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Preface

These are based on my lectures at the Tata Institute of Flemtam
Research in 1983-84. They are concerned with the probleepoésen-
tation of positive definite quadratic forms by other suchfer

§ 1.6 and Chapter 2 are added, besides lectures at the lastitut
Professor Raghavan (who also wrote§gpl.1-1.4) and myself respec-
tively.

I would like to thank Professor Raghavan and the Tata Instiior
their hospitality.
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Chapter 1

Fourier Coefficients of Siegel
Modular Forms

Introduction
1

The problem of the representation of a natural nunitzerthe sum of a
given numbem of squares of integers is quite classical and although its
history goes back to Diophantus, it may be said to have befjectively
with Fermat’s theorem that every prime number congruentrtmdulo

4 is a sum of two squares of integers. Practically, every ematiician

of repute since Fermat has made a contribution to problerntisofype

in the theory of numbers. One has, thanks to Jacobi, a forfouléne
numberry(t) of representations dfas a sum ofn squares of integers,
with m = 2, 4, 6 and 8; for example,

ra(t) =4 ) (-1,
dit
dodd
8y d(t odd)
dit
ra®) =124 Y d(teven)

dit
d odd
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Analogously, one can ask for the determinationrofrf) integral matri-
cesG or of thenumber (A, B) of all such G for which

(AIG] :=)'GAG=B (%)

whereA andB are given n, m) and f, n) integral positive definite ma-
trices. As a first step, one can seek suitable conditionsrumdieh (x)
has a solution. A recent result in this direction is given by

Theorem A ([B]). If m > 2n + 3 and if, for every prime number p,
there exists a matrix Gwith entries in the ringzZ,, of p-adic integers
with 'GpAG, = B, then we have an integral matrix G satisfying the
equation'GAG = B, provided that for the minimum of B, vinin(B) :=
OJQ!ZntX BX, we havenin(B) > 2 (A) for a suitable constant?”(A).

The proof of this theorem is arithmetical in nature and isgivn

ChaptefR §2.4.

Remarks 1.If, on the other handA is indefinitewith m > n + 3 and
if, for every primep including oo, (*) admits a solutiorG with entries
in Zp, then it is known that«() has a solutiorG with entries inZ. The
proof is given in Chaptdd & 2.4.

2. In the casen = 1 andm > 5, under the solvability of+) with
G overZj, for every primep (including co), TheorenA, in this
case, is well-known [([27][]4]). Fan = 1 andm = 4, however, if,
in addition, to the solvability of«) in G overZ for every prime
p, one assumes further that for every prigalividing 2 detA,
the power ofg dividing B does not exceed a fixed integethen
forall B> 2 = 2(t), the equationx) is solvable oveZ. The
proof of a stronger form of this assertion viis anisotropic over
g instead of § dividing 2detA”, is purely arithmetic in nature
and may be found in Kneser's Lecturési[15]. An analytic proof
using the decomposition of theta series into Eisensteiasand
a cusp form is also possible. th = 3 andn = 1, assuming
conditions as fom = 4 above, £) is solvable ovef for all B >
Z = Z(t), provided thatB does not belong to a finite number



of “exceptional spinor classes” and further that the Gdinmeh
Riemann Hypothesis holds; the proof is arithmetical in reatu
The casan = 2 andn = 1 reduces to a problem of representation
over quadratic fields.

There is an analytic approach to Theorein A, based on the asymp
totic behaviour ofr (A, B) or, more precisely, on an asymptotic formula
for r(A, B) asB “goes to infinity”. Clearlyr(A, B) > 0 if and only if («)
is solvable forG overZ. One first looks for a generating function for
r(A, B). Let%, = {Z € #x(C)|Z ='Z, i"1(Z - Z) > 0}, the Siegel upper
half space of degree (or “genusn”). For the givenA > 0 and anyZ in
4., let

92) =Z:A) = ) tr(GAGD)
B

wheree(a) = exp(2ria), tr denotes the trace ar@runs over all (n, n)
integral matrices. Thenitis clear thifz) = . r(A, B)e(tr(BZ)) where
B>0

B now runs over all if, n) non-negative definite integral matrices. It
turns out that the theta serié¢Z) is a Siegel modular form of degree
n, weightm/2 and levelN (someN depending ord). Thus the prob-
lem now reduces to studying the asymptotic behaviour ofiEpuodfi-
cients of Siegel modular forms which is in the very centrehefanalytic
approach referred to.

If Ay = 'UAU for U in GLy(Z), then obviously}(Z; A1) = HZ;A) 4
i.e.9(2) is a class-invariant associated with depending only on the
class (of matriceg\; “equivalent” toA as above). The genus éfcon-
sists of all positive-definite matrices' such that for every prime num-
berp, A* = 'U,AU, for U, in GLin(Zp); it is known from the reduction
theory of quadratic forms, that the genusfofonsists of finitely many
classes. Lef\, Ay,..., A, be a complete set of representatives of the
classes in the genus &f and leto(A;) be the order of the unit group
of A, consisting of allu in GL(Z) with 'UAU = A,. Then we have
the genus - invariar(Z) := {X; #(Z; A)/o(Ai)}/{2 1/0(A)} associated

|
with A, having the Fourier expansiod, a(B)e(tr(BZ)). From Siegel
B>0
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[23], we know that, foB > 0,

n-1
a(B) = 2" 4 [ Tyr (mT_k)}l detA ™2 detB|"*” [ | ap(A B)
k=0 p

the product[] being extended over all prime numbgrsinda (A, B),

p
the p-adic density of representation Bfby A is defined as

lim p"(+1=2M2WG e #tn(Z/P'Z)'\GAG = B(mod g)}.
We note thata(B) # 0 if and only if for every primep, 'GAG = B
is solvable forG overZ,. One then defines the modular forgnby
0(2) = 9(2) — E(Z) so that, denoting the Fourier d&eients ofg by
b(B), we have
r(A, B) = a(B) + b(B).

One expects this to be an asymptotic formularf@k, B), with a(B) as

the “main term” and(B) as the “error term”, one needs to estimaB)

i.e. essentially[ T ap(A, B), from below, as indeed shown to be possible
p

by

Theorem B. If m > 2n+ 3 and if'GAG = B is solvable for G oveZ,
for every prime p, thef] ap(A, B) > 27 (A) > 0, for a constant2”(A).
p

Remarks 3.The conditionm > 2n + 3 in TheorenB is best possible.
(Likewise in Theorem 1 too, this condition seems best pésshow-
ever, no counter examples are available to establish the)sam

4. Letm > nandP : {p|p 1 2detA}. ThenifB = tXpAXp for
every primep with primitive X, (i.e. with (Xp*) € GLn(Zp)), then
[Tap(AB) > Z(A) [I (1+eppt) for aconstant2’(A) >
peP peP(B)

0. HereP(B) is defined as the set of primgsfor which m —

Y™ "-1dNy detA\

, -1
2n+tp = 2 andeyp is the Legendre symb '(

p
if B = ((vi,vj))(mod p) for a basigv,...,vn} of the associated
guadratic spac®l overz/pZ with the orthogonal decomposition



N = RadN_LNp, tp = dim N anddNp the discriminant oNg. For
almost allp, B is unimodular and, = n.

If m>n+ 2, P(B)is afinite set. Ifm= 2n+ 2, B = 'X,AX;, for

a primitive X, whenevermp € P; in that case, [] (1+ spp‘l) >
peP(B)

T @-p?t) > ¢B)* for everye > 0, with B) denoting the
ple(B)
first elementary divisor oB. Form= 2n + 2,

peP(B) = t, =0 N = RadN < B = 0(mod p)< ple(B).

5. The next step is naturally to get upper estimates for thgi€io 6
codficientsb(B) of g(Z) which, by its very construction, has the
property that for every modular substitutigh— M < Z > (i=
(AZ+B)(CZ+D)™1), of degreen, the constant term in the Fourier
expansiorg(M < Z >)detCZ + D)™/? = %}b(B, M)e(tr(BZ)/N)

vanishes. Fon = 1, this property characterises a cusp form;
however,g is not a cusp form fon > 1, in general, preempting
an appeal to the estimation of Fourier fiaments of cusp forms
of degreen.

Using Hecke’s estimatig(B) = O(B™4) for the Fourier cofficients
of cusp forms (of degree 1 and weigi/2), we have form > 5 an
asymptotic formular(A,B) = a(B) + O(B™#), noting thata(B) >
B(M2-1) whenevera(B) # 0. Forn = 1 andm = 4, we can say that

a(B) > B¢ [] ap(A B)> B! for everye > 0, whenevea(B) is
pl2 detA
non-zero, provided that an additional restriction thafdbeer of primes

p dividing 2 detA does not exceeg" for a fixedt; the implied constants
in > depend ort. Using Kloosterman’s method, the “error terin(B)
in this case has the estimdiB) = O(B(™4)-1/4+#) for everye > 0 and
thus we have again a genuine asymptotic formulaféarB). Very little
is known, in this respect, far= 1 andm = 3.

Coming to the general case> 1 andm > 2n + 3, we shall prove
the following theorems, using Siegel’s generalized cimkthod

Theorem C (JA0],[19]). Forn>1, m> 2n+ 3and B> OwithdetB <« 7
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(min(B))"b(B) = O(min(B)™1-"2/2(detB)(™*1/2), (For n = 2, the
conditiondetB < (min(B))? is unnecessary).

Theorem D ([10],[20]). For n > 1 and even m> 4n + 4, b(B) =
O(min(B)1-™4(detB)(M"-1)/2)

Remarks 6.Since[]ap(A,B) > 1,1-m/4 < Oand 1- m/2+n <

0, both TheoremEF])C arldl D yield asymptotic formulae rfgk, B), as
the ‘minimum’ min®) of B goes to infinity. The condition d& <«
(minB)" for n > 3 in Theoren T is substantially the same as insisting
that min®) !B lies in a compact set.

The case whem < 2n+ 2 and in particulan = 2, m = 6 is difficult
and a conditional result can be obtained in this special, dase@ising
a generalization of Kloosterman’s method (involving théreation of
exponential sums).

Form=6andn = 2, letg = {Z € ¥%|absdetCZ + D) > 1 for every
modular matrixM = (& p) of degree 2 Let usmake the following

Assumption. Let ¢, ¢ be natural numbers;|c, andZ € 4. Then, for
Z | Z e((U101 + U202)/C1 + UsaQa/Co)| = O(C§+a1+8C%+a2)

g1,9omod ¢ ug,upmod g
gsmod @ usmod ¢

up/c1 W/cy
+Z¢€
(Uz/ C1 Ua/ Cz) s

where 0< a; < 3/2, 0< a; < 1/2 and theD-constant is independent of
Z. Then we can prove

Theorem E. For m = 6, n = 2 and Minkowski-reduced B (; p,,) > 0,
with min(B) > an absolute constan?” > 0, we have

VdetB
min(B)

b(B) = O(((min(B))%~Y/4** 4 (min(B))* log )(detB)®/?)

under the assumption above, whes¢h,,) is the number of distinct
prime divisors of by.



1.1. Estimates for Fourier Cigients... 7

Notation and Terminology.

For any matrixA, the transpose is denoted by By .#; s(R) we
mean the set ofr(s) matrices with entries in a commutative riRgvith
identity. If A € . ,(R) = #:(R), then the determinant and the trace
of A are denoted by dét and trd) respectively. For given matrices
B we abbreviaté BAB (when defined) byA[B]. Superscripts, son a
matrix A9 indicate that it has rows ands columns; byA®), we mean
an ,r) matrix A. By GL,(R) we mean the group ofh(n) matrices with
entries inR and deR invertible inR. For two matricesA, B in .#, s(Z),
we sayA = B(mod q) if all the entries oA — B are divisible byq.
The (, n) identity matrix is denoted b¥, and O represents a matrix,
of the appropriate size, with all entries equal to 0. We wéte- B
(respectivelyA > B) to say thatA — B is a symmetric positive-definite
(respectively non-negative-definite) matrix;< B (respectivelyA < B)
if B > A (respectivelyB > A). We use theD ando notation of Hardy-
Littlewood as well as the notatios: or > (due to Vinogradov). When
f <« gas well asf > g, we simply writef =< g; a similar notation
applies to matrices. B&Ln(Z; ), we mean the congruence subgroup
{U € GLy(Z)IU = Eyn(mod q) of level g. A matrix F™) in ./, (2)
with r < nis called primitive, if there existt) = (Fx) in GL,(Z).
By [a,...,a,] we mean a diagonal matrix with, ..., a, as diagonal
elements. By an integral matrix, we mean a matrix with estfiem
Z. For a complex matrixV = (w;;), the matrix {vi;) with the complex
conjugatesvi; as corresponding entries is denotedvidy

Let Ap = {S = 'S € .#,(Z)} and A}, the dual ofA,, viz. {S = 'S =
(sj) € #,(Q)Isi, 2sj € Z} = {S ='S|tr(ST) € Z for everyT in Ap}.

1.1 Estimates for Fourier Codficients of Cusp

Forms of Degree 1
10
We first give an elaborate description of the case of modwaang of
one variable, which is quite typical, in a sense but not elytiso, since
the higher dimensional cases are fairlyfidult. We have already re-
marked that the modular form introduced earlier is a cusp form for
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n = 1 but not so, in general, for > 1.

Let H = {z € C|Imz > 0} andk,N be natural numbers. The
principal congruence subgroup(N) = {o = (28) € SL(2)o =
(39) (mod Ny of the modular groufy = (1) acts orH via the confor-
mal mappings oH given byZ - o(2) = (az+b)(cz+d) ™ for o = (28)
in T(N). We recall thag(a) = exp(2rie) for a € C.

Definition. A holomorphic function . H — C is called a cusp form
(respectively a modular form) of weight k and level N if, foery

T= (i 3) e I(N), f((az+ b)(cz+ d) Y)(cz+ d) ™ = (2)

and further for every
_[a b Kk _
o= (C d) €T, f(c@)(cz+d)™* = ngoame(mz/N)

(respectively= Y ane(mz/N)).
m>0

Foro =(38)eTandf : H - C, we abbreviate (c(2)(cz+ d) ™
by flo. It is easy to verify that, forrq, o in T', we havef|oio0o =
(flow)lo2.

The following two theorems give estimates for the Fouriegfito
cients of cusp forms.

Theorem 1.1.1(Hecke [J']) For the Fourier cogicients &, of a cusp
form f(2 = Y ame(m2 of weight K> 2) and level N, we have,a=

m>0
O(mk/2).

Theorem 1.1.2.For f as in Theoreni_L11,,a= O(m/2-1/4+2) for
everye > 0.

We fix some notation and prove a few lemmas, before going on to

the proofs of these two theorems.
We know thafy = {z= x+iy € H| [x| £ 1/2,|4 > 1} is a fundamental
domain for the modular groupin H.
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Let

o <F>={o@ze F).Tw {(iol +”1) elne z} andg=| Jo<F>.

o€l

For any fixedm as in the assertion of Theordm 1]1.1or 1.1.2 and for
o= ("g 3) inT, letB(c) := {x € [0, N]lo(x + im™) € g}. We also write
B(c, d) for B(o), as may be seen to be appropriate.

SinceH= |J o <g>,wehavelyym = {x+im0<x<N}=
g€l \I'

U pB(0), this being indeed a finite union, in view of the compactness
oel\I'

of Inm. Furtherlymng = 0form> 2/ V3, since forz= x+iy € g,y >
V3/2. Thuslym = U B(o). Further, measurgd(c1) N B(c2)) = 0,

el \I'
o¢l’

for o1 ¢ I'ewop.
Now

N
Nam:ff(x+im‘1)e(—m(x+im‘1))dx
0

— Z ff(z)e(—mx)dx

€loo\T
7 et B@)

. en
ie. an= Z a(c,d), 1)
(cd)=1
c>1
writing a(c, d) for the integral ovep(o) = B(c, d). If (o) = 0, then the 12
corresponding(c, d) is 0. On the other hand, (o) # 0, there existx
in R with o(x + im™) € g implying that

Im(o-(x +im™)) = m 2/((cx+ d)? + ¢2/n?) > V3/2.

Hence, in this case/c? = mt/(c®m™2) > mY/((cx + d)? + ¢2/mP) >
V3/2 i.e.p(c # 0 implies thatc = O(y/m). Thus in the sum over
(c,d) in @) with (c,d) = 1, we may restrict to satisfy the condition
l<c< ym
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Lemma 1.1.3.If f is a cusp form of weight k and level N and ffio)
(2 = X a,e(nz/N) for o € T, then
n>1

> lallenz/N)| = O(exp(-211m2)) for Imz> 2 >0

n>0

where 27 = n/N and the O-constant depends only 8 and on f in
general.

Proof. Since ['(1) : T(N)] < oo, the set{f|o,o € T} is finite, even
for any modular form which is not necessarily a cusp form. c8in
(flo)(Z°/2) = ZajexpnnZ /N) is convergent, we obtainay|
exprnZ /N) = O(1). Hence, for anyr in I'(1) and Imz > 2, we
have

D lallenz/N)l = > laf exp(xnim z/N) exp¢-rnim z/N)

n>1 n>1

< Z |aj,| expanZ” /N) exprnlm z/N)

< Z expEmnim z/N)

= explnImz/N)/(1 — exp(nIm z/N))
< expnz/N)/(1 - expnZ /N)).

The finiteness of f|o; o= € I'} now completes the proof. O

Lemmal.1.4.1fb>a>0andr< -1/2, then
J(b, r) = f(xz + 1)f exp(—b/(x2 + 1))dX — Oa,r(le/z)

Proof. Splitting up the integral as the sum of integrals ovee {x €
R|x? + 1 > 2b/a} andB = {x € R|x? + 1 < 2b/a}, we have

J(b,r):f...dx+f...dx:J1+J2, say. Now
B

A
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Jp < f(x2 +1)dx< fxzrdx(sincer <0)

A A

Ji < f x?"dx (sincé > a)
x2>b/a
2
T 2r+1
— O(br+l/2)

X2r+1|c>o

b/a

with the constants i® involving a andr. ]

Forxin B, we use the estimate expf) < y' and obtain
Jr < f(xz + :I_)r(b/(x2 + ]_))r =2 2(b/a) _ 1= O(br+1/2)
B

which proves the lemma.
For the proof of Theorefn”1.1.1, we use the well-known circi-m
hod.

Proof of Theorem 1.1.1.For given €,d) = 1 with 1< ¢ < vm,

Z la(c,d+cdh)| < Z f lcz+d+cdy| ¥ exp(21/(micz+d+cdy?))dx

d1€Z dlezﬁ(c’d+cd1)

using Lemmd_ LT3 with?” = V3/2 for o = (& dgieq, ), X+ iMm™1c8(c)
and

f(x+im™) = (c(x +im™2) + d + cdy) ™ ) ape(nor(x +im™)/N).

Thus
d1+N

Z lr(c, d + cdhy)| < Z f ((cx+ d)? + ¢?/mP) /2

dJ_EZ dJ_EZ dl
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exp(— 21 ) dx
m((cx + d)2 + c2/mP)

<N f(czxz + 2 /mP) /2 eXp(_—CZXfrl/cT/rrﬁ) dx

= Nc¥mf? f(x2 +1)72 exp(—

—00

< c*m Yt my/A) M2 1 172
(by Lemma 1.4, fok > 2)

%1”1/02) dx

X2 +1

Z (afc, d + coy)| < ¢ tmi/Z1/2,
dieZ

This leads us, for fixed, to

| Z a(c, d)| < (p(c)/QmIZ Y2 « mid21/2

(d,c)=1
c fixed

whereg is Euler’s function. The theorem now follows, since

am < Z mk/2-12 « mk/2.
l<c<kym

For the proof of Theoreri1.1.2, we use a variation of the usual
method of Kloostermari[14], by rendering it suitable for agmliza-

tion to the case of modular forms of degree 2. First we need &ofine
1

notation. Letmand f be as given in Theorem 1.2. Fpe X+ im™ in
B(o) = p(c. d) with o = (38)in I andc > 1, we have

az+b a 1 a 1 a
o(2 = = = —+1, say

“cz+d ¢ c(z+d/c) - E_CZ(X+ imt+d/c) ¢C

7 =1(6,¢) = —1/{c%(@ + i/m)} with 6 := x + d/c. Now if (flo1)(w) =
> are(nw/N) for w € H, then by the definition of(c-), we have
n

(o) = a(c,d) = f (cz+ d)*(flo N (o (2))e(-mRd x
Blo)
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=c* f @+i/m=~ Z a,e(n(a/c + 7)/N)e(-m(6 — d/c))de

d/c<6<N+d/c
a/c+reg

na+ mNd
cN

=c* f (e+i/m)-k2a;e(m/N)e(—nﬂ)e( )de. )

d/c<6<N+d/c nz1

a/c+teg

For the proof of Theorefa"1.1.2, we need to estimgte(c, d) afresh.
c,d

But, as one may notice, in the expression (2)dar), we have also the

elementa of o featuring along witlc andd. This calls for the following

variation of the usual Kloosterman sums and estimates éosdme.
Fora,cin Zwithc> 1 and forze H, let

1 if a/c+zeg
0 otherwise.

9(ac,2) ={

Theng(a+ nc,c,2) = g(a, c,2) for everyn € Z. Thus we have a finite 16
Fourier expansion

9(a, ¢, 2) = tmodc bt(c, 2) e(ta/c). 3
Lemma 1.1.5. 3 |b(c,2)| = O(c®) for everye > 0, with an O-

. tmod ¢
constant independent of z.

Proof. Clearlyby(c,2) = ¢t 3 9(¢, ¢, 2e(-t¢/c). The boundary of

g in H consists of the unio{ﬁm%(i‘cthe translates— w + n of the arc
(X Y)IX° +y? = 1,-1/2 < x < 1/2}. Hence for any in H, the inter-
section of the lindu + Z0 < u < 1} with g has at mostwo connected
components sayj, b1], [az, by]. Using the definition ofy(¢, ¢, 2) in the
expansion folbx(c, zZ) above, we have the estimate

el <ct > e-te+ct D e-t/o)l
Lefay.by] Lefap.by]

But ¢/c € [aj, bj] means that & u; < ¢ < v; < c for suitable integers
Uy, Vi, Uz, VoWithO < u; <vi < up < v < ¢ Now

D e-tegi=1 ) et/ =1 Y e-te/o)
=0

£/celaj,bj] t=uj
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= |(e(-t(vj — uj + 1)/c) — 1)/(e(-t/c) - 1)
< 1/(sinzt/c) for L<t<cand j=12

17 Hence, for 1< t < ¢, we havdh(c, 2)| < 2/(csin(rt/c)). m|

Clearly|bc(c, 2)| < 1. Combining these estimates

2 & tr
C,2)|<1+- 1/sin—
> (e, 2) %; / sin—

tmod ¢

4
<1l+- Z cosec{r/c)
1<t<c/2

4

<1+ > 2c/(tn)
1<t<c/2
[c/2)

8
:l+;21/t

t=1
<1+ 8 logc

T
= O(c?), proving the lemma.

Our object now is to estimate first Y.  «(c,d) wherec > 1 is
d)=1
dzc(jg(n)]od N)

fixed and the summation is over atl, ) = 1 with d lying in a given

residue class modulbl, sayd = dg(mod N). Letcr = least common

multiple of c andN; so thatr > 1 andr|N. We fix, once for allgg =

(24) in T with somes = do(mod N). If X := {xin Z modulocr|(x,¢) =

1 andx = dp(mod N)} then{d € Z|(c,d) = 1,d = dy(mod N)} = |J{d e
X

X
Z|d = x(mod cr}, as can be readily verified. Hence, for the fi)eaaﬁ 1,
do moduloN andoy,

> acd=> > acd

(c,d)=1 xeX d=x(mod cr)

d=dp(mod N)
=> > > ecd) @

xeX ymod N/r d=x+cry(mod cN)
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Lemma 1.1.6. For x in X and vy, t inZ, there existsry = (é}:x b;g) =

. _ a2
ao(mod N)inT'. Moreover, we have an element= (%Y =

in T, congruent targ modulo N.

Proof. Sincex € X, we have €, x) = 1 andx = dp = §(mod N). Hence
there existsry = (&%) in I. Now oyogt = (%) (mod N) so that
a = 1(mod N) necessarily. Tht(% —1h)cr1 = oo(mod N), so that we
can takeay, = a— ch, by = b— hx Next,T clearly contains

1 -alry\(ax by\(1 ry+tN) (ax—alryc b/ B
0o 1 c xJ\0 1 ) c X+ cry+ctN/

and furthero- = op(mod N), sinceN|cr and
b’ = (ax — a2ryc)(ry + tN) + by — xary = ayry + by — a2ry x(mod N)

ie.
b" = ayry(1 — ayx) + by = bymod N
on noting that|(1 — axx) andNjcr. O
For the given cusp fornf (and indeed for any modular form) of
level N, we havef|o = f|og sinceo = og(mod N). Let

(flo™Hw) = (floghyw) = Z aj,e(nw/N) for we H.

Then for anyx € X, we have, with the notation as il (2) ad (4), 19

> > acd)

ymodN/r d=x+cry(mod cN)

= ) | 2.3l /N)

ym;JEdZN/ rc‘1x+ry+Nt5€5c‘1 x+ry+N(t+1)
cY(ax—aZ cry)+reg

a2
e(—me)e(n(ax ag cry) +CnI:IN(x+ cry+cNt))d9

-k f (@ +i/m™ > ane(nt/N)e(~mb)

clay+reg
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nay + mN
> e(y(—naﬁr/N)e(X—x) de. (5)
cN
ymod Nr1
We claim now thatdy, N/r) = 1. for, cr is the least Common multi-
ple of candN and if a primep dividesN/r, thenp necessarily divides
¢, and sop cannot divideay, sinceoy € I'. Hence

N/r if N/r divides n
0 otherwise.

D ey(-nar/N)) =

ymod N/r
The expression irf15) now reduces to

N ok , nay + mN
= f @+i/m™* > aene/Nye-mp)e( =) do
clay+reg (N/r)in
s n>0
N ok
-5 [ @rimteacen
Imt=>v3/2
na, + mN
D a,ge(nT/N)e(—m)e(Xc—Nx)de
(N/r)in
n>0
N o )
-5 [ erim Y aememe-m)
Im7>v3/2 (N/in
tN + n)ay, + mMNX
> bie.ne R 00 oy @)
cN
tmod ¢
As a consequence, for fixa> 1 anddp in Z, we obtain, from[{§),
N o )
a(c,d) = — f O +i/m™ Z ane(nt/N)e(—mp)
(Cd-1 re 0
d=dy(mod N) Imr>v3/2 (N/r)in
Y by e((tN F 1t me) do
tmod ¢ xeX ¢

Let us assume for a moment, that the inner most exponentia| far
everyn > 0 divisible byN/r, has the estimate

Z e((tN + N)ay + me) _ ot (e.m)). ©)

cN

XeX
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for everye > 0, with anO-constant independent bAndN. Then using
@) and LemmaB1.11.3 afid 1T.11.5, we may conclude form aboae, th

> acd)|<c* f (62 + mr2)~+/2

=1
d=do(mod N) Im 7> V3/2

—1

) c"‘c%+8(c, m)%de
(7)

(recalling thatr := —1/{c?(9 + i/m)}. Making the change of variable
6 — #/mon the right hand side ofk7), itis

exp(—ﬁ&”l c2(6? + mr?)

< ¢ W22 (¢ )i f (¢ + 1)% exp(-21m/(c*(1 + 6)))de

—00

with ¢ < y/mand now by LemmBZL1.4, we have a majorant
1 1 1
< C_k+1/2+2£(c, m)i mk—l(m/CZ)—k/2+l/2 < C_i+28mk/2_1/2(c, m)i )

Thus we have finally, as in the proof of TheorEm1.1.1,

am =0

Z CL’(C, d)] < Z C_1/2+28(C, m)l/ka/Z—l/Z

c<+ym l<c<y/m

But now writing €, m) = u, ¢ = uv < y/m, we havev < ym/uso that 21

Z L2425 (¢ /2 <<Z Ny Z (b2

l<cxvm um v< \m/u

:ZUZS Z V—l/2+28

um v< y/m/u

< Z u28( \/ﬁ.l/u)%+2£

um

_ m1/4+sz 1/vu

um



22

18 1. Fourier Coficients of Siegel Modular Forms

_ ml/4+e Z 1

um
<« m/4+ee
and hence
ay = O(mk/2—1/4+28) (8)

proving TheoreniI. Il 2ynder the assumption of the estim .
Before proceeding to the proof ofl(6), we make a few remarks.
Namely, any estimatey, |b(c,2)| = O(c’) with f < 1/2, may be seen

tmod ¢

to imply ay, = O(mK/2-1/4+1/2+2) in place of [B). Clearly and < 1/2
represents an improvement over Hecke’s estimate. A stfaiglard
application of Schwarz’'s inequality immediately yieldsestimate with
f = 1/2 but then we are in no better position than in Theorem11.1.1.

Let us denote bK the exponential sum irfl6). For anyin X,
(x,c) = 1 and so let us fix an integarwith ax = 1(mod c). Now since
axx = 1(mod c¢), we havey = a(mod c), so thab, = a + csfor some
sin Z, which is uniqgue module, sincea + cs = ax = a(mod N) by
LemmdI.TDB andl|cr. We observe thall|cf if and only if r|f. Indeed,
if r|f, crlcf and soN|cf; on the other hand, iN|cf, thencr|cf since
clcf and sor|f. Sinceay = a+ cs= a(mod N), we may writeK as

K=> > e(tN+n)(a+cg+mx N)/cN)-% D" e(a+cs-a)u/N)

xeX smod r umod N

Now the codficient of sin the expression above itN + n)/N =t +
(n/N(/r))/r and hence we are justified in takisgnly modulor. Thus

K=N" > e(tN+n)ja+mxN/cN)e(@-a)u/N) > e(tN+n+cus/N)

XeX seZ/(r
umod N 10

and the inner sum ovesmodulor isr or 0 according abl|(n-+cu) or not,
if we note that i+ cu)/N = (n/(N +r))/r + (cr/N)u/r has denominator
dividing r. As a result,

K = (r/N) Z e(—au/N) Z e((a((tN + n) + cu) + mxN)/cN)

umod N XeX
N|(n+cu)
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= (r/N) Z &(—au/N) Z e(a(t P Cu) + mX) /c) 9)

umod N xeX N
N|(n+cu)

wherein the second sum may be recognised as nearly a Klowster3
sum, sinceax = 1(mod c).

We remark now that there is a bijective correspondexee x be-
tweenX = {x € Z/(cn|(x,c) = 1, x = 6(mod N} and X’ = {Xx €
Z/(©)(x,c) = 1, x+ cs= 6(mod N) for somesin Z}. First, the map is
one-one, since, fax, xo € Xwith x; = xo(mod c), we have; = xo+cf
which, in view ofx; = § = xo(mod N), implies thalN|cf i.e. r|f (by
the arguments in the preceding paragraph) ana;se xp(mod cr).
The mapping is onto, since for anye X’, we need only remark that
X + csmodulocr (for the s involved in the definition ofX") maps to
x in X’. Suppose novad = 1(mod c). Thend + cg = 6(mod N)
for somes; inZ < a+cs = a(mod N) for ans, in Z. We
prove only the implication— (the proof for the reverse implication
being similar). Forad = 1(mod c), there exists* = (38)in I and

o (59)=(28318) = (35)(mod N).

Hence

% 1 SCI. -1 _ 1 _SZ .
o (O 1)0'0 Z(O 1 )(mod N) for some 5 in Z.

. 1 s\ (1 s1) . .
i.e. (O 1)0- (0 1) = op(mod N), implying that
a+cs = a(mod N), sincarg = (¢4). Writing t + (n + cu)/N in @) as
U and using the bijection betweehandX’, the inner sum ovex in (@)
becomes now 24

Ze(aﬂzmx): Z e(aﬂzmd)

xeX

amod ¢
(ac)=1l,a+cp=a(mod N) for some g2

- Y T g X e@res-aym),

amod ¢ spmodr vmod N
(a0)=1

by arguments as befare
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=N Y e(ammd) 3 e@a-aviN) Y ecsvN)

amod ¢ ¢ vmod N ssmod r
(ac)=1
a(l + cv/N) + md
=rN1t —av/N e 10
> vy Y e (10)
vmod N amod ¢
Nlcv (a0)=1
ad=1(mod c)

since the inner sum oves modulor is r or 0 according adN divides
cvor not. The inner sum over a moduton (IQ) is a genuine Klooster-
man sum (Note that ¥ cv/N € Z) and isO(cY?*¢(c, m)¥/?), by Weil’s
well-known estimate[[28]). This finally proved (6) and heeseablishes
TheorenZLI]2 as well.

1.2 Reduction Theory

In this section, we give a quick survey of Minkowski's redaottheory
for positive definite quadratic forms, as carried over togeeeral linear
groupGLm(R).

Let

a ... 0O
G=GLy[R),A=<¢: .. :|eGlallag >0
0O ... am

and

N=<|o . eGy.
0 ... 01
For anyg € G, the matrixtggis positive definite and we have the Baby-
P1 ... Pij
lonian decompositiofigg = '‘PPwhereP =| : -. : |withall p; > 0

0 .. Pm
andp;; = O fori > j. Thus if O(m) denotes the orthogonal group of
degreem, thengp™ € O(m) and furtherG = O(m)AN i.e. for everyg
in G, g = kanwith k € O(m), a € A andn € N. This decompaosition
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G = KAN is known as the Iwasawa decompaosition and is unique, for
everygin G. For givent, u > 0, let

a ... O
Ac=4ql: .. i |eAallg>04a <ta, for 1<i<m-1; and
0 ... an
Nij
Ny=4: . :]eNJImjl<u forall mjj;. Then
o ... 1

G = ”z(m) = O(M)AN, is a so-called Siegel domain; note that while

O(m) and Nu are compactA; is not compact. The following theorem
shows thatc™ is almost a fundamental domald/GLy(Z) for 26

2/V3,1/2
GLn(Z) in G;

Theorem 1.2.1.GLn(R) = 6, 3 1/,,GLm(Z).
We prove first a few lemmas necessary for this theorem.

Lemma 1.2.2.1f Nz := NN GLy(Z), then N= Ny,2 - Nz.

1. X% 1 ..
Proof. If x = (; . ]e N andy = (; . ;)e Nz, thenz = xy =
0. 1 0. 1
1 .. Zj
with z; = vy + Z XikYkj + Xij. In the order n— 1, m),

i<k<]j

(m 2 m-1), (m-2m),...,(,i +1),...(i,m), choosey;; € Z such
that|z;| < 1/2 fori < | (Note that fori = m— 1, j = m, the sum over
i < k< jisempty). This proves the lemma. O

Let, for any colummx := Y(xq, ..., Xm), its norm {/x2 + - -- + x&, be

denoted by|x||. Forgin G, we now putp(g) = ||gei|| wheree; is the
unit vector!(1, 0...0). Using the Iwasawa decompositigr= kanfor g
in G, we have

¢(9) = Ilkana]| = [lane|| = a1 = ¢(a)

wherea, is the leading entry of the diagonal matgx
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Remark. Forgin G andy in GL(Z), clearlygye; € gZ™ and C_}ipf(z) ©
yeGLm

(gy) = inf_|lgX| is attained at somerin Z™.
O#xezZm

Lemma 1.2.3.Let g= kan be the lwasawa decomposition of g in G and

let furtherinf ¢(gy) = ¢(g). Then, for the first two (diagonal) entries
¥€GLn(Z)

a1, & of a, we have ga, < 2/ V3.

Proof. By lemma [L.ZR), we can find’ in Nz such thatnr’ € Ny,.
Our hypothesis tells us tha{gn'y) > ¢(g) for everyy in GLy(Z). But,

from the form ofn’ and the definition ofp, we havep(g) = ¢(gr).
1 ..t

Writingt = nnf = (; . ] we have, by our choice of , |t;j| < 1/2.
0. 1

If Jo = (94) andEn 2 is the (n - 2)-rowed identity matrix, we take

Yo = (Jg En('1)—2)' Then

gl’f)/()el = gr{t(010. ..0)= kat(tlle. ..0)= kt(alt]_za.zo. ..0)

Thus \[a22, + & = ¢(gn'y0) = ¢(g) = a, implying thatitiy? < 1/4
i.e.al > a2(1-t%)) > (3/4)a2 and establishing our lemma. O

Theoren_I.Z]1 is now seen to be immediate from

Lemma 1.2.4. For g in G, there existyg in GLn(Z) such thatyo(gyo) =
| ¢(gy). Moreover go € S,,.345-

¥€GLm(2)

Proof. For m = 2, we know that for some; in GLy(Z), we have

¢(gy1) = inf _ ¢(gy). We can then evidently find’ in Nz such that,
yeGLo(Z)

with yo = y11’, we havegyg € S,/ 310+ Hence the Lemma is true for

m = 2 and let us suppose that, for> 3, the Lemma has been upheld

with m— 1 in place ofm. Now0 ian llgX| is attained at a’ # 0 inZ™
£XEZM

and such ax’ is necessarily (‘primitive’ and hence) of the forpe; for
somey; in GLy(Z). Thus we have (by the Remark following Lemma
[LZ22),

plgr) =it e(@y). (11)
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Let gy, = kanbe the lwasawa decomposition, so that

k_lg)’l =an= (aol ;,) with g’ in GLm_]_(R).

By the induction hypothesis, there exigfsin GLy-1(Z) such thay'y

.. N(m_l) . o ) .
isin S, @61/2. Consider the Iwasawa decompositigy;, = k'a’n” with
az

a’:( : ] Then we have
O'am

a 0 .
. k—l 1 0 _ a * — 10 ' . 1 . *
01 = Or1 0 ,yE) “\o wkarn) o K 0 : .

Now

otan) = et o (52 = etamg )=

1 0 .
lovs 5 ) el = lavseul = plara) = nf o(a) by (1)
0

. _ . _ 1 0 .
— inf ol ‘g7 =inf ol (5 2)) = inf et
4 4 Yo Y

sinceys (g, )y runs overGLn(Z) along withy. LemmalLZB now

applies tog; and so we have; /a, < 2/ V3. Already, by induction, we
know thata; /a1 < 2/ V3 for 2 < i < m. Now for some

1 0 "
_ -1 (m)
N € Nz,g1m = K "gy1 (0 7’6) Ny isin 62/\/5’1/2

in view of LemmdZL.ZR and so LemraTl2.4 is proved. o 29

Corollary. Forgin GLm(R),Oian llgX| < (2/ V3)™D/2(abgdetg))/™
£XeZM
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Proof. In view of Theoren_L.Z]1, we may assume thas in a Siegel

domaln@z’?\/il/2 = O(m)Az/\/gNl/z since bothoqlﬁrxlmg)ﬂ andabgdetg)
depend only on the cosgGLy(Z). Let theng = kanwith
a - O
keOm,a=|. : .|€A, 3 andneNypo.
0 - a
Clearly a1/a = [i<j<i-1(8j/aj+1) < (2/V3)~t and soa = T[]
1<j<m
(au/aj)xdeta< T[] (2/ V3)i~tdeta = (2/ V3)™™V/2abgdetg). This
1<j<m
gives us
¢(9) = & < (2/ V3)™/(absdetg)"/™ (12)

As we know,0 in% llg¥| is attained at a primitive vectot’ in Z™ and
£XeZM
such anx’ is of the formy’e; with somey’ in GL(Z). Thus

> - _int B
inf_[lgX| yeérgm(z)llgyelll in @(9y) < ¢(9)

O#xezZm

which proves the Corollary, in view o {IL2). o

Definition. For P in the spaceZ?, of real m-rowed symmetric positive
definite matrices, the minimumin(P. = . ian P[X].
£XeZM

If we define in the space’y, the domairsS; corresponding to the
Siegel domairsyy, by Sty = {a[n]la € A, n € Ny}, thenS  is just the
image ofS;, under the mapping — ‘ggfrom GLy, ontoB . Theorem
[LZ1] and its corollary give us immediately.

min(P)
Theorem 1.2.5. #, = S andum ;= sup ———— <
m yeGLl_Jm(Z) 4/3,1/2[v] andum peﬁa (detp)im

(4/3)%.

Proof. Writing P in £, astgg with g in GL(R), we know from The-
orem[LZ1 that, for somgy in GLin(Z), r = kan€ &,,,3,,- Then



1.2. Reduction Theory 25

P[y] = a[n] which is clearly inS4/31/2, proving the first assertion of
the theorem. Now

min(P) = inf p[x] = inf |lgxXI < (4/3)™V/?(detg)®™
0#£xezm 0#£xezm

by the Corollary. Hence mip) < (4/3)™D/2(detP)/™ giving the re-
quired upper bound fqi,. O

Remark. The constanii, known as Hermite's constant is known ex-
plicitly for all m < 8 (e.g.u2 = 2/ V3, being also the best possible
value). Itis related to constants in the packing of sphenésatso to the
first eigenvalue of the Laplacian on some spaces.

For two positive definite matriceB;, P, we use the notatioP; < 31
P, to indicate the existence of constanisc, for whichP; — ¢iP> > 0
andc,P, — c,P1 > 0, i.e. to say thaP; andP, are of the same order of
magnitude.

Theorem 1.2.6.For t, u> 0 and any R= (pj;)) = a[n] in S, we have
anx(pél: 0 )

* Pmm
.. a- 0 1'nij X1
Proof. Writing a = (6' : ),n: ( ! )andx: (Xm) # 0, we have

- am 0-1
Y1
fory:=nx= (y-m).

vad & Valx

Now a[x] > a&lx|* gives (Vailxil/ Va[X]) < 1 while, fork > i,
Vai|xd = E\/aklxklz < \/g\/ﬂ <t/ fary].

2
ay; . 2 .
Hence—yx' < (1+ i t("">/2u) < 1 where< involves constants

aiyf_ & {Xi+Znika] <

2
ay; _ a Vai|xi| VA Xl
e A" 9 ] |

depending ort andu. We see therefore thafnx = aly] < a[x] for
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everyxi.e. P < cia. On the other handy € N, implies at oncen™ ¢
Ny, for someu’ > 0 depending om(andm). Hencea[n ] € S;y. By
the arguments above, we haaf@'] < c,'ai.e. P> c,a, so thatP < a.
Taking X = g, the unit vector with 1 at théh place and 0 elsewhere32

we have nowc,a, = calg] < Ple] = pi < cialg] = cia so that
_ -0 .
Pi = @ for everyi. In other wordsa = (p(?)l: X ) and the theorem is

proved. m]

The following theorem shows that any Siegel dom&in in Zn,
intersects at most finitely marfy; y[y] for y € GLy(Z) and so a “fun-
damental domainF for GLy(Z) in &2y, can have at most finitely many
“neighbours”F[y].

Theorem 1.2.7.For any d > 1 and given S= S;, ¢ &, the number
of X in.#m(Z) with 1 < abqdetX) < d and §X] NS # 0 is finite.

Proof. We use induction om, for the proof. Let firsiX = (%1 >§(122) with

Xi € Mn(Z),1 =1,2, 1< m, mandmg +ny = m. Then writing
[IM]| for abgdetM), [IX|| = [IX1l| [IX2]] < d implies that 1< ||Xj|| < d for

i =1,2. Takea[n] in S with (a[n])[X] = &[n’] € S. Using the obvious
decompositions

a(ml) (M) a ’ ’
) O] _(nl nlz] ,_( O) ,_(nl nlz)
a= ,n= ,a = AR L

( 0o ™ 0 ng™ 0 a 0

we have

_(aa[m] O E n'n
=" |6 e

oy (aalm] O E nin
=[5 |6 ")

whereE now stands for the identity matrix of the appropriate sizeefT,
for X in the form given above, we see that

 (aa[n1Xq] 0 E XX+ X7IntngoXo
g = (M o TR
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By definition, &, & € AE"‘) andn;, n/ € N™ for i = 1, 2.
Now

ay[ni] = ai[n1 Xq],
N1, = X7HXao + X7t tngoXo,
a[ny] = (ag[n2])[ Xzl

Sincemy andmy, are both less tham, the induction hypothesis yields the
finiteness of the number of sueh and X, and hence their boundedness
as well. FurtherX;> = Xln’Iln’12 - nllnlzxz whereinng,, n}, are
bounded by virtue ofi, n” being inN, and moreover the inverses of the
bounded unipotent matrices, n; are again (unipotent and) bounded.
Thus the integral matrixi» is bounded and the number of suih,

is finite. Consequently, we have shown that the number ofjiateX =
(’f)l %) with 1 < [|X|| < dandS[X]NS # O is finite. Let us now take the
case ofX = (xj) not necessarily in any such simple form (for somg
mp) but withS[X] NS # 0 and 1< ||X|| < d. In fact, for 1<i <m-1,
there exist then integets, ki with x,,, # 0 andh; < i < k. Denote
the columnt(xy ... Xm) of X by x), for 1 < i < m. Let, as before,
p = a[n] € S with (pi’j) =p = (@n)[X] = a[n] € S. From Theorem
2.8, we have (for fixe&: ),

& = p = D] = ax] = > apd.
i
Hence 24
ai’ > a;h = Zajsz,hi 2 akixl%,hi >ay since Xgp #0.
i

ie. a >a (somek >i). (13)

Writing [[X|| = di, we haved; X! € .#(Z). SomeP e Sy, implies
thatAp € Sy, for 4 > 0, we havep [dX™1] = dfP belongs toS;
along withP’. Moreover, the integral matrisy X% is not in any simple
(block) form as above, since, otherwisg jtself would then take such
a simple (block) form. Applying now t&”’, P’[d;X1] in S;, the same
arguments as we used to derifzel (13), we find diat > &. Butsince
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d; < d, we may conclude tha =< &. Furthera,1 < ax (sincek; > i)
anday < &, as we have noted prior to derivig]13).
Henceaj,; < ay < & = g < aj;1 1.€. 8 = g1 for everyi. O

In other words, we have the chain of orders of magnitude:

a X a X...X anm
X ) X
ai = a’2 = ... = aT’n
But theny & x5 < ¥ ajx§ = @n[x0] = & =< a yields immediately
| |
thatx; < 1 for alli andj and the theorem as well.

1.3 Minkowski Reduced Domain

ForanyP = (pij) in %, we can introduce iZ™ an inner product (, ) by
defining &, y) = 'xPywhenevelx, y are inZ™ and give it the structure of

a quadratic module ovét. If = (0,...,0,1,0,...,0) is the standard
unit vector with 1 at thé!" place (and 0 elsewhere), théa, ..., em}

is a natural basis for this quadratic module, with €;) = pij. We
define, however, a new bagi, . .., f} as follows. Since® is positive-
definite, the number of integral vectors witkh k) < u for any givenu,

is necessarily finite. Hence we can filidin Z™ to satisfy the condi-
tion (fy, f;) = 0;ti)clefzm(x, X); of course,f; is not unique (since one can
take, for example-f; instead off;). Assuming thatf,, ..., fi have
been chosen already, we can proceed to fipdin Z™ meeting the re-
quirements:fy, ..., fiy1 can be extended to a basis&f and moreover,
(fisr, fiz1) = il’)](f(X, X) where the infimum is taken over aflin Z™ for
which fi, ..., fj, x can be extended to a basis@¥. By picking —fi,1
instead off;,1, if necessary, we impose the additional restriction that
fii+1 > O; still, fix1 is not unique but certainly exists. In this manner, we

can find az-basis{f4, ..., fn} for the above quadratic module. Writing
fi= 2> ujejwithuj inZ (for 1 < i < m), we find thatU = (uj) is
1<j<m

in GLm(Z); further, if g := (fi, fj), thenQ = (gj) = 'UPU is in the
same ‘class’ as the givdhin &, besides beingMinkowski-reduced”
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in the following sense. Indeed, for amy= '(x4, ..., Xm) in Z™ with the

lastm—k+ 1 element, X1, .. ., Xm having 1 as greatest common di-
. (Eca - . o
visor, the matr|>< ;1 x | is easily seen to be “primitive” i.e. capable ofe

being completed to an element@L(Z). Thusfy,..., fic1, > Xifi
1<i<m

can be completed to&basis ofZ™. Therefore, by our definition of,
we have

Q[N = { Z X fi, Z X fi} > (fi, fi) = G(1=ksm)

1<ism 1<i<m

Thus the matrixQ in the same class & satisfies the “reduction
conditions”:

(1) Q[¥ = k(1 < k <m), for everyx = (xq, ..., Xm) with the g.c.d.
(X X415 - - - » Xm) €qual to 1 and

(2) Okk+1 = 0.

Definition. Any positive definite matrix i’ satisfying the “reduction
conditions” [@) - @) above is called Minkowski-reduced (or merely M-
reduced).

Let us first note thatj;; = min(Q) = Oian Q[X. For any M-
£XeZM
reducedQ, takingxin () to bee; with £>k, we see that

Okk < Qre(k <) (14)

If, on the other hand, we takein (@) to bee + e for ¢ # k, then
condition [1) reads
Okk £ 20k + Qe ¢ > Okk

i.e. 37
lOkel < 1/2-q¢r for k¢ (15)

Let Zn = # denote the set of aM-reduced matrices i?,,. We
have just shown that in eve@Ln(Z)-orbit {P[U]|U € GLy(Z)} in P,
there exists an elemeQ in . We may then state the following the-
orem presenting the reduction theory due to Minkowski aredy&ifor
positive-definite matrices.
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Theorem 1.3.1. () Zm= U Z[U];
UeGLn(2)
(i) Z is contained in a Siegel domain Sfor some t, u (depending
only on m) and

(i) For any U # +Eq in GL(Z), Z n Z[U] is contained in the
boundary ofZ (relative to #y,).

Actually, Z is a fundamental domain f@L(Z) in &, for the ac-
tion p — P[U]with Pin &, andU in GLy(Z). It is a convex cone with
vertex at 0 and its boundary is contained in a finite union ginglanes.
Moreover,Z has only finitely many neighbours (i.&Z N Z[U] # 0,
only for finitely manyU in GLy(Z)). For all this, a detailed treatment
may be found, for example, in Maass {[1§]9).

Only the assertions (ii) and (iii) in Theordm_113.1. are topbaved
and we need some lemmas for that purpose.

Lemma 1.3.2. For any R= (rj;) in Z, r11. .. rmm<n§ detR.

Proof. The leading {, ¢) principal minorR, = R[Ef] in Ris alsoM-
reduced (ing?,) for 1 < £ < m. Let us assume the lemma proved with
m— 1 in place ofm; then writingr; for r;;(1 < j < m), we have

Mro...pep < detRwl (16)

where the constant i& depends only om— 1. Definingoy, by (ok¢) =
(detRwl)Rr‘nl_l, we have on using the inequaliti€s}14) corresponding to
Rmn1, lokelfe < rir2 ... rm_1 and hence

lokel/(detRm-1) < (rar2...rm-1)/(re detRy_1)

lowel/(detRm-1) < 1/re. 17)

If, now, we write

O g )
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with s :=rm — R_1 [r], we have, on applyind [14){IL5) arfd117),

Ra4lr] < Z (I/ri)riry < rm-a.

1<i,jsm-1

Thus
rm=s+R1 [ < s+rma. (19)

Since deR = (detRy_1) - sfrom (I8), we obtain from{16) an@{]19) thaso
Fifz...rm < (detRp-1) - rm < ((detR)/9) - rm < (L + rm_1/9) - detR.
Once we establish that

M1 <S (20)

the lemma will follow. In order to prove{20), let us assumattfor
some integek < m-—1,

Fes1 <4m-12%r, (foré=m-2m-3,...,k+ 1k but not k — 1).

(21)
Here [21) is to be properly interpreted whenekerqualsm - 1 or 1.
Writing zfor (g, . .., Xm-1), @8) gives, forx = (X4, ..., Xm),

RIX] = Rn1[X+ XmR.1,r] + $%,. (22)

Letc = (2m-2)™! and letx; + axm(1 < i < m— 1) denote the entries
of the columnz + mer‘nl_lr. Now, given an integek;, in the closed
interval [0 ¢c™], we can certainly find integers], X _,,...,X , to
satisfy 0< x' + aix, < 1, fork < i < m- 1. Dividing the closed
interval [Q 1] into ¢ closed subintervals of equal length, we can get a
decomposition of theni— k)-dimensional unit cube (iR™¥) into ¢™ K
cubes of equal volume. By Dirichlet's pigeonhole princjpét least
two of the 1+ c™X vectors, say, X + akXm, .. .» X1 + am-1Xm), (X +
AKXy v es X g+ am-1X7,) must be contained in one of thes®E K cubes;

in other words|x — x” + a(xy, — xp)| < 1/cfork <i < m-1. Hence
there exist integersy, X1, . - . , Xm, Which we may indeed even assume
to have greatest common divisor 1, such that 40

X + & Xm| < 1/C,0 < Xn < ™Kk <i <m-1).
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Trivially, there exist integersy, ..., Xx_1 satisfying the conditions
X +aXml<1(i=212...,k=1).

For the corresponding columx = Y(xq, ..., Xm), we haveR[X] > ry,
sinceRis M-reduced. But ther . {22) gives

(< RIX) < (k= 1)’r1 + (k= 1)(M—K)r_1/c
+ (m _ k)2(4(m _ l)Z)m—k—lrk/CZ + CZ(m—k)S

if we use the inequalities

.. 1
rijl < k2@ <0 j <k=1)Irpgl < Shca(p< k-1<qg-1)

Irl < (@M- 1"k +1<uv<m-1)

(the last one arising froniL{R1)). Agaim > 4(m - 1)?ry_1, by {Z1) and
therefore finally

2(m-k) g

1 1 1 3
e < =r+ =t + =+ c2M Vs = Sy e e rg<s
kS gl 2Nt 7Tk il k<<

Sincerp_1 < (4(m-12)™*1r,, (20) isimmediate and so is our lemma.
i

Remark. The (reverse) inequality
detR<ry...rm (23)

for anyRin 22, follows at once from the relation dBt= (detRy_1)s
implied by [I8), the obvious inequality< r, and the inequality, corre-
sponding to[(23), foRy_1 viz. detRy, 1 < r1...rm1 from an inductive
hypothesis.

For anyR = (rj;) in &m, we denote byRy, the diagonal matrix with
(the same) diagonal elemenmts, roo, ..., rmm(asRk).

Lemma 1.3.3.For any R inZ, we have ¢Ry < R < ¢c;Ry with constants
C1, ¢ depending only on m.
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Proof. LetRY? denote the positive square roofi1, .. ., VFmnj of the
diagonal matrixRg = [r11,...,rmml- FOr the eigenvaluegs, ..., om of
RIR;"?], we havep; + - - + pm = trace RIR;Y?]) = trace RR;) = m.
Whilep; ... pm = detR/ detRy > ¢’ for some constart’ = ¢’(m), by the
preceding lemma. Henag := m(MI¢ < pi <cp:=m,forl<i<m
which means that;Em < RIR;"?] < C2Em i.e.ciRo < R < R0, 0N
transforming both sides of the inequalities FRé/Z. O

The lwasawa decompositian= kan forg in GL,, implies at once
that everyR(= 'gg) in Z, has the (unique) Jacobi decompositien-
D[B] whereD = [dy, ..., dy] is diagonal with positive diagonal entries
di andB = (bj;) is upper triangular withy; = 1 for alli. The entries
di,...,dn andby;(i < j) are called theJacobi coordinate®f R = (r;;)
in Zy. Denotingr;i by r; as before, the relatioR = D[B] givesr; =

g+ 3 d,-bjzi for 1 < i < m(so thatr; > d; always) and further
I<j<i-1
detR=4d;...dn (ThusdeR < r;...rm, giving another proof fod{23)).
m

Suppose now thais M-reduced. Thef](rj/dj) = (r1...rm)/ det
=1
R < ¢” =c”(m), by LemmdI312. On the other hand, for dy D[B]
m
in Zm, we have I< (ri/di) < [1(rj/d;). Hence forRin #, 1 <r;/d; <
j=1

¢’ and so (I<)ri/di < rj/d;j for all i, j. Consequently foRin %, we 42
conclude, in view of[[1I4), that

dj r .
O0<—=—<—(1) for j<i.

di I
Now, to prove that alb;; are bounded (in absolute value) by a constant
depending only om, we use induction om. In fact, let us assume that

for1 < p<iandf> p, we haveby| < c¢;. Then from the relation

rj=dbyj+ > debyibpli < J).
1<p<i-1

we obtain that

dillyj| < Irijl + > dplbyillbyj|
p
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P

(in view of (I3) and the bound fdbyy|)

<

NI

ie.  |bjl < %(ri/di)+ > Gdp/di <1 (fori < ).
1<px<i

We have thus proved assertion (ii) of Theolem1.3.1. Aloritp Wheo-
rem[LZY, this gives us the important.

Corollary . If R and RU] are both inZ for some U in Gly(Z), the
number of such U is finite.

Before we proceed to prove assertion (iii) of Theodem_1.9é,
make a few remarks about the interigi® and the boundarg(%) of
Z. Among the “reduction conditions” (1) and (2), some areiativfor
example, ifx = e, thenR[X] = ri for every Rin &,,. We there-
fore omit those inequalities which impose no conditionZénThen%°
consists of points ofZ for which the “nontrivial” reduction conditions
among (1) and (2) hold good with strict inequality. Herd#§e?) con-
sists precisely of those points &f at which even one of these nontrivial
reduction conditions holds with an equality (in place)f

Let now bothR; andR, = Ry[U] for someU in GL(Z) belong
to Z. In view of the Corollary above, the matrid belongs to a finite
set of matrices (ifGLn(Z)) depending only om. First let us suppose
U = (WUz...Uy) with columnsuy, ..., U, be no diagonal matrix, so
that we have a first column, say, which is diferent from+e.. Then
the columnvi of U™ = (vy ... vy) is again# +e. SinceU = \;vuk...um
with a diagonal K— 1, k— 1) matrixW having+1 as its diagonal entries,
we find, on expanding dét(= +1) along thek™ column, that the last
m — k + 1 elements ofy have necessarily 1 as the greatest common
divisor. From the reduction conditions (1) f& = (rl(Jl)) we have
Ri[uk] = rl(j() i.e.if R = (rI(JZ)) thenrl((i) > rﬁ(). Similarly, fromRy =
Ro[U 1], it follows thatr() > r&. Thus we have

Rifu] = rlY = r® = Ry[w]



1.4. Estimation for Fourier Cdgcients of... 35

and soR;, R, belong to the boundar§(#) with ug, vk belonging to a
finite set of possible columns. We consider next the case whena
diagonal matrix with+1 as diagonal entries bt # +En. Suppose
the first change of sign among the diagonal entries occuraegsass
from the k" diagonal entry to the next one (on the diagonal). Then
r|(<,2|2+1 = Rl 1 = —r|(<,1|2+1- By (2), r|(<,l|2+1 andrl((’zlz+l are non-negative
and so necessarily{y,, =0=r) .
It follows again that bottir; andR; are on the boundary o (We 44
have also proved incidentally that the points &, N d(%) lie on a
finite set of hyperplanes. We remark, without proof thek = 0). All
the assertions in Theordm 113.1 have now been established.

Example. In the special case whem = 2, P = (g 2) is M-reduced, if
and only if 0< b < a/2 < ¢/2 anda > 0. These conditions imply that
ac < (4/3)detP. The reduced domaig is contained inSs/31/2 and

p2 = 4/3.

1.4 Estimation for Fourier Coeflicients of Modular
Forms of Degreen

Let ¢, denote the Siegel half-space of degreeonsisting of all §,n) 45
. . . . 1 =
complex symmetric matrices= X+iY with Im(Z) =Y := E(Z_Z) >
0. The modular grouf’n, = Sp(N,Z) = {M = (CA B) € Mn(Z)IM
IEM =y = (g )} acts on%, as a discontinuous group of holomor-
phic automorphism@ — M < Z >:= (AZ + B)(CZ + D) of 4,,
whereA, B, C, D are f, n) matrices constitutindgM in I'; observe that
M{Z} := CZ + D is invertible. Also note that whenevé = (é B) is
in T, 'M is also inl" and furtherM=* = (2 IE); M = (CA B) isin T if
and only if A'D — B!C = E,, A'B = B'A andC!'D = D!C. The sub-
group ofM = (é B) e T'with A, D = ‘A"t in GLy(Z) and symmetric
integralS = A~!B is denoted by .; if M = (&p) andN = (<p) are
both inT, thenM = (%“ ;) NIhoN. FOrZ € %, andM = (CA B) inT,
Im(M < Z >) =YCZ + D) *Im(Z)(CZz+ D)1 > 0.
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A fundamental domaii\%;, for the discontinuous action ®fon%,
is given by

(1) Abs detCZ + D) > 1 for every primitive
integral CD) with C'D = D!C
an :=4{Z € n| (2) Im(2) is M-reduced
(3) The elements ok := 1(Z + 2)
are< 1/2 in absolute value.

Introducing

an = U M < Fn>= U (Fn[U] +S), we remark

Mel e UeGLy(Z)
S='Se.#n(Z)
Z € gn = min(Im(2)) > V3.2. (24)

Indeed, min(ImZ[U] + S)) = min(Im(Z[U])) = min(Im(2)) for every
U in GLy(Z) andS = 'S in .#,(Z). We may therefore assume, without
loss of generality, tha is already infy,. TakingM = (& §)in Ty,

ey ) ol §

'0 Epa tg O
1 0 0O O
C= (to O) and D= (to En—l)’ and

inequality abs(deGZ+D)) > 1forZ = (zpq) = (Xpg+iypq), gives|zyy| >

1, x11] < 1/2 and soy11 > V3/2. Since Img) is reduced, min(InZ) =

yi1 > V3/2. Conversely, it can be shown that a constéif exists
such thatZ € g, whenever min(Imf)) > 2,. Let us fix a natural
numberg and a numbek with 2k integral once for allg will serve as
the “level” andk as the “weight” of the modular forms to be considered
in the sequel. Lef'n(g) denote the principal congruence subgroup of
level g in 'y, consisting of allM in T', with M = Exp(mod q).

Definition. For any f: 4, — C and M e I',,, we define kM = f|M by
(fIM)(Z) = f(M < Z >)detCZ + D)X, with a fixed determination of
the branch.
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For M1, My € I'y,, we havef|M;M, = i(f|M1)|M2.

Definition. By a Siegel modular form of degree n, weight k and level g,
we mean a holomorphic function:f4, — C such that fM = u(M)f

for every M inl'h(q) with a constant (M) of absolute valué and which,

for n = 1, satisfies the condition|¥ is bounded irF; for every M in

I's.

It is known (seel[16]) that for everil in Ty, fIM has the Fourier 47
expansion
D, am(Metr(T2)/q).
0<TeA;
Example.are given by the theta serie§, e(xi tr(S[G]Z)) for even in-
G(mn)
tegralS(™ > 0 and the Eisenstein seriesI&f(q).

Definition. A Siegel modular form of degree n, weight k and level q is
said to vanish at every cusp, if for every MIi, the constant term
awm (0) in the Fourier expansion of|[M is zero. (Note that this definition
is independent of the choice of the bramt#t(CZ + D)X).

Definition. A Siegel modular form of degree n, weight k and level q is
called a cusp form, if for every M ihy, the Fourier cogicients g, (T)
of f[M corresponding to all T iy, with detT = 0 vanish.

(This definition coincides fon = 1 with the preceding definition.
Forn > 1, however, a modular form vanishing at every cusp, is not a
cusp form in general).

One of our main objective is to estimate the Fourierfioents
a(T) of a Siegel modular form of degre®e weightk and levelq, van-
ishing at every cusp. ReplacindZ) by f(q2) (of level ¢?), if neces-
sary, weassumethat the Fourier expansion df is given by f(2Z) =

> a(P)e(tr(P2)), in the sequel Now, for givenT > 0, we know
0<PeAy,
that Ty = T[U] is M-reduced for som&J in GLy(Z). But, if f(Z2) =

> a(P)e(tr(P2)), then
P

(detU)*f(Z['U]) = (detU)-kZ a(P)e(tr(P[U]2)
P
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= (detU)™ )" a(P[U™)e(tr(P2)).
P

Denoting (det))ka(P[U~1]) by b(P), we see thaa(T)(detU) ¥ occurs
as the Fourier cd&cient, corresponding to thil-reduced matrixT,
for 1(g ¢ 1)- Sincef is of levelq and since GLm(Z) : GLm(Z; q)) <
oo, we have only finitely many distinct functions of this forms @
varies ovelGLyn(Z). We shall therefore assume in the sequel.tfatthe
estimation of the Fourier céigcienta(T), T is M-reducedandfurther
min(T) > 0 (i.e. min(T) is large enough).
The following lemma is essential for later applications.
Lemma 1.4.1. If the series > a(P)e(tr(P2)) converges abso-

0<P=tPe.#,(Z)
lutely for every Z in4, and if aP) = 0 for all p with rank(P) < £(< n),

then fory = Im(Z) in S, with min(Y) > ¢ > 0, we have

F@2) =) laP)lle(tr(PZ)| = Ou(exp(-2 tr(Yr))

P

where 2" is a positive constant and,¥s the leading(¢, ) minor of Y.

Proof. SinceY is in S;, we see exactly as in LemriaT13.3, thvat

Y11 0

Yo = [ Do ]and since minY) > ¢, we also havey > &' E,, for some
0 .. ¥Ynn

&g > 0 depending o, t andu. The given series converges absolutely

for Z = i(¢’ /2)En and hence(P) exp(ne’ tr(P)) = O(1). Thus

F(2) =) |a(P)| exp(rtr(PY))

P
< " [a(P)|exp(re’ tr(P)) exp(-rtr(PY))
< Z expErtr(PY)) = 7, say.

P=tP>0
rankP>¢

SinceY x Yg andtr(Y;) = yi1 + - - - + Ve, WE may assume that = Yg,
without loss of generality. For artywith £ < h < n, we set

aw)= > exptrtr(PY)

0<p="pe.#n(Z)
rank(P)=h
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sothat7 = 3, ao(h). In order to prove the lemma, it fices clearly
¢<h<n
to show that

ap(h) = O(exp2"tr(Y,)) for a constantZ” > 0. (25)
m]

SinceP > 0 and rankP) = h, there existdJ in GLy(Z) such that
P = (F(’)l g)[U] for an integraIP(lh) > 0. Suppose now that fddq, U,

in GLn(2) and P’ > 0, we have( % 9)[Uy] = [Pé“’ g][uz]. Then

|5 8] [U1U3Y = [ 8] implying thatU; U5t = [ WA 7, | with Wi in
GLn(Z), Wy in GLy-n(Z), W3 € Ahh-n(Z) andP1[W;] = P2. Since the
number ofW; in GL,(Z) with P1[W1] = Py is at least 2 (e.gP1[+Ep] =
P1), we have the inequality

o<y Y exp(—ntr(%l g)[U]Y) (26)

P1 uecLM(z)\GL\(2)

where nowP; runs overM-reduced integral matrices %, (represent-
ing the variousGLy(Z)-orbits of positive-definite integral matrices in
) andU runs over a complete set of representatives of right co$ets o

GLM(z) = {('i“ O)EGLn(Z)} in GL.(2).

*

Any suchU can be written at) = () with primitive F™ in .#,(Z). 50

Further, t(( % %) [U]Y) = tr(P.Y[P]). Thus [2B) becomes

aw) < > > expert(PLY[F]).  (27)
P1€Z2nNAtn (Z)FN) primitive

From the reduction conditions, the numberMfreduced integraP;
with given diagonal elementsy, p, ..., pn is seen to be< pf-tp)-2
... pno1 (Actually, it is not hard to verify that the number d& ([ (Z)-
equivalence) classg#;} of integral symmetric matriceP; with det
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P; < dis < d1/2+¢ for anye > 0. We, however, do not need to use
this fact). From[(2]7), we are led to the simple estimate

P ... 0
ao(h) < Z Z exp[%’tr [[ SR ]Y[F]]]
e S N (ST 0O ... pn

(28)
pp ... O

with a constant?z™ = 2”’(h) > 0. Writing P* = | : -. : [andF

0 .. p
(f1... fn), we haveP* > Ey, tr(P*Y[F]) > tr(Y[F]) and trh(P*Y[F])
g tr(P*Ep[F]) = &’ Y pitfifi > & tr(P*) sincelfifi > 1(1 <i < h)in

1<i<h

view of F being primitive. Thus

\%

exp2" tr(P*Y[F])) < exp(—%%’ tr(Y*[F]) exp(—%%’s’ tr(P*)).
Now since
h-1 1 ’
D, (Papze..pn)"exp 27E tr(pyt e+ ) < oo,
P1,....PheN
we obtain from[(ZB) that
1
h) <« exp= 2" tr(Y[F 29
ao(h) (Z) P52 tr(Y[F]) (29)
primitive

If, for 1 <i; <ip < ... <ip < n, the non-zero rows of ank in (Z9)

have indicesy, ..., ip, thenp > handi, > h.
Hence
w(YIF) = > fayifa > > yi,{ > firz,j]z Dw
115|i(5h 1<r<p 1<j=<h 1<r<p
<K<n

> tr(Yn) > tr(Yy)

and further
tr(Y[F]) > &' tr(FF) =& > f2

1<i<n
1<j<h
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It is now immediate that (for som&” > 0)

exp(—%%’ tr(Y[F] = exp(—%ﬂ&”’ tr(Y[F]) exp(—%ﬂ&”’ tr(Y[F]D)

< expE2 tr(Yy) exp| -2 € Z fij2
1<i<n
1<j<h

and as a result,

hn
ao(h) < exp2" tr(Ye)) {Z exp(—s’%gz)]
geZ

< expEZ2tr(Yy))

proving [Z5) and the lemma.
Let

t =tn(0) := {X = (Xj) € #ZR)IX =X, 0< xj <}

and, for any giverM in I’y andM-reducedl’ — 0 in Ay, with minT > 0
(as we have assumed prior to the statement of Lelmd 1.4.1),

BM) := (X € t{M < X +iT™1 > &gy}

so that3(M) = B(NM) for everyN in I',... Let My = Epy, Mo, ..., 52

M,,... be a complete set of representatives of the right cosely of
t]_]_ .. 0

in T'h. Now sinceT = (tjj) is M-reduced,T = ( : ]and so the
0 .. tm
assumption mim > 0 yields thattj > O for everyi > 1. Thustijl is
ti .. 0
sufficiently small; forT—1 = [ Dol ] min(T~1) is also stiiciently
0 .. q'll
small.

Hence ifB(Ezn) # 0, thenX +iT~1 € g, for someX and as a
consequence, mi(1) > +/3/2, which gives a contradiction. For all
but finitely manyi, 5(M;) = 0. Defining8(M,) = (M) andp(M;) =
B(Mi) N {B(My) U ... U B(Mi_1)}C¢ inductively fori > 3, where{ }°
denotes set complementation, the following lemma is imatedi
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Lemma 1.4.2.t = [[ B(M))
i>2

Forn = 2, the measure of the intersection of two distiffl;)’s is
0 (and presumably this is true far= 3 as well).

ForM = (¢ p) € I'h and a modular fornf of degreen, weightk
and levelg andT as above, let

@(C,D) = a(M) = a(ThM) = f £(X + T L)e(—tr(T X))dX
A(M)

wheredX = [] dx; denotes the volume elementtinThen if

I<i<j<n

(@)= > alew(T2),

0<TeA},

a(T) = g "M /2erm f f(X +iT (= tr(TX))dX
t

= q "2 K (M), by LemmdTZR.

2
Za’(Mi)

i>2

=0 : (30)

Lemma 1.4.3. For f as above vanishing at all cusps andM & §) e
I'n with M < Z >€ gy,

f(Z) = abs(detCZ + D) ™*)O(exp(-2 min(Im(M < Z >)),
for a constantZ".

Proof. (a) Sincel : I'n(g)] < o and furtherf|M1 M, = (f|M1)|M2
along with f|M = v(M)f, for all M in T'n(q), where|v(M)| = 1,
the number of functions abg() for N in T is finite.

(b) If N = (& &) € T, then|f| = [f|(N"IN)| = (absdetC’Z +
D) K(FIN")(N < Z >)L.
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(c) If Zis in the fundamental domaifi, for I'n in %, Y = (yjj) =
Im(Z) is M-reduced and hence belongsSg, for somet, u de-
pending only om, by Theoren_L3]1 (ii). We also know from
@34) that minY > V3/2. Sincef vanishes at all cusps,

(fIN@) = ) a(p;N)e(tr(P2)/q)
0<peA;,
rankP>1
for everyN in T',. Applying Lemmd_L.411. we have then, for every4
N in Tn, I(fIN)Z) = O(expt2y11)) = Oexp2
min(Im(2)))).

(d) Let M < Z >€ gp; then there exist) in GL,(Z) and integral

symmetricS such thatUM < Z > U +S € .%,. ForN =

(‘Y SY)M, we have min(InN < Z >) = min(im(M < Z >)) >

V32 and furtheN < Z > is M-reduced. From b), c) and a), it is
immediate that
1£(2)| = abs(detCZ + D) ™ )|(fIN")(N < Z >)|
= abs(detCZ + D) X)O(exp.2" min(Im(M < Z >))).

LemmdL.ZB implies at once

Lemmal.4.4.For f, T and M as above,

l(M)] < f abs(detC(X +iT1) + D))
B(M)
exp2 min(ImM < X +iT 1 >)))dX

Definition. A pair of (n,n) matrices C, D is called a symmetric pair if
C'D = D'C and is said to beoprimeg if, whenever GC and GD are both
integral, G is necessarily integral.

If M = (AB) € I'y, then CD) is a coprime symmetric pair. Con-
versely, it is not hard to prove that given any coprime synmimegir C,
D of (n, n) integral matrices, there exisid = (cp) in Tp.
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Definition. Two coprime symmetric pairs C, D and (D, are called 55
associatedf there exists U in GK(Z) such that(CD) = U(C1D,).

Let {C, D} denote the equivalence class of altrbwed) coprime
symmetric pairs associated with a given @2jD. We wish to determine
a special representative in each clg8D}, wherer = rankC. If r = 0,
thenC = 0; thenD is necessarily il L,(Z) and we choos®, E as a
representative. Letthen©r < n. There exisU, U, in GL(Z), such
that
C, O

)tuz where C; = C"" with detC; # 0.

UlC:(o 0 1

If we write analogously

Dy D2

UiD = (D3 -

)Ugl with D; = D&,

thenC!'D = D'C impliesU;C, U1D is symmetric and so

C: 0\('D: 'Ds\ (D1 D3\('C; O

(& e o[ o)(% o
ThusC,'D; = D1'C; andD3 = 0, so thatCy, D1 is symmetric.

Sin(:e(%1 D Bi) is primitive, D4 € GLy_,(Z) and further C,D3) is
primitive. Thus the symmetric pat,, D; is also coprime.

If Q1, Q2 are primitive f,r) matrices (i.e. capable of being com-
pleted to elements @b L.(Z)), we sayQ1, Q. areassociatedwhenever
Q1 = QuU3 for someUs € GL,(Z). We denote the class of matrices
associated witiQ; by {Qy}. Hence replacing)z = (Q*) by U (¢ &, )
with Us € GL,(Z), we can ensure that the primitive mati@™" is
a chosen representative in its class. Under — Uz(%3 Eg_r) with
U3z € GL/(2), the form ofU,C, U;D is unchanged, except for the re-
placement o€, D1, Q by C1!Us3, D1U§1, QU3 respectively. Replacing
now Uy by (‘¢ ¢, ) U1 with Uy in GL(Z), we can replac€;, D; by
any representative in its clagS;, D1}. Let us fix, for 1< r < n, from

the classes of-rowed coprime symmetric pairs a complete set of rep-
resentatives as well as a complete system of represemst&tifrem the
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classeqF} of primitive (n,r) matrices and to each, let us assign a
matrix U = (Fx) in GL(n,Z), once for all. Thus we have established
already a part of

Lemma 1.4.5. Let F = F(™ run over a complete set of representatives
of the classef} of primitive matrices and ¢ D1 over a complete set of
representatives of class@S;, D;} with C;, D1 coprime anddetC; # 0.

To each such F, let U= (Fx) € GL,(Z) be assigned once for all. Then

the pairs
_(C1 0}, (D1 0\,
C_(O O)U’D_(O En_r)u

form a complete set of representatives of the clag8eB} with C, D
coprime symmetric anchnkC = r.

Proof. What remains to be proved is only that théfelient pairs<C, D 57
obtained in this manner belong tdi#irent classes. If possible, let

. (Ch O\upw e (D5 O)
(G oo L)

satisfyC* = U;C, D* = U;D for someU; in GLy(Z). From this, we get
C*'D = D*!'C and so

(C; O)tu*tu—l(tDl 0 ):(D’i 0 )U*'lu(tcl 0)

0O O 0 E 0 En 0O O
Writing
Viy V 1 W, W
ty sty -1 _ (V1 V2 " _(Wq 2
Uty _(V3 V4),u u_(W3 W4)
we obtain

(c;vltD1 c;vz)_ DiW4'Cy o) (30)

0 0 _( Ws'C; 0
HenceV, = 0, W5 = 0 and fromU = U*(Vg1 Wj) it follows then
thatWy € GL,(Z). If U = (F G) andU* = (F*G*), thenF = F*W,
i.e.{F} = {F*} and soF = F* giving U = U*, since, corresponding to
F, we have assigned once for all. Hence

C, Db 0)_ (CT D O (U7 O
Ul(o 0 En—r)_(o 0 E. and soU; = L
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But sinceUy is in GLn(Z), U] is in GL(Z) and so{Cy, D1} = {C;D7}
i.e.Cy = Cj, D; = D7 and the lemma is proved. O

Lemma 1.4.6. Between the family of class@s, D} of n-rowed coprime
symmetric paris C, D witlletC # 0 and the set of al(n, n) rational
symmetric matrices P, there exists a one - one correspoedginen by
{(C,D} & p(= C1D).

Proof. Clearly {C, D} uniquely determine® = C™'D. Suppose now
{C1, D1} and{C, D} are mapped into the sanfei.e.C;*D; = C'D =
'D!C1 so thatCq'D = D;!C. This in turn means at once that fit =
(&5) My = (&, 8,)in Ty MiM~L = (5¢) with U € GLn(Z) and
therefore{C, D} = {C1, D;}. We have thus shown th&E,D} — P =

C1D is well-defined and one-one and we need only to show that it

is onto. For any given rational symmetrin, ) matrix P, there exist
Us, Ug in GL,(Z) such thatUzPUy is a diagonal matrix with diagonal
elementsa /bi(1 < i < n), for &, b in Z with (g,b) = 1 andb; >

0. If we now takeC; = BgUsz, D1 = AOU;1 with diagonal matrices
Ao = [a1,...,an] andBg = [by, ..., by], then clearlyP = C;*D;. Since

P = tP, we haveCltDl = DfCl. Since C]_Dl)(ugl 84) = (BO Ao)

is clearly primitive, it follows thaiC,, D1 is a coprime symmetric pair
corresponding t®(= C™1D) = P. O

As an immediate corollary of LemniaTh.6, we see that\{M =
(é B) € I'hldetC # 0} is in one - one correspondence wifh = tp €

M(Q)}viaC, D (CD =)P.

Definition. For P = C™!D = 'P € .#,(Q), define[P] = abs(deC). (It
is clear that if C'D = P = C;'Dy, then absietC = abs deC; from
above and s@P]is well-defined).

The following three lemmas have been reproduced from Sj2gegl
for the sake of completeness.

Lemma 1.4.7.Let K be an n-rowed diagonal matrjgs, C,, .. ., Cy] with
integers g,...,Cn, GlCGi+1(1 < i < n-1)as diagonal entries and?” =
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{U € GLy(Z)[KUK ™t integra}. Then
[G Ln(Z) . ji/] < l_[(l_ p—l)l—n l—[ Cik_n_l

picn 1<k<n
where p runs over the distinct primes dividing ¢

Proof. SinceQ := GLy(Z;q) is a subgroup of’z” for every positive
multiple g of ¢, we have GL,(Z) : #] = [GLy(2)/Q : 7 /Q]. Now
GLn(Z)/Q is isomorphic to the group of afi-rowed integral matrice¥
moduloq with detV = +1(mod q). In view of the Chinese Remainder
Theorem, it stices to show that

[%* : (%/*] < (1_ p—l)l—n l—[ Cik—n—l

1<k<n

under the conditions that = c, is a power of a fixed prime numbex
% * consists of alh-rowed integral matrice¥ moduloq with detV =
+1(mod q) and#* is the subgroup of all suct with integral KV K1,

Let ¥4 be the group oft, n) integralV modulog with (detV,g) = 1
and %, the subgroup of alV in #; with integral KVK™1. Then it is
clear that f;, : %*] = [#n @ #*land so [, @ ] = [%F 7).

If #77, and_#, denote the orders df;, and.#;, respectively, it sflices
then to show that 60

ftn = @R -p ) | ] e (31)

1<k<n

It is well-known that

wh=d" []a-p". (32)

1<k<n
Whenc; = ¢, we haveK = ¢ E,, J4, = %, and [31) is true,
since Y, (n+1-2k) = 0; in particular, this holds fon = 1. Let

1<k<n
us apply induction om and suppose that; < c¢,. Defineh by the

condition thatc, < Ch1 = Gy, then 1< h < n—-1. LetV = (V) =
ViV2) with V; = V™. The matrices/ andKVK-1 are both integral
V3 Vs 1

if and only if v, and CkagCEl areinZfork, ¢ = 1,2,...,n. Then
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V3 andV, are arbitrary integral matrices, whil andV, are integral
matrices subject to the conditiongy = 0O(mod ¢/ck) for k < h, k <
¢. Sincepl(cy/ck) for k < h < ¢, we haveV, = 0(mod p) and so
detV = (detV;)(detV4)(mod p). Consequently, we get the elemevits
of J#; as follows: Vy is any element off;,_,, V3 is an arbitrary integral
matrix modulog, V> is any matrix modulay satisfying the conditions
c;lcglvkg for k < h < ¢ andV; is any element of#;,. It follows that
8., = ad" ™M . 4%, - %, wherea is the number of matrice¥,,
namelya = """ ]‘[ (Ck/C[) Applying (1) withh instead ofn and

@2) withh,n—hin place ofn, we obtain

itz d@-p "t [ @[] e

1<k<h k<h<t
[Ta-p" [] @a-pY
1<k<h 1<k<n-h
Since
2 _ _ —1\n—
a [la-pM>th [] @-pH2@-pH™
1<k<h 1<k<n-h
and
I_I CPk'|—2k+l I_I (ck/cy) _ CEhUF#D I_I CT—2k+1 _ [_I CE_2k+l
1<k<h k<h<¢ 1<k<h 1<k<n
the assertiorf{31) follows and the lemma is proved. m|

The exact value ofGLy(Z) : 7] can be obtained from the paper
of A.N. Andrianov on ‘Spherical functions f@L, over local fields and
summation of Hecke series, Math. Sbornik 12 (1970), 429-452

Lemma 1.4.8.Let Acy, ..., cn) denote the number of modulancon-
gruent rational(n, n) symmetric matrices B C~*D whose ‘denomina-
tors’ C have g, ..., C, as elementary divisors. Then

ACy...c) <[ Ja-poH = [ o

pIch 1<k<n
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Proof. LetC* be any , n) integral matrix withcs, . . ., ¢, as elementary
divisors and leC* = UgKU with Ug, U € GLy(Z) and diagonaK =
[C1,...,cCq]. If A(C¥) is the number of modulo 1 incongruent symmetric
Rwith integralC*Rand ifR['U] = Ry = () say, therC*RIU = UgKR;
and soA(C*) = A(K). The matrixKRy is integral if and only ifckry, is
inZfor 1 <k, £ <n. Sincery = rg andcy|cy| . . . |, we obtain

AK) =[] g (33)
1<k<n

Now, the number of modulo 1 incongruent symmeRiwith the same 62
denominatorC* is at mostA(C*). On the other handC* = UgKU
andC; = U;KU, with Uy, Uy € GL,(Z) are denominators of the
same rational symmetric matrR, if and only if C*CIl € GLn(2); the
latter implies thatK U,U K1 is integral, Uo,U Y is in # = {V €
GLy(Z)[KVK~is integra} and soU, U, are in the same right coset of
A in GLy(Z). ThusA(cy, ..., Cn) < [GLy(Z) : #]A(K) and the lemma
is immediate from[[33) and Lemnia_T}4.7. O

We need one more lemma, for our later purposes.

Lemma 1.4.9. Let R run over a complete set of moddlincongruent
(n, n) rational symmetric matrices. Then the Dirichlet series

W= ), R
Rmod 1

converges for s- 1. If u> Oand s> 1, then

1

-S —n —-N-s 1-s

u Zlﬁl +Zlﬁ| <a(2+a)u
[Rl<u [Rlzu

where a depends only on n.

Proof. For two Dirichlet seriesy(s) = Y and,° andp(s) = X bnay®,

n n
we write a(s) < B(9) if |an| < |by| for everyn. From the definition of

A(Cy,...,Cn) above, we have(s) = > A(Cy,...,Ch)(C1...Co) S
c1lCal...[cn
wherec;, ..., c, run over all systems of natural numbers waticy|... 63
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|ch. From Lemmd—I1.418, we obtain, on lettimg, ..., c, run over all
natural numbers, that

we< > [Ja-pH " []dms

C1,....Cn PlCn 1<k<n
_ l_[ 1+(1- p—l)l—n Z p—t’s l_[ Z(s+n-K)
p 1<l<co 1<ks<n-1

Let
v=2"+n-3,y(9 ="(s+1) and by:=p((1- p~hHtn_1).

ThenO<bpy<2"-2=v-n+1forallp>2and
1+@1-p )" Y p=(1+bpp ™)/ p (- p )1 p)
1<t<oo

whence
Y(s) <y(9)4(9) (34)

proving the first assertion of the lemma. m]

Lety(S) = Yicne @2 andy(s) = Y dnyn~S. Further, letoy =

1<n<eo

> ag,y(1) = 7(2) = a. Then, from[34), we have
1<t<k

oK< Y dg[;]sk Dodijt<k Y dijt=akk=12..)

1<t<k 1<e<k 1<l<oco

Hence, for allu > 0,
Z R‘”zZa{<au (35)

Moreover, for

s> 1 Z RIS = Z ak™s

Rbu k>u
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- Z(O'k — o)< < Z ok~ (k+1)7°)

k>u k>u
k+1
= SZ oK f xS 1dx < as
k>u K
k+1 %)
Z fx‘sdxs asf X~ Sdx
k>u K U
= asu5/(s-1). (36)

The second assertion of the lemma follows frénd (35) (36).

It is known thaty(s) = 4C) ﬁ Z(2s+n—r)

Z(s+n)rz12(2s+2n—2r)
mann’s zeta function. This assertion may be founddinMaass[[1/7].

For a proof, see Kitaoka’s paper ‘Dirichlet series in theotiyeof Siegel
modular forms, Nagoya Math.J. 35 (1984), 73-84 (cf. G. Shandn
Eisenstein series, Duke Math.J.50(1983), 417-476).

Returning to the problem of estimatir%a(M), we first state the

where( is Rie-

following Propositions, which essentially go back to Sidg8].

Proposition 1.4.10.For f and T as above and half-integralbkn+1/2,
we have

> a(M) < (minT)(M1-0/2(gdetT)k-(M1)/2 (37)

(& Bmernar,
detC+0

if mnT > 2" > 0for 2" depending only on n.

Proposition 1.4.11.For f and T as above and half-integralkn+1/2,
we have

> a(M) < (minT)"*(detT)< (/2 (38)

(8 gmernair

detC=0

provided thatdetT < (minT)" andminT > 2" > 0 as in Proposition

LAT0.
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Remarks. Since 6+1-Kk)/2 < 0fork > n+ 3/2, the right hand side of
@12) is of a strictly lower order than the term (@&t~ (™12 occurring
in the corresponding Fourier cieient of Siegel’s genus invariant for
S > 0; therefore, for mifm > 0, we have a truly asymptotic formula
r(S, T). We also note that the condition det« (minT)" in Proposition
[LZT1 isnotnecessary for the proof di{B37).

Lemma 1.4.12.For M = (& B) € I'y with detC # 0 and real X= 'X,
we havdm(M < X+iT -1 >) = (T[X+C D]+ T H-[Cc 1 < T[C].
Further 3(M) # 0 implies thatmin(T[C™1]) > V3/2.

Proof. Indeed for
Z=X+iYe%,Im(M <Z>)=YCZ+D)tY(Cz+D)™*
so that

(Im(M < Z >)) 1 = (CX+D+iCY)YL({(CX+ D) —iY'C)
= Y~xic +'D] + Y['C].

Hence

IM(M < X +iT 1 >) = (T[X+CID]+ T HCc Y < (T HcH
=T[C™Y.

If X1 € B(M), thenM < X; +iT~1 > egn and hence mii[C~1] >
min(Im(M < X1 +iT~1 >)) > V3/2.
For givenM = (A 8) e I with detC # 0, we now proceed to
estimate the serieg; «(M(G £ )) = X o(C,D +CS). Applying
SeA SeA

Lemmad 144 anld T.Z12, we haye o(C,D + CS)

SeA

<> f (abs(detC(X +iT™Y) + D + CS)) ™

()

exp2 min((T[X + C™ID + S] + T 1Y C 1)) dX
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< g1z f (abs(detC(X +iT )™
“n

exp.2 min((T[X] + T"H[Cc7Y))dX

where the integration is now over thén + 1)/2-dimensional space;,
of all real X = 'X. For X € .%, we define® by ® = TY2XTY/?
whereT2 js the unique positive definite square rootTof ThendX =
(detT)-™1/2de and

Z a(C,D + CS) < (detT)<™1/2(abs deC)™ f
SeA
®n

det@? + E)¥2 exp(.2" min(@? + Ey) " YTZC1])de

Writing

®@=|: .. :|[V] with orthogonal V("
0O ... wy
= (Vij) and wy| > ... > [wpl,

we have

wi+1 ... 0
@?+En=| [V] < (1 +W))En,

0 ... w2+1
det@? + Ep) = ]—[ (1+w?),do = ]_[ Wi — Weldw, . . . dwhdu
1<j<n k<t

wheredu is the Haar measure on the orthogonal grafp) and |wy —
we| < (1+w2)Y2(1 + w?)Y/2. Since the volume af(n) is finite, we see
that the integral ovep,, above is

< f ]_[ (1+w) M2 exp-2 (1 +wi)~t min(T[C™]))

RN 1<j<n

66
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n 1+ WJ?)(”‘l)/Zdwl, ... dwh

1<j<n
< f (1+wg) W2 D2 exp 27(1+wE) t min T[C™'])dwy

sincek// - (n-1)/2>-1/2
< (MInT[C™1)™X/2 noting that mIifT[C™1] > V3/2,
by LemmdT.Z.72.
Now
min(T[C™Y]) = | detC|? min(T[(detC)C™1]) > (minT)/| detCJ?

Hence we have

Z |(C, D + CS)| < (detT)("+1)/2 (39)

SeA

| detC|™
| detC|~"(min T)("-K)/2

O

67  Proof of Proposition 1.4.10.From Lemm41.4]16 an@{B9), we have

(88)= D, eM)= > > a(CD+CS)

Méeln o \I' P=C!Dmod 1 SeA
detC+0

< (detT)k-(m1r2 > PPminm™92L X [P
P='Pe.#,(Q)mod 1 P='Pe.#,(Q)mod 1
[P l<minT)2 [P laminT)2

< (detT)k(n+l)/2(min T)(n+l—k)/2’

applying Lemm4&_L.2419 with = (minT)2 ands = k- n(> 3/2), which
proves [3FV) and Propositién_1.4110.

We proceed now to the proof of Propositibn_1.4.11. By Lemma
.44, we have

l(M)] = |a(C, D)| < f (abs det@©(X + T~} + D)) kdX  (39)
AM)
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since forX € B(M), min(Im(M < X +iT1 >)) > v3/2. We should
remark, however, that estimafe]39) is rather crude andndeséo be
improved with a better knowledge of the geometry#Qf in order to
obtain sharper estimates fafT). Using the form ofC, D in Lemma
43 with 1< r < n, we have

abs(detC(X +iT 1) + D)) = abs detC1(X[F] +iT "}[F]) + D1)
= | detCy|| det((X[F] +iT "*[F] + C;*Dy)I.

Thus 68

Cl 0 t Dl + C18 0 1
Z te% (( 0 0) U,( 0 En—r) U«
S=tSeA,

(detCy)™ > f

A A, 0 B, 0
Yl 1
‘e A E_ O 0 En 3 8 'y o
Ac, 0 D, O 0 u-l
0 E,

0 0 0 Eng
|detX[F] + C;1D1 + S +iT 1[F])[dX

|detCq| f |det|(Qq + C;1Dy +iTYF])|*dQ

0 U | 9
oA, 0 0
(40)

under the change of variablées — Q := X[U] = (Q(l*r’r) 82) noting
thatdX = dQ andQ; = X[F]. For a real symmetricr(r) matrix S’,

U (U] + (%55 §)) is a complete set of representationssf mod-
SeA

r

ulo {0 (s, 57 )1S2 € Anr(Z), Sa = 'S € Mn-1(Z)) and

{(tSSl 22) IS1 € ¢r,So € My n+(R/QZ), Sa = 'Sy € An-r(R/GZ)}
2 Sy
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is another system of representatives. Suppose now that

_(Q" q S 0
Q_(t(lgz Qi)et[U]+(O o) and

,_(Q1 Q; S0
=(& &ew+(5 9

with S = S’(mod q), Q2 = Q,(mod q) andQ, = Qj(mod q). Then
Q- (§9)andQ - (% 3) are both int{U] and further are congruent
moduloqg. SinceU is in GLy(Z) andt is the standard cube with sides
of lengthg, we have then necessarily— (§ %) = Q - (§ $) implying
thatQz = Qj, Q4 = Q, andS = S’. For any givenQ; = X[F] and
equivalence class in; modulog, Qy, Q4 run at most modulg. Hence,
after absorbing constants, we see that the expressi@nlins(40

< [Ar : qAr]qr(n—r)q(n—r)(n—r+l)/2| detcll—k

|det@q + T YF]) ™dQ, (41)
Q1='Qie.# (R)

the integrand being now independent@f and Q4. It is easy to see
again that the expression 0n{41) is

< | detCq| X (detT2[F])+1V/2k f |det(Xy +iE,)[dXy
X1=tX1€.4, (R)
< | detCq| X(detTY[F])r+1/2k, (42)

For fixedr with 1 < r < n, we know (by LemmaBEL.4.5 afd T}4.6)
that there exists a one - one correspondence

*

k
I \{M = (C D) € I'ylrankC

E S0
:r}/{[ " 10 0]]ern}<_>{c;1Dlmod 1, {F}
0 E,
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wherecilDl runs over a complete set of modulo 1 incongrueti)(
rational symmetric matrices afd™") over a complete set of(r) prim-
t1 ..

. 0
itive matrices described in LemrhaTl4.5. By assumpﬂ'onsr,[ N )
0 ..t
with t; :=t; and it is not hard to see that

(detT7YHF]) > t;1...t-1 , detE,[F].

n— r+1

In fact, if (' 3 I ) F is the determinant of the.(r) submatrix ofF

12.
formed by the rows W|th indiceig, i, ..., ir, then 70
tt ... 0
detT'F >detf : - :[[F]= >
0 o tr;l 1<ii<ip<...ir<n
i ir\?
N L 7 I Vo | -1
i i\
_ _ 2 ... _
>>t T r+lZ(i 2 I’r) :tnl~ nr+1detEn[F]
.

Using now the estimat&{¥2), we conclude that

@)
Z' ((c )tu,(Dl+Cls 0 )u-l)
SeA; 0 Enr

r+1 r+1
| < |detCy¥(t;L...t-1, )T X det@,[F]) Z

From the last estimate and the one - one correspondenceekfer
in the preceding paragraph, it follows at once that

M= Z a(M) <« Z RTK
(é E)GFn,m\Fn rankC=r R=tRe.#;(Q)mod 1
—— _ﬂ
(detEn[F]) 2 k(tn Ane r+1)k (43)
Fetn(2)/GLZ
F primitive

The representatives in the summation in{43) can be assumed to have
been chosen already to satisfy the condition E4F] is M-reduced. If
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F = (fy... f), then, by Lemm&T132, d&[F] > [] Enlfil. Since

1<i<r
(r+1)/2-k<n/2-k<0,we have
r
> (detEq[F]) 2k <<{ > (En[x])“”’/z-k} L (49)
F O#xezZ"

If X1...%, # 0, then X x,-2 > n|Xq ... %,|%". Therefore the series over

1<i<n
r+1

on the right hand side of[#4) i& Y 1cscn > (V2 +---+y2) 0 2) <«
YieZ\(0}

> 2tk = (r + 1)/2)/s) < 1sincek — (r + 1)/2 > n/2 forr < n, in
1<s<n
view of the hypothesi& > n + 1/2. Thus the series ovét in @4) is
< 1. On the other hand, sinée-r > 1 forr < n, we can apply Lemma

[LZ9 to conclude that > R < 1. So we finally see that
R=!Re.#;(Q)mod 1
the left hand side of{43) is

— — N+l n-r
< (tn ..t )2 = (detT) D208 L t2) 7 Mg 1) 7.

We now use the assumption that (@ig¢t< (minT)" for the M-reduced

11 0
TX(E-. ).Thentlxtgx...xtnxt,say.
0 ..t

Fori<r<n-1, (L _kyn-n+ ”—;r-r < n—kwith equality
taking place whemn = n- 1. Thus

n+l

nil_ n_r N+l n_r)4 D2L. _
(tl...tn_r) 2 k(tn_r+1...tn) DS t( 2 k)(n r)+ 2 r S tn k

n+l

and the left hand side oE{U3) is (detT)< 2 (minT)**for1 < r <
n - 1. Summing over[(43) for & r < n- 1, Propositio_LZ411 is
immediate. In view of the remarks preceding Lenimal.4.1 have the
following theorem (and Theorem C in the Introduction) asramediate
consequence of Propositibn 1.4.10 &nd 114.11.

Theorem 1.4.13([20],[219]). If k = n+ 3/2and f(Z) = Y a(T)
O<TeA*

etr(T2)/q) is a Siegel modular form of degree n, weigli€ KL/2Z),
level g and with constant term vanishing at all cusps, then

a(T) = O((min T)M1-R/2(detT)k-(M+1)/2)
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provided thatminT > 27(detT)Y" andminT > 2> > 0 for constants
21, Z» independent of f (but depending only on n).

Remarks. The condition mifil > (detT)¥" seems unavoidable for gen-
eraln. The next theorem giving an estimate for flmments of modular
forms of degree 2, weiglit > 7/2 and levelq vanishing at all cusps im-
poses no such condition. Sunder Lal (Math. Zeit. 88 (1966)-243)
has considered an analogue of Theofem114.13 for the Hiiegel
modular forms.

For anym-rowed integralS > 0, the associated theta serig¥) =
> e(tr(S[G]2)) is a modular form of degrer, weightm/2 and level 4

G
detS and f(Z) — ¢(2) vanished at every cusp, if we taléZ) to be the
analytic genus invariant associated withThe Fourier cofficientsb(T)
of (Z) are of the form:(detT) "2z~ ' x H ap(S,T) Whereﬂ @p(S,T)is

the product of thep-adic densities of representatlon 'bfby S. Thus,
for m> 2n + 3 and minT > (detT)Y", we have from Theoreli_LZJ13
an asymptotic formula far(S, T):

For the casen = 2, we have an improved version of Proposition
[LZT11, and evenot involving the unsatisfactory condition (dE} <
(min(T))? namely

]_[ ap(S.T) + O((detT

Proposition 1.4.14.For f, T as above witminT > 2" (an absolute
constant independent of f) and=n2,

Z a(M) < (Min(T))Z*(detT)3/2

V=(8 B)erzar
rankC=1

1ifk > 7/2
log(VdetT/ min(T)) ifk = 3
((detT)2/ min(T))Y?if k = 3

As immediate consequences of the foregoing, we have 73
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Theorem 1.4.15([A0)). Let f(Z2) = Y, =a(T)etr(T2)/q) be a Siegel
0<TeA

<Te
modular form of degre®, weight k> 7/2 (with 2k € Z), level g and with
constant term vanishing at all cusps. Then for-TO andminT > 2~
(an absolute constant independent of f), we have,

a(T) = O((MinT)CW2(detT)*3/2)

Corollary . If A™ > 0, B@ > 0and if AX] = B is solvable with
X having entries iz, for every prime p, then for largenin(B) and
m> 7, A[X] = B has a solution X with entries iA.

The proof of PropositioRT.Z4.14 has to be preceded by selaral
mas.

f
Definition. For given T> 0and C= (§8)" with U = (fl ) € GLy(2)
2
andc#0inZ, leta := T2 [( ]:; )] and

2 -1
P = P(x1, X2) = Pruc(xs, Xo) = ((al + Xé/al) 1/(a1detT)) [(1(/)0 xlz)]

Lemma 1.4.16.For M = (& B) e T with C = (§3).D = (§9)u2,
c#0inZ, U in GLy(Z), and Te &5, we have

Im(M < X +iT ™1 >) = P(q; + d/c, ax(aq + d/c)/ag — @)
where g, ap, 0, @z are given by TH[U] = (§ &) and U] = (& &).
Proof. We know that (Im¥1 < X+iT % >))™* = T({(CX+ D +iCT)}
(using the abbreviatioA{B} for 'BAB) = T[{(CX + D)] + T™['C]

2 _ 2
_ (detT) as(cap + d)? — 2axCp(cep + d) + 3y %5 = . aic® 0
—ap(cp +d) + agcp a 0 O
This is, on the other hand, the same as
p~(oa + ¢ 'd, a7 tag(cy + ¢ ) - qp)

ar + (g1 + d/c)?/ay 0 c 0
0 a detT ) |\cp — ajtax(cp +d) 1

(a1 + a7*(qy + d/c)?)c? + ay(detT)(cop — ajtaz(ca + d))? *
a detT (cp — ajtax(cop + d)) a; detT

O
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Lemma 1.4.17. With notation as in Lemnia_L.4116, ﬂ(g :) and M-
reduced T= ({ 2) [((1) Ll’)] we havelcf2 < (8/3) v/t and|fi foc| <
4/3, whenevemin(P) > V/3/2; moreover, under this conditionfy| = 0
or 1and if|f1| = 1, then|c| < 3.

Proof. Since

(t tw o gtoo
T_(tlu t1u2+t2)’T 2\0 1!

1 (t1u2+t2 —tlu) 1(t;1 o)

Thtp\ -tu 4 ) 2\0 g
B (Uz/tz +1/(2h) -u/tp )
- -u/t 1/(2t)

has determinant

. 4 1
sincet; < :—%tz and|u < 1/2. HenceT ! > E((lgl 1?,[2)). On the

other hand, sinc® e 2, (min(P))? < (4/3)detP. If then minP) >
v/3/2, we have

(3/4) = (3/4)(3/4) < (3/4) - (min(P))? < detP
= detP = 1/{c? detT (a2 + x3)} < 1/(a2c® detT).

f 1 1
_ 1N L2, Lo
o GRE RS

and as a result, we have

But

2
1 f2£2] 1(1 1,2
Zloa[ 22| Aty < S| =2+ =12 Ayt 45
4[ 4 b 12_4(t11+t22) 12 (45)

< (4/3)
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i.e.c?f2f2 < (4/3)% and so
[fofal <|cfify < 4/3.

Hence if fyfo # 0, |fy] = |fo] = 1. If fif, = 0, then (sincel is in
GLx(Z)), eitherf; = 0, f, = 1 or f; = 1, f, = 0 (taking only one
primitive column from each class). Frofn]45), we have

2 2
%(é f22) C2t1t2 < %(% ff + éfzz) Cztltz < (4/3)2
which gives u? 3 < 4(4/3)(tp/t1) i.e. [cfZ| < (8/3) Vio/ty. If |fy] =
1 = |fal, then (1<)c? = c?f2f2 < (4/3)? implies|cl = 1. If |fy] =
1 andf, = 0, then from [@b), we get?fity/ty < 4(4/3)% i.e.c? <
4(4/3)%(t1/t0) < 4(4/3)% < 2*i.e.|c| < 3. This proves all the assertions
of our lemma. m|

Remarks. 1) Under the conditions of LemnlaZT.2117, the number of
U coming into play is at most 4, namely = (9 3)if f, = 0,
= (% 5’) withne Zand|n < 1if f; # O (i.e. fy = 1). Whenever
|f1fo| = 1, we have = 1.

2) ForPasin Lemm&LZ17, i#V/3/2 < min(P) = P|(}: )] for some
integral columri(byby), we claim thatb, # 0. Otherwise, we can
takeby = 1 and then mirR) = P[(3)] = 1/(cX(aq + a;*x?)) <

(2/ V3)(detP)1/2 = (2/V3)/((a1 + a;1x3)c?ay detT)Y/2 < %

(minP/(ay detT))Y2 i.e. V3/2)2 < (min(P))/2 < (2/ V3)/(ay
detT)¥2 so thata; detT < 8/(3V3). Together with the inequality
as > % (£ 12+ £12) derived in the course of the proof of Lemma
[LZ17, this leads us to/2(t, f2 + t1f2) < 8/(3V3). Since either
f1 or f5 is different from 0, we have m(n}tl, %tz) < 8/(3V3)

which contradictst; andt, being stificiently large (in view of
minT > 0, by assumption). This contradiction shows that when
V3/2 <minP = P|(p:)]. b # 0.
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o0 oW
oRr o
oo
OO

~—

35
~
~

To anyo = (28) in SLy(2), let us associate =

0
Sp(27Z) = T',. Theno +— & is an injective homomorphism. If
¢ # 0, theno = (§°)(9-9"). In this case, we have f& =

7 7 01 c d

(%7%)
- _(a/c O -1/(c(cz + d)) 2/(cz +d)
"<Z>‘( 0 o)*( 2/(cz + d) z4—czg/(cz1+d))

(46)
by straightforward verification.

Leto = (38) € SIy(Z) with ¢ > 1 andU € Sly(Z). The fol-

lowing lemma gives an estimate for((§8))'U. (49) U~*) needed in
connection with Propositidn T.Z4]14.
a az

Lemma 1.4.18.Let o, U be as above and let & T~1{U] = (& 2).
For given® := (§ f2), A= T~[U] and C=(§8)'U, let

_ . —C%/(61 + iay) c (62 +iaz)/ (61 + iay)
T=1(0,AC) = (01(02 iay)/(01 +iar) Os+iaa— (6 + ia2)?/ (61 + ial))

Then
c 0);
(s o

exp(-2 min(P(61, a;tax0; — 62))d;d6,d6,.

U, d 0 Ul <c¥ (63 +af) ™2
01
(a(/)c g)+T€gz

®et[U]+( d(/)c 8)

Proof. In view of LemmdL. 44 foM = &(tg uql) =(¢p)inTy, we 78
see, on takingd = X[U] + (¢399) = (%*c'd &) and notingdX =
d@(Z: d91d92d94), Im(M < X+iT™1 >) = PT,U,C(ql + C_ld, a{laz(ql +
c1d) - gp) = P(61, a;*ax61 — 62) (by LemmdTZT6) and abs de(iX +
iT~1) + D) = absf, + ciay), that

le(M)| = |a(C, D)] < ¢ f (62 + a2) 2 exp 2
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min(P(61, &, tax0; — 62)))de

the domain of integration fa® corresponding t@(M) for X underX

0. ButM < X+iT1>=5< ®_(C*gd 8)+iT‘1[U] .- (a(/)cg)_ﬂ_,

by (@8) and so the lemma is proved. m|

Foro = (28)in S1y(Z) with ¢ > 1 andU equal to one of the four
matrices
0 -1
1 O
let

-1
%" (V) :=U{t(u)+(c do+mq g)}zyz/{(; Z)l&,&;eqz}

meZ

(1 0) with n=0,1 or -1,
n 1

An application of Lemm&ZI.4:18 witth (= d modulog, for a fixed
d) in place ofd, leads to

Lemma 1.4.19.For o, U as above and f, T as in Proposition_1.4.14,
we have

di1=d(mod cq)

<c* f (6% + a) ™% exp(-2” min(P(61. 8; "agf — 62)))d©

ac 0)
(0 0 +T€EQ2
91€R,0§92,94<q

Proof. We need only to note tha := T-[U] = (& %), 7 = 7(0, A, ¢)
andP = Py yc(x1, X2) are all independent o, taking an extension
(26 ) of (c dh) to SLy(Z) and that minP(6y, a;*ax61 — (62 + an)) =
min(P(61, a7*ax01 - 6) [(§9)]) = min(P(61. a7 ag6r — 6)) for every
neZz. m|

Before we begin the proof of Proposition1.4.14, we note, tfaat

©® = (i) in the domain of integration referred to in LemiaL3.19,
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we haveP(6y, a;tafs — 62) = Im7(= Im(M < X +iT 1 >), by Lemma
[CZ7I16)> +3/2. Hence, by Remark 2 following Lemnia_1.4.17, we
have minP(d1, a;'agfy — 62)) = P[(2:)] for an integral columri(byby)

with b, # 0. Thus, we can remove the conditi¢f® ) + 7 € a2
on the domain of integration fa® in LemmalLl.Z.10, if we majorize
exp2" min(P(61, a;'ax01 — 62))) by the series

D exp2 p(or, 8 a0 - 05) [ 12 ]).
0+by,b1€Z

Proof of Proposition 1.4.14.In the light of the preceding paragraph, weo

see that
| c 0\
0 0
di=d(mod cq)

> exp-2 a3/ detT) f (@ + &) H/2x

0#bz.b1€Z 01€R,0<02,64<q

b2(c by by + atanh; - ) g
a +6%/ay

di 0}, -1 —k
U,(O O)U )|<<c

X expE2 .

If by € b} + chpqZ, thenc b,y + a;tafy — 6, for any fixeddy, 64,
b2 # 0 (andfixed § modulocb,q) coversR asés runs over an interval
of lengthg. Thus the right hand side of the preceding inequality is

<™ " cloglexp-2 a; b3/ detT)
0%byeZ

o0 00

f f (62 + ) M2 exp(- 2 b365/(ay + 62/ay))d6,d6;

—00 —00

<c™ 3" |bylexpC 2 a; b3/ detT)
O#byeZ

f (61 + &) "/*(ay + 67/a0)"/?|bl 1oy
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(o9

< clK Z exp(-2 a;tm?/ detT)a, *+%? f (1 + x?)1R/2gy

0£meZ

- cl‘ka£k+3/2 Z expl 2 a;tn?/ detT),
meZ

—00

by the convergence of the last integral kor 5/2,
< ¥ K (q, detT)Y/? Z exp(2 ra, detT - nP)

meZ
(in view of the Poisson summation formula

1 x
Z g™ = — N i for 1> 0)
meZ \//_l mezZ

= c!*af (detT)"? > exp-r®2 ey detTn)
mezZ

81 < cl™ka2K(detT)¥2, on noting that the last series owaris < 1, since
ar detT = T Yuq] detT with u; = Y(0 1) or'(Ln) withn = 0, 1,-1 and,

-1
in view of T-1 < (tl 0 ) > t,1Ep, &y detT > t; > 0. If now, forc > 1,

0 ;!
we define
d 0\,
U’ (O 0) U ) ’

then the above estimate for the sub-series aye= d(mod cq) and
summation oved modulocqtogether yield the estimate

Z (c,U) = Z a/((g 8)t

d.0=1

2 (c,U) < ¢ *a2¥(detT)Y2,

Let us note here that = T™[9] < t;* anday = T }] < t;1 + nt;t
with [n| < 1 corresponding to the respective possibilities Wgrin the
former case <« Vty/t; and in the latter case © ¢ < 3. Hence

> %(c, (2 _01)) < > FME()Y?

1<c<oo c Vo /tg

= (min(T))* *(detT)%2  »*  &*
1<ck Vip/ty
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1 fork>7/2
< (min(T))?>*(detT)*%2 = {log(tp/t1) fork =3
Vit fork = 5/2
(Min(T))Z X (detT)<32, fork > 7/2
< { (Min(T))2*(detT)k3/2 log(VdetT/ min(T)), fork = 3
(min(T))ZK(detT)*32(detT)¥*/(min(T))Y2, for k = 5/2,

while

D ZU)< D EME+ it (detT)H?
1<c<3 1<c<3

In<1 n=0,1,-1

< B2 (tatp) M2 = (detT) 325K
< (detT)*32(min(T))?> ¥, sincet,/t; > 1 andk > 5/2.
These estimates prove Proposition T.h.14 immediately.

Remark. The case of) = ((1) ‘01) is troublesome. Iff; # 0, thenf; =
1<c<3anda > 1/1,

%(c(i g)) < f (@ + &) 2do,

#2+a2<1/ detT
(from LemmdI.Z.719 and since
detimr = detlImM < X +iT™1>) > 1)

_ al f (& + 1) ¥2dx
X2+1<1/(a2 detT)(<(t1 /t2)<1)

< t'fl.
1.5 Generalization of Kloosterman’s Method to the

Case of Degree 2

In this section, we generalize Theorém 11.1.2 to the case afutao
forms of degree 2 whose constant term vanishes at every cBsp.

82

83
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our result is conditional because we do not have a good dstifona
generalized Wey1 sum.

Let k, g be natural numbers witk > 3 andf(z2 = > a(P)
0<peA;

e(tr PZ) be a Siegel modular form of degree 2, weighand levelq
whose constant term vanishes at every cusp, and in addigoreguire
fIM = f for everyM € I'>(q). As before, we fix arM-reduced positive
definite matriXT whose minimum is larger than an absolute constént
fixed later.

Let .# = %, be a fundamental domain as $ML.4 and.%y be a
subset of# such that for every point i#, there is a unique point i#g

which is mapped by'». Putg = |J M < % > and fort := {X €
Merz’m

MrR)0 < Xj = Xj < q(L <0, ] < 2)} andM € T28(M) := {X € t{M <
X+iT 1 >eg).

Lemmal5.1.t= |J pB(M)andthe measure of
Merng\rz
Mé¢T2 o

B(M1) NB(M2) equals O if TyMjg # I'20Ma.

Proof. The first assertions is clear. Suppose S(M1) N B(M>). Then
we haveNy, N; € I’z such thatN;Mj < X+iT ! > £.%,. By definition

of %, we obtainN{M; < X +iT~1 >= N,My < X +iT~1 > and hence
(NoM2) IN{M; < X + 0T >= X +iT~1. Thusp(M1) N B(My) is
covered by a countable union of fixed points of the above typthe
measure oB(M1) NB(M>) is not zero, then the above equation for some
N1, N2 € Ta, is trivial in X and henceN>M2)"*NiM; = +B,. This
impliesT'2 M1 = I'2.0Ma. O

Remark . As noted after LemmB_1.4.2, this lemma holds without the
replacement of# by .%,. But the proof is lengthy.

Lemma 1.5.2. Let C, D € .#>(Z) be a symmetric coprime pair with
detC # 0. Then there exists & .#,(Z) such that(é ;5) e T, with
(detA,q) = 1.

Proof. SinceC, D is a coprime symmetric pair, there exi®ts .#>(Z)
with (& 5) € T2 Since(Z 2 )(85) = (~SC}), we have only
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to prove, for any primep, detA + SC # Omod p for some inte-
gral symmetric matrixS by using the Chinese remainder theorem. Let
c1/co be elementary divisors o and UCV = [c¢1,C] = C for U,

V € GLy(Z). Put'UtAV = (£ %) = AandS[U™1] = (2 2); then
we have detf + SC) = detUV) | 2138 2122 | =

+(agay — pag + 4C2(ay + S1C1) + AC1S1 — 8gC2Sy — C18Sp — C1C2SY).

We suppose that this is congruent to Omod p for ex&rys,, &4 € Z.
Thenajay — azagz, Craz, CoC1, a4C1, a3C, + Crap are obviously congruentss
to Omod p. SincéAC is symmetric,ascs + i3, = 2c @, follows. If

p does not dividecya, = agCp, thenp 4 ¢1¢. Thusci;ap, and so the
determinant of every (2) submatrix of (A, 'C) is divisible by p. This
contradicts @A, t€) being primitive. O

Lemma 1.5.3. Let C, D be a symmetric coprime pair witthetC =+ 0.
Then

(i) there existg & B’,) € I', with (detA’, g) = 1,

(iiy for D € .#>(Z) such that C, D form a symmetric coprime pair and
D = D’'mod q there exist A, B: .#(Z) such thatl, 5 (& 8) =

(& &)mod gand

(iii) for S € A, with CS = 0mod q and for A, B, D in(ii),

L [A-ASCA s« \_ (A B
2 C cs+b/=\c O q

Proof. First, (i) is nothing but the previous lemma.
Supposq A 8) e T, for D in (ii); then (& B) (& Bﬁ)_l

_(AD'-BC -AB+BA)\_(E )
“lctor-pic —ctm+DA) 0 E q

Thus

A B\ (E; G\(A B
(C D’) (0 Ez)(c I:))modqforsome G A.



87

70 1. Fourier Coficients of Siegel Modular Forms

Now A = A + GC, B = B + GD satisfy the conditions in (ii). 86
Let S be as in (iii). Put

M = E, -AS'A\(A B\(E» S).
~\0 E, /\C D/\0 Ep)’
then it is easy to see

M = A—AS'AC ASE,-'AD) - ASIACS+ B or
- C CS+D 2

Further S'AC = S!CA = Y(CS)A = Omod g andS(E, — 'AD) =
-S!'CB = -(CS)B = 0mod q imply (iii). O

Lemma 1.5.4.Let(% &) e I with (detA’, g) = 1anddetC # 0. Then
we have

A- ASICA
ngzw(é E): J U rl%( C CSi—D)

De2 SeA(C,q)

whereD runs overD € .#>(Z) such thatD = D’mod qgand (C, D) is a
symmetric coprime pair, & A(C,q) := {S = 'S € A,|CS = Omod q
and 2 := {D e .#>(Z)mod CA(C, q)|(C, D) is a symmetric coprime pair
and D= D’'mod ¢, and coset representatives on the right are congruent
to (& B/ )mod gfor some Ae .5(Z) with T2 5 (£ 8) = (& B )mod g

Proof. By the previous lemma, fob above, there existsA &) € I,
which is congruent t é’ B’, ) mod g Z is a set of representatives of such

D moduloCA(C, q), and so the rest follows from the previous lemma.
i

Lemma 1.5.5. Let A, C € .#>(Z) satisfying!AC = 'CA, det C# 0,
(detA, ) = 1. Then, for Pe A, we have

e(tr PAS'A/q)
SeA(c,g)mod A
_ [A(c,q) : gA] if ]
0 otherwise,
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where the conditiofrs1on P is as follows:

[#1: tr(PS) = Omod q for every Se A('C, q),
i.e. Se A with 'CS=0mod q

Proof. It is clear that we have only to prove that the conditien is
equal to trPAS'A) = Omod q for evens € A(C, ). Since (def\, q) =
1, forS € A we haveS € A(C,q) < CS = 0(mod q)—

'ACS'A = Omod g 'CAS'A = Omod g AS'A € A('C, q).

SinceS = A(A1S'A)!Amod q forA; € #>(Z) with AA, = AJA =
Eomod g, AS'A runs overA(‘C,g)mod A along withS € A(C,q).
Thus we have proved the equality of two conditions. O

The following two propositions are proved at the end, in Haistion.

Proposition 1.5.6. Let( % & ) e T with detC # 0, (detA’, ) = 1, and
P, G, T e A*. Suppose that p satisfies the condifiehin Lemmd_L.515.
We denote by &, P, T, C, (’é B )) the exponential sum

> et(AC™(G + Pq?) + TC'D).
De9

where A, D,2 are the same as in Lemria_1]5.4. Then we have 88

A B

S(G,P,T,C, (C D

)) = O(c3cy/***(cp, )¥?) forany & > 0,

where

cg O

_11-1
c=uU (o 02

)v-l, U,V € GLyx(2),0 < cilcp, T[V] = (I 1‘)

The implied constant depends only on q.

Proposition 1.5.7. Let n be a natural number and S {t(bd)|b, deZ,
(b,d) = 1}. We introduce the equivalence relatibf, d) ~ '(b/,d’)
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by (b d) = w(b’d’)mod nfor some we Z, with (w,n) = 1 and put
S(n) = S/ ~. Then, for T= (&) € A}, we have

> (T[X. W2 = O(n™**(e&(T). m)*?) forany & >0,
S(n)>x
where €T) = (t11, t2, 2t12).

As before weput, for M = (é B) ey,

a(M) = (C,D) := f f(X +iT He(—tr(TX)dX
BM)
Then we have

aT)=¢"a®] > oCD)+ » a(CD)
Mel“z,(x,\l“g Mel . \I'2
rankC=2 rankC=1

Let C € .#>(2) with detC # 0. ForS = 'S € .#,(Q) with SC ¢
AM>(Z) and forW € 4,, we put

1 if S+Weg,
0 otherwise.

a(S, C; W) ={

Theng(S, C; W) has the Fourier expansion
b(G, C; We(tr(S G).

GeA*/y(C)
wherey(C) := {G € A*|tr(SG € Z for everyS = 'S € .#,(Q) with
SCe .#>(2)) andb(G,C; W) = [A* : y(C)] ' X e(~ tr(SG)g(S, C; W)
S
whereS runs over(S = 'S e .#>(Q)mod A|SC € .#>(Z)}. Now we
have

Lemma 1.5.8. Let(C, D’) be a symmetric coprime pair wittetC # 0.
Then we have

> a(C,D) = [A(c.q) : gA]detc™
D
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f detg + T ) > &(Peltr(Pr)/g)x

0<PeA*
min(Im7)> V3/2 =re

xe(-t(Te)) > b(G,C;7)S(G,PT.C,

(A’ B’
GeA* /y(C)

c D’))de

where D runs ovefD = D’mod dC, D are symmetric and coprime
7=17(6,C) = —'CY+iT-Y)~CL, and( % § ) e > with (detA’, ) =
1, and &(P) are Fourier cogficients of

f| (’é EB):) (Z) = detCZ+ D) *f(A'Z + B')(CZ+ D)™}

= ) a(P)e(tr(PZ/0)).

Proof. By LemmalL5R, there exisfg\ §/) € > with (detA’,q) = 1
and we putf| (& B',)_l (2) = 3 a(P)e(tr PZ/q). ForD e .#,(Z) such
that C, D) is a symmetric coprime pair arid = D’mod g, there exists
(&4 8)erzwith (A8) = (2 &)mod g. Hence we havél (A B)_l =
fl (é g',)_l = F (say). Then we have(C,D) = [ detC(X+iT %)+ 90
B(M)
D) KF(M < X +iT~1 >)e(- tr(T X))dX, whereM = (& B).
Since deC # 0, we haveM < Z >= AC1-'C}(z+C'D)CcL.
PuttingX = - C™1D, r = -'C (9 +iTH)~1C,

a(C, D) = (detC) ¥ f @+iTH™*FAC +1)

fet+C1D
AC Lireg

e(—tr(T(6 — C~1D)))do.
= (detC) ¥ f O+iTH™ > a(P)e(tr(Pr)/q)
p

fet+C1D
AC lireg

e(—tr(TH)) x e(tr(PAC/q+ TC1D))do
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= (detC)* f O+iTH™* > a(P)
P

fet+C~1D
min(im(?))> V3/2

e(tr(Pr)/q)e(-tr(T6))
x Y bG,Cin)etr(ACT'G + PAC!/q + TC™'D))do
GeA*/y(C)

sinceAC™! + r € g implies min(imr) > V3/2. O

Applying Lemmd_LLE}4, the suif a(C, D) referred to is equal to
D

detcl™* > f O+iTH™ " a(P)e(tr(Pr)/q)e(- trT6)x
P

SED/\E(gq) fet+C1D+S
min(im7)>v3/2

X Z b(G, C; 7)e(rr (A — ASICAC'G + P(A - ASICAC/g+
GeA*/y(C)
+TCH(CS + D))ds,

91  (noting that tr(A—AS'CAC1G+P(A-AS'CACt/q+TC1(CS+D))

= tr(AC"1G + PAC1/q- PAS'A/q+ TC 'D)mod 1
since!lCAC ! ='A))

= (detC) X Z f (@+iTHk Z a(P)
SEAI(DE,?)/QA min(im7)> v3/2

e(tr(Pr/q)e(-tr(TA) x Y. b(G,C;De(tr(AC'G

GeA*/y(C)
+ PAC1/q- PAS'A/q+ TC1D))do

=[A(C,Q): QA](detC)_k f @+iT —l)—k
min(Im7)> V3/2

> a(P)e(tr(Pr/a))e(- tr(T6)x
[*1
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b(G.C: 7)S(G,P.T.C, (’é g,)) o,
GeA*/y(C)

which proves our lemma.

Lemma15.9.LetM=(AB) ez and IM(Z) = X & (P)e(tr(PZ/q)).
If minlmZ) > +3/2, then Y |a(P)e(tr(PZ/q))] = O(expl2
min(Im 2)) for someZ” > 0.

Proof. LetI'; = (J MiI'2(g) and f|M;(Z2) = X & (P)e(tr(PZ/q)). Sup-

pose ImZ[U~Y]) is M-reduced folU € GLy(Z). SincefM ('Y 2 ) =
f|M; for somei, (detU)*a’(P['U1]) = a(P) for every 0< P € A*, and
then we have

D 18 (P)e(tr(PZ/q)|
= > 1@ (PI'U ) e(tr(PZ[U ] /9))]
= la(P)e(tr(PZIU~]/q))|
= O(exp(2 min(im@Z[U™1)))) (LemmalTZ1L)
= O(expZ" min(Im 2))).
This completes the proof, sincE [ T'(g)] < . o 92

Here we make an assumption, namely
Assumption (*):

O<a;<3/2
Ib(G, C; 7)| = O(c3**c5?) for and anye > 0,
GeA*/y(C) O<ay<1/2

where 0< cy|c, are elementary divisors & and the implied constant
is independent of.

This is discussed later.

LetC, D € .#5(Z) form a symmetric coprime pair with dét# 0.
Under Assumptions(), we have, by virtue of LemnfaL%.8, Proposition
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5.6 and Lemm@a1.3.9,
| ), aCD)
D’=Dmod q

< |detC™| f |det@ +iT ) ™ exp.2” min(im T))CE %
min(Im7)> V3/2
c2cy/** (co, 1) 20

where
c=ut (Cl O)v—l, U,V e GLy(Z),0 < cilcp, T[V] = (* *)
0 o *
since

r=-Cro+iTHCc L Iimr=(T[6 + THYC,

and forX = VT VT, we havedd = detT~3/2dX. Hence

| ), aCD)
D’=Dmod q
< cqrkre e /2 6y )12 (detT) 32 f detX® + 1)™¥/2x
exp2 min((X? + )" VTC1))dX,

2-k 1/2-k 2 k=3/2 (i ~ —k/2
< TS ZKE (), )2 (detT) ¥ 2 (min(T[c ) ¥

(as for the proof of Propositidn_1.4110).
93 Thus we have proved

Lemma 1.5.10.Let C e .#>(Z) with detC # 0. Then we have

Z a(C,D)

D

< (detT)k—3/2Cil1+2—k+scgz+l/2—k+8

(c2, y2(min(T[CT]) 2
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under Assumptiof), where

cg O

_11-1
c-ut(y 2

)v—l, U,V € GLx(Z)0 < c1/c

and T[V] = (% 1)

For the aboveC, min(T[C-]) = min(r[v(C(i)1 Cgl )]) = o2
minT[V (%)% )] > ¢;2min(T) holds. In the decompositio = U~

(%1 CZ)V‘l, V is uniquely determined in

GLa(Z)/{(28) € GLa(Z)lb = Omod @/,

so we have a bijectiok = (2 §) ! (b d) € S(cz/c1) defined in Propo-
sition[L.5.F andd, t) < c1(c/cy, b).
Thus we have, by Propositin_1.b.7.

Lemma 1.5.11.Let0 < cq|cp. Then, under Assumptidr),

| Z CL’(C, D)| < (det-l-)k_3/2Cil1+5/2—k+scgz+1/2—k+s

(C2/c1) % (&(T), cp/cp) V2

1,
X
{(052 minT)¥2 forany £ > 0

where C runs over representatives of left cosets by(B)Lof integral 94
matrices with elementary divisors,@,, and D runs over all possible D
with (¢ p) € Ta.

Now we can prove

Proposition 1.5.12. Under Assumptioii) we have, for ang > 0,

| Z Cl/(C, D)| < (mm T)312+k/4—k/2+8(det-l-)k_g/z
rankC=2

if min(T) > 2" (= an absolute constant 0) and k> 3.
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Remark. Sincea, < 1/2,a,/2 + 5/4 — k/2 < 0 and soay/2 + 5/4 —
k/2 + & < O for a suficiently small positives.

Proof. Decompose the sui}’ a(C, D)| as

| > aCDI+l > eCD)I=)+> (say)

co<(min(T))Y/2 Co=(min(T))1/2 1 2
By virtue of LemmdL.5.31, we have

(detT)S/Z—k Z < Z Cil1+5/2—k+scg’:212+l/2—k+£(C2/C1)1+23
1 cilcz<(min(T))¥2

(&(T), ca/c1)M(c;2 min T)1K/2

— (min(T))l—k/Z Z C?1+a2+l—k+2£
calcp<(min(T))Y2
(Ca/ca) M2+ (g(T), /1) 2
< (min(T))l—k/Z Z na1+a2+1—k+28

n,m>1
nm<(min(T))Y/2

maz—1/2+38 (E(T), m)l/2.

95 The sum ovem does not exceed

Z r1/2 Z (SI’ a—-1/2+3¢

rle(T) s<(min(T))¥/2/nr
< Z pa2+3e Z o—1/2+3¢

rie(T) s<(min(T))Y/2/nr
< Z raz+38((min(T))l/Z/nr)az+1/2+3g (since ag + 1/2 + 3¢ > 0)
rie(T)
= (Min(T))P/2r /432 a-1/2-30 " =12
rie(T)
g(min(‘|’))~'¢12/2+1/4+3‘9/2r]—az_;L/z_g‘9 Z
rie(T)*

< (Min(T))®/2Y/4+2en-2-1/2-3  (gjnce g(T) < min(T)).
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Thus we have

(detT)3/2_k Z < (mm T)az/2+5/4—k/2+25 Z na1+1/2‘k‘8
1

n>1

< (MinT)%/2+5/4-K2+2  (gince gy + 1/2 — k < —1).

Similarly, we have

(det_l_)3/2_k Z < Z Calll+5/2—k+gcgz+l/2—k+a
2

clcz
C2=(min(T))Y/?2

(ca/c) "> (e(T), c2/c2)*?
Z Cz;1+a2+3—2k+28(CZ/Cl)a2+3/2—k+3a(e(T)’ CZ/C1)1/2

clcz
Co=(min(T))Y/2

Z na1+a2+3—2k+28 ma2+3/2—k+3a (E(T) m)1/2
n,m>1
nm=(min(T))/2

The sum ovemis less than
(Sr)a2+3/2—k+38r1/2
rle(T) s>(min(T))Y/2/(nr)

- Z paa+2—k+3e Z So+3/2-k+3s
rie(T) s2(min(T))Y/2/(nr)
< Z ra2+2—k+3£((min(-|-))l/2/nr)a2+5/2—k+3s
rie(T)
(sinceap + 5/2 -k + 3¢ < 0 for small &£ > 0)
— (min(-l-))az/2+5/4—k/2+(3/2)£n—a2—5/2+k—3£ Z r—l/2

re(T)
< (min(-l-))az/2+5/4—k/2+2£ n—a2—5/2+k—3s )

Thus we have

(detT)¥%k Z < (Min(T))?/25/4-k/2+2¢ Z a2k
7

n>1

96
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< (min(-l-))az/2+5/4—k/2+2£
O

The proof of Propositiofi .52 is complete, but for the prob
Propositio_1.516 ard_1.5.7.
Remark on Assumption (*). LetC = U~(% 2)Vv-twith U, V €
GLy(Z), 0 < ¢4cp, and putC’ = (Col C‘;) Then

¥(C") ={G e A¥|tr(SG) € Z for every S
='S e .#,(Q) with SC e .#,(Z)}
= {G € A"|tr(SQ € Z for every
S ='S e .#,(Q) with S[U]C € .#»(Z)}

=)'
Hence
bG.CW) = [A":¥(C)] ™ ) e-t(SP)Y(S.C;W)
'S=Smod A
S Ce.t(Z)
=[AYENT ), e-t(S[UIG)Y(S[U].CiW)
S%rgg/c}z?Z)

=[A" e Z (- tr(SF'U])g(S, C'; WU ™)
S

= b(G['U],C"; W[UY)).
Thus we obtain

bG.Cin)l= > IbG,C U
GeA*/y(C) GeA*/y(C)

ForS = (2 2), itis clear thatSC € .#,(Z) if and only if s; = uy/cy,
Sy = Up/C1, S4 = Ug/Cp fOr ug, Up, Ug € Z.

ForG = (2, géﬁz), G € y(C) if and only if ¢1|gs, €191, C1ld2, Colda.
Hence we have

Ib(G,C; 1)l
GeA*/y(C)
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= Z GGt Z €(U101/C1 + Up02/C1 + UaQa/Co)| .
g1,92mod g ug,u;mod g
gsmod @ uzmod ¢
(/es vy Jrrtu1eo
Thus Assumptions) is the same as 98

2 1
® > (g + UpGa) /€1 + UaQa/Co)| = O] cy™)
g1,02mod g [uz,u;mod g
gsmod e | usmod ¢

up/cy Ux/cy

for 0 < cylc, andanye >0
1lc2 ye (UZ/Cl Ug/Co

)+Weg

where 0< a; < 3/2, 0< ap < 1/2 and the implied constant is indepen-
dent ofcy, cp, W.
Using Schwarz’s inequality, the left hand side does not edce

3/2
Jc, |Z 2= w/czcz,/clcz ul/cl /), <)
01,92,04

Uz/Cl U4/C2

Hence Assumptions is true once we get a sharper estimate than the
estimate via Schwarz’s inequality. (cf. Remarks beforepttwaf of (8)
on page 21).

The left hand side offfj does not exceed

> Do D, elugic)l.

Uz,Uz,01,82mod @ | gamod ¢ usmod ¢

ui/cy U2/C1)
+W.
(UZ/Cl Ug/C2 cs

Suppose the sum inside the curly bracket®(e)*°) for somes > 0 99

(Actually it is O(c'?), from Schwarz’s inequality); then Assumptios) (
holds fora; = 3/2 a=1/2-6/2.
(Proof. If ¢ = O(cy), thenccy/?/(cl/?cy/? %) = ¢[%c)/? = O(1).
If c1 = O(c)), thenc4c3/2 5/(07/2 3 5/2) = c1/2 202 = 0(1).)
Combining Proposmomz with Proposmm.m, vagen
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Theorem 1.5.13.Let f(2) = Za(T)e(tr(T Z/q)) be a Siegel modular form
fo (degree?), level q, weight k= 3 and with zero as the constant term at
all cusps. Then for > 0andminT > 2" (= absolute constant)

VdetTmin(T)
)

a(T) = O((Min(T))*/2*** + (min(T))* log detT3/?)

under Assumptiog).
Remark. If VdetT = O(min(T)), then the above implies
a(T)/ detT¥2 - 0 as min{) — .
It remains to prove Propositidn_1.5.6 dnd 11.5.7.
ForP, T € A* andC e .#>(Z) with detC # 0, we put
K(P.T;C) = > e(tr(AC"'P + C™'DT)),
D
whereD runs over the sgDmod CA|(C, D) a symmetric coprime pdir
andA s an integral matrix such thé 1 ) € T'2. Another possible\ is

of the formA + SC S € A,. Thus the generalized Kloosterman sum
K(P, T;C) is well defined. To prove Propositien_T.b.6, we show that

i) S(G.P.T.C.(%& §))is reduced to the sum &(P, T; C)

ii) the same estimate fd€(P, T; C) holds as well as fo8(-).

Reduction from S(--) to K(--)
R1) The exponential su(G,P.T.C, (% & ))is well-defined.
Proof. Suppose that

At B _ (A2 B2 _
(C Dl) = (C Dz) mod g and R = Domod CA(C, q).

There existsS € A such thatD; = D, + CSandCS = Omod ¢, and
then there exist§$; € A such that

Ar B1) (E2 Si1\(A> Bp\(Ex2 S
C D) \0 E)J\C DyJ\0 E;
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and we havel; = A, + S1C. Hence tr6iC1(G + PqY) + TC1Dy) -
tr(A2C1G + Pq ) + TCIDy) = tr(Su(G + P ) + TS) = tr(S:Pq™Y)
mod 1. SinceA; = Az + S;C = Amod g impliesS;C = Omod q
and P satisfies the conditiof], we have tiS;P = Omod g. Thus the
exponential sun$(--) is well-defined.

R2) For(AB) € I, D = D'mod g, there exists a uniqu@ € A
mod A('C, q) such that

E; S\(A B|_(A B)
0 EJlc b lc o q

m]
Proof. Since 101
A B\(A B\ _(x = o
c ollc o] Tlo B 4
there existsS € A such that
E; S\(A B|_(A B)
0 EJlc b)¥lc o q
E, Si\(A B\ (E» S,\(A B
(0 Ez)(C D)=(0 Ez)(C D)mOdq
thenA + S;C = A+ S,Cmod g and s&; — S, € A('C, q). i

Therefore

SG.RT.C(EB)=> > et(A+SOCHG+PqY
De2 SeA/A(IC,q)
+TCD)g* ) &(A+SC-A)M/g),
Mmod g

where( 2 B) € Tz is any extension ofg, D),

—q¢ Y Y a(ACHG + PqY) + TCD + (A— A)M/Q)x
Mmod q DeZ
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x> etr(S(P+CM)gY).
SeA/A(tC,q)

The last exponential sumia[: A('C, g)] or O according asR+ %(C M+
'M!C))/q € A* or not. Thus it is equal to

1
q?[A : A('C, Q)] § § e(tr(ACYG + (P + =(CM
2
Mmod g De2
(P+3(CM+M!C)/geA*

+‘M'C))/q) + TC'D))e(- tr(A'M/q)).
Puting Ny := G + (P + 3(CM + 'M'C))/q € A", S(Ny) = X

De2
e(tr(AC Ny + TC1D)), we have

A B _ ~4 . t ’
SGPT.C(S pp-aaiatcal Y Stie-wama
Mmod q
NMEI\*

Note that A : A('C,q)] < [A : gA] and the number oM does not
exceedy*.

R3) The mappind +— D from ¥ to 2’ := {D € .#>(Z)/CA|C, D are
a symmetric coprime pair such that+ CS = D’mod ¢ for some
S € A} is bijective.

Proof. Suppose thab; = Domod CA for Dy, D, € 2. SinceDy, D €
2,D; = Dy = D’mod g. Hence fo6 € A with D; — D, = CS we have
CS = 0mod g and the® € A(C, g). This mean$1 = Domod CA(C, q)
and the mapping is injective. Since, fore 2’, D + CS(= Dmod CA)
for the S involved in the definition of7’ is contained iz, the mapping
is surjective. m|

R4) If (48) €2, D+CS=D'mod qforS e A e A+S,C =
Amod g forS; € A

Proof. D+ CS = D’mod g forS € A

(A B\(E2 S\_(x ) ..
c pJlo E/7\lc 9
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E; Si|(A B|(Ez S\_(A B)
=10 EJlc pllo EJ5\c D q
E, Si\(A B\ (A =«
=(T 2)E o)=(c moa
«— A+S;C=Amodq

ForN = Ny we have, withS(Ny) as in (R2) 103
S(Nw) = > e(tr(AC'N+TC'D)) (by (R3))
De2’

= > e(tr(ACIN + TCID)) (by (R4))
D:A+S;C=A'mod q
for Sle/\l,(é E)el‘z

= Z Z e(tr(A+ SQC™IN + TC'D))x
Dmod CA  SeAmodA(C,q)

(2 per

a* > etr((A+SC-A)M)/q) (by (R2)).
Mmod q
=q* Z e(tr(ACIN + TC1D)) Z e(tr(A — A')M/g)x
Dmod CA Mmod q

(€ p)er

x ), etr(SCMa)

SeAmod A('C,q)

=qAzACCl ) e-t(AM/g) D

mod q Dmod CA
(CM+{(CM))/25gA* :(é 5 )er2

e(tr(ACY(N + (1/(29))(CM + 'M'C)) + TC D))
=qazAfCl )

Mmod q
(CM+'{(CM))/2eqA*

e(—tr AM/Q))K(N + 1/(29)(CM + {(CM)), T; C).
Hence Proposition1.3.6 would follow immediately from m]

Proposition 1.5.14.Let C= U™(% 2 )V, for U, V € GLy(Z), 0 < 104
cilcp. For P, T € A*, we have, for anyg > 0.

K(P.T : C) = O(cie; **(c2, )*/?),
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where tis thg2, 2) entry of T[V].
To prove this, we need several lemmas.

Lemma 1.5.15.We have KP, T; U~tCcVv1) = K(P['U], T[V]; C) for P,
T e A*, U,V e GLy(Z) and Ce My(Z) with detC # 0.

Proof. Since

'U 0 \(A =\(v1 0| (U Av? *
o ullc p/j\o tv/] \utl cv?l ulpv)
Dmod CA < U™ 1D'Vmod U 1CAYV < U D'Vmod UtCVIA.

Hence we have

KPRT,ulcvh)= 3 etr(UAVHU-lcv )P
Dmod CA
+ U tcvHtu-iptvy)
> etr(ACP['U] + CIDT[V]))
Dmod CA
= K(P['U], T[V]: C).

O

Lemma 1.5.16. For the diagonal matrices G= [cy,Co], F = [f1, ],
H = [hy, hy], suppose thatff,, hilhy, ¢ = fihy, fi, b > 0( = 1,2)
and that $, h, are relatively prime. Put X= sf2F 1, X, = thaH* for
integers s, t with s+ th3 = 1. If then

A]_ B]_ Ag Bg €. 5 A B _ X2A1+X1A2 *
F Di)'\H D;)-"227c D~ HF HD; + FD;

and the mapping : (D1, D2) — D induces a bijection from

* *

F D

* *

{Dimod FA|( ) e I';} x {Do,mod I-I/\l(l_| D
2

)Grz}

*

to {|Dmod CA| (c ’[")) eIy,
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Proof. Let (% Bt), (4} 52) € T2 and put
A= XoA; + X1As, D = HD1 + FDy, B = (HF)"L(tAD - Ey).

Recall that, fof & B) € .#4(Z), (A §) € Iz if and only if‘AD - 'CB =
E, and'AC, 'BD are symmetric. ]

Now
B = XBy + X1 By + thsH A H ™D, + s2F1AF 1D,
is integral and both
'AC = (‘AgXp + "AXq)FH = th3'AgF + s AH
and
'‘BD = (‘DA-E,)C D ='DAC!D-C'D
='DACID-FD;-HD,

are symmetric. MoreovetAD — 'CB = E; and so(é B) €Iy If
HD1+FD; € CA, thenF1D;+H™ 1D, € A and soF Dy, H1D, € A
since (f2, hy) = 1. Hencep is injective. Itis easy to see that for the above

AB) e Iy, (HAMBIEAD) and (i FBIX2AR) are also il From
H(X2D) + F(X1D) = D follows the surjectivity ofp.

Lemma 1.5.17.Let C, F, H, X, X; be as in the previous lemma. Then
for P, T € A*, we have

K(P.T;C) = K(tP[hH ™), T; F)K(sPLfF 1], T; H).
Proof. By the previous lemma, we have

K(PT;C) = ) e(tr(ACT'P + C™'DT))
D
= ) eltr(XoAr + XaAg)FTHTIP
D1,D2
+ F'HY(HD; + FD2)T))
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= ) e(tr(XeAFTHTIP + F7ID,T))
D1

D e(tr(XaAgFHHTIP + HTID,T))
D2

= K(tP[hoH™Y, T; F)K(sP[ f,F 1], T: H).

106 By virtue of Lemma¢$_1.5.15 arfd_L.5]17, in order to prove Psdjom
512, we have only to show

(pP% O
K(P,T,(O pe:

>=omhﬁﬂm%omx

whereP is a prime number & e < &, T = (i) ande the implied
constant is independent @ e, &, P, T. PutC = (pol pﬁiz), D =
(& &)- C D is symmetric if and only itl = p*%~®d,. HenceC, D are
symmetric and coprime if and only ik = p®2©d, and one of (i) - (iv)
holds:
() &1 =€ =0, (i) e1=0,62> 0, ptdg,

(i) 0 <ey <&, ptdids, (V) O< ey =ey,dhds—d3=0mod p.
D runs over classes mod C if and onlyd{, d,, ds runs over classes
mod [, mod g, mod (52 respectively. For a symmetric coprime pair

C, D, we can takeA satisfying the condition$AC is symmetric and
B = CY('AD - E;) € .#4(Z), so tha & §) e I'2.

Put
pr P2/ 2) ( 1 2)
P= , T=
(P2/2 Pa t2/2 14

(i) Incasee; = e, =0, we cantakéd = D = 0 andK(P, T;C) = 1.

(i) In casee; = 0, & > 0, we can take(gg), with dmod 2 and
p  d asD and then we may taka = (3 ) with ad = 1mod §52.
107 Now K(P, T; C)
0 0 0 0
- qw( e2)|o+( eZ)T»
dm; # 0 a/p 0 d/p

ptd
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= Z e((aps + dtz)/p%) is a genuine Kloosterman
dmod 2
prd

sum and we are through.

iii) In case 0< e, < &, puts = dids— p2©d2(z Omod p) and for an
(iii) p p 5 p

integerd with ds = 1mod 82, we can takeA = d( % ~P% "%).
Then we have

K(P,T;C) = Z e(d(dapLp ™ — dap2p™® + dipap ®?)+
d;,domod 1
dsmod 2
ptdidy

+0hti p™® + dotop™® + datap™®),

takinga in Z with ady = 1mod [?( ds = & + p2 ®ad
mod [2).

Hence

KRT:iC)= D, editip™ +dhtop®
dl,dszd [fl,p'fdl
+app ™ +adtyp ™)
x Z e({d(ad% o p2(ez—el) — dppop®
smod [F2,pté
+ d1pg) + 6(ats)}/ p%)

where the last sum oé is the ordinary Kloosterman sum, and
sincep 1 a, we have

K(P,T;C) = p*O(p%/%(ta, p2)*/?).

(iv) In case O< e = & = g, dyi, dp, ds runs overzZ/p® with 6 =
dhds — d2 # Omod p. TakingA = d( 4, 2) for an integed with 108
ds = 1mod 5, we have

KPT;C) = >, el(didapr—dopz +ipa)
dl,dz,d4m0d [ZF
6z0mod p
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+ (hty + doto + data)}/ p°)

:Z+Z:Z+Z (say).

pldz  ptdz 1 2

We havey, = O(p?®®2(ty, p®)'/?) quite similarly to the previous
1

case. For dealing witl}y},, we define integersi, 6> by d; =
dps1mod [F andd, = dpsamod (F; thens := dyds—d3 = d3(5164—
1)mod § and 1= dd3(6164 — 1)mod 5. Theny, is transformed
to

Z = Z e(do{d(64p1 — P2 + 61Pa) + 6111 + ta + Sata}/ P°);
2 d2,61,64mod ﬁ
ptdz

6164%1mod p
noting thatdd, - d»(6164 — 1) = 1mod [F and denoting by’ the
inverse class okmod ,

D= > > elld)((610a — 1) (SaP1— P2 + 51Pa))+
2 61,04mod F  domod (f
6164%1mod p ptdz

+ dp(S1t1 + to + data)/ P°)

= Z O( pe/2(61t1 + 64t49 pe)l/z)‘

61,64mod F
6164#1mod p

§16421mod
=o(p™2 3 (% pe)l/z)ﬁ{61,64mod 5 eFmod P }
xmod & X=61t1+tp+54t4mod F
O
109 Put ¢4, p%) = pS;then0< s<e If s=¢, then% — O(p%) (by

the trivial estimation)= O(p%®+¢/2(p®, t4)1/?) is what we want. Suppose
s < eandty = up® with (u, p) = 1; then

Z = O(pe/Z Z (X, pe)l/Zﬁ {61,54mod F?

2 xmod

X=§1t1+tomod |I§
ud4=(x—0d1t1—t2)/pSmod [fs}
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:O(pe/z Z p(e—i)/2 Z psﬁ

O<i<e vmod g

ptv
s1mod FivpS = 61ty + tomod ¢
(taking x = vp*™)
= p™° > p"?0(#{s1mod ¢, vmod plvp®!

O<i<e

=61ty +thomod P p1v).
In casep’|t; and pStp, we have
Z — pe+s Z pl/2+eo(1) — O(l)p5e/2+s/2‘
2

O<i<e
e-i>s

In casepSt; but ps 1 to, vp*' = 61t1 + tbmod P if and only if vp® =
tomod . Puttinga, = ordp to < s, we havee — i = a and then

Z - pe+5—(e_a2)/20(ﬁ {51mod ¥, vmod %
2
— pe+s—(e—a2)/2+e+(e—a2—(s—a2))O(l)‘

— p5e/2+a2/20(1) — p5e/2+s/20(1)‘

vp2=t,mod
)

Thus, we are through in cag#jt;. In casea; = ordpt; < sanda, = 110
ordptp < ag, vp©™' = 61ty +tomod P(p 1 v) implies ordfaty +1tp) = ap <
sand soe —i = ay, moreovery = 51t1p® + top~®2mod P %. Hence

v = top~®mod F¢~% and the number of possibleis at mostp® 2 and

for eachv, ¢, satisfiess; = (v — top~2)(t1p~2)tmod P2 and so the
number of possiblé; is not larger tharp® =%, Thus we have

Z — pe+s+(a2—e)/2+e—s+a1+e—a1O(l) — O(l)pSe/2+a2/2 — O(l)p56/2+s/2.
2

Finally in casea; = ordgt; < s, @ = ordpty > &, o1t1 + to =
Omod Bt anda; < simply e—i > a;, and froméy(typ2) = vp*i-& —
top~®mod P&, it follows that the number of possiblg is at most
pe(s-a) for eachv. Hence we have

Z:O(l)pﬁs Z p—i/2+i+e—s+a1

2 O<i<e-a
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_ O(l)p2e+a1+%(e—a1) = O(pBe/2+si2),

Thus we have completed the proof of Proposition 115.14 andfso
Propositior_T.516.
Now it remains to prove Propositién_1L.b.7.
LetT = (t;}z tzt‘/12) € A*. SinceT[X] = 132 + trX1 X + 14X2, the sum
y(T,n) = Y (T[X,n)Y?is well-defined.
xeS(n)

Lemma 1.5.18. For integers m, n witiim, n) = 1 we havey(T,mn) =
y(T, m)y(T, n).

Proof. For x = Y(bd), y = Y(o’d’) with (b,d) = (b’,d’) = 1 we take
z = ‘(a0 with (a,c) = 1 so thatz = xmod m,z = ymod n. It is
easy to see that this induces a bijective mapping f&{m) x S(n) to
S(m, n). m|

Hence the left hand side is equal to

D (T, m2(T[X, 2

S(mn)>x

= d
- Tz,ml/sz,nl/z(Z X mo m)
S(;)me AT, 20 modn
S(n)>x

= The right hand side.

Thus we have only to give the proof for the case p® wherepis
a prime number and > 1. PutS’ = {(*(bd)|(b, d, p) = 1} and define the
equivalencé(bd) ~ {(b’d’) by {(bd) = n '(b’d’)mod ¢F for some integer
n; then we have

YT = > (TIH, pHY2,
S’ [~3X

sincex — x induces a bijective mapping fro®(p°®) to S’/ ~. Since
V € .#>(Z) with detV £ O0mod p operates d®’/ ~, we havey(T, p°) =

3 (TIVd, P2
S’ /=3Xx
Hence we may suppose, without loss of generality thatas a
canonical form mod $and more explicitly (i)T is the diagonal ma-

trix = [up®,uvf?] O < & < a, p f uv (i) 2%(y, %), a2 0
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if p=2or (i) 22( ), %*)a > 0if p = 2. Our aim is to prove 112
¥(T. p?) = O(p*+9(g(T), p°)*/?) wheree(T) = p*, 22, 22 according
to (i), (ii), (iii) respectively.
Lemma1.5.19. (i) X (MP+v,pe2)Y2=0(p)ifpfv,0<a <
nmod ¢

ptn
e, and

(i) X (pPr?+vped, pta)l/2 = O(pi*d) for anye > O, if
nmod 1
ptv,0<a <aandex> 1

Proof. First we prove (i). Ifp # 2 and(%’) = -1, then (i) is trivial

sincep 1 (N? +V). Suppose # 2 and(%’) = 1. Take ap-adic integerg

so thatg? + v = 0. If n? + v = Omod p, them = +g + mp* with me Z%,
s> 1 and sa® + v = pS(x2gm+ n?pd) is exactly divisible bypS. Thus
we have

Z (nZ +V, pe—a1)1/2

nmod
ptn
- Z (n? +v, p&a)t2 4 Z 1
nmod F nmod ¢
ptn,n%+v=0mod p ptn,n2+vz0(p)

<2 Z Z (S, pe—a1)1/2 +p°

1<s<emmod F°

ptm
=2 > pPe(pt+2 Y pEA (TS + pf

1<s<e-a; e-a;<s<e
whereg is the Euler function. O

The first partial sum is equal to 113

Do PP - pY) + pE 2p(p?

1<s<e-a;-1
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_ e_%(l— pre-a-1/2)q 4 p—%) + plEa/2,( 31 = O(pP).

The second ig®E3)/2(p(pa1) + .. + ¢(1)) = plera)/Z-1 = O(p°).
Thus, in this case, we are through.

Supposep = 2 andv # 7mod 8; them? + V z Omod 8 for oldn.
Hence we have

DUy, 22 < 3 (4,25%)F = 0(29).
nmod Z
2/n
Lastly, we supposp = 2,v = 7mod 8, and takg € Z; so thaig?+v = 0.
Since, fom =g+ 2'mwithr > 1, 2+t m, n? +v = 2"*Im(g + 2"~1m), we
have

(v 2oy

nmod 2
2fn
— Z (22m(g+ m)’ 2e—a1)% + Z Z (2r+1’ 2e—a1)%
mmod 21 2<r<emmod 2"
2fm 2fm
_ Z (22n’ 2e—a1)% + Z 2e—r—1(2r+1’2e—a1)%
nmod 21 2<r<e
2in
_ Z 2e—2—r(22+r 2e—a1)% + Z 2e—r—1(2r+l 2e—a1)%
1<r<e-1 2<r<e
— oe 2—r(2r+1’ 2e—a1)% _ o 2%(1—r)
2;<e 2<r<;a1—1
48 Z 2—r+%(e—a1) - 0(2°).

e-a)<r<e

114 Thus (i) has been proved. Let us prove (i))ajf> e, then we have

Z (p2n2 +V z—al’ pe—a1)1/2
nmod -1

— Z (pZnZ’ pe—a1)1/2 — Z So(pe_l_r)(p2+2r, e—a1)1/2

nmod [#-1 O<r<e-1



1.5. Generalization of Kloosterman’s Method... 95

— Z S0(pe—l—r)pl+r 4 Z S0(pe—l—r)p(e—al)/Z

O<r<(e-a1)/2-1 (e-a1)/2<r<e-1

= O(ef) = O(p***).
Supposex, < €, then we have
Z (p2n2 +Vpa2—a1’ pe—al)l/Z

nmod 1
So(pe—l—r)plﬂ 4 Z p(ag—al)/Z(mZ +v, pe—a2)1/2+
O<r<(ap—a1-2)/2 r=(ag—a1-2)/2
mmod 1"
ptm

e(p*)Pp* 2 (n = md, pr m)
(ap—a1)/2<r<e-1
=0@ef) + @2 S (R4 v pt )2,
r=(ag—a1-2)/2
mmod 1
ptm
The last partial sum vanishesa$ # aymod 2. Suppose, = aymod 2
andputE :=e-1-r,A; =0. ThenE = e-(ax—a)/2 > (ax+a1)/2 >
0= A; andE > e- ay. Hence the last partial sum is not larger than 115

p(az—al)/Z Z (m2+v’ pE)%
mmod g
ptm

= p@a)/20(p%),  (by (i) = O(p?).

Thus we have completed the proof of Lemima 1.6.19.

To provey(T, p®) = O(p1+9)(g(T), p®)2), note that(n, 1)(nmod (),
Y(m,pY) (p + mmmod P, 1 <t < e) give a complete set of repre-
sentatives ofS’/ ~. SupposeT to be in diagonal formyp®, uv?],
O0<a <ap, ptuythen

YT = Y (FPup™ +uvp®, p):?
nmod £
0 (mPug® + uvp?, °)2.
1<t<emmod !

ptm
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We want to show thag(T, p) = O(p&ite)+min(a.e)/2)
If a; > e, then

y(T,p°) = p72{p°+ @(p® 1) + -+ + (1)}
— e/Z{pe + pe—l} — O(p3e/2).

In casea; < e, we have

YT P = P 3 (0P vpf®, po s
nmod
ptn

1 1
D R Y AN e L
nmod -1

+ p%al Z Z (m2 + Vpa2—8.1+2t’ pe—al)%

1<t<emmod !

prm

116 Hence ifa; = a» < g, then

YT, P9 = p2/20(p°) + patet 4 p/2 3" (ptt) = O(p™/29).

I<t<e

If a; < eanda; < ay, then

(T, P9) = p™/2p(p%) + p™/20(pH9)) + pa/2 )" o(p)
1<t<e

— O( pe(1+s)+a1/2).

NN

Supposel = 2""(1 ) a> 0andp = 2. Since
2

T (f) = 2204 + x1% + X3), ordT[X] = 22 if (X, %,2) =1
2

Hence

y(T, 2e) = Z (2a, Ze)% — (ze + 2e—1)2|(ae)/2 — O(2e+min(a,e)/2).

XeS’ [~
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1
Supposel = 2a(§ é); then
2

YT = Y @i Y Y @29

nmod 2 1<t<e mmod 2t
2fm
— Z ¢(26_t)(2a+t, 26)% + Z go(Ze‘t)(Z"”t, ze)%
O<t<e 1<t<e

— 2e—1+min(a,e)/2+2 Z 2e—t—1+min(a+t,e)/2+2e/2

I<t<e-1

< 2e+min(ae)/2 + 2(6— 1)2e+min(a,e)/2 — O(Ze(1+s)+min(ae)/2)

sincee—t—1+min(@a+t,e)/2 < e+ min(a, e)/2.

1.6 Estimation of Fourier Codficients of Modular
Forms

Let{n, k, s} denote the space of modular forms of degreeeightkand 117
level s. In this section, we first obtain a Representation Theorem fo
{n, k, s} with evenk > 2n + 2 in terms of the Eisenstein seriEﬁj(Z; f)

in the sense of Klinger_[13] arising as ‘lifts’ of cusp formsn {j, k, s}

for j < n. Then we shall derive an estimate for the Fourierfioents

of modular forms in{n, k, s} for even (integralk > 2n + 2, following
Kitaoka [10]. We first prove a few preparatory lemmas for thepre-
sentation Theorem, following H. Braunl [3] and Christiah. [6]

Lemma 1.6.1. For any Re Sp, Q), there exist an upper triangular Q
to t

in GL(n, Q) and an(n, n) rational symmetric S such that MR( g?)

isinT.

Proof. Let R = (CA B) with (n,n) matricesA, B, C, D. For some
d# 0inZ, (-d'C, d'A) is an integral symmetric pair and further'C'A)
has rankn. Hence, for som&J in GL(2n,Z), (-d'CdA)U = (G 0)
with (n, n) invertible integralG. Clearly thenC’ := —-dG*C, D’ :=
dG 1A form a coprime symmetric pair and constitute therefore &ise |
nrows of N = (M’)™! for someM’ in I, so that we haveNR =
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r=n (CAHAQ) 7) = (64,) with Q in GL(n.Q). By easy induction,
there existd/ in GL(n, Z) with Q := VQq in upper triangular form. The

lemma is now immediate witM = M’( 0 v- 1 O

Let us fix, in the sequeM;, ..., M¢inTy sothatly = [[ Tr(9)Mi.

I<i<t
Then, by Lemma 1, anRR € Spp,Q) can be written in the form

N’M.( Q Qf) for some N’ in I'h(s) and M; with Q, S as in
LemdeEE]l Fof in {n, k, s}, we have therefore

t t
(1R = (i (8 33| @
= (fkM)('Q(Z +S)Q)  (detQ)*.

Now, for anyj with 1 < j < nandz; € %,_j, the j"-iterate®’ of
the Siegel operator on arfy: ¢, — C is defined by

i . Zl(n - j) 0
j _ .
(®71)(22) = Jim f (( 0 iaE; ||’
it is known that forf in {n,k; s}, ®; f exists and is ifn - j, K, *}.

Definition. We call f in{n,k, s} a j-cusp form if ®!(f|R) = 0for every
RinSpn, Q). For j = 1, we call f just acusp form

Lemma 1.6.2. Any f in {nk s} is a j-cusp form if any only if
O/(flkM)) =0forl<i <t.

Proof. To prove the lemma, it is enough to show tlids a j-cusp form
if ®I(f|xM) = 0 for everyM in I, (or equivalently ifdI(f|,M;) = O for
1 < i < t). The limit asA tends toco in the definition of®(f|,M;)(Z1)
can be applied termwise to the Fourier expansion

(f|kMi)(Zol.°)= S am g e e

I/lEj 5
T:(Tl Tz)zo
* T3

and hence

DI(fM))(Z2) = Z a((T:9); f; Mye?(Tz/s

)
T >0
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119 The assumptiond!(f|xM;) = 0 for 1 < i < tis equivalent then to
a((To1 8); f: M) = 0 forall Ty > 0 and 1< i < t. On the other hand, we
know from LemmdL6]1 that fdR in Sp{; Q),

. . t t
@I(1iRz) = oliv (§ 2

for suitableM; andQ, S as above

~ imcmyce(s L ]+90)

- Z a(T: f: M;)e’s (r(TZlQu+r(TsZi[ Q) +2 (T2 QeZ1Qu))) ¢

(n-j) i , -
T (Tl 3) > 0x €% (™) fim ™" tr(T3['Qa)),
3 —00

*

writing Q = [Q({)'” 82) andS’ = 'QSQ Now since deQ; = O,
3

tr(QsT5'Qs3) # 0 unlessTz = 0 and therefore for every with T3 = 0

and therefore for every with T3 # 0O, the limit of the corresponding

term asa tends tooo, is zero. IfT3 = 0, thenT, = 0 as well, in view

of “T > 0”. Thus in the limit ast tends toco, at most the terms corre-
sponding tol = (Tig_” g can survive. Our assumptio®!(f|xM;) = 0”
above implies aT; f; M;) = O for these latter type of are O, leading to
@/ (f|kR) = 0 for everyRin Spf, Q) and also proving the lemma. O

ForO0< j < n, letAyn-j(s) = {M € I'n(9)| the entries of the first
2n — j columns of the last rows of M are Q.

Then
A 0 B =x
* -1 * *
An,n—j(s) = M = C QO D ¥ € l—‘n(S)
0 0 00

and is indeed a subgroup Bf(s); any M in Ann_j(s), Q = Ej(mod s)
in GL(j,Z) and furtherM := (& B) is inT,_j(s). The mappingl - M 120
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is @ homomorphism ok, ,_j ontoI'y_j(s), with kernel

En_j 0 0 *

% EJ- %
€ Ann_i(s
En—j nn j()
0 0 E

We denoteAn n-j(1) simply asAnp-j.

Definition. For N1, N in T',, we say Nj:s N if, for some M inl'y(s),
we have N= N[*MN; € Appj.

Lemma 1.6.3.For N1, N in ', with NljfsNz and f in{n, k, s}, we have
®I(f|Ny) = 0 < ®/(f|N) =0for0< j<n.

Proof. Writing Z = (tzzlz 2) with Z; € %,_j, we have, forj < n, N <

Z >= (N<z> ) and deN{Z} = detN{Z;} detQ for someQ in GL(j, Z).
Thus®I(f|N2) = @I(fIMNg) = ®I(f|N1N) = (detQ)*(®!(f|Ny))IN, for
0<j<n i

The lemma follows on noting that fgr= n, ®"(f|N;) = the constant
term in the Fourier expansion éfN; and|a(0, N;)| = |a(0, Ny)|.
121 ForT >0, let

rsT={(5 ) erusmrur-=T}.

Then, for even (integralk > n + 1 + rankT, we define the Poincaré

seriesgk and px by
QEZTin(@) =, e TNEIdetmizy
MeTq(sT)\In(s)
PETINT() = ) eI deNMiZ)

N-IMeln(ST)\N-T'n(9)

for N in I',. These series converge absolutely, uniformly on compact
subsets of4, and belong to{n,k, s} for k > n+ 1 + rank(T). For

T = 0, they are just Eisenstein series. CleaolfZ, T; Exj;T'n(9) =
k(Z, T;Tn(9)).
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Lemmal.6.4.For k> n+ 1+ rankT and N in[',, we have
P(Z T; N;Tn(9)) = 9(Z T; Tn(S)IN .

Proof. SupposeM’ runs over a complete set of representatives of the
right cosets of",(s) moduloT'y(s*, T). ThenM : NM’N~1is in I'n(S)
andM’N~t = N~IM. FurtherM’N~! runs over a complete set of rep-
resentatives of elements N I',(s) such that, fomo two such distinct
elements, sajN~*M1, N"tM, we haveN1M; e I'n(s, T)N"1My; oth-

erwise, we will have foM; # M, with M/N7 := N=IMm;, i = 1, 2,
Mj € I'n(s, T)M/, a contradiction. O
Now 122
K(Z T;Th(9INL = Z e (T <N"1<Z>>)

M’ eln(sT)\Tn(s)
detM’{N™1 < Z >} detN~Y{z} 7

Z e% tr(T(M’N’1)<Z>)(det(M/N—l){z})—k
MI

Z e% tr(T(N"IM)<Z>)
N-IMel(s T)\N-1Th(s)
(detN~*M){z)) ™
Pk(Z, T, N; Tn(9)

Lemma 1.6.5.ForT = (Té:;j) g) with T(()n_j) >0and Z= (Z‘gr:j) i) €

% we haved(gu(Z, T; Tn(9) = *Ok(Zo, To; T'n-j(9)) iIf 0 < j < nand
D"(Gk(Z,0;Tn(9)) = 1.

Proof. The involved limit withZ = (% 2, ) (@sA — ) in ®I can be
applied termwise to the series definigg namely to each term

% 1TM<Z>)(detM(Z))* = &% "ToM<Z>)0) (detM(Z}) ™

where M < Z >)q denote the top (leftmosth( j,n — j) submatrix of
M < Z>. Let(& & Bt B2 ) with (n- j,n— j) submatrice<;, Dy be the
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matrix formed by the lagt rows of M(in I'(8)) andYy = Im(Zgp). As in
Klingen (Math. Zeit. 102 (1967), p.35), we have 123

abs(deM{Z})™2 = det(Im((M < Z >)o)/(detYoP(1) where P(1) :=
det(Y,[[Z5Cs + 'D3]] + E;j[[i'C4 + 'Da]])

with 'S RSabbreviated aR[[S]]; we are using here the relations

((YM)O YM,Z)_l{: (* * )}
*  Yms x (Ymz— (Ym)gHYmaD) ™t

= (Im(M <Z>)) = (Im2) ['(CZ+D)]] =
(Yt O x Y(CaZo + Da)
‘( 0 %Ej)[[(* (iAC4 + D4))]]’

and

(abs(det(CZ + D)?)/((detYo) )
= 1/ det(ImM < Z >)) = 1/((det(Vm)o)(det(Ymz — (Yn)g [Ym.2])))
= (1/ det(Im((M < Z >)o))(det(Yo [['(CsZo + Do))]

+ 2E{1(1Ca + D)
Now

&’ VMM det(Im(M < Z >)o)2| <[] (A%

1<t<n-j

wherec = ¢(Tp) > 0 andAy, ..., s-j are the eigenvalues of InN( <

Z >)o); hence it is bounded for aM, uniformly asA goes to infinity.
We can now conclude from above that, for fixag

fim e "TM<Z>)(detM{zZ}) ™ = 0,
unlessP() is a constant. Next we determine, for whdt P(1) can
turn out to be a constant. The relation above conned®fi) and abs
(detM{Z})~% shows thaP(1) > 0 while each oftY,[[Zo'C3+"'D3]] and
124 Ej[[iA'C4 + 'D4]] is non-negative definite. Hence, for all



1.6. Estimation of Fourier Cdkcients of Modular Forms 103

det(1?C4'Cq + DYDy) = det(E;[[iA'Cq + 'Da]])
< det@@Yy [[ZLC3 + D3]] + E;[[iA'C4 + 'Da]]).

If P(1) were constant, both sides have the constant valub 4Bt and
henceC, = 0; alsoY,*[[Zo'Cs + 'D3]] is necessarily 0, implying that
Cz = D3 = 0. Finally, thereforeM € Ann-j(s), under the assumption

thatP(1) is a constant. Thus, for < n, Jim % (TM<Z>) getM(Z) & =

0 unlessM is in Apnj(9); in that case, the limit s, in face t(ToM<Zo>)
detM{Zo} ¥, since deM{Z} = detD det(C1Zo+D1) ™ = detM{Zo} ™
andeZ t(TM<Z>) _ & tr(To(M<Z>)o) — % tr(ToM<Z0>) T complete the
proof for j < n, we need only observe that to any coset

A 0 By =
To O * U x %
rn(ss( 00 O)(Cl 0D; = )9
0 0 0tut

if we make correspond the cosE}-j(s, To) (& 5. ), this mapping is

clearly well-defined and surjective di_j(s, To)\I'n-j(9); it is also eas-
ily checked to be injective, since

Al 0 Bl * Al 0 Bl *
x* Up = * x  Up = *
C]_ 0 Dl * Cl 0 Dl *
o o o wlo o o wyt

En_j 0 O *
| o U1U£l * * To O
= Eny + | ( 0 o))'
0 U MU,
Thus
J- To O\ .

O

The proof for the cas¢ = nis immediate on putting = iAE, inthe 125
Fourier expansion of the Eisenstein seme&Z, 0;1',(s)) the only term
surviving in the limit is the constant term 1.
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Lemma 1.6.6. For Ng, Nz in I'y with Ny 1 N2 and j < n, we have
J,S

DI(pZ (76" 2), Nu, Tn(9)INz)) = O
Proof. Indeedd)j(pk(z,(T%_j 8), N1, Tn(9)INy) =

0

i/lEj

T8 D ),
o o

Lim e gk((zo0 ),T, Ta(9)N;INy)  (with T =(

%”gitr(T(M’Nl‘lNgk[ZO _O ]>)
= Z Lim/l—>ooe 0 I/lEJ

M’eln(ST)\In(s)
Z 0
rn—-1 0 -k
@etrng(Q 2 )
=0,
since, for noM” in T'n(s), M'N; Nz = N; - (Nt M/N; YN, € Apj, by
the hypothesidN; + N, and so the limit of every term is 0, by the same
J,.S
arguments as in the proof of LemifnaTl6.5. i

We now recall the structure of the finite dimensional spaoécusp
formsin (, k, s). As we know, givert, gin {n, k, s} at least one of which
is a cusp from, the scalar produdt ¢) is defined by

1 _
. | o

Tn(\%

dXdy
(dety)n 1k

with the customary (invariant) volume elemelt= (detY)-("1dX dY.
Corresponding t& = X +iY in %, andv := [ dv < o. If
Tn(9\%

f(z) = ¥ a(T)e* "™ is a cusp form inin,k, s}, the scalar product
T>0

(f(2), ak(Z, S; Th(9)) is, upto a constant factor, equal to (Sefi_l‘ka(S)
for S > 0 and O if deS = 0. If 7 denotes the subspace pfgen-
erated byge(Z, T;Tn(9) for semi-integralT™ > 0. Then, using the
(non-degenerate) scalar product ( , )jinthere exists an orthogonal
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complementn for 7 inyie.y = I & n. We claim thatn = {0}; in
fact, anyf in n is orthogonal tay(Z, S; I'n(s)) for every semi integral
S > 0 and hence the Fourier expansionfdias all cofficients equal to
Oie.f=0.

Lemma 1.6.7. Suppose that, for & {n,k, s}, ®!(f|R) is a cusp form for
RinTy,, whenever k n. Then there exists

Tr, O
¢ri(2) = ¢rj(Z: f) 1= )] Cypk(Z;( g’ 0) ;R Tn(9))
such that®! ((f — gr;)IR) = 0, for every R inly,.

Proof. First, letj < n. SinceCDj(flR) is a cusp form, there exist, by127
the above remarks, finitely maﬁ')&‘v“) > 0 and constants, = ¢,(R; f)
such that

(@(fIR)Zo) = D 60k(Z0; Tryi T j(9)  (Zo€ %))

- Yooz ("g )TN, byLemmas

- Yol (s ORISR, by Lemma

which proves the lemma foy < n. For j = n, we need only to take
¢rn(Z) = a0, R)pk(Z, 0;R; T'n(9)), since

O"(fIR) = @"(> | (T, Re® "72) = a(0,R) and
D"(pk(Z, 0; R Tn(9))IR) = @"(gk(Z, 0;T'n(9)) = 1. m

From Lemma_L6]2, we know thab!(f|[R) = O for everyR in
Sph, Q), if already ®!(f|M;) = 0 for finitely manyMy, ..., M in T
From theseM;, we pick a maximal set of representatives, 84y ...,
M(Jj which are mutuallyj, sinequivalent. Let nowf satisfy the condi-
tions stated in Lemma_L®.7. For fix¢dlet us consider

5D= Y s @= Y Yenda( T ofiMirao)
Y

1<ty 1<ty



128

129

106 1. Fourier Coficients of Siegel Modular Forms

with the same notation as in Lemma_1l6.7. Now &myl < i < t)is
~ My, for somemwith 1 < m < uj; we have then,
J,S

OI((f = y)) M) = DI(FIM; — oy, jIMi) = DI((F — oy, j)IM;) = O,
in view of Lemma$-1.6]16,1.6.7 abd 1J6.3, giving us

Lemma 1.6.8.For ¢ in {n, k, s}, suppose that, whenevekjn, ®!(p|M)
is a cusp form, for every M ifi,. Then there existg; in {n, Kk, sj_j =
{linear-combinations of ﬂZ;(Tégn g), M, I'n(s))} such that®!((p —
¥j)IM) = 0for every Min[and1< j <n.

Finally we state and prove the following Representationoféen
for modular forms.

Theorem 1.6.9. For even integral k> 2n + 1, every f in{n,k, s} is
a finite linear combination of the Poincaré seriegd£ T, N, 'y (s)) for
semi-integral T> 0and N inIy,.

Proof. First we need to formulate an inductive statement, follaih
Braun. Let2< j <nandR=(AB8) ey jsawith (n— j+1Ln—j+1)
submatriced\, B, C, D. Then

B O
i1 O 0
0O D O
0 0 Ej
isin, and further for anyf’ in {n, k, s} ®1(f’'|MR’) = ®(®I-1(f'|MR))
for anyM in ', and from the special form &, we haved!-(f|[MR) =
(@-1(f'IM))IR. Thus we have, for anyl in T andRin .1,

®l(H'|MR) = (@} (f'M))R). (*)
Now, from Lemmd_1.617, there existg in {n,k, s} such that

O"((f —yn)IM)=0 forevery M in Th.
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Assume now that, for any fixeflwith 1 < j < n and for the given
f 'denoted asfp, we have already constructefg_; in {n,K, s} so that
®!(fh-jIM)) is a cusp form for every in I',. Then by Lemm&1.6l8,

there existg/j (corresponding t@ = f,_j) such that
@ ((foj —yj)IM)=0 forevery M in T, (+*);
wherey € {n,k, sjy_j, is a linear combination of the Poincaré series

(n-j)
Pk(Z; (T 0 J 8); M’; Tn(S)).

Note that forj = n, ay, with ®"((fo — y¥n)IM) = 0 for everyM in I,
already exists. From¢);j and ¢), we obtain

OO (faej —¢))IM)IR) =0 forevery M in
I'n andevery R in I'hj;1

whenever 2< j < n. If we setf,_j.1 = fo_j — ¢j, the last relation
means that, for everiyl in I'y, d)j‘l(fn_j+1|M) is a cusp form. Applying
LemmdI6.B tdyj,1 in place off and j— 1 in place ofj (for which we 130
had the condition Z j < n), there existg/j_1 in {n, k, Sjn_j,1 as defined
above, such thab)~((f,_j,1 — ¥j-1)IM) = 0 for everyM in Ty, which

is just (*)j_1. Thus the inductive argument is complete, giving us the
validity of (xx)q, i.e.

0= d((fr1—P1)IM) = &((f — > /)IM) forevery M in Ty,

1<t<n

In other words,f — 3 y, is a cusp form. Since the space of cusp

1<f<n
forms is generated bp(Z; T™: Exn: T'n(S)) with semi-integralT > 0,
the proof of the theorem is complete. O

Let us now identify the Poincaré seriggin terms of “lifts” (i.e.
Eisenstein seriek(Z; f), in the sense of Klingen, arising) from cusp
forms f of degree< n. Let f be a cusp form inr, k, s}. Then for every
k> n+r+ 1, we define, after Klingen,

EX (Z; f) = Z f((M < Z >)*)(detM{Z}) ¥
MeAn; (9\T'n(s)
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where, for any 1, n) matrix A, we denote its top(leftmosty,) sub-
matrix by A*. The series is well-defined, since fist, N in T'n(s) with
M in An; (SN, we can easily verify thaft(M < Z >*)(detM{Z})™ =
f(N < Z >*)(detN{Z})7¥; further it represents an element{ofk, s}. If
T = (Tér) g) with To > 0, then we know already that the correspon-

dence

AD o B
= U = Ao Bo
[a(s T)IM =Tr(sT) Cg) 0 Dg) I I'v (s, To) (C Do)
0O 0 o0 Wt
=TI (s To)M

from the coset spadeé,(s, T)\An,(9) to the coset spadg (s, To)\I'r(S)
is a bijection. From the coset decompositidigs) = [[Anr(S)M,
Anr(9) = LTS TIN;, we get(9 = 1T Tr(s TN Mo
Now
2 tr(T(NjM()<Z>) _ & tr(To((NjM()<Z>)") _

— ez"?i tr(To(Nj<Mg<Z>>)*) _ ezr?i tr(ToN;<(M¢<Z>)">)

with N; in T’ (s) corresponding tdN; in An,(s) in the sense explained
already. Moreover,

(detN;M){Z}) ™ = (detNj{M; < Z >})™* x (detM,{Z})
= (detNj{(M¢ < Z >) DX (detM{Z}) 7~

Now we have

e% tr(T M<Z>) (detM {Z})—k
MeTn(sT)\I'n(s)

gk(27 Ta rn(s))

eZ”?i tr(T(N; Mg)<Z>) (det(N] M[){Z})_k

M¢€An; (S\In(9)
N;eln(ST)\An,(9)

Z(detMg{Z})ik Z e% tr(T0m<(M(<Z>)* >)
M, N;
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(detN;{(M; < Z >)})™

=Y etmazy Y e M)
M€ (Nl Ny (ST (9)

(detN;{(M, < Z>)"))™*
= EX(Z; 9k(*, To; T(9)).

We may reformulate the theorem above as the following deseifior
even integrak > 2n + 1, the spacén, k, s} is generated bEﬁ’r(Z; oM
asg varies over cusp forms of degreg< n) andM overTy,.

Using the above Representation Theorem{ifpk, s} in terms of the
Eisenstein serieEr'j’j(Z; f) constructed from cusp formé in {j,k, s}
and the estimate for Fourier déieients of cusp forms (analogous to
TheoremZL.T]1), we proceed now to derive an estimate for dueiér
codficients of modular forms ifn, k, s} for even integrak > 2n+ 2. To
this end, we shall prove, following Kitaoka]10], a seriedeshmas and
propositions.

We decompose ariyl in I'y asM = (& B* ) with (n, n) submatrices 133
Awm, Bum, Cm, Du. For any f, g) matrix F and anyswith 1 < s< p, we
denote the ¢ g) matrix formed from the lass rows of F by As(F). For
0 <r <n,{M €I the firstn + r columns of1,_(M) are Q is just the
groupAn, (1) introduced earlier. Indeed, for any suieh

_A]_ Ao _Bl B, _Cl Co _D]_ D»
AM_(A:% N)’BM_(B?» 54)’CM_(0 0)’DM_(0 D4)

with A1, By, Cq, Dy of size ¢, r) and furtherD, is in GLn_(Z), As'D4 =
Enr, AstD, = 0,C,D,4 = 0, and thereforé\, = 0,C, = 0, A = (ﬁ; ,34).

Moreover, An (S) = Any N Tx(9). If we write My = (éi Bi) for any

(such)M in Apy, thenMq is inT;. If Z; is the leading 1, r) submatrix
of Zin %,, then it is easy to see thid; < Z; > is the leading 1(;,r)
submatrix ofM < Z > and further deM{Z} = (detM1{Z;}). detDy,
whereN{Z} .= CNZ + Dy foranyN in Iy,

Lemma 1.6.10.For M, N inT'y, AprM = An N if and only ifAn_ (M) €
GLn—r(Z)An-r(N).
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Proof. From the form of the elements @, clearly A,,M = ApN 134
implies thati,_ (M) = VA, (N) for someV in GL,_(Z). On the other
hand, if 4n_(M) € GL,_(Z)An_r(N), we may already suppose, with-
out loss of generality, tha;ln (M) = An_r(N) after replacingM by

(‘U - 0) M for U = ( ) with a suitableV in GLn_(Z). But then we

have evidentlyl,_,(MN-1) = (0""™"E,_,) and we are through. O

Lemma 1.6.11. For any M inT', with rank (15(Cpm)) < s=n-r(< n),
there exists N imMpn_1 such thatA, M 3 N(g tUO—l) for some U in
GLn(Z).

Proof. From the hypothesis, there exiétin GLg(Z) andW in GLn(Z)

0
such thatl;(VAs(Cy)W) = 0. Then, forK := (O%S)M( ot )s

we havel1(Ck) = 0 and hence the elements bf(Dy) are relatively
prime. Itis clear thaDx = (¢ %1) F for someF in GLn(Z). If we set

N = K( > %), thenay(N) = (0...01) and consequently is in Anp 1.
The lemma follows on taking = W'F. ]

Let f be a cusp form idr, k, £} for fixedr < n— 1 and even integral
k > n+r + 2. Let us denote, in the sequel, the leading)(submatrix
Py of PO = (7t P2), by P*. For anyM in Iy, let us abbreviatd (M <
Z >)*) (detCmZ + Dy)) ¥ as (fIM)(2). For any giverRin I',, we split
the (absolutely convergent) Eisenstein seEﬁ;s(Z; f)IR as the sum of
two subseries; = %}(fHN)(Z), i = 1,2 whereN runs over a complete
|

set of elementy, Np, ... in Th(()R such thatN; ¢ An(€)N;j fori # |
and the rank ofi,_r(Cn) isn—r for N occurring inz and< n—r for Nin

Z NowCy = Cyfor M := N( g £ )and any mtegral symmetrg™n.
Thus the subseriel represent functions invariant under all translations

|
Z — Z+(S and admit Fourier expansiofsrsq & (T) exp(2ri tr(T 2)/¢).
Lemmad 1670, T.6.01 lead to the following

Proposition 1.6.12.For a cusp form f inr, k, £} as above and R ifiy,,
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all the Fourier cogficients a(T) for T > 0 of

D= 2, (NG
2

NeAn (O\Tn(OR
rank@n_r (Cn))<n-r

vanish.

Proof. By LemmalL61, there exi#t in Apy, M in Apn_1 andU in

GLn(Z) such thatN = KM (g1 ). LetK* := (& Bt) in I, formed

from the leading i, r) submatrices ofAc, Bk, Ck, Dk = (0D, ). Itis
easy to verify that 136

detN{Z} = (detK M){UZ'U})/(detV)
= (det(CkAw + DkCm)UZ'U + CxBy + DkDp)) detU
= detCkM < UZ'U > +Dg) detCmUZ'U + Dy) detU
= detC1M < UZ'U >)* + D1)detD, - det(M{UZ'U}) detU
= detK*{(M < UZ'U >)*} det(M{UZ'U}) detD, - detU

and moreover,
(N<Z>)" =((KM)<UZ'U >)* = (K < MUZ'U >>)*
=K*(M <UZ'U >)* > .

On the other hand, there exist constanis. . ., an, (depending orf and
K) such that

(K" < W>)(detk (Wi = > ajfj(W) for We

1<j<m
where fy,..., fy form a basis of the space of cusp forms{ink, ¢}.
Hence f|IN)(Z) = f(K* < (M < UZ'U >)* >)(detK*{(M < UZ!U >
)N K(detM{UZ'U ) = 3 o fj(M < UZ'U >)*)(detM{UZ'U}) & =
j

> aj(fjIM)(UZ'U). Decomposing = X +iY in %, as( 2, 22) with Z;
i

in 4,1, and writing

A, 0 B, B c, 0 D, D!
— 1 — 1 2 — 1 — 1 2
o= o=l wi)on= (3 oou=(5 )
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with A, By, C7, D of size fi—1,n-1), we have deM{Z} = det(C|Z; +
D})ds andM < Z > has &\ |Z; + B))(C|Zy + D’l)‘l as its leadingr{ — 137
1,n - 1) submatrix. Thusf(||M)(Z) is independent of the variabl&s
andzs.

.0 0 .
ForY = (Ypg) = ImZ, let us wrltea—Y = (qua—) with gpq = 1
or 1/2 according ap = qor p # g and denote byDy the diferential

operator (deY)(det—) known to be invariant under — VYV for all
Vin GLy(R). Then it is clear that

Dv((FIN)@)) = ) s Dy((fjIM)UZ'V))
j

= > aDy((fIM)UX'U +iY)) (using Y - UY'U)
j
=0

and soDy(})) = 0. On the other hand, we know that
2

(deta%)(exp(Zri tr(T2)/¢) = det((2r/£)T) exp(2ri tr(T 2)/¢).

Thus, on applyingDy termwise to the Fourier expansion f (as is
2
indeed permissible), it follows that

D" ay(T) det(-(2r/6)T) exp(2ri tr(T2)/¢) = O.

T>0
Consequently, for all > 0, we haveay(T) = 0 and the proposition is
proved. m]

Our objective being to get an estimate for the Fourielffocients of
Eisenstein series far > 0 or (indeed) foiay (T), in view of Proposition
612 above, we should first get a system of representaifitbe right
cosets of () moduloAy (¢) containingN with rank@,_;(Cy)) = n—r.
The next few lemmas tackle this question fot 1.

Lemma 1.6.13. For any n-rowed symmetric pa{C, D) there exists a
coprime symmetric paifP, Q) such that CP + D 'Q = 0.
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Proof. If C = 0, we can trivially take® = E™, Q = 0. Let thenC # 0

and first, let de€ # 0. Then there exidt) in GLy(Z) andV = (\éz) xi)

in GLon(Z) such that) (CD)V~! = (G0) with (n, n) integral non-singular
G. Hence G"'UCGIUD) = (V41 V,); evidently /1, V») is a symmetric
pair, which being primitive is coprime as well. The lemmaduais on
takingP = V,, Q = -V1. If 0 < r = rankC < n, there existU,,
Uz in GLy(Z) with U1CU, = (G §) and deCy # 0. Now U;CU,

andU;D'U;* = (Dé”) 82) form a symmetric pair again implying that
3 4

(C1,Dq) is a symmetric pair; furthe€,'D3z = 0 and soD3 = 0. By
the earlier case, there arrowed coprime symmetric paiP{, Q1) with
C:'P1 + D1!Q; = 0. The lemma is now immediate, on takiiy =
(G e2, )2, Q = (¢ 3)Uzt. The next lemma is quite vital for the
sequel. O

Lemma 1.6.14. For any M inT, with rank@1,_-(Cym)) = n —r, there
exists N ilAp M such thatdetCy # 0 and further(ANC;ll)* is integral.

Proof. First, there existJs in GL,_(Z) andV in GLy(Z) such that 139
Uadn_r(Cm)V = (0 Cg”‘r’”‘r)); necessarily then, déy # 0. Then
for

_(E- O _(ut o\ (v 0). . vV 0
U._( ),K._( 0 U M 0 v-1 isin AprM 0 v-1

and moreoverCk = (Col 82) Correspondingly, ifAx = (ﬁ; ﬁi), then,
from the relation'CxAx = 'AxCk, we get'C1A; = 'AC1. Apply-
ing Lemm&_L6.113 to the-rowed symmetric pairtCy, 'A,), there exists
an r-rowed coprime symmetric paiR{, S;)-and consequently, some
(gi Ei) in I';-such thafCltRl + tA]_tS]_ =0i.e.RCi+S1A; =0. O

Q 0 P1 O
Now L : é’l luoil Ffl 8} is in An, and further, clearly, foH :=
0 0 0 Uy
LM (ts’ i) we haveAy = (f\i 224) andCy = (82‘21)

From'CyAy = 'AuCh, we obtain'AjC, + 'AsCs = 0 i.e.Ag =
~'C,1'C,A]. Since the rank of the matrix formed by the firstolumns
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of H isr, the last relation implies thak; has necessarily ranki.e.
detA; # 0. NowN := (EOT 0 é)n)H (‘VO'1 0) is evidently inAn, M and
moreover,Cy = (’3'1 Alzgfé)tV‘l is indeed non-singular. Sinoky =
(2 22)'VL, (ANCRY)* = Er, which proves the lemma.

Let (C4,D4) be an ( — r)-rowed integral symmetric pair with
detC4 # 0 andD3 an (0 —r,r) integral matrix such thef := (C4D3Dy)
is primitive. ToF, we associate a unique right cosef@fmodulo Ay,
as follows (and denote it b, M{C4, D3, D4}. Indeed, there existg
in GLon-r)(Z) such thatC4D4)V~ 1= (0G)foranintegralG—r,n—r)
nonsingular matrixG. Now (G™1C4,G™1D4) = (0,En)V is an inte-
gral symmetric pair which (being primitive) is a coprime mpas well.
Further, since3C4D4) = (D3(0G)V) is primitive, so are P30G) and
(D3G). Thus there eX|stBJ in GLn(Z) with /ln r(U) = (D3G). Now it
is clear thaC := U (§ g5, ). D := U (& 5%, ) form a coprime sym-
metric pair andi,_((C) = (0C4) Anr(D) = (D3D4) Choose ani in
I'hy with 2,(M) = (CD); then, clearlyl,_, (M) = (0C4D3D4). By Lemma
[LE.13, there existdl in An M such that deEy # 0 and AnCRY)*
is integral. Now there exist®/, is GLn_(Z) such thatWsi,_(N) =
An_r(M) and we take, fotM{Cg, D3, D4}, the matrixP = (‘V‘(/)’l \9\,) N
whereW := (%’ v34)- Clearly 4, (P) = Wgdn—(N) = 24p—r(M) =
(0C4D3D4), detCp, # 0 and (APC51)* is integral. Any suclP is denoted
asM{Cg, D3, D4}; by LemmdZLE.T0A  M{C4, D3, D4} is uniquely de-
termined by C4D3D,4) from which we started above.

Denote by%,, the set ofF = (C4D3D4) as described at the be-
ginning of the last paragraph and define two such matfices’ to be
equivalent (in symbolsi- ~ F’) if F = WF for someW in GL,_((Z).
Let P(n,r;Z) = {U = (U;)Ui) GLn(Z)}. In %, introduce also
another equivalence relatidgh = (C4D3D4) = (C;D3D;) = F’ by the
conditionWF = (C4D3 + C4S3D4 + C4S4) for someW in GL,_((Z),
integral fi—r)-rowed symmetricS4 and fi—r,r) integralSs. Itis easily
verified F — F’ if and only if

AnrM{Cy, D3, Dy} = AnrM{Cy, D3, D4}P for
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EM o) tg,
P=| 0O Sz S4| in Ty
o EM

We now prove the following crucial

Lemma 1.6.15. (i)

[]  AuM=][AM(CsDs Dal (Y %)

Mel'y
rank@n_r(Cm))=n-r

where, on the right hand sidéC4D3D4) runs over a complete set
% of representatives of the - equivalence classegjpand U
runs over a complete sé of representatives of the right cosets
P(n,r; Z)\GLn(Z)

(ii L AneM = 11 AnrM{Ce, DaDal (g )Y )
rank(/ln_r(C,;))=n—r

where, on the right hand sid€C4D3D4) runs over a complete
set? of representatives of the -equivalence classes i, tU

runs over7 asin(i) and S runs over alln, n) integral symmetric 142
matrices of the fornf " +).

Proof. GivenM in I', with rank (1,_,(Cm)) = n—r, we can find, as in
the proof of Lemm&I6l 4 in ', with A, (H) = (0C4D3D4) for some

(C4D3Da) in 6y andW in GLo(Z) such thathg, M = Aq,H (W 0,) =

AnyM{Cy, D3, Dy} (“(’)" w1). To get the chosen representativesirand

7% , we need only to tak ‘g 0 M{Cy4, D3 D4}(‘W’tw 0 )for
’ 00U, P S 0 W) w1

suitableUy in GLy((Z) andW’ in P(n,r;Z). To prove (i), we have
therefore only to prove that the cosets on the right hand aideall
disjoint. Let, if possible,

U o o
O U—l) = An,rM{Cm D3a D4}( O (U/)—l)

for the chosen representatives frafhand %/ . Writing M, M’ instead
of M{Cy4, D3, D4}, M{C}, D3, D}} for the moment, we know thay =

AnrM({Cy4, D3, Dy} (
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(Ax2).cu=(%&)andCy = (Co’l gi) TakingV = 1 in the proof of
Lemmd 6.4, we may find a suitaliléin A, so that forH” := L’ M,
the firstr columns ofCy. are 0. Since the cosét,,M is unchanged
in the process, we may suppose already that therficstumns ofCy

and likewise ofCy are 0. Now, for som& in A, we haveKM =
M (1Y 2 ) with V = Ui’ = (Vi”) VZ).

o v1 V3 Vy
Also

(0 Cp _ (0 ¢c, (AL A _[(c: o
cu=lo Glow=(o &m-(a R)e(S o)

Dk = (%1 B%) with detC4. C, # 0. Further,Ckm = Cw 'V gives
4

C,'V> = 0, so thatV, = 0,'U’ € P(n,r;Z)'U and soU’ = U. Hence
KM = M’, D}(C4D3sDs) = (C,D3D}) with D} in GL,(Z) and so
(C4D3Dy4) = (D,D3D,). This proves assertion (i). We omit the proof of
(ii), since it is similar to that of (i). ]

As an immediate generalization of the well-known formgflaxp
R

(-axX + 2bX)dx = r/aexpp?/a) for Re @ > 0, with v/z/a > 0 for
a € R, we know that for g, m) complexA = ‘A with ReA > 0 and any
mrrowed columrb, [ expxAx+2thx)dx = (detrA~1)Y2 exp(bA )

R
with (detrA~1)Y2 > 0 for A > 0. As a further generalization, we have

Lemma 1.6.16.Let W) = W ='W > 0, A an(n —r,n — r) complex
symmetric matrix with Re A 0 and Q a complexn—r, r) matrix. Then

exp2r tr(W XAX) + 27 tr(XQ))dX
X(r.n-r)
= (detw)="W/22r-M/2(detA~1) 2 expr tr(( QA IQW 1) /2)

where the integration with respect to X (x;;) is over the space of
(r,n—r) real matrices, dX= [] dx; and (detA™1)"/2 > 0 for real A =
i.j

tA> 0.
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Proof. Writing 'X = (!xq,...,'%) wherexy, ..., x are ther rows of X

with n — r entries each, we have ¥A'X) = 'xBxwith 'x := (x;...X)
andB = ( ro 0) being the (0 — r)r, (n — r)r) matrix whoser blocks of

size f—r, n— r) on the diagonal are all equal foand otherii—r,n—r)
matrix blocks are 0. 1T\ is the positive square root ¥ and QW’l
(Y1...Yr) with columnsy;, we have trtKQW;1) = (y1...'y;)x. Thus the
integral on the left hand side becomes

(detWp)' ™" f expE2r tr(XAX) + 27 tr(XQW, 1))d X
X
= (detw)(—"/2 f exp2n'xBx+ 27ty . . .ty )X)dx

R(n-1)r
= (detw) =721 =72 (det A1) 2 expr tr("Wy M QAIQW 1) /2)

on using the formula preceding this lemma. O

Lemma 1.6.17.For Z in %, N in 'y with detCy # 0 and (ANC )

integral, (WW) az) W := (CnZ + Dn)'Cy and cusp form f inr, k, s,
2 3

we have

f((N < Z >)")(detCnZ + D)) = (detCy )X (detWs) ™ Z aj fj(Wa)

1<j<m

where{fy,..., fn} is a basis for the space of cusp forms{nk, s},
ai,...,amare (bounded) constants depending O(lNNCKll)* and W, =
Wi — WoW5 1.

Proof. Dropping the sflix N from Ay, Bn, Cn, Dy, we note thaiN <
Z>=ACt-t'C{(Cz+ D) =AC?t-W7, inview of the relations

B- ACD = B- AID'C™! = (B'C - AID)!)C™! = -'C. From the 145

Babylonian identity

wo (B WaWsh (W 0 E 0
“\0 Eny J\O W5/ (W'Wo Eny)
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we have Yv~1)* = W, 1. On the other hand, there exist constants ..,
am depending onf and the residue class QMCNl)* modulo s such
that

(M) b - ranedy - ziezy
= > ejfi@)for Zie%.
1<j<m
Thus
(FIN)@) = f((ANCR')" - W, )(detW'C™)™

Z a; F(Wa)(detWy) (detw) ™ (detC)*

1<j<m
= > ajfj(Wh - WoW5 W) (detWs) (detC)*.
,-

Since the number of residue classesrof)(integralS = 'S modulosis
finite, |aj| < vfor 1 < j < mand a constant = v(f). i

Let us nowfix N in I’y as in Lemmd_L.6.17 with d&y # 0Cy =
(C%’r) i) (ANC )" integral and a natural numbey with coCR! integral.
We shall study more closely the subseries

-lgte-1
7tn= Y 2
S n

e . . .
whereS = (?é; 22) runs over all matrices of this form inA, =

{aTV|T = 'T integra} anda := s¢. Recall
Aj = (TOD = (t)iti, 2t = 2t € Z),

the lattice dual ta\n. Let us further writeetas(x) for exp(2ri = |s) and
n for n1. As usual, letBABbe abbreviated a&[B]. In view of Lemma

61T,
F(F;N) = > aj > (detCn) (detWs + S)) 1,
,-

$2,53
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(Wy — (W3 + Sg) (W2 + S2)])

whereS,, S3 have entries divisible bg. As a first step, we note that,
for To > 0in Ay,
D (- tr(ToWz {'(w; + aSy)))

Sé"”")zo(mod 1)

= 3 [ oW + aX)D(r(S2 X)X
Sg’n_r)x(r,n—r)

(Poisson formula)

— (- TS WD) Y [ (- (@19 Tows 1)

S2

(—tr (z—jxvvglthTo) +tr(X!S,))d X
2a2 (r-n)/2
= - (T e Y. (e 27 )
S, S
. S _

(dett-We) /2 (- tr(}QweQTs )

. 2ia,, 1 "
whereQ := —?W3 WoTg +1'S,. Now

t -1 48.2 -1t 4a t t -1
tr(QW5QT,") = - tr(ToWs [Wz])+§ tr(S2"Wa) —tr(W5['S2] Ty, )

and so

S(r,n—r)_o S
5 '=0(mod a)

r(r-n)/2
S T, + S))]) = (2""2)
(detTo)"/2(det(-iWs))'/?

> (—é tr(S2'Wo) + é tr(Wa['S2] Ty 1))

SE integral
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For the Fourier caécientsb;(To) of the cusp form 147
§Z)= > bi(Tomn(ToZ’),
O<ToeAf

we know from an analogu€[19] of Theor€m T11.1 (Hecke) hély) =
O((detTp)¥/2). Using this Fourier expansion, we prove

Lemma 1.6.18.For a cusp form f inr, k, s} and Z in%,, we have, with
the same notation as in Lemma1.6.17,

- r(r-n)/2
> (T LS M = w2

oM s s
— 2
‘(tsz 0 )Ea’\”

(detWs) K (det-iWs)) /2
xYlap Y (detTo) M 2by (Toyps(tr(ToWa))n
j

O<ToeAf
Sg’”") integral

l t S t -1
(_5. '[I’(Wz Sz) + 4_8.2 tr(W3[ SZ]TO ))

the series over Jand $ being absolutely convergent.

Proof. In view of the arguments preceding this lemma, for its proof
we need only to insert the Fourier expansion for eégh < j < m)
and show the resulting (double) series oVgrand S, to be absolutely
convergent. i

Let us observe that the matrixdefined, for reaX"""), by

P = Im(Wy — W3 ['(Wa + X)]) + (Im(W; 1))
['(X + ReW, + Im(W5)(Re W5 1)) (Im(W5 1) ™)]

is actually independent of, since the terms involving give

— (Re (o) + X)(Im(W; 1) (X + Re (W)
— Im(W2)Re W5 1) - (X + Re (Wh))
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— (Re (\L) + X)ReW; ™t - Im "W,
+ (Re (W2) + X)(Im(W5H))('X + Re, (Wy))
+ Im(W2)Re W5 H)(X + Re (Wh)) + (ReW;* - Im "W, = 0.

On the other hand, for any rex(""", clearly W + (Q‘Q é) € 4, and 148

hence the imaginary part of the leadimgrj submatrix

(Wa — W5 {(Ws + X)) of (W -+ (?;) é))‘l

is negative definite. ThuB = P(Xp) = Im(W; — W3‘1[t(W2 +Xo)]) >0
taking Xo = —Re (\,) — Im(W») - Re (W3 1) (Im(W; 1)), Now

Ins(tr(To(W1 — W5 ['(W2 + Sp)))|

= exp-2 (To(P — (MW H)[(S2 ~ X))
< exp(—% tr(To + (S2 — X0)'(S2 - Xo)))

wherep > 0iis such thaP- \pE®, Im(-W;1)- ypE® andTo— pE®
are all> 0. The series on the left hand side of the asserted identity

=0l > (detTo)"2ng(tr(To(Wa — W5 ['(W2 + S7)])))
O0<ToeAy
S{™N=0(mod a)

and is now easily seen to be absolutely convergent.
To prove the absolute convergence of the double series aigtite
hand side, it sfiices to prove that

> IsrTows) - 2 tr(Wy'Sy) + % tr(Ws['S2] T, 1)

SE integral

= O((detTo)"" exp(2rptr(Tp)) for somep > 0.

Now 149
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Im(tr(ToWy) — ztr(Wztsz) + % tr(Wa['S2] Tgh) =

B To -—(s/2a)S
= tr(Im(W) (—(S/Za)t()Sz (52/4a2)'f'51[52]))

E, 0 ](T5” ©
=tr((lm(W))[—%;szTa1 En—r](8 0))

and further takingp, > 0 with Im(W) > p;E,, we see that the above
series ovels; is

2n s _
Z exnntegrm(—% tr (T() + 4—a252t52T0 1))} .
S

To complete the proof of the lemma, we have only to show that fo
p' = 2nsp1/(4a?) and for everyTo > 0in A},

> eXPnegral ¢ tr(S2S2ToY) = O((dletTo)™™).
S(Zr,n—r)

O

For this purpose, we may assume, without loss of generaﬁtyT‘gl is

7 ... 0O 1 *
M-reduced, so thaﬂfa1 = (: - ][ . |and forpz = po(r) > 0,

0. tJlo . 1
p3 = p3(r) >0,
t7 ... O t7 ... O
p2Toi=pa| i . | <Tgt<ps|: - i,
0o ... t o ... t
1

t; 0

(AF2)To<ppt| © .

0o ... tt

and hencey < pil(l <i <r). Thus, as a majorant for the last mentioned
150 series ove,, we have

Z exnntegral(_P,PZ tr(SZtSZT()))
S(2r,n—r)
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=[] [Z exp(—p'pztifz)]

1<i<r \¢tezZ
(1 N 2 expEp’p2ti) )n_r
isiar 1 - exp(-p’p2ti)

< n (1 L2 )n_r - l_[ (2 +p'pati )n_r
i p'p2ti i\ plpat

<[ ] +2)p'p2)™" (detTo)™

<

which proves our claim above and the lemma as well.

Lemma 1.6.19.For 0 < Tp in A}, we have

D7 (detWs + Sg))™(det(-i(Ws + Sa))"/2n((s/48%) tr((Ws + Ss)
SzeaAn r
Tal[sz]) — i(r—n)k(zﬂ)(n—r)(k—r/Z)z(r—n)(n—r—1)/2a(r—n)(n—r+l)/2

(48to) VA1 (k- r/2))n((s/a) tr(WsTo Y [S2])
D (detT)D/2n((1/48%t) tr(T W)
4

where p is a fixed natural number wit T, * integral, %”H) is integral,
[m(f) == 7™™D/4 T T -v/2)and T runs ove(T € AT >

O<ysm-1

1
0, 4—a(sT61[82] +151T) € Aj_ ).
Proof. The left hand side is just 151

i ((s/4a%) tr(WaTo Y[ S2]))

D, det-i(Ws + aSq))" /> n((s/4a) tr(SsTg [S2)
S3eAnr

= M((5/42) r(WaT [S2)) D m(s/4a) tr(S5ToSA])
An-r3S;mod 4ag

> det(i(Ws + aS} — 4atoSg)) /2
S3eAnr
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= K Mp((s/4a2) tr(WaT; 2[S2]))
PR CZETICA TS £5))
S;mod 4ag
x 20=M=r=D/2(1 1 (k - r/2))

D (detT) M /2p((1/4a%t) tr(T(Ws + aSy))),
O0<TeA;,

(n-r)(k-r/2)
( 2a2t0)

on using the well-known formula (for R > 0 andp > m+ 1)

2MmD2r(p) ) (det(Ys + 2xiF ) *

FeAm

= ) (detTy ™2 exp(tr(TYy)).

0<TeAR,

The lemma now follows from
n((s/4a) tr(S5To [Szl) + (1/4at) tr(T S5))
An_rZS’smod 4ap
(4at0)(”‘r)(”"+1)/2 if sT51[52]+
- +,1T € dan;,
0 otherwise

O

Going back to.”(f; N), we have, in view of LemmB_I1.6118 and
L6.19,

r(r-n)/2
RN (detcN)k(zaz)

- S
J Szealn-r

S
DT (detTo) "V 2y (To)ng(tr(ToWs) - < r(W5S2))x
O<ToeA;
Sg’”_r) integral

X(dettWs + S9) ™ (det-i(Ws + Sa)) /% (5 tr(Ws + S T3 [S2)) )



1.6. Estimation of Fourier Cdkcients of Modular Forms 125

2(r—n)(n—1)/2i(r—n)k(zﬂ)(n—r)(k—r/2)a(r—n)(r+n+1)/2
g(r_n)/zrn_r (k - r/2)

x > @y Y (detTo)™/2(dalto)IE-D/2p, (To)(detT)"%
1<j<m  To.S2.T

X

= (detCp)X

s 22 T(WaTg Sa))

s
xns(tr(ToWh) — atf(Wz

where 0< To € A}, SU" " isintegral, 0< T € A}y, STy Y [So]+t;1T € 152
daA;,_,. Let

To 55, P P,
P:= , say.
(—%ts2 =t i 7 sT‘l[Sz])) ( pe-n |+ SV

Then from

S
22 0 En-r

)detTo - detT.
a’ty

we see thaP > 0 and further de® = (4 >
Out assumptlons above dn, S; andT mean precisely tha®; €

2a
A7, S — P, is integral, SP3 € Ay_, and ?tope, - sTy USslisin A%
(the last condition being superﬂuous). N@Wy, Sp, T} is in buecnve
correspondence witR as above and

tr(WP) = tr(Wy To) — gtr(WztSZ) + %(tr(t(;leT) + tr(sWATSYS2])).

We have thus proved 153

Lemma 1.6.20. For a cusp form f infr, k, s} and N inT', as in Lemma
LeIT,

(detCN)kZ(r—n)(n—l)/Zi(r—n)k(zﬂ)(n—r)(k—r/Z)
D12 S(n—r)(k—(n+r+1)/2)rn k=t /2)><

X Z aj ) bj(P1)(detP;)™ st (PW))

0<P

Z(f;N) =

where R € A}, 2¢2p0""" is integral and gPs € A},
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We recall that forN in T, fixed above,C = Cy = (Cc(l)r) 22) and
4

-1 _~-1e. -1
cCl= Co(cé Clc?fc“ ) is integral. Let us defin®, G’ by
4

o s
_ t~—1 _ 2
G = {lh(S'CYS = (tSz 33) € aAy),

, o) S,
G ={Anr(C)|S = (tSZ 53) € SAn}.

1 r) . .
Clearly G’ = {(C4'S,, C483)|ES(2“” " integral, Sz € SAn_} is a sub-

. . . 1
group of index abs(d€l,)" in the (additive) groufizg = {(tS’Z, C483)|§
S, integral and of sizen(-r,r), S3 € SAn}. MoreoverG = {('S,'C;*-

1 .
sL(cyicCcyh, s3tc;1)|5 S integral,Ss € aAn_r} C G'. As repre-
sentatives 0659/G, we can take representatives{@;S3|Sz € sAn_r}/
{S3'C;YSs € aAn-} together with representatives §55|S, of size
(r,n—r) and with entries irsZ}/{'S,'C;%|S; of size ¢,n - r) and with
entries inaZ}. Hence
[Go : G] = [SAn_r : aC; An'C; ] abs(deté/s)'C )™
= abs(detoc; )"+ abs(detiCy )™
154 and so
[G': G] = ™™D aps((deCy) ™/ (detCa)™) = vo(Cn), say
Let
0 Si»
S’ = )
! (tS 2 Si3
be chosen such thah_r(CNS]) are representatives f@’/G. We now

claim that for'S = S = O(mod s) andM = N(3 £ ), (fIM)2) is
determined already by,_(M). Indeed, let

M/:N(En S),M”:N(En S)

)e SAp for 1< j<vo(Cn)

0 Ej 0 Ej
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with integral symmetricS’, S” = O(mod s) and lett,_(M’) = A,
(M”). Then, by Lemma&L6a1ay’ = KM” for someK in A, and
the hypothesis o1%’, S” forcesK to be inAn,(s) and the associated
K* in T, to lie in I',(s); hence we havef((M")(2) = (f|IKM”)(Z) =
((FIKINIM”)(Z) = (flIM”)(Z). Writing therefore €[|(An-r(Cwm), Anr
(Dwm))(2) for M = N (G 2 ) inT, as above, we have

Z(EN):= ) (f||N(EO” Esn))(Z)

_(00 52)
S‘(‘sz Sy )5S0

- Z (f1I(An-r (Cn), An—r (Dn) + H))(Z)

HeG’

= > > (Flnr(Cn), Anr(D + CS))) + H))(2)

i HeG

_ En S/\(En CylsS'Cy
- Z mz (f||N( 0 En)( 0 E 2).
5:(952 gz Jears

EO s/ ch ¢,
= = = 1
For M N( o E(">)’ we have, howeverCy Cn ( 5c)

Dw = CSi' + Dn, (Am Cgﬂl)* is integral andCyZ!Cy + Dy'Cy = 155
W + Cy S'ltCM. In view of Lemmd_L.6.20, we have
J(f,N) = ﬂ(detCN)ka(r—n)(n+r+1)/2

D" aj ) bj(Py)(detPy) -2/ (detp) (/2
ji o<P
X ns(tr(P(W + S{T'CnD)))

Q

P p

whereP = (tl o
P, P§

2c3P; integral,ciPs € A}, and
B 1 = ikt -n(-1)/2p)(-n)(k-r/2)y,
S(r—n)(k—(n+r—l)/2)/l—n_r(k —r/2).

) > 0 runs over all such matrices witPy € Ay,

For any suchP and anyH = (H&”‘”), Hg“r’”‘r)) in G, let y(H) =
ns(2tr(H1'C1P2) + 2tr(H2'C,P5) + tr(H2'C4P3)). Then it is not hard to
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prove thaty(H) = 1 for all H in G and ns(tr(PS['Cn]) = x((C4'S,,
C4Ss)) = x(An(CS)) for S = (‘gz gi? € sAn. Therefore, in view of
our choice ofS;, we havey, ns(tr(PS[['C])) = Xnec/c x(H) = vo(N)

|
or 0 according ag is trivial or not. Now,y is clearly trivial if and only
if 21C1P,C4 = O(mod 1) andC,PyCy + 1C41P2Cy + P3[Cy] € A%,
Lemma 1.6.21.For P as above and T= P[Cy] = (Tf) Tz), we have

T2 T3

T e Ay,

2'C1P,C4 = O(mod 1
1PeCa S Xmod D TiC] = (TG € A;

P1 € A7 2ciP, = O(mod 1) ciPs € A:;,} {
ICoP2Cy + 'C4'P2Cy + P3[Cy] € A},

156 Proof. T = P[Cy] is equivalent to the conditions

Ty = P1[C1], T2 = 'C1P1C; + 'C1P2Cy,
T3 = P1[Cy] + 'C4'P2Cy + 'CoP,Cy + P3[Cy].

From the assumptions dn, we see thall;, = P1[C1] € A}, 2T, =
2'C1P1Cy + 2'C1P,C4 = O(mod 1) andT3 € A}, proving the impli-
cation=. We uphold next the reverse implication. Frdime A;, and
T1CY. (TICYMD)* € A}, we have

Pl = Tl[CIJ'] S A:’ t(:2|:)2C4+t(:4t|32C2+ P3[C4] = T3— P]_[Cz] S A:]—r-
Further

2'C1P,Cy = 2T, — 2'C41P1C, = O(mod 1)

2¢3P; = 2¢0'C(2'C1P2C4)coCyt = O(mod 1)

P3 = T3[C;'] - P1[C2C, '] - 'C (‘T2 - 'C2P1Cy)Cy 'CoC
—{(C1'CCY)(T2 - 'C1P1CR)Cy !

1 _~-le -1 ) )
and soc3Ps € Aj_,, in view of coC™* = co(cé Clcifc“ ) being inte-

gral. m|
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Putting together the results above, we have ffandN as above,

(detCl)" / (detC4)" _
gn-r)(n+r+1)/2 Z @]

J(f,N) =8

Z bj (T [Cal]) *)(deﬂ-*)(r+l)/2—k(det-|-)k—(n+1)/2
0<TeAj

X ns(tr(T C' D))s(tr(T 2))

Lemma 1.6.22. The number ofD3, D4) such that F= (C4D3D4) runs
over a set of representatives ef-equivalence classes i, for fixed
C4 with detCy4 # Ois at mostabs(deCy) 67" ... 5n_r Wheresy|. .. |0nr
are elementary divisors of C

Proof. For fixedC4, the number ok -inequivalentF is at most the in-
dex of {C4H|H = H""" integra} in {H|H™"" integra} multiplied by

the index of{C4L|L € A} in {Dg”‘r’”‘r) integral|C; D4 is symmetrig

and hence at most equal to abs@gX - o1 (Cs) Whereo_((Cy) is

the index of A, in {{S = S with entries iNQ|C4S integra}. 157
Now there existJ1, U, in GL,_(Z) such thatJ,C,U, = ¢ is a diago-

nal matrix with diagonal entrie&,, ..., d,_r for which é4|...|6n_,. For
calculatingop((Cs), there is no loss of generality in takir@ to be
already equal t6 and saorn(C4) = 677" ... 6, proving the lemma. o

We are finally in a position to state

Theorem 1.6.23([10], [20]). Let f be a cusp form of degree r, (even)
weight k> n+r + 1 and stufe s, fod < r < n— 1. Then for T =
(T*fk”) I) > 0in A}, the Fourier cogficients 4T, f; M) of the transform
E,'ﬁ’,(z, f)IM of the Eisenstein series, for M Iy, we have the estimate

a(T, f; M) = O((detT)< (™12 ) (detT*)k-(+1/2)

the O-constants depending on f, n, s and k and being uniforlonas
as T lies in a fixed Siegel domain.

Proof. Now EX,(Z )M := > (fIIN)(Z2) and in view of
) NEAn (\In(s)M
Propositiol_L. 6.2, contributions &T, f; M) arise only from terms for
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which rank @n_r(Cn)) = n—r. By LemmdL&.1l5, we have
M(IM= [|  Anr(9KM(Cs Dz Ds)

(C4D3D4)€%n,r
E, S'\(E, sS\[U 0
0 E,J\O0 E,/\O u-?
(r.,r) (r.,r)
(0 *) S ='S'mod s!S=S= (0* :) integral

*
K € Anr(9\Ans,'U € P(n, 1, Z)\GLn(2)

where the accent ofy indicates that only thedyD3D4), K = K(S’, U)
and'U relevant for the decomposition of the left hand side app@ar.
deed KM(Cs, D3, D) (5 £ )M ("% ) must be inly(s), this con-
dition clearly being mdependent of the matrices). Applying the for-
mula for 7 (f,N), stated just prior to Lemma_1.6]22, f¢K* instead
of f, Z + S’ instead ofZ (since( ) commutes W|th( En SS) and
N = M{Cy4, D3, D4} we get, for the Fourler caicienta(T, f M) corre-
sponding tal' > 0 in A}, an expression of the form

yz sz 03D ((detCy)¥/(detCa) 9b;(T['UC\'])")

K,s' U
(det(r['U)*) F (detT)<"% x
X ns(tr(T S )ns(tr(T['U~11C D))

with a similar connotation for the account ¢has for[]’ earlier and
furthery = g/MN1+1/2 and pounded constant§(1 < j < m). By
LemmdLE.22, we know that the number (D) such thatCzD3Da)

runs over‘%m, for fixed (non-singularC4 with 61, ...,6nr as elemen-
tary divisors is at most (abs def)"6] " ... dn-r. Under the equivalence
~, C4 andVCy for V in GL,_((Z) have to be identified and hence, in
order to estimate the number of integral invertillgwith 61, ..., 6nr

Cl .. .
as elementary divisors, we may assu@ge = .l i in triangu-

: e Gj

woo Cp—r

lar form with c3,...,ch.r > O @and 0< ¢ < c. for | > i. Since
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017" ... 61 = 61(6162) ... (61...0nr) < C1(C1C2)...(C1...Cny) @nd the
number of sucltC, for fixedcy, ..., ¢y is evidently< c,...ch'~1, we
may now conclude, in view also of the estimate for Fourierfiocients

of cusp derived earlier, the finiteness of the numbeKpfS’ and the 159
boundedness of’j, that

aT, M) =0( > (detCy/ detCq)(det(T['U1]))*/

(C4D3 D4)E(;ﬂn,r
tUeP(n,r;Z)\GLn(Z)

detC2)M2(det(T['U1))*) & x (detT) (M2

=O(( Z 1. Cor) MG O Y
1<cy,...,Ch_r<o0

(> (det(['u™)")

tueP(nrz)\GLn (2)

= (k= n)""O((detT*)(+17K/2(detT)k-("+1)/2)

r+1-k n+l

= (detT)< ")

since, for the sum oveltJ which is a Selberg zeta function, we have
the aboveD-estimate involving det* and defl, as long ad stays in a
fixed Siegel domain (see page 143 and the Theorem on pagelidy, [
This completes the proof of Theordm 1.6.23. m|

Remarks. 1) The case of half-integr& > n+r + 1 can also be dealt
with similarly.

2) Letf(2) = > a(T)ns(tr(T2Z2) € {n,k, s} for evenk > 2n + 2, such
T

that the constant term of the Fourier expansions at all tispscu
vanish. Then, fof > 0, and minT) > 2" > 0, we havea(T) =
O((detT)* (™12 /(min(T))¥/2-1). (This is just TheoreriD stated
on page 7 and it follows from the reformulation of Theolem3d.6
given immediately thereafter and TheorEm1.5.23, on ndtiag
(detT*)(’+1‘k)/2 < ((min(-l-*))—r(k—r—l)/Z < (min(T))—r(k—r—l)/Z <
(MinT)) %2 sincer(k —r —1)/2 > k/2-1forl<r <n<
(k/2) - 1.
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3) Applying the theorem above to the theta series
9n(Z.S) = > exp(2ritr(S[G]2))
G(mn)

associated with an integrain(m) positive-definite matrixs, we
get, for the number(S, T) of integral representations af =
T > 0 by S, an ‘asymptotic formula’ fom > 4n + 4:

n-1 ;
(S, T) = on(m-n+1)/2 1_[ %(deﬁ) m-n-1 l_[ a/p(S, T)+
j=0 P

+O((detT)™ 112/ (min T) 1)

as min{l) tends to infinity.

1.7 Primitive Representations

We fix a natural numben. ForGp = GLy(Qp) N .#n(Zp) andUp =
GLn(Zp), L(Up, Gp) stands for a vector space ov@rspanned by left
cosetsUpg, g € Gp. Up acts canonically from the right on(Up, Gp)
and we denote b (Up, Gp) the set of all invariant elements afUp,
Gp) under this action. The abbreviatidhpgUp(g € Gp) denotes an
elementy, Upg; of H(Up, Gp) whereUpgUp = [J Upg; is a left coset
decomposition. It is easy to see that the{shigUp|g € Gp} is a basis
of H(Up, Gp). If we introduce a product ikl(Up, Gp) by (3 aUpgi)) -
(Z bjUphj)Z
= > abjUpghi(a. bj € Q. g, hj € Gp),
it is well defined. Let
mp(i) :=Up[p,...,p,1,...1]JUp (i =0,1,...n),
\./‘—-/
|

Tp(K) = Z Uplp,...,p"U, if k>0, and

ri+-+rp=Kk
ri>..>rn,=0

Tp(k) := 0if k < 0. Then the following is a fundamental result of
Tamagawa [ [
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Lemma 1.7.1. H(U,, Gp) is a commutative ring and

n
DD P IET (k- () = 0 for k> 1.
h=0

Let V be a vector space ové& with dimV = n. By alattice in V
we mean a finitely generatédsubmoduld. of V with rankL = n. Let
V be the vector space oveérwhose basis is the set of all lattices \@n
Then any element o is a formal sum of lattices ol with rational
codficients. If we consider a lattide onV as an element o7, then we 162
denote it by []. Now V becomes &1 (Up, Gp) module as follows: Let
L be a lattice invV andg € Gp. For a fixed basisui} of Z, ® L, let L,
be lattice inQp ® V spanned by, ..., u,)g L. Then we defingL =

VN (N Zq®LNLy). Foraleft coset decompositidt,gUp = [ Ui,
g#p
>i[giL] is independent of the choice of the basgig} and determined

uniquely byUpgUp, andL. Hence we can sdlp,gUp[L] = X[giL]
|

whereUpgUp = [ Upgi.

If {p%,..., p*} are elementary divisors @f € Gp, thenU pgUy[L]
is a sum inV of latticesM in V such thatM/L ~ Z/(p®)&... @ Z/(p*).
If UpgUp = [1U,Gi, UphUp = 1] Uph;, thenUphUp(UpgUp[L]) =
UphUp(S[aiL]) = X [hjgiL] = (UphUp)(UpgUp)ILI.

ThusV becomes &1(Up, Gp)-module.

Theorem 1.7.2.LetV be a regular quadratic space ov@withdimV =
n, and B, ) the bilinear form on V. Let P be a linear mapping frafrto
C such that R[L]) = Ounless @L) := detB(x;, x;) € Z where{x} is a
basis of L.

Putting
R(L): = > P(M), we have
MoL
P(L) = >’ 7(M, L)R(M) where
MoL

n(M, L) is defined as follows: SuppoggM/ZyL =Z/(p)® ... ®Z/(p) 163
hp
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for every prime p; them(M,L) = [](~1)"p™Me—1/2 and otherwise,
p
x(M,L) =0

Proof. If M o L, then clearlyd(L) = [M : L]?d(M) and soR(L) is a
finite sum of nonzerd®(M).
By LemmaL.Zll, we have

P(LD = PO D (1) p" 2Tk — hymp(M)[L])

k=0 h=0
= Zn:( 1)"phturz F’(i Tp(k = h)p(MIL])
0 k=0

>
Sl

= Y (-1t WP(Z Tp(Kp(MIL])

k=0

_ Y Yt VR Z Tal)-..

O<hi..hy<ni=2  Kg,e.,

- Tp[(kt)ﬂpl(hl) . ﬂpt(ht)[l—])
t
= > | [0 p 2R, (ha) . 7 (ROILD),

0O<hy,...hk<n i=1
wherepy,. .., p; are prime divisors ofi(L), sinceR(L) = p(IT X Tp(k)
p K

[L]). Sincerp,(h1)...mp(M)[L] is @ sum inV of latticesM such that
ZpM/ZpL =Z/(p) © ... ® Z(P;), the proof is complete. m|

hi

In the following, we fix a positive definite quadratic spaskeover
QdimW = m > nand a latticeéS on W such thatB(x,y) € Z, B(x, X) €
2Z for everyx, y € S whereB is a bilinear form onW. For a latticeL
on a positive definite quadratic space\éwith dimV = n, we denote
by R(L) andP(L) the number of isometries fromnto S and the number
isometriess from L to S such thatS/o(L) is torsion-free. An isometry
o from L to S induces canonically an isometry frovhto W and we
denote the extension by the same letter Considerings +— a pair
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(cIM, M) whereM = o (c(V) n' S), we obtainR(L) = Y P(M).
M>L
Hence we hav®(L) = Y, n(M, L)R(M).

M>SL

Let {S;} be a compDIete system of representatives of the (finitely
many) classes in the genus $fand E(S;) the order of the group of
isometries ofS;. Denote byS W(L) (= Siegel’s weighted sum)

DECRE=

whereR(L; S;) is the number of isometries fromto S;, and putA(L) =

R(L) — SWL). If T is an f, n) matrix corresponding ta, thenA(L) is

the Fourier cofficient of e(tr(T 2)) for a Siegel modular form of degree

n, weightm/2 and some level whose constant term vanishes at every
cusp. PutSWh(L) = X #(M,L)SWM) andAp(L) = Xp- (M, L)

MboL
A(M); thenP(L) = SWh(L) + Ag(L). It is known that

SW(L) = (some constant depending ny8) x d(L)™"-1/2 1_[ do(L, S),
p

wheredy(L, S) is a so-called primitive density and for a fixed primess
p the number of possible values df(L, S) is finite whenL runs over
regular lattices with rank = n. Moreover ifm > 2n + 3 andS Wy(L) #

0, thenSWh(L) > d(L)™"1/2 and ifm = 2n + 2, SW(L) # 0, then
SWh(L) > n(L)~*d(L)M™"-1/2 for anye > 0, wheren(L) is a natural
number defined by(L)Z = Z{Q(X)|x € L}.

Theorem 1.7.3. Suppose that, for every Siegel modular forfa) f=

> a(T)e(tr(T 2) of degree n, weight f2 and some level, whose con-
stant term vanishes at each cusp, the estimdli® a= O(min(T)™*
(detT)M"-1)/2) holds formin T > .2” (= an absolute constant indepen-
dent of f). If m> 2n + 2 ande¢ is a syficiently small positive number,
then Ay(L) = O((min(L))~#(d(L)M-"-1r2),

Proof. Leta > Z'(a € Z), and without loss of generality we may
supposeB(x,y) = Omod a for anyx, y € S. If, then min() < 2,
SWL) = R(L) = A(L) = 0. Hence we may suppose that the estimate

for a(T) holds without the restriction “mif{) > 2. For a positive
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definite matrixT and integral non-singular matri®, min(T[G™) =
min(detG=2.T[detG - G™] > detG2min(T). Hence, forM > L, we
have minM) > [M : L] 2 min(L). From this, we have

Ap(L) = Z x(M, L)A(M)
M>L
= Z I7(M, L)|O((min(M))~4 (d(M))(™-"-1)/2

M>oL
d(M)ez

= > (M, IO[M : L]*(min(L))*x
M>L
d(M)ez
X (M : L] Zd(L)™72)
< (MinL)#@LY™D2 D (M, LM : L],
M>L
d(M)ez
166 where the last sum is bounded by
(1+ Z ph(h—1)/2—h(m—n—l)+2hs+h(n—h)+a))
pid(L) 1<h<n
foranya >0 by LemmdT.4]7.
< 1_[(1 + Z ph(—h/2—3/2+2£)+a)(m > 2n+ 2)
P

1<h<n

< ]—[(1 +np ) <« 1.
=)

If n =1 andm > 4, then the supposition in Theordm117.3 is valid
and leads us to an asymptotic formula Ag(L); we can thus conclude
that if a natural numbetris primitively represented b8 at every prime,
thent is primitively represented globally b$ if t is suficiently large.

A similar assertion is also true for= 2, m > 7. Letn = 2, m = 6.

The error term i©Q((min(L))~¢ log %(d(L))3/Z) by Theoreni .53
VaM) VOI(")[M “L]for Mo L,

min(M) — min(L)

under the Assumption:}. Since

VaEW) | VAD

minM) ~ I min) * O([M : L]*) for anya > 0. Similarly, we

log
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getAy(L) = O((min(L) *log ML),






Chapter 2

Arithmetic of Quadratic
Forms

IN THIS CHAPTER, we exhibit several theorems on represantatof 167
quadratic forms obtained by an arithmetical approach. Tiig loasic
reference on quadratic forms here is

[S]J. -P. Serre, A Course in Arithmetic, Springer-VerlagwiNYork-
Heidelberg- Berlin, 1973.

2.0 Notation and Terminology

Letk be a field with characteristig 2, ando(> 1) a ring contained ik
(with k as quotient field).
Let M be ano-module andQ a mapping fromM to k such that

(1) Q(ax) = a®Q(x) forac oandxe M

(2) Q(x+Yy) — QX — QY) = 2B(x,y) is a symmetric bilinear form.
Then we call the tripleNl, Q, B) or simply M aquadratic module
over g andQ (resp.B) thequadratic form(resp. theilinear form
associated wittM.

Hereafter, we consider only modules which are finitely gatest
and torsion-free.

139
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2.0.0

Let M be a quadratic module overand suppose tha¥l has a basis
{vi} overo. Then we writeM =< (B(v;,V;)) >, detB(v;,V;)) is deter-
mined up to multiplication by an element 91‘2 = {¥*|x € 0*}. Now
det(B(Vi,Vj))9X2 is called thediscriminantof M and denoted byl(M)
(= disc @) in [S]). If d(M) # 0, then we say thaM is regular (=
non-degenerate irS[]. We write d(M) = (det®B(v, vj)) if there is no
ambiguity.

2.0.0

Let M, M’ be quadratic modules over If f is an injective linear map-
ping form M to M’ which satisfies

Q(f(x) = Q(¥) for xe M,

thenf is called arisometryfrom M to M’ (= injective metric morphism
in [S]), and we say thaM is represented by/’. If, moreover, f is
surjective, therM andM’ are called isometrics{isomorphic in ]) and
we write f : M = M’ (or M = M’). The group of all isometries frorv
onto M is denoted byD(M); 0" (M) stands fof{x € O(M)| detx = 1}.

2011

Let M be a quadratic module overand suppose thatl is the direct
sum of submoduleMy, ..., My. If, for any different indices, j,

B(x,y) =0 for xe Mj andy € M;,

then we write
M=M;L... LM,

(& is used in [S] instead af).
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2.0.2.2

Let M be a quadratic module overandN a subset oM. We denote by
N+ (= N%in [S]) the orthogonal complement of, i.e.,

N+ = {x € M|B(x, N) = O}.

2.0.3.3

Let V be a quadratic module ov&rand M ano-module onV. We call
M a (o-) latticeif kM = V.

2.04.4

Let M be a quadratic module overand suppose thédl contains a non- 169
zeroisotropic vector xthat is,M > x # 0, Q(x) = 0. ThenM is called
anisotropic quadratic module. (This definition isftirent from B].) If
M contains no (non-zero) isotropic elemelt s said to beanisotropic

2.0.55

Let K o k be fields andK > ©, k > o rings and suppose that> o.

For a quadratic modul&! over o, 6M denotes a canonically induced

guadratic modul®@® M overo. Let M (resp.V) be a quadratic module
[0}

overZ (resp.Q). Fora prime numbep, we denote b, V, quadratic
modulesZ,M, Q,V respectively. Fop = co, we writeRM, RV for M,
Veo-

2.1 Quadratic Modules OverQ,

In this paragraphpis a prime number and we denotey Zp, k = Qp
the ring of p-adic integers and the field gFadic numbers.

2.1.0

LetV be a regular quadratic module oderSuppose

V:<a1>J_...J_<an>(ai€kX)a
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that is, there is a bas|s;} such thatQ(v;) = a;, B(vi,v;) = O fori # |.
ThenS(V) = H(a. a;)(= &(V)(dV, -1) in the sense of]) where (, ) -

the Hilbert symbol ok-is an invariant oV and we quote the following
theorem from (§], p.39).

Theorem 2.1.1. Regular quadratic modules over k are classified by
d(Vv), S(V), dimV.

Corollary. LetV, W be regular quadratic modules over kdithV+3 <
dimW, then V is represented by W.

Proof. Without loss of generality, we may assume dim 3 = dimW.
Leta, b, c be non-zero elements &fwhich satisfy

ek = d(V) - d(W),
—-ac¢ kxz,
S(W) = (¢, d(V))(a, c)(ab, ac)(bc, ~1)S(V).

and putW =<a>l1<ab>1<bc>1 V.
After simple manipulations, we get

d(W) = d(W’), S(W) = S(W’), dimW = dimW'.

The theorem implies thaW/ = W', ]

2.1.0 Modular and Maximal Lattices

Let M be a regular quadratic module ower
By thescale $M) (resp. the nornm(M)) of M we mean am-module
in k generated by

B(x,y) for xye M(resp.Q(x) for xe M).

29(M) c n(M) c (M) follows from Q(x +y) — Q(X) — Qy) = 2B(X,Y)
andQ(x) = B(x, X). Hencen(M) is S(M) or 25(M).
If there exista € k* and a symmetric matril € .#,(0) with detA e

0* such that

M =< aA>,
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then we calM ((a)-) modular Whena € 0%, M is said to beinimodular.
If M is (a)-modular, thens(M) is equal to 4. We call M ((a)-)
maximal @ € k¥) if n(M) c (a) and M is the only latticeN which
satisfiesM c N c kM andn(N) c (a).
The fundamental fact on maximal lattices is the following

Theorem 2.1.2.Let V be aregular quadratic module over k and &*.
If M, N are (a)-maximal lattices on V, then M, N are isometric.

To prove this, we need several lemmas.

Lemma?2.1.1.LetV be aregular qguadratic module over k wittmV =
nand M a lattice on V. If (M) c (a)(a € k*) and(2"a™""d(M)) = o or
(p), then M is(a)-maximal.

Proof. Suppose that a lattidd on V containsM andn(N) c (a). Then
d(M) = [N : M]?d(N), as is obvious. Sinced(N)) c s(N)" c (272
n(N))" c (a/2)", we have (2a "d(N)) c o. Then it implies

o or (p)=("a"d(M))=[N:M]*2"a"d(N)) c [N : M]%.

From this it follows thatN : M] = 1 andM is maximal. O

Corollary . If M is a unimodular lattice with (M) c (2), then M is
(2)-maximal.

Proof. Sincen(M) = (2) follows, LemmdZ.T]1 yields immediately the
corollary. O

Lemma 2.1.2.Let V=< ( §) > be a hyperbolic plane over k and M a
lattice on V. The following assertions are equivalent:

(1) M is (2a)-maximal(a € k),
(2) M is (a)-modular with i{M) c (2a)(= 25(M)),

(3) M=<(93)>. 172
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Proof. (3) = (2) is trivial.

(2) = (1) : n(M) = (2a), (dM) = (a®) and Lemma 1 complete this
step.

(1) = (3) : Since any isotropic primitive vector ®fl is extended to
a basis oM, there exists a basis} of M such that B(e. e))) = (38),
b,cek Q&) =c Qe +e) =2b+c e n(M) c (2a) imply
c € (2a), b € (a). Supposebp™ € (a). SinceQ(arple; + ae) =
2a1a,p'b + asc € (2a) for g, & € o, M & L = o[p ey, e and
n[L] c (2a). This is a contradiction. Therefore we hawe: bu(u € 0%)

andM —Q[Ue_L,eZ_%el] —<(a8) > .

Lemma 2.1.3. Let V be a regular quadratic module over k and M a
lattice on V. Suppose that L is a modulainwdule in M. BL, M) c
s(L) ifand only if M= L L K for some module K.

Proof. Let s(L) = (a). Suppose thamM = L L K. ThenB(L, M) =
B(L,L) = (L). Conversely, supposB(L, M) c (a). We define a
submoduleL by L+ = {x € M|B(L,X) = 0}. ThenL L L* c M
andkL L kL*+ = kM. Take any elemernt € M and decompos& as
X =y+ 2y € kL,z € kL*). ThenB(L,y) = B(L,x) c B(L,M) c (a).
Let {v;} be a basis oL, then B(vi,v;)) = a(aj), detl;) € o* for
ajj € 0. Puty = Y cjvj(c; € k) andB(v,y) = aa(a € 0). These
imply (Cy,...,ch)a(a;) = a(ay, . .., an) and thenc; € 0. Hence we have
yeL,andze L+ with L ¢ M. ThusL L L* = M follows. O

Lemma 2.1.4. Let V be a regular quadratic module over k and M
an (a)-maximal lattice on V. For an isotropic primitive element & o
M, there is an isotropic element y of M such that Mo[x,y] L =,

o[xy] =< (0o %) >
Proof. By definition, B(x, M) c s(M) c %D(M) C %(a) holds. Suppose

B(x, M) c %(pa). Then, for everyw € M, we haveQ(w + p1x) =

Qw) + 2p~'B(w, x) € (a). Hencen(M + p~tox) c (a) follows. This
contradictsM being @)-maximal sinceM + p~tox 2 M. Taking an

1
elementz € M such thatB(x, 2) = Ea, we puty = z— a1Q(2)x € M;
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ox,y] =< g(g 1) >c Mis (a/2)-modular and3(q[x.y], M) ¢ (M) c

(g) We may now apply LemniaZ2]1.3 to complete the proof. O

Lemma 2.1.5. Let V be an anisotropic quadratic module over k and M
an (a)-maximal lattice. Then we have

M = {x e VIQ(x) € (a)}.

Proof. We have only to prov@(x+Y) € (a) if Q(X), Q(y) € (a). Suppose
that B(x,y) ¢ (a) for somex, y € V with Q(X), Q(y) € (a). Then
(2B(x, y)p") = (a) for somen > 1. This implies

d(x y) = QIQY) — B(x. y)* = —=B(x, y)*(1 - Q(X)Q(Y)/B(X. ¥)),

and QMQYB(xY)™?) = (QQY)a24p™) c (4p™). Hence
—d(x,y) € k¥ follows and therk[x,y] is a hyperbolic plane an¥ is
isotropic. This is a contradiction. ThuBg,y) € (a) andQ(x +Y) €
(@. m|

Lemma 2.1.6. Let V be a regular quadratic module over k and M an
(a)-maximal lattice on V. Then there are hyperbolic plangsatd an
anisotropic submodulef V such that 174

V =1 H; 1LV,
M=1(MnH;) L (MnVy),

_ (0 a2
MﬁH,_<(a/2 0)>,

M N Vo = {xe VolQ(X) € (a)}
Proof. This follows inductively from Lemmds2Z1.4 ahd2]1.5. 0O

In LemmdZ 116, the number of hyperbolic planes ¥pdp to isom-
etry are uniquely determined by Witt's theorem. This prothestheo-
rem.

Lemma 2.1.7. Let V be a regular quadratic module over k and L an
o-submodule in V with (L) c (a)(a € k¥). Then there exists afa)-
maximal lattice on V containing L.
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Proof. Suppose thafvy, ..., Vn} is a basis olL overo, and{vy,..., Vy,
...,Vm} is a basis oV overk. PutM = {vi,...,Vn, PVnits- .., PVim).
It is easy to se@(M) c (a) for a suficiently large integet. Here we
note the following two facts. (i) For lattick & N onV, d(K)/d(N) = 0
mod p?. (i) For a latticeK on V with n(K) c (a), d(K) c s(K)™ c
(%D(K))m C (a/2)™. If M is not (a)-maximal, then there is a lattibd;
onV with M c Mj. If My is not (a)-maximal, repeat the preceding

step and continue in this way. However, this process mustihaite at a
finite stage, and the last lattice is (a)-maximal. m|

Proposition 2.1.10.Let V, W be regular quadratic modules over k with
dimV + 3 < dimW, and M a maximal lattice on W. Then every lattice
L on V is represented by M if(h) c n(M).

Proof. From the Corollary to Theoreln 2.1.Y, is represented byV.
TheorenZ. 112 and LemrhaZIl.7 imply the proposition. m|

2.1.0 Jordan Splittings

Let L be a regular quadratic module ower We claim thatl is an or-
thogonal sum of modular modules of rank 1 or 2. Suppose tleae tis

an elemenk € L with (Q(X)) = S(L). Then, sincex is (Q(x))-modular,
LemmalZIRB implied = ox L . Next, suppose that}(x)) # s(L)

for everyx € L. SinceQ(x) = B(x,X) € (L) for x € L, we have
Q(x) € pqL) for x € L. Hence, forx, y € L with (B(x,y)) = S(L), it

is obvious thap[x, y) is s(L)-modular. Again by the same lemmlajs
split by o[x,y]. Grouping modular components of the above splitting,
we have a Jordan splitting

(ﬁ) L=L;L...L1L.

where evenl; is modular ands(L1) 2 ... 2 S(Ly).

For a quadratic modul®l we putM(a) = {x € M|B(x, M) c (@)}(a
K). Suppose thaM is (b)-modular. Then it is easy to séd(a) = M
or ab*M according ask) c (a) or (b) 2 (a) respectively. Hence
s(M(a)) c (a); further s(M(a)) = (a) if and only if (@) = (b). On the
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other hand, we havk(a) = L1(a) L ... L L¢(a) for (#). The above ar-
gument impliess(L(a)) = (a) if and only if (@) = s(L;) for somei. Thus

the numbet ands(L;) in the decompositiorf] are uniquely determined.
Fix anyi and takea € k* with (a) = S(L;). ThenB(L;(a), L;(a)) c (pa)

for j # i; furtherLj(a@) = L; is (@)-modular. SeV = L(a)/pL(a) and
B'(x,y) = a1B(x,y) € Z/(p) for x, y € V. ThenV is a vector space over
Z/(p) andB’ is a symmetric bilinear formB’ is identically zero on the
images ofL_j(a)(j # i) onV and gives a regular matrix on the image af76
Li(a) on V. Hence we get diix € VIB'(x,V) = 0} = } rankL;. Thus

F3

|
rank L; is also uniquely determined Hdy. If n(L;) # sJ(Li), thenp = 2
and X(L;) = n(L;), and it is the case if and only B'(x, X) is identically
zero forx € V. This condition being satisfied or not is determinedLby
ands(L;). Thus we have proved

Proposition 2.1.11. Let L be a regular quadratic module over ®@hen
there is a decomposition

L=LyL...LLy

where every Lis modular and €.1) 2 ... 2 s(L;). Moreover the num-
ber t, L), rankL; and the equality of fL;) and gL;) or otherwise are
uniguely determined by L.

Proposition 2.1.12. Suppose gt 2. Let L be a unimodular quadratic
module overoThenL=<1>1 ... 1<1>1<d(L) >. Ifrank L = 3,

QL) =0
Proof. For a unimodular modul®, suppose Q(x)) # o(= s(M)) for
1 .
everyx € M. Then we haveo = (M) c Eﬂ(l\/l) c (p/2). This
is a contradiction. Thus the proof of the previous proposgi shows
L =< up >1 Li(up € 0¥). SinceL is unimodularlL; is also unimodular.
Repeating this argument, we have=< u; >1 ... 1< U, > (4 € 0%).
Since the Hasse invariant &L is 1, < u; >L ... 1< u, > and
<1>1...1<1>1<d(L) > are isometric ovek after the exten-

sion of codficient ring fromo to k, and they ar®@-maximal by Corol-
lary to LemmdZ.I]1. Hence they are isometric, by Thedren¥2.it
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rank L

QL) =

Proposition 2.1.13. Suppose p= 2. Let L be a unimodular quadratic
module over o L has an orthogonal basis if and only iflt) = s(L).
Otherwise L is an orthogonal sumof( 9 §) >, < (%) >, < (%) >1<

21 . . 01 01
(12) > is isometric to< (10) >1< (10) >,

3, thenL =< (fl’ (1,) >1 * holds. Therefore it follows that

2
o. O

Proof. As in the proof of PropositioRZ T3, we have a decompasitio
L=1L1 L Ly,

whereL; =< u; >1 ... 1< U > (y € 0%), Ly is an orthogonal sum
of < (¥ ) > (@.c € ob,e 0. Moreover,n(L) = s(L) if and
only if rankL; > 1. SupposeM = 0x; L O[Xp, x3] and Q(x1) € 0%,
(B(Xi, Xj))i,j=23 = (Zba zbc), a, b, ceo,be o ThenN = o[x; + X, X3] IS
unimodular and)(x1 + X2) € 0*. The proof of PropositionZT1L1 shows
thatN has an orthogonal basis aMlis isometric toN L x by Lemma
EZT13. ThusM has an orthogonal basis. This proves the first assertion.
Let K = ofvi, o], (B(vi,v))) = (2 £)(ab.c € o.b e 0. ThenkK

is isometric to< 2a >1< 2ad >, d = 4ac— b? = -1 mod 4. After
easy manipulations, the Hasse invari&fkK) is 1 (resp.—1) accord-
ing asd = 3 (resp. 7) mod 8. Hence by virtue of Theorém 34.1.1,
kK is isometric to< (}3) > (resp.< (93) >) if d = 3 (resp. 7)
mod 8. Since they are (2)-maximal by Lemina—.1.1, they are iso
metric by Theorenli_Z1l.2. By Theordm 2]1.1 again, it is easye®
<(34)>1<(34)>1<(94) > overk. Overo, they are (2)-maximal
by LemmdZTI and then they are isometric. m|

2.1.0 Extension Theorems

LetV, W be quadratic modules ovkandM a (0)-lattice onV. Suppose
that
u:M-Ww

is a linear mapping oves. Then, putting, fow € W,

BuW)(X) = B(u(X),w) for xe M
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we obtainB,(w) € Hom(M, k). The following theorem is fundamental.

Theorem 2.1.14. Suppose that there is an o-submodule G in W such
that, for ke Z, the conditions

Hom(M, o) = {By(w)|w € G} + Hom(M, po),
(B { P 'n(G) c 20,
Qu(x)) = Q(x) mod 0 for xe M

are satisfied. Then there is an elemehtiHom(M, W) satisfying
U()=u(x) modp‘G for xeM and ()1
If, moreover, V is regular, there is an isometryftom M to W satisfying
Ug(X) = u(x) mod p‘G for xe M.

Proof. Let{v,...,Vvm} be a basis oM. Put
a(Y v, 3 yv) = 37 3 (QMUW) - Qe+ pt
D (BUW), u(vy)) - B, vi)xy;.

i<j
SinceQ(Y wi) = Q(w;) + 2 3 B(wj, wj), we have 179
i<j
2p4a(x, X) = QX)) - Q(x) for xe M.
It is obvious that
20(QMuUW) - Q) €0 and

p{BUV), u(v;)) - B(vi, vj)} = %p_k{ Q(u(vi + vj)) — Q(u(v))

= Q(u(vj)) — Qvi +Vvj) + Q(vi)
+Q(vj)} € 0.
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Thusa(x,y) is ano-valued bilinear form orM. Therefore, for each
there exisg; € G andm € Hom(M, po) such that

a(x,vi) = B(u(x),g) + m(x) for xe M.
Making use ofg;, we definev e Hom(M, G) by
VO | xivi) = = > %gi (% € 0).

We putu’(X) = u(X) + pv(x). Thenu’'(x) = u(x) mod p*G is obvious
for x e M. We must verify the propertyi)x,1 for u’. Forxe M, w € G,
we have

By (W)(X) = B(U' (), W) = BU(X), W) + PB(X), W)
= Bu(W)(¥) + P*B(V(¥), W).
Here the linear mapping — p“B(V(X),w) is in Hom(M, po) since
PB(vV(X), W) € p‘s(G) € %p“g(G) c po. Hence the first equation is

valid for u'.
Forx = > xvi € M, we have

QU (X)) = QUUEY) + P*Q(Y) + 2pBU(X), V(X))
= Q) + P*QV() + 2p*(- )" XB(u(x), &)
= Q(U() + P*QV(X) - 2p*(alx ) - > xm(x))
= Q) + PFQV(X) +2p* > xm().

Here p*Q(v(x)) € p*n(G) c 2p**!o, 2p* X xm(x) € 2p**1o hold.
Thus the third property offfjk.1 holds foru’, and the former part of
Theoren 2134 is proved. Repeating this argument indelgtithere is
an elementi, e Hom(M, W)(¢ > 1) satisfying

QU (X)) = Q(X) mod ‘0 for xe M,
w(X) =u(x) modp‘G for xe M.

Hence there is an elemem € Hom(M, W) such that

Q(Uo(¥) = Q(x) and up(X) =u(x) modp‘G for xe M.
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Supposealy(y) = 0 fory € M. Then we have

B(y. M) = B(Uo(y). Uo(M)) = 0.

If V is regular, thery = 0 follows. Hencey, is injective and indeed an
isometry. This completes the proof of TheoreEm 2.11.14. O

Definition. Let V be a quadratic module over k and M a lattice on V.
Then we denote by M

{x e V|B(x, M) c o}.

Corollary 1. LetV, W be regular quadratic modules over k and M, N
lattices on V, M respectively. Let h be an integer such that 181

p"n(M*) c 20.
If u e Hom(M, N) satisfies
Q(x) = Qu(x)) mod ™o for xe M,
then there exists an isometryfitom M to N such that
u'(M) = u(M)
U(X) =u(x) modp™tu(M*) for xe M.
In particular, we have U: M = u(M).

Proof. We claim thatu is injective. Suppose thalx) = 0for0# x €
M. Without loss of generality, we may assume tka primitive in M.
Hence there exists’ € M# satisfyingB(x, X) = 1. 25(M*) c n(M¥) c
2p "o implies B(p"M¥#, M#) c o and thenp"M*# c (M#)* = M. Thus
p"X is in M. From

Q(x + p"X) = Q(u(p"x)) mod ™o
= Q(p"X) mod "o

we have 0= Q(x) + 2p" = Q(u(x)) + 2p" = 2p" mod 2p™0. This is
a contradiction. Thus is injective. Letp be an element of Hony, o).
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Theng(x) = B(x, 2) for somez € M¥. We show that#),.1 holds for
G = u(M*%. Forx € M, we have

Pe(x) = B(x p"2) = (B(U(x), p"u() mod p"*o

and thenp(x) = B(u(x), u(2)) mod po. Thus the first condition holds.182
Forx € M#, we have

Q(P"¥) = Q(p"u(x)) and 2™'o
and  p"™Q(x) = pP™1QuU(x) mod 0.

From the assumptiop"n(M#) c 2o, it follows that
p"™1Q(x) =0 mod o andthen p™Qu(x)=0 mod 2o.

Thuspn(G) c 20. By TheoreniZ 114, there exists an isomefrfrom
M to W such that

U(X) =ux) modp™iuMb) for xe M.

Sincep™™# c M, U(X) = u(x) mod pu(M) for x € M. This implies
u'(M) = u(M). m|

Corollary 2. LetV be aregular quadratic module over k and M a lattice
on V. Let h be an integer such that

p"n(M?) c 20,

and let N be a submodule of M which is a direct summand of M as a
module, and suppose that is an isometry from N to M satisfying

Ug(X) = x mod p™tM# for xeN.
Then @ extends to an isometry; & o(M) such that

ur(X) = x mod p™M* for xe M.
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Proof. We take a submodulbl’ such thatM = N @ N’. We define an
endomorphisnmu of M by

ux+x)=up(X)+x for xeN,x eN.

PutG = M#. By assumptionp™n(G) € 20. Fory € Hom(M, 0) there
existsz € M# such that

o(X) =B(x,2 for xe M.
Then we have, fok € M,

@(X) = B(u(x),2)
= B(x - u(x), 2) € B(p™M*# M¥) c B(pM, M%)
C po

sincep"M* c M as in the proof of Corollarfd1 to Theordm 2.11.14. Thus
Hom(M, 0) = By(G) + Hom(M, pg). Forx e N, X' € N’, we have

Qu(x + X)) — Q(x + X) = Q(Uo(X) + X) — Q(X+ X)
= Q(UoX)) — Q(X) + 2B(Up(X) — X, X), putting ug(x) — x = p™*ly,
= 2B(p™y, x) + p?™DQ(y) + 2B(p™1y, x') € 2p™ 10 holds.

Thus the conditiont)n,1 in TheorenZ. 114 is satisfied fot = W and

a linear mapping satisfyingu = ug on N. In the proof of this theorem,
we assume thdt, ..., v} (respectively{vn.1, ..., Vm}) is a basis olN
(respectivelyN’). ThenQ(u(v))) = Q(v) for 1 £ i £ n, and hence
a(x,y) = 0 holds forx e M,y € N. Thus we can takg; = u, m; = 0 for 184
i < n. This impliesv(N) = 0. Henceu' constructed in Theorem 21114
satisfies the condition’ = u = up on N. Repeating this argument, we
obtain an isometry; from M to V such that

ur(X) =u(x) = x mod p™M* for xe M,
ur(X) = up(x) for xeN.

Now p"M# c M implies thatu;(M) ¢ M and thenuy(M) = M, on
comparing the discriminants. O
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Corollary 3. Let V be a regular quadratic module over k, M a lattice
onV, and{us,..., Uy} a set of linearly independent elements of V. Then
there is an integer h such that for a sgt,..., vy} of linearly inde-
pendent elements satisfyinguBu;) = B(vi,vj) and y - v; € p"M for

1 <i < j<n,thereis anisometry & o(M) such that u;) = v; for

1<i<n.

Proof. Without loss of generality, we may assume thae M for 1 <
in < n, taking p'M instead ofM. PutN = K[uy,...,uy] N M and let

{wi, ..., Wy} be a basis oN and
(Ug,...,up) = (Wy,...,wp)A for Ae My(0).
We define an isometnyp from N to M by ug(u;) = vi. Then we have

(..,up(W) —wi,...) = (..., up(u) — uj,.. )AL
=(..,v —Ui,...)A_l.

If his suficiently large, thenug(x) = x mod p"+*IM¥ for x € N and a
suficiently largeh’. From the previous corollary our assertion follows.
i

Corollary 4. Let L be a regular quadratic module overamd x, ...,

185 X € L aset of elements of L satisfyidgt®(x;, x;)) # 0. Then there ex-
ists an integer h such that for any,y..,y, € Lwithy; = x, mod p"L,
there is an isometry- € O(L) for which

O-(Q[le e Xn]) = g[ylv B yn]
holds.

Proof. PutM = 0[X1,..., %], N = O[y1,...,¥n]. We take a sfiiciently
largeh; then detB(y;, y;))/ detB(x;, Xj)) € 9x2_ Applying Corollanf1 to
TheoreniZT 4 td, N, u: x; — y;, we see thatthere arg,...,z, € N
such thatB(z, z;) = B(x, Xj) andz = y; mod p" L for a suficiently
largeh’. From the previous corollary follows the existence of amrise
try o € o(L) such thao(M) = 0[z,...,Z] = N. m|
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2.2 The Spinor Norm

Letk be a field with characteristie 2 andV a regular quadratic module
overk.

Let T(V) = ea ®V(®V =k, ®V = V) be the tensor algebra of

V and letl be the two-sided ideal of (V) generated by elements of
the formx® x — Q(X) € T(V). ThenC(V) = T(V)/I is called the
Clifford algebraof V. It is easy to see tha(V) is the direct sum of
the images ofly = @(&)V) (n : even) andl; = @(%V)(n : odd) since
= NnTo)a (Il NTy).

Lemma 2.2.15.Let{v,...,V,} be an orthogonal basis of V. Then the
centre of §V) is contained in k kv; ... v, (Where \ ... v, is the product
of v, ..., vhin C(V)).

Proof. Forx,y € V, we have

Q(x+Yy) = (X+y)(x+Yy) = Q(X) + Qy) + xy+yx in C(V),

and thenxy + yx = 2B(x,y). For a subse§ of {1,...,n}, we identifyS 186
with vi, ... v, (S = {ip < ... <ij}). If S = ¢, then we take the identity in
C(V). Thenx € C(V) is written as

= > aS)S (as) k),

S

whereS runs over all subsets df, ..., n}. Although it is known that
the expression is unique, i.e., diV) = 2", we do not need to prove
the lemma. Seg(S) = 1 (resp.—1) if the cardinality ofS is even
(resp. odd). Sincevj = -v;v; fori # |, we have, folS c {1,...,n},

_[e(syus if ig¢s,
~ |-e(S)vS if ieS.

Hence it is easy to see that 1 and .. v, with n odd are in the centre
of C(V); moreover, 1 and ...V, for oddn are linearly independent,
since 1€ Toandv; ...V, € T1. Let S consist of all subsets ¢1, ..., n},
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giving a basis of2(V); we may assume th& > ¢ and{1,...,n}if nis
odd. Suppose thatis an element of the centre 6{V) and let

x=>"a(S) S((S) € k).

SecG
Thenxy = v;ximplies
XV Z a(S)svy
= > aS)eSvS- > aS)SMS
igSeG ieSes
= > aS)us.

SeG

Multiplying v; from the left, we have

> as)s+ Y as)s=o
igSeS i€eSec
&S)=—1 &S)=1
Since@ gives a basis o£(V), we have
alsS) =0,

ifog+Sc{l....,n,,orS ={1...,n}with neven. This completes the
proof of LemmdZZ15. m|

For any anisotropic vector € V (i.e. with Q(v) # 0), we define an
isometryr, of V by

It is called asymmetrywith respect tov)
Lemma 2.2.16.Suppose, ... Ty, = 1. Then Quy)... Q(um) € ke,

Proof. First, we note thain is even, since det, = —1. For an aniso-
tropicu € V and allx € V we have

2B(u, X)
Q(u)

TuX:X_ u
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=x- Q) Yxu+uxu in C(V)
=—uxut(Uut=Qu)tu in C(V)).

Hencery, ...y, = 1, implying that
Up...UpX=XU;...Un forall xeV.
By the previous lemma, we have 188
Up...Upn=a+bvy...vp,

wherea, b € kand{va, ..., vy} is an orthogonal basis f&f andb = 0 if
nis even. Ifnis odd, therbv; ... v, is in the images oTy andT1, since
Up...Upn—ace Ty

Hencebv;...vpis0andu;...un, = a€ k. Sincex; ® ... X% —
X ®...® X1 induces an anti isomorphisiof C(V). Hence we have

Q(u1)...Q(Um) = U1...UnUm...Up
=Up...Unf(un)... f(u)
=Up...Unf(up...um)

= a’. Q.E.D.

The following theorem is implicitly proved in [S].
Theorem 2.2.17.The group @QV) is generated by symmetries.

Hence we can expresse O(V) as a product of symmetries,

O—:Tul...Tum

and denote by(o) the elemenQ(uy)... Q(um) € kX/kXZ. By Lemma
22716, this mapping is well-defined and then it is obviowa this a
group homomorphism from®(V) to KX /K 6(o) is called thespinor
normof o

Definition. O'(V) = {o € O*(V)|6(cr) € (K*)2).
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Proposition 2.2.18. Let L be a modular or maximal regular quadratic
module ovetZ, with rankL > 2. SupposeankL > 3 unless L is modu-
lar with p # 2. Theng(O* (L)) > ZF.

Proof. Suppose that is (a)-modular. Let, firstp # 2. Proposition 189
EZT.T12 implies

<ay>l...l<ap>=<by>L... 1L<by>

if &, bj € Z}; andIlg = I1b;.
Hence, for eaclh € zg, there exists a decomposition

L=2Zpv L % Q(v) = ab.

Then 7, induces an isometry of and 6(r,) = atx@f. Therefore
6(0O*(L)) > Zy. Supposep = 2. LetM = Za[vy, vo] and B(vi, V))) =
a(cl’ %) Foru e ZJ, itis clear thatry,+u, € O(M) andé(ty, +uy,) = 2au.
Henced(O*(M)) > Zng. Next suppose tham = Z,[vi,V,] and
(B(v1,Vj)) = a(% %) ThenQ;M is anisotropic andv is (2a)-maximal,
since < (%% > is (2)-maximal by Lemm&2Z1.1. Hendd = {x ¢
Q2M|Q(X) € (2a)} andO*(M) = O*(Q2M) - Q(v1 + bw) = 2a, 2a.3,
2a.7 and 2.13 according ab = 0,1, 2 and 3 respectively. Hence we
haveg(O*(M)) o Zng. Thus, to prove our assertion, we have only to
showL =< a(¥ %) >L «(c = 0 or 1). From Propositiof ZTI3, it
follows thatL has an orthogonal basfs;} with Q(vi) = au, u; € ZJ.
PUtM = Z[vy + Vo, V2 + Vg] =< a(“% ,1, ) >. ThenM is (a)-
modular,M c L and hencd. = M 1 =. Propositio 21,13 now implies
< ("2 w5 ) >=< (94) > or < (}4) >, and the previous assertion
givesd(O*(L)) > 6(0*(M)) > ZXQ¥. O

190 Suppose thakt is maximal. By virtue of LemmBZ.1.6 and the pre-
vious results, we may assume ti@gL is anisotropic. By the same
lemma, L is fixed as a set for every isometry Qf,L. Suppose rank
L > 4; then the corollary on page 37 in [S] impli€QpL) = Q,.
Henced(O* (L)) = 6(O*(QpL)) = Qf > Zg. Suppose rank = 3. From
the same corollary, it follows that € Q(QpL) if —u ¢ d(QpL). Since
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every non-zero element i@, is a product of two elements v with u,
v e —d(Qpl), we haves(O* (L)) = 6(O*(QpL)) = Qy again.

Proposition 2.2.19.Let V be a regular quadratic module ov@rwith
dimV ¢ 3. Then we have

(0% (V)) ={aeQ¥a>0 if RV is anisotropig.

Proof. Suppose thakV is anisotropic. TheRV is definite andQ(V) c

{a € Qaz= 0}or{ac Qa < 0. Hence the spinor norm is positive.
Puts = -1 if RV is positive definiteg = 1 otherwise, and lea be a
rational number such tha > 0 if RV is anisotropic. By Theorem 6
on page 36 in [S]QpV is isotropic except at a finite number of primes.
Hence we can choode e Q* such thatb > 0, ands.a.b.d(V) ¢ Q¥

6.b.d(V) ¢ Q’F‘,z for a primep if Q,V is anisotropic. ThelV L< éb >,
V 1< é.ab > are isotropic at every prime spot by the same theorem
and hence they are isotropic by the Hasse-Minkowski theanempage
41 in [S]. By Corollaryd on page 33 in [S}ob and—dab are inQ(V).
ThereforeaQ* = (-ob)(—sab)Q*" c 6(0*(V)). O

Proposition 2.2.20.Let V be a regular quadratic module ovér, with
dimV z 3. Theng(O*(V)) = Qy.

Proof. If Q(V) = Qp, the assertion is obvious. Otherwise, it follows
that dimV = 3 and if-a.d(V)(a € Qp) is not a square, thevi represents 191
a. Henceg(O*(V)) = Qp, as itis easy to see. O

Proposition 2.2.21.Let V be a regular isotropic quadratic module over
a field k withcharacteristict 2. Then O(V) is generated byyry(X,y €

V. Q(x) = Q(y) # 0).

Proof. LetQ be the subgroup @(V) which is generated by, ry(X,y €
V,Q(x) = Q(y) # 0). Then clearlyQ c O’(V), and fromorgryo=?t =
T To(y (o € 0(V)), it follows thatQ is a normal subgroup d@'(V).
LetV = H L WwhereH = K[e, e], Q(e1) = Q(e2) = 0, B(er, &) = 1.
Leto = 1y ...7x, € O'(V); then takey; € H so thatQ(y;)) = Q(x).
Sincety 1y, € Q, 0 =Ty, ...7y, IN O'(V)/Q. Sety = 1y, ... 7y,; theny
is identity onW, and hence|y € O'(H). Sincen|y € O’(H), there exist
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71, 2 € H such thatyly = 74 - 72, andQ(z1)Q(z2) = 1. Thenn = 7475,
onV. Thus we haver = =1inO’(V)/Q and so0’(V) c Q. ]

2.3 Hasse-Minkowski Theorem
This section is a complement §a3 of Chapter IV in [S].

Theorem 2.3.22.V, W be regular quadratic modules over If Vy, V.,
are represented by YYW,, for every prime p, then V is represented by
W.

Proof. When dimV = 1, this is nothing but Corollarfl1 on page 43
in [S]. We prove the theorem by induction on dim Decompose/
asV =< a >1 Vp, a € Q* The inductive hypothesis shows thaf

is represented bW and hence there is a submodWg in W which

is isometric toVp. SinceV is locally represented bW, < a > is lo-
cally represented bWy := {x € W|B(x, W) = 0}, using Witt’s theorem
(Corollary on page 32 in [S]). Hencea > is represented bWy . Thus

V is represented bw. m|

Corollary. LetV, W be regular quadratic modules ov@mwith dimV +
3 <dimW. IfRV is represented bRW, then V is represented by W.

Proof. Corollary to TheorertiZ1l1 and the above theorem yield the as
sertion. o

2.4 Integral Theory of Quadratic Forms

For a finite setS = {p, ... pn} Of prime numbers, we define a rizfS]
by
Z[S] = Z[ph- ., PRl

If S = ¢, thenZ[S] means the rin@ of rational integers. We define the
class, the spinor genus, and the genus of quadratic modules.
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Let V be a quadratic module ovér, S a finite set of primes, and
aZ[S]-lattice onV. Now we put

clsl = {K Z[S] — lattice onV such thaK = o(L) }

for someo € O(V)

Z[S] - lattice onV such that there exists
spnL = {K | isometrieso- € O(V), andop € O'(Vp) ,
satisfyingo(Kp) = op(Lp) for everyp ¢ S

Z[S] - lattice onV such that for everyp ¢ S there }

genl. = {K is an isometryr,, satisfyingKp = op(Lp)

It is obvious that geh > spnL > clsL. WhenK € clsL, spnL, genL 193
respectively, we say th#t andL belong to the same class, spinor genus,
genus, respectively.

Here we recall the fundamental relations between globiiddstand
their localizations.

Theorem 2.4.1.Let V be a finite dimensional vector space o@elS a
finite set of prime numbers, and KZ4S]-lattice on V. Suppose that a
collection{Lp} of aZ-lattice on \f(p ¢ S) is given and that }.is equal
to Ky = ZpK for almost all & all but a finite number of) prime numbers.

Then M= N (VNL,) is aZ[S]-lattice on V satisfying M= Z,M = L,
peS
forevery p¢ S.

24.0

The most fundamental result is the following

Theorem 2.4.2.Let V be a regular quadratic module ov&; S a finite
set of prime numbers. For arg[S]-lattice L on V ,genL contains only
a finite number of distinct classes.

Proof. Suppose that the assertion is proved$oe ¢. Forp € S, we
take and fix aZp-lattice My on Vp,, and forK € genL we putKq =

N (VN Kp) N(VNMp). ThenKy is aZ-lattice onV andKq € genLg
p¢S peS
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as is obvious. By assumption, gegcontains only a finite number of
distinct classes clsj(i = 1,...,n). Hence there is an isometey €
O(V) such thair(Kg) = K for somei = 1,2,...,n, and theno(K) =
o (Z[S]Ko) = Z[S]K; € genL. Thus clZ[S]K;(i = 1,2,...,n) are the
only classes contained in gén m|

Thus we have only to prove our assertion in c8se ¢. In the rest
of the proof, we assumg& = ¢. For an integem # O, it is obvious
that if genL = {clsK;} the geraL = {clsaK;}. Thus we may assume
s(L) = {3 B(%,¥i)IX,Vi € L} c Z. If K e genL, thend(L) = d(K) and
S(L) = S(K) sinces(L)Z, = s(Lp). Thus we have only to prove

Proposition 2.4.25.Let V be a regular quadratic module ov€rand
d # 0 an integer. Then there is only a finite numberctsfL such that
s(L) cZand dL) =d.

Lemma 2.4.26.Let V be a regular quadratic module ov€rand M a
Z-lattice with M) c Z on V. Suppose that N is a regular quadratic
submodule of M. Put K- N+ = {x € M|B(x, N) = 0}. Then we have

NLKcMcMcN LKF and [d(K)|[d(M)| - d(N)],

where, for a quadratic module L ovE&r we denotg¢x € QL|B(x, L) c Z}
by L*.

Proof. The relations on inclusions are trivial, sinte c L, implies
L’i D Lﬁz. Let x be an element oM. Then there is an elemegpte N*
such thatB(x, 2) = B(y, 2) for all z€ N. This correspondencgis linear
and we claim thaty™*(N) = N 1L K. Suppose thap(x) € N; then
B(x - ¢(X),2) = 0 for ze N and sox — ¢(X) € K. If, conversely,x =
X1+X2, X1 € N, X2 € K, thenB(x—¢(X), 2) = B(x1—¢(X),2) = 0forze N
ande(X) = x; € N. Thus we haveNl : N L K] = [¢(M) : NJ|[N# :
N] = d(N), and|d(N)-d(K)| = [d(M)|-[M : N L K]?|d(M)|-|d(N)I?. O

Lemma 2.4.27. For a regular quadratic module L ovez, min(L) :=
min{|Q(X)| |x € L, x # 0} < (4/3)"1/2d(L)|Y/" where n= rankL.
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Proof. We use induction on rank. In case rank = 1, the assertion is
trivial. For rankL > 1, we takev; € L such thatQ(v1)| = m(L), v; # O.
If min(L) = 0, then we have nothing to prove. Supp&¥g;) # 0, and
{V1,...,Vn} is a basis folL. Define a linear mapping by p(v1) = v,
pP(Vi) = Vi — Q(v1)"1B(vi, va)Vi(i = 2). Then the determinant gfis one,
and hence

[d(L)I = | det@(vi, v)))| = | detB(pvi, pv;))|
= min(L)| det®B(pvi, pvj))i.j>2,

sinceB(vi, pv) = 0 fori =2 2. PutM = Z[p(v2),..., p(vn)]. By the
inductive assumption, we have

min(M) < (4/3)(”‘2)/2|d(M)|1/n—1.
Takey € M and a rational numbersuch that
|Q(Y)| = min(M),y+ vy = X(Say)e L, Ir| 1/2

Then we obtain min() < |Q(X)| = |Q(y) + r’Q(vy)] £ min(M) +
%min(L). Hence

min(L) £ g min(M)
< (4/3)"2[d(M)[Y
= (4/3)Y3d(L)/ min(L)¥"
implying that
min(L) < (4/3)™Zd(L) 1",
m|
We prove the proposition by induction on difn In the case of
dimV =1, itis obvious.
Suppose thaM is a lattice onVv such thats(M) c Z andd(M) = d.

If min(M) # 0, then forv e M with |Q(V)| = min(M), we putN = Zv. If
min(M) = 0, then there is a primitive isotropic vecter € M. We can
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take a basi$vi, v, ...} of M such thaB(vy, M) = B(vi, V2)Z, B(vy, Vi) =
Ofori =2 3. Hencea = |B(v1, \2)| dividesd. SinceQ(vz +bwvi) = Q(v2) +
2ba, we may assumi(v,)| < a. In this case, we pulN = Z[vi, v].

If dimV = 2, thenM = N and the number of possible corresponding
matrices is finite. Hence, for a binary isotropic quadrataduoleV, the
assertion is proved. Otherwise, we have constructed a suh{sN of

M such thatid(N)| is bounded by a constant depending onlyd§i)
and dimV. PutK = N+. ThenrankK = rankM — 1 orrankM - 2, and
[d(K)| £ |d(M)]|d(N)| which is less than a constant depending only on
d(M) and dimV. By the inductive assumption, the number of possible
is finite and then the number of possildes finite and then the number
of possibleM for whichN L K ¢ M c N# L K is also finite. This
completes the proof.

Theorem 2.2.28.Let W, V be regular quadratic modules ov@r S a
finite set of prime numbers, and, MZ[S]-lattices on W, V respectively,
and suppose that Mis represented by Jfor p ¢ S and W, W,, are
represented by ¥/ V., for pe S. Then there is a lattice K genL such
that M is represented by K.

Proof. By the Hasse-Minkowski theorem, we may assume Wais
a submodule o¥/. Then there is an isometry, € 0(V;,) such that
op(Mp) € Lp, and for almost alp, My, c L. Hence gZ[S]-lattice K =

N (Vmggl(Lp)) N (VNLp) containsM and obviouslyK € genL
MizLp MpclLp
: i

2.2.0

In this paragraph, we give two filerent kinds of approximation the-
orems which are necessary latter. Before stating the sgsuk first
describe the topology. L&t be a vector space ovér, with dimV =
n < oco. Fixing a basis oV overQyp, V (resp. EnaV) is isomorphic to
p(respMin(Qp)). Using this isomorphism, we can introduce a topol-
ogy onV or EndV which is independent of the choice of bases. Take
two basedu;}, {vi} of V. If uandv € V or EndV) are sifficiently close
with respect to the topology introduced hy}, then they are also fiir
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ciently close with respect tfy;}. Hence we can use “ficiently close”
without ambiguity, when a finite number of fixed bases arelireah
The first theorem is an approximation theorem ).

Theorem 2.2.29.Let V be a regular quadratic modular ovéy with
dimV = 3 and suppose that\V= Q,V is isotropic for some spot v. (v
may be finite or infinite). Let L be A-lattice on V and S a finite set of
prime numbers with $ v. For a givenop € 0'(Vy) for p € S, there is
an isometry- € 0/(V) such that

o(Lp) = Lpfor pg Su{v}and
o andop are syficiently close in Endyfor pe S.

To prove the theorem, we need some preparatory lemmas.

Lemma 2.2.30.Let V be a regular quadratic module ov€rand S a
finite set of spots including. For giveno, € 0*(V,) forv € S, there
are vectors x, ..., Xon € V such thatry andry, - - - 7, are syficiently
close for ve S.

Proof. Putoy = 7y - Txnw)(Xi(V), € V). Since the order of any
symmetry is 2, we may suppose thmgs independent of € S. We have
only to choose; € V so thatx; andx;(v) are stfficiently close inV,, for
VeS. m]

Lemma 2.2.31.Let W be a regular quadratic module dfimW > 3,
overQ, S afinite set of sports, and v a sgo§ . For aZ-lattice K on W
there is an integep such that

() ueZgifpes. 198
(i) if a rational number a is represented by W, and
ae Q(Kp) NuZpfor p#v, Wsywith Qy) = aand ye K, for p # v.

Proof. ExtendingS, we may assume thatjif ¢ S, p # v, thenK is uni-
modular andp # 2. LetKq,..., Ky be a complete set of representatives
of classes in geK. We show thak; can be chosen so tha{j, = K,
for p € S. First, we note that every regular quadratic moddleverz,
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has a symmetry, since, fon € M satisfying Q(m)) = n(M), tr, gives

a symmetry ofM . Hence by the definition of the genus, there is an
isometryo p € 0" (W) such thatr ,((Ki)p) = Kp, and then by Lemma
there is an isometey, such thatr; ando  are sificiently close
for p € S. As representatives we have only to tak€K;). Thus we
may assumel{;), = K, for p € S. Now we choose an integdrso that
AK; c K for alli and € Z) for p € S, and putu = 4%. The condition

(i) is satisfied. Suppose that a is a rational number as inlfiip € S,
thena/u € Q(Kp). If p¢ S, p # v, thenp # 2, andK, is unimodular,
and thenK, =< (93) >1 «. Sincea/u € Zp, a/u is represented by
< (9%) >c Kp. If vis a finite spot associated with a prime number
a, thena/u - g € Q(Kq) for a suficiently large integet. Thusa/u

or a/u - g® is locally represented bl according as = co or g. By
TheorenZ.2.28, there is a vectom somekK; such thatQ(x) = a/u or
a/u - q® according ay = o or g. Theny = Ax or Aq~'x is what we
want. i

Lemma 2.2.32.Let V be a regular quadratic module ov@rof dimv >
4 which is isotropic at a spot v, L @-lattice on V, and T a finite set of
prime numbers with B v.

Suppose that a non-zero rational number a agdezVp(p # V)
satisfy

(i) Q(zp) =ac Q(V) forevery p# v, and
(i) zpelpifpeT.
Then there is a vectore V satisfying
(i) zand z are syficiently close if p= T,
(i) zeLpifpgTuiv,
(i) Q2 =a.

Proof. Multiplying the quadratic form bya™!, we may assuma = 1
without loss of generality. Extendingj, we may assume that {j ¢
T U {v}, thenL, is unimodular andp # 2. If V., is isotropic, then
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we have only to consider the casewof co. Thus we may assume that

a=1, andV, is anisotropic in case # co. Since we can take[( p)~'L
peT

instead ofL(r = 0), we may assume thag € L if p # v. Take and fix
any vectorx such thatQ(x) = 1. Takey, € 07(Vp) so thatyp(X) = 7,

for p e T. From LemmdZ2Z.30, follows the existence of an isometry
¢ € 07(V) such thatp andy,, are stficiently close forp e T, andy € L,

if pe T. Choose an integet so thati and 1 are sfficiently close inz,

if peT,andAye Lyif pg TU{v}, and seti = Ay; thenue L,if p#v
andQ(u) = 22, SetW = u* = {w € V|B(u,w) = 0}, and we determine a
lattice K on W under the following conditions:

Ko=(LNW)p,=LoUW,if p¢ T,

Kp c p'Lp for sufficiently larger if p e T. K c L, as is obvious. Set200
Ty =1{pld ¢ Z5,p # Vi, thenTNT, = ¢ sinced € Zyif p e T.
Let u be an integer in Lemma22ZI31 for¢ S = T U T, and M. Set

Ty = 1{plu ¢ Zg, p # vi; thenT, N (T U T, U {v}) = . We claim that §)
there is a rational numbgrso that

1- 2% € uZp N Q(Kp) andg € Zy if p # v,
B and 1 are sfiiciently close ifpe T,
1- 2282 € Q(W,) and 1- 128% € Q(W..).

We return to the proof of this latter and first complete withlielp the
proof of Lemmd2Z.2.32. By the Hasse-Minkowski Theorem, 32 e
Q(W). Applying the property (i) in Lemm&Z2.2B1 ® = 1 — 1252,
there is a vectow € W such thatQw) = 1 — 4282 andw e K, for
p # v. We show thatz = Bu + w is what we want. Suppode € T,
theng and 1 are sfliciently close inZ, andw € K, c p'Lp. Thusz
andu are stficiently close inV,. On the other handz, andy, u andy
are stticiently close respectively. Henaeandz, are sificiently close
forpeT. If pg TU({v, thenz = ply+w e Ly + Kp C Ly,
Lastly Q(2) = 8212 + Q(w) = 1. Thus the assertions (i), (ii)., (iii) are
satisfied. It remains for us to prove the existence of a ratiaamber
B. First, we construgB, € Qp which satisfies the conditiorf) locally
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with 1 - /12,3% #0forpe TUT,UT,. Then we approximatg, by s,
noting thatQ(Kp)\{0}, Q(W,)\{0}, Q(W.)\{O0} are open sets.

Let p € T, take a non-zero numbet, € Q(K,) which is suficiently
close to 0 and s¢t, = ﬂ‘l(l—ap/Z). Sincel and 1 are sfficiently close,

201 Bpand 1are also sticiently close. Clearly, 4283 = 1—-(1-ap/2)* =
ap(l - ap/b) € apz’gz c Q(Kp). SinceT N T, = ¢, we haveu € Zj
and then & 1282 € uZ,. Thus the conditiont) is satisfied fop, with
q- %65 # 0.

Letp € T,; takeBp € Qp so thays, andA~! are sifficiently close but
Bp # L. SinceA € Z¥, By € Z%. Obviously 0+ 1 - 4283 € uZ,. Since
p¢ TandQu) = 4% € Z% Kp = u* in Ly is unimodular, by virtue
of LemmaZIB. From Propositign 21112, it follows tig( ) = Zp.
Thus the conditiont is satisfied fo,, with 1 — 1282 # 0.

Let p € T,; first, we claim thak, contains a unimodular submodule
of rank = 2. Let{v;} be a basis ot , overZ, and assume, = by,
b € Qp. SinceT N T, = ¢, Lp is unimodular and the@(v;) = b? €
Zp. Supposeb € Zy; thenlp = Zpvi L (vyinLp) = Zpvi L Kp
by virtue of LemmdZZTI3 and the definition K. HenceK, itself is
unimodular. Supposk € pZ,; sincely is unimodular,B(vy, Lp) = Zp
and in view ofQ(v1) € pZp, we may assumé(vy, o) = 1, without
loss of generality. Thefy[vi, V2] is unimodular and so i€p[v1, Vo] *
in Lp(c Kp) by LemmaZZIB. Thus our claim above has been proved,
and then Proposition Z T2 implies tha(Kp) > 1. ForpB, = 0, the
condition §) is satisfied with 1- 4282 # 0 sinceuZ = Zy.

Supposer = oo; then we choose a large numbge Q such thap
andgy, are stficiently close forp e TUT,UT,,, andB € Z, otherwise. If
p ¢ TUT,UT,, thenu € Z5 andK is unimodular sincé p is unimodular

202 andQ(u) € Zy. HenceuZp = Q(Kp) = Zp, and the conditiondf) is
satisfied for each prime number. By assumpti@i,,) > {a € Rja <
0}, and then it is also satisfied far= co.

Supposer = q < co. Setfy = q7" for a suficiently larger; then
1- %85 = —A%B3(1 - 1729%) € Q(W), sinceVq =< A2 >1 Wy is
isotropic and +172¢% is a square. We take a rational numpeso that
B’ andg,, are stficiently close forp e TU T, U T, U {g} andg’ € Zp
otherwise. Next we take a Siciently large integem such thag™ and
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1 are sificiently close forpe TUT, UT,, and sepg = g/q"™. In the
processVy,, is positive definite, and 2 12? is suficiently close to 1 in
R. Itis easy to see tha@is the rational number required it ( ]

PROOF of Theorem[Z.Z.ZP when dinV 2 4.
LetV,v, S, op be as in Theoredd ZZP9.

(1) Suppose thatrp = 7x,7y,, Q(Xp) = Q(Yp) (Xp,Yp € Vp) for any

(ii)

(i)

peS.

Take a vectox € V so thatx andx, are sificiently close forp €
S, andx € Ly otherwise, and takg, € 0(Vp) so thatyp = 1pXp.
Choose a finite s&d’ of prime numbers so th& N (SU{v}) = ¢
and ifp ¢ S, thentyLp = Lp, Q(X) € Z3, p # 2, andLp is
unimodular. Set, = nppxfor p € S, 7z, = xforpe S. If
p ¢ SUS’U (v}, then there existg, € L, such thatQ(z,) = Q(X)
sinceLp is unimodular p # 2) andQ(x) € Zg. Applying Lemma
223210z, T =SUS, 0+ a=Q(X) € Q(V), there is a vector
z € V with Q(2) = Q(x) such thatz andz, are stfficiently close
forpeSUS’ zelpyforpg SUS U{V. If pe S, thentyr, 203
andry,7y, = op are stficiently close. Ifp € S’, thentyr; and
TxTx = id are sdficiently close and hencg,L, = Lp. Suppose
p¢ SuUS UV thentylLp = L, by the definition ofS’, and
further7.Lp = Lp sinceQ(2) = Q(X) € Z;andz € L,. Thus
o = 147 IS what we want.

Suppose thatrp = 7y, Ty, , * ** T, Ty Q(Xi.p) = Q(Yi,p) for each
peS.

In this case, we may assume thas independent of each e S,
since the order of any symmetry is 2. Applying (i) tQty,, we
complete the proof.

General Case.

Setop = Ty, ** Txy, With TIQ(X; p) = 1 and assume is inde-
pendent of eaclp € S as in (ii). ExtendingS, we may assume
that V,, is isotropic if p ¢ S, by virtue of Theorem 6 on page
36 in [S]. On this occasion, we set, = the identity mapping
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for p which belongs not to the original® but to the extended
S. TakeX,...,%x-1 € V so thatx; and x;, are stficiently

close forpe S,1 i £2r-1andsoare [ Q(x) and
1<ig2r-1
I1 1Q(xi,p)(;t 0) for p € S. Hence there is a unit, € Zg

=ig2r—

such thaQ(xzrp) ' = [I Qxp) =€5 [I Q(x), andep

1<i<2r-1 1<i<2r-1
is suficiently close to 1. We claim that there is a veckgr € V

sothatQ(xy) = [I Q(x)™%, andxyr andxyr p are stficiently
1<i2r-1

close forpe S. Seta= [] Q(X)% thena = Q(ep Xarp)
1<i<2r-1
for p € S, and sinceV, is isotropic forp ¢ S, a is represented

by V,, for every prime numbep. If V,, is isotropic, then a is also
represented bY.,. If V. is anisotropic, then the sign of ais equal
to Q(X2r_1), and hence a is also representedvhy By virtue of
Hasse-Minkowski Theoreng is represented by. Take a vec-
tor w € V with Q(w) = a, andnp € 0" (Vp) with npw =€, Xor o
for p € S, and approximate, by n € 07(V) by LemmaZZZ.30.
We can takep(w) asxy. Then [] Q(x) = 1 andty, - - - Ty,

1<igor
andry, , - -+ Tx,, are stiiciently close forp € S. SetS’ = {p ¢

SU{V}|ty, - Tx, Lp # Lp}. SinceV, is isotropic forp € S, it fol-
lows thatry, - - - 7x, is a product ofryry(X,y € Vp, Q(X) = Q(Y))

for p € S’. From (ii), follows the existence af1 € 0/(V) such
thatoq and 1 (resp.ty, - - - Tx, ) are stficiently close forp € S
(resp. p € S’) andoy(Lp) = Lpfor p ¢ SUS" U {v}. Then

0 = 0 My ++* Tx, IS What we want. Thus we have completed the
proof of TheoreniLZZ28 when divh= 4.

Suppose now that div = 3. Multiplying the quadratic form by a

constant, we may assung§V) = 1, thatis,V =< a; >1< a >1<
a1ap >, a € Q*. Now we define a quaternion algelita= Q + Qi+ Qj +
Qk by i? = —ay, j? = —ay, k¥ = —ayap and—ji = k. The conjugat& of
x=a+bi+cj+dk(ab,c,de Q)is defined bya— bi — cj— dk. Then
the normN(x) of x is, by definition,xx = & + b%a; + c?a, + d?a;ay,
and so it is a quadratic form and the corresponding bilineam B(X, y)
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1 . : . .

is E(xy + yX). ThusV is isometric to the subspacg + Qj + Qk and
we identify them. We note that andQ c C are orthogonal. Fox € V
with N(x) # 0, we have

¥ +yX)
N(x)
= —N(X)"Ixyx= —xyxtforye V.

™xY=Y~-

Thereforep € 0% (V) is written, for somez € C, as 205

o(y) =zyz'fory eV,

and then the spinor norm@yis N(z)QXz. SetL = Z 1 L and extend the
giveno € 0'(Vp) to op € 0/(Cp) whereap(1) = 1(e C). Similarly to
the foregoing, there is a vectag € C, so thatop(y) = zpyzlgl(p € S).
Sincedp(e 0'(Vp). Nz, = a5, ay € Q. Takinga,'z, instead ofz,, we
may assumeNz, = 1. If p ¢ S, then setzp = 1. LetT(2 v) be a
finite set of prime numbers such that> S and if p ¢ T, thenL, is
unimodular and a subring. Applying Lemrha2.2.32, there igetor
ze CsothatN(2) = 1,zandz, are stficiently close ifp e T andz e Ep
if p¢ T U{v). We define an isometryy0’(C) by o(y) = zyz1. Since
o(1) = 1, 0(V) = V follows, and setr = o|V. If p € S, thenz and
z, are stfficiently close, and thetr andop, are stficiently close, and
hence so are- ando, sinceo (1) = op(l) = 1. If p € T\S, theno
and id are sfiiciently close, and the& (L), and hencer(Lp) = Ly.
Supposep ¢ T; thenz e Lp, ande is unimodular. Hence,(Lp) = Ly,
sinceN(2) = 1. FromLy, = 1/l = Zpz = 2,27 c A,z = 7L,
it follows thata preserved p, and thenr(Lp) = L. Thuse is what we
wanted, and the proof of Theordm 2.2.29 is complete.

Theorem 2.2.33.Let V be a regular quadratic module ov€r with
dimV = m > 2 and suppose that V is not a hyperbolic plane, i.e.,
eitherdimV = 2and dV) # -1 ordimV = 3, and that \{, = RV =

(+ <1>)1 (é < —1>). Suppose that the following are given: 206

(a) aZ-lattice M on V,
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(b) a finite set S of prime numbers p such thatsS2 and M, is
unimodular for pg S,

(c) integers f, S with0<r' £r, 08 <5,
(d) Xip,....Xnp€ Mp(r'+s =np<m)forpesS.
Then there are vectors X . ., X, in M satisfying
(i) x and x , are syfficiently close inforpe S,1<i<n,

(i) for p¢ S,det®(x; Xj)) € Z§ with precisely one exceptionq,
where

det®(x;, xj)) € 9Zp,

(iii) a subspace spanned lp¥} in RV is isometric to(# <1>)1
% <-=1>).

Proof. We use induction on =r’+s'. First suppose = 1,m= 2. This
case is fundamental. L&?(a € Q) denote the vector space provided
with a new quadratic forrmQ(x). We shall usé.? to denote the lattice
when it is regarded as a lattice U?. First, we show that if the theorem
is true forV2, then it holds forV. Suppose that the theorem holds for
Vé(ae Q*) and thatM, S, 1", S/, X pin (a),.. ., (d) are given. Pug(a) =
Su{pla ¢ Zg}. Then for a latticeM® and S(a), the condition (b) is
satisfied. For a prime numbgr e S(a)\S, we can choosey p € My
with Q(x1,p) € Z sincep is odd andM, is unimodular. If a is positive,
then we put” =r’,s” = §. Otherwise, put” = s,s” =r’. From the
assumption, it follows that there exists M2 for which

(I") xandxyp are stficiently close inV,, for p € S(a),

(i) for p ¢ S(a), aQ(x) € Z§ with precisely one exceptiop = g,
whereaQ(x) € gz¥, and

(iii”) aQ(x) is positive (resp. negative) if’ = 1,8’ = 0 (resp.r’” =0,
s’ =1).
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(i") (resp. (iii)) implies (i) (resp. (iii)). Ifp ¢ S(@), p # g, then
we haveaQ(x) € Zxp anda € Zg and thereforeQ(x) € Z§. Forp = g,
Q(x) € gZg sinceq ¢ S(a). Forp € S(@\S, (i) implies thatQ(X)
and Q(x1,p) € Zy are stfficiently close. Henc&(X) € Z;. Thus we
get the assertions (i), (ii), (iii). Therefore, we may assutimatV is a
quadratic fieldk over Q and the quadratic forn® is equal to the norm
N from k to Q. We take a finite se’ > S of prime numbers so that
for p ¢ S’, Mp is equal to the localization of the maximal orderkof
We choosex; , € My is equal to the localization of the maximal order
of k. We choosex;p € Mp for p € S\S such thatNx , € Zj. By
the approximation theorem, there exigte k such thatNy is positive
(resp. negative) for' = 1, s = 0 (resp.r’ = 0, ' = 1) andy andx, p
are stficiently close forp € S’. Decompose the principal ideal) (as
(y) = mn wherem, n are ideals ok and the prime divisop appears in
mif and only if p divides some prime numberin S’. Thus it is known
that there exists a numbere k for whichzand 1 are sfficiently close
for p € S, Nzis positive, andj = nzis a prime divisor withNg = g
prime. O

Putx = yz Then the conditions (i), (iii) are obviously satisfied. For
p € S'\S,y, x;,p andz 1 are stficiently close respectively ardx, €
Zy. HenceQ(x) € Zp, for p € S$'\S. Since §) = (y2 = Mg, we
have Q(X) = +N(M)g. By the assumption om, the condition (ii) is
satisfied. By the construction, itis easy to see ®iatcontained in every 208
localization ofM and hence irM. Thus we have completed the proof
for the caser = 1, m = 2. Suppose now that= 1 andm = dimV > 3.
Take any primeh ¢ S. Then there exists a badig} of My, such that
(B(. V)12 = (9 3), Q(va) € ZXandMp, = Zp[vy, V5] L Zpvs L --- by
PropositiorTZT.12. We take, € M so thatx; andx, p are stficiently
close forp € S, andx; andv; + hw, are sifficiently close forh. Put
T ={p ¢ SIQ(x1) & Zy} > h. There exists; € V such thatQ(xz) > 0
(resp. < O)forr’ =1, =0 (resp.r' =0, = 1), forp e T,
X2 € Mp andQ(xp) € Z;‘) and moreoveryx, andvs are stfficiently close
for p = h. Then we have a natural number a such tingt € M and
p t afor p e T. The discriminant ofM’ = Z[x1,ax] is divisible
exactly byh. HenceW = Q[x1,ax] is not a hyperbolic plane. Put
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U={pgSuUTIdM) ¢ Z’g} andx’l’p =x if pe SUU, x’l’p = X if
peT,andS’ = SUT UU. ThenMy is unimodular forp ¢ S’, since
d(Mp) is a unit andM” c M. Applying the previous result to this, we
have an element € M’ such that

(i) xand Xy pare stficiently close forp € S’

(i) for p¢ S', Q(x) € Z with precisely one exceptiop = g, where
Q(X) € 9z,
(i) Q(X) > 0 (resp.<Q)ifr' =1 (resp.r’ = 0).

It is easy to see that thisis what we wanted. Now suppose<l
n < m. Applying the inductive assumption tQ p, ..., Xn-1,p, S and M,
there existxy, ..., X,-1 € M such thatx, and x; , are stficiently close
forl<isn-1,pesS,detB(x,X))jxn € Z;for p ¢ SuU {qi} for
some primey; ¢ S, detB(Xi, X;))i.j<n € qlzgl, and overR

(< B(Xi, Xj))i,jen >L< 6 >= (# <1l>)1 (Jg_ <-=1>)foré=+1

n-1
PutU = Y Qx, W = {x € V|B(x,U) = 0}. ThenV = U L W.
i=1

PUtA = Z[x1,. .., X-1]; thend(Aq,) € q1Zg,. From the local version
of Lemmal2.4.26, it follows thati(Ag, in Mg,) € Z,. On the other
hand,d(Mg,) € Z% impliesd(Aq,) - d(A) € ZX Q% /Q%. Thusd(AL, in
Mg,) € hZg,. LetAq = L1 L Ly, Ay, = L3 L L4 be Jordan splittings
so thatl 1, L3 are unimodular and rank, = rankL4 = 1. SinceMg, is
unimodular,L, L L4 is contained in the unimodular modulie; (L L3)*
in Mg, and thenAq, c Ly L (Ly L L3)*. Fromd(Aq) € uZy,, it
follows thatAg, is a direct summand ih; L (L; L L3)*, and hence
there is an elememt, 4, € Mg, such thathg, + ZgXnq, is a unimodular
moduleL; L (Ly L L3)*. Decompose,p asXnp = Ynp + Znp(Ynp €
Up, Zhp € Wp) for p € SU {q1}. We can takey, € U so thaty, andyn p
are stficiently close forp € SuU {q1} andy, € Ap for p ¢ S U {1 }. We
claim that

(#) there exist an elememt, in the projectionM’ of M to W and a
primeq ¢ S U {q1} such that

z, andz, p are stficiently close forp € S U {q1},
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Q(zy) € Z for p¢ S U {g, a1} andQ(z,) € 0Zy,
Q(xn)s > 0.

We come to the proof of this later and first complete the prddhe 210
theorem with its help. puk, = yn + Z,. Thenx, andX,p = Ynp +
zyp are stficiently close forp € S U {g:}. Hence the condition (i) is
satisfied, andk, € Mp, for p € SU {o1}. Forp ¢ S U {ai}, Mp, Ap
are unimodular and hendd, = A, L (x). SinceM’ is the projection
of M to W, we haveM, = A, L Mj. Hence we haveq = yn +
Z € Ap+ M = My for p ¢ SU{gi}. Thusx, € M. We check the
condition (ii). d(Zp[ X1, - . . , Xa]) @ndd(Zp[ X1, p, - . . , Xn,p]) @re sufficiently
close forp = g1, and the latter is a unit by the definition &fy,. Hence
d(Zp[X1, ..., %)) € Z5, for p = q1. Forp ¢ Su{ai}, d(Zp[x1, ..., %)) =
dZp[xa, .- - Xn-1,Yn+ Zn]) = A(Zp[X4, - - -, Xn-1, Z0]) (Yn € Ap) = d(Ap) -
Q(z) € Q(z)Z5. Thus from the property of, in (#) condition (ii)
follows. Condition (iii) follows from

QX1 .., Xn] = QX1 ... Xp-1] L Qzn
=< (B(%, Xj))i,j<n >L< 6 > overR.

It remains to showff). For dimW = 2, this is clear. Sincel(Wy,) =
d(Ag,) € mZg,, Wis not the hyperbolic plane. As we have sebh, =
Ap L Mj, forp¢ Su{q:} and thenMI’O is unimodular forp ¢ S U {q1}.
Also, z,p € Mb, from the definitions o, , andM’. Obviously,W =<
6 >L (x) overR, by the definition of5. Applying the theorem for the
casen = 1, we obtain the existence gf.

2.2.0

In this paragraph, we give ficient conditions under which gén=
spnLor spnL = clsL, and also a result on representation of indefinite1
quadratic forms.

Theorem 2.2.34.Let V be a regular quadratic module ov&r with
dimV > 3, S a finite set of prime numbers and LZ§S]-lattice on
V.
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If 6(07(Lp)) > Zj for every prime number g S, then we have
genL = spnL.

Proof. SupposeK € genL. Then from the definition, we have an
isometryop € 0(Vp) such thatop(Kp) = Lp. Forv e K satisfying
2B(x,v)

v _
Hence we may assume, € 0*(Vy), after multiplying it by, if nec-
essary. Moreover, we assumg = id, if K, = L. We can take a
positive numbea so thatad(o,) contains a unit fop ¢ S. By Proposi-
tion[ZZ19, there is an isometoy € 07 (V) such thab(o) = aQ*. For
M = o1(K), we haveryo-(Mp) = L, for everyp, andé(o-po) € Z;‘)Qf
forp¢S.

By assumption, there is an isometyy € 0" (L) such tha®(iynop

o) = Q’gz. Thus we have

Q)Zp = n(Kp), the symmetryry(x) = X — v belongs to OKp).

This mean¥ € spnL m|

Remark.LetLp, = L1 L --- L L be a Jordan splitting. If either rank
Li > 2 (resp. 3) for somefor p # 2 (resp. p = 2), orL is maximal
and rankLp, 2 3, then the conditior®(0*(Lp)) > Zj is satisfied by
Proposition 1 in previous section.

Theorem 2.2.35.Let V be a regular quadratic module ov€r with
dimV > 3, S a finite set of prime numbers, and LZgS]-lattice on
V. If V,, = RV is isotropic or , is isotropic for some g€ S, then
spnL=clsL .

Proof. SupposeK € spnL Then there exist isometrigse 0(V), o €
0'(Vp) for p ¢ S such that

/l(Kp) = O'p(l—p)-

PutT = {p ¢ Slu(Kp) # Lp} (a finite set). Then by Theoren 22129,

there is an isometry € 0’(V) such thatr(Lp) = Ly if p# T or T U{po}

according to the hypothesis,andop, are stfficiently close ifp e T.
Hence forp € T, o(Lp) = op(Lp) and thenu(Kp) = o(Lp) for

p ¢ S. This leads tK = u1o(L). O
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Corollary 1. LetV be a regular quadratic module ov@rwith dimV >
3, and suppose that.yis isotropic. If L is aZ-lattice on V that §.) c Z,
d(L) is odd and square-fregenL = clsL.

Proof. By assumption,L, is modular and., is maximal forp # 2.
Hence TheoremEZZIR3A,2.2.35 and the RemarlSfer ¢ imply the
corollary. O

Corollary 2. LetV, W be regular quadratic modules ov@rwith dim
V + 3 = dimW, and l{resp .M) a Z-lattice on Mresp W). Suppose
that

Lp is represented by Mfor all p,
V. is represented by W, and
W,, is isotropic

Then L is represented by M. 213

Proof. From the Corollary to Theorein=Z1.1, it follows théj is rep-
resented by, and then the Hasse-Minkowski theorem implies ¥at
is represented bW. We may assum¥ c W. By assumption, there
is an isometryo-, from L, to Mp. By Witt's theorem, we may assume
op € 0(Wp). Multiplying a symmetry of\/; from the right, we may
assumer, € 0*(Wp). From Propositio Z.Z.20 follows the existence of
Mp € O+(V;) and that(o)0(np) = 1. Multiplying o, by i, on the right,
we may assumeé(cp) = 1. Then there exists an isometye 0'(W)
such that

o is suficiently close tary if Ly ¢ Mp.

Henceo(Lp) ¢ M, for everyp and soo(L) ¢ M.

2.2.0

The aim of this paragraph is to prove the fundamental theanemep-
resentations of positive definite quadratic forms. We meaa positive
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lattice a quadratic modulel = Z[v1, .. ., viy] overZ with basis{v;} such
that B(v;, v;)) is positive definite. By definition, everB(vi, v;) is ratio-
nal. m|

Theorem 2.2.36([8]). Let M be a positive lattice of rankht 2n + 3.
There is a constant(®1) such that any positive lattice N of rankN n
is represented by M provided that

min(N) := min Q(x) 2 ¢(M), and
O0#xeN

Np is represented by Mfor every prime p.

The proof is based on several lemmas.

Let N be the set of hon-negative integers and we introduce a partia
ordering inNK defined by k1, -+ , %) £ (1,.... W) if X S yi(1 i
k). Then our first lemma is the following.

Lemma 2.2.37.Every subset X dfi* contains only finitely many mini-
mal elements.

Proof. We use induction ok. The assertion is trivial fok = 1. Write
X = (X,%) With X = (X1,...,%X1) € N and putx!, = (X €
Nk‘1|(x’, n) € X}. LetYy, Y’ be the sets of minimal elementsXf, [,
X/, respectively. By the inductive assumptiof, Y’ are finite sets. For
Yy € Y’ we choose and fix an elemente X satisfyingy = (Y, Y«),
and denote by the set of sucly. Y is also a finite set and puh =
maxykly € Y}. Suppose thak € X is minimal. Thenx' € X} from
the definition and then there exigte Y such thaty < xX'. If X = vk,
thenx = y and thenx = y € Y in view of the minimality ofx. Suppose
Xk < Yk(£ m). Sincex is minimal in Xy, X is minimal in X} . Hence
X € Yy Xk) € Uno(Yn, n). Thus every minimal elementis in a finite
setY U U ,(Yn,N). m|

Lemma 2.2.38.Let M, be a regular quadratic module ovéh, of rank

M, = m = n. Then there are only finitely many regular submodules
Np(j) of rankNy(j) = n such that each regular regular submodulg o
rankN, = n of M, is represented by someg,{y).
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Proof. If is obvious that the assertion holds if it is true foiM, instead
of Mp. Hence we may assume thg{Mp) c Z,. Let N, be a regular

t
quadratic module of rankandN, = _J_l Li a Jordan splitting. Sindg is
1=

modular,p P L; = K; is unimodular or p)-modular for somdy € N. By 215
virtue of PropositionE 21,12 abd 2.1 13, there are onlyeipmany iso-
metric modules oveZ, of unimodular or p)-modular quadratic mod-
ules of fixed rank. Thus there are only finitely many posdib8ifor the
whole collection ankL;, K;). Fix one of these and consider the corre-
sponding by, ..., b). By LemmdZ2-37, there exist only finitely many
minimal ones. Itis clear that if

No= L L, No= 1 L/
S =

rankl; = rankl!, p™PL; = p L],
b<b for 1<ist,

thenNj is represented biX,. HenceNp, ranging over all possible col-
lections ¢ankL;, K;j) and minimal familieslg;), constitute a finite family
with the required property. O

Lemma 2.2.39. Let L be a positive lattice of rank & 3 and suppose
that L, is maximal for all p, and let q be a prime such th@L), is
isotropic. Then there is a natural number s such that L repnés every
positive lattice N for which 3., represents [y for every prime p.

Proof. Let {L;j} be a complete set of representatives of classes ih.gen
From TheoreniLZ.2.35, it follows thaprz{q*}L = clsZ[q ]L. On the
other hand, our assumption implies des spnLand then ge[g™]

L = sprZ[gt]L by virtue of Propositioi.2.2.18 and Theorém 2.2.34.
Thus we have geA[q]L = clsZ[g }]L. Hence there is an isometry
oi € 0(QL) such thaZ[q1]L = Z[g Y]ci(L;). We determines by

g°ci(L;) c L for everyi.

The lemma follows immediately from Theordm 2.2.28. O
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Lemma 2.2.40.Let L, g, s be as in LemmaZZ]39, rankin+ 3, Ka 216
positive lattice. Then there is a constant ¢ such that K represents a
positive lattice N= Z[vy, ..., Vvn] of rankn for which N is represented

by Ko L g°L, for every p, andB(vi, vj)) > CEn.

Proof. Let S be a finite set of prime numbers such tisab 2,q and
for p ¢ SKp, Lp are unimodular, and fix a natural numbesuch that
p"s(Kp) € n(g’Ly) for p € S. Choose vector\fi#1 eK(i=12,....nh=

1,...,t) sothat for giverxy p, ..., X, p € Kp, we have

Vih = X.p mod erp~~~(>x<)

forsomeh(gzh<t)andevery =1,2,...,nand allp € S. We choose
a positive numbec so that

V) >0forh=1,.. .t

CEn — (B(V)\,

Let N = Z[vy,...,Vy] be a lattice which satisfies the conditions in the
lemma. By the first condition, there exist, € Kp, i p € g°L, such that

B(Vi, Vj) = B(Xi,p, Xj,p) + B(Yi,p, Yj.p) for all p.
For someh satisfying ) for thesex; , we put

A= (B(i, v))) - (B(, V).

We have only to prove tha is represented bl. All the entries of
A are rational andh is positive definite, sincé = ((B(vi,v;)) — cE, +
217 (CEn — (B(M", V) > 0. LetH = Z[uy, ..., un] be a positive lattice such
that B(u;, uj)) = A. PutX p = V' + p'z p(z,p € Kp). Then

A= (B(X,p- Xi.p)) + (BOi.p: Yi.p)) — (BO, V)

= (BWL V) + PBO.2yp) + P B(@p V) + P B(aip zip))+

+ (B(Yi p» Yi.p) — (B(, V)

holds.
By the choice of, the (, j)th entry ofAis congruent tdB(y; p, Yj.p)
modulon(g®L,) for p € S. It follows fromy; , € oL, thatn(Hp) c
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n(g’Ly) for p € S. Sincey; € N, vf‘ e K andn(Np) c n(Kp L g°Lp)
Zpfor p¢ S, we haven(Hp) c Z, = n(g’L,) for p ¢ S. Thus we have
provedn(Hp) c n(gL,) for everyp. PropositiorZL10 implies thét,
is represented bgL, for all p. From LemmdZ.2.39, it follows thad
is represented bl and the proof is complete. O

Proof of Theorem 2.2.36Let M be a positive lattice afankM = 2n+3.
Let S be a finite set of prime numbers such t&ab 2 andM, is uni-
modular forp ¢ S and Mg is unimodular for somey(# 2) € S. We
construct a set of submodulégJ), L(J) of M as in Lemmd2.Z40
and show thalN satisfies the condition in Lemnia—22.40 for sothe
For eachp € S, we choose finitely many submodull(jp) of rank
ninM, according to LemmBZZB8 and to each collectioa (jp)pes
we take a submodul&(J) or rankn € M satisfying the conditions
K(J)p = Np(jp) andd(K(J)) € Z or pZ for p ¢ S by Theoreni2.2.33
and Corollany# to Theorein 2.1]14. We construct a submod({igof 218
rankL(J) = rankM - n = n+ 3in {x € M|B(x, K(J)) = 0} as follows:
Forp¢ S, L(J)p = K(J)$ = {x € Mp|B(x,K(Jp)) = 0}. In this case,
L(J)p is (Zp—) maximal, sinces(L(J)p) c Zp andd(L(J)p) € Z5 U pZg
by the local version of LemmaZ2.4]26. Fpre S, we take any maxi-
mal module in{x € Mp|B(x, K(J)p) = 0}. From Propositiol 2218 and
TheoreniZ. 234, it follows that gén= spnL We show that (J)q is
isotropic. IfrankL(J)q = 5, thenL(J)q is isotropic. Otherwise, we have
rankL(J)q = 4, n = 1, rankMy = S. By the assumptiom(# 2) € S,
Mg is unimodular. Hencalq =< (93) >1< (9§) >1<  >. Un-
lessL(J)q is isotropic,QqM does not contain two copies of hyperbolic
planes. Thud (J)q is isotropic. LetN be a positive lattice ofank n
such thatNp, is represented b, for every p. Supposep ¢ S; then
M, is unimodular. Henca(Np) c Zp. SincelL(J), is Zp-maximal and
rankL(J)p = n+3, Ny is represented bly(J), = g°L(J)p by Proposition
20 for everyd. Forp € S, N, is represented bi((J), for someJ.
By LemmalZZ40, there is a constaiid) so thatN is represented by
K@) L LQJ) c M if (B(v;,vj)) > c(J) for some basigv;} of N. Put
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¢ = mJaxc(J). By reduction theory, there is a basig} of N such that

Qv1)
(B(vi,Vj)) € Sa/31/2, and then B(vi, vj)) > [ . ]
Q(vn)

If Ominl\I Q(v) is suficiently large, then we have(v;, vj)) > C'Ep.
£Ve
This completes the proof.

Remark. By the analytic considerations of Chaptefll, the fol-
lowing assertion holds fan=1,m>4o0orn=2,m> 7.

219 Let M be a positive lattice wittM = m. There is a constard(M)
such that any positive lattic with rank N = n is primitively repre-
sented byM provided that

min(N) = 0min Q(X) = ¢(M) and

£XeN

Np is primitively represented b, for every primep.

2.2.0

In this last subsection, we show that there is a submodul®difrc 1
which characterizes a given module.

LetL = L; L --- L Lg be a Jordan splitting of a regular quadratic
moduleL overZp, that is, everyL; is modular ands(L1) 22 S(Ly).

Then we put

to(L) = (ag,...,a1,...,8..., &)

AR NG
rank Ly rank Lk

whereg; is defined byp*Z, = §(Li) and thena; < a, < ... < a.
For two ordered seta = (as,...,an),b = (by,...,by), we define the
orderinga £ b by eithera; = bj for i < kanday, < bk for somek < n
ora = by for all i. For brevity, we denoté,(L,) by ty(L) for a regular
quadratic module ovér.

Lemma 2.2.41.Let L be aZ,-lattice on a regular quadratic module U
overQp. Then L contains &p-submodule M satisfying the following
conditions 1), 2):
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1) d(M) # 0, rank M=rank L— 1 and M is a direct summand of L
as a module.

2) Let L' be aZp-lattice on U containing M. If L") = d(L) and
to(L") = tp(L), then I’ = L.
Proof. First, we assume that is modular. Multiplying the quadratic220
form by some constant, we may suppose th& unimodular, without
loss of generality. Let’ be a lattice as in 2). Thetp(L) = tp(L) =
(O,...,0) impliess(L") c Zp, andd(L’) = d(L) implies thatL’ is uni-
modular. Suppose that has an orthogonal basis, thatlis= Jn_ vai.

Then we putM = J_ va. The condition 1) is trivially satisfiedl’ is

split by M, in V|ew of LemmdZ113. Thuk’ = M L aZpwn(a € Qp).
Further,d(L’) = d(L) impliesa € Z§ andL’ = L. Suppose that
does not have any orthogonal basis. Then, from Propos[@dn%2 and
113, it follows thatp = 2 and

L= .Jn-lzz[ui,vi],
i=

0 1 .
Zolui, vi] =< [1 0] > fori <Kk,

2c 1
ZZ[ukv Vk] =< [ 1 ZC] >

c=0o0rl LetQ(u) = Q(w) = 2¢, B(u, ) = 1 and putM =
k-1
J_ Zolui,Vi] LL Zo[uk + V]. Then condition 1) is satisfied. From

LemmalZLB, it now follows that’ = J_ Zz[u.,v.] L L”. Moreover,

L” is unimodular and.” > uy + V. SlnceQ(uk +Vy) = 2(2c+ 1), Uy + Wk
is primitive in L””. Hencel” = Z[u + v,au+ bvj(u = u, Vv = ), for
somea, b € QJ. Sincel” is unimodular, and(u + V) = 2(2c + 1), we
haveB(u+v, au+bv) € Z3 andQ(au+bv) € Z,. ThusB(u+v, au+bv) =
(a+b)(2c+1) € Z§ andQ(au+ bv) = 2(2c— 1)a — 2(2c— 1)ax+ 2cxX° €
Zy(x = a+b). Hencex € ZJ and Z(a - X) € Z,. This impliesa € Z>
andb = x—a € Z,. Thus we havd” = Z,[u,v] andL’ = L. Re-

k
turning to the general case, let= ,J_l Li, wherelL; is p*Zp-modular
1=
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anda; < --- < ak. Denote byMy a submodule of, which satisfies 1),
2) for Ly, and putM = L!‘;ll Li L M. Then condition 1) is obviously
satisfied. For a lattice’ as in 2),L” contains a modular module, and
tp(L’) = tp(L) impliess(L”) c s(L1). By LemmaZIB}L = L; L L”,
k-1
andtp(L”) = tp(li2 Li) and clearlyL” > 1%2 Li L M. Repeating this
argument, we get’ = LLiL L, tp(L) = tp(Lk), L o My, d(L) = d(L).
1<

Thus we have’ = L.

We call a submodul®/ in LemmaZZ 4l &haracteristic submod-

ule of L. Obviously the images of a characteristic submodule fy O(
are also characteristic. m|

Theorem 2.2.42.Let L be aZ-lattice on regular quadratic module U
overQ; then L contains &-submodule M satisfying the following con-
ditions 1), 2):

1) d(M) # 0, rankM = rankL — 1, and M is a direct summand of L
as a module.

2) Let L be aZ-lattice on a regular quadratic module LWbver Q
satisfying L") = d(L), rank L' = rank L, t,(L") = tp(L) for
every prime p. If there is an isometry u from M tg then L is
isometric to L.

Proof. We separate the case whdris a hyperbolic plane.

Suppose that is a hyperbolic plane and further, let= Z[uy, U],
(B(ui, uj)) = (8 2) Multiplying the quadratic form o some con-
stant, we may assumec2 and @', ¢’ /2) = 1 without loss of general-
ity. SinceQ(xu; + W) = 2(xb’ + ¢’/2), there is an integex such that

1 , : .
EQ(xul + W) is a prime numbeq with (g, 2dL) = 1. Hence td. cor-

responds the matrif? °) with 0 < b < g. Itis easy to see thas c are

uniguely determined by andd(L). We putM = Z[xu; + up], and let
L’ be a lattice in 2). From the hypothesis, it follows tisgt}) c Z, for

everypand hence tt’ corresponds the matr(Z% I ) with 0 < b” < g.

Henceb” = b, ¢’ = ¢. Asaresultl’ = L. From now on, we suppose
thatU is not a hyperbolic plane. L& be a set of prime numbers such
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thatS > 2, andL, is unimodular forp ¢ S, andl\7|IO a characteristic sub-
module ofL, for p € S. Suppos&px, = Mj = {x € Ly|B(x, M) = 0.
Thenx; = Mp, sinceMy is a direct summand of,. By Theorem
2233, there exists an element L such thatx andx, are stficiently
close forp € S andQ(X) € 2§ for p ¢ S with precisely one excep-
tion p = g, whereQ(x) € gZy. We putM = xt. ThenM satis-
fies the condition 1). From Corollafy 4 to Theorém 2.1.14pltoivs
that Z,x andZ,x, are transformed by Q¢) for p € S. ThusMp, M,
are also transformed by I0¢). HenceM, is a characteristic submod-
ule of Lp. If p ¢ S, p # g, thenM, is unimodular and theM, is

a characteristic submodule &f,. Let L’ be a lattice as in 2). Then
QL = Qu(M) L< d(L")Yd(M) >= QL. Hence we may suppose that
L’ is a lattice onU andL’ containsM. SinceM,, of LemmalZ2.4.26,
we haved(Mg) € gZ§. Hence there is a basisvi} of Mg such that
J_ZZqu is unimodular andQ(wn-1) € gZg. Sincei#]__zzqwi splits

isn—

Lq, and Mq is a direct summand ofq, there isw, € L, such that
{Wi,..., Wy} is a basis ofLy. SinceN = Zg[Wn_1, Wn] iS unimodular,
d(N) = Q(Wn_1)Q(Wn) — B(Wn_1, Wn)? is a unit. FromQ(wn_1) € gZX, it
follows thatB(wn-1, Wn) € Zg andQqN is hyperbolic. By Lemm&Z2.11.2,
there is a basige;, e} of N such thatQ(e) = 0( = 1,2)B(e;, &) = 1.
Putwp_1 = a1€1 + axex(a; € Zg); then Zyap € qZé. Multiplying g by a
unit and renumbering, we may suppege; = € +vae (v € Zy). Since
L& is unimodular and_g1 containsMg, there is a unimodular submodule
Kq such thatl = J_ZZqu 1 Kg, Kgq 3 Wn1. Let{wn_1,ce; + dep} 223

1sn—

be a basis 0K,. SinceKq is unimodular, we have + vqc € Z3 and
cd € Zq. Thenc € q1Zg, d € qZg or ¢ € Zg, d € Z. Thus we haveq =
Zqlqter, ge] or Zg[er, €2]. SinceB(x, M) = 0 andB(e1-vgey, Mq) = 0,
Ty = Te-vqe- LIS €asy to see that, _ygeZg[€1, €] = Zq[q‘lel,qez].
Thus we have.j = Lq or 74Lq. SincerxMp = Mp andMy is a charac-
teristic submodule ok, for p # g, we havel}, = Lp = 7xLp. Thus we
havel’ = L or 7yL. O

Remark. Let L be a regular quadratic module ov&andS a finite set
of prime numbers such that 2 S and L, is unimodular forp ¢ S,
and letM be a submodule df, of rank= rankL — 1, such thatM;, is
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characteristic fop € S and forp ¢ S, d(Mp) € Z§ with precisely one
exceptionp = g andd(Mq) € gz3. Letu be an isometry fronM to L.
Extendu to an isometry ofQL. Another extension igrx(x € M+). The
proof shows thati"*(L) = L or 7«L. Henceu is uniquely extended to an
isometry ofL. In particular, ifL is positive definite, then we have

r(M, L) = i{isometries ‘M — L} = #0(L).

Corollary 1. Let{L;}", be a set of regular quadratic modules ov&r
such that ranklL=n,d(Lij) =d(1 <i <m),and L # Ljifi # j. Then
there is a regular quadratic module M ovE&rsuch that rankM= n— 1

and there is precisely onéli < i £ m) for which M is represented by L

Proof. Let S be a finite set of prime numbers such that 3 and (),
is unimodular for 1<i <m, p ¢ S. PutS = {ps,---, pr} and define
A4, ..., A as follows:

Aq = {Lj; tp (L) is minimal in{t, (Lj); 1< jSmy,...,
A1 = {Lj; ty,,, (L) is minimal in{t,,,, (Lj); Lj € Ad}.

Supposd,; € A;, andM is a submodule df; which is constructed in the
proof of TheoreniZ2:42. Assuni¢é is represented bl;. Sincel; €
Ar C Agtp (L) £ tp(Lj). Further,My, is a characteristic submodule
of Li. Hence L), = (Lj)p and thertp, (Lj) =ty (Lj). ThusL; belongs
to A;. Repeating this argument, we havee A;. Thustp(Li) = tp(L;)
for every p. From TheorenriZZ32, it follows théj is isometric tol ;.
This completes the proof. m|

Corollary 2 ([9]). Let{S;i}, be a set of positive definite rational sym-
metric matrices such that ranki S n, |Sj| = d(1 £ i £ m) and there
is no element Te GL,(Z) which satisfies $T] = S;ifi # j. Then
0(Z,Si) = Y, e(o(Si[G]2)) are linearly independent where G runs over
EIRn,n—l(z) and

Z € Hn1 = {Z € My 1(C)Z = 'Z, ImZ > 0O},

Proof. This follows immediately from the previous corollary. ]
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