Lectures on
 Siegel Modular Forms and
 Representation by Quadratic Forms

By
Y. Kitaoka

Tata Institute of Fundamental Research Bombay

1986

Lectures on
 Siegel Modular Forms and Representation by Quadratic Forms

By

Y. Kitaoka

Published for the
Tata Institute of Fundamental Research
Springer-Verlag
Berlin Heidelberg New York Tokyo
1986

Author
Y. Kitaoka
Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-Ku, Nagoya, 464
JAPAN

(C) Tata Institute of Fundamental Research, 1986

ISBN 3-540-16472-3 Springer-Verlag, Berlin. Heidelberg.
New York. Tokyo
ISBN 0-387-16472-3 Springer-Verlag, New York.
Heidelberg. Berlin. Tokyo

No part of this book may be reproduced in any form by print microfilm or any other means without written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 400005

Printed by K. M. Aarif at Paper Print India, Worli, Bombay 400018 and published by H. Goetze, Springer-Verlag, Heidelberg, West Germany,

Printed In India

Preface

These are based on my lectures at the Tata Institute of Fundamental Research in 1983-84. They are concerned with the problem of representation of positive definite quadratic forms by other such forms.
§ 1.6 and Chapter 2 are added, besides lectures at the Institute, by Professor Raghavan (who also wrote up §§ 1.1-1.4) and myself respectively.

I would like to thank Professor Raghavan and the Tata Institute for their hospitality.

Y. Kitaoka

Contents

Preface v
1 Fourier Coefficients of Siegel Modular Forms 1
1.1 Estimates for Fourier Coefficients... 7
1.2 Reduction Theory 20
1.3 Minkowski Reduced Domain 28
1.4 Estimation for Fourier Coefficients of. 35
1.5 Generalization of Kloosterman's Method... 67
1.6 Estimation of Fourier Coefficients of Modular Forms 97
1.7 Primitive Representations 132
2 Arithmetic of Ouadratic Forms 139
2.0 Notation and Terminology 139
2.1 Ouadratic Modules Over © 141
2.2 The Spinor Norm 155
2.3 Hasse-Minkowski Theorem 160
2.4 Integral Theory of Ouadratic Forms 160

Chapter 1

Fourier Coefficients of Siegel Modular Forms

Introduction

The problem of the representation of a natural number t as the sum of a given number m of squares of integers is quite classical and although its history goes back to Diophantus, it may be said to have begun effectively with Fermat's theorem that every prime number congruent to 1 modulo 4 is a sum of two squares of integers. Practically, every mathematician of repute since Fermat has made a contribution to problems of this type in the theory of numbers. One has, thanks to Jacobi, a formula for the number $r_{m}(t)$ of representations of t as a sum of m squares of integers, with $m=2,4,6$ and 8 ; for example,

$$
\begin{aligned}
& r_{2}(t)=4 \sum_{\substack{d \mid t \\
d \text { odd }}}(-1)^{(d-1) / 2} \\
& r_{4}(t)=\left\{\begin{array}{c}
8 \sum_{d \mid t} d(t \text { odd }) \\
24 \sum_{\substack{d \mid t \\
d \text { odd }}} d(\text { teven })
\end{array}\right.
\end{aligned}
$$

Analogously, one can ask for the determination of (m, n) integral matrices G or of the number $r(A, B)$ of all such G, for which

$$
\begin{equation*}
(A[G]:=)^{t} G A G=B \tag{*}
\end{equation*}
$$

where A and B are given (m, m) and (n, n) integral positive definite matrices. As a first step, one can seek suitable conditions under which (*) has a solution. A recent result in this direction is given by

Theorem A ([8]). If $m \geq 2 n+3$ and if, for every prime number p, there exists a matrix G_{p} with entries in the ring \mathbb{Z}_{p} of p-adic integers with ${ }^{t} G_{p} A G_{p}=B$, then we have an integral matrix G satisfying the equation ${ }^{t} G A G=B$, provided that for the minimum of $B, \operatorname{viz} . \min (B):=$ $\inf _{0 \neq X \in \mathbb{Z}^{n}}{ }^{t} X B X$, we have $\min (B)>\mathscr{X}(A)$ for a suitable constant $\mathscr{X}(A)$.

The proof of this theorem is arithmetical in nature and is given in Chapter $2 \$ 2.4$

Remarks 1. If, on the other hand, A is indefinite with $m \geq n+3$ and if, for every prime p including $\infty,(*)$ admits a solution G with entries in \mathbb{Z}_{p}, then it is known that $(*)$ has a solution G with entries in \mathbb{Z}. The proof is given in Chapter2 $\$ 2.4$
2. In the case $n=1$ and $m \geq 5$, under the solvability of (*) with G over \mathbb{Z}_{p} for every prime p (including ∞), Theorem A in this case, is well-known ([27], [4]). For $n=1$ and $m=4$, however, if, in addition, to the solvability of $(*)$ in G over \mathbb{Z}_{p} for every prime p, one assumes further that for every prime $q \operatorname{dividing} 2 \operatorname{det} A$, the power of q dividing B does not exceed a fixed integer t, then for all $B>\mathscr{X}=\mathscr{X}(t)$, the equation $(*)$ is solvable over \mathbb{Z}. The proof of a stronger form of this assertion viz. A is anisotropic over q instead of " q dividing $2 \operatorname{det} A$ ", is purely arithmetic in nature and may be found in Kneser's Lectures [15]. An analytic proof using the decomposition of theta series into Eisenstein series and a cusp form is also possible. If $m=3$ and $n=1$, assuming conditions as for $m=4$ above, $(*)$ is solvable over \mathbb{Z} for all $B>$ $\mathscr{X}=\mathscr{X}(t)$, provided that B does not belong to a finite number
of "exceptional spinor classes" and further that the Generalized Riemann Hypothesis holds; the proof is arithmetical in nature. The case $m=2$ and $n=1$ reduces to a problem of representation over quadratic fields.

There is an analytic approach to Theorem Based on the asymptotic behaviour of $r(A, B)$ or, more precisely, on an asymptotic formula for $r(A, B)$ as B "goes to infinity". Clearly $r(A, B)>0$ if and only if (*) is solvable for G over \mathbb{Z}. One first looks for a generating function for $r(A, B)$. Let $\mathscr{G}_{n}=\left\{Z \in \mathscr{M}_{n}(\mathbb{C}) \mid Z={ }^{t} Z, i^{-1}(Z-\bar{Z})>0\right\}$, the Siegel upper half space of degree n (or "genus n "). For the given $A>0$ and any Z in \mathscr{G}_{n}, let

$$
\vartheta(Z)=\vartheta(Z ; A):=\sum_{B} e\left(\operatorname{tr}\left({ }^{t} G A G Z\right)\right)
$$

where $e(\alpha):=\exp (2 \pi i \alpha)$, tr denotes the trace and G runs over all (m, n) integral matrices. Then it is clear that $\vartheta(Z)=\sum_{B \geq 0} r(A, B) e(\operatorname{tr}(B Z))$ where B now runs over all (n, n) non-negative definite integral matrices. It turns out that the theta series $\vartheta(Z)$ is a Siegel modular form of degree n, weight $m / 2$ and level N (some N depending on A). Thus the problem now reduces to studying the asymptotic behaviour of Fourier coefficients of Siegel modular forms which is in the very centre of the analytic approach referred to.

If $A_{1}={ }^{t} U A U$ for U in $G L_{m}(\mathbb{Z})$, then obviously $\vartheta\left(Z ; A_{1}\right)=\vartheta(Z ; A) \quad 4$ i.e. $\vartheta(Z)$ is a class-invariant associated with A, depending only on the class (of matrices A_{1} "equivalent" to A as above). The genus of A consists of all positive-definite matrices A^{*} such that for every prime number $p, A^{*}={ }^{t} U_{p} A U_{p}$ for U_{p} in $G L_{m}\left(\mathbb{Z}_{p}\right)$; it is known from the reduction theory of quadratic forms, that the genus of A consists of finitely many classes. Let $A_{1}, A_{2}, \ldots, A_{h}$ be a complete set of representatives of the classes in the genus of A and let $o\left(A_{i}\right)$ be the order of the unit group of A_{i}, consisting of all U in $G L_{m}(\mathbb{Z})$ with ${ }^{t} U A_{i} U=A_{i}$. Then we have the genus - invariant $E(Z):=\left\{\sum_{i} \vartheta\left(Z ; A_{i}\right) / o\left(A_{i}\right)\right\} /\left\{\sum_{i} 1 / o\left(A_{i}\right)\right\}$ associated with A, having the Fourier expansion $\sum_{B \geq 0} a(B) e(\operatorname{tr}(B Z))$. From Siegel
[23], we know that, for $B>0$,
$a(B)=\pi^{n(2 m-n+1) / 4} \prod_{k=0}^{n-1}\left\{1 / \Gamma\left(\frac{m-k}{2}\right)\right\}|\operatorname{det} A|^{-n / 2}|\operatorname{det} B|^{\frac{m-n-1}{2}} \prod_{p} \alpha_{p}(A, B)$
the product \prod_{p} being extended over all prime numbers p and $\alpha_{p}(A, B)$, the p-adic density of representation of B by A is defined as

$$
\lim _{t \rightarrow \infty} p^{\operatorname{tn}(n+1-2 m) / 2} \sharp\left\{\left.G \in \mathscr{M}_{m, n}\left(\mathbb{Z} / p^{t} \mathbb{Z}\right)\right|^{t} G A G \equiv B\left(\bmod \mathrm{p}^{\mathrm{t}}\right)\right\} .
$$

We note that $a(B) \neq 0$ if and only if for every prime $p,{ }^{t} G A G=B$ is solvable for G over \mathbb{Z}_{p}. One then defines the modular form g by $g(Z)=\vartheta(Z)-E(Z)$ so that, denoting the Fourier coefficients of g by $b(B)$, we have

$$
r(A, B)=a(B)+b(B)
$$

One expects this to be an asymptotic formula for $r(A, B)$, with $a(B)$ as the "main term" and $b(B)$ as the "error term", one needs to estimate $a(B)$ i.e. essentially $\prod_{p} \alpha_{p}(A, B)$, from below, as indeed shown to be possible by

Theorem B. If $m \geq 2 n+3$ and if ${ }^{t} G A G=B$ is solvable for G over \mathbb{Z}_{p} for every prime p, then $\prod_{p} \alpha_{p}(A, B)>\mathscr{X}(A)>0$, for a constant $\mathscr{X}(A)$.

Remarks 3. The condition $m \geq 2 n+3$ in Theorem is best possible. (Likewise in Theorem 1 too, this condition seems best possible; however, no counter examples are available to establish the same).
4. Let $m>n$ and $P:\{p \mid p \nmid 2 \operatorname{det} A\}$. Then if $B={ }^{t} X_{p} A X_{p}$ for every prime p with primitive X_{p} (i.e. with $\left(X_{p} *\right) \in G L_{m}\left(\mathbb{Z}_{p}\right)$), then $\prod_{p \in P} \alpha_{p}(A, B)>\mathscr{X}(A) \prod_{p \in P(B)}\left(1+\varepsilon_{p} p^{-1}\right)$ for a constant $\mathscr{X}(A)>$ 0 . Here $P(B)$ is defined as the set of primes p for which $m-$ $2 n+t_{p}=2$ and ε_{p} is the Legendre symbol $\left(\frac{(-1)^{m-n-1} d N_{0} \operatorname{det} A}{p}\right) ;$ if $B \equiv\left(\left(v_{i}, v_{j}\right)\right)(\bmod \mathrm{p})$ for a basis $\left\{v_{i}, \ldots, v_{n}\right\}$ of the associated quadratic space N over $\mathbb{Z} / p \mathbb{Z}$ with the orthogonal decomposition
$N=\operatorname{Rad} N \perp N_{0}, t_{p}=\operatorname{dim} N_{0}$ and $d N_{0}$ the discriminant of N_{0}. For almost all p, B is unimodular and $t_{p}=n$.
If $m>n+2, P(B)$ is a finite set. If $m=2 n+2, B={ }^{t} X_{p} A X_{p}$ for a primitive X_{p}, whenever $p \in P$; in that case, $\prod_{p \in P(B)}\left(1+\varepsilon_{p} p^{-1}\right)>$ $\prod_{p \mid e(B)}\left(1-p^{-1}\right) \gg e(B)^{-\varepsilon}$ for every $\varepsilon>0$, with $e(B)$ denoting the first elementary divisor of B. For $m=2 n+2$,

$$
p \in P(B) \Longleftrightarrow t_{p}=0 \Longleftrightarrow N=\operatorname{Rad} N \Longleftrightarrow B=0(\bmod \mathrm{p}) \Longleftrightarrow \mathrm{ple}(\mathrm{~B}) .
$$

5. The next step is naturally to get upper estimates for the Fourier coefficients $b(B)$ of $g(Z)$ which, by its very construction, has the property that for every modular substitution $Z \rightarrow M<Z>$ (:= $\left.(A Z+B)(C Z+D)^{-1}\right)$, of degree n, the constant term in the Fourier expansion $g(M<Z>) \operatorname{det}(C Z+D)^{-m / 2}=\sum_{B} b(B, M) e(\operatorname{tr}(B Z) / N)$ vanishes. For $n=1$, this property characterises a cusp form; however, g is not a cusp form for $n>1$, in general, preempting an appeal to the estimation of Fourier coefficients of cusp forms of degree n.

Using Hecke's estimate $b(B)=O\left(B^{m / 4}\right)$ for the Fourier coefficients of cusp forms (of degree 1 and weight $m / 2$), we have for $m \geq 5$ an asymptotic formula $r(A, B)=a(B)+O\left(B^{m / 4}\right)$, noting that $a(B) \gg$ $B^{(m / 2-1)}$, whenever $a(B) \neq 0$. For $n=1$ and $m=4$, we can say that $a(B) \gg B^{1-\varepsilon} \prod_{p \mid 2 \operatorname{det} A} \alpha_{P}(A, B) \gg B^{1-\varepsilon}$ for every $\varepsilon>0$, whenever $a(B)$ is non-zero, provided that an additional restriction that the power of primes p dividing $2 \operatorname{det} A$ does not exceed p^{t} for a fixed t; the implied constants in \gg depend on t. Using Kloosterman's method, the "error term" $b(B)$ in this case has the estimate $b(B)=O\left(B^{(m / 4)-1 / 4+\varepsilon}\right)$ for every $\varepsilon>0$ and thus we have again a genuine asymptotic formula for $r(A, B)$. Very little is known, in this respect, for $n=1$ and $m=3$.

Coming to the general case $n \geq 1$ and $m \geq 2 n+3$, we shall prove the following theorems, using Siegel's generalized circle method

Theorem C ([10],[19]). For $n \geq 1, m \geq 2 n+3$ and $B>0$ with $\operatorname{det} B \ll 7$
$(\min (B))^{n} b(B)=O\left(\min (B)^{(n+1-m / 2) / 2}(\operatorname{det} B)^{(m-n-1) / 2}\right)$. (For $n=2$, the condition $\operatorname{det} B \ll(\min (B))^{2}$ is unnecessary).

Theorem D ([10],[20]). For $n \geq 1$ and even $m \geq 4 n+4, b(B)=$ $O\left(\min (B)^{1-m / 4}(\operatorname{det} B)^{(m-n-1) / 2}\right)$

Remarks 6. Since $\prod_{p} \alpha_{p}(A, B) \gg 1,1-m / 4<0$ and $1-m / 2+n<$ 0 , both Theorems \mathbb{C} and yield asymptotic formulae for $r(A, B)$, as the 'minimum' $\min (B)$ of B goes to infinity. The condition $\operatorname{det} B \ll$ $(\min B)^{n}$ for $n \geq 3$ in Theorem C is substantially the same as insisting that $\min (B)^{-1} B$ lies in a compact set.

The case when $m \leq 2 n+2$ and in particular $n=2, m=6$ is difficult and a conditional result can be obtained in this special case, by using a generalization of Kloosterman's method (involving the estimation of exponential sums).

For $m=6$ and $n=2$, let $\mathfrak{g}=\left\{Z \in \mathscr{G}_{2} \mid\right.$ abs $\operatorname{det}(C Z+D) \geq 1$ for every modular matrix $M=(\stackrel{*}{C} \stackrel{*}{D})$ of degree 2$\}$. Let us make the following

Assumption. Let c_{1}, c_{2} be natural numbers, $c_{1} \mid c_{2}$ and $Z \in \mathscr{G}_{2}$. Then, for

$$
\begin{gathered}
\sum_{\substack{g_{1}, g_{2} \bmod c_{1} \\
g_{4} \bmod c_{2}}}\left|\sum_{\substack{u_{1}, u_{2} \bmod c_{1} \\
u_{4} \bmod c_{2}}} e\left(\left(u_{1} g_{1}+u_{2} g_{2}\right) / c_{1}+u_{4} g_{4} / c_{2}\right)\right|=O\left(c_{1}^{2+a_{1}+\varepsilon} c_{2}^{1+a_{2}}\right) \\
\\
\left(\begin{array}{ll}
u_{1} / c_{1} & u_{2} / c_{1} \\
u_{2} / c_{1} & u_{4} / c_{2}
\end{array}\right)+Z \in \mathfrak{g}
\end{gathered}
$$

where $0 \leq a_{1} \leq 3 / 2,0 \leq a_{2}<1 / 2$ and the O-constant is independent of Z. Then we can prove

8 Theorem E. For $m=6, n=2$ and Minkowski-reduced $B=\left(\begin{array}{c}* \\ *\end{array} b_{22}^{*}\right)>0$, with $\min (B) \geq$ an absolute constant $\mathscr{X}>0$, we have

$$
b(B)=O\left(\left((\min (B))^{\left(2 a_{2}-1\right) / 4+\varepsilon}+(\min (B))^{-1} \log \frac{\sqrt{\operatorname{det}} B}{\min (B)}\right)(\operatorname{det} B)^{3 / 2}\right)
$$

under the assumption above, where $\omega\left(b_{22}\right)$ is the number of distinct prime divisors of b_{22}.

Notation and Terminology.

For any matrix A, the transpose is denoted by ${ }^{t} A$. By $\mathscr{M}_{r, s}(R)$ we mean the set of (r, s) matrices with entries in a commutative ring R with identity. If $A \in \mathscr{M}_{r, r}(R)=\mathscr{M}_{r}(R)$, then the determinant and the trace of A are denoted by $\operatorname{det} A$ and $\operatorname{tr}(A)$ respectively. For given matrices A, B we abbreviate ${ }^{t} B A B$ (when defined) by $A[B]$. Superscripts r, s on a matrix $A^{(r, s)}$ indicate that it has r rows and s columns; by $A^{(r)}$, we mean an (r, r) matrix A. By $G L_{n}(R)$ we mean the group of (n, n) matrices with entries in R and $\operatorname{det} R$ invertible in R. For two matrices A, B in $\mathscr{M}_{r, s}(\mathbb{Z})$, we say $A \equiv B(\bmod q)$ if all the entries of $A-B$ are divisible by q. The (n, n) identity matrix is denoted by E_{n} and 0 represents a matrix, of the appropriate size, with all entries equal to 0 . We write $A>B$ (respectively $A \geq B$) to say that $A-B$ is a symmetric positive-definite (respectively non-negative-definite) matrix; $A<B$ (respectively $A \leq B$) if $B>A$ (respectively $B \geq A$). We use the O and o notation of HardyLittlewood as well as the notation \ll or \gg (due to Vinogradov). When $f \ll g$ as well as $f \gg g$, we simply write $f \asymp g$; a similar notation applies to matrices. By $G L_{m}(\mathbb{Z} ; q)$, we mean the congruence subgroup $\left\{U \in G L_{m}(\mathbb{Z}) \mid U \equiv E_{m}(\bmod q)\right\}$ of level q. A matrix $F^{(n, r)}$ in $\mathscr{M}_{n, r}(\mathbb{Z})$ with $r \leq n$ is called primitive, if there exists $U=(F *)$ in $G L_{n}(\mathbb{Z})$. By $\left[a_{1}, \ldots, a_{n}\right]$ we mean a diagonal matrix with a_{1}, \ldots, a_{n} as diagonal elements. By an integral matrix, we mean a matrix with entries from \mathbb{Z}. For a complex matrix $W=\left(w_{i j}\right)$, the matrix $\left(\bar{w}_{i j}\right)$ with the complex conjugates $\bar{w}_{i j}$ as corresponding entries is denoted by \bar{W}.

Let $\Lambda_{n}=\left\{S={ }^{t} S \in \mathscr{M}_{n}(\mathbb{Z})\right\}$ and Λ_{n}^{*}, the dual of Λ_{n}, viz. $\left\{S={ }^{t} S=\right.$ $\left.\left(s_{i j}\right) \in \mathscr{M}_{n}(\mathbb{Q}) \mid s_{i i}, 2 s_{i j} \in \mathbb{Z}\right\}=\left\{S={ }^{t} S \mid \operatorname{tr}(S T) \in \mathbb{Z}\right.$ for every T in $\left.\Lambda_{n}\right\}$.

1.1 Estimates for Fourier Coefficients of Cusp Forms of Degree 1

$n=1$ but not so, in general, for $n>1$.
Let $H=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ and k, N be natural numbers. The principal congruence subgroup $\Gamma(N)=\left\{\left.\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, \sigma \equiv\right.$ $\left.\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)(\bmod \mathrm{N})\right\}$ of the modular group $\Gamma=\Gamma(1)$ acts on H via the conformal mappings of H given by $Z \mapsto \sigma(z)=(a z+b)(c z+d)^{-1}$ for $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $\Gamma(N)$. We recall that $e(\alpha)=\exp (2 \pi i \alpha)$ for $\alpha \in \mathbb{C}$.

Definition. A holomorphic function $f: H \rightarrow \mathbb{C}$ is called a cusp form (respectively a modular form) of weight k and level N if, for every

$$
\sigma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(N), f\left((a z+b)(c z+d)^{-1}\right)(c z+d)^{-k}=f(z)
$$

and further for every

$$
\sigma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma, f(\sigma(z))(c z+d)^{-k}=\sum_{m>0} a_{m} e(m z / N)
$$

$\left(\right.$ respectively $\left.=\sum_{m \geq 0} a_{m} e(m z / N)\right)$.
For $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ and $f: H \rightarrow \mathbb{C}$, we abbreviate $f(\sigma(z))(c z+d)^{-k}$ by $f \mid \sigma$. It is easy to verify that, for σ_{1}, σ_{2} in Γ, we have $f \mid \sigma_{1} \sigma_{2}=$ $\left(f \mid \sigma_{1}\right) \mid \sigma_{2}$.

The following two theorems give estimates for the Fourier coefficients of cusp forms.

11 Theorem 1.1.1 (Hecke [7]). For the Fourier coefficients a_{m} of a cusp form $f(z)=\sum_{m>0} a_{m} e(m z)$ of weight $k(\geq 2)$ and level N, we have $a_{m}=$ $O\left(m^{k / 2}\right)$.

Theorem 1.1.2. For f as in Theorem 1.1.1 $a_{m}=O\left(m^{k / 2-1 / 4+\varepsilon}\right)$ for every $\varepsilon>0$.

We fix some notation and prove a few lemmas, before going on to the proofs of these two theorems.

We know that $\mathfrak{F}=\{z=x+i y \in H| | x|\leq 1 / 2,|z| \geq 1\}$ is a fundamental domain for the modular group Γ in H.

Let

$$
\sigma<\mathfrak{F}>=\{\sigma(z) \mid z \in \mathscr{F}\}, \Gamma_{\infty}\left\{\left.\left(\begin{array}{cc}
\pm 1 & n \\
0 & \pm 1
\end{array}\right) \in \Gamma \right\rvert\, n \in \mathbb{Z}\right\} \text { and } \mathfrak{g}=\bigcup_{\sigma \in \Gamma_{\infty}} \sigma<\mathfrak{F}>
$$

For any fixed m as in the assertion of Theorem 1.1.1 or 1.1.2 and for $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in Γ, let $\beta(\sigma):=\left\{x \in[0, N] \mid \sigma\left(x+\mathrm{im}^{-1}\right) \in \mathfrak{g}\right\}$. We also write $\beta(c, d)$ for $\beta(\sigma)$, as may be seen to be appropriate.

Since $H=\bigcup_{\sigma \in \Gamma_{\infty} \backslash \Gamma} \sigma<\mathfrak{g}>$, we have $I_{N, m}=\left\{x+\operatorname{im}^{-1} \mid 0 \leq x \leq N\right\}=$ $\bigcup_{\sigma \in \Gamma_{\infty} \backslash \Gamma} \beta(\sigma)$, this being indeed a finite union, in view of the compactness of $I_{N, m}$. Further $I_{N, m} \cap \mathfrak{g}=\emptyset$ for $m>2 / \sqrt{3}$, since for $z=x+i y \in \mathfrak{g}, y \geq$ $\sqrt{3} / 2$. Thus $I_{N, m}=\bigcup_{\substack{\sigma \in \Gamma_{\infty} \propto \Gamma \\ \sigma \notin \Gamma}} \beta(\sigma)$. Further, measure $\left(\beta\left(\sigma_{1}\right) \cap \beta\left(\sigma_{2}\right)\right)=0$, for $\sigma_{1} \notin \Gamma_{\infty} \sigma_{2}$.

Now

$$
\begin{align*}
& N a_{m}=\int_{0}^{N} f\left(x+\mathrm{im}^{-1}\right) e\left(-m\left(x+\mathrm{im}^{-1}\right)\right) d x \\
& =e^{2 \pi} \sum_{\substack{\sigma \in \Gamma_{\infty} \backslash \Gamma_{\beta(\sigma)} \\
\sigma \notin \Gamma_{\infty}}} \int_{\beta(\sigma)} f(z) e(-m x) d x \\
& \text { i.e. } \quad a_{m}=\frac{e^{2} \pi}{N} \sum_{\substack{(c, d)=1 \\
c \geq 1}} \alpha(c, d) \text {, } \tag{1}
\end{align*}
$$

writing $\alpha(c, d)$ for the integral over $\beta(\sigma)=\beta(c, d)$. If $\beta(\sigma)=\emptyset$, then the corresponding $\alpha(c, d)$ is 0 . On the other hand, if $\beta(\sigma) \neq \emptyset$, there exists x in \mathbb{R} with $\sigma\left(x+\mathrm{im}^{-1}\right) \in \mathfrak{g}$ implying that

$$
\operatorname{Im}\left(\sigma\left(x+\mathrm{im}^{-1}\right)\right)=m^{-1} /\left((c x+d)^{2}+c^{2} / m^{2}\right) \geq \sqrt{3} / 2
$$

Hence, in this case $m / c^{2}=m^{1} /\left(c^{2} m^{-2}\right) \geq m^{-1} /\left((c x+d)^{2}+c^{2} / m^{2}\right) \geq$ $\sqrt{3} / 2$ i.e. $\beta(\sigma \neq \emptyset$ implies that $c=O(\sqrt{m})$. Thus in the sum over (c, d) in with $(c, d)=1$, we may restrict c to satisfy the condition $1 \leq c \ll \sqrt{m}$.

Lemma 1.1.3. If f is a cusp form of weight k and level N and if $(f \mid \sigma)$ $(z)=\sum_{n \geq 1} a_{n}^{\prime} e(n z / N)$ for $\sigma \in \Gamma$, then

$$
\sum_{n>0}\left|a_{n}^{\prime}\right||e(n z / N)|=O\left(\exp \left(-\mathscr{X}_{1} \operatorname{Im} z\right)\right) \text { for } \operatorname{Im} z \geq \mathscr{X}>0
$$

where $\mathscr{X}_{1}=\pi / N$ and the O-constant depends only on \mathscr{X} and on f in general.

Proof. Since $[\Gamma(1): \Gamma(N)]<\infty$, the set $\{f \mid \sigma, \sigma \in \Gamma\}$ is finite, even for any modular form which is not necessarily a cusp form. Since $(f \mid \sigma)(i \mathscr{X} / 2)=\Sigma a_{n}^{\prime} \exp (-\pi n \mathscr{X} / N)$ is convergent, we obtain $\left|a_{n}^{\prime}\right|$ $\exp (-\pi n \mathscr{X} / N)=O(1)$. Hence, for any σ in $\Gamma(1)$ and $\operatorname{Im} z \geq \mathscr{X}$, we have

$$
\begin{aligned}
\sum_{n \geq 1}\left|a_{n}^{\prime}\right||e(n z / N)|= & \sum_{n \geq 1}\left|a_{n}^{\prime}\right| \exp (-\pi n \operatorname{Im} z / N) \exp (-\pi n \operatorname{Im} z / N) \\
& <\sum_{n}\left|a_{n}^{\prime}\right| \exp (-\pi n \mathscr{X} / N) \exp (-\pi n \operatorname{Im} z / N) \\
\ll & \sum_{n} \exp (-\pi n \operatorname{Im} z / N) \\
& =\exp (-\pi \operatorname{Im} z / N) /(1-\exp (-\pi \operatorname{Im} z / N)) \\
& <\exp (-\pi z / N) /(1-\exp (-\pi \mathscr{X} / N)) .
\end{aligned}
$$

The finiteness of $\{f \mid \sigma ; \sigma \in \Gamma\}$ now completes the proof.
Lemma 1.1.4. If $b>a>0$ and $r<-1 / 2$, then

$$
J(b, r):=\int_{-\infty}^{\infty}\left(x^{2}+1\right)^{r} \exp \left(-b /\left(x^{2}+1\right)\right) d x=O_{a, r}\left(b^{r+1 / 2}\right)
$$

Proof. Splitting up the integral as the sum of integrals over $A=\{x \in$ $\left.\mathbb{R} \mid x^{2}+1>2 b / a\right\}$ and $B=\left\{x \in \mathbb{R} \mid x^{2}+1 \leq 2 b / a\right\}$, we have

$$
J(b, r)=\int_{A} \ldots d x+\int_{B} \ldots d x=J_{1}+J_{2}, \text { say. Now }
$$

$$
J_{1} \leq \int_{A}\left(x^{2}+1\right)^{r} d x<\int_{A} x^{2 r} d x(\text { since } r<0)
$$

i.e.

$$
\begin{aligned}
J_{1} & <\int_{x^{2}>b / a} x^{2 r} d x(\text { since } b>a) \\
& =\left.\frac{2}{2 r+1} x^{2 r+1}\right|_{\sqrt{b / a}} ^{\infty} \\
& =O\left(b^{r+1 / 2}\right)
\end{aligned}
$$

with the constants in O involving a and r.
For x in B, we use the estimate $\exp (-y) \ll y^{r}$ and obtain

$$
J_{2} \leq \int_{B}\left(x^{2}+1\right)^{r}\left(b /\left(x^{2}+1\right)\right)^{r}=2 b^{r} \sqrt{2(b / a)-1}=O\left(b^{r+1 / 2}\right)
$$

which proves the lemma.
For the proof of Theorem 1.1.1 we use the well-known circle method.

Proof of Theorem 1.1.1. For given $(c, d)=1$ with $1 \leq c \ll \sqrt{m}$,

$$
\sum_{d_{1} \in \mathbb{Z}}\left|\alpha\left(c, d+c d_{1}\right)\right| \ll \sum_{d_{1} \in \mathbb{Z}_{\beta\left(c, d+c d_{1}\right)}} \int\left|c z+d+c d_{1}\right|^{-k} \exp \left(-\mathscr{X}_{1} /\left(m\left|c z+d+c d_{1}\right|^{2}\right)\right) d x
$$

using Lemma 1.1.3 with $\mathscr{X}=\sqrt{3} / 2$ for $\sigma=\left(\begin{array}{cc}* & \stackrel{*}{c} \\ c & d+d_{1}\end{array}\right), x+\mathrm{im}^{-1} c \beta(\sigma)$ and

$$
f\left(x+\mathrm{im}^{-1}\right)=\left(c\left(x+\mathrm{im}^{-1}\right)+d+c d_{1}\right)^{-k} \sum_{n} a_{n}^{\prime} e\left(n \sigma\left(x+\mathrm{im}^{-1}\right) / N\right)
$$

Thus

$$
\sum_{d_{1} \in \mathbb{Z}}\left|\alpha\left(c, d+c d_{1}\right)\right| \leq \sum_{d_{1} \in \mathbb{Z}} \int_{d_{1}}^{d_{1}+N}\left((c x+d)^{2}+c^{2} / m^{2}\right)^{-k / 2}
$$

$$
\begin{aligned}
& \exp \left(-\frac{\mathscr{X}_{1}}{m\left((c x+d)^{2}+c^{2} / m^{2}\right)}\right) d x \\
\leq & N \int_{-\infty}^{\infty}\left(c^{2} x^{2}+c^{2} / m^{2}\right)^{-k / 2} \exp \left(-\frac{\mathscr{X}_{1} / m}{c^{2} x^{2}+c^{2} / m^{2}}\right) d x \\
= & N c^{-k} m^{k-1} \int_{-\infty}^{\infty}\left(x^{2}+1\right)^{-k / 2} \exp \left(-\frac{\mathscr{X}_{1} m / c^{2}}{x^{2}+1}\right) d x \\
\ll & c^{-k} m^{k-1}\left(m / c^{2}\right)^{-k / 2}+1 / 2
\end{aligned}
$$

(by Lemma 1.4, for $k \geq 2$)
i.e.

$$
\sum_{d_{1} \in \mathbb{Z}}\left(\alpha\left(c, d+c d_{1}\right) \mid \leq c^{-1} m^{k / 2-1 / 2} .\right.
$$

This leads us, for fixed c, to

$$
\left|\sum_{\substack{(d, c)=1 \\ c \text { fixed }}} \alpha(c, d)\right| \ll(\varphi(c) / c) m^{k / 2-1 / 2} \ll m^{k / 2-1 / 2}
$$

where φ is Euler's function. The theorem now follows, since

$$
a_{m} \ll \sum_{1 \leq c \ll \sqrt{m}} m^{k / 2-1 / 2} \ll m^{k / 2} .
$$

For the proof of Theorem 1.1.2 we use a variation of the usual method of Kloosterman [14], by rendering it suitable for a generalization to the case of modular forms of degree 2. First we need to fix some notation. Let m and f be as given in Theorem 1.2. For $z=x+\mathrm{im}^{-1}$ in $\beta(\sigma)=\beta(c, d)$ with $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in Γ and $c \geq 1$, we have
$\sigma(z)=\frac{a z+b}{c z+d}=\frac{a}{c}-\frac{1}{c^{2}(z+d / c)}=\frac{a}{c}-\frac{1}{c^{2}\left(x+\mathrm{im}^{-1}+d / c\right)}=\frac{a}{c}+\tau$, say $\tau=\tau(\theta, c)=-1 /\left\{c^{2}(\theta+i / m)\right\}$ with $\theta:=x+d / c$. Now if $\left(f \mid \sigma^{-1}\right)(w)=$ $\sum_{n} a_{n}^{\prime} e(n w / N)$ for $w \in H$, then by the definition of $\alpha(\sigma)$, we have

$$
\alpha(\sigma)=\alpha(c, d)=\int_{\beta(\sigma)}(c z+d)^{-k}\left(f \mid \sigma^{-1}\right)(\sigma(z)) e(-m x) d x
$$

$$
\begin{aligned}
& =c^{-k} \int_{\substack{d / c \leq \theta \leq N+d / c \\
a / c+\tau \in \mathfrak{g}}}(\theta+i / m)^{-k} \sum_{n} a_{n}^{\prime} e(n(a / c+\tau) / N) e(-m(\theta-d / c)) d \theta \\
& =c^{-k} \int_{\substack{d / c \leq \theta \leq N+d / c \\
a / c+\tau \in \mathfrak{g}}}(\theta+i / m)^{-k} \sum_{n \geq 1} a_{n}^{\prime} e(n \tau / N) e(-m \theta) e\left(\frac{n a+m N d}{c N}\right) d \theta .
\end{aligned}
$$

For the proof of Theorem 1.1.2, we need to estimate $\sum_{c, d} \alpha(c, d)$ afresh. But, as one may notice, in the expression (2) for $\alpha(\sigma)$, we have also the element a of σ featuring along with c and d. This calls for the following variation of the usual Kloosterman sums and estimates for the same.

For a, c in \mathbb{Z} with $c \geq 1$ and for $z \in H$, let

$$
g(a, c, z)= \begin{cases}1 & \text { if } a / c+z \in \mathfrak{g} \\ 0 & \text { otherwise }\end{cases}
$$

Then $g(a+n c, c, z)=g(a, c, z)$ for every $n \in \mathbb{Z}$. Thus we have a finite
Fourier expansion

$$
\begin{equation*}
g(a, c, z)={ }_{t \operatorname{modc}} b_{t}(c, z) e(t a / c) \tag{3}
\end{equation*}
$$

Lemma 1.1.5. $\sum_{t \bmod \mathrm{c}}\left|b_{t}(c, z)\right|=O\left(c^{\varepsilon}\right)$ for every $\varepsilon>0$, with an O constant independent of z.

Proof. Clearly $b_{t}(c, z)=c^{-1} \sum_{\ell \bmod \mathrm{c}} g(\ell, c, z) e(-t \ell / c)$. The boundary of \mathfrak{g} in H consists of the union of the translates $w \mapsto w+n$ of the arc $\left\{(x, y) \mid x^{2}+y^{2}=1,-1 / 2 \leq x \leq 1 / 2\right\}$. Hence for any z in H, the intersection of the line $\{u+z \mid 0 \leq u \leq 1\}$ with \mathfrak{g} has at most two connected components say $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right]$. Using the definition of $g(\ell, c, z)$ in the expansion for $b_{t}(c, z)$ above, we have the estimate

$$
\left|b_{t}(c, z)\right| \leq c^{-1}\left|\sum_{\frac{\ell}{c} \in\left[a_{1}, b_{1}\right]} e(-t \ell / c)\right|+c^{-1}\left|\sum_{\frac{\ell}{c} \in\left[a_{2}, b_{2}\right]} e(-t \ell / c)\right|
$$

But $\ell / c \in\left[a_{j}, b_{j}\right]$ means that $0 \leq u_{j} \leq \ell \leq v_{j} \leq c$ for suitable integers $u_{1}, v_{1}, u_{2}, v_{2}$ with $0 \leq u_{1} \leq v_{1} \leq u_{2} \leq v_{2} \leq c$. Now

$$
\left|\sum_{\ell / c \in\left[a_{j}, b_{j}\right]} e(-t \ell / c)\right|=\left|\sum_{\ell=u_{j}}^{v_{j}} e(-t \ell / c)\right|=\| \sum_{\ell=0}^{v_{j}-u_{j}} e(-t \ell / c) \mid
$$

$$
\begin{aligned}
& =\left|\left(e\left(-t\left(v_{j}-u_{j}+1\right) / c\right)-1\right) /(e(-t / c)-1)\right| \\
& \leq 1 /(\sin \pi t / c) \text { for } 1 \leq t<c \text { and } j=1,2
\end{aligned}
$$

17 Hence, for $1 \leq t<c$, we have $\left|b_{t}(c, z)\right| \leq 2 /(c \sin (\pi t / c))$.
Clearly $\left|b_{c}(c, z)\right| \leq 1$. Combining these estimates

$$
\begin{aligned}
\sum_{t \bmod \mathrm{c}}\left|b_{t}(c, z)\right| & \leq 1+\frac{2}{c} \sum_{t=1}^{c-1} 1 / \sin \frac{t \pi}{c} \\
& \leq 1+\frac{4}{c} \sum_{1 \leq t \leq c / 2} \operatorname{cosec}(t \pi / c) \\
& \leq 1+\frac{4}{c} \sum_{1 \leq t \leq c / 2} 2 c /(t \pi) \\
& =1+\frac{8}{\pi} \sum_{t=1}^{[c / 2]} 1 / t \\
& \leq 1+\frac{8}{\pi} \log c \\
& =O\left(c^{\varepsilon}\right), \text { proving the lemma. }
\end{aligned}
$$

Our object now is to estimate first $\sum_{\substack{(c, d)=1 \\ d \equiv d_{0}(\bmod \mathrm{~N})}} \alpha(c, d)$ where $c \geq 1$ is fixed and the summation is over all $(c, d)=1$ with d lying in a given residue class modulo N, say $d \equiv d_{0}(\bmod \mathrm{~N})$. Let $c r=$ least common multiple of c and N; so that $r \geq 1$ and $r \mid N$. We fix, once for all, $\sigma_{0}=$ $\left(\begin{array}{ll}\alpha & \beta \\ c & \delta\end{array}\right)$ in Γ with some $\delta \equiv d_{0}(\bmod \mathrm{~N})$. If $X:=\{x$ in $\mathbb{Z} \operatorname{modulo} \operatorname{cr} \mid(x, c)=$ 1 and $\left.x \equiv d_{0}(\bmod \mathrm{~N})\right\}$ then $\left\{d \in \mathbb{Z} \mid(c, d)=1, d \equiv d_{0}(\bmod \mathrm{~N})\right\}=\bigcup_{\mathrm{x} \in \mathrm{X}}\{\mathrm{d} \in$ $\mathbb{Z} \mid \mathrm{d} \equiv \mathrm{x}(\bmod \mathrm{cr})\}$, as can be readily verified. Hence, for the fixed $c \geq 1$, d_{0} modulo N and σ_{0},

$$
\begin{align*}
\sum_{\substack{(c, d)=1 \\
d \equiv d_{0}(\bmod \mathrm{~N})}} \alpha(c, d) & =\sum_{x \in X} \sum_{d \equiv x(\bmod \mathrm{cr})} \alpha(c, d) \\
& =\sum_{x \in X} \sum_{y \bmod \mathrm{~N} / \mathrm{r}} \sum_{d \equiv x+c r y(\bmod \mathrm{cN})} \alpha(c, d) \tag{4}
\end{align*}
$$

Lemma 1.1.6. For x in X and y, t in \mathbb{Z}, there exists $\sigma_{x}=\left(\begin{array}{cc}a_{x} & b_{x} \\ c & x\end{array}\right) \equiv$ $\sigma_{0}(\bmod \mathrm{~N})$ in Γ. Moreover, we have an element $\sigma=\left(\begin{array}{cc}a_{x}-a_{x}^{2} & \text { cry } \\ c & * \\ c & \\ x+\operatorname{cry}+c N t\end{array}\right)$ in Γ, congruent to σ_{0} modulo N.

Proof. Since $x \in X$, we have $(c, x)=1$ and $x \equiv d_{0} \equiv \delta(\bmod \mathrm{~N})$. Hence there exists $\sigma_{1}=\left(\begin{array}{ll}a & b \\ c & x\end{array}\right)$ in Γ. Now $\sigma_{1} \sigma_{0}^{-1} \equiv\left(\begin{array}{cc}a^{\prime} & h \\ 0 & 1\end{array}\right)(\bmod \mathrm{N})$ so that $a^{\prime} \equiv 1(\bmod \mathrm{~N})$ necessarily. Thus $\left(\begin{array}{cc}1 & -h \\ 0 & 1\end{array}\right) \sigma_{1} \equiv \sigma_{0}(\bmod \mathrm{~N})$, so that we can take $a_{x}=a-c h, b_{x}=b-h x$. Next, Γ clearly contains

$$
\left(\begin{array}{cc}
1 & -a_{x}^{2} r y \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a_{x} & b_{x} \\
c & x
\end{array}\right)\left(\begin{array}{cc}
1 & r y+t N \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a_{x}-a_{x}^{2} \mathrm{ryc} & b^{\prime} \\
c & x+\operatorname{cry}+c t N
\end{array}\right)=\sigma
$$

and further $\sigma=\sigma_{0}(\bmod \mathrm{~N})$, since $N \mid c r$ and

$$
b^{\prime}=\left(a_{x}-a_{x}^{2} \mathrm{ryc}\right)(r y+t N)+b_{x}-x a_{x}^{2} r y \equiv a_{x} r y+b_{x}-a_{x}^{2} r y x(\bmod \mathrm{~N})
$$

i.e.

$$
b^{\prime} \equiv a_{x} r y\left(1-a_{x} x\right)+b_{x} \equiv b_{x} \bmod \mathrm{~N},
$$

on noting that $c \mid\left(1-a_{x} x\right)$ and $N \mid c r$.
For the given cusp form f (and indeed for any modular form) of level N, we have $f|\sigma=f| \sigma_{0}$ since $\sigma \equiv \sigma_{0}(\bmod \mathrm{~N})$. Let

$$
\left(f \mid \sigma^{-1}\right)(w)=\left(f \mid \sigma_{0}^{-1}\right)(w)=\sum_{n} a_{n}^{\prime} e(n w / N) \text { for } w \in H
$$

Then for any $x \in X$, we have, with the notation as in (2) and (4),

$$
\begin{aligned}
& \sum_{y \bmod N / r} \sum_{d \equiv x+c r y(\bmod \mathrm{cN})} \alpha(c, d) \\
& =\sum_{\substack{y \bmod \mathrm{~N} / \mathrm{r} \\
t \in \mathbb{Z}}} \int_{\substack{-1 \\
c^{x+r y+N t \leq \theta \leq c^{-1}} \\
c^{-1}\left(a_{x}-a_{x}^{2} \text { cry }\right)+\tau \in \mathrm{g}+\mathrm{g}}} \sum_{n} a_{n}^{\prime} e(n \tau / N) \\
& e(-m \theta) e\left(\frac{n\left(a_{x}-a_{x}^{2} \mathrm{cry}\right)+m N(x+\mathrm{cry}+c N t)}{c N}\right) d \theta \\
& =c^{-k} \int_{c^{-1} a_{x}+\tau \in \mathfrak{g}}(\theta+i / m)^{-k} \sum_{n} a_{n}^{\prime} e(n \tau / N) e(-m \theta)
\end{aligned}
$$

$$
\begin{equation*}
\sum_{y \bmod \mathrm{Nr}^{-1}} e\left(y\left(-n a_{x}^{2} r / N\right) e\left(\frac{n a_{x}+m N x}{c N}\right) d \theta\right. \tag{5}
\end{equation*}
$$

We claim now that $\left(a_{x}, N / r\right)=1$. for, cr is the least Common multiple of c and N and if a prime p divides N / r, then p necessarily divides c, and so p cannot divide a_{x}, since $\sigma_{x} \in \Gamma$. Hence

$$
\sum_{y \bmod \mathrm{~N} / \mathrm{r}} e\left(y\left(-n a_{x}^{2} r / N\right)\right)= \begin{cases}N / r & \text { if } N / r \text { divides } n \\ 0 & \text { otherwise } .\end{cases}
$$

The expression in (5) now reduces to

$$
\begin{aligned}
& \frac{N}{r c^{k}} \int_{c^{-1} a_{x}+\tau \varepsilon g}(\theta+i / m)^{-k} \sum_{\substack{(N / r) \mid n \\
n>0}} a_{n}^{\prime} e(n \tau / N) e(-m \theta) e\left(\frac{n a_{x}+m N x}{c N}\right) d \theta \\
& =\frac{N}{r c^{k}} \int_{\operatorname{Im} \tau \geq \sqrt{3} / 2}(\theta+i / m)^{-k} g\left(a_{x}, c, \tau\right) \\
& \sum_{\substack{(N / r) \mid n \\
n>0}} a_{n}^{\prime} e(n \tau / N) e(-m \theta) e\left(\frac{n a_{x}+m N x}{c N}\right) d \theta \\
& =\frac{N}{r c^{k}} \int_{\operatorname{Im} \tau \geq \sqrt{3} / 2}(\theta+i / m)^{-k} \sum_{(N / r) \mid n} a_{n}^{\prime} e(n \tau / N) e(-m \theta) \\
& \left.\sum_{t \bmod \mathrm{c}} b_{t}(c, \tau) e\left(\frac{(t N+n) a_{x}+m N x}{c N}\right) d \theta \text { (by (3) }\right)
\end{aligned}
$$

20 As a consequence, for fixed $c \geq 1$ and d_{0} in \mathbb{Z}, we obtain, from (4),

$$
\begin{aligned}
& \sum_{\substack{(c, d)=1 \\
d \equiv d_{0}(\bmod \mathrm{~N})}} \alpha(c, d)=\frac{N}{r c^{k}} \int_{\operatorname{Im} \tau \geq \sqrt{3} / 2}(\theta+i / m)^{-k} \sum_{\substack{n>0 \\
(N / r) \mid n}} a_{n}^{\prime} e(n \tau / N) e(-m \theta) \\
& \sum_{t \bmod \mathrm{c}} b_{t}(c, \tau) \sum_{x \in X} e\left(\frac{(t N+n) a_{x}+m x N}{c N}\right) d \theta
\end{aligned}
$$

Let us assume for a moment, that the inner most exponential sum, for every $n>0$ divisible by N / r, has the estimate

$$
\begin{equation*}
\sum_{x \in X} e\left(\frac{(t N+n) a_{x}+m x N}{c N}\right)=O\left(c^{\frac{1}{2}+\varepsilon}(c, m)^{\frac{1}{2}}\right) \tag{6}
\end{equation*}
$$

for every $\varepsilon>0$, with an O-constant independent of t and N. Then using (6) and Lemmas 1.1.3 and 1.1.5 we may conclude form above, that

$$
\begin{align*}
&\left|\sum_{\substack{(c, d)=1 \\
d \equiv d_{0}(\bmod \mathrm{~N})}} \alpha(c, d)\right| \ll c^{-k} \int_{\operatorname{Im} \tau \geq \sqrt{3} / 2}\left(\theta^{2}+m^{-2}\right)^{-k / 2} \\
& \exp \left(-\mathscr{X}_{1} \frac{m^{-1}}{c^{2}\left(\theta^{2}+m^{-2}\right)}\right) c^{\varepsilon} c^{\frac{1}{2}+\varepsilon}(c, m)^{\frac{1}{2}} d \theta \tag{7}
\end{align*}
$$

(recalling that $\tau:=-1 /\left\{c^{2}(\theta+i / m)\right\}$. Making the change of variable $\theta \mapsto \theta / m$ on the right hand side of (7), it is

$$
\ll c^{-k+1 / 2+2 \varepsilon}(c, m)^{\frac{1}{2}} m^{k-1} \int_{-\infty}^{\infty}\left(\theta^{2}+1\right)^{-k / 2} \exp \left(-\mathscr{X}_{1} m /\left(c^{2}\left(1+\theta^{2}\right)\right)\right) d \theta
$$

with $c \ll \sqrt{m}$ and now by Lemma 1.1.4, we have a majorant

$$
\ll c^{-k+1 / 2+2 \varepsilon}(c, m)^{\frac{1}{2}} m^{k-1}\left(m / c^{2}\right)^{-k / 2+1 / 2} \ll c^{-\frac{1}{2}+2 \varepsilon} m^{k / 2-1 / 2}(c, m)^{\frac{1}{2}}
$$

Thus we have finally, as in the proof of Theorem 1.1.1

$$
a_{m}=O\left(\sum_{c \ll \sqrt{m}} \alpha(c, d)\right) \ll \sum_{1 \leq c \ll \sqrt{m}} c^{-1 / 2+2 \varepsilon}(c, m)^{1 / 2} m^{k / 2-1 / 2}
$$

But now writing $(c, m)=u, c=u v \ll \sqrt{m}$, we have $v \ll \sqrt{m} / u$ so that

$$
\begin{aligned}
\sum_{1 \leq c \ll \sqrt{m}} c^{-1 / 2+2 \varepsilon}(c, m)^{1 / 2} & \ll \sum_{u \mid m} \sqrt{u} \sum_{v \ll \sqrt{m} / u}(u v)^{-1 / 2+2 \varepsilon} \\
& =\sum_{u \mid m} u^{2 \varepsilon} \sum_{v \ll \sqrt{m} / u} v^{-1 / 2+2 \varepsilon} \\
& \ll \sum_{u \mid m} u^{2 \varepsilon}(\sqrt{m} / u)^{\frac{1}{2}+2 \varepsilon} \\
& =m^{1 / 4+\varepsilon} \sum_{u \mid m} 1 / \sqrt{u}
\end{aligned}
$$

$$
\begin{aligned}
& =m^{1 / 4+\varepsilon} \sum_{u \mid m} 1 \\
& <m^{1 / 4+2 \varepsilon}
\end{aligned}
$$

and hence

$$
\begin{equation*}
a_{m}=O\left(m^{k / 2-1 / 4+2 \varepsilon}\right) \tag{8}
\end{equation*}
$$

proving Theorem 1.1.2 under the assumption of the estimate (6).
Before proceeding to the proof of (6), we make a few remarks. Namely, any estimate $\sum_{\bmod }\left|b_{t}(c, z)\right|=O\left(c^{f}\right)$ with $f \leq 1 / 2$, may be seen ${ }^{t} \mathrm{mod} \mathrm{c}$
to imply $a_{m}=O\left(m^{k / 2-1 / 4+f / 2+\varepsilon}\right)$ in place of (8). Clearly and $f<1 / 2$ represents an improvement over Hecke's estimate. A straightforward application of Schwarz's inequality immediately yields an estimate with $f=1 / 2$ but then we are in no better position than in Theorem 1.1.1

Let us denote by K the exponential sum in (6). For any x in X, $(x, c)=1$ and so let us fix an integer a with $a x \equiv 1(\bmod \mathrm{c})$. Now since $a_{x} x \equiv 1(\bmod \mathrm{c})$, we have $a_{x} \equiv a(\bmod \mathrm{c})$, so that $a_{x}=a+c s$ for some s in \mathbb{Z}, which is unique modulo r, since $a+c s=a_{x} \equiv \alpha(\bmod \mathrm{~N})$ by Lemma 1.1.6 and $N \mid c r$. We observe that $N \mid c f$ if and only if $r \mid f$. Indeed, if $r|f, c r| c f$ and so $N \mid c f$; on the other hand, if $N \mid c f$, then $c r \mid c f$ since $c \mid c f$ and so $r \mid f$. Since $a_{x}=a+c s \equiv \alpha(\bmod \mathrm{~N})$, we may write K as
$\left.K=\sum_{x \in X} \sum_{s \bmod \mathrm{r}} e((t N+n)(a+c s)+m \times N) / c N\right) \cdot \frac{1}{N} \sum_{u \bmod \mathrm{~N}} e((a+c s-\alpha) u / N)$
Now the coefficient of s in the expression above is $(t N+n) / N=t+$ $(n / N(/ r)) / r$ and hence we are justified in taking s only modulo r. Thus
$\left.K=N^{-1} \sum_{\substack{x \in X \\ u \text { mod } N}} e((t N+n) a+m x N) / c N\right) e((a-\alpha) u / N) \sum_{s \in \mathcal{Z} /(r)} e((t N+n+c u) s / N)$
and the inner sum over s modulo r is r or 0 according as $N \mid(n+c u)$ or not, if we note that $(n+c u) / N=(n /(N+r)) / r+(c r / N) u / r$ has denominator dividing r. As a result,

$$
K=(r / N) \sum_{\substack{u \text { mod } N \\ N(n+c u)}} e(-\alpha u / N) \sum_{x \in X} e((a((t N+n)+c u)+m x N) / c N)
$$

$$
\begin{equation*}
\left.=(r / N) \sum_{\substack{u \bmod \mathrm{~N} \\ N \mid(n+c u)}} e(-\alpha u / N) \sum_{x \in X} e\left(a\left(t+\frac{n+c u}{N}\right)+m x\right) / c\right) \tag{9}
\end{equation*}
$$

wherein the second sum may be recognised as nearly a Kloosterman sum, since $a x \equiv 1(\bmod c)$.

We remark now that there is a bijective correspondence $x \mapsto x$ between $X=\{x \in \mathbb{Z} /(c r) \mid(x, c)=1, x \equiv \delta(\bmod \mathrm{~N})\}$ and $X^{\prime}=\{x \in$ $\mathbb{Z} /(c) \mid(x, c)=1, x+c s \equiv \delta(\bmod \mathrm{~N})$ for some s in $\mathbb{Z}\}$. First, the map is one-one, since, for $x_{1}, x_{2} \in X$ with $x_{1} \equiv x_{2}(\bmod c)$, we have $x_{1}=x_{2}+c f$ which, in view of $x_{1} \equiv \delta \equiv x_{2}(\bmod \mathrm{~N})$, implies that $N \mid c f$ i.e. $r \mid f$ (by the arguments in the preceding paragraph $)$ and so $x_{1} \equiv x_{2}(\bmod \mathrm{cr})$. The mapping is onto, since for any $x \in X^{\prime}$, we need only remark that $x+c s$ modulo $c r$ (for the s involved in the definition of X^{\prime}) maps to x in X^{\prime}. Suppose now $a d \equiv 1(\bmod \mathrm{c})$. Then $d+c s_{1} \equiv \delta(\bmod \mathrm{~N})$ for some s_{1} in $\mathbb{Z} \Longleftrightarrow a+c s_{2} \equiv \alpha(\bmod \mathrm{~N})$ for an s_{2} in \mathbb{Z}. We prove only the implication \Longrightarrow (the proof for the reverse implication being similar). For $a d \equiv 1(\bmod c)$, there exists $\sigma^{*}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in Γ and $\sigma^{*}\left(\begin{array}{cc}1 & s_{1} \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}a & a s_{1}+b \\ c & c s_{1}+d\end{array}\right) \equiv\left(\begin{array}{cc}a & * \\ c & \delta\end{array}\right)(\bmod \mathrm{N})$.

Hence

$$
\sigma^{*}\left(\begin{array}{cc}
1 & s_{1} \\
0 & 1
\end{array}\right) \sigma_{0}^{-1} \equiv\left(\begin{array}{cc}
1 & -s_{2} \\
0 & 1
\end{array}\right)(\bmod \mathrm{N}) \text { for some } s_{2} \text { in } \mathbb{Z}
$$ i.e. $\left(\begin{array}{cc}1 & s_{2} \\ 0 & 1\end{array}\right) \sigma^{*}\left(\begin{array}{cc}1 & s_{1} \\ 0 & 1\end{array}\right) \equiv \sigma_{0}(\bmod \mathrm{~N})$, implying that

$a+c s_{2} \equiv \alpha(\bmod \mathrm{~N})$, since $\sigma_{0}=\left(\begin{array}{cc}\alpha & \beta \\ c & \delta\end{array}\right)$. Writing $t+(n+c u) / N$ in (9) as \bar{u} and using the bijection between X and X^{\prime}, the inner sum over x in (9) becomes now

$$
\begin{aligned}
& \sum_{x \in X} e\left(\frac{a \bar{u}+m x}{c}\right)=\sum_{\substack{a \bmod \mathrm{c} \\
(a, c)=1, a+c s_{2} \equiv(\bmod \mathrm{~N}) \text { for some } s_{2} \in \mathbb{Z}}} e\left(\frac{a \tilde{u}+m d}{c}\right) \\
& =\sum_{\substack{a \bmod \mathrm{c} \\
(a, c)=1}} e\left(\frac{a \tilde{u}+m d}{c}\right) \times \frac{1}{N} \sum_{s_{2} \operatorname{modr} \mathrm{~m}} \sum_{v \bmod \mathrm{~N}} e\left(\left(a+c s_{2}-\alpha\right) v / N\right),
\end{aligned}
$$

by arguments as before,

$$
\begin{align*}
& =N^{-1} \sum_{\substack{a \bmod \mathrm{c} \\
(a, c)=1}} e\left(\frac{a \tilde{u}+m d}{c}\right) \sum_{v \bmod \mathrm{~N}} e((a-\alpha) v / N) \sum_{s_{2} \bmod \mathrm{r}} e\left(c s_{2} v / N\right) \\
& =r N^{-1} \sum_{\substack{v \bmod \mathrm{~N} \\
N \mid c v}} e(-\alpha v / N) \sum_{\substack{a \bmod \mathrm{c} \\
(a, c)=1 \\
a d \equiv 1(\bmod \mathrm{c})}} e\left(\frac{a(\tilde{u}+c v / N)+m d}{c}\right) \tag{10}
\end{align*}
$$

since the inner sum over s_{2} modulo r is r or 0 according as N divides $c v$ or not. The inner sum over a modulo c in (10) is a genuine Kloosterman sum (Note that $\tilde{u}+c v / N \in \mathbb{Z}$) and is $O\left(c^{1 / 2+\epsilon}(c, m)^{1 / 2}\right)$, by Weil's well-known estimate [28]). This finally proves (6) and hence establishes Theorem 1.1.2 as well.

1.2 Reduction Theory

In this section, we give a quick survey of Minkowski's reduction theory for positive definite quadratic forms, as carried over to the general linear $\operatorname{group} G L_{m}(\mathbb{R})$.

Let

$$
G=G L_{m}(\mathbb{R}), A=\left\{\left.\left(\begin{array}{ccc}
a_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & a_{m}
\end{array}\right) \in G \right\rvert\, \text { all } a_{i}>0\right\}
$$

and

$$
N=\left\{\left(\begin{array}{lll}
1 & \ldots & * \\
0 & \ddots & \\
0 & \ldots & 01
\end{array}\right) \in G\right\}
$$

For any $g \in G$, the matrix ${ }^{t} g g$ is positive definite and we have the Babylonian decomposition ${ }^{t} g g={ }^{t} P P$ where $P=\left(\begin{array}{ccc}p_{1} & \ldots & p_{i j} \\ \vdots & \ddots & \vdots \\ 0 & \ldots & p_{m}\end{array}\right)$ with all $p_{i}>0$ and $p_{i j}=0$ for $i>j$. Thus if $O(m)$ denotes the orthogonal group of degree m, then $g p^{-1} \in O(m)$ and further $G=O(m) A N$ i.e. for every g in $G, g=k a n$ with $k \in O(m), a \in A$ and $n \in N$. This decomposition
$G=K A N$ is known as the Iwasawa decomposition and is unique, for every g in G. For given $t, u>0$, let

$$
\begin{aligned}
A_{t} & =\left\{\left.\left(\begin{array}{ccc}
a_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & a_{m}
\end{array}\right) \in A \right\rvert\, \text { all } a_{i}>0, a_{i} \leq t a_{i+1} \text { for } 1 \leq i \leq m-1\right\} \text { and } \\
N_{u} & =\left\{\left.\left(\begin{array}{ccc}
1 & \ldots & n_{i j} \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1
\end{array}\right) \in N| | n_{i j} \right\rvert\, \leq u \text { for all } n_{i j}\right\} \text {. Then }
\end{aligned}
$$

$\mathfrak{S}=\mathfrak{S}_{t, u}^{(m)}:=O(m) A_{t} N_{u}$ is a so-called Siegel domain; note that while $O(m)$ and N_{u} are compact, A_{t} is not compact. The following theorem shows that $\mathfrak{S}_{2 / \sqrt{3}, 1 / 2}^{(m)}$ is almost a fundamental domain $G / G L_{m}(\mathbb{Z})$ for 26 $G L_{m}(\mathbb{Z})$ in G;

Theorem 1.2.1. $G L_{m}(\mathbb{R})=\mathfrak{F}_{2 / \sqrt{3}, 1 / 2} G L_{m}(\mathbb{Z})$.
We prove first a few lemmas necessary for this theorem.
Lemma 1.2.2. If $N_{\mathbb{Z}}:=N \cap G L_{m}(\mathbb{Z})$, then $N=N_{1 / 2} \cdot N_{\mathbb{Z}}$.
Proof. If $x=\left(\begin{array}{ccc}1 & \ldots & x_{i j} \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 1\end{array}\right) \in N$ and $y=\left(\begin{array}{ccc}1 & \ldots & y_{i j} \\ \vdots & \ddots & \vdots \\ 0 & \ldots & i\end{array}\right) \in N_{\mathbb{Z}}$, then $z=x y=$ $\left(\begin{array}{ccc}1 & \ldots & z_{i j} \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 1\end{array}\right)$ with $z_{i j}=y_{i j}+\sum_{i<k<j} x_{i k} y_{k j}+x_{i j}$. In the order $(m-1, m)$, $(m-2, m-1),(m-2, m), \ldots,(i, i+1), \ldots(i, m)$, choose $y_{i j} \in \mathbb{Z}$ such that $\left|z_{i j}\right| \leq 1 / 2$ for $i<j$ (Note that for $i=m-1, j=m$, the sum over $i<k<j$ is empty). This proves the lemma.

Let, for any column $x:={ }^{t}\left(x_{1}, \ldots, x_{m}\right)$, its norm $\sqrt{x_{1}^{2}+\cdots+x_{m}^{2}}$ be denoted by $\|x\|$. For g in G, we now put $\varphi(g)=\left\|g e_{1}\right\|$ where e_{1} is the unit vector ${ }^{t}(1,0 \ldots 0)$. Using the Iwasawa decomposition $g=k a n$ for g in G, we have

$$
\varphi(g)=\| \text { kane }_{1}\|=\| a_{n} \|=a_{1}=\varphi(a)
$$

where a_{1} is the leading entry of the diagonal matrix a.

Remark. For g in G and γ in $G L_{m}(\mathbb{Z})$, clearly $g \gamma e_{1} \in g \mathbb{Z}^{m}$ and $\inf _{\gamma \in G L_{m}(\mathbb{Z})} \varphi$ $(g \gamma)=\inf _{0 \neq x \in \mathbb{Z}^{m}}\|g x\|$ is attained at some x in \mathbb{Z}^{m}.

Lemma 1.2.3. Let $g=k a n$ be the Iwasawa decomposition of g in G and let further $\inf \varphi(g \gamma)=\varphi(g)$. Then, for the first two (diagonal) entries $\gamma \in G L_{m}(\mathbb{Z})$
a_{1}, a_{2} of a, we have $a_{1} / a_{2} \leq 2 / \sqrt{3}$.
Proof. By lemma (1.2.2), we can find n^{\prime} in $N_{\mathbb{Z}}$ such that $n n^{\prime} \in N_{1 / 2}$. Our hypothesis tells us that $\varphi\left(g n^{\prime} \gamma\right) \geq \varphi(g)$ for every γ in $G L_{m}(\mathbb{Z})$. But, from the form of n^{\prime} and the definition of φ, we have $\varphi(g)=\varphi\left(g n^{\prime}\right)$. Writing $t=n n^{\prime}=\left(\begin{array}{ccc}1 & \ldots & t_{i j} \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \vdots\end{array}\right)$, we have, by our choice of $n^{\prime},\left|t_{i j}\right| \leq 1 / 2$. If $J_{0}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and E_{m-2} is the $(m-2)$-rowed identity matrix, we take $\gamma_{0}=\left(\begin{array}{cc}J_{0} & 0 \\ 0 & E_{m-2}\end{array}\right)$. Then

$$
g n^{\prime} \gamma_{0} e_{1}=g n^{\prime t}(010 \ldots 0)=k a^{t}\left(t_{12} 10 \ldots 0\right)=k^{t}\left(a_{1} t_{12} a_{2} 0 \ldots 0\right)
$$

Thus $\sqrt{a_{1}^{2} t_{12}^{2}+a_{2}^{2}}=\varphi\left(g n^{\prime} \gamma_{0}\right) \geq \varphi(g)=a_{1}$, implying that $\left|t_{12}\right|^{2} \leq 1 / 4$ i.e. $a_{2}^{2} \geq a_{1}^{2}\left(1-t_{12}^{2}\right) \geq(3 / 4) a_{1}^{2}$ and establishing our lemma.

Theorem 1.2 .1 is now seen to be immediate from
Lemma 1.2.4. For g in G, there exists γ_{0} in $G L_{m}(\mathbb{Z})$ such that $\varphi\left(g \gamma_{0}\right)=$ $\int_{\gamma \in G L_{m}(\mathbb{Z})} \varphi(g \gamma)$. Moreover $g \gamma_{0} \in \mathbb{S}_{2 / \sqrt{3}, 1 / 2}$.

Proof. For $m=2$, we know that for some γ_{1} in $G L_{2}(\mathbb{Z})$, we have $\varphi\left(g \gamma_{1}\right)=\inf _{\gamma \in G L_{2}(\mathbb{Z})} \varphi(g \gamma)$. We can then evidently find n^{\prime} in $N_{\mathbb{Z}}$ such that, with $\gamma_{0}=\gamma_{1} n^{\prime}$, we have $g \gamma_{0} \in \mathbb{S}_{2 / \sqrt{3}, 1 / 2}$. Hence the Lemma is true for $m=2$ and let us suppose that, for $m \geq 3$, the Lemma has been upheld with $m-1$ in place of m. Now $\inf _{0 \neq x \in \mathbb{Z}^{m}}\|g x\|$ is attained at an $x^{\prime} \neq 0$ in \mathbb{Z}^{m} and such an x^{\prime} is necessarily ('primitive' and hence) of the form $\gamma_{1} e_{1}$ for some γ_{1} in $G L_{m}(\mathbb{Z})$. Thus we have (by the Remark following Lemma 1.2.2),

$$
\begin{equation*}
\varphi\left(g \gamma_{1}\right)=\inf _{\gamma \in G L_{m}(\mathbb{Z})} \varphi(g \gamma) \tag{11}
\end{equation*}
$$

Let $g \gamma_{1}=k a n$ be the Iwasawa decomposition, so that

$$
k^{-1} g \gamma_{1}=a n=\left(\begin{array}{cc}
a_{1} & * \\
0 & g^{\prime}
\end{array}\right) \quad \text { with } \quad g^{\prime} \text { in } G L_{m-1}(\mathbb{R})
$$

By the induction hypothesis, there exists γ_{0}^{\prime} in $G L_{m-1}(\mathbb{Z})$ such that $g^{\prime} \gamma_{0}^{\prime}$ is in $\Im_{2 / \sqrt{3}, 1 / 2}^{(m-1)}$. Consider the Iwasawa decomposition $g^{\prime} \gamma_{0}^{\prime}=k^{\prime} a^{\prime} n^{\prime}$ with $a^{\prime}=\left(\begin{array}{ccc}a_{2} & 0 \\ & \vdots & \\ 0 & & a_{m}\end{array}\right)$. Then we have

$$
g_{1}:=k^{-1} g \gamma_{1}\left(\begin{array}{cc}
1 & 0 \\
0 & \gamma_{0}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
a_{1} & * \\
0 & k^{\prime} a^{\prime} n^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & k^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
a_{1} & & 0 \\
& \vdots & \\
0 & & a_{m}
\end{array}\right)\left(\begin{array}{ccc}
1 & \cdot & * \\
\cdot & \cdot & . \\
0 & \cdot & 1
\end{array}\right)
$$

Now

$$
\begin{aligned}
& \varphi\left(g_{1}\right)=\varphi\left(k^{-1} g \gamma_{1}\left(\begin{array}{cc}
1 & 0 \\
0 & \gamma_{0}^{\prime}
\end{array}\right)=\varphi\left(g \gamma_{1}\left(\begin{array}{cc}
1 & 0 \\
0 & \gamma_{0}^{\prime}
\end{array}\right)\right)=\right. \\
& \left\|g \gamma_{1}\left(\begin{array}{cc}
1 & 0 \\
0 & \gamma_{0}^{\prime}
\end{array}\right) e_{1}\right\|=\left\|g \gamma_{1} e_{1}\right\|=\varphi\left(g \gamma_{1}\right)=\inf _{\gamma} \varphi(g \gamma) \text { by (11), } \\
& =\inf _{\gamma} \varphi\left(k^{-1} g \gamma\right)=\inf _{\gamma} \varphi\left(k^{-1} g \gamma_{1}\left(\begin{array}{cc}
1 & 0 \\
0 & \gamma_{0}^{\prime}
\end{array}\right) \gamma\right)=\inf _{\gamma} \varphi\left(g_{1} \gamma\right)
\end{aligned}
$$

since $\gamma_{1}\left(\begin{array}{cc}1 & 0 \\ 0 & \gamma_{0}^{\prime}\end{array}\right) \gamma$ runs over $G L_{m}(\mathbb{Z})$ along with γ. Lemma 1.2 .3 now applies to g_{1} and so we have $a_{1} / a_{2} \leq 2 / \sqrt{3}$. Already, by induction, we know that $a_{i} / a_{i+1} \leq 2 / \sqrt{3}$ for $2 \leq i \leq m$. Now for some

$$
n_{1} \in N_{\mathbb{Z}}, g_{1} n_{1}=k^{-1} g \gamma_{1}\left(\begin{array}{cc}
1 & 0 \\
0 & \gamma_{0}^{\prime}
\end{array}\right) n_{1} \text { is in } \Theta_{2 / \sqrt{3}, 1 / 2}^{(m)}
$$

in view of Lemma 1.2.2 and so Lemma 1.2.4 is proved.

Corollary. For g in $G L_{m}(\mathbb{R}), \inf _{0 \neq x \in \mathbb{Z}^{m}}\|g x\| \leq(2 / \sqrt{3})^{(m-1) / 2}(a b s(\operatorname{det} g))^{1 / m}$

Proof. In view of Theorem 1.2.1 we may assume that g is in a Siegel domain $\mathfrak{S}_{2 / \sqrt{3}, 1 / 2}^{(m)}=O(m) A_{2 / \sqrt{3}} N_{1 / 2}$ since both $\inf _{0 \neq x}\|g x\|$ and $a b s(\operatorname{det} g)$ depend only on the coset $g G L_{m}(\mathbb{Z})$. Let then $g=k a n$ with

$$
k \in O(m), a=\left(\begin{array}{ccc}
a_{1} & \cdot & 0 \\
\cdot & \vdots & \cdot \\
0 & \cdot & a_{n}
\end{array}\right) \in A_{2 / \sqrt{3}} \text { and } n \in N_{1 / 2}
$$

Clearly $a_{1} / a_{i}=\prod_{1 \leq j \leq i-1}\left(a_{j} / a_{j+1}\right) \leq(2 / \sqrt{3})^{i-1}$ and so $a_{1}^{m}=\prod_{1 \leq j \leq m}$ $\left(a_{1} / a_{j}\right) \times \operatorname{det} a \leq \prod_{1 \leq j \leq m}(2 / \sqrt{3})^{j-1} \operatorname{det} a=(2 / \sqrt{3})^{m(m-1) / 2} a b s(\operatorname{det} g)$. This gives us

$$
\begin{equation*}
\varphi(g)=a_{1} \leq(2 / \sqrt{3})^{(m-1) / 2}(a b s \operatorname{det} g)^{1 / m} \tag{12}
\end{equation*}
$$

As we know, $\inf _{0 \neq x \in \mathbb{Z}^{m}}\|g x\|$ is attained at a primitive vector x^{\prime} in \mathbb{Z}^{m} and such an x^{\prime} is of the form $\gamma^{\prime} e_{1}$ with some γ^{\prime} in $G L_{m}(\mathbb{Z})$. Thus

$$
\inf _{0 \neq x \in \mathbb{Z}^{m}}\|g x\|=\inf _{\gamma \in G L_{m}(\mathbb{Z})}\left\|g \gamma e_{1}\right\|=\inf _{\gamma} \varphi(g \gamma) \leq \varphi(g)
$$

which proves the Corollary, in view of (12).
Definition. For P in the space \mathscr{P}_{m} of real m-rowed symmetric positive definite matrices, the minimum $\min \left(P:=\inf _{0 \neq x \in \mathbb{Z}^{m}} P[x]\right.$.

If we define in the space \mathscr{P}_{m}, the domain $S_{t, u}$ corresponding to the Siegel domain $\mathfrak{S}_{t, u}$, by $S_{t, u}=\left\{a[n] \mid a \in A_{t}, n \in N_{u}\right\}$, then $S_{t^{2}, u}$ is just the image of $\mathfrak{S}_{t, u}$ under the mapping $g \mapsto^{t} g g$ from $G L_{m}$ onto \mathfrak{P}_{m}. Theorem 1.2.1 and its corollary give us immediately.

Theorem 1.2.5. $\mathscr{P}_{m}=\bigcup_{\gamma \in G L_{m}(\mathbb{Z})} S_{4 / 3,1 / 2}[\gamma]$ and $\mu_{m}:=\sup _{p \in \mathscr{P}_{m}} \frac{\min (P)}{(\operatorname{det} P)^{1 / m}} \leq$ $(4 / 3)^{\frac{n-1}{2}}$.

Proof. Writing P in \mathscr{P}_{m} as ${ }^{t} g g$ with g in $G L_{m}(\mathbb{R})$, we know from Theorem 1.2.1 that, for some $g \gamma$ in $G L_{m}(\mathbb{Z}), r=k a n \in \mathbb{S}_{2 / \sqrt{3}, 1 / 2}$. Then
$P[\gamma]=a^{2}[n]$ which is clearly in $S_{4 / 3,1 / 2}$, proving the first assertion of the theorem. Now

$$
\min (P)=\inf _{0 \neq x \in \mathbb{Z}^{m}} p[x]=\inf _{0 \neq x \in \mathbb{Z}^{m}}\|g x\|^{2} \leq(4 / 3)^{(m-1) / 2}(\operatorname{det} g)^{2 / m}
$$

by the Corollary. Hence $\min (p) \leq(4 / 3)^{(m-1) / 2}(\operatorname{det} P)^{1 / m}$ giving the required upper bound for μ_{m}.

Remark. The constant μ_{m} known as Hermite's constant is known explicitly for all $m \leq 8$ (e.g. $\mu_{2}=2 / \sqrt{3}$, being also the best possible value). It is related to constants in the packing of spheres and also to the first eigenvalue of the Laplacian on some spaces.

For two positive definite matrices P_{1}, P_{2} we use the notation $P_{1} \asymp \mathbf{3 1}$ P_{2} to indicate the existence of constants c_{1}, c_{2} for which $P_{1}-c_{1} P_{2}>0$ and $c_{2} P_{2}-c_{2} P_{1}>0$, i.e. to say that P_{1} and P_{2} are of the same order of magnitude.

Theorem 1.2.6. For $t, u>0$ and any $P\left(=\left(p_{i j}\right)\right)=a[n]$ in $S_{t, u}$, we have $P \asymp a \asymp\left(\begin{array}{ccc}p_{11} & \ddots & 0 \\ 0 & \ddots & p_{m m} \\ 0 & & p_{m m}\end{array}\right)$.
 for $y:=n x=\binom{y_{1}}{\dot{m}_{m}}$.

$$
\frac{a_{i} y_{1}^{2}}{a[x]}=\frac{a_{i}}{a[x]}\left(x_{i}+\sum_{k>i} n_{i k} x_{k}\right)^{2} \leq\left[\frac{\sqrt{a}\left|x_{i}\right|}{\sqrt{a[x]}}+\sum_{k>i} \frac{\sqrt{a_{i}}\left|x_{k}\right|\left|n_{i k}\right|}{\sqrt{a[x]}}\right)^{2}
$$

Now $a[x] \geq a_{i}\left|x_{i}\right|^{2}$ gives $\left(\sqrt{a_{i}}\left|x_{i}\right| / \sqrt{a[x]}\right) \leq 1$ while, for $k>i$,

$$
\sqrt{a_{i}}\left|x_{k}\right|=\sqrt{\frac{a_{i}}{a_{k}}} \sqrt{a_{k}\left|x_{k}\right|^{2}} \leq \sqrt{\frac{a_{i}}{a_{k}}} \sqrt{a[x]} \leq t^{(k-i) / 2} \sqrt{a[x]} .
$$

Hence $\frac{a_{i} y_{i}^{2}}{a[x]} \leq\left(1+\sum_{k>i} t^{(k-i) / 2} u\right)^{2} \ll 1$ where \ll involves constants depending on t and u. We see therefore that $a[n x]=a[y] \ll a[x]$ for
every x i.e. $P \leq c_{1} a$. On the other hand, $n \in N_{u}$ implies at once $n^{-1} \in$ N_{u}, for some $u^{\prime}>0$ depending on $u($ and $m)$. Hence $a\left[n^{-1}\right] \in S_{t, u^{\prime}}$. By the arguments above, we have $a\left[n^{-1}\right] \leq c_{2}^{-1} a$ i.e. $P \geq c_{2} a$, so that $P \asymp a$. Taking $x=e_{i}$, the unit vector with 1 at the $i^{\text {th }}$ place and 0 elsewhere, we have now $c_{2} a_{i}=c_{2} a\left[e_{i}\right] \leq P\left[e_{i}\right]=p_{i i} \leq c_{1} a\left[e_{i}\right]=c_{1} a_{i}$ so that $P_{i i} \asymp a_{i}$ for every i. In other words, $a \asymp\left(\begin{array}{ccc}p_{11} & \ddots & 0 \\ 0 & \cdot & p_{m m}\end{array}\right)$ and the theorem is proved.

The following theorem shows that any Siegel domain $S_{t, u}$ in \mathscr{P}_{m} intersects at most finitely many $S_{t, u}[\gamma]$ for $\gamma \in G L_{m}(\mathbb{Z})$ and so a "fundamental domain" F for $G L_{m}(\mathbb{Z})$ in \mathscr{P}_{m} can have at most finitely many "neighbours" $F[\gamma]$.

Theorem 1.2.7. For any $d \geq 1$ and given $S=S_{t, u} \subset \mathscr{P}_{m}$, the number of X in $\mathscr{M}_{m}(\mathbb{Z})$ with $1 \leq a b s(\operatorname{det} X) \leq d$ and $S[X] \cap S \neq \emptyset$ is finite.

Proof. We use induction on m, for the proof. Let first $X=\left(\begin{array}{cc}X_{1} & X_{12} \\ 0 & X_{2}\end{array}\right)$ with $X_{i} \in \mathscr{M}_{m_{i}}(\mathbb{Z}), i=1,2,1 \leq m_{1}, m_{2}$ and $m_{1}+n_{2}=m$. Then writing $\|M\|$ for $a b s(\operatorname{det} M),\|X\|=\left\|X_{1}\right\|\left\|X_{2}\right\| \leq d$ implies that $1 \leq\left\|X_{i}\right\| \leq d$ for $i=1$, 2. Take $a[n]$ in S with $(a[n])[X]=a^{\prime}\left[n^{\prime}\right] \in S$. Using the obvious decompositions

$$
a=\left(\begin{array}{cc}
a_{1}^{\left(m_{1}\right)} & 0 \\
0 & a_{2}^{\left(m_{2}\right)}
\end{array}\right), n=\left(\begin{array}{cc}
n_{1}^{\left(m_{1}\right)} & n_{12} \\
0 & n_{2}^{\left(m_{2}\right)}
\end{array}\right), a^{\prime}=\left(\begin{array}{cc}
a_{1}^{\prime} & 0 \\
0 & a_{2}^{\prime}
\end{array}\right), n^{\prime}=\left(\begin{array}{cc}
n_{1}^{\prime} & n_{12}^{\prime} \\
0 & n_{2}^{\prime}
\end{array}\right)
$$

we have

$$
\begin{aligned}
a[n] & =\left(\begin{array}{cc}
a_{1}\left[n_{1}\right] & 0 \\
0 & a_{2}\left[n_{2}\right]
\end{array}\right)\left[\left(\begin{array}{cc}
E & n_{1}^{-1} n_{12} \\
0 & E
\end{array}\right)\right], \\
a^{\prime}\left[n^{\prime}\right] & =\left(\begin{array}{cc}
a_{1}\left[n_{1}^{\prime}\right] & 0 \\
a & a_{2}^{\prime}\left[n_{2}^{\prime}\right]
\end{array}\right)\left[\left(\begin{array}{cc}
E & n^{\prime-1} n_{12}^{\prime} \\
0 & E
\end{array}\right)\right]
\end{aligned}
$$

where E now stands for the identity matrix of the appropriate size. Then, for X in the form given above, we see that

$$
a[n X]=\left(\begin{array}{cc}
a_{1}\left[n_{1} X_{1}\right] & 0 \\
0 & a_{2}\left[n_{2} X_{2}\right]
\end{array}\right)\left[\left(\begin{array}{cc}
E & X^{-1} X_{12}+X_{1}^{-1} n_{1}^{-1} n_{12} X_{2} \\
0 & E
\end{array}\right)\right]
$$

By definition, $a_{i}, a_{i}^{\prime} \in A_{t}^{\left(m_{i}\right)}$ and $n_{i}, n_{i}^{\prime} \in N_{u}^{\left(m_{i}\right)}$ for $i=1,2$.
Now

$$
\begin{aligned}
a_{1}^{\prime}\left[n_{1}^{\prime}\right] & =a_{1}\left[n_{1} X_{1}\right] \\
n_{1}^{\prime-1} n_{12}^{\prime} & =X_{1}^{-1} X_{12}+X_{1}^{-1} n_{1}^{-1} n_{12} X_{2}, \\
a_{2}\left[n_{2}^{\prime}\right] & =\left(a_{2}\left[n_{2}\right]\right)\left[X_{2}\right] .
\end{aligned}
$$

Since m_{1} and m_{2} are both less than m, the induction hypothesis yields the finiteness of the number of such X_{1} and X_{2} and hence their boundedness as well. Further, $X_{12}=X_{1} n_{1}^{\prime-1} n_{12}^{\prime}-n_{1}^{-1} n_{12} X_{2}$ wherein n_{12}, n_{12}^{\prime} are bounded by virtue of n, n^{\prime} being in N_{u} and moreover the inverses of the bounded unipotent matrices n_{1}, n_{1}^{\prime} are again (unipotent and) bounded. Thus the integral matrix X_{12} is bounded and the number of such X_{12} is finite. Consequently, we have shown that the number of integral $X=$ $\left(\begin{array}{cc}X_{1} & X_{12} \\ 0 & X_{2}\end{array}\right)$ with $1 \leq\|X\| \leq d$ and $S[X] \cap S \neq \emptyset$ is finite. Let us now take the case of $X=\left(x_{i j}\right)$ not necessarily in any such simple form (for some m_{1}, m_{2}) but with $S[X] \cap S \neq \emptyset$ and $1 \leq\|X\| \leq d$. In fact, for $1 \leq i \leq m-1$, there exist then integers h_{i}, k_{i} with $x_{k_{i}, h_{i}} \neq 0$ and $h_{i} \leq i<k_{i}$. Denote the column ${ }^{t}\left(x_{1 i} \ldots x_{m i}\right)$ of X by $x^{(i)}$, for $1 \leq i \leq m$. Let, as before, $p=a[n] \in S$ with $\left(p_{i j}^{\prime}\right)=p^{\prime}=(a[n])[X]=a^{\prime}[n] \in S$. From Theorem 1.2 .6 we have (for fixed $S_{t, u}$),

$$
a_{i}^{\prime} \asymp p_{i i}^{\prime}=a[n]\left[x^{(i)}\right] \asymp a\left[x^{(i)}\right]=\sum_{j} a_{j} x_{j i}^{2}
$$

Hence

$$
\begin{gather*}
a_{i}^{\prime} \gg a_{h_{i}}^{\prime} \asymp \\
\sum_{j} a_{j} x_{j, h_{i}}^{2} \geq a_{k_{i}} x_{k_{i}, h_{i}}^{2} \geq a_{k_{i}} \quad \text { since } \quad x_{k_{i}, h_{i}} \neq 0 . \tag{13}\\
\text { i.e. } \quad a_{i}^{\prime} \gg a_{i} \quad\left(\text { some } k_{i}>i\right) .
\end{gather*}
$$

Writing $\|X\|=d_{1}$, we have $d_{1} X^{-1} \in \mathscr{M}_{m}(\mathbb{Z})$. Some $P \in S_{t, u}$ implies that $\lambda p \in S_{t, u}$ for $\lambda>0$, we have $p^{\prime}\left[d_{1} X^{-1}\right]=d_{1}^{2} P$ belongs to $S_{t, u}$ along with P^{\prime}. Moreover, the integral matrix $d_{1} X^{-1}$ is not in any simple (block) form as above, since, otherwise, X itself would then take such a simple (block) form. Applying now to $P^{\prime}, P^{\prime}\left[d_{1} X^{-1}\right]$ in $S_{t, u}$ the same arguments as we used to derive (13), we find that $d_{1}^{2} a_{i} \gg a_{i}^{\prime}$. But since
$d_{1} \leq d$, we may conclude that $a_{i} \asymp a_{i}^{\prime}$. Further $a_{i+1} \ll a_{k_{i}}$ (since $k_{i}>i$) and $a_{k_{i}} \ll a_{i}^{\prime}$, as we have noted prior to deriving (13).

Hence $a_{i+1} \ll a_{k_{i}} \ll a_{i}^{\prime} \asymp a_{i} \ll a_{i+1}$ i.e. $a_{i} \asymp a_{i+1}$ for every i.
In other words, we have the chain of orders of magnitude:

$$
\begin{array}{rrr}
a_{1} \asymp a_{2} & \asymp \ldots \asymp a_{m} \\
)(&)(& \\
a_{1}^{\prime} \asymp & a_{2}^{\prime} & \asymp \ldots \asymp \\
a_{m}^{\prime}
\end{array}
$$

But then $\sum_{i} a_{j}^{\prime} x_{j i}^{2} \ll \sum_{i} a_{j} x_{j i}^{2} \asymp(a[n])\left[x^{(i)}\right]=a_{i}^{\prime} \asymp a_{j}^{\prime}$ yields immediately that $x_{j i} \ll 1$ for all i and j and the theorem as well.

1.3 Minkowski Reduced Domain

For any $P=\left(p_{i j}\right)$ in \mathscr{P}_{m}, we can introduce in \mathbb{Z}^{m} an inner product $($,$) by$ defining $(x, y)={ }^{t} x P y$ whenever x, y are in \mathbb{Z}^{m} and give it the structure of a quadratic module over \mathbb{Z}. If $e_{i}={ }^{t}(0, \ldots, 0,1,0, \ldots, 0)$ is the standard unit vector with 1 at the $i^{\text {th }}$ place (and 0 elsewhere), then $\left\{e_{1}, \ldots, e_{m}\right\}$ is a natural basis for this quadratic module, with $\left(e_{i}, e_{j}\right)=p_{i j}$. We define, however, a new basis $\left\{f_{1}, \ldots, f_{m}\right\}$ as follows. Since P is positivedefinite, the number of integral vectors with $(x, x) \leq \mu$ for any given μ, is necessarily finite. Hence we can find f_{1} in \mathbb{Z}^{m} to satisfy the condition $\left(f_{1}, f_{1}\right)=\inf _{0 \neq x \in \mathbb{Z}^{m}}(x, x)$; of course, f_{1} is not unique (since one can take, for example, $-f_{1}$ instead of f_{1}). Assuming that f_{1}, \ldots, f_{i} have been chosen already, we can proceed to find f_{i+1} in \mathbb{Z}^{m} meeting the requirements: f_{1}, \ldots, f_{i+1} can be extended to a basis of \mathbb{Z}^{m} and moreover, $\left(f_{i+1}, f_{i+1}\right)=\inf _{x}(x, x)$ where the infimum is taken over all x in \mathbb{Z}^{m} for which f_{1}, \ldots, f_{i}, x can be extended to a basis of \mathbb{Z}^{m}. By picking $-f_{i+1}$ instead of f_{i+1}, if necessary, we impose the additional restriction that $f_{i, i+1} \geq 0$; still, f_{i+1} is not unique but certainly exists. In this manner, we can find a \mathbb{Z}-basis $\left\{f_{1}, \ldots, f_{m}\right\}$ for the above quadratic module. Writing $f_{i}=\sum_{1 \leq j \leq m} u_{j i} e_{j}$ with $u_{j i}$ in \mathbb{Z} (for $1 \leq i \leq m$), we find that $U:=\left(u_{i j}\right)$ is in $G L_{m}(\mathbb{Z})$; further, if $q_{i j}:=\left(f_{i}, f_{j}\right)$, then $Q:=\left(q_{i j}\right)={ }^{t} U P U$ is in the same 'class' as the given P in \mathscr{P}_{m}, besides being "Minkowski-reduced"
in the following sense. Indeed, for any $x={ }^{t}\left(x_{1}, \ldots, x_{m}\right)$ in \mathbb{Z}^{m} with the last $m-k+1$ elements $x_{k}, x_{k+1}, \ldots, x_{m}$ having 1 as greatest common divisor, the matrix $\binom{E_{k-1}}{0}$ is easily seen to be "primitive" i.e. capable of $\mathbf{3 6}$ being completed to an element of $G L_{m}(\mathbb{Z})$. Thus $f_{1}, \ldots, f_{k-1}, \sum_{1 \leq i \leq m} x_{i} f_{i}$ can be completed to a \mathbb{Z}-basis of \mathbb{Z}^{m}. Therefore, by our definition of f_{k}, we have

$$
Q[x]=\left\{\sum_{1 \leq i \leq m} x_{i} f_{i}, \sum_{1 \leq i \leq m} x_{i} f_{i}\right\} \geq\left(f_{k}, f_{k}\right)=q_{k k}(1 \leqq k \leqq m)
$$

Thus the matrix Q in the same class as P satisfies the "reduction conditions":
(1) $Q[x] \geq q_{k k}(1 \leq k \leq m)$, for every $x={ }^{t}\left(x_{1}, \ldots, x_{m}\right)$ with the g.c.d. $\left(x_{k}, x_{k+1}, \ldots, x_{m}\right)$ equal to 1 and
(2) $q_{k, k+1} \geq 0$.

Definition. Any positive definite matrix in \mathscr{P}_{m} satisfying the "reduction conditions" (1) - (2) above is called Minkowski-reduced (or merely Mreduced).

Let us first note that $q_{11}=\min (Q)=\inf _{0 \neq x \in \mathbb{Z}^{m}} Q[x]$. For any M reduced Q, taking x in (1) to be e_{ℓ} with $\ell \geqq k$, we see that

$$
\begin{equation*}
q_{k, k} \leq q_{\ell, \ell}(k \leq \ell) \tag{14}
\end{equation*}
$$

If, on the other hand, we take x in (1) to be $e_{k} \pm e_{\ell}$ for $\ell \neq k$, then condition (1) reads

$$
q_{k, k} \pm 2 q_{k \ell}+q_{\ell \ell} \geq q_{k, k}
$$

i.e.

$$
\begin{equation*}
\left|q_{k \ell}\right| \leq 1 / 2 \cdot q_{\ell \ell} \quad \text { for } \quad k \neq \ell \tag{15}
\end{equation*}
$$

Let $\mathscr{R}_{m}=\mathscr{R}$ denote the set of all M-reduced matrices in \mathscr{P}_{m}. We have just shown that in every $G L_{m}(\mathbb{Z})$-orbit $\left\{P[U] \mid U \in G L_{m}(\mathbb{Z})\right\}$ in \mathscr{P}_{m}, there exists an element Q in \mathscr{R}. We may then state the following theorem presenting the reduction theory due to Minkowski and Siegel for positive-definite matrices.

Theorem 1.3.1. (i) $\mathscr{P}_{m}=\underset{U \in G L_{m}(\mathbb{Z})}{ } \mathscr{R}[U]$;
(ii) \mathscr{R} is contained in a Siegel domain $S_{t, u}$ for some t, u (depending only on m) and
(iii) For any $U \neq \pm E_{m}$ in $G L_{m}(\mathbb{Z}), \mathscr{R} \cap \mathscr{R}[U]$ is contained in the boundary of \mathscr{R} (relative to \mathscr{P}_{m}).

Actually, \mathscr{R} is a fundamental domain for $G L_{m}(\mathbb{Z})$ in \mathscr{P}_{m} for the action $p \mapsto P[U]$ with P in \mathscr{P}_{m} and U in $G L_{m}(\mathbb{Z})$. It is a convex cone with vertex at 0 and its boundary is contained in a finite union of hyperplanes. Moreover, \mathscr{R} has only finitely many neighbours (i.e. $\mathscr{R} \cap \mathscr{R}[U] \neq \emptyset$, only for finitely many U in $G L_{m}(\mathbb{Z})$). For all this, a detailed treatment may be found, for example, in Maass ([17], § 9).

Only the assertions (ii) and (iii) in Theorem 1.3.1 are to be proved and we need some lemmas for that purpose.

38 Lemma 1.3.2. For any $R=\left(r_{i j}\right)$ in $\mathscr{R}, r_{11} \ldots r_{m m} \underset{m}{<} \operatorname{det} R$.
Proof. The leading (ℓ, ℓ) principal minor $R_{\ell}=R\left[{ }_{0}^{E_{\ell}}\right]$ in R is also M reduced (in \mathscr{P}_{ℓ}) for $1 \leq \ell \leq m$. Let us assume the lemma proved with $m-1$ in place of m; then writing r_{j} for $r_{j j}(1 \leq j \leq m)$, we have

$$
\begin{equation*}
r_{1} r_{2} \ldots r_{m-1} \ll \operatorname{det} R_{m-1} \tag{16}
\end{equation*}
$$

where the constant in \ll depends only on $m-1$. Defining $\rho_{k \ell}$ by $\left(\rho_{k \ell}\right)=$ (det $\left.R_{m-1}\right) R_{m-1}^{-1}$, we have on using the inequalities (14) corresponding to $R_{m-1},\left|\rho_{k \ell}\right| r_{\ell} \ll r_{1} r_{2} \ldots r_{m-1}$ and hence

$$
\left|\rho_{k \ell}\right| /\left(\operatorname{det} R_{m-1}\right) \ll\left(r_{1} r_{2} \ldots r_{m-1}\right) /\left(r_{\ell} \operatorname{det} R_{m-1}\right)
$$

i.e.

$$
\begin{equation*}
\left|\rho_{k \ell}\right| /\left(\operatorname{det} R_{m-1}\right) \ll 1 / r_{\ell} . \tag{17}
\end{equation*}
$$

If, now, we write

$$
R=\left(\begin{array}{cc}
R_{m-1} & r \tag{18}\\
t_{r} & r_{m}
\end{array}\right)=\left(\begin{array}{cc}
R_{m-1} & 0 \\
t_{0} & s
\end{array}\right)\left[\left(\begin{array}{cc}
E_{m-1} & R_{m-1}^{-1} r \\
t_{0} & t
\end{array}\right)\right]
$$

with $s:=r_{m}-R_{m-1}^{-1}[r]$, we have, on applying (14), 15) and (17),

$$
R_{m-1}^{-1}[r] \ll \sum_{1 \leq i, j \leq m-1}\left(1 / r_{i}\right) r_{i} r_{j} \ll r_{m-1}
$$

Thus

$$
\begin{equation*}
r_{m}=s+R_{m-1}^{-1}[r] \ll s+r_{m-1} \tag{19}
\end{equation*}
$$

Since $\operatorname{det} R=\left(\operatorname{det} R_{m-1}\right) \cdot s$ from (18), we obtain from (16) and (19) that $r_{1} r_{2} \ldots r_{m} \ll\left(\operatorname{det} R_{m-1}\right) \cdot r_{m} \ll((\operatorname{det} R) / s) \cdot r_{m} \ll\left(1+r_{m-1} / s\right) \cdot \operatorname{det} R$. Once we establish that

$$
\begin{equation*}
r_{m-1} \ll s \tag{20}
\end{equation*}
$$

the lemma will follow. In order to prove (20, let us assume that for some integer $k \leq m-1$,
$r_{\ell+1}<4(m-1)^{2} r_{\ell} \quad($ for $\ell=m-2, m-3, \ldots, k+1, k$ but not $k-1)$.
Here (21) is to be properly interpreted whenever k equals $m-1$ or 1 . Writing z for ${ }^{t}\left(x_{1}, \ldots, x_{m-1}\right)$, (18) gives, for $x={ }^{t}\left(x_{1}, \ldots, x_{m}\right)$,

$$
\begin{equation*}
R[x]=R_{m-1}\left[x+x_{m} R_{m-1}^{-1} r\right]+s x_{m}^{2} \tag{22}
\end{equation*}
$$

Let $c=(2 m-2)^{m-1}$ and let $x_{i}+a_{i} x_{m}(1 \leq i \leq m-1)$ denote the entries of the column $z+x_{m} R_{m-1}^{-1} r$. Now, given an integer x_{m}^{\prime} in the closed interval $\left[0, c^{m-k}\right]$, we can certainly find integers $x_{k}^{\prime}, x_{k+1}^{\prime}, \ldots, x_{m-1}^{\prime}$ to satisfy $0 \leq x_{i}^{\prime}+a_{i} x_{m}^{\prime}<1$, for $k \leq i \leq m-1$. Dividing the closed interval $[0,1]$ into c closed subintervals of equal length, we can get a decomposition of the ($m-k$)-dimensional unit cube (in \mathbb{R}^{m-k}) into c^{m-k} cubes of equal volume. By Dirichlet's pigeonhole principle, at least two of the $1+c^{m-k}$ vectors, say, $\left(x_{k}^{\prime}+a_{k} x_{m}^{\prime}, \ldots, x_{m-1}^{\prime}+a_{m-1} x_{m}^{\prime}\right),\left(x_{k}^{\prime \prime}+\right.$ $\left.a_{k} x_{m}^{\prime \prime}, \ldots, x_{m-1}^{\prime \prime}+a_{m-1} x_{m}^{\prime \prime}\right)$ must be contained in one of these c^{m-k} cubes; in other words, $\left|x_{i}^{\prime}-x_{i}^{\prime \prime}+a_{i}\left(x_{m}^{\prime}-x_{m}^{\prime \prime}\right)\right| \leq 1 / c$ for $k \leq i \leq m-1$. Hence there exist integers $x_{k}, x_{k+1}, \ldots, x_{m}$, which we may indeed even assume to have greatest common divisor 1 , such that

$$
\left|x_{i}+a_{i} x_{m}\right| \leq 1 / c, 0<x_{m} \leq c^{m-k}(k \leq i \leq m-1) .
$$

Trivially, there exist integers x_{1}, \ldots, x_{k-1} satisfying the conditions

$$
\left|x_{i}+a_{i} x_{m}\right|<1(i=1,2, \ldots, k-1) .
$$

For the corresponding column $x={ }^{t}\left(x_{1}, \ldots, x_{m}\right)$, we have $R[x] \geq r_{k}$, since R is M-reduced. But then (22) gives

$$
\begin{aligned}
r_{k}(\leq R[x]) \leq(k & -1)^{2} r_{k-1}+(k-1)(m-k) r_{k-1} / c \\
& +(m-k)^{2}\left(4(m-1)^{2}\right)^{m-k-1} r_{k} / c^{2}+c^{2(m-k)} s
\end{aligned}
$$

if we use the inequalities

$$
\begin{aligned}
& \left|r_{i j}\right| \leq r_{k-1}(1 \leq i, j \leq k-1),\left|r_{p q}\right| \leq \frac{1}{2} r_{k-1}(p \leq k-1<q-1) \\
& \left|r_{u v}\right| \leq\left(4(m-1)^{2}\right)^{m-k-1} r_{k}(k+1 \leq u, v \leq m-1)
\end{aligned}
$$

(the last one arising from (21). Again $r_{k} \geq 4(m-1)^{2} r_{k-1}$, by (21) and therefore finally

$$
r_{k} \leq \frac{1}{4} r_{k}+\frac{1}{4} r_{k}+\frac{1}{4} r_{k}+c^{2(m-k)} s=\frac{3}{4} r_{k}+c^{2(m-k)} s \quad \text { i.e. } \quad r_{k} \ll s .
$$

Since $r_{m-1} \leq\left(4(m-1)^{2}\right)^{m-k-1} r_{k}$, (20) is immediate and so is our lemma.

Remark. The (reverse) inequality

$$
\begin{equation*}
\operatorname{det} R \leq r_{1} \ldots r_{m} \tag{23}
\end{equation*}
$$

for any R in \mathscr{P}_{m} follows at once from the relation $\operatorname{det} R=\left(\operatorname{det} R_{m-1}\right) s$ implied by (18), the obvious inequality $s \leq r_{m}$ and the inequality, corresponding to [23], for R_{m-1} viz. $\operatorname{det} R_{m-1} \leq r_{1} \ldots r_{m-1}$ from an inductive hypothesis.

For any $R=\left(r_{i j}\right)$ in \mathscr{P}_{m}, we denote by R_{0}, the diagonal matrix with (the same) diagonal elements $r_{11}, r_{22}, \ldots, r_{m m}($ as $R)$.

Lemma 1.3.3. For any R in \mathscr{R}, we have $c_{1} R_{0}<R<c_{2} R_{0}$ with constants c_{1}, c_{2} depending only on m.

Proof. Let $R_{0}^{1 / 2}$ denote the positive square root $\left[\sqrt{r}_{11}, \ldots, \sqrt{r}_{m m}\right.$] of the diagonal matrix $R_{0}=\left[r_{11}, \ldots, r_{m m}\right]$. For the eigenvalues $\rho_{1}, \ldots, \rho_{m}$ of $R\left[R_{0}^{-1 / 2}\right]$, we have $\rho_{1}+\cdots+\rho_{m}=\operatorname{trace}\left(R\left[R_{0}^{-1 / 2}\right]\right)=\operatorname{trace}\left(R R_{0}^{-1}\right)=m$. While $\rho_{1} \ldots \rho_{m}=\operatorname{det} R / \operatorname{det} R_{0} \geq c^{\prime}$ for some constant $c^{\prime}=c^{\prime}(m)$, by the preceding lemma. Hence $c_{1}:=m^{-(m-1)} c^{\prime}<\rho_{i}<c_{2}:=m$, for $1 \leq i \leq m$ which means that $c_{1} E_{m}<R\left[R_{0}^{-1 / 2}\right]<c_{2} E_{m}$ i.e. $c_{1} R_{0}<R<c_{2} R_{0}$, on transforming both sides of the inequalities by $R_{0}^{1 / 2}$.

The Iwasawa decomposition $g=$ kan for g in $G L_{m}$ implies at once that every $R\left(={ }^{t} g g\right)$ in \mathscr{P}_{m} has the (unique) Jacobi decomposition $R=$ $D[B]$ where $D=\left[d_{1}, \ldots, d_{m}\right]$ is diagonal with positive diagonal entries d_{i} and $B=\left(b_{i j}\right)$ is upper triangular with $b_{i i}=1$ for all i. The entries d_{1}, \ldots, d_{m} and $b_{i j}(i<j)$ are called the Jacobi coordinates of $R=\left(r_{i j}\right)$ in \mathscr{P}_{m}. Denoting $r_{i i}$ by r_{i} as before, the relation $R=D[B]$ gives $r_{i}=$ $d_{i}+\sum_{1 \leq j \leq i-1} d_{j} b_{j i}^{2}$ for $1 \leq i \leq m$ (so that $r_{i} \geq d_{i}$ always) and further $\operatorname{det} R=d_{1} \ldots d_{m}$. (Thus det $R \leq r_{1} \ldots r_{m}$, giving another proof for (23).

Suppose now that R is M-reduced. Then $\prod_{j=1}^{m}\left(r_{j} / d_{j}\right)=\left(r_{1} \ldots r_{m}\right) /$ det $R \leq c^{\prime \prime}=c^{\prime \prime}(m)$, by Lemma1.3.2 On the other hand, for any $R=D[B]$ in \mathscr{P}_{m}, we have $1 \leq\left(r_{i} / d_{i}\right) \leq \prod_{j=1}^{m}\left(r_{j} / d_{j}\right)$. Hence for R in $\mathscr{R}, 1 \leq r_{i} / d_{i} \leq$ $c^{\prime \prime}$ and so $(1 \leq) r_{i} / d_{i} \ll r_{j} / d_{j}$ for all i, j. Consequently for R in \mathscr{R}, we 42 conclude, in view of (14), that

$$
0<\frac{d_{j}}{d_{i}} \ll \frac{r_{j}}{r_{i}}(\leq 1) \quad \text { for } \quad j \leq i
$$

Now, to prove that all $b_{i j}$ are bounded (in absolute value) by a constant depending only on m, we use induction on m. In fact, let us assume that for $1 \leq p<i$ and $\ell>p$, we have $\left|b_{p \ell}\right| \leq c_{1}$. Then from the relation

$$
r_{i j}=d_{i} b_{i j}+\sum_{1 \leq p \leq i-1} d_{P} b_{p i} b_{p j}(i<j)
$$

we obtain that

$$
d_{i}\left|b_{i j}\right| \leq\left|r_{i j}\right|+\sum_{p} d_{p}\left|b_{p i} \|\left|b_{p j}\right|\right.
$$

$$
\leq \frac{1}{2} r_{i}+\sum_{P} d_{p} c_{1}^{2}
$$

(in view of 15) and the bound for $\left|b_{p \ell}\right|$)

$$
\text { i.e. } \quad\left|b_{i j}\right| \leq \frac{1}{2}\left(r_{i} / d_{i}\right)+\sum_{1 \leq p \leq i} c_{1}^{2} d_{p} / d_{i} \ll 1 \quad(\text { for } i<j) .
$$

We have thus proved assertion (ii) of Theorem 1.3.1 Along with Theorem 1.2.7 this gives us the important.

Corollary. If R and $R[U]$ are both in \mathscr{R} for some U in $G L_{m}(\mathbb{Z})$, the number of such U is finite.

Before we proceed to prove assertion (iii) of Theorem 1.3.1 we make a few remarks about the interior \mathscr{R}^{0} and the boundary $\partial(\mathscr{R})$ of \mathscr{R}. Among the "reduction conditions" (1) and (2), some are trivial; for example, if $x= \pm e_{k}$, then $R[x]=r_{k}$ for every R in \mathscr{P}_{m}. We therefore omit those inequalities which impose no condition on \mathscr{R}. Then \mathscr{R}^{0} consists of points of \mathscr{R} for which the "nontrivial" reduction conditions among (1) and (2) hold good with strict inequality. Hence $\partial(\mathscr{R})$ consists precisely of those points of \mathscr{R} at which even one of these nontrivial reduction conditions holds with an equality (in place of \geq).

Let now both R_{1} and $R_{2}=R_{1}[U]$ for some U in $G L_{m}(\mathbb{Z})$ belong to \mathscr{R}. In view of the Corollary above, the matrix U belongs to a finite set of matrices (in $G L_{m}(\mathbb{Z})$) depending only on m. First let us suppose $U=\left(u_{1} u_{2} \ldots u_{m}\right)$ with columns u_{1}, \ldots, u_{m} be no diagonal matrix, so that we have a first column, say u_{k}, which is different from $\pm e_{k}$. Then the column v_{k} of $U^{-1}=\left(v_{1} \ldots v_{m}\right)$ is again $\neq \pm e_{k}$. Since $U=\binom{W}{u_{k} \ldots u_{m}}$ with a diagonal $(k-1, k-1)$ matrix W having ± 1 as its diagonal entries, we find, on expanding $\operatorname{det} U(= \pm 1)$ along the $k^{\text {th }}$ column, that the last $m-k+1$ elements of u_{k} have necessarily 1 as the greatest common divisor. From the reduction conditions (1) for $R_{1}=\left(r_{i j}^{(1)}\right)$, we have $R_{1}\left[u_{k}\right] \geq r_{k k}^{(1)}$ i.e. if $R_{2}=\left(r_{i j}^{(2)}\right)$, then $r_{k k}^{(2)} \geq r_{k k}^{(1)}$. Similarly, from $R_{1}=$ $R_{2}\left[U^{-1}\right]$, it follows that $r_{k k}^{(1)} \geq r_{k k}^{(2)}$. Thus we have

$$
R_{1}\left[u_{k}\right]=r_{k k}^{(1)}=r_{k k}^{(2)}=R_{2}\left[v_{k}\right]
$$

and so R_{1}, R_{2} belong to the boundary $\partial(\mathscr{R})$ with u_{k}, v_{k} belonging to a finite set of possible columns. We consider next the case when U is a diagonal matrix with ± 1 as diagonal entries but $U \neq \pm E_{m}$. Suppose the first change of sign among the diagonal entries occurs, as we pass from the $k^{\text {th }}$ diagonal entry to the next one (on the diagonal). Then $r_{k, k+1}^{(2)}={ }^{t} u_{k} R_{1} u_{k+1}=-r_{k, k+1}^{(1)}$. By (2), $r_{k, k+1}^{(1)}$ and $r_{k, k+1}^{(2)}$ are non-negative and so necessarily, $r_{k, k+1}^{(1)}=0=r_{k, k+1}^{(2)}$.

It follows again that both R_{1} and R_{2} are on the boundary of \mathscr{R} (We have also proved incidentally that the points of $\mathscr{P}_{m} \cap \partial(\mathscr{R})$ lie on a finite set of hyperplanes. We remark, without proof that $\mathscr{R}^{0} \neq \emptyset$). All the assertions in Theorem 1.3.1 have now been established.

Example. In the special case when $m=2, P=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ is M-reduced, if and only if $0 \leq b \leq a / 2 \leq c / 2$ and $a>0$. These conditions imply that $a c \leq(4 / 3) \operatorname{det} P$. The reduced domain \mathscr{R} is contained in $S_{4 / 3,1 / 2}$ and $\mu_{2}=4 / 3$.

1.4 Estimation for Fourier Coefficients of Modular Forms of Degree n

Let \mathscr{G}_{n} denote the Siegel half-space of degree n, consisting of all (n, n) complex symmetric matrices $Z=X+i Y$ with $\operatorname{Im}(Z)=Y:=\frac{1}{2 i}(Z-\bar{Z})>$ 0. The modular group $\Gamma_{n}=\operatorname{Sp}(2 n, \mathbb{Z})=\left\{\left.M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \mathscr{M}_{2 n}(\mathbb{Z}) \right\rvert\, M\right.$ $\left.J_{n}^{t} M=J_{n}=\left(\begin{array}{cc}0 & E_{n} \\ E_{n} & 0\end{array}\right)\right\}$ acts on \mathscr{G}_{n} as a discontinuous group of holomorphic automorphisms $Z \mapsto M<Z>:=(A Z+B)(C Z+D)^{-1}$ of \mathscr{G}_{n}, where A, B, C, D are (n, n) matrices constituting M in Γ; observe that $M\{Z\}:=C Z+D$ is invertible. Also note that whenever $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is in $\Gamma,{ }^{t} M$ is also in Γ and further $M^{-1}=\binom{{ }^{t} D{ }^{t}{ }^{t}{ }^{t} B}{t_{A}} ; M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ is in Γ if and only if $A^{t} D-B^{t} C=E_{n}, A^{t} B=B^{t} A$ and $C^{t} D=D^{t} C$. The subgroup of $M=\left(\begin{array}{ll}A & B \\ O & D\end{array}\right) \in \Gamma$ with $A, D={ }^{t} A^{-1}$ in $G L_{n}(\mathbb{Z})$ and symmetric integral $S=A^{-1} B$ is denoted by $\Gamma_{n, \infty}$; if $M=\left(\stackrel{*}{C D}_{C D}^{*}\right)$ and $N=(\stackrel{*}{C D})$ are both in Γ, then $M=\left(\begin{array}{cc}E_{n} & S \\ 0 & E_{n}\end{array}\right) N \Gamma_{n, \infty} N$. For $Z \in \mathscr{G}_{n}$ and $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ in Γ, $\operatorname{Im}(M<Z>)={ }^{t}(C \bar{Z}+D)^{-1} \operatorname{Im}(Z)(C Z+D)^{-1}>0$.

A fundamental domain $\Gamma \backslash \mathscr{G}_{n}$ for the discontinuous action of Γ on \mathscr{G}_{n} is given by

$$
\mathfrak{g}_{n}:=\left\{\begin{array}{l|l}
Z \in _n & \begin{array}{l}
\text { (1) } \begin{array}{l}
\text { Abs } \operatorname{det}(C Z+D) \geq 1 \text { for every primitive } \\
\text { integral }(C D) \text { with } C^{t} D=D^{t} C \\
\text { (2) } \operatorname{Im}(Z) \text { is } M \text {-reduced }
\end{array} \\
\text { (3) The elements of } X:=\frac{1}{2}(Z+\bar{Z}) \\
\text { are } \leq 1 / 2 \text { in absolute value. }
\end{array}
\end{array}\right.
$$

Introducing

$$
\begin{align*}
& \mathfrak{g}_{n}=\bigcup_{M \in \Gamma_{n, \infty}} M<\mathcal{F}_{n}>=\bigcup_{\substack{U \in G L_{n}(\mathbb{Z}) \\
S=^{t} S \in M_{n}(\mathbb{Z})}}\left(\mathcal{F}_{n}[U]+S\right), \text { we remark } \\
& Z \in \mathfrak{g}_{n} \Longrightarrow \min (\operatorname{Im}(Z)) \geq \sqrt{3} .2 \tag{24}
\end{align*}
$$

$46 \quad$ Indeed, $\min (\operatorname{Im}(Z[U]+S))=\min (\operatorname{Im}(Z[U]))=\min (\operatorname{Im}(Z))$ for every U in $G L_{n}(\mathbb{Z})$ and $S={ }^{t} S$ in $\mathscr{M}_{n}(\mathbb{Z})$. We may therefore assume, without loss of generality, that Z is already in \mathfrak{F}_{n}. Taking $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ in Γ_{n}

$$
\begin{aligned}
\text { with } A & =\left(\begin{array}{cc}
0 & 0 \\
t_{0} & E_{n-1}
\end{array}\right), & B=\left(\begin{array}{cc}
-1 & 0 \\
t_{0} & 0
\end{array}\right) \\
C & =\left(\begin{array}{cc}
1 & 0 \\
t_{0} & 0
\end{array}\right) \text { and } & D=\left(\begin{array}{cc}
0 & 0 \\
t_{0} & E_{n-1}
\end{array}\right), \text { and }
\end{aligned}
$$

inequality abs $(\operatorname{det}(C Z+D))>1$ for $Z=\left(z_{p q}\right)=\left(x_{p q}+i y_{p q}\right)$, gives $\left|z_{11}\right| \geq$ $1,\left|x_{11}\right| \leq 1 / 2$ and so $y_{11} \geq \sqrt{3} / 2$. Since $\operatorname{Im}(Z)$ is reduced, $\min (\operatorname{Im} Z)=$ $y_{11} \geq \sqrt{3} / 2$. Conversely, it can be shown that a constant \mathscr{X}_{n} exists such that $Z \in \mathfrak{g}_{n}$ whenever $\min (\operatorname{Im}(Z))>\mathscr{X}_{n}$. Let us fix a natural number q and a number k with $2 k$ integral once for all; q will serve as the "level" and k as the "weight" of the modular forms to be considered in the sequel. Let $\Gamma_{n}(q)$ denote the principal congruence subgroup of level q in Γ_{n}, consisting of all M in Γ_{n} with $M \equiv E_{2 n}(\bmod q)$.

Definition. For any $f: \mathscr{G}_{n} \mapsto \mathbb{C}$ and $M \in \Gamma_{n}$, we define $\left.f\right|_{k} M=f \mid M$ by $(f \mid M)(Z)=f(M<Z>) \operatorname{det}(C Z+D)^{-k}$, with a fixed determination of the branch.

For $M_{1}, M_{2} \in \Gamma_{n}$, we have $f\left|M_{i} M_{2}= \pm\left(f \mid M_{1}\right)\right| M_{2}$.
Definition. By a Siegel modular form of degree n, weight k and level q, we mean a holomorphic function $f: \mathscr{G}_{n} \rightarrow \mathbb{C}$ such that $f \mid M=u(M) f$ for every M in $\Gamma_{n}(q)$ with a constant $u(M)$ of absolute value 1 and which, for $n=1$, satisfies the condition $f \mid M$ is bounded in \mathcal{F}_{1} for every M in Γ_{1}.

It is known (see [16]) that for every M in $\Gamma_{n}, f \mid M$ has the Fourier 47 expansion

$$
\sum_{0 \leq T \in \Lambda_{n}^{*}} a_{M}(T) e(\operatorname{tr}(T Z) / q)
$$

Example. are given by the theta series $\sum_{G^{(m, n)}} e(\pi i \operatorname{tr}(S[G] Z))$ for even integral $S^{(m)}>0$ and the Eisenstein series of $\Gamma_{n}(q)$.

Definition. A Siegel modular form of degree n, weight k and level q is said to vanish at every cusp, if for every M in Γ_{n}, the constant term $a_{M}(0)$ in the Fourier expansion of $f \mid M$ is zero. (Note that this definition is independent of the choice of the branch $\left.\operatorname{det}(C Z+D)^{-k}\right)$.

Definition. A Siegel modular form of degree n, weight k and level q is called a cusp form, if for every M in Γ_{n}, the Fourier coefficients $a_{M}(T)$ of $f \mid M$ corresponding to all T in Γ_{n}^{*} with $\operatorname{det} T=0$ vanish.
(This definition coincides for $n=1$ with the preceding definition. For $n>1$, however, a modular form vanishing at every cusp, is not a cusp form in general).

One of our main objective is to estimate the Fourier coefficients $a(T)$ of a Siegel modular form of degree n, weight k and level q, vanishing at every cusp. Replacing $f(Z)$ by $f(q Z)$ (of level q^{2}), if necessary, we assume that the Fourier expansion of f is given by $f(Z)=$ $\sum_{0 \leq P \in \Lambda_{n}^{*}} a(P) e(\operatorname{tr}(P Z))$, in the sequel. Now, for given $T>0$, we know that $T_{1}=T[U]$ is M-reduced for some U in $G L_{m}(\mathbb{Z})$. But, if $f(Z)=$ $\sum_{P} a(P) e(\operatorname{tr}(P Z))$, then

$$
(\operatorname{det} U)^{-k} f\left(Z\left[^{t} U\right]\right)=(\operatorname{det} U)^{-k} \sum_{P} a(P) e(\operatorname{tr}(P[U] Z)
$$

$$
=(\operatorname{det} U)^{-k} \sum_{P} a\left(P\left[U^{-1}\right]\right) e(\operatorname{tr}(P Z)) .
$$

Denoting $(\operatorname{det} U)^{-k} a\left(P\left[U^{-1}\right]\right)$ by $b(P)$, we see that $a(T)(\operatorname{det} U)^{-k}$ occurs as the Fourier coefficient, corresponding to the M-reduced matrix T_{1}, ∞, we have only finitely many distinct functions of this form, as U varies over $G L_{m}(\mathbb{Z})$. We shall therefore assume in the sequel that, for the estimation of the Fourier coefficient $a(T), T$ is M-reduced and further $\min (T) \gg 0$ (i.e. $\min (T)$ is large enough).

The following lemma is essential for later applications.
Lemma 1.4.1. If the series $\sum_{0 \leq P \pm P \in \mathscr{M}_{n}(\mathbb{Z})} a(P) e(\operatorname{tr}(P Z))$ converges absolutely for every Z in \mathscr{G}_{n} and if $a(P)=0$ for all p with $\operatorname{rank}(P)<\ell(\leq n)$, then for $\gamma=\operatorname{Im}(Z)$ in $S_{t, u}$ with $\min (Y) \geq \varepsilon>0$, we have

$$
\mathscr{S}(Z):=\sum_{P}|a(P)| \mid e\left(\operatorname{tr}(P Z) \mid=O_{\varepsilon}\left(\exp \left(-\mathscr{X} \operatorname{tr}\left(Y_{\ell}\right)\right)\right.\right.
$$

where \mathscr{X} is a positive constant and Y_{ℓ} is the leading (ℓ, ℓ) minor of Y.
Proof. Since Y is in $S_{t, u}$, we see exactly as in Lemma 1.3.3 that $Y \asymp$ $Y_{0}=\left(\begin{array}{ccc}y_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & y_{n n}\end{array}\right)$ and since $\min (Y) \geq \varepsilon$, we also have $Y \geq \varepsilon^{\prime} E_{n}$ for some $\varepsilon^{\prime}>0$ depending on ε, t and u. The given series converges absolutely for $Z=i\left(\varepsilon^{\prime} / 2\right) E_{n}$ and hence $a(P) \exp \left(-\pi \varepsilon^{\prime} \operatorname{tr}(P)\right)=O(1)$. Thus

$$
\begin{aligned}
\mathscr{S}(Z) & =\sum_{P}|a(P)| \exp (-\pi \operatorname{tr}(P Y)) \\
& \leq \sum|a(P)| \exp \left(-\pi \varepsilon^{\prime} \operatorname{tr}(P)\right) \exp (-\pi \operatorname{tr}(P Y)) \\
& \ll \sum_{\substack{P= \pm^{T} P \geq 0 \\
\operatorname{rank} P \geq \ell}} \exp (-\pi \operatorname{tr}(P Y))=\mathscr{T}, \text { say. }
\end{aligned}
$$

Since $Y \asymp Y_{0}$ and $\operatorname{tr}\left(Y_{\ell}\right)=y_{11}+\cdots+y_{\ell \ell}$, we may assume that $Y=Y_{0}$, without loss of generality. For any h with $\ell \leq h \leq n$, we set

$$
\alpha_{0}(h)=\sum_{\substack{0 \leq p=\left\{p \in \mathscr{M}_{n}(\mathbb{Z}) \\ \operatorname{rank}(P)=h\right.}} \exp (-\pi \operatorname{tr}(P Y))
$$

so that $\mathscr{T}=\sum_{\ell \leq h \leq n} \alpha_{0}(h)$. In order to prove the lemma, it suffices clearly to show that

$$
\begin{equation*}
\alpha_{0}(h)=O\left(\exp \left(-\mathscr{X} \operatorname{tr}\left(Y_{\ell}\right)\right) \text { for a constant } \mathscr{X}>0\right. \tag{25}
\end{equation*}
$$

Since $P \geq 0$ and $\operatorname{rank}(P)=h$, there exists U in $G L_{n}(\mathbb{Z})$ such that $P=\left(\begin{array}{cc}P_{1} & 0 \\ 0 & 0\end{array}\right)[U]$ for an integral $P_{1}^{(h)}>0$. Suppose now that for U_{1}, U_{2} in $G L_{n}(\mathbb{Z})$ and $P_{2}^{(h)}>0$, we have $\left(\begin{array}{cc}P_{1} & 0 \\ 0 & 0\end{array}\right)\left[U_{1}\right]=\left[\begin{array}{cc}P_{2}^{(h)} & 0 \\ 0 & 0\end{array}\right]\left[U_{2}\right]$. Then $\left[\begin{array}{cc}P_{1} & 0 \\ 0 & 0\end{array}\right]\left[U_{1} U_{2}^{-1}\right]=\left[\begin{array}{cc}P_{2} & 0 \\ 0 & 0\end{array}\right]$ implying that $U_{1} U_{2}^{-1}=\left[\begin{array}{cc}W_{1} & 0 \\ W_{3} & W_{4}\end{array}\right]$ with W_{1} in $G L_{h}(\mathbb{Z}), W_{4}$ in $G L_{n-h}(\mathbb{Z}), W_{3} \in \mathscr{M}_{h, h-h}(\mathbb{Z})$ and $P_{1}\left[W_{1}\right]=P_{2}$. Since the number of W_{1} in $G L_{n}(\mathbb{Z})$ with $P_{1}\left[W_{1}\right]=P_{1}$ is at least 2 (e.g. $P_{1}\left[\pm E_{h}\right]=$ P_{1}), we have the inequality

$$
\alpha_{0}(h)<\sum_{P_{1}} \sum_{U \in G L_{n}^{(h)}(\mathbb{Z}) \backslash G L_{n}(\mathbb{Z})} \exp \left(-\pi \operatorname{tr}\left(\begin{array}{cc}
P_{1} & 0 \tag{26}\\
0 & 0
\end{array}\right)[U] Y\right)
$$

where now P_{1} runs over M-reduced integral matrices in \mathscr{P}_{h} (representing the various $G L_{h}(\mathbb{Z})$-orbits of positive-definite integral matrices in \mathscr{P}_{h}) and U runs over a complete set of representatives of right cosets of

$$
G L_{n}^{(h)}(\mathbb{Z}):=\left\{\left(\begin{array}{cc}
E_{h} & 0 \\
* & *
\end{array}\right) \in G L_{n}(\mathbb{Z})\right\} \quad \text { in } \quad G L_{n}(\mathbb{Z}) .
$$

Any such U can be written as $U=\left({ }_{{ }_{*}}^{t_{F}}\right)$ with primitive $F^{(n, h)}$ in $\mathscr{M}_{n, h}(\mathbb{Z})$.
Further, $\operatorname{tr}\left(\left(\begin{array}{cc}p_{1} & 0 \\ 0 & 0\end{array}\right)[U] Y\right)=\operatorname{tr}\left(P_{1} Y[P]\right)$. Thus (26) becomes

$$
\begin{equation*}
\alpha_{0}(h)<\sum_{P_{1} \in \mathscr{\mathscr { R }}_{h} \cap \mathscr{M}_{h}(\mathbb{Z}) F^{(n, h)}} \sum_{\text {primitive }} \exp \left(-\pi \operatorname{tr}\left(P_{1} Y[F]\right)\right) . \tag{27}
\end{equation*}
$$

From the reduction conditions, the number of M-reduced integral P_{1} with given diagonal elements $p_{1}, p_{2}, \ldots, p_{h}$ is seen to be $\ll p_{1}^{h-1} p_{2}^{h-2}$ $\ldots p_{h-1}$ (Actually, it is not hard to verify that the number of $\left(G L_{h}(\mathbb{Z})\right.$ equivalence) classes $\left\{P_{1}\right\}$ of integral symmetric matrices P_{1} with det
$P_{1} \leq d$ is $\ll d^{(h-1) / 2+\varepsilon}$ for any $\varepsilon>0$. We, however, do not need to use this fact). From (27), we are led to the simple estimate

$$
\alpha_{0}(h) \ll \sum_{p_{1}, \ldots, p_{h} \in \mathbb{N}} \sum_{F_{\text {primitive }}^{(n, h)}} \sum_{\left(p_{1} p_{2} \ldots p_{h}\right)^{h-1}} \exp \left(-\mathscr{X}^{\prime} \operatorname{tr}\left(\left(\begin{array}{ccc}
p_{1} & \ldots & 0 \tag{28}\\
\vdots & \ddots & \vdots \\
0 & \ldots & p_{h}
\end{array}\right) Y[F]\right)\right)
$$

with a constant $\mathscr{X}^{\prime}=\mathscr{X}^{\prime}(h)>0$. Writing $P^{*}=\left(\begin{array}{ccc}p_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & p_{h}\end{array}\right)$ and $F=$ $\left(f_{1} \ldots f_{h}\right)$, we have $P^{*} \geq E_{h}, \operatorname{tr}\left(P^{*} Y[F]\right) \geq \operatorname{tr}(Y[F])$ and $\operatorname{tr}\left(P^{*} Y[F]\right) \geq$ $\varepsilon^{\prime} \operatorname{tr}\left(P^{*} E_{h}[F]\right)=\varepsilon^{\prime} \sum_{1 \leq i \leq h} p_{i}{ }^{t} f_{i} f_{i} \geq \varepsilon^{\prime} \operatorname{tr}\left(P^{*}\right)$ since ${ }^{t} f_{i} f_{i} \geq 1(1 \leq i \leq h)$ in view of F being primitive. Thus

$$
\exp \left(-\mathscr{X}^{\prime} \operatorname{tr}\left(P^{*} Y[F]\right)\right) \leq \exp \left(-\frac{1}{2} \mathscr{X}^{\prime} \operatorname{tr}\left(Y^{*}[F]\right)\right) \exp \left(-\frac{1}{2} \mathscr{X}^{\prime} \varepsilon^{\prime} \operatorname{tr}\left(P^{*}\right)\right)
$$

Now since

$$
\sum_{p_{1}, \ldots, p_{h} \in \mathbb{N}}\left(p_{1} p_{2} \ldots p_{h}\right)^{h-1} \exp \left(-\frac{1}{2} \mathscr{X}^{\prime} \varepsilon^{\prime} \operatorname{tr}\left(p_{1}+\cdots+p_{h}\right)\right)<\infty
$$

we obtain from (28) that

$$
\begin{equation*}
\alpha_{0}(h) \ll \sum_{F_{\text {primitive }}^{(n, h)}} \exp \left(-\frac{1}{2} \mathscr{X}^{\prime} \operatorname{tr}(Y[F])\right) \tag{29}
\end{equation*}
$$

51 If, for $1 \leq i_{1}<i_{2}<\ldots<i_{p} \leq n$, the non-zero rows of any F in (29) have indices i_{1}, \ldots, i_{p}, then $p \geq h$ and $i_{p} \geq h$.

Hence

$$
\begin{gathered}
\operatorname{tr}(Y[F])=\sum_{\substack{1 \leq i \leq h \\
1 \leq k \leq n}} f_{k i} y_{k} f_{k i} \geq \sum_{1 \leq r \leq p} y_{i_{r}}\left(\sum_{1 \leq j=\leq h} f_{i_{r}, j}^{2}\right) \geq \sum_{1 \leq r \leq p} y_{r} \\
\geq \operatorname{tr}\left(Y_{h}\right) \geq \operatorname{tr}\left(Y_{\ell}\right)
\end{gathered}
$$

and further

$$
\operatorname{tr}(Y[F]) \geq \varepsilon^{\prime} \operatorname{tr}\left({ }^{t} F F\right)=\varepsilon^{\prime} \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq h}} f_{i j}^{2}
$$

It is now immediate that (for some $\mathscr{X}>0$)

$$
\begin{aligned}
\exp \left(-\frac{1}{2} \mathscr{X}^{\prime} \operatorname{tr}(Y[F]\right. & =\exp \left(-\frac{1}{4} \mathscr{X}^{\prime} \operatorname{tr}(Y[F]) \exp \left(-\frac{1}{4} \mathscr{X}^{\prime} \operatorname{tr}(Y[F])\right)\right. \\
& \leq \exp \left(-\mathscr{X} \operatorname{tr}\left(Y_{\ell}\right)\right) \exp \left(-\mathscr{X} \varepsilon^{\prime} \sum_{\substack{1 \leq i \leq n \\
1 \leq j \leq h}} f_{i j}^{2}\right)
\end{aligned}
$$

and as a result,

$$
\begin{aligned}
\alpha_{0}(h) & \ll \exp \left(-\mathscr{X} \operatorname{tr}\left(Y_{\ell}\right)\right)\left(\sum_{g \in \mathbb{Z}} \exp \left(-\varepsilon^{\prime} \mathscr{X} g^{2}\right)\right)^{h n} \\
& \ll \exp \left(-\mathscr{X} \operatorname{tr}\left(Y_{\ell}\right)\right)
\end{aligned}
$$

proving (25) and the lemma.
Let

$$
\mathrm{t}=\mathrm{t}_{n}(q):=\left\{X=\left(x_{i j}\right) \in \mathscr{M}_{n}(\mathbb{R}) \mid X={ }^{t} X, 0 \leq x_{i j}<q\right\}
$$

and, for any given M in Γ_{n} and M-reduced $T \rightarrow 0$ in Λ_{n}^{*} with $\min T \gg 0$ (as we have assumed prior to the statement of Lemma 1.4.1),

$$
\tilde{\beta}(M):=\left\{X \in \mathrm{t} \mid M<X+i T^{-1}>\varepsilon \mathfrak{g}_{n}\right\}
$$

so that $\tilde{\beta}(M)=\tilde{\beta}(N M)$ for every N in $\Gamma_{n, \infty}$. Let $M_{1}=E_{2 n}, M_{2}, \ldots, \quad 5$ M_{r}, \ldots be a complete set of representatives of the right cosets of $\Gamma_{n, \infty}$ in Γ_{n}. Now since $T=\left(t_{i j}\right)$ is M-reduced, $T \asymp\left(\begin{array}{ccc}t_{11} & \ldots & 0 \\ \because & 0 \\ 0 & \ldots . & t_{n n}\end{array}\right)$ and so the assumption $\min T \gg 0$ yields that $t_{i i} \gg 0$ for every $i \geq 1$. Thus $t_{i i}^{-1}$ is sufficiently small; for $T^{-1} \asymp\left(\begin{array}{ccc}t_{11}^{-1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & t_{11}^{-1}\end{array}\right), \min \left(T^{-1}\right)$ is also sufficiently small.

Hence if $\tilde{\beta}\left(E_{2 n}\right) \neq \emptyset$, then $X+i T^{-1} \in \mathfrak{g}_{n}$ for some X and as a consequence, $\min \left(T^{-1}\right) \geq \sqrt{3} / 2$, which gives a contradiction. For all but finitely many $i, \tilde{\beta}\left(M_{i}\right)=\emptyset$. Defining $\beta\left(M_{2}\right)=\tilde{\beta}\left(M_{2}\right)$ and $\beta\left(M_{i}\right)=$ $\tilde{\beta}\left(M_{i}\right) \cap\left\{\tilde{\beta}\left(M_{2}\right) \cup \ldots \cup \tilde{\beta}\left(M_{i-1}\right)\right\}^{c}$ inductively for $i \geq 3$, where $\left\}^{c}\right.$ denotes set complementation, the following lemma is immediate.

Lemma 1.4.2. $\mathrm{t}=\coprod_{i \geq 2} \beta\left(M_{i}\right)$
For $n=2$, the measure of the intersection of two distinct $\tilde{\beta}\left(M_{i}\right)$'s is 0 (and presumably this is true for $n=3$ as well).

For $M=(\stackrel{*}{C} \stackrel{*}{D}) \in \Gamma_{n}$ and a modular form f of degree n, weight k and level q and T as above, let

$$
\alpha(C, D)=\alpha(M)=\alpha\left(\Gamma_{n, \infty} M\right)=\int_{\beta(M)} f\left(X+i T^{-1}\right) e(-\operatorname{tr}(T X)) d X
$$

where $d X:=\prod_{1 \leq i \leq j \leq n} d x_{i j}$ denotes the volume element in t. Then if

$$
\begin{align*}
f(Z) & =\sum_{0 \leq T \in \Lambda_{n}^{*}} a(T) e(\operatorname{tr}(T Z)), \\
a(T) & =q^{-n(n+1) / 2} e^{2 \pi n} \int_{\mathrm{t}} f\left(X+i T^{-1}\right) e(-\operatorname{tr}(T X)) d X \\
& =q^{-n(n+1) / 2} e^{2 \pi n} \sum_{i \geq 2} \alpha\left(M_{i}\right), \text { by Lemma 1.4.2 } \\
& =O\left(\sum_{i \geq 2} \alpha\left(M_{i}\right)\right) \tag{30}
\end{align*}
$$

Lemma 1.4.3. For f as above vanishing at all cusps and $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in$ Γ_{n} with $M<Z>\in \mathfrak{g}_{n}$,

$$
f(Z)=\operatorname{abs}\left(\operatorname{det}(C Z+D)^{-k}\right) O(\exp (-\mathscr{X} \min (\operatorname{Im}(M<Z>))
$$

for a constant \mathscr{X}.
Proof. (a) Since $\left[\Gamma_{n}: \Gamma_{n}(q)\right]<\infty$ and further $f\left|M_{1} M_{2}=\left(f \mid M_{1}\right)\right| M_{2}$ along with $f \mid M=v(M) f$, for all M in $\Gamma_{n}(q)$, where $|v(M)|=1$, the number of functions $\operatorname{abs}(f \mid N)$ for N in Γ_{n} is finite.
(b) If $N=\left(\stackrel{*}{C^{\prime}} \stackrel{*}{D^{\prime}}\right) \in \Gamma_{n}$, then $|f|=|f|\left(N^{-1} N\right) \mid=\left(\operatorname{abs} \operatorname{det}\left(C^{\prime} Z+\right.\right.$ $\left.\left.D^{\prime}\right)\right)^{-k}\left|\left(f \mid N^{-1}\right)(N<Z>)\right|$.
(c) If Z is in the fundamental domain \mathcal{F}_{n} for Γ_{n} in $\mathscr{G}_{n}, Y=\left(y_{i j}\right):=$ $\operatorname{Im}(Z)$ is M-reduced and hence belongs to $S_{t, u}$ for some t, u depending only on n, by Theorem 1.3 .1 (ii). We also know from (24) that $\min Y \geq \sqrt{3} / 2$. Since f vanishes at all cusps,

$$
(f \mid N)(Z)=\sum_{\substack{0 \leq p \in \Lambda_{n}^{*} \\ \operatorname{rank} P \geq 1}} a(p ; N) e(\operatorname{tr}(P Z) / q)
$$

for every N in Γ_{n}. Applying Lemma 1.4.1 we have then, for every N in $\Gamma_{n},|(f \mid N)(Z)|=O\left(\exp \left(-\mathscr{X} y_{11}\right)\right)=O(\exp (-\mathscr{X}$ $\min (\operatorname{Im}(Z))))$.
(d) Let $M<Z>\in \mathfrak{g}_{n}$; then there exist U in $G L_{n}(\mathbb{Z})$ and integral symmetric S such that ${ }^{t} U M<Z>U+S \in \mathscr{F}_{n}$. For $N=$ $\left(\begin{array}{cc}{ }^{t} U & S U^{-1} \\ 0 & U^{-1}\end{array}\right) M$, we have $\min (\operatorname{Im} N<Z>)=\min (\operatorname{Im}(M<Z>)) \geq$ $\sqrt{3} 2$ and further $N<Z>$ is M-reduced. From b), c) and a), it is immediate that

$$
\begin{aligned}
|f(Z)| & =\operatorname{abs}\left(\operatorname{det}(C Z+D)^{-k}\right)\left|\left(f \mid N^{-1}\right)(N<Z>)\right| \\
& =\operatorname{abs}\left(\operatorname{det}(C Z+D)^{-k}\right) O(\exp (-\mathscr{X} \min (\operatorname{Im}(M<Z>)))
\end{aligned}
$$

Lemma 1.4.3 implies at once

Lemma 1.4.4. For f, T and M as above,

$$
\begin{aligned}
|\alpha(M)| \ll & \int_{\beta(M)} \operatorname{abs}\left(\operatorname{det}\left(C\left(X+i T^{-1}\right)+D\right)\right)^{-k} \\
& \quad \exp \left(-\mathscr{X} \min \left(\operatorname{Im}\left(M<X+i T^{-1}>\right)\right)\right) d X
\end{aligned}
$$

Definition. A pair of (n, n) matrices C, D is called a symmetric pair if $C^{t} D=D^{t} C$ and is said to be coprime, if, whenever GC and GD are both integral, G is necessarily integral.

If $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{n}$, then $(C D)$ is a coprime symmetric pair. Conversely, it is not hard to prove that given any coprime symmetric pair C, D of (n, n) integral matrices, there exists $M=(\stackrel{*}{C D})$ in Γ_{n}.

Definition. Two coprime symmetric pairs C, D and C_{1}, D_{1} are called associated if there exists U in $G L_{n}(\mathbb{Z})$ such that $(C D)=U\left(C_{1} D_{1}\right)$.

Let $\{C, D\}$ denote the equivalence class of all (n-rowed) coprime symmetric pairs associated with a given pair C, D. We wish to determine a special representative in each class $\{C, D\}$, where $r=\operatorname{rank} C$. If $r=0$, then $C=0$; then D is necessarily in $G L_{n}(\mathbb{Z})$ and we choose O, E as a representative. Let then $0<r \leq n$. There exist U_{1}, U_{2} in $G L_{n}(\mathbb{Z})$, such that

$$
U_{1} C=\left(\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right)^{t} U_{2} \text { where } C_{1}=C_{1}^{(r, r)} \text { with } \operatorname{det} C_{1} \neq 0
$$

If we write analogously

$$
U_{1} D=\left(\begin{array}{ll}
D_{1} & D_{2} \\
D_{3} & D_{4}
\end{array}\right) U_{2}^{-1} \text { with } D_{1}=D_{1}^{(r, r)}
$$

then $C^{t} D=D^{t} C$ implies $U_{1} C, U_{1} D$ is symmetric and so

$$
\left(\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
{ }^{t} D_{1} & { }^{t} D_{3} \\
{ }^{t} D_{2} & { }^{t} D_{4}
\end{array}\right)=\left(\begin{array}{ll}
D_{1} & D_{2} \\
D_{3} & D_{4}
\end{array}\right)\left(\begin{array}{cc}
{ }^{t} C_{1} & 0 \\
0 & 0
\end{array}\right)
$$

Thus $C_{1}{ }^{t} D_{1}=D_{1}{ }^{t} C_{1}$ and $D_{3}=0$, so that C_{1}, D_{1} is symmetric.
Since $\left(\begin{array}{ccc}C_{1} & D_{1} & D_{2} \\ 0 & 0 & D_{4}\end{array}\right)$ is primitive, $D_{4} \in G L_{n-r}(\mathbb{Z})$ and further $\left(C_{1} D_{1}\right)$ is primitive. Thus the symmetric pair C_{1}, D_{1} is also coprime.

If Q_{1}, Q_{2} are primitive (n, r) matrices (i.e. capable of being completed to elements of $G L_{n}(\mathbb{Z})$), we say Q_{1}, Q_{2} are associated, whenever $Q_{1}=Q_{2} U_{3}$ for some $U_{3} \in G L_{r}(\mathbb{Z})$. We denote the class of matrices associated with Q_{1} by $\left\{Q_{1}\right\}$. Hence replacing $U_{2}=\left(Q^{*}\right)$ by $U_{2}\left(\begin{array}{cc}U_{3} & 0 \\ 0 & E_{n-r}\end{array}\right)$ with $U_{3} \in G L_{r}(\mathbb{Z})$, we can ensure that the primitive matrix $Q^{(n, r)}$ is a chosen representative in its class. Under $U_{2} \mapsto U_{2}\left(\begin{array}{cc}U_{3} & 0 \\ 0 & E_{n-r}\end{array}\right)$ with $U_{3} \in G L_{r}(\mathbb{Z})$, the form of $U_{1} C, U_{1} D$ is unchanged, except for the replacement of C_{1}, D_{1}, Q by $C_{1}{ }^{t} U_{3}, D_{1} U_{3}^{-1}, Q U_{3}$ respectively. Replacing now U_{1} by $\left(\begin{array}{cc}U_{4} & 0 \\ 0 & E_{n-r}\end{array}\right) U_{1}$ with U_{4} in $G L_{r}(\mathbb{Z})$, we can replace C_{1}, D_{1} by any representative in its class $\left\{C_{1}, D_{1}\right\}$. Let us fix, for $1 \leq r \leq n$, from the classes of r-rowed coprime symmetric pairs a complete set of representatives as well as a complete system of representatives F from the
classes $\{F\}$ of primitive (n, r) matrices and to each F, let us assign a matrix $U=(F *)$ in $G L(n, \mathbb{Z})$, once for all. Thus we have established already a part of

Lemma 1.4.5. Let $F=F^{(n, r)}$ run over a complete set of representatives of the classes $\{F\}$ of primitive matrices and C_{1}, D_{1} over a complete set of representatives of classes $\left\{C_{1}, D_{1}\right\}$ with C_{1}, D_{1} coprime and $\operatorname{det} C_{1} \neq 0$. To each such F, let $U=(F *) \in G L_{n}(\mathbb{Z})$ be assigned once for all. Then the pairs

$$
C=\left(\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right){ }^{t} U, D=\left(\begin{array}{cc}
D_{1} & 0 \\
0 & E_{n-r}
\end{array}\right) U^{-1}
$$

form a complete set of representatives of the classes $\{C, D\}$ with C, D coprime symmetric and $\operatorname{rank} C=r$.

Proof. What remains to be proved is only that the different pairs $C, D 57$ obtained in this manner belong to different classes. If possible, let

$$
C^{*}=\left(\begin{array}{cc}
C_{1}^{*} & 0 \\
0 & 0
\end{array}\right)^{t} U^{*}, D^{*}=\left(\begin{array}{cc}
D_{1}^{*} & 0 \\
0 & E_{n-r}
\end{array}\right) U^{*-1}
$$

satisfy $C^{*}=U_{1} C, D^{*}=U_{1} D$ for some U_{1} in $G L_{n}(\mathbb{Z})$. From this, we get $C^{* t} D=D^{* t} C$ and so

$$
\left(\begin{array}{cc}
C_{1}^{*} & 0 \\
0 & 0
\end{array}\right){ }^{t} U^{* t} U^{-1}\left(\begin{array}{cc}
t \\
D_{1} & 0 \\
0 & E_{n-r}
\end{array}\right)=\left(\begin{array}{cc}
D_{1}^{*} & 0 \\
0 & E_{n-r}
\end{array}\right) U^{*-1} U\left(\begin{array}{cc}
{ }^{t} C_{1} & 0 \\
0 & 0
\end{array}\right)
$$

Writing

$$
{ }^{t} U^{* t} U^{-1}=\left(\begin{array}{ll}
V_{1} & V_{2} \\
V_{3} & V_{4}
\end{array}\right), U^{*-1} U=\left(\begin{array}{ll}
W_{1} & W_{2} \\
W_{3} & W_{4}
\end{array}\right)
$$

we obtain

$$
\left(\begin{array}{cc}
C_{1}^{*} V_{1}^{t} D_{1} & C_{1}^{*} V_{2} \tag{30}\\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
D_{1}^{*} W_{1}^{t} C_{1} & 0 \\
W_{3}^{t} C_{1} & 0
\end{array}\right) .
$$

Hence $V_{2}=0, W_{3}=0$ and from $U=U^{*}\left(\begin{array}{cc}W_{1} & W_{2} \\ 0 & W_{4}\end{array}\right)$, it follows then that $W_{1} \in G L_{r}(\mathbb{Z})$. If $U=(F G)$ and $U^{*}=\left(F^{*} G^{*}\right)$, then $F=F^{*} W$, i.e. $\{F\}=\left\{F^{*}\right\}$ and so $F=F^{*}$ giving $U=U^{*}$, since, corresponding to F, we have assigned U once for all. Hence

$$
U_{1}\left(\begin{array}{ccc}
C_{1} & D_{1} & 0 \\
0 & 0 & E_{n-r}
\end{array}\right)=\left(\begin{array}{ccc}
C_{1}^{*} & D_{1}^{*} & 0 \\
0 & 0 & E_{n-r}
\end{array}\right) \text { and so } U_{1}=\left(\begin{array}{cc}
U_{1}^{\prime} & 0 \\
* & *
\end{array}\right) .
$$

But since U_{1} is in $G L_{n}(\mathbb{Z}), U_{1}^{\prime}$ is in $G L_{r}(\mathbb{Z})$ and so $\left\{C_{1}, D_{1}\right\}=\left\{C_{1}^{*} D_{1}^{*}\right\}$ i.e. $C_{1}=C_{1}^{*}, D_{1}=D_{1}^{*}$ and the lemma is proved.

Lemma 1.4.6. Between the family of classes $\{C, D\}$ of n-rowed coprime symmetric paris C, D with $\operatorname{det} C \neq 0$ and the set of all (n, n) rational symmetric matrices P, there exists a one - one correspondence given by $\{C, D\} \leftrightarrow p\left(=C^{-1} D\right)$.

Proof. Clearly $\{C, D\}$ uniquely determines $P=C^{-1} D$. Suppose now $\left\{C_{1}, D_{1}\right\}$ and $\{C, D\}$ are mapped into the same P i.e. $C_{1}^{-1} D_{1}=C^{-1} D=$ ${ }^{t} D^{t} C^{-1}$ so that $C_{1}{ }^{t} D=D_{1}{ }^{t} C$. This in turn means at once that for $M=$ $(\stackrel{*}{C} \stackrel{*}{D}), M_{1}=\left(\stackrel{*}{C_{1}} \stackrel{*}{D_{1}}\right)$ in $\Gamma_{n}, M_{1} M^{-1}=(\stackrel{*}{0} \stackrel{*}{U})$ with $U \in G L_{n}(\mathbb{Z})$ and therefore $\{C, D\}=\left\{C_{1}, D_{1}\right\}$. We have thus shown that $\{C, D\} \mapsto P=$ $C^{-1} D$ is well-defined and one-one and we need only to show that it is onto. For any given rational symmetric (n, n) matrix P, there exist U_{3}, U_{4} in $G L_{n}(\mathbb{Z})$ such that $U_{3} P U_{4}$ is a diagonal matrix with diagonal elements $a_{i} / b_{i}(1 \leq i \leq n)$, for a_{i}, b_{i} in \mathbb{Z} with $\left(a_{i}, b_{i}\right)=1$ and $b_{i}>$ 0 . If we now take $C_{1}=B_{0} U_{3}, D_{1}=A_{0} U_{4}^{-1}$ with diagonal matrices $A_{0}=\left[a_{1}, \ldots, a_{n}\right]$ and $B_{0}=\left[b_{1}, \ldots, b_{n}\right]$, then clearly $P=C_{1}^{-1} D_{1}$. Since $P={ }^{t} P$, we have $C_{1}{ }^{t} D_{1}=D_{1}{ }^{t} C_{1}$. Since $\left(C_{1} D_{1}\right)\left(\begin{array}{cc}U_{1}^{-1} & 0 \\ 0 & U_{4}\end{array}\right)=\left(B_{0} A_{0}\right)$ is clearly primitive, it follows that C_{1}, D_{1} is a coprime symmetric pair corresponding to $P\left(=C^{-1} D\right)={ }^{t} P$.

As an immediate corollary of Lemma 1.4.6 we see that $\Gamma_{n, \infty} \backslash\{M=$ $\left.\left.\left(\begin{array}{ll}A & B \\ C & B\end{array}\right) \in \Gamma_{n} \right\rvert\, \operatorname{det} C \neq 0\right\}$ is in one - one correspondence with $\left\{P={ }^{t} p \in\right.$ $\left.\mathscr{M}_{n}(Q)\right\}$ via $C, D \mapsto\left(C^{-1} D=\right) P$.

Definition. For $P=C^{-1} D={ }^{t} P \in \mathscr{M}_{n}(Q)$, define $\lceil P=\operatorname{abs}(\operatorname{det} C)$. (It is clear that if $C^{-1} D=P=C_{1}^{-1} D_{1}$, then abs $\operatorname{det} C=\operatorname{abs} \operatorname{det} C_{1}$ from above and so \overparen{P} is well-defined).

The following three lemmas have been reproduced from Siegel [25], for the sake of completeness.

Lemma 1.4.7. Let K be an n-rowed diagonal matrix $\left[c_{1}, c_{2}, \ldots, c_{n}\right]$ with integers $c_{1}, \ldots, c_{n}, c_{i} \mid c_{i+1}(1 \leq i \leq n-1)$ as diagonal entries and $\mathscr{K}=$
$\left\{U \in G L_{n}(\mathbb{Z}) \mid K U K^{-1}\right.$ integral $\}$. Then

$$
\left[G L_{n}(\mathbb{Z}): \mathscr{K}\right] \leq \prod_{p \mid c_{n}}\left(1-p^{-1}\right)^{1-n} \prod_{1 \leq k \leq n} c_{k}^{2 k-n-1}
$$

where p runs over the distinct primes dividing c_{n}.
Proof. Since $Q:=G L_{n}(\mathbb{Z} ; q)$ is a subgroup of \mathscr{K} for every positive multiple q of c_{n}, we have $\left[G L_{n}(\mathbb{Z}): \mathscr{K}\right]=\left[G L_{n}(\mathbb{Z}) / Q: \mathscr{K} / Q\right]$. Now $G L_{n}(\mathbb{Z}) / Q$ is isomorphic to the group of all n-rowed integral matrices V modulo q with $\operatorname{det} V \equiv \pm 1(\bmod q)$. In view of the Chinese Remainder Theorem, it suffices to show that

$$
\left[\mathscr{U}^{*}: \mathscr{K}^{*}\right] \leq\left(1-p^{-1}\right)^{1-n} \prod_{1 \leq k \leq n} c_{k}^{2 k-n-1}
$$

under the conditions that $q=c_{n}$ is a power of a fixed prime number p. \mathscr{U}^{*} consists of all n-rowed integral matrices V modulo q with $\operatorname{det} V \equiv$ $\pm 1(\bmod \mathrm{q})$ and \mathscr{K}^{*} is the subgroup of all such V with integral $K V K^{-1}$.

Let \mathscr{V}_{n} be the group of (n, n) integral V modulo q with $(\operatorname{det} V, q)=1$ and \mathscr{K}_{n} the subgroup of all V in \mathscr{V}_{n} with integral $K V K^{-1}$. Then it is clear that $\left[\mathscr{V}_{n}: \mathscr{U}^{*}\right]=\left[\mathscr{K}_{n}: \mathscr{K}^{*}\right]$ and so $\left[\mathscr{V}_{n}: \mathscr{K}_{n}\right]=\left[\mathscr{U}^{*}: \mathscr{K}^{*}\right]$. If $\sharp \mathscr{V}_{n}$ and $\sharp \mathscr{K}_{n}$ denote the orders of \mathscr{V}_{n} and \mathscr{K}_{n} respectively, it suffices then to show that

$$
\begin{equation*}
\sharp \mathscr{K}_{n} \geq\left(\sharp \mathscr{V}_{n}\right)\left(1-p^{-1}\right)^{n-1} \prod_{1 \leq k \leq n} c_{k}^{n-2 k+1} . \tag{31}
\end{equation*}
$$

It is well-known that

$$
\begin{equation*}
\forall \mathscr{V}_{n}=q^{n^{2}} \prod_{1 \leq k \leq n}\left(1-p^{-k}\right) . \tag{32}
\end{equation*}
$$

When $c_{1}=c_{n}$, we have $K=c_{1} E_{n}, \mathscr{K}_{n}=\mathscr{V}_{n}$ and (31) is true, since $\sum_{1 \leq k \leq n}(n+1-2 k)=0$; in particular, this holds for $n=1$. Let us apply induction on n and suppose that $c_{1}<c_{n}$. Define h by the condition that $c_{h}<c_{h+1}=c_{n}$, then $1 \leq h \leq n-1$. Let $V=\left(v_{k \ell}\right)=$ $\left(\begin{array}{ll}V_{1} & V_{2} \\ V_{3} & V_{4}\end{array}\right)$ with $V_{1}=V_{1}^{(h, h)}$. The matrices V and $K V K^{-1}$ are both integral if and only if $v_{k \ell}$ and $c_{k} v_{k \ell} c_{\ell}^{-1}$ are in \mathbb{Z} for $k, \ell=1,2, \ldots, n$. Then
V_{3} and V_{4} are arbitrary integral matrices, while V_{1} and V_{2} are integral matrices subject to the conditions $v_{k \ell} \equiv 0\left(\bmod \mathrm{c}_{\ell} / \mathrm{c}_{\mathrm{k}}\right)$ for $k \leq h, k<$ ℓ. Since $p \mid\left(c_{\ell} / c_{k}\right)$ for $k \leq h<\ell$, we have $V_{2} \equiv 0(\bmod \mathrm{p})$ and so $\operatorname{det} V \equiv\left(\operatorname{det} V_{1}\right)\left(\operatorname{det} V_{4}\right)(\bmod \mathrm{p})$. Consequently, we get the elements V of \mathscr{K}_{n} as follows: V_{4} is any element of \mathscr{V}_{n-h}, V_{3} is an arbitrary integral matrix modulo q, V_{2} is any matrix modulo q satisfying the conditions $c_{k}^{-1} c_{\ell} \mid v_{k \ell}$ for $k \leq h<\ell$ and V_{1} is any element of \mathscr{K}_{h}. It follows that $\sharp \mathscr{K}_{n}=a q^{h(n-h)} \cdot \sharp \mathscr{V}_{n-h} \cdot \sharp \mathscr{K}_{h}$, where a is the number of matrices V_{2}, namely $a=q^{h(n-h)} \prod_{k \leq h<\ell}\left(c_{k} / c_{\ell}\right)$. Applying (31) with h instead of n and (32) with $h, n-h$ in place of n, we obtain

$$
\begin{gathered}
\sharp \mathscr{K}_{n} \geq q^{n^{2}}\left(1-p^{-1}\right)^{h-1} \prod_{1 \leq k \leq h} c_{h}^{h-2 k+1} \prod_{k \leq h<\ell}\left(c_{k} / c_{\ell}\right) \\
\prod_{1 \leq k \leq h}\left(1-p^{-k}\right) \prod_{1 \leq k \leq n-h}\left(1-p^{-k}\right)
\end{gathered}
$$

61 Since

$$
q^{n^{2}} \prod_{1 \leq k \leq h}\left(1-p^{-k}\right)>\forall \mathscr{V}_{n}, \prod_{1 \leq k \leq n-h}\left(1-p^{-k}\right) \geq\left(1-p^{-1}\right)^{n-h}
$$

and

$$
\prod_{1 \leq k \leq h} c_{k}^{h-2 k+1} \prod_{k \leq h<\ell}\left(c_{k} / c_{\ell}\right)=c_{n}^{-h(n-h)} \prod_{1 \leq k \leq h} c_{j}^{n-2 k+1}=\prod_{1 \leq k \leq n} c_{k}^{n-2 k+1}
$$

the assertion (31) follows and the lemma is proved.
The exact value of $\left[G L_{n}(\mathbb{Z}): \mathscr{K}\right]$ can be obtained from the paper of A.N. Andrianov on 'Spherical functions for $G L_{n}$ over local fields and summation of Hecke series, Math. Sbornik 12 (1970), 429-452.

Lemma 1.4.8. Let $A\left(c_{1}, \ldots, c_{n}\right)$ denote the number of modulo 1 incongruent rational (n, n) symmetric matrices $P=C^{-1} D$ whose 'denominators' C have c_{1}, \ldots, c_{n} as elementary divisors. Then

$$
A\left(c_{1}, \ldots, c_{n}\right) \leq \prod_{p \mid c_{n}}\left(1-p^{-1}\right)^{1-n} \prod_{1 \leq k \leq n} c_{k}^{k} .
$$

Proof. Let C^{*} be any (n, n) integral matrix with c_{1}, \ldots, c_{n} as elementary divisors and let $C^{*}=U_{0} K U$ with $U_{0}, U \in G L_{n}(\mathbb{Z})$ and diagonal $K=$ [c_{1}, \ldots, c_{n}]. If $A\left(C^{*}\right)$ is the number of modulo 1 incongruent symmetric R with integral $C^{*} R$ and if $R\left[^{t} U\right]=R_{1}=\left(r_{k \ell}\right)$ say, then $C^{*} R^{t} U=U_{0} K R_{1}$ and so $A\left(C^{*}\right)=A(K)$. The matrix $K R_{1}$ is integral if and only if $c_{k} r_{k \ell}$ is in \mathbb{Z} for $1 \leq k, \ell \leq n$. Since $r_{k \ell}=r_{\ell k}$ and $c_{1}\left|c_{2}\right| \ldots \mid c_{n}$, we obtain

$$
\begin{equation*}
A(K)=\prod_{1 \leq k \leq n} c_{k}^{n-k+1} \tag{33}
\end{equation*}
$$

Now, the number of modulo 1 incongruent symmetric R with the same denominator C^{*} is at most $A\left(C^{*}\right)$. On the other hand, $C^{*}=U_{0} K U$ and $C_{1}=U_{1} K U_{2}$ with $U_{1}, U_{2} \in G L_{n}(\mathbb{Z})$ are denominators of the same rational symmetric matrix R, if and only if $C^{*} C_{1}^{-1} \in G L_{n}(\mathbb{Z})$; the latter implies that $K U_{2} U^{-1} K^{-1}$ is integral, $U_{2} U^{-1}$ is in $\mathscr{K}:=\{V \in$ $G L_{n}(\mathbb{Z}) \mid K V K^{-1}$ is integral $\}$ and so U, U_{2} are in the same right coset of \mathscr{K} in $G L_{n}(\mathbb{Z})$. Thus $A\left(c_{1}, \ldots, c_{n}\right) \leq\left[G L_{n}(\mathbb{Z}): \mathscr{K}\right] A(K)$ and the lemma is immediate from (33) and Lemma 1.4.7

We need one more lemma, for our later purposes.
Lemma 1.4.9. Let R run over a complete set of modulo 1 incongruent (n, n) rational symmetric matrices. Then the Dirichlet series

$$
\psi(s):=\left.\sum_{R \bmod 1} \sqrt{R}\right|^{-s-n}
$$

converges for $s>1$. If $u>0$ and $s>1$, then

$$
u^{-s} \sum_{|R|_{<u}}|R|^{-n}+\sum_{|R| \geq u}| |^{-n-s}<a\left(2+\frac{1}{s-1}\right) u^{1-s}
$$

where a depends only on n.
Proof. For two Dirichlet series $\alpha(s)=\sum_{n} a_{n} \lambda_{n}^{-s}$ and $\beta(s)=\sum_{n} b_{n} \lambda_{n}^{-s}$, we write $\alpha(s)<\beta(s)$ if $\left|a_{n}\right| \leq\left|b_{n}\right|$ for every n. From the definition of $A\left(c_{1}, \ldots, c_{n}\right)$ above, we have $\psi(s)=\sum_{c_{1}\left|c_{2}\right| . . \mid c_{n}} A\left(c_{1}, \ldots, c_{n}\right)\left(c_{1} \ldots c_{n}\right)^{-n-s}$ where c_{1}, \ldots, c_{n} run over all systems of natural numbers with $c_{1}\left|c_{2}\right|$.
$\mid c_{n}$. From Lemma 1.4 .8 we obtain, on letting c_{1}, \ldots, c_{n} run over all natural numbers, that

$$
\begin{aligned}
\psi(s) & <\sum_{c_{1}, \ldots, c_{n}} \prod_{p \mid c_{n}}\left(1-p^{-1}\right)^{1-n} \prod_{1 \leq k \leq n} c_{k}^{k-n-s} \\
& =\prod_{p}\left(1+\left(1-p^{-1}\right)^{1-n} \sum_{1 \leq \ell<\infty} p^{-\ell s} \prod_{1 \leq k \leq n-1} \zeta(s+n-k)\right.
\end{aligned}
$$

Let

$$
v=2^{n}+n-3, \gamma(s)=\zeta^{v}(s+1) \quad \text { and } \quad b_{p}:=p\left(\left(1-p^{-1}\right)^{1-n}-1\right)
$$

Then $0 \leq b_{p} \leq 2^{n}-2=v-n+1$ for all $p \geq 2$ and
$1+\left(1-p^{-1}\right)^{1-n} \sum_{1 \leq \ell<\infty} p^{-\ell s}=\left(1+b_{p} p^{-1-s}\right) /\left(1-p^{-s}\right)\left(1-p^{-1-a}\right)^{n-\nu-1} /\left(1-p^{-s}\right)$
whence

$$
\begin{equation*}
\psi(s)<\gamma(s) \zeta(s) \tag{34}
\end{equation*}
$$

proving the first assertion of the lemma.
Let $\psi(s)=\sum_{1 \leq n<\infty} a_{n} n^{-s}$ and $\gamma(s)=\sum_{1 \leq n<\infty} d_{n} n^{-s}$. Further, let $\sigma_{k}=$ $\sum_{1 \leq \ell \leq k} a_{\ell}, \gamma(1)=\zeta^{\gamma}(2)=a$. Then, from (34), we have

$$
\sigma_{k} \leq \sum_{1 \leq \ell \leq k} d_{\ell}\left[\frac{k}{\ell}\right] \leq k \sum_{1 \leq \ell \leq k} d_{\ell} / \ell<k \sum_{1 \leq \ell<\infty} d_{\ell} / \ell=a k(k=1,2, \ldots)
$$

Hence, for all $u>0$,

$$
\begin{equation*}
\sum_{|R|<u} \overparen{R}^{-n}=\sum_{\ell<u} a_{\ell}<a u \tag{35}
\end{equation*}
$$

64 Moreover, for

$$
s>1, \sum_{|R| \geq u} \overparen{R}^{-n-s}=\sum_{k \geq u} a_{k} k^{-s}
$$

$$
\begin{align*}
& =\sum_{k \geq u}\left(\sigma_{k}-\sigma_{k-1}\right)^{k^{-s}} \leq \sum_{k \geq u} \sigma_{k}\left(k^{-s}-(k+1)^{-s}\right) \\
& =s \sum_{k \geq u} \sigma_{k} \int_{k}^{k+1} x^{-s-1} d x<a s \\
& \quad \sum_{k \geq u} \int_{k}^{k+1} x^{-s} d x \leq a s \int_{u}^{\infty} x^{-s} d x \\
& =a s u^{1-s} /(s-1) . \tag{36}
\end{align*}
$$

The second assertion of the lemma follows from (35) and (36).
It is known that $\psi(s)=\frac{\zeta(s)}{\zeta(s+n)} \prod_{r=1}^{n} \frac{\zeta(2 s+n-r)}{\zeta(2 s+2 n-2 r)}$ where ζ is Riemann's zeta function. This assertion may be found in H. Maass [17]. For a proof, see Kitaoka's paper 'Dirichlet series in the theory of Siegel modular forms, Nagoya Math.J. 35 (1984), 73-84 (cf. G. Shimura: On Eisenstein series, Duke Math.J.50(1983), 417-476).

Returning to the problem of estimating $\sum_{M} \alpha(M)$, we first state the following Propositions, which essentially go back to Siegel [25].

Proposition 1.4.10. For f and T as above and half-integral $k>n+1 / 2$, we have

$$
\sum_{\substack{A \tag{37}\\
\left(\begin{array}{c}
A \\
C
\end{array} \\
B \\
D \\
\operatorname{det} C \neq \neq 0\right.}} \alpha(M) \ll(\min T)^{(n+1-k) / 2}(\operatorname{det} T)^{k-(n+1) / 2}
$$

if $\min T>\mathscr{X}>0$ for \mathscr{X} depending only on n.
Proposition 1.4.11. For f and T as above and half-integral $k \geq n+1 / 2$, we have

$$
\sum_{\substack{\left.A \tag{38}\\
\left(\begin{array}{c}
A \\
C
\end{array}\right)=M \in \Gamma_{n, \infty} \right\rvert\, \Gamma \\
\operatorname{det} C=0}} \alpha(M) \ll(\min T)^{n-k}(\operatorname{det} T)^{k-(n+1) / 2}
$$

provided that $\operatorname{det} T \ll(\min T)^{n}$ and $\min T>\mathscr{X}>0$ as in Proposition 1.4.10

Remarks. Since $(n+1-k) / 2<0$ for $k \geq n+3 / 2$, the right hand side of (37) is of a strictly lower order than the term $(\operatorname{det} T)^{k-(n+1) / 2}$ occurring in the corresponding Fourier coefficient of Siegel's genus invariant for $S>0$; therefore, for $\min T \gg 0$, we have a truly asymptotic formula $r(S, T)$. We also note that the condition $\operatorname{det} T \ll(\min T)^{n}$ in Proposition 1.4.11 is not necessary for the proof of (37).

Lemma 1.4.12. For $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{n}$ with $\operatorname{det} C \neq 0$ and real $X={ }^{t} X$, we have $\operatorname{Im}\left(M<X+i T^{-1}>\right)=\left(T\left[X+C^{-1} D\right]+T^{-1}\right)^{-1}\left[C^{-1}\right] \leq T\left[C^{-1}\right]$. Further $\beta(M) \neq \emptyset$ implies that $\min \left(T\left[C^{-1}\right]\right) \geq \sqrt{3} / 2$.

Proof. Indeed for

$$
Z=X+i Y \in \mathscr{G}_{n}, \operatorname{Im}(M<Z>)={ }^{t}(C \bar{Z}+D)^{-1} Y(C Z+D)^{-1}
$$

so that

$$
\begin{aligned}
(\operatorname{Im}(M<Z>))^{-1} & =(C X+D+i C Y) Y^{-1}\left({ }^{t}(C X+D)-i Y^{t} C\right) \\
& =Y^{-1}\left[X^{t} C+{ }^{t} D\right]+Y\left[^{t} C\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{Im}\left(M<X+i T^{-1}>\right) & =\left(T\left[X+C^{-1} D\right]+T^{-1}\right)^{-1}\left[C^{-1}\right] \leq\left(T^{-1}\right)^{-1}\left[C^{-1}\right] \\
& =T\left[C^{-1}\right] .
\end{aligned}
$$

If $X_{1} \in \beta(M)$, then $M<X_{1}+i T^{-1}>\epsilon \mathrm{g}_{n}$ and hence $\min T\left[C^{-1}\right] \geq$ $\min \left(\operatorname{Im}\left(M<X_{1}+i T^{-1}>\right)\right) \geq \sqrt{3} / 2$.

For given $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{n}$ with $\operatorname{det} C \neq 0$, we now proceed to estimate the series $\sum_{S \in \Lambda} \alpha\left(M\left(\begin{array}{cc}E_{n} & S \\ 0 & E_{n}\end{array}\right)\right)=\sum_{S \in \Lambda} \alpha(C, D+C S)$. Applying Lemmas 1.4.4 and 1.4.12 we have $\sum_{S \in \Lambda} \alpha(C, D+C S)$

$$
\begin{aligned}
\ll & \sum_{S \in \Lambda} \int_{\substack{\beta\left(M\left(\begin{array}{c}
E_{n} \\
0 \\
E_{n}
\end{array}\right)\right)}}\left(\operatorname{abs}\left(\operatorname{det}\left(C\left(X+i T^{-1}\right)+D+C S\right)\right)^{-k}\right. \\
& \exp \left(-\mathscr{X} \min \left(\left(T\left[X+C^{-1} D+S\right]+T^{-1,-1}\left[C^{-1}\right]\right)\right) d X\right.
\end{aligned}
$$

$$
\begin{aligned}
& \ll q^{n(n+1) / 2} \int_{\mathscr{S}_{n}}\left(\operatorname{abs}\left(\operatorname{det}\left(C\left(X+i T^{-1}\right)\right)\right)^{-k}\right. \\
& \exp \left(-\mathscr{X} \min \left(\left(T[X]+T^{-1}\right)^{-1}\left[C^{-1}\right]\right)\right) d X
\end{aligned}
$$

where the integration is now over the $n(n+1) / 2$-dimensional space \mathscr{S}_{n} of all real $X={ }^{t} X$. For $X \in \mathscr{S}_{n}$, we define Θ by $\Theta=T^{1 / 2} X T^{1 / 2}$ where $T^{1 / 2}$ is the unique positive definite square root of T. Then $d X=$ $(\operatorname{det} T)^{-(n+1) / 2} d \Theta$ and

$$
\begin{aligned}
& \sum_{S \in \Lambda} \alpha(C, D+C S) \ll(\operatorname{det} T)^{k-(n+1) / 2}(\operatorname{abs} \operatorname{det} C)^{-k} \int_{\varphi_{n}} \\
&\left.\operatorname{det}\left(\Theta^{2}+E\right)^{-k / 2} \exp \left(-\mathscr{X} \min \left(\Theta^{2}+E_{n}\right)^{-1} \left\lvert\, T^{\frac{1}{2}} C^{-1}\right.\right]\right) d \Theta
\end{aligned}
$$

Writing

$$
\begin{aligned}
\Theta & =\left(\begin{array}{ccc}
w_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & w_{n}
\end{array}\right)[V] \text { with orthogonal } V^{(n, n)} \\
& =\left(v_{i j}\right) \text { and }\left|w_{1}\right| \geq \ldots \geq\left|w_{n}\right|
\end{aligned}
$$

we have

$$
\begin{aligned}
& \Theta^{2}+E_{n}=\left(\begin{array}{ccc}
w_{1}^{2}+1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & w_{n}^{2}+1
\end{array}\right)[V] \leq\left(1+w_{1}^{2}\right) E_{n}, \\
& \operatorname{det}\left(\Theta^{2}+E_{n}\right)=\prod_{1 \leq j \leq n}\left(1+w_{j}^{2}\right), d \Theta=\prod_{k<\ell}\left|w_{k}-w_{\ell}\right| d w_{1} \ldots d w_{n} d \mu
\end{aligned}
$$

where $d \mu$ is the Haar measure on the orthogonal group $O(n)$ and $\mid w_{k}-$ $w_{\ell} \mid \leq\left(1+w_{k}^{2}\right)^{1 / 2}\left(1+w_{\ell}^{2}\right)^{1 / 2}$. Since the volume of $O(n)$ is finite, we see that the integral over φ_{n} above is

$$
\ll \int_{\mathbb{R}^{n}} \prod_{1 \leq j \leq n}\left(1+w_{j}^{2}\right)^{-k / 2} \exp \left(-\mathscr{X}\left(1+w_{1}^{2}\right)^{-1} \min \left(T\left[C^{-1}\right]\right)\right)
$$

$$
\begin{aligned}
& \prod_{1 \leq j \leq n}\left(1+w_{j}^{2}\right)^{(n-1) / 2} d w_{1}, \ldots d w_{n} \\
& \ll \int_{\infty}^{\infty}\left(1+w_{1}^{2}\right)^{-k / 2+(n-1) / 2} \exp \left(-\mathscr{X}\left(1+w_{1}^{2}\right)^{-1} \min T\left[C^{-1}\right]\right) d w_{1} \\
& \quad \text { since } k / /-(n-1) / 2>-1 / 2 \\
& \ll\left(\min T\left[C^{-1}\right]\right)^{(n-k) / 2} \text { noting that } \min T\left[C^{-1}\right] \geq \sqrt{3} / 2, \\
& \quad \text { by Lemma } 1.4 .12
\end{aligned}
$$

Now

$$
\min \left(T\left[C^{-1}\right]\right)=|\operatorname{det} C|^{-2} \min \left(T\left[(\operatorname{det} C) C^{-1}\right]\right) \geq(\min T) /|\operatorname{det} C|^{2}
$$

Hence we have

$$
\sum_{S \in \Lambda}|\alpha(C, D+C S)| \ll(\operatorname{det} T)^{k-(n+1) / 2}\left\{\begin{array}{l}
|\operatorname{det} C|^{-k} \tag{39}\\
|\operatorname{det} C|^{-n}(\min T)^{(n-k) / 2}
\end{array}\right.
$$

67 Proof of Proposition 1.4.10. From Lemma 1.4.6 and (39), we have

$$
\begin{aligned}
& \left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\sum_{\substack{M \in \Gamma_{n, \infty}, \Gamma_{n} \\
\operatorname{det} C \neq 0}} \alpha(M)=\sum_{P=C^{1} D \bmod 1} \sum_{S \in \Lambda} \alpha(C, D+C S) \\
& \ll(\operatorname{det} T)^{k-(n+1) / 2}\left\{\sum_{\substack{P^{t} P \in M_{M}(Q) \bmod 1}}\left|P^{n}(\min T)^{(n-k) / 2}+\sum_{\substack{P=^{t} P \in \mathscr{M}_{n}(Q) \bmod 1 \\
|P| \geq(\min T)^{1 / 2}}}\right|^{|P|^{k}}\right\} \\
& \ll(\operatorname{det} T)^{k(n+1) / 2}(\min T)^{(n+1-k) / 2},
\end{aligned}
$$

applying Lemma 1.4 .9 with $u=(\min T)^{1 / 2}$ and $s=k-n(\geq 3 / 2)$, which proves (37) and Proposition 1.4.10

We proceed now to the proof of Proposition 1.4.11 By Lemma 1.4.4 we have

$$
\begin{equation*}
|\alpha(M)|=|\alpha(C, D)| \ll \int_{\beta(M)}\left(\operatorname{abs} \operatorname{det}\left(\left(C\left(X+i T^{-1}\right)+D\right)\right)^{-k} d X\right. \tag{39}
\end{equation*}
$$

since for $X \in \beta(M), \min \left(\operatorname{Im}\left(M<X+i T^{-1}>\right)\right) \geq \sqrt{3} / 2$. We should remark, however, that estimate (39) is rather crude and deserves to be improved with a better knowledge of the geometry of \mathcal{F}_{n}, in order to obtain sharper estimates for $a(T)$. Using the form of C, D in Lemma 1.4.5 with $1 \leq r<n$, we have

$$
\begin{aligned}
\operatorname{abs}\left(\operatorname{det}\left(C\left(X+i T^{-1}\right)+D\right)\right) & =\operatorname{abs} \operatorname{det}\left(C_{1}\left(X[F]+i T^{-1}[F]\right)+D_{1}\right) \\
& =\mid \operatorname{det} C_{1} \| \operatorname{det}\left(\left(X[F]+i T^{-1}[F]+C_{1}^{-1} D_{1}\right) \mid\right.
\end{aligned}
$$

Thus

$$
\begin{align*}
& \sum_{S=^{t} S \in \Lambda_{r}}\left|\alpha\left(\left(\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right) t U,\left(\begin{array}{cc}
D_{1}+C_{1} S & 0 \\
0 & E_{n-r}
\end{array}\right) U^{-1}\right)\right| \ll \\
& \left(\operatorname{det} C_{1}\right)^{-k} \sum_{S \in \Lambda_{r}} \\
& \left.X \in \beta\left(\begin{array}{cccc}
A_{1} & 0 & B_{1} & 0 \\
A & E_{n-r} & 0 & 0 \\
C_{1} & 0 & D_{1} & 0 \\
0 & 0 & 0 & E_{n-r}
\end{array}\right)\left(\begin{array}{ccc}
E_{n} & S & 0 \\
& 0 & 0 \\
0 & & E_{n}
\end{array}\right)\left(\begin{array}{cc}
t & 0 \\
0 & U^{-1}
\end{array}\right)\right) \\
& \left|\operatorname{det}\left(X[F]+C_{1}^{-1} D_{1}+S+i T^{-1}[F]\right)\right|^{-k} d X \\
& \left.\left|\operatorname{det} C_{1}\right|^{-k} \quad \int \quad|\operatorname{det}|\left(Q_{1}+C_{1}^{-1} D_{1}+i T^{-1}[F]\right)\right|^{-k} d Q \\
& Q \in \bigcup_{S \in \Lambda_{r}}\left(t[U]+\left(\begin{array}{ll}
S & 0 \\
0 & 0
\end{array}\right)\right) \tag{40}
\end{align*}
$$

under the change of variables $X \mapsto Q:=X[U]=\left(\begin{array}{cc}Q_{1}^{(r, r)} & Q_{2} \\ * & Q_{4}\end{array}\right)$, noting that $d X=d Q$ and $Q_{1}=X[F]$. For a real symmetric (r, r) matrix S^{\prime}, $\bigcup_{S \in \Lambda_{r}}\left(\mathrm{t}[U]+\left(\begin{array}{cc}q S+S^{\prime} & 0 \\ 0 & 0\end{array}\right)\right)$ is a complete set of representations of $\mathscr{S}_{n} \bmod$ ulo $\left\{\left.q\left(\begin{array}{cc}0 & S_{2} \\ { }^{t} S_{2} & S_{4}\end{array}\right) \right\rvert\, S_{2} \in \mathscr{M}_{r, n-r}(\mathbb{Z}), S_{4}={ }^{t} S_{4} \in \mathscr{M}_{n-r}(\mathbb{Z})\right\}$ and

$$
\left\{\left.\left(\begin{array}{cc}
S_{1} & S_{2} \\
{ }^{t} S_{2} & S_{4}
\end{array}\right) \right\rvert\, S_{1} \in \varphi_{r}, S_{2} \in \mathscr{M}_{r, n-r}(\mathbb{R} / q \mathbb{Z}), S_{4}={ }^{t} S_{4} \in \mathscr{M}_{n-r}(\mathbb{R} / q \mathbb{Z})\right\}
$$

is another system of representatives. Suppose now that

$$
\begin{aligned}
& Q=\left(\begin{array}{cc}
Q_{1}^{(r, r)} & Q_{2} \\
{ }^{t} Q_{2} & Q_{4}
\end{array}\right) \in \mathrm{t}[U]+\left(\begin{array}{cc}
S & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \\
& Q^{\prime}=\left(\begin{array}{cc}
Q_{1} & Q_{2}^{\prime} \\
{ }^{t} Q_{2}^{\prime} & Q_{4}
\end{array}\right) \in \mathrm{t}[U]+\left(\begin{array}{cc}
S^{\prime} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

with $S \equiv S^{\prime}(\bmod q), Q_{2} \equiv Q_{2}^{\prime}(\bmod q)$ and $Q_{4} \equiv Q_{4}^{\prime}(\bmod q)$. Then $Q-\left(\begin{array}{ll}S & 0 \\ 0 & 0\end{array}\right)$ and $Q^{\prime}-\left(\begin{array}{cc}S^{\prime} & 0 \\ 0 & 0\end{array}\right)$ are both in $\mathrm{t}[U]$ and further are congruent modulo q. Since U is in $G L_{n}(\mathbb{Z})$ and t is the standard cube with sides of length q, we have then necessarily $Q-\left(\begin{array}{cc}S & 0 \\ 0 & 0\end{array}\right)=Q^{\prime}-\left(\begin{array}{cc}S^{\prime} & 0 \\ 0 & 0\end{array}\right)$ implying that $Q_{2}=Q_{2}^{\prime}, Q_{4}=Q_{4}^{\prime}$ and $S=S^{\prime}$. For any given $Q_{1}=X[F]$ and equivalence class in Λ_{r} modulo q, Q_{2}, Q_{4} run at most modulo q. Hence, after absorbing constants, we see that the expression in (40) is

$$
\begin{gather*}
\ll\left[\Lambda_{r}: q \Lambda_{r}\right] q^{r(n-r)} q^{(n-r)(n-r+1) / 2}\left|\operatorname{det} C_{1}\right|^{-k} \\
\int_{Q_{1}=t} \mid \operatorname{det}\left(Q_{1}+i T^{-1}[F]\right)^{-k} d Q_{1} \tag{41}
\end{gather*}
$$

the integrand being now independent of Q_{2} and Q_{4}. It is easy to see again that the expression in (41) is

$$
\begin{align*}
& \ll\left|\operatorname{det} C_{1}\right|^{-k}\left(\operatorname{det} T^{-1}[F]\right)^{(r+1) / 2-k} \int_{X_{1}={ }^{t} X_{1} \in \mathscr{M}_{r}(\mathbb{R})}\left|\operatorname{det}\left(X_{1}+i E_{r}\right)\right|^{-k} d X_{1} \\
& \ll\left|\operatorname{det} C_{1}\right|^{-k}\left(\operatorname{det} T^{-1}[F]\right)^{(r+1) / 2-k} . \tag{42}
\end{align*}
$$

For fixed r with $1 \leq r<n$, we know (by Lemmas 1.4.5 and 1.4.6) that there exists a one - one correspondence

$$
\begin{aligned}
\Gamma_{\eta, \infty} \backslash\{M & \left.=\left(\begin{array}{cc}
* & * \\
C & D
\end{array}\right) \in \Gamma_{n} \right\rvert\, \operatorname{rank} C \\
& \left.=r\} /\left\{\left(\begin{array}{cc}
E_{n} & \left(\begin{array}{cc}
S & 0 \\
0 & 0
\end{array}\right) \\
0 & E_{n}
\end{array}\right)\right) \in \Gamma_{n}\right\} \longleftrightarrow\left\{C_{1}^{-1} D_{1} \bmod 1\right\},\{\mathrm{F}\}
\end{aligned}
$$

where $C_{1}^{-1} D_{1}$ runs over a complete set of modulo 1 incongruent (r, r) rational symmetric matrices and $F^{(n, r)}$ over a complete set of (n, r) primitive matrices described in Lemma 1.4.5 By assumption, $T \asymp\left(\begin{array}{ccc}t_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots . & t_{n}\end{array}\right)$ with $t_{i}:=t_{i i}$ and it is not hard to see that

$$
\left(\operatorname{det} T^{-1}[F]\right) \gg t_{n}^{-1} \ldots t_{n-r+1}^{-1} \operatorname{det} E_{n}[F] .
$$

In fact, if $\left(\begin{array}{ccc}i_{1} & i_{2} & \ldots i_{r} \\ 1 & 2 & \ldots r\end{array}\right) F$ is the determinant of the (r, r) submatrix of F formed by the rows with indices $i_{1}, i_{2}, \ldots, i_{r}$, then

$$
\begin{aligned}
& \operatorname{det} T^{-1} F \gg \operatorname{det}\left(\begin{array}{ccc}
t_{1}^{-1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & t_{n}^{-1}
\end{array}\right)[F]=\sum_{1 \leq i_{1}<i_{2}<\ldots i_{r} \leq n} \\
& =\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{r} \\
1 & 2 & \ldots & r
\end{array}\right)_{F}^{2} t_{i_{1}}^{-1} \ldots t_{i_{r}}^{-1} \\
& \gg t_{n}^{-1} \ldots t_{n-r+1}^{-1} \sum\left(\begin{array}{cccc}
i_{1} & i_{2} & \ldots & i_{r} \\
1 & 2 & \ldots & r
\end{array}\right)_{F}^{2}=t_{n}^{-1} \ldots t_{n-r+1}^{-1} \operatorname{det} E_{n}[F] .
\end{aligned}
$$

Using now the estimate (42), we conclude that

$$
\begin{aligned}
& \sum_{S \in \Lambda_{r}} \left\lvert\, \alpha\left(\left(\begin{array}{cc}
C_{1}^{(r)} & 0 \\
0 & 0
\end{array}\right) t_{U},\left(\begin{array}{cc}
D_{1}+C_{1} S & 0 \\
0 & E_{n-r}
\end{array}\right) U^{-1}\right)\right. \\
& \left.\quad|\ll| \operatorname{det} C_{1}\right|^{-k}\left(t_{n}^{-1} \ldots t_{n-r+1}^{-1}\right)^{\frac{r+1}{2}-k} \operatorname{det}\left(E_{n}[F]\right)^{\frac{r+1}{2}-k}
\end{aligned}
$$

From the last estimate and the one - one correspondence referred to in the preceding paragraph, it follows at once that

$$
\begin{align*}
M= & \sum_{\left(\begin{array}{c}
* \\
C \\
C
\end{array}\right) \in \Gamma_{n, \infty}^{*} \backslash \Gamma_{n}, \operatorname{rank} C=r} \alpha(M) \ll \sum_{R=^{t} R \in \mathscr{M}_{r}(\mathbb{Q}) \bmod 1}| |^{-k} \sum_{\substack{F \in \mathscr{M}_{n, r}(\mathbb{Z}) / G L_{r} \mathbb{Z} \\
F \text { primitive }}}\left(\operatorname{det} E_{n}[F]\right)^{\frac{r+1}{2}-k}\left(t_{n} \ldots t_{n-r+1}\right)^{k-\frac{r+1}{2}} .
\end{align*}
$$

The representatives F in the summation in (43) can be assumed to have been chosen already to satisfy the condition that $E_{n}[F]$ is M-reduced. If
$F=\left(f_{1} \ldots f_{r}\right)$, then, by Lemma 1.3.2 $\operatorname{det} E_{n}[F] \gg \prod_{1 \leq i \leq r} E_{n}\left|f_{i}\right|$. Since $(r+1) / 2-k \leq n / 2-k<0$, we have

$$
\begin{equation*}
\sum_{F}\left(\operatorname{det} E_{n}[F]\right)^{(r+1) / 2-k} \ll\left\{\sum_{0 \neq x \in \mathbb{Z}^{n}}\left(E_{n}[x]\right)^{(r+1) / 2-k}\right\}^{r} \tag{44}
\end{equation*}
$$

If $x_{1} \ldots x_{n} \neq 0$, then $\sum_{1 \leq i \leq n} x_{i}^{2} \geq n\left|x_{1} \ldots x_{n}\right|^{2 / n}$. Therefore the series over x on the right hand side of (44) is $\ll \sum_{1 \leq s \leq n} \sum_{y_{i} \in \mathbb{Z} \backslash\{0\}}\left(y_{1}^{2}+\cdots+y_{s}^{2}\right)^{-\left(k-\frac{r+1}{2}\right)} \ll$ $\sum_{1 \leq s \leq n} \zeta(2\{k-(r+1) / 2) / s) \ll 1$ since $k-(r+1) / 2>n / 2$ for $r<n$, in $1 \leq s \leq n$
view of the hypothesis $k \geq n+1 / 2$. Thus the series over F in (44) is $\ll 1$. On the other hand, since $k-r>1$ for $r \leq n$, we can apply Lemma 1.4.9 to conclude that $\sum_{R=^{t} R \in \mathscr{M}_{r}(\mathbb{Q}) \bmod 1} \nabla^{-k} \ll 1$. So we finally see that the left hand side of (43) is

$$
\ll\left(t_{n} \ldots t_{n-r+1}\right)^{k-(r+1) / 2}=(\operatorname{det} T)^{k-(n+1) / 2}\left(t_{1} \ldots t_{n-r}\right)^{\frac{n+1}{2}-k}\left(t_{n-r+1} \ldots t_{n}\right)^{\frac{n-r}{2}}
$$

We now use the assumption that $(\operatorname{det} T) \ll(\min T)^{n}$ for the M-reduced $T \asymp\left(\begin{array}{ccc}t_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & t_{n}\end{array}\right)$. Then $t_{1} \asymp t_{2} \asymp \ldots \asymp t_{n} \asymp t$, say.

For $1 \leq r \leq n-1,\left(\frac{n+1}{2}-k\right)(n-r)+\frac{n-r}{2} \cdot r \leq n-k$ with equality taking place when $r=n-1$. Thus

$$
\left(t_{1} \ldots t_{n-r}\right)^{\frac{n+1}{2}-k}\left(t_{n-r+1} \ldots t_{n}\right)^{\frac{n-r}{2}} \asymp t^{\left(\frac{n+1}{2}-k\right)(n-r)+\frac{n-r}{2} \cdot r} \leq t^{n-k}
$$

and the left hand side of (43) is $\ll(\operatorname{det} T)^{k-\frac{n+1}{2}}(\min T)^{n-k}$ for $1 \leq r \leq$ $n-1$. Summing over (43) for $1 \leq r \leq n-1$, Proposition 1.4.11 is immediate. In view of the remarks preceding Lemma 1.4.1, we have the following theorem (and Theorem C in the Introduction) as an immediate consequence of Proposition 1.4.10 and 1.4.11
Theorem 1.4.13 ([10],[19]). If $k=n+3 / 2$ and $f(Z)=\sum_{0 \leq T \in \Lambda^{*}} a(T)$ $e(\operatorname{tr}(T Z) / q)$ is a Siegel modular form of degree n, weight $k(\in 1 / 2 \mathbb{Z})$, level q and with constant term vanishing at all cusps, then

$$
a(T)=O\left((\min T)^{(n+1-k) / 2}(\operatorname{det} T)^{k-(n+1) / 2}\right)
$$

provided that $\min T \geq \mathscr{X}_{1}(\operatorname{det} T)^{1 / n}$ and $\min T \geq \mathscr{X}_{2}>0$ for constants $\mathscr{X}_{1}, \mathscr{X}_{2}$ independent of f (but depending only on n).

Remarks. The condition $\min T \geq(\operatorname{det} T)^{1 / n}$ seems unavoidable for general n. The next theorem giving an estimate for coefficients of modular forms of degree 2 , weight $k \geq 7 / 2$ and level q vanishing at all cusps imposes no such condition. Sunder Lal (Math. Zeit. 88 (1965), 207-243) has considered an analogue of Theorem 1.4.13 for the Hilbert-Siegel modular forms.

For any m-rowed integral $S>0$, the associated theta series $f(Z)=$ $\sum_{G} e(\operatorname{tr}(S[G] Z))$ is a modular form of degree n, weight $m / 2$ and level 4 det S and $f(Z)-\varphi(Z)$ vanished at every cusp, if we take $\varphi(Z)$ to be the analytic genus invariant associated with S. The Fourier coefficients $b(T)$ of $\varphi(Z)$ are of the form $*(\operatorname{det} T)^{\frac{m-n-1}{2}} \times \prod_{p} \alpha_{p}(S, T)$ where $\prod_{p} \alpha_{p}(S, T)$ is the product of the p-adic densities of representation of T by S. Thus, for $m \geq 2 n+3$ and $\min T \gg(\operatorname{det} T)^{1 / n}$, we have from Theorem 1.4.13 an asymptotic formula for $r(S, T)$:

$$
r(S, T)=*(\operatorname{det} T)^{\frac{m-n-1}{2}} \prod_{p} \alpha_{p}(S, T)+O\left((\operatorname{det} T)^{\frac{m-n-1}{2}}(\min (T))^{\frac{2 n+2-m}{4}}\right)
$$

For the case $n=2$, we have an improved version of Proposition 1.4.11 and even not involving the unsatisfactory condition ($\operatorname{det} T$) $<$ $(\min (T))^{2}$ namely

Proposition 1.4.14. For f, T as above with $\min T>\mathscr{X}$ (an absolute constant independent of f) and $n=2$,

$$
\begin{aligned}
\sum_{\substack{M=\left(\begin{array}{cc}
A & B \\
C & D \\
\operatorname{rank}
\end{array}\right) \in \Gamma_{2, \infty} \backslash \Gamma_{2}}} \alpha(M) & \ll(\min (T))^{2-k}(\operatorname{det} T)^{k-3 / 2} \\
& \left\{\begin{array}{l}
1 \text { if } k \geq 7 / 2 \\
\log (\sqrt{\operatorname{det} T} / \min (T)) \text { if } k=3 \\
\left((\operatorname{det} T)^{1 / 2} / \min (T)\right)^{1 / 2} \text { if } k=\frac{5}{2}
\end{array}\right.
\end{aligned}
$$

As immediate consequences of the foregoing, we have

Theorem 1.4.15 ([10]). Let $f(Z)=\sum_{0 \leq T \in \Lambda} * a(T) e(\operatorname{tr}(T Z) / q)$ be a Siegel modular form of degree 2 , weight $k \geq \overline{7} / 2$ (with $2 k \in \mathbb{Z}$), level q and with constant term vanishing at all cusps. Then for $T>0$ and $\min T>\mathscr{X}$ (an absolute constant independent of f), we have,

$$
a(T)=O\left((\min T)^{(3-k) / 2}(\operatorname{det} T)^{k-3 / 2}\right)
$$

Corollary. If $A^{(m)}>0, B^{(2)}>0$ and if $A[X]=B$ is solvable with X having entries in \mathbb{Z}_{p} for every prime p, then for large $\min (B)$ and $m \geq 7, A[X]=B$ has a solution X with entries in \mathbb{Z}.

The proof of Proposition 1.4.14 has to be preceded by several lemmas.
Definition. For given $T>0$ and $C=\left(\begin{array}{ll}c & 0 \\ 0 & 0\end{array}\right)^{t_{U}}$ with $U=\left(\begin{array}{l}f_{1} \\ f_{2}\end{array} *\right) \in G L_{2}(\mathbb{Z})$ and $c \neq 0$ in \mathbb{Z}, let $a_{1}:=T^{-1}\left[\binom{f_{1}}{f_{2}}\right]$ and

$$
\left.P=P\left(x_{1}, x_{2}\right)=P_{T, U, c}\left(x_{1}, x_{2}\right):=\left(\begin{array}{cc}
\left(a_{1}+x_{1}^{2} / a_{1}\right)^{-1} & \\
0 & 1 /\left(a_{1} \operatorname{det} T\right)
\end{array}\right)\left[\begin{array}{cc}
1 / c & x_{2} \\
0 & 1
\end{array}\right)\right]
$$

Lemma 1.4.16. For $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{2}$ with $C=\left(\begin{array}{cc}c & 0 \\ 0 & 0\end{array}\right)^{t}, D=\left(\begin{array}{ll}d & 0 \\ 0 & 1\end{array}\right) U^{-1}$, $c \neq 0$ in \mathbb{Z}, U in $G L_{2}(\mathbb{Z})$, and $T \in \mathscr{P}_{2}$, we have

$$
\operatorname{Im}\left(M<X+i T^{-1}>\right)=P\left(q_{1}+d / c, a_{2}\left(q_{1}+d / c\right) / a_{1}-q_{2}\right)
$$

where $a_{1}, a_{2}, q_{1}, q_{2}$ are given by $T^{-1}[U]=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{2} & a_{4}\end{array}\right)$ and $X[U]=\left(\begin{array}{cc}q_{1} & q_{2} \\ q_{2} & q_{4}\end{array}\right)$.
Proof. We know that $\left(\operatorname{Im}\left(M<X+i T^{-1}>\right)\right)^{-1}=T\left\{^{t}\left(C X+D+i C T^{-1}\right)\right\}$ (using the abbreviation $A\{B\}$ for $\left.{ }^{t} \bar{B} A B\right)=T\left[{ }^{t}(C X+D)\right]+T^{-1}\left[{ }^{t} C\right]$

$$
=(\operatorname{det} T)\left(\begin{array}{cc}
a_{4}\left(c q_{1}+d\right)^{2}-2 a_{2} c q_{2}\left(c q_{1}+d\right)+a_{1} c^{2} q_{2}^{2} & * \\
-a_{2}\left(c q_{1}+d\right)+a_{1} c q_{2} & a_{1}
\end{array}\right)+\left(\begin{array}{cc}
a_{1} c^{2} & 0 \\
0 & 0
\end{array}\right)
$$

This is, on the other hand, the same as

$$
\begin{aligned}
& p^{-1}\left(q_{1}+c^{-1} d, a_{1}^{-1} a_{2}\left(q_{1}+c^{-1} d\right)-q_{2}\right) \\
& \qquad\left(\begin{array}{ccc}
a_{1}+\left(q_{1}+d / c\right)^{2} / a_{1} & 0 \\
0 & a_{1} \operatorname{det} T
\end{array}\right)\left[\left(\begin{array}{cc}
c & 0 \\
c q_{2}-a_{1}^{-1} a_{2}\left(c q_{1}+d\right) & 1
\end{array}\right)\right] \\
& \\
& \left(\begin{array}{cc}
\left(a_{1}+a_{1}^{-1}\left(q_{1}+d / c\right)^{2}\right) c^{2}+a_{1}(\operatorname{det} T)\left(c q_{2}-a_{1}^{-1} a_{2}\left(c q_{1}+d\right)\right)^{2} & * \\
a_{1} \operatorname{det} T\left(c q_{2}-a_{1}^{-1} a_{2}\left(c q_{1}+d\right)\right) & a_{1} \operatorname{det} T
\end{array}\right)
\end{aligned}
$$

Lemma 1.4.17. With notation as in Lemma 1.4.16 $U=\binom{f_{1} *}{f_{2} *}$ and M reduced $T=\left(\begin{array}{cc}t_{1} & 0 \\ 0 & t_{2}\end{array}\right)\left[\left(\begin{array}{cc}1 & u \\ 0 & 1\end{array}\right)\right]$, we have $|c| f_{2}^{2} \leq(8 / 3) \sqrt{t_{2} / t_{1}}$ and $\left|f_{1} f_{2} c\right| \leq$ $4 / 3$, whenever $\min (P) \geq \sqrt{3} / 2$; moreover, under this condition, $\left|f_{1}\right|=0$ or 1 and if $\left|f_{1}\right|=1$, then $|c| \leq 3$.

Proof. Since

$$
\begin{aligned}
T & =\left(\begin{array}{cc}
t_{1} & t_{1} u \\
t_{1} u & t_{1} u^{2}+t_{2}
\end{array}\right), T^{-1}-\frac{1}{2}\left(\begin{array}{cc}
t_{1}^{-1} & 0 \\
0 & t_{2}^{-1}
\end{array}\right) \\
& =\frac{1}{t_{1} t_{2}}\left(\begin{array}{cc}
t_{1} u^{2}+t_{2} & -t_{1} u \\
-t_{1} u & t_{1}
\end{array}\right)-\frac{1}{2}\left(\begin{array}{cc}
t_{1}^{-1} & 0 \\
0 & t_{2}^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
u^{2} / t_{2}+1 /\left(2 t_{1}\right) & -u / t_{2} \\
-u / t_{2} & 1 /\left(2 t_{2}\right)
\end{array}\right)
\end{aligned}
$$

has determinant

$$
\frac{1}{4 t_{2}^{2}}\left[\frac{t_{2}}{t_{1}}-2 u^{2}\right] \geq \frac{1}{4 t_{2}^{2}}\left[\frac{3}{4}-\frac{1}{2}\right]>0
$$

since $t_{1} \leq \frac{4}{3} t_{2}$ and $|u| \leq 1 / 2$. Hence $T^{-1}>\frac{1}{2}\left(\left(\begin{array}{cc}1 / t_{1} & 0 \\ 0 & 1 / t_{2}\end{array}\right)\right)$. On the other hand, since $P \in \mathscr{P}_{2},(\min (P))^{2} \leq(4 / 3) \operatorname{det} P$. If then $\min (P) \geq$ $\sqrt{3} / 2$, we have

$$
\begin{aligned}
(3 / 4)^{2} & =(3 / 4)(3 / 4) \leq(3 / 4) \cdot(\min (P))^{2} \leq \operatorname{det} P \\
& =\operatorname{det} P=1 /\left\{c^{2} \operatorname{det} T\left(a_{1}^{2}+x_{1}^{2}\right)\right\} \leq 1 /\left(a_{1}^{2} c^{2} \operatorname{det} T\right)
\end{aligned}
$$

But

$$
a_{1}=T^{-1}\left[\binom{f_{1}}{f_{2}}\right]>1 / 2\left(\frac{1}{t_{1}} f_{1}^{2}+\frac{1}{t_{2}} f_{2}^{2}\right)
$$

and as a result, we have

$$
\begin{align*}
\frac{1}{4}\left(2 \sqrt{\frac{f_{1}^{2}}{t_{1}} \frac{f_{2}^{2}}{t_{2}}}\right)^{2} c^{2} t_{1} t_{2} & \leq \frac{1}{4}\left(\frac{1}{t_{1}} f_{1}^{2}+\frac{1}{t_{2}} f_{2}^{2}\right)^{2} c^{2} t_{1} t_{2} \tag{45}\\
& \leq(4 / 3)^{2}
\end{align*}
$$

i.e. $c^{2} f_{1}^{2} f_{2}^{2} \leq(4 / 3)^{2}$ and so

$$
\left|f_{1} f_{2}\right| \leq\left|c f_{1} f_{2}\right| \leq 4 / 3
$$

Hence if $f_{1} f_{2} \neq 0,\left|f_{1}\right|=\left|f_{2}\right|=1$. If $f_{1} f_{2}=0$, then (since U is in $G L_{2}(\mathbb{Z})$), either $f_{1}=0, f_{2}=1$ or $f_{1}=1, f_{2}=0$ (taking only one primitive column from each class). From (45), we have

$$
\frac{1}{4}\left(\frac{1}{t_{2}} f_{2}^{2}\right)^{2} c^{2} t_{1} t_{2} \leq \frac{1}{4}\left(\frac{1}{t_{1}} f_{1}^{2}+\frac{1}{t_{2}} f_{2}^{2}\right)^{2} c^{2} t_{1} t_{2} \leq(4 / 3)^{2}
$$

which gives us $c^{2} f_{2}^{4} \leq 4(4 / 3)^{2}\left(t_{2} / t_{1}\right)$ i.e. $\left|c f_{2}^{2}\right| \leq(8 / 3) \sqrt{t_{2} / t_{1}}$. If $\left|f_{1}\right|=$ $1=\left|f_{2}\right|$, then $(1 \leq) c^{2}=c^{2} f_{1}^{2} f_{2}^{2} \leq(4 / 3)^{2}$ implies $|c|=1$. If $\left|f_{1}\right|=$ 1 and $f_{2}=0$, then from (45), we get $c^{2} f_{1}^{4} t_{2} / t_{1} \leq 4(4 / 3)^{2}$ i.e. $c^{2} \leq$ $4(4 / 3)^{2}\left(t_{1} / t_{2}\right) \leq 4(4 / 3)^{3}<2^{4}$ i.e. $|c| \leq 3$. This proves all the assertions of our lemma.

Remarks. 1) Under the conditions of Lemma 1.4.17 the number of U coming into play is at most 4 , namely $U=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ if $f_{1}=0$, $U=\left(\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right)$ with $n \in \mathbb{Z}$ and $|n| \leq 1$ if $f_{1} \neq 0$ (i.e. $f_{1}=1$). Whenever $\left|f_{1} f_{2}\right|=1$, we have $c=1$.
2) For P as in Lemma 1.4 .17 if $\sqrt{3} / 2 \leq \min (P)=P\left[\binom{b_{1}}{b_{2}}\right]$ for some integral column ${ }^{t}\left(b_{1} b_{2}\right)$, we claim that $b_{2} \neq 0$. Otherwise, we can take $b_{1}=1$ and then $\min (P)=P\left[\binom{1}{0}\right]=1 /\left(c^{2}\left(a_{1}+a_{1}^{-1} x_{1}^{2}\right)\right) \leq$ $(2 / \sqrt{3})(\operatorname{det} P)^{1 / 2}=(2 / \sqrt{3}) /\left(\left(a_{1}+a_{1}^{-1} x_{1}^{2}\right) c^{2} a_{1} \operatorname{det} T\right)^{1 / 2} \leq \frac{2}{\sqrt{3}}$ $\left(\min P /\left(a_{1} \operatorname{det} T\right)\right)^{1 / 2}$ i.e. $\left.\sqrt{3} / 2\right)^{1 / 2} \leq(\min (P))^{1 / 2} \leq(2 / \sqrt{3}) /\left(a_{1}\right.$ $\operatorname{det} T)^{1 / 2}$ so that $a_{1} \operatorname{det} T \leq 8 /(3 \sqrt{3})$. Together with the inequality $a_{1}>\frac{1}{2}\left(\frac{1}{t_{1}} f_{1}^{2}+\frac{1}{t_{2}} f_{2}^{2}\right)$ derived in the course of the proof of Lemma 1.4.17 this leads us to $1 / 2\left(t_{2} f_{1}^{2}+t_{1} f_{2}^{2}\right)<8 /(3 \sqrt{3})$. Since either f_{1} or f_{2} is different from 0 , we have $\min \left(\frac{1}{2} t_{1}, \frac{1}{2} t_{2}\right)<8 /(3 \sqrt{3})$ which contradicts t_{1} and t_{2} being sufficiently large (in view of $\min T \gg 0$, by assumption). This contradiction shows that when $\sqrt{3} / 2 \leq \min P=P\left[\binom{b_{1}}{b_{2}}\right], b_{2} \neq 0$.

To any $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $S L_{2}(\mathbb{Z})$, let us associate $\tilde{\sigma}=\left(\begin{array}{llll}a & 0 & b & 0 \\ 0 & 1 & 0 & 0 \\ c & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ in 77
$\operatorname{Sp}(2, \mathbb{Z})=\Gamma_{2}$. Then $\sigma \mapsto \tilde{\sigma}$ is an injective homomorphism. If $c \neq 0$, then $\sigma=\left(\begin{array}{cc}1 & a / c \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}0 & -c^{-1} \\ c & d\end{array}\right)$. In this case, we have for $Z=$ $\left(\begin{array}{l}z_{1} \\ z_{2} \\ z_{2}\end{array}\right)$,

$$
\tilde{\sigma}<Z>=\left(\begin{array}{cc}
a / c & 0 \tag{46}\\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
-1 /\left(c\left(c z_{1}+d\right)\right) & z_{2} /\left(c z_{1}+d\right) \\
z_{2} /\left(c z_{1}+d\right) & z_{4}-c z_{2}^{2} /\left(c z_{1}+d\right)
\end{array}\right)
$$

by straightforward verification.
Let $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ with $c \geq 1$ and $U \in S L_{2}(\mathbb{Z})$. The following lemma gives an estimate for $\left.\alpha\left(\left(\begin{array}{ll}c & 0 \\ 0 & 0\end{array}\right)\right)^{t} U,\left(\begin{array}{ll}d & 0 \\ 0 & 1\end{array}\right) U^{-1}\right)$ needed in connection with Proposition 1.4.14

Lemma 1.4.18. Let σ, U be as above and let $A=T^{-1}[U]=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{2} & a_{4}\end{array}\right)$. For given $\Theta:=\left(\begin{array}{cc}\theta_{1} & \theta_{2} \\ \theta_{2} & \theta_{4}\end{array}\right), A=T^{-1}[U]$ and $C=\left(\begin{array}{cc}c & 0 \\ 0 & 0\end{array}\right)^{t} U$, let

$$
\tau=\tau(\Theta, A, C):=\left(\begin{array}{cc}
-c^{-2} /\left(\theta_{1}+i a_{1}\right) & c^{-1}\left(\theta_{2}+i a_{2}\right) /\left(\theta_{1}+i a_{1}\right) \\
c^{-1}\left(\theta_{2}+i a_{2}\right) /\left(\theta_{1}+i a_{1}\right) & \theta_{4}+i a_{4}-\left(\theta_{2}+i a_{2}\right)^{2} /\left(\theta_{1}+i a_{1}\right)
\end{array}\right)
$$

Then

$$
\begin{aligned}
& \left|\alpha\left(\left(\begin{array}{ll}
c & 0 \\
0 & 0
\end{array}\right){ }^{t} U,\left(\begin{array}{ll}
d & 0 \\
0 & 1
\end{array}\right) U^{-1}\right)\right| \ll c^{-k} \int_{\left(\begin{array}{rr}
a / c & 0 \\
0 & 0
\end{array}\right)+\tau \in \mathfrak{g}_{2}}^{\Theta \in \mathrm{t}[U]+\left(\begin{array}{cc}
d / c & 0 \\
0 & 0
\end{array}\right)} \int_{i}\left(\theta_{1}^{2}+a_{1}^{2}\right)^{-k / 2} \\
& \exp \left(-\mathscr{X} \min \left(P\left(\theta_{1}, a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}\right)\right) d \theta_{1} d \theta_{2} d \theta_{4} .\right.
\end{aligned}
$$

Proof. In view of Lemma 1.4.4 for $M=\tilde{\sigma}\left(\begin{array}{cc}{ }^{t} U & 0 \\ 0 & U^{-1}\end{array}\right)=\binom{\stackrel{*}{C}}{C}$ in Γ_{2}, we 78 see, on taking $\Theta=X[U]+\left(\begin{array}{cc}c^{-1} d & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}q_{1}+c^{-1} & q_{2} \\ q_{2} & q_{4}\end{array}\right)$ and noting $d X=$ $d \Theta\left(:=d \theta_{1} d \theta_{2} d \theta_{4}\right), \operatorname{Im}\left(M<X+i T^{-1}>\right)=P_{T, U, c}\left(q_{1}+c^{-1} d, a_{1}^{-1} a_{2}\left(q_{1}+\right.\right.$ $\left.\left.c^{-1} d\right)-q_{2}\right)=P\left(\theta_{1}, a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}\right)$ (by Lemma 1.4.16) and $\operatorname{abs} \operatorname{det}(C(X+$ $\left.\left.i T^{-1}\right)+D\right)=\operatorname{abs}\left(c \theta_{1}+c i a_{1}\right)$, that

$$
|\alpha(M)|=|\alpha(C, D)| \ll c^{-k} \int\left(\theta_{1}^{2}+a_{1}^{2}\right)^{-k / 2} \exp (-\mathscr{X}
$$

$$
\left.\min \left(P\left(\theta_{1}, a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}\right)\right)\right) d \Theta
$$

the domain of integration for Θ corresponding to $\beta(M)$ for X under $X \mapsto$ Θ. But $M<X+i T^{-1}>=\tilde{\sigma}<\Theta-\left(\begin{array}{cc}c^{-1} d & 0 \\ 0 & 0\end{array}\right)+i T^{-1}[U]>=\left(\begin{array}{cc}a / c & 0 \\ 0 & 0\end{array}\right)+\tau$, by (46) and so the lemma is proved.

For $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $S L_{2}(\mathbb{Z})$ with $c \geq 1$ and U equal to one of the four matrices

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text { or }\left(\begin{array}{ll}
1 & 0 \\
n & 1
\end{array}\right) \text { with } n=0,1 \text { or }-1,
$$

let

$$
\mathscr{R}^{*}(U):=\bigcup_{m \in \mathbb{Z}}\left\{\mathrm{t}(U)+\left(\begin{array}{cc}
c^{-1} d+m q & 0 \\
0 & 0
\end{array}\right)\right\}=\mathscr{S}_{2} /\left\{\left.\left(\begin{array}{cc}
0 & s_{2} \\
s_{2} & s_{4}
\end{array}\right) \right\rvert\, s_{2}, s_{4} \in q \mathbb{Z}\right\}
$$

An application of Lemma 1.4.18 with d_{1} ($\equiv d$ modulo q, for a fixed d) in place of d, leads to

Lemma 1.4.19. For σ, U as above and f, T as in Proposition 1.4.14 we have

$$
\begin{aligned}
& \sum_{d_{1} \equiv d(\bmod \mathrm{cq})}\left|\alpha\left(\left(\begin{array}{cc}
c & 0 \\
0 & 0
\end{array}\right)^{t} U,\left(\begin{array}{c}
d_{1} \\
0 \\
0
\end{array}\right) U^{-1}\right)\right| \\
& \ll c^{-k} \int_{\substack{a_{c} \\
0 \\
0 \\
0 \\
\theta_{1} \in \mathbb{R}, 0 \leq \theta_{2}, \theta_{4}<q}}\left(\theta_{1}^{2}+a_{1}^{2}\right)^{-k / 2} \exp \left(-\mathscr{X} \min \left(P\left(\theta_{1}, a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}\right)\right)\right) d \Theta \\
&
\end{aligned}
$$

Proof. We need only to note that $A:=T^{-1}[U]=\left(\begin{array}{c}a_{1} \\ a_{2} \\ a_{2}\end{array} a_{4}\right), \tau=\tau(\Theta, A, c)$ and $P=P_{T, U, c}\left(x_{1}, x_{2}\right)$ are all independent of d, taking an extension $\left(\begin{array}{cc}a & * \\ c & d_{1}\end{array}\right)$ of $\left(c d_{1}\right)$ to $S L_{2}(\mathbb{Z})$ and that $\min \left(P\left(\theta_{1}, a_{1}^{-1} a_{2} \theta_{1}-\left(\theta_{2}+q n\right)\right)\right)=$ $\min \left(P\left(\theta_{1}, a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}\right)\left[\left(\begin{array}{cc}1 & c n \\ 0 & 1\end{array}\right)\right]\right)=\min \left(P\left(\theta_{1}, a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}\right)\right)$ for every $n \in \mathbb{Z}$.

Before we begin the proof of Proposition 1.4.14, we note that, for $\Theta=\binom{\theta_{1} \theta_{2}}{\theta_{2}}$ in the domain of integration referred to in Lemma 1.4.19
we have $P\left(\theta_{1}, a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}\right)=\operatorname{Im} \tau\left(=\operatorname{Im}\left(M<X+i T^{-1}>\right)\right.$, by Lemma 1.4.16) $\geq \sqrt{3 / 2}$. Hence, by Remark 2 following Lemma 1.4.17 we have $\min \left(P\left(\theta_{1}, a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}\right)\right)=P\left[\binom{b_{1}}{b_{2}}\right]$ for an integral column ${ }^{t}\left(b_{1} b_{2}\right)$ with $b_{2} \neq 0$. Thus, we can remove the condition $\left(\begin{array}{cc}a / c & 0 \\ 0 & 0\end{array}\right)+\tau \in g_{2}$ on the domain of integration for Θ in Lemma 1.4.19 if we majorize $\exp \left(-\mathscr{X} \min \left(P\left(\theta_{1}, a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}\right)\right)\right)$ by the series

$$
\sum_{0 \neq b_{2}, b_{1} \in \mathbb{Z}} \exp \left(-\mathscr{X} p\left(\theta_{1}, a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}\right)\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right)
$$

Proof of Proposition 1.4.14. In the light of the preceding paragraph, we see that

$$
\begin{aligned}
& \sum_{d_{1} \equiv d(\bmod \mathrm{cq})}\left|\alpha\left(\left(\begin{array}{cc}
c & 0 \\
0 & 0
\end{array}\right) t U,\left(\begin{array}{cc}
d_{1} & 0 \\
0 & 0
\end{array}\right) U^{-1}\right)\right| \ll c^{-k} \\
& \sum_{0 \neq b_{2}, b_{1} \in \mathbb{Z}} \exp \left(-\mathscr{X} a_{1}^{-1} b_{2}^{2} / \operatorname{det} T\right) \int_{\theta_{1} \in \mathbb{R}, 0 \leq \theta_{2}, \theta_{4}<q}\left(\theta_{1}^{2}+a_{1}^{2}\right)^{-k / 2} \times \\
& \times \exp \left(-\mathscr{X} \frac{b_{2}^{2}\left(c^{-1} b_{2}^{-1} b_{1}+a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}\right)^{2}}{a_{1}+\theta_{1}^{2} / a_{1}} d \Theta\right.
\end{aligned}
$$

If $b_{1} \in b_{1}^{\prime}+c b_{2} q \mathbb{Z}$, then $c^{-1} b_{2}^{-1} b_{1}+a_{1}^{-1} a_{2} \theta_{1}-\theta_{2}$ for any fixed θ_{1}, θ_{4}, $b_{2} \neq 0$ (and fixed b_{1}^{\prime} modulo $c b_{2} q$) covers \mathbb{R} as θ_{3} runs over an interval of length q. Thus the right hand side of the preceding inequality is

$$
\begin{aligned}
& \ll c^{-k} \sum_{0 \neq b_{2} \in \mathbb{Z}} c\left|b_{2}\right| \exp \left(-\mathscr{X} a_{1}^{-1} b_{2}^{2} / \operatorname{det} T\right) \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\theta_{1}^{2}+a_{1}^{2}\right)^{-k / 2} \exp \left(-\mathscr{X} b_{2}^{2} \theta_{2}^{2} /\left(a_{1}+\theta_{1}^{2} / a_{1}\right)\right) d \theta_{1} d \theta_{2} \\
& \ll c^{1-k} \sum_{0 \neq b_{2} \in \mathbb{Z}}\left|b_{2}\right| \exp \left(-\mathscr{X} a_{1}^{-1} b_{2}^{2} / \operatorname{det} T\right) \\
& \int_{-\infty}^{\infty}\left(\theta_{1}^{2}+a_{1}^{2}\right)^{-k / 2}\left(a_{1}+\theta_{1}^{2} / a_{1}\right)^{1 / 2}\left|b_{2}\right|^{-1} d \theta_{1}
\end{aligned}
$$

$\ll c^{1-k} \sum_{0 \neq m \in \mathbb{Z}} \exp \left(-\mathscr{X} a_{1}^{-1} m^{2} / \operatorname{det} T\right) a_{1}^{-k+3 / 2} \int_{-\infty}^{\infty}\left(1+x^{2}\right)^{(1-k) / 2} d x$
$\ll c^{1-k} a_{1}^{-k+3 / 2} \sum_{m \in \mathbb{Z}} \exp \left(-\mathscr{X} a_{1}^{-1} m^{2} / \operatorname{det} T\right)$,
by the convergence of the last integral for $k \geq 5 / 2$,
$\ll c^{1-k} a_{1}^{(3 / 2)-k}\left(a_{1} \operatorname{det} T\right)^{1 / 2} \sum_{m \in \mathbb{Z}} \exp \left(-\mathscr{X}^{-1} \pi^{2} a_{1} \operatorname{det} T \cdot m^{2}\right)$
(in view of the Poisson summation formula

$$
\begin{aligned}
& \left.\sum_{m \in \mathbb{Z}} e^{-\pi \lambda m^{2}}=\frac{1}{\sqrt{\lambda}} \sum_{m \in \mathbb{Z}} e^{-\frac{\pi}{\lambda} m^{2}}, \text { for } \lambda>0\right) \\
= & c^{1-k} a_{1}^{2-k}(\operatorname{det} T)^{1 / 2} \sum_{m \in \mathbb{Z}} \exp \left(-\pi^{2} \mathscr{X}^{-1} a_{1} \operatorname{det} T m^{2}\right)
\end{aligned}
$$

$81 \ll c^{1-k} a_{1}^{2-k}(\operatorname{det} T)^{1 / 2}$, on noting that the last series over m is ≤ 1, since $a_{1} \operatorname{det} T=T^{-1}\left[u_{1}\right] \operatorname{det} T$ with $u_{1}={ }^{t}(01)$ or ${ }^{t}(1 n)$ with $n=0,1,-1$ and, in view of $T^{-1} \asymp\left(\begin{array}{cc}t_{1}^{-1} & 0 \\ 0 & t_{2}^{-1}\end{array}\right)>t_{2}^{-1} E_{2}, a_{1} \operatorname{det} T \gg t_{1} \gg 0$. If now, for $c \geq 1$, we define

$$
\mathscr{X}(c, U):=\sum_{(d, c)=1} \alpha\left(\left(\begin{array}{ll}
c & 0 \\
0 & 0
\end{array}\right){ }^{t} U,\left(\begin{array}{ll}
d & 0 \\
0 & 0
\end{array}\right) U^{-1}\right)
$$

then the above estimate for the sub-series over $d_{1} \equiv d(\bmod \mathrm{cq})$ and summation over d modulo $c q$ together yield the estimate

$$
\mathscr{X}(c, U) \ll c^{2-k} a_{1}^{2-k}(\operatorname{det} T)^{1 / 2}
$$

Let us note here that $a_{1}=T^{-1}\left[\begin{array}{l}0 \\ 1\end{array}\right] \asymp t_{2}^{-1}$ and $a_{1}=T^{-1}\left[\begin{array}{l}1 \\ n\end{array}\right] \asymp t_{1}^{-1}+n^{2} t_{2}^{-1}$ with $|n| \leq 1$ corresponding to the respective possibilities for U; in the former case $c \ll \sqrt{t_{2} / t_{1}}$ and in the latter case $0<c \leq 3$. Hence

$$
\begin{aligned}
& \sum_{1 \leq c<\infty} \mathscr{X}\left(c,\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) \ll \sum_{c \ll \sqrt{t_{2} / t_{1}}} c^{2-k} t_{2}^{k-2}\left(t_{1} t_{2}\right)^{1 / 2} \\
& =(\min (T))^{2-k}(\operatorname{det} T)^{k-3 / 2} \sum_{1 \leq c \ll \sqrt{t_{2} / t_{1}}} c^{2-k}
\end{aligned}
$$

$$
\begin{aligned}
& \ll(\min (T))^{2-k}(\operatorname{det} T)^{k-3 / 2}= \begin{cases}1 & \text { for } k \geq 7 / 2 \\
\log \left(t_{2} / t_{1}\right) & \text { for } k=3 \\
\sqrt[4]{t_{2} / t_{1}} & \text { for } k=5 / 2\end{cases} \\
& \lll \begin{cases}(\min (T))^{2-k}(\operatorname{det} T)^{k-3 / 2}, & \text { for } k \geq 7 / 2 \\
(\min (T))^{2-k}(\operatorname{det} T)^{k-3 / 2} \log (\sqrt{\operatorname{det} T} / \min (T)), \text { for } k=3 \\
(\min (T))^{2-k}(\operatorname{det} T)^{k-3 / 2}(\operatorname{det} T)^{1 / 4} /(\min (T))^{1 / 2}, \text { for } k=5 / 2,\end{cases}
\end{aligned}
$$

while

$$
\begin{aligned}
\sum_{\substack{1 \leq c \leq 3 \\
\mid n \leq 1}} \mathscr{X}(c, U) & \ll \sum_{\substack{1 \leq c \leq 3 \\
n=0,1,-1}} c^{2-k}\left(t_{1}^{-1}+n^{2} t_{2}^{-1}\right)^{2-k}(\operatorname{det} T)^{1 / 2} \\
& \ll t_{1}^{k-2}\left(t_{1} t_{2}\right)^{1 / 2}=(\operatorname{det} T)^{k-3 / 2} t_{2}^{2-k} \\
& \ll(\operatorname{det} T)^{k-3 / 2}(\min (T))^{2-k}, \text { since } t_{2} / t_{1} \gg 1 \text { and } k \geq 5 / 2 .
\end{aligned}
$$

These estimates prove Proposition 1.4.14immediately.
Remark. The case of $U=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ is troublesome. If $f_{1} \neq 0$, then $f_{1}=$ $1 \leq c \leq 3$ and $a_{1} \gg 1 / t_{1}$,

$$
\begin{aligned}
\mathscr{X}\left(c,\left(\begin{array}{ll}
1 & 0 \\
n & 1
\end{array}\right)\right)< & \int_{\theta_{1}^{2}+a_{1}^{2} \ll 1 / \operatorname{det} T}\left(\theta_{1}^{2}+a_{1}^{2}\right)^{-k / 2} d \theta_{1} \\
& (\text { from Lemma 1.4.19 and since } \\
& \left.\operatorname{det} \operatorname{Im} \tau=\operatorname{det} \operatorname{Im}\left(M<X+i T^{-1}>\right) \gg 1\right) \\
= & a_{1}^{1-k} \int_{x^{2}+1 \ll 1 /\left(a_{1}^{2} \operatorname{det} T\right)\left(\ll\left(t_{1} / t_{2}\right) \ll 1\right)}\left(x^{2}+1\right)^{-k / 2} d x \\
\ll & t_{1}^{k-1} .
\end{aligned}
$$

1.5 Generalization of Kloosterman's Method to the Case of Degree 2

In this section, we generalize Theorem 1.1.2 to the case of modular forms of degree 2 whose constant term vanishes at every cusp. But
our result is conditional because we do not have a good estimate for a generalized Wey1 sum.

Let k, q be natural numbers with $k \geq 3$ and $f(z)=\sum_{0 \leq p \in \Lambda_{2}^{*}} a(P)$ $e(\operatorname{tr} P Z)$ be a Siegel modular form of degree 2, weight k and level q whose constant term vanishes at every cusp, and in addition we require $f \mid M=f$ for every $M \in \Gamma_{2}(q)$. As before, we fix an M-reduced positive definite matrix T whose minimum is larger than an absolute constant \mathscr{X} fixed later.

Let $\mathscr{F}=\mathscr{F}_{2}$ be a fundamental domain as in $\S 1.4$ and \mathscr{F}_{0} be a subset of \mathscr{F} such that for every point in \mathscr{G}_{2} there is a unique point in \mathscr{F}_{0} which is mapped by Γ_{2}. Put $\mathfrak{g}=\bigcup_{M \in \Gamma_{2, \infty}} M<\mathscr{F}_{0}>$ and for $\mathrm{t}:=\{X \in$ $\left.\mathscr{M}_{2}(\mathbb{R}) \mid 0 \leq x_{i j}=x_{j i}<q(1 \leq i, j \leq 2)\right\}$ and $M \in \Gamma_{2} \beta(M):=\{X \in \mathrm{t} \mid M<$ $\left.X+i T^{-1}>\in \mathfrak{g}\right\}$.

Lemma 1.5.1. $\mathrm{t}=\underset{\substack{M \in \Gamma_{2, \infty \mid \Gamma_{2}}^{M \notin \Gamma_{2, \infty}}}}{ } \beta(M)$ and the measure of

$$
\beta\left(M_{1}\right) \cap \beta\left(M_{2}\right) \text { equals } 0 \text { if } \Gamma_{2, \infty} M_{1} \neq \Gamma_{2, \infty} M_{2} .
$$

$84 \quad$ Proof. The first assertions is clear. Suppose $X \in \beta\left(M_{1}\right) \cap \beta\left(M_{2}\right)$. Then we have $N_{1}, N_{2} \in \Gamma_{2, \infty}$ such that $N_{j} M_{j}<X+i T^{-1}>\varepsilon \mathscr{F}_{0}$. By definition of \mathscr{F}_{0}, we obtain $N_{1} M_{1}<X+i T^{-1}>=N_{2} M_{2}<X+i T^{-1}>$ and hence $\left(N_{2} M_{2}\right)^{-1} N_{1} M_{1}<X+i T^{-1}>=X+i T^{-1}$. Thus $\beta\left(M_{1}\right) \cap \beta\left(M_{2}\right)$ is covered by a countable union of fixed points of the above type. If the measure of $\beta\left(M_{1}\right) \cap \beta\left(M_{2}\right)$ is not zero, then the above equation for some $N_{1}, N_{2} \in \Gamma_{2, \infty}$ is trivial in X and hence $\left(N_{2} M_{2}\right)^{-1} N_{1} M_{1}= \pm B_{2}$. This implies $\Gamma_{2, \infty} M_{1}=\Gamma_{2, \infty} M_{2}$.

Remark. As noted after Lemma 1.4.2 this lemma holds without the replacement of \mathscr{F} by \mathscr{F}_{0}. But the proof is lengthy.

Lemma 1.5.2. Let $C, D \in \mathscr{M}_{2}(\mathbb{Z})$ be a symmetric coprime pair with $\operatorname{det} C \neq 0$. Then there exists $A \in \mathscr{M}_{2}(\mathbb{Z})$ such that $\left(\begin{array}{l}A \\ C \\ D\end{array}\right) \in \Gamma_{2}$ with $(\operatorname{det} A, q)=1$.

Proof. Since C, D is a coprime symmetric pair, there exists $A \in \mathscr{M}_{2}(\mathbb{Z})$ with $\left(\begin{array}{cc}A & * \\ C & D\end{array}\right) \in \Gamma_{2}$. Since $\left(\begin{array}{cc}E_{2} & S \\ 0 & E_{2}\end{array}\right)\left(\begin{array}{cc}A & * \\ C & D\end{array}\right)=\left(\begin{array}{cc}A+S C & \stackrel{*}{D}\end{array}\right)$, we have only
to prove, for any prime $p, \operatorname{det}(A+S C) \not \equiv 0 \bmod \mathrm{p}$ for some integral symmetric matrix S by using the Chinese remainder theorem. Let $c_{1} \mid c_{2}$ be elementary divisors of C and $U C V=\left[c_{1}, c_{2}\right]=\tilde{C}$ for U, $V \in G L_{2}(\mathbb{Z})$. Put ${ }^{t} U^{-1} A V=\left(\begin{array}{lll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right)=\tilde{A}$ and $S\left[U^{-1}\right]=\left(\begin{array}{cc}s_{1} & s_{2} \\ s_{2} & s_{4}\end{array}\right)$; then we have $\operatorname{det}(A+S C)=\operatorname{det}(U V)\left|\begin{array}{lll}a_{1}+s_{1} c_{1} & a_{2}+s_{2} c_{2} \\ a_{3}+s_{2} c_{1} & a_{4}+s_{4} c_{2}\end{array}\right|=$

$$
\pm\left(a_{1} a_{4}-a_{2} a_{3}+s_{4} c_{2}\left(a_{1}+s_{1} c_{1}\right)+a_{4} c_{1} s_{1}-a_{3} c_{2} s_{2}-c_{1} a_{2} s_{2}-c_{1} c_{2} s_{2}^{2}\right)
$$

We suppose that this is congruent to $0 \bmod \mathrm{p}$ for every $s_{1}, s_{2}, s_{4} \in \mathbb{Z}$. Then $a_{1} a_{4}-a_{2} a_{3}, c_{2} a_{1}, c_{2} c_{1}, a_{4} c_{1}, a_{3} c_{2}+c_{1} a_{2}$ are obviously congruent to $0 \bmod \mathrm{p}$. Since ${ }^{t} A C$ is symmetric, $a_{3} c_{2}+c_{1} a_{2}=2 c_{1} a_{2}$ follows. If p does not divide $c_{1} a_{2}=a_{3} c_{2}$, then $p \nmid c_{1} c_{2}$. Thus $c_{1} a_{2}$ and so the determinant of every $(2,2)$ submatrix of $\left({ }^{t} \tilde{A},{ }^{t} \tilde{C}\right)$ is divisible by p. This contradicts $\left({ }^{t} \tilde{A},{ }^{t} \tilde{C}\right)$ being primitive.

Lemma 1.5.3. Let C, D^{\prime} be a symmetric coprime pair with $\operatorname{det} C \neq 0$. Then
(i) there exists $\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right) \in \Gamma_{2}$ with $\left(\operatorname{det} A^{\prime}, q\right)=1$,
(ii) for $D \in \mathscr{M}_{2}(\mathbb{Z})$ such that C, D form a symmetric coprime pair and $D \equiv D^{\prime} \bmod q$, there exist $A, B \in \mathscr{M}_{2}(\mathbb{Z})$ such that $\Gamma_{2} \ni\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \equiv$ $\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right) \bmod q$ and
(iii) for $S \in \Lambda_{2}$ with $C S \equiv 0 \bmod q$, and for A, B, D in (ii),

$$
\Gamma_{2} \ni\left(\begin{array}{cc}
A-A S^{t} C A & * \\
C & C S+D
\end{array}\right) \equiv\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right) \bmod \mathrm{q}
$$

Proof. First, (i) is nothing but the previous lemma.

$$
\begin{aligned}
& \text { Suppose }\left(\begin{array}{ll}
\tilde{A} & \tilde{B} \\
C & D
\end{array}\right) \in \Gamma_{2} \text { for } D \text { in (ii); then }\left(\begin{array}{cc}
\tilde{A} & \tilde{B} \\
C & D
\end{array}\right)\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right)^{-1} \\
& \qquad=\left(\begin{array}{ll}
\tilde{A}^{t} D^{\prime}-\tilde{B}^{t} C & -\tilde{A}^{t} B^{\prime}+\tilde{B}^{t} A^{\prime} \\
C^{t} D^{\prime}-D^{t} C & -C^{t} B^{\prime}+D^{t} A^{\prime}
\end{array}\right) \equiv\left(\begin{array}{cc}
E_{2} & * \\
0 & E_{2}
\end{array}\right) \operatorname{mod~q.~}
\end{aligned}
$$

Thus

$$
\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right) \equiv\left(\begin{array}{cc}
E_{2} & G \\
0 & E_{2}
\end{array}\right)\left(\begin{array}{cc}
\tilde{A} & \tilde{B} \\
C & D
\end{array}\right) \bmod \mathrm{q} \text { for some } \mathrm{G} \in \Lambda .
$$

Now $A=\tilde{A}+G C, B=\tilde{B}+G D$ satisfy the conditions in (ii).
Let S be as in (iii). Put

$$
M=\left(\begin{array}{cc}
E_{2} & -A S^{t} A \\
0 & E_{2}
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
E_{2} & S \\
0 & E_{2}
\end{array}\right)
$$

then it is easy to see

$$
M=\left(\begin{array}{cc}
A-A S^{t} A C & A S\left(E_{2}-{ }^{t} A D\right)-A S^{t} A C S+B \\
C & C S+D
\end{array}\right) \in \Gamma_{2}
$$

Further $S^{t} A C=S^{t} C A={ }^{t}(C S) A \equiv 0 \bmod q$ and $S\left(E_{2}-{ }^{t} A D\right)=$ $-S^{t} C B=-^{t}(C S) B \equiv 0 \bmod q \operatorname{imply}($ iii).

Lemma 1.5.4. Let $\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right) \in \Gamma_{2}$ with $\left(\operatorname{det} A^{\prime}, q\right)=1$ and $\operatorname{det} C \neq 0$. Then we have

$$
\bigcup_{\tilde{D}} \Gamma_{2, \infty}\left(\begin{array}{cc}
* & * \\
C & \tilde{D}
\end{array}\right)=\bigcup_{D \in \mathscr{D}} \bigcup_{S \in \Lambda(C, q)} \Gamma_{2, \infty}\left(\begin{array}{cc}
A-A S^{t} C A & * \\
C & C S+D
\end{array}\right) .
$$

where \tilde{D} runs over $\tilde{D} \in \mathscr{M}_{2}(\mathbb{Z})$ such that $\tilde{D} \equiv D^{\prime} \bmod \mathrm{q}$ and (C, \tilde{D}) is a symmetric coprime pair, $S \in \Lambda(C, q):=\left\{S={ }^{t} S \in \Lambda_{2} \mid C S \equiv 0 \bmod q\right\}$ and $\mathscr{D}:=\left\{D \in \mathscr{M}_{2}(\mathbb{Z}) \bmod \mathrm{C} \Lambda(\mathrm{C}, \mathrm{q}) \mid(\mathrm{C}, \mathrm{D})\right.$ is a symmetric coprime pair and $\left.D \equiv D^{\prime} \bmod \mathrm{q}\right\}$, and coset representatives on the right are congruent to $\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right) \bmod \mathrm{q}$ for some $A \in \mathscr{M}_{2}(\mathbb{Z})$ with $\Gamma_{2} \ni\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \equiv\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right) \bmod \mathrm{q}$.
Proof. By the previous lemma, for \tilde{D} above, there exists $\left(\begin{array}{cc}\tilde{A} & \tilde{B} \\ C & \tilde{D}\end{array}\right) \in \Gamma_{2}$, which is congruent to $\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right) \bmod \mathrm{q} \cdot \mathscr{D}$ is a set of representatives of such \tilde{D} modulo $C \Lambda(C, q)$, and so the rest follows from the previous lemma.

Lemma 1.5.5. Let $A, C \in \mathscr{M}_{2}(\mathbb{Z})$ satisfying ${ }^{t} A C={ }^{t} C A$, $\operatorname{det} C \neq 0$, $(\operatorname{det} A, q)=1$. Then, for $P \in \Lambda_{2}^{*}$, we have

$$
\begin{aligned}
& \sum_{S \in \Lambda(c, q) \bmod \mathrm{q} \Lambda} e\left(\operatorname{tr} P A S^{t} A / q\right) \\
= & \begin{cases}{[\Lambda(c, q): q \Lambda]} & \text { if } \nabla^{*} \\
0 & \text { otherwise, }\end{cases}
\end{aligned}
$$

where the condition $\left\lceil^{*}\right.$ on P is as follows:

$$
\begin{gathered}
\nabla^{*} \mid: \operatorname{tr}(P S) \equiv 0 \bmod \mathrm{q} \text { for every } \mathrm{S} \in \Lambda\left({ }^{\mathrm{t}} \mathrm{C}, \mathrm{q}\right) \\
\text { i.e. } S \in \Lambda \text { with }{ }^{t} C S \equiv 0 \bmod \mathrm{q} .
\end{gathered}
$$

Proof. It is clear that we have only to prove that the condition ${ }^{*}$ is equal to $\operatorname{tr}\left(P A S^{t} A\right) \equiv 0 \bmod q$ for every $S \in \Lambda(C, q)$. Since $(\operatorname{det} A, q)=$ 1, for $S \in \Lambda$ we have $S \in \Lambda(C, q) \Longleftrightarrow C S \equiv 0(\bmod q) \Longleftrightarrow$

$$
{ }^{t} A C S^{t} A \equiv 0 \bmod \mathrm{q} \Longleftrightarrow{ }^{\mathrm{t}} \mathrm{CAS}^{\mathrm{t}} \mathrm{~A} \equiv 0 \bmod \mathrm{q} \Longleftrightarrow \mathrm{AS}^{\mathrm{t}} \mathrm{~A} \in \Lambda\left({ }^{\mathrm{t}} \mathrm{C}, \mathrm{q}\right)
$$

Since $S \equiv A\left(A_{1} S^{t} A_{1}\right)^{t} A \bmod q$ for $A_{1} \in \mathscr{M}_{2}(\mathbb{Z})$ with $A A_{1} \equiv A_{1} A \equiv$ $E_{2} \bmod \mathrm{q}, A S^{t} A$ runs over $\Lambda\left({ }^{t} C, q\right) \bmod \mathrm{q} \Lambda$ along with $S \in \Lambda(C, q)$. Thus we have proved the equality of two conditions.

The following two propositions are proved at the end, in this section.
Proposition 1.5.6. Let $\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right) \in \Gamma_{2}$ with $\operatorname{det} C \neq 0,\left(\operatorname{det} A^{\prime}, q\right)=1$, and $P, G, T \in \Lambda^{*}$. Suppose that p satisfies the condition ${ }^{*}$ in Lemma 1.5 .5 We denote by $S\left(G, P, T, C,\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right)\right)$ the exponential sum

$$
\sum_{D \in \mathscr{D}} e\left(\operatorname{tr}\left(A C^{-1}\left(G+P q^{-1}\right)+T C^{-1} D\right)\right.
$$

where A, D, \mathscr{D} are the same as in Lemma 1.5.4 Then we have

$$
S\left(G, P, T, C,\left(\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right)\right)=O\left(c_{1}^{2} c_{2}^{1 / 2+\varepsilon}\left(c_{2}, t\right)^{1 / 2}\right) \text { for any } \varepsilon>0
$$

where

$$
C=U^{-1}\left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right) V^{-1}, U, V \in G L_{2}(\mathbb{Z}), 0<c_{1} \mid c_{2}, T[V]=\left(\begin{array}{cc}
* & * \\
* & t
\end{array}\right)
$$

The implied constant depends only on q.
Proposition 1.5.7. Let n be a natural number and $S=\left\{{ }^{t}(b d) \mid b, d \in \mathbb{Z}\right.$, $(b, d)=1\}$. We introduce the equivalence relation ${ }^{t}(b, d) \sim{ }^{t}\left(b^{\prime}, d^{\prime}\right)$
by ${ }^{t}(b d) \equiv w^{t}\left(b^{\prime} d^{\prime}\right) \bmod \mathrm{n}$ for some $w \in \mathbb{Z}$, with $(w, n)=1$ and put $S(n)=S / \sim$. Then, for $T=\left(t_{i j}\right) \in \Lambda_{2}^{*}$, we have

$$
\sum_{S(n) \exists x}(T[x], n)^{1 / 2}=O\left(n^{1+\varepsilon}(e(T), n)^{1 / 2}\right) \text { for any } \varepsilon>0,
$$

where $e(T)=\left(t_{11}, t_{22}, 2 t_{12}\right)$.
As before we put, for $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{2}$,

$$
\alpha(M)=\alpha(C, D):=\int_{\beta(M)} f\left(X+i T^{-1}\right) e(-\operatorname{tr}(T X) d X .
$$

Then we have

$$
a(T)=e^{4 \pi} a^{-3}\left\{\sum_{\substack{M \in \Gamma_{2, \infty}, \infty \Gamma_{2} \\ \operatorname{rank} C=2}} \alpha(C, D)+\sum_{\substack{M \in \Gamma_{2}, \infty, \Gamma_{2} \\ \operatorname{rank} K=1}} \alpha(C, D)\right\}
$$

Let $C \in \mathscr{M}_{2}(\mathbb{Z})$ with $\operatorname{det} C \neq 0$. For $S={ }^{t} S \in \mathscr{M}_{2}(\mathbb{Q})$ with $S C \in$ $\mathscr{M}_{2}(\mathbb{Z})$ and for $W \in \mathscr{G}_{2}$, we put

$$
g(S, C ; W)= \begin{cases}1 & \text { if } S+W \in \mathfrak{g}, \\ 0 & \text { otherwise } .\end{cases}
$$

Then $g(S, C ; W)$ has the Fourier expansion

$$
\sum_{G \in \Lambda^{*} / \gamma(C)} b(G, C ; W) e(\operatorname{tr}(S G)),
$$

where $\gamma(C):=\left\{G \in \Lambda^{*} \mid \operatorname{tr}(S G) \in \mathbb{Z}\right.$ for every $S={ }^{t} S \in \mathscr{M}_{2}(\mathbb{Q})$ with $\left.S C \in \mathscr{M}_{2}(\mathbb{Z})\right\}$ and $b(G, C ; W)=\left[\Lambda^{*}: \gamma(C)\right]^{-1} \sum_{S} e(-\operatorname{tr}(S G)) g(S, C ; W)$ where S runs over $\left\{S={ }^{t} S \in \mathscr{M}_{2}(\mathbb{Q}) \bmod \Lambda \mid S C \in \mathscr{M}_{2}(\mathbb{Z})\right\}$. Now we have

Lemma 1.5.8. Let $\left(C, D^{\prime}\right)$ be a symmetric coprime pair with $\operatorname{det} C \neq 0$.
Then we have

$$
\sum_{D} \alpha(C, D)=[\Lambda(c, q): q \Lambda] \operatorname{det} c^{-k}
$$

$$
\begin{gathered}
\int_{\min (\operatorname{Im} \tau) \geq \sqrt{3} / 2} \operatorname{det}\left(\theta+i T^{-1}\right)^{-k} \sum_{0 \leq P \in \Lambda^{*}} a^{\prime}(P) e(\operatorname{tr}(P \tau) / q) \times \\
\times e(-\operatorname{tr}(T \theta)) \sum_{G \in \Lambda^{*} / \gamma(C)} b(G, C ; \tau) S\left(G, P, T, C,\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right)\right) d \theta
\end{gathered}
$$

where D runs over $\left\{D \equiv D^{\prime} \bmod \mathrm{q} \mid \mathrm{C}, D\right.$ are symmetric and coprime $\}$, $\tau=\tau(\theta, C)=-{ }^{t} C^{-1}\left(\theta+i T^{-1}\right)^{-1} C^{-1}$, and $\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right) \in \Gamma_{2}$ with $\left(\operatorname{det} A^{\prime}, q\right)=$ 1, and $a^{\prime}(P)$ are Fourier coefficients of

$$
\begin{aligned}
f \left\lvert\,\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right)(Z)\right. & \left.=\operatorname{det}\left(C Z+D^{\prime}\right)^{-k} f\left(A^{\prime} Z+B^{\prime}\right)\left(C Z+D^{\prime}\right)^{-1}\right) \\
& =\sum a^{\prime}(P) e(\operatorname{tr}(P Z / q))
\end{aligned}
$$

Proof. By Lemma 1.5.2 there exists $\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right) \in \Gamma_{2}$ with $\left(\operatorname{det} A^{\prime}, q\right)=1$ and we put $f\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right)^{-1}(Z)=\sum a^{\prime}(P) e(\operatorname{tr} P Z / q)$. For $D \in \mathscr{M}_{2}(\mathbb{Z})$ such that (C, D) is a symmetric coprime pair and $D \equiv D^{\prime} \bmod \mathrm{q}$, there exists $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{2}$ with $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)=\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right) \bmod q$. Hence we have $f\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)^{-1}=$ $f \left\lvert\,\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right)^{-1}=F\right.$ (say). Then we have $\alpha(C, D)=\int_{\beta(M)} \operatorname{det}\left(C\left(X+i T^{-1}\right)+\mathbf{9 0}\right.$ $D)^{-k} F\left(M<X+i T^{-1}>\right) e(-\operatorname{tr}(T X)) d X$, where $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$.

Since $\operatorname{det} C \neq 0$, we have $M<Z>=A C^{-1}-{ }^{t} C^{-1}\left(Z+C^{-1} D\right)^{-1} C^{-1}$.
Putting $X=\theta-C^{-1} D, \tau=-{ }^{t} C^{-1}\left(\theta+i T^{-1}\right)^{-1} C^{-1}$,

$$
\begin{aligned}
& \alpha(C, D)=(\operatorname{det} C)^{-k} \int_{\substack{\theta \in \mathfrak{t}+C^{-1} D \\
A C^{-1}+\tau \in \mathfrak{g}}}\left(\theta+i T^{-1}\right)^{-k} F\left(A C^{-1}+\tau\right) \\
& e\left(-\operatorname{tr}\left(T\left(\theta-C^{-1} D\right)\right)\right) d \theta \\
&=(\operatorname{det} C)^{-k} \int_{\substack{\theta \in \mathfrak{t}+C^{-1} D \\
A C^{-1}+\tau \in \mathfrak{g}}}\left(\theta+i T^{-1}\right)^{-k} \sum_{p} a^{\prime}(P) e(\operatorname{tr}(P \tau) / q) \\
& e(-\operatorname{tr}(T \theta)) \times e\left(\operatorname{tr}\left(P A C^{-1} / q+T C^{-1} D\right)\right) d \theta
\end{aligned}
$$

$$
\begin{aligned}
&=(\operatorname{det} C)^{-k} \int_{\substack{\theta \in \operatorname{t}+C^{-1} D \\
\min (\operatorname{Im}(\tau)) \geq \sqrt{3} / 2}}\left(\theta+i T^{-1}\right)^{-k} \sum_{P} a^{\prime}(P) \\
& \times \sum_{G \in \Lambda^{*} / \gamma(C)} b(G, C ; \tau) e(\operatorname{tr}(P \tau) / q) e(-\operatorname{tr}(T \theta))
\end{aligned}
$$

since $A C^{-1}+\tau \in \mathfrak{g}$ implies $\min (\operatorname{Im} \tau) \geq \sqrt{3} / 2$.
Applying Lemma 1.5.4 the sum $\sum_{D} \alpha(C, D)$ referred to is equal to

$$
\begin{gathered}
|\operatorname{det} C|^{-k} \sum_{\substack{D \in \mathscr{\mathscr { }}, S \in \Lambda(C, q) \\
\min (\operatorname{Im} \tau) \geq \sqrt{3} / 2}}\left(\theta+i T^{-1}\right)^{-k} \sum_{P} a^{\prime}(P) e(\operatorname{tr}(P \tau) / q) e(-\operatorname{tr} T \theta) \times \\
\times \sum_{G \in \Lambda^{*} / \gamma(C)} b(G, C ; \tau) e\left(\tau r \left(\left(A-A S^{t} C A\right) C^{-1} G+P\left(A-A S^{t} C A\right) C^{-1} / q+\right.\right. \\
\left.+T C^{-1}(C S+D)\right) d \theta,
\end{gathered}
$$

91 (noting that $\operatorname{tr}\left(\left(A-A S^{t} C A\right) C^{-1} G+P\left(A-A S^{t} C A\right) C^{-1} / q+T C^{-1}(C S+D)\right.$)

$$
\begin{aligned}
& \equiv \operatorname{tr}\left(A C^{-1} G+P A C^{-1} / q-P A S^{t} A / q+T C^{-1} D\right) \bmod 1 \\
& \quad \begin{array}{l}
\text { since } \left.{ }^{t} C A C^{-1}={ }^{t} A,\right) \\
\\
=(\operatorname{det} C)^{-k} \sum_{\substack{D \in \mathscr{O} \\
S \in \Lambda(C, q) / q \Lambda}} \int_{\min (\operatorname{Im} \tau) \geq \sqrt{3} / 2}\left(\theta+i T^{-1}\right)^{-k} \sum a^{\prime}(P) \\
\left.\quad+P A C^{-1} / q-P A S^{t} A / q\right) e(-\operatorname{tr}(T \theta)) \times \sum_{G \in \Lambda^{*} / \gamma(C)} b(G, C ; \tau) e\left(\operatorname{tr}\left(A C^{-1} D\right)\right) d \theta \\
=[\Lambda(C, q): q \Lambda](\operatorname{det} C)^{-k} \int_{\min (\operatorname{Im} \tau) \geq \sqrt{3} / 2}\left(\theta+i T^{-1}\right)^{-k} \\
\quad \sum^{*} a^{\prime}(P) e(\operatorname{tr}(P \tau / q)) e(-\operatorname{tr}(T \theta) \times
\end{array}
\end{aligned}
$$

$$
\sum_{G \in \Lambda^{*} / \gamma(C)} b(G, C ; \tau) S\left(G, P, T, C,\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right)\right) d \theta
$$

which proves our lemma.
Lemma 1.5.9. Let $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{2}$ and $f \mid M(Z)=\sum a^{\prime}(P) e(\operatorname{tr}(P Z / q))$. If $\underline{\min }(\operatorname{Im} Z) \geq \sqrt{3} / 2$, then $\sum\left|a^{\prime}(P) e(\operatorname{tr}(P Z / q))\right|=O(\exp (-\mathscr{X}$ $\underline{\min }(\operatorname{Im} Z)$) for some $\mathscr{X}>0$.

Proof. Let $\Gamma_{2}=\bigcup_{i} M_{i} \Gamma_{2}(q)$ and $f \mid M_{i}(Z)=\sum a_{i}(P) e(\operatorname{tr}(P Z / q))$. Suppose $\operatorname{Im}\left(Z\left[U^{-1}\right]\right)$ is M-reduced for $U \in G L_{2}(\mathbb{Z})$. Since $f \left\lvert\, M\left(\begin{array}{cc}{ }^{t} U & 0 \\ 0 & U^{-1}\end{array}\right)=\right.$ $f \mid M_{i}$ for some $i,(\operatorname{det} U)^{k} a^{\prime}\left(P\left[{ }^{t} U^{-1}\right]\right)=a_{i}(P)$ for every $0 \leq P \in \Lambda^{*}$, and then we have

$$
\begin{aligned}
& \sum \mid a^{\prime}(P) e(\operatorname{tr}(P Z / q) \mid \\
= & \sum\left|a^{\prime}\left(P\left[{ }^{t} U^{-1}\right]\right) e\left(\operatorname{tr}\left(P Z\left[U^{-1}\right] / q\right)\right)\right| \\
= & \sum\left|a_{i}(P) e\left(\operatorname{tr}\left(P Z\left[U^{-1}\right] / q\right)\right)\right| \\
= & O\left(\exp \left(-\mathscr{X} \min \left(\operatorname{Im}\left(Z\left[U^{-1}\right]\right)\right)\right) \quad(\text { Lemma 1.4.1 })\right. \\
= & O(\exp (-\mathscr{X} \min (\operatorname{Im} Z))) .
\end{aligned}
$$

This completes the proof, since $[\Gamma: \Gamma(q)]<\infty$.
Here we make an assumption, namely

Assumption (*):

$$
\sum_{G \in \Lambda^{*} / \gamma(C)}|b(G, C ; \tau)|=O\left(c_{1}^{a_{1}+\varepsilon} c_{2}^{a_{2}}\right) \text { for }\left\{\begin{array}{l}
0 \leq a_{1} \leq 3 / 2 \\
0 \leq a_{2}<1 / 2
\end{array} \text { and any } \varepsilon>0\right.
$$

where $0<c_{1} \mid c_{2}$ are elementary divisors of C and the implied constant is independent of τ.

This is discussed later.
Let $C, D \in \mathscr{M}_{2}(\mathbb{Z})$ form a symmetric coprime pair with $\operatorname{det} C \neq 0$. Under Assumption (*), we have, by virtue of Lemma 1.5.8 Proposition

1.5 .6 and Lemma 1.5.9

$$
\begin{aligned}
&\left|\sum_{D^{\prime} \equiv D \bmod \mathrm{q}} \alpha\left(C, D^{\prime}\right)\right| \\
& \ll\left|\operatorname{det} C^{-k}\right| \int_{\min (\operatorname{Im} \tau) \geq \sqrt{3} / 2}\left|\operatorname{det}\left(\theta+i T^{-1}\right)\right|^{-k} \exp (-\mathscr{X} \min (\operatorname{Im} \tau)) c_{c_{2}}^{a_{1}+\varepsilon a_{2}} \times \\
& c_{1}^{2} c_{2}^{1 / 2+\varepsilon}\left(c_{2}, t\right)^{1 / 2} d \theta
\end{aligned}
$$

where

$$
C=U^{-1}\left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right) V^{-1}, U, V \in G L_{2}(\mathbb{Z}), 0<c_{1} \mid c_{2}, T[V]=\left(\begin{array}{cc}
* & * \\
* & t
\end{array}\right),
$$

since

$$
\tau=-^{t} C^{-1}\left(\theta+i T^{-1}\right)^{-1} C^{-1}, \operatorname{Im} \tau=\left(T[\theta]+T^{-1}\right)^{-1}\left[C^{-1}\right]
$$

and for $X=\sqrt{T} \theta \sqrt{T}$, we have $d \theta=\operatorname{det} T^{-3 / 2} d X$. Hence

$$
\begin{aligned}
& \left|\sum_{D^{\prime} \equiv D \bmod \mathrm{q}} \alpha\left(C, D^{\prime}\right)\right| \\
& \ll c_{1}^{a_{1}+2-k+\varepsilon} c_{2}^{a_{2}+1 / 2-k / \varepsilon}\left(c_{2}, t\right)^{1 / 2}(\operatorname{det} T)^{k-3 / 2} \int \operatorname{det}\left(X^{2}+1\right)^{-k / 2} \times \\
& \quad \exp \left(-\mathscr{X} \min \left(\left(X^{2}+1\right)^{-1}\left[\sqrt{T} C^{-1}\right]\right)\right) d X, \\
& \ll c_{1}^{a_{1}+2-k+\varepsilon} c_{2}^{a_{2}+1 / 2-k+\varepsilon}\left(c_{2}, t\right)^{1 / 2}(\operatorname{det} T)^{k-3 / 2}\left(\min \left(T\left[c^{-1}\right]\right)\right)^{1-k / 2} \\
& \quad \text { (as for the proof of Proposition 1.4.10). }
\end{aligned}
$$

Thus we have proved
Lemma 1.5.10. Let $C \in \mathscr{M}_{2}(\mathbb{Z})$ with $\operatorname{det} C \neq 0$. Then we have

$$
\begin{array}{r}
\left|\sum_{D} \alpha(C, D)\right| \ll(\operatorname{det} T)^{k-3 / 2} c_{1}^{a_{1}+2-k+\varepsilon} c_{2}^{a_{2}+1 / 2-k+\varepsilon} \\
\left(c_{2}, t\right)^{1 / 2}\left(\min \left(T\left[C^{-1}\right]\right)\right)^{1-k / 2}
\end{array}
$$

under Assumption (*), where

$$
C=U^{-1}\left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right) V^{-1}, U, V \in G L_{2}(\mathbb{Z}) 0<c_{1} / c_{2}
$$

and $T[V]=\binom{* *}{*}$.
For the above $C, \min \left(T\left[C^{-1}\right]\right)=\min \left(T\left[V\left(\begin{array}{cc}c_{1}^{-1} & 0 \\ 0 & c_{2}^{-1}\end{array}\right)\right]\right)=c_{2}^{-2}$ $\min T\left[V\left(\begin{array}{cc}c_{2} / c_{1} & 0 \\ 0 & 1\end{array}\right)\right]>c_{2}^{-2} \min (T)$ holds. In the decomposition $C=U^{-1}$ $\left(\begin{array}{cc}c_{1} & 0 \\ 0 & c_{2}\end{array}\right) V^{-1}, V$ is uniquely determined in

$$
G L_{2}(\mathbb{Z}) /\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}(\mathbb{Z}) \right\rvert\, b \equiv 0 \bmod \mathrm{c}_{2} / \mathrm{c}_{1}\right\}
$$

so we have a bijection $V=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto^{t}(b d) \in S\left(c_{2} / c_{1}\right)$ defined in Proposition 1.5.7 and $\left(c_{2}, t\right) \leq c_{1}\left(c_{2} / c_{1}, t\right)$.

Thus we have, by Proposition 1.5.7
Lemma 1.5.11. Let $0<c_{1} \mid c_{2}$. Then, under Assumption (*),

$$
\begin{aligned}
& \left|\sum \alpha(C, D)\right| \ll(\operatorname{det} T)^{k-3 / 2} c_{1}^{a_{1}+5 / 2-k+\varepsilon} c_{2}^{a_{2}+1 / 2-k+\varepsilon} \\
& \qquad\left(c_{2} / c_{1}\right)^{1+2 \varepsilon}\left(e(T), c_{2} / c_{1}\right)^{1 / 2} \times \\
& \times \\
& \times\left\{\begin{array}{l}
1, \\
\left(c_{2}^{-2} \min T\right)^{1-k / 2} \text { for any } \varepsilon>0
\end{array}\right.
\end{aligned}
$$

where C runs over representatives of left cosets by $G L_{2}(\mathbb{Z})$ of integral matrices with elementary divisors c_{1}, c_{2}, and D runs over all possible D with $(\stackrel{*}{C} \stackrel{*}{D}) \in \Gamma_{2}$.

Now we can prove
Proposition 1.5.12. Under Assumption (*) we have, for any $\varepsilon>0$,

$$
\left|\sum_{\operatorname{rank} C=2} \alpha(C, D)\right| \ll(\min T)^{a \mid 2+k / 4-k / 2+\varepsilon}(\operatorname{det} T)^{k-3 / 2}
$$

if $\min (T)>\mathscr{X}(=$ an absolute constant $>0)$ and $k \geq 3$.

Remark. Since $a_{2}<1 / 2, a_{2} / 2+5 / 4-k / 2<0$ and so $a_{2} / 2+5 / 4-$ $k / 2+\varepsilon<0$ for a sufficiently small positive ε.

Proof. Decompose the sum $\left|\sum \alpha(C, D)\right|$ as

$$
\left|\sum_{c_{2}<(\min (T))^{1 / 2}} \alpha(C, D)\right|+\left|\sum_{c_{2} \geq(\min (T))^{1 / 2}} \alpha(C, D)\right|=\sum_{1}+\sum_{2} \quad \text { (say) }
$$

By virtue of Lemma 1.5.11 we have

$$
\begin{gathered}
(\operatorname{det} T)^{3 / 2-k} \sum_{1} \ll \sum_{c_{1} \mid c_{2}<(\min (T))^{1 / 2}} c_{1}^{a_{1}+5 / 2-k+\varepsilon} c_{2}^{a_{2}+1 / 2-k+\varepsilon}\left(c_{2} / c_{1}\right)^{1+2 \varepsilon} \\
\left(e(T), c_{2} / c_{1}\right)^{1 / 2}\left(c_{2}^{-2} \min T\right)^{1-k / 2} \\
=(\min (T))^{1-k / 2} \sum_{c_{1} \mid c_{2}<(\min (T))^{1 / 2}} c_{1}^{a_{1}+a_{2}+1-k+2 \varepsilon} \\
\left(c_{2} / c_{1}\right)^{a_{2}-1 / 2+3 \varepsilon}\left(e(T), c_{2} / c_{1}\right)^{1 / 2} \\
\leq(\min (T))^{1-k / 2} \sum_{\substack{n, m \geq 1}} n^{a_{1}+a_{2}+1-k+2 \varepsilon} \\
n m<(\min (T))^{1 / 2} \\
m^{a_{2}-1 / 2+3 \varepsilon}(e(T), m)^{1 / 2} .
\end{gathered}
$$

The sum over m does not exceed

$$
\begin{aligned}
& \sum_{r \mid e(T)} r^{1 / 2} \sum_{s<(\min (T))^{1 / 2} / n r}(s r)^{a_{2}-1 / 2+3 \varepsilon} \\
&< \sum_{r \mid e(T)} r^{a_{2}+3 \varepsilon} \sum_{s<(\min (T))^{1 / 2} / n r} s^{a_{2}-1 / 2+3 \varepsilon} \\
& \ll \sum_{r \mid e(T)} r^{a_{2}+3 \varepsilon}\left((\min (T))^{1 / 2} / n r\right)^{a_{2}+1 / 2+3 \varepsilon} \quad\left(\text { since } a_{2}+1 / 2+3 \varepsilon>0\right) \\
&=(\min (T))^{a_{2} / 2+1 / 4+3 \varepsilon / 2} n^{-a_{2}-1 / 2-3 \varepsilon} \sum_{r \mid e(T)} r^{-1 / 2} \\
& \leqq(\min (T))^{a_{2} / 2+1 / 4+3 \varepsilon / 2} n^{-a_{2}-1 / 2-3 \varepsilon} \sum_{r \mid e(T)^{1}} \quad(\text { since } e(T) \leq \min (T)) .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
(\operatorname{det} T)^{3 / 2-k} \sum_{1} & \ll(\min T)^{a_{2} / 2+5 / 4-k / 2+2 \varepsilon} \sum_{n \geq 1} n^{a_{1}+1 / 2-k-\varepsilon} \\
& \ll(\min T)^{a_{2} / 2+5 / 4-k / 2+2 \varepsilon} \quad\left(\text { since } a_{1}+1 / 2-k \leq-1\right) .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& (\operatorname{det} T)^{3 / 2-k} \sum_{2} \ll \sum_{\substack{c_{1} \mid c_{2} \\
c_{2} \geq(\min (T))^{1 / 2}}} c_{1}^{a_{1}+5 / 2-k+\varepsilon} c_{2}^{a_{2}+1 / 2-k+\varepsilon} \\
& =\sum_{\substack{c_{1} \mid c_{2} \\
c_{2} \geq(\min (T))^{1 / 2}}} c_{1}^{a_{1}+a_{2}+3-2 k+2 \varepsilon}\left(c_{2} / c_{1}\right)^{a_{2}+3 / 2-k+3 \varepsilon}\left(e(T), c_{2} / c_{1}\right)^{1 / 2} \\
& =\sum_{\substack{n, m \geq 1 \\
n m \geq(\min (T))^{1 / 2}}} n^{a_{1}+a_{2}+3-2 k+2 \varepsilon} m^{a_{2}+3 / 2-k+3 \varepsilon}(e(T), m)^{1 / 2}
\end{aligned}
$$

The sum over m is less than

$$
\begin{aligned}
& \sum_{r \mid e(T)} \sum_{s \geq(\min (T))^{1 / 2} /(n r)}(s r)^{a_{2}+3 / 2-k+3 \varepsilon} r^{1 / 2} \\
= & \sum_{r \mid e(T)} r^{a_{2}+2-k+3 \varepsilon} \sum_{s \geq(\min (T))^{1 / 2} /(n r)} s^{a_{2}+3 / 2-k+3 \varepsilon} \\
\ll & \sum_{r \mid e(T)} r^{a_{2}+2-k+3 \varepsilon}\left((\min (T))^{1 / 2} / n r\right)^{a_{2}+5 / 2-k+3 \varepsilon} \\
& \left(\text { since } a_{2}+5 / 2-k+3 \varepsilon<0 \text { for small } \varepsilon>0\right) \\
= & (\min (T))^{a_{2} / 2+5 / 4-k / 2+(3 / 2) \varepsilon} n^{-a_{2}-5 / 2+k-3 \varepsilon} \sum_{r \mid e(T)} r^{-1 / 2} \\
\ll & (\min (T))^{a_{2} / 2+5 / 4-k / 2+2 \varepsilon} n^{-a_{2}-5 / 2+k-3 \varepsilon} .
\end{aligned}
$$

Thus we have

$$
(\operatorname{det} T)^{3 / 2-k} \sum_{2} \ll(\min (T))^{a_{2} / 2+5 / 4-k / 2+2 \varepsilon} \sum_{n \geq 1} n^{a_{1}+1 / 2-k-\varepsilon}
$$

$$
\ll(\min (T))^{a_{2} / 2+5 / 4-k / 2+2 \varepsilon}
$$

The proof of Proposition 1.5 .12 is complete, but for the proof of Proposition 1.5.6 and 1.5.7

Remark on Assumption (*). Let $C=U^{-1}\left(\begin{array}{cc}c_{1} & 0 \\ 0 & c_{2}\end{array}\right) V^{-1}$ with $U, V \in$ $G L_{2}(\mathbb{Z}), 0 \leq c_{1} \mid c_{2}$, and put $C^{\prime}=\left(\begin{array}{cc}c_{1} & 0 \\ 0 & c_{2}\end{array}\right)$. Then

$$
\begin{aligned}
\gamma\left(C^{\prime}\right)= & \left\{G \in \Lambda^{*} \mid \operatorname{tr}(S G) \in \mathbb{Z} \text { for every } S\right. \\
= & \left.{ }^{t} S \in \mathscr{M}_{2}(\mathbb{Q}) \text { with } S C^{\prime} \in \mathscr{M}_{2}(\mathbb{Z})\right\} \\
= & \left\{G \in \Lambda^{*} \mid \operatorname{tr}(S G) \in \mathbb{Z}\right. \text { for every } \\
& \left.\quad S={ }^{t} S \in \mathscr{M}_{2}(\mathbb{Q}) \text { with } S[U] C \in \mathscr{M}_{2}(\mathbb{Z})\right\} \\
= & \gamma(C)\left[{ }^{t} U\right] .
\end{aligned}
$$

97 Hence

$$
\begin{aligned}
b(G, C ; W) & =\left[\Lambda^{*}: \gamma\left(C^{\prime}\right)\right]^{-1} \sum_{\substack{t \\
S \\
S C \in \bmod _{2}(\mathbb{Z})}} e(-\operatorname{tr}(S G)) g(S, C ; W) \\
& =\left[\Lambda^{*} \gamma\left(C^{\prime}\right)\right]^{-1} \sum_{\substack{S \bmod \Lambda \\
S C^{\prime} \in \mathscr{M}_{2}(\mathbb{Z})}} e(-\operatorname{tr}(S[U] G)) g(S[U], C ; W) \\
& =\left[\Lambda^{*}: \gamma\left(C^{\prime}\right)\right]^{-1} \sum_{S} e\left(-\operatorname{tr}\left(S G\left[^{t} U\right]\right)\right) g\left(S, C^{\prime} ; W\left[U^{-1}\right]\right) \\
& =b\left(G\left[{ }^{t} U\right], C^{\prime} ; W\left[U^{-1}\right]\right) .
\end{aligned}
$$

Thus we obtain

$$
\sum_{G \in \Lambda^{*} / \gamma(C)}|b(G, C ; \tau)|=\sum_{G \in \Lambda^{*} / \gamma\left(C^{\prime}\right)}\left|b\left(G, C^{\prime}: \tau\left[U^{-1}\right]\right)\right| .
$$

For $S=\left(\begin{array}{c}s_{1} \\ s_{2} \\ s_{2}\end{array}\right)$, it is clear that $S C^{\prime} \in \mathscr{M}_{2}(\mathbb{Z})$ if and only if $s_{1}=u_{1} / c_{1}$, $s_{2}=u_{2} / c_{1}, s_{4}=u_{4} / c_{2}$ for $u_{1}, u_{2}, u_{4} \in \mathbb{Z}$.

For $G=\left(\begin{array}{cc}g_{1} & g_{2} / 2 \\ g_{2} / 2 & g_{4}\end{array}\right), G \in \gamma\left(C^{\prime}\right)$ if and only if $c_{1}\left|g_{1}, c_{1}\right| g_{1}, c_{1}\left|g_{2}, c_{2}\right| g_{4}$. Hence we have

$$
\sum_{G \in \Lambda^{*} / \gamma(C)}|b(G, C ; \tau)|
$$

$$
=\sum_{\substack{g_{1}, g_{2} \bmod \mathrm{c}_{1} \\ g_{4} \bmod \mathrm{c}_{2}}} c_{1}^{-2} c_{2}^{-1} \sum_{\substack{u_{1}, u_{2} \bmod \mathrm{c}_{1} \\ u_{4} \bmod \mathrm{c}_{2} \\ u_{1} / c_{1} u_{2} / c_{1} \\ u_{2} / c_{1} u_{4} / c_{2}}} \sum_{\substack{\left.u^{-1}\right] \in \mathfrak{g}}} e\left(u_{1} g_{1} / c_{1}+u_{2} g_{2} / c_{1}+u_{4} g_{4} / c_{2}\right) \mid
$$

Thus Assumption (*) is the same as

$$
\begin{aligned}
& \text { (\#) } \sum_{\substack{g_{1}, g_{2} \bmod c_{1} \\
g_{4} \bmod \mathrm{c}_{2}}}\left|\sum_{\substack{u_{1}, u_{2} \bmod \mathrm{c}_{1} \\
u_{4} \bmod \mathrm{c}_{2}}} e\left(\left(u_{1} g_{1}+u_{2} g_{2}\right) / c_{1}+u_{4} g_{4} / c_{2}\right)\right|=O\left(c_{1}^{2+a_{1}+\epsilon} c_{2}^{1+a_{2}}\right) \\
& \text { for } 0<c_{1} \mid c_{2} \text { and any } \varepsilon>0 \quad\left(\begin{array}{ll}
u_{1} / c_{1} & u_{2} / c_{1} \\
u_{2} / c_{1} & u_{4} / c_{2}
\end{array}\right)+W \in \mathfrak{g}
\end{aligned}
$$

where $0 \leq a_{1} \leq 3 / 2,0 \leq a_{2}<1 / 2$ and the implied constant is independent of c_{1}, c_{2}, W.

Using Schwarz's inequality, the left hand side does not exceed

$$
\sqrt{c_{1}^{2} c_{2}} \sqrt{\sum_{g_{1}, g_{2}, g_{4}}\left|\sum \ldots\right|^{2}}=\sqrt{c_{1}^{2} c_{2}} \sqrt{c_{1}^{2} c_{2} \sum 1} \begin{aligned}
& \binom{u_{1} / c_{1} u_{2} / c_{1}}{u_{2} / c_{1} u_{4} / c_{2}}+W \in \mathfrak{g}
\end{aligned} c_{1}^{3} c_{2}^{3 / 2} .
$$

Hence Assumption (*) is true once we get a sharper estimate than the estimate via Schwarz's inequality. (cf. Remarks before the proof of (6) on page 21).

The left hand side of (\sharp) does not exceed

$$
\sum_{u_{1}, u_{2}, g_{1}, g_{2} \bmod \mathrm{c}_{1}}\left\{\sum_{g_{4} \bmod \mathrm{c}_{2}} \left\lvert\, \sum_{\left(\begin{array}{r}
u_{4} \bmod \mathrm{c}_{4} \\
\left(u_{1} / c_{1}\right. \\
u_{2} / u_{2} / c_{1} \\
u_{2}
\end{array} u_{4} / c_{2}\right.}\right.\right)+W \in \mathfrak{g},
$$

Suppose the sum inside the curly brackets is $O\left(c_{2}^{3 / 2-\delta}\right)$ for some $\delta>0 \quad 99$ (Actually it is $O\left(c_{2}^{3 / 2}\right)$, from Schwarz's inequality); then Assumption (*) holds for $a_{1}=3 / 2, a_{2}=1 / 2-\delta / 2$.
(Proof. If $c_{2}^{\delta}=O\left(c_{1}\right)$, then $c_{1}^{3} c_{2}^{3 / 2} /\left(c_{1}^{7 / 2} c_{2}^{3 / 2-\delta / 2}\right)=c_{1}^{-1 / 2} c_{2}^{\delta / 2}=O(1)$. If $c_{1}=O\left(c_{2}^{\delta}\right)$, then $c_{1}^{4} c_{2}^{3 / 2-\delta} /\left(c_{1}^{7 / 2} c_{2}^{3 / 2-\delta / 2}\right)=c_{1}^{1 / 2} c_{2}^{-\delta / 2}=O(1)$.)

Combining Proposition 1.5.12 with Proposition 1.4.14 we have

Theorem 1.5.13. Let $f(z)=\Sigma a(T) e(\operatorname{tr}(T Z / q))$ be a Siegel modular form fo (degree 2), level q, weight $k=3$ and with zero as the constant term at all cusps. Then for $T>0$ and $\min T>\mathscr{X}$ (= absolute constant)
$a(T)=O\left(\left((\min (T))^{a_{2} / 2-1 / 4+\varepsilon}+(\min (T))^{-1} \log \frac{\sqrt{\operatorname{det} T} \min (T)}{)} \operatorname{det} T^{3 / 2}\right)\right.$ under Assumption (*).

Remark. If $\sqrt{\operatorname{det} T}=O(\min (T))$, then the above implies

$$
a(T) / \operatorname{det} T^{3 / 2} \rightarrow 0 \text { as } \min (T) \rightarrow \infty
$$

It remains to prove Proposition 1.5.6 and 1.5 .7
For $P, T \in \Lambda^{*}$ and $C \in \mathscr{M}_{2}(\mathbb{Z})$ with $\operatorname{det} C \neq 0$, we put

$$
K(P, T ; C)=\sum_{D} e\left(\operatorname{tr}\left(A C^{-1} P+C^{-1} D T\right)\right)
$$

where D runs over the set $\{D \bmod \mathrm{C} \Lambda \mid(\mathrm{C}, \mathrm{D})$ a symmetric coprime pair $\}$ and A is an integral matrix such that $\left(\begin{array}{ll}A & * \\ C & D\end{array}\right) \in \Gamma_{2}$. Another possible A is of the form $A+S C, S \in \Lambda_{2}$. Thus the generalized Kloosterman sum $K(P, T ; C)$ is well defined. To prove Proposition 1.5.6 we show that
i) $S\left(G, P, T, C,\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right)\right)$ is reduced to the sum of $K(P, T ; C)$
ii) the same estimate for $K(P, T ; C)$ holds as well as for $S(\cdot \cdot)$.

Reduction from $S(\cdot \cdot)$ to $K(\cdot)$

R1) The exponential $\operatorname{sum} S\left(G, P, T, C,\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right)\right)$ is well-defined.
Proof. Suppose that

$$
\left(\begin{array}{cc}
A_{1} & B_{1} \\
C & D_{1}
\end{array}\right) \equiv\left(\begin{array}{cc}
A_{2} & B_{2} \\
C & D_{2}
\end{array}\right) \bmod \mathrm{q} \text { and } \mathrm{D}_{1} \equiv \mathrm{D}_{2} \bmod \mathrm{C} \Lambda(\mathrm{C}, \mathrm{q})
$$

There exists $S \in \Lambda$ such that $D_{1}=D_{2}+C S$ and $C S \equiv 0 \bmod \mathrm{q}$, and then there exists $S_{1} \in \Lambda$ such that

$$
\left(\begin{array}{cc}
A_{1} & B_{1} \\
C & D_{1}
\end{array}\right)=\left(\begin{array}{cc}
E_{2} & S_{1} \\
0 & E_{2}
\end{array}\right)\left(\begin{array}{cc}
A_{2} & B_{2} \\
C & D_{2}
\end{array}\right)\left(\begin{array}{cc}
E_{2} & S \\
0 & E_{2}
\end{array}\right)
$$

and we have $A_{1}=A_{2}+S_{1} C$. Hence $\operatorname{tr}\left(A_{1} C^{-1}\left(G+P q^{-1}\right)+T C^{-1} D_{1}\right)-$ $\operatorname{tr}\left(A_{2} C^{-1}\left(G+P q^{-1}\right)+T C^{-1} D_{2}\right)=\operatorname{tr}\left(S_{1}\left(G+P q^{-1}\right)+T S\right) \equiv \operatorname{tr}\left(S_{1} P q^{-1}\right)$ $\bmod 1$. Since $A_{1}=A_{2}+S_{1} C \equiv A_{2} \bmod \mathrm{q}$ implies $S_{1} C \equiv 0 \bmod q$ and P satisfies the condition Γ^{*}, we have $\operatorname{tr} S_{1} P=0 \bmod$ q. Thus the exponential sum $S(\cdot \cdot)$ is well-defined.
R2) For $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{2}, D \equiv D^{\prime} \bmod \mathrm{q}$, there exists a unique $S \in \Lambda$ $\bmod \Lambda\left({ }^{\mathrm{t}} \mathrm{C}, \mathrm{q}\right)$ such that

$$
\left(\begin{array}{cc}
E_{2} & S \\
0 & E_{2}
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \equiv\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right) \bmod \mathrm{q}
$$

Proof. Since

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right)^{-1} \equiv\left(\begin{array}{cc}
* & * \\
0 & E_{2}
\end{array}\right) \bmod \mathrm{q}
$$

there exists $S \in \Lambda$ such that

$$
\left(\begin{array}{cc}
E_{2} & S \\
0 & E_{2}
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \equiv\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right) \bmod q .
$$

If

$$
\left(\begin{array}{cc}
E_{2} & S_{1} \\
0 & E_{2}
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \equiv\left(\begin{array}{cc}
E_{2} & S_{2} \\
0 & E_{2}
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \bmod \mathrm{q}
$$

then $A+S_{1} C \equiv A+S_{2} C \bmod q$ and so $S_{1}-S_{2} \in \Lambda\left({ }^{t} C, q\right)$.
Therefore

$$
\begin{aligned}
S\left(G, P, T, C,\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right)\right)= & \sum_{\left.D \in \mathscr{D} S \in \Lambda / \Lambda \Lambda^{t} C, q\right)} e\left(\operatorname{tr}(A+S C) C^{-1}\left(G+P q^{-1}\right)\right. \\
& \left.\left.+T C^{-1} D\right) q^{-4} \sum_{M \bmod \mathrm{q}} e\left(\left(A+S C-A^{\prime}\right) M / q\right)\right)
\end{aligned}
$$

where $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{2}$ is any extension of (C, D),

$$
=q^{-4} \sum_{M \bmod \mathrm{q}} \sum_{D \in \mathscr{D}} e\left(\operatorname{tr}\left(A C^{-1}\left(G+P q^{-1}\right)+T C^{-1} D+\left(A-A^{\prime}\right) M / q\right)\right) \times
$$

$$
\times \sum_{S \in \Lambda / \Lambda\left({ }^{t} C, q\right)} e\left(\operatorname{tr}\left(S(P+C M) q^{-1}\right)\right)
$$

The last exponential sum is $\left[\Lambda: \Lambda\left({ }^{t} C, q\right)\right]$ or O according as $\left(P+\frac{1}{2}(C M+\right.$ $\left.\left.{ }^{t} M^{t} C\right)\right) / q \in \Lambda^{*}$ or not. Thus it is equal to

$$
\begin{aligned}
& q^{-4}\left[\Lambda: \Lambda\left({ }^{t} C, q\right)\right] \sum_{\substack{M \bmod \mathrm{q} \\
\left(P+\frac{1}{2}\left(C M+{ }^{t} M^{t} C\right) / q \in \Lambda^{*}\right.}} \sum_{D \in \mathscr{D}} e\left(\operatorname { t r } \left(A C ^ { - 1 } \left(G+\left(P+\frac{1}{2}(C M\right.\right.\right.\right. \\
&\left.\left.\left.\left.\left.+{ }^{t} M^{t} C\right)\right) / q\right)+T C^{-1} D\right)\right) e\left(-\operatorname{tr}\left(A^{\prime} M / q\right)\right)
\end{aligned}
$$

Putting $N_{M}:=G+\left(P+\frac{1}{2}\left(C M+{ }^{t} M^{t} C\right)\right) / q \in \Lambda^{*}, S\left(N_{M}\right)=\sum_{D \in \mathscr{D}}$ $e\left(\operatorname{tr}\left(A C^{-1} N_{M}+T C^{-1} D\right)\right)$, we have
$S\left(G, P, T, C,\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C & D^{\prime}\end{array}\right)\right)=q^{-4}\left[\Lambda: \Lambda\left({ }^{t} C, q\right)\right] \sum_{\substack{M \bmod q \\ N_{M} \in \Lambda^{*}}} S\left(N_{M}\right) e\left(-\operatorname{tr} A^{\prime} M / q\right)$.
102 Note that $\left[\Lambda: \Lambda\left({ }^{t} C, q\right)\right] \leq[\Lambda: q \Lambda]$ and the number of M does not exceed q^{4}.

R3) The mapping $D \mapsto D$ from \mathscr{D} to $\mathscr{D}^{\prime}:=\left\{D \in \mathscr{M}_{2}(\mathbb{Z}) / C \Lambda \mid C, D\right.$ are a symmetric coprime pair such that $D+C S \equiv D^{\prime} \bmod q$ for some $S \in \Lambda\}$ is bijective.

Proof. Suppose that $D_{1} \equiv D_{2} \bmod \mathrm{C} \Lambda$ for $D_{1}, D_{2} \in \mathscr{D}$. Since $D_{1}, D_{2} \in$ $\mathscr{D}, D_{1} \equiv D_{2} \equiv D^{\prime} \bmod q$. Hence for $S \in \Lambda$ with $D_{1}-D_{2}=C S$ we have $C S \equiv 0 \bmod q$ and then $S \in \Lambda(C, q)$. This means $D_{1} \equiv D_{2} \bmod \mathrm{C} \Lambda(\mathrm{C}, \mathrm{q})$ and the mapping is injective. Since, for $D \in \mathscr{D}^{\prime}, D+C S(\equiv D \bmod \mathrm{C} \Lambda)$ for the S involved in the definition of \mathscr{D}^{\prime} is contained in \mathscr{D}, the mapping is surjective.

R4) If $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{2}, D+C S \equiv D^{\prime} \bmod q$ for $S \in \Lambda \Longleftrightarrow A+S_{1} C \equiv$ $A \bmod \mathrm{q}$ for $S_{1} \in \Lambda$

Proof. $D+C S \equiv D^{\prime} \bmod q$ for $S \in \Lambda$

$$
\Longleftrightarrow\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
E_{2} & S \\
0 & E_{2}
\end{array}\right) \equiv\left(\begin{array}{cc}
* & * \\
C & D^{\prime}
\end{array}\right) \bmod \mathrm{q}
$$

$$
\begin{aligned}
& \Longleftrightarrow\left(\begin{array}{cc}
E_{2} & S_{1} \\
0 & E_{2}
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
E_{2} & S \\
0 & E_{2}
\end{array}\right) \equiv\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C & D^{\prime}
\end{array}\right) \bmod \mathrm{q} . \\
& \Longleftrightarrow\left(\begin{array}{cc}
E_{2} & S_{1} \\
0 & E_{2}
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \equiv\left(\begin{array}{cc}
A^{\prime} & * \\
C & *
\end{array}\right) \bmod \mathrm{q} \\
& \Longleftrightarrow A+S_{1} C \equiv A^{\prime} \text { mod q. }
\end{aligned}
$$

For $N=N_{M}$ we have, with $S\left(N_{M}\right)$ as in (R2)

$$
\begin{aligned}
& S\left(N_{M}\right)=\sum_{D \in \mathscr{D}^{\prime}} e\left(\operatorname{tr}\left(A C^{-1} N+T C^{-1} D\right)\right) \quad(\text { by (R3)) } \\
& =\sum_{\substack{D: A+S_{1} C \equiv A^{\prime} \bmod q \\
\text { for } S_{1} \in \Lambda^{1},\left(\begin{array}{ll}
A \\
C & *
\end{array}\right) \in \Gamma_{2}}} e\left(\operatorname{tr}\left(A C^{-1} N+T C^{-1} D\right)\right) \quad(\text { by (R4)) } \\
& \left.=\sum_{\substack{D \bmod \mathrm{C} \Lambda \\
:\left(\begin{array}{ll}
A \\
C & *
\end{array}\right) \in \Gamma_{2}}} \sum_{\substack{ \\
C}} e\left(\operatorname{tr}(A+S C) C^{-1} N+T C^{-1} D\right)\right) \times \\
& q^{-4} \sum_{M \bmod \mathrm{q}} e\left(\operatorname{tr}\left(\left(A+S C-A^{\prime}\right) M\right) / q\right) \quad(\text { by }(\mathrm{R} 2)) . \\
& =q^{-4} \sum_{\substack{D \bmod \mathrm{CA} \\
:\left(\begin{array}{c}
A \\
C \\
C
\end{array}\right) \in \Gamma_{2}}} e\left(\operatorname{tr}\left(A C^{-1} N+T C^{-1} D\right)\right) \sum_{M \bmod q} e\left(\operatorname{tr}\left(A-A^{\prime}\right) M / q\right) \times \\
& \times \sum_{S \in \Lambda \bmod \Lambda\left({ }^{(} \mathrm{C}, \mathrm{q}\right)} e(\operatorname{tr}(S C M / q)) \\
& =q^{-4}\left[\Lambda: \Lambda\left({ }^{t} C, q\right)\right] \sum_{\substack{\operatorname{modq} \\
\left(C M+^{t}(C M)\right) / 2 \varepsilon q \Lambda^{*}}} e\left(-\operatorname{tr}\left(A^{\prime} M / q\right)\right) \sum_{\substack{D \bmod C \Lambda \\
\left(\begin{array}{ll}
A & * \\
C & D
\end{array}\right) \in \Gamma_{2}}} \\
& e\left(\operatorname{tr}\left(A C^{-1}\left(N+(1 /(2 q))\left(C M+{ }^{t} M^{t} C\right)\right)+T C^{-1} D\right)\right) \\
& =q^{-4}\left[\Lambda: \Lambda\left({ }^{t} C, q\right)\right] \sum_{\substack{M \bmod q \\
\left(C M+^{\prime}(C M)\right) / 2 \in q \Lambda^{*}}} \\
& \left.e\left(-\operatorname{tr} A^{\prime} M / q\right)\right) K\left(N+1 /(2 q)\left(C M+{ }^{t}(C M)\right), T ; C\right) .
\end{aligned}
$$

Hence Proposition 1.5.6 would follow immediately from
Proposition 1.5.14. Let $C=U^{-1}\left(\begin{array}{cc}c_{1} & 0 \\ 0 & c_{2}\end{array}\right) V^{-1}$, for $U, V \in G L_{2}(\mathbb{Z}), 0<\mathbf{1 0 4}$ $c_{1} \mid c_{2}$. For $P, T \in \Lambda^{*}$, we have, for any $\varepsilon>0$.

$$
K(P, T: C)=O\left(c_{1}^{2} c_{2}^{1 / 2+\varepsilon}\left(c_{2}, t\right)^{1 / 2}\right)
$$

where t is the $(2,2)$ entry of $T[V]$.
To prove this, we need several lemmas.
Lemma 1.5.15. We have $K\left(P, T ; U^{-1} C V^{-1}\right)=K\left(P\left[{ }^{t} U\right], T[V]\right.$; $\left.C\right)$ for P, $T \in \Lambda^{*}, U, V \in G L_{2}(\mathbb{Z})$ and $C \in M_{2}(\mathbb{Z})$ with $\operatorname{det} C \neq 0$.

Proof. Since

$$
\left(\begin{array}{cc}
{ }^{t} U & 0 \\
0 & U^{-1}
\end{array}\right)\left(\begin{array}{cc}
A & * \\
C & D
\end{array}\right)\left(\begin{array}{cc}
V^{-1} & 0 \\
0 & { }^{t} V
\end{array}\right)=\left(\begin{array}{ccc}
{ }^{t} U & A V^{-1} & * \\
U^{-1} & C V^{-1} & U^{-1} D^{t} V
\end{array}\right),
$$

$D \bmod \mathrm{C} \Lambda \Longleftrightarrow \mathrm{U}^{-1} \mathrm{D}^{\mathrm{t}} \mathrm{V} \bmod \mathrm{U}^{-1} \mathrm{C} \Lambda^{\mathrm{t}} \mathrm{V} \Longleftrightarrow \mathrm{U}^{-1} \mathrm{D}^{\mathrm{t}} \mathrm{V} \bmod \mathrm{U}^{-1} \mathrm{CV}^{-1} \Lambda$.
Hence we have

$$
\begin{aligned}
K\left(P, T ; U^{-1} C V^{-1}\right)= & \sum_{D \bmod \mathrm{C} \Lambda} e\left(\operatorname { t r } \left({ }^{t} U A V^{-1}\left(U^{-1} C V^{-1}\right)^{-1} P\right.\right. \\
& \left.\left.+\left(U^{-1} C V^{-1}\right)^{-1} U^{-1} D^{t} V T\right)\right) \\
= & \sum_{D \bmod \mathrm{C} \Lambda} e\left(\operatorname{tr}\left(A C^{-1} P\left[{ }^{t} U\right]+C^{-1} D T[V]\right)\right) \\
= & K\left(P\left[{ }^{t} U\right], T[V]: C\right) .
\end{aligned}
$$

Lemma 1.5.16. For the diagonal matrices $C=\left[c_{1}, c_{2}\right], F=\left[f_{1}, f_{2}\right]$, $H=\left[h_{1}, h_{2}\right]$, suppose that $f_{1}\left|f_{2}, h_{1}\right| h_{2}, c_{i}=f_{i} h_{i}, f_{i}, h_{i}>0(i=1,2)$ and that f_{2}, h_{2} are relatively prime. Put $X_{1}=s f_{2}^{2} F^{-1}, X_{2}=t h_{2}^{2} H^{-1}$ for integers s, t with $s f_{2}^{2}+t h_{2}^{2}=1$. If then

$$
\left(\begin{array}{cc}
A_{1} & B_{1} \\
F & D_{1}
\end{array}\right),\left(\begin{array}{cc}
A_{2} & B_{2} \\
H & D_{2}
\end{array}\right) \in \Gamma_{2}, \Gamma_{2} \ni\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
X_{2} A_{1}+X_{1} A_{2} & * \\
H F & H D_{1}+F D_{2}
\end{array}\right)
$$

and the mapping $\varphi:\left(D_{1}, D_{2}\right) \mapsto D$ induces a bijection from

$$
\begin{gathered}
\left\{D_{1} \bmod \mathrm{~F} \Lambda \left\lvert\,\left(\begin{array}{cc}
* & * \\
F & D_{1}
\end{array}\right) \in \Gamma_{2}\right.\right\} \times\left\{\mathrm{D}_{2} \bmod \mathrm{H} \Lambda \left\lvert\,\left(\begin{array}{cc}
* & * \\
H & D_{2}
\end{array}\right) \in \Gamma_{2}\right.\right\} \\
\text { to }\left\{|D \bmod \mathrm{C} \Lambda|\left(\begin{array}{cc}
* & * \\
C & D
\end{array}\right) \in \Gamma_{2}\right\}
\end{gathered}
$$

Proof. Let $\left(\begin{array}{cc}A_{1} & B_{1} \\ F & D_{1}\end{array}\right),\left(\begin{array}{cc}A_{2} & B_{2} \\ H & D_{2}\end{array}\right) \in \Gamma_{2}$ and put

$$
A=X_{2} A_{1}+X_{1} A_{2}, D=H D_{1}+F D_{2}, B=(H F)^{-1}\left({ }^{t} A D-E_{2}\right) .
$$

Recall that, for $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \mathscr{M}_{4}(\mathbb{Z}),\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{2}$ if and only if ${ }^{t} A D-{ }^{t} C B=$ E_{2} and ${ }^{t} A C,{ }^{t} B D$ are symmetric.

Now

$$
B=X_{2} B_{1}+X_{1} B_{2}+t h_{2}^{2} H^{-1} A_{1} H^{-1} D_{2}+s f_{2}^{2} F^{-1} A_{2} F^{-1} D_{1}
$$

is integral and both

$$
{ }^{t} A C=\left({ }^{t} A_{1} X_{2}+{ }^{t} A_{2} X_{1}\right) F H=t h_{2}^{2 t} A_{1} F+s f_{2}^{2 t} A_{2} H
$$

and

$$
\begin{aligned}
{ }^{t} B D & =\left({ }^{t} D A-E_{2}\right) C^{-1} D={ }^{t} D A C^{-1} D-C^{-1} D \\
& ={ }^{t} D A C^{-1} D-F^{-1} D_{1}-H^{-1} D_{2}
\end{aligned}
$$

are symmetric. Moreover, ${ }^{t} A D-{ }^{t} C B=E_{2}$ and so $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{2}$. If $H D_{1}+F D_{2} \in C \Lambda$, then $F^{-1} D_{1}+H^{-1} D_{2} \in \Lambda$ and so $F^{-1} D_{1}, H^{-1} D_{2} \in \Lambda$ since $\left(f_{2}, h_{2}\right)=1$. Hence φ is injective. It is easy to see that for the above
 $H\left(X_{2} D\right)+F\left(X_{1} D\right)=D$ follows the surjectivity of φ.

Lemma 1.5.17. Let C, F, H, X_{1}, X_{2} be as in the previous lemma. Then for $P, T \in \Lambda^{*}$, we have

$$
\left.K(P, T ; C)=K\left(t P\left[h_{2} H^{-1}\right]\right), T ; F\right) K\left(s P\left[f_{2} F^{-1}\right], T ; H\right) .
$$

Proof. By the previous lemma, we have

$$
\begin{aligned}
K(P, T ; C)= & \sum_{D} e\left(\operatorname{tr}\left(A C^{-1} P+C^{-1} D T\right)\right) \\
= & \sum_{D_{1}, D_{2}} e\left(\operatorname { t r } \left(\left(X_{2} A_{1}+X_{1} A_{2}\right) F^{-1} H^{-1} P\right.\right. \\
& \left.\left.+F^{-1} H^{-1}\left(H D_{1}+F D_{2}\right) T\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{D_{1}} e\left(\operatorname{tr}\left(X_{2} A_{1} F^{-1} H^{-1} P+F^{-1} D_{1} T\right)\right) \\
& \quad \sum_{D_{2}} e\left(\operatorname{tr}\left(X_{1} A_{2} F^{-1} H^{-1} P+H^{-1} D_{2} T\right)\right) \\
& =K\left(t P\left[h_{2} H^{-1}\right], T ; F\right) K\left(s P\left[f_{2} F^{-1}\right], T ; H\right)
\end{aligned}
$$

106 By virtue of Lemmas 1.5.15 and 1.5.17 in order to prove Proposition 1.5.14 we have only to show

$$
K\left(P, T ;\left(\begin{array}{cc}
p^{e_{1}} & 0 \\
0 & P^{e_{2}}
\end{array}\right)\right)=O\left(P^{2 e_{1}+e_{2} / 2}\left(P^{e_{2}}, t\right)^{1 / 2}\right)
$$

where P is a prime number $0 \leq e_{1} \leq e_{2}, T=\binom{* *}{*}$ and the implied constant is independent of p, e_{1}, e_{2}, P, T. Put $C=\left(\begin{array}{cc}p^{e_{1}} & 0 \\ 0 & p^{e_{2}}\end{array}\right), D=$ $\left(\begin{array}{ll}d_{1} & d_{2} \\ d_{3} & d_{4}\end{array}\right) . C^{-1} D$ is symmetric if and only if $d_{3}=p^{e_{2}-e_{1}} d_{2}$. Hence C, D are symmetric and coprime if and only if $d_{3}=p^{e_{2}-e_{1}} d_{2}$ and one of (i) - (iv) holds:
(i) $e_{1}=e_{2}=0$,
(ii) $e_{1}=0, e_{2}>0, p \nmid d_{4}$,
(iii) $0<e_{1}<e_{2}, p \nmid d_{1} d_{4}$,
(iv) $0<e_{1}=e_{2}, d_{1} d_{4}-d_{2}^{2} \not \equiv 0 \bmod \mathrm{p}$.
D runs over classes mod C if and only if d_{1}, d_{2}, d_{4} runs over classes $\bmod \mathrm{p}^{\mathrm{e}_{1}}, \bmod \mathrm{p}^{\mathrm{e}_{1}}, \bmod \mathrm{p}^{\mathrm{e}_{2}}$ respectively. For a symmetric coprime pair C, D, we can take A satisfying the conditions ${ }^{t} A C$ is symmetric and $B=C^{1}\left({ }^{t} A D-E_{2}\right) \in \mathscr{M}_{2}(\mathbb{Z})$, so that $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{2}$.

Put

$$
P=\left(\begin{array}{cc}
p_{1} & p_{2} / 2 \\
p_{2} / 2 & p_{4}
\end{array}\right), \quad T=\left(\begin{array}{cc}
t_{1} & t_{2} / 2 \\
t_{2} / 2 & t_{4}
\end{array}\right)
$$

(i) In case $e_{1}=e_{2}=0$, we can take $A=D=0$ and $K(P, T ; C)=1$.
(ii) In case $e_{1}=0, e_{2}>0$, we can take $\left(\begin{array}{ll}0 & 0 \\ 0 & d\end{array}\right)$, with $d \bmod \mathrm{p}^{\mathrm{e}_{2}}$ and $p \nmid d$ as D and then we may take $A=\left(\begin{array}{ll}0 & 0 \\ 0 & a\end{array}\right)$ with $a d \equiv 1 \bmod \mathrm{p}^{\mathrm{e}_{2}}$. Now $K(P, T ; C)$

$$
=\sum_{\substack{d \bmod \mathrm{p}^{e_{2}} \\
p \nmid d}} e\left(\operatorname{tr}\left(\left(\begin{array}{cc}
0 & 0 \\
0 & a / p^{e_{2}}
\end{array}\right) p+\left(\begin{array}{cc}
0 & 0 \\
0 & d / p^{e_{2}}
\end{array}\right) T\right)\right)
$$

$$
=\sum_{\substack{d \mathrm{mod}^{\mathrm{m}^{\mathrm{e}_{2}}} \\ p \nmid d}} e\left(\left(a p_{4}+d t_{4}\right) / p^{e_{2}}\right) \text { is a genuine Kloosterman }
$$

sum and we are through.
(iii) In case $0<e_{1}<e_{2}$, put $\delta=d_{1} d_{4}-p^{e_{2}-e_{1}} d_{2}^{2}(\not \equiv 0 \bmod \mathrm{p})$ and for an integer d with $d \delta \equiv 1 \bmod \mathrm{p}^{\mathrm{e}_{2}}$, we can take $A=d\left(\begin{array}{cc}d_{4} & -p^{e_{2}-e_{1}} d_{2} \\ -d_{2} & d_{1}\end{array}\right)$. Then we have

$$
\begin{aligned}
K(P, T ; C)= & \sum_{\substack{d_{1}, d_{2} \bmod ^{\mathrm{m}_{1}} \\
d_{4} \bmod ^{\mathrm{e}_{2}} \\
p \nmid d_{1} d_{4}}} e\left(d\left(d_{4} p_{1} p^{-e_{1}}-d_{2} p_{2} p^{-e_{1}}+d_{1} p_{4} p^{-e_{2}}\right)+\right. \\
& \left.+d_{1} t_{1} p^{-e_{1}}+d_{2} t_{2} p^{-e_{1}}+d_{4} t_{4} p^{-e_{2}}\right)
\end{aligned}
$$

taking a in \mathbb{Z} with $a d_{1} \equiv 1 \bmod \mathrm{p}^{\mathrm{e}_{2}}\left(\Longleftrightarrow \mathrm{~d}_{4} \equiv \mathrm{a} \delta+\mathrm{p}^{\mathrm{e}_{2}-\mathrm{e}_{1}} \mathrm{ad}_{2}^{2}\right.$ $\bmod \mathrm{p}^{\mathrm{e}_{2}}$).
Hence

$$
\begin{aligned}
K(P, T ; C)= & \sum_{d_{1}, d_{2} \bmod \mathrm{p}^{\mathrm{e}_{1}, \mathrm{p} \not \mathrm{~d}_{1}}} e\left(d_{1} t_{1} p^{-e_{1}}+d_{2} t_{2} p^{-e_{1}}\right. \\
& \left.+a p_{1} p^{-e_{1}}+a d_{2}^{2} t_{4} p^{-e_{1}}\right) \\
& \times \sum_{\delta \bmod \mathrm{p}^{\mathrm{e}_{2}, \mathrm{p} \nmid \delta}} e\left(\left\{d \left(a d_{2}^{2} p_{1} p^{2\left(e_{2}-e_{1}\right)}-d_{2} p_{2} p^{e_{2}-e_{1}}\right.\right.\right. \\
& \left.\left.\left.+d_{1} p_{4}\right)+\delta\left(a t_{4}\right)\right\} / p^{e_{2}}\right)
\end{aligned}
$$

where the last sum on δ is the ordinary Kloosterman sum, and since $p \nmid a$, we have

$$
K(P, T ; C)=p^{2 e_{1}} O\left(p^{e_{2} / 2}\left(t_{4}, p^{e_{2}}\right)^{1 / 2}\right)
$$

(iv) In case $0<e_{1}=e_{2}=e, d_{1}, d_{2}, d_{4}$ runs over \mathbb{Z} / p^{e} with $\delta=$ $d_{1} d_{4}-d_{2}^{2} \not \equiv 0 \bmod \mathrm{p}$. Taking $A=d\left(\begin{array}{cc}d_{4} & -d_{2} \\ -d_{2} & d_{1}\end{array}\right)$ for an integer d with 108 $d \delta \equiv 1 \bmod \mathrm{p}^{\mathrm{e}}$, we have

$$
K(P, T ; C)=\sum_{\substack{d_{1}, d_{2}, d_{4} \bmod \mathrm{p}^{\mathrm{e}} \\ \delta \neq 0 \bmod \mathrm{p}}} e\left(\left\{d\left\{d_{4} p_{1}-d_{2} p_{2}+d_{1} p_{4}\right)\right.\right.
$$

$$
\begin{aligned}
& \left.\left.\quad+\left(d_{1} t_{1}+d_{2} t_{2}+d_{4} t_{4}\right)\right\} / p^{e}\right) \\
& =\sum_{p \mid d_{2}}+\sum_{p \nmid d_{2}}=\sum_{1}+\sum_{2}(\text { say }) .
\end{aligned}
$$

We have $\sum_{1}=O\left(p^{2 e+e / 2}\left(t_{4}, p^{e}\right)^{1 / 2}\right)$ quite similarly to the previous case. For dealing with \sum_{2}, we define integers δ_{1}, δ_{2} by $d_{1} \equiv$ $d_{2} \delta_{1} \bmod \mathrm{p}^{\mathrm{e}}$ and $d_{4} \equiv d_{2} \delta_{4} \bmod \mathrm{p}^{\mathrm{e}}$; then $\delta:=d_{1} d_{4}-d_{2}^{2} \equiv d_{2}^{2}\left(\delta_{1} \delta_{4}-\right.$ 1)mod p^{e} and $1 \equiv d d_{2}^{2}\left(\delta_{1} \delta_{4}-1\right) \bmod \mathrm{p}^{\mathrm{e}}$. Then \sum_{2} is transformed to

$$
\sum_{2}=\sum_{\substack{d_{2}, \delta_{1}, \delta_{4} \bmod p^{\mathrm{e}} \\ \delta_{1} \delta_{2} \\ \delta_{1} \delta_{4} \neq \operatorname{l\operatorname {mod}\mathrm {p}}}} e\left(d_{2}\left\{d\left(\delta_{4} p_{1}-p_{2}+\delta_{1} p_{4}\right)+\delta_{1} t_{1}+t_{2}+\delta_{4} t_{4}\right\} / p^{e}\right)
$$

noting that $d d_{2} \cdot d_{2}\left(\delta_{1} \delta_{4}-1\right) \equiv 1 \bmod \mathrm{p}^{\mathrm{e}}$ and denoting by x^{\prime} the inverse class of $x \bmod \mathrm{p}^{\mathrm{e}}$,

$$
\begin{aligned}
\sum_{2}= & \sum_{\substack{\delta_{1}, \delta_{4} \bmod \mathrm{p}^{\mathrm{e}} \\
\delta_{1} \delta_{4} \neq \operatorname{lmod} \mathrm{m}}} \sum_{\substack{d_{2} \bmod \mathrm{p}^{\mathrm{e}} \\
p \not d_{2}}} e\left(\left\{d_{2}^{\prime}\left(\left(\delta_{1} \delta_{4}-1\right)^{\prime}\left(\delta_{4} p_{1}-p_{2}+\delta_{1} p_{4}\right)\right)+\right.\right. \\
& +\sum_{\substack{\delta_{1}, \delta_{2} \bmod \mathrm{p}^{\mathrm{e}} \\
\delta_{1} \delta_{4} \neq \bmod \mathrm{p}}} O\left(p^{e / 2}\left(\delta_{1} t_{1}+\delta_{4} t_{4}, p^{e}\right)^{1 / 2}\right) . \\
= & O\left(p^{e / 2} \sum_{x \bmod \mathrm{p}^{e}}\left(x, p^{e}\right)^{1 / 2}\right) \sharp\left\{\delta_{1},\left.\delta_{4} \bmod \mathrm{p}^{\mathrm{e}}\right|_{\mathrm{x}=\delta_{1} \delta_{1} \delta_{1}+\mathrm{t}_{2}+\delta_{4} \neq 1 \bmod \mathrm{mod} \mathrm{p}}\right\}
\end{aligned}
$$

109
Put $\left(t_{4}, p^{e}\right)=p^{s}$; then $0 \leq s \leq e$. If $s=e$, then $\sum_{2}=O\left(p^{3 e}\right)$ (by the trivial estimation $)=O\left(p^{2 e+e / 2}\left(p^{e}, t_{4}\right)^{1 / 2}\right)$ is what we want. Suppose $s<e$ and $t_{4}=u p^{s}$ with $(u, p)=1$; then

$$
\sum_{2}=O\left(p^{e / 2} \sum_{x \bmod \mathrm{p}^{\mathrm{e}}}\left(x, p^{e}\right)^{1 / 2} \sharp\left\{\delta_{1},\left.\delta_{4} \bmod \mathrm{p}^{\mathrm{e}}\right|_{\mathrm{u} \delta_{4} \equiv\left(\mathrm{x}-\delta_{1} \mathrm{t}_{1}-\mathrm{t}_{2}\right) / \mathrm{p}^{\mathrm{s}} \bmod \mathrm{p}^{\mathrm{e}-\mathrm{s}}} ^{\mathrm{x} \equiv \delta_{1} \mathrm{t}_{1}+\mathrm{t}_{2} \bmod \mathrm{p}^{\mathrm{s}}}\right\}\right.
$$

$$
\begin{aligned}
& =O\left(p^{e / 2} \sum_{0 \leq i \leq e} p^{(e-i) / 2} \sum_{\substack{v \bmod \mathrm{p}^{\mathrm{i}} \\
p \downarrow}} p^{s \sharp}\right. \\
& \quad\left\{\begin{array}{c}
\delta_{1} \bmod \mathrm{p}^{\mathrm{e}} \mid \mathrm{Vp} \mathrm{p}^{\mathrm{e}-\mathrm{i}} \equiv \delta_{1} \mathrm{t}_{1}+\mathrm{t}_{2} \bmod \mathrm{p}^{\mathrm{s}} \\
\left(\operatorname{taking} x=v p^{e-i}\right)
\end{array}\right\} \\
& =p^{e+s} \sum_{0 \leq i \leq e} p^{-i / 2} O\left(\sharp \left\{\delta_{1} \bmod \mathrm{p}^{\mathrm{e}}, \mathrm{vmod} \mathrm{p}^{\mathrm{i}} \mid \mathrm{vp}^{\mathrm{e}-\mathrm{i}}\right.\right.
\end{aligned}
$$

In case $p^{s} \mid t_{1}$ and $p^{s} \mid t_{2}$, we have

$$
\sum_{2}=p^{e+s} \sum_{\substack{0 \leq i \leq e \\ e-i \geq s}} p^{i / 2+e} O(1)=O(1) p^{5 e / 2+s / 2}
$$

In case $p^{s} \mid t_{1}$ but $p^{s} \nmid t_{2}, v p^{e-i} \equiv \delta_{1} t_{1}+t_{2} \bmod \mathrm{p}^{\mathrm{s}}$ if and only if $v p^{e-i} \equiv$ $t_{2} \bmod \mathrm{p}^{\mathrm{s}}$. Putting $a_{2}=\operatorname{ord}_{p} t_{2}<s$, we have $e-i=a_{2}$ and then

$$
\begin{aligned}
\sum_{2} & =p^{e+s-\left(e-a_{2}\right) / 2} O\left(\sharp\left\{\delta_{1} \bmod \mathrm{p}^{\mathrm{e}}, \operatorname{vmod} \mathrm{p}^{\mathrm{e}-\mathrm{a}_{2}} \left\lvert\, \begin{array}{c}
\mathrm{vp}_{\mathrm{a} \nmid \mathrm{v}} \equiv \mathrm{t}_{2} \bmod \mathrm{p}^{\mathrm{s}}
\end{array}\right.\right\}\right) \\
& =p^{e+s-\left(e-a_{2}\right) / 2+e+\left(e-a_{2}-\left(s-a_{2}\right)\right)} O(1) . \\
& =p^{5 e / 2+a_{2} / 2} O(1)=p^{5 e / 2+s / 2} O(1) .
\end{aligned}
$$

Thus, we are through in case $p^{s} \mid t_{1}$. In case $a_{1}=\operatorname{ord}_{p} t_{1}<s$ and $a_{2}=$ $\operatorname{ord}_{p} t_{2}<a_{1}, v p^{c-i} \equiv \delta_{1} t_{1}+t_{2} \bmod \mathrm{p}^{\mathrm{s}}(\mathrm{p} \nmid \mathrm{v})$ implies $\operatorname{ord}\left(\delta_{1} t_{1}+t_{2}\right)=a_{2}<$ s and so $e-i=a_{2}$, moreover, $v \equiv \delta_{1} t_{1} p^{-a_{2}}+t_{2} p^{-a_{2}} \bmod \mathrm{p}^{\mathrm{s}-\mathrm{a}_{2}}$. Hence $v \equiv t_{2} p^{-a_{2}} \bmod \mathrm{p}^{\mathrm{a}_{1}-\mathrm{a}_{2}}$ and the number of possible v is at most $p^{e-a_{1}}$ and for each v, δ_{1} satisfies $\delta_{1} \equiv\left(v-t_{2} p^{-a_{2}}\right)\left(t_{1} p^{-a_{2}}\right)^{-1} \bmod \mathrm{p}^{\mathrm{s}-\mathrm{a}_{1}}$ and so the number of possible δ_{1} is not larger than $p^{e-s+a_{1}}$. Thus we have

$$
\sum_{2}=p^{e+s+\left(a_{2}-e\right) / 2+e-s+a_{1}+e-a_{1}} O(1)=O(1) p^{5 e / 2+a_{2} / 2}=O(1) p^{5 e / 2+s / 2}
$$

Finally in case $a_{1}=\operatorname{ord}_{p} t_{1}<s, a_{2}=\operatorname{ord}_{p} t_{2} \geq a_{1}, \delta_{1} t_{1}+t_{2} \equiv$ $0 \bmod \mathrm{p}^{\mathrm{a}_{1}}$ and $a_{1}<s$ imply $e-i \geq a_{1}$, and from $\delta_{1}\left(t_{1} p^{-a_{1}}\right)=v p^{e-i-a_{1}}-$ $t_{2} p^{-a_{1}} \bmod \mathrm{p}^{\mathrm{s}-\mathrm{a}_{1}}$, it follows that the number of possible δ_{1} is at most $p^{e-\left(s-a_{1}\right)}$ for each v. Hence we have

$$
\sum_{2}=O(1) p^{e+s} \sum_{0 \leq i \leq e-a_{1}} p^{-i / 2+i+e-s+a_{1}}
$$

$$
=O(1) p^{2 e+a_{1}+\frac{1}{2}\left(e-a_{1}\right)}=O\left(p^{5 e / 2+s / 2}\right)
$$

Thus we have completed the proof of Proposition 1.5 .14 and so of Proposition 1.5 .6

Now it remains to prove Proposition 1.5.7
Let $T=\left(\begin{array}{cc}t_{1} & t_{2} / 2 \\ t_{2} / 2 & t_{4}\end{array}\right) \in \Lambda^{*}$. Since $T[x]=t_{1} x_{1}^{2}+t_{2} x_{1} x_{2}+t_{4} x_{2}^{2}$, the sum $\gamma(T, n)=\sum_{x \in S(n)}(T[x], n)^{1 / 2}$ is well-defined.
Lemma 1.5.18. For integers m, n with $(m, n)=1$ we have $\gamma(T, m n)=$ $\gamma(T, m) \gamma(T, n)$.

Proof. For $x={ }^{t}(b d), y={ }^{t}\left(b^{\prime} d^{\prime}\right)$ with $(b, d)=\left(b^{\prime}, d^{\prime}\right)=1$ we take $z={ }^{t}(a c)$ with $(a, c)=1$ so that $z \equiv x \bmod \mathrm{~m}, z \equiv y \bmod \mathrm{n}$. It is easy to see that this induces a bijective mapping from $S(m) \times S(n)$ to $S(m, n)$.

Hence the left hand side is equal to

$$
\begin{aligned}
& \sum_{S(m n) \ni x}(T[x], m)^{1 / 2}(T[x], n)^{1 / 2} \\
= & \sum_{\substack{S(m) \ni x \\
S(n) \ni x}}(T[z], m)^{1 / 2}(T[z], n)^{1 / 2}\left(\begin{array}{lr}
z \equiv x & \bmod \mathrm{~m} \\
z \equiv y & \bmod \mathrm{n}
\end{array}\right)
\end{aligned}
$$

$=$ The right hand side .
Thus we have only to give the proof for the case $n=p^{e}$ where p is a prime number and $e \geq 1$. Put $S^{\prime}=\left\{\left({ }^{t}(b d) \mid(b, d, p)=1\right\}\right.$ and define the equivalence ${ }^{t}(b d) \approx^{t}\left(b^{\prime} d^{\prime}\right)$ by ${ }^{t}(b d) \equiv n^{t}\left(b^{\prime} d^{\prime}\right) \bmod \mathrm{p}^{\mathrm{e}}$ for some integer n; then we have

$$
\gamma\left(T, p^{e}\right)=\sum_{S^{\prime} / \approx \ni x}\left(T[x], p^{e}\right)^{1 / 2}
$$

since $x \mapsto x$ induces a bijective mapping from $S\left(p^{e}\right)$ to S^{\prime} / \approx. Since $V \in \mathscr{M}_{2}(\mathbb{Z})$ with $\operatorname{det} V \not \equiv 0 \bmod p$ operates on S^{\prime} / \approx, we have $\gamma\left(T, p^{e}\right)=$ $\sum_{S^{\prime} /=\ni>}\left(T\left[V_{x}\right], p^{e}\right)^{1 / 2}$.

Hence we may suppose, without loss of generality that T has a canonical form mod p^{e} and more explicitly (i) T is the diagonal matrix $=\left[u p^{a_{1}}, u v p^{a_{2}}\right] O \leq a_{1} \leq a_{2}, p \nmid u v$ (ii) $2^{a}\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right), a \geq 0$
if $p=2$ or (iii) $2^{a}\left(\begin{array}{cc}0 & 1 / 2 \\ 1 / 2 & 0\end{array}\right) a \geq 0$ if $p=2$. Our aim is to prove $\gamma\left(T, p^{e}\right)=O\left(p^{e(1+\epsilon)}\left(e(T), p^{e}\right)^{1 / 2}\right)$ where $e(T)=p^{a_{1}}, 2^{a}, 2^{a}$ according to (i), (ii), (iii) respectively.

Lemma 1.5.19. (i) $\sum_{\substack{n \bmod p^{e} \\ p \nmid n}}\left(n^{2}+v, p^{e-a_{1}}\right)^{1 / 2}=O\left(p^{e}\right)$ if $p \nmid v, 0 \leq a_{1}<$ e, and
(ii) $\sum_{n \bmod \mathrm{p}^{\mathrm{e}-1}}\left(p^{2} n^{2}+v p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{1 / 2}=O\left(p^{e(1+\varepsilon)}\right)$ for any $\varepsilon>0$, if $p \nmid v, 0 \leq a_{1}<a_{2}$ and $e \geq 1$.
Proof. First we prove (i). If $p \neq 2$ and $\left(\frac{-v}{p}\right)=-1$, then (i) is trivial since $p \nmid\left(n^{2}+v\right)$. Suppose $p \neq 2$ and $\left(\frac{-v}{p}\right)=1$. Take a p-adic integer g so that $g^{2}+v=0$. If $n^{2}+v \equiv 0 \bmod \mathrm{p}$, then $n= \pm g+m p^{s}$ with $m \in \mathbb{Z}_{p}^{*}$, $s \geq 1$ and so $n^{2}+v=p^{s}\left(\pm 2 g m+m^{2} p^{s}\right)$ is exactly divisible by p^{s}. Thus we have

$$
\begin{aligned}
& \sum_{\substack{n \bmod \mathrm{p}^{\mathrm{e}} \\
p \not n}}\left(n^{2}+v, p^{e-a_{1}}\right)^{1 / 2} \\
= & \sum_{\substack{n \bmod \mathrm{p}^{\mathrm{e}} \\
p \nmid n, n^{2}+v=0 \bmod \mathrm{p}}}\left(n^{2}+v, p^{e-a_{1}}\right)^{1 / 2}+\sum_{\substack{n \bmod \mathrm{p}^{\mathrm{e}} \\
p \nmid n, n^{2}+\nu \neq 0(p)}} 1 \\
\leqq & 2 \sum_{1 \leq s \leq e} \sum_{\substack{m \bmod \mathrm{p}^{\mathrm{e}-s} \\
p \not m}}\left(p^{s}, p^{e-a_{1}}\right)^{1 / 2}+p^{e} \\
= & 2 \sum_{1 \leq s \leq e-a_{1}} p^{s / 2} \varphi\left(p^{e-s}\right)+2 \sum_{e-a_{1}<s \leq e} p^{\left(e-a_{1}\right) / 2} \varphi\left(p^{e-s}\right)+p^{e}
\end{aligned}
$$

where φ is the Euler function.
The first partial sum is equal to

$$
\sum_{1 \leq s \leq e-a_{1}-1} p^{s / 2} p^{e-s}\left(1-p^{-1}\right)+p^{\left(e-a_{1}\right) / 2} \varphi\left(p^{a_{1}}\right)
$$

$$
=p^{e-\frac{1}{2}}\left(1-p^{-\left(e-a_{1}-1\right) / 2}\right)\left(1+p^{-\frac{1}{2}}\right)+p^{\left(e-a_{1}\right) / 2} \varphi\left(p^{a_{1}}\right)=O\left(p^{e}\right)
$$

The second is $p^{\left(e-a_{1}\right) / 2}\left(\varphi\left(p^{a_{1}-1}\right)+\cdots+\varphi(1)\right)=p^{\left(e+a_{1}\right) / 2-1}=O\left(p^{e}\right)$.
Thus, in this case, we are through.
Suppose $p=2$ and $v \not \equiv 7 \bmod 8$; then $n^{2}+V \not \equiv 0 \bmod 8$ for old n.
Hence we have

$$
\sum_{\substack{n \bmod 2^{\mathrm{e}} \\ 2 \nmid n}}\left(n^{2}+v, 2^{e-a_{1}}\right)^{\frac{1}{2}} \leq \sum\left(4,2^{e-a_{1}}\right)^{\frac{1}{2}}=O\left(2^{e}\right) .
$$

Lastly, we suppose $p=2, v \equiv 7 \bmod 8$, and take $g \in \mathbb{Z}_{2}^{*}$ so that $g^{2}+v=0$. Since, for $n=g+2^{r} m$ with $r \geq 1,2 \nmid m, n^{2}+v=2^{r+1} m\left(g+2^{r-1} m\right)$, we have

$$
\begin{aligned}
& \sum_{\substack{n \bmod 2^{\mathrm{e}} \\
2 \nmid n}}\left(n^{2}+v, 2^{e-a_{1}}\right)^{\frac{1}{2}} \\
&= \sum_{\substack{m \bmod 2^{e-1} \\
2 \nmid m}}\left(2^{2} m(g+m), 2^{e-a_{1}}\right)^{\frac{1}{2}}+\sum_{2 \leq r \leq e} \sum_{\substack{m \bmod 2^{e-r} \\
2 \nmid m}}\left(2^{r+1}, 2^{e-a_{1}}\right)^{\frac{1}{2}} \\
&= \sum_{\substack{n \bmod 2^{e-1} \\
2 \mid n}}\left(2^{2} n, 2^{e-a_{1}}\right)^{\frac{1}{2}}+\sum_{2 \leq r \leq e} 2^{e-r-1}\left(2^{r+1}, 2^{e-a_{1}}\right)^{\frac{1}{2}} \\
&= \sum_{1 \leq r \leq e-1} 2^{e-2-r}\left(2^{2+r}, 2^{e-a_{1}}\right)^{\frac{1}{2}}+\sum_{2 \leq r \leq e} 2^{e-r-1}\left(2^{r+1}, 2^{e-a_{1}}\right)^{\frac{1}{2}} \\
&= 2^{e} \sum_{2 \leq r \leq e} 2^{-r}\left(2^{r+1}, 2^{e-a_{1}}\right)^{\frac{1}{2}}=2^{e} \sum_{2 \leq r \leq e-a_{1}-1} 2^{\frac{1}{2}(1-r)} \\
& \quad+2^{e} \sum_{e-a_{1} \leq r \leq e} 2^{-r+\frac{1}{2}\left(e-a_{1}\right)}=O\left(2^{e}\right) .
\end{aligned}
$$

114 Thus (i) has been proved. Let us prove (ii). If $a_{2} \geq e$, then we have

$$
\begin{aligned}
& \sum_{n \text { mod } \mathrm{p}^{\mathrm{e}-1}}\left(p^{2} n^{2}+v p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{1 / 2} \\
= & \sum_{n \text { mod } \mathrm{p}^{\mathrm{e}-1}}\left(p^{2} n^{2}, p^{e-a_{1}}\right)^{1 / 2}=\sum_{0 \leq r \leq e-1} \varphi\left(p^{e-1-r}\right)\left(p^{2+2 r}, p^{e-a_{1}}\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{0 \leq r \leq\left(e-a_{1}\right) / 2-1} \varphi\left(p^{e-1-r}\right) p^{1+r}+\sum_{\left(e-a_{1}\right) / 2 \leq r \leq e-1} \varphi\left(p^{e-1-r}\right) p^{\left(e-a_{1}\right) / 2} \\
& =O\left(e p^{e}\right)=O\left(p^{e(1+\varepsilon)}\right)
\end{aligned}
$$

Suppose $a_{2}<e$; then we have

$$
\begin{aligned}
& \sum_{n \bmod ^{\mathrm{e}-1}}\left(p^{2} n^{2}+v p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{1 / 2} \\
& \sum_{0 \leq r<\left(a_{2}-a_{1}-2\right) / 2} \varphi\left(p^{e-1-r}\right) p^{1+r}+\sum_{\substack{r=\left(a_{2}-a_{1}-2\right) / 2 \\
m \mathrm{mod} \mathrm{p}^{\mathrm{e}-1-\mathrm{r}} \\
p \nmid m}} p^{\left(a_{2}-a_{1}\right) / 2}\left(m^{2}+v, p^{e-a_{2}}\right)^{1 / 2}+ \\
& \sum_{\left(a_{2}-a_{1}\right) / 2 \leq r \leq e-1} \varphi\left(p^{e-1-r}\right) p^{\left(a_{2}-a_{1}\right) / 2}\left(n=m p^{r}, p \nmid m\right) \\
& =O\left(e p^{e}\right)+p^{\left(a_{2}-a_{1}\right) / 2} \sum_{\substack{r=\left(a_{2}-a_{1}-2\right) / 2 \\
m \bmod \mathrm{p}^{-1-\mathrm{r}} \\
p \nmid m}}\left(m^{2}+v, p^{e-a_{2}}\right)^{1 / 2}
\end{aligned}
$$

The last partial sum vanishes if $a_{2} \not \equiv a_{1} \bmod 2$. Suppose $a_{2} \equiv a_{1} \bmod 2$ and put $E:=e-1-r, A_{1}=0$. Then $E=e-\left(a_{2}-a_{1}\right) / 2>\left(a_{2}+a_{1}\right) / 2>$ $0=A_{1}$ and $E \geq e-a_{2}$. Hence the last partial sum is not larger than

$$
\begin{gathered}
p^{\left(a_{2}-a_{1}\right) / 2} \sum_{\substack{m \bmod _{\mathrm{p}} \mathrm{E} \\
p \nmid m}}\left(m^{2}+v, p^{E}\right)^{\frac{1}{2}} \\
=p^{\left(a_{2}-a_{1}\right) / 2} O\left(p^{E}\right), \quad(\text { by }(\mathrm{i}))=O\left(p^{e}\right) .
\end{gathered}
$$

Thus we have completed the proof of Lemma 1.5.19
To prove $\gamma\left(T, p^{e}\right)=O\left(p^{e(1+\varepsilon)}\left(e(T), p^{e}\right)^{\frac{1}{2}}\right)$, note that ${ }^{t}(n, 1)\left(n \bmod \mathrm{p}^{\mathrm{e}}\right)$, ${ }^{t}\left(m, p^{t}\right)\left(p \nmid m, m \bmod \mathrm{p}^{\mathrm{e}-\mathrm{t}}, 1 \leq \mathrm{t} \leq \mathrm{e}\right)$ give a complete set of representatives of S^{\prime} / \approx. Suppose T to be in diagonal form [up $p^{a_{1}}, u v p^{a_{2}}$], $0 \leq a_{1} \leq a_{2}, p \nmid u v$; then

$$
\begin{aligned}
\gamma\left(T, p^{e}\right)= & \sum_{n \bmod \mathrm{p}^{\mathrm{e}}}\left(n^{2} u p^{a_{1}}+u v p^{a_{2}}, p^{e}\right)^{\frac{1}{2}} \\
& +\sum_{1 \leq t \leq e} \sum_{\substack{\bmod \mathrm{p}^{\mathrm{e}-\mathrm{t}} \\
p \nmid m}}\left(m^{2} u p^{a_{1}}+u v p^{a_{2}+2 t}, p^{e}\right)^{\frac{1}{2}}
\end{aligned}
$$

We want to show that $\gamma\left(T, p^{e}\right)=O\left(p^{e(1+\varepsilon)+\min \left(a_{1}, e\right) / 2}\right)$.
If $a_{1} \geq e$, then

$$
\begin{aligned}
\gamma\left(T, p^{e}\right) & =p^{e / 2}\left\{p^{e}+\varphi\left(p^{e-1}\right)+\cdots+\varphi(1)\right\} \\
& =p^{e / 2}\left\{p^{e}+p^{e-1}\right\}=O\left(p^{3 e / 2}\right)
\end{aligned}
$$

In case $a_{1}<e$, we have

$$
\begin{aligned}
\gamma\left(T, p^{e}\right)= & p^{\frac{1}{2} a_{1}} \sum_{\substack{n \bmod \mathrm{p}^{\mathrm{e}} \\
p \nmid n}}\left(n^{2}+v p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{\frac{1}{2}}+ \\
& +p^{\frac{1}{2} a_{1}} \sum_{n \bmod \mathrm{p}^{\mathrm{e}-1}}\left(p^{2} n^{2}+v p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{\frac{1}{2}}+ \\
& +p^{\frac{1}{2} a_{1}} \sum_{1 \leq t \leq e} \sum_{\substack{\bmod \mathrm{p}^{\mathrm{e}-\mathrm{t}} \\
p \not m}}\left(m^{2}+v p^{a_{2}-a_{1}+2 t}, p^{e-a_{1}}\right)^{\frac{1}{2}}
\end{aligned}
$$

116 Hence if $a_{1}=a_{2}<e$, then

$$
\gamma\left(T, P^{e}\right)=p^{a_{1} / 2} O\left(p^{e}\right)+p^{\frac{1}{2} a_{1}+e-1}+p^{a_{1} / 2} \sum_{1 \leq t \leq e} \varphi\left(p^{e-t}\right)=O\left(p^{a_{1} / 2+e}\right)
$$

If $a_{1}<e$ and $a_{1}<a_{2}$, then

$$
\begin{aligned}
\gamma\left(T, P^{e}\right) & =p^{a_{1} / 2} \varphi\left(p^{e}\right)+p^{a_{1} / 2} O\left(p^{e(1+\varepsilon)}\right)+p^{a_{1} / 2} \sum_{1 \leq t \leq e} \varphi\left(p^{e-t}\right) \\
& =O\left(p^{e(1+\varepsilon)+a_{1} / 2}\right)
\end{aligned}
$$

Suppose $T=2^{a}\left(\begin{array}{cc}1 & \frac{1}{2} \\ \frac{1}{2} & 1\end{array}\right), a \geq 0$ and $p=2$. Since

$$
T\binom{x_{1}}{x_{2}}=2^{a}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right), \text { ord } T[x]=2^{a} \quad \text { if } \quad\left(x_{1}, x_{2}, 2\right)=1
$$

Hence

$$
\gamma\left(T, 2^{e}\right)=\sum_{x \in S^{\prime} \mid \approx}\left(2^{a}, 2^{e}\right)^{\frac{1}{2}}=\left(2^{e}+2^{e-1}\right) 2^{\mid(a, e) / 2}=O\left(2^{e+\min (a, e) / 2}\right)
$$

Suppose $T=2^{a}\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)$; then

$$
\begin{aligned}
\gamma\left(T, 2^{e}\right) & =\sum_{n \bmod 2^{e}}\left(2^{a} n, 2^{e}\right)^{\frac{1}{2}}+\sum_{1 \leq t \leq e} \sum_{\substack{m \bmod 2^{e-t} \\
2 \nmid m}}\left(2^{a+t} m, 2^{e}\right)^{\frac{1}{2}} \\
& =\sum_{0 \leq t \leq e} \varphi\left(2^{e-t}\right)\left(2^{a+t}, 2^{e}\right)^{\frac{1}{2}}+\sum_{1 \leq t \leq e} \varphi\left(2^{e-t}\right)\left(2^{a+t}, 2^{e}\right)^{\frac{1}{2}} \\
& =2^{e-1+\min (a, e) / 2}+2 \sum_{1 \leq t \leq e-1} 2^{e-t-1+\min (a+t, e) / 2}+2^{e / 2} \\
& \leq 2^{e+\min (a, e) / 2}+2(e-1) 2^{e+\min (a, e) / 2}=O\left(2^{e(1+\epsilon)+\min (a, e) / 2}\right)
\end{aligned}
$$

since $e-t-1+\min (a+t, e) / 2 \leq e+\min (a, e) / 2$.

1.6 Estimation of Fourier Coefficients of Modular Forms

Let $\{n, k, s\}$ denote the space of modular forms of degree n, weight k and level s. In this section, we first obtain a Representation Theorem for $\{n, k, s\}$ with even $k \geq 2 n+2$ in terms of the Eisenstein series $E_{n, j}^{k}(Z ; f)$ in the sense of Klingen [13] arising as 'lifts' of cusp forms f in $\{j, k, s\}$ for $j \leq n$. Then we shall derive an estimate for the Fourier coefficients of modular forms in $\{n, k, s\}$ for even (integral) $k \geq 2 n+2$, following Kitaoka [10]. We first prove a few preparatory lemmas for the Representation Theorem, following H. Braun [3] and Christian [6].

Lemma 1.6.1. For any $R \in \operatorname{Sp}(n, \mathbb{Q})$, there exist an upper triangular Q in $G L(n, \mathbb{Q})$ and an (n, n) rational symmetric S such that $M=R\left(\begin{array}{cc}{ }^{t} Q^{t} Q S \\ 0 & Q^{-1}\end{array}\right)$ is in Γ_{n}.

Proof. Let $R=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ with (n, n) matrices A, B, C, D. For some $d \neq 0$ in $\mathbb{Z},\left(-d^{t} C, d^{t} A\right)$ is an integral symmetric pair and further $\left(-{ }^{t} C^{t} A\right)$ has rank n. Hence, for some U in $G L(2 n, \mathbb{Z}),\left(-d^{t} C d^{t} A\right) U=\left(\begin{array}{ll}G & 0\end{array}\right)$ with (n, n) invertible integral G. Clearly then $C^{\prime}:=-d G^{-1 t} C, D^{\prime}:=$ $d G^{-1 t} A$ form a coprime symmetric pair and constitute therefore the last n rows of $N=\left(M^{\prime}\right)^{-1}$ for some M^{\prime} in Γ_{n}, so that we have $N R=$
 there exists V in $G L(n, \mathbb{Z})$ with $Q:=V Q_{1}$ in upper triangular form. The lemma is now immediate with $M=M^{\prime}\left(\begin{array}{cc}t_{V} & 0 \\ 0 & V^{-1}\end{array}\right)$.

Let us fix, in the sequel, M_{1}, \ldots, M_{t} in Γ_{n} so that $\Gamma_{n}=\underset{1 \leq i \leq t}{ } \Gamma_{n}(s) M_{i}$.
118 Then, by Lemma 1 , any $R \in \operatorname{Sp}(n, \mathbb{Q})$ can be written in the form $N^{\prime} M_{i}\left(\begin{array}{c}{ }^{t} Q^{t} Q S \\ 0 \\ O^{-1}\end{array}\right)$ for some N^{\prime} in $\Gamma_{n}(s)$ and M_{i} with Q, S as in Lemma 1.6.1 For f in $\{n, k, s\}$, we have therefore

$$
\begin{aligned}
\left(\left.f\right|_{k} R\right)(Z) & =\left(\left(\left.\left(\left.f\right|_{k} N^{\prime}\right)\right|_{k} M_{i}\left(\begin{array}{cc}
t \\
Q & { }^{t} Q S \\
0 & Q^{-1}
\end{array}\right)\right)(Z)\right. \\
& =\left(\left.f\right|_{k} M_{i}\right)\left({ }^{t} Q(Z+S) Q\right) \quad(\operatorname{det} Q)^{k} .
\end{aligned}
$$

Now, for any j with $1 \leq j \leq n$ and $Z_{1} \in \mathscr{G}_{n-j}$, the $j^{\text {th }}$-iterate Φ^{j} of the Siegel operator on any $f: \mathscr{G}_{n} \rightarrow \mathbb{C}$ is defined by

$$
\left(\Phi^{j} f\right)\left(Z_{1}\right)=\lim _{\lambda \rightarrow \infty} f\left(\left(\begin{array}{cc}
Z_{1}(n-j) & 0 \\
0 & i \lambda E_{j}
\end{array}\right)\right) ;
$$

it is known that for f in $\{n, k, s\}, \Phi_{j} f$ exists and is in $\{n-j, k, *\}$.
Definition. We call f in $\{n, k, s\}$ a j-cusp form, if $\Phi^{j}\left(\left.f\right|_{k} R\right)=0$ for every R in $\operatorname{Sp}(n, \mathbb{Q})$. For $j=1$, we call f just a cusp form.

Lemma 1.6.2. Any f in $\{n, k, s\}$ is a j-cusp form if any only if $\Phi^{j}\left(\left.f\right|_{k} M_{i}\right)=0$ for $1 \leq i \leq t$.

Proof. To prove the lemma, it is enough to show that f is a j-cusp form if $\Phi^{j}\left(\left.f\right|_{k} M\right)=0$ for every M in Γ_{n} (or equivalently if $\Phi^{j}\left(\left.f\right|_{k} M_{i}\right)=0$ for $1 \leq i \leq t)$. The limit as λ tends to ∞ in the definition of $\Phi^{j}\left(\left.f\right|_{k} M_{i}\right)\left(Z_{1}\right)$ can be applied termwise to the Fourier expansion

$$
\left(f \mid k M_{i}\right)\left(\begin{array}{cc}
Z_{1} & 0 \\
0 & i \lambda E_{j}
\end{array}\right)=\sum_{T=\left(\begin{array}{cc}
T_{1}^{(n-j)} & T_{2} \\
* & T_{3}
\end{array}\right) \geq 0} a\left(T ; f ; M_{i}\right) e^{2 \pi i \operatorname{tr}\left(T\left(\begin{array}{cc}
Z_{1} & 0 \\
0 & i \lambda E_{j}
\end{array}\right)\right) / s}
$$

and hence

$$
\Phi^{j}\left(\left.f\right|_{k} M_{i}\right)\left(Z_{1}\right)=\sum_{T_{1}^{(n-j)} \geq 0} a\left(\left(\begin{array}{rr}
T_{1} & 0 \\
0 & 0
\end{array}\right) ; f ; M_{i}\right) e^{2 \pi i \operatorname{tr}\left(\left(T_{1} Z_{1}\right)\right) / s}
$$

119 The assumption $\Phi^{j}\left(\left.f\right|_{k} M_{i}\right)=0$ for $1 \leq i \leq t$ is equivalent then to $\left.a\left(\begin{array}{cc}T_{1} & 0 \\ 0 & 0\end{array}\right) ; f ; M_{i}\right)=0$ for all $T_{1} \geq 0$ and $1 \leq i \leq t$. On the other hand, we know from $\operatorname{Lemma} 1.6 .1$ that for R in $\operatorname{Sp}(n ; \mathbb{Q})$,

$$
\begin{aligned}
\Phi^{j}\left(\left.f\right|_{k} R\right)\left(Z_{1}\right)= & \Phi^{j}\left(f \left\lvert\, M_{i}\left(\begin{array}{cc}
{ }^{t} Q & { }^{t} Q S \\
0 & Q^{-1}
\end{array}\right)\right.\right)\left(Z_{1}\right) \\
& \text { for suitable } M_{i} \text { and } Q, S \text { as above } \\
= & \lim _{\lambda \rightarrow \infty}\left(f \mid M_{i}\right)\left({ }^{t} Q\left(\left(\begin{array}{cc}
Z_{1} & 0 \\
0 & i \lambda E_{j}
\end{array}\right)+S\right) Q\right) \\
= & \sum a\left(T ; f ; M_{i}\right) e^{\frac{2 \pi i}{s}\left(\operatorname{tr}\left(T_{1} Z_{1}\left[Q_{1}\right]+\operatorname{tr}\left(T_{3} Z_{1}\left[Q_{2}\right]\right)+2 \operatorname{tr}\left(T_{2}{ }^{t} Q_{2} Z_{1} Q_{1}\right)\right)\right)} \times \\
& T=\left(\begin{array}{cc}
T_{1}^{(n-j)} & T_{2} \\
* & T_{3}
\end{array}\right) \geq 0 \times e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T S^{\prime}\right)} \lim _{\lambda \rightarrow \infty} e^{\frac{-2 \pi \lambda}{s}} \operatorname{tr}\left(T_{3}\left[{ }^{t} Q_{3}\right]\right)
\end{aligned}
$$

writing $Q=\left[\begin{array}{cc}Q_{1}^{(n-j)} & Q_{2} \\ 0 & Q_{3}\end{array}\right)$ and $S^{\prime}={ }^{t} Q S Q$. Now since $\operatorname{det} Q_{3} \neq 0$, $\operatorname{tr}\left(Q_{3} T_{3}{ }^{t} Q_{3}\right) \neq 0$ unless $T_{3}=0$ and therefore for every T with $T_{3}=0$ and therefore for every T with $T_{3} \neq 0$, the limit of the corresponding term as λ tends to ∞, is zero. If $T_{3}=0$, then $T_{2}=0$ as well, in view of " $T \geq 0$ ". Thus in the limit as λ tends to ∞, at most the terms corresponding to $T=\left(\begin{array}{cc}T_{1}^{(n-j)} & 0 \\ 0 & 0\end{array}\right)$ can survive. Our assumption " $\Phi^{j}\left(\left.f\right|_{k} M_{i}\right)=0$ " above implies a $\left(T ; f ; M_{i}\right)=0$ for these latter type of T are 0 , leading to $\Phi^{j}\left(\left.f\right|_{k} R\right)=0$ for every R in $\operatorname{Sp}(n, \mathbb{Q})$ and also proving the lemma.

For $0<j \leq n$, let $\Delta_{n, n-j}(s)=\left\{M \in \Gamma_{n}(s) \mid\right.$ the entries of the first $2 n-j$ columns of the last j rows of M are 0$\}$.

Then

$$
\Delta_{n, n-j}(s)=\left\{M=\left(\begin{array}{cccc}
A & 0 & B & * \\
* & Q^{-1} & * & * \\
C & 0 & D & * \\
0 & 0 & 0 & Q
\end{array}\right) \in \Gamma_{n}(s)\right\}
$$

and is indeed a subgroup of $\Gamma_{n}(s)$; any M in $\Delta_{n, n-j}(s), Q \equiv E_{j}(\bmod \mathrm{~s})$ in $G L(j, \mathbb{Z})$ and further $\underline{M}:=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is in $\Gamma_{n-j}(s)$. The mapping $M \mapsto \underline{M}$
is a homomorphism of $\Delta_{n, n-j}$ onto $\Gamma_{n-j}(s)$, with kernel

$$
\left\{\left(\begin{array}{cccc}
E_{n-j} & 0 & 0 & * \\
* & E_{j} & * & * \\
& & E_{n-j} & * \\
0 & & 0 & E_{j}
\end{array}\right) \in \Delta_{n, n-j}(s)\right\}
$$

We denote $\Delta_{n, n-j}(1)$ simply as $\Delta_{n, n-j}$.
Definition. For N_{1}, N_{2} in Γ_{n}, we say $N_{1} \tilde{j,} s N_{2}$ if, for some M in $\Gamma_{n}(s)$, we have $N=N_{1}^{-1} M N_{2} \in \Delta_{n, n-j}$.

Lemma 1.6.3. For N_{1}, N_{2} in Γ_{n} with $N_{1} \tilde{j,} s N_{2}$ and f in $\{n, k, s\}$, we have $\Phi^{j}\left(f \mid N_{1}\right)=0 \Longleftrightarrow \Phi^{j}\left(f \mid N_{2}\right)=0$ for $0 \leq j \leq n$.
 $Z>=\left(\begin{array}{c}\underline{N}<Z_{1}> \\ *\end{array}{ }_{*}^{*}\right)$ and $\operatorname{det} N\{Z\}=\operatorname{det} \underline{N}\left\{Z_{1}\right\} \operatorname{det} Q$ for some Q in $G L(j, \mathbb{Z})$. Thus $\Phi^{j}\left(f \mid N_{2}\right)=\Phi^{j}\left(f \mid M N_{2}\right)=\Phi^{j}\left(f \mid N_{1} N\right)=(\operatorname{det} Q)^{k}\left(\Phi^{j}\left(f \mid N_{1}\right)\right) \mid \underline{N}$, for $0 \leq j<n$.

The lemma follows on noting that for $j=n, \Phi^{n}\left(f \mid N_{i}\right)=$ the constant term in the Fourier expansion of $f \mid N_{i}$ and $\left|a\left(0, N_{1}\right)\right|=\left|a\left(0, N_{2}\right)\right|$.

For $T \geq 0$, let

$$
\Gamma_{n}(s ; T)=\left\{\left.\left(\begin{array}{cc}
t & * \\
0 & U^{-1}
\end{array}\right) \in \Gamma_{n}(S) \right\rvert\, T\left[^{t} U\right]=T\right\}
$$

Then, for even (integral) $k>n+1+\operatorname{rank} T$, we define the Poincaré series g_{k} and p_{k} by

$$
\begin{aligned}
& g_{k}\left(Z, T ; \Gamma_{n}(s)\right):=\sum_{M \in \Gamma_{n}(s, T) \backslash \Gamma_{n}(s)} e^{\frac{2 \pi i}{s} \operatorname{tr}(T M<Z>)}(\operatorname{det} M\{Z\})^{-k}, \\
& p_{k}\left(Z, T ; N ; \Gamma_{n}(s)\right):=\sum_{N^{-1} M \in \Gamma_{n}(s, T) \backslash N^{-1} \Gamma_{n}(s)} e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T N^{-1} M<Z>\right)}\left(\operatorname{det} N^{-1} M\{Z\}\right)^{-k}
\end{aligned}
$$

for N in Γ_{n}. These series converge absolutely, uniformly on compact subsets of \mathscr{G}_{n} and belong to $\{n, k, s\}$ for $k>n+1+\operatorname{rank}(T)$. For $T=0$, they are just Eisenstein series. Clearly $p_{k}\left(Z, T ; E_{2 j} ; \Gamma_{n}(s)\right)=$ $g_{k}\left(Z, T ; \Gamma_{n}(s)\right)$.

Lemma 1.6.4. For $k>n+1+\operatorname{rank} T$ and N in Γ_{n}, we have

$$
p_{k}\left(Z, T ; N ; \Gamma_{n}(s)\right)=g_{k}\left(Z, T ; \Gamma_{n}(s)\right) \mid N^{-1}
$$

Proof. Suppose M^{\prime} runs over a complete set of representatives of the right cosets of $\Gamma_{n}(s)$ modulo $\Gamma_{n}\left(s^{*}, T\right)$. Then $M: N M^{\prime} N^{-1}$ is in $\Gamma_{n}(s)$ and $M^{\prime} N^{-1}=N^{-1} M$. Further $M^{\prime} N^{-1}$ runs over a complete set of representatives of elements in $N^{-1} \Gamma_{n}(s)$ such that, for no two such distinct elements, say $N^{-1} M_{1}, N^{-1} M_{2}$ we have $N^{-1} M_{1} \in \Gamma_{n}(s, T) N^{-1} M_{2}$; otherwise, we will have for $M_{1}^{\prime} \neq M_{2}^{\prime}$ with $M_{i}^{\prime} N^{-1}:=N^{-1} M_{i}, i=1,2$, $M_{1}^{\prime} \in \Gamma_{n}(s, T) M_{2}^{\prime}$, a contradiction.

Now

$$
\begin{aligned}
g_{k}\left(Z, T ; \Gamma_{n}(s) \mid N^{-1}=\right. & \sum_{M^{\prime} \in \Gamma_{n}(s, T) \backslash \Gamma_{n}(s)} e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T M^{\prime}<N^{-1}<Z \gg\right)} \\
& \operatorname{det} M^{\prime}\left\{N^{-1}<Z>\right\}^{-k} \operatorname{det} N^{-1}\{Z\}^{-k} \\
= & \sum_{M^{\prime}} e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T\left(M^{\prime} N^{-1}\right)<Z>\right)}\left(\operatorname{det}\left(M^{\prime} N^{-1}\right)\{Z\}\right)^{-k} \\
= & \sum_{N^{-1} M \in \Gamma_{n}(s, T) \backslash N^{-1} \Gamma_{n}(s)} e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T\left(N^{-1} M\right)<Z>\right)} \\
& \left(\operatorname{det}\left(N^{-1} M\right)\{Z\}\right)^{-k} \\
= & p_{k}\left(Z, T ; N ; \Gamma_{n}(s)\right)
\end{aligned}
$$

Lemma 1.6.5. For $T=\left(\begin{array}{cc}T_{0}^{(n-j)} & 0 \\ 0 & 0\end{array}\right)$ with $T_{0}^{(n-j)}>0$ and $Z=\left(\begin{array}{cc}Z_{0}^{(n-j)} & * \\ * & *\end{array}\right) \in$ \mathscr{G}_{n} we have $\Phi^{j}\left(g_{k}\left(Z, T ; \Gamma_{n}(s)\right)=* g_{k}\left(Z_{0}, T_{0} ; \Gamma_{n-j}(s)\right)\right.$ if $0<j<n$ and $\Phi^{n}\left(g_{k}\left(Z, 0 ; \Gamma_{n}(s)\right)=1\right.$.

Proof. The involved limit with $Z=\left(\begin{array}{cc}Z_{0} & 0 \\ 0 & i \lambda E_{g}\end{array}\right)($ as $\lambda \rightarrow \infty)$ in Φ^{j} can be applied termwise to the series defining g_{k}, namely to each term

$$
e^{\frac{2 \pi i}{s} \operatorname{tr}(T M<Z>)}(\operatorname{det} M\{Z\})^{-k}=e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T_{0}(M<Z>)_{0}\right)}(\operatorname{det} M\{Z\})^{-k}
$$

where $(M<Z>)_{0}$ denote the top (leftmost) $(n-j, n-j)$ submatrix of $M<Z>$. Let $\left(\begin{array}{cccc}C_{1} & C_{2} & D_{1} & D_{2} \\ C_{3} & C_{4} & D_{3} & D_{4}\end{array}\right)$ with $(n-j, n-j)$ submatrices C_{1}, D_{1} be the
matrix formed by the last n rows of $M\left(\right.$ in $\left.\Gamma_{n}(s)\right)$ and $Y_{0}=\operatorname{Im}\left(Z_{0}\right)$. As in Klingen (Math. Zeit. 102 (1967), p.35), we have

$$
\operatorname{abs}(\operatorname{det} M\{Z\})^{-2}=\operatorname{det}\left(\operatorname{Im}\left((M<Z>)_{0}\right) /\left(\operatorname{det} Y_{0} P(\lambda) \text { where } P(\lambda):=\right.\right.
$$

$$
\operatorname{det}\left(\lambda Y_{0}^{-1}\left[\left[Z_{0}^{t} C_{3}+{ }^{t} D_{3}\right]\right]+E_{j}\left[\left[i \lambda^{t} C_{4}+{ }^{t} D_{4}\right]\right]\right)
$$

with ${ }^{t} \bar{S} R S$ abbreviated as $R[[S]]$; we are using here the relations

$$
\begin{aligned}
& \left(\begin{array}{cc}
\left(Y_{M}\right)_{0} & Y_{M, 2} \\
* & Y_{M, 3}
\end{array}\right)^{-1}\left\{=\left(\begin{array}{cc}
* & * \\
* & \left(Y_{M, 3}-\left(Y_{M}\right)_{0}^{-1}\left[Y_{M, 2}\right]\right)^{-1}
\end{array}\right)\right\} \\
& \quad=(\operatorname{Im}(M<Z>))^{-1}=(\operatorname{Im}(Z))^{-1}\left[\left[{ }^{t}(C Z+D)\right]\right]= \\
& \left.\quad=\left(\begin{array}{cc}
Y_{0}^{-1} & 0 \\
0 & \frac{1}{\lambda} E_{j}
\end{array}\right)\left[\left[\begin{array}{cc}
* & t\left(C_{3} Z_{0}+D_{3}\right) \\
* & t\left(i \lambda C_{4}+D_{4}\right)
\end{array}\right)\right]\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { (abs }\left(\operatorname{det}\left((C Z+D)^{2}\right) /\left(\left(\operatorname{det} Y_{0}\right) \lambda^{j}\right)\right. \\
& =1 / \operatorname{det}(\operatorname{Im}(M<Z>))=1 /\left(\left(\operatorname{det}\left(Y_{M}\right)_{0}\right)\left(\operatorname{det}\left(Y_{M, 3}-\left(Y_{N}\right)_{0}^{-1}\left[Y_{M, 2}\right]\right)\right)\right) \\
& =\left(1 / \operatorname{det}\left(\operatorname{Im}\left((M<Z>)_{0}\right)\right)\left(\operatorname { d e t } \left(Y_{0}^{-1}\left[\left[^{t}\left(C_{3} Z_{0}+D_{0}\right)\right)\right]\right.\right.\right. \\
& \left.\quad+\frac{1}{\lambda} E_{j}\left[\left[{ }^{t}\left(i \lambda C_{4}+D_{4}\right)\right]\right]\right)
\end{aligned}
$$

Now

$$
\left|e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T_{0}(M<Z>)_{0}\right)} \operatorname{det}\left(\operatorname{Im}\left((M<Z>)_{0}\right)\right)^{k / 2}\right| \leq \prod_{1 \leq \ell \leq n-j}\left(\lambda_{\ell}^{k / 2} e^{-c \lambda_{\ell}}\right)
$$

where $c=c\left(T_{0}\right)>0$ and $\lambda_{1}, \ldots, \lambda_{n-j}$ are the eigenvalues of $\operatorname{Im}((M<$ $Z>)_{0}$); hence it is bounded for all M, uniformly as λ goes to infinity. We can now conclude from above that, for fixed Z_{0},

$$
\lim _{\lambda \rightarrow \infty} e^{\frac{2 \pi i}{s} \operatorname{tr}(T M<Z>)}(\operatorname{det} M\{Z\})^{-k}=0
$$

unless $P(\lambda)$ is a constant. Next we determine, for what $M, P(\lambda)$ can turn out to be a constant. The relation above connecting $P(\lambda)$ and abs $(\operatorname{det} M\{Z\})^{-2}$ shows that $P(\lambda)>0$ while each of $\lambda Y_{0}^{-1}\left[\left[Z_{0}{ }^{t} C_{3}+{ }^{t} D_{3}\right]\right]$ and $E_{j}\left[\left[i \lambda^{t} C_{4}+{ }^{t} D_{4}\right]\right]$ is non-negative definite. Hence, for all λ,

$$
\begin{aligned}
& \operatorname{det}\left(\lambda^{2} C_{4}{ }^{t} C_{4}+D_{4}^{t} D_{4}\right)=\operatorname{det}\left(E_{j}\left[\left[i \lambda^{t} C_{4}+{ }^{t} D_{4}\right]\right]\right) \\
& \left.\leq \operatorname{det}\left(\lambda Y_{0}^{-1}\left[\left[Z_{0}^{t} C_{3}+{ }^{t} D_{3}\right]\right]+E_{j}\left[i \lambda^{t} C_{4}+{ }^{t} D_{4}\right]\right]\right) .
\end{aligned}
$$

If $P(\lambda)$ were constant, both sides have the constant value $\operatorname{det} D_{4}{ }^{t} D_{4}$ and hence $C_{4}=0$; also $Y_{0}^{-1}\left[\left[Z_{0}{ }^{t} C_{3}+{ }^{t} D_{3}\right]\right]$ is necessarily 0 , implying that $C_{3}=D_{3}=0$. Finally, therefore $M \in \Delta_{n, n-j}(s)$, under the assumption that $P(\lambda)$ is a constant. Thus, for $j<n, \lim _{\lambda \rightarrow \infty} e^{\frac{2 \pi i}{s} \mathrm{tr}(T M<Z>)} \operatorname{det} M\{Z\}^{-k}=$ 0 unless M is in $\Delta_{n, n-j}(s)$; in that case, the limit is, in fact, $e^{\frac{2 \pi}{s} \mathrm{tr}\left(T_{0} \underline{M}<Z_{0}>\right)}$ $\operatorname{det} \underline{M}\left\{Z_{0}\right\}^{-k}$, since $\operatorname{det} M\{Z\}^{-k}=\operatorname{det} D_{4}^{k} \operatorname{det}\left(C_{1} Z_{0}+D_{1}\right)^{-k}=\operatorname{det} \underline{M}\left\{Z_{0}\right\}^{-k}$ and $e^{\frac{2 \pi i}{s} \mathrm{tr}(T M<Z>)}=e^{\frac{2 \pi i}{s} \mathrm{tr}\left(T_{0}(M<Z>)_{0}\right)}=e^{\frac{2 \pi i}{s} \mathrm{tr}\left(T_{0} \underline{M}<Z_{0}>\right)}$. To complete the proof for $j<n$, we need only observe that to any coset

$$
\Gamma_{n}\left(s,\left(\begin{array}{cc}
T_{0} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cccc}
A_{1} & 0 & B_{1} & * \\
C_{1} & U & * & * \\
0 & D_{1} & * \\
0 & 0 & 0 & U^{-1}
\end{array}\right),\right.
$$

if we make correspond the coset $\Gamma_{n-j}\left(s, T_{0}\right)\left(\begin{array}{cc}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right)$, this mapping is clearly well-defined and surjective on $\Gamma_{n-j}\left(s, T_{0}\right) \backslash \Gamma_{n-j}(s)$; it is also easily checked to be injective, since

$$
\begin{aligned}
& \quad\left(\begin{array}{cccc}
A_{1} & 0 & B_{1} & * \\
* & U_{1} & * & * \\
C_{1} & 0 & D_{1} & * \\
0 & 0 & 0 & { }^{t} U_{1}^{-1}
\end{array}\right)\left(\begin{array}{cccc}
A_{1} & 0 & B_{1} & * \\
* & U_{2} & * & * \\
C_{1} & 0 & D_{1} & * \\
0 & 0 & 0 & { }^{t} U_{2}^{-1}
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cccc}
E_{n-j} & 0 & 0 & * \\
* & U_{1} U_{2}^{-1} & * & * \\
0 & & E_{n-j} & * \\
0 & & & { }^{t} U_{1}^{-1 t} U_{2}
\end{array}\right) \in \Gamma_{n}\left(s,\left(\begin{array}{cc}
T_{0} & 0 \\
0 & 0
\end{array}\right) .\right.
\end{aligned}
$$

Thus

$$
\Phi^{j}\left(g_{k}\left(Z,\left(\begin{array}{cc}
T_{0} & 0 \\
0 & 0
\end{array}\right) ; \Gamma_{n}(s)\right) \Gamma_{n}(s)\right)=g_{k}\left(Z_{0}, T_{0}, \Gamma_{n-j}(s)\right), \text { for } j<n .
$$

The proof for the case $j=n$ is immediate on putting $Z=i \lambda E_{n}$ in the Fourier expansion of the Eisenstein series $g_{k}\left(Z, 0 ; \Gamma_{n}(s)\right)$ the only term surviving in the limit is the constant term 1.

Lemma 1.6.6. For N_{1}, N_{2} in Γ_{n} with $N_{1} \nmid N_{2}$ and $j<n$, we have $\left.\Phi^{j}\left(\left.p_{k}\left(Z,\left(\begin{array}{cc}T_{0}^{(n-j)} & 0 \\ 0 & 0\end{array}\right), N_{1}, \Gamma_{n}(s)\right) \right\rvert\, N_{2}\right)\right)=0$.

Proof. Indeed $\Phi^{j}\left(p_{k}\left(Z,\left(\begin{array}{cc}T_{0}^{n-j} & 0 \\ 0 & 0\end{array}\right), N_{1}, \Gamma_{n}(s) \mid N_{2}\right)=\right.$

$$
\begin{aligned}
& \left.\left.\left.\operatorname{Lim}_{\lambda \rightarrow \infty} g_{k}\left(\begin{array}{cc}
Z_{0} & 0 \\
0 & i \lambda E_{j}
\end{array}\right), T, \Gamma_{n}(s)\right) \mid N_{1}^{-1} N_{2}\right) \quad \text { (with } T=\left(\begin{array}{cc}
T_{0}^{(n-j)} & 0 \\
0 & 0
\end{array}\right)\right) . \\
& =\sum_{M^{\prime} \in \Gamma_{n}(s, T) \backslash \Gamma_{n}(s)} \operatorname{Lim}_{\lambda \rightarrow \infty} e^{\frac{2 \pi i}{e^{s}} \operatorname{tr}\left(T\left(M^{\prime} N_{1}^{-1} N_{2}\right)<\left(\begin{array}{cc}
Z_{0} & 0 \\
0 & i \lambda E_{j}
\end{array}\right)>\right)} \\
& \quad\left(\operatorname{det}\left(M^{\prime} N_{1}^{-1} N_{2}\right)\left\{\left(\begin{array}{cc}
Z_{0} & 0 \\
0 & i \lambda E_{j}
\end{array}\right)\right\}\right)^{-k} \\
& =0
\end{aligned}
$$

since, for no M^{\prime} in $\Gamma_{n}(s), M^{\prime} N_{1}^{-1} N_{2}=N_{1}^{-1} \cdot\left(N_{1} M^{\prime} N_{1}^{-1}\right) N_{2} \in \Delta_{n, n-j}$, by the hypothesis $N_{1} \underset{j, s}{\sim} N_{2}$ and so the limit of every term is 0 , by the same arguments as in the proof of Lemma 1.6.5

We now recall the structure of the finite dimensional space γ of cusp forms in (n, k, s). As we know, given f, g in $\{n, k, s\}$ at least one of which is a cusp from, the scalar product (f, g) is defined by

$$
\frac{1}{v} \int_{T_{n}(s) \backslash \mathscr{G}_{n}} f(Z) \bar{g}(Z) \frac{d X d Y}{(\operatorname{det} Y)^{n+1-k}}
$$

with the customary (invariant) volume element $d v=(\operatorname{det} Y)^{-(n+1)} d X d Y$. Corresponding to $Z=X+i Y$ in \mathscr{G}_{n} and $v:=\int_{\Gamma_{n}(s) \backslash \mathscr{G}_{n}} d v<\infty$. If $f(Z)=\sum_{T>0} a(T) e^{\frac{2 \pi i}{s} \operatorname{tr}(T Z)}$ is a cusp form in $\{n, k, s\}$, the scalar product $\left(f(Z), g_{k}\left(Z, S ; \Gamma_{n}(s)\right)\right.$ is, upto a constant factor, equal to $(\operatorname{det} S)^{\frac{n+1}{2}-k} a(S)$ for $S>0$ and 0 if $\operatorname{det} S=0$. If I denotes the subspace of γ generated by $g_{k}\left(Z, T ; \Gamma_{n}(s)\right)$ for semi-integral $T^{(n)}>0$. Then, using the (non-degenerate) scalar product (,) in γ, there exists an orthogonal
complement \mathfrak{n} for I in γ i.e. $\gamma=I \oplus \mathfrak{n}$. We claim that $\mathfrak{n}=\{0\}$; in fact, any f in \mathfrak{n} is orthogonal to $g_{k}\left(Z, S ; \Gamma_{n}(s)\right)$ for every semi integral $S>0$ and hence the Fourier expansion of f has all coefficients equal to 0 i.e. $f=0$.

Lemma 1.6.7. Suppose that, for $f \in\{n, k, s\}, \Phi^{j}(f \mid R)$ is a cusp form for R in Γ_{n}, whenever $j<n$. Then there exists

$$
\varphi_{R, j}(Z)=\varphi_{R, j}(Z ; f):=\sum_{v} C_{\nu} p_{k}\left(Z ;\left(\begin{array}{rr}
T_{R, v} & 0 \\
0 & 0
\end{array}\right) ; R ; \Gamma_{n}(s)\right)
$$

such that $\Phi^{j}\left(\left(f-\varphi_{R, j}\right) \mid R\right)=0$, for every R in Γ_{n}.
Proof. First, let $j<n$. Since $\Phi^{j}(f \mid R)$ is a cusp form, there exist, by the above remarks, finitely many $T_{R, v}^{(n-j)}>0$ and constants $c_{\nu}=c_{\nu}(R ; f)$ such that

$$
\begin{aligned}
\left(\Phi^{j}(f \mid R)\right)\left(Z_{0}\right) & =\sum_{v} c_{v} g_{k}\left(Z_{0} ; T_{R, v} ; \Gamma_{n-j}(s)\right) \quad\left(Z_{0} \in \mathscr{G}_{n-j}\right) \\
& =\sum_{v} c_{\nu} \Phi^{j}\left(g_{k}\left(Z ;\left(\begin{array}{cc}
T_{R, v} & 0 \\
0 & 0
\end{array}\right) ; \Gamma_{n}(s)\right)\right), \quad \text { by Lemma } 5 \\
& =\sum_{v} c_{\nu} \Phi^{j}\left(\left.p_{k}\left(Z ;\left(\begin{array}{cc}
T_{R, v} & 0 \\
0 & 0
\end{array}\right) ; R ; \Gamma_{n}(s)\right) \right\rvert\, R\right), \quad \text { by Lemma } 4
\end{aligned}
$$

which proves the lemma for $j<n$. For $j=n$, we need only to take $\varphi_{R, n}(Z)=a(0, R) p_{k}\left(Z, 0 ; R ; \Gamma_{n}(s)\right)$, since

$$
\Phi^{n}(f \mid R)=\Phi^{n}\left(\sum a(T, R) e^{\frac{2 \pi i}{s} \mathrm{tr}(T Z)}\right)=a(0, R) \quad \text { and }
$$

$\Phi^{n}\left(p_{k}\left(Z, 0 ; R ; \Gamma_{n}(s)\right) \mid R\right)=\Phi^{n}\left(g_{k}\left(Z, 0 ; \Gamma_{n}(s)\right)=1\right.$.
From Lemma 1.6.2 we know that $\Phi^{j}(f \mid R)=0$ for every R in $\operatorname{Sp}(n, \mathbb{Q})$, if already $\Phi^{j}\left(f \mid M_{i}\right)=0$ for finitely many M_{1}, \ldots, M_{t} in Γ_{n}. From these M_{i}, we pick a maximal set of representatives, say M_{1}^{\prime}, \ldots, $M_{u_{j}}^{\prime}$ which are mutually $\tilde{j, s} s$-inequivalent. Let now f satisfy the conditions stated in Lemma 1.6.7 For fixed j, let us consider

$$
\psi_{j}(Z):=\sum_{1 \leq \ell \leq u_{j}} \varphi_{M_{\ell}^{\prime}, j}(Z)=\sum_{1 \leq \ell \leq u_{j}} \sum_{\gamma} c_{\ell, v} p_{k}\left(Z ;\left(\begin{array}{cc}
T_{M_{e}^{\prime}, v} & 0 \\
0 & 0
\end{array}\right) ; M_{\ell}^{\prime} ; \Gamma_{n}(s)\right)
$$

with the same notation as in Lemma 1.6.7 Now any $M_{i}(1 \leq i \leq t)$ is $\widetilde{j, s} M_{m}^{\prime}$ for some m with $1 \leq m \leq u_{j}$; we have then,

$$
\Phi^{j}\left(\left(f-\psi_{j}\right) \mid M_{i}\right)=\Phi^{j}\left(f\left|M_{i}-\varphi_{M_{m}^{\prime}, j}\right| M_{i}\right)=\Phi^{j}\left(\left(f-\varphi_{M_{m}^{\prime}, j}\right) \mid M_{i}\right)=0
$$

in view of Lemmas 1.6.6 1.6.7 and 1.6.3 giving us
Lemma 1.6.8. For φ in $\{n, k, s\}$, suppose that, whenever $j<n, \Phi^{j}(\varphi \mid M)$ is a cusp form, for every M in Γ_{n}. Then there exists ψ_{j} in $\{n, k, s\}_{n-j}:=$ $\left\{\right.$ linear-combinations of $\left.p_{k}\left(Z ;\left(\begin{array}{cc}T_{0}^{(n-j)} & 0 \\ 0 & 0\end{array}\right), M, \Gamma_{n}(s)\right)\right\}$ such that $\Phi^{j}((\varphi-$ $\left.\left.\psi_{j}\right) \mid M\right)=0$ for every M in Γ_{n} and $1 \leq j \leq n$.

Finally we state and prove the following Representation Theorem for modular forms.

Theorem 1.6.9. For even integral $k>2 n+1$, every f in $\{n, k, s\}$ is a finite linear combination of the Poincaré series $p_{k}\left(Z, T, N, \Gamma_{n}(s)\right)$ for semi-integral $T \geq 0$ and N in Γ_{n}.

Proof. First we need to formulate an inductive statement, following H. Braun. Let $2 \leq j \leq n$ and $R=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{n-j+1}$ with $(n-j+1, n-j+1)$ submatrices A, B, C, D. Then

$$
R^{\prime}:=\left(\begin{array}{cccc}
A & 0 & B & 0 \\
0 & E_{j-1} & 0 & 0 \\
C & 0 & D & 0 \\
0 & 0 & 0 & E_{j-1}
\end{array}\right)
$$

is in Γ_{n} and further for any f^{\prime} in $\{n, k, s\} \Phi^{j}\left(f^{\prime} \mid M R^{\prime}\right)=\Phi\left(\Phi^{j-1}\left(f^{\prime} \mid M R^{\prime}\right)\right)$ $\left(\Phi^{j-1}\left(f^{\prime} \mid M\right)\right) \mid R$. Thus we have, for any M in Γ_{n} and R in Γ_{n-j+1},

$$
\begin{equation*}
\Phi^{j}\left(f^{\prime} \mid M R^{\prime}\right)=\Phi\left(\left(\Phi^{j-1}\left(f^{\prime} \mid M\right)\right) \mid R\right) \tag{*}
\end{equation*}
$$

Now, from Lemma 1.6.7, there exists ψ_{n} in $\{n, k, s\}$ such that

$$
\Phi^{n}\left(\left(f-\psi_{n}\right) \mid M\right)=0 \quad \text { for every } \quad M \quad \text { in } \quad \Gamma_{n} .
$$

Assume now that, for any fixed j with $1 \leq j \leq n$ and for the given f denoted as f_{0}, we have already constructed f_{n-j} in $\{n, k, s\}$ so that $\Phi^{j}\left(f_{n-j} \mid M\right)$) is a cusp form for every M in Γ_{n}. Then by Lemma 1.6.8 there exists ψ_{j} (corresponding to $\varphi=f_{n-j}$) such that

$$
\Phi^{j}\left(\left(f_{n-j}-\psi_{j}\right) \mid M\right)=0 \quad \text { for every } \quad M \quad \text { in } \quad \Gamma_{n},(* *)_{j}
$$

where $\psi_{j} \in\{n, k, s\}_{n-j}$, is a linear combination of the Poincaré series

$$
p_{k}\left(Z ;\left(\begin{array}{cc}
T^{(n-j)} & 0 \\
0 & 0
\end{array}\right) ; M^{\prime} ; \Gamma_{n}(s)\right) .
$$

Note that for $j=n, a \psi_{n}$ with $\Phi^{n}\left(\left(f_{0}-\psi_{n}\right) \mid M\right)=0$ for every M in Γ_{n} already exists. From $(* *)_{j}$ and (*), we obtain

$$
\begin{aligned}
\left.\Phi\left(\left(\Phi^{j-1}\right)\left(\left(f_{n-j}-\psi_{j}\right) \mid M\right)\right) \mid R\right)=0 & \text { for every } M \text { in } \\
& \Gamma_{n} \text { and every } R \text { in } \Gamma_{n-j+1}
\end{aligned}
$$

whenever $2 \leq j \leq n$. If we set $f_{n-j+1}=f_{n-j}-\psi_{j}$, the last relation means that, for every M in $\Gamma_{n}, \Phi^{j-1}\left(f_{n-j+1} \mid M\right)$ is a cusp form. Applying Lemma 1.6.8 to f_{n-j+1} in place of f and $j-1$ in place of j (for which we had the condition $2 \leq j \leq n)$, there exists ψ_{j-1} in $\{n, k, s\}_{n-j+1}$ as defined above, such that $\Phi^{j-1}\left(\left(f_{n-j+1}-\Psi_{j-1}\right) \mid M\right)=0$ for every M in Γ_{n}, which is just $(* *)_{j-1}$. Thus the inductive argument is complete, giving us the validity of $(* *)_{1}$, i.e.

$$
0=\Phi\left(\left(f_{n-1}-\Psi_{1}\right) \mid M\right)=\Phi\left(\left(f-\sum_{1 \leq \ell \leq n} \psi_{\ell}\right) \mid M\right) \quad \text { for every } \quad M \text { in } \Gamma_{n} .
$$

In other words, $f-\sum_{1 \leq \ell \leq n} \psi_{\ell}$ is a cusp form. Since the space of cusp forms is generated by $p_{k}\left(Z ; T^{(n)} ; E_{2 n} ; \Gamma_{n}(s)\right)$ with semi-integral $T>0$, the proof of the theorem is complete.

Let us now identify the Poincaré series g_{k} in terms of "lifts" (i.e. Eisenstein series $E(Z ; f)$, in the sense of Klingen, arising) from cusp forms f of degree $\leq n$. Let f be a cusp form in $\{r, k, s\}$. Then for every $k>n+r+1$, we define, after Klingen,

$$
E_{n, r}^{k}(Z ; f):=\sum_{M \in \Delta_{n, r}(s) \backslash \Gamma_{n}(s)} f\left((M<Z>)^{*}\right)(\operatorname{det} M\{Z\})^{-k}
$$

where, for any (n, n) matrix A, we denote its top(leftmost) (r, r) submatrix by A^{*}. The series is well-defined, since for M, N in $\Gamma_{n}(s)$ with M in $\Delta_{n, r}(s) N$, we can easily verify that $f\left(M<Z>^{*}\right)(\operatorname{det} M\{Z\})^{-k}=$ $f\left(N<Z>^{*}\right)(\operatorname{det} N\{Z\})^{-k}$; further it represents an element of $\{n, k, s\}$. If $131 \quad T^{(n)}=\left(\begin{array}{cc}T_{0}^{(r)} & 0 \\ 0 & 0\end{array}\right)$ with $T_{0}>0$, then we know already that the correspondence

$$
\begin{aligned}
\Gamma_{n}(s, T) M & =\Gamma_{n}(s, T)\left(\begin{array}{cccc}
A_{0}^{(r)} & 0 & B_{0}^{(r)} & * \\
* & U & * & * \\
C_{0}^{(r)} & 0 & D_{0}^{(r)} & * \\
0 & 0 & 0 & { }^{t} U^{-1}
\end{array}\right) \mapsto \Gamma_{r}\left(s, T_{0}\right)\left(\begin{array}{ll}
\Lambda_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right) \\
& =\Gamma_{r}\left(s, T_{0}\right) \underline{M}
\end{aligned}
$$

from the coset space $\Gamma_{n}(s, T) \backslash \Delta_{n, r}(s)$ to the coset space $\Gamma_{r}\left(s, T_{0}\right) \backslash \Gamma_{r}(s)$ is a bijection. From the coset decompositions $\Gamma_{n}(s)=\coprod_{M_{\ell}} \Delta_{n, r}(s) M_{\ell}$, $\Delta_{n, r}(s)=\coprod_{N_{j}} \Gamma_{n}(s, T) N_{j}$, we get $\Gamma_{n}(s)=\underset{M_{\ell}, N_{j}}{\lfloor } \Gamma_{n}(s, T) N_{j} M_{\ell}$.

Now

$$
\begin{gathered}
e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T\left(N_{j} M_{\ell}\right)<Z>\right)}=e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T_{0}\left(\left(N_{j} M_{\ell}\right)<Z>\right)^{*}\right)}= \\
=e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T_{0}\left(N_{j}<M_{\ell}<Z \gg\right)^{*}\right)}=e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T_{0} N_{j}<\left(M_{\ell}<Z>\right)^{*}>\right)}
\end{gathered}
$$

with N_{j} in $\Gamma_{r}(s)$ corresponding to N_{j} in $\Delta_{n, r}(s)$ in the sense explained already. Moreover,

$$
\begin{aligned}
\left(\operatorname{det}\left(N_{j} M_{\ell}\right)\{Z\}\right)^{-k} & =\left(\operatorname{det} N_{j}\left\{M_{\ell}<Z>\right\}\right)^{-k} \times\left(\operatorname{det} M_{\ell}\{Z\}\right)^{-k} \\
& =\left(\operatorname{det} N_{j}\left\{\left(M_{\ell}<Z>\right)^{*}\right\}\right)^{-k}\left(\operatorname{det} M_{\ell}\{Z\}\right)^{-k}
\end{aligned}
$$

132 Now we have

$$
\begin{aligned}
g_{k}\left(Z, T ; \Gamma_{n}(s)\right) & =\sum_{M \in \Gamma_{n}(s, T) \backslash \Gamma_{n}(s)} e^{\frac{2 \pi i}{s} \operatorname{tr}(T M<Z>)}(\operatorname{det} M\{Z\})^{-k} \\
& =\sum_{\substack{M_{\ell} \in \Delta_{n, r}(s) \backslash \Gamma_{n}(s) \\
N_{j} \in \Gamma_{n}(s, T) \backslash \Lambda_{n, r}(s)}} e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T\left(N_{j} M_{\ell}\right)<Z>\right)}\left(\operatorname{det}\left(N_{j} M_{\ell}\right)\{Z\}\right)^{-k} \\
& =\sum_{M_{\ell}}\left(\operatorname{det} M_{\ell}\{Z\}\right)^{-k} \sum_{N_{j}} e^{\frac{2 \pi i}{s} \mathrm{tr}\left(T_{0} N_{j}<\left(M_{\ell}<Z>\right)^{*}>\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \quad\left(\operatorname{det} N_{j}\left\{\left(M_{\ell}<Z>\right)^{*}\right\}\right)^{-k} \\
= & \sum_{M_{\ell} \in \Delta_{n, r}(s) \backslash \Gamma_{n}(s)}\left(\operatorname{det} M_{\ell}\{Z\}\right)^{-k} \sum_{N_{j} \in \Gamma_{r}\left(s, T_{0}\right) \backslash \Gamma_{r}(s)} e^{\frac{2 \pi i}{s} \operatorname{tr}\left(T_{0} N_{j}<\left(M_{\ell}<Z>\right)^{*}>\right)} \\
& \left.\left(\operatorname{det} N_{j}\left(M_{\ell}<Z>\right)^{*}\right\}\right)^{-k} \\
= & E_{n, r}^{k}\left(Z ; g_{k}\left(*, T_{0} ; \Gamma_{r}(s)\right)\right) .
\end{aligned}
$$

We may reformulate the theorem above as the following assertion: for even integral $k>2 n+1$, the space $\{n, k, s\}$ is generated by $E_{n, r}^{k}(Z ; g) \mid M$ as g varies over cusp forms of degree $r(\leq n)$ and M over Γ_{n}.

Using the above Representation Theorem for $\{n, k, s\}$ in terms of the Eisenstein series $E_{n, j}^{k}(Z ; f)$ constructed from cusp forms f in $\{j, k, s\}$ and the estimate for Fourier coefficients of cusp forms (analogous to Theorem 1.1.1], we proceed now to derive an estimate for the Fourier coefficients of modular forms in $\{n, k, s\}$ for even integral $k \geq 2 n+2$. To this end, we shall prove, following Kitaoka [10], a series of lemmas and propositions.

We decompose any M in Γ_{n} as $M=\left(\begin{array}{cc}A_{M} & B_{M} \\ C_{M} & D_{M}\end{array}\right)$ with (n, n) submatrices $A_{M}, B_{M}, C_{M}, D_{M}$. For any (p, q) matrix F and any s with $1 \leq s \leq p$, we denote the (s, q) matrix formed from the last s rows of F by $\lambda_{s}(F)$. For $0 \leq r \leq n,\left\{M \in \Gamma_{n} \mid\right.$ the first $n+r$ columns of $\lambda_{n-r}(M)$ are 0$\}$ is just the group $\Delta_{n, r}(1)$ introduced earlier. Indeed, for any such M,

$$
A_{M}=\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right), B_{M}=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right), C_{M}=\left(\begin{array}{cc}
C_{1} & C_{2} \\
0 & 0
\end{array}\right), D_{M}=\left(\begin{array}{cc}
D_{1} & D_{2} \\
0 & D_{4}
\end{array}\right)
$$

with $A_{1}, B_{1}, C_{1}, D_{1}$ of size (r, r) and further D_{4} is in $G L_{n-r}(\mathbb{Z}), A_{4}{ }^{t} D_{4}=$ $E_{n-r}, A_{2}^{t} D_{4}=0, C_{2}^{t} D_{4}=0$, and therefore $A_{2}=0, C_{2}=0, A=\left(\begin{array}{cc}A_{1} & 0 \\ A_{3} & A_{4}\end{array}\right)$. Moreover, $\Delta_{n, r}(s)=\Delta_{n, r} \cap \Gamma_{n}(s)$. If we write $M_{1}=\left(\begin{array}{ll}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right)$ for any (such) M in $\Delta_{n, r}$, then M_{1} is in Γ_{r}. If Z_{1} is the leading (r, r) submatrix of Z in \mathscr{G}_{n}, then it is easy to see that $M_{1}<Z_{1}>$ is the leading (r, r) submatrix of $M<Z>$ and further $\operatorname{det} M\{Z\}=\left(\operatorname{det} M_{1}\left\{Z_{1}\right\}\right)$. $\operatorname{det} D_{4}$, where $N\{Z\}:=C_{N} Z+D_{N}$ for any N in Γ_{n}.

Lemma 1.6.10. For M, N in $\Gamma_{n}, \Delta_{n, r} M=\Delta_{n, r} N$ if and only if $\lambda_{n-r}(M) \in$ $G L_{n-r}(\mathbb{Z}) \lambda_{n-r}(N)$.

Proof. From the form of the elements of $\Delta_{n, r}$, clearly $\Delta_{n, r} M=\Delta_{n, r} N$ implies that $\lambda_{n-r}(M)=V \lambda_{n-r}(N)$ for some V in $G L_{n-r}(\mathbb{Z})$. On the other hand, if $\lambda_{n-r}(M) \in G L_{n-r}(\mathbb{Z}) \lambda_{n-r}(N)$, we may already suppose, without loss of generality, that $\lambda_{n-r}(M)=\lambda_{n-r}(N)$ after replacing M by $\left(\begin{array}{cc}{ }^{t} U^{-1} & 0 \\ 0 & U\end{array}\right) M$ for $U=\left(\begin{array}{cc}E_{r} & 0 \\ 0 & V\end{array}\right)$ with a suitable V in $G L_{n-r}(\mathbb{Z})$. But then we have evidently $\lambda_{n-r}\left(M N^{-1}\right)=\left(0^{(n-r, n+r)} E_{n-r}\right)$ and we are through.

Lemma 1.6.11. For any M in Γ_{n} with $\operatorname{rank}\left(\lambda_{s}\left(C_{M}\right)\right)<s=n-r(<n)$, there exists N in $\Delta_{n, n-1}$ such that $\Delta_{n, r} M \ni N\left(\begin{array}{cc}U & 0 \\ 0 & { }^{t} U^{-1}\end{array}\right)$ for some U in $G L_{n}(\mathbb{Z})$.

Proof. From the hypothesis, there exist V in $G L_{s}(\mathbb{Z})$ and W in $G L_{n}(\mathbb{Z})$ such that $\lambda_{1}\left(V \lambda_{s}\left(C_{M}\right) W\right)=0$. Then, for $K:=\left(\begin{array}{ccc}* & 0 & E_{r} \\ 0 & 0 & V\end{array}\right) M\left(\begin{array}{cc}W & 0 \\ 0 & t\end{array} W^{-1}\right)$, we have $\lambda_{1}\left(C_{K}\right)=0$ and hence the elements of $\lambda_{1}\left(D_{K}\right)$ are relatively prime. It is clear that $D_{K}=\left(\begin{array}{c}{ }_{0}^{*} . .01\end{array}\right) F$ for some F in $G L_{n}(\mathbb{Z})$. If we set $N=K\left(\begin{array}{cc}{ }^{t} F & 0 \\ 0 & F^{-1}\end{array}\right)$, then $\lambda_{1}(N)=(0 \ldots 01)$ and consequently N is in $\Delta_{n, n-1}$. The lemma follows on taking $U=W^{t} F$.

Let f be a cusp form in $\{r, k, \ell\}$ for fixed $r \leq n-1$ and even integral $k \geq n+r+2$. Let us denote, in the sequel, the leading (r, r) submatrix P_{1} of $P^{(n, n)}=\left(\begin{array}{ll}P_{1} & P_{2} \\ P_{3} & P_{4}\end{array}\right)$, by P^{*}. For any M in Γ_{n}, let us abbreviate $f((M<$ $\left.Z>)^{*}\right)\left(\operatorname{det}\left(C_{M} Z+D_{M}\right)\right)^{-k}$ as $(f \mid M)(Z)$. For any given R in Γ_{n}, we split the (absolutely convergent) Eisenstein series $E_{n, r}^{k}(Z ; f) \mid R$ as the sum of two subseries $\sum_{i}=\sum_{N}(f \| N)(Z), i=1,2$ where N runs over a complete set of elements N_{1}, N_{2}, \ldots in $\Gamma_{n}(\ell) R$ such that $N_{i} \notin \Delta_{n, r}(\ell) N_{j}$ for $i \neq j$ and the rank of $\lambda_{n-r}\left(C_{N}\right)$ is $n-r$ for N occurring in \sum_{1} and $<n-r$ for N in \sum_{2}. Now $C_{M}=C_{N}$ for $M:=N\left(\begin{array}{cc}E_{n} & \ell_{S} \\ 0 & E_{n}\end{array}\right)$ and any integral symmetric $S^{(n, n)}$. Thus the subseries \sum_{i} represent functions invariant under all translations $Z \rightarrow Z+\ell S$ and admit Fourier expansions $\sum_{T \geq 0} a_{i}(T) \exp (2 \pi i \operatorname{tr}(T Z) / \ell)$.

Lemmas 1.6.10 1.6.11 lead to the following

Proposition 1.6.12. For a cusp form f in $\{r, k, \ell\}$ as above and R in Γ_{n},
all the Fourier coefficients $a_{2}(T)$ for $T>0$ of

$$
\sum_{2}=\sum_{\substack{N \in \Delta_{n, r}(\ell)\left(\Gamma_{n}(\ell) R \\ \operatorname{rank}\left(\lambda_{n-r} r\left(C_{N}\right)\right)<n-r\right.}}(f \| N)(Z)
$$

vanish.
Proof. By Lemma 1.6.11 there exist K in $\Delta_{n, r}, M$ in $\Delta_{n, n-1}$ and U in $G L_{n}(\mathbb{Z})$ such that $N=K M\left(\begin{array}{cc}U & 0 \\ 0 & { }^{t} U^{-1}\end{array}\right)$. Let $K^{*}:=\left(\begin{array}{ll}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right)$ in Γ_{r} formed from the leading (r, r) submatrices of $A_{K}, B_{K}, C_{K}, D_{K}=\left(\stackrel{*}{*}_{\substack{* \\ 0 \\ D_{4}}}\right)$. It is easy to verify that

$$
\begin{aligned}
\operatorname{det} N\{Z\} & =\left(\operatorname{det}(K M)\left\{U Z^{t} U\right\}\right) /(\operatorname{det} U) \\
& =\left(\operatorname{det}\left(\left(C_{K} A_{M}+D_{K} C_{M}\right) U Z^{t} U+C_{K} B_{M}+D_{K} D_{M}\right)\right) \operatorname{det} U \\
& =\operatorname{det}\left(C_{K} M<U Z^{t} U>+D_{K}\right) \operatorname{det}\left(C_{M} U Z^{t} U+D_{M}\right) \operatorname{det} U \\
& \left.=\operatorname{det}\left(C_{1} M<U Z^{t} U>\right)^{*}+D_{1}\right) \operatorname{det} D_{4} \cdot \operatorname{det}\left(M\left\{U Z^{t} U\right\}\right) \operatorname{det} U \\
& =\operatorname{det}\left(K^{*}\left\{\left(M<U Z^{t} U>\right)^{*}\right\} \operatorname{det}\left(M\left\{U Z^{t} U\right\}\right) \operatorname{det} D_{4} \cdot \operatorname{det} U\right.
\end{aligned}
$$

and moreover,

$$
\begin{aligned}
(N<Z>)^{*} & =\left((K M)<U Z^{t} U>\right)^{*}=\left(K<M U Z^{t} U \gg\right)^{*} \\
& =K^{*}\left(M<U Z^{t} U>\right)^{*}>
\end{aligned}
$$

On the other hand, there exist constants $\alpha_{1}, \ldots, \alpha_{m}$ (depending on f and K) such that

$$
f\left(K^{*}<W>\right)\left(\operatorname{det} K^{*}\{W\}\right)^{-k}=\sum_{1 \leq j \leq m} \alpha_{j} f_{j}(W) \quad \text { for } \quad W \in \mathscr{G}_{r}
$$

where f_{1}, \ldots, f_{m} form a basis of the space of cusp forms in $\{r, k, \ell\}$. Hence $(f \| N)(Z)=f\left(K^{*}<\left(M<U Z^{t} U>\right)^{*}>\right)\left(\operatorname{det} K^{*}\left\{\left(M<U Z^{t} U>\right.\right.\right.$ $\left.\left.)^{*}\right\}\right)^{-k}\left(\operatorname{det} M\left\{U Z^{t} U\right\}\right)^{-k}=\sum_{j} \alpha_{j} f_{j}\left(\left(M<U Z^{t} U>\right)^{*}\right)\left(\operatorname{det} M\left\{U Z^{t} U\right\}\right)^{-k}=$
$\sum_{j} \alpha_{j}\left(f_{j} \| M\right)\left(U Z^{t} U\right)$. Decomposing $Z=X+i Y$ in \mathscr{G}_{n} as $\left(\begin{array}{cc}Z_{1} & Z_{2} \\ { }^{t} Z_{2} & Z_{3}\end{array}\right)$ with Z_{1} in \mathscr{G}_{n-1} and writing

$$
A_{M}=\left(\begin{array}{cc}
A_{1}^{\prime} & 0 \\
A_{3}^{\prime} & a_{4}
\end{array}\right), B_{M}=\left(\begin{array}{ll}
B_{1}^{\prime} & B_{2}^{\prime} \\
B_{3}^{\prime} & b_{4}
\end{array}\right), C_{M}=\left(\begin{array}{cc}
C_{1}^{\prime} & 0 \\
0 & 0
\end{array}\right), D_{M}=\left(\begin{array}{cc}
D_{1}^{\prime} & D_{2}^{\prime} \\
0 & d_{4}
\end{array}\right)
$$

with $A_{1}^{\prime}, B_{1}^{\prime}, C_{1}^{\prime}, D_{1}^{\prime}$ of $\operatorname{size}(n-1, n-1)$, we have $\operatorname{det} M\{Z\}=\operatorname{det}\left(C_{1}^{\prime} Z_{1}+\right.$ $\left.D_{1}^{\prime}\right) d_{4}$ and $M<Z>$ has $\left(A_{1}^{\prime} Z_{1}+B_{1}^{\prime}\right)\left(C_{1}^{\prime} Z_{1}+D_{1}^{\prime}\right)^{-1}$ as its leading $(n-137$ $1, n-1)$ submatrix. Thus $\left(f_{j} \| M\right)(Z)$ is independent of the variables Z_{2} and z_{3}.

For $Y=\left(y_{p q}\right)=\operatorname{Im} Z$, let us write $\frac{\partial}{\partial Y}=\left(\varepsilon_{p q} \frac{\partial}{\partial y_{p q}}\right)$ with $\varepsilon_{p q}=1$ or $1 / 2$ according as $p=q$ or $p \neq q$ and denote by D_{Y} the differential operator $(\operatorname{det} Y)\left(\operatorname{det} \frac{\partial}{\partial Y}\right)$ known to be invariant under $Y \mapsto V Y^{t} V$ for all V in $G L_{n}(\mathbb{R})$. Then it is clear that

$$
\begin{aligned}
D_{Y}((f \| N)(Z)) & =\sum_{j} \alpha_{j} D_{Y}\left(\left(f_{j} \| M\right)\left(U Z^{t} U\right)\right) \\
& \left.=\sum_{j} \alpha_{j} D_{Y}\left(\left(f_{j} \| M\right)\left(U X^{t} U+i Y\right)\right) \quad \text { (using } Y \mapsto U Y^{t} U\right) \\
& =0
\end{aligned}
$$

and so $D_{Y}\left(\sum_{2}\right)=0$. On the other hand, we know that

$$
\left(\operatorname{det} \frac{\partial}{\partial Y}\right)(\exp (2 \pi i \operatorname{tr}(T Z) / \ell)=\operatorname{det}(-(2 \pi / \ell) T) \exp (2 \pi i \operatorname{tr}(T Z) / \ell)
$$

Thus, on applying D_{Y} termwise to the Fourier expansion of \sum_{2} (as is indeed permissible), it follows that

$$
\sum_{T \geq 0} a_{2}(T) \operatorname{det}(-(2 \pi / \ell) T) \exp (2 \pi i \operatorname{tr}(T Z) / \ell)=0
$$

Consequently, for all $T>0$, we have $a_{2}(T)=0$ and the proposition is proved.

Our objective being to get an estimate for the Fourier coefficients of Eisenstein series for $T>0$ or (indeed) for $a_{1}(T)$, in view of Proposition 1.6.12 above, we should first get a system of representatives of the right cosets of $\Gamma_{n}(\ell)$ modulo $\Delta_{n, r}(\ell)$ containing N with $\operatorname{rank}\left(\lambda_{n-r}\left(C_{N}\right)\right)=n-r$. The next few lemmas tackle this question for $\ell=1$.

Lemma 1.6.13. For any n-rowed symmetric pair (C, D) there exists a coprime symmetric pair (P, Q) such that $C{ }^{t} P+D^{t} Q=0$.

Proof. If $C=0$, we can trivially take $P=E^{(n)}, Q=0$. Let then $C \neq 0$ and first, let $\operatorname{det} C \neq 0$. Then there exist U in $G L_{n}(\mathbb{Z})$ and $V=\left(\begin{array}{cc}V_{1}^{(n)} & V_{2} \\ V_{3} & V_{4}\end{array}\right)$ in $G L_{2 n}(\mathbb{Z})$ such that $U(C D) V^{-1}=(G 0)$ with (n, n) integral non-singular G. Hence $\left(G^{-1} U C G^{-1} U D\right)=\left(V_{1} V_{2}\right)$; evidently $\left(V_{1}, V_{2}\right)$ is a symmetric pair, which being primitive is coprime as well. The lemma follows on taking $P=V_{2}, Q=-V_{1}$. If $0<r=\operatorname{rank} C<n$, there exist U_{1}, U_{2} in $G L_{n}(\mathbb{Z})$ with $U_{1} C U_{2}=\left(\begin{array}{cc}C_{1} & 0 \\ 0 & 0\end{array}\right)$ and $\operatorname{det} C_{1} \neq 0$. Now $U_{1} C U_{2}$ and $U_{1} D^{t} U_{2}^{-1}=\left(\begin{array}{cc}D_{1}^{(r, r)} & D_{2} \\ D_{3} & D_{4}\end{array}\right)$ form a symmetric pair again implying that $\left(C_{1}, D_{1}\right)$ is a symmetric pair; further $C_{1}{ }^{t} D_{3}=0$ and so $D_{3}=0$. By the earlier case, there an r-rowed coprime symmetric pair $\left(P_{1}, Q_{1}\right)$ with $C_{1}^{t} P_{1}+D_{1}^{t} Q_{1}=0$. The lemma is now immediate, on taking $P=$ $\left(\begin{array}{cc}P_{1} & 0 \\ 0 & E_{n-r}\end{array}\right)^{t} U_{2}, Q=\left(\begin{array}{cc}Q_{1} & 0 \\ 0 & 0\end{array}\right) U_{2}^{-1}$. The next lemma is quite vital for the sequel.

Lemma 1.6.14. For any M in Γ_{n} with $\operatorname{rank}\left(\lambda_{n-r}\left(C_{M}\right)\right)=n-r$, there exists N in $\Delta_{n, r} M$ such that $\operatorname{det} C_{N} \neq 0$ and further $\left(A_{N} C_{N}^{-1}\right)^{*}$ is integral.

Proof. First, there exist U_{4} in $G L_{n-r}(\mathbb{Z})$ and V in $G L_{n}(\mathbb{Z})$ such that $U_{4} \lambda_{n-r}\left(C_{M}\right)^{t} V=\left(\begin{array}{ll}0 & C_{4}^{(n-r, n-r)}\end{array}\right)$; necessarily then, $\operatorname{det} C_{4} \neq 0$. Then for
$U:=\left(\begin{array}{cc}E_{r} & 0 \\ 0 & U_{4}\end{array}\right), K:=\left(\begin{array}{cc}t & U^{-1} \\ 0 & U\end{array}\right) M\left(\begin{array}{cc}t \\ & 0 \\ 0 & V^{-1}\end{array}\right)$ is in $\Delta_{n, r} M\left(\begin{array}{cc}{ }^{t} V & 0 \\ 0 & V^{-1}\end{array}\right)$
and moreover, $C_{K}=\left(\begin{array}{cc}C_{1} & C_{2} \\ 0 & C_{4}\end{array}\right)$. Correspondingly, if $A_{K}=\left(\begin{array}{cc}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right)$, then, from the relation ${ }^{t} C_{K} A_{K}={ }^{t} A_{K} C_{K}$, we get ${ }^{t} C_{1} A_{1}={ }^{t} A_{1} C_{1}$. Applying Lemma 1.6.13 to the r-rowed symmetric pair $\left({ }^{t} C_{1},{ }^{t} A_{1}\right)$, there exists an r-rowed coprime symmetric pair $\left(R_{1}, S_{1}\right)$-and consequently, some $\left(\begin{array}{ll}Q_{1} & P_{1} \\ S_{1} & R_{1}\end{array}\right)$ in Γ_{r}-such that ${ }^{t} C_{1}{ }^{t} R_{1}+{ }^{t} A_{1}{ }^{t} S_{1}=0$ i.e. $R_{1} C_{1}+S_{1} A_{1}=0$.

Now $L:\left(\begin{array}{cccc}Q_{1} & 0 & P_{1} & 0 \\ 0 & t & U_{4}^{-1} & 0 \\ S_{1} & 0 & 0 \\ S_{1} & 0 & R_{1} & 0 \\ 0 & 0 & 0 & U_{4}\end{array}\right)$ is in $\Delta_{n, r}$ and further, clearly, for $H:=$ $L M\left(\begin{array}{cc}{ }^{t} V & 0 \\ 0 & V^{-1}\end{array}\right)$, we have $A_{H}=\left(\begin{array}{cc}A_{1}^{\prime} & A_{2}^{\prime} \\ A_{3} & A_{4}\end{array}\right)$ and $C_{H}=\left(\begin{array}{cc}0 & C_{2}^{\prime} \\ 0 & C_{4}\end{array}\right)$.

From ${ }^{t} C_{H} A_{H}={ }^{t} A_{H} C_{H}$, we obtain ${ }^{t} A_{1}^{\prime} C_{2}^{\prime}+{ }^{t} A_{3} C_{4}=0$ i.e. $A_{3}=$ ${ }^{t} C_{4}^{-1 t} C_{2}^{\prime} A_{1}^{\prime}$. Since the rank of the matrix formed by the first r columns
of H is r, the last relation implies that A_{1}^{\prime} has necessarily rank r i.e. $\operatorname{det} A_{1}^{\prime} \neq 0$. Now $N:=\left(\begin{array}{cc}E_{n} & 0 \\ E_{r} & 0 \\ 0 & E_{n}\end{array}\right) H\left(\begin{array}{cc}{ }^{t} V^{-1} & 0 \\ 0 & V\end{array}\right)$ is evidently in $\Delta_{n, r} M$ and moreover, $C_{N}=\left(\begin{array}{cc}A_{1}^{\prime} & A_{2}^{\prime}+C_{2}^{\prime} \\ 0 & C_{4}\end{array}\right)^{t} V^{-1}$ is indeed non-singular. Since $A_{N}=$ $\left(\begin{array}{cc}A_{1}^{\prime} & A_{2}^{\prime} \\ A_{3} & A_{4}\end{array}\right)^{t} V^{-1},\left(A_{N} C_{N}^{-1}\right)^{*}=E_{r}$, which proves the lemma.

Let $\left(C_{4}, D_{4}\right)$ be an $(n-r)$-rowed integral symmetric pair with $\operatorname{det} C_{4} \neq 0$ and D_{3} an $(n-r, r)$ integral matrix such that $F:=\left(C_{4} D_{3} D_{4}\right)$ is primitive. To F, we associate a unique right coset of Γ_{n} modulo $\Delta_{n, r}$ as follows (and denote it by $\Delta_{n, r} M\left\{C_{4}, D_{3}, D_{4}\right\}$. Indeed, there exists V in $G L_{2(n-r)}(\mathbb{Z})$ such that $\left(C_{4} D_{4}\right) V^{-1}=(0 G)$ for an integral $(n-r, n-r)$ nonsingular matrix G. Now $\left(G^{-1} C_{4}, G^{-1} D_{4}\right)=\left(0, E_{n-r}\right) V$ is an integral symmetric pair which (being primitive) is a coprime pair as well. Further, since $\left(D_{3} C_{4} D_{4}\right)=\left(D_{3}(0 G) V\right)$ is primitive, so are $\left(D_{3} 0 G\right)$ and $\left(D_{3} G\right)$. Thus there exists U in $G L_{n}(\mathbb{Z})$ with $\lambda_{n-r}(U)=\left(D_{3} G\right)$. Now it is clear that $C:=U\left(\begin{array}{ll}0 & 0 \\ 0 & G^{-1} C_{4}\end{array}\right), D:=U\left(\begin{array}{cc}E^{(r)} & 0 \\ 0 & G^{-1} D_{4}\end{array}\right)$ form a coprime symmetric pair and $\lambda_{n-r}(C)=\left(0 C_{4}\right), \lambda_{n-r}(D)=\left(D_{3} D_{4}\right)$. Choose any M in Γ_{n} with $\lambda_{n}(M)=(C D)$; then, clearly $\lambda_{n-r}(M)=\left(0 C_{4} D_{3} D_{4}\right)$. By Lemma 1.6.14 there exists N in $\Delta_{n, r} M$ such that $\operatorname{det} C_{N} \neq 0$ and $\left(A_{N} C_{N}^{-1}\right)^{*}$ is integral. Now there exists W_{4} is $G L_{n-r}(\mathbb{Z})$ such that $W_{4} \lambda_{n-r}(N)=$ $\lambda_{n-r}(M)$ and we take, for $M\left\{C_{4}, D_{3}, D_{4}\right\}$, the matrix $P=\left(\begin{array}{cc}t^{t} W^{-1} & 0 \\ 0 & W\end{array}\right) N$ where $W:=\left(\begin{array}{cc}E_{r} & 0 \\ 0 & W_{4}\end{array}\right)$. Clearly $\lambda_{n-r}(P)=W_{4} \lambda_{n-r}(N)=\lambda_{n-r}(M)=$ $\left(0 C_{4} D_{3} D_{4}\right)$, det $C_{p} \neq 0$ and $\left(A_{P} C_{p}^{-1}\right)^{*}$ is integral. Any such P is denoted as $M\left\{C_{4}, D_{3}, D_{4}\right\}$; by Lemma 1.6.10, $\Delta_{n, r} M\left\{C_{4}, D_{3}, D_{4}\right\}$ is uniquely determined by $\left(C_{4} D_{3} D_{4}\right)$ from which we started above.

Denote by $\mathscr{C}_{n, r}$ the set of $F=\left(C_{4} D_{3} D_{4}\right)$ as described at the beginning of the last paragraph and define two such matrices F, F^{\prime} to be equivalent (in symbols, $F \sim F^{\prime}$) if $F=W F^{\prime}$ for some W in $G L_{n-r}(\mathbb{Z})$. Let $P(n, r ; \mathbb{Z})=\left\{U=\left(\begin{array}{cc}U_{1}^{(r, r)} & U_{2} \\ 0 & U_{4}\end{array}\right) \in G L_{n}(\mathbb{Z})\right\}$. In $\mathscr{C}_{n, r}$, introduce also another equivalence relation $F=\left(C_{4} D_{3} D_{4}\right)=\left(C_{4}^{\prime} D_{3}^{\prime} D_{4}^{\prime}\right)=F^{\prime}$ by the condition $W F^{\prime}=\left(C_{4} D_{3}+C_{4} S_{3} D_{4}+C_{4} S_{4}\right)$ for some W in $G L_{n-r}(\mathbb{Z})$, integral $(n-r)$-rowed symmetric S_{4} and $(n-r, r)$ integral S_{3}. It is easily verified $F-F^{\prime}$ if and only if

$$
\Delta_{n, r} M\left\{C_{4}^{\prime}, D_{3}^{\prime}, D_{4}^{\prime}\right\}=\Delta_{n, r} M\left\{C_{4}, D_{3}, D_{4}\right\} P \text { for }
$$

$$
P=\left(\begin{array}{ccc}
E^{(n)} & 0^{(r, r)} & { }^{t} S_{3} \\
0 & S_{3} & S_{4} \\
0 & E^{(n)} &
\end{array}\right) \text { in } \Gamma_{n}
$$

We now prove the following crucial
Lemma 1.6.15. (i)

$$
\coprod_{\substack{M \in \Gamma_{n} \\
\operatorname{rank}\left(\lambda_{n-r}\left(C_{M}\right)\right)=n-r}} \Delta_{n, r} M=\coprod \Delta_{n, r} M\left\{C_{4}, D_{3}, D_{4}\right\}\left(\begin{array}{cc}
{ }^{t} U & 0 \\
0 & U^{-1}
\end{array}\right)
$$

where, on the right hand side, $\left(C_{4} D_{3} D_{4}\right)$ runs over a complete set $\tilde{\mathscr{C}}$ of representatives of the - equivalence classes in $\mathscr{C}_{n, r}$ and ${ }^{t} U$ runs over a complete set \mathscr{U} of representatives of the right cosets $P(n, r ; \mathbb{Z}) \backslash G L_{n}(\mathbb{Z})$
(ii)

where, on the right hand side, $\left(C_{4} D_{3} D_{4}\right)$ runs over a complete set $\tilde{\mathscr{C}}$ of representatives of the \approx-equivalence classes in $\mathscr{C}_{n, r},{ }^{t} U$ runs over \mathscr{U} as in (i) and S runs over all (n, n) integral symmetric
matrices of the form $\left(\begin{array}{cc}0^{(r, r)} & * \\ * & *\end{array}\right)$.
Proof. Given M in Γ_{n} with rank $\left(\lambda_{n-r}\left(C_{M}\right)\right)=n-r$, we can find, as in the proof of Lemma 1.6.4 H in Γ_{n} with $\lambda_{n-r}(H)=\left(0 C_{4} D_{3} D_{4}\right)$ for some $\left(C_{4} D_{3} D_{4}\right)$ in $\mathscr{C}_{n, r}$ and W in $G L_{n}(\mathbb{Z})$ such that $\Delta_{n, r} M=\Delta_{n, r} H\left(\begin{array}{cc}{ }^{t} W & 0 \\ 0 & W^{-1}\end{array}\right)=$ $\Delta_{n, r} M\left\{C_{4}, D_{3}, D_{4}\right\}\left(\begin{array}{cc}{ }^{t} W & 0 \\ 0 & W^{-1}\end{array}\right)$. To get the chosen representatives in $\tilde{\mathscr{C}}$ and \mathscr{U}, we need only to take $\left(\begin{array}{ccc}* & E_{r} & 0 \\ 0 & 0 & U_{4}^{\prime}\end{array}\right) M\left\{C_{4}, D_{3}, D_{4}\right\}\left(\begin{array}{ccc}t^{t} W^{\prime} t_{W} & 0 \\ 0 & \left(W^{\prime}\right)^{-1} W^{-1}\end{array}\right)$ for suitable U_{4}^{\prime} in $G L_{n-r}(\mathbb{Z})$ and W^{\prime} in $P(n, r ; \mathbb{Z})$. To prove (i), we have therefore only to prove that the cosets on the right hand side are all disjoint. Let, if possible,

$$
\Delta_{n, r} M\left\{C_{4}, D_{3}, D_{4}\right\}\left(\begin{array}{cc}
t & 0 \\
0 & U^{-1}
\end{array}\right)=\Delta_{n, r} M\left\{C_{4}^{\prime}, D_{3}^{\prime}, D_{4}^{\prime}\right\}\left(\begin{array}{cc}
t & U^{\prime} \\
0 & \left(U^{\prime}\right)^{-1}
\end{array}\right)
$$

for the chosen representatives from \mathscr{C} and \mathscr{U}. Writing M, M^{\prime} instead of $M\left\{C_{4}, D_{3}, D_{4}\right\}, M\left\{C_{4}^{\prime}, D_{3}^{\prime}, D_{4}^{\prime}\right\}$ for the moment, we know that $A_{M}=$
$\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right), C_{M}=\left(\begin{array}{cc}C_{1} & C_{2} \\ 0 & C_{4}\end{array}\right)$ and $C_{M^{\prime}}=\left(\begin{array}{cc}C_{1}^{\prime} & C_{2}^{\prime} \\ 0 & C_{4}^{\prime}\end{array}\right)$. Taking $V=1$ in the proof of Lemma 1.6.14 we may find a suitable L^{\prime} in $\Delta_{n, r}$ so that for $H^{\prime}:=L^{\prime} M$, the first r columns of $C_{H^{\prime}}$ are 0 . Since the coset $\Delta_{n, r} M$ is unchanged in the process, we may suppose already that the first r columns of C_{M} and likewise of $C_{M^{\prime}}$ are 0 . Now, for some K in $\Delta_{n, r}$, we have $K M=$ $M^{\prime}\left(\begin{array}{cc}{ }^{t} V & 0 \\ 0 & V^{-1}\end{array}\right)$ with $V=U^{-1} U^{\prime}=\left(\begin{array}{cc}V_{1}^{(r, r)} & V_{2} \\ V_{3} & V_{4}\end{array}\right)$.

Also

$$
C_{M}=\left(\begin{array}{ll}
0 & C_{2} \\
0 & C_{4}
\end{array}\right), C_{M^{\prime}}=\left(\begin{array}{ll}
0 & C_{2}^{\prime} \\
0 & C_{4}^{\prime}
\end{array}\right), A_{M}=\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right), C_{K}=\left(\begin{array}{cc}
C_{1}^{*} & 0 \\
0 & 0
\end{array}\right)
$$

$D_{K}=\left(\begin{array}{cc}D_{1}^{*} & D_{2}^{*} \\ 0 & D_{4}^{*}\end{array}\right)$ with $\operatorname{det} C_{4} . C_{4}^{\prime} \neq 0$. Further, $C_{K M}=C_{M^{\prime}}{ }^{t} V$ gives $C_{4}^{\prime t} V_{2}=0$, so that $V_{2}=0,{ }^{t} U^{\prime} \in P(n, r ; \mathbb{Z})^{t} U$ and so $U^{\prime}=U$. Hence $K M=M^{\prime}, D_{4}^{*}\left(C_{4} D_{3} D_{4}\right)=\left(C_{4}^{\prime} D_{3}^{\prime} D_{4}^{\prime}\right)$ with D_{4}^{*} in $G L_{n-r}(\mathbb{Z})$ and so $\left(C_{4} D_{3} D_{4}\right)=\left(D_{4}^{\prime} D_{3}^{\prime} D_{4}^{\prime}\right)$. This proves assertion (i). We omit the proof of (ii), since it is similar to that of (i).

As an immediate generalization of the well-known formula $\int_{\mathbb{R}} \exp$ $\left(-a x^{2}+2 b x\right) d x=\sqrt{\pi / a} \exp \left(b^{2} / a\right)$ for $\operatorname{Re}(a)>0$, with $\sqrt{\pi / a}>0$ for $a \in \mathbb{R}$, we know that for (m, m) complex $A={ }^{t} A$ with $\operatorname{Re} A>0$ and any m-rowed column $b, \int_{\mathbb{R}^{m}} \exp \left(-^{t} x A x+2^{t} b x\right) d x=\left(\operatorname{det} \pi A^{-1}\right)^{1 / 2} \exp \left({ }^{t} b A^{-1} b\right)$ with $\left(\operatorname{det} \pi A^{-1}\right)^{1 / 2}>0$ for $A>0$. As a further generalization, we have

Lemma 1.6.16. Let $W^{(r, r)}=W={ }^{t} W>0, A$ an $(n-r, n-r)$ complex symmetric matrix with Re $A>0$ and Q a complex $(n-r, r)$ matrix. Then

$$
\begin{aligned}
\int_{X^{(r, n-r)}} & \exp \left(-2 \pi \operatorname{tr}\left(W X A^{t} X\right)+2 \pi \operatorname{tr}(X Q)\right) d X \\
& =(\operatorname{det} W)^{(r-n) / 2} 2^{r(r-n) / 2}\left(\operatorname{det} A^{-1}\right)^{r / 2} \exp \left(\pi \operatorname{tr}\left({ }^{t} Q A^{-1} Q W^{-1}\right) / 2\right)
\end{aligned}
$$

where the integration with respect to $X=\left(x_{i j}\right)$ is over the space of $(r, n-r)$ real matrices, $d X=\prod_{i, j} d x_{i j}$ and $\left(\operatorname{det} A^{-1}\right)^{r / 2}>0$ for real $A=$ ${ }^{t} A>0$.

144 Proof. Writing ${ }^{t} X=\left({ }^{t} x_{1}, \ldots,{ }^{t} x_{r}\right)$ where x_{1}, \ldots, x_{r} are the r rows of X with $n-r$ entries each, we have $\operatorname{tr}\left(X A^{t} X\right)={ }^{t} x B x$ with ${ }^{t} x:=\left(x_{1} \ldots x_{r}\right)$ and $B=\left(\begin{array}{ccc}A & 0 & 0 \\ \dot{0} & \dot{A}\end{array}\right)$ being the $((n-r) r,(n-r) r)$ matrix whose r blocks of size $(n-r, n-r)$ on the diagonal are all equal to A and other $(n-r, n-r)$ matrix blocks are 0 . If W_{0} is the positive square root of W and $Q W_{0}^{-1}=$ $\left(y_{1} \ldots y_{r}\right)$ with columns y_{i}, we have $\operatorname{tr}\left(X Q W_{0}^{-1}\right)=\left({ }^{t} y_{1} \ldots{ }^{t} y_{r}\right) x$. Thus the integral on the left hand side becomes

$$
\begin{aligned}
& \left(\operatorname{det} W_{0}\right)^{r-n} \int_{X} \exp \left(-2 \pi \operatorname{tr}\left(X A^{t} X\right)+2 \pi \operatorname{tr}\left(X Q W_{0}^{-1}\right)\right) d X \\
& =(\operatorname{det} W)^{(r-n) / 2} \int_{\mathbb{R}^{(n-r) r}} \exp \left(-2 \pi^{t} x B x+2 \pi\left({ }^{t} y_{1} \ldots^{t} y_{r}\right) x\right) d x \\
& =(\operatorname{det} W)^{(r-n) / 2} 2^{r^{r(r-n) / 2}}\left(\operatorname{det} A^{-1}\right)^{r / 2} \exp \left(\pi \operatorname{tr}\left(^{t} W_{0}^{-1 t} Q A^{-1} Q W_{0}^{-1}\right) / 2\right)
\end{aligned}
$$

on using the formula preceding this lemma.
Lemma 1.6.17. For Z in \mathscr{G}_{n}, N in Γ_{n} with $\operatorname{det} C_{N} \neq 0$ and $\left(A_{N} C_{N}^{-1}\right)^{*}$ integral, $\left(\begin{array}{cc}W_{1}^{(r, r)} & W_{2} \\ { }^{\prime} W_{2} & W_{3}\end{array}\right)=W:=\left(C_{N} Z+D_{N}\right)^{t} C_{N}$ and cusp form f in $\{r, k, s\}$, we have
$f\left((N<Z>)^{*}\right)\left(\operatorname{det}\left(C_{N} Z+D_{N}\right)\right)^{-k}=\left(\operatorname{det} C_{N}\right)^{k}\left(\operatorname{det} W_{3}\right)^{-k} \sum_{1 \leq j \leq m} \alpha_{j} f_{j}\left(W_{4}\right)$
where $\left\{f_{1}, \ldots, f_{m}\right\}$ is a basis for the space of cusp forms in $\{r, k, s\}$, $\alpha_{1}, \ldots, \alpha_{m}$ are (bounded) constants depending on $f,\left(A_{N} C_{N}^{-1}\right)^{*}$ and $W_{4}=$ $W_{1}-W_{2} W_{3}^{-1 t} W_{2}$.

Proof. Dropping the suffix N from $A_{N}, B_{N}, C_{N}, D_{N}$, we note that $N<$ $Z>=A C^{-1}-{ }^{t} C^{-1}(C Z+D)^{-1}=A C^{-1}-W^{-1}$, in view of the relations $B-A C^{-1} D=B-A^{t} D^{t} C^{-1}=\left(B^{t} C-A^{t} D\right)^{t} C^{-1}=-^{t} C^{-1}$. From the Babylonian identity

$$
W=\left(\begin{array}{cc}
E_{r} & W_{2} W_{3}^{-1} \\
0 & E_{n-r}
\end{array}\right)\left(\begin{array}{cc}
W_{4} & 0 \\
0 & W_{3}
\end{array}\right)\left(\begin{array}{cc}
E_{r} & 0 \\
W_{3}^{-1} W_{2} & E_{n-r}
\end{array}\right),
$$

we have $\left(W^{-1}\right)^{*}=W_{4}^{-1}$. On the other hand, there exist constants α_{1}, \ldots, α_{m} depending on f and the residue class of $\left(A_{N} C_{N}^{-1}\right)^{*}$ modulo s such that

$$
\begin{aligned}
\left(f \left\lvert\,\left(\begin{array}{cc}
\left(A_{N} C_{N}^{-1}\right)^{*}-E_{r} & \\
E_{r} & 0
\end{array}\right)\right.\right)\left(Z_{1}\right) & =f\left(\left(A_{N} C_{N}^{-1}\right)^{*}-Z_{1}^{-1}\right)\left(\operatorname{det} Z_{1}\right)^{-k} \\
& =\sum_{1 \leq j \leq m} \alpha_{j} f_{j}\left(Z_{1}\right) \text { for } \quad Z_{1} \in \mathscr{G}_{r}
\end{aligned}
$$

Thus

$$
\begin{aligned}
(f \| N)(Z) & =f\left(\left(A_{N} C_{N}^{-1}\right)^{*}-W_{4}^{-1}\right)\left(\operatorname{det} W^{t} C^{-1}\right)^{-k} \\
& =\sum_{1 \leq j \leq m} \alpha_{j} f_{j}\left(W_{4}\right)\left(\operatorname{det} W_{4}\right)^{k}(\operatorname{det} W)^{-k}(\operatorname{det} C)^{k} \\
& =\sum_{j} \alpha_{j} f_{j}\left(W_{1}-W_{2} W_{3}^{-1 t} W_{2}\right)\left(\operatorname{det} W_{3}\right)^{-k}(\operatorname{det} C)^{k} .
\end{aligned}
$$

Since the number of residue classes of (r, r) integral $S={ }^{t} S$ modulo s is finite, $\left|\alpha_{j}\right| \leq v$ for $1 \leq j \leq m$ and a constant $v=v(f)$.

Let us now fix N in Γ_{n} as in Lemma 1.6.17 with $\operatorname{det} C_{N} \neq 0 C_{N}=$ $\left(\begin{array}{cc}C_{1}^{(r, r)} & * \\ 0 & *\end{array}\right),\left(A_{N} C_{N}^{-1}\right)^{*}$ integral and a natural number c_{0} with $c_{0} C_{N}^{-1}$ integral. We shall study more closely the subseries

$$
\mathscr{S}(f ; N):=\sum_{S}\left(f \| N\left(\begin{array}{cc}
E_{n} & C^{-1} S^{t} C^{-1} \\
0 & E_{n}
\end{array}\right)(Z)\right.
$$

146 where $S=\left(\begin{array}{cc}0^{(r, r)} & S_{2} \\ { }_{t} S_{2} & S_{3}\end{array}\right)$ runs over all matrices of this form in $a \Lambda_{n}:=$ $\left\{a T^{(n, n)} \mid T={ }^{t} T\right.$ integral $\}$ and $a:=s c_{0}^{2}$. Recall

$$
\Lambda_{n}^{*}=\left\{T^{(n, n)}=\left(t_{i j}\right) \mid t_{i i}, 2 t_{i j}=2 t_{j i} \in \mathbb{Z}\right\}
$$

the lattice dual to Λ_{n}. Let us further write $e t a_{s}(*)$ for $\exp (2 \pi i * \mid s)$ and η for η_{1}. As usual, let ${ }^{t} B A B$ be abbreviated as $A[B]$. In view of Lemma 1.6 .17

$$
\mathscr{S}(f ; N)=\sum_{j} \alpha_{j} \sum_{S_{2}, S_{3}}\left(\operatorname{det} C_{N}\right)^{k}\left(\operatorname{det}\left(W_{3}+S_{3}\right)\right)^{-k} f_{j}
$$

$$
\left(W_{1}-\left(W_{3}+S_{3}\right)^{-1}\left[^{t}\left(W_{2}+S_{2}\right)\right]\right)
$$

where S_{2}, S_{3} have entries divisible by a. As a first step, we note that, for $T_{0}>0$ in Λ_{r}^{*},

$$
\begin{aligned}
& \sum_{S_{2}^{(r, n-r)} \equiv 0(\bmod 1)} n_{s}\left(-\operatorname{tr}\left(T_{0} W_{3}^{-1}\left[^{t}\left(w_{2}+a S_{2}\right)\right]\right)\right. \\
&= \sum_{S_{2}^{(r, n-r)}} \int_{X^{(r, n-r)}} \eta_{s}\left(-\operatorname{tr}\left(T_{0} W_{3}^{-1}\left[^{t}\left(W_{2}+a X\right)\right]\right) \eta\left(\operatorname{tr}\left(S_{2}^{t} X\right)\right) d X\right. \\
& \quad \quad(\text { Poisson formula) } \\
&= \eta_{s}\left(-\operatorname{tr}\left(T_{0} W_{3}^{-1}\left[{ }^{t} W_{2}\right]\right)\right) \sum_{S_{2}} \int_{X} \eta\left(-\operatorname{tr}\left(\left(a^{2} \mid s\right) T_{0} W_{3}^{-1}\left[^{t} X\right]\right)\right) \\
& \quad\left(-\operatorname{tr}\left(\frac{2 a}{s} X W_{3}^{-1 t} W_{2} T_{0}\right)+\operatorname{tr}\left(X^{t} S_{2}\right)\right) d X \\
&=\left.\eta_{s}\left(-\operatorname{tr}\left(T_{0} W_{3}^{-1}{ }^{t} W_{2}\right]\right)\right) \sum_{S_{2}}\left(\operatorname{det}\left(\frac{2 a^{2}}{s} T_{0}\right)\right)^{(r-n) / 2} \\
&\left(\operatorname{det}\left(-i W_{3}\right)\right)^{r / 2} \eta\left(-\frac{s}{4 a^{2}} \operatorname{tr}\left({ }^{t} Q W_{3} Q T_{0}^{-1}\right)\right)
\end{aligned}
$$

where $Q:=-\frac{2 i a}{s} W_{3}^{-1 t} W_{2} T_{0}+i^{t} S_{2}$. Now
$\operatorname{tr}\left({ }^{t} Q W_{3} Q T_{0}^{-1}\right)=-\frac{4 a^{2}}{s^{2}} \operatorname{tr}\left(T_{0} W_{3}^{-1}\left[{ }^{t} W_{2}\right]\right)+\frac{4 a}{s} \operatorname{tr}\left(S_{2}{ }^{t} W_{2}\right)-\operatorname{tr}\left(W_{3}\left[{ }^{t} S_{2}\right] T_{0}^{-1}\right)$
and so

$$
\begin{aligned}
& \sum_{S_{2}^{(r, n-r)} \equiv 0(\bmod \operatorname{a})} \eta_{s}\left(-\operatorname{tr}\left(T_{0} W_{3}^{-1}\left[{ }^{t}\left(W_{2}+S_{2}\right)\right]\right)=\left(\frac{2 a^{2}}{s}\right)^{r(r-n) / 2}\right. \\
& \left(\operatorname{det} T_{0}\right)^{(r-n) / 2}\left(\operatorname{det}\left(-i W_{3}\right)\right)^{r / 2} \\
& \sum_{S_{2}^{(r, n-r)} \text { integral }} \eta\left(-\frac{1}{a} \operatorname{tr}\left(S_{2}{ }^{t} W_{2}\right)+\frac{s}{4 a^{2}} \operatorname{tr}\left(W_{3}\left[{ }^{t} S_{2}\right] T_{0}^{-1}\right)\right)
\end{aligned}
$$

For the Fourier coefficients $b_{j}\left(T_{0}\right)$ of the cusp form

$$
f_{j}\left(Z^{*}\right)=\sum_{0<T_{0} \in \Lambda_{r}^{*}} b_{j}\left(T_{0}\right) \eta_{n}\left(T_{0} Z^{*}\right),
$$

we know from an analogue [19] of Theorem 1.1.1](Hecke) that $b_{j}\left(T_{0}\right)=$ $O\left(\left(\operatorname{det} T_{0}\right)^{k / 2}\right)$. Using this Fourier expansion, we prove

Lemma 1.6.18. For a cusp form f in $\{r, k, s\}$ and Z in \mathscr{G}_{n}, we have, with the same notation as in Lemma 1.6.17

$$
\left.\left.\left.\begin{array}{rl}
\sum_{S=\left(\begin{array}{ccc}
0^{(r)} & S_{2} \\
{ }_{S}^{t} S_{2} & 0
\end{array}\right) \in a \Lambda_{n}}\left(f \| N\left(\begin{array}{ccc}
E_{n} & C_{N}^{-1} S & { }^{t} C_{N} \\
0 & E_{n}
\end{array}\right)(Z)=\left(\operatorname{det} C_{N}\right)^{k}\left(\frac{2 a^{2}}{s}\right)^{r(r-n) / 2}\right. \\
\times \sum_{j} \alpha_{j} \sum_{\substack{0<T_{0} \in \Lambda_{r}^{*} \\
S_{2}^{(r, n-r)} \\
\\
\\
\\
\text { integral }}}\left(\operatorname{det} W_{3}\right)^{-k}\left(\operatorname{det}\left(-i W_{3}\right)\right)^{r / 2} \times \\
& \left.\left(-\frac{1}{a} \operatorname{tr}\left(W_{2}\right)^{t} S_{2}\right)+\frac{s}{4 a^{2}} \operatorname{trn}\right) / 2 b_{j}\left(T_{0}\right) \eta_{s}\left(\operatorname{tr}\left(T_{0} W_{1}\right)\right) \eta
\end{array}{ }^{t} S_{2}\right] T_{0}^{-1}\right)\right) .
$$

the series over T_{0} and S_{2} being absolutely convergent.
Proof. In view of the arguments preceding this lemma, for its proof we need only to insert the Fourier expansion for each $f_{j}(1 \leq j \leq m)$ and show the resulting (double) series over T_{0} and S_{2} to be absolutely convergent.

Let us observe that the matrix P defined, for real $X^{(r, n-r)}$, by

$$
\begin{aligned}
P= & \operatorname{Im}\left(W_{1}-W_{3}^{-1}\left[{ }^{t}\left(W_{2}+X\right)\right]\right)+\left(\operatorname{Im}\left(W_{3}^{-1}\right)\right) \\
& \quad\left[{ }^{t}\left(X+\operatorname{Re} W_{2}+\operatorname{Im}\left(W_{2}\right)\left(\operatorname{Re}\left(W_{3}^{-1}\right)\right)\left(\operatorname{Im}\left(W_{3}^{-1}\right)\right)^{-1}\right)\right]
\end{aligned}
$$

is actually independent of X, since the terms involving X give

$$
\begin{aligned}
& -\left(\operatorname{Re}\left(W_{2}\right)+X\right)\left(\operatorname{Im}\left(W_{3}^{-1}\right)\right)\left({ }^{t} X+\operatorname{Re}\left({ }^{t} W_{2}\right)\right) \\
& -\operatorname{Im}\left(W_{2}\right) \operatorname{Re}\left(W_{3}^{-1}\right) \cdot\left({ }^{t} X+\operatorname{Re}\left({ }^{t} W_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\operatorname{Re}\left(W_{2}\right)+X\right) \operatorname{Re} W_{3}^{-1} \cdot \operatorname{Im}^{t} W_{2} \\
& +\left(\operatorname{Re}\left(W_{2}\right)+X\right)\left(\operatorname{Im}\left(W_{3}^{-1}\right)\right)\left({ }^{t} X+\operatorname{Re},\left({ }^{t} W_{2}\right)\right) \\
& +\operatorname{Im}\left(W_{2}\right) \operatorname{Re}\left(W_{3}^{-1}\right)\left({ }^{t} X+\operatorname{Re}\left({ }^{t} W_{2}\right)\right)+\left(\operatorname{Re} W_{3}^{-1} \cdot \operatorname{Im}^{t} W_{2}=0 .\right.
\end{aligned}
$$

On the other hand, for any real $X^{(r, n-r)}$, clearly $W+\left(\begin{array}{cc}0^{(r)} & X \\ t_{X} & 0\end{array}\right) \in \mathscr{G}_{n}$ and 148 hence the imaginary part of the leading (r, r) submatrix

$$
\left(W_{1}-W_{3}^{-1}\left[{ }^{t}\left(W_{2}+X\right)\right]\right)^{-1} \quad \text { of }\left(W+\left(\begin{array}{cc}
0^{(r)} & X \\
{ }^{t} X & 0
\end{array}\right)\right)^{-1}
$$

is negative definite. Thus $P=P\left(X_{0}\right)=\operatorname{Im}\left(W_{1}-W_{3}^{-1}\left[{ }^{t}\left(W_{2}+X_{0}\right)\right]\right)>0$ taking $X_{0}=-\operatorname{Re}\left(W_{2}\right)-\operatorname{Im}\left(W_{2}\right) \cdot \operatorname{Re}\left(W_{3}^{-1}\right)\left(\operatorname{Im}\left(W_{3}^{-1}\right)\right)^{-1}$. Now

$$
\begin{aligned}
& \mid \eta_{s}\left(\operatorname { t r } \left(T_{0}\left(W_{1}-W_{3}^{-1}\left[^{t}\left(W_{2}+S_{2}\right)\right]\right) \mid\right.\right. \\
& \quad=\exp \left(-\frac{2 \pi}{s} \operatorname{tr}\left(T_{0}\left(P-\left(\operatorname{Im}\left(W_{3}^{-1}\right)\right)\left[^{t}\left(S_{2}-X_{0}\right)\right]\right)\right)\right. \\
& \quad<\exp \left(-\frac{2 \pi \rho}{s} \operatorname{tr}\left(T_{0}+\left(S_{2}-X_{0}\right)^{t}\left(S_{2}-X_{0}\right)\right)\right)
\end{aligned}
$$

where $\rho>0$ is such that $P-\sqrt{\rho} E^{(r)}, \operatorname{Im}\left(-W_{3}^{-1}\right)-\sqrt{\rho} E^{(r)}$ and $T_{0}-\sqrt{\rho} E^{(r)}$ are all >0. The series on the left hand side of the asserted identity

$$
=O\left(\sum_{\substack{0<T_{0} \in \Lambda_{r}^{*} \\ S_{2}^{(r, n-r)} \equiv 0(\bmod \mathrm{a})}}\left(\operatorname{det} T_{0}\right)^{k / 2} \mid \eta_{s}\left(\operatorname{tr}\left(T_{0}\left(W_{1}-W_{3}^{-1}\left[{ }^{t}\left(W_{2}+S_{2}\right)\right]\right)\right)\right)\right)
$$

and is now easily seen to be absolutely convergent.
To prove the absolute convergence of the double series on the right hand side, it suffices to prove that

$$
\begin{aligned}
& \sum_{S_{2}^{(r, n-r)} \text { integral }} \left\lvert\, \eta_{s}\left(\operatorname{tr}\left(T_{0} W_{1}\right)-\frac{s}{a} \operatorname{tr}\left(W_{2}{ }^{t} S_{2}\right)+\frac{s^{2}}{4 a^{2}} \operatorname{tr}\left(W_{3}\left[{ }^{t} S_{2}\right] T_{0}^{-1}\right)\right)\right. \\
& =O\left(\left(\operatorname{det} T_{0}\right)^{n-r} \exp \left(-2 \pi \rho \operatorname{tr}\left(T_{0}\right)\right) \text { for some } \rho>0\right.
\end{aligned}
$$

Now

$$
\begin{aligned}
\operatorname{Im}\left(\operatorname{tr}\left(T_{0} W_{1}\right)-\right. & \left.\frac{s}{a} \operatorname{tr}\left(W_{2}{ }^{t} S_{2}\right)+\frac{s^{2}}{4 a^{2}} \operatorname{tr}\left(W_{3}\left[{ }^{t} S_{2}\right] T_{0}^{-1}\right)\right)= \\
& =\operatorname{tr}\left(\operatorname{Im}(W)\left(\begin{array}{cc}
T_{0} & -(s / 2 a) S_{2} \\
-(s / 2 a)^{t} S_{2} & \left(s^{2} / 4 a^{2}\right) T_{0}^{-1}\left[S_{2}\right]
\end{array}\right)\right) \\
& =\operatorname{tr}\left((\operatorname{Im}(W))\left[\begin{array}{cc}
E_{r} & 0 \\
-\frac{s}{2 a} S_{2} T_{0}^{-1} & E_{n-r}
\end{array}\right]\left(\begin{array}{cc}
T_{0}^{(r)} & 0 \\
0 & 0
\end{array}\right)\right)
\end{aligned}
$$

and further taking $\rho_{1}>0$ with $\operatorname{Im}(W)>\rho_{1} E_{n}$, we see that the above series over S_{2} is

$$
O\left(\sum_{S_{2}} \exp _{\text {integral }}\left(-\frac{2 \pi \rho_{1}}{s} \operatorname{tr}\left(T_{0}+\frac{s^{2}}{4 a^{2}} S_{2}^{t} S_{2} T_{0}^{-1}\right)\right)\right)
$$

To complete the proof of the lemma, we have only to show that for $\rho^{\prime}=2 \pi s \rho_{1} /\left(4 a^{2}\right)$ and for every $T_{0}>0$ in Λ_{r}^{*},

$$
\sum_{S_{2}^{(r, n-r)}} \exp _{\text {integral }}\left(-\rho^{\prime} \operatorname{tr}\left(S_{2}^{t} S_{2} T_{0}^{-1}\right)\right)=O\left(\left(\operatorname{det} T_{0}\right)^{n-r}\right)
$$

For this purpose, we may assume, without loss of generality that T_{0}^{-1} is M-reduced, so that $T_{0}^{-1}=\left(\begin{array}{ccc}t_{1} & . . & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & t_{r}\end{array}\right)\left[\begin{array}{ccc}1 & & \\ & \ddots & \\ 0 & . . . & 1\end{array}\right]$ and for $\rho_{2}=\rho_{2}(r)>0$, $\rho_{3}=\rho_{3}(r)>0$,

$$
\begin{aligned}
& \rho_{2} T_{0}^{\prime}:= \rho_{2}\left(\begin{array}{ccc}
t_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & t_{r}
\end{array}\right)<T_{0}^{-1}<\rho_{3}\left(\begin{array}{ccc}
t_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & t_{r}
\end{array}\right), \\
&\left(\Lambda_{r}^{*} \ni\right) T_{0}<\rho_{2}^{-1}\left(\begin{array}{ccc}
t_{1}^{-1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & t_{r}^{-1}
\end{array}\right)
\end{aligned}
$$

and hence $t_{i}<\rho_{2}^{-1}(1 \leq i \leq r)$. Thus, as a majorant for the last mentioned series over S_{2}, we have

$$
\sum_{S_{2}^{(r, n-r)}} \exp _{\text {integral }}\left(-\rho^{\prime} \rho_{2} \operatorname{tr}\left(S_{2}^{t} S_{2} T_{0}^{\prime}\right)\right)
$$

$$
\begin{aligned}
& =\prod_{1 \leq i \leq r}\left(\sum_{\ell \in \mathbb{Z}} \exp \left(-\rho^{\prime} \rho_{2} t_{i} \ell^{2}\right)\right)^{n-r} \\
& \leq \prod_{1 \leq i \leq r}\left(1+\frac{2 \exp \left(-\rho^{\prime} \rho_{2} t_{i}\right)}{1-\exp \left(-\rho^{\prime} \rho_{2} t_{i}\right)}\right)^{n-r} \\
& <\prod_{i}\left(1+\frac{2}{\rho^{\prime} \rho_{2} t_{i}}\right)^{n-r}=\prod_{i}\left(\frac{2+\rho^{\prime} \rho_{2} t_{i}}{\rho^{\prime} \rho_{2} t_{i}}\right)^{n-r} \\
& \left.<\prod^{n-r}\left(\rho^{\prime}+2\right) / \rho^{\prime} \rho_{2}\right)^{n-r}\left(\operatorname{det} T_{0}\right)^{n-r}
\end{aligned}
$$

which proves our claim above and the lemma as well.
Lemma 1.6.19. For $0<T_{0}$ in Λ_{r}^{*}, we have

$$
\begin{aligned}
& \sum_{S_{3} \in a \Lambda_{n-r}}\left(\operatorname{det}\left(W_{3}+S_{3}\right)\right)^{-k}\left(\operatorname { d e t } (- i (W _ { 3 } + S _ { 3 })) ^ { r / 2 } \eta \left((s / 4 a ^ { 2 }) \operatorname { t r } \left(\left(W_{3}+S_{3}\right)\right.\right.\right. \\
& \left.T_{0}^{-1}\left[S_{2}\right]\right)=i^{(r-n) k}(2 \pi)^{(n-r)(k-r / 2)} 2^{(r-n)(n-r-1) / 2} a^{(r-n)(n-r+1) / 2} \\
& \left(4 a^{2} t_{0}\right)^{(r-n)(2 k-n-1) / 2}\left(1 / \Gamma_{n-r}(k-r / 2)\right) \eta\left(\left(s / a^{2}\right) \operatorname{tr}\left(W_{3} T_{0}^{-1}\left[S_{2}\right]\right)\right. \\
& \sum_{T}(\operatorname{det} T)^{k(n+1) / 2} \eta\left(\left(1 / 4 a^{2} t_{0}\right) \operatorname{tr}\left(T W_{3}\right)\right)
\end{aligned}
$$

where t_{0} is a fixed natural number with $t_{0} T_{0}^{-1}$ integral, $S_{2}^{(r, n-r)}$ is integral, $\Gamma_{m}(\ell):=\pi^{m(m-1) / 4} \prod_{0 \leq v \leq m-1} \Gamma(\ell-v / 2)$ and T runs over $\left\{T \in \Lambda_{n-r}^{*} \mid T>\right.$ $\left.0, \frac{1}{4 a}\left(s T_{0}^{-1}\left[S_{2}\right]+t_{0}^{-1} T\right) \in \Lambda_{n-r}^{*}\right\}$.

Proof. The left hand side is just

$$
\begin{aligned}
& i^{k(r-n)} \eta\left(\left(s / 4 a^{2}\right) \operatorname{tr}\left(W_{3} T_{0}^{-1}\left[S_{2}\right]\right)\right) \\
& \quad \sum_{S_{3} \in \Lambda_{n-r}} \operatorname{det}\left(-i\left(W_{3}+a S_{3}\right)\right)^{r / 2-k} \eta\left((s / 4 a) \operatorname{tr}\left(S_{3} T_{0}^{-1}\left[S_{2}\right]\right)\right) \\
& \left.=i^{k(r-n)} \eta\left(\left(s / 4 a^{2}\right) \operatorname{tr}\left(W_{3} T_{0}^{-1}\left[S_{2}\right]\right)\right) \sum_{\Lambda_{n-r} S_{3}^{\prime} \bmod 4 \mathrm{ata}} \eta(s / 4 a) \operatorname{tr}\left(S_{3}^{\prime} T_{0}^{-1}\left[S_{2}\right]\right)\right) \\
& \quad \sum_{S_{3} \in \Lambda_{n-r}} \operatorname{det}\left(-i\left(W_{3}+a S_{3}^{\prime}-4 a^{2} t_{0} S_{3}\right)\right)^{r / 2-k}
\end{aligned}
$$

$$
\begin{aligned}
&= i^{k(r-n)} \eta\left(\left(s / 4 a^{2}\right) \operatorname{tr}\left(W_{3} T_{0}^{-1}\left[S_{2}\right]\right)\right) \\
& \quad \sum_{S_{3}^{\prime} \bmod _{4 \mathrm{at}}} \eta\left((s / 4 a) \operatorname{tr}\left(S_{3}^{\prime} T_{0}^{-1}\left[S_{2}\right]\right)\right)\left(\frac{\pi}{2 a^{2} t_{0}}\right)^{(n-r)(k-r / 2)} \\
& \times 2^{(r-n)(n-r-1) / 2}\left(1 / \Gamma_{n-r}(k-r / 2)\right) \\
& \quad \sum_{0<T \in \Lambda_{n-r}^{*}}(\operatorname{det} T)^{k-(n+1) / 2} \eta\left(\left(1 / 4 a^{2} t_{0}\right) \operatorname{tr}\left(T\left(W_{3}+a S_{3}^{\prime}\right)\right)\right),
\end{aligned}
$$

on using the well-known formula (for $\operatorname{Re} Y_{1}>0$ and $\rho>m+1$)

$$
\begin{aligned}
& 2^{m(m-1) / 2} \Gamma_{m}(\rho) \sum_{F \in \Lambda_{m}}\left(\operatorname{det}\left(Y_{1}+2 \pi i F\right)\right)^{-\rho} \\
& \quad=\sum_{0<T \in \Lambda_{m}^{*}}(\operatorname{det} T)^{\rho-(m+1) / 2} \exp \left(-\operatorname{tr}\left(T Y_{1}\right)\right)
\end{aligned}
$$

The lemma now follows from

$$
\begin{aligned}
& \sum_{\Lambda_{n-r} \geq S_{3}^{\prime} \bmod 4 a \mathrm{a}_{0}} \eta\left((s / 4 a) \operatorname{tr}\left(S_{3}^{\prime} T_{0}^{-1}\left[S_{2}\right]\right)+\left(1 / 4 a t_{0}\right) \operatorname{tr}\left(T S_{3}^{\prime}\right)\right) \\
& \quad= \begin{cases}\left(4 a t_{0}\right)^{(n-r)(n-r+1) / 2} & \text { if } s T_{0}^{-1}\left[S_{2}\right]+ \\
0 & +t_{0}^{-1} T \in 4 a \Lambda_{n-r}^{*} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Going back to $\mathscr{S}(f ; N)$, we have, in view of Lemma 1.6.18 and 1.6.19

$$
\begin{gathered}
\mathscr{S}(f ; N)=\sum_{j} \alpha_{j} \sum_{S_{3} \in a \Lambda_{n-r}}\left(\operatorname{det} C_{N}\right)^{k}\left(\frac{2 a^{2}}{s}\right)^{r(r-n) / 2} \\
\sum_{\substack{0<T_{0} \in \Lambda_{r}^{*} \\
S_{2}^{(r, n-r)} \text { integral }}}\left(\operatorname{det} T_{0}\right)^{(r-n) / 2} b_{j}\left(T_{0}\right) n_{s}\left(\operatorname{tr}\left(T_{0} W_{1}\right)-\frac{s}{a} \operatorname{tr}\left(W_{2}^{t} S_{2}\right)\right) \times \\
\times\left(\operatorname{det}\left(W_{3}+S_{3}\right)\right)^{-k}\left(\operatorname{det}\left(-i\left(W_{3}+S_{3}\right)\right)^{r / 2} \eta\left(\frac{s}{4 a^{2}} \operatorname{tr}\left(\left(W_{3}+S_{3}\right) T_{0}^{-1}\left[S_{2}\right]\right)\right)\right.
\end{gathered}
$$

$$
\begin{gathered}
=\left(\operatorname{det} C_{N}\right)^{k} \frac{2^{(r-n)(n-1) / 2} i^{(r-n) k}(2 \pi)^{(n-r)(k-r / 2)} a^{(r-n)(r+n+1) / 2}}{s^{r(r-n) / 2} \Gamma_{n-r}(k-r / 2)} \times \\
\times \sum_{1 \leq j \leq m} \alpha_{j} \sum_{T_{0}, S_{2}, T}\left(\operatorname{det} T_{0}\right)^{(r-n) / 2}\left(4 a^{2} t_{0}\right)^{(r-n)(2 k-n-1) / 2} b_{j}\left(T_{0}\right)(\operatorname{det} T)^{k-\frac{n+1}{2}} \times \\
\times \eta_{s}\left(\operatorname{tr}\left(T_{0} W_{1}\right)-\frac{s}{a} \operatorname{tr}\left(W_{2}^{t} S_{2}\right)+\frac{s}{4 a^{2} t_{0}} \operatorname{tr}\left(T W_{3}\right)+\frac{s^{2}}{4 a^{2}} \operatorname{tr}\left(W_{3} T_{0}^{-1}\left[S_{2}\right]\right)\right)
\end{gathered}
$$

where $0<T_{0} \in \Lambda_{r}^{*}, S_{2}^{(r, n-r)}$ is integral, $0<T \in \Lambda_{n-r}^{*}, s T_{0}^{-1}\left[S_{2}\right]+t_{0}^{-1} T \in$ $4 a \Lambda_{n-r}^{*}$. Let

$$
P:=\left(\begin{array}{cc}
T_{0} & -\frac{s}{2 a} S_{2} \\
-\frac{s}{2 a}{ }^{t} S_{2} & \frac{s}{4 a^{2}}\left(t_{0}^{-1} T+s T_{0}^{-1}\left[S_{2}\right]\right)
\end{array}\right)=\left(\begin{array}{cc}
P_{1}^{(r)} & P_{2} \\
{ }^{t} P_{2} & P_{3}^{(n-r)}
\end{array}\right), \text { say. }
$$

Then from

$$
P=\left(\begin{array}{cc}
T_{0} & 0 \\
0 & \frac{s}{4 a^{2} t_{0}} T
\end{array}\right)\left[\begin{array}{cc}
E_{r} & -\frac{s}{2 a} T_{0}^{-1} S_{2} \\
0 & E_{n-r}
\end{array}\right]
$$

we see that $P>0$ and further $\operatorname{det} P=\left(\frac{s}{4 a^{2} t_{0}}\right) \operatorname{det} T_{0} \cdot \operatorname{det} T$.
Out assumptions above on T_{0}, S_{2} and T mean precisely that $P_{1} \in$ $\Lambda_{r}^{*}, \frac{2 a}{S} P_{2}$ is integral, $\frac{a}{S} P_{3} \in \Lambda_{n-r}^{*}$ and $\frac{4 a^{2}}{S} t_{0} P_{3}-s t_{0} T_{0}^{-1}\left[S_{2}\right]$ is in Λ_{n-r}^{*} (the last condition being superfluous). Now $\left\{T_{0}, S_{2}, T\right\}$ is in bijective correspondence with P as above and
$\operatorname{tr}(W P)=\operatorname{tr}\left(W_{1} T_{0}\right)-\frac{s}{a} \operatorname{tr}\left(W_{2}^{t} S_{2}\right)+\frac{s}{4 a^{2}}\left(\operatorname{tr}\left(t_{0}^{-1} W_{3} T\right)+\operatorname{tr}\left(s W_{3} T_{0}^{-1}\left[S_{2}\right]\right)\right)$.
We have thus proved
Lemma 1.6.20. For a cusp form f in $\{r, k, s\}$ and N in Γ_{n} as in Lemma 1.6.17

$$
\begin{aligned}
& \mathscr{S}(f ; N)=\frac{\left(\operatorname{det} C_{N}\right)^{k} 2^{(r-n)(n-1) / 2} i^{(r-n) k}(2 \pi)^{(n-r)(k-r / 2)}}{a^{(n-1)(n+r+1) / 2} s^{(n-r)(k-(n+r+1) / 2)} \Gamma_{n-r}(k-r / 2)} \times \\
& \times \sum_{j} \alpha_{j} \sum_{0<P} b_{j}\left(P_{1}\right)\left(\operatorname{det} P_{1}\right)^{\frac{r+1-2 k}{2}}(\operatorname{det} P)^{\frac{2 k-n-1}{2}} \eta_{s}(\operatorname{tr}(P W))
\end{aligned}
$$

where $P_{1} \in \Lambda_{r}^{*}, 2 c_{0}^{2} p_{2}^{(r, n-r)}$ is integral and $c_{0}^{2} P_{3} \in \Lambda_{n-r}^{*}$.

We recall that for N in Γ_{n} fixed above, $C=C_{N}=\left(\begin{array}{cc}C_{1}^{(r)} & C_{2} \\ 0 & C_{4}\end{array}\right)$ and $c_{0} C^{-1}=c_{0}\left(\begin{array}{cc}C_{1}^{-1}-C_{1}^{-1} C_{2} C_{4}^{-1} \\ 0 & C_{4}^{-1}\end{array}\right)$ is integral. Let us define G, G^{\prime} by

$$
\begin{aligned}
G & =\left\{\lambda_{n-r}\left(S^{t} C^{-1}\right) \left\lvert\, S=\left(\begin{array}{ll}
0^{(r)} & S_{2} \\
{ }^{t} S_{2} & S_{3}
\end{array}\right) \in a \Lambda_{n}\right.\right\}, \\
G^{\prime} & =\left\{\lambda_{n-r}(C S) \left\lvert\, S=\left(\begin{array}{ll}
0^{(r)} & S_{2} \\
{ }^{t} S_{2} & S_{3}
\end{array}\right) \in s \Lambda_{n}\right.\right\}
\end{aligned}
$$

Clearly $G^{\prime}=\left\{\left(C_{4}{ }^{t} S_{2}, C_{4} S_{3}\right) \left\lvert\, \frac{1}{s} S_{2}^{(r, n-r)}\right.\right.$ integral, $\left.S_{3} \in s \Lambda_{n-r}\right\}$ is a subgroup of index abs $\left(\operatorname{det} C_{4}\right)^{r}$ in the (additive) group $G_{0}=\left\{\left({ }^{t} S_{2}^{\prime}, C_{4} S_{3}\right) \left\lvert\, \frac{1}{s}\right.\right.$ S_{2}^{\prime} integral and of size $\left.(n-r, r), S_{3} \in s \Lambda_{n-r}\right\}$. Moreover, $G=\left\{\left({ }^{t} S_{2}{ }^{t} C_{1}^{-1}-\right.\right.$ $\left.S_{3}^{t}\left(C_{1}^{-1} C_{2} C_{4}^{-1}\right), S_{3}{ }^{t} C_{4}^{-1}\right) \left\lvert\, \frac{1}{a} S_{2}^{(r, n-r)}\right.$ integral, $\left.S_{3} \in a \Lambda_{n-r}\right\} \subset G^{\prime}$. As representatives of G_{0} / G, we can take representatives of $\left\{C_{4} S_{3} \mid S_{3} \in s \Lambda_{n-r}\right\} /$ $\left\{S_{3}{ }^{t} C_{4}^{-1} \mid S_{3} \in a \Lambda_{n-r}\right\}$ together with representatives of $\left\{{ }^{t} S_{2}^{\prime} \mid S_{2}^{\prime}\right.$ of size $(r, n-r)$ and with entries in $s \mathbb{Z}\} /\left\{{ }^{t} S_{2}{ }^{t} C_{1}^{-1} \mid S_{2}\right.$ of size $(r, n-r)$ and with entries in $a \mathbb{Z}\}$. Hence

$$
\begin{aligned}
{\left[G_{0}: G\right] } & =\left[s \Lambda_{n-r}: a C_{4}^{-1} \Lambda_{n-r}^{t} C_{4}^{-1}\right] \operatorname{abs}\left(\operatorname{det}(a / s)^{t} C_{1}^{-1}\right)^{n-r} \\
& =\operatorname{abs}\left(\operatorname{det} c_{0} c_{4}^{-1}\right)^{n-r+1} \operatorname{abs}\left(\operatorname{det} c_{0}^{2} C_{1}^{-1}\right)^{n-r}
\end{aligned}
$$

and so

$$
\left[G^{\prime}: G\right]=c_{0}^{(n-r)(n+r+1)} \operatorname{abs}\left(\left(\operatorname{det} C_{1}\right)^{r-n} /\left(\operatorname{det} C_{4}\right)^{n+1}\right)=v_{0}\left(C_{N}\right), \text { say. }
$$

Let

$$
S_{j}^{\prime}=\left(\begin{array}{cc}
0 & S_{j, 2} \\
{ }^{t} S_{j, 2} & S_{i, 3}
\end{array}\right) \in s \Lambda_{n} \text { for } 1 \leq j \leq v_{0}\left(C_{N}\right)
$$

be chosen such that $\lambda_{n-r}\left(C_{N} S_{j}^{\prime}\right)$ are representatives for G^{\prime} / G. We now claim that for ${ }^{t} S=S \equiv 0(\bmod s)$ and $M=N\left(\begin{array}{cc}E_{n} & S \\ 0 & E_{n}\end{array}\right),(f \| M)(Z)$ is determined already by $\lambda_{n-r}(M)$. Indeed, let

$$
M^{\prime}=N\left(\begin{array}{cc}
E_{n} & S^{\prime} \\
0 & E_{n}
\end{array}\right), M^{\prime \prime}=N\left(\begin{array}{cc}
E_{n} & S^{\prime \prime} \\
0 & E_{n}
\end{array}\right)
$$

with integral symmetric $S^{\prime}, S^{\prime \prime} \equiv O(\bmod \mathrm{~s})$ and let $\lambda_{n-r}\left(M^{\prime}\right)=\lambda_{n-r}$ $\left(M^{\prime \prime}\right)$. Then, by Lemma 1.6.10 $M^{\prime}=K M^{\prime \prime}$ for some K in $\Delta_{n, r}$ and the hypothesis on $S^{\prime}, S^{\prime \prime}$ forces K to be in $\Delta_{n, r}(s)$ and the associated K^{*} in Γ_{r} to lie in $\Gamma_{r}(s)$; hence we have $\left(f \| M^{\prime}\right)(Z)=\left(f \| K M^{\prime \prime}\right)(Z)=$ $\left(\left(f \| K^{*}\right) \| M^{\prime \prime}\right)(Z)=\left(f \| M^{\prime \prime}\right)(Z)$. Writing therefore $\left(f \|\left(\lambda_{n-r}\left(C_{M}\right), \lambda_{n-r}\right.\right.$ $\left.\left(D_{M}\right)\right)(Z)$ for $M=N\left(\begin{array}{cc}E_{n} & S \\ 0 & E_{n}\end{array}\right)$ in Γ_{n} as above, we have

$$
\begin{aligned}
\mathscr{T}(f, N): & \sum_{S=\left(\begin{array}{cc}
0^{(r)} & S_{2} \\
{ }^{t} S_{2} & S_{3}
\end{array}\right) \in s \Lambda_{n}}\left(f \| N\left(\begin{array}{cc}
E_{n} & S \\
0 & E_{n}
\end{array}\right)\right)(Z) \\
& =\sum_{H \in G^{\prime}}\left(f \|\left(\lambda_{n-r}\left(C_{N}\right), \lambda_{n-r}\left(D_{N}\right)+H\right)\right)(Z) \\
& \left.\left.=\sum_{i} \sum_{H \in G}\left(f \| \lambda_{n-r}\left(C_{N}\right), \lambda_{n-r}\left(D+C S_{i}^{\prime}\right)\right)+H\right)\right)(Z) \\
& =\sum_{i} \sum_{S=\left(\begin{array}{cc}
0^{(r)} S_{2} \\
{ }^{t} S_{2} & S_{3}
\end{array}\right) \in a \Lambda_{n}}\left(f \| N\left(\begin{array}{cc}
E_{n} & S_{i}^{\prime} \\
0 & E_{n}
\end{array}\right)\left(\begin{array}{cc}
E_{n} & C_{N}^{-1} S^{t} C_{N}^{-1} \\
0 & E_{n}
\end{array}\right)\right)(Z) .
\end{aligned}
$$

For $M=N\left(\begin{array}{cc}E^{(n)} & S_{i}^{\prime} \\ 0 & E^{(n)}\end{array}\right)$, we have, however, $C_{M}=C_{N}=\left(\begin{array}{cc}C_{1}^{(r)} & C_{2} \\ 0 & C_{4}\end{array}\right)$, $D_{M}=C S_{i}^{\prime}+D_{N},\left(A_{M} C_{M}^{-1}\right)^{*}$ is integral and $C_{M} Z^{t} C_{M}+D_{M}^{t} C_{M}=\mathbf{1 5 5}$ $W+C_{M} S_{1}^{\prime t} C_{M}$. In view of Lemma 1.6.20, we have

$$
\begin{aligned}
& \mathscr{T}(f, N)=\beta\left(\operatorname{det} C_{N}\right)^{k} a^{(r-n)(n+r+1) / 2} \\
& \sum_{j, i} \alpha_{j} \sum_{0<P} b_{j}\left(P_{1}\right)\left(\operatorname{det} P_{1}\right)^{(r+1-2 k) / 2}(\operatorname{det} P)^{k-(n+1) / 2} \times \\
& \times \eta_{s}\left(\operatorname{tr}\left(P\left(W+S_{i}^{\prime}\left[^{t} C_{N}\right]\right)\right)\right)
\end{aligned}
$$

where $P=\left(\begin{array}{cc}P_{1}^{(r)} & P_{2} \\ { }^{t} P_{2} & P_{3}^{(n-r)}\end{array}\right)>0$ runs over all such matrices with $P_{1} \in \Lambda_{r}^{*}$, $2 c_{0}^{2} P_{2}$ integral, $c_{0}^{2} P_{3} \in \Lambda_{n-r}^{*}$ and

$$
\begin{aligned}
\beta:= & i^{(r-n) k} 2^{(r-n)(n-1) / 2}(2 \pi)^{(n-r)(k-r / 2)} \times \\
& s^{(r-n)(k-(n+r-1) / 2)} / \Gamma_{n-r}(k-r / 2) .
\end{aligned}
$$

For any such P and any $H=\left(H_{1}^{(n-r, r)}, H_{2}^{(n-r, n-r)}\right)$ in G^{\prime}, let $\chi(H):=$ $\eta_{s}\left(2 \operatorname{tr}\left(H_{1}{ }^{t} C_{1} P_{2}\right)+2 \operatorname{tr}\left(H_{2}{ }^{t} C_{2} P_{2}\right)+\operatorname{tr}\left(H_{2}{ }^{t} C_{4} P_{3}\right)\right)$. Then it is not hard to
prove that $\chi(H)=1$ for all H in G and $\eta_{s}\left(\operatorname{tr}\left(P S\left[{ }^{t} C_{N}\right]\right)=\chi\left(\left(C_{4}{ }^{t} S_{2}\right.\right.\right.$, $\left.\left.C_{4} S_{4}\right)\right)=\chi\left(\lambda_{n-r}(C S)\right)$ for $S=\left(\begin{array}{cc}0 & S_{2} \\ { }^{S} S_{2} & S_{3}\end{array}\right) \in s \Lambda_{n}$. Therefore, in view of our choice of S_{i}^{\prime}, we have $\left.\sum_{i} \eta_{s}\left(\operatorname{tr}\left(P S_{i}^{\prime} t^{t} C\right]\right)\right)=\sum_{H \in G^{\prime} / G} \chi(H)=v_{0}(N)$ or 0 according as χ is trivial or not. Now, χ is clearly trivial if and only if $2^{t} C_{1} P_{2} C_{4} \equiv O(\bmod 1)$ and ${ }^{t} C_{2} P_{2} C_{4}+{ }^{t} C_{4}{ }^{t} P_{2} C_{2}+P_{3}\left[C_{4}\right] \in \Lambda_{n-r}^{*}$.

Lemma 1.6.21. For P as above and $T:=P\left[C_{N}\right]=\left(\begin{array}{cc}T_{1}^{(r)} & T_{2} \\ { }^{t} T_{2} & T_{3}\end{array}\right)$, we have

$$
\left.\begin{array}{l}
P_{1} \in \Lambda_{r}^{*} 2 c_{0}^{2} P_{2} \equiv 0(\bmod 1), \mathrm{c}_{0}^{2} \mathrm{P}_{3} \in \Lambda_{\mathrm{n}-\mathrm{r}}^{*} \\
2^{t} C_{1} P_{2} C_{4} \equiv 0(\bmod 1), \\
{ }^{t} C_{2} P_{2} C_{4}+{ }^{t} C_{4}{ }^{t} P_{2} C_{2}+P_{3}\left[C_{4}\right] \in \Lambda_{n-r}^{*}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
T \in \Lambda_{n}^{*} \\
T_{1}\left[C_{1}^{-1}\right]=\left(T\left[C_{N}^{-1}\right]\right)^{*} \in \Lambda_{r}^{*}
\end{array}\right.
$$

Proof. $T=P\left[C_{N}\right]$ is equivalent to the conditions

$$
\begin{aligned}
& T_{1}=P_{1}\left[C_{1}\right], T_{2}={ }^{t} C_{1} P_{1} C_{2}+{ }^{t} C_{1} P_{2} C_{4}, \\
& T_{3}=P_{1}\left[C_{2}\right]+{ }^{t} C_{4}{ }^{t} P_{2} C_{2}+{ }^{t} C_{2} P_{2} C_{4}+P_{3}\left[C_{4}\right] .
\end{aligned}
$$

From the assumptions on P, we see that $T_{1}=P_{1}\left[C_{1}\right] \in \Lambda_{r}^{*}, 2 T_{2}=$ $2^{t} C_{1} P_{1} C_{2}+2^{t} C_{1} P_{2} C_{4} \equiv 0(\bmod 1)$ and $T_{3} \in \Lambda_{n-r}^{*}$, proving the implication \Longrightarrow. We uphold next the reverse implication. From $T \in \Lambda_{n}^{*}$ and $T_{1}\left[C_{1}^{-1}\right] .\left(T\left[C_{N}^{-1}\right]\right)^{*} \in \Lambda_{r}^{*}$, we have
$P_{1}=T_{1}\left[C_{1}^{-1}\right] \in \Lambda_{r}^{*},{ }^{t} C_{2} P_{2} C_{4}+{ }^{t} C_{4}{ }^{t} P_{2} C_{2}+P_{3}\left[C_{4}\right]=T_{3}-P_{1}\left[C_{2}\right] \in \Lambda_{n-r}^{*}$.
Further

$$
\begin{aligned}
& 2^{t} C_{1} P_{2} C_{4}=2 T_{2}-2^{t} C_{1} P_{1} C_{2} \equiv 0(\bmod 1), \\
& 2 c_{0}^{2} P_{2}=2 c_{0}{ }^{t} C_{1}^{-1}\left(2^{t} C_{1} P_{2} C_{4}\right) c_{0} C_{4}^{-1} \equiv 0(\bmod 1), \\
& P_{3}=T_{3}\left[C_{4}^{-1}\right]-P_{1}\left[C_{2} C_{4}^{-1}\right]-{ }^{t} C_{4}^{-1}\left({ }^{t} T_{2}-{ }^{t} C_{2} P_{1} C_{1}\right) C_{1}^{-1} C_{2} C_{4}^{-1} \\
& \quad-{ }^{t}\left(C_{1}^{-1} C_{2} C_{4}^{-1}\right)\left(T_{2}-{ }^{t} C_{1} P_{1} C_{2}\right) C_{4}^{-1}
\end{aligned}
$$

and so $c_{0}^{2} P_{3} \in \Lambda_{n-r}^{*}$, in view of $c_{0} C^{-1}=c_{0}\left(\begin{array}{cc}C_{1}^{-1} & -C_{1}^{-1} C_{2} C_{4}^{-1} \\ 0 & C_{4}^{-1}\end{array}\right)$ being integral.

Putting together the results above, we have, for f and N as above,

$$
\begin{aligned}
\mathscr{T}(f, N)= & \beta \frac{\left(\operatorname{det} C_{1}\right)^{k} /\left(\operatorname{det} C_{4}\right)^{k}}{s^{(n-r)(n+r+1) / 2}} \sum_{j} \alpha_{j} \\
& \sum_{0<T \in \Lambda_{n}^{*}} b_{j}\left(\left[T\left[C_{N}^{-1}\right]\right)^{*}\right)\left(\operatorname{det} T^{*}\right)^{(r+1) / 2-k}(\operatorname{det} T)^{k-(n+1) / 2} \\
& \times \eta_{s}\left(\operatorname{tr}\left(T C_{N}^{-1} D_{N}\right)\right) \eta_{s}(\operatorname{tr}(T Z))
\end{aligned}
$$

Lemma 1.6.22. The number of $\left(D_{3}, D_{4}\right)$ such that $F=\left(C_{4} D_{3} D_{4}\right)$ runs over a set of representatives of \approx-equivalence classes in $\mathscr{C}_{n, r}$ for fixed C_{4} with $\operatorname{det} C_{4} \neq 0$ is at most $\operatorname{abs}\left(\operatorname{det} C_{4}\right)^{r} \delta_{1}^{n-r} \ldots \delta_{n-r}$ where $\delta_{1}|\ldots| \delta_{n-r}$ are elementary divisors of C_{4}.

Proof. For fixed C_{4}, the number of \approx-inequivalent F is at most the index of $\left\{C_{4} H \mid H=H^{(n-r, r)}\right.$ integral\} in $\left\{H \mid H^{(n-r, r)}\right.$ integral $\}$ multiplied by the index of $\left\{C_{4} L \mid L \in \Lambda_{n-r}\right\}$ in $\left\{D_{4}^{(n-r, n-r)}\right.$ integral $\mid C_{4}^{-1} D_{4}$ is symmetric $\}$ and hence at most equal to abs $\left(\operatorname{det} C_{4}\right)^{r} \cdot \sigma_{n-r}\left(C_{4}\right)$ where $\sigma_{n-r}\left(C_{4}\right)$ is the index of Λ_{n-r} in $\left\{{ }^{t} S=S^{(n-r, n-r)}\right.$ with entries in $\mathbb{Q} \mid C_{4} S$ integral $\}$. Now there exist U_{1}, U_{2} in $G L_{n-r}(\mathbb{Z})$ such that $U_{1} C_{4} U_{2}=\delta$ is a diagonal matrix with diagonal entries $\delta_{1}, \ldots, \delta_{n-r}$ for which $\delta_{1}|\ldots| \delta_{n-r}$. For calculating $\sigma_{n-r}\left(C_{4}\right)$, there is no loss of generality in taking C_{4} to be already equal to δ and so $\sigma_{n-r}\left(C_{4}\right)=\delta_{1}^{n-r} \ldots \delta_{r}$, proving the lemma.

We are finally in a position to state
Theorem 1.6.23 ([10], [20]). Let f be a cusp form of degree r, (even) weight $k \geq n+r+1$ and stufe s, for $1 \leq r \leq n-1$. Then for $T^{(n, n)}=$ $\left(\begin{array}{c}T_{*}^{*(t, r)} \\ *\end{array},{ }_{*}^{*}\right)>0$ in Λ_{n}^{*}, the Fourier coefficients $a(T, f ; M)$ of the transform $E_{n, r}^{k}(Z, f) \mid M$ of the Eisenstein series, for M in Γ_{n}, we have the estimate

$$
a(T, f ; M)=O\left((\operatorname{det} T)^{k-(n+1) / 2} /\left(\operatorname{det} T^{*}\right)^{k-(r+1) / 2}\right)
$$

the O-constants depending on f, n, s and k and being uniform as long as T lies in a fixed Siegel domain.

Proof. Now $E_{n, r}^{k}(Z, f) \mid M:=\sum_{N \in \Delta_{n, r}(s) \mid \Gamma_{n}(s) M}(f \| N)(Z)$ and in view of Proposition 1.6.12 contributions to $a(T, f ; M)$ arise only from terms for
which rank $\left(\lambda_{n-r}\left(C_{N}\right)\right)=n-r$. By Lemma 1.6.15 we have

$$
\begin{aligned}
& \Gamma_{n}(s) M= \coprod_{\left(C_{4} D_{3} D_{4}\right) \in \tilde{\mathscr{C}}_{n, r}} \Delta_{n, r}(s) K M\left\{C_{4}, D_{3}, D_{4}\right\} \\
&\left(\begin{array}{cc}
E_{n} & S^{\prime} \\
0 & E_{n}
\end{array}\right)\left(\begin{array}{cc}
E_{n} & s S \\
0 & E_{n}
\end{array}\right)\left(\begin{array}{cc}
t & 0 \\
0 & U^{-1}
\end{array}\right) \\
&\left(\begin{array}{cc}
0^{(r, r)} & * \\
* & *
\end{array}\right)=S^{\prime}={ }^{t} S^{\prime} \operatorname{mod~s},{ }^{\mathrm{t}} \mathrm{~S}=\mathrm{S}=\left(\begin{array}{cc}
0^{(r, r)} & * \\
* & *
\end{array}\right) \text { integral } \\
& K \in \Delta_{n, r}(s) \backslash \Delta_{n, r}{ }^{t} U \in P(n, r, \mathbb{Z}) \backslash G L_{n}(\mathbb{Z})
\end{aligned}
$$

where the accent on \amalg indicates that only the $\left(C_{4} D_{3} D_{4}\right), K=K\left(S^{\prime}, U\right)$ and ${ }^{t} U$ relevant for the decomposition of the left hand side appear. (Indeed $\left(K M\left(C_{4}, D_{3}, D_{4}\right)\left(\begin{array}{cc}E_{n} & S^{\prime} \\ 0 & E_{n}\end{array}\right)\right)^{-1} M\left(\begin{array}{cc}t^{t} U^{-1} & 0 \\ 0 & U\end{array}\right)$ must be in $\Gamma_{n}(s)$, this condition clearly being independent of the matrices $s S$). Applying the formula for $\mathscr{T}(f, N)$, stated just prior to Lemma 1.6.22 to $f \mid K^{*}$ instead of $f, Z+S^{\prime}$ instead of Z (since $\left(\begin{array}{cc}E_{n} & S^{\prime} \\ 0 & E_{n}\end{array}\right)$ commutes with $\left(\begin{array}{cc}E_{n} & s S \\ 0 & E_{n}\end{array}\right)$ and $N=M\left\{C_{4}, D_{3}, D_{4}\right\}$ we get, for the Fourier coefficient $a(T, f ; M)$ corresponding to $T>0$ in Λ_{n}^{*} an expression of the form

$$
\begin{aligned}
& \gamma \sum_{j} \alpha_{j}^{\prime} \sum_{\substack{\left(C_{4} D_{3} D_{4}\right) \in \tilde{\tilde{q}}_{6, r} \\
K, S^{\prime}, U}}\left(\left(\operatorname{det} C_{1}\right)^{k} /\left(\operatorname{det} C_{4}\right)^{k}\right) b_{j}\left(\left(T\left[^{t} U^{-1} C_{N}^{-1}\right]\right)^{*}\right) \\
& \left.\quad\left(\operatorname{det}\left(T \Gamma^{t} U^{-1}\right]\right)^{*}\right)^{\frac{r+1}{2}-k}(\operatorname{det} T)^{k-\frac{n+1}{2}} \times \\
& \left.\quad \times \eta_{s}\left(\operatorname{tr}\left(T S^{\prime}\right)\right) \eta_{s}\left(\operatorname{tr}\left(T{ }^{t} U^{-1}\right] C^{-1} D\right)\right)
\end{aligned}
$$

with a similar connotation for the account on \sum as for \amalg^{\prime} earlier and further $\gamma=\beta / s^{(n-r)(n+r+1) / 2}$ and bounded constants $\alpha_{j}^{\prime}(1 \leq j \leq m)$. By Lemma $\frac{1.6 .22}{\approx}$, we know that the number of $\left(D_{3}, D_{4}\right)$ such that $\left(C_{3} D_{3} D_{4}\right)$ runs over $\widetilde{\mathscr{C}}_{n, r}$, for fixed (non-singular) C_{4} with $\delta_{1}, \ldots, \delta_{n-r}$ as elementary divisors is at most $\left(\operatorname{abs} \operatorname{det} C_{4}\right)^{r} \delta_{1}^{n-r} \ldots \delta_{n-r}$. Under the equivalence $\approx C_{4}$ and $V C_{4}$ for V in $G L_{n-r}(\mathbb{Z})$ have to be identified and hence, in order to estimate the number of integral invertible C_{4} with $\delta_{1}, \ldots, \delta_{n-r}$ as elementary divisors, we may assume $C_{4}=\left(\begin{array}{ccc}c_{1} & \ldots & \vdots \\ \vdots & \ddots & c_{i j} \\ 0 & \ldots & c_{n-r}\end{array}\right)$ in triangular form with $c_{1}, \ldots, c_{n-r}>0$ and $0 \leq c_{i j}<c_{i}$ for ${ }^{c_{n-r}} j \geq i$. Since
$\delta_{1}^{n-r} \ldots \delta_{1}=\delta_{1}\left(\delta_{1} \delta_{2}\right) \ldots\left(\delta_{1} \ldots \delta_{n-r}\right) \leq c_{1}\left(c_{1} c_{2}\right) \ldots\left(c_{1} \ldots c_{n-r}\right)$ and the number of such C_{4} for fixed c_{1}, \ldots, c_{n-r} is evidently $\leq c_{2} \ldots c_{n-r}^{n-r-1}$, we may now conclude, in view also of the estimate for Fourier coefficients of cusp derived earlier, the finiteness of the number of K, S^{\prime} and the boundedness of α_{j}^{\prime}, that

$$
\begin{aligned}
& a(T, f ; M)=O\left(\sum _ { \substack { (C _ { 4 } D _ { 3 } D _ { 4 }) \in \tilde { \mathscr { C } } _ { n , r } \\
{ } ^ { t } U \in P (n , r ; Z , Z) \backslash L _ { n } (\mathbb { Z }) } } (\operatorname { d e t } C _ { 1 } / \operatorname { d e t } C _ { 4 }) ^ { k } \left(\operatorname{det}\left(T\left[^{t} U^{-1}\right]\right)^{*} /\right.\right. \\
& \left.\left.\operatorname{det} C_{1}^{2}\right)^{k / 2}\left(\operatorname{det}\left(T T^{t} U^{-1}\right]\right)^{*}\right)^{\frac{r+1}{2}-k} \times(\operatorname{det} T)^{k-(n+1) / 2} \\
& =O\left(\left(\sum_{1 \leq c_{1}, \ldots, c_{n-r}<\infty}\left(c_{1} \ldots c_{n-r}\right)^{-k+r} c_{1}^{n-r} \ldots c_{n-r} c_{2} \ldots c_{n-r}^{n-r-1}\right)\right. \\
& \left(\sum_{t U \in P(n, r, z) \mid G L_{n}(z)}\left(\operatorname{det}\left(T\left[^{t} U^{-1}\right]\right)^{*}\right)^{\frac{r+1-k}{2}}(\operatorname{det} T)^{k-\frac{n+1}{2}}\right) \\
& =\zeta(k-n)^{n-r} O\left(\left(\operatorname{det} T^{*}\right)^{(r+1-k) / 2}(\operatorname{det} T)^{k-(n+1) / 2}\right)
\end{aligned}
$$

since, for the sum over ${ }^{t} U$ which is a Selberg zeta function, we have the above O-estimate involving $\operatorname{det} T^{*}$ and $\operatorname{det} T$, as long as T stays in a fixed Siegel domain (see page 143 and the Theorem on page 144, [17]). This completes the proof of Theorem 1.6.23

Remarks. 1) The case of half-integral $k \geq n+r+1$ can also be dealt with similarly.
2) Let $f(Z)=\sum_{T} a(T) \eta_{s}(\operatorname{tr}(T Z) \in\{n, k, s\}$ for even $k \geq 2 n+2$, such that the constant term of the Fourier expansions at all the cusps vanish. Then, for $T>0$, and $\min (T) \geq \mathscr{X}>0$, we have $a(T)=$ $O\left((\operatorname{det} T)^{k-(n+1) / 2} /(\min (T))^{k / 2-1}\right)$. (This is just Theorem D stated on page 7 and it follows from the reformulation of Theorem 1.6.9 given immediately thereafter and Theorem 1.6.23 on noting that $\left(\operatorname{det} T^{*}\right)^{(r+1-k) / 2} \ll\left(\left(\min \left(T^{*}\right)\right)^{-r(k-r-1) / 2} \leq(\min (T))^{-r(k-r-1) / 2}<\right.$ $(\min T))^{1-k / 2}$, since $r(k-r-1) / 2 \geq k / 2-1$ for $1 \leq r \leq n \leq$ ($k / 2$) -1 .
3) Applying the theorem above to the theta series

$$
\vartheta_{n}(Z, S):=\sum_{G^{(m, n)}} \exp (2 \pi i \operatorname{tr}(S[G] Z))
$$

associated with an integral (m, m) positive-definite matrix S, we get, for the number $r(S, T)$ of integral representations of $T=$ $T^{(n, n)}>0$ by S, an 'asymptotic formula' for $m \geq 4 n+4$:

$$
\begin{gathered}
r(S, T)=2^{n(m-n+1) / 2} \prod_{j=0}^{n-1} \frac{\pi(m-j) / 2}{\Gamma((m-j) / 2)}(\operatorname{det} T)^{\frac{m-n-1}{2}} \prod_{p} \alpha_{p}(S, T)+ \\
+O\left((\operatorname{det} T)^{(m-n-1) / 2} /(\min T)^{\frac{m}{4}-1}\right)
\end{gathered}
$$

as $\min (T)$ tends to infinity.

1.7 Primitive Representations

We fix a natural number n. For $G_{P}=G L_{n}\left(Q_{P}\right) \cap \mathscr{M}_{n}\left(\mathbb{Z}_{P}\right)$ and $U_{P}=$ $G L_{n}\left(\mathbb{Z}_{P}\right), L\left(U_{P}, G_{P}\right)$ stands for a vector space over \mathbb{Q} spanned by left cosets $U_{P} g, g \in G_{P}$. U_{P} acts canonically from the right on $L\left(U_{P}, G_{P}\right)$ and we denote by $H\left(U_{P}, G_{P}\right)$ the set of all invariant elements of $L\left(U_{P}\right.$, $\left.G_{P}\right)$ under this action. The abbreviation $U_{P} g U_{P}\left(g \in G_{P}\right)$ denotes an element $\sum U_{P} g_{i}$ of $H\left(U_{P}, G_{P}\right)$ where $U_{P} g U_{P}=\amalg U_{P} g_{i}$ is a left coset decomposition. It is easy to see that the set $\left\{U_{P} g U_{P} \mid g \in G_{P}\right\}$ is a basis of $H\left(U_{P}, G_{P}\right)$. If we introduce a product in $H\left(U_{P}, G_{P}\right)$ by $\left.\left(\sum a_{i} U_{p} g_{i}\right)\right)$. $\left(\sum b_{j} U_{p} h_{j}\right)$:

$$
=\sum a_{i} b_{j} U_{p} g_{i} h_{j}\left(a_{i}, b_{j} \in \mathbb{Q}, g_{i}, h_{j} \in G_{p}\right),
$$

it is well defined. Let

$$
\begin{aligned}
& \pi_{p}(i):=U_{p}[\underbrace{p, \ldots, p}_{i}, 1, \ldots 1] U_{p}(i=0,1, \ldots n), \\
& T_{p}(k):=\sum_{\substack{r_{1}+\ldots+r_{n}=k \\
r_{1} \geq \ldots \geq r_{n} \geq 0}} U_{p}\left[p^{r_{1}}, \ldots, p^{r_{n}}\right] U_{p} \text { if } k \geq 0, \text { and }
\end{aligned}
$$

$T_{p}(k):=0$ if $k<0$. Then the following is a fundamental result of Tamagawa []:

Lemma 1.7.1. $H\left(U_{p}, G_{p}\right)$ is a commutative ring and

$$
\sum_{h=0}^{n}(-1)^{h} p^{h(h-1) / 2} T_{p}(k-h) \pi_{p}(h)=0 \text { for } k \geq 1
$$

Let V be a vector space over \mathbb{Q} with $\operatorname{dim} V=n$. By a lattice in V we mean a finitely generated \mathbb{Z}-submodule L of V with $\operatorname{rank} L=n$. Let \tilde{V} be the vector space over \mathbb{Q} whose basis is the set of all lattices on V. Then any element of \tilde{V} is a formal sum of lattices on V with rational coefficients. If we consider a lattice L on V as an element of \tilde{V}, then we denote it by $[L]$. Now \tilde{V} becomes a $H\left(U_{P}, G_{P}\right)$ module as follows: Let L be a lattice in V and $g \in G_{P}$. For a fixed basis $\left\{u_{i}\right\}$ of $\mathbb{Z}_{p} \otimes L$, let L_{p}^{\prime} be lattice in $\mathbb{Q}_{p} \otimes V$ spanned by $\left(u_{1}, \ldots, u_{n}\right) g^{-1}$. Then we define $g L=$ $V \cap\left(\bigcap_{q \neq p} \mathbb{Z}_{q} \otimes L \cap L_{p}^{\prime}\right)$. For a left coset decomposition $U_{p} g U_{p}=\amalg U_{p} g_{i}$, $\sum_{i}\left[g_{i} L\right]$ is independent of the choice of the basis $\left\{u_{i}\right\}$ and determined uniquely by $U_{p} g U_{p}$, and L. Hence we can set $U_{p} g U_{p}[L]=\sum_{i}\left[g_{i} L\right]$ where $U_{p} g U_{p}=\coprod U_{p} g_{i}$.

If $\left\{p^{e_{1}}, \ldots, p^{e_{n}}\right\}$ are elementary divisors of $g \in G_{p}$, then $U_{p} g U_{p}[L]$ is a sum in \tilde{V} of lattices M in V such that $M / L \simeq \mathbb{Z} /\left(p^{e_{1}}\right) \oplus \ldots \oplus \mathbb{Z} /\left(p^{e_{n}}\right)$. If $U_{p} g U_{p}=\amalg U_{p} G_{i}, U_{p} h U_{p}=\amalg U_{p} h_{j}$, then $U_{p} h U_{p}\left(U_{p} g U_{p}[L]\right)=$ $U_{p} h U_{p}\left(\sum\left[g_{i} L\right]\right)=\sum_{i j}\left[h_{j} g_{i} L\right]=\left(\left(U_{p} h U_{p}\right)\left(U_{p} g U_{p}\right)\right)[L]$.

Thus V becomes a $H\left(U_{p}, G_{p}\right)$-module.
Theorem 1.7.2. Let V be a regular quadratic space over \mathbb{Q} with $\operatorname{dim} V=$ n, and $B($,$) the bilinear form on V$. Let P be a linear mapping from \tilde{V} to \mathbb{C} such that $P([L])=0$ unless $d(L):=\operatorname{det} B\left(x_{i}, x_{j}\right) \in \mathbb{Z}$ where $\left\{x_{i}\right\}$ is a basis of L.

Putting

$$
\begin{aligned}
R(L): & =\sum_{M \supset L} P(M), \text { we have } \\
P(L) & =\sum_{M \supset L} \pi(M, L) R(M) \text { where }
\end{aligned}
$$

$\pi(M, L)$ is defined as follows: Suppose $\mathbb{Z}_{p} M / \mathbb{Z}_{p} L=\underbrace{\mathbb{Z} /(p) \oplus \ldots \oplus \mathbb{Z} /(p)}_{h_{p}}$
for every prime p; then $\pi(M, L)=\prod_{p}(-1)^{h_{p}} p^{h_{p}\left(h_{p}-1\right) / 2}$ and otherwise, $\pi(M, L)=0$.

Proof. If $M \supset L$, then clearly $d(L)=[M: L]^{2} d(M)$ and so $R(L)$ is a finite sum of nonzero $P(M)$.

By Lemma 1.7.1, we have

$$
\begin{aligned}
P([L]) & =P\left(\sum_{k=0}^{\infty} \sum_{h=0}^{n}(-1)^{h} p^{h(h-1) / 2} T_{p}(k-h) \pi_{p}(h)[L]\right) \\
& =\sum_{h=0}^{n}(-1)^{h} p^{h(h-1) / 2} P\left(\sum_{k=0}^{\infty} T_{p}(k-h) \pi_{p}(h)[L]\right) \\
& =\sum_{k=0}^{n}(-1)^{h} p^{h(h-1) / 2} P\left(\sum_{k=0}^{\infty} T_{p}(k) \pi_{p}(h)[L]\right) \\
& =\sum_{0 \leq h_{1} \ldots, h_{1} \leq n} \sum_{i=1}^{t}(-1)^{h_{i}} p^{h_{i}\left(h_{i}-1\right) / 2} P\left(\sum_{k_{1}, \ldots, k_{t} \geq 0} T_{p_{1}}\left(k_{1}\right) \ldots\right. \\
& =\sum_{0 \leq h_{1}, \ldots, h_{1} \leq n} \prod_{i=1}^{t}(-1)^{h_{i}} p^{h_{i}} p_{h_{i}\left(h_{i}-1\right) / 2} R\left(\pi_{p_{1}}\left(h_{1}\right) \ldots \pi_{p_{t}}\left(h_{t}\right)[L]\right),
\end{aligned}
$$

where p_{1}, \ldots, p_{t} are prime divisors of $d(L)$, since $R(L)=p\left(\prod_{p} \sum_{k} T_{p}(k)\right.$
$164[L])$. Since $\pi_{p_{1}}\left(h_{1}\right) \ldots \pi_{p_{t}}\left(h_{t}\right)[L]$ is a sum in \tilde{V} of lattices M such that $\mathbb{Z}_{p_{i}} M / \mathbb{Z}_{p_{i}} L=\underbrace{\mathbb{Z} /\left(p_{i}\right) \oplus \ldots \oplus \mathbb{Z}\left(P_{i}\right)}_{h_{i}}$, the proof is complete.

In the following, we fix a positive definite quadratic space W over $\mathbb{Q} \operatorname{dim} W=m \geq n$ and a lattice S on W such that $B(x, y) \in \mathbb{Z}, B(x, x) \in$ $2 \mathbb{Z}$ for every $x, y \in S$ where B is a bilinear form on W. For a lattice L on a positive definite quadratic space on V with $\operatorname{dim} V=n$, we denote by $R(L)$ and $P(L)$ the number of isometries from L to S and the number isometries σ from L to S such that $S / \sigma(L)$ is torsion-free. An isometry σ from L to S induces canonically an isometry from V to W and we denote the extension by the same letter σ. Considering $\sigma \mapsto a$ pair
$(\sigma \mid M, M)$ where $M=\sigma^{-1}(\sigma(V) \cap S)$, we obtain $R(L)=\sum_{M \supset L} P(M)$. Hence we have $P(L)=\sum_{M \supset L} \pi(M, L) R(M)$.

Let $\left\{S_{i}\right\}$ be a complete system of representatives of the (finitely many) classes in the genus of S and $E\left(S_{i}\right)$ the order of the group of isometries of S_{i}. Denote by $S W(L)$ (= Siegel's weighted sum)

$$
\left(\sum_{i} E\left(S_{i}\right)^{-1} \sum_{i} \frac{R\left(L ; S_{i}\right)}{E\left(S_{i}\right)}\right.
$$

where $R\left(L ; S_{i}\right)$ is the number of isometries from L to S_{i}, and put $A(L)=$ $R(L)-S W(L)$. If T is an (n, n) matrix corresponding to L, then $A(L)$ is the Fourier coefficient of $e(\operatorname{tr}(T Z))$ for a Siegel modular form of degree n, weight $m / 2$ and some level whose constant term vanishes at every cusp. Put $S W_{P}(L)=\sum_{M \supset L} \pi(M, L) S W(M)$ and $A_{p}(L)=\sum_{M \supset L} \pi(M, L)$ $A(M)$; then $P(L)=S W_{p}(L)+A_{p}(L)$. It is known that

$$
S W_{p}(L)=(\text { some constant depending on } n, S) \times d(L)^{(m-n-1) / 2} \prod_{p} d_{p}(L, S),
$$

where $d_{p}(L, S)$ is a so-called primitive density and for a fixed prime p the number of possible values of $d_{p}(L, S)$ is finite when L runs over regular lattices with rank $L=n$. Moreover if $m \geq 2 n+3$ and $S W_{p}(L) \neq$ 0 , then $S W_{p}(L) \gg d(L)^{(m-n-1) / 2}$, and if $m=2 n+2, S W_{p}(L) \neq 0$, then $S W_{p}(L) \gg \underline{n}(L)^{-\varepsilon} d(L)^{(m-n-1) / 2}$ for any $\varepsilon>0$, where $\underline{n}(L)$ is a natural number defined by $\underline{n}(L) \mathbb{Z}=\mathbb{Z}\{Q(x) \mid x \in L\}$.

Theorem 1.7.3. Suppose that, for every Siegel modular form $f(z)=$ $\sum a(T) e(\operatorname{tr}(T z))$ of degree n, weight $m / 2$ and some level, whose constant term vanishes at each cusp, the estimate $a(T)=O\left(\min (T)^{-\varepsilon}\right.$ $\left.(\operatorname{det} T)^{(m-n-1) / 2}\right)$ holds for $\min T \geq \mathscr{X}$ (= an absolute constant independent of f). If $m \geq 2 n+2$ and ε is a sufficiently small positive number, then $A_{p}(L)=O\left((\min (L))^{-\varepsilon}\left(d(L)^{(m-n-1) / 2}\right)\right.$.

Proof. Let $a \geq \mathscr{X}(a \in \mathbb{Z})$, and without loss of generality we may suppose $B(x, y) \equiv 0 \bmod$ a for any $x, y \in S$. If, then $\min (L)<\mathscr{X}$, $S W(L)=R(L)=A(L)=0$. Hence we may suppose that the estimate for $a(T)$ holds without the restriction " $\min (T) \geq \mathscr{X}$ ". For a positive
definite matrix T and integral non-singular matrix $G, \min \left(T\left[G^{-1}\right)=\right.$ $\min \left(\operatorname{det} G^{-2} . T\left[\operatorname{det} G \cdot G^{-1}\right]>\operatorname{det} G^{-2} \min (T)\right.$. Hence, for $M \supset L$, we have $\min (M) \geq[M: L]^{-2} \min (L)$. From this, we have

$$
\begin{aligned}
A_{p}(L) & =\sum_{M \supset L} \pi(M, L) A(M) \\
= & \sum_{\substack{M \supset L \\
d(M) \in \mathbb{Z}}}|\pi(M, L)| O\left((\min (M))^{-\varepsilon}(d(M))^{(m-n-1) / 2}\right. \\
= & \sum_{\substack{M \supset \\
d(M) \in \mathbb{Z}}}|\pi(M, L)| O\left([M: L]^{2 \varepsilon}(\min (L))^{-\varepsilon} \times\right. \\
& \left.\quad \times\left([M: L]^{-2} d(L)\right)^{(m-n-1) / 2}\right) \\
& <(\min (L))^{-\varepsilon}(d(L))^{(m-n-1) / 2} \sum_{\substack{M \supset L \\
d(M) \in \mathbb{Z}}}|\pi(M, L)|[M: L]^{-(m-n-1)+2 \varepsilon},
\end{aligned}
$$

where the last sum is bounded by

$$
\begin{aligned}
& \prod_{p l d(L)}\left(1+\sum_{1 \leq h \leq n} p^{h(h-1) / 2-h(m-n-1)+2 h \varepsilon+h(n-h)+\alpha)}\right) \\
& \text { for any } \alpha>0 \quad \text { by Lemmal.4.7 } \\
\leq & \prod_{P}\left(1+\sum_{1 \leq h \leq n} p^{h(-h / 2-3 / 2+2 \varepsilon)+\alpha}\right)(m \geq 2 n+2) \\
\leq & \prod_{P}\left(1+n p^{-1.5}\right) \ll 1 .
\end{aligned}
$$

If $n=1$ and $m \geq 4$, then the supposition in Theorem 1.7.3 is valid and leads us to an asymptotic formula for $A_{p}(L)$; we can thus conclude that if a natural number t is primitively represented by S at every prime, then t is primitively represented globally by S if t is sufficiently large. A similar assertion is also true for $n=2, m \geq 7$. Let $n=2, m=6$. The error term is $O\left((\min (L))^{-\varepsilon} \log \frac{\sqrt{d(L)}}{\min (L)}(d(L))^{3 / 2}\right)$ by Theorem1.5.13 under the Assumption (*). Since $\frac{\sqrt{d(M)}}{\min (M)} \leq \frac{\sqrt{d(L)}}{\min (L)}[M: L]$ for $M \supset L$, $\log \frac{\sqrt{d(M)}}{\min (M)} \leq \log \frac{\sqrt{d(L)}}{\min (L)}+O\left([M: L]^{\alpha}\right)$ for any $\alpha>0$. Similarly, we
1.7. Primitive Representations 137

$$
\text { get } A_{p}(L)=O\left((\min (L))^{-\varepsilon} \log \frac{\sqrt{d(L)}}{\min (L)}(d(L))^{3 / 2}\right)
$$

Chapter 2

Arithmetic of Quadratic Forms

[^0]
2.0 Notation and Terminology

Let k be a field with characteristic $\neq 2$, and $\underline{\varrho}(\ni 1)$ a ring contained in k (with k as quotient field).

Let M be an \underline{o}-module and Q a mapping from M to k such that
(1) $Q(a x)=a^{2} Q(x)$ for $a \in \underline{o}$ and $x \in M$
(2) $Q(x+y)-Q(x)-Q(y)=2 B(x, y)$ is a symmetric bilinear form. Then we call the triple (M, Q, B) or simply M a quadratic module over o, and Q (resp. B) the quadratic form (resp. the bilinear form associated with M.

Hereafter, we consider only modules which are finitely generated and torsion-free.

2.0 .0

Let M be a quadratic module over \underline{o} and suppose that M has a basis $\left\{v_{i}\right\}$ over \underline{o}. Then we write $M=<\left(B\left(v_{i}, v_{j}\right)\right)>; \operatorname{det}\left(B\left(v_{i}, v_{j}\right)\right)$ is determined up to multiplication by an element of $\underline{o}^{x^{2}}=\left\{x^{2} \mid x \in \underline{o}^{x}\right\}$. Now $\operatorname{det}\left(B\left(v_{i}, v_{j}\right)\right) \underline{O}^{x^{2}}$ is called the discriminant of M and denoted by $d(M)$ (= disc (Q) in $[S])$. If $d(M) \neq 0$, then we say that M is regular $(=$ non-degenerate in [S]]. We write $d(M)=\left(\operatorname{det}\left(B\left(v_{i}, v_{j}\right)\right)\right.$ if there is no ambiguity.

2.0.0

Let M, M^{\prime} be quadratic modules over \underline{o}. If f is an injective linear mapping form M to M^{\prime} which satisfies

$$
Q(f(x))=Q(x) \text { for } x \in M
$$

then f is called an isometry from M to M^{\prime} (= injective metric morphism in $[S]$), and we say that M is represented by M^{\prime}. If, moreover, f is surjective, then M and M^{\prime} are called isometric (= isomorphic in $[S]$) and we write $f: M \cong M^{\prime}$ (or $M \cong M^{\prime}$). The group of all isometries from M onto M is denoted by $O(M) ; 0^{+}(M)$ stands for $\{x \in 0(M) \mid \operatorname{det} x=1\}$.

2.0.1.1

Let M be a quadratic module over \underline{o} and suppose that M is the direct sum of submodules M_{1}, \ldots, M_{n}. If, for any different indices i, j,

$$
B(x, y)=0 \text { for } x \in M_{i} \text { and } y \in M_{j}
$$

then we write

$$
M=M_{1} \perp \ldots \perp M_{n}
$$

($\hat{\oplus}$ is used in [S] instead of \perp).

2.0.2.2

Let M be a quadratic module over \underline{o} and N a subset of M. We denote by $N^{\perp}\left(=N^{0}\right.$ in [S]) the orthogonal complement of N, i.e.,

$$
N^{\perp}=\{x \in M \mid B(x, N)=0\} .
$$

2.0.3.3

Let V be a quadratic module over k and M an \underline{o}-module on V. We call M a (o-) lattice if $k M=V$.

2.0.4.4

Let M be a quadratic module over \underline{o} and suppose that M contains a nonzero isotropic vector x, that is, $M \ni x \neq 0, Q(x)=0$. Then M is called an isotropic quadratic module. (This definition is different from [S].) If M contains no (non-zero) isotropic element, M is said to be anisotropic.

2.0.5.5

Let $K \supset k$ be fields and $K \supset \underline{\widetilde{\sigma}}, k \supset \underline{o}$ rings and suppose that $\underline{\widetilde{\sigma}} \supset \underline{o}$. For a quadratic module M over $\underline{o}, \underline{\widetilde{o}} M$ denotes a canonically induced quadratic module $\underset{\underline{\sigma}}{\underset{\sigma}{\sigma}} \otimes M$ over $\underline{\widetilde{\sigma}} \underset{\sim}{\sigma}$. Let M (resp. V) be a quadratic module over \mathbb{Z} (resp. \mathbb{Q}). For a prime number p, we denote by M_{p}, V_{p} quadratic modules $\mathbb{Z}_{p} M, \mathbb{Q}_{p} V$ respectively. For $p=\infty$, we write $\mathbb{R} M, \mathbb{R} V$ for M_{∞}, V_{∞}.

2.1 Quadratic Modules Over \mathbb{Q}_{p}

In this paragraph, p is a prime number and we denote by $\underline{o}=\mathbb{Z}_{p}, k=\mathbb{Q}_{p}$ the ring of p-adic integers and the field of p-adic numbers.

2.1.0

Let V be a regular quadratic module over k. Suppose

$$
V=<a_{1}>\perp \ldots \perp<a_{n}>\left(a_{i} \in k^{x}\right)
$$

that is, there is a basis $\left\{v_{i}\right\}$ such that $Q\left(v_{i}\right)=a_{i}, B\left(v_{i}, v_{j}\right)=0$ for $i \neq j$. Then $S(V)=\prod_{i \leq j}\left(a_{i}, a_{j}\right)(=\varepsilon(V)(d V,-1)$ in the sense of $[S])$ where $($,$) -$ the Hilbert symbol of k-is an invariant of V and we quote the following theorem from ([S], p.39).

Theorem 2.1.1. Regular quadratic modules over k are classified by $d(V), S(V), \operatorname{dim} V$.

170 Corollary. Let V, W be regular quadratic modules over k. If $\operatorname{dim} V+3 \leq$ $\operatorname{dim} W$, then V is represented by W.

Proof. Without loss of generality, we may assume $\operatorname{dim} V+3=\operatorname{dim} W$. Let a, b, c be non-zero elements of k which satisfy

$$
\left\{\begin{array}{l}
c k^{x^{2}}=d(V) \cdot d(W) \\
-a c \notin k^{x^{2}} \\
S(W)=(c, d(V))(a, c)(a b, a c)(b c,-1) S(V)
\end{array}\right.
$$

and put $W^{\prime}=<a>\perp<a b>\perp<b c>\perp V$.
After simple manipulations, we get

$$
d(W)=d\left(W^{\prime}\right), S(W)=S\left(W^{\prime}\right), \operatorname{dim} W=\operatorname{dim} W^{\prime}
$$

The theorem implies that $W \cong W^{\prime}$.

2.1.0 Modular and Maximal Lattices

Let M be a regular quadratic module over \underline{O}.
By the scale $s(M)$ (resp. the norm $\underline{n}(M)$) of M we mean an $\underline{\underline{o}}$-module in k generated by

$$
B(x, y) \quad \text { for } \quad x, y \in M(\text { resp. } Q(x) \quad \text { for } \quad x \in M) .
$$

$2 s(M) \subset \underline{n}(M) \subset s(M)$ follows from $Q(x+y)-Q(x)-Q y)=2 B(x, y)$ and $Q(x)=B(x, x)$. Hence $\underline{n}(M)$ is $s(M)$ or $2 s(M)$.

If there exist $a \in k^{x}$ and a symmetric matrix $A \in \mathscr{M}_{n}(\underline{o})$ with $\operatorname{det} A \in$ \underline{o}^{x} such that

$$
M=<a A>
$$

then we call $M((a)-)$ modular. When $a \in \underline{o}^{x}, M$ is said to be unimodular.
If M is (a)-modular, then $s(M)$ is equal to (a). We call $M((a)$-) maximal $\left(a \in k^{x}\right)$ if $n(M) \subset(a)$ and M is the only lattice N which satisfies $M \subset N \subset k M$ and $\underline{n}(N) \subset(a)$.

The fundamental fact on maximal lattices is the following
Theorem 2.1.2. Let V be a regular quadratic module over k and $a \in k^{x}$. If M, N are (a)-maximal lattices on V, then M, N are isometric.

To prove this, we need several lemmas.
Lemma 2.1.1. Let V be a regular quadratic module over k with $\operatorname{dim} V=$ n and M a lattice on V. If $\underline{n}(M) \subset(a)\left(a \in k^{x}\right)$ and $\left(2^{n} a^{-n} d(M)\right)=\underline{o}$ or (p), then M is (a)-maximal.

Proof. Suppose that a lattice N on V contains M and $\underline{n}(N) \subset(a)$. Then $d(M)=[N: M]^{2} d(N)$, as is obvious. Since $(d(N)) \subset s(N)^{n} \subset\left(2^{-1}\right.$ $\underline{n}(N))^{n} \subset(a / 2)^{n}$, we have $\left(2^{n} a^{-n} d(N)\right) \subset \underline{o}$. Then it implies
\underline{o} or $\quad(p)=\left(2^{n} a^{-n} d(M)\right)=[N: M]^{2}\left(2^{n} a^{-n} d(N)\right) \subset[N: M]^{2} \underline{o}$.
From this it follows that $[N: M]=1$ and M is maximal.
Corollary. If M is a unimodular lattice with $\underline{n}(M) \subset(2)$, then M is (2)-maximal.

Proof. Since $\underline{n}(M)=(2)$ follows, Lemma 2.1.1 yields immediately the corollary.

Lemma 2.1.2. Let $V=<\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>$ be a hyperbolic plane over k and $M a$ lattice on V. The following assertions are equivalent:
(1) M is $(2 a)$-maximal $\left(a \in k^{x}\right)$,
(2) M is (a)-modular with $\underline{n}(M) \subset(2 a)(=2 s(M))$,
(3) $M=<\left(\begin{array}{ll}0 & a \\ a & 0\end{array}\right)>$.

Proof. (3) $\Rightarrow(2)$ is trivial.
$(2) \Rightarrow(1): n(M)=(2 a),(d M)=\left(a^{2}\right)$ and Lemma 1 complete this step.
$(1) \Rightarrow(3)$: Since any isotropic primitive vector of M is extended to a basis of M, there exists a basis $\left\{e_{i}\right\}$ of M such that $\left(B\left(e_{i}, e_{j}\right)\right)=\left(\begin{array}{ll}0 & b \\ b & c\end{array}\right)$, $b, c \in k . Q\left(e_{2}\right)=c, Q\left(e_{1}+e_{2}\right)=2 b+c \in n(M) \subset(2 a)$ imply $c \in(2 a), b \in(a)$. Suppose $b p^{-1} \in(a)$. Since $Q\left(a_{1} p^{-1} e_{1}+a_{2} e_{2}\right)=$ $2 a_{1} a_{2} p^{-1} b+a_{2}^{2} c \in(2 a)$ for $a_{1}, a_{2} \in \underline{o}, M \varsubsetneqq L=\underline{o}\left[p^{-1} e_{1}, e_{2}\right]$ and $n[L] \subset(2 a)$. This is a contradiction. Therefore we have $a=b u\left(u \in \underline{o}^{x}\right)$ and $M=\underline{o}\left[u e_{1}, e_{2}-\frac{c}{2 b} e_{1}\right]=<\left(\begin{array}{cc}0 & a \\ a & 0\end{array}\right)>$.

Lemma 2.1.3. Let V be a regular quadratic module over k and $M a$ lattice on V. Suppose that L is a modular o-module in $M . B(L, M) \subset$ $s(L)$ if and only if $M=L \perp K$ for some module K.

Proof. Let $s(L)=(a)$. Suppose that $M=L \perp K$. Then $B(L, M)=$ $B(L, L)=s(L)$. Conversely, suppose $B(L, M) \subset(a)$. We define a submodule L by $L^{\perp}=\{x \in M \mid B(L, x)=0\}$. Then $L \perp L^{\perp} \subset M$ and $k L \perp k L^{\perp}=k M$. Take any element $x \in M$ and decompose x as $x=y+z\left(y \in k L, z \in k L^{\perp}\right)$. Then $B(L, y)=B(L, x) \subset B(L, M) \subset(a)$. Let $\left\{v_{j}\right\}$ be a basis of L, then $\left(B\left(v_{i}, v_{j}\right)\right)=a\left(a_{i j}\right)$, $\operatorname{det}\left(a_{i j}\right) \in \underline{o}^{x}$ for $a_{i j} \in \underline{o}$. Put $y=\sum c_{j} v_{j}\left(c_{j} \in k\right)$ and $B\left(v_{i}, y\right)=a a_{i}\left(a_{i} \in \underline{o}\right)$. These imply $\left(c_{1}, \ldots, c_{n}\right) a\left(a_{i j}\right)=a\left(a_{1}, \ldots, a_{n}\right)$ and then $c_{i} \in \underline{o}$. Hence we have $y \in L$, and $z \in L^{\perp}$ with $L \subset M$. Thus $L \perp L^{\perp}=M$ follows.

Lemma 2.1.4. Let V be a regular quadratic module over k and M an (a)-maximal lattice on V. For an isotropic primitive element x of M, there is an isotropic element y of M such that $M=\underline{o}[x, y] \perp *$, $\underline{o}[x, y]=<\left(\begin{array}{cc}0 & a / 2 \\ a / 2 & 0\end{array}\right)>$.
Proof. By definition, $B(x, M) \subset s(M) \subset \frac{1}{2} \underline{n}(M) \subset \frac{1}{2}(a)$ holds. Suppose $B(x, M) \subset \frac{1}{2}(p a)$. Then, for every $w \in M$, we have $Q\left(w+p^{-1} x\right)=$ $Q(w)+2 p^{-1} B(w, x) \in(a)$. Hence $\underline{n}\left(M+p^{-1} \underline{o} x\right) \subset(a)$ follows. This contradicts M being (a)-maximal since $M+p^{-1} \underline{o} x \supsetneqq M$. Taking an element $z \in M$ such that $B(x, z)=\frac{1}{2} a$, we put $y=z-a^{-1} Q(z) x \in M$;
$\underline{o}[x, y]=<\frac{a}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>\subset M$ is $(a / 2)$-modular and $B(\underline{o}[x, y], M) \subset s(M) \subset$ $\left(\frac{a}{2}\right)$. We may now apply Lemma 2.1.3 to complete the proof.

Lemma 2.1.5. Let V be an anisotropic quadratic module over k and M an (a)-maximal lattice. Then we have

$$
M=\{x \in V \mid Q(x) \in(a)\} .
$$

Proof. We have only to prove $Q(x+y) \in(a)$ if $Q(x), Q(y) \in(a)$. Suppose that $2 B(x, y) \notin(a)$ for some $x, y \in V$ with $Q(x), Q(y) \in(a)$. Then $\left(2 B(x, y) p^{n}\right)=(a)$ for some $n \geq 1$. This implies

$$
d(x, y)=Q(x) Q(y)-B(x, y)^{2}=-B(x, y)^{2}\left(1-Q(x) Q(y) / B(x, y)^{2}\right)
$$

and $\left(Q(x) Q(y) B(x, y)^{-2}\right)=\left(Q(x) Q(y) a^{-2} 4 p^{2 n}\right) \subset\left(4 p^{2 n}\right)$. Hence $-d(x, y) \in k^{x^{2}}$ follows and then $k[x, y]$ is a hyperbolic plane and V is isotropic. This is a contradiction. Thus $2 B(x, y) \in(a)$ and $Q(x+y) \in$ (a).

Lemma 2.1.6. Let V be a regular quadratic module over k and M an (a)-maximal lattice on V. Then there are hyperbolic planes H_{i}, and an anisotropic submodule V_{0} of V such that

$$
\begin{aligned}
& V=\perp H_{i} \perp V_{0} \\
& M=\perp\left(M \cap H_{i}\right) \perp\left(M \cap V_{0}\right), \\
& M \cap H_{i}=<\left(\begin{array}{cc}
0 & a / 2 \\
a / 2 & 0
\end{array}\right)>, \\
& M \cap V_{0}=\left\{x \in V_{0} \mid Q(x) \in(a)\right\} .
\end{aligned}
$$

Proof. This follows inductively from Lemmas 2.1.4 and 2.1.5
In Lemma2.1.6 the number of hyperbolic planes and V_{0} up to isometry are uniquely determined by Witt's theorem. This proves the theorem.

Lemma 2.1.7. Let V be a regular quadratic module over k and L an \underline{o}-submodule in V with $\underline{n}(L) \subset(a)\left(a \in k^{x}\right)$. Then there exists an (a) maximal lattice on V containing L.

Proof. Suppose that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of L over \underline{o}, and $\left\{v_{1}, \ldots, v_{n}\right.$, $\left.\ldots, v_{m}\right\}$ is a basis of V over k. Put $M=\left\{v_{1}, \ldots, v_{n}, p^{t} v_{n+1}, \ldots, p^{t} v_{m}\right\}$. It is easy to see $\underline{n}(M) \subset(a)$ for a sufficiently large integer t. Here we note the following two facts. (i) For lattice $K \varsubsetneqq N$ on $V, d(K) / d(N) \equiv 0$ $\bmod p^{2}$. (ii) For a lattice K on V with $n(K) \subset(a), d(K) \subset s(K)^{m} \subset$ $\left(\frac{1}{2} \underline{n}(K)\right)^{m} \subset(a / 2)^{m}$. If M is not (a)-maximal, then there is a lattice M_{1} on V with $M \subset M_{1}$. If M_{1} is not (a)-maximal, repeat the preceding step and continue in this way. However, this process must terminate at a finite stage, and the last lattice is (a)-maximal.

Proposition 2.1.10. Let V, W be regular quadratic modules over k with $\operatorname{dim} V+3 \leq \operatorname{dim} W$, and M a maximal lattice on W. Then every lattice L on V is represented by M if $\underline{n}(L) \subset \underline{n}(M)$.

Proof. From the Corollary to Theorem 2.1.1, V is represented by W. Theorem 2.1.2 and Lemma2.1.7 imply the proposition.

2.1.0 Jordan Splittings

Let L be a regular quadratic module over \underline{o}. We claim that L is an orthogonal sum of modular modules of rank $\overline{1}$ or 2 . Suppose that there is an element $x \in L$ with $(Q(x))=s(L)$. Then, since $\underline{o} x$ is $(Q(x))$-modular, Lemma 2.1.3 implies $L=\underline{o} x \perp *$. Next, suppose that $(Q(x)) \neq s(L)$ for every $x \in L$. Since $Q(x)=B(x, x) \in s(L)$ for $x \in L$, we have $Q(x) \in p s(L)$ for $x \in L$. Hence, for $x, y \in L$ with $(B(x, y))=s(L)$, it is obvious that $\underline{o}[x, y)$ is $s(L)$-modular. Again by the same lemma, L is split by $\underline{o}[x, y]$. Grouping modular components of the above splitting, we have a Jordan splitting

$$
\text { (\#) } \quad L=L_{1} \perp \ldots \perp L_{t} \text {. }
$$

where every L_{i} is modular and $s\left(L_{1}\right) \supsetneqq \ldots \supsetneqq s\left(L_{t}\right)$.
For a quadratic module M we put $M(a)=\{x \in M \mid B(x, M) \subset(a)\}(a \in$ $k)$. Suppose that M is (b)-modular. Then it is easy to see $M(a)=M$ or $a b^{-1} M$ according as $(b) \subset(a)$ or $(b) \supsetneqq(a)$ respectively. Hence $s(M(a)) \subset(a)$; further $s(M(a))=(a)$ if and only if $(a)=(b)$. On the
other hand, we have $L(a)=L_{1}(a) \perp \ldots \perp L_{t}(a)$ for (\sharp). The above argument implies $s(L(a))=(a)$ if and only if $(a)=s\left(L_{i}\right)$ for some i. Thus the number t and $s\left(L_{i}\right)$ in the decomposition (\sharp) are uniquely determined. Fix any i and take $a \in k^{x}$ with $(a)=s\left(L_{i}\right)$. Then $B\left(L_{j}(a), L_{j}(a)\right) \subset(p a)$ for $j \neq i$; further $L_{i}(a)=L_{i}$ is (a)-modular. Set $V=L(a) / p L(a)$ and $B^{\prime}(x, y)=a^{-1} B(x, y) \in \mathbb{Z} /(p)$ for $x, y \in V$. Then V is a vector space over $\mathbb{Z} /(p)$ and B^{\prime} is a symmetric bilinear form. B^{\prime} is identically zero on the images of $L_{j}(a)(j \neq i)$ on V and gives a regular matrix on the image of $L_{i}(a)$ on V. Hence we get $\operatorname{dim}\left\{x \in V \mid B^{\prime}(x, V)=0\right\}=\sum_{j \neq i} \operatorname{rank} L_{j}$. Thus rank L_{i} is also uniquely determined by L. If $\underline{n}\left(L_{i}\right) \neq s\left(L_{i}\right)$, then $p=2$ and $2 s\left(L_{i}\right)=\underline{n}\left(L_{i}\right)$, and it is the case if and only if $B^{\prime}(x, x)$ is identically zero for $x \in V$. This condition being satisfied or not is determined by L and $s\left(L_{i}\right)$. Thus we have proved

Proposition 2.1.11. Let L be a regular quadratic module over \underline{o}. Then there is a decomposition

$$
L=L_{1} \perp \ldots \perp L_{t}
$$

where every L_{i} is modular and $s\left(L_{1}\right) \supsetneqq \ldots \supsetneqq s\left(L_{t}\right)$. Moreover the number $t, s\left(L_{i}\right)$, rank L_{i} and the equality of $\underline{n}\left(L_{i}\right)$ and $s\left(L_{i}\right)$ or otherwise are uniquely determined by L.

Proposition 2.1.12. Suppose $p \neq 2$. Let L be a unimodular quadratic module over $\underline{\text { o. Then }} L=<1>\perp \ldots \perp<1>\perp<d(L)>$. If rank $L \geqq 3$, $Q(L)=\underline{o}$.

Proof. For a unimodular module M, suppose $(Q(x)) \neq \underline{o}(=s(M))$ for every $x \in M$. Then we have $\underline{o}=s(M) \subset \frac{1}{2} \underline{n}(M) \subset(p / 2)$. This is a contradiction. Thus the proof of the previous propositions shows $L=<u_{1}>\perp L_{1}\left(u_{1} \in \underline{o}^{x}\right)$. Since L is unimodular L_{1} is also unimodular. Repeating this argument, we have $L=<u_{1}>\perp \ldots \perp<u_{n}>\left(u_{i} \in \underline{o}^{x}\right)$. Since the Hasse invariant of $k L$ is $1,<u_{1}>\perp \ldots \perp<u_{n}>$ and $<1>\perp \ldots \perp<1>\perp<d(L)>$ are isometric over k after the extension of coefficient ring from \underline{o} to k, and they are \underline{o}-maximal by Corollary to Lemma 2.1.1 Hence they are isometric, by Theorem 2.1.2 If
rank $L \geqq 3$, then $L \cong<\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>\perp *$ holds. Therefore it follows that $Q(L)=\underline{o}$.

177 Proposition 2.1.13. Suppose $p=2$. Let L be a unimodular quadratic module over $\underline{o} . L$ has an orthogonal basis if and only if $\underline{n}(L)=s(L)$. Otherwise L is an orthogonal sum of $\left\langle\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\right\rangle \perp<$ $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)>$ is isometric to $<\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>\perp<\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>$.
Proof. As in the proof of Proposition 2.1.13, we have a decomposition

$$
L=L_{1} \perp L_{2}
$$

where $L_{1}=<u_{1}>\perp \ldots \perp<u_{t}>\left(u_{i} \in \underline{o}^{x}\right), L_{2}$ is an orthogonal sum of $<\left(\begin{array}{cc}2 a_{i} & b_{i} \\ b_{i} & 2 c_{i}\end{array}\right)>\left(a_{i}, c_{i} \in \underline{o}, b_{i}, \in \underline{o}^{x}\right)$. Moreover, $n(L)=s(L)$ if and only if $\operatorname{rank} L_{1} \geqq 1$. Suppose $M=\underline{o} x_{1} \perp \underline{o}\left[x_{2}, x_{3}\right]$ and $Q\left(x_{1}\right) \in \underline{o}^{x}$, $\left(B\left(x_{i}, x_{j}\right)\right)_{i, j=2,3}=\left(\begin{array}{cc}2 a & b \\ b & 2 c\end{array}\right), a, b, c \in \underline{o}, \bar{b} \in \underline{o}^{x}$. Then $N=\underline{o}\left[x_{1}+x_{2}, x_{3}\right]$ is unimodular and $Q\left(x_{1}+x_{2}\right) \in \underline{o}^{x}$. The proof of Proposition 2.1.11shows that N has an orthogonal basis and M is isometric to $N \perp *$ by Lemma 2.1.3 Thus M has an orthogonal basis. This proves the first assertion. Let $K=\underline{o}\left[v_{1}, v_{2}\right],\left(B\left(v_{i}, v_{j}\right)\right)=\left(\begin{array}{cc}2 a & b \\ b & 2 c\end{array}\right)\left(a, b, c \in \underline{o}, b \in \underline{o}^{x}\right)$. Then $k K$ is isometric to $<2 a>\perp<2 a d>, d=4 a c-b^{2} \equiv-1 \bmod 4$. After easy manipulations, the Hasse invariant $S(k K)$ is 1 (resp. -1) according as $d \equiv 3($ resp. 7) mod 8 . Hence by virtue of Theorem 2.1.1 $k K$ is isometric to $<\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)>\left(\right.$ resp. $\left.<\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>\right)$ if $d \equiv 3$ (resp. 7) mod 8. Since they are (2)-maximal by Lemma 2.1.1 they are isometric by Theorem 2.1.2 By Theorem 2.1.1 again, it is easy to see $<\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)>\perp<\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)>\perp<\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>$ over k. Over \underline{O}, they are (2)-maximal by Lemma 2.1.1 and then they are isometric.

2.1.0 Extension Theorems

Let V, W be quadratic modules over k and M a (o)-lattice on V. Suppose that

$$
u: M \rightarrow W
$$

is a linear mapping over \underline{o}. Then, putting, for $w \in W$,

$$
B_{u}(w)(x)=B(u(x), w) \quad \text { for } \quad x \in M
$$

we obtain $B_{u}(w) \in \operatorname{Hom}(M, k)$. The following theorem is fundamental.
Theorem 2.1.14. Suppose that there is an o-submodule G in W such that, for $k \in \mathbb{Z}$, the conditions

$$
(\sharp)_{k}\left\{\begin{array}{l}
\operatorname{Hom}(M, \underline{o})=\left\{B_{u}(w) \mid w \in G\right\}+\operatorname{Hom}(M, p o), \\
p^{k-1} n(G) \subset 2 \underline{o}, \\
Q(u(x)) \equiv Q(x) \quad \bmod 2 p^{k} \underline{o} \quad \text { for } \quad x \in M
\end{array}\right.
$$

are satisfied. Then there is an element $u^{\prime} \in \operatorname{Hom}(M, W)$ satisfying

$$
u^{\prime}(x) \equiv u(x) \quad \bmod p^{k} G \quad \text { for } \quad x \in M \quad \text { and } \quad(\sharp)_{k+1} .
$$

If, moreover, V is regular, there is an isometry u_{0} from M to W satisfying

$$
u_{0}(x) \equiv u(x) \quad \bmod p^{k} G \quad \text { for } \quad x \in M .
$$

Proof. Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of M. Put

$$
\begin{array}{r}
a\left(\sum x_{i} v_{i}, \sum y_{i} v_{i}\right)=\frac{1}{2} p^{-k} \sum_{i}\left(Q\left(u\left(v_{i}\right)\right)-Q\left(v_{i}\right)\right) x_{i} y_{i}+p^{-k} \\
\sum_{i<j}\left(B\left(u\left(v_{i}\right), u\left(v_{j}\right)\right)-B\left(v_{i}, v_{j}\right)\right) x_{i} y_{j}
\end{array}
$$

Since $Q\left(\sum w_{i}\right)=Q\left(w_{i}\right)+2 \sum_{i<j} B\left(w_{i}, w_{j}\right)$, we have

$$
2 p^{k} a(x, x)=Q(u(x))-Q(x) \quad \text { for } \quad x \in M .
$$

It is obvious that

$$
\begin{gathered}
\frac{1}{2} p^{-k}\left(Q\left(u\left(v_{i}\right)\right)-Q\left(v_{i}\right)\right) \in \underline{o} \text { and } \\
p^{-k}\left\{B\left(u\left(v_{i}\right), u\left(v_{j}\right)\right)-B\left(v_{i}, v_{j}\right)\right\}=\frac{1}{2} p^{-k}\left\{Q\left(u\left(v_{i}+v_{j}\right)\right)-Q\left(u\left(v_{i}\right)\right)\right. \\
-Q\left(u\left(v_{j}\right)\right)-Q\left(v_{i}+v_{j}\right)+Q\left(v_{i}\right) \\
\left.+Q\left(v_{j}\right)\right\} \in \underline{o} .
\end{gathered}
$$

Thus $a(x, y)$ is an \underline{o}-valued bilinear form on M. Therefore, for each i, there exist $g_{i} \in G$ and $m_{i} \in \operatorname{Hom}(M, p \underline{o})$ such that

$$
a\left(x, v_{i}\right)=B\left(u(x), g_{i}\right)+m_{i}(x) \quad \text { for } \quad x \in M
$$

Making use of g_{i}, we define $v \in \operatorname{Hom}(M, G)$ by

$$
v\left(\sum x_{i} v_{i}\right)=-\sum x_{i} g_{i}\left(x_{i} \in \underline{o}\right) .
$$

We put $u^{\prime}(x)=u(x)+p^{k} v(x)$. Then $u^{\prime}(x) \equiv u(x) \bmod p^{k} G$ is obvious for $x \in M$. We must verify the property $(\sharp)_{k+1}$ for u^{\prime}. For $x \in M, w \in G$, we have

$$
\begin{aligned}
B_{u^{\prime}}(w)(x) & =B\left(u^{\prime}(x), w\right)=B(u(x), w)+p^{k} B(v(x), w) \\
& =B_{u}(w)(x)+p^{k} B(v(x), w)
\end{aligned}
$$

Here the linear mapping $x \rightarrow p^{k} B(v(x), w)$ is in $\operatorname{Hom}(M, p o)$ since $p^{k} B(v(x), w) \in p^{k} s(G) \in \frac{1}{2} p^{k} \underline{n}(G) \subset p \underline{o}$. Hence the first equation is valid for u^{\prime}.

For $x=\sum x_{i} v_{i} \in M$, we have

$$
\begin{aligned}
Q\left(u^{\prime}(x)\right) & =Q(u(x))+p^{2 k} Q(v(x))+2 p^{k} B(u(x), v(x)) \\
& =Q(u(x))+p^{2 k} Q(v(x))+2 p^{k}\left(-\sum x_{i} B\left(u(x), g_{i}\right)\right) \\
& =Q(u(x))+p^{2 k} Q(v(x))-2 p^{k}\left(a(x, x)-\sum x_{i} m_{i}(x)\right) \\
& =Q(x)+p^{2 k} Q(v(x))+2 p^{k} \sum x_{i} m_{i}(x) .
\end{aligned}
$$

$180 \quad$ Here $p^{2 k} Q(v(x)) \in p^{2 k} \underline{n}(G) \subset 2 p^{k+1} \underline{o}, 2 p^{k} \sum x_{i} m_{i}(x) \in 2 p^{k+1} \underline{o}$ hold. Thus the third property of $(\sharp)_{k+1}$ holds for u^{\prime}, and the former part of Theorem 2.1.14 is proved. Repeating this argument inductively, there is an element $u_{\ell} \in \operatorname{Hom}(M, W)(\ell \geq 1)$ satisfying

$$
\begin{aligned}
Q\left(u_{\ell}(x)\right) & \equiv Q(x) \quad \bmod 2 p^{k+\ell} \underline{o} \quad \text { for } \quad x \in M \\
u_{\ell}(x) & \equiv u(x) \quad \bmod p^{k} G \quad \text { for } \quad x \in M
\end{aligned}
$$

Hence there is an element $u_{0} \in \operatorname{Hom}(M, W)$ such that

$$
Q\left(u_{0}(x)\right)=Q(x) \quad \text { and } \quad u_{0}(x) \equiv u(x) \quad \bmod p^{k} G \quad \text { for } \quad x \in M
$$

Suppose $u_{0}(y)=0$ for $y \in M$. Then we have

$$
B(y, M)=B\left(u_{0}(y), u_{0}(M)\right)=0
$$

If V is regular, then $y=0$ follows. Hence u_{0} is injective and indeed an isometry. This completes the proof of Theorem 2.1.14

Definition. Let V be a quadratic module over k and M a lattice on V. Then we denote by M^{\sharp}

$$
\{x \in V \mid B(x, M) \subset \underline{o}\} .
$$

Corollary 1. Let V, W be regular quadratic modules over k and M, N lattices on V, M respectively. Let h be an integer such that

$$
p^{h} \underline{n}\left(M^{\sharp}\right) \subset 2 \underline{o} .
$$

If $u \in \operatorname{Hom}(M, N)$ satisfies

$$
Q(x) \equiv Q(u(x)) \quad \bmod 2 p^{h+1} \underline{o} \quad \text { for } \quad x \in M,
$$

then there exists an isometry u^{\prime} from M to N such that

$$
\begin{aligned}
& u^{\prime}(M)=u(M) \\
& u^{\prime}(x) \equiv u(x) \quad \bmod p^{h+1} u\left(M^{\sharp}\right) \quad \text { for } \quad x \in M .
\end{aligned}
$$

In particular, we have $u^{\prime}: M \cong u(M)$.
Proof. We claim that u is injective. Suppose that $u(x)=0$ for $0 \neq x \in$ M. Without loss of generality, we may assume that x is primitive in M. Hence there exists $x^{\prime} \in M^{\sharp}$ satisfying $B\left(x, x^{\prime}\right)=1.2 s\left(M^{\sharp}\right) \subset \underline{n}\left(M^{\sharp}\right) \subset$ $2 p^{-h} \underline{o}$ implies $B\left(p^{h} M^{\sharp}, M^{\sharp}\right) \subset \underline{o}$ and then $p^{h} M^{\sharp} \subset\left(M^{\sharp}\right)^{\sharp}=M$. Thus $p^{h} x^{\prime}$ is in M. From

$$
\begin{aligned}
Q\left(x+p^{h} x^{\prime}\right) & \equiv Q\left(u\left(p^{h} x^{\prime}\right)\right) \quad \bmod 2 p^{h+1} \underline{o} \\
& \equiv Q\left(p^{h} x^{\prime}\right) \quad \bmod 2 p^{h+1} \underline{o}
\end{aligned}
$$

we have $0 \equiv Q(x)+2 p^{h} \equiv Q(u(x))+2 p^{h} \equiv 2 p^{h} \bmod 2 p^{h+1} \underline{o}$. This is a contradiction. Thus u is injective. Let φ be an element of $\operatorname{Hom}(M, \underline{o})$.

Then $\varphi(x)=B(x, z)$ for some $z \in M^{\sharp}$. We show that $(\sharp)_{h+1}$ holds for $G=u\left(M^{\sharp}\right)$. For $x \in M$, we have

$$
p^{h} \varphi(x)=B\left(x, p^{h} z\right) \equiv\left(B\left(u(x), p^{h} u(z)\right) \quad \bmod p^{h+1} \underline{o}\right.
$$

and then $\varphi(x) \equiv B(u(x), u(z)) \bmod p \underline{\text {. Thus the first condition holds. }}$ For $x \in M^{\sharp}$, we have

$$
\begin{array}{ll}
& Q\left(p^{h} x\right) \equiv Q\left(p^{h} u(x)\right) \quad \text { and } \quad 2 p^{h+1} \underline{o} \\
\text { and } \quad & p^{h+1} Q(x) \equiv p^{h+1} Q(u(x)) \quad \bmod 2 p^{2} \underline{o} .
\end{array}
$$

From the assumption $p^{h} \underline{n}\left(M^{\sharp}\right) \subset 2 \underline{o}$, it follows that

$$
p^{h+1} Q(x) \equiv 0 \quad \bmod 2 p \underline{o} \quad \text { and then } \quad p^{h+1} Q(u(x)) \equiv 0 \quad \bmod 2 p \underline{o} .
$$

Thus $p^{h} \underline{n}(G) \subset 2 \underline{o}$. By Theorem 2.1.14 there exists an isometry u^{\prime} from M to W such that

$$
u^{\prime}(x) \equiv u(x) \quad \bmod p^{h+1} u\left(M^{\sharp}\right) \quad \text { for } \quad x \in M
$$

Since $p^{h} M^{\sharp} \subset M, u^{\prime}(x) \equiv u(x) \bmod p u(M)$ for $x \in M$. This implies $u^{\prime}(M)=u(M)$.

Corollary 2. Let V be a regular quadratic module over k and M a lattice on V. Let h be an integer such that

$$
p^{h} \underline{n}\left(M^{\sharp}\right) \subset 2 \underline{o},
$$

and let N be a submodule of M which is a direct summand of M as a module, and suppose that u_{0} is an isometry from N to M satisfying

$$
u_{0}(x) \equiv x \quad \bmod p^{h+1} M^{\sharp} \quad \text { for } \quad x \in N
$$

Then u_{0} extends to an isometry $u_{1} \in o(M)$ such that

$$
u_{1}(x) \equiv x \quad \bmod p^{h+1} M^{\sharp} \quad \text { for } \quad x \in M
$$

Proof. We take a submodule N^{\prime} such that $M=N \oplus N^{\prime}$. We define an endomorphism u of M by

$$
u\left(x+x^{\prime}\right)=u_{0}(x)+x^{\prime} \quad \text { for } \quad x \in N, x^{\prime} \in N^{\prime}
$$

Put $G=M^{\sharp}$. By assumption, $p^{h} \underline{n}(G) \in 2 \underline{o}$. For $\varphi \in \operatorname{Hom}(M, \underline{o})$ there exists $z \in M^{\sharp}$ such that

$$
\varphi(x)=B(x, z) \quad \text { for } \quad x \in M
$$

Then we have, for $x \in M$,

$$
\begin{aligned}
& \varphi(x)-B(u(x), z) \\
& =B(x-u(x), z) \in B\left(p^{h+1} M^{\sharp}, M^{\sharp}\right) \subset B\left(p M, M^{\sharp}\right) \\
& \subset p \underline{o},
\end{aligned}
$$

since $p^{n} M^{\sharp} \subset M$ as in the proof of Corollary 1 to Theorem 2.1.14 Thus $\operatorname{Hom}(M, \underline{o})=B_{u}(G)+\operatorname{Hom}(M, p \underline{o})$. For $x \in N, x^{\prime} \in N^{\prime}$, we have

$$
\begin{aligned}
& Q\left(u\left(x+x^{\prime}\right)\right)-Q\left(x+x^{\prime}\right)=Q\left(u_{0}(x)+x^{\prime}\right)-Q\left(x+x^{\prime}\right) \\
= & \left.Q\left(u_{0} x\right)\right)-Q(x)+2 B\left(u_{0}(x)-x, x^{\prime}\right), \text { putting } u_{0}(x)-x=p^{h+1} y, \\
= & 2 B\left(p^{h+1} y, x\right)+p^{2(h+1)} Q(y)+2 B\left(p^{h+1} y, x^{\prime}\right) \in 2 p^{h+1} \underline{o} \text { holds. }
\end{aligned}
$$

Thus the condition $(\sharp)_{h+1}$ in Theorem 2.1.14 is satisfied for $V=W$ and a linear mapping u satisfying $u=u_{0}$ on N. In the proof of this theorem, we assume that $\left\{v_{1}, \ldots, v_{n}\right\}$ (respectively $\left\{v_{n+1}, \ldots, v_{m}\right\}$) is a basis of N (respectively N^{\prime}). Then $Q\left(u\left(v_{i}\right)\right)=Q\left(v_{i}\right)$ for $1 \leqq i \leqq n$, and hence $a(x, y)=0$ holds for $x \in M, y \in N$. Thus we can take $g_{i}=u, m_{i}=0$ for $i \leqq n$. This implies $v(N)=0$. Hence u^{\prime} constructed in Theorem 2.1.14 satisfies the condition $u^{\prime}=u=u_{0}$ on N. Repeating this argument, we obtain an isometry u_{1} from M to V such that

$$
\begin{aligned}
& u_{1}(x) \equiv u(x) \equiv x \quad \bmod p^{h+1} M^{\sharp} \quad \text { for } \quad x \in M, \\
& u_{1}(x)=u_{0}(x) \quad \text { for } \quad x \in N .
\end{aligned}
$$

Now $p^{h} M^{\sharp} \subset M$ implies that $u_{1}(M) \subset M$ and then $u_{1}(M)=M$, on comparing the discriminants.

Corollary 3. Let V be a regular quadratic module over k, M a lattice on V, and $\left\{u_{1}, \ldots, u_{n}\right\}$ a set of linearly independent elements of V. Then there is an integer h such that for a set $\left\{v_{1}, \ldots, v_{n}\right\}$ of linearly independent elements satisfying $B\left(u_{i}, u_{j}\right)=B\left(v_{i}, v_{j}\right)$ and $u_{i}-v_{i} \in p^{h} M$ for $1 \leq i \leq j \leq n$, there is an isometry $u \in o(M)$ such that $u\left(u_{i}\right)=v_{i}$ for $1 \leq i \leq n$.

Proof. Without loss of generality, we may assume that $u_{i} \in M$ for $1 \leq$ in $\leq n$, taking $p^{r} M$ instead of M. Put $N=k\left[u_{1}, \ldots, u_{n}\right] \cap M$ and let $\left\{w_{1}, \ldots, w_{n}\right\}$ be a basis of N and

$$
\left(u_{1}, \ldots, u_{n}\right)=\left(w_{1}, \ldots, w_{n}\right) A \quad \text { for } \quad A \in M_{n}(\underline{o}) .
$$

We define an isometry u_{0} from N to M by $u_{0}\left(u_{i}\right)=v_{i}$. Then we have

$$
\begin{aligned}
& \left(\ldots, u_{0}\left(w_{i}\right)-w_{i}, \ldots\right)=\left(\ldots, u_{0}\left(u_{i}\right)-u_{i}, \ldots\right) A^{-1} \\
= & \left(\ldots, v_{i}-u_{i}, \ldots\right) A^{-1} .
\end{aligned}
$$

If h is sufficiently large, then $u_{0}(x) \equiv x \bmod p^{h^{\prime}+1} M^{\sharp}$ for $x \in N$ and a sufficiently large h^{\prime}. From the previous corollary our assertion follows.

Corollary 4. Let L be a regular quadratic module over \underline{o} and x_{1}, \ldots, $x_{n} \in L$ a set of elements of L satisfying $\operatorname{det}\left(B\left(x_{i}, x_{j}\right)\right) \neq 0$. Then there exists an integer h such that for any $y_{1}, \ldots, y_{n} \in L$ with $y_{i} \equiv x_{i} \bmod p^{h} L$, there is an isometry $\sigma \in 0(L)$ for which

$$
\sigma\left(\underline{o}\left[x_{1}, \ldots, x_{n}\right]\right)=\underline{o}\left[y_{1}, \ldots, y_{n}\right]
$$

holds.
Proof. Put $M=\underline{o}\left[x_{1}, \ldots, x_{n}\right], N=\underline{o}\left[y_{1}, \ldots, y_{n}\right]$. We take a sufficiently large h; then $\operatorname{det}\left(B\left(y_{i}, y_{j}\right)\right) / \operatorname{det}\left(B\left(x_{i}, x_{j}\right)\right) \in \underline{o}^{x^{2}}$. Applying Corollary 1 to Theorem2.1.14 to $M, N, u: x_{i} \rightarrow y_{i}$, we see that there are $z_{1}, \ldots, z_{n} \in N$ such that $B\left(z_{i}, z_{j}\right)=B\left(x_{i}, x_{j}\right)$ and $z_{i} \equiv y_{i} \bmod p^{h^{\prime}} L$ for a sufficiently large h^{\prime}. From the previous corollary follows the existence of an isome$\operatorname{try} \sigma \in \underline{o}(L)$ such that $\sigma(M)=\underline{o}\left[z_{1}, \ldots, z_{n}\right]=N$.

2.2 The Spinor Norm

Let k be a field with characteristic $\neq 2$ and V a regular quadratic module over k.

Let $T(V)=\underset{n \geq 0}{\oplus} \stackrel{n}{\otimes} V(\stackrel{0}{\otimes} V=k, \stackrel{1}{\otimes} V=V)$ be the tensor algebra of V and let I be the two-sided ideal of $T(V)$ generated by elements of the form $x \otimes x-Q(x) \in T(V)$. Then $C(V)=T(V) / I$ is called the Clifford algebra of V. It is easy to see that $C(V)$ is the direct sum of the images of $\left.T_{0}=\oplus \stackrel{n}{\otimes} V\right)(n:$ even $)$ and $T_{1}=\oplus(\stackrel{n}{\otimes} V)(n:$ odd $)$ since $I=\left(I \cap T_{0}\right) \oplus\left(I \cap T_{1}\right)$.

Lemma 2.2.15. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthogonal basis of V. Then the centre of $C(V)$ is contained in $k+k v_{1} \ldots v_{n}$ (where $v_{1} \ldots v_{n}$ is the product of v_{1}, \ldots, v_{n} in $\left.C(V)\right)$.

Proof. For $x, y \in V$, we have

$$
Q(x+y)=(x+y)(x+y)=Q(x)+Q(y)+x y+y x \quad \text { in } \quad C(V),
$$

and then $x y+y x=2 B(x, y)$. For a subset S of $\{1, \ldots, n\}$, we identify S with $v_{i_{1}} \ldots v_{i_{j}}\left(S=\left\{i_{1}<\ldots<i_{j}\right\}\right)$. If $S=\phi$, then we take the identity in $C(V)$. Then $x \in C(V)$ is written as

$$
x=\sum_{S} a(S) S \quad(a(S) \in k),
$$

where S runs over all subsets of $\{1, \ldots, n\}$. Although it is known that the expression is unique, i.e., $\operatorname{dim} C(V)=2^{n}$, we do not need to prove the lemma. Set $e(S)=1$ (resp. -1) if the cardinality of S is even (resp. odd). Since $v_{i} v_{j}=-v_{j} v_{i}$ for $i \neq j$, we have, for $S \subset\{1, \ldots, n\}$,

$$
S v_{i}=\left\{\begin{array}{l}
e(S) v_{i} S \quad \text { if } \quad i \notin S \\
-e(S) v_{i} S \quad \text { if } \quad i \in S
\end{array}\right.
$$

Hence it is easy to see that 1 and $v_{1} \ldots v_{n}$ with n odd are in the centre of $C(V)$; moreover, 1 and $v_{1} \ldots v_{n}$ for odd n are linearly independent, since $1 \in T_{0}$ and $v_{1} \ldots v_{n} \in T_{1}$. Let \mathfrak{G} consist of all subsets of $\{1, \ldots, n\}$,
giving a basis of $C(V)$; we may assume that $\subseteq \ni \phi$ and $\{1, \ldots, n\}$ if n is odd. Suppose that x is an element of the centre of $C(V)$ and let

$$
x=\sum_{S \in \mathbb{S}} a(S) S(a(S) \in k)
$$

Then $x v_{i}=v_{i} x$ implies

$$
\begin{aligned}
x v_{i} & \sum a(S) S v_{i} \\
& =\sum_{i \notin S \in \mathbb{S}} a(S) e(S) v_{i} S-\sum_{i \in S \in \mathbb{S}} a(S) e(S) v_{i} S \\
& =\sum_{S \in \mathbb{S}} a(S) v_{i} S .
\end{aligned}
$$

187 Multiplying v_{i} from the left, we have

$$
\sum_{\substack{i \notin S \in \subseteq \\ e(S)=-1}} a(S) S+\sum_{\substack{i \in S \in \subseteq \\ e(S)=1}} a(S) S=0 .
$$

Since \mathfrak{S} gives a basis of $C(V)$, we have

$$
a(S)=0
$$

if $\phi \neq S \subsetneq\{1, \ldots, n\}$, or $S=\{1, \ldots, n\}$ with n even. This completes the proof of Lemma 2.2.15

For any anisotropic vector $v \in V$ (i.e. with $Q(v) \neq 0$), we define an isometry τ_{v} of V by

$$
\tau_{v} x=x-\frac{2 B(x, v)}{Q(v)} v
$$

It is called a symmetry (with respect to v)
Lemma 2.2.16. Suppose $\tau_{u_{1}} \ldots \tau_{u_{m}}=1$. Then $Q\left(u_{1}\right) \ldots Q\left(u_{m}\right) \in k^{x^{2}}$.
Proof. First, we note that m is even, since $\operatorname{det} \tau_{u}=-1$. For an anisotropic $u \in V$ and all $x \in V$ we have

$$
\tau_{u} x=x-\frac{2 B(u, x)}{Q(u)} u
$$

$$
\begin{aligned}
& =x-Q(u)^{-1}(x u+u x) u \quad \text { in } \quad C(V) \\
& =-u x u^{-1}\left(u^{-1}=Q(u)^{-1} u \quad \text { in } \quad C(V)\right) .
\end{aligned}
$$

Hence $\tau_{u_{1}} \ldots \tau_{u_{m}}=1$, implying that

$$
u_{1} \ldots u_{m} x=x u_{1} \ldots u_{m} \quad \text { for all } \quad x \in V \text {. }
$$

By the previous lemma, we have

$$
u_{1} \ldots u_{m}=a+b v_{1} \ldots v_{n}
$$

where $a, b \in k$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthogonal basis for V and $b=0$ if n is even. If n is odd, then $b v_{1} \ldots v_{n}$ is in the images of T_{0} and T_{1}, since $u_{1} \ldots u_{m}-a \in T_{0}$.

Hence $b v_{1} \ldots v_{n}$ is 0 and $u_{1} \ldots u_{m}=a \in k$. Since $x_{1} \otimes \ldots \otimes x_{t} \rightarrow$ $x_{t} \otimes \ldots \otimes x_{1}$ induces an anti isomorphism f of $C(V)$. Hence we have

$$
\begin{aligned}
Q\left(u_{1}\right) \ldots Q\left(u_{m}\right) & =u_{1} \ldots u_{m} u_{m} \ldots u_{1} \\
& =u_{1} \ldots u_{m} f\left(u_{m}\right) \ldots f\left(u_{1}\right) \\
& =u_{1} \ldots u_{m} f\left(u_{1} \ldots u_{m}\right) \\
& =a^{2} .
\end{aligned}
$$

Q.E.D.

The following theorem is implicitly proved in [S].
Theorem 2.2.17. The group $O(V)$ is generated by symmetries.
Hence we can express $\sigma \in O(V)$ as a product of symmetries,

$$
\sigma=\tau_{u_{1}} \ldots \tau_{u_{m}}
$$

and denote by $\theta(\sigma)$ the element $Q\left(u_{1}\right) \ldots Q\left(u_{m}\right) \in k^{x} / k^{x^{2}}$. By Lemma 2.2.16 this mapping is well-defined and then it is obvious that θ is a group homomorphism from $O(V)$ to $k^{x} / k^{x^{2}} \cdot \theta(\sigma)$ is called the spinor norm of σ.

Definition. $O^{\prime}(V)=\left\{\sigma \in O^{+}(V) \mid \theta(\sigma) \in\left(k^{x}\right)^{2}\right\}$.

Proposition 2.2.18. Let L be a modular or maximal regular quadratic module over \mathbb{Z}_{p} with rank $L \geq 2$. Suppose rank $L \geq 3$ unless L is modular with $p \neq 2$. Then $\theta\left(O^{+}(L)\right) \supset \mathbb{Z}_{p}^{x}$.

Proof. Suppose that L is (a)-modular. Let, first $p \neq 2$. Proposition 2.1.12 implies

$$
<a_{1}>\perp \ldots \perp<a_{n}>\cong<b_{1}>\perp \ldots \perp<b_{n}>
$$

if $a_{i}, b_{i} \in \mathbb{Z}_{p}^{x}$ and $\Pi a_{i}=\Pi b_{i}$.
Hence, for each $b \in \mathbb{Z}_{p}^{x}$, there exists a decomposition

$$
L=\mathbb{Z}_{p} v \perp *, Q(v)=a b
$$

Then τ_{v} induces an isometry of L and $\theta\left(\tau_{v}\right)=a b \mathbb{Q}_{p}^{x^{2}}$. Therefore $\theta\left(O^{+}(L)\right) \supset \mathbb{Z}_{p}^{x}$. Suppose $p=2$. Let $M=\mathbb{Z}_{2}\left[v_{1}, v_{2}\right]$ and $\left(B\left(v_{i}, v_{j}\right)\right)=$ $a\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. For $u \in \mathbb{Z}_{2}^{x}$, it is clear that $\tau_{v_{1}+u v_{2}} \in O(M)$ and $\theta\left(\tau_{v_{1}+u v_{2}}\right)=2 a u$. Hence $\theta\left(O^{+}(M)\right) \supset \mathbb{Z}_{2}^{x} \mathbb{Q}_{2}^{x^{2}}$. Next suppose that $M=\mathbb{Z}_{2}\left[v_{1}, v_{2}\right]$ and $\left(B\left(v_{1}, v_{j}\right)\right)=a\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. Then $\mathbb{Q}_{2} M$ is anisotropic and M is $(2 a)$-maximal, since $<\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)>$ is (2)-maximal by Lemma 2.1.1 Hence $M=\{x \in$ $\left.\mathbb{Q}_{2} M \mid Q(x) \in(2 a)\right\}$ and $O^{+}(M)=O^{+}\left(\mathbb{Q}_{2} M\right) \cdot Q\left(v_{1}+b v_{2}\right)=2 a, 2 a .3$, $2 a .7$ and $2 a .13$ according as $b=0,1,2$ and 3 respectively. Hence we have $\theta\left(O^{+}(M)\right) \supset \mathbb{Z}_{2}^{x} \mathbb{Q}_{2}^{x^{2}}$. Thus, to prove our assertion, we have only to show $L=<a\left(\begin{array}{cc}2 c & 1 \\ 1 & 2 c\end{array}\right)>\perp *(c=0$ or 1$)$. From Proposition 2.1.13, it follows that L has an orthogonal basis $\left\{v_{i}\right\}$ with $Q\left(v_{i}\right)=a u_{i}, u_{i} \in \mathbb{Z}_{2}^{x}$. Put $M=\mathbb{Z}_{2}\left[v_{1}+v_{2}, v_{2}+v_{3}\right]=<a\left(\begin{array}{cc}u_{1}+u_{2} & u_{2} \\ u_{2} & u_{2}+u_{3}\end{array}\right)>$. Then M is $(a)-$ modular, $M \subset L$ and hence $L=M \perp *$. Proposition 2.1.13 now implies $<\left(\begin{array}{cc}u_{1}+u_{2} & u_{2} \\ u_{2} & u_{2}+u_{3}\end{array}\right)>\cong<\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>$ or $<\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)>$, and the previous assertion gives $\theta\left(O^{+}(L)\right) \supset \theta\left(O^{+}(M)\right) \supset \mathbb{Z}_{2}^{x} \mathbb{Q}_{2}^{x^{2}}$.

Suppose that L is maximal. By virtue of Lemma2.1.6 and the previous results, we may assume that $\mathbb{Q}_{p} L$ is anisotropic. By the same lemma, L is fixed as a set for every isometry of $\mathbb{Q}_{p} L$. Suppose rank $L \geq 4$; then the corollary on page 37 in [S] implies $Q\left(\mathbb{Q}_{p} L\right)=\mathbb{Q}_{p}$. Hence $\theta\left(O^{+}(L)\right)=\theta\left(O^{+}\left(\mathbb{Q}_{p} L\right)\right)=\mathbb{Q}_{p}^{x} \supset \mathbb{Z}_{p}^{x}$. Suppose rank $L=3$. From the same corollary, it follows that $u \in Q\left(\mathbb{Q}_{p} L\right)$ if $-u \notin d\left(\mathbb{Q}_{p} L\right)$. Since
every non-zero element in \mathbb{Q}_{p} is a product of two elements u, v with u, $v \in-d\left(\mathbb{Q}_{p} L\right)$, we have $\theta\left(O^{+}(L)\right)=\theta\left(O^{+}\left(\mathbb{Q}_{p} L\right)\right)=\mathbb{Q}_{p}^{x}$ again.

Proposition 2.2.19. Let V be a regular quadratic module over \mathbb{Q} with $\operatorname{dim} V \notin 3$. Then we have

$$
\theta\left(O^{+}(V)\right)=\left\{a \in \mathbb{Q}^{x} \mid a>0 \quad \text { if } \quad \mathbb{R} V \text { is anisotropic }\right\} .
$$

Proof. Suppose that $\mathbb{R} V$ is anisotropic. Then $\mathbb{R} V$ is definite and $Q(V) \subset$ $\{a \in \mathbb{Q} \mid a \geqq 0\}$ or $\{a \in \mathbb{Q} \mid a \leq 0\}$. Hence the spinor norm is positive. Put $\delta=-1$ if $\mathbb{R} V$ is positive definite, $\delta=1$ otherwise, and let a be a rational number such that $a>0$ if $\mathbb{R} V$ is anisotropic. By Theorem 6 on page 36 in [S]. $\mathbb{Q}_{p} V$ is isotropic except at a finite number of primes. Hence we can choose $b \in \mathbb{Q}^{x}$ such that $b>0$, and δ.a.b.d $(V) \not \subset \mathbb{Q}_{p}^{x^{2}}$, $\delta . b . d(V) \not \subset \mathbb{Q}_{p}^{x^{2}}$ for a prime p if $\mathbb{Q}_{p} V$ is anisotropic. Then $V \perp<\delta b>$, $V \perp<\delta . a . b>$ are isotropic at every prime spot by the same theorem and hence they are isotropic by the Hasse-Minkowski theorem on page 41 in [S]. By Corollary 1 on page 33 in [S], $-\delta b$ and $-\delta a b$ are in $Q(V)$. Therefore $a \mathbb{Q}^{x^{2}}=(-\delta b)(-\delta a b) \mathbb{Q}^{x^{2}} \subset \theta\left(O^{+}(V)\right)$.

Proposition 2.2.20. Let V be a regular quadratic module over \mathbb{Q}_{p} with $\operatorname{dim} V \geqq 3$. Then $\theta\left(O^{+}(V)\right)=\mathbb{Q}_{p}^{x}$.

Proof. If $Q(V)=\mathbb{Q}_{p}$, the assertion is obvious. Otherwise, it follows that $\operatorname{dim} V=3$ and if $-a \cdot d(V)\left(a \in \mathbb{Q}_{p}^{x}\right)$ is not a square, then V represents
a. Hence $\theta\left(O^{+}(V)\right)=\mathbb{Q}_{p}^{x}$, as it is easy to see.
Proposition 2.2.21. Let V be a regular isotropic quadratic module over a field k with characteristic $\neq 2$. Then $O^{\prime}(V)$ is generated by $\tau_{x} \tau_{y}(x, y \in$ $V, Q(x)=Q(y) \neq 0)$.

Proof. Let Ω be the subgroup of $O(V)$ which is generated by $\tau_{x} \tau_{y}(x, y \in$ $V, Q(x)=Q(y) \neq 0)$. Then clearly $\Omega \subset O^{\prime}(V)$, and from $\sigma \tau_{x} \tau_{y} \sigma^{-1}=$ $\tau_{\sigma(x)} \tau_{\sigma(y)}(\sigma \in 0(V))$, it follows that Ω is a normal subgroup of $O^{\prime}(V)$. Let $V=H \perp W$ where $H=k\left[e_{1}, e_{2}\right], Q\left(e_{1}\right)=Q\left(e_{2}\right)=0, B\left(e_{1}, e_{2}\right)=1$. Let $\sigma=\tau_{x_{1}} \ldots \tau_{x_{n}} \in O^{\prime}(V)$; then take $y_{i} \in H$ so that $Q\left(y_{i}\right)=Q\left(x_{i}\right)$. Since $\tau_{x_{i}} \tau_{y_{i}} \in \Omega, \sigma=\tau_{y_{1}} \ldots \tau_{y_{n}}$ in $O^{\prime}(V) / \Omega$. Set $\eta=\tau_{y_{1}} \ldots \tau_{y_{n}}$; then η is identity on W, and hence $\left.\eta\right|_{H} \in O^{\prime}(H)$. Since $\left.\eta\right|_{H} \in O^{\prime}(H)$, there exist
$z_{1}, z_{2} \in H$ such that $\left.\eta\right|_{H}=\tau_{z_{1}} \cdot \tau_{z_{2}}$ and $Q\left(z_{1}\right) Q\left(z_{2}\right)=1$. Then $\eta=\tau_{z_{1}} \tau_{z_{2}}$ on V. Thus we have $\sigma=\eta=1$ in $O^{\prime}(V) / \Omega$ and so $O^{\prime}(V) \subset \Omega$.

2.3 Hasse-Minkowski Theorem

This section is a complement to $\S 3$ of Chapter IV in [S].
Theorem 2.3.22. V, W be regular quadratic modules over \mathbb{Q}. If V_{p}, V_{∞} are represented by W_{p}, W_{∞} for every prime p, then V is represented by W.

Proof. When $\operatorname{dim} V=1$, this is nothing but Corollary \square on page 43 in [S]. We prove the theorem by induction on $\operatorname{dim} V$. Decompose V as $V=<a>\perp V_{0}, a \in \mathbb{Q}^{x}$. The inductive hypothesis shows that V_{0} is represented by W and hence there is a submodule W_{0} in W which 192 is isometric to V_{0}. Since V is locally represented by W, $\langle a\rangle$ is locally represented by $W_{0}^{\perp}:=\{x \in W \mid B(x, W)=0\}$, using Witt's theorem (Corollary on page 32 in [S]). Hence $\langle a\rangle$ is represented by W_{0}^{\perp}. Thus V is represented by W.

Corollary. Let V, W be regular quadratic modules over \mathbb{Q} with $\operatorname{dim} V+$ $3 \leq \operatorname{dim} W$. If $\mathbb{R} V$ is represented by $\mathbb{R} W$, then V is represented by W.

Proof. Corollary to Theorem 2.1.1 and the above theorem yield the assertion.

2.4 Integral Theory of Quadratic Forms

For a finite set $S=\left\{p_{1}, \ldots p_{n}\right\}$ of prime numbers, we define a ring $\mathbb{Z}[S]$ by

$$
\mathbb{Z}[S]=\mathbb{Z}\left[p_{1}^{-1}, \ldots, p_{n}^{-1}\right]
$$

If $S=\phi$, then $\mathbb{Z}[S]$ means the ring \mathbb{Z} of rational integers. We define the class, the spinor genus, and the genus of quadratic modules.

Let V be a quadratic module over \mathbb{Q}, S a finite set of primes, and L a $\mathbb{Z}[S]$-lattice on V. Now we put
$\operatorname{cls} L=\left\{\begin{array}{l|l}K & \begin{array}{l}\mathbb{Z}[S] \text { - lattice on } V \text { such that } K=\sigma(L) \\ \text { for some } \sigma \in O(V)\end{array}\end{array}\right\}$,
$\operatorname{spn} L=\left\{\begin{array}{l|l}K & \begin{array}{l}\mathbb{Z}[S] \text { - lattice on } V \text { such that there exists } \\ \text { isometries } \sigma \in O(V) \text { and } \sigma_{p} \in O^{\prime}\left(V_{p}\right) \\ \text { satisfying } \sigma\left(K_{p}\right)=\sigma_{p}\left(L_{p}\right) \text { for every } p \notin S\end{array}\end{array}\right\}$,
gen $L=\left\{\begin{array}{l|l}K & \begin{array}{l}\mathbb{Z}[S] \text { - lattice on } V \text { such that for every } p \notin S \text { there } \\ \text { is an isometry } \sigma_{p} \text { satisfying } K_{p}=\sigma_{p}\left(L_{p}\right)\end{array}\end{array}\right\}$.
It is obvious that gen $L \supset \operatorname{spn} L \supset$ cls L. When $K \in \operatorname{cls} L, \operatorname{spn} L$, gen L respectively, we say that K and L belong to the same class, spinor genus, genus, respectively.

Here we recall the fundamental relations between global lattices and their localizations.

Theorem 2.4.1. Let V be a finite dimensional vector space over \mathbb{Q}, S a finite set of prime numbers, and $K a \mathbb{Z}[S]$-lattice on V. Suppose that a collection $\left\{L_{P}\right\}$ of a \mathbb{Z}_{p}-lattice on $V_{p}(p \notin S)$ is given and that L_{p} is equal to $K_{p}=\mathbb{Z}_{p} K$ for almost all $(=$ all but a finite number of) prime numbers. Then $M=\bigcap_{p \notin S}\left(V \cap L_{p}\right)$ is a $\mathbb{Z}[S]$-lattice on V satisfying $M_{p}=\mathbb{Z}_{p} M=L_{p}$ for every $p \notin S$.

2.4.0

The most fundamental result is the following
Theorem 2.4.2. Let V be a regular quadratic module over \mathbb{Q}, S a finite set of prime numbers. For any $\mathbb{Z}[S]$-lattice L on V, gen L contains only a finite number of distinct classes.

Proof. Suppose that the assertion is proved for $S=\phi$. For $p \in S$, we take and fix a \mathbb{Z}_{p}-lattice M_{p} on V_{p}, and for $K \in$ gen L we put $K_{0}=$ $\bigcap_{p \notin S}\left(V \cap K_{p}\right) \bigcap_{p \in S}\left(V \cap M_{p}\right)$. Then K_{0} is a \mathbb{Z}-lattice on V and $K_{0} \in$ gen L_{0}
as is obvious. By assumption, gen L_{0} contains only a finite number of distinct classes cls $K_{i}(i=1, \ldots, n)$. Hence there is an isometry $\sigma \in$ $O(V)$ such that $\sigma\left(K_{0}\right)=K_{i}$ for some $i=1,2, \ldots, n$, and then $\sigma(K)=$ $\sigma\left(\mathbb{Z}[S] K_{0}\right)=\mathbb{Z}[S] K_{i} \in$ gen L. Thus cls $\mathbb{Z}[S] K_{i}(i=1,2, \ldots, n)$ are the only classes contained in gen L.

Thus we have only to prove our assertion in case $S=\phi$. In the rest of the proof, we assume $S=\phi$. For an integer $a \neq 0$, it is obvious that if gen $L=\left\{\operatorname{cls} K_{i}\right\}$ the gen $a L=\left\{\operatorname{cls} a K_{i}\right\}$. Thus we may assume $s(L)=\left\{\sum B\left(x_{i}, y_{i}\right) \mid x_{i}, y_{i} \in L\right\} \subset \mathbb{Z}$. If $K \in \operatorname{gen} L$, then $d(L)=d(K)$ and $s(L)=s(K)$ since $s(L) \mathbb{Z}_{p}=s\left(L_{p}\right)$. Thus we have only to prove

Proposition 2.4.25. Let V be a regular quadratic module over \mathbb{Q} and $d \neq 0$ an integer. Then there is only a finite number of cls L such that $s(L) \subset \mathbb{Z}$ and $d(L)=d$.

Lemma 2.4.26. Let V be a regular quadratic module over \mathbb{Q} and M a \mathbb{Z}-lattice with $s(M) \subset \mathbb{Z}$ on V. Suppose that N is a regular quadratic submodule of M. Put $K=N^{\perp}=\{x \in M \mid B(x, N)=0\}$. Then we have

$$
N \perp K \subset M \subset M^{\sharp} \subset N^{\sharp} \perp K^{\sharp} \quad \text { and } \quad|d(K)|||d(M)| \cdot| d(N) \mid,
$$

where, for a quadratic module L over \mathbb{Z}, we denote $\{x \in \mathbb{Q} L \mid B(x, L) \subset \mathbb{Z}\}$ by L^{\sharp}.

Proof. The relations on inclusions are trivial, since $L_{1} \subset L_{2}$ implies $L_{1}^{\sharp} \supset L_{2}^{\sharp}$. Let x be an element of M. Then there is an element $y \in N^{\sharp}$ such that $B(x, z)=B(y, z)$ for all $z \in N$. This correspondence φ is linear and we claim that $\varphi^{-1}(N)=N \perp K$. Suppose that $\varphi(x) \in N$; then $B(x-\varphi(x), z)=0$ for $z \in N$ and so $x-\varphi(x) \in K$. If, conversely, $x=$ $x_{1}+x_{2}, x_{1} \in N, x_{2} \in K$, then $B(x-\varphi(x), z)=B\left(x_{1}-\varphi(x), z\right)=0$ for $z \in N$ and $\varphi(x)=x_{1} \in N$. Thus we have $[M: N \perp K]=[\varphi(M): N] \mid\left[N^{\sharp}:\right.$ $N]=d(N)$, and $|d(N) \cdot d(K)|=|d(M)| \cdot[M: N \perp K]^{2} \|\left. d(M)|\cdot| d(N)\right|^{2}$.

Lemma 2.4.27. For a regular quadratic module L over $\mathbb{Z}, \min (L):=$ $\min \{|Q(x)| \quad \mid x \in L, x \neq 0\} \leq(4 / 3)^{(n-1) / 2}|d(L)|^{1 / n}$ where $n=\operatorname{rank} L$.

Proof. We use induction on rank L. In case $\operatorname{rank} L=1$, the assertion is trivial. For rank $L>1$, we take $v_{1} \in L$ such that $\left|Q\left(v_{1}\right)\right|=m(L), v_{1} \neq 0$. If $\min (L)=0$, then we have nothing to prove. Suppose $Q\left(v_{1}\right) \neq 0$, and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for L. Define a linear mapping p by $p\left(v_{1}\right)=v_{1}$, $p\left(v_{i}\right)=v_{i}-Q\left(v_{1}\right)^{-1} B\left(v_{i}, v_{1}\right) v_{i}(i \geqq 2)$. Then the determinant of p is one, and hence

$$
\begin{aligned}
|d(L)| & =\left|\operatorname{det}\left(B\left(v_{i}, v_{j}\right)\right)\right|=\left|\operatorname{det}\left(B\left(p v_{i}, p v_{j}\right)\right)\right| \\
& =\min (L)\left|\operatorname{det}\left(B\left(p v_{i}, p v_{j}\right)\right)_{i, j \geq 2}\right|
\end{aligned}
$$

since $B\left(v_{1}, p v_{i}\right)=0$ for $i \geqq 2$. Put $M=\mathbb{Z}\left[p\left(v_{2}\right), \ldots, p\left(v_{n}\right)\right]$. By the inductive assumption, we have

$$
\min (M) \leqq(4 / 3)^{(n-2) / 2}|d(M)|^{1 / n-1} .
$$

Take $y \in M$ and a rational number r such that

$$
|Q(y)|=\min (M), y+r v_{1}=x(\text { say }) \in L,|r| \leqq 1 / 2
$$

Then we obtain $\min (L) \leqq|Q(x)|=\left|Q(y)+r^{2} Q\left(v_{1}\right)\right| \leqq \min (M)+$ $\frac{1}{4} \min (L)$. Hence

$$
\begin{aligned}
\min (L) & \leqq \frac{4}{3} \min (M) \\
& \leqq(4 / 3)^{n / 2}|d(M)|^{1 / n-1} \\
& =(4 / 3)^{n / 2}|d(L) / \min (L)|^{1 / n-1}
\end{aligned}
$$

implying that

$$
\min (L) \leqq(4 / 3)^{(n-1) / 2}|d(L)|^{1 / n}
$$

We prove the proposition by induction on $\operatorname{dim} V$. In the case of $\operatorname{dim} V=1$, it is obvious.

Suppose that M is a lattice on V such that $s(M) \subset \mathbb{Z}$ and $d(M)=d$. If $\min (M) \neq 0$, then for $v \in M$ with $|Q(v)|=\min (M)$, we put $N=\mathbb{Z} v$. If $\min (M)=0$, then there is a primitive isotropic vector $v_{1} \in M$. We can
take a basis $\left\{v_{1}, v_{2}, \ldots\right\}$ of M such that $B\left(v_{1}, M\right)=B\left(v_{1}, v_{2}\right) \mathbb{Z}, B\left(v_{1}, v_{i}\right)=$ 0 for $i \geqq 3$. Hence $a=\left|B\left(v_{1}, v_{2}\right)\right|$ divides d. Since $Q\left(v_{2}+b v_{1}\right)=Q\left(v_{2}\right) \pm$ $2 b a$, we may assume $\left|Q\left(v_{2}\right)\right| \leqq a$. In this case, we put $N=\mathbb{Z}\left[v_{1}, v_{2}\right]$. If $\operatorname{dim} V=2$, then $M=N$ and the number of possible corresponding matrices is finite. Hence, for a binary isotropic quadratic module V, the assertion is proved. Otherwise, we have constructed a sub-module N of M such that $|d(N)|$ is bounded by a constant depending only on $d(M)$ and $\operatorname{dim} V$. Put $K=N^{\perp}$. Then $\operatorname{rank} K=\operatorname{rank} M-1$ or $\operatorname{rank} M-2$, and $|d(K)| \leqq|d(M)||d(N)|$ which is less than a constant depending only on $d(M)$ and $\operatorname{dim} V$. By the inductive assumption, the number of possible K is finite and then the number of possible K is finite and then the number of possible M for which $N \perp K \subset M \subset N^{\sharp} \perp K^{\sharp}$ is also finite. This completes the proof.

Theorem 2.2.28. Let W, V be regular quadratic modules over \mathbb{Q}, S a finite set of prime numbers, and $M, L \mathbb{Z}[S]$-lattices on W, V respectively, and suppose that M_{p} is represented by L_{p} for $p \notin S$ and W_{p}, W_{∞} are represented by V_{p}, V_{∞} for $p \in S$. Then there is a lattice $K \in \operatorname{gen} L$ such that M is represented by K.

Proof. By the Hasse-Minkowski theorem, we may assume that W is a submodule of V. Then there is an isometry $\sigma_{p} \in 0\left(V_{p}\right)$ such that $\sigma_{p}\left(M_{p}\right) \subset L_{p}$, and for almost all $p, M_{p} \subset L_{p}$. Hence $\mathrm{q} \mathbb{Z}[S]$-lattice $K=$ $\bigcap_{M_{1} \not \subset L_{p}}\left(V \cap \sigma_{p}^{-1}\left(L_{p}\right)\right) \bigcap_{M_{p} \subset L_{p}}\left(V \cap L_{p}\right)$ contains M and obviously, $K \in \operatorname{gen} L$

2.2.0

In this paragraph, we give two different kinds of approximation theorems which are necessary latter. Before stating the results, we first describe the topology. Let V be a vector space over \mathbb{Q}_{p} with $\operatorname{dim} V=$ $n<\infty$. Fixing a basis of V over \mathbb{Q}_{p}, V (resp. End V) is isomorphic to $\mathbb{Q}_{p}^{n}\left(\right.$ resp. $\left.\mathfrak{M}_{n}\left(\mathbb{Q}_{p}\right)\right)$. Using this isomorphism, we can introduce a topology on V or End V which is independent of the choice of bases. Take two bases $\left\{u_{i}\right\},\left\{v_{i}\right\}$ of V. If u and $v \in V$ or End $\left.V\right)$ are sufficiently close with respect to the topology introduced by $\left\{u_{i}\right\}$, then they are also suffi-
ciently close with respect to $\left\{v_{i}\right\}$. Hence we can use "sufficiently close" without ambiguity, when a finite number of fixed bases are involved.

The first theorem is an approximation theorem for $0^{\prime}(V)$.
Theorem 2.2.29. Let V be a regular quadratic modular over \mathbb{Q} with $\operatorname{dim} V \geqq 3$ and suppose that $V_{v}=\mathbb{Q}_{v} V$ is isotropic for some spot v. (v may be finite or infinite). Let L be a \mathbb{Z}-lattice on V and S a finite set of prime numbers with $S \nexists v$. For a given $\sigma_{p} \in 0^{\prime}\left(V_{p}\right)$ for $p \in S$, there is an isometry $\sigma \in 0^{\prime}(V)$ such that

$$
\begin{aligned}
& \sigma\left(L_{p}\right)=L_{p} \text { for } p \notin S \cup\{v\} \text { and } \\
& \sigma \text { and } \sigma_{p} \text { are sufficiently close in } E n d V_{p} \text { for } p \in S .
\end{aligned}
$$

To prove the theorem, we need some preparatory lemmas.
Lemma 2.2.30. Let V be a regular quadratic module over \mathbb{Q} and S a finite set of spots including ∞. For given $\sigma_{v} \in 0^{+}\left(V_{v}\right)$ for $v \in S$, there are vectors $x_{1}, \ldots, x_{2 n} \in V$ such that σ_{v} and $\tau_{x_{1}} \cdots \tau_{x_{2 n}}$ are sufficiently close for $v \in S$.

Proof. Put $\sigma_{v}=\tau_{x_{1}(v)} \cdots \tau_{x_{2 n}(v)}\left(x_{i}(v), \in V_{v}\right)$. Since the order of any symmetry is 2 , we may suppose that n is independent of $v \in S$. We have only to choose $x_{i} \in V$ so that x_{i} and $x_{i}(v)$ are sufficiently close in V_{v} for $v \in S$.

Lemma 2.2.31. Let W be a regular quadratic module of $\operatorname{dim} W \geqq 3$, over \mathbb{Q}, S a finite set of sports, and v a spot $\notin S$. For a \mathbb{Z}-lattice K on W there is an integer μ such that
(i) $\mu \in \mathbb{Z}_{p}^{x}$ if $p \in S$.
(ii) if a rational number a is represented by W, and
$a \in Q\left(K_{p}\right) \cap \mu \mathbb{Z}_{p}$ for $p \neq v, W \ni y$ with $Q(y)=a$ and $y \in K_{p}$ for $p \neq v$.
Proof. Extending S, we may assume that if $p \notin S, p \neq v$, then K_{p} is unimodular and $p \neq 2$. Let K_{1}, \ldots, K_{h} be a complete set of representatives of classes in gen K. We show that K_{i} can be chosen so that $\left(K_{i}\right)_{p}=K_{p}$ for $p \in S$. First, we note that every regular quadratic module M over \mathbb{Z}_{p}
has a symmetry, since, for $m \in M$ satisfying $(Q(m))=\underline{n}(M), \tau_{m}$ gives a symmetry of M. Hence by the definition of the genus, there is an isometry $\sigma_{i, p} \in 0^{+}\left(W_{p}\right)$ such that $\sigma_{i, p}\left(\left(K_{i}\right)_{p}\right)=K_{p}$, and then by Lemma 2.2.30 there is an isometry σ_{i} such that σ_{i} and $\sigma_{i, p}$ are sufficiently close for $p \in S$. As representatives we have only to take $\sigma_{i}\left(K_{i}\right)$. Thus we may assume $\left(K_{i}\right)_{p}=K_{p}$ for $p \in S$. Now we choose an integer λ so that $\lambda K_{i} \subset K$ for all i and $\lambda \in \mathbb{Z}_{p}^{x}$ for $p \in S$, and put $\mu=\lambda^{2}$. The condition (i) is satisfied. Suppose that a is a rational number as in (ii). If $p \in S$, then $a / \mu \in Q\left(K_{p}\right)$. If $p \notin S, p \neq v$, then $p \neq 2$, and K_{p} is unimodular, and then $K_{p} \cong<\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>\perp *$. Since $a / \mu \in \mathbb{Z}_{p}, a / \mu$ is represented by $<\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>\subset K_{p}$. If v is a finite spot associated with a prime number q, then $a / \mu \cdot q^{2 t} \in Q\left(K_{q}\right)$ for a sufficiently large integer t. Thus a / μ or $a / \mu \cdot q^{2 t}$ is locally represented by K according as $v=\infty$ or q. By Theorem 2.2.28, there is a vector x in some K_{i} such that $Q(x)=a / \mu$ or $a / \mu \cdot q^{2 t}$ according as $v=\infty$ or q. Then $y=\lambda x$ or $\lambda q^{-t} x$ is what we want.

Lemma 2.2.32. Let V be a regular quadratic module over \mathbb{Q} of $\operatorname{dim} v \geqq$ 4 which is isotropic at a spot $v, L a \mathbb{Z}$-lattice on V, and T a finite set of prime numbers with $T \nexists v$.
199 Suppose that a non-zero rational number a and $z_{p} \in V_{p}(p \neq v)$ satisfy
(i) $Q\left(z_{p}\right)=a \in Q(V)$ for every $p \neq v$, and
(ii) $z_{p} \in L_{p}$ if $p \notin T$.

Then there is a vector $z \in V$ satisfying
(i) z and z_{p} are sufficiently close if $p \in T$,
(ii) $z \in L_{p}$ if $p \notin T \cup\{v\}$,
(iii) $Q(z)=a$.

Proof. Multiplying the quadratic form by a^{-1}, we may assume $a=1$ without loss of generality. Extending T, we may assume that if $p \notin$ $T \cup\{v\}$, then L_{p} is unimodular and $p \neq 2$. If V_{∞} is isotropic, then
we have only to consider the case of $v=\infty$. Thus we may assume that $a=1$, and V_{∞} is anisotropic in case $v \neq \infty$. Since we can take $\left(\prod_{p \in T} p\right)^{-r} L$ instead of $L(r \geqq 0)$, we may assume that $z_{p} \in L_{p}$ if $p \neq v$. Take and fix any vector x such that $Q(x)=1$. Take $\varphi_{p} \in 0^{+}\left(V_{p}\right)$ so that $\varphi_{p}(x)=z_{p}$ for $p \in T$. From Lemma 2.2.30, follows the existence of an isometry $\varphi \in 0^{+}(V)$ such that φ and φ_{p} are sufficiently close for $p \in T$, and $y \in L_{p}$ if $p \in T$. Choose an integer λ so that λ and 1 are sufficiently close in \mathbb{Z}_{p} if $p \in T$, and $\lambda y \in L_{p}$ if $p \notin T \cup\{v\}$, and set $u=\lambda y$; then $u \in L_{p}$ if $p \neq v$ and $Q(u)=\lambda^{2}$. Set $W=u^{\perp}=\{w \in V \mid B(u, w)=0\}$, and we determine a lattice K on W under the following conditions:

$$
K_{p}=(L \cap W)_{p}=L_{p} \cup W_{p} \text { if } p \notin T,
$$

$K_{p} \subset p^{r} L_{p}$ for sufficiently large r if $p \in T . K \subset L$, as is obvious. Set 200 $T_{\lambda}=\left\{p \mid \lambda \notin \mathbb{Z}_{p}^{x}, p \neq v\right\}$; then $T \cap T_{\lambda}=\phi$ since $\lambda \in \mathbb{Z}_{p}^{x}$ if $p \in T$. Let μ be an integer in Lemma 2.2.31 for $v \notin S=T \cup T_{\lambda}$ and M. Set $T_{\mu}=\left\{p \mid \mu \notin \mathbb{Z}_{p}^{x}, p \neq v\right\}$; then $T_{\mu} \cap\left(T \cup T_{\lambda} \cup\{v\}\right)=\phi$. We claim that (\sharp) there is a rational number β so that

$$
1-\lambda^{2} \beta^{2} \in \mu \mathbb{Z}_{p} \cap Q\left(K_{p}\right) \text { and } \beta \in \mathbb{Z}_{p} \text { if } p \neq v
$$

β and 1 are sufficiently close if $p \in T$,

$$
1-\lambda^{2} \beta^{2} \in Q\left(W_{v}\right) \text { and } 1-\lambda^{2} \beta^{2} \in Q\left(W_{\infty}\right)
$$

We return to the proof of this latter and first complete with its help the proof of Lemma 2.2.32 By the Hasse-Minkowski Theorem, $1-\lambda^{2} \beta^{2} \in$ $Q(W)$. Applying the property (ii) in Lemma 2.2.31 to $a=1-\lambda^{2} \beta^{2}$, there is a vector $w \in W$ such that $Q(w)=1-\lambda^{2} \beta^{2}$ and $w \in K_{p}$ for $p \neq v$. We show that $z=\beta u+w$ is what we want. Suppose $P \in T$; then β and 1 are sufficiently close in \mathbb{Z}_{p} and $w \in K_{p} \subset p^{r} L_{p}$. Thus z and u are sufficiently close in V_{p}. On the other hand, z_{p} and y, u and y are sufficiently close respectively. Hence z and z_{p} are sufficiently close for $p \in T$. If $p \notin T \cup\{v\}$, then $z=\beta \lambda y+w \in \beta L_{p}+K_{p} \subset L_{p}$. Lastly $Q(z)=\beta^{2} \lambda^{2}+Q(w)=1$. Thus the assertions (i), (ii)., (iii) are satisfied. It remains for us to prove the existence of a rational number β. First, we construct $\beta_{p} \in \mathbb{Q}_{p}$ which satisfies the condition (\sharp) locally
with $1-\lambda^{2} \beta_{p}^{2} \neq 0$ for $p \in T \cup T_{\lambda} \cup T_{\mu}$. Then we approximate β_{p} by β, noting that $Q\left(K_{p}\right) \backslash\{0\}, Q\left(W_{v}\right) \backslash\{0\}, Q\left(W_{\infty}\right) \backslash\{0\}$ are open sets.

Let $p \in T$; take a non-zero number $\alpha_{p} \in Q\left(K_{p}\right)$ which is sufficiently close to 0 and set $\beta_{p}=\lambda^{-1}\left(1-\alpha_{p} / 2\right)$. Since λ and 1 are sufficiently close, β_{p} and 1 are also sufficiently close. Clearly, $1-\lambda^{2} \beta_{p}^{2}=1-\left(1-\alpha_{p} / 2\right)^{2}=$ $\alpha_{p}\left(1-\alpha_{p} / 4\right) \in \alpha_{p} \mathbb{Z}_{p}^{x^{2}} \subset Q\left(K_{p}\right)$. Since $T \cap T_{\mu}=\phi$, we have $\mu \in \mathbb{Z}_{p}^{x}$ and then $1-\lambda^{2} \beta_{p}^{2} \in \mu \mathbb{Z}_{p}$. Thus the condition (\sharp) is satisfied for β_{p} with $q-\lambda^{2} \beta_{p}^{2} \neq 0$.

Let $p \in T_{\mu}$; take $\beta_{p} \in \mathbb{Q}_{p}$ so that β_{p} and λ^{-1} are sufficiently close but $\beta_{p} \neq \lambda^{-1}$. Since $\lambda \in \mathbb{Z}_{p}^{x}, \beta_{p} \in \mathbb{Z}_{p}^{x}$. Obviously $0 \neq 1-\lambda^{2} \beta_{p}^{2} \in \mu \mathbb{Z}_{p}$. Since $p \notin T$ and $Q(u)=\lambda^{2} \in \mathbb{Z}_{p}^{x}, K_{p}=u^{\perp}$ in L_{p} is unimodular, by virtue of Lemma 2.1.3 From Proposition 2.1.12 it follows that $Q\left(K_{p}\right)=\mathbb{Z}_{p}$. Thus the condition (\sharp) is satisfied for β_{p} with $1-\lambda^{2} \beta_{p}^{2} \neq 0$.

Let $p \in T_{\lambda}$; first, we claim that K_{p} contains a unimodular submodule of rank $\geqq 2$. Let $\left\{v_{i}\right\}$ be a basis of L_{p} over \mathbb{Z}_{p} and assume $v_{1}=b y$, $b \in \mathbb{Q}_{p}$. Since $T \cap T_{\lambda}=\phi, L_{p}$ is unimodular and then $Q\left(v_{1}\right)=b^{2} \in$ \mathbb{Z}_{p}. Suppose $b \in \mathbb{Z}_{p}^{x}$; then $L_{p}=\mathbb{Z}_{p} v_{1} \perp\left(v_{1}^{\perp}\right.$ in $\left.L_{p}\right)=\mathbb{Z}_{p} v_{1} \perp K_{p}$ by virtue of Lemma 2.1.3 and the definition of K. Hence K_{p} itself is unimodular. Suppose $b \in p \mathbb{Z}_{p} ;$ since \mathbb{L}_{p} is unimodular, $B\left(v_{1}, L_{p}\right)=\mathbb{Z}_{p}$ and in view of $Q\left(v_{1}\right) \in p \mathbb{Z}_{p}$, we may assume $B\left(v_{1}, v_{2}\right)=1$, without loss of generality. Then $\mathbb{Z}_{p}\left[v_{1}, v_{2}\right]$ is unimodular and so is $\mathbb{Z}_{p}\left[v_{1}, v_{2}\right]^{\perp}$ in $L_{p}\left(\subset K_{p}\right)$ by Lemma 2.1.3. Thus our claim above has been proved, and then Proposition 2.1.12 implies that $Q\left(K_{p}\right) \ni 1$. For $\beta_{p}=0$, the condition (\sharp) is satisfied with $1-\lambda^{2} \beta_{p}^{2} \neq 0$ since $\mu \mathbb{Z}_{p}=\mathbb{Z}_{p}$.

Suppose $v=\infty$; then we choose a large number $\beta \in \mathbb{Q}$ such that β and β_{p} are sufficiently close for $p \in T \cup T_{\lambda} \cup T_{\mu}$, and $\beta \in \mathbb{Z}_{p}$ otherwise. If $p \notin T \cup T_{\lambda} \cup T_{\mu}$, then $\mu \in \mathbb{Z}_{p}^{x}$ and K_{p} is unimodular since L_{p} is unimodular and $Q(u) \in \mathbb{Z}_{p}^{x}$. Hence $\mu \mathbb{Z}_{p}=Q\left(K_{p}\right)=\mathbb{Z}_{p}$, and the condition (\sharp) is satisfied for each prime number. By assumption $Q\left(W_{\infty}\right) \supset\{a \in \mathbb{R} \mid a<$ $0\}$, and then it is also satisfied for $v=\infty$.

Suppose $v=q<\infty$. Set $\beta_{q}=q^{-r}$ for a sufficiently large r; then $1-\lambda^{2} \beta_{q}^{2}=-\lambda^{2} \beta_{q}^{2}\left(1-\lambda^{-2} q^{2 r}\right) \in Q\left(W_{v}\right)$, since $V_{q}=<\lambda^{2}>\perp W_{q}$ is isotropic and $1-\lambda^{-2} q^{2 r}$ is a square. We take a rational number β^{\prime} so that β^{\prime} and β_{p} are sufficiently close for $p \in T \cup T_{\lambda} \cup T_{\mu} \cup\{q\}$ and $\beta^{\prime} \in \mathbb{Z}_{p}$ otherwise. Next we take a sufficiently large integer m such that q^{m} and

1 are sufficiently close for $p \in T \cup T_{\lambda} \cup T_{\mu}$, and set $\beta=\beta^{\prime} q^{-m}$. In the process, V_{∞} is positive definite, and $1-\lambda^{2} \beta^{2}$ is sufficiently close to 1 in \mathbb{R}. It is easy to see that β is the rational number required in (\sharp).

PROOF of Theorem 2.2.29 when $\operatorname{dim} V \geqq 4$.

Let V, v, S, σ_{p} be as in Theorem 2.2.29
(i) Suppose that $\sigma_{p}=\tau_{x_{p}} \tau_{y_{p}}, Q\left(x_{p}\right)=Q\left(y_{p}\right)\left(x_{p}, y_{p} \in V_{p}\right)$ for any $p \in S$.

Take a vector $x \in V$ so that x and x_{p} are sufficiently close for $p \in$ S, and $x \in L_{p}$ otherwise, and take $\eta_{p} \in 0\left(V_{p}\right)$ so that $y_{p}=\eta_{p} x_{p}$. Choose a finite set S^{\prime} of prime numbers so that $S^{\prime} \cap(S \cup\{v\})=\phi$ and if $p \notin S^{\prime}$, then $\tau_{x} L_{p}=L_{p}, Q(x) \in \mathbb{Z}_{p}^{x}, p \neq 2$, and L_{p} is unimodular. Set $z_{p}=\eta_{p} x$ for $p \in S, z_{p}=x$ for $p \in S^{\prime}$. If $p \notin S \cup S^{\prime} \cup\{v\}$, then there exists $z_{p} \in L_{p}$ such that $Q\left(z_{p}\right)=Q(x)$ since L_{p} is unimodular $(p \neq 2)$ and $Q(x) \in \mathbb{Z}_{p}^{x}$. Applying Lemma 2.2.32 to $z_{p}, T=S \cup S^{\prime}, 0 \neq a=Q(x) \in Q(V)$, there is a vector $z \in V$ with $Q(z)=Q(x)$ such that z and z_{p} are sufficiently close for $p \in S \cup S^{\prime}, z \in L_{p}$ for $p \notin S \cup S^{\prime} \cup\{v\}$. If $p \in S$, then $\tau_{x} \tau_{z}$ and $\tau_{x_{p}} \tau_{y_{p}}=\sigma_{p}$ are sufficiently close. If $p \in S^{\prime}$, then $\tau_{x} \tau_{z}$ and $\tau_{x} \tau_{x}=i d$ are sufficiently close and hence $\tau_{x} \tau_{z} L_{p}=L_{p}$. Suppose $p \notin S \cup S^{\prime} \cup\{v\}$; then $\tau_{x} L_{p}=L_{p}$ by the definition of S^{\prime}, and further $\tau_{z} L_{p}=L_{p}$ since $Q(z)=Q(x) \in \mathbb{Z}_{p}^{x}$ and $z \in L_{p}$. Thus $\sigma=\tau_{x} \tau_{z}$ is what we want.
(ii) Suppose that $\sigma_{p}=\tau_{x_{1, p}} \tau_{y_{1, p}} \cdots \tau_{x_{r, p}} \tau_{y_{r, p}}, Q\left(x_{i, p}\right)=Q\left(y_{i, p}\right)$ for each $p \in S$.

In this case, we may assume that r is independent of each $p \in S$, since the order of any symmetry is 2 . Applying (i) to $\tau_{x_{i}} \tau_{y_{i}}$, we complete the proof.

(iii) General Case.

Set $\sigma_{p}=\tau_{x_{1, p}} \cdots \tau_{x_{2 r, p}}$ with $\Pi Q\left(x_{i, p}\right)=1$ and assume r is independent of each $p \in S$ as in (ii). Extending S, we may assume that V_{p} is isotropic if $p \notin S$, by virtue of Theorem 6 on page 36 in [S]. On this occasion, we set $\sigma_{p}=$ the identity mapping
for p which belongs not to the originale S but to the extended S. Take $x_{1}, \ldots, x_{2 r-1} \in V$ so that x_{i} and $x_{i, p}$ are sufficiently close for $p \in S, 1 \leqq i \leqq 2 r-1$ and so are $\prod_{1 \leqq i \leqq 2 r-1} Q\left(x_{i}\right)$ and $\prod_{q \leq i \leq 2 r-1} Q\left(x_{i, p}\right)(\neq 0)$ for $p \in S$. Hence there is a unit $\varepsilon_{p} \in \mathbb{Z}_{p}^{x}$ such that $Q\left(x_{2 r, p}\right)^{-1}=\prod_{1 \leqq i \leq 2 r-1} Q\left(x_{i, p}\right)=\epsilon_{p}^{2} \prod_{1 \leq i \leq 2 r-1} Q\left(x_{i}\right)$, and ϵ_{p} is sufficiently close to 1 . We claim that there is a vector $x_{2 r} \in V$ so that $Q\left(x_{2 r}\right)=\prod_{1 \leq i \leq 2 r-1} Q\left(x_{i}\right)^{-1}$, and $x_{2 r}$ and $x_{2 r, p}$ are sufficiently close for $p \in S$. Set $a=\prod_{1 \leq i \leq 2 r-1} Q\left(x_{i}\right)^{-1}$; then $a=Q\left(\epsilon_{p} x_{2 r, p}\right)$ for $p \in S$, and since V_{p} is isotropic for $p \notin S$, a is represented by V_{p} for every prime number p. If V_{∞} is isotropic, then a is also represented by V_{∞}. If V_{∞} is anisotropic, then the sign of a is equal to $Q\left(x_{2 r-1}\right)$, and hence a is also represented by V_{∞}. By virtue of Hasse-Minkowski Theorem, a is represented by V. Take a vector $w \in V$ with $Q(w)=a$, and $\eta_{p} \in 0^{+}\left(V_{p}\right)$ with $\eta_{p} w=\epsilon_{p} x_{2 r, p}$ for $p \in S$, and approximate η_{p} by $\eta \in 0^{+}(V)$ by Lemma 2.2.30 We can take $\eta(w)$ as $x_{2 r}$. Then $\prod_{1 \leq i \leq 2 r} Q\left(x_{i}\right)=1$ and $\tau_{x_{1}} \cdots \tau_{x_{2 r} r}$ and $\tau_{x_{1, p}} \cdots \tau_{x_{22, p}}$ are sufficiently close for $p \in S$. Set $S^{\prime}=\{p \notin$ $\left.S \cup\{v\} \mid \tau_{x_{1}} \cdots \tau_{x_{2} r} L_{p} \neq L_{p}\right\}$. Since V_{p} is isotropic for $p \in S^{\prime}$, it follows that $\tau_{x_{1}} \cdots \tau_{x_{2 r}}$ is a product of $\tau_{x} \tau_{y}\left(x, y \in V_{p}, Q(x)=Q(y)\right)$ for $p \in S^{\prime}$. From (ii), follows the existence of $\sigma_{1} \in 0^{\prime}(V)$ such that σ_{1} and 1 (resp. $\tau_{x_{1}} \cdots \tau_{x_{2 r}}$) are sufficiently close for $p \in S$ (resp. $p \in S^{\prime}$) and $\sigma_{1}\left(L_{p}\right)=L_{p}$ for $p \notin S \cup S^{\prime} \cup\{v\}$. Then $\sigma=\sigma_{1}^{-1} \tau_{x_{1}} \cdots \tau_{x_{2 r} r}$ is what we want. Thus we have completed the proof of Theorem 2.2.28 when $\operatorname{dim} V \geqq 4$.

Suppose now that $\operatorname{dim} V=3$. Multiplying the quadratic form by a constant, we may assume $d(V)=1$, that is, $V=<a_{1}>\perp<a_{2}>\perp<$ $a_{1} a_{2}>, a_{i} \in \mathbb{Q}^{x}$. Now we define a quaternion algebra $C=\mathbb{Q}+\mathbb{Q} i+\mathbb{Q} j+$ $\mathbb{Q} k$ by $i^{2}=-a_{1}, j^{2}=-a_{2}, k^{2}=-a_{1} a_{2}$ and $-j i=k$. The conjugate \bar{x} of $x=a+b i+c j+d k(a, b, c, d \in \mathbb{Q})$ is defined by $a-b i-c j-d k$. Then the norm $N(x)$ of x is, by definition, $x \bar{x}=a^{2}+b^{2} a_{1}+c^{2} a_{2}+d^{2} a_{1} a_{2}$, and so it is a quadratic form and the corresponding bilinear form $B(x, y)$
is $\frac{1}{2}(x \bar{y}+y \bar{x})$. Thus V is isometric to the subspace $\mathbb{Q} i+\mathbb{Q} j+\mathbb{Q} k$ and we identify them. We note that V and $\mathbb{Q} \subset \mathbb{C}$ are orthogonal. For $x \in V$ with $N(x) \neq 0$, we have

$$
\begin{aligned}
\tau_{x} y & =y-\frac{(x \bar{y}+y \bar{x})}{N(x)} \\
& =-N(x)^{-1} x \bar{y} x=-x y x^{-1} \text { for } y \in V .
\end{aligned}
$$

Therefore $\varphi \in 0^{+}(V)$ is written, for some $z \in C$, as

$$
\varphi(y)=z y z^{-1} \text { for } y \in V
$$

and then the spinor norm $0(\varphi)$ is $N(z) \mathbb{Q}^{x^{2}}$. Set $\widetilde{L}=\mathbb{Z} \perp L$ and extend the given $\sigma_{p} \in 0^{\prime}\left(V_{p}\right)$ to $\widetilde{\sigma}_{p} \in 0^{\prime}\left(C_{p}\right)$ where $\widetilde{\sigma}_{p}(1)=1(\in C)$. Similarly to the foregoing, there is a vector $z_{p} \in C_{p}$ so that $\widetilde{\sigma}_{p}(y)=z_{p} y z_{p}^{-1}(p \in S)$. Since $\widetilde{\sigma}_{p}\left(\in 0^{\prime}\left(V_{p}\right), N z_{p}=a_{p}^{2}, a_{p} \in \mathbb{Q}_{p}^{x}\right.$. Taking $a_{p}^{-1} z_{p}$ instead of z_{p}, we may assume $N z_{p}=1$. If $p \notin S$, then set $z_{p}=1$. Let $T(\nexists v)$ be a finite set of prime numbers such that $T \supset S$ and if $p \notin T$, then \widetilde{L}_{p} is unimodular and a subring. Applying Lemma 2.2.32 there is a vector $z \in C$ so that $N(z)=1, z$ and z_{p} are sufficiently close if $p \in T$ and $z \in \widetilde{L}_{p}$ if $p \notin T \cup\{v\}$. We define an isometry $\widetilde{\sigma} 0^{\prime}(C)$ by $\widetilde{\sigma}(y)=z y z^{-1}$. Since $\widetilde{\sigma}(1)=1, \widetilde{\sigma}(V)=V$ follows, and set $\sigma=\widetilde{\sigma} \mid V$. If $p \in S$, then z and z_{p} are sufficiently close, and then $\widetilde{\sigma}$ and $\widetilde{\sigma}_{p}$ are sufficiently close, and hence so are σ and σ_{p} since $\widetilde{\sigma}(1)=\widetilde{\sigma}_{p}(1)=1$. If $p \in T \backslash S$, then $\widetilde{\sigma}$ and id are sufficiently close, and then $\widetilde{\sigma}\left(\widetilde{L}_{p}\right)$, and hence $\sigma\left(L_{p}\right)=L_{p}$. Suppose $p \notin T$; then $z \in \widetilde{L}_{p}$, and \widetilde{L}_{p} is unimodular. Hence $\tau_{z}\left(\widetilde{L}_{p}\right)=\widetilde{L}_{p}$, since $N(z)=1$. From $\widetilde{L}_{p}=\tau_{z} \widetilde{L}_{p}=z \widetilde{L}_{p} z=z \widetilde{L}_{p} z^{2} z^{-1} \subset z \widetilde{L}_{p} z^{-1}=\widetilde{\sigma} \widetilde{L}_{p}$, it follows that $\widetilde{\sigma}$ preserves \widetilde{L}_{p}, and then $\sigma\left(L_{p}\right)=L_{p}$. Thus σ is what we wanted, and the proof of Theorem 2.2.29 is complete.

Theorem 2.2.33. Let V be a regular quadratic module over \mathbb{Q} with $\operatorname{dim} V=m \geqq 2$ and suppose that V is not a hyperbolic plane, i.e., either $\operatorname{dim} V=2$ and $d(V) \neq-1$ or $\operatorname{dim} V \geqq 3$, and that $V_{\infty}=\mathbb{R} V \cong$ $\left({ }_{r}<1>\right) \perp(\perp<-1>)$. Suppose that the following are given:
(a) $a \mathbb{Z}$-lattice M on V,
(b) a finite set S of prime numbers p such that $S \ni 2$ and M_{p} is unimodular for $p \notin S$,
(c) integers r^{\prime}, s^{\prime} with $0 \leqq r^{\prime} \leqq r, 0 \leqq s^{\prime} \leqq s$,
(d) $x_{1, p}, \ldots, x_{n, p} \in M_{p}\left(r^{\prime}+s^{\prime}=\eta<m\right)$ for $p \in S$.

Then there are vectors x_{1}, \ldots, x_{n} in M satisfying
(i) x_{i} and $x_{i, p}$ are sufficiently close in V_{p} for $p \in S, 1 \leqq i \leqq n$,
(ii) for $p \notin S$, $\operatorname{det}\left(B\left(x_{i}, x_{j}\right)\right) \in \mathbb{Z}_{p}^{x}$ with precisely one exception $p=q$, where
$\operatorname{det}\left(B\left(x_{i}, x_{j}\right)\right) \in q \mathbb{Z}_{p}^{x}$,
(iii) a subspace spanned by $\left\{x_{i}\right\}$ in $\mathbb{R} V$ is isometric to $\left(\underset{r^{\prime}}{\perp}<1>\right) \perp$ $\left(\underset{s^{\prime}}{\perp}<-1>\right)$.

Proof. We use induction on $n=r^{\prime}+s^{\prime}$. First suppose $n=1, m=2$. This case is fundamental. Let $V^{a}\left(a \in \mathbb{Q}^{x}\right)$ denote the vector space provided with a new quadratic form $a Q(x)$. We shall use L^{a} to denote the lattice L when it is regarded as a lattice in V^{a}. First, we show that if the theorem is true for V^{a}, then it holds for V. Suppose that the theorem holds for $V^{a}\left(a \in \mathbb{Q}^{x}\right)$ and that $M, S, r^{\prime}, s^{\prime}, x_{1, p}$ in $(a), \ldots,(d)$ are given. Put $S(a)=$ $S \cup\left\{p \mid a \notin \mathbb{Z}_{p}^{x}\right\}$. Then for a lattice M^{a} and $S(a)$, the condition (b) is satisfied. For a prime number $p \in S(a) \backslash S$, we can choose $x_{1, p} \in M_{p}$ with $Q\left(x_{1, p}\right) \in \mathbb{Z}_{p}^{x}$ since p is odd and M_{p} is unimodular. If a is positive, then we put $r^{\prime \prime}=r^{\prime}, s^{\prime \prime}=s^{\prime}$. Otherwise, put $r^{\prime \prime}=s^{\prime}, s^{\prime \prime}=r^{\prime}$. From the assumption, it follows that there exists $x \in M^{a}$ for which
(i') x and $x_{1, p}$ are sufficiently close in V_{p} for $p \in S(a)$,
(ii') for $p \notin S(a), a Q(x) \in \mathbb{Z}_{p}^{x}$ with precisely one exception $p=q$, where $a Q(x) \in q \mathbb{Z}_{q}^{x}$, and

207 (iii') $a Q(x)$ is positive (resp. negative) if $r^{\prime \prime}=1, s^{\prime \prime}=0$ (resp. $r^{\prime \prime}=0$, $s^{\prime \prime}=1$).
(i') (resp. (iii')) implies (i) (resp. (iii)). If $p \notin S(a), p \neq q$, then we have $a Q(x) \in \mathbb{Z} x_{p}$ and $a \in \mathbb{Z}_{p}^{x}$ and therefore $Q(x) \in \mathbb{Z}_{p}^{x}$. For $p=q$, $Q(x) \in q \mathbb{Z}_{q}^{x}$ since $q \notin S(a)$. For $p \in S(a) \backslash S$, (i') implies that $Q(x)$ and $Q\left(x_{1, p}\right) \in \mathbb{Z}_{p}^{x}$ are sufficiently close. Hence $Q(x) \in \mathbb{Z}_{p}^{x}$. Thus we get the assertions (i), (ii), (iii). Therefore, we may assume that V is a quadratic field k over \mathbb{Q} and the quadratic form Q is equal to the norm N from k to \mathbb{Q}. We take a finite set $S^{\prime} \supset S$ of prime numbers so that for $p \notin S^{\prime}, M_{p}$ is equal to the localization of the maximal order of k. We choose $x_{1, p} \in M_{p}$ is equal to the localization of the maximal order of k. We choose $x_{1, p} \in M_{p}$ for $p \in S^{\prime} \backslash S$ such that $N x_{1, p} \in \mathbb{Z}_{p}^{x}$. By the approximation theorem, there exists $y \in k$ such that $N y$ is positive (resp. negative) for $r^{\prime}=1, s^{\prime}=0$ (resp. $r^{\prime}=0, s^{\prime}=1$) and y and $x_{1, p}$ are sufficiently close for $p \in S^{\prime}$. Decompose the principal ideal (y) as $(y)=\widetilde{m n}$ where $\widetilde{m}, \widetilde{n}$ are ideals of k and the prime divisor \widetilde{p} appears in \widetilde{m} if and only if \widetilde{p} divides some prime number p in S^{\prime}. Thus it is known that there exists a number $z \in k$ for which z and 1 are sufficiently close for $p \in S^{\prime}, N z$ is positive, and $\widetilde{q}=\widetilde{n} z$ is a prime divisor with $N \widetilde{q}=q$ prime.

Put $x=y z$. Then the conditions (i), (iii) are obviously satisfied. For $p \in S^{\prime} \backslash S, y, x_{1, p}$ and $z, 1$ are sufficiently close respectively and $N x_{1, p} \in$ \mathbb{Z}_{p}^{x}. Hence $Q(x) \in \mathbb{Z}_{p}^{x}$, for $p \in S^{\prime} \backslash S$. Since $(x)=(y z)=\tilde{m} \tilde{q}$, we have $Q(x)= \pm N(\widetilde{m}) q$. By the assumption on \widetilde{m}, the condition (ii) is satisfied. By the construction, it is easy to see that x is contained in every localization of M and hence in M. Thus we have completed the proof for the case $n=1, m=2$. Suppose now that $n=1$ and $m=\operatorname{dim} V \geqq 3$. Take any prime $h \notin S$. Then there exists a basis $\left\{v_{i}\right\}$ of M_{h} such that $\left(B\left(v_{i}, v_{j}\right)\right)_{i=1,2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Q\left(v_{3}\right) \in \mathbb{Z}_{h}^{x}$ and $M_{h}=\mathbb{Z}_{h}\left[v_{1}, v_{2}\right] \perp \mathbb{Z}_{h} v_{3} \perp \cdots$ by Proposition 2.1.12 We take $x_{1} \in M$ so that x_{1} and $x_{1, p}$ are sufficiently close for $p \in S$, and x_{1} and $v_{1}+h v_{2}$ are sufficiently close for h. Put $T=\left\{p \notin S \mid Q\left(x_{1}\right) \notin \mathbb{Z}_{p}^{x}\right\} \ni h$. There exists $x_{2} \in V$ such that $Q\left(x_{2}\right)>0$ (resp. < 0) for $r^{\prime}=1, s^{\prime}=0$ (resp. $r^{\prime}=0, s^{\prime}=1$), for $p \in T$, $x_{2} \in M_{p}$ and $Q\left(x_{2}\right) \in \mathbb{Z}_{p}^{x}$ and moreover, x_{2} and v_{3} are sufficiently close for $p=h$. Then we have a natural number a such that $a x_{2} \in M$ and $p \nmid a$ for $p \in T$. The discriminant of $M^{\prime}=\mathbb{Z}\left[x_{1}, a x_{2}\right]$ is divisible exactly by h. Hence $W=\mathbb{Q}\left[x_{1}, a x_{2}\right]$ is not a hyperbolic plane. Put
$U=\left\{p \notin S \cup T \mid d\left(M^{\prime}\right) \notin \mathbb{Z}_{p}^{x}\right\}$ and $x_{1, p}^{\prime}=x_{1}$ if $p \in S \cup U, x_{1, p}^{\prime}=x_{2}$ if $p \in T$, and $S^{\prime}=S \cup T \cup U$. Then M_{p}^{\prime} is unimodular for $p \notin S^{\prime}$, since $d\left(M_{p}^{\prime}\right)$ is a unit and $M^{\prime} \subset M$. Applying the previous result to this, we have an element $x \in M^{\prime}$ such that
(i) x and $x_{1, p}^{\prime}$ are sufficiently close for $p \in S^{\prime}$
(ii) for $p \notin S^{\prime}, Q(x) \in \mathbb{Z}_{p}^{x}$ with precisely one exception $p=q$, where $Q(x) \in q \mathbb{Z}_{p}^{x}$,
(iii) $Q(x)>0($ resp. $<0)$ if $r^{\prime}=1$ (resp. $\left.r^{\prime}=0\right)$.

It is easy to see that this x is what we wanted. Now suppose $1<$ $n<m$. Applying the inductive assumption to $x_{1, p}, \ldots, x_{n-1, p}, S$ and M, there exist $x_{1}, \ldots, x_{n-1} \in M$ such that x_{i} and $x_{i, p}$ are sufficiently close for $1 \leqq i \leqq n-1, p \in S, \operatorname{det}\left(B\left(x_{i}, x_{j}\right)\right)_{i, j<n} \in \mathbb{Z}_{p}^{x}$ for $p \notin S \cup\left\{q_{1}\right\}$ for some prime $q_{1} \notin S, \operatorname{det}\left(B\left(x_{i}, x_{j}\right)\right)_{i, j<n} \in q_{1} \mathbb{Z}_{q_{1}}^{x}$, and over \mathbb{R}

$$
\begin{aligned}
& \left(<B\left(x_{i}, x_{j}\right)\right)_{i, j<n}>\perp<\delta>\cong\left(\underset{r^{\prime}}{\perp}<1>\right) \perp\left(\underset{s^{\prime}}{\perp}<-1>\right) \text { for } \delta= \pm 1 \\
& \text { Put } U=\sum_{i=1}^{n-1} \mathbb{Q} x_{i}, W=\{x \in V \mid B(x, U)=0\} . \text { Then } V=U \perp W
\end{aligned}
$$ Put $A=\mathbb{Z}\left[x_{1}, \ldots, x_{n-1}\right]$; then $d\left(A_{q_{1}}\right) \in q_{1} \mathbb{Z}_{q_{1}}^{x}$. From the local version of Lemma 2.4.26, it follows that $d\left(A_{q_{1}}^{\perp}\right.$ in $\left.M_{q_{1}}\right) \in \mathbb{Z}_{q_{1}}^{x}$. On the other hand, $d\left(M_{q_{1}}\right) \in \mathbb{Z}_{q_{1}}^{x}$ implies $d\left(A_{q_{1}}\right) \cdot d\left(A_{q_{1}}^{\perp}\right) \in \mathbb{Z}_{q_{1}}^{x} \mathbb{Q}_{q_{1}}^{x^{2}} / \mathbb{Q}_{q_{1}}^{x_{1}^{2}}$. Thus $d\left(A_{q_{1}}^{\perp}\right.$ in $\left.M_{q_{1}}\right) \in q_{1} \mathbb{Z}_{q_{1}}^{x}$. Let $A_{q_{1}}=L_{1} \perp L_{2}, A_{q_{1}}^{\perp}=L_{3} \perp L_{4}$ be Jordan splittings so that L_{1}, L_{3} are unimodular and rank $L_{2}=\operatorname{rank} L_{4}=1$. Since $M_{q_{1}}$ is unimodular, $L_{2} \perp L_{4}$ is contained in the unimodular module $\left(L_{1} \perp L_{3}\right)^{\perp}$ in $M_{q_{1}}$, and then $A_{q_{1}} \subset L_{1} \perp\left(L_{1} \perp L_{3}\right)^{\perp}$. From $d\left(A_{q_{1}}\right) \in q_{1} \mathbb{Z}_{q_{1}}^{x}$, it follows that $A_{q_{1}}$ is a direct summand in $L_{1} \perp\left(L_{1} \perp L_{3}\right)^{\perp}$, and hence there is an element $x_{n, q_{1}} \in M_{q_{1}}$ such that $A_{q_{1}}+\mathbb{Z}_{q} x_{n, q_{1}}$ is a unimodular module $L_{1} \perp\left(L_{1} \perp L_{3}\right)^{\perp}$. Decompose $x_{n, p}$ as $x_{n, p}=y_{n, p}+z_{n, p}\left(y_{n, p} \in\right.$ $U_{p}, z_{n, p} \in W_{p}$) for $p \in S \cup\left\{q_{1}\right\}$. We can take $y_{n} \in U$ so that y_{n} and $y_{n, p}$ are sufficiently close for $p \in S \cup\left\{q_{1}\right\}$ and $y_{n} \in A_{p}$ for $p \notin S \cup\left\{q_{1}\right\}$. We claim that

(\sharp) there exist an element z_{n} in the projection M^{\prime} of M to W and a prime $q \notin S \cup\left\{q_{1}\right\}$ such that z_{n} and $z_{n, p}$ are sufficiently close for $p \in S \cup\left\{q_{1}\right\}$,

$$
\begin{aligned}
& Q\left(z_{n}\right) \in \mathbb{Z}_{p}^{x} \text { for } p \notin S \cup\left\{q, q_{1}\right\} \text { and } Q\left(z_{n}\right) \in q \mathbb{Z}_{q}^{x} \\
& Q\left(x_{n}\right) \delta>0
\end{aligned}
$$

We come to the proof of this later and first complete the proof of the theorem with its help. put $x_{n}=y_{n}+z_{n}$. Then x_{n} and $x_{n, p}=y_{n, p}+$ $z_{n, p}$ are sufficiently close for $p \in S \cup\left\{q_{1}\right\}$. Hence the condition (i) is satisfied, and $x_{n} \in M_{p}$, for $p \in S \cup\left\{q_{1}\right\}$. For $p \notin S \cup\left\{q_{1}\right\}, M_{p}, A_{p}$ are unimodular and hence $M_{p}=A_{p} \perp(*)$. Since M^{\prime} is the projection of M to W, we have $M_{p}=A_{p} \perp M_{p}^{\prime}$. Hence we have $x_{n}=y_{n}+$ $z_{n} \in A_{p}+M_{p}^{\prime}=M_{p}$ for $p \notin S \cup\left\{q_{1}\right\}$. Thus $x_{n} \in M$. We check the condition (ii). $d\left(\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]\right)$ and $d\left(\mathbb{Z}_{p}\left[x_{1, p}, \ldots, x_{n, p}\right]\right)$ are sufficiently close for $p=q_{1}$, and the latter is a unit by the definition of $x_{n, q_{1}}$. Hence $d\left(\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]\right) \in \mathbb{Z}_{p}^{x}$, for $p=q_{1}$. For $p \notin S \cup\left\{q_{1}\right\}, d\left(\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]\right)=$ $d\left(\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n-1}, y_{n}+z_{n}\right]\right)=d\left(\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n-1}, z_{n}\right]\right)\left(y_{n} \in A_{p}\right)=d\left(A_{p}\right)$. $Q\left(z_{n}\right) \in Q\left(z_{n}\right) \mathbb{Z}_{p}^{x}$. Thus from the property of z_{n} in ($\left.\sharp\right)$ condition (ii) follows. Condition (iii) follows from

$$
\begin{aligned}
\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] & =\mathbb{Q}\left[x_{1}, \ldots x_{n-1}\right] \perp \mathbb{Q} z_{n} \\
& =<\left(B\left(x_{i}, x_{j}\right)\right)_{i, j<n}>\perp<\delta>\text { over } \mathbb{R}
\end{aligned}
$$

It remains to show (\sharp). For $\operatorname{dim} W \geqq 2$, this is clear. Since $d\left(W_{q_{1}}\right)=$ $d\left(A_{q_{1}}^{\perp}\right) \in q_{1} \mathbb{Z}_{q_{1}}^{x}, W$ is not the hyperbolic plane. As we have seen, $M_{p}=$ $A_{p} \perp M_{p}^{\prime}$ for $p \notin S \cup\left\{q_{1}\right\}$ and then M_{p}^{\prime} is unimodular for $p \notin S \cup\left\{q_{1}\right\}$. Also, $z_{n, p} \in M_{p}^{\prime}$, from the definitions of $z_{n, p}$ and M^{\prime}. Obviously, $W \cong<$ $\delta>\perp(*)$ over \mathbb{R}, by the definition of δ. Applying the theorem for the case $n=1$, we obtain the existence of z_{n}.

2.2.0

In this paragraph, we give sufficient conditions under which gen $L=$ $s p n L$ or $s p n L=c l s L$, and also a result on representation of indefinite quadratic forms.

Theorem 2.2.34. Let V be a regular quadratic module over \mathbb{Q} with $\operatorname{dim} V \geqq 3, S$ a finite set of prime numbers and $L a \mathbb{Z}[S]$-lattice on V.

If $\theta\left(0^{+}\left(L_{p}\right)\right) \supset \mathbb{Z}_{p}^{x}$ for every prime number $p \notin S$, then we have gen $L=s p n L$.
Proof. Suppose $K \in$ gen L. Then from the definition, we have an isometry $\sigma_{p} \in O\left(V_{p}\right)$ such that $\sigma_{p}\left(K_{p}\right)=L_{p}$. For $v \in K_{p}$ satisfying $Q(v) \mathbb{Z}_{p}=\underline{n}\left(K_{p}\right)$, the symmetry $\tau_{v}(x)=x-\frac{2 B(x, v)}{Q(v)} v$ belongs to $0\left(K_{p}\right)$. Hence we may assume $\sigma_{p} \in 0^{+}\left(V_{p}\right)$, after multiplying it by τ_{v}, if necessary. Moreover, we assume $\sigma_{p}=i d$, if $K_{p}=L_{p}$. We can take a positive number a so that $a \theta\left(\sigma_{p}\right)$ contains a unit for $p \notin S$. By Proposition 2.2.19 there is an isometry $\sigma \in 0^{+}(V)$ such that $\theta(\sigma)=a \mathbb{Q}^{x^{2}}$. For $M=\sigma^{-1}(K)$, we have $\sigma_{p} \sigma\left(M_{p}\right)=L_{p}$ for every p, and $\theta\left(\sigma_{p} \sigma\right) \subset \mathbb{Z}_{p}^{x} \mathbb{Q}_{p}^{x^{2}}$ for $p \notin S$.

By assumption, there is an isometry $\eta_{p} \in 0^{+}\left(L_{p}\right)$ such that $\theta\left(\eta_{n} \sigma_{p}\right.$ $\sigma)=\mathbb{Q}_{p}^{x^{2}}$. Thus we have

$$
\sigma^{-1}\left(K_{p}\right)=\left(\eta_{p} \sigma_{p} \sigma\right)^{-1} L_{p}, \quad \eta_{p} \sigma_{p} \sigma \in 0^{\prime}\left(V_{p}\right) \text { for } p \notin S
$$

This means $K \in s p n L$.
Remark. Let $L_{p}=L_{1} \perp \cdots \perp L_{t}$ be a Jordan splitting. If either rank $L_{i} \geq 2$ (resp. 3) for some i for $p \neq 2$ (resp. $p=2$), or L_{p} is maximal and rank $L_{p} \geqq 3$, then the condition $\theta\left(0^{+}\left(L_{p}\right)\right) \supset \mathbb{Z}_{p}^{x}$ is satisfied by Proposition 1 in previous section.
212 Theorem 2.2.35. Let V be a regular quadratic module over \mathbb{Q} with $\operatorname{dim} V \geqq 3, S$ a finite set of prime numbers, and L a $\mathbb{Z}[S]$-lattice on V. If $V_{\infty}=\mathbb{R} V$ is isotropic or $V_{p_{o}}$ is isotropic for some $p_{0} \in S$, then $s p n L=c l s L$.
Proof. Suppose $K \in \operatorname{spnL}$. Then there exist isometries $\mu \in 0(V), \sigma_{p} \in$ $0^{\prime}\left(V_{p}\right)$ for $p \notin S$ such that

$$
\mu\left(K_{p}\right)=\sigma_{p}\left(L_{p}\right)
$$

Put $T=\left\{p \notin S \mid \mu\left(K_{p}\right) \neq L_{p}\right\}$ (a finite set). Then by Theorem 2.2.29 there is an isometry $\sigma \in 0^{\prime}(V)$ such that $\sigma\left(L_{p}\right)=L_{p}$ if $p \neq T$ or $T \cup\left\{p_{0}\right\}$ according to the hypothesis, σ and σ_{p} are sufficiently close if $p \in T$.

Hence for $p \in T, \sigma\left(L_{p}\right)=\sigma_{p}\left(L_{p}\right)$ and then $\mu\left(K_{p}\right)=\sigma\left(L_{p}\right)$ for $p \notin S$. This leads to $K=\mu^{-1} \sigma(L)$.

Corollary 1. Let V be a regular quadratic module over \mathbb{Q} with $\operatorname{dim} V \geqq$ 3 , and suppose that V_{∞} is isotropic. If L is a \mathbb{Z}-lattice on V that $s(L) \subset \mathbb{Z}$, $d(L)$ is odd and square-free, gen $L=c l s L$.

Proof. By assumption, L_{2} is modular and L_{p} is maximal for $p \neq 2$. Hence Theorems 2.2.34 2.2.35 and the Remark for $S=\phi$ imply the corollary.

Corollary 2. Let V, W be regular quadratic modules over \mathbb{Q} with dim $V+3 \geqq \operatorname{dim} W$, and $L($ resp. . M) a \mathbb{Z}-lattice on $V($ resp. $W)$. Suppose that

$$
\begin{aligned}
& L_{p} \text { is represented by } M_{p} \text { for all } p, \\
& V_{\infty} \text { is represented by } W_{\infty} \text {, and } \\
& W_{\infty} \text { is isotropic. }
\end{aligned}
$$

Then L is represented by M.
Proof. From the Corollary to Theorem 2.1.1 it follows that V_{p} is represented by W_{p}, and then the Hasse-Minkowski theorem implies that V is represented by W. We may assume $V \subset W$. By assumption, there is an isometry σ_{p} from L_{p} to M_{p}. By Witt's theorem, we may assume $\sigma_{p} \in 0\left(W_{p}\right)$. Multiplying a symmetry of V_{p}^{\perp} from the right, we may assume $\sigma_{p} \in 0^{+}\left(W_{p}\right)$. From Proposition 2.2 .20 follows the existence of $\eta_{p} \in 0^{+}\left(V_{p}^{\perp}\right)$ and that $\theta\left(\sigma_{p}\right) \theta\left(\eta_{p}\right)=1$. Multiplying σ_{p} by η_{p} on the right, we may assume $\theta\left(\sigma_{p}\right)=1$. Then there exists an isometry $\sigma \in 0^{\prime}(W)$ such that

$$
\begin{aligned}
& \sigma\left(M_{p}\right)=M_{p} \text { if } L_{p} \subset M_{p} . \\
& \sigma \text { is sufficiently close to } \sigma_{p} \text { if } L_{p} \not \subset M_{p} .
\end{aligned}
$$

Hence $\sigma\left(L_{p}\right) \subset M_{p}$ for every p and so $\sigma(L) \subset M$.

2.2.0

The aim of this paragraph is to prove the fundamental theorem on representations of positive definite quadratic forms. We mean by a positive
lattice a quadratic module $M=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]$ over \mathbb{Z} with basis $\left\{v_{i}\right\}$ such that $\left(B\left(v_{i}, v_{j}\right)\right)$ is positive definite. By definition, every $B\left(v_{i}, v_{j}\right)$ is rational.

Theorem 2.2.36 ([8]). Let M be a positive lattice of rankM $\geqq 2 n+3$. There is a constant $c(M)$ such that any positive lattice N of rankN $=n$ is represented by M provided that

$$
\min (N):=\min _{0 \neq x \in N} Q(x) \geqq c(M), \text { and }
$$

N_{p} is represented by M_{p} for every prime p.
The proof is based on several lemmas.
Let \mathbb{N} be the set of non-negative integers and we introduce a partial ordering in \mathbb{N}^{k} defined by $\left(x_{1}, \cdots, x_{k}\right) \leqq\left(y_{1}, \ldots, y_{k}\right)$ if $x_{i} \leqq y_{i}(1 \leqq i \leqq$ $k)$. Then our first lemma is the following.

Lemma 2.2.37. Every subset X of \mathbb{N}^{k} contains only finitely many minimal elements.

Proof. We use induction on k. The assertion is trivial for $k=1$. Write $x=\left(x^{\prime}, x_{k}\right)$ with $x^{\prime}=\left(x_{1}, \ldots, x_{k-1}\right) \in \mathbb{N}^{k-1}$, and put $X_{n}^{\prime}=\left\{x^{\prime} \in\right.$ $\left.\mathbb{N}^{k-1} \mid\left(x^{\prime}, n\right) \in X\right\}$. Let Y_{n}, Y^{\prime} be the sets of minimal elements of $X_{n}^{\prime}, \cup_{n=0}^{\infty}$ X_{n}^{\prime} respectively. By the inductive assumption, Y_{n}, Y^{\prime} are finite sets. For $y^{\prime} \in Y^{\prime}$ we choose and fix an element $y \in X$ satisfying $y=\left(y^{\prime}, y_{k}\right)$, and denote by Y the set of such $y . Y$ is also a finite set and put $m=$ $\max \left\{y_{k} \mid y \in Y\right\}$. Suppose that $x \in X$ is minimal. Then $x^{\prime} \in X_{x_{k}}^{\prime}$ from the definition and then there exist $y \in Y$ such that $y^{\prime} \leqq x^{\prime}$. If $x_{k} \geqq y_{k}$, then $x \geqq y$ and then $x=y \in Y$ in view of the minimality of x. Suppose $x_{k}<y_{k}(\leqq m)$. Since x is minimal in $X_{x_{k}}, x$ is minimal in $X_{x_{k}}^{\prime}$. Hence $x \in\left(Y_{x_{k}}, x_{k}\right) \subset \cup_{n=0}^{m}\left(Y_{n}, n\right)$. Thus every minimal element x is in a finite set $Y \cup \cup_{n=0}^{m}\left(Y_{n}, n\right)$.

Lemma 2.2.38. Let M_{p} be a regular quadratic module over \mathbb{Z}_{p} of rank $M_{p}=m \geqq n$. Then there are only finitely many regular submodules $N_{p}(j)$ of $\operatorname{rank} N_{p}(j)=n$ such that each regular regular submodule N_{p} of $\operatorname{rank} N_{p}=n$ of M_{p} is represented by some $N_{p}(j)$.

Proof. If is obvious that the assertion holds if it is true for $p^{\tau} M_{p}$ instead of M_{p}. Hence we may assume that $s\left(M_{p}\right) \subset \mathbb{Z}_{p}$. Let N_{p} be a regular quadratic module of rank n and $N_{p}=\stackrel{t}{\perp}{ }_{i=1}^{\perp} L_{i}$ a Jordan splitting. Since L_{i} is modular, $p^{-b_{i}} L_{i}=K_{i}$ is unimodular or (p)-modular for some $b_{i} \in \mathbb{N}$. By virtue of Propositions 2.1.12 and 2.1.13, there are only finitely many isometric modules over \mathbb{Z}_{p} of unimodular or (p)-modular quadratic modules of fixed rank. Thus there are only finitely many possibilities for the whole collection $\left(\operatorname{rank} L_{i}, K_{i}\right)$. Fix one of these and consider the corresponding $\left(b_{1}, \ldots, b_{t}\right)$. By Lemma 2.2.37 there exist only finitely many minimal ones. It is clear that if

$$
\begin{aligned}
& N_{p}=\stackrel{t}{\stackrel{1}{i=1}} L_{i}, \quad N_{p}^{\prime}=\stackrel{t}{\stackrel{\perp}{i=1}} L_{i}^{\prime}, \\
& \operatorname{rank} L_{i}=\operatorname{rank} L_{i}^{\prime}, p^{-b_{i}} L_{i} \cong p^{-b_{i}^{\prime}} L_{i}^{\prime}, \\
& b_{i} \leqq b_{i}^{\prime} \text { for } 1 \leqq i \leqq t,
\end{aligned}
$$

then N_{p}^{\prime} is represented by N_{p}. Hence N_{p}, ranging over all possible collections ($\operatorname{rank} L_{i}, K_{i}$) and minimal families $\left(b_{i}\right)$, constitute a finite family with the required property.

Lemma 2.2.39. Let L be a positive lattice of rank $L \geqq 3$ and suppose that L_{p} is maximal for all p, and let q be a prime such that $(\mathbb{Q} L)_{p}$ is isotropic. Then there is a natural number s such that L represents every positive lattice N for which $q^{s} L_{p}$ represents N_{p} for every prime p.

Proof. Let $\left\{L_{i}\right\}$ be a complete set of representatives of classes in gen L. From Theorem 2.2.35, it follows that $s p n \mathbb{Z}\left\{q^{-1}\right\} L=c l s \mathbb{Z}\left[q^{-1}\right] L$. On the other hand, our assumption implies gen $L=s p n L$ and then gen $\mathbb{Z}\left[g^{-1}\right]$ $L=s p n \mathbb{Z}\left[g^{-1}\right] L$ by virtue of Proposition 2.2.18 and Theorem 2.2.34 Thus we have gen $\mathbb{Z}\left[q^{-1}\right] L=\operatorname{cls} \mathbb{Z}\left[g^{-1}\right] L$. Hence there is an isometry $\sigma_{i} \in 0(\mathbb{Q} L)$ such that $\mathbb{Z}\left[q^{-1}\right] L=\mathbb{Z}\left[g^{-1}\right] \sigma_{i}\left(L_{i}\right)$. We determine s by

$$
q^{s} \sigma_{i}\left(L_{i}\right) \subset L \text { for every } i
$$

The lemma follows immediately from Theorem 2.2.28

Lemma 2.2.40. Let L, q, s be as in Lemma 2.2.39 rank $L \geqq n+3$, K a positive lattice. Then there is a constant c such that $K \perp L$ represents a positive lattice $N=\mathbb{Z}\left[v_{1}, \ldots, v_{n}\right]$ of rankn for which N_{p} is represented by $K_{p} \perp q^{s} L_{p}$ for every p, and $\left(B\left(v_{i}, v_{j}\right)\right)>c E_{n}$.

Proof. Let S be a finite set of prime numbers such that $S \ni 2, q$ and for $p \notin S K_{p}, L_{p}$ are unimodular, and fix a natural number r such that $p^{r} s\left(K_{p}\right) \subset \underline{n}\left(q^{s} L_{p}\right)$ for $p \in S$. Choose vectors $v_{i}^{h} \in K(i=1,2, \ldots, n, h=$ $1, \ldots, t)$ so that for given $x_{1, p}, \ldots, x_{n, p} \in K_{p}$, we have

$$
v_{i}^{h} \equiv x_{i . p} \quad \bmod p^{r} K_{p} \cdots(*)
$$

for some $h(q \leqq h \leqq t)$ and every $i=1,2, \ldots, n$ and all $p \in S$. We choose a positive number c so that

$$
c E_{n}-\left(B\left(v_{i}^{h}, v_{j}^{h}\right)\right)>0 \text { for } h=1, \ldots, t
$$

Let $N=\mathbb{Z}\left[v_{1}, \ldots, v_{n}\right]$ be a lattice which satisfies the conditions in the lemma. By the first condition, there exist $x_{i, p} \in K_{p}, y_{i, p} \in q^{s} L_{p}$ such that

$$
B\left(v_{i}, v_{j}\right)=B\left(x_{i, p}, x_{j, p}\right)+B\left(y_{i, p}, y_{j, p}\right) \text { for all } p
$$

For some h satisfying $(*)$ for these $x_{i, p}$, we put

$$
A=\left(B\left(v_{i}, v_{j}\right)\right)-\left(B\left(v_{i}^{h}, v_{j}^{h}\right)\right)
$$

We have only to prove that A is represented by L. All the entries of A are rational and A is positive definite, since $A=\left(\left(B\left(v_{i}, v_{j}\right)\right)-c E_{n}+\right.$ $\left(c E_{n}-\left(B\left(v_{i}^{h}, v_{j}^{h}\right)\right)>0\right.$. Let $H=\mathbb{Z}\left[u_{1}, \ldots, u_{n}\right]$ be a positive lattice such that $\left(B\left(u_{i}, u_{j}\right)\right)=A$. Put $x_{i, p}=v_{i}^{h}+p^{r} z_{i, p}\left(z_{i, p} \in K_{p}\right)$. Then

$$
\begin{aligned}
& A=\left(B\left(x_{i, p}, x_{j, p}\right)\right)+\left(B\left(y_{i, p}, y_{j, p}\right)\right)-\left(B\left(v_{i}^{h}, v_{j}^{h}\right)\right) \\
&=\left(B\left(v_{j}^{h}, v_{j}^{h}\right)+p^{r} B\left(v_{i}^{h}, z_{j, p}\right)+p^{r} B\left(z_{i, p}, v_{j}^{h}\right)+p^{2 r} B\left(z_{i, p}, z_{j, p}\right)\right)+ \\
&+\left(B\left(y_{i, p}, y_{j, p}\right)-\left(B\left(v_{i}^{h}, v_{j}^{h}\right)\right)\right.
\end{aligned}
$$

holds.
By the choice of r, the (i, j) th entry of A is congruent to $B\left(y_{i, p}, y_{j, p}\right)$ modulo $\underline{n}\left(q^{s} L_{p}\right)$ for $p \in S$. It follows from $y_{i, p} \in q^{s} L_{p}$ that $\underline{n}\left(H_{p}\right) \subset$
$\underline{n}\left(q^{s} L_{p}\right)$ for $p \in S$. Since $v_{i} \in N, v_{i}^{h} \in K$ and $\underline{n}\left(N_{p}\right) \subset \underline{n}\left(K_{p} \perp q^{s} L_{p}\right) \subset$ \mathbb{Z}_{p} for $p \notin S$, we have $\underline{n}\left(H_{p}\right) \subset \mathbb{Z}_{p}=\underline{n}\left(q^{s} L_{p}\right)$ for $p \notin S$. Thus we have proved $\underline{n}\left(H_{p}\right) \subset \underline{n}\left(q^{s} L_{p}\right)$ for every p. Proposition 2.1.10 implies that H_{p} is represented by $q^{s} L_{p}$ for all p. From Lemma 2.2.39, it follows that H is represented by L and the proof is complete.

Proof of Theorem 2.2.36. Let M be a positive lattice of $\operatorname{rank} M \geqq 2 n+3$. Let S be a finite set of prime numbers such that $S \ni 2$ and M_{p} is unimodular for $p \notin S$ and M_{q} is unimodular for some $q(\neq 2) \in S$. We construct a set of submodules $K(J), L(J)$ of M as in Lemma 2.2.40 and show that N satisfies the condition in Lemma 2.2.40 for some J. For each $p \in S$, we choose finitely many submodules $N_{p}\left(j_{p}\right)$ of rank nin M_{p} according to Lemma 2.2.38 and to each collection $J=\left(j_{p}\right)_{p \in S}$ we take a submodule $K(J)$ or rank $n \in M$ satisfying the conditions $K(J)_{p} \cong N_{p}\left(j_{p}\right)$ and $d(K(J)) \in \mathbb{Z}_{p}^{x}$ or $p \mathbb{Z}_{p}^{x}$ for $p \notin S$ by Theorem 2.2.33 and Corollary 4 to Theorem 2.1.14 We construct a submodule $L(J)$ of $\operatorname{rank} L(J)=\operatorname{rank} M-n \geqq n+3$ in $\{x \in M \mid B(x, K(J))=0\}$ as follows: For $p \notin S, L(J)_{p}=K(J)_{p}^{\perp}=\left\{x \in M_{p} \mid B\left(x, K\left(J_{p}\right)\right)=0\right\}$. In this case, $L(J)_{p}$ is $\left(\mathbb{Z}_{p}-\right)$ maximal, since $s\left(L(J)_{p}\right) \subset \mathbb{Z}_{p}$ and $d\left(L(J)_{p}\right) \in \mathbb{Z}_{p}^{x} \cup p \mathbb{Z}_{p}^{x}$ by the local version of Lemma 2.4.26. For $p \in S$, we take any maximal module in $\left\{x \in M_{p} \mid B\left(x, K(J)_{p}\right)=0\right\}$. From Proposition 2.2.18 and Theorem 2.2.34 it follows that gen $L=s p n L$. We show that $L(J)_{q}$ is isotropic. If $\operatorname{rank} L(J)_{q} \geqq 5$, then $L(J)_{q}$ is isotropic. Otherwise, we have $\operatorname{rank} L(J)_{q}=4, n=1, \operatorname{rank} M_{q}=S$. By the assumption $q(\neq 2) \in S$, M_{q} is unimodular. Hence $M_{q}=<\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>\perp<\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)>\perp<*>$. Unless $L(J)_{q}$ is isotropic, $\mathbb{Q}_{q} M$ does not contain two copies of hyperbolic planes. Thus $L(J)_{q}$ is isotropic. Let N be a positive lattice of rank n such that N_{p} is represented by M_{p} for every p. Suppose $p \notin S$; then M_{p} is unimodular. Hence $\underline{n}\left(N_{p}\right) \subset \mathbb{Z}_{p}$. Since $L(J)_{p}$ is \mathbb{Z}_{p}-maximal and $\operatorname{rank} L(J)_{p} \geqq n+3, N_{p}$ is represented by $L(J)_{p}=q^{s} L(J)_{p}$ by Proposition 2.1.10 for every J. For $p \in S, N_{p}$ is represented by $K(J)_{p}$ for some J. By Lemma 2.2.40, there is a constant $c(J)$ so that N is represented by $K(J) \perp L(J) \subset M$ if $\left(B\left(v_{i}, v_{j}\right)\right)>c(J)$ for some basis $\left\{v_{i}\right\}$ of N. Put
$c^{\prime}=\max _{J} c(J)$. By reduction theory, there is a basis $\left\{v_{i}\right\}$ of N such that

$$
\left(B\left(v_{i}, v_{j}\right)\right) \in S_{4 / 3,1 / 2}, \text { and then }\left(B\left(v_{i}, v_{j}\right)\right) \gg\left(\begin{array}{ll}
Q\left(v_{1}\right) & \\
& \ddots \\
& \\
& \\
& \\
& \\
& \left(v_{n}\right)
\end{array}\right)
$$

If $\min _{0 \neq v \in N} Q(v)$ is sufficiently large, then we have $\left(B\left(v_{i}, v_{j}\right)\right)>c^{\prime} E_{n}$.
This completes the proof.
Remark. By the analytic considerations in $\$ 1.7$ of Chapter \square the following assertion holds for $n=1, m \geq 4$ or $n=2, m \geq 7$.

Let M be a positive lattice with $M=m$. There is a constant $c(M)$ such that any positive lattice N with rank $N=n$ is primitively represented by M provided that

$$
\min (N)=\min _{0 \neq x \in N} Q(x) \geqq c(M) \text { and }
$$

N_{p} is primitively represented by M_{p} for every prime p.

2.2.0

In this last subsection, we show that there is a submodule of codim 1 which characterizes a given module.

Let $L=L_{1} \perp \cdots \perp L_{k}$ be a Jordan splitting of a regular quadratic module L over \mathbb{Z}_{p}, that is, every L_{i} is modular and $s\left(L_{1}\right) \underset{\neq \cdots}{\supset} \stackrel{\rightharpoonup}{ } s\left(L_{k}\right)$. Then we put

$$
t_{p}(L)=(\underbrace{a_{1}, \ldots, a_{1}}_{\text {rank } L_{1}}, \ldots, \underbrace{a_{k}, \ldots, a_{k}}_{\text {rank } L_{k}})
$$

where a_{i} is defined by $p^{a_{i}} \mathbb{Z}_{p}=s\left(L_{i}\right)$ and then $a_{1}<a_{2}<\ldots<a_{k}$. For two ordered sets $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right)$, we define the ordering $a \leqq b$ by either $a_{i}=b_{i}$ for $i<k$ and $a_{k}<b_{k}$ for some $k \leqq n$ or $a_{i}=b_{i}$ for all i. For brevity, we denote $t_{p}\left(L_{p}\right)$ by $t_{p}(L)$ for a regular quadratic module over \mathbb{Z}.

Lemma 2.2.41. Let L be a \mathbb{Z}_{p}-lattice on a regular quadratic module U over \mathbb{Q}_{p}. Then L contains a \mathbb{Z}_{p}-submodule M satisfying the following conditions 1), 2):

1) $d(M) \neq 0$, $\operatorname{rank} M=\operatorname{rank} L-1$ and M is a direct summand of L as a module.
2) Let L^{\prime} be a \mathbb{Z}_{p}-lattice on U containing M. If $d\left(L^{\prime}\right)=d(L)$ and $t_{p}\left(L^{\prime}\right) \geqq t_{p}(L)$, then $L^{\prime}=L$.
Proof. First, we assume that L is modular. Multiplying the quadratic form by some constant, we may suppose that L is unimodular, without loss of generality. Let L^{\prime} be a lattice as in 2). Then $t_{p}\left(L^{\prime}\right) \geqq t_{p}(L)=$ $(0, \ldots, 0)$ implies $s\left(L^{\prime}\right) \subset \mathbb{Z}_{p}$, and $d\left(L^{\prime}\right)=d(L)$ implies that L^{\prime} is unimodular. Suppose that L has an orthogonal basis, that is, $L=\stackrel{n}{\stackrel{n}{\perp}} \mathbb{Z}_{p} v_{i}$. Then we put $M=\stackrel{n-1}{\stackrel{\perp}{=1}} \mathbb{Z}_{p} v_{i}$. The condition 1$)$ is trivially satisfied. L^{\prime} is split by M, in view of Lemma 2.1.3 Thus $L^{\prime}=M \perp a \mathbb{Z}_{p} v_{n}\left(a \in \mathbb{Q}_{p}^{x}\right)$. Further, $d\left(L^{\prime}\right)=d(L)$ implies $a \in \mathbb{Z}_{p}^{x}$ and $L^{\prime}=L$. Suppose that L does not have any orthogonal basis. Then, from Propositions 2.1.12 and 2.1.13 it follows that $p=2$ and

$$
\begin{aligned}
& L=\stackrel{n}{\perp} \mathbb{Z}_{2}\left[u_{i}, v_{i}\right], \\
& \mathbb{Z}_{2}\left[u_{i}, v_{i}\right]=<\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]>\text { for } i<k, \\
& \mathbb{Z}_{2}\left[u_{k}, v_{k}\right]=<\left[\begin{array}{cc}
2 c & 1 \\
1 & 2 c
\end{array}\right]>
\end{aligned}
$$

$c=0$ or 1 . Let $Q\left(u_{k}\right)=Q\left(v_{k}\right)=2 c, B\left(u_{k}, v_{k}\right)=1$ and put $M=$ $\stackrel{k-1}{\stackrel{L}{i=1}} \mathbb{Z}_{2}\left[u_{i}, v_{i}\right] \perp \perp \mathbb{Z}_{2}\left[u_{k}+v_{k}\right]$. Then condition 1) is satisfied. From Lemma 2.1.3, it now follows that $L^{\prime}=\stackrel{{ }_{i=1}^{k-1}}{\mathbb{Z}_{2}}\left[u_{i}, v_{i}\right] \perp L^{\prime \prime}$. Moreover, $L^{\prime \prime}$ is unimodular and $L^{\prime \prime} \ni u_{k}+v_{k}$. Since $Q\left(u_{k}+v_{k}\right)=2(2 c+1), u_{k}+v_{k}$ is primitive in $L^{\prime \prime}$. Hence $L^{\prime \prime}=\mathbb{Z}_{2}[u+v, a u+b v]\left(u=u_{k}, v=v_{k}\right)$, for some $a, b \in \mathbb{Q}_{2}^{x}$. Since $L^{\prime \prime}$ is unimodular, and $Q(u+v)=2(2 c+1)$, we have $B(u+v, a u+b v) \in \mathbb{Z}_{2}^{x}$ and $Q(a u+b v) \in \mathbb{Z}_{2}$. Thus $B(u+v, a u+b v)=$ $(a+b)(2 c+1) \in \mathbb{Z}_{2}^{x}$ and $Q(a u+b v)=2(2 c-1) a^{2}-2(2 c-1) a x+2 c x^{2} \in$ $\mathbb{Z}_{2}(x=a+b)$. Hence $x \in \mathbb{Z}_{2}^{x}$ and $2 a(a-x) \in \mathbb{Z}_{2}$. This implies $a \in \mathbb{Z}_{2}$ and $b=x-a \in \mathbb{Z}_{2}$. Thus we have $L^{\prime \prime}=\mathbb{Z}_{2}[u, v]$ and $L^{\prime}=L$. Returning to the general case, let $L=\stackrel{\stackrel{k}{\perp}}{\stackrel{L}{1}} L_{i}$, where L_{i} is $p^{a_{i}} \mathbb{Z}_{p}$-modular
and $a_{1}<\cdots<a_{k}$. Denote by M_{k} a submodule of L_{k} which satisfies 1), 2) for L_{k}, and put $M=\perp_{i=1}^{k-1} L_{i} \perp M_{k}$. Then condition 1) is obviously $t_{p}\left(L^{\prime}\right) \geqq t_{p}(L)$ implies $s\left(L^{\prime}\right) \subset s\left(L_{1}\right)$. By Lemma 2.1.3] $L^{\prime}=L_{1} \perp L^{\prime \prime}$, and $t_{p}\left(L^{\prime \prime}\right) \geqq t_{p}\left(\underset{1 \geq 2}{\perp} L_{i}\right)$ and clearly $L^{\prime \prime} \supset \underset{1=2}{\stackrel{k}{\perp}} L_{i} \perp M_{k}$. Repeating this argument, we get $L^{\prime}=\underset{i<k}{\perp} L_{i} \perp \tilde{L}, t_{p}(\tilde{L}) \geqq t_{p}\left(L_{k}\right), \tilde{L} \supset M_{k}, d(\tilde{L})=d\left(L_{k}\right)$. Thus we have $L^{\prime}=L$.

We call a submodule M in Lemma 2.2.41 a characteristic submodule of L. Obviously the images of a characteristic submodule by $0(L)$ are also characteristic.

Theorem 2.2.42. Let L be a \mathbb{Z}-lattice on regular quadratic module U over \mathbb{Q}; then L contains a \mathbb{Z}-submodule M satisfying the following conditions 1), 2):

1) $d(M) \neq 0$, $\operatorname{rank} M=\operatorname{rank} L-1$, and M is a direct summand of L as a module.
2) Let L^{\prime} be a \mathbb{Z}-lattice on a regular quadratic module U^{\prime} over \mathbb{Q} satisfying $d\left(L^{\prime}\right)=d(L)$, rank $L^{\prime}=\operatorname{rank} L, t_{p}\left(L^{\prime}\right) \geqq t_{p}(L)$ for every prime p. If there is an isometry u from M to L^{\prime}, then L^{\prime} is isometric to L.

Proof. We separate the case when U is a hyperbolic plane.
Suppose that U is a hyperbolic plane and further, let $L=\mathbb{Z}\left[u_{1}, u_{2}\right]$, $\left(B\left(u_{i}, u_{j}\right)\right)=\left(\begin{array}{cc}0 & b^{\prime} \\ b^{\prime} & c^{\prime}\end{array}\right)$. Multiplying the quadratic form on U some constant, we may assume $2 \mid c^{\prime}$, and ($b^{\prime}, c^{\prime} / 2$) $=1$ without loss of generality. Since $Q\left(x u_{1}+u_{2}\right)=2\left(x b^{\prime}+c^{\prime} / 2\right)$, there is an integer x such that $\frac{1}{2} Q\left(x u_{1}+u_{2}\right)$ is a prime number q with $(q, 2 d L)=1$. Hence to L corresponds the matrix $\left(\begin{array}{cc}2 q & b \\ b & c\end{array}\right)$ with $0<b<q$. It is easy to see that b, c are uniquely determined by q and $d(L)$. We put $M=\mathbb{Z}\left[x u_{1}+u_{2}\right]$, and let L^{\prime} be a lattice in 2). From the hypothesis, it follows that $s\left(L_{p}^{\prime}\right) \subset \mathbb{Z}_{p}$ for every p and hence to L^{\prime} corresponds the matrix $\left(\begin{array}{c}2 q \\ b^{\prime \prime} \\ c^{\prime \prime}\end{array}\right)$ with $0<b^{\prime \prime}<q$. Hence $b^{\prime \prime}=b, c^{\prime \prime}=c$. As a result, $L^{\prime} \cong L$. From now on, we suppose that U is not a hyperbolic plane. Let S be a set of prime numbers such
that $S \ni 2$, and L_{p} is unimodular for $p \notin S$, and \tilde{M}_{p} a characteristic submodule of L_{p} for $p \in S$. Suppose $\mathbb{Z}_{p} x_{p}=\tilde{M}_{p}^{\perp}=\left\{x \in L_{p} \mid B\left(x, \tilde{M}_{p}\right)=0\right\}$. Then $x_{p}^{\perp}=\tilde{M}_{p}$, since \tilde{M}_{p} is a direct summand of L_{p}. By Theorem 2.2.33, there exists an element $x \in L$ such that x and x_{p} are sufficiently close for $p \in S$ and $Q(x) \in \mathbb{Z}_{p}^{x}$ for $p \notin S$ with precisely one exception $p=q$, where $Q(x) \in q \mathbb{Z}_{p}^{x}$. We put $M=x^{\perp}$. Then M satisfies the condition 1). From Corollary 4 to Theorem 2.1.14 it follows that $\mathbb{Z}_{p} x$ and $\mathbb{Z}_{p} x_{p}$ are transformed by $0\left(L_{p}\right)$ for $p \in S$. Thus \tilde{M}_{p}, M_{p} are also transformed by $0\left(L_{p}\right)$. Hence M_{p} is a characteristic submodule of L_{p}. If $p \notin S, p \neq q$, then M_{p} is unimodular and then M_{p} is a characteristic submodule of L_{p}. Let L^{\prime} be a lattice as in 2). Then $\mathbb{Q} L^{\prime}=\mathbb{Q} u(M) \perp<d\left(L^{\prime}\right) d(M)>\cong \mathbb{Q} L$. Hence we may suppose that L^{\prime} is a lattice on U and L^{\prime} contains M. Since M_{p} of Lemma 2.4.26 we have $d\left(M_{q}\right) \in q \mathbb{Z}_{p}^{x}$. Hence there is a basis $\left\{w_{i}\right\}$ of M_{q} such that $\underset{i \leqq n-2}{\perp} \mathbb{Z}_{q} w_{i}$ is unimodular and $Q\left(w_{n-1}\right) \in q \mathbb{Z}_{q}^{x}$. Since $\underset{i \leqq n-2}{\perp} \mathbb{Z}_{q} w_{i}$ splits L_{q}, and M_{q} is a direct summand of L_{q}, there is $w_{n} \in L_{p}$ such that $\left\{w_{1}, \ldots, w_{n}\right\}$ is a basis of L_{q}. Since $N=\mathbb{Z}_{q}\left[w_{n-1}, w_{n}\right]$ is unimodular, $d(N)=Q\left(w_{n-1}\right) Q\left(w_{n}\right)-B\left(w_{n-1}, w_{n}\right)^{2}$ is a unit. From $Q\left(w_{n-1}\right) \in q \mathbb{Z}_{q}^{x}$, it follows that $B\left(w_{n-1}, w_{n}\right) \in \mathbb{Z}_{q}^{x}$ and $\mathbb{Q}_{q} N$ is hyperbolic. By Lemma 2.1.2, there is a basis $\left\{e_{1}, e_{2}\right\}$ of N such that $Q\left(e_{i}\right)=0(i=1,2) B\left(e_{1}, e_{2}\right)=1$. Put $w_{n-1}=a_{1} e_{1}+a_{2} e_{2}\left(a_{i} \in \mathbb{Z}_{q}\right)$; then $2 a_{1} a_{2} \in q \mathbb{Z}_{q}^{x}$. Multiplying e_{i} by a unit and renumbering, we may suppose $w_{n-1}=e_{1}+v q e_{2}\left(v \in \mathbb{Z}_{q}^{x}\right)$. Since L_{q}^{\prime} is unimodular and L_{q}^{\prime} contains M_{q}, there is a unimodular submodule K_{q} such that $L_{q}^{\prime}=\underset{i \leqq n-2}{\perp} \mathbb{Z}_{q} w_{i} \perp K_{q}, K_{q} \ni w_{n-1}$. Let $\left\{w_{n-1}, c e_{1}+d e_{2}\right\}$ be a basis of K_{q}. Since K_{q} is unimodular, we have $d+v q c \in \mathbb{Z}_{q}^{x}$ and $c d \in \mathbb{Z}_{q}$. Then $c \in q^{-1} \mathbb{Z}_{q}^{x}, d \in q \mathbb{Z}_{q}$ or $c \in \mathbb{Z}_{q}, d \in \mathbb{Z}_{q}^{x}$. Thus we have $K_{q}=$ $\mathbb{Z}_{q}\left[q^{-1} e_{1}, q e_{2}\right]$ or $\mathbb{Z}_{q}\left[e_{1}, e_{2}\right]$. Since $B(x, M)=0$ and $B\left(e_{1}-v q e_{2}, M_{q}\right)=0$, $\tau_{x}=\tau_{e_{1}-v q e_{2}}$. It is easy to see that $\tau_{e_{1}-v q e_{2}} \mathbb{Z}_{q}\left[e_{1}, e_{2}\right]=\mathbb{Z}_{q}\left[q^{-1} e_{1}, q e_{2}\right]$. Thus we have $L_{q}^{\prime}=L_{q}$ or $\tau_{x} L_{q}$. Since $\tau_{x} M_{p}=M_{p}$ and M_{p} is a characteristic submodule of L_{p} for $p \neq q$, we have $L_{p}^{\prime}=L_{p}=\tau_{x} L_{p}$. Thus we have $L^{\prime}=L$ or $\tau_{x} L$.

Remark. Let L be a regular quadratic module over \mathbb{Z} and S a finite set of prime numbers such that $2 \in S$ and L_{p} is unimodular for $p \notin S$, and let M be a submodule of L, of rank $=\operatorname{rank} L-1$, such that M_{p} is
characteristic for $p \in S$ and for $p \notin S, d\left(M_{p}\right) \in \mathbb{Z}_{p}^{x}$ with precisely one exception $p=q$ and $d\left(M_{q}\right) \in q \mathbb{Z}_{q}^{x}$. Let u be an isometry from M to L. Extend u to an isometry of $\mathbb{Q} L$. Another extension is $u \tau_{x}\left(x \in M^{\perp}\right)$. The proof shows that $u^{-1}(L)=L$ or $\tau_{x} L$. Hence u is uniquely extended to an isometry of L. In particular, if L is positive definite, then we have

$$
r(M, L)=\sharp\{\text { isometries }: M \rightarrow L\}=\sharp 0(L) .
$$

Corollary 1. Let $\left\{L_{i}\right\}_{i=1}^{m}$ be a set of regular quadratic modules over \mathbb{Z} such that $\operatorname{rank} L_{i}=n, d\left(L_{i}\right)=d(1 \leqq i \leqq m)$, and $L_{i} \neq L_{j}$ if $i \neq j$. Then there is a regular quadratic module M over \mathbb{Z} such that rankM $=n-1$ and there is precisely one $i(1 \leqq i \leqq m)$ for which M is represented by L_{i}.

Proof. Let S be a finite set of prime numbers such that $2 \in S$ and $\left(L_{i}\right)_{p}$ is unimodular for $1 \leq i \leq m, p \notin S$. Put $S=\left\{p_{1}, \cdots, p_{r}\right\}$ and define A_{1}, \ldots, A_{r} as follows:

$$
\begin{aligned}
A_{1} & =\left\{L_{i} ; t_{p_{1}}\left(L_{i}\right) \text { is minimal in }\left\{t_{p_{1}}\left(L_{j}\right) ; 1 \leqq j \leqq m\right\}, \ldots,\right. \\
A_{k+1} & =\left\{L_{i} ; t_{p_{k+1}}\left(L_{i}\right) \text { is minimal in }\left\{t_{p_{k+1}}\left(L_{j}\right) ; L_{j} \in A_{k}\right\}\right\} .
\end{aligned}
$$

Suppose $L_{i} \in A_{r}$, and M is a submodule of L_{i} which is constructed in the proof of Theorem 2.2.42 Assume M is represented by L_{j}. Since $L_{i} \in$ $A_{r} \subset A_{1}, t_{p_{1}}\left(L_{i}\right) \leqq t_{p_{1}}\left(L_{j}\right)$. Further, $M_{p_{1}}$ is a characteristic submodule of L_{i}. Hence $\left(L_{i}\right)_{p} \cong\left(L_{j}\right)_{p}$ and then $t_{p_{1}}\left(L_{i}\right)=t_{p_{1}}\left(L_{j}\right)$. Thus L_{j} belongs to A_{1}. Repeating this argument, we have $L_{j} \in A_{r}$. Thus $t_{p}\left(L_{i}\right)=t_{p}\left(L_{j}\right)$ for every p. From Theorem 2.2.42, it follows that L_{j} is isometric to L_{j}. This completes the proof.

Corollary 2 ([9]). Let $\left\{S_{i}\right\}_{i=1}^{m}$ be a set of positive definite rational symmetric matrices such that rank $S_{i}=n,\left|S_{i}\right|=d(1 \leqq i \leqq m)$ and there is no element $T \in G L_{n}(\mathbb{Z})$ which satisfies $S_{i}[T]=S_{j}$ if $i \neq j$. Then $\theta\left(Z, S_{i}\right)=\sum e\left(\sigma\left(S_{i}[G] Z\right)\right)$ are linearly independent where G runs over $\mathfrak{M}_{n, n-1}(\mathbb{Z})$ and

$$
Z \in H_{n-1}=\left\{Z \in \mathfrak{M}_{n-1}(\mathbb{C}) \mid Z={ }^{t} Z, \operatorname{Im} Z>0\right\}
$$

Proof. This follows immediately from the previous corollary.

Bibliography

[1] A.N. Andrianov: Spherical functions for $G L_{n}$ over local fields and summation of Hecke series, Math. Sbornik 12 (1970), 429-452.
[2] A.N. Andrianov and G.N. Maloletkin: Behaviour of theta-series of degree n under modular substituions, Math. USSR Izv. 9(1975), 227-241.
[3] H. Braun: Darstellung hermitischer Modulformen durch Poincaresche Reihen, Abhand. Math. Sem. Hamburg 22 (1958), 9-37.
[4] J.W.S. Cassels: Rational Quadratic Forms, Academic Press, 1978.
[5] R. Carlsson and W. Johanssen: Der Multiplikator von Thetareihen höheren Grades $z u$ quadratischen Formen ungerader Ordnung, Math, Zeit 177 (1981), 439-449.
[6] U. Christian: Uber Hilbert-Siegelsche Modulformen und Poincaresche Reihen, Math. Annalen 148 (1962), 257-307.
[7] E. Hecke: Theorie der Eisensteinscher Reihen und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh Math. Sem. Hamburg 5 (1927), 199-224, Gesamm. Abhand. 461-486.
[8] J. C Hsia, Y. Kitaoka and M. Kneser: Representations of positive definite quadratic forms, Jour. reine angen. Math, 301 (1978), 132141.
[9] Y. Kitaoka: Representations of quadratic forms and their application to Selberg's zeta functions, Nagoya Math. J. 63 (1976), 153162.
[10] Y. Ditaoka: Modular forms of degree n and representation by quadratic forms I, II, III Nagoya Math. J. 74 (1979), 95-122, ibid. 87(1982). 127-146, Proc. Japan. Acad. 57 (1981). 373-377.
[11] Y. Kitaoka: Fourier coefficients of Siegel cusp forms of degree 2, Nagoya Math. J. 93 (1984), 149-171.
[12] Y. Kitaoka: Dirichlet series in the theory of Siegel modular forms, Nagoya Math. J. 95 (1984), 73-84.
[13] H. Klingen: Zum Darstellungssatz fur Siegelsche Modulformen, Math. Zeit. 102 (1967), 30-43.
[14] H.D. Kloosterman: Asymptotische Foremeln fur die Fourierkoeffizienten ganzer Modulformen, Math. Sem. Hamburg 5 (1927), 337-352.
[15] M. Kneser: Quadratische Formen, Vorlesungs-Ausarbeitung, Giottingen, 1973-'74.
[16] M. Koecher: Zur Theorie der Modulformen n-ten Grades I, II, Math. Zeit. 59 (1954), 399-416, ibid. 61 (1955), 455-466.
[17] H. Maass: Siegel's Modular Forms and Dirichlet Series, Lecture Notes in Math. 216, Springer-Verlag, 1971.
[18] O.T.O’Meara: Introduction to Quadratic Forms, Grundlehren Math. Wissen. 117, Springer-Verlag, 1973.
[19] S. Raghavan: Modular forms of degree n and representation by quadratic forms, Annals Math. 70 (1959), 449-477.
[20] S. Raghavan: Estimates of coefficients of modular forms and generalized modular relations, International Colloq. on Automorphic forms, Representation theory and Arithmetic, Bombay 1979.
[21] J.P. Serre: A Course in Arithmetic, Springer-Verlag, 1973.
[22] G. Shimura: On Eisenstein series, Duke Math. J. 35 (1984), 73-84.
[23] C.L. Siegel: Über die analytische Theorie der quadratischen Formen, Annals Math. 36 (1935), 527-607, Gesamm. Abhand.I, 326405.
[24] C.L. Siegel: Einführung in der Theorie der Modulfunktionen, Math. Annalen 116 (1939), 617-657, Gesamm. Abhand. II, 97137.
[25] C.L. Siegel: On the theory of indefinite quadratic forms, Annals Math. 45 (1944), 577-622, Gesamm. Abhand II, 421-466.
[26] T. Tamagawa: On the ς-functions of a division algebra, Annals Math. 77 (1963), 387-405.
[27] W.A. Tartakowsky: Die Gesamtheit der Zahlen, die durch eine positive quadratische Form $F\left(x_{1}, \ldots, x_{s}\right)(s \geq 4)$ darstellbar sind, Izv. Akad. Nauk SSSR u (1929), 111-122, 165-196.
[28] A. Weil: On some exponential sums, Proc. Nat. Acad. Sci. USA, 34 (1948), 204-207.

[^0]: IN THIS CHAPTER, we exhibit several theorems on representations of quadratic forms obtained by an arithmetical approach. The only basic reference on quadratic forms here is
 [S] J. -P. Serre, A Course in Arithmetic, Springer-Verlag, New York-Heidelberg- Berlin, 1973.

