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Preface

Since its appearance in 1972 the variational principle @l&td has
found many applications in fierent fields in Analysis. The best refer-
ences for those are by Ekeland himself: his survey artict® §&d his
book with J.-P. Aubin[[2]. Not all material presented her@egns in
those places. Some are scattered around and there lies rivatioot
in writing these notes. Since they are intended to studeintsluded
a lot of related material. Those are the detours. A chaptédamyt-
skii mappings may sound strange. However | believe it isuissince
their properties so often used are seldom proved. We alwaygcs
the students: go and look in Krasnoselskii or Vainberg! hihtome
of the proofs presented here are more straightforward. eTass two
chapters on applications ®DE. However | limited myself to semi-
linear elliptic. The central chapter is on Brézis proof loé tminimax
theorems of Ambrosetti and Rabinowitz. To be self containledd to
develop some convex analysis, which was later used to gioenplete
treatment of the duality mapping so popular in my childhoagsd |
wrote these notes as a tourist on vacations. Although the moaid
is smooth, the scenery is so beautiful that one cannot respd into
the side roads. That is why | discussed some of the geometBaof
nach spaces. Some of the material presented here was pacbofse
delivered at the Tata Institute of Fundamental ResearchaimgBlore,
India during the months of January and February 1987. Somiarpr
nary drafts were written by Subhasree Gadam, to whom | espres/
gratitude. | would like to thank my colleagues at UNICAMP foeir
hospitality and Elda Mortari for her patience and cheerfillingness in
texing these notes.

Campinas, October 1987
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Chapter 1

Minimization of Lower
Semicontinuous Functionals

Let X be a Hausddf topological space. A functiond : X - RU{+c0} 1
is said to bdower semicontinuoud for every a € R the set{x € X :
®(X) > a} is open. We use the terminology functional to designatela rea
valued function. A Hausdfitopological spaceX is compactif every
covering ofX by open sets contains a finite subcovering. The following
basic theorem implies most of the results used in the mimitiga of
functionals.

Theorem 1.1. Let X be a compact topological space afd: X —
R U {+o0} a lower semicontinuous functional. Thémx) @ is bounded
below, andb) the infimum ofD is achieved at a pointgxe X.

Proof. The open seté, = {x € X : ®(X) > —n}, for n € N, constitute
an open covering oK. By compactness there existe@e N such that

No
LJAi=x
=1

So®d(X) > ng for all x € X.
(b) Now let£ = Inf @, £ > —co. Assume by contradiction thdtis

1



2 1. Minimization of Lower Semicontinuous Functionals

not achieved. This means that

(o9

U{xex:cb(x)>£+%}:x.

n=1
By compactness again it follows that there exist & N such that

n

U{xeX:d)(x)>€+%}:X.

n=1

But this implies thatd(x) > ¢ + n—ll for all x € X, which contradicts
the fact that is the infimum of®. o

In many cases it is simpler to work with a notion of lower seonic
tinuity given in terms of sequences. A functidn: X — R U {+oo} is
said to besequentially lower semicontinuoifSor every sequencexf)
with lim X, = Xo, it follows that®(xp) < liminf ®(x,). The relationship
between the two notions of lower semicontinuity is expouhaethe
following proposition.

Proposition 1.2. (a) Every lower semicontinuous functidn : X —
R U {+o0} is sequentially lower semicontinuoufb) If X satisfies the
First Axiom of Countability, then every sequentially lovgemicontinu-
ous function is lower semicontinuous.

Proof. (a) Letx, — Xgin X. Suppose first thab(xg) < . For each
€ > 0 consider the open sAt= {x € X : ®(X) > ®(X) — €}. Since
Xo € A, it follows that there existay = ng(e) such thatx, € A for
all n > ng. For suchn’s, ®(x,) > ®(xg) — €, which implies that
liminf ®(x,) > ®(Xo) — €. Sincee > 0 is arbitrary it follows that
liminf ®(xp) > ®(Xg). If ®(Xg) = +oo take A = {x € X : ®(X) >
M} for arbitraryM > 0 and proceed in similar way.

(b) Conversely we claim that for each real numbaéhe set- = {x €
Q : ®(X) < a} is closed. Suppose by contradiction that this is not
the case, that is, there exists € F\F, and so®(xg) > a. On
the other hand, leD, be a countable basis of open neighborhoods



of Xg. For eachn € N there existsx, € F N On. Thusx, — Xo.
Using the fact thatb is sequentially lower semicontinuous and
d(x,) < awe obtain thatb(xp) < a, which is impossible.

m|

Corollary 1.3. If X is a metric space, then the notions of lower semi-
continuity and sequentially lower semicontinuity coircid

Semicontinuity at a Point. The notion of lower semicontinuity can be
localized as follows. Le® : X — R U {+o0} be a functional andg € X.
We say thatd is lower semicontinuouat Xg if for all a < ®(xp) there
exists an open neighborhodof xo such thata < ®(x) forall x e V. 3
It is easy to see that a lower semicontinuous functionalvsetosemi-
continuous at all pointx € X. And conversely a functional which is
lower semicontinuous at all points is lower semicontinudlise reader
can provide similar definitions and statements for seqaElotiver semi-
continuity.

Some Examples WherX = R. Let® : R — RU{+oo}. Itis clear thatd

is lower semicontinuous at all points of continuityxifis a point where
there is a jump discontinuity andl is lower semicontinuous there, then
D(Xg) = MIN{d(Xy — 0), D(Xg + 0)}. If lim d(X) = +c0 asX — Xg then
D(Xp) = +oo if @ is to be lower semicontinuous there. @fis lower
semicontinuous the s¢x € R : ®(X) = +oo} is not necessarity closed.
Example:®(x) = 0if 0 < x < 1 and®(x) = +co elsewhere.

Functionals Defined in Banach Spaces.in the case whekX is a Ba-
nach space there are two topologies which are very usefumeNa
the norm topologyr (also called the strong topology) which is a metric
topology and the weak topology” which is not metric in general. We
recall that the weak topology is defined by giving a basis @fogets as
follows. For eachke > 0 and each finite set of bounded linear functionals
l1,...,4n € X*, X* is the dual space oX, we define the (weak) open
set{x € X : |[t1(X)| < e,...,|tn(X)| < €}. It follows easily thatr is a
finer topology thamr®, i.e. given a weak open set there exists a strong
open set contained in it. The converse is not true in gen@ghé remark
that finite dimensionality oK implies that these two topologies are the
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same]. It follows then that a weakly lower semicontinuouscfional

@ : X - R U {+c0}, X a Banach space, is (strongly) lower semicontinu-
ous. A similar statement holds for the sequential lower sentinuity,
since every strongly convergent sequence is weakly coemerdn gen-
eral, a (strongly) lower semicontinuous functional is natakly lower
semicontinuous. However the following result holds.

Theorem 1.4. Let X be a Banach space, add: X — R U {+o0} a
convex function. Then the notions of (strong) lower sentiicoity and
weak lower semicontinuity coincide.

Proof. (i) Case of sequential lower semicontinuity. Suppagse—
Xo (the half arrown— denotes weak convergence). We claim that
the hypothesis ob being (strong) lower semicontinuous implies
that
D(xp) < liminf ®(xy).

Let ¢ = liminf ®(x,), and passing to a subsequence (cakyit
again) we may assume that= lim ®(x,). If £ = +oo there is
nothing to prove. lf~c0 < £ < o0, we proceed as folows. Given
€ > 0 there isng = np(€) such thaid(x,) < ¢ + € for all n > ny(e).
Renaming the sequence we may assumedat) < ¢ + € for

all n. Sincex is the weak limit of &) it follows from Mazur's
theorem [which is essentially the fact that the convex balk,)

of the sequencexf) has weak closure coinciding with its strong
closure] that there exists a sequence

Kn Kn
yN:ZajNXj, ZajN:l, cszZO,
=1 =1

such thatyN — xg asN — oo. By convexity
kn
®(yN) < Z AN D(x)) < C+€
=1

and by the (strong) lower semicontinui®(Xy) < ¢ + €. Since
€ > 0 is arbitrary we getd(xg) < ¢. If £ = —oc0, we proceed



in a similar way, just replacing the statemeabiix,) < ¢ + € by
d(x,) < —M for all n > n(M), whereM > 0 is arbitrary.

(i) Case of lower semicontinuity (nonsequential). Giaer R we
claim that the sefx € X : ®(X) < a} is weakly closed. Since such
a set is convex, the result follows from the fact that for avesn
set being weakly closed is the same as strongly closed.
m]

Now we discuss the relationship between sequential weakrlow
semicontinuity and weak lower semicontinuity, in the castunction-
als® : A » R U {+oo} defined in a subseA of a Banach spac¥.

As in the case of a general topological space, every weakrleami-
continuous functional is also sequentially weak lower semiinuous.
The converse has to do with the fact that the topologi ought to sat-
isfy the First Axiom of Countability. For that matter one trgdts to the
case wherA is bounded. The reason is: infinite dimensional Banach
spacesX (even separable Hilbert spaces) do not satisfy the FirstrAxi

of Countability under the weak topology. The same staterisente for

the weak topology induced in unbounded subset$. @ee the examples
below

Example (von Neumann)Let X be the Hilbert spacé?, and letA c ¢2
be the set of pointgy,,, m,n=1,2,..., whose coordinates are

1, ifi=m
Xmn(i) =<m, if i=n
0, otherwise

Then 0 belongs to weak closure Af but there is no sequence of
points in A which converge weakly to 0. [Indeed, if there is a se-
quenceXmn, — O, then ¢, Xmn),z — O, for ally € ¢2. Takey =
(1,1/2,1/3,...) and see that this is not possible. On the other hand
given any basic (weak) open neighborhood ofs0¢ £2 : (y, X),2 < €
for arbitraryy € £? ande > 0, we see thax, belongs to this neighbor-
hood if we takem such thatym| < €/2 and them such thaty,| < €/2m].
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However, if the duaK* of X is separablethen the induced topology
in aboundedsubsetA of X by the weak topology oX is first countable.
In particular this is the case K is reflexiveand separable since this
implies X* separable. It is noticeable that in the case wKénreflexive
(with no separability assumption made) the following rebolds.

Theorem 1.5(Browder [19]) Let X be a reflexive Banach space, A a
bounded subset of X point in the weak closure of A. Then there
exists an infinite sequen¢r) in A converging weakly togdn X.

Proof. It suffices to construct a closed separable subspgae# X such
that xg lies in the weak closure d€ in Xg, whereC = An Xg. Since
Xo is reflexive and separable, it is first countable and theretbgrsts
a sequencexk) in C which converges tog in the weak topology of
Xo. So () lies in A and converges tag in the weak topology o¥.
The construction 0Kg goes as follows. LeB be the unit closed ball in
X*. For each positive integer, B" is compact in the product of weak
topologies. Now for each fixed integar > 0, each {o1,...,wn] € B"
has a (weak) neighborhoadin B" such that

ﬂ ﬁ{xeA:|<wj,x—xo)|<n%}:(Z).

[w1,....0n]€V j=1

By compactness we construct a finite Bgt, ¢ A with the property
that given any s, ..., wn] € B" there isx € A such thatwj, X — Xo)| <
Lforall j=1,...,n Now let

Ag = O Fnm.

nm=1

ThenAg is countable andy is in weak closure of. Let Xg be the
closed subspace generatedAy SoXg is separable, and denoting by
C = Xgn Ait follows thatxg is in the closure o€ in the weak topology
of X. Using the Hahn Banach theorem it follows thatis the closure
of C in the weak topology oKp. m|



Remark . The Erberlein-Smulian theorem states: “Réte a Banach
space andA a subset ofX. Let A denote its weak closure. Théehis
weakly compact if and only i is weakly sequentially precompact, i.e.,
any sequence i\ contains a subsequence which converges weakly”.
See Dunford-Schwartz 185, p. 430]. Compare this stateméhtWe-
orem[Lb and appreciate thefdrence!

Corollary . In any reflexive Banach space X a weakly lower semicon-
tinuous functionald : A — R, where A is a bounded subset of X, is
sequentially weakly lower semicontinuous, and conversely






Chapter 2

Nemytskii Mappings

Let Q be an open subset BN, N > 1. A functionf : QxR — Ris said 7
to be aCarathéodary functiorif (a) for each fixeds € R the function

X - f(x, 9) is (Lebesgue) measurable §n (b) for fixedx € Q(a.e)
the functions — f(x, s) is continuous inR. Let M be the set of all
measurable functions: Q — R.

Theorem 2.1.If f : Q x R — R is Carathéodory then the function
X f(x u(x)) is measurable for all . M.

Proof. Let uy(X) be a sequence of simple functions converging a.e. to
u(x). Each functionf (x, un(X)) is measurable in view of (a) above. Now
(b) implies thatf (x, un(X)) converges a.e. t(x, u(x)), which gives its
measurability. O

Thus a Carathéodory functiohdefines a mappinil; : M — M,
which is called aNemytskii mapping The mappingN; has a certain
type of continuity as expresed by the following result.

Theorem 2.2. Assume tha® has finite measure. Lét,) be a sequence
in M which converges in measure toauM. Then Nu, converges in
measure to Nu.

Proof. By replacingf(x, s) by g(x,s) = f(x, s+ u(x)) — f(x, u(x)) we
may assume thédt(x, 0) = 0. And moreover our claim becomes to prove

9



10 2. Nemytskii Mappings

that if (u,) converges in measure to 0 thd(x, u,(X)) also converges
in measure to 0. So we want to show that given- 0 there exists
no = No(e) such that

{xe Q:[f(X,un(X)) = €}l <€ Vn=ng,
where|A| denotes the Lebesgue measure of dsdtet

Q={xeQ:|9d<1/k=|f(X 9 < €}

ClearlyQ; c Q, c ... andQ = |J Q(a.e). Thus|Qy — |Q|. So
k=1

there existk such thatQ| — [y < €/2. Now let
An = {XxeQ: us(¥)| < 1/k}.

Sinceu, converges in measure to 0, it follows that there exigts
No(e) such that for alh > ny one hagQ| — |An| < €/2. Now let

Dn={xeQ:[f(X un(X)l < €.
Clearly AN Qp c Dn. SO
1] = [Dnl < (12 = [Anl) + (11 = 1)) < €
and the claim is proved. m|

Remark . The above proof is essentially the one in Ambrosetti-Prodi
[2]. The proof in Vainberg[78] is due to Nemytskii and relt@savily in

the following result (see references in Vainberg’s book; &lso Scorza-
Dragoni [74] and J.-P. Gosselz_[47] for still another proofl.et f :
Qx| — R be a Carathéodory function, whdrés some bounded closed
interval inR. Then givene > 0 there exists a closed setc Q with
|Q\F| < € such that the restriction dfto F x | is continuous”. This is

a sort of uniform (with respect tee 1) Lusin’s Theorem.

Now we are interested in knowing whedy maps anLP space in
some othet_P space.
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Theorem 2.3. Suppose that there is a constant ©, a function §x)
L), 1 < q < o0, and r> 0 such that

(2.1) [f(x,9) <cd +b(X), ¥YxeQ, VseR.

Then(a) Ns maps 19 into LY, (b) N¢ is continuous and bounded
(that is, it maps bounded sets into bounded sets).

Proof. It follows from (Z) using Minkowski inequality
(2.2) [INfullLa < clllul{lLa + [IbllLa = CIIUIIqur + |bllLa

which gives (a) and the fact th&; is bounded. Now suppose thad
Up, — uin L9, and we claimN;u, — N¢uin LY. Given any subsequence
of (uy) there is a further subsequence (call it againsuch thatu,(X)| <
h(x) for someh € L% (Q). It follows from (21) that

(X un())I < ch(X)I" + b(x) € LYC).

Sincef (X, un(X)) converges a.e. t(x, u(x)), the result follows from
the Lebesgue Dominated Convergence Theorem and a staredadd r
on metric spaces. O

Itis remarkable that the ficient condition[[ZI1) is indeed necessary
for a Carathéodory functiori defining a Nemytskii map betwedr’
spaces. Indeed

Theorem 2.4. Suppose Nmaps IP(Q) into LYQ) for 1 < p < oo,
1 < g < . Then there is a constant<0 and kx) € L9(Q) such that

(2.3) If(x, 9)| < |59+ b(X)

Remark . We shall prove the above theorem for the case wfleis
bounded, although the result is true for unbounded domadiris.also
true that ifNy mapsLP(Q), 1 < p < « into L*(Q) then there exists a
functionb(x) € L*(Q) such thatf(x, s)| < b(x). See Vainberd[48].

Before proving Theoreind.4 we prove the following result.
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Theorem 2.5. Let Q be a bounded domain. Suppose IHaps [P(Q)
into LYQ) for 1 < p < 0,1 < q < o. Then N is continuous and
bounded.

Proof. (a) Continuity ofN¢. By proceeding as in the proof of Theorem
22 we may suppose théfx, 0) = 0, as well as to reduce to the question
of continuity at 0. Suppose by contradiction thgt —» 0 in LP and

Nfu -» 0 in LY. So by passing to subsequences if necessary we may
assume that there is a positive constaatich that

(2.4) Znunllfp <oco and f|f(x, un(X))4>4a, Vvn.
n=1 Q

Let us denote by
a 1/q
Bn =X e Q:|f(X un(X)| > (m)

In view of Theoren.Z12 it follows thdB,| — 0. Now we construct
a decreasing sequence of positive numlagrand select a subsequence
(Un,) of (un) as follows.

1st step: e1 = |Q| up, = Uy.
2nd step: choosee, < €1/2 and such that

[t <Svoca. bi<2e,
D

then choosey, such|By,| < e.
3rd step: chooserss < /2 and such that

f (% Un, I < gvo cQ, ID|< 2.
D

then choos@ such thaiBy,| < es.

And so on. LetDp, = By \ |J By. Observe that thé)]sare pair-
i=j+1
wise disjoint. Define
U(x) = unj(x) if xe an, j=12...
0 otherwise
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The functionuis in LP in view of (Z4). So by the hypothesis of the
theoremf (x, u(x)) should be in_L9(Q). We now show that this is not the
case, so arriving to contradiction. Let

<= [ irocuonr = [ ifeeuoor= [ < [ =1-,

Next we estimate the integrals in the right side as follows:

I = fB 110 (9 = fg 10 Un, (O - fg \an|f<x,un,.(x))|q

]

sa 2_2
97373

and to estimate); we observe thaB,\D, ¢ (J Bp. We see that
i=j+1

|Bn;\Dn| < f 6 < 2¢j.1. Consequenthyd; < a/3. ThusK; > a/3.

i=j+1
And so .
[ r0cuooe = Y2y =

(b) Now we prove thatN¢ is bounded. As in part (a) we assumel
that f(x,0) = 0. By the continuity ofNs at 0 we see that there exists
r > 0 such that for all € LP with |jul|.r < r one hag|Nsul|.r < 1. Now
given anyu in LP let n (integer) be such thatrP < ||u||Ep < (n+ 1P,

ThenQ can be decomposed inter 1 pairwise disjoint setQ; such that
J;, P < rP. So
]

n+1 p
q._ q ||u”LP)
fg [T (%, u(x))| j§=1 fQj [fu))¥<n+1< ( . +1

O

Proof of Theorem[Z4. Using the fact thalN; is bounded we get a
constant > 0 such that

(2.5) L oo u()ddx < ¢ if fg P < 1.
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Now define the functiomd : Q x R — R by
H(x, s) = max{|f(x, s)| — c/s9: 0}.
Using the inequalityr + (1 — )9 < 1 for0< a < 1 we get
(2.6) H(x, 99 < [f(x, 99+ c9gP for H(x, s) > 0.

Letu e LPandD = {x € Q : H(x,u(x)) > 0}. There exisin > 0
integer and & e < 1 such that

f u(x)|Pdx=n+e.
D

So there are + 1 disjoint setdD; such that

n+1

D=| JDi and f lu(x)|Pdx < 1.
Dj

i=1
From [Z5) we get

n+l

fD (%, u(x))|%dx = .Z‘ fD | (%, u(x)))%dx < (n+ 1)cd.
Then using this estimate i (2.6) we have
2.7) f H(x u(x)9 < (n+1)c? - (n+¢e)c? < ¢
Q

which then holds for alli € LP.
Now using the Lemma below we see that for each positive intege
there existal € M with |uk(X)| < k such that
bk(X) = supH(x, s) = H(X, uk(X)).
Isi<k
It follows from (1) thatbk(x) € LYQ) and||bg|l.a < c. Now let us
define the functiom(x) by
(2.8) b(xX) = sup H(x 9 = I(Iim bi(x).

—00<S<0

It follows from Fatou’s lemma thai(x) € L9 and||b||.s < c. From
&3) we finally obtain[(Z13). m|
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Lemma.Let f: Qx| — R be a Carathédory function, where | is some
fixed bounded closed interval. Let us define the function

c(X) = ngealle(x, ).

Then ce M and there exists € M such that

(2.9)

c(X) = f(x,u(x)).

Proof. (i) For each fixedsthe functionx — fs(X) is measurable. We

(ii)

claim that
c(X) =sudfs(X): sel, s—rationa}

showing then that is measurable. To prove the claim bef €
Q(a.e) and choosesy € | such thatc(xg) = f(xo, S). Sincesy
is a limit point of rational numbers anflxg, ) is a continuous
function the claim is proved.

For eachx € Q(ae) letFyx = {se | : f(x, ) = c(X)} which is a
closed set. Let us define a function Q — R by T(x) = ming Fy.
Clearly the functiorti satisfies the relation i .{d.9). It remains to
show thafli e M. To do that it sfices to prove that the sets

B, ={XeQ:UX) >a}Va el

are measurable. [Recall thafx) € | for x € Q]. Let 3 be the
lower end ofl. Now fixeda € | we define the functio, : Q —
R by
C.(X) = max f(x, 9)
B<s<za

which is measurable by part (i) proved above. The proof is-com
pleted by observing that

B, = {Xe€ Q:c(X) > c,(X)}.
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Remark. The Nemytskii mappindNs defined fromLP into L9 with 1 <

p < o0, 1< @ < oo is not compact in general. In fact, the requirement
that N is compact implies that there existdb@) € L9(Q) such that
f(x, 9 = b(x) for all s R. See Krasnoselskil |[53].

The Differentiability of Nemytskii Mappings. Suppose that a Cara-
théodory functionf (x, ) satisfies conditior{213). Then it defines a map-
ping fromLP into LY. It is natural to ask: iff (x, s) has a partial derivative
fZ(x, s) with respect tos, which is also a Carathéodory function, does
fZ(x, s) define with respect ts, which is also a Carathéodory function,
doesf/(x, s) define a Nemytskii map between soineéspaces? In view
of TheorenTZH we see that the answer to this question is nernn g
eral. The reason is thdf (2.3) poses no restriction on thetgrof the
derivative. Viewing the dferentiability of a Nemytskii-mappindl; as-
sociated with a Carathéodory functidifx, s) we start assuminghat
f{(x, 9) is Carathéodory and

(2.10) 1fi(x, 9 <cd™+b(x), VseR VxeQ.

whereb(x) € L"(Q), 1 < n < oo, m > 0. Integrating [Z710) with respect
to swe obtain

C m+1
(211) (91 < —I9™ + IS+ a(¥.

wherea(x) is an arbitrary function. Shortly we impose a condition on
a(x) so as to having a Nemytskii map defined between adeduiate
spaces. Using Young’s inequality in{2111) we have

c+1 m
< m+1 (m+1)/m )
[£(x 91 < 8™ + —=b()™ /M + a(x)

Observe that the functids(x)™1/Mis in LY(Q), whereg = mry/(m+
1). So if we picka € LY it follows from Theoren{ZI3 that (assuming

Z10)):

(2.12) Nt :LP > L9 p=mn and g=mn/(m+1)
(2.13) Ny : LP — L".

Now we are ready to study theffrentiability of the mappingn;.
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14  Theorem 2.6. Assume(ZI0) and the notation inZI2) and (Z.I3)
Then N is continuously Fréchet glerentiable with
Nj @ LP — £(LP, L%
defined by
(2.14) NE(W[V] = N (UV(= fo(x u(x))v(x)), Yu,ve LP.

Proof. We first observe that under our hypotheses the funcxior
f2(x, u(X))v(x) is in LY(Q). Indeed by Holder’s inequality

/
fg |f;<x,u<x))v(x>|‘*s( fg |f;(x,v(x>|w(p-q>/p>(p-q>/p)( fg |v(x>|p)qp.

Observe thapg/(p — g) = n and use[[2.13) above. Now we claim
that for fixedu € LP

w(V) = Nf(u+ V) — N¢(u) = fo(x uv

is o(v) for v e LP, that is||w(V)llLa/IMILe — O as|VllL» — 0. Since
1
f(u(x) + v(x)) — f(u(x)) = fo dgt f(x u(x) + tv(x))dt

= f ' fo(% u(x) + tv(x))v(x)dt
0
we have
fg w(v)idx = fg | fo "0 U060 + () — £506 U VOOd el

Using Holder’s inequality and Fubini, we obtain

f lw(V)|9dx <
Q
1 a/n
< ( [ 120069 + 1) - t20x w0y dt) M.
0 Jo
Using [ZI3B) and the fact th&d; is a continuous operator we have

the claim proved. The continuity &f; follows readily [ZTH#) and{Z.13).
mi
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Remark. We observe that in the previous theorgns q, since we have
assumeadn > 0. What happens ifh = 0, that is
[fs(X 9l < b(X)
whereb(x) € L"(Q)? First of all we observe that
Ny :LP > L" vp>1
and proceeding as above (supposing i < o)
N¢ :LP > L9 vp>1 and g=np/(n+p)

and we are precisely in the same situation adan 12. 121 12. New
assumen = +oo, i.e., there exist$1 > 0

(2.15) [fs(X, 9| <M VxeQ, VseR.
Integrating we obtain
(2.16) If(X, 9| < M|s| + b(X)

It follows under [ZIb) and{Z.16) that
Nf*'ZLp—>Lc><> Vi< p<oo
N : LP — LP (takingb € LP).

It is interesting to observe that such lip cannot be Fréchet fer-
entiable in general. Indeed:

Theorem 2.7. AssumdZ.18) If Ns : LP — LP is Fréchet diferentiable
then there exist functions:g € L™ and k(x) € LP such that {x, s) =
a(x)s+ b(x).

Proof. (a) Let us prove that the Gateaux derivativeNgfat u in the
directionv is given by

div N (W) = F(x UGVX).
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First we observe that{(x, u(x))v(x) € L9. So we have to prove
that

wi(X) = t‘l[f(x, u(x) + tv(x)) — f(x, u(x))] — (X, u(x))v(x)

goes to 0irLP ast — 0. As in the proof of Theorein 4.6 we write
1
wi(X) = f [fs(x u(x) + trv(X)) — fs(x, u(x))]v(x)dr.
0
So

1
flwt(X)IdeSf f|f;(x,u(x)+trv(x))—fs’(x,u(x))|p|v(x)|pdx dr.
Q 0 Q

Now for eachr € [0, 1] and eachx € Q(a.e) the integrand of the 16
double integral goes to zero. On the other hand this integisn
bounded by (B1)Plv(x)|P. So the result follows by the Lebesgue
Dominated convergence Theorem.

Now supposé\; is Fréchet dierentiable. Then its Fréchet deriva-
tive is equal to the Gateaux derivative, and assumingfthad) =
0 we have that

(2.17)  ullAIf(x u) = fZ(x,O)ullLe — O as |julliz — O.

Now for each fixed € R andxp € Q consider a sequeneg(X) =
{Bs(x), 1-€., @ multiple of the characteristic function of the ball
Bs(xo). For such functions the expression I[n_(2.17) raised to the
power p can be written as

1

—_— f(x,€) — f2(x, 0)|Pdx
TV E00) g oy T4 0 060K

So taking the limit ag — 0 we obtain

1
ﬁlf(xO,f) - fi(%0,0)| =0, X€ Q(ae)
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which shows thaff (xo, £) = f4(xo,0)¢. Since the previous argu-
ments can be done for alh € Q(a.e) and all¢ € R, we obtain
that f(x, s) = a(x)swherea(x) = f{(x, 0) is anL* function.

i

The Potential of a Nemytskii Mapping. Let f(x, s) be a Carathéodory
function for which there are constants<dm, 1 < p < oo and a function
b(x) € LP/™(Q) such that

[f(x )| < 9™ + b(X).
Denoting byF(x, ) = fos f(x, 7)dr we obtain that
IF(x, 9] < calg™* + c(x)

wherec(x) € LP/(M™M(Q). (See the paragraphs before Theofem 2.7).
ThenNs : LP — LPMandNg : LP — LP/(M1),
In particular, ifp = m+ 1, (= p > 1) the inequalities above become

, 1 1
(218)  |f(x 9l <csP T +b(x), b(x)eLP, A
|F(X9 S)l < C1|Sp + C(X)’ C(X) € Ll
and we have thatl; : LP — LP andNg : LP — L.

Theorem 2.8. AssumdZ18) Then

Y(u) = fg F(x, u(x))dx

defines a continuous function®l : LP(Q2) — R, which is continuously
Fréchet djferentiable.

Proof. The continuity ofNg implies that¥ is continuous. We claim that
¥ = N¢. So all we have to do is proving that

w(v)zLF(x,u+v)—LF(X,U)—Lf(X,u)Vzo(V)
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asv — 0inLP. As in the calculations done in the proof of Theorend 2.6
we obtain

1
a)(v):Lj;[f(x,u+tv)—f(x,u)]vdtdx

Using Fubini's theorem and Holder's inequality

1
lw(v)l < fo [INf (U + tv) = Nt (U)ll_o dtiVIlLe.

The integral in the above expression goes to zer/jas — 0 by
the Lebesgue Dominated Convergence Theorem with an appticaf
TheorenZB. So

-1
IMILpw(v) > 0 as [VllLe — 0.






Chapter 3

Semilinear Elliptic
Equations |

We consider the Dirichlet problem 18
3.1 -Au=f(x,u) in Q u=0 on 0Q,

whereQ is a bounded smooth domainit, N > 2 anddQ denotes its
boundary. We assume all along thfat Q x R — R is a Carathéodory
function. By aclassical solutionof @) we mean a functiom €
C2(Q) N CO%Q) which satisfies the equation at every point Q and
which vanishes o@Q. By ageneralized solutionf (3) we mean a
functionu € Hcl)(Q) which satisfies[{3]1) in the weak sense, i.e.

(3.2) LVU-VVZLf(X,U)V, Yv e CJ(Q).

We see that in order to have things well definednl(3.2), thetfon
f(x, 5) has to obey some growth conditions on the real variablé/e
will not say which they are, since a stronger assumptionheilhssumed
shortly, when we look for generalized solution as criticalnts of a
functional. Namely let us consider

(3.3) d)(u):% fg VUP - fg F(x.u)
23
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whereF(x, ) = [ f(x 7)dr. In order to haveb : Hy(Q) — R well
defined we should require thB(x, u) € LY(Q) for u € H}(Q). In view
of the Sobolev imbedding theorehl% < LP (continuous imbedding)
ifl <p<2N/(N-2)ifN>3and 1< p< oif N=2. So using
TheorenZB we should require thiasatisfies the following condition

(3.4) If(x 9)| < 9Pt + b(x)

wherep satisfies the conditions of the Sobolev imbedding and

b(x) € L¥, EJri,zl
P P
Using Theoreni 218 we conclude that:
if  satisfies(@.4) the functional® defined in@3) is continuous
Fréchet djiferentiable i.e.,C?, and

(3.5) (d)’(u),v):fVu-Vv—ff(x,u)v, Vv e HJ
Q Q

where(, ) denotes the inner product iné}(lQ).

It follows readily that the critical points ab are precisely the gen-
eralized solutions of3l1). So the search for solutiong3dl)(is trans-
formed in the investigation of critical points @f. In this chapter we
study conditions under whicl has a minimum.

® is bounded belovif the following condition is satisfied:

(3.6) F(x,9) < %ysz +a(x)

wherea(x) € LY(Q) andu is a constant O< u < A;. [Here 1; de-
notes the first eigenvalue of the Laplacian subject to Dieichoundary
conditions]. Indeed we can estimate

d)(u)z%LquF—%pLuz—La(x)z—fga(x)

where we have used the variational characterization of teedigen-
value.
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® is weakly lower semicontinuous ir%Hf condition {333) is satisfied
with1 < p<2N/(N-2)if N>3and 1< p< oo if N = 2. Indeed

@) = SIull, — ¥

where¥(u) = fQ F(x, u) has been studied in Section 1.2, and the clagn
follows using the fact that the norm is weakly lower semigwnus and
under the hypothesi¥ is weakly continuous fronHé into R. Let us
prove this last statement. Lef — uin Hcl). Going to a subsequence if
necessary we hawg — uin LP with prestricted as above to insure the
compact imbeddingié — LP. Now use the continuity of the functional
Y to conclude.

Now we can state the following result

Theorem 3.1. Assumd3.8)and G 4)with1 < p < 2N/(N-2)if N > 3

andl < p < o if N = 2. Then for each r> 0 there exist, < 0 and

Ur € Hé with ||ur||42 < r such thatd’(u;) = AU, and® restricted to the
ball of radius r aroundO assumes its infimum at.u

Proof. The ballB;(0) = {u € Hcl, " lullgr < r}is weakly compact. So
applying Theoreni 1]1 to the functiond@lrestricted toB, (0) we obtain
a pointu, € B;(0) such that

O(u;) = Inf{®(u) : u € B, (0)}.
Now letv € B,(0) be arbitrary then
O(u) < d(tv + (1 - tuy) = O(ur) + KD (ur), v — ur) + oft)
which implies
(3.7) (D' (ur),v—1ur) > 0.

If u; is an interior point ofB,(0) thenv — u, covers a ball about the
origin. Consequentlyb’(u,) = 0. If u; € 9B, (0) we proceed as follows.
In the case whe®’(u;) = 0 we have the thesis withy = 0. Otherwise
when®’(u) # 0 we assume by contradiction th@t(u,)/||D’"(u)ll #
—U/lur]l. Thenv = —r®’(u,)/||®’ (Ul is in 8B,(0) andv # u,. So
(v,u) < r?. On the other hand with suchwain @) we obtain 0<
(=V,V—U) = r2 < (v,u), contradiction. o
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Corollary 3.2. In addition to the hypothesis of TheorEml 3.1 assume that
there exists r- 0 such that

(3.8)

o) >a>0 for uedB/(0)

where a is some given constant. Thehas a critical point.

Proof. Since®(0) = 0, we conclude fromi{3l8) that the infimum of
in B;(0) is achieved at an interior point of that ball. m|

Remarks (Suficient conditions that insure (3.3))
(1) Assumeu < 17 in condition [36). Then

(3.9)
1 2_H f 2 1, _r f 2
d(u) > 2fqul > u--ClQ| > > 1 o [Vul ClQ|

where we have used the variational characterization of tke fi
eigenvalue. It follows from[{3]19) thab(u) — +oo as||ul] — oo,
that is,® is coercive So [3B) is satisfied.

(2) In particular, if there existg < A1 such that

lim supw <u

|g—00

then one had{3.6) with a < 11, and® is coercive as proved
above.

(3) (A result of Mawhin-Ward-Willem[]60]) Assume that

(3.10) lim sup@ <a(X) <A1
|si—c0

wherea(x) € L*(Q) anda(X) < 11 on a set of positive measure.

Then under hypothesdB8.4) and ([3:10), the Dirichlet problem

has a generalized squtioneuHé(Q). To prove this statement all

it remains to do is to prove that conditidn{[3.8) is satisfiEdst

we claim that there existg > 0 such that

(3.11) O(u) = f |Vu|2—fa(x)u2 > e, VIIUIIHé =1
Q Q
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Assume by contradiction that there exists a sequengg i
H3(Q) with [|uylly: = 1 and®(u,) — 0. We may assume without
loss of generality thati, — up (weakly) inHJ andu, — uin
L2. As a consequence of the fact thex) < 1, in Q, we have
®(un) > 0 and then

(3.12) 0< f IVuol? — f a(X)u3 < 0.

On the other hand®(u,) = 1- [ @(x)u3 gives [ a(x)u3 = 1. From
B12) we get|upllyz = 1, which implies that, — ug (strongly)

in H3. This implies thatip = 0. Now observe tha® : Hj —» R 22
is weakly lower semicontinuous, th@{u) > O for allu € Hé
and®(up) = 0. Souy is a critical point of®, which implies that

Up € Hé(Q) is a generalized solution 6fAuy = a(X)ug. Thus

Up € W22(Q) and it is a strong solution of an elliptic equation. By
the Aleksandrov maximum principle (see for instance, Giba
Trudinger [46, p. 246]) we see thag # 0 a.e. inQ. Using [3.IR)
again we have

/llfu(z)sfquolzsfa(x)u(2)</11fu(2),
Q Q

which is impossible. Sd{3.11) is proved.
Next it follows from [3ID) that giver < 116y (the o of 311))
there exists a constant > 0 such that

a(X) + €

F(x 9 < S+c, YxeQ, VseR.

Then we estimaté as follows

1 > 1 2 € 2
o) > = | [VuP? - = — - - c Q.
(u)_zfl u| 2foz(x)u qu C|Q|

Using [3:11) we get

1 1e€
o) > = VUl - =— | [Vu? -c.|Q
(U)_Zfoflul 2ﬂlflw Q)

which implies thatd is coercive, and in particulaf(3.8) is satis-
fied.
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Remark. We observe that in all cases considered above we in fact pro-
ved that® were coercive. We remark that conditidn{3.8) could be at-
tained without coerciveness. It would be interesting to nthe other
reasonable condition df to insure [3B). On this line, see the work of
de Figueiredo-Gossez [42].

Final Remark. (Existence of a minimum without the growth condition
@32)). Let us look at the functiondl assuming the following condition:
for some constartt > 0 anda(x) € L1(Q) one has

(3.13) F(x, ) < blgP + a(x)

where 1< p < 2N/(N-2)if N > 3and 1< p< w0 if N = 2. For
u e Hj we have

fF(x, u(x))dx < bf|u(x)|pdx+fa(x)dx
Q

where the integral on the left side could be. In view of the Sobolev
imbedding it is< +c0. So the functionafd could assume the valuex.
Let us now check its weakly lower semicontinuity at a paE Hé(Q)
where®d(up) < +o0. SOF (X, ug(X)) € L. Now take a sequenag — up
in Hé. Passing to subsequence if necessary we may supposg, that
Up in LP, un(X) — up(X) a.e. inQ and|un(X)| < h(x) for someh € LP.

It follows then from [3IB) that

F(X, un(X)) < bh(X)P + a(x).

Since the right side of the above inequality isLih we can apply
Fatou’s lemma and conclude that

Iimsupf F(x,un(x))dxgfF(x,uo(x))dx
Q

Consequently we have

liminf ®(u,) > liminf % f IVunl? — lim sup f F (X, Un)

1
> EflVUolz—fF(X,Uo)-
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Sod . Hcl)(Q) — R U {+o0} is defined and weakly lower semicon-
tinuous. By TheoredIl® has a minimum in any baB, (0) contained
in Hcl). If F satisfies conditio (3:10) (which by the way impliES{8.13))
we see by Remark 3 above thiais coercive. Thu® has a global mini-

mum in Hcl). Without further conditions (namelfZ(3.4)) one cannot grov
that such a minimum is a critical point @f.






Chapter 4

Ekeland Variational
Principle

Introduction. We saw in Chaptdr1 that a functional bounded below
assumes its infimum if it has some type of continuity in a togglthat
renders (local) compactness to the domain of said fundtiohkow-
ever in many situations of interest in applications thisas the case.
For example, functionals defined in (infinite dimensionailpktt spaces
which are continuous in the norm topology but not in the weglotogy.
Problems with this set up can be handleficeently by Ekeland Varia-
tional Principle. This principle discovered in 1972 hasrfd@a multitude

of applications in dierent fields of Analysis. It has also served to pro-
vide simple and elegant proofs of known results. And as weitsse

a tool that unifies many results where the underlining idesoiee sort
of approximation. Our motivation to write these notes is takman at-
tempt to exhibit all these features, which we find matheraliyiquite
interesting.

Theorem 4.1(Ekeland Principle - weak form)Let (X, d) be a complete
metric space. Le® : X —» R U {+oo} be lower semicontinuous and
bounded below. Then given aay 0 there exists ue X such that

(4.1) D(U) < Infx ® + e,

31
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and
(4.2) ®(u,) < ®(uU) + ed(u,u.), Yue X with u=#u,.

For future applications one needs a stronger version of rEneld.]..
Observe thatl{415) below gives information on the wheretbofithe
pointu,. As we shall see in Theorefm #.3 the paintin Theoren 4R
[or u. in Theoren[Z1] is a sort of “almost” critical point. Hencs it
importance.

Theorem 4.2(Ekeland Principle - strong form)Let X be a complete
metric space an@® : X — R U {+o0} a lower semicontinuous function
which is bounded below. Let> 0 andt € X be given such that

(4.3) O(T) < Infx ® + g

Then givem > 0 there exists pe X such that

(4.4) D(uy) < O(T)
(45) d(U/l,U) <A
(4.6) D(Uy), D(U) + %d(u, u) Yu#u,.

Proof. For notational simplification let us put,(x,y) = (1/0)d(X,y).
Let us define a partial order X by

U<Vve o) < dV) —ed,(u, V).

It is straightforward that: (i) (reflexivityy < u; (i) (antisymmetry)
u < vandv < uimply u = v; (iii) (transitivity) u < vandv < wimply
u < w; all these three properties for al] v, w in X. Now we define a
sequences,) of subsets oK as follows. Start withu; = U and define
€

S;={fueX:u<u}, uWeS; st d)(uz)slnfsld>+22

and inductively

Sh=fueX:u<uy}; Upn1€Sy st ®(up) < Infg @+ %
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ClearlyS; o S; o S3 o --- EachS, is closed: letxj € S, with
Xj = X € X. We haved(x;) < ®(un) — ed,(Xj, un). Taking limits using
the lower semicontinuity o and the continuity ofl we conclude that
X € Sp. Now we prove that the diameters of these sets go to zero: diam
Sn — 0. Indeed, take an arbitrary poirte S,,. On one handx < u,
implies

(4.7) D(X) < D(Un) — edy(X, Un).

On the other hand, we observe thxabelongs also t&,_;. Soitis 26
one of the points which entered in the competition when wkeqaai,.
So

(4.8) D(Un) < O(X) + %

From [4T) and[{4]8) we get
di(x,up) <2 Vxe S,

which gives dian8,, < 2-™. Now we claim that the unique point in the
intersection of th&,,'s satisfies condition§{4.4) £E{4.5)E(1.6). Let then

M Sh = {u,}. Sinceu, € Sy, [@4) is clear. Now leti # u,. We cannot

n=
haveu < u,, because otherwise would belong to the intersection of
theSy’s. Sou £ u,, which means that

O(U) > D(uy) — edy(u, wy)
thus proving[[46). Finally to prov€{4.5) we write
n-1 n-1
(T ) < Y da(uj, Ujer) < > 27
=1 =1
and take limits ag — co. ]

Remark. The above results and further theorems in this chapter are du
to Ekeland. Sed [37].138], and his survey paper [39].
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Connections With Fixed Point Theory. Now we show that Ekeland’s
Principle implies a Fixed Point Theorem due to Caristi [238ke also
[23]. As a matter of fact, the two results are equivalent mgbnse that
Ekeland’s Principle can also be proved from Caristi's tkewor

Theorem 4.3(Caristi Fixed Point Theorem)_et X be a complete metric
space, andb : X — RU{+o0} a lower semicontinuous functional which
is bounded below. Let TX — 2% be a multivalued mapping such that

(4.9) DY) <O(X) —d(xy), VYXxeX, VyeTx
Then there existsyx X such that € T .
Proof. Using Theoreni 411 witla = 1 we findxp € X such that

(4.10) D(x0) < D(X) +d(X, X)) VX # Xo.

Now we claim thatxg € T xy. Otherwise ally € T Xy are such that
y # Xo. S0 we have froni{419) anB14]10) that

D(y) < (%) - d(x0.y) and D(xo) < D(y) + d(xo.Y)
which cannot hold simultaneously. i

Proof of Theorem[4.] from Theorem[4B. Let us use the notation
di = ed, which is an equivalent distance ¥a Suppose by contradiction
that there is na. satisfying [4.R). So for eack € X the set{ly € X :
D(X) = O(Y) + di(xy);y # X} is not empty. Let us denote this set by
Tx. In this way we have produced a multivalued mappihn (X, d;)
which satisfies conditiori{4.9). By Theoréml4.3 it shouldsexy € X
such thatxy € T xp. But this is impossible: from the very definition of
Tx, we have thak ¢ T x m|

Remark. If T is a contraction in a complete metric space, that s, if there
exists a constark, 0 < k < 1, such that

dTxTy) <kd(xy), VYXyeX

thenT satisfies conditior[{419) witl(x) = 1led(x,Tx). So that part of
the Contraction Mapping Principle which says about theterise of a
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fixed point can be obtained from Theor€ml4.3. Of course ther@on
tion Mapping Principle is much more than this. Its well knoptoof
uses an iteration procedure (the method of successive xapm@ions)
which gives an ffective computation of the fixed point, with an error
estimate, etc. ..

Application of Theorem £ to Functionals Defined in Banach Ba-
ces. Now we put more structure on the spa€evhere the functionals
are defined. In fact we suppose thétis a Banach space. This will
allow us to use a Dierential Calculus, and then we could appreciate
better the meaning of the relatidn_[4.2). Loosely speakfg)(has to
do with some Newton quocient being small.

Theorem 4.4, Let X be a Banach space add: X — R a lower semi-
continuous functional which is bounded below. In additsuppose that

@ is Gteaux dferentiable at every point ¥ X. Then for eaclte > 0 28
there exists ye X such that

(4.11) O(u) < Infx ® + €
(4.12) IDD(Ue)lIx- < €.

Proof. It follows from TheorenT 4]l that there exisis € X such that
&13) holds and

(4.13) D(u.) < D(U) + €lu—-u]] Yue X

Letv € X andt > 0 be arbitrary. Puttingi = u. + tvin @I3) we
obtain
D (ue) — DU, + V)] < €Ml

Passing to the limit as —» 0 we get—(Dd(u),v) < €||v|| for each

givenv € X. Since this inequality is true fov and —v we obtain
[(D®(u), v)| < €|M], for all v e X. But then

Dd(u), v
IDD(U)lIx- = sup DoV, v) <
vev w0 IV
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Remark 1. The fact thatd is Gteaux diferentiable does not imply that
® is lower semicontinuous. One has simple examples, eveX foR?.

Remark 2. In terms of functional equations Theoréml4.4 means the fol-
lowing. Suppose that : X — X* is an operator which isgradient i.e.,
there exists a functiona : X — R such thafl = D®. The functional

@ is called thepotentialof T. If ® satisfies the conditions of Theorem
K4, then that theorem says that the equalion= x* has a solutiorx

for some X in a ball of radiuse around 0 inX*. And this for alle > 0.

As a matter of fact one could say more if additional cond#iame set

on ®. Namely

Theorem 4.5. In addition to the hypotheses of Theollen] 4.4 assume that
there are constants ¥ 0 and C such that

d(u) > K||u|] - C.

Let B* denote the unit ball about the origin in“XThen BD(X) is
dense in kB.

Proof. We shoule prove that givea > 0 andu* € kB' there exists
Ue € X such that]|D®(u.) — U*||lx~ < €. So consider the functional
Y(u) = ®(u) — (u*,u). Itis easy to see tha¥ is lower semicontinuous
and Gteaux dferentiable. Boundedness below follows frof?), So
by Theoreni.4Z¥4 we obtain, such thaf|D¥(u,)||x- < €. SinceD¥(u) =
DY¥(u) — u*, the result follows. m|

Corollary 4.6. In addition to the hypotheses of Theollen 4.4 assume that
there exists a continuous functign [0, o) — R such thatp(t)/t — +oo
ast— +oo and ®(u) > ¢(||ull) for all u € X. Then Bp(X) is dense in

X*.

Proof. Letk > 0. Choosely > 0 such thaip(t)/t > kfort > tg. So
@d(U) > Kul| if [jull > to. If |lul] < tg, D(U) > C whereC = min{e(t) :
0 <t < to}. Applying Theoreni 4]5 we see thBtP(X) is dense irkB".
Sincek is arbitrary the result follows. m|
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For the next result one needs a very useful concept, a sodmof ¢
pactness condition for a function@l We say that &£ functional satis-
fies thePalais - Smale conditiofor (PS) condition, for short] if every
sequenceuy) in X which satisfies

|®(up)| < const. and®’(u,) » 0 in X~
possesses a convergent (in the norm) subsequence.

Theorem 4.7. Let X be a Banach space adg : X — R a C! func-
tional which satisfies th@S) condition. Suppose in addition théitis
bounded below. Then the infimumdfis achieved at a pointgue X
and  is a critical point of®, i.e.,®’(up) = 0.

Proof. Using TheoreniL4l4 we see that for each positive integbere
is U € X such that

(4.15) ®(up) < Infx @ + % | (un)ll < %

Using (PS) we have a subsequengg)(and an elemeni, € X such
thatu,, — Up. Finally from the continuity of bothd and ®" we get

@I15).
(4.16) (W) = Infx® @'(up) =0
i

Remarks. (1) As a matter of fact the result is true without the conti-
nuity of @’. The mere existence of the Fréchefeliential at each
point sufices. Indeed, we have only to show that the first state-
ment in [£I6) implies the second. This is a standard fadhén 80
Calculus of Variations. Here it goes its simple proof: take X,

vl = 1, arbitrary and > 0. So

®(Ug) < D(ug + tv) = d(Up) + t{(D’(Up), V) + o(t)

from which follows that||®’(up)llx- = sup(®’(up),V) < @ for
lIvil=1
allt > 0. Makingt — 0 we get the result.
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(2) The boundedness below @f it could be obtained by a condi-
tion like the one in Corollarf_416. Observe that a conditiiie |
®(u) — +oo ad||u] — o (usually called coerciveness) [or even
the stronger on&(u)/||ul| — +oo as||ul] — +oco] does not guaran-
tee thatd is bounded below. See Chapiér 1.

(3) Theoreni4l7 appears in Changl[24] with elient proof and re-
stricted to Hilbert spaces. Possibly that proof could bemokéd to
the case of general Banach using a the flow given by subgtadien
like in [68], instead of the gradient flow.



Chapter 5

Variational Theorems of
Min-Max Type

Introduction. In this chapter we use the Ekeland Variational Principse
to obtain a general variational principle of the min-maxayjve follow
closely Brézis[[1B], see also Aubin-Ekelarid [6]. From ttasult we
show how to derive the Mountain Pass Theorem of AmbrosedtiRar
binowitz [4], as well as the Saddle Point and the Generaliedntain
Pass Theorems of Rabinowitz, [66] ahdl[67] respectively.

Let X be a Banach space add: X — R aC? functional. LetK be
a compact metric space alg c K a closed subset. Ldp : Kg — X
be a given (fixed) continuous mapping. We introduce the famil

(5.1) r={feCK,X): f=1 on Kg}

whereC(K, X) denotes the set of all continuous mappings fridrmto
X. Now we define

(5.2) ¢ = Inf Max o(f(t)),

where we observe that without further hypothesesuld be—co.

Theorem 5.1. Besides the foregoing notations assume that

(5.3) Max®(f(0) > Max a(f(t)), VfeT.

39
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Then givere > 0 there exists e X such that

cC<®u)<c+e
10" (Uelix- < €

Remark . Observe that the functiona@ is not supposed to satisfy the
(PS) condition, see Chapt€t 1. The theorem above says that timgler
hypotheses there existdalais—Smale sequendhbat is, () in X such
that ®(u,) — c and®’(u,) — 0. Consequently, if one assumes in
addition that® satisfies theRS) condition, then there exists a critical
point at levec : ®’(up) = 0 and®’(up) = C.

The proof uses some facts from Convex Analysis which we now
expound in a generality slight greater than actually neéded.

The Subdifferential of a Convex Function. Let X be a Banach space
and® : X —» R U {+o0} a convex lower semicontinuous functional, with
®(X) # +o0. Let us denote the domain @by domd = {x € X : (X) <
oo}. We define thesubdjferential of @, 0 : X — 2X°, by

(5.4) 0D(X) = {u e X" : DY) = D(X) + {(u,y—Xx), VYye X}

We observe thab®(x) could be the empty set for somee X.
Clearly this is the case & ¢ dom®. However the following property
has a straightforward proof.

(5.5) 0®(X) is aconvex w*-closed set.

In generab®(x) is not bounded. [To get a good understanding with
pictures (!) consider simple examples.®i): R — R U {+oo} defined by
®d(X) = 0if x| < 1 and®d(x) = +oo otherwise. (ii))® : R — R U {+o0}
defined by®(x) = 1/xif 0 < x < 1 and®(X) = +co otherwise. (iii)

@ : R —» RU{+o0} defined byd(x) = |tanx] if |X < 7/2 and®(X) = +oo
otherwise].

However the following result is true.

Proposition 5.2. Let® : X —» R U {+o0} be a convex lower semicontin-
uous functional, withb(x) = +co. Let % € dom® and suppose thab
is continuous at x Thend®(xp) is bounded and non-empty.
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Proof. Givene > 0 there existg > 0 such that
(5.6) |D(X) — D(X)| < € if |X—Xg| <6.

Let v € X with ||v|| = 1 be arbitrary and take a (fixed), with
0 < tg < 6. For eachu € dd(xg) taking in [54)y = xo + tov we obtain

D(Xp + toV) > D(Xo) + (i, tov),

where(, ) denotes the duality pairing betweeti and X. And using 33
E&8) we get(u, V) < €/tp, which implies|ul|x- < €/tp. It remains to
prove thato®(xg) # 0. This will be accomplished by using the Hahn-
Banach theorem applied to sets in the Cartesian producR. Let

A={(x,a) e XX R:XxeBsX), a>d(x)}

whereB;(Xp) denotes the open ball of radidsaroundxg. It is easy to
check thatA is open and convex. Also, the pointy(®(Xg)) ¢ A. So
there exists a non-zero functiona i) € X* x R such that

(5.7) W, Xo) +rP(Xg) < (v, Xy +ra, VY(x,a) €A

By taking x = Xg in (&4) we conclude conclude that> 0. So
callingu = —v/r we obtain

—(u, Xo) + D(X0) < —(u, Xy +a V(x,a) €A

By the continuity of® we can replaca in the above inequality by
®(X), and so we get

(5.8) D(X) > D(Xo) + (u, X— Xo) VX € Bs(Xo).

To extend inequality[{5]8) to ak € X and so finishing the proof we
proceed as follows. Giveng Bs(xo), there exisi € Bs(Xp) and O< t <
1 such thai = ty + (1 —t)Xo. By convexity®(x) < td(y) + (1 - t)®(Xg).
This together with[{5]8) completes the proof. O

Remark. If follows from Propositiof 5P and{3.5) thatb(x) is a non-
empty convexw*-compact set at the pointsof continuity of ® where
D(X) < +00.



34

42 5. Variational Theorems of Min-Max Type

Corollary 5.3. If @ : X — R is convex and continuous wittom® = X,
thend®d(X) is a non-empty convex‘-compact subset of*Xorall x € X.

The One-Sided Directional Derivative. Let ® : X — R be convex
continuous function. It follows from convexity that the fition: t €

(0, 0) > t7@(x + ty) — ®(X)] is increasing as increases for every,

y € X fixed. Now letu € 9®(x). One has

DO(X + ty) — O(X)
t

(5.9) > (wy) Vt>0

It follows then that the limit ag — 0 of the left side of [5]9) exists
and itis> Max{{u, y) : u € 00(xX)}. Actually one has equality, as proved
next.

Proposition 5.4. Let® : X — R be convex and continuous. Then for
each x, ye X one has

O(X+ty) -D(X)
(5.10) {Ilr(p " = Hgggé) W, y).

Proof. Let x andy in X be fixed and let us denote the left side of

&10) by’ (x;y). In view of the discussion preceeding the statement
of the present proposition, it fiices to exhibit a« € d®(x) such that

@’ (xy) < (u,Y). To do that we consider the following two subsets of

XX R:

A={(za)e XxR:a> 0(2)}
B = {(X + ty, ®(X) + td’ (X;y)) : t > 0},

which are the interior of the epigraph @ and a half-line respectively.
It is easy to see that they are convex @nid open.

So by the Hahn-Banach theorem they can be separated: thsi® ex
a non-zero functionah(r) € X* x R such that

(5.11) v, 2y +ra > (v, X+ ty) + r{®(x) + t’(x y)}
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for all (za) € Aand allt > 0. Makingz = x andt = 0 in (&11) we
conclude that > 0. So callingu = —v/r and replacinga by ®(2) [here
use the continuity o] we obtain

(5.12) —(u,2) + O(2) > —{p, X+ ty) + O(X) + tD’, (X;y)

which holds for allz € X and allt > 0. Makingt = 0 in (&12) we
conclude thap € d®(x). Next takingz = x we getd’, (x;y) < (u, V),
completing the proof. O

The Subdifferential of a Special Functional. Let K be a compact met-
ric space an€(K, R) be the Banach space of all real valued continuous
functionsx : K — R, endowed with the normix|| = max|x(t)] : t e K}. 35
To simplify our notation let us denoté = C(K,R). By the Riesz rep-
resentation theorem, see Dunford-Schwaliz, [35, p. 224¢itlalE* of

E is isometric isomorphic to the Banach spak#K,R) of all regular
countably additive real-valued set functiongfor short: Radon mea-
sures) defined in the-field of all Borel sets inK, endowed with the
norm given by the total variation:

k k
lal = sup{z uEN: | JE CEENE =0, vk=12.. }
i=1

i=1

Next we recall some definitions. We say thdRadon measurg is
positive and denote: > 0 if (u, X) > O for all x € E such thatx(t) > 0
for all t € K. We say that &adon measurg hasmass onéf (u, ) = 1,
wherern € E is the function defined by (t) = 1 for allt € K. We say
that aRadon measurg vanishesn an open set) c K if {u, x) = 0 for
all x € E such that the support ofis a compact sdty contained inJ.
Using partion of unit, one can prove thagifvanishes in a collection of
open setdJ,, thenu also vanishes in the uniddU,. So there exists
a largest open séf wherey vanishes. The support of the measure
denoted by supp, is defined by supp = K\U. For these notions in the
more general set-up of distributions, see Schwartk [72].siél need
the following simple result.
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Lemma5.5. Let xe E be a function such tha{ty = Ofor allt € suppu.
Then{u, x) = 0.

Proof. For each subsék c K let us denote by, = {t € K : dist(, A) <
€}, wheree > 0. By Urysohn’s Theorem there exists for eath=
1,2,..., afunctiong, € E such thaips(t) = O fort € (suppu)1/n and
en(t) = 1 fort ¢ (suppu)2n. Then the sequenag,x converges to in
E and{u, onX) — (u, X). Since the support of eagh x is a compact set
contained inJ = K\ suppu, we have(u, ¢nX) = 0, and then the result
follows. O

Proposition 5.6. Using the above notation consider the functiofal
E — R defined by

O(x) = Max{x(t) : t € K}.

Then® is continuous and convex. Moreover, for each E,
(5.13)
nueddX) o u>0,{u =1 suppuci{teK:xt)=0(X)

Proof. The convexity of® is straightforward. To prove the continuity,
letx,y € E. Then

O(x) — B(y) = x() — Maxky < x(t) - y(b),

wheret € K is a point where the maximum ofis achieved. From the
above inequality one obtains

1O(x) — W)l < lIx -Vl
(i) Let us prove [5.1B)=. We claim that
(5.14) O) > 0(X) + (u,y—x VyeE.

The functionz = x— @(X)x is in E andz(t) = 0 fort € suppu. Using
Lemmal5b we have thdf,z) = 0 which implies{u, x) = ©(x). So
(ET12) become®(y) > (u,y). But this follows readily from the fact that
> 0 and the functiou = @(y)r — yis > 0.
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(iii) Let us prove [EIB)=. Now we have thaf{5.14) holds by hy-
pothesis. Let € E, z > 0, be arbitrary and put = x — zin (&13); we
obtain

M}?x(x— 2 - M}?x(x) > —(l, 2).

Since the left side of the above inequality0 we get{u,z) > 0.
Next letC € R be arbitrary and put = x + Cr in (&212); we obtain

Maxk (X + Crr) — Maxx (X) = {u, Cr) = C{u, ).

Since the left side of the above inequalitydsve obtainC{u, ) <
C, which implies{u, r) = 1. Finally, in order to prove that the support
of u is contained in the closed sBt= {t € K : x(t) = O(X)} it suffices to
show thafu vanishes in any open st c K\S. Letz € E be a function
with compact supporq contained inJ. Let

¢ = O(X) — Maxg,(X) > 0,

and choose > 0 such thatrez(t) < ¢, for all t € K. Thusx(t) = ez(t) <
O(X), andO(x + €2) = O(x). So using[[5.14) witly = x + ez we obtain
+e(u, 2) < 0 which shows thatu, z) = 0. O

Now we are ready to prove Theoréml5.1.

Proof of Theorem[5.1. (i) Viewing the use of the Ekeland Variational
Principle we observe thaitis a complete metric space with the distanaz
defined by

d(f,g) = Max{||f(t) —g(t)|| : te K}, Vf,geTl.
Next define the functional : T’ — R by
Y(f) = Maxd(f(t)).
teK

It follows from (&.3) that¥ is bounded below. Indee#(f) > b for
all f eI, where
b = Max®( fy(t)).
tEKo
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Next we check the continuity of at f; € I'. Givene > 0, choose
6 > 0 such that®(x) — @(y)| < e for all y € f1(K) and allx € X such
that||x — y|| < 6. Now for eachf € I'" such thad(f, f;) < 6 we have

() - ¥(f1) = ©(f (1)) — Maxiex O(f1(t)) < ©(f (1)) — ©(f2()

wheret € K is the point where the maximum df(f(t)) is achieved.
Since||f () — f. (D)l < d(f, f1) < 6§ we conclude tha®(f) — ¥(f;) < e.
And reverting the roles of and f; we obtain that¥(f) — ¥(f1)| < e,
showing that¥ is continuous. Thus by Ekeland Variational Principle,
givene > 0 there exists d, € I" such that

(5.15) c<Y(f)<c+e

(5.16) Y(f) < W(f) + ed(f, f.), Vferl.

(ii) Now we denotdg = {k € C(K, X) : k(t) = 0, ¥t € Kp}. For any
k € T'o and anyr > 0, we have

Dfe(t) + k(1) = D(F(0) + F{@' (Fe(0), K(O) + O(rk(1).
So
Max(f(1) + k(1) < Max(@(f(0) + (@ (£.(0), k) + o(rII)
where||k|| = rpeﬁmk(t)ll. Using this in [5.16) withf = f. + rk we obtain
(5.17)  Maxd(f(t) < Max(@(f() + K/ (Fe(0). k) + erll
Now we are in the framework of Propositignb.6: the functions

X(t) = O(f.(t)) andy(t) = (D’ (f.(1)), k(t)) are inE = C(K,R). So [5.1F)
can be rewritten as

O(X +ry) — O(X) S
p >

—ellKl
Taking limits asr | 0 and using Propositidn 3.4 we get

1 M —e||k
(5.18) #Ea(gg()(u,wz ellKl
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Observe that if{5.18) depends ok. Replacingk by —k we obtain
from (&.18):

(5.19) Min,coo) (i, ) < €llKI|

where d0(x) is the set of all Radon measurgsin K such thaty >
0, (u,IT) = 1 and supp ¢ K; whereK; = {t € K : ®(f(t)) =
Maxick @(f.(t))}. Dividing (&I9) through byjk|| and taking Sup we
get

(5.20) Suﬁﬁrol Minecaex){t, (D' (T(-)), K())) < €

Using von Neumann min-max Theorefi [7] we can interchange the
Sup and Min in the above expression. Now we claim

(5.21) Su%rolw, (D'(F (). k() = SURellclzq(lK,lx)w, (D (T (), k()

Indeed, sinc&Kg andK; are disjoint compact subsets léfone can
find a continuous functiop : K — R such thatp(t) = 1 fort € Ky,
¢(t) = 0fort € Ko and 0< ¢(t) < 1 forallt € K. Given anyk € C(K, X)
with ||k < 1 we see thai (-) = o(-)k(-) € I'g, |kl < 1 and

(D" (Fe()), k(Y = (e, (D' (Fe (), ka (D))

because suppc K;. So [5.21) is proved. Singe> 0 the right side of
&2) is less or equal to

u, SUQe”il(lK,lX)(@'(fe(')), k()

But the Sup in the above expression is equdiit f.(-))|l. So com-
ing back to [5.20) interchanged we get

Min s, 10" (eI < €.

Let € 00(x) the measure that realizes the above minimum: 39

® N0 (fe@)II) < €
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Sinceu has mass one and it is supportedip it follows that, there
existst € K; such thaf|®’(f.(t))|| < e. Letu, = f.(t). Sincet € Ky it
follows that

(D(ue) = MaXek (D(fe(t)) = lII(fe)

So from [EI5) we have < ®(u,) < ¢ + €, completing the proofo

Remark 1.In the above proof, Von Neumann min-max theorem was
applied to the functios : M(K,R)xC(K, X) — R, [M(K,R) endowed
with thew*-topology] defined by

G(u, K) = {u, (@' (fe (). k()N

Observe thaG is continuous and linear in each variable separately
and that the se®(x) and{k € C(K, X) : ||k|| <} are convex, the former
one beingwv*-compact.

Remark 2. Let (g,) be an arbitrary family of functions i6(K, R), which
are uniformly bounded. Them= sup, g, € C(K,R). Sinceg, < gwe
have that fop € M(K,R), u = 0, one hasy, 9,) < (u, ). This given

SuR,{, o) < {1, SUPGa).

Mountain pass Theorem and Variants

Now we turn to showing that Theordmb.1 contains as specsasca
all three min-max theorems cited in the Introduction to tispter.

Theorem 5.7(Mountain Pass Theorernl [4]).et X be a Banach space
and® : X — R a C! functional which satisfies th@S) condition. Let
S be a closed subset of X which disconnets X. p@hd % be points
of X which are in distinct connected components g6 X Suppose that
® is bounded below in S, and in fact the following conditiondsfied

(5.22) Infls®>b and Max{®(xg),P(X1)} < b.

Let
I'={f e C([0,1]; X]) : f(0) = X0, (1) = xu}.
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Then
¢ = Inf ter Maxiepo,11 D(f (1))

is > —oo and it is a critial value. That is there existg ¥ X such that
D(xg) = c and®’(xg) = 0.

Remark. The connectedness referred above is arcwise connectedness
SoX\S is a union of open arcwise connected components, see Dugundi
[34, p. 116]. Thusxg andxy, being in distinct components implies that
any arc inX connectingxo and x; interseptS. For instanceS could

be a hyperplane iX or the boundary of an open set, [in particular, the
boundary of a ball].

Proof of Theorem[&]. It is an immediate consequence of Theorem
B.. In view of the above remarli{,{5122) impli€s{5.3). ]

Theorem 5.8(Saddle Point Theorenh [66]Let X be a Banach space
and® : X — R a C! functional which satisfies th@®S) condition.

Let V c X be a finite dimensional subspace and W a complement of
V: X =Va&W. Suppose that there are real numbers 0 and a< b
such that

(5.23) Infy®>b Maxgpp®<a

where D=V N B:(0), B/(0) = {xe X : |[X| <r}anddD = {x e V :
x| = r}. Let

I={feC(D,X): f(X)=x, VxedD)},

and
¢ = Infter Sup g P(f(X))

Then c> —co and it is a critical value.

Proof. It suffices to show thaE{5.23) implies(b.3) and the result follows
from TheorenTB]1. The set§ andKg of said theorem ar® anddD
respectively. Leff € I'. Since the right side of{3.3) in view df(5123) is
< a, it suffices to prove that there ise D such thatf(x) € W and then
use [5.2B) again. Le®? : X — X be the linear projection ovér along
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W. Sof(X) € Wis equivalent td® f(x) = 0. Thus the question reduces
in showing that the continuous mapping

Pf:D—V

has a zero. Sinc¥ is finite dimensional an® f = identity ondD the
result follows readily from Brouwer fixed point theorem. i

Remark. The last step in the previous proof is standard. It can begurov
in few lines using the Brouwer theory of topological degr&@mnsider
the homotopyH(t, ) = tPf+(1-t)id : D — V. SinceP f(x) = xfor x e
oD it follows that the homotopy is admissible adédgH(t, -), D,0) =
const. ThusdegPf,D,0) = dedid,D,0) = 1 and consequentl{? f
has a zero. Another proof using Brouwer fixed point theorestead
uses the mappinBo Pf : D — D whereRis the radial retraction over
D : R(v) = vis|v]| < r andR(v) = rv/||v|| elsewhere.

Theorem 5.9(Generalized Mountain Pass Theoreéml [674]t X be a
Banach space and : X — R aC? functional which satisfies th@S)
condition. As in the previous theorem let=XV @& W, V finite dimen-
sional. Letw € W be fixed and lgt < R be given positive real numbers.
LetQ={v+rwo:VveV,|V| < RO0O<r <R}. Suppose that

(5.24) IanﬁaBp O>b, Maxped<a a<hbh,
wheredB, is the boundary of the ball %0). Let
I'={f e C(Q,X): f(X) =x xe€aQ},

and
¢ = Infter Supeq @((X))
Then c> —c0 and it is a critical value.
Proof. We apply TheoreriBl1 witl = Q andKgp = 4Q. It suffices
then to show thaf{(5.24) implieE(5.3). First we see thatitiet side of

E3) is< ain view of (5.24). So by[(5.34) again it is enough to show
that for each giverf € I' there existx € Q such that

(5.25) f(x) € WN 4B,
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To prove that we use degree theory again. Let us define a ntappin
g:Q—-VeR,, asfollows

9(v + rwo) = (PF(V + rwo), (1 — P)f(v + rwo)l)

Clearlyg is continuous andj(v + rwg) = V+ rwg if v+ rwg € Q.
The point (Qp) is in the interior ofQ relative toV@&Rwg. So there exists
V + Two € Q such thag(V + Twp) = (0, p). This proves[(5.25). o 42

A useful and popular form of the Mountain Pass Theorem. The
following result follows from Theorermi 3.7 and TheorEm 5. Elow. ®
is C1, satisfies(PS) and it is unbounded below. Suppose thgtisia
strict local minimum ofd. Then® possesses a critical point u£ Up.
The definition ofstrict minimumis: there existg > 0 such that

D(U) < d(U), VYO<|lu—ugll <e.

Theorem 5.10(On the nature of local minima).et® e C1(X, R) satisfy
the Palais-Smale condition. Suppose thgtauX is a local minimum,
i.e. there exist > 0 such that

®d(up) < d(u) for |lu—ugll < e

Then given ang < ¢ < e the following alternative holds: eithei)
there existd < « < g, such that

Inf{®(u) : [lu - Uoll = @} > D(uo)

or (ii) for eacha, with0 < @ < g, ® has a local minimum at a point,u
with [|u, — Ugll = @ and ®(u,) = D(Up).

Remark. The above result shows that at a strict local minimum, adtern
tive (i) holds. The proof next is part of the proof of Theoref®bbelow
given in de Figueiredo-Solimini_[43].

Proof. Let ¢g with O < ¢y < € be given, and suppose that (i) does not
hold. So for any given fixed, with 0 < a < ¢, one has

(5.26) INfD(U) : [Ju-— || = a} = ®(ug)
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52 5. Variational Theorems of Min-Max Type

Lets > Obesuchthat& a -6 < a + 6 < g. Consider® restricted
totheringR ={ue X:a—-46 < |lu-u| < a+46}. We start withu, such
that

1
lun = Uoll = @ and - ®(un) < P(uo) +

where the existence of suah is given by [5.26). Now we apply the
Ekeland variational principle and obtaip € R such that

(5.27) @) < D). ltn—voll <~ and

1
(5.28) Dd(vy) < P(u) + ﬁllu —Vpll YueR.

From the second assertion In.(3.27) it follows thais in the interior
of R for largen. We then take in[(5.28) = v, + tw, wherew € X with
norm 1 is arbitrary and > 0 is suficiently small. Then using Taylor's
formula and letting — 0 we get||®’(vy)| < % This together with the
first assertion in{5.27) and (PS) gives the existence of sexuence of
vy (call it v, again) such that, — v,. So0®(v,) = ®(ug), ¥’(v,) = 0
and|lv, — Ugl| = a. m|

A weaker form of the Mountain Pass Theorem. The following wea-
ker form of the result presented in the last section appedRabinowitz
[68]. He uses a sort of dual version of the Mountain Pass Hmof he
proof presented here is due to de Figueiredo-Solimidi [43].

Proposition 5.11. Let ® € C!(X R) satisfy(PS) condition. Suppose
that

(5.29) Inf{®(u) : |jull = r} > Max{®(0), ®(e)}
where0 < r < ||g|. Then® has a critical point g # 0.

Proof. The case when there is strict inequality [0.{%.29) is comt@iim
Theorem5J7. Therefore let us assume equality_1n [5.29% idflocal
minimum we are through. So we may assume that there existsa po
€ neare where®(€¢') < ®(e). Therefore replacing by € two things
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may occur: either (i) we gain inequality i (5]29) and agahedrem
applies and we finish, or (ii) equality persists and weshav

(5.30) Inf{®(u) : |jull = r} = ©(0) > O(e).
So we assume thdi(5130) holds. Also we may assume that
(5.31) Inf{d(u) : [|ull < r} = ®(0)

because otherwise Theor€ml5.7 would apply again and we Viaigt.
But (531) says that 0 is a local minimum. So we can apply Témor
and conclude. m|

Corollary 5.12. Let® e CY(X, R) satisfy(PS) condition. Suppose that
® has two local minima. Thed has at least one more critical point.

Proof. Use Theoremis5.10 ahdb.7. m|






Chapter 6

Semilinear Elliptic
Equations Il

Introduction. In this chapter we continue the study of the Dirichleg
problem:

(6.1) —Au=f(x,u) in Q u=0 on 9Q

whereQ is a bounded smooth domainit, N > 2 anddQ denotes its
boundary. In order to minimize technicalities, we assurhalahg this
chapter the following minimal assumption on the nonlingari

f: QxR — R isacontinuous function of both variables.

As in ChaptefBB we search the critical points of the functiona

(6.2) O(u) = %f|Vu|2—fF(x,u).

If not stated on the contrary all integrals are taken ovemthele of
Q. We assume the following additional condition fof

(6.3) 1f(x 9) < cgPt +b(x)

wherec > 0 is a constantp(x) € L (Q) with (1/p) + (1/p) = 1, and
l1<p<ooifN=2,0rl<p<2N/(N-2)if N> 3. As we proved

55
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in ChapteiB, under this hypothesis the functiobal Hcl) — R defined

in (€3) is continuously Fréchet fiiérentiable. In Chaptdid 3 a further
condition was required of (see [[3B) there) which was fiigient to
guarantee thab is bounded below. Here we are interested in the cases
when @ is not bounded below any longer. We assume the following
condition

. f(x s , =
lim inf (%9 > A1 uniformly in  Q
S—+o00

(6.4)

whereA; is the first eigenvalue ofHA, Hé).
Lemma 6.1. Under (&4) the functional® is unbounded below.

Proof. It follows from (&.2) that there are constants> 1; andc such
that f(x,s) > us—c, for all s > 0. Therefore we can find constanis
andc’ with g > g’ > A3 such thatF(x,s) > 3u/'s> - ¢/, for all s > 0.
Thus fort > 0 we have

1 1, ,
O(tpy) < St f of - Su't? f o] +c1Q.
O

Viewing the future applications of the variational theoseofi Chap-
ter[@ we now state conditions which insure tRS] condition for®.

Lemma 6.2. Assume conditio@3)with1 < p<2N/(N-2)if N > 3
andl < p < o if N = 2. Then® satisfies th€PS) condition if every
sequencguy) in HY, such that

(6.5) |®(up)| < const, ®'(uy) >0
is bounded.

Proof. All we have to prove is thatg) contains a subsequence which
converges in the norm dﬂcl). Since (i) is bounded, there is a subse-
quence () converging weakly irHé to someup and strongly in any
LP to the samelp, with 1 < p<2N/(N-2)if N > 3 and 1< p < o if

N = 2. On the other hand the second assertiofild (6.5) means that

(6.6) ”fVUnVV—ff(X,Un)V”SEn”V”Hl, Yv e Hé
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wheree, — 0. Putv = u, — Ug, and taking limits over the subsequence
we obtain that

[Here we have used the continuity properties of the Nemiytslaip-
pings, see ChaptEl 2]. Jan,llh1 — lluollnz- This together with the fact
thatun, — Up (Weakly) inHJ, gives thatu,, — Up (strongly) inHj. o 46

Palais-Smale Condition for Asymptotically Linear Problems. As-
sume that the limits below exist &%° functions

£(x,9) f(x 9)

(67) T = (Y(X) and S_I)l_‘rl;lo T :ﬂ(X).

It follows then that there are positive constactsandc, such that

lim
S——00

(6.8) [f(x,9)] <clgd+Cy, VYSER, VxeQ.

Lemma 6.3. Assumdf6.1) above. In addition suppose that the problem
below has only the solution= O:

(6.9) -Av=B(XV'-a(X)v- in Q and v=0 on Q.

Then the functionad satisfiegPS) condition. Here ¥ = max{, 0)
andv =v" —v,

Remark 1. It suffices to conside{8.9) in the] sense. That is

f TWouv = f [BOIVE — a(Vglv, Vv e HE

andyp € Hé. We will use without further mentionning a result of Stam-
pachialll]: ifv e Hé thenvj, v and in generaG(v), whereG : R — R
is a Lipschitz continuous function, are bdg functions.

Remark 2. If @ andg are constants, then the paits §) such that prob-
lem {€9) has non-trivial solutions constitute the soamhlsingular set

>. In the case o = 1 this set has been completely characterized by
Fucik [44]. Itis not known a similar result fod > 2. However some in-
formation abouf’, has been obtained, see Dancer [29], Gallouet-Kavian
[45] and Magalhaes [%9].
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Proof for LemmaB3. We use LemmB&l2. Suppose by contradiction
that there is a sequencay] in Hé such that

(6.10) |d>(un)|:|:—2L f IVup[? - f F(x, uy)| < Const

(642) K&/ ().l =1 [ Tu9v— [ 0w < clvlhe ve HE

(6.12) lunllqz = o0, €& — 0.

Let v, = up/llunllyz, and (passing to a subsequence if necessary)
assume that g € Hj can be found such that — vo (weakly) inHJ,
Vi = Vg (Strongly) inL?, v, — Vg a.e. andvy| < h for someL?-function
h. Now we claim that

(6.13) Unllis £ (X Un(X) = BOIVG — (Vg in L2

We prove that using the argumetn in Costa-de Figueiredocz@laes
[27]. Let us denoter, = ||unl| and£(X) = B(X)VG — a(X)Vv,. It suffices
to show that every subsequencefgiX) = a1 (X, anva(X)) possesses a
further subsequence which convergeg( in L. Using [6.8)

(6.14) ()] < ap™[Cranlva(X)] + C2] < ch(X) + ayc.

In the setA = {X: vo(X) # 0}, fo(X) — €(X) a.e.. So by the Lebesgue
Dominated Convergence theorefgya — ¢ in L. In the setB = {x :
vo(X) = 0} it follows from (&13) thatf,(x) — 0 a.e. So similanyf,yg —
0in L2. So the claim in[[613) is proved. Now dividing (11) tyh|ly:
and passing to the limit we obtain

fVVOVv— f[ﬁ(x)vg —a(XVplv=0 VYve H;.

In view of (€9) it follows thatvy = 0. Next use[(&1) again with
V = Vp, divide it through byj|up||y: to obtain

f(X, Un) &
2 > Un n
|f|VVn| - V| < [IVnllyz.

lUnllyz " llunllke
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In the above inequality the first term is equal to 1 and therdihe
converge to zero, impossible!

Palais-Smale Condition for Superlinear Problems. Assume that

(6.15) lim im‘m =

|g—00

+00,

that is, the problem is superlinear at bettb and—co. In this case the 48
following lemma provides dticient conditions for PS).

Lemma 6.4. ® satisfies(PS) condition if one assumegi) condition
E&3)with1 < p<2N/(N - 2)in the case N> 3and1 < p < « in the
case N= 2, and(ii) the following condition introduced by Ambrosetti
and Rabinowitz[]7]: there is @ > 2 and g > 0 such that

(6.16) 0< OF(x,9) < sf(x,9) YxeQ V|9 > .

Proof. Let (u,) be a sequence ihlcl) satisfying conditions[{6.10) and

(E&11) above. Replaceby u, in @11). Multiply (E10) byd and sub-
tract [6.11) from the expression obtained:

0
(5—1) f VU2 < f [6F (X, Un) — Un f (X, Un)] + €nlltnllis + C

Using [6.16) we obtain thalu,|ly: < C. The proof is completed
using Lemmagl2. m|

Remark . Condition [€I6) implies thaF is superquadratic. Indeed,
from @1I6):0/s < f(x, 9)/F(x 9). Integrating fromsy to s : 9[¢n|g —
tng] < nF(x, 9) — £nF(x, so), which impliesF(x, s) > F(x, s0)s,°I7,
for |3 > sp. Using [6I6) again we obtaifi(x, s) > OF(x, so)s5%19 ™.
Observe that this inequality is stronger than the requirgnpait in
(E&15). So there is some room betweEn (b.15) &nd(6.16). , Tiovs
about Palais-Smale in the case whesatisfies [€.15) but nof{6116)?
There is a partial answer to this question(inl [42].

Palais-Smale Condition for Problems of the Ambrosetti-Prali Type.
Now we assume

. f(x, s o
(6.17) lim sup% <A1 and liminf

S——00 S—+o0

f(x 9

> A
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where the conditions above are to hold uniformly foe Q. The first
limit could be—co and the second could ex.

Lemma 6.5. Assumdf.3) and the first assertion i@.I1) Let(u) be
a sequence in H{Q) such that

(6.18) |fVuan—ff(x,un)v|sen||v||H1 Vv e HJ

whereg, — 0. [We may visualize thel,'s as “almost” critical points
of @, or as “approximate” solutions of {6.1), vaguely speakinghen
there exists a constant M 0 such thaf|u, |51 < M.

Proof. If follows from the assumption that there existxQu < 1; and
a constant such that

(6.19) f(x,9) >us—c for s<O.

Replacingv by u,, in (618) we can estimate

fIVUﬁl2 < - f f(X Un)Uy, + énlluy [l2.

Using [6.19) we obtain

f|Vu;|2 g,uf(u;)2+cfu; + enl|UpllHz2-

Finally using Poincaré and Schwarz inequalities we coteplee
proof. m|

Lemma 6.6. Assumde.17)and that f has linear growth,e.
(6.20) If(x, 9 <cis+c YxeQ, VseR

where @, ¢, are given positive constants. Then the functichaatisfies
(PS) condition.
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Proof. Assume by contradiction that there exists a sequemgdar( Hcl)
satisfying conditiond{6.10)(6.111) ardld (d.12) above. Akémmd6.B,
let Vo = Un/||Unlly2 and assume that, — Vo in HJ, v — Vo in L? and
a.e. ), and that there is ah?-function h such thatv,(x)| < h(x). It
follows from Lemmd&Fb that; — 0 in H}, and we may assume that
v, — 0a.e. 2). Sovp > 0in Q. First we claim that the sequence

f ,

On = Xn (X, Un) -0 in L2
[lunl|

whereyy, is the characteristic function of the dat: u,(x) < 0}. Indeed
this follows easily from the Lebesgue Dominated Convergenheo-
rem, observing thaf{6.20) implies

us c?
6.21 Ionl < c1—— +
(6.21) R T WA TR
and|gn| < cith+ ¢ /||lunllyz. On the other hand, the sequence (or passsn
to a subsequence of it):

—0 a.e.

f(x.un)
[[UnllH

in L2

(6.22) Yn=(1-xn)

wherey is someL? function andy > 0. Indeed using{6.20) we have
that
byl < €1h + Co/llUnllyz < cth+ 1 e L2,

The positiveness af comes from the following consideration. From
the second assertion in.(6117) there existsO such thatf (x, s) > 0 for
s > r. Let&, be characteristic function of the set e Q : uy(x) > r}.
Clearly&yyn — v in L2. And the assertion that > 0 follows from the
fact thaté,yn is in the cone of non-negative functions lof, which is
closed and convex. Now go back [0 {8.11), divide it throughlugyi,y:
and pass to the limit usin§{6121) ald (8.22). We obtain

(6.23) vaWv—fw:O Vv e Hj.

It follows from the second assertion [D.{6117) that therecargstants
@ > A1 andc > 0 such thatf(x,s) > us—cfor x e Qands > 0. So
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Yn > ,uv;—c||un||;11. Passing to the limit we obtain> uvy. Using [6.2B)
with v = @1, whereg; > 0in Q is a first eigenfunction of<A, Hcl)(Q)),

we obtain
/hfvowl = fVVOVSDl = f)’le Z,usosﬂl.

Sinceu > 13 we conclude thatp = 0. So from [62BY = 0. Finally
use [E1I11) again, divided through lyn|/2 and withv = v:

(X, un)

2 s ©N

|f|VVn| _f Vnl < &nllunllyz = &n.
[Unl

The first term is equal to 1 and the other two go to zero, impdessi
i

Lemma 6.7. Assumge.3) and (&17) and suppose that there are con-
stantsg > 2 and g > 0 such that

(6.24) 0< OF(x, 9 < sf(x, ), VYxeQ, Vs>g.
Then® satisfieqPS) condition.

Proof. Let (u,) be a sequence iH} for which ({E10) and&11) holds.
By Lemmal&.P2 we should show thgti||;2 < const. We know from
Lemmd®&.b thatu, ||,y < const. Using the first assertion [D{6.17) we see
that there are constants<Qu < 4; andc > 0 such thafF(x, s) < ’E‘sz—cs

for xe Qands<0.

[Foc-w) <4 [@-c [ < const

So from [EID) we obtain
1
(6.25) > flVUﬁlz - fF(x, ut) < const.
Using [6.11) withv = u} we obtain

(6.26) IIIVUﬁIZ—ff(x,UK)u;IsénIIUEIIHl-
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Multiplying (6.23) by# and subtractind(6.26) from it we get
(g - 1)[|Vu;|2 < f[@F(x, Unt) = FOL U] + enllUflge + const.

Using [6:22%) we conclude thiti!||: < const. m|

Remark. If f(x, ) > 0 for x € Q ands < 0, then the eventual solutions
of €1) are> 0. Indeed, leti € H} be a solution of[{8]1), that is:

fVqu:ff(x,u)v Vv e HS.
o o

Letv=u". Then

—fIVu‘IZ:ff(x,u)u‘120:>fqu‘|2:O.

Sou~ = 0, proving the claim. Observe that under this hypothesis
on f, the first assertion if{6.17) holds. So Lemra$ 6.6[add 6 vigeo
suficient conditions forPS) on a class of semilinear elliptic equations
with positive solutions. For example: (f)= |u|P forany 1< p < oo if
N=2orl<p<(N+2)/(N-2)if N> 3. (ii) f = (u")P with the same
restrictions orp.

Existence results for (1). To illustrate the use of the theorems proved
in Chaptefb we now consider some examples.

Example 1.Consider the following Dirichlet problem 52
(6.27) —Au=f(uy+h(x) iIn Q u=0 on dQ

whereh e C(Q) [a weaker condition would sfice] andf : R — Ris a
continuous function such that

(6.28) lim E =a and lim @ =B.

S——00 S S—+00 S

Let 0< A1 < A2 < A3 < ... be the eigenvalues of-, H}(Q)).
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Theorem 6.8(Dolph [33]). If A« < @, B < A1, then problem@&.21)
has a solution for every h.

Proof. We look for critical points of the functionab : Hcl) — R defined

i O(u) = % f [Vul? - f F(u) — f hu

whereF(s) = fos f. It is easy to see that(B) does not belong to the
singular sef’,. So by Lemm&®I3D satisfiesPS). LetV be the finite di-
mensional subspace generated by the Kissgenfunctions of{A, Hcl)),
andW = V+. Letuy andu be such thatly < u < @, B < u < Ays1. It
follows from (6.28) that there existy > 0 such tahu < s71f(s) <

for |9 > 5. A straightforward computations shows that there exist con
stantsC andC such that

1 1 _
(6.29) Eﬂsz ~C<F(9< E,7s2 +C, Vs
Now if v € V we estimate

1
D) < 5 f WP -5 f v+ Cll + [V

and using the inequalitf [Vvi? < A [V?, for v € V, and the Poincaré
inequality we obtain

1 _
d(v) < > (1— Aﬁk)fww2 +CIQ| + [Ihll 27 IV V| 2.

Sod(v) — —oo as||V|| — oo with v e V. On the other hand ilv e W
we estimate

1 I _
D(w) > > fIVWI2 - l—; fWZ - ClQ| — [Ihll 2| 2
and using the inequality [Vw[? > A1 [ W? for w € W, we obtain
1 K 2_¢E -1
owW) > = |1- — IVw|© — C|Q| — ||h|||_2/11 [IVW]| 2.
2 Ak+1

Sod(w) - +oo0 as|jwl| —» oo with w € W. Therefore the result
follows from the Saddle Point Theorem, Theoren] 5.8. O
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Remark . Condition [6.2P) sffices to having the functional with the
“shape” of the Saddle Point Theorem. However we do not knoitv if
will give (PS). Observe thatRS) was obtained above with hypothesis
on the derivative of with respect tos, namely f. Of course we are
willing to assume growth conditions dnto assure the dierentiability

of @, see Chaptdd 2. But even so, it is not knownRE&) holds.

As a second example we consider problem (1) again and prove

Theorem 6.9(Ambrosetti-Rabinowitz[[4]) Supposse that f satisfies the
conditions of Lemmia8.4. In addition, assume

(6.30) lims™f(x, 9) < 1.
s—0

Then problen{l) has a nontrivial solution.

Proof. It follows from (€30) thatf(x,0) = 0, and thereforai = 0 is
a solution of [G11). Observe that conditidn (8.16) implissg Remark
after the proof of LemmB@.4) thdf{6]15) holds. So Lenimh ®lies
that @ is not bounded below. AlsoPS) holds, by Lemmd&6l4. We
plan to apply the Mountain Pass Theorem, Thedrein 5.7. Fonthter
we study the functiona® nearu = 0. Given 0< u < A3, it follows
from (E30) that there exists > 0 such thatf(x, s)| < u|g for | < 6.
Therefore
Fx9l<5is? vis<o.

On the other hand using{6.3) we can find a constanD such that
IF(x, 9l <KsP Vg > 0.

Here without loss of generality we may suppgse 2. Therefore
adding the two previous inequalities:

[F(X 9)| < %lsiz +klgP VseR.

Thus® can be estimated as follows 54

1 2_H 2 _ f p
d)(u)zzf|Vu| qu K| |u
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and using Poincaré inequality and Sobolev imbedding waiobt

D(u) > %(1— Aﬂl)fwuﬁ— k(fqu|2)p/2.

Sincep > 2 we see that there exigts- 0 such that ifjul|4: = r then
®(u) > afor some constard > 0. So the result follows immediately
from Theoreni 5J7. m|

A Problem of the Ambrosetti-Prodi Type. As a third example we
consider the Dirichlet problem

(6.31) —Au=f(x,u)+te1+h in Q u=0 on 9dQ,

wheret is a real parameteg; > 0 is a first eigenfunction ofA, Hé)
andh e C*(Q), with [hg, = 0, is fixed. Assume that is locally
lipschitzian inQ x R. Then we prove.

Theorem 6.10. Assume(©.11) and &20) [or @3) ©I1) ©&24).

Then it follows that there existg £ R such that for all t< to, prob-
lem(31) has at least two solutions in%&(Q).

Remark. There is an extensive literature on problems of the Ambtieset
Prodi type, starting with work of Ambrosetti-Prodil [3]. Weemtion
Kazdan-Warnel]52], Amann-hess [1], Berger-Poddlak [HLBeresty-
cki [9], McKenna [57], Rufl[71L] Soliminil[75],. .. There hagbn several
recent papers by Lazer-McKenna which we don't survey them.Hghe
result above and the proof next are due to de FigueiredorBol[43].
See a similar result by K. C. Charig [25].

Proof. It follows from either Lemm&=®6l16 [or Lemnia®.7] that the func-
tional below satisfiesKS):

(6.32) @(u):% f IVuf? - f F(x, U) — f (to1 + h)u.

Also the second assertion [D{6117) implies by Lenima 6.1 d¢hist
not bounded below. In the previous example we also proveexise
tence of two solutions; however there we had the first sailufio= 0)
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to start. Here we have first to obtain a solution[of (B.31) \léca local
minimum, and then apply the Mountain Pass Theorem. We bi@ale s
steps of the proof in a series of lemmas. O

Remark . For the next lemma we recall some definitions. We present
them in the particular framework of the problem considereceh We
refer to Gilbarg-Trudinger [46] for more general definition

(i) Afunctionw € Hcl) is said to be aveak subsolutioof the Dirichlet
problem

(*) —Au+ Mu = g(x) in Q, u = 0 ondQ, whereg € L2 andM is a
real constant, if

fvww+Mfw¢zsfg¢z, Vg e H3, ¢ >0.

(i) A function w € C2*(Q) is a classical subsolution of (*) if

-Aw+Mw<g in Q w=0 on Q.

(iif) Weak supersolution and classical supersolution afned like-
wise by reverting the inequalities in the equations above.

(iv) Every classical subsolution [supersolution] is alseak subsolu-
tion [supersolution].

Lemma6.11. AssumdB.T1) Then there exist constar@s< u < A3 < u
and C> 0 such that

(6.33) f(x,8)>pus-C and f(xs)>pus-C
for all x € Q and all se R.

Proof. The first assertion if{6.17) givesOu < 1; andC; > 0 such
that f(x,s) > us— ¢y for all x e Q ands < 0. The second assertion in
©117) givesl; < zandC, > 0 such thatf (x, s) > s— C, for all x € Q
ands> 0. LetC = maxXC,, C,} and [6.3B) follows. O
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Lemma 6.12. Assumd6.11) Then for each £ R problem(@31)has 56
a classical subsolution. Moreover given any classical supersolution
W; of (&313)][or in particular any solution of @31)] one haswi(x) <
Wi(x), VX € Q, and

%(x) > M(x), ¥Xx e dQ.
ov v

Proof. Let M; = Sup, Ite1(X) + h(x)|. The Dirichlet problem
—Au = pu—C - M in Q u=0 on 9dQ

with y andC as in [E.3B) above, has a unique solutione C22(Q),

whichis< 0inQ andaaivt < 0indQ, see LemmpA6.13 below. It follows
from the inequality in[[6.33) thaby is a classical subsolution. To prove
the second statement, use (%.33) again

—AW — wp) > F(X, W) + to1 + h— pwr — C = My > p(Wh — wr)
and apply LemmBA&.13. m|

Lemma 6.13. Leta(x) be an L° function such thaSup, a(X) < ;. Let
u € HJ be such that

(6.34) ~Au>a(X)u in Hj-sense

Then u> 0. Moreover, if ue C2*(Q) then u> 0in Q and g—‘vj <0on
Q.

Proof. Expression[{6.34) means

fVUVlﬁ > fa(x)uw, Yy e HY, w>o.

Takey = u™ and use Poincaré’s inequality

[z [P - o> -u [@)
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which impliesu™ = 0. Sou = u*. If u € C%?(Q) then we use the
classical maximum principle to

—Au+a uzatu,
where the right side iz 0 by the first part of this lemma. O

Lemma 6.14. AssumdB.11) Then there exists @& R such that for all 57
t < to (&31) has a classical supersolution W

Proof. Letk = f f(x, 0)p1 and f1(X) = f(x, 0)—ke1. So the equation in
€&31) may be rewritten as

(6.35) —Au = f(x,u) — f(x,0)+ (k+t)p1 + h+ fy.
Now letW; be the solution of the Dirichlet problem
-Au=h+f in Q u=0 on dQ.
We see that\; is a supersolution of (6.B1) provideds such that
FOCW) - F(%,0) + (K +t)pr <0

or

& f(x, W) — f(x,O).
$1
So it remains to prove that the above Supis-co. It suffices then
to show that the functiog(x) = [ f(x, W(X)) — f(x, 0)]/¢1(X) is bounded
in a neighborhood 0bQ. Boundedness in any compact subselQof
follows from ¢y (X) > O there. Ifxg is a point o2, we use the Lipschitz
condition onf to estimate

t<-k-Su

¢1(X)
whereK is a local lipschitz constant in a neighborhobldof xg. The

function Wi (X)/¢1(X) is bounded inN : at the pointsx € N N dQ,
WH(X)/¢t(x) = [VWE(X)I/[Ve1(X)| by L'HOspital rule. o

l9(x3)I < K|
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Remark. The above proof is taken from Kannan and Ortéga [51]. An-
other proof of existence of a supersolution for this clagsroblems can
be seen in Kazdan and Warngrl[52].

Proof of Theorem[& 1D Continued. From now on we fixt < ty de-
termined by Lemm&®6.14. So by Lemma 8.1, < W;, and in fact
we < Wi in Q. Let

(6.36) C={ueHj:w <u< W

which is closed convex subset Idg. Plan of action: (i) restrict® to C
and show that it has a minimum in C which is a critical point ofD:
(i) show thatug is indeed a local minimum @b in Hcl); (iii) obtain a 2
solution of [6:31l) using the Mountain Pass Theorem, Prépodb.T].
To accomplish the first step we need the following result.

Proposition 6.15. Let ® : X — R be a C functional defined in a
Hilbert space X. Let C be a closed convex subset of X. Suppase t
(i) K =1-®" maps C into C(ii) @ is bounded below in C anii) ®
satisfies(PS) in C. Then there existssuie C such that®’(ug) = 0 and
|nfc o= (D(Uo).

Proof. Apply the Ekeland variational principle @ : C — R. So given
€ > 0 there isu, € C such thatd(u,) < Infc ® + € and

(6.37) D) <PU) +€lu-ul YueC

Put in [&37)u = (1 - t)u. + tKu, with 0 < t < 1 and use Taylor's
formula to expandb(u, + t(Ku, — u.)) aboutu.. We obtain

1D (ue) I < etl|D’ (uell + oft)
which implies||®’ (u| < . We then useRS) to conclude. O
Back to the Proof of Theorem[G.1ID. The idea now is to apply Propo-

sition[&.T5 to the functionab defined in[6:31) an€ defined in[&36).
However a dificulty appears in the verification of condition (i). The way
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we see to solve this question is to change the norhi%ias follows. We
chooseM > 0 such that the function

(6.38) s g(x S) = f(X 9) + Ms+ te1(X) + h(X)

is increasing irs € [a, b], for eachx € Q fixed, wherea = minw; and
b = maxW,;. The norms irHcl) given by

||u||2H1:f|VU|2 and ||U||2:f|Vu|2+|V|fu2

are equivalent. Let us denote fy the inner product i|1|-lcl) correspond-
ing to the second norm. Next we rewrife(d.31)

(6.39) —AuU+Mu=g(xu) in Q u=0 on IQ

The functional associated 0 (6139) is
1 S
0 = 50w - [Geu. 6(e9 = [ o

which is alsaC?, it satisfies PS) and it has the same critical points as tra
original functional®. Now we show that for such a functional, condition
(i) of Proposition .15 holds. Indeed, lete C and letv = (I — ¥')u.
This means

Vg = (U, ) — U, y) + f g(x, Uy

for all y € HJ. Then

V=W ) > f [0 U) — g w)ly. Vo e HL ¢>0

and we obtainv > w; using the weak maximum principle. Similarly
v < W;.. Now we apply Propositiof 6.15 and get a critical paigtof

®. However the proposition insures only thaf is a minimum of®
restricted toC. To apply Propositiol’5.11, in order to obtain a second
solution, we should now prove thag is indeed a local minimum. [This
is not trivial sinceC has empty interior irH}]. Observe thatiy € HJ
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is a solution [[6:31). It follows then from theP regularity theory of
elliptic equations thaty € C2*(Q). This proved by a standard bootstrap
argument. Suppose now thag is not a local minimum of®. This
means that for every > 0 there existal. € B, = B.(ug) such that
Y(ue) < ¥(up). Now consider the functionab restricted toB, and use
Theoren:311: there exists € B, andA,. < 0 such that

(6.40) W(v,) = Infs, ¥ < P(u,) < ¥(Uo)
(6-41) \P,(Ve) = /lE(VE - UO)-

Using again a bootstrap argument as above we conclude/that

C22(Q). (6.:41) means
642)  wad)- [ Qv = A - o). Ve H

Clearlyv, — upin Hcl) ase — 0. We have seen thap and thev,'s

areC?? functions. Now we show that. — ug in the norm ofC1(Q).
From [&.4P) we obtain

(6.43)  (1-Ac)Ve —Uo,¥) = f [9(x ve) — g(% Uo)ly Yy € Hg.

Again a bootstrap in the equatidn (6.43) gives the claimeveoe
gence. On the other hand, it follows from Lemma’6.12 thak ug in
Q and% > ‘% in 0Q. Therefore by the above convergence we have
similar inequalities fow, in place ofup. A similar argument with\,.
Thusv, € C and we have a contradiction!

Final Remark. As said before, problems of the Ambrosetti-Prodi have
been extensively studied in the literature. A direction toatched in
these notes is the question of obtain more than two solutighse-
markable progress has been made by H. Hofer and S. Solimoudh

a delicate analysis of the nature of the critical points.



Chapter 7

Support Points and Suport
Functionals

Introduction. Let X be a Banach space afida closed convex subseb1
of X. Wealways assum#hatC # X andC # 0. A point Xy € C is said

to be asupport pointif there exists a bounded linear functiorfak X*
such thatf(xg) = Sup: f. A given functionalf € X* is said to be a
support functionalf there existsxg € C such thatf(xg) = Sug: f. We
always assumthat f # 0. The terminology “support” comes from the
geometric fact that the hyperplaikdetermined byf, whereH = {x €

X f(X) = f(x0)}, touchesC at xg and leave< in one of half spaces
determined byH. Two basic questions will be studied in this chapter.

Problem 1. GivenC a closed convex subset ®f Are all points in the
boundarydC of x support points? If not, how large is the set of support
points?

Problem 2.GivenC a closed convex subset & Are all functionals
f e X* support functionals? If not, how large is the set of support
functionals of a giverC?

Six Remarks and Examples.

(1) Of course the above questions make sengeisfbounded orC,

73
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i.e., there exist/ € R such thatf(x) < M for all x € C. This will
be achieved in particular &€ is bounded. In many cases studied
here we assume th@tis a closed bounded convex subseXof

62 (2) Givenf andC, it is not true in general thaft supportsC at some
point. For example:

C={(xy)eR?:x>0,y>0 and xy> 1} and f(xy) = -V.

However ifC is a closed convex bounded subseRdf (or more
generally of a reflexive Banach spaxpthen any continuous lin-
ear functionalf supportsC. This follows readily from Theorem
[L[1: C is weakly compact and f is weakly continuous.

(3) The previous result is false in generaldfis not reflexive. Ex-
ample: LetX be the Banach space of all continuous functions
X : [0,1] —» R with x(0) = x(1) = 0 and the norm|X||lc =
Max{|x(t)| : t € [0, 1]}. Consider the continuous linear functional
f(x) = fol x(t)dt and letC be unit closed ball ifX : {x € X :
[IXllo < 1}. Clearly f does not suppoi€. However see Theorem
[Z2 below.

(4) LetC be a closed bounded convex subset of a Banach space and
let xg € AC. Itis not true in general that there exists a functional
f supportingC at xo. Example: let

c:{gefzzg,- >0, “5”22251251}-
=1

We claim first thatC = dC. Indeed, giverf € C ande > 0, letng
be chosen such thit, | < /2. The point

E: (§19 v 75[10—1, _6/2, §n0+1, .. ) ¢ C

and B .
1€ = &Il = |ény + §| <e.
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Next we show that the point € C, with £ > 0 and||é|| < 1,
are not support points. Indeed, fix one sychnd suppose that
there exists a functiondl such that Sup f = f(£). Since Oc C

it follows that 0< f(£). Also there exists &> 1 such thaté € C.
So f(t€) < f(£), which then implies thaf(£) = 0. By the Riesz
representation theorem lét= (171,17, ...) € £2. So we have

Z ni&j =0,

j+1
which implies that there exists ja such that;;, > 0. Since the 63
pointej, = (0,...,0,1,0,...) € C, [here 1is in thej]' component
and 0 in the remaining ones] arfde;,) = nj, > 0 contradicting
the fact proved above that Sup = 0.

(5) However if the closed bounded convex 8dbas an interior, then
all points on the boundar§C are support points. This is an im-
mediate consequence of the Hahn Banach theorem: given any
Xo € 0C there exists a functiondl € X* which separateg; and
IntC. As we saw in the example in 4 above, if the interiorGf
is empty then there are points @(= dC) which are not support
points. However, see Theordml7.1, which then provides a-sati
factory answer to Problef 1.

(6) For Problenil2, the example in (3) above provides a negjativ
swer to the first question. The second question in answered in
TheorenZP.

Theorem 7.1(Bishop-Phelps[12]) Let C be a closed convex subset of
a Banach space. Then the set of support points of C are detde. in

Theorem 7.2(Bishop-Phelps[12]) Let C be a closed bounded convex
subset of a Banach space X. Then the set of continuous lineetidn-
als which support C is dense i X

The proof of Theorerfi 711 relies on Theoreml 7.4 which willdall
from the result below, whose proof uses the Ekeland Vanati®rinci-

ple.
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Theorem 7.3(The Drop Theorem, DaneS[30]let S be a closed subset
of Banach space X. Lety X\S and R= dist(y,S). Letr andp be
prositive real numbers such th@t < r < R < p. Then there exists
Xg € S such that

(7.1) ly—xoll<p and Dy, r;%)NS = {xo}

where O, r; x) = co(B(y) U {xo}). [This set is called a “drop”, in
view of its evocative geometry].

Remark. By definition distf, S) = Inf{|ly— x| : x € S}. If Xis reflexive
this infimum is achieved, but in general this is not so. Thatmt “co”
above means the convex hull. ABJ(y) = {xe X : [[X=Vy|| <r}.

Proof of Theorem[Z3. By a translation we may assume thyat 0.
LetF = EP(O) N S which is a closed subset of, and consequently a
complete metrix space with a distance induced naturalljnbynbrm of
X. Define the following functionad : F — R by

p+T
O(X) = —||X|.
() = H—IIxI

By the Ekeland Variational Principle, given= 1 there existg € F
such that

(7.2) D(x0) < D(X) + [IX = Xoll.
Such anxg satisfies the first requirement ¢f{l.1) and now we claim

that{xo} = D(0,r; Xp)NS. Suppose by contradiction that there is another
point X # Xo in this intersection. So

(7.3) xeS and x=(1-t)X +tv

for somev e B,(0) and 0< t < 1.
Clearly 0< t < 1. From [ZB):Ix|| < (1 - t)l|xol| + t][v], which gives

(7.4) t(R—=r) < t(lIxoll = IIVIl) < lIxoll = 1.

If follows from ([Z2) and [ZB) that
o+ o+ o+
— —IIX| + [IX = Xoll = =—IX|| + t]IXo — ViI.
R rIIXo|| <RC rII Il + 11X = Xoll R rII Il + tliXo — VI
Using [Z.3) to estimatein the above inequality and estimatifig —
V|| < p +r, we obtain||xo|l < |IX|| + (IIXoll — IXI]), which is impossible!o
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Remark. The above theorem is due to Danes, who gave_in [30] a proof,
different from the above one, using the following result of Kosstskii

and Zabreiko[[55]: “LetX be a Banach space and keindy be given
points inX such that O< r < p < |[X—V||. Then

2[|IX =yl + 1]
IX=yll-r

The above proof is essentially the one in Brgndsied [17]atRels

between the Drop Theorem and the Ekeland Variational Rriediave

been pointed out by several people, Brezis and Browder [D&hes
[31], Penotl6L].

diam[D(x, r; y)\B,(X)] < (Ix=yll = p)".

Theorem 7.4 (Browder [20]) Let S be a closed subset of a Banacds
space X. Let > 0and ze dS. Then there exigt> 0, a convex closed
cone K with non-empty interior andyx S such that

(7.5) IXo—2l<e and SN (x+ K) N Bs(xo) = {Xo}.

Remark. For the sake of geometric images, the above theorem means
that: “a closed se$ satisfies a local (exterior) cone condition on a dense
set of9S”.

Proof of Theorem[Z4. Chosey ¢ S such that|z- V|| < €/3. Then
R = disty,S) < ¢/3. Takep = ¢/2 and choose < R. By the Drop
Theorem, there existg € S such that

(7.6) IXo-Yll<e/2 and D(y,r;x) NS = {xo}

Since|lxo — 2| < X0 = Yl + |ly — 2| < €/2 + €/3, the first assertion
in (Z3) follows. For the second one take< ||xo — Y| — r. It suffices to
prove that the points

(7.7) x=x+t(v—x) with t>0, veB(y), [x—xl<6

are in the dro(y, r; Xg). Then we would take the cor€ as the set of
halflines with end point at 0 and passing through the pointh®tall

B (y — xo), i.e.
K={ueX:u=t(v-x), t>0 veB(y)
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SoK + xg = {Xg + t(v— %) : t > 0,v € B(y)} as in [ZF). To prove
the above claim, all we have to do is to show thattteén ([Z4) have to
be< 1, and so thein [Z4) is indeed a point in the drdp(y, r; Xg). We
rewrite x

X=X+ ty—X)+tv-y) = t(y—x) +t(v-y) = X=X
Estimating we obtaijly — Xo|| — t|lv — yIl < [IX— Xol| < & or
t(ly —Xoll =r) <d <lXo-yl-r=t<Ll |

Proof of Theorem[Z]. Letz € 9C ande > 0 be given. By Theorem
[Z4 there existsg € 4C, K ands > 0 such that

(7.8) Cn(xo+K)NBs(x) = {x}, IIx-2 <e

Now we claim that in facC N (xg + K) = {Xo}. Otherwise leix # Xxg
with x € C N (Xo + K); thenX = Xp + t(x — Xo) for small tot > 0is# 0
and belongs t&€ N (xg + X) N Bs(Xp), contradicting[[Z18). Next, based in
the assertion just proved we see tBandU = Int(K + Xp) are disjoint.
By the Hahn Banach theorem there exists a continuous lineatibnal
f € X* such that Sup f < Infyey f(u). So Sup f < f(xp), and indeed
there is equality becauseg € C. m|

To prove TheorerfizZ12 we will use two lemmas due to Phélgs [62].

Lemma 7.5. Let S be a closed subset of a Banach space X. leeKf
be such thal f||x- = 1 andSup; f < oo, and let0 < k < 1. Then the set
K defined below is a closed convex cone

(7.9) K ={xeX:KIxl < f(X)}.
Moreover, for all ze S there existsgxe S such that
(7.10) Xo€z+K Sn(X+K)={xX}.

Proof. The verification thaK is a non-empty closed convex cone is
straightforward. To prove the second assertiorFlet (z+ K) N S and
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consider the functionab : F — R defined asb = —f|g. Takee < k
and use the Ekeland Variational Principle: there exigts F such that

(7.11) —f(x) <—f(X) +€llXo—XI|, YXeF, X#X.

Lety € Sn (X + K). First we claim thaly € F; indeed, since
y— X € K andxp — z € K it follows thaty — z € K. Next we show that
y = Xo. Otherwise, from[(Z11)

(7.12) —f(x0) < —1(y) + €lly — Xoll

Sincey — xp € K we havek|ly — x|l < f(y — Xg). This together with
(Z12) gives a contradiction. o

Lemma 7.6. Let C be a closed convex subset of a Banach space X. Let
feX|fllxx =1and0 < k < 1. Let K be as in[Z9). Suppose that
Xo € C is such that

(7.13) C N (X + K) = {xo}.
Then there exist8 # g € X* such that 67
(7.14) Supg=9(x) llg— fllx <k

Proof. Consider the functionab : X — R defined by
O(x) = KXl - f(x)

Clearly @ is continuous and convex. Now apply the Hahn-Banach
theorem to separate the sets:

Ci={(Xr)e XxXR:d(X) <r}
Co={(Xr)e XxR:xeC—-xq,r =0}
C, is the interior of the epigraph, epj which is open and conveg; is

convex and closedC; N C, = 0; otherwise there existee C — Xg such
that®(x) < 0, i.e.x € K. Sox+ Xy € Candx + Xy € Xo + K. Using
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([ZI3) we obtaink = 0. But this is impossible since (0) ¢ C;. Then
by the Hahn Banach theorem there exists (X x R)* such that

(7.15) Sug, F <Infc, F

Observe that corresponding Eathere are (unique) € X* andt € R
such thaf (x,r) = g(x) +tr for all (x,r) € XxR. Since (00) € C,NC;
it follows that the Sup and the Inf ilL(Z115) are both equal t&Sihce
for all x € X, (x, ®(x)) € C; we see that

(7.16) g(x) +td(x) = 0

This shows that cannot be equal to 0, [otherwige= 0 and so
F = 0]. The point (1) € C;. So0< F(0,1) = t. Thust > 0, and
without loss of generality we may assuiine 1. If follows from (ZI6)
thatg(x) + K||x|| — f(x) > O for all x € R, and this gives the second
assertion in[[Z14). Now fox € C, it follows that (x — xp,0) € C, and
sog(x — Xp) < 0 which gives the first assertion in{7114). m|

Proof of Theorem[Z2. Given 0% f € X* ande > 0, let f = f/|/f|Ix-
andK as defined in[{719) witk = €/||f]lx-. Choose & € C. Then by
LemmalZb there existgy € C such thatS N (xg + K) = {xo}. Now
by LemmdaZDb there exists # g € X* such that|g — f||x- < kandg
supportsC. Denote byg'= ||fA||x*g. Then||§ — fll<e andd supportsC.
Since the previous inequality is true for anyQe < I flix- the density
follows. O



Chapter 8

Convex Lower
Semicontinuous Functionals

Introduction. In Chaptef b we introduced the concept of stiledi 68
ential of a convex lower semicontinuous functidn We observed that
doma® c dom®. Here we prove a result of Brgndsted and Rockafellar
[18] which show that dom® is dense in don®. The main ingredients

in the proof are the Ekeland Variational Principle again awdlculus of
subdiferentials. The proof here follows Aubin-Ekeland [6] an€fatis
from the original one and also from that in Ekeland-Temanj.[36

Proposition 8.1. Let ®, ¥ : X — R U {+oo} be two convex lower
semicontinuous functionals defined in a Banach space X actdthat
® = +o0 and¥ = +o0. Then

(8.1) O(tD)(X) = tdd(x), VYt>0 VxeX
(8.2) (D + P)(X) C 0D(X) + IP(X) VYxe X

Moreover if there iX € dom®ndomW¥ where one of the functionals
is continuous then there is equality @2).

Proof. 1) and[BR) are straightforward. The last assertiorraser
using the Hahn Banach theorem; see the details in Ekelamaye36].
mi

81
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Subdifferential and Differentiability. The reader has surely observed
that these two notions are akin. Indeed, stfledéntials were introduced
to go through situations when one does not havefardintial. This was
precisely what occurred in Chapfér 5. We have the followasnlt

Proposition 8.2. Let® : X —» R U {+o0} be a convex lower semicon-
tinuous function. Suppose th@tis Goteaux dferentiable at a point
Xo € doma, i.e., there exists an element of, Xlenoted by @®(xg), such
that

(8.3) D(Xg + tv) = D(Xg) + {DD(Xg), V) + o), VYveX

[The above expression is to hold for small t; how small is tedefs on
v].

Then

(8.4) Xo € domagd and Dd(Xg) € ID(Xp).
Moreover

(8.5) O®D(X) = DO(Xo).

Proof. To prove [B1) we have to show that

(8.6) D(y) > D(X) + (DD(X0),y — X0y, Vye X

It ®(y) = +o0 there is nothing to do. Assume that dom®. So the
whole segment connecting toy is in dom®, and we have

D (X0 +1(y = %)) < (1 - )®(xo) + tO(Y).
Using [8.B) we get, for smatt
D(X0) + UDD(X0),y — Xo) + Ot) < (1 - )D(x0) + tD(y)
which implies [B3) readily. Next, let us suppose that 0D(xo):

(8.7) O(y) > O(X0) + 1,y —Xo) YyeX
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Now givenv € X we know by assumptiof{d.3) thas+tv, for small
t, is in dom®. So from [B)

D(xg + tv) — O(Xg) > t(u, V).

Assumingt > 0, dividing through byt and passing to the limit we
obtain(D®(xg), V) = (u, v) for all v € X, which impliesu = D®(Xxp). O

Theorem 8.3(Brgndsted-Rockafellai [18])Let X be a Banach space
and® : X — R U {+o0} a convex lower semicontinuous function, such
that® = +co. Thendomd® is dense irdom®. More precisely, for any 70
X € dom®, there exists a sequen€s) in X such that

(8.8) lIX — X < 1/k
(8.9) D(x¢) — D(X)
(8.10) o0(x) 0 forall k.

Proof. The set
E={(xa) e XxR:®(X < a}

[called theepigraphof @] is closed and convex. (Prove!) SinEez X
we can take Xg, ag) ¢ E and use Hahn Banach theorem: there exists
u € X*anda € R such that

(8.11) YX)=D(X) - (u,X) —a>0 forall xeX

[there is a small step to gdi(8]11) from Hahn-Banach; seendasi
situation in the proof of Propositidn.4]. Now let us applyebrenfZ4P
to ¥ with €/2 = ¥(X) — Infx . So for eachl = 1/k, k € N, we obtain
Xk such that[{818) holds, and moreover

(8.12) Y(x) < ¥(X)
(8.13) P(x) < P(X) + eKl|Xc — X|| VX # Xk.

Next consider the function® : X — R U {+oo} defined by

O(X) = ¥(X) + eKlIx — X«ll,
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which is convex and lower semicontinuous. Frédm(B.13) iofes that
X is the (unique) global minimum @&. So 0€ 9O(Xy). Letl' : X - R
be the convex lower semicontinuous functional defined’@y = ||x —
x¢||. By[B it follows that there arg® € 0¥(x) andw* € dI'(xc) such
that 0= z* + ekw*. Using PropositiofL8l1 once more and Proposition
we see that there exists € d®(x) such thatz" = x* — u, proving

@10). To provel(819) we rewrit€{8112) in termsdf
(8.14) D(x) < D(X) + (u, X — X).

Using [B38) and[(814) we have limsup(x) < @®(X). On the
other hand, sinc® is weakly lower semicontinuous we obtalf{X) <
liminf ®(xy). There two last inequalities proMe{8112). m|

The Duality Mapping. Let X be a Banach space. In the theory of
monotone operators : X — 2% a very important role is played by the
so-called duality mapping. It essentially does in Banadtephe job
done by the identity in Hilbert spaces. Ttheality mapping X X — 2%

is defined for eaclkk € X by JO =0 and

(8.15)  JIx=f{ue X' : (X = XA lull = Xl for x#0,

where we use the same notation for norms in BOHNAX*. Expression
@13) is equivalent to.

Ix= (e X* 1 (u, Xy > [IXI2, llull < [IX1).

We can show directly from the definition, using Hahn-Banabht
Jxis a non-empty*-closed convex subset &, for eachx € X. How-
ever, we will prove that and much more using the results ouwlifiign-
entials proved in Chapté€l 5, after we prove the followingpasition.

Proposition 8.4. Let X be a Banach space, add: X — R the func-
tional defined byb(x) = 3|IX||2. Then

(8.16) oD = J,

Remark . A study of generalized duality mappings can be found in
Browder [Z23].



85

Proof. Letu € d®(X). It suffices to considex # 0, sinced®(0) = 0 and
JO=0. Then

1 1
(8.17) SV = SIXIE+ y =% VeX
Lett > 0 andv € X be arbitrary, and replace iR (8llype x + tv:

1 1 1
t, V) < Slix+ tvif% — §||x||2 < tIx|| vl + §t2||v||2.

Dividing through byt and passing to the limit
W,V <INV Yve X

This implies|jul| < ||X||. On the other hand, lgt= tx in B11):
(8.18) 2~ DN > (- 1 0.

For 0< t < 1 we obtain from[B8}(t + 1)[IX|? < (i, x). Letting 72
t — 1 we have(u, x) > |IX||>, completing the proof that € Jx The
other way around, assume now that Jx, and we claim thatl{8.17)
holds. Let us estimate the right side Bf{8.17) using the @rtigs ofu:

1 1
.Yy — {u, X) + §||x||2 < [IXII Vil = [1X1? + §||x||2,

and clearly the right side of the above inequalit;gi%”ynz. O

Remark 1.If u € J(xo) it follows from the above that supports the
ball of radius||xgl| around O at the poirty. Indeed if|lyll < ||%oll, then
1Y) < {u, Xo)- 1.e. Su, y) @ IVl < [1%oll} = (i, Xo)-

Conversely, if a functionagl supports the unit ball at a poing, then
u € J(lullxo). Indeed, from

{1, X0) = SURy<1 (K, )

we obtain{u, Xg) = ||ull, which proves the claim.
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Remark 2. Let us callR(J) = U{JIx: x € X}. If X is a reflexive Banach
space, the above remark says tR&fl) = X*. If X is not reflexive there

is a result of R. C. Jame§_149] which says that there are fomats
which do not support the unit ball. So for non reflexive Bansphces
R(J) # X*. However the Bishop Phelps theorem proved in Chdgter 7
says thaiR(J) is densein X*, for all Banach spaces.

Gateaux Differentiability of the Norm. As in the previous section let
Dd(X) = %||x||2. Sinced : X — R is continuous and convex we have by
Propositio 5.4 that

im D(X + ty) — D(X)

(8.19) Ho " = MaX,ey (. Y), t>0.

It follows from B.I9) that

(8.20) !'Tr(? D(X + B? - Dd(X)

= Mingeax(u,y), t<0.

The functional® is Gateaux dierentiable if and only if the two
limits in BI3) and [[820) are equal and in fact there is atiooous
linear functional, noted byp®(x) and called the Gateaux derivative at
X, such there limits are equal t®®(x),y). So the existence of the
Gateaux derivative ab at a certain poink implies that

Max,cxu, Yy = Mineaxiu,yy forall yeY.

Clearly this implies thatlx is a singleton, andx = D®(x). The
converse is clearly true: ixis singleton then{8.19) anf{8]20) imply
that @ is Gateaux dterentiable atx and D@®(x) = Jx So we have
proved.

Proposition 8.5. Let X be a Banach spaced(x) = 3|Ix||* is Gateaux
differentiable at a point x if and only if Jx is a singleton. MorepJx =
Dd(x). In particular, the duality mapping is singlevalued,; X — X*,
if and only if®(x) = %||x||2 is Gateaux dferentiable at all points x X.

Remark 1. Which geometric properties of the Banach spcgive a
singlevaled duality mapping? For the definitions belowBgt {x € X :
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IIX| < 1} anddBy = {x € X : ||| = 1}. In the terminology introduced in
Chaptefl, we see from the Hahn Banach theorem that all pafigt3;
are support points, i.e. givene 9dB; there exists a functional € X*
such that

Sups, i = {u, X).

In geometric terms we say that the bBll has a hyperplane of sup-
port at each of its boundary points. A Banach spXcis said to be
strictly convexf given x1, Xo € dB1, with X3 # Xo, then||tx, +(1-t)xy|| <
1forall 0 <t < 1. Another way of saying that it is: each hyper-
plane of support touchae3B; at a unique point. (Or stilbB; contains
no line segments). A Banach spaXds said to besmoothif each point
X € 9By possesses only one hyperplane of support. Exampl& in
with different norms: (i) the Euclidean norfix[> = x¢ + X3 is both
strictly convex and smooth; (ii) the sup notfr|| = Supf|xl, %]} is
neither strictly convex non smooth; (iii) the norm whoseturall is
(X1, %) 1 —1<x <1, X2 —1< X < 1- x5} is strictly convex but not
smooth: (iv) the norm whose unit ball is the union of the thsets next
is smooth but not strictly convex:

(X %) =1 < X, % < A {(Xe, X2) - X = 1, (% — 12+ %5 < 1)

and
(X1, X2) : X1 < =1, (% + 1)? + %5 < 1.

Remark 2. With the terminology of the previous remark, Propositiors
states: ®(x) = %||x||2 is Gateaux dferentiable if and if X is smooth
No condition on reflexivity is asked fror.

Remark 3.If X* is strictly convex then is singlevalued. Indeed, for
eachxg € X, JX is a convex subset of the sgt € X* : ||ul| = |I%oll},
which is a singleton in the case whihis strictly convex. Sa<* strictly
convex implies thak is smooth, in view of Propositidn 8.5 and Remark
2 above.

Remark 4. There is a duality between strict convexity and smoothness
in finite dimensional Banach spacesis strictly convex [resp. smooth]
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if and only if X* is smooth [resp. strictly convex]. Such a result does
not extend to all Banach spaces, see Beauzainy [8, p. 186hfeka
ample. However this is true for reflexive Banach spaces. Wwhisfirst
proved byémulian [7%], and it follows readily from Remakk 3 above
and Remarkl5 below.

Remark 5. X* smooth impliesX strictly convex. Indeed suppose théat
is not strictly. Then there ang, xo € dB; such thak = %(x1+x2) € 0Bs.
JX € 0B] wheredB] = {u € X* : |lull = 1}. We now claim thaix; and
X2 viewed as elements of* are two support functionals @] at Jx,
contradicting the smoothness %f. In fact

(8.21) 1=(IX,X) = %(J)‘(, X1) + %(J)‘(, X2)
implies(JX, x1) = 1 and(JX, Xp) = 1, proving the claim.

Frechet Differentiability. We know that a functionad : X —» R
which is Gateaux diierentiable is not in general Frécheffdrentiable.
However

Proposition 8.6. Let X be a Banach space, A functiorl: X — R is
continuously Fréchet gerentiable (i.e. &) if and only if it is continu-
ously Gateaux gferentiable.

Proof. One of the implications is obvious. Let us assume thas

Gateaux dierentiable in a neighborhood of pointup € X and that
the mapping« € V — D®(X) € X* is continuous. We claim thd@®(ug)

is the Fréchet derivative ap, and, indeed:

(8.22) D(Up + V) — D(Up) — (DD(Up), vy = 0(V).

The real-valued functiohe [0, 1] — ®(ug + tv) is differentiable for
smallv. So by the mean value theorebfug + v) — ®(Up) = (D®(up +
7V), V), which holds for smallv and somer € [0, 1]. So we could es-
timate the left side off{8.22) byp®(uy + 7v) — DD(Up)|, and using the
continuity of the Gateaux derivative we finish. m|

It is clear that a functionad : X — R could be Frechet fieren-
tiable without beingCt. However this is not the casedf(x) = %||x||2.
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Proposition 8.7. Let X be a Banach space. df(X) = %||x||2 is Fréchet
differentiable [which implies Gateauxjfirentiable andd® = J, where
J is singlevalued] then 3X — X* is a continuous mapping.

Remark. Without additional assumptions on the Banach space, asingl
valued duality mapping : X — X* is continuous from the strong topol-
ogy of X to thew*-topology of X*. For simplicity let us sketch the proof
using sequences. Since thv&-topology needs not to be metrizable, fil-
ters should be used, see Beauzamy [24, p. 177]x4-et xin X. Since
[[I%llx+ < const, there ig € X* such that

w
IX—u.

We claim thaty = Jx First, from(Jx, X,y = [[X|[?> we conclude
(u, Xy = |IX||°>. Next givene > 0 there existsi € X with ||u|| = 1 such that
llull < <, Uy + €. So||ull < (Ix, Uy + € < ||Xq]| + € for largen. Passing to
the limit, and since > 0 is arbitrary||u|| < ||| O

Proof of Proposition [B-1. Suppose by contradiction that there is a
sequence, — X andr > 0 such that|Jx, — JX| > 2r, for all n. So for
eachn there existyy, € X, |lynll = 1 such that

(8.23) (I% — IX Yn) > 2.

Using the Frechet flierentiability of® we can finds > 0 such that

(8.24) DX +Y) —D(X) —(Ix | <rlyl for iyl <.
On the other hand we have 76
(8.25) D(X + 6Yn) — D(Xn) = (IXa, X+ OYn — Xn).

Now using [B:2K) we estimate
(I% = IX 0Yn) < @(X+ 6Yn) — P(Xn) + (I%n, Xn — X) = (IX OYn)
which is equal to

(8.26) D(X+ dYn) — D(X) = (IX SYn) + D(X) — D(Xn) + (I X, Xn — X).
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The first three terms if.(8.26) we estimate using(|8.24). St
with B8Z3) we get

2r6 <16 + O(X) — D(Xn) + [IXnll X — X|

which implies that®(x,) does not converge t®(x). This contradicts
the continuity ofd. m|

As a consequence of the previous propositions we have tlsvfol
ing characterization of Fréchetfféirentiability of the norm:

Proposition 8.8. Let X be a Banach spaceb(x) = %||x||2 is Frechet
differentiable if and only if the duality mappings is singlexaluand
continuous.

Remark. Which geometric properties of the Banach spAggve a con-
tinuous singlevalued duality mapping? We start with a ctiowliintro-
duced byémulian [75]. X* satisfiescondition (S) if for eachx € dB;
we have

(8.27) limdiamAy(®) = 0,

whereAy(s) = {u € X" : (u,X) > 1-6} N Bj.

Proposition 8.9. Let X be a Banach space. The duality mapping is
singlevalued and continuous if and only if ¥atisfieqS).

Proof. (i) First assume§). Suppose that there existse 9B; such
that Jx containsu; # up. Clearlyui, u» € Ax(6), for all 6 > 0, and
llt1 — woll > 0 negated(8.27). To show the continuityBfit suffices to
prove that ifx, — X, with ||X,|| = 1, thenJx, — Jx. We know that

anﬁJx,

so it is enough to show thadk,) is a Cauchy sequence. Given- 0,
chooses > 0 such that diam(6) < e. We know that{(Jx,, X) —
(Ix Xy = 1. So there existgy such thatdx, € Ay(6) for all n > ng.
Using condition §) we conclude thatJx, — Ixqll < e for all n, m > ng.
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(i) Conversely, assume by contradiction thg) floes not hold, for
somex € 9B;. So there existgy > 0 such that for everm € N we can
find un, py, in B; with the properties

1 ’ 1 ’
(n, Xy > 1 - pe (U, Xy > 1 - v llten — ppll = €o.

We have seen, Remdlk 2, tHa¢J) is dense inX*. So we can find
Xn» Yn in X such that

2 2 €
(828) (IxX=1-= (WX 2l-= 9% = Inll > EO
1 1
(8.29) 1%l < 1+ =, Jyll < 1+ .

Observe that the sequencesy(), (Jy,) are bounded irX*. By the
Banach Alaoglu Theorem, there exigtandy’ in X* such that

w* W,
o=, Ih—p.

(As usual take subsequences if necessary). Passing tonihel8.28)
we obtain{u, X) > 1, (u’, Xy > 1. From [8.2B) it follows that in fact we
have(u, X) = (u’, Xy = 1, which impliesu = ¢’ = Jx On the other hand,
from the last assertion il{828) we can find B, such that

(3% = Iyn,2) > 6740.

Passing to the limit in this inequality we come to a contridic O

Remark. Now we give a geometric condition which isfRBaient to hav-
ing the continuity and singlevaluednessJofSome definitions. A Ba-
nach spac& is said to beuniformly convexXClarkson [26]) if givene >

0 there exists = d(e) > 0 such that ifx, y € 4By and||3(x + Y)| > 1 -6
then||x - y|| < e. A Banach spacX is said to bdocally uniformly con-
vex(Lovaglia [58]) if givene > 0 andxg € dB; there exist$ = d(e, Xo)
such that ifx € By and||3(x + Xo)ll > 1 -6 then||x — Xoll < e. The
previous two definitions can be given in terms of sequencdsliasys.

X is uniformly convexf given and two sequences ) and §,) in By 78
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such thatH%(xn + yn)ll = 1 then||x, — ynll = 0. X is locally uniformly

convex if given any poinky € dB; and any sequence) in B; such

that||%(xo + Xp)ll = 1 thenx, — Xo. A Banach spac¥ is said to satisfy
Property H(Fan-Glicksberg[40]) ifX is strictly convex and

(8.30) Xn = X0, Xl = [IXoll = Xn — Xo.

Hilbert spaces are uniformly convex. A uniformly convex Bah
space is locally uniformly convex. A locally uniformly coew Banach
space satisfies Propertid). The first assertion is easily verified using
the fact thatx + y is orthogonal tox —y, for x, y € dB;. The second
is trivial. And the third is proved as follows. It is clear the locally
uniformly convex Banach space is strictly convex. To prd@&&0) we
may assume thdix,|| < 1 and||xo|| = 1. We claim thatx, — Xp and
IXall = %ol implies that||%(xn + %)l = 1. Once this is done, the
fact thatX us supposed locally uniformly convex implies that— Xo.
Suppose by contradiction that a subsequencexgf flenoted by X)
again, is such tha (x, + Xo)l <t < 1, for alln. Letu € Jx. Then

1
(u, E(XO + Xn)) < (u, tXo)

which implies% + %(/u, Xny < t. Passing to the limit we come to a
contradiction.

Proposition 8.10. Let X be a Banach space and suppose thatisX
locally uniformly convex. Then the duality mapping is sivglued and
continuous.

Proof. Singlevaluedness is clear. Now bet — Xxo in X. As in Proposi-
tion[89 we may supposk| = 1. We know that

anm—ﬁx]m.

Suppose by contradiction (passing to a subsequence)ﬁnhaﬁ +
Jxll <t < 1. Then

(3% + IX0, Xn + Xg) < 4t.
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On the other hand the left side of the above inequality is kegua

(3%, %n) + (I%0, Xn) + (IXn, X0) + (%0, X0) = 2+ (IX0, Xn) + (IXn, X0)
which converges to 4. Impossible! O

Proposition 8.11. Let X be a reflexive Banach space. Then J is singi®-
valued and continuous if and only if )$atisfies Property H.

Proof. It can easily be seen that, in the case of reflexive spacegeRyo
H on X* implies the said properties ah To prove the converse, we use
Proposition[8P and show that PropeByimplies PropertyH on X*;

of course reflexivity is used again. Suppose by contradidfiat there
exists a sequence

tn = po, llunll = llpoll, -+ wo.

We may suppose without loss of generality thatl| < 1 and||uoll =
1. Sothere exisdy > 0 and sequences$q) and k,) going toco such that

(8.31) lleej, — kol = €o.

Sinceldis singlevalued continuous and onto, we can figth X with
IXoll = 1 such thajp = Jx. Consider the seby,(6) defined in [B27)
and choose@ > 0 such that diand,,(6) < ep/2. Clearlyun € Ay (5) for
largen. But this contradictd{8.31). O

Uniform Fr échet Differentiability of the Norm. In this seciton we
limit ourselves to Propositiof 8112 below. We refer to thekm of
Beauzamyl[8] and Diestel [32] for more on this subject. A @picof
uniform smoothness can be introduced and be shown to enjaglayd
with uniform convexity, just like smoothness and strict\eexity do.

Proposition 8.12. The duality mapping J is singlevalued and uniformly
continuous on bounded subsets of X if and only isXiniformly convex.

Proof. (i) We first prove thaX* uniformly convex implies the said prop-
erties onJ. From Propositiol 810 it follows thakis singlevalued and
continuous. To prove uniform continuity we preceed by cadittion.
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Assume that the existg > 0 and sequences), (Yn) in some fixed
bounded subset of such that

1
IXn = Ynll < - and [|[I% — Iynll > eo.

We may assume thékl = [lynll = 1. Now we claim thag||Jx, +
Jynll = 1 asn — oo, arriving then at a contradiction through the use of
the uniform convexity oX*. To prove the claim just look at the identity

(I% + I¥h, Xn) = (IX, Xn) + (I¥n, Yn) + (IYn, X0 — Yn)
and estimate to obtain
2> (I% + Iyn, Xn) = 2= 2%y — Ynll.

Now we assume thatis singlevalued and uniformly continuous on
bounded sets. By the fact thH&¢J) is dense inX* it suffices to show that
givene > 0 there exists & > 0 such that

1
(8.32) %= 3yl 2 € = S|Ix+ M < 1-5

for X, y € 9B;. First we write an identity fou, v € 9B,
(8.33) (IX+ Iy, Uy = —(IX—=JY, V) + (IX U+ V) + (Jy,u— V).

Observe that the sup of the left side with respeat ® 9B is the
norm of Jx+Jy, and the sup of the first term in the right side with respect
to v € 9B; gives the norm ofix— Jy. Next let 0< € < € and choose
V € 9B such that

(8.34) (Ix- Iy, > €.

Now choose O< ¢ < €. By the uniform continuity ofJ there is
n > 0 such that

(8.35) Wz -Jzll <& if |z— 2l <4
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Now takev = 7v in (833) and let us estimate separately the three
terms in the right side of{8.83). The first is trivially estited by—e€'7.
The other two are estimated as follows:

(IXUu+Vv)+{Jy,u—=v) < |lu+v|+[lu-=wv.
Lets= (u+V)/|lu+ V| andd = (u-V)/|lu- V||, and write the identity
(8.36) lu+v+lu=v]=(Jsu)+ (Jd,u) + (IJs—Jd,v).
Then estimatd{8.86) using(8135) and get
lu+vil+llu-Vl <2+&lvl <2+ ¢n.
Finally 8:33) is estimated bye'n + 2 + &n, for all u € 9B;. So 81

€ —-¢
2

1
SI9x+ <1~ 7.

and [83P) is proved. O

Remark. The functional® is said to bauniformly Frechet dferentiable
if it is Frechet diferentiable and if gives > O there exist$ > 0 such
that

[O(X + ) — (X) — (D"(X), U] < €llull

for all x e B; and all|jul| < 6. It is easy to see that the uniformfiidiren-
tiability of @ is equivalent tal being singlevalued and uniformly con-
tinuous on bounded sets. So the norm of a Banach space isrmalfo
Frechet diferentiable ff X* is uniformly convex.






Chapter 9

Normal Solvability

Introduction. Let X andY be Banach spaces. Lét: X — Y be 82
a given function. This section is devoted to questions ikeab the
solvability of the equatiorf(x) = y, wheny € Y is given. The function

f is supposed to be Gateauxtdrentiable and we would like to have
suficient conditions for the solvability of the above equatidated in
terms of the properties of the Gateaux derivatd/g. Parallelling the
Fredholm theory for compact operators these conditionsnatiurally
involve Df;. For the sake of later referencing we start by recalling some
results from the theory of linear operators. Then we go tcsthealled
normal solvability results of F. E. Browder and S. |. Pol®mzaSome
results of W. O. Ray and |. Ekeland are also discussed. We ¢has
section with a comparative study of the results here withcthssical
inverse mapping theorem.

What is Normal Solvability? LetL : X — Y be a bounded linear
operator from a Banach spageto a Banach spac¥. The equation
Lx = yis said to benormally solvablgin the sense of Hausd®y if

9.1) ye N(L)' = ye R(L).

HereL* : Y* — X* is the adjoint operator defined as follows for
eachu € Y*, L*u € X* is given by({L*u,x) = {(u,Lx) for all x € X.
The other notations iM{9.1) are: (N(T) to denote the kernel of an
operatorT : X — Y, i.e.N(T) = {x € X : Tx = 0}; (ii) the range of

97
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T, R(T) ={yeY:3Ixe X st Tx =y}, and the (right) polar of a
subspaceB c X*, Bt = {x e X : (u,X) = 0,Yu € B}. Later on we also
use the (left) polar of a subspadec X defined as

At ={ueX :(u,x)=0 VYxeA

The well-known Fredholm alternative for compact linear rapers
T : X = X in a Banach spack gives that the operatdrt = | — T is
normally solvable. For a general bounded linear operatorX — Y,
one can prove that

(9.2) N(L*)*" = R(D).

So all operator& with a closed range are normally solvable.

Some Results From The Linear Theory. We now recall some theo-
rems from the theory of bounded linear operators in Banaabesp The
reader can find the proofs in many standard texts in Fundtmelysis,
see for instance Yosida79], Brézis[15].

Theorem 9.1(Closed range Theorem)et L : X — Y be a bounded
linear operator, X and Y Banach spaces. The following proeerare
equivalent:(i) R(L) is closedii) R(L*) is closediii) R(L) = N(L*)*,
(iv) R(L*) = N(L)*.

Theorem 9.2 (Surjectivity Theorem)Let L : X — Y be a bounded
linear operator. The following conditions are equivaléNtR(L) = Y,
(i) N(L*) = {0} andR(L") is closed (iii) there exists a constant € 0
such thatly*|| < C||IL*y*||.

Theorem 9.3 (Surjectivity Theorem for the adjointlLet L : X —» Y
be a bounded linear operator. The following conditions ageiealent:
() R(L*) = X, (ii)) N(L) = {0} and R(L) is closed,(iii) there exists a
constant C> 0 such that|x|| < C||Lx||

Normal Solvability of Nonlinear Operators. Now we describe a non-
linear analogue of Theorel®.2. This result was proved byoPadv
[63] (see alsol164],[165]) for reflexive Banach spaces &(d) weakly
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closed, and by Browdei [20]["[21], for general Banach spacEke
Browder papers mentionned above contain much more materiabr-
mal solvability besides the simple results presented here.

Theorem 9.4. Let f : X — Y be a Gateaux gerentiable function

between Banach spaces X and Y. Assume {Pgti$ closed. Let us use
the notation D{ for the Gateaux derivative at a pointe X. Assume

that N(Dfy) = {0} for all x € X. Then f is surjective.

The above result follows from a more general one, (namelyoThe
rem[@.5) due also to Browder. The proof below follows the sapigt
of Browder’s original proof. However it uses a more direcpigach
[directness is a function of the arrangement one sets irs@resenta-
tion!] through the Drop Theorem (Theordml7.3), proved in @8eld
via the Ekeland Variational Principle.

Theorem 9.5.Let X and Y be Banach spaces, andX — Y a Gateaux
differentiable function. Assume thatX) is closed. Let \e Y be given
and suppose that there are real numbgrs 0 and0 < p < 1 such that

(9.3) f=1(By(y)) # 0
(9.4) Inf{lly — £(X) -2l : ze R(D)} < plly - F(3)II,
for all x € f=1(B,(y)). Then ye f(X).

Remark 1. If (B23) and [@3) holds simultaneously for eack Y, then
f is surjective. Observe that a larggives [@.8), but theri{9.4) is harder
to be attained.

Remark 2. Proof of Theoreni GIN(Dfy) = {0} implies, by [Q.R), that
@.3) is attained withp = 0 and arbitranyp. So, for each giver, take
p such that dist(, f(X)) < p, and takep = 0. Therefore Theoref 9.5
implies Theoreni 914.

Remark 3. The thesis of Theoref 9.4 still holds if in the hypotheses
we replaceN(Dfy) = {0} by R(Dfy) dense inY. Theoren[ 9} contains
a result of Kacurovskii[I35], who considered continuoustedhet dif-
ferentiable mapping$ and assumed th&(Dfy) = Y for all x € X. 85
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The proof uses a Newton-Kantorovich method of successipeoap
mations. See Remalk 1 after Theorlen 9.8.

Remark 4. A Gateaux diferentiable mapping : X — Y is said to be
a Fredholm mappingf Dfy : X — Y is a Fredholm (linear) operator
for eachx € X. We recall that a bounded linear operator X — Y is
Fredholm ifN(L) is finite dimensional an®(L) is closed and has finite
codimension. The indeXL) is defined ag(L) = dim N(L)—codimR(L).
We observe thait(D fy) for a Fredholm mapping is locally constant.
SinceX is connected we can then define

i(f)y=i(Dfy) forsome xe X

since the right side is independent>of Now if in Theoren[ 34 we as-
sume thatf is a Fredholm mapping of index 0, then conditid(D ;) =
{0} can be replaced bM(Dfy) = {0}.

Proof of Theorem[@%. LetS = f(X). Suppose by contradiction that
y ¢ S. LetR = dist(y,S) and choose&, p > 0 such that < R < p
andpp < r. Observe that if[{3]3) an@{9.4) hold for somgthen it also
holds for any othep, with R < p < po. Then use the Drop Theorem:
there existsp € S

(9.5) lup—yll<p and SN D(y,r;Uo) = {Uo}.
Now let X € X be such thaf (xg) = ug. Then [E2) implies
Inf{lly - f(x0) ~ 2l : ze RDD )} < plly = F(xo)ll <.
So there existx € X such that
(9.6) lly = f(x0) = Dy, ()l <.

and approximating the Gateaux derivative by the Newtortignbone
has for smalt > O:

f(xo +tx) — f(Xo)l

| <.
t

W]l = [ly = f(Xo) —
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Thus the vectoy — w; € D(y, r; ug), and the same is true for @
t)up + t(y —w) with 0 < t < 1 andt small. But this last statement simply
says that

(9.7) f(xo+tx) € D(y,r;up), VYt>0 small
The second assertion in{P.5) abd19.7) imply that 86
f(xo+tX)=uy VYt>0 small

which givesD fy,(X) = 0. Going back to[{316) we géiy — f(Xo)ll <,
which is impossible. O

Some Surjectivity Results. Both theoremBE 914 aiid 9.5 have as hypoth-
esis the statement th&{X) is a closed set. This is a global assumption
whose verification may causiiitulties when applying those theorems.
It would be preferable to have local assumptions insteadt iffs the
contents of the next result which is due to Ekeland, see BHztetand
[[7]; see also Ray-Rosenholtz_]69] for a slightly more gehegault.
Observe that the functiohis assumed to be continuous in the next the-
orem. This implies that the graph défclosed, but asserts nothing like
that aboutf (X).

Theorem 9.6. Let X and Y be Banach spaces andX — Y a contin-
uous mapping, which is Gateauxfdrentiable. Assume:
(9.8) R(Df) =Y, V¥xeX
(9.9) Jk>0 s.t. VxeX, VYyeY, 3dze(Df) Xy
with the property:
12l < Kiiyll.

Then f is surjective.
Proof. If suffices to prove that ¢ f(X). Define the functionafd :
X — R by ®(x) = ||f(x)|l. Clearly® satisfies the conditions for the

applicability of the Ekeland Variational Principle. So give > 0 there
existsx, € X such that

(9-10) IE(XN < Infx [[F(X)N| + €
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(9.11) (XN < TN + €ellX = Xell VX # Xe.

Take in [Q.I0)x = x, + tv, wheret > 0 andv € X are arbitrary. Let
ut € Y* such that

(9.12) lleall = L, N1 (% + I = Cu, F(Xe + V),

see RemarKkl1l after the proof of Propositlonl 8:4: € J(f(x. + tv)/
IIf(xe + tvl]). We observe thatf (x|l > {(u, f(X). Altogether, we can

write (@.11) as

©013) i e o)~ 10D,y

By the Banach-Alaoglu theorem (i.e., ti&-compactness of the
unit ball in Y*) and the fact that

%[f(xe +tv) — f(X)] = Dfy (V) (strongly)inY
we can pass to the limit ds— 0 in (@.12) and[[2.13) and obtain

(9.14) llwoll = 1, 1 (Xl = Cuos, (X))
(9.15) (uo, Dfy (V)) > —€llvl] forall veX

Now using hypothesi§{3.8) anld(P.9) we can selactaX such that
Dy (v) = —f(xe) and|vi| < K| f(xc)Il. All this gives

(uo, F(Xe)) < ekl f(x)II.

So if we start with are such thatk < 1, the last inequality contra-
dicts [O.I2), unles$(x,.) = 0. m|

Remark 1. The passage to the limit in the above proof requires a word

of caution. IfX is separable then the&*-topology of the unit ball in
X* is metrizable. So in this case we can use sequences in thagmi
questions. Otherwise we should use filters. She Dunforav8cth [35,
p. 426].
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Remark 2.Let L : X — Y be a bounded linear operator with closed
range. Then there exists a constlint 0 such that for eaclt € R(T)
there is anx € X with properties thay = Lx and||x| < K|ly|l. Thisis a
classical result of Banach and it can be proved from the Opapding
Theorem in a straightforward way: consider the oper@itoiX/N(T) —
R(T). In this set-up it is contained in Theordm19.3 above. Now let
us see which implications this has to Theoren 9.6 above. iGond
@.3) implies that the inequality ifl.{9.9) holds withkadepending on
X. Viewing a generalization of Theorefl D.6 let us define a fonet

k: X — R as follows. Assume thdt : X — Y has a Gateaux derivative
with the property thaR(D fy) is the whole ofY. For eachx € X, k(X) is
defined as a constant that has the property

(9.16) 2l <kX)lyll YyeY andsome ze (Dfy,)ty.

We remark that for each € X, the smallest value possible flfx)
is the norm of thel 1 whereT : X/N(Dfy) — V.

Theorem 9.7. Let X and Y be Banach spaces andX — Y a contin- 88
uous mapping which is Gateauxfdrentiable. Assume

(9.17) R(DfY) =Y, VxeX
(9.18) YR>0dc=c(R)s.t. KX)<c, V|IXI<R
(9.19) If(X)) = 0 as ||X|| — oo.

Then f is surjective.

Proof. It suffices to prove that @ f(X). Define® : X —» R by ®(x) =
If(X)|. Letp = ||f(0)|]. It follows from (@.I9) that there exisR > 0
such that

3 .
(9.20) 1112 5o if 1M =R

Choose are > 0 such thaktc(R) < 1 ande < p/2. By the Ekeland
Variational Principle there existg € X such that

(9.21) (X < Infy ® +e<p+e<3p/2.
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(9.22) XN < TN+ €ellX = Xell, VX # X

It follows from (@.20) and[[9.21) thaix.|| < R. Now we preceed as
in the proof of Theorerfi 916 and conclude thiéx.) = 0. i

Remark 1.1f X = Y and f = identity + compact is a continuously
Fréchet dferentiable operator, the surjectivity bhas been established
by Kacurovskii [50] under hypothesig {9]119) aNgdD fy) = {0} for all

x € X. SinceD fy is also of the form identity- compact, such a condition
is equivalent to[{9,17); this is a special case of the sibmatiescribed in
Remark{# after the statement of TheorEm 9.5. So Katurovekiilt
would be contained in Theordm®.7 provided one could pro&eithhis
case condition[{39.18) holds. Is it possible to do that? Inhiyeothe-
ses of Kacurovskii theorem, Krasnoselskill[54] obsenteat f is also
injective.

Remark 2. Local versions of Theorem 9.7 have been studied by Cramer
and Ray[[28], Ray and Walker [69].

Comparison with the Inverse Mapping Theorem. The classical in-
verse mapping theorem states: “ReétandY be Banach spacek) an
open neighborhood afy in X, andf : U — Y aC? function. As-
sume thatDfy, : X — Y is an isomorphism (i.e., a linear bounded
injective operator fronX ontoY, and then necessarily with a bounded
inverse). Then there exists an open neighborhdad xg, V c U, such
that flv : V — f(V) is a difeormorphism”. The injectivity hypothe-
sis can be withdrawn from the theorem just stated providedttesis is
replaced byf being an open mapping in a neighborhoodxgf More
precisely we have the following result due to Graves [48}ydfi have
the book by Lang156], the result is proved there.

Theorem 9.8.Let X and Y be Banach spaces, U an open neighborhood
of xpin X, and f: U — Y a C function. Assume that Rf: X —>Y

is surjective. Then there exists a neighborhood Vepl/xc U, with the
property that for every open ball(B) c V, centered at X, (V) contains

an open neighborhood of(X).



105

Remark 1. If the mappingf : X — Y is defined in the whole oK,
and it isC* with R(Dfy) = Y for all x € X, Graves theorem says that
f(X) is open inY. If we have as an additional hypothesis thiéX) is
closed, it follows then that(X) = Y, in view of the connectedness %f
Now go back and read the statement of Thedremh 9.4. What wejinstve
proved also follows from Theoref 9.4, using relatibnl(9.@bserve
thatR(Dfyx) = Y is much stronger a condition thBt(D f;) = {0}. The
latter will be satisfied ifR(Dfy) is just dense inY. We remark that
the proof of Graves theorem via an iteration scheme usesattidtfat
R(Dfy) is the whole ofY. We do not know if a similar proof can go
through just with hypothesis th&(D fy) is dense ir.

Remark 2. Graves theorem, TheordmP.8 above, can be proved using
Ekeland Variational Principle. Since few seconds are eftlbse the
set, we leave it to the interested reader.

The following global version of the inverse mapping theoismue
to Hadamard in the finite dimensional case. See a proof in Be®yjer
[L0] or in J. T. SchwartNY U Lecture Notes[[/3]. More general results
in Browder [19].

Theorem 9.9. Let X and Y be Banach spaces and X — Y a C
function. Suppose that R X — R is an isomorphism. For each
R> 0, let
{(R) = SudIIDf) 1 < Xl < RY.
Assume that 90
< dr

—_— =0

¢(r)
[In particular this is case if there exists, constant=k O such that
(D)7 < k for all x € X]. Then f is a difeomorphism of X onto
Y.

Remark. Go back and read the statement of Thedrem 9.6. The ontoness
of the above theorem, at least in the particular case, i@ there.






Bibliography

[1] H. Amann and P. Hess — A multiplicity result for a class biptic 91

boundary value problems — Proc. Royal Soc. Edinburgh 84&419
145-151.

[2] A. Ambrosetti and G. Prodi — Analisi non lineare, | Quader—
Pisa (1973).

[3] A. Ambrosetti and G. Prodi — On the inversion of somdfet-
entiable mappings with singularities between Banach spadenn.
Mat. Pura ed Appl. 93 (1972), 231-246.

[4] A. Ambrosetti and P. H. Rabinowitz — Dual variational rhetls in
critical point theory and applications — J. Functional Ab4l(1973),
349-381.

[5] J. Appell — The superpaosition operator in function spgaee sur-
vey, Report No. 141 — Institut fur mathematik Augsburg (298

[6] J.-P. Aubin and I. Ekeland — Applied Nonlinear Analysislehn
Wiley and Sons (1984).

[7] P. W. Bates and |. Ekeland — A saddle point theorem fddéntial
Equations. Academic Press (1980), 123-126.

[8] B. Beauzamy — Introduction to Banach spaces and theimgiy
— Notas de Matematica, 86, North Holland (1982).

[9] H. Berestycki — Le nombre de solutions de certains peoi#s
semilineaires — J. Fctl. Anal.

107



92

108 BIBLIOGRAPHY

[10] M. S. Berger — Nonlinearity and Functional Analysis —aiemic
Press (1977).

[11] M. Berger and E. Podolak — On the solutions of a nonlinear
Dirichlet problem — Indiana Univ. Math. J. 24 (1975), 837684

[12] E. Bishop and R. R. Phelps — The support functionals afravex
set — Proc. Symp. Pure Math. Amer. Math. Soc., Vol 7 (1962387

[13] H. Brezis — The Ambrosetti-Rabinowit?l PL via Ekeland’s min-
imization principle. (Manuscript).

[14] H. Brezis — Opérateurs maximaux monotones et sempgale
contractions dans les espaces de Hilbert — Notas de Matziddi.
50. (North-Holland) (1973).

[15] H. Brezis — Analyse fonctionelle — Masson (1983).

[16] H. Brezis and F. E. Browder — A general principle on oatksets
in nonlinear functional analysis — Adv. Math. 21 (1976), 3364.

[17] A.Brgndsted — On alemma of Bishop and Phelps — Pac. h.Mat
55 (1974), 335-341.

[18] A. Brgndsted and R. T. Rockafellar — On the suffetientiability
of convex functions — Proc. AMS 16 (1965), 605-611.

[19] F. E. Browder — Nonlinear operators and nonlinear eiquatof
evolution in Banach spaces — Proc. Symp. Pure Math. AmehMat
Soc. Vol XVIII, Part 2 (1976).

[20] F. E. Browder — Normal solvability for nonlinear mapgminto
Banach spaces — Bull Amer. Math. Soc. 77 (1971), 73-77.

[21] F. E. Browder — Normal solvability and the Fredholm afiz-
tive for mappings in infinite dimensional manifolds — J. Féthal. 8
(1971), 250-274.

[22] J. Caristi— Fixed point theorems for mappings satisfyiinward-
ness conditions — Trans. Amer. math. Soc. 215 (1976), 241-25



BIBLIOGRAPHY 109

[23] J. Caristi and W. A. Kirk — Mapping Theorems in Metric and
Banach spaces — Bull. Acad. Pol. Sci. XXIIl (1975), 891-894.

[24] K. C. Chang — Solutions of asymptotically linear operagéqua-
tions via Morse theory — Comm. Pure App. Math. XXXIV (1981),
693-712.

[25] K. C. Chang — Variational methods and sub —and supedisoki—
Scientia Sinica A XXVI (1983), 1256—-1265.

[26] J. A. Clarkson — Uniformly convex spaces — TransactiéisS
40 (1936), 396-414.

[27] D. G. Costa, D. G. de Figueiredo and J. V. A. Gongalves+l@
uniqueness of solution for a class of semilinear elliptichpems — J.
Math. Anal. Appl. 123 (1987), 170-180.

[28] W. J. Cramer Jr. and W. O. Ray — Solvability of nonlinepeo
ador equations — Pac. J. Math. 95 (1981), 37-50.

[29] E. N. Dancer — On the ranges of certain weakly nonlindigp-e 93
tic partial diferential equations — J. Math. Pures et Appl. 57 (1978),
351-366.

[30] J. Danes — A geometric theorem useful in nonlinear fiomal
analysis — Boll. Un. Mat. Ital. 6 (1972), 369—-375.

[31] J. Danes — Equivalence of some geometric and relamaltseof
nonlinear functional analysis — Comm. Math. Univ. Carofin26
(1985), 443-454.

[32] J. Diestel — Geometry of Banach spaces — Lecture Notiki-
ematics 485, Springer Verlag (1975).

[33] C. L. Dolph — Nonlinear integral equations of Hammeirstiype
— Trans. AMS 66 (1949), 289-307.

[34] J. Dungundji — Topology — Allyn & Bacon (1966).



94

110 BIBLIOGRAPHY

[35] N.Dunford and J. T. Schwartz — Linear Operators, Pa@dneral
Theory, Interscience Publishers, Ine. New York (1957).

[36] I. Ekeland and R. Temam — Convex Analysis and Variationa
Problems — North-Holland Publishing Company (1976).

[37] 1. Ekeland — Sur les problemes variationnels, CR Acxal. Paris
275 (1972), 1057-1059.

[38] I. Ekeland — On the variational principle, J. Math. An&ppl. 47
(1974), 324-353.

[39] I. Ekeland — Nonconvex minimization problems, Bull. Am
Math. Soc. 1 (1979), 443-474.

[40] K. Fan and I. Glicksberg — Some geometrical propertiethe
spheres in a normed linear space — Duke Math. J. 25 (1958}, 553
568.

[41] D. G. de Figueiredo — On the superlinear AmbrosettielPpyob-
lem — Nonl. Anal. TMA 8 (1984), 655-665.

[42] D. G. de Figueiredo and J.-P. Gossez — Conditions de non-
resonance pour certains problemes elliptiques serailiegé —
C.R.A.S. Paris 302 (1986), 543-545.

[43] D. G. de Figueiredo and S. Solimini — A variational apgmb to
superlinear elliptic problems — Comm. in PDE 9 (1984), 6997

[44] S. FuCik — Remarks on a result by A. Ambrosetti and G.dPro
Boll. Un. Mat. Ital. 11 (1975), 259-267.

[45] T. Gallouet and O. Kavian Resultats d’existence et da-n
existence pour certains problémes demi-linéaires didiin- Ann.
Fac. Sci. Toulouse, Il (1981), 201-246.

[46] D. Gilbarg and N. S. Trudinger — Elliptic Partial Derential
Equations — Springer Verlag (1977).



BIBLIOGRAPHY 111

[47] J.-P. Gossez — Existence of optimal controls for somealinear
processes — J. Optim. Th. and Appl. 3 (1969), 89-97.

[48] L. M. Graves — Some mapping theorems — Duke Math. J. 17
(1950), 111-114.

[49] R. C.James — Weak compactness and reflexivity — Israé¢hath.
2 (1964), 101-119.

[50] R.J.Kacurovskii— Generalization of the Fredholmdtems and
of theorems on linear operators with closed range to sonssetaof
nonlinear operators — Sov. Math. Dokl. Vol. 12 (1971), 4874

[51] R. Kannan and R. Ortega — Superlinear elliptic boundzaiyie
problems — Czech Math. J.

[52] J. Kazdan and F. Warner — Remarks on some quasilingptiell
equations — Comm. Pure Appl. Math. XXVIII (1975), 367-397.

[63] M. A. Krasnoselskii — On several new fixed point prin@pl—
Sov. Math. Dokl. Vol. 14 (1973), 259-261.

[54] M. A. Krasnoselsii — Topological methods in the theofynonlin-
ear integral equations — MacMillan, New York (1964).

[55] M. A. Krasnoselskii and P. P. Zabreiro — On the solvaypitif non-
linear operator equations — Funkcional. Anal. i Priloz&r(1971),
42-44.

[56] S.Lang — Real Analysis — Addison-Wesley Publ. C. (1969)

[57] A. Lazer and P. J. McKenna — On multiple solutions of a-hon
linear Dirichlet problem — Dterential Equations, Acadmic Press
(1980), 199-214.

[58] A. R. Lovaglia — Locally uniformly convex Banach spaces
Transactions AMS 78 (1955), 255-238.

[59] C. A. Magalhaes — Doctoral dissertation (UniversifyBrasilia),
1988.



95

112 BIBLIOGRAPHY

[60] J. Mawhin, J. R. Ward Jr. and M. Willem — Variational meth
ods and semilinear elliptic equations, Sem. Math. LouvRiap. 32
(1983).

[61] J.-P. Penot — The drop theorem, the petal theorem anthide
Variational Principle — Nonlinear Analysis TMA 10 (1986)138-
822.

[62] R.R. Phelps — Support cones in Banach spaces and thsicap
tions — Adv. Math. 13 (1974), 1-19.

[63] S. I. PohoZzaev — Normal solvability of nonlinear eqaas — So-
viet Mat. Dokl. 10 (1969), 35-38.

[64] S. I. Pohozaev — On nonlinear operators having wealdgez
range and quasilinear elliptic equations — Math. USSR Skodfn
(1969), 227-250.

[65] S.I. Pohozaev — Normal solvability Banach spaces —kEiamal
Anal. i Prilozen 3 (1969), 80-84.

[66] P. H. Rabinowitz — Some minimax theorems and applicetitn
nonlinear partial dferential equations — Nonlinear Analysis: a col-
lection of papers in honor of E. H. Rothe, (L. Cesari, R. Kanaad
H. F. Weinberger, editors) Academic Press (1978), 161-177.

[67] P. H. Rabinowitz — Some critical point theorems and aapl
tions to semilinear elliptic partial ffierential equations — Ann. Scuola
Norm Sup. Pisa, Ser. IV, 5 (1978), 215-223.

[68] P. H. Rabinowitz — Variational methods for nonlineag@ivalue
problems, (The Varenna Lectures) — Eigenvalues of nonlipeab-
lems (G. Prodi, editor) C.I.M.E., Edizioni Cremonese Roitavd),
140-195.

[69] W. O. Ray and A. M. Walker — Mapping theorems for Gateaux
differentiable and accretive operators — Nonlinear Anal. TMA 6
(1982), 423-433.



BIBLIOGRAPHY 113

[70] I. Rosenheltz and W. O. Ray — Mapping theorems fdfeden-
tiable operators — Bull. Acad. Polon. Sci.

[71] B. Ruf — On nonlinear problems with jumping nonlineer# —
Ann. Math. Pura App. 28 (1981), 133-151.

[72] L. Schwartz — Théorie des distributions, Vol. | — Henmma Paris
(1957).

[73] J. T. Schwartz — Nonlinear functional analysis — NYU tLee
Notes (1963-1964).

[74] G. Scorza — Drogoni — Un teorema sulle funzioni continue
rispetto ad una e misurabili rispetto at un’altra variabilRend. Sem.
Mat. Univ. Padova 17 (1948), 102—-106.

[75] V. L. Smulian — Sur la derivatilité de la norme dans I'espace de
Banach Dokl. Akad. Nauk 27 (1940), 643—-648.

[76] S. Solimini — Existence of a third solution for a classtof.p.
with jumping nonlinearities — J. Nonlinear Anal. 7 (1983},79927.

[77] G. Stampacchia — Le probleme de Dirichlet pour lesatigms 96
elliptiques du second ordre a coeficients descontinus — Arst.
Fourier 15 (1965), 189-258.

[78] M. M. Vainberg — Variational methods in the study of niolar
operators — Holden Day (1964).

[79] K. Yosida — Functional Analysis — Springer Verlag (1974



	Minimization of Lower Semicontinuous Functionals
	Nemytskii Mappings
	Semilinear Elliptic Equations I
	Ekeland Variational Principle
	Variational Theorems of Min-Max Type
	Semilinear Elliptic Equations II
	Support Points and Suport Functionals
	Convex Lower Semicontinuous Functionals
	Normal Solvability

