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Preface

These notes are based on a course given at the Tata Insfitateda-
mental Research in the beginning of 1990. The aim of the eowes
to describe the solution by O. Mathieu of some conjecturdleérnrep-
resentation theory of semi-simple algebraic groups. Thes@ctures
concern the inner structure of dual Weyl modules and somteef ana-
logues.

Recall that ifG is a (connected, simply connected) semi-simple
complex Lie group an@ a Borel subgroup, the Borel-Weil-Bott Theo-
rem tells that one may construct the finite dimensional irodule G-
modules in the following way. Take a line bundk on the gener-
alized flag varietyG/B, such thatH%(G/B, £) does not vanish. Then
HO(G/B, £) is an irreducibleG-module, called a dual Weyl module or
an “induced module”, and by varying one gets all finite dimensional
irreducibles.

More generally one may, after Demazure, considerBhmaodules
HO(BwB/B, £) with £ as above. (So one still requires thl(G/B, £)
does not vanish.) The “Demazure character formula” detezmihe
character oH°(BWB/B, £). It was shown by P. Polo that ttg2module
HO(BwWB/B, £) has a nice homological characterization in terms of its
highest weight1 (see3.1.710). We therefore use the notatRfn) for
this module. Thé>(2) are generalizations of dual Weyl modules. Indeed
recall that nothing is lost when restricting a rational mlediwom G to
B; inducing back up fronB to G one recovers the original module (see
Z11).

Now the conjectures are about filtrations of the dual Weyl mod
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ulesHO(G/B, £) or their generalizatoinB(1), for semi-simple algebraic
groups in arbitrary characteristic. (Over the integersualty.) The
strongest conjecture of the series is Polo’s conjecturgivdays that if
one twists &(1) by an anti-dominant character the resultiBgnodule
can be filtered with subsequent quotieR{g;). In Polo’s terminology—
which we will follow—the twisted module has axcellent filtration (In
Mathieu’s terminology the twisted modulesgong)

This conjecture, now a theorem of Mathieu, has many niceezons
quences. For instance, suppose one takes a semi-simplegplhgof
G corresponding with a subset of the set of simple roots. Thene
restricts the representatid®(1) from B to B n L, that restriction has
excellent filtration. For the case of dual Weyl modules thosfrms
Donkin’s conjecture that the restriction koof a dual Weyl module has
“good filtration”, i.e. a filtration whose successive quotients are dual
Weyl modules again. (Unlike the preceding statements,ishimt in-
teresting in the case of semi-simple Lie groups, where aitg fifimen-
sionalL-module has good filtration, because of complete redutybili

Another consequence is a solution of the well-known probtgm
showing that the tensor product of two modules with gooddfilbn has
good filtration. This problem was around at least since 19F&mJ.E.
Humphreys was drawing attention to it. Actually Mathieu kasolve
this problem first, before settling Polo’s conjecture. Meitls proof was
the first that did not need to exclude any cases. (And this whigweed
by not having any case distinctions to begin with.) Later @opthas
been found that uses the canonical bases of Lusztigystal bases of
Kashiwara).

A different type of consequence, amply demonstrated in the works
of Donkin, is that many results can be carried over from attarastic
0 to characteristiq. This is because modules with excellent filtration
have nice cohomological properties and thus nice base eharogper-
ties. (But observe that the proofs by Mathieu start at therotimd and
rely very much on characteristigmethods.)

Although the subject of the course is the contribution of ik,
one should of course not forget the work of Wang, Donkin, Roldhat
prepared the way. This story is not told here. To exacerlbéngs, but
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in keeping with established practice, our choice of namesaithemati-
cians in terminology is quite arbitrary. We encourage tlaeles to check
the references for all the things that are left out.

As is already evident from the above, we place much emphasis o
B-modules (more than Mathieu did). Indeed we believe a gotithge
for the theory is provided by the category Bfmodules, enriched with
the tensor product operation and also wittighest weight category
structure (in the sense of Cline, Parshall, Scaft [2]) with tR€1) as
“induced modules”. In the lectures the highest weight aatggtruc-
ture was simply disguised as a particular total orderinchefweights,
dubbed “length-height order”. (Weights are ordered by feragcord-
ing to a Weyl group invariant inner product, and then for filegth by
height.) Indeed no derived categories are found in the notes

In [35] we identified another class Bfmodules. The module in this
class with highest weight we call Q(u). It is related to thd>(1) by the
following type of duality:

) ; . 1, ifi=0andd=—y;
dim(Exta(Qlu)", P(1) = {0, otherwise.

The interaction between tH&(1) and theQ(v) has much relevance
for the filtration conjectures.

Mathieu’s proof of these conjectures involves an innowatixay to
exploit Frobenius splittings on Bott-Samelson-Dema#dagsen reso-
lutions of Schubert varieties and some of their generatinat It was
interesting to be lecturing about Frobenius splittings &R, with the
originators of that theory in the audience.

Warning. When we speak of highest weight, we are using the or-
dering in which the roots oB are positive. This is opposite to the
choice in much of the recent literature, but we hope the mreageees
that in our situation—-where the main concern is mod&lgy with one-
dimensional socles generated by a highest weight vectoeaftwa—it
would be silly to reverse the ordering.

The lectures given in Bombay have served as a starting pmithé
present notes, but is was not a straightforward job to corteroral
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story into something organized and intelligible. | am veratgful to
S.P. Inamdar who wrote the main body of the notes. He smoaihed
many rough spots and mercifully removed some of my less riatt!
variations.

Finally, it is a pleasure to thank colleagues andisah TIFR for
providing such a friendly environment for us visitors.

Utrecht 1993, Wilberd van der Kallen
e-mail: vdkallen@math.ruu.nl
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Chapter 1

Premilinaries

This chapter should be taken as a guideline of what notatidrtermi- 1
nology is used later on during the course rather than giviograplete
treatment of the structure theory of reductive groups. Acetent ref-
erence for a detailed discussion of the contents of the fsticn is
the book [Humphreys: Linear Algebraic Groups]. Indeed, hodghe
material is taken from it.

1.1 Reductive Algebraic Groups

Letk be an algebraically closed field. L&tbe a variety ovek with the
structure of a group on its set of points. We ¢lanalgebraic groupif
the mapsu : G x G — G, whereu(x,y) = xy, andr : G — G, where
7(X) = x1, are algebraic morphisms.

By a morphism of groups we mean an algebraic group homomor-
phism between the two varieties. A morphism from an algetgedup
G to GL(n, k) is called a (rational) representation @&fof dimensionn
with underlying vector spadé’.

Theadditive groupG, is the dfine lineA! with the group lavu(x, y)
= X+ Y. Themultiplicative groupG, is the open fiine subsek* c A!
with group lawu(x, y) = xy. The setGL(n, k) of nxninvertible matrices
with entries irk is a group under matrix multiplication called theneral
linear group
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A closed subgroup of an algebraic group is an algebraic grohps
the special linear group S(n, k) of all the matrices of determinant 1 in
GL(n, k) and the subgroup(n, k) of all diagonal matrices are algebraic
groups. An algebraic group is called a torus if it is isomacgh D(n, k)
for somen.

Let G be an algebraic groufx a variety. We say thab acts(ratio-
nally) on X if we are given a morphism : G x X — X such that for
X € G,y € X we havep(x1, ¢(X2, Y)) = ¢(x1Xz,y) ande(ey) =y. One
usually writesg - v or gv for ¢(g, v).

Lety : G — GL(n,K) be a (rational) representation of an algebraic
groupG. ThenG acts on the fline n-spaceA" via this representation,
i.e. x-v = ¢(X)(v), and thus on a-dimensional vector spadé overk.

In this case we calV a (rational)G-module. More generally, i& acts
linearly on ak-vector spac®/, thenV is called a (rationalf>-module if it
is the union of finite dimensional subspaces on witicacts rationally.

A characterof an algebraic groufs is a morphism of algebraic
groupsy : G — Gn,. We denote the group of charactersg@®by X(G).

Let H be a diagonal subgroup (or a subgroup&f(n, k) which is
diagonalisable). LeV be anH-module. TherV decomposes as direct
sum of subspaceé,, wherea runs over the character grox{gH) of H
and

Vo ={veV|X-v=a(XV}

Thosea for which V,, is non-zero are called theeightsof V and
v e V, is called a weight vector of weiglat.

Every algebraic group contains a unique largest connectetial
solvable group. We call this subgroup @ftheradical of G. It is de-
noted byR(G). A groupG is called semi-simple iR(G) is trivial. The
subgroup ofR(G) consisting of all unipotent elements is normalGn
we call it theunipotent radicalof G. We denote it byR,(G). We callG
reductive ifR,(G) is trivial.

The groupS L(n, k) is semi-simple andL(n, k) is reductive. Note
that any semi-simple group is automatically reductive.

From now on we will assume that our gro@is connected reduc-
tive.
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A Borel subgroumf G is a maximal closed connected solvable sub-
group ofG. A connected solvable subgroup of largest possible dimen-
sion inGis of course a Borel subgroup and it is also true that evergBor
subgroup ofG has the same dimension. In fact we have the following
stronger theorem:

Theorem 1.1.1.Let B be any Borel subgroup of G. Then'Esis a
projective variety, and all other Borel subgroups are caygte to B.

We call a closed subgroup & parabolicif it contains a Borel sub- 3
group. The centralize€ of a maximal torusT of G is called aCartan
subgroupof G. Note that we did not pur the condition of it being a
connected subgroup @ as it can be shown that any Cartan subgroup
of a connected algebraic group is connected. For reductivapg, the
Cartan subgrou@s(T) equalsT.

We now state the Borel Fixed Point Theorem and some of itsezons
guences.

Theorem 1.1.2(Borel Fixed Point Theorem)Let B be a connected
solvable algebraic group, and X be a complete variety on lvB@&cts.
Then B has a fixed point in X.

From this theorem one can deduce Theoféml.1.1 and also:
(i) All maximal tori, and all Borel subgroups are conjugate.

(i) P is parabolic subgroup d& if and only if G/P is a complete
variety.

If Sisany torus irG, we callNg(S)/Cs(S) Weyl group of G relative
to S,whereNg(H) andCg(H) denote the normalizer and centralizer in
G of a subgrouH of G. Since all maximal tori are conjugate, all their
Weyl groups are isomorphic. We call this group eyl group of G
We denote it byW. We state here some of the important properties of
this groupW. Recall thaiG is a connected reductive algebraic group.

(i) Wis afinite group.
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(i) W is generated by elementg1 < i < 1), for somel, with the
following defining relations between thems §)™") = e, with
m(i,i) = 1 and 2< m(i, j) < oo fori # j. A group generated by
elements having such defining relations is callétbaeter group

(iii) If y € X(T) andt € T the formula

(@N)() = x(n"tn)

gives us an action of an elemante W on X(T); heren denotes a
coset representative ofin Ng(T).

(iv) Since the real vector spae€T) ® R is aW-module, we can put a
metric on it which is invariant under the action of the finiteigp
W, i.e. there is an inner product ( , ) such thaty{ wu) = (v, 1)
for everyy, u € X(T).

(v) If we fix a Borel subgrouB and a maximal toru¥ c B, we get a
preferred set of generators Bf. We call them simple reflections.
If they are indexed by a (finite) sé{e.g. the nodes of the Dynkin
diagram), then for eadhe I, we also have a simple roatand we
may choose a homomorphisBil(2, k) — G, mapping

(é tl)Hxa(t), (% :?)l—)X_a(t).

Here if 8 is a root,x; : Gqa — B denotes a conveniently normal-
ized injective homomorphism satisfyimggg(t)h‘l = Xg(B(h)t) for

t e k, he T. (Cf. [34, Chapters 9, 10].) Our homomorphism
SL(2,k) — G has the property that it has at m¢s;—1} as ker-
nal and hence the image is isomorphic to eitBéf2, k) or to the
quotientPS L(2, k) of S L(2, k) by this subgroup of order 2. We
note that in characteristic 2, the above grélip-1} does not dif-

fer from {1} and one must replace it by a “group scheme” of order
2.

If ¢ : G - GL(V) is a representation, theeightsof V are the
images inX(T) of the weights ofp(T) in V via the canonical homo-
morphismX(¢(T)) — X(T). We makeW act on weights oWV via this
canonical homomorphism.
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Let us fix a Borel subgroup and a maximal toru§ of B. LetW
denote the Weyl group oB relative toT. As we have just pointed
out this choice ofB and T gives us a preferred set of generators of
W and for each simple reflection we either have a cop$ &f2, k) or
PS (2, k) embedded inG. Any such subgroup together with gen-
erateds a parabolic subgroup ®f We call these subgroupsinimal
parabolic subgroups ofs. If 5 is a simple reflection iW and P; de-
notes the associated minimal parabolic subgroup By@ontains a rep-
resentative of in G. Note that sincd lies in B, the double cosd8nB
is independent of the choice ofrepresenting a givew € W. We thus
write BwB for this double coset. Its image @&/B is called aBruhat
cell and the closure of a Bruhat cell is calledsahubert variety It is
a union of Bruhat cells. Any elememt € W can be expressed as the
products; ... s for some sequencesy,..., s} of simple reflections in 5
W. If this expression is reduced aiil is the minimal parabolic corre-
sponding withs, thenBwBhas as its closure the skt ... P, i.e. the
image ofP; x - - - x P, under the multiplication ma@ x --- x G — G.

Theorem 1.1.3(Bruhat decomposition)For any reductive group G, we
have G= UyewBwWB, with BwB = Bw,B if and only if yf = w, in W.

Corollary 1.1.4. Let G be a reductive group and B be a Borel subgroup
of G. We have & = UywBwB/B with BwyB/B = Bw,B/B if and
only if wy = wo.

This decomposition gives a stratification of the smooth gmtiye
variety G/B by the Bruhat cells, thé" stratum being the union of all
Bruhat cells of dimensiom. A codimension one Schubert variety of
G/Bis called a Schubert divisor &/B.

1.2 Demazure Desingularisation of5/B

The projective varietys/B being homogeneous it is smooth. However,
the Schubert varieties are not all smooth subvarietigs/&. Further,
two Schubert divisors need not intersect transversally wéch other.
Demazure constructed a “desingularisation”@fB to overcome this
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problem. In this section we first discuss Kempf’'s approaehte stan-
dard modifications. Next we reformulate the resolution imtgof fibre
bundles. Itis the latter description which will be used date

Recall G is a connected semi-simple or reductive algebraic group
over an algebraically closed field of arbitrary characteridNe fixed a
maximal torusT and a Borel subgroup containingT. The unipotent
radical of B will be denotedU. If W is the Weyl group ofG, then we
have a preferres set of generatorsVaf called simple reflections. We
typically denote them bg or 5. ThenPs or P; denotes the associated
(minimal) parabolic subgroup @. For any parabolic subgroup > B
of G, by a Schubert variety i6/Q we mean the closure ofBorbit in
G/Q. We will be dealing mostly with Schubert varieties@'B. The
properties for Schubert varieties @/Q can be deduced from those of
in G/B by studying the fibratioils/B — G/Q.

We have the Bruhat decompositiGiB = UywBwB/B of G/Binto
B-orbits. Note that as this is a finite union, aByinvariant irreducible
closed subvariety dB/B is a Schubert variety.

Let X, = BWB/B be a Schubert variety of dimension Letw =
s1...S be areduced expression far We also complete it into a re-
duced expression for the elemeng of maximal lengthwy = s1... &
...SN. Letwj = s;...spand X; = Xy, be the corresponding Schu-
bert variety of dimensiorj. Note thatX; = Xy. It is known (refer
to Kempf [13]) that the varietie; are saturated for the morphism
nj © G/B — G/P; and thatX;_; maps birationally onto its image
7j(Xj-1) = 7j(X)).

Thestandard modificatio; : M; — X; is defined by the Cartesian
square:

M — - X;

N

Xj1 — > mj(Xj-1)

ThusMj is aP*-bundle over the divisoX;_; in X;.

The Demazure resolution®r desingularisationsy; : Z; — Xj are
defined inductively. We start by takirgy = Xo, a point, andyg : Zy —
Xo the identity morphism. Thew; : Z; — X; is defined by the diagram
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with Cartesian squares:

4 Mj —F— X

bbb

Zj, Xj1 — > mj(Xj-1)

Note thatf; : Z; — Zj_; is aP-bundle being a pullback of the
Pl-bundlexj — mj(Xj-1). This implies that the&Z; are nonsingular by
induction. We also have a section; : Z;_1 — Z; given by the inclusion
Xj-1 € Xj. Furthery; is birational sincer; is birational onX;_; and by
inductive hypothesis we can assume; is birational.

SinceX; = Xy we get by this process a standard modification and
Demazure resolution ak,,. Note that this resolution depends on the
reduced expression chosen for We also get a Demazure resolution
for G/B by this process aXy, = G/B.

We now prepare to give another description for the varieti#ained 7
by the desingularisation process. Recall that stace G/B s a princi-
pal B-fibration, given anyB-spaceX (i.e. any varietyX such thaB acts
on it on the left) we can associate a fibre bundle @@ with fibre be-
ing isomorphic toX. We denote such associated fibre bundl&hy? X.

It is defined as the quotient & x X given by the equivalence relation

(9, X) ~ (gh,b~1x). Note that the natural left multiplication action Gf

on G x X descends to a left action on the associated fibre bundle. This
action commutes with the projection morphism and thus tBeaated
fibre bundle is & fibre bundle orG/B.

Exercise 1.2.1. (i) This fibre bundle is locally trivial in the Zariski
topology. (Check that for ang € G it is trivial over gBwyB/B,
wherewg denotes the longest element of the Weyl group.)

(i) Prove similar statements fd? xB X and forG x" Y whereP is a
parabolic—always containinB-andY is a P-space. Here it may
help to the familiar with standard coordinates in Bruhatscels
explained for instance in 34, Chapter 10]. Observe thafitiia-
tion G/B — G/Pis an example of an associated fibre bundle with
X =P/B.
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Remark 1.2.2.If X is in fact aG-space, then the fibre bundBx? X is
globally trivial by means of the ma@ xB X — G/B x X which sends
the class ofg, x) to (9B, gX).

Now each paraboli®; containsB, and hence they aB-invariant
under the left translation action &on G. The Demazure desingulari-
sation ofX, is the associated fibre bundle = Py xB(PoxB- .. xBP,/B)
and the map, : Z, — Xy is the multiplication map defined on the prod-
uct Py x - - - x P, which actually descends to the associated fibre bundle.
This description will be very useful for us later on. It nowabtes us to
say that in the Bruhat decomposition®fB, the varietieBwB/B are bi-
rational to the image dP1xB(P>xB. - -xBP, /B) under the multiplication
map. Thus the dimension &, is just the length of the reduced expres-
sion ofw. More specifically, the subse, Bx®(BBxB- - -xBBsB/B)
of Z, maps isomorphically to the Bruhat céwB/B. (Comparell34,
Chapter 10].) It will also be useful to consider the analogti&;, for
words s, ... s that are not reduced. Then of course one will not get a
birational map.

To any B-moduleM, we can associate a fibre bundle ®pB with
the fibre being isomorphic witM as before. We denote this bundle on
G/Bby £(M). ThisG fibre bundle is called the associated vector bundle
for the given representation. The reader will see duringcthase of
lectures that this construction will enable us to use “gdoicieresults
to study the representations ®fandB.



Chapter 2

B-Module Theory

Let k be an algebraically closed field. Lidtbe an algebraic group oven
k. LetV be vector space ovd. A group morphismH — GL(V) is
called a (rational) representation @ WhenG is reductive and con-
nected we get a good hold on the representation theoB/myf looking

at the representations of its Borel subgrdBp For example, Weyl's
highest weight theory in characteristic zero gives a dpsori of irre-
ducible representations @ in terms of dominant characters Bf In
this chapter we introduce the dual Joseph modules andweBthubert
modules. These two classesB®inodules are analogues of irreducible
G-modules in characteristic zero.

In the first section we prove the Frobenius reciprocity for con-
nected reductive grou and its Borel subgroup. Let Cg denote the
category ofG-modules. The reciprocity implies tha@t is a full subcat-
egory ofCg.

In the second section, we introduce the Joseph furtd{pon the
category ofB-modules associated to a Schubert variggyc G/B.

In the third section we introduce the dual Joseph modules.aFo
charactent, letw = w; denote the minimal element of the Weyl group
W such thatw 1 € X(T)”™ = {u € X(T) | (u,a) < O for all rootsa
of B}. The dual Joseph moduR(1) is then defined aBl, (W 11). The
relative Schubert modul®(1) is defined as the kernel of the restriction
map fromH,,(w~12) to the sections over the boundai¥, of X.

9
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In positive characteristic we do not have complete redlitibiln
order to “understand” the indecomposaBlanodules we introduce the
concepts of excellent filtrations and relative Schubergtilbns. Indeed
we will be studying the excellent filtrations extensivelyahghout these
notes.

We finish this chapter by giving examples of modules withtreda
Schubert filtration.

2.1 Frobenius Reciprocity

Let H be an algebraic group. We call &hmodule M simple(and the
corresponding representatiomeducible) if M # 0 and if M has noH-
submodules other than 0 ail It is calledindecomposablé it cannot
be decomposed into a direct sum of two propesubmodules and it is
semi-simpldf it is a direct sum of simpldéd-submodules. For anyl the
sum of all its simple submodules is called tecleof M and denoted
by sogy M or simply soaM if it is clear whichH is considered. It is
the largest semi-simplel-submodule oM. Each one-dimensionad-
module is simple. LeCg andCg denote the categories &modules
andG-modules respectively.

For a subgroupd of G and aG-moduleM we can restrict the action
of G to H. This functor fromCg to Cy is called therestriction functor
and denoted by r&p{?). It takes an exact sequence@fmodules to an
exact sequence df-modules and thus it is an exact functor.

Let G be our reductive connected algebraic group. We fix once and
for all a maximal torusT and a Borel subgroup of G containingT.
Let W be the Weyl group o6. Recall that our choice @ gives us a set
of preferred generatolS = {sy,..., §} of W, called simple reflections.
Let X(T) denote the set of charactersf Recall that the Weyl group
W acts naturally on characters ©fand fix aW-invariant inner product
on X(T) ®R.

SinceT c B, res?(M) is aT-module for anyB-moduleM. AsT is
diagonalisableM then decomposes as a direct sum of one-dimensional
submodules. The character with whighacts on a one-dimensional
submodaule is called theeightof that submodule. The direct sum of the
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one-dimensional submodules Bf having the same weight is called
the weight spac&, of M. Let C.r denote the category d@-modules
all of whose weights are of length not more tHRmvith respect to the
chosenW-invariant inner product oiX(T) ® R. For aB-moduleM, we
denote byM<g the largestB-submodule ofM which is inC<g. This
defines a left exact functor frofg to C<g. For example, iR = 0, then
Mg is nothing else thai®(B, M), the subspace d-fixed vectors in
M.

Exercise 2.1.1Give an example to show that the functdr— Mris 11
not right exact.

For M € Cg, let £L(M) denote the associatégtvector bundle, (pos-
sibly infinite dimensional), 065/B, as introduced before. The gro@®
acts on/(M) and therefore we have a natu@hction on

HO(G/B, L(M)),

cf. Jantzen[]11, 1 5.11 Remark]. We call ttiismodule in(‘g(M). Thus
we have a functo€g — Cg given byM — ind‘é‘(M). This functor is
called theinduction functor The reader should note that in Jantzen’s
book the induction functor is defined more algebraically foutus this
equivalent definition will prove more useful.

If M were aG-module then the associated vector bundigV) is
isomorphic with the trivial bundl&/B x M. Further, ass/B is a com-
plete variety we havel®(G/B, £(M)) = M. Therefore ifM € Cg, then
indS(M) = M.

Remark 2.1.2.1f P is a parabolic subgroup @ then we define in a
similar way the induction functor irgc(?) by assigning thé-module
HO(P/B, L(M)) to aB-moduleM. As before, ifM were aP-module,
we get ing(M) = M.

Remark 2.1.3.The fibre over thé-fixed pointB/B of the vector bundle
L(M) is canonically isomorphic wittM. Therefore the restriction map
HO(G/B, £(M)) — £L(M)|g/s gives a naturaB-equivariant morphism
indg‘(M) — M. This map is called thevaluation map
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Exercise 2.1.4. (i) Prove that the evaluation map @\(M) — Mis
an isomorphism iM is aG-module.

(i) Give examples to prove that this map need not be injecéind
need not be surjective.

Remark 2.1.5.The functor in§(?) is left exact and commutes with
forming direct sums, intersections of submodules, andatliimits over
directed systems. (The latter property helps to underdtamdneaning
of indg‘(M) for an infinite dimensional modul®l, asM is a union of its
finite dimensional submodules.) There is a transitivitynofuiction, that
is, if B C P, then ind = indS o indf. We also have the following tensor
identity:
indS(M @ re(N)) = (indS(M))® N

for any G-moduleN and B-moduleM.

The Frobenius reciprocity says that the induction funcsoright
adjoint of the restriction functor.

Proposition 2.1.6(Frobenius reciprocity) For any G-module N and B-
module M we havelomg(N, indg(M)) = HomB(reg(N), M).

Proof. ComposingN — ind$ (M) with the evaluation map irff{M) —
M gives us a natural map HQ{(I\I,indg(M)) - HomB(reﬁ(N), M).
Conversely given @&-equivariant mapf : N — M we associate to it
a G-equivariant mapl : N — indS(M) by the formulaf(n) = (g

(9. f(g~tn))). O
Corollary 2.1.7. One may viewCg as a full subcategory afs.

Proof. If M, N € Cg then Hong(N, M)) = HomG(N,indg reﬁ M)) =
Homg(res3 (N), ress M). O

Remark 2.1.8.As we will see, many questions aboBtmodules are
special cases of questions ab&imodules through this identification
of Cg with a subcategory afg.
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Remark 2.1.9.Here G need not be reductive, of course, and we will
not hesitate to use the result more generally. We will ofteouss only

G andor B, leaving it to the reader to find the scope of the arguments.
When in doubt, consulfT11].

In fact the identification o¢ with a full subcategory o€y even
works on the level of Ext groups. This is derived from the targ
using Kempf’s Vanishing Theorem A.2.7. Indeed we have

Lemma 2.1.10.Let P be a parabolic subgroup containing B and let M,
N be P-modules. Theixt,(M, N) = Extg(M, N) for all i.

Proof. In [L1, Il Corollary 4.7] this is stated fo& and P instead ofP
andB, but the argument is the same. O

2.2 Joseph’s Functors

13
In characteristic zero, a rational representatiorGas completely re-

ducible. Further, the irreduciblé-modules are induced up from irre-
ducible B-modules. We do not have such a nice result for representa-
tions of G in characteristicp > 0. In this section we define Joseph’s
functors. These functors will then lead us to study dual dloseodules
and relative Schubert modules which form some kind of bagddlocks
for a class of representationsBbr G, sharing good properties with the
G-modules of characteristic 0.

For a Schubert variety,, of G/B, we get a naturaB action on
HO(Xw, £(M)), the sections of the vector bundfgM)|x,, over Xy,.

Definition 2.2.1.The functorsH,, : Cg — Cg given by the ruleM —
HO(Xw, £(M)) are calledJoseph’s functors

Remark 2.2.2.The Joseph functors are also defined for Kac-Moody
groups using cohomological algebra. (See [18].) They ateadly dual

to the functors originally studied by Josephlinl[12], alsélmdohomo-
logical algebra. The above definition gives a kind of “repraability”

of the Joseph Functors.
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Remark 2.2.3.1t should be noted that for the element of largest length
wp of W, the two functorsH,,, and intﬁ are the same. (Up to @s
which may safely be ignored from now on, because of Cor@llayd2

Remark 2.2.4.We denote byPs the minimal parabolic subgroup asso-
ciated to a simple reflectioa e S. The Schubert varietXs c G/Bis
the image ofPs under the projection map. It is thus isomorphic with
the complete varietfPs/B. Also, for anyB-moduleM the vector bundle
L(M) on Pg/B is isomorphic with the restriction of the vector bundle
L(M) to Xs ¢ G/B. We thus get that the functdis : Cg — Cg is
the composition of two functors I‘lé%o indgs. That is, in this particular
case, the modulklg(M) is aPs-module viewed as B-module.

Recall that for an element € W, the lengthi(w) of w is the length
of any of its reduced expressions in the chosen generatassntlepen-
dent of which reduced expression one is using and thus defiimésger
valued function onW. For anyw € W ands € S, the preferred set of
generators, we havéfsw) # I(w) and in factl(sw) is eitherl(w) + 1 or
I(w) — 1.

Proposition 2.2.5.For se S, we W and Me Cg, we have:
() HsHw(M) = Hy(M) iflI(s-w) = I(w) — 1.
(i) HsHwW(M) = Hg(M) ifI(s-w) = I(w) + 1.

Proof. Let Ps denote the parabolic subgroup associated to the simple
reflections € W. Consider the following diagram

Ps xB Xy — PsXy € G/B
Ve

Ps/B

where the morphismm s the multiplication map which descends to the
fibre bundle.

(): 1(s-w) = I(w) — 1.
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(ii):

In this case the image of the multiplication mapis BsBX, U
BXw = Xsw U Xy = Xy by [€, 28.3]. Therefore the natural left
action ofPs on G/B leavesX,, invariant. The vector bundl&€(M)
on G/B has a naturac (and hencedPg) action. This gives a nat-
ural Ps action onH®(X,, £(M)). When restricted td, this ac-
tion gives theB-module action orHy(M). Therefore we have
Hw(M) € Cp, C Cg. Hence in§*(Hw(M)) = Hy(M). Also we
haveHs(M) = re%so indES(M). Thus by Remark21l.2 we get
[(s-w) =I(w) + 1.
Now the associated fibre bundle oWy B in the above diagram is
such that the multiplication morphism is birational and proper
with PsXy = Xsw. AS Xsw is normal (cf. [25]), this implies
rn*OPSXBXW = Oxsw
(22, I Lemma 14.5]). For &-moduleM, this gives

HSW(M) = HO(XSW’ L(M))
= Ho(Xow M.Op 8, ® L(M))
= HO(Ps xB Xy, m* £L(M))
= HO(Ps/B, 7.m* £(M))
But we haverr.m* £L(M) = L(H°(Xw, £L(M))). Therefore we get 15
that:
Hew(M) = HO(Ps xB Xy, m* £(M))
= HO(Ps/B, L(H°(Xw, L(M))))
= HS(HW(M))'

This proves the proposition. m]

Exercise 2.2.6Prove thatr,m* £(M) = L(H°(Xw, L(M))).

Corollary 2.2.7. Letwe W and letw= s, ... s, be a reduced expres-
sion. Then i, = Hg o---oHs .
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Let k, denote the one-dimensionBimodule on whichB acts via a
characterl. We denote by (1) its associated line bundle and bly,(1)
its image under the Joseph functdy,(?).

Extra hypothesis 2.2.8.For all the questions we are interested in, one
may easily reduce to the case that the commutator subgromr abn-
nected reductive algebraic gro@is simply connected. This implies
that for each simple root, the corresponding homomorphiem 5 L,
into G is a closed embedding. (Recall that the other possibilityldibe
that the image of this homomorphism is isomorphi®®L,.) Let us as-
sume simply connectedness from now on. Then any line bumi®&/ 8

is associated to a one-dimensional representatioB ¢df. Corollary
[AZ3) and if the associated characids anti-dominant.e. 2 € X(T)",
then £(1) is base point freei.e. given any pointx € G/B there ex-
ists a global sectios € H%(G/B, £(1)) with s(X) # 0. Conversely, if
HO(G/B, £(1)) # 0 then£(1) is base point free (because of equivari-
ance) andl is anti-dominant. (Seéll1, Il 2.6], keeping in mind that his
dominant weights are our anti-dominant ones.)

Lemma 2.2.9. For any A € X(T)~, the socle of (1) is one-dimensio-
nal and its character is W.

Proof. The Bruhat decomposition @/B says that thd3-orbit of w in

Xw is open (and thus dense)Xq,. Therefore for @8-moduleM a section

of Hw(M) on whichB acts by a character is determined uniquely by its
image under the restriction mafy,(M) — L(M)|w. Therefore, since the
fibre of £(1) is of dimension one, we can have only dgénvariant (up

to scalar multiplication) section dfi,,(1). Further, as the restriction is
T-equivariant B acts by the charact&ri on such a section. On the other
handH,(1) # 0 because the line bundle is base point free. By the Borel
Fixed Point Theorem, (TheordmLl1.2) there exists a fixedtgor the

B action on the projective spa&¢H,,(1)). This proves the existence (cf.
[T, I 2.1]) of a B-invariant one-dimensional subspacetf(1). Thus
the result. i

Corollary 2.2.10. Let 2 € X(T)~. Then, Wil occurs as a weight in
Hw(2) for every i < w in the Bruhat order.
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Proof. Since the line bundI£ (1) = £L(k,) is base point free, the natural
restriction map fromH, (1) to Hy (1) is not the zero map. The socle of
the image is thus a non-zero subspace of the sodi&,dft). The socle
of Hy (1) is of dimension one and has weighti. Therefore as the
restriction map idB-equivariantw’A occurs as a weight iRl (1). O

Lemma 2.2.11. For any two B-invariant closed subsets S',& G/B
and any line bundle without base pointson G/B, we have an exact
Mayer-Vietoris sequence

05 HSUS, L) - HYS, LoHYS, L) > HY(SNS ., L) -0
Moreover the map HG/B, £) — HO(S, £) is surjective.

Proof. This Mayer-Vietoris Lemma used Ramanathar [31] for the sur-
jectivity statements (cf. Propositidn_A.2.6), and it usednfRnathan
once more for knowing th&8 NS’ is also the scheme theoretic intersec-
tion, i.e. that its ideal sheaf i65/B is the sum of the ideal sheafs &f
andS’. This then gives an exact sequence of sheaves

0—-JIsus > Is®lsg = Isns — 0

from which the result follows easily. (The “unattentive’ader is alerted
here that one should be worrying that the scheme theordérsiction
might not be reduced. See the exercise below.) O

Remark 2.2.12.The similar Mayer-Vietoris exact sequence is valid arr
G/P for any parabolid?, cf. Exercisd_A.ZP. The passage fr@iB to
G/Pis easy as the projectidd/B — G/P is aP/B fibration.

Exercise 2.2.13Find an example of anfiine varietyX and two closed
subvarietiesS, S’ so thatH(SUS’, Ox) is not the kernel oH(S, Ox)®
HO(S’,0x) — H(SNS’, Ox). Here unions and intersections are simply
taken set theoretically.

Definition 2.2.14.We say a weight occurring in an indecomposable
module isextremalif it has the largest length.
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The moduledH,, (1) are indecomposable as they have one-dimensio-
nal socle. The following proposition gives a nice descoiptof the ex-
tremal weights oH,(1).

Proposition 2.2.15.Let 2 € X(T)~. The extremal weights of 1)
are wa for w < w. Further, the weight spaces corresponding to the
extremal weights are one-dimensional.

Proof. The CorollaryLZZTI0 says that thesé&l occur as a weight in
Hw(4).

For A € X(T)™ the global sections moduld®(G/B, £(1)) is # 0.
We start with showing that the extremal weights of

Huo (1) := HY(G/B, L(1))

arewAd forw e W.

The moduleH%(G/B, £(1)) is aG-module. Therefore for eveny e
W and every extremal weight, the charactewy occurs as a weight
of HO(G/B, £(1)). Furtherwy is also extremal as the inner product on
the vector spac&(T) ® R is W-invariant. Letw, € W be such that
the characterg = w,v is a dominant character,e. such thatyg €
X(T)* = {u € X(T)|(u, @) > 0O for all rootse of B}. Now for any positive
roota occurring in the Lie algebra d, we consider the corresponding
copy of SLy in G and its Borel subgrouB;. The weight space ofv
is By-invariant for otherwise (]9, 31.1]) there would be a weightace
with weightwy + ia, i > 0, and such a translate wf will have larger
length which will be a contradiction to the extremalnessof Thus the
dominant extremal weighty occurs in theB-socle of H(G/B, £(1))
which has weightvgA by LemmdZ.ZB. Thus is aW-translate of this
weightwp. Also since the socle dfi®(G/B, £(1)) is one-dimensional
we see that the weight space for any extremal weigli,@{) is one-
dimensional.

The line bundle£(2) is base point free. Therefore the restriction
map on to sections overEfixed pointw - B/B is surjective for every
w € W. The torusT acts by the charactevi on the fibre of this fixed
point. This gives a geometric description of the one-dirfmared ex-
tremal weight spackl®(G/B, £(1))w., Nnamely it is spanned by “thér -
semi-invariant section af(1) whose restriction to the fibté(1)we/s is
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non-zero. This section vanishesz&/B for z € W with z1 # wl. Note
that in HO(X,, A(1)) the restricted section is eveBrsemi-invariant so
that its zero set is a union of the Schubert varietiXesvith z < w and
Z1 # WA.

To see the general case we note that that natural restriotam
from Hy, (1) to Hy (1) for w e W preserves the length of a weight and is
surjective by Ramanathan (Proposition Al 2.6). Therefazesee that the
weightwA of Hy,(2) is extremal and any other extremal weighttf(1)
is also an extremal weight ¢%(G/B, £(1)). Now let us be given an
extremal weighi: of H,(1) and a non-zero sectiof of weight u over
G/B. Choosew minimal in the Bruhat order so tha'A = u. We
claimw < w. Otherwise the Mayer-Vietoris Lemnia—22.11 gives a
g € HOXw U Xy, £(1)), with the same restriction o’ - B/B asf, but
vanishing onX,,. By Ramanathan Propositi@a_A.P.6 this sectiplifts
to HY(G/B, £(1)), and thus agrees witl, which is absurd. Here we
have been using several times thais semi-simple, so that i1 — N
is a surjectivel-module mapM, — N, is surjective for every weight
1 of N. O

Remark 2.2.16.0ne can also prove the above proposition by induction
on the length ofv, using Corollanf 2.2.10 and Propositibn2]2.5.

2.3 Dual Joseph Modules

For any characten € X(T), there exists an element € W, the Weyl
group ofG, such thagi; = wu € X(T)~. We define

P() = HO(Xy1, L))
Thus the socle dP(u) is of dimension one and has weight

Lemma 2.3.1. P(u) is independent of w, i.e. for any;yww, € W with 19
Wit = Wou € X(T)", we have H(X,1, L)) = HO(X, 2. L)

Proof. We denote byl the translate ofi underW such thatt € X(T)".
Thenrecall ([9, 1.8, 1.10, 1.12]) that there exist elements andwmax
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of the Weyl group/V with the property that for any otherwith wu = A,
we havewnmin < W < Wmax. Now consider the natural restriction map

HOXyes, . L) = HO(Xyr2. L(2)).

Since this map restricts to identity on the socles of the twduhes,
socles of both modules are one-dimensional and have wgigittis
injective, and it is surjective according to Propositio@A. Thus it is
an isomorphism. This proves the proposition. m|

Definition 2.3.2.A B-module M is calleddual Joseph modulé M is
isomorphic withP(u) for some character.

Example 2.3.3. 1. Foru € X(T)~ we haveP(u) = k,, the one-
dimensionalB-module with charactei.

2. Foru € X(T)* we haveP(u) = HO(G/B, L(Wow)).

Definition 2.3.4. (i) If S’ c S are B-invariant closed subspaces of
G/B and A4 € X(T)~, we define arelative Schubert module
Q(S, S, Q) by:

Q(S, S, 2) = ker(res H(S, £(1)) —» HY(S', £L(2))).

(i) If Xy is a Schubert variety its “boundary’X,, is defined as the
union of all Schubert varieties that are strictly contairmed,,.
Thus the boundary is the complementXp of the Bruhat cell
BwB/B.

(iif) Foranyu € X(T), we define aninimal relative Schubert modyle
denoted byQ(u) by:

Qu) = ker(res :H (X, 1 , L(1)) — H(0X, 1, L(1)))

where as before] = Wninu € X(T)™ andwp,, is @ minimal such
element inw.

20  Remark 2.3.5.Note thatQ(u) — P(u). Also, the geometric description
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of the extremal weights d?(u) tells us that an extremal weight B{u)
other tharu does not restrict to zero on the boundary. Therefasethe
only extremal weight of(u).

Definition 2.3.6.A B-moduleM is said to have aexcellent filtrationif

and only if there exists a filtration @ Fo c F1 c ... by B-modules
such thatuF; = M andF;/Fi_1 ~ ®P(4;) for somed; € X(T). Here®

stands for any number of copies, ranging from zero copiesfinitely
many.

Remark 2.3.7.The property of having excellent filtration is closed un-
der extension for finite dimensionBtmodules. Thus for any short exact
sequence 6> M; - M — M, — 0 of finite dimensionaB-modules,

M has excellent filtration whenevéi; and M, both have excellent fil-
tration.

In the next chapter, using the cohomological criterion faretlent
filtrations, we will remove the finite dimensionality coridit (cf. Corol-
lary[32.10).

Definition 2.3.8.A B-moduleM is said to have #elative Schubert fil-
tration if and only if there exists a filtration @ Fo c F1 c ... by B-
modules such thatF; = M andF;/Fi_1 ~ ®Q(4;) for someJ; € X(T).

Remark 2.3.9.The property of having relative Schubert filtration is also
closed under extension for finite dimensioBamodules.

In the next chapter we use Polo’s theorem to give a criteriorBf
modules to have an excellent filtration. Here we will now ggxamples
of modules with relative Schubert filtration.

Lemma 2.3.10. The relative Schubert module(® S’, 1) has relative
Schubert filtration for all B-invariant closed subsets § S and any
antidominant characten.

Proof. The proof is by induction on the number of Schubert varieties
contained irS but not inS’.
First assume there is just one such Schubert varietyXgayrhen 21
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Xw NS’ = dXy and from the Mayer-Vietoris LemnfaZ22]11 one gets
Q(S, S, 1) = Q(Xw, 0Xw, 1), which is either zero oQ(wA).

If there are more, chooseBinvariantS” strictly betweers andS’
and consider the following exact sequence.

0- Q(S,S")— Q(S,S) - QE”,s') - 0.

Note that the exactness of this sequence is due to the Magtorlg
LemmdZZ1N.

By the induction hypothesis both the quotient and the sulubeoof
Q(S, ') have relative Schubert filtration. Now the Remiarkd.3.9pso
the result. m]

Another set of examples of modules with relative Schubérafibn
is given by the following proposition.

Proposition 2.3.11. For any B-invariant closed subset S of Band
A € X(T)~, HO(S, £(1) has a relative Schubert filtration with layers
Q(w2). Moreover @wa) occurs only when wis an extremal weight of
HOY(S, £(1)), and has multiplicity one.

Proof. The previous proof applies also for emi@@yand the rest should
be clear from the discussion. m]

Corollary 2.3.12. The modules (1) has relative Schubert filtration
for allw e W anda € X(T).
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Polo’'s Theorem

In characteristic zero, the representations of reductiyebaaic groups 22
are completely reducible. This means that the irreduciefresenta-
tions are injective, as any extension of an irreducible byr@aducible
is split exact. The dual Joseph modules introduced in theteapter are
not injective in the category d8-modules. Due to this non-injectivity
the excellent filtrations are non-trivial filtrations 8fmodules. How-
ever, in this chapter, we prove certain injectivity theosefor P(2).

In the first section, we prove Polo’s theorem which says tiattal
Joseph modul®(2) is injective in a smaller catego§<(y).

In the second section, using a strong version of Polo’s trapwe
give a cohomological criterion for B-module to have an excellent fil-
tration.

3.1 Polo’s Theorem

We choose as in Bourbaki a linear functiohaighton X(T) ® R which

is positive on all roots oB and injective on the lattic¥(T). We say that

A precedes: in length-height ordeif either 1(1) < I(u) or [I(2) = 1(u)
and the height functional takes a higher valuepothen onAd]. This
defines a total order oK(T)-somewhat arbitrarily because of the free-
dom in the choice of the height functional-which captures ‘thighest
weight category structure” corresponding with the duaggbanodules.

23
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Rather than explaining what this means we ask the readeokohow
the length-height order functions in proofs. Ebre X(T) we define
C-, to consist of theB-modules all of whose weights strictly precede
A in length-height order. 1M is a B-module thenM_, is the largest
B-submodule oM that is inC.,. Similarly one defineg€<, and M.
(For gradedB-modules we will give a slightly dierent meaning to these
notations.)

If R > 0 thenC<r(C<r) denotes the full subcategory 6 whose
objects are the modules all of whose weights have length pot than
R (strictly less tharR).

In this section we prove that the dual Joseph mo&( is injective
in Cx(y)-

If R > 0 thenC<r(C<r) denotes the full subcategory 6 whose
objects are the modules all of whose weights have length pot than
R (strictly less tharR).

In this section we prove that the dual Joseph mo&g is injective
in Caq-

Lemma 3.1.1. The categoryCg of B-modules has enough injectives.

Proof. Recall that for any subgroup of a groupG, the restriction func-
tor re§ is exact. Further by the Frobenius reciprocity the indurctio
functor incﬁ is its right adjoint functor (see Propositibn 2]1.6). The in
duction functor thus sends injecti¥¢-modules to injectivé&s-modules.
This makesk[B], the ring of regular functions o, an injective B-
module ak[B] = ind{B}(k), where thegle} denotes the identity subgroup

e
of B. Similarly, if M is a B-module, then ina} re§Be} M is injective,
and it containdM as a submodule (exercise). Theref@ghas enough

injectives. O

Remark 3.1.2.A useful property of injectives i@g is that if one tensors
them with anyB-module, the result is again injectivé (J11, | 3.10]).

Corollary 3.1.3. The subcategorie€<r, Cr, C<1, C<, have enough
injectives.

Proof. We prove the corollary fo€<g. The proof is similar for the other
cases.
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We denote byM.g the largesB-submodule of 8-moduleM whose
weights have length less than or equaRtoarhenM — M g is the right
adjoint of the embedding funct@.gr — Cg, which is exact. So iM is
an injectiveB-module, therM<R is injective in the categorgg. O

Remark 3.1.4.Beware tahMg is usually much smaller than the largest
T-submodule oM whose weights have length less than or equdk.to
The latter would be simply the sum of those weight spaces atvesght
has length less than or equalRo

Remark 3.1.5.The description of the extremal weights ldf,(1) says 24
thatHy(1) € C<g for k; € C<r. Therefore foru with () < 1(1) < R,
the moduleP(u) (and hence&)(w)) is an object oC<g.

For a moduleM to be injective in a categorg we need to have
vanishing of the Ext functors favl ([23, Ch III]). Before trying to prove
such vanishing for a dual Joseph module we first make someakema

Remark 3.1.6.Note that given @8-moduleN one may write it as a fil-
tered unionN = lim; N; of finite dimensional submodulés;. This con-
struction also has the property that the standard injeotiselutions[[111,
Hochschild complex] of thél; converge to an injective resolution Nf
Thus to prove ExX{Mg, ?) = 0 for a fixed finite dimensionaMy € Cg
and fixedi, we need only prove EXMy, N) = 0 for afinite dimensional
N.

Remark 3.1.7.Further given a finite dimension&-moduleN, using
Borel's Fixed Point Theorem we get a one-dimensioBahodulek,
with weightv such that 0— k, - N - Q — 0.

Writing its associated long exact sequence of Broups, we see
that Ext(Mg, N) = 0 whenever Ex{Mg, Q) = Ext'(Mo, k,) = 0.

Therefore aB-module Mg with Ext' (Mg, k,) = 0 for all v, is injec-
tive.

Remark 3.1.8.Let C be a category with gficiently many injectives and
let C" be a full subcategory af with the following property: whenever
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M1, My € C’, then for every exact sequenceOM; > M — My — 0

in C, M also lies inC’. Then forM andN in C’, we have E%(M, N) =
Ext’, (M, N) (cf. [Z3, Ch 1l §1, §8]). This observation is useful in the
case ofC’ = C.g andC = Cg. SinceT-modules are semi-simple, every
exact sequence d@-modules 0—» M; - M — My — 0 splits as
T-modules and thus 11, M, € C<g thenM € C<r indeed.

Definition 3.1.9.The injective hull of a B-module M, is an injective
B-module containingyl whose socle is sot{). It is unique up to non-
canonical isomorphism.

Theorem 3.1.1Q(Polo’s theorem) LetA € X(T)~ with length (). Then
Hu(2) = HO(Xw, £(2))
is the injective hull of ¢, in C<(y.

Proof. (After H.H. Andersen.) The dual Joseph modHig(1) has one-
dimensional socle with weighed. Thus it is enough to prove thhl, (1)
is injective iNnC(y). O

By a familiar application of Zorn’s Lemma-—cf. proof of Prof.2
in [23, Ch. lll]-it sufices to prove thaH(1) is injective in the full
subcategory oy consisting of finite dimensional modules. Also
note that for finite dimensiona¥l (seel[1l, | Ch. 4])

Exty(M, Hy(1)) = H'(B, Hy(1) ® M)
= Exty(Hw(1)*, M").

Therefore it is enough to prove that %ﬁ(HW(/l)*, M) = 0, where

Exté’ , denotes the first derived functor of the functor Hom in theecat
gory C«p).- We will prove using induction ofength of wthat

Extg_(Hw(1)", k) = 0.

Whenw = e, we haveHy(1) = k;. Also Homg(k_;, M) = MY,
the U-invariants inM_,. But in C<y we haveMY, = M_, because
A € X(T)~ (exercise, cf. proof of 2Z15). Thus the Hom functor is
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identified with the functoM — M_,. This functor is exact. Therefore
Extg ,(k_1, M) = 0.

Let Hy(2) be the injective hull ok,. Let s € W be a simple reflec-
tion such that(sw) = I(w) + 1. To complete the inductive argument, we
need to prove thatlsy(1) is injective inC<(y).

Recall that by Propositidn 2.2.5

HSW = HS o HW = |ndgs OHw.
Further, by using the Frobenius reciprocity repeatedlyptitain:

Homg(Hs(Hw(M))", N) = Home,(Hs(Hu(M))", Hs(N))
= Homp,(Hs(N)*, Hs(Hw(M)))
= Homg(Hw(M)*, Hg(N)).

Thus we get that
Homg(Hsw(M)", N) = Homg(Hw(M)", Hs(N)) *)

This proves that the functor HastHsw(1)*, ?) is the composition of
the two functorsHg : Cg — Cg and Hong(Hw(2)*, ?). Now recall the
Grothendieck spectral sequende{[11]) for two functersC — C’ and 26
F’: C" - C” with F, F’ left exact and= mapping injective objects in
C to objects acyclic foF’. It says that

(R'F')(R"F)(M) = R*M(F’ o F)(M) VM € C.

In particular, ifM is acyclic forF, i.e. if (R"F)M = 0 form > 0,
then the spectral sequence degenerates to

(R'"F)F(M) = R'(F" o F)(M).

The latter is all we will use about the Grothendieck spectesl
quence and it can of course be proved directly—without salestquen-
ces-by induction om, using the long exact sequences associated with
the exact sequence

0—- M- Qu— Qu/M -0,
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whereQy is the injective hull ofM.
We want to use all this foF = Hs : Cg — Cg and

F’ = Homg(Hw(2)*, ?).
We have to check the conditions. To this end we need

Lemma 3.1.11. Let M be a B-module which is a quotient of a-P
module. Then M i;dEs-acyclic. In particular, Hy(1) is ind5>-acyclic.

Proof. Note that the restriction ma%G/B, £(1)) — Hw(1) is sur-
jective by Ramanathan (cf. Propositibn"Al2.6), so tHa({1) is indeed
a quotient of aPs-module. NowPs/B is a projective lineP?, so there
is no higher cohomology than in degree 1, andVifis a quotient of
the Ps-moduleN thenR!ind53(M) = H(Ps/B, £(M)) is a quotient of
R! inng(N), which vanishes becausg&(N) is a trivial bundle (see also

(7). O

Now for the spectral sequence to apply we must check thehiagis
of Ext(Hw(1)*, Hs(N)) = H™(B, Hw(1) ® Hs(N)) for m > 0, whenN
is an injectiveB-module. But therHg(N) = indES(N) is an injective
Ps-module, and ifM is a finite dimensionaB-module,

Extg(Hs(M)", Hs(N)) = Extg (Hs(M)", Hg(N))

by[ZTTI0, so this vanishes ar(B, Hs(M) ® Hg(N)) thus vanishes for

any B-moduleM. This means (use Remdrk=3]1.2) that at least we have

a spectral sequence for the functérsand F”, with F” = HO(B,?®
Hs(N)). The composite functdf” oF is justHO(B, 22Hs(N)), by Frobe-
nius reciprocity andCZT10. The lemma gives us tHa(B, Hy (1) ®
Hs(N)) = R™(F” o F)(Hw(1)) = R"(F”) o F(Hw(1)) = 0 form > 0, as
required.

We may thus state that

Exth(Hu(1)", RIH(K)) = Exty) (Hou(1)". k)

and finish the proof as follows.
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1. The case whenis anti-dominant with respect ®i.e. Hg(v) # 0.
In this case using Kempf’s vanishing theorem we see khas
acyclic forHs. Therefore our spectral sequence degenerates and
gives:
Extg(Hsw(1)", ky) = Extg(Hw(2)*, Hs(k)))

Now we use the inductive hypothesis to get the required tresul

2. vis not anti-dominant with respect

We putu = s(v—p), wherep is the half sum of the roots @&. Then
w is anti-dominant with reference gand moreovek, is the socle
of p®@Hs(u). Also we haveRIHg(o®Hs(1)) = RIHs(p)®Hs(i) by

the tensor identity {[11]). BUR'Hs(p) = 0 Vj > 0 (cohomology
of line bundleO(-1) onP?, cf. [11, I1 5.2].

Thus we have EXtHw (1), RiHs(p ® Hs(u))) = O for all i and j.
Now consider

0-k —p®Hsu) - Q—0.

Writing down part of the associated long exact sequencB-of
cohomology gives Hog(Hsw(4)", Q) — Exth(Hsw(4)", k,) — O.
But one can check (cf[11, I 5.2]) that all weights@fare strictly
less in length tham. As the socle oHg(1) has a weight at least
as long as, one must have Hop{Q*, Hsw(1)) = 0. This gives
the vanishing of the Ext.

Lemma 3.1.12.Let M be a B-module with an excellent filtration. Then
M is ind5=-acyclic.

Proof. Use RemarkZ115 and Lemma3.].11 to prove this lemman

3.2 Cohomological Criterion

28
In this section we give a criterion for B-module to have an excellent

filtration. First we prove a stronger version of Polo’s theror
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Remark 3.2.1.Polo’s theorem and Remdrk=3.11.8 preceding it says that:
Exts(Hw(1)*, M) = 0, wherew € W and € X(T)~ andM € Cx,.

The following theorem proves that this equality is true iseaf the
higher derived functors too.

Theorem 3.2.2(Strong form of Polo’s Theorem)LetA € X(T)™ and
M € C«(y. Then, forwe W, i> 0,

Exty(Hw(2)*, M) = 0.

Proof. We merely extend H.H. Andersen’s proof of Polo’s theorem
(TheorenZ31.7110) to prove this extension. We go through kh@mof.
This time we want to prove EXHy(1)*,k,) = 0 fori > 0 andk, €
Ca-

Whenw = ¢, the identity element of the Weyl group, we take the
minimal injective resolutiori *(2) of k, in Cg, as in [11, 1l 4.8-9]. We
claim that all the weights other thanoccurring inl1(1) are necessar-
ily longer than . Indeedl(1) = k; ® kU] and A has non-negative
inner product with every non-zero weight kfU] becausel is anti-
dominant. For higher values ofthe weights ofi!(1) are in the same
region (seel[11, 1l 4.8-9]) and are thus also strictly lontana. There-
fore Ext(k_,, k,) = Ext (k_,, k;) = 0, which proves the case wherhas
length zero.

The rest of the proof of Theorem—3I110 extends without t@ub
to give this stronger version. As the end, where the weight® are
all strictly shorter tharv, use that we may assume by induction on the
length of weights that all EXtHsw(1)*, Q) vanish. m|

Exercise 3.2.3Complete the above proof by filling in all the details.
Let M be a finite dimensiond-module. Then,
Ext (M, N) = H'(B, M* ® N).

Thus the injectivity ofH,,(1) can be interpreted in terms Bfacyclicity.
(Recall that B-moduleM is B-acyclic if H'(B, M) = 0 fori > 0.)

Corollary 3.2.4. For A, u € X(T), P(1) ® P(u) is B-acyclic.
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Proof. Let (u,u) < (1, 1), Then we have:
H'(B, P(1) ® P(1) = Extg(P())", P())
Now the strong Polo’s theorem gives the result. O

Recall that aB-module M is said to have amxcellent filtrationif
there exists a filtration & F_; c Fg c F1 c ... by B-modules such
thatUF; = M andF;/Fi_1 ~ ®P(4;) for somed; € X(T).

Corollary 3.2.5. The tensor product of two modules with excellent fil-
trations is B-acyclic.

Theorem 3.2.6.For 4, u € X(T), P(1) & Q(u) is B-acyclic.

Proof. If 1(u) < 1(u) thenQ(u) € C«i(yy and thusH'(B, P(1) ® Q(w)) = 0
fori > 0.

If 1(u) > (1) then we lew, denote the minimal element of the Weyl
group which takeg: to the anti-dominant chamber. We will prove the
theorem by induction on the length wf,.

Whenl(w,) = 0, we haveu € X(T)~ and therefor&Q(u) = P(«) and
the result follows.

Whenl(w,) > 0, we look at the short exact sequence

0 - Q) — P(u) — Ho(axml,jj(wﬂy)) - 0.

The quotient has a filtration whose associated graded ¢srmsidi-
rect sums of relative Schubert moduf@&) with I(w;) < I(w,) and thus
we can use an induction hypothesis for the quotient. Nowsbe@ated
long exact sequence of Ext gives the result. O

We now prove that a weaker condition than the one suggested by
TheorenZ3.2]6 is dlicient for a module to have an excellent filtration.

Theorem 3.2.7(Cohomological criterion for excellent filtration)_et
M be a B-module such that for evetye X(T), H}(B,M ® Q(1)) = 0.
Then, M has excellent filtration.
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Proof. First, we order the characters in the length-height ordest ko
A1, ... be our enumeration o{(T) according to length-height order. Let
{Fi} be the length-height filtration ¥, i.e. | = M., is the largest
B-submodule whose weights arefity, 1o, . . ., 4j}.

We will prove that the length-height filtration &fl is an excellent
filtration of M. In fact we will show thaf;/Fi_; ~ ®P(4;) fori > 0. If
not, takei to be minimal so that it fails.

Consider the short exact sequenée: 0 - Fi_y > M - R— 0.
All the weights occurring in so&) are strictly larger tham;_; in the
length-height order. Now for a charactgesuch that(n) < [(1i_1), we
write the long exact sequence Bfcohomology associated & Q(r).
We get because of the Acyclicity Theor€m312.6 tHa(B, R® Q(1)) =
0. Therefore we do not cheat if we replageby R in the sequel. The
effect of this is that we may further assume th(B, F; ® k,) = 0.
There are two cases. The first case is that the height of at least that
of A;. Then all weights oN := F; ® k, are of negative or zero height, as
the socle o is of weighta; — . But then Exg(k, N) clearly vanishes,
cf. [A1, 1 4.10].

The second case is that precedesg; in length-height order, so that
Hom(Q(»)*, M/F;) = 0. It follows that Ext(Q(;)*,F;) = 0. Further,

looking at
01 Q) 2% 0 ¢

with 5 short fork,, we get Homa((Q(n)/n)*, Fi) — Ext'(k_,, Fi) — O.
HoweverQ(rn)/n has weights which are strictly less in length than
Therefore we have Hog@(@)*, F;) = 0 and the second case follows
too. ThusF; is injective inC ;) with a socle purely of weight;. This
proves that; is a direct sum of copies &¥(;), with as many copies as
the dimension of the socle &f. O

From the proof we actually get:

Corollary 3.2.8. For a B-module with excellent filtration the length-
height filtration is an excellent filtration.

This corollary is important for checking that the lengthigig or-
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der leads to a highest weight category structure in the seih€dine-
Parshall-Scott. We will not get into that and just tell exbiyg in terms
of the length-height order itself.

Corollary 3.2.9. An injective B-module has an excellent filtraton.

Corollary 3.2.10. The property of excellent filtration is closed under
extension.

Proof. Let M; and M, be twoB-modules (maybe infinite dimensional)
with excellent filtration. LetM be aB-module such that we have an
exact sequence & M; - M — M, — 0. Tensor this exact sequence
by Q(u) and write its associated long exact sequencB-obhomology
and use the cohomological criterion. O

Lemma 3.2.11.Let M be a B-module with excellent filtration and let w
be an element of the Weyl group. Then the modyJé\H has excellent
filtration.

Proof. We fix a set of generatoiS = {s, ..., §} of W such that each of
its elements is a simple reflection. et= s ... s, be areduced expres-
sion ofw. By Propositio 2215, we havé, (M) = Hg, o --- o Hg (M).
Therefore it is enought to prove theig(M) has excellent filtration for
every simple reflectios € S. We first consider the case whith= P(u)
for some character. Letu; = lely denote the anti-dominant weight in
its Weyl group orbit. TherP(u) = Hy, (11) andHs(P(w)) is by Proposi-
tion[Z2% either isomorphic thly, (1) = P(u) or to Hsy, (1) = P(sw).
Therefore we have proved the claim fdr = P(u).

Now we will use induction to prove the claim for all .

Let0c F; ¢ F> c ... be an excellent filtration oM. Note that
F1 is a direct sum of copies d®(u) for someu. Therefore we know
thatHg(F1) has excellent filtration butis(Frm. 1) does not have excellent
filtration. Consider the exact sequence

0-Fn— Fpr— M1 — 0.

The moduleM; is isomorphic to a direct sum of copies Bfv) for 32
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some character. This exact sequence gives rise to the exact sequence
0 — Hs(Fm) = Hs(Fms1) — Hs(M1) — O.

The surjectivity of this exact sequence is due to th%ﬁr&tyclicity
of Frn (Lemma3IIR). Now the cohomological criterion for exeetl
filtration—or common sense if the modules are finite dimeradiegives
us the result. o

3.3 Relative Schubert Modules

In this section we state and prove (in the form of exercisag)jagous
statements for the relative Schubert modules.

Definition 3.3.1.LetC, denote the full subcategory 6§ whose objects
are the module$/ such that ifu is a weight ofM then eithe = A or

I(u) < 1(2).
Note thatC ) & C1 & C«y) if 1 # 0.
Exercise 3.3.2Prove thaiQ(1) is injective inC,.

Hint: Use the injectiveness d?(1) in C(y and the proof of the
Corollary[3TB.

The proof of the cohomological criterion for excellent ffion ex-
tends easily to give us the following result.

Exercise 3.3.3(The cohomological criterion for relative Schubert fil-
tration). Prove that 8B-moduleM has relative Schubert filtration if and
only if HY(B, M ® P(u)) = 0 for all characterg.

Hint: This time order the weights a little fiérently, using the nega-
tive of the height function.



Chapter 4

Donkin’s Conjecture

Let k now be an algebraically closed field pbsitive characteristic p 33
and letG be our connected reductive group oket.et M be G-module.
Afiltration F of M is calledgoodif the successive quotients are isomor-
phic to a direct sum of copies &f(u) with u € X(T)*. In this chapter
we prove Donkin’s conjecture for good filtrations. The bastwkn half

of this conjecture is the (older) conjecture stating thattiqu € X(T)™,
P(1) ® P(u) has good filtration. The crucial idea (due to O. Mathieu) is
to study theG-modules which are embedded in a gra@edlgebra with

a “canonical splitting”.

In the first section we give the definition and basic propeiegood
filtration. We also give the relationship between the exctlfiltrations
and good filtrations.

In teh second section we give a criterion for existence of @adgo
filtration for a G-module. This criterion works in a very specialized
case of &5-module embedded inside a gradg@lgebra each of whose
graded components has an excellent filtration and only onghivia its
socle. However, as we will see in the last section, this roitegives us
the proof of Donkin’s conjecture.

This criterion leads us to study what we call Frobeniusdimendo-
morphisms of a gradeklalgebraR. A splitting o- of R is a Frobenius-
linear endomorphism such thaf1) = 1. The Frobenius splittings were
introduced by Mehta and Ramanathan(inl [24]. Following Mathiwe

35
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then introduce the notion of a canonical splittingRdind prove the cru-
cial proposition that the image ofgxsubmodule oR under a canonical
splitting is again é@-submodule.

The criterion for good filtration relates the concept of azinal
splitting and that of good filtration. This gives the proof @énkin’s
conjecture.

4.1 Good Filtrations

Definition 4.1.1.Let M be aG-module. A filtrationf = Foc F; C ...
of M by G-submodules is said to begaod filtrationif

() UiFi = M.
(i) Fi/Fi_1 ~ ®P(uj) with ui € X(T)".

The reader may have noticed the similarity between exddfilama-
tion of aB-module and good filtration of @module. Indeed the ques-
tions of aB-moduleM having excellent filtration and iff{M) having
good filtration are related. First we see what happens ngb) = M.

Exercise 4.1.2L et M be aG-module. Show that the length-height fil-
tration of M is not just a filtration byB-submodules, but one b-
submodules. (Hint: Consider a minimal counterexample antbf out
an irreducibleG-submodule.)

Exercise 4.1.3Let M be aG-module. Prove that the following are
equivalent:

(i) M has a good filtration.

(i) M has an excellent filtration. (That is, %M) has one, but recall
from 21T that we embe@g in Cg.)

(iii) The length-height filtration oM is a good filtration.

Remark 4.1.4.As the property of having excellent filtration is closed
under extension, we see that the property of having a goaoadtifih is
also closed under extension.
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We also have a cohomological criterion for good filtrationiethis
analogous to the one for existence of an excellent filtrat{tins much
older.)

Proposition 4.1.5(Donkin). ([L1, 11 4.16]) Let M be a G-module. Thenss
M has a good filtration if and only if for every dual Weyl mod&igl),
A e X(T)*, one has H(G, M @ P(1)) = 0.

Corollary 4.1.6. Let M = My @ M5 be a direct sum of two G-modules.
Then M has good filtration if and only if both ;Mand M, have good
filtration.

Exercise 4.1.7Use Lemmd_3.Z.11 to show thatM has excellent fil-
tration, inds(M) has good filtration.

4.2 Criterion for Good Filtrations

In this section we give a criterion for existence of gooddiimns. Un-
like the cohomological criterion, which is intrinsic, thigiterion de-
pends upon an embedding of the givérmodule into a grade&-alge-
bra. To motivate this approach we look at Donkin’s conjestur

Remark 4.2.1.Donkin’s conjecture claims that fot, 4 two dominant
characters the modulg(1) @ P(u) has good filtration. Now geometri-
cally P(1)® P(u) can be interpreted @) ® P(u) = H(G/BxG/B, £)
where/ is the line bundlel(wpd) x L(wou) onG/Bx G/B. The variety
GxBG/B = G/BxG/B containsBwyBxBG/B as an open subset. There-
fore the natural restriction map gives a natural embeddirR(.0) & P(u)
into the gradecB—aIgebraaa‘J?‘;oHO(BwoB xBG/B, £)). ThisB-algebra is
induced from theT-moduIeeajHO(TwoB xB G/B, £1) and is therefore
injective. Hence by the cohomological criterion, it hasedbant filtra-
tion.

Motivated by this remark, we state the following criteriamr §ood
filtration. First a definition.
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Definition 4.2.2.Let A = & A be a graded-algebra. We define B-
subalgebraA., of Aby A<, = &A_;,. (Recall thatM., is the largest
B-submodule oM which is in the categorg.,.)

Theorem 4.2.3(p-root closure and good filtration)_et A= &;A' be a
graded B-algebra such that

(i) A°=k.
(i) A has excellent filtration.

(i) There existst € X(T)* such that insoc@)) only j- A occurs as
weight.

Let S be graded subalgebra which is a graded G-module andwhic
is p-root closed (i.e. Be S = a€ S). Then S has good filtration.

Proof. We wish to prove that eac" has good filtration and we may
restrict attention to a given We know by the cohomological criterion
for excellent filtration (Theorefi32.7) that eachAdfhas excellent fil-
tration. Therefore for anyn, the rescaled-algebraA; = &A™ with
Ai1 = AM also has excellent filtration. Therefore we may assume that
stzo.

The socle ofS' contains only a single weight. Further asS is a
G-module,il is an extremal weight o8' and all extremal weights are
in the same Weyl group orbit as.

Therefore we hav8 c A.,.

The length-height filtration oA is excellent. Further as the socle of
Al has no other weight than A, we see that the first non-zero module in
this filtration of Al is (Al)<j,. Therefore A<;)! is isomorphic tapP(j-A).

To get a firm hold of the situation we need a technical sublemma
that gives more insight in the algebra structuredgf. That will allow
us to pass to convenient subalgebras. The reader is advigags over
this sublemma quickly. i

Sublemma 4.2.4.The graded B-algebra 4 may be reconstructed from
its “subalgebra of socles®; sog(Al). More generally, any graded sub-
algebra ofe; sogs(Al) is the subalgebra of socles of a suitable graded
subalgebraA of A.;, with A having excellent filtration.
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Proof. We have seen already thak(;)! is isomorphic as &-module
to a direct sum of cipies dP(j1), with the number of copies equal to
the dimension of socf(c;)!). To say it more canonically-which one
must, in view of the task at hand-there is a canonical isohismp of
B-modules _ _

P(j2) ® soc(A<)) @ koji — (Aw)'.

So that is how we reconstruét., as aB-module. To get the ring 37
structure, note that multiplication is given Bymodule maps

(A<)" ® (A)® — (A

Thus we are done with the first half of the lemma if we show that
restriction defines an isomorphism from

Homg((A<1)" ® (A<1)®, (A<2)'™®)

to
Homg(soc(A<,)") ® S0C(A<,)%), SOC(B<a) ™))

For surjectivity one uses Polo’s theorem wirequal to the length
of (r + 9)A. To see injectivity, consider a map

f1(A) ®(AL)® = (A)™®

in the kernel. Iff is not zero, its image must hit the socle &L()" *=.
But then it must be non-zero on the weight spaée (' ® (A<1)®)+9a-
And that is just soc@<,)") ® soc((A<,)°) as one sees by looking at
lengths and heights. The rest of the sublemma follows sitpila O

Encouraged by the sublemma we I€¢8) denote the graded sub-
algebra ofA.; whose j" component is the injective hull &! in the
categoryC<j.,. The subalgebr&(S) c A<, clearly has excellent filtra-
tion. In factl(S) is a direct summand di, and thus the filtration from
its grading is an excellent filtration! Therefore we replacey | (S).

We will prove thatS = A.

We can assume, by rescaling again if necessary,Shat 1(S?).
Therefore there exists a copy Bf1) c |(S?) such thaS?! does not con-
tain P(1). We denote byA; the algebra generted by tH%¥1). Phrased
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differently, we letA; be the graded subalgebra with excellent filtration
whose socle algebra is generated by the socle of our chogsnaodo
P(1). Let A2 = A1 N S. TheG-algebraA; is againp-root closed inA;.
One may quickly dispense of the case thét: 0 for largej.

We choose a parabolic subgroBsuch thatl extends as a character
to P andP is maximal for this property. The line bundle = L(wg - 1)
is very ample orG/P [11, Il 8.5]. Further, we haved®(G/B, £) =
HOY(G/P, £).

Thus we can restrict our attention to the situation

S=AycA =A= @ HOG/P, £)).
i

Consider the projective spaBéA') of one-dimensionajuotientsof
Al. We have a rational map : P(Al) — P(S!). However, the image
of G/P, under the canonical embedding, lies inside the domainisf th
map. Therefore we get a morphism: G/P — IMAGE — P(SY).
The spacd MAGE is aG-space (a homogeneous space) and we claim
the mapf is bijective fromG/P to IMAGE. Indeed let us inspect the
stabilizerQ of the image ofx = P/P. This is the stabilizer in§%)* of
a lineL stabilized byP. SoQ is a parabolic subgroup containifgand
by the classification of parabolic subgroups contairdwge only have
to check which elements of the Weyl group stabilizeThat is easy, as
L has weight-wpA. Note that things would be much more subtle if we
needed the scheme theoretic stabilizerl [11, | 2.6.dfVe do not need
it as we do not claim our bijection is an isomorphism of vaet

Next, we recall alemma from algebraic geometry. The lemmats
stated in its full generality but only in a form which will beseful to
us. The proof is given in the Appendix (cf. SublemmaA.5.1p Wish
to apply it with the line bundlef ~ O(1) onIMAGE. Alternatively one
may apply Sublemm@ZAg.1 to the structure sheaf of $¢p8¢]) = the
affine cone ovelMAGE.

Sublemma 4.2.5.Let X, Y be two projective varieties over k and let
f : X —> Y be a morphism which is bijective. Then for every ample line
bundle£ on Y and for ss HO(X, f*(£)) we have &' e HO(Y, £P") for
some large n.
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Therefore (cf.[[7, Il 7]) for evenya € Al, we havea®" € S for some
largem. Now using thep-root closure ofS we see that € S. Thus
Al c S, a contradiction. O

Remark 4.2.6.There is another way to understand wéiy' € S for
some largem. Namely, scheme theoretically the stabiliZglis gener-
ated byP and some connected infinitesimal subgroup. This connected
infinitesimal subgroup is contained in a Frobenius kern&] find thus 39
acts trivially onaP" for some largem.

4.3 Frobenius Splittings

In this section we define Frobenius splittings and introdheecanonical
splittings.
Let R be ak-algebra.

Definition 4.3.1.A Frobenius-linear endomorphism Bfis a mapo :
R — Rsuch that foa, b e R,

() o(a+b) = o(a) + (b
(i) o(aPb) = a- o(b)

We denote the space of Frobenius-linear endomorphisms ty En

R

Definition 4.3.2. 1. A Frobenius-linear endomorphisiis called a
splitting if o(aP) = a. This meansr is a splitting if and only if
o(1)=1.

2. Letl be anideal oR. We say ar € End:=(R) is compatiblewith
| if and only if (1) c I. We denote the space of such endomor-
phisms by End(R, 1).

3. We sayl is compatibly splitin R if there exists a splitting- of R
such that- € End=(R, I).
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Definition 4.3.3.Let R be ak-algebra. Foa € Rando € End:(R) we

definea x o by
axo(b) = o(a-h).

Definition 4.3.4.Let A = @;0A' be a grade®-algebra. As € End:(A)
is calledgradedif o(A'P) c A' ando(A') = 0 if i is not divisible byp.

In caseR is aG-module, we define & action on Engd(R, |) by

@+0)@=9g-0(g’-a).

Let Rbe aB-algebra. Then under theaction, the module ErqR)
is aB-module, possibly not rational. No® is generated by the tords
and the one-parameter subgroups = {x.(t) | t € k} with @ a simple
root. Everyo € End:(R) defines a ma — End=(R) beb - b= o. If
the B-module Eng(R) is finite dimensional, one expects this to define
a polynomial map on each of the subgrolihs A T-invariant splitting
is canonical if an even stronger condition is true.

Definition 4.3.5.A splitting o € End:(R) (or o € End:=(R, 1)) is called
canonicalif for every simple rootr, there existo,, € End:(R) such
that

() hxo = o foreveryh e T(K).
p-1 .
(i) X (t) x o= Y t' = oy, for every simple rootr and evenyt € k.
r-0
Here it is important that the summation stopgpat 1.

Remark 4.3.6.If R is a B-algebra andr a canonical splitting orR,
theno takes weight vectors of weighsid to weight vectors of weight.
Therefores(R,) = 0 if %)/1 is not a weight oR.

The following proposition underlines the importance of aaical
splittings.

Proposition 4.3.7(Key Proposition) Let o be a canonical splitting of
the B-algebra R. Then the image underof a B-submodule of R is
again B-invariant—and thus a B-submodule.
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Proof. Letv be in aB-submoduleN. Recall that one may wrltea(t)v
as a polynomialyot' X(')v This explains the notat|01x in what
follows.

We write z(t) = (X,(~tP) = o)(v) in two ways. On the one hand we
have

Y = Z(‘tp)ixg)"[z tjpxc(vj)v] = 3 7 2y X (x).
i>0 j=0 i,j>0
On the other hand, asis canonicalz(t) equals 41

p-1

p-1
(-1P) * or0)() = Z(crr,a((—tp)fv»

=0

_‘
'O

Z( ) (s (V):
r=0
Write Z(t) = Y50 Zat". Theno (V) = z. From the second expression
oen sees that the otheg, vanish, sar(v) = 150 Zont?". Now we use
the first expression to rewrite this as

D7 PSPy XD (XPv).

i,>0

But that is just
Xo(—tP) Y o ((tP)PXPIV),
s>0

whence the result thag, (tP)o(v) is in o-(N). Now just substitute for

tP. (We have vary over an algebraically closed field). We conclude that
o(N) is invariant under alk, (t) with @ simple. It is more or less built
into the definition of canonical that(N) is also invariant undert (k).
Now use thaB(K) is generated by (k) and the above,,(t). O

This proposition together with Remdrk™413.6 immediatelyegius
the following corollary. HereA., is the obvious variation oi,. It
equals®;A il whereA' 1 Is the largestB-submodule ofAl which is
in the categonC.i, conS|st|ng of allB-modules with weights strictly
preceding A in length-height order.
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Corollary 4.3.8. If o is a graded canonical splitting on A, then we have
(A1) € Acpando(Ac) € A

The RemarlCZ.2]1 motivates us to look for geometric examples
splitings and in particular canonical splittings. The Faolus-linear en-
domorphisms have the following geometric extension.

Let X be a variety ovek. Let F : X — X denote theabsolute
Frobenius morphism, i.ethe morphism which om@x restricts to the
morphism induced by taking™ power. This morphism is identity on
the underlying topological space. However, on functioriskies a given
function to itsp™ power.

We defineEndg(X) — sheaf of Frobenius-linear endomorphisms —
by assigning the abelian group En{dx(U)) to each opetJ. Let F,.Ox
be the direct image oDx. As a sheaf of abelian groups, the sheaf
F.Ox is isomorphic toOx. The Ox-module structure of,.Ox is via
the Frobenius morphism. We therefore haves = aPsfor a € Ox and
s € F.Ox. Thus,&nde(X) = (F.Ox)*, the dual ofF.Ox. This gives
an Ox-module structure o&nde:(X). We denote the space of global
sections oEndr(X) by End:(X). We get

End:(X) = HO(X, End: (X))
= HO(X7 (F*OX)*)

Definition 4.3.9.A variety X overk is called Frobenius split if there
existso- € End:(X) which is a splitting.

If X is aG-variety, we can give &-structure to Engd(X) by (g =
o)(9) =g-o(g?t- s for se Ox.

The operation: defined before gives anothéx-module structure
on &nde(X). We see that thi®)x-module structure is obtained by us-
ing the isomorphism betwedn.Ox andOyx as abelian groups. K is
smooth, then the she&hdg(X) is isomorphic to a line bundle under the
% operation. This is best seen by passing to the completiorpatra,
which makes things very computable. (Recall the complaticthe lo-
cal ring at a smooth point is just a power series ring in a nunabe
variables.)
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Let Y be a closed subvariety of. Let I be the sheaf of ideals
defining Y. We define the sheaf of Frobenius-linear endomorphisms
which arecompatiblewith Y by assigning the abelian group

End:(Ox(U), 1(V))

to any open subséi of X. We denote this sheaf nd:(X, Y) and its
space of global sections by Ef(X, Y).

Definition 4.3.10.A closed subvariety is said to be compatibly split
in X if there exists a splitting- € End:=(X, Y).

We next list certain properties of splittings and canongglttings
which are useful to us.

Direct images: 43

1. Letf : Z — X be amorphism such thétOz = Ox. Supposer is
a splitting onZ such thatr- compatibly splitsY c Z. Then there
exists a splitting orX which compatibly splitsf(Y).

2. If moreoverZ, Y, X areB-varieties,f is aB-equivariant morphism
ando € End:(Z,Y) is canonical, then the induced splitting in
End-=(X, f(Y)) is also canonical.

Lemma 4.3.11. Let & € End:(X) be a splitting and£ a line bun-
dle on X. Thernr extends uniquely to a graded splitting of£} =
@iZOHO(Xa LI)

Proof. LetV c X be such thaV = SpecA is afine and/]y is trivial.
ThenR(£) is a polynomial ringA[T]. We first prove that a splitting
of A extends uniquely to a graded splitting AfT]. We defineo?, by
Fv(ZisoaT) = Tisoo(@p)T'. Itis clear that any splitting ofA[T]
which restricts t@- on A and which is graded has to satisfy this equation.
Therefore this extension is unique. It is this uniqgueneasalows us to
patch these local sections, To get a splitting oR(L). O

Remark 4.3.12.For aB-variety X and equivariant line bundl&, the
extension of a canonical splitting will again be canonical.
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Let G be our reductive algebraic group overwith B (andT c B)

a Borel (and torus) subgroup & We now consider the special case of
X = G/B. We will prove that the Demazure desingularisatibaof G/ B,
introduced in the second section of the first chapter, hasnanical
splitting. Therefore using the direct image property oftspbs, G/B
itself will have a canonical splitting.

Let W be the Weyl group ofz. Lets;...s, be a reduced expres-
sion for the longest elememy in W. For eachs, we have a minimal
parabolic subgroug; of G. Then,Z, = Py xB P> xB ... xB P,,/B
is called the Demazure desingularisation@fB. The multiplication
mapm : Py x --- x P, —» G induces a morphisnp : Z, — G/B.
The morphismyp is birational. Thus a&/B is a normal variety, we get
.0z, = Og/s ([11, Il Lemma 14.5]).

Remark 4.3.13.Later we will also have use f&, whenn is more than
the number of positive roots. Then of courge .. s, will not be a re-
duced expression farg. Much of the discussion that follows applies to
this more general situation.

We define divisor®; = Py xB---xBP;_; xBBxBPj,1...Py/Bof
Zn. LetDy = U’j‘:lf)j. The components db, intersect transversally at
their intersection poink = Bx8 ... xB B/B.

Consideréndr(Zy, Dy), the sheaf of Frobenius-linear endomorphi-
sms onZ, which leave the ideal ob, invariant. SinceD,, is a codi-
mension one subvariety of the smooth varigty the duality theory for
the absolute Frobenius m#&p: Z, — Z, tells us that&nd:(Z,, D) ~
wz,(Dn)¥P. (See alst A319,A46). Herez, denotes the canonical
line bundIeQQn of Z,.

Definition 4.3.14.Let V be aB-equivariant vector bundle on a variety
X with B action. (That is, on the corresponding geometric vector bun
dle there is aB action compatible with the action ad.) ThenV[A1]
denotes the same vector bundle, but wBtaction twisted bya : For

se HOU, V), b € B, we letb.s be A(b) times what it would be without
the twist.
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Proposition 4.3.15. The shea€&ndr(Z,, Dy) is B-equivariantly isomor-
phic withg* L((1 - p)e)[(p— 1)o], so that ify : Z, — G/B is surjective,
its module of global sectionsnd:=(Z,, Dy) is B-equivariantly isomor-
phic with kp_1), ® HY(G/B, L((1 - p)p)).

For the proof we refer reader to the Appendix{Al4.6). O
Restricting the above isomorphism to global sections, wethye
following corollary.

Corollary 4.3.16. If the mapy : Z, — G/B is surjective, then there
exists a B-equivariant isomorphism betwégd:(Z,, Dn) and kp_1), ®
H(G/B, L((1 - p)p)).

Proposition 4.3.17.Let{s,, ..., sy} denote a sequence of simple reflec-
tions, let R be the corresponding minimal parabolic subgroups and let
Z, = P1 xB ... xB P,/B be as above. Let : Z, — G/B be the “mul-
tiplication” map which we assume to be surjective. Thenehexists

o € End:=(Z,, D) which is a canonical splitting.

Remark 4.3.18.The surjectivity is not really needed for the conclusioss
to hold.

Proof of Proposition [£31Y: (See also the Appendx’A4.7.) To get a
candidate for the canonical splitting we uBel[24] to whichrefer for
details. As Mehta and Ramanathan explairiif [24], one gepditérg

by taking the correct scalar multiple of any element of HZd, Dy)
that does not vanish at the intersection potntf the components of
Dn. And such an element can be obtained by pulling back a section
of £L((1 - p)p)[(p — 1)o] that does not vanish @/B. We claim the
splitting may be taken to b&-equivariant so that it satisfies the first
condition for being canonical. Indeed, if it were ribtequivariant we
could simply take its weight zero component and we would fimat t
component is also a splitting (exercise). From Propos#dhI®b we
see that the weight zero space of E(ih, Dy,) is one-dimensional, so
in fact we end up with a unique splitting this way. Now the ertal
weights ofHY(G/B, L((1- p)p)) are in the Weyl group orbit of (& p)p,

so for a simple rootr the ladderia | ia is a weight of Eng(Zy, D)}
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stops with p— L) = (p— 1) — so(p — 1)o. Thus the second condition
for being canonical is also satisfied. m|

4.4 Donkin's Conjecture

In this section we prove Donkin’s conjecture.

Theorem 4.4.1(Canonical splittings and good filtrations)et A be a
connected (i.e. A= k), graded B-algebra with excellent filtration. Let
o be a graded canonical splitting of A. If S is a grade€dinvariant
subalgebra which is a G-module, then S has a good filtration.

Proof. We concentrate on proving th&' has a good filtration. The
other degrees can be treated similarly, using rescaling #eeiproof of
EZ3. (We ask the reader to figure out how a graded canombiting
on A defines one on the rescaled algera™'.)

The length-height filtration oA is an excellent filtration, therefore
A<, also has excellent filtration. For any weightf A, the B-subalgebra
A, of Ais invariant under the canonical splitting, as is its idAa}
(Corollary[2:3:B). Also note for € X(T)*, that the submodul8 N A.,
is againG-invariant, as is its ideab N A, (cf. £1.2). We therefore
replaceA by A.,/A.,—with its induced canonical splitting—arsl by
SN A, /SN AL, Then with these new choicasis such thaiA is the
only weight in sod\'. Also S is p-root closed sincé is invariant under
o ando(af) = a. We now use Theorein 4.2.3 to see tBabas good
filtration. m]

Next, we give a geometric implication of the above theorermteN
that the motivating variety i€ x& G/B.

Lemma4.4.2.Let X be a B-variety and Y a B-invariant subvariety. Let
GxBX denote the associated fibre bundle ovéBG®vith fibre X. Assume
that there exists a canonical splittirgof GxEX compatible with GBY .
Let £ be a G-equivariant line bundle on €8 X. Let K(£) denote the
kernel of the restriction morphism res: %G xB X, £) - HO(GxBY, £).
Then the G-modules HG xB X, £) and K(£) have good filtrations.
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Proof. Letr : G xB X — G/B be the projection map. Now,H(G xB
X, L") — epHo(r"1(BwB/B), £L"). But 7 1(BwoB/B) ~ BwpT x' X
in a B-equivariant way and therefore

HO(x1(BwB)/B, L") = ind? Ho(weT x™ X, £M.

Therefore@HO(r1(BwyB/B), L") is an injectiveB-module. Thus by
the cohomological criterion, (Theordm312.7), it has are#igat filtra-
tion. Now we extendr to a graded canonical splitting on

onHO(r1(BwoB), £LM).

This splitting leaves th&-submodule®,HY(G xB X, £") invari-
ant. Therefore, by Theorelm ZUdH(G xB X, £") has good filtration.
ThereofreHY(G xB X, £) has good filtration.

Similar arguments show that ti&moduleH°(G xB Y, £) has good
filtration.

Consider next the following diagram:

0 0

@nK (L") ®nK’ (L")

®nHO(G xB X, LM @, H(BwoB xB X, LM

res res

&nHO(G xBY, LM @ H(BwoB xB Y, L")

Now the splitting ore,HO(BwoB xB X, LM restricts to a splitting 47
on the algebrk & @ K’'(£L"). (We addedk in degree zero to get an
algebra rather than an ideal.) Further, this splitting éske | K(L")
invariant. Therefore, by Theorell 24K (L) also has good filtration.

m]

Now we are in a position to prove Donkin's conjecture. Likée al
main results in these notes, it and its method of proof ard¢aathieu.
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(The reader is invited to compare our exposition with thaMatthieu,
to see where the emphasisfdrs.)

Theorem 4.4.3(Donkin’s Conjecture) Let A, u € X(T)*.
1. P(1) ® P(u) has a good filtration.

2. (Restriction Conjecture) Let L be the Levi factor of a parabolic
subgroup P of G and let € X(T)". Thenref(lndg(/l)) as an
L-module has a good filtration.

Proof. We are now in a position to exploit Remdrk™4]2.1. We have
P(1) ® P(u) = HY(G xB G/B, (G xB L(w))[]) with G xBG/B ~ G/B x
G/B. If 5,...,5 is a sequence of simple reflections such that—with
suitable choice of—the mapZ, = P; xB --- xB Py/B % G xB G/B
is birational, then we have a canonical splitting fninducing one on
G xB G/B and by Lemm&ZZ12 we get the first result.

For the second result notice that similafy<® G/B ~ P/B x G/B.
The module we have to study is now the restriction of

HO(P xB G/B, (P xB £(1)).

As P/B is a Schubert variety, it has its Demazure resolution jst li
G/B. It is thus not dificult to come up withsy, ..., $,, such thatz, =
P;xB.. .xBP,/B 5 PxBG/Bis birational. Thu®xBG/B = Lx-"BG/B
has a canonical splitting, which of course remains canomwiith respect
to the Borel subgrou N L of L. Apply LemmdZ.ZP. m|

Exercise 4.4.4Read the Appendix and fill in the detains in the above
proof.



Chapter 5

Joseph’s Conjecture

In the last chapter we proved that the tensor product of twdutes with 48
good filtrations has good filtration. Now as the reader wi#l,g&xample
B.373), the tensor product of two modules with excellentdiion need
not have excellent filtration. However in this chapter weverdoseph'’s
conjecture which says that the tensor product of a modulk ggbd
filtration and an anti-dominant character has excellemafitin.

We will prove that1 ® P(u) ® Q(v) is B-acyclic ford € X(T) ", u €
X(T)* andv € X(T). This implies, by the cohomological criterion, that
the tensor product ® P(u) has excellent filtration fon anti-dominant
andu dominant. From this the Joseph’s conjecture follows.

To prove the vanishing d8-cohomology, we first induce these mod-
ules up toG using the in@ functor. We then prove that the inducéd
modules have good filtration and thereby &@acyclic. We then use the
Frobenius reciprocity to prove thB-acyclicity. The use of Frobenius
reciprocity requires the irﬁ}acyclicity of these modules and we use the
method of Frobenius splitting to prove the same.

5.1 Double Schubert Varieties

Letw, z € W be two elements of the Weyl group & Let P andQ
be two parabolic subgroups &, containingB. Let X,, and X; denote
the Schubert varietieBwP/P c G/P andBzQ/Q c G/Q respectively.

51
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Consider the closeB-subvarietyX,, x X; of G/P x G/Q.

Definition 5.1.1.By a double Schubert variety we mean the subvariety
G xB (Xw X X;) of G xB (G/P x G/Q).

As the total space of the fibre bundie<B(G/PxG/Q) is isomorphic
with G/BxG/PxG/Q, a double Schubert variety is naturally embedded
in the triple productG/B x G/P x G/Q.

Proposition 5.1.2. There exists a canonical splitting of/8 x G/P x
G/Q such that all double Schubert varieties are simultanelyocsm-
patibly split in the triple product.

For the proof we refer the reader to the Appendix (Propasitio
AZ1).

Let u € X(T)™, and letP, be the parabolic subgroup such that
extends to a character & and it is maximal for this property. There-
fore onG/P,, the line bundleL(u) associated to the characjeexists
and is ample. Indeed we work wite/P, instead ofG/B for precisely
this reason. One further notes thatrif. G/B — G/P, is the natural
projection map, then we haveé £(u) = L(u).

We haveP, = Bif and only if i1 is regular inX(T)".

Let A, u, v be characters itX(T)~ with A regular. LetL(A,u,v)
denote the line bundl& (1) x L(u) x L(v) on the producG/Bx G/P, x
G/P,. Let}; and}, be unions of double Schubert varietiesdniB x
G/P, x G/P, such that’, c };. Then, we have

Lemmab5.1.3. (i) HY(X 1, £L(A, 4, v)) has good filtration.

(i) The restriction map (X1, £L(A, 1, v)) = HO(Z,, LA, 1, v)) is
surjective. Further, its kernel &1, X2, 4, 4, v) has good filtra-
tion.

Proof. (i) By Corollary ?? we see thaH%(} 1, £(1, 4, v)) and the
kernel of the restriction mag (31, X0, 4, u, v) have good filtra-
tion.

(i) As GxBY; are compatibly splititGxB(G/P,xG/P,) and the line
bundle£L(4, u, v) is amply onG/Bx G/P, x G/P, the surjectivity
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of the restriction map follows from the Appendix (see Caoll

AZ2).

O

Remark 5.1.4.Consider the short exact sequence

0 KO amy) = HOO, L v) = H , L4, 1)) > 0.
1 2 1 2

As the kernelK(} 1, >0, 4, 1, v) has good filtration, it is5-acyclic. 50
ThusH(G, K(21, X0, A, 1, v)) = 0. Therefore, by writing out the long
exact sequence @-cohomologies corresponding to the above short ex-
act sequence, we get the surjectivity of the restriction maphe G-
invariantsHO(G, 3.1, L(4, i1, v)) = HYG, X, L(A, i1, v)).

The double Schubert varieties arise naturally in the caruEfiltra-
tions of B-modules in the following manner:

Leta, i, v be characters. Lé¥l = 1@ P(u)® P(v). As a vector space
M is isomorphic withP(u) ® P(v) but theB action onM is shifted by
the characten.

Letu1 = w,'u andvy = w; 'y be the anti-dominant characters in the
respective Weyl group orbits. We pBt= P,, andQ = P,,.

Using the double Schubert varieties we get the followingdpson
of indS(M).

Let S be the producy, X Xy, in G/P, x G/P,. Consider the
restricted fibratiorf = 7 o i onG/B as given below.

G xBS— =G xB(G/P, xG/P,)
\ \Lﬂ
G/B

If £(M) denotes the vector bundle @yB corresponding to th&-
representatioM, we haveL(M) = f.i* L(4, u1,v1). Therefore we have

indS(M) = H%(G/B, f.i* £(4, u1,v1))
= HYG xB S, £(A, 1. v1))



51

54 5. Joseph’s Conjecture

If we assumel regular anti-dominant, the line bundi&(, u1, v1)
is ample onG/B x G/P x G/Q. Further,G xB S is compatibly split in
G/Bx G/P x G/Q. Therefore, we have

Rl indS(M) = HI(G/B, £(M))

= HI(Gx®S, £(Lpu1.v1)) by RemardAZB,
=0 forj>0 by CorollanfAZ2.

Thus we have the following lemma.

Lemma 5.1.5. LetA € X(T)™ be regular. Let S be a union of products
of Schubert varieties in @, x G/P, with i, v € X(T)~. Then, M=
2@ HO(S, L(u) x L(v)) is indS-acyclic.

Proof. The above reasoning also works for such a union. m|

5.2 Joseph’s Conjecture

In this section we will prove Joseph’s conjecture. Morept@ra reg-
ular, anti-dominant charactdrand any two charactegsandv we will
prove theB-acyclicity of 1 ® Q(u) ® Q(v).

Lemmd&.IF gives us the following vanishing result.

Lemma5.2.1. Let 4, u, v be anti-dominant withl being regular. Let S,
S1, Sy be unions of products of Schubert varieties withcSS;. Then

(i) M =20 HYS, L(u) x L(»)) is B-acyclic.

(i) M” = Ker{d® HO(S1, L) x L)) = 1@ HY(S2, L) X L))}
is B-acyclic.

Proof. (i) By Lemmal5.lB we see that i@d\/l) has good filtration.
FL_thher, by L_emmESZI].M is inog-acyclic. Therefore, we have
H(B, M) = H'(G, indS(M)) = 0.

(i) We know that bothd ® HO(S;, £L(x) x £L(v)) are B-acyclic. Fur-
ther, using Remark’5.1.4 and Frobenius reciprocity, we lsat t
HO(B, 1@ HO(S1, L(u) x L(v))) = HY(B, 1@ H(Sz, L(1) x L(v)))
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is surjective. Now we write the long exact sequencB-abhomo-
logy associated with 0 M’ — 1 ® HO(Sy, L(u) x L(v)) —
1@ HO(S,, L(1) x L(v)) — 0 to get the result.

m|

Corollary 5.2.2. LetA € X(T)™ be regular. Letu, v € X(T) and let
Q(w), Q(v) denote the relative Schubert modules with sacénd v re-
spectively. Them ® Q(u) ® Q(v) is B-acyclic.

Proof. Recall that the relative Schubert modul®§u) are defined ass2
kernels of the restriction map &{u) onto the sections over the bound-
ary of the Schubert variety definirig(u). We takeS; = Xy, x Xy, and

S2 = (0% X Xy,) U (Xw, XXy, ). Then the kernel of the restriction map
A® HO(Sy, L(u1) x L(v1)) = 1@ HO(S,, L(u1) x L(v1)) is canonically
isomorphic witha ® Q(u) ® Q(v) whereu; andv; are the anti-dominant
characters in the Weyl group orbit af and v respectively. Now the
LemmdB&.Z1 gives the result. |

Corollary 5.2.3. LetA € X(T)~ be regular and lejx be any character.
Thend ® Q(u) has excellent filtration.

Proof. Apply the cohomological criterion for excellent filtratigmheo-
rem[B2Z2Y). O

In order to prove Joseph’s conjecture we now need the fatigwi
lemma.

Lemma 5.2.4. Letp be the character corresponding to the half sum of
positive roots. Then, fot € X(T)* we have k® P(1) = Q(1 + p).

Proof. We have a natural multiplication map froht®(G/B, £L(wol) ®
HO(G/B, L(—p)) to HY%G/B, L(Wol) ® L(-p)). Letk, be the weight
space of weighp of HY(G/B, £(-p)). We restrict the multiplication
map to the sub-spade®(G/B, L(wol)) ® k,. This gives us a mam :
P(1) ® k, — P(1 + p). This map is injective as it is injective on the
one-dimensional socle of its domain. (Use the geometricrggmn of
extremal weights.)
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We claim thatm defines a natural isomorphism betwee() ® k,
andQ(A + p) c P(1 + p).

To see this we first fix a non-zero elemént k, c H%(G/B, L(p)).
Then f vanishes on lower dimensional Schubert variedgs Thus the
image of the multiplication mamis contained imQ(1 + p).

To see the surjectivity, view/X as a rational section of(p). Notice
that 1/f has pole of order 1 along the codimension one Schubert vari-
eties [5.25). Now if£ is a line bundle and any section of£, we get a
(possibly rational) sectios/ f of the line bundleL ® L(o). Thus, for a
sections of the line bundleL(wp1 - p), the elemens/ f gives us a ratio-
nal section of£(wp). However, if we restrict this map to the subspace
Q(1 + p) of P(1 + p) = HY(G/B, L(Wo — p)) we get an algebraic map
as all the elements @(1 + p) vanish on the codimension one Schubert
varieties. This map fronQ(1 + p) to P(2) is injective (by its injectivity
on the socle). Therefore the dimensions satisfy

dim P(1) ® k, = dimy P(2) > dimy Q(1 + p).

Therefore the multiplication map defined above is also stivie.
i

The reader is advised to do the following illuminating exszcto
see the “geometry” involved in the apparently represematieoretic
lemma above. The exact formula for computing the degree ofea |
bundle£(1) onG/B restricted to any line of the types/B can be found
in [3].

Exercise 5.2.5(cf. [14]). Let f € k, C HO(G/B, L(-p)) be as in the
proof of[2.2.4. Lets be a simple reflection with corresponding minimal
parabolicPs. Show

() The restriction of£(—p) to the linePs/B has degree 1, and the
same is true for the restriction to any left translatePafB in
G/B.

(i) The line woPs/B intersects the zero set df only in the point
WoSB/B.
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(i) f vanishes to order one along the codimension one Schubeért var
ety Xwps-

We now prove Joseph’s conjecture. The proof given hefferdia
little from the one by Mathieu.

Proposition 5.2.6(Joseph’s Conjecture)etd € X(T)™ andu € X(T)*.
ThenaA ® P(u) has excellent filtration.

Proof. We know that fori € X(T)~ which is also regular] ® Q(u) has
excellent filtration. Now,

A®P) = (1-p)®p®Pu)
= (1-p)® Qu + p).

Further,A — p € X(T)~ is regular. (In factv — p is regular anti-
dominant if and only ify is anti-dominant.) Therefore by Corollary
we get he result. m]

Corollary 5.2.7 (Joseph) Let A € X(T) andu € X(T)*. Then, R1) ® 54
P(u) has excellent filtration.

Proof. Letw € W be such thatv21 = v € X(T)~. We haveP(v) = k,.
Therefore P(v)® P(u) has excellent filtration. Singeis dominantP(u)
is aG-module and therefore, by the tensor identity,gﬁa’(r) ®P(u)) =
(indgs P(r)) ® P(u) for any simple reflectiors and weightr. Recall that
we haveHs o H, = Hg; for Joseph functors when the length s¥fis
more than the length af. Therefore we see thad,,(P(v) ® P(u)) =
P(wv) ® P(v). Now recall that Propositior?? states thaH,, sends a
module with excellent filtration to a module with excellentréition.
Therefore the result. O

For an application f Joseph’s conjecture se€ [21, Theord} 5.
which gives the existence of a “good basis” in a module witlbdyo
filtration. One easily checks that although the proof reter#olo’s
conjecture (cf. next chapter), itfices to apply Joseph’s conjecture.
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5.3 An Example

In this section we give an example showing that the tensadymtoof
modules with excellent filtration need not have excellettafiion.

Example 5.3.1.We takeG = S L(3,k), with B the subgroup of upper
triangular matricesT the subgroup of diagonal matrices. Inside @Ge
module M3 of 3-by-3 matrices, upon whic@ acts by conjugation, we
consider the five-dimensionBtsubmoduleE generated, asB-module,
by the matrices

1 00 0 0O
C=(0 0 O0f, D=(0 1 0f.
0 0 Q0 0 0 Q0

If has a four-dimensional submodutegenerated by, and the ex-
tension
0-S—>E—->k—-0

does not split. S#11(B, S) # 0. Now one checks th& = P(-sw1) ®
P(—s1w2)®Q(p), wherew,, w2 denote the fundamental weights, €.J[11].
(RecallQ(p) = k,.) SoS gives an example of a tensor product of the
form P(1)®P(1)®@ Q(v) which is notB-acyclic. From the cohomological
criteria it then follows thaP(1) ® P(u) does not have excellent filtration
and thatP(u) ® Q(v) does not have relative Schubert filtration.

Exercise 5.3.2(Polo) Computer the characters of tH¢) for each
weighté of P(—sw1) ® P(—s1w>2) and show thaP(—sw1) @ P(—s1w2)
does not even have the character of any module with excdileation.
Similarly show thatP(—sw2) ® Q(p) does not even have the character
of any module with relative Schubert filtration.



Chapter 6

Polo’s Conjecture

Let £ be a character. We denote by (by ) the anti-dominant (the 56
dominant) character in the Weyl group orbitzofThe Joseph Conjecture
states that fort € X(T)” andu € X(T), the moduled ® P(up) has
excellent filtration. Here we study a generalization of tbajecture,
first stated by P. Polo. It says that fare X(T)~ andu arbitrary, the
moduled ® P(u) has excellent filtration. Equivalently, we need to prove
that1 ® P(u) ® Q(v) is B-acyclic.

6.1 Reformulating the Problem Repeatedly

We first look at the case whenis regular anti-dominant. Consider the
following exact sequence:

05 19K - A9 P(up) > 1@ P) —» 0 (6.1.1)

By Joseph'’s conjecturggP(ug) has excellent filtration. The module
K has a filtration by relative Schubert modules and.faegular anti-
dominant we already know that® Q(v) has excellent filtration for any
charactew. Thereforel®K has excellent filtration. Now, using the long
exact sequence @-cohomology associated th (6.1.1), we see that the
moduled ® P(u) also satisfies the cohomological criterion for excellent
filtration.

59
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However this method fails wheh is not regular as it is no longer
true thatd ® Q(v) has excellent filtration. Indeed, whenis a trivial
character, we see th@(v) cannot have an excellent filtration unlesis
anti-dominant.

To tackle the general case we again resort to the same trieKirsv
induce theB-modules toG-modules and use the canonical splitting to
prove results. But first, we need the following lemma.

Lemma 6.1.2. LetA, u, v € X(T)” and we W. Let S be a union of
Schubert varieties in @,. Assume that we can prove (for all suthy,
v, W, S) that the natural restriction map

HO(B, 1® H(Xw, L(1)) ® P(v0)) — H%(B, 1® H(Xw, L(1)) ® H(S, L()))
(6.1.3)
is surjective. Then Polo’s conjecture is true.

Proof. LetK = ker(H(G/P,, £L(+)) — HO(S, £(+))). LetM = 1® K.
We know by Joseph’s conjecture tha® P(vg) has excellent filtration.
Therefore H1(B, 1@ P(vp) ® Q(7)) = 0 for all 7. However,H%(Xy, £(x))
has a filtration by relative Schubert modul®ér). Hence,H(B,1 ®
P(vo) ® HO(Xw, L(1))) = 0. Therefore, fop € X(T)™ andw € W, the
surjectivity in [E.LB) giveH(B, M @ H(Xy, L(1))) = 0.

ThusH?! (B, M® module with excellent filtration}¥ 0. Therefore,
M has filtration by relative Schubert modules by the cohomioligri-
terion for relative Schubert filtration (cf. Exercise=3]3.3

This in turn means tha¥l ® P(r) is B-acyclic for anyr € X(T).

For anyzv € X(T), we have the following diagram:

0—— K1 ——= HYG/P,, L(v)) — HO(X,, L(v)) ——0

] -

0—— Koy ——= HO(G/P,, £(v)) — HO(0X,, L(v)) —=0

Further,K; andK; satisfy the following exact sequence (cf. Exercise
AZ9):
0—- K;— Ky, - Q(zv) — 0.
Now we may takeM = 1 ® K; in the above, sa ® K; ® P(r) is B-
acyclic for anyr € X(T) (i = 1, 2). But then the quotient® Q(zv)® P(7)
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is B acyclic too, for alla, v € X(T)~, ze W, v € X(T). This proves the
lemma. O

Remark 6.1.3.Note that there is also a slightlyftirent argument to58
prove theB-acyclicity of M®P(u) in the above: If one has thet!(B, M®
module with excellent filtration¥ O, then letlg — I ... be an injective
resolution ofP(u). Consider the exact sequences

0 - ker(ly = Int1) = In— im(lp)) - 0

of modules with excellent filtration. Tensoring witl and takingB-
invariants gives many short exact sequences andHi(B M ® P(.))

in fact vanishes for > 0. The advantage of this argument is that it does
not need the cohomological criterion for relative Schuliérations.

To prove surjectivity of[[6.113), we first induce both moduig toG
and then prove that the map @ninvariants in surjective. The Frobenius
reciprocity then gives us the surjectivity @invariants.

Recall that in§ (1 ® HO(Xu, L(1)) ® H(S, £L(»))) = H(G xB (X x
S), L(A, 1, v)). Now the line bundle£(a, u,v) is not ample orG xB
(G/P, x G/P,), unlessA is regular. Therefore, for all we know now,
the restriction mapi®(G xB (Xy x G/P,), L(1, 1, v)) = HO(G xB (X x
S), £(A, 1, v)) need not be surjective, even thoughx® (X, x S) is
compatibly split in the produds/B x G/P, x G/P,. However, the line
bundle £(4, u, v) is ample orG/P, x G/P, x G/P,. However, the line
bundle £(2, i, v) is ample onG/P,; x G/P, x G/P,. Therefore, we
consider the following diagram:

Z =G xB (Xy x S)——= G xB(G/P, xG/P,)

lﬂ

G/P,xG/P,xG/P,

The mapr is defined by ¢, x,y) — (0,0% gy), where the “bar”
denotes the image of an elemeni®in the corresponding quotient.
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Lemma 6.1.5.If 1,07 = O(z), then

HO(G, indS (1 ® HO(Xy, L(w)) ® P(v0)))

l res

HO(G, ind$S (2 ® HO(Xy, L(w)) ® HY(S, L())))

is surjective.

Proof. We have in§(1 ® H(Xw, L)) ® P(vo)) = HOG xB (Xy x
G/P,), L(A, 11, v)) and in€(1® HO(Xy, L(u)) @ HO(S, L(+))) = HYGxB
(Xw % S), £(4, u, v)). Consider the map of pairs

(G xB (G/P, xG/P,),2) 5 (G/P, x G/P, x G/P,, x(Z))
If 7|z has the direct image propertyOz = Oz, we have

1. m (LA, 1, v)lz) = L(A, 1, V)lxz) and thereforeH%(Z, £(A, i, v)) =
HO((Z), L(4, 1, ).

2. Further, the canonical splitting on the domain will giveacanon-
ical splitting onG/P, x G/P, x G/P,, which compatibly splits
n(2).

Now, L(A, 1, v) = L(A) x L(u) x L(v) is ample ornG/P, x G/P, x
G/P,. Therefore the restriction map

HO(G/P, x G/P, x G/P,, L(A, i1, v)) = H(n(Z), L(A, i, v))

will be surjective. Further, its kernel will have good filien. This
allows us to apply the Remalk5.11.4 to see that the restnictiap on
G-invariants is surjective. From this the claim follows ass tsurjective
map factors throughi®(G, indS (1 ® HO(Xy, L(w)) ® P(vo))). O

Therefore to prove Polo’s conjecture, we only have to prdwat t

nlz has the indicated direct image property. Now we remark again

that the mapr is defined onX = G/B x G/P, x G/P, and we have
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m.0x = Og/p,xG/P,xG/P,- 1herefore we can “push forward” the canon-
ical splitting of X on to its image. This “pushed splitting” will split the
imagern(Z) of Z.

Consider now the following proposition. The proof of thi®posi-
tion will be given in the AppendiX{A.5]2). We have to expldirst what
separablemeans forf : X — Y. The relevant notion of separability is
somewhat fancy, as our varieties are not irreducible. Wthaeans is
that there is a dense subsetyan Y for which there is arx € f~(y) so
that the tangent map atis surjective. It is thus some kind of generic
smoothness.

Proposition 6.1.6. Let f : X — Y be a surjective, separable, proper
morphism between two varieties, with connected fibres. W that
Y is Frobenius split. Then.®x = Oy.

Let us grant separability for the time being. Thus in ordepriove 60
Polo’s conjecture it only remains to prove that the fibreshef map
n:Z— G/P,xG/P,xG/P, are connected. This topological problem
will also be reformulated repeatedly.

The reader is asked to be patient about this roundabout. piduf
fact is that, as hishe will come to know in Remafk®&. 1110, the statement
we want to prove is very similar to some false statements. &ve o
sneak around all these false statements.

First we note a result, which tells us that having connectaddiand
having the direct image property are really the same projderthat we
may switch back and forth between the two at our convenieimcized
we will later turn around and go back all the way to a problemilsir

to surjectivity of [6.1.B).

Lemma 6.1.7(Corollary 11.3) Let f : X — Y be a proper morphism
between two varieties and assumé&,f = Ovy. Then all fibres of f are
connected.

Next note thaG xB (G/P, x G/P,)~G xP G xB G/P,. The maps
is defined on the product b(g, X, y) = (gx x 1, 9).
The image o underg is G xP« (P,w 1B xB S).
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We definer™: G xP (P,w 1B xB S) - G/P, x G/P, x G/P, by
7((9, X, ¥) = (0, 0% gXy). Up to the isomorphism, this7 is justs.

So our aim is to prove that fibres afdre connected. Using thg-
equivariance ofr'we see that we may restrigttd the subspacg’ =
(Py) xP (P,Ww1BxBS) = () x (P,w1BxEBS).

All we need is that the fibres of that restricted map are camaec

The image o’ is contained irG/P, x G/P,. Note that a®,wB
is an irreducible two-side&-invariant closed subvariety @, we have
by Bruhat decomposition sonyes W such that,w-1B = ByB

Summing up, we have to show that the mByBxB S — G/P, x
G/P, has connected fibres.

A fibre of the mapByBxB S — G/P, x G/P, is simply an intersec-
tion of a fibre ofByBxB S — G/P;, with a fibre ofByBx® S — G/P,.
We first concentrate on the projection towa@is,.

Proposition 6.1.8. Let P be a parabolic, % c G/B a Schubert variety.
The non-empty fibres of the projectiog %> G/P are left translates of
Schubert varieties.

Proof. Using theB-equivariance we may restrict attention to the fibre
of zP/P, wherez is a minimal representative in the Weyl grouy of
the cosezW(P), if W(P) denotes the Weyl group &f. Recall from [10,
Proposition 1.10], cf]1, Ch. \M§1 Exercice 3] that(zu) = I(2) + I(u)

if u e W(P), so thatBzBuB= BzuB The fibre is thus a union of sets
zBuB/B, whereu € W(P) is such thazu < w. Recall also (same source)
thatw decomposes uniquely @s/ whereZ is a minimal representative
of the coseZW(P) andu’ € W(P). Then a lemma of Deodhar (read
w € Wqg where it saysv € W/ W, in [16, Lemma 4.4]) says there is a
unique maximal. Then the fibre igBuB/B for that maximalu. O

So what the proposition tells us is that we should prove that t
fibres ofgBuBxB® S — G/P, are connected fay € G, u € W. And by
G-equivariance we may forget

Thus we have to prove

Proposition 6.1.9. The fibres of the multiplication map nBuBxBS —
G/P, are connected.
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Remark 6.1.10.We can now point out a subtlety, which shows that one
cannot get by just with generalities about Frobenius gmdigt Namely,
the proposition fails iBuBis replaced by a union @vBs (v € W). This

is related to the fact that a tensor product of two modulek extcellent
filtration need not have an excellent filtration (see Exarbpil.)

6.2 The Proof of Polo’s Conjecture

Clearly Propositioh 6,119 presents a smaller problem tharohe sug-
gested by LemmR6.1.5. In this section we prove the Propa$fil.9
and thus also:

Theorem 6.2.1(Mathieu; Polo’s Conjecture)Let 2 € X(T)™ and let
u € X(T). Thena ® P(u) has excellent filtration.

Apart from Propositiof 6.719 one must also must worry abepas 62
rability. But fortunately this does not require a thorougtderstanding
of fibres. One only needs to show that the source of our map istae fi
union of pieces on which the map to “image piece” is separable
pieces to take are thBuBx® (component ofS) of Proposition[6.119,
basically. One easily finds subvarieties that actually rmiegdibnally to
the image of the piece. We leave it at this sketch for now ahdmeo
the proof of Propositioi 6.7.9.

We first note that il = s1... &, is a reduced expression ofe W,
then the multiplication mam : BuBx® S — G/P, can be lifted to the
projection

Ps, x®...Ps x2S = G/P,.

The fibres of this projection map surjectively onto the fibo&sn.
Further, the study may be broken up into little pieces like:th

Pg, xB...Ps xBS = Py xB.. . Ps , xBPsS — G/P,.

So the trick is to show (cf. Lemnfa6.1.7) that PsxBS — PsS
does have the direct image property.

SayC is the cokernel of the maPp,s — ¥.Op8s. We need to
show thatHO(PsS,C ® £(nv)) vanishes for large. (That will show
C = 0 by ampleness, cf.]11, Il 14.6 (4)].)
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Consider the following diagram

P.xBS 2~ PS c G/P,

ln

Ps/B
We have

HO(Ps x® S,y L(nv)) = H(Ps/B, m.y” L(nv))
= HS(HO(S, L(nv)).

Therefore, we have a natural injective map
HO(PsS, £(nv)) — HO(Ps xB S, " L£(nv)) = Hs(HO(S, £L(nv))).

By ExercisdlAZD the proof of Proposition 611.9 will be fimsl once
we have the following lemma.

Lemma 6.2.2. For any B-invariant closed subset S of & any simple
reflection s andl € X(T)~, the natural map

HO(PsS, £L1) — Hs(H(S, L)
is an isomorphism.

Proof. We will prove the lemma by induction on “size” &. Note that

if Sisirreducible,i.e. whensS is a Schubert variet¥y, the imagePsS

is either Xsw (Whensw > w) or X,,. In either case the lemma is true.
Therefore we assume that the lemma is true if we substitut® émy of
its properB-invariant closed subvarieties.

Now we writeS asX,, U S’, and we may replac®’ by S’ U dX,, to
make sure we understa®dn X,, well. IndeedS’ N Xy, is nowdXy, (even
scheme theoretically by Ramanathan). And of course we ninedix;,
S’ are really smaller thaS. By the Mayer-Vietoris LemmBZ 211 we
have an exact sequence-8 HY(S, £) — H(Xw, £) ® HY(S, £) —
HO(@Xw, £) — 0. This gives an exact sequence-Hs(HO(S, £)) —
Hs(HO(Xw, £)) ® Hs(HY(S", £)) — Hs(H%(9Xw))-
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Thus what remains to be checked is tRg8’ N PsXy, = PsdXy, tO
make the computation go. Hw < w, thenPgoX,, = Xy = PsXy, and
X C PsS.

If sw> w, thenPsXy, = Xsw and we need that far e W, z # w,
Z # sw, sz < swimpliesz < w. (Thezto be taken are such that
BzBc S’.) That is indeed so, and a reference’1d [10, 5.9]. (The reader
can take this as an exercise!) O

We still have to explain how to handle the details of the saipitity
issue. We do this in a series of exercises. The reader is asston
be familiar with standard coordinates in Bruhat cells, gslared for
instance in[[34, Chapter 10].

Exercise 6.2.3Letg: Z — X, f : X - Y be maps between varieties,
with g surjective, so thff g is separable. Thehis separable.

Exercise 6.2.4More generally, leg, : Zi —» X, i =1,...n, f : X -
Y be maps between varieties, withgi(Z) = X, so that eachfg; is
separable to its image. Thdrs separable to its image.

Exercise 6.2.5Let f : X — Y be a separable,-equivariant map. Then64
it induces a separable m&@xP+ X — G xP» Y.

(Hint: Use that the fibration& xP» X - G/P, andG x Y — G/P,

are locally trivial.)

Exercise 6.2.6Let z, u be as in the proof of Propositidn 6.11.8, with
P = P, and letC be a component . Let U, be the subgroup dfl
generated by the root groupk, with U,zn P = (€). Thena — azmaps
U, isomorphically to its image i6/P. Furthermore the rulea(b, ¢) —
(a, azbg mapsU, x BuBx C separably to its image id, x G/P,..

Hint: ReplaceBuBandC by suitable subvarieties to make to make
the map b, ¢) - bcbirational towardBuBCand use the automorphism
(a,b) — (a,ab) of U, x G/P,,.

Exercise 6.2.7Now check that the map needed in the proof of Polo’s
conjecture is indeed separable.
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6.3 Variations and Questions

We start with an analogue of Donkin’s restriction conjeetucetP be
a parabolic subgroup corresponding with a sulbs#tthe simple roots,
so thatP is generated by and theU_, with a € |. Let L be the Levi
factor of P with Borel subgrouB N L generated by and theU, with
ael.

Theorem 6.3.1.1f M is a B-module with excellent filtration, theass .,
M is a BN L-module with excellent filtration.

Remark 6.3.2.Note that one may just as well restrictBon L’, where

L’ is the commutator subgroup bf: Any B n L-module breaks up into
a direct sum of weight spaces for the action of the centdr. oThese
weight spaces arB n L’-modules and they have excellent filtration as
B N L’-modules if and only if they have one & L-modules. If you
wish this is so by definition.

Proof of theorem: We may assum# is finite dimensional. Choose an
anti-dominant weight whose stabilizer ilW is the Weyl groupW(L)

of L. Thuss lies in the reflecting hyperplanes of the simple reflections
corresponding with the elements lgfbut not in the other reflecting hy-
perplanes (seel[9, 1.12]). L& be the closure of the anti-dominant
chamber. Them lies in the interior ofuyewWC. As this union is a
cone, it follows that fon suficiently largeu + né is in the cone for every
weightu of M. We proceed with such and studyM ® ks, which has
excellent filtration by Polo’s conjecture. Now forBan L-module hav-
ing an excellent filtration it does not matter whether onessaiys : all
that changes is the action of the centet.ofSo we may further assume
that all weights ofM lie in UyewyWC. In other words, in the excellent
filtration of M all the P(2) that occur have theit in the W(L)-orbit of
an elemeni; of X(T)~. Write P(1) = HgHs,...Hs(11) with the 5
simple reflections that are W(L). Noting thatPs/B = PsnL/BN L,
we get re§, P(1) = Hg HS, ... HS (11), whereHg is the analogue of
Hy in the context oL : HL = indE*". So the restriction property holds

BnL
for all relevantP(). ]
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Exercise 6.3.3State and prove a similar result for relative Schubert fil-
trations.

Polo has introduced another notion, viz. that of having auSeht
filtration. We first give the definition, then relate it to ottencepts to
show that the analogue of Polo’s conjecture holds for Sahditieations
too. (This was proved by Polo under some restrictions.)

Definition 6.3.4. A finite dimensionaB-moduleM has a&Schubert filtra-
tion if and only if there exists a filtration & Foc F1 c...c F, =M

by B-modules such thag;/Fi_y = H(S;, £(4)) for somen; € X(T)".

Here theS; are unions of Schubert varieties and 0.

In [27] Polo proves the following cohomological criterioarfhav-
ing a Schubert filtration. 1t € X(T)™, y < win W, putK(w,y, 1) =
kerP(w1) — P(yA).

Theorem 6.3.5(Polo). Let M be a finite dimensional B-module. Then
M has a Schubert filtration if and only for all € X(T)~ and y< w in
W the module M K(w, Y, 1) is B-acyclic.

From this it follows that if
O-M->M->M"->0

is exact, andVl’, M have Schubert filtration, then so da€s'. 66
Clearly, a module with Schubert filtration also has a filoatby
relative Schubert modules. Also, $fis a simple reflection an¥ is a
module with Schubert filtration, thell is acyclic for Hs and Hg(M)
has Schubert filtation. This follows by imitating the prodflaemma
BZ711 with the help of LemmR6.2.2. From Lemia8.2.2 one then
concludes that in fact a relative Schubert modMds already acyclic
for Hs. (Another way to see this is through the formg(M) =
Hi(B, Hs(k[B]) ® M), see [[Tl, | 4.10]. AK[B] is injective, Hs(k[B])
has excellent filtration ands(k[B]) ® M is B-acyclic.) This will be used
in the proof of

Proposition 6.3.6. For a B-module M the following are equivalent.
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() M has a Schubert filtration.

(i) The evaluation maindg(M) — M is surjective, its kernel has a
relative Schubert filtration anthdS (M) has a good filtration.

(iii) There is a module with good filtration N and a surjective B-mod
le map N— M whose kernel has relative Schubert filtration.

Proof. (Sketchy)

(i) = (ii). If the Schubert filtration ofM has just one layer, (ii)
follows easily. The general case then follows using acigglior induc-
tion.

(i) = (iii). Obvious.

(i) = (i). Let K be the kernel oN — M. We must show that
M ® K(w,y, 1) is B-acyclic. AsM has relative Schubert filtration, the
problem is to show thatl%(B, M ® P(w.)) — HO(B, M ® P(y1)) is sur-
jective. It suffices to show thati®(B, N ® P(w.1)) — H(B, M ® P(yA))
is surjective. NowH°(B,N ® P(w1)) = HO(G,indS(N ® P(wa))) =
HO(G,indS(N ® P(yd))) = H(B,N ® P(y1)). But K ® P(y1)) is B-
acyclic. i

Corollary 6.3.7. Let A be a dominant or an anti-dominant weight and
let M have Schubert filtration. Then® ® M has Schubert filtration.

Proof. Write M as a quotient of a module with good filtration by one
with relative Schubert filtration and use that the analogua® corol-
lary holds for those concepts. m|

Remark 6.3.8.Mathieu’s proof of this corollary (for anti-dominari
was similar to his proof of Polo’s conjecture. It did not rely Polo’s
conjecture, like ours does.

We now list some open questions which are related to those an-
swered in these notes.

Question 1We know that excellent tensor excellent need not be excel-
lent, (see Example’5.3.1). No counterexamples are knownretfotlow-

ing question: Is excellent tensor excellent relative Sent®That is, is
the tensor product of three modules with excellent filtratacyclic?
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Question 2Define thatM preserves excellendé M® excellent= ex-
cellent. Using the cohomological criteria one sees thigjisvalent to
“preserving the existence of a relative Schubert filtratidit is equiv-
alent toM @ P(1) ® Q(u) being B-acyclic for all 4, u.) In particular, it
implies thatM ® Q(p) = M®K, has relative Schubert filtration. Mathieu
conjectures the convers# preserves excellence M ® k, has relative
Schubert filtration.

Remark 6.3.9.There are many related questions one may ask. We do
not know for what tensor products one should ex@@etcyclicity. It
undoubtedly has to do with the facets the weights of the sdideon.






Chapter 7

Other Base Rings

In this chapter we state the earlier results in their propeegality: The 68
base ring need not be an algebraically closed field of cheniatit p,

but may in fact be any commutative ring. In particular it maythe
complex number field. While for G-modules there is nothing to prove
in that case, the results f@&modules are also of interest over fields of
characteristic 0.

7.1 The group schemes and the Schubert varieties
over the integers

Recall that over an algebraically closed fi&lave have been consider-
ing a connected reductive gro@together with a maximal torus, a
Borel groupB and embeddings & L(2, k) or PS L(2, k) into G (one for
each simple root). Let us assume tkats in fact semi-simple simply
connected, so that we are dealing with embeddifgsS L(2, k) — G.
Now Chevalley and Demazure have shown that correspondirigiso
data G, T, B, {¢i}ic;) Overk one gets a group fiéne group scheme3};
overZ with subgroups (closed subgroup scheniks)Bz and embed-
dings ofS L(2); into Gz, such that the situation ovkimay be recovered
from that ovefZ by extension of scalars frofto k. One says thdbz is
az-form of G. More generally, ifS is some structure ovds, a Z-form

73
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Sz of Sis an analogous structure ovgtogether with an isomorphism
betweerts and the structur§y obtained frons; by extension of scalars
from Z to k. The group schems8 L(2); is the dfine algebraic group de-
fined overZ which represents the funct® — S L(2, R). The torusTz

is diagonalisable. (This means that we are discussingt*spliuctive
group schemes.) We write(R) for Gz(R), the group of points rational
over the ringR of the group schem&;. For each simple root we get a
homomorphismy; : S L(2,Z) — G(Z).

Remark 7.1.1.We do not just try to descer@d from k to Z, but G to-
gether withB, T and theg;. That is becaus& has too many automor-
phisms, so that there is no canonical “descent” for it. WeesHaigid-
ified” by also giving the rest of the data. (Assume Horms Tz and
S L(2); already chosen.) Thanks to the rigidification we geaaonical
map fromG(K) to the originalG.

Remark 7.1.2.Just as one has &form for G, one also has one for
G/B. In fact for (G/B)z one simply takess7/Bz. It is also straight-
forward to get analogues ové&rof the Demazure resolutions and one
may simply define the Schubert varied§()z to be the image offfs, xB
NG Ps,/B)z — (G/B)z. Unions of Schubert varieties are defined
by intersecting their ideal sheafs. It is not obvious, buefrthat these
constructions do indeed yield-forms of Schubert varieties and their
unions respectively. In fact, if one looks inJ11], one sdex to prove
that you really geZ-forms of Schubert varieties, you should first try to
understand thé1%((Xy)z, L") for high powers£" of some ample line
bundle£ on (G/B)z.

7.2 Forms of the Modules

Because of the technicalities indicatedin—4.1.2 it is besawoid the
Z-forms of Schubert varieties as much as possible when Igdiinz-
forms P(1)z, Q(1)z of the B-modulesP(1), Q(1). One can then later
exploit the understanding of the(1);z to get he grips with theXy)z
and to make the passage to characteristic zero. (Passalgerazieris-
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tic 0 uses semi-continuity and constructibility propestief. [6, 9.2.6.2,
9.4.2, 12.2.4], and generic flathess. See [11, || Chapterahd]also
[L7].) Fortunately there is an alternative, thanks to thenBeure res-
olution. Indeed one knows—bhut this is also not obvious—MXadz is
normal, and that leads to the alternative descriptioll®{Xy)z, £) as
being H°((Zi)Z,¢/i*L), whereyi : (Z)z — (G/B)z is the Demazure 70
resolution of K,)z. This hopefully explains our clumsy looking con-
structions below.

Definition 7.2.1.For anyu € X(T), letZ, denote theBz-module corre-
sponding with the charactar As aZ-module it is free of rank 1.

Given 1 € X(T) we choose simple reflectiors, . .., sy and anti-
dominant; such thatl = w1, wherew has reduced expressian. . .
Sm. (We also taken minimal.) Then we define

P(A)z = indSindSt . ..indg" Z,,,

where we have simplified notation a bit by dropping some ofsihie-
scriptsZ. (Everything is to be done oveét.) We will see later that
the notation is justified, by showing thB{1)z does not depend on the
choices made here. It only depends.onSimilarly, we defineQ(1)z
inductively:

Q)z = F1F2...FmZy,,

whereFi(M) = Z, ®z indgi (Z-5p ®z M). The reader will be asked later
to check that this is independent of the choices made.

Proposition 7.2.2(Base change)For any algebraically closed field k of
finite characteristic, PA)x is the dual Joseph module of highest weight
and Q1) is the minimal reltive Schubert module of highest weighh
other words, B1)z and Q1)z are indeedz-forms of what the notation
suggests.

Proof. A universal cofficient theorem [[11, | 4.18]) says that we have
an exact sequence

0 - RindgZ(N) @ k — R indg(N) — Tor*(R*indgZ(N), k)
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for any parabolid® and any flati(e. torsion free)Z-moduleN with Bz
action. So we can pass to formulas okevhenever the higher derived
functors of induction vanish. And they vanish ovg&iif they do over
all k. (Observe that a finitely generat@dmodule M is zero if all Mg
vanish.) Thus, from what we know in finite charcteristic, waynton-
clude that, in the notations BEZ2.B(A)x = ind5tindg! ...indEmky, .
The result forP(1)y thus follows from Proposition 2.2.5.

ForQ(1) we argue similarly. So we must check okehat the higher
derived functors of induction vanish at the relevantfiomnts and that
kp®indgs(k_sp®Q(/u)) = Q(su) whensis a simple reflection witlsu > u.

First let us consider an example. Tgke= —p. ThenQ(-p) = k,
and P(-s) is two-dimensional with weights and —so, as the degree
of the line bundleL(-p) is 1 onPs/B. S0 Q(-s0) = k.. Inthe
exact sequence &» Q(-s0) —» P(-s) — P(-p) — 0 we may
interpret Q(—sp) as HO(Ps/B, I ® L(-p)) where T is the ideal sheaf
of the pointB/B. We claim that/, as aB-equivariant sheaf, is just
L(-)[p]. (Notations as il 43714.) Indeed, if one substitutes toat
7, one findsHO(Ps/B, 7 ® L(—p)) = k_s,. In view of the classification
of B-equivariant sheafs (see Lemia_Al4.1), no other equivaliae
boundle gives that answer. Of course one may also just carthet
action onf in local co-ordinates.

More generally one thus wants to see thatuif> u, the evaluation
map incgs Q(u) — Q(u) is surjective and that its kernél®(Ps/B, 7 ®
L(Q(u))) equalsQ(su). (The surjectivity will yield the necessary van-
ishing of H(Ps/B, I ® £(Q(x))).) Sayu = z11, 11 € X(T)~, with z
minimal. Now if one has a section @(u), then that is a section of
P(u) = HO(X, £(11)), which extends by zero t6Xs, by the Mayer-
Vietoris Lemmd2ZZ1. That section in turn extends to on®(af:)
by Ramanathan (PropositiGn"A.R.6), and if one views it ascéiae of
HO(PsxB X,, £(11)), cf. Propositioi.Z-2]5, then it vanishes HA(Ps xB
0Xz, £(11)) by construction. This shows the surjectivity. The kerokl
the map in@* Q(u) — Q(u) consists of sections ¢1%(Ps x® X,, £(11))
that vanish orB xB X, U Ps xB 9%, and that is just the same as sections
of P(su) that vanish ordXs. m|

It is worthwhile to make explicit what we have just shown. Omay
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compare it also with Propositidn 2.2115 dnd 2.B.11.

Lemma 7.2.3.1f u € X(T) and s is a simple reflection such that s y,
then the following sequence is exact:

eval

0 — Q(su) = Hs(Q) — Q) — 0.

Exercise 7.2.4Use the formulé, ® inng(ILSp ® Q) = Q(su), valid
for su > u by the above, to derive a “Demazure character formula” for
Q(1), analogous to the one f&(1) in [11, Il Proposition 14.18].

Definition 7.2.5.Just like before in Definitioh 2.3.6 we say thaBa- 72
module has excellent filtration if it has an exhaustive fiitna whose
successive filter quotients are isomorphic to direct sumsodflules
P(1)z. More generally, ifR is any commutative ring we say thaBa-
module has excellent filtration if it has an exhaustive fiitna whose
successive filter quotients are isomorphic to direct summodflules
P()r.

Theorem 7.2.6.Let My, be a B;-module, finitely generated and flat as
a Z-module. Assume that for any algebraically closed field krifefi
characteristic the module vhas excellent filtration. Then so doesg M

Proof. First observe that the integars in
ch(Mi) = > my chP(4))

do not depend on the characteristickadbecause the cR(1)x) are lin-
early independent and do not depend on the characteristioey(are
given by the Demazure character formula, §eé [11, Il Préposl4.18].
Note that chP(1)x) = €' plus terms with weights precedinigin length-
height order.) Fixt minimal in length-height order witin, # 0. Then
dimg(Homg, (P(2)k, My)) = my is independent of the characteristic, so
that we expect the injective map

Homg, (P(1)z, Mz) ® k = Homg, (P(2)k, My)

to be an isomorphism. To see this is indeed so, recall thesponding
universal cofficient theorem [[11, | 4.18]) which says that we have an
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exact sequence
0 — H'(Bz, N) ® k > H!(By, N) — Tor?(H*1(Bz, N), k)

for any flat {.e. torsion free)Z-moduleN with Bz action.
So we wish to get hold of thé-moduleH'(Bz, N), with

N = Homgz(P(1)z, Mz).

It is finitely generated by weight considerations asiii [11Rrop.
4.10]. (The weight spaces of tlie-cohomology are finitely generated.)
Now

H' Bk, Homz(P(2)z, Mz) ® k) = H'(Bx, Hom(P(A)k, Mi))
= EleBk(P(/i)k, M)

vanishes for > 0 by the strong form of Polo’s theorem.
Next we consider the natural homomorphism

(]3 . P(/i)z ®7 HomBZ(P(/l)Z, Mz)) - Mz.

When tensored witk one always gets an isomorphism from a direct
sum ofmy, copies ofP(1)x with a submodule oM. By the elementary
divisors theorem this means the cokernepas$ torsion free and thus is
a module as in the theorem, but with smaller rank. The thedodows
by induction on the rank. m|

Corollary 7.2.7 (Uniqueness) Let Mz be a B;-module, finitely gener-
ated and flat as &-module. Assume that for any algebraically closed
field k of finite characteristic the modulegNé the dual Joseph module
of highest weighfi. Then M; is isomorphic with P1).

Proof. In the excellent filtration oMz we must findP(1)z, and nothing
else, because of characters. (Compare the proof of thedingctheo-
rem.) Note that it follows that the choices made in the camsiobn of
P(1)z do not make a diierence. m|

Exercise 7.2.8. (i) Show that Exg(Q(1), Q(u)) vanishes when = u
and also whenr-A precedes-u in length-height order.
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(i) Now formulate and prove a similar theorem and corollarigh
relative Schubert filtrations.

Theorem 7.2.9Main Theorem; MathieUTZ20])Let R be a commutative
ring, M a Bz-module with excellent filtration. Let € X(T)~. Then
Az ®7 M has excellent filtration.

Proof. As the P(u)z are flat, it siffices to takeR = Z. By the Local-
Global Theoreni 2216 it now follows from Polo’s Conjectlit&d as
proved in the previous chapter. O

In the same vain we get

Theorem 7.2.10(Restriction Theorem)Let R be a commutative ring,
M a Bz-module with excellent filtration. Letg.be the Levi factor of
a parabolic, corresponding with a subset of the simple rootien
ref:mBR M is an Lg N Bg-module with excellent filtration.

7.3 Passage to Characteristic O

74
Many properties that have been proved with the help of Friolsesplit-

tings easily extend to characteristic 0 by semi-continaiig constructi-
bility properties as developed inl[6]. We will illustrateigtwith an ex-
ample. Observe however that in characteristic 0 our theayg sothing
interesting abouG-modules because of complete reducibility. On the
other hand, the main theorem certainly gives non-obviosslt®for B-
modules. We do not even know a direct proof that, for anti-ithamt 1
and dominanft, the character ot ® P(u) is a sum of characters of dual
Joseph modules.

We know in finite characteristic that Schubert varietiesravamal.
As is well known this yields:

Lemma 7.3.1. Over the complex numbers Schubert varieties are also
normal.

Proof. Letw € W. Let (Xy)z be defined as the closure BfwB;/Bz in
Gz/Bz. In other words, the ideal sheaf of()z consists of the functions
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that pull back to zero oB;wB;. It is clear that Ky)z is flat overZ. (We

do not really need that much; generic flathness would have &eengh.)
Now (Xw)c is obtained by flat extension, and one sees it is the Schubert
variety we want to study. Itis reduced, connected, irrdaleadf dimen-
sionl(w) and it contain8wB/B. So by [6, 9.2.6.2, 12.2.4] and common
sense (for the containment), there is a neighborhood ofeherie point

of Specf), such that the analogous properties hold %g)¢ whenever

k is a geometric point o¥. (That is k is algebraically closed and its im-
age in Sped) lies inV.) But then for such a geometric point of finite
characteristic, Xy )k cannot be anything else than a Schubert variety. So
it is normal. Now the same Theoref [6, 12.2.4] finishes the job O

Lemma 7.3.2. The B:-module RA)c is indeed H(Xy, £,,), with w e
W andAa; anti-dominant such that = wA;.

Proof. As C is flat overZ, we haveP(1)c = indStindZ?...indE" C,,.
So what we need is the analogue of ProposifionP.2.5. Butdymmbed
on normality of Schubert varieties, so it goes through. m|



Appendix A

Geometry

In this appendix we give a more extensive discussion of Frioisesplit- 75
ing of varieties. Further we tie up some loose ends that hawe o do
with algebraic geometry than witB-modules.

The notion of Frobenius split varieties was introduced biv¢hta
and A. Ramanathan in 1984. We refer the reader b [32] foohcstl
remarks. Indeed, much of the material in this appendix isetbfrom
this source.

A.1 Frobenius Splitting of Varieties

In this section and the next some proofs are sketchy or ablSenimore
information seel[32][124]/131]. Lek be a algebraically closed field of
characteristiqp > 0. Let A be anyk-algebra. In this situation, we have
the Frobenius ring homomorphisan— aP of A. For a varietyX overk
we have the absolute Frobenius morphismX — X which is induced
by the Frobenius ring homomorphism on any of ifi$re open subsets.
Note that the mag is identity on the underlying topological space of
X and on functions it is thg™ power map. By abuse of notation, we
also useF to denote thep™ power mapF : Ox — F.Ox. If Gis a
coherent sheaf oM then the direct imagE.G is the same a§ as a sheaf
of abelian groups; only it®x-module structure is via the Frobenius
morphism,.e. fog= fPg, of f € Ox andg € F.G.

81
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Definition A.1.1. 1. A variety X overk is called Frobenius split if
the p" power mapF : Ox — F.Ox has a splitting.e. anOx-
module morphisny : F.Ox — Ox such that the composits- :
Ox — Ox is identity.

2. If Y is a closed subvariety of with the ideal sheaf such that
¢(F.I) = I then we sayY is compatibly split inX.

3. IfYs,..., Y,are closed subvarieties which are all compatibly split
by the same Frobenius splitting #fthen we say that the closed
subvarietiesry, . .., Y, aresimultaneously compatibly split X.

Exercise A.1.2.Check that these definitions agree with those given ear-
lier in [A£3.

The following remark was used by Ramanathan to study thensehe
theoretic intersection of two unions of Schubert variefigfs proof of
Mayer-Vietoris Lemm@&=Z2Z11).

Remark A.1.3.1f X is a scheme anf : X — X has a splitting theixX

is necessarily reduced. This is a consequence of the fadtn&robe-
nius morphism is theg™ power map on functions and if the scheme is
Frobenius split then this map is an injection.

A Frobenius splitting of a variet) is thus an element in the set
of global sectiondH(X, (F.Ox)*) of the dual ofF.Ox. Let us assume
now thatX is a smooth variety of dimensiam Let wx be its canonical
bundle. Using duality theory—an alternative will be dissrcin section
A3-we see that

HO(X, (F.0x)*) = H'(X, F.Ox ® wx)
= H"(X, F.(Ox ® F*wx))
= F.H"(X, §)
1-
= HO(X, wy ).

The following proposition tells that a normal variety wik -robe-
nius split if one of its desingularisation if Frobenius &pli
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Remark A.1.4.Conversely, there are proofs of hormality based on Fro-
benius splittings, using Propositibn Ab.2. Sed [25].

Proposition A.1.5. Let f : Z —» X be a morphism of algebraic vari-77
eties. Assume that@; = Ox. (We will say that f has the direct image
property.) Then,

() If Z is Frobenius split then X is also Froenius split.

(ii) IfY is aclosed subvariety of Z which is compatibly split irh2&rt
its image {Y) is compatibly splitin X.

Proof. (i) For an open subsdt of X the splitting gives an element
of End=(Oz(f~1(U))) that sends the function 1 to itself.

(i) Let I c Oz be the ideal sheaf of. Then asf.0z = Ox, the ideal
sheaf of f(Y) is f.Z. Now it is an easy exercise to see that the
“pushed” splitting ofX splits f(Y).

m|

Lemma A.1.6. If a splitting of the variety X is compatible with the
subvarieties Yand Y, then it is also compatible with,YAY, and U Y5.

It is compatible with a subvariety Y if and only if it is comipé
with each irreducible component of Y.

Proof. For the first part one uses thay,ny, = Iv, + Iy, andZv,uy, =
Tv,n1y,- FOI the second one shows that a splittings compatible with
a subvarietyZ if and only if there is an open subsgtsuch thatJ N Z
is dense irZ and such thatr|y is compatible withJ n Z. O

Now we give a criterion for a section of)l(_p of a smooth variety to
be a splitting.

Proposition A.1.7. Let Z be a smooth projective variety of dimension n.
LetZ,...,Z, be smooth irreducible subvarieties of codimensi®uch
that the scheme theoretic intersectianrZ . .NZ;, is smooth irreducible
and of dimension rrforall 1 <i; <... <ir < n. If there exists a
section se HO(Z, wg(l) such thatdiv (s), the divisor of zeroes of s, is
Z1 +--- + Zy + D where D is an gective divisor not passing through
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the point P= Z; N ... N Z, then the sectionr = sP~* of a))l(_p gives, by
duality, a splitting of Z (or a non-zero multiple of one) whimakes all
the intersectionsZN ... N Z; compatibly split.

Note that an elemeiat of End:=(X) is a splitting if and only ifr(1) =
1. If X is projective, then in any case(1) is a global function, hence
constant. Thus it gfices to check its value at a single point. In the case
of the proposition one uses the poihaind makes a computation in local
coordinates.

Let G be a connected simply connected semi-simple algebraigpgrou
overk. (Orletitbe asin 2.2.8.) Lék be a maximal torus® > T a Borel
subgroup andV = N(T)/T the Weyl group ofG. Letwy € W denote
the longest element of the Weyl group.

The homogeneous spaGyB is a projective variety. A closure of
a B-orbit in G/B is called a Schubert variety. ThH&orbits inG/B are
indexed in a natural way by elementsWwf If P > B is a parabolic sub-
group ofG, then there are only finitely mar§-orbits in the projective
varietyG/P. We refer the reader to Kempf's papéer{[14]), for basic facts
about the geometry of Schubert varieties.

Let D denote the divisor sum of all codimension one Schubert vari-
eties ofG/B. Let D denote the sum offy translates of codimension one
Schubert varieties. Then the divisbr+ D gives the anti-canonical bun-
dle wé}B of G/B. Itis the image of a divisor in a Demazure resolution
that satisfies the criteridn’A.1.7 for a splitting and by poghforward
with Lemma?? one gets a splitting which simultaneously splits all the
Schubert varieties db/B. Therefore we have the following theorem.

Theorem A.1.8. Let G be connected simply connected semi-simple al-
gebraic group. Let P be a parabolic subgroup of G. Then théegtove
variety G/P is Frobenius split. Further, all the Schubert varieties of
G/P are simultaneously compatibly split.

Proof. One uses Lemn{a’A1.6 to deal with Schubert varieties of highe
codimension. O

Theorem A.1.9. 1. The product @B x G/B is Frobenius split. Fur-
ther the diagonalA = {(x,X) | x € G/B} is compatibly split in
G/Bx G/B.
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2. The variety GxB (G/B x G/B) is Frobenius split. Further all the
double Schubert varieties are simultaneously compatibliy. s

This will be proved below (Propositiohs A.2.9 dnd Al4.8).

A.2 Applications of Frobenius Splitting

79
In this section we prove certain vanishing theorems for thab&nius

split variety X.

First some remarks on the direct and inverse images of skeave
under the absolute Frobenius morphism Let M be a sheaf 0D-
modules onX. Recall that the direct image shdafM is the same as
M as a sheaf of abelian groups, but the-module structure is changed
tofom= fPm, for f € Ox andm € M. As a way of notation,
we will identify M andF. M as sets. The pullback*M is by defini-
tion M ®o, F.O%. Here the prime has been put in to denote that the
Ox-module structure is given by the usual multiplication oa second
factor,i.e. f(lm®g) = fm® g = m® fg (and notm® fPg). The
sheaf M ® F.Ox with its Ox-module structure coming fronM, i.e.
f(me®g) = fm® g = m® fPg, is by definitionF.F* M. This gives us
the projection formulaF.F*M = M ®q, F.Ox.

If we consider a line bundl& on X, we get a natural isomorphism
F*£L ~ LP. Tensoring the Frobenius exact sequence

0—-0x—>F.Ox—>C—0
by £ and taking the cohomology, we get a natural map
H'(X, £) = H'(X, L& F.Ox) = H (X, F.F* £) = H'(X, F, £P).

Proposition A.2.1. Let X be a projective variety which is Frobenius
split. Let Y be a closed subvariety of X which is compatiblig. dpet £
be a line bundle on X such that (X, £™ = H(Y, £L™) = 0 for some i
and for all large m. Then HX, £) = 0 = H(Y, £).

Proof. We have a natural mad'(X, £) — H'(X, F.£P). Further asF
is dfine (.e. inverse image of anfine open set isfine), it commutes
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with the cohomology. Thus$t'(X, F.LP) = H(X, £LP). Now as the
sequence

0-L—->LoF.O0Ox—> LeC—0

is split exact this morphism is injective. Therefore, byratéon, we
have an injective morphisrii'(X, £) — H'_(X,va) for all v. Thus
H'(X, £P") = 0 implies thatH' (X, .£) = 0 = H'(Y, £). m|

The above proposition together with Serre vanishing theayves
us the following corollary.

Corollary A.2.2. Let £ be an ample line bundle on X. If X is Frobenius
split, then H(X, £) = Ofor alli > 0. Further, if Y ¢ X is compatibly
split, H'(Y, £) = 0 and the restriction map H{X, £) — HO(Y, L) is
surjective.

Proof. To see the surjectivity of the restriction map, we consider

HO(X, £) — H(X, L")

|

HO(Y, £) — HO(Y, LP)

As the horizontal arrows are split, it is enough to see thgstivity
of the global sections for a high power 6f Thus the result. m|

For Schubert varieties Ramanathan proved something keter
what one can achieve with the above. He also deals with basefpee
line bundles orG/B that are not ample. So he deals with tBet) with
A anti-dominant, but not regular anti-dominant. We need shisnger
result. Therefore let us now discuss a more refined notiompldtisg
(although we have no other application than this strongault®f Ra-
manathan).

Definition A.2.3. Let £ be a line bundle oiX ands : Ox — £ a non-
zero section off with zeroes precisely ob.
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1. We sayX is FrobeniusD-split (or less precisely Frobenius-
split) if there existsy : F.L — Ox such that the composiie =

YF.(9)
F.Ox i

o Y

F.L

Ox

is a Frobenius splitting oX.
2. If Yis a closed subvariety of such that

(i) no irreducible component of is contained in the support
suppD,

(ii) ¢ gives a compatible splitting of in X, 81
then we sayY is compatiblyD-split in X.

3. If all subvarietiesys, ..., Y; are compatiblyD-split by the same
D-splitting of X then we say thaYs,...,Y, are simultaneously
compatiblyD-split in X.

Remark A.2.4. 1. We note that ifX is Frobenius split, it is also
wi‘p-split, as any section which gives a splitting vanishes on a
divisor whose associated line bundleuigp.

2. LetD’ be another Cartier divisor with @ D’ < D. Then if X is
D-split it is alsoD’-split.

We now see a consequencelmiplittings.

Proposition A.2.5. If X is £-split with £ ample andM is a line bundle
without base points (i.e. for everyexX, there exists s H°(X, M) such
that gx) # 0) then H(X, M) = Ofori > 0. If further Y is compatibly/-

split then H(Y, M) = O for i > 0 and the restriction map H{X, M) —

HO(Y, M) is surjective.

For the proof we refer the reader to Ramanathah [32].



82

88 1. Geometry

Let us now consider the case wheiis the projective homogeneous
spaceG/B. In this case the divisorp(— 1)(D + D) gives a splitting.
The line bundle corresponding to the dividdiis ample, in fact it is the
line bundle given by the charactep. Also asG/B is homogeneous,
any homogeneous line bundle with a non-zero section is bzinefpee.
Therefore we get the following proposition.

Proposition A.2.6(Ramanathan|_[31, Theorem 3]et L be aline bun-
dle on G/B such that H(G/B, £) # 0. Then H(X, £) = 0for any union

of Schubert varieties X and for all+ 0. Further the restriction map
H'(G/B, £) — H(X, £) is surjective for all i.

Remark A.2.7.The caseX = G/B is known as Kempf’s vanishing the-
orem.

Remark A.2.8.Let S be a union of product of Schubert varieties. Con-
sider the fibration

GxBs

G/B

It is locally trivial in the Zariski topology (Exercise_1D)., so the
structure sheaf d& xB S is certainly flat over the basg/B. The propo-
sition above gives us th&n,0 = 0 fori > 0 becaus&® .0 is a vector
bundle onG/B with fibre isomorphic withH'(S, ©) which vanishes as
O is base point free oG/B. (Use [, Grauert’s corollary to Semiconti-
nuity].) Similarly, if P, Q are parabolics and is an ample line bundle
(or one without base points) @x8 (G/P x G/Q) then for any uniors
of products of Schubert varieties @y P x G/Q the highemR' f,(L|gxes)
vanish, wherdf : GxBS — G/B. SoH(G/B, f.(Llgxss)) = H'(G xB
S, Llgx8s) by Leray ([7, lll, Ex. 8.1]).

Exercise A.2.9.Let P be a parabolic and | be a union of Schubert
varieties inG/P. Argue as in the remark above to show thafiis a line
bundle orG/P, thenHi(S, £) = H(x~1(S), n* £), with7 : G/B — G/P.
Next assumeL is base point free and I&; be a union of Schubert
varieties inG/B with 7(S1) = S. Show thatH%(Sy, 7* £) = HY(S, £).
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A.3 Cartier Operators and Splittings

We now give another approach to the isomorph&nt:(X) ~ w;‘p.
It does not make reference to duality theory, but only to theti€r op-
erator. With this description it will be quite feasible to keaexplicit
computations with splittings in local coordinates, if thaitsings are
given as sections aby ",

Let X be a variety of dimension overk, with k algebraically closed
of characteristig, as usual. We consider the DeRham complex

00— Q-0

with as diferentiald the usual exterior dierentiation. Because this dif-
ferential is notOx-linear, we twist thedx-module structure om‘X by
putting f * w = fPw for a sectionf € HO(U, Ox) and a diferentiali-
formw € HO(U,Q‘X). With this twisted module structure the DeRham
complex is a complex of cohere@-modules, and the exterior algebra3
Q5 = @ Q) is a diferential gradedx-algebra. We denote its coho-
mology sheafsH .. So if U is an dfine open subset, thdﬂlO(U,‘Hc'jR)
consists of all closed fierentiali-forms onU modulo the exact ones.
Now consider the map : f - class off P~td f from Ox to H..

Lemma A.3.1. y is a derivation and thus induces @-algebra ho-
momorphism ¢ Q5 — Hj..

Remark A.3.2. Note that one should put the ordina®y-module struc-
ture onQj here, not the twisted one that is used%gR.

Proof of Lemmal[A33: With
DX, Y) = ((X+Y)P=XP-YP)/peZ[XY]
we get

(f + g)Ptd(f + g) = fP-1df + g°1dg+ da(f, Q)
(fg)Ptd(fg) = g+ fPdf + f « g”ldg,
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where the first equality is a consequence of the fact that
p(X + Y)Pd(X + Y) = pXPldX + pYP1dY + pdd(X,Y)

in the torsion fre%-moduleQ%[XY].
Proposition A.3.3. If X is smooth, the homomorphism c is bijective. The

inverse map C Hj, — Q is called the Cartier operator (cfL[26]).

O

Proof. To check that a map of coherent sheafs is an isomorphism-it suf
fices to check that one gets an isomorphism after passing twotinple-
tion at an arbitrary closed point. But then we are simply idgalvith
the DeRham complex for a power series ringnimariables ovek and
everything can be made very explicity (exercise). m|

Remark A.3.4.Here are some formulas satisfied by the Cartier opera-
tor, in sloppy notation. In view of these formulas the corioecwith
Frobenius splittings is not surprising.

() C(fPr) = fC(7)
(i) C(dr)=0
(i) C(dlogf) = dlogf, where dlogf stands for (1f)df if f is in-
vertible (or inverted).
(iv) C(¢ A7) =C(¢) AC(r)
Heref is a function and,  are forms.

Proposition A.3.5. If X is smooth, we have a natural isomorphism
ENCk(X) ~ wy, P = Hom(k, wx),

wherewy is the canonical line bundl®F. If 7 is a local generator of
wy, T alocal section oDy, ¢ a local homomorphism))p( — wx, then
the corresponding local sectiom of Ende(X) is defined by (f)r =

C(class ofg(f7%r)).

Proof. One checks that (class ofg(fr®r))/r does not depend on the
choice ofr, so thato- depends only og. To see that the map — o
defines an isomorphism of line bundles we may argue as in thagus
proof. m|
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A.4 Canonical splitting of the Demazure resolution

We wish to studyende(Z,, Dy) for an arbitrary sequencg,, ..., s, of
simple reflections. In particular, we wish to prove Proposif4d.3.T5.
We start with the problem of recognizirigrequivariant bundles o,

Lemma A.4.1. Let X be a connected projective variety with B action
and x an invariant point. Lef, ¥ be B-equivariant line bundles that
are isomorphic as line bundles. If there fibres over x are Bhegyiantly
isomorphic, then the line bundles themselves are B-eqaividy iso-
morphic.

Proof. Tensoring withE* we reduce to the case thét ¥ are trivial as
line bundles. Then

HO(X, &) ~ HO({x}, &) ~ HO({x}, F) ~ H(X, &)

equivariantly. But the global sections generate a trividad every- 85
where, so theB action on such a sheaf is determined by what it does
on global sections. O

This lemma takes care of recognizing tBeaction, so let us now
look at the Picard group &,.

Lemma A.4.2. The isomorphism type of a line bundle opiZ deter-
mined exactly by the degrees of the restrictions to the n dddaPl’s
of the form BxB ... xB P; xB... xB B/B.

Proof. This is clear forZ,, ~ P, so we work our way back t@, by
means of the fibrations; : Zj, = Pj x® Pj;1...Py/B - Pj/B ~ P!
with fibre Zj.1 . Use [T, Ch. II, Prop. 6.5] with as divisor the fibre of
the point “at infinity” 5, of P;/B and observe that the complement of
this fibre is a direct product .1, with an dfine line. Apply [7, Ch.
I, Prop. 6.6] to this complement. O

Corollary A.4.3. Under the standing hypothesis 2.2.8 all line bundles
on G/B come from G-equivariant ones. The equivariant structgre i
unigue up to a twist by a character of G. In particular, if G {s bwn
commutator subgroup then the equivariant structure is ueiq
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Proof. The regular representation Gfrestricts to a faithful representa-
tion of its commutator group, so the fundamental weighthefdommu-
tator group are restrictions of weights Bf Therefore the set of degrees
of restrictions to the projective lind3;/B(s € S) runs through all pos-
sibilities as we vary the line bundle over dl(1), 2 € X(T). And a line
bundle is clearly determined by its pullback to a Demazuseltgion of
G/B. To finish, argue as in the proof of LemiaAl4.1. o

Exercise A.4.4.Let P be a parabolic and a space witlB action. Show
that everyP-equivariant vector bundle ddx® X is of the formP xB v
with <V a B-equivariant bundle oiX.

The following lemma may be used to pass betwé&enr(Z,, D)
andénde(Z) @ 75 .

Lemma A.4.5. Let A be a domain of characteristic p aff) a principal
ideal in it. ThenEnd:(A, ()) = (f)PL « End:(A).

Proof. That the left-hand side contains the right-hand side isclest
o € End=(A, (f)). Theno(fa) = fr(a) defines a map from Ato itself.
One checks that € End=(A) and thatfo = f(fP1 x 7). O

Proposition A.4.6. The sheaEndg(Z,, Dy) is B-equivariantly isomor-
phic withe* L((1- p)p)[(p— 1)e], so that ify : Z, — G/B is surjective,
&ndr(Z,, Dy) is B-equivariantly isomorphic with

Kp-1) ® HY(G/B, L((1 - p)p)).

Proof. By Lemmad’/AZb anfCA35 all we have to show for the first
statement is thabz, (—Dn) = ¢* L(p)[—p], equivariantly. We argue again
by induction, using the fibration; : Zjn = Pj xB Pjs1...Pn/B —
Pj/B = P! with fibre Zji1n. Let Dj, denote the analogue @, in
Zjn. ThusDj, is a divisor withn — j + 1 components intersecting in a
point x. The required result is easy for= n. Indeed ifa is the simple
root corresponding witl,, one gets a local coordinaten P,/B ~ P!
fromt — x_,(t)B/B and the stalk at the “origink of wz,,(~Dnn) is
generated bylt/t on whichT acts trivially. Further the degree of the
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line bundle is—1, so by our recognition LemnfaA.4.1 we must have
wz,,(=Dnn) = @5 nL(p)[—p], equivariantly.

Now assume such a result forzjﬂvn(—DHl,n) and considercuzjvn
(=Djn). It is the tensor product of two line bundles. The first one,
sayR, is the relative canonical bund«l&zj’n/IPl = A"IQ in/et, twisted by
L(P;j xB Dj:+1n).- The second is the pullback afy:(—{x}), with x “as
above”. Let us study through its restrictions to the various copies of
P!, cf. LemmadAZl andA4.2. By base change for relativiedin-
tials, seelll7, 11, 8.2], the restriction sz',n . 0 BxBZHLn isjustcuzjﬂvn.
SoR restricts towz,,, ,(—~Dj+1,n), which we know. We also need the re-
striction of R to Pj/B. Now that is aPj-equivariant sheaf whose fibre
atx has trivial T action, so it must be the structure sheaffgiiB. The
sheafwp1(—{x}) we have already found to be the pullback fr@yB of
L(p)[-p], and its pullback t&; , is easy to understand in terms of its re-
strictions to the relevarit'’s. So we have all the ingredients to conclude
wz,,(=Djn) = ¢"L(p)[-p], equivariantly. To prove the last statement
of the proposition, use Exerci§& AHK.4 and the fibratiopso se that

HO(* L(1 - P)p)) = Hs; 0 -+ o Hg,((1 - Plp). 0

Proposition A.4.7 (PropositioZ317) There existsr € End-(Z,, D) 87
which is a canonical splitting.

Proof. We have already describedin”4-3.17 how one proves this with
the criterioALY. Let us tell it a little éierently now. Let

se HY%G/B, L((1 - p)o)(p - 1)p])

be a weight vector of weight zero. It does not vanisB . We wish to
show that its pullback defines, € End=(Z,, D) with o-n(1) # 0. AsZ,

is completegp(1) is a constnat function. Call the constapt We argue
by induction, the casa = 0 being easy. Now an exercise in chasing
duality, say with the Cartier operator, shows that the ie&in of oj (1)

to Zj11n is justoji1n(1) in hopefully self-explanatory notation. (Use
reasonable identifications, choose a local coordimate Pj/B which
vanishes aB/B and use that the fibratiod;, — P;j/B is trivial in a
neighborhood 0B/B.) Socj, = Cj.1n, Which is non-zero by inductive
assumption. This proves that up to a scalar multiple we heséyced a
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splitting, and by construction it has weight 0 so that it mhestanonical
because of the position of the weights of E(d\, Dn). (See proof of
A31T). O

Proposition A.4.8(A. 1.9 part. 2.) Let P and Q be parabolic subgroups.
There is a canonical splitting on €2 (G/P x G/Q) which is compatible
with all double Schubert varieties.

Proof. Choose a reduced expression of a minimal representativg of
modulo the Weyl group oP. Let it be followed by a reduced expression
for wg and let that finally be followed by a reduced expression foiram
imal representative afip modulo the Weyl group of. Together that is
a long expression based on which one gefs which maps birationally
onto G x” G xB G/Q by “multiplication”. This proper birational map
has the direct image property because the target is hormaé now
takes the canonical splitting BfA.3.7. It is compatiblewatl unions of
intersections of components DFf,.

Next note thaG xB (G/P x G/Q)<G xP G xB G/Q. The maps is
defined byg(g, X, V) = (gx x1,y) (cf.[CZ2). The image dB xB (X, x
Xw) underg is G xP (Pv-1B) xB X,, which is clearly the image of an
intersection of components @,. So the splitting is compatible with
it. m|

We are also ready to prove

Proposition A.4.9(A 19 part 1.) The product GBx G/B is Frobenius
split. Further the diagonahA = {(x, X)|x € G/B} is compatibly split in
G/Bx G/B.

Proof. TakeQ = G, P = B in the previous proof and recal[ {1.P.2) that

GxBG/BLG/BxG/Bwith ¢(g, h) = (g, gh). We get a splitting which is
compatible withG xB B/B, and that subspace is mapped to the diagonal
by ¢. O
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A.5 Two Technical Results

Sublemma A.5.1.Let X, Y be two quasi-projective schemes over an
algebraically closed field k of characteristicp 0. Let f: X — Y be

a bijective proper morphism. Then for every line bundlen Y and for

se HO(X, f*(£)) we have B € imageH°(Y, £P")) for some large n.

Proof. As f is proper and quasi-finite, it is finite an€fiae. We may as-
sumeX andY to be reduced, in which ca$¢’(Y, £") may be identified
with its image. Then the problem is local dh Thus we may assume
thatY andX are dfine and that the line bundles are trivial. We identify
them with the structure sheafs. Séy= Specf), X = SpecB), A c B.
As B is finite overA, we have a bound on the dimension®®&, k for
any point¢ : A — k. We may replacé by BPA. Repeating that if nec-
essary we may assume that for all poipthe local artin algebr& ®, k

is reduced. But then it must simply the ask is algebraically closed.
By Nakayama’s Lemma the majp— B is now surjective at all points,
hence surjective. O

Proposition A.5.2. Let f : X — Y be a surjective, separable, proper
morphism between two varieties, with connected fibres. Bieaes that
Y is Frobenius split. Then.®x = Oy.

Proof. By Stein factorisation we may assunfi¢o be finite. Then it is
actually a bijection, so that our earlier LemimaAl5.1 appligve may
assume again tha¢ = SpecB), Y = Specf), A c B and we have to
show thatA is p-root closed irB.

First consider a smooth pointof X, such that the tangent map ig9
surjective atx and f(x) is smooth inY. As the dimensions are the same
at x and f(x), the surjectivity of the tangent map implies an “analytic”
isomorphismOy ~ Of(y. Thus f(x) is outside the support of tha-
moduleB/A. Therefore there is € A which annihilates that module—
one say< is in the conductor oB over A—such that(f(x)) # O.

Return to the question gf-root closure. Leb € B with bP? € A
and leto : A — A be the splitting. Foc in the conductor we haveb,

c, bP € A, soco(bP) = o(cPbP) = ch. Sob equalso(bP) at all points
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wherec does not vanish. Varyingwe get a dense set of points whére
equalso(bP), sob € o(A) Cc A. O
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A.6 Glossary of Notations

()

W <w

s> p
M1

Yo

indS oindj
axo

g+ o

m‘L

m.0O

M*
(F.Ox)"

G xB X
Llx

C«

C</1
C<r
C<R
ch(My)

W-invariant inner producfl4

W precedesv in the Bruhat orden.e. Xy C Xu,
2

(o - s, 31— p) > 0,[78

anti-dominant weight itW-orbit of u, I3
dominant weight inV-orbit of v, L4

composite functof, 11

b o(a- b) whenais ring element-41

b~ g- (g™t - a) whengis group elemeni 31
pullback of £, seell7][Ih

direct image oD, [14

dual of M, 28

Hom(F.Ox, Ox), 44

total space of associated fibre bundle, 7
restriction of bundle to subspaee[I1

@A, whenA is graded[ 43

also in graded cas«aaiA'Si ey
largestB-submodule oM that is inC.,,
largestB-submodule with weights of length R,
ma

largestB-submodule oM that is inC<,,
weight space of weight, 2,10

Z-form of G, [73

Borel subgroup]2

double cosefl4

the category of rationd8-modules[ZID

the category of rationadb-modules[P

category ofB-modules whose weights precede
subcategory with weights strictly precedingZ3
subcategory ofg with length of weights< R, [I0
subcategory of’g with length of weightx R,[24
formal character oM, [74
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Enck(R 1)
Endk:(X)
Enck(X, Y)
Ext
Exty(M, N)
Extg,,
&nde (X)
ENde(X,Y)
F

F.Ox

Ga

Gm

GL(n, k)

G

HO(B, M)

HO(X, L)
H'(B, M)
Hw
Hw(2)
Is

indS

k

k[B]

Ka

K(w,y, 1)

K(X1, X2, 4, 14,v)
I(w)

Glossary of Notations

irreducible divisor inZ,, 49
divisor with normal crossing i, 44
space of Frobenius-linear endomorphismsRpf
&1
subspace of those compatible wittd1
global sections o&ndg(X), 44
global sectons afnd: (X, Y), 24
i-th Ext functor [23, Ch. ][ Zb
Ext group in the categorgg, 12
Extin Cqy, 28
sheaf of Frobenius-linear endomorphisms, 44
subsheaf of those compatible withiZ4
absolute Frobenius morphish] 43
the direct image oy underF, 44
additive group[1L
multiplicative group[dL
general linear groujh) 1
algebraic groud]1
reductive connected] 2
simply connected to@, 15
submodule oM consisting of vectors fixed bi,
ma
global sections oveX of £ or L]y, [I1,[T3
i-th cohomology oM in Cg ([11]),
Joseph’s functoM — HO(X, £(M)), 13
Hw(ka), 13
ideal sheaf of5,[18
induction functorCg — Cg, 11
algebraically closed field] 1
of characteristiqp > 0,[39
the ring of regular functions 0B, [24
one-dimensionaB-module of weight1, I3
kerP(wl) — P(yA), 63
ker : HO(X1, L(4, 11,v)) = HY(Z2, L(A, 1, v)), B2
length ofw, 13
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L(M) vector bundleG xB M overG/B with fibre M, 8

L(1) L(ky),13

LA, u,v) line bundleL£(A) x L(u) x L(v),

n has no fixed valud¢,_216

o(n) power of twisting sheaf[7[. 28

Ox structure sheaf ok, [14

p the characteristi¢,_B5

P" projectiven-space[[F]27

P(u) dual Joseph module with sodig, I8

P minimal parabolicBsBU B,A

Ps minimal parabolicBsB U B,[H

Py parabolic withL(u) very ample orG/P,,,

Q(u) minimal relative Schubert module with sodtg,
IRe|

Q(S, S, 1) ker(res :HO(S, £(1)) — HYS, £(1))), ™

R'F n-th derived functor of, [24

R.(G) unipotent radical o6, 2

res restriction functoiCg — Cn, 10

SLnK) special linear grouji] 1

socM socle ofM, usually asB-module[ID

S i-th simple reflection in a sequenég, 3

T maximal torus, contained iB,d

U unipotent radical oB,H

U, root subgrougdx,(t) | t € k}, &2

w Weyl group[B

Wo longest elemenk] 7

X(G) character group o8, 2

X(M* the set of dominant weights X(T), L[4

X(T)~ the set of anti-dominant weights X(T),

X the Schubert varietBwB/B, 8

OXw complement of the open Bruhat cell X, [139

Xg isomorphismG, — Ug, @A

Z; Demazure resolutiof] 6

Je half sum of the roots oB, 29

> union of double Schubert varieti¢s] 52
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QQ whereX is smooth of dimension, 28
sheaf ofg-forms onX, 44



Index: First some notions for which we refer to textbooks, as
indicated.

acyclic for a functor [11], 27

birational map [9], 6
Bruhat order [34], 16

canonical line bundle [7], 46
complete variety [9], 3

derived functor [7], 26
direct image [7], 44
divisor [7], 6

duality [7], 82

Dynkin diagram [9], 4

equivariant [9], 16
Ext functor [23; Ch 1l1], 25

geometric vector bundle [7; Il
Exercise 5.18], 46

highest weight theory [8], 9

ideal sheaf [7], 17
injective (module) [11], 24

Levi factor [9], 50

rational map [7], 40

reduced expression [9], 5
regular function [9], 24
regular representation [11], 92

semi-invariant [9], 18
simple reflection [9], 4
simple root [9], 4

simply connected [9], 16

unipotent [9], 2
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Index: Now the terms that are explained in the notes.

ample, 40

anti-dominant, 16
associated fibre bundle, 7
associated vector bundle, 8

B-acyclic, 30

base point, 16

Borel Fixed Point Theorem, 3
Borel subgroup, 3

boundary of Schubert veriety, 20
Bruhat cell, 5

Bruhat decomposition, 5

canonical splitting, 42
Cartan subgroup, 3
Catrtier operator, 90
character, 2
character (formal), 77
cohomological criterion
for excellent filtration, 31
for good filtration, 37
for rel. Schubert filtration,
34
compatibly split, 41
simultaneously, 82
subvariety, 45
Coxeter group, 4

Demazure character formula, 77
Demazure resolutions, 6

direct image property, 83

direct limit, 12

dominant, 18

Donkin’s conjecture, 49

106

double Schubert variety, 51
dual Joseph module, 20
dual Weyl module, 37

equivariant vector bundle, 46
evaluation map, 11

excellent filtration, 21
extremal weight, 18

Frobenius reciprocity, 12
Frobenius split variety, 44
Frobenius-linear, 41

geometric description of extre-
mal weight, 18

good filtration, 36

graded splitting, 42

Grothendieck spectral sequence,
27

indecomposable, 10
induction functor, 11

injective hull, 26

irreducible representation, 10

Joseph’s conjecture, 57
Joseph'’s functor

and reduced expression, 15
Joseph'’s functors, 13

Kempf vanishing, 88

length-height filtration, 32
length-height order, 23

Main Theorem, 79
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Mayer-Vietoris Lemma, 17 very ample, 40
minimal parabolic, 5 _
module (rational), 2 weight space, 11
multiplicity of a weight, 22 weight vector, 2
weights of representation, 2
p-root closure, 38 Weyl group, 3
parabolic, 3
Polo’s theorem, 26 Z-form, 73

strong form, 30

radical, 2

rational representation, 1
reductive, 2

regular anti-dominant, 57
relative Schubert filtration, 21
relative Schubert module, 20
Restriction Conjecture, 50
restriction functor, 10
Restriction Theorem, 79

Schubert divisor, 5

Schubert filtration, 69

Schubert variety, 5

inG/Q, 6

semi-simple, 10

semi-simple group, 2

separable map, 63

simple module, 10

socle, 10

splitting, 41

standard modification of Kempf,
6

subalgebra of socles, 38

tensor identity for induction, 12
torus, 2
transitivity of induction, 12
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