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Preface

These lectures were given at the Tata Institute of Fundamental Research
in October - November 1985. It was my first object to present a self-
contained introduction to summation and transformation formulae for
exponential sums involving either the divisor functiond(n) or the Fourier
coefficients of a cusp form; these two cases are in fact closely analogous.
Secondly, I wished to show how these formulae - in combination with
some standard methods of analytic number theory - can be applied to
the estimation of the exponential sums in question.

I would like to thank Professor K. Ramachandra, Professor R.Bala-
subramanian, Professor S. Raghavan, Professor T.N. Shorey, and Dr. S.
Srinivasan for their kind hospitality, and my whole audience for interest
and stimulating discussions. In addition, I am grateful to my colleagues
D.R. Heath-Brown, M.N. Huxley, A. Ivic, T. Meurman, Y. Motohashi,
and many others for valuable remarks concerning the presentnotes and
my earlier work on these topics.
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Notation

The following notation, mostly standard, will occur repeatedly in these
notes.

γ Euler’s constant.
s = σ + it, a complex variable.
ζ(s) Riemann’s zeta-function.
Γ(s) The gamma-function.
χ(s) = 2sπs−1Γ(1− s) sin(πs/2).
Jn(z),Yn(z),Kn(z) Bessel functions.
e(α) = e2πiα.
ek(α) = e2πiα/k.
Res(f ,a) The residue of the functionf at the pointa.
∫

(c)

f (s) ds The integral of the functionf over the line Res= c.

d(n) The number of positive divisors of the integern.
a(n) Fourier coefficient of a cusp form.

ϕ(s) =
∞
∑

n=1
a(n)n−s.

κ The weight of a cusp form.
ã(n) = a(n)n−(κ−1)/2.
r = h/k, a rational number with (h, k) = 1 andk ≥ 1.
h̄ The residue (modk) defined byhh̄ ≡ 1 (modk).

E(s, r) =
∞
∑

n=1
d(n)e(nr)n−s.

ϕ(s, r) =
∞
∑

n=1
a(n)e(nr)n−s.

‖ α ‖ The distance ofα from the nearest integer.
∑′

n≦x

f (n) =
∑

1≦n≦x
f (n), except that ifx is an integer,

then the termf (x) is to be replaced by12 f (x).
∑′

a≦n≦b

f (n) A sum with similar conventions as above

if a or b is an integer.

v



vi Notation

D(x) =
∑′

n≦x

d(n).

A(x) =
∑′

n≦x

a(n).

D(x, α) =
∑′

n≦x

d(n)e(nα).

A(, α) =
∑′

n≦x

a(n)e(nα).

Da(x) = 1
a!

∑′

n≦x

d(n) (x− n)a.

Aa(x),Da(x, α),Aa(x, α) are analogously defined.
ǫ An arbitrarily small positive constant.
A A constant, not necessarily the same at

each occurrence.
Cn[a,b] The class of functions having a continuous

nth derivative in the interval [a,b].

The symbols 0(),≪, and≫ are used in their standard meaning.
Also, f ≍ g means thatf andg are of equal order of magnitude, i.e. that
1≪ f /g≪ 1. The constants implied by these notations depend at most
on∈.
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Introduction

ONE OF THE basic devices (usually called “process B”; see [13], § 1

2.3) in van der Corput’s method is to transform an exponential sum into
a new shape by an application of van der Corput’s lemma and thesaddle-
point method. An exponential sum

(0.1)
∑

a<n≤b

e( f (n)),

where f ǫC2[a, b], f ′′(x) < 0 in [a, b], f ′(b) = α, and f ′(a) = β, is first
written, by use of van der Corput’s lemma, as

(0.2)
∑

α−η<n<β+η

b
∫

a

e( f (x) − nx) dx+ 0(log(β − α + 2)),

whereηǫ (0.1) is a fixed number. The exponential integrals here are
then evaluated approximately by the saddle-point method interms of
the saddle pointsxnǫ(a, b) satisfying f ′(xn) = n.

If the sum (0.1) is represented as a series by Poisson’s summation
formula, then the sum in (0.2) can be interpreted as the “interesting” part
of this series, consisting of those integrals which have a saddle point in
(a, b), or at least in a slightly wider interval.

The same argument applies to exponential sums of the type

(0.3)
∑

a≤n≤b

d(n)g(n)e( f (n))

1



2 Introduction

as well. The role of van der Corput’s lemma or Poisson’s summation
formula is now played by Voronoi’s summation formula

∑′

a≤n≤b

d(n) f (n) =

b
∫

a

(log x+ 2γ) f (x) dx+
∞
∑

n=1

d(n)

b
∫

a

f (x)α(nx) dx,

α(x) = 4K◦(4πx1/2) − 2πY◦(4πx1/2).(0.4)

2

The well-known asymptotic formulae for the Bessel functions K◦
andγ◦ imply an approximation forα(nx) in terms of trigonometric func-
tions, and, when the corresponding exponential integrals in (0.4) with
g(x)e( f (x)) in place of f (x)-are treated by the saddle-point method, a
certain exponential sum involvingd(n) can be singled out, the contri-
bution of the other terms of the series (0.4) being estimatedas an error
term. The leading integral normally represents the expected value of the
sum in question.

As a technical device, it may be helpful to provide the sum (0.3)
with suitable smooth weightsη(n) which do not affect the sum too much
but which make the series in Voronoi formula for the sum

∑′

a≤n≤b

η(n)d(n)g(n)e( f (n))

absolutely convergent.
Another device, at first sight nothing but a triviality, consists of re-

placing f (n) in (0.3) by f (n) + rn, wherer is an integer to be chosen
suitably, namely so as to make the functionf ′(x) + r small in [a, b].
This formal modification does not, of course, affect the sum itself in any
way, but the outcome of applying Vornoi’s summation formulaand the
saddle-point method takes quite a new shape.

The last-mentioned argument appeared for the first time [16], where
a transformation formula for the Dirichlet polynomial

(0.5) S(M1,M2) =
∑

M1≤m≤M2

d(m)m−1/2−it

was derived. An interesting resemblance between the resulting expres-3



Introduction 3

sion forS(M1,M2) and the well-known formula of F.V. Atkinson [2] for
the error termE(T) in the asymptotic formula

(0.6)

T
∫

0

|ζ
(

1
2
+ it

)

|2 dt = (log(T/2π) + 2γ − 1)T + E(T)

was clearly visible, especially in the caser = 1. This phenomenon has,
in fact, a natural explanation. For differentiation of (0.6) with respect
to T, ignoring the error termo(log2 T) in Atkinson’s formula forE(T),
yields heuristically an expression for|ζ(1

2 + it)|2, which can be indeed
verified, up to a certain error, if

|ζ
(

1
2
+ it

)

|2 = ζ2
(

1
2
+ it

)

χ−1(
1
2
+ it)

is suitably rewritten invoking the approximate functionalequation for
ζ2(s) and the transformation formula forS(M1,M2) (for details, see
Theorem 2 in [16]).

The method of [16] also works, with minor modifications, if the co-
efficientsd(m) in (0.5) are replaced by the Fourier coefficientsa(m) of
a cusp form of weightκ for the full modular group; the Dirichlet poly-
nomial is now considered on the critical lineσ = κ/2 of the Dirichlet
series

ϕ(s) =
∞
∑

n=1

a(n)n−s.

This analogy betweend(m) anda(m) will prevail throughout these
notes, and in order to avoid repetitions, we are not going to give details
of the proofs in both cases. As we shall see, the method could be gen-
eralized to other cases, related to Dirichlet series satisfying a functional 4

equation of a suitable type. But we are leaving these topics aside here,
for those two cases mentioned above seem to be already representative
enough.

The transformation formula of [16] has found an applicationin the
proof of the mean twelfth power estimate

(0.7)

T
∫

0

|ζ
(

1
2
+ it

)

|12 dt≪ T2 log17 T
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of D.R. Heath-Brown [11]. The original proof by Heath-Brownwas
based on Atkinson’s formula. The details of the alternativeapproach
can be found in [13],§ 8.3.

The formula of [16] is useful only if the Dirichlet polynomial to be
transformed is fairly short and the numberst(2πMi)−1 lie near to an in-
tegerr. But in applications to Dirichlet series it is desirable to be able
to deal with “long” sums as well. It is not advisable to transform such
a sum by a single formula; but a more practical representation will be
obtained if the sum is first split up into segments which are individually
transformed using an optimally chosen value ofr for each of them. The
set of possible values ofr can be extended from the integers to the ra-
tional numbers if a summation formula of the Voronoi type, tobe given
in § 1.9, for for sums

∑′

a≤n≤b

b(n)ek(hn) f (n), b(n) = d(n) or a(n),

is applied. The transformation formula for Dirichlet polynomiala are de-
duced in§ 4.1 as consequences of the theorems of Chapter 3 concerning
the transformation of more general exponential sums5

(0.8)
∑

M1≤m≤M2

b(m)g(m)e( f (m))

or their smoothed versions.
An interesting problem is estimating long exponential sumsof the

type (0.8). A result of this kind will be given in§ 4.3, but only under
rather restrictive assumptions on the functionf , for we have to suppose
that f ′(x) ≈ Bxα. It is of course possible that comparable, or at least
nontrivial, estimates can be obtained in concrete cases without this as-
sumption, making use of the special properties of the function f .

In view of the analogy betweenζ2(s) andϕ(s), a mean value result
corresponding to Heath-Brown’s estimate (0.7) should be anestimate
for the sixth moment ofϕ(κ/2+ it). However, the proofs of (0.7) given in
[11] and [13] utilize special properties of the functionζ2(s) and cannot
be immediately carried over toϕ(s). An alternative approach will be
presented in§ 4.4, giving not only (0.7) (up to the logarithmic factor),
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but also its analogue

(0.9)

T
∫

0

|ϕ(κ/2+ it)|6 dt≪ T2+ǫ .

This implies the estimate

(0.10) |ϕ(κ/2+ it)| ≪ t1/3+ǫ for t ≥ 1,

which is not new but neverthless essentially the best known presently.
In fact, (0.10) is a corollary of the mean value theorem

(0.11)

T
∫

0

|ϕ(κ/2+ it)|2 dt = (C◦ logT +C1)T + o((T logT)2/3)

of A. Good [9]. The estimate (0.10) can also proved directly in a rela- 6

tively simple way, as will be shown in§ 4.2.
The plan of these notes is as follows. Chapters 1 and 2 containthe

necessary tools - summation formulae of the Voronoi type andtheorems
on exponential integrals - which are combined in Chapter 3 toyield
general transformation formulae for exponential sums involving d(n) or
a(n). Chapter 4, the contents of which were briefly outlined above, is
devoted to specializations and applications of the resultsof the preced-
ing chapter. Most of the material in Chapters 3 and 4 is new andappears
here the first time in print.

An attempt is made to keep the presentation selfcontained, with an
adequate amount of detail. The necessary prerequisites include, beside
standard complex function theory, hardly anything but familiarity with
some well-known properties of the following functions: theRiemann
and Hurwitz zeta functions, the gamma function, Bessel functions, and
cusp forms together with their associated Dirichlet series. The method
of van der Corput is occasionally used, but only in its simplest form.

As we pointed out, the theory of transformations of exponential
sums to be presented in these notes can be viewed as a continuation
or extension of some fundamental ideas underlying van der Coroput’s
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method. A similarity though admittedly of a more formal nature can also
be found with the circle method and the large sieve method, namely a
judicious choice of a system of rational numbers at the outset. In short,7

our principal goal is to analyse what can be said about Dirichlet se-
ries and related Dirichlet polynomials or exponential sumsby appealing
only to the functional equation of the allied Dirichlet series involving
the exponential factorse(nr) and making only minimal use of the ac-
tual structure or properties of the individual coefficients of the Dirichlet
series in question.



Chapter 1

Summation Formulae

THERE IS AN extensive literature on various summation formulae of 8

the Voronoi type and on different ways to prove such results (see e.g. the
series of papers by B.C. Berndt [3] and his survey article [4]). We are
going to need such identities for the sums

∑′

a≤n≤b

b(n)e(nr) f (n),

where 0< a < b, f ∈ C1[a, b], r = h/k, andb(n) = d(n) or a(n).
The casef (x) = 1 is actually the important one, for the generalization
is easily made by partial summation. So the basic problem is to prove
identities for the sumsD(x, r) andA(x, r) (see Notation for definitions).
In view of their importance and interest, we found it expedient to derive
these identities from scratch, with a minimum of backgroundand effort.

Our argument proceeds via Riesz meansDa(x, r) andAa(x, r) where
a ≥ 0 is an integer. We follow A.L. Dixon and W.L. Ferrar [6] with some
simplifications. First, in [6] the more general case whena is not neces-
sarily an integer was discussed, and this leads to complications since
the final result can be formulated in terms of ordinary Besselfunctions
only if a is an integer. Secondly, it turned out that fora = 0 the case
x ∈ Z, which requires a lengthy separate treatment in [6], can actually
be reduced to the casex < Z in a fairly simple way.

To get started with the proofs of the main results of this chapter, we 9

7



8 1. Summation Formulae

need information on the Dirichlet seriesE(s, r) andϕ(s, r), in particu-
lar their analytic continuations and functional equations. The necessary
facts are provided in§§ 1.1 and 1.2.

Bessel functions emerge in the proofs of the summation formulae
when certain complex integrals involving the gamma function are cal-
culated. We could refer here to Watson [29] or Titchmarsh [26], but
for convenience, in§ 1.4 , we calculate these integrals directly by the
theorem of residues.

In practice, it is useful to have besides the identities alsoapproxi-
mate and mean value results onD(x, r) andA(x, r), to be given in§ 1.5.

Identities forDa(x, r) andAa(x, r) are proved in§§ 1.6–1.8, first for
a ≥ 1 and then fora = 0. The general summation formulae are finally
deduced in§ 1.9.

1.1 The FunctionE(s, r)

The function

(1.1.1) E(s, r) =
∞
∑

n=1

d(n)e(nr)n−s(σ > 1)

wherer = h/k, was investigated by T. Estermann [8], who proved the
results of the following lemma. Our proofs are somewhat different in
details, for we are making systematic use of the Hurwitz zeta-function
ζ(s, a).

Lemma 1.1. The function E(s, h/k) can be continued analytically to
a meromorphic function, which is holomorphic in the whole complex
plane up to a double pole at s= 1, satisfies the functional equation

(1.1.2)
E(s, h/k) = 2(2π)2s−2Γ2(1− s)k1−2s×

× {E(1− s, h̄/k) − cos(πs)E(1− s, h̄/k)},

and has at s= 1 the Laurent expansion10

(1.1.3) E(s, h/k) = k−1(s− 1)−2 + k−1(2γ − 2 logk)(s− 1)−1 + · · ·
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Also,

(1.1.4) E(0, h/k) ≪ k log 2k.

Proof. The Dirichlet series (1.1.1) converges absolutely and thusde-
fines a holomorphic function in the half-planeσ > 1. The function
E(s, h/k) can be expressed in terms of the Hurwitz zeta-function

ζ(s, a) =
∞
∑

n=0

(n+ a)−s (σ > 1, 0 < a ≤ 1).

Indeed, forσ > 1 we have

E(s, h/k) =
∞
∑

m,n=1

ek(mnh)(mn)−s

=

k
∑

α,β=1

ek(αβh)
∑

m≡α (mod k)
n≡β (mod k)

(mn)−s

=

k
∑

α,β=1

ek(αβh)
∞
∑

µ,ν=0

((α + µk)(β + νk))−s,

so that

(1.1.5) E(s, h/k) = k−2s
k

∑

α,β=1

ek(αβh)ζ(s, α/k)ζ(s, β/k).

This holds, in the first place, forσ > 1, but sinceζ(s, a) can be ana-
lytically continued to a meromorphic function which has a simple pole 11

with residue 1 ats= 1 as its only singularity (see [27], p. 37), the equa-
tion (1.1.5) gives an analytic continuation ofE(s, h/k) to a meromorphic
function. Moreover, its only possible pole, of order at most2, is s= 1.

To study the behaviour ofE(s, h/k) nears = 1, let us compare it
with the function

k−2sζ(s)
k

∑

α,β=1

ek(αβh)ζ(s, β/k) = k1−2sζ2(s).
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The difference of these functions is by (1.1.5) equal to

(1.1.6) k−2s
k

∑

α=1



















k
∑

β=1

ek(αβh)ζ(s, β/k)



















(ζ(s, α/k) − ζ(s)).

Here the factorζ(s, α/k)− ζ(s) is holomorphic ats= 1 for all α, and
vanishes forα = k. Since the sum with respect toβ is also holomorphic
at s= 1 for α , k, the function (1.1.6) is holomorphic ats= 1. Accord-
ingly, the functionsE(s, h/k) andk1−2sζ2(s) have the same principal part
at s= 1. Because

ζ(s) =
1

s− 1
+ · · · ,

this principal part is that given in (1.1.3).
To prove the functional equation (1.1.2), we utilize the formula

([27], equation (2.17.3))

(1.1.7) ζ(s, a) = 2(2π)s−1Γ(1− s)
∞
∑

m=1

sin(
1
2
πs+ 2πma)ms−1(σ < 0).

Then the equation (1.1.5) becomes

E(s, h/k) = −(2π)2s−2Γ2(1− s)k−2s×

×
k

∑

α,β=1

ek(αβh)
∞
∑

m,n=1

{eπisek(mα + nβ) + e−πisek(−mα − nβ)

− ek(mα − nβ) − ek(−mα + nβ)}(mn)s−1 (σ < 0).

12

Note that

k
∑

α=1

ek(αβh∓mα) =















k if β ≡ ±mh̄ (mod k),

0 otherwise

The functional equation (1.1.2) now follows, first forσ < 0, but by
analytic continuation elsewhere also.
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For a proof of (1.1.4), we derive forE(0, h/k) an expression in a
closed form. By (1.1.5),

(1.1.8) E(0, h/k) =
k

∑

α,β=1

ek(αβh)ζ(0, α/k)ζ(0, β/k).

If 0 < a < 1, then the series in (1.1.7) converges uniformly and thus
defines a continuous function for all reals ≤ 0. Hence, by continuity,
(1.1.7) remains valid also fors= 0 in this case. It follows that

ζ(0, a) = π−1
∞
∑

m=1

sin(2πma)m−1.

But the series on the right equalsπ(1/2− a) for 0 < a < 1, whence

(1.1.9) ζ(0, a) = 1/2− a.

Sinceζ(0, 1) = ζ(0) = −1/2, this holds fora = 1 as well. Now, by
(1.1.8) and (1.1.9)

E(0, h/k) =
k

∑

α,β=1

ek(αβh)(1/2 − α/k)(1/2− β/k).

From this it follows easily that 13

(1.1.10) E(0, h/k) = −
3
4

k+ k−2
k

∑

α,β=1

ek(αβh)αβ.

To estimate the double sum on the right, observe that if 1≤ α ≤ k−1
andβ runs over an arbitrary interval, then

∣

∣

∣

∣

∣

∣

∣

∣

∑

β

ek(αβh)

∣

∣

∣

∣

∣

∣

∣

∣

≪‖ αh/k ‖−1 .

Thus, by partial summation,
∣

∣

∣

∣

∣

∣

∣

∣

k−1
∑

α=1

k
∑

β=1

ek(αβh)αβ

∣

∣

∣

∣

∣

∣

∣

∣

≪ k2
k−1
∑

α=1

‖ αh/k ‖−1



12 1. Summation Formulae

≪ k2
∑

1≤α≤k/2

k/α ≪ k3 logk,

and (1.1.4) follows from (1.1.10). �

1.2 The Functionϕ(s, r)

Let H be the upper half-plane Imτ > 0. The mappings

τ→
aτ + b
cτ + d

where
(

a b
c d

)

is an integral matrix of determinant 1, takeH onto itself and
constitute the (full)modular group. A function f which is holomorphic
in H and not identically zero, is acusp form of weight k for the modular
group if

(1.2.1) f

(

aτ + b
cτ + d

)

= (cτ + d)k f (τ), τ ∈ H

for all mappings of the modular group, and moreover

(1.2.2) lim
Im τ→∞

f (τ) = 0.

It is well-known thatk is an even integer at least 12, and that the14

dimension of the vector space of cusp forms of weightk is [k/12] if
k . 2 (mod 12) and [k/12] − 1 if k ≡ 2 (mod 12) (see [1],§§ 6.3 and
6.5).

A special case of (1.2.1) isf (τ + 1) = f (τ). Hence, by periodicity,
f has a Fourier series, which by (1.2.2) is necessarily of the form

(1.2.3) f (τ) =
∞
∑

n=1

a(n)e(nτ).

The numbersa(n) are called theFourier coefficients of the cusp
form f . The casek = 12 is of particular interest, for thena(n) = τ(n),
the Ramanujan function defined by

∝
∑

n=1

τ(n)xn = x
∞
∏

m=1

(1− xm)24 (|x| < 1).



1.2. The Functionϕ(s, r) 13

We are going to need some information on the order of magnitude
of the Fourier coefficientsa(n). For most purposes, the classical mean
value theorem

(1.2.4)
∑

n≤x

|a(n)|2 = Axk + o(xk−2/5)

of R.A. Rankin [24] suffices, though sometimes it will be convenient of
necessary to refer to the estimate

(1.2.5) |a(n)| ≤ n(k−1)/2d(n).

This was known as the Ramanujan-Petersson conjecture, untill it
became a theorem after having been proved by P. Deligne [5]. In (1.2.5),
it should be understood thatf is a normalized eigenform (i.e.a(1) =
1) of all Hecke operatorsT(n), but this is not an essential restriction,
for a basis of the vector space of cusp forms of a given weight can be 15

constructed of such forms.
Now (1.2.4) implies that the estimate (1.2.5), and even more, is true

in a mean sense, and since we shall be dealing with expressions involv-
ing a(n) for many values ofn, it will be usually enough to know the
order ofa(n) on the average.

It follows easily from (1.2.4) that the Dirichlet series

ϕ(s) =
∞
∑

n=1

a(n)n−s,

and, more generally, the series

ϕ(s, r) =
∞
∑

n=1

a(n)e(nr)n−s,

wherer = h/k, converges absolutely and defines a holomorphic function
in the half-planeσ > (k+ 1)/2. It was shown by J.R. Wilton [30], in the
casea(n) = τ(n), thatϕ(s, r) can be continued analytically to an entire
function satisfying a functional equation of the Riemann type. But his
argument applies as such also in the general case, and the result is as
follows.
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Lemma 1.2. The functionϕ(s, h/k) can be continued analytically to an
entire function satisfying the functional equation

(k/2π)sΓ(s)ϕ(s, h/k)(1.2.6)

= (−1)k/2(k/2π)k−sΓ(k− s)ϕ(k− s,−h̄/k).

Proof. Let

τ =
h
k
+

iz
k
, τ′ = − h̄

k
+

i
zk
,

whereRe z> 0. Thenτ, τ′ ∈ H, and we show first that16

(1.2.7) f (τ′) = (−1)k/2zk f (τ).

The pointsτ and τ′ are equivalent under the modular group, for
puttinga = h̄, b = (1 − hh̄)/k, c = −k, andd = h, we havead− bc = 1
and

aτ + b
cτ + d

= τ′.

Also,
cτ + d = −iz,

so that (1.2.7) is a consequence of the relation (1.2.1).
Now letσ > (k + 1)/2. Then we have

(k/2π)sΓ(s)ϕ(s, h/k) =
∞
∑

n=1

a(n)ek(nh)

∞
∫

0

xs−1e−2πnx/k dx

=

∞
∫

0

xs−1 f

(

h
k
+

ix
k

)

dx.

Here the integral over (0,1) can be written by (1.2.7) as

(−1)k/2
1

∫

0

xs−1−k f

(

− h̄
k
+

i
xk

)

dx= (−1)k/2
∞

∫

1

xk−1−s f

(

− h̄
k
+

ix
k

)

dx.
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Hence

(k/2π)sΓ(s)ϕ(s, h/k)(1.2.8)

=

∞
∫

1

{

xs−1 f

(

h
k
+

ix
k

)

+ (−1)k/2xk−1−s f

(

−
h̄
k
+

ix
k

)}

dx.

But the integral on the right defines an entire function ofs, for, by
(1.2.3), the functionf (τ) decays exponentially as Imτ tends to infinity.
Thus (1.2.8) gives an analytic continuation ofϕ(s, h/k) to an entire func-
tion. Moreover, it is immediately seen that the right hand side remains 17

invariant under the transformationh/k→ −h̄/k, s→ k− s if k/2 is even,
and changes its sign ifk/2 is odd. Thus the functional equation (1.2.6)
holds in any case. �

REMARK. The special case k= 1 of (1.2.6)amounts to Hecke’s func-
tional equation

(2π)−sΓ(s)ϕ(s) = (−1)k/2(2π)s−kΓ(k− s)ϕ(k− s).

1.3 Asymptotic Formulae for the Gamma Function
and Bessel Functions

The special functions that will occur in this text are the gamma function
Γ(s) and the Bessel functionsJn(z),Yn(z),Kn(z) of nonnegative integral
ordern. By definition,

Jn(z) =
∞
∑

k=0

(−1)k(z/2)2k+n

k!(n+ k)!
,(1.3.1)

Yn(z) = −π−1
n−1
∑

k=0

(n− k− 1)!
k!

(z/2)2k−n(1.3.2)

+π−1
∞
∑

k=0

(−1)k(z/2)2k+n

k!(n+ k)!
(2 log(z/2)− ψ(k + 1)− ψ(k+ n+ 1)),
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and

Kn(z) =
1
2

n−1
∑

k=0

(−1)k(n− k− 1)!
k!

(z/2)2k−n(1.3.3)

+
1
2

(−1)n−1
∞
∑

k=0

(z− 2)2k+n

k!(n+ k)!
92 log(z/2)− ψ(k + 1)− ψ(k+ n+ 1)),

where

ψ(z) =
Γ′

Γ
(z).

In particular,

ψ(1) = −γ, ψ(n+ 1) = −γ +
n

∑

k=1

k−1, n = 1, 2, . . .

Repeated use will be made of Stirling’s formula forΓ(s) and of the18

asymptotic formulae for Bessel functions. Therefore we recall these
well-konwn results here for the convenience of further reference.

The following version of Stirling’s formula is precise enough for our
purposes.

Lemma 1.3. Letδ < π be a fixed positive number. Then

(1.3.4) Γ(s) =
√

2π exp{s− 1/2) logs− s}(1+ o(|s|−1))

in the sector|args| ≤ π − δ, |s| ≥ 1. Also, in any fixed strip A1 ≤ σ ≤ A2

we have for t≥ 1

(1.3.5) Γ(s) =
√

2πts−1/2 exp(−1
2
πt − it +

1
2
π(σ − 1/2)i)(1+ o(t−1)),

and

(1.3.6) |Γ(s)| =
√

2πtσ−1/2e−(π/2)t(1+ 0(t−1)).

The asymptotic formulae for the functionsJn(z),Yn(z), and Kn(z)
can be derived from the analogous results for Hankel functions

(1.3.7) H( j)
n (z) = Jn(z) + (−1) j−1iYn(z), j = 1, 2.
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The variablez is here restricted to the slit complex planez, 0, |arg
z| < π. Obviously,

Jn(z) =
1
2

(

H(1)
n (z) + H(2)

n (z)
)

,(1.3.8)

Yn(z) =
1
2i

(

H(1)
n (z) − H(2)

n (z)
)

.(1.3.9)

The functionKn(z) can also be written in terms of Hankel functions, for
(see [29], p. 78)

Kn(z) =
π

2
in+1H(1)

n (iz) for − π < argz< π/2,(1.3.10)

Kn(z) =
π

2
i−n+1H(2)

n (−iz) for
π

2
< argz< π.(1.3.11)

19

The asymptotic formulae for Hankel functions are usually derived
from appropriate integral representations, and then the asymptotic be-
haviour of Jn,Yn, andKn can be determined by the relations (1.3.8) -
(1.3.11) (see [29],§§ 7.2, 7.21 and 7.23). The results are as follows.

Lemma 1.4. Let δ1 < π andδ2 be fixed positive numbers. Then in the
sector

|argz| ≤ π − δ1, |z| ≥ δ2(1.3.12)

we have

H( j)
n (z) = (2/πz)1/2 exp

(

(−1) j−1i

(

z−
1
2

nπ −
1
4
π

))

(1+ g j(z)),(1.3.13)

where the functions gj(z) are holomorphic in the slit complex plane z,
0, |argz| < π, and satisfy

(1.3.14) |g j(z)| ≪ |z|−1

in the sector(1.3.12). Also, for real x≥ δ2,

Jn(x) = (2/πx)1/2 cos

(

x−
1
2

nπ −
1
4
π

)

+ o(x−3/2),(1.3.15)
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Yn(x) = (2/πx)1/2 sin

(

x−
1
2

nπ −
1
4
π

)

+ o(x−3/2),(1.3.16)

and

(1.3.17) Kn(x) = (π/2x)1/2e−x
(

1+ o(x−1)
)

.

Strictly speaking, the functionsg j should actually be denoted byg j,n,
say, because they depend onn as well, but for simplicity we dropped the20

indexn, which will always be known from the context.

1.4 Evaluation of Some Complex Integrals

Let a be a nonnegative integer,σ1 ≥ −a/2, σ2 < −a,T > 0, and letCa

be the contour joining the pointsσ1−i∞, σ1−Ti, σ2−Ti, σ2+Ti, σ1+Ti,
andσ1 + i∞ by straight lines. LetX > 0, k a positive integer, andc a
number such that

(k− a− 1)/2 ≤ c < k.

In the next two sections we are going to need the values of the com-
plex integrals

I1 =
1

2πi

∫

Ca

Γ2(1− s)Xs(s(s+ 1) . . . (s+ a))−1 ds,(1.4.1)

I2 =
1

2πi

∫

Ca

Γ2(1− s) cos(πs)Xs(s(s+ 1) . . . (s+ a))−1 ds,(1.4.2)

and

I3 =
1

2πi

∫

(c)

Γ(k− s)Γ−1(s)Xs(s(s+ 1) . . . (s+ a))−1 ds.(1.4.3)

Lemma 1.5. We have

I1 = 2(−1)a+1X(1−a)/2Ka+1(2X1/2),(1.4.4)

I2 = πX(1−a)/2Ya+1(2X1/2),(1.4.5)
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and

I3 = X(k−a)/2Jk+a(2X1/2).(1.4.6)

Proof. For positive numbersT1 andT2 exceedingT, denote byCa(T1,

T2) that part ofCa which lies in the strip−T1 ≤ t ≤ T2. The integrals
I1 and I2 are understood as limits of the corresponding integrals over 21

Ca(T1,T2) asT1 andT2 tend to infinity independently. Similarly,I3 is
the limit of the integral over the line segment [c− iT1, c+ iT2].

Let N be a large positive integer, which is kept fixed for a moment.
Denote byΓ(T1,T2; N) the closed contour joining the pointsN+1/2−iT1

andN + 1/2 + iT2 with each other and with the initial and end point of
Ca(T1,T2), respectively, or with the pointsc− iT1 andc+ iT2 in the case
of I3. Then, by the theorem of residues,

(1.4.7)
1

2πi

∫

Γ

(. . .) ds=
∑

Res,

where (. . .) means the integrand of the respectiveI j , whose residues
insideΓ = Γ(T1,T2; N) are summed on the right.

By (1.3.6) and our assumptions onσ1 andc, the integrals over those
horizontal parts ofΓ(T1,T2; N) lying on the linest = −T1 and t = T2

are seen to be≪ (logTi)−1, i = 1, 2. Hence these integrals vanish in the
limit as theTi tend to infinity. Then the equation (1.4.7) becomes

(1.4.8) − I j +
1

2πi

∫

(N+1/2)

(. . .) ds=
∑

Res.

Consider now the integrals over the lineσ = N + 1/2.
By a repeated application of the formulaΓ(s) = s−1Γ(s+ 1), theΓ-

factors in the integrands can be expressed in terms ofΓ(1/2+ it). Then,
by some simple estimations, we find that the integrals in question vanish
in the limit asN tends to infinity. Therefore (1.4.8) gives

IJ = −
a

∑

k=0

Res(· ,−k) −
∞
∑

k=1

Res(· , k), j = 1, 2,(1.4.9)
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I3 = −
∞
∑

k=k

Res(· , k),(1.4.10)

where the dot denotes the respective integrand.22

Consider the integralI1 first. Obviously

Res(· ,−h) = (−1)hh!((a− h)!)−1X−h for h = 0, 1, . . . , a.

The sum of these can be written, on puttingk = a− h, as

(1.4.11) (−1)a(X1/2)1−a
a

∑

k=0

(−1)k(a− k)!(k!)−1(2X1/2/2)2k−a−1.

The integrand has double poles ats = 1, 2, . . . , and the residue atk
can be calculated, multiplying (fors= k+ δ) the expansions

Γ2(1− s) = δ−2Γ2(1− δ)(k − 1+ δ)−2(k− 2+ δ)−2 . . . (1+ δ)−2

= δ−2((k − 1)!)−2(1− 2ψ(k)δ + . . .),

(s(s+ 1) . . . (s+ a))−1 = (k− 1)!((k + a)!)−1

(1− (ψ(k+ a+ 1)− ψ(k))δ + · · · ),

and
Xs = Xk(1+ δ logX + · · · ).

We obtain

Res(· , k) = Xk((k+a)!(k−1)!)−1(log X−ψ(k+a+1)−ψ(k)), k = 1, 2, . . .

Hence, also taking into account (1.4.11) and (1.3.3), we maywrite the
sum of residues as

2(−1)a(X1/2)1−a















1
2

(a+1)−1
∑

k=0

(−1)k((a+ 1)− k− 1)!(k!)−1(2X1/2/2)2k−(a+1)

+
1
2

(−1)(a+1)−1
∞
∑

k=0

(k!(k+ (a+ 1))!)−1(2X1/2/2)2k+(a+1).

· (2 log(2X1/2/2)−ψ(k+1)−ψ(k+(a+1)+1)) } = 2(−1)aX(1−a)/2Ka+1(2X1/2)·
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Now (1.4.4) follows from (1.4.9).
The residues of the integrands ofI1 andI2 at s= k differ only by the23

sign (−1)k. The series of residues of the integrand ofI2 can be written
in terms of the functionYa+1, and the assertion (1.4.5) follows by a
calculation similar to that above.

Finally, the residue of the integrand ofI3 at h ≥ k is

(−1)h−kXh((h+ a)!(h− k)!)−1,

and puttingk = h − k the sum of these terms can be arranged so as to
give

−X(k−a)/2Jk+a(2X1/2).

�

This proves (1.4.6).

1.5 Approximate Formula and Mean Value
Estimates for D(x, r) and A(x, r)

Our object in this section is to derive approximate formulaeof the Voro-
noi type for the exponential sums

D(x, r) =
∑′

n≤x

d(n)e(nr)

and
A(x, r) =

∑′

n≤x

a(n)e(nr),

and to apply these to the pointwise and mean square estimation of D(x, r)
andA(x, r). As before,r = h/k is a rational number.

A model of a result like this is the following classical formul for
D(x) = D(x, 1):

D(x) = (log x+ 2γ − 1)x(1.5.1)

+(π
√

2)−1x
1
4

∑

n≤N

d(n)n−3/4 cos(4π
√

nx− π/4)+ o(x1/2+ǫN−1/2),
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wherex ≥ 1 and 1≤ N ≪ x (see [27], p. 269). The corresponding24

formula forD(x, r) will be of the form

(1.5.2) D(x, h/k) = k−1(log x+2γ−1−2 logk)x+E(0, h/k)+∆(x, h/k),

where∆(x, h/k) is an error term.
The next theorem reveals an analogy between∆(x, r) andA(x, r).

THEOREM 1.1. For x ≥ 1, k ≤ x, and1 ≤ N ≪ x the equation(1.5.2)
holds with

∆(x, h/k) = (π
√

2)−1k1/2x1/4
∑

n≤N

d(n)ek(−nh̄)n−3/4 cos(4π
√

nx/k − π/4)

(1.5.3)

+0(kx
1
2+ǫN−

1
2 ).

Also,

A(x, h/k) = (π
√

2)−1k
1
2 x−

1
4+

k
2

∑

n≤N

a(n)ek(−nh̄)n−1/4−k/2 cos

(

4π
√

nx
k

−
π

4

)

(1.5.4)

+0(kxk/2+ǫN−1/2).

Proof. Consider first the formula (1.5.3). We follow the argument of
proof of (1.5.1) in [27], pp. 266–269, with minor modifications.

Let δ be a small positive number which will be kept fixed throughout
the proof. By Perron’s formula,

(1.5.5) D(x, r) =
1

2πi

1+δ+iT
∫

1+δ−iT

E(s, r)xss−1 ds+ 0(x1+δT−1),

wherer = h/k andT is a parameter such that

(1.5.6) 1≤ T ≪ k−1x.

As a preliminary for the next step, which consists of moving the25

integration in (1.5.5) to the lineσ = −δ, we need an estimate forE(s, r)
in the strip−δ ≤ σ ≤ 1+ δ for |t| ≥ 1.
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The auxiliary function

(1.5.7)

(

s− 1
s− 2

)2

E(s, r)

is holomorphic in the strip−δ ≤ σ ≤ 1+ δ, and in the part where|t| ≥ 1
it is of the same order of magnitude asE(s, r). This function is bounded
on the lineσ = 1+ δ, and on the lineσ = −δ it is

≪ (k(|t| + 1))1+2δ

by the functional equation (1.1.2) and the estimate (1.3.6)of the gamma
function. The convexity principle now gives an estimate forthe function
(1.5.7), and as a consequence we obtain

(1.5.8) |E(s, r)| ≪ (k|t|)1−σ+δ for − δ ≤ σ ≤ 1+ δ, |t| ≥ 1.

LetC be the rectangular contour with vertices 1+δ± iT and−δ± iT .
By the theorem of residues, we have

(1.5.9)
1

2πi

∫

C

E(s, r)xss−1 ds= k−1(log x+2γ−1−2 logk)x+E(0, r),

where the expansion (1.1.3) has been used in the calculationof the
residue ats= 1.

The integrals over the horizontal parts foC are≪ x1+δT−1 by (1.5.8)
and (1.5.6). Hence (1.5.2), (1.5.5), and (1.5.9) give together

(1.5.10) ∆(x, r) =
1

2πi

−δ+iT
∫

δ−iT

E(s, r)xss−1 ds+ o(x1+δT−1).

The functional equation (1.1.2) forE(s, r) is now applied. The term
involving E(1 − s, h̄/k) decreases rapidly as|t| increases and it will be 26

estimated as an error term. Then forσ = −δ, we obtain

E(s, r) = −2(2π)2s−2Γ2(1− s)k1−2s cos(πs)
∞
∑

n=1

d(n)ek(−nh̄)ns−1
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+o((k(|t| + 1))1+2δe−π|t|).

The contribution of the error term to the integral in (1.5.10) is

≪ k1+2δx−δ ≪ kxδ ≪ x1+δT−1.

Thus we have

∆(x, r) = −
1
2
π−2k

∞
∑

n=1

d(n)n−1ek(−nh̄) jn + o(x1+δT−1),(1.5.11)

where

jn =
1

2πi

−δ+iT
∫

−δ−iT

Γ2(1− s) cos(πs)(4π2nxk−2)ss−1 ds.(1.5.12)

At this stage we fix the parameterT, putting

(1.5.13) T2k2(4π2x)−1 = N + 1/2,

whereN is an integer such that 1≤ N ≪ x. It is immediately seen that
T ≪ k−1x. In order that the condition (1.5.6) be satisfied, we should
also haveT ≥ 1, which presupposes thatN ≫ k2x−1. We may assume
this, for otherwise the assertion (1.5.3) holds for trivialreasons. Indeed,
if 1 ≤ N ≪ k2x−1, then (1.5.3) is implied by the estimate∆(x, h/k) ≪
x1+ǫ , which is definitely true by (1.5.2) and (1.1.4).

Next we dispose of the tailn > N of the series in (1.5.11). The
integral jn splits into three parts, in whicht runs respectively over the
intervals [−T,−1], [−1, 1], and [1,T]. The second integral is clearly
≪ k2δn−δx−δ, and these terms contribute≪ kxδ. The first and third27

integrals are similar; consider the third one, sayj′n.
By (1.3.5) we have for−δ ≤ σ ≤ δ andt ≥ 1

Γ2(1− s) cos(πs)(4π2nxk−2)ss−1(1.5.14)

= A(σ)t−2σ(4π2nxk−2)σeiF(t)(1+O(t−1)),
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whereA(σ) is bounded and

(1.5.15) F(t) = −2t log t + 2t + t log(4π2nxk−2).

Thus

(1.5.16) j′n = Ak2δn−δx−δ





















T
∫

1

t2δeiF(t) dt + o(T2δ)





















.

The last integral is estimated by the following elementary lemma
([27], Lemma 4.3) on exponential integrals. �

Lemma 1.6. Let F(x) and G(x) be real functions in the interval[a, b]
where G(x) is continuous and F(x) continuously differentiable. Suppose
that G(x)/F′(x) is monotonic and|F′(x)/G(x)| ≥ m> 0. Then

(1.5.17) |
b

∫

a

G(x)eiF(x) dx| ≤ 4/m.

Now by (1.5.15) and (1.5.13) we have

(1.5.18) F′(t) = log(4π2nxk−2t−2) ≥ log

(

n
N + 1/2

)

for 1 ≤ t ≤ T, whence by (1.5.16) and (1.5.17)

j′n ≪ k2δn−δT2δx−δ














(

log

(

n
N + 1/2

))−1

+ 1















.

Thus
∑

n≥2N

d(n)n−1| j′n| ≪ Nδ ≪ xδ,

and
∑

N<n≤2N

d(n)n−1| j′n| ≪
∑

1≤m≤N

d(N +m)m−1 ≪ xδ.

Accordingly, in (1.5.11) the tailn > N of the series can be omitted with28
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an error≪ kxδ, and taking into account the choice (1.5.13) ofT, we
obtain

(1.5.19) ∆(x, r) = −
1
2
π−2k

∑

n≤N

d(n)n−1ek(−nh̄) jn + o(kx
1
2+δN

1
2 ).

The remaining integralsjn will be calculated approximately by Lem-
ma 1.5, and to this end we extend the path of integration in (1.5.12) to
the infinite broken line through the pointsδ − i∞, δ − iT,−δ − iT,−δ −
iT,−δ+ iT, δ+ iT andδ+ i∞, estimating the consequent error when the
jn in (1.5.19) are replaced by the new integrals.

First, by (1.5.14) and (1.5.13),

∑

n≤N

d(n)n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

δ+iT
∫

−δ+iT

(· · · )

∣

∣

∣

∣

∣

∣

∣

∣

∣

≪
∑

n≤N

d(n)n−1

δ
∫

−δ

(n/N)σ dσ

≪ Nδ
∑

n≤N

d(n)n−1−δ ≪ xδ,

where (· · · ) means the integrand ofjn. The same estimate holds for the
integrals over the line segment [−δ − iT, δ − iT ].

Next, by (1.5.14), (1.5.18), and Lemma 1.6, we have

∑

n≤N

d(n)n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

δ+i∞
∫

δ+iT

(· · · )

∣

∣

∣

∣

∣

∣

∣

∣

∣

≪ (k−2x)δ
∑

n≤N

d(n)n−1+δ

∣

∣

∣

∣

∣

∣

∣

∣

∞
∫

T

t−2δ
(

eiF(t) + o(t−1)
)

dt

∣

∣

∣

∣

∣

∣

∣

∣

≪ (k−2T−2x)δ
∑

n≤N

d(n)n−1+δ















(

log

(

N + 1/2
n

))−1

+ 1















≪
∑

n≤N/2

d(n)n−1 +
∑

N/2<n≤N

d(n)(N + 1/2− n)−1 ≪ xδ,

and similarly for the integrals over [δ − i∞, δ − iT ].29
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These estimations show that (1.5.19) remains valid if thejn are re-
placed by the modified integrals, which are of the typeI2 in (1.4.2) for
a = 0 andX = 4π2nxk−2, and thus equal to

2π2(nx)1/2k−1Y1(4π
√

nx/k)

by (1.4.5). The assertion (1.5.3) now follows whenY1 is replaced by its
expression (1.3.16) (which holds trivially forn = 1 with the error term
0(x−1) even in the interval (o, δ2)).

The proof of (1.5.4) is quite similar. The starting point is the equa-
tion

A(x, r) =
1

2πi

(k+1)/2+δ+iT
∫

(k+1)/2+δ−iT

ϕ(s, r)xss−1 ds+ o(x(k+1)/2+δT−1),

where 1≤ T ≪ k−1x. It should be noted that Deligne’s estimate (1.2.5)
is needed here; otherwise the error term would be bigger.

The integration is next shifted to the line segment [(k − 1)/2 − δ −
iT, (k− 1)/2− δ+ iT ] with arguments as in the proof of (1.5.10), except
that now there are no residue terms. Applying the functionalequation
(1.2.6) ofϕ(s, r), we obtain

A(x, r) = (−1)k/2(k/2π)k
∞
∑

n=1

a(n)n−kek(−h̄n)×

× 1
2πi

(k−1)/2−δ+iT
∫

(k−1)/2−δ−iT

Γ(k− s)Γ(s)−1(4π2nxk−2)ss−1 ds+ o(x(k+1)/2+δT−1).

The parameterT is chosen as in (1.5.13) again. Next it is shown,
as before, that the tailn > N of the above series can be omitted, and
that in the remaining terms the integration can be shifted tothe whole 30

line σ = (k − 1)/2 + δ. The new integrals are evaluated in terms of the
function Jk using (1.4.6). FinallyJk is approximated by (1.3.15) (which
holds trivially with the error termo(x−1/2) even in the interval (0, δ2)) to
give the formula (1.5.4). The proof of the theorem is now complete.
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ChoosingN = k2/3x1/3 and estimating the sums on the right of
(1.5.3) and (1.5.4) by absolute values, one obtains the following esti-
mates for∆(x, r) andA(x, r),

COROLLARY. For x ≥ 1 and k≤ x we have

∆(x, h/k) ≪ k2/3x1/3+ǫ ,(1.5.20)

A(x, h/k) ≪ k2/3xk/2−1/6+ǫ .(1.5.21)

As another application of Theorem 1.1 we deduce mean value re-
sults for∆(x, r) andA(x, r).

THEOREM 1.2. For X ≥ 1 we have

X
∫

1

|∆(x, h/k)|2 dx= c1kX3/2 + o(k2X1+ǫ) + o(k3/2X5/4+ǫ ),

(1.5.22)

and

X
∫

1

|A(x, h/k)|2 dx= c2(k)kXk+1/2 + o(k2Xk+ǫ ) + o(k3/2Xk+1/4+ǫ ),

(1.5.23)

where

c1 = (6π2)−1
∞
∑

n=1

d2(n)n−3/2

and

c2(k) =
(

(4k + 2)π2
)−1

∞
∑

n=1

|a(n)|2n−k−1/2.

Proof. The proofs of these assertions are very similar; so it suffices to31

consider the verification of (1.5.22) as an example. We are actually
going to prove the formula

2X
∫

X

|∆(x, h/k)|2 dx= c1k
(

(2X)3/2 − X3/2
)

(1.5.24)
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+o
(

k2X1+ǫ
)

+ 0
(

k3/2X5/4+ǫ
)

for k ≤ X, and forX≪ k we estimate trivially

(1.5.25)

X
∫

1

|∆(x, h/k)|2 dx≪ k2X1+ǫ

noting that∆(x, h/k) ≪ k log 2k for x≪ k by (1.5.2) and (1.1.4). Clearly
(1.5.22) follows from (1.5.24) and (1.5.25).

Turning to the proof of (1.5.24), letX ≤ x ≤ 2X, and chooseN = X
in the formula (1.5.3), which we write as

∆(x, h/k) = S(x, h/k) + 0(kxǫ ).

We are going to prove that

(1.5.26)

2X
∫

X

|S(x, h/k)|2 dx= c1k
(

(2X)3/2 − X3/2
)

+ o
(

k2X1+ǫ
)

,

which implies (1.5.24) by Cauchy’s inequality.
Squaring out|S(x, h/k)|2 and integrating term by term, we find that

(1.5.27)

2X
∫

X

|S(x, h/k)|2 dx= S◦ + o(k(|S1| + |S2|)),

where

S◦ = (4π2)−1k
∑

n≤X

d2(n)n−3/2

2X
∫

X

X1/2 dx,

S1 =
∑

m,n≤X
m,n

d(m)d(n)(mn)−3/4

2X
∫

X

x1/2e(2(
√

m−
√

n)
√

x/k) dx,

S2 =
∑

m,n≤X

d(m)d(n)(mn)−3/4

2X
∫

X

x1/2e
(

2
(√

m+
√

n
) √

x/k
)

dx.
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The sumS◦ gives the leading term in (1.5.26), for

S◦ = c1k
(

(2X)3/2 − X3/2
)

+ o
(

kX1+ǫ
)

.

Further, by Lemma 1.6,

S1 ≪ kX
∑

m,n≤X
m<n

d(m)d(n)(mn)−3/4
(√

n−
√

m
)−1

≪ kX
∑

m,n≤X
m<n

d(m)d(n)m−3/4n−1/4(n−m)−1

≪ kX1+ǫ/2
∑

m≤X

m−1 ≪ kX1+ǫ ,

and similarly forS2. Hence (1.5.26) follows from (1.5.27), and the proof
of (1.5.22) is complete. �

COROLLARY. For k≪ X1/2−ǫ and X→ ∞ we have
X

∫

1

|∆(x, h/k)|2 dx∼ c1kX3/2,(1.5.28)

X
∫

1

|A(x, h/k)|2 dx∼ c2(k)kXk+1/2.(1.5.29)

It is seen that for k≪ x1/2−ǫ the typical order of|∆(x, h/k)| is
k1/2x1/4, and that of|A(x, h/k)| is k1/2xk/2−1/4. This suggests the fol-
lowing

CONJECTURE. For x ≥ 1 and k≪ x1/2

|∆(x, h/k)| ≪ k1/2x1/4+ǫ(1.5.30)

|A(x, h/k)| ≪ k1/2xk/2−1/4+ǫ .(1.5.31)

Note that (1.5.30) is a generalization of the old conjecture33

|∆(x)| ≪ x1/4+ǫ

in Dirichlet’s divisor problem.
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1.6 Identities for Da(x, r) and Aa(x, r)

The Casea ≥ 1.
As generalizations of the sum functionsD(x, r) andA(x, r), define

the Riesz means

Da(x, r) =
1
a!

∑′

n≤x

d(n)e(nr)(x − n)a(1.6.1)

and

Aa(x, r) =
1
a!

∑′

n≤x

a(n)e(nr)(x − n)a,(1.6.2)

where a is a nonnegative integer. ThusD◦(x, r) = D(x, r) andA◦(x, r) =
A(x, r). Actually, for our later purposes, only the casea = 0 will be of
relevance, but just in order to be able to deal with this somewhat delicate
case by an induction from a toa−1, we shall need identities forDa(x, r)
andAa(x, r) as well. These are contained in the following theorem.

THEOREM 1.3. Let a≥ 0 be an integer. Then for x> 0 we have

Da(x, h/k) =
x1+a

(1+ a)!k

















log x+ 2γ − 2 logk−
a+1
∑

n=1

1
n

















(1.6.3)

+

a
∑

n=0

(−1)n

n!(a− n)!
E(−n, h/k)xa−n + ∆a(x, h/k),

where

∆a(x, h/k) = −(k/2π)ax(1+a)/2
∞
∑

n=1

d(n)n−(1+a)/2×

(1.6.4)

×
{

ek(−nh̄)Y1+a(4π
√

nx/k) + (−1)a(2/π)ek(nh̄)K1+a(4π
√

nx/k)
}

.

Also, 34

Aa(x, h/k) = (−1)k/2(k/2π)ax(k+a)/2×(1.6.5)
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×
∞
∑

n=1

a(n)n−(k+a)/2ek(−nh̄)Jk+a(4π
√

nx/k).

Proof. (the casea ≥ 1). By a well-known summation formula (see [13],
p. 487, equation (A.14)), we have for anyc > 1

Da(x, r) =
1

2πi

∫

(c)

E(s, r)xs+a(s(s+ 1) · · · (s+ a))−1 ds.

First leta ≥ 2, and move the integration to the broken lineCa joining
the points−1/3− i∞,−1/3− i,−(a+ 1/2)− i,−(a+ 1/2)+ i,−1/3+ i,
and−1/3 + i∞. The residues at 1, 0,−1, . . . ,−a give the initial terms
in (1.6.3); the expansion (1.1.3) is used in the calculationof the residue
at s = 1. Note also that the integrand is≪ |t|−2σ−a for |t| ≥ 1 andσ
bounded (the implied constant depends onk andx), so that the theorem
of residues gives

∆a(x, r) =
1

2πi

∫

Ca

E(s, r)xs+a(s(s+ 1) · · · (s+ a))−1 ds.

The functionE(s, h/k) is now expressed by the functional equation
(1.1.2), and the resulting series can be integrated term by term by the
last mentioned estimate. The new integrals are of the typeI1 and I2 in
the notation of§1.4, and (1.6.4) follows, fora ≥ 2, when these integrals
are evaluated by Lemma 1.5.

Next we differentiate both sides of (1.6.3) with respect tox. By the
definition (1.6.1) we have fora ≥ 2

D′a(x, r) = Da−1(x, r),(1.6.6)

and consequently by (1.6.3)

∆′a(x, r) = ∆a−1(x, r).(1.6.7)

35
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The right hand side of (1.6.4) shares the same property, for its deriva-
tive equals the same expression with a replaced bya− 1, Formally, this
can be verified by differentiation term by term using the relations

(xnKn(x))′ = −xnKn−1(x)(1.6.8)

and

(xnYn(x))′ = xnYn−1(x).(1.6.9)

But by (1.3.16) and (1.3.17) the series in (1.6.4) convergesabso-
lutely for a ≥ 1, and the convergence is uniform in any interval [x1, x2] ⊂
(0,∞), which justifies the differentiation term by term fora ≥ 2. This
argument proves (1.6.4) fora = 1 also.

The identity (1.6.5) is proved in the same way, starting fromthe
formula

Aa(x, r) =
1

2πi

∫

(c)

ϕ(s, r)xs+a(s(s+ 1) · · · (s+ a))−1 ds,

wherec > (k + 1)/2. Fora ≥ 2 the integration can be shifted to the line
σ = k/2 − 2/3, where we use the functional equation (1.2.6) to rewrite
ϕ(s, h/k). This leads to integrals of the typeI3, which can be expressed
in terms of the Bessel functionJk+a by (1.4.6). As a result, we obtain
the assertion (1.6.5) fora ≥ 2. The casea = 1 is deduced from this by
differentiation as above, using the relation

(1.6.10) (xnJn(x))′ = xnJn−1(x)

and the asymptotic formula (1.3.15). We have now proved the theorem
in the casea ≥ 1, and the casea = 0 is postponed to§ 1.8.

Estimating the series in (1.6.4) and (1.6.5) by absolute values, one 36

obtains estimates for∆a(x, r) andAa(x, r). In the casea = 1, the result
is as follows. �

COROLLARY. For x≫ k2 we have

|∆1(x, h/k)| ≪ k3/2x3/4(1.6.11)
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and

|A1(x, h/k)| ≪ k3/2xk/2+1/4.(1.6.12)

REMARK . The error term∆◦(x, r) coincides with∆(x, r), defined in
(1.5.2). The relations(1.6.6)and (1.6.7)remain valid also for a= 1 if x
is not an integer. Thus, in particular,

(1.6.13) ∆′1(x, r) = ∆(x, r) for x > 0, x < Z.

Together with(1.6.4)for a = 1, this yields(1.6.4)for a = 0, x < Z
as well, if the differentiation term by term of(1.6.4) for a = 1 can
be justified. This step is not obvious but requires an analysis which is
carried out in the next section. After that the remaining case a= 0, x ∈ Z
is dealt with in§ 1.8 by a limiting argument.

In analogy with(1.6.13), we have

(1.6.14) A′1(x, r) = A(x, r) for x > 0, x < Z.

This relation, which follows immediately from the definition (1.6.2),
is the starting point in the proof of(1.6.5)for a = 0.

1.7 Analysis of the Convergence of the Voronoi Se-
ries

In this section we are going to study the series (1.6.4) and (1.6.5) for
a = 0 as a preliminary for the proof of Theorem 1.3 for this remaining37

value of a. In virtue of the analogy betweend(n) and a(n), we may
restrict ourselves to the analysis of the first mentioned series. Thus, let
us consider the series
(1.7.1)

x1/2
∞
∑

n=1

d(n)n−1/2
{

ek(−nh̄)Y1(4π
√

nx/k) + (2/π)ek(nh̄)K1(4π
√

nx/k)
}

.

Fork = 1 this is - up to sign - Voronoi’s expression for∆(x), and the
more general series (1.7.1) will also be called aVoronoi series.
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From the point of view of convergence, the factorx1/2 in front of
the Voronoi series is of course irrelevant, but because we are going to
considerx as a variable in the next section, we prefer keepingx explicit
all the time.

Denote by
∑

(a, b; x) that part of the Voronoi series in which the
summation is taken over the finite interval [a, b]. The following theorem
gives an approximate formula for

∑

(a, b; x).

THEOREM 1.4. Let [x1, x2] ⊂ (0,∞) be a fixed interval. Then uni-
formly for x∈ [x1, x2] and2 ≤ a < b < ∞ we have

∑

(a, b; x) = Ax5/4d(m)m−5/4ek(mh)

√
b

∫

√
a

u−1 sin(4π(
√

m−
√

x)u/k) du

(1.7.2)

+o(a−14 loga),

where m is the positive integer nearest to x (or any one of the two pos-
sibilities if x > 1 is half an odd integer), and A is a number depending
only on k.

For the proof, we shall need the following elementary lemma.

Lemma 1.7. Let f ∈ C2[a, b], where0 < a < b. Then 38

∑′

a≤n≤b

f (n)d(n)ek(nh) =

b
∫

a

(∆(t, h/k) f (t) − ∆1(t, h/k) f ′(t))(1.7.3)

+

b
∫

a

∆1(t, h/k) f ′′(t) dt + k−1

b
∫

a

(log t + 2γ − 2 logk) f (t) dt.

Proof. According to (1.5.2), the sum under consideration is

b
∫

a

f (t)dD(t, h/k) = k−1

b
∫

a

f (t)(log t+2γ−2 logk) dt+

b
∫

a

f (t)d∆(t, h/k).
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By repeated integrations by parts and using (1.6.13), we obtain

b
∫

a

f (t)d∆(t, h/k) =

b
∫

a

f (t)∆(t, h/k) −
b

∫

a

f ′(t)∆(t, h/k) dt

=

b
∫

a

( f (t)∆(t, h/k) − ∆1(t, h/k) f ′(t))

+

b
∫

a

∆(t, h/k) f ′′(t) dt,

and the formula (1.7.3) follows. �

Proof of Theorem 1.4. Becauseh/k, x1, and x2 will be fixed during
the following discussion, we may ignore the dependence of constants
on time.

First, by the asymptotic formulae (1.3.16) and (1.3.17) forBessel
functions, we have

∑

(a, b; x) = Ax1/4
∑

a≤n≤b

d(n)n−3/4ek(−nh̄) cos(4π
√

nx/k− π/4)

+ o(a−1/4 loga).

(1.7.4)

Lemma 1.7 is now applied to the sum here, with−h̄/k in place of
h/k, and with

f (t) = x1/4t−3/4 cos(4π
√

tx/k− π/4).

The integrated terms in (1.7.3) are≪ a−1/4, by (1.5.20) and (1.6.11).39

Also, by Lemma 1.6, the last term in (1.7.3) is≪ a−1/4 loga. Thus it
remains to consider the integral

(1.7.5)

b
∫

a

∆1(t,−h̄/k) f ′′(t) dt.
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In our case,

f ′′(t) = Ax5/4t−7/4 cos(4π
√

tx/k− π/4)+ o(t−9/4).

The contribution of the error term to (1.7.5) is≪ a−1/2. Hence, in place
of (1.7.5), it suffices to deal with the integral

(1.7.6) x5/4

b
∫

a

t−7/4∆1(t,−h̄/k) cos(4π
√

tx/k− π/4)dt.

For∆1(t, h̄/k) we have the formula (1.6.4), which gives

∆1(t,−h̄/k) = At3/4
∞
∑

n=1

d(n)n−5/4ek(nh) cos(4π
√

nt/k+ π/4)+ o(t1/4).

The contribution of the error term to (1.7.6) is≪ a−1/2. Thus, the result
of all the calculations so far is that

∑

(a, b; x) = Ax5/4
∞
∑

n=1

d(n)n−5/4ek(nh)×

×
b

∫

a

t−1 cos(4π
√

tx/k− π/4) cos(4π
√

nt/k+ π/4)dt + o(a−1/4 loga).

Further, when the product of the cosines is written as the sumof two
cosines, and the variableu =

√
t is introduced, this equation takes the

shape

∑

(a, b; x) = Ax5/4
∞
∑

n=1

d(n)n−5/4ek(nh)×

×



























√
b

∫

√
a

u−1 cos(4π(
√

n+
√

x)u/k)du−

√
b

∫

√
a

u−1 sin(4π(
√

n−
√

x)u/k)du



























+ o(a−1/4 loga).
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By Lemma 1.6, the integrals here are≪ a−1/2|
√

n±
√

x|−1. Hence, 40

if the integral standing on the right of (1.7.2) is singled out, the rest can
be estimated uniformly as≪ a−1/2. This completes the proof.

The problem on the nature of convergence of the Voronoi series is
now reduced to the estimation of an elementary integral, andit is a sim-
ple matter to deduce the following

THEOREM 1.5. The series(1.7.1)is boundedly convergent in any in-
terval [x1, x2] ⊂ (0,∞), and uniformly convergent in any such interval
free from integers. The same assertions hold for the series(1.6.5) for
a = 0.

Proof. The integral in (1.7.2) vanishes ifx = m, and otherwise it tends
to zero asa andb tend to infinity. Thus, in any case, the Voronoi series
(1.7.1) converges. Moreover, if the interval [x1, x2] contains no integer,
then the integral in question is≪ a−1/2 uniformly in this interval, where
the Voronoi series is therefore uniformly convergent.

Finally, to prove the boundedness of the convergence in [x1, x2], let
x andmbe as in Theorem 1.4, and putx = m+ δ, c = min(

√
b,max(

√
a,

1/|δ|)). Then
√

b
∫

√
a

u−1 sin(4π(
√

m−
√

x)u/k) du=

c
∫

√
a

+

√
b

∫

c

≪
c

∫

√
a

|
√

m−
√

x|du+ c−1|
√

m−
√

x|−1 ≪ 1.

Hence
∑

(a, b; x) ≪ 1 uniformly for all 0< a < b andx ∈ [x1, x2].
�

1.8 Identities for D(x, r) and A(x, r)

We are now in a position to prove Theorem 1.3 fora = 0. For conve-
nience of reference and because of the importance of this result, we state41

it separately as a theorem.
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THEOREM 1.6. For x > 0 we have

D(x, h/k) = k−1(log x+ 2γ − 1− 2 logk)x+ E(0, h/k)(1.8.1)

−x1/2
∞
∑

n=1

d(n)n−1/2
{

ek(−nh̄)Y1(4π
√

nx/k) + (2/π)ek(nh̄)K1(4π
√

nx/k)
}

and

A(x, h/k) = (−1)k/2xk/2
∞
∑

n=1

a(n)n−k/2ek(−nh̄)Jk(4π
√

nx/k).(1.8.2)

Proof. Consider first the case whenx is not an integer. Let [x1, x2] be
an interval containingx but no integer. Then the series on the right of
(1.8.1) converges uniformly in this interval, by Theorem 1.5. Therefore
the differentiation term by term of the identity (1.6.4) for∆1(x, h/k) is
justified, which gives the formula (1.6.4) fora = 0, and thus also the
formula (1.8.1) (see the remark in the end of§ 1.6).

The case whenx = m is an integer will now be settled by Theorem
1.4 and the previous case. Let

S(x) = −x1/2
∞
∑

n=1

d(n)n−1/2

{

ek(−nh̄)Y1(4π
√

nx/k) + (2/π)ek(nh̄)K1(4π
√

nx/k)
}

.

ThenS(x) = ∆(x, h/k) if x > 0 is not an integer, andS(m) is the
value of∆(m, h/k) asserted. We are going to show that

1
2

lim
δ→o+

(D(m+ δ, h/k) + D(m− δ, h/k))(1.8.3)

= k−1(logm+ 2γ − 1− 2 logk)m+ E(0, h/k) + S(m).

Because1
2(D(m+ δ, h/k) + D(m− δ, h/k)) equalsD(m, h/k) for all

δ ∈ (0, 1), this implies (1.8.1) forx = m.
First, the leading terms of the formula forD(m±δ, h/k), just proved, 42
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give in the limit the leading terms on the right of (1.8.3). Therefore, it
remains to prove that

(1.8.4) lim
δ→0+

(S(m+ δ) + S(m− δ) − 2S(m)) = 0.

Where
S(x) = S1(x) + S2(x) + S3(x),

where the range of summation in the sumsSi(x) is, respectively, [1, δ−1),
[δ−1, δ−3], and (δ−3,∞). We estimate separately the quantities

∆i(δ) = Si(m+ δ) + Si(m− δ) − 2Si(m).

Consider first∆1(δ), writing

∆1(δ) =
∑

n<δ−1

d(n)αn(δ).

By the formulae

(x1/2Y1(4π
√

nx/k))′ = 2π(
√

n/k)Y◦(4π
√

nx/k),(1.8.5)

(x1/2K1(4π
√

nx/k))′ = −2π(
√

n/k)K◦(4π
√

nx/k),(1.8.6)

which follow from (1.6.8) and (1.6.9), we find thatαn(δ) ≪ n−1/4δ.
Hence

(1.8.7) ∆1(δ) ≪ δ1/4 log(1/δ).

Next, by definition,
(1.8.8)
∆2(δ) = −

∑
(

δ−1, δ−3; m+ δ
)

−
∑

(

δ−1, δ−3; m− δ
)

+ 2
∑

(

δ−1, δ−3; m
)

.

To facilitate comparisons between the sums on the right, we write
the factor (m± δ)5/4 in front of the formula (1.7.2) for

∑

(δ−1, δ−3; m± δ)
asm5/4 + 0(δ). Then, by (1.8.8) and (1.7.2),43

∆2(δ) ≪
∣

∣

∣

∣

∣

∣

δ−3/2
∫

δ−1/2

u−1
{

sin(4π(
√

m−
√

m+ δ)u/k)
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+ sin(4π(
√

m−
√

m− δ)u/k)
}

du

∣

∣

∣

∣

∣

∣

+ δ1/4 log(1/δ).

The expression in the curly brackets is estimated as follows:

|{· · · }| = |2 sin
(

2π
(√

m+ δ +
√

m− δ − 2
√

m
)

u/k
)

cos
(

2π
(√

m− δ −
√

m− δ
)

u/k
)

|

≪ δ2u.

Hence

(1.8.9) ∆2(δ) ≪ δ1/4 log(1/δ).

Finally, by Theorem 1.4 and Lemma 1.6, we have for anyb > δ−3

∑

(δ−3, b; m± δ) ≪ δ3/2δ−1 + δ3/4 log(1/δ) ≪ δ1/2,

and the same estimate holds also for
∑

(δ−3, b; m). Hence

(1.8.10) ∆3(δ) ≪ δ1/2,

Now (1.8.7), (1.8.9), and (1.8.10) give together

S(m+ δ) + S(m− δ) − 2S(m)≪ δ1/4 log(1/δ),

and the assertion (1.8.4) follows. This completes the proofof (1.8.1),
and (1.8.2) can be proved likewise. �

1.9 The Summation Formulae

We are now in a position to deduce the main results of this chapter,
the summation formulae of the Voronoi type involving an exponential
factor.

THEOREM 1.7. Let0 < a < b and f ∈ C1[a, b]. Then 44

∑′

a≤n≤b

d(n)ek(nh) f (n) = k−1

b
∫

a

(log x+ 2γ − 2 logk) f (x) dx+ k−1(1.9.1)
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∞
∑

n=1

d(n)

b
∫

a

{−2πek(−nh̄)Y◦(4π
√

nx/k) + 4ek(nh̄)K◦(4π
√

nx/k)} f (x) dx

and

∑′

a≤n≤b

a(n)ek(nh) f (n)(1.9.2)

= 2πk−1(−1)k/2
∞
∑

n=1

a(n)ek(−nh̄)n(k−1)/2

b
∫

a

x(k−1)/2Jk−1(4π
√

nx/k) f (x) dx.

The series in(1.9.1)and (1.9.2)are boundedly convergent for a and
b lying in any fixed interval[x1, x2] ⊂ (0,∞).

Proof. We may suppose that 0< a < 1, for the general case then follows
by subtraction. Accordingly, the sum in (1.9.1) is

∑′

n≤b

d(n)ek(nh) f (n) =

b
∫

a

f (x)dD(x, h/k).

By an integration by parts, this becomes

(1.9.3) f (b)D(b, h/k) −
b

∫

a

f ′(x)D(x, h/k) dx.

We substituteD(x, h/k) from the identity (1.8.1), noting that the re-
sulting series can be integrated term by term because of bounded con-
vergence. Thus

b
∫

a

f ′(x)D(x, h/k) dx =

b
∫

a

f ′(x)
{

k−1(log x+ 2γ − 1

− 2 logk)x+ E(0, h/k)
}

dx−
∞
∑

n=1

d(n)n−1/2

b
∫

a

f ′(x)x1/2
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{

ek(−hh̄)Y1(4π
√

nx/k) + (2/π)ek(nh̄)K1(4π
√

nx/k)
}

dx.

This is transformed by another integration by parts, using also
(1.8.5) and (1.8.6). The integrated terms then yieldf (b)D(b, h/k), again
by (1.8.1), and the right hand side of the preceding equationbecomes 45

f (b)D(b, h/k) − k−1

b
∫

a

(log x+ 2γ − 2 logk) f (x) dx

+2πk−1
∞
∑

n=1

d(n)

b
∫

a

{

ek(−nh̄)Y◦(4π
√

nx/k) − (2/π)ek(nh̄)K◦(4π
√

nx/k)
}

f (x) dx.

Substituting this into (1.9.3) we obtain the formula (1.9.1). It is also
seen that the boundedness of the convergence of the series (1.9.1). �

The proof of (1.9.2) is analogously based on the identity (1.8.2) and
the formula

(xk/2Jk(4π
√

nx/k))′ = 2π(
√

n/k)x(k−1)/2Jk−1(4π
√

nx/k),

which follows from (1.6.10).

Notes

Our estimate (1.1.4) forE(0, h/k) is stronger by a logarithm than the
boundE(0, h/k) ≪ k log2 2k of Estermann [8].

The valueζ(0) = −1/2 can also be deduced from (1.1.9) by observ-
ing that for fixeds , 1 the functionζ(s, a) is continuous in the inter-
val 0 < a ≤ 1 (this follows e.g. from the loop integral representation
(2.17.2) ofζ(s, a) in [27]).

The integralsI1, I2, andI3 in § 1.4 can also be evaluated by the inver-
sion formula for the Mellin transformation, using the Mellin transform
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pairs (see (7.9.11), (7.9.8), and (7.9.1) in [26])

x−νKν(x), 2s−ν−2Γ

(

1
2

s

)

Γ

(

1
2

s− ν
)

,

x−νYν(x), −2s−ν−1π−1Γ

(

1
2

s

)

Γ

(

1
2

s− ν
)

cos

((

1
2

s− ν
)

π

)

,

x−νJν(x), 2s−ν−1Γ

(

1
2

s

)

Γ

(

ν −
1
2

s+ 1

)

.
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Theorems 1.1, 1.2, 1.6 and 1.7 (for sums involvingd(n)) appeared in
[18]. The error terms in Theorem 1.2 could be imporved. In fact, Tong
[28] proved that

(*)

X
∫

2

∆2(x) dx = C1X3/2 + o(X log5 X)

(for a simple proof, see Meurman [22]), and similarly it can be shown
that (1.5.22) and (1.5.23) hold with error termso(k2X log5 X) and
o(k2Xk log5 X), respectively. An analogue of (*) for the error termE(T)
in (0.6) was obtained by Meurman in the above mentioned paper.

The general summation formulae of Berndt (see [3], in particular
part V) cover (1.9.2) but not (1.9.1), because the functional equation
(1.1.2) forE(s, r) is not of the form required in Berndt’s papers.

The novelty of the proof of Theorem 1.6 for integer values ofx lies
in the equation (1.8.3).

Analogues of the results in this and subsequent chapters canbe
proved for sums and Dirichlet series involving Fourier coefficients of
Maass waves. H. Maass [21] introduced non-holomorphic cusp forms
as auto-morphic functions in the upper half-planeH for the full modular
group, which are eigenfunctions of the hyperbolic Laplacian−y2(∂2

x+∂
2
y)

and square integrable over the fundamental domain
{

z= x+ yi
∣

∣

∣

∣

∣

−1
2
≤ x ≤ 1

2
, y > 0, |z| ≥ 1

}

with respect to the measurey−2 dx dy. Such functions, which are more-47
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over orthonormal with respect to the Petersson inner product, eigen-
functions of all Hecke operatorsTn, and either even or odd as functions
of x, are called Maass waves. A Maass wavef , which is associated with
the eigenvalue 1/4+ r2(r ∈ R) of the hyperbolic Laplacian and an even
function of x, can be expanded to a Fourier series of the form (see [20])

f (z) = f (x+ yi) =
∞
∑

n=1

a(n)y1/2Kir (2π ny) cos(2π nx).

It has been conjectured thata(n) ≪ nǫ , but this hypothesis-an ana-
logue of (1.2.5) - is still unsettled. The weaker estimatea(n) ≪ n1/5+ǫ

has been proved by J.-P. Serre.
As an analogue of the Dirichlet seriesϕ(s), one may define the L-

function

L(s) =
∞
∑

n=1

a(n)n−s.

This can be continued analytically to an entire function satisfying
the functional equation (see [7])

π−sL(s)Γ
( s+ ir

2

)

Γ

( s− ir
2

)

= πs−1L(1− s)Γ

(

1− s+ ir
2

)

Γ

(

1− s− ir
2

)

.

More generally, it can be proved that the function

L(s, h/k) =
∞
∑

n=1

a(n) cos(2πnh/k)n−s

has the functional equation

(k/π)sL(s, h/k)Γ
( s+ ir

2

)

Γ

( s− ir
2

)

= (k/π)1−sL(1− s, h̄/k)Γ

(

1− s+ ir
2

)

Γ

(

1− s− ir
2

)

,

which is an analogue (1.2.6). Results of this kind can be proved for 48

“odd” Maass waves as well, and having the necessary functional equa-
tions at disposal, one may pursue the analogy between holomorphic and
non-holomorphic cusp forms further.



Chapter 2

Exponential Integrals

AN INTEGRAL OF the type49

b
∫

a

g(x)e( f (x)) dx

is called anexponential integral. The object of various “saddle-point
theorems” is to give the value of such an integral approximately in terms
of the possiblesaddle point x◦ ∈ (a, b) satisfying, by definition, the
equation f ′(x◦) = 0. Results of this kind can be found e.g. in [27],
Chapter IV, and in [13],§ 2.1.

For our purposes, the existing saddle-point theorems are some-times
too crude. However, more precise results can be obtained forsmoothed
exponential integrals

∫

η(x)g(x)e( f (x)) dx,

whereη(x) is a suitable smooth weight function. The present chapter
is devoted to such integrals. The main result of§ 2.1 is a saddle-point
theorem, and§ 2.2 deals with the case when no saddle point exists.

46
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2.1 A Saddle-Point Theorem for Smoothed Expo-
nential Integrals

It will be convenient to single out a linear part from the function f ,
writing thus f (x) + αx in place of f (x). Accordingly, our exponential
integral reads

(2.1.1) I = I (a, b) =

b
∫

a

g(x)e( f (x) + αx) dx=

b
∫

a

h(x) dx,

say, whereα is a real number.
For a given positive integerJ and a given real numberU > 0, we 50

define the weight functionηJ(x) by the equation

IJ = IJ(a, b) = U−J

U
∫

0

du1 · · ·
U

∫

o

duJ

b−u
∫

a+u

h(x) dx(2.1.2)

=

b
∫

a

ηJ(x)h(x) dx,

whereu = u1 + · · · + uJ. We suppose thatJU < (b − a)/2. Also,
we defineI◦ = I , and interpretη◦(x) as the characteristic function of the
interval [a, b]. Clearly 0< ηJ(x) ≤ 1 for x ∈ (a, b), andηJ(X) = 1 for
a+ JU ≤ x ≤ b− JU.

The following lemma gives an alternative expression for theintegral
IJ.

Lemma 2.1. For any c∈ (a+ JU, b− JU) we have

IJ = (J!UJ)−1
J

∑

j=◦

(

J
j

)

(−1) j(2.1.3)























c
∫

a+ jU

(x− a jU)Jh(x) dx

b− jU
∫

c

(b− jU − x)Jh(x) dx























.
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Proof. The caseJ = 0 is trivial, and otherwise the assertion can be
verified by induction using the recursion formula

(2.1.4) IJ(a, b) = U−1

U
∫

◦

IJ−1(a+ uJ, b− uJ) duJ.

For completeness we give some details of the calculations.
Supposing that (2.1.3) holds for the indexJ − 1, we have by (2.1.4)

IJ = U−1
(

(J − 1)!UJ−1
)−1

J−1
∑

j=0

(

J − 1
j

)

(−1) j

U
∫

o























c
∫

a+ jU

(max(x− a− jU−

uJ, 0))J−1h(x) dx+

b− jU
∫

c

(max(b− jU − uJ − x, 0))J−1 h(x) dx























duJ

=
(

J!UJ
)−1

J−1
∑

j=0

(

J − 1
j

)

(−1) j+1























c
∫

a+( j+1)U

(x− a− ( j + 1)U)J h(x) dx

+

b−( j+1)U
∫

c

(b− ( j + 1)U − x)J h(x) dx























+
(

J!UJ
)−1

J−1
∑

j=0

(

J − 1
j

)

(−1) j























c
∫

a+ jU

(x− a jU)Jh(x) dx

b− jU
∫

c

(b− jU − x)Jh(x) dx























=
(

J!UJ
)−1

J−1
∑

j=1

((

J − 1
j − 1

)

+

(

J − 1
j

))

(−1) j























c
∫

a+ jU

(x− a jU)Jh(x) dx+

b− jU
∫

c

(b− jU − x)Jh(x) dx























+
(

J!UJ
)−1























(−1)J





















c
∫

a+JU

(x− a− JU)Jh(x) dx+

b−JU
∫

c
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(b− JU − x)Jh(x) dx+

c
∫

a

(x− a)Jh(x) dx+

b
∫

c

(b− x)Jh(x) dx























,

which yields (2.1.3) for the indexJ. � 51

Remark. As a corollary of (2.1.3), we obtain the identity

(2.1.5)
(

J!UJ
)−1

J
∑

j=0

(

J
j

)

(−1) j(z− jU )J = 1.

Indeed, this holds forz= x−a with a+ JU ≤ x ≤ c, sinceηJ(x) = 1
in this interval. Then, by analytic continuation, (2.1.5) holds for all com-
plex z. Of course, (2.1.5) can also be verified directly in an elementary
way.

Before going into formulations of the saddle-point theorems, it is 52

convenient to list for future reference a number of conditions on the
functions f andg.

(i) f (x) is real fora ≤ x ≤ b.

(ii) f andg are holomorphic in the domain

D =
{

z
∣

∣

∣z− x
∣

∣

∣ < µ(x) for some x ∈ [a, b]
}

,

whereµ(x) is a positive function, which is continuous and piece-
wise continuously differentiable in the interval [a, b].

(iii) There are positive functionsF(x) andG(x) such that for|z− x| <
µ(x) anda ≤ x ≤ b

|g(z)| ≪ G(x),
∣

∣

∣ f ′(z)
∣

∣

∣ ≪ F(x)µ(x)−1.

(iv) f ′′(x) > 0 and
f ′′(x) ≫ F(x)µ(x)−2

for a ≤ x ≤ b.
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(v) µ′(x) ≪ 1 for a ≤ x ≤ b wheneverµ′(x) exists.

(vi) F(x) ≫ 1 for a ≤ x ≤ b.

Since f ′(x) + α is monotonically increasing by (iv), it has at most
one zero, say atx◦, in the interval (a, b). Whenever terms involvingx◦
occur in the sequel, it should be understood that these termsare to be
omitted if x◦ does not exist.

Remark . By Cauchy’s integral formula for the derivatives of a holo-
morphic function, it follows from (ii) and (iii) that53

(2.1.6)
∣

∣

∣ f (n)(x)
∣

∣

∣ ≪ n!2nF(x)µ(x)−n for a ≤ x ≤ b, n = 1, 2, . . .

Hence the conditions (iii) and (iv) together imply that

(2.1.7) f ′′(x) ≍ F(x)µ(x)−2 for a ≤ x ≤ b.

Next we state two saddle-point theorems. The former of these, due
to F.V. Atkinson ([2], Lemma 1), deals with the integralI , and the latter
is its generalization toIJ. Let

(2.1.8) EJ(x) = G(x)
(∣

∣

∣ f ′(x) + α
∣

∣

∣ + f ′′(x)1/2
)−J−1

.

In the next theorem, and also later in this chapter, the unspecified
constantA will be supposed to be positive.

Theorem 2.1. Suppose that the conditions (i) - (v) are satisfied, and let
I be defined as in(2.1.1). Then

I = g(x◦) f ′′(x◦)
−1/2e( f (x◦) + αx◦ + 1/8)(2.1.9)

+ o





















b
∫

a

G(x) exp(−A|α|µ(x) − AF(x)) dx





















+ o
(

G (x◦) µ (x◦) F (x◦)
−3/2

)

+ o (E◦(a)) + o (E◦(b)) .
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Theorem 2.2. Let U > 0, J a fixed nonnegative integer, JU< (b−a)/2,
and suppose that the conditions (i)-(vi) are satisfied. Suppose also that

(2.1.10) U ≫ δ(x◦)µ(x◦)F(x◦)
−1/2,

whereδ(x) is the characteristic function of the union of the intervals
(a, a+ JU) and(b− JU, b). Let IJ be defined as in(2.1.2). Then

IJ = ξJ(x◦)g(x◦) f ′′(x◦)
−1/2e( f (x◦) + αx◦ + 1/8)(2.1.11)

+ o





















b
∫

a

(1+ (µ(x)/U)J)G(x) exp(−A|α|µ(x) − AF(x) dx





















+ o
((

1+ δ(x◦)F(x◦)
1/2

)

G(x◦)µ(x◦)F(x◦)
−3/2

)

+ o



















U−J
J

∑

j=0

(EJ(a+ jU ) + EJ(b− jU ))



















,

where 54

ξJ(x◦) = 1 for a+ JU < xc < b− JU,

(2.1.12)

ξJ(x− ◦) =
(

J!UJ
)−1

j1
∑

j=0

(

J
j

)

(−1) j
∑

◦≤ν≤J/2

cν f ′′(x◦)
−ν(x◦ − a− jU )J−2ν

(2.1.13)

for a < x◦ ≤ a+ JU with j1 the largest integer such that a+ j1U < x◦,
(2.1.14)

ξJ(x◦) = (J!UJ)−1
j2

∑

j=0

(

J
j

)

(−1) j
∑

◦≤ν≤J/2

cν f ′′(x◦)
−ν(b− jU − x◦)

J−2ν

for b− JU ≤ x◦ < b with j2 the largest integer such that b− j2U > x◦.
The cν are numerical constants.

Proof. We follow the argument of Atkinson [2] with some modifications
caused by the smoothing. There are four cases as regards the saddle
point x◦: 1) a + JU < x◦ < b − JU, 2) x◦ does not exist, 3)a < x◦ ≤
a+ JU, 4) b− JU ≤ x◦ < b. Accordingly the proof will be in four parts.
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1) Suppose first thata+ JU < x◦ < b− JU. Putλ(x) = βµ(x), where
β is a small positive constant. Choosec = x◦ in the expression
(2.1.3) forIJ.

The intervals of integration in (2.1.3) are replaced by the paths
shown in the figure. HereC1,C3,C′3, andC5 are, respectively,

55

the line segments [a+ jU, a+ jU−(1+i)λ(a+ jU )], [xo−(1+i)λ(xo),
xo], [xo, xo + (1i)λ(xo)], and [b− jU + (1+ i)λ(b− jU ), b− jU ].
The curveC2 is defined byz = x− (1+ i)λ(x), a + jU ≤ x ≤ xo,
and analogouslyC4 is defined byz= x+ (1+ i)λ(x), xo ≤ x ≤ b−
jU . By the holomorphicity assumption (ii) and Cauchy’s integral
theorem, we have

IJ =
(

J!UJ
)−1

J
∑

j=0

(

J
j

)

(−1) j























∫

C1+C2+C3

(z− a− jU )Jh(z) dz

(2.1.15)

+

∫

C′3+C4+C5

(b− jU − z)Jh(z) dz



























.

To estimate the modulus ofh(z), we need an upper bound for
Re{2πi( f (z) + αz)}. Let z = x + (1 + i)y, wherea ≤ x ≤ b and
|y| ≤ λ(x). By Taylor’s theorem,
(2.1.16)
f (z) + αz= f (x) + αx+ ( f ′(x) + α)(1+ i)y+ i f ′′(x)y2 + θ(x, y),
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where

θ(x, y) =
∞
∑

n=3

(

f (n)(x)/n!
)

((1+ i)y)n.

By (2.1.6), we have

|θ(x, y)| ≪ F(x)|y|3µ(x)−3,

so that by (iv) 56

|θ(x, y)| ≤ 1
2

y2 f ′′(x)

if β is supposed to be sufficiently small. Then (2.1.16) gives

(2.1.17) Re{2πi( f (z) + αz)} ≤ −2π( f ′(x) + α)y− π f ′′(x)y2

for a ≤ x ≤ b and|y| ≤ λ(x).

Consider, in particular, the casey = sgn( f ′(x) + α)λ(x), which
occurs in the estimation of the integrals overC2 andC4. The right
hand side of (2.1.17) is now at most

−A| f ′(x) + α|µ(x) − AF(x).

In the cases|α| ≥ 2| f ′(x)| and|α| < 2| f ′(x)| this is

≤ −A|α|µ(x) − AF(x)

and
≤ −AF(x) ≤ −A|α|µ(x) − AF(x),

respectively. Hence forz ∈ C2 ∪C4

(2.1.18) |h(z)| ≪ G(x) exp(−A|α|µ(x) − AF(x)).

The pathsCi for i = 1, 2, 4 and 5 depend onj, so that for clarity
we denote them byCi( j). Let us first estimate the contribution
of the integrals over theC2( j) andC4( j) to IJ. By the identity
(2.1.5), the integrands in (2.1.15) combine to give simplyh(z) on
C2( j)∪C3∪C′3∪C4( j), hence in particular onC2( j)∪C4( j). Thus,
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by (2.1.18) and the assumption (v), viz.µ′(x) ≪ 1, the integrals
in (2.1.15) restricted toC2( j) andC4( j) contribute 57

≪
b−JU
∫

a+JU

G(x) exp(−A|α|µ(x) − AF(x)) dx.

Integrals over the other parts of theC2( j) andC4( j) are estimated
similarly, but noting that the function in front ofh(z) is now≪
1+(µ(x)/U)J. In this way it is seen that the integrals over theC2( j)
andC4( j) give together at most the first error term in (2.1.11).

Next we turn to the integrals over theC1( j) andC5( j). By (2.1.17)
we have

∫

C1( j)

(z− a− jU )Jh(z) dz≪ G(a+ jU )

∞
∫

◦

yJ exp(−2π| f ′(a+ jU )

+ α|y− π f ′′(a+ jU )y2) dy

≪ EJ(a+ jU ),

and similarly for the integrals over theC5( j). Hence these inte-
grals contribute the last error term in (2.1.11).

Finally, as was noted above, the integrals overC3 + C′3 give to-
gether the integral

(2.1.19) K = (1+ i)

λ(x◦)
∫

−λ(x◦)

h(x◦ + (1+ i)y) dy.

Applying Taylor’s theorem and similar arguments as in the proof
of (2.1.17), we find that for|y| ≤ λ(x◦)
(2.1.20)

g(xo + (1+ i)y) = g(xo) + g′(xo)(1+ i)y+ o
(

G(xo)µ(xo)−2y2
)

,

or, more crudely,

(2.1.21) g(x◦ + (1+ i)y) = g(x◦) + o
(

G(x◦)µ(x◦)
−1|y|

)

,
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and analogously

f (x◦ + (1+ i)y) + α(x◦ + (1+ i)y) = f (x◦) + αx◦

(2.1.22)

+ i f ′′(x◦)y
2 +

1
6

f ′′′(x◦) (1+ i)3y3 + o
(

F(x◦)µ(x◦)
−4y4

)

= f (x◦) + αx◦ + i f ′′(x◦)y
2 + o

(

F(x◦)µ(x◦)
−3|y|3

)

.

(2.1.23)
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Let

(2.1.24) v = λ(x◦)F(x◦)
−1/3,

and writeK = K1 + K2 + K3, where the integralsK1,K2, andK3

are taken over the intervals [−λ(x◦),−v], [−v, v], and [v, λ(x◦)],
respectively.

First, by (2.1.17) we have

K1 + K3 ≪ G(x◦)

∞
∫

v

exp
(

−π f ′′(x◦)y
2
)

dy

≪ G(x◦)v
−1 f ′′(x◦)

−1 exp
(

−πv2 f ′′(x◦)
)

≪ G(x◦)µ(x◦)F(x◦)
−2/3 exp

(

−AF(x◦)
1/3

)

,

whence by (vi)

(2.1.25) K1 + K3 ≪ G(x◦)µ(x◦)F(x◦)
−3/2.

The integralK2, which will give the saddle-point term is evaluated
by applying (2.1.20) and (2.1.22). The latter implies that for |y| ≤
v

e( f (x◦ + (1+ i)) + α (x◦ + (1+ i)y))(2.1.26)

= e( f (x◦) + αx◦) exp
(

−2π f ′′(x◦)y
2
)

×
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×
{

1+
1
3
πi f ′′(x◦) (1+ i)3y3 + o

(

F(x◦)µ(x◦)
−4y4

)

+ o
(

F(x◦)
2µ(x◦)

−6y6
)

}

;

note that the last two terms in (2.1.22) are≪ 1 by the choice
(2.1.24) ofv. When this equation is multiplied by (2.1.20) and59

the product is integrated over the interval [−v, v], the integrals of
those explicit terms involving odd powers ofy vanish, and we end
up with

K2 = (1+ i)g(x◦)e( f (x◦) + αx◦)

v
∫

−v

exp
(

−2π f ′′(x◦)y
2
)

dy

(2.1.27)

+o





















G(x◦)

v
∫

−v

exp
(

−2π f ′′(x◦)y
2
) (

µ(x◦)
−2y2 + F(x◦)µ(x◦)

−4y4+

F(x◦)
2µ(x◦)

−6y6
)

dy
)

.

In the main term, the integration can be extended to the wholeline
with an error≪ G(x◦)µ(x◦)F(x◦)−3/2, and since

(2.1.28)

∞
∫

−∞

exp
(

−cy2
)

dy= (π/c)1/2(c > 0),

the leading term in (2.1.27) gives the leading term in (2.1.11) with
ξ(x◦) = 1, in accordance with (2.1.12). Further, as a generaliza-
tion of (2.1.28), we have

(2.1.29)

∞
∫

−∞

exp
(

−cy2
)

y2ν dy= dνc
−ν−1/2(c > 0, ν ≥ 0)

where thedν are certain numerical constants, and by using this the
error terms in (2.1.27) are seen to be≪ G(x◦)µ(x◦)F(x◦)−3/2.
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2) Suppose next thatx◦ does not exist. Thenf ′(x)+ α is of the same
sign, say positive, in the whole interval (a, b). Let c be a point in
the interval (a+ JU, b− JU), write IJ as in (2.1.3), and transform
the integrals over the intervals [a+ jU, c] and [c, b− jU ] using the
contours shown in the figure, where the curvilinear part is defined
by z= x+ (1+ i)λ(x) with a+ jU ≤ x ≤ b− jU . Observe that the
integrals over the segment [c, c + (1 + i)λ(c)] cancel, by (2.1.5).
Integrals over the other parts of the contours are estimatedas in
the preceding case, and these contribute the first and last error 60

term in (2.1.11).

If f ′(x) + α is negative, then an analogous contour is used in the
lower half-plane.

3) Consider now the casea < x◦ ≤ a + JU. Again choosec ∈
(a + JU, b − JU). In (2.1.3) the integrals over [c, b − jU ] are
written as in the preceding case, and likewise the integralsover
[a + jU, c] for j > j1, in which case the saddle pointx◦ does not
lie in the (open) interval of integration. On the other hand,for
j ≤ j1 the contour is of a shape similar to the first case. Only the
last mentioned integrals require a separate treatment; theothers
give error terms as before.

A new complication is that the sum overj ≤ j1 of the integrals
over the line segmentL = [x◦ − (1 + i)λ(x◦), x◦ + (1 + i)λ(x◦)]
cannot be written as an integral ofh(z), but the integrals have to
be evaluated separately. Other parts of the contours do not present
any new difficulties.

Thus, consider the integral 61
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(2.1.30) K = U−J
∫

L

(z− a− jU )Jh(z) dz.

This is of the same type as the integralK in (2.1.19) - withg(z)
replaced byU−J(z− a − jU )Jg(z) - so that in principle it would
be possible to apply the result of the previous discussion assuch.
But then the functionG(x) would have to be replaced byU−Jµ(x)J

G(x), which may become large ifJ is large. Therefore we modify
the argument in order to prevent the error term from becoming
impracticably large.

But the first step in the treatment of the integralK is as before.
Namely, letv be as in (2.1.24), putz = x◦ + (1 + i)y, and let
K1 and K3 be the integrals with respect toy over the intervals
[−λ(x◦),−v] and [v, λ(x◦)]. ThenK1 + K3 can be estimated as be-
fore, except that the extra factor 1+ (v/U)J has to be inserted. But
since (v/U)J ≪ F(x◦)J/6 by (2.1.10) and (2.1.24), the estimate
(2.1.25) remains valid even for the new integralsK1 andK3.

The new integralK2, which represents the main part ofK, is now

K2 = (1+ i)U−J

v
∫

−v

(x◦ − a− jU + (1+ i)y)Jh(x◦ + (1+ i)y) dy.

For the functionh(x◦ + (1+ i)y) we are going to use a somewhat
cruder approximation than before. By (2.1.21) and (2.1.23)we
have

h(x◦ + (1+ i)y)(2.1.31)

=
{

g(x◦)e( f (x◦) + αx◦) + o
(

G(x◦)µ(x◦)
−1|y|

)

+o
(

F(x◦)G(x◦)µ(x◦)
−3|y|3

)}

× exp
(

−2π f ′′(x◦)y
2
)

.

Since by (2.1.29), (2.1.10), and (iv)62

U−J

v
∫

−v

(

UJ + |y|J
)

|y|ν exp
(

−2π f ′′(x◦)y
2
)

dy
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≪ f ′′(x◦)
−(ν+1)/2 + U−J f ′′(x◦)

−(ν+J+1)/2

≪ µ(x◦)
ν+1F(x◦)

−(ν+1)/2

the contribution of the error terms in (2.1.31) toK2 is≪ G(x◦)
µ(x◦) F(x◦)−1. Hence

K2 =
√

2g(x◦)e( f (x◦) + αx◦ + 1/8)U−J

v
∫

−v

(x◦ − a− jU + (1+ i)y)J

exp
(

−2π f ′′(x◦)y2
)

dy+ o
(

G(x◦)µ(x◦)F(x◦)−1
)

=
√

2g(x◦)e( f (x◦) + αx◦ + 1/8) U−J
∑

0≤ν≤J/2

(x◦ − a− jU )J−2ν×

× (1+ i)2ν

(

J
2ν

)

v
∫

−v

y2ν exp
(

−2π f ′′(x◦)y2
)

dy

+ o
(

G(x◦)µ(x◦)F(x◦)−1
)

.

As before, the integrals here can be extended to the whole real
line with a negligible error. Then, evaluating the new integrals by
(2.1.29) we find that with

cν = 2−νπ−ν−1/2(1+ i)2ν
(

J
2ν

)

dν

and withξ(x◦) as in (2.1.13), the resulting expression forIJ is as
in (2.1.11).

4) The remaining caseb− jU ≤ x◦ < b is analogous to the preceding
one.

�

Remark . If f satisfies the conditions of Theorem 2.1 and 2.2 except
that f ′′(x) is negative in the interval [a, b], then the results hold with the63

minor modifications that in the main term the factore( f (x◦)+αx◦+1/8)
is to be replaced bye( f (x◦) + αx◦ − 1/8), and| f ′′(x◦)| should stand in
place of f ′′(x◦).
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2.2 Smoothed Exponential Integrals without a Sad-
dle Point

Theorem 2.2 covers also the case of exponential integralsIJ without a
saddle point. However, in applications, the condition (iv)on f ′′ may
not be fulfilled. Nevertheless, if the assumption off ′ is strengthened,
then no assumption onf ′′ is needed. The next theorem is a result of this
kind.

Theorem 2.3. Suppose that the functions f and g satisfy the conditions
(i) and (ii) in the preceding section, withµ(x) = µ, a constant. Suppose
also that

|g(z)| ≪ G for z∈ D,(2.2.1)

| f ′(x)| ≍ M for a ≤ x ≤ b,(2.2.2)

and

| f ′(z)| ≪ M for z ∈ D.(2.2.3)

Let IJ be as in(2.1.2)with α = 0 and0 < JU < (b− a)/2. Then

(2.2.4) IJ ≪ U−JGM−J−1 +
(

µJU1−J + b− a
)

Ge−AMµ .

Proof. By (2.2.2), the functionf ′(x) cannot change its sign in the inter-
val [a, b]. Suppose, to be specific, thatf ′(x) is positive. By (2.2.3) and
Cauchy’s integral formula we have

| f (k)(x)| ≪ k!M(µ/2)−k+1 for k = 1, 2, . . . and a ≤ x ≤ b.

Then, by (2.2.2) and Taylor’s theorem, it is seen that

(2.2.5) Re(2πi f (z)) < −AMy

for z = x+ yi, a ≤ x ≤ b, and 0≤ y ≤ βµ = λ, whereβ is a sufficiently64

small positive constant. �
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Now, for a proof of (2.2.4), the integralIJ is written as in (2.1.3),
where the intervals [a+ jU, c] and [c, b− jU ] are deformed to rectangular
contours respectively with verticesa+ jU, a+ jU + iλ, c+ iλ, andc, or
c, c+ iλ, b− jU + iλ, andb− jU . Then (2.2.4) follows easily by (2.2.1),
(2.2.5) and (2.1.5).

Notes

In the saddle-point lemma of Atkinson (Lemma 1 in [2]), the assump-
tions on the functionsF andµ are weaker than those in Theorem 2.2,
for the conditions (v) and (vi) are missing. Actually we posed these just
for simplicity. On the other hand, one of the conditions in [2] is stronger
than ours, for in place of (iv) there is an upper bound forf ′′(z)−1 for
z ∈ D. However, in the proof this is needed only on the real interval
[a, b], in which case it coincides with (iv).

The complications that arose in Theorem 2.2 whenx◦ lies neara or
b seem inevitable, for then the integrand is almost stationary neara or
b, and consequently there is not so much to be gained by smoothing.

The caseJ = 1 of Theorem 2.3 is Lemma 2 in [16] and Lemma 2.3
in [13]. Our proof is not a direct generalization of that in [16] which
turned out to become somewhat tedious for generalJ.

Theorems 2.2 and 2.3 may be useful in problems in which the stan- 65

dard results (corresponding toJ = 0) on exponential integrals are not
accurate enough. An example of such an application is the improvement
of the error terms in the approximate functional equations for ζ2(s) and
ϕ(s) in [19].

The parametersU and J, which determine the smoothing, can be
chosen differently ata andb. Such a version of Theorem 2.2 is given in
[19], and the proof is practically the same. The corresponding smoothed
integrals is of the type

U−JV−K

U
∫

◦

du1 · · ·
U

∫

◦

duJ

V
∫

◦

dv1 · · ·
V

∫

◦

dvK

b−v
∫

a+u

h(x) dx,
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whereu = u1 + · · · + uJ andv = v1 + · · · + vK . ForU = V andJ = K,
this amounts to the integralIJ in (2.1.2).



Chapter 3

Transformation Formulae
for Exponential Sums

THE BASIC RESULTS of these notes, formulae relating exponential 66

sums
∑

M1≤m≤M2

b(m)g(m)e( f (m) = d(m) or a(m),

or their smoothed versions, to other exponential sums involving the
sameb(m), are established in this chapter by combining the summation
formulae of Chapter 1 with the theorems of Chapter 2 on exponential
integrals. The theorems in [16] and [17] concerning Dirichlet polyno-
mials (which will be discussed in§ 4.1) were the first examples of such
results. As will be seen, the methods of these papers work even in the
present more general context without any extra effort.

3.1 Transformation of Exponential Sums

To begin with, we derive a transformation formula for the above men-
tioned sum withb(m) = d(m). The proof is modelled on that of Theorem
1 in [16].

In the following theorems,δ1, δ2, . . . denote positive constants which
may be supposed to be arbitrarily small. Further, putL = log M1 for
short.

63
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Theorem 3.1.Let2 ≤ M1 < M2 ≤ 2M1, and let f and g be holomorphic
functions in the domain

(3.1.1) D = {z |z− x| < cM1 for some x∈ [M1,M2]} ,

where c is a positive constant. Suppose that f(x) is real for M1 ≤ x ≤67

M2. Suppose also that, for some positive numbers F and G,

|g(z)| ≪ G,(3.1.2)

| f ′(z)| ≪ FM−1
1(3.1.3)

for z ∈ D, and that

(3.1.4) (0<) f ′′(x) ≫ FM−2
1 for M1 ≤ x ≤ M2.

Let r = h/k be a rational number such that

1 ≤ k≪ M1/2−δ1
1 ,(3.1.5)

|r | ≍ FM−1
1(3.1.6)

and

f ′(M(r)) = r(3.1.7)

for a certain number M(r) ∈ (M1,M2). Write

M j = M(r) + (−1) jmj , j = 1, 2.

Suppose that m1 ≍ m2, and that

(3.1.8) Mδ2
1 max

(

M1F−1/2, |hk|
)

≪ m1 ≪ M1−δ3
1 .

Define for j= 1, 2

p j,n(x) = f (x) − rx + (−1) j−1
(

2
√

nx/k− 1/8
)

,(3.1.9)

n j =
(

r − f ′
(

M j

))2
k2M j ,(3.1.10)
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and for n < n j let xj,n be the (unique) zero of p′j,n(x) in the interval
(M1,M2). Then

∑

M1≤m≤M2

d(m)g(m)e( f (m))(3.1.11)

= k−1 (

log M(r) + 2γ − 2 logk
)

g(M(r)) f ′′(M(r))−1/2e( f (M(r))

−rM (r) + 1/8)+ +i2−1/2k−1/2
2

∑

j=1

(−1) j−1

∑

n<nj

d(n)ek

(

−nh̄
)

n−1/4x−1/4
j,n g

(

x j,n

)

p′′j,n
(

x j,n

)−1/2
×

×e
(

p j,n(x j,n) + 1/8
)

+ o
(

FGh−2km−1
1 L

)

+ o
(

G(|h|)1/2m1/2
1 L2

)

+

+o
(

F1/2G|h|−3/4k5/4m−1/4
1 L

)

.

68

Proof. Suppose, to be specific, thatr > 0, and thush > 0. The proof is
similar for r < 0.

The assertion (3.1.11) should be understood as an asymptotic result,
in which M1 and M2 are large. Then the numbersF and n j are also
large. In fact,

F ≫ M1/2+δ1
1(3.1.12)

and

n j ≫ hkM2δ2
1 .(3.1.13)

For a proof of (3.1.12), note that by (3.1.6) and (3.1.5)

F ≫ M1r ≥ k−1M1 ≫ M1/2+δ1
1 .

Consider next the order ofn j . By (3.1.1) and the holomorphicity of
f in the domain (3.1.1) we havef ′′(x) ≪ FM−2

1 , which implies together
with (3.1.4) that

(3.1.14) f ′′(x) ≍ FM−2
1 for M1 ≤ x ≤ M2.
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Thus, by (3.1.7),
∣

∣

∣

∣

r − f ′
(

M j

)

∣

∣

∣

∣

≍ mjFM−2
1 ,(3.1.15)

so that by (3.1.10) and (3.1.6) we have

n j ≍ F2k2m2
j M
−3
1 ≍ F−1h3k−1m2

j .(3.1.16)

69

This gives (3.1.13) owing to the estimatesmj ≫ M1+δ2
1 F−1/2 and

F ≪ M1r. Also, it follows thatn j ≪ MA
1 , for h≪ M1 andmj ≪ M1 by

(3.1.8).
The numbersn j are determined by the condition

(3.1.17) p′j,nj

(

M j

)

= 0.

Then clearly
(−1) j p′j,n

(

M j

)

> 0 for n < n j .

On the other hand, by (3.1.7)

(−1) j p′j,n(M(r)) = −n1/2M(r)−1/2k−1 < 0

for all positive n. Consequently, forn < n j there is a zerox j,n of
p′j,n(x) in the interval (M1,M2), and moreoverx1,n ∈ (M1,M(r)), x2,n ∈
(M(r),M2). Also, it is clear thatp′j,n has no zero in the interval (M1,M2)
if n ≥ n j .

To prove the uniqueness ofx j,n, we show thatp′′j,n is positive and
thusp′j,n is increasing in the interval [M1,M2]. In fact,

(3.1.18) p′′j,n(x) ≍ FM−2
1 for M1 ≤ x ≤ M2, n ≤ 2n j ,

at least ifM1 is supposed to be sufficiently large. For by definition

p′′j,n(x) = f ′′(x) + (−1) j 1
2

n1/2x−3/2k−1,

where by (3.1.16) and (3.1.8)

n1/2x−3/2k−1 ≪ Fm1M−3
1 ≪ FM−2−δ3

1 ,
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so that by (3.1.14) the termf ′′(x) dominates.70

After these preliminaries we may go into the proof of the formula
(3.1.11). Denote by 5 the sum under consideration. Actuallyit is easier
to deal with the smoothed sum

S′ = U−1

U
∫

◦

S(u) du,(3.1.19)

where

S(u) =
∑

M1+u≤m≤M2−u

d(m)g(m)e( f (m)).(3.1.20)

The parameterU will be chosen later in an optimal way; presently
we suppose only that

(3.1.21) Mδ4
1 ≪ U ≤ 1

2
min(m1,m2) .

Since
∑

x≤n≤x+y

d(n) ≪ y log x for xǫ ≪ y≪ x,(3.1.22)

(see [25]), we have

S − S′ ≪ GUL.(3.1.23)

The summation formula (1.9.1) is now applied to the sumS(u),
which is first written as

S(u) =
∑

a≤m≤b

d(m)g(m)e( f (m) −mr)e(mr),

with a = M1+u, b = M2−u. We may assume that neither of the numbers
a andb is an integer, for the value ofS(u) for the finitely many other
values ofu is irrelevant in the integral (3.1.19). Then by (1.9.1)

S(u) = k−1

b
∫

a

(log x+ 2γ − 2 logk)g(x)e( f (x) − rx) dx

(3.1.24)
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+ k−1
∞
∑

n=1

d(n)

b
∫

a

{

−2πek

(

−nh̄
)

Y◦
(

4π
√

nx/k
)

+ 4ek

(

nh̄
)

K◦
(

4π
√

nx/k
)}

g(x)e( f (x) − rx) dx

= k−1















I◦ +
∞
∑

n=1

d(n)
(

ek

(

−nh̄
)

In + ek

(

nh̄
)

in
)















,

say.71

The integralsin are very small and quite negligible. Indeed, by
(3.1.5) we have

√
nM1/k≫

√
nMδ1

1 , so that by (1.3.17)

k−1
∞
∑

n=1

d(n) |in| ≪ k−1GM1

∞
∑

n=1

d(n) exp
(

−A
√

nMδ1
1

)

(3.1.25)

≪ Gexp
(

−AMδ1
1

)

.

Consider next the integralI◦. We apply Theorem 2.1 withα = −r
andµ(x) a constant function≍ M1. The assumptions of Theorem 2.1
are satisfied in virtue of the conditions of our theorem. By (3.1.7), the
saddle point isM(r). Hence the saddle-point term fork−1I◦ equals the
leading term in (3.1.11).

The first error term in (2.1.9) is

≪ LGM1 exp(−AF)

which is negligible by (3.1.12).
The last two error terms contribute

(3.1.26)

≪ GL
{

(∣

∣

∣ f ′(a) − r
∣

∣

∣ + F1/2M−1
1

)−1
+

(∣

∣

∣ f ′(b) − r
∣

∣

∣ + F1/2M−1
1

)−1
}

.

For same reasons as in (3.1.15), we have
∣

∣

∣ f ′(a) − r
∣

∣

∣ ≍ Fm1M−2
1 ,

and likewise for| f ′(b) − r |. Hence the expression (3.1.26) is≪ F−1

Gm−1
1 M2

1L, which is further≪ FGm−1
1 r−2L by (3.1.6). The second error72
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term in (2.1.9), viz.o(GM1F−3/2L), can be absorbed into this, for

M1F−3/2 ≪ r−1 ≪ FM−1
1 r−2 ≪ Fm−1

1 r−2.

Hence the error terms fork−1I◦ give togethero(FGh−2km−1
1 L),

which is the first error term in (3.1.11).
We are now left with the integrals

(3.1.27) In = −2π

b
∫

a

Y◦
(

4π
√

nx/k
)

g(x)e( f (x) − rx) dx.

By (1.3.9), the functionY◦ can be written in terms of Hankel func-
tions as

Y◦(z) =
1
2i

(

H(1)
◦ (z) − H(2)

◦ (z)
)

,(3.1.28)

where by (1.3.13)

H( j)
◦ (z) =

(

2
πz

)1/2

exp

(

(−1) j−1i

(

z−
1
4
π

))

(

1+ g j(z)
)

.(3.1.29)

The functionsg j(z) are holomorphic in the half-planeRe z> 0, and
by (1.3.14)

(3.1.30)
∣

∣

∣g j(z)
∣

∣

∣ ≪ |z|−1 for |z| ≥ 1,Re z> 0.

By (3.1.27) - (3.1.29) we may write

In = I (1)
n − I (2)

n ,(3.1.31)

where

I ( j)
n = i2−1/2k1/2n−1/4

b
∫

a

x−1/4g(x)
(

1+ g j

(

4π
√

nx/k
))

e
(

p j,n(x)
)

dx.

(3.1.32)
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For n ≤ 2n j we apply Theorem 2.1 toI ( j)
n , again withα = −r. The 73

function
f (x) + (−1) j−1

(

2
√

nx/k− 1/8
)

now stands for the functionf , and moreoverµ(x) ≍ M1 andF(x) = F.
The conditions of the theorem are satisfied, in particular the validity of
the condition (iv) onf ′′ follows from (3.1.18), and the condition (iii)
on f ′ can be checked by (3.1.3) and (3.1.16). The numberx j,n is, by
definition, the saddle point forI ( j)

n , and it lies in the interval (M1,M2)
if and only if n < n j . However, inI ( j)

n the interval of integration is
[a, b] = [M1+u,M2−u], andx j,n ∈ (a, b) if and only if n < n j(u), where

(3.1.33) n j(u) =
(

r − f ′
(

M j + (−1) j−1u
))2

k2
(

M j + (−1) j−1u
)

in analogy with (3.1.10). But for simplicity we count the saddle-point
terms for alln < n j , and the number of superfluous terms is then

(3.1.34) ≪ 1+ n j − n j(U)≪ 1+ F2k2m1M−3
1 U.

The saddle-point term fork−1I ( j)
n is

i2−1/2k−1/2n−1/4x−1/4
j,n g

(

x j,n

) (

1+ g j

(

4π
√

nxj,n/k
))

×(3.1.35)

×p′′j,n
(

x j,n

)−1/2
e
(

p j,n

(

x j,n

)

+ 1/8
)

.

Multiplied by (−1) j−1d(n)ek(−nh̄), these agree, up tog j(. . .), with
the individual terms of the sums on the right of (3.1.11). Theeffect of
the omission ofg j(. . .) is by (3.1.30), (3.1.16), (3.1.18), and (3.1.5)

≪ F−1/2Gk1/2M1/4
1

∑

n≪M1

d(n)n−3/4

≪ Gkm1/2
1 M−1/2

1 L ≪ Gm1/2
1 L,

which can be absorbed into the second error term in (3.1.11).74

The extra saddle-point terms, counted in (3.1.34), contribute at most

≪
(

1+ F2k2m1M−3
1 U

)

F−1/2Gk−1/2M3/4+ǫ
1 n−1/4

1 ,
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which, by (3.1.16) and (3.1.6), is

(3.1.36) ≪ F1/2Gh−3/2k1/2m−1/2
1 Mǫ

1 + F−1/2Gh3/2k−1/2m1/2
1 Mǫ

1U.

Now, allowing for these error terms, we have the same saddle-point
terms given in (3.1.11), for all sumsS(u), and hence by (3.1.19) forS′,
too.

Consider now the error terms when Theorem 2.1 is applied toI ( j)
n

for n ≤ 2n j . The first error term in (2.1.9) is clearly negligible. Further,
the contribution of the error terms involvingx◦ to S(u) is

≪ F−3/2Gk−1/2M3/4
1

∑

n≪n1

d(n)n−1/4,

which, by (3.1.16), (3.1.8) and (3.1.5), is

≪ Gkm3/2
1 M−3/2

1 L ≪ Gkm1/2
1 M−1/2

1 L ≪ Gm1/2
1 .

This is smaller than the second error term in (3.1.11).
The last two error terms are similar, so it suffices to considero(E◦(a))

as an example. By (2.1.8) and (3.1.32), this error term fork−1I ( j)
n is

≪ Gk−1/2M−1/4
1 n−1/4

(∣

∣

∣p′j,n(a)
∣

∣

∣ + p′′j,n(a)1/2
)−1

.

Consider the casej = 1; the casej = 2 is less critical since|p′2,n(a)|
cannot be small. Nowp′1,n1(u)(a) = 0 andp′′1,n(a) ≍ F−1r2, so it is easily 75

seen that

(∣

∣

∣p′1,n(a)
∣

∣

∣ + p′′1,n(a)1/2
)−1
≪















F1/2r−1 for |n− n1(u)| ≪ F−1/2h2m1,

kM1/2
1 n1/2

1 |n− n1(u)|−1 otherwise

Note that by (3.1.8) and (3.1.6)

F−1/2h2m1 ≫ F−1h2M1+δ2
1 ≫ hkMδ2

1 .

Hence, by (3.1.22), the mean value ofd(n) in the interval|n− n1(u)|
≪ F−1/2h2m1 can be estimated aso(L). It is now easily seen that the
contribution toS(u) of the error terms in question is

≪ Gh1/2k1/2m1/2
1 L2,
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which is the second error term in (3.1.11).
The smoothing device was introduced with the integralsI ( j)

n for n >
2n j in mind. By (3.1.19), (3.1.24), (3.1.31), and (3.1.32), their contribu-
tion to S′ is equal to

i2−1/2k−1/2
2

∑

j=1

(−1) j−1
∑

n>2nj

d(n)ek

(

−nh̄
)

n−1/4×(3.1.37)

×
M2
∫

M1

η1(x)x−1/4g(x)
(

1+ g j

(

4π
√

nx/k
))

e
(

p j,n(x)
)

dx,

whereη1(x) is a weight function in the sense of Chapter 2, withJ = 1
andU being the other smoothing parameter. The series in (3.1.24)is
boundedly convergent with respect tou, by Theorem 1.7, so that it can
be integrated term by term.

The smoothed exponential integrals in (3.1.37) are estimated by
Theorem 2.3, wherep j,n(z) stands forf (z), andµ ≍ m1. To begin with,76

we have to check that the conditions of this theorem are satisfied. We
have

p′j,n(z) = f ′(z) − r + (−1) j−1n1/2z−1/2k−1.

Let n > 2n j , and letz lie in the domainD, sayD◦, of Theorem 2.3.
Then by (3.1.16)

∣

∣

∣n1/2z−1/2k−1
∣

∣

∣ ≫ m1FM−2
1 .

On the other hand, sincef ′(M(r)) − r = 0 and| f ′′(z)| ≪ FM−2
1 for

z ∈ D◦ by (3.1.3) and Cauchy’s integral formula, we also have

| f ′(z) − r | ≪ m1FM−2
1 .

Thus, the condition (2.2.3) holds with

(3.1.38) M = k−1M−1/2
1 n1/2.

Further, to verify the condition (2.2.2), comparep′j,n(x) with p′j,nj
(x),

using (3.1.17) and the fact thatp′j,nj
(x) is increasing in the interval

[M1,M2].
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We may now apply the estimate (2.2.4) in (3.1.37). The secondterm
on the right of (2.2.4) is exponentially small, for by (3.1.38), (3.1.16),
and (3.1.8)

Mµ≫ k−1M−1/2
1 n1/2m1 ≫ (n/n1)1/2 Fm2

1M−2
1

≫ (n/n1)1/2 M2δ2
1 .

Hence these terms are negligible.
The contribution of the termsU−1GM−2 in (2.2.4) to (3.1.37) is

≪ Gk3/2M3/4
1 U−1

∑

n≫n1

d(n)n−5/4

≪ Gk3/2M3/4
1 n−1/4

1 U−1L

≪ GF−1/2kM3/2
1 m−1/2

1 U−1L

≪ GFh−3/2k5/2m−1/2
1 U−1L.

77

Combining this with (3.1.23) and (3.1.36), we find that (3.1.11)
holds, up to the additional error terms

≪ GUL+ F1/2Gh−3/2k1/2m−1/2
1 Mǫ

1(3.1.39)

+ F−1/2Gh3/2k−1/2m1/2
1 Mǫ

1U +GFh−3/2k5/2m−1/2
1 U−1L.

Here the second term is superseded by the last term in (3.1.11). Fur-
ther, the first and last term coincide with the last term in (3.1.11) if we
choose

(3.1.40) U = F1/2h−3/4k5/4m−1/4
1 .

Then, by (3.1.8), the third term in (3.1.39) is

≪ Gh3/4k3/4m1/4
1 M1 ≪ G(hk)1/2m1/2

1 Mǫ−δ2/4
1 ,

which can be absorbed into the second error term in (3.1.11).
It should still be verified that the numberU in (3.1.40) satisfies the

condition (3.1.21). By (3.1.8) and (3.1.6) we have

Um−1
1 ≪ U

(

M1+δ2
1 F−1/2

)−1
≪ (hk)1/4m−1/4

1 M−δ2
1 ≪ M−δ2

1
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and also, in the other direction,

U ≫ F1/2h−3/4k5/4M−1/4+δ3/4
1

≫ M1/4+δ3/4
1 h−1/4k3/4 ≫ Mδ3/4

1

Hence (3.1.21) holds, and the proof of the theorem is complete.78

The next theorem is an analogue of Theorem 3.1 for exponential
sums involving the Fourier coefficientsa(n) of a cusp form of weightκ.
The proof is omitted, because the argument is practically the same; the
summation formula (1.9.2) is just applied in place of (1.9.1). Note that
in (1.9.2) there is nothing is correspond to the first term in (1.9.1), and
consequently in the transformation formula there are no counterparts for
the first explicit term and the first error term in (3.1.11). �

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satis-
fied. Then

∑

M1≤m≤M2

a(m)g(m)e( f (m))(3.1.41)

= i2−1/2k−1/2
2

∑

j=1

(−1) j−1
∑

n<nj

a(n)ek

(

−nh̄
)

nκ/2+1/4×

× xκ/2−3/4
j,n g

(

x j,n

)

p′′j,n
(

x j,n

)−1/2
e
(

p j,n

(

x j,n

)

+ 1/8
)

+ o
(

G (|h|k)1/2 M(κ−1)/2
1 m1/2

1 L2
)

+ o
(

F1/2G|h|−3/4k5/4M(κ−1)/2
1 m−1/4

1 L
)

.

3.2 Transformation of Smoothed Exponential Sums

We now give analogues of Theorem 3.1 and 3.2 for smoothed exponen-
tial sums provided with weights of the typeηJ(n). We have to pay for
the better error terms in these new formulae by allowing certain weights
to appear in the transformed sums as well.

Theorem 3.3. Suppose that the assumptions of Theorem 3.1 are satis-
fied. Let

(3.2.1) U ≫ F−1/2M1+δ4
1 ≍ F1/2r−1Mδ4

1 ,
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and let J be a fixed positive integer exceeding a certain bound(which 79

depends onδ4). Write for j= 1, 2

M′j = M j + (−1) j−1JU = M(r) + (−1) jm′j ,

and suppose that m′j ≍ mj . Let nj be as in(3.1.10), and define analo-
gously

(3.2.2) n′j =
(

r − f ′
(

M′j
))2

k2M′j .

Then, defining the weight functionηJ(x) in the interval[M1,M2] as
in (2.1.2), we have

∑

M1≤m≤M2

ηJ(m)d(m)g(m)e( f (m))(3.2.3)

= k−1 (

log M(r) + 2γ − 2 logk
)

g(M(r)) f ′′(M(r))−1/2

e( f (M(r)) − rM (r) + 1/8)

+ i2−1/2k−1/2
2

∑

j=1

(−1) j−1
∑

n<nj

w j(n)d(n)ek

(

−nh̄
)

n−1/4x−1/4
j,n ×

×
(

x j,n

)

p′′j,n
(

x j,n

)−1/2
e
(

p j,n

(

x j,n

)

+ 1/8
)

+ o
(

F−1G|h|3/2k−1/2m1/2
1 UL

)

,

where

w j(n) = 1 for n < n′j ,(3.2.4)

w j(n) ≪ 1 for n < n j ,(3.2.5)

w j(y) and w′j(y) are piecewise continuous functions in the interval(n′j ,
n j) with at most J− 1 discontinuities, and

(3.2.6) w′j(y) ≪
(

n j − n′j
)−1

for n′j < y < n j

whenever w′j(y) exists.
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Proof. We follow the argument of the proof of Theorem 3.1, using80

however Theorem 2.2 in place of Theorem 2.1. Denoting bySJ the
smoothed sum under consideration, we have by (1.9.1), as in (3.1.24),

SJ = k−1

M2
∫

M1

(

log x+ 2γ − 2 logk
)

ηJ(x)g(x)e( f (x) − rx) dx

(3.2.7)

+ k−1
∞
∑

n=1

d(n)

M2
∫

M1

{

−2πek

(

−nh̄
)

Y◦
(

4π
√

nx/k
)

+ 4ek

(

nh̄
)

K◦

(

4π
√

nx/k
)}

ηJ(x)g(x)e( f (x) − rx) dx

= k−1















I◦ +
∞
∑

n=1

d(n)(ek(−nh̄)In + ek(nh̄)in)















.

As in the proof of Theorem 3.1, the integralsin are negligible.
Consider next the integralI◦. We apply Theorem 2.2 choosing

µ(x) ≍ M1 again. The saddle-point isM(r), as before, and the saddle-
point term forI◦ is the same as in the proof of Theorem 3.1. The first
error term in (2.1.11) is exponentially small. The error terms involving
EJ are also negligible ifJ is taken sufficiently large (depending onδ4),
since

U−1 f ′′(x)−1/2 ≪ M−δ4 for M1 ≤ x ≤ M2.

The contribution of the error termo(G(x◦)µ(x◦)F(x◦)−3/2) to k−1I◦
is by (3.2.1) and (3.1.8)

≪ k−1F−3/2GM1L ≪ F−1GUL≪ F−1Gh−1/2m1/2
1 U,

which does not exceed the error term in (3.2.3).
Turning to the integralsIn, we write as in (3.1.31) and (3.1.32)

In = I (1)
n − I (2)

n ,

where81
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(3.2.8)

I ( j)
n = i2−1/2k1/2n−1/4

M2
∫

M1

ηJ(x)−1/4g(x)
(

1+ g j

(

4π
√

nx/k
))

e
(

p j,n(x)
)

dx.

Let first n > 2n j . As in the proof of Theorem 3.1, we may apply
Theorem 2.3 withµ ≍ m1 andM as in (3.1.38). Observe that by (3.2.1),
(3.1.16), and (3.1.8)

U−1M−1 ≪ (n1/n)1/2 F−1/2m−1
1 M1−δ4

1 ≪ (n1/n)1/2 M−δ2−δ4
1

whence we we may make the termU−JGM−J−1 in (2.2.4) negligibly
small by takingJ large enough. As before, the second term in (2.2.4) is
also negligible.

The terms forn ≤ 2n j are dealt with by Theorem 2.2. The saddle
point terms occur again forn < n j , and they are of the same shape as in
(3.1.35) except that there is the additional factor

(3.2.9) w j(n) = ξ
(

x j,n

)

.

The property (3.2.4) ofw j(n) is immediate by (2.1.12), forM1 +

JU < x j,n < M2 − JU if and only if n < n′j . Further, (3.2.5) follows
from (2.1.12) - (2.1.14) by (3.2.1) and (3.1.18). To prove the property
(3.2.6), consider

w j(y) = ξ
(

x j,y

)

as a function of the continuous variable in the interval (n′j , n j). Herex j,y

is the unique zero ofp′j,y(x) in the interval (M1,M1+ JU) for j = 1, and
in the interval (M2 − JU,M2) for j = 2. Thusz= x j,y satisfies

f ′(z) − r + (−1) j−1y1/2z−1/2k−1 = 0.

Hence, by implicit differentiation, 82

p′′j,y(z)
dxj,y

dy
+

1
2

(−1) j−1y−1/2z−1/2k−1 = 0,

which implies that

(3.2.10)

∣

∣

∣

∣

∣

∣

dxj,y

dy

∣

∣

∣

∣

∣

∣

≍ F−1k−1M3/2
1 n−1/2

1 ≍ m1n−1
1 for n′j < y < n j .
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The functionξJ(x) in (2.1.13) and (2.1.14) is continuously differen-
tiable except at the pointsa+ JU andb− jU, j = 1, . . . , J, where terms
appear or disappear. By differentiation, noting thatf ′′′(x) ≪ FM−3

1 , it
is easy to verify that

(3.2.11) ξ′J(x) ≪ U−1

elsewhere in the intervals (a, a+JU) and (b−JU, b). By (3.1.10), (3.2.2),
and (3.1.14) we have

(3.2.12)
(

n j − n′j
)

n−1
j ≍ m−1

1 U.

Now (3.2.6) follows from (3.2.10) - (3.2.12) at those pointsy for
which x j,y is not of the forma+ jU or b− jU with 1 ≤ j ≤ J − 1.

As in the proof of Theorem 3.1, we may omitg j(. . .) in the saddle-
point terms with an admissible error

Gkm1/2
1 M−1/2

1 L ≪ F−1Gh3/2k−1/2m1/2
1 U,

and after that these terms coincide with those in (3.2.3).
Consider finally the error terms in (2.1.11) forI ( j)

n . The first of these
is clearly negligible. Also, for the same reason as in the case of I◦, the
error terms involvingEJ can be omitted ifJ is chosen sufficiently large.

Finally, the second error term in (2.1.11) fork−1I ( j)
n is83

≪ F−3/2Gk−1/2M3/4
1 n−1/4

1 for n < n′j

and
≪ F−1Gk−1/2M3/4

1 n−1/4
1 for n′j ≤ n < n j .

The contribution of these toSJ is

(3.2.13) ≪ F−3/2Gk−1/2M3/4
1 n3/4

1 L+F−1Gk−1/2M3/4
1 n−1/4

1

(

n j − n′j
)

L.

Here we estimated the mean value ofd(n) in the interval [n′j , n j) by
o(L), which is possible, by (3.1.22), for by (3.2.12), (3.1.16), (3.1.8),
(3.2.1), and (3.1.6) we have

n j − n′j ≪ m−1
1 n1U ≪ F2k2m1M−3

1 U
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≪ F2k2
(

M1+δ2
1 F−1/2

)

M−3
1

(

F−1/2M1+δ4
1

)

≍ hkMδ2+δ4
1 .

By (3.2.12), the second term in (3.2.13) is

≍ F−1Gk−1/2m−1
1 M3/4

1 n3/4
1 UL,

which is of the same order as the error term in (3.2.3) and dominates the
first term, since

m−1
1 U ≫

(

F−1/2M1

)

M−1
1 = F−1/2.

The proof of the theorem is now complete.
The analogue of the preceding theorem for exponential sums involv-

ing Fourier coefficientsa(n) is as follows. The proof is similar and can
be omitted. �

Theorem 3.4. With the assumptions of Theorem 3.3, we have 84
∑

M1≤m≤M2

ηJ(m)a(m)g(m)e( f (m))(3.2.14)

= i2−1/2k−1/2
2

∑

j=1

(−1) j−1
∑

n<nj

w j(n)a(n)ek

(

−nh̄
)

n−κ/2+1/4

× xκ/2−3/4
j,n g (x− j, n) p′′j,n

(

x j,n

)−1/2
e
(

p j,n

(

x j,n

)

+ 1/8
)

+ o
(

F−1G|h|3/2k−1/2M(κ−1)/2
1 m1/2

1 UL
)

.

Remark. In practice it is of advantage to chooseU as small as the con-
dition (3.2.1) permits, i.e.

(3.2.15) U ≍ F1/2+ǫ r−1.

Then the error term in (3.2.3) is

(3.2.16) o
(

F−1/2+ǫG (|h|k)1/2 m1/2
1

)

and that in (3.2.14) is

(3.2.17) o
(

F−1/2+ǫG (|h|k)1/2 M(κ−1)/2
1 m1/2

1

)

.



Chapter 4

Applications

THE THEOREMS OF the preceding chapter show that the short expo-85

nential sums in quesion depend on the rational approximation of f ′(n) in
the interval of summation. But in long sums the value off ′(n) may vary
too much to be approximated accurately by a single rational number,
and therefore it is necessary to split up the sum into shortersegments
such that in each segmentf ′(n) lies near to a certain fractionr. By suit-
able averaging arguments, it is possible to add these short sums - in a
transformed shape - in a non-trivial way. Variations on thistheme are
given in§§ 4.2 - 4.4. But as a preliminary for§§ 4.2 and 4.4, we first
work out in§ 4.1 the transformation formulae of Chapter 3 in the special
case of Dirichlet polynomials related toζ2(s) andϕ(s).

4.1 Transformation Formulae for Dirichlet Polyno-
mials

The general theorems of the preceding chapter are now applied to
Dirichlet polynomials

S (M1,M2) =
∑

M1≤m≤M2

d(m)m−1/2−it ,(4.1.1)

Sϕ (M1,M2) =
∑

M1≤m≤m2

a(m)m−k/2−it ,(4.1.2)

80
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as well as to their smoothed variants

S̃ (M1,M2) =
∑

M1≤m≤M2

ηJ(m)d(m)m−1/2−it ,(4.1.3)

S̃ϕ (M1,M2) =
∑

M1≤m≤M2

ηJ(m)a(m)m−k/2−it ,(4.1.4)

whereηJ(x) is a weight function defined in (2.1.2). 86

We shall suppose for simplicity thatt is a sufficiently large positive
number, and putL = log t. The functionχ(s) is as in the functional
equationζ(s) = χ(s)ζ(1− s), thus

χ(s) = ssπs−1 sin

(

1
2

sπ

)

Γ(1− s).

If σ is bounded andt tends to infinity, then (see [27], p. 68)

(4.1.5) χ(s) = (2π/t)s−1/2 ei(t+π/4)
(

1+ o
(

t−1
))

.

Define also

(4.1.6) φ(x) = ar sinh
(

x1/2
)

+
(

x+ x2
)1/2

.

As before,δ1, δ2, . . . will denote positive constants which may be
supposed to be arbitrarily small.

Theorem 4.1. Let r = h/k be a rational number such that

M1 <
t

2πr
< M2(4.1.7)

and

1 ≤ k≪ M1/2−δ1
1 .(4.1.8)

Write

M j =
t

2πr
+ (−1) jmj ,(4.1.9)
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and suppose also that m1 ≍ m2 and

tδ2 max
(

t1/2r−1, hk
)

≪ m1 ≪ M1−δ3
1 .(4.1.10)

Let

(4.1.11) n j = h2m2
j M
−1
j .

Then87

S(M1,M2) =
{

(hk)−1/2 (

log(t/2π) + 2γ − log(hk)
)

(4.1.12)

+ π1/4(2hkt)−1/4
2

∑

j=1

∑

n<nj

d(n)e

(

n

(

h̄
k
− 1

2hk

))

n−1/4×

×
(

1+
πn

2hkt

)−1/4
exp

(

i(−1) j−1
(

2tφ
(

πn
2hkt

)

+
π

4

))

}

r it

χ

(

1
2
+ it

)

+ o
(

h−3/2k1/2m−1
1 t1/2L

)

+ o
(

hm1/2
1 t−1/2L2

)

+ o
(

h−1/4k3/4m−1/4
1 L

)

.

Proof. We apply Theorem 3.1 with−r in place ofr, and with

f (z) = −(t/2π) logz,(4.1.13)

and

g(z) = z−1/2.(4.1.14)

Then the assumptions of the theorem are obviously satisfied with

F = t,(4.1.15)

G = M−1/2
1 ≍ r1/2t−1/2,(4.1.16)

and

(4.1.17) M(−r) =
t

2πr
.
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Then the numbern j in (3.1.10) equals the one in (4.1.11).
The leading term on the right of (3.1.11) is

(hk)−1/2(log(t/2π) + 2γ − log(hk))r it (2π/t)itei(t+π/4)

which can also be written, by (4.1.5), as

(4.1.18) (hk)−1/2(log(t/2π) + 2γ − log(hk))r itχ

(

1
2
+ it

)

(

1+ o
(

t−1
))

.

The functionp j,n(x) reads in the present case 88

(4.1.19) − (t/2π) log x+ rx + (−1) j−1
(

2
√

nx/k− 1/8
)

and the numbersx j,n are roots of the equation

(4.1.20) p′j,n = −
t

2πx
+ r + (−1) j−1n1/2x−1/2k−1 = 0,

and thus roots of the quadratic equation

(4.1.21) x2 −
( t
πr
+

n

h2

)

x+
( t
2πr

)2
= 0.

Moreover, sincex1,n < x2,n, we have

x j,n =
t

2πr
+

n

2h2
+

(−1) j

h2

(

n2

4
+

hknt
2π

)1/2

(4.1.22)

and

(t/2πr)2x−1
j,n =

t
2πr
+

n

2h2
−

(−1) j

h2

(

n2

4
+

hknt
2π

)1/2

.(4.1.23)

Next we show that
(4.1.24)

2−1/2k−1/2x−3/4
j,n p′′j,n

(

x j,n

)−1/2
= π1/4(2hkt)−1/4

(

1+
πn

2hkt

)−1/4
.

Indeed, by (4.1.19) we have

2kx3/2
j,n p′′j,n

(

x j,n

)

= π−1ktx−1/2
j,n + (−1) jn1/2,
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which by (4.1.20) and (4.1.23) is further equal to

(−1) j−1h2n−1/2
(

2
( t
2πr

)2
x−1

j,n −
t
πr

)

+ (−1) jn1/2

= π−1/2(2hkt)1/2
(

1+
πn

2hkt

)1/2
.

This proves (4.1.24).
To complete the calculation of the explicit terms in (3.1.11), we still89

have to work outp j,n(x j,n). Note that by (4.1.22) and (4.1.23)

(

2πrt−1x j,n

)

(−1) j = 1+
πn
hkt
+

(

(

πn
hkt

)2
+

2πn
hkt

)1/2

=

(

(

πn
2hkt

)1/2
+

(

1+
πn

2hkt

)1/2
)2

,

whence

(4.1.25) log
(

2πrt−1x j,n

)

= (−1) j2ar sinh

(

(

πn
2hkt

)1/2
)

.

Also, by (4.1.20) and (4.1.22),

2πrx j,n + 4π(−1) j−1n1/2x1/2
j,n k−1

= 2t − 2πrx j,n

= t −
πn
hk
+ (−1) j−12t

(

πn
2hkt

+

(

πn
2hkt

)2
)1/2

Together with (4.1.19), (4.1.25), and (4.1.6), this gives

2πp j,n

(

x j,n

)

= (−1) j−1
(

2tφ
(

πn
2hkt

)

−
π

4

)

− t log(t(2π) + t log r + t −
πn
hk
.

Hence, using (4.1.5) again, we have

i(−1) j−1e
(

p j,n

(

x j,n

)

+ 1/8
)

=(4.1.26)

= e
(

−
n

2hk

)

exp
(

i(−1) j−1
(

2tφ
(

πn
2hkt

)

+
π

4

))

r it
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χ

(

1
2
+ it

)

(

1+ 0
(

t−1
))

.

By (4.1.18), (4.1.24), and (4.1.26), we find that the explicit terms
on the right of (3.1.11) coincide with those in (4.1.12), up to the factor
1+ o(t−1). The correctiono(t−1) can be omitted with an error

≪ t−1
(

(hk)−1/2L + (hkt)−1/4n3/4
1 L

)

,

which is 90

≪ t−1
(

(hk)−1/2L + t−1h2k−1m3/2
1 L

)

≪ hm1/2
1 t−1L(4.1.27)

by (4.1.11), (4.1.7), and (4.1.10). This is clearly negligible in (4.1.12).
Finally, the error terms in (3.1.11) give those in (4.1.12) by (4.1.15)

and (4.1.16).
An application of Theorem 3.2 yields an analogous result for

Sϕ(M1,M2). �

Theorem 4.2. Suppose that the conditions of Theorem 4.1 are satisfied.
Then

Sϕ(M1,M2) = π
1/4(2hkt)−1/4



















2
∑

j=1

∑

n<nj

a(n)e

(

n

(

h̄
k
− 1

2hk

))

×

(4.1.28)

× n1/4−k/2
(

1+
πn

2hkt

)−1/4
exp

(

i(−1) j−1
(

2tφ
(

πn
2hkt

)

+
π

4

))

}

r it

χ(1/2+ it) + 0
(

hm1/2
1 t−1/2L2

)

+ 0
(

h−1/4k3/4m−1/4
1 L

)

.

Turnign to smoothed Dirichlet polynomials, we first state a transfor-
mation formula forS̃(M1,M2).

Theorem 4.3. Suppose that the conditions of Theorem 4.1 are satisfied.
Let

(4.1.29) U ≫ r−1t1/2+δ4
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and let J be a fixed positive integer exceeding a certain bound(which
depends onδ4). Write for j= 1, 2

M′j = M j + (−1) j−1JU =
t

2πr
+ (−1) jm′j ,

and suppose that mj ≍ m′j. Define91

(4.1.30) n′j = h2(m′j)
2
(

M′j
)−1

.

Then, defining the weight functionηJ(x) in the interval [M1,M2]
with the aid of the parameters U and J, we have

S̃ (M1,M2) =
{

(hk)−1/2(log(t/2π) + 2γ − log(hk))(4.1.31)

+π1/4(2hkt)−1/4
2

∑

j=1

∑

n<nj

w j(n)d(n)e

(

n

(

h̄
k
−

1
2hk

))

n−1/4×

×
(

1+
πn

2hkt

)−1/4
exp

(

i(−1) j−1
(

2tφ
(

πn
2hkt

)

+
π

4

))

}

r itχ(1/2+ it)

+o
(

h2k−1m1/2
1 t−3/2UL

)

,

where

w j(n) = 1 for n < n′j ,(4.1.32)

w j(n) ≪ 1 for n < n j ,(4.1.33)

w j(y) and w′j(y) are piecewise continuous in the interval(n′j , n j) with at
most J− 1 discontinuities, and

(4.1.34) w′j(y) ≪
(

n j − n′j
)−1

for n′j < y < n j

whenever w′j(y) exists

Proof. We apply Theorem 3.3 to the sum̃S(M1,M2) with f , g, F,G and
r as in the proof of Theorem 4.1; in particular,F = t. Hence the con-
dition (3.2.1) onU holds by (4.1.29). The other assumptions of the
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theorem are readily verified, and the explicit terms in (4.1.31) were al-
ready calculated in the proof of Theorem 4.1,up to the properties of the
weight functionsw j(y), which follow from (3.2.4) - (3.2.6).

The error term in (3.2.3) gives that in (4.1.31). It should also be
noted that as in the proof of Theorem 4.1 there is an extra error term92

caused byo(t−1) in the formula (4.1.5) forχ(1/2+ it). This error term is
≪ hm1/2

1 t−1L, as was seen in (4.1.27). By (4.1.29) this can be absorbed
into the error term in (4.1.31), and the proof of the theorem is complete.

The analogue of the preceding theorem forS̃ϕ(M1,M2) reads as fol-
lows. �

Theorem 4.4. With the assumptions of Theorem 4.3, we have

S̃ϕ (M1,M2) = π
1/4(2hkt)−1/4



















2
∑

j=1

∑

n<nj

w j(n)a(n)×

(4.1.35)

× e

(

n

(

h̄
k
− 1

2hk

))

n1/4−k/2
(

1+
πn

2hkt

)−1/4
×

× exp
(

i(−1) j−1
(

2tφ
(

πn
2hkt

)

+
π

4

))}

r itχ(1/2+ it)

+ o
(

h2k−1m1/2
1 t−3/2UL

)

.

Remark 1. It is an easy corollary of Theorem 4.1 that
(4.1.36)

∣

∣

∣

∣

∣

∣

∣

∑

x1≤n≤x2

d(n)n−1/2−it

∣

∣

∣

∣

∣

∣

∣

≪ log t for t ≥ 2 and |xi − t/2π| ≪ t2/3.

Remark 2. In Theorems 4.3 and 4.4 the error term is minimal whenU
is as small as possible, i.e.

(4.1.37) U ≍ r−1t1/2+ǫ .

The error term then becomes

(4.1.38) 0
(

hm1/2
1 t−1+ǫ

)

.
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This is significantly smaller than the error terms in Theorems 4.1
and 4.2. for example, ifr = 1 andm1 = t3/4, then the error in Theorem
4.1 is≪ t−1/8L2, while (4.1.38) is just≪ t−5/8+ǫ . The lengthsn j of the
transformed sums are aboutt1/2, which is smaller than the length≍ t3/4

of the original sum. A trivial estimate of the right hand sideof (4.1.12)93

is≪ t1/8L, which is a trivial estimate of the original sum is≪ t1/4L.
Thanks to good error terms, Theorems 4.3 and 4.4 are useful when a

number of sums are dealt with and there is a danger of the accumulation
of error terms.

Remark 3. With suitable modifications, the theorems of this section
hold for negative values oft as well. In this caser (and thus alsoh)
will be negative. Becausep′′j,n is now negative, our saddle point theo-
rems take a slightly different form (see the remark in the end of§ 2.1.
When the calculations in the proof of Theorem 4.1 are carriedout, then
instead of (4.1.12) we obtain, fort < 0,

S (M1,M2) =
{

(|h|k)−1/2(log |t|/2π) + 2γ − log(|h|k)

+ π1/4(2hkt)−1/4
2

∑

j=1

∑

n<nj

d(n)e

(

n

(

h̄
k
−

1
2hk

))

n−1/4×

×
(

1+
πn

2hkt

)−1/4
exp

(

i(−1) j−1
(

2tφ
(

πn
2hkt

)

− π
4

))

}

|r |it

χ

(

1
2
+ it

)

+ o
(

|h|−3/2k1/2m−1
1 |t|

1/2L
)

+ o
(

|h|m1/2
1 |t|

−1/2L2
)

+ o
(

|h|−1/4k3/4m−1/4
1 L

)

,

and similar modifications have to be made in the other theorems. Of
course, this formula can also be deduced from (4.1.12) simply by com-
plex conjugation.

4.2 On the Order ofϕ(k/2+ it)

Dirichlet series are usually estimated by making use of their approx-
imate functional equations. Forζ2(s), this result is classical-due to
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Hardy-Littlewood and Titchmarsh - and states that for 0≤ σ ≤ 1 and
t ≥ 10

(4.2.1) ζ2(s) =
∑

n≤x

d(n)n−s + χ2(s)
∑

n≤y

d(n)ns−1 + o
(

x1/2−σ log t
)

,

wherex ≥ 1, y ≥ 1, andxy= (t/2π)2. Analogously, forϕ(s) we have 94

ϕ(s) =
∑

n≤x

a(n)n−s + ψ(s)
∑

n≤y

a(n)ns−k + o
(

xk/2−σ log t
)

,(4.2.2)

where

ψ(s) = (−1)k/2(2π)2s−kΓ(k− s)/Γ(s).

For proofs of (4.2.1) and (4.2.2), see e.g. [19].
The problem of the order ofϕ(k/2+ it) can thus be reduced to esti-

mating sums

(4.2.3)
∑

n≤x

a(n)n−k/2−it

for x≪ t; we take heret positive, for the case whent is negative is much
the same, as was seen in Remark 3 in the preceding section.

Estimating the sum (4.2.3) by absolute values, we obtain

|ϕ(k/2+ it)| ≪ t1/2L,

which might be called a “trivial” estimate. If there is a certain amount
of cancellation in this sum, then one has

(4.2.4) |ϕ(k/2+ it)| ≪ tα,

whereα < 1/2. An analogous problem is estimating the order ofζ(1/2+
it), and in virtue of the analogy betweenζ2(1/2+ it) andϕ(k/2+ it), one
would expect that if

(4.2.5) |ζ(1/2+ it)| ≪ tc,
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then (4.2.4) holds withα = 2c. (Recently it has been shown by E.
Bombieri and H. Iwaniec thatc = 9/56+ epsilonis admissible). In par-
ticular, as an analogue of the Lindelöf hypothesis for the zeta-function, 95

one may conjecture that (4.2.4) holds for all positiveα. A counterpart
of the classical exponentc = 1/6 would beα = 1/3, for which (4.2.4)
is indeed known to hold, up to an unimportant logarithmic factor. More
precisely, Good [9] proved that

(4.2.6) |ϕ(k/2+ it)| ≪ t1/3(log t)5/6

as a corollary of his mean value theorem (0.11). The proof of the lat-
ter, being based on the spectral theory of the hyperbolic Laplacian, is
sophisticated and highly non-elementary.

A more elementary approach toϕ(k/2 + it) via the transformation
formulae of the preceding section leads rather easily to an estimate
which is essentially the same as (4.2.6).

Theorem 4.5. We have

(4.2.7) |ϕ(k/2+ it)| ≪ (|t| + 1)1/3+ǫ .

Proof. We shall show that for all large positive values oft and for all
numbersM,M′ with 1 ≤ M < M′ ≤ t/2π andM′ ≤ 2M we have

(4.2.8)
∣

∣

∣Sϕ(M,M′)
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∑

M≤m≤M′
a(m)m−k/2−it

∣

∣

∣

∣

∣

∣

∣

≪ t1/3+ǫ .

A similar estimate could be proved likewise for negative values oft,
and the assertion (4.2.7) then follows from the approximatefunctional
equation (4.2.2).

Let δ be a fixed positive number, which may be chosen arbitrarily
small. forM ≤ t2/3+δ the inequality (4.2.8) is easily verified on estimat-
ing the sum by absolute values.

Let now96

M◦ = t2/3+δ,

M◦ < M < M′ ≤ t/2π,(4.2.9)
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K = (M/M◦)
1/2,(4.2.10)

and consider the increasing sequence of reduced fractionsr = h/k with
1 ≤ k ≤ K, in other words the Farey sequence of orderK.

Themediantof two consecutive fractionsr = h/k andr′ = h′/k′ is

ρ =
h+ h′

k+ k′

The basic well-known properties of the mediant are :r < ρ < r′, and

(4.2.11) ρ − r =
1

k(k+ k′)
≍ 1

kK
, r′ − ρ = 1

k′(k+ k′)
≍ 1

k′K
.

Subdivide now the interval [M,M′] by all the points

(4.2.12) M(ρ) =
t

2πρ

lying in this interval; hereρ runs over the mediants. Then the sum
Sϕ(M,M′) is accordingly split up into segments, the first and last one
of which may be incomplete. Thus, the sumSϕ(M,M′) now becomes a
sum of subsums of the type

(4.2.13) Sϕ(M(ρ′),M(ρ)),

up to perhaps one or two incomplete sums. This sum is related to that
fraction r = h/k of our system which lies betweenρ andρ′. We are
going to apply Theorem 4.2 to the sum (4.2.13). The numbersm1 and
m2 in the theorem are nowM(r) − M(ρ′) and M(ρ) − M(r). Hence
m1 ≍ m2 by (4.2.12) and (4.2.11), which imply moreover that 97

(4.2.14) mj ≍ tr−2(r − ρ) ≍ k−1K−1M2t−1 ≍ k−1M3/2t−2/3+δ/2.

This gives further

(4.2.15) Mt−1/3+δ ≪ mj ≪ Mt−1/6+δ/2.

It follows that the incomplete sums contribute

≪ M1/2t−1/6+δ ≪ t1/3+δ,
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which can be omitted.
Next we check the conditions of Theorem 4.2, i.e. the conditions

(4.1.8) and (4.1.10) of Theorem 4.1. The validity of (4.1.8)is clear by
(4.2.10) and (4.2.9). In (4.1.10), the upper bound form1 follows from
(4.2.15). As to the lower bound, note thatm1 ≫ Mt−1/2+δ ≍ t1/2+δr−1

by (4.2.15), and that

hk = rk2 ≪
(

M−1t
) (

MM−1
◦

)

≍ t1/3−δ ≪ mj t
−3δ.

The error terms in (4.1.28) can be estimated by (4.2.10), (4.2.12),
and (4.2.14). The first of them is≪ L2, and the second is smaller. The
number of subsums is

≍
(

tM−1
)

K2 ≍ t1/3−δ.

Hence the contribution of the error terms is≪ t1/3.
Next we turn to the main terms in (4.1.28). A useful observation

will be that the numbers

n j ≍ m2
j h

2M−1

are of the same order for all relevantr, namely

(4.2.16) n j ≍ t2/3+δ.

98

This is easily seen by (4.2.14).
To simplify the expression in (4.1.28), we omit the factors

(

1+
πn

2hkt

)−1/4
= 1+ o

(

k−2Mnt−2
)

,

which can be done with a negligible error≪ 1.
We now add up the expression in (4.1.28) for different fractionsr.

Putting
ã(n) = a(n)n−(k−1)/2,

we end up with the problem of estimating the multiple sum

t−1/4

∣

∣

∣

∣

∣

∣

∑

h,k

(hk)−1/4(h/k)it
∑

n<nj

ã(n)n−1/4e

(

n

(

h̄
k
−

1
2hk

))

×(4.2.17)
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× exp
(

i(−1) j−1
(

2tφ
(

πn
2hkt

)

+ π/4
))

∣

∣

∣

∣

∣

∣

.

As a matter of fact, the numbersn j depend also onr = h/k, but this
does not matter, for only the order ofn j will be of relevance.

For convenience we restrict in (4.2.17) the summations to the in-
tervalsK◦ ≤ k ≤ K′◦,N◦ ≤ n ≤ N′◦, whereK′◦ ≤ min(2K◦,K), and
N′◦ ≤ 2N◦,N◦ ≪ t2/3+δ. Also we take forj one of its two values, say
j = 1. The whole sum is then a sum ofo(tδ) such sums.

It may happen that some of the n-sums are incomplete. In orderto
have formally complete sums, we replace ˜a(n) by ã(n)δ(h, k; n), where

δ(h, k; n) =















1 for n < n1(h, k),

0 otherwise;

the dependence ofn1 on h/k is here indicated by the notationn1(h, k).
Then, changing in (4.2.17) the order of the summations with respect to 99

n and the pairsh, k, followed by applications of Cauchy’s inequality and
Rankin’s estimate (1.2.4), we obtain

≪ t−1/4N1/4
◦



















∑

n

∣

∣

∣

∣

∣

∣

∣

∣

∑

h,k

δ(h, k; n) (hk)−1/4(h/k)it×

× e

(

n

(

h̄
k
− 1

2hk

)

+ (1/π)tφ
(

πn
2hkt

)

)
∣

∣

∣

∣

∣

∣

2














1/2

.

Here the square is written out as a double sum with respect toh1, k1,
and h2, k2, and the order of the summations is inverted. Then, since
N◦ ≪ t2/3+δ and

(4.2.18) hk≍ K2
◦M
−1t,

the preceding expression is

≪ K−1/2
◦ M1/4t−1/3+δ

















∑

h1,k1

∑

h2,k2

|s(h1, k1; h2, k2)|
















1/2

,(4.2.19)
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where

s(h1, k1; h2, k2) =
∑

N◦≤n≤N′◦

δ (h1, k1; n) δ (h2, k2; n) e( f (n))(4.2.20)

with

f (x) = x

(

h̄1

k1
− 1

2h1k1
− h̄2

k2
+

1
2h2k2

)

+ (t/π)

(

φ

(

πx
2h1k1t

)

− φ
(

πx
2h2k2t

))

.

(4.2.21)

Thuss(h1, k1; h2, k2) is a sum over a subinterval of [N◦,N′◦]. It will
be estimated trivially for quadruples (h1, k1, h2, k2) such thath1k1 =

h2k2, and otherwise by van der Corput’s method, applying the following
well-known lemma (see [27], Theorem 5.9). �

Lemma 4.1. Let f be a twice differentiable function such that

0 < λ2 ≤ f ′′(x) ≤ hλ2 or λ2 ≤ − f ′′(x) ≤ hλ2

throughout the interval(a, b), and b≥ a+ 1. Then100
∑

a<n≤b+1

e( f (n)) ≪ h(b− a)λ1/2
2 + λ

−1/2
2 .

Now, by (4.1.6),

φ′′(x) = −1
2

x−3/2(1+ x)−1/2,

so that for our functionf in (4.2.21)

f ′′(x) = −2−3/2π−1/2t1/2x−3/2















(h1k1)−1/2
(

1+
πx

2h1k1t

)−1/2

− (h2k2)−1/2
(

1+
πx

2h2k2t

)−1/2












,

and accordingly

λ2 ≍ N−3/2
◦ t1/2

∣

∣

∣(h1k1)−1/2 − (h2k2)−1/2
∣

∣

∣
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≍ K−3
◦ M3/2N−3/2

◦ t−1 |h1k1 − h2k2| ,

where we used (4.2.18). Hence, by Lemma 4.1,

s(h1, k1; h2, k2) ≪ K−3/2
◦ M3/4N1/4

◦ t−1/2 |h1k1 − h2k2|1/2

+ K3/2
◦ M−3/4N3/4

◦ t1/2 |h1k1 − h2k2|−1/2

if h1k1 , h2k2. By (4.2.18)
∑

h1k1,h2k2

|h1k1 − h2k2|1/2 ≪
(

K2
◦M
−1t

)5/2

and
∑

h1k1,h2k2

|h1k1 − h2k2|−1/2 ≪
(

K2
◦M
−1t

)3/2
tδ.

Thus
∑

h1,k1

∑

h2,k2

|s(h1, k1; h2, k2)| ≪ K7/2
◦ M−7/4N1/4

◦ t2

+ K9/2
◦ M−9/4N3/4

◦ t2+δ + K2
◦M
−1N◦t

≪ K7/2
◦ M−7/4t13/6+δ

+ K9/2
◦ M−9/4t5/2+2δ + K2

◦M
−1t5/3+δ.

Hence the expression (4.2.19) is 101

≪ K5/4
◦ M−5/8t3/4+2δ + K7/4

◦ M−7/8t11/12+2δ + K1/2
◦ M−1/4t1/2+2δ

≪ t1/3+2δ,

and the proof of the theorem is complete.

Remark. The preceding proof works forζ2(s) as well, and gives
∣

∣

∣ζ2(1/2+ it)
∣

∣

∣ ≪ t1/3+ǫ .

This is, of course, a known result, but the argument of the proof is
new, though there is a van der Corput type estimate (Lemma 4.1) as an
element in common with the classical method.
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4.3 Estimation of “Long” Exponential Sums

The method of the preceding section is now carried over to more general
exponential sums

(4.3.1)
∑

M≤m≤M′
b(m)g(m)e( f (m)), b(m) = d(m) or a(m),

which are “long” in the sense that the length of a sum may be of the order
of M. “Short” sums of this type were transformed in Chapter 3 under
rather general conditions. Thus the first steps of the proof of Theorem
4.5 –dissection of the sum and transformation of the subsums-can be
repeated in the more general context of sums (4.3.1) withoutany new
assumptions, as compared with those in Chapter 3. But it turned out to
be difficult to gain a similar saving in the summation of the transformed
sums without more specific assumptions on the functionf . However,
if we suppose thatf ′ is approximately a power, the analogy with the
previous case of Dirichlet polynomials will be perfect. Theresult is as102

follows.

Theorem 4.6. Let 2 ≤ M < M′ ≤ 2M, and let f be a holomorphic
function in the domain

(4.3.2) D =
{

z
∣

∣

∣|z− | < cM for some x∈ [M,M′]
}

,

where c is a positive constant. Suppose that f(x) is real for M ≤ x ≤ M′,
and that either

(4.3.3) f (z) = Bzα
(

1+ 0
(

F−1/3
))

for z ∈ D

whereα , 0, 1 is a fixed real number, and

F = |B|Mα,(4.3.4)

or

f (z) = B logz
(

1+ o
(

F−1/3
))

for z ∈ D,(4.3.5)
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where

F = |B|.(4.3.6)

Let g∈ C1[M,M′], and suppose that for M≤ x ≤ M′

(4.3.7) |g(x)| ≪ G, |g′(x)| ≪ G′.

Suppose also that

(4.3.8) M3/4 ≪ F ≪ M3/2.

Then

(4.3.9)

∣

∣

∣

∣

∣

∣

∣

∑

M≤m≤M′
b(m)g(m)e( f (m))

∣

∣

∣

∣

∣

∣

∣

≪ (G+ MG′)M1/2F1/3+ǫ ,

where b(m) = d(m) or ã(m).

Proof. We give the details of the proof forb(m) = d(m) only; the other
case is similar, even slightly simpler.

It suffices to prove the assertion forg(x) = 1, because the general103

case can be reduced to this by partial summation.
The proof follows that of Theorem 4.5, which corresponds to the

case f (z) = −t logz. ThenF = t, so that the condition (4.3.8) states
t2/3 ≪ M ≪ t4/3. We restricted ourselves to the caset2/3 ≪ M ≪ t,
which sufficed for the proof of Theorem 4.5, but the method gives, in
fact,

∣

∣

∣

∣

∣

∣

∣

∑

M≤m≤M′
ã(m)mit

∣

∣

∣

∣

∣

∣

∣

≪ M1/2t1/3+ǫ for t2/3 ≪ M ≪ t4/3.

This follows, by the way, also from the previous case by a “reflec-
tion”, using the approximate functional equation (4.2.2).

The analogy between the numbert in Theorem 4.5 and the number
F in the present theorem will prevail throughout the proof. Accordingly,
we put

M◦ = F2/3+δ
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and define, as in (4.2.10),

(4.3.10) K = (M/M◦)
1/2 .

We may suppoe thatM ≥ M◦, for otherwise the assertion to be
proved, viz.

(4.3.11)

∣

∣

∣

∣

∣

∣

∣

∑

M≤m≤M′
d(m)e( f (m))

∣

∣

∣

∣

∣

∣

∣

≪ M1/2F1/3+ǫ ,

is trivial.
Consider the case whenf is of the form (4.3.3); the case (4.3.5) is

analogous and can be dealt with by obvious modifications. We suppose104

thatB is of a suitable sign, so thatf ′′(x) is positive.
The equation (4.3.3) can be formally differentiated once or twice to

give correct results, for by Cauchy’s integral formula we have

f ′(z) = αBzα−1
(

1+ o
(

F−1/3
))

(4.3.12)

and

f ′′(z) = α(α − 1)Bzα−2
(

1+ o
(

F−1/3
))

(4.3.13)

for z lying in a regionD′ of the type (4.3.2) withc replaced by a smaller
positive number. Hence, forz ∈ D′,

∣

∣

∣ f ′(z)
∣

∣

∣ ≍ FM−1,(4.3.14)

and

∣

∣

∣ f ′′(z)
∣

∣

∣ ≍ FM−2,(4.3.15)

so that the parameterF plays here the same role as in Chapters 2 and 3.
The proof now proceeds as in the previous section. The set of the

mediantsρ is constructed for the sequence of fractionsr = h/k with
1 ≤ k ≤ K, and the interval [M,M′] is dissected by the pointsM(ρ) such
that

(4.3.16) f ′(M(ρ)) = ρ.
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The numbersm1 andm2 then have formally the same expressions as
before by (4.3.15) and (4.3.16)

(4.3.17) mj ≍ k−1K−1M2F−1 ≍ k−1M3/2F−2/3+δ/2

in analogy with (4.2.14). This implies that 105

(4.3.18) MF−1/3+δ ≪ mj ≪ min
(

MF−1/6+δ/2,M1/2F1/3+δ/2
)

;

note thatk ≫ F−1M for M ≫ F by (4.3.16) and (4.3.14). The up-
per estimate in (4.3.18) shows that the possible incompletesums in the
dissection can be omitted.

The subsums are transformed by Theorem 3.1, the assumptionsof
which are readily verified as in the proof of Theorem 4.5.

Of the three error terms in (3.1.11), the second one is≪ M1/2

log2 M, and the others are smaller. Since the number of subsums is
≍ F1/3−δ, the contribution of these is≪ M1/2F1/3.

The leading term in (3.1.11) is≪ F−1/2k−1M log F. For a givenk, h
takes≪ FM−1k values. Hence the contribution of the leading terms is

≪ F1/2K log F ≪ M1/2F1/6.

Consider now the sums of lengthn j in (3.1.11). By (3.1.16) and
(4.3.17) we have (cf. (4.2.16))

(4.3.19) n j ≍ F2/3+δ.

For convenience, we restrict the triple sum with respect toj, n, and
h/k by the conditionsj = 1,N◦ ≤ n ≤ N′◦, andK◦ ≤ k ≤ K′◦, where
K◦ ≍ K′◦ andN◦ ≍ N′◦. Denote the saddle pointx1,n by x(r, n) in order
to indicate its dependence onr. Then, for givenr, the sum with respect
to n can be written as

(4.3.20)
∑

n

Q(r, n)d(n)e( fr(n)) ,

where 106

Q(r, n) = i2−1/2k−1/2n−1/4x(r, n)−1/4 (

f ′′(x(r, n))−(4.3.21)
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−
1
2

k−1n1/2x(r, n)−3/2
)−1/2

and

fr (n) = −nh̄/k+ f (x(r, n)) − rx(r, n) + 2k−1n1/2x(r, n)1/2.(4.3.22)

The range of summation in (4.3.20) is either the whole interval
[N◦,N′◦], or a subinterval of it ifn1 ≤ N′◦. Since

|Q(r, n)| ≍ F−1/2K−1/2
◦ M3/4N−1/4

◦ ,

we may write

Q(r, n) = F−1/2K−1/2
◦ M3/4N−1/4

◦ q(r, n),

where|q(r, n)| ≍ 1. Then, using Cauchy’s inequality as in the proof of
Theorem 4.5, we obtain

∑

r

∑

n

Q(r, n)d(n)e( fr(n))(4.3.23)

≪ F−1/2+δK−1/2
◦ M3/4N1/4

◦

















∑

r1,r2

|s(r1, r2)|
















1/2

,

where
s(r1, r2) =

∑

n

q (r1, n) q (r2, n) e
(

fr1(n) − fr2(n)
)

.

The saddle pointx(r, n) is defined implicitly by the equation

(4.3.24) f ′(x(r, n)) − r + k−1n1/2x(r, n)−1/2 = 0.

Therefore, by the implicit function theorem,
(4.3.25)

∣

∣

∣

∣

∣

dx(r, n)
dn

∣

∣

∣

∣

∣

≍
(

K−1
◦ M−1/2N−1/2

◦
) (

FM−2
)−1
≍ F−1K−1

◦ M3/2N−1/2
◦

Then it is easy to verify that107
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∣

∣

∣

∣

∣

dq(r, n)
dn

∣

∣

∣

∣

∣

≪ N−1
◦ Fδ/2;

the assumptionM ≪ F4/3 is needed here. Consequently, if

(4.3.26)

∣

∣

∣

∣

∣

∣

∣

∑

n

e
(

fr1(n) − fr2(n)
)

∣

∣

∣

∣

∣

∣

∣

≤ σ (r1, r2)

whenevern runs over a subinterval of [N◦,N′◦], then by partial summa-
tion

|s(r1, r2)| ≪ σ (r1, r2) Fδ/2.

Thus, in order to prove that the left hand side of (4.3.23) is≪
M1/2F1/3+◦(δ), it suffices to show that

(4.3.27)
∑

r1,r2

σ (r1, r2)≪ F5/3+o(δ)K◦M
−1/2N−1/2

◦ .

With an application of Lemma 4.1 in mind, we derive bounds for
d2

dn2 ( fr1(n) − fr2(n)), wheren is again understood for a moment as a con-
tinuous variable. First, by (4.3.22) and (4.3.24),

d fr (n)
dn

= −h̄/k+
(

f ′(x(r, n)) − r + k−1n1/2x(r, n)−1/2
) dx(r, n)

dn
+ k−1n−1/2x(r, n)1/2

= −h̄/k+ k−1n−1/2x(r, n)1/2,

and further

(4.3.28)
d2 fr (n)

dn2
=

1
2

k−1n−1/2x(r, n)−1/2 dx(r, n)
dn

−
1
2

k−1n−3/2x(r, n)1/2.

Here the first term, which is

(4.3.29) ≪ F−1K−2
◦ MN−1

◦

by (4.3.25), will be less significant.
The saddle pointx(r, n) is now approximated by the pointM(r),

which is easier to determine. By definition

f ′(M(r)) = r;
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hence by (4.3.12) 108

αBM(r)α−1 = r
(

1+ o
(

F−1/3
))

,

which gives further, by (4.3.4),

(4.3.30) M(r) =

(

Mα

|α|F

)2β

|r |2β
(

1+ o
(

F−1/3
))

with

β =
1

2(α − 1)
.

But the difference ofM(r) andx(r, n) is at most the maximum ofm1

andm2, so that by (4.3.17)

x(r, n) = M(r) + o
(

F−1K−1
◦ K−1M2

)

= M(r)
(

1+ o
(

F−1K−1
◦ K−1M

))

.

Hence by (4.3.30)

x(r, n) =

(

Mα

|α|F

)2β

|r |2β
(

1+ o
(

F−1K−1
◦ K−1M

))

;

note that by (4.3.10)

F−1K−1
◦ K−1M ≥ F−1K−2M = F−1/3+δ.

So the second term in (4.3.28) is

−
1
2

(|α|F)−β k−1Mαβn−3/2|r |β + o
(

F−1K−2
◦ K−1M3/2N−3/2

◦
)

.

The expression (4.3.29) can be absorbed into the error term here, for
N◦ ≪ K−2M by (4.3.10) and (4.3.19). Hence (4.3.28) gives

d2

dn2

(

fr1(n) − fr2(n)
)

(4.3.31)

=
1
2

(|α|F)−β Mαβn−3/2
(

|h2|βk−1−β
2 − |h1|βk−1−β

1

)

+ o
(

F−1K−2
◦ K−1M3/2N−3/2

◦
)

.

By the following lemma, the differences|h2|βk−1−β
2 − |h1|βk−1−β

1 are109

distributed as one would expect on statistical grounds. �
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Lemma 4.2. Let H ≥ 1,K ≥ 1, and0 < ∆ ≪ 1. Letα andβ be non-zero
real numbers. Then the number of quadruples(h1, k1, h2, k2) such that

H ≤ hi ≤ 2H, K ≤ ki ≤ 2K(4.3.32)

and
∣

∣

∣

∣

hα1kβ1 − hα2kβ2

∣

∣

∣

∣

≤ ∆HαKβ(4.3.33)

is at most

≪ HK log2(2HK) + ∆H2K2,(4.3.34)

where the implied constants depend onα andβ.

We complete first the proof of Theorem 4.6, and that of Lemma 4.2
will be given afterwards.

In our case, the number of pairs (r1, r2) such that
∣

∣

∣

∣

|h2|βk−1−β
2 − |h1|βk−1−β

1

∣

∣

∣

∣

≤ ∆K−1
◦

(

FM−1
)β

(4.3.35)

is at most

≪ FK2
◦M
−1 log2 F + ∆F2K4

◦M
−2(4.3.36)

by Lemma 4.2. Let
∆◦ = c◦F

−1K−1
◦ K−1M,

wherec◦ is a certain positive constant. For those pairs (r1, r2) satisfying
(4.3.35) with∆ = ∆◦ we estimate triviallyσ(r1, r2) ≪ N◦. Then, by
(4.3.36), their contribution to the sum in (4.3.27) is

≪ FK2
◦M
−1N◦ log2 F ≪ F5/3+2δK◦M

−1/2N−1/2
◦ .

110

Let now∆◦ ≤ ∆ ≪ 1, and consider those pairs (r1, r2) for which
the expression on the left of (4.3.35) lies in the interval (∆K−1

◦ (FM−1)β,
2∆K−1

◦ (FM−1)β]. If c◦ is chosen sufficiently large, then the main term
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(of order≍ ∆K−1
◦ M1/2N−3/2

◦ ) on the right of (4.3.31) dominates the error
term. Then by Lemma 4.1

σ (r1, r2)≪ ∆1/2K−1/2
◦ M1/4N1/4

◦ + ∆
−1/2K1/2

◦ M−1/4N3/4
◦ .

The number of the pairs (r1, r2) in question is≪ ∆F2K3
◦KM−2

log2 F by (4.3.36) and our choice of∆◦, so that they contribute

≪ ∆3/2F2+δK5/2
◦ KM−7/4N1/4

◦ + ∆
1/2F2+δK7/2

◦ KM−9/4N3/4
◦

≪ F2+δK◦M
−1/2N−1/2

◦
(

K5/2M−5/4N3/4
◦ + K7/2M−7/4N5/4

◦
)

≪ F5/3+δK◦M
−1/2N−1/2

◦ .

The assertion (4.3.27) is now verified, and the proof of Theorem 4.6
is complete.

Proof of Lemma 4.2. To begin with, we estimate the number of
quadruples satisfying, besides (4.3.32) and (4.3.33), also the conditions

(4.3.37) (h1, h2) = (k1, k2) = 1.

By symmetry, we may suppose thatH ≥ K. The condition (4.3.33)
can be written as

hα1kβ1 = hα2kβ2(1+ o(∆)).

Raising both sides to the powerα−1 and dividing byh2kβ/α1 , we ob-
tain

∣

∣

∣

∣

∣

∣

∣

h1

h2
−

(

k2

k1

)β/α
∣

∣

∣

∣

∣

∣

∣

≪ ∆.

for given k1 and k2, the number of fractionsh1/h2 satisfying this,111

(4.3.32), and (4.3.37), is≪ 1 + ∆H2 by the theory of Farey fractions.
Summation over the pairsk1, k2 in question gives

≪ K2 + ∆H2K2 ≪ HK + ∆H2K2.

Consider next quadruples satisfying (4.3.32) and (4.3.33)but instead
of (4.3.37) the conditions

(h1, h2) = h, (k1, k2) = k
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for certain fixed integersh andk. Then, writingh1 = hh′i , ki = kk′i , we
find that the quadruples (h′1, k

′
1, h
′
2, k
′
2) satisfy the conditions (4.3.32),

(4.3.33), and (4.3.37) withH andK replaced byH/h andK/k. Hence,
as was just proved, the number of these quadruples is

≪ HK/hk+ ∆H2K2(hk)−2.

Finally, summation with respect toh andk gives (4.3.34).

Example .To illustrate the scope of Theorem 4.6, let us consider the
exponential sum

(4.3.38) S =
∑

M≤m≤M′
b(m)e

(X
m

)

whereb(m) is d(m) or ã(m). By the theorem,

S≪ M1/6X1/3+ǫ for M7/4 ≪ X≪ M5/2.

Thus, forM ≍ χ1/2, one hasS ≪ M5/6+ǫ . In the caseb(m) = d(m)
it is also possible to interpretS as the double sum

∑

m,n≥1
M≤mn≤M′

e
( X
mn

)

.

112

This can be reduced to ordinary exponential sums, fixing firstmor n,
but it can be also estimated by more sophisticated methods inthe theory
of multiple exponential sums. For instance, B.R. Srinivasan’s theory of
n-dimensional exponent pairs gives, forM ≍ X1/2 andb(m) = d(m),

(4.3.39) S≪ M1−ℓ1+ℓ◦ ,

where (ℓ◦, ℓ1) is a two-dimensional exponent pair (see [13],§ 2.4). Of
the pairs mentioned in [13], the sharpest result is given by (23

250,
56
250),

namely (4.3.39) with the exponent 217/250 = 0.868. The optimal ex-
ponent given by this method is 0.86695. . . (see [10]). If a conjecture
concerning one- and two-dimensional exponent pairs (Conjecture P in
[10]) is true, then the exponent could be improved to 0.8290. . . , which
is smaller than 5/6. But in any case, forb(m) = ã(m) the sumS seems
to be beyond the scope of ad hoc methods because of the complicated
structure of the coefficientsa(m).
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4.4 The Twelfth Moment ofζ(1/2+it) and Sixth Mo-
ment of ϕ(k/2+ it)

In this last section, a unified approach to the mean value theorems 0.7
and 0.9 will be given.

Theorem 4.7. For T ≥ 2 we have

T
∫

◦

|ζ(1/2+ it)|12 dt≪ T2+ǫ(4.4.1)

and

T
∫

◦

|ϕ(k/2+ it)|6 dt≪ T2+ǫ .(4.4.2)

Proof. The proofs of these estimates are much similar, so it suffices to113

consider (4.4.2) as an example, with some comments on (4.4.1).
It is enough to prove that

(4.4.3)

2T
∫

T

|ϕ(k/2+ it)|6 dt≪ T2+ǫ .

Actually we are going to prove a discrete variant of this, namely that

(4.4.4)
∑

ν

|ϕ(k/2+ itν)|6 ≪ T2+ǫ

whenever{tν} is a “well-spaced” system of numbers such that

(4.4.5) T ≤ tν ≤ 2T,
∣

∣

∣tµ − tν
∣

∣

∣ ≥ 1 for µ , ν.

Obviously this implies (4.4.3). Again, (4.4.4) follows if it is proved
that for anyV > 0 and for any system{tν}, ν = 1, . . . ,R, satisfying
besides (4.4.5) also the condition

|ϕ(k/2+ itν)| ≥ V,(4.4.6)
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one has

R≪ T2+ǫV−6.(4.4.7)

The last mentioned assertion is easily verified if

(4.4.8) V ≪ T1/4+δ

whereδ again stands for a positive constant, which may be chosen as
small as we please, and which will be kept fixed during the proof. In-
deed, one may apply the discrete mean square estimate

(4.4.9)
∑

ν

|(k/2+ itν)|2 ≪ T1+δ

which is an analogue of the well-known discrete mean fourth power
estimate for|ζ(1/2 + it)| (see [13], equation (8.26)), and can be proved
in the same way. Now (4.4.9) and (4.4.6) together give 114

(4.4.10) R≪ T1+δV−2,

and thusR≪ T2+5δV−6 if also (4.4.8) holds.
Henceforth we may assume that

(4.4.11) V ≫ T1/4+δ.

Then by (4.4.10)

(4.4.12) R≪ T1/2−δ.

Large values ofϕ(s) on the critical line can be investigated in terms
of large values of partial sums of its Dirichlet series, by the approximate
functional equation (4.2.2). The partial sums will be decomposed as
in the proof of Theorem 4.5. However, in order to have compatible
decompositions for different valuest ∈ [T, 2T], we define the system of
fractionsr = h/k in terms ofT rather than in terms oft. As a matter of
fact, the “order”K of the system will not be a constant, but it varies as a
certain functionK(r) of r. More exactly, write

(4.4.13) M(r, t) =
t

2πr
,
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and lettingR be the cardinality of the system{tν} satisfying (4.4.5),
(4.4.6), and (4.4.11), define

(4.4.14) K(r) = M(r,T)1/2T−1/3R−1/3.

We now construct the (finite) set of all fractionsr = h/k ≥ 1 satisfy-
ing the conditions

k ≤ K(r),(4.4.15)

K(r) ≥ Tδ,(4.4.16)

and arrange these into an increasing sequence.115

This sequence determines the sequenceρ1 < ρ2 < · · · < ρP of
the mediants, and we define moreoverρ◦ = ρ−1

1 . We apply (4.2.2) for
σ = k/2, choosing

(4.4.17) x = x(t) = M(ρ◦, t), y = y(t) = (t/2π)2x−1.

Then, if (4.4.6) and (4.4.11) hold, at least one of the sums oflength
x(tν) andy(tν) in (4.2.2) exceedsV/3 in absolute value. Let us suppose
that for at leastR/2 pointstν we have

(4.4.18)

∣

∣

∣

∣

∣

∣

∣

∣

∑

n≤x(tν)

ã(n)n−1/2−itν

∣

∣

∣

∣

∣

∣

∣

∣

≥ V/3;

the subsequent arguments would be analogous if the other sumwere as
large as often.

The sum in (4.4.18) is split up by the pointsM(ρi , tν) as in§ 4.2. As
to the set of pointstν satisfying (4.4.18), there are now two alternatives:
either

(4.4.19)

∣

∣

∣

∣

∣

∣

∣

∣

∑

n≤M(ρP,tν)

ã(n)n−1/2−itν

∣

∣

∣

∣

∣

∣

∣

∣

≥ V/6

for ≫ R points, or there are functionsM1(t),M2(t) of the typeM(ρi , t)
such thatM1(t) ≍ M2(t) and

(4.4.20)
∣

∣

∣Sϕ (M1(tν),M2(tν))
∣

∣

∣≫ VL−1,
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with L = logT, for at least≫ RL−1 pointstν. We are going to derive an
upper bound forR in each case.

Consider first the former alternative. We apply the following large116

values theorem of M.N. Huxley for Dirichlet polynomials (for a proof,
see [12] or [15]). �

Lemma 4.3. Let N be a positive integer,

(4.4.21) f (s) =
2N
∑

n=N+1

ann−s,

and let sr = σr + itr , r = 1, . . . ,R, be a set of complex numbers such that
σr ≥ 0, 1 ≤ |tr − tr ′ | ≤ T for r , r′, and

| f (sr )| ≥ V > 0.

Put

G =
2N
∑

n=N+1

|an|2 .

Then

(4.4.22) R≪
(

GNV−2 + TG3NV−6
)

(NT)ǫ .

This lemma cannot immediately be applied to the Dirichlet poly-
nomial in (4.4.19), for it is not of the type (4.4.21), and thelength of
the sum depends moreover ontν. To avoid the latter difficulty, we ex-
press the Dirichlet polynomials in question by Perron’s formula using
the function

f (w) =
∑

n≤N

ã(n)n−w

with N = M(ρP, 2T). Lettingy = N1/2 andα = 1/ log N, we have

∑

n≤M(ρP,tν)

ã(n)n−1/2−itν =
1

2πi

α+iY
∫

α−iY

f (1/2+ itν + w)

M (ρP, tν)
w w−1 dw+ o

(

Tδ
)

.
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Now, in view of (4.4.19), there is a numberX ∈ [1,Y] and numbers 117

N1,N2 with N1 < N2 ≤ max(2N1,N) such that writing

f◦(w) =
∑

N1≤n≤N2

ã(n)n−w

we have

(4.4.23)

X
∫

−X

| f◦ (1/2+ α + i (tν + u))| du≫ VχL−2

for at least≫ RL−2 pointstν. Next we select a sparse set ofR◦ numbers
tν with

(4.4.24) R◦ ≪ 1+ RX−1L−2

such that (4.4.23) holds for these, and moreover|tµ − tν| ≥ 3X for µ , ν.
Further, by (4.4.23) and similar quantitative arguments asabove, we
conclude that there exist a numberw ≫ VL−2, a subset of cardinality
≫ R◦L−1 of the set of theR◦ indices just selected, and for eachν in this
subset a set≫ VW−1XL−3 pointsuν,µ ∈ [−X,X] such that

(4.4.25) W ≤
∣

∣

∣

∣

f◦
(

1/2+ α + i
(

tν + uν,µ
))

∣

∣

∣

∣

≤ 2W

and
∣

∣

∣uν,λ − uν,µ
∣

∣

∣ ≥ 1 for λ , µ.

The systemtν + uν,µ for all relevant pairsν, µ is well-spaced in the
sense that the mutual distance of these numbers is at least 1,and its
cardinality is

≫ R◦VW−1XL−4.

On the other hand, its cardinality is by Lemma 4.3

≪
(

N1W−2 + TN1W−6
)

Tδ ≪W−1
(

NV−1 + TNV−5
)

TδL10.

118
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These two estimates give together

R◦X≪
(

NV−2 + TNV−6
)

TδL14.

But R◦X≫ RL−2 by (4.4.24), so finally

(4.4.26) R≪
(

NV−2 + TNV−6
)

T2δ ≪ NV−2T2δ

by (4.4.11). This means that a direct application of Lemma 4.3 gives a
correct result in the present case though the conditions of the lemma are
not formally satisfied.

SinceρP was the last mediant, we have by (4.4.14), (4.4.16), and the
definition ofN

N ≪ T2/3+2δR2/3.

Together with (4.4.26), this implies

R≪ T2/3+4δR2/3V−2,

whence

(4.4.27) R≪ T2+12δV−6

We have now proved the desired estimate forR in the case that
(4.4.19) holds for≫ R indicesν.

Turning to the alternative (4.4.20), we write

(4.4.28) Sϕ (M1(t),M2(t)) =
i2

∑

i=i1

Sϕ (M (ρi+1, t) ,M (ρi , t))

for T ≤ t ≤ 2T. The sumsSϕ here are transformed by Theorem 4.2.
That unique fractionr = hk which lies betweenρi andρi+1 will be used
as the fractionr in the theorem. WriteM = M1(T) and 119

(4.4.29) K = M1/2T−1/3R−1/3.

Then by (4.4.14) we haveK(r) ≍ K for thoser related to the sums
in (4.4.28). Since for two consecutive fractionsr andr′ of our system
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we haver′ − r ≤ [K(r′)]−1, it is easily seen thatK(r) − K(r′) < 1. Thus
either r and r′ are consecutive fractions in the Farey system of order
[K(r)], or exactly one fractionr′′ = h′′/k′′ with K(r′) < k′′ ≤ K(r) of
this system lies between them. Then, in any case,|r − ρ j | ≍ (kK)−1 for
j = i andi + 1, whence as in (4.2.14) we have

(4.4.30) mj ≍ k−1K−1M2T−1 ≍ k−1M3/2T−2/3R1/3.

Hencemj ≪ M1−δ/3 by (4.4.12), so that the upper bound part of the
condition (4.1.10) is satisfied. The other conditions of Theorem 4.2 are
easily checked as in the proof of Theorem 4.5.

The error terms in Theorem 4.2 are now by (4.4.30) and (4.4.13)
o(k1/2k−1/2L2) ando(K3/4K1/4M−1/4L), and the sum of these for differ-
entr is

≪ k2M−1TL2 + K3T M−5/4L

≪ T1/3R−2/3L2 + M1/4R−1L ≪ T1/3R−2/3L2.

If
T1/3R−2/3 ≪ VT−δ,

then these error terms can be omitted in (4.4.20). Otherwise

R≪ T1/2+3δ/2V−3/2

≪
(

T1/2+3δ/2V−3/2
)4
= T2+6δV−6

and we have nothing to prove. Hence, in any case, we may omit the120

error terms in (4.1.28).
Consider now the explicit terms in Theorem 4.2. For the numbers

n j we have by (4.1.11), (4.4.30), and (4.4.29)

(4.4.31) n j ≍ K−2M ≍ T2/3R2/3.

Denote bySr (t) the explicit part of the right hand side of (4.1.28)
for the sum related to the fractionr. Then by (4.4.20), (4.4.28), and the
error estimate just made we have

(4.4.32)

∣

∣

∣

∣

∣

∣

∣

∑

r

Sr (tν)

∣

∣

∣

∣

∣

∣

∣

≫ VL−1



4.4. The Twelth Moment of 113

for at least≫ RL−1 numberstν.
At this stage we make a brief digression to the proof of the estimate

(4.4.1). So far everything we have done forϕ(s) goes through forζ2(s)
as well, except that in Theorem 4.1 there is the leading explicit term
and the first error term which have no counterpart in Theorem 4.2. The
additional explicit term is≍ (hk)−1/2L, and the sum of these over the
relevant fractionsr is≪ T1/6L, which can be omitted by (4.4.11). The
additional error term in (4.1.12) is also negligible, for itis dominated
in our case by the second one. So the analogy between the proofs of
(4.4.1) and (4.4.2) prevails here, like also henceforth.

It will be convenient to restrict the fractionsr = h/k in (4.4.32)
suitably. Suppose thatK◦ ≤ k ≤ K′◦, whereK◦ ≍ K′◦ andK◦ ≪ K, and
suppose also that for two different fractionsr = h/k, r′ = h′/k′ in our 121

system we have
∣

∣

∣r − r′
∣

∣

∣≫ K−2
◦ Tδ(4.4.33)

and

0 <
∣

∣

∣

∣

∣

1
hk
− 1

h′k′

∣

∣

∣

∣

∣

<
(

K′◦
)−2(4.4.34)

An interval [K◦,K′◦] and a set of fractions of this kind can be found
such that

(4.4.35)

∣

∣

∣

∣

∣

∣

∣

∑

r

Sr (tν)

∣

∣

∣

∣

∣

∣

∣

≫ VT−2δ

for at leastR1 ≫ RT−2δ numberstν. The sum overr here is restricted as
indicated above.

Let

(4.4.36) Z = K2
◦M
−1T.

There exists a numberR2 such that those intervals [T + pZ,T +
(P + 1)Z] containing at leastR2/2 and at most 2R2 of the R1 numbers
tν contain together≫ R1L−1 of these. Omit the other numberstν, and
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suppose henceforth that thetν under consideration lie in these≪ R1R−1
2

intervals. Summing (4.4.35) with respect to thosetν lying in the interval
[T + pZ,T + (p+ 1)Z], we obtain by Cauchy’s inequality

(4.4.37) R2VT−2δ ≪



















R2

∑

ν

∣

∣

∣

∣

∣

∣

∣

∑

r

Sr (tν)

∣

∣

∣

∣

∣

∣

∣

2
















1/2

.

The following inequality of P.X. Gallagher (see [23], Lemma1.4) is
now applied to the sum overtν.

Lemma 4.4. Let T◦,T ≥ δ > 0 be real numbers, and let A be a finite
set in the interval[T◦ + δ/2,T◦ + T − δ/2] such that|a′ − a| ≥ δ for any
two distinct numbers a, a′ ∈ A. Let S be a continuous complex valued122

function in[T◦,T◦ +T] with continuous derivative in(T◦,T◦ +T). Then

∑

aǫA

|S(a)|2 ≤ δ−1

T◦+T
∫

T◦

|S(t)|2 dt +























T◦+T
∫

T◦

|S(t)|2 dt























1/2 





















T◦+T
∫

T◦

|S′(t)|2 dt























1/2

.

The lengthsn j of the sums inSr(t) depend linearly ont. However,
the variation ofn j in the intervalT + pZ ≤ t < T + (p+1)Z is onlyo(1),
so that (4.4.35) and (4.4.37) remain valid if we redefineSr (t) takingn j

constant in this interval. Lemma 4.4 then gives

∑

ν

∣

∣

∣

∣

∣

∣

∣

∑

r

Sr (ν)

∣

∣

∣

∣

∣

∣

∣

2

≪
Z

∫

◦

∣

∣

∣

∣

∣

∣

∣

∑

r

Sr (T + pZ+ u)

∣

∣

∣

∣

∣

∣

∣

2

du(4.4.38)

+





















Z
∫

◦

∣

∣

∣

∣

∣

∣

∣

∑

r

Sr (T + pZ+ u)

∣

∣

∣

∣

∣

∣

∣

2

du





















1/2 



















Z
∫

◦

∣

∣

∣

∣

∣

∣

∣

∑

r

S′r (T + pZ+ u)

∣

∣

∣

∣

∣

∣

∣

2

du





















1/2

.

Let η(u) be a weight function of the typeηJ(u) such thatJU =
Z, η(u) = 1 for 0 ≤ u ≤ Z, η(u) = 0 for u < (−Z, 2Z), andJ is a large
positive integer. Then

Z
∫

◦

∣

∣

∣

∣

∣

∣

∣

∑

r

Sr(T + pZ+ u)

∣

∣

∣

∣

∣

∣

∣

2

du≤
2Z
∫

−Z

η(u)

∣

∣

∣

∣

∣

∣

∣

∑

r

Sr

∣

∣

∣

∣

∣

∣

∣

2

du(4.4.39)
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=
∑

r,r ′

2Z
∫

−Z

η(u)SrSr ′ du.

We now dispose of the nondiagonal terms. Putt(u) = T + pZ + u.
When the integral on the right of (4.4.39) is written as a sum of integrals,
recalling the definition (4.1.28) ofSr(t), a typical term is

(4.4.40)

2Z
∫

−Z

η(u)g(u)e( f (u)) du,

where 123

g(u) = π1/22−1/2(hkh′k′)−1/4ã(n)ã(n′) (nn′)−1/4×

× e













n

(

h̄
k
−

1
2hk

)

− n′












h′

k′
−

1
2h′k′

























t(u)−1/2

(

1+
πn

2hkt(u)

)−1/4 (

1+
πn

2h′k′t(u)

)−1/4

,

f (u) = (−1) j−1
{

(t(u)/π)φ

(

πn
2hkt(u)

)

+ 1/8

}

− (−1) j′−1
{

(t(u)/π)φ

(

πn′

2h′k′t(u)

)

+ 1/8

}

+ (t(u)/π) log(r/r′),

r = h/k, r′ = h′/k′, j′ and j′ are 1 or 2, andn < n j , n′ < n j′ . Now

∣

∣

∣

∣

∣

d
du

(

t(u) log
(

r/r′
))

∣

∣

∣

∣

∣

=
∣

∣

∣log
(

r/r′
)

∣

∣

∣≫ K−2
◦ MT−1+δ

by (4.4.33), while by (4.1.6)
∣

∣

∣

∣

∣

∣

d
du

(

t(u)φ

(

πn
2hkt(u)

))
∣

∣

∣

∣

∣

∣

≍ (hkT)−1/2n1/2 ≍ K−1
◦ M1/2n1/2T−1,

which is by (4.4.31)

≪ K−1
◦ K−1MT−1 ≪ K−2

◦ MT−1.
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Accordingly,

| f ′(u)| ≍ | log(r, /r′)| ≫ TδZ−1.

We may now apply Theorem 2.3 to the integral (4.4.40) withµ ≍
Z,M ≍ | log(r, r′)| ≫ TδZ−1, andU ≍ Z. If J ≍ δ−2 andδ is small, then
this integral is negligible. A similar argument applies to the integral in-
volving S′r in (4.4.38). Consequently, it follows from (4.4.37) - (4.4.39)
that

R2VT−2δ ≪ R1/2
2























∑

r

2Z
∫

−Z

|Sr(t(u))|2 du

+





















∑

r

2Z
∫

−Z

|Sr(t(u))|2 du





















1/2 



















∑

r

2Z
∫

−Z

∣

∣

∣S′r (t(u))
∣

∣

∣

2
du





















1/2




















1/2

.

Summing these inequalities with respect to the≪ R1R−1
2 values of124

p, we obtain by Cauchy’s inequality

R1L−1VT−2δ ≪ R1/2
1























∑

p,r

2Z
∫

−Z

|Sr (T + pZ+ u)|2 du

+





















∑

p,r

2Z
∫

−Z

|Sr (T + pZ+ u)|2 du





















1/2 



















∑

p,r

2Z
∫

−Z

∣

∣

∣S′r (T + pZ+ u)
∣

∣

∣

2
du





















1/2




















1/2

.

For eachp, the integrals here are expressed by the mean value theo-
rem. Then by (4.4.36) this implies (recall thatRT−2δ ≪ R1 ≤ R)

RV≪ R1/2K◦M
−1/2T1/2+4δL















∑

p,r

∣

∣

∣Sr(tp)
∣

∣

∣

2
(4.4.41)

+

















∑

p,r

∣

∣

∣Sr(tp)
∣

∣

∣

2

















1/2 















∑

p,r

∣

∣

∣S′r (t
′
p)
∣

∣

∣

2

















1/2


















1/2

,
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where{tp} is a set of numbers in the interval (T − Z, 2T + 2Z) such that

(4.4.42)
∣

∣

∣tp − tp′
∣

∣

∣ ≥ Z for p , p′,

and similarly for{t′p}.
The rest of the proof will be devoted to the estimation of the double

sums on the right of (4.4.41). For convenience we restrict inSr andS′r
the summation to an intervalN ≤ n ≤ N′, whereN ≍ N′, and take
j = 1. The notationSr is still retained for these sums. The original sum
can be written as a sum ofo(L) new sums. We are going to show that

(4.4.43)
∑

p,r

∣

∣

∣Sr(tp)
∣

∣

∣

2 ≪
(

K−2
◦ K−2M2T−1 + K−1

◦ M1/2R
)

T2δ.

It will be obvious that the argument of the proof of this givesthe
same estimate for the similar sum involvingS′r as well. Then the in-
equality (4.4.41) becomes 125

RV≪
(

K−1M1/2R1/2 + K1/2
◦ M−1/4T1/2R

)

T6δ ≪ R5/6T1/3+6δ;

recall the definition (4.4.29) ofK. This gives

R≪ T2+36δV−6,

as desired.
To prove the crucial inequality (4.4.43), we apply methods of Halász

and van der Corput. The following abstract version of Halász’s inequal-
ity is due to Bombieri (see [23], Lemma 1.5, or [13], p. 494).

Lemma 4.5. If ξ, ϕ1, . . . , ϕR are elements of an inner product space over
the complex numbers, then

R
∑

r=1

|(ξ, ϕr)|2 ≤‖ ξ ‖2 max
1≤r≤R

R
∑

s=1

|(ϕr , ϕs)| .

Suppose that the numbersN and N′ above are integers, and de-
fine the usual inner product for complex vectorsa = (aN, . . . , aN′), b =
(bN, . . . , bN′) as

(a, b) =
N′
∑

n=N

anb̄n.
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Define vectors

ξ =
{

ã(n)n−1/4
}N′

n=N
,

ϕp,r =















(

1+
πn

2hktp

)−1/4

e

(

n

(

h̄
k
−

1
2hk

)

+
(

tp/π
)

φ

(

πn
2hktp

))















N′

n=N

with the convention that ifn1 < N′, then inϕp,r the components for
n1 ≤ n ≤ N′ are understood as zeros. Then by (4.1.28) we have

∣

∣

∣Sr (tp)
∣

∣

∣≪ K−1/2
◦ M1/4T−1/2

∣

∣

∣

∣

(

ξ, ϕp,r

)

∣

∣

∣

∣

.

Hence, by Lemma 4.5, there is a pairp′, r′ such that126

(4.4.44)
∑

p,r

∣

∣

∣Sr(tp)
∣

∣

∣

2 ≪ K−1
◦ M1/2N1/2T−1+δ

∑

p,r

∣

∣

∣

∣

(

ϕp,r , ϕp′,r ′
)

∣

∣

∣

∣

.

If now

(4.4.45)
∑

p,r

∣

∣

∣

∣

(

ϕp,r , ϕp′,r ′
)

∣

∣

∣

∣

≪
(

K−1
◦ K−1M + KM−1/2RT

)

Tδ,

then (4.4.43) follows from (4.4.44); recall thatN ≪ K−2M by (4.4.31).
Hence it remains to prove (4.4.45).

Let

fp,r(x) = x

(

h̄
k
−

1
2hk

)

+
(

tp/π
)

φ

(

πx
2hktp

)

.

The estimation of|(ϕp,r , ϕp′,r ′)| can be reduced, by partial summa-
tion, to that of exponential sums

∑

n

e
(

fp,r(n) − fp′,r ′(n)
)

.

Namely, if this sum is at most∆(p, r) in absolute value whenevern
runs over a subinterval of [N,N′], then

∣

∣

∣

∣

(

ϕp,r , ϕp′,r ′
)

∣

∣

∣

∣

≪ ∆(p, r).



4.4. The Twelth Moment of 119

So in place of (4.4.45) it suffices to show that

(4.4.46)
∑

p,r

∆(p, r) ≪
(

K−1
◦ K−1M + KM−1/2RT

)

Tδ.

The quantity∆(p, r) will be estimated by van der Corput’s method.
To this end we need the first two derivatives of the functionfp,r (x) −
fp′,r ′(x) in the interval [N,N′]. By the definition (4.1.6) of the function
φ(x) we have

φ′(x) =
(

1+ x−1
)1/2

,

φ′′(x) = −1
2

x−3/2(1+ x)−1/2.

127

Then by a little calculation it is seen that

f ′p,r(x) − f ′p′,r ′(x) =
h̄
k
− 1

2hk
− h̄′

k′
+

1
2h′k′

(4.4.47)

+BK−3
◦ M3/2N−1/2

∣

∣

∣

∣

∣

∣

hkt−1
p − h′k′t−1

p +
1
2
πx

(

tptp′
)−1

(

hk
h′k′
−

h′k′

hk

)
∣

∣

∣

∣

∣

∣

,

where|B| ≍ 1, and

∣

∣

∣ f ′′p,r(x) − f ′′p′,r ′(x)
∣

∣

∣ ≍ K−3
◦ M3/2N−3/2

∣

∣

∣hkt−1
p − h′k′t−1

p′(4.4.48)

+
1
2
πx

(

t−2
p − t−2

p′
)

∣

∣

∣

∣

∣

.

We shall estimate∆(p, r) either by Lemma 4.1, or by the following
simple lemma (see [27], Lemmas 4.8 and 4.2). We denote by‖ α ‖ the
distance ofα from the nearest integer.

Lemma 4.6. Let f ∈ C1[a, b] be a real function with f′(x) monotonic
and‖ f ′(x) ‖≥ m> 0. Then

∑

a<n≤b

e( f (n)) ≪ m−1.
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Turning to the proof of (4.4.46), let us first consider the sumover
the pairsp, r′. Trivially,

∆(p′, r′) ≪ N ≪ K−2M ≪ K−1
◦ K−1M.

If p , p′, then by (4.4.47)
∣

∣

∣ f ′p,r ′(x) − f ′p′,r ′(x)
∣

∣

∣ ≍ K−1
◦ M1/2N−1/2T−1

∣

∣

∣tp − tp′
∣

∣

∣ .

We may apply Lemma 4.6 if128

∣

∣

∣tp − tp′
∣

∣

∣ ≪ K◦M
−1/2N1/2T,

and the corresponding part of the sum (4.4.46) is

≪ K◦M
−1/2N1/2T

∑

p

∣

∣

∣tp − tp′
∣

∣

∣

−1 ≪ K−1
◦ K−1MTδ;

recall (4.4.42), (4.4.36), and (4.4.31).
Ohterwise∆(p, r) is estimated by Lemma 4.1. Now by (4.4.48)

∣

∣

∣ f ′′p,r ′(x) − f ′′p′,r ′(x)
∣

∣

∣ ≍ K−1
◦ M1/2N−3/2T−1

∣

∣

∣tp − tp

∣

∣

∣≫ N−1,

so that these values ofp contribute

≪
∑

p

(

N
(

K−1
◦ M1/2N−3/2

)1/2
+ N1/2

)

≪
(

K−1/2
◦ M1/4N1/4 + N1/2

)

R

≪ M1/2R,

which is clearly≪ KM−1/2RT.
For the remaining pairsp, r in (4.4.46) we haver , r′. Let p be

fixed for a moment. Then

(4.4.49)
∣

∣

∣hkt−1
p − h′k′t−1

p′
∣

∣

∣ ≫ T−1,

save perhaps for one “exceptional” fractionr = h/k; note that by the
assumption (4.4.34) no two different fractions in our system have the
same value forhk. If (4.4.49) holds, then by (4.4.48)

∣

∣

∣ f ′′p,r(x) − f ′′p′,r ′(x)
∣

∣

∣ ≍ K−3
◦ M3/2N−3/2

∣

∣

∣hkt−1
p − h′k′t−1

p′
∣

∣

∣ .
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Then, if r runs over the non-exceptional fractions,
∑

r

∣

∣

∣ f ′′p,r(x) − f ′′p′,r ′(x)
∣

∣

∣

−1/2 ≪ K3/2
◦ M−3/4N3/4T1/2

∑

m≪K2
◦M−1T

m−1/2

≪ K5/2
◦ M−5/4N3/4T

≪ KM−1/2T,

and 129

∑

r

N
∣

∣

∣ f ′′p,r(x) − f ′′p′,r ′(x)
∣

∣

∣

1/2 ≪ K3/2
◦ M−3/4N1/4T ≪ KM−1/2T.

Hence by Lemma 4.1

(4.4.50)
∑

r

∆(p, r) ≪ KM−1/2T.

Consider finally∆(p, r) for the exceptional fraction. We shall need
the auxiliary result that for any two different fractionsh/k andh′/k′ of
our system we have

(4.4.51) ‖ h̄
k
− 1

2hk
− h′

k′
+

1
2h′k′

‖≫ K−2
◦ M2T−2.

For if k , k′, then the left hand side is≫ K−2
◦ by the condition

(4.4.34), like also in the casek = k′ if h . h′ (mod k). On the other
hand, ifk = k′ andh ≡ h′ (mod k), then|h− h′| ≫ K◦, and the left hand
side is

∣

∣

∣

∣

∣

1
2hk
−

1
2h′k

∣

∣

∣

∣

∣

≫ (hh′)−1 ≫ K−2
◦ M2T−2.

Let r be the exceptional fraction (for givenp), and suppose first that
for a certain small constantc

(4.4.52)
∣

∣

∣hkt−1
p − h′k′t−1

p′
∣

∣

∣ ≤ cK◦M
1/2N1/2T−2

in addition to the inequality

(4.4.53)
∣

∣

∣hkt−1
p − h′k′t−1

p

∣

∣

∣ ≪ T−1
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which defines the exceptionality. Then, by (4.4.51), the first four terms
in (4.4.47) dominate, and we have

‖ f ′′p,r(x) − f ′p′r ′(x) ‖≫ K−2
◦ M2T−2.

Hence by Lemma 4.6 130

∆(p, r) ≪ K2M−2T2 ≪ KM−3/2T5/3 ≪ KM−1/2T,

sinceK ≪ M1/2T−1/3 andM ≫ T2/3.
On the other hand, if (4.4.52) does not hold, then by (4.4.48)and

(4.4.53)

K−3
◦ M3/2N−3/2T−1 ≫

∣

∣

∣ f ′′p,r(x) − f ′′p′,r ′(x)
∣

∣

∣ ≫ K−2
◦ M2N−1T−2.

Hence by Lemma 4.1

∆(p, r) ≪ K−3/2
◦ M3/4N1/4T−1/2 + K◦M

−1N1/2T

≪ MT−1/2 + M−1/2T ≪ M−1/2T.

Now we sum the last estimations and those in (4.4.50) with respect
to p to obtain

∑

p,r
r,r ′

∆(p, r) ≪ KM−1/2RT.

Taking also into account the previous estimations in the case r = r′,
we complete the proof of (4.4.46), and also that of Theorem 4.7.

Notes

Theorems 4.1 and 4.2 were proved in [16] for integral values of r. The
results of§ 4.1 as they stand were first worked out in [17].

In §§ 4.2 - 4.4 we managed (just!) to dispense with weighted ver-
sions of transformation formulae. The reason is that in all the problems
touched upon relatively large values of Dirichlet polynomials and expo-
nential sums occurred, and therefore even the comparatively weak error131
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terms of the ordinary transformation formulae were not too large. But in
a context involving also small or “expected” values of sums it becomes
necessary to switch to smoothed sums in order to reduce errorterms. A
challenging application of this kind would be proving the mean value
theorems

T+T2/3
∫

T

|ζ(1/2+ it)|4 dt≪ T2/3+ǫ

T+T2/3
∫

T

|ϕ(k/2+ it)|2 dt≪ T2/3+ǫ ,

respectively due toH. Iwaniec [14] andA. Good [9] (a corollary of
(0.11) in a unified way using methods of this chapter.

The estimate (4.4.2) for the sixth moment ofϕ(k/2 + it) actually
gives the estimate forϕ(k/2+ it) in Theorem 4.5 as a corollary, so that
strictly speaking the latter theorem is superfluous. However, we found it
expedient to work out the estimate ofϕ(k/2+ it) in a simple way in order
to illustrate the basic ideas of the method, and also with thepurpose of
providing a model or starting point for the more elaborate proofs of
Theorem 4.6 and 4.7, and perhaps for other applications to come.

The method of§ 4.4 can probably be applied to give results to the
effect that an exponential sum involvingd(n) or a(n) which depends on
a parameterX is “seldom” large as a function ofX. A typical example
is the sum (4.3.38). An analogue of Theorem 4.7 would be

X2
∫

X1

∣

∣

∣

∣

∣

∣

∣

∑

M1≤m≤M2

b(m)e
( X
m

)

∣

∣

∣

∣

∣

∣

∣

6

dx≪ X5/2+ǫ
1

for M1 ≍ M2,X1 ≍ X2,X1 ≫ M2
1, andb(m) = d(m) or ã(m).
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