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Preface

These notes comprise the contents of lectures I gave at the T.I.F.R. Cen-
tre in Bangalore in April/May 1983. There are actually two separate
series of lectures, on controlled stochastic jump processes and nonlin-
ear filtering respectively, and the corresponding two partsof these notes
are almost disjoint. They are united however, by the common philoso-
phy (if that is not too grand a work for it) of treating Markov processes
by methods of stochastic calculus, and I hope the reader will, at least,
be convinced of the usefulness of this and of the ‘extended generator’
concept in doing calculations with Markov precesses.

The first part is aimed at developing optimal control theory for a
class of Markov processes called piecewise-deterministic(PD)proce-
sses. These were only isolated rather recently but seen general enough
to include as special cases practically all the non-diffusion continuous
time processes of applied probability. Optimal control forPD processes
occupies a curious position just half way between deterministic and Sto-
chastic optimal control theory in such a way that no standardtheory
from either side is adequate to deal with it. The only applicable theory
that exists at all is very recent work of D. Vermes based on thegener-
alized dynamic programming ideas of R.B. Vinter and R.M. Lewis, and
this is what I have attempted to describe here. Undoubtedly,further de-
velopment of control theory for PD processes will be a fruitful field of
enquiry.

Part II concentrates on the “pathwise” theory of filtering for diffu-
sion processes and on more sophisticated extensions of it due primarily
to H. Kunita. The intriguing point here is to see how stochastic partial
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differential equations can be dealt with by stochastic flow theory through
what amounts to a “doubly stochastic” version of the FeynmanKac for-
mula. Using this, Kunita has given an elegant argument to show the
existence of smooth conditional densities under Hörmander-type con-
ditions. This is included. Ultimately, it rests on results obtained by
Bismut and others using Malliavin calculus, since one needsa version
of the Hörmander theorem which is valid for continuous (rather than
C∞) t-dependence of the coefficients. It was unfortunately impossible
to go into such questions in the time available.

I would like to thank Professor K.G. Ramanathan for his kind invita-
tion to visit Bangalore and K.M. Ramachandran for his heroicefforts at
keeping up-to-date notes on a rapidly accumulating number of lectures,
and for preparing the final version of the present text. I would also like
to thank the students and staff of the T.I.F.R. Centre and of the I.I.Sc.
Guest House for their friendly hospitality which made my visit such a
pleasant one.
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Part I

Stochastic Jump Processes
and Applications
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Chapter 1

Stochastic Jump Processes

0 Introduction

Stochastic jump processes are processes with piecewise constant paths. 1

The Poisson process, the processes arising in Inventory problems (stocks
of items in a store with random ordering and replacement) andqueuing
systems (arrivals at a queue with each customer having random demand
for service) are examples of stochastic jump processes. Ouraim here
is to develop a theory suitable for studying optimal controlof such pro-
cesses.

In Section 1, martingale theory and stochastic calculus forjump pro-
cesses are developed. Gnedenko-Kovalenko [16] introducedpiecewise-
linear process. As an example of such a process, consider virtual waiting
time process (VWT) for queueing systems, whereVWT(t) is the time
customer arriving at timet would have to wait for service, see Fig. (0.1).

Later Davis [7] and Vermes [25] introduced the concept of piece-
wise deterministic processes which follow smooth curves (not necessar-
ily straight lines) between jumps. In Section 2, we will study some ap-
plications to piecewise-deterministic processes. The idea there is to de-
rive Markov properties, Dynkin’s formula, infinitesimal generators etc.,
using the calculus developed in Section 1.

3



4 1. Stochastic Jump Processes

Service

Demand

Figure 0.1: Arrival time of customers
2

1 Martingale Theory for Jump Processes

Let (X,S) be a Borel space.

Definition 1. A jump process is defined by sequences T1,T2,T3, . . .,
Z1,Z2,Z3, . . . of random variables, Ti ∈ R+ and Ti+1 > Ti a.s. and
Zi ∈ (X,S). Set

T∞ = lim
k→∞

Tk.

Let z0, z∞ be fixed elements ofX. Define the path (xt)t≥0 by

xt =



z0 if t < T1

Zi if t ∈ [Ti ,Ti+1[

z∞ if t ≥ T∞.

Then the probability structure on the process is determinedby either
joint distribution for (Ti ,Zi , i = 1, 2, . . .) or specifying

(i) distribution of (Z1,T1)3

(ii) for eachk = 1, 2, . . . , conditional distribution of (Sk,Zk | Tk−i , i =
1, 2, . . .), whereSk = Tk − Tk−i is thenk th inter-arrival time.

We will start studying the process (xt) having a single jump, i.e.,

xt


z0 if t < T(ω)

Z(ω) if t ≥ T(ω).
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If T = ∞, let Z = z∞, a fixed point ofX.

Figure 1.2:

Define the probability space (Ω, F,P) as the canonical space forT,
Z,

i.e., ((R+ × X)U{(∞, z∞)}, B(R+) ∗ S, {(∞, z∞)}, µ)

whereµ is a probability measure on

((R+ × X)U{(∞, z∞)}, B(R+) ∗ S, {(∞, z∞)}).

The random function (xt) generates the increasing family ofσ− fields 4

(F0
t ), i.e.,

F0
t = σ{xS, s≤ t}.

We suppose
µ(([0,∞] × {z0})U{0} × X) = 0.

This assumption guarantees that the processxt does jump at its jump
timeT, i.e.,

P(T > 0 and Z , z0) = 1.

Recall that anR+ - valued random variableτ is a stopping time of a
filtration Ft, if (τ ≤ t ∈)Ft,∀t. Let

Ft = Completion ofF0
t with all F0

∞ − null sets.

Proposition 1.1. T is not an F0
t stopping time, but T is an Ft stopping

time.



6 1. Stochastic Jump Processes

Proof. Let A = {Z = z0} andK be any set inX. Then

x−1
S (K) =


([s,∞] × X)U([o, s] × {z0}) if z0 ∈ K and Z(E − A) ∩ K = φ

((s,∞] × X)U([o, s] × K) if z0 ∈ K and Z(E − A) ∩ K , φ.

[o, s] × K if z0 < K.

whereE = R+ × X − A.
Clearly [0, t] × X cannot be in theσ- algebra generated by sets of

the above form. SoT is not anF0
t stopping time. LetB = X − {z0}. By

assumption,P(A) = 0; soA ∈ Ft.

x−1
t (B) = [0, t] × X − A ∈ F0

t .

So5

[0, t] × X ∈ Ft.

But {T ≤ t} = [0, t] × X. HenceT is anFt stopping time. �

It can be seen that

Ft = B[o, t] ∗ S U(]t,∞] × X)U null sets ofF◦∞.

The stoppedσ- field FT is given by

FT = {G ∈ F∞ : G∩ (T ≤ t) ∈ Ft,∀t}.

Clearly
FT = F∞.

Definition 1.2. A process(Mt) is an Ft -martingale if E | Mt |< ∞ and
for s≤ t

E[Mt | Fs] = Ms a.s.

(Mt) is a local Ft- martingale if there exists a sequence of stopping
times Sn ↑ ∞ a.s. such that Mnt := MtΛSn is a uniformly integrable
martingale for each n; here tΛSn := Min(t,Sn).
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Proposition 1.2. If Mt is a local martingale and S is a stopping time
such that S≥ T a.s., then MS = MT a.s.

Proof. Let Sn be stopping times such thatSn ↑ ∞ a.s. ThenMtΛSn is u.i.
martingale. LetMn

t = MtΛSn,∀n. Then by optional sampling theorem

E[Mn
SFTΛSn] = Mn

T;

but FT = F∞.

So 6

E[Mn
S | FT ] = Mn

S.

Also

lim
n→∞

Mn
T = MT

and lim
n→∞

Mn
S = MS.

So
MS = MT a.s.

�

Proposition 1.3. Supposeτ is an Ft-stopping time. Then there exist
t0 ∈ R+ such thatτΛT = t0 ΛT a.s.

Proof. If τ is a stopping time, then (τΛT ≤ t) ∈ Ft,∀t. But if TΛτ is
not constant a.s. on (τ ≤ T), then

(τΛT ≤ t) ∩ (]t,∞] × X) ⊂
,
]t,∞[×X for some t ∈ R+.

But [t,∞] × X is an atom ofFt. This contradicts the fact thatτ is a
stopping time. So

τΛT = t0ΛTa.s.

The general definition of a stoppedσ-field is that ifU is a stopping
time. Then

FU = {A ∈ F | A∩ (U ≤ t) ∈ Ft,∀t}.

But this is an implicit definition of theσ-field. �
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Exercise 1.1.Supposeτ = t0ΛT. Show that

(i) Fτ = Fto

(ii) F τ = σ{xτΛs,S ≥ 0}.
7

Definition 1.3. For A ∈ S , define

FA(t) = µ([t,∞] × A)

and F(t) = FX(t) = P[T > t].

Note that F(0) = 1 and F(.) is monotone decreasing and right con-
tinuous. Define

c =


inf {t : F(t) = 0}

+∞ if {t : F(t) = 0} = φ.

Proposition 1.4. Suppose(Mt)t≥0 is an Ft local martingale. Then

(a) if c = ∞ or c < ∞ and F(c−) = 0, then Mt is a martingale on[0, c[.

(b) if c < ∞, F(c−) > 0, then(Mt) is a uniformly integrable martingale.
Here F(c−) = lim

t↑c
F(t).

Proof. (a) If τk ≥ Ta.s. for somek, then

MtΛτk = MtΛτkΛT = MtΛT = Mt.

So Mt is a u.i. martingale. Hence supposeP[τk < T] > 0 for all
k(∗); then by Proposition 1.3,

τkΛT = tkΛT for some fixedtk

andtK < c because of (∗). Also tk ↑ c sinceτk ↑ ∞.8

So
MtΛτk = MtΛτkΛT = MtΛTΛtk = MtΛtk.

HenceMtΛtk is a u.i. martingale. So (Mt)t<c is a martingale.
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(b) c < ∞, F(c−) > 0.
F(c−) = P(T = c)

P(T = c) > 0; so it must be the case thattk = c for somek. Oth-
erwiseP(τk < c) ≥ F(c−) > 0; so “τk ↑ ∞ a.s.” fails. For this
k,

MtΛtk = Mt

So (Mt) is au.i. martingale.
Our main objective is to show that all local martingales can be rep-

resented in the form of “stochastic integrals”. So we introduce some
“elementary martingales” associated with the process (xt). For A ∈ S
andt ∈ R+, define

p(t,A) = Ĩ(t≥T) I(Z∈A)

p̃(t,A) = −
∫

]o,TΛ t[

1
F(s−)

dFA(s).

�

Proposition 1.5. Let q(t,A) = p(t,A)− p̃(t,A). Then(q(t,A))t≥0 is an Ft

- martingale, i.e., ˜p(t,A) the “compensator” of the point process p(t,A).

Proof. (Direct calculation). Taket > s, then 9

E[p(t,A) − p(s,A) | Fs] = I(s<T)
FA(s) − FA(t)

F(s)
.

E[ p̃(t,A) − p̃(s,A) | Fs] = Is<T
F(t)
F(s)

∫

[s.t]

dFA(u)
F(u−)

−
1

F(s)

∫

[s.t]

∫

[s.r ]

dFA(u)
F(u−)

dF(r)



and
∫

[s,t]

∫

[s,r ]

dFA(u)
F(u−)

dF(r) =
∫

[s,t]

1
F(u−)

∫

[u,t]

dF(r)dFA(u)
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=

∫

[s.t]

1
F(u−)

(F(t) − F(u−))dFA(u)

= F(t)
∫

[s.t]

dFA(u)
F(u−)

+ FA(t) − FA(s).

So
E[q(t,A) − q(s,A) | Fs] = 0

�

Another expression for p̃(t, A): We haveFA(.) << F(.) (i.e. FA (.) is
absolutely continuous w.r.t.F(.)). So there exists a functionλ(s,A) such
that

FA(0)− FA(t) = −
∫

]o.t]

λ(s,A)dF(s).

In fact
λ(s,A) = P(Z ∈ A | T = s).

SupposeX is such that a regular version of this conditional probabil-

ity exists (which is the case, sinceX is Borel space). Then
−dFA(s)
F(s−)

=

λ(s,A)dΛ(s) wheredΛ(s)
−dF(s)
F(s−)

.

Then

p̃(t,A) =
∫

]o,T Λ T]

λ(s,A)dΛ(s).

Stochastic Integrals10

Let I denote the set of measurable functionsg : Ω → R such that
g(∞, z∞) = 0.

(a) Integrals w.r.t. p(t, A): SupposeNt is a counting process. Since
its sample functions are monotone increasing and there is a one-
to-one correspondence between monotone increasing functions
and measures, and since in this case, mass is concentrated atthe
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jump points and they are only countable; the functionNt defines
a random measure on (R, B(R)) say,π =

∑
i
δTi whereδX is the

Dirac measure atx. Similarly, the one jump process can be iden-
tified with the random measureδ(T,xT ) on R+ × X. So we can
define Stieltjes integrals of the form

∫
g(t, x)p(dt, dx) for suitable

integrandsg ∈ I as
∫

Ω

g(t, x) p(dt, dx) = g(T, xT ).

We sayg ∈ L1(p) if

E
∫

Ω

|g(t, x) | p(dt, dx) < ∞

and denote

|| g ||L1(p)= E
∫

Ω

| g(t, x) | p(dt, dx)

Clearlyg ∈ L1(p) if and only if
∫

R+×X

| g(t, x)dµ < ∞

(b) Integrals w.r.t. p̃(t, A): 11

Recall p̃(t,A) =
∫

]o,T Λ t]

λ(s,A)dΛ(s).

So we define∫

Ω

g(t, x)p̃(dt, dx) =
∫

[o,T]

∫

X

g(t, x)λ(t, dx)dλ(t)

and say g ∈ L1(p̃) if
∫

Ω

|g(t, x) | p̃(dt, dx) < ∞

and || g ||L1(p̃)=

∫

Ω

| g(t, x) | p̃(dt, dx).
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Proposition 1.6.
|| g ||L1(p)=|| g ||L1(p̃)

and so
L1(p) = L1(p̃).

Proof.

|| g ||L1(p̃) = −

∫

R+

∫

[o,T]

1
F(s−)

| g(s, x) | dµ(s, x)dF(T)

=

∫

Ω

1
F(s−)

| g(s, x) | (−
∫

[s,∞]

dF(t))dµ(s, x)

=

∫

Ω

| g(s, x) | dµ(s, x)

=|| g ||L1(p) .

Define

Lloc
1 (p) = {g ∈ I | g(s, x)Is≤t ∈ L1(p),∀t < c}

Lloc
1 (p̃) = {g ∈ I | g(s, x)Is≤t ∈ L1(p),∀t < c}. Clearly

Lloc
1 (p) = Lloc

1 (p̃).

Following is the main result of this section, which gives an integral12

representation forFt local martingales. �

Proposition 1.7. All F t-local martingales are of the form

Mt =

∫

Ω

(g(s, x)I(s≤t)dq(s, x)

=

∫

Ω

(g(s, x)Is≤tdp(s, x) −
∫

Ω

(g(s, x)I(s≤t)d̃p(s, x).

for some g∈ Lloc
1 (p).

We need the following result.
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Lemma 1.1. Suppose(Mt)t>0 is u.i.Ft martingale with M0 = 0. Then
there exists a function h: Ω→ R such that

E | h(T,Z) |< ∞ (1)

and

Mt = I(t≥T)h(T,Z) − I(t<T)
l

F(t)

∫

]0,t]×X

h(s, z)µ(ds, dz) (2)

Proof. If ( Mt) is au.i. martingale, thenMt = E[ξ | Ft] for someF∞-
measurable r.v.ξ and from the definition ofF∞, we have

ξ = h(T,Z) a.s.

for some measurableh : Ω → R. Expression (1) is satisfied sinceMt is 13

u.i., andMo = 0 implies ∫

Ω

h.dµ = 0. (3)

Now

Mt = E[h(T,Z)|Ft]

= I(t≥T)h(T,Z) + I(t<T)
1

F(t)

∫

]t,∞]×X

h(s, x)µ(ds, dx). (4)

From (3) and (4), we have (2). �

Forg ∈ Lloc
I (p), the stochastic integral

Mg
t =

∫

]0,t]×X

g(s, x)q(ds, dx)

is defined by

Mg
t =

∫

R+×X

I(s≤t)g(s, x)p(ds, dx) −
∫

R+×X

I(s≤t)g(s,x) p̃(ds, dx).

Then the question is whetherMt given by (2) is equal toMg
t for

someg. As a motivation to the answer consider the following example.
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Example 1.1.Let (X,S) = (R, B(R)) and

µ(ds, dx) = ψ(s, x) ds dx.

Then

Mg
t = I(t≥T)


g(T,Z) −

T∫

0

∫

R

1
F(s)

g(s, x)ψ(s, x)dxds



− I(t≥T)



t∫

0

∫

R

1
F(s)

g(s, x)ψ(s, x)dxds


(5)

If Mg
y given by (5) is equal toMt given by (2), then the coefficients14

of I(t≥T) and I(t<T) must agree. Comparing the coefficients ofI(t>T), we
require

h(t, z) = g(t, z) −

t∫

0

∫

R

1
F(s)

g(s, x)ψ(s, x)dxds.

Let
η(t) = h(t, z) − g(t, z).

Define

γ(t) =
∫

R

ψhdx

and

f (t) =
∫

R

ψdx.

Then

η(t) =

T∫

0

1
F(s)



∫

R

h(s, z) + η(s)

ψ(s, x)dx)ds

=

t∫

0

1
F(s)

γ(s)ds+

t∫

0

1
F(s)

η(s) f (s)ds;
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that is

d
dt
η(t) =

f (t)
F(t)

n(t) +
1

F(t)
γ(t)

η(o) = 0

which has a unique solution

η(t) =

t∫

0

φ(t, s)
1

F(s)
γ(s)ds,

where

φ(t, s) = exp

t∫

s

f (u)
F(u)

du

=
F(s)
F(t)

, since f (t) = −
dF(t)

dt
.

So 15

η(t) =
1

F(t)

t∫

0

γ(s)ds.

Hence

g(t, z) = h(t, z) +
1

F(t)

t∫

0

∫

R

h(s, x)ψ(s, x)dxds (6)

Now it can be checked that with this choice ofg the coefficients ofI(t<T)

in (2) coincides with that of (5). SoMt = Mg
t .

Now we can prove the general case given in Proposition 1.7.

Proof of Proposition 1.7.

Case 1.c < ∞, F(c−) > 0. Take a local martingale Mt with Mo = 0.
Then(Mt) is u.i. So Mt = E[h(T,Z)|Ft] for some measurable h such that
E|h| < ∞,Eh= 0. Then we claim that Mt = Mg

t where

g(t, z) = h(t, z) + I(t<c)
1

F(s)

∫

]◦,t]×x

h(s, z) µ (ds, dz).
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But this can be seen algebraically following similar calculations as
of the example 1.1. Now to show thatg ∈ Lloc

1 (p).

∫
|g|dµ ≤

∫
|h|dµ −

∫

]o,c[

1
F(t)

∫

]o,t]×X

|h|dµdF(t)

≤

∫
|h|dµ −

1
F(c−)

∫

]o,c[

∫

]o,t]×X

|h|dµdF(t)

≤

∫
|h|dµ +

1
F(c−)

∫

]o,c[×X

(F(t) − F(c−))|h|dµ

≤

(
1+

1
F(c−)

) ∫
|h|dµ < ∞.

Case 2.c = ∞, or c < ∞ and F(c−) = 0. Then from proposition 1.4, Mt16

is a martingale on[0, c], and so it is u.i. on[o, t] for t < c. Therefore

Ms = E[h(T,Z)|F∞]

for some function h satisfying

∫

]o,t]xX

|g(s, x)|dµ(s, x) < ∞ for all t < c.

Define g(s, x) as in (6). Then calculations as in case 1. Show that
Ms = Mg

s for s≤ t < c. Now

∫

[o,t]×X

|g|dµ ≤
∫

]o,t×X

|h|dµ −
∫

]o,t]

1
F(s)

≤

∫

]o,s]×X

|h|dµ dF(s)

≤

∫

]o,t]×X

|h|dµ(1−
∫

]o,t]

1
F(s)

dF(s))

< ∞ for t < c.

Hence g∈ Llog
1 (p).
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Conversely, supposeg ∈ Llog
1 (p). Then it can be checked thatMg

t is
a local martingale.

Remark 1.1. If g ∈ Llog
1 (p) thenMg

t is a martingale. But the result does
not sayMt is a martingale if and only ifM = Mg for g ∈ L1(p), it only
characterizeslocal martingales.

Remark 1.2.All preceding results hold ifzo is a random variable; then
µ should be taken as conditional distribution of (T,Z) givenzo

The multi-jump case: The processxt has jump timesT1,T2, . . . with 17

corresponding statesZ1,Z2, . . . Let (Y, y) denote the measurable space

(Y, y) = ((R+ × X)U{(∞, z∞)}, σ{B(R+) ∗ S, {(∞, z∞)}}).

Define

Ω =

∞∏

i=1

Yi ,ΩK =

K∏

i=1

Yi

Fo = σ


∞∏

i=1

yi



where (Yi , yi) denote a copy of (Y, y). Let

Sk(ω) = Tk(ω) − Tk−1(ω)

and wk(ω) = (S(ω),Z1(ω), . . .Sk(ω),Zk(ω)).

Then

Tk(ω) =
k∑

i=1

Si(ω)

T∞(ω) = lim
k→∞

Tk(ω).

As before, (xt(w))t≥o is defined by

xt(ω) =



zo if t < T(ω)

Zk if t ∈ [Tk(ω),Tk+1(ω)]

z∞ if t ≥ T∞(ω)
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A probability measureµ on (Ω, Fo) is specified by a familyµi :
Ωi−1 × y→ [0, 1] (with Ωo = φ) satisfying

(i) µi(.;Γ) is measurable for each fixedΓ

(ii) µi(wi−1(ω); .) is a probability measure on (Y, y) for each fixedω ∈
Ω,

(iii) µi(wi−1(ω); .({0} × X) ∪ (R+ × {zi−1(ω)})) = 0 for allω,18

(iv) µi(wi−1(ω); .{(∞, z∞)}) = 1 if Si−1(ω) = ∞.

Then forΓ ∈ y andη ∈ Ωi−1, µ is defined by

µ[(T1,Z1) ∈ Γ] = µ1(Γ)

µ[(Si ,Zi) ∈ Γ|wi−1 = η] = µ
i(η : Γ)i = 2, 3 · · ·

Notice that as in the single jump case, here (iii) ensure thattwo
“jump times” Ti−1,T do not occur at one and that the processxt does
effectively jump at its jump times (iv) ensures thatµ[Zk = z∞|Tk = ∞] =
1.

As before,Fo
t = σ{xs, s≤ t} and

Ft = completion ofFo
t with all µ-null sets ofFo.

Proposition 1.8. (i) F∞ = F, the completion of Fo

(ii) F Tn =
n∏

i−1
yi ×

∞∏
i=n+1

yi .

The idea here is to reduce everything to one jump case. That is, the
process “restarts” at eachTk. We need the following result.

Proposition 1.9.

F(Tk−l+t)ΛTk = FTk−l Vσ
{
x(Tk−l+s)ΛTk, o ≤ s≤ t)

}
.

Proof of this is an application of the “Galmarino test” (Dellacherie
and Mayer [12], theorem IV, pp. 100).

Recall that in one jump caseFtoΛT = Fto. Now we conjecture that,19



1. Martingale Theory for Jump Processes 19

if U = (Tk−1 + to)ΛTk, then

FU =


k−1∏

i−1

yi

 ∗ yk
to ∗


∞∏

i=k+1

Yi

 ,

where yk
to = S ∗ B[o, to] ∪ (x× [to,∞]) .

As an example, see the following exercise.

Exercise 1.2.Consider a point process with k= 2, and take the proba-
bility space asR2

+. Then

xt =

2∑

i=1

I(t≥Ti ).

Then

(a) Show that

Ft = Borel sets in{S1 + S2 ≤ t}

+ (A× R+)
⋂

B+ [t,∞] × R+,A ∈ B(R)

where
B = {S1 + S2 ≥ t}

⋂
{S2 ≤ t}.

(b) With U = (T1 + to)ΛT2, show that

FU = B(R+ × [o, t]) + {(A × R+)
⋂

(R+×]to,∞]) : A ∈ B(R)}.

Elementary Martingales, Compensator’sDefine

p(t,A) =
∑

i

I(t≥Ti )I(zi∈A)

which counts the jump of (xt) ending in the setA. Define

φA
1(s) = −

∫

[o,s]

1

F1(u)
dF1A(u)
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where 20

F1 = µ1([t,∞] × X)

and

φA
k (wk−1; s) = −

∫

[o,s]

1

Fk(u−)
dFkA(u)

where
FkA(u) = µk(wk−1; [u,∞] × A).

Now define

p̃(t,A) = φA
1(T1) + φA

2 (w1; S2) + · · · φA
j (w j−1; t − T j−1(ω))

for t ∈]T j−1,T j ].

Exercise 1.3.Consider a renewal process

xt =
∑

i

I(t≥Ti )

and Si ’s are independent, P(Si > t) = F(t) is continuous. Then show
that the compensator for xt is

p̃(t) = −ℓn(F(S1)F(S2) · · · F(Sk−1)F(t − Tk−1)) for t ∈ [Tk−1,Tk],

and xt − p̃(t) is a martingale.

Example 1.If F(t) = e−αt, then p̃(t) = αt.

Proposition 1.10. For fixed k, and A∈ S ,21

q(tΛTk, A) = p(tΛTk, A) − p̃(tΛTk, A), t ≥ 0

is an Ft - martingale.

Proof. Calculation as in proposition 1.5. �

The class of integrandsI consists of measurable functiong(t, x, ω)
such that

g(t, x, ω) =



g1(t, x), t ≤ T1(ω)

gk(wk−1, t − Tk−l , x), t ∈]Tk−l (ω),Tk(ω)],

0, t ≥ T∞(ω)
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for some functiongk such thatg1(∞, x) = gk(wk;∞, x) ≡ 0. Suchg′s
areF1−predictable processes. Now we defineL1(p), L1(p̃), etc. exactly
as in one jump case:

∫
g dp=

∑

i

g(Ti ,Zi)

Li(p) =

g ∈ I : E
∑

i

|g(Ti ,Zi)| < ∞


∫

g dp̃ = −
∑

k

∫

]o,Tk−Tk−l ]×X

g(ωk−l , s, x)λ(ωk−l , s, dx)
dFk(s)

Fk(s−)

where

λ(ωk−l , s,A) =
dFkA

dFk
(s)

g ∈ Γloc
1 (p) if there exists a sequence of stopping timesσk ↑ T∞ a.s. and

gI(t≤σn ∈ L1(p),∀n. Forg ∈ L1oc
1 (p) we define

Mg
t =

∫

[o,t]×X

g(s, x) q (ds, dx)

=

∫

[o,t]×X

g(s, x) p (ds, dx) −
∫

[o,t]×X

g(s, x) p̃ (ds, dx).

Proposition 1.11. If g ∈ L1oc
1 then there exists a sequence of stopping22

times Tn < T∞ such thatτn ↑ T∞ and Mg
tΛTn

is a u.i. martingale for
each n.

Proof. Takeτn = nΛTnΛσn. Then the result follows by direct calcula-
tions using the optional sampling theorem. �

Now let (Mt)t≥0 be a u.i.Ft−martingale. Then

Mt = MtΛT1 +

∞∑

k=2

(MtΛTk − MTk−1), It≥Tk−l (7)

because this is an identity ift < T∞ and the right-hand side is equal to
lim MTK is t ≥ T∞. Here we haveMT∞− = MT∞. Now we state the main
result.
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Theorem 1.1. Let (Mt) be a local martingale of Ft. Then there exists
g ∈ Lloc

1 (p) such that

Mt − Mo =

∫

[o,t]×x

g(s, x, ω) q(ds, dx).

Proof. Suppose first thatMt in a u.i. martingale. define

x1
t = MtΛT1

xk
t − M(t+Tk−l )ΛTk − MTk−1, k = 2, 3, . . .

Then from (7)

Mt =

∞∑

k=l

xk
(t−Tk−l )Vo.

We can now use proposition 1.7 to represent eachxk. Fix k and
define fort ≥ 0.

Ht = F(t+Tk−1)ΛTk.

Thenxk
t is anHt martingale. Then there exists a measurable function23

hk such that
xk

t = E(hk(ωk−1; Sk,Zk)|Ht).

Then using proposition 1.7, there existsgk(ωk−1; s, z) such that

xk
t =

∫

]o,t]×X

gk(ωk−1; s, z)qk(ds, dz)

whereqk(t,A) = q((t + Tk−1)ΛTk,A) and gk ∈ Lloc
1 (pk) for all ωk−1

a.s. Piecing these results together fork = 1, 2, 3, . . . gives the desired
representation withg = (gk). It remains to prove thatg ∈ Lloc

1 (p) as
defined, for which we refer to Davis [6].

If ( Mt) is only a local martingale with associated stopping time se-
quenceτn ↑ ∞ such thatMtΛτn is a u.i. martingale, apply the above
arguments toMtΛτn to complete the proof. �

Corollary 1.1. If T∞ = ∞ a.s. then the result says(Mt) is a local
martingale of Ft if and only if Mt = Mg

t for some g∈ Lloc
1 (p).
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Remark 1.3. It would be useful to determine the exact class of inte-
grandsg required to represent u.i. martingales (as opposed to localmar-
tingales) when the jump timesTi are totally inaccessible, Boel, Varaiya
and Wong [4] show that{Mg, g ∈ L1(p)} coincides with the set ofu.i. 24

martingales of integrable variation. It seems likely that this coincides
with the set u.i. martingales ifEp(t,E) < ∞ for all t (a somewhat
stronger condition thanTi → ∞ a.s.) but no proof of this is available as
yet.

2 Some Discontinuous Markov Processes

Extended Generator of a Markov Process
Let the processxt ∈ (E,E), some measurable space. Then (xt, Ft) is

a Markov process if fors≤ t

E[ f (xt)|Fs] = E[ f (xt)|xs]a.s.

A transition function p(s, x, t, Γ) is a function such that

p(s, xs, t, Γ) = P(xt ∈ Γ|xs)

= E[IΓ(xt)|xs] a.s. f or t ≥ s.

p satisfies the Chapman-Kolmogorov equation

p(s, x, t, Γ) =
∫

E

p(s, x, u, dy)p(u, y, t, Γ) for s≤ u ≤ t.

Not every Markov process has a transition function, but usually one
wants to start with transition function and construct the corresponding
process. This is possible if (E,E) is a Borel space (required to apply
Kolmogorov extension theorem; refer Wentzel [27]). One constructs a
Markov family,

{Px,s, (x, s) ∈ E × R+}px,s

being the measure for the process starting atxs = x. All measuresPs,x

have the same transition functionp. Denote byEx,s integration w.r.t
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Px,s. Let B(E) be the set of bounded measurable functions

f : E→ R with ‖ f ‖ = sup
x∈E
| f (x)|

Define25

Ts,t f (x) = Ex,s| f (xt)|], s≤ t.

Ts,t is an operator onB(E) such that

(i) it is contraction,‖Ts,t f ‖ ≤ ‖ f ‖,Ts,t1 = 1.

(ii) Semi group property:r ≤ s≤ t,

Tr,t = Tr,sTs,t

for

Tr,t(Ts,t f ) (x) = Ex,r [Exs,s( f (xt))]

= Ex,r [E( f (xt)|Fs)]

= Ex,r f (xt))

= Tr,t f (x).

Ts,t is time invariant ifTs+r,t+r = Ts,t for all r ≥ −s. ThenTs,t =

T0,t−s ≡ Tt−s. SoT is a one parameter family; this happens when the
transition function is time invariant i.e.,p(s, x, t, Γ) = p(s + r, x, t +
r, Γ). Then get a one parameter family of measures (Px, x ∈ E) and the
connection is

Tt f (x) = Ex f (xt); T0 f = f .

Let
B0(E) = { f ∈ B(E) : ‖Tt f − f ‖ → 0, t ↓ 0}.

An operator
◦

A with domainD(
◦

A) ⊂ B◦(E) is thestrong infinitesimal
generatorof Tt if

lim
t↓0
‖(Tt f − f ) −

◦

A f‖ = 0.

So26
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◦

A f =
d
dt

Tt f (x)|t=0

Take f ∈ D(
◦

A). Then

lim
t↓0

1
t
(TtTs f − Ts f ) = lim

t↓0

1
t
(Tt+s f − Ts f )

= lim
t↓0

Ts
1
t
(Tt f − f )

= Ts

◦

A f.

So f ∈ D(
◦

A) implies Ts f ∈ D(
◦

A) and
◦

ATs f = Ts

◦

A f . So we get
backward Kolmogorov equation

d
ds

Ts f =
◦

A(Ts f ). (1)

The main results of the “analytic theory” of Markov semigroups are the
following;

(i) Hille-Yosida theorem: Necessary and sufficient conditions for an

operator
◦

A to be the generator of some semigroup.

(ii) If
◦

A satisfies these conditions, thenD(
◦

A) is dense inB0(E) and

(
◦

A,D(
◦

A)) determinesTt (via the so called resolvent operator).

NB: The domainD
◦

A provides essential information.
Integrating (1), we getDynkin’s formula

Tt f (x) − f (x) =

t∫

0

Ts
◦

A f(x)ds

i.e., Ex f (xt) − f (x0) = Ex

t∫

0

◦

A f(xs)ds, f ∈ D(
◦

A).
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Proposition 2.1. If f ∈ D(
◦

A) then the process

C f
t = f (xt) − f (x0) −

t∫

0

◦

A f(xs)ds

is a martingale.

Proof. For t ≥ s27

E|C f
t −C f

s |Fs] = E

 f (xt) − f (xs) −

t∫

s

◦

A f(xu)du|Fs



= Exs f (xt) − f (xs) − Exs

t∫

s

◦

A f(xs)ds. 0. �

�

Definition 2.1. Let M(E) be the set of measurable functions f: E→ R.
Then A,D(A) withD(A) ⊂ M(E) is theextended generatorof (xt) if C f

t
is a local martingale, where

C f
t = f (xt) − f (x0) −

t∫

0

A f(xs)ds.

This is an extension of(
◦

A,D
◦

A)) in thatD(
◦

A) ⊂ D(A) and
◦

A f = A f

for f ∈ D(
◦

A). We have uniqueness of A in the following sense. Write

f (xt) = f (x0) +

t∫

0

A f(xs)ds+C f
t .

This shows that( f (xt)) is a “special semi-martingale” (=local mar-
tingale+ predictable bounded variation process). The decomposition is
unique. So, if B is another generator then

t∫

0

(A f(xs) − B f(xs))ds= 0Px a.s.∀t.
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Thus A f(x) = B f(x) except on a set of potential zero. where a set of
Γ has potential zero, where a setΓ has potential zero if

Ex

∞∫

0

IΓ(xs)ds= 0 ∀x.

Example 2.1.Supposext ∈ R
d satisfies

dxt = b(xt)dt + σ(xt) dwt

with standard Ito conditions. Iff ∈ C2, then 28

d f(xt) =


∑

i

bi(xt)
∂ f
∂xi

(xt) +
1
2

∑

i, j

(σσ′)i j
∂2 f

∂xi∂xi∂x j

dt +

t∫

0

▽ f ′σdw.

SoC2 ⊂ D(A) and

A f(x) =
∑

i

bi(x)
∂ f
∂xi
+

1
2

∑

i j

(σσ′)i j
∂2 f
∂xi∂x j

C f
t =

t∫

0

▽ f ′σdw.

NB: This is not a characterisation ofD(A).

Remark 2.1. If we had requiredC f
t to be a martingale rather than a

local martingale in definition 2.1, then not everyf ∈ C2 would be in
D(A) because of the properties of I to integrals.

Exercise 2.1.For i = 1, 2, . . . ,let Ni
t be a Poisson process with rateλi

where
∑

i λi < ∞. Define

Xt =

∞∑

i=1

ℓiN
i
t

whereℓi ≥ 0 and
∞∑

i=1

ℓiλi = r < ∞.

Find the extended generator of xt

(This is also an example where jump times are not isolated).
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Piecewise-linear Markov Process 29

Gnedenko-Kovalenko introduced the concept of piecewise linear
Markov process. Later, Vermes [24] simplified the definitionas fol-
lows. A piecewise linear processis a two component Markov process
(xt) = (νt, ξt) wherevt is integer-valued andξt takes values in an interval
[an, bn] of the real line ifνt = n (bn may be+∞). Let E be the state
space, i.e.,E = {(n, ξ) ∈ Z × R : ξ ∈ Z × R : ξ ∈ [an, bn]} Then the prob-
abilistic description is that if the motion starts at (n, z) ∈ E and xt os
given byνt = n, ξt = z+ t for t < T1, the first jump time. “ Spontaneous
jumps” happen at rateλ(xt), i.e., probability “jump occurs” in (t, t + dt),
is λ(xt)dt, and process must jump ifξt− = bn. Let the transition measure
be given byQ(A; x) for A ∈ B(E). ThenxT1 is selected from the prob-
ability distribution Q(A; xT1). After a jump, motion restarts as before.
Thus the law of the process is determined by specifying the intervals
[an, bn], the jump intensityλ(x) and the transition measureQ(A; x).

Example 2.2.Non-stationary countable state Markov Process(ξτ)
(ξτ) takes integer values with the-dependent transition ratesai j (t)

such that

PΓξt+h = i|ξt = j] = ai j (t)δ + ◦(δ), i , j.

Thenxt = (ξt, t) is aPL process with no barriers, i.e.,an = 0, bn = +∞.

Example 2.3.Countable state process with non-exponential sojourn30

times
Here, jump times of the process (xt) form a renewal process with

inter arrival densityb(.) and transition matrixqi j = P[xTk,= i, xTk = j].
This is aPL process withνt = xt, andξt the time since last arrival. The
jump rate is

λ(ν, ξ) =
b(ξ)
∞∫

ξ

b(t)dt

Here againan = 0, bn = +∞.

Example 2.4.Virtual waiting times.(The M/ G/ 1 queue)
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Customers arrive at a single-server queue according to Poisson pro-
cess with rateµ, and havei.i.d. service time requirements with distri-
butionsF. The virtual waiting timeξt is the time a customer arriving at
time t would have to wait for service. Piecewise linear process structure
is :

vt =


1 if queue is not empty

0 if queue is empty

anda1 = 0, b1 = ∞, a◦ = b◦ = 0. Hereξt moves to left with uniform
speed and transition to (0, 0) is certain ifxt− = (1, 0).

A more general definition ofPL process of Gnedenko and Kova-
lenko allowsξt to move in an open subset 0νt of Rd(νt) with uniform
speed in a fixed directionV(νt). Again transition must take place if
ξt−, ∈ ∂0νt , the boundary of 0νt .

Example 2.5.VWT with renewal process arrivals.(The GI/G/I queue) 31

Suppose the inter arrivals times in Example 2.4 are not exponential,
but form a renewal process with inter arrival densityb(.). Now the ap-
propriate structure isν is 0 or 1 as before,d(1) = 2, d(0) = 1. (When
ν = 1 we have to remember both the value of VMT and the time since
the last arrival.)

We cannot accommodate this in previous framework, because there
[an, bn] is fixed, whereas here the length of the interval is random.

Davis [7] introduced the piecewise deterministic (PD) process
which is a further generalization. It is similar to the piecewise linear pro-
cess, except thatξt satisfies some ordinary differential equation, rather
than moving in straight line.

Example 2.6.Shot noise. This has sample functions similar to theVWT
process except that decay between arrivals is exponential rather than
linear (fig. 2.1).
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Figure 2.1:

Example 2.7.A model for capacity expansion. Suppose that the demand32

for some utility is monotone increasing and follows a Poisson process
with rateµ. Each ‘unit’ of supply providesq units of capacity. These
are built one at a time at a cost of Rs.p. Investment takes place at a rate
of Rs.u(t)/week andu(t) ≤ constant. When

t∫

0

u(s)ds= p,

then the project is finished, capacity is increased byq and investments
are channelled into next project.

Denotedt = demand;ct = capacity at timet; ξt = cumulative invest-
ment in current project

=

t∫

τ

u(s)ds,

whereτ is the last time project was completed. Investment is determined
by some “policy”ψ, i.e.,

u(t) =
d
dt
ξt = ψ(ct, dt, ξt)

where (ct, dt, ξt) is the current “situation”. Definevt = (ct, d). Then the
processxt = (νt, ξt) evolves in the state spaceE = Z2

+ × [o, p] (Z2
+

is the 2-dimensional positive integer lattice). Then forν = (c, d) if

gν(ξ) = ψ(c, d, ξ), ξt satisfies
d
dt
ξt = gνt (ξt).
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The piecewise-deterministic process;
Let K be a countable set andd : K → N (= natural numbers) be a

given function. For eachν ∈ K,Mν is an open subset ofRd(ν)(Mν can be
ad(ν)-dimensional manifold). Then the state space of thePD process is 33

E = U
ν∈K

Mν = {(ν, ξ); ν ∈ K, ξ ∈ Mν}.

Let
E =

{
∪′
ν∈K

Aν; Aν ∈ B(Mν)
}

Then (E,E) is a Borel space. Then the process isxt = (νt, ξt). The
probability law of (xt) is specified by The probability law of (xt) is spec-
ified by

(i) Vector fields (Xν, ν ∈ K)

(ii) A ‘rate’ function λ : E→ R+

(iii) A transition measureQ : E × E→ [0, 1]

Assume that corresponding to eachXν there is a unique integral
curveφν(t, z), i.e.,φν(t, z) satisfies

d
dt

f (φν(t, z)) = Xν f (φν(t, z))

φν(o, z) = z

for every smooth functionf , andφ(t, z) exists for allt ≥ o. Let ∂Mν

be the boundary ofMν. ∂∗Mν is those points inMν at which integral
curves exit fromMν, i.e., ∂∗Mν = {z ∈ ∂Mν : φν(t, ξ) = z for some
(t, ξ) ∈ R × Mν}.

Let
Γ∗ = {ν, z : ν :∈ K, z∈ ∂∗Mν}.

So Γ∗ is the set of points on the boundary at which jumps may take
place. Forx = (ν, z) ∈ E, denote

t ∗ (x) = inf {t > 0 : φν(t, z) ∈ ∂
∗Mν}.
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Write Xh(x) for the function whose value atx = (ν, z) is Xνh(ν, .)(z).
For λ, we suppose that the functiont → λ(γ, φν(t, z)) is Lebesgue inte-
grable on [o, ∈] for some∈> 0, 0(., x) is a probability measure on (E,E) 34

for eachx ∈ EUΓ∗.
The motion of the process (xt) starting fromx = (n, z) ∈ E is de-

scribed as follows. Define

F(t) =


exp

−
t∫

0

λ(n, φn(s, z))ds

 , t < t∗(x)

0, t ≥ t∗(x).

This is the distributions ofT1, the first jump time. More precisely,
F(t) is the survivor function

F(t) = Px[T1 > t].

Now let Z1 be an E-valued random variable with distribution
Q(, ;φn)(T1, z)). Then define

xt =


(n, φn(t, z)) t < T1

Z1 t = T1

and restart with (n, z) replaced byZ1. AssumeTk ↑ ∞ a.s. Thenxt de-
fines a measurable mapping from (Ω, a,P) (countable product of unit
interval probability spaces) into space of right continuous E- valued
functions. This defines a measurePx on the Canonical space.

NB: The condition onλ ensures thatT1 > 0 a.s and hence thatTk −

Tk−1 > 0 a.s.

Proposition 2.2. (xt,Px) is a Markov process.

Proof. Suppose thatTx ≤ t < Tk+1. The distributions ofTk+1 − Tk is
given by

P[Tk+1 − Tk > s] =


exp

−
s∫

0

λ
(
νTk, φTk

)
du

 , s< t∗(xTk)

0, s≥ t ∗ (xTk).
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Denoteν = νTk, ξ = ξTk, Then fors> t ands< t∗(xTk)35

P[Tk+l > s|Tk,Tk+l > t] = P[Tk+l − Tk > s− Tk|Tk,Tk+l − Tk > t − Tk]

= exp

−
s−Tk∫

t−Tk

λ(ν, φ(u, ξ))du



= exp

−
s−t∫

o

λ(νt, φνt(u, ξt))du



where we used the semigroup property ofφ. Since the process “restarts”
at Tk+1, the law of the process fors> t given part uptot coincides with
the law givenxt. Hence the Markov Property. �

Let Γ ⊂ Γ∗ be the subset for which, ify = (ν, ξ) ∈ Γ∗

P[T1 = T∗(x)] → asx= (n, z)→ y.

ThenΓ is called the “essential” boundary

Exercise 2.2.Prove that y∈ Γ if and only if Px[T1 = T∗(x)] > 0 for
some x= (ν, z).

SoPx[xs− ∈ Γ − Γ
∗] for somes > 0] = 0, andQ(A, x) need not be

specified forx ∈ Γ − Γ∗.

Example 2.8.Hereν has only a single value; so delete it.ξ takes values

in M = [0.1] × R+, λ = 0 andX =
∂

∂ξ1
. ThenΓ∗ = {(l, y); y ∈ R+}. Let

Q(., (l, y)) = δ(1−
1
2

y,
1
2

y).

Then starting atx0 = (0, 1) we have 36

Tn =

n∑

k=1

1
k− 1

so that lim
n→∞

Tn < ∞.

The same effect could be achieved by the combined effect ofλ and
Q, suitably chosen. So, we prefer to assumeT∞ = ∞ a.s. rather than
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stating sufficient conditions onχ, λ,Q to ensure this. To illustrate the

difference betweenΓ andΓ∗, suppose thatλ(ξ1, 1) =
1

1− ξ1
(This is

equivalent to sayingT1 is uniformly distributed on [0, 1] if the process
starts at (0, 1). Then (1,1) os never hit, whatever be the starting point.
So (1,1)∈ Γ − Γ∗.

Figure 2.2:

The Associated Jump Process.
Let (xt) be an PD process. Definite the associated jump process (zt)

by
zt = xTk, t ∈ [Tk,Tk+1[ (2)

This is anE-valued jump process such thatZTK = xTK . Let Ft =37

σ{xs, s≤ t} andFz
t = σ{zs, s≤ t}.

Proposition 2.3. Ft = Fz
t for each t

Proof. This follows form the fact that there is a one-to-one mapping
from x[o,t] to z[o,t] .x → z is given by (2). Conversely, ifz[o,t] is given
thenx[o, t] can be constructed since the motion in the interval [Tk,Tk+1[
is deterministic. �

NB:

(1) xt andzt are not in one-to-one correspondence at each fixed timet.
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(2) (zt) is not a Markov process.

SinceFt = Fz
t , we can apply jump process theory. Define

p(t,A) =
∑

Ti≤t

I(xTi−∈A)

p∗t =
∑

Ti≤t

I(xTi−∈Γ)

p̃(t,A) =

t∫

0

Q(A, xs)λ(xs)ds+

t∫

0

Q(A, xs )dp∗s (3)

Proposition 2.4. Suppose E(p(t,E)) < ∞. Then for each

A ∈ E, q(t,A) = p(t,A) − p̃(t,A) (4)

is an Ft-martingale.

Proof. From previous results, the compensator ofp(tΛT1,A) is

p̃(tΛT1,A) = −
∫

]o,tΛT1]

Q(A, xs−)
dFs

Fs−
.

But 38

Ft =


exp

−
t∫

0

λ(xs)ds

 t < t∗1(x)

0 t ≥ t∗1(x).

Thus -
dFt

Ft
= λ(xt)dt for t < t∗1(x) and

△Ft∗t

Ft∗1
−
= 1.

�

This verifies the result fort ≤ T1. As before, we show by consider-
ing intervals [Tk−1,Tk] that the compensator ofp(tΛTn,A) is p̃(tΛTn,A)
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given by (3). Sincep(t,A) and p̃(t,A) are monotonic increasing func-
tions andTn ↑ ∞ a.s.E(p(t,E)) < ∞, taking the limits, we have

q(t,A) = p(t,A) − p̃(t,A)

is a martingale.

Exercise 2.3.Show that p∗t is an Ft− predictable process.

Then (4) is the Doob-Meyer decomposition of the submartingale p.
The next step is to use stochastic integrals to calculate theextended

generator ofxt. Choose the following integrands. For Measurablef :
Ē→ R, define

B f(x, s, ω) = f (x) − f (xs−(ω))

Then Bf∈ L1(p) if

E
∑

Ti≤t

| f (xTi ) − f (xTi−)| < ∞

for eacht ≥ 0. This certainly holds iff is bounded andE p (t,E) < ∞.39

t∫

o

∫

E

B f(y, s,w)p̃(ds, dy) =
∫

[0,t]

∫

E

( f (y) − f (xs−))Q(dy; xs−)λ(xs)ds

+

∫

[0,t]

∫

E

( f (y) − f (xs−))Q(dy; xs−)dss. (5)

Suppose thatf satisfies the boundary condition

f (x) =
∫

E

f (y)Q(dy; x), x ∈ Γ. (6)

Then the second integral in (5) is zero. The following resultcharac-
terizes the extended generatorA of (xt).

Theorem 2.1. The domain D(A) of the extended generator A of(xt)
consists of those functions f satisfying
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(i) For each (n, z) ∈ E the function t→ f (n, φn(n, z)) is absolutely
continuous for t∈ [0, t∗(n, z)[.

(ii) The boundary condition (6) is satisfied.

(iii) Bf ∈ Lloc
1 (p).

Then for f ∈ D(A)

A f(x) = X f(x) + λ(x)
∫

E

[ f (y) − f (x)]Q(dy; x). (7)

Proof. Suppose thatf satisfies (i)-(iii). Then
∫

Bf dq is a local martin-
gale, and

t∫

0

B f dq=
∑

Ti≤t

f (xTi ) − f (xT− i−
) −

t∫

0

∫

E

[ f (y) − f (xs)]Q(dy; xs)λ(xs)ds.

Now, 40

∑

Ti≤t

f (xTi ) − f (xTī
) =


∑

Ti≤t

( f (xTi ) − f (XTi−1)) + f (xt) − f (xTn)



−


∑

Ti≤t

( f (xT− ī
) − f (xTi−1)) + f (xt) − f (xTn)



whereTn is the last jump time beforet. The first bracket is (f (xt) −
f (xo)). Note that

f (xTī
) − f (xTi−1) =

Ti∫

Ti−1

XνTi−1
f (ν′Ti−1

φνTi−1
(ξTi−1, s)dsa.s).

�

So the second bracket is equal to
t∫

0

x f(xs)dsand
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∫
B f dq= f (xt) − f (x0)−

t∫

o

∫

E

( f (y) − f (xs))Q(dy, xs)λ(xs)ds−

t∫

o

X f(xs)ds.

So A f is given by (7) andC f
t =

t∫

0

Bf dq. Conversely, suppose

f ∈ D(A). Then there exists a functionh such thats → h(xs) is

Lebesgue integrable andMt = f (xt) − f (x0) −
t∫

0

h(xs)ds is a local mar-

tingale. By the martingale representation theorem,Mt = Mg
t for some

g ∈ L1oc
1 (p). Now the jumps ofMt andMg

t must agree, these only occur
whent = Ti for somei and are then given by

△Mt = Mt − Mt− = f (xTi ) − f (xTī
).

△Mg
t = Mg

t − Mg
t−

= g(xt, t,w) −
∫

E

g(y, t,w)Q(dy, xt−)I(xt−∈Γ)

at t = Ti . It follows that

g(x, t,w)I(xt</Γ) = ( f (x) − f (xt−))I(xt−<Γ)

except possibly on a setG ∈ E ∗ p such that41

Ey

∫

R+×E

IGp(dt, dx) = 0 for all y ∈ E.

Now supposeXTi = z ∈ Γ; then

f (x) − f (z) = g(x, t, ω) −
∫

E

g(y, t, ω)Q(dy; z)

for all x except a setA ∈ E such thatQ(A, z) = 0. Since only the first
terms on the left and right involvex it must be the case that

f (x) = g(x, t, ω) + f̃ (t, ω)
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and f (z) =
∫

E

g(y, t, ω)Q(dy; z) + f̃ (t,w)

for some predictable process̃f . Sinceg = f − f̃ ,

f (z) =
∫

E

f (y)Q(dy; z)

for z ∈ Γ, i.e., f satisfies condition (ii). Hence

g(x, t, ω) = f (x) − f (xt−).

Hence we get

‖(B f − g)I(t<σn)‖L1(p) = 0.

So condition (iii) is satisfied. Fixω and consider (Mt)o≤t<t1(ω) start-
ing at (νo, ξo)., then

Mt = f (νo, φνo(t, ξo)) − f (νo, ξo) −

t∫

o

h(xs)ds

Mg
t =

t∫

o

∫

E

( f (y) − f (xs))Q(dy; xs)λ(xs)ds.

Hencef (νo, φνo(t, ξo)) is absolutely continuous fort < T1(ω). Since 42

(νo, ξo) is arbitrary andT1(w) > 0 a.s. this shows that (i) is satisfied.

A “Feynman-Kac” formula.
This is used to calculate expected values of functionals such as

Ex



t∫

o

e−αs c(s, xs)ds+ e−αt φ(xt)

 .

There is no extra generality in allowing aP.D. Process to be time-
varying, because time can always be included as one component of ξt.
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However, it is sometimes convenient to consider the joint process (t, xt)

with generatorÃ =
∂

∂t
+ A. Then for f ∈ D(Ã)

f (t, xt) − f (o, xo) =

t∫

o

(
∂

∂s
+ A

)
f (s, xs)ds+

t∫

o

B f dq.

If

(
∂

∂s
+ A

)
f (s, xs) = o andB f ∈ L1(p), then f (t, xt) is a martin-

gale, so it has constant expectation

Exo f (t, xt) = f (o, xo).

Then

f (o, xo) = Exo φ(xt)

where f (t, x) = φ(x) (φ prescribed).

Proposition 2.5. Let t > o be fixed andα : [o, t] × E → R+, c : [o, t] ×
E → R andφ : E → R be measurable functions. Suppose f: [o, t] ×
E→ R satisfies:

(i) f (s, . ∈ D(Ã))

(ii) f (t, x) = φ(x), x ∈ E

(iii) B f ∈ Ll(p)


(8)

∂ f (s, x)
∂s

+ A f(s, x) − α(s, x) f (s, x) + c(s, x) = 0 (9)

(s, x) ∈ [o, t[ × E.

Then43

f (o, x) = Eo,x



t∫

0

exp

−
s∫

o

α(u, xu)du

 c(s, xs)ds

+ exp

−
t∫

o

α(u, xu)du

 φ(xt)

 (10)
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Proof. Supposef satisfies (8). Define

es = exp

(
−

∫ s

o
α(u, xu)du

)
.

Then

d(es f (s, xs)) = esd f(s, xs) + f (s, xs)des

= es

(
∂ f
∂s
+ A f

)
ds+ es B f dq− α(s, xs)es f ds

= −es c(s, xs)ds+ es B f dq (by (9)).

Now by (iii), es B f ∈ L1(p) sincees ≤ 1. Thus the last term is a
martingale and

Ex[et f (t, xt) − f (o, x)] = −Ex



t∫

o

esc(s, xs)ds

 .

This with (ii) gives (10). �

Example 2.9.The Renewal Equation:
Let (Nt) be a renewal process with inter arrival densityf (.). Let

m(t) = ENt. Since the process “restarts” at renewal times,

E[Nt |T1 = s] =


0, s> t

m(t − s) + 1, s< t.

So

m(t) =

∞∫

o

E[Nt |T1 = s] f (s)ds

which gives the renewal equation 44

m(t) =

t∫

o

(1+m(t − s)) f (s) ds. (11)
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This can be solved by Laplace transforms. Defining

f̂ (p) =

∞∫

o

e−pt f (t)dt

etc., we get

m̂(p) = m̂(p) f̂ (p) +
1
p

f̂ (p).

So

m̂(p) =
1
p f̂ (p)

1− f̂ (p)
.

In particular, for the Poisson processf (t) = λe−λt,

f̂ =
λ

λ + p

will give

m̂(p) =
λ

p2

to get
m(t) = λt.

Exercise 2.4.Compute Mτ(t) = EτNt, where the component in service
at time 0 has ageτ (and is replaced by a new component when it fails).

(Nt) is aPD process if we takext = (νt, ξt) whereνt = Nt andξt is
the time since last renewal. Then

Xν =
∂

∂ξ
, λ(ξ) =

f (ξ)
∞∫

ξ

f (u)du

andQ(.; ν, ξ) = δ(ν+1,0), so that45

A f(ν, ξ) =
∂

∂ξ
f (ν, ξ) + λ(ξ)[ f (ν + 1, 0)− f (ν, 0)].
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Use proposition 2.5 withα = c = 0 andφ(x) = ν to get

f (0, ν, ξ) = E(ν,ξ)νt.

Clearly
f (s, ν + 1, ξ) = f (s, ν, ξ) + 1.

Define
f (s, 0, ξ) = h(s, ξ).

Then the equation forf (or h) becomes

∂

∂s
h(s, ξ) +

∂

∂ξ
h(s, ξ) + λ(ξ)[1 + h(s, 0)− h(s, ξ)] = 0 (12)

h(t, ξ) = 0.

Define
z(u) = h(u, u).

Then

d
du

z(u) = −λ(u)[1 + h(u, 0)− z(u)]

z(t) = 0.

Thusz(u) satisfies

ż(u) = λ(u) z(u) − λ(u)[1 + h(u, 0)] (13)

where

λ(u) = −
Ḟ
F
=

f
F
, F(u) =

∞∫

u

f (s) ds.

Equation (13) is a linearODE satisfied byz(u). The transition function
corresponding toλ(u) is

φ(u, v) =
F(u)
F(v)

Hence (13) has the following solution at time 0: 46
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z(o) = h(o, o) =

t∫

o

f (u)[1 + h(u, o)]du (14)

Define
m(s) = h(t − s, o).

Then (14) coincides with the renewal equation (11). Having deter-
minedh(u, o) o ≤ u ≤ t, h(s, ξ) for s , ξ , o can be calculated from
(12). The result will be equivalent to that of Exercise 2.4.



Chapter 2

Optimal Control of pd
Processes

General formulations of stochastic control problems have been studied 47

using martingale theory, where the conditions for optimality, existence
of optimality are derived (E1 Karoui [15]). But this does notgive ways
of computing optimal control. Control of Markov jump processes has
been studied using dynamic programming (Pliska [21]). In this Chap-
ter, we will be dealing with control theory forPD processes, following
Vermes [25].

Let Y be a compact metric space. Control arises when the system
functionsX, λ,Q contain a parametery ∈ Y i.e., for x = (ν, ξ)

Xy f (x) =
∑

i

b(ν, ξ, y)
∂ f (ν, ξ)
∂ξi

Q = Q(A, x, y).

A feedbackpolicy (or strategy) is a functionu : R+ × E → Y.
Let U denote the set of all strategies.u is stationary if there is not-
dependence, i.e.,u : E → Y. Corresponding to policyu we get aPD
process with characteristicsXu, λu,Qu given by

Xu f =
∑

i

b(ν, ξ, u(x))
∂ f
∂ξi

(x)

45
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λu(x) = λ(x, u(x))

Qu(A; x) = Q(A; x, u(x)).

More conditions onu will be added when required. Then we get a
PD processxt with probability measurePu determined byXu, λu,Qu.

Given a cost function, say, for example,48

Jx(u) = Eu
x



t∫

o

e−αs c(xs, us)ds+ e−αtφ(xt)



whereEu
x is the expectation w.r.t.Pu starting atx andα > 0. The control

problem is to chooseu(.) to minimiseJx(u). The “usual” approach to
such problems is via “dynamic programming”. LetV(s, x) be a function
of (s, x). Introduce the Bellman-Hamilton-Jacobi equation

∂V(s.x)
∂s

+ min
y ∈ Y

[AyV(s, x) + c(x, y)] − α V(s, x) = 0 (B)

whereAy is the generator corresponding toXy, λ(., y), Q(., y).
If Y has one point, then this coincides with the equation forJx as

before.

Proposition 1. Suppose(B) has a “nice” solution (i.e., satisfies bound-
ary condition etc.). Then

V(o, x) = min
u ∈ U

Jx(u)

and the optimal strategy uo(s, x) satisfies

Auo(s,x)V(s, x) + c(x, uo(s, x)) = min
y ∈ Y

(Ay v+ c).

Proof. Same calculations arise as before. Letxt correspond to an arbi-
trary control policyu. Then

d(e−αsV(s, xs)) = −αe−αsV(s, xs)ds+ e−αs
(
∂V
∂s
+ AuV

)
ds

+ e−αsBV dq≥ −e−αsc(xs, u(s, xs))ds+ e−αsBu dq (1)
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So49

V(o, x) ≤ Ex



t∫

o

e−αs c(xs, us)ds+ e−αt φ(xt)



= Jx(u).

Now supposeu = u0, then “equality” holds in place of “inequality” in
(1). So

V(0, x) = Jx(u0).

Souo is optimal. �

Objections:

(1) There is no general theory under which (B) has solution.

(2) uo(x) constructed as above may fail to be an admissible control:
to make sense of it, we must be able to solve the ODE

d
ds
ξ(s) = buo

ν (ξs) = b(ν, ξ, uo(s, ξ)).

There is no guarantee thatuo leads to a “solvable” ODE.
So we must redefine “admissible controls” so that this is avoided.

Remark 1. In control of diffusion processes, the equation is

dxt = b(xt, u(xt))dt + σ(xt)dWt.

Here we “handle” nonsmoothu by using weak solutions.

Remark 2. In deterministic control, one uses open-loop controls de-
pending only on time. The equation here is of the form

ẋ = b(xt, u(t)).

Then solution is well defined for the measurableu(.).

Special cases: 50
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(1) Control only appears inQ. Then the problem reduces to a se-
quential decision problem where a “decision” is taken each time
a jump occurs. (Rosberg, Varaiya and Walrand [22]).

(2) X = 0. Here Markov jump process with piecewise constant paths
are considered. Control appears inλ andQ.

Then

Au
f = λ(x, u(x))



∫

E

( f (z) − f (x))Q(dz; x, u(x))



is a bounded operator onB(E). Regard (B) as an ODE in Banach
spaceB(E). Let V(s) := V(s, .), then

dV
ds
= g(V(s)) = min

yǫY
(AyV + c).

So g is a nonlinear function, but it is Lipschitz continuous inV
[Pliska [21]].

(3) Piecewise linear processes (Vermes [25]).

Hereξt is on dimensional andX = ∂
∂ξ

. Control appears inλ andQ.
Consider a ‘stationary’ control problem, where the Bellmanequa-

tion takes the form

min
yǫY

(AyV + c(x, y)) = 0

V(x) = Φ(x), xǫET .

This corresponds to minimising

Ex



τ∫

0

c(xs, us)ds+ Φ(xτ)

 ,

whereτ is the first hitting time of some target setET . Then

AyV(x) =
∂

∂ξ
V(ν, ξ) + λ(x, y)

∫

E

(V(z) − V(x))Q(dz, x, y).
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Supposeνǫ{1, 2, . . . , n} and51

V(ξ) =

(
V(l, ξ)
V(N, ξ)

)

Then Bellman equation takes the form

d
dξ

V(ξ) = g(V(.)).

This is an “ordinary” functional differential equation with non-stan-
dard boundary condition. Vermes showed existence of an optimal feed-
back strategy in special cases.

‘Generalised’ Dynamic Programming Conditions:
Let us consider next optimal control of the deterministic differential

system:
ẋt = f (xt, t, ut), tǫ[to, tl]. (2)

Then the control problem is to

minimize

tl∫

to

ℓ(xt, t, ut)dt

over “admissible” control/trajectory pairsut, xt i.e., pairs of functions
for which

(i) (2) is satisfied,

(ii) x(tl) = xl , x(to) = xo with xo, xl given,

(iii) xtǫĀ, utǫΩ, whereĀ,Ω are compact andA = Ā× [to, tl ].

This will be called thestrong problem(S).
We assume (a) an admissible pair (xt, ut) exists, and also we make a

temporary assumption

(b)


f (x, t,Ω)

ℓ(x, t,Ω)

 is convex. 52
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This enables “relaxed controls” to be avoided. Define

η(S) = “value” of S

i.e., inf
(xt ,ut)ad

∫
ℓdt.

Theorem 1. There exists an optimal admissible pair(xt, ut) for the
strong problem.

This is a “standard” result in optimal control theory (Vinter and
Lewis [26]). It depends critically on the convexity assumption (b).

A Sufficient Condition for Optimality: (Standard Dynamic Program-
ming). Suppose (xt, ut) is admissible andΦ is in C1(A) such that

Φt(t, x) +max
uǫΩ

(Φx(x, t) f (x, t, u) − ℓ(x, t, u)) = 0

Φ(xl , tl) ∈ A×Ω

and Φt(t, xt) + Φ(xt, t) f (xt, t, ut) − ℓ(xt, t, ut) = 0 a.a.t.

then (xt, ut) is optimal andη(S) = −Φ(xo, to). The main result of Vinter
and Lewis is as follows.

Theorem 2. The strong problem has a solution (i.e., there exists an
optimal pair(xt, ut)). There exists a sequence{Φi} in C1(A) such that

Φi
t +max

uǫΩ
(Φx f − ℓ) ≤ o, (x, t)ǫA

Φi (x1, t1) = 0

and(xt, ut) is optimal if and only if53

lim
t→∞

Hi(t) = 0 in Ll[to, t1]

where Hi(t) = Φi
t(xt, t) + Φ

i
x(xt, t) f (xt, t, ut) − ℓ(xt, t, ut).

The Weak Problem
For (xt, ut) admissible, defineµx,uǫC∗(A×Ω), the dual ofC(A×Ω),

by

< g, µx,u >=

tl∫

to

g(xt, t, ut) dt

for arbitrarygǫC(A×Ω). µx,u satisfies
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(i) µx,uǫP+ (i.e., if g ≥ o then< g, µx,u >≥ o).

(ii) TakeφǫC1(A) andg(x, t, u) = φ(x, t) + φx(x, t) f (x, t, u)

then
< φt + φx f , µx,u >= φ(xl , tl) − φ(xo, to).

Define
µ = {µǫC∗(A×Ω) : (i) and (ii) are satisfied}.

Proposition 2. µ is weak* compact and convex.

Note 1.The cost function for (xt, ut) is < ℓ, µx,u >.

Weak Problem (W): Minimise< ℓ, u > overµǫµ. So 54

η(W) ≤ η(S).

Theorem 3. η(S) = η(W). There exists an optimal x, u for S , soµx,u is
optimal for W.

Now we incorporate the constraints onµ into the cost function in the
following way. Define extended real valued functionsp, q onC∗(A×Ω)
as follows:

p(µ) =


< ℓ, µ > if |µ| ≤ tl − to, µǫP+

+∞ otherwise.

Let M2 = {µǫC∗ : Condition (ii) is satisfied}. Then

q(µ) =


o if µǫM2

−∞ otherwise.

Proposition 3. p is ℓ. s.c. and convex,
q is u.s.c. and concave,

and
η(W) = inf

µǫC∗
{p(µ) − q(µ)}.
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The Fenchel dual problem is as follows:

max
ξǫC(A×Ω)

(q∗(ξ) − p∗(ξ)) (D)

wherep∗, q∗ are “dual” functionals defined by

p∗(ξ) = sup
µǫC∗

< ξ, µ > −p(µ).

q∗(ξ) = inf
µǫC∗

< ξ, µ > −q(µ).

Proposition 4.

p∗(ξ) = max
(x,t,u)ǫA×Ω

(ξ(t, x, u) − ℓ(t, x, u))+ × (tl − to).

where a+ := max(a, 0).55

Sketch of proof:

p∗(ξ) = sup
|µ|≤tl−to
µǫP+

[< ξ, µ > − < ℓ, µ >]

= sup
|µ|≤tl−to
µǫP+

[< ξ − ℓ, µ >].

If < ξ, µ > − < ℓ, µ > is negative, then the optimum is zero. If
< ξ, µ > − < ℓ, µ >≥ o, then put Dirac measurex(tl − to) on maximum
point to get the result.

Proposition 5.

W = {ξǫC : ξ = φt + φx f for someφǫCl (A)}.

Then

q∗(ξ) =


−∞ if ξ < W̄

lim
i

(φi(x1, t1) − φi(xo, to)) if ξǫW̄

where ξ = lim
i
ξi andξi = φi

t + φ
i
x f .
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Proof. For ξǫW, by definition ofq andq∗, we getq∗(ξ) = φ(x1, t1) −
φ(x0, to).

A similar argument gives the result foruǫW̄. For ξ < W̄, there
exists a separating hyperplane, i.e., ¯µǫC∗ such that< ξ̄, µ̄ >, 0, ξ̄ǫW̄
and< ξ, µ̄ >= 0. If µǫM2, thenµ + cµ̄ǫM2. So

q∗(ξ) = inf
µǫM2

< ξ, µ >= −∞.

�

Characterizing the solution of (D): 56

η(D) = max
ξǫW̄

[
lim

i
(φi(x1, t1) − φi(xo, to))

− max
(x,t)ǫA×Ω

(ξ(t, x, u) − ℓ(t, x, u)+(tl , to))

]

= sup
φǫC∗

(φ(x1, t1) − φ(xo, to) −max
x,t,u

(φt + φx f − ℓ)+(tl − to)).

It is no restriction to assumeφ(x1, t1) = 0. Then Vinter and Lewis show
by an ingenious argument that

η(D) = sup(−φ(xo, to))

where the supremum overφǫCl such thatφ(x1, t1) = 0 and (φt + φx f −
ℓ) ≤ 0 ∀ (x, t, u).

Theorem 4.
η(D) = η(W) = η(S).

Proof. This follows from a “standard” result in duality theory:q∗ is
finite at some point in its domain wherep∗ is continuous. �

Proof of the main results now follow easily. The strong problem has
a solution sinceη(S) = η(D).

η(S) = lim(−φi(xo, to))

for some sequence ofφi ’s satisfying the “Bellman inequality”. The char-
acterization of optimal pairs (xt, ut) follows.
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Remark 3. If the set 57(
f (x, t,Ω)
ℓ(x, t,Ω)

)

is not convex, them the results are still valid butrelaxed controlsmust
be used.

A relaxed controlµt is aC∗(Ω)-valued function on [to, t1] such that
µt is a probability measure for everyt andt →

∫
g(t, u)µt(du) is measur-

able for every continuous functiong.

Interpretation: xt, µt is an admissible pair, whenever

dxt

dt
=

∫

Ω

f (xt, t, u)µt(du);

the cost is

tl∫

to

∫

Ω

f (xt, t, u)µt(du)dt.

Optimal Control PD Processes (Vermes [25])
In this section, we adopt a slightly modified definition of thePD

process (xt). It will take values inE, a closed subset ofRd, and we
suppose that

E = EoUE∂UET (disjoint)

whereET is a closed set,Eo is an open set and

E∂ = (Ēo − Eo) − ET .

Let E′o, E′
∂
, E′T be compactification ofEo, E∂, ET respectively and

E′ be the disjoint union ofE′o, E′
∂
, andE′T . Then a controlled PD process

is determined by functions

f : E′o × Y→ Rd;

λ : E′o × Y→ R+,

and Q : (E′oUE′) × Y→ m1(Eo)

whereml(Eo) is the set of probability measures onEo andY is a compact58
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(control) space. Functionf gives the deterministic motion by

ẋt = f (xt, yt).

We assumef satisfies a Lipschitz condition inx.
Admissible Controls: Feed back controlsu(t) = u(xt) are not the
“right” class of controls because the equationx = f (x, u(x)) only has
a unique solution under strict conditions onu(.). Let

αt = last jump time beforet.

n(t) = xα(t)

z(t) = t − α(t).

Thenn(t), z(t) determinext; in fact, for fixedyǫY,

xt = Xn(t),z(t)

where Xn,z = n+

z∫

o

f (Xn,s, y)ds.

Then admissible controls areY-valued measurable functions
u(n(t), z(t)). By Caratheodory’s theorem, the equation

Xn,z = n+

z∫

o

f (Xn,s, u(n, s))ds

has a unique solution, and PD process is well defined for suchu. We 59

will consider the three component process (xt, zt, nt) for notational con-
venience.

Relaxed controlsare functionsµ : E × R+ → m1(Y) such that (n, z) →∫
φ(n, z, y)µ(dy; n, z) is a measurable function for (n, z) for all continuous

φ. Corresponding toµ, define

f µ(x, n, z) =
∫

f (x, y)µ(dy, n, z)

λµ(x, n, z) =
∫

λ(x, y)µ(dy; n, z)
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Qµ(A, x, n, z) =
∫

Q(A, x, y)µ(dy, n, z).

Then we construct a PD process (xt, nt, zt) corresponding tof µ, λµ,
Qµ in the usual way.

The strong problemis to minimiseJx̂o(µ) over admissible relaxed
controlsµ, wherex̂o = (x, x, o), and

Jx̂o(µ) = Eµ
xo



τ∫

o

∫

Y

ℓo(xt, y)µ(dy; nt , zt)dt

+
∑

{t:xt−ǫE∂}

∫
ℓo(xt−, y)µ(dy; nt− , zt−) + ℓT(xτ)

 .

Hereτ is the first hitting time of setET .

Main Results:

Theorem 5. There exists an optimal (relaxed) control.

Theorem 6. The value functionψ(x) = supφ(x, x, o) where the supre-
mum is over all functionsφǫC1(E) such that

φz(x, n, z) +min
yǫY

(
∇xφ(x, n, z) f (x, y) + λ(x, y)

(∫
φ(ξ, ξ, o)Q(dξ, x, y) − φ(x, n, z)

)
+ ℓo(x, y)

)
(x, n, z)ǫẼo (3)

≥ 0

φ(x, n, z) ≤ min
yǫY

{∫
φ(ξ, ξ, o)Q(dξ, y, x) + ℓo(x, y)

}
(x, n, z)ǫẼ∂ (4)

φ(x, n, z) ≤ ℓT(x), xǫET (5)

andẼ is the space of triplets(x, n, z).60

Theorem 7. There exists a sequenceφk satisfying (3), (4), (5) above
such thatµo is optimal if and only if

φk(x, n, z) +
∫

Y

{
∇xφ

k(x, n, z) f (x, y) + λ(x, y)
}
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[∫
φk(ξ, ξ, 0)× Q(dξ, x, y) − φk(x, n, z)

]

+ ℓo(x, y)µo(dy, n, z) → o in Ll(Q
o
o). (6)

∫

Y



∫

Eo

φk(ξ, ξ, o)Q(dξ, x, y) + ℓo(x, y)


µo(dy, n, z)

− φk(x, n, z) → 0 in Ll(Q
o
∂) (7)

φk(x, n, z) − ℓT(x)→ 0 in L1(Qo
T). (8)

The measures Qoo, Qo
∂

and Qo
T are defined as follows.

Denotex̃t = (xt, nt, zt). For AǫẼo,

Qo
o(A) = Ẽµo

x̂o

τ∫

o

ψA(x̃t)dt

which is a measure oñEo and is called potential measure ofx̃t. 61

Qo
∂(A) = Ẽµo

x̂o

∑

t≤τ

ψA(x̃t−)

where A∈ Ẽ∂.
Qo

T(A) = P̃µo
x̂o

[ x̃T ∈ A]

for A ∈ ẼT .

Comparing with deterministic case, the necessary and sufficient con-
dition there was that (xt, µt) is optimal if and only if

φi
t(xt, t) +

∫ {
φi

x(xt, t) f (xt, t, u) − ℓ(xt, t, u)
}
µt(du) → o in Ll(t0, t1).

The “probability measure” corresponding toµt is Dirac measure on
x(.) andQo

o(A) is the time spent byx(.) in A. Thus the conditions stated
are a direct generalization of the deterministic ones.

Remark 4. Note that if we define

Qo
o(A) = Ex̃

∫ τ

o
ψA(x̃s)ds
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then for any positive measurable functiong,

Ex̃

∫ τ

o
g(x̃s)ds=

∫

Ẽo

g(ξ)Qo
o(dξ);

for, if g(x̃) =
∑

i

ciψAi (x̃)

then62

Ex̃

τ∫

o

g(x̃s)ds=
∑

i

ciEx

τ∫

0

ψAi (x̃s)ds

=
∑

i

ciQ
◦
◦(Ai)

=

∫

Eo

g(ξ) Q(dξ).

The general case follows by monotone convergence.

Remark 5. The Q◦i are “potentials of additive functionals”ℓt is anad-
ditive functionalif ℓ ≥ o and1

ℓt+s = ℓt + ℓsoθt

t, p∗t , I(t≥τ) are some example of additive functionals.

The potential of an additive functional is an operator

Uℓg(x̃) = Ex̃

τ∫

o

g(x̃s)dℓs.

HereQo
O,Q

o
∂
,Qo

T correspond precisely to this withℓt = t, p∗t , I(t>T)

respectively.

The Weak Problem:
1θt is the shift operator on the space of right continuous functions: (θtw)s = ωt+s
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The deterministic weak problem involved the fact that

φ(x1, t1) − φ(xo, to) =

t1∫

to

(φt + φx f )ds

for anyφ ∈ C1. The stochastic equivalent of this is Dynkin’s formula.
To get this in the appropriate form,define operators Ay, By as follows.

Ayφ(x, n, z) = φz(x, n, z) + ▽xφ(x, n, z) f (x, y)

+ λ(x, y)
∫

ẼO

(φ(ξ, ξ, o) − φ(x, n, z))Q(dξ, x, y)

and Byφ(x, n, z) =
∫

E∂

φ(ξ, ξ, o)Q(dξ, x, y) − φ(x, n, z)

for (x, n, z) ∈ Ẽ∂. Then the Dynkin formula on the interval (o, τ) is 63

Ẽµ

x̂φ(xτ, nτ, zτ) − φ(x̂)

= Eµ

x̂



τ∫

o

∫

Y

Ayφ(xt, nt, zt)µ(dy; nt , zt)dt

+

τ∫

o

∫

Y

Byφ(xt, nt, zt)µ(dy, zt , nt)dp∗t



=

∫

Ẽo

∫

Y

Ayφ(x, n, z)µ(dy; n, z)Qµ
o(dx, dn, dz)

+

∫

Ẽd

∫

Y

Byφ(x, n, z)µ(dy; x, z)Qµ
o(dx, dn, dz)

Now

Ẽµ

x̂φ(xτ, nτ, zτ) =
∫

ẼT

φ(x, n, z)Qµ

T (dx, dn, dz).
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So we can express the Dynkin formula as follows:

φ(x̂o) =
∫

Ẽ×Y

Lφ(x̃, y)Mµ(dx̃, dy)

where Lφ(x, n, z, y) = ψẼT
φ(x, n, z) + ψÊo

Ayφ(x, n, z) + ψẼ∂B
Y(x, n, z).

Mµ (S1 × S2) = Qµ

T

(
S1

⋂
ẼT

)
+

∫

S1
⋂

Ẽo

∫

S2

µ(dy; n, z)Qµ
o(dx, dn, dz)

+

∫

S1
⋂

Ẽ∂

∫

S2

µ(dy; n, z)Qµ

∂
(dx, dn, dz).

The cost for the relaxed controlµ is64

Jx̂o(µ) =
∫

E×Y

ℓ(x̃, y)Mµ(dx̃, dy).

The following supplementary assumption is required.

inf
u∈u

Jx̂o(µ) = inf
µ∈uo

Jx̂o(µ)

for somec > o andu is the set of relaxed controls,

uc =
{
µ ∈ u : µ ∈ [τ + p∗τ] ≤ c

}

with this assumption the weak problem is to minimize
∫

Ē×Y

ℓdM over

measuresM ∈ m1+c(Ẽ × Y) (wherema is the set positive measures of
total mass less than or equal to a) such that

1. M = Mo + M∂ + MT

where MT ∈ m1 (ẼT ).

M∂ ∈ m(Ẽ∂ × Y)

MO ∈ m(Ẽo × Y).
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2. φ(x̂o) =
∫

LφdM, φ ∈ C1(Ẽ).

From this point on, the development follows the Vinter-Lewis argu-65

ments closely. We reformulate the weak problem as a convex optimiza-
tion problem by incorporating the constrains in the cost function and
obtain the characterization of optimality by studying the dual problem.
The reader is referred to Vermes [25] for the details.

Remark 6. The optimality condition involves the measuresQo
O,Q

o
∂
,Qo

T
corresponding toµo. These can be computed from the following system
of equations.

Aµ
o
h(x̃) + ψΓ⋂ Eo = 0, x̃ ∈ ẼO

Bµ
o
h(x̃) + ψΓ⋂ Ẽ∂ = 0, x̃ ∈ Ẽ∂

h(x̃) + ψΓ⋂ ẼT
˜(x), x̃ ∈ ẼT .

Then
Qo(Γ) = h(x̂o).

Example 1.If Γ ⊂ Ẽo, then Dynkin’s formula says

h(x̂o) = Eµo

x̂O

τ∫

O

ψΓ(x̃s)ds

= Qo
O(Γ).

The results outlined above are the first general results on optimal
control of PD processes. Obviously much work remains to be done;
natural next steps would be to determine necessary conditions for op-
timality of Pontrjagin type; to develop computational methods; and to
study optimal stopping and “impulse control” forPD processes. For
some related work, see van der Duyn Schouton [29], Yushkevich [30]
and Rishel [31].
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Filtering Theory
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0. Introduction 65

0 Introduction

Suppose{xt} is a signal process which represents the state of a system,66

but cannot be observed directly. We observe a related process {yt}. Our
aim is to get an expression for the “best estimate” ofxt, given the history
of {yt} upto timet.

In Section 1, we give quick derivations of the “Kalman filter”for
the linear systems, and nonlinear filtering equations, thatof Fujisaki,
Kallianpur and Kunita and Zakai’s equation for unnormalized condi-
tional density (Kallianpur [19], Davis and Marcus [8]). In section 2,
we will study pathwise solutions of differential equations. In section
3, we will study the “Robust” theory of filtering as developedby Clark
[5], Davis [10] and Pardoux [20]. Here the above filtering equations are
reduced to quasi-deterministic form and solved separatelyfor each ob-
servation sample path. Also, we will look here into some moregeneral
cases of filtering developed by Kunita [17], where the existence of con-
ditional density functions is proved using methods relatedthe theory of
“Stochastic flows”.

1 Linear and Nonlinear Filtering Equations
Kalman Filter (Davis [11])

Suppose that the “signal process”xt satisfies the liner stochastic differ- 67

ential equation
dxt = Axtdt + cdVt (1)

whereVt is some Wiener process. “Observation”yt is given by

dyt = Hxtdt + dWt (2)

whereWt is a Wiener process independent ofVt. Assumexo ∼ N(o,Po).
To get a physical model, suppose we write (2) as

dyt

dt
= Hxt +

dWt

dt

then
dWt

dt
corresponds to white noise and

dyt

dt
is the “ physical” obser-

vation.
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The filtering problem is to calculate ‘best estimate’ ofxt given
(ys, s≤ t). There are two formulations for Kalman filter.

(a) Strict Sense: If (Vt,Wt) are Brownian motions then (xt, yt) is a
Guassian process. Then ˆxt = E[xt |ys, s ≤ t] is the “best estimate”
in the sense of minimizingE(xt − z)2 over allyt-measurable, square
integrable random variablesz, where

yt = σ{Ys, s≤ t}.

Because of normality, ˆxt is a liner function of (ys, s≤ t).

(b) Wide Sense Formulation:Do not supposeVt,Wt are normally dis-68

tributed. Just suppose that theith coordinatesVi
t ,W

i
t are uncorrelated

andEVi
tV

i
s = tΛs; EWi

tW
i
s = tΛs, i.e.,Vi ,Wi are orthogonal incre-

ment processes. Now look for the best linear estimate ofxt given
(ys, s≤ t). This will coincide withE(xt |yt) in strict sense case.

Calculatingx̂t is a Hilbert space projection problem. The random
variables we consider belong toLo

2(Ω, F, P) which is a Hilbert space
with inner product (X,Y) = EXY, whereo denotes the elements are
of zero mean. For any process, sayyt defineHy = L(yt, t ≥ o), the
linear span ofyt; this is a linear subspace. Then if ˆz denotes the
projection ofz ontoHy, then

‖z− ẑ‖ = min
U∈Hy

‖z− U‖.

Let x̂t be projection ofxt ontoHy
t = L(ys, s≤ t). Then the “Innova-

tions process”νt is defined by

dνt = dyt − Hx̂tdt. (3)

The Innovations processνt has the following properties:

(i) νt is an orthogonal increments process.

(ii) Hy
t = Hν

t .

(iii) Hν
t =

{ t∫
o

g(s)dνs, g ∈ L2[o, t]

}
.
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Then x̂t satisfies the linear equation69

dx̂t = Ax̂tdt + P(t)H′dνt

x̂o = 0 (4)

where the error covarianceP(t) = E(xt − x̂t)(xt − x̂t)′, (‘ denotes the
transpose).

P(t) satisfies the “Riccati equation”

d
dt

P(t) = AP(t) + P(t)A′ +CC′ − P′(t)HH′P(t)

P(o) = Po = Cov(xo).

The above equation (4) is theKalman Filter.

Derivation of Kalman Filter equation: From properties (ii), (iii) we
know

x̂t =

t∫

o

g(t, s)dνs

for someg such that
t∫

o

g2(t, s)ds< ∞.

Now using projection,xt − x̂t ⊥ νs, s≤ t. So

Extν
′
s = Ex̂tν

′
s

= E



t∫

o

g(t, u)dvu

 ν
′
s

=

t∫

o

g(t, u)du.

Hence

g(t, s) =
d
ds

Extν
′
s.
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Write innovations process as 70

dνt = Hx̃tdt + dWt wherex̃t = xt − x̂t.

Extν
′
s =

s∫

o

E(xt x̃′u))H′du.

Now

xt = φ(t, u)xu +

t∫

u

φ(t, r)CdVr

whereφ is the transition matrix ofA. So

Extν
′
s =

s∫

o

φ(t, u)(x̃ux̃′u)H′du

=

s∫

o

φ(t, u)P(u)H′du

g(t, s) = φ(t, s)P(s)H′.

So

x̂t =

t∫

o

φ(t, s)P(s)H′dνs.

But this is the unique solutions of (4).

Important Points:

(1) It is a recursive estimator.

(2) In the strict sense version ˆxt is a sufficient statistic for the condi-
tional distribution ofxt given (ys, s ≤ t), since this distribution is
N(x̂t,P(t)) andP(t) is nonrandom.

Exercise 1.1(Constant Signal). Let xt = θ with E(θ) = 0, Var (θ) = σ2

and
dyt = θdt + dWt
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with θ independent of Wt. Show directly by projection that71

θ̂t =
1

t + 1
σ2

yt.

Now show that the Kalman filter gives the same result.

Nonlinear Filtering
Suppose “signal”xt is a Markov process and “observation”yt is

given by
dyt = h(xt)dt + dWt,

generallyh is a bounded measurable function (extra smoothness condi-
tion will be added later). Assume that for eacht, xt and (Wu−Wv), u, v ≥
t are independent, which allows for the “feedback” case. Our objective
is to calculate in recursive from the “estimates” ofxt. to do this, it is
necessary to compute the condition ofxt given

yy = σ{ys, s≤ t}.

The Innovations Approach to Nonlinear Filtering
This approach was originally suggested by Kailath for the linear

case and by Kailath and Frost for nonlinear filtering. The definitive
formulation of the filtering problem from the innovations standpoint was
given by Fujiskki, Kallianpur and Kunita [18].

Innovations Processes:Consider processyt satisfying 72

dyt = ztdt + dWt, t ∈ [o,T] (5)

whereWt is Brownian motion and assume

E

T∫

o

z2
sds< ∞ (6)

and the “feedback” condition is satisfied. Let

ẑt = E[zt |yt].
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More precisely ˆzt is the “predictable projection” ofzt onto yt. The
innovations process is then

dνt = dyt − ẑydt. (7)

Note (i): νt is a Brownian motion w.r.t.yt, i.e.,νt is ayt martingale and
< ν >t. If Fν

t = σ{νs, s ≤ t}, the question is whetherFν
t = Fy

t . It has
been shown that in general, this is not true. But if (i) holds and (zt), (Wt)
are independent, then Allinger-Mitter proved thatFν

t = Fy
t .

Note (ii): All yt-martingales are stochastic integralsw.r.t. (νt), i.e., if
Mt is ayt-martingale, then there is ag such that

T∫

o

g2
sds< ∞ a.s.

and

Mt =

t∫

o

gsdνS.

This is true even ifFν
t , Fy

t , but note that (gs) is adapted toFy
t , not

necessarily toFν
t .

A General Filtering Formula: Take anFt-martingalent, process (αt)73

satisfying

E

T∫

o

|αs|
2ds< ∞

andFo measurable random variableξo with Eξ2
o < ∞.

Now define anFt semi-martingaleξt by

ξt = ξo +

t∫

o

αsds+ nt. (8)
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Since< W,W >t= t, we have

< n,W >t=

t∫

o

βsds

for someβt and for any martingalent. Let

ξ̂t = E[ξt |yt].

Thenξ̂t satisfies the following stochastic differential equation

ξ̂t = ξ̂o +

t∫

o

α̂sds+

t∫

o

[ξ̂szs + ξ̂sẑs + β̂s]dνs. (9)

Proof. Define

µt = ξ̂t − ξ̂o =

t∫

o

α̂sds

�

Thenµt is a yt- martingale. So there is some integrable functionη

such that

µt =

t∫

o

ηsdνs. (10)

Now we will identity the form ofnt, using ideas of Wong [28]. Using74

(5) and (8) and I to formula,

ξtyt = ξoyo +

t∫

o

ξs(zsds+ dWs) +

t∫

o

ys(asds+ dns)

Now calculateξ̂tyt using (7) and (10),

ξ̂tyt = ξ̂oyo +

t∫

o

ξ̂s(ẑsds+ dvs) +

t∫

o

ys(âsds+ ηsdvs) +

t∫

o

ηsds.
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Now for t ≥ s,
E

[
ξtyt − ξ̂tyt |ys

]
= 0.

So

E



t∫

s

(
(ξ̂uzu) − ξ̂uẑu + β̂u − ηu

)
du|ys

 = 0.

Let
V(u) = ξ̂uzu − ξ̂uẑu + β̂u − ηu.

ThenV(u) is predictable process and

E

[∫ t

s
V(u)du|Fs

]
= 0.

This is, ∫

A×[s,t]

V(u)dudP= 0∀s, t ≥ s,A ∈ Fs.

The class of setsA×[s, t] generatesP, the predictableσ-field. Hence
V(u, ω) = 0 a.e.dt ∗ dP. Hence the result.

Formula (9) is not a recursive equation forξ̂t. Still we can use it to75

obtain more explicit results for filtering of Markov processes. Let (xt)
be a Markov process andA,D(A) be generator, i.e., forf ∈ D(A) then

C f
t = f (xt) − f (xs) −

t∫

s

A f(xu)du

is a martingale. Suppose

< C f ,W >t=

t∫

o

Z f(xs)ds

for some functionZ f . Introduce the notation
∏

t

( f ) = E[ f (xt)|yt]
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Now apply (9) withξt = f (xt); A f(xs) = αs,C
f
t = nt andzt = h(xt)

to get Fujisaki-Kallianpur-Kunita filtering formula

Πt( f ) = Πo( f ) +

t∫

o

Πs(A f)ds+

t∫

o

[
Πs(D f ) − Πs(h)Πs( f )

]
dvs (11)

where
D f (x) = Z f(x) + h(x) f (x).

If we interpretΠt as the conditional distribution ofxt given yt, so
that

Πt( f ) =
∫

f (x)Πt(dx) = E[ f (xt)|yt],

then (11) is a measure-valued stochastic differential equation, and gives
an infinite-dimensional recursive equation for filtering.

Exercise 1.2.Derive the Kalman filter from the Fujisaki-Kallianpur-76

Kunita equation.

The Unnormalized (Zakai) Equations:
Introduce a new probability measurePo on (Ω, F) with t ∈ [o,T] by

dPo

dP
= exp

−
T∫

o

h(xs)dWs −
1
2

T∫

o

h2(xs)ds

 .

Since h is bounded,Po is probability measure and (yt) is a Po-
Brownian motion. Also

< C f
t , y >t =< C f

t ,w >t

=

t∫

o

Z f(xs)ds.

Note that, in general,C f
t is a semi-martingale underPo but< ., . > is

invariant under absolutely continuous change of measure. Also if Z = o,



74

thenxt has the same distribution under either measure. Let

∧T =
dP
dPo
= exp



T∫

o

h(xs)dys −
1
2

T∫

o

h2(xs)ds

 .

Let Eo denote the expectation underPo. Then it can be calculated
that under measurePo,

Πt( f ) = E[ f (xt)|yt]

=
Eo[ f (xt)At |yt]

Eo[At |yt]

=:
σt( f )
σt(1)

.

Thenσt( f ) is an unnormalized conditional distribution sinceσt(1)77

does not depend onf . To obtain a¡n equation satisfied byσt, we need a
semi-martingale representation forσt(1). First we have

dΛt = h(xt)Λtdyt (12)

i.e.,

Λt = 1+

t∫

o

h(xs)Λsdys

alsoΛt is a (Ft,Po) martingale. Then as before

Λ̂t = Eo[Λt |yt]

is ayt-martingale, so there exists someyt-adapted integrandηt such that

Λ̂t = 1+

t∫

o

ηsdys (13)

To identify ηt, we use the same technique as in deriving theFKK
equation. Calculate using (12) and I to’s rule,

Λtyt =

t∫

o

Λtdys +

t∫

o

ysΛsh(xs)dys +

t∫

o

Λsh(xs)ds.
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Calculating using (13) and Ito’s rule,

Λ̂tyt =

t∫

o

Λ̂sdys +

t∫

o

ysηsdys +

t∫

o

ηsds.

Now
Eo[Λtyt − Λ̂tyt |ys] = o for t ≥ s,

so we get
ηt = ̂Λ(t)h(xt) := Eo[Λth(xt)|yt].

So (13) becomes ag 78

Λ̂t = 1+
∫
Λ̂sΠs(h)dys (14)

This has a unique solution

Λ̂t = exp



t∫

o

Πs(h)dys −
1
2

t∫

o

Π2
s(h)ds



= σt(1)

Theorem 1.1.σt( f ) satisfies the “Zakai equation”

dσt( f ) = σt(A f)dt + σt(D f )dyt (15)

σo( f ) = Πo( f ) = E[ f (xt)].

Proof. Direct calculation using (11), (14) and the fact that

σt( f ) = Λ̂tΠt( f ).

�

Corollary 1.1. There is a one-to-one relation between Zakai equation
and FKK equation, in that wheneverσt satisfies Zakai equation,σ f ( f )/
σt(1) satisfies (11), and whenever

∏
t( f ) satisfies (11),

Πt( f ) exp



t∫

o

Πs(h)dys −
1
2

t∫

o

Πs(h)ds



satisfies Zakai equation.
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The Zakai Equation with Stratonovich Integrals: 79

Recall
t∫

o

us ◦ dvs :=

t∫

o

usdvs +
1
2
< u, v >t

whereo denotes a Stratonovich Stochastic integral andu andv are con-
tinuous semi-martingales. We have to calculate< σ.(D f ), y >t. From
Zakai equation

dσt(D f ) = σt(AD f)dt + σt(D
2 f )dyt .

So
d < σ.(D f ), y >t= σt(D

2 f )dt.

So the Stratonovich version of the Zakai equation is

dσt( f ) = σt(A f)dt + σt(D f )odyt −
1
2
σt(D

2 f )dt

= σt(L f )dt + σt(D f )odyt

where

L f (x) = A f(x) −
1
2

D2 f (x).

Application to Diffusion Process:
Consider a processxt ∈ R

d satisfying

d f(xt) = Xo f (xt)dt + X j f (xt)odBj
t (16)

for arbitrary smoothf , whereXo, . . . ,Xr are vector fields onRd we sup-
pose that< B j,W >t= α

j t for some constantsα1, . . . , αr

Note thatA is the generator ofxt under measureP (not Po). This is80

given by

A f(x) = Xo f (x) +
1
2

∑

j

X2
j f (x).

Proof. Rewrite (16) in Ito form. Replacef by Xk f in (16).

dXk f (xt) = XoXk f (xt)dt + XiXk f (xt)odBj
t .

�
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Then
d < Xk f , Bk >t= X2

k f (xt)dt.

Then Ito version of (16) is

d f(xt) =

(
Xo +

1
2

∑
X2

j

)
f (xt)dt + X j f (xt)dBj

t .

So

A = XO +
1
2

∑
X2

j

and2

C f
t =

t∫

o

X j f (xs)dBj
s.

Proposition 1.1. For Z given by

< C f ,W >t=

∫
Z f(xs)ds.

with Z f = σ jX j ,Z is a vector field.

Proof.

d < C f ,W > = d <
∫

X j f dBj ,W >

= X j f d < B j,W >

= α jX j f (xt)dt.

So 81

D = Z + h

= αiXi + h.

�

2We sometimes use the convention of implied summation over repeated indices.



78

Proposition 1.2. There exist vector fields YoY1, . . .Yr such that

A−
1
2

D2 =
1
2

∑

j

Y2
j + Yo −

1
2

Dh.

Proof.

D2 f = (αiXi + h)(α j X j f + h f)

= αiα jXiX j f + α
iXi(h f) + α jhXj f + h2 f

= αiα jXiX j f + hZ f + Dh f.

�

Let α = (α1α2, . . . αr)′ and supposeI − αα′ is nonnegative definite.
Write (I − αα′) = ∆∆′ and letX = (X1, . . . ,Xr)′.

X′∆∆′X =
∑

X2
i − α

iα jXiX j .

So defineY = ∆′X. ThenY′i sare vector fields and

A−
1
2

D2 =
1
2

∑

i

Y2
i − hZ+ Xo −

1
2

Dh

=
1
2

∑

i

Y2
i + Yo −

1
2

Dh

whereYo = Xo − hZ. It remains to check thatI − αα′ ≥ o. Takeξ ∈ Rr

with |ξ| = 1. Then

ξ′(I − αα′)ξ = 1− (α′ξ)2

≥ 1|α|2

≥ 0.

Since|α|2 ≤ 1, for82

<
∑

i

αi Bi,W >t =
∑

i

αi < Bi ,W >t

= |α|2t
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Soα2t = EUWt, whereU =
∑

i α
i Bi.

|α|4t2 ≤ EU2t = |α|2t2.

So we have Zakai equation in Ito’s form

dσt( f ) = σt(A f)dt + σt(D f )dyt

With vector fieldsX0,X1, . . .Xr and in Stratonovich form

dσt( f ) = σt(L f ) + σt(D f )odyt

With vector FieldsY0,Y1, . . .Yr plus a “0th-order” term. Now we
investigate what sort of process isxt under the measurePo.

Proposition 1.3. Under Po, xt satisfies the equation

d f(xt) = Yo f (xt)dt + Z f(xt)odyt + Yj f (xt)odbj
t (17)

where b1, . . .br are independent standard Brownian motions indepen-
dent of yt

Proof. Recall the Girsanov transformation. UnderP, B1, . . . Br are inde-
pendent and< B j ,W >t= α

jt. Now

dPo

dP
= exp

(
Mt −

1
2
< M,M >t

)

whereM is aP-martingale. UnderPo, B
j
t− < B j,M >t is a martingale 83

and hence a Brownian motion. Here

Mt = −

t∫

o

h(xs)dWs;

d < B j,M >= −α jh(xt)dt.

�
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So underPo,
dV j

t = dBj
t + α

jh(xt)dt

are independent Brownian motions, butV j is not independent ofyt, in
fact< V j , y >t= α

jt.
Now defineb̃ j

t = V j
t − α jyt, then< b̃ j , y >= 0, and this implies̃b j , y

are independent. But thẽb j are now not independent. In fact,

< b j , bk >t=


−α jαkt for k , j

1− (α j)2t for k = j

So

< b̃ j , b̃k >t =
[
< b̃ j , b̃k >t

]

= (I − αα′)t.

Let (I − αα′) = ∆∆′ as before and definebt = ∆
′−1b̃t.

Thenb̃t = ∆
′b̃y and< b >t= It. So

d f(xt) = Xo f (xt)dt + X j f (xt)odBi

= Xo f (xt)dt + X j f (xt)o(−α jh(xt)dt + α jdyt + db̃ j
t )

= (Xo f (xt) − hZ f(xt))dt + Z f(xt)odyt + Yj f (xt)odb̃ j
t

= Yo f (xt)dt + Z f(xt)odyt + Yj f (xt)o d b̃ j
t

whereYo f = Xo f − hZ f andY = ∆′X.84

The so calledKallianpur- Striebel Formulagives the solutionσt of
the Zakai equation as a function space integral in the following form,
wherext is functional of (y, b1, . . .br ).

σt( f ) = Eo

 f (xt) exp



t∫

o

h(xs)dys −
1
2

t∫

o

h2(xs)ds

 yt



i.e., as a function ofy, we have

σt( f )(y) =
∫

Cr [o,t]

 f (xt) exp



t∫

o

h(xs)dys −
1
2

t∫

o

h2(xs)ds



 µw(db1) . . . µw(dbr)

whereµw(db) is the Wiener measure onC[◦,T].
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2 Pathwise Solutions of Differential Equations

Consider the Doss- Sussman construction for the equation

ẋ = b(x) + g(x)ẇ (1)

x(o) = x

wherew ∈ C′(R+). Let φ(t, x) be the “flow” ofg, i.e.,

∂

∂t
φ(t, x) = g(φ(t, x))

φ(o, x) = x.

If b = o, then it is immediate that the solution of (1) is 85

xt = φ(w(t), x).

If b , o, then the solution of (1) is of the form

xt = φ(w(t), η(t)) (2)

whereη(t) satisfies someODE. With x(t) defined by (2),

ẋ(t) = g(x(t))ẇ(t) + φx(w(t), η(t))η̇(t)

and we require that

φx(w(t), η(t))η̇(t) = b(φ(w(t), η(t))).

Sox(t) satisfies (1) ifη(t) satisfies

η̇ = (φx(w(t), η(t)))−1b(φ(w(t), η(t)))

η(o) = x

Coordinate-free form: Let

Xo f (x) = b(x)
d f
dx

X1 f (x) = g(x)
d f
dx
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ξt(x) = φ(w(t), x).

Define
(ξ−1

t∗ Xo) f (x) = Xo( f oξ−1
t )(ξt(x)).

Then the equation forη(t) can be expressed as

d
dt

f (ηt) = (ξ−1
t∗ Xo) f (ηt)

ηo = x,

for86

(ξ−1
t∗ Xo) f (ηt) = b(ξt(x))

d
dx

f (ξ−1
t (x))|ξt(x)

= b(ξt(x))
d
dx

f (x)
d
dx

(ξ−1
t (x))|ξt(x)

= b(ξt(x))
d
dx

f (x)(ξx(x))−1. (∗)

Sinceξ−1(ξ(x)) = x and so

d
dx

(ξ−1(ξ(x)))
d
dx
ξ(x) = 1.

Whenx ∈ Rd, then

Xo f (x) =
d∑

i=1

bi(x)
∂ f (x)
∂xi

X1 f (x) =
d∑

i=1

gi(x)
∂ f (x)
∂xi

Then (∗) is of the form

(ξ−1
t∗ Xo) f (ηt) =

d∑

i=1

bi(x)
∂

∂xi
{ f ◦ ξ−1

t }|ξt(x)
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=

d∑

j=1

d∑

i=1

∂ f (x)
∂xi

∂(ξ−1
t ) j

∂xi
(x).

So the same results apply forxt ∈ R
d, but generallynot for more

than one “input”, i.e., for vectorw(t).

Interpretation: xt defined by (2) makes sense for anyw(.) ∈ C(R+).
In particular, if w(t) is a sample path of Brownian motion, then what87

equation doesxt satisfy?
Answer: the Stratonovich equation

dxt = b(xt)dt + g(xt)odwt (3)

Exercise 2.1.Expand xt given by (2) using Ito’s calculus and show that
it satisfies (3).

The following examples show that the pathwise solution ideacannot
generally be extended to “multi-input” equations.

Example 2.1.Let

ẋ = g1(x)ẇ1 + g2(x)ẇ2

x(o) = x.

The solution should be of form

xt = h(w1
t ,w

2
t ). (4)

Then withh1(w1,w2) =
∂

∂w1
h(w1,w2) etc., we have

ẋt = h1ẇ1 + h2ẇ2

h1(w1
t ,w

2
t ) = g1oh(w1

t ,w
2
t )

h2(w1
t ,w

2
t ) = g2oh(w1

t ,w
2
t )

and

h12(w
1
t ,w

1
t ) = g1

xoh.h2 = (g1
xoh)(g2oh)
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h21(w
1
t ,w

2
t ) = (g2

xoh)(g1oh).

So we must have
g1g2

x = g2g1
x.

Define the Lie bracket [X1,X2] = X1X2 − X2X1. Now88

X1X2 f = g1 d
dx

(
g2 d f

dx

)

g1g2
x fx + g1g2 fxx.

Therefore
[X1,X2] f = (g1g2

x − g2g1
x) fx.

So a necessary condition for (4) to hold is that

[X1,X2] = 0

i.e., X1X2 = X2X1.

Exercise 2.2.Consider

Ẋ =
n∑

i=1

gi(x)ẇi .

Letφi(t, x) be the flow of gi andξi
t(x) = φi(wi

t, x). Then show that

xt = ξ
1
t oξ2

t o . . . oξn
t

if [Xi ,X j] = 0 ∀i, j.

With one input,||wn − w|| → 0 implies xn
t → xt, where|| · || is the

sup norm. But with inputsw1,w2, the solution map generally is not
continuous.

Example 2.2(Sussmann [23]). Let t ∈ [0, 1] and89

ẋn = Axnẇ1,n + Bxnẇ2,n

x(o) = xo
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whereA, B aren× n matrices with

[A, B] = AB− BA, 0.

Partition [0, 1] into n equal intervalsIn
j =

[
j − 1

n
,

j
n

]
, j = 1, 2, . . . , n.

Partition eachIn
j into four equal intervalsIn

j,i , i = 1, 2, 3, 4. Definew1,n

to be equal to 4n1/2 for t ∈ In
j,1 to−4n1/2 for In

j,2, and to zero for all other

t. Similarly, let ẇ2,n be equal to 4n1/2 for t ∈ In
j,2 to −4n1/2 for t ∈ In

j,4,
and to zero for all othert.

Then

wi,n(t) =
∫ t

o
ẇi,n(s)ds, i. = 1, 2.

Clearly ẇi,n converges to zero uniformly asn → ∞, i = 1, 2. Let
s= n−1/2, then

xn(1/n) = eBse−AseBseAsxo

= eτxo.

We use the Baker-Campbell -Hausdorff formulaeAeB = eC where

C = A+ B+
1
2

[A, B] +
1
12
{[[ B,A],A] + [[ B,A], B]} + · · ·

we get

τ = [B,A]
1
n
+ o(1/n).

So 90

xn(1) = enτxo

= e([B,A]+o(1/n))xo

Hence
lim
n→∞

xn
t = et[B,A] xo.
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3 Pathwise Solution of the Filter Equation

Consider the equation

d f(xt) = Yo f (xt)dt + Z f(xt)odyt + Yi f (xt)odbi
t .

To express this pathwise in (yt), let φ(t, x) be the integral curve ofZ
andξt(x) = φ(y(t), x). Defineηt as follows:

d f(ηt) = (ξ−1∗
t Yo) f (ηt)dt + (ξ−1

t∗ Yj) f (ηt) ◦ dbj
t

ηo = x.

Then

xt = ξtoηt

= φ(y(t), η(t)).

The generator ofη is

A∗t = ξ
−1
t∗ Yo +

1
2

∑

j

(
ξ−1

t∗ Yj

)2
.

The Kallianpur-Striebel Formula: Recall91

σt( f ) = E(b)
[
f (xt) exp

(∫ t

o
h(xs)dys −

1
2

∫ t

o
h2(xs)ds

)]

= E(b)
[
f (xt) exp

(∫ t

o
h(xs)odys −

1
2

∫ t

o
Dh(xs)ds

)]

whereD = Z + h.

Notation: For any diffeomorphismψ : M → M, ψ∗ : C∞(M)→ C∞(M)
is given by

ψ∗ f (x) = f oψ(x) = f (ψ(x)).

So

f (xt) = ξ
∗
t f (ηt),
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and σt( f ) = E(b)
[
ξ∗t f (ηt) exp

(∫ t

o
ξ∗sh(ηs)odys −

1
2

∫ ∗

o
Dh(ηs)ds

)]

The next step is to remove “ody”. Define

H(t, x) =
∫ t

o
φ∗sh(x)ds.

CalculateH(yt, ηt) using Stratonovich calculus

dH(yt , ηt) = ξ
∗
t h(ηt)odyt + ξ

−1
t∗ YoHys(ηs)ds+ ξ−1

t∗ YiHys(ηs)odbi
s.

Notation:

gs(x) = H(y(s), x)

y∗j = ξ
−1
t∗ Yj

Bs f (x) = φ∗s f (x) exp

(∫ s

o
φ∗uh(x)du

)
.

Finally, we get 92

σt( f ) = E(b)[By(t) f (ηt)α
o
t (y)]

where the multiplicative functionalαs
t is given by

αs
t (y) = exp

[∫ t

s
Y∗j gu(ηu)dbj

u −
1
2

∫ t

s
(Y∗j )

2gu(ηu)du

−

∫ t

s
Y∗ogu(ηu)du−

1
2

∫ t

s
ξ∗uDh(nu)du

]

Soσt( f ) is now pathwise iny with σt( f ) : C[o, t] → R and (σt( f )/
σt (1)) is a version ofE[ f (xt)|yt]. Now we want to computeσt( f ) re-
cursively.

(a) Multiplicative Functional Approach:
Let (xt) be a Markov process with extended generator (A,D(A)).

The associated semigroup onB(E) is
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Ts,t f (x) = Es,x[ f (xt)]

αs
t (s ≤ t) is a multiplicative functional(m. f .) of (xt) if αs

t is σ{xu, s ≤
u ≤ t}-measurable and forr ≤ s≤ t,

αr
t = α

r
sα

s
t .

Corresponding toαs
t there is a semigroup defined by

Tα
s,t f (x) = Es,x

[
f (xt)α

s
t
]
.

In particular,
Tα

s,t1 = Es,x[α
s
t ].

It is a Markov (or Sub-Markov) semigroup when93

Es,x [αs
t ] = 1 (≤ 1).

If ( xt) is a homogeneous Markov process,αs
t is a homogeneous m.f.

if

αs
t = α

s+r
t+r o θr

where θr xt = xt+r .

Then
αs

t = α
o
t−s o θ−s.

So denotingαt = α
o
t , them. f . property is

αt+s = αt.αs o θt.

Now we want to find the generator of

Tα
t f (x) = Ex( f (xt) αt).

Suppose for the moment thatαt ≤ 1,∀ t. Thenαt is monotone
decreasing. In this casesαt corresponds to “killing” at rate (−dαt/αt).
It is possible to construct an “α-subprocess” which is a Markov process
xt such that

Ex[ f (xαt )] = Tα
t f (x).



3. Pathwise Solution of the Filter Equation 89

See Blumenthal and Getoor [1]. Define the extended generatorof
Tα to be the extended generator ofxαt , i.e.,

f (xαt ) − f (xαo) −

t∫

o

Aα f (xαs)ds

is a local Martingale iff ∈ D(Aα). This says (excluding stopping) 94

E

 f (xαt ) − f (xαs) −

t∫

s

Aα f (xαu)du|Fs

 = 0

or Exs[αt−s f (xt)] − f (xs) − Exs

t∫

s

αu−sA
α f (xu)du= 0.

So equivalently,f ∈ D(Aα) if

αt ( f (xt) − f (x) −

t∫

o

αsA
α f (xs)ds

is a local Martingale (Px) for everyx.
This characterizesAα even when the conditionαt ≤ 1 is not satis-

fied, so we adopt it as our definition.

Example 3.1.Let γt = exp

(
−

t∫
o

V(xs)ds

)
whereV ∈ B(E). Take

f ∈ D(A) and compute

d(γt f (xt)) = γt A f(xt) dt + γt d Mt f − V(xt) f (xt) γt dt.

γt f (xt) − f (x) =

t∫

o

γs[A f(xs) − V(xs) f (xs)] ds+

t∫

o

γs dMs f .

So
Aγ f (x) = A f(x) − V(x) f (x).
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Example 3.2.Let βt =
a(xt)
a(xo)

where a∈ D(A) anda(x) > o ∀ x. Then 95

Tβ
t g(x) =

1
a(x)

Tt(a f)(x).

Exercise 3.1.Show that

Aβ f (x) =
1

a(x)
A(a f)(x).

Now suppose xt satisfies

d f(xt) = Xo f (xt)dt + X j f (xt) o dwj
t .

Takeg ∈ C∞b (E) and define

δt = exp

−
t∫

o

X jg(xu)dwj
u −

1
2

t∫

o

∑

j

(X jg(xu))2du

 . (1)

If we define
dPδx
dPx
= δt,

then
dw̃ j

t = dwj
t + X j g(xt)dt

is aPδx - Brownian motion. Thus

d f(xt) = (Xo f (xt) −
∑

j

X jg(xt)X j f (xt))dt + X j f (xt)o dw̃− j
t .

Now δt is am. f . of xt (as will be verified below) and

Ex[ f (xt)δt] = Eδ
x[ f (xt)].

So96

Aδ f (x) =

Xo −
∑

j

X jg(xt)X j

 f +
1
2

∑

j

X2
j f .
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The three examples here are related by

t∫

o

X j g(xs)dwj
s = g(xt) − g(x) −

t∫

o

Ag(xs)ds.

Using this in (1), we see thatδt factors

δt = βt γt

with

V(x) = −Ag(x) +
1
2

∑

j

(X j g(x))2

a(x) = e−g(x).

So

Aδ f (x) = eg A(e−g f ) −

Ag−
1
2

∑

j

(X jg)2

 f (x).

So

egA(e−g f ) = A f −
∑

(X jg)X j f −

Ag+
1
2

∑

j

(X jg)2

 f .

Exercise 3.2.Verify that this result is correct by direct calculation of
egA(e−g f ).

We have the unnormalized solution of filtering problem as

σt( f ) = E[Byt f (ηt)α
o
t (y)]

for y ∈ C[o,T]. Hereηt is a diffusion,αo
t (y) is a m.f. ofηt. Now

αs
t (y) = exp

−
t∫

s

Y∗j g(ηu)dbj
u −

1
2

t∫

s

∑

j

(Y∗j gu(ηu))2du



× exp


1
2

t∫

s

∑

j

(Y∗j gu(ηu))2du−
1
2

t∫

s

(Y∗j )
2gu(ηu)du
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−

t∫

s

Y∗ogu(ηu)du−
1
2

t∫

s

ξ∗uDh(ηu)du

 .

This factorsαs
t into product of a “Girsanov”m. f . and a “Feynman-97

Kac” m. f . Hence the corresponding generator is

Ay
t f = A∗t f −

∑

j

Y∗j gtY
∗
j f +


1
2

∑

j

(Y∗j gt)
2 − A∗gt −

1
2
ξ∗t Dh

 f .

Proposition 3.1. Ay
t f = Byt

(
A− 1

2D2
)
B−1

yt
.

Proof. This can be verified by a straightforward but somewhat lengthy
calculation, using the expansion foregAe−g obtained previously, once
has obtained an expression forB−1

t . Recall thatBt is defined by

Bt f (x) = f (ξ(t, x)) exp

t∫

o

h(ξ(u, x))du.

�

It is a group of operators with generatorD = Z+ h. The inverseB−1
t

is given as follows. Letg(x) = Bt f (x), then

f (x) = B−1
t g(x)

= g(ξ(−t, x)) exp

−
t∫

o

h(ξ(u, ξ(−t, x)))du



= g(ξ−1(t, x)) exp

−
t∫

o

h(ξ−1(s, x))ds

 .

98
Example 3.3 (Independent “signal” and “noise”). Take Z = 0, then
ξ(t, x) = x and

Ay
t f (x) = eh(x)y(t)

(
A−

1
2

h2
)
(e−y(t)h(.) f (.))(x)

= ehy(t)Ae−hy(t) f −
1
2

h2 f .
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It is easy to see that this must be the right formula. The calculations
have been carried out for arbitraryy ∈ C[o,T] but Ay

t depends only on
y(t). SoAy

t = Aȳ
t whereȳ(s) ≡ y(t) (t fixed). Now

σt( f )(ȳ) = E

 f (xt)e
h(xt )ȳt exp

−
t∫

o

ȳ(s)dh(xs) −
1
2

t∫

o

h2(xs)ds





= E

 f (xt)e
h(xt )ȳt exp

−ȳ(t)h(xs) + ȳ(t)h(xo) −
1
2

t∫

o

h2(xs)ds





= E

 f (xt)e
h(xt )yt

exp(−y(t)h(xt))
exp(−y(t)h(xo))

. exp

−
1
2

t∫

o

h2(xs)ds



 .

So we have separated into two functionals and the result follows.

Direct Solution of Zakai Equation: We will consider a slight general-
ization from the original Zakai equation. Define

L =
1
2

∑

j

Y2
j + Yo + ho

D = Z + h

whereYi ,Z are smooth vector fields;h, ho areC∞b functions (Previously, 99

we hadho = −
1
2

Dh). Write 〈 f , µ〉 for
∫

f dµ and consider the measure-

valued equation

d〈 f , σt〉 = 〈L f , σt〉dt + 〈D f , σ〉 ◦ dyt (2)

where〈 f , σ.〉 = f (x) i.e., σo = δx. The solution can be expressed as
follows: Definext by

d f(xt) = Z f(xt).dyt + Yo f (xt)dt + Yj(xt) ◦ dbj
t , xo = x,

whereb j are Brownian motion independent ofy. Then the solution is

σt( f ) = Eb
[
f (xt) exp

(∫ t

o
ho(xs)ds+

∫ t

o
h(xs) ◦ dys

)]
.
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Kunita [17] show that this solution is unique if coefficients are
smooth and bounded. Now the question is whetherσt has a density.

Theorem 3.1.
〈 f , σt〉 = 〈Byt f , νt〉 (3)

where
Byt f (x) = 〈 f , µt〉

andµt, νt satisfy the equations

d < f , µt > =< D f , µt > odyt (4)

< f , µ0 > = f (x)

d < f , νt > =< Byt L B−1
yt
, νt > dt. (5)

Proof. If L = o, then (4) is the same as (2); so the solution of (4) is100

< f , µt >= f (xt) exp



t∫

o

h(xs) ◦ dys



wherext satisfies
d f(xt) = Z f(xt)odyt .

�

But this has pathwise solutionxt = ξ(yt, x). The previous definition
of B was

Byt f (x) = f (ξ(yt, x)) exp



yt∫

o

h(ξ(u, x))du

 .

Now,

d



yt∫

o

h(ξ(u, x))du

 = h(ξ(yt, x))odyt .

So (3) holds withBt defined as before. Now

d < Byt f , νt > = d′ < By′t f , νt > + < Byt f , ν̇t > dt



3. Pathwise Solution of the Filter Equation 95

= Byt L B−l
yt

Byt f , νt > dt+ < Byt D f , νt > odyt

by (5) and (4).

=< Byt L f , νt > dt+ < Byt D f , νt > odyt .

This verifies (2).

Proposition 3.2. Supposeνt has a density function qt(z, x) 3. Then for 101

t > o.σt has density

ρt(V) = qt(ξ
−1(yt,V)x) exp



yt∫

o

h(ξ−1(s,V))ds

× |
∂

∂V
ξ−1(yt,V) | (6)

where|
dξ−1

dV
| is the Jacobian of the map V→ ξ−1(yt,V).

Proof. If νt has a densityqt, then

< f , σt > =

∫
Byt f (z)qt(z, x)dz

=

∫
f (ξ(yt, z)) exp(

yt∫

o

h(ξ(u, z))du)qt(z, x)dz.

Changing the variable toV = ξ(yt, z) gives (6). �

Theorem 3.2(Bismut [2]). νt has C∞-density if the Yi are “smooth”
vector fields, i.e., coefficients are bounded with bounded derivatives of
all orders and Y1, . . . ,Yn satisfy the “restricted Hörmander condition”
H :- Consider vector fields Yi , [Yi ,Yj], [[Yi ,Yj],Yk] . . .. At each x the
restrictions of these vector fields to x span Tx(M).

In local coordinatesYi =
∑
i

bi(x)
∂

∂xi
, . . . etc. So the condition says

the vectorsb etc. spanRd at eachx. Recall,Byt LB−1
yt
= A∗t + (1st and

3Here z is the “dummy variable” andx refers of the initial condition in (2), i.e.,
σ0 = δx
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0th order terms)
A∗ =

∑

i

(ξ−1
t∗ Yi)

2 + · · ·

Now
ξ−1

t∗ [Yi ,Yj] = [ξ−1
t∗ Yi , ξ

−1
t∗ Yj] etc .

So if Yi satisfy the Hörmander condition, then (ξ−1
t∗ Yi) satisfies it.102

Hörmander’s own result requires coefficients to beC∞ in (t, x). Here
the coefficients are continuous (but not evenC1) in t. Bismut’s version
of Malliavin calculus shows that the result still holds withthis degree of
smoothness int.

In the filtering problem, the “signal process” involved vector fields
X1,X2, . . .Xn,X0 andY = ∆X, where∆ is nonsingular if| α |< 1. Then
X = ∆−1Y. So

[
. . . [[Xi1,Xi2]Xi3] . . .Xik

]
=

∑

j

c j

[
. . . [[Y1δ,Y2δ],Y3δ] . . .Yin, jδ

]
.

So if the “X” Lie brackets spanRd then there must be a collection of
“Y” brackets which also spanRd. The Hörmander condition forX with
| α |< 1 implies the existence of density.

The Case of Vector Observations:Let dyi = hi(xt)dt + dW0,i
t ,W0,i are

independent Brownian motions.α will now be a matrix,

αi j t =< W0,i ,W0, j > .

Consider the following cases. (a) Independent signal and noise:
Hereαi j = 0∀i, j. Then whole theory goes through unchanged.

Then (2) becomes103

d < f , µt >=
∑

i

< hi f , µt > odyi
t

with solution

< f , µt > = exp


∑

i

yi(t)h(x)

 f (x)
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=
∏

i

exp(yi(t)h(x)) f (x)

So this gives pathwise solution as before.

Another Point of View: The Kallianpur-Striebel formula is

σt( f ) = E(x)

 f (xt) exp


∑

i

t∫

i

hi(xs)dyi
s −

1
2

∑

i

t∫

o

h2
i (xs)ds





= E(x)

 f (xt)
∏

i

eyi (t)h(xt ) exp


∑

i

t∫

o

yi(s)dhi (xs)

=
1
2


∑

i

t∫

o

h2
i (xs)ds





 .

(b) The General Case: Here we have no “pathwise” theory (except
under very artificial conditions) but the same theory goes through a.s.
(Wiener measure). There is no continuous extension to the whole of
Cp[o,T]. In this case, equation (2) becomes

d < f , µt >=
∑

i

< Di f , µt > odyi
t

where Di = Zi + h andZi is a vector field.

A pathwise solution only exists ifD′i s commute, which is very arti-
ficial. But, as before, the solution can be expressed as

< f , µt >= f (xt) exp


∑

i

t∫

0

hi(xs)odyi
s

 (7)

wherext satisfies 104

d f(xt) =
∑

i

Di f (xt)odyi
t
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xo = x.

Regardµ as the operator mappingf →< f , µt >. Then “stochastic
flow” theory (Elworthy [13], Kunita [17], Bismut [2] says that if D′i s
have smooth coefficients thenx→ xt(x, ω) is a diffeomorphism a.a.ω,
and so the inverse mapx−1

t (x) exists. We have to calculateµ−1
t . Gener-

alize (7) slightly to

< f , µs,t >= f (xt, t) exp


∑

i

t∫

s

hi(xr , r) odyi
r



d f(xt, t) =
∑

i

Di f (xt, t) o dyi
t t ≥ s

xs = x.

Proposition 3.3(Kunita [17]).

µ−1
s,t ( f (x)) = f (x−1

s,t (x)) exp

−
∑

i

t∫

s

hi(x
−1
r,t (x)) ◦ d̂yi

r

 (8)

where “od̂” means backwards Stratonovich integral. Here defineσ−

fields Fr,t r ≤ t, by

Fr,t = σ
{
yi

u − yi
v, r ≤ u, v ≤ t, i = 1, 2, . . . , d

}
.

Then
t∫

s
φr d̂yi is a well defined backward I to integral ifφr is a back-

ward semimartingale w.r.t.(Fr,t)r≤t. Then the Stratonovich integral is105

defined as usual. IfΦr is continuous, then
∫

φrod̂yi
r =

∑

k

Φ

(
tnk + tnk+1

2

) (
yi

kn
k+1
− yi

tnk

)

Soµ−1
s,t (x) is well defined by (8). Now verify that

t∫

s

hi

(
x−1

r,t (p)
)
◦ d̂yi

r

∣∣∣
p=xs,t (x)
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=

t∫

s

hi(xs,r )odyi
r .

This checks thatµ−1
s,t (µs,t(x)) = x.

Now all remaining calculations go through as beforebut onlya.s.
(Wiener measure).

More general results on existence of densities have been obtained
by Bismut and Michel [3]
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