N F3. The flirst section of this example was
given by Salmon and Fielder [68] in their book on geometrylished
in 1874, by studying the intersection ohypersurfaces ii®;. The as-
sumption is again that this intersection is given by onelugble curve
and a finite set of isolated points. In 1891, M, Piéril [59] stddthe in-
tersection of two subvarieties, say M. Piéril[59] studiee ithtersection
of two subvarieties, say1, V, of P} assuming tha¥; NV is given by
one irreducible component of dimension dinn V, and a finite set of
isolated points. Also, it seems that a starting point of aargection
theory in the non-classical case was discovered by M.Riefi947, 56 17
years after M. Pieri, F. Sevefl[78] suggested a beautiflutiem to the
decomposition of Bezout's number d¥&g) - deg{/,) for any irreducible
subvarietiesvy, Vo of PE. Unfortunately, Sever i's solution is not true.
The first counter- example was given By Lazarfeld [45] in 1981. But
Lazarfeld also shows how Severi's procedure can be modifigdat it
does yield a solution to the stated problem.

Nowadays, we have a remarkable theory of W. Fulton and R. Mac-
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Pherson on defining algebraic intersection (see, €.¢. [1H]). Sup-
poseV; andV, are subvarieties of dimensignand s of a non-singular
algebraic varietyX of dimensionn. Then the equivalence cla%s - V>

of algebraicr + s— n cycles which represents the algebraic intersection
of V; andVs is defined upto rational equivalenceXn This intersection
theory produces subvarieti®#g of V, N V,, cycle classea; on W, pos-
itive integersm; with Y, mja; representing/; - V, and degy; > degW
eveninthecasediviNVo #r +s—n.

Our object here is to describe the algebraic approach_of (854
also [56]) to the intersection theory by studying a formuadegi/,) -
degl/,) in terms of algebraic data, W1 andV, are pure dimensional
subvarieties oP}. The basis of this formula is a method (sEe [B]J[98])
for expressing the intersection multiplicity of two projyeintersecting
varieties as the length of a certain primary ideal assatitdiehem in
a canonical way. Using the geometry of the join ConStI‘UCﬁDP%Hl
over a field extensiol of K we may apply this method even if divy{n
V,) > dimV1+dimVo—n. The key is that algebraic approach provides an
explicit description of the subvarieti€} and the intersection numbers
1(V1, V2; Ci) which are canonically determined over a field extension of
K.



Chapter 1

Preliminary Results

A. Preliminary Definitions and Remarks

(1.1)

Let R be a noetherian ring aridbe an ideal irR. The Krull-dimension, 19
K —dim(l) of | is the Krull-dimension of the rindgR/l. Suppose that

| =qgin---Ngy is a primary decomposition of whereq; is %-primary,

% € SpecR) for 1 < i < r. We say thaty is a%{-primary component
of | any % is an associated prime of /R We write AsgR/l) =
2, ...,%. Suppose tha —dim(l) = K-dim(g))for1 <i < s<r. We

S
setU(l) := N qi. This ideal is well defined and is called thexmixed

part of 1. Ilt ils clear thatl c U(l) andkdimU(l). Anideall c Ris
calledunmixedif and only if | = U(l). A ring Ris calledunmixedif the
zero ideal (0) irR is unmixed.

Let % € SpecR) andq be a? -primary ideal. The length of the
Artinian local ring R/q)« is called the length of cand we will denote
it by £r(Q). It is easy to see that the length @fs the number of terms
in @ composition seriex} = 1 € g2 C --- C qp = ¥ for g, where
Oi,- - ,Qr are? -primary ideals.

Remark . (see [[106], Corollary 2 orp. 237, vol. 1]) Lett c Rbe 20
a maximal ideal oR andqg c R be a®t primary ideal. Ifg = g1 C

13



21

14 1. Preliminary Results

02 C --- C g = M is a composition series fay, wherequ,...,q, are
M-primary ideals. Then there exigte ¢j,2 < i < ¢, such that

() & ¢ gi-1
(i) g = (Gi-1, &)
(i) Mg cqg-gforall2<ix<e.

Proof. (i) and (ii) are easy to prove.

(iii) ReplacingR by R/gwe may assume thgt= 0 andR s Artinian
local. Supposé&hq ¢ qi_; for some 2< i < ¢. Then we getj_1 ¢
(Gi-1 + Mag) = g = (gi-1,&). Therefore we can writg; = q + ma for

someq € gi_; andm € M. Thena = - g € g1 Which is a

(1-m)
contradiction to (i). i

Let R be a semi-local noetherian ring and rfdgdpe the Jacobson
radical ofR. Anidealq c Ris called anideal of definitionif (rad(R))" c
g c rad(R) for somen € N.

(1.2) The Hilbert-samuel Function

Let R be a semilocal noetherian ring andc R be an ideal of defini-
tion. Let M be any finitely generateB-module. The numerical func-
tion HY,(0,-) : Z* — Z* given by H},(q,n) = {(M/q"M) < oo is
called the Hilbert-Samuel function of gn M. If M = Rwe say that
H'(q, -) := HA(q, -) is the Hilbert-Samuel function af. If (R, .#) is a
local ring therHA(-) := HY(M, -) is calledthe Hilbert-Samuel function
of R
The following theorem is well known(for proof, see[72] DiOEI).

Hilbert-samuel Theorem.

Let Rbe a semilocal noetherian ring agd: R be an ideal of definition.
Let M be any finitely generate®-module. TherH%,l(q, -)is, forn >>
1, a polynomialPy (g, -) in n, with codficients inQ. The degree of
Pwm(g, -) is 6 whered = Krull dimension ofM(:= k — dim R/anrg)(m)).
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We will write this polynomial in the following form:

n+d n+d-1
Pu(@n) =6l  |+el j_, |+ +&

whereey(> 0).ey,..., €4 are integers and = K — dim(r). The mul-
tiplicity of g on M, ey(g; M), is defined byey(q; M) := e. Note that
e(g; M) := 0 if and only if K — dim(M) < K — dim(R). The positive
integerep(q; R) is called the multiplicity ofg. If Ris local andg = .7 is
the maximal ideal oRtheney(R) := ep(.#'; R) is called the multiplicity
of R

Remark.

() Let (A, .#) — (B,.#) be a flat local homomorphism of local
rings. Assume thatZB = .#". Then for every -primary idealq of A
we have

€(0; A) = ep(gB; B)

Proof. It is easy to see (see, e.gl1[34], (1.28)] thH’ré(qB, t) = (g 22
(B/A'B) = ¢8(A/d' ®a B) = (a(A/d)¢s(B/.#8) = (a(A/d)) = HA(a.1)
for all t > 0. Thereforeegy(gB; B) = ep(q; A). O

Let A = @oAn be a graded ring such tha&y, is artinian andA is
n>

generated as aAp-algebra byr elementsx...,%. of A;. LetN =

@ONn be a finitely generated gradédmodule. The numerical function
n=

Hi(N,-) : Z* — Z* defined byHX(N,n) = ¢a,(N/Nns1) is called
the Hilbert function of N The following is a well-known theorem (for
proof, seell55b] orl[72]).

Theorem HILBERT. The function Ii(N, -) is, for n >> 1, a polyno-
mial Pa(N, -) in n with cogficients in Q. The degree ofdfN, -)is <.
We will write this polynomial in the following form:

+---+hy,

n+r
PA(N,n):ho( ) )+h1( ;

where ly(> 0), hy, ..., h, are integers.
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Note that

1 r—2

n+r-1 n+r-2
HQ(N,n) = £a,(Nn) = ho( . )+ h’l( )+ e+ h,

wherehy, ..., hf are integers.

Remark.

23 (i) From the exact sequence

0_>(O|\:|)Zl)_>NLN_>N/>Zl_>O
of graded modules, it follows that

1 . 1 . Y.
HE s, (M/%aNo ) - HE g (0 : Xa)n - 1)

= HJ(N,n) forall n> 0.

Therefore we havio(N/XiN) - ho ((o : >?1)) — ho(N).

(iiii)y Let Rbe a semi-local ring and = (X1, ..., Xg) € Rbe an ideal

of definition generated by a system of parameters. ., X4 for
R. Let M be any finitely generate®-module.

ThenH},(q,n) = Hg;. (9rq(M), n) for all n. ThereforePw(q, n)
= Pyry(R)(Qrq(M), n) for all n andep(g; M) = ho(grq(m)), where
9rq(R) = @ d'/q™" andgrg(M) = @ a"M/q™ M.

n> n>

B. The General Multiplicity Symbol

Let R be a noetherian ring anll be any finitely generateR-module.

LetXq,...

, X4 be a system of parameters f&r We shall now define the

general multiplicity symboler(X, . .., XgIM), of X1,...,Xq on M.

(1.3) Definition. Let Rbe a noetherian ring ard be any finitely gen-
eratedR-module. Letx,..., Xq be a system of parameters flar We
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shall defineer(xy, ..., Xg|M), by induction ond. If d = 0, then de-
fine er(:IM) = ¢r(M) < co. Assume thad > 1 and the multiplicity
symbol has been defined far< d — 1 elements and all modules. De-

fineer(Xy, ..., XdlM) = er/x (X2, ..., XaIM/X1M) — €rx, (X2, . . ., Xdl(O ;o
X1)). Itis clear thaier(xy, . . ., X4|M) is an integer (in fact, non-negative,
sed(L9) ).
(1.4) Remarks. (i) By induction ond, it follows that er(xy,...
d-1
XdIM)) = £(M/qM) - £((dg-1M o Xd)/Qd—lM)_kgleR/qk(Xkﬂ, e
Xal(@-1M o %)/G-1M) wherege = (xg, -, xR0 < Kk
d_lvq: (le"' ,Xd)

IA

(i) Assume thad > 2 and 1< m< d. Then

er(X, .-, XalM) = > &8RO - Xl M)

v

wheree,= +1 andM, are uniquely determined byl andxa, ...
Xm-1-

Some Properties of the General Multiplicity Symbol

(1.5) The additive property

Let0 - M’ - M” — 0 be an exact sequence of finitely generated
R-modules andX. . ., X4 be a system of parameters for Fhen

er(X1, ..., XdIM) = er(X1, ..., XdM’) + &r(X1, ..., Xd|M”).
1.6) Corollary. Leto— My - Mp.1 » -+ > M1 > Mg —» Obe 25
p p

an exact sequence of finitely generated R-modules and-x x4 be a
system of parameters for R. Then

p
> (1) er(xe.. ... x4IM;) = 0.
i=0
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Proof. It is convenient to provg (1.3) anf{ll.6) simultaneouslyodPr
by induction ond. If d = 0 then

p ) p _
D (-1 er(IM) = D (~1)e(M;) = 0.
i=0 i=0

Now suppose that = s+ 1, s> 0 and thaf (T.5) and{1.6) holds for
d = s. We have an exact sequence

0- (0 M X1) — (O'\:/I x1) — (0 M:” X1) = M’ /x M’
— M/X]_M - M’//XlM” -0

Therefore by induction hypothesis, we have

BR/xi (X2 -+ XalM/X1M) = @Ry, (X2, -, Xl (0 2 X))
= &R/ (%, -+, XalM' /X M") — € (%2, Xal(0 2 x1))
+ €rx (X2, - > XdIM” /X M”) — Ry, (X2, . . ., Xa)I (0 5, %)

HenceeR(le ’XdlM) = Q?(Xla"' aXd|M,) +Q?(Xla"' aXd|M”)' O

(1.7) The Exchange Property

Let M be any finitely generateld-module andk, . .., X4 be a system of
parameters foR. Then

er(X1, - - -» XdIM) = €r(Xiy, - . ., Xig|M)
for every permutationiq, .. .,ig) of (1,...,d).
Proof. By remark [LH) (ii), it is enough to prove that,
er(Xa, ..., XdIM) = er(X2, Xa, . . ., XaIM).

Let K be any finitely generateld/ (X1, X2) -module. Then we denote
a?/(xl,XZ)(X3a ceey XdlK) by [K] O
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Now, we have
er(X1, ..., XdIM) = [M/(X1, x2)M] - [(O . X2)]
-[(0 o Xl)/XZ(O,\:A x1)] +[(O o X2)] = [a] - [b] - [c] + [d],

where
[a] = [M/Oa MLIB = [0 < %)) [d = [0 5 xa)/%(0 ; x)]
and d] =[(0 N:ll X2)], with M; := (Oh;I x)fori=12

Now,

(0] i X2) — (M 1 X2)/x1M, (0 v Xo) = (Oh;I X1) N (Oh;I X2)

Therefore, & and [d] are symmetric ink; andX,. Thus it is enough
to prove that ] + [c] is also symmetric inx; and x. SincexiM c
xM + (0 ; X)) N (XM : xz) we get by (L.5) ,
[b] = DaM + (0 . Mx2)/xiM] +[(xaM © %2)/xuM +(0 : )]
=10 2 %)/ XM N (0 & %)l + XM N xM/x1xoM] = [€] +[f]
where ] = [(0: x2)/xtM N (0 : x2)] and [f] = [X1M N xoM/X1%M]. 27
M M

Clearly [f] is symmetric inx; and X,. Now consider §] + [€]. Since
xxMn(O: x2) = x(0: xlxz) andx,(0 : x2) C X(0: xlxz) c x1(0: x2)

we get bﬂ1;5} €l + [C]
=De(0 2 xx)/ X2(0>:<1)] +10 2 x1)/%(0 : X))
+10 %)/ %1(0 ;. x0x)]
= [d] +[h]

where

[9] = [%2[(0 : x1%2)/%2(0 : x)] and
M M
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[h] = [(0 : x1)/%2(0 : X1 x2)] + [(0 : X2)/%1(0 : X1%2)].
M M M M

Clearly [h] is symmetric inx; andx, and since (0 x3x2)/(0 : X1) +
M M
X2
© : X) — %0 1'\>A<1X2)/X2(0 3 x1),lg = [(O: ,\>§1X2)/X2(0 : X1)
+ (0 : x0)] is also symmetric irx; andx,. Thereforeer(X, ..., Xg|M) =

M
[a] +[d] = [f] —[g] — [h] is symmetric inx; andXx,. This completes the
proof.
(1.8)

Let M be any finitely generate®@-module andxy, ..., Xg be a system of
parameters foR. Suppose™M = 0 for some 1< i < dandme N.
Thener(X1, ..., Xg|M) = 0.

Proof. By [[T.7]] we may assume tlie= 1. Proof by induction om. If
m= 1thenM = M/x;M and (0 :x;) = M and hencer(X, ..., Xq|M) =
M

&R/x (X2: - -, XdIM) —€r/x, (X2, . . ., X M) —€R/x (X2, . . ., XaIM) = 0. O

Now suppose thad = s+ 1,s > 0 and the result holds fai = s.

We have by (T.5) ,
eR(XL, - .., XdIM) = €r(X1, ..., Xd[X1M) + €r(X1, . . ., XdIM/X1M).

Sincex™(x1M) = x1(M/x:M) = 0, by induction the result follows.

(1.9)

Let M be any finitely generateld-module andk, . .., X4 be a system of
parameters foR. Then

0 < er(X, ..., XdIM) < 6(M/(X1, ..., X%3)M) < oco.

Proof. First, by induction ord, we shower(X1,...,XM) < 0. Ifd=0
thener(-|M) = ¢r(M) > 0. Now suppose that = s+ 1, s> 0 and the
result holds fod = s. O
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PutN = M/(0 : xT). If . >> 1, then itis easy to see that (&}') =

M N
0. From[{LT.5] anfi(T.§) , we gek(Xy, ..., XdIM) = er(X, ..., XdIN) =
er(Xo, ..., X4IN/x1N) and hence, by induction, it follows thag(xy, . . .,
Xd¢/M) > 0. The second inequality follows frofi{l.4) (i).

(1.10) Corollary. If (X1,...,%)M = M, then &(X, ..., Xg|/M) = 0.

(1.11) Proposition. Let M be any finitely generated R-module. Let
X1,...,Xd-1, X and X,..., Xg_1,y be two systems of parameters for R.
Then we have Xy, ..., X4-1, XY M) = er(Xq,...,XM) + er(X1,...,
Xd-1, YIM).

Proof. By induction ond. Supposed = 1. Then we have exact se-
guences

0— (xXyM: y)/xM — |\/|/X|\/|l> M/xyM —» M/yM — 0
M

0-(0:X) = (0:xy) > (0:% — (0:%/(0:xy) >0
M M M M M

29
Therefore we get

C(M/YM) + £(M/XM) = £(M/xyM) + £((XyM : y)/XM),
M
and £((0 1)) + £((0 : X)) = £((0 : xy)) + £((0 = Y))((O : xy)).
M M M M M
O

Now, it is easy to see that (Qy)/(0 : xy) — (xyM M y)/XM is an
M M

isomorphism. Therefore we get that
er(XIM) + er(yIM) = £{(M/xM) — %(0 1 X)) + ((M/yM) - fh(A(O 1Y)

= {(M/xyM) — %(0 1 Xy)) = er(xyIM).

Now suppose thad = s+ 1,s > 1 and the result holds fai = s.
Letg= (Xs,...,X4-1). Then, by induction, we have

er(X1, ..., Xd-1, XYIM) = er/x (X2, . . ., Xg-1, XYIM/x1 M)
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eR/xl(XZ, - ooy Xd-1, XY| M) = eR/xl(XZ, cees Xd-1, Xy| M/XlM)
— €Rr/x (X2, . .., Xd-1, XI(0 ;\Axl)

— ryx, (X2, - - - Xd-1, YI(0 y X1)
=€R(XL, - - ., Xd-1, XIM) + €r(X1, . .., Xd-1, YIM).
(1.12) Corollary. For any positive integersin. .., ng, we have
(i) er(X,....x"M) = ... NgeR(X, - . ., XgI M)
M/, .. X M)

Np...Ng

Proof. (i) follows from @) and[(T.111). (ii) follows from (i) ah(1.9)
: i

(i) 0<er(X,...,XdM) <

(1.13) Corollary. If x™ c (X1,...,Xi-1, Xi+1, - - ., Xa)M for some i<
i <dand me IN, then &(Xg, ..., X|M) = 0.

Proof. By [T.7]], we may assume that 1. If n > m, then ], xo, .. .,
x?) I(\/I = (X2, ..., Xd)M and so, by[[T.12), we get,Der(X1, . .., Xd/M) <
{(M/(Xo,..

=XM) _, 9 asn — co. Henceer(xy, . . ., X4IM) = 0. O

(1.14) Proposition. Let M be any finitely generated R-module and
X1,...,Xg be a system of parameters for R contained in & Then
&(X1,..., %XgIM) = E(M/(Xq, ..., X )M) ifand only if x, ..., Xq is an M-
sequence, that i$(x1,...,xi_1)M'\;| %)= (X1,...,X-)Mforl<i<d.

Proof. (<=) This implication follows fron_L.I4 (i) €>) Proof by in-

duction ond. Supposeal = 1. Then we havé(M/x1M) = er(x1|M) =

(rR(M/x1M) — €r((0 : X1)). Therefore, we gefr((0 : x1)) = 0, that is,
M M

(0:x)=0 m|
M

Now suppose thal = s+ 1 and the result holds fat = s.
Let ny,...,ng be arbitrary positive integers. Then py (I]9) and
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@12) (i) we have

RO - X)) S IM/OEE .. X IM) < gL Nyl
(M/(Xg, ..., %)M) =ng...... Nger(Xe, . . ., XalM) = er(X(%, ..., X")|M).

PutN = M/(0 : x1). Then by (1. 8) we have
M

oM/ (X, . XM = er(X},. . ., XIM) = er(X, . .., x3)IN)
<IN/ .. XN = 1(M/(0 ;\Axl) + (L. X )M)

and hence (0x;) c (X*,...,x{")M for arbitrary positive integers
M

ni,...,Ng. Thenwe getthat (0 x3) ¢ N (X,...., XM c N "M =
M n>0 n>0
0 by Krull's Intersection Theorem, whete= (X1, ..., Xg).

Now,

eR/x (X2 - - - » XdIM/ X1 M) = er(X4, . . ., XdlM) = |
(M/(X1, ..., X)M) = I(M/x1M/(Xo, . . ., X)) M/ X1 M).

Therefore, by induction, we get thét,, . .., Xq} is M/x; M-seque-
nce.

This completes the proof.

(1.15) Corollary. (i) Let(R,.#) be a noetherian local ring. Then R
is a Cohen-Macaulay ring if and only if there exists a systépae
rameters {xi,...,Xq} for R such that g(xi,...,XglR) = 32

I(R/(X4, .. ., Xd))-

(i) Let(R,.#) be a noetherian local ring. Then R is a Cohen-Macau-
lay ring if and only if for every system of parameteis.x. , xq for
R, we have g(X, ..., XgIR) = I(R/(X1, .. ., Xg)).

Proof. (i) Clear. (ii) Follows from [71, Theorem 2, VI-20] an@{1]14
mi
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(1.16) The limit formula of Lech:

Let M be any finitely generate®@-module andxy, . .., Xg be a system of
parameters foR. Letng, ..., nyg be positive integers. Then

lim M/ ... X3 )M)

min(n;) — oo = er(Xy...Xg|M).
ng----- Ng

Proof. Proof by induction ord. Supposal = 1. Then, for anyn > O,
we haveer(X"|M) = [(M/x"M) - I((O ; x")). Choose an integen > 0
such that (OM:X”) =(0 o XM for all n > m. Therefore, by[[L12)(i), we
haveer(X"|M) = ner(xM) = £(M|x"M) — I((0 M xM) for n > m. Thus
er(XM) = ‘)(L;‘n'v') + C/n, whereC is independent ofi. In particular,

we get

lim w = er(X|M).

N—oo n

Now suppose that = s+ 1, s> 1 and the result holds fat = s.
33 Using[(T.5) an@i{T.8) and replacind by N := M/(oﬁ X", m>>
1, we may assume that ('8 %1) = 0. Note thater(Xs, ..., XsI|M) =

er(Xa, -, XaIN) and

0 < r(M/(KE, ..., X IM) = Er(N/(X, ..., X*)N)
=100 : X)) + (¢ o XM/ L XM = t’((Ol\:/I X1)/(0 : X"

N OG- X7M) < 1((0 ;\AXT)/(XQZ,...,X”")(O :MXT))

<ng---ngl(((0: XT)/(XZ"“’Xd)'(O,\;I X1)) =np...nyC,
M

whereC is a positive integer which is independentsf. .., ng.

Thus we get
[(M/OCE, . XCYM) = I(IN/(CE, .. XN
OS(/(1 4 IM) = I(N/ (X d))sC/nl
nlnznd
i.e. lim 1M/ .. M) = lime I(N/(E, ., XN,
€ min(r|1i)—>oo( /(Xl’ ’Xd) ) min(lni)—mo( /(Xl’ ’Xd) )
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This shows that we may assumeJOq:) = 0. Now by [T.IR),

< nl(M/(x, X2, ..., X3 )M)
=ml(M/X?,.... X )M)

whereM = M/x;M. Therefore, by induction, it follows that

er(X1, - ., XalM)
M/ X M)
im
~ min(n)—oo nmnp----- Ng
(M/(X2, ... X )M) _
li = o XglM
- min(lr:?eoo Np----- ng Q?/xl(XZ, > Xl )
= er(Xy, ..., X|M), since
(0:x) =0. Thus we get 34
M
. M/ (X ... X )M)
lim = er(Xg, ..., Xg|M).
min(nj)— oo np----- Ny

In the next proposition, we will prove that the general npliktity
symbol is nothing but the multiplicity defined jn (TJ2)Now onwards,
we assume that R is semilocal noetherian O

(2.17) The Limit Formula of Samuel

Let M be any finitely generate®-module andky, . .., Xg be a system of
parameters foR.

Assume thag = n(xl,...,xd) is an ideal of definition irR. Then

. M|g"M

a)(q, M) = r!mo nd—(;]dl = QQ(X]_, vy XdlM)

For the proof of this formula, we need the following lemma.
(1.18) Lemma. Let M be any finitely generated R-module and-q
(X1,...,Xg be an ideal of definition generated by a system of parameters
{X1,..., Xq} for R. Then

e0(0; M) = egry (R)(Xa, - . ., Xalgrq(M)),
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35  wherex,...,Xq are images of X ..., Xq in g/0?.

Proof. We putA := grq(R), N := grq(M). By induction ond we shall
prove thathg(N) = ea(Xq, ..., X4|N). Supposal = 0, theng=0,A =R,
N = M andhp(N) = Ir(M) = ¢a(N) = ea(:IN). Now suppose that
d = s+ 1, s > 0 and the result holds fa = s. Then we have by
induction

&R, - %aIN) = a5, .., TIN/TN) — e (. ., %O : )
= ho(N/%iN) — ho((0 : 5) = ho(N),

see remark (i) ifi (I.9) . Also, it follows from the same reknéii) that

eo(d; M) = ho(arg(M))) = gryR) (X1 - - - » Xalgrq(M)). 0
Proof of (1.17)First, we prove that
. 1(Mig"M)
r!mo W < er(Xy, ..., XdIM).
t((Mig"M)

If d = 0theng = 0 and lim s (M) = er(Xa, . . ., Xd|M).

Now suppose thad > 1 and putM = M/x;M, R = R/xq, q = g/
The we haveM/q"M = M/(xaM + g"M)
(RIM/G™M) = ((M/q"M) = £ M + ¢"M/q"M)
= {(M/g"M) = ((xM/x:M N q"M)

Now, itis easy to see thag M/x;MNg"M = x;M/x1(q"M M X1) %
M/(g"M : x;) is an isomorphism. Therefore we get

M
(x(M/q"M) = 1[(M/q"M) — I(M/(@™M : xa)) = 1(M/"M) - [(M/g™2M)
= HS ®(@rg(M).n - 1) for all n.

36
Thus —
eo(@ W) = fim 7T

o n-1/(d = 1)1 > ep(a; M)
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If d > 2, replacingM by M, Rby R, q by g, we get

€(q; M) < en(a/x1; M/x1 M) < ep(a/ (X1, X2), M/(X1, X2)M) < - - -
< e((0); M/gM) = £(M/gM).

i.e., lim M

Now, replacingxy, . .., xg by X7,..., x§, we get

aM/APM) M/, ..., XD"M)
noe (np)d/dl Tnse (npd/d
I(M/(XP, ..., xD)"M)
< pd
CEM/OE, L XYM
Henceey(g; M) < glm ~ = er(Xs,...,Xg|M) by
(1.I6)]. It remains to prove the reverse inequality. hgt..,nq be

positive integers. Pul = grg(R),N = grg(M) andxy, ..., xq be the
image ofxy,...,Xq in /g% SetF := (X',....xX;(")M,K := @ "M n

n>0

(@M + F)/g™M andL = (X%, ..., X{)N. Then it is clear thaK, L
are gradedd-submodules oN, L c K and

forall p> 0.

N/K = & d"M/q"M N (@M +F) = @ "M + F/q™*M + F.
n>0 n>0
Forn>n; +--- + ng, we haveq"M c F. Therefore we get

RMOE, ..., XE)M) = Z fr(G"M + E/q™IM + F)

n>0

= (r(N/K) < €r(N/L) = tr(N/(X, ..., XN).

If Gr(N/(X, ..., XON) = Ea(N/XE, ..., X1).N), then we get’r
(M/(XE, ..., X IM) < Ea(N/ (X, ..., X)N) for arbitrary positive inte-
gersny,...,nq. Therefore, by (1.18) , we get

_ IrR(M/(X2, ..., X:YM)
er(xe,.... xalM) = _lim :
min(nj)—oo Ng----- Ng
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_ EAN/(XE, ... X3)N)
< lim

min(n;)—oo Ng----- Ng
= ea(Xy,. .., XdIN) = eo(q; M)

by[LT8.

Thus it is enough to prove that
CRIN/XE, .. XPN) = Ca(N/XE, ... X )M).

Putl = (X1,...,Xq) - A. Since everyA-module is alsdR-module, it
follows that €a(N/X,....X7)N) < Ir(N/X],...,X)N) and
Ia (N/X, L XEON/ITN) < TR(GE ..., XE)N/IPN), wheren > ng +
.- Ng.

Therefore it is enough to prove that

LR(N/I™N) = £A(N/I"N).
Sincex, . .., Xg annihilates 'N/I'+IN, it follows thatlg(1'N/I'*1N)
. . -1
= Ia(I'N/I'*IN) for all i > 0. Therefore we gelr(N/I"N) = nz Ir
i=0
. . -1 . .
(I'N/IIN) = nz CA('N/IFIN) = £4(N/IPN).
i=0
This complletes the proof pT (L.1J7) .

(1.19) Corollary . Let M be any finitely generated R-module and-
(X1,...,X%3) =g c R be an ideal of definition generated by a system of
parameters for R. Then

er(Xg,...,X4IM) = 0 &= K —dim(M) < dim(R) = d.
In particular,er(Xa, . .., X4|R) > O.

(1.20) Corollary. Let M be any finitely generated R-module ang g
(X1,..., %), d" = (X,..., %)) be ideals of definitions generated by sys-
tems of parameters for R. Then

() g’ cq, then @(xa, ..., XM) < er(X}, ..., XjIM) and

(i) Ifq’ =g, then @(xa, ..., XdM) = er(X}, ..., XjIM).
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(1.21) Corollary. Let M be any finitely generated R-module ang q
(X1, ..., Xq) be an ideal of definition generated by a system of parameters
for R. Then

eo(a; M) = I(M/gM) — £((0g-1M G Xd)/0d-1M)
d-1

~ 2 €0(a/0k (6k-10 ; %)/Ck-1 M)
k=l M

where G=(X,....,%),0<k=<d-1 39
Proof. This follows from remark[{114)(i) and ((Z.If) ). O

(1.22) Corollary. Let M be any finitely generated R-module ane- q
(X1,...,X%3) € R be any ideal of definition generated by a system of
parametergxy, ..., X4} for R. Then g(q; M) = ¢(M/gM) — €((dg-1 : Xd)

M

gg-1M) if and only if X is not in any prime idea? belonging to Ass
(M/0k-1M) such that K-dimR/# > d—k, where @ = (X1, ..., X),0 <
k<d-1

Proof. Itis easy to see that
Ass (Ok-1: MXk) /Gk-1M) = Ass (M/qk-1M) N V((x)).

Therefore we get

K—-dim(@k1M : x)/k-1M) = SupK —dimR/% <d-k
M HeASEM/Gk-1M)NV (%)
if and only if xx ¢ % for all " € AsgM/k-1M) with K — dimR/#%" >
d-k. O

Therefore by[(1.19), we geg(d/dk; (Gk-1M : X)/dk-1M) = Oif and
only if xx ¢ % for all € AsgM/qk-1M) with K —dimR/# > d — k.

Now (IT.22) follows from [(T.211).

(1.23) Definition. (seel2]). LetM be a finitely generate®-module. A
set of elementsy, ..., Xy € RadR) is said to be a reducing system of
parameters with respect i if
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(@) {Xa,...,Xq} is system of parameters f&

(b) eo(a; M) = £(M/qM) — £((Qd-1M :m Xd)/Ad-1M) whereq = (x4, .. .,
Xd) andgg-1 = (X1, . . ., Xd-1)-

The following propositions are useful for the computatidnttee
multiplicity

(1.24) Proposition. Let M be any finitely generated R-module and
(X1,...,%d) = g € R be an ideal generated by a system of parame-
ters x,...,Xq for R. Then g can be generated by a reducing system of
parameters with respect to M.

Proof. By (I.22), it is enough to prove thai ¢ % for all % € Ass
(M/0k-1M) such thaK —dimR/%" > d—k, wheregk = (X1, ..., X),0 <
k<d-1. m|

Leti be an integer with k i < d. Suppose that there exist elements
Y1,...,Yi-1 such thatqg = (ya,...,Yi-1, %,..., %) andy; ¢ # for all
% e Ass M/(y1,....Yj-)M) with K —dimR/# > d - j, foranyj =
1...,i—-1.

We setq = (Y1,...,Yi1, Xi+1,-.., Xg). It is clear thatg c mqg+ q;,
wherem=rad (R). Hence there is an elemente g such thal; ¢ mag+q;
andy; ¢ % forany#% € Ass M/(Y1, ..., Yi.1)M)with R/% > d-i Since
Vi, ..., Yi 1, Xi+1, - - - » X4 @re linearly independent mad g, Nakayama'’s
lemma impliesg = (Y1,..., Vi, Xi+1, . - . » Xd)-

(1.25) Proposition. Let (R,.#) be a noetherian local ring and &
(X1,...,X%3) € R be an ideal generated by a system of paramdters
.., Xq) for R. Then we puty := (0) and 0 := U(0k_1) + (X) for any
0< k<d. Then g(g;R) = [(R/0y).

Proof. From the proof of[({T.9) ), we have
eo(a; R) = eo(a/xa; R/((x1) + (0 : X3)))

for largen. Proof by induction ord. Letd = 1. Then it is clear that
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(0 : x]) = U(0) for largen andep((x1); R) = €(R/((x1) + (0 : X7))) =
ER/((x1) + U(0)) = LR/ %).

Now suppose thad = s+ 1,s > 1 and the result holds fai = s.
First we shall show that ((x1) + (0 : x7)) = U((x) + U(0)) for largen.
Let % € V((x1)) be such thakK — dimR/#% = d — 1. Then it is easy to
see that, for large

% e Ass R/((x1) + (0: X)) &= # € Ass R/((x1) + U(0)))

Moreover, (k1) + (0 : X))z = ((x1) + U(0))» for any? e Ass
(R/((x1) + (0 = x7))) = Ass R/((x1) + U(0))) with K — dimR/%" =
d-1. O

ThereforeU((x1) + (0 : x7)) = U((x1) + U(0)) for largern

PutR := R/(x1) + (0 : X)) for largen, &1 = (0) and 0k = (x) +
U(Ok-1 for any 1 < k < d. Then by induction we gety(q; R) =
e(q; R) = ¢(R/U). Now, sinced = U(0) + (x1), it follows that

U(0) = U(U(0) + U((x1) + (0 : x) and Oy = Oy/((x1) + (0 : x7))
for largen. Thereforegy(q; R) = ep(q'; R) = ¢(R'/0"d) = €(R/ ).

(1.26) Example. Take the classical example froni [[90], 811] ( see also
[[26], p. 180] and [I50], p. 126]).

Let V1, V> andC be the subvarieties (ﬂ‘k‘ with defining prime ide-
als:

@Vl = (X1X4 - X2X3, X]2_X3 - Xga XlX:% - X%X4’ XZXZ% - Xg)’
X, = (X1, Xa) and %y = (Xg, Xa, X3, Xa).

We putA(Vy; C) := A := (K[(Xo, X1, X2, X3, X4/ %) %.
Then %,.A = (X1, Xs)A is generated by a system of parameters
X1, X4 for A and

%, + (X1) = (X1, XoXz, X2, Xo X5 = X3) N (X1, X3, X3, Xa)

is a primary decomposition @¥, +(X1) in A. Therefored (%4, +(X1)) =
(X1, X2X3, X3, Xo X5 — X3). It follows from (I2Z5) that

eo(Z,A; A) = L(A/(Xa) + U(H, + (X))
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= O(A/ (X1, Xa, X5, X2 X3, X3)A) = 4.

Also, £(A/%,) = €(A(X1, Xa, X2X3, X3, X3)A) = 5. Therefore in this
example the inequality N (1.9) is a strict inequality, i@ (A/ %, A; A)
< I(A/(#,).

C. The HILBERT Function and the Degree

(1.27) Notation. The following notation will be used in sequel.

Let K be a field andR := K[Xop,..., X,] be the polynomial ring
in (n + 1)-variables oveK. LetV(n + 1,t) denote theK-vector space
consisting all forms of degreein Xo,...,X,. It is easy to see that

dime V(n+ 1,t) = (A7), forallt > 0,n > 0.
Letl c Rbe a homogeneous ideal. D\éfl, t) be theK-vector space
consisting of all forms invV(n + 1,t) which are contained ih.

(1.28) Definition. The numerical functioM(l,-) : Z* — Z* defined
by H(I,t) = dimg V(n+ 1,t) —dimk V(I,t) is called theHilbert function
of I.

General properties of the HILBERT function
Letl, J c Rbe two homogeneous ideals.
(1.29)

() If1 c JthenH(l,t) > H(J,t) forall t > 0.

(i) H( +Jt) =H{,t)+Ht)—H( nJt)forallt> 0.

Proof. SinceV(l,t) < V(Jt)if | c JandV(l + Jt) = V(I,) + V(I 1) —
V(I nJt)forallt> 0, (i) and (ii) are clear. m|

Let <R be a form of degree. Then
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(1.30)
) H(pR 1) = H((0),t) - H((0),t - )
=M -GN fort>r—n
=tMforo<t<r-n
44
. H( NneRt) = HER ) + H(l : ¢),t—T).
(i — H(eR 1)+ H(t— 1) if (1 1 @) = 1.
i) H( +oR 1) = H(I,t) = H(l : ¢),t—r).

—H(,0) - H{ :t—1)if (1 1 ¢) = 1.

In particular, H((0).t) = (")

n

H((1),t) = Oforallt > O.
Proof. Itis easy to see thdtn ¢R = (I : ¢) - ¢R. Therefore we get
dimg V(I N R t) = dimg V(I : ¢, t =)

In particular (takd = R),dimk V(I¢R,t) = dimg(R,t — r). From this
and[{T.Z9] all (i), (i), (iii) are clear. m]

(1.31)

Let % c Rbe a homogeneous prime ideal wkh- dimR/# = 1 If K
is algebraically closed, the#( is generated by linear forms and

() HZ,)=1forallt>0

(i) Foranyr>OH@"t)=1+(])+ ")+ +("7) = (")
Proof. We may assume tha§y ¢ . Consider the idea?, = {f.|f(1, 45
X1/ X0, ..., Xn/Xo), T € @} € K[X1/Xo,...,Xn/Xo]. It is easy to see
that this is a maximal ideal i/K[X1/Xo, ..., Xn/Xo]. Therefore, by
Hilbert’s Nullstellensatz, there exist;,...,a, € K such that#, =
(X1/Xg — a1,..., Xn/Xo — &,). Now it is easy to see that’ = (X; —
X, ..., Xn — anXg). To calculateH(#/,t) andH(#",t), we may as-
sume that? = (Xg,...,X,) Then it is clear thaH(#/,t) = 1 for all

t > 0 and since”" is generated by forms of degreen Xi,..., X, it
follows that O
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=

r—

H(#',t) =

_Z(n+k 1) (n+r—1)
& r-1
The following is a well-known theorem (for proof see [26]5]%r

[72]).

(forms of degredin xq,..., Xn)

LI

(1.32) HILBERT-SAMUEL Theorem

Let | c R be a homogeneous ideal. The Hilbert functidil,t), for
larget is a polynomialP(l,t) in t with codficients inQ. The degree
d(0 < d < n) of this polynomialP(l, t) is called the projective dimension
or dimension of and we will denote it by dim|. It is well-known that
dim(l) = K —dim(l) - 1. We will write the polynomialP(l, t) in the
following form:

P(1,t) = ho(1)(g) +ha(g_1) + -+ + ha,

wherehg(l) > 0, hy, ..., hy are integers.

(1.33) Definition. (a) Letl c Rbe a homogeneous ideal. The positive
integerhg(l) is calledthe degreef I.

(b) LetV = V(I) c P} be a projective variety iity defined by a homo-
geneous idedl c R. ThenK —dim(l)(resp dim(l), degree of I) is
called the Krull-dimension of V (resp. The dimension of V, the de-
gree of \) and we denote it b — dim(V)(resp dim(V), deg¥)).

V is called pure dimensional or unmixeifl | is unmixed.

(1.34) Remark. In general, the degree &f is to be the number of
points in which almost all linear subspadesd™“) c P meetV. By
combining this geometric definition with a variant of the bdift poly-
nomial, we can give our purely algebraic definition of dépénd open
the way to the deeper study of this properties (see [50, Emed6.25)
on p. 112)).
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Some properties of the degree.

(1.35)

Let ¢1,...,05s € R be forms of degrees,,...,rs, respectively. If
(o1, ..., ¢i—1) - ¢i) = (¢1,...,¢i-1) forany 1<i < sthen

hO((Sala ) QDS)) = rl ~~~~~ rS'

Proof. Proof by induction ors. Supposes = 1. Then by {T.30) (i) we
haveH((¢1).t) = (3") = (" ") =ra(,fy ) + -+~ forallt>r —n. o

n nt

Thereforehg((¢1)) = r1. Now supposes = p+ 1, p > 1 and result 47

holds forr = p. Since (@1,...,¢s-1) : ¥s) = (@1, .., ps1) by[[T.30)]
(i) we have

H((QD]_, R QDS)7 t) = H((QD]_, R ‘705—1)’ t) - H((QD]_, R 903—1)9t - rS)

:hO((‘Pl,...,Sﬁs—l))( )+~~~—h0((g01,...,g05_1))( t="rs )

n-s+1 n-s+1
=rs—ho((¢1, .. .,gos_l))(nzs) +---forallt>rs—n.

Therefore, by induction, we gép((¢1, - - -, ¢s)) = rs-ho(e1, . . -, ps-1) =
r]_, [N rs.

(1.36)

Let | c R be a homogeneous ideal apde R be a form of degree.
Then

(i) If dim(1,¢) = dim(l) = dim(l : ¢) thenho(l, ¢) = ho(l) = ho(l :
)8

(i) 1Fdim(1,) = dim(1) > dim(l : ¢) thenho(l, @) = ho(1).
(i) 1f (1 @) = I, thenho(l, ¢) = r.ho(l).

Proof. This follows from[{T.30] ]



48

36 1. Preliminary Results

(1.37)

Let| c Rbe a homogeneous ideal. Then

ho(1) = ho(U(1))

Proof. Suppose dim( = d. We may assume thatgc U(l). Then we
havel = U(l) n J whereJ c Ris a homogeneous ideal with dif)(<
dim(U) = dim(l) = d. Therefore fron] (I.29) (ii), we gdtp(l) =
ho(U (1)) o

(1.38)

Let? c Rbe a homogeneous prime ideal and R be a homogeneous
% -primary ideal. Then

ho(0) = 1(q).-ho(%).

Proof. Letgq=01 c g Cc --- C g, = # be a composition series for
It is enough to prove that

ho(g) = ho(Qis1) + ho(#) forany 1<i < ¢ -2
O

We assumé = 1. There exist formspy,..., ¢s such thatgy =
(A1, ¢1, - - -» @s)- By using remark in (1.1) to th&' Ry - primary ideal
gR» c Ry, it follows the % ¢; c g, for all i=1,..., sand there exist
formsa; andg;, 2 <i < r such that

() ppg# forall2<i<s
(i) aigi—Bipremforal2<i<s

Therefore @1 : ¢1) = % and since? < (191, - - -»¢i) © @iv1) the
homogeneous idealsfp1, . . ., ¢i) : ¢i+1) have dimensior d, for any

1 <i < s—1. Therefore fronf (1.36) (i}, (1.36) (i), we gbb(qp) =
ho((O1¢1, - - - @s-1) = ho((Q1¢1, - - -, @s-2) = -+ = ho(qr) — ho(#).
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(1.39)

Let 7 # % be two homogeneous ideals fand letg; be two ho-
mogeneous?- primary ideals fori = 1,2 If dimqg; = dimaqgp then

ho(gz N G2) = ho(a1) + ho(Q2).

Proof. Since#; # %5, it follows that dim@ + g) < dimqgz = dimap.
Therefore, fronf (1.29) (ii), we have

ho(gz N d2) = ho(ar) + ho(g2).

O
(1.40)
Let| c Rbe a homogeneous ideal. Then
ho(1) = ho(U(1)) = > 1(0)-ho(#).
whereq runs through al” -primary components of with dim(g) =
dim(l).
Proof. This follows from[(1.37] [(1.39) ar{d (1.3B) . |

(1.41)

Letl c K[Xo, ..., Xn-1] be a homogeneous ideal of dimensidnvith
the Hilbert functionH (I, t) = ho(}) +hy(_,)+---ha fort >> 1. Letl* c
K[Xo, ..., Xn] be the homogeneous ideal generated Byen dim(*) =
dim(l) + 1 = d + 1 and the Hilbert function of* is given by

H(*,t) = ho(l},,) + (ho + o)) + -+ - + (hg + hg + 1) fort >> 1.

Proof. Every form¢ € 1 of degreet can be written uniquely in the
form
=@+ oiXnt o+ X,
wheregt, ¢r_1, . . . are forms of degredst — 1,...inI.
ThereforeV(l*,t) = kiOV(I_, k) and hence O

49
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H(I* 1) = (t:]n) _ kzio[(::q)) —H(I,K)].

! — L (t+n t+n
= H(l,Kk), since ( )):( )

k=0 k= k=0
t+1 t+1 t+1
-l on( &)
S P RGN 4 ERRRR YRR PR

(1.42)

Letl c K[Xg,...,Xn] be a homogeneous ideal of dimensi(0 < d <
n—1). Putl = | N K[Xo,..., Xn-1]

1 = {p € K[Xo, ..., Xn1llgi is a form such thapg + ¢1 X, € | for
some formy € K[Xo, ..., Xn-1]}

I = {¢ € K[Xo, ..., Xn-1]lgi is a form andpg+ @1 Xy +- - - +@i X! € |
for some formspg, ..., 91 € K[Xo, ..., Xn_1]} fori > 1.

Thenitis clear that

lclycloc - Cly=lyyy =... for somer > 1.

Therefore, we get

t
dimV(.t) = dimV(1.t) + > dimV(,t-K forallt > 0
k=1

and hence

t
A1) = () (70 @0 - DI - Hot- )
k=1
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t
=H(I,t) - > H(lt—K) forallt >0,
k=1
51
(1.43) Example. (i) Let % be the prime ideal

(XoXz — X2, X1X2 — XoXa, X3 — X1X3) € K[Xo, X1, X2, X3].
Following the notation df{1.43) , it is easy to see that

Y = (XoXo = X3)

=% =...(Xo, X).

Therefore, by (1.35) , we get
H(#,t) = 2t + 1 andH(#%4,t) = H(@,t) = --- = 1 forallt > 0.

Hence by (T.42)

t
H&Z. ) = H@ .0+ > H@t-K) =3t+1
k=0

Thereforehy(#) = 3

(i) Let & be the prime idealXoX, — X2, X3 — XoX3) C K[Xo, X1,
X2, X3]. Then? = (XoXp — X2),H(#,t) = 2t + 1, for allt > 0.
W= =..=X,X2),

l1fort=0

H(94,1) = H(%5,1) =
(#1.9) (%2.1) {Zforalltzl

Therefore, by (1.47) , we get

l1fort=0

t
H(Z,t) = H(Z, 1) + k;) H#t-k) = {4t forallt> 1.

Hencehy(#) = 4. 52
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(iii) Let # be the prime idealX3Xz — X3, XoX3 — X1 Xz, XoX5X3Xs,
X1 X3 = X3) € K[Xo, X1, X2, X3

Then
— — 1fort=0
YW = (X2%Xo — X3),H(Z) =
(XX =X0). H() {3tforal|t21.
1fort=0
% = (XoX2), H(#4,1) =
1= (XoXq). HA.Y {Zforalltzl.
Wy = W3 = -+ = (Xo, X1), H(#5,1) = H(#4,1) = ... = 1 for all
t > 0. Therefore, by (T.43) , we get
t 1 fort=0
HZ,0) = H#Z, 1) + > H(Zt-K) =14 fort > 1.
k=0 4+t fort=>2

HenceHy(#) = 4.

(iv) Let % c K[Xp, X1, X2, X3] = Rbe the prime ideal in example (jii)
above and? = (X1, Xg) € K[Xg, X1, X2, X3].

Thenq = (% + Z) = (Xo, Xa, X1, X2, X3, X3) is (Xo, X1, X2, X3)-
primary ideal and it is easy to see th@/q) = 5. Therefore, by (1.3§) ,
we havehy(q) = £(R/q) - ho((Xo, X1, X2, X3)) = 5 and from example (iii)
ho(#') = 4. This shows that

5 = ho(q) # ho(#) - ho(Z") = 4.

D. Miscellaneous Results

Now we collect some results which will be used in the nextieast
Let K be a field.

(1.44) Proposition. Let A be a finitely generated K-algebra. Then
U = {# e Spech)|A» is Cohen-Macaulay is a non-empty Zariski-
open subset ddpech).



D. Miscellaneous Results 41

For the proof of this proposition, we need the following lemm

(1.45) Lemma. Let A be a finitely generated K-alegbra agd <
Spech) If Ax is Chone-Macaulay, then there exists a maximal ideal
m of A containing?” such that A, is Chone-Macaulay.

Proof. Proof by induction ord := dim(A). O

Case(i): ht ' = 0. In this case# is a minimal prime ideal of. If

d = K -dimA = o, then there is nothing to prove. Now suppose that
d = s+ 1,s> 0 and the result holds faf = s. ReplacingA by A for
somef ¢ %, we may assume that As8)(= {#'} andK — dimA > O.
Then depth &) > 0. Letx € A be a non-zero- divisor i andq be a
minimal prime ideal ofx A. Then by Krull'sPID ht q = 1 and hence
% Cq.

PutA” = A/(x) andq’ = gA ThenAj is Cohen Macaulay and
htg = 0. Therefore,by induction, there exists a maximal ide@&l of
A’ with  c .’ andA’'mis Cohen-Macaulay. Thew = .#’ N Aisa 54
maximal ideal ofA containingg > ¢ and Ay, is Cohen-Macaulay.

Case (ii):ht# =r > 0.

SinceAs is Cohen-Macaulay of dimensiarthere exisixy, ... X, in
% such thatxy, ... X }is anAg - sequence.

By replacing A by A; for somef ¢ %, we may assume that
{X1,...%} is an A-sequence an&’ is a minimal prime ideal of
(X, ...%). PUtA” = A/(X1,...%)and%”’ = #A. Then ht%’ = 0
andA;y, is Cohen-Macaulay; therefore, by case(i), there existsx-ma
mal idealm’ of A’ such thatf > #” andA,y is Cohen-Macaulay. Then
m=m N Ais a maximal ideal oA with m> % and sincgXy,... X} is
an A-sequence, it follows th# , is Cohen-Macaulay.

Proof of Proposition (1.44). ClearlyU # ¢. Let# e U shall show
that there existd ¢ #'such thatD(f) = {g € Spec@)|f ¢ q} C
U, that is, A; is Cohen-Macaulay for somé ¢ #. By (.43), we
may assume tha® = .# is a maximal ideal ofA. ReplacingA by
As for somef ¢ .# we may assume that AsaX = #4,...,% with
% c mi < i <r. SinceApis Cohen- Macaulay, we haw :=ht
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m=dimAy, = dim(A/%)m forall 1 <i < r. Therefore
dimA = supdimA/Z% = supdim(A/%).» = d

1<i<r 1<i<r
and there exisky, ..., Xy € msuch that{xy, ..., Xq} is anAn-sequence.
Further, replacing by A; for somef ¢ m, we may assume théx;, . . .,
X4} is anA-sequence. This shows thaais Cohen-Macaulay.

(1.46) Proposition.

1. Let UK be afield extension. Letd Ko[Xo,.. ., Xn] =: R be a homo-
geneous ideal. PR = L[Xo, ..., Xp]. Then k(I) = ho(IR).

2. Let A be a finitely generated K-algebra and-l A be an unmixed
ideal. Let xe A be such that k- dim(A/(1, X)) = K —dim(A/l) — 1.
Then

RadU((I, x))) = Rad(, X).

3. Let V = V(I) c P} be a projective variety defined by the homoge-
neous ideal Ic K[Xo, ..., X,] =: R. Let C be an irreducible subva-
riety of V with the defining prime idea. Let A= (R/l)s be the
local ring of V at C. If V is pure dimensional, then

K —dim(A) = K —dim(V) — K — dim(C).
Proof. 1. Clear.

2. Putd := K - dim(A/l). It is enough to prove that, for every
minimal prime ideal of (I, X)

K-dim(A/g)=d-1

Sincel is unmixedd = K —dim(A/I) = K —dim (A/#%) for every
% e Ass (A/1). Let (I,X) c q c A be a minimal prime ideal
of (I,x). Then there exists a minimal prime ide&l of | such
that% ¢ g and by Krull's Principal Ideal Theorem, we have ht
g/% = 1. Therefore; since is a finitely generatedk-algebra,
we get

K-dimA/g=K-dmA/#% —htg/#% =d- 1
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3. Letl c g c Rbe a minimal prime ideal of such thatk — dim
(R/g)# = K —dim (A). Then, sincd is unmixed andr/q is a
finitely generated-algebra, we get

K —dim(V) = K — dimR/I = K — dimR/q = K — dm(R/%)
+ K - dim(R/Q)% = K — dim(C) + K — dim(A).

O

(1.47) Proposition. Assume that K is algebraically closed. LgKL

and L|K be field extensions and B be finitely generated K-algebras.
Then

@) (a) L% L’ is an integral domain.

(b) K—-dim (A% B) = K-dim (A) + K-dim (B) and if A and B are
integral domain then /% B is an integral domain.

(c) PuA =1L % A. Then K-dim A =K-dim A and if A is an
integral domain then Ais an integral domain.

(i) There is a one-one correspondence between the isopatete ide-

als of A and the isolated prime ideals of A L§A which preserves 57
K-dimensions.

(i) (@) If Ais unmixedthen A=L % A is unmixed.

(b) If Aand B are unmixed then%\B is unmixed.

(iv) (a) If Aand B are Cohen-Macaulay ther%B is Cohen-Macaulay.

(b) Let# e Specf) and ge SpecB). If A» and B, are Cohen-
Macaulay then A % Bq is Cohen-Macaulay.

Proof. (i) (a) We may assume thatis finitely generated ovef. Let
{X1,..., X} C L be a separating transcendence basig¢f(since
K is algebraically closed it exists). Put := K(X1,...,Xn). Then
LIL; is separable and hende = Li(a) = L1i[X]/(f(X)), where
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f(X) is the irreducible polynomial of ovel;. Sinel; % L' =~
ST (L[Xe, ..., %]), whereS = K [X1,...,X%] - 0, L1 ® L’ is an

integral domain with quotient fiel&d = L’(xq, ..., X,). Now, note

that sinceK is algebraically closed ih’, it is easy to see that

L1 = E(Xs,...,X,) is algebraically closed ifc. ThenL % L' =

LeLlili®Ll’ o L®E = Li[X]/(f(X) ® E = E[X]/(f(X)) is an
Ll Ll Lj_ Ll

integral domain.

(b) By Normalization Lemma, we have
K- dim(A% B) = K —dim(A) + K — dim(B).

LetL (resp.L’) be the quotient field oh (resp.B).
ThenAg Bc L% L” which is an integral domain bJ.

(c) Similar to p).

(i) Let # e Specf). Then by () (c) AL € Specf) andK —

dim(#) = K —dim(Z'A.). Itis easy to see tha is isolated if
and only if % A, is isolated. Therefor@ « % A, is, as required
al — 1 correspondence.

(i) (a) Let# € Ass (A). Then by )(c)K —dim#Z A = K-dim¥% =

K —dimA = K —dimA_. Therefore it is enough to prove that Ass
(AL) ={Z AL|% € Ass (A)}, which follows from {i).

(b) Let# € Ass (A) andg € Ass B). Then by {i) (b) (#,q) isa
prime ideal inAg B =: CandK - dim#,q)C = K —-dim% +

K-dimg=K-dimA+ K -dimB = K—dim(Ag B).

Therefore it is enough to prove that

AssC) = {(#,0).C|# € AssA),q e (B)}.

Let P € Ass (C). Then sinceC is flat overA andB it follows that
PNA=% e€Ass (A)andP N B = qeAss B).
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(iv)

By replacingA by A» we may assume tha&t is local with max-
imal ideal# € Ass (A). SinceA is unmixedAy is unmixed and
thereforeAy is artinian.

Now there exists a cdicient fieldL of A containingK andL %
B— Ag B is an integral extension. It follows frona)thatB, :=
L% B is unmixed and byii) gB e Ass BL). If (#/,0) C ¢ P) then
gBL ¢ PN B, becaus3, — Ag B is an integral extension.

SinceA% B is a freeB_-module it follows thatP N B € Ass BL).

This contradicts the fact th&; is unmixed. Therefor® = (%, q)
-C.

(@ LetK-dim A = r and K-dimB = s. Then we have K-
dmA®B = K-dm A+ K -dmB =r +s. Let{a,...,&a}

K
(resp.{by,...,bs}) be anA-sequence (resfB-sequence). Then,
sinceK is a field, itis easy toseethe#; ® 1,...,a, ® 1,®by, .. .,
1®bg}is an (Ag B)-sequence of length+ s. ThereforeAg Bis

Cohen-Macaulay.

(b) It is easy to see thaty % Bq - S‘l(Ag B), whereS is the
multiplicative set A — %) % (B-0)in Ag B. By (I.23) there
existf € A— % andg € B - g such thatA; andBs are Cohen-
Macaulay. Therefore byaj A¢ % By is Cohen-Macaulay. Since
Ay % By N % B) is a localization ofAs % By it follows that

Ay ® By is Cohen-Macaulay.
m






Chapter 2

The Main Theorem

IN THIS CHAPTER, we state and prove the Main Theorérhrough- 60
out this chapter K denotes an algebraically closed field Bydhe pro-
jective n-space over K

A. The Statement of the Main Theorem

(2.1) Main theorem

Let V1 = V(I1) andV, = V(I,) be two pure dimensional subvarieties
in Pk defined by homogeneous ide&jsandl; in K[Xo, ..., Xn]. There
exists a collection{C;} of irreducible subvarieties 0f; N V, (one of
which may bep) such that

(i) For everyC; € {C;j} there are intersection numbers, sgy/,
Vy; C;) = 1 of V1 andV, alongC; given by the lengths of certain
well-defined primary ideals such that

degis) - deglvs) = . j(Va,Va; Ci) - degCi),
Cie(Cil}

where we put deg() = 1.

(i) If C c V1N Vsyisan irreducible component &f; NV, thenC; €
{Ci}.

a7
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(iii) For everyC; € {Ci}
dim(C;) > dim(Vy) + dim(V2) — n.

In order to prove the main theordm (2}1) we need some prediryin
results.

B. The Join-procedure

The following notation will be used in the sequel.

2.2)

LetV; = V(I1) andV;, = V(l,) be two pure dimensional subvarieties in
Py defined by homogeneous ideddsandl, c Ry := K[Xo,...,].

We introduce two copieR; := K[Xi,...,Xin], i = 1,2 of Ry and
denotel; the homogeneous ideal R corresponding td;,i = 1, 2.

PutN = 2(n+ 1) - LR = K[Xjli = 1,2;0 < n] andr := the
diagonal ideal irR generated byX;; — X;|0 < j < nj.

We introduce new independent variablég overK, 0 < j, k < n.
LetK be the algebraic closure &f(Uy |0 < j, k < n). PutR := K[Xjjli =
1,2;0 < j < n]. Then we introduce so calledyeneric linear forms
loy...,ln:

n
fic:= ) Ukj(Xaj — Xgj). for0<k <ninR
j=0

_ Note that sinceRis generated byn+ 1) - elements anéy, . .., {n €
R, itis clear thatrR = (£, ..., {n)R. B
Let J(V1, V) be the join-variety defined by [ + 15)Rin PE.

(2.3) Lemma. 1. The ideal(l] + Ié)R_’ is unmixed and hence(J; +
1R = (I + I)R.
2. K—dim(J(Vy,Vy)) = K —dim(l; + 15)R
= K —dim(l1) + K = dim(l2) = dim(V1) + dim(V2) + 2.
K —dim((1; + 15)R+7R) = K —dim(ly + 1) = dimVy N Vo + 1.
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3. There is a one-one correspondence between the isolatee pieals
of (I + 12) in Ry and the isolated prime ideals @f + I))R+7RinR
and that this correspondence preserves dimensions aneée&egr

4. For every irreducible component C of YA V»

dimC > dimV; +dimV, - n.

5. degWa). degl2) = ho(l1)-ho(12) = ho((17 + 12)R)
= ho((11 + 15)Rho(7R).

Proof.
1. Follows from [1.417).
2. Follows from [T.417).

3. We have a ring homomorphism
@ R->Ry: K_[Xo,...,Xn]

given by X;j — Xjfori = 1,2 and every O< j < n. lItis
easy to see that Kes = TR ¢ X(#) = (#’ + 1)R. where?’
is the prime ideal irR; corresponding to the prime ide& of 63
R, and ¢—1((|1 +12)R.) = (1] + I)R+ 7R ThereforeR/(l] +

)R+ R 5= Ro/(I1 + 1)Ry and? & %’ + tRgives 1- 1
correspondence between the isolated prime ideal$; of ()Ro
and the isolated prime ideals df ¢ I2)R+ 7RIn R. Itis clear that
this correspondence preserves the dimension and degre®. No

(iii) follows from (LZ4).

4. This follows from (iii) and the fact that, every isolatedipe ideal
of (I7 + 15)R has Krull dimensiorK — dim(l}) + K — dim(l}) =
dimVi + dimV> + 2 (see (i) and (ii)).
Therefore it follows that every isolated prime |deaIsIQF+(I2)R+ 64

7R has Krull dimensior> dim(V4) + dim(V,) + 2 — (n + 1) =
dimVi; +dimV, —n+ 1.
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5. We havehy(R) = 1 by (I3%). Therefore we only have to prove
ho(l1).ho(12) = ho((1] + 15)R). We haveR/(l] + 15)R — Ry/l1] %
Ro/1} = §0/|1§§0/|2. ThereforeH ((I7+15)R t) = 3, H(11Ro, ).

. i+j=t
H(I2Ro, j) for all t > 0. Choose an integersuch that the Hilbert
functionsH(I1Ro, i) =: Hi andH(I2Ro, i) =: H/ are given by poly-
nomialsh; andh’, respectively foii > r. Then

i=0 t r t
DUHH = D R R+ (Hi— )R+ > hi(HE - )
T =0 =0 ==

forn>> 0(n > 2r).

Therefore it follows fronf (1.32) that

L= A
D7 H HE = o) o) 1) ()5, )+ ctherterms)

ol PozR0 g o)

+ terms with degree (in t dy + d».
Therefore we get

ho((17 + 15)R) = ho(11Ro)-ho(12Ro)
= hg(l1).ho(l2)

by[1.46.

It is clear that Lemmd{Z2l3), the Join-Procedur@% reduces our
considerations to the case that one variety is a completesigttion of
degree 1.

To calculateng((1; +15)R), we will study the sum ideal{+15)R+7R
and the radical (denoted by Rad()) of this ideal.



B. The Join-procedure 51

(2.4) Notation. The following notation will be used in the sequel:

§:=K—dim((l;+15)R)  =dimV;+dimV,+2
d: =K —dim((} + I)R+ 7R = K — dim((l1 + 12)Ro)
=dim(V1 N Vy) + 1.

Let % ; be the minimal prime ideals of{( + 15)R + 7R of Krull
dimensionj,0 <t < j <d <. We thus put:

(*) Rad((l; +15)R+7R) = Z44N...0Pyd N ... 0 ZA4N ... 0Tt

wheremy > 1,my_1,...,m > 0 are integers, and where we sgt=0 65
for an integett < j < d - 1if (¥) has no prime ideal of Krull dimension

j.

(2.5) Remark. From[Z3 (iii) it follows that the prime ideal%/ ; in ()

of 24 are in 1- 1 correspondence with the irreducible components of
V1 N V7 and that this correspondence preserves the dimension and th
degree.

(2.6) Lemma. Let C be an irreducible component of ¥ V, and %
be the prime ideal corresponding to C ir) (0f[Z4. PutA = (R/(1] +
15)R)%;, the local ring of the join-variety /1, V) at % j. Then

() K —dim(A) = K —dim(R/(1; + 15)R) - K - dim(#;) = 6 - .
(i) Let % c R be a prime ideal. Then

¥ e AsgR/(1] + 15)R+ (¢, ..., 6)R) with # ¢ %; and K- dim(#)
= ¢ifand only if 7 A € AsgA/(¢o, ..., )A) and K—dim(#Z A) = ¢ —|.

Proof. Follows fromZ3B (i) and_L.45. m|

(2.7) Proposition. (i) For anyé —d generic linear forms, sa#, .. .,
{s5_4—1 we have

K —dim((1; + 15)R+ (¢o. ..., ls-g-1)R=d

(if 5 = d then we sely, . . ., {s_q-1)R = (0)).
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(i) 6 —t -1 < n and equality holds if and only if £ dim(V1) + 66

dim(V2) - n+ 1.

Proof. (i) Assume that there exiskssuchthat (k<6 -d-1and
tx € @ for some? € Ass R/(1] + I)R+ (ell, . .., {k-1)R) with
K-dim@ =6 -K). Letk+1 < m< n. Letyny, be te automor-
phism ofK overK given byom(Uk) = U, om(Une) = Uy, and
em(Upr) = Upe forall 0 < p(# k,m) < nand 0< ¢ < n. Now,
since? is defined oveK; = K(Upjl0 < p<k-1,0< j<n)and
¢m(K1) € K1, we getpm(fk) = tm € ¢ and thereforelf + 17)R +
(o, ..., tn)Rc & Therefore we ged = K—dim((I]+17)R+7R) >
K—-dim(@) = 6 -k, thatis,6 —d—1 > k > 6 —d which is absurd.
This proves (i).

(i) From[Z3 (i) andZb we geat> dim(Vy)+dim(V2)-n+1 > 6—n-1.
Therefores — t — 1 < nand equality holds if and only if

t = dim(Vy) + dim(V2) — n + 1.

O

(2.8) Proposition. Let C be an irreducible component of ¥ V, and
% | be the prime ideal corresponding to C i) flZ4. LetA = (R/(I] +
15)R)%; be the local ring of the join-variety (¥1, V) at ;. Then
{to, ..., ls-j-1} is a reducing system of parameters for

Proof. In view of[Z8 (ii) it is enough to prove: o
(i) Foreveryl<k<d-j-1,
b1 # Y forall @ e Ass R/(I5 + IR+ (Co, ..., lie2)R) with
% c % ;andk—dim#) > 6 - k.
(i) l5-j-1 ¢ @ forall @ e AsgR/(I] + I)R+ (Co, . .., £5-j-2)R) with
% c % ;andk — dim(#) = K —dim((I1 + I2)R(¢o, . .., £5-j-2)R)

Proof of (i) : Suppose for some £ k<6 —j— 1,01 € # for some
% e Ass R/(I] + I5)R) with " ¢ % j andK — dim(#') > § — k. Then
from the proof of 217 (i) we get

(I3 +15)R+7cRC ¥ c %.
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ThereforeZ’ = %; j andK —dim(#%) = | > 6 — k. This shows that
j26-k>=6-6+j+1=j+1whichis absurd.
Proof of (i) : From (i) we get B

K —dim(l] + D))R+ (fo,....ls-j 2R =6 - (06— j-1)=j+ 1 If

ls-j-1 € # for sameZ € AsgR/(I] + I))R+ (o, ..., ls_j-2)R) with
% c % ;. Then by the same argument in (i) above we get= % ;.
ThereforeK — dim(#%') = j. This proves (ii).

C. Step | of the Proof

Step I. In this step, we define the intersection numbgkg,Vo; C) of
V1 and \b along C, where C is an irreducible component af(VYVz
with dim(C) = dim(V1 N V2).

The following notation will be used in the sequel.
[(7+1PR- = (1 +1HR B
[(17 + 19)R]k = U([(17 + 19)R]k-1) + &R
forany O<k<§-d-1.
(2.9) Remarks. (i) (I1+15)Rc (I1+15)R+(¢o, - ., IR < [(1}+15)Rlk
foreveryO<k<¢6-d-1.

(i) It follows from the lemmdZl7 (i) and the repeated apation of
.48 (i) that

Rad(([(1; + I} 1) = RadQ(U([l; + 13]) + Ik 2R)
= Rad(([1] + I3lk-2) + 1R

= Rad(} + 15)R+ (o, ..., tk1)R
forevery O< k<6 —d.
(iii) From (ii), we get

(17 + 1R = ) = U((1] + 15)Rlk)
foreveryO<k<d6-d-1.

68
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Now we study the primary decomposition off(1] + Ié)l‘«_’]&_d_o in
the following lemma.

(2.10) Lemma. (i) The primary decomposition of
U U (1] + 1)Rl5-a-1)
69 is given by
u((1; + 19)Rls-0-1) = A [ ).+ Gme-d[ ] 61

where gq are primary ideals belonging to the prime ideal§qy
in (x) of Z2)1 < i < my and & is the intersection of all other
primary component af([1] + 17)R]s-g-1).

(i)  degii) - degivz) = ho((17 + 15)R) = ho(U([I] + 15)Rls-g-1))

my
= Z(Iength ofgq) - ho(#.q) + ho(O)
i—1

(i) Every prime ideal® j in () of (Z24) with t< j < d — 1 contains
01. In particular, if V; nV> has an irreducible component of Krull
dimensiorn< d — 1then?; # R.

(iv) Every associated prime ide& of &1 has Krull dimension d.

(v) The diagonal ideatR is not contained in any associated prime of
0.

Proof. (i) From (ZT)(i) and[Z19)(ii), we have

K = dimU([1] + 19)Rls-d-1)) =
K —dim(1; + 15)R+ (I, -+ ,l5-4_1)R) = d

and
Rad O([l] + I)Rls-a-0)) = ~
Rad ((; + 1R+ (Lo, ..., ls-a-1)R) € H g

for every 1< i < mq. Therefore# 4 is associated ta([l] +
I7)Rls-q-1) for every 1< i < my.
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70 (i) From[(T:40)] and[[ZI9)(iii)[(1-39) (iii), we get

ho(U((1} + 19)Rls-d-1)) = ho([17 + 1)Rls-a-2) + £5-0-1R))
= ho(U([11 + 12)R]5-a-2))
... = ho(17 + 15)R) = deg{1) - deg{2)

(iii) We have from the proof of (i) that
Rad (15 + 15)Rls-d-1)) = %14 N - - N Zhna N RAAE) € %

for everyt < j < d-1 and for alli. Therefore we gety; c
Rad(©1) c % ; for everyt < j < d -1 and for alli.

(iv) Clear.

(v) If TR ¢ & for some? e AsgR/&4) then (4 + 15)R+ 1R
Rad((; + I,)RR+ 7R) ¢ &. Therefore? = 2y becauseK —
dim(#) = d (from (iv)). This is contradiction!

m|

(2.11) Definition. LetC c V1 NV, be an irreducible component with
dimC = dim(Vy1 NnV2) = d - 1. Let% 4 be the prime ideal in«) of
&3) corresponding (see [Zb)). We define thatersection number
j(V1, V2; C) of Vy and \, along Cto be the length of the corresponding
% a-primary componentj g1 of U([(1] + 15)R]s-d-1).

From [ZID)(i) it is clear that, for every irreducible conmentC of
V1NV, with dim(C) = dim(V1NV>) the intersection numbg(Vy, Vo; C)
of V; andV, alongC is defined and(Vy, Vo; C) > I.

(2.12) Remarks. (i) Itfollows (EI0)(ii) and the definitiod(Z11) that71

dega) - degia) = ) j(V1, Va; C) - degC) + ho(6),
C

whereC runs through all irreducible components\6f n V, with
dim(C) = dim(Vy N Vo).
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(i) If t =d, then our algorithm stops.

Assume that < d, that is,V1 " V2 has irreducible components of
Krull dimension< d — 1. Therefore by[{Z10) (iiy # R. In the
next step we apply modified procedure to stig{1).

D. Step Il of the Proof

Step Il. In the step, we define the intersection numbg€Ys, V»; C) of
V7 and \b along C in the following two cases:

() If C is an irreducible component of M V, of Krull dimension
<d-1.

(i) Certain imbedded irreducible subvarieties C of MV, with t <
K-dim(C)<d-1

(2.13)

From [ZID)(ii) we havel{ g, ..., IR ¢ & for every prime ideat? e
AsgR/07). It follows from the proof of the propositio{2.7)(i) that
b ¢ % forevery? € AsgR/01) withn >r > 6 — d. Consided;_g, we
have

ThereforeK — dim(&; + ls_gR) = K — dim(¢,) — 1 = d - 1 and
(O1r:ls-a) = O1 B

Now we study the primary decomposition of the idg&l1+15_¢' R).
Every primary componert of U(&, + £5_g R) belongs to one of the fol-
lowing three cases:

Case(1).qis #- primary such that there is a prime ide#l; in () of
Z3),t<j<d-1with® =%.

Case(2).qis # -primary such that there is a prime ide#} in (x) of
E3) with# ; c %'

Case(3).qis # -primary such that’ ; ¢ % for all prime ideals? j in
(x) of (Z4)
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Letu(o, + I5_d,R_’) =g N g2N (s be the primary decompo-
sition of U(01 + £s_¢'R), whereqq, g2 and gz run through the primary
components ofJ (01 + €s_¢R) which appear in cas€l(1), cagé (2) and
casel[(B), respectively. If there is no primary componentiged(l), case
@) or casel(3) then we setq = Rfori = 1,2 or 3. We put/s := () Q.
We then have

(2.14) Lemma. (i) If V1 N V3 has irreducible components of Krull
dimension d- 1, then#; runs through prime ideal® 41 1 <i <

Mg-1 in (x) of (Z2).
(i) ho(01) = qz(length of q)-ho(%)+g](length of @)ho(#2) +ho(02).

(i) Every prime ideal? ; in (x) of (Z4) with t< j < d — 2 contains 73
0>. In particular, if V1 NV has an irreducible component of Krull
dimension< d — 2then?, # R.

(iv) Every associated prime ide@ of &> has Krull dimension & 1.

(v) The diagonal ideatR is not contained in any associated prime
ideal of 0.

Proof. (i) From (ZID)(iv) and[ZJ0)(iii), we have’; c % 4_1 for
every 1< i < my_;. Therefore 01 + {5 qR) C % 4_1 for every 74
1<i<mg_3. SinceK-dim(&y+15_gR) = d—1 = K—dim(#f 4_1)
it follows that%/ 4_, is associated tof; + 5_gR) for every 1< i <
My-1.

(i) From[(Z:36) (iii) and (1:40) , we get
ho(01) = ho(01 + 15-aR) = ho(U (01 + 15-4R))

= ) (length ofqy)ho(#41) + ) (length ofc) - ho(%2) + ho(€72)
G G

(i) From @ZI0) (iii), we have ¢1) c % for everyt < j < d- 2.
Therefore {1 + 5-qR) c % for everyt < j < d - 2. Now it
follows from (L.4%) (ii) that
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Rad((01 +15-4R))

= W41 ﬂ . ﬂ Dhrg1.d1 ﬂ N%5 ﬂ Rad(©>)

= Rad@ +1;-qR) c % foreveryt < j<d-2
Therefored, c Rad(@>) c % j foreveryt < j <d-2.

(iv) Clear.

(v) If 71R c¢ @ for some? e AsgR/0,) then (; + 1)) +7 c &.

Therefore?(; c % for somet < j < d and somd. This is a
contradiction (see (i)).
m|

(2.15) Definition. (a) LetC c Vi NV, be an irreducible component

(b)

with K — dim(C) = d — 1. Let % 4-1 be the prime ideal in%)
of Z34) corresponding t€ (see [ZF)). We definthe intersection
number {V1,V>; C) of V; and \4 along Cto be the length of the
corresponding 4_1-primary componentj -1 of U(01 + 1,-4R)
(see [ZIN)(0)).

From [ZI%)(i), it is clear that, for every irreducible coomentC of
V1 (N V2 with K-dim(C) = d—1 the intersection numbeg(Vy, Vo; C)
of V1 andV; alongC is defined and(V1, V2; C) > 1.

From [ZB)(iii), it follows that the prime ideal®s; which appear

in case [[R) of (Z.I3) corresponds to certain imbedded inibtk
subvariety ofV; N Vs.

LetC c V1 NV, be an irreducible subvarieties ¥f N V, corre-
sponding to the prime ide&!, which appear in casél(2) pf (Z.13) .
We definethe intersection number(Y,, Vo; C) of Vi and \b along

C to be the length of the correspondi#g -primary component g
of U(O1 + 15_q4R) (sed(Z:13) ). It is clear that(y1, V2; C) > 1.

(2.16) Remarks. (i) Putc; := > (length ofgy)hg(#5), wheregp runs
02

through all primary components &f(¢; + 1s_gR) which appears

in case[(R) of (Z.13) . Then it follows frori{2]12)(i) arid(Z)i)
that
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(ii)

(i)

(ii)

(iii)

deg{1). deglz) = % J(V1,V2; C). deg(C) + c1 + ho(02).

whereC runs through all irreducible components\6f( V2 with
d-1<K-dim(C) < d.

If t=d - 1, then our algorithm of stdpl Il stops.

(2.17)

Assume that < d - 1, that isV1 " V> has irreducible component
of Krull dimension< d-2. Therefore by[(Z4)(iii))¢> # R. Then
we again apply the above procedure to the ide@aln general, the
application of our algorithm to the idedls < s < d -t is given by
the following considerations.

Suppose the idealss, - -- , 05,2 < s < d -t are already defined.
Consider the idealffsls_g.+s-1R). Then we have

K — dim(Cs + €5_gqss1R) = K — dim(&s + ls_g+s-1R) = d — s and
(Os: €s-dss-1) = Os

Let (Os+ ls_grs1R) = N g1 N g2N () gz be the primary decom-
position ofU(0s + 5_4.+s-1R), which appear in cas€l(1), cagé (26

and casel(3) i (Z.13) , respectively. We g1 := () ds. Then
we have

If V1N V2 has irreducible components Kfdimensiond — sthen
%4 runs through the prime idead% 4_s in (x) of (Z4).

ho(Os) = ho(Os + 15-d+s-1R) = ho(U(Fs + Is-a+5-1R))
= D (length of @) - ho(#3)
1
+ Z(Iength of ().ho(#52) + ho(Ts:1).
7]
We putcs = >.(length of €).hg(#5), whereq, runs through all
02

primary components df) (Js + €5_q+s-1R) Which appear in case

@) of [(Z.13].
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(iv)

v)
(vi)

2. The Main Theorem

Every prime ideal ; in (x) of (Z4) witht < j < d - s-1 con-
tains Os,1. In particular, ifVy (V2 has an irreducible of Krull
dimension< d - s—1thends.1 # R

Every associated prim& of s, has Krull dimensiord — s.
The diagonal ideakR is not contained in any associated prime

ideal of 05,1

In any case, our algorithm of St&p Il stops if we have congtadic

the ideal 0y_;1. We obtain this ideal by studying the primary
decomposition oJ(04_t + £5_+_1R). Therefore the last step yields
the following result:

ho(Od-t) = ho(Cd_t + £5-+-1R) = ho(U(Ty_t + €5+ 1R))

Ik
= > (length ofc; )ho(%%) + Ca-t + ho(a-1+1)
i=0

whereq ; is the % -primary component o) (0y_t + 5-1-1R) for
all1 <i <m andcy¢ = Y, (length ofgy) ho(#2), whereq, runs
02

through all primary components bf(&y_;+£s_t_1R) which appear

in caselR) of (Z.13) .

Summarizing all these we have:

(2.18)

(i)

(ii)

For every irreducible componefitof V; (N Vo we have defined the
intersection numbej(V1, V; C) of V; andV, alongC. Moreover,
j(V1,V2; C) > 1 andj(V1, V2; C) is the length of the corresponding
% j-primary component) j of U(0y-t + €5--1R),t < ] < d (see

(ii)).

We have collected certain imbedded irreducible suietes of
V1N V2 corresponding to the primary components iy« +
ls-1-1R), 1 < s < d -t which appear in cas€l(2) pT (Z.IB) . For
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every imbedded irreducible subvarigiyof V1 (M V2 in this collec-
tion we have defined the intersection numbgry, Vo; C) of Vi
and V, along C. Moreover, j(V1,V2;C) > 1 and j(V,, V2;C)

is the length of the correspondingz-primary componemg of 78
U(Oy-t +15-+-1R), 1 < s < d — t which appear in casgl(2) of (2.13)

(iii) It follows from (EI8)(i) and(Z-17] (iii),(vii) that

deg{V) - deg{V)
= " J(V1,V2; C) degC) + €1 + G + -+ G-t + ho(G-1+1),
C

whereC runs through all irreducible components\6f( V.. We
put C(V]_,Vz) =C+C+---C4—t + ho(ﬁd—Hl)- This C(Vl,Vz) is
called thecorrection term.

(iv) If s—t—1=nthenfy1 =R

Proof. If § —t—1 = nthen (] + I)R+ 7R € Og_rz1. Therefore, if
Og4-t+1 # R then for every associated some prime id@&alof 0y_ty
contains some prime ide& j in () of (Z4). This is a contradiction

(sed(ZIN) ). :
We note the following important observation from SEép Il.

(2.19) Lemma. Let C be an irreducible component of | V,. Let
%; be the prime ideal corresponding to C (R) of (Z32). LetA =
(R/(11,15)R)%; be the local ring of the join-variety (¥1,V2) at % ;.
Then we have

() CierA = U(Ok + Cs_gekaA) for every0 < k < d — j — 1, where
0 = U([(17,1)]5-d-1)-

(i) (Oa-j +l5-j-1)A = U(C4-j + l5-j-1)A = g, jA where g is the
% j-primary component of (Uy_j + 15-j-1R)

(i) % j1A=A.
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Proof. (i) From[(ZI7]) (i), we have 79

K — dimU(Gi + €s_gsk1R) = K = dim(G,1) = d — kand
Y € AsS(Oks1 = ¥ € AssU(Ok+Ls_daik1R) and@p, ¢ ¥

forall pandt < ¢ < d.

Therefore, 7 € Ass(Oxs1) and% C % ; «— % € AssU(0k +
ls_d+k-1R)) and % < % j. This shows thavy,1A = U(0k +

5_gr1)Aforevery O<k<d-j-1.

(i) It follows from [Z.I7)])(i) and[{Z.17] (ii) thatk — dim(Ty-j +
ts-j-1R)) = jand % € AssU(0gy-j + ls-j-1R)) C Ass(-j +
f(s_j_lR. Thereforeﬁd_j + fg_j_l)A = U(ﬁd_j + fg_j_l)A = (j’jA,
whereq; j is theZ j-primary component o) (0y_; + €5-j-1R).

(i) Since K —dim(0y-j+1) = j = K —dim(%(), it follows from the
proof of (i) that AssC4-j+1A = ¢. Thereforedy_j.1A = A
i
(2.20) Corollary.
eo((Cos - - » Cs-j-1)A A = E(A/(Og-j + 5-j-1)A) = j(V1, V2; C)

Proof. This follows from [Z39), [Z29)(i) and (ii) [{I25) afd (SN(i).
i

E. Step Il of the Proof

Step Ill. In this step we collect certain imbedded irreducible subvar
etiesof Y NVowitht—s< K-dim(C) <t,where s=n-6+t+1>0

(see[2ZT)(ii)).
(2.21)

From [ZT)(ii), we havé —t—1<n. If 6—t—1=nthenfy_,1 = R
(seq (Z.18) (iv)) and our algorithm stops.
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Assume thaf—t—1 < nanddy_t.1 # R Puts—t—1+s = nfor some
s> 0. To calculateng(y-t,1), we study the primary decomposition of
the idealU(0y-t;1 + £5-tR). Every primary componert of U(Jg_t,1 +
¢s_tR belongs to one of the following two cases:

Case(1).qis #'-primary such that there is a prime ide#; in () of
(Z.3) such that¥ ; c 78

Case(2).qis % -primary such that th&f ; ¢ % for all prime ideals’
in (*) of (Z4).

LetU(0y-ts1 +05_{R) = NnopN o be the primary decomposition of
U(O4-t+1+€s-tR), whereg; andgy run through the primary components
of U(Oy_t+1 + €5_t{Rwhich appear in casgl(1) and cale (2), respectively.
We putfy_t.» = NQz. Then we have

ho(Od-t+1) = ho(Od-ts1 + l5R)

= ) (length ofdy)ho(#4) + ho(Gg-t2).
01

whereq; runs through the primary components W{Fy_1 + €5-R)
which appear in cas€él(1).

From [ZB)(iii), it follows that the prime ideal®; which appear in 81
case[(R) corresponds to certain imbedded irreducible sigtiess of\V,N
Vo.

(2.22) Definition. Let C c Vi1 NV, be an irreducible subvariety of
V1NV, corresponding to the prime ide& which appear in casgl(1) of
({{Z.Z1)]). We definethe intersection number (Y1, V2;C) of Vi and
V, along Cto be the length of the corresponditg-primary compo-
nenta; of U(Oy-+1+65-tR) (sed(Z.2]) ). Itis clear thafVy, Vo, C) > 1.
Assumedy_t,» = R; then our algorithm of steplIl stops.

(2.23)

If Og-ts2 # R, then we repeat the above procedure to the idgal.»
by usingfs_t,1.
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In general, the application of our algorithm to the idéal .k, 1 <
k<s=n-¢§+t+ 1isgiven by the following considerations:

Suppose the idealéy_t.2, ..., 04k are already defined for 2
k < s. Then consider the ideabyy_.k + €s_tk-1R). Then we have

K = dim(@g-tek + Cs-trke1R) = K = dimU(Gg_eak + o-trke1) = t— K

and (ﬁd—t+k : 56—t+k—l) = ﬁg—nk-

LetU (gt +ls5-tk-1R) = NgiNNay be the primary decomposition
of U(Oy-t+k + ls—t+k-1R), whereq; andq, are the primary components
of U(Oy_tk + €5-1-k-1R) which appear in casgl(1) and cdSe (2) of (2.21)
, respectively. We pulig_tks1 = NGp. Then we have

ho(Cd-tsk = ho(Od-tsk + Cs-tsk-1R) = No(U(Cg-tsk + ls-tsk-1R))

= Z length ofd) ho(24) + ho(Cg_tsksr) for2 < k < s.
(o1

In any case, our algorithm stops if we have used all genereali
forms ¢g, ..., ¢n. ThereforeCy_tssi1 = R wheres = n-6+t+ 1.
Therefore the last step yields:

ho(Od-t+s) = ho(Oy-trs + fnﬁz ho(U(Oy-t+s + €n|'-\_>))

- Z( length ofa).ho(21)
1

whereq; runs through all%;-primary components of) (0g_t.s + (nR
(Note that all primary components 0f(0y_t. s+ £nR) appear in cas€l(1)

of [ZZ1]).

(2.24) Remark. Note thatk — dim 0y_t,x =t —kforevery 1<k < s.
Therefore, in this step, we have collected certain imbeddeducible
subvarietiesC of V; NV, corresponding to the primary components of
U(O4-t+k + €s-t+k-1R), 1 < k < s, which appear in cas€l(1) of (2.21)
. For every imbedded irreducible subvari€lyof V1 N V5 in this col-
lection, we have defined the intersection numf®dh, V; C) of V; and

V2 alongC. Moreover, j(V1,V2;C) > 1, j(V1, V2;C) is the length of
the corresponding?s-primary componenty; of U(0y i1k + €s_tik_1R),
1<k<s=n-¢§+t-1which appear in casgl(1) pf (Z.41) .
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Proof of the Main Theorem(2.1).

() Let {C;} be the collection of irreducible subvarieties 6f NV, 83
consisting of irreducible subvarieties ¥f N V> which are col-
lected in[(Z-18] ()[{Z.I8) (ii) anf (Z.23) . Then the ineston
numbersj(V1, V2; Ci) > 1 of V; andV, alongC; are defined and
j(V1, V; ;) are the lengths of certain well-defined primary ideals.

It follows from[(Z.18] (iii) and(2.23) that

degla). degiva) = ) j(V1, Va; Ci) degCi)
Ci

(i) ltis clear from[{Z.I8] (i) that every irreducible compent ofVyN
V, belongs to our collectiofC;}.
(iii) Let Ci € {Ci}. Then it follows{Z.I8) (ii) ani (Z.23) that

K-dmC)>t-s=t-(n-6+t+1)=6-n-1
that is dim(C;) > dim(Vy) + dim(V2) — n.

This completes the proof of the main theorem (2.1) .
We have the following generalization of the main theoferi){2.

(2.25) The General Main Theorem

LetVy =V(l1),...,V: = V(l;),r = 2 be pure dimensional projective va-
rieties inP{‘( defined by homogeneous idedds..., I, c K[Xo, ..., Xq].
There exists a collectiofC;} of irreducible subvarieties &f; N --- NV,
(one of which may b@) such that

(i) ForeveryC; € {C;}there are intersection number, sdy1,...,V;; 84
C) = 1, ofVy,..., V, alongC; given by the lengths of certain well-
defined primary ideals such that

[ [degt) = > itVa,....ViiCi). degCi),
i=1

Cie(Ci}

where we put degg#) = 1.
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(i) f CcVin---NnV,isanirreducible component &; N --- NV,
thenC; € {C;}.

(i) For everyC; € {Ci},
dim(C) > > dim(vVi) - ( - 1).n.
i=1

Proof. Proof of this theorem is very similar to the proof of that irsea
r = 2 (seq(Z2.1) ). Therefore we omit the proof. (For details, Rat-
Vogel [56, Main theorerfi (1.3) ]). m|

F. Consequences

In the following, we list some immediate consequences ofrih& the-
orem some of which are already known.
A typical classical result in this direction says thaVif, ..., V,,r >
r
2 are pure dimensional subvarietiesPijy, and 3, dim(V;) = (r — 1).n,
i=1
r r
and NV, is finite set of isolated points, thef) V; contains atmost
i=1 i=1
r
[1degd;) points. The following corollary (2.26) strengthens this t
i=1

allow arbitrary intersections.

(2.26) Corollary (Refined Bezout's Theorem)

LetVy,..., V; C Pg,r > 2 be pure dimensional projective varieties in
r

Pk. LetZy,...,Zy be the irreducible components 6f V;. Then
i=1

[ [degw) = >’ dege) > m.
i=1 i=1

This refined Bezout's theorem was developed by W.Fulton and
R.MacPherson (seé& [19], [18]) to give affienative answer the fol-
lowing question asked by S.Kleiman in 1979.
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(2.27) Corollary (Kleiman’'s Question)
LetVy,...,V: C P{‘(, r > 2 be pure dimensional projective varieties in

r
Pg. Then the number of irreducible componentg ¥, is bounded by
i=1
r
the Bezout's numbef] deg{;).

The first proof isI gliven in [17, 87.6] (see al$sa]18]). A secqmdof
(see [[1F]) was suggested by a construction of Deligne useddiace
another intersection question in projective space to ardettion with
a linear factor (see also the method used in [98 Lemma on paki¥
Z3) (v)). A new interpretation of the refined Bezout's trexa was
given by R.Lazarsfeld [45].

The following Corollary [Z28) strengthens the refined Béaahe-

orem[(2.26] .

(2.28) Corollary . Let\,...,V, c Pg,r > 2 be pure dimensional

projective varieties iPk. Then 86

[ [degt) = > iva,..., Vi; C) deg)
i=1

C

where C runs through all irreducible components gffV--- N V;.

The following corollary[Z.2B) gives a generalization®6.Jacobi’s
observation (see the Historical Introductidn,![36].]1[16§460]).

(2.29) Corollary . Let Fy,...,F, be any hypersurfaces ify of de-
n
grees d,...,dy, respectively. Assume that F; contains a finite set of

i=1
isolated points,say F. .., Ps. Then we get

ﬁdi - > deg() > ﬁdi = > i(F1,...,Fy;C).degC) > s
i=1 C i=1 C

n
where C runs through all irreducible components of:% N F; with
i=1
dim(C) > 1.
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(2.30)

Analyzing these results and their proofs, one might be tethpd ask
the following question:

Let V1 = V(I1) andV, = V(I,) be pure dimensional projective vari-
eties inPy defined by homogeneous idedfs andl; c K[X,, ..., Xq].
We consider a primary decomposition of

li+lo=qN---NOgmNgmir N ---N e

whereq; is %-primary and#, ..., %, are the minimal prime ideals of
1+ I5. Then

Question 1.If dim(Vy N Vo) = dim(Vy) + dim(V2) — nis then deg{,).
degl{,) > ¢-17?

Question 2.1f dim(Vy N Vo) > dim(Vy) + dim(V2) — nis then deg{,).
degly) > ¢?

Question 3.If deg(V1) deg V/») > m, is then deg{1) degl/,) > £?

However, these questions have negative answers, as wehaill s
by examples[{3.14) in the next chapter.



Chapter 3

Examples, Applications and
Problems

A. Examples

In this section, we shall illustrate the proof of the mainciteen[(Z.T)] 88
by describing some examples.

First, we would like to make the following definitions.
We preserve the notation of Chapter Il

(3.1) Definition. Let V7 = V(l1) andV, = V(I,) be two pure dimen-
sional projective varieties ity defined by homogeneous ide#{sand
|2 C RO = K[KQ,...,Xn].

(@) An irreducible subvariet€ c V; NV, is said to be anmbedded
component of ¥N Va, if the defining prime ideat/'(C) = # of C
is an imbedded prime ideal offy(+ 15).

(b) Anirreducible subvariet€ c V1 NV, is called ageometric imbed-
ded component of M Vs, if

(i) the defining prime ideal/ (C) = # of C is not associated to
I1+1,and

69



70 3. Examples, Applications and Problems

(ii) C does yield a contribution to Bezout's number dég(- deg
(V2), that is,C belongs to our collectiofC;} of the main the-

orem{TZ1] .

In the following examples, we use the notation of Chapter
For simplicity, we puiXy; = Xj andXp; = YjforallO< j <n.

89  (3.1) Example. Let V; andV> be two hypersurfaces HHZK defined by
F1 = X5(Xz — Xo) = 0 andF, = X;X; = 0. Putl; = (Fy) and
lo = (F2)(c K[Xp, X1, X2]). Itis easy to see that:

() The primary decomposition df, + I, is given byl; + 1, = (X2) N
(X1, X2—Xo) N (X1, X3) and therefore Rati{+15) = (X2) N (X1, Xo—
Xo).

(i) (a) Theset-theoretic intersectionVvh Vs, of V1 andV, is precisely
the linef : X, = 0 and the isolated poirg: X; = X —Xg = 0.

(b) Theideal-theoretic intersection of \vandV; is precisely the
line ¢ : X, = 0, the isolated poinP : X; = X, — Xg = 0 and
the imbedded poin®; : X3 = X, = 0.

(c) Thegeometric intersection of MandVs is precisely the line

¢ : Xo = 0, the isolated poinP : X; = X, — Xg = 0 and two
imbedded pointh X1 =X2=0, Q2 : Xo=X2=0.

N

.’,U1:O

.%‘2:0

Wi Vo
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A. Examples
¢Q2:x9=122=0
P:llszQ—TU:O P:I1:CC2*J,”[):0 P:Cﬁ:xz*ﬂ)zo
[ ° b ° ® °
o =1\ >IN\
Il I Qr:z1=29=01l er‘Tl:I?:O
8 8§ )
I L !
~ = ~

(a) Set-theoretic (b) Ideal-theoretic (c) Geometric

90

(i) Rad(q] + 15)R+ 7R) = (Xa. Y2, Xo — Yo, X1 — Y1)
N (X2 — Xo, X1, Y1, Xo — Yo, X2 — Y2)

=N

1.2 = (X2, Y2, Xo — Yo, X1 — Y1)

where
P11 = (X2 — Xo, X1, Y1, Xo = Yo, X2—2).

and

6 =dim(Vy) +dim(Vo) +2=1+1+2=14
d=dmViNVy)+1=1+1=2
t=1 Therefores —d-1=1

Following the proof of Stefd | in Chapter Il, we get:

(V) U((1; + 1R = (15 + I)R =+ (fo, )R
= 02N O1
whereqiz> = (X%,Yz,fo, 1) is the %4 »- primary component of
U([(1] + 15)R]1) and
01 = (Xa — Xo, Y1, Lo, €1) N (X3, Y1, €0, £1) N (X2 = Xo, Y2, €0, £1).

(v) Let C; be the irreducible component &f; NV, corresponding
to the prime ideal?;,. Then the defining prime ideal & is 91
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(Vi)

3. Examples, Applications and Problems

% (C) = (X2) € K[Xo, X1, Xz] and
j(V1,V2;C) = length ofgy 2 = £((R/012)#12) = 2

Note thatt < d; therefored; # R.
Now following the proof of stepdl in Chapter Il, we get:

U(01, t2) = qu1NG2Nd, wheregy 1 = (X2—Xo, Y1, fo, £1, £3) is the
%4 1-primary component ot) (01, £2) andgp = (X%,Yl,t’o, {1, €2)
(resp.q, = (X2 — Xo, Y2, €0, €1,€2) is %5 = (X1, Y1, X2, Y2, X0 —
Yo) (resp.%; = (Xo, Yo, X2, Y2, X1, —Y1)) -primary component of
U(01,£2)

(vii) Let C, be the irreducible component ¥f N V, corresponding to

the prime ideal; 1 and letCg, C4 be irreducible subvarieties of
V1 NV, corresponding to the prime ideal%, %7/, respectively.
Then the defining prime ideals 6%, C3 andCy4 are Xz — Xo, X1),
(X1, X3) and (X2 — Xo, X2) respectively and

j(V1,V2; C) = length ofqy 1 = 1
j(V1,V2;C3) = lentofqp = 2
j(V1,V2;Cy4) = Lentofgy = 1

Note thatdy_t,1 = 05 = Rand therefore there is no stied Il in this
example

(viii) (a) The required collectiofC;} of irreducible subvarieties of; N

Vs is:

C1 : Xz = 0 the linef with j(V1, V2;Cy) = 2.

C,: X1 = Xo — Xp = O(the isolated point P) with(V1, Vo; Cp) = 1.

Cs3: X1 = X2 = O(the imbedded poin®,) withj(V1, Vo; C3) = 2.

Cs4: Xp = X3 = O(the geometric imbedded po@)with
j(V1,V2;Cy) = 1.

(b) From[{T:35] , we have deg() = 3,deg{/>) = 2 and dedC;) =
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lforalli =1,...,4. therefore we get

6 = deg{1). deglV,) = _Z j(V1, V2; Ci) degCi) = 6.

4
i=1

(3.3) Example. LetV be the non-singular curve i, parametrically
given by{s*, $°t, st?, t*} (see [[26], p.180], [[50], p.126];[190], §11] and
(0.5))

It is easy to see that the prime ideal\bis

| = (XoXa — X1 X2, X3Xo — X3, X1 X2 — X3, XoX5 — XZX3)
C K[Xo, Xl, X2, X3].

Let V; c P? be the defined b = X; = 0. Thenl; = (Xo,X1) C
K[Xo, X1, X2, X3] is the prime ideal oW/;. It is easy to see that:

(i) (1+11) = (Xo, X1, X3) isZ = (Xo, X1, X2, ) -primary; therefore the
intersectionV N V1 has precisely one isolated poipt Xg = X; =
X2 = 0.

(i) Rad((l” + 1))R+7R) = Z4 1, where
@1 = (Xo, X1, X2, Yo, Y1, Y2, X3 - Y3)
0=dmV+dmV,+2=1+1+2=4
d=dimVnVi)+1=11t=1 Thereforda =dands—-d-1=2. 93
Following the proof of Stefl | in Chapter I, we get:

@iy U+ Ii)_R_’]z = (1,1 N &1 Whereq 1 is % 1 primary component of
U([I’'+17)R]2) and ((" +1")R+(fo, {1, £2)R)a, = U([I"+17)R]2) 2, -
Therefore @11)a;, = (Xo, X1, X3, Yo, Y1, X2 — Y2, X3 — Y3)Ray,

(iv) Let C; be the irreducible component & n V; corresponding
to the prime ideal?; ;. Then the defining prime ideal @; is
(Xo, X1, X2) = % and

j(V,V1;Cy) length @11) = 3
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Note thatt = d = 1 therefore their is no Stdpl Il in this exam-
ple. Following Stefi1ll in Chapter I, we gé¢ — dimU (&, €3) =

K dim(01, ¢3) = K — dim(01) — 1 = 0 Thereforeq := U(01, {3) =

(01, t3) is primary ideal corresponding to the homogeneous max-
imal ideal (Xo, Yo, X1, Y1, X2, Y2, X3, Y3) € R This primary idealy
gives the empty subvarietyin our collection.

(v) (@) The required collectiofC;} of irreducible subvarieties of N
V,is:
Cy: Xp = X1 = Xp = 0 (the isolated poinP) with j(V, V1, Cy)
= 3, ¢: the empty subvariety witi(V, V1; ¢) = length of @)
(b) From [1:2B) (iii) an (1-39) ), we have d&)(= 4 and deg¥{1)
=1, degcl) =1
(c) Therefor, from the main theordm (Z]1) we get

4 = deglV). degV1) = j(V,Vy;C1) degCy + j(V, V1, ¢). degip)
=3+ j(V,V1. ¢).

This shows thaf(V, V1, ) = length of @) = 1, so thalg = (&4, £3)
is the homogeneous maximal ideXb( Xy, X2, X3, Yo, Y1Y2, Y3).

The lineVy is atangent line t& at P whose intersection multiplicity
with V atP is 3. In general, the non-singular curv@g c P3 defined
parametrically by

{s' 1, st 1% d > 4,
are of degreel and have a tangent line with a contact of order 1

(3.4) Remark. The empty subvariety is geometric imbedded compo-
nent ofV NV in example[(3B).

(3.5) Example. LetV c P be the non-singular curve of example{3.3)
andV, c Pﬁ be the line defined by = X, = 0. Thenl, = (Xp, X2) C
K[Xo, X1, X2, X3] be the prime ideal o¥/,. It is easy to see that:

(i) The primary decomposition of+l, is given byl +12 = (Xo, X1, X2)
N (Xo. X1, X3, X3, X2X3) and therefore Radi(+ I2) = (Xo, X1, Xo).
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(i) The set-theoretic intersectionnV, of V andV- has precisely one

isolated point.

(i) Rad((I” +15)R+ 7R) = %11 where

(iv)

#1.1 = (Xo, X1, X2, Yo, Y1, Y2, X3 = Y3).
o=dmV+dmVo+2=1+1+2=4
d=dim(VnVy)+1=11t=1. Thereforda =dands-d-1= 2.
Following the proof of stefl | is Chapter Il, we get:

U((I" + 1)R12) = dian 61
whereqy 1 is %4 1 -primary component of) ([(1” + |é)F\_’]2) and

(@1)2 12U {17 + 15)RI2) a2, = (17 + 1R+ (Co, (1, €2)Res,
= (Xo, X1, X2, Yo, Y1, Y2, X3 — Y3).

Let C; be the irreducible component & N V, corresponding
to the prime ideal?; ;. Then the defining prime ideal @; is
(Xo, X1, X2) = # and j(V, Vz; C1) = length ofg;1 = 1 Note that

t = d = 1; therefore there is no StEp Il in this example. Following
StedIl in Chapter Il, we get

K —dim(0y, {3) = K—dimU(&71, £3) = K —dim(0;) — 1= 0.

Thereforeq := U(&1, €3) = (01, £3) is primary ideal correspond-
ing to the homogeneous maximal idexb(X1, X2, X3, Yo, Y1, Y2,
Y3) ¢ R This primary idealq gives empty subvariety in our
collection

(v) (a) The required collectiofC;} of irreducible subvarieties &fNV, 96

is:
C1: Xo = X1 = Xp = 0 (the isolated poin®) with j(V, V5;Cy) = 1.
¢: the empty subvariety with(V, V2; ¢) = length ofq

(b) We have from example(3.3) d&g(= 4 and fron{ (1.35)

deg{z) = 1,degCi) = 1
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(c) Therefore from the main theorem we get

4 = degl). degl>) = j(V, V1, Vo; C1) degCy)
+ j(V, V1, V2; ¢) deg )
=1+ j(V,Vs, V2 )

This shows thaf(V, V1, Vy; ¢) = length ofq = 3.

(3.6) Remark. The empty subvariety is imbedded component & n
V5 in example [[3b)

(3.7) Example. Let V; andV, be two hypersurfaces i defined by
Fi:= X0X1(Xo—2X1) =0 andF2 = XoXl(Xl—ZXo) =0. putll = (F]_)
andl, = (F2)(c K[Xp, X1, X2]). Itis easy to see that:

(i) The primary decomposition df + I, is given byl; + 1, = (Xg) N
(X1) N (X3, X2) and therefore Rati{ + 12) = (Xo) N (X1).

(ii) (a) The set-theoretic intersectidh NV, of V1 andV; is precisely
the two linestp : Xg = 0 and¢; : X; = 0.
(b) The ideal-theoretic intersection W% andV is precisely the
two linesty : Xg = 0f1 : X3 = 0 and the imbedded poift : Xg =
X1=0

(i) Rad((l] + 1)R+7R) = #12N %, N % 1 where

P12 = (Xo, Yo, X1 — Y1, X2 — Y2), %2 = (X1, Y1, Xo — Yo, X2 — Y2)
and

P11 = (Xo, X1, Yo — Y1, X2 = Y2).
6=dimVy+dimV,+2=1+1+2=4
d=dim(ViNnVy)+1=21t=1thereforas—-d-1=1
Following the proof of Stefd | in Chapter Il, we get:

(iv) U([(15 + I5)R]1) = Gu2 N G2 N O, whereqy (resp.dg2) is
% .2 -(%5,2)- primary component chj([(li + Ié)R] 1) Infact, g2 =
(X0, Yo, €0, €1), t2 = (X1, Y1, to, €1)
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(iv) LetC;andC, be irreducible components ¥f NV, corresponding
to the prime ideals?; ; and%5,. Then the defining prime ideals
of C; andC; are (Xp) and (X1),respectively and(Vy, Vo; Cy) =
length ofqy 2 = 1, j(V1, V2; Cy) = length ofgp, = 1,,

Note thatt < d: therefored; # R.
Following the proof of steflll is Chapter Il we get:

(V) q = U(01,6) = (01,862) is #11 - primary ideal. LetCs be
the irreducible component &f; NV, corresponding to the prime

ideal #4.1. Then the defining prime ideal &3 is (Xp, X1) and
j(V1, V2; C3) = length of @).

(vi) (a) The required collectiofC;} is: 98

Ci1:Xp=0 (the Iinefo) with j(Vl,Vz; C]_) =1
Cr,: X3=0 (the Iinefl) with j(Vl,Vz; Cz) =1
C3 : Xg = X1 = O(the imbedded point P ) witi(V1, V2; C3) = £(q)

(b) From[{I.35] , we have ded{) = deg{/2) = 3and ded®; =1 99
foralli=1,2,3.

(c) from the main theorefn (Z.1) , we get9deg¥1) - deglz) =
3

_Zl J(V1,V2; Ci) degCi) = 2+ j(V1, V2; C3).

1=

Thereforef(q) = j(V1,V2;C3) =7
This example was also studied By. Fulton andR. MacPherson in
[[L9], p.10]

(3.8) Example. Let V1 = V(I1) andVz = V(I) be two projective va-

rieties inP} defined by homogeneous idedis= (X4, Xg’ — X1 Xo(Xo —

2X1)) andly = (Xa, X3 = X1 Xo(X1 — 2X2)) € K[Xo, X1, Xa, X3, Xa]. Fol-

lowing the proof of the main theore (Z]1) itis easy to se& tha
(a)The required collectiofC;} is given by:.

C]_ . X]_ = X3 = X4 =0 (the Iine) Withj(vl, Vg; Cl) =1
C,: Xy = X3 = X4 =0 (the line) withj(V1,V5; Cp) = 1
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C3: Xy = X2 = X3 = X4 = 0 (the imbedded point) with(V, Vo; C3) = 7.

(b) From[{T:35] we have ded{) = degl/2) = 3 and dedCi) =
1fori = 1,2, 3. Therefore

3
9 = deglv1) degi2) = ) i(Va, Va; Ci) degC).
i=1
(3.9) Remark. The example[(3]8) was also studied Wy Fulton and
R. MacPherson, (se€ [[119],p.10]) This example illuminatespyroblem
6 below as follows:
Use the diagram foX := V; andY := V,

XNY——A

L

XXY——=p4xp?

the originP is a so-called distinguished variety in the theory of Fulton
and MacPherson, its contribution to the multiplicity is 3ch line also
contributes 3 to the Bezout's number d&ydeg(y) = 9.

In view of the problem 6 below, we want to consider another dia
gram. Using the diagram

XNY——=XxY

L

Aps —— p4 x P4

then we get the intersection numbers 7,1,1 (7 at the )ity apply-
ing the theory of Fulton and MacPherson. Our method alsgasshe
multiplicity 7 to the originP and 1 to each line.

A simpler example irPf< is the following: LetX andY be given by
X1X2 = 0 andX; = 0,resp. TheiXnY is the lineX; = 0. Applying again
the theory of Fulton and MacPherson, we will construct seetion
from the diagram

XNY——=Y

|

X P2
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Then onlyY is a distinguished variety and counts twice. Construct in-
tersection from the diagram

XNY—=XxY

L

Apz —— P2  p?

ThenY and the origin are distinguished varieties each contribliteln
our theory, the origin is also a so-called distinguishedearand its
contribution to the multiplicity is 1, the lin&; = 0 also contributes 1 to
the Bezout’s number degjdeg(y) = 2.

Therefore we want to study the following example:

(3.10) Example. Let V1 andV;, be two hypersurfaces iFg defined by 101
F1 := XX andF; := X2 =0
Following the proof of the main theordm (Z]1) , it is easy te 8&t:

(&) The required collectiofC;} is:
Cy : X1 = O(the line) withj(V1,V2;C1) = n
C, : X1 = X3 = O(the imbedded points) witi(V1, V2; C2) = n

(b) From [(I:35] ), we have ded{) = 2, deg{/2) = nand degCi) = 1
fori=1,2.

2
Therefore & = deg{V1). degl/o) = 3 j(V1, V2; Ci) degCi)
i=1

(3.11) Example. LetV; = V(I1) andV> = V(l,) be two subvarieties
in Py with Vi N V2 = ¢ (for example,the linegy : Xo = X; = 0 and
l1: Xp=X3=0in Pﬁ). Following the proof of the main theorem (2.1)
,itiseasytoseethatt = 0,6—-d-1=06-1<nandU([l;+1]s-1) = q

is primary for the homogeneous maximal ided.(. .., Xn, Yo, ..., Yn).
Therefore the required collectid@;} is just the empty subvariety and
by the main Theorefn (Z.]) ), we get

1(V1, V2; ¢) = deglvy) - deglva).
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(3.12) Remark. LetV,and\s be as in examplé{31L1). LE(V,) (resp.
C(V2)) be the projective cone ovar; (resp. overVy) in IPE”. Then
C(V1) N C(Vy) is given by one pointsafp : Xo = --- = X5 = 0. Itis
possible to show that

J(V1, V2; ¢) = j(C(V1), C(V2); P).

which does provided a geometrical interpretation of thersgction
numberj(V1, V; ¢).

(3.13)

LetV1,Vo andVs C Pﬁ be three hypersurfaces definedby := XgX4,
Fo @ XoXz andF3 @ XpXs, respectively. Put; = (F1),12 = (F2) and
I3 = (F3)(c K[Xo, X1, Xo, X3]). It is easy to see that:

() The primary decomposition df + 1, + Iz isgiven byl; + 12+ 13 =
(Xo) N (X1, X2, X3) and Radly + 12 + 13) = (Xo) N (X1, X2, X3).
Therefore the intersectiod; N V> N V3 is precisely one surface
C: Xp = 0 and the isolated poi® : X; = X, = X3 =0.
Note that we cannot apply the main theofgm (2.1) to this exam-
ple but we can apply the general main theofem (2125) . We pre-
serve the notation of [56]. For simplicity, pi§; = X, X3j =
YjandXsj; = Zj for j =0,...,3.

(i) Rad((l;+15+I5)R+7R) = %4 3n%1 1 whereZ 3 = (Xo, Yo, Zo, X1 —
Y1, X1 — Z1, X — Z, X3 — Y3, X3,~Z3) and
P11 = (X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, Xo, — Yo, X0, —Zp) and
6 =dimVy +dimVo +dimV3+3=2+2+2+3=09,

6 =dimVinVonVy)+1=31t=1. Therefores —d-1 =
9-3-1=5

Following the proof of Ste@ | of [[56], (Z.1) ], we get:

(iiiy U([(1;+15+15)R]s) = qu.3n &1 wheregy 3 = (Xo, Yo, Zo, o, - - -, €5)
is the &1 3 primary component o) ([(I17 + 15 + 13)R]s)
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103  (iv) LetC; be the irreducible component @ NnV,NV;3 corresponding
to the prime ideal’’; 3. Then the defining prime ideal @f; is (Xo)
and j(V1, V2, V3; ¢1) = length ofgy 3 = 1. Following the proof of
Ster of [56][(Z.T) , we get:

(V) U(O1,le) = GiNGENGEN O, whereg; (resp.q3, 63) is (X1, Yo, Zo)+
TR (resp. Ko, Y2, Yo)+7R(Xo, Yo, Z3)+7R)-primary components of
U(01, le). LetCy, CzandCy be irreducible subvarieties ¥ NV,N
V3 corresponding to the prime idealsy( Yo, Zo) + TR(Xo, Y2, Zo) +
7R and Xo, Yo,Z3) + 7R respectively. Then the defining prime
ideals ofC,, C3 andC4 are (Ko, X1), (Xo, X2) and (Xo, X3), respec-
tively and j(V1, Vo, Ci) =1 fori = 2,3, 4.

(Vi) U(O2,€7) = of NG N3 N gf where
a = (X0, Y2, Z3) + TR = (X1, Yo, Z3) + 7RG = (Xo, Y2, Zo) + 7R
and
qf = (Xo. Y2, Z) + TR
Note thatd —t + 1 = 3 and 04,1 = 03 = R Let Cs,Cg,C
andCg be irreducible. subvarieties % NV, N V3 corresponding
to q},qf,qﬁ and q‘l‘, respectively. Then the defining prime ideals
of C5, Ce, C7 andC8 are Q(o, X2, X3), (Xo, Xl, X3), (Xo, Xl, Xz), and
(X1, X2, X3) respectively and(V1, Vo, V3,C)) = 1fori = 5,6,7, 8.

(vii) (a) The required collectiofC;} is:

Cy1: Xp=0 (the surface)

C22X0=X1=0
C3ZXO=X2=0
Cs:Xo=X3=0

Cs: Xg=Xo=X3=0
Cs: Xo=X1=X3=0
Cr: Xp=X1=X=0
Cg: X3 =Xy, =X3=0 (the isolated point)

andj(Vy,Vy;C) =1foralli=1,...,8. 104
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(b) From[{1.35] , we have
degli) =2foralli =1,2,3and degC;) = 1foralli=1,...,8.

3 8
Therefore we get & [] degV) = 3 j(V1, V2; Ci) degCi).
i=1 i=1

(3.14) Examples. (i) LetVy; =V(l1) andV, = V(l2) C P7K be defined

by 11 = (Xo, X1) N (X2, X3) N (X4, X5) N (X6, X7) @andlp = (Xo +
X2, X4 + Xg). Then the primary decompaosition bf + |, is given

by

I1+ 12 = (Xo, X1, X2, X4 + Xg) N (Xo, X2, X3, Xa + Xe)
N (X4, X5, X6, Xo + X2) N (Xa, X, X7, Xo + X2)
N (X2, X3, Xo + Xo, X1, Xa, Xa + Xe) (X, X2, Xq + X, X5, X7, X0, +X2).

Using the notation df{2.30) we have

m=4/_{=6.

We also have 3 dim(Vy N Vo) = dim(V1) + dim(Vo) -7 =5+
5-7 =3 and fron(Z.40) angd (1T.3%) deag( = 4,degl>) = 1.
Therefore 4= deg{/1) degl/o) # £ — 1 = 5. This example shows
that Questiofi]l df (Z:30) is not true in general.

(i) Let V1 =V(l1) andV, = V(l,) C Pﬁ be defined by; = (Xg, X1) N

(X2, X3) N (Xo + X2, Xg) andly = (Xp + X2). Then the primary
decomposition of; + |5 is given by

I1+ 12 = (Xo + Xz, X4) N (Xo, X1, X2) N (Xo, X2, X3)
N (X3, X3, Xo + Xz, X1, Xa).

Thereforem= 1 and¢ = 4
Also 2 = dim(Vy NVy) > dimV; +dimV, -4 =2+3-4=1

and deg¥{;) = 3,degl{/>) = 1 by[(T.39)] and[(1:34). Therefore
3 =degl1)degl,) # ¢ = 4.

This example shows that Questidn Zof (Z.B0) is not true in gen
eral.
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(iiiy Let V3 = V(I1) andV = V(I,) c P| be defined by; = (Xg, X1) N
(X2, X3) N (X4, X5) N (Xg, X7) @andiz = (Xo + Xz, X4 + Xg). The
primary decomposition dfy + |, is given by

Iy + 15 = (X3, X1, Xo + Xo, Xq + Xg) N (Xo, X2, X3, Xa + Xg)
N (X4, X5, X6, Xo + X2) N (Xa, Xs, X7, Xo + X2)N
(X3, X3, X1, X3, Xo + Xa, Xa, +Xe) N (X3, X3, Xs, X7, Xo + Xz, X4 + Xg)

Thereforem = 4 and¢ = 6. From[{L.Z0] an{l (I.33) we have
degl/1) = 5,degl/y) = 1. Therefore ded(;) - deg{,) > m but
deglvy) - deglp) # €. This example shows that Questidn 3 of (2.30)
IS not true in general.

B. Applications of the Main Theorem

The purpose of this section is to show that the main thegremj](@so 106
yields Bezout's Theorem.

We preserve the notation of Chapter Il. In addition, thedfelhg
notation will be used in sequel.

(3.15) Notation. LetV; = V(I1) andV, = V(l,) be two pure dimen-
sional projective varieties ity defined by homogeneous idedisand
loin Ry := K[Xp,..., Xn]. LetC be an irreducible component @f NV,
with the defining prime ideal (C) = #'. Letq(C) = g be the primary
component of + I,. we put:

{(V1,V2; C) := length ofqg = ¢((Ro/11 + 12)%") and
&(V1, V2, C) = en(A(Ro)#; (Ro)»).

Using [Z3B) (iii), we get the isolated prime ideR{resp. I5) of (I1 +
I, + 7)R(resp. (7 + 15 + 7)R)- Let Q(resp. Q) be theP (resp. P)-
primary component ofl{ + 17 + 7) R(resp. (; + 1, + 7)R). LetA =
(R/(17 + 15))p (resp. A = (R/(I] + 13))p be the local ring of the join-
variety J(V1, V) (resp. J(V1, Vo)) atP (resp. P).

(3.16) Remarks. (i) Note thatP = % j for some prime ideat ; in
(x) of Z4), wherej = K — dim(C).
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(ii) eo(tA A) = &(QA A) and
eo(TA; A) = eg(QA; A)

(il eo(tA; A) = eo(A; A) and
@(QA A) = &(Q- A A)

107  Proof. (i) We have QA)" = ((I; + 15+ 7)A)" = (rA)" for all n > 1,
so thatf(A/(QA)") = ¢(A/(xA)") for all n > 1. ThereforeEq(QA A) =

e(7A, A). Similarly, eg(Q.A; A) = ey(TA; A).
(i) This follows from the remark (i) of {1.2) . m|

(3.17) Remark. If Cis a proper component &f; N Vo, that is,C is
irreducible and dim®) = dim(V1) + dim(V2) — n,then the Weil's inter-
section multiplicity symbol(V1, Vo; C) of V1 andV, alongC is given
by

i(V1,V2;C) = eo(tA A)

Proof. See [[69] ; ch. Il, 85, a] m|

(3.18) Lemma. Let Vy = V(l1) and \b = V(l2) be two pure dimen-
sional projective varieties ii?}; defined by homogeneous idealsahd
I2in Ry := K[Xo, ..., Xy]. Let C be an irreducible component of M
V,. Then IV]_, Vo; C) = e()((f(), Ceey fg_j_l)A; A) ={,..., fg_j_l)A) -

£, ..., Cs_j—2) * Cs_j— _ ,
(o o-i-2) il l) where j= K — dim(C).
(o, ..., ls—j-2)A

Proof. This follows from [Z2D),[[Z18) and{1.P3). o
(3.19) Corollary.

I(V1,V2; C) = €(V1, V2; C) + L(tA/ (Lo, - - - s--1)A)
(bo,. -, ls-j-2) " ls-j1
(Cos ..., ls-j-2)A

- )

108 Proof. We havet(Vy, Vo; C) = ¢(A/tA). Therefore this corollary fol-
lows from [3.IB). m|
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We put

Ky := €A/ (Co, . . . L5-j-1)A) ~
_ (({)0, cee fg_j_z) . 55__j_1)A
(o, ..., ls-j-2)A
(3.20) Corollary. (i) Suppose that the local rings(¥; C) of V; at C

are Cohen-Macaulay for+ 1,2. Then [V1, V,;C) > £(V1,V2; C)
and equality holds if and only #fA c (4o, .. ., l5-j-1)A

and Ks:

(i) If TA c (o, ..., Cs5-j-1)A then [V1,V,;C) < £(V1,V,;C) and
equality holds if and only if &/;;C) and AV;;C) are Cohen-
Macaulay. (Note thatA c (fo,...,ls-j-1)A whendimC = dim
Vi +dimV, —n).

Proof. (i) From the proposition{3.21) below, it follows thAtis Co-
hen -Macaulay. Therefore (i) results from1(3.19).

(ii) Follows from (3.I9) and the following propositiof (3R
We study the connecting between the Cohen -Macaulay piepert
of A(V;; C) andA in the following proposition. O

(3.21) Proposition. The notations being the same[as (2.2) dnd{3.18).
The following conditions are equivalent:

() A(Vy;C) and AV»; C) are Cohen -Macaulay 109
(i) Ais Cohen-Macaulay.

(i) (K[X10,-- -, Xan, X20, - - -, Xen] /(1] +15))#(cy +# ¢y is Cohen-Mac-
aulay, whereZ (C)’; and #(C)” are prime ideals in Rand R,
respectively corresponding & (C).

Proof. (i) = (iii). Since % (C)' + #(C)" c % + 1, the local ring of (iii)
is a localization ofA and hence Cohen -Macaulay.

(iii) = (i). This is proved byR. Achilles. This proof is not so easy,
since he uses Samuel’s techniques on the extension of fiedé$inition
(see [I69], ch. 1l, 81, No. 3 and 4]). Therefore, for the prosde the
forthcoming thesis (PromotioB) of R. Achilles.
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() = (ii). By (.44), there exist elementse A(V1) g € A(V,) such
that A(V1)¢ and A(V2)g are Cohen-MacaulayA(V;) denote the coordi-
nates ring ofV;,i = 1,2). It follows immediately from[[T.47) (iv)(a)
that

O AV1)¢ % A(V2)q is Cohen -Macaulay.

Now, putS = {f" % g"Mn,m e IN}. ThenS is a multiplicative set in
A(V1) % A(V,) and it is easy to see th&1(A(V1) % A(V2))=>A(V1)¢ %
A(V2)g. Therefore

K& AV @ (K@ ANV2)gS(KDXao, - Xanl /1) 1@
(K[Xao. .- Xanl) /13)g=>(K[Xa0. .. Xan. Xeo. ... Xanl /(17 + 15))1g

is Cohen-Macaulay. Note thdtg ¢ #'(C) + 7, thereforeATis_a localiza-
tion of (K[X1o,..., X1n, X0, ..., Xen] /17 + 15)tg @and henceA is Cohen
-Macaulay.

(3.22) Proposition. Let Vi = V(I1) and b = V(l») be two pure dimen-
sional projective varieties iy defined by homogeneous ideajsahd
l2in Ry = K[Xo, ..., Xn]. Let C be an irreducible component of V5.
Then o L

j(V1,V2; C) = eo(7A, A) = eo(Q.A; A).
In particular, if C is a proper component ofi\h Vs, that is,dim(C) =
dim(V4) + dim(V») — n, then

j(V1, V2, C) = ep(7A, A) = i(V4, Va; C).

Proof. In view of (3.I8) (ii) and [3.18), it is enough to prove that :
e((fo, ..., ls-j-1)A;A) = eg(rA;A). Sincely,...,ls-j-1 are generic
linear forms we see from the proof ol [[51], Theoreml[69]]tth@ . . .,
ts_j-1 is a “superficial sequence” of order 1 feA = (lo,...,ln)A.
Therefore from [[51], Theorenm[F1]] we get

0 e((lo,.... looj-1)A A) = e((Lo, - . ., (A A) = g(TA; A)
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(3.23) Remark. Proposition [[3.22) does yield a connection between
our definition of intersection multiplicity and Samuel’'ssaovations on
improper components given in his thesis (séeMath.Pures Appl. (9),
30 (1951)-274 in particular chaptef, section 2), see alsd [[69], ch. II,
85, No. 9].

(3.24) Proposition. Let Vi = V(I1) and Wb = V(l,) be two pure
dimensional projective varieties iRy defined by homogeneous ide-
als Iy and b in Ry := K[Xp,...,Xy]. Suppose thatim(V, N V,) = 111
dim(Vy) + dim(Vz) — n. Thendeg{1) - deg{z) = % j(V1,V2; C) degC),

where C runs through all irreducible components afi\\W,.
For the proof of this proposition, we need the following leenm

(3.25) Lemma. Let V; = V(I1) and W = V(l,) be two pure di-
mensional projective varieties i®; defined by homogeneous ideals |
and b in Ry := K[Xp,...,Xy]. Then the following conditions are
equivalent:

() dim(V1 N Vy) = dim(V1) + dim(V2) - n

(i) Every irreducible component of(\h Vo, has dimensiordimVq +
dimVs —n.

(iiiy dim((1] + 15 +7R) = dim((1} + 15)R) - (N + 1).
Proof. We prove (i)= (iii) = (ii) O

From (i) we have dim(g + 17 + 7)R) = dim(Vy N V,) = dim(Vy) +
dim(V2) —n=dim((I] +17)R-1~-n, thatis, we have (iii).

(iii) = (ii) Follows from the fact thatI¢ + I17)R is unmixed (see
@Z3)(i)) and [I23b) (ii). (i)= (i) is trivial.
Proof of Proposition (3.24). From Lemmal(3.25), we hawe= d and
6 —d -1 = n. Hence we get from the Sté€p | of our proof of the mair12

theoren{ (Z.T) that

U([(15 + 15)RIn) = Gud N - N Gmy.a N O
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Therefore, sinc&; ¢iq forany 1<i < my, we geto = R. Hence
{C|C an irreducible component &f; N V,} is the required collection in
the main theorerfi (Z.1) . Theh{3124) follows from the mairotieen
(2.1)].

The following proposition yields a new and simple proof af thell-
known Bezout's theorem.

(3.26) Proposition (Bezout's Theorem)

Let V; = V(I1) andV, = V(l2) be two pure dimensional projective
varieties inlPy; defined by homogeneous idedlsandl, in Ry := K
[Xo, ..., Xn]. Suppose that dinMy N V») = dim(V1 + dim(V2) — n. Then
deg{V). degiz) = 2

c
i(V1, Vo; C) - degC) whereC runs through all irreducible components
of V1N Va.

Proof. Follows from [321) and{3.22). m|

(3.27) Remark. In [[/2] Serre gave an elegant formula for the in-
tersection multiplicity with correction terms to the naigaess which
takes only the length of primary ideals (see our discussfochapter

0, sectionA). In a sense this Tor-formula of Serre explains why the
naive guess fails. Another explanation is givenWy Fulton andR.
MacPherson in [[19], 84]. Also, our approach does give tlsoa for
this phenomenon. Our correction term is givenkyy(See the notation
after the proof of Corollary{3.19)). Roughly speaking, oanstruction
shows that we have to drop the imbedded components. Furbiherme
open the way to deeper study by applying our resQis13.19)aRZ2).
For example, it follows immediately from Corollafy312@) ¢he well-
known fact that

degVy) - degl) < degl1 N Vy)

when dimy{/; N Vo) = dimV; + dimV, — n. In case dim{; N V,) >
dimVy + dimV, — n, we obtain the following results.
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(3.28) Proposition. Let V; = V(I;) and \b = V(I,) be two pure di-
mensional projective varieties iFf; defined by homogeneous ideajs |
and b in Ry := K[Xg,...,Xn]. Assume that the local rings(¥; C)
and A\V»; C) of V1 and \b at C are Cohen -Macaulay for all irreducible
components C of M1 V, with dimC = dim(V1 N V5). Then

deg1) - degl2) > deglv1n'V)
Proof. From the main theorefn (Z.]1) , we get:

dega) - degiva) = ) j(V1,V; Cr) - degCi)
Ci

> > j(V1, V2 C) deg€)
C

> )" V1,V C)degC) by (E20) (i)
C

= deglV1nVy) by [(T.40])

where C runs through all irreducible components ¢f N V,. with 114
dim(C) = dim(Vy N Vy). O

(3.29) Corollary . With the same assumption as [0 (3.28), we have
deg{V1) - degl2) — deglVi N'V,) > ¥ degC) > number of irreducible
C

components of M V, with dimC < dim(V1 N Vy).

(3.30) Proposition. Let V; = V(I1) and Wb = V(l,) be two pure di-
mensional projective varieties i defined by homogeneous ideafs |
and b in Ry := K[Xo, ..., Xy]. Assume that the local ringg(¥; C) and
A(V>; C) of V1 and W, at C are Cohen-Macaulay for all irreducible com-
ponents C of YN V,. Thendegl,) - deg{z) > ge(vl,vz, ;C)deg(C),

where C runs through all irreducible components @f W5, and equal-
ity holds if and only if {V1,V2;C) = €(V1,V, : C) for all irreducible
components C of MV, and{C;} = {C|C an irreducible component of
V1 N Vs,

(3.31) Corollary . With the same assumption as [0 (3.30), we have
deglv1) - degl,) —deglVi NnVo) = 3, £(V1, V2; C) degC), where C runs
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through all irreducible components of YA Vo with dim(C) < dim(V1 N
Vo).

C. Problems

Let Vi = V(I1) andV, = V)I,) be two pure dimensional projective
varieties in P; defined by homogeneous ideals and I in
Ry := K[Xo, ..., Xn].

(3.32) The Main Problem

115  Analyzing the proof of the main theordm (Z]1) and the exanfRl&2),
one might be tempted to ask the following question:

Let C c V1 n V; be an irreducible subvariety corresponding to an
imbedded prime idea®” belonging tol1 + I>. If dmC > dimVy +
dimV, — n, thenC belongs to our collectiofC;} of the main theorem
[[Z.1)]. However, this is not so, as we will show by the follog/iexam-
ple:

The construction is due . Achilles.

LetV; andV; ve two surfaces ilﬁ”“K given by the following ideals

l1 = (Xo, X1) N (Xo, X2) N (X2, X3) and
l2 = (X, Xa) N (X3, Xo + Xa).
Then we have the following primary decompositionl of 15 : 11 +
I, = (Xo, X2) N (Xo, X1, X4) N (Xl, X, X3, X4) N (Xon, Xo + Xo, X1, X3).

Applying proposition [1.46), (i) it is not too flicult to show that
the collection{C;} of irreducible subvarieties &f; NV, is given by:

Ci:Xg=X2=0 with  j(V1,V2;C1) =2
Co:Xo=X1=X4=0 with  j(V1,V2;Co) =1
C3: Xg=X1=X>=0 with  j(V1,V2;C3) =2
Cs: Xg=Xo=X3=0 with  j(V1, V2, Cy) =2

C5ZXO=X1:X2:X4=O with j(Vl,Vz;C5):l
C61X1=X2:X3:X4=O with j(Vl,Vz;Cg):l
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Therefore, the imbedded poidpy = X3 = Xo = Xg=00fViNnVy 116
is not an element ofCi}.

Note that, the correction terg(Vy, V2) > 0 (See notation of{28),
(ii)).

Of course, it would be very interesting to say something ahow
imbedded components contribute to the Bezout's numbeMieg@eg
(V2). This is our main problem.

(3.33) Problem 1. Give reasonably sharp estimate between \deg(

degl,) and} j(V1, V2; C) degC) whereC runs through all irreducible
C

components of/; NV,

(3.34) Remark. It seems to us a rather hard question to give reason-
ably sharp estimates on the error term between\d¢geg{/,) and

> j(V1, Vo; C)degC) or eveny, degC).
C C

In 1982, Lazarsfeld was able to show that if one intersecisemt
spacel in Py with a subvarietyv c PL(V is irreducible and non- de-
generate) an@., ..., C; are the irreducible componentslofh V, then

;
Z degCi < degV) —e

i=1

wheree = dim(L N V) — dimV+ codimL.
His proof is rather complicated. Therefore we want to pose aua7
second problem.

(3.35) Problem 2. Would our methods yield similar results asin(3.34)?

(3.36) Problem 3. (@) If ¢(V1,V2) > 0 then is it true that: dedyf) -
degl/») = number of associated primeslaf+ 1,?

(b) Assume thaV; andV, are reduced. If de§yy)d - deg{/>) > number
of irreducible components &f; NV, then is it true that:

degl1) - degl,) > number of associated primeslaf+ 1,?
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(3.37) Remark. The assumption “reduced” is necessary in Problem

3(b) (see examplé(3.114) (iii)).

(3.38) Problem 4. Let C be an irreducible component ¥f N V, with
K —dim(C) = j,t < j < d. Give geometric (or algebraic ) interpretation
of the property: _ _

TA C (o, ..., 55_1'_1)A.

In connection with Corollanf{3.20), we want to pose thedaling prob-
lem:

(3.39) Problem 5. Let C be an irreducible component ¥, N V. If
j(V1,V2; C) = €(V1,V2; C) or j(V1,V2; C) < £(V1,Vo; C),then describe
the structure of the local ring&(Vy; C) andA(V; C) of V1 andV; atC.

(3.40) Remarks. (i) If A(V1,C) andA(V2; C) are Cohen -Macaulay.
then j(V1, V2; C) > €(V1, V2; C).

(i) If dim Vi NV, = dim(Vy) + dim(V2) — n, then j(V1,V2;C) =
£(V1, V2; C) if and only if A(V1; C) andA(V»; C) are Cohen-Macau-
lay.

(3.41) Problem 6. Give the connection between our approach and func-
tion’s approach to the intersection theory[inl[18]lor [19&our remark
on example[(318)).

(3.42) Problem 7. Is it possible to give an extension of our approach to
the intersection theory for pure dimensional subvariedgs. ., V,r >
2 of an ambient smooth varieg?

(3.43) Problem 8. (David Buchsbaum) Describe all intersection num-
bers ofV; andV, alongC as Euler -Poincare Characteristic.

(3.44) Problem 9. (David Eisenbud) Assume thay andV; are irre-
ducible subvarieties 8f,. Suppose thaV; c V,. Then describe all

elements of the collectiofC;} of the main theorerpn (Z.]) .

In connection with this problem, we want to study the follogi
example.
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(3.45) Example. LetV; = V, be defined by the equatioff + X5 - X2 = 119
Oin Pf(. Then it is not hard to show that our collecti¢®;} of the main
theoren[ (Z.1) is given by:

Ci: X2+ X5 - X2 = 0 and two imbedded points, s& andCs,
which are defined ove.

Therefore we get

4 = degVy)deglo) = ) j(Vi,V2;Cy1) degCi).

3
i=1
Hencej(V1, Vo;Cy) = 1foralli=1,2 3.

(3.46) Proposition. Let 4, V2, V3 be pure dimensional varieties if; .
Then

3
[ [degvd = > (Vs V2, Vs; D) degQ)
i=1

DcViNV,V3

= > |iV1.V2:C) Y (C. V5 E) degE)

CcVinVs EcVs

where D runs through the collectiofD;} of the general main theorem
(2.25])], C runs through the collectid;} of the main theorefn (Z2:1) for
Vi and\b and E runs through the collectiofk;} of the main theorem
(2.1) for C and ¥.

Proof. Immediate from main theorefn (Z]1) dnd (Z.R5) . O

(3.47) Problem 10. Let V4, ..., Vg be pure dimensional subvarieties of
Pg. LetC an irreducible component &f; --- Vs, s> 1. Then is it true
that

S
j(Va,....VsiC) = | [ 3(vi.C; ©)?
i=1

Also give a characterization for the equality. 120
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(3.48) Remark. In 1937, 0. Zariski proved the following statement
(see: Trans. Amer. Math. Soc. 41(1937), 249-265): if thginns an
m-fold point of n hypersurfaces, ..., F, of P} and it is an isolated
point of intersection of thesevarieties, then the intersection multiplic-
ity at the origin is not less thamym, - - - m,, by assuming that the hyper-
surfaced4, ..., F, have only a finite number of common points. Other
proofs have been given, for example, by 0. Perron (see:Bayead.
Wiss. Math. NaturK 1. Sitzungsber. Jahrgang 1954, 179-199) or by H.
Gigl (see: Monatsh. math. 60(1956), 198-204). Also Zakskieorem

is a special case of a theorem given by D.G. Northcott (seartQi
math. Oxford Ser. (2)4 (1953), 67-80) or by W. Vogel (see: Bish.
math. 71(1967), 238-247) as an illustration of the genéebity which
was developed in these papers. Studying our prodleml (3vEANant to
give an extension of these observations. In the meanwhil&cRilles
proved the above inequality. The characterization of theality is yet
open. We want to conclude these notes with the followingexoye:

Conjecture. Let X and Y be two pure dimensional subschemé;, of
given by the ideals(K) and I(Y). Thendeg(X).deg(Y) > number of
prime ideals? belonging to (X) + I1(Y) such thatdm% > dimX +
dimY —-n.
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