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Preface

These notes are based on a course given at the Tata Institute of Funda-
mental Research in the beginning of 1990. The aim of the course was
to describe the solution by O. Mathieu of some conjectures inthe rep-
resentation theory of semi-simple algebraic groups. Theseconjectures
concern the inner structure of dual Weyl modules and some of their ana-
logues.

Recall that ifG is a (connected, simply connected) semi-simple
complex Lie group andB a Borel subgroup, the Borel–Weil–Bott Theo-
rem tells that one may construct the finite dimensional irreducible G-
modules in the following way. Take a line bundleL on the gener-
alized flag varietyG/B, such thatH0(G/B,L) does not vanish. Then
H0(G/B,L) is an irreducibleG-module, called a dual Weyl module or
an “induced module”, and by varyingL one gets all finite dimensional
irreducibles.

More generally one may, after Demazure, consider theB-modules
H0(BwB/B,L) with L as above. (So one still requires thatH0(G/B,L)
does not vanish.) The “Demazure character formula” determines the
character ofH0(BwB/B,L). It was shown by P. Polo that theB-module
H0(BwB/B,L) has a nice homological characterization in terms of its
highest weightλ (see 3.1.10). We therefore use the notationP(λ) for
this module. TheP(λ) are generalizations of dual Weyl modules. Indeed
recall that nothing is lost when restricting a rational module from G to
B; inducing back up fromB to G one recovers the original module (see
2.1.7).

Now the conjectures are about filtrations of the dual Weyl mod-
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vi Preface

ulesH0(G/B,L) or their generalizatoinsP(λ), for semi-simple algebraic
groups in arbitrary characteristic. (Over the integers, actually.) The
strongest conjecture of the series is Polo’s conjecture, which says that if
one twists aP(λ) by an anti-dominant character the resultingB-module
can be filtered with subsequent quotientsP(µi). In Polo’s terminology–
which we will follow–the twisted module has anexcellent filtration. (In
Mathieu’s terminology the twisted module isstrong.)

This conjecture, now a theorem of Mathieu, has many nice conse-
quences. For instance, suppose one takes a semi-simple subgroup L of
G corresponding with a subset of the set of simple roots. Then if one
restricts the representationP(λ) from B to B ∩ L, that restriction has
excellent filtration. For the case of dual Weyl modules this confirms
Donkin’s conjecture that the restriction toL of a dual Weyl module has
“good filtration”, i.e. a filtration whose successive quotients are dual
Weyl modules again. (Unlike the preceding statements, thisis not in-
teresting in the case of semi-simple Lie groups, where any finite dimen-
sionalL-module has good filtration, because of complete reducibility.)

Another consequence is a solution of the well-known problemof
showing that the tensor product of two modules with good filtration has
good filtration. This problem was around at least since 1977 when J.E.
Humphreys was drawing attention to it. Actually Mathieu hasto solve
this problem first, before settling Polo’s conjecture. Mathieu’s proof was
the first that did not need to exclude any cases. (And this was achieved
by not having any case distinctions to begin with.) Later a proof has
been found that uses the canonical bases of Lusztig (= crystal bases of
Kashiwara).

A different type of consequence, amply demonstrated in the works
of Donkin, is that many results can be carried over from characteristic
0 to characteristicp. This is because modules with excellent filtration
have nice cohomological properties and thus nice base change proper-
ties. (But observe that the proofs by Mathieu start at the other end and
rely very much on characteristicp methods.)

Although the subject of the course is the contribution of Mathieu,
one should of course not forget the work of Wang, Donkin, Polo,. . . that
prepared the way. This story is not told here. To exacerbate things, but
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in keeping with established practice, our choice of names ofmathemati-
cians in terminology is quite arbitrary. We encourage the reader to check
the references for all the things that are left out.

As is already evident from the above, we place much emphasis on
B-modules (more than Mathieu did). Indeed we believe a good setting
for the theory is provided by the category ofB-modules, enriched with
the tensor product operation and also with ahighest weight category
structure (in the sense of Cline, Parshall, Scott [2]) with theP(λ) as
“induced modules”. In the lectures the highest weight category struc-
ture was simply disguised as a particular total ordering of the weights,
dubbed “length-height order”. (Weights are ordered by length accord-
ing to a Weyl group invariant inner product, and then for fixedlength by
height.) Indeed no derived categories are found in the notes.

In [35] we identified another class ofB-modules. The module in this
class with highest weightµ we callQ(µ). It is related to theP(λ) by the
following type of duality:

dim(ExtiB(Q(µ)∗,P(λ))) =


1, if i = 0 andλ = −µ;

0, otherwise.

The interaction between theP(λ) and theQ(ν) has much relevance
for the filtration conjectures.

Mathieu’s proof of these conjectures involves an innovative way to
exploit Frobenius splittings on Bott-Samelson-Demazure-Hansen reso-
lutions of Schubert varieties and some of their generalizations. It was
interesting to be lecturing about Frobenius splittings at TIFR, with the
originators of that theory in the audience.

Warning. When we speak of highest weight, we are using the or-
dering in which the roots ofB are positive. This is opposite to the
choice in much of the recent literature, but we hope the reader agrees
that in our situation–where the main concern is modulesP(λ) with one-
dimensional socles generated by a highest weight vector of weightλ–it
would be silly to reverse the ordering.

The lectures given in Bombay have served as a starting point for the
present notes, but is was not a straightforward job to convert the oral
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story into something organized and intelligible. I am very grateful to
S.P. Inamdar who wrote the main body of the notes. He smoothedout
many rough spots and mercifully removed some of my less fortunate
variations.

Finally, it is a pleasure to thank colleagues and staff at TIFR for
providing such a friendly environment for us visitors.

Utrecht 1993, Wilberd van der Kallen
e-mail: vdkallen@math.ruu.nl
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Chapter 1

Premilinaries

This chapter should be taken as a guideline of what notation and termi- 1

nology is used later on during the course rather than giving acomplete
treatment of the structure theory of reductive groups. An excellent ref-
erence for a detailed discussion of the contents of the first section is
the book [Humphreys: Linear Algebraic Groups]. Indeed, most of the
material is taken from it.

1.1 Reductive Algebraic Groups

Let k be an algebraically closed field. LetG be a variety overk with the
structure of a group on its set of points. We callG analgebraic groupif
the mapsµ : G × G → G, whereµ(x, y) = xy, andτ : G → G, where
τ(x) = x−1, are algebraic morphisms.

By a morphism of groups we mean an algebraic group homomor-
phism between the two varieties. A morphism from an algebraic group
G to GL(n, k) is called a (rational) representation ofG of dimensionn
with underlying vector spacekn.

Theadditive groupGa is the affine lineA1 with the group lawµ(x, y)
= x+ y. Themultiplicative groupGm is the open affine subsetk∗ ⊂ A1

with group lawµ(x, y) = xy. The setGL(n, k) of n×n invertible matrices
with entries ink is a group under matrix multiplication called thegeneral
linear group.

1



2 1. Premilinaries

A closed subgroup of an algebraic group is an algebraic group. Thus
thespecial linear group S L(n, k) of all the matrices of determinant 1 in
GL(n, k) and the subgroupD(n, k) of all diagonal matrices are algebraic2

groups. An algebraic group is called a torus if it is isomorphic to D(n, k)
for somen.

Let G be an algebraic group,X a variety. We say thatG acts(ratio-
nally) on X if we are given a morphismϕ : G × X → X such that for
xi ∈ G, y ∈ X we haveϕ(x1, ϕ(x2, y)) = ϕ(x1x2, y) andϕ(e, y) = y. One
usually writesg · v or gv for ϕ(g, v).

Let ϕ : G → GL(n, k) be a (rational) representation of an algebraic
groupG. ThenG acts on the affinen-spaceAn via this representation,
i.e. x· v = ϕ(x)(v), and thus on an-dimensional vector spaceV overk.
In this case we callV a (rational)G-module. More generally, ifG acts
linearly on ak-vector spaceV, thenV is called a (rational)G-module if it
is the union of finite dimensional subspaces on whichG acts rationally.

A character of an algebraic groupG is a morphism of algebraic
groupsχ : G→ Gm. We denote the group of characters ofG by X(G).

Let H be a diagonal subgroup (or a subgroup ofGL(n, k) which is
diagonalisable). LetV be anH-module. ThenV decomposes as direct
sum of subspacesVα, whereα runs over the character groupX(H) of H
and

Vα = {v ∈ V | x · v = α(x)v}.

Thoseα for which Vα is non-zero are called theweightsof V and
v ∈ Vα is called a weight vector of weightα.

Every algebraic group contains a unique largest connected normal
solvable group. We call this subgroup ofG the radical of G. It is de-
noted byR(G). A groupG is called semi-simple ifR(G) is trivial. The
subgroup ofR(G) consisting of all unipotent elements is normal inG;
we call it theunipotent radicalof G. We denote it byRu(G). We callG
reductive ifRu(G) is trivial.

The groupS L(n, k) is semi-simple andGL(n, k) is reductive. Note
that any semi-simple group is automatically reductive.

From now on we will assume that our groupG is connected reduc-
tive.
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A Borel subgroupof G is a maximal closed connected solvable sub-
group ofG. A connected solvable subgroup of largest possible dimen-
sion inG is of course a Borel subgroup and it is also true that every Borel
subgroup ofG has the same dimension. In fact we have the following
stronger theorem:

Theorem 1.1.1. Let B be any Borel subgroup of G. Then G/B is a
projective variety, and all other Borel subgroups are conjugate to B.

We call a closed subgroup ofG parabolicif it contains a Borel sub- 3

group. The centralizerC of a maximal torusT of G is called aCartan
subgroupof G. Note that we did not pur the condition of it being a
connected subgroup ofG as it can be shown that any Cartan subgroup
of a connected algebraic group is connected. For reductive groups, the
Cartan subgroupCG(T) equalsT.

We now state the Borel Fixed Point Theorem and some of its conse-
quences.

Theorem 1.1.2(Borel Fixed Point Theorem). Let B be a connected
solvable algebraic group, and X be a complete variety on which B acts.
Then B has a fixed point in X.

From this theorem one can deduce Theorem 1.1.1 and also:

(i) All maximal tori, and all Borel subgroups are conjugate.

(ii) P is parabolic subgroup ofG if and only if G/P is a complete
variety.

If S is any torus inG, we callNG(S)/CG(S) Weyl group of G relative
to S ,whereNG(H) andCG(H) denote the normalizer and centralizer in
G of a subgroupH of G. Since all maximal tori are conjugate, all their
Weyl groups are isomorphic. We call this group theWeyl group of G.
We denote it byW. We state here some of the important properties of
this groupW. Recall thatG is a connected reductive algebraic group.

(i) W is a finite group.
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(ii) W is generated by elementssi(1 ≤ i ≤ l), for somel, with the
following defining relations between them: (si sj)m(i, j) = e, with
m(i, i) = 1 and 2≤ m(i, j) < ∞ for i , j. A group generated by
elements having such defining relations is called aCoxeter group.

(iii) If χ ∈ X(T) andt ∈ T the formula

(ωχ)(t) = χ(n−1tn)

gives us an action of an elementω ∈W on X(T); heren denotes a
coset representative ofw in NG(T).

(iv) Since the real vector spaceX(T)⊗R is aW-module, we can put a4

metric on it which is invariant under the action of the finite group
W, i.e. there is an inner product ( , ) such that (wχ,wµ) = (χ, µ)
for everyχ, µ ∈ X(T).

(v) If we fix a Borel subgroupB and a maximal torusT ⊂ B, we get a
preferred set of generators ofW. We call them simple reflections.
If they are indexed by a (finite) setI (e.g. the nodes of the Dynkin
diagram), then for eachi ∈ I , we also have a simple rootα and we
may choose a homomorphismS L(2, k)→ G, mapping

(
1 t
0 1

)
7→ xα(t),

(
1 0
t 1

)
7→ x−α(t).

Here if β is a root,xβ : Ga → B denotes a conveniently normal-
ized injective homomorphism satisfyinghxβ(t)h−1 = xβ(β(h)t) for
t ∈ k, h ∈ T. (Cf. [34, Chapters 9, 10].) Our homomorphism
S L(2, k) → G has the property that it has at most{1,−1} as ker-
nal and hence the image is isomorphic to eitherS L(2, k) or to the
quotientPS L(2, k) of S L(2, k) by this subgroup of order 2. We
note that in characteristic 2, the above group{1,−1} does not dif-
fer from {1} and one must replace it by a “group scheme” of order
2.

If ϕ : G → GL(V) is a representation, theweightsof V are the
images inX(T) of the weights ofϕ(T) in V via the canonical homo-
morphismX(ϕ(T)) → X(T). We makeW act on weights ofV via this
canonical homomorphism.



1.2. Demazure Desingularisation ofG/B 5

Let us fix a Borel subgroupB and a maximal torusT of B. Let W
denote the Weyl group ofG relative toT. As we have just pointed
out this choice ofB and T gives us a preferred set of generators of
W and for each simple reflection we either have a copy ofS L(2, k) or
PS L(2, k) embedded inG. Any such subgroup together withB gen-
erateds a parabolic subgroup ofG. We call these subgroupsminimal
parabolic subgroups ofG. If si is a simple reflection inW andPi de-
notes the associated minimal parabolic subgroup thenPi contains a rep-
resentative ofsi in G. Note that sinceT lies in B, the double cosetBnB
is independent of the choice ofn representing a givenw ∈ W. We thus
write BwB for this double coset. Its image inG/B is called aBruhat
cell and the closure of a Bruhat cell is called aSchubert variety. It is
a union of Bruhat cells. Any elementw ∈ W can be expressed as the
products1 . . . sr for some sequence{s1, . . . , sr} of simple reflections in 5

W. If this expression is reduced andPi is the minimal parabolic corre-
sponding withsi , thenBwBhas as its closure the setP1 . . .Pr , i.e. the
image ofP1 × · · · × Pr under the multiplication mapG× · · · ×G→ G.

Theorem 1.1.3(Bruhat decomposition). For any reductive group G, we
have G= ∪w∈WBwB, with Bw1B = Bw2B if and only if w1 = w2 in W.

Corollary 1.1.4. Let G be a reductive group and B be a Borel subgroup
of G. We have G/B = ∪w∈WBwB/B with Bw1B/B = Bw2B/B if and
only if w1 = w2.

This decomposition gives a stratification of the smooth projective
variety G/B by the Bruhat cells, theith stratum being the union of all
Bruhat cells of dimensioni. A codimension one Schubert variety of
G/B is called a Schubert divisor ofG/B.

1.2 Demazure Desingularisation ofG/B

The projective varietyG/B being homogeneous it is smooth. However,
the Schubert varieties are not all smooth subvarieties ofG/B. Further,
two Schubert divisors need not intersect transversally with each other.
Demazure constructed a “desingularisation” ofG/B to overcome this
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problem. In this section we first discuss Kempf’s approach via the stan-
dard modifications. Next we reformulate the resolution in terms of fibre
bundles. It is the latter description which will be used later.

RecallG is a connected semi-simple or reductive algebraic group
over an algebraically closed field of arbitrary characteristic. We fixed a
maximal torusT and a Borel subgroupB containingT. The unipotent
radical ofB will be denotedU. If W is the Weyl group ofG, then we
have a preferres set of generators ofW, called simple reflections. We
typically denote them bys or si . ThenPs or Pi denotes the associated
(minimal) parabolic subgroup ofG. For any parabolic subgroupQ ⊇ B
of G, by a Schubert variety inG/Q we mean the closure of aB-orbit in
G/Q. We will be dealing mostly with Schubert varieties inG/B. The
properties for Schubert varieties inG/Q can be deduced from those of
in G/B by studying the fibrationG/B→ G/Q.

We have the Bruhat decompositionG/B = ∪w∈WBwB/Bof G/B into6

B-orbits. Note that as this is a finite union, anyB-invariant irreducible
closed subvariety ofG/B is a Schubert variety.

Let Xw = BwB/B be a Schubert variety of dimensionr. Let w =
s1 . . . sr be a reduced expression forw. We also complete it into a re-
duced expression for the elementwN of maximal length:wN = s1 . . . sr

. . . sN. Let w j = s1 . . . sj and X j = Xwj be the corresponding Schu-
bert variety of dimensionj. Note thatXr = Xw. It is known (refer
to Kempf [13]) that the varietiesX j are saturated for the morphism
π j : G/B → G/P j and thatX j−1 maps birationally onto its image
π j(X j−1) = π j(X j).

Thestandard modificationϕ j : M j → X j is defined by the Cartesian
square:

M j

��

ϕ
// X j

π j

��
X j−1

π j
// π j(X j−1)

ThusM j is aP1-bundle over the divisorX j−1 in X j.
TheDemazure resolutions(or desingularisations)ψ j : Z j → X j are

defined inductively. We start by takingZ0 = X0, a point, andψ0 : Z0 →

X0 the identity morphism. Thenψ j : Z j → X j is defined by the diagram
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with Cartesian squares:

Z j

f j

��

// M j

��

ϕ
// X j

π j

��
Z j−1

ψ j−1
// X j−1

π j
// π j(X j−1)

Note that f j : Z j → Z j−1 is a P1-bundle being a pullback of the
P1-bundleX j → π j(X j−1). This implies that theZ j are nonsingular by
induction. We also have a sectionσ j : Z j−1→ Z j given by the inclusion
X j−1 ⊂ X j . Furtherψ j is birational sinceπ j is birational onX j−1 and by
inductive hypothesis we can assumeψ j−1 is birational.

SinceXr = Xw we get by this process a standard modification and
Demazure resolution ofXw. Note that this resolution depends on the
reduced expression chosen forw. We also get a Demazure resolution
for G/B by this process asXwN = G/B.

We now prepare to give another description for the varietiesobtained 7

by the desingularisation process. Recall that sinceG→ G/B is a princi-
pal B-fibration, given anyB-spaceX (i.e. any varietyX such thatB acts
on it on the left) we can associate a fibre bundle overG/B with fibre be-
ing isomorphic toX. We denote such associated fibre bundle byG×B X.
It is defined as the quotient ofG × X given by the equivalence relation
(g, x) ∼ (gb, b−1x). Note that the natural left multiplication action ofG
on G × X descends to a left action on the associated fibre bundle. This
action commutes with the projection morphism and thus the associated
fibre bundle is aG fibre bundle onG/B.

Exercise 1.2.1. (i) This fibre bundle is locally trivial in the Zariski
topology. (Check that for anyg ∈ G it is trivial over gBw0B/B,
wherew0 denotes the longest element of the Weyl group.)

(ii) Prove similar statements forP×B X and forG ×P Y whereP is a
parabolic–always containingB-andY is a P-space. Here it may
help to the familiar with standard coordinates in Bruhat cells, as
explained for instance in [34, Chapter 10]. Observe that thefibra-
tion G/B→ G/P is an example of an associated fibre bundle with
X = P/B.
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Remark 1.2.2.If X is in fact aG-space, then the fibre bundleG×B X is
globally trivial by means of the mapG ×B X → G/B× X which sends
the class of (g, x) to (gB, gx).

Now each parabolicPi containsB, and hence they areB-invariant
under the left translation action ofB on G. The Demazure desingulari-
sation ofXw is the associated fibre bundleZr = P1×

B(P2×
B · · ·×BPr/B)

and the mapψr : Zr → Xw is the multiplication map defined on the prod-
uct P1× · · · ×Pr which actually descends to the associated fibre bundle.
This description will be very useful for us later on. It now enables us to
say that in the Bruhat decomposition ofG/B, the varietiesBwB/Bare bi-
rational to the image ofP1×

B(P2×
B· · ·×BPr/B) under the multiplication

map. Thus the dimension ofXw is just the length of the reduced expres-
sion ofw. More specifically, the subsetBs1B×

B(Bs2B×B· · ·×BBsr B/B)
of Zr maps isomorphically to the Bruhat cellBwB/B. (Compare [34,
Chapter 10].) It will also be useful to consider the analogueof Zr for8

words s1 . . . sr that are not reduced. Then of course one will not get a
birational map.

To anyB-moduleM, we can associate a fibre bundle onG/B with
the fibre being isomorphic withM as before. We denote this bundle on
G/B byL(M). ThisG fibre bundle is called the associated vector bundle
for the given representation. The reader will see during thecourse of
lectures that this construction will enable us to use “geometric” results
to study the representations ofG andB.



Chapter 2

B-Module Theory

Let k be an algebraically closed field. LetH be an algebraic group over9
k. Let V be vector space overk. A group morphismH → GL(V) is
called a (rational) representation ofH. WhenG is reductive and con-
nected we get a good hold on the representation theory ofG by looking
at the representations of its Borel subgroupB. For example, Weyl’s
highest weight theory in characteristic zero gives a description of irre-
ducible representations ofG in terms of dominant characters ofB. In
this chapter we introduce the dual Joseph modules and relative Schubert
modules. These two classes ofB-modules are analogues of irreducible
G-modules in characteristic zero.

In the first section we prove the Frobenius reciprocity for our con-
nected reductive groupG and its Borel subgroupB. Let CG denote the
category ofG-modules. The reciprocity implies thatCG is a full subcat-
egory ofCB.

In the second section, we introduce the Joseph functorHw on the
category ofB-modules associated to a Schubert varietyXw ⊂ G/B.

In the third section we introduce the dual Joseph modules. For a
characterλ, let w = wλ denote the minimal element of the Weyl group
W such thatw−1λ ∈ X(T)− = {µ ∈ X(T) | (µ, α) ≤ 0 for all rootsα
of B}. The dual Joseph moduleP(λ) is then defined asHw(w−1λ). The
relative Schubert moduleQ(λ) is defined as the kernel of the restriction
map fromHw(w−1λ) to the sections over the boundary∂Xw of Xw.

9



10 2. B-Module Theory

In positive characteristic we do not have complete reducibility. In
order to “understand” the indecomposableB-modules we introduce the
concepts of excellent filtrations and relative Schubert filtrations. Indeed
we will be studying the excellent filtrations extensively throughout these
notes.

We finish this chapter by giving examples of modules with relative10

Schubert filtration.

2.1 Frobenius Reciprocity

Let H be an algebraic group. We call anH-moduleM simple(and the
corresponding representationirreducible) if M , 0 and if M has noH-
submodules other than 0 andM. It is calledindecomposableif it cannot
be decomposed into a direct sum of two properH-submodules and it is
semi-simpleif it is a direct sum of simpleH-submodules. For anyM the
sum of all its simple submodules is called thesocleof M and denoted
by socH M or simply socM if it is clear which H is considered. It is
the largest semi-simpleH-submodule ofM. Each one-dimensionalH-
module is simple. LetCB andCG denote the categories ofB-modules
andG-modules respectively.

For a subgroupH of G and aG-moduleM we can restrict the action
of G to H. This functor fromCG to CH is called therestriction functor
and denoted by resG

H(?). It takes an exact sequence ofG-modules to an
exact sequence ofH-modules and thus it is an exact functor.

Let G be our reductive connected algebraic group. We fix once and
for all a maximal torusT and a Borel subgroupB of G containingT.
Let W be the Weyl group ofG. Recall that our choice ofB gives us a set
of preferred generatorsS = {s1, . . . , sl} of W, called simple reflections.
Let X(T) denote the set of characters ofT. Recall that the Weyl group
W acts naturally on characters ofT and fix aW-invariant inner product
on X(T) ⊗ R.

SinceT ⊂ B, resBT(M) is aT-module for anyB-moduleM. As T is
diagonalisable,M then decomposes as a direct sum of one-dimensional
submodules. The character with whichT acts on a one-dimensional
submodule is called theweightof that submodule. The direct sum of the
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one-dimensional submodules ofM having the same weightλ is called
the weight spaceMλ of M. Let C≤R denote the category ofB-modules
all of whose weights are of length not more thanR with respect to the
chosenW-invariant inner product onX(T) ⊗ R. For aB-moduleM, we
denote byM≤R the largestB-submodule ofM which is inC≤R. This
defines a left exact functor fromCB to C≤R. For example, ifR= 0, then
M≤R is nothing else thanH0(B,M), the subspace ofB-fixed vectors in
M.

Exercise 2.1.1.Give an example to show that the functorM 7→ M≤R is 11

not right exact.

For M ∈ CB, letL(M) denote the associatedG-vector bundle, (pos-
sibly infinite dimensional), onG/B, as introduced before. The groupG
acts onL(M) and therefore we have a naturalG action on

H0(G/B,L(M)),

cf. Jantzen [11, I 5.11 Remark]. We call thisG-module indGB(M). Thus
we have a functorCB → CG given by M 7→ indG

B(M). This functor is
called theinduction functor. The reader should note that in Jantzen’s
book the induction functor is defined more algebraically butfor us this
equivalent definition will prove more useful.

If M were aG-module then the associated vector bundleL(M) is
isomorphic with the trivial bundleG/B× M. Further, asG/B is a com-
plete variety we haveH0(G/B,L(M)) = M. Therefore ifM ∈ CG, then
indG

B(M) = M.

Remark 2.1.2.If P is a parabolic subgroup ofG then we define in a
similar way the induction functor indPB(?) by assigning theP-module
H0(P/B,L(M)) to a B-moduleM. As before, ifM were aP-module,
we get indPB(M) = M.

Remark 2.1.3.The fibre over theB-fixed pointB/Bof the vector bundle
L(M) is canonically isomorphic withM. Therefore the restriction map
H0(G/B,L(M)) → L(M)|B/B gives a naturalB-equivariant morphism
indG

B(M)→ M. This map is called theevaluation map.
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Exercise 2.1.4. (i) Prove that the evaluation map indG
B(M) → M is

an isomorphism ifM is aG-module.

(ii) Give examples to prove that this map need not be injective and
need not be surjective.

Remark 2.1.5.The functor indGB(?) is left exact and commutes with
forming direct sums, intersections of submodules, and direct limits over
directed systems. (The latter property helps to understandthe meaning
of indG

B(M) for an infinite dimensional moduleM, asM is a union of its
finite dimensional submodules.) There is a transitivity of induction, that
is, if B ⊆ P, then indGB = indG

P ◦ indP
B. We also have the following tensor

identity:

indG
B(M ⊗ resGB(N)) = (indG

B(M)) ⊗ N

for anyG-moduleN andB-moduleM.12

The Frobenius reciprocity says that the induction functor is right
adjoint of the restriction functor.

Proposition 2.1.6(Frobenius reciprocity). For any G-module N and B-
module M we haveHomG(N, indG

B(M)) = HomB(resGB(N),M).

Proof. ComposingN → indG
B(M) with the evaluation map indGB(M) →

M gives us a natural map HomG(N, indG
B(M)) → HomB(resGB(N),M).

Conversely given aB-equivariant mapf : N → M we associate to it
a G-equivariant mapf̃ : N → indG

B(M) by the formula f̃ (n) = (g 7→

(g, f (g−1n))). �

Corollary 2.1.7. One may viewCG as a full subcategory ofCB.

Proof. If M, N ∈ CG then HomG(N,M)) = HomG(N, indG
B resGB M)) =

HomB(resGB(N), resGB M). �

Remark 2.1.8.As we will see, many questions aboutG-modules are
special cases of questions aboutB-modules through this identification
of CG with a subcategory ofCB.
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Remark 2.1.9.HereG need not be reductive, of course, and we will
not hesitate to use the result more generally. We will often discuss only
G and/or B, leaving it to the reader to find the scope of the arguments.
When in doubt, consult [11].

In fact the identification ofCG with a full subcategory ofCB even
works on the level of Ext groups. This is derived from the corollary
using Kempf’s Vanishing Theorem A.2.7. Indeed we have

Lemma 2.1.10.Let P be a parabolic subgroup containing B and let M,
N be P-modules. ThenExtiP(M,N) = ExtiB(M,N) for all i.

Proof. In [11, II Corollary 4.7] this is stated forG andP instead ofP
andB, but the argument is the same. �

2.2 Joseph’s Functors
13

In characteristic zero, a rational representation ofG is completely re-
ducible. Further, the irreducibleG-modules are induced up from irre-
ducible B-modules. We do not have such a nice result for representa-
tions of G in characteristicp > 0. In this section we define Joseph’s
functors. These functors will then lead us to study dual Joseph modules
and relative Schubert modules which form some kind of building blocks
for a class of representations ofB or G, sharing good properties with the
G-modules of characteristic 0.

For a Schubert varietyXw of G/B, we get a naturalB action on
H0(Xw,L(M)), the sections of the vector bundleL(M)|Xw overXw.

Definition 2.2.1.The functorsHw : CB → CB given by the ruleM 7→
H0(Xw,L(M)) are calledJoseph’s functors.

Remark 2.2.2.The Joseph functors are also defined for Kac-Moody
groups using cohomological algebra. (See [18].) They are actually dual
to the functors originally studied by Joseph in [12], also with cohomo-
logical algebra. The above definition gives a kind of “representability”
of the Joseph Functors.
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Remark 2.2.3.It should be noted that for the element of largest length
w0 of W, the two functorsHw0 and indGB are the same. (Up to resG

B,
which may safely be ignored from now on, because of Corollay 2.1.7)

Remark 2.2.4.We denote byPs the minimal parabolic subgroup asso-
ciated to a simple reflections ∈ S. The Schubert varietyXs ⊂ G/B is
the image ofPs under the projection map. It is thus isomorphic with
the complete varietyPs/B. Also, for anyB-moduleM the vector bundle
L(M) on Ps/B is isomorphic with the restriction of the vector bundle
L(M) to Xs ⊂ G/B. We thus get that the functorHs : CB → CB is
the composition of two functors resPs

B ◦ indPs
B . That is, in this particular

case, the moduleHs(M) is aPs-module viewed as aB-module.

Recall that for an elementw ∈ W, the lengthl(w) of w is the length
of any of its reduced expressions in the chosen generators. It is indepen-
dent of which reduced expression one is using and thus definesa integer
valued function onW. For anyw ∈ W and s ∈ S, the preferred set of14

generators, we have:l(sw) , l(w) and in factl(sw) is eitherl(w) + 1 or
l(w) − 1.

Proposition 2.2.5. For s ∈ S , w∈W and M∈ CB, we have:

(i) HsHw(M) = Hw(M) if l (s ·w) = l(w) − 1.

(ii) HsHw(M) = Hsw(M) if l (s · w) = l(w) + 1.

Proof. Let Ps denote the parabolic subgroup associated to the simple
reflections∈W. Consider the following diagram

Ps ×
B Xw

π

��

m // PsXw ⊂ G/B

PS/B

where the morphismm is the multiplication map which descends to the
fibre bundle.

(i): l(s · w) = l(w) − 1.
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In this case the image of the multiplication mapm is BSBXw ∪

BXw = Xs·w ∪ Xw = Xw by [9, 28.3]. Therefore the natural left
action ofPs onG/B leavesXw invariant. The vector bundleL(M)
on G/B has a naturalG (and hencePs) action. This gives a nat-
ural Ps action onH0(Xw,L(M)). When restricted toB, this ac-
tion gives theB-module action onHw(M). Therefore we have
Hw(M) ∈ CPs ⊂ CB. Hence indPs

B (Hw(M)) = Hw(M). Also we
haveHs(M) = resPs

B ◦ indPs
B (M). Thus by Remark 2.1.2 we get

thatHsHw(M) = Hw(M).

(ii): l(s · w) = l(w) + 1.

Now the associated fibre bundle overPs/B in the above diagram is
such that the multiplication morphismm is birational and proper
with PsXw = Xsw. As Xsw is normal (cf. [25]), this implies

m∗OPs×
BXw
= OXsw

([11, II Lemma 14.5]). For aB-moduleM, this gives

Hsw(M) = H0(Xsw,L(M))

= H0(Xsw,m∗OPs×BXw
⊗ L(M))

= H0(Ps ×
B Xw,m

∗L(M))

= H0(Ps/B, π∗m
∗L(M))

But we have:π∗m∗L(M) = L(H0(Xw,L(M))). Therefore we get 15

that:

Hsw(M) = H0(Ps ×
B Xw,m

∗L(M))

= H0(Ps/B,L(H0(Xw,L(M))))

= Hs(Hw(M)).

This proves the proposition. �

Exercise 2.2.6.Prove thatπ∗m∗L(M) = L(H0(Xw,L(M))).

Corollary 2.2.7. Let w∈ W and let w= si1 . . . sir be a reduced expres-
sion. Then Hw = Hsi1

◦ · · · ◦ Hsir
.
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Let kλ denote the one-dimensionalB-module on whichB acts via a
characterλ. We denote byL(λ) its associated line bundle and byHw(λ)
its image under the Joseph functorHw(?).

Extra hypothesis 2.2.8.For all the questions we are interested in, one
may easily reduce to the case that the commutator subgroup ofour con-
nected reductive algebraic groupG is simply connected. This implies
that for each simple root, the corresponding homomorphism from S L2

into G is a closed embedding. (Recall that the other possibility would be
that the image of this homomorphism is isomorphic toPS L2.) Let us as-
sume simply connectedness from now on. Then any line bundle on G/B
is associated to a one-dimensional representation ofB (cf. Corollary
A.4.3) and if the associated characterλ is anti-dominanti.e. λ ∈ X(T)−,
thenL(λ) is base point free,i.e. given any pointx ∈ G/B there ex-
ists a global sections ∈ H0(G/B,L(λ)) with s(x) , 0. Conversely, if
H0(G/B,L(λ)) , 0 thenL(λ) is base point free (because of equivari-
ance) andλ is anti-dominant. (See [11, II 2.6], keeping in mind that his
dominant weights are our anti-dominant ones.)

Lemma 2.2.9. For anyλ ∈ X(T)−, the socle of Hw(λ) is one-dimensio-
nal and its character is wλ.

Proof. The Bruhat decomposition ofG/B says that theB-orbit of w in
Xw is open (and thus dense) inXw. Therefore for aB-moduleM a section
of Hw(M) on whichB acts by a character is determined uniquely by its
image under the restriction mapHw(M)→ L(M)|w. Therefore, since the16

fibre ofL(λ) is of dimension one, we can have only oneB-invariant (up
to scalar multiplication) section ofHw(λ). Further, as the restriction is
T-equivariant,B acts by the characterwλ on such a section. On the other
handHw(λ) , 0 because the line bundle is base point free. By the Borel
Fixed Point Theorem, (Theorem 1.1.2) there exists a fixed point for the
B action on the projective spaceP(Hw(λ)). This proves the existence (cf.
[11, II 2.1]) of a B-invariant one-dimensional subspace ofHw(λ). Thus
the result. �

Corollary 2.2.10. Let λ ∈ X(T)−. Then, w′λ occurs as a weight in
Hw(λ) for every w′ ≤ w in the Bruhat order.
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Proof. Since the line bundleL(λ) = L(kλ) is base point free, the natural
restriction map fromHw(λ) to Hw′(λ) is not the zero map. The socle of
the image is thus a non-zero subspace of the socle ofHw′(λ). The socle
of Hw′(λ) is of dimension one and has weightw′λ. Therefore as the
restriction map isB-equivariant,w′λ occurs as a weight inHw(λ). �

Lemma 2.2.11. For any two B-invariant closed subsets S , S′ of G/B
and any line bundle without base pointsL on G/B, we have an exact
Mayer-Vietoris sequence

0→ H0(S ∪ S′,L)→ H0(S,L) ⊕ H0(S′,L)→ H0(S ∩ S′,L)→ 0

Moreover the map H0(G/B,L)→ H0(S,L) is surjective.

Proof. This Mayer-Vietoris Lemma used Ramanathan [31] for the sur-
jectivity statements (cf. Proposition A.2.6), and it used Ramanathan
once more for knowing thatS∩S′ is also the scheme theoretic intersec-
tion, i.e. that its ideal sheaf inG/B is the sum of the ideal sheafs ofS
andS′. This then gives an exact sequence of sheaves

0→ IS∪S′ → IS ⊕ IS′ → IS∩S′ → 0

from which the result follows easily. (The “unattentive” reader is alerted
here that one should be worrying that the scheme theoretic intersection
might not be reduced. See the exercise below.) �

Remark 2.2.12.The similar Mayer-Vietoris exact sequence is valid on17

G/P for any parabolicP, cf. Exercise A.2.9. The passage fromG/B to
G/P is easy as the projectionG/B→ G/P is aP/B fibration.

Exercise 2.2.13.Find an example of an affine varietyX and two closed
subvarietiesS, S′ so thatH0(S∪S′,OX) is not the kernel ofH0(S,OX)⊕
H0(S′,OX)→ H0(S∩S′,OX). Here unions and intersections are simply
taken set theoretically.

Definition 2.2.14.We say a weight occurring in an indecomposableB-
module isextremalif it has the largest length.
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The modulesHw(λ) are indecomposable as they have one-dimensio-
nal socle. The following proposition gives a nice description of the ex-
tremal weights ofHw(λ).

Proposition 2.2.15. Let λ ∈ X(T)−. The extremal weights of Hw(λ)
are w′λ for w′ ≤ w. Further, the weight spaces corresponding to the
extremal weights are one-dimensional.

Proof. The Corollary 2.2.10 says that thesew′λ occur as a weight in
Hw(λ).

For λ ∈ X(T)− the global sections moduleH0(G/B,L(λ)) is , 0.
We start with showing that the extremal weights of

Hw0(λ) := H0(G/B,L(λ))

arewλ for w ∈W.
The moduleH0(G/B,L(λ)) is aG-module. Therefore for everyw ∈

W and every extremal weightν, the characterwν occurs as a weight
of H0(G/B,L(λ)). Furtherwν is also extremal as the inner product on
the vector spaceX(T) ⊗ R is W-invariant. Letwν ∈ W be such that
the characterν0 = wνν is a dominant character,i.e. such thatν0 ∈

X(T)+ = {µ ∈ X(T)|(µ, α) ≥ 0 for all rootsα of B}. Now for any positive
rootα occurring in the Lie algebra ofB, we consider the corresponding
copy of S L2 in G and its Borel subgroupB1. The weight space ofwν
is B1-invariant for otherwise ([9, 31.1]) there would be a weightspace
with weightwν + iα, i > 0, and such a translate ofwν will have larger
length which will be a contradiction to the extremalness ofwν. Thus the
dominant extremal weightν0 occurs in theB-socle ofH0(G/B,L(λ))
which has weightw0λ by Lemma 2.2.9. Thusν is aW-translate of this
weightw0λ. Also since the socle ofH0(G/B,L(λ)) is one-dimensional18

we see that the weight space for any extremal weight ofHw0(λ) is one-
dimensional.

The line bundleL(λ) is base point free. Therefore the restriction
map on to sections over aT-fixed pointw · B/B is surjective for every
w ∈ W. The torusT acts by the characterwλ on the fibre of this fixed
point. This gives a geometric description of the one-dimensional ex-
tremal weight spaceH0(G/B,L(λ))wλ, namely it is spanned by “the”T-
semi-invariant section ofL(λ) whose restriction to the fibreL(λ)|wB/B is
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non-zero. This section vanishes atzB/B for z ∈ W with zλ , wλ. Note
that in H0(Xw,Λ(λ)) the restricted section is evenB-semi-invariant so
that its zero set is a union of the Schubert varietiresXz with z ≤ w and
zλ , wλ.

To see the general case we note that that natural restrictionmap
from Hw0(λ) to Hw(λ) for w ∈W preserves the length of a weight and is
surjective by Ramanathan (Proposition A.2.6). Therefore we see that the
weightwλ of Hw(λ) is extremal and any other extremal weight ofHw(λ)
is also an extremal weight ofH0(G/B,L(λ)). Now let us be given an
extremal weightµ of Hw(λ) and a non-zero sectionf of weightµ over
G/B. Choosew′ minimal in the Bruhat order so thatw′λ = µ. We
claim w′ ≤ w. Otherwise the Mayer-Vietoris Lemma 2.2.11 gives a
g ∈ H0(Xw′ ∪ Xw,L(λ))µ with the same restriction tow′ · B/B as f , but
vanishing onXw. By Ramanathan Proposition A.2.6 this sectiong lifts
to H0(G/B,L(λ))µ and thus agrees withf , which is absurd. Here we
have been using several times thatT is semi-simple, so that ifM → N
is a surjectiveT-module map,Mµ → Nµ is surjective for every weight
µ of N. �

Remark 2.2.16.One can also prove the above proposition by induction
on the length ofw, using Corollary 2.2.10 and Proposition 2.2.5.

2.3 Dual Joseph Modules

For any characterµ ∈ X(T), there exists an elementw ∈ W, the Weyl
group ofG, such thatµ1 = wµ ∈ X(T)−. We define

P(µ) = H0(Xw−1,L(wµ)).

Thus the socle ofP(µ) is of dimension one and has weightµ.

Lemma 2.3.1. P(µ) is independent of w, i.e. for any w1, w2 ∈ W with 19

w1µ = w2µ ∈ X(T)−, we have H0(Xw−1
1
,L(w1µ)) = H0(Xw−1

2
,L(w2µ)).

Proof. We denote byλ the translate ofµ underW such thatλ ∈ X(T)−.
Then recall ([9, 1.8, 1.10, 1.12]) that there exist elementswmin andwmax
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of the Weyl groupW with the property that for any otherw with wµ = λ,
we havewmin ≤ w ≤ wmax. Now consider the natural restriction map

H0(Xw−1
max
,L(λ))→ H0(Xw−1,L(λ)).

Since this map restricts to identity on the socles of the two modules,
socles of both modules are one-dimensional and have weightµ, it is
injective, and it is surjective according to Proposition A.2.6. Thus it is
an isomorphism. This proves the proposition. �

Definition 2.3.2.A B-moduleM is calleddual Joseph moduleif M is
isomorphic withP(µ) for some characterµ.

Example 2.3.3. 1. For µ ∈ X(T)− we haveP(µ) = kµ, the one-
dimensionalB-module with characterµ.

2. Forµ ∈ X(T)+ we haveP(µ) = H0(G/B,L(w0µ)).

Definition 2.3.4. (i) If S′ ⊂ S are B-invariant closed subspaces of
G/B and λ ∈ X(T)−, we define arelative Schubert module
Q(S,S′, λ) by:

Q(S,S′, λ) = ker(res :H0(S,L(λ)) → H0(S′,L(λ))).

(ii) If Xw is a Schubert variety its “boundary”∂Xw is defined as the
union of all Schubert varieties that are strictly containedin Xw.
Thus the boundary is the complement inXw of the Bruhat cell
BwB/B.

(iii) For anyµ ∈ X(T), we define aminimal relative Schubert module,
denoted byQ(µ) by:

Q(µ) = ker(res :H0(Xw−1
min
,L(λ))→ H0(∂Xw−1

min
,L(λ)))

where as before,λ = wminµ ∈ X(T)− andwmin is a minimal such
element inW.

Remark 2.3.5.Note thatQ(µ) ֒→ P(µ). Also, the geometric description20
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of the extremal weights ofP(µ) tells us that an extremal weight ofP(µ)
other thanµ does not restrict to zero on the boundary. Thereforeµ is the
only extremal weight ofQ(µ).

Definition 2.3.6.A B-moduleM is said to have anexcellent filtrationif
and only if there exists a filtration 0⊂ F0 ⊂ F1 ⊂ . . . by B-modules
such that∪Fi = M andFi/Fi−1 ≈ ⊕P(λi) for someλi ∈ X(T). Here⊕
stands for any number of copies, ranging from zero copies to infinitely
many.

Remark 2.3.7.The property of having excellent filtration is closed un-
der extension for finite dimensionalB-modules. Thus for any short exact
sequence 0→ M1 → M → M2 → 0 of finite dimensionalB-modules,
M has excellent filtration wheneverM1 andM2 both have excellent fil-
tration.

In the next chapter, using the cohomological criterion for excellent
filtrations, we will remove the finite dimensionality condition (cf. Corol-
lary 3.2.10).

Definition 2.3.8.A B-moduleM is said to have arelative Schubert fil-
tration if and only if there exists a filtration 0⊂ F0 ⊂ F1 ⊂ . . . by B-
modules such that∪Fi = M andFi/Fi−1 ≈ ⊕Q(λi) for someλi ∈ X(T).

Remark 2.3.9.The property of having relative Schubert filtration is also
closed under extension for finite dimensionalB-modules.

In the next chapter we use Polo’s theorem to give a criterion for B-
modules to have an excellent filtration. Here we will now giveexamples
of modules with relative Schubert filtration.

Lemma 2.3.10. The relative Schubert module Q(S,S′, λ) has relative
Schubert filtration for all B-invariant closed subsets S′ ⊂ S and any
antidominant characterλ.

Proof. The proof is by induction on the number of Schubert varieties
contained inS but not inS′.

First assume there is just one such Schubert variety, sayXw. Then 21
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Xw ∩ S′ = ∂Xw and from the Mayer-Vietoris Lemma 2.2.11 one gets
Q(S,S′, λ) = Q(Xw, ∂Xw, λ), which is either zero orQ(wλ).

If there are more, choose aB-invariantS′′ strictly betweenS andS′

and consider the following exact sequence.

0→ Q(S,S′′)→ Q(S,S′)→ Q(S′′,S′)→ 0.

Note that the exactness of this sequence is due to the Mayer-Vietoris
Lemma 2.2.11.

By the induction hypothesis both the quotient and the submodule of
Q(S,S′) have relative Schubert filtration. Now the Remark 2.3.9 proves
the result. �

Another set of examples of modules with relative Schubert filtration
is given by the following proposition.

Proposition 2.3.11. For any B-invariant closed subset S of G/B and
λ ∈ X(T)−, H0(S,L(λ)) has a relative Schubert filtration with layers
Q(wλ). Moreover Q(wλ) occurs only when wλ is an extremal weight of
H0(S,L(λ)), and has multiplicity one.

Proof. The previous proof applies also for emptyS′ and the rest should
be clear from the discussion. �

Corollary 2.3.12. The modules Hw(λ) has relative Schubert filtration
for all w ∈W andλ ∈ X(T).
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Polo’s Theorem

In characteristic zero, the representations of reductive algebraic groups 22

are completely reducible. This means that the irreducible representa-
tions are injective, as any extension of an irreducible by anirreducible
is split exact. The dual Joseph modules introduced in the last chapter are
not injective in the category ofB-modules. Due to this non-injectivity
the excellent filtrations are non-trivial filtrations ofB-modules. How-
ever, in this chapter, we prove certain injectivity theorems for P(λ).

In the first section, we prove Polo’s theorem which says that the dual
Joseph moduleP(λ) is injective in a smaller categoryC≤l(λ).

In the second section, using a strong version of Polo’s theorem, we
give a cohomological criterion for aB-module to have an excellent fil-
tration.

3.1 Polo’s Theorem

We choose as in Bourbaki a linear functionalheighton X(T) ⊗ R which
is positive on all roots ofB and injective on the latticeX(T). We say that
λ precedesµ in length-height orderif either l(λ) < l(µ) or [l(λ) = l(µ)
and the height functional takes a higher value onµ then onλ]. This
defines a total order onX(T)-somewhat arbitrarily because of the free-
dom in the choice of the height functional-which captures the “highest
weight category structure” corresponding with the dual Joseph modules.

23
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Rather than explaining what this means we ask the reader to look how
the length-height order functions in proofs. Forλ ∈ X(T) we define
C<λ to consist of theB-modules all of whose weights strictly precede23

λ in length-height order. IfM is a B-module thenM<λ is the largest
B-submodule ofM that is inC<λ. Similarly one definesC≤λ andM≤λ.
(For gradedB-modules we will give a slightly different meaning to these
notations.)

If R ≥ 0 thenC≤R(C<R) denotes the full subcategory ofCB whose
objects are the modules all of whose weights have length not more than
R (strictly less thanR).

In this section we prove that the dual Joseph moduleP(λ) is injective
in C≤l(λ).

If R ≥ 0 thenC≤R(C<R) denotes the full subcategory ofCB whose
objects are the modules all of whose weights have length not more than
R (strictly less thanR).

In this section we prove that the dual Joseph moduleP(λ) is injective
in C≤l(λ).

Lemma 3.1.1. The categoryCB of B-modules has enough injectives.

Proof. Recall that for any subgroupH of a groupG, the restriction func-
tor resGH is exact. Further by the Frobenius reciprocity the induction
functor indGH is its right adjoint functor (see Proposition 2.1.6). The in-
duction functor thus sends injectiveH-modules to injectiveG-modules.
This makesk[B], the ring of regular functions onB, an injectiveB-
module ask[B] = indB

{e}(k), where the{e} denotes the identity subgroup

of B. Similarly, if M is a B-module, then indB
{e} resB

{e} M is injective,
and it containsM as a submodule (exercise). ThereforeCB has enough
injectives. �

Remark 3.1.2.A useful property of injectives inCB is that if one tensors
them with anyB-module, the result is again injective ([11, I 3.10]).

Corollary 3.1.3. The subcategoriesC≤R, C<R, C≤λ, C<λ have enough
injectives.

Proof. We prove the corollary forC≤R. The proof is similar for the other
cases.
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We denote byM≤R the largestB-submodule of aB-moduleM whose
weights have length less than or equal toR. ThenM 7→ M≤R is the right
adjoint of the embedding functorC≤R→ CB, which is exact. So ifM is
an injectiveB-module, thenM≤R is injective in the categoryC≤R. �

Remark 3.1.4.Beware tahtM≤R is usually much smaller than the largest
T-submodule ofM whose weights have length less than or equal toR.
The latter would be simply the sum of those weight spaces whose weight
has length less than or equal toR.

Remark 3.1.5.The description of the extremal weights ofHw(λ) says 24

that Hw(λ) ∈ C≤R for kλ ∈ C≤R. Therefore forµ with l(µ) ≤ l(λ) ≤ R,
the moduleP(µ) (and henceQ(µ)) is an object ofC≤R.

For a moduleM to be injective in a categoryC we need to have
vanishing of the Ext functors forM ([23, Ch III]). Before trying to prove
such vanishing for a dual Joseph module we first make some remarks.

Remark 3.1.6.Note that given aB-moduleN one may write it as a fil-
tered unionN = lim j N j of finite dimensional submodulesN j. This con-
struction also has the property that the standard injectiveresolutions [11,
Hochschild complex] of theN j converge to an injective resolution ofN.
Thus to prove Exti(M0, ?) = 0 for a fixed finite dimensionalM0 ∈ CB

and fixedi, we need only prove Exti(M0,N) = 0 for afinite dimensional
N.

Remark 3.1.7.Further given a finite dimensionalB-moduleN, using
Borel’s Fixed Point Theorem we get a one-dimensionalB-modulekν
with weightν such that 0→ kν → N → Q→ 0.

Writing its associated long exact sequence of Exti groups, we see
that Exti(M0,N) = 0 whenever Exti(M0,Q) = Exti(M0, kν) = 0.

Therefore aB-moduleM0 with Exti(M0, kν) = 0 for all ν, is injec-
tive.

Remark 3.1.8.LetC be a category with sufficiently many injectives and
let C′ be a full subcategory ofC with the following property: whenever
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M1, M2 ∈ C
′, then for every exact sequence 0→ M1 → M → M2→ 0

in C, M also lies inC′. Then forM andN in C′, we have Ext1C(M,N) =
Ext1
C′

(M,N) (cf. [23, Ch III §1, §8]). This observation is useful in the
case ofC′ = C≤R andC = CB. SinceT-modules are semi-simple, every
exact sequence ofB-modules 0→ M1 → M → M2 → 0 splits as
T-modules and thus ifM1, M2 ∈ C≤R thenM ∈ C≤R indeed.

Definition 3.1.9.The injective hull of a B-module M, is an injective
B-module containingM whose socle is soc(M). It is unique up to non-
canonical isomorphism.

Theorem 3.1.10(Polo’s theorem). Letλ ∈ X(T)− with length l(λ). Then

Hw(λ) = H0(Xw,L(λ))

is the injective hull of kwλ in C≤l(λ).

Proof. (After H.H. Andersen.) The dual Joseph moduleHw(λ) has one-25

dimensional socle with weightwλ. Thus it is enough to prove thatHw(λ)
is injective inC≤l(λ). �

By a familiar application of Zorn’s Lemma–cf. proof of Prop.7.2
in [23, Ch. III]–it suffices to prove thatHw(λ) is injective in the full
subcategory ofC≤l(λ) consisting of finite dimensional modules. Also
note that for finite dimensionalM (see [11, I Ch. 4])

ExtiB(M,Hw(λ)) = Hi(B,Hw(λ) ⊗ M∗)

= ExtiB(Hw(λ)∗,M∗).

Therefore it is enough to prove that Ext1
B,λ(Hw(λ)∗,M) = 0, where

Ext1B,λ denotes the first derived functor of the functor Hom in the cate-
goryC≤l(λ). We will prove using induction onlength of wthat

Ext1B,λ(Hw(λ)∗, kν) = 0.

Whenw = e, we haveHw(λ) = kλ. Also HomB(k−λ,M) = MU
−λ

,
the U-invariants inM−λ. But in C≤l(λ) we haveMU

−λ
= M−λ because

λ ∈ X(T)− (exercise, cf. proof of 2.2.15). Thus the Hom functor is
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identified with the functorM 7→ M−λ. This functor is exact. Therefore
Ext1B,λ(k−λ,M) = 0.

Let Hw(λ) be the injective hull ofkλ. Let s ∈ W be a simple reflec-
tion such thatl(sw) = l(w) + 1. To complete the inductive argument, we
need to prove thatHsw(λ) is injective inC≤l(λ).

Recall that by Proposition 2.2.5

Hsw = Hs ◦ Hw = indPs
B ◦Hw.

Further, by using the Frobenius reciprocity repeatedly, weobtain:

HomB(Hs(Hw(M))∗,N) = HomPs(Hs(Hw(M))∗,Hs(N))

= HomPs(Hs(N)∗,Hs(Hw(M)))

= HomB(Hw(M)∗,Hs(N)).

Thus we get that

HomB(Hsw(M)∗,N) = HomB(Hw(M)∗,Hs(N)) (*)

This proves that the functor HomB(Hsw(λ)∗, ?) is the composition of
the two functorsHs : CB → CB and HomB(Hw(λ)∗, ?). Now recall the
Grothendieck spectral sequence ([11]) for two functorsF : C → C′ and 26

F′ : C′ → C′′ with F, F′ left exact andF mapping injective objects in
C to objects acyclic forF′. It says that

(RnF′)(RmF)(M)⇒ Rn+m(F′ ◦ F)(M) ∀M ∈ C.

In particular, if M is acyclic forF, i.e. if (RmF)M = 0 for m > 0,
then the spectral sequence degenerates to

(RnF′)F(M) = Rn(F′ ◦ F)(M).

The latter is all we will use about the Grothendieck spectralse-
quence and it can of course be proved directly–without spectral sequen-
ces–by induction onn, using the long exact sequences associated with
the exact sequence

0→ M → QM → QM/M → 0,
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whereQM is the injective hull ofM.
We want to use all this forF = Hs : CB→ CB and

F′ = HomB(Hw(λ)∗, ?).

We have to check the conditions. To this end we need

Lemma 3.1.11. Let M be a B-module which is a quotient of a Ps-
module. Then M isindPs

B -acyclic. In particular, Hw(λ) is indPs
B -acyclic.

Proof. Note that the restriction mapH0(G/B,L(λ)) → Hw(λ) is sur-
jective by Ramanathan (cf. Proposition A.2.6), so thatHw(λ) is indeed
a quotient of aPs-module. NowPs/B is a projective lineP1, so there
is no higher cohomology than in degree 1, and ifM is a quotient of
the Ps-moduleN thenR1 indPs

B (M) = H1(Ps/B,L(M)) is a quotient of
R1 indPs

B (N), which vanishes becauseL(N) is a trivial bundle (see also
[7]). �

Now for the spectral sequence to apply we must check the vanishing
of ExtmB(Hw(λ)∗,Hs(N)) = Hm(B,Hw(λ) ⊗ Hs(N)) for m > 0, whenN
is an injectiveB-module. But thenHs(N) = indPs

B (N) is an injective
Ps-module, and ifM is a finite dimensionalB-module,

ExtmB(Hs(M)∗,Hs(N)) = ExtmPs
(Hs(M)∗,Hs(N))

by 2.1.10, so this vanishes andHm(B,HS(M)⊗Hs(N)) thus vanishes for
any B-moduleM. This means (use Remark 3.1.2) that at least we have27

a spectral sequence for the functorsF and F′′, with F′′ = H0(B, ?⊗
Hs(N)). The composite functorF′′◦F is justH0(B, ?⊗Hs(N)), by Frobe-
nius reciprocity and 2.1.10. The lemma gives us thatHm(B,Hw(λ) ⊗
Hs(N)) = Rm(F′′ ◦ F)(Hw(λ)) = Rm(F′′) ◦ F(Hw(λ)) = 0 for m > 0, as
required.

We may thus state that

ExtiB(Hw(λ)∗,RjHs(kν))⇒ Exti+ j
B (Hsw(λ)∗, kν)

and finish the proof as follows.
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1. The case whenν is anti-dominant with respect tos, i.e. Hs(ν) , 0.
In this case using Kempf’s vanishing theorem we see thatkν is
acyclic for Hs. Therefore our spectral sequence degenerates and
gives:

ExtiB(Hsw(λ)∗, kν) = ExtiB(Hw(λ)∗,Hs(kν))

Now we use the inductive hypothesis to get the required result.

2. ν is not anti-dominant with respect tos.

We putµ = s(ν−ρ), whereρ is the half sum of the roots ofB. Then
µ is anti-dominant with reference tosand moreoverkν is the socle
of ρ⊗Hs(µ). Also we have:RjHs(ρ⊗Hs(µ)) = RjHs(ρ)⊗Hs(µ) by
the tensor identity ([11]). ButRjHs(ρ) = 0 ∀ j ≥ 0 (cohomology
of line bundleO(−1) onP1, cf. [11, II 5.2].

Thus we have Exti(Hw(λ),RjHs(ρ ⊗ Hs(µ))) = 0 for all i and j.
Now consider

0→ kν → ρ ⊗ Hs(µ)→ Q→ 0.

Writing down part of the associated long exact sequence ofB-
cohomology gives HomB(Hsw(λ)∗,Q) → Ext1B(Hsw(λ)∗, kν) → 0.
But one can check (cf. [11, II 5.2]) that all weights ofQ are strictly
less in length thanν. As the socle ofHsw(λ) has a weight at least
as long asν, one must have HomB(Q∗,Hsw(λ)) = 0. This gives
the vanishing of the Ext.

Lemma 3.1.12.Let M be a B-module with an excellent filtration. Then
M is indPs

B -acyclic.

Proof. Use Remark 2.1.5 and Lemma 3.1.11 to prove this lemma.�

3.2 Cohomological Criterion
28

In this section we give a criterion for aB-module to have an excellent
filtration. First we prove a stronger version of Polo’s theorem.
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Remark 3.2.1.Polo’s theorem and Remark 3.1.8 preceding it says that:
Ext1B(Hw(λ)∗,M) = 0, wherew ∈W andλ ∈ X(T)− andM ∈ C≤λ.

The following theorem proves that this equality is true in case of the
higher derived functors too.

Theorem 3.2.2(Strong form of Polo’s Theorem). Let λ ∈ X(T)− and
M ∈ C≤l(λ). Then, for w∈W, i > 0,

ExtiB(Hw(λ)∗,M) = 0.

Proof. We merely extend H.H. Andersen’s proof of Polo’s theorem
(Theorem 3.1.10) to prove this extension. We go through the old proof.
This time we want to prove Exti(Hw(λ)∗, kν) = 0 for i > 0 andkν ∈
C≤l(λ).

Whenw = e, the identity element of the Weyl group, we take the
minimal injective resolutionI ∗(λ) of kλ in CB, as in [11, II 4.8-9]. We
claim that all the weights other thanλ occurring inI1(λ) are necessar-
ily longer thanλ. IndeedI1(λ) = kλ ⊗ k[U] and λ has non-negative
inner product with every non-zero weight ofk[U] becauseλ is anti-
dominant. For higher values ofi the weights ofI i(λ) are in the same
region (see [11, II 4.8-9]) and are thus also strictly longerthanλ. There-
fore Exti(k−λ, kν) = Exti(k−ν, kλ) = 0, which proves the case whenw has
length zero.

The rest of the proof of Theorem 3.1.10 extends without trouble
to give this stronger version. As the end, where the weights of Q are
all strictly shorter thanν, use that we may assume by induction on the
length of weights that all Exti(Hsw(λ)∗,Q) vanish. �

Exercise 3.2.3.Complete the above proof by filling in all the details.

Let M be a finite dimensionalB-module. Then,

Exti(M,N) = Hi(B,M∗ ⊗ N).

Thus the injectivity ofHw(λ) can be interpreted in terms ofB-acyclicity.
(Recall that aB-moduleM is B-acyclic if Hi(B,M) = 0 for i > 0.)

Corollary 3.2.4. For λ, µ ∈ X(T), P(λ) ⊗ P(µ) is B-acyclic.29



3.2. Cohomological Criterion 31

Proof. Let (µ, µ) ≤ (λ, λ), Then we have:

Hi(B,P(λ) ⊗ P(λ)) = ExtiB(P(λ)∗,P(µ))

Now the strong Polo’s theorem gives the result. �

Recall that aB-moduleM is said to have anexcellent filtrationif
there exists a filtration 0= F−1 ⊂ F0 ⊂ F1 ⊂ . . . by B-modules such
that∪Fi = M andFi/Fi−1 ≈ ⊕P(λi) for someλi ∈ X(T).

Corollary 3.2.5. The tensor product of two modules with excellent fil-
trations is B-acyclic.

Theorem 3.2.6.For λ, µ ∈ X(T), P(λ) ⊕ Q(µ) is B-acyclic.

Proof. If l(µ) ≤ l(µ) thenQ(µ) ∈ C≤l(λ) and thusHi(B,P(λ)⊗Q(µ)) = 0
for i > 0.

If l(µ) > l(λ) then we letwµ denote the minimal element of the Weyl
group which takesµ to the anti-dominant chamber. We will prove the
theorem by induction on the length ofwµ.

Whenl(wµ) = 0, we haveµ ∈ X(T)− and thereforeQ(µ) = P(µ) and
the result follows.

Whenl(wµ) > 0, we look at the short exact sequence

0→ Q(µ)→ P(µ)→ H0(∂Xw−1
µ
,L(wµµ))→ 0.

The quotient has a filtration whose associated graded consists of di-
rect sums of relative Schubert modulesQ(τ) with l(wτ) < l(wµ) and thus
we can use an induction hypothesis for the quotient. Now the associated
long exact sequence of Ext gives the result. �

We now prove that a weaker condition than the one suggested by
Theorem 3.2.6 is sufficient for a module to have an excellent filtration.

Theorem 3.2.7(Cohomological criterion for excellent filtration). Let
M be a B-module such that for everyλ ∈ X(T), H1(B,M ⊗ Q(λ)) = 0.
Then, M has excellent filtration.
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Proof. First, we order the characters in the length-height order. Let 30

λ1, . . . be our enumeration ofX(T) according to length-height order. Let
{Fi} be the length-height filtration ofM, i.e. Fi = M≤λi is the largest
B-submodule whose weights are in{λ1, λ2, . . . , λi}.

We will prove that the length-height filtration ofM is an excellent
filtration of M. In fact we will show thatFi/Fi−1 ≈ ⊕P(λi) for i ≥ 0. If
not, takei to be minimal so that it fails.

Consider the short exact sequence:E : 0→ Fi−1 → M → R→ 0.
All the weights occurring in soc(R) are strictly larger thanλi−1 in the
length-height order. Now for a characterη such thatl(η) ≤ l(λi−1), we
write the long exact sequence ofB-cohomology associated toE ⊗Q(η).
We get because of the Acyclicity Theorem 3.2.6 thatH1(B,R⊗Q(η)) =
0. Therefore we do not cheat if we replaceM by R in the sequel. The
effect of this is that we may further assume thatH1(B, Fi ⊗ kη) = 0.
There are two cases. The first case is that the height of−η is at least that
of λi . Then all weights ofN := Fi ⊗ kη are of negative or zero height, as
the socle ofN is of weightλi − η. But then ExtB(k,N) clearly vanishes,
cf. [11, II 4.10].

The second case is that−η precedesλi in length-height order, so that
Hom(Q(η)∗,M/Fi) = 0. It follows that Ext1(Q(η)∗, Fi) = 0. Further,
looking at

0→ η→ Q(η)→
Q(η)
η
→ 0, (*)

with η short forkη, we get HomB((Q(η)/η)∗, Fi) → Ext1(k−η, Fi) → 0.
HoweverQ(η)/η has weights which are strictly less in length thanλi .
Therefore we have HomB(( Q(η)

η
)∗, Fi) = 0 and the second case follows

too. ThusFi is injective inC≤l(λi ) with a socle purely of weightλi. This
proves thatFi is a direct sum of copies ofP(λi), with as many copies as
the dimension of the socle ofFi. �

From the proof we actually get:

Corollary 3.2.8. For a B-module with excellent filtration the length-
height filtration is an excellent filtration.

This corollary is important for checking that the length-height or-31
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der leads to a highest weight category structure in the senseof Cline-
Parshall-Scott. We will not get into that and just tell everything in terms
of the length-height order itself.

Corollary 3.2.9. An injective B-module has an excellent filtraton.

Corollary 3.2.10. The property of excellent filtration is closed under
extension.

Proof. Let M1 andM2 be twoB-modules (maybe infinite dimensional)
with excellent filtration. LetM be aB-module such that we have an
exact sequence 0→ M1 → M → M2 → 0. Tensor this exact sequence
by Q(µ) and write its associated long exact sequence ofB-cohomology
and use the cohomological criterion. �

Lemma 3.2.11.Let M be a B-module with excellent filtration and let w
be an element of the Weyl group. Then the module Hw(M) has excellent
filtration.

Proof. We fix a set of generatorsS = {s1, . . . , sl} of W such that each of
its elements is a simple reflection. Letw = s1 . . . sn be a reduced expres-
sion ofw. By Proposition 2.2.5, we haveHw(M) = Hs1 ◦ · · · ◦ Hsn(M).
Therefore it is enought to prove thatHs(M) has excellent filtration for
every simple reflections∈ S. We first consider the case whenM = P(µ)
for some characterµ. Letµ1 = w−1

µ µ denote the anti-dominant weight in
its Weyl group orbit. ThenP(µ) = Hwµ

(µ1) andHs(P(µ)) is by Proposi-
tion 2.2.5 either isomorphic toHwµ

(µ1) = P(µ) or to Hswµ(µ1) = P(sµ).
Therefore we have proved the claim forM = P(µ).

Now we will use induction to prove the claim for all ofM.
Let 0 ⊂ F1 ⊂ F2 ⊂ . . . be an excellent filtration ofM. Note that

F1 is a direct sum of copies ofP(µ) for someµ. Therefore we know
thatHs(F1) has excellent filtration butHs(Fm+1) does not have excellent
filtration. Consider the exact sequence

0→ Fm→ Fm+1→ M1→ 0.

The moduleM1 is isomorphic to a direct sum of copies ofP(ν) for 32
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some characterν. This exact sequence gives rise to the exact sequence

0→ Hs(Fm)→ Hs(Fm+1)→ Hs(M1)→ 0.

The surjectivity of this exact sequence is due to the indPs
B -acyclicity

of Fm (Lemma 3.1.12). Now the cohomological criterion for excellent
filtration–or common sense if the modules are finite dimensional–gives
us the result. �

3.3 Relative Schubert Modules

In this section we state and prove (in the form of exercises) analogous
statements for the relative Schubert modules.

Definition 3.3.1.LetCλ denote the full subcategory ofCB whose objects
are the modulesM such that ifµ is a weight ofM then eitherµ = λ or
l(µ) < l(λ).

Note thatC<l(λ) ( Cλ ( C≤l(λ) if λ , 0.

Exercise 3.3.2.Prove thatQ(λ) is injective inCλ.

Hint: Use the injectiveness ofP(λ) in Cλl(λ) and the proof of the
Corollary 3.1.3.

The proof of the cohomological criterion for excellent filtration ex-
tends easily to give us the following result.

Exercise 3.3.3(The cohomological criterion for relative Schubert fil-
tration). Prove that aB-moduleM has relative Schubert filtration if and
only if H1(B,M ⊗ P(µ)) = 0 for all charactersµ.

Hint: This time order the weights a little differently, using the nega-
tive of the height function.
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Donkin’s Conjecture

Let k now be an algebraically closed field ofpositive characteristic p, 33

and letG be our connected reductive group overk. Let M beG-module.
A filtration F of M is calledgoodif the successive quotients are isomor-
phic to a direct sum of copies ofP(µ) with µ ∈ X(T)+. In this chapter
we prove Donkin’s conjecture for good filtrations. The best known half
of this conjecture is the (older) conjecture stating that for λ, µ ∈ X(T)+,
P(λ) ⊗ P(µ) has good filtration. The crucial idea (due to O. Mathieu) is
to study theG-modules which are embedded in a gradedB-algebra with
a “canonical splitting”.

In the first section we give the definition and basic properties of good
filtration. We also give the relationship between the excellent filtrations
and good filtrations.

In teh second section we give a criterion for existence of a good
filtration for a G-module. This criterion works in a very specialized
case of aG-module embedded inside a gradedB-algebra each of whose
graded components has an excellent filtration and only one weight in its
socle. However, as we will see in the last section, this criterion gives us
the proof of Donkin’s conjecture.

This criterion leads us to study what we call Frobenius-linear endo-
morphisms of a gradedk-algebraR. A splittingσ of R is a Frobenius-
linear endomorphism such thatσ(1) = 1. The Frobenius splittings were
introduced by Mehta and Ramanathan in [24]. Following Mathieu, we

35
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then introduce the notion of a canonical splitting ofRand prove the cru-
cial proposition that the image of aB-submodule ofRunder a canonical
splitting is again aB-submodule.

The criterion for good filtration relates the concept of canonical
splitting and that of good filtration. This gives the proof ofDonkin’s34

conjecture.

4.1 Good Filtrations

Definition 4.1.1.Let M be aG-module. A filtrationF = F0 ⊂ F1 ⊂ . . .

of M by G-submodules is said to be agood filtrationif

(i) ∪iFi = M.

(ii) Fi/Fi−1 ≃ ⊕P(µi) with µi ∈ X(T)+.

The reader may have noticed the similarity between excellent filtra-
tion of aB-module and good filtration of aG-module. Indeed the ques-
tions of aB-moduleM having excellent filtration and indG

B(M) having
good filtration are related. First we see what happens if indG

B(M) = M.

Exercise 4.1.2.Let M be aG-module. Show that the length-height fil-
tration of M is not just a filtration byB-submodules, but one byG-
submodules. (Hint: Consider a minimal counterexample and factor out
an irreducibleG-submodule.)

Exercise 4.1.3.Let M be aG-module. Prove that the following are
equivalent:

(i) M has a good filtration.

(ii) M has an excellent filtration. (That is, resG
B(M) has one, but recall

from 2.1.7 that we embedCG in CB.)

(iii) The length-height filtration ofM is a good filtration.

Remark 4.1.4.As the property of having excellent filtration is closed
under extension, we see that the property of having a good filtration is
also closed under extension.
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We also have a cohomological criterion for good filtration which is
analogous to the one for existence of an excellent filtration. (It is much
older.)

Proposition 4.1.5(Donkin). ([11, II 4.16]) Let M be a G-module. Then35

M has a good filtration if and only if for every dual Weyl moduleP(λ),
λ ∈ X(T)+, one has H1(G,M ⊕ P(λ)) = 0.

Corollary 4.1.6. Let M = M1 ⊕ M2 be a direct sum of two G-modules.
Then M has good filtration if and only if both M1 and M2 have good
filtration.

Exercise 4.1.7.Use Lemma 3.2.11 to show that ifM has excellent fil-
tration, indGB(M) has good filtration.

4.2 Criterion for Good Filtrations

In this section we give a criterion for existence of good filtrations. Un-
like the cohomological criterion, which is intrinsic, thiscriterion de-
pends upon an embedding of the givenG-module into a gradedB-alge-
bra. To motivate this approach we look at Donkin’s conjecture.

Remark 4.2.1.Donkin’s conjecture claims that forλ, µ two dominant
characters the moduleP(λ) ⊕ P(µ) has good filtration. Now geometri-
cally P(λ)⊕P(µ) can be interpreted asP(λ)⊕P(µ) = H0(G/B×G/B,L)
whereL is the line bundleL(w0λ)×L(w0µ) onG/B×G/B. The variety
G×BG/B = G/B×G/BcontainsBw0B×BG/Bas an open subset. There-
fore the natural restriction map gives a natural embedding of P(λ)⊕P(µ)
into the gradedB-algebra⊕∞j=0H0(Bw0B×B G/B,L j). ThisB-algebra is

induced from theT-module⊕ jH0(Tw0B ×B G/B,L j) and is therefore
injective. Hence by the cohomological criterion, it has excellent filtra-
tion.

Motivated by this remark, we state the following criterion for good
filtration. First a definition.
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Definition 4.2.2.Let A = ⊕iAi be a gradedB-algebra. We define aB-
subalgebraA≤λ of A by A≤λ = ⊕iAi

≤iλ. (Recall thatM≤µ is the largest
B-submodule ofM which is in the categoryC≤µ.)

Theorem 4.2.3(p-root closure and good filtration). Let A= ⊕iAi be a
graded B-algebra such that

(i) A0 = k.36

(ii) A has excellent filtration.

(iii) There existsλ ∈ X(T)+ such that insoc(A j) only j · λ occurs as
weight.

Let S be graded subalgebra which is a graded G-module and which
is p-root closed (i.e. ap ∈ S⇒ a ∈ S ). Then S has good filtration.

Proof. We wish to prove that eachSr has good filtration and we may
restrict attention to a givenr. We know by the cohomological criterion
for excellent filtration (Theorem 3.2.7) that each ofA j has excellent fil-
tration. Therefore for anym, the rescaledB-algebraA1 = ⊕iAm−i with
Ai

1 = Aim also has excellent filtration. Therefore we may assume that
S1
, 0.
The socle ofSi contains only a single weightiλ. Further asS is a

G-module,iλ is an extremal weight ofSi and all extremal weights are
in the same Weyl group orbit asiλ.

Therefore we haveS ⊂ A≤λ.
The length-height filtration ofA is excellent. Further as the socle of

A j has no other weight thanj ·λ, we see that the first non-zero module in
this filtration ofA j is (A j)≤ jλ. Therefore (A≤λ) j is isomorphic to⊕P( j·λ).

To get a firm hold of the situation we need a technical sublemma
that gives more insight in the algebra structure ofA≤λ. That will allow
us to pass to convenient subalgebras. The reader is advised to pass over
this sublemma quickly. �

Sublemma 4.2.4.The graded B-algebra A≤λ may be reconstructed from
its “subalgebra of socles”⊕ j socB(A j). More generally, any graded sub-
algebra of⊕ j socB(A j) is the subalgebra of socles of a suitable graded
subalgebraÃ of A≤λ, with Ã having excellent filtration.
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Proof. We have seen already that (A≤λ) j is isomorphic as aB-module
to a direct sum of cipies ofP( jλ), with the number of copies equal to
the dimension of soc((A≤λ) j). To say it more canonically-which one
must, in view of the task at hand–there is a canonical isomorphism of
B-modules

P( jλ) ⊗ soc((A≤λ)
j) ⊗ k− jλ → (A≤λ)

j .

So that is how we reconstructA≤λ as aB-module. To get the ring 37

structure, note that multiplication is given byB-module maps

(A≤λ)
r ⊗ (A≤λ)

s→ (A≤λ)
r+s.

Thus we are done with the first half of the lemma if we show that
restriction defines an isomorphism from

HomB((A≤λ)
r ⊗ (A≤λ)

s, (A≤λ)
r+s)

to
HomB(soc((A≤λ)

r ) ⊗ soc((A≤λ)
s), soc((A≤λ)

r+s)).

For surjectivity one uses Polo’s theorem withR equal to the length
of (r + s)λ. To see injectivity, consider a map

f : (A≤λ)
r ⊗ (A≤λ)

s→ (A≤λ)
r+s

in the kernel. If f is not zero, its image must hit the socle of (A≤λ)r+s.
But then it must be non-zero on the weight space ((A≤λ)r ⊗ (A≤λ)s)(r+s)λ.
And that is just soc((A≤λ)r ) ⊗ soc((A≤λ)s) as one sees by looking at
lengths and heights. The rest of the sublemma follows similarly. �

Encouraged by the sublemma we letI (S) denote the graded sub-
algebra ofA≤λ whose jth component is the injective hull ofS j in the
categoryC≤ j·λ. The subalgebraI (S) ⊂ A≤λ clearly has excellent filtra-
tion. In factI (S) is a direct summand ofA≤λ and thus the filtration from
its grading is an excellent filtration! Therefore we replaceA by I (S).

We will prove thatS = A.
We can assume, by rescaling again if necessary, thatS1

, I (S1).
Therefore there exists a copy ofP(λ) ⊂ I (S1) such thatS1 does not con-
tain P(λ). We denote byA1 the algebra generted by thisP(λ). Phrased
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differently, we letA1 be the graded subalgebra with excellent filtration
whose socle algebra is generated by the socle of our chosen copy of
P(λ). Let A2 = A1 ∩ S. TheG-algebraA2 is againp-root closed inA1.
One may quickly dispense of the case thatA j

1 = 0 for large j.
We choose a parabolic subgroupP such thatλ extends as a character

to P andP is maximal for this property. The line bundleL = L(w0 · λ)
is very ample onG/P [11, II 8.5]. Further, we haveH0(G/B,L) =
H0(G/P,L).

Thus we can restrict our attention to the situation38

S = A2 ⊂ A1 = A =
⊕

i

H0(G/P,Li).

Consider the projective spaceP(A1) of one-dimensionalquotientsof
A1. We have a rational mapf : P(A1) → P(S1). However, the image
of G/P, under the canonical embedding, lies inside the domain of this
map. Therefore we get a morphismf : G/P → IMAGE ֒→ P(S1).
The spaceIMAGE is aG-space (a homogeneous space) and we claim
the mapf is bijective fromG/P to IMAGE. Indeed let us inspect the
stabilizerQ of the image ofx = P/P. This is the stabilizer in (S1)∗ of
a lineL stabilized byP. SoQ is a parabolic subgroup containingP and
by the classification of parabolic subgroups containingB we only have
to check which elements of the Weyl group stabilizeL. That is easy, as
L has weight−w0λ. Note that things would be much more subtle if we
needed the scheme theoretic stabilizer [11, I 2.6] ofx. We do not need
it as we do not claim our bijection is an isomorphism of varieties.

Next, we recall a lemma from algebraic geometry. The lemma isnot
stated in its full generality but only in a form which will be useful to
us. The proof is given in the Appendix (cf. Sublemma A.5.1). We wish
to apply it with the line bundleL ≈ O(1) on IMAGE. Alternatively one
may apply Sublemma A.5.1 to the structure sheaf of Spec(k[S1]) = the
affine cone overIMAGE.

Sublemma 4.2.5.Let X, Y be two projective varieties over k and let
f : X→ Y be a morphism which is bijective. Then for every ample line
bundleL on Y and for s∈ H0(X, f ∗(L)) we have sp

n
∈ H0(Y,Lpn

) for
some large n.
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Therefore (cf. [7, II 7]) for everya ∈ A1, we haveapm
∈ S for some

largem. Now using thep-root closure ofS we see thata ∈ S. Thus
A1 ⊂ S, a contradiction. �

Remark 4.2.6.There is another way to understand whyapm
∈ S for

some largem. Namely, scheme theoretically the stabilizerQ is gener-
ated byP and some connected infinitesimal subgroup. This connected
infinitesimal subgroup is contained in a Frobenius kernel [11] and thus 39

acts trivially onapm
for some largem.

4.3 Frobenius Splittings

In this section we define Frobenius splittings and introducethe canonical
splittings.

Let Rbe ak-algebra.

Definition 4.3.1.A Frobenius-linear endomorphism ofR is a mapσ :
R→ R such that fora, b ∈ R,

(i) σ(a+ b) = σ(a) + σ(b)

(ii) σ(apb) = a · σ(b)

We denote the space of Frobenius-linear endomorphisms by EndF

(R).

Definition 4.3.2. 1. A Frobenius-linear endomorphismσ is called a
splitting if σ(ap) = a. This meansσ is a splitting if and only if
σ(1) = 1.

2. Let I be an ideal ofR. We say aσ ∈ EndF(R) is compatiblewith
I if and only if σ(I ) ⊂ I . We denote the space of such endomor-
phisms by EndF(R, I ).

3. We sayI is compatibly splitin R if there exists a splittingσ of R
such thatσ ∈ EndF(R, I ).
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Definition 4.3.3.Let R be ak-algebra. Fora ∈ R andσ ∈ EndF(R) we
definea ∗ σ by

a ∗ σ(b) = σ(a · b).

Definition 4.3.4.Let A = ⊕i≥0Ai be a gradedB-algebra. Aσ ∈ EndF(A)
is calledgradedif σ(Aip) ⊂ Ai andσ(Ai) = 0 if i is not divisible byp.

In caseR is aG-module, we define aG action on EndF(R, I ) by

(g ∗ σ)(a) = g · σ(g−1 · a).

Let R be aB-algebra. Then under the∗ action, the module EndF(R)40

is aB-module, possibly not rational. NowB is generated by the torusT
and the one-parameter subgroupsUα = {xα(t) | t ∈ k} with α a simple
root. Everyσ ∈ EndF(R) defines a mapB→ EndF(R) beb 7→ b ∗ σ. If
the B-module EndF(R) is finite dimensional, one expects this to define
a polynomial map on each of the subgroupsUα. A T-invariant splitting
is canonical if an even stronger condition is true.

Definition 4.3.5.A splitting σ ∈ EndF(R) (or σ ∈ EndF(R, I )) is called
canonical if for every simple rootα, there existσr,α ∈ EndF(R) such
that

(i) h ∗ σ = σ for everyh ∈ T(k).

(ii) xα(t) ∗ σ =
p−1∑
r−0

ti ∗ σr,α for every simple rootα and everyt ∈ k.

Here it is important that the summation stops atp− 1.

Remark 4.3.6.If R is a B-algebra andσ a canonical splitting onR,
thenσ takes weight vectors of weightpλ to weight vectors of weightλ.
Thereforeσ(Rµ) = 0 if 1

pµ is not a weight ofR.

The following proposition underlines the importance of canonical
splittings.

Proposition 4.3.7(Key Proposition). Letσ be a canonical splitting of
the B-algebra R. Then the image underσ of a B-submodule of R is
again B-invariant–and thus a B-submodule.
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Proof. Let v be in aB-submoduleN. Recall that one may writexα(t)v
as a polynomial

∑
i≥0 tiX(i)

α v. This explains the notationX(i)
α in what

follows.
We writez(t) = (xα(−tp) ∗ σ)(v) in two ways. On the one hand we

have

z(t) =
∑

i≥0

(−tp)iX(i)
α σ


∑

j≥0

t jpX( j)
α v

 =
∑

i, j≥0

tip+ j (−1)iX(i)
α σ(X( j)

α v).

On the other hand, asσ is canonical,z(t) equals 41

p−1∑

r=0

((−tp)r ∗ σr,α)(v) =
p−1∑

r=0

(σr,α((−tp)rv))

=

p−1∑

r=0

(−t)r (σα,r(v)).

Write z(t) =
∑

n≥0 zntn. Thenσ(v) = z0. From the second expression
oen sees that the otherzpn vanish, soσ(v) =

∑
n≥0 zpntpn. Now we use

the first expression to rewrite this as
∑

i,s≥0

tip+sp(−1)iX(i)
α σ(X(ps)

α v).

But that is just

xα(−tp)
∑

s≥0

σ((tp)psX(ps)
α v),

whence the result thatxα(tp)σ(v) is in σ(N). Now just substitutet for
tp. (We havet vary over an algebraically closed field). We conclude that
σ(N) is invariant under allxα(t) with α simple. It is more or less built
into the definition of canonical thatσ(N) is also invariant underT(k).
Now use thatB(k) is generated byT(k) and the abovexα(t). �

This proposition together with Remark 4.3.6 immediately gives us
the following corollary. HereA<λ is the obvious variation onA≤λ. It
equals⊕iAi

<iλ, whereAi
<iλ is the largestB-submodule ofAi which is

in the categoryC<iλ consisting of allB-modules with weights strictly
precedingiλ in length-height order.
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Corollary 4.3.8. If σ is a graded canonical splitting on A, then we have
σ(A≤λ) ⊆ A≤λ andσ(A<λ) ⊆ A<λ.

The Remark 4.2.1 motivates us to look for geometric examplesof
splitings and in particular canonical splittings. The Frobenius-linear en-
domorphisms have the following geometric extension.

Let X be a variety overk. Let F : X → X denote theabsolute
Frobenius morphism, i.e.the morphism which onOX restricts to the
morphism induced by takingpth power. This morphism is identity on42

the underlying topological space. However, on functions, it takes a given
function to itspth power.

We defineEndF(X) – sheaf of Frobenius-linear endomorphisms –
by assigning the abelian group EndF(OX(U)) to each openU. Let F∗OX

be the direct image ofOX. As a sheaf of abelian groups, the sheaf
F∗OX is isomorphic toOX. TheOX-module structure ofF∗OX is via
the Frobenius morphism. We therefore havea · s = aps for a ∈ OX and
s ∈ F∗OX. Thus,EndF(X) = (F∗OX)∗, the dual ofF∗OX. This gives
an OX-module structure onEndF(X). We denote the space of global
sections ofEndF(X) by EndF(X). We get

EndF(X) = H0(X,EndF(X))

= H0(X, (F∗OX)∗).

Definition 4.3.9.A variety X over k is called Frobenius split if there
existsσ ∈ EndF(X) which is a splitting.

If X is a G-variety, we can give aG-structure to EndF(X) by (g ∗
σ)(s) = g · σ(g−1 · s) for s∈ OX.

The operation∗ defined before gives anotherOX-module structure
on EndF(X). We see that thisOX-module structure is obtained by us-
ing the isomorphism betweenF∗OX andOX as abelian groups. IfX is
smooth, then the sheafEndF(X) is isomorphic to a line bundle under the
∗ operation. This is best seen by passing to the completion at apoint,
which makes things very computable. (Recall the completionof the lo-
cal ring at a smooth point is just a power series ring in a number of
variables.)
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Let Y be a closed subvariety ofX. Let I be the sheaf of ideals
defining Y. We define the sheaf of Frobenius-linear endomorphisms
which arecompatiblewith Y by assigning the abelian group

EndF(OX(U),I(U))

to any open subsetU of X. We denote this sheaf byEndF(X,Y) and its
space of global sections by EndF(X,Y).

Definition 4.3.10.A closed subvarietyY is said to be compatibly split
in X if there exists a splittingσ ∈ EndF(X,Y).

We next list certain properties of splittings and canonicalsplittings
which are useful to us.

Direct images: 43

1. Let f : Z→ X be a morphism such thatf∗OZ = OX. Supposeσ is
a splitting onZ such thatσ compatibly splitsY ⊂ Z. Then there
exists a splitting onX which compatibly splitsf (Y).

2. If moreoverZ, Y, X areB-varieties,f is aB-equivariant morphism
andσ ∈ EndF(Z,Y) is canonical, then the induced splitting in
EndF(X, f (Y)) is also canonical.

Lemma 4.3.11. Let σ ∈ EndF(X) be a splitting andL a line bun-
dle on X. Thenσ extends uniquely to a graded splitting of R(L) =
⊕i≥0H0(X,Li).

Proof. Let V ⊂ X be such thatV = SpecA is affine andL|V is trivial.
Then R(L) is a polynomial ringA[T]. We first prove that a splitting
of A extends uniquely to a graded splitting ofA[T]. We defineσ̃V by
σ̃V(

∑
i≥0 aiT i) =

∑
i≥0σ(aip)T i . It is clear that any splitting ofA[T]

which restricts toσ onA and which is graded has to satisfy this equation.
Therefore this extension is unique. It is this uniqueness that allows us to
patch these local sections ˜σV to get a splitting ofR(L). �

Remark 4.3.12.For a B-variety X and equivariant line bundleL, the
extension of a canonical splitting will again be canonical.
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Let G be our reductive algebraic group overk, with B (andT ⊂ B)
a Borel (and torus) subgroup ofG. We now consider the special case of
X = G/B. We will prove that the Demazure desingularisationZ of G/B,
introduced in the second section of the first chapter, has a canonical
splitting. Therefore using the direct image property of splittings, G/B
itself will have a canonical splitting.

Let W be the Weyl group ofG. Let s1 . . . sn be a reduced expres-
sion for the longest elementw0 in W. For eachsi, we have a minimal
parabolic subgroupPi of G. Then, Zn = P1 ×

B P2 ×
B · · · ×B Pn/B

is called the Demazure desingularisation ofG/B. The multiplication
map m : P1 × · · · × Pn → G induces a morphismϕ : Zn → G/B.
The morphismϕ is birational. Thus asG/B is a normal variety, we get
ϕ∗OZn = OG/B ([11, II Lemma 14.5]).

Remark 4.3.13.Later we will also have use forZn whenn is more than44

the number of positive roots. Then of courses1 . . . sn will not be a re-
duced expression forw0. Much of the discussion that follows applies to
this more general situation.

We define divisors̃D j = P1 ×
B · · · ×B P j−1 ×

B B×B P j+1 . . .Pn/B of
Zn. Let Dn = ∪

n
j=1D̃ j . The components ofDn intersect transversally at

their intersection pointx = B×B · · · ×B B/B.

ConsiderEndF(Zn,Dn), the sheaf of Frobenius-linear endomorphi-
sms onZn which leave the ideal ofDn invariant. SinceDn is a codi-
mension one subvariety of the smooth varietyZn, the duality theory for
the absolute Frobenius mapF : Zn → Zn tells us thatEndF(Zn,Dn) ≈
ωZn(Dn)1−p. (See also A.3.5, A.4.6). HereωZn denotes the canonical
line bundleΩn

Zn
of Zn.

Definition 4.3.14.LetV be aB-equivariant vector bundle on a variety
X with B action. (That is, on the corresponding geometric vector bun-
dle there is aB action compatible with the action onX.) ThenV[λ]
denotes the same vector bundle, but withB action twisted byλ : For
s ∈ H0(U,V), b ∈ B, we letb.s beλ(b) times what it would be without
the twist.
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Proposition 4.3.15.The sheafEndF(Zn,Dn) is B-equivariantly isomor-
phic withϕ∗L((1− p)ρ)[(p− 1)ρ], so that ifϕ : Zn→ G/B is surjective,
its module of global sectionsEndF(Zn,Dn) is B-equivariantly isomor-
phic with k(p−1)ρ ⊗ H0(G/B,L((1− p)ρ)).

For the proof we refer reader to the Appendix (A.4.6). �

Restricting the above isomorphism to global sections, we get the
following corollary.

Corollary 4.3.16. If the mapϕ : Zn → G/B is surjective, then there
exists a B-equivariant isomorphism betweenEndF(Zn,Dn) and k(p−1)ρ ⊗

H0(G/B,L((1− p)ρ)).

Proposition 4.3.17.Let {s1, . . . , sn} denote a sequence of simple reflec-
tions, let Pi be the corresponding minimal parabolic subgroups and let
Zn = P1 ×

B · · · ×B Pn/B be as above. Letϕ : Zn → G/B be the “mul-
tiplication” map which we assume to be surjective. Then there exists
σ ∈ EndF(Zn,Dn) which is a canonical splitting.

Remark 4.3.18.The surjectivity is not really needed for the conclusion45

to hold.

Proof of Proposition 4.3.17: (See also the Appendix A.4.7.) To get a
candidate for the canonical splitting we use [24] to which werefer for
details. As Mehta and Ramanathan explain in [24], one gets a splitting
by taking the correct scalar multiple of any element of EndF(Zn,Dn)
that does not vanish at the intersection pointx of the components of
Dn. And such an element can be obtained by pulling back a section
of L((1 − p)ρ)[(p − 1)ρ] that does not vanish atB/B. We claim the
splitting may be taken to beT-equivariant so that it satisfies the first
condition for being canonical. Indeed, if it were notT-equivariant we
could simply take its weight zero component and we would find that
component is also a splitting (exercise). From Proposition4.3.15 we
see that the weight zero space of EndF(Zn,Dn) is one-dimensional, so
in fact we end up with a unique splitting this way. Now the extremal
weights ofH0(G/B,L((1− p)ρ)) are in the Weyl group orbit of (1− p)ρ,
so for a simple rootα the ladder{iα | iα is a weight of EndF(ZN,DN)}
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stops with (p− 1)α = (p− 1)ρ − sα(p− 1)ρ. Thus the second condition
for being canonical is also satisfied. �

4.4 Donkin’s Conjecture

In this section we prove Donkin’s conjecture.

Theorem 4.4.1(Canonical splittings and good filtrations). Let A be a
connected (i.e. A0 = k), graded B-algebra with excellent filtration. Let
σ be a graded canonical splitting of A. If S is a gradedσ-invariant
subalgebra which is a G-module, then S has a good filtration.

Proof. We concentrate on proving thatS1 has a good filtration. The
other degrees can be treated similarly, using rescaling as in the proof of
4.2.3. (We ask the reader to figure out how a graded canonical splitting
on A defines one on the rescaled algebra⊕iAm−i .)

The length-height filtration ofA is an excellent filtration, therefore
A≤λ also has excellent filtration. For any weightλ of A, theB-subalgebra
A≤λ of A is invariant under the canonical splitting, as is its idealA<λ
(Corollary 4.3.8). Also note forλ ∈ X(T)+, that the submoduleS ∩ A≤λ46

is againG-invariant, as is its idealS ∩ A<λ (cf. 4.1.2). We therefore
replaceA by A≤λ/A<λ–with its induced canonical splitting–andS by
S ∩ A≤λ/S ∩ A<λ. Then with these new choicesλ is such thatiλ is the
only weight in socAi. Also S is p-root closed sinceS is invariant under
σ andσ(ap) = a. We now use Theorem 4.2.3 to see thatS has good
filtration. �

Next, we give a geometric implication of the above theorem. Note
that the motivating variety isG×B G/B.

Lemma 4.4.2.Let X be a B-variety and Y a B-invariant subvariety. Let
G×BX denote the associated fibre bundle over G/B with fibre X. Assume
that there exists a canonical splittingσ of G×BX compatible with G×BY.
LetL be a G-equivariant line bundle on G×B X. Let K(L) denote the
kernel of the restriction morphism res: H0(G×BX,L)→ H0(G×BY,L).
Then the G-modules H0(G×B X,L) and K(L) have good filtrations.
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Proof. Let π : G×B X→ G/B be the projection map. Now⊕nH0(G×B

X,Ln) ֒→ ⊕nH0(π−1(Bw0B/B),Ln). But π−1(Bw0B/B) ≈ Bw0T ×T X
in a B-equivariant way and therefore

H0(π−1(Bw0B)/B,Ln) = indB
T H0(w0T ×T X,Ln).

Therefore⊕H0(π−1(Bw0B/B),Ln) is an injectiveB-module. Thus by
the cohomological criterion, (Theorem 3.2.7), it has an excellent filtra-
tion. Now we extendσ to a graded canonical splitting on

⊕nH0(π−1(Bw0B),Ln).

This splitting leaves theG-submodule⊕nH0(G ×B X,Ln) invari-
ant. Therefore, by Theorem 4.4.1,⊕H0(G×B X,Ln) has good filtration.
ThereofreH0(G×B X,L) has good filtration.

Similar arguments show that theG-moduleH0(G×B Y,L) has good
filtration.

Consider next the following diagram:

0

��

0

��
⊕nK(Ln) //

��

⊕nK′(Ln)

��

⊕nH0(G×B X,Ln)
�

�

//

res
��

⊕nH0(Bw0B×B X,Ln)

res
��

⊕nH0(G×B Y,Ln)
�

�

// ⊕nH0(Bw0B×B Y,Ln)

Now the splitting on⊕nH0(Bw0B ×B X,Ln) restricts to a splitting 47

on the algebrak ⊕
⊕

n K′(Ln). (We addedk in degree zero to get an
algebra rather than an ideal.) Further, this splitting leavesk⊕

⊕
n K(Ln)

invariant. Therefore, by Theorem 4.4.1,K(L) also has good filtration.
�

Now we are in a position to prove Donkin’s conjecture. Like all
main results in these notes, it and its method of proof are dueto Mathieu.
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(The reader is invited to compare our exposition with that ofMathieu,
to see where the emphasis differs.)

Theorem 4.4.3(Donkin’s Conjecture). Letλ, µ ∈ X(T)+.

1. P(λ) ⊗ P(µ) has a good filtration.

2. (Restriction Conjecture) Let L be the Levi factor of a parabolic
subgroup P of G and letλ ∈ X(T)−. ThenresGL (IndG

B(λ)) as an
L-module has a good filtration.

Proof. We are now in a position to exploit Remark 4.2.1. We have
P(λ) ⊗ P(µ) = H0(G×B G/B, (G×BL(µ))[λ]) with G×B G/B ≈ G/B×
G/B. If s1, . . . , sn is a sequence of simple reflections such that–with

suitable choice ofϕ–the mapZn = P1 ×
B · · · ×B Pn/B

ϕ
−→ G ×B G/B

is birational, then we have a canonical splitting onZn inducing one on
G×B G/B and by Lemma 4.4.2 we get the first result.

For the second result notice that similarlyP×B G/B ≈ P/B×G/B.
The module we have to study is now the restriction of

H0(P×B G/B, (P×B L(λ)).

As P/B is a Schubert variety, it has its Demazure resolution just like
G/B. It is thus not difficult to come up withs1, . . . , sn, such thatZn =

P1×
B· · ·×BPn/B

ϕ
−→ P×BG/B is birational. ThusP×BG/B = L×L∩BG/B

has a canonical splitting, which of course remains canonical with respect
to the Borel subgroupB∩ L of L. Apply Lemma 4.4.2. �

Exercise 4.4.4.Read the Appendix and fill in the detains in the above
proof.
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Joseph’s Conjecture

In the last chapter we proved that the tensor product of two modules with 48

good filtrations has good filtration. Now as the reader will see, (Example
5.3.1), the tensor product of two modules with excellent filtration need
not have excellent filtration. However in this chapter we prove Joseph’s
conjecture which says that the tensor product of a module with good
filtration and an anti-dominant character has excellent filtration.

We will prove thatλ ⊗ P(µ) ⊗ Q(ν) is B-acyclic forλ ∈ X(T)−, µ ∈
X(T)+ andν ∈ X(T). This implies, by the cohomological criterion, that
the tensor productλ ⊗ P(µ) has excellent filtration forλ anti-dominant
andµ dominant. From this the Joseph’s conjecture follows.

To prove the vanishing ofB-cohomology, we first induce these mod-
ules up toG using the indGB functor. We then prove that the inducedG-
modules have good filtration and thereby areG-acyclic. We then use the
Frobenius reciprocity to prove theB-acyclicity. The use of Frobenius
reciprocity requires the indGB-acyclicity of these modules and we use the
method of Frobenius splitting to prove the same.

5.1 Double Schubert Varieties

Let w, z ∈ W be two elements of the Weyl group ofG. Let P andQ
be two parabolic subgroups ofG, containingB. Let Xw andXz denote
the Schubert varietiesBwP/P ⊂ G/P andBzQ/Q ⊂ G/Q respectively.

51
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Consider the closedB-subvarietyXw × Xz of G/P×G/Q.

Definition 5.1.1.By a double Schubert variety we mean the subvariety49

G×B (Xw × Xz) of G×B (G/P×G/Q).

As the total space of the fibre bundleG×B(G/P×G/Q) is isomorphic
with G/B×G/P×G/Q, a double Schubert variety is naturally embedded
in the triple productG/B×G/P×G/Q.

Proposition 5.1.2. There exists a canonical splitting of G/B × G/P ×
G/Q such that all double Schubert varieties are simultaneuously com-
patibly split in the triple product.

For the proof we refer the reader to the Appendix (Proposition
A.4.8).

Let µ ∈ X(T)−, and letPµ be the parabolic subgroup such thatµ

extends to a character onPµ and it is maximal for this property. There-
fore onG/Pµ, the line bundleL(µ) associated to the characterµ exists
and is ample. Indeed we work withG/Pµ instead ofG/B for precisely
this reason. One further notes that ifπ : G/B → G/Pµ is the natural
projection map, then we haveπ∗L(µ) = L(µ).

We havePµ = B if and only if µ is regular inX(T)−.
Let λ, µ, ν be characters inX(T)− with λ regular. LetL(λ, µ, ν)

denote the line bundleL(λ)×L(µ)×L(ν) on the productG/B×G/Pµ×
G/Pν. Let

∑
1 and

∑
2 be unions of double Schubert varieties inG/B×

G/Pµ ×G/Pν such that
∑

2 ⊂
∑

1. Then, we have

Lemma 5.1.3. (i) H0(
∑

1,L(λ, µ, ν)) has good filtration.

(ii) The restriction map H0(
∑

1,L(λ, µ, ν)) → H0(
∑

2,L(λ, µ, ν)) is
surjective. Further, its kernel K(

∑
1,

∑
2, λ, µ, ν) has good filtra-

tion.

Proof. (i) By Corollary ?? we see thatH0(
∑

1,L(λ, µ, ν)) and the
kernel of the restriction mapK(

∑
1,

∑
2, λ, µ, ν) have good filtra-

tion.

(ii) As G×B∑
i are compatibly split inG×B(G/Pµ×G/Pν) and the line

bundleL(λ, µ, ν) is amply onG/B×G/Pµ×G/Pν the surjectivity
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of the restriction map follows from the Appendix (see Corollary
A.2.2).

�

Remark 5.1.4.Consider the short exact sequence

0→ K(
∑

1

,
∑

2

, λ, µ, ν)→ H0(
∑

1

,L(λ, µ, ν))→ H0(
∑

2

,L(λ, µ, ν))→ 0.

As the kernelK(
∑

1,
∑

2, λ, µ, ν) has good filtration, it isG-acyclic. 50

ThusH1(G,K(
∑

1,
∑

2, λ, µ, ν)) = 0. Therefore, by writing out the long
exact sequence ofG-cohomologies corresponding to the above short ex-
act sequence, we get the surjectivity of the restriction mapon theG-
invariantsH0(G,

∑
1,L(λ, µ, ν))→ H0(G,

∑
2,L(λ, µ, ν)).

The double Schubert varieties arise naturally in the context of filtra-
tions ofB-modules in the following manner:

Let λ, µ, ν be characters. LetM = λ⊗P(µ)⊗P(ν). As a vector space
M is isomorphic withP(µ) ⊗ P(ν) but theB action onM is shifted by
the characterλ.

Let µ1 = w−1
µ µ andν1 = w−1

ν ν be the anti-dominant characters in the
respective Weyl group orbits. We putP = Pµ1 andQ = Pν1.

Using the double Schubert varieties we get the following description
of indG

B(M).
Let S be the productXwµ

× Xwν
in G/Pµ × G/Pν. Consider the

restricted fibrationf = π ◦ i onG/B as given below.

G×B S
�

� i //

f
((QQQQQQQQQQQQQQ

G×B (G/Pµ ×G/Pν)

π

��
G/B

If L(M) denotes the vector bundle onG/B corresponding to theB-
representationM, we haveL(M) = f∗i∗L(λ, µ1, ν1). Therefore we have

indG
B(M) = H0(G/B, f∗i

∗L(λ, µ1, ν1))

= H0(G×B S,L(λ, µ1, ν1))



54 5. Joseph’s Conjecture

If we assumeλ regular anti-dominant, the line bundleL(λ, µ1, ν1)
is ample onG/B×G/P ×G/Q. Further,G ×B S is compatibly split in
G/B×G/P×G/Q. Therefore, we have

Rj indG
B(M) = H j(G/B,L(M))

= H j(G×B S,L(λ, µ1, ν1)) by Remark A.2.8,

= 0 for j > 0 by Corollary A.2.2.

Thus we have the following lemma.

Lemma 5.1.5. Let λ ∈ X(T)− be regular. Let S be a union of products51

of Schubert varieties in G/Pµ × G/Pν with µ, ν ∈ X(T)−. Then, M=
λ ⊗ H0(S,L(µ) × L(ν)) is indG

B-acyclic.

Proof. The above reasoning also works for such a union. �

5.2 Joseph’s Conjecture

In this section we will prove Joseph’s conjecture. Moreover, for a reg-
ular, anti-dominant characterλ and any two charactersµ andν we will
prove theB-acyclicity ofλ ⊗ Q(µ) ⊗ Q(ν).

Lemma 5.1.5 gives us the following vanishing result.

Lemma 5.2.1. Letλ, µ, ν be anti-dominant withλ being regular. Let S ,
S1, S2 be unions of products of Schubert varieties with S2 ⊂ S1. Then

(i) M = λ ⊗ H0(S,L(µ) × L(ν)) is B-acyclic.

(ii) M′ = Ker{λ ⊗ H0(S1,L(µ) × L(ν)) → λ ⊗ H0(S2,L(µ) × L(ν))}
is B-acyclic.

Proof. (i) By Lemma 5.1.3 we see that indG
B(M) has good filtration.

Further, by Lemma 5.1.5M is indG
B-acyclic. Therefore, we have

Hi(B,M) = Hi(G, indG
B(M)) = 0.

(ii) We know that bothλ ⊗ H0(Si ,L(µ) × L(ν)) areB-acyclic. Fur-
ther, using Remark 5.1.4 and Frobenius reciprocity, we see that
H0(B, λ⊗H0(S1,L(µ)×L(ν)))→ H0(B, λ⊗H0(S2,L(µ)×L(ν)))
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is surjective. Now we write the long exact sequence ofB-cohomo-
logy associated with 0→ M′ → λ ⊗ H0(S1,L(µ) × L(ν)) →
λ ⊗ H0(S2,L(µ) × L(ν))→ 0 to get the result.

�

Corollary 5.2.2. Let λ ∈ X(T)− be regular. Letµ, ν ∈ X(T) and let
Q(µ), Q(ν) denote the relative Schubert modules with socleµ andν re-
spectively. Then,λ ⊗ Q(µ) ⊗ Q(ν) is B-acyclic.

Proof. Recall that the relative Schubert modulesQ(µ) are defined as 52

kernels of the restriction map ofP(µ) onto the sections over the bound-
ary of the Schubert variety definingP(µ). We takeS1 = Xwµ

× Xwν
and

S2 = (∂Xwµ×Xµν)∪ (Xwµ
×∂Xwν

). Then the kernel of the restriction map
λ ⊗ H0(S1,L(µ1) × L(ν1))→ λ ⊗ H0(S2,L(µ1) × L(ν1)) is canonically
isomorphic withλ⊗Q(µ) ⊗Q(ν) whereµ1 andν1 are the anti-dominant
characters in the Weyl group orbit ofµ and ν respectively. Now the
Lemma 5.2.1 gives the result. �

Corollary 5.2.3. Let λ ∈ X(T)− be regular and letµ be any character.
Thenλ ⊗ Q(µ) has excellent filtration.

Proof. Apply the cohomological criterion for excellent filtration(Theo-
rem 3.2.7). �

In order to prove Joseph’s conjecture we now need the following
lemma.

Lemma 5.2.4. Let ρ be the character corresponding to the half sum of
positive roots. Then, forλ ∈ X(T)+ we have kρ ⊗ P(λ) = Q(λ + ρ).

Proof. We have a natural multiplication map fromH0(G/B,L(w0λ) ⊗
H0(G/B,L(−ρ)) to H0(G/B,L(w0λ) ⊗ L(−ρ)). Let kρ be the weight
space of weightρ of H0(G/B,L(−ρ)). We restrict the multiplication
map to the sub-spaceH0(G/B,L(w0λ)) ⊗ kρ. This gives us a mapm :
P(λ) ⊗ kρ → P(λ + ρ). This map is injective as it is injective on the
one-dimensional socle of its domain. (Use the geometric description of
extremal weights.)
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We claim thatm defines a natural isomorphism betweenP(λ) ⊗ kρ
andQ(λ + ρ) ⊂ P(λ + ρ).

To see this we first fix a non-zero elementf ∈ kρ ⊂ H0(G/B,L(−ρ)).
Then f vanishes on lower dimensional Schubert varietiesXw. Thus the
image of the multiplication mapm is contained inQ(λ + ρ).

To see the surjectivity, view 1/ f as a rational section ofL(ρ). Notice
that 1/ f has pole of order 1 along the codimension one Schubert vari-
eties (5.2.5). Now ifL is a line bundle andsany section ofL, we get a
(possibly rational) sections/ f of the line bundleL ⊗ L(ρ). Thus, for a
sectionsof the line bundleL(w0λ−ρ), the elements/ f gives us a ratio-
nal section ofL(w0λ). However, if we restrict this map to the subspace53

Q(λ + ρ) of P(λ + ρ) = H0(G/B,L(w0λ − ρ)) we get an algebraic map
as all the elements ofQ(λ + ρ) vanish on the codimension one Schubert
varieties. This map fromQ(λ + ρ) to P(λ) is injective (by its injectivity
on the socle). Therefore the dimensions satisfy

dimk P(λ) ⊗ kρ = dimk P(λ) ≥ dimk Q(λ + ρ).

Therefore the multiplication map defined above is also surjective.
�

The reader is advised to do the following illuminating exercise to
see the “geometry” involved in the apparently representation theoretic
lemma above. The exact formula for computing the degree of a line
bundleL(λ) onG/B restricted to any line of the typePs/B can be found
in [3].

Exercise 5.2.5(cf. [14]). Let f ∈ kρ ⊂ H0(G/B,L(−ρ)) be as in the
proof of 5.2.4. Letsbe a simple reflection with corresponding minimal
parabolicPs. Show

(i) The restriction ofL(−ρ) to the linePs/B has degree 1, and the
same is true for the restriction to any left translate ofPs/B in
G/B.

(ii) The line w0Ps/B intersects the zero set off only in the point
w0sB/B.
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(iii) f vanishes to order one along the codimension one Schubert vari-
ety Xw0s.

We now prove Joseph’s conjecture. The proof given here differs a
little from the one by Mathieu.

Proposition 5.2.6(Joseph’s Conjecture). Letλ ∈ X(T)− andµ ∈ X(T)+.
Thenλ ⊗ P(µ) has excellent filtration.

Proof. We know that forλ ∈ X(T)− which is also regular,λ ⊗ Q(µ) has
excellent filtration. Now,

λ ⊗ P(µ) = (λ − ρ) ⊗ ρ ⊗ P(µ)

= (λ − ρ) ⊗ Q(µ + ρ).

Further,λ − ρ ∈ X(T)− is regular. (In factν − ρ is regular anti-
dominant if and only ifν is anti-dominant.) Therefore by Corollary
5.2.3 we get he result. �

Corollary 5.2.7 (Joseph). Let λ ∈ X(T) andµ ∈ X(T)+. Then, P(λ) ⊗ 54

P(µ) has excellent filtration.

Proof. Let w ∈ W be such thatw−1λ = ν ∈ X(T)−. We haveP(ν) = kν.
Therefore,P(ν)⊗P(µ) has excellent filtration. Sinceµ is dominant,P(µ)
is aG-module and therefore, by the tensor identity, indPs

B (P(τ)⊗P(µ)) =
(indPs

B P(τ)) ⊗ P(µ) for any simple reflectionsand weightτ. Recall that
we haveHs ◦ Hz = Hsz for Joseph functors when the length ofsz is
more than the length ofz. Therefore we see thatHw(P(ν) ⊗ P(µ)) =
P(wν) ⊗ P(ν). Now recall that Proposition?? states thatHw sends a
module with excellent filtration to a module with excellent filtration.
Therefore the result. �

For an application f Joseph’s conjecture see [21, Theorem 5.5],
which gives the existence of a “good basis” in a module with good
filtration. One easily checks that although the proof refersto Polo’s
conjecture (cf. next chapter), it suffices to apply Joseph’s conjecture.
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5.3 An Example

In this section we give an example showing that the tensor product of
modules with excellent filtration need not have excellent filtration.

Example 5.3.1.We takeG = S L(3, k), with B the subgroup of upper
triangular matrices,T the subgroup of diagonal matrices. Inside theG-
moduleM3 of 3-by-3 matrices, upon whichG acts by conjugation, we
consider the five-dimensionalB-submoduleE generated, as aB-module,
by the matrices

C =



1 0 0
0 0 0
0 0 0

 , D =



0 0 0
0 1 0
0 0 0

 .

If has a four-dimensional submoduleS generated byD, and the ex-
tension

0→ S→ E→ k→ 0

does not split. SoH1(B,S) , 0. Now one checks thatS = P(−s2ω1) ⊗
P(−s1ω2)⊗Q(ρ), whereω1,ω2 denote the fundamental weights, cf. [11].
(RecallQ(ρ) = kρ.) SoS gives an example of a tensor product of the55

form P(λ)⊗P(µ)⊗Q(ν) which is notB-acyclic. From the cohomological
criteria it then follows thatP(λ)⊗P(µ) does not have excellent filtration
and thatP(µ) ⊗ Q(ν) does not have relative Schubert filtration.

Exercise 5.3.2(Polo). Computer the characters of theP(ξ) for each
weightξ of P(−s2ω1) ⊗ P(−s1ω2) and show thatP(−s2ω1) ⊗ P(−s1ω2)
does not even have the character of any module with excellentfiltration.
Similarly show thatP(−s1ω2) ⊗ Q(ρ) does not even have the character
of any module with relative Schubert filtration.



Chapter 6

Polo’s Conjecture

Let ζ be a character. We denote byζ1 (by ζ0) the anti-dominant (the 56

dominant) character in the Weyl group orbit ofζ. The Joseph Conjecture
states that forλ ∈ X(T)− and µ ∈ X(T), the moduleλ ⊗ P(µ0) has
excellent filtration. Here we study a generalization of thatconjecture,
first stated by P. Polo. It says that forλ ∈ X(T)− andµ arbitrary, the
moduleλ ⊗ P(µ) has excellent filtration. Equivalently, we need to prove
thatλ ⊗ P(µ) ⊗ Q(ν) is B-acyclic.

6.1 Reformulating the Problem Repeatedly

We first look at the case whenλ is regular anti-dominant. Consider the
following exact sequence:

0→ λ ⊗ K → λ ⊗ P(µ0)→ λ ⊗ P(µ)→ 0 (6.1.1)

By Joseph’s conjectureλ⊗P(µ0) has excellent filtration. The module
K has a filtration by relative Schubert modules and forλ regular anti-
dominant we already know thatλ ⊗ Q(ν) has excellent filtration for any
characterν. Thereforeλ⊗K has excellent filtration. Now, using the long
exact sequence ofB-cohomology associated to (6.1.1), we see that the
moduleλ ⊗ P(µ) also satisfies the cohomological criterion for excellent
filtration.

59
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However this method fails whenλ is not regular as it is no longer
true thatλ ⊗ Q(ν) has excellent filtration. Indeed, whenλ is a trivial
character, we see thatQ(ν) cannot have an excellent filtration unlessν is
anti-dominant.

To tackle the general case we again resort to the same trick. We first57

induce theB-modules toG-modules and use the canonical splitting to
prove results. But first, we need the following lemma.

Lemma 6.1.2. Let λ, µ, ν ∈ X(T)− and w ∈ W. Let S be a union of
Schubert varieties in G/Pν. Assume that we can prove (for all suchλ, µ,
ν, w, S ) that the natural restriction map

H0(B, λ ⊗ H0(Xw,L(µ)) ⊗ P(ν0))→ H0(B, λ ⊗ H0(Xw,L(µ)) ⊗ H0(S,L(ν)))
(6.1.3)

is surjective. Then Polo’s conjecture is true.

Proof. Let K = ker(H0(G/Pν,L(ν))
res
−−→ H0(S,L(ν))). Let M = λ ⊗ K.

We know by Joseph’s conjecture thatλ ⊗ P(ν0) has excellent filtration.
Therefore,H1(B, λ⊗P(ν0)⊗Q(τ)) = 0 for all τ. However,H0(Xw,L(µ))
has a filtration by relative Schubert modulesQ(τ). Hence,H1(B, λ ⊗
P(ν0) ⊗ H0(Xw,L(µ))) = 0. Therefore, forµ ∈ X(T)− andw ∈ W, the
surjectivity in (6.1.3) givesH1(B,M ⊗ H0(Xw,L(µ))) = 0.

ThusH1 (B, M⊗ module with excellent filtration)= 0. Therefore,
M has filtration by relative Schubert modules by the cohomological cri-
terion for relative Schubert filtration (cf. Exercise 3.3.3).

This in turn means thatM ⊗ P(τ) is B-acyclic for anyτ ∈ X(T).
For anyzν ∈ X(T), we have the following diagram:

0 // K1

��

// H0(G/Pν,L(ν))

��

// H0(Xz,L(ν))

res
��

// 0

0 // K2 // H0(G/Pν,L(ν)) // H0(∂Xz,L(ν)) // 0

Further,K1 andK2 satisfy the following exact sequence (cf. Exercise
A.2.9):

0→ K1→ K2→ Q(zν) → 0.

Now we may takeM = λ ⊗ Ki in the above, soλ ⊗ Ki ⊗ P(τ) is B-
acyclic for anyτ ∈ X(T) (i = 1, 2). But then the quotientλ⊗Q(zν)⊗P(τ)
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is B acyclic too, for allλ, ν ∈ X(T)−, z ∈ W, τ ∈ X(T). This proves the
lemma. �

Remark 6.1.3.Note that there is also a slightly different argument to 58

prove theB-acyclicity ofM⊗P(µ) in the above: If one has thatH1(B,M⊗
module with excellent filtration)= 0, then letI0→ I1 . . . be an injective
resolution ofP(µ). Consider the exact sequences

0→ ker(In → In+1)→ In→ im(In)→ 0

of modules with excellent filtration. Tensoring withM and takingB-
invariants gives many short exact sequences and thusHi(B,M ⊗ P(µ))
in fact vanishes fori > 0. The advantage of this argument is that it does
not need the cohomological criterion for relative Schubertfiltrations.

To prove surjectivity of (6.1.3), we first induce both modules up toG
and then prove that the map onG-invariants in surjective. The Frobenius
reciprocity then gives us the surjectivity onB-invariants.

Recall that indGB(λ⊗H0(Xw,L(µ))⊗H0(S,L(ν))) = H0(G×B (Xw×

S),L(λ, µ, ν)). Now the line bundleL(λ, µ, ν) is not ample onG ×B

(G/Pµ × G/Pν), unlessλ is regular. Therefore, for all we know now,
the restriction mapH0(G×B (Xw×G/Pν),L(λ, µ, ν))→ H0(G×B (Xw×

S),L(λ, µ, ν)) need not be surjective, even thoughG ×B (Xw × S) is
compatibly split in the productG/B×G/Pµ ×G/Pν. However, the line
bundleL(λ, µ, ν) is ample onG/Pλ ×G/Pµ ×G/Pν. However, the line
bundleL(λ, µ, ν) is ample onG/Pλ × G/Pµ × G/Pν. Therefore, we
consider the following diagram:

Z = G×B (Xw × S)
�

�

// G×B (G/Pµ ×G/Pν)

π

��
G/Pλ ×G/Pµ ×G/Pν

The mapπ is defined by (g, x, y) 7→ (g, gx, gy), where the “bar”
denotes the image of an element ofG in the corresponding quotient.
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Lemma 6.1.5. If π∗OZ = Oπ(Z), then

H0(G, indG
B(λ ⊗ H0(Xw,L(µ)) ⊗ P(ν0)))

res
��

H0(G, indG
B(λ ⊗ H0(Xw,L(µ)) ⊗ H0(S,L(ν))))

is surjective.

Proof. We have indGB(λ ⊗ H0(Xw,L(µ)) ⊗ P(ν0)) = H0(G ×B (Xw ×59

G/Pν),L(λ, µ, ν)) and indGB(λ⊗H0(Xw,L(µ))⊗H0(S,L(ν))) = H0(G×B

(Xw × S),L(λ, µ, ν)). Consider the map of pairs

(G ×B (G/Pµ ×G/Pν),Z)
π
−→ (G/Pλ ×G/Pµ ×G/Pν, π(Z))

If π|Z has the direct image propertyπ∗OZ = Oπ(Z), we have

1. π∗(L(λ, µ, ν)|Z) = L(λ, µ, ν)|π(Z) and therefore,H0(Z,L(λ, µ, ν)) =
H0(π(Z),L(λ, µ, ν)).

2. Further, the canonical splitting on the domain will give us a canon-
ical splitting onG/Pλ × G/Pµ × G/Pν, which compatibly splits
π(Z).

Now,L(λ, µ, ν) = L(λ) × L(µ) × L(ν) is ample onG/Pλ ×G/Pµ ×
G/Pν. Therefore the restriction map

H0(G/Pλ ×G/Pµ ×G/Pν,L(λ, µ, ν))→ H0(π(Z),L(λ, µ, ν))

will be surjective. Further, its kernel will have good filtration. This
allows us to apply the Remark 5.1.4 to see that the restriction map on
G-invariants is surjective. From this the claim follows as this surjective
map factors throughH0(G, indG

B(λ ⊗ H0(Xw,L(µ)) ⊗ P(ν0))). �

Therefore to prove Polo’s conjecture, we only have to prove that
π|Z has the indicated direct image property. Now we remark again
that the mapπ is defined onX = G/B × G/Pµ × G/Pν and we have
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π∗OX = OG/Pλ×G/Pµ×G/Pν . Therefore we can “push forward” the canon-
ical splitting ofX on to its image. This “pushed splitting” will split the
imageπ(Z) of Z.

Consider now the following proposition. The proof of this proposi-
tion will be given in the Appendix (A.5.2). We have to explainfirst what
separablemeans forf : X → Y. The relevant notion of separability is
somewhat fancy, as our varieties are not irreducible. What it means is
that there is a dense subset ofy in Y for which there is anx ∈ f −1(y) so
that the tangent map atx is surjective. It is thus some kind of generic
smoothness.

Proposition 6.1.6. Let f : X → Y be a surjective, separable, proper
morphism between two varieties, with connected fibres. We assume that
Y is Frobenius split. Then f∗OX = OY.

Let us grant separability for the time being. Thus in order toprove 60

Polo’s conjecture it only remains to prove that the fibres of the map
π : Z→ G/Pλ ×G/Pµ ×G/Pν are connected. This topological problem
will also be reformulated repeatedly.

The reader is asked to be patient about this roundabout proof. The
fact is that, as he/she will come to know in Remark 6.1.10, the statement
we want to prove is very similar to some false statements. We have to
sneak around all these false statements.

First we note a result, which tells us that having connected fibres and
having the direct image property are really the same problem, so that we
may switch back and forth between the two at our convenience.Indeed
we will later turn around and go back all the way to a problem similar
to surjectivity of (6.1.3).

Lemma 6.1.7(Corollary 11.3). Let f : X → Y be a proper morphism
between two varieties and assume f∗OX = OY. Then all fibres of f are
connected.

Next note thatG×B (G/Pµ ×G/Pν)
φ
≈G×Pµ G×B G/Pν. The mapφ

is defined on the product byφ(g, x, y) = (gx, x−1, y).

The image ofZ underφ is G×Pµ (Pµw−1B×B S).
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We define ˜π : G ×Pµ (Pµw−1B ×B S) → G/Pµ × G/Pλ × G/Pν by
π̃((g, x, y) = (g, gx, gxy). Up to the isomorphismφ, this π̃ is justπ.

So our aim is to prove that fibres of ˜π are connected. Using theG-
equivariance of ˜π we see that we may restrict ˜π to the subspaceZ′ =
(Pµ) ×Pµ (Pµw−1B×B S) = (e) × (Pµw−1B×B S).

All we need is that the fibres of that restricted map are connected.
The image ofZ′ is contained inG/Pλ ×G/Pν. Note that asPµw−1B

is an irreducible two-sidedB-invariant closed subvariety ofG, we have
by Bruhat decomposition somey ∈W such thatPµw−1B = ByB.

Summing up, we have to show that the mapByB×B S → G/Pλ ×
G/Pν has connected fibres.

A fibre of the mapByB×B S→ G/Pλ ×G/Pν is simply an intersec-
tion of a fibre ofByB×B S→ G/Pλ with a fibre ofByB×B S→ G/Pν.
We first concentrate on the projection towardsG/Pλ.

Proposition 6.1.8. Let P be a parabolic, Xw ⊂ G/B a Schubert variety.61

The non-empty fibres of the projection Xw → G/P are left translates of
Schubert varieties.

Proof. Using theB-equivariance we may restrict attention to the fibre
of zP/P, wherez is a minimal representative in the Weyl groupW of
the cosetzW(P), if W(P) denotes the Weyl group ofP. Recall from [10,
Proposition 1.10], cf. [1, Ch. IV,§1 Exercice 3] thatl(zu) = l(z) + l(u)
if u ∈ W(P), so thatBzBuB= BzuB. The fibre is thus a union of sets
zBuB/B, whereu ∈W(P) is such thatzu≤ w. Recall also (same source)
thatw decomposes uniquely asz′u′ wherez′ is a minimal representative
of the cosetz′W(P) andu′ ∈ W(P). Then a lemma of Deodhar (read
w ∈ WQ where it saysw ∈ W/WQ, in [16, Lemma 4.4]) says there is a
unique maximalu. Then the fibre iszBuB/B for that maximalu. �

So what the proposition tells us is that we should prove that the
fibres ofgBuB×B S → G/Pν are connected forg ∈ G, u ∈ W. And by
G-equivariance we may forgetg.

Thus we have to prove

Proposition 6.1.9.The fibres of the multiplication map m: BuB×BS→
G/Pν are connected.
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Remark 6.1.10.We can now point out a subtlety, which shows that one
cannot get by just with generalities about Frobenius splittings. Namely,
the proposition fails ifBuBis replaced by a union ofBvB’s (v ∈W). This
is related to the fact that a tensor product of two modules with excellent
filtration need not have an excellent filtration (see Example5.3.1.)

6.2 The Proof of Polo’s Conjecture

Clearly Proposition 6.1.9 presents a smaller problem than the one sug-
gested by Lemma 6.1.5. In this section we prove the Proposition 6.1.9
and thus also:

Theorem 6.2.1(Mathieu; Polo’s Conjecture). Let λ ∈ X(T)− and let
µ ∈ X(T). Thenλ ⊗ P(µ) has excellent filtration.

Apart from Proposition 6.1.9 one must also must worry about sepa- 62

rability. But fortunately this does not require a thorough understanding
of fibres. One only needs to show that the source of our map is a finite
union of pieces on which the map to “image piece” is separable. The
pieces to take are theBuB×B (component ofS) of Proposition 6.1.9,
basically. One easily finds subvarieties that actually map birationally to
the image of the piece. We leave it at this sketch for now and return to
the proof of Proposition 6.1.9.

We first note that ifu = s1 . . . sn is a reduced expression ofu ∈ W,
then the multiplication mapm : BuB×B S → G/Pν can be lifted to the
projection

Ps1 ×
B . . .Psn ×

B S→ G/Pν.

The fibres of this projection map surjectively onto the fibresof m.
Further, the study may be broken up into little pieces like this:

Ps1 ×
B . . .Psn ×

B S→ Ps1 ×
B . . .Psn−1 ×

B PsnS→ G/Pν.

So the trick is to show (cf. Lemma 6.1.7) thatψ : Ps ×
B S → PsS

does have the direct image property.
SayC is the cokernel of the mapOPsS → ψ∗OPs×BS. We need to

show thatH0(PsS,C ⊗ L(nν)) vanishes for largen. (That will show
C = 0 by ampleness, cf. [11, II 14.6 (4)].)
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Consider the following diagram

Ps ×
B S

π

��

ψ
// PsS ⊂ G/Pν

Ps/B

We have

H0(Ps×
B S, ψ∗L(nν)) = H0(Ps/B, π∗ψ

∗L(nν))

= Hs(H
0(S,L(nν))).

Therefore, we have a natural injective map

H0(PsS,L(nν)) → H0(Ps ×
B S, ψ∗L(nν)) = Hs(H

0(S,L(nν))).

By Exercise A.2.9 the proof of Proposition 6.1.9 will be finished once
we have the following lemma.

Lemma 6.2.2. For any B-invariant closed subset S of G/B, any simple63

reflection s andλ ∈ X(T)−, the natural map

H0(PsS,Lλ)→ Hs(H
0(S,Lλ))

is an isomorphism.

Proof. We will prove the lemma by induction on “size” ofS. Note that
if S is irreducible,i.e. whenS is a Schubert varietyXw, the imagePsS
is eitherXsw (when sw > w) or Xw. In either case the lemma is true.
Therefore we assume that the lemma is true if we substitute for S any of
its properB-invariant closed subvarieties.

Now we writeS asXw ∪ S′, and we may replaceS′ by S′ ∪ ∂Xw to
make sure we understandS′∩Xw well. IndeedS′∩Xw is now∂Xw (even
scheme theoretically by Ramanathan). And of course we mean thatXw,
S′ are really smaller thanS. By the Mayer-Vietoris Lemma 2.2.11 we
have an exact sequence 0→ H0(S,L) → H0(Xw,L) ⊕ H0(S′,L) →
H0(∂Xw,L) → 0. This gives an exact sequence 0→ Hs(H0(S,L)) →
Hs(H0(Xw,L)) ⊕ Hs(H0(S′,L))→ Hs(H0(∂Xw)).
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Thus what remains to be checked is thatPsS′ ∩ PsXw = Ps∂Xw, to
make the computation go. Ifsw < w, thenPs∂Xw = Xw = PsXw, and
Xw ⊂ PsS′.

If sw > w, thenPsXw = Xsw and we need that forz ∈ W, z , w,
z , sw, sz ≤ sw implies z < w. (The z to be taken are such that
BzB⊂ S′.) That is indeed so, and a reference is [10, 5.9]. (The reader
can take this as an exercise!) �

We still have to explain how to handle the details of the separability
issue. We do this in a series of exercises. The reader is assumed to
be familiar with standard coordinates in Bruhat cells, as explained for
instance in [34, Chapter 10].

Exercise 6.2.3.Let g : Z → X, f : X → Y be maps between varieties,
with g surjective, so thtf g is separable. Thenf is separable.

Exercise 6.2.4.More generally, letgi : Zi → X, i = 1, . . . n, f : X →
Y be maps between varieties, with∪igi(Zi) = X, so that eachf gi is
separable to its image. Thenf is separable to its image.

Exercise 6.2.5.Let f : X→ Y be a separablePµ-equivariant map. Then64

it induces a separable mapG×Pµ X→ G×Pµ Y.
(Hint: Use that the fibrationsG ×Pµ X → G/Pµ andG ×Pµ Y → G/Pµ
are locally trivial.)

Exercise 6.2.6.Let z, u be as in the proof of Proposition 6.1.8, with
P = Pλ and letC be a component ofS. Let Uz be the subgroup ofU
generated by the root groupsUα with Uαz∩P = (e). Thena 7→ azmaps
Uz isomorphically to its image inG/P. Furthermore the rule (a, b, c) 7→
(a, azbc) mapsUz× BuB×C separably to its image inUz×G/Pν.

Hint: ReplaceBuBandC by suitable subvarieties to make to make
the map (b, c) 7→ bcbirational towardsBuBCand use the automorphism
(a, b) 7→ (a, ab) of Uz×G/Pν.

Exercise 6.2.7.Now check that the map needed in the proof of Polo’s
conjecture is indeed separable.
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6.3 Variations and Questions

We start with an analogue of Donkin’s restriction conjecture. LetP be
a parabolic subgroup corresponding with a subsetI of the simple roots,
so thatP is generated byB and theU−α with α ∈ I . Let L be the Levi
factor ofP with Borel subgroupB∩ L generated byT and theUα with
α ∈ I .

Theorem 6.3.1.If M is a B-module with excellent filtration, thenresBB∩L
M is a B∩ L-module with excellent filtration.

Remark 6.3.2.Note that one may just as well restrict toB∩ L′, where
L′ is the commutator subgroup ofL : Any B∩ L-module breaks up into
a direct sum of weight spaces for the action of the center ofL. These
weight spaces areB∩ L′-modules and they have excellent filtration as
B∩ L′-modules if and only if they have one asB∩ L-modules. If you
wish this is so by definition.

Proof of theorem: We may assumeM is finite dimensional. Choose an
anti-dominant weightδ whose stabilizer inW is the Weyl groupW(L)
of L. Thusδ lies in the reflecting hyperplanes of the simple reflections
corresponding with the elements ofI , but not in the other reflecting hy-
perplanes (see [9, 1.12]). LetC be the closure of the anti-dominant65

chamber. Thenδ lies in the interior of∪w∈W(L)wC. As this union is a
cone, it follows that forn sufficiently largeµ+nδ is in the cone for every
weightµ of M. We proceed with suchn and studyM ⊗ knδ, which has
excellent filtration by Polo’s conjecture. Now for aB∩ L-module hav-
ing an excellent filtration it does not matter whether one twiss byδ : all
that changes is the action of the center ofL. So we may further assume
that all weights ofM lie in ∪w∈W(L)wC. In other words, in the excellent
filtration of M all the P(λ) that occur have theirλ in the W(L)-orbit of
an elementλ1 of X(T)−. Write P(λ) = Hs1Hs2 . . .Hsr (λ1) with the si

simple reflections that are inW(L). Noting thatPs/B = Ps ∩ L/B∩ L,
we get resBB∩L P(λ) = HL

s1
HL

s2
. . .HL

sr
(λ1), whereHL

si
is the analogue of

Hsi in the context ofL : HL
si
= indPs∩L

B∩L . So the restriction property holds
for all relevantP(λ). �
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Exercise 6.3.3.State and prove a similar result for relative Schubert fil-
trations.

Polo has introduced another notion, viz. that of having a Schubert
filtration. We first give the definition, then relate it to other concepts to
show that the analogue of Polo’s conjecture holds for Schubert filtrations
too. (This was proved by Polo under some restrictions.)

Definition 6.3.4.A finite dimensionalB-moduleM has aSchubert filtra-
tion if and only if there exists a filtration 0= F0 ⊂ F1 ⊂ . . . ⊂ Fr = M
by B-modules such thatFi/Fi−1 = H0(Si ,L(λi)) for someλi ∈ X(T)−.
Here theSi are unions of Schubert varieties andr ≥ 0.

In [27] Polo proves the following cohomological criterion for hav-
ing a Schubert filtration. Ifλ ∈ X(T)−, y ≤ w in W, put K(w, y, λ) =
kerP(wλ)→ P(yλ).

Theorem 6.3.5(Polo). Let M be a finite dimensional B-module. Then
M has a Schubert filtration if and only for allλ ∈ X(T)− and y≤ w in
W the module M⊗ K(w, y, λ) is B-acyclic.

From this it follows that if

0→ M′ → M → M′′ → 0

is exact, andM′, M have Schubert filtration, then so doesM′′. 66

Clearly, a module with Schubert filtration also has a filtration by
relative Schubert modules. Also, ifs is a simple reflection andM is a
module with Schubert filtration, thenM is acyclic for Hs and Hs(M)
has Schubert filtation. This follows by imitating the proof of Lemma
3.2.11 with the help of Lemma 6.2.2. From Lemma 6.2.2 one then
concludes that in fact a relative Schubert moduleM is already acyclic
for Hs. (Another way to see this is through the formulaHi

s(M) =
Hi(B,Hs(k[B]) ⊗ M), see [11, I 4.10]. Ask[B] is injective, Hs(k[B])
has excellent filtration andHs(k[B])⊗M is B-acyclic.) This will be used
in the proof of

Proposition 6.3.6. For a B-module M the following are equivalent.
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(i) M has a Schubert filtration.

(ii) The evaluation mapindG
B(M) → M is surjective, its kernel has a

relative Schubert filtration andindG
B(M) has a good filtration.

(iii) There is a module with good filtration N and a surjective B-modu-
le map N→ M whose kernel has relative Schubert filtration.

Proof. (Sketchy)
(i) ⇒ (ii). If the Schubert filtration ofM has just one layer, (ii)

follows easily. The general case then follows using acyclicity for induc-
tion.

(ii) ⇒ (iii). Obvious.
(iii) ⇒ (i). Let K be the kernel ofN → M. We must show that

M ⊗ K(w, y, λ) is B-acyclic. AsM has relative Schubert filtration, the
problem is to show thatH0(B,M ⊗ P(wλ)) → H0(B,M ⊗ P(yλ)) is sur-
jective. It suffices to show thatH0(B,N ⊗ P(wλ)) → H0(B,M ⊗ P(yλ))
is surjective. NowH0(B,N ⊗ P(wλ)) = H0(G, indG

B(N ⊗ P(wλ))) =
H0(G, indG

B(N ⊗ P(yλ))) = H0(B,N ⊗ P(yλ)). But K ⊗ P(yλ)) is B-
acyclic. �

Corollary 6.3.7. Let λ be a dominant or an anti-dominant weight and
let M have Schubert filtration. Then P(λ) ⊗ M has Schubert filtration.

Proof. Write M as a quotient of a module with good filtration by one
with relative Schubert filtration and use that the analogue of the corol-
lary holds for those concepts. �

Remark 6.3.8.Mathieu’s proof of this corollary (for anti-dominantλ)67

was similar to his proof of Polo’s conjecture. It did not relyon Polo’s
conjecture, like ours does.

We now list some open questions which are related to those an-
swered in these notes.

Question 1We know that excellent tensor excellent need not be excel-
lent, (see Example 5.3.1). No counterexamples are known to the follow-
ing question: Is excellent tensor excellent relative Schubert? That is, is
the tensor product of three modules with excellent filtration B-acyclic?
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Question 2Define thatM preserves excellenceif M⊗ excellent= ex-
cellent. Using the cohomological criteria one sees this is equivalent to
“preserving the existence of a relative Schubert filtration”. (It is equiv-
alent toM ⊗ P(λ) ⊗ Q(µ) beingB-acyclic for allλ, µ.) In particular, it
implies thatM⊗Q(ρ) = M⊗kρ has relative Schubert filtration. Mathieu
conjectures the converse:M preserves excellence ifM ⊗ kρ has relative
Schubert filtration.

Remark 6.3.9.There are many related questions one may ask. We do
not know for what tensor products one should expectB-acyclicity. It
undoubtedly has to do with the facets the weights of the socles lie on.





Chapter 7

Other Base Rings

In this chapter we state the earlier results in their proper generality: The 68

base ring need not be an algebraically closed field of characteristic p,
but may in fact be any commutative ring. In particular it may be the
complex number fieldC. While forG-modules there is nothing to prove
in that case, the results forB-modules are also of interest over fields of
characteristic 0.

7.1 The group schemes and the Schubert varieties
over the integers

Recall that over an algebraically closed fieldk we have been consider-
ing a connected reductive groupG together with a maximal torusT, a
Borel groupB and embeddings ofS L(2, k) or PS L(2, k) into G (one for
each simple root). Let us assume thatG is in fact semi-simple simply
connected, so that we are dealing with embeddingsφi : S L(2, k) → G.
Now Chevalley and Demazure have shown that corresponding tothis
data (G,T, B, {φi}i∈I ) overk one gets a group (affine group scheme)GZ
overZ with subgroups (closed subgroup schemes)TZ, BZ and embed-
dings ofS L(2)Z into GZ, such that the situation overk may be recovered
from that overZ by extension of scalars fromZ to k. One says thatGZ is
aZ-form of G. More generally, ifS is some structure overk, aZ-form

73
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SZ of S is an analogous structure overZ together with an isomorphism
betweenS and the structureSk obtained fromSZ by extension of scalars
from Z to k. The group schemeS L(2)Z is the affine algebraic group de-
fined overZ which represents the functorR 7→ S L(2,R). The torusTZ
is diagonalisable. (This means that we are discussing “split” reductive69

group schemes.) We writeG(R) for GZ(R), the group of points rational
over the ringR of the group schemeGZ. For each simple root we get a
homomorphismφi : S L(2,Z)→ G(Z).

Remark 7.1.1.We do not just try to descendG from k to Z, but G to-
gether withB, T and theφi . That is becauseG has too many automor-
phisms, so that there is no canonical “descent” for it. We have “rigid-
ified” by also giving the rest of the data. (Assume theZ-formsTZ and
S L(2)Z already chosen.) Thanks to the rigidification we get acanonical
map fromG(k) to the originalG.

Remark 7.1.2.Just as one has aZ-form for G, one also has one for
G/B. In fact for (G/B)Z one simply takesGZ/BZ. It is also straight-
forward to get analogues overZ of the Demazure resolutions and one
may simply define the Schubert variety (Xw)Z to be the image of (Ps1×

B

· · · ×B Psm/B)Z → (G/B)Z. Unions of Schubert varieties are defined
by intersecting their ideal sheafs. It is not obvious, but true, that these
constructions do indeed yieldZ-forms of Schubert varieties and their
unions respectively. In fact, if one looks in [11], one sees that to prove
that you really getZ-forms of Schubert varieties, you should first try to
understand theH0((Xw)Z,Ln) for high powersLn of some ample line
bundleL on (G/B)Z.

7.2 Forms of the Modules

Because of the technicalities indicated in 7.1.2 it is best to avoid the
Z-forms of Schubert varieties as much as possible when looking for Z-
forms P(λ)Z, Q(λ)Z of the B-modulesP(λ), Q(λ). One can then later
exploit the understanding of theP(λ)Z to get he grips with the (Xw)Z
and to make the passage to characteristic zero. (Passage to characteris-
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tic 0 uses semi-continuity and constructibility properties, cf. [6, 9.2.6.2,
9.4.2, 12.2.4], and generic flatness. See [11, II Chapter 14]and also
[17].) Fortunately there is an alternative, thanks to the Demazure res-
olution. Indeed one knows–but this is also not obvious–that(Xw)Z is
normal, and that leads to the alternative description ofH0((Xw)Z,L) as
being H0((Zi)Z, ψ∗iL), whereψi : (Zi)Z → (G/B)Z is the Demazure 70

resolution of (Xw)Z. This hopefully explains our clumsy looking con-
structions below.

Definition 7.2.1.For anyµ ∈ X(T), letZµ denote theBZ-module corre-
sponding with the characterµ. As aZ-module it is free of rank 1.

Given λ ∈ X(T) we choose simple reflectionss1, . . . , sm and anti-
dominantλ1 such thatλ = wλ1, wherew has reduced expressions1 . . .

sm. (We also takemminimal.) Then we define

P(λ)Z = indP1
B indP1

B . . . indPm
B Zλ1,

where we have simplified notation a bit by dropping some of thesub-
scriptsZ. (Everything is to be done overZ.) We will see later that
the notation is justified, by showing thatP(λ)Z does not depend on the
choices made here. It only depends onλ. Similarly, we defineQ(λ)Z
inductively:

Q(λ)Z = F1F2 . . .FmZλ1,

whereFi(M) := Zρ ⊗Z indPi
B (Z−siρ ⊗Z M). The reader will be asked later

to check that this is independent of the choices made.

Proposition 7.2.2(Base change). For any algebraically closed field k of
finite characteristic, P(λ)k is the dual Joseph module of highest weightλ

and Q(λ)k is the minimal reltive Schubert module of highest weightλ. In
other words, P(λ)Z and Q(λ)Z are indeedZ-forms of what the notation
suggests.

Proof. A universal coefficient theorem ([11, I 4.18]) says that we have
an exact sequence

0→ Ri indPZ
BZ

(N) ⊗ k→ Ri indPk
Bk

(Nk)→ TorZ(Ri+1 indPZ
BZ

(N), k)
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for any parabolicP and any flat (i.e. torsion free)Z-moduleN with BZ
action. So we can pass to formulas overk whenever the higher derived
functors of induction vanish. And they vanish overZ if they do over
all k. (Observe that a finitely generatedZ-moduleM is zero if all Mk

vanish.) Thus, from what we know in finite charcteristic, we may con-
clude that, in the notations of 7.2.1,P(λ)k = indP1

B indP1
B . . . indPm

B kλ1.
The result forP(λ)k thus follows from Proposition 2.2.5.

ForQ(λ) we argue similarly. So we must check overk that the higher71

derived functors of induction vanish at the relevant coefficients and that
kρ⊗indPs

B (k−sρ⊗Q(µ)) = Q(sµ) whens is a simple reflection withsµ > µ.
First let us consider an example. Takeµ = −ρ. ThenQ(−ρ) = k−ρ

andP(−sρ) is two-dimensional with weightsρ and−sρ, as the degree
of the line bundleL(−ρ) is 1 on Ps/B. So Q(−sρ) = k−sρ. In the
exact sequence 0→ Q(−sρ) → P(−sρ) → P(−ρ) → 0 we may
interpret Q(−sρ) as H0(Ps/B,I ⊗ L(−ρ)) whereI is the ideal sheaf
of the point B/B. We claim thatI, as aB-equivariant sheaf, is just
L(−sρ)[ρ]. (Notations as in 4.3.14.) Indeed, if one substitutes thatfor
I, one findsH0(Ps/B,I ⊗ L(−ρ)) = k−sρ. In view of the classification
of B-equivariant sheafs (see Lemma A.4.1), no other equivariant line
boundle gives that answer. Of course one may also just compute the
action onI in local co-ordinates.

More generally one thus wants to see that, ifsµ > µ, the evaluation
map indPs

B Q(µ) → Q(µ) is surjective and that its kernelH0(Ps/B,I ⊗
L(Q(µ))) equalsQ(sµ). (The surjectivity will yield the necessary van-
ishing of H1(Ps/B,I ⊗ L(Q(µ))).) Sayµ = zλ1, λ1 ∈ X(T)−, with z
minimal. Now if one has a section ofQ(µ), then that is a section of
P(µ) = H0(Xz,L(λ1)), which extends by zero to∂Xsz by the Mayer-
Vietoris Lemma 2.2.11. That section in turn extends to one ofP(sµ)
by Ramanathan (Proposition A.2.6), and if one views it as a section of
H0(Ps×

B Xz,L(λ1)), cf. Proposition 2.2.5, then it vanishes onH0(Ps×
B

∂Xz,L(λ1)) by construction. This shows the surjectivity. The kernelof
the map indPs

B Q(µ)→ Q(µ) consists of sections ofH0(Ps×
B Xz,L(λ1))

that vanish onB×B Xz∪ Ps×
B ∂Xz and that is just the same as sections

of P(sµ) that vanish on∂Xsz. �

It is worthwhile to make explicit what we have just shown. Onemay
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compare it also with Proposition 2.2.15 and 2.3.11.

Lemma 7.2.3. If µ ∈ X(T) and s is a simple reflection such that sµ > µ,
then the following sequence is exact:

0→ Q(sµ)→ Hs(Q(µ))
eval
−−−→ Q(µ)→ 0.

Exercise 7.2.4.Use the formulakρ ⊗ indPs
B (k−sρ ⊗ Q(µ)) = Q(sµ), valid

for sµ > µ by the above, to derive a “Demazure character formula” for
Q(λ), analogous to the one forP(λ) in [11, II Proposition 14.18].

Definition 7.2.5.Just like before in Definition 2.3.6 we say that aBZ- 72

module has excellent filtration if it has an exhaustive filtration whose
successive filter quotients are isomorphic to direct sums ofmodules
P(λ)Z. More generally, ifR is any commutative ring we say that aBR-
module has excellent filtration if it has an exhaustive filtration whose
successive filter quotients are isomorphic to direct sums ofmodules
P(λ)R.

Theorem 7.2.6.Let MZ be a BZ-module, finitely generated and flat as
a Z-module. Assume that for any algebraically closed field k of finite
characteristic the module Mk has excellent filtration. Then so does MZ.

Proof. First observe that the integersmλ in

ch(Mk) =
∑

mλ ch(P(λ)k)

do not depend on the characteristic ofk because the ch(P(λ)k) are lin-
early independent and do not depend on the characteristic. (They are
given by the Demazure character formula, see [11, II Proposition 14.18].
Note that ch(P(λ)k) = eλ plus terms with weights precedingλ in length-
height order.) Fixλ minimal in length-height order withmλ , 0. Then
dimk(HomBk(P(λ)k,Mk)) = mλ is independent of the characteristic, so
that we expect the injective map

HomBZ(P(λ)Z,MZ) ⊗ k→ HomBk(P(λ)k,Mk)

to be an isomorphism. To see this is indeed so, recall the corresponding
universal coefficient theorem ([11, I 4.18]) which says that we have an
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exact sequence

0→ Hi(BZ,N) ⊗ k→ Hi(Bk,Nk)→ TorZ(Hi+1(BZ,N), k)

for any flat (i.e. torsion free)Z-moduleN with BZ action.
So we wish to get hold of theZ-moduleHi(BZ,N), with

N = HomZ(P(λ)Z,MZ).

It is finitely generated by weight considerations as in [11, II Prop.
4.10]. (The weight spaces of theU-cohomology are finitely generated.)
Now

Hi(Bk,HomZ(P(λ)Z,MZ) ⊗ k) = Hi(Bk,Homk(P(λ)k,Mk))

= ExtiBk
(P(λ)k,Mk)

vanishes fori > 0 by the strong form of Polo’s theorem.
Next we consider the natural homomorphism

φ : P(λ)Z ⊗Z HomBZ(P(λ)Z,MZ))→ MZ.

When tensored withk one always gets an isomorphism from a direct
sum ofmλ copies ofP(λ)k with a submodule ofMk. By the elementary
divisors theorem this means the cokernel ofφ is torsion free and thus is73

a module as in the theorem, but with smaller rank. The theoremfollows
by induction on the rank. �

Corollary 7.2.7 (Uniqueness). Let MZ be a BZ-module, finitely gener-
ated and flat as aZ-module. Assume that for any algebraically closed
field k of finite characteristic the module Mk is the dual Joseph module
of highest weightλ. Then MZ is isomorphic with P(λ)Z.

Proof. In the excellent filtration ofMZ we must findP(λ)Z, and nothing
else, because of characters. (Compare the proof of the preceding theo-
rem.) Note that it follows that the choices made in the construction of
P(λ)Z do not make a difference. �

Exercise 7.2.8. (i) Show that ExtB(Q(λ),Q(µ)) vanishes whenλ = µ
and also when−λ precedes−µ in length-height order.
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(ii) Now formulate and prove a similar theorem and corollarywith
relative Schubert filtrations.

Theorem 7.2.9(Main Theorem; Mathieu [20]). Let R be a commutative
ring, M a BR-module with excellent filtration. Letλ ∈ X(T)−. Then
λZ ⊗Z M has excellent filtration.

Proof. As theP(µ)Z are flat, it suffices to takeR = Z. By the Local-
Global Theorem 7.2.6 it now follows from Polo’s Conjecture 6.2.1 as
proved in the previous chapter. �

In the same vain we get

Theorem 7.2.10(Restriction Theorem). Let R be a commutative ring,
M a BR-module with excellent filtration. Let LR be the Levi factor of
a parabolic, corresponding with a subset of the simple roots. Then
resBR

LR∩BR
M is an LR∩ BR-module with excellent filtration.

7.3 Passage to Characteristic 0
74

Many properties that have been proved with the help of Frobenius split-
tings easily extend to characteristic 0 by semi-continuityand constructi-
bility properties as developed in [6]. We will illustrate this with an ex-
ample. Observe however that in characteristic 0 our theory says nothing
interesting aboutG-modules because of complete reducibility. On the
other hand, the main theorem certainly gives non-obvious results forB-
modules. We do not even know a direct proof that, for anti-dominantλ
and dominantµ, the character ofλ ⊗ P(µ) is a sum of characters of dual
Joseph modules.

We know in finite characteristic that Schubert varieties arenormal.
As is well known this yields:

Lemma 7.3.1. Over the complex numbers Schubert varieties are also
normal.

Proof. Let w ∈W. Let (Xw)Z be defined as the closure ofBZwBZ/BZ in
GZ/BZ. In other words, the ideal sheaf of (Xw)Z consists of the functions
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that pull back to zero onBZwBZ. It is clear that (Xw)Z is flat overZ. (We
do not really need that much; generic flatness would have beenenough.)
Now (Xw)C is obtained by flat extension, and one sees it is the Schubert
variety we want to study. It is reduced, connected, irreducible of dimen-
sion l(w) and it containsBwB/B. So by [6, 9.2.6.2, 12.2.4] and common
sense (for the containment), there is a neighborhood of the generic point
of Spec(Z), such that the analogous properties hold for (Xw)k whenever
k is a geometric point ofV. (That is,k is algebraically closed and its im-
age in Spec(Z) lies in V.) But then for such a geometric point of finite
characteristic, (Xw)k cannot be anything else than a Schubert variety. So
it is normal. Now the same Theorem [6, 12.2.4] finishes the job. �

Lemma 7.3.2. The BC-module P(λ)C is indeed H0(Xw,Lλ1), with w ∈
W andλ1 anti-dominant such thatλ = wλ1.

Proof. As C is flat overZ, we haveP(λ)C = indP1
B indP2

B . . . indPm
B Cλ1.

So what we need is the analogue of Proposition 2.2.5. But hat depended
on normality of Schubert varieties, so it goes through. �



Appendix A

Geometry

In this appendix we give a more extensive discussion of Frobenius split- 75

ing of varieties. Further we tie up some loose ends that have more to do
with algebraic geometry than withB-modules.

The notion of Frobenius split varieties was introduced by V.Mehta
and A. Ramanathan in 1984. We refer the reader to [32] for historical
remarks. Indeed, much of the material in this appendix is copied from
this source.

A.1 Frobenius Splitting of Varieties

In this section and the next some proofs are sketchy or absent. For more
information see [32], [24], [31]. Letk be a algebraically closed field of
characteristicp > 0. Let A be anyk-algebra. In this situation, we have
the Frobenius ring homomorphisma 7→ ap of A. For a varietyX overk
we have the absolute Frobenius morphismF : X→ X which is induced
by the Frobenius ring homomorphism on any of its affine open subsets.
Note that the mapF is identity on the underlying topological space of
X and on functions it is thepth power map. By abuse of notation, we
also useF to denote thepth power mapF : OX → F∗OX. If G is a
coherent sheaf onX then the direct imageF∗G is the same asG as a sheaf
of abelian groups; only itsOX-module structure◦ is via the Frobenius
morphism,i.e. f ◦ g = f pg, of f ∈ OX andg ∈ F∗G.

81
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Definition A.1.1. 1. A variety X over k is called Frobenius split if
the pth power mapF : OX → F∗Ox has a splittingi.e. anOX-
module morphismφ : F∗OX → OX such that the compositeφF :76

OX → OX is identity.

2. If Y is a closed subvariety ofX with the ideal sheafI such that
φ(F∗I) = I then we sayY is compatibly split inX.

3. If Y1, . . . ,Yn are closed subvarieties which are all compatibly split
by the same Frobenius splitting ofX then we say that the closed
subvarietiesY1, . . . ,Yn aresimultaneously compatibly splitin X.

Exercise A.1.2.Check that these definitions agree with those given ear-
lier in 4.3.

The following remark was used by Ramanathan to study the scheme
theoretic intersection of two unions of Schubert varieties(cf. proof of
Mayer-Vietoris Lemma 2.2.11).

Remark A.1.3. If X is a scheme andF : X → X has a splitting thenX
is necessarily reduced. This is a consequence of the fact that the Frobe-
nius morphism is thepth power map on functions and if the scheme is
Frobenius split then this map is an injection.

A Frobenius splitting of a varietyX is thus an element in the set
of global sectionsH0(X, (F∗OX)∗) of the dual ofF∗OX. Let us assume
now thatX is a smooth variety of dimensionn. LetωX be its canonical
bundle. Using duality theory–an alternative will be discussed in section
A.3–we see that

H0(X, (F∗OX)∗) = Hn(X, F∗OX ⊗ ωX)

= Hn(X, F∗(OX ⊗ F∗ωX))

= F∗H
n(X, ωp

X)

= H0(X, ω1−p
X ).

The following proposition tells that a normal variety will be Frobe-
nius split if one of its desingularisation if Frobenius split.
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Remark A.1.4.Conversely, there are proofs of normality based on Fro-
benius splittings, using Proposition A.5.2. See [25].

Proposition A.1.5. Let f : Z → X be a morphism of algebraic vari-77

eties. Assume that f∗OZ = OX. (We will say that f has the direct image
property.) Then,

(i) If Z is Frobenius split then X is also Froenius split.

(ii) If Y is a closed subvariety of Z which is compatibly split in Z then
its image f(Y) is compatibly split in X.

Proof. (i) For an open subsetU of X the splitting gives an element
of EndF(OZ( f −1(U))) that sends the function 1 to itself.

(ii) Let I ⊂ OZ be the ideal sheaf ofY. Then asf∗OZ = OX, the ideal
sheaf of f (Y) is f∗I. Now it is an easy exercise to see that the
“pushed” splitting ofX splits f (Y).

�

Lemma A.1.6. If a splitting of the variety X is compatible with the
subvarieties Y1 and Y2 then it is also compatible with Y1∩Y2 and Y1∪Y2.

It is compatible with a subvariety Y if and only if it is compatible
with each irreducible component of Y.

Proof. For the first part one uses thatIY1∩Y2 = IY1 + IY2 andIY1∪Y2 =

IY1∩IY2
. For the second one shows that a splittingσ is compatible with

a subvarietyZ if and only if there is an open subsetU such thatU ∩ Z
is dense inZ and such thatσ|U is compatible withU ∩ Z. �

Now we give a criterion for a section ofω1−p
X of a smooth variety to

be a splitting.

Proposition A.1.7. Let Z be a smooth projective variety of dimension n.
Let Z1, . . . ,Zn be smooth irreducible subvarieties of codimension1 such
that the scheme theoretic intersection Zi1∩ . . .∩Zir is smooth irreducible
and of dimension n− r for all 1 ≤ i1 < . . . < iR ≤ n. If there exists a
section s∈ H0(Z, ω−1

X ) such thatdiv (s), the divisor of zeroes of s, is
Z1 + · · · + Zn + D where D is an effective divisor not passing through
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the point P= Z1 ∩ . . . ∩ Zn then the sectionσ = sp−1 of ω1−p
X gives, by

duality, a splitting of Z (or a non-zero multiple of one) which makes all
the intersections Zi1 ∩ . . . ∩ Zir compatibly split.

Note that an elementσ of EndF(X) is a splitting if and only ifσ(1) =78

1. If X is projective, then in any caseσ(1) is a global function, hence
constant. Thus it suffices to check its value at a single point. In the case
of the proposition one uses the pointP and makes a computation in local
coordinates.

LetG be a connected simply connected semi-simple algebraic group
overk. (Or let it be as in 2.2.8.) LetT be a maximal torus,B ⊃ T a Borel
subgroup andW = N(T)/T the Weyl group ofG. Let w0 ∈ W denote
the longest element of the Weyl group.

The homogeneous spaceG/B is a projective variety. A closure of
a B-orbit in G/B is called a Schubert variety. TheB-orbits inG/B are
indexed in a natural way by elements ofW. If P ⊃ B is a parabolic sub-
group ofG, then there are only finitely manyB-orbits in the projective
varietyG/P. We refer the reader to Kempf’s paper ([14]), for basic facts
about the geometry of Schubert varieties.

Let D denote the divisor sum of all codimension one Schubert vari-
eties ofG/B. Let D̃ denote the sum ofw0 translates of codimension one
Schubert varieties. Then the divisorD+ D̃ gives the anti-canonical bun-
dleω−1

G/B of G/B. It is the image of a divisor in a Demazure resolution
that satisfies the criterion A.1.7 for a splitting and by pushing forward
with Lemma?? one gets a splitting which simultaneously splits all the
Schubert varieties ofG/B. Therefore we have the following theorem.

Theorem A.1.8. Let G be connected simply connected semi-simple al-
gebraic group. Let P be a parabolic subgroup of G. Then the projective
variety G/P is Frobenius split. Further, all the Schubert varieties of
G/P are simultaneously compatibly split.

Proof. One uses Lemma A.1.6 to deal with Schubert varieties of higher
codimension. �

Theorem A.1.9. 1. The product G/B×G/B is Frobenius split. Fur-
ther the diagonal∆ = {(x, x) | x ∈ G/B} is compatibly split in
G/B×G/B.
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2. The variety G×B (G/B×G/B) is Frobenius split. Further all the
double Schubert varieties are simultaneously compatibly split.

This will be proved below (Propositions A.4.9 and A.4.8).

A.2 Applications of Frobenius Splitting
79

In this section we prove certain vanishing theorems for the Frobenius
split varietyX.

First some remarks on the direct and inverse images of sheaves
under the absolute Frobenius morphismF. LetM be a sheaf ofOX-
modules onX. Recall that the direct image sheafF∗M is the same as
M as a sheaf of abelian groups, but theOX-module structure is changed
to f ◦ m = f pm, for f ∈ OX and m ∈ M. As a way of notation,
we will identify M andF∗M as sets. The pullbackF∗M is by defini-
tionM ⊗OX F∗O′X. Here the prime has been put in to denote that the
OX-module structure is given by the usual multiplication on the second
factor, i.e. f(m ⊗ g) = f m ⊗ g = m ⊗ f g (and notm ⊗ f pg). The
sheafM ⊗ F∗OX with its OX-module structure coming fromM, i.e.
f (m⊗ g) = f m⊗ g = m⊗ f pg, is by definitionF∗F∗M. This gives us
the projection formula:F∗F∗M =M⊗OX F∗OX.

If we consider a line bundleL on X, we get a natural isomorphism
F∗L ≈ Lp. Tensoring the Frobenius exact sequence

0→ OX → F∗OX → C → 0

byL and taking the cohomology, we get a natural map

Hi(X,L)→ Hi(X,L ⊗ F∗OX) = Hi(X, F∗F
∗L) = Hi(X, F,Lp).

Proposition A.2.1. Let X be a projective variety which is Frobenius
split. Let Y be a closed subvariety of X which is compatibly split. LetL
be a line bundle on X such that Hi(X,Lm) = Hi(Y,Lm) = 0 for some i
and for all large m. Then Hi(X,L) = 0 = Hi(Y,L).

Proof. We have a natural mapHi(X,L) → Hi(X, F∗Lp). Further asF
is affine (i.e. inverse image of an affine open set is affine), it commutes
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with the cohomology. ThusHi(X, F∗Lp) = Hi(X,Lp). Now as the
sequence

0→ L → L ⊗ F∗OX → L ⊗ C → 0

is split exact this morphism is injective. Therefore, by iteration, we
have an injective morphismHi(X,L) → Hi(X,Lpν ) for all ν. Thus
Hi(X,Lpν) = 0 implies thatHi(X,L) = 0 = Hi(Y,L). �

The above proposition together with Serre vanishing theorem gives80

us the following corollary.

Corollary A.2.2. LetL be an ample line bundle on X. If X is Frobenius
split, then Hi(X,L) = 0 for all i > 0. Further, if Y ⊂ X is compatibly
split, Hi(Y,L) = 0 and the restriction map H0(X,L) → H0(Y,L) is
surjective.

Proof. To see the surjectivity of the restriction map, we consider

H0(X,L)

��

// H0(X,Lpν)

��

H0(Y,L) // H0(Y,Lpν)

As the horizontal arrows are split, it is enough to see the surjectivity
of the global sections for a high power ofL. Thus the result. �

For Schubert varieties Ramanathan proved something betterthan
what one can achieve with the above. He also deals with base point free
line bundles onG/B that are not ample. So he deals with theL(λ) with
λ anti-dominant, but not regular anti-dominant. We need thisstronger
result. Therefore let us now discuss a more refined notion of splitting
(although we have no other application than this stronger result of Ra-
manathan).

Definition A.2.3. Let L be a line bundle onX ands : OX → L a non-
zero section ofL with zeroes precisely onD.
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1. We sayX is FrobeniusD-split (or less precisely FrobeniusL-
split) if there existsψ : F∗L → OX such that the compositeφ =
ψF∗(s)

F∗OX

F∗(s) ##GG
GG

GG
GG

G

φ
// OX

F∗L
ψ

<<zzzzzzzz

is a Frobenius splitting ofX.

2. If Y is a closed subvariety ofX such that

(i) no irreducible component ofY is contained in the support
suppD,

(ii) φ gives a compatible splitting ofY in X, 81

then we sayY is compatiblyD-split in X.

3. If all subvarietiesY1, . . . ,Yr are compatiblyD-split by the same
D-splitting of X then we say thatY1, . . . ,Yr are simultaneously
compatiblyD-split in X.

Remark A.2.4. 1. We note that ifX is Frobenius split, it is also
ω

1−p
X -split, as any section which gives a splitting vanishes on a

divisor whose associated line bundle isω1−p
X .

2. Let D′ be another Cartier divisor with 0≤ D′ ≤ D. Then if X is
D-split it is alsoD′-split.

We now see a consequence ofD-splittings.

Proposition A.2.5. If X isL-split withL ample andM is a line bundle
without base points (i.e. for every x∈ X, there exists s∈ H0(X,M) such
that s(x) , 0) then Hi(X,M) = 0 for i > 0. If further Y is compatiblyL-
split then Hi(Y,M) = 0 for i > 0 and the restriction map H0(X,M) →
H0(Y,M) is surjective.

For the proof we refer the reader to Ramanathan [32].
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Let us now consider the case whenX is the projective homogeneous
spaceG/B. In this case the divisor (p − 1)(D + D̃) gives a splitting.
The line bundle corresponding to the divisorD is ample, in fact it is the
line bundle given by the character−ρ. Also asG/B is homogeneous,
any homogeneous line bundle with a non-zero section is base point free.
Therefore we get the following proposition.

Proposition A.2.6(Ramanathan, [31, Theorem 3]). LetL be a line bun-
dle on G/B such that H0(G/B,L) , 0. Then Hi(X,L) = 0 for any union
of Schubert varieties X and for all i> 0. Further the restriction map
Hi(G/B,L)→ Hi(X,L) is surjective for all i.

Remark A.2.7.The caseX = G/B is known as Kempf’s vanishing the-
orem.

Remark A.2.8.Let S be a union of product of Schubert varieties. Con-82

sider the fibration

G×B S

π

��
G/B

It is locally trivial in the Zariski topology (Exercise 1.2.1), so the
structure sheaf ofG×B S is certainly flat over the baseG/B. The propo-
sition above gives us thatRiπ∗O = 0 for i > 0 becauseRiπ∗O is a vector
bundle onG/B with fibre isomorphic withHi(S,O) which vanishes as
O is base point free onG/B. (Use [7, Grauert’s corollary to Semiconti-
nuity].) Similarly, if P, Q are parabolics andL is an ample line bundle
(or one without base points) onG×B (G/P×G/Q) then for any unionS
of products of Schubert varieties inG/P×G/Q the higherRi f∗(L|G×BS)
vanish, wheref : G ×B S → G/B. SoHi(G/B, f∗(L|G×BS)) = Hi(G ×B

S,L|G×BS) by Leray ([7, III, Ex. 8.1]).

Exercise A.2.9.Let P be a parabolic and letS be a union of Schubert
varieties inG/P. Argue as in the remark above to show that ifL is a line
bundle onG/P, thenHi(S,L) = Hi(π−1(S), π∗L), with π : G/B→ G/P.
Next assumeL is base point free and letS1 be a union of Schubert
varieties inG/B with π(S1) = S. Show thatH0(S1, π

∗L) = H0(S,L).
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A.3 Cartier Operators and Splittings

We now give another approach to the isomorphismEndF(X) ≈ ω
1−p
X .

It does not make reference to duality theory, but only to the Cartier op-
erator. With this description it will be quite feasible to make explicit
computations with splittings in local coordinates, if the splittings are
given as sections ofω1−p

X .
Let X be a variety of dimensionn overk, with k algebraically closed

of characteristicp, as usual. We consider the DeRham complex

0→ Ω1
X → · · · → Ω

n
X → 0

with as differentiald the usual exterior differentiation. Because this dif-
ferential is notOX-linear, we twist theOX-module structure onΩi

X by
putting f ∗ ω = f pω for a sectionf ∈ H0(U,OX) and a differential i-
form ω ∈ H0(U,Ωi

X). With this twisted module structure the DeRham
complex is a complex of coherentOX-modules, and the exterior algebra83

Ω∗X = ⊕
n
i=0Ω

i
X is a differential gradedOX-algebra. We denote its coho-

mology sheafsH i
dR. So if U is an affine open subset, thenH0(U,H i

dR)
consists of all closed differentiali-forms onU modulo the exact ones.
Now consider the mapγ : f 7→ class off p−1d f from OX toH1

dR.

Lemma A.3.1. γ is a derivation and thus induces anOX-algebra ho-
momorphism c: Ω∗X → H

∗
dR.

Remark A.3.2.Note that one should put the ordinaryOX-module struc-
ture onΩ∗X here, not the twisted one that is used forH∗dR.

Proof of Lemma A.3.1: With

Φ(X,Y) = ((X + Y)p − Xp − Yp)/p ∈ Z[X,Y]

we get

( f + g)p−1d( f + g) = f p−1d f + gp−1dg+ dΦ( f , g)

( f g)p−1d( f g) = g ∗ f p−1d f + f ∗ gp−1dg,
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where the first equality is a consequence of the fact that

p(X + Y)p−1d(X + Y) = pXp−1dX+ pYp−1dY+ pdΦ(X,Y)

in the torsion freeZ-moduleΩ1
Z[X,Y]. �

Proposition A.3.3. If X is smooth, the homomorphism c is bijective. The
inverse map C: H∗dR→ Ω

∗
X is called the Cartier operator (cf. [26]).

Proof. To check that a map of coherent sheafs is an isomorphism it suf-
fices to check that one gets an isomorphism after passing to the comple-
tion at an arbitrary closed point. But then we are simply dealing with
the DeRham complex for a power series ring inn variables overk and
everything can be made very explicity (exercise). �

Remark A.3.4.Here are some formulas satisfied by the Cartier opera-
tor, in sloppy notation. In view of these formulas the connection with
Frobenius splittings is not surprising.

(i) C( f pτ) = fC(τ)84

(ii) C(dτ) = 0

(iii) C(dlog f ) = dlog f , where dlogf stands for (1/ f )d f if f is in-
vertible (or inverted).

(iv) C(ξ ∧ τ) = C(ξ) ∧C(τ)

Here f is a function andξ, τ are forms.

Proposition A.3.5. If X is smooth, we have a natural isomorphism

EndF(X) ≈ ω1−p
X = Hom(ωp

X, ωX),

whereωX is the canonical line bundleΩn
X. If τ is a local generator of

ωX, f a local section ofOX, φ a local homomorphismωp
X → ωX, then

the corresponding local sectionσ of EndF(X) is defined byσ( f )τ =
C(class ofφ( fτ⊗p)).

Proof. One checks thatC (class ofφ( fτ⊗p))/τ does not depend on the
choice ofτ, so thatσ depends only onφ. To see that the mapφ 7→ σ

defines an isomorphism of line bundles we may argue as in the previous
proof. �
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A.4 Canonical splitting of the Demazure resolution

We wish to studyEndF(Zn,Dn) for an arbitrary sequencesi1, . . . , sin of
simple reflections. In particular, we wish to prove Proposition 4.3.15.
We start with the problem of recognizingB-equivariant bundles onZn.

Lemma A.4.1. Let X be a connected projective variety with B action
and x an invariant point. LetE, F be B-equivariant line bundles that
are isomorphic as line bundles. If there fibres over x are B-equivariantly
isomorphic, then the line bundles themselves are B-equivariantly iso-
morphic.

Proof. Tensoring withE∗ we reduce to the case thatE, F are trivial as
line bundles. Then

H0(X,E) ≈ H0({x},E) ≈ H0({x},F ) ≈ H0(X,E)

equivariantly. But the global sections generate a trivial sheaf every- 85

where, so theB action on such a sheaf is determined by what it does
on global sections. �

This lemma takes care of recognizing theB action, so let us now
look at the Picard group ofZn.

Lemma A.4.2. The isomorphism type of a line bundle on Zn is deter-
mined exactly by the degrees of the restrictions to the n embeddedP1’s
of the form B×B · · · ×B Pi ×

B · · · ×B B/B.

Proof. This is clear forZn,n ≈ P
1, so we work our way back toZn by

means of the fibrationsπ j : Z j,n = P j ×
B P j+1 . . .Pn/B → P j/B ≈ P1

with fibre Z j+1,n. Use [7, Ch. II, Prop. 6.5] with as divisor the fibre of
the point “at infinity” si j of P j/B and observe that the complement of
this fibre is a direct product ofZ j+1,n with an affine line. Apply [7, Ch.
II, Prop. 6.6] to this complement. �

Corollary A.4.3. Under the standing hypothesis 2.2.8 all line bundles
on G/B come from G-equivariant ones. The equivariant structure is
unique up to a twist by a character of G. In particular, if G is its own
commutator subgroup then the equivariant structure is unique.
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Proof. The regular representation ofG restricts to a faithful representa-
tion of its commutator group, so the fundamental weights of the commu-
tator group are restrictions of weights ofB. Therefore the set of degrees
of restrictions to the projective linesPs/B(s ∈ S) runs through all pos-
sibilities as we vary the line bundle over allL(λ), λ ∈ X(T). And a line
bundle is clearly determined by its pullback to a Demazure resolution of
G/B. To finish, argue as in the proof of Lemma A.4.1. �

Exercise A.4.4.Let P be a parabolic andX a space withB action. Show
that everyP-equivariant vector bundle onP×B X is of the formP×BV

withV a B-equivariant bundle onX.

The following lemma may be used to pass betweenEndF(Zn,Dn)
andEndF(Zn) ⊗ Ip−1

Dn
.

Lemma A.4.5. Let A be a domain of characteristic p and( f ) a principal86

ideal in it. ThenEndF(A, ( f )) = ( f )p−1 ∗ EndF(A).

Proof. That the left-hand side contains the right-hand side is clear. Let
σ ∈ EndF(A, ( f )). Thenσ( f a) = fτ(a) defines a mapτ from A to itself.
One checks thatτ ∈ EndF(A) and thatfσ = f ( f p−1 ∗ τ). �

Proposition A.4.6. The sheafEndF(Zn,Dn) is B-equivariantly isomor-
phic withϕ∗L((1− p)p)[(p− 1)ρ], so that ifϕ : Zn→ G/B is surjective,
EndF(Zn,Dn) is B-equivariantly isomorphic with

k(p−1)ρ ⊗ H0(G/B,L((1− p)ρ)).

Proof. By Lemmas A.4.5 and A.3.5 all we have to show for the first
statement is thatωZn(−Dn) � ϕ∗L(ρ)[−ρ], equivariantly. We argue again
by induction, using the fibrationπ j : Z j,n = P j ×

B P j+1 . . .Pn/B →
P j/B ≈ P1 with fibre Z j+1,n. Let D j,n denote the analogue ofDn in
Z j,n. ThusD j,n is a divisor withn− j + 1 components intersecting in a
point x. The required result is easy forj = n. Indeed ifα is the simple
root corresponding withPn, one gets a local coordinatet on Pn/B ≈ P1

from t 7→ x−α(t)B/B and the stalk at the “origin”x of ωZn,n(−Dn,n) is
generated bydt/t on whichT acts trivially. Further the degree of the
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line bundle is−1, so by our recognition Lemma A.4.1 we must have
ωZn,n(−Dn,n) � ϕ∗n,nL(ρ)[−ρ], equivariantly.

Now assume such a result forωZ j+1,n(−D j+1,n) and considerωZ j,n

(−D j,n). It is the tensor product of two line bundles. The first one,
sayR, is the relative canonical bundleωZ j,n/P1

= ∧n− jΩ j,n/P1, twisted by

L(P j ×
B D j+1,n). The second is the pullback ofωP1(−{x}), with x “as

above”. Let us studyR through its restrictions to the various copies of
P1, cf. Lemmas A.4.1 and A.4.2. By base change for relative differen-
tials, see [7, II, 8.2], the restriction ofωZ j,n/P1

to B×BZ j+1,n is justωZ j+1,n.
SoR restricts toωZ j+1,n(−D j+1,n), which we know. We also need the re-
striction ofR to P j/B. Now that is aP j-equivariant sheaf whose fibre
at x has trivialT action, so it must be the structure sheaf onP j/B. The
sheafωP1(−{x}) we have already found to be the pullback fromG/B of
L(ρ)[−ρ], and its pullback toZ j,n is easy to understand in terms of its re-
strictions to the relevantP1’s. So we have all the ingredients to conclude
ωZ j,n(−D j,n) � ϕ∗L(ρ)[−ρ], equivariantly. To prove the last statement
of the proposition, use Exercise A.4.4 and the fibrationsπ j to se that
H0(ϕ∗L((1− p)ρ)) = Hs1 ◦ · · · ◦ Hsn((1− p)ρ). �

Proposition A.4.7(Proposition 4.3.17). There existsσ ∈ EndF(Zn,Dn) 87

which is a canonical splitting.

Proof. We have already described in 4.3.17 how one proves this with
the criterion A.1.7. Let us tell it a little differently now. Let

s ∈ H0(G/B,L((1− p)ρ)[(p− 1)ρ])

be a weight vector of weight zero. It does not vanish atB/B. We wish to
show that its pullback definesσn ∈ EndF(Zn,Dn) with σn(1) , 0. AsZn

is complete,σn(1) is a constnat function. Call the constantcn. We argue
by induction, the casen = 0 being easy. Now an exercise in chasing
duality, say with the Cartier operator, shows that the restriction ofσ j,n(1)
to Z j+1,n is justσ j+1,n(1) in hopefully self-explanatory notation. (Use
reasonable identifications, choose a local coordinatet on P j/B which
vanishes atB/B and use that the fibrationZ j,n → P j/B is trivial in a
neighborhood ofB/B.) Soc j,n = c j+1,n, which is non-zero by inductive
assumption. This proves that up to a scalar multiple we have produced a
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splitting, and by construction it has weight 0 so that it mustbe canonical
because of the position of the weights of EndF(ZN,DN). (See proof of
4.3.17). �

Proposition A.4.8(A.1.9 part. 2.). Let P and Q be parabolic subgroups.
There is a canonical splitting on G×B (G/P×G/Q) which is compatible
with all double Schubert varieties.

Proof. Choose a reduced expression of a minimal representative ofw0

modulo the Weyl group ofP. Let it be followed by a reduced expression
for w0 and let that finally be followed by a reduced expression for a min-
imal representative ofw0 modulo the Weyl group ofQ. Together that is
a long expression based on which one gets aZn which maps birationally
ontoG ×P G ×B G/Q by “multiplication”. This proper birational map
has the direct image property because the target is normal. One now
takes the canonical splitting of A.4.7. It is compatible with all unions of
intersections of components ofDn.

Next note thatG ×B (G/P ×G/Q)
φ
≈G ×P G ×B G/Q. The mapφ is

defined byφ(g, x, y) = (gx, x−1, y) (cf. 1.2.2). The image ofG ×B (Xv ×

Xw) underφ is G ×P (Pv−1B) ×B Xw, which is clearly the image of an
intersection of components ofDn. So the splitting is compatible with
it. �

We are also ready to prove

Proposition A.4.9(A.1.9 part 1.). The product G/B×G/B is Frobenius88

split. Further the diagonal∆ = {(x, x)|x ∈ G/B} is compatibly split in
G/B×G/B.

Proof. TakeQ = G, P = B in the previous proof and recall (1.2.2) that

G×BG/B
φ
≈G/B×G/Bwith φ(g, h) = (g, gh). We get a splitting which is

compatible withG×B B/B, and that subspace is mapped to the diagonal
by φ. �
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A.5 Two Technical Results

Sublemma A.5.1. Let X, Y be two quasi-projective schemes over an
algebraically closed field k of characteristic p> 0. Let f : X → Y be
a bijective proper morphism. Then for every line bundleL on Y and for
s∈ H0(X, f ∗(L)) we have sp

n
∈ image(H0(Y,Lpn

)) for some large n.

Proof. As f is proper and quasi-finite, it is finite and affine. We may as-
sumeX andY to be reduced, in which caseH0(Y,Ln) may be identified
with its image. Then the problem is local onY. Thus we may assume
thatY andX are affine and that the line bundles are trivial. We identify
them with the structure sheafs. SayY = Spec(A), X = Spec(B), A ⊂ B.
As B is finite overA, we have a bound on the dimension ofB ⊗φ k for
any pointφ : A→ k. We may replaceB by BpA. Repeating that if nec-
essary we may assume that for all pointsφ the local artin algebraB⊗φ k
is reduced. But then it must simply bek, ask is algebraically closed.
By Nakayama’s Lemma the mapA→ B is now surjective at all points,
hence surjective. �

Proposition A.5.2. Let f : X → Y be a surjective, separable, proper
morphism between two varieties, with connected fibres. We assume that
Y is Frobenius split. Then f∗OX = OY.

Proof. By Stein factorisation we may assumef to be finite. Then it is
actually a bijection, so that our earlier Lemma A.5.1 applies. We may
assume again thatX = Spec(B), Y = Spec(A), A ⊂ B and we have to
show thatA is p-root closed inB.

First consider a smooth pointx of X, such that the tangent map is89

surjective atx and f (x) is smooth inY. As the dimensions are the same
at x and f (x), the surjectivity of the tangent map implies an “analytic”
isomorphismÔx ≈ Ô f (x). Thus f (x) is outside the support of theA-
moduleB/A. Therefore there isc ∈ A which annihilates that module–
one saysc is in the conductor ofB overA–such thatc( f (x)) , 0.

Return to the question ofp-root closure. Letb ∈ B with bp ∈ A
and letσ : A → A be the splitting. Forc in the conductor we havecb,
c, bp ∈ A, socσ(bp) = σ(cpbp) = cb. Sob equalsσ(bp) at all points
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wherec does not vanish. Varyingc we get a dense set of points whereb
equalsσ(bp), sob ∈ σ(A) ⊂ A. �
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généralisées, Ann. Sci.École Norm. Super. 7 (1974), 53-88.

[4] S. Donkin, Rational Representations of Algebraic Groups: tensor
products and filtrations, Lecture Notes in Mathematics 1140, Berlin:
Springer 1985.

[5] S. Donkin, Good filtrations of rational modules for reductive
groups, Proc. Symp. in Pure Math. 47 (1987), 69-80.

[6] A. Grothendieck and J. Dieudonn’e, EGA IV (3), Publ. Math. IHES
28 (1966).

[7] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathemat-
ics, Berlin: Springer 1977.

[8] J.E. Humphreys, Introduction to Lie Algebras and Representation
Theory, Graduate Texts in Mathematics, Berlin: Springer 1972.

[9] J.E. Humphreys, Linear Algebraic Groups, Graduate Texts in Math-
ematics, Berlin: Springer 1975.

97



98 BIBLIOGRAPHY

[10] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cam-
bridge Studies in Advanced Math. 29, Cambridge: Cambridge Uni-
versity Press 1990.

[11] J.-C. Jantzen, Representations of Algebraic Groups, Pure and Ap-91

plied Mathematics v. 131, Boston: Academic Press 1987.

[12] A. Joseph, On the Demazure character formula, Ann. Sci.École
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(, ) W-invariant inner product, 4
w′ ≤ w w′ precedesw in the Bruhat order,i.e. Xw′ ⊂ Xw,

17
sµ > µ (ρ − sρ, sµ − µ) > 0, 76
µ1 anti-dominant weight inW-orbit of µ, 18
ν0 dominant weight inW-orbit of ν, 17
indG

P ◦ indP
B composite functor, 11

a ∗ σ b 7→ σ(a · b) whena is ring element, 41
g ∗ σ b 7→ g · σ(g−1 · a) wheng is group element, 41
m∗L pullback ofL, see [7], 14
m∗O direct image ofO, 14
M∗ dual ofM, 26
(F∗OX)∗ Hom(F∗OX,OX), 44
G×B X total space of associated fibre bundle, 7
L|X restriction of bundle to subspaceX, 11
A<λ ⊕iAi

<iλ whenA is graded, 43
A≤λ also in graded case:⊕iAi

≤iλ, 37
M<λ largestB-submodule ofM that is inC<λ, 24
M≤R largestB-submodule with weights of length≤ R,

10
M≤λ largestB-submodule ofM that is inC≤λ, 24
Mµ weight space of weightµ, 2, 10
GZ Z-form of G, 73
B Borel subgroup, 2
BwB double coset, 4
CB the category of rationalB-modules, 10
CG the category of rationalG-modules, 9
C≤λ category ofB-modules whose weights precedeλ,

24
C<λ subcategory with weights strictly precedingλ, 23
C≤R subcategory ofCB with length of weights≤ R, 10
C<R subcategory ofCB with length of weights< R, 24
ch(Mk) formal character ofM, 77
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D̃ j irreducible divisor inZn, 46
Dn divisor with normal crossing inZn, 46
EndF(R) space of Frobenius-linear endomorphisms ofR,

41
EndF(R, I ) subspace of those compatible withI , 41
EndF(X) global sections ofEndF(X), 44
EndF(X,Y) global sectons ofEndF(X,Y), 44
Exti i-th Ext functor [23, Ch. III], 25
ExtiB(M,N) Ext group in the categoryCB, 12
Ext1B,λ Ext in C≤l(λ), 26
EndF(X) sheaf of Frobenius-linear endomorphisms, 44
EndF(X,Y) subsheaf of those compatible withY, 44
F absolute Frobenius morphism, 43
F∗OX the direct image ofOX underF, 44
Ga additive group, 1
Gm multiplicative group, 1
GL(n, k) general linear group, 1
G algebraic group, 1

reductive connected, 2
simply connected too, 15

H0(B,M) submodule ofM consisting of vectors fixed byB,
10

H0(X,L) global sections overX of L orL|X, 11, 13
Hi(B,M) i-th cohomology ofM in CB ([11]), 26
Hw Joseph’s functorM 7→ H0(Xw,L(M)), 13
Hw(λ) Hw(kλ), 15
IS ideal sheaf ofS, 16
indG

B induction functorCB→ CG, 11
k algebraically closed field, 1

of characteristicp > 0, 35
k[B] the ring of regular functions onB, 24
kλ one-dimensionalB-module of weightλ, 15
K(w, y, λ) kerP(wλ)→ P(yλ), 68
K(

∑
1,

∑
2, λ, µ, ν) ker : H0(

∑
1,L(λ, µ, ν))→ H0(

∑
2,L(λ, µ, ν)), 52

l(w) length ofw, 13
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L(M) vector bundleG×B M overG/B with fibre M, 8
L(λ) L(kλ), 15
L(λ, µ, ν) line bundleL(λ) × L(µ) × L(ν), 52
n has no fixed value, 46
O(n) power of twisting sheaf [7], 28
OX structure sheaf ofX, 14
p the characteristic, 35
Pn projectiven-space [7], 27
P(µ) dual Joseph module with soclekµ, 18
Pi minimal parabolicBsi B∪ B, 4
Ps minimal parabolicBsB∪ B, 5
Pµ parabolic withL(µ) very ample onG/Pµ, 52
Q(µ) minimal relative Schubert module with soclekµ,

19
Q(S,S′, λ) ker(res :H0(S,L(λ)) → H0(S′,L(λ))), 19
RnF n-th derived functor ofF, 27
Ru(G) unipotent radical ofG, 2
resGH restriction functorCG → CH, 10
S L(n, k) special linear group, 1
socM socle ofM, usually asB-module, 10
si i-th simple reflection in a sequence, 3
T maximal torus, contained inB, 4
U unipotent radical ofB, 5
Uα root subgroup{xα(t) | t ∈ k}, 42
W Weyl group, 3
w0 longest element, 7
X(G) character group ofG, 2
X(T)+ the set of dominant weights inX(T), 17
X(T)− the set of anti-dominant weights inX(T), 9
Xw the Schubert varietyBwB/B, 6
∂Xw complement of the open Bruhat cell inXw, 19
xβ isomorphismGa→ Uβ, 4
Z j Demazure resolution, 6
ρ half sum of the roots ofB, 28∑

1 union of double Schubert varieties, 52
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ωX Ωn
X whereX is smooth of dimensionn, 46

Ω
q
X sheaf ofq-forms onX, 46



Index: First some notions for which we refer to textbooks, as
indicated.

acyclic for a functor [11], 27

birational map [9], 6
Bruhat order [34], 16

canonical line bundle [7], 46
complete variety [9], 3

derived functor [7], 26
direct image [7], 44
divisor [7], 6
duality [7], 82
Dynkin diagram [9], 4

equivariant [9], 16
Ext functor [23; Ch III], 25

geometric vector bundle [7; II
Exercise 5.18], 46

highest weight theory [8], 9

ideal sheaf [7], 17
injective (module) [11], 24

Levi factor [9], 50

rational map [7], 40
reduced expression [9], 5
regular function [9], 24
regular representation [11], 92

semi-invariant [9], 18
simple reflection [9], 4
simple root [9], 4
simply connected [9], 16

unipotent [9], 2
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ample, 40
anti-dominant, 16
associated fibre bundle, 7
associated vector bundle, 8

B-acyclic, 30
base point, 16
Borel Fixed Point Theorem, 3
Borel subgroup, 3
boundary of Schubert veriety, 20
Bruhat cell, 5
Bruhat decomposition, 5

canonical splitting, 42
Cartan subgroup, 3
Cartier operator, 90
character, 2
character (formal), 77
cohomological criterion

for excellent filtration, 31
for good filtration, 37
for rel. Schubert filtration,

34
compatibly split, 41

simultaneously, 82
subvariety, 45

Coxeter group, 4

Demazure character formula, 77
Demazure resolutions, 6
direct image property, 83
direct limit, 12
dominant, 18
Donkin’s conjecture, 49

double Schubert variety, 51
dual Joseph module, 20
dual Weyl module, 37

equivariant vector bundle, 46
evaluation map, 11
excellent filtration, 21
extremal weight, 18

Frobenius reciprocity, 12
Frobenius split variety, 44
Frobenius-linear, 41

geometric description of extre-
mal weight, 18

good filtration, 36
graded splitting, 42
Grothendieck spectral sequence,

27

indecomposable, 10
induction functor, 11
injective hull, 26
irreducible representation, 10

Joseph’s conjecture, 57
Joseph’s functor

and reduced expression, 15
Joseph’s functors, 13

Kempf vanishing, 88

length-height filtration, 32
length-height order, 23

Main Theorem, 79
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Mayer-Vietoris Lemma, 17
minimal parabolic, 5
module (rational), 2
multiplicity of a weight, 22

p-root closure, 38
parabolic, 3
Polo’s theorem, 26

strong form, 30

radical, 2
rational representation, 1
reductive, 2
regular anti-dominant, 57
relative Schubert filtration, 21
relative Schubert module, 20
Restriction Conjecture, 50
restriction functor, 10
Restriction Theorem, 79

Schubert divisor, 5
Schubert filtration, 69
Schubert variety, 5

in G/Q, 6
semi-simple, 10
semi-simple group, 2
separable map, 63
simple module, 10
socle, 10
splitting, 41
standard modification of Kempf,

6
subalgebra of socles, 38

tensor identity for induction, 12
torus, 2
transitivity of induction, 12

very ample, 40

weight space, 11
weight vector, 2
weights of representation, 2
Weyl group, 3

Z-form, 73
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