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Preface

These lectures were given at the Tata Institute of Fundamental Research
in the summer of 1990. The specialized topic of mean values of the
Riemann zeta-function permitted me to go into considerable depth. The
central theme were the second and the fourth moment on the critical line,
and recent results concerning these topic are extensively treated. In a
sense this work is a continuation of my monograph [1]], since except for
the introductory Chapter[T] it starts where [[1] ends. Most of the results
in this text are unconditional, that is, they do not depend on unproved
hypothesis like Riemann’s (all complex zeros of {(s) have real parts
equal to %) or Lindel6f’s (& (% +it) < #¢). On the other hand, in many
problems concerning mean values one does not obtain the conjectured
results even if one assumes some unproved hypothesis. For example, it
does not seem possible to prove E(T) « T#+€ even if one assumes the
Riemann hypothesis. Incidentally, at the moment of writing of this text,
it is not yet known whether the Riemann or Lindelof hypothesis is true
or not.

Each chapter is followed by Notes, where some results not treated
in the body of the text are mentioned, appropriate references: are given
etc. Whenever possible, standard notation (explained at the beginning
of the text) is used.

I’ve had the pleasure to have in my audience well-known special-
ists from analytic number theory such as R. Balasubramanian, K. Ra-
machandra, A. Sankaranarayanan, T.N. Shorey and S. Srinivasan. I am
grateful to all of them for their interest, remarks and stimulating discus-
sions. The pleasant surroundings of the Institute and the hospitality of
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the Tata people made my stay a happy one, inspite of heavy monsoon
rains.

I wish to thank also M.N. Huxley, M. Jutila, K. Matsumoto and T.
Meurman for valuable remarks concerning the present lecture notes.

Special thanks are due to K. Ramachandra, Who kindly invited me
to the Tata Institute, and with whom I’ve been in close contact for many
years.

Finally, most of all I wish to thank Y. Motohashi, whose great work
on the fourth moment influenced me a lot, and who kindly permitted me
to include his unpublished material in my text.

Belgrade, March 1991.



Notation

Owing to the nature of this text, absolute consistency in notation could
not be attained, although whenever possible standard notation is used.
The following notation will occur repeatedly in the sequel.

k,l,m,n Natural numbers (positive integers).

A,B,C,Cq,... Absolute positive constants (not necessarily
the same at each occurrence).

S, 2, W Complex variables Re s and Im s denote the

real imaginary part of s, respectively; com-
mon notation is o = Res and ¢ = Ims.

1, X,y Real variables.

Res F(s) The residue of F(s) at the point s = 5.

REAY

2(s) Riemann’s zeta-function defined by {(s) =

o

Zn‘s for Res > 1 and for other values of
n=1
s by analytic continuation.

v(s) The gamma-function, defined for Res > 0 by
I(s) = f Ootx_le_’dt, otherwise by analytic
continuatign.

0% Euler’s constant, defined by
r= foo e "logxdx = 0.5772156649 .. ..

x(s) = {91201 — 5) = ()T (s) cos (2.

vii
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u(o)

expz
e(z)
log x
[x]
di(n)

dm)

I(T)
E(T)

E(T)(= Ei(T))

Es(T)

ar sinh z

A(x)

0. Notation

_ log [¢(o +1t)|
= limsup ————(
t—00 1
= e~
— e27riz‘

o real).

= Log,x(= Inx).

Greatest integer not exceeding x.

Number of ways n can be written as a product
of k fixed natural numbers.

= dy(n) = number of divisors of n.

A sum over all positive divisors of n.

=) d.
I

A sum taken over all natural numbers not ex-
ceeding x; the empty sum is defined to be
Z€ero.

Same as above, only ’ denotes that the last
summand is halved if x* is an integer.

A product taken over all possible values of the
index j; the empty sum is defined to be unity.

| 2k
= f |§(— + it)’ dt(k = 0).
0 172

The error term in the asymptotic formula
when k > 1 is an integer.

o1 T
f |{(— + 1t)| dt — Tlog(—) —Qy-T.
0 2 2w
T 2
¢+ in)| di - £@o)T
0
—% Sin1(7r0')T2_2‘T (% <0< 1).
=log(z + (2% + 1)2).
: 1
= Z d(m) ~ x(logx+2y = 1) = 7.

n<x



Ap(x)

Jp(Z)a Kp(Z), Yp(Z)
G(T)

Go(T)

B(o)
S(m,n;c)

cr(n)
@j, xj, Hj (%)

J)  ~ gx) as

X = Xg

f(x) = 0(g(x))

J) < g()
JF(x) > g(x)
J(x) = g(x)

(a,b)

[a, b]
0, €

C'la,b]

X

Error term in the asymptotic formula for
D di(n); 2a(x) = A,
nzx

Bessel functions of index p.
T

= f (E(T) - ndb).

fT (1 3)
= (E,(t) = b(o))dt = <o < =|.
2 2

4
The constant defined by (3.3).
Kloosterman sum, defined as Z =
1<d<c,(d.c)=1.dd’
d + nd
(mod c)e (u)

Ramanujan sum, defined as c.(n) =

S ()
1<h<r,(h,r)=1 r

Quantities appearing in the spectral theory of

the non-Euclidean Laplace operator, defined

in Section

Means lim @ =1, with xg possibly infi-
x—x0 g(x)

nite.

Means [f(x)| < Cg(x) for g(x) > 0, x > xg
and some absolute constant C > 0.

Means the same as f(x) = 0(g(x)).

Means the same as g(x) = 0(f(x)).

Means that both f(x) <« (g(x)) and g(x) <
f(x) hold.

Means the interval a < x < b.

Means the integral a < x < b.

An arbitrarily small number, not necessarily
the same at each occurrence in the proof of a
theorem or lemma.

The class of functions having a continuous 7-
th derivative in [a, b].



0. Notation

x) = O(g(x)) as eans that lim TAC)) = 0, with xg possibly
(x) = 0(g(x)) M hat 1 fE )
x—x0 g(X
X = X0 infinite.
f(x) =Q.(gx) Means that there exists a suitable constant

C > 0 and a sequence x, tending to co such
that f(x) > Cg(x) holds for x = x,,.

f(x) =Q_(gx)) Means that there exists a suitable constant
C > 0 and a sequence x, tending to co such
that f(x) < —Cg(x) holds for x = x;,.

f(x) = Q.(g(x) Means that both f(x) = Q. (g(x)) and f(x) =
Q_(g(x)) holds.

J(0) = Q(g(x)) Means that |f(x)] = Q.(g(x)).
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Chapter 1
Elementary Theory

1.1 Basic Properties of {(s)

THE RIEMANN ZETA-FUNCTION {(s) is defined as

[

(o)=Y = ]a-p™ (e =Res> 1), (1.1)
P

n=1

where the product is over all primes p. For other values of the complex
variable s = o+ it it is defined by analytic continuation. It is regular
for all values of s except s = 1, where it has a simple pole with residue
equal to 1. Analytic continuation of {(s) for o > 0 is given by

)= (A =2""7 Y =1yn, (1.2)

n=1

since the series is (L2) converges for Re s > 0.
For x > 1 one has

Zn_s = f u'dlu] = [x]x° + sf [ulu=*'du
1-0 1

n<x
K sxl=s

s—1 s-1°

X
=0(x'7) + sf ([u] = wu*'du +
1
If o > 1 and x — oo, it follows that

{(s) = = + Sfoo([u] —wu " du.
A 1 1
1



2 1. Elementary Theory

By using the customary notation ¥(x) = x — [x] — 1/2 this relation
can be written as

(s) = — + - - sf Y~ du. (1.3)

y+1
Since Y(u)du = 0 for any y, integration by parts shows that

y
(L3) provides the analytic continuation of /() to the half-plane o= > —1,
and in particular it follows that £(0) = —1/2. The Laurent expansion of
{(s) at s = 1 has the form

1
()= —7++nG=D+yls= D7+ (1.4)
with
-1 k+1 0o B
n=— [ xlogofase
: 1-0
C(=DF logkn  logtt!' N
T 135‘30[; n kvl | (15

and in particular
li 1+1+ +1 logN|=T"(1)
=v = lim —+-.---4+——=10 =
Yo=y = g > N g
= —f e *logxdx =0.577...
0
is Euler’s constant. To obtain (I.4) and (1.3)), write (I.3)) as

1 (o)
{s) = —— = f S (),
s—1 1-0

Then

- foo xdy(x) = - foo x_le_(s_l)logxdw(x)
1-0 1-0

_ —l (_ )k+1 ' '
Z — —(log (s = D'dy(x)
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ol £GR A a K k
= E % f x(logx)"dy(x) ¢ (s — 1)".
: 1-0

k=0

The inversion of summation and integration is justified by the fact
that, for k > 1, integration by parts gives

f xMogh xdy(x) = f x2y(x)(logh x — klogh™! x)dx,
1-0 1-0
and the last integral is absolutely convergent.

To obtain analytic continuation of {(s) to the whole complex plane
it is most convenient to use the functional equation

£(s) = 27" sin (g)F(l —8)(1 - ), (1.6)
which is valid for all s. Namely, for o < 0
1
, 1 1
—Sfov l,[/(l/t)l/t_b_ldl/t = s—_l + 5,

hence by (L3)
L(s) = —s f B (™" du, (-1 <o <0). (1.7)
0

By using the Fourier expansion

(o)

W) = - Z sin(2n7rx)’

nim
n=1

which is valid when x is not an integer, we obtain for s = o, -1 < 0 < 0,

1] 1l
| ]
gk
~ —
[\
5/ = S
< 3
£y &)
iR —
o E
B ——
~ S 38
T =
= A
g &
o N—_——
A
[\
&
L
&
——
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S s [ e
2 el - 5)Im {e o dZ}
0o <

;(ZH)S{ (1 - ) Im(e”™)'(~s)

_ @2n)? s

21— ) sin(?){—sr(—s)}

— oips! sin(?)l“(l — 5 —s).

Here one can justify termwise integration by showing that

y—)OO

[ee) ] 00
lim Z - f sin(2n7ru)u—s—ldu =0 (-1 <o <0),
n=1 y

which is easily established by performing an integration by parts. Thus
(L.6) follows for —1 < s = o= < 0, and for other values of s it follows by
analytic continuation.

One can also write (L.6) as

£(5) = X()Z(1 = $)x(5) = @n)*/ (2r<s> cos (%)) (1.8)

By using Stirling’s formula for the gamma-function it follows that,
uniformly in o,

o0 O’+il—% o 1
x(5) = (7) el+am {1 + o(;)}(o <o<lLit>t>0) (1.9)
and also
1 o —itlog(t/2m)+it+ % in i 1
S i) =|— - — = > f :
z)-(7) {1z ol oo

(1.10)

1.2 Elementary Mean Value Results

In general, mean value results concern the evaluation of the integral

T k
f |¢(o + in)|dt (1.11)
1
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as T — co, where o and k(> 0) are fixed. Since {(s) >, 1 when o > 1,
the case o= > 1 is fairly easy to handle. By the functional equation (L8]
and (L.9) it is seen that the range o~ < 1/2 can be essentially reduced to
the range o~ > 1/2. Thus the basic cases of (I.11]) are o-1/2 (“the critical
line”), 1/2 < o < 1 (“the critical strip”’) and o = 1. Naturally, the case
when k in (I.IT)) is not an integer is more difficult , because 2 (s) may
not be regular. For the time being we shall suppose that £ > 1 is an
integer, and we also remark that when k = 2N is even the problem is
somewhat less difficult, since |£(o + it)|?N = (N(o + iV (o — if).

In problems involving the evaluation of (IL1I]) one often encounters
the general divisor function

dm = 1,

n=np...ng

which denotes the number of ways n may be written as a product of
k(> 2) fixed factors. In this notation d(n) = d»>(n) denotes the number of
all positive divisors of n. For Re s > 1

(o) k (o)
K@) = (Z n_s] = Z di(myn™". (1.12)
n=1 n=1

Note that di(n) is a multiplicative function of n (meaning di(mn) =
dy(m)dy(n) for coprime m and n) and

k-1 | a!

dk(p“)z(“+k‘1)_ kk+1).. (@+k-1)

For fixed k£ we have dy(n) <, n° for any € > 0, which follows from
the stronger inequality
dy < exp(C(k)logn/loglogn) (n=2), (1.13)

where C(k) > 0 is a suitable constant. One proves (I.13)) by induction
on k, since di(n) = Y, di_1(6) and (I.13) is not difficult to establish for
oln

k=2.



6 1. Elementary Theory

To obtain some basic mean-value formulas we shall use a simple
so-called “approximate functional equation”. This name refers to vari-
ous formulas which express {(s) (or §k(s)) as a number of finite sums
involving the function n™°. The approximate functional equation of the
simplest kind is

1-s
9= Yo+ =+ 0, (1.14)

n<x

and is valid for 0 < o9 > o < 2, x > |t|/n, s = o + it, where the
O-constant depends only on 0. We shall also need a result for the eval-
uation of integrals of Dirichlet polynomials, namely sums of the form
Z a,,ni’ , where ¢ is real and the a,,’s are complex. The standard mean-

n<N
value result for Dirichlet polynomials, known as the Montgomery-Vaug-

han theorem, is the asymptotic formula

T .
Jy |2
0

n<N
This holds for arbitrary complex numbers ay,...,ay, and remains
true if N = oo, provided that the series on the right-hand side of (I.13)
converge.
Now suppose %T >t > T and choose x = T in (I.14) to obtain, for
1/2 < o < 1 fixed,

2
dtzTZlan|2+0

n<N

Z n|an|2]. (1.15)

n<N

{o+in= ) n""+R,

n<T

where R << T77. Since |§(s)|2 = g“(s)@, we obtain

T T
(o + in)dt = f noi
LT 3T Z

20 In<T

2
dr + O(T'727)

T
—o—itp
+2Re{ﬁTZn Rdt}.

2% n<T

Using we have
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fT
ir

2

2

E n—(r—it

n<T

dt = %TZn_Z(’ +0(Z nl-sz] (1.16)

n>T n<T

= %§(20')T + O(T*2),

Trivially we have Z n " « T177 R < T™7, hence

n<T

T
f Z n " "Rdt < T*7%°.
1T

24 n<T

In the case when o = % the analysis is similar, only the right-hand
side of (L.16) becomes

1 B T T
5TZn +0(ZIJ—510g5+0(T).
n<T n<T

Thus replacing 7 by 727/ in the formulas above (j = 1,2,...) and
adding the results we obtain

T
f (o + inPdt = (20T + O(T*7%)
0

and .
1
f |§(E +if)?dt = Tlog T + O(T).
0

To obtain the mean square formula in the extreme case o = 1 we
use (LI4) with s =1 +ir, 1 <t < T, x = T. Then we have

. T—it 1
1+ir) = E RRR———y o] ey
¢ +in) 2" it (T)
We use this formula to obtain

! 2 ! 1-i
|+ in)Pdr = -l
f1|g( + in)d fl >on

n<T

g 1 (T T\ dr
df — 2 Re -_f Zn_l(—) a
[N =t n t
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+0(fT >ont o). | (17
n — . .

1 T
n<T
Therefore by (L.13)

T 2

f Zn—l—"’ dt = (T - 1)Zn—2 + O(Z n—l]
1 nsT n<T n<T
={2)T + O(logT), (1.18)

and so by the Cauchy-Schwarz inequality

T .
f Zn—l—zt
1

n<T
Finally, let H be a parameter which satisfies 2 < H < %T . Then
Jar )
U<t n !
T it T T T it
= ) n—l{'l(/n) +f .2( /n) dt}
n<T(1-1/H) itlog(T/n)h 1 it*log(T/n)

i fT dt]
2. T
T(1-1/H<n<T) 1!

1 1
< ——— +logT Z -

dt
i o).

+0

n<T(1-1/H) nlog(T/n) T(1-1/H)<n<T "
TA-1/H) dx logT
< f + +1
xlog(T/x) H

T
d logT
=f ! + o8 +1
(1-1/H)"! ulogu H

logT
< loglog T —loglog(1 — 1/H)™ + gl

+1

log T
< loglogT +1logH + % + 1 <« loglogT
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for H = log T. In view of (I.I7)) this shows that

! 2 ! 1-i
| +in)Pdr = ~iit
f1|§( + in)dr fl Don

n<T
and in conjunction with (I.I8)) we obtain

2
dt + O(loglog T), (1.19)

T
f 12(1 + if)*dt = £{2)T + O(log T).
1

Hence we have proved

Theorem 1.1. For 1/2 < o < 1 fixed we have

T
f (o + in)dt = (Qo)T + O(T*%). (1.20)
0
Moreover
T 1
f £(5 + it)>dt = Tlog T + O(T) (1.21)
0
and ;
f 1Z(1 + inPdt = £2)T + O(log T). (1.22)
1

It should be remarked that the asymptotic formulas (L.20), (L21)
and (I.22) cannot be improved, that is, the error terms appearing in them
are in fact of the order 72727, T and log T, respectively. But the first two
formulas in equation may be given in a much more precise form, which
will be the topic of our study in Chapter[2]and Chapter[3l Note also that
the argument used in the proof of Theorem [LIlyields easily, on using
di(n) < nt,

T (o)
f (o + ir)Prdt = (Z d,f(n)n—sz) T+ O(T> ) + 0(1)
1 n=1

for o > 1 fixed and k > 1 a fixed integer.
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1.3 Bounds Over Short Intervals

We begin with a useful result which shows that pointwise estimation of 9
Z*(s) may be replaced by estimation of the integral of *(ss) over a short
interval, and the latter is in many cases easier to carry out. This is

Theorem 1.2. Let 1/2 < o < 1 be fixed and let k > 1 be a fixed integer.
Then for any fixed constants 6, A > 0

1Z(o + in)|F < (log T) f (o + in)Fdv + T7A. (1.23)
-0

Proof. Let B,C > 0 denote constants to be chosen later, r = [ClogT],
s=o+it, T > Tyand X = exp(u; + - -- + u,). By the residue theorem
we have

B B
2niB ¢ (s) = f f Ks+w X" dwdu .. .du,. (1.24)
0 0 [w|=6

We may clearly suppose that 0 < ¢ < 1/2, so that on the semicircle
Wl = 6, Re w < 0 we have [eB¥ — 1] < 2 and (s + w) < T? (because
from (L.14) we trivially have {(1+if) < log T, and then by the functional
equation {(it) < T? log T'). Hence

B B
f . f f Ks+w)X"wldwdu, . .. du,
0 0

|[w|=06,Re w<0
B

B
= f {k(s+w)few"'du1...feW”"du,dWW
0

[w|=6,Re w<0 0

Bw _ r . r
- f {k(S+w)(e 1) dw SnTi"(g) .
w )

w

[w|=6,Re w<0

On the other hand we obtain by Cauchy’s theorem

w —-w

s+ w)XW%W = f s+ w)Xwa

|w|=6,Re w>0 [w|=6,Re w=>0
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d
+ é’k(s + w)X_W—W
w
[w|=6,Re w>0
i6 . " p
XV -X
= f("(s+w)—dw+ f Hs+wx Y,
w w
—i0 [w|=6,Re>0

since w™!(X" — X~) is regular on the segment [—id, i§]. On the semi- 10
circle [w| = 8, Rew > 0 we have |X™"| < 1, hence the total con?ribution
of the last integral above will be again in absolute value < 7T 2%(2/5)".

Thus (L.24)) gives

B i

B
XV -Xv
|{(0’+it)|k§B_rf---f f{k(s+w)wa duy ...du,
0 0 |is

-
+27TT%k i .
oB

Forw = iv, =6 < v < 6 we have

ivlogX _ e—ivlogX
2ivlog X
<2logX =2+ -+ +u,) <2Br<logT.

sin(vlog X)
vlog X

XY -Xv e

w

=2logX =2logX

Taking B = 46!, r = [Clog T] with C = C(k, 6, A) > 0 a sufficiently
large constant, we obtain

6
(o +iT) <« BB f (o + iT + iv)[Flog Tdv + T2

-0

o
< (logT) f (o +iT + iv)[fdv + T4,
-5

as asserted.
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From Theorem [L.2] one sees immediately that the famous Lindelof
hypothesis that £ (% + it) < |t|° is equivalent to the statement that

T
1
f|g(E + it) Fdr < T'*€ (1.25)
1

holds for any fixed integer k£ > 1. That the lindelof hypothesis implies
(L23) is obvious, and by (L.23)

T+1
1 1
|g(§ + iT) K< logT f |g(5 + iu) Kdu + T4
T-1
< T"€logTlog T < T'*%

if (I.23) holds. Thus for any ¢ > 0
.
5(5 +iT) < T®

if k = [(1 + 2¢)/€1] + 1 in the last bound above. At the time of the writ-
ing of this text both the Lindel6f hypothesis and the stronger Riemann
hypothesis (all complex zeros of {(s) lie on the line o~ = 1/2) are neither
known to be true nor false. The Lindelof hypothesis may be rephrased
as u(o) = 0 for o > 1/2, where for any real o one defines

1 + it
u(o) = lim sup LA ¢lo +in)
t—o0 log ¢t

so that ((o + if) < *@*€ holds, but {(o + if) < ¢ does not hold if
¢ < u(o). It may be shown that the function u(o) is convex downward
and non-increasing. The last assertion is a consequence of O

Theorem 1.3. ForO <oy <op <01+ % < % t > ty we have

l(og+it)y <1+ max |{(oq + it + V). (1.26)
[vI<loglogt
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Proof. Let 9 be the rectangle with vertices oy + it + i log log #, E +it+
iloglogt. The function

f(s) = L(s)exp (— cos(g(s — so))), S0 = 0o + it

is regular in the domain bounded by &. Therefore by the maximum
modulus principle

£(s) exp( cos (;—r(s - so)))‘ .

1£(so)l = el f(so)l < e max

But for w = u + iv(u, v real) we have 12

1 . .
exp (_E(EIW + e"w))

| exp(—cosw)| =

=exp(—cosu - chv),

1. .
exp (—E(e’”e_v + e_”‘ev))

which decays like a second- order exponential as [v| — oo if cosu > 0.
If s € 9, then |Re(s — s59)| < 10, hence

cos( (s—so))>cos(1310) A>0,

and the maximum of |f(s)| on the side of & with Res = E is O(1).
On the horizontal sides of & we have |Im(s — so| = loglogt, and since
trivially {(s) < ¢ we have that the maximum over these sides is

A
< texp (—Ach (g log log t)) < texp (Ee(ﬂlog log t)/3)
A
=texp (_E (log t)”/3) =0(1)

as t — oo. On the vertical side of & with Re s = 0| the exponential
factor is bounded, and (I.26) follows.



14 1. Elementary Theory
From (L.14), the functional equation and convexity it follows that

1 foro > 2,
log ¢ forl <o <2,

o+it) <
4 ) t%(l_") logt forO0<o <1,

(1.27)

e log ¢t foro <0.

The bound in (.27) for 0 < o < 1 is not best possible, and the true
order of (o + it) (or the value of u(0)) is one of the deepest problems
of zeta-function theory. By using the functional equation one obtains
u(o) < % — 0 + u(l — o), so that the most interesting range for o is

13 % < o < 1. The latest bounds for g“(% + it) are

1\ 89 1\ 17
)< — =0.15892...,u=| < — =0.15740. .. 1.2
“(2)—560 0.1589 ’“(z)— Tog = 015740, (1.28)

1
,u(i) < 89/570 = 0.15614. ..

due to N. Watt [165]], M.N. Huxley and G. Kolesnik [73]] and M.N. Hux-
ley [69], respectively. These are the last in a long string of improvements
obtained by the use of intricate techniques from the theory of exponen-
tial sums.

We pass now to a lower bound result for mean values over short
intervals. As in the previous theorem we shall make use of the kernal
exp(— cos w), which regulates the length of the interval in our result.

Theorem 1.4. Ifk > 1 is a fixed integer, o > 1/2 is fixed, 12loglog T <
Y <T, T =Ty, then uniformly in o

T+Y

f (o + it)[Fdt > Y. (1.29)

T-Y

Proof. Let0'1:a'+2,s1:(1'1+it,T—%YStSY+%Y. O
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15
Then £(s1) > 1 and therefore
T+iy
f (o) + in)dt > Y. (1.30)
T-1y

Let now & be the rectangle with vertices o + iT £ iY, 05 + iT +iY
(02 = 0 +3) and let X be a parameter which satisfies

T°X<T*

for some ¢ > 0. The residue theorem gives

1 k -
e ' M) = = ) exp (— cos (—W 2 )) X "dw.
2ni ) w— s 3

(55

On & we have |Re((w — s1)/3)| < 1, and on its horizontal sides

w =51
1
’m( 3 )

Hence if w lies on the horizontal sides of & we have

ool- (257

cos 1

> exp ( exp(2 loglog T))

1
= exp (— 0025 (log T)2) .

Therefore the condition 77¢ < X < T¢ ensures that, for a suitable
c|1 > 0,

T+Y
Moy +in < X2 f ¢ + i)l exp (—ereV3) dv
T-Y
T+Y
+x! f exp (—cie ™) dv + 0(1).

T-Y

14
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Integrating this estimate over ¢ and using (L30) we obtain

T+Y T+1Y
Y < X? f |C(o + iv)[Fdy f exp(—ci1e”3)dr (1.31)
T-Y -1y

T+y [ T+3Y

+X‘1fdv fexp(—clel"_’w)dt

T-Y ~ly
T+Y
< X? f 1Z(o + iv)[Fdv + XY,
T-Y
Let now
T+Y
I:= f |£(o + iv)lkdv,
T-Y

and choose first X = Y¢. Then (L31) gives I > Y'~2¢, showing that I
cannot be too small. Then we choose X = Y'/3171/3_ 50 that in view of

(L.28) trivially

T8 « X <,

With this choice of X (I.31) reduces to ¥ < Y?/3Y1/3 and (T.29)
follows.

1.4 Lower Bounds For Mean Values on The Critical
Line

The lower bound of Theorem [[.4] is best possible when o > 1/2 (for
Y > T2727 this follows from (I.20)). However, in the most important
case when o = 1/2, this bound is poorer by a log-factor than the ex-
pected order of magnitude of the integral in question. It is conjectured
that for any fixed k > 0

T
I(T) ::f{(%+it)

0

2k
dt ~ exT(log T)F (T — o) (1.32)
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for some constant cx(> 0). So far this is known to hold only for £ = 0
(the trivial case), k = 1, k = 2 withcp = 1, ¢; = 1 and ¢; = 1/(272),
respectively. For k = 1 this follows from (L.21)), and for k = 2 this is a
consequence of A.E. Ingham’s classical result that

Tl (1
b(T):f0 {(§+il‘)

For other values of k it is impossible at present to prove (L.32)
(k = 1/2 would be very interesting, for example), and it seems diffi-
cult even to formulate a plausible conjectural value of ¢, (this subject
will be discussed more in chapter ). The lower bound

4

T

di = —1log* T+ O(T1og®T).  (1.33)
212

I«(T) > T(log TY (1.34)

is known to hold for all rational k¥ > 0, and for all real £ > O if the
Riemann hypothesis is true. The following theorem proves the lower
bound (I.30) (under the Lindelof hypothesis) with the explicit constant
implied by the symbol >. This is

Theorem 1.5. Assume the Lindeldf hypothesis. If k > O is a fixed integer,
then as T — oo
Clo .
f ‘4(5 + it) dt > (¢, + 0(1))T(log T)*, (1.35)
0

where

, 1 e (Tk+m)
Ck_r(k2+1)n[(1 7 Z(F(k)m!)p ] (1.36)

V4 m=0

Proof. Note that ¢y = c6 and ¢; = ¢. The proof will give uncondition-
ally fork <2/u(1/2) (so that u(1/2) = 0, the Lindeldf hypothesis,
gives the assertion of the theorem). Also, if the Riemann hypothesis is
assumed then holds for all £ > 0 (and not only for integers). For
this reason it is expedient to use in (.36 the gamma-function notation.

16



18 1. Elementary Theory

Let ai(s) = de(n)n_s, where Y = Y(T) = o(T) will be chosen
n<yY
later. Using |a — bl*> = |al* + |b]* - 2Re ab one has

0< f|§k(1/2 +it) — Ak(% +in)? +dt
1
= I(T)+ O(1) + f|Ak(1/2 +in)dt

- 2Re {f{k(l/Z + iNAr(1/2 — it)dt

From (I.13) we obtain

T
f |Ak(1/2 + it)dt = (T + O(Y)) Z iy (1.37)

1 n<Y

Consider now the rectangle with vertices % +i,a+i,a+iT, % +iT,
where a = 1 + 1/(log T'). Then by Cauchy’s theorem we have

T
f( + zt)Ak (— - zt)dt = f{ ($)A(1 = s)ds
1

+0 f|§(6+lt)lk2dkn” ldo |+ o).

n<Y
Now we use the Lindel6f hypothesis in the form

1
Lo +it) < P Jog (5 <o<lt> to),

17 which follows from ¢ ( + zt) < 1%, {(1 + it) < log t and convexity. We
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also recall the elementary estimate

Z di(n) < Ylog"'y,

n<Y

so that by partial summation

f <« max TU=Dy7 1002k T 4 Y log?*
1

1
3 2<o'<l

< (TXY? + V)log® T < Yiog* T

with the choice € = 1/(3k), since obviously k > 1 may be assumed.
Since

Al =) < Al —a) = Z di(mn®! <« Z di(n),

n<Y n<Y
we have by absolute convergence
a+iT | a+iT B
f LA = s)ds = Z dy(m) ;dk(n)n - f (%) ds b x
ati a+i
di(m)d,
T-0Y & vo| Y _dem)di(n)_ | (1.38)
= |10g m|manl—a
n< m#n,n<Y n

To estimate the last error term we use the elementary inequality
1
di(mydy(n) < 5(d(m) + di(m))

and distinguish between the cases m < 2Y and m > 2Y. The total
contribution of the error term is then found to be

log—‘ +Zd2(n) Z

n<Yn¢m m=1,m#n

log X

< Z d,%(m)m_“
m=1

D dmm Y log T + )" di(n) log* T.

m=1 n<Y
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From (I.37) and (T.38)) it follows then

I(T)>T Z Zmn +0 (Z d*(n) log? T}

n<Y n<Y
+0 {Y[Z dimm™ + " dimym ™ log T + log™ T]} :
m<Y m=1
18 To finish the proof note that
1
{(a) < +1 (a>1)
a-1

fora=1+1/(logT) gives

> dmm™ < X (a) < (log T)F,

m=1
and that we have
D & mnt =+ 0)log ) (3> ) (1.39)

n<Y

with ¢} given by (L.36)). Thus taking

logT
Y:Texp(— o2 )

loglog T
we obtain the assertion of the theorem. For unconditional results we use
the bound

Lo+ it) < (HNDrO0-0) 1601 (1/2 <0 < 1,1 > 1),
while if the Riemann hypothesis is true we may use the bound

Alogt
loglogt

[(o+i) < exp( ) (A>0,0'2 %,tZto). (1.40)

In the last case the appropriate choice for Y is

V=T ArlogT
=Texp|-—————
P loglog T

with a; > A. We conclude by noting that an unconditional proof of
(L33) will be given in Chapter [6l m|
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Notes For Chapter 1

For the elementary theory of {(s) the reader is referred to the first
two chapters of E.C. Titchmarsh’s classic [[155] and to the first chapter
of the author’s monograph [155].

There are many ways to obtain the analytic continuation of {(s) out-
side the region oo > 1. One simple way (see T. Estermann [30]) is to
write, for o > 1,

oo o n+1
(s) :;n ;{n f ‘du]+sil

n

and to observe that

n+l n
n’— f “du| = ff N dzdu| < |sin™"

Hence the second series above converges absolutely for o > 0, and
we obtain

o n+l
£(s) = Z [n-s - f u_sdu] + % (o > 0).

n=1 n

One can formalize this approach (see R. Balasubramanian and K.
Ramachandra [9]]) and show that

D f(n)—ff(x)dx——ff 3+ Pvydudy

a<n<b a<n<b

if a < b are integers and f(x) € C'[a, b]. By repeated application of this
summation formula one can obtain analytic continuation of {(s) to C,
and also the approximate functional equation (L.14) for x > (% + 6) |#.

The approximate functional equation (I.14) is given as Theorem 1.8
of Ivi¢ [[75] and as Theorem 4.11 is Titchmarsh [[155]].

19



22 1. Elementary Theory

The functional equation (L)) is, together with the Euler product rep-
resentation (LI, one of the fundamental features of {(s). There are
seven proofs of (I.6) in Chapter 2] of Titchmarsh [153] (one of which is
given in our text), plus another one in the Notes for Chapter [I] via the
theory of Eisenstein series.

For fractional mean values, that is, the integral (LTI when & is not
necessarily a natural number, the reader is referred to Chapter [6l The
formulas (6.4) - (6.7) show how (I.12) can be made meaningful for an
arbitrary complex number k.

To obtain a precise form of (LI3) when k = 2, letn = p{' --- p;" be
the canonical decomposition of n. Since p“ has exactly a + 1 divisors
for any prime p we have

diwn™ = [ Ja;+ Dp,™",
j=1

where ¢ > 0 will be suitably chosen. Now (a + 1)p~® < 1 for p > 21/9
and

1
20“5(1+6log2)z(1+a5log2)(1+ )21+a/

olog?2

shows that
(a + l)p_‘S <1+

olog2

for all primes p and a > 1. Hence

ﬂ(21/5)
dmn <1+
()= < ( dlog 2) ’

where m(x)(~ x/ log x as x — o) is the number of primes not exceeding
x. The choice

5= (1 . Clog3n) log?2

log,n [log,n’
with C > 2, log, n = loglogn, log; n = logloglog n gives after a simple
calculation

dn) < eXp{longogn N 0(10gn10g3 n)}

log, n (log, n)?

20
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As shown by S. Ramanujan [[145], this inequality holds even without
logs n in the O-term, in which case it is actually best possible.

H.L. Montgomery and R.C. Vaughan [122] proved (L.13) from a
version of the so-called Hilbert inequality. The proof of (L13) was sim-
plified by K. Ramachandra [[139]], and his proof is essentially given in
Chapter[Qlof A. Ivi¢ [[75]. See also the papers of S. Srinivasan [153] and
E. Preissmann [[134].

Recently R. Balasubramanian, A. Ivi¢ and K. Ramachandra [13]] in-
vestigated the function

T
R(T) := f (L + inPd - (T,
1

where the lower bound of integration has to be positive because of the
pole of {(s) at s = 1. They proved that

R(T) = O(log T),

which is in fact (I.22)),
T
fR(t)dt = —-naTlogT + O(T loglog T)
1

and

T
f (R(t) + log 1)*dt = O(T loglog T)*.
1

From either of the last two results one can deduce that
R(T)=Q_(logT),

which justifies the claim in the text that the error term in (L22)) cannot
be improved.

Theorem [[.2] is due to R. Balasubramanian and K. Ramachandra
[1O], [11]]. It improves considerably on Lemma 7.1 of the author’s work
[1], which generalizes a lemma of D.R. Heath-Brown [59]].

21
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The convexity of the function u(o) follows e.g. from general results
on Dirichlet series. A direct proof is given by the author [1] in Chapter
8.

Theorem [L.3]is an improved version of Lemma 1.3 of the author’s
work [1]. The improvement comes from the use of the kernel function
exp(— cos w), which decays like a second-order exponential.

This kernel function, in the alternative form exp(sin2 w), was intro-
duced and systematically used by K. Ramachandra (see e.g. [137] and
[141]]). In Part I of [141]] Ramachandra expresses the opinion that prob-
ably no function regular in a strip exists, which decays faster than a
second-order exponential. This is indeed so, as was kindly pointed out
to me by W.K. Hayman in a letter of August 1990. Thus Ramachandra’s
kernel function exp(sin® w) (or exp(— cos w)) is essentially best possible.
This does not imply that, for example, the range |v| < loglog ¢ in (1.26))
cannot be reduced, but it certainly cannot be reduced by the method of
proof given in the text.

Bounds for u(o) are extensively discussed in Chapter [5f of Titch-
marsh [155] and Chapter 7 of Ivi¢ [[75]]. All of the latest vounds for
u(1/2), given by (L.28)), are based on the powerful method introduced
by E. Bombieri and H. Iwaniec [16], who proved u(1/2) < 9/56 =
0.16071.... This method was also used by H. Iwaniec and C.J. Moz-
zochi [82]] to prove that §(x) = O(x7/?2*€), where

A() = )" d(n) - x(log x + 2y — 1)
nx

is the error term in the Dirichlet divisor problem. M.N. Huxley, either
alone [[67]], [68l], [69], [70], for jointly with N. Watt [163], [67], success-
fully investigated exponential sums via the Bombieri-Iwaniec method.
Among other things, they succeeded in obtaining new exponent pairs for
the estimation of exponential sums (for the definition and basic proper-
ties of exponent pairs see S.W. Graham [S0] and E. Kritzel [102]).

M.N. Huxley kindly informed me that he just succeeded in proving
,u(%) < 89/570 = 0.156140.. .. As in the previous estimates of ,u(%) by
the Bombieri-Iwaniec method, the limit of the method, appears to be the
value 3/20. Huxley also provided me with the following summary of the
salient ideas of the Bombieri-Iwaniec method, for which I am grateful.
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Like the van der Corput method, the Bombieri-Iwaniec method be-
gins by dividing the sum

S= ). e(fom)

M<n<2M

of length M into short sums of the same length N. The short sums
are estimated in absolute value, losing the possibility of cancellation
between different short sums. The best estimate obtainable from the
method must be Q(MN~'/2). The first idea is to approximate f(x) on
each short interval by a polynomial with rational coefficients. Suppose
that f(x) < TM™" forr = 2,3,4 and f®(x) > TM>. Then as x runs
through an interval of length N, the derivative 1/2f”(x) runs through an
interval of length
= NT/M? < 1/R?;

this equation defines the parameter R. A rational number a/g is chosen
in the interval. Let m be the integer for which 1/2f”(m) is closest to
a/q. Then f(m + x) can be approximated by a polynomial

fm)+ (b + x)q_lx + aq_lx2 + ,ux3,

where b is an integer, x and u are real numbers.

The sum of length N is transformed by Poisson summation first
modulo ¢, then in the variable x, to give an exponential sum in a new
variable &, whose length is proportional to g. Short sums with ¢ < R?/N
are called major arcs. For this the sum over /4 is estimated trivially. Esti-
mating all transformed sums trivially gives the bound O(MT¢(NR?)~!/%),
corresponding to the exponent pair (é, %) The exponential in the trans-
formed sum is (for g odd) essentially

T, 2 12
e(—4—a(h2 bk — 2h%% + 3xh!/ )
q (27ug*)'?

since further terms will make a negligible contribution. The expression
in the exponential can be written as

— x(h) - ¥(a/g),

23



26 1. Elementary Theory

where x(h) is the vector (h, h, h*/?, h'/?), and Y(a/q) has entries involv-

ing 4a, b, g, x and y from the approximating polynomial on the minor
arc (4a denotes the multiplicative inverse of 4a modulo ¢)./ Bombieri
and Iwaniec interpreted these sums as analogues of those in the clas-
sical large sieve, which are sums first over integers, then over rational
numbers. They devised an extremely general form of the large sieve.

The large sieve, applied to the transformed sums with ¢ large (mi-
nor arcs) would show that the short sums have root mean square size
O(N'?) if two spacing problems could be settled. The first spacing
problem is to show that for some r the vectors

x(hy) + x(ha) + -~ x(hy)

corresponding to different r-tuples of integers (hy,...,h,) are usually
separated by a certain distance. This is easy to show of » = 3. Bombieri
and Iwaniec [16] gave a proof for r = 4, using analytic methods and
ingenious induction. N. watt gave an elementary proof for r = 4, and
a partial result for » = 5. Huxley and Kolesnik [[73]] obtained the full
result for r = 5, combining Watt’s elementary method with exponential
sum techniques. The case r = 6 is open. For r > 7 the Dirichlet box
principle shows that there must be many near-coincident sums of seven
x(h) vectors.

The second spacing problem is to show that the vectors Y(a/q) cor-

responding to different minor arcs are usually separated by a certain
distance. Bombieri and Iwaniec [16] gave an argument for the case of
Dirichlet series, showing for certain ranges of the parameters that the
vectors are separated in their first and third entries. Huxley and Watt
[71] and G. Kolesnik obtained arguments of the same power in the gen-
eral case. The parameter ranges could be extended if one could show
that vectors which coincide in their first and third entries are separated
in their second and fourth entries. Huxley (to appear) considered how
the entries of the vector Y(a/g) change on adjacent minor arcs, and ob-

tained a partial result in this direction.
Bombieri and Iwaniec got the estimate O(MTE(NR)™'/2) for the
originale sum S.N. Watt [165] sharpened this to O(MT¢(N'!R%)~1/40),

24
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Huxley and Kolesnik [73] to O(M TE(N3R*>)~1/19)and Huxley (to ap-
pear) to O(MT¢(N''R*)~1/3%). The conjectured answer to the second
spacing problem could give O(MT€N~'/2) even with r = 3 in the first
spacing problem.

The method was adapted by H. Iwaniec and C.J. Mozzochi [82]] to
show that

Z Z e(hf'(m)) = O(HMTE(NR)™/?)

H<h<2H M<m<2M

with the approximating polynomial (b + x)g~'h+2ahqg™" x+ 3uhx? in the
notation used above. The first spacing problem is different, but easier.
These sums are related to the error terms in the divisor and circle prob-
lems (see (2.4), discussion after (2.111]) and Notes for Chapter2)), which
Iwaniec and Mozzochi estimated as O(x”/?2*€). Huxley [67] general-
ized the application to other lattice-point problems in two dimensions.
The improvement in the second spacing problem gives the better bound
O(HMT<(HN3R*)~'/%), and the exponent 7/22 in the divisor and circle
problems can be improved to 23/73 (Huxley, to appear). The method
can be also applied to the estimation of E(T"). This was done by Heath-
Brown and Huxley [64] (see Theorem [2.9]), who obtained the exponent
7/22 in this problem also. In the case of E(T) there is the extra condi-
tion H> < NR which prevents one from using the improvement in the
second spacing problem.

Theorem [I.4] improves Theorem 9.6 of Ivi¢ [75]. The method of
proof is the same, only again the use of the kernel function exp(— cos w)
improves the range for Y from log! " T < ¥ < T to 12loglogT < Y <
T. A result analogous to Theorem[L.4lholds for a large class of Dirichlet
series, since the proof uses very little from the properties of £(s).

The lower bound (I.34)) when k is an integer was proved first by
K. Ramachandra [138], who obtained many significant results on lower
bounds for power moments. For more about his results, see the Notes
for Chapter[6l

Theorem 1.5 is due to J.B. Conrey and A. Ghosh [23]. Their re-
search is continued in [25] and [26]. I have included the proof of Theo-
rem because of its simplicity, since a sharper result (Theorem [6.3)),
due to Balasubramanian and Ramachandra, will be proved later.

25
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28 1. Elementary Theory

The asymptotic formula (I.39) follows by standard methods of ana-
lytic number theory. Namely,

¢ = 1lim (s— ¥ F(s)/()!,
s—1+0

where (see also Section[4.4)) for Re s > 1

& B s X (Th+m)\
Fi(s) =y ditmn™ =" ()| [((1-p™F (—) p.
; k l:[ n;) mIT(k)

Since lin}(s — 1){(s) = 1, one obtains from the above representation
Mg

the value of ¢ given by (L.36).
In what concerns unconditional bounds for J(s), the best known
bound in the vicinity of o = 1 is of the form

: 1
Lo +if) < (A 10623 g (1> 2, ssos<h. (1.41)

This was proved (with C = 100) by H.-E. Richert [148]] by using
Vinogradoc’s method. In Chapter [6] of [157]] the author proved that the
estimate

Dlog® N

2

n'' <« Nexp(
log” ¢

) (1< N<0), (1.42)
N<N<N’'<2N

which also follows from Vinogradov’s method, implies (L41)) for 1 -5 <
o < 1 (the relevant range for o) with C = %(3D)‘1/ 2. The estimate
(I.42) was shown to hold with D = 107>, giving C = 122. Recently
E.L. Panteleeva [133] improved the value of D to D = ﬁ. Since

2(226)"* = 20.99735 ..., this proves (LAT) with C = 21, a fact which
was also independently obtained by K.M. Bartz [14]].

On the other hand, the best conditional bound for ¢ (% + it) under
the Riemann hypothesis is (I.40Q), a proof of which is to be found in
Titchmarsh [155] or Ivié [[73] (thus by (I.40)) it is seen that the Riemann
hypothesis implies the Lindelof hypothesis). An explicit value of the
constant A appearing in (L40), namely A = 0.46657..., was found
recently by K. Ramachandra and A. Sankaranarayanan [[144]].



Chapter 2
The Error Terms In Mean
Square Formulas

2.1 The Mean Square Formulas

T
THE EVALUATION OF the mean square integral f (o + ir)|dt is

one of the central problems in zeta-function theory. Ir{) view of the func-
tional equation £(s) = x(s){(1 — s) is turns out that the relevant range
for o is the so called “critical strip” 1/2 < o < 1. Of particular interest
is the case o = 1/2 (i.e. the so-called “critical line”). This problem was
considered in Chapter [I] (Theorem [LT)). It is possible to push the anal-
ysis much further, and to obtain fairly precise formulas for the integrals
in equation. These in turn yield relevant information about |{(o + it)|
and |£(1/2 + it)|. With this in mind we define

T
E(T) ::f‘g(%w‘z)
0

where y is Euler’s constant, and for % <o < 1 fixed

2
dt - Tlog(%)— 2y - 1T, 2.1)

T
E (T) := f (o +inPdi—¢oyT— 2= DRI =D o o220
0

1-0
(2.2)

29
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The functions E(T) and E,(T) are obviously related, and in fact we
have
lirln E,(T)=E(T). (2.3)

o—5+0

To show this we use the Laurent expansions

1
1"(S)Z;‘7’+a1s+a252+--- (near s = 0),
1
§(S)=—1+7+71(S—1)+--- (near s = 1),
S_
£(s) = £(0) + ' (0)s + bys® + - - -
1 1
=-3 —Elog(27r)s+b2s2+--- (near s = 0),
1 1
1—:2—2(1—2s)+2(1—2s)2+~-- (nearszz).
28 Then for oo — % + 0 and T fixed we have
20— DI'QRo -1 1 T
{Q2o)T + £Q20 - Do )cos(n(o-— —NT?7%7 =
1- 2 200—1

+9T + 020 - 1) + {2 = 2(1 = 20) + O(20 - 1))} x

{_% - % log(2m)(20 — 1) + O((20 — 1>2>} X

{ ! -y +a120 - 1)+ 020 - 1)2)}x
20— 1

[T+ =20)Tlog T + 0(20 - 1))} x
=TlogT + 2y — 1 - log2a)T + O(20 — 1)),

and this proves (2.3).

An explicit formula for E(T) was discovered in 1949 by FE.V. Atkin-
son, and its analogue for EU(T)(% <o < %) in 1989 by K. Matsumoto.
Atkinson’s formula shows certain analogies with the classical Voronoi
formula for

Alx) = Z d(n) — x(log x + 2y — 1) — }1, 2.4)

n<x
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the error term in the Dirichlet divisor problem (see (2.23))), where Z,

n<x
means that the last term in the sum is to be halved if x is an integer. In

fact, the analogy between E(T) and A(x) was one of the primary mo-
tivations of Atkinson’s work on E(T), and his formula will be given
below as Theorem 2.1 It has inspired much recent research on the zeta-
function. One of its remarkable aspects is that it provides various results
on E(T) and related topics, some of which will be discussed in Chapter
Bl Another important thing is that Atkinso’s formula may be general-
ized in several ways. Instead of the mean square of |{ (% + it)| one may
consider the mean square of |L(% + it, x)|. The possibility of considering
the mean square of a Dirichlet polynomial together with |£ (% + it)| will
be treated in Section 2.8l The approach to the fourth power moment,
found recently by Y. Motohashi and expounded in Chapter [3] is based
on a generalization of Atkinson’s approach. As already mentioned, it
is also possible to obtain the analogue of E(T) for E,(T) in the range
% <o < % (o= % appears to be the limit of the present method). The
formula for E,(T) will be given as Theorem and its proof will be
given parallel to the proof of Theorem 2.1l A discussion of the mean
square formula for E(T"), which is analogous to the corresponding prob-
lem for A(x), is presented in Section Upper bound results on E(T)
and E,(T) are contained in Section 2.7, and some aspects of E(T) are
discussed also in Chapter ] where a general approach to even moments
of [£(% + if)| is given.

We present now the formulas for E(T") and E,(T).

Theorem 2.1. Let 0 < A < A’ be any two fixed constants such that
1

AT <N <A'T, N’ =N'(T) =T/2n) + N/2—(N*/4+ NT/(2n))2, and

let

f(T,n) :=2Tarsinh /% + 2anT + m*n®)V/? - ;_T

T
g(T,n):= Tlog(z—) -T+ %,arsinhx :=log(x + VxZ +1).
nn

29
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Then
i I mn -l T 1 i
E(T) =22 ,;v(_l) d(myn”? (arsmh ﬁ) (% + Z) %
1 T -1
cos(f(T,n)) -2 dinn 2 (log—] X
nSZN’ ( 27m)
cos(g(T, n)) + O(log> T). (2.5)

Theorem 2.2. Let 0 < A < A’ be any two fixed constants such that

AT < N < A'T, and let o be a fixed number satisfying % <o < %.

If oq(n) = Y, d? then with the notation introduced in Theorem 2.1 we

din
have
-1 -1
E(T)=2"" (%) ’ Z:(—1)”0'1_2(,(n)n‘r_1 (ar sinh /%) X
n<N
T 1\ 2m\7 1
(% + Z) cos((f(T,n)) =2 (?) D 12 (mn” %
n<N
(2.6)
T -1
(log —) cos(g(T,n)) + O(log T).
2nn
30 Note that, as o — % + 0, the sums in Theorem [2.2] become the sums

in Theorem 2.1l In the next sections we shall give a proof of Theorem
2.1Iland Theorem[2.2] It will transpire from the proof why the restriction
3

% < 0 < j is a natural one in Theorem 2.2

2.2 The Beginning of Proof

We start with the initial stages of proof of Theorem 2.1l and Theorem
2.2l Atkinson’s basic idea was to use the obvious identity, valid for
Reu > 1andRev > 1,

s

L@y =Y N M = L) + fa) + fow,  (Q27)

m=1 n

Il
—_
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where

fu,v) = i i rr+s)". (2.8)

r=1 s=1

What is needed is the analytic continuation of f(u,v) to a region

containing the points u = % +it,v= % —it,v= % — it, so that eventually

the integration of (2.7) will lead to (2.3)). To carry out this plane we show
first that f(u, v) is a meromorphic function of u and v for Re(u + v) > 0.
Taking Rev > 1 and writing

X
1
0 = =131 - 30 = [ vy,
1
so that ¥/ (x) < 1 uniformly in x, it follows on integrating by parts that

Yo = [eeyrani= [@- e
s=1 1-0 r

1 (o)
=== Er_v - vfw(x)x_"_ldx

=== %r‘v —-viv+1) fwl(x)x_"_zdx

1
=r 7= DT = S O R,

Hence

| =

fauvy=@=17 Y o
r=1

() (o)
Z UV 40 (MZ Z /~Reu—Re v—l] ’
r=1

r=1

and therefore

fuv)—@-D""u+v-1)+ %{(u +)

is regular for Re(u + v) > 0. Thus (2.7) holds by analytic continuation
when u and v both lie in the critical strip, apart from the poles at v = 1,
u+v=1landu+v=2.

3
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We consider next the case —1 < Reu < 0, Re(u+v) > 2. We use the
well-known Poisson summation formula: If a, b are integers such that
a < b and f(x) has bounded first derivative on [a, b], then

b w b
Z' fn) = f f@dx+2)] f f(x) cosQanxdx,  (2.9)
a n=179

a<n<b

’
where Z means that the first and the last term in the sum is to be

halved. By using (2.9) with a = 0, b = o it follows that

Z rir+s)" = fx_”(x +5) Vdx+2 Z fx_“(x +5)7"%
r=1 0 m=1 0
cos(2mmx)dx = s' 47 [ f Y1+ y)Vdy + 2x
0

Z f Y1 +y)™ cos(27rmys)dy]
m:lO

after the change of variable x = sy. Recalling the beta-integral formula

1

T(a)(b
B(a,b) = fx“_l(l -’ ldx = %(Rea > 0,Reb > 0), (2.10)
0

we have with 1 +y =1/z

) 1
r - DI -
fy‘“(l +y)tdy = f(l _grugenzgy 2 Lty DI 20
I'(v)

0 0

(2.11)
Since Re(u + v) > 2, summation over s gives

gu,v) = fu,v)-Tu+v-DId - u)l“_l(v)g“(u +v-—-1)

[ee)
(o)

Iu=y f Y1+ y) "V cosQamsy)dy.  (2.12)
s=1 m=10

lL
NgE
o
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32 To investigate the convergence of the last expression we note that
forReu<1,Re(u+v)>0,m>1,

(o) [

> f (1 + ) cos2any)dy = f YL+ )™ (elny) + e(—my))dy
0 0
(2.13)

= f Yy +y)eVdy + f y (1 +y) Ve(—ny)dy

0 0

oo —ico
_nu—l —uq X - d u—1 —ufq X - —d
= y +2) eOdy+n y +2 ) el=dy
0 0
< nReu—1|u _ 1|—1

uniformly for bounded u and v, which follows after an integration by
parts. Therefore the double series in (Z.12)) is absolutely convergent for
Reu < 0,Rev > 1, Re(u + v) > 0, by comparison with

(o) (o)
2171
s=1 m=1

Hence (2.12)) holds throughout this region, and grouping together
the terms with ms = n we have

g =2 ) i) [ 714 cosrmydy.
n=1 0

where as before o,(n) = Y d%, sothat og(n) = >, 1 = d(n) is the number
din dn
of divisors of n.

Therefore if g(u, v) is the analytic continuation of the function given
by @2.12), then for0 < Reu < 1,0 <Rev < 1, u +v # 1, we have

W) =Lu+v)+l(u+v-DI'(u+v-1)

I(l-u) T(-v)
v | T )*g(”"’“g(v, w.  (2.14)
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So far our discussion was general, but at this point we shall distin-
guish between the cases o = % and o > % which eventually lead to the
expressions for E(T) and E,(T), given by Theorem 2.1] and Theorem
respectively.

a) The Case o = 1/2.

We are interested in (2.14) in the exceptional case u +v = 1. We
shall use the continuity of g(#,v) and setu +v =1+9,0 < |d] < 1/2,
with the aim of letting § — 0. Then the terms on the right-hand side of
(.14) not containing g become

I —u) . r(u—a))
I'(l—u+06) I'(u)

n)° ( (1 —u) . I(u— 5))
2 cos(%ﬂé) (1 —u+o9) [(u)

=6 +7+(7—5‘1)(% + é10g277)(1 BN CLOF —@5)

{1 +96)+ é(é)r(é)(

={(1+6)+(1-9)

2 I'(1 - u) (u)
+0(0])

1 (F’(l —w) | T’

“2\Td-uw ~ T ) + 2y — log(2m) + O(4)),

where we used the functional equation for £(s). Hence letting 6 — 0 we
have, for0 < Reu < 1,

I'(1 —u N I (u)
IF'l-w  yw

Lw)l(1-u) = % ( )+2y—log(27r)+g(u, 1-u)+g(1-u, u),
(2.15)

where reasoning as in (2.13) we have, for Reu < 0,
gu,1—u)y=2 Z d(n)f y (1 + y)*~! cos(2rny)dy. (2.16)
n=1 0

What is needed now is the analytic continuation of g(u, 1 — u), valid
for Reu = 1/2. This will be obtained in the next section by the use of
the Voronoi formula. Right now, assuming that we have such a contin-
uation, we may write an expression for E(T) that will be used in later
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evaluations. We set u = % + it and note that {(u){(1 — u) = |§(% + i)
Integration of 2.13) gives then

T %—iT
1
2 f (5 + inldt = f L)1 - uydu
0 L+iT
1 1 +il
5(— logI'(1 — u) + logI'(u)) I 2iT(2y — log2m)
7~ l
L+l
+ f (g(u,1 —u)+g(1 —u,u))du
1-iT
L+iT
I +il)
0g ———— +2iT(2y —log2m) +2 f g(u, 1 —u)du.
(3 —iT)
L-iT
To simplify this expression we use Striling’s formula in the form 34

1 1
logI'(s + b) = (s +b-— E)1og s =5+ 5 log(2m) + o(sI™, (2.17)

which is valid for b a constant and |arg s| < 7 — 6(6 > 0), if s = 0 and
the neighbourhoods of the poles of I'(s + ) are excluded. We obtain

T
1 \oo T ,
f|§(§+zT)| dt—Tlog(ﬂ)wL(Zy—l)T—z
0

$+iT
f g(u,1 —uwdu+ O(1), (2.18)
3-iT
or
1+iT
E(T) = - f g(u, 1 —u)du + O(1). (2.19)

1 .
i_lT
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b) The Case 1/2 < o < 3/4.

We start again from 2.14), settingu = o +it,v=20—-u =0 — it
and integrating the resulting expression over . It follows that

T
f (o + if)dt = LQR0)T +2¢20 — DI (20 — 1) Re %
0

T (1 ) o+iT
I'l+o+it
S G 20 — u)du.
f T(o + if) ’fg(“’ o~ u)du
0 o—iT

(2.20)

To evaluate the first integral on the right-hand side of (2.20) we use
Stirling’s formula in the form

T(s) = V2m 2 exp {—gt + i(tlogt— t+ g(a - %))} . (1 + 0(%))

2.21)
forO<o <1,t>1ty>0. Then fort > 1
- oy Za-20)-[1+0[-
(o + i) exp(7 (L —2))\1+o17])-
I I 2-20
I'd-o+ir f (i;r )T“
— T = | +0() =exp(= (1 -2 +0(1
f (o + if) () =exp(7 (I =20)) 555 + O,
0 To
and
T
I'ad—-o+ir
2020 - DI'26 — 1)R _
(o~ I@0 - ) Re f (o +if)
0
20 = 1)y(20 - 1) cos(3n(1 - 20
_ 4( ( ) cos(z7( ))T2‘2“+0(1).
-0
35 Inserting the last expression in (2.20) we obtain

Q220 — 1) sin(ro)

g T*27 + E(T)

T
f (o + in)dt = (Qo)T +
0
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with

o+iT
Es(T)=-i f g(u,20 — w)ydu + O(1). (2.22)

o—iT

2.3 Transformation of the Expressions for the Er-
ror Terms

We shall transform the integrals in (2.19) and (2.22)), providing inci-
dentally analytic continuation for the function g which appears in them.
First we shall deal with the case of E(T) in (2.19), using the Voronoi
formula for A(x) (see (2.24) to transform the integral in (Z.16). This is

Ax) = —7% WZ d(nyn™2 (K1(47r Vax) + gyl(zm \/E)), (2.23)
n=1

where K, Y] are standard notation for the Bessel functions. It is known
from Analysis that there exist asymptotic formulas for the Bessel func-
tions with any desired degree of accuracy. In particular, one has

x‘l‘ = _3 T
AW =5 Z; d(myn~3 cos (47r N Z) (2.24)

STy Z d(n)n—7/4 cos (4x\/ﬁ _ %) + 0(x_5/4),
L2 =1

The series in (2.23)) is boundedly convergent when x lies in any fixed
closed subinterval of (0, o), and it is uniformly convergent when the
interval is free of integers. Instead of (2.23) or (2.24) one often uses a
truncated expression for A(x), namely

A = @ VD)t > dnt cos (4 Nl g)

n<N

36
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O0(x) + O(x2*EN"7) (2.25)

when 1 < N < x# for any fixed A > 0.
Let now N be a large positive integer, X = N + 1/2, and

o

h(u, x) =2 fy_“(l + )"~ cos(2rxy)dy. (2.26)
0

With D(x) = Z d(n) we have

n<x

Zd(n)h(u, n) = f h(u, x)dD(x)
n>N X

(59

= f(logx+ 2y)h(u, x)dx + fh(u, x)dA(x)
X

X

[

= -AX)h(u, x) + f(log X + 2y)h(u, x)dx
X

(9]

_ f A(x)ahg: Y g,

X

Hence (2.16) becomes

gu,1 —u) = Z dm)h(u,n) — AX)h(u, X)
n<N

(o)

+ f (log x + 2y)h(u, x)dx — f A(x)(?h(u, x)dx
X

Ox
X

= g1(w) — g2(u) + g3(u) — ga(w),

say. Here g; (1) and g»(u) are analytic functions of « in the region Re u <
1, since the right-hand side of (2.26)) is analytic in this region. Next we
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have

(o)

g3(u) = f (log x + 2y)x
X

f YL+ y) e(xy)dy + f YL+ y)e(=xy)dy | dx.

0 0
(2.27)

The last integral may be taken over [0, co) and the variable changed
from y to y/X. The other two integrals in (2.27) are treated similarly,
and the results may be combined to produce

g3(u) = -1 (log X + 2y) f y N1 + y) L sinaXy)dy
0

(9]

+ (mu) ™! f y 11 + y)* sin(2nXy)dy. (2.28)
0

To treat g4(u), write first

ico —joco
h(u, x) = fy_”(l +y)”_1e(xy)dy + fy_“(l +y)“_le(—xy)dy.
0 0
Then
w = 2ni f YA+ ) e(ay)dy — 27 f YA+ ) e(=xy)dy
X
0 0
ico y et —ico y el
= 2mix? fyl’“ (1 + ;) e(y)dy — fyl’” (1 + ;) e(=y)dy
0 0
< xReu—Z

for Reu < 1 and bounded u. From @223) with N = x!/3 one has by
trivial estimation A(x) < x!/3*¢, which suffices to show that g4(x) is an

37
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analytic function of u when Re u < 2/3. Therefore from (2.19) and the

expressions for g,(u#) we obtain
ET)y=L-L+1-1;+0(),
where forn =1,2,3,4

1,
§+ZT

Iy =—i f gn(u).

1
E—IT

Hence

I = 4Zd( )fsm(Tlog(l +1/y)) cos(27rny)
n=N Y31 +y)? log(1 + 1/y)
38

b = 4A(X) f sin(T' log(1 + 1/y)) cos(27Xy) ,
y2(1 +y)2 log(1 + 1/y)

Iy = —g(logX +2y) f sin(T log(1 + 1/y)) Sm(z”Xy)
yi(1 +y)2 log(1 + 1/y)
2+1T
+ (i)~ f sin(2nXy)dy f (A +y HYutdu,

-—lT

and lastly
3 Lyir

=—lfA( x f@h(ux)

——zT

(2.29)

(2.30)

2.31)

(2.32)

(2.33)

(2.34)

where N is a positive integer, X = N + 1/2, and as in the formulation
of Theorem 2.1l we get AT < N < A’T. A more explicit formula for I4
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may be derived as follows. Using (2.26) we have

$+iT 00
f oh(u, x)du _ 4i£ {f sin(T log(1 + 1/y)) cos(27rxy)dy}

0x Ox y2(1 +y)? log(1 + 1/y)

1 .
f_lT

3 41,2 f.o sin(T log(x + y)/y) cos(27ry)dy
dx YE(x +y)? log(x +y)/y

4 cos(2my)

—s

Y2(x + )2 log(x + y)/y

— o

T cos(T log(x + y)/y) — sin(T log(x + y)/y) (%)

+ log_1 (x al y)} dy
y

Hence replacing y by xy we obtain
r A(x r cos(2mxy)
I4=4f ()dxf 172 352 . X
xSyl log(1 +1/y)
X

1+ 1+ 1 1+
{T cos (T log y) — sin (T log y) (— +log™! (_y))} dy.
y y J\2 y

(2.35)

We pass now to the discussion of E,(T"), namely the case 1/2 < o <
3/4. Let

Diag()= Y 1 2(n), (236)

n<x

’
where, as in the definition of A(x), Z means that the last term in the 39
sum is to be halved if x is an integer, and the error term Aj_p,(x) is
defined by the formula

D120 (x) = LQ20)x + (2 = 20)7' L2 = 20)x* 2
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- %g(ZO- = 1)+ A0 (). (2.37)

The analytic continuation of g(u, 20-—u) in (2.22)) can be obtained by
the use of the analogue of Voronoi’s classical formula for the function
A1_25(x). In the usual notation of Bessel functions one has

Aio2e(X) = =277 ) 1o (! {COS(UF)J22U(47T Vi (238)
n=1

+sin() (Y2—2<r(47T V) + 2Ky a4 m)} :

and it may be noted that the right-hand side of (2.38)) becomes the right-
hand side of (Z.23) when o — § + 0. Actually we have the generating
Dirichlet series

DT = {(){Qo — 1+ 5) (Res > 1),
n=1
Z dmn™ = 7(s) (Res > 1),
n=1

and

lim o_7,(n) = dn).
0'—>%+0

The series in (2.38)) is boundedly convergent when x lies in any fixed
closed subinterval of (0, c0), provided that 1/2 < o < 3/4, which is
a condition whose significance in the analysis of E,(7T) now becomes
apparent. Using the asymptotic formulas for the Bessel functions we
obtain from (2.38])

Ajap(x) = O(x 71 + (V2r) L34 > 1 oag(mn”* {cos (47 Vinx
n=1

‘;‘r) - (327 V)~ (16(1 = o) = 1) sin (4"‘/”_‘ %)}
(2.39)
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The analogue of the truncated Voronoi formula (2.25)) for Aj_»,(x)
40 is,forl <N < x4 1/2<0<3/4,

Al —ap(x) = (V2m) 1347 Z T1—20 (M /* cos (47r \inx — %)

n<N
+ O(x! 2T NT-12ve) L O(x3 N7, (2.40)

Taking in @.40) N = x“4o~D/Go+D we obtain by trivial estimation
Al gy < x!/GT+Dre (2.41)

One can prove ([2.40) much in the same way as one proves (2.33).
We shall now briefly sketch the proof. By the Perron inversion formula

I+e+iT w
: 1
D o) = 5 f Loy —dw + 0(x%) + 0T, (2.42)
P 27r11 . w
- +e—i

where T is a parameter, w = u + iv(v > vp), and

Lw) = {w){ Q2o — 1+ w) =¢W)L(1 —w),
v )2—2(7—2u

Y(w) = YW (2o — 1 +w) = (ﬂ

J 1
exp {—2ivlog(l) + 2iv + Z}. 1+0|-
2n 2 v

by (L.8) and (L9) of Chapter[Il The segment of integration in (2.42)) is
replaced by the segment [—6 — iT, —¢ + iT] (6 > O arbitrarily small, but
fixed) with an error which is

< (XD)S(xT™ ! 4 77172042070y,
Let N be an integer and 72/(4n’x) = N + 1/2. In view of the poles
of the integrand in (2.42) atw = 1, w = 2 — 2§ and w = 0, it follows that

—0+iT

1 x"
Al 2e(x) = o f Y(w)L(1 — w)de + OX
—6-iT



46 2. The Error Terms In Mean Square Formulas

{(xT)f(l +xT '+ T1-2”+25x-5)}

- —5+iT
1 w1 X"
= E T1-20(M)| 5= ywn™ —dw
27i w
n=1 —6—iT

+ O[T + 71 4+ T1727420,70))

41  because of the absolute convergence of the above series. Using the
asymptotic formula for ¥/(w) it is seen that the terms in the above series
for n > N contribute < N€T'=27. In the remaining terms we replace the
segment [—6 — iT, -0 + iT] by [—6 — ico, =0 + ico] with an admissible
error. By using

(WY .
W) = 22921 w23 G (_) Sm(

w Q2o - 1)
2

> " T2
(1 = w2 = 20 — w)

and properties of Mellin transforms for the Bessel functions we arrive
at

A]*Z(r(-x) — O(XI/Z—O'N(T—I/2+E) + 0(x1/2+EN—%) _ xl—D‘ Z 0'1,20—(71)710-_1
n<N

{COS(O'ﬂ)Jz_z(,(éln Vnx) + sin(on) (Yz_za—(4ﬂ' \Vnx) + %Kz_z(r(ﬁlﬂ' \/Ec))} )

Finally with the asymptotic formulas

2\!/2 1
Jy(x) = (—) cos (x - (v + —)
X 2
2\!/? 1
Y,(x) = (—) sin (x - (V + —)
X 2

K,(x) <, x Y2,

) +0,(x71),

NS

NN

) +0,(x7),

the above expression for Aj_»,(x) easily reduces to (Z.40). The deriva-
tion of (2.38) is analogous to the derivation of the Voronoi formula

@.23)) for A(x).
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Having finished this technical preparation we pass to the evaluation
of the integral in (2.22). We shall write

8,20 = u) = )" o1 ap(mh(u,n),
n=1
h(u, x) =2 f Y7 + )" cos(2mxy)dy,
0
as no confusion with ([2.26) will arise. As in the case of g(u, 1 — u) we

obtain analogously (X = N + 1/2)

2,20 = u) = " 0120 (M, 1) = Ar_2e (X)h(ut, X)
n<N

+ f (LQR0) + (2 = 20)x" 2V h(u, x)dx
X

0 9
- [ 12005 2
0x
X
= g1(u) — g2(u) + g3(u) — g4(u),

say. Here again a slight abuse of notation was made to keep the analogy
with E(T), since g,(u) = g,(o, u). We wish to show that g(u, 20— u) can
be analytically continued to the line Reu = o, 1/2 < o < 3/4. Since the
integral h(u, x) is absolutely convergent for Re u < 1, the functions g (1)

and g»(u) clearly possess analytic continuation to the line Re u = 0. For
g3(u) we have, assuming first Reu < 0,

g3(u) = f m(:@a) + {2 = 20)x" 2 (u, x)dx
X

= f Qo) + L2 - 20)x'727) f YL+ Y)Y e(xy)dydx
X 0

—joco

+ f (LQo) + L2 - 20)x'77) f YL+ p) 2 e(—xy)dydx
X 0

42
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= 11 +12,

say. Using Fubini’s theorem and integrating by parts we obtain
ico -
I = f O i { f Qo)+~ 2o>x1-2”>e<xy>dx} dy
J X
ico

- - f VUL 4 y) {(4(20) re@- 2a>x1—2">e(i.y)}dy
2riy
0

ico

- f 2= 2091 - 2005 f (142 8D
2riy
X 0

ico

L f (¢Q20) + L2 = 200X"27) 71711 + ) X e(Xy)dy

2mi
0
(-] ico
1-2 2-2
_§ 0-){(. 7) fx_w fy_l_”(l + )2 e(xy)dy dx.
2mi
X 0
43 We denote the last double integral by J and make a change of vari-

able xy = w. Then we obtain
3] ico
J = fx—20'+l+u—u+20'—1 fw—l—u(x + W)u—ZO'e(W)dW dx
X 0
ico

:fw_l_”e(w)f (x + W) dx dw
X

0
100
=— f w e (X + w)* 27 (= 20 + 1) dw.
0
Change of variable y = w/X gives now

Xl—ZO’

J=—— fy_l_“(l + )7 e(Xy)dy,
0
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and inserting this in the expression for /; we obtain
1 100
h= =50 (@0 + 62 - 20X 4y ety
i
0

L (1=20002 - 209X f

—1-u u+l1-20
1 Xy)dy.
2mi(u+ 1 - 207) fy (1) eXo)dy
0

Similarly we obtain 44

L= ﬁ f ((Q0) +£2 = 200X 20y ™1 + )" T e(=Xy)dy

f YT+ y) 2 e (~Xy)dy.
0

(=202 - 20)X 120
2ri(u + 1 —20)

Since g3(u) = I + I, we finally obtain the desired analytic contin-
uation of g3(u) to the line Re u = ¢ in the form (after changing the lines
of integration to [0, c0))

g3(u) = % f (£(26) + {2 = 20)X' 27y~ 74(1 + y)“727 sin(2nXy)dy
0

(o)

> S f YT+ )T sin2nXy)dy.
0

. (1-20)(2-20)
a(u+1-20)

(2.43)

To show that

r P
ga(u) = fAl_gg(x)a—h(u,x)dx
X
X

converges for Re u > o we use (2.41) and

d
—h(u, x) < xReu=2,

Ox
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which is obtained as in the corresponding estimate for (2.26). Thus the
integral for g4(u) converges absolutely for Reu < 1 — 1/(1 + 407). But
if o < 3/4, then 0 < 1 — 1/(1 + 40), which means that the integral
representing g4(u) converges for Reu = 0. Now we can integrate the
expression for g(u, 20 — u) in (2.22)) to obtain

o+iT
Es(T)=-i(G1 —G2+G3-Gy4) +0(1),G; = f gjwdu (2.44)
o—iT
for 1 < j <4 with
e 1
G =4i) Gl_gg(n)f y 7 log™! (1 + —)x
n<N 0 y
1
cos(2rny) sin (T log (1 + —)) dy, (2.45)
y

> 1
Gs = 4iA|_5,(X) f y (1 +y)log™! (1 + —) X
0 y

1
cos(2rXy) sin (T log (1 + —)) dy, (2.46)
y

Gy = (620 + 42 = 200X [y 71143 log (1 ’ i)x
0

:(’g(z 20X (2.47)

1

sin(27Xy) sin (T log (1 + —)) dy +
y

00 o+iT

1 u
[ytasp 2 sineanay [ <u+1—zcr>—1(1+_) du.
y
0 o—iT

45 To obtain a suitable expression for G4 note that

o+iT a a oo o+iT
f —h(u, x)du = 2— f f YU+ y)2 cos(2mxy)du dy
ox ox

o—iT 0 o-iT

— 49 {fy—“u +y) 7 log™! (1 + 1)><
0x y

0
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sin (T log (1 + %)) cos(27rxy)dy}

= 4i2 {fngly”(x +y) 7 log™! (_x il y) X
ox y

0
sin (T log (m)) cos(27ry)dy} ,
y

similarly as in the derivation of (2.33) from (2.34). Hence differentiat-
ing the last expression under the integral sign we arrive at

(o)

o0 1
G, = 4ifx_1A1_2(,(x)dxf y 71 +y) 7 og™! (1 + —)x
0 y
X

cos(2mxy) (T cos (T log (1 + i)) + sin (T log (1 + i)) X

{(20' - 1)(1+y)—o—log™ (1 + %y)}) dy. (2.48)

Note that this expression corresponds exactly to (2.33) when o —
1
5 +0.
2

2.4 Evaluation of Some Exponential Integrals

We shall first state and prove an elementary result, often used in the
estimation of exponential integrals. This is

Lemma 2.1. Let F(x) be a real differentiable function such that F’(x) is
monotonic and F'(X) >m > 0or F'(x) < —m <0 fora < x < b. Then

b

- 4

f T Pdx| < =, (2.49)
m

a

If in addition G(x) is a positive, monotonic function fora < x < b
such that |G(x)| < G, G(x) € C'[a, b], then
7 4
; G
f G(x)eFMdx| < —. (2.50)
m

a

46
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Proof. The merit of the above estimates is that they do not depend on
the length of the interval of integration. Recall that by the second mean
value theorem for integrals

b
b f) [ gxydx if f(x) 20, (x) 20,

f J(0gx)dx = (2.51)

a f(@) [gdx if f(x) =0, f'(x) <0,

where a < ¢ < b and f’(x), g(x) € Cla, b]. We write

'™ = cos F(x) + i sin F(x),
b

b
f cos F(x)dx = f (F'(x))"'d sin F(x),

a

and use (2.51)), since (F’)~! as the reciprocal of F’ is monotonic in [a, b].

It is seen that
b

2
fcosF(x)dx < —.

m
a

O

and the same bound holds for the integral with sin F(x). Hence
follows. To obtain (2.50) write again ¢/ = cos F(x)+isin F(x),
and to each resulting integral apply (2.31)), since G(x) is monotonic. Us-
ing then (2.49), 2.30) follows.

From the formulas of Section[2.3lit is seen that the proof of Theorem
2.1l and Theorem [2.2]is reduced to the evaluation of certain integrals of

the form
b

1= f (e(f(x) + kx)dx,

where ¢(x), f(x) are continuous, real-valued functions on [a, b], and k is
real. The evaluation of this type of integrals, which properly represents
a theory of its own, is most often carried out by the so-called “saddle
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point” method, or the method of “stationary phase”. It consists of con-
sidering I as the complex integral

b

lzbfwmdﬂ@+km&,

a

where naturally one imposes some conditions on ¢(z) and f(z) as func-
tions of the complex variable z. One then replaces the segment of in-
tegration [a, b] by a suitable contour in the z-plane. If (f(z) + kz)" has
a (unique) zero in [a, b] (“saddle point”), then in many cases arising in
practice the main contribution to / comes from a neighbourhood of the
saddle point xo. There are several results in the literature which give an
evaluation of 7 under different hypotheses. The one we shall use, due to
E. V. Atkinson, will be stated without proof as

Theorem 2.3. Let f(z), ¢(z) be two functions of the complex variable z,
and [a, b] a real interval such that:

1. For a < x < b the function f(x) is real and f" (x) > 0.

2. For a certain positive differentiable function u(x), defined on a <
x < b, f(2) and ¢(z) are analytic fora < x < b, |z — x| < u(x).

3. There exist positive functions F(x), ®(x) defined on la, b] such
that for a < x < b, |z — x| < u(x) we have

0(2) < O(x), f(2) < Fu™ (x). 1f @I < () F ' (),
and the <-constants are absolute.

Let k be any real number, and if f'(x)+k has a zero in [a, b] denote it by
xo. Let the values of f(x), ¢(x), and so on, at a, xy and b characterised
by the suffixes a,0 and b, respectively. Then

; 1
fQD(X)E(f(X) + kx)dx = ‘Po(fé')_zé’(fo + kxo + g) + 0(®0#0F63/2)

a

+0

b
f D(x) exp {—Clklu(x) — CF(x)} (dx + Idu(x)l)]

a

48
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1\—1
+0(@u(1f +K+ £74))
-1
+ 0((1)1, (Ify + K1+ 17'2) ) 2.52)
If f(x) + k has no zeros in [a, b, then the terms involving xq are to be
omitted.

a simplified version of the above result may be obtained if the con-
ditions 2. and 3. of Theorem[2.3] are replaced by
2’. There exists ¢ > 0 such that f(z) and ¢(z) are analytic in the
region
D = D(u) ={z: |z — x| < u for some x € [a, b]}.

3’. There exist F, ® > 0 such that forz € D
@) <@, f'(2) < Fu ' If @I < pw?F~ L.

Then in the notation of Theorem [2.3] one has
b

| 1
f P()e(f(x) + kx)dx = po(fy)) 2 e (fo + kxo + §)

a

+0

)
—“]) (2.53)
Fu'A+F:z

where
A = min(la — xol, |b = xol).

If f/(x) + k has no zeros in [a, b], then the terms involving xq are to
be omitted.

In Atkinson’s Theorem [2.3] we would have two additional error
terms, which would be

O(DuF %) + O(D(b — a) exp(—A(klu + F))),

where A > 0 is an absolute constant. However, these error terms are
negligible if F > 1, since b — a < u. Indeed,

b
(b-a)Fu? < ff”(x)dx = f'(b) - f'(a) < Fu",
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whence b —a < u. If F < 1, then 2.53)) is verified directly: in any
case the left-hand side of (2.33) is O(u®) and the first term on the right-
hand side is O(u®F ‘%). Both of these are absorbed in the error term of
2.53).

Taking @(x) = x~(1 + x)# (log 1) 7, f(x) = Llog £, ¢(x) =
x¥(1 + x)*P, F(x) = T/(1 + x), u(x) = x/2, we obtain after some
calculations from Theorem [2.3] the following

Lemma 2.2. Let a,8,v,a,b,k, T be real numbers such that a, 3,7y are
positive and bounded, « # 1,0 < a < %, a<T/@rnk),b>T,k>1and
T > 1. Then

b
14y)” 1
f Yol + y)ﬁ(log Y ) exp(iTlog Ty +2nkiy)dy=(2/m%)1x
y y

a

[ A 1\7* . : . T
T2V77U™2 U_E U+§ exp(zTV+27rlkU—mk+Z)

+0@ T+ 0" Pk + R(T, k) (2.54)

uniformly for |@ — 1| > €, where

| 1
T 1)\ 7k \2
U=|—+-| ,V =2arsinh|—]| ,
(27rk 4) arsi (2T)
R(T, k) < TO=a=P)/2=1/4~(y-a=p)/2-5/4 for1 <k<T,

T(T, k) < T~ 2! fork >T.

A similar result holds for the corresponding integral with —k in place
of k, except that in that case the main term on the right-hand side of
[@2.534) is to be omitted.

For the next lemma we apply Theorem 2.3 with a, b as the limits of 50
integration, where b > T, and

-1 1 -1 _1
2 3
o(x) = x *|arsinh|x X L+l +l 1+L ,
N 2T 2nx2 4 2 4 27x?
1
1, (T¥* x*\* T . | m
f(x)_ix _(E-FZ) —;arsmh( T )
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1
u(x) = 5% Ox)=xYFx) =
Then we obtain
Lemma 2.3. For AT> <a<A'T7,0<A <A, a>0,

p expi {477)“/_ — 2Tarsinh(x Vaj2T) — QuT + m2x*)? + xz} |
dx = 4nT~

1

a xar sinh(x Va2T) ((% + (# + 41_1)%)(41_1 + 772)1)

2nx

. T -1 T 3/2-a
w0z ) (5 -n) e fi(r - Tog(5 ) - 2m+ )
T l1-a
+O(T-%"min(1,|2«/E+a—(a2+2T/n)%|-‘))+o(nz“' 1>(2 n) T‘M),
JT

(2.55)

provided that n > 1, n < T/(2n), (T/(2x) — n)? > na®. If the last two
conditions on n are not satisfied, or if \n is replaced by — +\/n, then the
main term and the last error term on the right-hand side of [2.33) are
to be omitted.

2.5 Completion of the Proof of the Mean Square
Formulas

Having at our disposal Lemmas and [2.3] we proceed to evaluate
I,(1 < n < 4), as given by @31)- 2.34). We consider first I}, tak-
ing in Lemma 2210 < @ < 1, @ + B8 > 7, so that we may let a — 0,
b — oo. Hence, if + < @ < 3, 1 < k < AT, we obtain

f sin(T log(1 + 1/y)) Cos(27rky) 4 k) y

(1 + )7 log(1 +1/y)

( )2 sin(TV + 2nkU — 7Tk+7T/4)
b

0

+O(T™ K2 (2.56)

vuz(Uu-4) (U+ )

51 Since this formula holds uniformly in @, we may put @ = 1/2. Tak-



2.5. Completion of the Proof of the Mean Square Formulas 57

ing into account that sin(x — nk) = (1) sin x we obtain, after substitut-

ing (2.36) with & = 1/2 into 2.31)),

I = O % 4273 Z(—l)"d(n)n—%x

n<N

sin(2Tar sinh \an/2T + V2nnT + n?n? + nt/4)

T , (2.57)
(arsinh Van/2T)(T /27m) + )
by taking AT < N < A’T. Similarly, using A(x) < x!'/3*¢ we obtain
from (2.32))
L < |AX)IX1? < 7718, (2.58)
To deal with I3 we write (2.33)) in the form
2
I = —=(log X + 2y)I31 + (i) I3y, (2.59)
T

and consider first /3. We have

o 2x)! 00

sin(7 log(1 + 1/y)) sin(2nXy) 3 “172
f PR+ ) P log(l+ 1y) f* f <

0 ex!

Here we estimated the integral from 0 to (2X)~! by the second mean
value theorem for integrals (see (2.51))). Namely setting

Fx) = x2(1 + "2/ log(1 + 1/x)
we find that f’(x) > 0, hence the integral in question equals

f .
277Xf sin(7T log(1 + 1/y))
(I +y)

fdy = 2nX f(£)x

jsin(T log(1 + 1/y))d
yd+y)

n
= 27XE(1 + &) (log(1 + 1/8) "%
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f 1
< T2,
n

{77! cos(T log(1 + 1/y))}

where 0 < 7 < &€ < (2X)~!. The remaining integral is estimated by 52
Lemma 2.2] by treating the main terms on the right-hand side of

as an error term.
Take next I3, and write

0 L+iT

1 u
132=fy1 sin(2nXy)dy f (j) d_u
y u

0 1=iT

1 00
:fdy+fdy:]§2+lélz’
0 1

say. Note that

1 0 )
f y~sin(2nXy)dy = f y~!sin(2nXy)dy — f vy~ sin(2nXy)dy
0 0 1

(e8]
(o8]

y~ cos(2nXy)

zfv_l sinvdv +
2nX
0

1

[ee)

+fwdy:’l+o D e
2nXy? 2 X
1

In I}, we have 0 <y < 1, hence by the residue theorem

14T . cotilT =il .
f 1+y\ du i f N f 1+y\ du
y u y u
LT S+ —oo=iT

=2nmi+ O(T"'y™1/?),
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since
ey d Py
+ +
f (_y) Yt f(—y) dr < T~y 12,
y u y
LT -
Hence

1

1
L, = 2ni f y~!sin@aXy)dy + O(T™ f | sin2rXy)ly > dy)
0 0
X—l

59

- zm(g) +oxX ")+ O[T1 fxﬂdy] + O(T’l f y’mdy) =22+ O(T ).
X71

0

Next, an integration by parts gives

o Lt Lwir
1+y\"d 2nX 1+
I, = fy'l sin(2mrxy)dy f T4y} du ] cos@rXy) J
; y u 21Xy y
1 Lot 1-ir
. L+t
fcos(Zan)d f 1+y\" du
27 Xy? Y y u
1 $-ir
. LT

u—1
_ f cos(2nXy) (”y) y2du < T ' logT,

2nXy y

1 1

2
since fory > 1

S +T . 1+iT

1+ du du

f (_y) — < f ’— < logT,

y u u

1-iT 1-iT

so that finally
I =n+0T ?1ogT).

2.61)

It remains yet to evaluate Iy, as given by (2.33), which will yield the
terms —2 Y. --- in (2.3) in the final formula for E(T"). We estimate first

n<N’
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the inner integrals in (2.33), making @ — 0, b — oo in Lemma[2.2] We
have then in the notation of Lemma[2.2] for k = x > AT,

[

fcos(T log(1 + 1/y)) cos(any)d
Y21 +y)3 2 log(1 + 1/y)

1 1
( )_1 (T)z cos(TV + 2nxU — x + Zﬂ')

. 12 32 T O(Tx_l/z)’
(U+3)

T U+1

VUl (u-1) !

and similarly for r = 1, 2,

[59)

f‘ sin(7T log(1 + 1/y)) cos(27rxy)d
yI2(1 +y)32(log(1 + 1/y))"

-1/2
= O(T”2 (U - %) x-l] + O(T_lx_l/z) = 0(x"1?).

Thus we have

0o

X
T cos(2Tar sinh Vax/2T + 2nxT + n°x%)? — nx + n/4

T ot O(x~"?) b dx.
(V2xar sinh Vax/2T) ((% 1)+ %)(% 1)

54 Now from ([2.23) it follows without difficulty that A(x) is ~ x!'/* in
mean square (see Theorem[2.3]for a sharp result). Hence by the Cauchy-
Schwarz inequality and integration by parts we obtain

(o8] (o0

1/2
00 1/2
f I AWOG ) dx < ( f x-4/3dx) [ f x—5/3A2(x)dx]
X

X X
(2.62)
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. o x 172
5
+ = f [ f Az(t)dt] x—8/3dx}
¥ 3
x \o

Changing the variable x to x!/? in the integral for I; and using (2.24)
we obtain

< xV/6 {(x—5/3 f A% (1)dr)

0
< X—1/6X3/4—5/6 — X_1/4.

T o0
Is=~ Z dmyn~34x (2.63)
n=1

(o)

f cos {2Tar sinh(x Va/2T) + 2r23T + 12 xH)V2 — px? + 71/4}

i 172 1/4
i x3/2 (ar sinh(x \Vn2/T) (TTxZ + %) + %)(ZHTXZ + %)

1 1
{cos(47rx \n - Zﬂ) —3(32nx\n) ! sin(drx Vn - Z?T)} dx + O(T™ 1)
T o0
= = ) dmn ¥, + o7,
d n=1

say. Strictly speaking, we should write the integral for /4 ad

b2
hlim X TAG(. . )dx

X

and then apply this procedure, since the series for A(x) is boundedly
convergent in finite intervals only. But it is not difficult to see that work-
ing with lim leads to the same final result.

b—o0

Now it is clear why we formulated Lemma[2.3] It is needed to eval-

2
uate the integral J, in (2.63). Indeed, if (%r - n) >nX,n < T/2n),
that is to say if

(2.64)

r X _(x2 xr\"_
2r 2 \4 2x) 7

n<—+——(—

then an application of Lemma [2.3] gives, with @ = 3/2, @ = 5/2,

55
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12 T \! T n
Iy = ZZ d(n)n (log E) cos (T log(%) -T+ 4_1)

n<Z
+ o[z; dmn™ V(T - 27rn)_1) + O[T—”2 Z; dmn™"? E;(T - znn)"/z]

+ O[T‘/4 D dmn ™ min(1, 12 v+ VX = (X + T/27r))]/2|_1J +O(T™ "%
n=1

= Iy + O(Ip2) + O(I33) + O(Ig) + O(T ™),

say, Here 14, contributes the second main term on the right-hand side

of (2.3)), while the contribution of the other error terms (/socomes from
applying Lemma 23] to estimate the sine terms in (2.63) with @ = 5/2)
is O(log2 T). To see this, observe that in view of AT < X < A'T we
have Z < T,T/(2rn) — Z > T. Hence

I < T7! Z:d(n)n‘l/2 < T YlogT,

n<Z

Ly < T™V27712 Zd(n)n-”2 < T YogT,

n<Z

and it remains yet to deal with /44. Since

2
1 2T 1 X T X2 XT
X+ = VX | =S v =2
2 T 2 2 2m 4 b

we have

Iy < T Z d(myn~>* min(1, |n'/2 - ')

n=1
S DR D VD)
ns1/2Z lzen<z-7'2  Z-7\1<n<Z+Z\? Z+Z\2<n<2Z  n>2Z
=TS +S2+83+84+S5),

say. Using partial summation and the crude formula Z d(n) ~ xlog x,
n<x
we obtain
S| = Z dmn 42z -ty « 772 Z dimn™* < T 1og T,

1 1
n<sZ n<sZ
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Sy = Z dmyn314(ZV2 — 112yl « 77174 Z d(n)(z —n)"!

$Z<n<Z-7'2 3Z<n<Z-Z7'1
( d
t
< T4 Z d([Z] - k™' < T7Y*Z(og2)Z™' + f tlogtt—z)
Z”zsks%Z 7172

< T4 log2 T,

Ss = Z d(n)n_3/4 < T—l/4logT,
Z-7'2<n<Z+Z'/2

while
Sy < TV/*10g®T

follows analogously as the estimate for S . Finally

Ss < Z dmn™4n'? - 721 « Z A" < T4 1og T.
n>27 n>27Z

Therefore we obtain

T \! T
Iy = ZZ d(n)n_l/2 (log %) cos (T log(%) -T+ Z{)+0(log2 T).

n<Z
(2.65)
It remains to note that in (2.61)) the limit of summation Z may be
replaced by

N* NT\'?
4+E) ’

as in the formulation of Theorem 2.l with a total error which is
O(log? T). Theorem [Z1] follows now from @.29), Z.37), Z.38), 2.61)
and ([2.63) if N is an integer. If N is not an integer, then in (2.3) we
replace N by [N] again with an error which is O(log® T).

It remains yet to indicate how the expression (2.44) for E,(T), with
Gj(1 < j < 4) given by - (2.49), is transformed into the one
given by Theorem[2.2] Firstly, applying Lemma2.2]to (2.43)), we obtain
(analogously as for I; given by (2.31))
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-1
_ no-1. T T-1/2 n.o—1 . nn
G =2 z(f) > 1) ar sinh (|2

n<N

T ~1/4
— 4= cos f(T,n) + O(T'*).
2 4

Secondly, the estimate

G2 < T(1—40')/(2+8(T)+e

follows from (2.46)), (2.41)) and Lemma[2.2l Thirdly, starting from (2.47)
and using a technique similar to the one used in obtaining 2.61)), we
arrive at

{2 -20)

. 3 20-1_5\ =¥/
G; =in(1 - 20)(2n) I'Qo) sin(o)

+O(T ™. (2.66)

Note that in (2.66)) the main term tends to 7 as o — % +0 in analogy
with (2.61)). We also remark that in proving (2.66), instead of ([2.60), we
use the formula

=20 : 7T
= 2.67
f w27 sin wdw 20 sin(ro) (2.67)
0

which follows with p = 1 — 20 from the well-known formula
ftp_l sintdtzl"(p)sin(pz_ﬂ) (-1<p<0)
0

and the relation I'(s)I'(1 — s) = x/ sin(7s).
To evaluate G4 we apply Lemma 2.2] to the inner integral in (2.48))
to obtain

Gy = 0( f |Alza(x>|x“—2T‘/2—“dx)
X
+20’—1iﬂ0'—1/2fAl_lo_(x)TS/Z—O'XO'—ZX
X
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. /ﬂx T 1,4
arsinh [ —||— + - X
2T J\2nx 4

T 1 1/2 1 -1
((%c *Z) *5) cos(f(T, x))dx, (2.68)

where f(T,x) is as in the formulation of Theorem 2.1l From (2.40)
it follows that Aj_p,(x) is * x4~ in mean square, hence as in the
corresponding estimate in (2.62)) for 14 it follows that the contribution of
the error term in (2.68) is O(T''/*~7).

To evaluate the main term in (2.68) we proceed as in the evaluation

of I (see (2.63)), only instead of A(x) we use the formula (2.38)) for
b2
A1_25(x). To be rigorous, one should treat me as blim , since Aj_p,(x)

— 00

X
is boundedly convergent only in finite intervals. However, in both cases
the final result will be the same, namely

27 \7 12 1 T\
7) Z O 120 (m)n (1og E) cos(g(T, n)) + O(log T).

n<N’

G4=2i(

The error term O(logT), which is better than the error term
O(log? T) appearing in the expression (2.63)) for I, comes from the fact
that

1
> T1ae(n) ~ LQ0)x (> 5.3 oo),
n<x

whereas
Z d(n) ~ xlog x (x = o0),
n<x

and this accounts for the saving of a log-factor. This completes our
discussion of the proof of Theorem 2.2
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2.6 The Mean Square Formula For E(T)

From the expressions for E(T) and E,(T), given by Theorem 2.1] and
Theorem 2.2 one can obtain by squaring and termwise integration the
asymptotic formula

T
f EX(t)dt = cT3? + O(T>*10g> T) (2.69)
2
with
2 i a2 1pdtGl2)
c==2m)7 'Y Pmn? = Z@en) VP2 = 10.3047 . ..
3 Z:; 3 £@3)
(2.70)
Similarly for o fixed satisfying 1/2 < o < 3/4 we obtain
T
f EX(H)dt = ¢(o)T*727 + O(T"* 7 log T) (2.71)
2
with
2 200-3/2 S 2 200-5/2
e(0) = g Qny ; 02 (7! (2.72)

From (2.69) and 2.71)) we can get weak omega results for E(T') and
E (T) (recall that f(x) = Q(g(x)) means that lim f(x)/g(x) = 0 does
X—>00

not hold). For example, (2.69) implies
E(T) = (T, (2.73)

and .71 gives
E(T) = QT34). (2.74)

There are reasons to believe that (2.73) and (2.74)) are fairly close to
the actual order of magnitude of E(T") and E,(T) (for 1/2 < o < 3/4),
as one may conjecture that E(T) < T'/**¢ and E(T) < T3/*7+*€ (for
1/2 < o < 3/4). The proofs of both of these bounds are out of reach
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at present; the conjectural bound for E(T') implies by Theorem [2.2] that
£(1/2 + it) < t'/3*€ The main aim of this section is to prove a sharp-
ening of (2.69). We remark that by the same method a sharpening of
@.71) may be also obtained, but we shall treat only the more interest-
ing case of E(T). In Chapter 3] we shall deal with the omega results,
and we shall improve ([2.74) a little and (2.73)) substantially, obtaining
Q. —results for E(T) which correspond to the best known Q. —results
for A(x). Our main result is

Theorem 2.4. With ¢ given by 2.70) we have
T
f E*(H)dt = ¢T*? + O(T log’ T). (2.75)
2
This result corresponds to the mean square result for
/ 1
A(x) = Z‘ d(n) - x(logx+2y = 1) = 7.

which also shows the analogy between E(T') and A(x). The mean square
result for A(x) is contained in
Theorem 2.5.

X

2 _ G2 ap 5
f A*(x)dx = 6ﬂ2§(3)X + O(X log’ X). (2.76)

2

We note that from we can obtain an order estimate for E(T),
which is much better than E(T) <« T'/? log T, a result that is a trivial
consequence of Atkinson’s formula (2.3). Namely, from the definition

T
E(T) = f|g(1/2 +in)dt — T(log % +2y - 1)
0

we find that, for0 < x < T,

E(T +x)— E(T) > —2Cxlog T (2.77)
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for T > T and some absolute C > 0. Hence

T+x

f E(t)dt = xE(T) + fx(E(T +u)— E(T))du
0

T

X
> xE(T) - 2Clog T f udu = xE(T) — Cx*logT.
0

Therefore we obtain

T+x
E(T) < x7! fE(t)dt +CxlogT O<x<T,T > Ty), (2.78)
T
and analogously
T
E(T)>x"! fE(t)dt —CxlogT O<x<T,T >Ty). (2.79)
T—x

Combining and (2.79)), using the Cauchy-Schwarz inequality
and Theorem [2.4] we obtain
T+x

|E(T)| < x7! f |E(0)|dt + 2Cxlog T
T—x
1/2

T+x
<x 12 Lf Ez(t)dt] +2CxlogT
—X
= x V2T + )32 = «(T - x)*"? + O(T log® T))/? + 2Cxlog T
< TV 471257121082 T + xlog T < T3 log? T
61 with the choice x = T'/3log T. Therefore the bound
E(T) < T'31log®>T (2.80)

is a simple corollary of Theorem 2.4 the foregoing argument gives in
fact a little more. Namely, if we define F(T') by
T

f E*(tdt = ¢T3 + F(T), (2.81)
2
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and 7 is the infimum of numbers d such that F(T) < T, then
E(T) < T"3*. (2.82)

Since E(T) = Q(TY*) by Z.73), this means that we must have
3/4 < n < 1, the upper bound being true by Theorem 2.4l It would
be interesting to determine 7, although this problem looks difficult. My
(optimistic) conjecture is that > 3/4. An Q-result for F(T'), which is
sharper than just n > 3/4, is given by Theorem[3.8] We also remark here
that the bound in was obtained without essentially taking into ac-
count the structure of the exponential sums (with the divisor function
d(n)) that appear in Atkinson’s formula for E(T"). The use of the expo-
nential sum techniques improves (2.80). A brief discussion of this topic
will be given in Section 2.7}

Before we pass to the proof of Theorem [2.4] and Theorem we
remark that Theorem [2.4] was recently proved independently by Y. Mo-
tohashi and T. Meurman. We shall only outline the salient points of
Motohashi’s proof, as it is based on his deep work on the approximate
functional equation for £?(s), which represents the analogue of the clas-
sical Riemann-Siegel formula for {(s). We state Motohashi’s formula
for E(T) as

Theorem 2.6. Let 6 > 0 be a small constant and 6 < o < <1 -6.
Define

1 if0<x<a,
AX) =4B-0)/B-a) fa<x<p,
0 ifp<x<1,

w(n) = /1(2”7") ,on) =1- /l(exp (—2ar sinh %)) Then we have,

with an absolute constant cy and T (@) = %(1 - ),

nn - T 1 -4
ET)=2""2 " (~1)'@mdmn" (arsinh _) (_ ; _)
n<T(a) 2 2nn 4

T -1
x cos(f(T, n)) — nsﬁ;(zﬂ) w(myd(nyn~'1? (log %) cos(g(T, n))
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+co+ 0T Y+ 0(B-a) ' T 10gT)
+0(B-a)"’T™ 108”2 T). (2.83)

In this formula (7T, n) and g(7T, n) are as in Theorem 2,11 If we con-
sider the special case when 8 = « + T~!/2, replace w and @ by 1 with
total error O(log T'), we obtain Atkinson’s formula (2.3) with N = T'(a)
and 6 < @ < 1 -9, only with the error term O(log T'), which is better
than O(log? T') in Atkinson’s formula. This saving of a log-factor comes
essentially from the smoothing technique inherent in Motohashi’s ap-
proach. The asymptotic formula (2.83)) is strong enough to produce, by
standard termwise integration technique, the asymptotic formula 2.75)
with the good error term O(T log’ T).

The proof of (2.83) is based on Motohashi’s expression for

Ro(s.x) = £(s) = Y. dmn™ —x*(s) Y dmn*™, (284

nzx n<y

where xy = (¢/(27))%. In the most important case when x = y = t/(2n),
his asymptotic formula reduces to

Y(1= )R (s, é) - —2(£)_1/2 A(é) ro(r'H), 289

which shows the explicit connection between the divisor problem and
the approximate functional equation for ¢%(s). Using the functional

equation £(s) = x(s)(1 — s) and (2.84) one can write

n<t/2rn

l£(1/2 + i)|* = 2Re {X(1/2 —if) Z’ d(n)n—l/Z—it}

+x(1/2 = inR> (1/2 +it, i)

Integration gives

T
f 1£(1/2 + it)*dt = I|(T) + Ix(T),
0
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say, where
T
I,(T) = 2Re Z dmyn~'12 f x(1/2 =it ar
n<T/2rn 2
T
I(T) = f)((l/z - it)R2(1/2+ it,%r)dr.
0

Quite a delicate analysis is required to evaluate /;(7), which neces-
sitates the use of the saddle-point method to evaluate certain exponential
integrals. The perturbation device

1 8
IL(T) = —f I(T)dé
ﬁ_a @

induces a lot of cancellations, when the sum over n in the expression
for I1(T) is split into two parts according to whether n < T /(2n) or
ET/2m) <n < T/2nm) (6 £ & <1-0). The integral I,(T) is evaluated
with the aid of the ?-analogue of the Riemann-Siegel formula.

In Meurman’s proof of Theorem 2.4] which we proceed to present
now, one first derives in fact a special case of Motohashi’s Theorem
which essentially corresponds to the case 8 — @ ~ T~!/4. To obtain this
we return to the proof of Atkinson’s formula (2.3). Analyzing the proof,
it is seen that one gets

E(T) = (2—T)_ D () dmn*e(T, m) cos(£(T, n))

T
n<N

AW

- ; D dmn ™41, (T, VN) + 7+ O(AN)IN'?)
n=1

+0 ( f " X‘3/2|A(x)|dx) +O(T™ V),

N
where T < N < T, f(T,n) is as in Theorem 2,11 64

-1
12 a7
e(T,n)=(1+%) (\/Earsith%) ,



72 2. The Error Terms In Mean Square Formulas

(o8]

Ju(T.Y) = fg3/2(x) cos (f(T, x?) —mx® + g)
%

{cos (47rx\/_ - %) —Cx 'n % in (47rx\/_ - ;_r)} dx,

-1
(x) = ¢ x%arsinh|x n T + ' + ! T + "
ol = N 27 )\\27x2 4 2\2nx2 4

and C is a constant. Now we average the expression for E(7) by taking
N = (a + u)?, integrating over 0 < u < U and dividing by U. Choosing
T'* « U <« TY* we have TV? «< a < T'2. Since A(x) is ~ x!/* in
mean square we easily obtain

f x3PA)dx < T4

N

without the averaging process. But by using Theorem [2.5] (whose proof
is independent of Theorem [2.4)) we obtain
U U
U! f IANIN~?du < T7'2U™! f IA((a + u)?)|du
0 0

1/2

a*+4aU
A2(v)v—”2dv] < T‘3/4U‘”2[ f Az(v)dv]

a2

(@+U)? 172

< T‘”zU_l/z { f

a2

< T3UV2(Ua* + a*log® T)'V? < 714,

Thus we obtain

ET)= Y (D)=n'T Y don K, + 7+ 0T (286)

n=1

) 1/4
(1) = (—) Do =1 dmn e cos(£(T, m)),
v/

n<(a+U)?
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n(n) = 1 — max(0, U™ (n'"? - a)),

1 _
3 MK 5 0) + OUK, 3 plan™ PIKy s plen™ 21K 5 o)),

K, = U ffga(x) exp {i(i47rxw/ﬁ — AT, x*) + mx® — ;—r)} dxdu.

0 atu

The important feature of (2.86) is that the error term is O(T~'/4). we 65
define now

1/2
Z(u) = Z(T, u) = 1 + (a +u)? - {l(a +u)’ + 1(a + u)4} ,
2r 4

£(T, n) = max {min(l, U (12 (% - n) —a)), o} ,

and note that £(T, n) = 0 for n > Z(0). We can evaluate K, , by using the
saddle-point method as in Theorem 2.3] (see also M. Tutila [93]]). One
obtains, for T >2,a >0, T"? <« a< T"?>,1<U<aandn>1

4 T\ T e b/g
+ _ gt 751 o - S -
Kio = 07¢(Ton) 7" (log 27m) (277 n) %P {l( gTon)+ 2)}

+0

U 3 min{lL (Vi W)‘Q}]+ O RT nt ™),

u=0,U
(2.87)

where g(T,n) is as in @2.3), 6* = 1,6~ =0, R(n) = T~/2 for n < Z(u),
R(n) = 1 for z(u) < n < Z(0), and R(n) = 0 for n > Z(0). Using (2.87) it
follows that

—n'T Z dmn™ Ky = 3 (T) + O(Ry) + O(Ry) + O(R),

where
-1

* T
Soy=-2 3 &Tmdmn? (log %) cos(s(T,n)), (2.88)

n>Z(0)

Ri=U'T' 30 % dinn™ min(1, (Vi = yZ() ™),

u=0,U n>1
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R, =T"! Z dmn™ V2 Ry = 7712 Z dmn™2,
n<Z(0) Z(U)<n<Z(0)

66  Trivially
R, < T '?logT,

and since dZ(u)/du < T1'/? we have
Ry < TN (Z(0) - Z(U))logT < UT "?1ogT <« T™*10gT.
In R; the values of n in (1/2Z(u), 2Z(u)] contribute

< UlT? > dmymin(1, Z(u)(n - Z(w) ™

1Z(u)<n<2Z(u)
< U 'T 2%
Z(uw)dn
2 dom + 2 n - )Z((u)))z
Z(u)— Vz(u)<n<Z(u)+ Vz(u) [n—Z(w)|> VZ(u),1/2Z(u)<n<2Z(u)

< U'T V21210 T < T *10g T.

The remaining n’s contribute to R; only < U~!T~1/2€ « T-3/4+¢,
Therefore from (2.86), and the above estimates we obtain, for
T>2, TV <U<TV T"? <a<T'?,

ET)= Y+ Y M+ +0T HlogT). (2.89)

We note that by using multiple averaging (i.e. not only over one
variable u, but over several) one can remove the log-factor from the error
term in (2.89)), although this is not needed for the proof of Theorem 2.41
It is the variant of Atkinson’s formula, given by (2.89), that is suitable
for the proof of Theorem 2.4l We use it with a = T2 — Uy, U =714,
and combine with the Cauchy-Schwarz inequality to obtain

2T
sz([)dl‘ =111 + 21 + Iy + 21l
T
+O(T Iy log T + TV + 1), (2.90)
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67 where
2T

I = f Zj(r)ZZ(t)dt (k=1or2),

T
2T

I = f Zj(z)dz < 134
T

by Lemma 2.1l From now on the proof is essentially the same as the
one that will be given below by Theorem Termwise integration
gives (the factors n(n) and £(¢, n) will cause no trouble)

Iy = cQT)*"? = ¢T3 + O(T 10g’ T), (2.91)
I = O(T log* 1), (2.92)
so that the main contribution to (Z.73) comes from (2.91)), which will
follow then on replacing 7 in (Z.90) by T27/(j = 1,2,...) and adding

all the resulting expressions. Thus the proof will be finished if the con-
tribution of 7, in (Z.90) is shown to be negligible. To see this let

PRCEDWGEINO!

where in X'(¢) we have n < T/A, and in X”(t) we have T/A < n < T,
A > 0 being a large constant. Then by termwise integration we obtain,

as in the proof of (2.91)),
2T )
f ( Z”(t)) <73 P Y P+ Tlogh T
T n>T /A n>T/A
< Tlog"T. (2.93)

Set I =1 + I, where

2T

2T
I = f Z'(r)ZZ(r)dr,l": f Z"(t) ZZ(t)dt.

2 T
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Thus by the Cauchy-Schwarz inequality, (2.92) and (2.93) we infer
that I’ < log* T'. Consider now I’. We have

I < Z Z dmyd(mn=m™ 2 (1150 + )
n<T/A m<Z2T,0)

68 where

-1
S = f £t myt Pe(t, n) (log ﬁ) explif(1, n) + g(t, m))}d
H

and H is a subinterval of [T, 2T] such that m < Z(t,0) for t € H. Now

t
f'(t,n) = 2ar sinh 1ljﬂ,g'(t, m) = log(—),
2t 2mm

and for n < T/A we have |f'(t,n) = g’(t,m)| > 1 in H, which was
the reason for considering separately X’(¢) and X" (). Hence by Lemma
2.1 we obtain J¥, < T'%4, and consequently I’ < Tlog’T, Iy <
T log* T, and Theorem 2.4 follows.

It remains to prove Theorem whose method of proof inciden-

tally establishes (2.91). Suppose x > 1 is not an integer and let
Sp(x) == (xV2) x4 Z d(myn~>3* cos (47T\/n_ - %)
n<M

From the Voronoi formula (2.24)) one has

A) = Sp(x) + OIS 1| +1S2) + 714, (2.94)
Sy = Z (d(n) — logn — 2y)n~>* exp(4ni Vnx),
n>M
Sy = (logn +2y)n~* exp(4mi ynx).
n>M

For &€ > M > 2x we have

3
G(¢) = Z exp(4ni Vnx) = f exp(4mi Vix)dt + O(1) = O((£/x)'7),
M<n<é M

(2.95)
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where we used Lemma[2Z.land the elementary relation

b

> e(fm) = f e(f(0))dx + O5(1), (2.96)

a<n<b "

provided that f(x) € C?[a, b, f'(x) is monotonic on [a, b] and |f’(x)| <
¢ < 1. Then by partial summation it follows that

S2 = lim Z (logn + 2y)n~>/* exp(dni Vinx)

M<n<A

A (o)
= lim {(logt+ N3G E)| - f ((1ogt+2y)f3/4)’G(t)dz}
—00 M
M

< x PV og M < x7V2,
For § 1, note that for any 7 > 1

Z(d(n) —logn — 2y) = A(t) + O(t),

n<t

’
since the definition of A(¢) contains Z and d(n) < n€. Partial summa-
n<t

tion and the weak estimate A(x) < x!/3*€ give

A
Si= lim {(A(t) + 0(t))131* exp(4ni Vix) .

A
- f (A(D) + Ot)) (=3 exp(dni Vix)) dt
M

[ee)

f AP exp(4mi Vix)dt

M

(o)

+ | 4N 2ar

M

« MES/12 4 (172

(o)

f A1 * exp(4ri Vix)dt

M

1/2

< x + x M2 ppe A
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= X204 X\ P = xl/ZZI(ZkM) +x\2pgetiA
k=0

where we have set

2Y
I(Y) := f A(y)y™"* exp(4mi \Jxy)dy.
Y

To estimate I(Y) we use

AG) = (12! dain cos (4 gy - T ) + 00r) (¥ <y <21

n<yY
This gives

I(Y) < Z d(l’l)n_3/4 (|I;(Y)| + |I;(Y)|) + YE_1/4,

n<Y

where using Lemma 2.1l we have

2Y
-1/2
0y — -1 j =)
o = Yf N T

The contribution of I} is trivially O(Y -1/2) "and that of I, is (since
by assumption x is not an integer)

_3/4
< Zd(n)n’3/4Y‘1/2|x”2 CnlP « y 12yl Z d(mn
|x —n|
n<Y %x<n$2x
= Y2 oy 2V | x 7Y + oY 12 Z rd([x] + x4
|r|<x—1,r£0

< Y—l/2 +x—l/4+€ ” X ”—l Y—l/2’

where || x || is the distance for x to the nearest integer, and where we set
n = [x] + r. Thus

I(Y) < Y—]/Zx—1/4+6 ” X ”—1 +YE—1/4’
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Sl < M—1/2x1/4+6 ” X ”—l +x1/2M6_1/4.
But € > 0 sufficiently small
M—l/4+exl/2 < x—l/2 for M > x4+206’
M—l/2x1/4+6 ” X ”_IS x—1/2 forM S x3/2+26 || x ||—2 .

The truncated Voronor formula (2.25)) gives A(x) = Sp(x) + O(x€) if
x > 1, M > x, so that we obtain

x71/4 it M > max(x4+205,x3/2*25 ” X ”—2)’

€

X otherwise.

A(X) = () + R(x), R(x) < {

IfM > || x |72, then M > 4x° > x*20¢. M > x3/2+2€ || x ||72 for

0 < € < 1/20, hence R(x) < x~'/* for M > x° || x |72, and R(x) < x¢

otherwise. It is this estimate for R(x), which shows that it is <« x~!/4

“most of the time”, that makes the proof of Theorem possible. So
we take now M = X°, X < x < 2X, obtaining

AGH) = {6M(x) +0(X)~1/4 %f x> X2, 2.07)
Su(x) + O(X6) if || x]l< X2
To prove Theorem [2.5]it will be sufficient to show
2X -
D= f 62, (x)dx = 6—; (Z dz(n)n_3/2)((2X)3/2—X3/2)+0(X log’ X),
X n=1
(2.98)
since using (2.97) we have
2X 2X
fAz(x)dx =D+0 f X*dx|+ 0" + X'4p'?%),
X Jldl<x2

by applying the Cauchy-Schwarz inequality. Thus if (2.98)) holds we
obtain

2X
f A2 (x)dx = D + O(X) = d(2X)** = X3/?) + O(X 10g’ X)
X
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with

2 an)_ £G/2)
= o (Zd() ) 67°(3)

To prove (2.98)) we use cosacosf = 5 cos(a + B) + %cos(a -pB). It
follows from the definition of d;(x) that

2X
D=3 Z d(m)d(n)(mn) 4 f x!/2x
m,n<M X

12 _ 172

{cos(47r(m )22 + sindn(m'/? + n'/2)x'12)) dx

ﬂ_z Z dZ(m)m 3/2((2X)3/2 X3/2)
m<M

rolx Y d(m)d(n) ] (2.99)

1/41,,1/2 _ 5,1/2
m,n<M,m#n (mn) |m n |

G

after an integration by parts. Since M = X°, we have

Z P(mym™3? = Z dmym="? + o(M~* 1og* M)

m<M
44(3/ 2) 4
=2———+0X™).
£(3)
72 The double sum in the O-term in (2.99)) is

< Z d(m)d(n) < Z dn)d(n +r)

m34m 4 (m — n) n34r(n + r)l/4

n<m<M r<Mn<Mn+r<M

if we write m = n + r. In the portion of the last sum with n < M,

%n< r<Mwehaven+r > %nand } < n+r Hence
dn)dn +r dn dn +r
Z (m)d( ) <3 Z (n) Z ( )
n34r(n + r)l/4 n3/4 (n+r)5/4
tn<r<Mn+r<M n<M n+r<M,r>1/2n

< Z d(myn~3/* Z dmym™"* < Z dmn logn < log? M.

n<M m>3n/2 n<M
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Also
Z dn)d(n+r)

n3/4r(n + r)l/4

dn)d(n +r)
Z Z 113/4(n+r)1/4

r<i M 2r<n<M

_ dn) dn+r)
<2 Z r 1[ Z mm}

r< %n,n<M,n+rsM

}’S%M 2r<n<M
1/2 1/2
<2 Z r! [Z dz(n)n_l] [ Z dz(m)m_l]
rS%M n<M m<2M
< log5 M.

In view of M = X° this implies

Z dn)d(n+r) <log’ X

3/4 1/4
r<Mapn<Mn+r<M n r(n + }")

and therefore establishes (2.98).
Finally we discuss how to improve slightly on the error terms in
Theorem 2.4l and Theorem 2.5 and obtain

T
f E*(H)dt = ¢T*? + O(T log* T), (2.100)
2
and analogously the error term in (2.76)) may be replaced by O(X log* X).

Instead of the fairly straightforward estimation of the O-term in (2.99)
one has to use the inequality

> expliby — iby) >, (2.101)

1/4(,-1/2 _ ¢1/2
r,S<R;r#s (I"S) (}" § ) r<R

where the a/s are arbitrary complex numbers, and the b)s are arbitrary
real numbers. This follows from a variant of the so-called Hilbert’s in-

equality: Suppose that 4y, Ay, ... Ag are distinct reals and §, = min |4, —
s 4+
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As|, where min, f denotes the least positive value of f. Then

Uu
Z /lr - ils

r,s<R;r#s

3 _
<5 PN (2.102)

r<R

By taking in @I02) A, = r'/?, u, = a,r~"/*exp(ib,) and noting that
in this case

. . r—=s _
0, = min |r1/2—s1/2| =min |———|<r 1/2,
A2 4 g2

s + s +

One obtains (2.10T). This possibility was noted recently by E. Preiss-
mann [135]], who considered the mean square of A(x), using a classical
differencing technique of E. Landau based on the Voronoi formula for
the integral of A(x). This seems more appropriate in this context than the
use of the method of proof of Theorem where the choice M = X°
is large for the application of (2.I01). But for (2.100) this can be done
directly, and it will be sufficient that the non-diagonal terms in the mean
square for X (¢) are < T log* T'. The non-trivial contribution to the sum
in question comes from

2T

D, damdun(mn(nmn) f e(t, me(t,n) cos(f(t,m) = f(t,n)dt

m#n<T

= > domdmnm(n)mn)=x
m#n<T
2T

f e(t,me(t, n) di {sin(f(t, n) — f(t,m))} dt
; t

5 (ar sinh(%)l/2 — ar sinh (%)1/2)

1
=3 3 dmdimmm(amm

m#n<T

T

e(t,m)e(t,n) T

{ar sinh(%)]/2 — ar sinh (’%)

T

S (sin(f(t,m) - f(t, m)))}

2T
—% > domdmmOmyn)mn) f sin(f(t,n) - f(, m»%x
T

m#En<T
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dt.

{ e(t,m)e(t,n)

ar sinh (%)1/2 — arsinh (%1)1/2

The integrated terms are first simplified by Taylor’s formula and then
estimated by (2.101)), giving sums like

T Z d(m)d(n) exp(if (T, n) — if (1,m))

4
(m1/2 _ n1/2)(mn)1/4 < TlOg T.

m#n<T

o7
The integral [ in the above sum is estimated by Lemma[2Jland the

T
ensuing sums are treated analogously as in the proof of Theorem

Their total contribution will be again < log* T, and (ZI00) follows.

2.7 The Upper Bounds for the Error Terms

We have seen in Section how by an averaging technique Theorem
4] can be used to yield the upper bound E(T) < T'/3log? T. Now we
shall use another, similar averaging technique to obtain an upper bound
for E(T) which is in many ways analogous to the truncated formula
for A(x). This bound will have the advantage that exponential
sum techniques can be applied to it, thereby providing the possibility to
improve on E(T) < T'/31log?> T. We shall also give upper bounds for
E,(T), which will be valid in the whole range 1/2 < o < 1, and not just
for 1/2 < o < 3/4, which is the range for which Theorem 2.2 holds.

We shall consider first E(T). In case E(T) > 0 we start from the
inequality

H H
E(T)sH-Nf---fE(Tml+---+uN)du1...duN+CHlogT,
0 0

(2.103)
whose proof is analogous to the proof of (2.78). A similar lower bound
inequality, analogous to (2.79)), also holds and may be used to estimate
E(T) when E(T) < 0. Wesuppose T > Ty, T* < H < T'/2, and take
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N to be a large, but fixed integer. In Atkinson’s formula (2.3), which we
write as

E(T)= ) (T)+ ) (T)+0(og* T),

take N=T,N =aT,a = %T + % - (i + 217r) . First we shall show that
the contribution of
-1
DM =2 )" don™ " (1og —) cos(g(T. n))
n<N’ 2

is negligible. We have

3 T n 0g(T,n) _ T
g(T,n)—Tlog(zﬂn) T+ 2 —log( )>>1

2nn
for n < N. Hence

H H
H_Nf-~fZZ(T+u1+~'+uN)du1~—duN
0

T
_2HT" d(n)nl/zf flog2 R B )
7T

n<N’

osing(T +uy +--- + uan)d

(9141 uy - -duy
P ~12 sing(T + H+uy +-+-up,n)
=-2H Z d(m)n f f[ 1 T+H+u2+ T+H+up+-+uy
n<N’ Og — 2m )

sing(T+u2+---+un,n))d d
p— u2---

2 ( THup+-+uy
IOg ( 2nn )

H H
+2f~~f10g_3(T+ul+W+MN)
2rn
0

0

sing(T +uy + -+ up,n)

duy - -duy
T+u+---+uy
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H H
:—2H_N2d(n)n_1/2f f sing(T+H+uy+---+uy,n)
log T+H+u2+ +uN)
0 0

n<N’ 2nn
sing(T +uy + -+ uy,n)
B 1 2 (T+ug+-+uy duz o dMN
og ( 2nn )
+O(T " ?1logT)=...= O(HCNT?10g T)

+O(T?10gT)

after N integrations by parts. Thus for N sufficiently large the contri- 76
bution of X, is negligible, namely it is asorbed in the term CH log T in

(2.103).

Further we have

-1 —1/4
1 T 1
3 @ =24 S ydmn (ar sinh /%) (% + Z) cos(f(T, n)),

n<T
of(T, . /
f(g)T ) = 2ar sinh ;—;

It will be shown now that the contribution of n for which T'*¢H~? <
n < T (e > 0 arbitrarily small and fixed) in the integral of (T + u; +
-+ uy) in (2.103)) is negligible. To see this set

-2 -1/4
T 1
Fi(T,n) := 2732 (arsmh ’m) (— + —) .

where

2T 2 4

On integrating by parts it is seen that the integral in question is equal
to

H H
H™N Z (—1)”d(n)n’1/2f~-~fF1(T+u1+-~+uN,n)><
0

T+ H-2<p<T
osin f(T +uy +---+ uN,n)d
6[41

H H
LY (—1)"d(n)n_l/2{f--'f(Fl(T+H+”2+"'+”N’”)
0 0

T'eH-2<n<T

ul...duN
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sin f(T+H+uy+---+uy,n)— Fi(T +uy +---+ uy,n)

H
H
sinf(T+u2+---+uN,n))du2'~duNf-~~f
0
0

i€ ula uy, n) sin f(T + uy + -+ + uy, n)duy "'d”n}-
Ui

77 But we have

-5/4 [\ "2
aFI(T’ n) - _ 1 i + l ar sinh ﬂ + 2_3/2><
oT 8V8mn \2nrn 4 2T

-1/4 -3 _

T 1 1/2 1/2
4| (ar sinb)| /2= (1 + "—”) ("—”) 77372
2nn 4 2T 2T 2

14,314,

< T~

and since Z d(n)n55 /4 converges, trivial estimation shows that the con-

n>1

tribution of the N-fold integral is negligible. Now set

1

Fa(T,n) = 2" arsinh \[ 22| Fy(T,n)
2T
-3 —-1/4
/ T 1
= 2_5/2 (ar sinh %) (% + Z) .

Then we have (the other (N —1)-fold integral is treated analogously:)

H H
HN 3 = den™? [ | CRUT w4 uy m)x
0 0

T\+e H2<p<T
sin f(T + uy + -+ + uy, n))duy - - duy
H H
=HN Z (—1)"d(n)n_”2f--~sz(T+MZJF"'JF”N’”)><
THeH2<n<T 0 0

ocos f(T +u2+---+uy,n)

d
auz

uz...duN
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H

H
=H™N 3 (=1 den {f~--f(Fz(T+H+u3+-~~+uN,n)><
T'eH2<n<T 0 0
cosf(T+H+uz+---+uy,n)—Fo(T +usz + -+ uy.n)X
H H
cosf(T+u3+~'+uN,n))du3~~duN—f'--fx
0 0
OF (T +up + -+ +uy,n)
ouy

cos f(T +up + -+ + uy,n)duy - ~-duN}

But
—aFZ(T’ ") < TV4p=3/4,
oT
Trivial estimation shows that the total contribution of the (N—1)-fold 78
integral is

<« HN-1gN Z d(nyn~ 12T /4514
n>T1+eH-2

< H'TV3 e g2 1og T < 1.

Thus defining

1-k
Fi(T,n) = (2_1ar sinh /%) Fi(T, n)

we continue integrating, until all V integrations are completed. We es-
timate the resulting expression trivially, obtaining a contribution of all
integrated terms as

3(1-N)
HY Y dwn'? (1)2 Fi(T,n) < HVT3V*ix
T
n>T+eH=2
Z d(n)n_%_%Nx
n>T1+eH-2
H VTN (e g2)imaN og T = T2 2N g1 2 1o T <« 1
if N = N(e) is sufficiently large. The contribution of the remaining

n’s in X for which n < T'*€H™? is estimated trivially, by taking the
supremum of the expression in question. Therefore we obtain
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Theorem 2.7. ForT¢ < H< T2 0<e< 1/2 fixed, we have

-1
2

E(T)< HlogT + sup
1T<T2T

Z (~D)'d(m)n"

nST“"H‘Z

) |n - T 1\4
(arsmh Z) (% +4—1) cos(f(r,n))

Estimating the sum over n in (2.104) trivially we obtain

. (2.104)

E(T) < HlogT +T"* %" dmn™"* < Hlog T+ T'/**H™'"2,

nSTHEH’Z
79 Choosing H = T'/3 we obtain
E(T) = O(T'*),

which is essentially (Z.80). A similar analysis may be made for E,(T),
if one uses (2.6) and follows the foregoing argument. In this way one
obtains

Theorem 2.8. For T€¢ <« H < T2, 0<e<1/2and 1/2 < o < 3/4

fixed, we have

E T) < H+T'"*7 sup
3T<T2T

D D e mnTx

n<Tl+e -2

mn ! T 1\
inh /_ 1
(ar sin 27) (27m + 4) cos f(t,n)

Choosing H = T!/(1+49) and estimating trivially the sum in 2.103)
one obtains

. (2.105)

E (T) < TY/A0e (12 < o < 3/4), (2.106)

and using the technique similar to the one employed in deriving (2.80), it
can be seen that “€” in (2.106) can be replaced by a suitable log-power.
The point of having upper bound such as (Z.104) and 2.103) is that

both (2.80) and (2.106) can be improved by the use of exponential sum
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techniques on writing d(n) = ), 1 and o013, (n) = Z kl_z", respec-
kl=n

tively. In this way one obtains a double sum which is skl;igable for further

transformations and estimations. We shall consider first the estimation

of E(T') in more detail and treat E,(7') later on. However, right now we

remark again that (Z.J04) corresponds to the truncated formula (2.23))

for A(x), namely

L1/ .
Ax) = —— ) dmn*cos (47“/”— B _) +0(xV2eN112).
V2 ,; 4 ( )

(2.107)

where 1 < N < x. In this analogy N corresponds to T'*H2 xto T,
4rnx — % to f(t,n), since

ft,n) = —g 4 4n /;—; + 0212y (n = o(1)).

Hence we may consider for simplicity the estimation of A(x), since
the estimation of E(T') via (2.106) will be completely analogous. Re-
moving by partial summation n~3/# from the sum in (Z.107), we have by
the hyperbola method

Z d(n)e(2 Vnx) =2 Z Z e(2 Vmnx) — Z Z e(2 Vmnx).
n<N m< VN n<N/m m< VN n< VN
If (x.4) is a one-dimensional exponent pair, then for 1 <« M <« x
e2 Nmnx) < (mxM~Y2*M* = (mx)2*MA2*,
M<nsM’<2M
Hence
Dl < {(mx)%X(N/m)”—%x + (mx)%XN%”—%X}
nSN m< \/N
< X%X(N/l—%xN%x—%/l+% +N%/l—%XN%X+%) < X%XN%(LM).
Partial summation gives

Z d(myn=* cos (4ﬂ N %) < 12201/

n<N

80
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and from (2.107)) it follows that
A(x) < xRN L 1i24en=12 (/@A D+ 10g)

with the choice
N = (1-20/Qa+D)

The same approach can be used to estimate E(T), by considering
separately even and odd n to get rid of the factor (—1)" in (2.104). We
therefore obtain the bound

E(T) < TWHD/@a+Dte (2.109)

But if (xp, Ag) is exponent pair, then so is also

1 1
(x, ) = B(xp, o) = (/10 — X0+ 5).

This is the so-called B-process (Poisson step) in the theory of expo-

nent pairs. Then
x+4 ) + Ao

20+1  2(xp+1)

hence we also have
E(T) < THD/Cx+2+e (2.110)

where (x, A) is any exponent pair obtained after applying the B-process.
In (2.109) the exponent of T is less than 1/3 if 3x + A < 1, i.e. in this
case (2.109) improves (2.80). We remark that we shall also consider
the estimation of E(T) in Section There we shall obtain (Z.110) in
another way, first from a general approach to even moments, and then
from an explicit formula of R. Balasubramanian on E(7T). The latter
gives an estimate which is slightly sharper than (2.110), namely

E(T) < TOV/Cx*2)(100 T2,

Nevertheless, it is worth noting that upper bounds for E(T") such as
2.109) or 2.110), which involve the explicit use of one-dimensional ex-
ponent pairs, are not likely to produce the sharpest known upper bound
for E(T'), which we state without proof as
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Theorem 2.9.
E(T) < T"/?**, (2.111)

This is a recent result of D.R. Heath-Brown ad M.N. Huxley [66],
which is analogous to the well-known bound A(x) < x7/22*€ of H.
Iwaniec and C.J. Mozzochi [82] (in both cases “€” can be replaced by
a suitable log-power). Thus the analogy between E(7T) and A(x) holds
in this case in the sense that at best known exponents in both problems
are 7/22 = 0.3181818-- -, and as we shall see in Chapter 3] analogous
Q. -results also hold in both problems.

The proof of Theorem is quite involved, and its presentation
would lead us too much astray. It rests on the application of the Bombieri-
Iwaniec method for the estimation of exponential sums (see Notes for
Chapter[d)), applied to the sum

&g ) )

=H m=M+2H-1

As is common in such problems, F(x) is a real-valued function with
sufficiently many derivatives which satisfy certain non-vanishing condi-
tions for 1 < x < 2. Heath-Brown and Huxley succeeded in treating S
by the ideas of Iwaniec-Mozzochi. They obtained a general mean value
bound which gives

T+A

1
f 65 + it)Pdt < AlogT (T"**10g®/2T <« A< T).
T

This bound implies
E(T +A)— E(T) < AlogT + T"**10g®"2 T, (2.112)
and they obtain (2.111) in an even slightly sharper form, namely
E(T) < T"**1og"'22 T,

by the use of an averaging technique, similar to the one used in Section
[5.6/for the fourth moment of (% + if).

82
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For the rest of this section we shall suppose that 1/2 < o < 11is
fixed, and we shall consider the estimation of

T
20- NDI'QRo -1
E(T) = f (o +indi— o — 22T 1 W20 =D o2
-
0
To this end we shall introduce also the function
I(T, o A) = (AVr)~! f (o +iT + inPe "1 dr (2.113)

and

E(T,0:;A) := (T, 0, A) — {Q207) — 2¢(20- — DT (20 — 1) sin(ror) T 727,
(2.114)
where 0 < A < T/logT. Since

lim I(T,o;A) = (o + iT)P,
A—o+

83 it follows that E(T, 0; A) may be thought of as a sort of a derivative of
E,(T). The connection between E(T,0; A) and E,(T) will be made in
the following lemmas.

Lemma2.4. For1/2 <o < 1fixed, T <A< T'"¢and L = 100+/log T
we have uniformly

2T 2T+LA
f (o + in)*dt < f I(t,o; Aydt + O(1)
T T-LA

and

2T-LA

2T
f (o + in)|*dt > f I(t, 0 A)dt + O(1).
T

T+LA
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Proof of Lemma 2.4. This lemma is similar to Lemma and the
proof is similar. We have

o0 2T+LA
2T+LA -
f I(t,07; A)dt = f 1Z(o + iw)* [ (A V)~ f e grl du
T-LA
—o0 T-LA
2T 2T+LA
> flé(O' + iw)* | (A V)™ f e_(’_”)z'Azdt] du.
T T-LA
But for T < u < 2T we have, on setting t — u = Av,
2T+LA (QT-u)/A+L
N B S I e
T-LA (T-u)/A-L
0 0 —100 \/log T
S fe_"zdv +0 f edv+ f e dv
- 100 \/log T -
=1+0(T™".
Therefore
2T 2T+LA
(1 + 0T '%) f (o + in)|dr < f (1,07 A)dt,
T T-LA

which proves the upper bound inequality in the lemma. The lower bound 84
is proved analogously.

Lemma 2.5. For1/2 < o < 1 fixed, T <A < T'"¢and L = 100+/log T
we have uniformly

2T+LA 2T—-LA
|E,(2T) — E,(T)| < f Et,o; A)di| + f E(t,0; A)di| + O(LA).
T-LA T+LA
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Proof of Lemma 2.5. This follows from Lemma 2.4l when we note that
the integrals appearing in Lemmal[2.4] on the left-hand sides are equal to

2T

s

((20— - 1)F(20- — 1) Sin(n-o-)tZ—Zo-}
T

1-0

E;Q2T) - E,(T) + {{(20') +

and then use (2.114) and simplify.

Lemma 2.6. For 1/2 < o < 1 fixed, T€ < A < T'~¢ we have uniformly

T
T 1/2—0
f E(t, o, A)dt = O(log T) + 27! (;) 1020 (i x
0 n=1

h [ n T 1\~
(ar sin ﬁ) (% + 4_1) X
2
exp [— (Aar sinh , / %) ] cos(f(T, n)),

where f(T,n) is in Theorem 21}

Proof of Lemma 2.6. Follows from the method of Y. Motohashi [130],

which is analogous to the method that he used in proving Theorem

the fundamental result on the fourth moment. However, the case of the

fourth moment is much more difficult than the case of the mean square,

hence only the salient points of the proof of lemma[2.6] will be given.
Consider, for Reu,Rev > 1,0 < A<T/logT,

Lo(u,v; A) := (ANm)™! f L+ ind(v —ine ™ dr.

Then I(u,v;A) can be continued meromorphically to C2, and by
shifting appropriately the line of integration one has, for Reu, Rev < 1,

2Vr

oG, v: A) = (Avm)™! f u+incv—ine "N dr + S wrv=1)
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ol eo(517))

On the other hand, in the region of absolute convergence we have

To(u, v A) = L +v) + IV, v A) + IV, u; A),

where

1D, v; A) = E m~"(m +n)”" exp (—I log? (1 + ﬁ))
m

mn=1

For Rev > Re s > 0 we define

I'v+it—s
( )e_;Z/AZ

M(s,v;A) == (AVn)~'T dt,
(s.318) = (AR TG [ R
so that for x > 0, a > 0 we have
a+ico
-V Az 2 1 -5
1 +x) "exp[——1log"(1 +x)| = — M(s,v; N)xds.
4 2mi
a—ico

This gives, for Re(u +v) >a+ 1> 2,

a-+ico

1D, v;A) = % f () (u+ v — $)M(s,v; Ads.

a—ioo

If (u, v) lies in the region b > Re(u + v) > a + 1 > 2, then we move
the line of integration to Re s = b. In this way we obtain

1
I(l)(u,v;A):{(u+v—1)M(u+v—1,v;A)+T (2.115)
JTl

b+ico

f L(H(u+v—s)M(s,v; A)ds.

b—ico
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From (Z.I15) we have a meromorphic continuation of IV to the
region b > Re(u + v). Then we use the functional equation for £(s) and
obtain from 2.113), for any o- < 1 and b > 2,

(A~ f (o +iT + infe™ M dt = {20) + £ Q20 — 1)x

IMQo - 1,0 +iT;A) + MQo — 1,0 — iT; A)}

b+ico
(o] 2 _
= 2021772 Y a1 () f (27n)~* sin(y)x
n=1 b—ioco

I'(s+1-=20){M(s,0c+iTA)+ M(so —iT;A)}ds

. 2
— 4x(AVR) {20 — 1) Re {exp(#) } (2.116)

86 In (2.116) the sine is written by means of the exponential function,
and the resulting integrals are simplified by changing the order of in-
tegration. In this way we obtain from 2.I16), for 7¢ < A < T'=¢,
T <t < 2T, and I defined by @2.113),

I(t, 03 A) = {(20) + 220 — DI 20 — 1)(AVa) ™

Re fr(l -0 + it‘.l‘iu)e_MZ/AZdu
I'(o + it + iu)

o0

+4 Z O1-20(n) fy_”(l + y)"7 cos(2rny)x
n=1 0

1 A? 1
cos (tlog(l + —)) exp (—— log? (1 + —)) dy
y 4 y

+0 (exp (—% log® T)) (2.117)
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By Stirling’s formula we find that, for 7 < t < 27,

[Se]

(A \/;)—1 Re {f r(l — o +it+ iu)e_MZ/Azdu} t1—20' Sin(ﬂ'G’) + 0(%) )

(o + it + iu)

[ee)

(2.118)
On inserting 2.118)) in (2.117) and integrating it follows that

2T

f E(t, 0 A)dt = O(1) + 4 Z 0120 () (2.119)

T n=1

(" cos(2rny) sin(tlog(1 + 1/y)) A
{Of ¥ (L +y) log(1 + 1/y) exp(_41°g (“l/y))dy}

2T

T

It remains to evaluate the exponential integrals in (2.119). This can
be done directly by the saddle-point, as was done by Y. Motohashi [[130],
or one can use Atkinson’s Theorem 23] In fact, save for the factor
exp (—ATZ ), the integrals in question are of the same type as those
considered by Lemma By either method one obtains Lemma2.6]
replacing T by T27/(j = 1,2,...) and adding all the results.

As we have

3
arsinhx = x — % +0(x’) (x < D),

it follows that we may truncate the series in Lemma@Z.6lat n = 1007 A~2
log T with an error which is O(1), provided that A < T'/2. Hence
combining Lemma [2.5] and Lemma 2.6 we obtain

Theorem 2.10. For 1/2 < o < 1 fixed, T¢ < A < T'? and f(T,n) as in
Theorem[2.1] we have uniformly

E,2T) — E;(T) < AylogT + sup 7!/%7x

L <r<3T

1
Z (=)o 120 (m)n” ! (ar sinh ‘/@) x
2t

n<100TA=2log T
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T 1y . [7n ’
(% + 4_1) exp (— (Aar sinh E) ]COS(f(T, n))

This result may be compared to Theorem The parameter H in
2.103) corresponds to A in (Z.120Q). The latter has two distinct advan-
tages: the range for o is the whole interval 1/2 < o < 1, and in the
range for n there is no 7€, but only log T present.

To obtain bounds for E,(T) from Theorem[2.10} we use first the fact
that, for o > 1/2 and x — oo,

D T1ae(n) ~ LQ0)x.

n<x

. (2.120)

Hence by partial summation and trivial estimation one obtains from
Theorem [2.10)

EsQT) = Eo(T) < T** 3" oy pp(mn”*
n<100TA-2log T

+ A(log T)'? < T1V2AT2712(1og T)7 =12 4 Alog T)'/2.

Choosing
A = TV/(1+40) (1o T)dr-3)/Bo+2)

we obtain
E(T) < TVIH4) (g TyHo=DIGo+h (10 < 0 < 1), (2.121)

This bound obviously sharpens and extends (2.106). Note that, for

3+ V17
o> +T‘/_ — 0.890388... ., (2.122)
we have |
Tva0 27

so that in this range the bound 2.121) for E,(T) becomes larger than
the second main term (see (2.2)) in the asymptotic formula for

T
f (o + i)|dt.
0
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Now we shall use the theory of exponent pairs to estimate E,(7), which
will yield non-trivial bounds in the whole range 1/2 < o < 1, and in
particular when o satisfies (2.122). To this end first note that the fac-
tor (—1)" appearing in the sum in (2.120Q) is harmless, since one may
consider separately subsums over even and odd integers. Thus, with a
slight abuse of notation, this factor may be discarded. The functions

~1/4
arsinh(7n/2T)"/? and (% + 21;) ! may be approximated by the first

few terms coming from the Taylor expansion. The factor exp(—(A.. )?)
lies between 0 and 1, and since it is monotonically decreasing as a func-
tion of n, it may be removed from the sum by partial summation. Thus
the problem is reduced to the estimation

S(T,N) := T3 a1 ag (> explif (T,m)|,
n<N

where N < TA72log T. We estimate first

DUTN) = oriag(m) explif (T,m)).

n<N

Write

Z(T,N) = Z K27 exp( if (T, km))

km<N

=2 Z K2 Z exp(if (T, km))

k<N1/2 m<N/k

- Z k' Z exp(if (T, km)).

k<N'/2 m<N'/2
The sums over m are split into subsums of the form

Sy = Z exp(if (T,km)) (1 <M <N).
M<m<M'’'<2M

Note that

OF (T, km) (2nkT)% .
om ’

m
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and that higher derivatives with respect to m may be also easily eval-
uated. Their form is such that S, may be estimated by the theory of
exponent pairs as
1 1
Sy < (Tk)2*M* 2%,
and consequently
DUT Ny < DK TR N+ K (Thy N
k<N? k<N?
1 1 1 1 1 1
< TEXNA—EX k1—2(r+x—/1 + TEXNEJ—Z)C k1—20'+§x
2, 2
k<NZ k<NZ
< T%XN1—0'+%/1
if
A—-x<2-20, (2.123)

and if equality holds in (2.123]) we get an extra log-factor. Partial sum-
mation gives then

Bl—=

S(T,N) < Ti 7+ "N « T30+ 15T A 2 log T) 2474,

and consequently we obtain

EO—(2T) _ EO—(T) < T1/2(x+/l+l)—0'A1/2—/1(10g T)1/2/1—1/4 + A(lOg T)1/2.
(2.124)
If we choose
(1-20)+x+1

A =T 221 (log T)%

to equalize the terms on the right-hand side of (2.124]), we obtain the
following

Theorem 2.11. If (v, A) is an exponent pair and 1/2 < o < 1 is a fixed
number such that 1 — x < 2 — 20, then

EO—(T) < T(1—20'+)(+/l)/(2/1+1)(10g T)(Zﬂ—l)/(2/1+l)‘ (2125)

By specialising (y, 4) one can get several interesting estimates from
(2.123). For example, by taking (v, 1) = (1/2,1/2) itis seen that (2.1235))
holds for 1/2 < o < 1, hence we have
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Corollary 1. For 1/2 < o < 1 fixed we have
E,(T)<T'™“. (2.126)

Note that (2.126) provides a bound which is always of a lower order
of magnitude than the main terms, and it improves 2.121) for 3/4 <
o< 1.

Another possibility is to choose (x, 4) such that 1 = x + % Then
(2.123) reduces to o < 3/4, and the estimate given by (2.123) is opti-
mal for y minimal. Taking (y, 1) = (% + €, g—g + e), which is a recent
exponent pair of Hauley-Watt, we see that even the case o = % may be
treated, and we obtain

Corollary 2. For 1/2 < o < 3/4 fixed we have
E(T) < TO17360)/65+€ (2.127)

and in particular
E34(T) < T%/%5%€, (2.128)

Note that (ZI21) gives only E3/4(T) < T'*(og T)'/?, which is
much weaker than (2.128]). There are possibilities to choose various
other exponent pairs which, depending on the condition [2.123), will
provide various estimates for E,(7"). We list here only one more specific
example. Namely, with (y, 1) = (%, %) we see that (2.123) holds for
o <11/12, and yields

Corollary 3. For % <o < % fixed we have
Eq(T) < T80/ (Jog T)!/2
and we also have
Enjio(T) < T log TY*2

Of course, there are possibilities to use the techniques of two-dimen-
sional exponential sums to estimate (7', N). These techniques may, at
least in some ranges of o, lead to further small improvements of our
results. Also it may be remarked that (2.123)) in the limiting case when
o — 1/2 + 0 reduces to the bound (Z.110Q) for E(T).
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2.8 Asymptotic Mean Square of the Product of the
Zeta Function and a Dirichlet Polynomial

The title of this section refers to the asymptotic formula for the integral
T
I(TA)'—f{ 1+'t A 1+‘t
, = > i 2 i
0

A(s) = Z a(mym™*

m<M

2 2

dt,

where

is a Dirichlet polynomial. Problems involving the application of I(T, A)
with various (complex) coefficients a(m) frequently occur in analytic
number theory. Thus it is desirable to have an asymptotic formula for
I(T,A), or at least a good upper bound. It is natural to expect that for
relatively small M an asymptotic formula for /(7,A) may be derived,
and we know that in the trivial case M = 1 such a formula exists. R.
Balasubramanian et al. [6] established an asymptotic formula in the case
when a(m) <, m© and log M < log T. They proved that

a(h)a(k)
hk

T(h, k)?
2rhk

IT,A) =T Z

hk<M
+ 0T M?) + Op(T log B T) (2.129)

(h, k) (log + 2y — 1)

for any B > 0, so that one gets a true asymptotic formula from 2.129))
in the range 1 < M < T'/27¢. In some special cases, or in the case when
some additional conjectures are assumed (e.g. like Hooley’s Conjecture
R* for Kloosterman sums), the error term in can be improved.
The asymptotic formula for /(T, A) can be recovered (by an argument
similar to the one used in Sections and [3.7) from the asymptotic
formula for

s = (avr) f £C1/2 + inPIAC1 /2 + e 1N gy,
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where T < u < 2T, exp(5+/logT) < A < T/logT. The evaluation of
g(u) is rather delicate. Putting so = 1/2 + iu one can write

1,
5 tioo

g(w) = (iavr)” f VY 2(5)(1 = HASA(L = s)ds

1 .
3l

and move the line of integration to Re s = 1 + n(n > 0). This procedure
is difficult, as it involves the evaluation of certain complicated integrals
containing the exponential function.

Another approach to the evaluation of I(7T,A) is given by Y. Mo-
tohashi [3, Part V]. He observed that the argument of Atkinson which
leads to the proof of Theorem 2.Jl may be generalized to produce the
asymptotic formula for /(7, A). His result is

Theorem 2.12. IfA(S) = Z a(m)ym™* with a(m) <. m€ and log M <
m<M

logT, then

a(hya(k)
hk

T(h, k)
2rhk

IT,A) =T Z

(h,k) (log
hk=M

+2y— 1) + 0 (T3+M*P).
(2.130)

Proof. Only an outline of the proof will be given, since full details re-
quire considerable technicalities. Unlike (2.129), from (2.130Q) one can
obtain the estimate E(T) <, T'/3*€ simply by taking m = 1. We have,
forReu>1,Rev > 1,

L MAWAR) = L +v) ) aaDlk, 1™

k<M
M(u,v)+ M(v,u),

where
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This relation is an easy generalization of (2.7)) and (2.8]) in the initial
stage of the proof of Atkinson’s formula. To obtain analytic continuation
of M(u,v) to the region Re u < 1 we use the formula

1 o0
rf= % fys_le_'ydy (r>0,Res>0)
0

to replace summation over m and n by a double integral over (0, co) X
(0, 0). Then we replace this integral by integrals over the contour % .
This is the loop contour which starts at infinity, proceeds along the pos-
itive real axis to 6(0 < & < 1/2), describes a circle of radius 6 coun-
terclockwise around the origin and returns to infinity along the positive
axis. This procedure leads to

I'd-uw
r'(v)

1—u—v
toev-1 Y L aa® + gz )
k1l

Mu,v)=Twu+v+1) [k, 1]

where

o | a(kyald) ¥
g(u, V,A) = F(M)F(V)(EZHW _ 1)(627riv — 1) Z ) ;

k.l
yV—l u—1 1 5(f)
fey—Zm'f/l 1 fx A2k 1 kx + ky dxdy.
(g (g
94 Here 6(f) = 1if [ | kf and zero otherwise, and the double integral

is absolutely convergent for Re u < 1. Collecting the above estimates it
follows that, for 0 < Reu < 1 and u + v — 1, we have

T Aka)
(1 = WAGA( —70) = ; bt
1T T -w k. 1)
{5 ( M T -w ) +log =+ 2y - 2log<27r>}

+g(u,l —u; A) + g(1 - u,u;Z).
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Setting k* = k/(k, 1), I* = 1/(k,[), Kk = 1 mod I*, one transforms
g into

g(u,l—u;A)=Z% (2.131)
k,l ’

2, i) exp(mikc 1) f exp((2iny)/ (k' I)y™(1 +y)*~"dy.
0

n#0

Further transformations of (2.130) may be carried out by the ana-
logue of the Voronoi formula for the function

A k1) = Z d(n)exp [2771'];—:11)

- %(IOgX+ 2y —1-2logl") - D(O, ];—) (2.132)
where
)N )
Dl|s,—|:= Zd(n)exp 2ni—n|n”* Res > 1).
n=1 I

Formulas for (2.132)) are given by M. Jutila [95]], and their use makes
it possible to estimate the error term in (Z.130). If the function in ques-
tion is denoted by E(T, A), then the result of Theorem 2.12] follows by
using an averaging technique, either the analogue of (2.13)), or by con-
sidering

f E(T) +t,A)e™ 19 41,

the suitable choice for G being G = T'/3*¢M*3. Note that the error 95
term in (2.130) does not exceed the error term in (2.129).
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Notes For Chapter 2

The definition of E,(T) in (2.2)) differs from K. Matsumoto’s defi-

nition in [115] by a factor of 2. This is because Matsumoto considers
T

f (o + ir)|*dt, but T thought it more appropriate to define E,(T) in
-T
such a way that the limiting formula (2.3)) holds. I have followed Mat-
sumoto in the use of the function o1_,(n) in (2.6) and in the sequel.
This notation is perhaps a little awkward because of the double appear-
ance of “sigma”, but I hope this will cause no confusion.

In view of (2.4) and the fact that G(T) = O(T>*) (see (B.I) and
Lemma[3.2)) perhaps it would be more consistent to define

T
E(T) = f|§(1/2 + if)[dt — T(log L, 2y — 1) -,
2n
0

which would be stressing the analogy between E(T) and A(x). However,
I prefer to use the standard notation introduced in the fundamental paper
of F.V. Atkinson [4] (see also his work [5]] which contains the ideas used
in [4]]). Moreover, one defines often in the literature A(x) not by (2.4)
but as
A(x) = Z dn) — x(logx +2y—1),
n<x

which is then more in true with the definition of E(T) is extensively
studied by M. Jutila [87], [90] and [91].

Generalizations of Atkinson’s method to L-functions were made in-
dependently by Y. Motohashi in the series of papers [125]], and by T.
Meurman [117], [[120]. For example the latter notes that, for Reu > 1
and Rev > 1 one has

L(u, ))L(v, x) = e(@)(L(u + v, x0) + fo(u,v) + fo(v, u)),
x (mod g)
where yj is the principal character modulo ¢ and
frwvy= > X+,
r=1,(r,1)=1 s=1
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the double series being absolutely convergent for Re(u + v) > 2, Rev >

1. Writing
Fawvy = p) » > (kr +qs)™,

klg s=1 r=1

one can apply Poisson’s summation formula to the sum over r if Re u <
—1, Re(u + v) > 2, and then carry on the analysis in the manner of
Atkinson. In this fashion Meurman eventually obtains an asymptotic
formula for

T

Bani= Y, [apzeioba
x  (mod (1)0

2 T 1
_ @D, log L=+ 3" 258 4oy 1,
4 2 plqp_1

which generalizes Atkinson’s formula for E(T) = E(1,T). Y. Moto-
hashi also obtains several interesting results concerning applications of
Atkinson’s method to L-functions. Thus in Part I of [[125]] he proves that,
if ¢ is a fixed real and ¢ is a prime, then

1"/
(g-1D7! Z IL(1/2 + it, )P = log <L + 2y + Re —(1/2 + i)
2 T
x (mod q)
+2g " Ple(1/2 + i) cos(tlog q) — ¢ |L(1/2 + iD]* + O(g™*?),

a result that suggests some peculiar relation between the zeros of {(s)
and the values of L-functions. Part V of Motohashi [[125]] is discussed in
Section[2.8]

Theorem [2.1] is due to F. V. Atkinson [4], and Theorem [2.2] was
proved by K. Matsumoto [115].

In deriving (2.28)) we started from Reu < 0, but (2.28)) in fact can
be seen to hold for Reu < 1.

The classical formula of G.F. Voronoi [[162], [[163] for A(x) is dis-
cussed also in Chapter 3 of Ivi¢ [[73] and by M. Jutila [93]]. The asymp-
totic formula for (2.38)) for A;_»,(x) is due to A. Oppenheim [132]. The
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proof of the truncated formula (2.40Q) for A;_,,(x) is analogous to the
proof of the formula for A(x) given in Chapter 12 of E.C. Titchmarsh
[155]. for properties of Bessel functions the reader is referred to the
monograph of G.N. Watson[164].

A more general version of the second mean value theorem for in-
tegrals than (2.31) is as follows. Suppose f(x) is monotonic and g(x)
integrable on [a, b], a < b. Then there exists a < & < b such that

b ¢ b
f Fg(0dx = f(@ f ¢()dx + f(b) f ¢(x)dx.
a a f

X

Namely, let G(x) = f g(t)dt. Integration by parts gives

a

b b b
f Jg)dx = f J(0dG(x) = G(D) f(b) - f G(x)df(x).

Suppose now f(x) is increasing. Then df(x) is a positive Stieltjes
measure, and in view of continuity of G(x) the last integral above equals

GE(fb) - f@)  (a<&<b),

so that after rearrangement we obtain the result.

Theorem 2.3] Lemmas and 23] are all from F.V. Atkinson [4]].
Proofs of these results may be also found in Chapter [2] of Ivi¢ [75],
and results on exponential integrals in the monographs of M. Jutila [95]]
and E. Kritzel [102]. For this reason and because exponential integrals
are not the main topic of this text, I have not given the proofs of these
results.

The discussion concerning the simplified version of Atkinson’s The-
orem 2.3] (with the conditions 2. and 3.”) is due to T. Meurman [116].

The mean square formula is due to D.R. Heath-Brown [60]].
Theorem [2.4] was obtained independently by T. Meurman [118]] and Y.
Motohashi [[126], and the latter work contains a comprehensive account
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on his important work on the analogue of the Riemann-Siegel formula
for ¢ 2(s). Theorem 2.3]is due to K.-C. Tong [156]. The asymptotic for-
mula @.71)), in the range 1/2 < o < 3/4, is due to K. Matsumoto [115].
He kindly informed me that, jointly with T. Meurman, he succeeded in
improving the error term in (Z.71)) to O(T log* T).

Concerning the use of (2.I01I) for the proof of (Z.100) (and the
sharpening of by a log-factor), it may be remarked that E. Preiss-
mann in correspondence informed me that he also obtained a proof of
@.100). In [135] he actually treats in detail the circle problem (i.e., the
function P(x) = r(n) — mx, where r(n) is the number of representa-

n<x
tion of n as a sum of two integer squares) by the classical method of E.

Landau [108]] and (Z.101)), getting
X

1 (o)
sz(x)dx = CX¥? 4+ 0(X1og? X),C = — > ™.
2m? A
1 =

The divisor problem is closely related to the circle problem (see
Chapter 13 of Ivi¢ [75]), and similar methods may be applied to both.
However, the above result for P(x) is not new, since it was proved long
ago by I. Katai [100]]. K4tai used the estimate

1
Z r(mr(n + k) < xz p (uniformly for 1 < k < x'/3),
n<x dlk

which he proved by ingenious elementary arguments.
Y. Motohashi remarked that alternatively one can prove

Z dn)d(n+r)

— <o 4x
rn3/*(n + r)l/4 g

r<Man<Mn+r<M

by noting that, for r < x,
Z dm)d(n + r) < o1 (r)xlog? x,
n<x

which follows e.g. from a theorem of P. Shiu [151] on multiplicative
functions.

929
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Theorem 2.7] corresponds to Theorem 15.5 of A. Ivi¢ [75]], which is
a result of M. Jutila [87]. Theorem[2.8lis given by K. Matsumoto [115].

R. Balasubramanian’s formula [6] for E(T) will be discussed in
Chapter @l There it will be shown how a smoothing technique, com-
bined with the method that gives (2.110)), leads to the estimate

E(T) < TUV/Cx+2) 1502 T

This result is superseded by a bound of D.R. Heath-Brown and M.N.
Huxley [64]], contained in Theorem 2,91

In [130] Y. Motohashi uses the argument briefly described in the
proof of Lemma[2.6to prove, for 1/2 < o < 1 fixedand 7€ < A < T'¢,

E(T,0;A) = O(AZT_l—ZO') + O(AI/Z—ZO'T—I/Zlog5 T)+

TA\1/2-0 &2 T 1 —-1/4
+ 20 (_) -1 n—1 3 o-1(_~ + =
ﬂ Zl< i P

2
sin f(T, n) exp {— (A arsinh 4 /%) ]

uniformly in A. Motohashi’s idea to work with the smoothed integral
(2.113) is used in his fundamental works [3, Part VI], [128]] on the fourth
power moment, which is discussed in Chapter[3l There is the reader will
find more on the properties of the function M(s, v; A), which is crucial in
establishing (2.116)). For details on (Z.118)), see (3.19), where a similar
expression is also evaluated by Stirling’s formula.

Proofs of Theorem[2.10]and Theorem 2,11 have not been published
before.

As was already remarked in Notes for Chapter [I, M.N. Huxley and
N. Watt [71] discovered new exponent pairs. This means that these ex-
ponent pairs, one of which is the pair (% + €, g—g + e) used in the text,
cannot be obtained by a finite number of applications of the so-called
A—, B—processes and convexity to the trivial exponent pair (x,1) =
0, 1).

For C. Hooley’s Conjecture R*, which is important for the asymp-
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totic formula (2.129) of R. Balasubramanian et. al. [6], see C. Hooley
[65]].
The Dirichlet series

D(s, ]zj) = z:; d(n) exp (2m'lzfn) n (Res> 1),

which appears in (2.132) is sometimes called the Estermann zeta - func-
tion. This is in honour of T. Estermann, who in [33] studied analytic
properties of this function. It will appear again in Chapter[3lin connec-
tion with the fourth power moment. For its properties one can also see
M. Jutila [93].






Chapter 3

The Integrals of the Error
Terms in Mean Square
Formulas

3.1 The Formulas for the Integrated Error Terms

This Chapter is in a certain sense a continuation of Chapter 2] where 101
we established explicit formulas for the functions E(T"), E,(T) defined

by @.J) and @2.2), respectively. These functions, which represent the
error terms in mean square formulas, contain much information about

{(s) on the critical line Re s = 1/2 and Re s = o. This topic was in part
discussed at the end of Chapter 2] and further results may be derived
from the asymptotic formulas for

T
G{T) := f(E(t) — m)dt 3.1
2
and
T
G,(T) := f(EU(t) — B(0))dt (% <o< %), 3.2)
2

113
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where

B(o):=(Qo - 1DI'2o - l)f
0

{F(l — 0 —iu) N I'd—-o+iu) _oyl2 Sin(ﬂo')} du (3.3)

I'(o—iu) I'(o + iu)
a(l =202 = 20)(2n)*o !
I'Q2o) sin(ro)

Throughout this chapter it will be assumed that o is fixed and is
restricted to the range 1/2 < o < 3/4. It may be shown that

lim B(o)=mn, 3.4

o—1/2+40 @) 34)

so that (3.I) may be thought of as the limiting case of (3.2)), which in

view of continuity one certainly expects to be true. The lower limit of

integration in (3.1 and (3.2) is unimportant, especially in applications.

102 It could be, of course, taken as zero, but a strictly positive lower limit

enables one to use asymptotic formulas such as Stirling’s for the gamma-
function. Our main results are contained in the following theorems.

Theorem 3.1. Let 0 < A < A’ be any two fixed constants such that
AT < N < A'T, N’ = N'(T) = T/2n) + N/2 — (N*/4 + NT/(2n))'/?,
and let

3 . [nn » /2w
f(T,n) =2Tarsinh ﬁ+(2nnT+ﬂ n) T

T
g(T,n) = Tlog(—)—T+ J—T,arsinhxz log(x+ X2+ 1).
2nn 4

Then if G(T) is defined by (3.1)) we have

m - T 1\~
_ n-3/2 _ 1\ -1/2 . o . -
G(T) =2 ;/( ' d(n)n (arsmh 2T) (27m + 4)

3.5)
. “1)2 T \7? . 1/4
Sin(f(T,m) ~2= Y dwyn (log E) sin(g(T, n)) + O(T'/4).

n<N’
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Theorem 3.2. Let 1/2 < o < 3/4 be fixed. Then with the above notation
and Gy — (T) defined by (3.2) we have

o-1/2
Go(T) = 272 (;) %(—n"m_zg(n)nf"l (3.6)
-2 ~1/4
(ar sinh 4 /%) (271% + }1) sin(f(T, n))
2\ 12 (T2 i
- 2(7) ZN 12 (5 sinGe(T,m) + 0T,

We remark first that, when o — 1/2 + 0, the expression on the
right-hand side of (3.6) reduces to the corresponding expression in (3.3).

Since
af(T,n) . an 0g(T,n) ( T )
- =2 h,/l—,——=1 —_—
oT AN Tar T % \om)

it is seen that formal differentiation of the sine terms in (3.3) and (3.6)
yields the sums in (2.3)) and (2.6)), respectively. This is natural to expect,
because

dG(T) dG(T)

ar -~ ED —r

The formulas (3.3) and (3.6) are of intrinsic interest, and in Sec-
tion (B.2) we shall use them to obtain omega-results for E(T), E,(T)
and G,(T). Theorem [3.4] brings forth the sharpest Q.- results for E(T)
which correspond to the sharpest known results for A(x). Mean square
estimates for G(T') and G,(T') are also of interest, and they will be dis-
cussed in Section[3.4].

We shall begin now with the proof of Theorem[3.1]and Theorem[3.2]
Details will be given only for Theorem [3.1] and then it will be indicated
what changes are to be made in proving Theorem[3.2] One applies (3.3)
most often in the case when N = T, namely

-2 ~1/4
G(T)=273? Z:(—l)"d(n)lfl/2 (ar sinh , /;—T) (% + ‘1—1) 3.7

n<T

= E(T).

-2
sin(f(T,n)) — 2 Z d(nyn~'? (log %) sin(g(T, n)) + O(T'7?),

n<coT

103
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_1,l L1
=2 N T o

In proving either (3.3) or (3.7) one would naturally wish to use
Atkinson’s formula for E(T"), but unfortunately it contains the error term
O(log? T') which is much too large for this purpose. We shall actually
prove (3.7), and then indicate how it can be used to yield the slightly
more general result contained in (3.3). We start from the formulas 2.18))
and with T replaced by ¢ and integrate. We obtain

where

2T 2T 1
fE(t)dt:ffg(l/2+ia,l/2—ia’)d0'dt+0(1)
T T —t

27
= f(ll(t) — L) + I(1) — L(n)dt + O(1),
T

104  where I, = I,(¢) is as in 2.30) - (2.34)), only with T replaced by ¢ and
N =T. To prove (3.7) i twill suffice to prove

2T
f E(tdt = nT + HRT) — H(T) + K2T) - K(T) + O(T"*%), (3.8)
T
where
_ " i x 1 -
H(x): =273 ;(—1) d(nyn™? (% + Z) (3.9)
B -2
(ar sinh /@) sin(f(x, n)),
2x
-1/2 x \2 .
H(x) : = —2n;xd(n)n (log %) sin(g(x, ), (3.10)

and then to replace 7 by 727/ and sum over j = 1,2, ... The main term
7T in (3.8) comes from I5(¢), while the sums defined by H will appear
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2T

in the evaluation of f I1(t)dt. The integral I} was evaluated in Section

T
with an error term O(7~!/2) which, when integrated, is too large for
our purposes. To avoid this difficulty we take advantage of the extra
averaging over ¢ via the following lemma.

Lemma 3.1. Let «,8,7, a,b,k, T be real numbers such that «, B,y are
positive and bounded, o # 1,0 <a < 1/2,a<T/@8nk), b>T, k > 1,
T>1,

1\ k
Ut = (m 4 Z) , V(1) = 2arsinh ,/%,

—a -B
L(t) = %(Zk ﬁ)—lz”zv—y—l(z)u—”z(z)(U(r) - %) (U(t) + %)

exp {itV(t) 4+ 27kiU (1) — mik + %} ,

and

2T b N
J(T):ffy_a(l+y)_5(1og(1+;))
T a

1
exp {itlog(l + —) + 27riky} dydt. (3.11)
y

Then uniformly for | — 1| > €,1 <k < T + 1, we have

J(T) = LQ2T) = L(T) + O(a"™®) + O(Tk™'p?~"F)

A similar result. without L(2T") — L(T'), holds for the corresponding
integral with —k in place of k.

This result is a modified version of Lemma 2.2] and likewise also
follows from Atkinson’s Theorem 2.3l Therein one takes

1+z
Z

, X)) =x*0+x7P, Fx) = ﬁ,,u(x) = g,

t
f@= o log

105
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follows the proof of Atkinson’s theorem for the inner integral in (3.11)),
and then one integrates over ¢. The contribution of the integrals /3; and
I3 (see p. 63 of Ivi¢ [[73]) is contained in the O-term in (3.12), since in
our case we find that

It Loy < e~k if k > log? T,
e e if k < 1og? T.

Likewise, the error terms

P ('fé + k| + f”f/z)_1 , Dy (If; + k| + fé/l/z)—l

give after integration the terms O(a'~®) and O(Tk™'bY~*B) which are
present in (3.12). The main contribution comes from I3, only now one
has to integrate over ¢ for T < ¢ < 2T. This leads to the same type of
integral (the factor 1/i is unimportant) at 7 and 27T respectively. The
only change is that y + 1 appears instead of y, because of the extra
factor log(1 + 1/y) in the denominator. Hence the main terms will be
L(2T) — L(T), and as in Theorem 2.3 the error term is ®ouoF, 0 32 with
again y + 1 replacing y. This gives the last O-term in (3.12)) (see the
analogous computation on p 453 of Ivi¢ [75]), and completes the proof

of Lemma (B.1)).
Now we write

2T

2T b
. . sin(tlog(1 + 1/y)) cos(2nny)
Li(tdt=4 ) d lim 1 dydt
fl() ; (”)ail%o‘b‘ﬂmff V(L + ) 2 log(1+ 1/y) >
ns T 0

T

=20 dm, lip i m
n<T

2T b
ff exp(itlog(1 + 1/y) + 2miny)
T 0

dydt$ + OT'"™.
V() P log(l+ 1/y) » T

106 The first equality above holds because the integral defining /;(¢) con-
verges uniformly at co and O for 1/2 < @ < 1 — €. The second equality
comes from using the case of Lemma[3.1]“—k inplace of k” for the other
two integrals coming from sin(...) and cos(...) in 11 (). We evaluate the
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double integral above by applying Lemma 3.1l with 8 = 1/2, y = 1,

a — 0. Thenweletbh — coand @ — 1/2 + 0. we obtain

2T
f L(tdt = HR2T) - H(T) = 2737 Z (-1)'d(n)n~"?
T T<n<2T

-1/4 -2
(2—T + 1) (ar sinh %) sin(f(2T, n)) + O(TY*)  (3.13)

2nin 4
where H(x) is given by (3.9).

Hence forth we set for brevity X = [T] +%. Note that the contribution

of the integral

sin(tlog(1 + 1/y)) cos(2nXy)
Y21+ )12 log(1 + 1/y)

I(1) = 4A(X)f
0

2T

to f E(t)dt is estimated again by Lemma[3.1l Using the weak estimate

T
A(X) < X'/3*€ it follows at once that

2T

f L(T)dt < T V8.

T

‘We now turn to

sin(tlog(1 + 1/y)) sin(2nXy)

2 (o)
I(t) = —— (log X + 2y)f
3/2 1/2 1
n ) Y21+ ) log (1 + 1)
X 0 5 1/2+it e
i X
+ — —sm( d y)dy f (1 + —) u'du
Tl 3 y y

1/2—it
2 1

= ——(log X + 2y)131 (1) + —132(1),
T Tl

say. We have first

dy
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2T 2T 3T 2T oo

fowa- [ [ [}

f cos(T log(1l + 1/y)) — cos(2T log(1 + 1/y))} sm(27er)

Y2(1+ y) 2 log?(1 +1/y)

+O0(T™")
0

on estimating f; -+ as O(T~?) by writing the sine terms in I31(¢) as
exponentials, and applying Lemma 2.1l The remaining integral above is

written as
3T (2x)7!
f f f Il
0 2x)!

say. By applying twice the second mean value theorem for integrals it is
seen that the part of I’ containing cos(7 log(1 + 1/y)) equals, for some
O<n<&e<2X)],

3
p 1/2 1/2
Wf cos(T log(1 +1/y)) y'*(1+ ' ,
y(1 +y) log?(1 + 1/y)

51/2(1 +&)l? fcos(T log(1 + l/y))d
log (1+1/¢) y( +y) Y

A

-1/2
log (1+1/8) ’

<T

3
{—% sin(T log(1 + l/y))}

n

since y~!sin(27Xy) is a monotonically decreasing function of y in
[0,(2X)" '], and y'/2(1 +y)'/? log_z(l +1/y) is monotonically increasing.

108  The same reasoning applies to the integral with cos(27 log(1+1/y)), and
I"” < T2 follows on applying Lemma 2.1l Hence

2T

fl31(t)dt < T2,

T
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Next take I3,(#) and write

1/2+it
sin(2nX )
132()_f Y f(l 1/y)u”
0 1/2—it
1/2+it
00 2 X
+f Sin@2rXy) f(1+l/y)”u_ld“2132(’)+1§/2(t)’
1 Y 1/2~it

say. As in the corresponding estimation in the proof of Theorem[2.Ilone
has I7,(1) < 1~ "og t, which gives

2T

flg’z(t)dt < logT.
T

In I,(t) we have 0 <y < 1, hence by the residue theorem

1/2+it —oco+it  1/2—-i
f (A + 1/yYu du = 27i — f + f 1+ 1/y)u"du
1/2—it [2+it  —oo—it
If we use
1 2nX )

fs1n(27er) f%d _f_f = E+0(T—1)
2nX 2
5 0

and integrate, we obtain

2T 27 1 ) —oo+it
X
f32(t)dt—7rzT ffsm(” ) f(1+1/y)“ “du dy dt
T 1/2+it
1/2—it

2T
f fsm(27TXy) f(1+1/y)”u‘ldudydt+0(1)

—oo—it
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Both triple integrals are estimated similarly, each being < T71/2,

Namely, changing the order of integration and integrating by parts we
have

2T 1/2+it 12

2T
[ [ awiwmctana= [avimes [avim—tae
o+t

T —ocotit —o0 T
12

_f(1+1)"{ U Vo0 S (0 Vo) LA
- y) \i(o +2iT)log(1/1/y) i(o +iT)log(1 + 1/y)

—00

(1+1/y)"
(o + i log(1 + 1/y)
T

12
U+ 1y7de o
log(1 + 1/y)

—00

dt}do- <T!

forO0 <y <1,and

1 -1

! f | sinQaXy)ly*dy < T7!
0

>

00

Xy Pdy+ 17! fy_3/2dy <717

X!

og}

Therefore combining the preceding estimates we have

2T

flg(t)a’t =xaT + O(logT).
T

Finally, it remains to deal with the contribution of the integral

) 1/2+it "
L) = —i f A(x) f UG PR
Ox
X /2—it

2T
to f E(1), where as in the proof of Theorem 2.1]
T

[e9)

h(u, x) = 2fy_”(1 + ) cos(2mxy)dy
0

109
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[ee)

=2 f w(x + w)* ! cos2aw)dw.
0

It is easy to see that this integral 4 is uniformly convergent, and
so we can differentiate under the integral sign to get (after changing
variables again)

ih(u, x) = %(u -1 fy_”(l + )72 cos(2rxy)dy.
Oox X
0

This integral is absolutely convergent at both endpoints, so we insert
it in the definition of I4(¢) to obtain

2T )
- f Li(t)dt = 2i f Ax)x 'dx f y 21 4+ )32
T X 0
2T 1/2+it 12
cos(27rxy)dyf f (u— 1)(1 + —) dudt.
T 1/2—it Y

We can now evaluate explicitly the integrals with respect to u and
t. We shall see from subsequent estimates that what remains provides
absolute convergence for the integral in x, so that this procedure is jus-
tified. We have

2T

- f14(t)dt =4 foo AX)(xX)~ UI(x, T) + T(x, T)dx, (3.14)
X

T

where

[e9)

—zsin(zlog(1 + 1/y)) cos(2nxy)
I(x,2) : = f 5 d
Y2(1 + )2 log™(1 + 1/y)

’

(o)

Ty = f {cos(T log(1 + 1/y)) — cos(2T log(1 + 1/y))} cos(2xy)
1) : = YI2(1 + )32 1og*(1 + 1/y)

0
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1 2 .,
2 T logl+ 1p [

00 3T P
r(x,T) =f =f +f=l'+l”,
0 0 5T

say. In I”” we write

Split now

cos(T log(1 + 1/y)) — cos(2T log(1/y))

. (3T . (T
= 2s1n(7 log(1 + l/y)) s1n(§ log(1 + l/y))

and use the second mean value theorem for integrals. Thus we have, for
some ¢ > 37T,

STZ{Sin(%l‘)g(H%» sin(%log@%))}
i , .

T
2 %log(l+i) %log 1+ 5=

Ill

C
cos(2nxy) (1 2 -1
_eos@ry) f1 2 | et
[y1/2<1+y)3/2 2 " logT+ 1 [P

since the first expression in curly brackets is O(1), and the above integral
is O(T~'x~!) on applying Lemma 2.Il Hence using Theorem the
Cauchy-Schwarz inequality we obtain

oo ) 12 / 1/2
4 f A I"dx < [ f Az(x)x_zdx] [ f x‘zdx] < TV  (3.15)

X X X

To evaluate I’ we use Lemma[2.2] (treating the main terms as an error
term) to get the analogue of (3.13) for I. the integral I(x,27T) — I(x,T)
is also evaluated by LemmaR2.2lwith @ — 1/2 + 0, 8 = 3/2,y = 2. The

error terms will be < 7/# as in (3.13). The main terms will be

T 112 1\ x
—z(4x)™! (—) viuitlu - = U+ = sin(zV+ 2nxU — nx + —)
b 2 2 X

2T

T
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where
z 1\'/? X
={—+ - V=2 'h,/—.
U (27” 4) R ar sin 2
Thus (3.13) becomes
2T )

- f L(ndt = O(T"*) - f A(x)x73?
Z

T
2T

1 -1
{ V2oV 2y (U + 5) sin (zV +2mxU — mx + ’1)
X
T

}dx. (3.16)

The last integral bears resemblance to the integral for /4 in Section
The difference is that instead of V! we have V2 and sine (at 112
T and 2T) instead of cosine in (3.16). This difference is not impor-
tant at all, and after using the Voronoi series expansion for A(x) and
changing the variable x to x? the above integral may be evaluated by
Lemma The modification is that, as on p. 454 of Ivi¢ [73], we
have V = 2arsinh(xo(n/2T)'?) = log( 1 ); hence if we replace

27n

ar sinh (x ) /%) by its square in Lemma [2.3] we obtain in the main term

the additional factor 2 (log (%))_l, the error terms remain unchanged.
With this remark one can proceed exactly as was done in the evaluation
of 1 in the proof of Atkinson’s formula, and the details for this reason
may be omitted. We obtain

2T 2T
_ -1/2 z \7? . 1/4
— | I(ndr = -2 Z dmn"?(log =) sin(g(z,n)| +OT*
J ~ 2nn T

i 27 \ 72
= KQT) - K(T) -2 Z dmyn™" (log %)

Nj<n<N{
sin(g(2T, n)) + O(T*), (3.17)
where as in the proof of Atkinson’s formula
X (X2 Xz)” 2

Z
Z=N@X) = +2_ A2
@X) =3\ T o
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N;. = N’(2T, jT), and K(x) is given by (3.10).

Thus except for the extra sums in (3.17) and the expression for
27

f I (t)dr in (3.13]) we are near the end of the proof of (3.8). But the

T
sums in question may be transformed into one another (plus a small er-

ror term) by the method of M. Jutila [89]. Indeed, from Jutila’s work we
obtain (analogously to eq (15.45) of Ivié [[75]))

2T\
_ -1/2 =L .
2 E d(n)n (log 27m) sin(g(2T, n))

Ni<n<N{
~1/4
2T 1
=272 N (o (= 5
2mn 4
T<n<2T

-2
(ar sinh | /%) sin(f(2T, n)) + O(log> T),

the difference from (15.45) of Ivi¢ [75] being in (log...)‘2 and

(arsinh...)™2, and in 27 instead of 7. Hence collecting all the expres-
27

sions for f I,(t)dt (1 < n < 4) we obtain (3.8). But applying the same

T
procedure (i.e. (15.45) of Ivi¢ [[75]) we obtain without difficulty Theo-
rem[3.1] from (B.8).
We pass now to the proof of Theorem 3.2, basing our discussion on
the method of proof of Theorem and supposing 1/2 < o < 3/4
throughout the proof. In the notation of (2.20) we have (with ¢ in place
of T)

f (o + in)Pdu = Qo) + (2o — DIQRo — 1)
0

t o+it

y(o — iu) I'(o + iu) )

o—it

where g(u,v) is the analytic continuation of the function which is for
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Reu < 0, Re(u + v) > 2 given by
gu,v) =2 Z O1-u—v(n) f y (1 +y)™" cos(2nny)dy.
n=1 0

Now we use Stirling’s formula for the gamma-function in the from
(s)=c+it,0<oc<1l,t>e

1
I(s) = V2rt" k(o 1) exp {—gt + i(tlogt —t+ g(a - 5))}

with
k(o) = 1+ci (@) + -+ ey(@)™ + oy
for any fixed integer N > 1, where ¢ (o) = %i(a’ — 02— 1/6). Therefore
c1(0) = c;(1 — 0), and for u > e we obtain
I'd-o+iu)
I'(o + iu)

k(1 -o0,u)
k(o,u)

u'"2% exp (%"(1 - 20)) ‘(1 +m(o,u),  (3.19)

= "2 exp (%(1 - 2(7))

m(o', M) = dz(O')u_z + e+ dN(O')u_N + ON(M_N_l)_

Thus .
. _ (o —i ¢
f ( (1 -0 +iu) N (I-o m))du - f zul‘z‘Tcos(mr— 1/2n)du
0

I'(o + iu) I'(o - iu) 0

t

. f{r(l -0 _ i) N rd -o + iu) _oyl2 cos(ro — 1/271)} du
I'(o—iu) I'(o +iu)

(9]

2-20 =1 — 1
_! sin(o) + f{F(l o — iu) + d-o+ m)} du + 0O(t™2%),
0

l1-0 I'(o - iu) I'(o + iu)

where (3.19) was used. Then we have

2T
§(2o-—l)F(2o-—1)ff(r(l_o—_m)+F(1_0—+m))dudt
0
T

I'(o —iu) I'(o + iu)
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2T
Qo - 1)F(20‘ - 1)

I'2o - l)f{ d-otin —ul sin(ncr)} du.

F(o- + iu)

=0T + sin(o)? 72 dt + 2020 — 1)

Taking into accout (3.18) and the definition of E,(T) it follows that

2T o+it

2T
f E,(t)dt = A(0)T —i f f g(u, 20— w)du dt + O(T'27), (3.20)
T
where
A(0) = {Qo — DT 20 — 1)I{M +
I'(oc - iu)
0
I'd-o+iu 5120
—F(a- i) 2u sm(ﬂu)} du. 3.21)

For E(T) we had an analogous formula, only without a term corre-
sponding to A(0)T. Therefore it seems natural to expect that

lim A(c) = 3.22
oo A = (5.22)

which will indirectly establish (3.4). We write

\%
A() = lim f {{(20'— Do - 1) (3.23)
0

(F(I—O'—iu)+r(1—0'+iu)

—2u'% —1/2x|} du.
I'(o —iu) I'(o + iu) " cos(ror =1/ ﬂ)} “

115 For a fixed u and o — 1/2+0 the expression in curly brackets equals

(_l ~ L iogemo - 1)+ 020 - 1)2))( !
) 20 —

> -¥+ 020 - 1))) X

1
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X {2 - (20 - 1)(1%(1/2 —iu) + I%(1/2 + iu)) -2(1+(1-20)logu+ O(2o - 1)2))},

which tends to

1(r{ N "1 v 21
AGE iu |3 iu ogul.
Because of uniform convergence the integral in (3.23)) is

1

\%4
5 f(l%a/z —iu) + %(1/2 — iu) — 2log u) du (3.24)
0

1, T(/2+iV)

= —log == gV 4V
2% 2 Ta2—iv) %

But for V > Vj > 0 Stirling’s formula gives

L(1/2 +iV) = V2mexp(=1/27V +i(V1ogV = V)) - (1 + O(1/V)),
[(1/2 - iV) = V2mexp(=1/2n.V + i(=V1og V + V)) - (1 + O(1/v)).

Therefore

T(1/2 +iV)
CTa2=iv)

Inserting (3.23) in (3.24) and taking the limit in (3.23)) we obtain
3.22).

Hence, analogously to the proof of Theorem 3.1l we obtain

=2i(VlogV -V)+0(1/V). (3.25)

2T o+it

2T
f(E(T(t) - A(o))dt = —if f g, 20 — uwydudt + O(1)
T T o-it

2T

= —if(Gl -G+ Gz —Gyydt+0(1), (3.26)
T

where G, for 1 < n < 4 is given by 2.43)- (2.43).
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2T
As in the evaluation of f I1(t)dt in the proof of Theorem [3.2]it will
T

be seen that in the final result the contribution of G| will be 272 (%)0_1/2
> ...in B6) plus O(T?/* — o), which is the largest O-term appearing

n<N

in the estimation of various integrals. Using (2.41)), namely

A1—20-(X) < x] /(4(1‘+1)+E’
it follows for sufficiently small € that
2T
szdt < TV _1)2e < 1.
T

The contribution of G is, however, more involved. We have

2T

, _ (1 =202 - 20)(2m)>7 !
—i f Gsdr = T (20 sintro) T +0(ogT). (3.27)

T

Since it will be indicated that he contribution of G4 will be essen-
-1/2
tially —2(27”)0 / > ...in (3.6), it follows from (3.27) that B(c) in

n<N’

(3.2) is indeed given by (3.3). In view of (3.2I) we may write

(1 =20)(2 = 20)(2m)> !

B(o) = A(o) + [(20) sin(zor)

’

hence taking the limit as o — 1/2 + 0 and using (3.22) we obtain (3.4).
To obtain (3.27) we split (X = N + 1/2) the contribution of the first
integral appearing in the definition of G3 as

2T 3T T o .
ff...+ff...:_(%){4(20-)_,_((2_20.”1—20}
bis
T 0 T 3T

3T

f sin2zXy) {cos(T log(1 + 1/y)) — cos(2T log(1 + 1/y))}
Y +y)7 log* (1 +1/y)

dy + O(T™),

0
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117 analogously as in the treatment of /3(¢) in the proof of Theorem (3.1).
By the same technique the remaining integral is found to be

37 (207! 3T
f: f + f =I'+II" <T'"% « 1.
0 0 @x)!

The main term in (3.27) comes from the second integral in the ex-
pression for G3. Integration yields (with —i as a factor)

o+it
! 2")4(2 209X ffsm(ZﬂX)’)d) f(u+1_20_)—1(1+l) dudt
y(1 + y)2o-l y

o—it
ff bm(ZnX))dy f( 11— 20.)— (1+ ) dudt}
(1 +y)20' 1

The total contribution of the second triple integral above is <« log T,
after integration by parts, analogously as in the corresponding part of
the proof of Theorem 2.1l To evaluate the first integral note that the
theorem of residues gives, for 0 <y <1,

o+it

1 u
f(u+l—20')_1(1+—) du
o—it Y

—oo+it o—it

:27ri(1 ) /- f(“)mf—-za

o+it —oo—it

1 O'
:27ri(1+—) +J +J",
y

say. Then 118

. 1 . 20—-1
20 a [ D o1 1)y
p y(l +y)20'—1 y

1
=2(1 =202 - 20)X' 27 f y727 sin(2nXy)dy
0
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=2(1 =202 - 20)X' 27 f Y27 sin(2nXy)dy + O(T~27)
0

[

dw
=2(1 =202 - 20)X' 27 f X*72m)* w™ sinw - > T O 27y
0

220)% 711 - 202 - 20) f w27 sin W dw + O(T %)

_ (1 =20)2(2 - 20)(2m)> !
- I'(20) sin(zo)

where, similarly as in the proof of Theorem ([2.2)), we used

+O(T™),

=20 : 7T
dw=——"
f Vo WA = S 20 sin(ro)
0

The contribution of J” (similarly for J”) is
2T o—it

[ [l a1

—oo—it

L T dt
=f1+— a’vf1+— S —
y y v—it+1-20
T

—00

= f—(l 1/ dv < T‘ly‘(’,
Tlog(1 + 1/y)

on integrating the middle integral by parts. Then
1

71 f | sin(2rXy)|

y<7+1 (1 + y)ZU—l

X71

1
R | sin(2rXy)| | sin(2rXy)|
=T f y0'+1(1 + y)20——1 dy + y<7+1(1 + y)2<r—l dy
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X! )
<77 ny“Tdy+ fy‘("ldy < T «logT,
0 X1
which proves (3.27). 119
Further with

c=c(y,a')=(20'—1)(1+y)—0'—10g_1 (l+%)xy(y—>oo)

we have

2T

fG4dt =4

T

[eS]

1
XA e (X)dx f Y71 +y) " og™ (1 + —)cos(27rxy)
y
0

ol 8ol o

=4i | x'Ae(0)dx(I-(x,2T) = I (x, T) + T (x, T)),

g Ty s

where, analogously as in the treatment of sz ’ I4(t)dt in Theorem [3.1]

o

zsin(zlog(1 + 1/y)) cos(2mxy)
Ir(x,2) = f 3 d
Yy (L+ )7 log™(1 + 1/y)

ro(aT) = f {cos(2T log(1 + 1/y)) — cos(T log(1 + 1/y))} cosrxy)(—c(y, o-))dy.

y0(1+y)1+” log2(1+1/y)

0

Then analogously as in the proof of Theorem [3.1] we write

(o0

3T
r(,(x,T):f+f:I'+I"
0

3T

and show that, for some ¢’ > 37T, 120
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’

( 2 2
I”<<T2 f% 0'+—]—(20'—1)(1+))) dy
e y(d+y) log(1+§)

< T*TT 77 5t = 727207

Since in mean square Aj_»,(x) is of the order X% — o, we find that

00 o0 1/2 / 1/2
f]"x_lAl_zo-(x)dx < T2 [fA%_zg(x)x_zdx] [fx_zdx]

X X X

< T2—2(T(T—lT3/2—20’)1/2T—1/2 — T7/4—30’ < T3/4—0’

for o > 1/2. Using Lemma 2.1l we also obtain I’ < T3/ — ¢

The integral I-(x,2T) — I,(x, T) is evaluated by using Lemma
The remainder terms will be <« 72727 (T4 x5/ 4+ 7=1x71/2) and their
total contribution will be (as in the previous case) < T3/4=7 Thus we
shall obtain

2T )
i f Gadt = O(T?*7) = 29 g7~ 1/2 f A 25 (x)x" 2
T X

-1
1
{z3/2—f’\/—2U—‘/2 (U + 5) sin (zV +2nxU — 7tx + %)

2T

} dx.
z=T

From this point on the proof is very similar to the corresponding part
of the proof of Theorem 3.1l Instead of the Voronoi formula 2.23)) for
A(x) we use the analogue (2.38)) for A;_,,(x). The main terms will be the
ones appearing in (3.6)), and all the error terms will be < 73/4~7_ Finally
one may derive the transformation formulae for Dirichlet polynomials
for o1_25(n) by the same technique used by M. Jutila [89]] in deriving

121  the transformation formulae for Dirichlet polynomials containing d(n).
In this way the proof of Theorem[3.2]is completed.
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3.2 Omega-Results

One of the principal uses of Theorem [3.1]and Theorem [3.2]is to provide
omega-results for E(T), E,(T) and G,(T). We recall the common nota-
tion: f(x) = Q(g(x)) as x — co means that f(x) = o(g(x)) does not hold,
f(x) = Q,(g(x)) means that there exists C > 0 and a sequence x,, tend-
ing to infinity such that f(x,) > Cg(x,). Analogously, f(x) = Q_(g(x))
means that f(y,) < —Cg(y,) for a sequence y, tending to infinity, while
S(x) = Q.(g(x)) means that both f(x) = Q.(g(x)) and f(x) = Q_(g(x))
hold. To obtain omega-results we shall work not directly with Theorem
[B.1] but with a weaker version of it, contained in

Lemma 3.2.

G(T) = 0=1/4,=3/43/4 Z(—l)"d(n)n‘sm
n=1
sin( V8anT — g) + O(T*P1og T), (3.28)
G (T) = 207 3/4qo=5/45 /4= Z(_l)n O 120 (m)n” /4

n=1

sin(\/SﬂnT - ;—T) + O(Tl—%‘flog T). (3.29)

Proof. Both proofs are analogous, so we shall only sketch the proof of
(3.29), using Theorem [3.2] Trivially we have

T _2
7127 % o n (log 5 ) sin(a(T,m)
n

n<N’

< TY27T%1og T =T ?log T,

and%<1—%0’f0r0’<%.A150%—0’<1—%0’and

mn 2 T 1\
T/ Z (—1)”0'1_20(n)n‘7_1(arsinh ’,ﬁ) (%4-4_1)

T'B3<n<N
sin(f(T,n))
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1/2-0 o1 (BT - 5/d—0 o-7/4
<T > donn (7) (;) <T > dn

T'3<n<N n>T1/3

< T5/4—0'T(U'—3/4)/3 log T = Tl_%a- log T.

O

122 Further we have

20~ -2 77 1/2T1/2 g Z n o—1 r 1y

(-D)'o 20 (n)n ar sinh —2 —+ = sm(f(T, n))

2mn 4

n<T1/3
_ h0-2_o-1/2p1/2-0 y e - n 12 T 1
277 n T ;/3( Do 120 (n)n ((ZT) +0((T) (2 )

(1 + o(% )sm(f(T )

= 9034, 0=5/45/4-0 Z (=1)' 0120 (W~ = VA Gin( £(T, n))

n<T1/3

+ O[TI/Z—(r Z d(n)l’l(r_l (%)3/4] . O[Tl/z—a- Z d(n)n"'_l (;)1/4]

n<T1/3 n<T1/3

= 27 TSR N (10 g (T sin£(T,m)) + O(Tl—%" log T).

W<T13
Finally, for I <n < T'/3, we have by Taylor’s formula
f(T,n) = (87TI1T)1/2 — % + 0(n3/2T—1/2) ’

and the total contribution of the error term above will be

< T340 Z Ay 43212 = 314 Z d(myn®11*

n<T1/3 n<T1/3

< T34 logT - TO+DB = 7137 |og T.

123 Therefore if we write

ZZZ

n<T\3  n=1  p>T1/3

and estimate the last sum above trivially, we obtain (3.29).
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Observe now that G(#) is a continuous function of # which may be
written as

Go(t) = 277347 S 4p14=T 6 (1) + O (zl-%” log t) , (3.30)
where
8o ()= Y hnysin( VBt = 2 ) hn) = ho(n) = (1020 ", (3.31)
n=1

and the series in (3.31) is absolutely convergent for o= < 3/4, which is
of crucial importance. Namely, we shall first deduce our omega-results
from the following

Lemma 3.3. If g,(¢) is defined by (3.31)), then there exists a constant
C > 0 such that, uniformly for1 < G < T,

T+G
f g (tdt = CG + O(T'?). (3.32)
T

Proof. By absolute convergence the series in (3.31) may be squared and
integrated termwise. Therefore the left-hand side of (3.32) equals

T+G

> iy f sinz(\/&mt—%)dt (3.33)
n=1 T
o T+G
+0{ > |hm)h(n) f exp (i V8ant(vim + ) dt
mn=1;m+#n T
O

The first integral in (3.33) is

! T+G |

1 _ T _ /2, -1/2

> f(l cos(\/327mt 2))dt_ 2G+0(T n1/?)

T

124
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uniformly in G on applying Lemma 2.1l Therefore

T+G

2 ) _7_T_l NIT 1/200 20, N,,—1/2
Zh(n)fsm (\/87mt 4)—2G2h(n)+0(T > i2mn ]
n=1 T n=1 n=1
1 < o
=56 Z:; o2 (7 o(T'?)

uniformly in G, and the last series above is absolutely convergent and
positive.
Also using Lemma 2.1l we obtain that the O-term (3.33)) is, uni-
formly in G,
< T2 i O TAre T =T/Ave (112 _ p1/2)=1/2
m,n=1;1<n<m

mo‘—7/4+e+1 /2

< T1/2 i n0'—7/4+5 Z
m-n

n=1 n<m<2n
©0 o-T/4+e+1/2
_ m
+ T1/2 Z n’ 7/4+€ Z
n=1 m>2n m-—n
o0 o0
< T2 Z p2o—-3+2e log(n + 1) + T1/2 Z o T/4+e Z more9/4
n=1 n=1 m>2n
o0 (e8]
< T1/2 Z n20’—3+2€ log(n + 1) + T1/2 Z n20'—3+2€ < T1/2
n=1 n=1

if € > 0 is sufficiently small, since o < 3/4.
It follows from Lemma that there exist two constants B,D > 0
and a point #g € [T,T + DT'/2] such that lgo(to)] > B whenever T >
125  Ty. However, it is not clear whether g, (7o) is positive or negative. The
following lemma shows that both positive and negative values of g, (f)
may occur.

Lemma 3.4. [f g,() is given by (3.31)), then there exist two constants
B, D > 0 such that for T > Ty every interval [T, T + DTY?] contains
two points t1, tp for which

8o(t1) > B, go(12) < —B. (3.34)



3.2. Omega-Results 139

Proof. Both inequalities in (3.34) are proved analogously, so the details
will be given only for the second one. Suppose that g,(¢) > —e for any
given € > 0,and r € [T,T + DTY?] for T > Ty(€) and arbitrary D > 0.
If Cy, Cy,. .. denote absolute, positive constants, then for D sufficiently
large and G = DT'/? we have from (3.32)

T+G

C,G < f ga(ndt =) f gx(dt + ) f g2 (Hdt,
T k Ik ¢ Je

where Il’cs denote subintervals of [T, T + G| in which g,(¢) > 0, and the
Jés subintervals in which g,(¢) < 0. In each J; we have g(ZT(t) < €, and
since

8o < D A = )" o1ae(mn” 7 = Gy,

n=1 n=1

we have

Co<Cr ). f go(t)dt + G2
kY

T+G

=, f gr()dt +Cy ) f (~go(1)d1 + Gé?
t T

T
T+G

<G, f g (Ndt + C2Ge + Ge>.

T
But using (3.31)) and Lemma 2.Tlit follows that

T+G

T+G © T
~D)dt = h i nnt — = |dt
fT 8o (D) ; (n)‘T[sm(\/ n 4)

< T2 3 ™" = C37'72,

n=1

hence

126
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CiG < C4TV? + C,Ge + GE2. (3.35)

If we take G = DT'2, D > C4/C; and € sufficiently small, then
(3.33) gives a contradiction which proves the second inequality in (3.34),
and the first one is proved similarly. O

Now we turn to (3.30)) and observe that %—0' > 1—%0‘ for % <o< %.

Therefore, by continuity, Lemma [3.4] yields the following proposition
(B, D, 11, t; are not necessarily the same as in Lemma [3.4): There exist
two positive constants B and D such that for T > T every interval
[T,T + DT'/?] contains two points t1,, for which G,(t;) > Btf/ 40
Gs(1r) < —Btg/ 4 By continuity, this also implies that there is a zero
t3 of Go(t) in [T, T + DT'/?].

Next consider for H > 0

T+H
G,(T+H)-Gs(T) = f(Eg(t) — B(o0))dt. (3.36)
T

Let T be a zero of G,(T), and let H be chosen in such a way that
G,(T + H) > B(T + H)’/*7. By the preceding discussion we may take
H < FT'? with suitable F > 0. then (3.36) gives

T+H
B(T + B+ < f (Eo(t) - B(o))dt = H(Eo(t3) - B(@)
T

for some t4 € [T, T + H] by the mean value theorem for integrals. There-
fore

Eq(ts) > Ct)*7

with a suitable C > 0, and similarly we obtain
Eq(ts) < —Ct)/*™7

with #4,15 € [T, T + FT'/?]. the foregoing analysis may be repeated, by
virtue of (3.28), with G(T) in place of G,(T) (in (3.31)) we shall have
h(n) = (=1)"d(n)n=>'*). In this way we are led to our first omega-result,
which is
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Theorem 3.3. There exist constants B, D > 0 such that for T > Ty every
interval [T, T + DT'/?] contains points ty, tr, 13, 14T, T2, T3, T4 such that

E(t) > Bt,/* E(t) < -Bt)*,G(13) > Br)*,G(1s) < -Bt}*,  (3.37)

0 Eg(t2) < -BT)/*7, (3.38)
5/4—0

0—(‘1’1) > BT

Go(13) > Br5/4 7

Go(14) < -Bt}
Since G(T) = O(T*), G(T) = O(T>*) by (3.28) and (3.29),
this means that we have proved

G(T) = O(T*M), G(T) = Qu(TY*), Go(T) =)(T/+),
Go(T) = Q) (3.39)

and also
E(T) = Qu(T'*), Ex(T) = Qu(T¥*7). (3.40)

Thus shows that, up to the values of the numerical constants
involved, we have determined the true order of magnitude of G(7") and
G,(T). Moreover, not only does Theorem [3.3] provide Q. -results for
the values where these functions attain large positive and small nega-
tive values, respectively. As mentioned in Section the mean square
formulas (2.69) and provide weak omega-results, namely

E(T) = T, Ex(T) = QT¥*),

which are superseded by (3.40). One can, of course, try to go further and
sharpen by using special properties (arithmetical structure) of the
functions d(n) and o1 _»,(n) appearing in (3.28)) and (3.29), respectively.
As already mentioned in Chapter P there are several deep analogies
between E(T) and A(x). Even the formula (3.28)) has its counterpart in
the theory of A(x), namely

T

f Aydi = = \/-,,z Zd(n)n sin (47r\/n_ - g) +0(1),
2

128
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which is a classical formula of G.F. Voronoi. For A(x) the best known
omega-results are

A(T) — Q+ {(T log T)1/4(10g IOg T)1/4(3+log4)e—C lOglOglOg T} (341)

and

1/4
AT) = Q{7174 exp [ 2008108 T) , (3.42)
(logloglog T)3/4

due to J.L. Hafner [51]] and K. Corradi - I. Katai [28]], where C,D > 0
are absolute constants. The corresponding problems involving Aj_»,(x)
may be also considered, but it seems appropriate to make the following
remark here. The arithmetical function o-1_,(n), which by 2.37) and
(2.41)) has the mean value /(20), is much more regularly distributed than
d(n), whose average order is log n. For this reason sharp omega-results
for 01 _»,(n) are harder to obtain than sharp omega-results for d(n), since
for the latter one somehow tries to exploit the irregularities of distribu-
tion of d(n). Observe that in (3.28)) there is the factor (—1)", which is
T

not present in the above Voronoi formula for f A(t)dt. It was thought

by many that the oscillating factor (-1)", preseznt already in Atkinson’s
formula (2.3) for E(T), would hinder the possibility of obtaining sharp
Q. -results for E(T) analogous to (3.41)) and (3.42). The theorem that
follows shows that this is not the case, and that (3.28)) is in fact strong
enough to render (when suitable techniques are applied to it) the ana-
logues of (3.41) and (3.42). In the casee of E,(T) we would have to
cope with the regularity of distribution of o-1_,(n), and the presence of
the oscillating factor (—1)". For this reason we shall content ourselves
only with sharp omega-results for E(T"), contained in

Theorem 3.4. There exist absolute constants C, D > 0 such that
E(T) =Q, {(T log T)*(loglog T)/*(3 + log 4)e ™€ Vk’gk’gk’gT} (3.43)

and

(3.44)

1/4
E(T)=Q. {T1/4 exp( D(loglogT) )}

(logloglog T)3/4
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These formulas are the exact analogues of (3.41) and (3.42)). Since
the problem of Q.-results for A(x) is certainly not more difficult than
the corresponding problem for E(T) (the Voronoi formula for A(x) is
simpler and sharper than Atkinson’s formula for E(7T') or any of its vari-
ants), it is hard to imagine improvements of and (3.44)) which
would come from methods not capable of improving (3.41) and (3.42).
On the other hand, although and (3.44) are such sharper than just
E(T) = Q.(T'*), which follows from Theorem[3.3] one does not obtain
in the proof of Theorem [3.4] the localization of points where large pos-
itive and small negative values of E(T) are taken (or to be precise, the
localization will be very poor). Theorem[3.3]provides good localization,
and thus the omega-results furnished by Theorem and Theorem [3.4]
both have their merits and are in a certain sense complementary to one
another.

Proof of Theorem 3.4. First we prove the Q. -result (3.43)). Let

1
E*(t) := f Eo(t + wky(u)du, Eo(t) == 26)?e2nt?), (3.45)

-1

where E is introduced because it is more convenient to work without
square roots in Atkinson’s formula. Further let

An

kn(u) = Kij22,(u) 1= = (M

1/24,u

2
) (A, = 4 \n) (3.46)
2

be the Fejér kernel of index 1/24,, and M is a large positive integer.

Because
1

ky(u) > 0,0 < ko(u)du <1,
-1

(B.43)) is a consequence of the following assertion: there exist absolute,
positive constants A and C such that

E*(t)>A(logt)1/4(10glogt)1/4(3+log4)e—C logloglogt (3.47)

130
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for some arbitrarily large values of 7. To prove (3.47) we shall show that,
uniformly for 1 < M < /2,

Ew= Y (1 dmn (1 _ (%)”2) cos (47r N g) +o(l) (348
n<M

and then deduce (3.47) from (3.48)). To this end let

£y = 27120 f (EQmy) -y dy,
2

so that by (3.28) we obtain
I © _ ) T
)= 4 ;(—1)"d(n)n 1 sin(A,t - 2 +o), (3.49)
and by direct computation we find that
d
Eo(t) = - £ + ot 1?). (3.50)
131 Using (3.30) in (3.43), integrating by parts, and then using (3.49) we

obtain, uniformly for 1 < M < 2

1
E*(t)=- ff(t + wkj,(u)du + o(1)
-1

1
1 « T ;
= (=1)"d(n)n~>"* Im e’“"t‘z)fe”l"”k}w(u)du +o(1).
n=1 -1

The last integral is readily evaluated as

1

: Ay .
f M Ky (w)du = {‘W (1-g)+o) ifn<m,

o(1) ifn> M,
-1

and (3.4]) follows.
To take advantage of (3.48)) we need some facts about sums involv-

ing the divisor function, which reflect the irregularities of its distribu-
tion. This is
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Lemma 3.5. For each positive constant C and positive integer K > 2,
there is a set Pc C {1,2,... K} such that uniformly

Z dmn™* < C 2k 1og K,
ng¢Pc,n<K

and if |Pc| denotes the cardinality of Pc, then
|Pc| < K(log K)' ¢4 exp (C loglog K) .
Proof. First we show that

Z d(n)(w(n) — 2loglog X)? < x log xlog log x, (3.51)

n<x

where as usual w(n) denotes the number of distinct prime factors of n. 132
To obtain (3.31) note that if p, g are primes, then

d(np) = 2d(n) - d(ﬁ)
p
and

q pq

where we put d(x) = 0 if x is not an integer. Then, for distinct primes
D, q we obtain

Z d(n)w?(n) = Z

d(npq) = 4d(n) — 2d(§) - 2d(§) + d(i),

n<x Pg=x.p#q
{42;1 < x/pgd(n) — 2 Z d(n) -2 Z d(n) Z d(n)}
n<x/p’q n<x/pq* n<xp’q?
+Z{2 PIEOEDY d(n)}
p<x n<x/p n<x/p?

=4 Z ilogi + o(xlog xlog log x)
Pgsx b4

= 4x1log x(log log x)*> + o(xlog x log log x).
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In a similar fashion it may be shown that

Z d(n)w(n) = 2xlog xlog log x + o(x log x),

n<x

and (3.31) follows. Let now
Pc = {n <K :w(n) > 2loglogK — C\/loglogK}.
By using d(n) > 2“™ it follows that

|PC|2210g10gK—C 1/loglog K < Z Qe < Zd(n) < KlogKk,

nePc n<kK

as asserted. Also, using (3.51) and partial summation we find that

D dmn™* < (Cloglog K)™' Y dmn*(w(n) - 2loglog K)?
n¢Pc n¢Pc
< (C*loglogK)™" Z dmn~*(w(n) - 2loglog K)?
n<kK

< C72K'"*1og K.

133 Now let K = [M/2] and let Pc be as in Lemma for this K and
some C to be chosen later. By Dirichlet’s approximation theorem there

exists ¢ satisfying
M? <t < M*64lFel

and such that for each m in Pc and n = 2m we have |t \n — x,,| < (%4 for
some integers x,. For these n and this 7 it follows that

1
cos(47rt\/_— %) > cos(% + ;—T) >3

Note that each pair M, t constructed in this way satisfies 1 < M <
t'/2. For this pair (3.48) gives

E*(1) = % Z - Z - Z d(n)n_3/4(1—(%)1/2)+0(1)

n<Mn=2m ng¢Mn=2m n<M.n=2m+1
meP¢ m#Pc
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= %Z‘% D —% > d(n)n_3/4(l—(%)1/2)+0(1).

n<M n<M.,n=2m n<M.n=2m+1
méPc

But we have elementarily

> dm) = %xlogx +0(), > dm)= %xlogx + 0(x),

n<x,n=2m n<x,n=2m+1

hence by partial summation

-3/4 n\l/2 8 1/4 1/4
D dmn (1 - (—) = M4 log M + O(M"%)
n<M M 3

and

-3/4 n\"3\ _ 2 1/4
Z dmyn™3*(1 - (—) = ZM*log M + O(M'/%.
M 3
n<M,n=2m+1
With these formulas and Lemma (3.3) we obtain for this pair £, M 134
and C sufficiently large that

1 1
E*(t) > (5 + O(C‘z)) M'"*logM > 4—1M1/4 log M. (3.52)

Note that from ¢ < M?>64/Pc! and the second part of Lemma (3.3)) we
obtain

M > log t(loglog 1)'°24~! exp (—C log log log t) (3.53)

for some (perhaps different) constant C > 0. Combining (3.32) and
(3.33) it is seen that (3.47) holds, and so (3.43) is proved.

We proceed now to the proof of the Q-result (3.44), using again
([B.28) as our starting point. First we are going to prove a weaker Q-
result, namely

lim inf E(TTV* = —c. (3.54)
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This result will be then used in deriving the stronger 2_-result given
by (3.44). To prove (3.34) it suffices to show that

li}n inf E*(T) = —o0, (3.55)

where E*(T) is defined by (3.45). Write eachn < M in (3.48) as n = v*q,
where ¢ is the largest squarefree divisor of n. By Kronecker’s approxi-
mation theorem there exist arbitrarily large 7" such that

my + 04 if g is odd,

-]

1 . .
7 tng+6, ifgiseven,

with some integers m, and |6,| < ¢ for any given 6 > 0. With these T
we conclude that

(=1)"cos (47rT\/_ - g) = —€,COS (%) + O(+\nd),

where
{—1 ifn=0 (mod 4).
€ =

1 ifn#0 (mod 4).
We deduce from (3.48) that

1/2
lim inf E°(7) < - cos (%) 3 e (1 - (%) ) +OGMlog M. (3.56)

n<M

On letting 6 — 0 we obtain (3.33)), since the sum in (3.36) can be
shown elementarily to be unbounded as M — oo.

Now we pass to the actual proof of (3.44) by using a variant of a
technique of K.S. Gangadharan [40]. Let P, be the set of odd primes
< x, and Q, the set of squarefree numbers composed of primes from
P.. Let |P,| be the cardinality of P, and M = 2! the cardinality of Q.
Then we have

L < Py <« L, M < exp i (3.57)
log x log x log x

for some ¢ > 0, and also that all elements in Q, do not exceed ¢>*.
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Now let S, be the set of numbers defined by

Se={pu= > rg\g:rg€(-1,0,15 ) 22 2¢,

q€Q0x

and finally
A(x) = inf {[Vim +pl :m =12, spe S}

Taking m = [3, y/g]* itis seen that | vim—Y, /gl < 1, hence fi(x) < 1.
Also there are only finitely many distinct values of |y/m + u| in (0,1). 136
Then one has (see Gangadharan [40]):

Lemma 3.6. If g(x) = —log#j(x), then for some ¢ > 0

CcX
x < Q(X) < exp(@) .

Similarly as in the proof of (3.43) we avoid square roots by intro-
ducing the functions

T
2
B() = M{E(é—ﬂ)—n},a(r) _ f (E(d. (3.58)
0

From (3.28) we have then

ET) =T (-1'd(mn ™ sin (T Vi - %) +OT*logT).  (3.59)

n=1

If we could differentiate this series (and the O-term) we could deal
with E(T) directly. This is not possible, but we can use integration by
parts in subsequent integrals that appear to take advantage of (3.39)).

We let
ax

Px) = exp (@)

be such that
P(x) > max(q(x), M?) (3.60)
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and define, for a fixed x,

{— \/27rE(u2/(87r))}
Yx = Sup .
u>0

ul/2+1/P(x) (3.61)

Now for T — 0+, E(T) ~ —T log T, so that the expression in brack-
ets in (3.61) is bounded for small u. If this expression is not bounded for
all u then more than (3.44) would be true. Also, by our earlier Q_-result
(3.34) there exists a u > 0 for which this expression is positive. Hence
we can conclude that 0 < y, < oo, or, in other words,

yxul/2+1/P(x) +A+Ew) =0

137 forallu > 0, where A = V273/2.
Our next step is to describe the part of the kernel function we use
to isolate certain terms of the “series” for E(u), and to point them in an
appropriate direction. Let

iz+ —iz
V(z) = Zcoszg - re +1

and set

T(u) = 1—[ V(u q—54—ﬂ).

q€Q0x
Note that T',(x) > O for all u. Finally, put o, = exp(=2P(x)) and

Jy= o2 f ('yxul/2+l/P(x) + A+ E)ue” ™ To(udu.  (3.62)
0

From the remarks above we see immediately that J, > 0. In the next
two lemmas we provide the tools for an asymptotic expansion for J,. In
the first we cover the first two terms of J,.

Lemma 3.7. For % <0 <?2andx — o we have

f We T (wydu = o7 (1 + 6) + o(0).
0
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Proof. We expand the trigonometric polynomial 7,(u) into exponential
polynomials as _
T.(u)=Tog+T1+T1+T>,

where

1 ) )
Ty= 1Ty = 240 3 i1y = 3 et
qEQWy HES x

T is the complex conjugate of T}, and hy, are constants bounded by 1/4
in absolute value. m|

Note that T contributes to the integral exactly the first term, so that
we have to consider the other parts of 7',. The part 7 contributes exactly

1 . -
¢ N0 Y erig T < ) g P < M= 0(0777)
q€0x q€0x

since @ + 1 > 0 and (3.60) holds. The contribution of 7' is likewise
0(0';5/ 2), and T provides the term

-1-6
(1 + 6) Z (o + iu)™' 0. < 3M ( inf Iul) < 3Mji(x)~1?

= exp{cyP() + PO)(1 +6)} = 0(07%),

again by (3.60) and the fact that 1 + 6 < 3.
In the next lemma we cover the contribution to J, from E(U). It is
here that we appeal to the identity (3.59) for £, (T).

Lemma 3.8. For x — oo we have

f Euue 7T (u)du = ——r( ) =52 Z d@)g 3 + o(d 7).
0

q€0x

Proof. Or first step is to integrate by parts to introduce E.(T) in the
integral so that we can use (3.59). Thus our integral can be written as

()

- f E(@)L (77T () du.
0 du

0

E (e 7" T(u)

138
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Now since
E.G) ow? ifo<u<l1o0,
u) =
" 0w??) ifu > 10,

the integrated terms vanish. In the remaining integral we wish to replace
E.(u) by (3.59). However, we must be careful how we deal with the
error term. Write the integral in question as

- f h(u)u3/2i(e_(’X”Tx(u)) du + 0[ f u*3 logu i(...) du]
du du
10
—(...)

0 10
d 0 1d
+ fh(u)u3/2—(. .odu+ O f u? du
du 0 du
0

=1 + 0(12) + 13 + 0(14),

139 say, where h(u) is defined by

h(u) = g(—l)"d(n)n—ﬂ‘* sin (u N %)

The integral /3 is bounded by

10

d
Ié = fl,t3/2 E() du,
0

and this dominates the last integral /4. Hence, we should estimate I and
I, and calculate ;.

For the two integral estimates, we need a bound on the expression in
absolute values. For this we note that from the definition and from the
decomposition used in the proof of Lemma 3.7l we have

To(u) < 2", T2 (u) < 3™ Me<,
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so that J
— (77T () < e T4M,
du

In Ié this contributes at most
10
_ -5/2
4Mfu 2qu < ec VP(x) = O(o; / ).

0

In I, the estimate becomes

qaM fu4/3e_(’<“” logudu < e VP(X)O';WS_E = 0(0';5/2).
10

For I} we expand the expression %(. ..)as
d 3
u—3/2_(u3/26—a'xu x(”)) _ _u—le—a'xu x(”)-
du 2

The last term contributes to /; at most (since /A(u) is bounded)
oM f u'Pe M dy < 2Mo 3 = 00,
0

Finally, we are left to deal with the following: 140

[

- f h(u)% (1?27 T (w)) du.
0

We replace h(u) by its series definition and integrate term by term.
This is legitimate because of absolute and uniform convergence. We
obtain

- Z(—l)”d(n)n_5/4 Im(e” 4 1(n)), (3.63)
n=1

where

(o)

I(n) := f eiuﬁdi‘i(u?’/ze-axm(u))du.
0
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In this integral we can reintegrate by parts and expand 7',(«) as we
did in the proof of Lemma [3.7]to obtain

I(n) = ivn f NY312 =Tut (T 4y + Ty () + T1(u) + To(u))du
0

= Io(n) + Li(n) + I}(n) + L(n),

say. The only significant contribution will come from /(n), as we shall
see. First we have

Io(n) < Vnloy —iVn|™"? < n73/4,

Second,
I'(n) < Vn Z o — i(Vn + VI ™? < n™34 M.
q€0x
Third,
L < Yo —i(Vn -2
HES x

3Mp=3/4 ifn>2max{|ul:uesS,,
3Mp(x) 2\ ifn < 2max {|u € S,).

This max{|y|. ..} is bounded by Me“*. Hence all of these contribute
to our series (3.63) no more than

3Mﬁ(x)—5/2(MeCX)l/4+6 — 0(0_;5/2)

as required. There remains only the contribution of /;(n). We need to
distinguish two cases. If n # ¢ for all g € Q,, then we obtain a bound
exactly as above for Ip(n), but with M replacing the factor 3 which
comes from the number of terms in the sum. Now suppose n = g for
some g in Q. The term in the sum defining 7';(«) corresponding to this
g along contribute exactly

1. <. 5 _
§l€5m/4r(§) \/_O-x5/2-
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The other terms contribute as in the case n # g. Combining all these
contributions to (3.63) we see that the lemma is proved. It should be
noted that each ¢ in Q, is odd so that the factor (—1)7 in (3.63)) is always
negative for the significant terms.

We can now complete the proof of (3.44). For J, in (3.62)) we first
have J, > 0. thus by Lemma [3.7] and Lemma [3.8] we also have, as

X — 00,

1P [
Jy=yx0y %2 KJ 2()Lymm + o(yy) +o(1).

Hence if x is sufficiently large we deduce that

v Y d@g > || a+2p7

q€0y 2<p<x

1/4
= exp( E log(1 + 2p‘3/4)] > exp(f():g )
X

2<p<x

In other words, for each sufficiently large x there exists a u, such
that for some absolute constant A > 0

logu, cx!/4
~ E@u;'* > A + : 3.64
;! eXp( Py | Togx (3.64)
This implies first that u, tends to infinity with x. If the second term
in the exponential dominates, then it is easy to see on taking logarithms
and recalling the definition of P(x) that

logl < .
08108 log x
Hence

x> loglogu,logloglog uy,

and since the function x'/#/log x is increasing for x > xo, we obtain

(B.44) from (@B.64). If the first term in the exponential in (3.64) domi-
nates, then we may assume

(loglogu,)'/4 log u,
(loglog log x)3/4 P(x)°

142
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since otherwise the Q_-result holds again. But the last condition gives
again

loglo < X
u s
glogu, Jog x

so that (3.44) holds in this case as well.

3.3 Mean Square Formulas

The explicit formulas for G(T') and G,(T), contained in Theorem [3.1]
and Theorem [3.2] enable us to obtain mean square formulas for these
functions. The results are given by

Theorem 3.5.
T 4
f G*(tdt = BT** + O(T?),B = OGP 079320, . (3.65)
) SaN2rL(5)
and for 1/2 < o < 3/4 fixed
T
f G2(dt = C(o)T"*727 + O(1°7%) (3.66)
2
] with s
o-1_20- 0
Clo) = % Z:; o (22, (3.67)

Proof. Note that here, as on some previous occasions, the asymptotic
formula (3.66) for G, reduces to the asymptotic formula for G as oo —
1/2+0. The proofs of both (3.63]) and are analogous. The proof of

is given by Hafner-Ivi¢ [54], and here only (B:()gﬁl) will be proved.
We use Theorem [3.2]to write

m\-1/2 n -2 t 1\~
Go(t) = 2"—2(?) ;(—1)”01,2(,(;1)#’—1 (arsinh ‘/E) (ﬁ + Z) sin f(t, n)
1
2m\772 . t\7?
+ {—2(7) Z o120 ()N (log 2[77)

n<cot

=20+ Y0,

sing(t,n) + 0(T3/4—”)}
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say, and assume 7 < ¢ < 27. Then we have

2T 2T 2T 2T
f G2 (Hdt = f Zf(t)dw f Zz(t)dt+2 f Zl(t)zz(t)dt,
T T T

T

so that in view of the Cauchy-Schwarz inequality (3.66)) follows from

2T
f Zz(t)dt < TS5/ (3.68)
T

and
2T
f Z?(t)dt = C()T)*72 — C()T"*2 + O(T**)  (3.69)
T

on replacing 7 by 727/ and summing over j = 1,2, .. .. the bound given
by (3.68) follows easily by squaring and integrating termwise, since the
sum in ) ,(#) is essentially a Dirichlet polynomial of length <« T, so its
contribution to the left-hand side of (3.68) will be <« T'*€, and the error
term O(T>/4~7) makes a contribution which is < 7°/>72 By grouping
together terms with m = n and m # n it is seen that the left-hand side of

(3.69) equals

2T

2 201 1-2 2 20-2 an\ (i 1\
47 g7 ft nd 2‘71720(”)” o (ar sinh 5) (% + Z)
T

n<t

2T

sin® f(t, n)dt + 472! f z””{ Z (=)™ | e (M) | 26 (n) ()"~

m#n<t

T
% t N 1 -1/4 ¢ . 1 -1/4 ok prn -2 - — )
2rm 4 2rn 4 \ 2 A/ o
Sinf(t, Wl) Sinf(t, I’l)}dt = Z/ + Z”,

say, and the main terms in will come from })". We have 144
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Z,=S1+Sz,

where
2T 12
S =47 27201 Z o-%_zg(n)nz‘r_2 f =2 (ﬁ + 4_1)
n<T1/2 7
—4
(ar sinh \/g) sin? f(z, n)dt,
S, < Z L2722 (Z)_m (Z)z
T1/2<p<T " "
= 77220 Z P22 « o514 10g3 T .72
T12<n<T
=T log® T
so that
Sz < T3_20-,

since 9/4 — 0 <3 —20 for o < 3/4.
Simplifying S| by Taylor’s formula and using Lemma 2.1]it follows

that

2T
S4 :4(r—27r2(r—1 Z 0_%_20_(,1)”20'—2ftl—2(r[—l/2(2n_)l/2nl/2ﬂ_—2n—24t2.
n<T1/2 T
1 —cos2f(t,n) (1 N 0((2)))1/2&
2 T
| 2T
4o~
= V2n——n%"3 Z o2 (N f £12727(1 = cos 2.f(t, n))dt
2 n<T1/2 T
2T
+0 Z O_%izg(n)nza—su f 2720 gy
n<T'/2 T

2T
1
_4(;-1”20-3(2”)1/2 Z U%_z{r(n)nz"_”zfts/z_z"dt+0(T3_2")
T

2
n<T1/2
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= C(@)T)>2 — (T2 4 O(T>20 77514 1ogh T + T327)
on writing 145
n<Tl2  n=1 p>T!2

and estimating the tails of the series trivially. It remains yet to consider
>". By symmetry we have

2T
~1/4
” o—1 t 1
Yi< 3] T 120 (M) 1 2 (M) )™ ¢ | = + 7
2mm 4
n<m<2T max(m,T)

t 1\ ) [nm - . [7tn 2 . .
X (% + é_l) (ar sinh E) (ar sinh E) sin f(t, m) sin f(¢, n)dt|.
The sine terms yield exponentials of the form exp{if (t,m) = if (¢,
n)}, and the contribution of the terms with the plus sign is easily seen

to be < T372% by Lemma 2.1l For the remaining terms with the minus
sign put

F() = f(t,m) = f((t,n)

for any fixed n < m < 27, so that by the mean value theorem

F'(f) = 2arsinh /% — 2arsinh /% =< T~ 12m!/? = nl/?).

Again by Lemma 2.1

7
< T3—2(r Z (mn)e—5/4+0'—1/2(m1/2 _ n1/2)—1

n<m<2T
= TH‘T( Yo+ ]: T327(S5+ S 4),
n<l1/2m n>1/2m

say. Since 1/2 < o < 3/4 then trivially S3 < 1 if € is sufficiently small, 146
and also

_ m _
Sy < Z m?€t2=1/2 Z < Z m**2 3 logm < 1.
m —

m<2T 1/2m<n<m m<2T

This proves (3.69), and completes the proof of (3.66). O

1/2
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3.4 The Zerosof E(T) —

From Theorem [3.3] it follows by continuity that every interval [T,T +
DT'Y?] for T > Ty and suitable D > 0 contains a zero of E(f) — 7.
The same is true, of course, for the function E(¢) itself, but it seems
more appropriate to consider the zeros of E(f) — m, since by Theorem
[3.1] E(¢) has the mean value . Naturally, one can make the analogous
conclusion also for E,(t) — B(o), but the numerical calculations of zeros
of E,(t) — E(0) would be more tedious. Also the function E(T) seems
more important, as the results concerning it embody usually much infor-
mation about the behaviour of {(s) opn the critical line o = 1/2, which
is one of the main topics of zeta-function theory.

In [1] the author and H.J.J. te Riele investigated the zeros of E(T)—n
both from theoretical and numerical viewpoint. From many numerical
data obtained in that work we just present here a table with the first 100
zeros of E(T) — n. Hence forth 1, will denote the n™ distinct zero of
E(T) — n. All the zeros not exceeding 500 000 were found; all were
simple and ¢, = 499993.656034 for n = 42010 was the largest one. The
interested reader will find other data, as well as the techniques used in
computations, in the aforementioned work of Ivec-te Riele.

n ty n ty n ty n ty
1 1.199593|26 99.048912 |51 190.809257| 76 318.788055
2 4757482127 99.900646 |52 192.450016| 77 319.913514
9.117570(28 101.331134 (53 199.646158| 78 321.209365
13.545429 29 109.007151 (54 211.864426| 79 326.203904
17.685444 |30 116.158343 (55 217.647450| 80 330.978187
22.098708 |31 117.477368 |56 224.290283| 81 335.589281
27.736900 |32 119.182848 |57 226.323460| 82 339.871410
31.884578 33 119.182848 |58 229.548079| 83 343.370082
9 35.337567 |34 121.514013 |59 235.172515| 84 349.890794
10 40.500321 |35 126.086873 |60 239.172515| 85 354.639224
11 45.610584 |36 130.461139 |61 245.494672| 86 358.371624
12 50.514621|37 136.453527 |62 256.571746| 87 371.554495
13 51.658642|38 141.371299 |63 362.343301| 88 384.873869

W
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n ty n ty n ty n ty
14 52.295421|39 144.418515|64 267.822499| 89 390.001409
15 54.295421|40 149.688528 |65 280.805140| 90 396.118200
16 56.819660|41 154.448617 |66 289.701637| 91 399.102390
17 63.010778 |42 159.295786 |67 290.222188 | 92 402.212210
18 69.178386 (43 160.333263 |68 294.912620| 93 406.737516
19 73.799939 |44 160.636660 |69 297.288651 | 94 408.735190
20 76.909522 145 171.712482 |70 297.883251| 95 417.047725
21 81.138399 46 179.509721 |71 298.880777| 96 430.962383
22 85.065530|47 181.205224 |72 299.919407 | 97 434.927645
23 90.665198 |48 182.410680 |73 308.652004 | 98 439.425963
24 95.958639|49 182.899197 |74 314.683833| 99 445.648250
25 97.460878 |50 185.733682 |75 316.505614 | 100 448.037348

As already mentioned, from Theorem [3.3]it follows that every inter-
val [T, T + DT'/?] contains a zero of E(f) — x, hence

Toet — ty < 112, (3.70)

On the other hand, the gaps between the consecutive #,’s may be
sometimes quite large. This follows from the inequality

max |E(f) —n| < (ty+1 — ty) logty, (3.71)

1, <t<tp+1

so if we define
x=inf{c>0:t,41 —t, <1,},a=inf{c > 0: E(t) < 1},
then (3.70) gives x < 1/2 and B.7I) gives
x> a. (3.72)

that x > 1/4. There is some numerical evidence which supports our
conjecture that x = 1/4, which if true would be very strong, and is
certainly out of reach at present. To prove (3.71) let

Since we know from Q-results on E(T) that « > 1/4, it follows

|E(t) — n| = max |E(t) — 7.

n=>=ln+]

148
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Suppose E(f) — m > 0 (the other case is analogous) and use 2.77).
Then for some C > 0,n>npand 0 < H < %tn,

E(t+H)-n>E(f) —-n-CHlogt, >0

holds if 0 < H < (E(t) — n)/(2Clogt,). Thus E(f) — & has no zeros in
[z, + H] with H = (E(f)/2C log t,,). Consequently

(E(t) —m)/(2Clogty) = H < tys1 — tn,

and (B.71) follows.
Another important problem is the estimation of 7, as a function of n.
Alternatively, one may consider the estimation of the counting function

K(T) := Z 1.

t,<T

Since [T, T+DT'/?] contains a t, for T > T, it follows that K(T) >

T'/2, Setting T = 1, we have n = K(t,) > 1}/%, giving

ty < n?. (3.73)

This upper bound appears to be crude, and we proceed to deduce
a lower bound for #,, which is presumably closer to the true order of
magnitude of 7,. Note that K(T) <« M(T), where M(T) denotes the
number of zeros in [0, T'] of the function

E'(f) = ‘g(% + it) T 1og(§r) —2y = 22(1) - 1og(§r) ~ 2y,

Here, as usual, we denote by Z(¢) the real-valued function
o0 =X + i + i,
2 2
where
£(s)

_ _As_s—1 _: E _
X(S)_—g“(l—s) =2’ s1n(2)F(1 s).
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Thus |Z(?)| = | (1% + ir)|, and the real zeros of Z(¢) are precisely the
ordinates of the zeros of {(s) on Re s = 1/2. But

M(T) = M(T) + M(T),

where M (T) and M,(T) denote the number of zeros of

t 1/2 ¢t 1/2
Z(t) — (log o + 2y) , Z()+ (log o + Zy)

in [0, T], respectively. Note that M;(T) < L;(T), where L;(T) is the
number of zeros of ‘

(=1)/
2t y/log(t/2m)

in [0, T]. It was shown by R.J. Anderson [1]] that the number of zeros

of Z'(¢) in [0, T] is asymptotic to % log T, and by the same method it

follows that L;(T) = O(T logT). Hence K(T) < T logT, and taking
T = t, we obtain

Z'(t) +

t, > n/logn. (3.74)

In the range for n that was investigated numerically by Ivi¢- te Riele
[75], t,, behaves approximately like n log n, but it appears quite difficult
to prove this.

Another inequality involving the #,’s may be obtained as follows.
Observe that (7'(f) — w)’ must vanish at least once in (,,t,+1). Hence
this interval contains a point g such that

2

1 f
0= E'(to) = ‘4(5 + ito) - (log % + 2y).

Therefore it follows that
L iills (log 22+ 2,) 3.75
_ > L
tnglg):ﬂ((2+zt)_(og2ﬂ+ y) . (3.75)

This inequality shows that the maximum of |{ (% + it)| between con-
secutive zeros of E(T") — m cannot be too small, even if the gap between

150
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such zeros is small. On the other hand, the maximum of | (% + it)| can
be larger over long intervals, since R. Balasubramanian [7]] proved

1 3 f log H
_ > | —= .
((2 + n‘) > exp(4 loglogH] (3.76)

in the range 100loglog7 < H < T. Using (3.71) we may investigate
sums of powers of consecutive gaps #,.; — t,. Namely from Theorem
2.4 we have, as T — oo,

max
T<ti<T+H

2T T+l

C1T3/2~fE2(t)dt~ Z sz(t)dt. (3.77)
T<=2T

T
T4 10g™2 T<T i1ty

In

The contribution of gaps less than 7'/*log T is negligible by
(B.71) and trivial estimation. From (3.77) we infer by using (3.71) that

32 « Z (ths1 — zn)( max |E(t) — x> + 1)
te[tn,trwl]
T<t,<2T tys1~1,=TV/*log ™ T
< log’T Z (tns1 = 1n)° + T

T<t,<2Ttys1~1 =T /4 log™> T
Replacing 7 by 727/ and summing over j > 1 this gives

T210g2 T < ) (tar1 = ). (3.78)

t,<T

In general, for any fixed @ > 1 and any given € > 0

T1/4(3+a_6) <Ko Z(trwl - tn)w- (379)
1,<T
151 This follows along the same lines as (3.78)), on using
T

T+ Aee f |E(n)dt  (a = 0,€>0) (3.80)
2
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with a = @ — 1. The bound (3.80Q) for a > 2 (without “€”) follows easily
from Theorem 2.4 and Holder’s inequality, and for o < a < 2 it follows

from
T T 172 , ¢ 1/2
737 « f El/za(t)Ez_l/za(t)dts[ f |E(t)|2dt] [ f |E(t)|4_“dtJ
2 2 2
on using
T
flE(t)lAdt <« TIt1/4A+e (0 <A< ?) (3.81)
0

a proof of which is given by the author in Chapter 15 of [1]. It maybe
conjectured that the lower bound in (3.79) is close to the truth, that is,
we expect that

D lter — 1) = THAETD) (g > 1T — ), (3.82)

t,<T

but unfortunately at present we cannot prove this for any specific @ > 1
(for @ = 1 this is trivial).
If u,, denotes the n™ zero of G(T'), then by Theorem [3.3] there exist

infinitely many u,’s the sequence {u,}’, is unbounded, and moreover

Upil — Uy <K u,ll/z.
This bound is actually close to being best possible, since we can
prove without difficulty that

. log(uys1 — up) 1
= Tim sup —Bnl “¥n) _ 2
s S Py 2

This should be contrasted with what we have succeeded in proving

for the sequence {z,}” |, namely only

log(t,+1 — t, 1
< limsup 1og(ts1 = t) <=
s 00 logt, 2

ST

To prove that 8 = % it remains to show that 8 < % cannot hold. We 152
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have
T+H

G(T+H)-G(T) = f (E(t) — m)dt,
T

and we choose T (this is possible by Theorem [3.3) such that G(T') <
—BT3/* and H such that G(T + H) = 0. Then we have O < H < TF*€,
and using the Cauchy-Schwarz inequality it follows that

T+H
T3? <« GXT)< H f E*()dt + H* < H*T"?> + HT 10’ T
T

by appealing to Theorem[2.4l Hence
T2 « TI2242 | TI4Bre 1005 T

which is impossible if 8 < % and € > 0 is sufficiently small. This
proves that § = % The reason that one can obtain a sharper result
for the sequence {u,};’ | than for the sequence {z,}° , is essentially that
G(T) is the integral of E(T) — &, and possesses the representation (3.28))
involving an absolutely convergent series which is easily manageable.

No expression of this type seems to exist for E(T).

3.5 Some Other Results

In this section we shall investigate some problems concerning E(7') that
were not treated before. In particular, we shall consider integrals of the
type

T+H

I1=IT,H)= f FE@)EA/2 + in|dr, (3.83)
T

where T > Ty, 0 < H < T, and f(¢) is a given function which is
continuous in [7,T + H]. The method for evaluating the integral in
(3.83) is very simple. Namely, if F’ = f, then from the definition of
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E(T) it follows that

T+H
= f FEW) (E’(t) +log é + Zy) dt (3.84)
T

T+H

=F(E(T+H))-FEM))+ ff(E(t))(logé+2y)dt.
T

Therefore the problem is reduced to a simpler one, namely to the
evaluation of the integral where |/|? is replaced by log(t/2n) + 2y. If T
and T + H are points at which E(T) = E(T + H), then (3.84) simplifies
even further. As the first application we prove

Theorem 3.6. With ¢ = 3(2m)™'%¢*(3) /£(3) we have

T 2
f EX()|C(1/2 + in)Pdt = c(log o 2y — §) T2+ O(Tlog’ T) (3.85)
0

and

T
f E*DIC(1/2 + if)Pdt < T3, (3.86)
0

T
f ES()|C(1/2 + if)dt < T>/**€, (3.87)
0

T
f E3(D|C(1/2 + if)Pdt < T3, (3.88)
0

Proof. To prove (3.83) we apply 3.84) with H = T, f(1) = 1>, F(t) = °.
Using the weak bound E(f) < t'/3 and the mean square formula (Z.100)
with the error term O(T log® T), it follows that

2T 2T

f E2()|£(1/2 + if)dt = O(T) + f E% (1) (log é + 2y) dt

T T
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t . T 2T T dr
- [ f Ez(u)du] (log— + 27) - f { f Ez(u)du] 4 o oT)
2w T t

0 T \0
. N\ T
=c??(log— +2y - Z|| +O(Tlog’T).
2n 3/ 17
O
154 Replacing T by T2~/ and summing over j = 1,2,... we obtain

(3.83). the remaining estimates (3.86)-(3.88)) are obtained analogously

by using (3.81). The upper bounds in (3.86)-(3.88) are close to being
best possible, since

Ti+l/4A-e (0<A<2),

3.89
T4 10g T (A >2), (3:89)

T
f IEOA12(1/2 + it)dt > {
0

for any fixed A > 0 and € > 0. For A > 2 this follows easily from (3.83)
and Holder’s inequality for integrals, since

T T

sz(l)|§(1/2+ indt = fEz(f)|§|4/A|{|2(l_2/A)dt

0 0
T
{ f 12(1/2 + it)lzdt]
0

T
< { f IEO2(1/2 + it)Izdt]
0

For O < A < 2 we use again (3.83) and Holder’s inequality to obtain

1-2

2/A 2

T
T3 log T < f EVA0|c(1/2 + i) E>VPA0\2(1/2 + in)|dt

0
1/2 1/4

T T T
< [ f E@)A (/2 + it)lzdt] [ f |E(t)|82Adt] [ f 12(1/2 + it)|4dt]
0

0 0

1/4
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Using (3.8T)) (with A replaced by 8 — 2A) and the weak bound

T
f|§(1/2 +inftdr < T
0

we obtain the first part of (3.89).
Perhaps the most interesting application of our method is the evalu-
ation of the integral

T
f E@®)|E(1/2 + it)|?dt. (3.90)
0

The function E(¢) has the mean value 7 in view of Theorem 3.1
while |£(1/2 + if)]* has the average value logt. Therefore the integral
in (3.90) represents in a certain sense the way that the fluctuations of
these important functions are being superimposed. We shall prove the
following

Theorem 3.7. Let U(T) be defined by
T

fE(mg(l /2 + if)2dt = 2T (log %T +2y - 1) LUT), (391
0

and let V(T) be defined by
T
G2 o an

U(tydt = =13 + V(). 3.92
f (H)dt 3VIRG) +V(T) (3.92)

Then
U(T) = O(T**1og T), U(T) = Q. (T**log T), (3.93)
V(T) = O(T**10g T), V(T) = Q.(T>*1og T) (3.94)

and

T

f U(tydt = T*?P,(log T) + O(T°/4+9), (3.95)

2

where Py(x) is a suitable quadratic function in x.

155
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Proof. We begin the proof by noting that (3.84) gives
T | T
t
f E@®|(1/2 + it)Pdt = EEz(T) + f E(f) (log >+ 27) +0(1).
T
2 2

In view of the definition (3.1 of G(T') the integral on the right-hand side
of this equality becomes

T

T
fn(1ogzi+zy dt+f 10g—+2y dG(1)
T
2 2

T
=7rT(10g2£+2y)—7rfdt+0(l)+G(T)(log21+27)—fG(t)%.
bis bis
2

2

156 Hence
T

1 T dt
U(T) = SEX(T) + G(T) (log =+ 27) - f G + 0.
n
2
Using Theorem [3.1]and Lemma 2.1 it follows that

T
d
f G(t)Tt =O(T"%. (3.96)
2
This gives at once
1 T
U(T) = SEX(T) + G(T) (log = 2y) +OT'H, (3.97)

Since E(T) < T'/3, then using 3.28) and G(T) = Q.(T**) we
obtain (3.93). Therefore the order of magnitude of U(T) is precisely
determined, and we pass on to the proof of (3.94) and (3.93). From
we have

T T

T
2
f Uz(t)dtz sz(t)(IOgé +2’)/) di+ O f(E4([)+T1/2)dt

121 1/2T 2T
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T
+0 f IGOIE?(£) + T"*)log Tdt|.
2T
Using (3.81) with A = 4 it is seen that the contribution of the first

O-term above is T>*€. To estimate the second O-term we use (3.63)) and
the Cauchy-Schwarz inequality. We obtain a contribution which is

T T 172
< logT f G*(1)dt f E*(tdt + T2 < T4+
1/2T 12T

Integration by parts and yield (B = £*(5/2)/(57 V21 (5)))

T
t 2 t 2|
f G*(1) (log — + 2y) dt = (B> + 0(£7*°)) (log —+ 27)
2r 2n

ar 1/2T
P T
) f 1277 (B2 + 0(1*9)) (log LI 2y) dt = 2P, (log 1)
2n 1/2T
+ 0(T2+E),

where P»(x) = agx* + ajx + ay with ag, a1, a» effectively computable. 157
This means that we have shown that

T T
f U(Hdt = P2Py(logt)|  + O(T?/49),
Var 12T

so that replacing 7 by 727/ and summing over j = 0, 1,2, ... we obtain
(3.93)). Probably the error term in (3.93) could be improved to O(T2+€)
(in analogy with (3.63)), but this appears to be difficult.

Now we shall establish (3.92) with the O-result (3.94). Integrating
([B.97) with the aid of Theorem 2.4 we have

- 1 1\ A t
f Udr = Ec[T3/2—(§) ]+0(T5/4)+ f G() (10g§ +2)dt. (3.98)

12T 12T
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Using Theorem [3.1] (with N = T) it is seen that the contribution of
the sum Z to the last integral is O(T'), while the contribution of the
n<N’
error term O(T'/%) is trivially o(T>'4 log T)). The contribution of the
sum Z is, after simplification by Taylor’s formula,
n<N

T

2~ V/Ag=3/4 314 E (=D)"d(myn=>"* sin(VSnnz - %)(log Zi + 2y) dr + O(T"*)
T
121 n=1

o T
t
= 2SN 1y f S (1og Ly Zy) 4 {cos( gt — ’1)} + 0T
o r 2 dt 4

o0 T
= 2 N 1y {7 (1og - + 2) cos ( Ve - 7))

n=1

1/2T
T

> 51 t 1
 -3/4_-5/4 N\, qyn=1 ~7/4 2.1 r 1
2734 ;( D™ dmn f(4z4 (log 5 +2’y)+t4)

1/2T

cos ( N %)dr + (T

) T
=2734p5/4 Z:(—l)"’ld(n)n’”4 {15/4 (log A + 2)/) cos ( VSnnt)}
2r

n=1

+O(T)
1/2T

if we use Lemma [2.1] to estimate the last integral above. Inserting this
expression in (3.98) we obtain (3.92) with

T
V(T) = W(T) + 27347514 5/4 (log o Zy)
T
(~ 1Y d(myn~ 7 cos ( BanT - Z) (3.99)
n=1
where
W(T) = O(T>*10g T). (3.100)

This proves the O-result of (3.94). By the method of Lemma[3.3and
Lemma [3.4]it is easily seen that the series in (3.99) is Q.(1), so that the
omega-result of (3.94) follows from a sharpening of (3.100), namely

W(T) = O(T'*). (3.101)
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To see that (3.101)) holds we have to go back to (3.98)) and recall that
it is the error term O(T'/*) which, after integration in (3.98), leads to
(3.100) since actually all other error terms will be O(T>/%). Observe that
in (B.98)) we have in fact a double integration, since G(T) itself is an in-
tegral (the log-factor is unimportant). By analyzing the proof of Lemma
[B.1]it will be seen that instead of the error term ®gugF’ 0 32 with y+1
replacing y we shall have y +2 replacing vy in view of double integration.
This produces in our case the error term O((7T'/ k)1/20+2-a=p=1/4p=5/4y
which for g = 1,y = 1, @ > $+0 will eventually give O(T*/*1og T) and
therefore (3.10T) holds. This completes the proof of Theorem[3.71 O

We shall conclude this chapter by establishing some further ana-
logues between the functions E(7T") and A(x). Namely, we shall use the
Q. -results and (3.41)) to derive omega-results in the mean square
for the functions in question. Thus we write

T

2 _ 732 _ % —1/254(3/2))
2f E%(0)dt = ¢T3 + F(T) (c = 30n) =3 ) (3.102)
L 4
f AX(f)dt = dT3? + H(T) (d = gﬂ(zif( 2) (3.103)

2

Upper bound results F(T) < Tlog’ T and H(T) < Tlog’ T were 159
given by Theorem 2.4l and Theorem respectively. Moreover, it was
pointed out that in both bounds log® T’ may be replaced by log* 7. Now
we shall prove

Theorem 3.8. If F(T) and H(T) are defined by (3.102) and (3Z.103)),
respectively, then with suitable constants By, By > 0

F(T) =Q {T3/4(10g T)—1/4(10g log T)3/4(3+10g 4)6_31 4/logloglog T} (3104)

and

HT) = Q{4 log )4 (loglog 1?40+ e~ VlsloelosT} (3.105)
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Proof. In Chapter 2l we proved the inequalities
T+H
E(T)<H™! f E(tdt + CHlogT (O <H<T,T > Ty,C > 0)
T

and

T
E(T) > H™! f E(t)dt — CHlogT.

T-H
Thus by the Cauchy-Schwarz inequality we have

T+H
EXT) <2H7' [ Et)dt+2C°H*1og’ T (E(T) > 0)
T
T
and EXT) <2H' [ E*t)dt+2C*H?log’ T (E(T)<0)
T-H

so that in any case for T > T and a suitable C; > 0 we obtain

T+H
EXT)<2H™! f EX(t)dt + C1H* log* T. (3.106)

T-H

In (3.106) we take T = T, the sequence of points T, — oo for which
160  the Q, -result (3.43)) is attained. If Cy,C, ... denote absolute, positive
constants, then we obtain

C,H(T log T)'*(loglog T)'/?3+10e 9 exp (—C3 ylogloglog T)
<2¢(T + H)*? = 2¢(T — H)*? + 2F(T + H) + 2F(T — H) + C\H’ 1og’ T
< C3HT'? + 2F(T + H) - 2F(T — H) + C,H>1og* T..

Suppose (3.104) does not hold. Then

F(T) < K(T,B)) :=
T3/4(log T)_1/4(10g log T)>3/4G+10ed ox (—81 ylogloglog T)
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for any given By > 0, where K(T, By) is an increasing function of T for
T > To(B1). Now let

H = H(T, By) = (K(T, B)) log > T)'/>.

Then we obtain

C4H(T log T)'*(log log T)/2G3+10e%) exp (—C3 vlogloglog T)
< CsT**(log T) V*(log log T)*/4G+102 D expy (—31 vlogloglog T) ,

or after simplification

1
Cyexp (— (§B1 + C3) ylogloglog T) < Csexp (—Bl vlogloglog T).

Taking B; = 3Cj3 the last inequality gives a contradiction if 7 >
T(C3), which proves (3.104). One proves (3.103) analogously, only the
proof is even slightly easier, since in this case one has

x+H
Ax) = H™! f A(Hdt + O(Hlog x) (x° < H < x). (3.107)

Namely

x+H x+H

Alx)— H! f A(t)dt = H™! f (A(x) = A(r))dt

x+H

< Hlogx+H™! f ( Z d(n)] dt < Hlog x,
pé x<n<x+H
since 161
Z din) < Hlogx (x° < H < x). (3.108)

x<n<x+H

O
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Notes For Chapter 3

Theorem 3.2lis new, while Theorem[3.1lis to be found in J.L. Hafner
- A. Ivi¢ [54]. The motivation for the study of G(T) is the fact, already
exploited by Hafner [S3], that it is not essential to have a functional
equation for the generating Dirichlet series connected with a number-
theoretic error term, but a Voronoi-type representation for the error term
in question. By this we mean representations such as

MD=n*TWﬂ“Zﬁmmw%MGﬂﬁﬁ—9+OU%

n<T

which follows from Voronoi’s classical formula for A(T) (see [162],
[163]), and is considerably simpler than Atkinson’s formula for E(T).
Indeed, for E(T) it is not clear what the corresponding Dirichlet series
should look like, while for A(T') it is obviously ¢ 2(s).

Lemmas [3.3] and [3.4] are from A. Ivi¢ [78], where a more general
result is proved. This enables one to prove analogous results for error
terms corresponding to Dirichlet series with a functional equation in-
volving multiple gamma-factors. These error terms, studied extensively
in the fundamental papers of K. Chandrasekharan and R. Narasimhan
[20], [21], [22]], involve functional equations of the form

A(s)p(s) = A(r — )¥(r - 9),

where
00 o0 N
() = D FmA", W)= ) g, AGs) = | | Tlavs + ),
n=1 n=1 v=1

a,’s are real, and some natural conditions on ¢ and ¥ are imposed. The
class of functions possessing a functional equation of the above type
is large, and much work has been done on this subject. For this the
reader is referred to J.L. Hafner [S2]], where additional references may
be found.

For the method of transforming Dirichlet polynomials with the di-
visor function see M. Jutila [89]], [92] and his monograph [95]. Further
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applications of this theory are to be found in M. Jutila [96], [97], (98],
[99]], where among other things, he reproves H. Iwaniec’s result [[82]]

T+G

|
f ‘g(i + lt)
T

without the use of spectral theory and Kloosterman sums. The above
result will be proved in this text in Chapter 4] and Chapter [3] where the
fourth moment will be extensively discussed.

The first part of Theorem is contained in A. Ivi¢ [78]], while
[B.38) is new.

The first Q-result for E(T), namely E(T) = Q(T'/*), was obtained
by A. Good [46], and it of course follows also from the mean value
result of D.R. Heath-Brown [60], given by (2.69). Good’s method is
based on the use of a smoothed approximate functional equation for
{(s), obtained by the method of Good [44]]. This approximate func-
tional equation is similar in nature to the one that will be used in Chapter
Ml for the investigation of higher power moments of | (% + it)|. In [45]]
Good obtained an explicit expression for E(T), similar to the one ob-
tained by R. Balasubramanian [6]]. The use of the smoothing device, a
common tool nowadays in analytic number theory, makes Good’s proof
less complicated (his error term is only 0(1), while Balasubramanian
had 0(10g2 T)). However, Good’s final formula contains expressions in-
volving the smoothing functions that are not of a simple nature. Good’s
method is powerful enough to enable him in [46] to derive an asymptotic
formula for

4
dt < TG (Tz/3 SGST)

X
f (E(T + H) - E(T)’dT  (H < X',
0

and then to deduce from his result that E(T) = Q(T/%).

Theorem [3.4lis from Hafner -Ivié [54].

Concerning (3.43)) and Lemma (3.3)) (the latter is due to J. L. Hafner 163
[511)), it should be remarked that (3 + log 4)/4 is the best possible expo-
nent of loglog T in (3.43)) that the method allows. This was observed by
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S. Srinivasan, who remarked that in the proof one wants to have

Z’d(n) > (1 -0)xlogx, Z, 1<x/y

n<x n<x

with y as large as possible, where }," denotes summation over a subset
of natural numbers. If @ > 1, then by Hélder’s inequality it follows that

1-1/a 1/a
xlogx < Z'd(n)s[Z'l) (Zd“(n))

n<x n<x n<x

X 1_1/0 @ 1/(1/
< (—) (x(log x)2 _1) R
y

hence y < (log x)¢@,

(07
where C(a) = m — log4 -1
a—-1
as @ — 1 + O. Thus it is only the small factors like exp(C +/loglog K)
in Hafner’s Lemma [3.5] that can be possibly improved by this method.
In the proof of Lemma 3.3l one encounters sums (see (3.31])) which
are a special case of the sum

D dima" (),

n<x

where m, k are fixed natural numbers. An analytic method is presented
in A. Ivi¢ [76], which enables one to evaluate asymptotically sums of
the form 3}, f(n)g(n), where f(n) is a suitable “small” multiplicative,
and g(n) a “small” additive function. In particular, it is proved that, if
m,N > 1 and k > 2 are fixed integers, then there exist polynomials
P, (1) (j = 1,...,N) of degree m in ¢t with computable coefficients
such that

N
Z di(mw™(n) = x Z Pim,j(loglog x) logk=/ x
=1

nsx J

+0 (x(log x)*N-1(loglog x)m) )
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For a formulation and proof of Dirichlet’s and Kronecker’s approx-
imation theorems the reader is referred to Chapter 9 of Ivi¢ [75].

R. Balasubramanian’s paper [7] in which he proves (3.76)) is a con-
tinuation of Balasubramanian - Ramachandra [8]], where a weaker ver-
sion of this result was proved (% was replaced by a smaller constant).
It turns out that the limit of the value that the method can give is only
slightly larger than 43'1’ so that any substantial improvement of (3.76]) will
require new ideas.

One can obtain a more precise result than y > 41'1' Namely, from the
Q. -result (3.43) it follows that

tasl — ta > Bt *(log 1,)°"*(log log 1,,) /4341929 exp (—C log log log t,,)

for infinitely many n with suitable B, C > O.

The conjecture (3.82) was made by Ivié- te Riele [75]. the numer-
ical data are so far insufficient to make any reasonable guess about the
“0O(1)” in the exponent on the right-hand side of (3.82).

The proof that

B log(up1 —up) 1
imsuyp —— = =
n—s00 log uy, 2

is given by the author in [78]], while Theorem and Theorem [3.7] are
from [76]. Thus the omega-result (3.106) answers the question posed
in Ch. 15.4 of Ivi¢ [75], and a weaker result of the same type was an-
nounced in Ch. VII of E.C. Titchmarsh [155]]. However, the argument
given therein is not quite correct (only E(T") = Q(T'%)) is not enough
to give F(T) = Q(T**(log T)™"). This oversight was pointed out to me
by D.R. Heath-Brown. Both Heath-Brown and T. Meurman indepen-
dently pointed out in correspondence how (3.104) is possible if (3.43)
is known.

The bound (3.1Q07) is a special case of a useful general result of P.
Shiu [[151]] on multiplicative functions.






Chapter 4

A General Study of Even
Moments

4.1 The Error Term for the 2k Moment

In This Chapter we are going to study the asymptotic evaluation of the

integral
T
L.
Ik(T) = g 5 + 1t
0

when k > 1 is a fixed integer. This is a problem that occupies a central
position in zeta-function theory. Upper bounds for I;(7') have numerous
applications, for example in zero-density theorems for £(s) and various
divisor problems. In Chapter[2]and Chapter[3]we studied extensively the
function E(T'), defined by

T
1&T)=\f¢§(%+@ﬁ
0

and in Chapter 5] we shall investigate the asymptotic formula for I;(T).
There we shall present the recent work of Y. Motohashi, who succeeded
in obtaining a sharp asymptotic formula for a weighted integral con-

2k
dt 4.1)

2 T
m:r@g—+w—g+ﬂn,
2n

181
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nected with I,(T'). A classical result of A.E. Ingham states that

T
Iz(T):f‘g(%+it)
0

Ingham’s proof of ([@.2) was difficult, and (4.2) remained the best
result of its kind for more than half a century. It should be remarked that
precise asymptotic formulas for

! + it
—+1i
2

00 T

1
fe_‘” (E + it) dt, fe_‘”
0 0

were obtained by H. Kober [101]] and F.V. Atkinson [3], respectively. So
far no one has succeeded in deriving from these formulas correspond-
ingly sharp results for /(7). In 1979 D.R. Heath Brown [61]] substan-
tially improved (4.2)) by showing that

L(T) = f‘{ + ll‘

4

T
dt = — log* T + O(T log® T). 4.2)
212

2 4

dt (6 — O+)

dt =T Z ajlog/ T+ ExT)  (43)
Jj=0

with
as = 1/Q2r%),a3 = a(4y - 1 - log2m) - 120/ Q)n %) (44)

and
E(T) < T7/8%. (4.5)

The remaining a;’s in (4.3 can be also written down explicitly, but
are not of such a simple form as a4 and a3. Heath-Brown’s method of
proof, which will be briefly discussed in Section[d.7] rests on evaluating
a certain weighted integral rather than evaluating I,(T') directly. This
type of technique, used also in Chapter 3 is becoming prominent in
analytic number theorey. It usually gives good upper bound estimates
for the error terms in question. Its disadvantage is that it rarely produces
an explicit expression (such as Atkinson’s formula for E(T) does) for
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the error term. Recently N.I. Zavorotnyi improved (4.3) by showing
that
Ex(T) < T?3*. (4.6)

The proof makes heavy use of spectral theory of automorphic func-
tions and N.V. Kuznetsov’s “trace formula”. Earlier H. Iwaniec [82]

proved
T+G,
4 ! + it
5t
T

by a related technique involving results on sums of Kloosterman sums.
Iwaniec’s result was reproved by M. Jutila [96], [97]], who used a more
classical approach, based on transformation formulas involving Dirich-
let polynomials with the divisor function d(n). The upper bound in (4.6)
will be improved in Chapter 3l where we shall show that 7€ may be re-
placed by a suitable log-power. Any improvement of the exponent 2/3
necessitates non-trivial estimates for exponential sums with the quanti-
ties a jHi(%) from the theory of automorphic L-functions.

When k > 3 no asymptotic formulas for /;(7") are known at present.
Even upper bounds of the form

L(T) <pe T'E

4
dt < GT*¢ (T2/3 <G< T)

would be of great interest, with many applications. The best known
unconditional bound for 2 < k < 6 is, apart from 7€ which can be
replaced by log-factors,

1(T) <, T'+erat=2), (4.7)

Concerning lower bounds for I(T) we already mentioned (see

(L.34)) that
I(T) <i T(log TY¥, (4.8)

which is a result of K. Ramachandra. Presumably this lower bound
is closer to the true order of magnitude than the upper bound in (7).
Therefore it seems to make sense to define, for any fixed integer k > 1,
T 1 2%
EW(T) := fl{(i + it) dt —TPp(logT), 4.9)

0
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where for some suitable constants a

k2

Pe() = aj. (4.10)

J=0

Thus E((T) = E(T), P1(y) =y + 2y — 1 —log(2r), P4(y) is given by
@.3) and (4.4). However, in the case of general k one can only hope that
Ex(T) = o(T)as T — oo will be proved in the foreseeable future for any
k > 3. Another problem is what are the values (explicit expressions) for
the constants aj; in (£10). In fact, heretofore it has not been easy to
define properly (even on heuristic grounds) the value of

2k
dt, 4.11)

T
-1 1
ck) = apy = Tll_{r(}o (T logk2 T) f‘g(i + it)
0

provided that the existence of the limit is assumed. Even assuming un-
proved hypotheses, such as the Riemann hypothesis or the Lindelof hy-
pothesis, it does not seem easy to define c(k). I believe that, if c(k) exists,
then for all integers k > 1

VA S (Tl + )
oo oo o (S]]

This formula gives ¢(1) = 1, ¢(2) = 1/(27?), which are the correct
values. A conditional lower bound for I;(T) is given by Theorem

kZ
Note that we have c(k) = 2 (%k) ¢, where ¢} is the constant defined by
(L36).
We proceed now to establish some general properties of Ex(T), de-
fined by (4.9). We have E;, € C*(0, o) with

2k
— (Pa(log T) + P}, (log T))

ELT) = ‘g(% + iT)

= Z2X(T) - (Pia(log T) + P, (log 7)),
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where as usual
1 1
Z() =y '/? (5 + it)g“(z + it),

L)
x(s) = 20— )

For r > 2 we obtain

= 25257 11(1 = ) sin(?).

ED(T) = (ZKT)D + 0,.(T7),

where the (r — 1)* derivative can be easily found by an application of
Leibniz’s rule and the Riemann-Siegel formula for Z(T).

One can use Ex(T) to obtain bounds for £ (% + it). Using Theorem
[L2lwith 6 = 1 we obtain

] T+1 ] 2%
‘§(§+iT) <<logT[1+f§(§+it) dt]

2k

T+1

=logT {1 +(tPp(ogt)| +EWT +1)— E(T - 1)}.

T-1
Therefore we obtain 169

Lemma 4.1. For k > 1 a fixed integer we have

1/2k
1 2
— 4 (k“+1)/(2k)
{(2 + zT) < (logT) + (log Tte[Trr_lla’);H] IEk(t)I) . (4.13)

Note that Lemma&.T]in conjunction with (4.6) gives
1
4(5 + iT) < T1/6%e, (4.14)
which is essentially the classical bound of Hardy-Littlewood.
The function E¢(T") can grow fast (near the points where ¢ (% + iT) is

large), but it can decrease only relatively slowly. Namely, for0 < x < T
one obtains, by integrating the expression for E, (1),
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T+x
0< f ‘{(% +it)
T

+ EW(T + x) — E(T) < Cexlog® T + Ex(T + x) — E(T)

2% T+x
dt = f (Pie(log ) + Pjy(log 1)) dt
T

for a suitable constant C; > 0. Thus
EW(T) < E((T + x) + Cexlogd' T,

and integrating this inequality over x from 0 to H(0 < H < T) we obtain

T+H
Ex(T)<H™! f Ex(hdt + CuH1log" T (0 < H < T).
T

Similarly we obtain a lower bound for E;(T). The above discussion
is contained in

Lemma 4.2. For a suitable Cy > 0 and any fixed integer k > 1
EWT) < EWT +x)+ Cixlog"' T (0<x<T), (4.15)

EWT) 2 E(T —x) - Cixlog' T (0<x<T), (4.16)
T+H
EWT)<H' [ Eundi+CiHlog" T (0<H<T), (4.17)
T

T
E«T) > H" [ Eundi—CiHlog" T (0<H<T). (4.18)
T+H

The Lindeldf hypothesis that ¢ (% + it) < 1€ has many equivalent
formulations. A simple connection between the Lindel6f hypothesis and
the differences E (T + H) — E;(T) is contained in

Theorem 4.1. Let k > 1 be a fixed integer. The Lindeldf hypothesis is
equivalent to the statement that

ExW(T+H)-E(T)=0(H|IT®) (0<|H|<T) (4.19)

or
T+H
Ex(T)=H""! f Ex(tdt + o(H|T) (0 < |H| <T). (4.20)
T
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Proof. Let the Lindelof hypothesis be true. Then ¢ (% +it) < 1! for any
€1 > 0 and consequently

T+H

E(T + H) — E(T) = f '(% + it)
T

T+H

2%
dt — f (sz (log1t) + P}, (log t)) dt
T

< |H| (Tze"‘ +log" T) < |H|T®

for € = 2¢1k. Conversely, if (.19) holds, then by following the proof
of Lemma4. 1] we have

| 2% T+1
|§(§ + iT) < logT {1 + tP2(logt) +e(T-1)— E(T - 1)}
T-1
< (log T+ 4 1€ log T < T,
which gives ¢ (% +iT) <, T*¢. Further we have 171
T+H T+H
E(T)-H™'! f Ex(di = H' f (Ex(T) = Ex(1)) 1,
T T

so that (4.19) implies (4.20). Finally, if (.20) holds then we use it
once with H, and once with T replaced by T + H and H by —H to get

#.19). o

Concerning the true order of magnitude of Ey(7")I conjecture that
for k > 1 fixed and any € > 0

EW(T) = O(T"*+e) 4.21)

andfor1 <k <4
Ex(T) = (T'*), (4.22)

the last result being true for k = 1 and k = 2 (see Theorem [3.7). The
reason I am imposing the restriction 1 < k < 4 in (.22 is that if (£.22))
holds for k = 5, then this would disprove the Lindel6f hypothesis which
trivially implies Ex(T) < Tl+e, Anyway, the result E>(T) = QT'?)
of Theorem [5.7] clearly shows that it is reasonable to expect that Ex(T)
gets bigger as k increases, and that in some sense the eighth moment
will be a “turning point” in the theory of Ix(T).
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4.2 The Approximate Functional Equation

We pass now to the derivation of an approximate functional equation
for £*(s) that will prove to be very useful in the evaluation of (7).
There are many approximate functional equations in the literature. For
example, one has

()2 +it) = Z n1/2[t+)((%+it

n<(t/2m)1/2

) n P 0, (4.23)
n<(t/2m)l/?

which is weakened form of the classical Riemann-Siegel formula, and
Motohashi’s result

2(1)2+it) = Z d(myn~ 174y 2 (%+it) Z Ay~ 12+ L 017119,

n<t/2m n<t/2n

If we multiply these equations by y~!/? (% + it) and ! (% + it), re-
spectively, we see that they have s symmetric form, in the sense that one
main term in each of them is the conjugate of the other main term. How-
ever, the error term in (4.23) is best possible, and the other error term
is also too large for the evaluation of the general (7). What we seek
is a smoothed approximate functional equation, which is symmetric like
(@.23)), but contains a fairly small error term. Such an expression can be
squared and integrated termwise, with the aim of evaluating the integral
I(T). Before we formulate our main result, we shall prove a lemma
which guarantees the existence of the type of smoothing function that
we need. This is

Lemma 4.3. Let b > 1 be a fixed constant. There exists a real-valued
function p(x) such that

(1) p(x) € C*(0, ),
(i) p(x) +p (L) = 1forx>0,

(iii) p(x) = 0 for x = b.
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Proof. Let us define fora >8>0

8 -1

o) = exp (@ = 7)| [[exp (6 - ")
—B
if [f| < B, and put ¢(¢) = 0 if |f| > 5, and let
x+a X
f(x) = f p(1)dt = f (@t + @) — p(t — @) dt.
Then ¢(t) € C(—c0, ), ¢(t) > 0 for all ¢, and from the definition of
@ and f it follows that f(x) € C*®(—o0, ), f(x) = 0 for all x and

)0 if x> a+pB,
f(x)_{l if [x] < @ — B.

Moreover if ¢(¢) is even, then f(x) is also even. Now choose @ = 173
1 +b),B=3b-1). then

) 0 ifx>b,
X) =
1 if0<x<1.

1 1
p(x) = 3 (1 + f(x) - f(—)). (4.24)
X

The property p(x) € C*(0, o), which is i) of Lemma (4.3), is obvi-
ous.
Next

o o) = 5 (1 se-s(3)) 5 (1 () - reo) =1

which establishes ii) of the lemma. Lastly, if x > b,

-t )

since 1/x < 1/b < 1 and f(x) = 1 for 0 < x < 1. Thus p(x), defined
by (@.24)), satisfies the desired requirements i) - iii), and the lemma is
proved. |
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The main result in this section is

Theorem 4.2. For 1/2 < 0 < 1 fixed 1 < x,y < * s = o +it,
k
Xy = (ﬁ) , 1 >1tgand k > 1 a fixed integer we have

0= (E)d"(")”_s X0 2 (E)dk(n)ns‘l (4.25)
n=1 * n=1 y
+0 (tk<1;fr>_1) +0 (l.k(l/Z—(r)—zyg- logt-! t),

where p(x) is a function satisfying the conditions of Lemma (@.3). fur-
thermore, if ¢ > 1 is a fixed constant, then

=3 (%) + Zp(%)p(%)dﬂnm—s (4.26)

n=1

k > n nc s—1 ki-o) g
+X°(s) p(—)p(—)dk(n)n +0[13
250 )

n O(tk(l/Z—zT)‘zy(r logk—l t).

174  Proof. Note that in the most important special case when s = % + it,

xX=y= (ﬁ)mk it follows that

£(s) = le (%) et~ + ) ;p(g)dkm)n“l 4.27)
+0 ([k/ﬁ—l + ll/4k_2 logk—l f) ,

{s) = ip(f)dk(mn‘s + ip(f)p(i)dkm)rz‘s M) (428)
o X o n CcX
Zp(f)p(f)dk(n)ns-l + OO 4 11192 1ogh 1)
pr X X

Thus ([@.277) for k = 1 is a smoothed variant of (£.23)) (since all the series
are in fact finite sums), only it contains an error term for k£ = 1 which is
only o('%).
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Our method of proof is based on the use of Mellin transforms.
Namely, let

0

R(s) := f p(x)x*Ldx (4.29)
0

denote the Mellin transform of p(x). This is a regular function for Re s >
0, but it has analytic continuation to the whole complex plane. Its only
singularity is a simple pole at s = 0 with residue 1. For Re s > 0

b b 00

x? b x* 1
R(s) = fp(x)xs_ldx = —p(x)| — f—p'(x)dx = —fp'(x)xsdx,
) s 0o s s )

and the last integral is an analytic function for Re s > —1. Since

b

—fp’(x)dX= 1,

0

the residue of R(s) at s = 0 equals 1. In general, repeated integration by
parts gives, for N > 0 an integer

b

(_ 1 )N+ 1
PNV Ndx,  (4.30)

RS = T D G N DG
0

Taking N sufficiently large it is seen that (4.30) provides analytic
continuation of R(s) to the whole complex plane. For any N, and o in a
fixed strip (s = o + it)

R(s) <y 117 (Il — o). (4.31)
In fact, @.30) shows that R(s) is regular at all points except s = 0,

since for N > 1

b

f PNV ()dx = p™M(b) — p™M(0) = 0.
0

175
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For —1 < Res < 1 and s # 0 we have

b 00

1 ~ 1 , Lo
R(s) = —= fpl(x)xédx= - fp’(x)x“dx: - fp'(—)t_é_zdt
S Ky s t
0

0 0

after change of variable x = 1/z. But
1 ’ - ’ 1 4 1 4
p(0) +p(;) =1, pPO-1"p (;) =0, p (7) = 1p'(1).

Hence

R(-s) = 1 f p'(l)ts_zdt: 1 f o' (Di°dt = —R(s)
S t S
o 0

for —1 < Re s < 1, and then by analytic continuation for all s
R(—=5) = —R(s) (4.32)

Conversely, from ([.32) by the inverse Mellin transform formula we
can deduce the functional equation p(x) + p(1/x) = 1. The fact that
R(s) is an odd function plays an important role in the proof of Theorem

4.2l O

Having established the necessary analytic properties of R(s) we pass
to the proof, supposing s = o +it,1/2 <o < 1,t > tp,d =Rez> 1—-o0.
Then for any integer n > 1 we have from (4.29), by the inversion formula
for Mellin transforms

d+ioco
n 1 X\¢
o(2)= 5 f R@)(2) de
X 27i n
d—ico
By the absolute convergence of the series for £*(s) this gives

00 d+ico

Zp(ﬁ)dk(n)n_s = L f R(2)x{ (s + 2)dz.
X 2mi

n=1 d—ico
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176 We shift the line of integration to Rez = —d, passing the poles of
the integrand at z = 1 — s and z = 0. Using (@.31)) it is seen that the first
residue is O(t~*) for any fixed A > 0. Hence by the residue theorem and
the functional equation {(w) = y(w){(1 — w) we have

—d—ioco

Yo ()™ =+ 00N o [ R@ s+ 2
0 \x 27rl_d+i(>0
—d—ico
= X))+ 0™ + Zim f R@)xx (s + 2751 = s — 2)dz
—d+ico
d—ioco
= Ms)+ 0™ - ZLm f R(—w)x "}k (s = w)Z*(1 = s + wydw
d+ioco
d+ico
= Xs)+ 0™ - 2%1 f RWIYT™"x (s = w)Z*(1 = s + w)dw.
d—ico

Here we supposed 1 < x,y < X and xy = T, where

X' (1/2 +it)
logT = —k———F——. 4.33
8 (/2 + in) (4.33)
e () £(1/2-1/25)
LGV S N il e 4.34
X($) -y~ Ta/2s) (4.34)
logarithmic differentiation and Stirling’s formula for the gamma func-
tion give
X' (1/2 + 1) o
————— = —logr+log(2 o). 4.35
Hence
O\
T = (—) (1 +0(™?)). (4.36)
2n
In fact, (4.34) gives
Yo _ o Td-io Ty

=10gm — >
ORI N3 —1s) 2I(3s)
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and using

I'(s) 1 1
=1 - — Ol —
T(s) 8% 77" (ﬂ)’

which is just a first approximation to a full asymptotic expansion of
Stirling, it follows that
X0 _
X(5)

log(2r) + - llog s(1—5)+ 0(1)

s(1-s5) 2 2

If s = 1 + it, then

1 1 1 1
5 logs(l—s) =3 log(z + ﬁ) =logr+ 0(72)
and (.33)) follows. For s = o + it we obtain similarly

X' (o +it)

1
e log t + log(2m) + 0(;). 4.37)

We shall derive first the approximate functional equation with x, y

k

satisfying xy = T, and then replace this by the condition xy = (%r) ,

estimating the error term trivially. This is the method due originally to

Hardy and Littlewood, who used it to derive the classical approximate

functional equations for £(s) and £ 2(s). Therefore so far we have shown
that

£M(s) = ip (g)dk(mn‘s +0@1™)
d+ico

- ﬁ f R0 (2) s = w1 = s+ w. @438)

d—ico

We choose d to satisfy d > o, so that the series for /% in @38) is
absolutely convergent and may be integrated termwise. Since R(w) <
[v|™ for any fixed A > 0 if v = Imw, it is seen that the portion of
the integral in (@.38)) for which |v| > ¢ makes a negligible contribution.
Suppose now N is a (large) fixed integer. For |[v| < ¢
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T k(S W) —

exp {kww + klog y(s) — Z (T (log )((s))}
DT

(172 + it) dsi
(1+00™)

because —(log x(8)) < 71 for j > 2. Using @33) and @37) we 178
infer that

explkw ...} = XY ()1 + G(w, 5))
with G(w, s) < €71 for |[v| < ¢€. For § > 0 and N sufficiently large we
obtain

d+ico
— f RWY!T " (s = w)Z*(1 = s + w)dw
d ioo
d+ico
- 0y + f ROVY A5 — 5 + wydw
27l
d—ioco

+ — f Rw)y"x (s){ (1 -s5s+w)Gw, s)dw.
6 ico
We have, since d > o,

d+ico

1
— fR(w)y (s){ (1 -s+w)ydw
2ri
d—ico
o ! d+ico o
— Kk s=1) 1 R E
0 o o f () v
"= d—ico
k - y s—1
- S )
X (S)nZ::‘ K(m)p o)
For ¢ > 0 sufficiently small
| O+ioco
3 f RWY X ()X = s + w)G(w, s)dw (4.39)

d—ioco
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< f Rw)y“ ¢ (s = )0 (W (1 = s + w)G(w, s)dw

| Im w|<t€ ,Re w=6

< A 4! f|§(o- +it=8+iv)fdv < 4 + FHOra-l

where €, — 0 as € — 0, and where as in Chapter[Il we set

1 + it
t—o0 log ¢

179 For our purposes the standard bound

u(o) < (% <o< 1) (4.40)

will suffice. This comes from u (%) < %, u(1) = 0 and convexity, and

the use of the recent bounds for u(1/2) (see (I.28])) would lead to small
improvements. Thus, if € = €(k) is sufficiently small

£s) = Zp( )t~ + x (s)Zp( )dkm)n" (1) @an

It is the use of (@.40) that required the range % < o < 1. We could

have considered also the range 0 < o < % The analysis is, of course,

quite similar but instead of (£.40) we would use
1 20 1
<--2 O<o<-).
u(o) < >3 O=<o< 2)

This means thlat we would have obtained @4T) with O(<(1-)/3-1)
replaced by O (tk(i_Ta)“_l). As the final step of the proof of (4.235) we

k
replace y = Tx~! by ¥, where Y = x! (i) . Then, for n < y, we have

Y —y =027,

Y —
p(z) —p(ﬁ) K —— | yl < * 2x_ly <r?
y Y ¥



4.2. The Approximate Functional Equation 197

Since p (g) = 0 for n > by this means that if in ({.41]) we replace y
by Y the total error is

< tk(1/2—o-) Z t—de(n)na-—l < tt(1/2—o-)—2Yo- logk—l t
n<by

Writing then y for Y we obtain (4.23).
To prove (4.26)) we proved analogously, taking @, > 0,8> 1 -0+
a. Then for ¢ > 1 fixed and any fixed A > 0

o a-+ico f+ico

) diop (e (2)n = s f f RONRQE (s + 2 = widzdw

a—ico f—ico

a—ico

a+ioco —B+ico
= L f Rw)x™ {{k(s —w)+ 0™ + i f XERR (s + 72— w)dz} dw
27i 27i
—B—ico
a+ico
1 w k k —-A
= o Rw)x™x* (s —w)"(1 — s + wydw + O(t™)
| a+ico f—ico
-— ROWR(=2)x™" ™y (s — 2 = w)Z*(1 = s + 7+ w)dzdw,
(2mi)?
a—ico B+ico
where we used the residue theorem and the functional equation for {(s). 180
Now we treat the above integrals as in the previous case, using R(—z) =
—R(z), choosing suitably @ and 8 and integrating termwise the series for
(k. We also replace Y*(s —w) and Y (s —z—w) by Y (s) plus an error
term, as was done before. In this way we obtain

;d"(”)p e () (4.42)
e oS
N 0( k(l—:r)_l) + O(Ik(%—a)—2ycr logk_l t)

k
1f1<<xy<<tk Xy = (’) s—0'+zt,§§0'<1.C0mbining@])
with (#.23) we obtain , so that Theorem[4.2is completely proved.
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4.3 Evaluation of /,(T)

In this section we proved to evaluate asymptotically I;(T), defined by
(@.1)), when k > 1 is a fixed integer. The approach is in principle general,
but the error terms that will be obtained can be O(T1+€) only for k < 4.
Thus a weakened form of the eighth moment is in fact the limit of the
method. Of course, we still seem to be far from proving I4(T) < T'*€
(the proof of N.V. Kuznetsov [107] is not complete). On the other hand
our method, which is a variation of the method used by N. Zavorotnyi
to evaluate I5(T), leaves hope for evaluating successfully /3(7). To fol-
low Zavorotnyi more closely we make a formal change of notation in
Theorem 4.2l by setting
v(x) :=p (1) ,
X

where p is the function explicitly constructed in Lemma[.3l Then v(x) €
C(0,00), v(x) +v (1) = 1, (x) = 0 for x < 1/b, v(x) = 1 for x > b for
a fixed b > 1, v(x) is monotonically increasing in (b~!, b) and v/, v are
piecewise monotonic. In Theorem 4.2l we set s = % +it,x=y= (ﬁ)k,
obtaining

2s) = ;dk(n)v(g)n_s + ;dk(n)v(g)ns_l +ORUD).,  (443)

£ = OR0) + Y dytmyv (=)™ (4.44)
n—1

+ Z di(n)v (g) v (%) n™s + x5 (s) Z di(n)v (rfz) v (cin)”s_] ;

where
k1, ko k-1
Ri(t) =to~ +ti “log™ t. (4.45)

The case k = 2 of these equations was used by Zavorotnyi, who
had however the weaker error term Ry(r) = ¢~!/2 log ¢, which was still
sufficiently small for the evaluation of I(T).

As is common in analytic number theory, it is often not easy to eval-
uate directly an integral, but it is more expedient to consider a weighted
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(or smoothed) version of it. This approach was used by Heath-Brown,
Zavorotnyi and Motohashi (see Chapter[3)) in their evaluation of I(T),

so it is natural that we shall proceed here in a similar vein. The smooth- 182
ing functions used in the evaluation of I;(T') are introduced similarly as

the function p in Lemma[d.3] Let, for |¢| < 1,

B(0) :=exp(tzl_1)‘{flexp(u21—1)]

—1

-1

and B(t) = O for |¢f| > 1. Define then

t+1

a(t) := f B(wdu.
t—1

By construction f B(uw)du = 1, and it follows that a(f) = a(-1),

a(f) € C(0,00), a(t) = 1 for || < 1, a(t) = 0 for || > 2, and a(?)
is decreasing for 1 < ¢t < 2. Henceforth assume 7 is large and let the
parameter T satisfy 7€ < Ty < T'7¢, and define

20— 13T +2T0-T 20— 13T +4To - T
[t = 53T + 2T, )’ J_‘(t)za[ lt— 53T +4T) '

J0 = a( 27, 27,

The functions f and f are constructed in such a way that, for any ¢,

0 < f() < Xr(1) < f(0)

if y7(#) denotes the characteristic function of the interval [T,27T]. Thus
we have
I g (T) < IQ2T) = I(T) < I, #(T), (4.46)

where

) T
L y(T) = f FOIA/2 + inPde, [ +(T) = f FOIA/2+inPkdr.  (4.47)
0 0
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Therefore if we can prove
Iy (T) = tPp(og 7 + O(T7) (4.48)
with a suitable O < y; < 1, where henceforth f will denote either ]_‘ , then

in view of (4.46) we obtain

T
I«(T) = f 1E(1/2 + i)**dt = TP(log T) + O(TY++€) (4.49)
0

on replacing 7 by 727/ and summing over j > 1. We can reinterpret
our current knowledge on [;(T') by saying that

1 7 1 2 k-2

<y < —, —<ym<= < Bu— <k<6.
FSVNS55 557Nns3, v <1+ ) for 3<k<6
The problem of evaluating I;(T') is therefore reduced to the (some-
what less difficult) problem of the evaluation of I; ¢(T'), where f is either

f or f. For any integer g > 1

20— 3BT +2To T __,
27, 0

— 3
7@ = sgn” (t - ET) " (
and an analogous formula also holds for ]_‘(’ )(1). This gives

0 < Ty (r=1,2,..), (4.50)

which is an important property of smoothing functions. It provides the
means for the regulation of the length of exponential sums (Dirichlet
series) that will appear in the sequel. A general disadvantage of this type
of approach is that it is difficult to obtain an explicit formula for Ex(T)
when k£ > 2. Hopes for obtaining analogues of Atkinson’s formula for
E((T) = E(T) in the case of general Ex(T), may be unrealistic. Namely,
Theorem shows that the explicit formula for the integral in question
does not contain any divisor function, but instead it contains quantities
from the spectral theory of automorphic functions.
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Let now
NCE i v(%)dk(m)m—l/z—it . (x = (é)”%). (4.51)
m=1
Then (@.43) yields

2 +in= Y0+ 12+ (1) + R0,

hence taking conjugates one obtains

Fa2-in= > o 12 -in 30+ OR).

From the functional equation one obtains y(s)y(1 — s) = 1, hence 184
multiplying the above expressions we obtain

—
(/2 + i =2 3 0 + 2Re (Xku 2+ (t))
+ 0 (Rl D (0]) + ORE ().
Now we multiply the last relation by f(f) and integrate over ¢ from

T/2 to (5T)/2. Since the support of f is contained in [T/2, (5T)/2] we
have

oo ~ —
%Ik,fm: fo f(r>|Z(r>|2dt+Re[ f Fokarz+iny] <r)dr]
0
1/2(5T) 1/2(5T)
+0[ f Rk(t)|Z(t)|dt]+[ f Ri(z)dz].

12T 1/2T
We can proceed now by using
Ri(r) = 167" + i 2 10gh 1 ¢ (4.52)

and applying the Cauchy-Schwarz inequality to the first O-term. We
shall restrict k to 1 < k < 4, although we could easily carry out the
subsequent analysis for general k. The reason for this is that in the
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sequel the error terms for k > 5 will be greater than T'* for some
nx > 0, hence there is no hope of getting an asymptotic formula for
I(T) by this method. However, instead of using the pointwise estimate
(4.32), a sharper result will be obtained by using (#.39) with o = 1/2,
namely

tE
Ri(f) < 1Y% 210gk "1 ¢ 4 27! f 1C(1/2 +it =6+ ivtdv.  (4.53)
_[5

we have
1/2(5T)

1C(1/2 + iDfFdr < Tlog* T (1 <k <4),
1/2T
and by standard methods (Perron’s inversion formula) it follows that

Z ) < Thu(1/2)+e
Thus in view of u(1/2) < 1/6 we obtain

1 [ee]
Sk = [ 501 wfdr (4.54)
0

+Re {ff(t))(" (1/2 +it) Zz(t)dt} + O(T*®),
0

which shows that the error term coming from the error term in our ap-
proximate functional equation for *(s) is fairly small. However, in the
sequel we shall encounter larger error terms which hinder the possibil-
ity of obtaining a good asymptotic evaluation of I;(T) when k > 5. In

write
— - —
k _ [k .
SIL'OYDY
and evaluate the factor in brackets by subtracting (4.44) from (.43). We
obtain

(o) — o
f Faont2+in) " 0de= > dm)di(m)mny™?
0

m,n=1
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(o8]

[t (E)r () ()2 a0y > admtmm™

0 m,n=1

f F(n)ekiTlog F+3m (| 4 g 1))y (%) y (f) y (é) (mn)"dt,
0

n

where g(f) < 1/t. The last bound is a consequence of the asymptotic
expansion

] 28 ] A2 1
12+ if) = i(tlog 2 +1+1x) 1_L+_+‘”+0 -,
x(1/2+it)=e PR W

which follows, for any fixed integer N > 2, from Stirling’s formula for
the gamma-function. Therefore the method used to estimate

> dimydy () mn) ™2 f floyekiitoe Faeeim) (4.55)
0

m,n=1
D)o

will give a bound of a lower order of magnitude (by a factor or T') for the
corresponding integral containing g (). In the integral in (4.33)), which
will be denoted by I(m, n), we make the substitution ¢ = 2u(mn) k.
Since x = (t/2m)'/%* we have

kin 4 4 k n
I(m,n) : = 2xe * (mn)* ff(27m(mn)?)v (Lﬁ A / —)
m
0
v (ug Cc! m ) eZﬂ'ki(mn)”k(—u logu+i) .
\ n

B
— 2ﬂel/4ki7r(mn)1/k fH(t; m, n)eZHki(mn)(—tlogHt)dt
A

with

H(tm.n) : = FQrt(mn) )y ([l/Zk (2)1/2) V(tl/Zk (ﬂ)l/z) V([l/ZkC—l (T)I/Z) ,
m n n

186
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o TFTy  (m\Vk . (c\kn\lk 2T T,
Ai= max(Zﬂ(mn)”k’(n) b ’(b) (m) st<B:= 2n(mn)l/x’
where upper signs refer to f, and lower signs to foIf
F(t) = —tlogt +1,

then
|[F'()] = logt > log(1 +6) > 6

1/k
for a given O > ¢ < 1 when (%) / b=k > 1 + 6. On the other hand, if
(m)b_z/k < 1+ 6, then

n

2/k 1/k 2/kp=2/k

(5) (ﬁ) > (5) A+6) " >1+6
b m b

for
¢ =b*(1 +26)k. (4.56)

Thus |F'(1)] = logt > 6 for A < t < B, provided that (4.56) holds.
Since H(A; m,n) = H(B; m,n) = 0, integration by parts yields

B
f H(t;m, n)e (k(mn)” "F(t)) dt
A

B
B _(mn)_l/k H(t;m,n) i

17k
ki logt di {e (kamm " F (1)}
A
B
_(mn)_l/k H' (t;m,n) H(t;m,n) 1k
© ki f( log ¢ - tlog? ¢ )e(k(mn) f(t))dt'

Now we use the standard estimate (see Lemma[2.)) for exponential
187  integrals to show that the portion of the last integral containing H(t; m, n)
is < (mn)~2/*r=1_ Consider next, in obvious notation,

H'(t;m,n) = 2r(mn)"/* 7 (2m(mn) ¥1) v( (v ()

dv(-
+ 3 FOD ), (4.57)
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One has v'(x) = 0 for x < 1/b or x > b, so that the terms coming
from Y, f (-)% ... in (.37 vanish, because of the conditions

1/2 1/2
T K Y
b n b m

]

which cannot hold in view of t < T, 1 < m,n < TV*, Taking into

account that f’(f) < 1/Ty and using again Lemma .1 it follows that
the expression in (4.53)) equals

D T wdimmmy ™2 <50 ST N demydi(n)(mn) ™2
m,n=1 m<<T 12k T 1/2k
< T1/2"T61(log T)2k—2.
This gives
1 B P X x\it
S = Y dimydi(m)mn) 1/2Re{ f f(t)v(—)v(—) dt}
mn=1 m n
1-6<2<1+6 0
(4.58)
+OT0) + O (Tt ) + 3 dmydimn)mm)™
m,n=1
-6 <1+6
P it 0
Re{ f f(t)v(i)v(ﬁ)v(m) dt}+ 3 dmdimmny
m X n =
0 1

2<1-6,2>1+6

el [ G5 -GN o

We recall that we have at out disposal the parameters Ty and 6 such 188
that 7€ < Tp < T'¢ and 0 < 6 < 1. In the last sum in @.37) we have
log(m/n) > 6. We integrate the integral in that sum by parts, setting

o= s = () PN
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and after integration we use the second mean value theorem for inte-
grals to remove the v-function. Since f’(f) < 1/Ty, on applying again
Lemmal[Z.1lit is seen that the last sum in @.38)) is O(T'"/ 2"+ET()‘ .

It remains to simplify the remaining two sums in (£.38)), and it is at
this point that we shall make use of the parameter 6. Namely, it will
be shown that for § sufficiently small v(%‘) = 1if holds. This

2 k . . . .
happens for ¢ > b, or t > 2r(nb/c) /k. The integral in question is

m > (1 — 8)n, we have

2/k 2/k b
‘> 2n(f) > 2n(f) (1 -6 > 272
b b c

2/k
non-zero for x/m > 1/b, giving t > 27‘((%) / . Since in both sums

2/k

for
(1=6)c > b

In view of (4.56) this condition reduces to showing that
1+261-6)>1.

The last inequality is certainly true for 0 < § < 1, since (1 + 26)¢ >
1 +26. Therefore, in the second integral in (4.38)), v (%) may be omitted
for0 <6 < % Using v(f) + v(%) = 1 we finally obtain

Theorem 4.3. for 1 < k < 4 an integer, 0 < 6 < % T < Ty < T~

and x = (ﬁ)mk we have

! \ - h +ep—
A Zd,f(n)n 'Re {ff(t)v(g)dt} +O(TH%) + O (T2<T;Y)
" 0

(4.59)

sY g Re { f ror(Z)(2) dt} .
0

mun=1
m#n,1-6< % <146

189 The above formulas may be considered as the starting point for
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the evaluation of I(7). Two sums will emerge, of which the first is
TR;2(log T) plus an error term. This will be shown in the next sec-
tion, where Rj2(y) is a polynomial of degree k*> in y whose first two
coefficients do not depend on v, but the others do. The other (double)
sum, presumably of order lower by a factor of log? T than the first one,
is much more complicated. This sum represents the major difficulty
in the evaluation of It(T"), and so far can be evaluated asymptotically
only for k = 1 and k = 2. Since the final (expected) formula (4.9)
(with E(T) = o(T) as T — o0) does not contain in its main term the
v-function, it is natural to expect that the coefficients in both sums con-
taining the v-function will eventually cancel each other. This is because
the v-function does not pertain intrinsically to the problem of evaluating
asymptotically I;(T), and can be in fact chosen with a reasonable degree
of arbitrariness.

4.4 Evaluation of the First Main Term

The title of this section refers to the evaluation of the sum

SUT):= Y dwn' Re { f f(t)v(%)dt} (4.60)
n=1 0

which figures in @.39). This sum can be precisely evaluated. We shall
show that, for 1 < k < 4,

2T

+(tHy,(log 1))
T

2T

+O(TTy)+O(T™*€), (4.61)
T

SK(T) = (1Qy(log1))

where n; = 0, nx = % for 2 < k < 4. In @.61) H;,(y) is a polynomial
of degree k> — 2 in y whose coefficients depend on k and the function v,
while Q,2(y) is a polynomial of degree k2 in y whose coefficients depend
only on &, and may be explicitly evaluated. Before this is done, observe
that the error terms O(T<T) and O(T'/?**<T ;1) in @39) and @.6) set
the limit to the upper bound on Ey(T) as

EW(T) = O(T1/4k+e)

190
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on choosing Ty = TV#, 1 < k < 4. This is the conjectural bound
mentioned in (£.2])), and the above discussion provides some heuristic
reasons for its validity. Coupled with (@.22)), it means that heuristically
we have a fairly good idea of what the true order of magnitude of Ey(T)
should be for 1 < k£ < 4. We are certainly at present far from proving
the above upper bound for any &, which is quite strong, since by Lemma
K.1lit implies u(1/2) < 1/8.

To prove we define first, for Re s > 1 and k£ > 1 a fixed integer

Fu(s) = Z d2(myn™*.

n=1
Since

kk+1)...(@a+k-1) Tk+a)
al  allk)’

di(p”) =

we have
£4(s)

F1(s) = {(5), Fa(s) = [25)’

2 K2 Pk + 1)?
Fi(s) = (S)U(l—p_“)k (1+k2p_“+—( : ) p_2S+...)

2 K2k — 1%
-Fol (-5 o0
p

The Dirichlet series defined by the last product converges absolutely
forRes > 4 + eand any fixed € > 0 (the O -term vanishes for k = 2), so
that the last formula provides analytic continuation of Fy(s) to Res >
I+e

Further we introduce the function

(o8] [ee)

1
P(s) = fv(X)x_de =<1 fv’(x)xl_sdx <4 |Ims|™
0

0

for any fixed A > 0 if Re s lies in any fixed strip, the last bound be-
ing obtained by successive integrations by parts. P(s) is regular in
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the complex plane, and has only a simple pole at s = 1 with residue
1 (: f f (x)xs‘ldx) is the Mellin transform of f, then f is regular (since
0

the support of f does not contain zero). By the Mellin inversion formula
| c+ioo
fx) = — f f()x%ds (¢ >0).
2ri

In (£.60) we make the substitution ¢ = 2x(nu)*/*, dt = HZn?/ky?/k=1,
Then for ¢ > 1

Su(T) = 47" > @ "D Re { f 1 () v(u)ufldu} (4.62)
n=1 0

c+ico 0o

WA Re{ — f f (9 (2t xzfx-lvu)dxds}

c—ico 0

3 4 1 HiwA_ I ) > —(1+2(s=1)
= Re{?% f f()(2nm) (f(; v(x)xz/k(] ) ldx) [; d%(n)n (147 )]ds}

c+ioo
:Re[%-i ff(s)@ﬂ)lSFk(1+%(s—1))P(l+%(s—l))ds’,

where the interchange of summation and integration is justified by ab-
solute convergence. We have

.
y ﬂ@:]}@m*mgxm (r=0,1,2,...),
sr
0
5T/2 5T/2
ﬂ@:j}uw*m«hff*M<T¢ (4.63)
T/2 T/2

Moreover, if r > 1 is an integer and Re s lies in a fixed strip, then 192
integration by parts and (4.60) give

=D’

TS+ D). s+

f(s) 5 ff(’)(x)x”’_ldx < |Im [Ty T
.
0
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In the last integral in (4.62)) we move the line of integration to Re s =
eifk=1,andtoRes = % + € if kK > 2. We encounter the pole of the

integrand of order k> + 1 at s = 1. By the residue theorem we have
2 7 1-s 2 2 (+E
Si(T) = z Re Rglsf(s)(2n) Fr(l+ %(s -D|P(1+ %(s -1t + O(T™"¢)

withy; = Ofor k = 1 and i, = %forZ < k < 4. Here we used
the properties of Fi(s), @.63) and P(s) <4 |Ims|™. To evaluate the
residue at s = 1, we shall use the following power series expansions
near s = 1:

(271')1_5 =1 +Cll(S— 1)+a2(s_ 1)2 + (Cl/ — M)’

J!
Fi(s) = d_kz(k)z +eet d-1(0) +do(k) +di(k)(s—1) + -,
(s =Dk s—1
fls)=> ejts =1, (4.64)
j=0

0 2T
cj= % FfO) = % f f(x)log’ xdx = %[ f log’ xdx + O(Ty log’ T)}
0 T
2T
+ O(T, log’ T,
T

1 L3 - .
= ﬁ[noguﬂ;(—l)lm—1)...(,—€+1)1ogf "t]
1 :
P(e)= — + D his =1,
=0

193 with hpj(v) = 0for j=0,1,2,.... The last assertion follows because

(o)

fv’(x) log/*! xdx,

0

(_1)j+1
G+ D!

hj(v) =

and using v(x) + v ()lc) = 1 we have v/ (x) — x~2V/ (%) = 0, which gives

00 1 o

fV'(X)logzn_Ide=fv'(x)logzn_lxdx-i—fv’(x)logz"‘lxdx

0 0 1
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1 1
1
:fv'(x)logzn_lxdx—fv’(—)x_zlogzn_lxdx=0
x
0 0

forn=1,2,.... Near s = 1 we thus have the expansion
2, s 2 2
S Fk(l + 0 1))P(1+ (s 1))

2(1+a1(s—1)+a2(¥—1) +)(co+er(s =1+ eals = 1) +--)

2\
(2 + hl(v)(s 1)+( )h3(v)(s—l) + - ]

k

kz(k) . d_ (k)
1)k2

2
Is—1) +do(k)+d1(k)z(s_ 1)+._,]
k

{cot(c1 + coay)(s — 1) + (co + cray + coaz)(s — 1) + -

+(cra + ce—jay + -+ + coarp) (s — 1)k +}

d_j2(k) d_ge-1)(k) =
5 \&2 —t S\ 1 ot
() -vF (7)) G-1F e

with suitable coeflicients e; = e;(k, v) depending on k and the function
v. The residue in the formula for S(7) is the coefficient of (s — 1)~!
in the above power series expansion. It will be a linear combination of
the ¢;’s with j running from O to k. The e ;’s (which depend on v) will
appear in the expression for the residue as the coefficients of the ¢;’s for
j < k*=2. In view of (4.64) we obtain then the main in @.61)). If Q;2(y)
in (@.61) is written as 194

ej(s— 1)/

k2
2
0e() = > Ay,
Jj=0
then the above power series expansion enables us to calculate explicitly
Ap(k) and A (k). We have
k2

2\ k )
M®=W%a ¢mmquG)g%u4ﬁhm
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k K2 )
_ 212 : —k? 2 -5
—wn(ﬁsg%@o ;@mm]

el -3 S )

Note that Ag(k) is the coefficient of (log T)k2 in the asymptotic for-
mula for )] d,f(n)n‘l. I conjecture that for k = 3,4
n<(T/2m)2*

Ii(T) = 2S(T) + O (T log" 2 T) (4.65)

holds, and (@.63)) is in fact true for k = 1, 2 (when, of course, much more
is known). Hence the expression for Ag(k) leads to the conjectural value
#12) for c(k), namely

T
C(k) = Jim (Tlog"2 T)_l f 12(1/2 + in)Prdt
0
(R W (& Tk + 2\
_2(5) F(k2+1)l:[{(1_1_?) (;( JIT(k) )pl '

Other coefficients A ;(k) can be also calculated, although the calcu-
lations turn out to be quite tedious as j increases. 1 shall only evaluate

2T
here A (k) explicitly. It is the coefficient of tlogkz‘1 t| in
T
k K k-1
(E) (Ckz + Ck2_1a]) d_kz(k) + (5) Ck2_1d_(k2_1)(k)~
195 Thus in view of we obtain

(R logm K
mw‘G)GWMWW—mV“®+6) @—pwn®
(4.66)
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K\ 1 k
= (5) . (kZ — 1)' {—Ed_kz(k)(l + log(27r)) + d_(kz_l)(k)} .

Fork =2

4
d_4(2) = lirlno(s - 1)4{—“) L 3.

{2 L2 a?
Thus

T
. _ . 1 1
c(2):TILr)I§O(T10g4 T) 1f|§(1/2+zt)|4dt:2-4—!-67r 2= 33
0

Further, near s = 1,

_ o) _ 4
= £(25) _(s—l FyEnls- 1)+”')
1202
= GRS D
(4(2> O )
=d4@)(s—- D) +d a3 (s— D7+
with A )
Y
d32) = — - -
@ (2 Q2

Hence for k = 2 yields

_(+logQm) 4y - 124'(2)7#)
£(2) 4(2)

=72 (4y - 1 - log(2m) - 12/ 2)n™?),

1
A1(2)=5(

which coincides with #.4)), since for a3 given by (.3) we have a3 =
2A1(2).

To find a more explicit form of the expression for A;(k), as given by
#.66), we proceed as follows. Write

Fi(s) = 5 (5)Gi(s)  Res > 1),
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where
o 2\2
3 e Lk+ D\ s 1
Gi(s) = l_l{(l—p ) (Z(W ) Res> ). (4.67)
p j=0
196 Near s = 1 we have the Laurent expansion

Fiu(s) = d_pp()(s = D)7 + d_gayy(k)(s — )7 ® D 4

1 K
:(—+y+y1(s—1)+---) (Ge() + Gy(D(s = D +---).

s—1
This yields
W[ F(k+j))2 »
d_i2(k) = Gi(1) = 1--— i,
() = Gi(1) ]:[{( p) [;(ﬂr(k) P

dia_ (k) = yK*Gi(1) + G(1).

Hence we obtain

K2 .
Theorem 4.4. If Q2(y) = > A j(k)ykz‘f is the polynomial in (A.61)), we
=0

obtain

k\©
Ao(k) = —) Gi(1),

il
Uk,

m (5) {(yk - E(l + 10g(27r))) Gi(1) + G,’c(l)} ,

where Gi(s) is given by ([d.67).

Note that the conjecture (.63) may be formulated more explicitly
as (k=3,4)

Aj(k) =

T
f (172 + in)P*dr = T (240(k) log" T + 24, (k) log" ™' T + O(log" 2 7).
0

A. Odlyzko has kindly calculated the values
24,(3) = 1.04502424 x 107>, 2A(4) = 1.34488711 x 10~'2.
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4.5 The Mean Square Formula

The mean square formula

T
L(T) = f|§(1/2 + it)lzdt = T(log 1 + 2y — 1) + E(T)
2w
0

and results concerning E(T) were discussed extensively in Chapter 2 197
and Chapter[3] In this section we shall show how bounds for E(T) may
be obtained from Theorem[4.3] which for k = 1 gives

(9

%Il,f(r) => %Re[ff(t)v(j—i)dt] +o(T"®) + o (TV>*13 ")
0

n=1

v 3 o o) o)
0

m,n=1;m#n
1-6<m/n<1+6

1/2
where x = (zi) / ,and 0 < 6 < % From (4.60) and (4.62) we have

T

T

NOESY %Re ( fo B f(t)v(%)dt) (4.68)

n=1

2Re {R_els F)2m)' =521 + 2(s — D)P( + 2(s — 1))} + O(T).

Near s = 1

27(9)2m)' (1 + 2(s — D)P(1L +2(s — 1))

=2(co+erls—D+ca(s= 1>+ )AL +ai(s = D+ax(s— 17+

+y+271(s—1)+---)( +2h1(s—1)+---).

|
% (2(s -1

The residue at s = 1 therefore equals

2(s—1)

1
5 (C90a1 +c) + 2760) .
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But

2T

+ 0(To),
T

a; = —log(2m),co =t

2T

= flogtdt+ O(TologT) = (tlogt —1)
T

Hence becomes

2T
+ O(TylogT).

T

21
+O(T)+ O(TologT). (4.69)
T

i
STy =3 (tlog i Ly - l)t)

198 In view of (@.61) it is seen that the above expression (with a suit-
able choice for T) will indeed furnish the main term in the asymptotic
formula for /;(T). Therefore it remains to estimate the double sum

o= Y (mn)_l/zf.o f(t)v(%)(%)itdt (4.70)
0

mn=1;m+#n
1-6<8<1+6

> ey aTim, ),
m,n=1;m#n
1-6<2<1+6

where both m, n take at take at most 2 \NT values, and

m .

J(T:m,n) = ff(z)v(%)(;)n dr. @71
0

Integrating by parts the integral in (@.71)) we obtain

J(T;m,n):—ff’(z)[fv(ml ﬂ)(f)ml dul]dt=...=
2r)\n
0 0
:(_I)Rff(R)(t){f fv(m—l \/E) m ml dul---duR]dt.
X X To 2r (n)
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We evaluate the R-fold integral by using f c'dt = c/(ilogc), af-

ter removing the v-function from the innermost integral by the second
m|—R
I

mean value theorem for integrals. Hence this integral is <z |log
Moreover, since f®(f) <z TR, we obtain uniformly in m and n

J(T;m,n) <g TT§| log ﬂ|_R.
n

To use this bound for J we write the sum in (&.70) ad

[ [Se]

)NOEID T

mn=1;m#n m,n=1;m#n
1-0<2 <146 m=n|>TV*eT51 1-6<2<1+6 m—n|<T/2*eT;!

- Zl +Zz’

say, where € > 0 is an arbitrarily small, but fixed number. We obtain

_ m _ _
Zl <z Z (mn)~" | log —| RT TR,
n
m,n<2 \/T;m:#n
1-6<2 <1+8;lm—n|>T /21!

Sincel—ds%sl+6and0<6<%,wehave

log m_ log(l + 2 —n) > Im = n > T2 er !
n n n

Therefore
"R, \~1/2. Rop—1/2R—€RR
D<r Do TT ey nfT T
m,n<2T!/2
<g TR Z n 1?2 « 732 R «q

m<2T1/2 n<T1/2

if we choose R = [3/(2¢€)] + 1. In other words, the smoothing function
f with its salient property that f®(r) < T®, has the effect of making
the contribution of }}; negligible What remains is the “shortened” sum

>3, which becomes, on writing m —n = r,

.= D) ”_1/2(’1"'V)_l/zj‘f(t)V(nj_r)(l+g)itdt.
0

O<[ri<T1/2%eTy!
r>2 VT ,—6n<r<én

217
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We suppose T€ < Ty < T'/?, since we do not wish the sum over r
to be empty. To estimate >, write

0 ' 2T-T, )
S [ R T o
| o

say, where in I, the intervals of integration are < Ty in length. In I} we
have f(¢#) = 1, and the v-function is removed by the second mean value
theorem for integrals. We use

fB (@)"’ gy = ' = /™
n
A

ilog(m/n)

and perform summation over n. Since m = n + r we encounter sums of
the type

-1
! (log(l + f)) exp (iT log(l + f)) 4.72)
n n
n<2T1/2
with 7 < T. If (y, A) is an exponent pair, then for N < T'!/?
Tr\Y
Z exp (iT log(l + f)) < (_r) N4, (4.73)
n N?
N<n<N'<2N
and since log (1 + fl) ~ + it follows by partial summation that the sum
in @72) is
<PV - 2x) = PITVA

Summation over r shows then that the contribution of I; is

< > TP < e o4 T

L<r<T1/24eTy !

The contribution of I, is obtained not by integration, but by esti-
mation, first over n using again (4.73)), then over r under the integral
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sign. Trivial estimation of the integral as O(T) times the maximum of
the sums shows that this contribution will be <« T¢*1/20+07T" iyst ag
in the previous case. Combining the preceding estimates we have, for
T¢ < Ty < T2,

E(T) < T¢(To + TV?Tg" + T4V,

We choose now Ty = TWHV/Cx+2) Since 1/4 < (x + 1)/2x +2) <
1/2 for any (x, ), we have T'/* < Ty < T'/? and therefore
x+ A4
E(T) < m + €. (474)
This is the same upper bound that was obtained in Section 2.7] from
Atkinson’s formula for E(T) by an averaging process. However, we
already remarked that it seems difficult to obtain an explicit formula

(such as Atkinson’s) for E(T) from Theorem 4.3l

There is yet another approach to the estimation of E(7"), which gives
essentially the same bound as (#.74)). It involves the use of an explicit
formula for E(T), due to R. Balasubramanian [6]. He integrated the
classical Riemann-Siegel formula and obtained

sin(T log 7) sin(26 — T log mn) 5
E(T)=2 “ O(log=T 4.75
(7) Z Z {(mn)l/Z log 2 + (mn)1 220’ — log mn)} +0(og™T), (4.75)

n<K m<K,m#n

1/2
where K = K(T) = (%) / ,0=0(T) = %log % - % — 3. As already

seen in Chapter 2l from the definition of E(T) it follows that
E(T)<E(T +u)+ CulogT (C;>0,0<5u<T).
Set u = t + GL, multiply by exp(—>*G~2) and integrate over ¢ from
—GL to GL, where L = log T. We obtain
GL GL
f E(T)e 1% gt < f E(T +t+GLye 9 dr + CG2L2,
-GL -GL
whence for 1 < G < T'/? and a suitable C > 0
GL
E(T) < ( \/%G)_1 f E(T +1+GL)e 9 qr + CGL?,  (4.76)

-GL

201
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and similarly

GL
E(T) > (ﬁG)_1 f E(T +t-GLe “9qr—CGL2. (477
-GL

If E(T) > 0 we use (.76), otherwise (. 77), and since the analysis
is similar in both cases we may concentrate on (4.76). The parameter G
may be restricted to the range T'/* < G < T'/3 since E(T) = Q(T'%)
and E(T) = O(T'3). We insert in the integral in (4.76), with T
replaced by T + ¢ + GL. The first step is to replace K(T + ¢t + GL) by
K(T). In doing this we make an error which is 0(GL). Then we integrate

Balasubramanian’s formula by using

(o9

2
fe—sz sin(Ax + C)dx = 4| %e% sinC  (ReB > 0). (4.78)

—00

Wesett =T + GL and use

sin(20(t + t) — (7 + t) logmn)

— 7+ tlog —7—T)+0(G2L2T‘1),

T
2nmn 4
-1 T -2
) +0(GL(log ) )
2mmn

which follows by Taylor’s formula after some simplifying. The total
contribution of the error terms will be again O(GL). Thus using @.78)
we obtain, for T4 <G < T3, t=T +GL,L = logT,

E(T) < CGLI? +2 Z Z

\/_ < \/;m#n

n<
sin (Jlog —1) 16 2 sm (Jlog W -J- Z)e I @79
vmn log m log S

The bound for E(T) given by (4.79) allows an easy application of
exponent pairs (and also of two-dimensional techniques for the estima-
tion of exponential sums). The sum over n can be split into O(log T")

. T
= sin (T log Y~

20/ — log mn)~! (1og
2mmn
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subsums in which K; < n < 2K (< T'/?), and then we may suppose
1/2K; < m < 1/2(5Ky), for otherwise the exponential factors are very
small. By this and by symmetry we may setm =n+r,1 <r < 1/2Kj,
the contribution of r for which » > K;G~! L being negligible by the rapid
decay of the exponential function (the contribution of K; < 2GL™! is
also negligible). Thus by using partial summation we get

E(T) < GL? + L max Z r max
K\ <T/? Ki<K|<K"<2K;
r<KiG'L

2 [ Tr) g

< GI*+ L max Z = |k
1/2

K< koL K

> exp (iTlog(l + %))

Kj<n<K}

on estimating the first sine terms in (4.79)), and the other sine terms will 203
give at the end the same upper bound. Thus

E(T) < GL* + L max T K} ™*(K\,G'L)*

K\ <T1/?

< L? (G + T”z(x”)G_x).
Taking G = T*+V/(2¥+2) ye obtain
E(T) < TT0 10g? T. (4.80)

This is the same as (@.74), only T€ is now replaced by the sharper
log? T. The reason for this is the use of the specific smoothing factor
exp(—t>?G~?), which decays very fast, and by [#.78) enables one to eval-
uate explicitly the integrals in question. The had work is, in this case,
contained in Balasubramanian’s formula for E(T). In the previous
approach, which was the evaluation of I{(T) via I ;(T), the smoothing
factor f(-) was built in from the very beginning of proof. This was use-
ful, since it saved some hard work, but as pointed out before, it resulted
in the fact that the could not get an explicit formula for E(T) itself, but
just an upper bound.
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4.6 The Fourth Power Moment

In Chapter 5] we shall study extensively the asymptotic evaluation of

T
L(T) = f 1£(1/2 + in)*dt
0

by the powerful methods developed by Y. Motohashi. In this section
we wish to investigate I>(T) by using Theorem and indicate how
the bounds E»(T) = O(T7/3+€) and E»(T) = O(T*3+¢), due to Hewth-
Brown and Zavorotnyi, respectively, may be derived. So far we have
pushed Zavorotnyi’s method to the extent of establishing Theorem (4.3]
for k < 4, and not only for k < 2, as was done by Zavorotnyi. Now
we shall use first Heath-Brown’s approach in conjunction with Theorem
4.3 and then we shall briefly sketch the salient points of Zavorotnyi’s
method. In view of we need only to evaluate the sum

o

ST =ST:6.f):= Y. dmd(n)mn)" > Re { fT f(t)v(ﬁ)(%)itdt}.
0

m,n=1;m#n
1-6<m/n<1+6

This sum is split into three subsums, according to the conditions:

Om>nm/n<1+o6,i)m<nn/m<1+6,i)]1+6<n/m<
ﬁ, and the subsums are denoted by S ;(T), S;;(T), S ii(T), respectively.
Integrating by parts, as in the proof of Theorem and using f'(f) <
T_1, we obtain

Si(T) < T'eTy .

InS;(T)wesetm =n+r,and in S ;;(T)n = m + r. Changing then m
into n in S ;(T') we obtain, for 0 < 6 < 1/2,

S(T)=0(T"15") + i D dmydn+ )+ )~

n=1 1<r<én

ff(t) (V(m) + v(ﬁ)) cos (tlog(l + 2))611‘.
0
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Note that n < bT in the range of summation of n in view of the
properties of v(x). By @.37) we see that the terms for which n < T

contribute Jond
< Z Z () (n+r) '« T¢Ty.

r
n<Ty r<on

Now choose 0 < ¢ < 1/2 fixed, € > 0 arbitrarily small but fixed, and
T, = T (e, 0) so large that T‘TO‘1 <é6forT >T;. Forr > TETaln we
have log (1 + ﬁ) < T°Ty ! Thus integrating sufficiently many times by
parts it is seen that the contribution of the terms for which r > TT; n
to S(T) is negligible. We have

S(T) = OTTo) + OT*TgH + > (4.81)

nzTo rSTET(;lﬂ

din)d(n+r) fw t ( t ) ( ( ))
—_ t I tlog(1 dr.
w2 ) POV zrma ) TV G cos\tlee(L+
0
Next, for v(-) in the above sum we have, by Taylor’s formula,
t (t) tr ,(t)+0t2r2
Viz——|=V|s— | ==V |7— —.
2n(n +71) 2nn)  2an? \2an n*
The contribution of the O-term to S (7T') is trivially

- Z Z dmyd(n+r) T3¢

(nn+rH2  nt

n=Toy rSTfT(;ln

< T3+€ Z —5T3€T << T3+4€T—

n>Ty
Therefore (@.81) becomes
dn)d(n +r)
S(T)=2 Z Z o) (4.82)

n2To r<TeTy'n

fmf(l)V(?tn)cos(tlog(l + ’g))dt— Z 27t1n2 Z
0

n=To r<TeTy'n

205
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rd(n)d(n +r)
i + r))1/2 ff( 2% cos (tlog (1 + n))dt

+0(r'*erg! ) +O(TTp) + O (T3+4ET0—4).

The contribution of the second double sum in @.82)) is, on applying

Lemma2.1]
_ r n _
<T¢ Y ot Y = Te- < T
To<n<bT r<TeTy'n n r
206 Write now

1
(n+r) V2 =nt2 - Ern_3/2 + O(rzn_5/2).

The contribution of the terms —r/(2n%/?) to S (T') will be
0 (T1+3ET0—1)
by Lemma 2.1l The O-term will contribute

< T¢€ Z n‘] Z Trzn—s/z « TlHe Z n_7/2T35T0_3n3

To<n<bT rSTfT(;ln To<n<bT
< T3/2+4eT0—3'
Therefore

S(T) = OT*(TTy" + Ty + T°T5* + T3°757)) (4.83)

w2 3N dmpden+ n! f f(t)v cos(tlog(1+ ))dt

To<n<bT r<Te Ty n

We may further simplify (4.83) by using

t t t 2t
cos(tlog(1+£)):cos( r)+_r s'n( r)+0
n n 2n? nt
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The contribution of the error term is

< DTt Y T < TR

To<n<bhT r<TeTy'n
The contribution of the sine terms will be, by Lemma[2.1]
0(T2+46T0—2)‘
Hence we have
S(T)= Y (1) + O{T* (To + TTy' + T*T52 + T°T* + T4T5°)}, - (4.84)
where

Say=2 Y Mff(t)v(ﬁ)cos(%)dt. (4.85)
0

To<n<bT y<Te T61

Writing A, = max(To, ¥ToT ™€), we may change the order of sum-
mation in ) (7") and obtain

San=2 Y N WIf(t)v(ﬁ)cos(%)dt. (4.86)
0

y<bT1+e T51 A, <n<bT

It would be good if the above sum could be evaluated as a double
(exponential) sum with divisor coeflicients. This, unfortunately, does
not seem possible at the moment. One can, however, perform summa-
tion over n and then over . Some loss is bound to occur in this approach,
used both by Heath-Brown and Zavorotnyi. The former shows that

Z din)yd(n+r) =m(x,r)+ E(x,r),

n<x
where for some absolute constants ¢;;

2

m(x,r) = Z ci(rx(log x)i, ci(r) = Cij Cij Z d_l(log d)j,

2 2
i=0 j=0 =0 dr

207
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and uniformly for 1 < r < x°/6

E(x,r) < x/6%€, (4.87)

while uniformly for 1 < r < X?/4

2X
f E*(x,r)dx < X°/**€, (4.88)
X
The estimates (4.87) and (.88)) are of independent interest. They are
obtained by techniques from analytic number theory and T. Estermann’s

estimate [35]]
IS (u, v; @)l < d(g)q"*(u, v, q)""* (4.89)

for the Kloosterman sum (e(y) = exp(2niy))

S, vig) = D e (”” b V”’). (4.90)

n<q,(n,g)=1,nn’=1 (mod q) q

In we write the sum as

F(T,r): = Z d(n)d(n + Ph(n, r),

A,<n<bT

h(x,r) : = % ff(t)v(%)cos (%)dt.
0

Hence
bT
F(T,r) = fh(x, rd{m(x,r) + E(x,r}
Ay
bT bT

bT

= f m'(x, r)h(x, r)dx + E(x,nh(x,r)| - f K (x,r)E(x, r)dx.
4,

r r

208 By Lemma 2.1l we have h(x,r) = O(1/r) uniformly in r. Thus the
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total contribution of the integrated terms to S(T) is < T°/6*€, the con-
dition r < T°/¢ being trivial if we suppose that Ty > T/, Next

dh(x o__ .- f f(t)y cos( )dt

—x_3ff(t)—v 2m)cos( dt+x ff(t)trv x)sm(t—r)dt

X

< (r0) '+ Tr(rxz)—l < Tx%.

Using [@.88) (the condition < T3/% holds again for Ty > T'/?) we
obtain, for A, <Y < bT,

2y 2y 172 oy 172
fh’(x, NEx,nNdx < T fx_4dx sz(x, r)dx
Y Y Y

< TY32yd/a+e « Ty /4,

Hence

l+e 4—1/4
> f W(unEGndx <y T4
1<r<bT1+eT! L<r<bT+eTy!
< Z T1+ET0—1/4 + Z T1+€T(;l/4l"_l/4
r<Te Te<r<bT'*T,!

< T1+26T61/4 + T7/4+ET0—1

It is the contribution of the last term above which is large, and sets
the limit of Heath-Brown’s method to E»(T) <« T7/3€, on choosing
Ty = T7/®. With this choice of T we have

bT

Z(T)=2 Z f m'(x, )h(x, r)dx + O (T73+¢),

L1<r<bT'*eTy! 4
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with 209
m’(x,r) = (co(r) + c1(r) + (c1(r) + 2¢2(r)) log x + c2(r) log2 X
= do(r) + dy(r) log x + da(r) log? x,

say. Thus

Z(T) = ZZ Z dj(r) fh(x r)log/ xdx + O (T7/#*).

1<r le“T 1

By the second mean value theorem for integrals it is seen that A(x, r)
equals at most four expressions of the form

1 T 5T
— sin(‘rlrx_l)v(rz/(2ﬂx)) — <71, < —
r 2 2

each multiplied by a factor containing the f-function. Hence by Lemma

21

Ay
fh(x, r) logjxdx < Tf‘lr‘2A3 < T2E_1T§,
0
and so
A
Z d.,'(r)fh(x, r) IOgjxdx < Tzf_ngT“fTal = 73T,

1<r<bT'+eT!

Thus

Z(T) = 22 Z di(r) f h(x,r)log/ x dx + O(T7/8+¢),

770 1<r<bT 1T, !

Now write
2T T 2T+T)
h(x,r):%f (2 )COS dt+—Lf f ]f(t)v cos( )dt
T 1,
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in case f(f) = ]_”(t), and the case when f(t) = ]_C(t) is analogous. The
contribution of the last two integrals is estimated in a similar way. By
using Lemma 2.1l we have

bT T

d (r)f f f(’)v x cos( r)dtdx
r<bT1+eT 1 T,
) ,Sb;T_l v fTiTo 7o (fobT y (ﬁtx) ¥ cos (t}r) dx) dt

< To Z dj(l”)l"_lT(),

erT”ETO’1

2T+T0
which is negligible. The same bound holds for f . Hence combining 210

2T
this estimate with @.84)-#.86) we infer that, for To = T"/8,

S(T) = O(T<Ty) + 22 Z 4.91)
bT1+eT 1
bT 2T

dj(r)ffx_]v(?tx)cos(%)logjxdtdx.
0 T

We have
2T T 2T
t tr by t .. (tr by 1,7t r
fv(—)cos(—)dt: —v(—)sm(—) ——f—v (—)s (—)dt
2nx X r \2mx x|y r 2rx \2mx X
T T
Hence
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2T T

__Z Z di(ryr- ff s1n tr ' 27trx)

1<r bTI+eT—

log’ xdxdt + O(T€Ty).
Note that v(y), v'(y) = 0 for y < 1/b, and also v'(y) = 0 for y > b.

bT bt/2n bt/2m
Hence f becomes f in the first sum above and f in the second
0 0 t/2nh

sum. We make the change of variable ¢/(27x) = y to obtain

S(T) = 22 Z di(rr! { f sm(27ryr)v(y)—log ( Z:Ty) & ]

1<r bTHET ! 1/b

) o7
_}rz Z dj(r)r"lf

J=0 r<briery! T

b

f Y (y) sin(myr) log? (L) @] di + O(T<Ty).
2ry) y

1/b

211 It remains to write

t
log — = logt — log(2ny),
2y
t
log22— = log2 t —2logtlog(2ny) + log2(27ry),
y

observe that the integral

o0

; d
f sinryr)v(y) log/ (27y) 3
1/b Y
converges and that, by lemma [2.1] it is uniformly O(1/r). Similar anal-
b
ysis holds for f . This means that in the expression for S (7)) we can
1/b

extend summation over r to co, making an error which is O(T'*¢T ).
In the second integral we can integrate log’ ¢ from T to 27. This finally
gives

2T

S(T) = (Cotlogt + Cytlogt + Cat) |+ O(T"/3+), (4.92)
T
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where each C; is a linear combination of integrals of the type

(9
(9]

g
> e (! f sinryr)v(y) log/ 2myn) 2|
= y
r=1 1/b

o b
> ! f sinQryr)y’ (2zyr)v' (y) 1ogf'(2ny)dy—y,
r=1 1/b

with suitable e;(r), f;(r). When combined with @.61) (k = 2), 4.92)
proves Heath-Brown’s result

Eo(T) < T7/8%. (4.93)

The only problem which remains is the technical one, namely to
2T

show that (tH,,,(log t))’ from @.61)) cancels with all terms containing
the v-function in MI).TThiS can be achieved in two ways: first by fol-
lowing Zavorotnyi [167]], who actually shows that this must be the case,
,e. that the terms with the v-function actually cancel each other. This
fact is a difficult part of Zavorotnyi’s proof of (&.6). Equally difficult, but
feasible, is to show this fact directly. We can identify the coefficients a;
in @.3) in the final formula for I>(7T') by going through Heath-Brown’s

proof. Essentially these will come from f if integration is from 1 to oo,
1/b
and no v-function is present. But v(y) = 1 for y > b and in the integral

from 1 to b write v(y) = 1+(v(y)—1) and show that v(y)—1 = —v(1/y) can
be cancelled with the corresponding part from 1/b to b. The integrals

b
. , ; dy
sinQ2ryr)v' (y) log! 2ry)—
1/b Y
will be the “true” integrals containing the v-function. It can be, how-
ever, shown that the coefficients of H,, in will contain exactly

the coeflicients representable by these integrals. This requires a lot of
additional (technical) work, and will not be carried out explicitly here,
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since Zavorotnyi’s work already established that eventually all the terms
containing the v-function cancel each other. Naturally, Heath-Brown’s
proof of is in several ways technically simpler than the above one,
since it does not use the v-function but smoothing with the exponential
factor exp(—t>G~2), which is easier to handle.

N. Zavorotnyi’s improvement of (£.93), namely (4.6)), is based on
the convolution formula of N.V. Kuznetsov [106]. This gives an explicit
representation of

Wi (s, ys wo, wi) = N1 " () (4.94)

n=1

e )
where

Taln) = D d T m) = m 72 oy oy (m), 01 ,(0) = £2s = 1),
din

wg, wy are sufficiently smooth functions with rapid decay. Crudely
speaking, Heath-Brown used (4.89) as the pointwise estimate of the ab-
solute value of the Kloosterman sum, whereas Kuznetsov’s formula for
(@.94)) involves an average of Kloosterman sums, where a much larger
cancellation of terms occurs, and at the end the sharp result (.6)) is ob-
tained. That massive cancellation occurs in sums of Kloosterman sums
may be seen from N.V. Kuznetsov’s bound

D S meye < TVo(ogT)'3. (4.95)
c<T

Actually in application to the fourth moment Kuznetsov’s formula
@94 is used with wo(x) = 0, wi(x) = wy(x) € C*®(0,0) and with
s,v — 1/2. This is written as

Wy (% %; 0, WN) .= N"1/2 Z d(n)d(n + Nywy ( \/%)
n=1

11 11
_safl 1 @ (L1
=7 (2,2,h0)+Z_N(2,2,h0 hl)

N
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+Z¢ (% %;ho - hl) +Z{ (% %; h*) +Gy.
The Zy’s are explicit, but complicated expressions, involving the
Hecke series and spectral values of the corresponding Laplacian. These
functions will contribute to the error term (in the application to (7)),
N < T'73 with the choice Ty = T?/3). The main term will arise, after a
long and complicated calculation, from

Gy = lim, {En(sVN(L/2,9) + In(s, 1 = W)V(1/2,1 =)
v—1/2

+ In(1 = 5. V(s v) + I = 5,1 = V)V (s, 1= v)]

where
_L(2s5)(2v)
gN(& V) = {(ZS i 2V) TS+V(N)a
Vn(s,v) = f (1 + )" wy(0)x¥dx.
0

The complete details of the proof are given by N. Zavorotnyi [[167],
and will not be reproduced here. Another reason for not giving the de-
tails of proof is that in Chapter [3] spectral theory will be extensively
used in presenting Motohashi’s formula for the fourth moment (Theo-
rem[3.)), which is more powerful than Heath-Brown’s or Zavorotnyi’s.

Also in Section[3.3 more details on spectral theory and hecke series
may be found.

4.7 The Sixth Power Moment

We shall conclude this chapter by giving a discussion of I3(T"), based
on Theorem 4.3 and (4.61)). This problem is considerably more difficult
than the problem of evaluation of I;(T) or I,(T), and it does not seen
possible at this moment to prove by any existing method even the weak
upper bound I3(T) < T'*¢, much less an asymptotic formula for I3(T).
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As in the case of I,(T) we define similarly (see (4.39) with k = 3)

r 3/2 mit
S(T) = d3(m)ds(n)(mn)~'* Re f f(t)V( L m-') —) ar
1:'::%;51% 0 (Zﬂ) ( " )

Si(T) +8u(T) + S u(T),

say. Wehave 0 < 6 < 1/2,in Si(T)m > n,m/n < 1 + 6, in S;;(T) we
havem <n,n/m <1+6,andin S;;;(T) 1 +6 <m < 1/(1 = 6). The
property that v(y) = 0 for y < 1/b gives the condition m,n < bT3/? in
S(T), since 1 —=¢ < & < 1+ 6. We integrate S;;(T) by parts and use
<7y ! to obtain

Sa(T) < Y dsm)dsm)(mn)*Tg" < T32T5 " log* T.
m,n<bT3/?

In S;(T)wesetm =n+r,and in S ;(T)n = m + r. Changing m into
nin S ;(T) we obtain

S(T) = O(T*PT5 log )+ > )" dsmyds(n + ryn™ P(n + )72

n=1 r<én

P 32 32
f [0 {v((t [27) ) + v((t/ 2m) )} cos(rlog(1 + L))dr.
n+r n n
0

As in the case of Ir(T), the terms for which n < Ty by Lemma 2.1]
make a contribution which is

ds(n)ds(n+r)n .
<<sz;<<TTO.

n<Ty r<oén

Now choose a fixed ¢ such that 0 < ¢ < %, € > 0 arbitrarily small
but fixed, and T} = T,(9, €) so large that TETO‘ l'<§forT > T,. For
r> TETo‘ln and n > Ty we have log(1+r/n) > TETO‘I. Thus integrating
R times by parts we have

ds;(n)ds(n + r)n_l/z(n + r)_l/2

To<n<bT?3/2 T<Ty Yn<r<én



4.7. The Sixth Power Moment 235

[Se]

ff(t) {v(%) + v(@)} cos (tlog(l + 2))dr
0
= 3 55 ()

n
To<n<bT3/2 TfT(;1 n<r<én

< T'*€ Z %T(;R Z AR R

To<n<bT3/? T<Ty'n<r<én
< T1+ETO—R Z nR—l(TeTo—l)l—R < T1+e+e(l—R)T61T3/2
n<bT3/?

<1
if R = [5/(2¢€) + 1], say. We thus have
S(T) = O(T<Ty) + O(T>/**T;1) (4.96)

+ Z Z ds(n)d;(n + r)n_l/z(n + 1’)_1/2
To<n<bT3?2 r<TeT;'n

P 32 3/2
ff(t) {v ( (t/nz?r ) +v ((t/2::) )} cos (t log (1 + 2)) dt.
0

Now we use

(t/2m)31? (t/2m)31% t 32, ((t)2n)? £r?
% =v - (—) =V |————|+0|—
n+r n 2n)  n? n n*

and Lemma 2.] to find that the total error terms coming from the O-

term and v’ are < T4*4€T;* and T%/**2¢T !, respectively. Hence for
T2 < Ty < T'¢ [@.96) becomes

S(T) = O(TTo) + O (TV**15") + O (T* 1) (4.97)

2 > > dmds+ T Py
To<n<bT3?2 r<T<T;'x

ff(t)v (@)cos (tlog(l + 2)) dt.
0
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The last sum can be further simplified if we use 216
1
(n+ r)_l/2 =n 12— 3?4 O(rzn_s/z).
2
The contribution of the terms —%rrﬁ/2 to S(7T') will be, by using
Lemmal2.1]
<T€ Z n? Z rr~t < TIPS

To<n<bT3/? r<TeTy'n

The O-term will contribute
<« T¢ Z n! Z Tr*n™>/?

To<n<bT3/2 r<TeTy'n
< T1+E Z n—1/2T3ETO—3 < T7/4+4ET63 < T3/2+4ET0—1
To<n<bT3/?

if Ty > T'/2. We further simplify @#.97) by using

r try ot 2
cos (tlog(l + —)) = cos (—) + — sm(—) +0|—|.
n n)  2n? n 4

The contribution of the last error term is < 7%/2*%¢T; and the
sine term contributes < 7/ 2+3ET0_ 2 if we again use Lemma 2.1l For
T2 < Ty < T'~€ we have

9/2-5 yp—}
TPTy° < T*T;Y,
and we obtain
S(T) = Z(T) + 015 (To + T**T5" + T1PT52 + T'T %)}

where we set

Z(T):Z Z Z dy(n)ds(n + ryn”!

To<n<bT3/2 y<T<Ty'n

ff(t)v(@)cos (tlog(l + 2))dl‘.
0

217 Therefore if we collect all previous estimates we obtain
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Theorem 4.5. For T'/? < Ty < T'~€ there exist polynomials Qo(y) and
H; ,(y) of degree nine and seven, respectively, such that the coefficients
of H3,, depend on the smoothing function v(-), while those of Qg do not,
and

2T 2T

L f(T) = (tQo(logt)) |  + (tH3,(log1))

T T
+0{T%(To + T*T5" + T°7T57 + T*15 %))

4y > dsdsn+rn!

To<n<bT32 1<r<T<Ty'n

P 32
x f f(t)v(w)cos (%) ar. (4.98)
n
0

n

Obviously, the best error term one can get here is O(T>/+€) with the
choice Ty = T°/6. But the main difficulty lies in the evaluation of the
double sum in (4.98)). I expect the double sum in question to equal

2T

(tR3,(log 1) + 15 3(log 1))
T

plus an error term, where R3,(y) is a polynomial of degree seven in y
whose coeflicients depend on v, and actually equals —H3,(y). The co-
efficients of the polynomial S3(log ), of degree < 7 in log ¢, should not
depend on v. It is hard to imagine that one could take advantage of the
fact that the sum in (4.98)) is a double sum, when the same situation was
difficult to exploit in the simpler case of I5(7"). One thing seems clear:
there is hope of getting I3(T) < T'*¢ (weak form of the sixth moment)
by this method only if one can take advantage in (.98)) of special prop-
erties of the function ds(-). Specifically, one should try to establish an
asymptotic formula for the summatory function of ds3(n)ds(n + r), where

n < T32, r < T'*€. Trivial estimation of f ..dt in (4.98)) by Lemma
0

2.1l produces only the trivial bound

L(T) < T3/%*€,
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It should be of interest even to reprove
L(T) < T4,

which is (up to “€”) the best currently known upper bound for I3(7).
Finally, it was pointed out by Y. Motohashi that the key to solving the
sixth power moment problem lies probably in the use of spectral theory
of SL(3,Z). Motohashi was led to this assertion by analogy with the
study of I,(T'). His powerful method will be fully explained in Chapter
Bl In any case, the formula (4.98) may serve as the basis for an attack on
the sixth moment. The double sum appearing in it has the merit that the
sum over  is “short”, in the sense that the range is < T°/2*¢T !, while
is the range for n is < 73/2, and heuristically some saving should result
from this situation.



4.7. The Sixth Power Moment 239

Notes For Chapter 4

A proof of A.E. Ingham’s classical result (£.2), given in his work
[74]], is given in Chapter [3] of Ivi¢ [[75]. The latter proof is based on the
ideas of K. Ramachandra [136]] and the use of the mean value theorem

’ [ee)
The asymptotic formula of H. Kober [101]] for fe“s’ |§(% + it)|2 dt
0

is proved in Chapter 7 of Titchmarsh [[155]].
F.V. Atkinson proved, as 6 — O+,

fe‘& ((% + it)
0

4

1 1 1 1 1
dt = = (Alog4 — + Blog® 5 + Clog® 5+ Dloglog +E)

o
1)1 /14+e
+0 (((_5) ] (4.99)
with suitable constants a, B, C, D, E. In particular, he obtained
1 1 247 (2)
A= 2—7[2, B = —7? (210g(2ﬂ')—6’y+ 7'(2 )

His proof uses T. Estermann’s formula [34]] for the sum

S(x,r) = )" dmyd(n + r);

n<x

see Section .6 for Heath-Brown’s results (4.87) and (.88)), proved in
his paper [61]. Observe that A = a4 in (4.4), but B # a3. Atkinson
remarked that improved estimates for S (x, r), already available in his
time, would improve the exponent in the error term in (#.99) to 8/9 + ¢,
and further improvements would result from the best known estimates
for S(x,r) (see Th. A.1] of N.V. Kuznetsov [106]]). Thus, through the
use of Estermann’s formula for S(x,r), Kloosterman sums appear in
the asymptotic formula for the integral in @.99). In [34] Estermann
acknowledges the influence of E. Hecke in the approach to treat S (x, r)
by considering Dirichlet series of d(n)e (%n) Clearly one can see the
genesis of “Kloostermania” here.
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The work of N.I. Zavorotnyi [167] in which he proves exists in
the form of a preprint, and to the best of my knowledge it has not been
published in a periodical.

For N.V. Kuznetsov’s convolution formula and related results in-
volving the use of spectral theory of automorphic functions see his pa-
pers [103] - [107]]. In [LO7] he claims to have proved

T
|

f lg (E + lt)

0
but although his paper contains some nice and deep ideas, .100) is
not proved. Not only is the proof in the text itself not complete, but Y.
Motohashi kindly pointed out that e.g. the change of triple summation
in (3.6) of [[127] needs certain conditions under which ®y(x) does not
seem to satisfy the conditions stated in Theorem 4.

The function Ex(T), defined by (.9), should not be confused with
E,(T) (defined by 2.2)) for % < 0 < 1), which was discussed in Chapter
and Chapter[3

The definition of c¢(k) in (4.12)) is made by using the gamma - func-
tion, so that the expression for c(k) makes sense even when £ is not an
integer, although in that case I have no conjecture about the correct value
of c(k).

For some of the approximate functional equations for Z*(s) see
Chapter 4l of Ivié [[75]. This contains also an account of the Riemann-
Siegel formula, for which one also see C.L. Siegel [[152] and W. Gabcke
[38]]. For Y. Motohashi’s analogue of the Riemann-Siegel formula for
14 2(s), see his workds [[124]] and [126]. M. Jutila [93]], [94] also obtained
interesting results concerning the approximate functional equation for
().

The smoothing function p(x) of the type given by Lemma[.3]is used
also by Zavorotnyi [[167]], but his work does not give the construction of
such a function, whereas Lemma 4.3 does. Other authors, such as A.
Good [44], [45] or N.V. Kuznetsov [[105]], made use of similar smoothing
functions.

The classical results of G.H. Hardy and J.E. Littlewood on the ap-
proximate functuional equations for {(s) and ¢ 2(s) are to be found in

8
dt < T(log T)®, (4.100)
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their papers [56] and [157]].

The rather awkward form of the approximate functional equation
(#.26)) is used in the proof of Theorem[4.3] This is the reason why (4.26)
is derived.

For the Perron inversion formula for Dirichlet series, used in the
proof of (.34)), see the Appendix of Ivi¢ [75] or Lemma 3.12 of E.C.
Titchmarsh [[155]].

Several interesting results on mean values of |{ (% + it)| are obtained
by J.B. Conrey and A. Ghosh [23] - [26] and Conrey et al. [23]. In
particular, in [26] Conrey and Ghosh consider c(k), as defined by (.11,
for integral and non-integral values of £ > 0. Assuming that c(k) exists
they show that

K[ o 2
w55
P 14 =0 J:

with specific values F3 = 10.13, F4 = 205, F'5 = 3242, Fg = 28130,
and with even sharper conditional bounds. None of these lower bounds
contradict my conjectural value (4.12)) for c(k).

The discussion on E(T) in Section complements Chapter[2l R.
Balasubramanian’s formula [6] is presented here to show how a dif-
ferent smoothing technique, namely one with the exponential function,
can be also effectively used. The bound seems to be particularly
well-suited for the application of two-dimensional techniques for the
estimation of exponential sums, but it seems unlikely that these tech-
niques can improve on the result of Heath-Brown and Huxley (Theorem
2.7) that E(T) < T7/%2*€. This is in distinction with (#.86), where one
does not see how to take advantage of the fact that the exponential sum
in question is two dimensional.

If instead of Heath-Brown’s results (4.87) and (£.88) one uses Th.
@ Tlof N.V. Kuznetsov [106] for E(x, r), one can get E»(T) < T°/7*€ di-
rectly by the method used in the text. N.I. Zavorotnyi’s approach [[167],
which we also briefly discussed, is in the same vein, but it is more so-
phisticated and leads to (4.6).

From the discussion of E(T) made in this chapter and previously in

221
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Chapter 2] and from the estimation of E»(T) in Chapter[3] it transpires
that
EW(T) <. T3 (4.101)

can be proved for k = 1,2 by trivial estimation. In fact, for k = 2 no
non-trivial estimation of exponential sums with the quantities « jH;.(%)
is known. The same situation is expected when k > 3, so at most that
we can heuristically hope for is ({.101) for k = 3, which is of course the
sixth moment. But if (.10} holds for k = 3, then for k > 3 it trivially
holds by using the bound for £ = 3 and {(% +it) < 1'% A strong
conjecture of A.L. Vinogradov [[159] states that

D demydi(n + 1) = xQa(log x; ) + 0 (x*V7%), (4.102)
n<x
where k > 2 is fixed, Q2> is a polynomial in log x of degree 2k — 2
whose coefficients depend on r, and r lies in a certain range (although
this is not discussed by Vinogradov). The asymptotic formula @.102)
suggests that perhaps on could have

EW(T) < TR (k> 2),

which is stronger than my conjecture #.21)) for k > 3. Vinogradov’s
paper [159] stresses the importance of spectral theory of S L(k; Z) in the
problem of the evaluation of (7).

Additive divisor problems, of which .102) is an example, are es-
pecially difficult when r is not fixed, but may be depending on x. When
r is fixed, a large literature exists on the asymptotic formulas for sums
of di(n)d,,(n + r). For example, Y. Motohashi [[123]] shows that for any
fixedk > 2

(log log x)°®

k
Z di(m)d(n + 1) = x ZO &()log"  x + 0 (x los x

n<x j:

) (4.103)

with c(k) > 0 and constants &(j) which may be effectively calculated.
When k£ = 2 J.M. Deshouillers and H. Iwaniec [30] obtain the asymp-
totic formula with the error term 0(x*/3*€), and show explicitly

£(0) = 6772, 6(1) = > utmn(4y - 4logn - 2),

n=1
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£(2) =4 ) utmn™ {(y —logn)(y — logn — 1) +2}..

n=1

Their technique, based on the use of Kuznetsov’s trace formula, was
used by N.V. Kuznetsov himself in [106] to yield that, for k = 2 the
error term in @103 is O((xlog x)*/?). For k = 3 D.R. Heath-Brown
[63] obtained @.I103) with the error term O(x!~1/192+€) while for k > 4
E. Fouvry and G. Tenenbaum [37]] have shown that the error term is

0] (x exp (—c1 (k) \/@)) .

The bound @.93)) is proved by N.V. Kuznetsov [104], while the
proof of this result (with (log T)!/3 replaced by 7€) has been alterna-
tively obtained by D. Goldfeld and P. Sarnak [43], whose method is
simpler than Kuznetsov’s. In fact, Y.V. Linnik [113] and A. Selberg
[150] independently conjectured that, for any € > 0 and T > (m, n)'/>*€,
one has

Z c'S(m,n;c) <, TC.

c<T

If true, this conjecture is close to being best possible, since M. Ram
Murthy [[146] proved that, for some C; > O,

CilogT
Zc‘lS(m,n;c) = Q(exp(%)).
e<T 0glog

As shown by Theorem[4.3] sums of d3(n)d3(n+r) play a fundamental
role in the study of I3(T). They were studied, together with analytic
properties of the associated zeta-function

Z4(s) = Z dy(mds(n+ rn™*  (Res> 1),
n=1

by A.L. Vinogradov and L. TahtadZjan [160]. This topic is also investi-
gated by A.IL. Vinogradov [157]], [158].






Chapter 5
Motohashi’s formula for the
fourth moment

5.1 Introduction and Statement fo results

IN THIS CHAPTER we shall study in detail Y. Motohashi’s recent 224
important work on the critical line. Instead of working directly with

T | 4
L(T) = f’{(z + it) dt
0
we shall deal with
- 1 4 2 T
fg —+iT+it|| e dr [0<A< , (5.1)
2 log T

and then use later averaging techniques to obtain information about
I(T) itself, or about E»(T). The last function was defined in Chapter @4

as
T
E2(T)=f‘{(%+it)
0

where P4(y) is a suitable polynomial in y of degree four with the leading
coeflicient equal to 1/(27%). The basic idea is to consider the following

4
dt —TP4(logT), (5.2)
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246 5. Motohashi’s formula for the fourth moment
function of four complex variables u, v, w, z, namely
I(u, v, w, 2, A) := 1 f L+ iDL — iDZ(w + iDLz — ine” "™ dr. (5.3)
Avr

For Re i, Rev, Rew, Rez > 1 we have by absolute convergence

(o)

f AvBE g | % AEB) (Re B > 0).

—00

225  Following the initial step in Atkinson’s treatment of E(T') (see (2.7) and

(2.8)) one writes then
I, v,w,z; A) = Z + Z + Z K m™n" X exp| — élogf—n 2
b b b b 2 km
km=Cn  km<{n km>{n
=Lw,v,w,z;A) + L(u,v,w,z; A) + Ii(u, v, w, z; A), 5.4)

say. In I} we have n = km/{, hence

LiGu,v,w,z;A\) = Z [ ()

k,m,,n>1;km=Cn
(o) (o)
53 [ 5 e[ 3w = S oo
r=1 \{n=r km=r r=1

To evaluate the last series we recall a classical identity of S. Ra-
manujan. This is

{(8){(s —a){(s = b){(s —a—Db)
{(2s—a-Db)

D Tameymn = (5.5)
n=1
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Itis valid for Re s > max(1,Rea+1,Reb+1,Rea+Reb+1) and can
be proved by expanding both sides into an Euler product, since o,(n) is
a multiplicative function of n for any z. Setting s = u +z,a = z —v,
b = u —w we obtain

L +v){(u + 2)0(v + w)l(w + 2)

{(u+v+w+z)

Li(u,v,w,z;A) = ; (5.6)
thereby providing analytic continuation of /; as a meromorphic function
of u, v, w,z over C*. By symmetry

Liu,v,w,z;A) = L(v,u,z,w; A), 5.7

and the main task is to prove that Ir(u, v, w, z; A) also exists as a mero-
morphic function of u,v,w,z on C*. We are interested in .3) for
u=31+il,v=14%-iT,w=1%+iT,z=1-iT, thatis, in the an-
alytic continuation of the function defined initially by (3.3). Henceforth
we shall assume that I(u, v, w, z; A) stands for the meromorphic function
of u, v, w, z on C* defined initially by (5.3).

It is not difficult to show that

1 1 1 1
IN\=+iT,——iT,—+iT,- - iT;A| = .
(2+l,2 l,2+l,2 iT; ) (5.8)

A
A\/}_f‘§(§+lT+lt)

v (ool

1 T
and the last expression is O(exp (—5 log> T'|| for 0 < A < oaT" The
0

! v

~(1/A)? X
e dt + — Re
A

analytic continuation of I,(u, v, w, z; A) is carried out in several steps, to
a region in which it admits an expression in terms of sums of Klooster-
man sums

SGmnic) = L [md+nd
C

) , (5.9

1<d<c,(d,c)=1,dd’=1( mod c) (
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where e(x) = ¢**. This analytic continuation will be given in detail
in Section It turns out that one can successfully apply the power-
ful machinery of Kuznetsov’s trace formula and the spectral theory of
automorphic forms to the resulting expression for analytic continuation.
This will be discussed in Section while in Section [5.4] we shall ob-
tain an explicit formula for (5.1)) which requires a considerable amount
of technical work. This is Motohashi’s main result, which we state here
as

Theorem 5.1. If0 < A <1/logT, then

A;ﬁﬂé(%nrnr):‘(mzdz (5.10)
le(d+ie)
= Fy(T, A) + f e T e
i ( )H(XJ,T A)
a
+Zzaﬂk JZk( )A(kTA)+O( “og?T),
k=6 j=

where a;,ajo and the functions Hj, H ;o are defined in Section B3
Fo,0, A by (5.112) and (3. LL0). The 0-constant in (53.10) is absolute.

One can evaluate explicitly Fo(7, A) as follows. From Stirling’s for-
mula one has

1
I(s) =T(s) (log S= 5, Yars 2 +.. . +as "+ F,(s))
s

with F(s) <, |s|7"~!. Hence by successive differentiation

r®(s)
I'(s)

k
= Z bix(s) log/ s + c_1,ks_1 +.ooot s +0 (,lsl_’_l)
j=0
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for any fixed integers k > 1, r > 0, where each bji(s) (~ bj; for a
suitable constant b ) has an expansion in nonpositive powers of s. From
(5.I12) it is seen that in evaluating Fo(T, A) we encounter sums which
involve, for 0 < r < 4,

(1 .
Re log" [= +iT +it|e” ™ dt
-

o1
— 777 Re {f log" (5 +iT + iuA) e_uzdu}

o0

logT
_1 r 1 . . —u? —A
= 2Re log §+1T+mAe duy + O0s(T™")
—log T

for any fixed A > 0. For |u| < log T one has the power series expansion

1 r
log" (5 +iT + mA) = (logiT) + ) (]:)(log iTy
k=1

k
wud 1 l(uh ] ? N
T 2T 2\T 2T T
Thus in the range 0 < A < T exp(— +/log T') we have

Fo(T,A) = Q4(logT) + O (exp (—% vlog T)) , (5.11)

where Q4(y) is a polynomial of degree four whose coefficients may be
explicitly evaluated.

A remarkable feature of Theorem[5.1]is that the error term appearing
in it is quite small. This makes it a powerful instrument in the study of
{(s) in general, with greater, with greater potential and applicability than
the formulas for the fourth moment of Heath-Brown and Zavorotnyi that
were discussed in Chapter @l By more careful analysis, involving the
evaluation of certain exponential integrals by the saddle-point method, it
is possible to transform the right-hand side of (5.10) into a more explicit
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form, at the cost of a poorer error term and a shorter range for A. This
will be effected in Section and the result is the following theorem
(all the relevant notation is defined in Section[3.3)):

Theorem 5.2. IfT% log™ T < A < Texp(—+flogT) where A > 0 is
arbitrary but fixed, then there exists C = C(A) > 0 such that uniformly
in A

1
A\/_f’{( +zT+zt

1

=n2" 2T_%Zozjx]2H3( )sm(leog4 T) ~(8x;/27) + 0(log® T).
e
Jj=

e UIA? gy (5.12)

By (B.11) we have Fo(T,A) > log* T, so that C > 4 in (5.12). It is
also useful to have an integrated version of (3.12).

Theorem 5.3. If V2log ™AV < A < Vexp(—+/log V), where A > 0 is
arbitrary but fixed, then there exists C = C(A) > 0 such that uniformly
in A

s 4

e Sl

0 —oo
x —(AXx;
4(10gV)+7r( ) ZO//H%( ) cos(leogﬁ) (Ax;/2V)?

0(V210g" V) + O(Alog® V),

eV gy 4T (5.13)

229  where P4(y) is a suitable polynomial of degree four in y. Moreover, if
1 3
Vilog™V <A< V3, then

(o8]

o [kl

(o)

ea(L) Z 13 (2] oo 12

4
N 4t AT = VP4(log V)
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"B L O(V3) + O(Alog V), (5.14)
where, as j — oo,

ci=(1 +0(1))xj_.3/2.

In fact, it is not difficult to see that Py is the same polynomial which
appears in the definition (3.2)) of E»(T) (see also (4.3) and (.4)), and it
is possible to deduce an upper bound for E5(T) from Theorem[5.3] This
is

Theorem 5.4. There is an absolute constant C > 0 such that
Ex)(T) < T*310g° T (5.15)

This upper bound is a slightly sharper form of the result (4.6) of
N. Zavorotnyi. We can also obtain integral averages of E»(7T") which
correspond to Theorem [3.1land Theorem 3. 7Ifor E1(T) = E(T). This is

Theorem 5.5. We have

T

f E>(Hdt < T3"? (5.16)
0

and

4
dr < T3*log*T. (5.17)

T
ng(t) g(% + it)
0

We also have a mean square result on E»(T), contained in

Theorem 5.6. There is a suitable constant C > 0 such that uniformly
forT?B <« H<T

T+H
f Es(dt < T3*H3*10g° T. (5.18)
T
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The previous theorems dealt with upper bound results. However,
we can also obtain an omega-result for E»(7T'). The result, which is one
of the most important applications of the explicit formula for the fourth
moment, is

Theorem 5.7.
1
E)(T) = Q(T?2). (5.19)

In the proof of Theorem[5.7] given in Section[5.7, we shall make use
of a non-vanishing type of result for automorphic L-functions, proved
recently by Y. Motohashi. However, if one could prove a certain linear
independence over the integers of spectral values, then we shall that
(5.19) may be replaced by the stronger

lim sup |Ex(T)|T™2 = +oco.
T—0
Finally, we shall reprove an important result of H. Iwaniec on sums
of integrals of |{ (% + it) [* in short intervals. In fact we improve on
Iwaniec’s result by obtaining log-powers where we had T€. This is

Theorem 5.8. Suppose R <t) <t) <...<tg <2T witht,.1 —t, > A
1
(r=12,...,R—1)and T2 < A < T. Then there exist constants
C1,Cy > 0 such that
t+A 4

> [ klz+i)

r<R P

dt < RA1ogS' T + RETA2 1ogC2 T.

We shall prove Theorems [5.4] - [5.6] and Theorem [5.8]in Section [5.11
We remark that Theorem 3.8] yields

I

as a corollary with an effectively computable D > 0. The above esti-
mate, with D = 17, was proved first by D.R. Heath-Brown.

12
dr < T*log? T
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5.2 Analytic Continuation

As the first step we shall establish (5.8)), which is important because the
integral (5.1)) appears on the right-hand side. In (3.3) we move the line
of integration to .Z, as follows:

D ¥z
E N oi(u — 1)
oi(w — 1)
oi.(l —v) . .
oi(l — z) P,

Then we have, for Re #, Re v, Rew, Re z > 1, by the residue theorem
1 . . . N —(t/A)?
I(u,v,w,z;A) = —— | L(u+it){(v —it){(w + it){(z — it)e dt
A+r
<z

L2 1{ ((u—l)z]
—m2elw+v—-1D{w—-u+1)(u+z—-1)exp A

D

2
+§(u+v—1)§(v+w—1){(z—v+1)exp{ - ]
il
+{(u-w+DIv+w—-1)(w+z-1)exp

+§(u+z—l){(v—z+l){(w+z—l)exp( ]}

Namely, there are simple poles of the integrand at the points ¢ =
A =w/i,(1 =w)/i,(v—1)/i,(z—1)/iand e.g.

lim J(u+ zt)(t— I—Tu) = l.,

t—>(1-u)/i

hence the above relation follows. It obviously holds for those u, v, w,z 232



254 5. Motohashi’s formula for the fourth moment

such that i(1 —v), i(1 —2) € 2y, and i(u — 1), i(lw — 1) € &,. Then ¥
can be replaced by the real axis, and we obtain for any 7 > 0 and Re u,
Rev,Rew,Rez < 1,

Iu+il,v—iT,w+iT,z—iT;A) (5.20)
! ji{( +iT + inl( T —it)l(w + iT + it)
=— u+i ine(v—iT —it)l(w + i i
Avr

{(z—iT — ine ™ gy

1

1 . 2
+ %{g’(u+v— DEw—u+ D(u+z— l)exp((%:_l) ]

( v—iT =1\
+lu+v—-1DIv+w—-1){(z—v+ 1)exp (T)

. 2
L= w+ D+ w = D+ 2 — 1)exp[(W+’TT_1) ]

. 2
+L(u+ 2= DLW =2+ DEw +z— 1)exp [(#) ]} .

When (u, v, w, 7) is in the neighbourhood of the point (%, % (%%) the
points u + v — 1, w — u + 1 etc. appearing in curly braces in are
close to 0 and 1. Using the power series expansion of {(s) near these
points and simplifying we obtain (3.8)) from (5.20).

The next step is to seek analytic continuation of the functions /, and
I3, defined by (3.4), in the case u = % +iT,v = % —iT,w = % +iT,
z= % —iT. We can write, for Reu, Rev, Rew, Rez > 1,

L(wu+iT,v—iT,w+iT,z—iT;A)

= A niny \2
—u—i —weiT . —v+iT . —7+i 112
— Z mlu lezw ITn1V+lTn21+lT exp|— —10g .
2 miniy

my,my,ny,ny=1mymy<n;ny

We group together terms with mymy = m, set nyny = m + n, so that
m,n > 1. Thus we obtain

L(u+iT,v—iT,w +iT,z — iT;A)
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i m“(m+n)"’ {Z m;”}( Z n;Z]
mpn=1 malm nal(m+n)

(1 + %)ZT exp [— (% log(l + %))2)
Z G- (m+ )1+ ”)_MT

m,n=1
—u—v ( (A n ?
m exp|— —10g(1+—) .
2 m

To transform further the last expression we set p = 5, ¢ = w — s in
the beta-integral formula

233

I'(pI'(g) xP!
T +q) = f(l " x)PﬂIdx (Rep,Reqg > 0)
0

to obtain

r(s);(::) f (1 + 0" x*ldx.

This means that F(s) = F(s)F(w— s)/T'(w) (for w fixed) is the Mellin
transform of f(x) = (1 + x)™". Hence by the Mellin inversion formula
a+ico
TFrw)(1 +x)™" = ﬁ f I'(s)I'(w — s)x *ds, (5.21)
a—ico
where Rew > a > 0, x > 0. We divide (3.21) by I'(w), replace w

by w + it, multiply by exp(—(t/A)?) and integrate over t. Using the
exponential integral as in the transformation of (3.3 we have

A 2
(1+x)"exp [— (E log(1 + x)) ) (5.22)

o~ (t/D)
I'(s)I' it — -
27” A _\/_ f F(W + lt) (S) (W + 1t S).x dS dt
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| a+ico
= — fM(s,w;A)x_sds,
2mi

a—ioco

where the interchange of integration is justified by absolute conver-
gence, and where we set, for Rew > Re s > 0,

1 r F(S)F(W + lt - S) —(l‘/A)2
M(s,w;A) := - dt. 5.23
(8 w:8) Aﬁf Tw+in (523)

By the Mellin inversion formula one has from (3.22)), for Re s > 0
and any w,

X 2
M(s,w;A) = fys_l(l +y)"exp (— (% log(1 + y)) )dy. (5.24)
0

This implies that M(s, w; A) is an entire function of w and a mero-
morphic function of s which decays rapidly with respect to s. Namely,
we have for all s and w

. A2
M(s,w; A) = (&7 = 1)~} f 2= exp(—Zlogz(l +z))dz,
<

where .Z is the loop contour consisting of the real axis from +oo to €,
the circular arc of radius € with center at the origin (0 < € < 1), and
again the real axis from € to +co. By performing [C] + 1 integrations by
parts in the above integral it is seen that

M(s,w:A) = O(1 + |s)~€

uniformly for any fixed C > 0, bounded w and Re s bounded, as long as
s stays away from nonpositive integers.
Now we recall that Ramanujan’s sum c¢,(n), defined by

. h
cr(n) = Z e (—n), (5.25)
h=1iGr)=1 "
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may be written alternatively as
r
o= u(5)d= > uom
drdn {m=r,m|n

Thus
Cr(n)r—sz Z ’u([)g—sml—s’

tm=r,m|n

and consequently for Re s > 1

S e =y (Z ml‘s}ﬂ(f)f‘s - —‘T‘é;(;()”).

r=1 =1 \m|n

In this formula set s = 1 — @ with Re @ < 0. Then we obtain
oo(n) = £(1 — ) Z o mr*™! (Rea < 0), (5.26)
r=1

which is a variant of a classical formula of S. Ramanujan. With (3.22))

and (3.26) we have

a+ioo

- 1
L= ) culmo,(m+mm™™ - — f M(s,v —iT; A)
2mi
m,n=1 .
a—ieo
n\-S _ oo oo -
(E) ds=((1+z-v) Z Z O y_w(m)e,(m + n)r =
r=1 mn=1
a+ico
f M(s,v—iT; Nm*n"°ds
a—ico

:{(1+z—v)irv7“1 Zr: iie((m+n)§)

r=1 h=1,(h,r)=1 m=1 n=1
a+ico
1
O-ufw(m)m_u_vf f m*n"*M(s,v — iT; A)ds
Tl

a—ioco

235



236

258 5. Motohashi’s formula for the fourth moment

. . a+ioco
1
3 _ v—z—1 — —1iT;
={(1+z V)Z’” Z 2ni f My =ii8)
pa h=1,(hr)=1 =" S
00 h ad h
(Z e(—n)n_s) (Z e(—m)O'u—w(m)m_u_VHJ ds.
n=1 d m=1 '

The introduction of Ramanujan’s sums via the identity (3.26) played
a crucial role, because it enabled us to separate the variables m and n,

since e ((m + n)%) =e (mé) e (né) To write the last two sums above in
brackets in closed form we introduce the zeta-functions

D(s;a/,e(@)) = Za’a(m)e(ﬁm) m~* (o> max(1,Rea+ 1)) (5.27)
r r

m=1

and
h ST
Ls;el—]):= Ze -n|n Res>1), (5.28)
r = r
the latter being a special case (with x = h/r, a = 0) of the so-called
Lerch zeta-function

(o)

p(x,a,5) = )" e(x)(n+a)”". (5.29)

n=0

With this notation we obtain, for Reu, Rew > 1 and Rev > Rez >
a>1,

b(u+iT,v—iT,w+iT,z — iT;A) (5.30)
o , ! a+ioo
={0+v-0 Yy At N —
(A +v=2) ; hZ::‘ 27 f

(hyry=1 ~ a7i
h h .
Dlu+z—s;u—w,e|=]||s;e|—=]|M(s,z—iT;N)ds.
r r

Actually here we changed places of v and z, for technical reasons,
which is permissible because from the definition of I, it follows that
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Lwu+iT,v—ilT,w+il,z—iT;A) = L(u+il,z—iT,w+iT,v—iT;A\).

A common property of zeta-functions is that they possess in many
cases functional equations resembling (and often generalizing) the clas-
sical functional equation (L8] for /(s). This is the case with the zeta-
function D(-), defined by (3.27). If (h,r) = 1 and hh = 1(mod r), then
we have the functional equation

D (s; a,e (é)) =202 2P - (A +a—s)  (5.31)

oo 2pf-oect)
ol o)

The functional equation (3.31)) follows similarly as does the func-
tional equation (hh = 1( mod k) here)

h
E (s, %) = 20207221 - sk~

h h
X {E (1 - s, z) —cos(ns)E (1 -5, —z)}, (5.32)

E(s, %) = n; d(m)e (m%)m_s (Res > 1),

oot oo

and (5.32)) is a special case of (3.31)). To obtain (5.37)) one writes

ofonl)

where

so that

(5.33)

Il
[
_(\
—_
S~ s
3
=
~—
3
Q
—_—
3
S
~
==Y

m(l—Sn—S

I
IS
S
l

Q
—_
N s
Q
S
~——

m=a(mod r), n=b(mod r)
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= Zr: e (éab) i (a+un*>b+vr)™*

a,b=1 u,v=0

r

= pa2s Z e(éab){(s - a, g){(S, ?),

a,b=1
237 where -
{(s,a) = Z(n+a)‘s (0<a<l1,Res>1)
n=0

h
is the Hurwitz zeta-function (it should not be confused with ¢ (s; e (—))
-

of (5.28)). The representation (3.33)) provides analytic continuation of
D(-), showing that it has simple polesat s = land s = a + 1 (a # 0)
with residues r*1¢(1 — @) and r27'2(1 + @), respectively.

We can write {(s,a) as

sl—ax

_ S 1 [ s—1 —(n+a)x
{s,a)= ) r_f dx = m) —dx  (5.34)
n=0 o
~ —msl—*(l _ S) f 75 1 —az
B l-e =%

where C is the loop contour as in the proof of Theorem [2.10] and where
we have used I'(s)['(1 — s) = &/ sin(srs). The last integral representation
provides the analytic continuation of {(s,a) over the whole complex
plane. Expanding the loop to infinity it is seen that the residues at 2muri
and —2mui contribute together

1
—2(2mm)*~ e sin (27rs + 2m7ra)
hence it follows that

Z(s,a) = 22n)*'T(1 - 5) Z sin(%ﬂs + 2m71a) m*! (Res<0). (5.35)
m=1
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Inserting (3.33) in (3.33) and simplifying one obtains (3.31) for
Re s < 0, and by analytic continuation (5.31)) holds also for other values
of s.

Now we return to (3.30) and shift the line of integration to Re s = b,
where b > a + 1 and the conditions

Reu>1, Rew>1, Rev>Rez>a>1 (5.36)
and
Re(u+z)<b, Re(z+w)<b, 2b+1)<Re(u+v+w+z) (5.37)

are satisfied. There is a domain in C* where both (5.36) and (5.37) are
satisfied, and assuming u # w there are simple poles at s = =1 + u + 2
and s = —1 + w + z. By using (5.26)) and

Z o ™ =(s){(s —a) (o> max(1,Rea+ 1)),
n=1

it is seen that the contribution of the residues from these poles to (5.30)
will be

Lu+v)iz+w-DIA+v-2)(A+u-w)
(u+v—-—z-w+?2)
+4’(w+v)§(u+z—1)§(l+v—z)§(l+w—u)

w+v—u—-z+2)

M(iz+w-1,z-1iT;A) (5.38)

Mu+z—-1,z—iT;A).

There remains

0o - b+ioco
h
1+ v—z)ZrZ_V_1 Z f D(u+z— S;u —w,e(—)) (5.39)
=1 h=1 < r
(hr)=1

Ie (s; e (é)) M(s,z —iT;A)ds.

By (337 it is seen that the double sum in (3.39) converges abso-
lutely in the region defined by (5.37), hence there it is regular. Therefore
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in (5.37) I, possesses analytic continuation and in that region it may be
decomposed into the sum of the expressions (3.38) and (3.39), so we
may write

L(wu+iT,v—iT,w+iT,z—iT;A)

=1, w, 5 T.A) + 17 (v, w, 2 T, A), (5.40)

where I;l) denotes the first summand in (3.38)), and 152) denotes the sec-
ond. At this point we shall use the functional equation (5.31)) and sim-

h h
plify the resulting expression. The exponential factors e (—) and e (——)
r r

will lead to the appearance of the Kloosterman sums

S(m,n;c) = D e(M) (5.41)

1<d<c,(d,c)=1, dd=(mod ¢)

and the related Kloosterman-sum zeta-function
Znn(8) := Qr mn)* ! Z S (m, n; ). (5.42)
=1

This is one of the most important features of the whole approach,
since sums of Kloosterman sums can be successfully treated by the
Kuznetsov trace formula and spectral theory of automorphic forms. In
view of the bound S (m, n; ¢) <pu.e cite (see (@.89)) it is seen that the
series representation (3.42)) is valid for o= > 3/4.

So we use the functional equation (3.31)) in (3.39), writing

Py, w, T, A) = 10 v, w, 2T, A) + 19 (w, v, w, 23 T, A), (5.43)

where Iézi refers to D(l -5 —a,e(%)) cos (%) in (3.31)), and Iézl to

—cos (ns - ’%)D(l -5 —a,e( h)) Then we obtain

r

b+ico

o r
I;Zz — Z(] +v— Z) Z ,.Z*V*l Z L f _2(2ﬂ)214+217ZS727u+w,ufw72u722+2x+l
r=1 g
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XF(I—u—z—s)l"(l—w—z+s)cos(7r(u+z—s)—g(u—w))

D(l —u—-z+ s;w—u,e(—é))((s;e(é))M(s,z— iT;N)ds

b+ico
co

-1 "
— 44(1 +v— Z) Z rfufvfwfz_. Z f 2(2ﬂ)u+w+2:72S72r2x
r=1

2ni h=1,(h,r)= lb—ioo

+
F(l—u—z+s)F(1—W—z+s)><cos(7r(z+uzw—s))

o h v ) Itl B
M(s’ o lT’ A) Z € (;m) m’ Z O-vv—u(”l)e (—;ﬂ) rf””“ﬂds
m=1

n=1

={(1+v-2) i i i, (n)n” T4 i pHTvTR [ 2 e (hm ; fin )]
h=1,Grr)=1

m=1 n=1 r=1
b+ico
u+w
xfcos(ﬂ(z+ - —s))F(l—u—z+s)F(1—w—z+s)
b—ico

M(S, 7—iT; A)(zﬂ.)u+w+22—25‘—3 rZS(mn)—sds’

where the interchange of summation and integration is justified by abso-

lute convergence because of the choice of b. If 4 runs over a reduced sys-
tem of residues mod r, so does —A, so that the sum over % is S (—m, n; r).
Hence after some rearrangement, which will be useful later for technical
reasons (i.e. application of (3.64))), we obtain

I v, w, T, A) = 202021 +v=2) Y ) (5.44)

m=1 n=1

(Sw_u(l’l)l’l_ % (w+v—u—z+l)m— % (u+v+w+z—-1)

) S(— . 2 u+v+w+z—1
XZ ( m,n,r)( ﬂ\/mn)
p— r r
b+ico
+
x f cos(ﬂ(z+ 4 2W —s))F(l U7+ T —w—z+5)
b—ico
drfmn\ >
Ms.z— iT;A)(—V) ds.
r
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In a similar way it follows that

1) (u, v, w, 2, T, A) = =2i(27)"" cos (g(u - w)) {(1+v=-2)

o0 [s6]
_1 _ _1 oy
Z Zm 5 (utv+w+z I)O'W_u(n)n 5 (WHv—u—z+1)

m=1 n=1
b+ico
X f Zm,n(% —S)F(l —u—z+5)
b—ico
XI'(1=w—z+s)M(s,z—iT;A)ds, (5.45)

where the Kloosterman-sum zeta-function Z,, , is defined by (5.42)). This
ends our present transformation of /. Further analysis will be carried
out by the means of spectral theory of automorphic functions and the
Kuznetsov trace formula.

5.3 Application of Spectral theory and Kuznetsov’s
trace formula

We begin first by introducing briefly some notions and results which
will be used later. A detailed study would lead us too much astray.
On the upper complex half-plane H the modular group

I'=SLQ2,7Z) = {[Ccl Z] :(a,b,c,d €Z) A (ad — bc = 1)}

az+b
acts in the obvious way. Namely, if y € I, then yz = Z+ 7 he
cz

non-Euclidean Laplace operator

2 2
L=_y2(5 b )

—_— + —_—
ox2  0y?
is invariant under T', as is the measure du(z) = y~2dxdy, z = x + iy. The

terminology non-Euclidean comes from the fact that H is the Poincaré
model of Lobacevskyi’s hyperbolic geometry, where straight lines are
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either semicircles with centers on the real axis or lines perpendicular to
it. The classical cusp forms of even integral weight are regular functions
f(z) on H such that

f(y2) = (cz+ d f(2)

for any y € I' and y%kl f(z)| is bounded as y — oco. As a generalization
of these, H. Maass introduced non-holomorphic cusp forms (cusp forms
of weight zero), the so-called Maass wave forms. They are the eigen-
functions of the discrete spectrum of L (which has the form {1 j};‘;l with

1
A = x? + — and x; > 0), and they satisfy the partial differential equa-

tion LY(z) = A¥(z). Every solution W(z) satisfies also ¥(yz) = ¥(z) for
vy € I', and the finiteness condition

f BPdu) = f \BGr -+ i9)Py2dx dy < +oo,
9 9

where ¥ is the fundamental domain of the modular group I'. In standard
form one usually takes (z = x + iy)

1 1 1
@:{Z:y>0,lz|>l,—§§x<§}ﬁ{z:lzl=1,—§§x<0}.

Since ¥(z) is periodic in x = Rez with period 1, it has a Fourier
series of the form

[Se]

\I](Z): Z Cm(y)eZm'mx.

m=—00

If we insert this relation in the equation LW¥(z) = A¥(z), multiply
by e(—nx) and integrate over x from O to 1, we obtain the differential
equation

2l () + 4Py en(y) = Aca(y),

which determines c,(y) up to a constant factor. For n # 0 and y > O the
solution of this equation is

cn(y) = p(n)y? Kin2rlnly) + p(n)y? Lix(2minly),
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1
where x = (/1 - i)z , p(n) and p(n) are constants, I and K are the Bessel

functions. The above finiteness condition forces p(n) = 0 and yields
also co(y) = 0. Thus if ¢; is the eigenfunction attached to x;, then we 242
have the Fourier expansion

¢1@) = ) pime(nx)y? K Qalnly) (2 = x + iy),
n#0

and moreover for real-valued ¢; we have p(n) = pj(—n), in which case
¢; is either an even or an odd function of x.

The function K(y) is an even function of s and is real for s purely
imaginary and y > 0. For Re z > 0 one defines

1 1
K(z) = 5 fts_l exp (—% (t + 5)) dt,
0

which gives K (z) = K_g(z) by changing ¢ to 1/¢ in the above integral.
We have the Mellin transform

f K ()x" " dx = 25‘—2r(%)r (S R r) (Res > |Rer),  (5.46)
0

and if Re s, Re z > 0, then

1

K@) ~ 27 T()7° (2 = 0), Ka(2) ~ (2%) ¢ (7> ).

Setting s = ir, z = y in the definition of K;,(z) we obtain

[e9)

K (y) = fe‘ycm cos(rt)dt ~ (1)7 e? (y— o)
2y
0

for r fixed, while for y fixed

1
27\2
K (y) ~ (_ﬂ) e—%nr sin (% +rlogr—r—rlog %) (r — o).
r
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From the Mellin transform formula (5.46)) one obtains by the inver-
sion formula for Mellin transforms

o+ico
1
K (x) = f AT(s + ir[(s — ir)x > ds(x > 0, o > 0).
4
o—ico
Henceforth let ¢; denote the Maass wave form attached to x;, so
that {¢ j} forms an orthonormal basis (with respect to the Petersson

inner product (f1, ) = f fif2du(z)) of all cusp forms of H, and ¢; jisan

2
eigenfunction of every Hecke operator. The Hecke operator T, acts on
H, for a given n € N, by the relation

1

(Tnf)z) =n">

az+b)

ad=n, d>0 b(modd)

and we also have (T_; f)(z) = f(—z). The Hecke operators are commu-
tative, which follows from the relation (omitting f and z)

= Z T2 (5.47)

d|(n,m)

so that Ty, = T, T,, if (n,m) = 1, that is, T}, is a multiplicative function
of n. Thus T, is determined by its values at prime powers n = p“, and
(5.47) yields for a > 2

Tpe = Tpra—l - Tpaer.

This recurrence relation shows that if we define the Cebyshev poly-
nomial U,(x)(n =0, 1,...) by the identity

sin(n + 1)0
sin @

U,(cos ) =

then for any integer r > 1

EDEr =R,

243
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Let, for each n > 1, t;(n) denote the eigenvalue corresponding to ¢;
with respect to T}, i.e. T,p;(z) = t;j(n)¢;(z), and assume that ¢;(z) is
an eigenfunction of the reflection operator. This means that ¢;(-2) =
€j¢(z), where €; = £1 is the parity sign of the form corresponding to
x;. Thus €; = +1if ¢; is an even function of x, and €; = —1 if ¢; is an
odd function of x. Calculating T,,¢;(z) by using the Fourier expansion
of ¢;(z), it follows that

TOEDY

nm 1
[ pj (_z)] e(mx)y? Kiy, (2mmly),
m¢0 dl(nam)’d>0

d

while by comparing this result with the expansion of 7;(n)¢ j(z) we obtain

mpmy = Y Pj(’;—’?)’ (m # 0)

d|(n,m),d>0

hence in particular

pi(Dtj(n) = pin) (n=1, j>1).

The Fourier coefficient p;(1) is of special importance in the sequel.
Following standard usage we set

a;j = (P (ch(rx)~".

One always has «; > 0, for otherwise the corresponding Maass wave
form would be identically zero (since p(n) = p;(1)t;(n)), which is im-
possible.

N.V. Kuznetsov proved the asymptotic formula

T 2
> bjmP(chr) ! = (;) + O(T log T + Tnf + n%+f), (5.48)

)CjST

so that for n = 1 provides an asymptotic formula for )} a;.
x;<T
From the theory of the Selberg zeta-function it follows that

2

T
(xj 1 xj < Th= 2=+ O(T), {xjtl-TI<1f<T,  (549)
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whence
xj~ A12j (j— o0).

By the Rankin-Selberg convolution method one can deduce a func-
tional equation and obtain analytic continuation of the function

Ri(s) = ) loj(mPn™,
n=1

and furthermore deduce

Z lo(m? = 627 2ch(nx /)N + 0 (N*/5%€). (5.50)
n<N

This immediately implies p;(n) < ; n3/10+€ but even pj(n) <

n'/3*€ is known.
At this point we define the Hecke series
S - _ -l
His):= ) ton™ = [ [ (1= 15mp™ + p7™) (5.51)
n=1 p

in the region of absolute convergence of the above series and product
(which includes the region o > 2, since ¢;(n) < o1(n)), and otherwise
by analytic continuation. From the properties of Hecke operators T, it
follows that 7;(n) is a multiplicative function of n, and in fact

mtm) =y zj(@) (mn > 1). (5.52)

2
d|(m,n) d

Writing out the series representation for H;(s)H (s — a) and using
(5.32) it is seen that, in the region of absolute convergence, we have

To(mtimn™ = (Hi(s)Hj(s — a)/{(2s — a). (5.53)

n=1

This identity is the counterpart of the classical Ramanujan identity

G.3).

245
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The Hecke series satisfy the functional equation

H(s) = 77 'Qn)* 7 'T( = s + ix)T(1 — s — ix;)
{— cos(s) + ejch(mx ) H (1 - 5), (5.54)

where €; is the parity sign corresponding to ¢;. This functional equation
is analogous to the functional equation {(s) = x(s){(1 — s) for the Rie-
mann zeta-function. The function H,(s) is an entire function of s and
satisfies Hj(s) < x;’. for some ¢ > 0 and bounded s.

One has the following formula, due to Y. Motohashi:

1\ 2712 1
Z a jHJZ. (E) == (log T+y-— 3~ log(27r)) +O(T 108 T). (5.55)
x_,ST

We shall now briefly discuss holomorphic cusp forms and introduce
analogous notions and notation. Let {¢;}, 1 < j < do, k > 6 be the
orthonormal basis, which consists of eigenfunctions of Hecke operators

246  To(n), of the Petersson unitary space of holomorphic cusp forms of
weight 2k for the full modular group. Thus for every n > 1 there is a
tjok(n) such that

Tor(n)(pj2k(2)) (5.56)

_1 a k az + b
- Z (Z) Z S"ﬂk( d ) = k(M) j2k(2).
ad=n, d>0 b( mod d)

The corresponding Hecke series
Hjxu(s) = Z tia(mn™* (5.57)
n=1

converges absolutely, as in the case of H (s), at least for o > 2. The
function H(s) is entire. It satisfies a functional equation which im-
plies that, uniformly for bounded s,

Hj,Zk(S) < k¢ (558)
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nor some ¢ > 0. The analogue of (5.32) is
Z oa(mtjo(mn™ = (Hju($)H (s — a))/{(2s — a). (5.59)
n=1

If pj2x(1) is the first Fourier coeflicient of ¢, then let
@jor 1= (2k = D272 (D

Setting

Puall) 1= 2k =1) )

t=1

1
S m.n: 0 (471 \/mnt’_l) , (5.60)

where J is the Bessel function of the first kind, we have for every m,n >
1 Petersson’s formula

2k — 1
P = 5D st mtonn + (106, 2 s61)

J<dai

where 6,,, = 1 if m = n and 6,,, = 0 if m # n. From the standard
representation

1
1
2n72(x/2) 1
Jy(x) = Lx/l) fcos(xt)(l — ) 1dr (Rev > ——)
F(V+ E) 2
0
one obtains, for x > 0,
x\2k-1
i < —— (%)
2%-1(xX) I"(2k—%) >

247
Hence using the trivial bound |S (m, n; )] < ¢ it follows that uni-
formly

1 2k-1
Pma(k) < m(zﬂ Vmn) > (5.62)

and setting m = n = 1 in (3.61) and (3.62)) we obtain

Z o <K k (k=6).

J<doy
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After these preparations we are going to state a variant of the Kuznet-
sov trace formula, which connects a sum of Kloosterman sums with a
sum over the eigenvalues 7;. Let

(W) := 2ch(zw) f h(y)KZ;W(y)% (5.63)
0

be the Bessel transform of 4(y), where h(y) € C3(0, ), h(0) = 1’ (0) =
0, h)(y) < y>€asy — oo for some € > 0 and 0 < j < 3. Then for
every m,n > 1

S (=m, n; O)h (4z Nmnt™") (5.64)

DINgE
&=

1

(9

j=1

bis (mn)™|Z(1 + 2iw)[?

Another form of the trace formula deals with sums of S (m,n;{)
when mn > (0. We shall need a consequence of it, which is the fol-
lowing decomposition of the zeta-function Z,,,(x), defined by (5.42)).
Namely for any s and m,n > 1 we have
I'(s)

Zonn(5) = Zoh(5) + Z5h(5) + ZS(S) = Gn - S

(5.65)
where

1 - 1 1
Z,(nl!)n(s) =5 sin(7rs) E a;tim)t ()l (s -3 + ixj)F(s 5" ixj), (5.66)
=1

72 (s) = % sin(rs) )" (-1 p,,,,n(k)r(s - % + (k - %))
k=1

1 1
F(S - E - (k - E)), (567)

248  and Z,<n3’ L(s) is the analytic continuation of the function defined, for Re
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s > 1/2, by the formula
sin(rrs) r n\w
Zin(s) = 25 f (2] waimomeraunto (5.68)
Vg m

1 1
lZ(1 + 2iw)|—2r(s -7+ iw)r(s -3 iw) dw.

The decomposition formula (3.63) will be applied to (5.43). Note
that (3.37) holds, hence Re (M - r) > 1 for Rer = b. The

2
integral in (3.43) becomes then
b+ico b+ico
f o M(s,z— iT; A)ds = f { (20 + 22, + 7))
b—ico b—ico

u+v+w+2 Omn F(W—S)
2 -8 2 '1—*(1+s_u+v-5w+z)

F(l—u—z+ )0 —w—z+s)M(s,z—iT; A)ds
= (Cop + Co + C + CS) (v, w, 2), (5.69)

say. Here obviously C,(,{?n corresponds to Z,(,f),, forl < j<3,and Cfi)n to
the portion with 6, .
From (3.66), t;(n) < o1(n), X a; < x? and Stirling’s formula we

Xj<x
find that
Zyuh(s) < o1 (myor (s R,

This implies that we may change the order of summation and inte-
gration in Ci,l,)n(u, v, w, 7) to obtain

1 o0
Chnvow,2) = 5 3 atymt UG v, wzix).— (570)
=1
where
b+ico
U, v, w, 2, £) = fsin(g(u+v+w+z—2s)) (5.71)

b—ico
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2 2
I'l-—u—-—z+I'Ad-—w—z+s)M(s,z—iT;A)ds.

+v+w+z-1 +v+w+z-1
r(u Vtw+tz —s+§)1"(” V+w+z —s—f)

Note that U is well defined if (3.37) holds and | Re &| < 1. Moreover
for compacta of and £ € R

Uu,v,w,z,&) < e, (5.72)

Next consider Cﬁ,?)n and observe that we may change the order of

integration by appealing to Stirling’s formula. It follows that

oo

1 N Uu,v,w,z;i€)
3) = — — i ) A
Co)(u,v,w,2) = 27rf(m) T2ig(M)T g (n) (1 + 2i6) % 61

—00

Similarly we may change the order of summation and integration in
C? 1o obtain first
m,n

1 v 1
Comn(u, v, w,2) = = Z(—l)"pm,,,(k)U(u, v,w, 2k — —). (5.74)
e 2
Then we shift the line of integration in (3.7I) to Res = b; > 0,
where b; may be arbitrarily large, but is fixed. In doing this no poles

of the integrand will be encountered, and by Stirling’s formula we infer
that, if (3.37) holds and C > 0 is arbitrary but fixed, then uniformly

1
U (u, vow, 2 k — 5) < k€. (5.75)

With this estimate it is seen that we may write (3.74) as

l © _ 2k — 1)
Chan(t,v,w,2) = = > (=1)f (pm,nac) — =6, )
T 2
U - t)oLs
v, W, 5k = 35|~ 5—Omn
- 1
Z(2k— l)U(u, vow, 3k — 5). (5.76)
k=1
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To transform the second sum in (3.76)), note that using zI'(z) = '(z +
1) we have
I'k—=1+ys) 'k +5) I'tk—=1+ys)

k= D=y “Ta+k—n " Th-y 5.77)

and write
()
DIEDIEDIED LD
k=1  k<ko k>ko 1 2

say, where ky is a large integer. Using (3.77) we find that

b+ioco
Z =-r f IFrl-—u—-z+I'd—w—-z+s)M(s,z—1iT;A) (5.78)
1 b—ico
m — s r k + u+v+w+z -5
X a ) + (=Dt ( ) ds.
ra- w.,_) T(kg +1— w+s)

250
Now by using again (3.77) and inverting the order of summation and
integration by appealing to (3.73), we have with b arbitrarily large

by +ico
Z:nZ(—l)k(zk—l)fr(l—u—z+s)r(1—w—z+s)
2 k>ko by—ico

F(k—l—s+%(u+v+w+z))
M(s,z—1iT;A) ; ds
Fk+1+s—5u+v+w+2)

by +ico
= n(=1)ko+! f T —u—z+ (1 —w—z+)M(s,7 - iT; A)
b1—ioco

T(ko+ 1u+v+w+2)—s)

s,
F(ko+1+s—%(u+v+w+z))

since all the terms in the sum will cancel, except the one corresponding
to ko + 1, because of the presence of the factor (=D)¥. In the last integral
we shift the line of integration back to Re s = b, and add the results to
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(5.76). We find then that the second term on the right-hand side of (5.76)
is equal to Cﬁ,, W, v, w, 7). Thus using Petersson’s formula (3.61) we

have
Cin (v, w,2) + Coon (v, w, 2) (5.79)
2k—1 1
=—Z< D (P = 18- =) 0 (v, 25— &
- 2w 2
1 [ee]
= EZ Z af]zktjzk(m)f]zk(n)U(u vow,z k — —)

J<doy

This ends our transformation of the integral in (5.69). We are going
to insert the transformed formula into the right-hand side of (3.43) and
transform it further. To achieve this note that from the above expressions

we have
Cf,i)n(u, v,w,2) < o (m)o;(n) Z aje™ < o(m)o(n), (5.80)
j=1
CP (u, v, w,2) < d(m)d(n) f 1E(1 + 2i8)[2e™de, (5.81)

CP (v, w,2) + Cop) (u, v, w,2) < o1 (m)ay () Z K¢ < o (m)o(n). (5.82)
k

251

These estimates are all uniform for bounded u,v,w,z satisfying
E.3D).

Now temporarily assume that (u, v, w, z) satisfies (5.37)) and that Re v
is large. Then (5.80)-(5.82)) ensure that all multiple sums that arise, after
inserting the transformed formula for in (3.43), are absolutely
convergent. Performing the summation and taking into account (3.52))
and we obtain the following spectral decomposition formula:

(9]

12 v, w, 2T, A) = ifg(”””””_lng) (5.83)

2
.'.)

—0o0

u+v+w+z—1__)x (u+v—w
f( > i£)x¢ 3
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{(u+v—w—z+1 _ié:){(v+w—u—z+i_i§)

2 2
Y(u,v,w,z;i€)
[£(1 + 2i5)"

= u+v+w+z-—1 u+v—-w-z+1
+ZajHj( 3 )Hj( 3 )

(o)
v+w—u—z+1 .
Hj( 5 )‘I’(u, v, W,Z,1X;) + Z Z @2k
k=6 j<d

u+v+w+z-1 u+v—-w-z+1
H;oy ) 2k )

+tw-—u-z+1 1
Hj,Zk(v rorts )‘I’(u,v,w,z;k——),

d¢

2 2
where we have set

Y(u,v,w,z;6) =Y, v,w,z;¢,T,A) := —i(27r)z_v_2 (5.84)
100
cos(ﬂu_ﬂw)fs'n( (u+v+w+z ))
l —_— —
2 )T ’

+v+w+z-1 +v+w+z-1
r(” 4 ;V < —s+g)r(” 4 VZV < —s—g)

I'd-u—-z+9I'(1 —w—z+s)M(s,z—iT;A)ds.

In the last integral the path of integration is curved (indented) to
ensure that the poles of the first two gamma-factors of the integrand lie
to the right of the path and the poles of the other two gamma-factors
are on the left of the path, with the condition that «, v, w, z, are such that
the contour may be drawn. Obviously when (5.37)) is satisfied and ¢ is
purely imaginary, then the path may be taken as Res = b. Since for 252
bounded s we have uniformly

Hj(s) < xj-, H o (s) < k¢ (c>0), (5.85)

which follows from the functional equations for H; and H;, we infer
that the condition that Re v be large may be dropped. Hence (5.83)) holds
for u, v, w, z satisfying (3.37).
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The integral in (5.84) bears resemblance to the so-called Mellin-
Barnes type of integral. A classical example is the Barnes lemma, which
states that

2Lm' f I'(a+ B+ H(y — s)I(6 — s)ds (5.86)
B I:(a/ + Y@+ OB+ y)I(B+ )
B Ta+B+7y+06)

’

and the line of integration is to be taken to the right of the poles of
I'(a + s)I'(B + s), and to the left of the poles of ['(y — s)I'(6 — s).

Now we shall transform Iész in (5.44). The presence of the Kloost-
erman sums S (—m, n; r) makes the application of the Kuznetsov trace
formula (5.64) a natural tool. We are going to transform the sum

Dyn(u,v,w,2) = i %S(—m,n;f)go (47r W‘l),
=1

where m,n > 1 and

b+ioco

o(x) = (g)uww“_l f cos (71 (z + 4 ;W - s)) (5.87)

b—ico

-2s
T —u—z+ (1 —w—z+s)M(s,z—iT;A)(§) ds

with (u, v, w, z) satisfying (3.37). The function ¢(x) defined by (5.87)
satisfies the regularity and decay condition needed in the application of
(5.64), which may be seen by suitably shifting the line of integration.

Then applying (3.64) we have

Dy, v, w,2) = Z ajejt j(m)tj(n)@(x;)

J=1

[e9)

1 .
- f 02 m)o g (m)(mn) €101 + 2i€) 2 HENE.

—00
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253
Similarly as in the case of Ié’?r, it follows that for Iézz we have the
following spectral decomposition formula

(o)

lgj(u,v,w,z;T,A):_}rfg(””“;”_I-g) (5.88)
X((LH-V_W_Z_'—I+i§)§(”+v_w_Z+l—i§)
2 2
{(V+W_M_Z+1+i§)d§(v+w_u_z+l—i§)
2 2
<D(uvwz,z§) u+v+w+z-1
s 2ep “T Z e ( 2 )

+v-—w-— +1 +w—-—u-—-z+1
H; ury £ H; yrwouze DO(u, v, w, z; ix;),
2 2
where we have set

O(u, v, w, ;&) = Ou, v, w, ;& T, A) := —iRn)* "2 cos(n€)  (5.89)
fcos(ﬂ(z+ u;w _S))r(u+v+v2v+z—l —s+§)

(u+v+w+z—1

2
I'd-w-—-z+s)M(s,z—iT;A)ds.

—s—f)l"(l—u—z+s)

The same remark about the path of integration should be made here
as for (3.84), and (5.89) also holds for u, v, w, z satisfying (3.37).

Thus finally we may collect the preceding formulas and obtain an
expression for Ir(u + iT,v — iT,w + iT,z — iT; A) (the omission of iT,
that is, the consideration of Ir(u, v, w, z; A) results only in the omission
of iT in the M-factor; thus it is no loss of generality if one worked with
L(u,v,w,z; A)), which is valid for u, v, w, z satisfying (3.37)). This is

L(u+iT,v—iT,w+iT,z—iT;A) (5.90)
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={w+v{w+z-D{w—-w+DIv—z+1)
Mw+z-1,z-iT;A)
(u+v-w—-2z+2)

M(u+z—1,z—iT;A)1j‘o whvawrzol
(w+v—-—u—-z+2) ir 2

—ico

u+v+w+z-1 u+v—-w-z+1
(et ez

><év(u+v—;v—z+1 —§){(V+W_;_Z+1 +§)

g(v+w—u—z+1 B )(‘P—fb)(u,v,w,z;f)
2 {1 +26(1 - 26)

= u+v+w+z—1 u+v—-w-z+1
+Za]Hj( )Hj( > )
Jj=1

viw-—u—z+1 i
Hj(f)(‘{l_ Q) (u, v, w, z;ix;)

= u+v+w+z-1 u+v—-w-z+1
+ Z Z a'j,2kHj,2k(f)Hj,2k (f)
k=6 j<dy

+L{v+wl(u+z-1),{(w—-u+1)

{v—-z+1)

23

+w-—u-z+1 1
Hj,zk (%)T(H, v, W,Z;k_ E)’

where we changed the variable so that the £-integral is teken along the

imaginary axis. This ends our transformation of /,. In the next section it
will be shown that (5.90) actually provides the analytic continuation of
L(u+iT,v—iT,w+iT,z—iT;A) to the entire four-dimensional space
c*.

5.4 Further Analytic Continuation and the explicit
formula

In this section it will be shown that provides analytic continua-
tion of Ip(u + iT v iT,w + iT,z — iT; A) to C*. Hence specializing
(u,v,w,2) = (2, 3 2, ) one will obtain eventually (5.10) (Theorem[3.1])
from (3.4) and (3.6) - (3.8). Theorem 5.1lis the fundamental result on
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which all subsequent results of this chapter (Theorems -[5.8) are
founded. However, before we make the passage from to (3.10),
some difficult technical work has to be done. We have to show that
Y(u,v,w,z;&) and O(u, v, w, z; ) possess meromorphic continuation to
the entire space C°. This will be achieved by showing that ¥ and ® can
be expressed in terms of the function

ico

rd . A
E(u,v,w,z;f)::f (%(u+v+w+z )—s+&) (5.91)
IGG-u-v-w-20+s5+§

—joco

I'd-—u—z+I'd—w—z+s)M(s,z—iT;N)ds,

and then proving the analytic continuation of =Z. In (5.91) the path of
integration, as before in analogous situations, has to be suitably curved.
Using I'(s)['(1 — s) = &/ sin(ns) one obtains the identities

. 1 1 = 7T
sm(?TS)F(S -5t U)F(s 57 77) ~ 2sin(mn)
{r(s—i— mn F(s—%3+ ’7)} (5.92)
[(=s+3-m T(=s+3+n)
and
ol Lo el Lo\ o =7
cos(zs)[| s Sy TR \S TS50 ~ 2cos(mn)

I(=s+5+n) TI(-s+35-n)

for any s and 5. From (3.92)) and (5.93)) it follows that

Y(u,v,w,z;€) = i(zﬂ)z—v—lw

4 sin(n€)
E(u,v,w,z;6) — Z(u,v,w, z, =€)} (5.94)
and
i(2 z—v—1 _
O(u,v,w,z,&) = ig}w {sin (ﬂ(v 5 ‘ 5)) (5.95)
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E(u,v,w,z;€) —sin (71 (% - f)) 22U, v,w, z; —f)} .

To investigate the analytic continuation of =, consider the region
D(P), which consists of (u, v, w, 7) satisfying (5.37), £ satisfying | Re £| <
% and |ul, [v|, wl, |zl, |¢] < P, where P > 0 is a (large) parameter. Assum-
ing this we may take Res = b (see (3.37) as the line of integration
in (3.91). We split Z into two parts by noting that, using (3.24) and
integrating by parts v times, we have

[e9)

2
M(s,z;A) = fxs‘l(l + x)“exp (_AZ log2(1 + x)) dx (5.96)

1 00
F(S) s+v—1 p(v)
F(S+V)[f+f]x 7 (x)dx
0 1

_ I(s)
T T(s+v)

M (5,28) + M (5,2 A)),

say, where

v 2
fx) = (di) {(1 + ) exp (—A— log?(1 + x))} .
X 4

Accordingly we may write

B, v, w,23€) = B, v, w, 7€) + EY (u, v, w, 23 6), (5.97)

1 00
where )| corresponds to f ,and Y, to f . Note that, uniformly for

0 1
256 Res >0,

MY (s,z:8) < 1,

with the «-constant depending on v, z, A. Thus by Stirling’s formula the
integrand of E(lv) is, for Re s > b,

< |s|—v— 1+Re(v—z) ,



5.4. Further Analytic Continuation and the explicit formula 283

as long as %(u +v+w+z-1)+ & — s stays away from nonpositive

integers. Thus we may shift the line of integration from Re s = b to +oco
if v > 3P, say. If this 1s assumed, then by the residue theorem we obtain

U+v+w+z—

- 1
2V (W, v, w,2:6) = =27 Y (-1 ( 5 +ET QT A)

q=0

TGG+w—u-z+ D+E+ QTG U+v-w-z+ D+E+ QTG +v+w+z-1D+£+q)

T(g+ DI(g+1 +2§)F(%(u+v+w+z—l)+q+f+v)
(5.98)

This series provides meromorphic continuation of E(lv) to compacta
of C, since the summands are by Stirling’s formula

< q—v—1+Re(v—z)
uniformly for all bounded (&, v, w, z, £) regardless of whether they be-
long to the region D(P) or not, and v may be taken sufficiently large.
By analogous considerations one may also obtain a series representa-
tion for E(ZV)(M, v, w, z; &) which is of a similar type as the one we have in
(5.98). We conclude that Z(u, v, w, z; £), and then by (5.94) and (3.93),
the functions W(u,v,w, z;¢) and ®(u, v, w,z; ) are meromorphic over
C. To show that the double sum over k and j in (3.83) is a meromor-
phic function over C*, it is enough to show that

1
‘I’(u, vow, 7k — E) < k€ (5.99)

uniformly for |u|, v, |wl|,|z] < P and C > 0 an arbitrary, but fixed con-
stant. By (5.94) we see that (3.99) follows from

1
E(u, vow,zk - 5) < k€, (5.100)
since it gives, for k an integer,
1 i X
p k== Z(=1 +12 z—=v—1
(u,v,w,z, 2) ;D@

1
cos(g(z—w))E(u,v,w,z;k— 5), (5.101)
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since by using I'(s)['(1 — s) = r/ sin(xrs) and (3.91)) we find that

1 1
E(u,v,w,z;—(k—E))z—E(u,v,w,z;k—5) (k € 7).

To obtain (3.100), shift the line of integration in (5.91) to Re s = Q,
where 2P — 1 < Q < k— 1+ 2P. Using Stirling’s formula and choosing
Q appropriately it is seen that (3.100) holds. Also if |u| < P, |v| < P,
w| < P, |z < P and |¢| < P, then

2w, v, w, 7€) < E7¢ (5.102)
for any fixed C > 0, and consequently also
P(u, v, w,7;€) < ¢ Ce™ (5.103)
and
D(u, v, w,2;€) < 1€17C. (5.104)

Therefore it is seen that the sums over the discrete spectrum in (3.90)
admit meromorphic continuation over C*, and it remains to deal with the

continuous spectrum in (3.90) and (5.88). Using (5.94) and (5.93) we
have that the term pertaining to the continuous spectrum in (3.9Q) is
equal to
100
L(u, v, w,2) 1= 2(20)<" 3 f g(

—ioco

{(u+v+w+z—1 _g)xg(u+v—w—z+l +§)

u+v+w+z-1 )
2 *é

2 2
u+v-w-z+1 v+w—u—z+1
([ e
g(”w_;’_Z“ —§)><(27r)2§l"(1 —25){cos(g(u—w))

—sin (77 (u + .f))} %d&

257
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where we assume that u, v, w, z satisfy (5.37)), and the path of integration
is the imaginary axis. The singularities of the integrand are the poles
coming from a) poles of the function =, b) poles of the product of the
six zeta-factors, c¢) poles of ({(1 + 2&)¢ (25))‘1, d) poles of I'(1 — 2¢). If
we assume again that P is large, |ul, |v|, |wl,|z| < P and {(s) # O on the
line | Im s| = 3P, then we can replace the line of integration Re & = O for
1. by the contour which is piecewise linear and is formed by the points
—ico, —=3Pi, 3P — 3Pi, 3P + 3Pi, 3Pi, ico. Denote this contour by .Z.
By the residue theorem we obtain a contribution of O(P log P) residues,
all of which are meromorphic functions on C*. Recalling (5.102)), we
have that E(u, v, w, z; £) decays rapidly if |u], |v|, |wl, |z| < P, which is our
case. Hence the integral over .Z is a regular function, and since P may
be arbitrary this shows that /., admits meromorphic continuation to C*.
Hence the decomposition formula for I(u, v, w, z; A), given by (5.4) in
terms of Iy, I, I, holds for (u, v, w, z) € C*.
We are going now to take the special value

2 2 2

in (5.4), or equivalently in the expression for I, we take u = v =
w =z = . More precisely, if Py is the point given by (5.103), then we
have to study I (&, v, w, z; A) in the vicinity of Pr.

Consider first the contribution of the discrete spectrum in (5.90).
The functions H are entire, and for £ = ix; the functions ¥ and @ are

regular near Py, since

1 1 1 1
(u,v,w,z) = (— +iT, = —iT,— +iT, 3 iT) (5.105)

1ijco

P
_ ) F(%(u+v+w+z—1)—s+ixj)
E(,v,w,z;ix;j) =

F(3B-u—v—w=2)+s+ix;)

1 .
g—ico
I'l—-u—-—z+I'(d—w—2z+5)M(s,z;A)ds,

and the right-hand side is regular near P7. Hence the first term in (3.90)
that belongs to the discrete spectrum equals

- 1
> aH; (5) (¥ - €,0)(Pr; ix)),
j=1

258
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with the obvious abuse of notation. Similarly it follows that the other
sum in (3.90) involving the discrete spectrum is equal to

i Z “J?ZkH;;zk (%)‘/’(PTQIC - %)

k=6 j<doi

To deal with the continuous-spectrum term /., suppose first that
(u, v, w, s) satisfies (5.37). Then we replace the line of integration Re & =
0 in the integral for /. by the contour ., as defined above. By the
residue theorem it follows that

LGty v, ,2) = 190G, v, w,2) + 12, v, w,2) + f . (5.106)
R4

where (p denotes complex zeros of {(x))

Iél)(u, v,w,z) = —2mi Z R?S
|Impl<3P $=2P

and
15.2)(»1, vV,W,Z7) = —2771'2 Res,

the residues being taken here at the points & = %(u +v+w+z-3),
%(u +v-—w-z-1), %(v +w —u — z— 1), all of which have positive
real parts for suitable u, v, w, z satisfying (3.37). But, as stated before,

f provides analytic continuation of /., so we may consider (&, v, w, ) to

%
belong to a neighbourhood of Pr. Then we obtain

f =19, v,w,2) = I, v, w,2) + f , (5.107)

<z —ico

where
123)(u, v, W, z) = 2mi Z Res,

the residues being now taken at the points & = %(3 —u—-v-w-2),
%(w +z—u—v+1), %(u + 2z —v—w+ 1), which have positive real parts
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in a neighbourhood of Pr. Combining (3.106) and (3.107) we obtain
jco
I.(u,v,w,z) = If.z)(u, v,w,7) + 153)(14, v, W,2) + f .

—ico

The last integral is over the imaginary axis. It is regular at Py and
equals there

1 RA +igP

- m(‘y - O)(Pr;i&)dé.

Now we compute IEZ) and I£3), noting that

\P(M, V,W,Z; f) = ‘y(u’ V,W,Z; _f)a (I)(u’ v, W, Z; é‘) = (I)(uy v, W, Z; _g)a

so that 1§2) and 153) are of equal absolute value, but of opposite sign. We 260
insert the preceding estimates in the expression (5.90) for I, and recall

that by (5.4), (5.6) and (3.7)) we have

oy L)+ v+ w)l(w + 2)
Iu,v,w,z;A) = v iwia) (5.108)

+ L(u,v,w,z;A) + L(v,u,z,w; A)

Hence

T B Al RS L

= 1 - 1
3 ) 2 C I .
+ Z o H (E)o(xj, T,A)+ ) Z @jokH (2)A(k, T;A),
Jj=1 k=6 j<dp
where we have (note that we may assume €; = +1, for if €; = —1, then

H(3) = 0 by (5.34))

0T, A) :=2Re{(¥Y — O)(Pr;i6)}, Ak; T, A) := 2Re {‘I’ (PT;k - %)}, (5.110)
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and F(T, A) is the value at Py of the function

fu,v,w,z) = fut v)i((b;ii)i(:vivgg(w *2) (5.111)
N {u+v{w+z-1D)(u-—w+1){(v—-z+1)
{(u+v—-w-z+2)
N (v+wl(u+z-1D)w—-—u+1)(v-z+1)
(v+w—-u-z+2)
N u+viw+z-1D)(u-—w+1D{v-z+1)
{(u+v-w-z+2)
N {u+2lv+w—-1),z-v+1D){(u—-w+1)
{(u+z—-v—-w+2)
+4§(u+z){(v+w— Diu—w+ 1)E(v—2)
(2+u+z—-v—-—w)

Mw+z-1,z;A)

Mu+z-1,z;A)

Mw+z—-1;w,A)

My+w-=1;w,A)

Y- D)

1
(u,v,w,z;i(v+w—u—z— 1))

+4{(W+Z)§(u+ v—1DI{w—u+ 1l —-2)
(2+wz—u—-v)

Y- D)

1
(u,v,w,z;i(u+v—w—z— 1))

+4§(2—u—z){(2—w—z){(u+v—1){(v+w—1)
(A-u-v-w-7)

(¥ - )

1
(u,v,w,z;i(u+v+w+z—3))

+4§(v+w){(u+z—1)§(V—z+1)§(u—w)
(2+v+w—-—u—-7)

Y- D)

1
(V,M,Z,W;E(u+z—v—w— 1))

+4{(w+z)§(u+v—1)§(z—v+1)§(u—w)(‘P_(D)
(2+w+z—u—v)

1
(V,U,Z,W;E(M+V—W—Z— 1))

+4((2—v—w)§(2—w—z){(u+v—1).{(u+z—1)
(A-u-v-w-7)

(¥ - )
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1
v,u,z,w;z(u+v+w+z—3) .

This expression contains 11 terms, of which the first is the zeta-
function term in (3.108)), and the others (denoted by I to X) are formed
as follows. I and II are the first two terms (without —iT in M(-)) on the
right-hand side of (5.90), and III, IV come form I, II by changing u to v
and w to z, as is clear from (3.108). The terms V, VI, VII come from the
residues of 15.2) at the points %(v +w—-—u—-—z-1), %(u +v-—w-z-1),
%(u + v+ w + z — 3), respectively. Finally VIII, IX, X come from V, VI,
VII by changing again u to v and w to z. What remains is the technical
task to evaluate f(u,v,w,z) at the point Pr. It will be shown that, with

the obvious abuse of notation, there are absolute constants cy, ..., ¢
such that
- I’

F(T,A) = Hy(T, A) + co + Re| (A7) {c1 F+ (5.112)
s r”’ .\ r 2 . | .\ T . | R4 3 s 1—*(4) . " 2
o—+c3|—= C4— +c5—— +c6| = 71— +cg|—
T "7°\T T "2 "™T T TO\T

17 r\4 N2T 7
r'r r T | 2\ a2
CQT-FC]O(F) +CI1T}(§+1T+”)6 dt

= Ho(T,A) + Fo(T, A),
say. We already simplified Fo(T, A) in (3.11), and it will turn out that
Ho(T,A) < T ' 1og? T + & T/’ (5.113)

for any T, A > 0, so that the contribution of Hy(T, A) is negligible.

In the neighbourhood of Pr the points & = %(v +w-u-z-1)etc.
in V — X in (3.11) are close to —%. Thus the integrals and (3.89),
which define ¥ and ¢, cannot be used, since the path of integration
cannot be drawn. For ¥ the singularity comes from the factor F(%(u +
v+ w+2z) — s+ &), which has a simple pole at s = %(u+v+w+z)+§.
We make a small indentation around the path in (5.84), so that the last
point lies to the left of the indented contour, and then use the theorem of

261

262



290 5. Motohashi’s formula for the fourth moment

residues, moving eventually the contour to Re s = }‘. This can be done
for @ also, and therefore when (u, v, w, z) is in the neighbourhood of Pr
and ¢ is close to —% we have

(¥ = O)u, v, w,2:€) = H(u,v,w,2:€) + 2! {COS (W 5 W)

—cos(g(z—v+ 1)—7r§)}cos(7r§)F(—2§)F(l +V+V2V_M_Z +§)
F(l +u+v—w—z+§)M(u+v+w+z—1
2 2

+ &,z A) (5.114)

where

H(u,v,w,z;,&) := —i(2n)*"""2 cos (W - nw)

2

1,
g Hioo

X f sin(g(u+v+w+z)—7rs)

1.
7 100

1“(u+v+w+z—1
2
u+v+w+z-—1
r
(5
XT(1—w—z4+s)M(s,z; A)ds

+ 1272 cos(n€)

1,
g Hioo

X f cos(nz+ g(u+w) —ns)

1 .
Z—lOO

—s+§)

s—f)r(l—u—z+s)

—1
><1“(u+v+w+z s+§)
2
1
xr(”””;” s—g)r(l—u—us)

XI'(1-w—z+s)<(s,z;N)ds. (5.115)

In (5.114) we may set & = %(v +w —u—z— 1) etc., and then insert



5.5. Deductions from the explicit formula 291

the resulting expression in V — X of (5.111). Then we set
(u,v,w,z) = Pr + (61, 62,03, 04),

or
2 2 ’W 2 2 ’

where the ¢’s are small in absolute value, and will eventually tend to 263
zero. In the process we take into account that

I'(s—r+it)
— ¢

~W/A gt (R R 5.116
TG+ 1) (Res>Rer), (5. )

M(r, s;A) =T(r)(A Vo)™ f

so that the gamma-factor terms are introduced. The resulting expression
for
. | 1. 1.
f(§+zT+61,§—zT+62,§+zT+53,E—zT+64

is cumbersome. It contains 11 terms without H (of which all but the
first contain integrals with the gamma-function), plus six terms with
H. The simplification of the expression in question is tedious, albeit
straightforward. Eventually one obtains (3.112)), with Hy(T, A) coming
from all the terms containing the H-functions. Putting (3.116)) in (3.113))
it is seen that at the points Pr + (01, 02,03,04) and & = %(62 +03 — 01 —
04 — 1) the function H may be expressed as a double integral, whose
estimation leads to (3.113). By restricting finally A to the range 0 < A <
T/log T we obtain (3.10), so that Theorem 3.1l is proved.

5.5 Deductions from the explicit formula

Theorem 5.1l provides a precise expression for the integral in (3.10)), but
the right-hand side contains the functions ® and A whose asymptotic
behaviour is not simple. Thus in this section we shall give a detailed de-
duction of Theorem [5.2] from Theorem 5.1l The result is the asymptotic
formula (3.12)), which is quite explicit, although the error term is not
sharp. The same type of analysis with appropriate modifications, which
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will be indicated, permits also the deduction of Theorem [3.3] which
contains the asymptotic formulas (3.13) and (5.14)), valid for different
ranges of V.

To begin with, note that by and (3.93)), for real & we have

S S
VPP i) = g (B (Pr3 i6) ~ E(Pr3 —i6)) (5.117)
and .
O(Pr1ié) = é(aaﬂr; i&) + B(Pr: —iE)), (5.118)
where by (3.91)
) | —+z°°1"(%—s+l'-f) 5 ( 1 )
=(Pr; = —— T Mls,——iT;Alds. 5.119
(Priie fr(%ﬂ%) (M (5,5 ~iT;Ads. (5119)

Moreover by (5.101) we have, for k = 6,7,...

1 tico

1) (=DM Th-s) I
kI’(Pr,k—z)_ e fl"(k+s)r (s)M(s,E—lT,A)ds. (5.120)

1 .
Zloo

To estimate Z(Pr; i) in (3.119) and W(Pr; k— %) in (3.120) we need
abound for M(s, 1 —iT;A). In (5.24) we replace the ray of integration
and write

oo exp(iT—1-gn(Ims))
1 .
M(s’z _iT;A) - f N1 4 )3T (5.121)

2
exp (—%IOgZ(l +x))dx < e—l]ms\/TM(Res,%;A) < e—l]msl/TA—Res’

where the <«-constant depends only on Re s, since by a change of vari-
able we obtain, for Re s > 0,

1 r u\"3
M|(Res, 5; A= AR R“‘l(l —)
( es,2 ) fu +A
0
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2

A
exp (_Z log? (1 + %)) < ARes,

the last integral above being bounded.
By shifting the line of integration integration in (3.120) sufficiently
to the right and using (3.121) it is seen that for any fixed C; > 0

1 Ak ifk<C,
Y| Prk-=-|< , (5.122)
2 (kA€ ifk>C,

where C depends on C;. Therefore we have, uniformly for 0 < A <
T

logT’

o

1
Z Z aj,zka;zk(E)A(k; T,A) < A™S. (5.123)

k=6 dezk

Next we indicate how one obtains
E(Pr;i&) < &€ (5.124)

for any fixed C > 0if 79 < A < T for any fixed 0 < § < 1, [¢] > 265
C T log T with C; > 0 a sufficiently large constant. To see this we move

1
the line of integration in (3.119) to Re s = m + 1 for a large integer m.
Thus by the residue theorem

+'§1
i€, -
2

(=D + d 4 i) ( 1

2(Pr:if) =27 ) T+ DIGk+1+2i0) "2

—1iT; A)
k=0

m+ L +ico

1 el — .
+ f MFZ(S)M (s,l - iT;A) ds.
I'(5+s+if) 2

m+z—100

On using (5.121)) and Stirling’s formula (5.124)) then follows. There-
fore we have shown that, for 7° < A < T/ logT,

4
e UIDY gy (5.125)

(A f‘{(% +iT + it)
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PR el v aep
_ 1 3t? .
= Fo(T,A) + ~ f ROESTE 0 T, Ndé

—CTlogT
1
+ > oH] (5) 0(xj; T, A) + o(A™%) + o(T " 1og? T).
x;<CTlog T

We want to show that in (5.123) both the sum and the integral can be
further truncated with a small error. To this end we transform E(Pr; i€)
by noting that, for |¢| < TlogT and T7° < A < T/log T (6 > O arbitrar-

ily small, but fixed) we have

1,
gt

_ , F(%—F+i§) )
=(Pr; = _— T
(Pr;ié) j‘n§+r+z)(”

1
Z—IOO

fxr_l(l + x) 2T g3 0?1+ gy g (5.126)
0
1ico

- [

1 .
Z—loo

= E(Pr3ig) + o(e™ 1),

Loodx dr+ o(e_Az/wo)

O%M_

say. We have

1
2
E”(Pzﬁif):==LINX‘1(14-X)‘%+”1 (5.127)
0

1 .
7 tioo

A2 I —r+i) .
exp (_Z 10g2(1 + x)) f mﬂ(r)x dridx

1_jco

2 2
. —Liig . A 2
=2nmi | R(x,&)x 2751 +x) 27" exp —Zlog (1 +x)|dx,
0
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where
1

R(x, &) := fy‘%”‘f(l — ) 2] 4 xy) 2y, (5.128)
0

The proof of the identity (3.127), with R(x, &) given by (5.128), is
equivalent to showing that

) _+iool"(l—r+i§)
2ri 1f2—r2 "d 5.129
(2mi) F(%+r+i§) (nx'dr ( )

The right-hand side of (5.129) may be written as PEALT | (—x), where

1

I(x) := fz“_l(l -2 (1 - z2x)Pdz

0

withe = =1 +i& y = 1 +2i¢. Setting

_Tla+n)
T T(a)

we have, for |x| < 1,

(@

=ala+1)...(a+n-1), (a) =1,

1

I(x) = f 227N =gyt Z (_kﬁ )(—zx)kdz (5.130)

k=0

)

0
1
% fza+k—l(1 _Z)‘y—(l—ldz xk
k=0 ’
|

0
Z B T+ Iy — a)}xk _ Iy -a)
k

] TGy + 0 o) F(a,B:v; x),

266
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where

(9]

(@B
F(a,B,y;x) =
% (Y)ik!

is the hypergeometric function. Now on the left-hand side of (5.129) we

Xk

1
shift the line of integration to Rer = N + T where N is a large integer.

There are simple poles of the integrand at r = % +ié+n,n=0,1,...,N.
By using the identity

I'(s+n)=s(s+1)...(s+n—DI(s)

and the fact that (—1)"/n! is the residue of I'(s) at s = —n we see that, on
letting N — oo, the left-hand side of equals the right-hand side
of (5.130).

In (5127) we replace the segment of integration [0, 1] by £; U £, as
follows:

0 CcA'logT 1/2

Heeb = (TlogT) ™!, 6, < A(Tlog?T)™", C > 0is a large
constant and ¢ > 0 (the case & < 0 is similar). On ¢; we have x¥¢ <
exp(—CEéA/(T log2 T)), and on £, we have |x| > CA™! log T. Hence we
obtain, for some C’ > 0,

£1A

2T

E°(Pr; i) < exp (—C’ ) +exp(—C’log? T), (5.131)

T log

providing |£| < CT log T. Therefore

X 4
(AVr)™! f ‘g(% +iT + it) e gy (5.132)
CTA ' log® T
~ 1 G+l
= F()(T, A) + 7—1_ f m@(f, T, A)dé“

—CTA 'log®T
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1
+ Z o H’ (E) 0(xj; T, A) + o(T " 1og® T),
x;<CTA 1log® T

and henceforth we restrict A to the range

TZlog™ T < A < Texp(—log T), (5.133)

with A > 0 an arbitrary, but fixed constant. One can consider also the
values of A outside this range, but for all practical purposes the range
(5.133) appears to be sufficient. We proceed now to evaluate

13
E°(PT;i§):2mffx—%+ff(1+x)-%+"T(1+xy)-%—ify—%+ff
0 0

(1- y)_%-}—ié:e—%Az 10g2(1+X)dx dy (5.134)

by using the following procedure. For |¢| < log** T we integrate first
over y (simplifying (1+xy)~2~% by Taylor’s formula), getting essentially
a beta-integral, that is,

1

B(p,q) = fxp’l(l —x)7dx =

0

I'(p)I'(q)

(Rep >0, Reg>0). (5.135)
Tp+q 7 7

For the remaining range log* T' < [¢| < CTA 'log® T we use the
saddle-point method, evaluating first the integral over x, and then inte-
grating over y.

Thus we begin the evaluation of Z°(Pr; if), supposing |¢] < log*A T
By we have, with some ¢ > 0,

A llogT
2°(Pr; i) = O(e™¢'T) + 27 f XL 4 )T

0
1

A? : . ,
exp (_Z log?(1 + x)) dxfy_%”f(l —y) 1] 4 xy) 2 E gy
0

268
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A llogT
; —L+ig —i+iT A 2
= 2mi X271+ x)727 exp —Tlog(1+x) dx

1 A llogT

fy-%”f(l — )2y 4 2ni f xT2HE(] 4 )2 T

0 0

I
1 AL, Leig - +ig
X —;—zf exp —Zlog (I+x))dx | y2™(1 —y)"2""dy
0

A llogT
+0 f BPlogA T - dx|+ 0@ Ty = [, + L + O(T ™Y,

0

say. We have

A llogT
_lyi Ly
I = 2ni f X 4 )2t

0
1

A2 . .
exp (_T log(1 + x)) dxfy_%“g(l — y) Tty
0
PG [

1, 1, .
— e 27 —7+lf‘l+ —7+IT
Mrarag ) Y 4

0

ex _A_21 2 —clog®T
P 1 og“(1+x))dx+ O(e ).

269
Next we use

o0
2

fexp(ozx — Bx*)dx = \/gexp (Z_ﬁ) (Rep > 0)

—00



5.5. Deductions from the explicit formula 299

to write the last integral above as

(A\/7_T)_1 fx—%+if(1 +x)—%+iT [f(l +x)iue—(M/A)2du]dx
0 o0

1 00
= (AVr)™! f ymRHE(] — )T ImiET f (1 — vy e gy gy
0 —0o0
after change of variable x/(1 + x) = v. This may be further written as

1 )
(A ) lim f It (] Zy)aiE=iT f (1 = v) "W gy gy
a—>—1+
0 —00

AlogT
=AY lim f eI gy
a——1+0
—AlogT

1
f yTEHE(L =y iEToigy 4 e o T

0
AlogT
. _ 2
=(AVm)™' lim fe(”/A)-
a——1+0
—AlogT

I + &+ 1 - i€ — iT — iu)
T(a+ 3 —iT — iu)

AlogT
= (AVn)™

—-Alog T

di+ O(e=c1°¢'T)

1 . . .
e_(”/A)Z ‘ F(i + zgl)r(—g —iT - m)du N O(e_"logz T)’
(3 —iT — iu)

where uniform convergence was used and the fact that é + 7 + u # 0
for [u| < Alog T, |¢] < log* T. By Stirling’s formula, in the form stated
after (3.18)), we find that

T(} + & (=i& —iT — i) 1 1
=T(= T 2
F(%—iT—iu) (2+z§)( +u+é)
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exp {—gg + %i — i¢log(T + u) + 0('%')} : (1 + 0(%))

Since

270

Alog* T
10g(T+u):10gT+;+0(%),

(T+u+& 2 =T"2+0T 3 AlogT)

and A < T exp(o 4/log T), it follows that

Y O (—ig —iT — i
F(ﬁlfl)r( i — 1T — iu) :r(1+i§)
I'(5 —iu—iT) 2

. . 1
e%”’_%ﬂgT_%_lg . {1 +0 (exp (—5 ylog T))} .

This means that the last expression is negligible if & > 0 and & is
large, in which case F(% + i€) = exp(—%ﬂf). Therefore

F3(l+i§) 1. 1 1_; 1
I = 2;mi—2—— et T L 4 ——logT||},
LT 2in)¢ { (eXp( 2 Vo8 ))}
and by the same method it is established that
1
I < T2 exp (—5 ylog T).
Hence uniformly for |¢] < log* T we have

R R r3(l+i'f) 1. 1
BE°(Pr; if) = 2mie®™ 7”fmT 7 'f{1 +0(exp(—§\/log T))} (5.136)

It may be remarked that the expression in (5.136)) can be integrated
in applications whenever this is needed. Now we suppose additionally

D < ¢ <1og* T, (5.137)



5.5. Deductions from the explicit formula 301

where D > 0 is a large constant. Then we use again Stirling’s formula
to obtain 1
E°(Pr;if) < T72¢™  (¢£>0), (5.138)

and

E°(Prsié) = 4?23 (TIE))? expi¢ log €] — i€ log(4eT)) - (1 + o(é—l)) (5.139)

for £ < 0. Finally from (5.138) and (5.139) we can obtain an asymptotic
formula for 6(&; T, A) when (5.137) holds. On using and (3.118)

it is seen that

0. T, A) = 2Re{¥(Pr: if) — (Pt i&)} (5.140)

i Lo\ T
S {( Sh(ng) ’) BPriie) - (sh(ﬂ§) i ’) =(Pr; ’5)}

1 1
= - IM{E°(Pr; i) + Z°(Pr; —if)} + O(T21el™).

Thus 6(¢; T, A) < |§|‘%T‘% in the continuous spectrum, making the
total contribution of the continuous spectrum < T2 log€ T for |¢] <
log** T. On the other hand, in the discrete spectrum one has to take
& > 0, so that the main contribution to 6(x;; T, A) (with error which is

O(T—%x]—,l)) will be

% Im{E°(Pr; —ix;)}
= —ﬂ(Zij)_% sin (xj log 4:;7) = 77(2ij)_% sin (xj log 4);+T)

Then we can, in view of A < T exp(—+/logT), x; < log*A T, insert
the exponential factor exp(—(Ax;/ 27)?) in the relevant term in (3.132),
making a negligible error. This is done, because these (harmless) factors
are present in the series appearing in Theorem and Theorem 3.3
Hence it remains to consider the ranges || < D and 10g3A T < ¢ <
CTA 'log® T. In the range |¢| < D we trivially have E°(Pr; i&) < T2,
so that the contribution to both the continuous and discrete spectrum is
<T: , more than required by Theorem

271



272

302 5. Motohashi’s formula for the fourth moment

We turn now to the range
log* T < ¢ < CTA  og? T, (5.141)

provided that (3.133)) holds. We rewrite (3.134)) as
1
E°(Pr; ié) = 27i f VL~ y)ES (v )y, (5.142)
0

where

1

S &) = fx-%”f(l + ) 2T (] 4 xy) 2 emi A g0 g (5.143)
0

and proceed to evaluate by the saddle-point method first S (y;¢), and

then E° itself. First we show that, in case & > 0 and (5.141) holds, the

contribution of S (y; ) is negligible uniformly in y. Namely we replace
the segment of integration [0, %] by L; U Ly, as follows:

On L; we have x¢ < exp (—%ng), hence the integral over L; is

< exp (—Ef). On L, we have |x| > A~!log T, consequently we obtain,
for £ > 0,
=°(Pys if) < exp (—gg) + exp(=Cy log? T). (5.144)
In case & < 0 write
1
2

2
S &) = f 31 +x)72 exp(—%logz(l + x)) exp(i f(x))dx,

0
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where

f(X) = f(; &, T,y) := Elog x + Tlog(1 + x) — Elog(1 + xy),
so that

& T &y°

= - + .
X2 (1+x)?2  (1+xy)?

&y

1+x_1+xy

fo=ty S = -
X

The saddle point is the solution of the equation f’(x,) = 0, giving

- 20|
T — |+ (T = €)% + 4Tyé)?
2
:i(pﬂm(f_))»ﬂ. (5.145)
T — € T T2 T

We can now evaluate S (y; €) by a general result on exponential inte-
grals, like Theorem[2.3] This will be sufficient for the proof of Theorem
and the first part of Theorem[3.3] On the other hand, we may use a
special contour, suited to the particular structure of the integral S (y; &),
and evaluate S (y; €) from first principles. The latter approach, which is
naturally more delicate, leads to slightly better error terms and enables
one to deduce the second part of Theorem [5.3]

Thus we shall first use Theorem[2.3] but before it is applied we shall 273
truncate S (y; €). So consider

7-1
2
fx‘%(l + x)‘% exp (—AI log*(1 + X)) exp(if(x))dx
0
(o) T_lz_k 0
= f L= I,
=0 T-15-k1 k=0

say. In each I(k) we have f’(x) > |£|/x, hence by Lemma 2.1]

—1m—ky—1 ky—1 B AR .
Ik) < (T 2757 2()¢IT2%) " < |é|” T~ 227 2k,
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and consequently

-1

2
f X7 2(1 + x)72 exp (_AT log?(1 + x)) exp(if(x)dx < |&7'T™2
0

Also we have trivially

1

A2
X721+ %) 72 exp (_T log?(1 + x)) exp(i f(x))dx
l€1'/2(10T)=1/2

2 24
< exp (— A%kl ) < exp (_Ifllog—T) < exp (—M)

100T 100 100

in view of (5.141)), and thus the integral is negligible if A > 1, which
may be assumed. In the remaining integral

gl 2(10m)112 )
A
I:= f x_%(l + x)_% exp (_Z log2(1 + x)) exp(if(x))dx
T-1
we have f/(x) < min(|¢|x~!, T), f’: (%) > Ifllx‘z. To evalluate I we apply
Theorem 23| with a = T, b = |¢]2(10T)72, ®(x) = x~2 exp(~CA?x?),
ux) = x/10, o(x) = x_%(l + x)_% exp (—ATz log?(1 + x)) Fx) =
min(J€], Tx). We have |f” ()7 < x| < @ (x)F~1(x) trivially if
F(x) = £, and x2¢]" < T 'x7! < @2(0)F~'(x) if x < |€]T~". For
the error terms we obtain

/ Nl -1 1 _ _ 1
O, (1fsl+ 172) < Thaary ! = 1T,
i -1
q)b ('fl;l e/ 2) < e oe T, DopoFy™? < g™ 77,

274  and the contribution of the exponential error term in Theorem is
clearly negligible. Therefore Theorem 2.3] gives

I= \/ngoo(fé’)_% exp |iT log(1 + xp) + i€ log 0 =
1+xy 4
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0(|§|—1 —') N2AT- ZeXp[ (Af)z]

exp (iT log(1 + xp) + i€ log I :Co + %) + 0(|§|‘1T—%)‘
X0y

Since ¢ < 0 we also obtain, by using (3.143),

& 2
Tlog(1 + x0) + £ log —— X = ¢lo gﬂ+( 2)%+0(|§_|2),

which gives

2 b
I= @T‘é exp(—(A—i) ]exp(zflogu +z(y—%)§—+ ZT)

0(1ePT-5?) + 0 (e 773).

[\

Then
2°(Pr:ie) = O (EPT™2) + 0(|§|‘1T—%) + Qr 2™ (5.146)

2
exp (zflog % - i) f()’(l -y :

2
exp{iEtoe1 - + s s

The last integral may be truncated at ||~ and 1 — |£* with an error
of O(|¢|™"). The remaining integral
12
_1 .z
si= [ o=y exptiona,
€172
_ &
JO) = f(:€,T) := Elog(y(1 = y)) + T
may be evaluated again by Theorem 2.3 We have

£ 68 e £ £
x 1-x

2 (1-x?2

fx) =
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and the saddle point x, satisfies f’(x,) = 0, whence

1\ 1
_ & £\ 1 ¢ & 5§
x"_(l_ﬁJr(Hﬁ)] _§+8_T_128T3+0(F)'

275 The error terms from Theorem will be all < &2, Thus with
1
@(x) = (x(1 — x))”2 we obtain

J = V2re.(f')exp (i 1o+ %) +0E?)
= nres e 2 {1+ 0 (") + 0 (16PT 7))
exp (—i§ log4 + g) + 0.

Inserting the expression for J in we obtain

E°(Prs i) = —2327(E\T) "2 exp (ig log 4'%) (5.147)

exp ((—g)z] (1+o0(ar™")+ 0(ie’r7?))

1

+0(EPTR) + 0l T ) @ <o),

provided that (5.141)) holds. The error terms O(|¢|T~") and O(&°T2)
in (3.147) will make a negligible contribution. The main term in (5.147))
is the same main term as in (5.139), only with the additional factor
exp(—(A&/2T)?). Hence the analysis concerning the main term in
will be as in the previous case. To deal with the remaining two
error terms in (5.147) we shall use the bounds

e
Jie

6
dr < T>*1og®/* T (5.148)

and
< x*log€ x. (5.149)
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The last bound (with C = %(B + 1)) follows on using the Cauchy-
Schwarz inequality and the bounds

1
> aiH} (5) < x’logx, (5.150)
Xj<x

1
Z ajH;‘(z) < 2 log® x. (5.151)
Xj<x

Note that (3.150Q) is a weak consequence of (3.53)), while (3.151)

has been claimed by N. Kuzmetsov. A proof was found recently by
Y. Motohashi, which shows that actually (3.131) holds with B = 20.
Therefore on using (3.148)) it follows that the contribution of the error 276
terms O(|§|3T‘5/ %) and O(lfl‘1 T‘%) to the continuous spectrum (i.e. in-
tegral) in (3.132) is negligible. The contribution of these error terms
to the discrete spectrum (i.e. sum) in (5.132) is, by (5.149) and partial

summation,
1
3
#i3)

< Z a;
< (TAf1 log® T)5 772 log€ T + (TAf1 log® T) T2 logt T

()C;T_S/2 + xj_-lT_%)
xj<CTA 'log® T
< (log T)PW

with D(A) = 15+ 5A + C, providing that holds. This established
then Theorem[5.2]in view of (3.11)).

We pass now to the discussion of the proof of the first part of The-
orem[3.3l We integrate Theorem 5. dlover T for V < T < 2V. First we
note that from we have

A%

1
fM(s,E —iT;A)dT
\%4
P q v _q A2
= —ifxs_l(l + x)—%+lv(b;+x) exp (_T log?(1 + x)) dx.

0
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IfRes > 1and 7¢ < A < T exp(— +/log T) the right-hand side is

< AI—Re se—IIm s|/V

similarly as in the proof of (5.121)). Hence we obtain

2V

ALk k<C,
fA(k; T,NdT <« { -

kA€ k> C,
\%4

for any fixed C; > 0. This means that the contribution of the holo-
morphic part in (3.10) to the integral in (3.13)) is negligible. From the
formula (see Section [5.1))

r(k)( s)
I'(s)

k
= Z bix(s) log/ s + c_1,ks_1 +..tCcopks "+ O, (lsl_’_l)
J=0

277 it follows that, for a suitable polynomial R4(y) of degree four in y,

2V
f Fo(T, NdT = VR4(log V) + O(Alog® V),
\%4

hence both (3.13) and (5.14) will contain the error term O(A log® V).
The proof of (3.13) resembles the foregoing proof, only in
we integrate for V < T < 2V, and eventually we shall replace V by
V27/ and sum over j = 1,2,.... We have now also to consider the
additional factor i ' log~!(1+x) ~ i"'x~! at x = xq, which appears in the
integrals in after integration over 7'. Since xo ~ |£|T !, the factor
i~1T1€7! will be essentially reproduced in the whole analysis, both in
the main term and error terms. Thus we shall have, as the analogue of

(14D,

2V

f =°(Pr; )T = O (|gPV™2) + 0 (I V')
) 2V
+

PRI TS exp i€ log o | (46277
4eT

Vv
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(1+0(av")+o(e’v2)),

and the factor i accounts for the change of sine into cosine in Theorem
[5.3] The error terms above will all contribute a total of O(V% 1ogD(A) V),
and the first part of Theorem [5.3 follows, since similar arguments apply
to (3.136).

As mentioned earlier, there is a possibility to evaluate S(y; &) in
(B.143) (for ¢ < 0 and (5.141) being true) directly by treating it as a
complex integral, choosing a suitable contour in the x-plane to replace
the segment of integration [0, %]. Such an evaluation is necessary for the
proof of the second part of Theorem [5.3] namely (3.14). This was the
approach used originally by Motohashi, who replaced the segment [0, %]
by €1 U £, U €3 U €4. Here £y, {5, {3, {4 denote segments formed by the
points 0, %xo(l —0), xo(1 + e+ €i), A} log2 T + xoe€i, % respectively, and
€ > 0 is a small constant. On ¢; the integrand of S (y; £) is, uniformly
iny,

-1 T X0
< |xI"2exp|—=1|€| + T arc tan
I p( i o

X0y
+ |é| arc tan ————
X0 €1 2+ xoy)

1
< 272 exp (—§|§|)

since xp ~ |§-‘|T‘1. Hence the contribution of ¢; is negligible if, say,
A > 1/3 in (3.141). Clearly the contribution of ¢4 can also be neglected.
Asfor 3, let Q = xo(1 +u+e+ei) withu >0. Thefor0<y<1,u>0
the integrand of S (y; £) at Q is uniformly

X0€

1 €
< x| 2ex arctan —— — T arc tan
o p(|§| l+u+e 1+ xo(1 +u+e

2

) < |x"% exp (—%|g|) (5.152)

YX0€

—|&| arc tan
1 1+yxo(1+u+e

if € is sufficiently small. Thus the contribution on €3 will be also negli-
gible if A in is large enough.

On ¢, we may use (5.152) with u = 0 and € a small, positive con-
stant. It follows that we have x = xy + rxg, dx = xodr, where r is the

278
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. Loi L .
variable that runs over the segment [—ee4’”, ee4’”]. However, if we re-

strict r to the segment [—|&["%/3¢37, |£|"2/5¢37] then the integrand on the
remaining two segments of ¢, is bounded by the last bound in (3.132)
with € = |£] |=2/>. Hence we have a total error which is

< "2 exp(-C'le') (€’ > 0),

(5.153)

and this is certainly negligible if A > 2 in (3.141)). Therefore it follows
that, for £ < 0 and an absolute O-constant,

SO;é) =

1

’ xo '
O (exp(-C'Ia17)) + (M)

AZ
X exp (_T log*(1 + xo)) exp (iT log(1 + xo) + i€ log

|25 il

-4
x f (1+r)—%(1+ﬂ) (1+
1 + xoy
_‘frz/sfﬂ/’l

A? Xot
X exp {_Z (210g(1 + xo)log(l + " Xo)

+log2(1 + 1?10)) + iZajrj}dr.

j=2

Here we have, by Taylor’s formula,

XD (x0)

ai
J
J!

= 0j(lED,

Xor

1+ x

ﬁ

1+x0y)

(5.154)

279  and the term with j = 1 vanishes because xg is the saddle point of f(x),
that is, f'(xp) = 0. Since

3 r &y’

£ ==

it follows that

_4
2

a

_— + ,
2 (1+x)?  (1+xy)?

Tx; xoy V)_lé(, ¢
b+ﬂHWW_@+m» _?@+7
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—1
2

With the change of variable r = ei™a 2y the last integral above is

2
equal to
Ag 1
Lri -3 Iri =3\ 2 -1 “172
e*"a, l+ei™a,*ul (+..)72(1+...)
_Af

2

A 3
exp (—7(2 log.. .)) exp (—u2 + ia3e%’”a;3/2 3

u — ia4a52u4 +.. .)du,

where A; ~ %Ifl” 1025 T'— co. Expanding the last exponential into its
Taylor series it is seen that this becomes

10)+ b1, by < "7,

Jj=3
Ag 1
1. -1 1 _L\72 1 1
1(j) = e"™a,’ f(l +e4”’a22u) (I+..)72(1+..)72
7A§
A? Xor S
——(21log... +log*(1 + ‘ule™ du.
exp( 7 ( og og ( 1+x0))) we ™ du
We truncate the series ), at j = J so large that the trivial estimation
j=3

of the terms with j > J makes a total contribution of order O(T‘%). The
integrals /() for j > 3 will make the same type of contribution as /(0),
only each will be by a factor of |§|1‘%j smaller than /(0). Thus we may
consider only /(0) in detail. We have

Ag

_1 loj 1 -
1(0) = ei”ia;% f(l + eflt”ia;%u) ’ (1 4 Xoyer a i zzu)

1 + xgy

D=

_A§

1

1. =
xoei™a,’u
[1 y—2

1+XO

-1 K
X exp {— (E) (2log(1 + xg) log
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g 2y xpei™a, 2" ’

0 0 _2

2 +|log|1 + ———— e du.
1+x0

1.
Zﬂl

In I(0) we have 0 < y < 1, ap = |£], xo ~ |§|T‘1. Thus we repeat
what we already did: we expand all three square roots above into power
series, keeping as many terms as is necessary so that the trivial estima-
tion of the remaining terms makes a total contribution which is O(T‘%).
Thus we are left with the integral

Ag
_ ini -3 2 A_2
J=e"a, expi —u 7 2log(1 + xp) log (5.155)
_A§
_1 _1
e 2 uxo ) ei™a, 2 uxg
1+ +log” |1+ u
1+ X0 1+ X0

plus integrals of similar type, each of which is by an order of magnitude

1 . . .
of |£|2 smaller than the previous one. When we expand the integrand in
(5.133)) into power series we obtain the integral

A
] A? o1
fexp {—(1 + ;—‘Azx(z)agl)uz - ?x(z,e}*’”afu} du  (5.156)

—A;

[N

.
— pd™
Ji =e*"a,

plus again a number of integrals of similar type, which are of a lower
order of magnitude than J;. Since

1
Azx(z)ag] < A?8T72g <« T 'Alog® T < exp (—5 ylog T),

we have
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By using
r 2 Ps a?
fexp (a/x - Bx )dx = \/;CXP(E) (RegB > 0)
we find that
Ji = e%”ia;%n% (1 + %Azx%agl)_% exp[ l.A4'XéCl£1 ]
8(1 + ﬁAzx(z)agl)

+ O (exp (—colél'))

. _1 j iN x3a!
:e}*”’n%azz(l—iAzx%ag]+...) 1+ 02 +...
8 8( )

1+ ﬁAzx(Z)agl
+ O(exp (—colfll/s)).

If we further make the restriction A < T'#, then all the terms involv- 281
ing powers of A%c%a; ! will eventually make a negligible contribution.
On noting that with suitable constants e; = e;(y) we have

1 11 > L
ay? =221 [1+Zej§fT J
j=1

>

we may collect all the expressions for J; in (5.156) and insert them in
(5.154). Expanding the quantity

X0 % A2 2
((1 YT xOy)) exp (_T log=(1 + xo))

into Taylor series and using

Xo o _ €l 1\ & 55
T log(1 + xp) + ¢ log T+ 1oy =¢log oT +(y 2) T +0 2

we arrive at the expression for E°(Pr;i£), where the main term is
like in (3.147), only it is multiplied by a finite sum of the form 1 +
2iabe |£19TP A€ with each term satisfying

1
IE9TP A¢ < exp (—5 vlog T) ,
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and the contribution of the error terms is negligible (i.e. it is O(T‘%)).
When we integrate then Z°(Pr;ié) over T, V < T < 2V, replace V by
V27/, sum over Jj, then we obtain the second assertion of Theorem [3.3]
From the above discussion it follows that the total error term for the
range |¢] > log®* T will be O(V%), while for the range D < |¢] < 1og*A T
it will be sufficient to use

PxY% 2v

f E°(Pr3i€)dT = i2"Pr |1 T exp (iflog ﬂ) (1+o0a4™)
4eT

Vv Vv

for & < 0, which is the analogue of (5.139). For |£] < D the trivial bound
2v
f E°(Pr;ig)dT < V?
14

suffices.
In concluding, it may be remarked that the quantities ¢; which ap-

pear in (5.14)), satisfy ¢; = (1 +0(1))xj_.3/2(j — o0) as asserted. However,
in the relevant range

Vilog AV <A<Vi x;<VA 'logV,

one can replace the term o(1) in the above expression for ¢; by an ex-
plicit O-term and obtain

_1
¢ = {1 + o(v—% log? V) + O(xj 2)} 2,

5.6 Upper Bounds

In this section we shall deduce the upper bound results for E>(T) con-
tained in Theorems [5.4] - and we shall also prove Theorem [5.8] To
begin with, we shall apply an averaging technique to the asymptotic for-
mulas of Theorem[5.3] Rewrite Theorem [5.3] as

T
fl4(t, A)dt = TP4(logT)+ S(T,A) + R(T, A), (5.157)
0
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where

T\ & 4eT .
_ -3/2 143 ~(Ax;/2T)
S(T.A) := n( ) ;a,xj H ( )cos(x,log ) ) (5.158)
and 1

R(T,A) < T2 1ogc® T (5.159)

for T2 log™ T < A < Texp(—+/logT) and any fixed A > 0. Suppose
henceforth that 7€ < A < T exp(— +/log T) and put first T; = T—Alog T,
T, =2T + AlogT. Then

T> 0 4 T
1
f L(t, A)dt = f §(§+iu) (AVr)™! f N gl du - (5.160)
—00 T,
2T+AlogT
f |§ +zu (A V)™ f e A2t | du.
T-AlogT

But for T < u < 2T we have, by the change of variable t — u = Av,

2T+AlogT QT-u)A™"+log T
2 /A2 2
(AvVn)™! f e N gt = 7 f eV dv

T-AlogT (T-w)A~1-log T

=

0 S —logT

=7r_%fe_vzdv+0 fe_vzdv+ f e dv :1+0(e_1°g2T),

—00 logT —00

since T —u <0, 2T — u > 0. Therefore 283

2T

f{ 1+ it
2 l

T
—TP4(logT) + O(Alog’ T) + SQ2T + Alog T, A)
—S(T —AlogT,A) + RQT + AlogT,A) — R(T — Alog T, A)

4 2
dt < fl4(t, A)dt + O(1) = 2T P4(log 2T)

1

by using the mean value theorem.
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Consider now the equality in (5.160) with 7y = T + AlogT,
T, =2T — Alog T. We obtain

T,

2T
f Li(t, Aydt = f ‘{(%+iu)
T T

1

4 T
(A )| f 0N gl du + 0(1),
T,

since with u — t = Av we have
4 2T-AlogT
(AvVm)™! f e gl g

T
1 v
J > iu
—00 T+AlogT
2T-AlogT; T 4
1
=A™ f [f {(§+iu) e‘(’—">2/A2du]dz

T+AlogT ‘-

2T-AlogT, S 4

2
eV dv|dt

I
N
D=

1
— +it—iAv
T+AlogT \(t-T)/A

(o)
) 12
<71 f(1+v)e Vdv < e21e' T

log T

The same upper bound holds for the integral from 27 to co. But

2T
f { 1 " .
= [27)
2
T
2T 2T+AlogT

4
1
sfg(inu) (AVr)™! f A gl du
T
2T

4 Tz
(AVr)! f eI g
T

T-AlogT

1 4
=f§(§+iu) du + 0(1)
T

284  as in the previous case. Thus we have proved
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Lemma 5.1. For 0 < € < 1 fixed and T€ < A < Te~ V'°¢T e have
uniformly

2T
f (l+'t)

4’2 I
T

+SQT +AlogT,A) - S(T — Alog T, A)
+RQT + AlogT,A) — R(T — Alog T, A)

4
dt < 2T P4(log 2T) — TP4(log T) + O(Alog® T)

and

4
dt > 2T P4(log2T) — TP4s(logT) + O(A log5 T)

2T
fifeea
dea
T

+SQ2T — AlogT,A) — S(T + Alog T, A)
+RQT = AlogT,A) — R(T + Alog T, A).

To obtain an upper bound for E»(7T") from Lemma note that, for
7 =< T, we have uniformly for A > 0 sufficiently large

1
2 1 4
S(t,A) = n(z)z Z ajx;.s/zH; (—)cos (x/- log g)e’mx//zr)z (5.161)

2 2 ;
1
3
H; (5)

xj<TA™! log% T
by trivial estimation. To estimate the last sum we use (5.149) with
C= %(B + 1) to obtain by partial summation

+0(1)

+0(1)=0[T% Z )

1
ijATA’] log2 T

S(t,A) < TA 2(log T)?B*T  (r=T).

Therefore from Lemma/[3.1]and Theorem [3.3]we infer that, for I < 285
A < T exp(—4/log T), uniformly in A

I+

4
dt = 2T P4(log 2T) — T P4(log T)




286

318 5. Motohashi’s formula for the fourth moment

+OAlog’ T) + 0 (T% logC® T) + O(TA’%(log T)%B+%).
We equalize the first and the third O-term by choosing
A = T*3(log T)B/3-17/6,
Then we obtain
E>»(2T) — Eo(T) < T*3(log T)B/3+13/6,
Hence replacing T by T2~/ and summing over j = 1,2,... we have

Ex(T) < T*3(log T)B/3+13/6, (5.162)

B 13
which proves Theorem with C = 3 + r where B is the constant

appearing in (3.131). Note that any non-trivial estimation of the sum
in (3.161) would lead to improvements of (5.162). Such a non trivial
estimation would presumably lead to a bound of the form E»(T) < T"*€
with some 17 < 2/3. By Theorem[LI]this would imply ¢ (% +iT) < T

1
with 6 = Z < 3 thus providing a nontrivial estimate for ¢ (% +iT).

We pass now to the proof of Theorem From Lemma [5.1] and
(5.10) we have, with a slight abuse of notation,

E>(2T) — Ex(T) < SQ2T + Alog T, A) — S(T — Alog T,A)  (5.163)
+O(T?) + O(Alog’ T),

where this time

1 o
m\2 1 4eT\ _ a0y
S(T,A) = ﬂ(z) > ajc;H] (—)cos (xj'log T )e (Ax;/21)
=1 :

[\

with ¢; ~ xj_.s/ 2 T2 log*T <A< T3. An expression of similar type

holds also for the lower bound. We replace in (3.163) T by 27 and

sum for € = 1,2,...,L, where L is chosen in such a way that L <
1

PT < "L Then we take A = T2 log™> T and T < 1 < 2T, so that the
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condition T2 log>T <A< T is satisfied if T is replaced by 127¢ for
each ¢ =1,2,...,L. By Theorem[5.4] we have

Ex(P'y < (T3 10g" T < T/,

hence we obtain

L
Ex(n) < Z {$ (2!t + Alog T.A) - § (27t = Alog T, A)} + O(T?), (5.164)
=1

since the analysis of the proof of Lemma [5.1]shows that log(r2~/) may
be replaced by log 7T with the same effect. Therefore integration of

G.164) gives

2T
f E>(t)dt < O(T3/?) (5.165)
T
L 2T 2T
+> fs(21-ft+AlogT,A)dt—fs(z—"t—AlogT,A)dt ,
=1\ T T

and a lower bound of similar type will hold for the left-hand side of
(3.163). We break the series for S (T, A) at TA™' log” with a negligible
error to obtain

2T 2T
1
fs(z—"z—AlogT,A)dz:nz—%f(z—f’t—AlogT)z
T T
1 4e(27‘t — Alog T
X Z ajch;(E)cos(leog « o2 ))
x;<TA='log T Xj

AU\ ar < (T2
xexp—ﬁ t<< (T27°2T

1
—1 {3
X E @;cjx; Hj (E)

xj<TA 'logT

< T3¢,
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Here we used Lemma [2.1] and the fact that by (5.162) and partial

summation
(] 3 =523 (1
Z @;cjX; Hj E < Za'jxj Hj E < 400,
xj<TA'logT j=1
Summing over ¢ we have

2T

f Ex(H)dt < CT??  (C >0),

T

287  and the analogue of (5.163]) for the lower bound will show that the above
integral is also —CT?3/2. This proves (5.16). In view of Lemma [5.4] it
may well be true that

T
f E>(tdt ~ C(T)T?? (T > o), (5.166)
0

where C(T) is a function represented by infinite series of the type ap-
pearing in (5.206)), and where

C(T) =0(1), CT)=2Q(1)

holds. It does not appear easy, however, to prove (3.166).
To prove (5.17) write

T
12(T):f§(%+iz)

0
2T 4 2T

f Ex(1) {(%+it) dt = f E>(0 I (ndt
T T

2T
= f E>(©) (P4(log 1)+ Py(logr) + Eg(t)) dt
T

4
(df) = TP4(log T) + E»(T).

Then we have
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2T
- f Ex(t) (Pa(log ) + Py(log 1)) dt + %E§(2T) - %E%(T).
T

For the last integral we use (5.16) and integration by parts. Since
Ex(T) < T*310g" T, G17) follows. Recall that E(T)(= E(T)) had
mean value 7 (Theorem [3.I). On the other hand, if the conjecture
(5.166) is true, then E»(T) certainly can have no mean value.

We proceed now to prove the mean square estimate given by Theo-
rem Before giving the proof we remark that (3.18)) gives

T
f E5(Hhdt < T°*10g® T.
0

This bound shows that, in mean square, E;(f) is < /8, and this is
better than what one gets from the pointwise estimate (3.13). T expect

that
T

f E3(tdt = CT* + H(T) (5.167)
0

holds for some C > 0 and H(T) = o(T?) as T — oo. This conjecture
seems to be fairly deep, since proving even

2T

f E5(Hdt > T?

T

seems difficult (this lower bound trivially implies Theorem[3.7)). In fact
it is even plausible to conjecture that

H(T) = 0(T3/2+f), H(T) = Q(T3/2—5) (5.168)

for any 6, € > 0, and the above omega-result can be proved if the strong
omega-result (5.212) is true. Incidentally, (5.18) implies E»(T) < T*/3
log€ T, which is Theorem[5.4l To see this recall that by Lemma[.2] with

288
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k = 2 we have
T+H
ExT) < H™! f E>(Hdt + C1H10g4 T (O<H<T) (5.169)
T

and

T
Ex(T)> H™! f Ex(dt—C Hlog*T (0<H<T). (5.170)
T-H

From (5.18), (5.169), (5.170) and the Cauchy-Schwarz inequality it
follows that

T+H
|Ex(T)| < H™! f |Ex(0)\dt + C1H log* T
T-H
T+H 2
<H? f Eg(z)dz] +Hlog'T
-H

< TiH 810g2C T + Hlog* T < T*3(log T)“C+4/°

with H = T23(log T)“C32/9, By the same argument E»(T) < T2*€ is

true if (3.167) and the O-result in (5.168)) are true.

To prove (5.18) we use (5.163) provided that E(¢) > 0, and an anal-
ogous lower bound when E(f) < 0. Thus squaring and integrating we
obtain

T+H L
f EX()dt < TH + HA? 1og'° T + log T Z
(=1

T

T+H T+H
x{fs2(21—‘r+AlogT,A)dr+ fsz(z-"t—AlogT,A)dt

T T

T+H T+H
+f52(2'—‘t—AlogT,A)dt+fsz(z—fHAlogT,A)dr}. (5.171)
T T
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All four integrals in (3.I71)) are estimated similarly, the first being
majorized by O(log T') subintegrals of the type

Jnv =JIn(T,H,?)

T+H | 4
= f T Z a/jCjHJ3‘ (—) cos (Xj log ﬂ) e~ (bxi/2)
2 Xj
T N<xj§2N .
where 7 = 217t + Alog T =< 27T, N < TA 'log T. Squaring out the
integrand one obtains
1 1
Iy < T27¢ Z ajam(xjxm)_3/2 H3 (= H, (=
7\2 2
N<xjxu<2N
T+ 4 1-¢ 1 1-¢ 1
27+ AlogT 27+ AlogT
f cos (xj log « o8 )) cos (xm log —og) dt
T

=53

say, where in )}; we fix x; and sum over x,, such that |x; — x,,| < V, and
in 3, we sum over |x; —x,| > V. Here V (> 1) is a parameter satisfying
V <« N, and which will be suitably chosen a little later. To estimate }};

we use the bound
1
2 : 3

x=V<x;<x+V
for log®! x < V < x, which follows by the Cauchy-Schwarz inequality
from (3.33) and (3.131)) with C = %(B + 1), where B is the constant in
(5.I51). Alternatively, one can use the bound

2
dt,

< X3PV 10gC x (5.172)

1
Z a/]Hf(E) < xVlogx (Blog%xSVSx,B>0),

x=V<x;<x+V

proved very recently by Y. Motohashi [129]. This gives, again by
(3.1371)), the same bound as in (3.172).
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Hence by trivial estimation and (3.172) we have
1
323 L
Z < H Z @;x; Hi(z)
1

N<x‘,~S2N
1
H’ (5)‘ N3 < HVIN? 10g% T.

VilogC T (5.173)

< HV? logCT Z a;j
X_,'SZN

290
To estimate ), we use Lemma[2.Tland

cosacosf = % {cos(a — B) + cos(a + B)}.

It follows that

3(1 3 (1
Z<<T Z cxjam(xjxm)_3/2w (5.174)
2

Xi— X
N<xj,xn<2N3|xj=xp|>V | J ml

< TV_I[ Z a/jxj_.3/2

2
1
H; (5)” < TV 'NlogB*'T,
N<XjS2N

with B as in (5.1531)). From (5.173) and (5.174) we have
Iy < T2 logB*! T (HV%N% + TV‘IN)
< 27 'TiN3H3 logP™' T (5.175)
for
V=T*3N'"3E™253 <« N.
The condition V < N is satisfied for N > TH™!. If N < TH™!, then
it suffices to use (5.149) and obtain, by trivial estimation,
Iy <27 THN10g* T < 27'T%10g*“ T.
If N > TH™', then in view of N < TA~!log T we must have A <
Hlog T. Therefore combining the preceding estimates we have

T+H

f E3(ndt < (T2 +A’H + TYB3H? max )logD T
N<TA-!log TN?/3
T
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< (17 + A°H + T*H*PAP) 10g"" ' T < T2 H¥* 10gP*' T
with a suitable D > 0 and
A=T3a18,

With the above A the condition A <« HlogT holds for H « T3

log_g T. This is actually the relevant range for (5.18)), since for H < 291
T2/3

~8/9 T the trivial estimate

log
T+H
f E5(Ddt < H Maxy<<or |E2(0))? < HT*P 10g*° T,
T

which comes from Theorem [5.4] is better than (3.18) if one disregards
the log-factors. The condition (271)!/? <« A < (276)%/* will be satisfied
if Lin (5.171) is chosen to satisfy 2Lt < T3¢ < 21-Lr_ This completes
the proof of Theorem[5.6l We remark that, if instead of (3.131)), one also
had

1
Z ajH? (5) < xV1og€x (xE < V< x%),

x=V<x;j<x+V

then instead of (5.172)) the Cauchy-Schwarz inequality would give
1
2 : 3

x=V<xj<x+V
Proceeding as above we would obtain

< xV1og€ x (xf < V< x%).

T+H
f EX(0)dt < (T2 +AH + TZH%A-%)logC T
T

< (1% + T¥HY)10g" T

for A = T H~'3, and again A < H for H > T?*. Hence we would

get
T+H

f E3(ndt < T3PH3 P 10gC T (T2/3 < H< T),
T
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which improves Theorem[3.6l In particular, we would obtain

T

f EX(n)dt < T3 10gC T.
0

It remains yet in this section to prove Theorem [5.8] namely
t+A

1
Zfl{(zﬂt)l“dt < RAlog"' T + RETA 2 10eC* T,  (5.176)

r<R %
provided that

T<ti<..<tg<2T, tr;1—t,>A(r=1,...,R-1),
1 2/3
T2 <ALT,

since for 7?3 < A < T the bound (5.176) is trivial in virtue of Theorem
5.4l We have

t+A

e Axil27 4 O(RAT0gC T)

T ) —% 3 1 —% . ] XJ
SEH\/;A Z a;x;” Hj (E)Zt’ sin leogE

1 <
x;<20TA-'log2 T r<R

e~ Bxil20% L O(RA log€ 7)),

where Theorem [5.2] was used. For technical reasons it is convenient to
remove e~ ) by partial summation from the last sum with a total error
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which is certainly < RA log€ T. Then we have to majorize
)ID YR

1
K=20TA 'log2 T27";m=1,2,...
1.
- .

- 5 ol
r<R

K<x;<2K
By using the Cauchy-Schwarz inequality we obtain

R RO

= (S}S9),

r<R

-

say. By using (5.151)) we immediately obtain
S’ < Klog?K.

To bound S one needs a “large sieve” type of inequality for sums
with o ;H 2( %). Such a result has been recently established by Y. Moto-
hashi (see (3.9) of [129]), and we state it here without proof as

Lemma 5.2. Let T < 1) < ... < tg < 2T, ty41 — t, > ATA ' log? T
forr=1,....R -1 and suitable A > 0, logT =< logK, log? K < A <
K/log K. Then for arbitrary complex numbers c1,...,cg we have

Z a'sz( )
K<)C/'SK+A

In this result, which is of considerable interest in itself, we replace
Kby K+ A K+2A,...etc. and take A = K/ log K. Then we obtain

gt

K<xj<2K

1x
j
Crly

< Z le2KAlog K.
=1 r=1

R

S|

r=1

R
< Z le,2K? log K (5.177)
r=1
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provided that
tya1 — 1> TK ' 1og®? T, (5.178)

_1
in which case we obtain from (3.177) (with ¢, = t, %)
S% < RT'K?log K.

However, our assumption is that t,+1 — t, > A and K satisfies K <
TA™! log% T, so that (5.178) does not have to hold. In that case we may
choose from our system of points {tr}fz1 subsystems of points for which
([BI78) is satisfied for consecutive points of each subsystem. There are
then < TK™'A™! 10g3/ T subsystems in question, and we obtain, on
using the above bound for S, for each of these subsystems,

S% <RT'K?logK - TK'A™' 1og®* T < RKA ' 1og’* T.

294
Hence we obtain in any case

Sk < RTKA2(log T)i?B+5)
and consequently
> < RATA™(log T)T?8+7),

This finally gives

t+A
Zf {(%+it)

r<R
which is (5.176) with C1 = C (> 4, the constant in Theorem[3.2)), C5 =
12B+7).

4
dt < RA1ogC T + R2TA 2 (log T)i?B+D),

We recall that the result

I

12
dr < T*1og” T (5.179)
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was proved by D.R. Heath-Brown with D = 17. We shall show now that
(5.179) follows also from Theorem[5.8] Write

2T
f(l+'t)

42 I
T

say, where C is the constant appearing in Theorem [5.8] Trivially we

12
dt = + =1+ 1,

[I<T/8 logC4rdIA T |7|>T1/8 logCatD/4 T

have
2T ! 4
I < T1<>g2€1+2T-f§(5 +it) dr < T?10g*C*0 T.
T
We put
1 12
L= Z LV, L(V) := f ‘g(znz) dt.
V:T1/627j,j21 v<l|<2V
T<t<2T
Then b
L)< Y K Lol <rov?
2 r \%4 9

r<Ry

where {t}R" is a system of points such that 7 < ¢, < 2T and ¢, —t, > 1. 295

r=1

By Theorem [[.2] we have

t+1/3

I .
RyV* <« logTZ f ‘{(E + lt)
" t-1/3

for a system of points {T,}Ile1 suchthat T <7, <2T and 7,1 — 7, > 1,
Ri < Ry. An application of Theorem 5.8 gives, with 72 < A < T%/3,

4 Ry

1 1
RyV* < logT (RVA 10g°! T + RZTA% log® T) < RETA 3 10gC*!' T
if with a suitable ¢ > 0

A=cVog TY O ! > T2,
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This happens for
V> T8(log T)iC1+D),
which is the range of V in I;. It follows that
Ry < (TV_6(1og T)%(1+C1)+Cz+12) — TZV_lz(log TYHC1+2C;,
h(V) < T2(log T)**C1*2C1 | [, < T2(log T)*+C1+2C2,
From the estimates for I; and I, (3.179) follows with

D =Max (2C1 +6, 4+ C; +2C»).

5.7 The Omega-Result

One of the most striking features of the explicit formula (3.1Q) is the
fact that is can be used to prove the Q-result of Theorem 5.7, namely

Ex(T) = (T?).

The proof of this result requires first some technical preparation.
We begin with a lemma, which is the counterpart of Lemma[5.1l From
(5.160) of Section[5.6]it follows, with Ty = T, T, = 2T and T¢ < A <

T/logT
27 2T-AlogT 4 2T
f Li(t, At > f ‘g(% + iu) [(A Vo) f e—<f—u>2/A2dt] du
T T+Alog T T
2T-Alog T 4
f ’{(% +iu) du+ O(1)
T+Alog T

2T
= tP4(log t)’T + O(A log5 T)+ E;2QT — AlogT) — Eo(T + AlogT),

296  similarly as in the proof of the first inequality in Lemma On the
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other hand, we have

2T 0 ! 4 2T
f Li(t, ANdt = f ‘4(5 + m) [(A V)~ f e—<’—“>2/A2dtJ dy
T —00 T
2T+Alog T 4 2T
1
- f 5(5 + iu) AV f e—<’—”>2/A2er du + 0(1)
T-Alog T T
2T+AlogT 4 2T+2Alog T
1
< 4(5 + m) (Avm)™! f R gl du + 0(1)
T-AlogT T-2AlogT
2T+AlogT { 4
= f {(E +iu) du + O(1)
T-AlogT

2T
= tP4(log z)‘T +0(Alog’ T) + Ex(2T + Alog T) — Ex(T - Alog T).
Therefore we have proved

Lemma 5.3. For 0 < € < 1 fixed and T < A < T/logT, we have
uniformly

2T
f Li(t, Aydt > 2T P4(log 2T) — T P4(log T)
T
+0(Alog® T) + Eo(2T = Alog T) = Ex(T + Alog T)

and

2T
f Iy(t, A)dt < 2T P4(log 2T) — TP4(log T) + O (Alog’ T)
T

+ E>(2T + AlogT) — Ex(T — AlogT).

The idea of the proof of Theorem[5.7]is as follows. With

297
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4 2
RIS

I4(T,A):(A\/%)‘lf‘g(%+iT+it)

rewrite (3.137) as
2T
f14(t, A)dt = TQq(log T) + U(T, N), (5.180)
T
where Q4(y) is a suitable polynomial of degree four in y. Consider then
2V
HWV,A) = fU(T, AN)dT. (5.181)
1%

If it can be shown that
H(V,A) = Q(V3'%) (5.182)

with a suitable A = A(V), then this means that H(V, A) = o(V3/?) cannot
hold as V — oo, and so by (3.181) we see that, as T — oo, U(T,A) =
O(T%) cannot hold. But if Theorem were false, namely if Ex(T) =
O(T%) were true, then by Lemmal[3.3]and (3.180) it would follows that

U(T, A) = o(T?),

which we know is impossible. We shall actually prove that, for suitable
A, we have H(V,A) = Q.(V>3/2). This does not seem to imply that

Ex(T) = Qu(T?), (5.183)

although I am convinced that (5.183) must be true. The reason is that in
Lemmal[3.3] we have differences with the function E,, which hinders the
efforts to obtain the above result from H(V, A) = Q. (V3/2).

Therefore by (5.180), (3.181)) and Theorem [3.1 our problem is first
reduced to the study of the integrals

2T 2T

f 0(&;t, A)dt, f A(k; t, A)dt.

T T
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But in Section we have shown that

2T

Ak k<C,
f Ak t, A)dt < (5.184)

J kA€ k>=C,

for any C; > 0. Thus by (5.184) the contribution of the holomorphic
cusp-forms is negligible. Hence it remains to study the integral

2T

f@(f; t,A)dt. (5.185)

T

This is carried out by the analysis developed in Section If
U(T, A) is defined by (3.180) and (5.181)), then uniformly for 7¢ < A <
T'-€ we have

U(T,A) = U(T, A) + O (Alog’ T) (5.186)

with

2T
1 1£G + i)
UN(T.A) = ~ f KIESTaE f Z(g t,A)dt d¢ (5.187)

lEl<TA-Llog® T

2T
1
y “fo'(z) f > xjit, At = Uni(T.A) + Urn(T, ),
T

x<TA'log® T
say, where
-1
:T,A) ;= ——— Re {E°(Pr; —i€) — E°(Pr; i 1
2ETA) = Zor s Re(E (P =) = (Prii)} (5.188)

1
+ 4_ {E (PT’ lé‘:) + :O(PT, _lf)}

1 L Neopoo (L Neon
=ZTR€{(sh(ﬂ§)—l)u(PT,lf) (sh@g)*’)“(”’ zf)},

298
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and as in Section
1

=°(Prs i) = 2ni f v -y S (3 E)dy (5.189)
0

with
1
2
SO0 = f XTI ) T (1 )
0

A2
exp (_T log?(1 + x)) dx. (5.190)

Integrating U(T, A) in (5.181) we obtain
H(V,A) = Hy (V,A) + Hip(V,A) + O (VAlog’ V), (5.191)

where Hy; and H, come from the integration of Uy, and Uy,, respec-
tively, and V€ < A < V!=€. Thus in view of (5.188) - (5.190) the problem
is reduced to the study of

2V 2T 1
f f =°(Py ig)dt dT = 2ni f YA+ )T (0 Vi E)dy + O
vV T 0
(5.192)
299  with suitable ¢ > 0, where
$'0iv) = - [t (5.193)
0

(142 =301+ 0" +2)
21og*(1 + x)

Here we used the representation (3.189)—(3.190) and the fact that in
(5.192) one can replace S by S* with the total error which is
< exp(—cAz). Henceforth we assume that

(1 + xy) 273 og’ (1) 7

VgsASV%long.



5.7. The Omega-Result 335

In the range
AllogV < |l < VA ' log® v (5.194)

we have, uniformly for V€ < A < V2 log? Vv,

2V 2T

f f E°(Py;i&)dt dT < V32|72, (5.195)
Vv Vv

This is obtained similarly as the evaluation of S (y; ¢) and E°(Pr; i€)
in Section[3.3l The bound (3.193) comes essentially from integration of
the main terms in the expression for Z°(P;; i€), namely

e

over T <t < 2T,V < T < 2V. The integrals of the error terms will
be < V3/2|¢[73/2. Another possibility to obtain (5.193) is to note that
S*(y; V, &) differs from S (y; V, &) by a factor log_2(1 + x), which at the
saddle point x = x( changes the final expression by a factor of order

xaz = ¢72V2. Thus when we multiply by ' (the order of the integral

for §) and integrate over y (which makes a contribution of order Ifl‘% in
the expression for £°), we obtain again (3.193).

It will turn out that for the range the estimate (53.193)) is suf-
ficient. For the remaining range

€l < A/logV (5.196)

we shall establish an asymptotic formula for the integral in (3.193)). First

note that the integral in (5.193) may be truncated at x = A~! log% 1%
with a negligible error because of the presence of the presence of the
exponential factor. Then (5.196)) implies that in the remaining integral

(1 +xy) 27 = 1 + O(x(1 + |€])).
Consequently

S*(; V,€) = ST (v, &) + 0((1 + VA~ log/8 v), (5.197)

300
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where

ﬁ@www=—j?%%a+ﬂ%”v (5.198)
0
((1+ 2 =31+ 0" +2) A
exp(

2
——1021+x)dx,
21log*(1 + x) g log i+

since the integral from 0 to A~! log% V containing the error term O(x(1+
|£])) may be estimated trivially as

A-llog% v 2V 2T
< (1+¢) f XIx ff(l+x)”dth dx
0 Vv T
A logd v N 2v
X2 y ,
1 — 1+ %" — (1 +x)7)dr|d
<<+m>\f bghwkf«+m (1+x)7")dT|dx
0 1%

Ao

3
< VA +IEDh B Y idx < (1 + EDVA~Z log P v,

and so (5.197) follows. In the range (5.196)) the total contribution of the
error term in (3.197) will be
51
H; (5

301  on using (5.148) and (5.149). The integral in (5.198) is evaluated simi-
larly as we deduced (5.136)) from (3.134). Thus we have

| (5 +i&)°
-3 3/8 2 oy
< VA 2 log’*V f 0 2i§~‘)|2(1 + |£)dé + E a;x;

¢l<A/log V IS

< VA ?1ogt Vv

ST(y"/’é'_-) — —(A \/;)—l fe—(u/A)z fx—%ﬂ'f(l +x)—%+iv+iu
—oo 0

((1+ 2 =31+ 0" +2)

5 dx du
2log“(1 + x)
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AlogV
@it [ et e ofeter),
-AlogV

say. Because of uniform convergence we have

o (03 =31+ 1) +2)
()= lim | x72F€(] 4 x)~@FiVriu > dx
0{—>%+0 S 210g (1 + x)

) 2V 2T

=— lim X 2+’f(1 4 x) Tt ff(l + x)'dt dT dx

1
-5 +0

2V 2T oo

= — lim f f f x"2HE(] 4 x)TOHiL g g dT
a/—>%+0

2V 2T

. +z§ a———m—zt—z.f)dd
= - tdT
ainlof f T(a = iu— ir

X ZTF +z§ I'(—iu — it — i&)
ff di dT.
——zu—zt)

vV T

We use Stirling’s formula, as in the derivation of (IE_TEI) to find that
uniformly for |u| < AlogV,& < A/logV,V < T,A < Vzlog®>V

2V 2T
(1 ;
I(u) = _e%mr(§+i§)e—%”f f f 2€dr dT

+O(e SrEHEN A2 (00 V) (5.199)

Therefore (3.199) gives

2V 2T

ST(y;‘/,A)=e%”i‘%”fl"( +z§)fft""fdth
v T
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+0 (e*%"@*'f')v%A2 log? V). (5.200)
302 Hence from (3.192), (3.197) and (3.200) we have
2V 2T r3( N .f) 2V 2T
l 1 .
=°(Py;ig)dt dT = 2miei™= ™2~ 2 fffz—’fdr dT
f f (Pri i) e (1 + 2i8)

+0(e mEHD 3 A2 [og? v) (5.201)

uniformly for V¢ < A < % log? V, €] < A/logV, and we note that

the main term on the right-hand side of (5.201)) is < V3/2(j¢| + 1)7/2,
similarly as in (5.193)). The total contribution of the integrals in (3.193),

in the range (5.194)), is

G + g A
<V f |§12+ Zlfg)lzlfrs/zdfw” 2 “f'H?(z)'xj5’2

A
Xj2 ooy
logv<|{-’|< log \%4 J=TogV

< V32773 log€ v
on using (5.148) and (5.149). Hence we obtain from (5.191)
H(V,A) = H}|(V.A) + Hj,(V.A) + O (VA ?10g" V) (5.202)

+ O(V%A2 log V) + 0(V3/2A—% log€ v),

where
| ol -
Hy(V.A) = — f I§(12+ S f f Z(g t,A)dt dT dé,  (5.203)
|£]<A/log V
2V 2T
HH(V,A) = a,H3( ) f f Z(x],t A)dt dT, (5.204)
x;<A/logV

and ) (&;1,A) is obtained if in the definition (3.188) of Y.(&;¢, A) one

replaces £° by
3(1,
r (2 +l§)t_%_i§

1_. 1
2ti =57
e T(1 + 2i6)
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in view of (5.201)). Since # < V in (5.203) and 1% = ¢~%1°87 it is seen
that, performing an integration by parts over £ in H},(V, A), we obtain

Hi (V,A) < V32 /logV (5.205)

Note that all the error terms in (5.202) are < V3/%/log V for V9 <

1
A < V379 when 0 < 6 < T is any fixed constant. Also we may

replace the sum in (3.204)) by the infinite series, producing na error term
< V32 /1og V. Tt follows from (5.202)) — (5.203)) that we have proved

1
Lemma54. Let0 <6 < T be arbitrary, but fixed. Then for V° < A <

V13- ywe have uniformly

3 = i ix V3
H(V,A) = 2V Im{;ajH;(z)(F(xj)V + F(=x,)V )}+0[1ogv]’ (5.206)

where H(V, A) is defined by (3.181) and

N La(eri I (% _ iZ) (2%+iz _ 1) (2%+iz—1)
F(z) := (W )ez (z+) L(1 = 2iz)(1 + 2iz)(3 + iz)

Having at our disposal Lemma we may proceed to prove
1
EL(T) = Q(T?), or equivalently by (5.182) and (3.206) that

Im {Z o H? (%) (F(x))V™ + F(—xj)v—xf')} =Q()  (5.207)
=1

by fixing A = VV®, say. This will follow (even with Q.(1) in (5.207))
from

Lemma 5.5. Let {a J'}j‘il and {b j};il be two complex sequences such that
2. (lajl+1bjl) < oo and |ai| > |by|, and let {wj};’;l be a strictly increasing
j=1
sequence of positive numbers. Then, as x — oo

Im {i (ajx™r +b ,xiwf)} = Q.(1).

Jj=1
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Before giving the proof of Lemma[5.3] which is not difficult, let us 304
show how Lemma [5.5] implies (5.207), and consequently Theorem [5.7]
Denote by {up};”,, arranged in increasing order, the set of all distinct
x;.s and put, for a given yy,

1
- 3
Gni= ) a;H;] (5) .
Xj=Hn
With this notation (5.207) becomes
Im {Z G (Fun)V™ + F(—yh)v—"ﬂh)} =Q(1).

h=1

Set in Lemmaaj = GjF(ﬂj), bj = GjF(—/Jj), Wj = Uj, X = V.
Since the series in (3.206)) is majorized by a multiple of

Sl

=1
> (lajl + b)) < +eo.

=

x]_.s/z = 0(1),

we obviously have

We have yet to show that
IG1 1Fuol > |G| 1F(=p1)l,
which is true if G| # 0 and
|F (o)l > [F(=p)l. (5.208)
From the definition of F(z) it follows that, for x > 0,
IF(0)l = e " |F(=x),

so that (5.208)) is true. Now to have G1 # 0, we can relabel the ,u;ls, if
necessary, and by actual numerical calculation find a 4 such that G;, # 0.
As this is tedious, we appeal to the asymptotic formula

= 1
E ajHj.(E)h(xj) =(+ 0(1))§n’3/2K3Alog3K (K - o), (5.209)
=
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DL . 1 _ .
which is uniform for K2*€ < A < K'7¢, where 0 < € < }‘ is fixed and

1 x— K\ x+ K\?
— (42 4 _ _ _
h(x)—(x +4){exp( ( A )) +exp( ( A ))}
This has been proved by Y. Motohashi [[129], and it clearly implies

that there are actually infinitely many % such that G, # 0. So all there
remains is the

PROOF OF LEMMA 5.5 Let
fo(x) :=1Im {Z (ajxi“’f + bjx_[‘“f)} ,
=1

J=

and forn > 1

X 4
Su(x) = ffn—l(u)%,

where T = exp(rr/w;) (> 1). Then by induction it follows that

- iwj _1\" . —iwj=1\
Ju(x) = Im{z (aj(T o 1) X' +bj(T—ia)‘ )x—le)}'
J j

J=1

Since 71 = —1 we obtain

fa(x) =2"Im {a1 (L) X+ by (_—’) x—"w} +R,(x), (5.210)
wi w1
where uniformly
Ry(x) = 02" wy"),

because ) (la;| + |b;]) < co. If f,(x) = Q,(1) is not true, then for any
j=1

€ > 0 and x > xp(€) we have f,(x) < €. Since wy > w;, we have for any

0>0

IRu(0)| < Slay|w;"2"
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for n > ng(€), uniformly in x. Now for n = 4N + 1(> ng) we have
N+ = = 1, s0 if we take

2Mm — arg al-)

X = exp(
w1

306 and M is any large positive integer, we have

. n
Im {a1 (L) xi“"} = Im {ilar|w;") = latlw;". (5.211)

w]
Therefore (5.210) yields, if f,(x) < €,
€ > 2"lat|w)" = 2"|b1lw|" = dlatlw, ™" = 2"w " (1 = &)lai| — [by)).

But for sufficiently small 6 we have (1 — 6)|a;| > |b1], so fixing n(>
no(9)) the last inequality produces a contradiction, since € may be arbi-
trarily small. Analogously we obtain a contradiction if f,(x) = Q_(1)
does not hold by noting that i*V*? = —i, so we can obtain that the left-
hand side of (3.211) equals —|a;|w]". Thus, by the defining property of
fn(x), we have also that

Jae1(x) = Que(1), fr2(x) = Qu(D), ...,

until finally we conclude that fy(x) = Q.(1), and the lemma is proved.
We remark that the proof of Lemma actually yields the following:
There exist constants A > 0 and B > 1 such that every interval [V, BV]
for V > Vj contains two points V| and V5 such that for Vo< A< VISo

H(Vi,A) > AV, H(Va, A) < —AV).

The foregoing proof was self-contained, but there is another, quicker
way to deduce (5.207). Let

= 1 ix: S 1 ix;j
L) =Y o) (§)F<x,->v"‘f, L) =Y o (E)F(—xj)V ),
= =1

and set
t1(x) = Li(e"), 6(x) = Ly(e).
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Then ¢;(x) and £,(x) are almost periodic functions in the sense of H.
Bohr [15] by the Fundamental Theorem for almost periodic functions,
because e.g.

00 N
. 1 .
(@) = ) GrF () = lim > aH] (_) F(xj)e"
h=1 j=1

2
uniformly for all x, since 307
i (L) F S o ()52 < 1
a; j 5 (XJ') < Za/j j 5 xj < I.
j=1 j=1

Then the function

am:mmm+aﬂ

= 2[00 - ) - (D - BE)| = Y Guane

h=—c0

where we have set

1
Hn=—p, G_p=Gpay= % (F(up) = F(=pp)) ,

is also almost periodic, since conjugation, multiplication by constants
and addition preserve almost-periodicity. By Parseval’s identity for al-
most periodic functions

T

o ‘ 1

Y, GilaP = fim & [ iecopax.
0

h=—c0

Since |F(x)| = e *|F(—x)| for x > 0 and G # O for at least one #,
it follows that the series on the left-hand side above is positive. Thus
by continuity we cannot have £(x) = 0. Let xy be a point such that
€(xo) # 0. By the definition of an almost periodic function, to every
€ > 0 there corresponds a length L = L(e) such that each interval of
length L(€) contains a translation number 7 for which

[€(x) —€(x+ 1) <€
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for all real x, and so in particular this holds for x = xp. If € = %If(x0)|(>
0), then either £(xo+7) > $|0(x0)] or £(xg+T) < —31€(xo)| holds for some
arbitrarily large values of 7. Hence (5.207) follows, because £(log V) is
the left-hand side of (3.207).

Note that this argument gives £(x) = Q. (1) if we can find (say by
numerical computation) two values x1, xp such that £(x;) > 0, £(x;) < 0,
and this is regardless of any non-vanishing hypothesis for Gy,.

We shall now explore another possibility of obtaining omega-results
for E»(T), by a method which could possible give

lim sup [Ex(T)|T™2 = +co, (5.212)

T—o0

which is stronger than E>(T) = Q(T%) of Theorem[5.71
Suppose that

F(y) = Zf(j)cos (ajy + bj), Z f(Dla) < +oo
=1 J=1

is a trigonometric series with a; > 0, and a; nondecreasing. Let

K) = K ajy (Sin(%al}’)]z
JO) = K, B

») =52
21 %afy

1
i

be the Fejér kernel of index %a J- Then

1

fe"“fym)dy: |- ailar Odjap =
O(l/aj) if j>J
|

Hence

1

Fi(y) = f F(y + wk(u)du (5.213)

-1

=3 (1 - Z—j)f(j) cos(a,y + b;) + O(1),

<7
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which is essentially the transformation used in the proof of the first part
of Theorem[3.4l However, one has

1

ky(y) >0, 0 < f ky(uwdu < 1

-1

for all J > 1, so that if F(y) is large, then F(y;) is large for some y,
such that [y — y;| < 1.
Now we use (3.14) of Theorem[5.3] namely

T
f L(t, A)dt = O(T?) + O (Alog™ T) (5.214)
0

1 oo
T\2 1 deT
=TP4(logT) + 77(5) ; a/jch; (5) cos (xj log :;]) e~ BT

uniformly for T2 log™ T < A < T3 and any fixed A > 0. In (3.214)
1
take A = T2 log™® T To show that (5.212) holds it suffices to show that

N 1 4eT
E ajch;. (5) cos (xj log L) ¢~ (Bi/2T)
=1 i

Namely, if the lim sup in (5.212)) were finite, then so would be the
limsup in (3.213) by Lemmal[3.3] To prove (5.213]) one can prove

N 1 1
Z ajch; (5) cos (xj logT + x;jlog x_e)
J=1 /

since if the limsup in (3.213) is finite, then the partial sum of any length
of the series in (5.213) is bounded. But by using

OOl 2 14+ 0(A%2T72)

lim sup
T—o0

= +o0. (5.215)

lim sup

T—o0

= +c0.  (5.216)

it is seen that any partial sum of the series in (5.216)) is bounded, which
is impossible. We rewrite (3.216)) as

lim sup

T—o0

- 4
Z g1 COS (,uh log T + uplog _e) = 400, (5.217)
=1 Mh
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[e9)

where as before {u};?

for a given yy,

is the set of distinct x;’s in increasing order, and

1
8h = Z CXjCjH;? (E)

with ¢; ~ xj_.3/ 2 as j > oo. We shall consider F,(y) in (5:213) with
logT =y, a; = uj,b; = py; log(z—j), f(j) = gj. It will be assumed that
gj > 0, for it there are negative values the proof can be modified by mak-
ing the relevant cosines near to 1 for such j (there are infinitely many
values of j such that g; # 0 by (5.209)). At this point the following
effective version of L. Kronecker’s theorem on Diophantine approxi-
mation is used: Let by, by,...,b; be given real numbers, ay, a,...,a;y
given real numbers linearly independent over the integers, and ¢ a given
positive number. Then there is an arbitrarily large positive number ¢ and
integers xp, X2, . . ., Xy such that

ltaj—bj—xjl<1/q (j=12,....,J)

In this result take (with a slight abuse of notation for a; and b))
aj = uj/Q2m), b; = uj(Zﬂ)_llog(4e/ﬂj), q = pj. Then we have with

y=t
4 1
cos(ujy+ujlog—e):l+0(—) G
Hj My
Therefore
& Hj 4e
FAy):Z(l——])gjcos(pjy+,ujlog—)+0(1)
jSJ luJ ,u]
X 1
= > (1= ZL)ajed | |+ o)
< Xy J\2
Jj<J

where J’ > J and the O-constant is absolute. Since x; ~ /12 we have
1 —xj/xp>1/2for j< J> and J large. Therefore

oy

+ O(1),

Fi(y) > Z ajx;.S/z
1

j<J?
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and the last sum over j is unbounded as J — oo. Thus follows
if we can prove that the u;’s are linearly independent over the integers,
which does not seem obvious. Very likely even better Q-results than
(3.212) are true, but their proofs will depend on arithmetic properties of
the x;’s, which so far appear to be rather obscure. The problem of linear
independence is not trivial even when one tries to get Q_-results for the
(relatively simple) function

A(x) = 7712728 Z d(n)n~3 cos (47r\/n_ - %) +0(1)

n=1

by the classical method of A.E. Ingham, which rests on certain inte-
gral (Laplace) transforms. The method requires the arithmetic fact that
(roughly) the square roots of squarefree numbers are linearly indepen-
dent over the rationals. The last assertion, although not very difficult,
certainly requires proof. Perhaps Ingham’s method could be also used
in connection with Q-results for E»(T), but very likely a “linear inde-
pendence condition” would be required again.
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NOTES FOR CHAPTER 5

The fundamental result of this chapter is Theorem[5.1l The ground-
work for it laid in Y. Motohashi [[127]], the result (together with variants
of Theorems [5.2] and was announced in [3, Part VI] and proved in
detail in [128]]. The proof given in the text is based on a draft version of
Motohashi [128]], and for this reason some of the notation differs from
the one used in Motohashi [128]]. A conditional proof of Theorem [5.71is
sketched in Ivié-Motohashi [79]], namely if not all G, vanish, where for

a given yp
1
6= Y, wi3)

Xj=Hn

and {u;} denotes the set of distinct x;’s. Detailed proofs of Theorems[5.4]
-[5.8]are to be found in Ivié¢-Motohashi [80], while the results on spectral
mean values needed in the proofs of these theorems are furnished by
Motohashi [129], and are quoted at the appropriate places in the text.

In Motohashi [128] the series appearing in the formulation of Theo-
rem[5.1] are written as

= 1 - 1\, (.(1
> aH; (E)e(xj; T,A) + > Y iy, (5)9(1 (5 - k) T, A),
=1

k=6 j<d

where the function 6 is explicitly written down as

X

e(r;T,A):fx-%(Hx)-% cos(Tlog(1+1))
0

A, 1
A(x,r)exp|—— log 1+; dx,

4
i )Fz(%+ir)

A =Re{x 2771
(x.7) e{x ( T SinhGen) | T+ 2in)

1 1 1
F(E + ir, 3 +ir; 1 + 2ir; ——)}

X
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with the hypergeometric function (see the definition after (3.130)). This
representation is possible because ®(Pr;k — %) = 0, and it stresses
the analogy between the holomorphic and nonholomorphic cusp forms.
However, the contribution of the holomorphic part, as shown by (3.123)),
is small and it is the nonholomorphic part that is difficult to deal with.

The estimate
T
! + it
0

was first proved by D.R. Heath-Brown [59] (see also Chapter 7 of Ivi¢
[75]). It can be also deduced from H. Iwaniec’s result [82]] on the fourth
moment of £ (% + it) in short intervals, i.e. Theorem[5.8] with T¢ instead
of log-powers. Then one gets T2*€ in (5.218) instead of T2 log!” T.
Iwaniec’s proof was based on the intricate use of Kloosterman sums
(see also his papers [82], [84], [85] and the joint works with J.-M.
Deshouillers [29]], [31], [32]). Deshouillers-Iwaniec [31]], [32] continue
the work of Iwaniec [[83]]. They obtain several interesting results on up-
per bounds for integrals of the form

T 2 T
f‘{ (% + it) Z amm_%_i’ dt, f‘{(% + it)
0 0

m<M

where the a,,’s are arbitrary complex numbers satisfying |a,,| < 1. The
proofs use deep bounds for various sums of Kloosterman sums, but al-
though the results are strong, they cannot yield the sixth moment that
L(T) <, T'*€. The results of H. Iwaniec [82] are reproved by M. Jutila
[96l, [97], [98] by another method, which is essentially elementary in
nature and does not involve the use of Kloosterman sums. It is based on
transformations of exponential sums with the divisor function. For this
see his paper [89], and the monograph [95] which provides an exten-
sive account of this topic. The method is suitable for generalizations to
exponential sums involving Fourier coefficients of modular forms and
Maass wave forms. For applications of Jutila’s method to the latter, see
the papers of T. Meurman [119], [121]].

12
dr < T?1og" T (5.218)

4 2

4
l_.
Z a,m- 27" dt,

m<M
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For S. Ramanujan’s work on ¢,(n) see G.H. Hardy [55] and S. Ra-
manujan [145]. The identity (5.26) can be extended to S L(3,7Z). For
this see D. Bump [[18]], and for generalizations to higher dimensions see
the papers of D. Goldfeld [41]], [42].

The functional equation (5.32]) was proved by T. Estermann [33]]. A
proof may be also found in M. Jutila [95]].

The definition of Z,, ,(s) in (5.42) is from N.V. Kuznetsov [104]. A.
Selberg, whose paper [150] incited much subsequent research, does not
have the factor (27 v/mn)**~! in the definition of Z,,,(s). Selberg has
shown that it is possible to continue the function Z,, ,(s) meromorphi-
cally onto the entire s-plane, and gave the location of its poles in the

half-plane Re s > %

The term “non-Euclidean” regarding the upper complex half-plane
H comes from the fact that H represents the Poincaré model of Lobacev-
skyi’s hyperbolic non-Euclidean geometry. In this model the straight
lines are either semicircles with centers on the real axis or semilines
perpendicular to it. Detailed accounts on the spectral theory of the non-
Euclidean Laplace operator may be found in N.V. Kuznetsov [104] or
A. Terras [[154].

To prove (5.46) make the change of variables u = xt, v = ; Then

o0

fKr(X)XS_ldX= %ffxs_lt’_le_%x(’”_l)dt dx
0 0

0

ENT

ff(uv)%(S_l)u%(r_l)v%(l_r)e_%(“”)v_ldu dv
0 0

_ ZS_ZF(S + r)r(s - r).
2 2

The asymptotic formula is proved by N.V. Kuznetsov in [104]].
It improves a formula obtained by R.W. Bruggeman [[17].

The Rankin-Selberg convolution method was introduced indepen-
dently in the fundamental papers of R.A. Rankin [147] and A. Selberg
[149]. See also the papers of P. Ogg [131]] and D. Bump [19] for the
Rankin-Selberg method in a general setting.




5.7. The Omega-Result 351

In view of (5.50) and p j(1)t;(n) = p;(n) it follows, by an application
of the Cauchy-Schwarz inequality, that the series in (3.3)) is actually
absolutely convergent for Re s > 1. Analogously the series in
converges absolutely for Re s > 1.

The functional equation (5.533)) for Hecke series is a special case of
Theorem [2.2] of N.V. Kuznetsov [[106].

The asymptotic formula (5.33]), proved by Y. Motohashi [129], is
a corrected version of a result of N.V. Kuznetsov. Namely, in [[106]
Kuznetsov states without proof that, for fixed real t and % <o <1,one
has

2 _ 2\ 120
> ajlH (o +inf = (;) ({(20‘) 2= 20) (T—) ]+0(T log ),

= 2-20 \2n

1
while for o = = the right-hand side in the above formula has to be
replaced by

272
—-(log T + 2y — 1 + 2log(2m)) + O(T log 7).
b3

This is incorrect, as the main term differs from the one given by
Motohashi in (5.55)). It incidentally also differs from what one gets if in

the above formula for |H (o + it)|> one sets ¢ = 0 and lets o — 3 + 0.

Both of the above formulas of Kuznetsov are not correct.
The trace formulas of N.V. Kuznetsov [[104], [LOS]] for transforming
series of the form

Z 'S (=m, n; Oh (47r ‘/ZT") Z 1S (m, n; O)h (471 \/ZE)
=1 =1

are fundamental results with far-reaching applications. Their proofs are
not given in the text, since that would lead us too much astray. The
reader is referred to the papers of Deshouillers-Iwanice [29]], M.N. Hux-
ley [66] and Y. Motohashi [128]]. The last paper contains a sketch of the
proof of (5.63)), with a somewhat more stringent condition on the de-
crease of h)(y).
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The bound in is the strongest known bound, stemming from

T | 6 T T 43'1 T
f ’4(5+n) dt = f |§|3|§|3dts[ f |§|4dt] [ f |§|12dr]
0 0 0 0

and the bounds for the fourth and twelfth moment. For the proof in the
text the trivial bound
T
Ie 1+'t ng“ 1+'t
2! 2!
0

T
[l(Le
5+
0
is in fact sufficient.

The bound (3.531), with an unspecified B, is indicated in N.V.
Kuznetsov [107], but not proof is given. A rigorous proof is due to
Y. Motohashi [129]], while a proof of the slightly weaker result

1
Z a/jH;! (E) < x°t€

Xj<x

1
)

6 4

4
dt < Maxo<<T dt <. T3

is briefly sketched by Vinogradov-Tahtadzjan [161], where upper and
lower bounds for a; are also given.

It should be remarked that Theorems 3.4l and [5.7], namely E»(T) <
T2310gC T and E»(T) = Q(T?), have their counterparts for zeta - func-
tions of cusp forms. Namely, if a(n) is the n-th Fourier coefficient of a
cusp form of weight x = 2m(> 12) (see e.g. T.M. Apostol [2]]), and let

(o)

o(s) = Z a(nm)n™* (Re s> %(x + 1))

n=1

be the associated zeta-function. E. Hecke [38] proved the functional
equation

Qm)T($)e(s) = (=1)7* Q) “IT(x - s)e(x — 5),

1
so that the role of the critical line o = 3 for £(s) is played in this case

by the line o = g The functional equation for ¢(s) provides a certain
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analogy between tp(%(x — 1) + s) and Z%(s), which was systematically
exploited by M. Jutila [95]]. The function ¢(s) was studied by A. Good
[44], [471], [48], [49]. Let

[

where ¢_; denotes the residue, and c_;co the constant term in the Lau-

2 T
dt =2c_q (log — + co) T+ E(p;T), (5.219)
2me

rent expansion of ), la(n)[*n=* at s = x. Then Good [47]] proved that
n=1

E(p;T) = Q(T%) if the non-vanishing of a certain series, too compli-
cated to be stated here in detail, is assumed. In [48] he proved that
E(p;T) < (Tlog T)*3, which corresponds to our result that E»(T) <
T%/310g® T. It should be remarked that £%(s) has a double pole at s = 1,
while ¢(s) is an entire function of s. This fact makes the study of E(p; T')
in some aspects less difficult than the study of E,(7"). For example,
this is reflected in the simpler form of the main term for the integral in
(5.219).

It was already stated that it seems unlikely that an analogue of Atkin-
son’s formula exists for E»(T). The Q-result E»(T) = Q(T%) supports
this viewpoint, in case should such an analogue contain the divisor func-
tion d4(n) (generated by ¢ 4(5)). Namely for A4(x), the error term in the
asymptotic formula for )] d4(n), it is known (see Chapter 13 of Ivié

<
[75])) that -
X

M0 =6, [ Moy <
1

and one conjectures that A4(x) = O(x3/8+€). Thus the functions A4(T)
and E»(T) are of a different order of magnitude.

For A.E. Ingham’s method for omega-results see his paper [74] and
K. Gangadharan [40]]. This method is essentially used in the proof of

[B.44) of Theorem[3.4]
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Chapter 6
Fractional Mean Values

6.1 Upper and Lower Bounds for Fractional mean
Values

IN THIS CHAPTER we are going to study the asymptotic behaviour of 317
the integral

T
I(T, o) := f (o + in)| P dt (6.1)
0

when % < o0 < 1 and k > 0 is not necessarily an integer. If & is not an in-
teger, then it is natural to expect that the problem becomes more difficult.
In the most important case when o = % we shall set I (T, %) = Ii(T), in
accordance with the notation used in Chapter @l When & is an integer,
we can even obtain good lower bounds for I(T + H) — I(T) for a wide
range of H, by using a method developed by R. Balasubramanian and
K. Ramachandra. This will be done in Section In this section we
shall use the method of D.R. Heath-Brown, which is based on a convex-
ity technique. Actually this type of approach works indeed for any real
k > 0, but when k is not rational it requires the Riemann hypothesis to
yield sharp results. Since / prefer not to work with unproved hypothe-
ses such as the Riemann hypothesis is, henceforth it will be assumed
that k£ > O is rational. Now we shall formulate the main result of this
section, which will be used in Section to yield an asymptotic for-
mula for certain fractional mean values, and in Section|6.3| for the study
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of the distribution of values of |{ (% + it)|. This is

Theorem 6.1. Ifk > 0 is a fixed rational number, then

T 2%k
1
I«(T) = f ‘g(z + it) dt > T(log T)*. (6.2)
0
318 If m > 1 is an integer, then uniformly in m
T(log 7)™ < I j(T) < T(log T)/™". (6.3)

Before we proceed to the proof of Theorem|[6.1] we shall make some
preliminary remarks and prove several lemmas.

Already in Chapter [Il we encountered the divisor function di(n),
which represents the number of ways n may be written as a product
of k factors, where k(> 2) is a fixed integer. In case k > 0 is not an
integer, we define di(n) by

Hoy=[Ja-p™™* =D dimnRes>1). (6.4)
p n=1
Here a branch of 7%(s) is defined by the relation

7X(s) = exp(klog £(s)) = exp [—kz >t p—ﬁ] (Res>1). (6.5)
p =l
Note that the above definition makes sense even if k as an arbitrary
complex number. It shows that di(n) is a multiplicative function of n for
a given k. If p® is an arbitrary prime power, then from (6.4) we have

o _ 1\ —k\ _k(k+1)...(k+a-1) Tk+a)
di(p®) = (1) (a) = . = Toal (6.6)
so that by multiplicativity
B I'tk +a)

p2ln
From (6.6) it follows then that always dy(n) > O for k > 0, the

function di(n) is an increasing function of k for fixed n, and moreover
for fixed k > 0 and any € > 0 we have di(n) <. n°. Now we state
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Lemma 6.1. For fixed k > O there exists c; > 0 such that

1 -k N 1 -k
2 -2
(0' - 5) < Z::‘ (™ < (0' - E) (6.8)
uniformly for 1/2 + cx/log N < o < 1 and 319
2 ul 2
log" N < > dimn™" < log" N. (6.9)
n=1

Moreover, if k = 1/m and m > 1 is an integer, then (6.9) holds
uniformly in m, and also (6.8) if 1/2 + c¢/log N < o < 1 for a suitable
constant ¢ > Q.

PROOF OF LEMMA By taking o = 1/2 + ¢¢/log N and noting
that we then have n™! < n™2% < n~! for 1 < n < N, we see that (6.9)
follows from (6.8). By induction on « it follows that

k(k+1)...(k+a'—1))zs R +1)...(*+a—1) = de(p),

a!

dy(p™) = (

a!
whence by multiplicativity d,%(n) < dje(n) for n > 1. This gives

N N 00
Z df(n)n_z‘r < Z dip(n)(n) ™7 < Z dip(n)n™>"
n=1

n=1 n=1

= F0) < (0' - 1)_k
5|

and this bound is uniform for k < ky. To prove the lower bound in (6.8)
write f(n) := dZ(n)u*(n), o = 1/2 + 6. Then

gdﬁ(n)n—% > nzlz;f(n)n—l—za S ;f(n)n“‘% (1 _ (%)5)

=S +28)-N7S(1+9), (6.10)
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where forreal s > 1

S(s):= . fon™ = [ [(1+£2p™) = ()5

n=1 V4

with

60 = x| 3 o1+ ) e 7)) -
2
Thus gi(s) is continuous, and so it is bounded for 1 < s < 2. If
0 < Ay < gk(s) < Brand Cy < (s — 1){(s) < D for 1 < s <2, then we
have

S(1+26) = NS(1+06) = ACF 26 — N B D57,

Since o > 1/2 + ¢/ log N we have N° > exp(cy), and if ¢; is so

large that
B, (D ’
k k

then we shall have
S(1+28)=N°S(1+68)>6F,

and consequently the lower bound in (6.8) will follow from (6.10). For
k < ko the argument shows that the lower bound is also uniform, to
taking k = 1/m, m > 1 an integer, the last part of Lemma easily
follows.

The next two lemmas are classical convexity results from complex
function theory, in the from given by R.M. Gabriel [39], and their proof
will not be given here.

Lemma 6.2. Let f(z) be regular for « < Rez < B and continuous
for @ < Rez < B. suppose f(z) — 0 as |Imz| — oo uniformly for
a < Rez < B. Then for o <7y < B and any g > 0 we have

f|f(y +it)|%dt < [f |f(a+ it)lth]

By y=a
(3

Fa (9 =
[flfw+it)|th] . (6.11)
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Lemma 6.3. Let R be the closed rectangle with vertices zo, 20, —20, —Z0-
Let F(z) be continuous on R and regular on the interior of R. Then

f F()dd] < f F(2)7dd f F()dd 6.12)
L P )

for any g > 0, where L is the line segment from %(Zlo —20) to %(Zo - Z0)
P consists of the three line segments connecting 7(20 - 20), 20, 20 and
%(Zo — Z0), and Py is the mirror image of Py in L.

We shall first apply Lemma to f(z) = {()exp((z — it)?), @ = 321
’%

l-o,B=0,y = %,where% <0 =<3%q=2k>0and 7 > 2. By the
functional equation {(s) = x(s){(1 — ), x(s) < |t|%“7 we have

(e +if) < 2B+ iDI(1 +16)72,

whence

f [f(a + in*dr < f (o + inPH(L + () 7D 2k gy

1

PR 37/2
? . Lt r)?
< + f (1+ |t|)2ke—2k(t—r) dt+Tk(20——l) f |§(0_+ ll)|2ke 2k(t-1) dt
—co  37/2 72

k2 _ . A (1—7)2
<e 2kt=/5 +Tk(2()’ l)f|év(0_+ lt)|2ke 2k(t—T) dt.

—00

The above bound is also seen to hold uniformly for k = 1/m, m <
1
(loglog T)z, which is a condition that we henceforth assume. Since

B-y/B-a)=(y-a)/B-a) =1/2, 6II) gives then
P 1 2k

2
e—2k(t—‘r) dt
(o)
2 1 2
< ¢TI 4 ghlo=y) f ¢ (o + inPre 2 gy,

—00
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If we define
2T

w(t) = f e K= g

T
and integrate the last bound for T < 7 < 27T, then we obtain

Lemma 6.4. Let % <o < %, k>0andT > 2. Then

1
1(5) <« THO=2) J(or) 4+ ¢ K713, (6.13)

where .
J(o) = f (o + it) **w(t)dt.
Also (6.13) holds uniformly for k = 1/m, where m > 1 is an integer
1
such that m < (loglog T)z.

322 Next we take f(z) = (z — 1){(z) exp((z — iT)?) (so that f(z) is entire,
because z— 1 cancels the pole of {() atz = 1),y =0, =1/2,8=13/2,
q=2k>0,1/2<0 <3/4,and 7 > 2. Then

o0 | ok 37/2 .
f‘f(§+it) dt<<ff(§+it)
—00 /2

37/2 2%
—e(1—1)2
e 2k(t—7)

== [

7/2

2k

dt + e—2k'rz /5

dt + e—2k72 /5

and similarly

00 3 37/2 2%
S+

2% 1
dr < f 4(5 + it)
37/2

7/2
_ _7)2 _ 2
< 7 fe =1 gt 4 72K 12K,

7/2

2 2
e—2k(t—‘r) dt + e—2k‘r /5
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From (6.11)) we conclude that

f If (o + in|*dr < % [ f ‘g(% + it)

But we have

3_
EO—

2k
e_Zk(t_T)zdt] +e B (6.14)

o0 37/2
f (o + inPRe T gr <« f ¢(o + inPre K0T g 4 TN
—00 7/2
31/2
< 2% f If(o + in)*dt + e 2715 (6.15)
/2

(o]
2
<7 f [f(o + infPdr + e,
—00

In case k = 1/m we have to observe that, for T < 7 < 2T,

372
f e 2= Im gy o
/2

instead of < 1. We combine (6.13) with (6.14) and integrate for T <
7 < 2T. By using Holder’s inequality we obtain then

Lemma 6.5. Let 3 <o <3, k>0andT > 2. Then
1 3/2—0 5
J(o) < T"‘”ZJ(E) + e K4

and ifk = 1/m, m > 1 is an integer, then uniformly for m < (loglog T)%
we have

Loy (1 1(3-20) ,
J(o) < (me) J(E) + e T/ m)
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Since (6.2)) is trivial for k = 0, we may henceforth assume that k =
u/v, where u and v are positive coprime integers, so that for (6.3) we
have k = u/v with u = 1, v = m. In the former case let N = T3 and in
the latter N = T'3. We also write

S(s) = Z di(mn™,  g(s) = {"(s) = §"(s).

n<N

We apply now Lemmal[6.2]to the function f(z) = g(z) exp(u(z — it)?)
withy =0,a=1/2,8="7/8 and g = 2/v. Hence

f|f(0'+it)|§dt£[f‘f(%+it)rdt] [f‘f(%+it)

Note that, for % < Re s < 2, trivial estimation gives

8o-4

th] . (6.16)

S(s) < NHIRes 4 | < T,

thus
u+v l 1
g(s) < (T + 1) 55Res£2, |s—1|§1—0 . (6.17)

It follows that

0 2 37/2
f‘f(%ﬂt)vdt:flf(%ﬂt)
—00 T/2

1
77’

2
v

dt

+0 f + f (T + |1))>+ e~ 2k gy
—co 3r
2
37/2 2
7 g
- Zhit] dr+o(TH*eFB3) . (6.18)
8
7/2

At this point we shall use Lemma which allows us to avoid the

3 1
324  singularity of {(s) at s = 1. We take z9 = 3 + EiT’ F(2) = f(z - % - ir)
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2
and ¢ = —. For the integrals in (6.12)) we then have
v

31/2 2
7 v
fIF(Z)Iqldzlsz(§+it) dt
L /2
and
f |F(2)|"|dz| (6.19)
P
37/2 5 2 5/4 ! 2 3 2
Al Y iT\|”
_f‘f(é_l+lt) dt+f{‘f(n+§n') +f(77+7) }dn.
7/2 7/8
By (6.17) we have

1
f(n + EiT) < (T + ‘1')“”6_%’”2

3
and similarly for f (n + g) Thus the second integral on the right of
(619 is < T?*%* exp(—k7?/3) and similarly

37/2

f Fdz] = f f(%m)
P, 7/2

Lemma [6.3] therefore yields

2
v

dt + 0(T2+2k e—k72/3).

37/2
v

e
AL btse af [

o0

dt

1

2 1
v 2
dt] + T2+2ke—k‘r /7’
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since by (6.17)

37/2 2
f{\f(;ﬂ-,) (34
7/2

From (6.16) and (6.18)) we now deduce

2
v

ydt+

}dt < (T + 1)*2k,

do-2
540 (3¢ 3
o0 00 2 3 2 2
2 Lo\ 5\
flf(a+zt)|vdt<< [f‘f(§+zt) dt] ff(z_lﬂt) dt
—00 () %T
I8¢

8o—4

v dt] 3 (T2+2k e—k72/7) 3

@f(;”,)z

325 We integrate this for 7 < v < 2T and write

K(o) = f lg(o + in|s w(D)dt,

whence
402
IS_TM 2T 37/2 s 2 3
K(o) < K(E) f f g(1+it) e 2K gy (6.20)
T /2
1 # 80 —4
LY sy
+K(2) (e7°%)
ﬁ
n= R s | 135 e
3 v 3 kT2 Q20-1)
< K| = — +1it|| dt + K= T,
GIRTAIE 2
1

2

From the definition of g(s) we have

g(s) = Z an® (Res>1)

n>N



6.1. Upper and Lower Bounds for Fractional mean Values 365
with 0 < a, < d,(n), so that a, < 1if u = 1, in particular for k = 1/m.

By the mean value theorem for Dirichlet polynomials (see (I.13) we
find that

3T
f 5+'t
— 1
£\
iT

< TN"(log Ny~ + N 2(log N}~ < TN732(log N)*~!

2
dt<T Z ain™? + Z ain?

n>N n>N

since N < T and
D d(n) < x(logx) .

n<x

Therefore by Holder’s inequality for integrals we obtain
v 1-1 3 2_1 ¥ 3 w1
dt<T ™ (TN_7 log" ™~ T) =TN »(logT) v .

3T 2
f > it
£\4

iT

From (6.20)) we then obtain

Lemma 6.6. Let % <o < %, T > 2. Ifk = u/v, where u and v are 326
positive coprime integers, then

5-40 402 71-8a
3 3

_3 =LY 3 1\ 3 #2eo-n
(TN w(logT) V) + K|= e 6,

1
K(o) < K(E) 3

where

K(o) = f lg(o + in)|F w(t)dt.

If k =1/m, m > 1 is an integer, then uniformly for m < (loglog T)%
we have

7-8a

1\ 3 e
+K|= e om

5-40
== 40-2

K(o) < K(%) (m%TN—%) ’
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PROOF OF As a companion to the integrals J(o) and K(o) we
define

L(o) := f|S(a+ i w(r)dt (% <o < %)

To estimate L(o") note that

2T
w(t) = f e KD gr « exp (—(T2 + tz)k/18)
T

fort <0ort>3T. Since S (o +it) < T we have

3T
L(o) = fIS (o + inPw(n)dt + O(1).
0

Moreover w(t) < 1 for all ¢, and w(r) > 1 for 4T/3 <t < 5T/3.
Thus the mean value theorem for Dirichlet polynomials yields

3T
f IS (o +infdt = ) dimn 7 BT + 0m) < T Y di(mn™
0 n<N n<N
and
ST/3
T
S (o + if)[dr = dznn_z"'(—+0n)>>T d>(nn~%°.
[ 15+ iny o™ (5 + o) = 7 3
4T3 < <
327 Hence we may deduce from (6.8) of Lemma[6.1] that
1\ 1\~
T (o- - 5) < Lo) < T(o- - 5) (6.21)

for 1/2 + ¢x/log T < o < 3/4, and from (6.9) that

1
T(log T)¥ < L(E) < T(logT)¥. (6.22)
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In case k = 1/m we obtain, as in the previous discussion, an extra
1 . 1
factor m?2, and (6.21)) and (6.22) become, uniformly for m <(loglog T)z,

| ~1/m? 1 1 —1/m?
m2T (o- - E) < L(o) < m2T (a' - 5) (6.23)

for 1/2 + c¢/logN < o <3/4, and
1
m2T(log T/ <« L(E) < m?T(log T)"™. (6.24)

We trivially have

ISV ()P = 1"(s) — g(s)P
< 2max(JZ*(s)l, lg()N?" < 1Z(s)F + 1g(s)P,

whence
Lio) < J(o) + K(o0). (6.25)
Similarly
J(o) < L(0) + K(0) (6.26)
1 1 1
In case K(%) < T we have from (6.23) (with o = %) and (6.22)
T(log T < ](%) (6.28)

1
Similarly (6.26) and (6.22)) show that K (5) < T implies
1 k2
J > < T(logT)". (6.29)

Thus we shall assume K (%) > T and show that (6.28)) holds, and for
k=1/m also holds (with the additional factor m%). From these

328
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estimates Theorem will be deduced. From Lemma we have,
1
assuming K(E) >T,

2-40 4-8¢
1 1) o2 1\ * 72 (403
K@) < K(E){K(E) (TN*%(log T)"*%) ; +K(§) ek‘f‘z”}

4o

<K (%) {(N—?r(log T)"—%)Tz + (T‘ze_isz)w‘z} (6.30)

< K (%) N%(log T)("‘%)(¥).

Now we turn to the proof of (6.2)), noting that the proof of (6.3)) is
based on very similar ideas. From (6.23), (6.27) and (6.30) we have,
1
sincenow N =T2 and k = u/v,

1-20

Lo) < J(o) + (L(l) + J(%)) (T1og?T) ™,

2

where B = (8 — 8u)/3. Thus either

1-20

1 4v
L(o) < L(E) (T10g” T) (6.31)

or
1-20

L) < 1(%) (T1og®T) ™ +J(0), (6.32)

and by using Lemma [6.3] the latter bound gives
.
o—1 1)?2 B 222 1 _lrr2
Llo)< T 2J 3 +(Tlog”T)y * J 3 +e 4 (6.32)

1
Write o0 = 3 + 1 UT, where n > 0 is a parameter. Then (6.21)),
og

(6.31)) and (6.22) yield, for some constant c(k) > O,

2
1\
T (0' - 5) < c(k)T (log T)kze_"/(zv).
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Hence
e < nkzc(k),

which is false if n = n(k) is sufficiently large. Thus for this value of n
(6.32)) holds, and using (6.21)) it gives

, 13-20)
Tlogh T < L(o) < J(E) + J(E) +1,

and (6.28) follows. But recall that w(¢) < 1 for all ¢ and
w(f) < exp(—k(* + T?)/18)

fort < 0andt > 3T. Thus

0 00
1
J(E) < Ik(3T) + [f+f] e—k(t2+t2)/20dt < Ik(3T) + e—kTZ/ZO’
3T

[ee)

so that (6.2)) follows from (6.28). Similarly for the case k = 1/m, m > 1
an integer in (6.3) we obtain the result from

1
m2T(log T)"/"™ < J(E) < m?T(log T)"™ (6.33)

because in this case w(f) < m3 always, and w(z) > m?> for AT/3 <t <
5T/3. Thus (6.33)) gives in the case of the upper bound

5T 4T 1
m? (11/,,, (?) — Iijm (7)) < J(E) < m?T(log T)'/"™.

Replacing T by (4/5)"T and summing over n we obtain the upper
bound in (6.3), and the lower bound is proved as in the previous case.
One obtains (6.33) from the corresponding estimates of the previous

m . .
case and chooses o = — + ——, where D > 0 is a suitable large
2 logT
constant.
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In the analysis concerning the case k = 1/m we have made the as-
. 1 . .
sumption that m < (loglogT)2. Therefore it remains to prove (6.3)

when m > mg = [(loglog T)%]. In that case

r 1
Ly(T) = f‘((i + if)
0

for m > my and T — oo. This follows from Lemma of the next

section, whose proof is independent of Theorem To deal with the
upper bound, denote by A; the set of numbers ¢ € [0, T'] such that |£ (% +
it)] < 1, and let A, be the complement of A in the interval [0, T']. Then

Liym(T) = f+f §(%+it) dtsT+f‘{(%+it)
A

A A
Clgr P , :
<T+ f g(— + it) dt < T+T(logT)" <« T(logT)" ",
0

2
since the upper bound in (6.3)) holds for m = my.

2/m
dt > T + o(T) > T(log T)"/™

2/m 2/mq

dt

6.2 An Asymptotic formula for mean values

In this section we shall consider the limit

TR
Th_r)rgofflg(z + n‘) dt =1, (6.34)
0
or equivalently
[ Ig(E R it) =T +o(T) (T - o) (6.35)
0

when A > 0. If A is fixed, then (6.34) (or (6.33)) cannot hold in view of
the lower bound in Theorem On the other hand, is trivial if
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A = 0. Therefore one feels that for certain A = A(T'), tending sufficiently
quickly to zero as T — oo, (6.34) will hold. It seems interesting to
determine precisely the range of 4 = A(T") for which holds. This
is achieved in

Theorem 6.2. If y(T) denotes an arbitrary positive function such that
Y(T) — coas T — oo, then for

0< 1< (¥(T)loglogT)™2

[+

Moreover (6.36) cannot hold for A > C(loglog T)_% and a suitable
C>0.

we have

A
dt=T +o(T) (T — o). (6.36)

To prove Theorem [6.2] we shall prove the corresponding upper and
lower bound estimates. The latter is contained in the following lemma,
which was already used in the discussion of the lower bound in Theorem
in Section

Lemma 6.7. Forany 1 >0

[+

PROOF OF LEMMA [6.7] Let, as usual, N(o, T) denote the number of
complex zeros p =+ iy of {(s) such that 8 > 0,0 <y < T. From J.E.
Littlewood’s classical lemma (see Section 9.1 of E.C. Titchmarsh [155]])
on the zeros of an analytic function in a rectangle, it follows that

a4
dt>T+oT) (T — ). (6.37)

T T

2ﬂf0'0N(0', T)do = flog |§(0'o+it)|dt—flog |£(2 + it)|dt

1 0 0

331
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2
+ farg {(o+iT)do + K(oy),

oo
where K(o) is independent of T, and % < 09 < 1. However, uniformly
for o > % we have arg {(o + it) < logt if ¢ is not the ordinate of a zero
of £(s). For o > 1 we have

log¢(s) = ) i m ™,

p m=1
hence with [A{(n)] < 1 we have
T .
& zn—lT -1
flog |£(2 + it)|dt = Re Z Ai(mn~ =0(1).
logn
0 n=2
Therefore we obtain
1 T
27rfN(a', T)do = flog |£(og + it)|dt + O(log T). (6.38)
a0 0
332 Since N(o, T) > 0 for all o and T, (6.38)) gives with oo = %
1 T .
0< 27TfN(O’, T)do = flog .{(5 + it) dt + O(log T),
1 0
2
hence for a suitable C > 0
- 1
flog {(5 + it) dt > —ClogT. (6.39)
0

Now recall that, if a < b, f(f) > 0fora <t < b, f € Cla, b], then

b b
L~flogf(t)a’tslog{L~ff(t)vlt], (6.40)
b-a b-a
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which is an easy consequence of the inequality between the arithmetic
and geometric means of nonnegative numbers. Hence, for 4 > 0 and

f@= |§(% + it)|, (6.40) gives
1 ”
g(z +1 )

T . T
1
flog{(§+it) dt=iflog
0 0

P
dt

and so using (6.39) we obtain

T
L k(L v
AL
0

for 0 < A < 2. For A = 0 (€.37) is trivial, for A > 2 it follows by Holder’s
inequality for integrals and the weak bound

[T+

PROOF OF THEOREM We shall show that for

AClog T _2ClogT

a
dt>e T >e T =1+0(

log T
T

2
dt> TlogT.

0< A< @W(T)loglogT)™?

[+

Take m = [(loglog T)%]. Then by Holder’s inequality and the upper
bound in (6.3) we have, for some C; > 0, 333

a1tz

we have

A
dt <T+o(T) (T — o). (6.41)

Lma

2m\?
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Lma 1
< (C1T(og )™ 714 = 7C2™ (10g TYV®™ = T + o(T).

Namely
0<4/2m) < (% + 0(1)) t//_%(T)(log log T)_l,

hence, as T — oo,
Lm
(log TYV™ = 1+ o(1), C™ =1+0(l).

This establishes (6.41) and in view of (6.37) proves the first part of

Theorem 6.2
1

To obtain that (6.36) cannot hold for A > C(loglog 7)2 and a suit-

ably chosen C, we use the lower bound in (6.3]) with

m = [Cg‘aog log Ty 2| (C3 > 0).

This gives with some C, > 0

I

2/m
dt > CyT(log )" = C,T exp (C3 + o(1))  (6.42)

1
> CoT exp(icg) > 2T
for C, > (2 log(2/C2))% if C; < 2, and the bound given by (6.42)) is

trivial otherwise. Hence as T — oo

2
A= = =2/|C5' (loglog T)%] = (2C3 + o(1))(loglog T) "2
m

3Cs(loglog T)_% =,
say. But if for some 4g > 0

I

Ao
dt > wT,
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then for A > Ao Holder’s inequality gives

ol b ol

o [ are| [J(3 -4
0 0

and so 334
T

f(l+'t)

¢ 5T
0

Therefore (6.36) cannot hold for 2 > C(loglog T)2, C = 3Cs,
where Cj is as above. This completes the proof of Theorem[6.2]

Ap/A
A
dtJ T4/,

A
dt > 2Y0T > 2T,

6.3 The values Distribution on the Critical line

From (6.3) we may deduce some results on the distribution of values
of |§(% + it)|. The order of |{ (% + it)| remains, of course, one of the
most important unsolved problems of analytic number theory. But the
following two theorems, due to M. Jutila, show that the corresponding
“statistical” problem may be essentially solved.

Theorem 6.3. Let T > 2, 1 <V <logT, and denote by My(V) the set
of numbers t € [0, T] such that Ig’(% + it)| = V. Then the measure of the
set M7 (V) satisfies

2
w(Mp(V)) < T exp {_log—V (1 L0 (M))} (6.43)

loglogT loglog T
and also 5
log”V
M7 (V T —-c—— 6.44
HMr(V)) < exp( CloglogT) (6:44)

for some constant ¢ > 0.

Corollary. Let W(T') be any positive function such that W(T) — oo as

T — . Then
4 l+‘t
—+1
2

<exp (‘I’(T)(log log T)%)
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for the numbers ¢ € [0, T] which do not belong to an exceptional set of
measure o(T).

Theorem 6.4. There exist positive constants ay, a, and as such that for

T > 10 we have
Iq 1+'t
-+
2

in a subset of measure at least a3T of the interval [0, T].

exp (al(log log T)%) < < exp (az(log log T)%)

PROOF OF THEOREM It is enough to restrict V' to the range
(loglog T)% <logV <loglogT.

Namely for logV < (loglog T)% the exp(...) terms in (6.43) and
are bounded, so the bounds in question both reduce to u(Mr(V))
< T, which is trivial, and log V < loglog T is equivalent to our assump-
tion that V < log T. Now by (6.3), for any integer m > 1,

2/m

T
1
w(Mp(V)V2m < f ‘5(5 + it) dt < T(log T)'/™,
0

whence ,
w(Mp(V)) < T(log T)V/m y=2/m. (6.45)

As a function of m, the right-hand side of is minimized for
m = loglog T'/log V. Since m must be an integer, we take

m = [loglog T/ log V],

so that (6.43)) yields then and (6.44).

PROOF OF THEOREM 6.4l Let 0 < A < 1 be a constant to be chosen
1
sufficiently small later, and let m = [(Aloglog T)2] — a, where a is 0 or

4
1 so that m is an even integer. We suppose T > exp |exp Z)’ so that m

is positive, and denote by by, by, . . . positive, absolute constants.
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Denote by E the set of points ¢ € [0, T'] such that

1 ”
§(§+l)

and let F = [0, T]\E. If we can show that

[+

then Theorem [6.4] follows from (6.47) and the lower bound in (6.3). 336
Indeed the latter gives, by our choice of m,

T
[l{L e
5 i
0
whence by (6.47) with sufficiently small A we have
T
f§l+it dt—f§l+it
2 - 2
E 0
- f 4 ! + it
2
F

Consequently, by the defining property of the set E,

exp ((A log log T)%) < < exp (A‘l(log log T)%) . (6.46)

2/m
dt < biT, (6.47)

2/m
dt > bye'T,

2/m 2/m

dt

2/m .
dt > —byedT.
) 2

-1 M ia
u(E){exp|A™ (loglog T)2 Zzbze T,

which gives

u(E) = %bz {exp (A_1 - b3A‘3/2)} T.

1
Thus Theorem [6.4] holds with a; = A%, a = A7 a3 = Ebz exp
(A1 = b3A73/2),
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It remains to prove (6.47). Let F’ denote the subset of F in which

|
5(5"‘11‘)

and let F”/ = F\F’. Then trivially

T

F/
Further, using (6.3) and noting that m is even, we have

< exp ((A log log T)%) ,

2/m
dt < bsT. (6.48)

1 2/m —2/m T 1 4/m
f‘{(z + it) dt < {exp (A‘l(log log T)i>} f‘é’(i + it) dt
Fr 0
< bsexp(~beA™2 + byA™) T < byT. (6.49)

Here bg may be taken to be independent of A, for example bg = b5
if A < (bg/b7)>. Combining and we obtain (6.47), com-
pleting the proof of Theorem

One can also ask the following more general question, related to the
distribution of ¢ (% + it), or equivalently log £ (% +it) (if £ (% +it) # 0).

337 Namely, if we are given a measurable set E(C C) with a positive Jordan
content, hos often does log ¢ (% + it) belong to E? This problem was
essentially solved in an unpublished work of A. Selberg, who showed
that

log £(3 + if)
vloglog ¢

where as before u(-) is the Lebesgue measure. Roughly speaking, this
result says that log £ (% + it)/ y/loglog ¢t is approximately normally dis-
tributed. From (6.50) one can deduce the asymptotic formula

T
flog §(%+it)—a
0

o1 ‘ T
lim T“(O <t<T; c E] - ;{Efe dx dy, (6.50)

dt = 2n) 2 T(loglog T)? + O,(T),  (6.51)
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where a # 0 is fixed.

Independently of Selberg’s unpublished work, A. Laurin¢ikas ob-
tained results on the value distribution of |£ (% +it)| and |L( % +it,x)|ina
series of papers. As a special case of (6.50) he proved

y

1 10g|{(%+it>| ) i
lim —u OStST:—Sy:(27r)2fe 2 du, (6.52)

Tooo T
/3 loglog T ~

which is of course stronger and more precise than Theorem [6.4l It is
interesting that Laurinikas obtains (6.32) by applying techniques from
probabilistic number theory to the asymptotic formula

T
Lﬂ):f{(%m)

0
which holds uniformly for k7 < k < kg, where k7 = exp(—(log log T)%),
ko is an arbitrary positive number and

x= [k \2loglog 7| +5) . (6.54)
(L |+5)

The crucial result, which is (6.33), is proved by using the method
employed by D.R. Heath-Brown in proving Theorem This involves
the use of convexity techniques, but since the argument requires asymp-
totic formulas instead of upper and lower bounds, it is technically much
more involved than the proof of Theorem although the underlying
ideas are essentially the same. For example, instead of the bounds (6.8])
and (6.9) furnished by Lemma 6.1} for the proof of (6.33) one requires
the following asymptotic formulas:

2x
dr =T(logT)* (1+0((oglogT)™%)).  (6.53)

& = Hx)Q2o - D™+ 0N (ogN)Y)  (6.55)

n<N

+0(@o - 1T (2 + 1,20 - DlogN))

+0 ((20‘ ~ 1)log? N) +0 ((20’ — )" (loglog T)—%)

338
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and

Z d(myn" = %(log Ty (1+0(toglogT)™)).  (6.56)

n<N

Both (6.33) and (6.36) are uniform in k € [k7, ko], in (6.33) one has
o > 1/2, and moreover

H =] | {(1 -pH” i dﬁ(pr)p"} ,
P r=0

[

I'(s,y):= fxs_le_xdx.

y

We shall not reproduce here the details of the arguments leading
to (6.33) - and eventually to and (6.32). We only remark
here that, in order to get the asymptotic formulas that are needed, the
weighted analogue of J(o) (and correspondingly other integrals) in The-
orem|6.1]is defined somewhat differently now. Namely, for o > 1/2 one

sets
) T
Jo(o) = f (o + inPw(odt,  w(t) = f exp (-2n(t - 21)%) dr,
- log? T

where 17 = xk~!. The modified form of the weight function w(t) is found
to be more expedient in the proof of (6.33) than the form of w(z) used in
the proof of Theorem [6.11

6.4 Mean Values Over Short Intervals

339 In this section we shall investigate lower bounds for

T+H
I(T + H) — I(T) = f ‘g(% + it)
T

2k
dt (6.57)
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when T > Ty, k > 1 is a fixed integer, and this interval [T, T + H] is
“short” in the sense that H = o(T) as T — oco. The method of proof
of Theorem which works for all rational £ > 0, will not produce
good results when H is relatively small in comparison with T. Methods
for dealing successfully with the integral in (6.37) have been developed
by K. Ramachandra, who alone or jointly with R. Balasubramanian,
obtained a number of significant results valid in a wide range for H.
Their latest and sharpest result on (6.57), which follows from a general
theorem, is the following

Theorem 6.5. Let k > 1 be a fixed integer, T > To and (loglog T)? <
H < T. Then uniformly in H

T+H 1 ,2kd> ' O(H-\8 0 1 H1 sz 658
T
where
o1 ey S (e m?y
Ck_F(k2+1)U{(l r) ’;)( T )p } (6.59)

Proof. Note that (6.58)) is a remarkable sharpening of Theorem[L.3] and
that it is also true unconditionally. Since

D &) ~ bpxlog T x, Y dimn ~ clog" x,  (6.60)

n<x n<x

it is seen that instead of (6.38) it is sufficient to prove
T+H
f ’ ! + it
- l
2
T

To this end let

2k
dt > Z (H +OH"?) + O(n)) di(mn~'.  (6.61)

n<H

F@):=¢* (% + it) = D dn T = Y A (6.62)

< 1
n<H H<n<H+H4

340
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—§( +lf) Fi(1) = F2(0),

say, and assume that (6.61) is false. Then it follows that

e

By using the mean value theorem for Dirichlet polynomials (see

(L13)) we obtain

dt <2H Z d(myn~. (6.63)
n<H

T+H
f \F1(0)Pdt < 2H Z dXnyn~, (6.64)
n<H
and also
T+H
f |F2(0)dt < H Z d2(myn”! (6.65)
T H<n<H+H i
< Z d2(n) < H? < H Z dZ(myn™!
H<n<H+H? n<H

since trivially dx(n) < n'/3 for n > ny. Thus by (6.62)

T+H T+H 2
f |F(H)[2dr < f U{(%+it)
T T

< H Z d,%(n)n_l,

n<H

and consequently from (6.63)) - (6.63) we obtain by the Cauchy-Schwarz
inequality

+IF1(O)P +|F2(0)f* |dt (6.66)

T+H

f \F(1)F()\dt < H¥ Z d2myn", (6.67)

n<H
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T+H
f F1(0F2(1)ldt < HS Z di(myn".
T n<H

We now introduce the multiple averaging, which will have the effect 341
of making certain relevant integrals in the sequel small. Let U = H'/3
and r > 1 a large, but fixed integer. Set

U T+H—-uj—uy—...—u,

U U
f‘P(t)dt: U_rfdurfdu,_l...fdul f Y(r)dt.
0 0

(r) 0 T+U+uj+ur+...4+u,

Thus if ¥(¢) > 0 for T <t < T + H and Y¥(¢) is integrable, we have

T+H T+H-(r+ 1)U

f‘P(t)dth‘P(t)dtZ f Y(0)du. (6.68)

T (r) T+(r+HU

From (6.62)) we have

Ve (% + it) = F1(t) + F2(0) + F(0),

hence
4 1+ it
5 i
This gives
T+H ! 2% !
f’g(int) dtzﬂg(zﬂ-t)
T (r)

+2Re f Fi(OF(dtb + 0 f (IF1()F2(0)| + |F2(0)F (D)} dt | .
r) (r)

2k
= |F1(0)]* + |F20)F + [F (1)

+2Re {sz(t) + F1OF (@) + Fz(t)F(t)} .

2k
dt f |F1()]>dr > (6.69)
(@]
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The integrals in the error terms are majorized by the integrals in
(6.67). Thus using once again (L.I3) we obtain

T+H : 2% T+H—-(r+1)U
f ‘g(§+iz) dt > f \F1(0)*dt (6.70)
T T+(r+1)U

+2Re f Fi(OF(t)dt } + 0[117/8 > d,f(n)n—l)

) n<H

= > (H+O0H"®) + 0m) di(myn™" +2Re f Fi(OF (Hdt ;.
n<H )

342
We assumed that (6.61)) is false. Therefore if we can prove that

f FiF(ndt < H'® 3" dimn™, (6.71)

) n<H

we shall obtain a contradiction, which proves (6.61)) and consequently

(6.38)). Let
As):= ) dimn™,  Bls):=l)— ). dmm™,

< 1
n<H n<H+H?

Then by Cauchy’s theorem
fA(l — §)B(s)ds =0,
D

where D is the rectangle with vertices % +iT+U+u +...+u),
2+i(T+U+ur+. . .+uy), 2+i(T+H-uy—. . .—uy), 3 +i(T+H—-ui—.. .—u,).
Hence

U U U
U"fdu,fdu,,l...fdul fA(l—s)B(s)ds
0 0 0

D
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[ U %
:U"fdurfdur_l...fdul[f+f+f+f]A(1—s)B(S)dS=0’

0 0 0 I I Iz Iy

where I} and I3 are the left and right vertical sides of D, and I, and I
are the lower and upper horizontal sides, respectively. If we denote, for

1<n<4,

U

U U
Jy = U_rfdurfdur_l...fdul fA(l—s)B(s)ds
0 0

0 I,

and observe that
Ji=i f Fi(t)F(1dt,
(r)
then (6.71)) will follow if we can show that

J < H'/8 Z d2(myn", (6.72)
n<H
Js<H' Y dion, (6.73)
n<H
and
Jo<H'S Y dimn™. (6.74)
n<H

To prove (6.73) note that, for Re s > 1,

Bis)=2M o) - > dmm™ = Y dimm™.

1 1
m<H+H?% m>H+H?%

Therefore
U U 2+i(T+H—t) ...~ 11y)
Jy = U”fdu,...fdul f A(1 — $)B(s)ds
0 0 24i(T+U+u;+...+u,)
U U T+H-uy—...—u,

=iv7 > S dmymndy(n) f du, . .. f du, f (%)”d:

1
nsH m>H+H4% 0 0 T+U+uy +...+u,
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vy 3 dk(m)m’zndk(n)(log%)_r_l.

1
n<H m>H+H?#

But for m, n in the last sum we have

H+Hi

EN[N)

\%

m L
log — > log —H 1,
n 2

and since U = H'/® we obtain
Jy <, H''8g=0+D/3 Z ndy(n) Z di(m)ym™2
n<H m>H

<, HBH OB 10622 i <, HT8 10g" ' |

for any r > 7.

It remains to prove (6.72) and (6.74). Since both proofs are similar,
344  only the details for the latter will be given. Set for brevity

G(s):=A( = 9)B(s), T, :=T+U+u; +...+u,.

Then we have
U 2

U
Jy = U_rfdur...fdulfG(0'+iTr)d(T, (6.75)
0

0 1
2

and by the theorem of residues we may write

1
G(o +iT,) = —— f Gw + o +iT,) exp (— cos Y) W 676)
2rmie Al w
E

where A > 0 is a constant, and E is the rectangle with vertices % -0+

iT —iT,,2+iT —iT,,2+iT+H-T,), % —o+i(T + H-T,), whose

vertical sides are Is, I7 and horizontal sides are I, Ig, respectively. The
. w . . . .

kernel function exp (— cos —), which is essentially the one used in the

proof of Theorem [I.3] is of very rapid decay, since

exp (— cos ;—V)‘ = exp (— cos% . ch%) w=u+iv, A>0).
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We insert (6.76) in (6.73), obtaining
Jo=Js5+Jg+J7+ Jg,

say, where J,(n = 5,6,7,8) comes from the integral over I,. Forw =
u+ ivon Ig and Is we have |[v| > U = H'/8, consequently for A = 10

w u v 1 1
— —_ = — _ — ] < __ _ [vl/10
exp( COSA)‘ exp( cos 0 chlo)_exp( 2cos(5)e )

1 1
<exp (_E cos (g) eH'/8 /10) <cT°€ (6.77)

for any fixed C > 0, since H > (loglog T')>. In fact, one could increase
the range for H in Theorem[6.3]to H > (loglog T)'*¢ for any fixed 6 > 0
at the cost of replacing the error term O(H~'/®) by a weaker one. From
(6.77) it easily follows that the contribution of Jg + Jg is negligible.

Consider now
.U U 2
U-
J5= - fdur...fduzf
2rie
0 0 1
2
’ d
fdulfG(w+0'+iTr)exp(—cos K)—W . (6.78)
Al w
0 I

On Is we have w = %—0’+i(v—T,),T <v £ T+ H. Thus the
integral in curly brackets in (6.78]) becomes (with A = 10)

T+H U
ifG(%+iv)dvfexp{—cos(%—0'+i(v—T—u1—...—u,)/10)}
T 0
duy
%—0‘+i(v—T—u1—...—u,)
T+H

1
< f ‘G(E + iv)
T

U | |
5—0
dv fexp {_5 cos ( 2 5 J . e—lv—T—ul—...—u,.l}
0
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dl/ti
(G=1/22+ @ +T +...+u,—2)"*

The presence of the exponential factor makes the portion of the in-
tegral over uy, for which u; + T + ... + u, —v| > 1, to be O(1). The
remaining portion for which |u; + T + ... + u, — v| < 1 is majorized by

v—T-U—-...—u,+1 1

duy _ f dx
((0‘ - —)2 + xz)%

1
T U1 ((0' - %)2 +u+T+...+u,— \/)2)2 e/

(o= br+1) o

—1+((0‘—%)2+1)% T3

2 Loy
dvf(log 1] do
o3

dv = f \FI(OF(H)|dt < H¥ Z d2(myn”",

n<H

= log

Hence we obtain

T+H 1
G (E + lV)

Js < U f
T
T+H |
< U™! f'G(§+iv)
T

on using (6.64) and (6.66) coupled with the Cauchy-Schwarz inequality.
Finally we consider

-

d
du; | do G(w+0’+lTr)exp( cos —)—W
27rle w
346 On17wehavew:2+zv,T—TrSvsT+H—Tr. Since

T-T =\U+ui+...+u|>H"3|T+H-T,>H"3, the presence
of exp (— cos 1W_0) makes it possible to replace, in the integral over w, the
range for v by (—o0, co) with a negligible error. In the remaining integral
we may interchange, in view of the absolute convergence, the order of
integration. We are left with

1 24+iv)\ dv
e ) SPUTN T0 ) 2w

—00
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2 U

U
U"fdo-fdur...fdulG(2+0'+i(v+Tr)) .
0

1 0
2
But we have
GR+o+iv+T,)=A-1-0c-iv—iT,)BR+ 0o +iv+iT,)
) n \iG+T+U+ur+...+uy)
= > dmm™ T dy ! (—) .
m

If we proceed as in the case of the estimation of J3 and carry out the
integrations over uy, up, . . . u,, we readily seen that the contribution of J;
is O(1) if r is sufficiently large. This completes the proof of the theorem.
It may be noted that essentially the multiple averaging accounts for the
shape of the lower bound in (6.38)), while the kernel function introduced
in (6.76) regulates the permissible range for H.
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NOTES FOR CHAPTER 6

The method of D.R. Heath-Brown [62], where (6.2) was proved, is
based on a convexity technique. This is embodied in Lemma and
Lemma [6.3] both of which are due to R.M. Gabriel [39]. The bounds
given by (6.3), which have the merit of being uniform in m, were proved
by M. Jutila [88]], who modified the method of Heath-Brown [62]. Lem-
mas|[6.1] [6.4] [6.3] and [6.6] are from Heath-Brown [[62]).

E.C. Titchmarsh was the first to prove that if £ is a fixed natural

number, then
f 4 ! +it
—+1
2
0

for0 <o < % (see Theorem 7.19 of his book [155]]). From this it is easy
to deduce that

2k 1 1 K?
e™Oldt > 5 (log 5)

lim sup {Ik(T)T_l(log T)kz} > 0.
T—co
Improving upon this K. Ramachandra (see his series of papers [[138]])
was the first to obtain lower bounds of the type (6.2). His method uses
averaging techniques which do not depend on the aforementioned re-
sults of Gabriel, and besides it is capable of obtaining results valid over
short intervals. In [138] Part II], he shows that

T+H
T

where 100 < (logT)"/" < H < T. Here k,m, £ are any fixed natural

d[
S (K (s))

y dt > Cy¢H(log HY", (6.79)
S

1,
S—2+lt

1
numbers, T > To(k,l,m), 1 = £ + Zkz, Cre > 0 is a constant which

depends on k, £. If the kernel exp(z***?) that Ramachandra used is re-
placed by his kernel exp(sin®z), then the range for H can be taken as
CrloglogT < H < T (as mentioned in Notes for Chapter[I] the latter
type of kernel is essentially best possible). Upper bounds for the inte-
gral in (6.79) are obtained by Ramachandra in [138], Part III]; one of the
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results is that

T+H

/

T

dt < H(log T)i* (6.80)

coftea)

for £ > 1 a fixed integer, H = T4, 1 < A < 1. From (&.79) and (6.80) we

infer that
T
1
T(logT)i < f lg(E + it)
0

but it does not seem possible yet to prove (or disprove) that, for some

C >0,
T
f(l+'t)
§2 i
0

The lower bound results are quite general (for example, they are ap-
plicable to ordinary Dirichlet L-series, L-series of number fields and so
on), as was established by Ramachandra in [138], Part III]. The climax
of this approach is in Balasubramanian-Ramachandra [12] (see also Ra-
machandra’s papers [[140], [[142], [[143]). Their method is very general,
and gives results like

dt < T(logT)F,

dt ~ CT(log T)? (T — o).

I(T + H) - I(T) > C,H(log H* (1 +0 (logl%T) +0 (loglG))
uniformly for ¢; loglogT < H < T,if k > 1is afixed integer (and for all
fixed £ > 0, if the Riemann hypothesis is assumed). Bounds for I;(T +
H) — I(T) for irrational k were also considered by K. Ramachandra (see
[[141} Part IT]), and his latest result is published in [141, Part III].

Theorem[6.2]is from A. Ivi¢ - A. Perelli [81]], which contains a dis-
cussion of the analogous problem for some other zeta-functions.

E.J. Littlewood’s lemma, mentioned in the proof of Lemma [6.7] is
proved in Section 9.9 of E.C. Titchmarsh [155]. Suppose that ®(s) is
meromorphic in and upon the boundary of the rectangle & bounded by
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the linest = 0,¢t =T7T(> 0), 0 = @, 0 =8 B > @), and regular and not
zero on o = 3. Let F(s) = log @(s) in the neighborhood of o = g, and
in general let
F(s) = lim F(o + it + i€).
e—0+

If v(o”, T) denotes the excess of the number of zeros over the num-
ber of poles in the part of the rectangle for which o > ¢, including
zeros or poles on t = T, but not these on ¢ = 0, then Littlewood’s lemma

states that
B
fF(s)ds = —27rifv(a', T)do.

D a

Theorem[6.3] and Theorem [6.4] were proved by M. Jutila [88].

A comprehensive account on the distribution of values of £(s), in-
cluding proofs of Selberg’s results (6.50) and (6.51)), is to be found in
the monograph of D. Joyner [86].

A. Laurincikas’ results on the distribution of | (% + it)|, some of
which are mentioned at the end of Section are to be found in his
papers [109], [110], [111]], [112]]. For example, the fundamental formula
(6.32)) is proved in [111} Part I] under the Riemann hypothesis, while
(111} Part II] contains an unconditional proof of this result.

Theorem [6.3]is a special case of a general theorem due to R. Bala-
subramanian and K. Ramachandra [12]]. I am grateful for their permis-
sion to include this result in my text.
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