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Preface

Since its appearance in 1972 the variational principle of Ekeland has
found many applications in different fields in Analysis. The best refer-
ences for those are by Ekeland himself: his survey article [23] and his
book with J.-P. Aubin [2]. Not all material presented here appears in
those places. Some are scattered around and there lies my motivation
in writing these notes. Since they are intended to students Iincluded
a lot of related material. Those are the detours. A chapter onNemyt-
skii mappings may sound strange. However I believe it is useful, since
their properties so often used are seldom proved. We always say to
the students: go and look in Krasnoselskii or Vainberg! I think some
of the proofs presented here are more straightforward. There are two
chapters on applications toPDE. However I limited myself to semi-
linear elliptic. The central chapter is on Brézis proof of the minimax
theorems of Ambrosetti and Rabinowitz. To be self containedI had to
develop some convex analysis, which was later used to give a complete
treatment of the duality mapping so popular in my childhood days! I
wrote these notes as a tourist on vacations. Although the main road
is smooth, the scenery is so beautiful that one cannot resistto go into
the side roads. That is why I discussed some of the geometry ofBa-
nach spaces. Some of the material presented here was part of acourse
delivered at the Tata Institute of Fundamental Research in Bangalore,
India during the months of January and February 1987. Some prelimi-
nary drafts were written by Subhasree Gadam, to whom I express may
gratitude. I would like to thank my colleagues at UNICAMP fortheir
hospitality and Elda Mortari for her patience and cheerful willingness in
texing these notes.

Campinas, October 1987
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Chapter 1

Minimization of Lower
Semicontinuous Functionals

Let X be a Hausdorff topological space. A functionalΦ : X→ R∪{+∞} 1

is said to belower semicontinuousif for every a ∈ R the set{x ∈ X :
Φ(x) > a} is open. We use the terminology functional to designate a real
valued function. A Hausdorff topological spaceX is compactif every
covering ofX by open sets contains a finite subcovering. The following
basic theorem implies most of the results used in the minimization of
functionals.

Theorem 1.1. Let X be a compact topological space andΦ : X →
R ∪ {+∞} a lower semicontinuous functional. Then(a) Φ is bounded
below, and(b) the infimum ofΦ is achieved at a point x0 ∈ X.

Proof. The open setsAn = {x ∈ X : Φ(x) > −n}, for n ∈ N, constitute
an open covering ofX. By compactness there exists an0 ∈ N such that

n0⋃

j=1

A j = X.

SoΦ(x) > n0 for all x ∈ X.
(b) Now let ℓ = Inf Φ, ℓ > −∞. Assume by contradiction thatℓ is

1



2 1. Minimization of Lower Semicontinuous Functionals

not achieved. This means that

∞⋃

n=1

{
x ∈ X : Φ(x) > ℓ +

1
n

}
= X.

By compactness again it follows that there exist an1 ∈ N such that2

n1⋃

n=1

{
x ∈ X : Φ(x) > ℓ +

1
n

}
= X.

But this implies thatΦ(x) > ℓ + 1
n1

for all x ∈ X, which contradicts
the fact thatℓ is the infimum ofΦ. �

In many cases it is simpler to work with a notion of lower semicon-
tinuity given in terms of sequences. A functionΦ : X → R ∪ {+∞} is
said to besequentially lower semicontinuousif for every sequence (xn)
with lim xn = x0, it follows thatΦ(x0) ≤ lim inf Φ(xn). The relationship
between the two notions of lower semicontinuity is expounded in the
following proposition.

Proposition 1.2. (a) Every lower semicontinuous functionΦ : X →
R ∪ {+∞} is sequentially lower semicontinuous.(b) If X satisfies the
First Axiom of Countability, then every sequentially lowersemicontinu-
ous function is lower semicontinuous.

Proof. (a) Letxn→ x0 in X. Suppose first thatΦ(x0) < ∞. For each
ǫ > 0 consider the open setA = {x ∈ X : Φ(x) > Φ(x0)− ǫ}. Since
x0 ∈ A, it follows that there existsn0 = n0(ǫ) such thatxn ∈ A for
all n ≥ n0. For suchn’s, Φ(xn) > Φ(x0) − ǫ, which implies that
lim inf Φ(xn) ≥ Φ(x0) − ǫ. Sinceǫ > 0 is arbitrary it follows that
lim inf Φ(xn) ≥ Φ(x0). If Φ(x0) = +∞ takeA = {x ∈ X : Φ(x) >
M} for arbitraryM > 0 and proceed in similar way.

(b) Conversely we claim that for each real numbera the setF = {x ∈
Ω : Φ(x) ≤ a} is closed. Suppose by contradiction that this is not
the case, that is, there existsx0 ∈ F\F, and soΦ(x0) > a. On
the other hand, letOn be a countable basis of open neighborhoods
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of x0. For eachn ∈ N there existsxn ∈ F ∩ On. Thusxn → x0.
Using the fact thatΦ is sequentially lower semicontinuous and
Φ(xn) ≤ a we obtain thatΦ(x0) ≤ a, which is impossible.

�

Corollary 1.3. If X is a metric space, then the notions of lower semi-
continuity and sequentially lower semicontinuity coincide.

Semicontinuity at a Point.The notion of lower semicontinuity can be
localized as follows. LetΦ : X→ R∪ {+∞} be a functional andx0 ∈ X.
We say thatΦ is lower semicontinuousat x0 if for all a < Φ(x0) there
exists an open neighborhoodV of x0 such thata < Φ(x) for all x ∈ V. 3

It is easy to see that a lower semicontinuous functional is lower semi-
continuous at all pointsx ∈ X. And conversely a functional which is
lower semicontinuous at all points is lower semicontinuous. The reader
can provide similar definitions and statements for sequential lower semi-
continuity.

Some Examples WhenX = R. LetΦ : R→ R∪{+∞}. It is clear thatΦ
is lower semicontinuous at all points of continuity. Ifx0 is a point where
there is a jump discontinuity andΦ is lower semicontinuous there, then
Φ(x0) = min{Φ(x0 − 0),Φ(x0 + 0)}. If lim Φ(x) = +∞ asx → x0 then
Φ(x0) = +∞ if Φ is to be lower semicontinuous there. IfΦ is lower
semicontinuous the set{x ∈ R : Φ(x) = +∞} is not necessarity closed.
Example:Φ(x) = 0 if 0 ≤ x ≤ 1 andΦ(x) = +∞ elsewhere.

Functionals Defined in Banach Spaces.In the case whenX is a Ba-
nach space there are two topologies which are very useful. Namely
the norm topologyτ (also called the strong topology) which is a metric
topology and the weak topologyτω which is not metric in general. We
recall that the weak topology is defined by giving a basis of open sets as
follows. For eachǫ > 0 and each finite set of bounded linear functionals
ℓ1, . . . , ℓn ∈ X∗, X∗ is the dual space ofX, we define the (weak) open
set {x ∈ X : |ℓ1(x)| < ǫ, . . . , |ℓn(x)| < ǫ}. It follows easily thatτ is a
finer topology thanτω, i.e. given a weak open set there exists a strong
open set contained in it. The converse is not true in general.[We remark
that finite dimensionality ofX implies that these two topologies are the
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same]. It follows then that a weakly lower semicontinuous functional
Φ : X→ R ∪ {+∞}, X a Banach space, is (strongly) lower semicontinu-
ous. A similar statement holds for the sequential lower semicontinuity,
since every strongly convergent sequence is weakly convergent. In gen-
eral, a (strongly) lower semicontinuous functional is not weakly lower
semicontinuous. However the following result holds.

Theorem 1.4. Let X be a Banach space, andΦ : X → R ∪ {+∞} a
convex function. Then the notions of (strong) lower semicontinuity and
weak lower semicontinuity coincide.

Proof. (i) Case of sequential lower semicontinuity. Supposexn ⇀

x0 (the half arrow⇀ denotes weak convergence). We claim that
the hypothesis ofΦ being (strong) lower semicontinuous implies4

that
Φ(x0) ≤ lim inf Φ(xn).

Let ℓ = lim inf Φ(xn), and passing to a subsequence (call itxn

again) we may assume thatℓ = lim Φ(xn). If ℓ = +∞ there is
nothing to prove. If−∞ < ℓ < ∞, we proceed as folows. Given
ǫ > 0 there isn0 = n0(ǫ) such thatΦ(xn) ≤ ℓ + ǫ for all n ≥ n0(ǫ).
Renaming the sequence we may assume thatΦ(xn) ≤ ℓ + ǫ for
all n. Sincex is the weak limit of (xn) it follows from Mazur’s
theorem [which is essentially the fact that the convex hullco(xn)
of the sequence (xn) has weak closure coinciding with its strong
closure] that there exists a sequence

yN =
kN∑

j=1

αN
j x j ,

kN∑

j=1

αN
j = 1, αN

j ≥ 0,

such thatyN→ x0 asN → ∞. By convexity

Φ(yN) ≤
kN∑

j=1

αN
j Φ(x j) ≤ ℓ + ǫ

and by the (strong) lower semicontinuityΦ(x0) ≤ ℓ + ǫ. Since
ǫ > 0 is arbitrary we getΦ(x0) ≤ ℓ. If ℓ = −∞, we proceed
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in a similar way, just replacing the statementΦ(xn) ≤ ℓ + ǫ by
Φ(xn) ≤ −M for all n ≥ n(M), whereM > 0 is arbitrary.

(ii) Case of lower semicontinuity (nonsequential). Givena ∈ R we
claim that the set{x ∈ X : Φ(x) ≤ a} is weakly closed. Since such
a set is convex, the result follows from the fact that for a convex
set being weakly closed is the same as strongly closed.

�

Now we discuss the relationship between sequential weak lower
semicontinuity and weak lower semicontinuity, in the case of function-
alsΦ : A → R ∪ {+∞} defined in a subsetA of a Banach spaceX.
As in the case of a general topological space, every weak lower semi-
continuous functional is also sequentially weak lower semicontinuous.
The converse has to do with the fact that the topology inA ought to sat-
isfy the First Axiom of Countability. For that matter one restricts to the
case whenA is bounded. The reason is: infinite dimensional Banach
spacesX (even separable Hilbert spaces) do not satisfy the First Axiom
of Countability under the weak topology. The same statementis true for
the weak topology induced in unbounded subsets ofX. See the example5

below

Example (von Neumann).Let X be the Hilbert spaceℓ2, and letA ⊂ ℓ2

be the set of pointsxmn, m, n = 1, 2, . . ., whose coordinates are

xmn(i) =



1, if i = m

m, if i = n

0, otherwise

Then 0 belongs to weak closure ofA, but there is no sequence of
points in A which converge weakly to 0. [Indeed, if there is a se-
quencexmjnj ⇀ 0, then (y, xmjnj )ℓ2 → 0, for all y ∈ ℓ2. Take y =
(1, 1/2, 1/3, . . .) and see that this is not possible. On the other hand
given any basic (weak) open neighborhood of 0,{x ∈ ℓ2 : (y, x)ℓ2 < ǫ}

for arbitraryy ∈ ℓ2 andǫ > 0, we see thatxmn belongs to this neighbor-
hood if we takemsuch that|ym| < ǫ/2 and thenn such that|yn| < ǫ/2m].
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However, if the dualX∗ of X is separable, then the induced topology
in aboundedsubsetA of X by the weak topology ofX is first countable.
In particular this is the case ifX is reflexiveandseparable, since this
impliesX∗ separable. It is noticeable that in the case whenX is reflexive
(with no separability assumption made) the following result holds.

Theorem 1.5(Browder [19]). Let X be a reflexive Banach space, A a
bounded subset of X, x0 a point in the weak closure of A. Then there
exists an infinite sequence(xk) in A converging weakly to x0 in X.

Proof. It suffices to construct a closed separable subspaceX0 of X such
that x0 lies in the weak closure ofC in X0, whereC = A ∩ X0. Since
X0 is reflexive and separable, it is first countable and then there exists
a sequence (xk) in C which converges tox0 in the weak topology of
X0. So (xk) lies in A and converges tox0 in the weak topology ofX.
The construction ofX0 goes as follows. LetB be the unit closed ball in
X∗. For each positive integern, Bn is compact in the product of weak
topologies. Now for each fixed integerm > 0, each [ω1, . . . , ωn] ∈ Bn

has a (weak) neighborhoodV in Bn such that

⋂

[ω1,...,ωn]∈V

n⋂

j=1

{
x ∈ A : |〈ω j , x− x0〉| <

1
m

}
= ∅.

By compactness we construct a finite setFnm ⊂ A with the property
that given any [ω1, . . . , ωn] ∈ Bn there isx ∈ A such that|〈ω j , x− x0〉| <
1
m for all j = 1, . . . , n. Now let6

A0 =

∞⋃

n,m=1

Fnm.

ThenA0 is countable andx0 is in weak closure ofA0. Let X0 be the
closed subspace generated byA0. SoX0 is separable, and denoting by
C = X0∩ A it follows thatx0 is in the closure ofC in the weak topology
of X. Using the Hahn Banach theorem it follows thatx0 is the closure
of C in the weak topology ofX0. �
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Remark . The Erberlein-Smulian theorem states: “LetX be a Banach
space andA a subset ofX. Let A denote its weak closure. ThenA is
weakly compact if and only ifA is weakly sequentially precompact, i.e.,
any sequence inA contains a subsequence which converges weakly”.
See Dunford-Schwartz [35, p. 430]. Compare this statement with The-
orem 1.5 and appreciate the difference!

Corollary . In any reflexive Banach space X a weakly lower semicon-
tinuous functionalΦ : A → R, where A is a bounded subset of X, is
sequentially weakly lower semicontinuous, and conversely.





Chapter 2

Nemytskii Mappings

LetΩ be an open subset ofRN, N ≥ 1. A function f : Ω×R→ R is said 7

to be aCarathéodary functionif (a) for each fixeds ∈ R the function
x 7→ f (x, s) is (Lebesgue) measurable inΩ, (b) for fixed x ∈ Ω(a.e.)
the functions 7→ f (x, s) is continuous inR. LetM be the set of all
measurable functionsu : Ω→ R.

Theorem 2.1. If f : Ω × R → R is Carathéodory then the function
x 7→ f (x, u(x)) is measurable for all u∈ M.

Proof. Let un(x) be a sequence of simple functions converging a.e. to
u(x). Each functionf (x, un(x)) is measurable in view of (a) above. Now
(b) implies thatf (x, un(x)) converges a.e. tof (x, u(x)), which gives its
measurability. �

Thus a Carathéodory functionf defines a mappingNf : M → M,
which is called aNemytskii mapping. The mappingNf has a certain
type of continuity as expresed by the following result.

Theorem 2.2.Assume thatΩ has finite measure. Let(un) be a sequence
inM which converges in measure to u∈ M. Then Nf un converges in
measure to Nf u.

Proof. By replacing f (x, s) by g(x, s) = f (x, s+ u(x)) − f (x, u(x)) we
may assume thatf (x, 0) = 0. And moreover our claim becomes to prove

9
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that if (un) converges in measure to 0 thenf (x, un(x)) also converges
in measure to 0. So we want to show that givenǫ > 0 there exists
n0 = n0(ǫ) such that

|{x ∈ Ω : | f (x, un(x))| ≥ ǫ}| < ǫ ∀n ≥ n0,

where|A| denotes the Lebesgue measure of a setA. Let8

Ωk = {x ∈ Ω : |s| < 1/k⇒ | f (x, s)| < ǫ}.

ClearlyΩ1 ⊂ Ω2 ⊂ . . . andΩ =
∞⋃

k=1
Ωk(a.e.). Thus|Ωk| → |Ω|. So

there existsk such that|Ω| − |Ωk| < ǫ/2. Now let

An = {x ∈ Ω : |un(x)| < 1/k}.

Sinceun converges in measure to 0, it follows that there existsn0 =

n0(ǫ) such that for alln ≥ n0 one has|Ω| − |An| < ǫ/2. Now let

Dn = {x ∈ Ω : | f (x, un(x))| < ǫ}.

ClearlyAn ∩ Ωk ⊂ Dn. So

|Ω| − |Dn| ≤ (|Ω| − |An|) + (|Ω| − |Ωk|) < ǫ

and the claim is proved. �

Remark . The above proof is essentially the one in Ambrosetti-Prodi
[2]. The proof in Vainberg [78] is due to Nemytskii and reliesheavily in
the following result (see references in Vainberg’s book; see also Scorza-
Dragoni [74] and J.-P. Gossez [47] for still another proof).“Let f :
Ω× I → R be a Carathéodory function, whereI is some bounded closed
interval inR. Then givenǫ > 0 there exists a closed setF ⊂ Ω with
|Ω\F | < ǫ such that the restriction off to F × I is continuous”. This is
a sort of uniform (with respect tos∈ I ) Lusin’s Theorem.

Now we are interested in knowing whenNf maps anLp space in
some otherLp space.
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Theorem 2.3. Suppose that there is a constant c> 0, a function b(x) ∈
Lq(Ω), 1 ≤ q ≤ ∞, and r> 0 such that

(2.1) | f (x, s)| ≤ c|s|r + b(x), ∀x ∈ Ω, ∀s ∈ R.

Then(a) Nf maps Lqr into Lq, (b) Nf is continuous and bounded
(that is, it maps bounded sets into bounded sets).

Proof. It follows from (2.1) using Minkowski inequality

(2.2) ||Nf u||Lq ≤ c|||u|r ||Lq + ||b||Lq = c||u||r
Lqr + ||b||Lq

which gives (a) and the fact thatNf is bounded. Now suppose that9
un→ u in Lqr, and we claimNf un→ Nf u in Lq. Given any subsequence
of (un) there is a further subsequence (call it againun) such that|un(x)| ≤
h(x) for someh ∈ Lqr

(Ω). It follows from (2.1) that

| f (x, un(x))| ≤ c|h(x)|r + b(x) ∈ Lq(Ω).

Since f (x, un(x)) converges a.e. tof (x, u(x)), the result follows from
the Lebesgue Dominated Convergence Theorem and a standard result
on metric spaces. �

It is remarkable that the sufficient condition (2.1) is indeed necessary
for a Carathéodory functionf defining a Nemytskii map betweenLp

spaces. Indeed

Theorem 2.4. Suppose Nf maps Lp(Ω) into Lq(Ω) for 1 ≤ p < ∞,
1 ≤ q < ∞. Then there is a constant c> 0 and b(x) ∈ Lq(Ω) such that

(2.3) | f (x, s)| ≤ c|s|p/q + b(x)

Remark . We shall prove the above theorem for the case whenΩ is
bounded, although the result is true for unbounded domains.It is also
true that ifNf mapsLp(Ω), 1 ≤ p < ∞ into L∞(Ω) then there exists a
functionb(x) ∈ L∞(Ω) such that| f (x, s)| ≤ b(x). See Vainberg [78].

Before proving Theorem 2.4 we prove the following result.
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Theorem 2.5. LetΩ be a bounded domain. Suppose Nf maps Lp(Ω)
into Lq(Ω) for 1 ≤ p < ∞, 1 ≤ q < ∞. Then Nf is continuous and
bounded.

Proof. (a) Continuity ofNf . By proceeding as in the proof of Theorem
2.2 we may suppose thatf (x, 0) = 0, as well as to reduce to the question
of continuity at 0. Suppose by contradiction thatun → 0 in Lp and
Nf u 9 0 in Lq. So by passing to subsequences if necessary we may
assume that there is a positive constanta such that

(2.4)
∞∑

n=1

||un||
p
Lp < ∞ and

∫

Ω

| f (x, un(x))|q ≥ a, ∀n.

Let us denote by

Bn =

x ∈ Ω : | f (x, un(x))| >

(
a

3|Ω|

)1/q


In view of Theorem 2.2 it follows that|Bn| → 0. Now we construct10

a decreasing sequence of positive numbersǫ j , and select a subsequence
(unj ) of (un) as follows.

1st step: ǫ1 = |Ω| un1 = u1.

2nd step: chooseǫ2 < ǫ1/2 and such that
∫

D
| f (x, un1(x))|q <

a
3
∀D ⊂ Ω, |D| ≤ 2ǫ2,

then choosen2 such|Bn2| < ǫ2.

3rd step: chooseǫ3 < ǫ2/2 and such that
∫

D
| f (x, un2(x))|q <

a
3
∀D ⊂ Ω, |D| ≤ 2ǫ3.

then choosen3 such that|Bn3| < ǫ3.

And so on. LetDnj = Bnj\
∞⋃

i= j+1
Bni . Observe that theD′j s are pair-

wise disjoint. Define

u(x) =


unj (x) if x ∈ Dnj , j = 1, 2, . . .

0 otherwise
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The functionu is in Lp in view of (2.4). So by the hypothesis of the
theoremf (x, u(x)) should be inLq(Ω). We now show that this is not the
case, so arriving to contradiction. Let

K j ≡

∫

Dnj

| f (x, u(x))|q =
∫

Dnj

| f (x, unj (x))|q =
∫

Bnj

−

∫

Bnj \Dnj

≡ I j − J j .

Next we estimate the integrals in the right side as follows:

I j =

∫

Bnj

| f (x, unj (x))|q =
∫

Ω

| f (x, unj (x))|q −
∫

Ω\Bnj

| f (x, unj (x))|q

≥ a−
a
3
=

2a
3

and to estimateJ j we observe thatBnj\Dnj ⊂
∞⋃

i= j+1
Bni . We see that

|Bnj\Dnj | ≤
∞∑

i= j+1
ǫi ≤ 2ǫ j+1. ConsequentlyJ j < a/3. ThusK j ≥ a/3.

And so ∫

Ω

| f (x, u(x))|q =
∞∑

j=1

K j = ∞.

(b) Now we prove thatNf is bounded. As in part (a) we assume11

that f (x, 0) = 0. By the continuity ofNf at 0 we see that there exists
r > 0 such that for allu ∈ Lp with ||u||Lp ≤ r one has||Nf u||Lp ≤ 1. Now
given anyu in Lp let n (integer) be such thatnrp ≤ ||u||pLp ≤ (n + 1)r p.
ThenΩ can be decomposed inton+1 pairwise disjoint setsΩ j such that∫
Ω j
|u|p ≤ r p. So

∫

Ω

| f (x, u(x))|q =
n+1∑

j=1

∫

Ω j

| f (x, u(x))|q ≤ n+ 1 ≤

(
||u||Lp

r

)p

+ 1

�

Proof of Theorem 2.4. Using the fact thatNf is bounded we get a
constantc > 0 such that

(2.5)
∫

Ω

| f (x, u(x))|qdx≤ cq if
∫

Ω

|u(x)|p ≤ 1.
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Now define the functionH : Ω × R→ R by

H(x, s) = max{| f (x, s)| − c|s|p/q; 0}.

Using the inequalityαq
+ (1− α)q ≤ 1 for 0≤ α ≤ 1 we get

(2.6) H(x, s)q ≤ | f (x, s)|q + cq|s|p for H(x, s) > 0.

Let u ∈ Lp andD = {x ∈ Ω : H(x, u(x)) > 0}. There existn ≥ 0
integer and 0≤ ǫ < 1 such that

∫

D
|u(x)|pdx= n+ ǫ.

So there aren+ 1 disjoint setsDi such that

D =
n+1⋃

i=1

Di and
∫

Di

|u(x)|pdx≤ 1.

From (2.5) we get

∫

D
| f (x, u(x))|qdx=

n+1∑

i=1

∫

Di

| f (x, u(x)))qdx≤ (n+ 1)cq.

Then using this estimate in (2.6) we have

(2.7)
∫

Ω

H(x, u(x))q ≤ (n+ 1)cq − (n+ ǫ)cq ≤ cq

which then holds for allu ∈ Lp.12

Now using the Lemma below we see that for each positive integer k
there existsuk ∈ M with |uk(x)| ≤ k such that

bk(x) = sup
|s|≤k

H(x, s) = H(x, uk(x)).

It follows from (2.7) thatbk(x) ∈ Lq(Ω) and||bk||Lq ≤ c. Now let us
define the functionb(x) by

(2.8) b(x) ≡ sup
−∞<s<∞

H(x, s) = lim
k→∞

bk(x).

It follows from Fatou’s lemma thatb(x) ∈ Lq and ||b||Lq ≤ c. From
(2.8) we finally obtain (2.3). �
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Lemma. Let f : Ω× I → R be a Carathédory function, where I is some
fixed bounded closed interval. Let us define the function

c(x) = max
s∈I

f (x, s).

Then c∈ M and there existsu ∈ M such that

(2.9) c(x) = f (x, u(x)).

Proof. (i) For each fixeds the functionx 7→ fs(x) is measurable. We
claim that

c(x) = sup{ fs(x) : s∈ I , s− rational}

showing then thatc is measurable. To prove the claim letx0 ∈

Ω(a.e.) and chooses0 ∈ I such thatc(x0) = f (x0, s0). Sinces0

is a limit point of rational numbers andf (x0, s) is a continuous
function the claim is proved.

(ii) For eachx ∈ Ω(a.e.) let Fx = {s ∈ I : f (x, s) = c(x)} which is a
closed set. Let us define a functionu : Ω→ R by u(x) = mins Fx.
Clearly the functionu satisfies the relation in (2.9). It remains to
show thatu ∈ M. To do that it suffices to prove that the sets

Bα = {x ∈ Ω : u(x) > α} ∀α ∈ I

are measurable. [Recall thatu(x) ∈ I for x ∈ Ω]. Let β be the
lower end ofI . Now fixedα ∈ I we define the functioncα : Ω →
R by

cα(x) = max
β≤s≤α

f (x, s)

which is measurable by part (i) proved above. The proof is com- 13

pleted by observing that

Bα = {x ∈ Ω : c(x) > cα(x)}.

�
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Remark. The Nemytskii mappingNf defined fromLp into Lq with 1 ≤
p < ∞, 1 ≤ q < ∞ is not compact in general. In fact, the requirement
that Nf is compact implies that there exists ab(x) ∈ Lq(Ω) such that
f (x, s) = b(x) for all s ∈ R. See Krasnoselskii [53].

The Differentiability of Nemytskii Mappings. Suppose that a Cara-
théodory functionf (x, s) satisfies condition (2.3). Then it defines a map-
ping fromLp into Lq. It is natural to ask: iff (x, s) has a partial derivative
f ′s(x, s) with respect tos, which is also a Carathéodory function, does
f ′s(x, s) define with respect tos, which is also a Carathéodory function,
doesf ′s(x, s) define a Nemytskii map between someLp spaces? In view
of Theorem 2.4 we see that the answer to this question is no in gen-
eral. The reason is that (2.3) poses no restriction on the growth of the
derivative. Viewing the differentiability of a Nemytskii-mappingNf as-
sociated with a Carathéodory functionf (x, s) we start assumingthat
f ′s(x, s) is Carathéodory and

(2.10) | f ′s(x, s)| ≤ c|s|m + b(x), ∀s∈ R ∀x ∈ Ω.

whereb(x) ∈ Ln(Ω), 1 ≤ n ≤ ∞, m > 0. Integrating (2.10) with respect
to swe obtain

(2.11) | f (x, s)| ≤
c

m+ 1
|s|m+1

+ b(x)|s| + a(x),

wherea(x) is an arbitrary function. Shortly we impose a condition on
a(x) so as to having a Nemytskii map defined between adequateLp

spaces. Using Young’s inequality in (2.11) we have

| f (x, s)| ≤
c+ 1
m+ 1

|s|m+1
+

m
m+ 1

b(x)(m+1)/m
+ a(x).

Observe that the functionb(x)(m+1)/m is in Lq(Ω), whereq = mn/(m+
1). So if we picka ∈ Lq it follows from Theorem 2.3 that (assuming
(2.10)):

Nf : Lp→ Lq p = mn and q = mn/(m+ 1)(2.12)

Nf ′∗ : Lp→ Ln.(2.13)

Now we are ready to study the differentiability of the mappingNf .
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Theorem 2.6. Assume(2.10) and the notation in(2.12) and (2.13).14

Then Nf is continuously Fréchet differentiable with

N′f : Lp→ L(Lp, Lq)

defined by

(2.14) N′f (u)[v] = Nf ′∗ (u)v(= f ′s(x, u(x))v(x)), ∀u, v ∈ Lp.

Proof. We first observe that under our hypotheses the functionx 7→
f ′s(x, u(x))v(x) is in Lq(Ω). Indeed by Hölder’s inequality
∫

Ω

| f ′s(x, u(x))v(x)|q ≤

(∫

Ω

| f ′s(x, v(x)|pq/(p−q)/p)(p−q)/p
) (∫

Ω

|v(x)|p
)q/p

.

Observe thatpq/(p − q) = n and use (2.13) above. Now we claim
that for fixedu ∈ Lp

ω(v) ≡ Nf (u+ v) − Nf (u) − f ′s(x, u)v

is o(v) for v ∈ Lp, that is||ω(v)||Lq/||v||Lp → 0 as||v||Lp → 0. Since

f (u(x) + v(x)) − f (u(x)) =
∫ 1

0

d
dt

f (x, u(x) + tv(x))dt

=

∫ 1

0
f ′s(x, u(x) + tv(x))v(x)dt

we have
∫

Ω

|ω(v)|qdx=
∫

Ω

|

∫ 1

0
[ f ′s(x, u(x) + tv(x)) − f ′s(x, u(x))]v(x)dt|qdx.

Using Hölder’s inequality and Fubini, we obtain
∫

Ω

|ω(v)|qdx≤

≤

(∫ 1

0

∫

Ω

| f ′s(x, u(x) + tv(x)) − f ′s(x, u(x))|ndx dt

)q/n

||v||qLp.

Using (2.13) and the fact thatNf ′∗ is a continuous operator we have
the claim proved. The continuity ofN′f follows readily (2.14) and (2.13).

�
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Remark. We observe that in the previous theoremp > q, since we have
assumedm> 0. What happens ifm= 0, that is

| f ′s(x, s)| ≤ b(x)

whereb(x) ∈ Ln(Ω)? First of all we observe that

Nf ′∗ : Lp→ Ln ∀p ≥ 1

and proceeding as above (supposing 1≤ n < ∞)15

Nf : Lp→ Lq ∀p ≥ 1 and q = np/(n+ p)

and we are precisely in the same situation as in (2.12), (2.13). Now
assumen = +∞, i.e., there existsM > 0

(2.15) | f ′s(x, s)| ≤ M ∀x ∈ Ω, ∀s∈ R.

Integrating we obtain

(2.16) | f (x, s)| ≤ M|s| + b(x)

It follows under (2.15) and (2.16) that

Nf ′∗ : Lp→ L∞ ∀1 ≤ p ≤ ∞

Nf : Lp→ Lp (takingb ∈ Lp).

It is interesting to observe that such anNf cannot be Fréchet differ-
entiable in general. Indeed:

Theorem 2.7. Assume(2.15). If N f : Lp→ Lp is Fréchet differentiable
then there exist functions a(x) ∈ L∞ and b(x) ∈ Lp such that f(x, s) =
a(x)s+ b(x).

Proof. (a) Let us prove that the Gâteaux derivative ofNf at u in the
directionv is given by

d
dv

Nf (u) = f ′s(x, u(x))v(x).
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First we observe thatf ′s(x, u(x))v(x) ∈ Lq. So we have to prove
that

ωt(x) ≡ t−1[ f (x, u(x) + tv(x)) − f (x, u(x))] − f ′s(x, u(x))v(x)

goes to 0 inLp ast → 0. As in the proof of Theorem 2.6 we write

ωt(x) =
∫ 1

0
[ f ′s(x, u(x) + tτv(x)) − f ′s(x, u(x))]v(x)dτ.

So
∫

Ω

|ωt(x)|pdx≤
∫ 1

0

∫

Ω

| f ′s(x, u(x) + tτv(x)) − f ′s(x, u(x))|p|v(x)|pdx dτ.

Now for eachτ ∈ [0, 1] and eachx ∈ Ω(a.e.) the integrand of the 16

double integral goes to zero. On the other hand this integrand is
bounded by (2M)p|v(x)|p. So the result follows by the Lebesgue
Dominated convergence Theorem.

(b) Now supposeNf is Fréchet differentiable. Then its Fréchet deriva-
tive is equal to the Gâteaux derivative, and assuming thatf (x, 0) =
0 we have that

(2.17) ||u||−1
Lp || f (x, u) − f ′s(x, 0)u||Lp → 0 as ||u||L1 → 0.

Now for each fixedℓ ∈ R andx0 ∈ Ω consider a sequenceuδ(x) =
ℓχBδ(x0), i.e., a multiple of the characteristic function of the ball
Bδ(x0). For such functions the expression in (2.17) raised to the
powerp can be written as

1
ℓpvol Bδ(x0)

∫

Bδ(x0)
| f (x, ℓ) − f ′s(x, 0)ℓ|pdx.

So taking the limit asδ→ 0 we obtain

1
ℓp | f (x0, ℓ) − f ′s(x0, 0)ℓ| = 0, x0 ∈ Ω(a.e.)
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which shows thatf (x0, ℓ) = f ′s(x0, 0)ℓ. Since the previous argu-
ments can be done for allx0 ∈ Ω(a.e.) and allℓ ∈ R, we obtain
that f (x, s) = a(x)swherea(x) = f ′s(x, 0) is anL∞ function.

�

The Potential of a Nemytskii Mapping. Let f (x, s) be a Carathéodory
function for which there are constants 0< m, 1≤ p ≤ ∞ and a function
b(x) ∈ Lp/m(Ω) such that

| f (x, s)| ≤ c|s|m + b(x).

Denoting byF(x, s) =
∫ s

0 f (x, τ)dτ we obtain that

|F(x, s)| ≤ c1|s|
m+1
+ c(x)

wherec(x) ∈ Lp/(m+1)(Ω). (See the paragraphs before Theorem 2.7).
ThenNf : Lp→ Lp/m andNF : Lp→ Lp/(m+1).

In particular, ifp = m+ 1, (⇒ p > 1) the inequalities above become

| f (x, s)| ≤ c|s|p−1
+ b(x), b(x) ∈ Lp′ ,

1
p
+

1
p′
= 1(2.18)

|F(x, s)| ≤ c1|s|
p
+ c(x), c(x) ∈ L1

and we have thatNf : Lp→ Lp′ andNF : Lp→ L1.17

Theorem 2.8. Assume(2.18). Then

Ψ(u) =
∫

Ω

F(x, u(x))dx

defines a continuous functionalΨ : Lp(Ω) → R, which is continuously
Fréchet differentiable.

Proof. The continuity ofNF implies thatΨ is continuous. We claim that
Ψ
′
= Nf . So all we have to do is proving that

ω(v) ≡
∫

Ω

F(x, u+ v) −
∫

Ω

F(x, u) −
∫

Ω

f (x, u)v = o(v)
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asv→ 0 in Lp. As in the calculations done in the proof of Theorem 2.6
we obtain

ω(v) =
∫

Ω

∫ 1

0
[ f (x, u+ tv) − f (x, u)]v dt dx.

Using Fubini’s theorem and Hölder’s inequality

|ω(v)| ≤
∫ 1

0
||Nf (u+ tv) − Nf (u)||Lp′dt||v||Lp.

The integral in the above expression goes to zero as||v||Lp → 0 by
the Lebesgue Dominated Convergence Theorem with an application of
Theorem 2.3. So

||v||−1
Lpω(v)→ 0 as ||v||Lp → 0.

�





Chapter 3

Semilinear Elliptic
Equations I

We consider the Dirichlet problem 18

(3.1) −∆u = f (x, u) in Ω, u = 0 on ∂Ω,

whereΩ is a bounded smooth domain inRN, N ≥ 2 and∂Ω denotes its
boundary. We assume all along thatf : Ω × R → R is a Carathéodory
function. By aclassical solutionof (3.1) we mean a functionu ∈
C2(Ω) ∩ C0(Ω) which satisfies the equation at every pointx ∈ Ω and
which vanishes on∂Ω. By a generalized solutionof (3.1) we mean a
functionu ∈ H1

0(Ω) which satisfies (3.1) in the weak sense, i.e.

(3.2)
∫

Ω

∇u · ∇v =
∫

Ω

f (x, u)v, ∀v ∈ C∞c (Ω).

We see that in order to have things well defined in (3.2), the function
f (x, s) has to obey some growth conditions on the real variables. We
will not say which they are, since a stronger assumption willbe assumed
shortly, when we look for generalized solution as critical points of a
functional. Namely let us consider

(3.3) Φ(u) =
1
2

∫

Ω

|∇u|2 −
∫

Ω

F(x, u)

23
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whereF(x, s) =
∫ s

0 f (x, τ)dτ. In order to haveΦ : H′0(Ω) → R well
defined we should require thatF(x, u) ∈ L1(Ω) for u ∈ H1

0(Ω). In view
of the Sobolev imbedding theoremH1

0 ֒→ Lp (continuous imbedding)
if 1 ≤ p ≤ 2N/(N − 2) if N ≥ 3 and 1≤ p < ∞ if N = 2. So using19

Theorem 2.8 we should require thatf satisfies the following condition

(3.4) | f (x, s)| ≤ c|s|p−1
+ b(x)

wherep satisfies the conditions of the Sobolev imbedding and

b(x) ∈ Lp′ ,
1
p
+

1
p′
= 1.

Using Theorem 2.8 we conclude that:
if f satisfies(3.4) the functionalΦ defined in(3.3) is continuous

Fréchet differentiable, i.e.,C1, and

(3.5) 〈Φ′(u), v〉 =
∫

Ω

∇u · ∇v−
∫

Ω

f (x, u)v, ∀v ∈ H1
0

where〈 , 〉 denotes the inner product in H10(Ω).
It follows readily that the critical points ofΦ are precisely the gen-

eralized solutions of (3.1). So the search for solutions of (3.1) is trans-
formed in the investigation of critical points ofΦ. In this chapter we
study conditions under whichΦ has a minimum.
Φ is bounded belowif the following condition is satisfied:

(3.6) F(x, s) ≤
1
2
µs2
+ a(x)

wherea(x) ∈ L1(Ω) andµ is a constant 0< µ ≤ λ1. [Here λ1 de-
notes the first eigenvalue of the Laplacian subject to Dirichlet boundary
conditions]. Indeed we can estimate

Φ(u) ≥
1
2

∫

Ω

|∇u|2 −
1
2
µ

∫

Ω

u2 −

∫

Ω

a(x) ≥ −
∫

Ω

a(x)

where we have used the variational characterization of the first eigen-
value.
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Φ isweakly lower semicontinuous in H1
0 if condition (3.4) is satisfied

with 1 ≤ p < 2N/(N − 2) if N ≥ 3 and 1≤ p < ∞ if N = 2. Indeed

Φ(u) =
1
2
||u||2H1 − Ψ(u)

whereΨ(u) =
∫
Ω

F(x, u) has been studied in Section 1.2, and the claim20

follows using the fact that the norm is weakly lower semicontinuous and
under the hypothesisΨ is weakly continuous fromH1

0 into R. Let us
prove this last statement. Letun ⇀ u in H1

0. Going to a subsequence if
necessary we haveun→ u in Lp with p restricted as above to insure the
compact imbeddingH1

0 ֒→ Lp. Now use the continuity of the functional
Ψ to conclude.

Now we can state the following result

Theorem 3.1. Assume(3.6)and(3.4)with 1 ≤ p < 2N/(N−2) if N ≥ 3
and 1 ≤ p < ∞ if N = 2. Then for each r> 0 there existλr ≤ 0 and
ur ∈ H1

0 with ||ur ||H1 ≤ r such thatΦ′(ur ) = λrur , andΦ restricted to the
ball of radius r aroundO assumes its infimum at ur .

Proof. The ballBr(0) = {u ∈ H1
0 : ||u||H1 ≤ r} is weakly compact. So

applying Theorem 1.1 to the functionalΦ restricted toBr(0) we obtain
a pointur ∈ Br (0) such that

Φ(ur ) = Inf {Φ(u) : u ∈ Br(0)}.

Now letv ∈ Br(0) be arbitrary then

Φ(ur ) ≤ Φ(tv+ (1− t)ur ) = Φ(ur ) + t〈Φ′(ur ), v− ur〉 + o(t)

which implies

(3.7) 〈Φ′(ur ), v− ur〉 ≥ 0.

If ur is an interior point ofBr(0) thenv− ur covers a ball about the
origin. ConsequentlyΦ′(ur ) = 0. If ur ∈ ∂Br(0) we proceed as follows.
In the case whenΦ′(ur ) = 0 we have the thesis withλr = 0. Otherwise
whenΦ′(ur ) , 0 we assume by contradiction thatΦ′(ur )/||Φ′(ur )|| ,
−ur/||ur ||. Thenv = −rΦ′(ur )/||Φ′(ur )|| is in ∂Br(0) andv , ur . So
〈v, ur〉 < r2. On the other hand with such av in (3.7) we obtain 0≤
〈−v, v− ur〉 ⇒ r2 ≤ 〈v, ur〉, contradiction. �
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Corollary 3.2. In addition to the hypothesis of Theorem 3.1 assume that
there exists r> 0 such that

(3.8) Φ(u) ≥ a > 0 for u ∈ ∂Br (0)

where a is some given constant. ThenΦ has a critical point.

Proof. SinceΦ(0) = 0, we conclude from (3.8) that the infimum ofΦ
in Br (0) is achieved at an interior point of that ball. �21

Remarks (Sufficient conditions that insure(3.8)).

(1) Assumeµ < λ1 in condition (3.6). Then
(3.9)

Φ(u) ≥
1
2

∫
|∇u|2 −

µ

2

∫
u2 −C|Ω| ≥

1
2

(
1−

µ

λ1

) ∫
|∇u|2 −C|Ω|

where we have used the variational characterization of the first
eigenvalue. It follows from (3.9) thatΦ(u) → +∞ as ||u|| → ∞,
that is,Φ is coercive. So (3.8) is satisfied.

(2) In particular, if there existsµ < λ1 such that

lim sup
|s|→∞

f (x, s)
s
≤ µ

then one has (3.6) with aµ < λ1, andΦ is coercive as proved
above.

(3) (A result of Mawhin-Ward-Willem [60]).Assume that

(3.10) lim sup
|s|→∞

2F(x, s)

s2
≤ α(x) ≤ λ1

whereα(x) ∈ L∞(Ω) andα(x) < λ1 on a set of positive measure.
Then under hypotheses(3.4) and (3.10), the Dirichlet problem
has a generalized solution u∈ H1

0(Ω). To prove this statement all
it remains to do is to prove that condition (3.8) is satisfied.First
we claim that there existsǫ0 > 0 such that

(3.11) Θ(u) ≡
∫

Ω

|∇u|2 −
∫

Ω

α(x)u2 ≥ ǫ0, ∀||u||H1
0
= 1.
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Assume by contradiction that there exists a sequence (un) in
H1

0(Ω) with ||un||H1 = 1 andΘ(un) → 0. We may assume without
loss of generality thatun ⇀ u0 (weakly) in H1

0 andun → u in
L2. As a consequence of the fact thatα(x) ≤ λ1 in Ω, we have
Θ(un) ≥ 0 and then

(3.12) 0≤
∫
|∇u0|

2 −

∫
α(x)u2

0 ≤ 0.

On the other hand,Θ(un) = 1−
∫
α(x)u2

n gives
∫
α(x)u2

0 = 1. From
(3.12) we get||u0||H1 = 1, which implies thatun → u0 (strongly)
in H1

0. This implies thatu0 . 0. Now observe thatΘ : H1
0 → R 22

is weakly lower semicontinuous, thatΘ(u) ≥ 0 for all u ∈ H1
0

andΘ(u0) = 0. Sou0 is a critical point ofΘ, which implies that
u0 ∈ H1

0(Ω) is a generalized solution of−∆u0 = α(x)u0. Thus
u0 ∈W2,2(Ω) and it is a strong solution of an elliptic equation. By
the Aleksandrov maximum principle (see for instance, Gilbarg-
Trudinger [46, p. 246]) we see thatu0 , 0 a.e. inΩ. Using (3.12)
again we have

λ1

∫

Ω

u2
0 ≤

∫

Ω

|∇u0|
2 ≤

∫
α(x)u2

0 < λ1

∫
u2

0,

which is impossible. So (3.11) is proved.

Next it follows from (3.10) that givenǫ < λ1ǫ0 (the ǫ0 of (3.11))
there exists a constantcǫ > 0 such that

F(x, s) ≤
α(x) + ǫ

2
s2
+ cǫ , ∀x ∈ Ω, ∀s∈ R.

Then we estimateΦ as follows

Φ(u) ≥
1
2

∫
|∇u|2 −

1
2

∫
α(x)u2 −

ǫ

2

∫
u2 − cǫ |Ω|.

Using (3.11) we get

Φ(u) ≥
1
2
ǫ0

∫
|∇u|2 −

1
2
ǫ

λ1

∫
|∇u|2 − cǫ |Ω|

which implies thatΦ is coercive, and in particular (3.8) is satis-
fied.
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Remark. We observe that in all cases considered above we in fact pro-
ved thatΦ were coercive. We remark that condition (3.8) could be at-
tained without coerciveness. It would be interesting to findsome other
reasonable condition onF to insure (3.8). On this line, see the work of
de Figueiredo-Gossez [42].

Final Remark. (Existence of a minimum without the growth condition
(3.4)). Let us look at the functionalΦ assuming the following condition:
for some constantb > 0 anda(x) ∈ L1(Ω) one has

(3.13) F(x, s) ≤ b|s|p + a(x)

where 1≤ p < 2N/(N − 2) if N ≥ 3 and 1≤ p < ∞ if N = 2. For
u ∈ H1

0 we have
∫

F(x, u(x))dx ≤ b
∫

Ω

|u(x)|pdx+
∫

a(x)dx

where the integral on the left side could be−∞. In view of the Sobolev23

imbedding it is< +∞. So the functionalΦ could assume the value+∞.
Let us now check its weakly lower semicontinuity at a pointu0 ∈ H1

0(Ω)
whereΦ(u0) < +∞. SoF(x, u0(x)) ∈ L1. Now take a sequenceun ⇀ u0

in H1
0. Passing to subsequence if necessary we may suppose thatun →

u0 in Lp, un(x)→ u0(x) a.e. inΩ and|un(x)| ≤ h(x) for someh ∈ Lp.
It follows then from (3.13) that

F(x, un(x)) ≤ bh(x)p
+ a(x).

Since the right side of the above inequality is inL1 we can apply
Fatou’s lemma and conclude that

lim sup
∫

Ω

F(x, un(x))dx ≤
∫

F(x, u0(x))dx

Consequently we have

lim inf Φ(un) ≥ lim inf
1
2

∫
|∇un|

2 − lim sup
∫

F(x, un)

≥
1
2

∫
|∇u0|

2 −

∫
F(x, u0).
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SoΦ : H1
0(Ω) → R ∪ {+∞} is defined and weakly lower semicon-

tinuous. By Theorem 1.1Φ has a minimum in any ballBr(0) contained
in H1

0. If F satisfies condition (3.10) (which by the way implies (3.13))
we see by Remark 3 above thatΦ is coercive. ThusΦ has a global mini-
mum inH1

0. Without further conditions (namely (3.4)) one cannot prove
that such a minimum is a critical point ofΦ.





Chapter 4

Ekeland Variational
Principle

Introduction. We saw in Chapter 1 that a functional bounded below24

assumes its infimum if it has some type of continuity in a topology that
renders (local) compactness to the domain of said functional. How-
ever in many situations of interest in applications this is not the case.
For example, functionals defined in (infinite dimensional) Hilbert spaces
which are continuous in the norm topology but not in the weak topology.
Problems with this set up can be handled efficiently by Ekeland Varia-
tional Principle. This principle discovered in 1972 has found a multitude
of applications in different fields of Analysis. It has also served to pro-
vide simple and elegant proofs of known results. And as we seeit is
a tool that unifies many results where the underlining idea issome sort
of approximation. Our motivation to write these notes is to make an at-
tempt to exhibit all these features, which we find mathematically quite
interesting.

Theorem 4.1(Ekeland Principle - weak form). Let (X, d) be a complete
metric space. LetΦ : X → R ∪ {+∞} be lower semicontinuous and
bounded below. Then given anyǫ > 0 there exists uǫ ∈ X such that

(4.1) Φ(uǫ ) ≤ Inf XΦ + ǫ,

31
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and

(4.2) Φ(uǫ ) < Φ(u) + ǫd(u, uǫ ), ∀u ∈ X with u, uǫ .

For future applications one needs a stronger version of Theorem 4.1.
Observe that (4.5) below gives information on the whereabouts of the
point uλ. As we shall see in Theorem 4.3 the pointuλ in Theorem 4.225

[or uǫ in Theorem 4.1] is a sort of “almost” critical point. Hence its
importance.

Theorem 4.2(Ekeland Principle - strong form). Let X be a complete
metric space andΦ : X → R ∪ {+∞} a lower semicontinuous function
which is bounded below. Letǫ > 0 andu ∈ X be given such that

(4.3) Φ(u) ≤ Inf XΦ +
ǫ

2
.

Then givenλ > 0 there exists uλ ∈ X such that

Φ(uλ) ≤ Φ(u)(4.4)

d(uλ, u) ≤ λ(4.5)

Φ(uλ),Φ(u) +
ǫ

λ
d(u, uλ) ∀u , uλ.(4.6)

Proof. For notational simplification let us putdλ(x, y) = (1/λ)d(x, y).
Let us define a partial order inX by

u ≤ v⇐⇒ Φ(u) ≤ Φ(v) − ǫdλ(u, v).

It is straightforward that: (i) (reflexivity)u ≤ u; (ii) (antisymmetry)
u ≤ v andv ≤ u imply u = v; (iii) (transitivity) u ≤ v andv ≤ w imply
u ≤ w; all these three properties for allu, v, ω in X. Now we define a
sequence (Sn) of subsets ofX as follows. Start withu1 = u and define

S1 = {u ∈ X : u ≤ u1}; u2 ∈ S1 s.t. Φ(u2) ≤ InfS1 Φ +
ǫ

22

and inductively

Sn = {u ∈ X : u ≤ un}; un+1 ∈ Sn s.t. Φ(un+1) ≤ InfSn Φ +
ǫ

2n+1
.
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Clearly S1 ⊃ S2 ⊃ S3 ⊃ · · · EachSn is closed: letx j ∈ Sn with
x j → x ∈ X. We haveΦ(x j ) ≤ Φ(un) − ǫdλ(x j , un). Taking limits using
the lower semicontinuity ofΦ and the continuity ofd we conclude that
x ∈ Sn. Now we prove that the diameters of these sets go to zero: diam
Sn → 0. Indeed, take an arbitrary pointx ∈ Sn. On one hand,x ≤ un

implies

(4.7) Φ(x) ≤ Φ(un) − ǫdλ(x, un).

On the other hand, we observe thatx belongs also toSn−1. So it is 26

one of the points which entered in the competition when we pickedun.
So

(4.8) Φ(un) ≤ Φ(x) +
ǫ

2n .

From (4.7) and (4.8) we get

dλ(x, un) ≤ 2−n ∀x ∈ Sn

which gives diamSn ≤ 2−n+1. Now we claim that the unique point in the
intersection of theSn’s satisfies conditions (4.4) – (4.5) – (4.6). Let then
∞⋂

n=1
Sn = {uλ}. Sinceuλ ∈ S1, (4.4) is clear. Now letu , uλ. We cannot

haveu ≤ uλ, because otherwiseu would belong to the intersection of
theSn’s. Sou � uλ, which means that

Φ(u) > Φ(uλ) − ǫdλ(u, uλ)

thus proving (4.6). Finally to prove (4.5) we write

dλ(u, un) ≤
n−1∑

j=1

dλ(u j , u j+1) ≤
n−1∑

j=1

2− j

and take limits asn→ ∞. �

Remark. The above results and further theorems in this chapter are due
to Ekeland. See [37], [38], and his survey paper [39].
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Connections With Fixed Point Theory. Now we show that Ekeland’s
Principle implies a Fixed Point Theorem due to Caristi [22].See also
[23]. As a matter of fact, the two results are equivalent in the sense that
Ekeland’s Principle can also be proved from Caristi’s theorem.

Theorem 4.3(Caristi Fixed Point Theorem). Let X be a complete metric
space, andΦ : X→ R∪{+∞} a lower semicontinuous functional which
is bounded below. Let T: X→ 2X be a multivalued mapping such that

(4.9) Φ(y) ≤ Φ(x) − d(x, y), ∀x ∈ X, ∀y ∈ T x.

Then there exists x0 ∈ X such that x0 ∈ T x0.27

Proof. Using Theorem 4.1 withǫ = 1 we findx0 ∈ X such that

(4.10) Φ(x0) < Φ(x) + d(x, x0) ∀x , x0.

Now we claim thatx0 ∈ T x0. Otherwise ally ∈ T x0 are such that
y , x0. So we have from (4.9) and (4.10) that

Φ(y) ≤ Φ(x0) − d(x0, y) and Φ(x0) < Φ(y) + d(x0, y)

which cannot hold simultaneously. �

Proof of Theorem 4.1 from Theorem 4.3. Let us use the notation
d1 = ǫd, which is an equivalent distance inX. Suppose by contradiction
that there is nouǫ satisfying (4.2). So for eachx ∈ X the set{y ∈ X :
Φ(x) ≥ Φ(y) + d1(x, y); y , x} is not empty. Let us denote this set by
Tx. In this way we have produced a multivalued mappingT in (X, d1)
which satisfies condition (4.9). By Theorem 4.3 it should exist x0 ∈ X
such thatx0 ∈ T x0. But this is impossible: from the very definition of
T x, we have thatx < T x. �

Remark. If T is a contraction in a complete metric space, that is, if there
exists a constantk, 0≤ k < 1, such that

d(T x,Ty) ≤ kd(x, y), ∀x, y ∈ X,

thenT satisfies condition (4.9) withΦ(x) = 1
1−kd(x,T x). So that part of

the Contraction Mapping Principle which says about the existence of a
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fixed point can be obtained from Theorem 4.3. Of course the Contrac-
tion Mapping Principle is much more than this. Its well knownproof
uses an iteration procedure (the method of successive approximations)
which gives an effective computation of the fixed point, with an error
estimate, etc. . .

Application of Theorem 4.1 to Functionals Defined in Banach Spa-
ces. Now we put more structure on the spaceX where the functionals
are defined. In fact we suppose thatX is a Banach space. This will
allow us to use a Differential Calculus, and then we could appreciate
better the meaning of the relation (4.2). Loosely speaking (4.2) has to
do with some Newton quocient being small.

Theorem 4.4. Let X be a Banach space andΦ : X → R a lower semi-
continuous functional which is bounded below. In addition,suppose that
Φ is Gteaux differentiable at every point x∈ X. Then for eachǫ > 0 28

there exists uǫ ∈ X such that

Φ(uǫ ) ≤ Inf XΦ + ǫ(4.11)

||DΦ(uǫ )||X· ≤ ǫ.(4.12)

Proof. It follows from Theorem 4.1 that there existsuǫ ∈ X such that
(4.11) holds and

(4.13) Φ(uǫ ) ≤ Φ(u) + ǫ||u− uǫ || ∀u ∈ X.

Let v ∈ X and t > 0 be arbitrary. Puttingu = uǫ + tv in (4.13) we
obtain

t−1[Φ(uǫ ) − Φ(uǫ + tv)] ≤ ǫ||v||.

Passing to the limit ast → 0 we get−〈DΦ(u), v〉 ≤ ǫ||v|| for each
given v ∈ X. Since this inequality is true forv and −v we obtain
|〈DΦ(u), v〉| ≤ ǫ||v||, for all v ∈ X. But then

||DΦ(u)||X· = sup
v∈V v,0

〈DΦ(u), v〉
||v||

≤ ǫ.

�
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Remark 1. The fact thatΦ is Gteaux differentiable does not imply that
Φ is lower semicontinuous. One has simple examples, even forX = R2.

Remark 2. In terms of functional equations Theorem 4.4 means the fol-
lowing. Suppose thatT : X→ X∗ is an operator which is agradient, i.e.,
there exists a functionalΦ : X → R such thatT = DΦ. The functional
Φ is called thepotentialof T. If Φ satisfies the conditions of Theorem
4.4, then that theorem says that the equationT x = x∗ has a solutionx
for some x∗ in a ball of radiusǫ around 0 inX∗. And this for allǫ > 0.
As a matter of fact one could say more if additional conditions are set
onΦ. Namely

Theorem 4.5. In addition to the hypotheses of Theorem 4.4 assume that
there are constants k> 0 and C such that

Φ(u) ≥ k||u|| −C.

Let B∗ denote the unit ball about the origin in X∗. Then DΦ(X) is
dense in kB∗.

Proof. We shoule prove that givenǫ > 0 andu∗ ∈ kB∗ there exists
uǫ ∈ X such that||DΦ(uǫ ) − u∗||X∗ ≤ ǫ. So consider the functional
Ψ(u) = Φ(u) − 〈u∗, u〉. It is easy to see thatΨ is lower semicontinuous29

and Gteaux differentiable. Boundedness below follows from (??). So
by Theorem 4.4 we obtainuǫ such that||DΨ(uǫ )||X∗ ≤ ǫ. SinceDΨ(u) =
DΨ(u) − u∗, the result follows. �

Corollary 4.6. In addition to the hypotheses of Theorem 4.4 assume that
there exists a continuous functionϕ : [0,∞)→ R such thatϕ(t)/t → +∞
as t→ +∞ andΦ(u) ≥ ϕ(||u||) for all u ∈ X. Then DΦ(X) is dense in
X∗.

Proof. Let k > 0. Chooset0 > 0 such thatϕ(t)/t ≥ k for t > t0. So
Φ(u) ≥ k||u|| if ||u|| > t0. If ||u|| ≤ t0, Φ(u) ≥ C whereC = min{ϕ(t) :
0 ≤ t ≤ t0}. Applying Theorem 4.5 we see thatDΦ(X) is dense inkB∗.
Sincek is arbitrary the result follows. �
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For the next result one needs a very useful concept, a sort of com-
pactness condition for a functionalΦ. We say that aC1 functional satis-
fies thePalais - Smale condition[or (PS) condition, for short] if every
sequence (un) in X which satisfies

|Φ(un)| ≤ const. andΦ′(un)→ 0 in X∗

possesses a convergent (in the norm) subsequence.

Theorem 4.7. Let X be a Banach space andΦ : X → R a C1 func-
tional which satisfies the(PS) condition. Suppose in addition thatΦ is
bounded below. Then the infimum ofΦ is achieved at a point u0 ∈ X
and u0 is a critical point ofΦ, i.e.,Φ′(u0) = 0.

Proof. Using Theorem 4.4 we see that for each positive integern there
is un ∈ X such that

(4.15) Φ(un) ≤ Inf XΦ +
1
n
||Φ′(un)|| ≤

1
n
.

Using (PS) we have a subsequence (unj ) and an elementu0 ∈ X such
that unj → u0. Finally from the continuity of bothΦ andΦ′ we get
(4.15).

(4.16) Φ(u0) = Inf XΦ Φ
′(u0) = 0

�

Remarks. (1) As a matter of fact the result is true without the conti-
nuity ofΦ′. The mere existence of the Fréchet differential at each
point suffices. Indeed, we have only to show that the first state-
ment in (4.16) implies the second. This is a standard fact in the 30

Calculus of Variations. Here it goes its simple proof: takev ∈ X,
||v|| = 1, arbitrary andt > 0. So

Φ(u0) ≤ Φ(u0 + tv) = Φ(u0) + t〈Φ′(u0), v〉 + o(t)

from which follows that||Φ′(u0)||X∗ = sup
||v||=1
〈Φ′(u0), v〉 ≤ o(t)

t for

all t > 0. Makingt → 0 we get the result.
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(2) The boundedness below ofΦ it could be obtained by a condi-
tion like the one in Corollary 4.6. Observe that a condition like
Φ(u) → +∞ ad ||u|| → ∞ (usually called coerciveness) [or even
the stronger oneΦ(u)/||u|| → +∞ as||u|| → +∞] does not guaran-
tee thatΦ is bounded below. See Chapter 1.

(3) Theorem 4.7 appears in Chang [24] with a different proof and re-
stricted to Hilbert spaces. Possibly that proof could be extended to
the case of general Banach using a the flow given by subgradient,
like in [68], instead of the gradient flow.



Chapter 5

Variational Theorems of
Min-Max Type

Introduction. In this chapter we use the Ekeland Variational Principle31

to obtain a general variational principle of the min-max type. We follow
closely Brézis [13], see also Aubin-Ekeland [6]. From thisresult we
show how to derive the Mountain Pass Theorem of Ambrosetti and Ra-
binowitz [4], as well as the Saddle Point and the GeneralizedMountain
Pass Theorems of Rabinowitz, [66] and [67] respectively.

Let X be a Banach space andΦ : X → R aC1 functional. LetK be
a compact metric space andK0 ⊂ K a closed subset. Letf0 : K0 → X
be a given (fixed) continuous mapping. We introduce the family

(5.1) Γ = { f ∈ C(K,X) : f = f0 on K0}

whereC(K,X) denotes the set of all continuous mappings fromK into
X. Now we define

(5.2) c = Inf
f∈Γ

Max
t∈K
Φ( f (t)),

where we observe that without further hypothesesc could be−∞.

Theorem 5.1. Besides the foregoing notations assume that

(5.3) Max
t∈K
Φ( f (t)) > Max

t∈K0

Φ( f (t)), ∀ f ∈ Γ.

39
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Then givenǫ > 0 there exists uǫ ∈ X such that

c ≤ Φ(uǫ ) ≤ c+ ǫ

||Φ′(uǫ)||X∗ ≤ ǫ

Remark . Observe that the functionalΦ is not supposed to satisfy the32

(PS) condition, see Chapter 1. The theorem above says that underthe
hypotheses there exists aPalais–Smale sequence, that is, (un) in X such
that Φ(un) → c andΦ′(un) → 0. Consequently, if one assumes in
addition thatΦ satisfies the (PS) condition, then there exists a critical
point at levec : Φ′(u0) = 0 andΦ′(u0) = c.

The proof uses some facts from Convex Analysis which we now
expound in a generality slight greater than actually neededhere.

The Subdifferential of a Convex Function. Let X be a Banach space
andΦ : X→ R∪ {+∞} a convex lower semicontinuous functional, with
Φ(x) . +∞. Let us denote the domain ofΦ by domΦ = {x ∈ X : Φ(x) <
∞}. We define thesubdifferentialof Φ, ∂Φ : X→ 2X∗ , by

(5.4) ∂Φ(x) = {µ ∈ X∗ : Φ(y) ≥ Φ(x) + 〈µ, y− x〉, ∀y ∈ X}.

We observe that∂Φ(x) could be the empty set for somex ∈ X.
Clearly this is the case ifx < domΦ. However the following property
has a straightforward proof.

(5.5) ∂Φ(x) is a convex w∗-closed set.

In general∂Φ(x) is not bounded. [To get a good understanding with
pictures (!) consider simple examples. (i)Φ : R→ R∪{+∞} defined by
Φ(x) = 0 if |x| ≤ 1 andΦ(x) = +∞ otherwise. (ii)Φ : R → R ∪ {+∞}
defined byΦ(x) = 1/x if 0 < x ≤ 1 andΦ(x) = +∞ otherwise. (iii)
Φ : R→ R∪{+∞} defined byΦ(x) = | tanx| if |x| < π/2 andΦ(x) = +∞
otherwise].

However the following result is true.

Proposition 5.2. LetΦ : X→ R∪ {+∞} be a convex lower semicontin-
uous functional, withΦ(x) ≡ +∞. Let x0 ∈ domΦ and suppose thatΦ
is continuous at x0. Then∂Φ(x0) is bounded and non-empty.
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Proof. Givenǫ > 0 there existsδ > 0 such that

(5.6) |Φ(x) − Φ(x0)| < ǫ if |x− x0| < δ.

Let v ∈ X with ||v|| = 1 be arbitrary and take a (fixed)t0, with
0 < t0 < δ. For eachµ ∈ ∂Φ(x0) taking in (5.4)y = x0 + t0v we obtain

Φ(x0 + t0v) ≥ Φ(x0) + 〈µ, t0v〉,

where〈 , 〉 denotes the duality pairing betweenX∗ and X. And using 33

(5.6) we get〈µ, v〉 ≤ ǫ/t0, which implies ||µ||X∗ ≤ ǫ/t0. It remains to
prove that∂Φ(x0) , ∅. This will be accomplished by using the Hahn-
Banach theorem applied to sets in the Cartesian productX × R. Let

A = {(x, a) ∈ X × R : x ∈ Bδ(x0), a > Φ(x)}

whereBδ(x0) denotes the open ball of radiusδ aroundx0. It is easy to
check thatA is open and convex. Also, the point (x0,Φ(x0)) < A. So
there exists a non-zero functional (ν, r) ∈ X∗ × R such that

(5.7) 〈ν, x0〉 + rΦ(x0) ≤ 〈ν, x〉 + ra, ∀(x, a) ∈ A.

By taking x = x0 in (5.7) we conclude conclude thatr > 0. So
callingµ = −ν/r we obtain

−〈µ, x0〉 + Φ(x0) ≤ −〈µ, x〉 + a ∀(x, a) ∈ A.

By the continuity ofΦ we can replacea in the above inequality by
Φ(x), and so we get

(5.8) Φ(x) ≥ Φ(x0) + 〈µ, x− x0〉 ∀x ∈ Bδ(x0).

To extend inequality (5.8) to allx ∈ X and so finishing the proof we
proceed as follows. Giveny < Bδ(x0), there existx ∈ Bδ(x0) and 0< t <
1 such thatx = ty+ (1− t)x0. By convexityΦ(x) ≤ tΦ(y)+ (1− t)Φ(x0).
This together with (5.8) completes the proof. �

Remark. If follows from Proposition 5.2 and (5.5) that∂Φ(x) is a non-
empty convexω∗-compact set at the pointsx of continuity ofΦ where
Φ(x) < +∞.
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Corollary 5.3. If Φ : X→ R is convex and continuous withdomΦ = X,
then∂Φ(x) is a non-empty convexω∗-compact subset of X∗ forall x ∈ X.

The One-Sided Directional Derivative. Let Φ : X → R be convex
continuous function. It follows from convexity that the function: t ∈
(0,∞) 7→ t−1[Φ(x + ty) − Φ(x)] is increasing ast increases for everyx,34

y ∈ X fixed. Now letµ ∈ ∂Φ(x). One has

(5.9)
Φ(x+ ty) − Φ(x)

t
≥ 〈µ, y〉 ∀t > 0

It follows then that the limit ast → 0 of the left side of (5.9) exists
and it is≥ Max{〈µ, y〉 : µ ∈ ∂Φ(x)}. Actually one has equality, as proved
next.

Proposition 5.4. LetΦ : X → R be convex and continuous. Then for
each x, y∈ X one has

(5.10) lim
t↓0

Φ(x+ ty) − Φ(x)
t

= Max
µ∈∂Φ(x)

〈µ, y〉.

Proof. Let x and y in X be fixed and let us denote the left side of
(5.10) byΦ′+(x; y). In view of the discussion preceeding the statement
of the present proposition, it suffices to exhibit aµ ∈ ∂Φ(x) such that
Φ
′
+(x; y) ≤ 〈µ, y〉. To do that we consider the following two subsets of

X × R:

A = {(z, a) ∈ X × R : a > Φ(z)}

B = {(x+ ty,Φ(x) + tΦ′+(x; y)) : t ≥ 0},

which are the interior of the epigraph ofΦ and a half-line respectively.
It is easy to see that they are convex andA is open.

So by the Hahn-Banach theorem they can be separated: there exists
a non-zero functional (ν, r) ∈ X∗ × R such that

(5.11) 〈ν, z〉 + ra ≥ 〈ν, x+ ty〉 + r{Φ(x) + tΦ′+(x; y)}
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for all (z, a) ∈ A and all t ≥ 0. Making z = x and t = 0 in (5.11) we
conclude thatr > 0. So callingµ = −ν/r and replacinga byΦ(z) [here
use the continuity ofΦ] we obtain

(5.12) −〈µ, z〉 + Φ(z) ≥ −〈µ, x+ ty〉 + Φ(x) + tΦ′+(x; y)

which holds for allz ∈ X and all t ≥ 0. Making t = 0 in (5.12) we
conclude thatµ ∈ ∂Φ(x). Next takingz = x we getΦ′+(x; y) ≤ 〈µ, y〉,
completing the proof. �

The Subdifferential of a Special Functional. Let K be a compact met-
ric space andC(K,R) be the Banach space of all real valued continuous
functionsx : K → R, endowed with the norm||x|| = max{|x(t)| : t ∈ K}. 35

To simplify our notation let us denoteE = C(K,R). By the Riesz rep-
resentation theorem, see Dunford-Schwartz, [35, p. 234] the dualE∗ of
E is isometric isomorphic to the Banach spaceM(K,R) of all regular
countably additive real-valued set functionsµ (for short: Radon mea-
sures) defined in theσ-field of all Borel sets inK, endowed with the
norm given by the total variation:

||µ|| = sup


k∑

i=1

|µ(Ei)| :
k⋃

i=1

Ei ⊂ E,Ei ∩ E j = ∅; ∀k = 1, 2, . . .



Next we recall some definitions. We say that aRadon measureµ is
positive, and denoteµ ≥ 0 if 〈µ, x〉 ≥ 0 for all x ∈ E such thatx(t) ≥ 0
for all t ∈ K. We say that aRadon measureµ hasmass oneif 〈µ, π〉 = 1,
whereπ ∈ E is the function defined byπ(t) = 1 for all t ∈ K. We say
that aRadon measureµ vanishesin an open setU ⊂ K if 〈µ, x〉 = 0 for
all x ∈ E such that the support ofx is a compact setK0 contained inU.
Using partion of unit, one can prove that ifµ vanishes in a collection of
open setsUα, thenµ also vanishes in the unionUUα. So there exists
a largest open set̃U whereµ vanishes. The support of the measureµ,
denoted by suppµ, is defined by suppµ = K\Ũ. For these notions in the
more general set-up of distributions, see Schwartz [72]. Weshall need
the following simple result.
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Lemma 5.5. Let x∈ E be a function such that x(t) = 0 for all t ∈ suppµ.
Then〈µ, x〉 = 0.

Proof. For each subsetA ⊂ K let us denote byAǫ = {t ∈ K : dist(t,A) <
ǫ}, whereǫ > 0. By Urysohn’s Theorem there exists for eachn =
1, 2, . . ., a functionϕn ∈ E such thatϕn(t) = 0 for t ∈ (suppµ)1/n and
ϕn(t) = 1 for t < (suppµ)2/n. Then the sequenceϕnx converges tox in
E and〈µ, ϕnx〉 → 〈µ, x〉. Since the support of eachϕnx is a compact set
contained inŨ = K\ suppµ, we have〈µ, ϕnx〉 = 0, and then the result
follows. �

Proposition 5.6. Using the above notation consider the functionalΘ :
E→ R defined by

Θ(x) = Max{x(t) : t ∈ K}.

ThenΘ is continuous and convex. Moreover, for each x∈ E,
(5.13)

µ ∈ ∂Θ(x)⇔ µ ≥ 0, 〈µ, π〉 = 1, suppµ ⊂ {t ∈ K : x(t) = Θ(x)}.

Proof. The convexity ofΘ is straightforward. To prove the continuity,36

let x, y ∈ E. Then

Θ(x) − Θ(y) = x(t) −MaxKy ≤ x(t) − y(t),

wheret ∈ K is a point where the maximum ofx is achieved. From the
above inequality one obtains

|Θ(x) − Θ(y)| ≤ ||x− y||

(ii) Let us prove (5.13)⇐. We claim that

(5.14) Θ(y) ≥ Θ(x) + 〈µ, y− x〉 ∀y ∈ E.

The functionz= x−Θ(x)π is in E andz(t) = 0 for t ∈ suppµ. Using
Lemma 5.5 we have that〈µ, z〉 = 0 which implies〈µ, x〉 = Θ(x). So
(5.14) becomesΘ(y) ≥ 〈µ, y〉. But this follows readily from the fact that
µ ≥ 0 and the functionu = Θ(y)π − y is ≥ 0.
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(iii) Let us prove (5.13)⇒. Now we have that (5.14) holds by hy-
pothesis. Letz ∈ E, z ≥ 0, be arbitrary and puty = x− z in (5.14); we
obtain

Max
K

(x− z) −Max
K

(x) ≥ −〈µ, z〉.

Since the left side of the above inequality is≥ 0 we get〈µ, z〉 ≥ 0.
Next letC ∈ R be arbitrary and puty = x+Cπ in (5.14); we obtain

MaxK(x+Cπ) −MaxK(x) ≥ 〈µ,Cπ〉 = C〈µ, π〉.

Since the left side of the above inequality isC we obtainC〈µ, π〉 ≤
C, which implies〈µ, π〉 = 1. Finally, in order to prove that the support
of µ is contained in the closed setS = {t ∈ K : x(t) = Θ(x)} it suffices to
show thatµ vanishes in any open setU ⊂ K\S. Let z ∈ E be a function
with compact supportK0 contained inU. Let

ℓ = Θ(x) −MaxK0(x) > 0,

and chooseǫ > 0 such that±ǫz(t) < ℓ, for all t ∈ K. Thusx(t) ± ǫz(t) <
Θ(x), andΘ(x± ǫz) = Θ(x). So using (5.14) withy = x± ǫz we obtain
±ǫ〈µ, z〉 ≤ 0 which shows that〈µ, z〉 = 0. �

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. (i) Viewing the use of the Ekeland Variational
Principle we observe thatΓ is a complete metric space with the distance37

defined by

d( f , g) = Max{|| f (t) − g(t)|| : t ∈ K}, ∀ f , g ∈ Γ.

Next define the functionalΨ : Γ→ R by

Ψ( f ) = Max
t∈K
Φ( f (t)).

It follows from (5.3) thatΨ is bounded below. IndeedΨ( f ) ≥ b for
all f ∈ Γ, where

b = Max
t∈K0

Φ( f0(t)).
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Next we check the continuity ofΨ at f1 ∈ Γ. Givenǫ > 0, choose
δ > 0 such that|Φ(x) − Φ(y)| ≤ ǫ for all y ∈ f1(K) and allx ∈ X such
that ||x− y|| ≤ δ. Now for eachf ∈ Γ such thatd( f , f1) ≤ δ we have

Ψ( f ) − Ψ( f1) = Φ( f (t)) −Maxt∈K Φ( f1(t)) ≤ Φ( f (t)) − Φ( f1(t))

wheret ∈ K is the point where the maximum ofΦ( f (t)) is achieved.
Since|| f (t) − f1(t)|| ≤ d( f , f1) < δ we conclude thatΨ( f ) − Ψ( f1) ≤ ǫ.
And reverting the roles off and f1 we obtain that|Ψ( f ) − Ψ( f1)| ≤ ǫ,
showing thatΨ is continuous. Thus by Ekeland Variational Principle,
givenǫ > 0 there exists afǫ ∈ Γ such that

c ≤ Ψ( fǫ) ≤ c+ ǫ(5.15)

Ψ( fǫ) ≤ Ψ( f ) + ǫd( f , fǫ ), ∀ f ∈ Γ.(5.16)

(ii) Now we denoteΓ0 = {k ∈ C(K,X) : k(t) = 0,∀t ∈ K0}. For any
k ∈ Γ0 and anyr > 0, we have

Φ( fǫ(t) + rk(t)) = Φ( fǫ (t)) + r〈Φ′( fǫ(t)), k(t)〉 + o(rk(t)).

So

Max
t∈K
Φ( fǫ(t) + rk(t)) ≤ Max

t∈K
{Φ( fǫ(t)) + r〈Φ′( fǫ (t)), k(t)〉} + o(r ||k||)

where||k|| = max
t∈K
||k(t)||. Using this in (5.16) withf = fǫ + rk we obtain

(5.17) Max
t∈K
Φ( fǫ (t)) ≤ Max

t∈K
{Φ( fǫ(t)) + r〈Φ′( fǫ (t)), k(t)〉} + ǫr ||k||

Now we are in the framework of Proposition 5.6: the functions38

x(t) = Φ( fǫ (t)) andy(t) = 〈Φ′( fǫ(t)), k(t)〉 are inE = C(K,R). So (5.17)
can be rewritten as

Θ(x+ ry) − Θ(x)
r

≥ −ǫ||k||

Taking limits asr ↓ 0 and using Proposition 5.4 we get

(5.18) Max
µ∈∂Θ(x)

〈µ, y〉 ≥ −ǫ||k||
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Observe that in (5.18)y depends onk. Replacingk by −k we obtain
from (5.18):

(5.19) Minµ∈∂Θ(x)〈µ, y〉 ≤ ǫ||k||

where∂Θ(x) is the set of all Radon measuresµ in K such thatµ ≥
0, 〈µ,Π〉 = 1 and suppµ ⊂ K1 where K1 = {t ∈ K : Φ( fǫ (t)) =
Maxt∈K Φ( fǫ (t))}. Dividing (5.19) through by||k|| and taking Sup we
get

(5.20) Supk∈Γ0
||k||≤1

Minµ∈∂Θ(x)〈µ, 〈Φ
′( fǫ (·)), k(·)〉〉 ≤ ǫ

Using von Neumann min-max Theorem [7] we can interchange the
Sup and Min in the above expression. Now we claim

(5.21) Supk∈Γ0
||k||≤1
〈µ, 〈Φ′( fǫ (·)), k(·)〉〉 = Supk∈C(K,X)

||k||≤1
〈µ, 〈Φ′( fǫ(·)), k(·)〉〉

Indeed, sinceK0 andK1 are disjoint compact subsets ofK one can
find a continuous functionϕ : K → R such thatϕ(t) = 1 for t ∈ K1,
ϕ(t) = 0 for t ∈ K0 and 0≤ ϕ(t) ≤ 1 for all t ∈ K. Given anyk ∈ C(K,X)
with ||k|| ≤ 1 we see thatk1(·) = ϕ(·)k(·) ∈ Γ0, ||k1|| ≤ 1 and

〈µ, 〈Φ′( fǫ(·)), k(·)〉〉 = 〈µ, 〈Φ′( fǫ (·)), k1(·)〉〉

because suppµ ⊂ K1. So (5.21) is proved. Sinceµ ≥ 0 the right side of
(5.21) is less or equal to

〈µ,Supk∈C(K,X)
||k||≤1

〈Φ′( fǫ(·)), k(·)〉〉

But the Sup in the above expression is equal to||Φ′( fǫ(·))||. So com-
ing back to (5.20) interchanged we get

Minµ∈∂Θ(x)〈µ, ||Φ
′( fǫ(·))||〉 ≤ ǫ.

Let µ ∈ ∂Θ(x) the measure that realizes the above minimum: 39

〈µ, ||Φ′( fǫ(t))||〉 ≤ ǫ
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Sinceµ has mass one and it is supported inK1, it follows that, there
existst ∈ K1 such that||Φ′( fǫ(t))|| ≤ ǫ. Let uǫ = fǫ(t). Sincet ∈ K1 it
follows that

Φ(uǫ ) = Maxt∈K Φ( fǫ(t)) ≡ Ψ( fǫ ).

So from (5.15) we havec ≤ Φ(uǫ ) ≤ c+ ǫ, completing the proof.�

Remark 1. In the above proof, Von Neumann min-max theorem was
applied to the functionG :M(K,R)×C(K,X)→ R, [M(K,R) endowed
with thew∗-topology] defined by

G(µ, k) = 〈µ, 〈Φ′( fǫ(·)), k(·)〉〉.

Observe thatG is continuous and linear in each variable separately
and that the setsΘ(x) and{k ∈ C(K,X) : ||k|| ≤} are convex, the former
one beingw∗-compact.

Remark 2. Let (gα) be an arbitrary family of functions inC(K,R), which
are uniformly bounded. Theng ≡ supα gα ∈ C(K,R). Sincegα ≤ g we
have that forµ ∈ M(K,R), µ ≥ 0, one has〈µ, gα〉 ≤ 〈µ, g〉. This given

Supα〈µ, gα〉 ≤ 〈µ,Supgα〉.

Mountain pass Theorem and Variants

Now we turn to showing that Theorem 5.1 contains as special cases
all three min-max theorems cited in the Introduction to thisChapter.

Theorem 5.7(Mountain Pass Theorem [4]). Let X be a Banach space
andΦ : X → R a C1 functional which satisfies the(PS) condition. Let
S be a closed subset of X which disconnets X. Let x0 and x1 be points
of X which are in distinct connected components of X\S . Suppose that
Φ is bounded below in S , and in fact the following condition is verified

(5.22) InfSΦ ≥ b and Max{Φ(x0),Φ(x1)} < b.

Let40

Γ = { f ∈ C([0, 1]; X]) : f (0) = x0, f (1) = x1}.
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Then
c = Inf f∈ΓMaxt∈[0,1]Φ( f (t))

is > −∞ and it is a critial value. That is there exists x0 ∈ X such that
Φ(x0) = c andΦ′(x0) = 0.

Remark . The connectedness referred above is arcwise connectedness.
SoX\S is a union of open arcwise connected components, see Dugundji
[34, p. 116]. Thusx0 andx1, being in distinct components implies that
any arc inX connectingx0 and x1 interseptS. For instanceS could
be a hyperplane inX or the boundary of an open set, [in particular, the
boundary of a ball].

Proof of Theorem 5.7. It is an immediate consequence of Theorem
5.1. In view of the above remark, (5.22) implies (5.3). �

Theorem 5.8(Saddle Point Theorem [66]). Let X be a Banach space
andΦ : X → R a C1 functional which satisfies the(PS) condition.
Let V ⊂ X be a finite dimensional subspace and W a complement of
V : X = V ⊕W. Suppose that there are real numbers r> 0 and a< b
such that

(5.23) InfWΦ ≥ b Max∂DΦ ≤ a

where D= V ∩ Br(0), Br(0) = {x ∈ X : ||x|| < r} and∂D = {x ∈ V :
||x|| = r}. Let

Γ = { f ∈ C(D,X) : f (x) = x, ∀x ∈ ∂D},

and
c = Inf f∈Γ Supx∈DΦ( f (x))

Then c> −∞ and it is a critical value.

Proof. It suffices to show that (5.23) implies (5.3) and the result follows
from Theorem 5.1. The setsK andK0 of said theorem areD and∂D
respectively. Letf ∈ Γ. Since the right side of (5.3) in view of (5.23) is
≤ a, it suffices to prove that there isx ∈ D such thatf (x) ∈ W and then
use (5.23) again. LetP : X → X be the linear projection overV along
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W. So f (x) ∈ W is equivalent toP f(x) = 0. Thus the question reduces
in showing that the continuous mapping

P f : D→ V

has a zero. SinceV is finite dimensional andP f = identity on∂D the41

result follows readily from Brouwer fixed point theorem. �

Remark. The last step in the previous proof is standard. It can be proved
in few lines using the Brouwer theory of topological degree.Consider
the homotopyH(t, •) ≡ tP f + (1− t)id : D→ V. SinceP f(x) = x for x ∈
∂D it follows that the homotopy is admissible anddeg(H(t, •),D, 0) =
const. Thusdeg(P f,D, 0) = deg(id,D, 0) = 1 and consequentlyP f
has a zero. Another proof using Brouwer fixed point theorem instead
uses the mappingR◦ P f : D → D whereR is the radial retraction over
D : R(v) = v is ||v|| ≤ r andR(v) = rv/||v|| elsewhere.

Theorem 5.9(Generalized Mountain Pass Theorem [67]). Let X be a
Banach space andΦ : X → R aC1 functional which satisfies the(PS)
condition. As in the previous theorem let X= V ⊕W, V finite dimen-
sional. Let w0 ∈W be fixed and letρ < R be given positive real numbers.
Let Q= {v+ rω0 : v ∈ V, ||v|| ≤ R, 0 ≤ r ≤ R}. Suppose that

(5.24) InfW∩∂Bρ Φ ≥ b, Max∂QΦ ≤ a, a < b,

where∂Bρ is the boundary of the ball Bρ(0). Let

Γ = { f ∈ C(Q,X) : f (x) = x, x ∈ ∂Q},

and
c = Inf f∈Γ Supx∈QΦ( f (x))

Then c> −∞ and it is a critical value.

Proof. We apply Theorem 5.1 withK = Q and K0 = ∂Q. It suffices
then to show that (5.24) implies (5.3). First we see that the right side of
(5.3) is≤ a in view of (5.24). So by (5.24) again it is enough to show
that for each givenf ∈ Γ there existsx ∈ Q such that

(5.25) f (x) ∈W∩ ∂Bρ.
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To prove that we use degree theory again. Let us define a mapping
g : Q→ V ⊕ Rω0, as follows

g(v+ rω0) = (P f(v+ rω0), ||(I − P) f (v+ rω0)||)

Clearlyg is continuous andg(v + rω0) = v + rω0 if v + rω0 ∈ ∂Q.
The point (0, ρ) is in the interior ofQ relative toV⊕Rω0. So there exists
v+ rω0 ∈ Q such thatg(v+ rω0) = (0, ρ). This proves (5.25). � 42

A useful and popular form of the Mountain Pass Theorem. The
following result follows from Theorem 5.7 and Theorem 5.10 below.Φ
is C1, satisfies(PS) and it is unbounded below. Suppose that u0 is a
strict local minimum ofΦ. ThenΦ possesses a critical point u1 , u0.
The definition ofstrict minimumis: there existsǫ > 0 such that

Φ(u0) < Φ(u), ∀0 < ||u− u0|| < ǫ.

Theorem 5.10(On the nature of local minima). LetΦ ∈ C1(X,R) satisfy
the Palais-Smale condition. Suppose that u0 ∈ X is a local minimum,
i.e. there existsǫ > 0 such that

Φ(u0) ≤ Φ(u) for ||u− u0|| ≤ ǫ.

Then given any0 < ǫ0 ≤ ǫ the following alternative holds: either(i)
there exists0 < α < ǫ0, such that

Inf {Φ(u) : ||u− u0|| = α} > Φ(u0)

or (ii) for eachα, with 0 < α < ǫ0,Φ has a local minimum at a point uα
with ||uα − u0|| = α andΦ(uα) = Φ(u0).

Remark. The above result shows that at a strict local minimum, alterna-
tive (i) holds. The proof next is part of the proof of Theorem 5.10 below
given in de Figueiredo-Solimini [43].

Proof. Let ǫ0 with 0 < ǫ0 ≤ ǫ be given, and suppose that (i) does not
hold. So for any given fixedα, with 0 < α < ǫ0, one has

(5.26) Inf{Φ(u) : ||u− u0|| = α} = Φ(u0)



52 5. Variational Theorems of Min-Max Type

Let δ > 0 be such that 0< α− δ < α+ δ < ǫ0. ConsiderΦ restricted
to the ringR = {u ∈ X : α− δ ≤ ||u− u0|| ≤ α+ δ}. We start withun such
that

||un − u0|| = α and Φ(un) ≤ Φ(u0) +
1
n
,

where the existence of suchun is given by (5.26). Now we apply the
Ekeland variational principle and obtainvn ∈ R such that

Φ(vn) ≤ Φ(un), ||un − vn|| ≤
1
n

and(5.27)

Φ(vn) ≤ Φ(u) +
1
n
||u− vn|| ∀u ∈ R.(5.28)

43

From the second assertion in (5.27) it follows thatvn is in the interior
of R for largen. We then take in (5.28)u = vn + tw, whereω ∈ X with
norm 1 is arbitrary andt > 0 is sufficiently small. Then using Taylor’s
formula and lettingt → 0 we get||Φ′(vn)|| ≤ 1

n. This together with the
first assertion in (5.27) and (PS) gives the existence of a subsequence of
vn (call it vn again) such thatvn → vα. SoΦ(vα) = Φ(u0), Φ′(vα) = 0
and||vα − u0|| = α. �

A weaker form of the Mountain Pass Theorem. The following wea-
ker form of the result presented in the last section appears in Rabinowitz
[68]. He uses a sort of dual version of the Mountain Pass Theorem. The
proof presented here is due to de Figueiredo-Solimini [43].

Proposition 5.11. Let Φ ∈ C1(X,R) satisfy(PS) condition. Suppose
that

(5.29) Inf{Φ(u) : ||u|| = r} ≥ Max{Φ(0),Φ(e)}

where0 < r < ||e||. ThenΦ has a critical point u0 , 0.

Proof. The case when there is strict inequality in (5.29) is contained in
Theorem 5.7. Therefore let us assume equality in (5.29). Ife is local
minimum we are through. So we may assume that there exists a point
e′ neare whereΦ(e′) < Φ(e). Therefore replacinge by e′ two things
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may occur: either (i) we gain inequality in (5.29) and again Theorem
5.7 applies and we finish, or (ii) equality persists and we have

(5.30) Inf{Φ(u) : ||u|| = r} = Φ(0) > Φ(e).

So we assume that (5.30) holds. Also we may assume that

(5.31) Inf{Φ(u) : ||u|| ≤ r} = Φ(0)

because otherwise Theorem 5.7 would apply again and we wouldfinish.
But (5.31) says that 0 is a local minimum. So we can apply Theorem
5.10 and conclude. �

Corollary 5.12. LetΦ ∈ C1(X,R) satisfy(PS) condition. Suppose that
Φ has two local minima. ThenΦ has at least one more critical point.

Proof. Use Theorems 5.10 and 5.7. �





Chapter 6

Semilinear Elliptic
Equations II

Introduction. In this chapter we continue the study of the Dirichlet44

problem:

(6.1) −∆u = f (x, u) in Ω, u = 0 on ∂Ω

whereΩ is a bounded smooth domain inRN, N ≥ 2 and∂Ω denotes its
boundary. In order to minimize technicalities, we assume all along this
chapter the following minimal assumption on the nonlinearity:

f : Ω × R→ R is a continuous function of both variables.

As in Chapter 3 we search the critical points of the functional

(6.2) Φ(u) =
1
2

∫
|∇u|2 −

∫
F(x, u).

If not stated on the contrary all integrals are taken over thewhole of
Ω. We assume the following additional condition off :

(6.3) | f (x, s)| ≤ c|s|p−1
+ b(x)

wherec > 0 is a constant,b(x) ∈ Lp′(Ω) with (1/p) + (1/p′) = 1, and
1 ≤ p < ∞ if N = 2, or 1≤ p ≤ 2N/(N − 2) if N ≥ 3. As we proved

55
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in Chapter 3, under this hypothesis the functionalΦ : H1
0 → R defined

in (6.3) is continuously Fréchet differentiable. In Chapter 3 a further
condition was required onF (see (3.6) there) which was sufficient to
guarantee thatΦ is bounded below. Here we are interested in the cases45

whenΦ is not bounded below any longer. We assume the following
condition

(6.4) lim inf
s→+∞

f (x, s)
s

> λ1 uniformly in Ω

whereλ1 is the first eigenvalue of (−∆,H1
0).

Lemma 6.1. Under (6.4) the functionalΦ is unbounded below.

Proof. It follows from (6.4) that there are constantsµ > λ1 andc such
that f (x, s) ≥ µs− c, for all s > 0. Therefore we can find constantsµ′

andc′ with µ > µ′ > λ1 such thatF(x, s) ≥ 1
2µ
′s2 − c′, for all s > 0.

Thus fort > 0 we have

Φ(tϕ1) ≤
1
2
λ1t2

∫
ϕ2

1 −
1
2
µ′t2

∫
ϕ2

1 + c′|Ω|.

�

Viewing the future applications of the variational theorems of Chap-
ter 5 we now state conditions which insure the (PS) condition forΦ.

Lemma 6.2. Assume condition(6.3)with 1 ≤ p < 2N/(N − 2) if N ≥ 3
and 1 ≤ p < ∞ if N = 2. ThenΦ satisfies the(PS) condition if every
sequence(un) in H1

0, such that

(6.5) |Φ(un)| ≤ const, Φ′(un)→ 0

is bounded.

Proof. All we have to prove is that (un) contains a subsequence which
converges in the norm ofH1

0. Since (un) is bounded, there is a subse-
quence (unj ) converging weakly inH1

0 to someu0 and strongly in any
Lp to the sameu0, with 1 ≤ p < 2N/(N − 2) if N ≥ 3 and 1≤ p < ∞ if
N = 2. On the other hand the second assertion in (6.5) means that

(6.6) ||

∫
∇un∇v−

∫
f (x, un)v|| ≤ ǫn||v||H1, ∀v ∈ H1

0
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whereǫn → 0. Putv = un − u0, and taking limits over the subsequence
we obtain that ∫

∇unj∇(unj − u0)→ 0.

[Here we have used the continuity properties of the Nemytskii map-
pings, see Chapter 2]. So||unj ||H1 → ||u0||H1. This together with the fact
thatunj ⇀ u0 (weakly) inH1

0, gives thatunj → u0 (strongly) inH1
0. � 46

Palais-Smale Condition for Asymptotically Linear Problems. As-
sume that the limits below exist asL∞ functions

(6.7) lim
s→−∞

f (x, s)
s
= α(x) and lim

s→+∞

f (x, s)
s
= β(x).

It follows then that there are positive constantsc1 andc2 such that

(6.8) | f (x, s)| ≤ c1|s| + c2, ∀s ∈ R, ∀x ∈ Ω.

Lemma 6.3. Assume(6.7)above. In addition suppose that the problem
below has only the solution v≡ 0:

(6.9) −∆v = β(x)v+ − α(x)v− in Ω and v= 0 on ∂Ω.

Then the functionalΦ satisfies(PS) condition. Here v+ = max(v, 0)
and v− = v+ − v.

Remark 1. It suffices to consider (6.9) in theH1
0 sense. That is

∫
∇v0∇v =

∫
[β(x)v+0 − α(x)v−0 ]v, ∀v ∈ H1

0

andv0 ∈ H1
0. We will use without further mentionning a result of Stam-

pachia [1]: ifv ∈ H1
0 thenv+0 , v−0 and in generalG(v), whereG : R → R

is a Lipschitz continuous function, are allH1
0 functions.

Remark 2. If α andβ are constants, then the pairs (α, β) such that prob-
lem (6.9) has non-trivial solutions constitute the so-called singular set∑

. In the case ofN = 1 this set has been completely characterized by
Fučik [44]. It is not known a similar result forN ≥ 2. However some in-
formation about

∑
has been obtained, see Dancer [29], Gallouet-Kavian

[45] and Magalhães [59].
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Proof for Lemma 6.3. We use Lemma 6.2. Suppose by contradiction
that there is a sequence (un) in H1

0 such that

|Φ(un)| = |
1
2

∫
|∇un|

2 −

∫
F(x, un)| ≤ Const(6.10)

|〈Φ′(un), v〉| = |
∫
∇un∇v−

∫
f (x, un)v| ≤ ǫn||v||H1, ∀v ∈ H1

0(6.11)

||un||H1 → ∞, ǫn→ 0.(6.12)
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Let vn = un/||un||H1, and (passing to a subsequence if necessary)
assume that av0 ∈ H1

0 can be found such thatvn ⇀ v0 (weakly) inH1
0,

vn→ v0 (strongly) inL2, vn→ v0 a.e. and|vn| ≤ h for someL2-function
h. Now we claim that

(6.13) ||un||
−1
H1

f (x, un(x))→ β(x)v+0 − α(x)v−0 in L2.

We prove that using the argumetn in Costa-de Figueiredo-Gonçalves
[27]. Let us denoteαn ≡ ||un|| andℓ(x) ≡ β(x)v+0 − α(x)v−0 . It suffices
to show that every subsequence offn(x) ≡ α−1

n f (x, αnvn(x)) possesses a
further subsequence which converges toℓ(x) in L2. Using (6.8)

(6.14) | fn(x)| ≤ α−1
n [c1αn|vn(x)| + c2] ≤ c1h(x) + α−1

n c2.

In the setA = {x : v0(x) , 0}, fn(x)→ ℓ(x) a.e.. So by the Lebesgue
Dominated Convergence theoremfnχA → ℓ in L2. In the setB = {x :
v0(x) = 0} it follows from (6.14) thatfn(x)→ 0 a.e. So similaryfnχB→

0 in L2. So the claim in (6.13) is proved. Now dividing (11) by||un||H1

and passing to the limit we obtain
∫
∇v0∇v−

∫
[β(x)v+0 − α(x)v−0 ]v = 0 ∀v ∈ H1

0.

In view of (6.9) it follows thatv0 = 0. Next use (6.11) again with
v = vn, divide it through by||un||H1 to obtain

|

∫
|∇vn|

2 −

∫
f (x, un)
||un||H1

vn| ≤
ǫn

||un||H1
||vn||H1.
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In the above inequality the first term is equal to 1 and the other two
converge to zero, impossible!

Palais-Smale Condition for Superlinear Problems.Assume that

(6.15) lim inf
|s|→∞

f (x, s)
s
= +∞,

that is, the problem is superlinear at both+∞ and−∞. In this case the 48

following lemma provides sufficient conditions for (PS).

Lemma 6.4. Φ satisfies(PS) condition if one assumes:(i) condition
(6.3)with 1 ≤ p < 2N/(N − 2) in the case N≥ 3 and1 ≤ p < ∞ in the
case N= 2, and (ii) the following condition introduced by Ambrosetti
and Rabinowitz [7]: there is aθ > 2 and s0 > 0 such that

(6.16) 0< θF(x, s) ≤ s f(x, s) ∀x ∈ Ω ∀|s| ≥ s0.

Proof. Let (un) be a sequence inH1
0 satisfying conditions (6.10) and

(6.11) above. Replacev by un in (6.11). Multiply (6.10) byθ and sub-
tract (6.11) from the expression obtained:

(
θ

2
− 1

) ∫
|∇un|

2 ≤

∫
[θF(x, un) − un f (x, un)] + ǫn||un||H1 +C

Using (6.16) we obtain that||un||H1 ≤ C. The proof is completed
using Lemma 6.2. �

Remark . Condition (6.16) implies thatF is superquadratic. Indeed,
from (6.16): θ/s ≤ f (x, s)/F(x, s). Integrating froms0 to s : θ[ℓn|s| −
ℓns0] ≤ ℓnF(x, s) − ℓnF(x, s0), which impliesF(x, s) ≥ F(x, s0)s−θ0 |s|

θ,
for |s| ≥ s0. Using (6.16) again we obtainf (x, s) ≥ θF(x, s0)s−θ0 |s|

θ−1.
Observe that this inequality is stronger than the requirement put in
(6.15). So there is some room between (6.15) and (6.16). Thus, how
about Palais-Smale in the case whenf satisfies (6.15) but not (6.16)?
There is a partial answer to this question in [42].

Palais-Smale Condition for Problems of the Ambrosetti-Prodi Type.
Now we assume

(6.17) lim sup
s→−∞

f (x, s)
s

< λ1 and lim inf
s→+∞

f (x, s)
s

> λ1



60 6. Semilinear Elliptic Equations II

where the conditions above are to hold uniformly forx ∈ Ω. The first
limit could be−∞ and the second could be+∞.

Lemma 6.5. Assume(6.3) and the first assertion in(6.17). Let (un) be
a sequence in H10(Ω) such that

(6.18) |

∫
∇un∇v−

∫
f (x, un)v| ≤ ǫn||v||H1 ∀v ∈ H1

0

whereǫn → 0. [We may visualize theun’s as “almost” critical points49

of Φ, or as “approximate” solutions of (6.1), vaguely speaking!] Then
there exists a constant M> 0 such that||u−n ||H1 ≤ M.

Proof. If follows from the assumption that there exists 0< µ < λ1 and
a constantc such that

(6.19) f (x, s) > µs− c for s≤ 0.

Replacingv by u−n in (6.18) we can estimate

∫
|∇u−n |

2 ≤ −

∫
f (x, un)u−n + ǫn||u

−
n ||H1.

Using (6.19) we obtain

∫
|∇u−n |

2 ≤ µ

∫
(u−n )2

+ c
∫

u−n + ǫn||u
−
n ||H1.

Finally using Poincaré and Schwarz inequalities we complete the
proof. �

Lemma 6.6. Assume(6.17)and that f has linear growth,i.e.

(6.20) | f (x, s)| ≤ c1|s| + c2 ∀x ∈ Ω, ∀s ∈ R

where c1, c2 are given positive constants. Then the functionalΦ satisfies
(PS) condition.
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Proof. Assume by contradiction that there exists a sequence (un) in H1
0

satisfying conditions (6.10), (6.11) and (6.12) above. As in Lemma 6.3,
let vn = un/||un||H1 and assume thatvn ⇀ v0 in H1

0, vn → v0 in L2 and
a.e. (Ω), and that there is anL2-function h such that|vn(x)| ≤ h(x). It
follows from Lemma 6.5 thatv−n → 0 in H1

0, and we may assume that
v−n → 0 a.e. (Ω). Sov0 ≥ 0 inΩ. First we claim that the sequence

gn ≡ χn
f (x, un)
||un||

→ 0 in L2

whereχn is the characteristic function of the set{x : un(x) ≤ 0}. Indeed
this follows easily from the Lebesgue Dominated Convergence Theo-
rem, observing that (6.20) implies

(6.21) |gn| ≤ c1
u−n
||un||H1

+
c2

||un||H1
→ 0 a.e.

and|gn| ≤ c1h+ c2/||un||H1. On the other hand, the sequence (or passing50

to a subsequence of it):

(6.22) γn ≡ (1− χn)
f (x, un)
||un||H1

⇀ γ in L2

whereγ is someL2 function andγ ≥ 0. Indeed using (6.20) we have
that

|γn| ≤ c1h+ c2/||un||H1 ≤ c1h+ 1 ∈ L2.

The positiveness ofγ comes from the following consideration. From
the second assertion in (6.17) there existsr > 0 such thatf (x, s) ≥ 0 for
s ≥ r. Let ξn be characteristic function of the set{x ∈ Ω : un(x) ≥ r}.
Clearlyξnγn ⇀ γ in L2. And the assertion thatγ ≥ 0 follows from the
fact thatξnγn is in the cone of non-negative functions ofL2, which is
closed and convex. Now go back to (6.11), divide it through by||un||H1

and pass to the limit using (6.21) and (6.22). We obtain

(6.23)
∫
∇v0∇v−

∫
γv = 0 ∀v ∈ H1

0.

It follows from the second assertion in (6.17) that there areconstants
µ > λ1 andc > 0 such thatf (x, s) ≥ µs− c for x ∈ Ω and s ≥ 0. So
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γn ≥ µv+n−c||un||
−1
H1. Passing to the limit we obtainγ ≥ µv0. Using (6.23)

with v = ϕ1, whereϕ1 > 0 inΩ is a first eigenfunction of (−∆,H1
0(Ω)),

we obtain

λ1

∫
v0ϕ1 =

∫
∇v0∇ϕ1 =

∫
γϕ1 ≥ µ

∫
v0ϕ1.

Sinceµ > λ1 we conclude thatv0 ≡ 0. So from (6.23)γ ≡ 0. Finally
use (6.11) again, divided through by||un||H1 and withv = vn:

|

∫
|∇vn|

2 −

∫
f (x, un)
||un||

vn| ≤ ǫn||un||H1 = ǫn.

The first term is equal to 1 and the other two go to zero, impossible!
�

Lemma 6.7. Assume(6.3) and (6.17)and suppose that there are con-
stantsθ > 2 and s0 > 0 such that

(6.24) 0< θF(x, s) ≤ s f(x, s), ∀x ∈ Ω, ∀s≥ s0.

ThenΦ satisfies(PS) condition.

Proof. Let (un) be a sequence inH1
0 for which (6.10) and (6.11) holds.

By Lemma 6.2 we should show that||un||H1 ≤ const. We know from51

Lemma 6.5 that||u−n ||H1 ≤ const. Using the first assertion in (6.17) we see
that there are constants 0< µ < λ1 andc > 0 such thatF(x, s) ≤ µ

2 s2−cs,
for x ∈ Ω ands≤ 0.

∫
F(x,−u−n ) ≤

µ

2

∫
(u−n )2 − c

∫
u−n ≤ const.

So from (6.10) we obtain

(6.25)
1
2

∫
|∇u+n |

2 −

∫
F(x, u+n ) ≤ const.

Using (6.11) withv = u+n we obtain

(6.26) |

∫
|∇u+n |

2 −

∫
f (x, u+n )u+n | ≤ ǫn||u

+

n ||H1.
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Multiplying (6.25) byθ and subtracting (6.26) from it we get

(
θ

2
− 1

) ∫
|∇u+n |

2 ≤

∫
[θF(x, un+) − f (x, u+n )u+n ] + ǫn||u

+

n ||H1 + const.

Using (6.24) we conclude that||u+n ||H1 ≤ const. �

Remark. If f (x, s) ≥ 0 for x ∈ Ω ands≤ 0, then the eventual solutions
of (6.1) are≥ 0. Indeed, letu ∈ H1

0 be a solution of (6.1), that is:

∫

Ω

∇u∇v =
∫

Ω

f (x, u)v ∀v ∈ H1
0.

Let v = u−. Then

−

∫
|∇u−|2 =

∫
f (x, u)u−1 ≥ 0⇒

∫
|∇u− |2 = 0.

So u− = 0, proving the claim. Observe that under this hypothesis
on f , the first assertion in (6.17) holds. So Lemmas 6.6 and 6.7 provide
sufficient conditions for (PS) on a class of semilinear elliptic equations
with positive solutions. For example: (i)f = |u|p for any 1≤ p < ∞ if
N = 2 or 1≤ p < (N+ 2)/(N− 2) if N ≥ 3. (ii) f = (u+)p with the same
restrictions onp.

Existence results for (1). To illustrate the use of the theorems proved
in Chapter 5 we now consider some examples.

Example 1.Consider the following Dirichlet problem 52

(6.27) −∆u = f (u) + h(x) in Ω u = 0 on ∂Ω

whereh ∈ C(Ω) [a weaker condition would suffice] and f : R → R is a
continuous function such that

(6.28) lim
s→−∞

f (s)
s
= α and lim

s→+∞

f (s)
s
= β.

Let 0< λ1 < λ2 ≤ λ3 ≤ . . . be the eigenvalues of (−∆,H1
0(Ω)).
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Theorem 6.8(Dolph [33]). If λk < α, β < λk+1, then problem(6.27)
has a solution for every h.

Proof. We look for critical points of the functionalΦ : H1
0 → R defined

by

Φ(u) =
1
2

∫
|∇u|2 −

∫
F(u) −

∫
hu

whereF(s) =
∫ s

0 f . It is easy to see that (α, β) does not belong to the
singular set

∑
. So by Lemma 6.3,Φ satisfies (PS). LetV be the finite di-

mensional subspace generated by the firstk eigenfunctions of (−∆,H1
0),

andW = V⊥. Let µ andµ be such thatλk < µ < α, β < µ < λk+1. It
follows from (6.28) that there existss0 > 0 such tahtµ < s−1 f (s) < µ

for |s| ≥ s0. A straightforward computations shows that there exist con-
stantsC andC such that

(6.29)
1
2
µs2 −C ≤ F(s) ≤

1
2
µs2
+C, ∀s.

Now if v ∈ V we estimate

Φ(v) ≤
1
2

∫
|∇v|2 −

µ

2

∫
v2
+C|Ω| + ||h||L2 ||v||L2

and using the inequality
∫
|∇v|2 ≤ λk

∫
v2, for v ∈ V, and the Poincaré

inequality we obtain

Φ(v) ≤
1
2

(
1−

µ

λk

) ∫
|∇v|2 +C|Ω| + ||h||L2λ−1

1 ||∇v||L2.

SoΦ(v) → −∞ as||v|| → ∞ with v ∈ V. On the other hand ifw ∈W
we estimate

Φ(w) ≥
1
2

∫
|∇w|2 −

µ

2

∫
w2 −C|Ω| − ||h||L2 ||w||L2

and using the inequality
∫
|∇w|2 ≥ λk+1

∫
w2 for ω ∈W, we obtain53

Φ(w) ≥
1
2

(
1−

µ

λk+1

) ∫
|∇w|2 −C|Ω| − ||h||L2λ−1

1 ||∇w||L2.

SoΦ(w) → +∞ as ||w|| → ∞ with w ∈ W. Therefore the result
follows from the Saddle Point Theorem, Theorem 5.8. �
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Remark . Condition (6.29) suffices to having the functional with the
“shape” of the Saddle Point Theorem. However we do not know ifit
will give (PS). Observe that (PS) was obtained above with hypothesis
on the derivative ofF with respect tos, namely f . Of course we are
willing to assume growth conditions onf to assure the differentiability
of Φ, see Chapter 2. But even so, it is not known if (PS) holds.

As a second example we consider problem (1) again and prove

Theorem 6.9(Ambrosetti-Rabinowitz [4]). Supposse that f satisfies the
conditions of Lemma 6.4. In addition, assume

(6.30) lim
s→0

s−1 f (x, s) < λ1.

Then problem(1) has a nontrivial solution.

Proof. It follows from (6.30) thatf (x, 0) = 0, and thereforeu ≡ 0 is
a solution of (6.1). Observe that condition (6.16) implies (see Remark
after the proof of Lemma 6.4) that (6.15) holds. So Lemma 6.1 implies
that Φ is not bounded below. Also (PS) holds, by Lemma 6.4. We
plan to apply the Mountain Pass Theorem, Theorem 5.7. For that matter
we study the functionalΦ nearu = 0. Given 0< µ < λ1, it follows
from (6.30) that there existsδ > 0 such that| f (x, s)| ≤ µ|s| for |s| ≤ δ.
Therefore

|F(x, s)| ≤
µ

2
|s|2 ∀|s| ≤ δ.

On the other hand using (6.3) we can find a constantk > 0 such that

|F(x, s)| ≤ k|s|p ∀|s| > δ.

Here without loss of generality we may supposep > 2. Therefore
adding the two previous inequalities:

|F(x, s)| ≤
µ

2
|s|2 + k|s|p ∀s∈ R.

ThusΦ can be estimated as follows 54

Φ(u) ≥
1
2

∫
|∇u|2 −

µ

2

∫
u2 − k

∫
|u|p
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and using Poincaré inequality and Sobolev imbedding we obtain

Φ(u) ≥
1
2

(
1−

µ

λ1

) ∫
|∇u|2 − k

(∫
|∇u|2

)p/2

.

Sincep > 2 we see that there existsr > 0 such that if||u||H1 = r then
Φ(u) ≥ a for some constanta > 0. So the result follows immediately
from Theorem 5.7. �

A Problem of the Ambrosetti-Prodi Type. As a third example we
consider the Dirichlet problem

(6.31) −∆u = f (x, u) + tϕ1 + h in Ω, u = 0 on ∂Ω,

wheret is a real parameter,ϕ1 > 0 is a first eigenfunction of (−∆,H1
0)

and h ∈ Cα(Ω), with
∫

hϕ1 = 0, is fixed. Assume thatf is locally

lipschitzian inΩ × R. Then we prove.

Theorem 6.10. Assume(6.17) and (6.20) [or (6.3), (6.17), (6.24)].
Then it follows that there exists t0 ∈ R such that for all t≤ t0, prob-
lem(31) has at least two solutions in C2,α(Ω).

Remark. There is an extensive literature on problems of the Ambrosetti-
Prodi type, starting with work of Ambrosetti-Prodi [3]. We mention
Kazdan-Warner [52], Amann-hess [1], Berger-Podolak [11],H. Beresty-
cki [9], McKenna [57], Ruf [71] Solimini [76],. . . There has been several
recent papers by Lazer-McKenna which we don’t survey them here. The
result above and the proof next are due to de Figueiredo-Solimini [43].
See a similar result by K. C. Chang [25].

Proof. It follows from either Lemma 6.6 [or Lemma 6.7] that the func-
tional below satisfies (PS):

(6.32) Φ(u) =
1
2

∫
|∇u|2 −

∫
F(x, u) −

∫
(tϕ1 + h)u.

Also the second assertion in (6.17) implies by Lemma 6.1 thatΦ is55

not bounded below. In the previous example we also proved theexis-
tence of two solutions; however there we had the first solution (u ≡ 0)
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to start. Here we have first to obtain a solution of (6.31) which is a local
minimum, and then apply the Mountain Pass Theorem. We break some
steps of the proof in a series of lemmas. �

Remark . For the next lemma we recall some definitions. We present
them in the particular framework of the problem considered here. We
refer to Gilbarg-Trudinger [46] for more general definitions.

(i) A functionω ∈ H1
0 is said to be aweak subsolutionof the Dirichlet

problem

(*) −∆u + Mu = g(x) in Ω, u = 0 on∂Ω, whereg ∈ L2 andM is a
real constant, if

∫
∇ω∇ψ + M

∫
ωψ ≤

∫
gψ, ∀ψ ∈ H1

0, ψ ≥ 0.

(ii) A function ω ∈ C2,α(Ω) is a classical subsolution of (*) if

−∆ω + Mω ≤ g in Ω ω = 0 on ∂Ω.

(iii) Weak supersolution and classical supersolution are defined like-
wise by reverting the inequalities in the equations above.

(iv) Every classical subsolution [supersolution] is also weak subsolu-
tion [supersolution].

Lemma 6.11.Assume(6.17). Then there exist constants0 < µ < λ1 < µ

and C> 0 such that

(6.33) f (x, s) > µs−C and f(x, s) > µs−C

for all x ∈ Ω and all s∈ R.

Proof. The first assertion in (6.17) gives 0< µ < λ1 andC1 > 0 such
that f (x, s) > µs− c1 for all x ∈ Ω ands ≤ 0. The second assertion in
(6.17) givesλ1 < µ andC2 > 0 such thatf (x, s) > µs−C2 for all x ∈ Ω
ands≥ 0. LetC = max{C1,C2} and (6.33) follows. �
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Lemma 6.12. Assume(6.17). Then for each t∈ R problem(6.31)has 56

a classical subsolutionωt. Moreover given any classical supersolution
Wt of (6.31) [or in particular any solution of(6.31)] one hasωt(x) <
Wt(x), ∀x ∈ Ω, and

∂ωt

∂ν
(x) >

∂Wt

∂ν
(x), ∀x ∈ ∂Ω.

Proof. Let Mt = SupΩ |tϕ1(x) + h(x)|. The Dirichlet problem

−∆u = µu−C − Mt in Ω u = 0 on ∂Ω

with µ andC as in (6.33) above, has a unique solutionωt ∈ C2,α(Ω),

which is< 0 inΩ and ∂ωt
∂ν

< 0 in ∂Ω, see Lemma 6.13 below. It follows
from the inequality in (6.33) thatωt is a classical subsolution. To prove
the second statement, use (6.33) again

−∆(Wt − ωt) ≥ f (x,Wt) + tϕ1 + h− µωt −C − Mt > µ(Wt − ωt)

and apply Lemma 6.13. �

Lemma 6.13. Letα(x) be an L∞ function such thatSupΩ α(x) < λ1. Let
u ∈ H1

0 be such that

(6.34) −∆u ≥ α(x)u in H1
0 − sense.

Then u≥ 0. Moreover, if u∈ C2,α(Ω) then u> 0 in Ω and ∂u
∂ν
< 0 on

∂Ω.

Proof. Expression (6.34) means

∫
∇u∇ψ ≥

∫
α(x)uψ, ∀ψ ∈ H1

0, ψ ≥ 0.

Takeψ = u− and use Poincaré’s inequality

−λ1

∫
(u−)2 ≥ −

∫
|∇u−|2 ≥ −

∫
α(x)(u−)2 > −λ1

∫
(u−)2



69

which impliesu− = 0. Sou = u+. If u ∈ C2,α(Ω) then we use the
classical maximum principle to

−∆u+ α−u ≥ α+u,

where the right side is≥ 0 by the first part of this lemma. �

Lemma 6.14. Assume(6.17). Then there exists at0 ∈ R such that for all 57

t ≤ t0 (6.31)has a classical supersolution Wt.

Proof. Let k =
∫

f (x, 0)ϕ1 and f1(x) = f (x, 0)− kϕ1. So the equation in
(6.31) may be rewritten as

(6.35) −∆u = f (x, u) − f (x, 0)+ (k+ t)ϕ1 + h+ f1.

Now let Wt be the solution of the Dirichlet problem

−∆u = h+ f1 in Ω u = 0 on ∂Ω.

We see thatWt is a supersolution of (6.31) providedt is such that

f (x,Wt) − f (x, 0)+ (k + t)ϕ1 ≤ 0

or

t ≤ −k− SupΩ
f (x,Wt) − f (x, 0)

ϕ1
.

So it remains to prove that the above Sup is< +∞. It suffices then
to show that the functiong(x) ≡ [ f (x,W(x))− f (x, 0)]/ϕ1(x) is bounded
in a neighborhood of∂Ω. Boundedness in any compact subset ofΩ
follows fromϕ1(x) > 0 there. Ifx0 is a point on∂Ω, we use the Lipschitz
condition onf to estimate

|g(x)| ≤ K|
Wt(x)
ϕ1(x)

|

whereK is a local lipschitz constant in a neighborhoodN of x0. The
function Wt(x)/ϕ1(x) is bounded inN : at the pointsx ∈ N ∩ ∂Ω,
Wt(x)/ϕt(x) = |∇Wt(x)|/|∇ϕ1(x)| by L’Hôspital rule. �
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Remark. The above proof is taken from Kannan and Ortega [51]. An-
other proof of existence of a supersolution for this class ofproblems can
be seen in Kazdan and Warner [52].

Proof of Theorem 6.10 Continued. From now on we fixt ≤ t0 de-
termined by Lemma 6.14. So by Lemma 6.12,wt ≤ Wt, and in fact
wt < Wt in Ω. Let

(6.36) C = {u ∈ H1
0 : wt ≤ u ≤Wt}.

which is closed convex subset ofH1
0. Plan of action:(i) restrictΦ to C

and show that it has a minimumu0 in C which is a critical point ofΦ:
(ii) show thatu0 is indeed a local minimum ofΦ in H1

0; (iii) obtain a 2nd

solution of (6.31) using the Mountain Pass Theorem, Proposition 5.11.58

To accomplish the first step we need the following result.

Proposition 6.15. Let Φ : X → R be a C1 functional defined in a
Hilbert space X. Let C be a closed convex subset of X. Suppose that
(i) K ≡ I − Φ′ maps C into C,(ii) Φ is bounded below in C and(iii) Φ
satisfies(PS) in C. Then there exists u0 ∈ C such thatΦ′(u0) = 0 and
InfCΦ = Φ(u0).

Proof. Apply the Ekeland variational principle toΦ : C→ R. So given
ǫ > 0 there isuǫ ∈ C such thatΦ(uǫ ) ≤ InfCΦ + ǫ and

(6.37) Φ(uǫ ) ≤ Φ(u) + ǫ||u− uǫ || ∀u ∈ C

Put in (6.37)u = (1 − t)uǫ + tKuǫ with 0 < t < 1 and use Taylor’s
formula to expandΦ(uǫ + t(Kuǫ − uǫ )) aboutuǫ . We obtain

t||Φ′(uǫ )||
2 ≤ ǫt||Φ′(uǫ || + o(t)

which implies||Φ′(uǫ || < ǫ. We then use (PS) to conclude. �

Back to the Proof of Theorem 6.10. The idea now is to apply Propo-
sition 6.15 to the functionalΦ defined in (6.31) andC defined in (6.36).
However a difficulty appears in the verification of condition (i). The way
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we see to solve this question is to change the norm inH1
0 as follows. We

chooseM > 0 such that the function

(6.38) s 7→ g(x, s) ≡ f (x, s) + Ms+ tϕ1(x) + h(x)

is increasing ins ∈ [a, b], for eachx ∈ Ω fixed, wherea = minwt and
b = maxWt. The norms inH1

0 given by

||u||2H1 =

∫
|∇u|2 and ||u||2 =

∫
|∇u|2 + M

∫
u2

are equivalent. Let us denote by〈, 〉 the inner product inH1
0 correspond-

ing to the second norm. Next we rewrite (6.31)

(6.39) −∆u+ Mu = g(x, u) in Ω u = 0 on ∂Ω

The functional associated to (6.39) is

Ψ(u) =
1
2
〈u, u〉 −

∫
G(x, u), G(x, s) =

∫ s

0
g(x, ξ)dξ,

which is alsoC1, it satisfies (PS) and it has the same critical points as the59

original functionalΦ. Now we show that for such a functional, condition
(i) of Proposition 6.15 holds. Indeed, letu ∈ C and letv = (I − Ψ′)u.
This means

〈v, ψ〉 = 〈u, ψ〉 − 〈u, ψ〉 +
∫

g(x, u)ψ

for all ψ ∈ H1
0. Then

〈v− wt, ψ〉 ≥

∫
[g(x, u) − g(x,wt)]ψ, ∀ψ ∈ H1

0, ψ ≥ 0

and we obtainv ≥ wt using the weak maximum principle. Similarly
v ≤ Wt. Now we apply Proposition 6.15 and get a critical pointu0 of
Φ. However the proposition insures only thatu0 is a minimum ofΦ
restricted toC. To apply Proposition 5.11, in order to obtain a second
solution, we should now prove thatu0 is indeed a local minimum. [This
is not trivial sinceC has empty interior inH1

0]. Observe thatu0 ∈ H1
0
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is a solution (6.31). It follows then from theLp regularity theory of
elliptic equations thatu0 ∈ C2,α(Ω). This proved by a standard bootstrap
argument. Suppose now thatu0 is not a local minimum ofΦ. This
means that for everyǫ > 0 there existsuǫ ∈ Bǫ ≡ Bǫ(u0) such that
Ψ(uǫ ) < Ψ(u0). Now consider the functionalΦ restricted toBǫ and use
Theorem 3.1: there existsvǫ ∈ Bǫ andλǫ ≤ 0 such that

Ψ(vǫ ) = Inf Bǫ Ψ ≤ Ψ(uǫ) < Ψ(u0)(6.40)

Ψ
′(vǫ ) = λǫ(vǫ − u0).(6.41)

Using again a bootstrap argument as above we conclude thatvǫ ∈
C2,α(Ω). (6.41) means

(6.42) 〈vǫ , ψ〉 −
∫

g(x, vǫ )ψ = λǫ〈vǫ − u0, ψ〉, ∀ψ ∈ H1
0.

Clearlyvǫ → u0 in H1
0 asǫ → 0. We have seen thatu0 and thevǫ ’s

areC2,α functions. Now we show thatvǫ → u0 in the norm ofC1,α(Ω).
From (6.42) we obtain

(6.43) (1− λǫ)〈vǫ − u0, ψ〉 =

∫
[g(x, vǫ ) − g(x, u0)]ψ ∀ψ ∈ H1

0.

Again a bootstrap in the equation (6.43) gives the claimed conver-
gence. On the other hand, it follows from Lemma 6.12 thatwt < u0 in
Ω and ∂wt

∂ν
>

∂u0
∂ν

in ∂Ω. Therefore by the above convergence we have
similar inequalities forvǫ in place ofu0. A similar argument withWt.60

Thusvǫ ∈ C and we have a contradiction!

Final Remark. As said before, problems of the Ambrosetti-Prodi have
been extensively studied in the literature. A direction nottouched in
these notes is the question of obtain more than two solutions. A re-
markable progress has been made by H. Hofer and S. Solimini through
a delicate analysis of the nature of the critical points.



Chapter 7

Support Points and Suport
Functionals

Introduction. Let X be a Banach space andC a closed convex subset61

of X. Wealways assumethatC , X andC , ∅. A point x0 ∈ C is said
to be asupport pointif there exists a bounded linear functionalf ∈ X∗

such thatf (x0) = SupC f . A given functional f ∈ X∗ is said to be a
support functionalif there existsx0 ∈ C such thatf (x0) = SupC f . We
always assumethat f , 0. The terminology “support” comes from the
geometric fact that the hyperplaneH determined byf , whereH = {x ∈
X : f (x) = f (x0)}, touchesC at x0 and leavesC in one of half spaces
determined byH. Two basic questions will be studied in this chapter.

Problem 1.GivenC a closed convex subset ofX. Are all points in the
boundary∂C of x support points? If not, how large is the set of support
points?

Problem 2.GivenC a closed convex subset ofX. Are all functionals
f ∈ X∗ support functionals? If not, how large is the set of support
functionals of a givenC?

Six Remarks and Examples.

(1) Of course the above questions make sense iff is bounded onC,

73
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i.e., there existsM ∈ R such thatf (x) ≤ M for all x ∈ C. This will
be achieved in particular ifC is bounded. In many cases studied
here we assume thatC is a closed bounded convex subset ofX.

(2) Given f andC, it is not true in general thatf supportsC at some62

point. For example:

C = {(x, y) ∈ R2 : x > 0, y > 0 and xy≥ 1} and f (x, y) = −y.

However ifC is a closed convex bounded subset ofRN (or more
generally of a reflexive Banach spaceX) then any continuous lin-
ear functionalf supportsC. This follows readily from Theorem
1.1: C is weakly compact and− f is weakly continuous.

(3) The previous result is false in general ifX is not reflexive. Ex-
ample: LetX be the Banach space of all continuous functions
x : [0, 1] → R with x(0) = x(1) = 0 and the norm||x||∞ =
Max{|x(t)| : t ∈ [0, 1]}. Consider the continuous linear functional
f (x) =

∫ 1
0 x(t)dt and letC be unit closed ball inX : {x ∈ X :

||x||∞ ≤ 1}. Clearly f does not supportC. However see Theorem
7.2 below.

(4) Let C be a closed bounded convex subset of a Banach space and
let x0 ∈ ∂C. It is not true in general that there exists a functional
f supportingC at x0. Example: let

C =


ξ ∈ ℓ2 : ξ j ≥ 0, ||ξ||2 =

∞∑

j=1

ξ2
j ≤ 1


.

We claim first thatC = ∂C. Indeed, givenξ ∈ C andǫ > 0, letn0

be chosen such that|ξn0| < ǫ/2. The point

ξ̃ = (ξ1, . . . , ξn0−1,−ǫ/2, ξn0+1, . . .) < C

and
||ξ − ξ̃|| = |ξn0 +

ǫ

2
| < ǫ.
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Next we show that the pointŝξ ∈ C, with ξ̂ j > 0 and ||ξ̂|| < 1,
are not support points. Indeed, fix one suchξ̂ and suppose that
there exists a functionalf such that SupC f = f (ξ̂). Since 0∈ C
it follows that 0≤ f (ξ̂). Also there exists at > 1 such thattξ̂ ∈ C.
So f (tξ̂) ≤ f (ξ̂), which then implies thatf (ξ̂) = 0. By the Riesz
representation theorem letf = (η1, η2, . . .) ∈ ℓ2. So we have

∞∑

j+1

η j ξ̂ j = 0,

which implies that there exists aj0 such thatη j0 > 0. Since the 63

pointej0 = (0, . . . , 0, 1, 0, . . .) ∈ C, [here 1 is in thejth0 component
and 0 in the remaining ones] andf (ej0) = η j0 > 0 contradicting
the fact proved above that SupC f = 0.

(5) However if the closed bounded convex setC has an interior, then
all points on the boundary∂C are support points. This is an im-
mediate consequence of the Hahn Banach theorem: given any
x0 ∈ ∂C there exists a functionalf ∈ X∗ which separatesx0 and
Int C. As we saw in the example in 4 above, if the interior ofC
is empty then there are points inC(= ∂C) which are not support
points. However, see Theorem 7.1, which then provides a satis-
factory answer to Problem 1.

(6) For Problem 2, the example in (3) above provides a negative an-
swer to the first question. The second question in answered in
Theorem 7.2.

Theorem 7.1(Bishop-Phelps [12]). Let C be a closed convex subset of
a Banach space. Then the set of support points of C are dense in∂C.

Theorem 7.2(Bishop-Phelps [12]). Let C be a closed bounded convex
subset of a Banach space X. Then the set of continuous linear function-
als which support C is dense in X∗.

The proof of Theorem 7.1 relies on Theorem 7.4 which will follow
from the result below, whose proof uses the Ekeland Variational Princi-
ple.
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Theorem 7.3(The Drop Theorem, Danes̆ [30]). Let S be a closed subset
of Banach space X. Let y∈ X\S and R= dist(y,S). Let r andρ be
prositive real numbers such that0 < r < R < ρ. Then there exists
x0 ∈ S such that

(7.1) ||y− x0|| ≤ ρ and D(y, r; x0) ∩ S = {x0}

where D(y, r; x0) = co(Br (y) ∪ {x0}). [This set is called a “drop”, in
view of its evocative geometry].

Remark. By definition dist(y,S) = Inf {||y− x|| : x ∈ S}. If X is reflexive
this infimum is achieved, but in general this is not so. The notation “co”
above means the convex hull. AndBr (y) = {x ∈ X : ||x− y|| ≤ r}.

Proof of Theorem 7.3. By a translation we may assume thaty = 0.64

Let F = Bρ(0) ∩ S which is a closed subset ofX, and consequently a
complete metrix space with a distance induced naturally by the norm of
X. Define the following functionalΦ : F → R by

Φ(x) =
ρ + r
R− r

||x||.

By the Ekeland Variational Principle, givenǫ = 1 there existsx0 ∈ F
such that

(7.2) Φ(x0) < Φ(x) + ||x− x0||.

Such anx0 satisfies the first requirement of (7.1) and now we claim
that{x0} = D(0, r; x0)∩S. Suppose by contradiction that there is another
point x , x0 in this intersection. So

(7.3) x ∈ S and x = (1− t)x0 + tv

for somev ∈ Br(0) and 0≤ t ≤ 1.
Clearly 0< t < 1. From (7.3):||x|| ≤ (1− t)||x0|| + t||v||, which gives

(7.4) t(R− r) ≤ t(||x0|| − ||v||) ≤ ||x0|| − ||x||.

If follows from (7.2) and (7.3) that
ρ + r
R− r

||x0|| <
ρ + r
R− r

||x|| + ||x− x0|| =
ρ + r
R− r

||x|| + t||x0 − v||.

Using (7.4) to estimatet in the above inequality and estimating||x0−

v|| ≤ ρ + r, we obtain||x0|| < ||x|| + (||x0|| − ||x||), which is impossible!�
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Remark. The above theorem is due to Danes, who gave in [30] a proof,
different from the above one, using the following result of Krasnoselskii
and Zabreiko [55]: “LetX be a Banach space and letx andy be given
points inX such that 0< r < ρ < ||x− y||. Then

diam[D(x, r; y)\Bρ(x)] ≤
2[||x− y|| + r]
||x− y|| − r

(||x− y|| − ρ)′′.

The above proof is essentially the one in Brøndsted [17]. Relations
between the Drop Theorem and the Ekeland Variational Principle have
been pointed out by several people, Brezis and Browder [16],Danes̆
[31], Penot [61].

Theorem 7.4 (Browder [20]). Let S be a closed subset of a Banach65

space X. Letǫ > 0 and z∈ ∂S . Then there existδ > 0, a convex closed
cone K with non-empty interior and x0 ∈ S such that

(7.5) ||x0 − z|| < ǫ and S∩ (x0 + K) ∩ Bδ(x0) = {x0}.

Remark . For the sake of geometric images, the above theorem means
that: “a closed setS satisfies a local (exterior) cone condition on a dense
set of∂S”.

Proof of Theorem 7.4. Chosey < S such that||z− y|| ≤ ǫ/3. Then
R ≡ dist(y,S) ≤ ǫ/3. Takeρ = ǫ/2 and chooser < R. By the Drop
Theorem, there existsx0 ∈ S such that

(7.6) ||x0 − y|| ≤ ǫ/2 and D(y, r; x0) ∩ S = {x0}

Since||x0 − z|| ≤ ||x0 − y|| + ||y − z|| ≤ ǫ/2 + ǫ/3, the first assertion
in (7.5) follows. For the second one takeδ < ||x0 − y|| − r. It suffices to
prove that the points

(7.7) x = x0 + t(v− x0) with t ≥ 0, v ∈ Br (y), ||x− x0|| < δ

are in the dropD(y, r; x0). Then we would take the coneK as the set of
halflines with end point at 0 and passing through the points ofthe ball
Br (y− x0), i.e.

K = {u ∈ X : u = t(v− x0), t ≥ 0 v ∈ Br(y)}
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SoK + x0 = {x0 + t(v− x0) : t ≥ 0, v ∈ Br (y)} as in (7.7). To prove
the above claim, all we have to do is to show that thet’s in (7.7) have to
be≤ 1, and so thex in (7.7) is indeed a point in the dropD(y, r; x0). We
rewrite x

x = x0 + t(y− x0) + t(v− y)⇒ t(y− x0) + t(v− y) = x− x0

Estimating we obtaint||y− x0|| − t||v− y|| ≤ ||x− x0|| < δ or

t(||y− x0|| − r) < δ < ||x0 − y|| − r ⇒ t < 1. �

Proof of Theorem 7.1. Let z ∈ ∂C andǫ > 0 be given. By Theorem
7.4 there existsx0 ∈ ∂C, K andδ > 0 such that

(7.8) C ∩ (x0 + K) ∩ Bδ(x0) = {x0}, ||x0 − z|| < ǫ.

Now we claim that in factC∩ (x0+ K) = {x0}. Otherwise letx , x066

with x ∈ C ∩ (x0 + K); thenx = x0 + t(x− x0) for small tot > 0 is, 0
and belongs toC∩ (x0+ x)∩ Bδ(x0), contradicting (7.8). Next, based in
the assertion just proved we see thatC andU = Int(K + x0) are disjoint.
By the Hahn Banach theorem there exists a continuous linear functional
f ∈ X∗ such that SupC f ≤ Infu∈U f (u). So SupC f ≤ f (x0), and indeed
there is equality becausex0 ∈ C. �

To prove Theorem 7.2 we will use two lemmas due to Phelps [62].

Lemma 7.5. Let S be a closed subset of a Banach space X. Let f∈ X∗

be such that|| f ||X∗ = 1 andSupS f < ∞, and let0 < k < 1. Then the set
K defined below is a closed convex cone

(7.9) K = {x ∈ X : k||x|| ≤ f (x)}.

Moreover, for all z∈ S there exists x0 ∈ S such that

(7.10) x0 ∈ z+ K S ∩ (x0 + K) = {x0}.

Proof. The verification thatK is a non-empty closed convex cone is
straightforward. To prove the second assertion letF = (z+ K) ∩ S and
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consider the functionalΦ : F → R defined asΦ = − f |F . Takeǫ < k
and use the Ekeland Variational Principle: there existsx0 ∈ F such that

(7.11) − f (x0) < − f (x) + ǫ||x0 − x||, ∀x ∈ F, x , x0.

Let y ∈ S ∩ (x0 + K). First we claim thaty ∈ F; indeed, since
y− x0 ∈ K andx0 − z ∈ K it follows thaty− z ∈ K. Next we show that
y = x0. Otherwise, from (7.11)

(7.12) − f (x0) < − f (y) + ǫ||y− x0||

Sincey− x0 ∈ K we havek||y− x0|| ≤ f (y− x0). This together with
(7.12) gives a contradiction. �

Lemma 7.6. Let C be a closed convex subset of a Banach space X. Let
f ∈ X∗, || f ||X∗ = 1 and 0 < k < 1. Let K be as in(7.9). Suppose that
x0 ∈ C is such that

(7.13) C ∩ (x0 + K) = {x0}.

Then there exists0 , g ∈ X∗ such that 67

(7.14) SupC g = g(x0) ||g− f ||X∗ ≤ k.

Proof. Consider the functionalΦ : X→ R defined by

Φ(x) = k||x|| − f (x)

ClearlyΦ is continuous and convex. Now apply the Hahn-Banach
theorem to separate the sets:

C1 = {(x, r) ∈ X × R : Φ(x) < r}

C2 = {(x, r) ∈ X × R : x ∈ C − x0, r = 0}.

C1 is the interior of the epigraph, epiΦ, which is open and convex.C2 is
convex and closed.C1 ∩C2 = ∅; otherwise there existsx ∈ C − x0 such
thatΦ(x) < 0, i.e. x ∈ K. So x + x0 ∈ C and x + x0 ∈ x0 + K. Using
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(7.13) we obtainx = 0. But this is impossible since (0, 0) < C1. Then
by the Hahn Banach theorem there existsF ∈ (X × R)∗ such that

(7.15) SupC2
F ≤ InfC1 F

Observe that corresponding toF there are (unique)g ∈ X∗ andt ∈ R
such thatF(x, r) = g(x)+ tr for all (x, r) ∈ X×R. Since (0, 0) ∈ C2∩C1

it follows that the Sup and the Inf in (7.15) are both equal to 0. Since
for all x ∈ X, (x,Φ(x)) ∈ C1 we see that

(7.16) g(x) + tΦ(x) ≥ 0

This shows thatt cannot be equal to 0, [otherwiseg = 0 and so
F = 0]. The point (0, 1) ∈ C1. So 0≤ F(0, 1) = t. Thus t > 0, and
without loss of generality we may assumet = 1. If follows from (7.16)
that g(x) + k||x|| − f (x) ≥ 0 for all x ∈ R, and this gives the second
assertion in (7.14). Now forx ∈ C, it follows that (x − x0, 0) ∈ C2 and
sog(x− x0) ≤ 0 which gives the first assertion in (7.14). �

Proof of Theorem 7.2. Given 0, f̂ ∈ X∗ andǫ > 0, let f ≡ f̂ /|| f̂ ||X∗
andK as defined in (7.9) withk = ǫ/|| f̂ ||X∗ . Choose az ∈ C. Then by
Lemma 7.5 there existsx0 ∈ C such thatS ∩ (x0 + K) = {x0}. Now
by Lemma 7.6 there exists 0, g ∈ X∗ such that||g − f ||X∗ ≤ k andg
supportsC. Denote by ˆg = || f̂ ||X∗g. Then||ĝ− f̂ || ≤ ǫ andĝ supportsC.
Since the previous inequality is true for any 0< ǫ < || f̂ ||X∗ the density
follows. �



Chapter 8

Convex Lower
Semicontinuous Functionals

Introduction. In Chapter 5 we introduced the concept of subdiffer- 68

ential of a convex lower semicontinuous functionΦ. We observed that
dom∂Φ ⊂ domΦ. Here we prove a result of Brøndsted and Rockafellar
[18] which show that dom∂Φ is dense in domΦ. The main ingredients
in the proof are the Ekeland Variational Principle again anda calculus of
subdifferentials. The proof here follows Aubin-Ekeland [6] and differs
from the original one and also from that in Ekeland-Temam [36].

Proposition 8.1. Let Φ, Ψ : X → R ∪ {+∞} be two convex lower
semicontinuous functionals defined in a Banach space X and such that
Φ ≡ +∞ andΨ ≡ +∞. Then

∂(tΦ)(x) = t∂Φ(x), ∀t > 0 ∀x ∈ X(8.1)

∂(Φ + Ψ)(x) ⊂ ∂Φ(x) + ∂Ψ(x) ∀x ∈ X.(8.2)

Moreover if there isx ∈ domΦ∩domΨwhere one of the functionals
is continuous then there is equality in(8.2).

Proof. (8.1) and (8.2) are straightforward. The last assertion is proved
using the Hahn Banach theorem; see the details in Ekeland-Temam [36].

�

81
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Subdifferential and Differentiability. The reader has surely observed
that these two notions are akin. Indeed, subdifferentials were introduced
to go through situations when one does not have a differential. This was
precisely what occurred in Chapter 5. We have the following result69

Proposition 8.2. LetΦ : X → R ∪ {+∞} be a convex lower semicon-
tinuous function. Suppose thatΦ is Goteaux differentiable at a point
x0 ∈ domΦ, i.e., there exists an element of X∗, denoted by DΦ(x0), such
that

(8.3) Φ(x0 + tv) = Φ(x0) + t〈DΦ(x0), v〉 + o(t), ∀v ∈ X.

[The above expression is to hold for small t; how small is t depends on
v].

Then

(8.4) x0 ∈ dom∂Φ and DΦ(x0) ∈ ∂Φ(x0).

Moreover

(8.5) ∂Φ(x0) = DΦ(x0).

Proof. To prove (8.4) we have to show that

(8.6) Φ(y) ≥ Φ(x0) + 〈DΦ(x0), y− x0〉, ∀y ∈ X.

It Φ(y) = +∞ there is nothing to do. Assume thaty ∈ domΦ. So the
whole segment connectingx0 to y is in domΦ, and we have

Φ(x0 + t(y− x0)) ≤ (1− t)Φ(x0) + tΦ(y).

Using (8.3) we get, for smallt:

Φ(x0) + t〈DΦ(x0), y− x0〉 + o(t) ≤ (1− t)Φ(x0) + tΦ(y)

which implies (8.4) readily. Next, let us suppose thatµ ∈ ∂Φ(x0):

(8.7) Φ(y) ≥ Φ(x0) + 〈µ, y− x0〉 y ∈ X.
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Now givenv ∈ X we know by assumption (8.3) thatx0+ tv, for small
t, is in domΦ. So from (8.7)

Φ(x0 + tv) − Φ(x0) ≥ t〈µ, v〉.

Assumingt > 0, dividing through byt and passing to the limit we
obtain〈DΦ(x0), v〉 ≥ 〈µ, v〉 for all v ∈ X, which impliesµ = DΦ(x0). �

Theorem 8.3(Brøndsted-Rockafellar [18]). Let X be a Banach space
andΦ : X → R ∪ {+∞} a convex lower semicontinuous function, such
thatΦ ≡ +∞. Thendom∂Φ is dense indomΦ. More precisely, for any 70

x ∈ domΦ, there exists a sequence(xk) in X such that

||xk − x|| ≤ 1/k(8.8)

Φ(xk)→ Φ(x)(8.9)

∂Φ(xk) , ∅ for all k.(8.10)

Proof. The set
E = {(x, a) ∈ X × R : Φ(x) ≤ a}

[called theepigraphof Φ] is closed and convex. (Prove!) SinceE , X
we can take (x0, a0) < E and use Hahn Banach theorem: there exists
µ ∈ X∗ andα ∈ R such that

(8.11) Ψ(x) ≡ Φ(x) − 〈µ, x〉 − α > 0 for all x ∈ X.

[there is a small step to get (8.11) from Hahn-Banach; see a similar
situation in the proof of Proposition 5.4]. Now let us apply Theorem 4.2
toΨ with ǫ/2 = Ψ(x) − Inf XΨ. So for eachλ = 1/k, k ∈ N, we obtain
xk such that (8.8) holds, and moreover

Ψ(xk) ≤ Ψ(x)(8.12)

Ψ(xk) < Ψ(x) + ǫk||xk − x|| ∀x , xk.(8.13)

Next consider the functionalΘ : X→ R ∪ {+∞} defined by

Θ(x) = Ψ(x) + ǫk||x− xk||,
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which is convex and lower semicontinuous. From (8.13) it follows that
xk is the (unique) global minimum ofΘ. So 0∈ ∂Θ(xk). LetΓ : X→ R
be the convex lower semicontinuous functional defined byΓ(x) = ||x −
xk||. By 8.1 it follows that there arez∗ ∈ ∂Ψ(xk) andw∗ ∈ ∂Γ(xk) such
that 0= z∗ + ǫkw∗. Using Proposition 8.1 once more and Proposition
8.2 we see that there existsx∗ ∈ ∂Φ(xk) such thatz∗ = x∗ − µ, proving
(8.10). To prove (8.9) we rewrite (8.12) in terms ofΦ:

(8.14) Φ(xk) ≤ Φ(x) + 〈µ, xk − x〉.

Using (8.8) and (8.14) we have lim supΦ(xk) ≤ Φ(x). On the
other hand, sinceΦ is weakly lower semicontinuous we obtainΦ(x) ≤
lim inf Φ(xk). There two last inequalities prove (8.12). �

The Duality Mapping. Let X be a Banach space. In the theory of71

monotone operatorsT : X→ 2X∗ a very important role is played by the
so-called duality mapping. It essentially does in Banach space the job
done by the identity in Hilbert spaces. Theduality mapping J: X→ 2X∗

is defined for eachx ∈ X by J0 = 0 and

(8.15) Jx= {µ ∈ X∗ : 〈µ, x〉 = ||x||2, ||µ|| = ||x||}, for x , 0,

where we use the same notation for norms in bothX andX∗. Expression
(8.15) is equivalent to.

Jx= {µ ∈ X∗ : 〈µ, x〉 ≥ ||x||2, ||µ|| ≤ ||x||}.

We can show directly from the definition, using Hahn-Banach,that
Jx is a non-emptyw∗-closed convex subset ofX∗, for eachx ∈ X. How-
ever, we will prove that and much more using the results on subdiffer-
entials proved in Chapter 5, after we prove the following proposition.

Proposition 8.4. Let X be a Banach space, andΦ : X → R the func-
tional defined byΦ(x) = 1

2 ||x||
2. Then

(8.16) ∂Φ = J.

Remark . A study of generalized duality mappings can be found in
Browder [23].
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Proof. Let µ ∈ ∂Φ(x). It suffices to considerx , 0, since∂Φ(0) = 0 and
J0 = 0. Then

(8.17)
1
2
||y||2 ≥

1
2
||x||2 + 〈µ, y− x〉 ∀ ∈ X.

Let t > 0 andv ∈ X be arbitrary, and replace in (8.17)y be x+ tv:

t〈µ, v〉 ≤
1
2
||x+ tv||2 −

1
2
||x||2 ≤ t||x|| ||v|| +

1
2

t2||v||2.

Dividing through byt and passing to the limit

〈µ, v〉 ≤ ||x|| ||v|| ∀v ∈ X.

This implies||µ|| ≤ ||x||. On the other hand, lety = tx in (8.17):

(8.18)
1
2

(t2 − 1)||x||2 ≥ (t − 1)〈µ, x〉.

For 0< t < 1 we obtain from (8.18)12(t + 1)||x||2 ≤ 〈µ, x〉. Letting 72

t → 1 we have〈µ, x〉 ≥ ||x||2, completing the proof thatµ ∈ Jx. The
other way around, assume now thatµ ∈ Jx, and we claim that (8.17)
holds. Let us estimate the right side of (8.17) using the properties ofµ:

〈µ, y〉 − 〈µ, x〉 +
1
2
||x||2 ≤ ||x|| ||y|| − ||x||2 +

1
2
||x||2,

and clearly the right side of the above inequality is≤ 1
2 ||y||

2. �

Remark 1. If µ ∈ J(x0) it follows from the above thatµ supports the
ball of radius||x0|| around 0 at the pointx0. Indeed if||y|| ≤ ||x0||, then
〈µ, y〉 ≤ 〈µ, x0〉. I.e. Sup{〈µ, y〉 : ||y|| ≤ ||x0||} = 〈µ, x0〉.

Conversely, if a functionalµ supports the unit ball at a pointx0, then
µ ∈ J(||µ||x0). Indeed, from

〈µ, x0〉 = Sup||y||≤1〈µ, y〉

we obtain〈µ, x0〉 = ||µ||, which proves the claim.
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Remark 2. Let us callR(J) = ∪{Jx : x ∈ X}. If X is a reflexive Banach
space, the above remark says thatR(J) = X∗. If X is not reflexive there
is a result of R. C. James [49] which says that there are functionals
which do not support the unit ball. So for non reflexive Banachspaces
R(J) , X∗. However the Bishop Phelps theorem proved in Chapter 7
says thatR(J) is densein X∗, for all Banach spaces.

Gâteaux Differentiability of the Norm. As in the previous section let
Φ(x) = 1

2 ||x||
2. SinceΦ : X → R is continuous and convex we have by

Proposition 5.4 that

(8.19) lim
t↓0

Φ(x+ ty) − Φ(x)
t

= Maxµ∈Jx〈µ, y〉, t > 0.

It follows from (8.19) that

(8.20) lim
t↑0

Φ(x+ ty) − Φ(x)
t

= Minµ∈Jx〈µ, y〉, t < 0.

The functionalΦ is Gâteaux differentiable if and only if the two73

limits in (8.19) and (8.20) are equal and in fact there is a continuous
linear functional, noted byDΦ(x) and called the Gâteaux derivative at
x, such there limits are equal to〈DΦ(x), y〉. So the existence of the
Gâteaux derivative ofΦ at a certain pointx implies that

Maxµ∈Jx〈µ, y〉 = Minµ∈Jx〈µ, y〉 for all y ∈ Y.

Clearly this implies thatJx is a singleton, andJx = DΦ(x). The
converse is clearly true: ifJx is singleton then (8.19) and (8.20) imply
that Φ is Gâteaux differentiable atx and DΦ(x) = Jx. So we have
proved.

Proposition 8.5. Let X be a Banach space.Φ(x) = 1
2 ||x||

2 is Gâteaux
differentiable at a point x if and only if Jx is a singleton. Moreover Jx=
DΦ(x). In particular, the duality mapping is singlevalued, J: X → X∗,
if and only ifΦ(x) = 1

2 ||x||
2 is Gâteaux differentiable at all points x∈ X.

Remark 1. Which geometric properties of the Banach spaceX give a
singlevaled duality mapping? For the definitions below letB1 = {x ∈ X :
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||x|| ≤ 1} and∂B1 = {x ∈ X : ||x|| = 1}. In the terminology introduced in
Chapter 7, we see from the Hahn Banach theorem that all pointsof ∂B1

are support points, i.e. givenx ∈ ∂B1 there exists a functionalµ ∈ X∗

such that
SupB1

µ = 〈µ, x〉.

In geometric terms we say that the ballB1 has a hyperplane of sup-
port at each of its boundary points. A Banach spaceX is said to be
strictly convexif given x1, x2 ∈ ∂B1, with x1 , x2, then||tx1+(1−t)x2|| <

1 for all 0 < t < 1. Another way of saying that it is: each hyper-
plane of support touches∂B1 at a unique point. (Or still∂B1 contains
no line segments). A Banach spaceX is said to besmoothif each point
x ∈ ∂B1 possesses only one hyperplane of support. Examples inR2

with different norms: (i) the Euclidean norm||x||2 = x2
1 + x2

2 is both
strictly convex and smooth; (ii) the sup norm||x|| = Sup{|x1|, |x2|} is
neither strictly convex non smooth; (iii) the norm whose unit ball is
{(x1, x2) : −1 ≤ x1 ≤ 1, x2

1 − 1 ≤ x2 ≤ 1− x2
1} is strictly convex but not

smooth: (iv) the norm whose unit ball is the union of the threesets next
is smooth but not strictly convex:

{(x1, x2) : −1 ≤ x1, x2 ≤ 1}, {(x1, x2) : x1 ≥ 1, (x1 − 1)2 + x2
2 ≤ 1}

and
{(x1, x2) : x1 ≤ −1, (x1 + 1)2 + x2

2 ≤ 1}.

Remark 2. With the terminology of the previous remark, Proposition74

8.5 states: “Φ(x) = 1
2 ||x||

2 is Gâteaux differentiable if and if X is smooth”.
No condition on reflexivity is asked fromX.

Remark 3. If X∗ is strictly convex thenJ is singlevalued. Indeed, for
eachx0 ∈ X, Jx0 is a convex subset of the set{µ ∈ X∗ : ||µ|| = ||x0||},
which is a singleton in the case whenX∗ is strictly convex. SoX∗ strictly
convex implies thatX is smooth, in view of Proposition 8.5 and Remark
2 above.

Remark 4. There is a duality between strict convexity and smoothness
in finite dimensional Banach spaces:X is strictly convex [resp. smooth]
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if and only if X∗ is smooth [resp. strictly convex]. Such a result does
not extend to all Banach spaces, see Beauzamy [8, p. 186] for an ex-
ample. However this is true for reflexive Banach spaces. Thiswas first
proved byS̆mulian [75], and it follows readily from Remark 3 above
and Remark 5 below.

Remark 5. X∗ smooth impliesX strictly convex. Indeed suppose thatX
is not strictly. Then there arex1, x2 ∈ ∂B1 such thatx = 1

2(x1+x2) ∈ ∂B1.
Jx ∈ ∂B∗1 where∂B∗1 = {µ ∈ X∗ : ||µ|| = 1}. We now claim thatx1 and
x2 viewed as elements ofX∗∗ are two support functionals ofB∗1 at Jx,
contradicting the smoothness ofX∗. In fact

(8.21) 1= 〈Jx, x〉 =
1
2
〈Jx, x1〉 +

1
2
〈Jx, x2〉

implies〈Jx, x1〉 = 1 and〈Jx, x2〉 = 1, proving the claim.

Frechet Differentiability. We know that a functionalΦ : X → R
which is Gâteaux differentiable is not in general Fréchet differentiable.
However

Proposition 8.6. Let X be a Banach space, A functionalΦ : X → R is
continuously Fréchet differentiable (i.e. C1) if and only if it is continu-
ously Gâteaux differentiable.

Proof. One of the implications is obvious. Let us assume thatΦ is
Gâteaux differentiable in a neighborhoodV of point u0 ∈ X and that
the mappingx ∈ V 7→ DΦ(x) ∈ X∗ is continuous. We claim thatDΦ(u0)
is the Fréchet derivative atu0, and, indeed:75

(8.22) Φ(u0 + v) − Φ(u0) − 〈DΦ(u0), v〉 = o(v).

The real-valued functiont ∈ [0, 1] 7→ Φ(u0 + tv) is differentiable for
smallv. So by the mean value theoremΦ(u0 + v) − Φ(u0) = 〈DΦ(u0 +

τv), v〉, which holds for smallv and someτ ∈ [0, 1]. So we could es-
timate the left side of (8.22) by|DΦ(u0 + τv) − DΦ(u0)|, and using the
continuity of the Gâteaux derivative we finish. �

It is clear that a functionalΦ : X → R could be Frechet differen-
tiable without beingC1. However this is not the case ifΦ(x) = 1

2 ||x||
2.
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Proposition 8.7. Let X be a Banach space. IfΦ(x) = 1
2 ||x||

2 is Fréchet
differentiable [which implies Gateaux differentiable and∂Φ = J, where
J is singlevalued] then J: X→ X∗ is a continuous mapping.

Remark. Without additional assumptions on the Banach space, a single-
valued duality mappingJ : X→ X∗ is continuous from the strong topol-
ogy ofX to thew∗-topology ofX∗. For simplicity let us sketch the proof
using sequences. Since thew∗-topology needs not to be metrizable, fil-
ters should be used, see Beauzamy [24, p. 177]. Letxn→ x in X. Since
||Jxn||X∗ ≤ const, there isµ ∈ X∗ such that

Jxn
w∗
⇀µ.

We claim thatµ = Jx. First, from 〈Jxn, xn〉 = ||xn||
2 we conclude

〈µ, x〉 = ||x||2. Next givenǫ > 0 there existsu ∈ X with ||u|| = 1 such that
||µ|| ≤ 〈µ, u〉 + ǫ. So||µ|| ≤ 〈Jxn, u〉 + ǫ ≤ ||xn|| + ǫ for largen. Passing to
the limit, and sinceǫ > 0 is arbitrary||µ|| ≤ ||x||. �

Proof of Proposition 8.7. Suppose by contradiction that there is a
sequencexn → x andr > 0 such that||Jxn − Jx|| > 2r, for all n. So for
eachn there existsyn ∈ X, ||yn|| = 1 such that

(8.23) 〈Jxn − Jx, yn〉 > 2r.

Using the Frechet differentiability ofΦ we can findδ > 0 such that

(8.24) |Φ(x+ y) − Φ(x) − 〈Jx, y〉| ≤ r ||y|| for ||y|| ≤ δ.

On the other hand we have 76

(8.25) Φ(x+ δyn) − Φ(xn) ≥ 〈Jxn, x+ δyn − xn〉.

Now using (8.24) we estimate

〈Jxn − Jx, δyn〉 ≤ Φ(x+ δyn) − Φ(xn) + 〈Jxn, xn − x〉 − 〈Jx, δyn〉

which is equal to

(8.26) Φ(x+ δyn) − Φ(x) − 〈Jx, δyn〉 + Φ(x) − Φ(xn) + 〈Jxn, xn − x〉.
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The first three terms in (8.26) we estimate using (8.24). So starting
with (8.23) we get

2rδ < rδ + Φ(x) − Φ(xn) + ||xn|| ||xn − x||

which implies thatΦ(xn) does not converge toΦ(x). This contradicts
the continuity ofΦ. �

As a consequence of the previous propositions we have the follow-
ing characterization of Fréchet differentiability of the norm:

Proposition 8.8. Let X be a Banach space.Φ(x) = 1
2 ||x||

2 is Frechet
differentiable if and only if the duality mappings is singlevalued and
continuous.

Remark. Which geometric properties of the Banach spaceX give a con-
tinuous singlevalued duality mapping? We start with a condition intro-
duced byS̆mulian [75]. X∗ satisfiescondition (S) if for each x ∈ ∂B1

we have

(8.27) lim
δ→0

diamAx(δ) = 0,

whereAx(δ) = {µ ∈ X∗ : 〈µ, x〉 ≥ 1− δ} ∩ B∗1.

Proposition 8.9. Let X be a Banach space. The duality mapping is
singlevalued and continuous if and only if X∗ satisfies(S).

Proof. (i) First assume (S). Suppose that there existsx ∈ ∂B1 such
that Jx containsµ1 , µ2. Clearlyµ1, µ2 ∈ Ax(δ), for all δ > 0, and
||µ1 − µ2|| > 0 negates (8.27). To show the continuity ofJ, it suffices to
prove that ifxn→ x, with ||xn|| = 1, thenJxn→ Jx. We know that

Jxn
w∗
⇀Jx,

so it is enough to show that (Jxn) is a Cauchy sequence. Givenǫ > 0,77

chooseδ > 0 such that diamAx(δ) ≤ ǫ. We know that〈Jxn, x〉 →
〈Jx, x〉 = 1. So there existsn0 such thatJxn ∈ Ax(δ) for all n ≥ n0.
Using condition (S) we conclude that||Jxn− Jxm|| ≤ ǫ for all n, m≥ n0.
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(ii) Conversely, assume by contradiction that (S) does not hold, for
somex ∈ ∂B1. So there existsǫ0 > 0 such that for everyn ∈ N we can
find µn, µ′n in B∗1 with the properties

〈µn, x〉 ≥ 1−
1
n
, 〈µ′n, x〉 ≥ 1−

1
n
, ||µn − µ

′
n|| ≥ ǫ0.

We have seen, Remark 2, thatR(J) is dense inX∗. So we can find
xn, yn in X such that

〈Jxn, x〉 ≥ 1−
2
n
, 〈Jyn, x〉 ≥ 1−

2
n
, ||Jxn − Jyn|| ≥

ǫ0

2
,(8.28)

||Jxn|| ≤ 1+
1
n
, ||Jyn|| ≤ 1+

1
n
.(8.29)

Observe that the sequences (Jxn), (Jyn) are bounded inX∗. By the
Banach Alaoglu Theorem, there existsµ andµ′ in X∗ such that

Jxn
w∗
⇀µ, Jyn

w∗
⇀µ′.

(As usual take subsequences if necessary). Passing to the limit in (8.28)
we obtain〈µ, x〉 ≥ 1, 〈µ′, x〉 ≥ 1. From (8.29) it follows that in fact we
have〈µ, x〉 = 〈µ′, x〉 = 1, which impliesµ = µ′ = Jx. On the other hand,
from the last assertion in (8.28) we can findz ∈ B1 such that

〈Jxn − Jyn, z〉 ≥
ǫ0

4
.

Passing to the limit in this inequality we come to a contradiction. �

Remark. Now we give a geometric condition which is sufficient to hav-
ing the continuity and singlevaluedness ofJ. Some definitions. A Ba-
nach spaceX is said to beuniformly convex(Clarkson [26]) if givenǫ >
0 there existsδ = δ(ǫ) > 0 such that ifx, y ∈ ∂B1 and||12(x+ y)|| ≥ 1− δ
then||x− y|| ≤ ǫ. A Banach spaceX is said to belocally uniformly con-
vex(Lovaglia [58]) if givenǫ > 0 andx0 ∈ ∂B1 there existsδ = δ(ǫ, x0)
such that ifx ∈ B1 and ||12(x + x0)|| ≥ 1 − δ then ||x − x0|| ≤ ǫ. The
previous two definitions can be given in terms of sequences asfollows.
X is uniformly convexif given and two sequences (xn) and (yn) in B1 78
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such that||12(xn + yn)|| → 1 then||xn − yn|| → 0. X is locally uniformly
convex if given any pointx0 ∈ ∂B1 and any sequence (xn) in B1 such
that ||12(x0+ xn)|| → 1 thenxn→ x0. A Banach spaceX is said to satisfy
Property H(Fan-Glicksberg [40]) ifX is strictly convex and

(8.30) xn ⇀ x0, ||xn|| → ||x0|| ⇒ xn→ x0.

Hilbert spaces are uniformly convex. A uniformly convex Banach
space is locally uniformly convex. A locally uniformly convex Banach
space satisfies Property (H). The first assertion is easily verified using
the fact thatx + y is orthogonal tox − y, for x, y ∈ ∂B1. The second
is trivial. And the third is proved as follows. It is clear that a locally
uniformly convex Banach space is strictly convex. To prove (8.30) we
may assume that||xn|| ≤ 1 and||x0|| = 1. We claim thatxn ⇀ x0 and
||xn|| → ||x0|| implies that||12(xn + x0)|| → 1. Once this is done, the
fact thatX us supposed locally uniformly convex implies thatxn → x0.
Suppose by contradiction that a subsequence of (xn), denoted by (xn)
again, is such that||12(xn + x0)|| ≤ t < 1, for all n. Let µ ∈ Jx0. Then

〈µ,
1
2

(x0 + xn)〉 ≤ 〈µ, tx0〉

which implies 1
2 +

1
2〈µ, xn〉 ≤ t. Passing to the limit we come to a

contradiction.

Proposition 8.10. Let X be a Banach space and suppose that X∗ is
locally uniformly convex. Then the duality mapping is singlevalued and
continuous.

Proof. Singlevaluedness is clear. Now letxn→ x0 in X. As in Proposi-
tion 8.9 we may suppose||xn|| = 1. We know that

Jxn
w∗
⇀Jx0.

Suppose by contradiction (passing to a subsequence) that1
2 ||Jxn +

Jx0|| ≤ t < 1. Then

(Jxn + Jx0, xn + x0) ≤ 4t.
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On the other hand the left side of the above inequality is equal to

(Jxn, xn) + (Jx0, xn) + (Jxn, x0) + (Jx0, x0) = 2+ (Jx0, xn) + (Jxn, x0)

which converges to 4. Impossible! �

Proposition 8.11. Let X be a reflexive Banach space. Then J is single-79

valued and continuous if and only if X∗ satisfies Property H.

Proof. It can easily be seen that, in the case of reflexive spaces, Property
H on X∗ implies the said properties onJ. To prove the converse, we use
Proposition 8.9 and show that PropertyS implies PropertyH on X∗;
of course reflexivity is used again. Suppose by contradiction that there
exists a sequence

µn ⇀ µ0, ||µn|| → ||µ0||, µ9 µ0.

We may suppose without loss of generality that||µn|| ≤ 1 and||µ0|| =

1. So there existǫ0 > 0 and sequences (jn) and (kn) going to∞ such that

(8.31) ||µ jn − µkn|| ≥ ǫ0.

SinceJ is singlevalued continuous and onto, we can findx0 in X with
||x0|| = 1 such thatµ0 = Jx0. Consider the setAx0(δ) defined in (8.27)
and chooseδ > 0 such that diamAx0(δ) < ǫ0/2. Clearlyµn ∈ Ax0(δ) for
largen. But this contradicts (8.31). �

Uniform Fr échet Differentiability of the Norm. In this seciton we
limit ourselves to Proposition 8.12 below. We refer to the books of
Beauzamy [8] and Diestel [32] for more on this subject. A concept of
uniform smoothness can be introduced and be shown to enjoy a duality
with uniform convexity, just like smoothness and strict convexity do.

Proposition 8.12. The duality mapping J is singlevalued and uniformly
continuous on bounded subsets of X if and only if X∗ is uniformly convex.

Proof. (i) We first prove thatX∗ uniformly convex implies the said prop-
erties onJ. From Proposition 8.10 it follows thatJ is singlevalued and
continuous. To prove uniform continuity we preceed by contradiction.
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Assume that the existsǫ0 > 0 and sequences (xn), (yn) in some fixed
bounded subset ofX such that

||xn − yn|| <
1
n

and ||Jxn − Jyn|| ≥ ǫ0.

We may assume that||xn|| = ||yn|| = 1. Now we claim that12 ||Jxn +

Jyn|| → 1 asn→ ∞, arriving then at a contradiction through the use of
the uniform convexity ofX∗. To prove the claim just look at the identity80

〈Jxn + Jyn, xn〉 = 〈Jxn, xn〉 + 〈Jyn, yn〉 + 〈Jyn, xn − yn〉

and estimate to obtain

2 ≥ 〈Jxn + Jyn, xn〉 ≥ 2− 2||xn − yn||.

Now we assume thatJ is singlevalued and uniformly continuous on
bounded sets. By the fact thatR(J) is dense inX∗ it suffices to show that
givenǫ > 0 there exists aδ > 0 such that

(8.32) ||Jx− Jy|| ≥ ǫ ⇒
1
2
||Jx+ Jy|| ≤ 1− δ

for x, y ∈ ∂B1. First we write an identity foru, v ∈ ∂B1

(8.33) 〈Jx+ Jy, u〉 = −〈Jx− Jy, v〉 + 〈Jx, u+ v〉 + 〈Jy, u− v〉.

Observe that the sup of the left side with respect tou ∈ ∂B1 is the
norm ofJx+Jy, and the sup of the first term in the right side with respect
to v ∈ ∂B1 gives the norm ofJx− Jy. Next let 0< ǫ′ < ǫ and choose
v ∈ ∂B1 such that

(8.34) 〈Jx− Jy, v〉 ≥ ǫ′.

Now choose 0< ξ < ǫ′. By the uniform continuity ofJ there is
η > 0 such that

(8.35) ||Jz1 − Jz2|| ≤ ξ if ||z1 − z2|| ≤ 4η.
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Now takev = ηv in (8.33) and let us estimate separately the three
terms in the right side of (8.33). The first is trivially estimated by−ǫ′η.
The other two are estimated as follows:

〈Jx, u+ v〉 + 〈Jy, u− v〉 ≤ ||u+ v|| + ||u− v||.

Let s= (u+v)/||u+v|| andd = (u−v)/||u−v||, and write the identity

(8.36) ||u+ v|| + ||u− v|| = (Js, u) + (Jd, u) + (Js− Jd, v).

Then estimate (8.36) using (8.35) and get

||u+ v|| + ||u− v|| ≤ 2+ ξ||v|| ≤ 2+ ξη.

Finally (8.33) is estimated by−ǫ′η + 2+ ξη, for all u ∈ ∂B1. So 81

1
2
||Jx+ Jy|| ≤ 1−

ǫ′ − ξ

2
η.

and (8.32) is proved. �

Remark. The functionalΦ is said to beuniformly Frechet differentiable
if it is Frechet differentiable and if givenǫ > 0 there existsδ > 0 such
that

|Φ(x+ u) − Φ(x) − 〈Φ′(x), u〉| ≤ ǫ||u||

for all x ∈ B1 and all||u|| ≤ δ. It is easy to see that the uniform differen-
tiability of Φ is equivalent toJ being singlevalued and uniformly con-
tinuous on bounded sets. So the norm of a Banach space is uniformely
Frechet differentiable iff X∗ is uniformly convex.





Chapter 9

Normal Solvability

Introduction. Let X and Y be Banach spaces. Letf : X → Y be 82

a given function. This section is devoted to questions relative to the
solvability of the equationf (x) = y, wheny ∈ Y is given. The function
f is supposed to be Gâteaux differentiable and we would like to have
sufficient conditions for the solvability of the above equation stated in
terms of the properties of the Gâteaux derivativeD fx. Parallelling the
Fredholm theory for compact operators these conditions will naturally
involve D f ∗x . For the sake of later referencing we start by recalling some
results from the theory of linear operators. Then we go to theso-called
normal solvability results of F. E. Browder and S. I. Pohoz̆aev. Some
results of W. O. Ray and I. Ekeland are also discussed. We close the
section with a comparative study of the results here with theclassical
inverse mapping theorem.

What is Normal Solvability? Let L : X → Y be a bounded linear
operator from a Banach spaceX to a Banach spaceY. The equation
Lx = y is said to benormally solvable(in the sense of Hausdorff) if

(9.1) y ∈ N(L∗)⊥ ⇒ y ∈ R(L).

HereL∗ : Y∗ → X∗ is the adjoint operator defined as follows for
eachµ ∈ Y∗, L∗µ ∈ X∗ is given by〈L∗µ, x〉 = 〈µ, Lx〉 for all x ∈ X.
The other notations in (9.1) are: (i)N(T) to denote the kernel of an
operatorT : X → Y, i.e. N(T) = {x ∈ X : T x = 0}; (ii) the range of

97
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T, R(T) = {y ∈ Y : ∃x ∈ X s.t. T x = y}, and the (right) polar of a83

subspaceB ⊂ X∗, B⊥ = {x ∈ X : 〈µ, x〉 = 0,∀µ ∈ B}. Later on we also
use the (left) polar of a subspaceA ⊂ X defined as

A⊥ = {µ ∈ X∗ : 〈µ, x〉 = 0 ∀x ∈ A}.

The well-known Fredholm alternative for compact linear operators
T : X → X in a Banach spaceX gives that the operatorL = I − T is
normally solvable. For a general bounded linear operatorL : X → Y,
one can prove that

(9.2) N(L∗)⊥ = R(L).

So all operatorsL with a closed range are normally solvable.

Some Results From The Linear Theory. We now recall some theo-
rems from the theory of bounded linear operators in Banach spaces. The
reader can find the proofs in many standard texts in Functional Analysis,
see for instance Yosida [79], Brézis [15].

Theorem 9.1(Closed range Theorem). Let L : X → Y be a bounded
linear operator, X and Y Banach spaces. The following properties are
equivalent:(i) R(L) is closed,(ii) R(L∗) is closed,(iii) R(L) = N(L∗)⊥,
(iv) R(L∗) = N(L)⊥.

Theorem 9.2 (Surjectivity Theorem). Let L : X → Y be a bounded
linear operator. The following conditions are equivalent(i) R(L) = Y,
(ii) N(L∗) = {0} andR(L∗) is closed,(iii) there exists a constant C> 0
such that||y∗|| ≤ C||L∗y∗||.

Theorem 9.3(Surjectivity Theorem for the adjoint). Let L : X → Y
be a bounded linear operator. The following conditions are equivalent:
(i) R(L∗) = X, (ii) N(L) = {0} andR(L) is closed,(iii) there exists a
constant C> 0 such that||x|| ≤ C||Lx||

Normal Solvability of Nonlinear Operators. Now we describe a non-
linear analogue of Theorem 9.2. This result was proved by Pohoz̆aev84

[63] (see also [64], [65]) for reflexive Banach spaces andf (X) weakly
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closed, and by Browder [20], [21], for general Banach spaces. The
Browder papers mentionned above contain much more materialon nor-
mal solvability besides the simple results presented here.

Theorem 9.4. Let f : X → Y be a Gâteaux differentiable function
between Banach spaces X and Y. Assume that f(X) is closed. Let us use
the notation D fx for the Gateaux derivative at a point x∈ X. Assume
that N(D f ∗x ) = {0} for all x ∈ X. Then f is surjective.

The above result follows from a more general one, (namely Theo-
rem 9.5) due also to Browder. The proof below follows the samespirit
of Browder’s original proof. However it uses a more direct approach
[directness is a function of the arrangement one sets in one’s presenta-
tion!] through the Drop Theorem (Theorem 7.3), proved in Chapter 7
via the Ekeland Variational Principle.

Theorem 9.5.Let X and Y be Banach spaces, and f: X→ Y a Gâteaux
differentiable function. Assume that f(X) is closed. Let y∈ Y be given
and suppose that there are real numbersρ > 0 and0 ≤ p < 1 such that

f −1(Bρ(y)) , ∅(9.3)

Inf {||y− f (x) − z|| : z∈ R(D fx)} ≤ p||y− f (x)||,(9.4)

for all x ∈ f −1(Bρ(y)). Then y∈ f (X).

Remark 1. If (9.3) and (9.4) holds simultaneously for eachy ∈ Y, then
f is surjective. Observe that a largeρ gives (9.3), but then (9.4) is harder
to be attained.

Remark 2. Proof of Theorem 9.4N(D f ∗x ) = {0} implies, by (9.2), that
(9.4) is attained withp = 0 and arbitraryρ. So, for each giveny, take
ρ such that dist(y, f (X)) < ρ, and takep = 0. Therefore Theorem 9.5
implies Theorem 9.4.

Remark 3. The thesis of Theorem 9.4 still holds if in the hypotheses
we replaceN(D f ∗x ) = {0} by R(D fx) dense inY. Theorem 9.4 contains
a result of Kacurovskii [35], who considered continuously Frechet dif-
ferentiable mappingsf and assumed thatR(D fx) = Y for all x ∈ X. 85



100 9. Normal Solvability

The proof uses a Newton-Kantorovich method of successive approxi-
mations. See Remark 1 after Theorem 9.8.

Remark 4. A Gâteaux differentiable mappingf : X → Y is said to be
a Fredholm mappingif D fx : X → Y is a Fredholm (linear) operator
for eachx ∈ X. We recall that a bounded linear operatorL : X → Y is
Fredholm ifN(L) is finite dimensional andR(L) is closed and has finite
codimension. The indexi(L) is defined asi(L) = dimN(L)−codimR(L).
We observe thati(D fx) for a Fredholm mappingf is locally constant.
SinceX is connected we can then define

i( f ) = i(D fx) for some x ∈ X

since the right side is independent ofx. Now if in Theorem 9.4 we as-
sume thatf is a Fredholm mapping of index 0, then conditionN(D f ∗x ) =
{0} can be replaced byN(D fx) = {0}.

Proof of Theorem 9.5. Let S = f (X). Suppose by contradiction that
y < S. Let R = dist(y,S) and chooser, ρ > 0 such thatr < R < ρ

andpρ < r. Observe that if (9.3) and (9.4) hold for someρ0 then it also
holds for any otherρ, with R < ρ ≤ ρ0. Then use the Drop Theorem:
there existsu0 ∈ S

(9.5) ||u0 − y|| < ρ and S ∩ D(y, r; u0) = {u0}.

Now let x0 ∈ X be such thatf (x0) = u0. Then (9.4) implies

Inf {||y− f (x0) − z|| : z ∈ R(D fx0)} ≤ p||y = f (x0)|| < r.

So there existsx ∈ X such that

(9.6) ||y− f (x0) − D fx0(x)|| < r,

and approximating the Gâteaux derivative by the Newton quotient one
has for smallt > 0:

||wt || ≡ ||y− f (x0) −
f (x0 + tx) − f (x0)

t
|| < r.
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Thus the vectory − wt ∈ D(y, r; u0), and the same is true for (1−
t)u0+ t(y−wt) with 0 < t < 1 andt small. But this last statement simply
says that

(9.7) f (x0 + tx) ∈ D(y, r; u0), ∀t > 0 small.

The second assertion in (9.5) and (9.7) imply that 86

f (x0 + tx) = u0 ∀t > 0 small.

which givesD fx0(x) = 0. Going back to (9.6) we get||y − f (x0)|| < r,
which is impossible. �

Some Surjectivity Results. Both theorems 9.4 and 9.5 have as hypoth-
esis the statement thatf (X) is a closed set. This is a global assumption
whose verification may cause difficulties when applying those theorems.
It would be preferable to have local assumptions instead. That it is the
contents of the next result which is due to Ekeland, see Bates-Ekeland
[7]; see also Ray-Rosenholtz [69] for a slightly more general result.
Observe that the functionf is assumed to be continuous in the next the-
orem. This implies that the graph off closed, but asserts nothing like
that aboutf (X).

Theorem 9.6. Let X and Y be Banach spaces and f: X → Y a contin-
uous mapping, which is Gâteaux differentiable. Assume:

R(D fx) = Y, ∀x ∈ X(9.8)

∃k > 0 s.t. ∀x ∈ X, ∀y ∈ Y, ∃z ∈ (D fx)
−1(y)(9.9)

with the property:
||z|| ≤ k||y||.

Then f is surjective.

Proof. If suffices to prove that 0∈ f (X). Define the functionalΦ :
X → R by Φ(x) = || f (x)||. ClearlyΦ satisfies the conditions for the
applicability of the Ekeland Variational Principle. So given ǫ > 0 there
existsxǫ ∈ X such that

|| f (xǫ )|| ≤ Inf X || f (x)|| + ǫ(9.10)
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|| f (xǫ )|| < || f (x)|| + ǫ||x− xǫ || ∀x , xǫ .(9.11)

Take in (9.11)x = xǫ + tv, wheret > 0 andv ∈ X are arbitrary. Let
µt ∈ Y∗ such that

(9.12) ||µt || = 1, || f (xǫ + tv)|| = 〈µt, f (xǫ + tv)〉;

see Remark 1 after the proof of Proposition 8.4:µt ∈ J( f (xǫ + tv)/
|| f (xǫ + tv||). We observe that|| f (xǫ )|| ≥ 〈µt, f (xǫ〉. Altogether, we can
write (9.11) as

(9.13)
〈µt, f (xǫ + tv)〉 − 〈µt, f (xǫ )〉

t
≥ −ǫ||v||.

By the Banach-Alaoglu theorem (i.e., thew∗-compactness of the87

unit ball in Y∗) and the fact that

1
t
[ f (xǫ + tv) − f (xǫ )] → D fxǫ (v) (strongly) in Y

we can pass to the limit ast → 0 in (9.12) and (9.13) and obtain

||µ0|| = 1, || f (xǫ )|| = 〈µ0, f (xǫ)〉(9.14)

〈µ0,D fxǫ (v)〉 ≥ −ǫ||v|| for all v ∈ X.(9.15)

Now using hypothesis (9.8) and (9.9) we can select av ∈ X such that
D fxǫ (v) = − f (xǫ) and||v|| ≤ k|| f (xǫ )||. All this gives

〈µ0, f (xǫ )〉 ≤ ǫk|| f (xǫ )||.

So if we start with anǫ such thatǫk < 1, the last inequality contra-
dicts (9.14), unlessf (xǫ) = 0. �

Remark 1. The passage to the limit in the above proof requires a word
of caution. If X is separable then thew∗-topology of the unit ball in
X∗ is metrizable. So in this case we can use sequences in the limiting
questions. Otherwise we should use filters. She Dunford-Schwartz [35,
p. 426].
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Remark 2. Let L : X → Y be a bounded linear operator with closed
range. Then there exists a constantk > 0 such that for eachy ∈ R(T)
there is anx ∈ X with properties thaty = Lx and ||x|| ≤ k||y||. This is a
classical result of Banach and it can be proved from the Open Mapping
Theorem in a straightforward way: consider the operatorT̃ : X/N(T)→
R(T). In this set-up it is contained in Theorem 9.3 above. Now let
us see which implications this has to Theorem 9.6 above. Condition
(9.8) implies that the inequality in (9.9) holds with ak depending on
x. Viewing a generalization of Theorem 9.6 let us define a functional
k : X→ R as follows. Assume thatf : X→ Y has a Gâteaux derivative
with the property thatR(D fx) is the whole ofY. For eachx ∈ X, k(x) is
defined as a constant that has the property

(9.16) ||z|| ≤ k(x)||y|| ∀y ∈ Y and some z ∈ (D fx)
−1y.

We remark that for eachx ∈ X, the smallest value possible fork(x)
is the norm of theT−1 whereT : X/N(D fx)→ Y.

Theorem 9.7. Let X and Y be Banach spaces and f: X → Y a contin- 88

uous mapping which is Gâteaux differentiable. Assume

R(D fx) = Y, ∀x ∈ X(9.17)

∀R> 0 ∃c = c(R) s.t. k(x) ≤ c, ∀||x|| ≤ R.(9.18)

|| f (x)|| → ∞ as ||x|| → ∞.(9.19)

Then f is surjective.

Proof. It suffices to prove that 0∈ f (X). DefineΦ : X → R byΦ(x) =
|| f (x)||. Let ρ = || f (0)||. It follows from (9.19) that there existsR > 0
such that

(9.20) || f (x)|| ≥
3
2
ρ if ||x|| ≥ R.

Choose anǫ > 0 such thatǫc(R) < 1 andǫ ≤ ρ/2. By the Ekeland
Variational Principle there existsxǫ ∈ X such that

|| f (xǫ )|| ≤ Inf XΦ + ǫ ≤ ρ + ǫ ≤ 3ρ/2.(9.21)
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|| f (xǫ )|| < || f (x)|| + ǫ||x− xǫ ||, ∀x , xǫ(9.22)

It follows from (9.20) and (9.21) that||xǫ || ≤ R. Now we preceed as
in the proof of Theorem 9.6 and conclude thatf (xǫ) = 0. �

Remark 1. If X = Y and f = identity + compact is a continuously
Fréchet differentiable operator, the surjectivity off has been established
by Kac̆urovskii [50] under hypothesis (9.19) andN(D fx) = {0} for all
x ∈ X. SinceD fx is also of the form identity+ compact, such a condition
is equivalent to (9.17); this is a special case of the situation described in
Remark 4 after the statement of Theorem 9.5. So Kac̆urovskiiresult
would be contained in Theorem 9.7 provided one could prove that in his
case condition (9.18) holds. Is it possible to do that? In thehypothe-
ses of Kac̆urovskii theorem, Krasnoselskii [54] observed that f is also
injective.

Remark 2. Local versions of Theorem 9.7 have been studied by Cramer
and Ray [28], Ray and Walker [69].

Comparison with the Inverse Mapping Theorem. The classical in-
verse mapping theorem states: “LetX andY be Banach spaces,U an
open neighborhood ofx0 in X, and f : U → Y a C1 function. As-
sume thatD fx0 : X → Y is an isomorphism (i.e., a linear bounded
injective operator fromX onto Y, and then necessarily with a bounded89

inverse). Then there exists an open neighborhoodV of x0, V ⊂ U, such
that f |V : V → f (V) is a diffeormorphism”. The injectivity hypothe-
sis can be withdrawn from the theorem just stated provided the thesis is
replaced byf being an open mapping in a neighborhood ofx0. More
precisely we have the following result due to Graves [48]. Ifyou have
the book by Lang [56], the result is proved there.

Theorem 9.8. Let X and Y be Banach spaces, U an open neighborhood
of x0 in X, and f : U → Y a C1 function. Assume that D fx0 : X → Y
is surjective. Then there exists a neighborhood V of x0, V ⊂ U, with the
property that for every open ball B(x) ⊂ V, centered at x, f(V) contains
an open neighborhood of f(x).
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Remark 1. If the mapping f : X → Y is defined in the whole ofX,
and it isC1 with R(D fx) = Y for all x ∈ X, Graves theorem says that
f (X) is open inY. If we have as an additional hypothesis thatf (X) is
closed, it follows then thatf (X) = Y, in view of the connectedness ofY.
Now go back and read the statement of Theorem 9.4. What we havejust
proved also follows from Theorem 9.4, using relation (9.2).Observe
thatR(D fx) = Y is much stronger a condition thatN(D f ∗x ) = {0}. The
latter will be satisfied ifR(D fx) is just dense inY. We remark that
the proof of Graves theorem via an iteration scheme uses the fact that
R(D fx) is the whole ofY. We do not know if a similar proof can go
through just with hypothesis thatR(D fx) is dense inY.

Remark 2. Graves theorem, Theorem 9.8 above, can be proved using
Ekeland Variational Principle. Since few seconds are left to close the
set, we leave it to the interested reader.

The following global version of the inverse mapping theoremis due
to Hadamard in the finite dimensional case. See a proof in M. S.Berger
[10] or in J. T. SchwartzNYULecture Notes [73]. More general results
in Browder [19].

Theorem 9.9. Let X and Y be Banach spaces and f: X → Y a C1

function. Suppose that D fx : X → R is an isomorphism. For each
R> 0, let

ζ(R) = Sup{||D fx)
−1|| : ||x|| ≤ R}.

Assume that 90∫ ∞ dr
ζ(r)
= ∞.

[In particular this is case if there exists, constant k> 0 such that
||(D fx)−1|| ≤ k for all x ∈ X]. Then f is a diffeomorphism of X onto
Y.

Remark. Go back and read the statement of Theorem 9.6. The ontoness
of the above theorem, at least in the particular case, is contained there.





Bibliography

[1] H. Amann and P. Hess — A multiplicity result for a class of elliptic 91

boundary value problems – Proc. Royal Soc. Edinburgh 84A (1979),
145–151.

[2] A. Ambrosetti and G. Prodi — Analisi non lineare, I Quaderno –
Pisa (1973).

[3] A. Ambrosetti and G. Prodi — On the inversion of some differ-
entiable mappings with singularities between Banach spaces – Ann.
Mat. Pura ed Appl. 93 (1972), 231–246.

[4] A. Ambrosetti and P. H. Rabinowitz — Dual variational methods in
critical point theory and applications – J. Functional Anal14 (1973),
349–381.

[5] J. Appell — The superposition operator in function spaces – a sur-
vey, Report No. 141 – Institut für mathematik Augsburg (1987).

[6] J.-P. Aubin and I. Ekeland — Applied Nonlinear Analysis –John
Wiley and Sons (1984).

[7] P. W. Bates and I. Ekeland — A saddle point theorem – Differential
Equations. Academic Press (1980), 123–126.

[8] B. Beauzamy — Introduction to Banach spaces and their geometry
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