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Preface

These notes comprise the contents of lectures | gave atltReRl.Cen-
tre in Bangalore in ApriMay 1983. There are actually two separate
series of lectures, on controlled stochastic jump procease nonlin-
ear filtering respectively, and the corresponding two pafrteese notes
are almost disjoint. They are united however, by the comntologo-
phy (if that is not too grand a work for it) of treating Markowggesses
by methods of stochastic calculus, and | hope the readeyr atileast,
be convinced of the usefulness of this and of the ‘extendedrgéor’
concept in doing calculations with Markov precesses.

The first part is aimed at developing optimal control theary d
class of Markov processes called piecewise-determin{§tig)proce-
sses. These were only isolated rather recently but seemajemough
to include as special cases practically all the ndfudion continuous
time processes of applied probability. Optimal controlP@ processes
occupies a curious position just half way between detestimand Sto-
chastic optimal control theory in such a way that no standaedry
from either side is adequate to deal with it. The only applieaheory
that exists at all is very recent work of D. Vermes based org#reer-
alized dynamic programming ideas of R.B. Vinter and R.M. [se\aind
this is what | have attempted to describe here. Undoubtédiher de-
velopment of control theory for PD processes will be a fuliffeld of
enquiry.

Part 1l concentrates on the “pathwise” theory of filtering fiffu-
sion processes and on more sophisticated extensions d pritmarily
to H. Kunita. The intriguing point here is to see how stocicagartial
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Vi

differential equations can be dealt with by stochastic flow thgwough
what amounts to a “doubly stochastic” version of the Feynifaanfor-
mula. Using this, Kunita has given an elegant argument tovshe
existence of smooth conditional densities under Hormathge con-
ditions. This is included. Ultimately, it rests on resultstained by
Bismut and others using Malliavin calculus, since one needsrsion
of the Hormander theorem which is valid for continuous Heatthan
C*) t-dependence of the cficients. It was unfortunately impossible
to go into such questions in the time available.

I would like to thank Professor K.G. Ramanathan for his kimdta-
tion to visit Bangalore and K.M. Ramachandran for his heefliorts at
keeping up-to-date notes on a rapidly accumulating numblectures,
and for preparing the final version of the present text. | \@a@lso like
to thank the students and §taf the T.I.F.R. Centre and of the I.1.Sc.
Guest House for their friendly hospitality which made myitviich a
pleasant one.
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Chapter 1

Stochastic Jump Processes

O Introduction

Stochastic jump processes are processes with piecewistanbpaths. 1
The Poisson process, the processes arising in Inventonygong (stocks
of items in a store with random ordering and replacement)camdiing
systems (arrivals at a queue with each customer having naiéonand
for service) are examples of stochastic jump processes.aibuhere
is to develop a theory suitable for studying optimal contifiduch pro-
cesses.

In Sectior[l, martingale theory and stochastic calculugifap pro-
cesses are developed. Gnedenko-Kovalehkb [16] introdpieegwise-
linear process. As an example of such a process, considiealivaiting
time process\{WT) for queueing systems, whex8NT(t) is the time
customer arriving at timewould have to wait for service, see Fig.{0.1).

Later Davis [[f] and Vermes_ [25] introduced the concept otgie
wise deterministic processes which follow smooth curves lecessar-
ily straight lines) between jumps. In Sectioh 2, we will stimbme ap-
plications to piecewise-deterministic processes. Tha fHere is to de-
rive Markov properties, Dynkin’s formula, infinitesimal gerators etc.,
using the calculus developed in Sectidn 1.

3



4 1. Stochastic Jump Processes

Service
Demand

Figure 0.1: Arrival time of customers

1 Martingale Theory for Jump Processes

Let (X, S) be a Borel space.

Definition 1. A jump process is defined by sequencesT?, Ts, ...,
Z1,25,7Z3, ... of random variables, Te R, and T,; > T; a.s. and
Zi € (X,S). Set

Te = klmo Tk.

Let z, z., be fixed elements ok. Define the pathx)wo by

V4y) if t< Tl
X =32 if te]T, Tl
Zo If t>Tg.

Then the probability structure on the process is determiiyssither
joint distribution for (T;, Z;,i = 1,2,...) or specifying

(i) distribution of 3, Ty)

(ii) for eachk = 1,2, ..., conditional distribution of$x, Zx | Ty_i,i =
1,2,...), whereS, = Ty — T_i is thenk ™ inter-arrival time.

We will start studying the procesg] having a single jump, i.e.,

" Zp if t<T(w)
tZ(w) if t>T(w).



1. Martingale Theory for Jump Processes 5

If T = o0, letZ =z, afixed point ofX.

Zy T

Figure 1.2:

Define the probability spac&(F, P) as the canonical space for
Z,

ie., (®+ X X)U{(o0, Z)}, B(R+) * S, {(00, Zo)}, 11)
whereu is a probability measure on
(R4 X X)U{(e0, Zoo)}, B(R4) * S, {(00, Z)}).

The random functionX) generates the increasing family of fields 4
(F9), i.e.,
FO = oixs,s<t).

We suppose
u(([0, o] x {Zo})U{0} x X) = 0.

This assumption guarantees that the procgegtoes jump at its jump
timeT, i.e.,
P(T>0andZ #z) =1

Recall that arR, - valued random variableis a stopping time of a
filtration Fy, if (7 <t €)Fy, Vt. Let

Fi = Completion ofF{ with all F — null sets.

Proposition 1.1. T is not an I? stopping time, but T is anstopping
time.



6 1. Stochastic Jump Processes

Proof. Let A ={Z = zy} andK be any set irX. Then

xs'(K) =
([s, o0] x X)U([O, 5] x{z0}) If zeK andZ(E-A)NK=4¢
((s, o] x X)U([0, 5] xK)  if z0€ K and Z(E - A)NK # 4.
[0, 9] xK if 2o ¢ K.

whereE = R, x X — A.

Clearly [ t] x X cannot be in ther- algebra generated by sets of
the above form. S@ is not anFt0 stopping time. LeB = X — {z}. By
assumptionP(A) = 0; soA € F.

X 1(B) = [0,t] x X — Ae F.

So
[0,t] x X € Fy.

But {T <t} =[0,t] x X. HenceT is anF stopping time. m|
It can be seen that
Ft = B[o,t] * SU(t, o] x X)U null sets ofF,.
The stoppedr- field F+ is given by
Fr={GeFe:GN(T <t)e Fy, Vt).

Clearly
Fr = Fe.

Definition 1.2. A procesgM;) is an |k -martingale if E| M; |[< oo and
fors<t
E[Mt | Fs] = Ms a.S.

(My) is a local k- martingale if there exists a sequence of stopping
times § T oo a.s. such that §1 := Ms, is a uniformly integrable
martingale for each n; hereAS,, := Min(t, Sy).
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Proposition 1.2. If M is a local martingale and S is a stopping time
suchthat S> T a.s., then M = Mt a.s.

Proof. Let Sy be stopping times such th@f T o a.s. TherVias, is u.i.
martingale. LeM{" = Mi,s,, Yn. Then by optional sampling theorem

E[M2Ftas,] = MT;

but Fr =Fe.
So 6
E[M2 | Fr] = M&.
Also
. N
Jm, M = M
and lim Mg = Ms.
So
Ms = Mt as.

O

Proposition 1.3. Supposer is an R-stopping time. Then there exist
to € R, such thatt AT =ty AT a.s.

Proof. If T is a stopping time, thenrAT < t) € F, Vt. Butif TAris
not constant a.s. om (< T), then

(TAT < t) N (Jt, 00] X X) g]t, oo[xX for somet € R,.

But [t, 0] x X is an atom off;. This contradicts the fact thatis a
stopping time. So
TAT =tpATas.

The general definition of a stoppedfield is that ifU is a stopping
time. Then
Fu={AeF|AN(U <t)eF,Vt.

But this is an implicit definition of ther-field. O



8 1. Stochastic Jump Processes

Exercise 1.1.Suppose = toAT. Show that
() Fr=Fg
(i) Fr=0{Xns S 20}

Definition 1.3. For A€ S, define

FA®) = u([t, o] x A)
and Ht) = FX(t) = P[T > t].

Note that KO) = 1 and K.) is monotone decreasing and right con-
tinuous. Define

o inf {t: F(t) =0}
|+ if {t:F(t) =0) = 6.
Proposition 1.4. Supposé€M;)i-o is an R local martingale. Then
(@) ifc= o0 0rc< ooand Hc-) =0, then M is a martingale or0, c[.

(b) ifc < o, F(c-) > 0, then(M;) is a uniformly integrable martingale.
Here Hc-) = Ign F(t).
C

Proof. (a) If rx > Tas. for somek, then
Miaz, = Miagat = MiaT = Mt

So M is au.i. martingale. Hence suppo$§r, < T] > 0 for all
k(x); then by PropositiofTl 3,

kAT = ttAT for some fixedy

andtk < c because of«). Alsotk T csincery T .

So
Miazr, = MiaraT = MiaTay, = Miag,.

HenceMyy, is a u.i. martingale. SoW)<c is @ martingale.



1. Martingale Theory for Jump Processes

(b) c < o0, F(c.) > 0.
F(c.))=P(T=¢

P(T = ¢) > 0; so it must be the case thiat= ¢ for somek. Oth-
erwiseP(tx < ¢) > F(c-) > 0; so “tx T o a.s” fails. For this

K,
Miat, = My

So (My) is au.i. martingale.
Our main objective is to show that all local martingales carrdp-

resented in the form of “stochastic integrals”. So we intrel some
“elementary martingales” associated with the procegs ForA € S

andt € R,, define

p(t,A) = r(tzT)I(ZeA)
oA =- [ FeFo.

10, TA [

O

Proposition 1.5. Let qt, A) = p(t, A) - p(t, A). Then(q(t, A))o isan ik
- martingale, i.e.p(t, A) the “compensator” of the point procesgtpA).

Proof. (Direct calculation). Také > s, then

Arqy _ FA
Elp(t. A) - p(s A) | o = |M%

ELB(t A) = B(s A) | Fo = It
F(t) d FA(U) d FA(U)
F9 ) ) F(s)f f y 4FO)

[st] [sr]

and

f f dFF(z(_L;)dF(r) f ) f dF(r)dFA(u)

[st] [sr] [st] [ut]
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1
- f] FsFO - FedF @)
St

=F(t) f dFF(S(_L;) + FA®) - FA9.

[s1]
So
Ela(t, A —a(s A) | Fs] =0

O

Another expression for (i(t, A): We haveFA(.) << F(.) (i.e. FA()is
absolutely continuous w.r.E(.)). So there exists a functiot(s, A) such
that

FA0) - FA®M) = - f A(s, AF(s).
Jot]
In fact
ASA) =P(ZecA|T=9).

SupposeX is such that a regular version of this conditional probabil-

_AEA
ity exists (which is the case, singeis Borel space). Then% =
—dF(s)
A(s, A)dA(s) wheredA(s) Fo)
Then

B(t, A) = A(s A)dA(S).
]o,T[T]

Stochastic Integrals
Let | denote the set of measurable functigns Q@ — R such that

g(c, Zy) = 0.

(a) Integrals w.r.t. p(t, A): Suppose\; is a counting process. Since
its sample functions are monotone increasing and there liea 0
to-one correspondence between monotone increasing dascti
and measures, and since in this case, mass is concentrdbed at
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(b)

jump points and they are only countable; the functiyrdefines
a random measure ofR(B(R)) say,nm = } o1, wheredy is the

Dirac measure at. Similarly, the one jumlp process can be iden-
tified with the random measuigr x;) on R, x X. So we can
define Stieltjes integrals of the forﬁg(t, X) p(dt, dx) for suitable
integrandg € | as

f o(t. %) p(clt, dx) = g(T. xr).
Q

We sayg € Li(p) if

E | gt X) | p(dt, dx) < co
/

and denote

19lp= E f | o(t, %) | p(dt dx)
Q

Clearlyg € L1(p) if and only if
| ot g <o
RyxX

Integrals w.r.t. P(t, A): 11

Recallgit, A) = [ A(s A)dA(9).
10,T A f]

So we define

o(t, X)p(dt, dx) = g(t, X)A(t, dXydA(t)
f [

[oT] X

and say ge Ly(p) if f lg(t, X) | P(dt,dX) < oo
Q

and 19 = f | o(t. ) | B, dx).
Q



12 1. Stochastic Jump Processes

Proposition 1.6.
19 Ly =1l 9 llLy(p)

and so
L1(p) = La(P).

Proof.

19l = - f f %Ig(&X)Idu(SX)dF(T)

Ry [0,T]

_ f 1 gs9](- f dF()du(s %)
[

F(s.)

Q S,00]

f | o(s %) | du(s %)
Q

=[ g llLy(p) -
Define
L%(p) = {g e | | 9(s ¥)ls<t € La(p), Vi < c}
LY9°(B) = {g e | | g(s X)ls<t € L1(p), Vt < c}. Clearly
L(p) = LY°(P).

12 Following is the main result of this section, which gives ategral
representation foF; local martingales. m|

Proposition 1.7. All F-local martingales are of the form

M = f (9(s, X)I (s<tydq(s, X)
Q
= f (9(s ¥)lstdp(s, X) — f (9(s X s<ndp(s, X).
Q Q

for some g L'°(p).

We need the following result.
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Lemma 1.1. Supposd€M;)wo is Ui.Ft martingale with My = 0. Then
there exists a function hQ — R such that

E|hT,Z)|< o (1)

and

I
M; = le)N(T, Z) - IM)W f h(s, 2u(ds d2 (2
10,t]xX

Proof. If (My) is au.i. martingale, theiM; = E[¢ | F¢] for someF -
measurable r.\& and from the definition oF.,, we have

£E=Nh(T,2)as

for some measurable: Q — R. Expression[{l) is satisfied sind4 is 13
u.i., andMp = 0 implies

fh.dy =0. (3)

Q

Now
Mt = E[h(T, Z)IF]
e D +lenzgs [ hedudsdy. @
Jt,o0]x X
From [3) and[(4), we hav&l(2). ]

Forg e LI°°(p), the stochastic integral

M9 = f o(s x)q(ds d¥
10,t]xX

is defined by

MP = f l(s<n9(s X)p(ds dX) — f | (s<g(sx P(AS dX).
R+*xX RExX

Then the question is whethdd; given by [2) is equal tdvi? for
someg. As a motivation to the answer consider the following exampl
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Example 1.1.Let (X, S) = (R, B(R)) and
u(ds dX) = y(s x) ds dx

Then

]
M = 1) 4 O(T, 2) - f f %g(a (s X)dxd
0 R

t
e { f f %g(s,xw(ax)dxd:} 5)
0 R

If M3 given by [3) is equal tdM; given by [2), then the cdigcients
of l¢=1y andl 1) must agree. Comparing the d¢beients ofl ., we
require

t
ht.2) = o(t.2) - f f %g(sst X)dxds
0 R

Let
n(t) = h(t, 2 - g(t. 2.
Define
¥ = [ whax
R
and
f(t) = f wdx
R
Then

T

n(t) = f %[ f h(s,Z)+n(S)]t//(s X)dxds
R

0

t t
1 1
:f@’y(S)dS'i‘f%ﬂ(S)f(S)ds

0 0
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that is

£(t)

F (t) —n(t) + —

) = 7
n(o) =

which has a unique solution

F (t)

o) = f ot 97591

where
o(t, 5) = exp FE ))d

() _dF()

F() sincef(t) = TR
So . 15

10 = g5 [ 79
0

Hence

t
ot. ) = ht. z)+% Of Rf h(s X)u(s dxds ®)

Now it can be checked that with this choicegithe codficients ofl )
in @) coincides with that of{5). SM; = M
Now we can prove the general case given in Propodifign 1.7.

Proof of Proposition 1.7.

Case 1.c < oo,F(c_) > 0. Take a local martingale Mwith M, = 0.
Then(My) is u.i. So M = E[h(T, 2)|F] for some measurable h such that
E|n| < co, En= 0. Then we claim that M= M where

ot.2) = h(t. ) + IM% f h(s 2« (ds d2).

Jo,t]xx
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But this can be seen algebraically following similar ca#tidns as
of the exampl&I]1. Now to show thgie L'°(p).

lgidu < [ Ihidu — L IndudF(t)
Jioaz [ [ 5 |

[eXe} ]o,f]xX
1
Jo,c[ Jo,t]xX
1
< [ sz [ FO-Fehg
Jo,c[xX
<1+ ! f|h|d <
00,
VTR T

16  Case 2.c = o, 0or ¢ < oo and Hc_) = 0. Then from propositiof 1.4, M
is a martingale orf0, c], and so it is u.i. orjo, t] for t < c. Therefore

Ms = E[h(T, Z)IF ]
for some function h satisfying
f lg(s, X)|du(s, X) < o forall t < c.
]o,f]xX

Define ds, X) as in [8). Then calculations as in caSe 1. Show that
Ms = MZfor s<t < c. Now

lgldu < Ihid — 1 < Injdu dF(s)
[ s [ e [ g

[o,f]xX ]o,txX o] ]o,s]xX
1
< hdu(1- | ——dF(s
< [ hdua- [ m5eFe)
Jo,t]xX Jot]

<o fort<c.

|
Hence ge LT%(p).
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Conversely, supposge L'log(p). Then it can be checked thit? is
a local martingale.

Remark 1.1.1f g € L'log(p) thenM? is a martingale. But the result does
not sayM is a martingale if and only iM = M9 for g € L1(p), it only
characterizefocal martingales.

Remark 1.2.All preceding results hold if, is a random variable; then
u should be taken as conditional distribution ®f Z) givenz,

The multi-jump case: The process; has jump timesTy, To, ... with 17
corresponding stateg, Z, . .. Let (Y, y) denote the measurable space

(YY) = (R4 x X)U{(00, Zw)}, {B(R,) * S, {(00, Zo)}}).

Define

Q

| Yi,QK=1_[Yi

(o8]
i=1 i

ie

i=1

K
=1

FO

where {Yi, y;) denote a copy ofY(y). Let

Sk(w) = Tk(w) = Tk-1(w)
and Wi(®) = (S(), Z1(). . .. Sk(), Zk()).

Then
k
Ti(w) = ), Si(w)
i=1
Teo(@) = Jim Tiw).

As before, &(W))eo is defined by

Z, ift<T(w)
X(w) =12 if t e [Te(w), Tkea(w)]
Zo It To(w)
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A probability measurg: on (Q, F°) is specified by a familyd :
Qi_1 xy — [0,1] (with Qo = ¢) satisfying
(i) u'(.;T)is measurable for each fixéd

(i) u'(wi—1(w);.) is a probability measure or,y) for each fixedw €
Q,

18 (i) i (Wi—1(w); ({0} x X) U (R4 X {zi—1(w)})) = O for all w,
(iv) 1 (Wi—1(w); .{(e0, Zw)}) = Lif Si_1(w) = co.
Then forT" € yandn € Q;_1, u is defined by

pl(T1,Z2) €T] = p(D)
ul(Si.Zi) €Tiwiy = 7] = p'(n - D)i = 2,3+

Notice that as in the single jump case, here (iii) ensure tivat
“jump times” T;_1, T do not occur at one and that the procassloes
effectively jump at its jump times (iv) ensures théZy = Z.|Tk = o] =
1.

As before,FP = o{xs, s< t} and

Ft = completion off? with all u-null sets ofF°.

Proposition 1.8. (i) F. = F, the completion of F

n oo
(i) Fr,=T1yix 1 ¥
i-1 i=n+1
The idea here is to reduce everything to one jump case. Thhkis
process “restarts” at eadfy. We need the following result.

Proposition 1.9.
F(kal +t)ATk = FTk—I Vo {X(Tk7|+5)ATk, 0<s< t)} .

Proof of this is an application of the “Galmarino test” (xalherie
and Mayer|[[12], theorem IV, pp. 100).
19 Recall that in one jump cadg 1 = Ft,. Now we conjecture that,
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if U= (Tk_1+1to)ATy, then

k-1 o0
FU = [ny'}*yro *[l_[ Y,},
i-1 i=k+1
where Y& = S B0, to] U (XX [to, 0]).
As an example, see the following exercise.

Exercise 1.2.Consider a point process withk 2, and take the proba-
bility space aR?. Then

2
X = Z le=T))-
i=1

Then
(@) Show that

F: = Borel setsinS; + S, < t}
+ (AxR+)m B+ [t, o] xR, A€ B(R)

where
B={S;+S,>1) ﬂ{sz <tl.

(b) WithU = (T1 + t)AT», show that

Fu = BR: x [0.t]) + ((Ax Re) [ |®axto, o)) : A € B(R)).
Elementary Martingales, Compensator'sDefine
p(t, A) = Z le=T)l@en)
i
which counts the jump of4) ending in the sef\. Define

Aray _ 1 A
ACEE i@

[o.9]
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where 20
Ft = i ([t, o] x X)

and 1

A _ 1 = — dFkA

W9 = - | FesaFi)
[o.9]
where
FRAU) = uM(Wig; [u, 0] x A).

Now define

Bt A) = ¢7(T1) + @5 (Wi; Sp) + -+ 1 (Wj_1;t — Tj_1(w))
for t€]Tj_1, Tj].

Exercise 1.3.Consider a renewal process

X = Z le=Ti)

i
and S’s are independent, S; > t) = F(t) is continuous. Then show
that the compensator for is
pt) = —(n(F(S1)F(S2) - - - F(Sk-1)F(t — Tk-1)) for t € [Tk-1, Tk],
and % — P(t) is a martingale.
Example 1.If F(t) = e, thenp(t) = at.
Proposition 1.10. For fixed k, and A S,
q(tATk, A) = p(tATk, A) — p(tATk, A),t>0

is an R - martingale.
Proof. Calculation as in propositidn.5. m|

The class of integrandsconsists of measurable functigyt, X, w)
such that
g'(t, X, t < Tai(w)
ot X @) = { g W1, t = Tier, X), t €] Tioi (@), Ti(w)],
0, t> Too(w)
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for some functiong® such thatg(co, X) = g¥(wy; o0, X) = 0. Suchg’s
areF;—predictable processes. Now we deflné€p), L1(P), etc. exactly
as in one jump case:

fgdp=zg(Ti,Zi)

Li(p) = {9 €l: EZ l9(Ti, Zi)| < 00}

dFX(9)

Jow=-3 | s sdg

k 10, Tk=Ty—1]xX
where
FkA

Aot 5 A) = G(9

ge F'loc(p) if there exists a sequence of stopping timgs! T, a.s. and
9lg<o, € L1(p), ¥N. Forg € L1°%(p) we define

My = f 9(s ¥ q(ds dx
[ot]xX

= f g(s, ) p(ds dx) - f 9(s, x) p(ds dx).
[ot]xX [o,f]xX
Proposition 1.11.If g € L}OC then there exists a sequence of stoppirg

times T, < Tw such thatr, T T, and IVEATn is a u.i. martingale for
each n.

Proof. Taker, = nAT,Aoy. Then the result follows by direct calcula-
tions using the optional sampling theorem. O

Now let (My)=0 be a u.i.Fi—martingale. Then

Mt = MiaT, + Z(MtATk - M1 It (7)
k=2
because this is an identity if< T,, and the right-hand side is equal to
lim My, ist > T. Here we haveMrt__ = M1_. Now we state the main
result.
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Theorem 1.1. Let (M;) be a local martingale of  Then there exists
g € L'°(p) such that

My = Mo = f o(s x. ) o(ds d%).

[o,t]xx

Proof. Suppose first thatl; in a u.i. martingale. define

1
X = M,

Xlt( - M(t+Tk7|)ATk - MTk,]_? k = 23 37 L

Then from [T)
k
M= D Xr o
k=l

We can now use propositidi_1.7 to represent edchFix k and
define fort > 0.

Hy = F(t+Tk-1)/\Tk-

Thenx! is anH; martingale. Then there exists a measurable function
hk such that
X = E(h(wi-1; Sk, ZWIHy).

Then using propositiofi .7, there exigtéwk_1; S, 2) such that
= [ dlocuisaddsd
Jo,t]xX

wheregf(t, A) = q((t + Tie1)ATi, A) and gt e L(p¥) for all w1
a.s. Piecing these results togetherKote 1,2, 3,... gives the desired
representation witly = (g). It remains to prove thag € L'loc(p) as
defined, for which we refer to DavisI[6].

If (My) is only a local martingale with associated stopping time se
quencer, T o such thatM:;At, is a u.i. martingale, apply the above
arguments toM;Ar, to complete the proof. m|

Corollary 1.1. If T, = o a.s. then the result sayd;) is a local
martingale of k if and only if M = M? for some ge L'°%(p).
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Remark 1.3.1t would be useful to determine the exact class of inte-
grandsg required to represent u.i. martingales (as opposed to toaga
tingales) when the jump timég are totally inaccessible, Boel, Varaiya
and Wong [[4] show thatM9, g € L,(p)} coincides with the set afii. 24
martingales of integrable variation. It seems likely thas tcoincides
with the set u.i. martingales Ep(t,E) < o for all t (a somewhat
stronger condition thail; — co a.s.) but no proof of this is available as
yet.

2 Some Discontinuous Markov Processes

Extended Generator of a Markov Process
Let the process; € (E, E), some measurable space. Thenk,) is
a Markov process if fos < t

E[f(x)IFs] = E[f(x)Ixs]as.
A transition function s, x,t,T’) is a function such that

p(s, Xs, t,T) = P(X € I'|Xs)
= E[Ir(X)IXs] a.s. fort > s

p satisfies the Chapman-Kolmogorov equation

p(s x,t,T) = f p(s x,u,dy)p(u,y,t,I') fors<u <t
E

Not every Markov process has a transition function, but lswmne
wants to start with transition function and construct theresponding
process. This is possible iE(E) is a Borel space (required to apply
Kolmogorov extension theorem; refer WentZell[27]). Onestarcts a
Markov family,

{Pxs (X, 8) € ExR }pys

being the measure for the process startingsat x. All measuresPgy
have the same transition functign Denote byE, s integration w.r.t
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Pys. Let B(E) be the set of bounded measurable functions

f . E — Rwith||f|| = sup|f(X)|

xeE

25 Define
Tsif(X) = Exslf(%)l], s<t.

Tst Is an operator oB(E) such that
(i) itis contraction,||Ts:f|| < |Ifll, Tst1 = 1.
(i) Semi group propertyr < s<t,
Tre = TrsTst

for

Tra(Tst ) (9 = Exr[Ex. s(f(x0))]
= Exr[E(f(x)IFs)]
= Exr f(x))
= Tr,tf(x)-

Tst is time invariant ifTsyrr = Tgt for allr > —s. ThenTg; =
Tot-s = Ti—s. SOT is a one parameter family; this happens when the
transition function is time invariant i.ep(s, x,t,I) = p(s+r, Xt +
r,I'). Then get a one parameter family of measufgs X € E) and the
connection is

Tif(X) = Exf(%); Tof = f.
Let
Bo(E) = {f € B(E) : ||T:f — f|| = 0,t | O}.

An operator,z\ with domainD(,OA) c B.(E) is thestrong infinitesimal
generatorof T if

im (T~ )~ Afll = 0,

26 So
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Af = dgtth(X)lt=o
Take f € D(A). Then
lim L(TeTof = Tof) = lim L(Tesf - Tof)
tl0 t tl0 t
= lim Ts%(th _f)
= TAf.

Sof € DA) implies Tsf € D(A) andATsf = TAf. So we get
backward Kolmogorov equation

d o
d—sTsf = A(Tsf). (1)

The main results of the “analytic theory” of Markov semigpsiare the
following;
(i) Hille-Yosida theorem: Necessary andfgtient conditions for an
operatorA to be the generator of some semigroup.

(i) If Z\ satisfies these conditions, th@(,z\) is dense inBy(E) and
(A, D(A)) determinedl; (via the so called resolvent operator).

NB: The domair@,z\ provides essential information.
Integrating (L), we gebynkin’s formula

t

T F(X) - £(x) = fTs/lf(x)ds

0
t

ie., E, f(x) — f(x) = Exf/f\f(xs)dsf e D(A).
0
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Proposition 2.1. If f € Z)(Z\) then the process
t

Cl = f(x) - f(xo) - | Af(x9ds
/

is a martingale.

Proof. Fort > s

t
EIC{ — CiIFs = E| f(x) - f(xs) — f /‘if(xu)dums‘

S

t
= Ex f(%) - f(xs)—Exszf(xs)ds 0 o

S
O

Definition 2.1. Let M(E) be the set of measurable functions E — R.
Then AD(A) with D(A) c M(E) is theextended generataf (x;) if th
is a local martingale, where

t

Cl = 100 - 100) - [ AfGods
0
This is an extension @i, DA)) in that D(A) ¢ D(A) andAf = Af
for f D(,Z\). We have uniqueness of A in the following sense. Write
t
f(x) = f(xo) + fAf(xs)ds+ cl.
0

This shows thatf (x)) is a “special semi-martingale” £local mar-
tingale + predictable bounded variation process). The decompasisio
unique. So, if B is another generator then

t
f (Af(xs) — Bf(xe))ds= 0PyasVt.
0
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Thus A{X) = Bf(X) except on a set of potential zero. where a set of
I' has potential zero, where a 9éhas potential zero if

[o0)

0

Example 2.1.Supposex € RY satisfies
dx = b(x)dt + o (%) dw

with standard Ito conditions. If € C2, then 28

t
4100 = | 000000 + 3 Yooy L (ot
T\ 4P a Y T 2 L Mg, '
’ 0

SoC? c D(A) and
t

Af(x)_Zb.(x) ZZ( “)'Jaxax c :fvf’crdvv.
0

NB: This is not a characterisation 6¥(A).

Remark 2.1.1f we had requireot:tf to be a martingale rather than a
local martingale in definitiofi_211, then not evefye C? would be in
D(A) because of the properties of | to integrals.

Exercise 2.1.Fori = 1,2,... let N{ be a Poisson process with rate
where}; 4; < co. Define

X= > 6N
i—1
where¢; > 0 and
Zfi/li =r < oo,
i=1

Find the extended generator of x
(This is also an example where jump times are not isolated).
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Piecewise-linear Markov Process 29
Gnedenko-Kovalenko introduced the concept of piecewiseali
Markov process. Later, Vermes_[24] simplified the definitias fol-
lows. A piecewise linear proceds a two component Markov process
(%) = (v, &) wherev, is integer-valued ang takes values in an interval
[an, bn] of the real line ifv; = n (b, may be+wo). Let E be the state
space, i.e E={(n&) e ZxR:£€ZxR: &€ [an,bp]} Then the prob-
abilistic description is that if the motion starts at4) € E and x 0s
given byv; = n, & = z+t for t < Ty, the first jump time. “ Spontaneous
jumps” happen at rat&(x), i.e., probability “jump occurs” int(t + dt),
is A(x)dt, and process must jumpdf- = b,. Let the transition measure
be given byQ(A; x) for A € B(E). Thenxg, is selected from the prob-
ability distribution Q(A; xr,). After a jump, motion restarts as before.
Thus the law of the process is determined by specifying thenials
[an, br], the jump intensity1(x) and the transition measu€(A; x).

Example 2.2.Non-stationary countable state Markov Procés9
(¢;) takes integer values with the-dependent transition rat€g
such that

Pléen = ilé = j] = & (t)d + o(6),i # .
Thenx; = (&,t) is aPL process with no barriers, i.@, = 0,b, = +c0.

Example 2.3.Countable state process with non-exponential sojourn
times

Here, jump times of the process;( form a renewal process with
inter arrival densityb(.) and transition matrixjj = P[Xr,,= i, X7, = j].
This is aPL process withy = X, andé; the time since last arrival. The
jump rate is

Av.E) = Oob(g)
[ b(t)dt
£

Here agaira, = 0, b, = +.

Example 2.4.Virtual waiting times.(The M/ G/ 1 queue)
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Customers arrive at a single-server queue according te&ojzo-
cess with rate:, and havd.i.d. service time requirements with distri-
butionsF. The virtual waiting time; is the time a customer arriving at
timet would have to wait for service. Piecewise linear procesgtire
is :

v = 1 if queue is not empty
"~ 10 ifqueue is empty

anda; = 0,b; = «,a, = b, = 0. Here& moves to left with uniform
speed and transition to,(0) is certain ifx._ = (1,0).

A more general definition oPL process of Gnedenko and Kova-
lenko allowsé&; to move in an open subsef, ®f RY(v;) with uniform
speed in a fixed directioW(;). Again transition must take place if
&, € 00,,, the boundary of .

Example 2.5.VWT with renewal process arrivaléThe GJG/I queue) 31

Suppose the inter arrivals times in Examipld 2.4 are not exitad,
but form a renewal process with inter arrival dendify). Now the ap-
propriate structure ig is 0 or 1 as befored(1) = 2, d(0) = 1. (When
v = 1 we have to remember both the value of VMT and the time since
the last arrival.)

We cannot accommodate this in previous framework, becdgse t
[an, bn] is fixed, whereas here the length of the interval is random.

Davis [{] introduced the piecewise deterministieY) process
which is a further generalization. Itis similar to the pietse linear pro-
cess, except that satisfies some ordinary féierential equation, rather
than moving in straight line.

Example 2.6.Shot noiseThis has sample functions similar to &/ T
process except that decay between arrivals is exponeatiair than
linear (fig.[2).



32

30 1. Stochastic Jump Processes

£

Figure 2.1:

Example 2.7.A model for capacity expansioSuppose that the demand
for some utility is monotone increasing and follows a Paispoocess
with rateu. Each ‘unit’ of supply provideg units of capacity. These
are built one at a time at a cost of Rs.p. Investment take @fa rate
of Rsu(t)/week andu(t) < constant. When

t

fu(s)ds: p,

0

then the project is finished, capacity is increasedjland investments
are channelled into next project.

Denoted; = demandg; = capacity at time; & = cumulative invest-

ment in current project
t

= fu(s)ds

T

wherer is the last time project was completed. Investment is deteth
by some “policy”’y, i.e.,

d
u(t) = d—tft = Y(C, o, &)

where €, d;, &) is the current “situation”. Defing = (¢, d). Then the
processx = (v.&) evolves in the state spad = Z2 x [o, p] (Z2
is the 2-dimensional positive integer lattice). Then fore (c,d) if

9,(€) = y(c,d,é), & satisfiesd—tft = Oy (&1)-
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The piecewise-deterministic process;

Let K be a countable set arl: K —» N (= natural numbers) be a
given function. For each € K, M, is an open subset &%)(M, can be
ad(v)-dimensional manifold). Then the state space ofRlbeprocess is 33

E= UM, ={(n&);veKéeM,).
veK
Let
E- {U’A,,;A,, e B(Mv)}
veK

Then E, E) is a Borel space. Then the processiis= (v, &). The
probability law of () is specified by The probability law ok{) is spec-
ified by

() Vector fields ,,v € K)
(i) A'‘rate’ function2: E — R,
(iii) A transition measurd : E x E — [0, 1]
Assume that corresponding to eakh there is a unique integral
curveg,(t, 2), i.e.,¢,(t, 2 satisfies
d
g1 [ @v(t.2) = X, 1(¢,(t.2))
¢V(Oa Z) =z

for every smooth functiorf, and¢(t, 2) exists for allt > o. LetdM,
be the boundary oM,. 9*M, is those points irM, at which integral
curves exit fromM,, i.e., "M, = {z € IM, : ¢,(t,&) = zfor some
(t,&) e Rx M,}.
Let
I'"={v,z:v:eK,ze "M, }.

SoT™ is the set of points on the boundary at which jumps may take
place. Forx = (v, 2) € E, denote

tx(X)=inf{t>0:9¢,(t2 € d*M,}.
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Write Xh(X) for the function whose value at= (v, 2) is X,h(v, .)(2).
For A, we suppose that the functian— A(y, ¢,(t, 2)) is Lebesgue inte-
grable on §, €] for somee> 0, 0(,, X) is a probability measure ofe(E) 34
for eachx € EUT .

The motion of the process) starting fromx = (n,2) € E is de-
scribed as follows. Define

exp(— ft AN, ¢n(s 2)ds|, t<t'(X)
0
0, t > t*(x).

F(O) =

This is the distributions of1, the first jump time. More precisely,
F(t) is the survivor function

F(t) = Py[T1 > 1].

Now let Z; be an E-valued random variable with distribution
Q(; ¢n)(T1,2)). Then define

_ (n’ ¢n(t7 Z)) t<Ty
= Z t=Th

and restart withr, z) replaced byZ;. AssumeTy T o a.s. Thenx de-
fines a measurable mapping frof?, &, P) (countable product of unit
interval probability spaces) into space of right continsids valued
functions. This defines a measutgon the Canonical space.

NB: The condition om ensures thal; > 0 a.s and hence thdi —
Tk-1 > 0 a.s.

Proposition 2.2. (X, Px) is a Markov process.
Proof. Suppose thaly <t < Tg.1. The distributions offy,; — Tk is
given by
S
exp(—f/l(ka,mk)du], s < t*(x7,)
0

0, St (X,).

P[Tker— Tk > 9] =
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Denotey = vt,,& = é1,, Then fors > t ands < t*(x1,)

PlTisl > ST, Tkat > t] = P[Tigt — Tk > S— Tl Tk, Tkt — T > t = Ty

s—Tk

=exp|— f Ay, ¢(u, £))du

L t—Tk

[ st
= exp _f/l(vt’ ¢vt(u’€t))du‘

o

where we used the semigroup propertyofince the process “restarts”
at Ty, 1, the law of the process far> t given part uptd coincides with
the law givenx;.. Hence the Markov Property. O

LetI" c T be the subset for which, ff= (v,£) € T*
P[T: =T*(X)] — asx=(n,2 > V.
ThenI is called the “essential” boundary

Exercise 2.2.Prove that ye T if and only if B[T1 = T*(x)] > 0O for
some x= (v, 2).

SoPy[xs. € I' = T"] for somes > 0] = 0, andQ(A, X) need not be
specified forx e ' — ™.

Example 2.8.Herev has only a single value; so deletedttakes values
inM =[0.1] xR,,2 =0andX = % ThenI™ = {(I,y);y € R, }. Let
1

11
Q- (1Y) = (1= 5¥. 5V
Then starting akg = (0, 1) we have

N1
E — so that limT, < .
k=1 k-

Nn—oo

The same fect could be achieved by the combindtkeet of 1 and
Q, suitably chosen. So, we prefer to assume = oo a.s. rather than
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stating stfficient conditions ory, A, Q to ensure this. To illustrate the
, 1 .
difference betweel andI™, suppose thaf(£,1) = W (This is
— &1
equivalent to sayin@; is uniformly distributed on [01] if the process
starts at (01). Then (1,1) os never hit, whatever be the starting point.
So(1,1)eT -T".

> / FI
v rd
&2 /‘/
S
}/
0 T4 t
Figure 2.2:

The Associated Jump Process.
Let (x) be an PD process. Definite the associated jump proegss (
by
z = X7, t € [Tk, Tkwa[ (2)

This is anE-valued jump process such thag, = xr.. LetF; =
o{Xs, s< thandFf = oz, s < t}.

Proposition 2.3. F; = F{ for each t

Proof. This follows form the fact that there is a one-to-one mapping
from Xjoq t0 Zoy.X — zis given by [2). Conversely, iy is given
thenx|o, t] can be constructed since the motion in the inter¥a@) Tw.1[
is deterministic. i

NB:

(1) % andz are not in one-to-one correspondence at each fixedttime
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(2) (z) is not a Markov process.

SinceF; = F{, we can apply jump process theory. Define

P A) = > L,

Ti<t
P = Z I(XTi —eI)
Ti<t
t t
B(t. A) = f QA X)A(xs)ds + f QA. X5 )d P, ®
0 0

Proposition 2.4. Suppose E(t, E)) < co. Then for each
AcE qt,A) = p(t. A) - p(t, A) 4
is an R-martingale.

Proof. From previous results, the compensatop@ifAT,, A) is

- dF
PIATLA = - [ QUAX)ES.
S_
]0,tAT1]
But . 38
exp(— f A(xs)ds) t<t;(X)
Ft = 0
0 t>t7().
Thus % = A(x)dt for t < tj(x) and
t
AFt{
Fuo—

O

This verifies the result for < T;. As before, we show by consider-
ing intervals _1, Ti] that the compensator @g{tATn, A) is P(tATh, A)
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given by [3). Sincep(t, A) and p(t, A) are monotonic increasing func-
tions andT,, T o a.s.E(p(t, E)) < oo, taking the limits, we have

q(t, A) = p(t, A) - p(t. A)
is a martingale.
Exercise 2.3.Show that pis an R— predictable process.

Then [3) is the Doob-Meyer decomposition of the submartanga

The next step is to use stochastic integrals to calculatextended
generator ofx;. Choose the following integrands. For Measurable
E — R, define

Bf(x s w)=f(X) - f(Xs-(w))
Then Bfe Li(p) if

E D 1f(xr) = f(xr)l < oo

Ti<t

39  for eacht > 0. This certainly holds iff is bounded and p(t, E) < co.

t
f f Bf(y. s w)p(ds dy) = f f (F(y) — (%)) Q(y: X )A(x)ds
o E

04 E

+ f f (f(y) - f(xs-))Q(dy; Xs-)dss.  (5)

0.4 E

Suppose thaf satisfies the boundary condition
9= [ f)QUy0.x € . ©)
E

Then the second integral il (5) is zero. The following reshlrac-
terizes the extended generatoof (x).

Theorem 2.1. The domain DA) of the extended generator A (f;)
consists of those functions f satisfying
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() Foreach(n,zZ) € E the function t— f(n,¢n(n, 2) is absolutely
continuous for & [0, t*(n, 2)[.

(i) The boundary conditior[{6) is satisfied.
(iiiy Bf € L'1°°(p).
Then for f € D(A)

AT() = XT(x) + A(x) f [f(y) - F(1Q(AY X). ()
E

Proof. Suppose thaf satisfies (i)-(iii). Thenf Bf dqis a local martin-
gale, and

t

fodq:Z

0 Ti<t

t

(xr) — Fxr-,) - f f [£(y) - F(x)]Qdy; ¥ A(x)ds
0 E

Now,

DT0m) = fx) = | D (FOxr) = £(Xr,0) + F(%) - f(xTn)}

Ti<t Ti<t
- Z(f(XT—;) = F(xi0)) + f(x0) - f(XTn)‘
Ti<t

whereT, is the last jump time before The first bracket is f{(x) —
f(Xo)). Note that

Ti

f(x) — f(xr_,) = f Xvn,lf(V’Ti_1¢vri,1(§Ti—1’ s)dsa.s)

Ti-1

t
So the second bracket is equalﬁoxf(xs)dsand
0

40
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fodq= (%) - f(x0)—

t

t
[ [0~ 1@y xaxds- [ xtxds
o E 0
t
So Af is given by [I) ancCtf = f Bf dg Conversely, suppose
0
f € D(A). Then there exists a functiom such thats — h(xs) is
t
Lebesgue integrable ard; = f(x;) — f(Xo) — fh(xs)dsis a local mar-
0

tingale. By the martingale representation theordfpn,= Mtg for some
g e Lioc(p). Now the jumps oM, andM{ must agree, these only occur
whent = T; for somei and are then given by

AM; = Mt — M = f(x7;) — f(X7).
AM? = M - M2

~ gx.t,w) - f a0, t WQ(Y. X )l e
E

att = T;. It follows that
906 & Wl gy = (F0) = £ () (Xier)
41 except possibly on a sé& € E * p such that
Ey f Igp(dt,dx) =0 forally € E.
RyxE

Now supposeXt, = ze I'; then

f() - (@ =gxt,w) - f 90y, t, w)Q(dy; 2)
E

for all x except a sef € E such thatQ(A, 2 = 0. Since only the first
terms on the left and right involveit must be the case that

f(X) = g(x t, w) + f(t, w)
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and @) = f oyt w)Qdy.2) + F(t.w)
E

for some predictable proce$s Sinceg = f — f,
f@- [ 1oy
E

forz € T, i.e., f satisfies condition (ii). Hence
g%t w) = F(x) - f(x-).

Hence we get
I(Bf — )l t<oyllLa(p) = 0.

So condition (iii) is satisfied. Fix and considerNM)o<t<t, () Start-
ing at (o, &), then

t
My = £ (or ot £0)) — F(vor o) — f hxe)ds

t
M = f f (F(y) — £(xs))Q(dy; Xs)A(xs)ds
o E

Hencef (vo, ¢y, (t, £0)) is absolutely continuous fdr< T1(w). Since 42
(vo, &) is arbitrary andl'y(w) > 0 a.s. this shows that (i) is satisfied.

A “Feynman-Kac” formula.
This is used to calculate expected values of functionalb asc

t

f e c(s xs)ds+ e ¢(x)|.

(o]

Ex

There is no extra generality in allowingReD. Process to be time-
varying, because time can always be included as one compohégn
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However, it is sometimes convenient to consider the joiatess 1, x;)
: ~ 0 ~
with generatoiA = p + A. Thenforf € D(A)

t t
f(t,xt)—f(o,xo)zf (aﬁs+A)f(s,xs)ds+fodq

If (aﬁs + A] f(s,x) =oandBf € Li(p), thenf(t, x) is a martin-
gale, so it has constant expectation
Ex, f(t, %) = (0, Xo).
Then
f(0, Xo) = Ex, ¢(%)
where f(t,X) = ¢(X) (¢ prescribed)

Proposition 2.5. Let t > o be fixed andv : [0,t] X E — R,,c: [0,1] X
E —» Rand¢ : E - R be measurable functions. Suppose [, t] x
E — R satisfies:

()  f(s.€DA)

(i) f(t,x) = ¢(X), xe E (8)
(iii) Bf € Li(p)
%+Af(SX)—a(SX)f(s,X)+C(s,X)=0 9)
(s,X) € [o,t] XE.
Then
t S
f(0,X) = Eox exp[— a(u, X, )dujc(s, xs)ds
[=t]

(10)

t
+exp| - f a(u, x,)du| ¢(x)
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Proof. Supposef satisfies[(B). Define

€ = exp(— fsa(u, xu)du).

d(esf(s, xs)) = esd f(s, xs) + f(s Xs)des

Then

= es(g—; + Af)ds+ es Bf dg— a(s, xs)esf ds
= -esC(s x)ds+es Bf dg  (by (@)).

Now by (iii), es Bf € Li(p) sincees < 1. Thus the last term is a
martingale and

t
f esc(s, xs)d% .

[o]

Ex[af(ta Xt) - f(07 X)] = -Ex

This with (i) gives [10). ]

Example 2.9.The Renewal Equation:
Let (N;) be a renewal process with inter arrival density). Let
m(t) = EN;. Since the process “restarts” at renewal times,

0, s>t
E[NT1 =¢] =
mt—9s)+1, s<t.

So

[ee)

m(t) = fE[Nt|T1 = g] f(s)ds

(o]

which gives the renewal equation 44

t
m(t) = f(l +m(t-9)f(s) ds (12)
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This can be solved by Laplace transforms. Defining

(o)

f(p) = f &P ()t

o

etc., we get
(p) = ) F(P)+ < F(p)
So ~
) = 2
1-f(p)

In particular, for the Poisson procesf) = 1e™,

-
A+p
will give
. A
m(p) = 2
to get
m(t) = At.

Exercise 2.4.Compute M(t) = E;N;, where the component in service
at time 0 has age (and is replaced by a new component when it fails).

(Ny) is aPD process if we take; = (v, &) wherevy = Ny andé; is
the time since last renewal. Then

0 _ @
a_é_n /l(‘f) BSS

[ f(uydu
¢

Xy =

andQ(.; v, €) = 6¢+1,0), SO that

Af(n,¢) = a%f(v,f) + A& (v +1,0) - f(v,0)].



2. Some Discontinuous Markov Processes 43

Use propositiof 215 withr = ¢ = 0 andg(x) = v to get
f(O, v, f) = E(V,g)vt.

Clearly
f(sv+1¢&) =1(s1&+1

Define
f(s,0,£) = h(s,9).
Then the equation fof (or h) becomes
0 0
a—sh(s, &)+ 9 h(s.&) + A1 +h(s 0)-h(s&)] =0  (12)
h(t,£) = 0.

Define
Z(u) = h(u, u).
Then

22(0) = -2 + h(u,0) ~ 2u)]
Z(t) = 0.

Thusz(u) satisfies

Z(u) = A(u) z(u) — A(W[1 + h(u, 0)] (13)
where -

Au) = —E = % F(u) = f f(s)ds

u

Equation[IB) is a linea®DE satisfied byz(u). The transition function
corresponding ta(u) is

_FW

V) = £

Hence [[IB) has the following solution at time O: 46
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t
2(0) = h(0,0) = f f(U)[L + h(u, 0)]du (14)

Define
m(s) = h(t — s,0).

Then [I%) coincides with the renewal equatibnl (11). Havietgd
minedh(u,0)0 < u < t,h(s &) for s # £ # o can be calculated from
@32). The result will be equivalent to that of Exerdisg 2.4.



Chapter 2

Optimal Control of pd
Processes

General formulations of stochastic control problems haenbstudied 47
using martingale theory, where the conditions for optitgakxistence
of optimality are derived (E1 Karoui[15]). But this does mote ways
of computing optimal control. Control of Markov jump proses has
been studied using dynamic programming (Pligka [21]). Ia @hap-
ter, we will be dealing with control theory fd?D processes, following
Vermes [25].

Let Y be a compact metric space. Control arises when the system
functionsX, 4, Q contain a parametgr € Yi.e., forx = (v,&)

of(v,é)
0&i

X109 = ) b£.Y)
Q= QA X ).

A feedbackpolicy (or strategy is a functionu : R, x E — Y.
Let % denote the set of all strategies.is stationaryif there is not-
dependence, i.ey,: E — Y. Corresponding to policy we get aPD
process with characteristieg’, A", Q" given by

XUf = 3" b(v, £ u(x) g—; (%)

45
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AU(%) = A%, u(x))
Q"(A X = Q(A; X, u(x).
More conditions oru will be added when required. Then we get a

PD processx with probability measur®" determined by, 24, Q.
Given a cost function, say, for example,

t

f €S (s, Us)dS+ € ()

(o]

Ju(u) = Ex

wherekEy} is the expectation w.r.® starting atx anda > 0. The control
problem is to choose(.) to minimise Jx(u). The “usual” approach to
such problems is via “dynamic programming”. L\éfs, x) be a function
of (s, X). Introduce the Bellman-Hamilton-Jacobi equation

aV(zX) + minfAV(s X) +c(xy)] -a V(s X) =0 ®)

whereA is the generator correspondingXxd, A(.,y), Q(., y).
If Y has one point, then this coincides with the equationJfpas
before.

Proposition 1. Supposé€B) has a “nice” solution (i.e., satisfies bound-
ary condition etc.). Then

V(0,X) = min Jy(u)
ue %
and the optimal strategy®(s, x) satisfies

AUO(SX)V(S X) + C(X’ UO(S X)) = mlg (Ay V+ C).
ye

Proof. Same calculations arise as before. ketorrespond to an arbi-
trary control policyu. Then

s
+€ "BV dg> —€ *3c(Xs, U(S, Xs))ds+ e **Budq (1)

d(e™ V(s Xg)) = —a€ *3V(s, Xg)ds+ e *® (a_v + A”V) ds
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t

f €775 ¢(Xs, Us)d S+ €% ¢b(x)

[o]

= Jy(u).

V(o, X) < Ex

Now supposeas = W, then “equality” holds in place of “inequality” in

@. so
V(0, X) = Jx(Up).

SouwP is optimal. O
Objections:
(1) There is no general theory under whi@) bas solution.

(2) u°(x) constructed as above may fail to be an admissible control:
to make sense of it, we must be able to solve the ODE

d Uo _ o
d_sg(s) =b,°(&s) = b(v, &, U°(s, 6)).

There is no guarantee thaft leads to a “solvable” ODE.
So we must redefine “admissible controls” so that this isdeai

Remark 1. In control of difusion processes, the equation is
dx = b(x;, u(x))dt + o(x)dW.
Here we “handle” nonsmoothby using weak solutions.

Remark 2.In deterministic control, one uses open-loop controls de-
pending only on time. The equation here is of the form

X = b(x;, u(t)).

Then solution is well defined for the measuratg.

Special cases: 50
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(1) Control only appears iQ. Then the problem reduces to a se-
guential decision problem where a “decision” is taken e#&ule t
a jump occurs. (Rosberg, Varaiya and Walrend [22]).

(2) X = 0. Here Markov jump process with piecewise constant paths
are considered. Control appearstiandQ.

Then
AF =A%, u(X))[ f (f(2 - F(x)Q(dz x, u(x))
E

is a bounded operator @(E). Regard B) as an ODE in Banach
spaceB(E). LetV(s) := V(s,.), then

dv
— =g(V(9)) = min(A'V +c).
35 = V(9) = min(AV +¢)
Sog is a nonlinear function, but it is Lipschitz continuous\in

[Pliska [21]].
(3) Piecewise linear processes (Vernies [25]).

Here¢; is on dimensional an = % Control appears in andQ.
Consider a ‘stationary’ control problem, where the Bellnejua-
tion takes the form

Ti\p(AyV +c(x,y) =0
V(X) = O(X), xeEr.

This corresponds to minimising

’

Ex [ f o(Xs, U)dS + ()

0

wherer is the first hitting time of some target $et. Then

AV(X) = a%vw, £ + (%) f (V@ - V()Qdz x.).
E
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51 Supposee(l, 2,...,n} and

Vo= (i)

Then Bellman equation takes the form

d
d—gV(éf) =g(V()).

This is an “ordinary” functional dferential equation with non-stan-
dard boundary condition. Vermes showed existence of amapfeed-
back strategy in special cases.

‘Generalised’ Dynamic Programming Conditions:
Let us consider next optimal control of the deterministidediential
system:

X = f(%. t, W), te[to, t]. )
Then the control problem is to

f

minimize ff(xt,t, U)dt
to

over “admissible” contrgtrajectory pairsu;, x; i.e., pairs of functions
for which

() @ is satisfied,
(i) x(t) = %, X(to) = %o With X5, % given,
(i) XeA, weQ, whereA, Q are compact anfh = A X [to, 4.

This will be called thestrong probler(S).
We assume (a) an admissible pad, () exists, and also we make a
temporary assumption

o [f(x, t,Q)

iS convex. 52
(1, Q))
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This enables “relaxed controls” to be avoided. Define
n(S) = “value” of S

i.e., inf £dt.
(%.u)ad

Theorem 1. There exists an optimal admissible pdix, u;) for the
strong problem.

This is a “standard” result in optimal control theory (Vintand
Lewis [26]). It depends critically on the convexity assuiapt(b).

A Sufficient Condition for Optimality: (Standard Dynamic Program-
ming). Supposex;, W) is admissible and is in C1(A) such that

Dy(t, X) + mgx(d)x(x, Of(xtu) —£(xt,u) =0
Ue!
D(x, 1) e AxQ
and DO(t, %) + P(X, ) F(X, t,w) — (%, t,u) =0 a.a.t.

then &, u) is optimal andy(S) = —®(Xo, tp). The main result of Vinter
and Lewis is as follows.

Theorem 2. The strong problem has a solution (i.e., there exists an
optimal pair (x, i)). There exists a sequengg'} in C(A) such that

@} + max(@yf - ¢) < 0, (X, )eA
@' (X, ) = 0
and (X, W) is optimal if and only if
lim H'(t) = 0in Li[to, ta]
where H(t) = @} (%, t) + DX, t) F (X, t, Up) — €(X, t, Uy).

The Weak Problem
For (X, ur) admissible, defingy,eC*(A x Q), the dual ofC(A x Q),

by

t
< G pixu >= f g0 £, u) dt
to

for arbitrarygeC(A x Q). uxy satisfies
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() uxueP* (i.e.,ifg > othen< g, uxy >> 0).
(i) TakepeCL(A) andg(x,t,u) = ¢(X, t) + dx(X, 1) F(X, 1, U)

then
< ¢t + dxf, puxu >= (X, 1) — d(Xo, to).
Define
u={ueC*(Ax Q) : (i) and (ii) are satisfied
Proposition 2. u is weak* compact and convex.

Note 1.The cost function forX, u;) is < ¢, uxy >.

Weak Problem (W): Minimise < ¢, u > overueu. So 54

n(W) < n(S).

Theorem 3. n(S) = n(W). There exists an optimal u for S, squyy IS
optimal for W.

Now we incorporate the constraints @mto the cost function in the
following way. Define extended real valued functigng) onC*(Ax Q)
as follows:

<lu> if |ul <t —to, ueP*
p(u) = c 0
+00 otherwise

Let.#, = {ueC* : Condition (ii) is satisfiefl Then

o] if ueMy
k) = ;
—oo  otherwise
Proposition 3. pisf. s.c. and convex,
g is u.s.c. and concave,
and

(W) = inf {p() - a(u)}-
ME
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The Fenchel dual problem is as follows:

max (q() - p*(¢)) (D)

£€C(AXQ)

wherep*, g* are “dual” functionals defined by
p(§) = sup< &, > —plu).
ueC*
a') = inf <& u>-qu).
ueC
Proposition 4.

p*(‘f) = (X,trl‘,l])EaAXXQ(é:(t’ X, U) - f(t, X, U))+ X (t| - t0)

where & := max(@, 0).
Sketch of proof:

p'(€) = sup [<épu>—<bpu>]
lul<ti—to
ueP*t
= sup[<&-Cu>].
lul<ti—to
ueP*t

If < &u > — < ¢,u > is negative, then the optimum is zero. If
< &,u>— < {,u>= 0, then put Dirac measurgt; — t,) on maximum
point to get the result.

Proposition 5.
W = {£eC : & = ¢y + ¢ T for somepeC'(A)}.

Then

) —co if &g W
TO=im@ 00, t) - 90, to) if £6W

where ¢ = lim & andé = ¢} + ¢\ f.
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Proof. For £eW, by definition ofg andg*, we getg*(£) = ¢(x, t1) —

¢(X0’ tO) — —
A similar argument gives the result faeW. Foré& ¢ W, there

exists a separating hyperplane, i@C* such that< & ># 0,£eW
and< & u >= 0. If ue#>, thenu + cueM,. So

q'(¢) = inf <& p>=—co.
ueMz

Characterizing the solution of (D): 56

n(D) = max| lim (' (xq, tz) — ¢' (%o, to))
EeW |

— max (&(t, x,u) — £(t, x, u)* (4, to))

(x,t)eAXQ
= ;lég(cb(xl, t2) = ¢(%o, to) — MaX(y + ¢xf — )" (ti —to)).

It is no restriction to assumg(xy,t1) = 0. Then Vinter and Lewis show
by an ingenious argument that

1(D) = sup-¢(Xo. to))

where the supremum oveeC' such thaip(x, t1) = 0 and ¢ + ¢y f —
) <0V (xt,u).

Theorem 4.

n(D) = n(W) = n(S).

Proof. This follows from a “standard” result in duality theong® is
finite at some point in its domain whep# is continuous. O

Proof of the main results now follow easily. The strong peoblhas
a solution sincey(S) = n(D).

n(S) = iM(=¢' (¥, to))

for some sequence ¢f’s satisfying the “Bellman inequality”. The char-
acterization of optimal pairs«(, u;) follows.
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Remark 3. If the set 57
f(xt,Q)
(%1, Q)

is not convex, them the results are still valid bellaxed controlsmust
be used.

A relaxed controly; is aC*(Q2)-valued function ontf, t;] such that
Ut is a probability measure for everandt — fg(t, Wu(du) is measur-
able for every continuous functian

Interpretation: X, u; is an admissible pair, whenever

d
- f F (%01, U (dU);
Q

f

the cost is f f f (%, t, Wur(du)dt.
Q

to

Optimal Control PD Processes (Vermes [25])

In this section, we adopt a slightly modified definition of th®
process %). It will take values inE, a closed subset @ and we
suppose that

E = EQUESUET (disjoint)

whereEr is a closed sek, is an open set and
Ey = (Eo — Eo) — Er.

Let Eg, Eé, E; be compactification oE,, Es, Et respectively and
E’ be the disjoint union ok, E}, andE;. Then a controlled PD process
is determined by functions

f:E, xY—R%
A:EygxY - Ry,
and Q: (EQUE) x Y — my(Ey)

wherem (Ey) is the set of probability measures BpandY is a compact
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(control) space. Functioh gives the deterministic motion by

X = (%, Y1)

We assumd satisfies a Lipschitz condition ix
Admissible Controls: Feed back controlsi(t) = u(x) are not the
“right” class of controls because the equatior= f(x, u(x)) only has
a unique solution under strict conditions of). Let

a¢ = last jump time before.

n(t) = Xa()
Z(t) =t — af(t).
Thenn(t), z(t) determinex;; in fact, for fixedyeY,
Xt = Xn(t),z(t)
z
where Xnz=N+ f f(Xns y)ds
(o]

Then admissible controls ar&’-valued measurable functions
u(n(t), z(t)). By Caratheodory’s theorem, the equation

z
Xnz=n+ f f(Xn,s, u(n, s))ds
(o]

has a unique solution, and PD process is well defined for sudie 59
will consider the three component process £, n;) for notational con-
venience.

Relaxed controlsare functiong: : E x R, — my(Y) such thatif,2) —
f¢>(n, z y)u(dy; n, 2) is a measurable function fan,(z) for all continuous
¢. Corresponding t@, define

f”(x,n,z):ff(x,y)y(dy, n, 2)

AH(x,n,2) = f A(X, Y)u(dy; n, 2)
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Q(Axn2 = f QA. X, Y)u(dy. n.2)

Then we construct a PD process, (¢, z) corresponding td#, A#,
@ in the usual way.

The strong problemis to minimise Jg, (1) over admissible relaxed
controlsu, wherexg = (X, X, 0), and

Jro (1) = B [ f f Lo(Xe, Y)u(dy; ne, z)dt
oY

- f Lol Ya(dy; e ) + £r(x0) |
{t:x—€eEp)

Herer is the first hitting time of seEr.
Main Results:

Theorem 5. There exists an optimal (relaxed) control.

Theorem 6. The value functiony(x) = supg(x, X, 0) where the supre-
mum is over all functiongeC*(E) such that

6:06n.2) + min(T004n D) + A(x)

( [ ote.e. 0 ) - otxn z)) + bo(x y)) (xndeEo (3

>0
¢(x.n.2) < min {f¢(€, £,0)Q(dé, Y, X) + Lo(x, y)} (xNn,2eEs  (4)
#(x,n,2 < r(x), xeEr 5)

60 andE is the space of tripleté, n, 2).

Theorem 7. There exists a sequeng® satisfying [B), [4), [[5) above
such tha is optimal if and only if

#5(x, n, z)+f{Vx¢k(x, n, z)f(x,y)+/1(x,y)}

Y
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[ f #4(6.£.0) x Q. x.y) — ¢ (x.N.2)
L YOdyn2) - 0inL(QY).  (6)

f f 94(E.£.0)QdE X Y) + Lo(X,Y) | 1O(dy. 0. 2)
Eo

Y
— ¢(x,n,2) — 0in L;(QY) 7
#*(x,n,2) — £r(X) — 0in L1(Q2). (8)

The measures QQJ and ¢ are defined as follows.
Denotef = (X, nt, z). For AeEo,

Q) = B [ watict

which is a measure oR, and is called potential measure &f 61

QA = B > ya(%)

t<r

where Ac E,. )
QF(A) = Pl[%r € A]

for A € Er.

Comparing with deterministic case, the necessary afitgnt con-
dition there was thatq, u) is optimal if and only if

A0+ [ 600 DF06L0) - 6L 0] () - oin Lt o)

The “probability measure” correspondingipis Dirac measure on
X(.) andQ3(A) is the time spent by(.) in A. Thus the conditions stated
are a direct generalization of the deterministic ones.

Remark 4. Note that if we define

QA = Ex f yaRods
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then for any positive measurable functign
& [ aads= [ oe)Qgae
0 g
for, if o(xX) = Z Civa (X)
i
then
Ex [ g%ads= ) Ex [ vakads
o i 0

2, 6QA)

fd@q%)
Eo

The general case follows by monotone convergence.

Remark 5. The Q’ are “potentials of additive functionald; is anad-
ditive functionalif ¢ > o andl

Ciys = €t + £506;

t, p;, l=r) are some example of additive functionals.

The potential of an additive functional is an operator

uan=afmmws

Herg Q2. 3 Q2 correspond precisely to this with = t, p{, l¢T)
respectively.

The Weak Problem:

1, is the shift operator on the space of right continuous famsti G;w)s = wi.s



The deterministic weak problem involved the fact that

t1
B(%0.tr) = B(%orto) = f (60 + duT)ds
to

forany¢ € Cl. The stochastic equivalent of this is Dynkin’s formula.

To get this in the appropriate forrdefine operators ¥X\BY as follows.

AN(x,n.2) = d(X. N 2) + Vxp(x. N, D F(xY)

A(xY) f (0. £, 0) — B(x. N, 2)QdE. x.Y)
Eo

and BYo(xn.2) = f 0(E. £, 0)Q(AE X.y) — 6(X,1.2)
Es

for (x,n, 2) € Ey. Then the Dynkin formula on the intervad, ¢) is
ELp (% Ne. Z2) = 6(R)

_EH
= E}

f f Ao v, 2)u(dy; e, 2)dt
oY

" f f BY(x., e 2)p(dly, 2 n)d
oY

- f f Ag(x. 1. 2u(dy; n, QA (dx dn. d2)
E, Y
+ BY¢(x, n, 2u(dy; X, 2)Q(dx dn, d2)
/]

Now
Eo0x.n..2) = [ oxn2Qf(dxdnda,
Er

63
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So we can express the Dynkin formula as follows:

0(3) = f Lo(%, y)MH(d%, dy)
ExY
where Lé(x,n,2Yy) =Yg ¢(X.n,2) + wéoqus(x, N2 +yg, BY(x, n,2).

W (x5 = & (S1 VEr)+ [ [utdyn Qi dnd

SiN E, S2
¢ [ [ uynaQexdna.
S1 m E@ S
64 The cost for the relaxed controlis
B = [ MRy,
ExY

The following supplementary assumption is required.
inf Js, () = inf Js,(u)
for somec > o andu is the set of relaxed controls,
U=fueuipelr+p]<cl

with this assumption the weak problem is to minimizﬁ ¢dM over
ExY
measuresM € my.¢(E x Y) (wheremy is the set positive measures of

total mass less than or equal to a) such that
1. M=Mg+ Mg+ Mt

where Mr € my (Er).
M(') € m(E(') X Y)
Mo € m(Eo x Y).
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2. ¢(%) = [LgdM, ¢ € CL(E).

From this point on, the development follows the Vinter-Lew&rgu-
ments closely. We reformulate the weak problem as a convémiap.-
tion problem by incorporating the constrains in the costcfiom and
obtain the characterization of optimality by studying theldproblem.
The reader is referred to Vermés|[25] for the details.

Remark 6. The optimality condition involves the measu@g, Qp, Q}
corresponding t@°. These can be computed from the following system
of equations.

AChE) +yrnE, =0, %€ Eo
Bh(R) + yr g, = 0.8 € Ey
(%) + g (9, X € Er.

Then
Q°() = h(Xo).

Example 1.1f T’ c E,, then Dynkin’s formula says

(i) = £ [ ur(ds
(@]

= Qo(D).

The results outlined above are the first general results ¢dimap
control of PD processes. Obviously much work remains to be done;
natural next steps would be to determine necessary conglifar op-
timality of Pontrjagin type; to develop computational nudh; and to
study optimal stopping and “impulse control” f&D processes. For
some related work, see van der Duyn Schoulon [29], YushkRgag]
and Rishel[[31].
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Filtering Theory
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O Introduction

Supposg x} is a signal process which represents the state of a syst&m,
but cannot be observed directly. We observe a related mdgésOur
aim is to get an expression for the “best estimate¥pfjiven the history
of {y;} upto timet.

In Section[1, we give quick derivations of the “Kalman filtéor
the linear systems, and nonlinear filtering equations, dfdtujisaki,
Kallianpur and Kunita and Zakai's equation for unnormadizzondi-
tional density (Kallianpur[I19], Davis and Marcus [8]). ledion[2,
we will study pathwise solutions of fllerential equations. In section
B, we will study the “Robust” theory of filtering as developeyg Clark
[5], Davis [10] and Pardow{[20]. Here the above filtering &ipns are
reduced to quasi-deterministic form and solved separdtelgach ob-
servation sample path. Also, we will look here into some ngmeeral
cases of filtering developed by Kunifa]17], where the eristeof con-
ditional density functions is proved using methods reldtexitheory of
“Stochastic flows".

1 Linear and Nonlinear Filtering Equations
Kalman Filter (Davis [11])

Suppose that the “signal procesg’satisfies the liner stochasticfidir- 67
ential equation

dx = Axdt + cd\ D
whereV; is some Wiener process. “Observationp’ls given by
dyt = Hxdt + dW, 2

whereW; is a Wiener process independenipf Assumex, ~ N(0, Po).
To get a physical model, suppose we wiiie (2) as

dyt _ dW
dt = e
dW . . dy; . .
thenF corresponds to white noise a|=r§t1 is the “ physical” obser-

vation.
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The filtering problem is to calculate ‘best estimate’ xf given

(Ys, s < t). There are two formulations for Kalman filter.

(a) Strict Sense: If (Vi, W) are Brownian motions therx{ ;) is a

(b)

Guassian process. Then = E[xlys, S < t] is the “best estimate”
in the sense of minimizing(x — 2)2 over ally;-measurable, square
integrable random variableswhere

Vi = of{Ys, S< t}.
Because of normality s a liner function of §s, s < t).

Wide Sense Formulation:Do not suppos#&, W; are normally dis-
tributed. Just suppose that fffecoordinated/!, Wi are uncorrelated
andEV/VL = tAs, EWW. = tAs, i.e., V!, W' are orthogonal incre-
ment processes. Now look for the best linear estimate given
(Ys, s < t). This will coincide withE(x|y;) in strict sense case.

Calculatingx; is a Hilbert space projection problem. The random
variables we consider belong t§(Q, F,P) which is a Hilbert space
with inner product X, Y) = EXY, whereo denotes the elements are
of zero mean. For any process, saylefineHY = L(y;,t > 0), the
linear span ofy;; this is a linear subspace. Thenzidénotes the
projection ofz ontoHY, then

Z—7| = min|lz- U]
lz— 2 = min iz Ul

Let % be projection of ontoH} = L(ys, s < t). Then the “Innova-

tions processy; is defined by

dve = dy; — Hdt. 3)

The Innovations process has the following properties:

(i) v¢is an orthogonal increments process.

(i) HY = H.

t
@iy HY = {f g(s)dvs, g € Ly[o, t]}.
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ThenX; satisfies the linear equation

d)?t = A)’tht + P(t)H/th
% =0 (4)

where the error covariande(t) = E(x — X)(% — %), (* denotes the
transpose).

P(t) satisfies the “Riccati equation”
dgt P(t) = AP(t) + P()A’ + CC' — P'()HH'P(t)
P(0) = Po = CoXo).

The above equatioil(4) is th&lman Filter.

Derivation of Kalman Filter equation: From properties (ii), (iii) we
know

t
K = f g(t, 9)dvs
(0]
for someg such that
t
fgz(t, s)ds < .
(0]
Now using projectionx — X L vs,S<t. SO
Exvg = EXovg

t
= E[fg(t, u)dvu] A

(o]

= jg(t, u)du.

d_
glt,s) = ds Exvs

Hence
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Write innovations process as

dvi = HXdt + dW wherexX;y = x — %.

S

Ex{v’ssz(xti’u))H’du.

(o]

Now

t
X = (L, U)X, + f o(t.CAV;

whereg is the transition matrix oA. So

S
Ex, = f 8(t, W% ) H'du
0

= f¢(t, wP(U)H'du

g(t, s) = ¢(t, YP(SH’".
So

t
% = f #(t, YP(YH’ dvs.

But this is the unique solutions dfl(4).

Important Points:
(1) Itis arecursive estimator.

(2) In the strict sense version is a suficient statistic for the condi-
tional distribution ofx; given s, s < t), since this distribution is
N(%;, P(t)) andP(t) is nonrandom.

Exercise 1.1(Constant Signal)Let % = 6 with E(6) = 0, Var () = 02
and
dy; = odt + dW
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with 8 independent of W Show directly by projection that

Now show that the Kalman filter gives the same result.

Nonlinear Filtering
Suppose “signal’x; is a Markov process and “observatiog’ is
given by
dy; = h(x)dt + dW,

generallyh is a bounded measurable function (extra smoothness condi-
tion will be added later). Assume that for eack and $V,—W,), u,v >

t are independent, which allows for the “feedback” case. (jeative

is to calculate in recursive from the “estimates”»@f to do this, it is
necessary to compute the conditionxpfjiven

The Innovations Approach to Nonlinear Filtering

This approach was originally suggested by Kailath for timedr
case and by Kailath and Frost for nonlinear filtering. Therigfe
formulation of the filtering problem from the innovationastipoint was
given by Fujiskki, Kallianpur and Kunita [18].

Innovations ProcessesConsider procesg satisfying 72
dy = zdt+ dW,t € [0, T] (5)

whereW, is Brownian motion and assume

.
Efzgds<oo (6)

and the “feedback” condition is satisfied. Let

z = E[zly].
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More preciselyzis the “predictable projection” af; ontoy;. The
innovations process is then

dvy = dy — 2,dt. @)

Note (i): v¢ is a Brownian motion w.r.ty;, i.e.,v; is ay; martingale and
<v > If FY = o{vs, s < t}, the question is whethdf, = FY. It has
been shown that in general, this is not true. But if (i) holdd &), (W)
are independent, then Allinger-Mitter proved tit= F;.

Note (ii): All y;-martingales are stochastic integrals.t. (), i.e., if
M is ay;-martingale, then there isgsuch that

.
fgﬁds< 0 as.
(0]

and

t
M = fgstS-
)

This is true even iy # F{, but note thatds) is adapted td=}, not
necessarily td-'.

A General Filtering Formula: Take anF¢-martingalen;, process ¢;)

satisfying
T
E f lg?ds < oo
(o]

andF, measurable random variakgwith E¢2 < co.
Now define arF; semi-martingale; by

t
gt:§0+fasds+ M. (8)
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Since< W W >¢=t, we have

t
<nW >= fﬂsds
(0]

for someg; and for any martingale;. Let

& = E[&ly].
Thené; satisfies the following stochasticfiirential equation

t

t
gtzgo"‘f&sds"' f[é'fszs"'gszs"'ﬁs]d"s- 9
0

(o]

Proof. Define
t

Mt=$t—$o=f@sds
(o]
o

Theny; is ay;- martingale. So there is some integrable function

such that .

Mt = f’]sts- (10)
)

Now we will identity the form ofn;, using ideas of Wond@ [28]. Using74
@) and [B) and | to formula,

t t
&Yt = EoYo + fgs(zsds"‘ dWs) + f)’s(asd5+ dng)
0 0

Now calculatetyy; using [T) andI{I0),

t

t t
By = Eoyo + f Ei(3ds+ dve) + f Ye(@sds-+ nsdve) + f neds
(o] (o]

(o]
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Now fort > s, A
E [§tyt - §tyt|ys] =0.
So

E

t
f((é:/u—z\u) - éuzu +Bu - Uu) dU|Ys‘ =0

Let .
V(u) = &uzy — Euu + Bu — M.

ThenV(u) is predictable process and
t
E[f V(u)du|Fs] =0.
S

f V(uWdudP=0Vst> s A€ Fs.

Ax[st]

This is,

The class of set&x[s, t] generate®, the predictable--field. Hence
V(u, w) = 0 a.e.dt = dP. Hence the result.

Formula [®) is not a recursive equation for Still we can use it to
obtain more explicit results for filtering of Markov process Let )
be a Markov process aml D(A) be generator, i.e., fof € D(A) then

t

Cl = f(x) - f(xs) - fAf(xu)du

S

is a martingale. Suppose

t
<Ch W= fo(xs)ds

[o]

for some functior¥ f. Introduce the notation

[ ] = Elf o0
t
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Now apply [9) withs; = f(x); Af(xs) = as.C{ = nt andz = h(x)
to get Fujisaki-Kallianpur-Kunita filtering formula

t

t
I (f) = To(f) + f My(Af)ds+ f [I(DF) — Ts(MTTs(f)] dvs (1)

(o]

where
Df(x) = Zf(X) + h(x) f(X).

If we interpretIl; as the conditional distribution of; giveny;, so
that

M (f) = f FOOTT(d®) = E[F(x)lyd.

then [11) is a measure-valued stochastitedéntial equation, and gives
an infinite-dimensional recursive equation for filtering.

Exercise 1.2.Derive the Kalman filter from the Fujisaki-Kallianpur-76
Kunita equation.

The Unnormalized (Zakai) Equations:
Introduce a new probability measupg on (2, F) with t € [0, T] by

T T
dP, 1
d_F(’) = exp[—fh(xs)dWs— > fhz(xs)dS}
0 o

Since h is bounded,P, is probability measure andyj is a Po-
Brownian motion. Also

f f
<C,y> =<C;,W>
t

= fo(xs)ds

[o]

Note that, in genera(;tf is a semi-martingale undéy but< .,. > is
invariant under absolutely continuous change of measusa iAZ = o,
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thenx has the same distribution under either measure. Let

apP

T T
1
AT = aP. = exp[f h(xs)dys — > fhz(xs)dsJ.
[0} [0}

Let E, denote the expectation undeg. Then it can be calculated
that under measure,,

() = E[f(x0)Iyt]
_ Eolf(x)Adyi]
- EO[AtWt]
_.o(f)
T o(1)
Theno(f) is an unnormalized conditional distribution sineg1)

does not depend ofi To obtain ajn equation satisfied by, we need a
semi-martingale representation tof(1). First we have

7

dAt = h(Xt)Atdyt (12)

t
A=1+ [ rxndy,
(0]
alsoA; is a (Ft, Po) martingale. Then as before
At = Eo[Adyi]

is ay;-martingale, so there exists soyeadapted integrangi such that
t

Ar=1+ f’]deS (13)

(o]

To identify n;, we use the same technique as in deriving FieK
equation. Calculate using{12) and | to’s rule,

t t

t
Ayr = fAtdyS+fySASh(XS)dyS+fASh(XS)dS
0

(0] (0]
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Calculating usingl(lI3) and Ito’s rule,
t t

t
/A\thZf/A\deS"‘IYSUdeS"‘stdS
0

o o

Now
Eo[Atyt — Atyilys] = ofort>s
So we get
= AQh(x) = Eo[Ach(x)lyil.
So [I3) becomes ag 28

Ar=1+ f AslTs(h)dys (14)

This has a unique solution

t t
At = exp[f Ig(h)dys — :_2L fHﬁ(h)ds]

o (o]

= o1(1)
Theorem 1.1. o(f) satisfies the “Zakai equation”
do(f) = o¢(Af)dt + o(D f)dy (15)
oo(f) =IIo(f) = E[f(x)].
Proof. Direct calculation usind{11)[{14) and the fact that
() = AdI(f).
m]

Corollary 1.1. There is a one-to-one relation between Zakai equation
and FKK equation, in that whenevert satisfies Zakai equatiomn;s (f)/
o(1) satisfies[(II1), and wheneVE},(f) satisfies[(1l1),

t

t
m(f)exp[ [ mtays- 5 [ s

0] (0]

satisfies Zakai equation.
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The Zakai Equation with Stratonovich Integrals:

Recall .

t
1
fusodvs ::fusdvs+§<u,v>t

o} o
whereo denotes a Stratonovich Stochastic integral amaeidv are con-
tinuous semi-martingales. We have to calculate~.(Df),y >;. From
Zakai equation

do(Df) = ot(AD f)dt + o(D? f)dw.

So
d < o.(Df),y >= o(D?f)dt.

So the Stratonovich version of the Zakai equation is
do(f) = o(Af)dt + (D f)ody — %at(DZf)dt

= o¢(Lf)dt + o¢(Df)ody

where 1
Lf(x) = Af(X) — ED2f(x).
Application to Diffusion Process:
Consider a procesg € RY satisfying
df(x) = Xof(x)dt + X; f(x)od B! (16)

for arbitrary smoothf, whereX,, ..., X; are vector fields o we sup-
pose thak BI, W >;= alt for some constanis?, ..., "

Note thatA is the generator of; under measur® (not Py). This is
given by

AF(X) = XoF(X) + % zj:szf(x).

Proof. Rewrite [I®) in Ito form. Replacé by X f in ({I8).
dX F (X)) = XoXic f(X)dt + X X f (x)0d B,
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Then
d < Xif, BS >= X2 (x)dt.

Then Ito version of[(1I6) is

df(x) = (x0 + %Z xj?) f(x)dt + X; f(x;)dB!.
So 1
A=Xo+ EZXJ'Z

anﬂ

t

cl = f X; f(xs)dBL.

(0]
Proposition 1.1. For Z given by

<Cl,W>= fo(xs)ds

with Z f = 01X}, Z is a vector field.

Proof.
d<Cf,W>:d<fXjdej,W>
= X;fd < B, W >
= anj f(x)dt.
So 81
D=Z+h
:aiXi+h.

O

2We sometimes use the convention of implied summation oyerated indices.
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Proposition 1.2. There exist vector fields, Y1, ... Y, such that

1, 1 ) 1
A-3D ‘EZJ.:YJ' +Yo - 5Dh.

Proof.
D2f = (/' X; + h)(@'X; f + hf)
= d' XX f + a'Xi(hf) + a'hX;f + b f
= '’ XX f + hZf + Dhf.
O

Leta = (a'e?,...a") and supposé — ac’ is nonnegative definite.
Write (I — aa’) = AA” and letX = (Xq,..., X;)’.

XANX = 3" X2 - alalXiX;.
So defineY = A’X. ThenY/ s are vector fields and

1 1

1
A-=D?=2) Y2-hz — =Dh
2 ZZ i %= 3

1o, 1
=3 Z Y7+ Yo~ 5Dh
|
whereY, = X, — hZ. It remains to check thdt— aa’ > 0. Takeé € R'
with |£] = 1. Then

E(l - aa)é =1- (@'€)?
> :|.|cy|2
> 0.

82 Since|ef? < 1, for
< ZaiBi,W >t = Zai < Bi,W>t
i i

= laf?t
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Soa?t = EUW, whereU = Y o' B'.
la*t? < EU%t = |of?t%
So we have Zakai equation in Ito’s form
doy(f) = o(Af)dt + o(Df)dy
With vector fieldsXg, X1, ... X, and in Stratonovich form
doi(f) = ot(Lf) + o(Df)ody

With vector FieldsYp, Y4, ...Y, plus a “0"-order” term. Now we
investigate what sort of processxsunder the measure,.

Proposition 1.3. Under R, x; satisfies the equation
df(x) = Yof(x)dt + Z f(x)ody + Y; f(xt)odbg a7)

where B,...b" are independent standard Brownian motions indepen-
dent of y

Proof. Recallthe Girsanoy transformation. UndeB?,. .. B" are inde-
pendent an& B!, W >= a't. Now

dP 1
d_F(: = eXp(Mt— E <M M >t)

whereM is aP-martingale. UndeP,, B/~ < BI,M > is a martingale 83
and hence a Brownian motion. Here

t
My = — f h(xs)dW;
(o]

d < Bl,M >= —a'h(x)dt.



84

80

So underP,, _ o
dV/ = dB! + a’h(x)dt

are independent Brownian motions, Bitis not independent of;, in
fact< Vl,y>=alt.

Now defineb} = V{ — oy, then< bl,y >= 0, and this implied!,y
are independent. But tH# are now not independent. In fact,

< bl b > {—a/jak'-[ for k # J
1-(a))’t fork=j
So
< bl B>t = [< Bl 0" ]
=(l —ad)t.
Let (I — aa’) = AA’ as before and defirg = A"b;.
Thenb; = A’by and< b >= It. So
df(x) = Xof (x)dt + X; f (x)odB
= Xof (x)dt + X; f (x)o(=a'h(x)dt + o dy; + db})
= (Xof (%) — hZ f(x))dt + Z f(x;)odyt + Y; f (x;)odb!
= Yo f(x)dt + Z f(x;)ody + Y; f(x)o d b}

whereY,f = X, f —hZfandY = A’X.

The so calleKallianpur- Striebel Formulagives the solutiorr; of
the Zakai equation as a function space integral in the fatigviorm,
wherex; is functional of §, bt,...b").

t t
f(x) exp[ [ a5 [ h2<xs)ds]yt\

i.e., as a function of, we have

t t
- [ [f(xoexp[ [ ey | hz(xs)ds]

C'[o.t]

oi(f) = B

ﬂw(dbl) ... w(dD)

whereu,,(db) is the Wiener measure @@io, T].
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2 Pathwise Solutions of Diferential Equations

Consider the Doss- Sussman construction for the equation

X = b(X) + g(X)w 1)
X(0) = X

wherew € C'(R,). Let¢(t, X) be the “flow” ofg, i.e.,
209 = 9(t )
#(0, X) = X.
If b = o, then it is immediate that the solution @f (1) is
X = $(W(t), X).
If b # o, then the solution of{1) is of the form
X = ¢(W(), 7(1)) )
wheren(t) satisfies som®DE. With x(t) defined by[[R),
X(t) = g(x(OW(E) + Bx(w(t), n(t))(t)
and we require that
dx(W(t), n(0)7(t) = blp(W(t), n(1))).
Sox(t) satisfies[{ll) if;(t) satisfies

1= (¢x(W(t). n(t)) " b(B(W(t). n(t)))
n(0) = x

Coordinate-free form: Let
df
Xof(9) = b5

df
X1f(x) = Q(X)&
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&i(x) = ¢(w(b), x).

Define
(& Xo) F(X) = Xo(fo&r (& (X))

Then the equation faj(t) can be expressed as

S0 = G )
Mo =X,
86  for
(67X F 1) = BEM) - T 0o
d d
= D)) 3 0 (& Rl
= DE()) 1 FIED) ™ )
Since¢ 1(£(X)) = x and so
d, d
SEHEON 0 =1
Whenx € RY, then

X,f( >—Zb'( R

af (%)

xlf(x)—Zg() I

Then §) is of the form

d
_ i 0 _
G = 2, D095 T o oy
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4 & af(x) ol 1)1
= D D T a9

=1 i=1

So the same results apply far € RY, but generallynot for more
than one “input”, i.e., for vectow(t).

Interpretation: X defined by [[R) makes sense for an{.) € C(R,).

In particular, ifw(t) is a sample path of Brownian motion, then what
eqguation does; satisfy?

Answer: the Stratonovich equation

dx = b(x)dt + g(x)odw €))

Exercise 2.1.Expand xgiven by[[2) using Ito’s calculus and show that
it satisfies[(B).

The following examples show that the pathwise solution ademot
generally be extended to “multi-input” equations.

Example 2.1.Let
X = gt IW! + gP (WP
x(0) = x.
The solution should be of form

X = h(wi, wi). @)

aa —h(w', w?) etc., we have

% = hyW! + hpw?

Then withh (W, w?) =

hl(th ’Wtz) = gloh(vvtl, Wt2)
ha (Wi, W2) = g?oh(wy, w?)

and

hio(Wi, we) = gkohhy = (gkoh)(goh)
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h2a(Wi, WE) = (gZoh)(g'oh).
So we must have
9'd% = oox.
Define the Lie bracket{, Xp] = X1Xo — XoX;. Now
d df
_1 49 odl
9'02 fy + 00 fxx.
Therefore
[X1, X2] f = (9'6% — 9% .
So a necessary condition fél (4) to hold is that

[X1,X2] =0
i.e., X1 X2 = XoXj.
Exercise 2.2.Consider
- n . .
X=>"dXW.
i=1

Leto'(t, X) be the flow of gand&}(x) = ¢' (W, X). Then show that

1,2
X = &{0&70. .. o

if [X',X]] =0Vi,]j.

With one input,|w" — wj| — 0 impliesx — x, where|| - || is the
sup norm. But with inputsv!, w?, the solution map generally is not

continuous.

89  Example 2.2(Sussmanri[23]Lett € [0,1] and

K= AW 4+ BXWA"
X(0) = %o
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whereA, B aren x n matrices with

[A B] = AB- BA% 0.

Partition [Q 1] into n equal intervalsjf‘ = [J;nl J] i=12,.

Partition eacH;1 into four equal intervalsl;n i = 1,2 3,4. Definew™"
to be equal tod/? fort e 17, to —4nt/? for In and to zero for all other

t. Similarly, letw®" be equal to a/? for t e In to —4n'/Zfort € 17,
and to zero for all othet.

Then .
w(t) = f W(s)dsi. = 1,2.
(o]

Clearly w" converges to zero uniformly as — oo,i = 1,2. Let
s=n"Y2 then

n(l/n) _ BSeAS
=€ Xo-

We use the Baker-Campbell -Hausfidormulae®e® = € where

C=A+B+ %[A, B] + %{[[B,A],A] +[[B, A], B]} +

we get
1

7=[B, A]ﬁ + o(1/n).
So 90

xX'(1)=€"

_ lBAo(1/m)
Hence
lim X! = eBAx,.

n—oo
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3 Pathwise Solution of the Filter Equation
Consider the equation
df(x) = Yof (x)dt + Z f(x)odyt + Y; f (x)odH.

To express this pathwise i}, let ¢(t, X) be the integral curve at
andé&i(X) = ¢(y(t), X). Definen; as follows:

df(m) = (& Yo) Flm)dt + (E.2Y)) f (mr) o by
Mo =X

Then

Xt = &0
= ¢(y(1), n(1)).

The generator of is

. _ 1
A= ft*lYo + > Z ft*lYJ
j

The Kallianpur-Striebel Formula: Recall

oi(f) = g® [f(xt) exp(j‘t h(xs)dys — % ft hz(xs)ds)]

- E® [f(xt) exp( f t h(xs)odys — % f t Dh(Xs)dS)]

whereD =Z + h.

Notation: For any difeomorphismy : M — M, y* : C*(M) —» C*®(M)
is given by

Y i) = foy(x) = f(¥(x).
So

f(x) = & (),
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t *
and ()= €| mexp( [ Eshtndone - 5 [ oreras)

The next step is to remove “ody”. Define

t
HEx) = [ oniods
(0]
CalculateH (y;, nt) using Stratonovich calculus

dH(yt, 7)) = &h(7)0dyt + £ YoHys(ns)ds+ £5.2Yi Hys(ns)od,.

Notation:
9s(x) = H(¥(s), )
Y = &Y
Bsf(X) = ¢5f(X) exp(fsgbﬁh(x)du).
0]
Finally, we get

() = EP[Byy f(maf )]

where the multiplicative functional; is given by

t . t
af(y)=exp[ | Vioutnt - 5 [ 0?autna

t 1 t
_f Yo0u(ru)du— Ef ff,Dh(nu)du]
S s

Soo(f) is now pathwise iry with o(f) : C[o,t] — R and @+(f)/
o @) is a version ofE[ f(x)ly;]. Now we want to computer(f) re-
cursively.

(&) Multiplicative Functional Approach:
Let (x) be a Markov process with extended generatar7j(A)).
The associated semigroup BfE) is
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Tstf(X) = Esul f(x0)]

a; (s < t) is amultiplicative functional(m.f.) of (x) if af is o{xy, s <
u < t}-measurable and for< s< t,

af = aley.
Corresponding te; there is a semigroup defined by
Teif(X) = Esx[f(X)at] -

In particular,

93 It is a Markov (or Sub-Markov) semigroup when
Esx[of] =1 (< 2).

If (%) is a homogeneous Markov proces$ js a homogeneous m.f.

a; = agly 06,
where O %t = Xyr-
Then
a; = ap g 00_s.

So denotingy = o7, them.f. property is
Qiys = Qt.ag O G,
Now we want to find the generator of
T £(%) = Ex(f(x) av).

Suppose for the moment that < 1,V t. Thena; is monotone
decreasing. In this caseg corresponds to “killing” at rate{da:/at).
It is possible to construct am*subprocess” which is a Markov process
Xt such that
ExLf ()] = T¢ £(%).
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See Blumenthal and Getodri [1]. Define the extended genevétor
T to be the extended generatorf i.e.,

t
100) - 106) - [ A*T(&)ds
[0}
is a local Martingale iff € D(A%). This says (excluding stopping) 94

E

t
f(x) — f(xg) —f A"f(xﬁ)dulFs‘ =0
t

or Ex[at—s f(X)] — f(Xs) — Ex, f ay_sA” f(x,)du= 0.
S
So equivalentlyf € D(A®) if

t

o (F06) — (%) - f A F(xg)ds

[o]

is a local Martingale®,) for everyx.
This characterize&® even when the conditioa; < 1 is not satis-
fied, so we adopt it as our definition.

t

Example 3.1.Let y; = exp(—f V(xs)ds) whereV € B(E). Take
(0]

f € D(A) and compute

diyt (X)) =yt A f(x) dt+ye d My f = V(%) f(x) y: dt.
t t

Y f (%) - F() = f Yo AT(xe) - V(x9) F(x9] ds-+ f ys AMf.

(0] (0]

So
A’ f(X) = Af(X) — V(X f(X).
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a(x)
a(X%o)

95

Example 3.2.Letg; =

T/ 9(¥) = ﬂ Te@h) ().

Exercise 3.1.Show that

ABE(X) = ﬂ A@f)(x).

Now supposepsatisfies
df(x) = Xof(x)dt + X;j f(%) 0 dw.

Takeg € C.’(E) and define

t

t
o1
at=exp[— [ Xt -5 [ Yoo @
(0] (0] J
If we define
dPy
dPX = 0t
then

! = dw] + X; g(x)dt

is aP$ - Brownian motion. Thus

df(x) = (%o (x) = Y X)X, F(x))dt + X f (x)o ;.
j

Now ¢; is am.f. of x (as will be verified below) and
Ex[f(x)dt] = ER[f(x)].

96 So

A9 = [xo— ijg(xt)xj] N
j j
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The three examples here are related by

t t

{5 gtxvd = g0 - 909 - [ Acxads

(o] o

Using this in[1), we see that factors

Ot =Bt
with
V) = A + 5 Y (%) 909
,-
a(x) = e 99,
So
AP F(x) = &9 A(e9f) — [Ag— % Z(ng)z] f(x).
,-
So

FAEIT) = Af - > (X9X;f - {Ag+ % ;(xjg)z] f.
Exercise 3.2.Verify that this result is correct by direct calculation of
e9A(e9f).
We have the unnormalized solution of filtering problem as
ot(f) = E[By, f(m)ef(y)]
fory € C[o, T]. Heren; is a difusion,e((y) is a m.f. ofp. Now

t

t
ofy) = exp[— [ YVigoaael -5 [ Z(Y;gu(nu))zdu]
s

S

t t
xexp[% [ ¢t amarau- 5 [ e
j s

S
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t t
1
- f Yagu)du - > f szh(nu)du].

S

This factorsey into product of a “Girsanovin.f. and a “Feynman-
Kac” m.f. Hence the corresponding generator is

f.

ANT=AT-> Y aYf+ EZ(ngt)z—Agt—Egch
] ]

Proposition 3.1. Af = By (A- $D?) By,

Proof. This can be verified by a straightforward but somewhat length
calculation, using the expansion feétAe? obtained previously, once
has obtained an expression &r. Recall thatB, is defined by

t
Bif(x) = f(£(t. X)) exp f h(£(u. x))du.

O

It is a group of operators with generar= Z + h. The inverseB;*
is given as follows. Leg(x) = B;f(x), then

f(4 = Bi'g(¥)

t
- gé(-t. %) exp[— f h(E(u, (-, x)))du]

t
= g (t, %) exp[—fh(g‘l(s, X))ds].

Example 3.3 (Independent “signal” and “noise”TJakeZ = 0, then
&(t,x) = xand

Af(x) = g¥(®) ( A— %‘hZ) (YOO £(.))(x)

= dOpae MO f _ }hzf.
2
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It is easy to see that this must be the right formula. The taticins
have been carried out for arbitrayye C[o, T] but A/ depends only on
y(t). SoA! = AY wherey(s) = y(t) (t fixed). Now

t t
() = E| F0d exp) - [ ganix) -5 [ hz(xs)dsﬂ

[ t
~ E| F(x)e% exp| 5100 + TG - 5 [ h2<xs)dsﬂ

- o
_ (x)¥t exp(=y(t)h(x)) _} 2
= E|f(x)€ oo Pl 3 Of h?(xs)ds|| .

So we have separated into two functionals and the resutisl|

Direct Solution of Zakai Equation: We will consider a slight general-
ization from the original Zakai equation. Define

1
L:EZj:Y1.2+YO+hO

D=Z+h

whereY;, Z are smooth vector fields; h, areCy;’ functions (Previously, 99

1 . .
we hadh, = _EDh)' Write ( f, u) for f f d, and consider the measure-
valued equation

d(f, oty = (Lf,opdt+(Df, o) o dy (2

where(f,o.) = f(X) i.e.,00 = 6x. The solution can be expressed as
follows: Definex; by

df(x) = Z f(x).dyt + Yof (x)dt + Y;(x) o dby, o = X,

whereb; are Brownian motion independent pfThen the solution is

o(f) = Eb[f(xt) exp( fo t ho(Xs)ds+ fo t h(xs) odys)].
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Kunita [14] show that this solution is unique if dfieients are
smooth and bounded. Now the question is whethdras a density.

Theorem 3.1.
<f90-t> = <Bytf,Vt> (3)

where
By f(X) = (f, u)
and gy, v; satisfy the equations
d< f,ut >=<Df,u > ody (4)
< foup > = f(X)
d<f,np>=<ByL B;tl, ve > dt (5)

Proof. If L = o, then [3) is the same dd (2); so the solutior[df (4) is

t
< fu >= (%) exp[f h(xs) o dys]
(0]

wherex; satisfies
df(x) = Z f(x)ody.

O

But this has pathwise solutioq = £(y;, X). The previous definition

of Bwas
Wt

B, (%) = F(é(k. X)) exp[ f

(o]

h(&(u, x))du] .

Now, y
d[ f h(¢(u, X))du] = h(£(Yt, X))od.

So [@) holds withB; defined as before. Now

d<Byfn>=d < By f,vt > + < By f, 1 > dt
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= ByL B} By f,» > dt+ < ByD f, > ody
by @) and [#)
=< By L f,» > dt+ < By, D f,» > odyt.
This verifies [R).

Proposition 3.2. Suppose; has a density function; (g, x) B. Then for 101
t > 0.0 has density

W
V) = (€0 VY exp[ | h(g-l(s,v»ds]x PSRN0

-1
where| dj—v | is the Jacobian of the map V¥ ¢X(y;, V).

Proof. If v; has a density, then

<f,o¢>= folf(z)qt(z, X)dz

Wt
- f (. 2) exp( f h(e(u, 2)du)a (z )dz

Changing the variable td = £(y;, 2) gives [®). O

Theorem 3.2(Bismut [4]). v; has C°-density if the Yare “smooth”
vector fields, i.e., cggcients are bounded with bounded derivatives of
all orders and Y, . .., Y, satisfy the “restricted Hormander condition”

H :- Consider vector fields;Y[Yi,Yjl, [[Yi, Yjl. Y] . ... At each x the
restrictions of these vector fields to x spaf(W).

In local coordinatesy; = 3, bi(x)%, ... etc. So the condition says
: :

the vectors etc. sparR? at eachx. Recall, By, LB;tl = A + (Btand

3Here z is the “dummy variable” anc refers of the initial condition in[j2), i.e.,
oo = Ox
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0" order terms)

A= D EM

Now
&Y Y] = 6,67 ete.

So if Y; satisfy the Hormander condition, thefj,tY;) satisfies it.

Hormander’s own result requires ¢beients to beC* in (t, x). Here
the codficients are continuous (but not eved) in t. Bismut’s version
of Malliavin calculus shows that the result still holds wiltis degree of
smoothness it

In the filtering problem, the “signal process” involved \arcfields

X1, Xo,... Xn, Xg andY = AX, whereA is nonsingular iff « |< 1. Then
X =A"1Y. So

[ [[Xigs X I Xig] -+ X3 ] = Z Cj [ - [[Y16,Y26], Y3] ... Yin,jé].
i
So if the “X” Lie brackets spai®? then there must be a collection of

“Y” brackets which also spakd®. The Hérmander condition fox with
| @ |< 1 implies the existence of density.

The Case of Vector Observationsietdy = h(x)dt + dW>, WO are
independent Brownian motiong.will now be a matrix,

ajjt =< Wo’i,WO’j >,
Consider the following cases.a)(Independent signal and noise:

Herea;; = OVi, j. Then whole theory goes through unchanged.
Then [2) becomes

d< fu>= > <hf,u > ody
i
with solution

<fu>= exp[z Yi (t)h(X)) fF3)
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= l_[ expy;i (t)h(x)) f(X)

So this gives pathwise solution as before.

Another Point of View: The Kallianpur-Striebel formula is

[ t t
ou(F) = E® | £x) exp[z f (o) dlyl -%Z f hiz(xs)dsﬂ

- t
= E® f(xt)r[e" (Oh0e) exp[z f y(s)dh(xo)

_ %[Z Of hiz(xs)dsm.

(b) The General Case: Here we have no “pathwise” theory (except
under very artificial conditions) but the same theory goesuhh a.s.
(Wiener measure). There is no continuous extension to thaendf
CP[o, T]. In this case, equatioiil(2) becomes

d< fu >= Z < Dif,u > od){
i

where Di = Zi + handyz; is a vector field

A pathwise solution only exists ;s commute, which is very arti-
ficial. But, as before, the solution can be expressed as

t
< fo>= 1) exp[z | hi<xs)ody;] ™
o

wherex; satisfies 104

df(x) = Z D; f (x;)ody}
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Xo = X.

Regardu as the operator mapping—< f,u; >. Then “stochastic
flow” theory (Elworthy [13], Kunita [1F], Bismut(]2] says thdf D;s
have smooth cdicients thenx — x(X, w) is a difeomorphism a.aw,
and so the inverse map(x) exists. We have to calculatg®. Gener-
alize ) slightly to

t
< fLuse >= f(x, 1) exp[z f hi (%, 1) ody'r]
df(x.t) = > Dif(t)odyt>s

XS: X.

Proposition 3.3 (Kunita [14]).
t
u;%u(x)):f(x;%(x))exp[—z | h«x;,%(x))oav;] ®)

where “od” means backwards Stratonovich integral. Here define
fields Rt r <t, by

Fre=oly,- M. rsuvsti=12...d}.

t
Then [ ¢,dy is a well defined backward | to integrald is a back-

S
ward semimartingale w.r.t(F,);<«t. Then the Stratonovich integral is
defined as usual. 1B, is continuous, then
n

A e+t .
[ v = 30 (52 (g, ~54)
Sopgt(x) is well defined by[{8). Now verify that

t

f  (%(P) © Wil

S
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t
= f hi (Xsr)ody}.

This checks thatgi(ust(X) = X.

Now all remaining calculations go through as befbrd onlya.s.
(Wiener measure).

More general results on existence of densities have beeainebit
by Bismut and Michelll3]
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