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Preface

These lectures were given at the Tata Institute of FundaahRessearch
in October - November 1985. It was my first object to presentlf s
contained introduction to summation and transformatiamnfdae for
exponential sums involving either the divisor funct{m) or the Fourier
codficients of a cusp form; these two cases are in fact closelygaoas.
Secondly, | wished to show how these formulae - in combimatiith
some standard methods of analytic number theory - can bédppl
the estimation of the exponential sums in question.

| would like to thank Professor K. Ramachandra, Profess@dka-
subramanian, Professor S. Raghavan, Professor T.N. Slam@r. S.
Srinivasan for their kind hospitality, and my whole audiefior interest
and stimulating discussions. In addition, | am grateful §ocuolleagues
D.R. Heath-Brown, M.N. Huxley, A. lvic, T. Meurman, Y. Motakhi,
and many others for valuable remarks concerning the prest¢es and
my earlier work on these topics.



Notation

The following notation, mostly standard, will occur repedly in these
notes.

v Euler’s constant.
S = o +it, a complex variable.
(9 Riemann’s zeta-function.
I'(s) The gamma-function.
x(9 = 257511 (1 - 9) sin(rs/2).
(2, Yn(2), Kn(2 Bessel functions.
&) = e,
(@) = gria/k,
Res(, a) The residue of the functioh at the pointa.
[f(s9ds The integral of the functiori over the line Res = c.
©
d(n) The number of positive divisors of the integer
a(n) Fourier codficient of a cusp form.
#(9 = % a(n.
n=
K The weight of a cusp form.
&(n) = a(n)n-*-1r2,
r = h/k, arational number withn(k) = 1 andk > 1.
h The residue (mod) defined byhh = 1 (modKk).
E(s1) = 3 d(nje(nn)n=.
n=1
p(sr1) = X alme(nnn™>.
n=
lall The distance ofr from the nearest integer.
Z, f(n) = Y f(n), exceptthatifX is an integer,

<n<
nex 1<n<x

then the termf (X) is to be replaced bjf(x).
Z, f(n) A sum with similar conventions as above

asnsb

if aorbis an integer.



Vi Notation

D(X) = > d(n).
nx
A(X) = Z a(n).
nx
D(x, a) = Z d(n)e(na).
nx
A ) = Z a(n)e(na).
nx
Da(X) =15 dn (x-n3
ngx
Aa(X), Da(Xx, @), Aa(X, @) are analogously defined.
€ An arbitrarily small positive constant.
A A constant, not necessarily the same at
each occurrence.
C"a,b] The class of functions having a continuous

nth derivative in the interval b].

The symbols 0()}<, and> are used in their standard meaning.
Also, f < gmeans thaf andg are of equal order of magnitude, i.e. that
1 <« f/g < 1. The constants implied by these notations depend at most
one.
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Introduction

ONE OF THE basic devices (usually called “process B”; $€4,[$3 1
2.3) in van der Corput’s method is to transform an exponkstien into

a new shape by an application of van der Corput’s lemma arshitheie-
point method. An exponential sum

(0.) >, efn),

a<n<b

where feC?[a,b], f/(X) < 0in [a,b], f’(b) = , andf’(a) = B, is first
written, by use of van der Corput's lemma, as

b
(0.2) Z fe(f(x)—nx)dx+ O0(logB — a + 2)),

a—n<n<B+n

wherene (@) is a fixed number. The exponential integrals here are
then evaluated approximately by the saddle-point methagrims of
the saddle pointg,e(a, b) satisfyingf’(x,) = n.

If the sum [O1l) is represented as a series by Poisson’s stiomma
formula, then the sum ifi{0.2) can be interpreted as theréstang” part
of this series, consisting of those integrals which havedalsapoint in
(a, b), or at least in a slightly wider interval.

The same argument applies to exponential sums of the type

(0.3) > dmgme(f (n)

a<n<b



2 Introduction

as well. The role of van der Corput’s lemma or Poisson’s sutioma
formula is now played by Voronoi’s summation formula

b - b
Z’ d(n)f(n):f(logx+27)f(x)dx+Zd(n)ff(x)a(nx)dx,
a n=1 a

a<n<b

(0.4) a(X) = 4K, (4rxY?) — 2nY, (4rx/?).

The well-known asymptotic formulae for the Bessel functidh,
andy, imply an approximation foe(nx) in terms of trigonometric func-
tions, and, when the corresponding exponential integraf@#) with
a(xX)e(f(x)) in place of f(x)-are treated by the saddle-point method, a
certain exponential sum involvind(n) can be singled out, the contri-
bution of the other terms of the seri€s{0.4) being estimatedn error
term. The leading integral normally represents the expeatue of the
sum in question.

As a technical device, it may be helpful to provide the stm)(0.
with suitable smooth weightgn) which do not #&ect the sum too much
but which make the series in Voronoi formula for the sum

> nmydmg(n)e(f ()

a<n<b

absolutely convergent.

Another device, at first sight nothing but a triviality, cgsts of re-
placing f(n) in @3) by f(n) + rn, wherer is an integer to be chosen
suitably, namely so as to make the functibi{x) + r small in [a, b].
This formal modification does not, of courséext the sum itself in any
way, but the outcome of applying Vornoi’'s summation formaial the
saddle-point method takes quite a new shape.

The last-mentioned argument appeared for the first timle jUogre
a transformation formula for the Dirichlet polynomial

(0.5) S(My, M) = Z d(mym-2/2-it

M1<m<M,

was derived. An interesting resemblance between the magu@kpres-
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sion forS(Mz, My) and the well-known formula of F.V. Atkinsohl[2] for
the error ternE(T) in the asymptotic formula

.
(0.6) f|§(% + it) 1 dt = (log(T/2x) + 2y — 1)T + E(T)
0

was clearly visible, especially in the case 1. This phenomenon has,
in fact, a natural explanation. Forftéirentiation of [0J6) with respect
to T, ignoring the error terno(log? T) in Atkinson’s formula forE(T),
yields heuristically an expression fm(% + it)|?, which can be indeed
verified, up to a certain error, if

|g(% + it) ? = gz(% + it))(‘l(% +it)
is suitably rewritten invoking the approximate functiormmjuation for
Z%(s) and the transformation formula f@(M, M) (for details, see
Theorem 2 in[[16]).
The method ofi[16] also works, with minor modifications, iétbo-
efficientsd(m) in (@.3) are replaced by the Fourier ¢eientsa(m) of
a cusp form of weighk for the full modular group; the Dirichlet poly-

nomial is now considered on the critical lime = «/2 of the Dirichlet
series

o(s) = Z a(nns.
n=1

This analogy betweed(m) anda(m) will prevail throughout these
notes, and in order to avoid repetitions, we are not goingv® details
of the proofs in both cases. As we shall see, the method ceulgeh-
eralized to other cases, related to Dirichlet series sitigfa functional 4
eqguation of a suitable type. But we are leaving these topitkdere,
for those two cases mentioned above seem to be already eafatise
enough.

The transformation formula of [16] has found an applicafiothe
proof of the mean twelfth power estimate

.
(0.7) f|§(% + it) 112dt < T?log’ T
0
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of D.R. Heath-Brown[[I1]. The original proof by Heath-Browras
based on Atkinson’s formula. The details of the alternatipproach
can be found in[13]§ 8.3.

The formula of [16] is useful only if the Dirichlet polynomito be
transformed is fairly short and the numb&@7M;)! lie near to an in-
tegerr. But in applications to Dirichlet series it is desirable ®® dble
to deal with “long” sums as well. It is not advisable to trarsfi such
a sum by a single formula; but a more practical represemtatiti be
obtained if the sum is first split up into segments which adividually
transformed using an optimally chosen value &r each of them. The
set of possible values ofcan be extended from the integers to the ra-
tional numbers if a summation formula of the Voronoi typebogiven
in § [L.9, for for sums

> bmehn f(n). bn) = d(n) o a(n)

a<n<b

is applied. The transformation formula for Dirichlet potymniala are de-
duced in§ &7 as consequences of the theorems of ChRbter 3 concerning
the transformation of more general exponential sums

(0.8) > b(mg(m)e(f(m))

M1<m<M»

or their smoothed versions.

An interesting problem is estimating long exponential surhthe
type [O.B). A result of this kind will be given i§ &3, but only under
rather restrictive assumptions on the functiigrior we have to suppose
that f/(X) ~ Bx®. It is of course possible that comparable, or at least
nontrivial, estimates can be obtained in concrete casd®utithis as-
sumption, making use of the special properties of the foncti

In view of the analogy betweei?(s) and(s), a mean value result
corresponding to Heath-Brown's estimafe0.7) should besiimate
for the sixth moment op(x/2+it). However, the proofs of{0.7) given in
[L1] and [13] utilize special properties of the functigf(s) and cannot
be immediately carried over tg(s). An alternative approach will be
presented ir§ E.4, giving not only[[Q7) (up to the logarithmic factor),
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but also its analogue

.
(0.9) f lp(k/2 + it)[® dt < T2*e.
0

This implies the estimate
(0.10) lo(k/2 + it)] < t/3€ for t>1,

which is not new but neverthless essentially the best knoweagntly.
In fact, (0.I0) is a corollary of the mean value theorem

.
(0.11) f lo(k/2 + )2 dt = (C, log T + C1)T + o((T log T)?/3)
0

of A. Good [9]. The estimatd{0.]L0) can also proved direatlnirela- 6
tively simple way, as will be shown iZ3.

The plan of these notes is as follows. Chapférs 1[&nd 2 cotftain
necessary tools - summation formulae of the Voronoi typethedrems
on exponential integrals - which are combined in Chapler $ietd
general transformation formulae for exponential sumslirmg d(n) or
a(n). Chapteil ¥4, the contents of which were briefly outlined a&as
devoted to specializations and applications of the residilte preced-
ing chapter. Most of the material in ChaptErs 3 Bnd 4 is newaapeéars
here the first time in print.

An attempt is made to keep the presentation selfcontaingh,an
adequate amount of detail. The necessary prerequisitesl@deside
standard complex function theory, hardly anything but feamity with
some well-known properties of the following functions: tR&mann
and Hurwitz zeta functions, the gamma function, Besseltfans, and
cusp forms together with their associated Dirichlet serigse method
of van der Corput is occasionally used, but only in its sirapferm.

As we pointed out, the theory of transformations of expoiaént
sums to be presented in these notes can be viewed as a ctiotinua
or extension of some fundamental ideas underlying van deofliv's
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method. A similarity though admittedly of a more formal mataan also
be found with the circle method and the large sieve methodiehaa
judicious choice of a system of rational numbers at the outseshort,
our principal goal is to analyse what can be said about Oetcke-
ries and related Dirichlet polynomials or exponential siopappealing
only to the functional equation of the allied Dirichlet s=riinvolving
the exponential factorg(nr) and making only minimal use of the ac-
tual structure or properties of the individual éidgients of the Dirichlet
series in question.



Chapter 1

Summation Formulae

THERE IS AN extensive literature on various summation folaewf 8
the Voronoi type and on fierent ways to prove such results (see e.g. the
series of papers by B.C. Berndi [3] and his survey articlg. [¥Ye are
going to need such identities for the sums

> b(nye(nn) f(n).

a<n<b

where 0< a < b, f € C[a,b],r = h/k, andb(n) = d(n) or a(n).
The casef(x) = 1 is actually the important one, for the generalization
is easily made by partial summation. So the basic problem Bdve
identities for the sumB®(x, r) andA(x, r) (see Notation for definitions).
In view of their importance and interest, we found it expetlie derive
these identities from scratch, with a minimum of backgroand dfort.

Our argument proceeds via Riesz meBgéx, r) andAa(Xx, r) where
a > Ois aninteger. We follow A.L. Dixon and W.L. Ferrai [6] witbisie
simplifications. First, in[[6] the more general case whdga not neces-
sarily an integer was discussed, and this leads to comiplisasince
the final result can be formulated in terms of ordinary Befgattions
only if aiis an integer. Secondly, it turned out that o= 0 the case
X € Z, which requires a lengthy separate treatmentlin [6], camadigt
be reduced to the casez Z in a fairly simple way.

To get started with the proofs of the main results of this ¢erapve 9

7
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8 1. Summation Formulae

need information on the Dirichlet seri€fs, r) and¢(s r), in particu-
lar their analytic continuations and functional equatiofise necessary
facts are provided i§§ [L1 and_TP.

Bessel functions emerge in the proofs of the summation ftaenu
when certain complex integrals involving the gamma funcéwe cal-
culated. We could refer here to Watson][29] or TitchmalsH,[Bat
for convenience, ir§ [[.4 , we calculate these integrals directly by the
theorem of residues.

In practice, it is useful to have besides the identities alsproxi-
mate and mean value results B(x, r) andA(x, r), to be given in§ [L.3.

Identities forDa(x, r) andAa(x, r) are proved irg§ ILA-ELS, first for
a > 1 and then fom = 0. The general summation formulae are finally
deduced ir§ [I.9.

1.1 The FunctionE(s,r)

The function
(1.1.2) E(sr) = i d(nye(nr)n~S(c > 1)
n=1

wherer = h/k, was investigated by T. Estermarn [8], who proved the
results of the following lemma. Our proofs are somewh#tedent in
details, for we are making systematic use of the Hurwitz-aatation

{(sa).

Lemma 1.1. The function Es, h/k) can be continued analytically to
a meromorphic function, which is holomorphic in the wholenptex
plane up to a double pole at=s 1, satisfies the functional equation

E(s h/K) = 2(271)%2T%(1 - sk 25

(1.1.2) — _
X {E(1 - s h/k) — cos@s)E(1 - s h/K)},

and has at s= 1 the Laurent expansion

(1.1.3) E(sh/K) =k*s-1)2+k™*(2y-2logk)(s—1) "+
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Also,
(1.1.4) E(0, h/k) <« klog 2k.

Proof. The Dirichlet series[{I.1l1) converges absolutely and theis
fines a holomorphic function in the half-plame > 1. The function
E(s h/k) can be expressed in terms of the Hurwitz zeta-function

(9

l(sa) = Z(n+a)‘S (c>10<acx<l).
n=0

Indeed, foro- > 1 we have

E(sh/K)= > a(mnh(mn)
mn=1
k

= D, &g 3 (M0

a,B=1 m=a  (MmodKk)
n=B (modKk)

Kk o0

= > aaph) Y (o +pk) (B + k),

a,p=1 u,y=0

so that
k

(1.1.5) E(sh/k) = k2 ) edaBh)l(s a/K(s B/K).

a,B=1

This holds, in the first place, fer > 1, but since/(s, a) can be ana-
lytically continued to a meromorphic function which has mgie pole 11
with residue 1 as = 1 as its only singularity (se&[27], p. 37), the equa-
tion (L) gives an analytic continuation®fs, h/k) to a meromorphic
function. Moreover, its only possible pole, of order at msis s = 1.

To study the behaviour d(s, h/k) nears = 1, let us compare it
with the function

k
K27(9) ) e(ap)e(s B/K) = K257%(s).

a,f=1
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The diterence of these functions is By (111.5) equal to

k

(1.1.6) Y

a=1

k
D e(aBh(s B/ k)] (s a/k) = £(9).
p=1

Here the factor (s, a/K) — Z(s) is holomorphic as = 1 for all &, and
vanishes forr = k. Since the sum with respect gds also holomorphic
ats = 1 fora # k, the function[1.116) is holomorphic at= 1. Accord-
ingly, the functionsE(s, h/k) andk!~25/2(s) have the same principal part
ats= 1. Because

1
5(5):a+”',

this principal part is that given ifi{L.1.3).
To prove the functional equatiofi(I1L.2), we utilize thenfata
([24], equation (2.17.3))

(1.1.7) Z(sa)=220)%r1-s) i sin(%ns+ 2rmam®> (o < 0).

m=1

Then the equatioi.(1.1.5) becomes

E(s h/K) = —(27)25212(1 - 9k 2x

Kk o0
x Y aah) ) (€ a(ma +np) + e Sea(-ma - )

a,f=1 mn=1
— a(ma — B) — &(—ma + BMN=* (o < 0).

12
Note that

k . =

k if B=+mh K
Y aaphzmay =< A ==mh (modk.
o 0 otherwise

The functional equatior.{1.1.2) now follows, first fer< 0, but by
analytic continuation elsewhere also.
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For a proof of [I.TK), we derive fdE(0, h/k) an expression in a
closed form. By[(1.115),

k
(1.18)  EQ.NK= ) adaph)i(0.a/ki(O.5/K.
a,f=1

If 0 < a< 1, then the series il{1.1.7) converges uniformly and thus
defines a continuous function for all remk 0. Hence, by continuity,
(@I1) remains valid also f&= 0 in this case. It follows that

{08 =7t sinrmam ™,
m=1

But the series on the right equalél/2 — a) for 0 < a < 1, whence
(1.1.9) /(0,8 =1/2—a

SinceZ(0,1) = £(0) = —1/2, this holds fora = 1 as well. Now, by
(CI3) and[(1.119)

k
EQ.h/K) = ) edaBh)(1/2 - a/k)(1/2 - B/K).

a,f=1
From this it follows easily that 13
3 k
(1.1.10) EO.h/K) = —Zk+ k2 > ex(aphop.

a,B=1

To estimate the double sum on the right, observe thakifil< k-1
andg runs over an arbitrary interval, then

2 adaph)| <l ah/k ™t
B

Thus, by partial summation,

k-1

k
D> adaphlop

a=1p=1

k-1
< kzz Il ah/k ||t
a=1
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< Kk? Z kK/la < k3log K,
1<a<k/2

and [T.T4) follows from[{T.T.10). m|

1.2 The Functiong(s,r)

Let H be the upper half-plane Im> 0. The mappings

ar+b
ﬁ
ct+d

where( 2 8} is an integral matrix of determinant 1, takieonto itself and
constitute the (fullmodular group. A function f which is holomorphic
in H and not identically zero, iseusp form of weight k for the modular
group if

ar + b K
(1.2.2) f(CT+d)—(CT+d) f(r),reH
for all mappings of the modular group, and moreover
(1.2.2) lim f(r) =0.
Im7—00

It is well-known thatk is an even integer at least 12, and that the
dimension of the vector space of cusp forms of weiklig [k/12] if
k2 (mod 12) andi/12] - 1 if k = 2 (mod 12) (se€]1]§§ 6.3 and
6.5).

A special case of{1.2.1) i§(r + 1) = f(r). Hence, by periodicity,

f has a Fourier series, which Hy (112.2) is necessarily ofdha f

(1.2.3) f(r) = > a(ne(nm).
n=1
The numbersa(n) are called the~ourier coefficients of the cusp
form f. The cas&k = 12 is of particular interest, for thes(n) = 7(n),
the Ramanujan function defined by

oC

DX = xﬁ(l — x™24 (%] < 1).
m=1

n=1
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We are going to need some information on the order of magmitud
of the Fourier cofficientsa(n). For most purposes, the classical mean
value theorem

(1.2.4) D la(n)? = A% + o(x2)

n<x

of R.A. Rankin [24] stfices, though sometimes it will be convenient of
necessary to refer to the estimate

(1.2.5) la(n)] < n&12d(n).

This was known as the Ramanujan-Petersson conjecturd, itinti
became a theorem after having been proved by P. Deligne§L.Z5),
it should be understood thdtis a normalized eigenform (i.@(1) =
1) of all Hecke operator3 (n), but this is not an essential restriction,
for a basis of the vector space of cusp forms of a given weightbe 15
constructed of such forms.

Now (L. Z3) implies that the estimafe{1]2.5), and even nistteue
in a mean sense, and since we shall be dealing with expredsiariv-
ing a(n) for many values oh, it will be usually enough to know the
order ofa(n) on the average.

It follows easily from [1.Z}) that the Dirichlet series

(9]

(9 = ) amn s,

n=1
and, more generally, the series

(o)

¢(s1) =) an)e(nnns,

n=1

wherer = h/k, converges absolutely and defines a holomorphic function
in the half-planer > (k+ 1)/2. It was shown by J.R. Wiltor [30], in the
casea(n) = t(n), thaty(s, r) can be continued analytically to an entire
function satisfying a functional equation of the Riemanpety But his
argument applies as such also in the general case, and theisess
follows.
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Lemma 1.2. The functiony(s, h/k) can be continued analytically to an
entire function satisfying the functional equation

(1.2.6) (k/27)°T(S)e(s. h/K)
= (-1)/A(k/20) Tk = p(k ~ 5. ~h/K).

Proof. Let

h iz h i

T=—+ T =——+

k' Kk k' zK
whereRe z> 0. Thenr, v’ € H, and we show first that

(1.2.7) f(r') = (-1)2Z4 (7).

The pointst and " are equivalent under the modular group, for
puttinga=h,b = (1 - hh)/k c=-k,andd = h, we havead—bhc =1

and
ar+b 3

cr+d

/

Also,
ct+d=—iz,

so that[[I.ZI7) is a consequence of the relafion{fl.2.1).
Now leto > (k + 1)/2. Then we have

(k/2m)T(¢(s /K) = Za(n)@(nh) f L2 g

f( ) g

Here the integral over (0,1) can be written by (11.2.7) as

(o8]

1 _ _
h i h ix
_1\k/2 s1-ke_ M1 — (_1)/2 k-1-s¢(_2 . 2
(-1) fx f( k+xk)dx (-1) fx f( k+k)dx
0 1
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Hence

(1.2.8) (k/27)°T(S)p(s, h/K)

[l s e B

But the integral on the right defines an entire functiorsoffor, by
[TZ3), the functionf(r) decays exponentially as lrtends to infinity.
Thus [T.ZB) gives an analytic continuationag, h/k) to an entire func-
tion. Moreover, it is immediately seen that the right harsegiemains 17
invariant under the transformatidmik — —h/k, s —» k—sif k/2 is even,
and changes its sign /2 is odd. Thus the functional equatidn(1]12.6)
holds in any case. O

REMARK. The special case ¥ 1 of (I.Z.6)amounts to Hecke’s func-
tional equation

(27) " T(9e(9) = (~1)/*(21)" T(k - (k- 9).

1.3 Asymptotic Formulae for the Gamma Function
and Bessel Functions

The special functions that will occur in this text are the gaafunction
I'(s) and the Bessel function,(2), Yn(2), Kn(2) of nonnegative integral
ordern. By definition,

k 2k+n
(1.3.1) In(@ = Z( il)(r(]zizlz)l ,

n-1
| (n- kl)

(1.3.2) Yn(2) = L (z/2y* "

k=0
= Z (-1)(z/2)+n

i+ ir 21096/ —u(k+ 1)~ y(k+n+ 1))



18

16 1. Summation Formulae

and

153 K(%22<n%!kn(m%n

2k+n
+2 ( i 12 s ) 7 92100€/2) = (k-+ 1) =k n+ 1)),
where ’
v = =@,
In particular,

Y1) = -y p(n+ 1) =—y+ Yy k'n=12. .
k=1

Repeated use will be made of Stirling’s formula fofs) and of the
asymptotic formulae for Bessel functions. Therefore wealtethese
well-konwn results here for the convenience of further nezfiee.

The following version of Stirling’s formula is precise ergsufor our
purposes.

Lemma 1.3. Lets < x be a fixed positive number. Then
(1.3.4) I'(s) = V2rexps— 1/2)logs— sj(1 + o(|S %))

in the sectotargg < 7 —4,|9 > 1. Also, in any fixed strip A< oo < Ap
we have for > 1

(1.3.5) T(s) = Vnts Y2 exp(—:—ZLﬂt —it+ %ﬂ(a - 1/2)i)(1 + o(t™1)),
and
(1.3.6) I0(s)| = V2rt7Y2e /241 + Ot™1)).

The asymptotic formulae for the functiord(2), Yn(2), and K, (2
can be derived from the analogous results for Hankel funstio

(1.3.7) HY@ = 3@ + (1) tiYa(@), j = 1,2
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The variablezis here restricted to the slit complex plane 0, | arg
2 < m. Obviously,

1
(1.3.8) 3@ =5 (H@ + HP@).
1
(1.3.9) Yo@) = = (HP@ - HP@).
The functionK,(2) can also be written in terms of Hankel functions, for
(seell29], p. 78)

(1.3.10) Kn(2) = gi””H,ﬁl)(iz) for —nx<argz<n/2,
(1.3.11) Kn(2 = gi‘””H,(]Z)(—iz) for g <argz<nm.

19
The asymptotic formulae for Hankel functions are usuallyivel
from appropriate integral representations, and then thimpitic be-
haviour of Jy, Y,,, andK, can be determined by the relatiofisS{11.3.8) -
@C311) (se€]29]s§ 7.2, 7.21 and 7.23). The results are as follows.

Lemma 1.4. Letd; < w andd» be fixed positive numbers. Then in the
sector

(1.3.12) larggd < 7 - 61,14 = 62

we have

(1.3.13) H (@) = (2/x2)"/2 exp((—l)i—li (z - %nﬂ - %n)) (1+gi@).

where the functions;fz) are holomorphic in the slit complex planetz
0,|argZ < &, and satisfy

(1.3.14) lgj@l < 127

in the sectorT.3.12) Also, for real x> 62,

(13.15) (¥ = (2/m)*? COS(X ) %”’T ) %1”) +o(x¥?),
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(13.16)  Yo(¥) = (zxnx)”zsm(x‘ o - %") +o(x3?)

and
(1.3.17) Kn(X) = (/227 (1 + o(x1)).

Strictly speaking, the functiorgy should actually be denoted iy,
say, because they dependroas well, but for simplicity we dropped the
indexn, which will always be known from the context.

1.4 Evaluation of Some Complex Integrals

Let a be a nonnegative integer; > —a/2,00 < —a, T > 0, and letC,
be the contour joining the points,—ico, 01— Ti,02—-Ti,02+Ti,01+Ti,
ando; + ico by straight lines. LeX > 0,k a positive integer, and a
number such that

(k-a-1)/2<c<k

In the next two sections we are going to need the values ofdahe ¢
plex integrals

(141) 1y = % fl"z(l— 9XS(s(s+1)... (s+a)Lds
Ca

(1.4.2) = % fFZ(l — 9 cosrs)X(s(s+1)...(s+a)) ' ds
Ca

and

(1.43) 3= % fl"(k — I Y9X(s(s+1)...(s+a)tds
©

Lemma 1.5. We have

(1.4.4) Iy = 2(=1)IXE-A/2K 1 (2XY?),
(1.4.5) I, = aXE /2y, 1 (2XY?),
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and
(1.4.6) I3 = X&3/23, . (2xY3).

Proof. For positive number3; and T, exceedingT, denote byC,(T1,

T»,) that part ofC, which lies in the strip-T; <t < T,. The integrals

I, andl, are understood as limits of the corresponding integrals oge
Ca(T1,T2) asTy and T, tend to infinity independently. Similarly; is

the limit of the integral over the line segmentfiTy,c+iT>].

Let N be a large positive integer, which is kept fixed for a moment.
Denote by'(T1, T2; N) the closed contour joining the poirts+1/2—iT;
andN + 1/2 + iT, with each other and with the initial and end point of
Ca(Tq1, Tp), respectively, or with the points-iT; andc+iT» in the case
of I3. Then, by the theorem of residues,

(2.4.7) % f(. ..)ds= Z Res
r

where (..) means the integrand of the respectiye whose residues
insideI’ = I'(T1, T2; N) are summed on the right.

By (L.3:8) and our assumptions on andc, the integrals over those
horizontal parts of’(T1, T2; N) lying on the linest = -T, andt = T,
are seen to b& (log T;)™%,i = 1, 2. Hence these integrals vanish in the
limit as theT; tend to infinity. Then the equatioR{T.#.7) becomes

(1.4.8) —|j+% f (...)ds= > Res
(N+1/2)
Consider now the integrals over the lioe= N + 1/2.
By a repeated application of the formuigs) = sI'(s + 1), thel-
factors in the integrands can be expressed in terri$lgR + it). Then,
by some simple estimations, we find that the integrals intipresanish

in the limit asN tends to infinity. Thereford{1.4.8) gives

a 00
(1.4.9) I3 == ) Res(,—k) - > Res{,k),j =12
k=0 k=1
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(1.4.10) I3 = - i Res(, k),
k=k

where the dot denotes the respective integrand.
Consider the integrd, first. Obviously

Res(,-h) = (-1)"hi((a- h))*X™" for h=0,1,...,a

The sum of these can be written, on puttlng a - h, as
a

(14.11) LR ) (1)@ - KI(K) HXM? 2%,
k=0

The integrand has double polessat 1,2,..., and the residue &t
can be calculated, multiplying (far= k + 6) the expansions

21— 9) = 6721%(1 - s)(k— 1+ 6) 2(k— 2+ 6)2... (1 +6) 2
=62((k— 1)) 21— 20(K)5 +...),
(s(s+1)...(s+a)t=(k-D((k+a)h™*
(1-Wk+a+1)-y®)s+--),
and
XS =XK1 +6logX +---).
We obtain

Res(, k) = X((k+a)!(k-1))"L(log X —y(k+a+1)—y(K). k= 1,2, ...

Hence, also taking into accouif{1.4.11) and {1.3.3), we wiég the
sum of residues as

(a+1)-1
2(-1)(XM?)t2 {% DT DM@+ 1) - k- 1)(kt) (X2 2@
k=0

+ %(—1)@“1)—1 DKk + (a+ 1)) HRXY2 2Pk @),
k=0
-(210g(2X"2/2)=y(k+ 1) =y(k+ (@+1)+1)) ) = 2(-1)*XTI2Kq,1(2XH?)-
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Now (T.Z.3) follows from[(1.4]9).
The residues of the integrandslefandl; at s = k differ only by the

sign (-1). The series of residues of the integrand ptan be written
in terms of the functionY,,;, and the assertiof (1.4.5) follows by a
calculation similar to that above.

Finally, the residue of the integrand kfath > kiis

DX (h+ @) (h—K)) ™,
and puttingk = h — k the sum of these terms can be arranged so as to

give
—xk&a23 - (2xY3).

This proves[(1.416).

1.5 Approximate Formula and Mean Value
Estimates for D(x, r) and A(x, r)

Our object in this section is to derive approximate formuéthe Voro-
noi type for the exponential sums

D(x.r) = Y "d(n)e(nr)

n<x

and

Axr) = " a(n)e(nn).

n<x

and to apply these to the pointwise and mean square estmtdtiz(x, r)
andA(x, r). As beforer = h/k is a rational number.

A model of a result like this is the following classical forhfor
D(x) = D(x, 1):

(1.5.1) D(x) = (logx+ 2y — 1)x
+HrV2y™a Y dnn cos(dr Vinx— 1/4) + o(x 2N Y2),

n<N
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wherex > 1 and 1< N <« x (see [2F], p. 269). The corresponding4
formula forD(x, r) will be of the form

(1.5.2) D(x, h/k) = k™1(log x+ 2y —1-2 logk)x+ E(0, h/K) + A(x, h/K),

whereA(x, h/K) is an error term.
The next theorem reveals an analogy betw&enr) andA(x, r).

THEOREM 1.1. For x> 1,k < X, andl < N < x the equatior{T.5.2)

holds with

(1.5.3)

A(x, h/K) = (r V2) 1kY2x14 Z d(n)a(—=nh)n%/* cos(4 Vnx/k — rr/4)
n<N

+O(kxE N -2),

Also,
(1.5.4)
A(x, h/K) = (7 V2) keix 3+2 Z a(n)ex(—nh)n1/4-k2 cos(—47r ;/ﬁ - :—Tl)

n<N

+O(KX/ZHen=1/2),

Proof. Consider first the formuld{1.3.3). We follow the argument of
proof of (L) in[[27], pp. 266—269, with minor modificat®
Lets be a small positive number which will be kept fixed throughout
the proof. By Perron’s formula,
1+6+iT
(1.5.5) D(X,r) = % f E(s r)xSstds+ 00T 1),
1+6-iT

wherer = h/k andT is a parameter such that
(1.5.6) 1< T < k1x

As a preliminary for the next step, which consists of movihg t
integration in [I.515) to the line = -5, we need an estimate f&i(s, r)
inthe strip—6 <o < 1+6for|t| > 1.
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The auxiliary function

(1.5.7) (z%;)z E(sr)

is holomorphic in the strip-6 < o < 1 + 6, and in the part wherig > 1
it is of the same order of magnitude Bés, r). This function is bounded
onthe lineoc = 1+ §, and on the liner = —§itis

< (k(t| + 1))+

by the functional equatiofi{I1.2) and the estimgaie (Il & &)e gamma
function. The convexity principle now gives an estimatetfa function
(@C51), and as a consequence we obtain

(1.5.8) IE(s.r) < (Kit)* o for —6<o<1+6]t>1

Let C be the rectangular contour with vertices d+iT and—6+iT.
By the theorem of residues, we have

(1.5.9) %fE(s, Nxstds=k(logx+2y—-1-2logk)x+E(,r),
c

where the expansioi{11.3) has been used in the calculefidthe
residue as = 1.
The integrals over the horizontal partsGare< x*9T! by (L5.8)

and [L.55). Hencé (1.5.2), (1.5.5), ahd (1.5.9) give toget

—0+iT
1
(1.5.10) A(X, 1) = o f E(s r)xSstds+ o(x**T™1).
55T

The functional equatioi{I.1.2) fd(s, r) is now applied. The term
involving E(1 — s h/k) decreases rapidly at increases and it will be 26
estimated as an error term. Then foe -6, we obtain

E(s ) = —2(27)%572I?(1 - 9k cosfrs) i d(n)e(-nh)n>1
n=1
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+o((k(it| + 1))+ e,
The contribution of the error term to the integral In(1.%.k0
< kP 0 « k¥ < XFOTL,

Thus we have

(1511) Ak = ‘%”_2"2 d(mn~te(=nh) jn + o(x*T1),
n=1

where
1 —6+iT
(1.5.12) n=5- f I'?(1 - s)cosgrs)(4n’nxk?)Sstds
ST

At this stage we fix the paramet&r putting
(1.5.13) T2Kk2(4n?x) "t = N+ 1/2,

whereN is an integer such that4 N < x. It is immediately seen that
T < k™Ix. In order that the conditior {1.3.6) be satisfied, we should
also havel > 1, which presupposes thit > k?x1. We may assume
this, for otherwise the assertidn (115.3) holds for trivedsons. Indeed,

if 1 < N < k?x71, then [LEB) is implied by the estimatéx, h/k) <
x1*+€, which is definitely true by[{1.512) anB{L1.4).

Next we dispose of the tait > N of the series in[[T.5.11). The
integral j,, splits into three parts, in whichruns respectively over the
intervals FT,-1],[-1,1], and [1T]. The second integral is clearly
< k¥n<x 9 and these terms contribute kx°. The first and third
integrals are similar; consider the third one, $gy

By (I.333) we have for§ < o <dandt > 1

(1.5.14) I'?(1 - s) cosrs)(4n’nxk 2)Sst
= Al (4r’nxk 27" 0 (1 + Ot™)),
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whereA(o) is bounded and

(1.5.15) F(t) = —2tlogt + 2t + tlog(4r®nxk2).
Thus
T
(1.5.16) in = Ak®nox° [ f 20RO dt + o(T”)J.
1

The last integral is estimated by the following elementamimna
([217], Lemma 4.3) on exponential integrals. O

Lemma 1.6. Let F(X) and ((x) be real functions in the intervdh, b]
where @X) is continuous and E) continuously dferentiable. Suppose
that G(x)/F’(x) is monotonic andF’(x)/G(x)| > m> 0. Then

b
(1.5.17) | f G(x)eF™ dx < 4/m,
Now by (T.5.15) and{1.5:13) we have
'y 2 l-24—2 n
(1.5.18) F’(t) = log(4r“nxK“t™<) > Iog(N " 1/2)

for1 <t < T, whence by[(1.5:16) anf{1.5]17)

-1
" 26 \~6 25 \—6 n
jn << k®n°T<x ((IOg(N+1/2)) +1).

Thus
D dmnHjn < N0 < X,
n>2N
and Do dmn i< > dN+mm T < .
N<n<2N 1<m<N

Accordingly, in [I.5.111) the taih > N of the series can be omitted witreg
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an error< kX, and taking into account the choide (1.5.13)Tofwe
obtain

(1.5.19)  A(Xr) = —%n_zk > dmn e (—nh) jn + okt **N?),

n<N

The remaining integralf, will be calculated approximately by Lem-
malL5, and to this end we extend the path of integratioh | 12) to
the infinite broken line through the poinis- ico,§ —iT, -6 —iT, -6 —
iT,-6+IT,0+IiT ands + ico, estimating the consequent error when the
jnin (CEI9) are replaced by the new integrals.

First, by [I.5.I#) and (1T.5113),

O+T §
> dmn ()< D dmn [ (yN)7 dor
n<N 61; n<N _j(;
< N¢ Z dmn 170 <« ¥,
n<N

where (- -) means the integrand gf. The same estimate holds for the
integrals over the line segmentd — iT,6 —iT].
Next, by [1.5.14),[{1.518), and Leminall.6, we have

O+ico
> dmn f () < (k‘zx)5Zd(n)n‘1+‘5
n<N T n<N

f 2 (eFO + o(t™)) dt
/

-1
< (K2T72x)° Z d(n)n~1+e ((Iog(N +n1/2)) + 1]

n<N

< Yldmnt+ T dmN+12-n)T < X,

n<N/2 N/2<ngN

29 and similarly for the integrals ove$ |- ico,6 —iT].
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These estimations show thff{1.5.19) remains valid ifjthare re-
placed by the modified integrals, which are of the typén (I.4.2) for
a= 0 andX = 4r°nxk?, and thus equal to

272(nX)Y2k1Y (4r Vnx/K)

by (I.Z5). The assertiof {1.5.3) now follows wheénis replaced by its
expression[(1.3.16) (which holds trivially for= 1 with the error term
0(xY) even in the intervald, 65)).

The proof of [IL&}K) is quite similar. The starting pointhe tequa-
tion

(k+1)/2+6+IT
1
Alx.r) = o f o(s r)x®s tds+ o(xkrD/Z+oT-1)
(k+1)/2+6—iT

where 1< T <« k™Ix. It should be noted that Deligne’s estimdie (1.2.5)
is needed here; otherwise the error term would be bigger.

The integration is next shifted to the line segmekt{(1)/2 — 6 —
iT,(k—1)/2-¢6+IiT] with arguments as in the proof df{1.5]10), except
that now there are no residue terms. Applying the functi@ualation
[@CZ8) ofp(s, r), we obtain

A(x.r) = (~1F2(k/2n)* )" a(mine(-hn)x
n=1
(k=1)/2—6+T
X~ I'(k — 9N(9) (4r°nxk?)5s 1 ds+ o(xk+D/2+oT-1y,

2ri
(k=1)/2—-6—iT

The parameteTl is chosen as il {1.5.]13) again. Next it is shown,
as before, that the tail > N of the above series can be omitted, and
that in the remaining terms the integration can be shiftethéowhole 30
line o = (k- 1)/2 + 6. The new integrals are evaluated in terms of the
function Jx using [LZB). Finallyd, is approximated by[{1.3.J5) (which
holds trivially with the error terno(x~/?) even in the interval (¥>)) to
give the formulal(1.5]4). The proof of the theorem is now clatg
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ChoosingN = k?3x1/3 and estimating the sums on the right of
(@53) and[(1.5]4) by absolute values, one obtains theviallg esti-
mates forA(x,r) andA(x,r),

COROLLARY. For x> 1and k< x we have
(1.5.20) A(x, h/K) < K?/3xL/3+e,
(1.5.21) A(X, h/K) < K?/3yki2-1/6+e
As another application of Theore1l.1 we deduce mean vaklue re
sults forA(x, r) andA(x, r).
THEOREM 1.2. For X > 1 we have

(1.5.22)
X

f IA(X, h/K)? dx = c1kX3/? + o(k?X1€) + o(k3/2X5/4+€),
1
(1.5.23)

X
andf |A(X, h/k)|2 dx = C2(k)ka+l/2 + 0(k2xk+e) + 0(k3/2Xk+1/4+E),
1

where

c1= (61971 ) (32
n=1

and

(o)

ca(k) = ((4k+ 2)22) Y ja()Pn <2,
n=1

Proof. The proofs of these assertions are very similar; soffices to

consider the verification of {I.5R22) as an example. We areallg
going to prove the formula

2X
(1.5.24) f A h/K)2 dx = cik ((2X)%2 - X¥2)
X
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+0 (k2xl+s) +0 (k3/2x5/4+e)

for k < X, and forX <« k we estimate trivially
X

(1.5.25) f IA(X, h/K)? dx < k2X1*e
1

noting thatA(x, h/k) < klog 2k for x < k by (I.5.2) and(1.114). Clearly

@C5.22) follows from[1.5.24) an@{1.5]25).
Turning to the proof of[[T.5.24), leX < x < 2X, and choos&\ = X

in the formula[[T.513), which we write as
A(x, h/K) = S(x, h/k) + 0(kx).

We are going to prove that

2X
(1.5.26) f SO h/K)P dx = cok ((2X)%2 = X¥2) + o (K2X1*),
X

which implies [T.5.24) by Cauchy’s inequality.
Squaring outS(x, h/k)[? and integrating term by term, we find that
2X
(1.5.27) f IS(x, h/K)[Z dx = S, + o(k(IS1| + S2])),
X

where
2X

So = (4% 7k )" dP(mn3? f XY2 dx

n<X

Sp= ), dmdn(mn* | x2e(2(vm- Vi) Vx/k)dx

mn<X
m#EN

Sp= ) dmyd(n)(mn) 4

mn<X

xl/ze(z(\/ﬁ+ %) \/T(/k) dx

XS§ X%g\é X
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32
The sumS, gives the leading term il {1.5126), for

S. = ek ((2X)¥2 = X¥2) + o (kX**).
Further, by LemmBZl6,

S; < kX Z d(m)d(n)(mn)~>/* ( V- ‘/m)_l

m,n<X
m<n

< kX ' dmdnm4n-4mn - m)!

m,n<X
m<n

< kxtre/? Z m 1 < kxte,

m<X

and similarly forS,. Hencel(1.5.26) follows froni.{I.5.P7), and the proof
of (LE22) is complete. i

COROLLARY. Fork <« X¥2-¢ gnd X — oo we have

X
(1.5.28) f IA(X, h/K)? dx ~ c1kX3/?,
1
X
(1.5.29) f IA(X, h/K)[2 dx ~ co(K)kXK22.
1

It is seen that for k< xY27¢ the typical order of|A(x, h/K)| is
k1/2x1/4, and that of|A(x, h/K)| is k/2xX/2-1/4_ This suggests the fol-
lowing

CONJECTURE. For x > 1and k< x/2
(1.5.30) IA(X, h/K)| < kY/2xL/4+e
(1.5.31) IA(X, h/K)| < KY/2xK/2-1/4+e,
Note that [1.5.30) is a generalization of the old conjecture
IA(X)| < xM/4+e

in Dirichlet’s divisor problem.
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1.6 Identities for D4(X, r) and Ag(X, r)

The Casea > 1.
As generalizations of the sum functioBgx, r) and A(x, r), define
the Riesz means

(1.6.1) Da(x. 1) = % > d(me(nn)(x - n)?®
and
(1.6.2) Aa(X.1) = % Z a(n)e(nr)(x — n)?,

n<x

where a is a nonnegative integer. THUgX, r) = D(x,r) andA.(X, r) =
A(x,r). Actually, for our later purposes, only the case 0 will be of
relevance, but just in order to be able to deal with this soha\delicate
case by an induction from a to- 1, we shall need identities f@,(x, r)
andAg(x, r) as well. These are contained in the following theorem.

THEOREM 1.3. Let a> 0 be an integer. Then for x O we have

1+a ar+l

(163)  Dalxh/K) = o |log x-+ 2y — 2logk - n; %
. i m((;—l_)nmIE(—n, h/K)XE™ + Aa(x h/K),
n=0 |
where
(1.6.4)

Aa(x, h/K) = —(k/27r)aX(l+a)/2 Z d(n)n—(l+a)/2><
n=1

% {@(=nh) Ya,a(47 VAX/K) + (~1)%(2/m)a(nh)Ky.a(4m VIX/K)} .
Also,

(1.6.5) Aa(x, h/K) = (_:|_)k/2(k/zﬂ.)ax(k+a)/2><
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x ) almn D 2e(~nh) J.a(dr VRX/K).
n=1

Proof. (the casa > 1). By a well-known summation formula (see[13],
p. 487, equation (A.14)), we have for aay 1

2ni
©

Da(X,r) = = f E(s r)x5*3(s(s+1)---(s+a))tds

Firstleta > 2, and move the integration to the broken I@gjoining
the points-1/3 —ico,-1/3-i,—(a+ 1/2)—i,—(a+1/2) +i,-1/3 +1,
and-1/3 + ico. The residues at,D,-1,...,—a give the initial terms
in (L&3); the expansiol {1.1.3) is used in the calculatibtihe residue
ats = 1. Note also that the integrand 4s [t|2"~2 for |t| > 1 ando
bounded (the implied constant dependska@mndXx), so that the theorem
of residues gives

Aa(x, 1) = % fE(s, Nx*3(s(s+1)---(s+a))tds

Ca

The functionE(s, h/K) is now expressed by the functional equation
[T I2), and the resulting series can be integrated terneioy by the
last mentioned estimate. The new integrals are of the kypadl, in
the notation of§.4, and[[T.6}4) follows, foa > 2, when these integrals
are evaluated by Lemnial.5.

Next we diferentiate both sides di{1.6.3) with respeckitdBy the
definition [T.6:1) we have faa > 2

(1.6.6) Da(x. 1) = Da-1(X 1),
and consequently b{/{1.6.3)

(1.6.7) AL T) = Ago1 (X 1).
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The right hand side of{1.8.4) shares the same propertytsfderiva-
tive equals the same expression with a replaced by, Formally, this
can be verified by dierentiation term by term using the relations

(1.6.8) (X'Kn(¥))" = =X"Kn_1(X)
and
(1.6.9) (X"Ya(X))" = X"Yp_1(X).

But by (I.3.16) and[{1.3.17) the series [N_(11.6.4) conveudjeso-

lutely fora > 1, and the convergence is uniform in any interval k,] c
(0, o), which justifies the dferentiation term by term foa > 2. This
argument prove$(1.8.4) far= 1 also.

The identity [IT.6b) is proved in the same way, starting friha
formula

A1) = 5= f (S X5+ 1)+ (s+ @)L ds
(©

wherec > (k + 1)/2. Fora > 2 the integration can be shifted to the line
o = k/2 - 2/3, where we use the functional equatién_(1.2.6) to rewrite
(s h/K). This leads to integrals of the typg, which can be expressed
in terms of the Bessel functiody., by (I.Z6). As a result, we obtain
the assertion{1.68.5) fa > 2. The casa = 1 is deduced from this by
differentiation as above, using the relation

(1.6.10) &"In(x)) = X"In-1(¥)

and the asymptotic formul@{L.3]115). We have now provedtherem
in the case > 1, and the casa = 0 is postponed t¢§ [L.8.
Estimating the series il {1.6.4) arid (116.5) by absolutaeslone 36
obtains estimates fak,(X, r) andAg(x, r). In the case = 1, the result
is as follows. O

COROLLARY. For x> k? we have

(1.6.11) IA1(x, h/K)| < K3/2x3/4
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and

(1.6.12) IAL(X, h/K)| < K3/2xKI2+1/4,

REMARK. The error termA,(x,r) coincides withA(x,r), defined in
([@C52) The relationg[.6.6)and (I.&1)remain valid also for a= 1if x
is not an integer. Thus, in particular,

(1.6.13) Aj(xr)=A(xr) for x>0,x¢Z.

Together with{L.6.4)for a = 1, this yields(I.6.4)fora = 0,x ¢ Z
as well, if the dfferentiation term by term offL6.4)for a = 1 can
be justified. This step is not obvious but requires an anglydiich is
carried out in the next section. After that the remainingecas: 0, X € Z
is dealt with in§ [[.8 by a limiting argument.

In analogy withL.&.I3) we have

(1.6.14) Al(xr) =A(xr) for x>0,x¢Z.

This relation, which follows immediately from the defimt{@.6.2)
is the starting point in the proof of.6.3)for a = 0.

1.7 Analysis of the Convergence of the Voronoi Se-
ries

In this section we are going to study the serles(1.6.4) BRI for
a = 0 as a preliminary for the proof of Theordm]1.3 for this renmain
value ofa. In virtue of the analogy betweed(n) and a(n), we may
restrict ourselves to the analysis of the first mentionegkseihus, let
us consider the series

(1.7.1)

X2 3" d(mn/2 {e(~nh)Y1(4r VAX/K) + (2/m)adnh)Ky(4r Viix/k))
n=1

Fork = 1 this is - up to sign - Voronoi's expression fafx), and the
more general serieB{1.Y.1) will also be calledosonoi series
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From the point of view of convergence, the factdf? in front of
the Voronoi series is of course irrelevant, but because weayaing to
considerx as a variable in the next section, we prefer keepirgplicit
all the time.

Denote by} (a, b; X) that part of the Voronoi series in which the
summation is taken over the finite interval b]. The following theorem
gives an approximate formula 3t (a, b; X).

THEOREM 1.4. Let[x1, %] C (0, ) be a fixed interval. Then uni-
formly for xe [x1, X] and2 < a < b < oo we have

(1.7.2)

Vb
3 (a.b;x) = Ad(mym e (mh f UL sin(4r( V- VR)u/k) du
\/5
+o(@a*loga),

where m is the positive integer nearest to x (or any one ofwlepios-
sibilities if x > 1 is half an odd integer), and A is a number depending
only on k.

For the proof, we shall need the following elementary lemma.

Lemma 1.7. Let f € C?[a, b], where0 < a < b. Then 38

a<n<b

b
(1.7.3) > f(md(mec(nh) = f (AL, h/K)F () — A(t, h/K) T/ (D))

b b
+ f Ax(t, h/K) £ (1) dt + KL f (logt + 2y — 2logk) f (t) dt.
a

a

Proof. According to [T.5.R), the sum under consideration is

b b b
f f(t)dD(t, h/K) = kL f f(t)(log t+2y—2logk) dt+ f f ()AL, h/K).
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By repeated integrations by parts and us[ng (116.13), waimbt

b b b
f f(O)dA(t, h/k) = f f(OA(L, h/k) — f /()AL h/K) dt

b
_ f (FOA( h/K) — Ayt h/K) /(D)

b

+ f A(t, h/K) £ (1) dt,

a

and the formulal{T.713) follows. m|

Proof of Theorem[1.4 Becausen/k, X1, and x, will be fixed during
the following discussion, we may ignore the dependence p$temts
on time.

First, by the asymptotic formula€{1.3116) ahd (1.B.17)Bessel
functions, we have

(1.7.4)
Di@b;x) = Ax 3" dnn-a(—nh) cos(4r Vix/k - m/4)

a<n<b

+o(@*loga).

LemmalLY is now applied to the sum here, with/k in place of
h/k, and with

f(t) = x/4t~3/* cos(4r Vix/k — n/4).

39 The integrated terms ii{1.1.3) akea /4, by (I.5.20) and{L.6.11).
Also, by Lemmd_L}6, the last term iB{L)V.3)<s a *loga. Thus it
remains to consider the integral

b
(1.7.5) f Aq(t, —h/K) 7 (1) dt.
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In our case,
f(t) = Ax®/*t™ "4 cos(4r Vix/k — /4) + o(t™¥/4).
The contribution of the error term tb {1 .5)<s a */?. Hence, in place
of L LD), it sdfices to deal with the integral

b
(1.7.6) x4 f t~"4Aq(t, —h/K) cos(4r Vix/k — z/4)dt.

a

For As(t, h/k) we have the formuld{Z.8.4), which gives

Aq(t,—h/K) = A4 Z d(n)n~>*g (nh) cos(4r Vnt/k + 7/4) + o(t/4).
n=1

The contribution of the error term tB{LY.6)<4s a /2. Thus, the result
of all the calculations so far is that

@b = A i d(nn~54e (nh)x
n=1

b
><ft‘lcos(éh\/t—x/k—n/4)cos(4r\/n—t/k+n/4)dt+o(a‘”“loga).

a

Further, when the product of the cosines is written as thedfumo
cosines, and the variable= +t is introduced, this equation takes the
shape

@b = A i d(mn~4e(nh)x
n=1

B B
X fu‘lcos(4r(\/ﬁ+ \/i)u/k)du—fu‘lsin(#(\/_— vVX)u/K)du
v v

+o(@Y*loga).
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By Lemma LB, the integrals here azea 1/?|yn+ X 1. Hence, 40
if the integral standing on the right df{1.V.2) is singled,dhe rest can
be estimated uniformly as a~Y/2. This completes the proof.

The problem on the nature of convergence of the Voronoi Sésie
now reduced to the estimation of an elementary integraljtaad sim-
ple matter to deduce the following

THEOREM 1.5. The seriel.Z.1)is boundedly convergent in any in-
terval [xg, Xo] < (0O, o), and uniformly convergent in any such interval
free from integers. The same assertions hold for the s¢€fi€s%) for
a=0.

Proof. The integral in[[T.712) vanishesxf= m, and otherwise it tends
to zero asa andb tend to infinity. Thus, in any case, the Voronoi series
[@Z1) converges. Moreover, if the interval [x,] contains no integer,
then the integral in question +& a~/? uniformly in this interval, where
the Voronoi series is therefore uniformly convergent.

Finally, to prove the boundedness of the convergencesir}], let
xandmbe as in Theorein“l.4, and piit m+6,¢ = min(\/B, max(+/a,

1/16])). Then
vb c b
fu‘lsin(ébr(\/ﬁ— \/>_<)u/k)du:f+f
Va va ¢

C
<<f|vm_ VRdut el vin- VXL < 1.
va

Hence} (a b; X) < 1 uniformly for all 0< a < b andx € [x1, X2].
i

1.8 Identities for D(x, r) and A(x,r)

We are now in a position to prove Theoréml1.3 foe 0. For conve-
41 nience of reference and because of the importance of thit,re® state
it separately as a theorem.
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THEOREM 1.6. For x> 0 we have
(1.8.1) D(x, h/K) = k™1(log x + 2y — 1 — 2logk)x + E(0, h/k)

X2 S 4 fa-nVa(an VX/K) + (2/me (K (r V)
n=1
and

(1.8.2)  A(x h/K) = (-1)</2xK/2 i a(mn¥2e(—=nh) Jc(4r Vnx/K).
n=1

Proof. Consider first the case whetis not an integer. Leb§, Xo] be
an interval containing but no integer. Then the series on the right of
(@C381) converges uniformly in this interval, by TheoreM. ITherefore
the differentiation term by term of the identity {1.5.4) fag(x, h/k) is
justified, which gives the formuld{1.6.4) far = 0, and thus also the
formula [L.8.1) (see the remark in the enc§@.9).

The case when = mis an integer will now be settled by Theorem
[L.4 and the previous case. Let

S(x) = —x'/2 i d(nn*2
n=1
{e(=nh)Ya(4r VAX/K) + (2/m)ed(nh)Ky (4r VAX/K) .

ThenS(x) = A(x, h/K) if x > 0 is not an integer, an8(m) is the
value of A(m, h/Kk) asserted. We are going to show that

1
2
=k Y(logm+ 2y — 1 - 2logk)m + E(0, h/k) + S(m).

(1.8.3) lim (D(m +6, h/K) + D(m =6, h/K))

Because%(D(m + 6,h/K) + D(m - 6, h/k)) equalsD(m, h/k) for all
6 € (0, 1), this implies[I.811) fox = m.
First, the leading terms of the formula fB(m< 6, h/k), just proved, 42
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give in the limit the leading terms on the right @ (118.3).€Fé&fore, it
remains to prove that

(1.8.4) lim(S(m+3) + S(m—5) - 25(m)) = 0.
Where
S(X) = S1(X) + S2(X) + S3(X),

where the range of summation in the suBN&) is, respectively, [1671),
[671,67%], and @2, ). We estimate separately the quantities

Ai(6) = Si(m+ 8) + Si(m— 6) — 2S;(m).
Consider firstA1(5), writing
A1) = ) dMan(o).

n<o-1

By the formulae
(1.8.5) (X2Y1(4r VX/K) = 2r(Vn/K)Yo (4r VRX/K),
(1.8.6) (/2K (4r VRX/K)) = =2r(VIV/K)Ko (4 Vx/K),

which follow from (L&8) and[L819), we find that,(s) < nY4s.
Hence
(1.8.7) A1(8) < 6Y*log(1/9).

Next, by definition,
(1.8.8)

Ar(0) = - Z (5—1, 53 m+ 5) _ Z (5—1’ 53 m— 5) + ZZ (6‘1, 58 m).

To facilitate comparisons between the sums on the right, vite w
the factor (= 6)% in front of the formulal[TZ]2) fok (671, 63; m=6)
asm4 + 0(). Then, by [.818) and{1.1.2),

6_3/2

Ax(6) < ‘ f u‘l{sin(ébr(\/ﬁ— Vm + 6)u/K)

6—1/2
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+ sin(4r(vm - Vm=6)u/k)} du + 57/ log(1/6).

The expression in the curly brackets is estimated as follows

-} = |Zsin(27r(\/m+6+ Vm—é—Zx/ﬁ)u/k)
cos(2r( Vm—=5 - Vm-5)u/k)|

< &2u.
Hence
(1.8.9) Ax(8) < 6Y*1og(1/6).
Finally, by Theoreni-T14 and Lemriall.6, we have for Bnys—3
D3 bm=6) < 6%2671 + 6% log(1/6) < 62,
and the same estimate holds alsozg:(6‘3, b; m). Hence
(1.8.10) A3(6) < 6%,
Now (I.8.T), [(1.8P), and(I1.8110) give together
S(m+ 6) + S(m-6) — 2S(m) < 6¥*log(1/6),

and the assertio {1.8.4) follows. This completes the poddf.81),
and [T.8R) can be proved likewise. m|

1.9 The Summation Formulae

We are now in a position to deduce the main results of this tehap
the summation formulae of the Voronoi type involving an exgatial
factor.

THEOREM 1.7. LetO < a< band fe Cl[a b]. Then 44

b
(1.9.1) Z/ d(n)e(nh)f(n) = k* f(logx+ 2y —2logk) f(x) dx+ k1

a<n<b
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o b
>0 [ (-2ra-nY. (4n VAX/K) + deu(rK. (4 VK119 dx
n=1 a

and

(1.9.2) > aednh)f(n)
a<n<b
b

= 27r|(1(_1)k/22 a(n)e(—nh)n-r2 f X623, 3 (4r Vnx/k) F(X) dx

n=1 a

The series iffl.9.1)and (I.9.2)are boundedly convergent for a and
b lying in any fixed intervalxy, xo] c (0, o).

Proof. We may suppose thata < 1, for the general case then follows
by subtraction. Accordingly, the sum in{L.B.1) is

n<b

b
Z’d(n)a((nh)f(n) :ff(x)dD(x, h/K).
By an integration by parts, this becomes
b
(2.9.3) f(b)D(b, h/Kk) — f f/(X)D(x, h/K) dx.

We substituteD(x, h/k) from the identity [I.8]1), noting that the re-
sulting series can be integrated term by term because ofdeoucon-
vergence. Thus

b b
ff’(x)D(x,h/k)dx:ff’(x){k‘l(logx+ 2y-1

b
— 2logKk)x + E(0, h/k)} dx - Z d(nn=/2 f f/(x)x4/2
n=1 a
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{e(=hh)Y1(4r VX/K) + (2/m)ed(nh)Ky(4r VX/K)} dx

This is transformed by another integration by parts, usitsp a
([@8.3) and[[1.816). The integrated terms then yiglg) D(b, h/k), again
by (.81), and the right hand side of the preceding equéttmomes 45

b
f(b)D(b, h/k) — k1 f(logx + 2y — 21ogk) f (x) dx

. b
+2ikct ) dn) [ {ed-nR)Y.(dr VAXIK) - (2/m)eu(ri, (4 VXK
n=1 a
f(X)dx

Substituting this into[{1.913) we obtain the formUla{I)9I1is also
seen that the boundedness of the convergence of the §eBEh (1 O

The proof of [I.8.R) is analogously based on the iderffiig.g).and
the formula

(X923 (4m Vnx/K) = 2r(Vn/K)XED2 3 o (4r Vnx/k),
which follows from [L.6.1D).

Notes

Our estimate[[T.T14) foE(0O, h/k) is stronger by a logarithm than the
boundE(0, h/k) < klog? 2k of Estermann(]8].

The value/(0) = —1/2 can also be deduced frol{1]1.9) by observ-
ing that for fixeds # 1 the function/(s, @) is continuous in the inter-
val 0 < a < 1 (this follows e.g. from the loop integral representation
(2.17.2) of¢(s, @) in [27]).

The integraldy, |2, andlz in §[I.4 can also be evaluated by the inver-
sion formula for the Mellin transformation, using the Mellransform
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pairs (see (7.9.11), (7.9.8), and (7.9.1)lin[26])

1 1
~v S—v=21r|[ = Te_
XK, (X), 2 F(zs)l"(zs v),
1 1 1
—v _osv-1_-1 - Te_ Te_
XY, (X), 2 T F(ZS)F(ZS v)cos((zs v)n),
1 1
—~v S—v-1p|( = _ =
X" J,(X), 2 F(zs) F(V 23+ 1).

46
Theorem§&TIL 112, 1.6 ahd1l.7 (for sums involwifa)) appeared in
[18]. The error terms in Theore 1.2 could be imporved. I, féiong
[28] proved that

X
* f A%(x) dx = C1X%2 + o(X log® X)
2

(for a simple proof, see Meurman_22]), and similarly it canghown
that [1.5.2P) and[{I.5.23) hold with error terrn&?Xlog®X) and
o(k?X¥ log® X), respectively. An analogue dfl(*) for the error tef(T)
in (@.8) was obtained by Meurman in the above mentioned paper

The general summation formulae of Berndt (s€e [3], in paldic
part V) cover [T.9R) but nof11.9.1), because the functi@ugation
[TI2) forE(s r) is not of the form required in Berndt's papers.

The novelty of the proof of Theorel 1.6 for integer valuex biés
in the equation{1.8]3).

Analogues of the results in this and subsequent chapterdean
proved for sums and Dirichlet series involving Fourier ffio@gents of
Maass waves H. Maass|[211] introduced non-holomorphic cusp forms
as auto-morphic functions in the upper half-plahéor the full modular
group, which are eigenfunctions of the hyperbolic Laplaeig?(93+d7)
and square integrable over the fundamental domain

{z:x+yi‘—% sxs%,y>0,|z|21}

47 with respect to the measuye? dx dy. Such functions, which are more-
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over orthonormal with respect to the Petersson inner piodigen-
functions of all Hecke operatoi&,, and either even or odd as functions
of x, are called Maass waves. A Maass wdy&hich is associated with
the eigenvalue M + r2(r € R) of the hyperbolic Laplacian and an even
function of x, can be expanded to a Fourier series of the form (sée [20])

[ee)

f(2) = f(x+yi) = Z a(n)yY?Ki; (27 ny) cos(2r nx).
n=1
It has been conjectured thafn) < n¢, but this hypothesis-an ana-
logue of [T.Zb) - is still unsettled. The weaker estima(i® < nl/5+€
has been proved by J.-P. Serre.
As an analogue of the Dirichlet serie$s), one may define the L-
function

L(s) = Z a(nns.
n=1
This can be continued analytically to an entire functioriséghg
the functional equation (se€ [7])

n‘SL(s)F(S;ir)F(S_Zir) ZﬂS_lL(l—S)F(l_ ;+ ir)r(l— ;— ir)‘

More generally, it can be proved that the function

[ee)

L(s h/k) = " a(n) cos(zmh/k)n~
n=1

has the functional equation

(mLishior(S5H)r(357)

= (k/n)*SL(L - s,ﬁ/k)r(l‘ S+ if)r(l— s-— ir)’

2 2

which is an analogud {1.2.6). Results of this kind can be gudor 48
“odd” Maass waves as well, and having the necessary furaitegua-
tions at disposal, one may pursue the analogy between hgbtcand
non-holomorphic cusp forms further.
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Chapter 2

Exponential Integrals

AN INTEGRAL OF the type

b
tfquﬂmmx

is called anexponential integral. The object of various “saddle-point
theorems” is to give the value of such an integral approx@hgah terms
of the possiblesaddle pointx, € (a b) satisfying, by definition, the
equationf’(x,) = 0. Results of this kind can be found e.g. Inl[27],
Chapter 1V, and in[[13]§ 2.1.

For our purposes, the existing saddle-point theorems ane-giones
too crude. However, more precise results can be obtainezshfoothed
exponential integrals

tfmmmmduwmx

wheren(x) is a suitable smooth weight function. The present chapter
is devoted to such integrals. The main resul§ @1 is a saddle-point
theorem, and [Z2 deals with the case when no saddle point exists.

46
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2.1 A Saddle-Point Theorem for Smoothed Expo-
nential Integrals
It will be convenient to single out a linear part from the ftion f,

writing thus f(x) + ax in place of f(x). Accordingly, our exponential
integral reads

b b
2.1.1) | = I(a,b):fg(x)e(f(x)+ax)dx:fh(x)dx,

say, wherey is a real number.
For a given positive integel and a given real numbéy > 0, we 50
define the weight function;(x) by the equation

U b-u

U
(2.1.2) ly=13@b)=U" [ du--- | duy | h(x)dx
[oarf o]

b

- f n3(Oh() dx

a

whereu = u; + --- + U3. We suppose thalU < (b — a)/2. Also,
we definel, = |, and interpret;,(X) as the characteristic function of the
interval [, b]. Clearly 0< n3(x) < 1 for x € (& b), andn;(X) = 1 for
a+JU<x<b-Ju.

The following lemma gives an alternative expression foritiregral
5.

Lemma 2.1. For any ce (a+ JU,b— JU) we have
13

2.1.3) Iy=wH)1 (.)—11

(21.3) 1= ,Z e

c b-ju

f(x—ajU)Jh(x)dxf(b—jU—x)Jh(x)dx .

+jU
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Proof. The casel = O is trivial, and otherwise the assertion can be
verified by induction using the recursion formula

U
(2.1.4) 13(a,b) = u-1f|3_1(a+ uy, b — uy) du;.

o

For completeness we give some details of the calculations.
Supposing thaf{Z.11.3) holds for the ind&x 1, we have by[{Z.114)

J-1 Ul ¢
TETT J-1\-1 J-1 P P
ly=U" (-1 ;( j )( 1)Jof +{(max(x a-ju

b-ju
ug, 0))’h(x) dx + f (max(b - jU — uy — x,0))> 1 h(x) dx} duy

-1 C
()™ ( )( 1)i+t f(x—a—(j+1)U)Jh(x)dx

=0

+(j+1)U
b-(j+1)U 1
+ f (b (j+ 1)U - %’ he) dx} + (31U?) ™ ( )( 1)
c j=0
b-juU
f(x aJU)Jh(x)dxf(b jU = ) h(x) dx
+jU
1
:(J!UJ)_l ‘;_i) (J 1))( 1))

b-ju

|
f(x—ajU)Jh(x)dx+ f(b—jU—x)Jh(x)dx

U
b-JU
+(a0?) {( 1)3Lf(x a- JU)Jh(x)dx+f

+JU c
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c b
(b—JU—x)Jh(x)dx+f(x—a)Jh(x)dx+f(b—x)Jh(x)dx ,

which yields [ZI.B) for the inde3. o 51

Remark. As a corollary of [Z113), we obtain the identity

J

(2.1.5) ()Y (?)(—1)i(z— Uy = 1.

=0

Indeed, this holds fozr = x—awith a+ JU < x < ¢, sincen;(X) = 1
in this interval. Then, by analytic continuatiof, (Z]1.8)ds for all com-
plex z. Of course,[[Z.1]5) can also be verified directly in an eldamgn
way.

Before going into formulations of the saddle-point theoser is 52
convenient to list for future reference a number of condii@mn the
functionsf andg.

(i) f(x)isrealfora<x<h.
(i) f andgare holomorphic in the domain
D ={zlz-¥ <u(x) forsome xe [a b]},

whereu(X) is a positive function, which is continuous and piece-
wise continuously dferentiable in the interval| b].

(iii) There are positive functionk(x) andG(x) such that fofz — x| <
u(x)anda< x<b

19(2] < G(x),

|t'@)| < FOu()™.
V) £7(x) > 0and

£(x) > F(u(x) >

fora<x<h.
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(V) ¢/ (X) < 1fora< x < bwhenever/(x) exists.
(vi) F(x) > 1fora<x<h.

Since f’(X) + a is monotonically increasing by (iv), it has at most
one zero, say at., in the interval & b). Whenever terms involving,
occur in the sequel, it should be understood that these tarento be
omitted if X, does not exist.

Remark . By Cauchy’s integral formula for the derivatives of a holo-
morphic function, it follows from (ii) and (iii) that

(21.6) |fOx)| <n2"F(Qu(x) ™" for a<x<bn=12...
Hence the conditions (iii) and (iv) together imply that
(2.1.7) f7(x) < F(Qu(x)™2 for a<x<bh.

Next we state two saddle-point theorems. The former of thiise
to F.V. Atkinson ([2], Lemma 1), deals with the integtaland the latter
is its generalization tb;. Let

2.1.8) Es(9 = GO (|09 + o] + 17(0¥2) .

In the next theorem, and also later in this chapter, the unifspe
constantA will be supposed to be positive.

Theorem 2.1. Suppose that the conditions (i) - (v) are satisfied, and let
| be defined as ifZL1) Then

(2.1.9) 1 =g(x) " (%) Y2e(f(X) + aX. + 1/8)
b
fG(x) expEAlalu(X) — AF(X)) dx

a

+0(G (%) (%) F (%)) + 0(Es(8)) + 0 (Eo(b)).

+0
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Theorem 2.2.Let U > 0, J a fixed nonnegative integer, JX(b—a)/2,
and suppose that the conditions (i)-(vi) are satisfied. $8pglso that

(2.1.10) U > 50X )u(X)F (%) Y2,

where§(X) is the characteristic function of the union of the intervals
(a,a+ JU) and(b— JU,b). Let | be defined as i€ L.2) Then

(2.1.11) 13 = £3(%)906) 7 (%) e (f(%) + ax, + 1/8)
b
+0 f(l + (y(X)/U)J)G(X) expEAlalu(X) — AF(X) dx]

* 0((1 + 5(Xo)F(Xo)1/2) G(Xo)ﬂ(XO)F(XO)_g/Z)

J
+o|U™ Z(EJ(aJr jU) + Ey(b- jU))],
j=0

where 54
(2.1.12)

&3(%) =1 for a+JU<x <b-JU,
(2.1.13)
j1
=) = (207 D (et B e - a- Uy
i=0 o<v<l/2

fora < x, < a+ JU with j; the largest integer such thata j;U < X,
(2.1.14)

2
J i .
800 =YY (D) Y 600 0= U - %)
; ) OSVZSJ/Z
forb— JU < x, < b with j, the largest integer such that-b joU > X..
The ¢ are numerical constants.

Proof. We follow the argument of Atkinsof[2] with some modificatson
caused by the smoothing. There are four cases as regardadtie s
pointX,: 1)a+ JU < X, < b—JU, 2) x, does not exist, 3a < X, <

a+JU,4)b-JU < x, < b. Accordingly the proof will be in four parts.
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1) Suppose first that+ JU < x, < b—JU. PutA(x) = Bu(X), where

B is a small positive constant. Choose= X, in the expression
@I3) forl.

The intervals of integration iH{Z21.3) are replaced by ththg
shown in the figure. Her€4, Cs, Cs andCs are, respectively,

Cy

! C5
a a+jU Zo C

p b
o} / b+ jU
3
C2

the line segmentsaf jU, a+ jU —(1+i)A(a+ jU)], [Xo—(1+1)A(X0),
Xol; [Xo0, %o + (1))A(%0)], and b — jU + (1 +i)A(b - jU),b - jU].
The curveC; is defined byz = x — (L + i)A(X),a+ jU < X £ X,
and analogouslZ, is defined byz = x+ (1 +i)A(X), Xo < X< b-
jU. By the holomorphicity assumption (ii) and Cauchy’s intdgr
theorem, we have

(2.1.15)

J
IJz(J!UJ)_lZ(‘;)(—l)j f(z—a—jU)Jh(z)dz

j=0 C1+C2+C3

+ f (b- jU — 2°h(2) dz} .
Ci+C4+Cs

To estimate the modulus df(z2), we need an upper bound for
Re2ri(f(2 + @2)}. Letz = x+ (1 +1i)y, wherea < x < b and
Iyl < A(X). By Taylor’s theorem,

(2.1.16)

f(2) +az=f(X) +ax+ (f'(X) +a)L+i)y+if” (V> + 6(xY),
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where

(9

o06y) = > (FO00/m!) (@ +iy)",

n=3
By @1.8), we have
6(x )| < FOIYER() ™,
so that by (iv) 56
% Y) < 3719
if B is supposed to be fiiciently small. Then[[Z1.16) gives
(2.1.17) Re{27i(f(2) + a2)} < —27(f'(X) + @)y — 7 f"(X)y?

fora < x < bandly| < A(X).

Consider, in particular, the cage= sgrn(f’(x) + a)A(x), which
occurs in the estimation of the integrals o@randC,. The right
hand side of[[Z1.17) is now at most

Al (X) + alu(X) — AF(X).

In the cases| > 2/f/(X)| and|a| < 2/f’(X)| this is
< —Alaju(x) — AF(X)

and
< —AF(X) < —Alelu(x) - AF(X),

respectively. Hence fare Co, U Cy

(2.1.18) (2] < G(x) explAlalu(X) — AF(X)).

The path<C; fori = 1,2,4 and 5 depend o, so that for clarity
we denote them b{i(j). Let us first estimate the contribution
of the integrals over th€,(j) andCy(j) to I;. By the identity

(Z13), the integrands i (Z.1]15) combine to give sinfi{y on
Ca(j)uC3UCLUC4(]), hence in particular 062(j) UCa(j). Thus,
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by (ZZI1IB8) and the assumption (v), viz,(X) < 1, the integrals
in @1.I5%) restricted t€,(j) andCy(j) contribute

b-Ju
< f G(X) expAlafu(X) — AF(X)) dx
a+JuU
Integrals over the other parts of tlig(j) andCy(j) are estimated
similarly, but noting that the function in front df(2) is now <

1+(u(x)/U)”. In this way it is seen that the integrals over @)
andCy(j) give together at most the first error term [0 {2.1.11).

Next we turn to the integrals over tkg(j) andCs(j). By (ZLIT)
we have

f(z—a— ju)’h(z) dz< G(a+ jU)fyJ exp2n|f'(a+ ju)
Ca(i) °
+aly—nf"(a+ ju)y?) dy
< Ej(a+ ju),
and similarly for the integrals over thes(j). Hence these inte-
grals contribute the last error term [D{271.11).

Finally, as was noted above, the integrals o@gr+ C; give to-
gether the integral

A(Xo)
(2.1.19) K=(1+1i) f h(x, + (1 +i)y) dy.
-A(X%)

Applying Taylor's theorem and similar arguments as in theopr

of @ZIIT), we find that fofy| < A(X,)
(2.1.20)

0% + (L+ )Y) = 90%) + & (xa)(L + )Y + 0 (GO (%) 2YP).

or, more crudely,

(2121) g%+ (L+0)y) = g0x) + 0(Gx)u(x:) "W).
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and analogously
(2.1.22)
f(% + (L +Dy) + a6 + (L+i)y) = F(X) +ax
IO+ E706) (4 )Y + 0 FOuu0e) )

(2.1.23)
= F(%) + % +if”(%)y? + 0 (F(xe)u(x) *Iy%).

58
Let

(2.1.24) V = A(%)F (%) Y3,

and writeK = K; + Ky + K3, where the integral&, Ky, andK3
are taken over the intervals-{(x.), -vl],[-V, V], and , A(X,)],
respectively.

First, by [ZI1.1FF) we have

Ky + Ks < G(X,) f exp(-mf”(x.)y?) dy

< GV (%) exp(-mv? (%))

< GG (X:)F (%) 22 exp(-AF(x,)13),
whence by (vi)
(2.1.25) K1 + Ka < G(Xo)u(X)F (%) /2.

The integraK,, which will give the saddle-point term is evaluated

by applying [Z1.20) and.(ZIP2). The latter implies thaty| <
v

(2.1.26) e(f (% + (L +1)) +a (X + (1 +i)y))
= e(f(%) + ax) exp(-2r " (%,)y?) X
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X {1 + %nif"(xo) (1+0)%? + o (FOx)u(x) )
+ O(F(XO)ZM(XO)_GVG) };

note that the last two terms i {2.1122) ate 1 by the choice
EZI23) ofv. When this equation is multiplied by {2.1120) and
the product is integrated over the interval[V], the integrals of
those explicit terms involving odd powersytanish, and we end
up with

(2.1.27)

Ko = (14 Da0c)e(T(0) +ax) [ exp(-201"(x)?) dy

+o[e<xo> [ exp(-2nt700)?) (u06) 252 + Fouute) s

F(%)2u(%)"%®) dy).

In the main term, the integration can be extended to the whnale
with an error< G(x.)u(x,)F (X.)~%/2, and since

(2.1.28) fexp(—cyz) dy = (x/c)¥3(c > 0),

the leading term iM{Z1.27) gives the leading ternin (Zl)viith
£(%,) = 1, in accordance witH(ZT]12). Further, as a generaliza-

tion of (ZI1.28), we have

(o9

(2.1.29) f exp(-cy?)y* dy = d,c™2(c > 0, > 0)

—00

where thed, are certain numerical constants, and by using this the
error terms iN[[ZZL.27) are seen toLeG(X, )u(X.)F(X,)~3/2.
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2)

3)

Suppose next that, does not exist. Thef'(X) + « is of the same
sign, say positive, in the whole interval, ). Letc be a point in
the interval &+ JU,b— JU), write | ; as in [ZZ1.B), and transform
the integrals over the intervalaf jU, c] and [c, b— jU] using the
contours shown in the figure, where the curvilinear part fséed
byz= x+ (1+i)A(x) witha+ jU < x < b- jU. Observe that the
integrals over the segment, £ + (1 + i)A(c)] cancel, by [Z.115).
Integrals over the other parts of the contours are estimeddd
the preceding case, and these contribute the first and last &0

term in [ZZ1T1).

|
I 1
a a+jU ¢ b+3iU

If f’(X) + « is negative, then an analogous contour is used in the
lower half-plane.

(a+ JU,b - JU). In ZI3) the integrals oveclb — jU] are
written as in the preceding case, and likewise the integrads
[a+ jU,c] for | > ji1, in which case the saddle poirs does not

lie in the (open) interval of integration. On the other hafat,

j < j1 the contour is of a shape similar to the first case. Only the
last mentioned integrals require a separate treatmeniptties
give error terms as before.

Consider now the case < x, < a+ JU. Again choosec €

A new complication is that the sum ovgr< j; of the integrals
over the line segmerit = [X, — (1 + i)A(X), Xo + (1 + 1)A(X,)]
cannot be written as an integral lofz), but the integrals have to
be evaluated separately. Other parts of the contours daesemt
any new dfficulties.

Thus, consider the integral 61
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(2.1.30) K=uU" f(z— a— jU)’h(2)dz
L

This is of the same type as the integkain (Z.1.I9) - withg(2)
replaced byUJ(z - a- jU)’g(2) - so that in principle it would
be possible to apply the result of the previous discussiguels.
But then the functioii(x) would have to be replaced ty1(x)’
G(x), which may become large fis large. Therefore we modify
the argument in order to prevent the error term from becoming
impracticably large.

But the first step in the treatment of the integkais as before.
Namely, letv be as in[[Z1.24), put = X, + (1 + i)y, and let
K1 and K3 be the integrals with respect toover the intervals
[-1(%), —Vv] and [v, A(X,)]. ThenK; + K3 can be estimated as be-
fore, except that the extra factor-{v/U)” has to be inserted. But
since ¢/U)’ < F(x,)Y® by (ZIID) and[Z.1.24), the estimate
(ZI12%) remains valid even for the new integrdisandKs.

The new integraKy, which represents the main partkf is now
\"
Ko =(1+i)U™ f(xo —a-jU+@+i)y)’h(x + (L+i)y)dy.
-V

For the functiorh(x, + (1 + i)y) we are going to use a somewhat
cruder approximation than before. Hy (2.1.21) and (21128)
have

(2.1.31)  h(x +(1+i)y)
= {90x)e(F (%) + @) + 0(G(XJu(%:) W)
+0(F(%)G (X (%) 3Iyi%)) x exp(~2n 7 (x,)y)..

Since by [Z1.29)[[2Z.110), and (iv)

Vv

U [ (U7 1) 1 exp(-2x 1 (x)y?) dy

-V
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< f//(xo)—(v+l)/2 + U—Jf//(xo)—(v+J+l)/2
< ,u(XO)v+1F(XO)_(V+l)/2

the contribution of the error terms IR{ZI131) KB is < G(X,)
1(%) F(%)™t. Hence

Ko = V290, )e(f (%) + ax, + 1/8)U~" f(xo —a-juU +@1+iy)’

exp(—an”(xo)yz) dy+ O(G(Xo)p(XO)F(Xo)’l)
= V2g(x)e(f(x) +ax +1/8)U7 3 (x,—a- jU)’?x
0<v<J/2

><(1+i)2V(2Jv) f y? exp(—2r 1" (x.)y?) dy

+0(GX)u(Xe)F (%) ).

As before, the integrals here can be extended to the whole rea
line with a negligible error. Then, evaluating the new imég by
(Z1.29) we find that with

C, =27 M1+ i)ZV( ) )d,,
2v

and with&(x,) as in [ZZ1IB), the resulting expression fgiis as
in ZI11).

4) The remaining cade- jU < X, < bis analogous to the preceding
one.

O

Remark. If f satisfies the conditions of Theordml2.1 2.2 except
that f”/(X) is negative in the interval] b], then the results hold with thes3
minor modifications that in the main term the facgf (x,) + ax, +1/8)

is to be replaced bg(f(x,) + ax, — 1/8), and|f”’(X,)| should stand in
place of f”’(x,).



64

60 2. Exponential Integrals

2.2 Smoothed Exponential Integrals without a Sad-
dle Point

TheoremZR covers also the case of exponential integiyalsthout a
saddle point. However, in applications, the condition 6w) f”” may
not be fulfilled. Nevertheless, if the assumptionféfis strengthened,
then no assumption oft’ is needed. The next theorem is a result of this
kind.

Theorem 2.3. Suppose that the functions f and g satisfy the conditions
(i) and (ii) in the preceding section, wifla(x) = u, a constant. Suppose
also that

(2.2.1) 029 <« G for ze D,
(2.2.2) [f'(xX) <M for a<x<b,
and

(2.2.3) If'(9) <M for zeD.

Let I be as inZI2)witha = 0and0 < JU < (b—a)/2. Then
(2.2.4) I3 <UTGM 7+ (U + b—a) Ge AW
Proof. By (ZZ.2), the functiorf’(x) cannot change its sign in the inter-
val [a, b]. Suppose, to be specific, thit(x) is positive. By [Z.Z1B) and
Cauchy’s integral formula we have
R < KM(u/2)™! for k=1,2,... and a<x<bh.
Then, by [ZZPR) and Taylor's theorem, it is seen that
(2.2.5) Rg2nif (2)) < —~AMy

forz=x+yi,a< x<b,and 0<y < Bu = 1, whereg is a suficiently
small positive constant. m|
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Now, for a proof of [ZZW4), the integrd} is written as in[[ZT13),
where the intervalsg+ jU, c] and [c, b— jU] are deformed to rectangular
contours respectively with verticest+ jU,a+ jU +i4,c+i4, andc, or
Cc,c+id,b—jU +i4, andb - jU. Then [ZZ1}) follows easily by {2.2.1),
ZZ35) and[[Z115).

Notes

In the saddle-point lemma of Atkinson (Lemma 1 i [2]), thewasp-
tions on the function$ andu are weaker than those in Theor€ml 2.2,
for the conditions (v) and (vi) are missing. Actually we poskese just
for simplicity. On the other hand, one of the conditionsihig2stronger
than ours, for in place of (iv) there is an upper bound f6(2)~* for

z € D. However, in the proof this is needed only on the real interva
[a b], in which case it coincides with (iv).

The complications that arose in TheorEm 2.2 wketies neara or
b seem inevitable, for then the integrand is almost stationaara or
b, and consequently there is not so much to be gained by smgothi

The case) = 1 of TheoreniZZI3 is Lemma 2 il L6] and Lemma 2.3
in [L3]. Our proof is not a direct generalization of that ir6[which
turned out to become somewhat tedious for gengral

Theorem$§2Z12 arld 2.3 may be useful in problems in which the st&s
dard results (corresponding b= 0) on exponential integrals are not
accurate enough. An example of such an application is theowement
of the error terms in the approximate functional equatiamg%(s) and
¢(s) in [19].

The parametert) and J, which determine the smoothing, can be
chosen dferently ata andb. Such a version of Theorem 2.2 is given in
[19], and the proof is practically the same. The correspapdimoothed
integrals is of the type

\ b-v

U U \Y% _
U‘JV‘Kfdul---fdqudvl---fdefh(x)dx,
o o o a+u

o
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whereu=u; +---+ujandv=vy +---+v. ForU =V andJ = K,
this amounts to the integrdj in (Z1.2).



Chapter 3

Transformation Formulae
for Exponential Sums

THE BASIC RESULTS of these notes, formulae relating exptiaén 66
sums
> b(mg(me(f(m) =d(m) or a(m),

M1 <m<M,
or their smoothed versions, to other exponential sums \iwglthe
sameb(m), are established in this chapter by combining the summatio
formulae of Chaptelll with the theorems of Chajiler 2 on expiiale
integrals. The theorems in_[[16] arld [17] concerning Digtgolyno-
mials (which will be discussed iIZ) were the first examples of such
results. As will be seen, the methods of these papers work ievihe
present more general context without any exffare

3.1 Transformation of Exponential Sums

To begin with, we derive a transformation formula for the abmen-
tioned sum withb(m) = d(m). The proof is modelled on that of Theorem
1in [16].

In the following theoremsj, d», . . . denote positive constants which
may be supposed to be arbitrarily small. Further, put log M, for
short.

63
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Theorem 3.1.Let2 < M; < My < 2M4, and let f and g be holomorphic
functions in the domain

(3.1.1) D={z|z-x <cM; forsome x [M1, M2]},

where c is a positive constant. Suppose th@d fs real for My < x <
M,. Suppose also that, for some positive numbers F and G,

(3.1.2) 92| < G,
(3.1.3) If'(2] < FM*

for ze D, and that
(3.1.4) (0<)f”(X) > FM? for Mj<Xx< M,

Let r = h/k be a rational number such that

(3.1.5) 1<k< M7>,
(3.1.6) Irl < FM;t

and

(3.1.7) f/(M(r)) =r

for a certain number Nr) € (M1, M5). Write
M; = M(r) + (-1)'m;, j = 1,2
Suppose that im= m,, and that
(3.1.8) M22 max(M;F Y2, |hK) < my < My
Define for j=1,2

(3.1.9) Pin(¥) = F(¥) = rx+ (-1 (2vnx/k - 1/8),
(3.1.10) ny = (r = £ (M) 12M;,
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and for n < n; let x;, be the (unique) zero of]’p(x) in the interval
(M1, My). Then

(3.1.11) >, dmgme(f(m)

Mi<m<Ma

=kt (log M(r) + 2y - 21ogk) g(M(r)) f” (M(r)) " ?e(f(M(r))

2
—IM(r) + 1/8) + +i2 Y2 3 -1y
j=1
Z d(n)a( (—nh n_l/4xir:|]-/4g (Xj,n) p]’,n (Xj’n)—l/Z y
n<n;j
xe(pjn(Xjn) + 1/8) + o(FGh 2kmy L) + o(G(h)"2my/?L?) +
10 (Fl/ZG|h|‘3/4k5/4m11/4L) .
68

Proof. Suppose, to be specific, that- 0, and thus > 0. The proof is
similar forr < 0.

The assertior {3.1.11) should be understood as an asymgstilt,
in which M1 and M are large. Then the numbeFsandn; are also
large. In fact,

1/2+6
(3.1.12) F > M2
and
(3.1.13) nj 3> hkM22,

For a proof of [3.1.112), note that Ky (3.11.6) ahd (3.1.5)
F > Mir > kMg > M2

Consider next the order of. By (2.1.1) and the holomorphicity of
f in the domain[[31]1) we havi¢’ (X) < FM:2, which implies together

with Z1.3) that
(3.1.14) f”(x) < FM7? for Mj<x< M,
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Thus, by [Z117),
(3.1.15) Ir— £ (M))| < mFM?,

so that by[[3.1.70) an@(3.1.6) we have
(3.1.16) nj = FACMEME® =< F~h3k e,

This gives [3Z13) owing to the estimateg > M;™?F~Y/2 and
F < Myr. Also, it follows thatn; < Mf, forh < My andm; < Mz by

@B.I38).

The numbers; are determined by the condition
(3.1.17) P, (Mj)=0.

Then clearly _
(-1)! p}’n(Mj) >0 for n<nj.

On the other hand, b{L (31.7)
(1)) Pjp(M()) = -n2M(r) ™kt <0

for all positive n. Consequently, fon < n; there is a zero;, of
p’j’n(x) in the interval M1, M), and moreoveK; , € (M1, M(r)), Xon €
(M(r), My). Also, itis clear thap’j’n has no zero in the intervaM, M»)
if n> n;.

To prove the uniqueness af,, we show that|o’jfn is positive and
thus p’j’n is increasing in the intervaM 1, M>]. In fact,

(3.1.18) () = FM? for Mj;<x< Man<2n;
at least ifM1 is supposed to be fiiciently large. For by definition
i1
Pia(d) = 1700 + (~1) 5t %2k,

where by [3.1.76) and{31.8)

n2x 32kt « FiyM;% < FM[27%,
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so that by[[3.1.74) the terdt’(x) dominates.

After these preliminaries we may go into the proof of the falan
(BI11). Denote by 5 the sum under consideration. Actutibyeasier
to deal with the smoothed sum

U
(3.1.19) S = U‘lfS(u)du,

where
(3.1.20) S(u) = Z d(m)g(m)e( f (m)).
Mi+usm<Ma—u

The parameted will be chosen later in an optimal way; presently
we suppose only that

1 .
(3.1.22) M < U < 5 min (my, m).
Since
(3.1.22) Z din) <ylogx for x®<y< X,
XSNSX+Y

(seel25]), we have

(3.1.23) S-S <GUL

The summation formuld{1.9.1) is now applied to the s8(u),
which is first written as

S = > d(mg(me(f(m) — mre(mn),
a<m<b

with a = M;+u, b = Myo—u. We may assume that neither of the numbers
a andb is an integer, for the value @&(u) for the finitely many other
values ofu is irrelevant in the integral {3.1.]19). Then thy (119.1)

(3.1.24)

b
S(u) =k f(log X+ 2y — 2logk)g(x)e( f (X) — rx) dx
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o b
+ k‘lzd(n) f {~2re (-nh) Y, (47 VRx/K) + 4a(nh)
n=1 a

Ko (47 vax/k)} g(x)e(f(x) - rx) dx
_ k‘l{lo o S ) (o (- 1 + q(nmin)},
n=1

say.
The integralsi, are very small and quite negligible. Indeed, by

(BI3) we haveynMy /k > VnM}?, so that by[1:3:17)

(3.1.25) k* i d(n) |in] < K1GM; i d(n) exp(-Avnm?)
n=1 n=1
< Gexp(-AMYY).

Consider next the integradl. We apply Theorei 211 withh = —r
andu(x) a constant functionr< M;. The assumptions of Theordm12.1
are satisfied in virtue of the conditions of our theorem. BYL(®), the
saddle point isM(r). Hence the saddle-point term fer!l, equals the

leading term in[(31.71).
The first error term in[(Z119) is

< LGM; exp(-AF)

which is negligible by[(31.32).
The last two error terms contribute
(3.1.26)

< OL{(|F@ 1|+ FV2M7Y) o (|0) - 1] + FY2M5T) ).
For same reasons as [0(3.]1.15), we have
(@) - r| < Fr M2,

and likewise for|f’(b) — r|. Hence the expressiol (3.1126)<s F~1
Gy tMZL, which is further< FGnlr=2L by 3I®). The second error
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term in [ZZI.D), viz.o(GM;F~%/2L), can be absorbed into this, for
MiF 32 « 1t <« FM{r2 < Fmptr2,

Hence the error terms fok *I, give togethero(FGh 2kmylL),
which is the first error term i .{31011).
We are now left with the integrals

b
(3.1.27) Iy = -2 f Y. (4 Vinx/k) g(x)e(f(x) - rx) dx

By (L39), the functior¥, can be written in terms of Hankel func-
tions as

3.1.28) Y. = %(Hﬁl)(Z) -HP@),

where by [L.3713)

0 2\"? i 1
(3.1.29) HY (z):(ﬂ—z) exp((—l)l—ll (Z—Zn))(1+gj(z)).

The functionsgj(2) are holomorphic in the half-plariRe z> 0, and

by (L.3.1%)

(3.1.30) l0;@| <12 for |Z>1Rez>0.
By BI.ZT) - (3.1.2P) we may write

(3.1.31) Iy =10 1@

where

(3.1.32)

b
Ir(1j) _ i2‘1/2k1/2n‘1/4fx‘l/4g(X) (1+ 9i (471 \/ﬁ/k))e(pj’n(x)) dx
a
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Forn < 2n; we apply Theoreri2l1 tbﬁj), again witha = —r. The 73
function

f(x) + (-1)7* (2vx/k - 1/8)

now stands for the functiofi, and moreoven(x) < M1 andF(x) = F.
The conditions of the theorem are satisfied, in particulantilidity of
the condition (iv) onf” follows from {3ZI.I8), and the condition (iii)
on f’ can be checked by {3.1.3) arld(3.1.16). The numggris, by
definition, the saddle point fa?, and it lies in the interval i, My)
if and only if n < n;. However, inI,(H) the interval of integration is
[a b] = [M1+u, Ma—u], andx;, € (a, b) if and only if n < n;(u), where

(3.1.33)  nju) = (r - f (Mj + (—1)1‘1u))2 |<2(|\/|j + (—1)1‘1u)

in analogy with [3.1.710). But for simplicity we count the sié&point
terms for alln < nj, and the number of superfluous terms is then

(3.1.34) < 1+n;-nj(U) < 1+ F%*mM;3U.
The saddle-point term fde21{ is
(3.1.35) i2—1/2k—1/2n—1/4x;§/4g(x,-,n) (1+ gj (4 Y% n/K)) %
, -1/2
XPjn (Xj,n) e(pj,n (Xj,n) + 1/8) .

Multiplied by (—1)j‘1d(n)a<(—nr_|), these agree, up tgj(...), with
the individual terms of the sums on the right Bf(3.1.11). Efiect of
the omission ofy;(. . .) is by (31.3D),[(31.736)[(3T18), ad (3]1.5)

< FY26K2M74 3T d(nn

n<«<Mq

< Gkm?M; Y%L < Gny?L,

74 which can be absorbed into the second error terfian{3.1.11).
The extra saddle-point terms, countedln(3.11.34), canteilat most

< (1 + F2k2mlMI3u) F—l/ZGk—l/ZMf/4+En11/4,
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which, by [3LTB) and(3.1.6), is
(3.1.36) < FY2Gh3/2kY2m M 2MS + FY2GH/ 2k 2ml* MsU.

Now, allowing for these error terms, we have the same sgoiullg-
terms given in[[(31.31), for all sun®u), and hence by (3. 1.119) f&,
too.

Consider now the error terms when Theolen 2.1 is applielqﬂ”to
for n < 2n;. The first error term in[(Z119) is clearly negligible. Fugth
the contribution of the error terms involving to S(u) is

< F32Gk MM 3" dnn v,

n<np
which, by [31.15) [[3118) an@{3.1.5), is
< GkmY/*M*?L < Gkn/*M 2L < G2

This is smaller than the second error termn (311.11).
The last two error terms are similar, so ifistes to considen(E, (a))
as an example. BYTZ:1.8) ad(3.1.32), this error ternkfér! is
— - - / 7/ -1
< GKY2M M YA (| p) (@) + pla@)M?)

Consider the casg= 1; the casg = 2 is less critical sincg, . (a)l
cannot be small. Nowg; , ,(a) = 0 andpy (a) = F~1r?, soitis easily 75
seen that

(
Note that by[[(3.118) and(3.1.6)

FY2n2my > F~1h?M;7% > hkM2.

FY2r1 for |n-ny(u)] < F~Y2nmy,

kM?n?In—m(u)l™t  otherwise

-1
Pa(@)] + Pia@Y?) T < {

Hence, by[[371.32), the mean valueddf) in the intervaln — ny(u)|
<« FY2nmy can be estimated axL). It is now easily seen that the
contribution toS(u) of the error terms in question is

<G h:l'/zkl/zmi/2 L2,
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which is the second error term I.(311.11). _
The smoothing device was introduced with the integh%ﬁsfor n>

2n; in mind. By [3-LID) [B124)[(3.LB1), add(3.1.32) iticentribu-

tionto S’ is equal to

2
(3.1.37) i2V22 ) (-1t ) d(n)ex (—nh)n"4x

j=1 n>2n;
Mgz
x [ mx 409 (1+ g (4 VAXIK)) (o) e
M3

wheren;(X) is a weight function in the sense of Chagier 2, with: 1
andU being the other smoothing parameter. The serieE1n (3.1s24)
boundedly convergent with respectupby Theoreni_1]7, so that it can
be integrated term by term.

The smoothed exponential integrals [N (3.1.37) are estichaly
TheorenZB, where;(2) stands forf(2), andu =< my. To begin with,
we have to check that the conditions of this theorem arefigatis\We
have

Pin@ = '@ -1+ (-1 2712t

Letn > 2n;, and letz lie in the domainD, sayD., of TheorenZI3.

Then by [31T6)

In2z 12 > mFM2

On the other hand, sincE(M(r)) - r = 0 and|f” (2] < FM;? for
ze D, by (3I3) and Cauchy'’s integral formula, we also have

1t'(@) - rl < mFM;2
Thus, the condition{Z2.3) holds with
_1,-1pzn-1/2,,1/2
(3.1.38) M = kM Ynt2,

Further, to verify the conditiod {Z.2.2), compep’&(x) with p’j’nj (%),
using [311l7) and the fact thai’j’nj (X) is increasing in the interval
[M1, M2].
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We may now apply the estimafe{2ZR2.4)II0(3.1.37). The setemd

on the right of [Z2ZK) is exponentially small, for dy (38)3(E.1.16),
and [31.B)

Mg s> KM Y20t 2my > (n/m) Y2 Frg M2
> (n/ny)Y? Mf‘sz.

Hence these terms are negligible.
The contribution of the termd "1GM~2 in (Z2Z3) to [31.37) is

< GK2MP*Ut Y d(nn

n>=>n;
< GK2MY*n YUt
< GFY2kM¥2m Y2y 1L
< GFh 32 2m 2y -1L,

77

Combining this with [321.23) and(3.1136), we find thaf (.

holds, up to the additional error terms
(3.1.39) < GUL+ F1/2(3.h—3/2k1/2mIl/2Mi
+ F V2GR 12ml2 MU + GFh-¥/2K52m 2u 1L,

Here the second term is superseded by the last tefmin (. E Gt
ther, the first and last term coincide with the last tern1d(Bl) if we
choose

(3.1.40) U= Fl/zh_3/4k5/4m11/4,
Then, by [3IB), the third term iE(3.1139) is
< G/ m My < G(hIgY 2y 2 Mg/

which can be absorbed into the second error terfiin(3.1.11).
It should still be verified that the numberin Z1.40) satisfies the

condition [3I.21). BY(3118) anA(3.1.6) we have

-1
Umt < U (M7 2R %) < (Y Am VM %2 < M2
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and also, in the other direction,
U > EL2H-3/4y5/4\-1/4+03/4
1

> Mi/‘l+53/4h‘1/4k3/4 > Mi3/4

Hence[[3:1.21) holds, and the proof of the theorem is complet

The next theorem is an analogue of Theofem 3.1 for expornentia
sums involving the Fourier cdigcientsa(n) of a cusp form of weighk.
The proof is omitted, because the argument is practicaélysdime; the
summation formula{1.9.2) is just applied in place [of ()9Note that
in (I.8.2) there is nothing is correspond to the first ternfli®1), and
consequently in the transformation formula there are noparts for
the first explicit term and the first error term [D{3.7.11). m|

Theorem 3.2. Suppose that the assumptions of Thedrerh 3.1 are satis-
fied. Then

(3.1.41) > a(myg(me(f (m)

Mi<m<My

2
=27 M2 (1)1 )" a(n)e (—nh) /24
=1

n<nj
x X727 (x0) B}y (x,-,n)—l/z e(pjn (Xin) + 1/8)
+0(G (hKM2 M 2my/2.2)
+ O(F1/ZG|h|_3/4k5/4Mgk_l)/zmIlML) .

3.2 Transformation of Smoothed Exponential Sums

We now give analogues of Theoréml3.1 3.2 for smoothednhexpo
tial sums provided with weights of the typg(n). We have to pay for
the better error terms in these new formulae by allowingatemeights

to appear in the transformed sums as well.

Theorem 3.3. Suppose that the assumptions of Thedreth 3.1 are satis-
fied. Let

(3.2.1) U > FY2M7"% < FY2 v,
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and let J be a fixed positive integer exceeding a certain bduidch 79
depends oi,). Write for j= 1,2

M} = Mj + (=1)71JU = M(r) + (-1)/m,

and suppose that’fnz m;. Let n, be as in@I1.10) and define analo-
gously

(3.2.2) = (r - () KoM,

Then, defining the weight functier(x) in the interval[M1, M5] as
in ZI12) we have

(3.2.3) D ma(myd(mgmye( f (m)

M1<m<My
= k1 (log M(r) + 2y — 2logk) g(M(r)) f” (M(r)) /2
e(f(M(r)) —rM(r) + 1/8)
2
+i2 VA2 Z(—l)j_l Z wj(n)d(n)ex (—nh n‘”“xﬁ“x
=1 n<n;
7/ -1/2
X (Xin) P (Xin) " €(Pin(Xin) + 1/8)
+0o(F G2k ?m2UL),

where
(3.2.4) wj(n)=1 for n<nj,
(3.2.5) wj(n) <1 for n<nj,

w;j(y) and V\Ij(y) are piecewise continuous functions in the inter(n%l,
n;) with at most J- 1 discontinuities, and

(3.2.6) wj(y) < (nj - n])_1 for m <y<n

whenever \7j\(y) exists.
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Proof. We follow the argument of the proof of Theordml3.1, usirap
however Theoreri. 2.2 in place of Theoréml2.1. DenotingShythe
smoothed sum under consideration, we havdby1.9.1), BSIi¥4),

(3.2.7)

M3
Sy= k‘lf(logx+ 2y — 2logk) n3(X)g(x)e( f(x) — rx) dx
M1

Mgz
+k‘12d(n) f {~2ne(~nh) Y, (47 vx/K) + 4ac (nh) K,
n=1 My

(47 VX/K)} n3(x)g09e(f (9 — rx) dx
=k {Io - > dr)ed-rln + a«nﬁ)in)} :

n=1

As in the proof of Theoreri 3.1, the integralsare negligible.

Consider next the integrdl,. We apply Theoreni_2/2 choosing
u(X) < My again. The saddle-point MI(r), as before, and the saddle-
point term forl, is the same as in the proof of Theor€ml3.1. The first
error term in[[Z1711) is exponentially small. The erromtsrinvolving
E; are also negligible ifl is taken sHiciently large (depending ofy),
since

U’ Y2 « M™% for Mp < x< M.

The contribution of the error term(G(x, )u(X.)F(X.)"%/?) to k™11,
is by (3221) and(3.118)

< kF?¥2GML < FIGUL < F'Gh 2m/?y,

which does not exceed the error termin(3.2.3).
Turning to the integral,, we write as in[(3.1.31) an@(3.1132)

In =10 19,

where
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(3.2.8)
M;
1) = i Y22y f 13097909 (1+ g; (47 VAX/K)) e(p;n(9) dx
My

Let firstn > 2n;. As in the proof of Theoreri 3.1, we may apply
TheorenZB withy < my andM as in [31.3B). Observe that iy (312.1),
@B116), and(3:118)

UM < (ny/n)Y2 F2mt M < (ng/m)Y2 M%7

whence we we may make the tetdT'GM~-1 in Z2Z3) negligibly
small by takingJ large enough. As before, the second ternfin(2.2.4) is
also negligible.

The terms fom < 2n; are dealt with by Theorein2.2. The saddle
point terms occur again for < nj, and they are of the same shape as in
B13%) except that there is the additional factor

(3.2.9) wj(n) = £(Xjn).-

The property [[3.2]14) ofvj(n) is immediate by[(Z.1.12), foM; +
JU < Xjn < Mz —JU if and only if n < n?. Further, [3.2)5) follows
from (ZZ112) - [Z1.714) by((32.1) an .18). To prove finoperty
@BZ.8), consider

wj(y) = £(Xjy)
as a function of the continuous variable in the intervgl ;). Herex;y
is the unique zero qb]’y(x) in the interval My, M1 + JU) for j = 1, and
in the interval M> — JU, M) for j = 2. Thusz = Xx;y satisfies

(9 —r + (-1 y2z YVt = o,
Hence, by implicit diferentiation, 82
dxy 1
% Y 2 \ily12,-1/2-1 _
Py dy +2( DIy ez 4k 0,
which implies that

dxjy

(3.2.10) Ty

- B Le1pm32012 _ ol / _
= FK M n 7" <mn~ for nj<y<n.
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The function&;(x) in ZZ1.I3) andl[Z1.14) is continuouslyfidiren-

tiable except at the poins+ JU andb - jU, j = 1,..., J, where terms
appear or disappear. Byffirentiation, noting that”’’(x) < FM73, it
is easy to verify that

(3.2.11) &< Ut

elsewhere in the intervals,(a+JU) and p—JU, b). By (3.1.10), [3ZR),
and [31.TU) we have

(3.2.12) (ny =)t =< mtu.

Now (BZ6) follows from [3.210) {(3.2112) at those poigtfor

which x;y is not of the forma+ jU orb— jU with1< j<J-1.
As in the proof of Theorerfi 3.1, we may ongif(. . .) in the saddle-
point terms with an admissible error

Gkm/*M; V2L < F1GR/2kY2m/?U,

and after that these terms coincide with thos€In (B.2.3).

Consider finally the error terms iR{Z.T111) ﬂ(ﬁP. The first of these
is clearly negligible. Also, for the same reason as in the cd$., the
error terms involvinge; can be omitted il is chosen sfiiciently large.

Finally, the second error term iR {Z.1111) k)TlIr(]J) is

< F‘3/ZGk‘1/2Mf/4n11/4 for n<n

and
< Fek ™ 2My Y for ni<n<n;.

The contribution of these 18 is

Here we estimated the mean valued@f) in the interval h’j, n;) by
o(L), which is possible, by({3.1.22), for by (3.2112), (31.16G.13),
@Z1), and[(3116) we have

1 212 M3
nj —n <mymU < Fk*mM;°U
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< FAC (M 2F2) M3 (FY2M ) < hkmgzoe,
By 3.212), the second term in(3.2113) is
= Fiek Y2mtm¥*ndtuL,

which is of the same order as the error ternfin(3.2.3) and dates the
first term, since

my*U > (F72Mp) Myt = F2

The proof of the theorem is now complete.
The analogue of the preceding theorem for exponential savos/
ing Fourier coéicientsa(n) is as follows. The proof is similar and can

be omitted. O
Theorem 3.4. With the assumptions of TheorEml 3.3, we have 84
(3.2.14) Z na(mya(m)g(m)e( f (m))

M1<m<M,

2
=27 M2 (1)t 3 wi(ma(n)e (—nh) n/2ey/4

=1 n<n;j
x X723 (x — .0) ply (Xin) " €(Pin (Xin) + 1/8)
+o(FGIP 2Kk Y2 ME D 22U L)

Remark. In practice it is of advantage to chooSeas small as the con-
dition (21) permits, i.e.

(3.2.15) U = EV2+e-1
Then the error term if(3.4.3) is

(3.2.16) ) (|:—1/2+eG (IhlKk)Y/2 mi/Z)

and that in[(3.2274) is

(3.2.17) 0(|:—1/2+sG (hiK)Y2 M i’“l)/zmi/z).
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Chapter 4

Applications

THE THEOREMS OF the preceding chapter show that the shod-exp
nential sums in quesion depend on the rational approximatid’(n) in
the interval of summation. But in long sums the valud ¢h) may vary
too much to be approximated accurately by a single rationaiber,
and therefore it is necessary to split up the sum into sheggments
such that in each segmefii(n) lies near to a certain fractian By suit-
able averaging arguments, it is possible to add these stims s in a
transformed shape - in a non-trivial way. Variations on thisme are
given in §§ &2 -[£3. But as a preliminary fd§ B2 andZ}, we first
work out in§ &1 the transformation formulae of Chagfkr 3 in the special
case of Dirichlet polynomials related #8(s) ande(s).

4.1 Transformation Formulae for Dirichlet Polyno-
mials

The general theorems of the preceding chapter are now dpfuie
Dirichlet polynomials

(4.1.1) S(My, M) = > d(mm /2T,
Mi<m<M»

(4.1.2) Sp (M, Mg) = > amm /2T,
Mi<m<mp

80
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as well as to their smoothed variants

(4.1.3) S (Mg, My) = Z m(m)d(m)m‘l/z‘it,
M1<m<Ma
(4.1.4) S, (M1, Mp) = Z na(ma(mym /21t
M1<m<Ma
wheren;(x) is a weight function defined il.(Z.1.2). 86

We shall suppose for simplicity thais a suficiently large positive
number, and put = logt. The functiony(s) is as in the functional
equation/(s) = x(9)(1 - 9), thus

x(9) = 751 sin(%sﬂ) [(1-9).

If o is bounded antitends to infinity, then (se&127], p. 68)

(4.1.5) x(9) = (2n/))T Y20 (14 0(t71)).
Define also
(4.1.6) ¢(x) = arsinh (x¥2) + (x + xz)l/z.

As before,d1, 62, ... will denote positive constants which may be
supposed to be arbitrarily small.

Theorem 4.1. Let r = h/k be a rational number such that

t
4.1.7 M — <M
( ) 1< T < M2
and
(4.1.8) 1<k< M?
Write

(4.1.9) Mj = — + (-1)'m;,
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and suppose also that;nx m, and

(4.1.10) 192 max(tl/zr‘l, hk) <m < M™%,
Let

(4.1.11) nj = Pmem;
Then

(4.1.12)

S(M1, Mg) = {(hk)~"/2 (log (t/2r) + 2y — log(hk))

2 _
+ n1/4(2hkt)—1/4z Z d(n)e(n(E B ﬁ )) Ay

j=1 n<n;
an \~1/4 ; n b :
ek i(—1)-1 el T it
X (“ 2hkt) EXp('( b (2t¢(2hkt)+ 4))}r
o3 it) + o(92K2m L) + o hird/2t12L2)
+ O(h_1/4k3/4m11/4L) )

Proof. We apply Theorerfi 311 withr in place ofr, and with

(4.1.13) f(2) = —(t/2n)logz,
and
(4.1.14) g(2) = 272

Then the assumptions of the theorem are obviously satisfidgd w

(4.1.15) F=t,
(4.1.16) G = M[Y? = 212,
and

(4.1.17) M(=r) = L

2nr
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Then the numben; in @I.I0) equals the one IR(AT111).
The leading term on the right df(3.1111) is

(hK)~2(log(t/27) + 2y — log(hk)r" (2rr/t)" &t+/4)
which can also be written, bff{4.1.5), as
(4.1.18) bk ~Y?(log(t/2x) + 2y — log(hK)r'ty (% + it) (1+0(t™)).

The functionp;n(X) reads in the present case

(4.1.19) — (t/2r)log x + rx + (-1)I"* (2 Vnx/k - 1/8)
and the numbers;, are roots of the equation

;o t i-1.1/2,,~1/21,-1 _
(4.1.20) Pin = ot r+(-1))"n"°x°k =0,

and thus roots of the quadratic equation

2 (L ﬂ) (L)Z_
(4.1.21) X (ﬂr+h2 x+(5=) =0

Moreover, sinceq n < X2n, We have

(4.1.22) Xin 7t o

N o T T e

and

21 _
(4.1.23) (t/2nr)°x - = 7 + o

LN Y hknt 1z
BT onr T2 R '

Next we show that
(4.1.24)

“120,-1/2 -3/ (o \ Y2 _ 14 s m 14
2 (Xjn) T = 42Nk (1+2hkt .

Indeed, by[[4.119) we have

2p” ~Apgy-1/2 :
ZkXi/n Pin (Xj,n) = lktxj’n/ + (_1)Jn1/2’

88
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which by [£T1.2D) and{4.1.P3) is further equal to

. t \2 t .
_1N\i-1x2n-1/2 - '—l = _1\inl/2
(~1)"h?n (2(%) X nr)+( 1)in

1/2
_ n‘1/2(2hkt)1/2(l L )

2hkt

This provesl(4.1.24).
89 To complete the calculation of the explicit terms[in (3.3, e still

have to work oupjn(X;n). Note that by[[(4.1.22) an@{4.1]23)

12
1y V(—1)i =14 1 (”_”)2 2
(errt xj,n)( 1) =1+ hkt+( ) T Pk

n \Ll/2 L an \1/2\2
—((m) +(1+ ) )

whence
1y Y = (_1)i%ar si ”_n)l/z
(4.1.25) log( 271t ) = (-1) 2arsmh((2hkt .
Also, by (41.2D) and{4.1.22),
2nr X0 + Am(=1) "t 2G A
zn : n an \2\Y?
=1- — — J_l - _
-t 2t(2hkt+(2hkt) )

Together with[[£.1.79)[(4.1.25), arld (4]1.6), this gives
nn

21pjn (Xjn) = (1) (2t¢(%‘(t) - %) - tlog(t(2x) + tlogr +t- 7.

Hence, using{4.115) again, we have
(4.1.26)  i(-1)"e(pjn(Xin) + 1/8) =

= o) exel1-7 (21 ()« )
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(3 +1t) (2+0(c).

By @118), [£124), and(4.1PR6), we find that the explierms
on the right of [31.11) coincide with those [0(4.1.12), oghe factor

1+ o(t™1). The correctioro(t™1) can be omitted with an error
< (MR ~Y2L + (hky™4nP4L),

which is 90
< (™2 + Pk tmY2L)

(4.1.27) < hm/21L

by (Z1.11),[41]7), and{4.T]10). This is clearly nedligiin (Z_T.IP).
Finally, the error terms if{3.1111) give thoselin (41.12)BI.T5)

and [£1.76).
An application of Theoreni3.2 yields an analogous result for
S(’D(Ml, Mz). O

Theorem 4.2. Suppose that the conditions of Theofenh 4.1 are satisfied.
Then

(4.1.28)

o
S

j=1 n<n;j
114-Ki2 ﬂ_”)‘”“ (-2 (2o (70 ) + T
xn (1+ tht eXp I( 1) 2t¢ tht + 4 r
(172 +it) + O (221 2) 4 o (Y434 m AL ).

Turnign to smoothed Dirichlet polynomials, we first statesansfor-
mation formula forS(M1, M»).

Theorem 4.3. Suppose that the conditions of Theofenh 4.1 are satisfied.
Let

(4.1.29) U > r1tl/2+
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and let J be a fixed positive integer exceeding a certain bduich
depends o@,). Write for j=1,2

. t .
M- 191 =
Mj—MJ+(—1)J JU—%-F(—].)JITI’-,
and suppose that m’J Define
/2 \2 N1
(4.1.30) n, = h2(m)?(M]) .

Then, defining the weight functiopy(X) in the interval[M1, M5]
with the aid of the parameters U and J, we have

(4.1.31) S (M1, My) = {(hk)‘l/z(log(t/ZJr) + 2y — log(hk))

+xt/4(2hkt)~/4 ZZ: > Wj(n)d(n)e(n(E - ﬁ)) nY4x

i=1 hen,
x (1 + %‘(t)_m exp(i(-l)i—l (2t¢> (%”kt) + %))} Ft(L/2 + it)

+o(h2k‘1mi/2t‘3/2U L),

where
(4.1.32) wj(n) =1 for n<nj,
(4.1.33) wj(n) <1 for n<nyj,

w;j(y) and V\Ij(y) are piecewise continuous in the inter\(as, n;) with at
most J- 1 discontinuities, and

(4.1.34) wj(y) < (nj - n’j)_1 for mj<y<n

whenever \Ij\(y) exists

Proof. We apply Theoreri3 3 to the suffM1, M) with f, g, F, G and
r as in the proof of Theorein 4.1; in particul&t, = t. Hence the con-

dition (3Z1) onU holds by [£1.29). The other assumptions of the
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theorem are readily verified, and the explicit terms1n Z) were al-
ready calculated in the proof of Theoréml4.1,up to the ptaseof the
weight functionswj(y), which follow from (Z2Z4) -[3.216).

The error term in[[3213) gives that i {4.1.31). It shouldoabe
noted that as in the proof of Theordml4.1 there is an extra &rm
caused by(t™1) in the formula[ZI) fox(1/2 +it). This error term is
< hm/?t1L, as was seen il{Z.I127). Hy{4.1.29) this can be absorbed
into the error term iN{4.1.31), and the proof of the theorsmomplete.

The analogue of the preceding theoremég(Ml, My) reads as fol-
lows. O

Theorem 4.4. With the assumptions of Theoréml4.3, we have

(4.1.35)
2
8, (M1, M) = x%/4(2hkt)~2/4 Z Z w;(n)a(n)x
=1 n<n;j
h 1 1/4—k/2( mn )_1/4
- 1+ —
X e(”(k 2hk)) n "okt %

x exp(i(-l)i—l (2t¢(%‘(t) + %))} fU(1/2 + it)

+ o(hzk‘lmi/zt‘mu L) .

Remark 1. It is an easy corollary of Theoren 4.1 that
(4.1.36)

Z d(n) n—1/2—it

X1<N<X2

<logt for t>2 and |x-t/2n1 < t?3.

Remark 2. In Theorem$4]3 arld 4.4 the error term is minimal when
is as small as possible, i.e.

(4.1.37) U = ritl/2+e

The error term then becomes

(4.1.38) Q(hnmy /%),
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This is significantly smaller than the error terms in Thecs&iil
and[Z2. for example, if = 1 andmy = t¥/4, then the error in Theorem
A is< t78L2, while @I38) is jusk t™>/8¢. The lengths; of the
transformed sums are abdtf?, which is smaller than the Iengt%-ht:*/4
of the original sum. A trivial estimate of the right hand safe@.1.12)
is < tY8L, which is a trivial estimate of the original sumds t1/4L.

Thanks to good error terms, Theordmd 4.3[@nH 4.4 are useén wh
number of sums are dealt with and there is a danger of the adation
of error terms.

Remark 3.With suitable modifications, the theorems of this section
hold for negative values dfas well. In this case (and thus alsd)

will be negative. Becausp, is now negative, our saddle point theo-
rems take a slightly dierent form (see the remark in the end$dZ.1.
When the calculations in the proof of TheorEml 4.1 are cawigidthen
instead of [4.1.72) we obtain, fox O,

S (M1, Mp) = {(Ihlk)*?(log |t|/2n) + 2y — log(hlk)

+ x4 (2hkt) 1/42 > d(n)e( (k Zik)) nY4x

J =1 n<n;j

(i) el o ) - )

1
X(E + |t) + o(|h=3/2KM2m it /2L) + o Ihimy 2 t~Y/2L2)
o4k 4m L),

and similar modifications have to be made in the other thesre®f
course, this formula can also be deduced frbm({411.12) gitmpktom-
plex conjugation.

4.2 On the Order of o(k/2 + it)

Dirichlet series are usually estimated by making use ofr tapprox-
imate functional equations. F@F(s), this result is classical-due to
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Hardy-Littlewood and Titchmarsh - and states that fot @ < 1 and
t>10

(421) (9= ) dmn=+x%(9) > dmn=t +o(x¥2logt),

n<x n<y

wherex > 1,y > 1, andxy = (t/27)?. Analogously, forp(s) we have 94

(4.2.2) () = Z a(nn~s + y(9) Z a(mn®* + (x> logt),

n<Xx n<y

where
() = (-1)92@r)> Tk - 9)/1(9).

For proofs of [4.Z11) and{4.2.2), see e[a.|[19].
The problem of the order af(k/2 + it) can thus be reduced to esti-

mating sums

(4.2.3) > aynt

n<x

for x < t; we take heré positive, for the case whens negative is much
the same, as was seen in Renfdrk 3 in the preceding section.
Estimating the sunf{4.2.3) by absolute values, we obtain

lo(k/2 + it)] < tY/2L,

which might be called a “trivial” estimate. If there is a @nt amount
of cancellation in this sum, then one has

(4.2.4) lp(k/2 + it)| < t¢,

wherea < 1/2. An analogous problem is estimating the ordef(af 2+
it), and in virtue of the analogy betweef(1/2 + it) andp(k/2 + it), one
would expect that if

(4.2.5) (172 +it)] <t
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then [£2ZH1) holds witlwv = 2c. (Recently it has been shown by E.
Bombieri and H. lwaniec that = 9/56 + epsilonis admissible). In par-
ticular, as an analogue of the Lindelof hypothesis for theaZunction, 95
one may conjecture thdi{4.2.4) holds for all posititeA counterpart

of the classical exponemt= 1/6 would bea = 1/3, for which [Z2ZH)

is indeed known to hold, up to an unimportant logarithmicdacMore
precisely, Good[9] proved that

(4.2.6) lp(k/2 + it)] < tY3(logt)*®

as a corollary of his mean value theordm (0.11). The prooheflat-
ter, being based on the spectral theory of the hyperboliddcem, is
sophisticated and highly non-elementary.

A more elementary approach #gk/2 + it) via the transformation
formulae of the preceding section leads rather easily to stimate
which is essentially the same &s(412.6).

Theorem 4.5. We have
(4.2.7) lo(k/2 + it)| < (It] + 1)Y/3*e.

Proof. We shall show that for all large positive valuestand for all
numbersM, M’ with1 < M < M’ < t/2r andM’ < 2M we have

(4.2.8) |Se(M, M")| = Z a(mymH/2-it| « t1/3+,

M<m<M’

A similar estimate could be proved likewise for negativeueal oft,
and the assertiofi{4.2.7) then follows from the approxinfianetional
equation[[£Z]2).

Let 6 be a fixed positive number, which may be chosen arbitrarily
small. forM < t%3*° the inequality [Z.218) is easily verified on estimat-
ing the sum by absolute values.

Let now

Mo — t2/3+5
(4.2.9) M, <M < M’ <t/2r,
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(4.2.10) K = (M/M,)Y2,

and consider the increasing sequence of reduced fraatieris/k with
1 <k < K, in other words the Farey sequence of orider
Themediantof two consecutive fractions= h/k andr’ = b’ /K’ is

_h+hk
P kK
The basic well-known properties of the mediant are p < r’, and
1 1 1 1
4.2.11 —r= - —p=—— ==
@210 =T Tk TP T kR T RK

Subdivide now the intervalNl, M’] by all the points

t

(4.2.12) M(p) = 5

lying in this interval; herep runs over the mediants. Then the sum
Sy(M, M’) is accordingly split up into segments, the first and last one
of which may be incomplete. Thus, the s@p(M, M’) now becomes a
sum of subsums of the type

(4.2.13) S,(M(p"), M(p)),

up to perhaps one or two incomplete sums. This sum is relatéuht
fractionr = h/k of our system which lies betwegnandp’. We are
going to apply Theorem4.2 to the sum{4.2.13). The numbgrand
mp in the theorem are nowi(r) — M(p") and M(p) — M(r). Hence

m < mp by (£212) and{4.2.11), which imply moreover that 97
(4.2.14)  my = trY3(r - p) < KIKIMAL < kIM322/34002,

This gives further
(4.2.15) Mt 130 < m; < Mt1/6+0/2,

It follows that the incomplete sums contribute

< Ml/Zt—l/6+6 < t1/3+5,



98

92 4. Applications

which can be omitted.
Next we check the conditions of Theordml4.2, i.e. the coowti
#13) and[[41130) of Theorem#.1. The validity BI (4. li8¢lear by

EZ10) and[[4.219). IM{4.1110), the upper boundrfarfollows from
@ZI5). As to the lower bound, note that > Mt < t1/2+op-1

by @.Z15), and that
hk = rk? < (M‘lt) (M Mo‘l) =130 « mjt_35.

The error terms in[{Z.1.28) can be estimated[by (412.10%.12),
and [ZZI¥). The first of them is L2, and the second is smaller. The

number of subsums is
- (tM—l) K2 = tl/3-6

Hence the contribution of the error terms<st!/3.
Next we turn to the main terms i {4.T1]128). A useful obseorati
will be that the numbers

nj < mJZhZM‘l
are of the same order for all relevantamely

2/3
(4.2.16) nj =< t¥3,

This is easily seen by {4.2114).
To simplify the expression il {Z.T8), we omit the factors

mn "4 -2 -2
(1+ W[) = 1+ 0(k2Mnt2),
which can be done with a negligible errer 1.
We now add up the expression [0 ({4.1.28) foffelient fractiong.
Putting

a(n) = a(n)n~-1/2,

we end up with the problem of estimating the multiple sum

Z é(n)n‘l/“e(n(g - Z_ik)) X

n<nj

(4.2.17) tv4

PN GLRGYSE
hk
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exp(i-0 (20 ) + /4] |

As a matter of fact, the numbeng depend also on = h/k, but this
does not matter, for only the order of will be of relevance.

For convenience we restrict il {4.2117) the summations ¢oirth
tervalskK, < k < K/,N, < n < N, whereK, < min(2K,, K), and
N/ < 2N,, N, < t¥3+9_ Also we take forj one of its two values, say
j = 1. The whole sum is then a suma(t’) such sums.

It may happen that some of the n-sums are incomplete. In ¢oder

have formally complete sums, we replafe) by &(n)s(h, k; n), where

1 for n<ny(hK),
0 otherwise;

anmm:{

the dependence af, on h/k is here indicated by the notation (h, k).
Then, changing if{4.2.17) the order of the summations vagipect to 99
nand the pair$, k, followed by applications of Cauchy’s inequality and
Rankin’s estimatd {1.2.4), we obtain

< t_l/“Nol/4 {Z

n

Z s(h, k; n) (K)Y4(h/K)"x
h,k

h 1 n WA
v/
X e(n(E - ﬁ) + (l/ﬂ)t(ﬁ(m)) } .

Here the square is written out as a double sum with respéxt kg,
and hy, ko, and the order of the summations is inverted. Then, since
N, < t%3+0 and

(4.2.18) hk < K2M™1t,

the preceding expression is

1/2

(4.2.19) < KVPMYAE N N s (h, ks b k)l |
hyke bz ke
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where

(4220)  s(hkiho k)= > 6w kein) e (o, ko n)e(f ()

N, <n<N/
with

@221) B
_ hy 1 hy 1 X X
) =X "2k o 2h2k2) +(Um) (¢(2h1k1t) _¢(2h2k2t))'

Thus s(hy, kg; hy, ko) is a sum over a subinterval aff, N/]. It will
be estimated trivially for quadruples(ki, ho, ko) such thathik; =
hoko, and otherwise by van der Corput’s method, applying thevdlhg
well-known lemma (seé[27], Theorem 5.9). m|

Lemma 4.1. Let f be a twice djerentiable function such that
O<<f’'(X)<hly or A<—-f"(X)<ha
100 throughout the intervafa, b), and b> a+ 1. Then
> i) < ho-a)a? + ;2.

a<n<b+1

Now, by [Z1.6),
¢N(X) — _%X—3/2(l + X)—1/2’

so that for our functiorf in @Z21)

f”(X) — _2—3/27_[—1/2.[1/2)(—3/2 [(hlkl)—l/Z (1 +

~ (hoky) V2 [ 14+ X e
2 2hokot ’

ax \Y?
2hikqt

and accordingly

T2 = NZ¥2072 (k) 272 — (hoky) ™2
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= KS3M32NG320 gk — hokal
where we used(4.2.118). Hence, by Lenima 4.1,
s(h, ka; ha, ko) < KS¥/2M¥ANG 442 |hky — hokepl /2

+ KF2M 34N Y2 kg — hoko| 12

if hiky # hoky. By M)

5/2
Ihaks — hakel/2 < (K2M 1)
hy kg £hoko
and
3/2
lhaks — hakel ™2 < (K2M1)* ¢
hiky#hoko
Thus
DD sty ke hp, ko)l < KIZMTANG 42
ha,kg ho,ko
+ KY2M-YANZA4240 4 K2ZMINGt
< K7/2M—7/4t13/6+6
+ K?/ZM—9/4»[5/2+26 + KEM_1t5/3+5.
Hence the expressiofh (4.2119) is 101

<« KOAN5/83/4+20 | | TIAN-T/B{LY/12¢25 | 112\ g~1/441/2+25
« tL/3+2
and the proof of the theorem is complete.
Remark. The preceding proof works far(s) as well, and gives
|{2(1/2 + it)| < ti/3t+e,

This is, of course, a known result, but the argument of thefpi
new, though there is a van der Corput type estimate (Lefmn)zad.an
element in common with the classical method.
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4.3 Estimation of “Long” Exponential Sums

The method of the preceding section is how carried over temgeneral
exponential sums

(4.3.1) Z b(m)g(m)e(f(m)), b(m) = d(m) or a(m),

M<m<M’

which are “long” in the sense that the length of a sum may beebtder

of M. “Short” sums of this type were transformed in Chapler 3 unde
rather general conditions. Thus the first steps of the pro@heorem
B3 —dissection of the sum and transformation of the substansbe
repeated in the more general context of sums{¥.3.1) withoytnew
assumptions, as compared with those in Chdpter 3. But ietbiout to
be dfficult to gain a similar saving in the summation of the transied
sums without more specific assumptions on the funcfiorHowever,

if we suppose thaf’ is approximately a power, the analogy with the
previous case of Dirichlet polynomials will be perfect. Tiesult is as
follows.

Theorem 4.6.Let2 < M < M’ < 2M, and let f be a holomorphic
function in the domain

(4.3.2) D={z]z-|<cM forsome > [M, M1},

where c is a positive constant. Suppose tha) is real for M < x < M,
and that either

(4.3.3) f(2 =BZ(1+0(F*3)) for zeD
wherea # 0, 1is a fixed real number, and

(4.3.4) F = |B|M?,

or

(4.3.5) f(2 = Blogz(1+ o(F‘1/3)) for zeD,
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where
(4.3.6) F =Bl

Let ge C[M, M’], and suppose that for M x < M’
(4.3.7) lg(X)| < G, g’ (Y| < G'.

Suppose also that

(4.3.8) M¥* <« F < M32,
Then
(4.3.9) > bmyg(mye(f(M)| < (G + MG )MM2FY3+e,
M<m<M’

where §m) = d(m) or a(m).

Proof. We give the details of the proof fdi(m) = d(m) only; the other
case is similar, even slightly simpler.

It suffices to prove the assertion fg¢x) = 1, because the generalo3
case can be reduced to this by partial summation.

The proof follows that of Theorefi 4.5, which correspondshe t
casef(2) = -tlogz. ThenF = t, so that the conditior{4.3.8) states
213 « M < t%3. We restricted ourselves to the cad€ <« M < t,
which suficed for the proof of Theorein’4.5, but the method gives, in
fact,

Z ammt| « MY23+ € for 28 « M < t*3.

M<m<M’

This follows, by the way, also from the previous case by a érefl
tion”, using the approximate functional equatién{4.2.2).
The analogy between the numhen Theoren 46 and the number
F in the present theorem will prevail throughout the proofcédingly,
we put
M, = F2/3+
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and define, as il {4.2.110),

(4.3.10) K = (M/M,)Y2.
We may suppoe thatl > M,, for otherwise the assertion to be
proved, viz.
(4.3.11) DT dme(f(m)| < MM2RY3H,
M<m<M’
is trivial.

Consider the case whehis of the form [£3B); the casE(4.B.5) is
104 analogous and can be dealt with by obvious modifications. Wease
thatB is of a suitable sign, so thdt’(x) is positive.
The equation{4.313) can be formallyfidirentiated once or twice to
give correct results, for by Cauchy’s integral formula weéa

(4.3.12) '(2) = aB£™? (1 + o(F‘1/3))
and
(4.3.13) 1(2) = afa - )BZ 2 (L+ o(F 7))

for zlying in a regionD’ of the type [4.3) witlt replaced by a smaller
positive number. Hence, fare D’,

(4.3.14) || < FM7Y,
and
(4.3.15) |”@)| =< FM~2,

so that the parametér plays here the same role as in Chapiérs 2Zand 3.
The proof now proceeds as in the previous section. The séieof t

mediantsp is constructed for the sequence of fractions h/k with

1 < k < K, and the interval1, M’] is dissected by the pointd (o) such

that

(4.3.16) £(M(p)) = p.
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The numbersn; andmy, then have formally the same expressions as

before by [4.3715) and (4.3116)

(4.3.17) mj < K IK-IM2E 1 = k-1 M3/2E-2/3+0/2
in analogy with [£214). This implies that 105

(4.3.18)  MF3 < m; < min(MF~Y6+/2 MY2E130/2)

note thatk > F~*M for M > F by @3.16) and[[£3.14). The up-
per estimate in[{£:3.18) shows that the possible incompglates in the
dissection can be omitted.

The subsums are transformed by Theofem 3.1, the assumpfions
which are readily verified as in the proof of Theorem 4.5.

Of the three error terms i {3.1]11), the second oneisM/?
Iog2 M, and the others are smaller. Since the number of subsums is
= FY/3-9_the contribution of these isc MY2F1/3,

The leading term in(3.1.11) isc F~Y2k~IM log F. For a giverk, h
takes< FM~'k values. Hence the contribution of the leading terms is

< FY2K logF <« MY2FY/8,

Consider now the sums of length in (ZI1.11). By [3.1.76) and
E31T) we have (cf[{4.2116))

(4.3.19) nj < F2/3%9,

For convenience, we restrict the triple sum with respegt o and
h/k by the conditionsj = 1, N, < n < N/, andK, < k < K/, where
K, < K; andN, < N/. Denote the saddle point , by x(r, n) in order
to indicate its dependence onThen, for giverr, the sum with respect
to n can be written as

(4.3.20) > mdme(fi(n),

where 106

(4.3.21) Q(r,n) = i27Y2k2n"Yax(r, n)=Y4 (£ (x(r, n))—
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14 1/2 -3/2 iz
_Ek n<x(r, n)

and
(4.3.22)  f,(n) = —nh/k + f(X(r,n)) — rx(r, n) + 2k In%2x(r, n) /2.

The range of summation il {4.3120) is either the whole iraerv
[N, N’], or a subinterval of it ifn; < N’. Since

1Q(r, n)| < FY2K Y2M3ANS T4,
we may write
Q(r,n) = FY2K2M¥4N; Y4q(r, ),

where|q(r,n)| < 1. Then, using Cauchy’s inequality as in the proof of
Theorenf 4}, we obtain

(4.3.23) Z Z Q(r, n)d(n)e(f,(n))

1/2
< F—1/2+6KO—1/2M3/4N3'/4[Z |S(r1, r2)|} >

ri,rz

where

s(r1,r2) = . a(r1,n) a(rz,n) e(fry(n) = fi(m).

The saddle poink(r, n) is defined implicitly by the equation

(4.3.24) £/(x(r,n)) — r + kInY2x(r,n) Y2 = 0.
Therefore, by the implicit function theorem,
(4.3.25)
dx(r,n) g (Ko—lM—l/ZNo—l/Z) (FM‘Z)_l - F‘lKo‘lMS/ZNO‘l/Z
dn

Then it is easy to verify that
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‘dq(r, n)‘ <« NZIFo/2:
dn
the assumptioM < F#3 is needed here. Consequently, if

(4.3.26) <o (ry,r2)

> e(fry(n) - fr,()

n

whenevem runs over a subinterval of[,, N/], then by partial summa-
tion
IS(r1,r2)l < o (ry, 12) F*/2.
Thus, in order to prove that the left hand side BI(4.1B.23xis
ML/2E1/3+(0) it suffices to show that

(4327) Z a (rl’ r2) < F5/3+0(5) Ko M_1/2N0_1/2,
r1,r2

With an application of LemmB&4.1 in mind, we derive bounds for
%(frl(n) - fr,(n)), wheren is again understood for a moment as a con-

tinuous variable. First, by14.3P?2) arld(4.3.24),

df(n _ -~ ’ B 1,172 —172) dX(r, n)
i = h/k+ (£(x(r.m) = r + k™n2x(r,n) )—dn

+ k- In7Y2x(r, n)Y/?

= —h/k+ k™ n 2x(r, n)*2,

and further

) 1 1 g vapdX0N) 1 g e
(4.3.28) iz _Ek n~~<x(r, n) T_Ek N~ <x(r,n)~<.
Here the first term, which is
(4.3.29) < FIK;2MN;T

by [@325), will be less significant.
The saddle poini(r,n) is now approximated by the poiiN(r),
which is easier to determine. By definition

fr(Mr) =r;
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hence by[(4:3712)
aBM(r)* ! =1 (L+0(F 7)),
which gives further, by[{4314),

M \¥ 28 -1/3
(4.3.30) M(r)=(|a|F) Irl (1+°(F ))
with
1
b= 2@ -1)

But the diference oM(r) andx(r, n) is at most the maximum aofy
andm, so that by[[4.3717)

X(r.n) = M(r) + o(F 'K K ™M?)
= M(r) (1+o(FK;'K™M)).
Hence by[[4:3:30)

M
x(r,n) = (MF

note that by[(4.3.10)
FKIK™M > FTK™2M = B3+,
So the second term il{4.3]128) is

a

)28 Ir|%# (1 + O(F_lKo—lK—lM)) ;

1
2 (2lF) Pk MP 32 1 o (FIK 2K TM¥2N;32).

The expressio{4.3.29) can be absorbed into the error tere, for
N, < K™2M by @31I0) and(£3:19). Hende(4.3.28) gives

d2
(4.3.31) = (fr,(n) = f,(n))
1 L e
= 5 (alF)? MPn 92 (i — i ™)
+ o(F—lK;ZK-1M3/2N;3/2) .

By the following lemma, the dierencesh, Pk, — |k ' are
distributed as one would expect on statistical grounds. i

108
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Lemmad4.2.LetH> 1,K > 1,and0 < A < 1. Letae and be non-zero
real numbers. Then the number of quadruplles ki, hy, ko) such that

(4.3.32) H<h <2H, K<k <2K
and

(4.3.33) K — hgig| < AHKE

is at most

(4.3.34) < HK log?(2HK) + AH?K?,

where the implied constants dependwandg.

We complete first the proof of TheordmM$.6, and that of Leriifa 4.
will be given afterwards.
In our case, the number of paing (r») such that

(4.3.35) Il — 1P| < AR (FMLY
is at most
(4.3.36) < FK2Mtlog? F + AF2K4M 2

by LemmdZ.DP. Let
Ao = CFIKIIK ™M,

wherec, is a certain positive constant. For those paigsrg) satisfying
E33%) withA = A, we estimate triviallyo(r1,r2) < N,. Then, by
#3.3%), their contribution to the sum I {4.3.27) is

< FK2M™IN, log? F < F¥3 2K M-Y2N; 12,

110
Let nowA, < A <« 1, and consider those pains,(r,) for which
the expression on the left di{Z.3135) lies in the interveK{1(FM 1),
2AKZHFM~YY]. If ¢, is chosen sfiiciently large, then the main term
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(of order=< AK;1MY/2N;/2) on the right of [2:3:31) dominates the error
term. Then by Lemmga4.1

o (r1,12) < AVPKGY2MYANYA ¢ A-12K 12\ -1AN3/4,

The number of the pairsr{,r2) in question is< AF?K3KM2
log® F by @3:36) and our choice af., so that they contribute
« AMRE2+0K 512 \-TIANYA 4 ALVZE2HK T2 \-9ANS/4
< F2+5KOM—1/2N—1/2 (KS/ZM—5/4N3/4 + K7/2M—7/4N5/4)
< F5/3+5KOM—1/2N—1/2_
The assertio{4.3:27) is now verified, and the proof of Teedd.6
is complete.

Proof of Lemmal42 To begin with, we estimate the number of
guadruples satisfying, besidés (4.3.32) 4dnd (413.33),thks conditions

(4.3.37) (he, hp) = (ki ko) = 1.

By symmetry, we may suppose thdt> K. The condition[[4:3.33)
can be written as

ok = h3K(1 + o(A)).

Raising both sides to the power! and dividing byhzk'f/", we ob-

tain 5
hy (k)"
hy - (kl) < A.

111 for given k; and ky, the number of fraction$y/h, satisfying this,
@332), and[Z.3B7), i 1+ AH? by the theory of Farey fractions.
Summation over the pailg, ko in question gives

<« K2 + AH?K? <« HK + AH?K?Z,

Consider next quadruples satisfyilg(4.3.32) &nd (4]l H88nstead
of @3.3T) the conditions

(hy, h2) = h, (k, ko) = k
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for certain fixed integerd andk. Then, writingh; = hi, ki = kk', we
find that the quadrupled, ki, h’, k) satisfy the conditions {4.3.B2),
E333), and[4.3.37) withl andK replaced byH/h andK/k. Hence,
as was just proved, the number of these quadruples is

<« HK/hk + AH?K2(hk)~2.
Finally, summation with respect toandk gives [£.3.31).

Example . To illustrate the scope of TheordmM.6, let us consider the
exponential sum

(4.3.38) s= ) b(m)e(%)

M<m<M’

whereb(m) is d(m) or &(m). By the theorem,
S <« MYeXY3+e for M7 <« X < MY2,

Thus, forM = y/2, one hasS < M>®8+*¢_ In the casés(m) = d(m)
it is also possible to interpr& as the double sum
X
> (=)
mn
mn>1
M<mn<M’
112
This can be reduced to ordinary exponential sums, fixingrfigtn,
but it can be also estimated by more sophisticated methdtig itheory
of multiple exponential sums. For instance, B.R. Srinivéséheory of
n-dimensional exponent pairs gives, fdr= X2 andb(m) = d(m),

(4.3.39) S <« MIatle,

where (., {1) is a two-dimensional exponent pair (seel[18R.4). Of
the pairs mentioned iri.I13], the sharpest result is given%g, %),
namely [4:3:39) with the exponent 2/Z60 = 0.868. The optimal ex-
ponent given by this method is85695... (see [1D]). If a conjecture
concerning one- and two-dimensional exponent pairs (Ctunje P in
[2Q]) is true, then the exponent could be improved .8&290.. ., which

is smaller than 6. But in any case, fob(m) = &(m) the sumS seems
to be beyond the scope of ad hoc methods because of the cataglic
structure of the cd@cientsa(m).
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4.4 The Twelfth Moment of £(1/2+it) and Sixth Mo-
ment of p(k/2 + it)

In this last section, a unified approach to the mean valua¢hesi0.)
and@.® will be given.

Theorem 4.7.For T > 2 we have

.
(4.4.1) f 12(1/2 + it)[*? dt < T2
and

.
(4.4.2) f lo(k/2 + it)|® dt < T2+

Proof. The proofs of these estimates are much similar, sofficas to
consider[[4.4]2) as an example, with some commentEanl(4.4.1
It is enough to prove that

2T
(4.4.3) f lo(k/2 +it)|® dt <« T2*e,
T

Actually we are going to prove a discrete variant of this, anthat

(4.4.4) D lp(k/2 + it,)|° < T2+

whenevelt,} is a “well-spaced” system of numbers such that
(4.4.5) T<t<2T|t,-t|>1 for p#v

Obviously this implies[[4.4]13). Again{4.34.4) follows ffis proved
that for anyV > 0 and for any systenft,},v = 1,...,R, satisfying
besides[(4.4]5) also the condition

(4.4.6) lp(k/2 +1t,)| >V,
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one has

(4.4.7) R < T2tevS,
The last mentioned assertion is easily verified if
(4.4.8) V <« TY4+9

whereéd again stands for a positive constant, which may be chosen as
small as we please, and which will be kept fixed during the forbo
deed, one may apply the discrete mean square estimate

(4.4.9) Dlk/2 +it,)P < T
which is an analogue of the well-known discrete mean foudtvey

estimate foi/(1/2 + it)| (see [13], equation (8.26)), and can be proved
in the same way. Now{4.4.9) arld(414.6) together give 114

(4.4.10) R< THoV2,

and thusR < T?*¥V-8 if also (ZZ.8) holds.
Henceforth we may assume that

(4.4.11) Vo> T4,
Then by [£Z10)
(4.4.12) R< T2,

Large values of(s) on the critical line can be investigated in terms
of large values of partial sums of its Dirichlet series, by dpproximate
functional equation[[Z2.2). The partial sums will be deposed as
in the proof of Theoreni_4l5. However, in order to have conybati
decompositions for dierent values € [T, 2T], we define the system of
fractionsr = h/k in terms ofT rather than in terms df As a matter of
fact, the “order’K of the system will not be a constant, but it varies as a
certain functiorK (r) of r. More exactly, write

t

(4.4.13) M@0 = 5.
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and lettingR be the cardinality of the systeit,} satisfying [4.4b),
(#.438), and[2411), define

(4.4.14) K(r) = M(r, T)Y?T-Y3R1/3,

We now construct the (finite) set of all fractions- h/k > 1 satisfy-
ing the conditions

(4.4.15) k < K(r),
(4.4.16) K(r) > T°,
and arrange these into an increasing sequence.
This sequence determines the sequemce< p, < --- < pp Of

the mediants, and we define moreoyper= p;*. We apply [ZZR) for
o = k/2, choosing

(4.4.17) X = X(t) = M(po, 1),y = y(t) = (t/27)°x 2.

Then, if (£.4.6) and{4.Z11) hold, at least one of the sunisrajth
X(t,) andy(t,) in @Z2) exceed¥/3 in absolute value. Let us suppose
that for at leasR/2 pointst, we have

(4.4.18) > Emyn et

n<x(ty)

> V/3;

the subsequent arguments would be analogous if the othewsuenas
large as often.

The sum in[[44.18) is split up by the poin#(p;, t,) as in§&4. As
to the set of points, satisfying [£.4.1B), there are now two alternatives:
either

(4.4.19) > st

nSM(pPatv)

> V/6

for > R points, or there are functiond(t), M»(t) of the typeM(p;, t)
such thatM4(t) < M»(t) and

(4.4.20) S, (Ma(t,), Ma(t,))| > VL™,
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with L = log T, for at leasts> RL™* pointst,. We are going to derive an
upper bound foRin each case.

Consider first the former alternative. We apply the follogviarge
values theorem of M.N. Huxley for Dirichlet polynomials (fa proof,
see|[12] orl[[15]). O

Lemma 4.3. Let N be a positive integer,

2N

(4.4.21) f(9= ) ans

n=N+1

andlet $ = o +it;,r = 1,...,R, be a set of complex numbers such that
or>20,1<t-ty|<Tforr+r’,and

If(s) >V >0.
Put
2N
G= ). lal.
n=N+1
Then
(4.4.22) R< (GNV2+ TGNV ) (NT)".

This lemma cannot immediately be applied to the Dirichlelypo
nomial in [£4.1P), for it is not of the typé&{4.4121), and tkagth of
the sum depends moreover tn To avoid the latter diiculty, we ex-
press the Dirichlet polynomials in question by Perron’srfala using
the function

fw) = > amn™

n<N

with N = M(pp, 2T). Lettingy = N2 anda = 1/ logN, we have

a+iY
o1 .
> é(n)n‘l/z"“:% f f(1/2 +it, +w)
n<M(op.t,) aciY

M (op, t,)" W dw + o(T?).
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Now, in view of (£ 4.1D), there is a numbXre [1, Y] and numbers 117
N1, N2 with N3 < No < max(2N1, N) such that writing

fow)= > amn™

N1<n<N2

we have

X
(4.4.23) f If. (1/2+ @ +i (t, + u))| dus> VyL™?
-X

for at leasts> RL™2 pointst,. Next we select a sparse setRfnumbers
t, with

(4.4.24) R, < 1+RX1L™7?

such that[{4.4.23) holds for these, and moredtyer t,| > 3X for u # v.
Further, by [4Z4.23) and similar quantitative argumentsalagve, we
conclude that there exist a numbers VL2, a subset of cardinality
> R,L~! of the set of theR, indices just selected, and for eacin this
subset a set- VW-1XL3 pointsu,, € [-X, X] such that

(4.4.25) W <

fo (1/2 +a+i (t,, + u,,,ﬂ))| <2W
and
lua—uy,l>1 for A#pu

The systent, + u,, for all relevant pairs, 1 is well-spaced in the
sense that the mutual distance of these numbers is at leasidlits
cardinality is

> RVW IXL™,

On the other hand, its cardinality is by Lemmal4.3
< (le-2 4T le-G) T <« Wt (NV‘l +T N\r5) TOL10,

118
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These two estimates give together
RX < (NVZ+ TNV ) ToL™,
But R, X > RL2 by @Z.2%), so finally
(4.4.26) R< (NVZ+TNVE)T? « NV2T%

by (£4.11). This means that a direct application of LerinZhgives a
correct result in the present case though the conditionsedeimma are
not formally satisfied.

Sincepp was the last mediant, we have by (4.4.14), (414.16), and the

definition of N
N <« TY/3H+2R2S,
Together with[(4.4.26), this implies
R« T2/3+46R2/3V_2,
whence
(4.4.27) R < T2H12%y-6

We have now proved the desired estimate Romn the case that
#419) holds for> Rindicesy.
Turning to the alternativd (4.4.P20), we write

(4.4.28) S, (Ma(®), Ma®) = > Sy (M (pis1,), M (o1, 1)

i=i1

for T <t < 2T. The sumsS, here are transformed by Theoréml4.2.
That unique fractiom = hk which lies betweep; andp;,1 will be used
as the fractiorr in the theorem. Writél = M1(T) and 119

(4.4.29) K = MY2T-13R-1/3,

Then by [£4.14) we hav&(r) < K for thoser related to the sums
in @4.28). Since for two consecutive fractionandr’ of our system
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we haver’ —r < [K(r’)] 7%, it is easily seen that (r) — K(r’) < 1. Thus
eitherr andr’ are consecutive fractions in the Farey system of order
[K(r)], or exactly one fractiom” = h”/k” with K(r") < k" < K(r) of

this system lies between them. Then, in any cfise pj| < (kK)™1 for

j =iandi + 1, whence as if{4.2]14) we have

(4.4.30) m; =< k' 1K"IM2T1 < k' IM3¥/2T-23R13,

Hencem; < M1-9/3 by [@ZT2), so that the upper bound part of the
condition [411D) is satisfied. The other conditions of dieen[4.2 are
easily checked as in the proof of Theoreni 4.5.

The error terms in Theorefn 4.2 are now by (4.4.30) &and (4)4.13
o(kY2k~12.2) ando(K3/4KY4M~1/4L), and the sum of these forftr-
entr is

< KMTITLZ + K3TMAL
< TRZPLZ 4+ MYIRTIL <« TVRRZ3L2,

TR < VT,
then these error terms can be omittedn (41.20). Otherwise

R<< Tl/2+36/2v—3/2
< (T1/2+35/2V—3/2)4 _ T2+60\/-6

and we have nothing to prove. Hence, in any case, we may omit th

error terms in[(4.1.28).

Consider now the explicit terms in Theoréml4.2. For the nusbe
n; we have by[(ZT.11)[14.410), arid{4.4.29)
(4.4.31) nj < K2M = T?3R23,

Denote byS;(t) the explicit part of the right hand side df (4.11.28)

for the sum related to the fractian Then by [4.4.20)[{4.428), and the
error estimate just made we have

> si(t)

(4.4.32) > VLt
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for at leasts> RL™1 numberg, .

At this stage we make a brief digression to the proof of thienede
@Z1). So far everything we have done §gs) goes through fot?(s)
as well, except that in Theorem .1 there is the leading expérm
and the first error term which have no counterpart in ThedrgéinBhe
additional explicit term is< (hk)~Y/2L, and the sum of these over the
relevant fractions is < TY6L, which can be omitted by {Z.Z111). The
additional error term in[{4.1.12) is also negligible, foistdominated
in our case by the second one. So the analogy between thespybof
#41) and[({4.4]12) prevails here, like also henceforth.

It will be convenient to restrict the fractions = h/k in (@4.32)
suitably. Suppose th#t, < k < K/, whereK, < K/ andK, <« K, and
suppose also that for twoftirent fractiong = h/k,r’ = h/k’ in our 121
system we have

(4.4.33) Ir—r'| > K;2T°
and

1 1 N—2
(4434) O < m( - W < (Ko)

An interval [K,, K/] and a set of fractions of this kind can be found
such that

(4.4.35) > VT2

DS ()

for at leastR; > RT-% numberg,. The sum over here is restricted as
indicated above.
Let

(4.4.36) Z=K2MIT.

There exists a numbdR, such that those intervald [+ pZ T +
(P + 1)Z] containing at leasR,/2 and at most R, of the Ry numbers
t, contain togethers> R;L~! of these. Omit the other numbets and
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suppose henceforth that theunder consideration lie in these Rlel
intervals. Summind{4.4.B5) with respect to thoskying in the interval
[T+ pZT+(p+ 1)Z], we obtain by Cauchy’s inequality

n1/2
DS () ] :

The following inequality of P.X. Gallagher (s€e 23], Lemihd) is
now applied to the sum ovey.

(4.4.37) RVT? « [RZZ

Lemma 4.4. Let T,,T > 6 > 0 be real numbers, and let A be a finite

setin the interva|T, + 6/2, T, + T — §/2] such thafa’ — al > ¢ for any
122 two distinct numbers.,@ € A. Let S be a continuous complex valued

function in[T,, T, + T] with continuous derivative i¢l,, T, + T). Then

TosT TosT Y2 141 172

2]&@?554 IS(H)2 dt + IS(H)2 dt IS’ (12 dt
st < [ eotae| [ eotal | [

The lengthsn; of the sums ir5,(t) depend linearly on. However,
the variation oh; in the intervallT + pZ <t < T +(p+1)Z is onlyo(1),
so that[[4.4.35) and{4.2137) remain valid if we redefpé) taking n;
constant in this interval. Lemnfia#%.4 then gives

>180() du

2 2
du] du]

Let n(u) be a weight function of the typeg;(u) such thatJu =
Znu)=1for0O<u<Zn(u =0foru¢ (-Z22), andJ is a large
positive integer. Then

Z

f
J

1/2
o

2 2
<

(4.4.38) >

(i

o

Zsr(T + pZ+U)
r

1/2

Zsr(T + pZ+U)
r

Zs;(T + pZ+u)
r

4

(4.4.39) f

o]

2 2Z

dusfn(u)

-Z

2
du

D Si(T +pZ+)
r

s
r
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2z
=Y [ nwsSdu
N

We now dispose of the nondiagonal terms. Ut = T + pZ + u.
When the integral on the right df{4.4]139) is written as a sfimtegrals,
recalling the definition[[4Z.1.28) &, (t), a typical term is

2z

(4.4.40) f P(Ug(Ue(f () du

-Z

where 123

g(u) = 7¥/227Y2(hkHK)~Y4&(n)a(n’) (nr')~4x

h 1 (v 1 1
X e(”(k - 2hk) -n (k’ B 2h'k’])t(u)
~1/4 ~1/4
n n
(“ 2hkt(u)) (“ 2h’k’t(u)) ’

i mn
@ = 0 0o g ) + 18]

an’

2hk't(u)

-0 {0 s |+ e} + am og e
r=h/kr’ =h/K', j” andj" are 1 or 2, anah < nj,n” < nj.. Now

‘%(t(u) log (r/r"))| = [log (r/r")| > K;ZMT 1+

by (&Z438), while by[[4.116)

d n
a0 (o)
which is by [£Z.31)

< KIAKIMT !t < K2MT L

= (hkT)—l/an/Z - Ko_lMl/an/zT_l,
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Accordingly,
[f/(u)| < |log(r, /r')| > T%z~L.

We may now apply Theore 2.3 to the integial {4.4.40) itk
Z M < |log(r,r)| > T°Z %, andU < Z. If J < 5-2 ands is small, then
this integral is negligible. A similar argument applies lte integral in-

volving S; in (4.38). Consequently, it follows frorhi{4.4]137]-(&9)
that

2z
RVT % « R%/Z Zf|8,(t(U))|2 du
r
*z

1/2 1/2y 1/2

2z 2z
+ [Z ! ISe (W) du] [Z [ SO du]

124 Summing these inequalities with respect to theRlel values of
p, we obtain by Cauchy’s inequality

2z
RILWVT? « 1/2{2 f|Sr(T +pZ+Uu)Pdu

pr
[ 2z
pr Y

For eachp, the integrals here are expressed by the mean value theo-
rem. Then by[[Z.Z:36) this implies (recall tRT-% « R; < R)

1/2 1/2

12
ST +pZ+ u)l2 du] }

27
+ {Z f|Sr(T + pZ+u)? du]
pr g

(4.4.41) RV < RY2K, M-L/2TL/2+46 L{Z IS (tp)|
P.r

p.r p.r

1/2 1/2\1/2
+{Z|Sr<tp>|2] [lext;)lz] } :
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where({t,} is a set of numbers in the interval ¢ Z, 2T + 2Z) such that
(4.4.42) ltp—ty| =2 for p=p,

and similarly for{t;)}.

The rest of the proof will be devoted to the estimation of tbalide
sums on the right of{4.4.%1). For convenience we restri&;iandS;
the summation to an intervéd < n < N’, whereN =< N’, and take

j = 1. The notatiors; is still retained for these sums. The original sum
can be written as a sum ofL) new sums. We are going to show that

(4.4.43) Z ISe(tp)]” < (KS2K2M2T 1 4+ KTMY2R) T2,
p,r

It will be obvious that the argument of the proof of this gitbe
same estimate for the similar sum involvigj as well. Then the in-

equality [4.4.411) becomes 125
RV < (KTMYZRY2 1 K/ZMVATY2R) T « RO/GTH3E;
recall the definition[[£.4.29) d. This gives
R« T2H3%y-6

as desired.

To prove the crucial inequality {4.4143), we apply methoddalasz
and van der Corput. The following abstract version of Hatamequal-
ity is due to Bombieri (see [23], Lemma 1.5, br[13], p. 494).

Lemmad.5.1f &, ¢4, ..., prare elements of an inner product space over
the complex numbers, then

R R
2 2
;I(f,sor)l <l l@géél(sor,sos)l-

Suppose that the numbels and N’ above are integers, and de-
fine the usual inner product for complex vectars (ay,...,an),b =
(b, ...,bn) as

N/
(ab) = ) abn
n=N
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Define vectors

=

o[ ) ol o )

with the convention that iy, < N’, then ing,, the components for
n; < n < N’ are understood as zeros. Thenhy (411.28) we have

|Sr (tp)] < KHZMYAT 12 |(§, Sop,r)

126 Hence, by LemmB4l5, there is a pgirr’ such that

(4448) Y [Si(tp)]" < KIMYANVETEO R (g )
pr p.r

If now

(4.4.45) |(s0p,r, )
p.r

< (KS'K™IM + KMY2RT) T°,

then [Z.2.2B) follows from{Z.Z.44); recall thisit < K—2M by &Z.31).
Hence it remains to proveé{4.4145).

Let -
1
for(X) = X(E - m() + (tp/ﬂ)¢(2;:|i(tp).

The estimation of(¢p,, ¢p )l can be reduced, by partial summa-
tion, to that of exponential sums

> e(fpr(m) = fy ().

n

Namely, if this sum is at mogt(p, r) in absolute value whenever
runs over a subinterval oN, N’], then

< A(p, ).

|(‘Pp,r,90p’,r’)
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So in place of[(4.4.45) it dtices to show that

(4.4.46) D A1) < (KSPK™M + KMTZRT) T2,
pr

The quantityA(p, r) will be estimated by van der Corput’s method.
To this end we need the first two derivatives of the functigp(x) —
fo.r(X) in the interval N, N’]. By the definition [£.116) of the function
#(X) we have

o) = (1+x))"

(f)”(X) — —%X_S/Z(l-i- X)—l/Z.

127
Then by a little calculation it is seen that

) ) h 1 w1
(4447) fp’r(X) — fp,’r,(X) = E — m - W + m

. _ e 1 1/ hk  hK
+BK;3MI2N2 hki - bkt + Earx(tptp,) ( )

’

k' hk

where|B| < 1, and
(4.4.48)  [f.(0 = 5 (9] < KI3M¥2N"¥2 |nkt! - bt}

- %nx(tgz -t7)).

We shall estimaté(p, r) either by Lemma&4l1, or by the following
simple lemma (seé¢ [27], Lemmas 4.8 and 4.2). We denotgdy the
distance ofx from the nearest integer.

Lemma 4.6. Let f € Cl[a, b] be a real function with 4(x) monotonic
and|| f’(x) [[= m> 0. Then

D () <m.

a<n<b
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Turning to the proof of[[4.4.46), let us first consider the sonver
the pairsp, r’. Trivially,

AP, 1) < N < KM < K;1K™Im.
If p# p’, then by [ZZ417)
|50 = f 0 (9] =< KITMYENTY2T Aty — ty |
We may apply Lemm@a4l.6 if
[tp — ty| < KeM™Y2NY2T,

and the corresponding part of the sUum{4:1.46) is

< KMTNY2T 3 Ity — by < KIIKTIMITY,
p

recall [£Z24P),[[4.4.36), and{4.4131).
OhterwiseA(p, r) is estimated by Lemn{a4.1. Now Hy{4.4.48)

|00 = T (9] = KSTMY2NT32T L e — 1] > N7,
so that these values gfcontribute

< Z (N (Ko—lMl/ZN—S/z)l/Z N N1/2) < (KO—1/2M1/4N1/4 + N1/2) R
P

< Ml/ZR,

which is clearly< KM~Y2RT.
For the remaining pairp,r in @.4.46) we have + r’. Let p be
fixed for a moment. Then

(4.4.49) |kt - HKtH > T,

save perhaps for one “exceptional” fraction= h/k; note that by the
assumption[{4.2:34) no two feierent fractions in our system have the
same value fohk. If (£4.49) holds, then by {Z.2.148)

| £ = £/ 1 (9] = KSSM¥2N3/2 |kt — WKt
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Then, ifr runs over the non-exceptional fractions,

D09 = ) < kIR N e
r m<K2ZM-1T
< K2M-SANS/AT
< KMY2T,
and 129
1/2

SNIE09 - 7,00 < KIPM-34NIAT < K-V,

r

Hence by LemmB4l1

(4.4.50) D A(p.T) < KM7Y2T,
r

Consider finallyA(p, r) for the exceptional fraction. We shall need
the auxiliary result that for any two filerent fractionsh/k andh’ /k’ of
our system we have
(4.4.51) I h_ L _h 1 > KZ2M2T 2,

For if k # k', then the left hand side is- K2 by the condition
#Z33), like also in the cade= K if h 2 " (modk). On the other

hand, ifk = k" andh = " (mod k), thenlh—h’| > K,, and the left hand
side is

1 1
‘ﬁ 2k
Letr be the exceptional fraction (for givas), and suppose first that
for a certain small constawt

> (hh)™ > K72M?T 2,

(4.4.52) |hkts? — WKt} < K, MY2NY2T 2
in addition to the inequality

(4.4.53) [kt - WKt < 771
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which defines the exceptionality. Then, by (4.4.51), the fosr terms
in @4.4T) dominate, and we have

I for (3 = e (9 11> K:?M?T~2.
Hence by LemmBZl6 -
A(p,1) < KZM™2T2 « KM32T53 « KM~Y/2T,

sinceK < MY2T-13 andM > T%3,
On the other hand, if{4.4.52) does not hold, then[by {Z4]4a4®)
(#.453)

KS3M¥2NT32T L | £ — £ (9] > KTPMPNTIT 2,
Hence by LemmB4l1

A(p,1) < KS¥V2MIANYAT-22 4 K, M-INY2T
< MT Y24 MY2T « M7Y2T,

Now we sum the last estimations and thosdin (414.50) witheets
to p to obtain
D A(pr) < KMTY2RT,
p.r

r;t’r’
Taking also into account the previous estimations in the casr’,
we complete the proof of {4.4146), and also that of Thedréefin 4.

Notes

Theorem$4]1 arld 4.2 were provedlinl[16] for integral valdes dhe
results of§ A7 as they stand were first worked outlinl[17].

In §§ B2 -[43 we managed (just!) to dispense with weighted ver-
sions of transformation formulae. The reason is that inhalgroblems
touched upon relatively large values of Dirichlet polynalsiand expo-

131 nential sums occurred, and therefore even the compasatiedk error
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terms of the ordinary transformation formulae were not tyge. But in
a context involving also small or “expected” values of sutrtseicomes
necessary to switch to smoothed sums in order to reduceterrns. A
challenging application of this kind would be proving theanevalue
theorems

T+T23

f 12(1/2 + it)[* dt <« TZ/3*e
S

T+T%3

f lp(k/2 + it)]? dt < T2/3+€,
S

respectively due tdd. Iwaniec [14] andA. Good [9] (a corollary of
@13) in a unified way using methods of this chapter.

The estimate[{4.412) for the sixth momentg(k/2 + it) actually
gives the estimate fap(k/2 + it) in TheorenT4Pb as a corollary, so that
strictly speaking the latter theorem is superfluous. Howeave found it
expedient to work out the estimateg(k/2+it) in a simple way in order
to illustrate the basic ideas of the method, and also wittptireose of
providing a model or starting point for the more elaborateofs of
Theoren’46 and 4.7, and perhaps for other applicationsn@co

The method of§ E24 can probably be applied to give results to the
effect that an exponential sum involvimign) or a(n) which depends on
a parametekX is “seldom” large as a function of. A typical example
is the sum[{4.3:38). An analogue of Theorlem 4.7 would be

X2 X 6
5/2+€
D b(m)e(a)| dx < X5/

Mi<m<My

X1

for My < My, X1 = Xo, X1 > M2, andb(m) = d(m) or &(m).
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