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Preface

This monograph is meant to be an appendix to the Chapterswd V4l
of the famous book of E.C. TITCHMARSH (second edition) reds
and edited by D.R. HEATH-BROWN. Recently there are a few Isook
on these topics but | am sure that the material presentedsitdok is
new and that this book is not a repetition. There are a few rapb
theorems which are new, especially the asymptotic formsild a» oo
for

min max|(Z(1 + it))3, z = €°,

LI=H  tel
whereg is a real constant and the minimum is taken asns over alk-
intervals (of fixed lengtiH) contained in [20). | hope that the style of
writing motivates the topic and is also readable. Many ofttipécs deal
with the joint work of mine with Professor R. BALASUBRAMANIN
to whom my indebtedness is due. | owe a lot to the famous book of
E.C. TITCHMARCH mentioned already, to the twelve lecturesRA-
MANUJAN by G.H. HARDY, Distribution of prime numbers by A.E.
INGHAM, Riemann zeta-function by K. CHANDRASEKHARAN, and
Topics in Multiplicative Number Theory by H.L. MONTGOMERRe-
cently | am also indebted to the book Arithmetical functidms K.
CHANDRASEKHARAN, Sieve methods by H.-E.
RICHERT, A method in the theory of exponential sums by M. LA
and to the two books Riemann zeta-function and Mean valugbeof
Riemann zeta-function by A. I\. | owe a lot (by way of their encour-
agement at all stages of my work) to Professors P.X. GALLARHE
MOTOHASHI, E. BOMBIERI, H.L. MONTGOMERY, D.R. HEATH-
BROWN, H.-E. RICHERT, M. JUTILA, K. CHANDRASEKHARAN,
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Vi Preface

A. BAKER, FRS, A. IVIC and M.N. HUXLEY. Particular mention has
to be made of Professor M. JUTILA for his many encouragintgfet
and his help in various ways.

| have to give an excuse for referring to too many papers of my-
self and that of R. BALASUBRAMANIAN. The excuse is that | deal
with an appendix to Chapters VII and VIII of the famous bookeo€.
TITCHMARSH as mentioned already and that | can do betteigest
(by way of a good exposition when writing about our work).

| acknowledge some important help given to me by Dr. A. SANKA-
RANARAYANAN and Sri K. SOUNDARARAJAN.

Next | am indebted to Professor S. RAMANAN for agreeing topub
lish this material in the Lecture Notes series of TIFR.

Lastly | offer my sincere thanks to Sri D.B. SAWANT for his excel-
lent typing of the manuscript in TEX.

K. RAMACHANDRA



Notation

Except very rarely, the notation is standard. The let@rg with or
without sufixes denote constants. Sometimes we AsB, D, E, also
for constants.T andH will be real variables in the domaih > H >
CloglogT. T will be suficiently large. Sometimes we u3e> H >

C. In Chapter Il we give explicit constants everywhere with tiope
that the results will be useful in many situations. Howeverhave not
attempted to get economical constants. The same remarkeuaref
weak Titchmarsh series with which we deal in Chapter Ill. Tdteers

w, z and s will be reserved for complex variables. Very often we write
W= uUu+iv,z= X+Iiy ands = o + it. But some times there may be
exceptions (for example in Chapter VII) in the notation v, X, y, o
andt. The letterk will be often real. Sometimes it is a constant and
sometimes it is a variable depending on the context. Therletvill
denote an arbitrary real number. (In the chapter on intrmityecemarks
as well as in Chapter \j will denote the least upper bound of the real

parts of the zeros af(s). Of course as is usudls) = § nS(c > 1)

n=1
and its analytic continuations). We write Expfor €*. Other standard
notation used is as follows:

(1) f(X) ~ g(x) asx — X meansf(x)(g(x))"* — 1 asx — Xo, where
Xo IS possiblyco.

(2) f(x) = O(g(x)) with g(x) > 0 meang f(x)(g(x))"| does not ex-
ceed a constant independentxdf the range in context.

(3) f(X) < g(x) meansf(x) = O(g(x)) and f(x) > g(x) will mean the

Vii



viii Notation
same ag)(xX) = O(f(x)) and f(X) =< g(x) will mean bothf(x) «
g(x) andg(x) < f(x).
(4) f(x) = Q(g(x)) will mean f(x)(g(X))~* does not tend to zero.
F(X) = Q.(g(x)) will mean limsupf(X)(g(x))™) > 0. f(X) =
Q_(g(x)) will mean liminf(f(x)(g(x))™*) < 0. Also f(X) = Q.

(9(x)) will mean bothf(x) = Q,(9(X)) and f(x) = Q_(g(x)). In
theseQ results in the text the range in context isxas» co.

(5) The letters:, 6,  will denote small positive constants.
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Introductory Remarks

Riemann zeta-functioti(s)(s = o + it) is defined ino- > 1 by

(9= n-5[= []a- p-S)-l} (1)
n=1 p
where the product in the parenthesis is over all primes. tbatity
connecting the series ifl(1) with the product is the wellsndEuler
product. Euler knew very much more about the serieElin (1)krésv
things like

n

+1
| du| <« du
(9=, |- 5*2[@
n=1 1

n n

n+1
du

-s
n 0

1
+ a, (O' > O) (2)

[y

n= n

Also by the repetition of the trick by which we obtaindd (2)rfr the
series in[(l) we can prove that the series[in (2) is an entinetion
(a fact known to Euler). Moreover he knew certainly boundstfe
absolute value of the series i (2) and its analytic contionain the
form

1Z(s) — s%ll <n (It + 10)f“+2 (c=-AA=0) 3)

and also things like
1Z(s) - 3%1 | < (t| + 1007 log(t| + 10), O<o<1). (4)

1



2 Introductory Remarks

Euler knew even the functional equation &) (see A. Weil, [104],
p. 261-266). However the question of the distribution of zkeos of
Z(s) was raised by Riemann who initiated some important rebearc
Riemann conjectured that

(9% 0.0 > ) ®

and from the functional equation it was an obvious dedudtiom this
that

{(9) =0(0< o <1)implieso = % (6)

This is the famous Riemann conjecture. This being an irgldetprob-
lem at present (it has withstood the attacks of many imporizathe-
maticians like G.H. Hardy for more than a century) we ask: Wira
some important consequences[df (5)? Can we prove any of thém w
out assumind{5)? | mention four outstanding unsolved gmklwhich
follow as consequencesd (5).

First ConsequenceFor every fixede > 0, we have
1 ...
{(§+It)t ¢ > 0ast > . @)
Remark 1. In fact J.E. Littlewood proved thdfl(5) implies things like

1 10logt
{(E + It) EXp(—Iog Iogt) — 0 ast — oo. (8)

" . . 89
Remark 2. The latest unconditional result il (7) is with> 57 due
to M.N. Huxley. The truth of[{[7) for every > 0 is called Lindelof
hypothesis.

Second ConsequenceConsider the rectangle

1
{c>a,0<t<T} (Esasl,Tzlo). 9



Introductory Remarks 3

The number of zeros af(s) in this rectangle does not exceed
C(E)T(2+s)(l—a') (IOg T)lOO’ (10)

for everye > 0, provided we assumEl (7). (Consequences like this were
deduced from[{]7) for the first time by A.E. Ingham). The undbadal

21 2 .
resultse = 37 and = were obtained by A.E. Ingham, H.L. Mont3

gomery and M.N. Huxley respectively. The truth Bfl(10) foegwe > 0
is called Density hypothesis.

Third Consequence.Letp; =2, p2 = 3,p3 = 5,... be the sequence of
all primes. Then A.E. Ingham deduced frdml(10) that

1 €
Prs1 — Pn < C(e)pZ” (11)

holds for everye > 0 (C(e) may be diferent from the one i .{10)). His
unconditional resulé = % in (T1) does not need the functional equation
or the approximate functional equation. However all thaulteswith
€< % which followed later need the functional equation. M.N. Hayss
resulte = % in (Id) implies an asymptotic formula for the number of
primes in &, x + h) whereh = x* with 1 > 112 D.R. Heath-Brown has
an asymptotic formula even whédn= x1lz(log x)~1 and slightly better
results. All these results depend crucially on the deefdtr@gs) of I.M.
Vinogradov. The latest unconditional result InJ(11) is wéth- Ziz due

to S.T. Lou and Q. Yao, two Chinese students of H. Halberstahe
unconditional improvements from > =5 to e > 55 are very dificult
and involve ideas of H. lwaniec, M. Jutila and D.R. Heath:samo

Fourth Consequence.The consequencgl(7) & (5) implies
(o +it)t™¢ - 0ast — oo (12)

for all fixed o in % < o < 1 and for every fixed > 0. (Foro- = 1 this is
trivially true).

Remark 1.1t is a pity that we do not know the truth di_{12) for any
a, (% <0< 1).



4 Introductory Remarks

Remark 2. The most valuable and the mosttdult result in the whole
of the theory of the Riemann zeta-function in the directioifl@) is a
result due to .M. Vinogradov (for reference see A.A. Kanbiss paper
[511]) which states that fot < o < 1 we have

9~ 5| < @u+10f loggu+10) (13

whereA is a certain positive constant. Actually Vinogradov proteat
in (I3) RHS can be replaced by

3 A
((|t| + 102 4 10) log(lt| + 10).

The inequality [IB) implies that

(X) - li x = O(XExp(-c(log )3 (log logx)~5)), (14)
X
wherer(X) = > 1,li x = IO% andc is a positive numerical constant.
pP<X 2

This is the best known result to day as regards upper bountlssf@HS
of (I4). Riemann’s hypothesiBl(5) implies in an easy way L6 of
@ is O(x% logx). It must be mentioned th&d(x Exp(—c(log x)%)) is
an easy result which follows fro{lL3) with-1¢ in place of (1- o)2,
which is a very trivial result. The inequalitf_{{L3) also irngd that for
t > 200,

Z(1+it) = O((log t)%(log Iogt)%). (15)

Besiglles proving[{d3) Vinogradov proved that[nl(15) we cawvpditog
logt)3. As a hybrid of this result and{IL3) H.-E. Richert proved tihat
R.H.S. in [IB) can be replaced by

3
O((t] + 10)19°E)2 (jog(t] + 10))%). (16)
See also the paper]96] by K. Ramachandra and A. Sankarameiay

RemarkZB.AIthough the best known bound far(1 + it)|(t = 1000) is
O((logt)3), due to .M. Vinogradov, we have still a long way to go since



Introductory Remarks 5

one can deduce in a simple way the bo@itbg logt) from (8). In fact
to deduce this result it is enough to assume that the least lggundy
for the real parts of zeros @{(s) is < 1. The only information abowt
available today i% < 6 < 1. An excellent reference article for many of
the facts mentioned above is A.A. Karatsuba [51].

It must be mentioned that the results mentioned above seiwewm-
tivation for many result proved in the theory &(). Howeverl concen-
trate on what | have called Titchmarsh’'s phenomenon (b¢heorems
and mean-value theorems). | will also consider a few otheblpms
like the proof (due to J.B. Conrey, A. Ghosh and S.M. Gone#) 4ts)
has infinity of simple zeros ibh > 1. In short this monograph is meant
to be a short appendix to the famous book of E.C. Titchmarsthen
Riemann zeta-function. | do not deal with complicated rsslike N.
Levinson’s result on the critical zeros, and the results o$é&lberg and
D.R. Heath-Brown on Levinson’s simple zeros, R. Balasulamgian’s
result on the mean square |§(% + it)| and its latest improvements by
D.R. Heath-Brown and M.N. Huxely, D.R. Heath-Brown'’s rés the
mean fourth power and the mean twelfth power, the improvewighe
error them (in the fourth power mean result of D.R. HeathvBrpby
N. Zavorotnyi, H.lwaniec’s contribution to the fourth avaeifth power
moments and M. Jutila’s approach to these and more genetalepns,
the contribution to higher power moments on the lines- 3 due to
S. Graham, the results of N.V. Kuznetsov (to be corrected bM&-
tohashi), and the results of J.L. Hafner, A. Ivi€ and Y. Mwehi. In
short it is meant to be a readable appendix which is not togtioated.
Before closing the introduction | would like to mention inreeection
with the second consequence that after Ingham’s contoibati= % a
good amount of later researches were inspired by the condlitresult
(depending on Lindeldf hypothesis) that for every fixesd 0 and every
fixedo > 0, there holds

lim T™°N (§ +(5,T) =0
Tooo 4

whereN(a, T) is the number of zeros df(s) in the rectangle[{9). This
conditional result is due to G. Halasz and P. Turan. In ection with 6



6 Introductory Remarks

the second and the third consequences we have to mentioricdthe p
neering works of F. Carleson and G. Hoheisel. In connectidh tle
fourth consequence we have to mention the pioneering wdrkao.
Hardy, J.E. Littlewood and H. Weyl. For these we refer to thorknof
A.A. Karatsuba cited above. Regarding the prime numberrémas of
Hadamard and de la Vallée Poussin we refer the reader oagetaghe
work of Karatsuba.

Notes at the end of Introductory remarks

The equatior{8) was proved with some unspecified constantaae
of 10 by J.E. Littlewood. By using the method of A. Selberg,Ra-
machandra and A. Sankaranarayanan have shown that it iblpos
replace 10 by a constant which is less tlg%r(see [94]).

The inequality [[ID) was first proved with = 2 by F. Carleson.
This result and the earlier results in the direction[afl (18 do G.H.
Hardy, J.E. Littlewood and (independently by) H. Weyl wesed by G.
Hoheisel to prove (A1) with some< % The earlier results just referred
to, implied that the RHS ir.{]14) could be replaced by

O(xExp(-c+/log xloglogx))

due to J.E. Littlewood which is deep but not veryfdient from the
results of J. Hadamard and de la Vallée Poussin namely

O(xExp(-c+logx)).

For these results see E.C. Titchmarsh, [100]. Hereafter iWeefier to
this as Titchmarsh’s book. By looking at the proof of the Hssof G.H.
Hardy, J.E. Littlewood, H. Weyl and also the great improvataeby
I.M. Vinogradov it will be clear that we do not need machinékg the
functional equation or the approximate functional equmatiothe proof

of things like [11) with some < % (see K. Ramachandréd,_164]. The
remark there in beforg6 is not used in an essential way) and in fact with
€ = %. Among other important reference works are H.L. Montgomery
[66], H.E. Richert[[99], M. Jutilal[47], K. Chandrasekhar@l], [28],

Y. Motohashi [60] and A. lvic[[4R],[[43]. One may also refer tioe

booklet by K. Ramachandra]65].



Chapter 1

Some Preliminaries

1.1 Some Convexity Principles

Suppose (s) is an analytic function o = o-+it defined in the rectangle7
R={a<o<b tg-H<t<ty+H}

wherea andb are constants satisfyirgy< b. We assume thaf(s)] < M
(with M > 2; sometimes we assume implicitly thislt exceeds a large
positive constant) througholR. A simple method of obtaining better
upper bounds foff (g + itg)] with a < o9 < b is to apply maximum
modulus principle to

f(so+WEVXY  (wheresy = og + ito)

over the rectangle with the sides Re- a — g, Rew = b — o, Imw =
+H and choose& in an optimal way. We may also consider

3 1 W2 WdW
f(sO)—Zniff(smw)e X<

over the anti-clockwise boundary of the same rectangle. efioms
after doing this we may consider upper bounds for



8 Some Preliminaries

A better kernel in place o is Exp@?") wheren is any positive odd

: . . 2\ .
integer or still better Exé(sm %) ) with bigger constants in place of

1000 if necessary. g is close toa or b we get a factor fronﬁ which
is very big. However in some cases we may avoid this big famyap-
pealing to a two variable convexity theorem of R.M. Gabrielall these
cases, to get worthwhile results it is necessary to ve loglogM
(with a large implied constant). In this section we presegeiaeral the-
orem (without the requiremeri > loglogM) which enables one to
prove, for instance, things like

1 . .
f |§(— +ito+ |v) [Kdv > t5¢
M<D  \2

wherek ande are any two positive constants abddepends only ok
ande. The general theorem also gives

f 12(1 + ito + iv)[<dv > (logtg) .
M<D

In a later chapter we will show that here the LHS is actuallyD.
We do not know how to prove the same for the previous integrkdss
D > loglogty (when we can prove a better bound as we shall see in a
later chapter). First we will be interested in obtaining ésveounds for

()= | If(o +ito+iv)[dv (1.1.1)
|v|£

wherek > 0 is any real constant.

Theorem 1.1.1. Suppose there exists a constant d such thatdhi< b
and that in d< o < b, |[f(9)] is bounded both below and above by
B and S~ whereg < 1is a positive constant (it is enough to assume
this condition for [o”) with H replaced by an arbitrary quantity lying
between%H and H in place otf(9)[). Lete > 0 be any constant. Then
for H = D where D is a certain positive constant depending only on
€, k,a,b,d andg we have, for &< o < d,

(o) > M.

Next we prove
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Theorem 1.1.2.Let Ay, o1 andé be any three constants satisfying A
0,a< o1 <b,6>0andH=¢. Then fore = o1 + (log M)~ (whatever
be the sign), we have,

1f (o1 + ito)l< < M~ 4+ I (o) log M

and
f ey +ito + iu)|“du < M~ + I (o) log log M.
|U|S§

We deduce TheorenisT11.1 dnd 11.1.2 by two general theorems on
convexity which we now proceed to prove. First of all a remalolout
the real constarit > 0. We will (for technical simplicity) assume that
k is an integer. To prove the general case we have to proceee as w
do here, but we have to use the Riemann mapping theorem (@iith z
cancelling factorsg(w))¥ suitably; see Lemmds B B, 4 §1L.3). Ifk
is an integer we can considé(s) in place of (f(s))* without loss of

generality.
Leta<og<o1 <02<b 0<DZ<H,s =o01+itgand
let P denote the contoulP;P,P3P4P; whereP; = —(o1 — o) — iD,

P,=05-01-ID,P3=03—-01+iD andP4 = —(0'1—0'0)+iD. Let
W = U+ iv be a complex variable. We have

2nif(sy) = f f(s + W)X""dWW whereX > 0. 1.1.2)
P

We put
X=ExXp(Y+Up+Ux+...+U) (2.12.3)

whereY > 0 and (i1, Uy, ... Ur) is any point belonging to the- dimen-
sional cube [0C] x [0,C] x ... x [0,C], C being a positive constant to
be chosen later. The contoBrconsists of the two vertical linesVy
andV, respectively given by,4P, and P,P3; and two horizontal lines
Q1, — Q> respectively given by, P, andP3P,4. Averaging the equation
[TI2) over the cube we get

C Cc

277if(31):C_rf...fff(31+W)XWWdeLh...dur. (1.1.4)
P

0 0
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OverVy andV, we do not do the averaging. But ov@f andQ, we do
average and replace the integrand by its absolute value bt&@o

2t(s0) < BPY(o - 00) [ 11+ W

+EXp((Y+CI’)(O'2—O'1))j\: |f(51+W)dWW|

r+1

+ Tor PP+ C){orz — o)) max [1(sy +wW)l)(orz = o)

and thus

127 f(s)l < (Exp(=Y(o1 — 00)))lo
+ (Exp(Cr(o2 — 1)) EXp(Y(o2 — 1)) (2 + M™A)

2 Ex - '
- 2M(rz - o) Exp(Y(rz - o)) ZEPEZZTD 1)
whereA is any positive constant and
IO:f|f(sl+w)d—W| andl, = |f(sl+w)d—W|. (1.1.6)
W A w
Vo

ChoosingY to equalise the first two terms on the RHS oI (1.1.5), i.e.
chooseY by

Exp(Y(o2 — 00)) = (I2+I—OM—A) Exp(-Cr(o2 - 1))

lo (02—01)(o2-00) ™t
|2 + M_A)

Exp(~Cr(o2 — 01)*(02 — 070) 2)

Exp(Y (02— 1)) = (

and noting that

(02— 01) = (02— 1) (02— d0) = (02 — 01)(01 — o) (o2 — 070) T,
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we obtain

|27Tf(sl)| < 2{|8-2_0-1(|2 + M—A)O'l—UO}(O—Z_U'O)il
{Exp(c((r2 —0)(01 - Uo))}r

02—00

lo (02-01)(02-00)
+ 2M (O‘ 2 — O 0) ( )

|2 + M-A
2 C(oz - o1)(o1— 00) ||
{ﬁ Exp( p—— )} . 2.2.7)

Collecting we state the following convexity theorem.

Theorem 1.1.3.Suppose () is an analytic function of s o+it defined

in the rectangle R{a< o <b,tp—H <t <ty+ H} where aand b are
constants with a< b. Let the maximum of (s)| taken over R be M.
Leta< og < 01 < 02 < bandlet A be any large positive constant. Let
r be any positive integef) < D < Hand § = o3 + itg. Then for any 11
positive constant C, we have,

|27 f(sp)l < 2{|g'2—a'1(|2 + M_A)O'l—O'o}(O_Z—O'O)_l
{Exp(c((r2 —01)(o1 = 00) )}r

02— 00
D #\ (2—01)(o2—00) 1
+ 2MA*2(05 — o) [2(1 + (Iog( )) ) X
g1 — 00
r
o iExp Clo2 - o1)(o1 = 00) (1.1.8)
CD 02— 00
where
lg = f(oo+it +iv—.‘ 1.1.9
0 jl:/lsD (oo +ito )(ro_(rl_HV 1.1.9)
and
) ) dv
Izzf f(o-2+|to+|v)—_‘, (1.1.10)
M<D og2—01+1IV

and we have writteix)* = max(Q x) for any real number x.
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Proof. We have used, + M™ > M and ¢ — o1)(o2 — o0) L < 1
and ifD > o1 — 00,

1-00 D
|Os|v|f Lszm{f dv +f d—"}.
M<D 100 =01+ 1V 0 0O1—00 o1-oo V
This completes the proof of Theordm 111.3. o

In (L.I.8) we replacéy by to + @ and integrate with respect toin
the rangde| < D, where now D < H. LHS in nowJ(o1) defined by

J(O’l) =2r |f(0’1 + ito + Ia/)lda (1.1.11)
la|<D

Next

f (Iaz—ol(lz + M_A)o—l_go)(az—ao)‘l
lal<D 0

(02—01)(02—00) 7t (1-00)(o2—00) !
< (f Ioda) (f (I + M—A)da) .
lal<D lal<D

Now

f loda = f f f(op + ito + i + iv)ﬂ‘
lal<D V<D Jla|<D og—01+1IV
< (f If (00 + ito + iv)|dv)f L‘
v|<2D M<D 00— 01 + IV
< 2(1+ (Iog( D )) )w (1.1.12)
g1—00
12 where
I(og) = f [f (oo + itg + iV)|dv. (1.1.13)
v<2D

Proceeding similarly, with

l(02) = fw . If (00 + ito + iv)ldV (1.1.14)
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we have

*

jl:xlsD(Iz + M Ade < 2DMA + 2(1+ (Iog( )I(a’z).

(1.1.15)

02—-01
Thus we have the following corollary.

Theorem 1.1.4.In addition to the conditions of Theordm 1]1.3,2Et <
H and let Jo1), I(0g) and I(o2) be defined by[{I.TA11) {1T.T113) and
(CI13). Then, we have,

D #\\ (02—01)(o2—00) ™2
2nd(o1) < 4{| (00) (1 + (Iog( )) )} X
01— 00

D * (o1-00)(o2~00) L
x{l(o-z)(1+(log(o_2_o_l)) )+ M‘A} X

{EXP(C(O'z —o1)(o1 - UO))}r + AMA2(0rp — )

02—00

D #y (02-01)(02—00) 2
{i-+ (oo 25 X

2 C(oz - o1)(o1— 00) ||
X{E)EXIO( 02— 00 )} '

Proof of Theorem (1.1.1). In Theoren_L.Tl4 replace D by /R and
assume that (#r1) is bounded below (bgﬂD) and I(o») is bounded
above bys1D (these conditions are implied by the conditions of The-
orem[LTl). PutC= 1, r = [elogM] + 1 and D = Exp(e1E)
where E is a large constant. Lety, o1 and o> be constants satisfy-
inga< o =0 < 01 < 02 < b. We see that the second term on the
RHS of [LL16) isc M~A so that

1 D\ zoz-oo)t
=BD < J(o1) S4{|(0'0) (1+(Iog( )) )} "
5 g1— 00

D #\\ (01-00)(o2—00)~?
<o (o (ool 2 ) X
02 —01

(1.1.16)
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x {Exp(((rz Vi ”0))} . (1.1.17)

02—00

This proves Theoreri (1.1.1).

Proof of Theorem (1.1.2). In theoremd_I. 113 arld_1.1.4 chodBe=

5 (6 any positive constantyy, — o1 = (logM)™%, 02 = o, 0 = &,

r = [log M], C = a large constant times*. We obtain the first part of
TheorenZI.T]2 namely the sign. To obtain the second part we argue
as in the proof of TheoremBE{1.1.3) add (1.1.4) but now with

1 _wadw

along the same contou® with the sameX as before (not&X™" in the
present integrand). The rest of the details are similar.

1.2 A Lemma in Complex Function Theory

In this section we prove

Theorem 1.2.1.Let n be any positive integer, B 0 arbitrary, r > 0
arbitrary. Let f(2) be analytic in|Z < r and let the maximum df (2)|
in this disc be< M. Let0 < x <1, C = Bnx, [p = Vr2-x2, and
@ = 2(C~tsinhC + coshC). Then (for any fixed combination of siga}
we have

1(0)l < (O‘E‘;"O)(Z—f0 [ f(x+ iy>|dy)

+ (é)n {1+ + e tsin? (2w (1.2.1)

Putting x= 0 we obtain the following

Corollary. We have

1£(0) < (@)(2—1r ﬂ |f(iy)|dy) + (é)n M. (1.2.2)
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In particular with B= 6r—, M > 3, A> 1, and n= the integer part of
(A+1)logM + 1, we have

[f(0) < El((A+ 1)logM + 1)(i fr |f(iy)|dy) +MA (1.2.3)
T 2r J_,

Remark 1.The equations[{1.2.1)[(1.2.2) arld (112.3) are statements
about|f(2)]. Itis possible to extend{1.2.1) and herice (1.2.2) AndJy.2.

to more general functions thaf(z)| with some other constants in place

of a, 2, 2 (For example tof ()| wherek > 0 is any real number).

' nm

Remark 2. The Corollary shows that

[f(0)| < (24Alog M) (2—1r f |f(iy)|dy) +MA (1.2.4)

We ask the question “Can we replace Mgby a term of smaller or-
der say by+/logM (or omit it altogether) at the cost of increasing the
constant 2A?”. The answer is no. See the Remiark & [4.

Remark 3. The method of proof is nearly explained§iiL.. As for the
applications we can state for example the following rediét.3 < H <

T. Divide the intervalT, T + H into intervalsl of lengthr each. We
can assume & r < 1 and omit a small bit at one of the ends. Then for
any integer constamt > 1, (the result is also true Kis real by Theorem
IZ22), we have

T+H+r
E max| }+it |k<<M f }+it
: il ¢ 2 r ¢ 2
T-r
(2.2.5)

the implied constant being absolute. We may retain only ena bn
the LHS of [I.Zb) and if we know for example that RHS Rf (1) 35
< HTE€ then it would follow that

1\ 1. (logH
“(z) < H'L‘L(m)- (12.6)
Since what we want holds fé# = T3 andk = 2 and any (0 < r < 1)

we obtain the known resuit(3) < % due to H. Weyl, G.H. Hardy and
J.E. Littlewood. Similar remarks apply tofunctions and so on.

k
dt+ r IHTAK
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Remark 4. The results of this section as well as some of the results
section§ [ are improvements and generalizations of some lemmas
in Ivi€'s book (see page 172 of this book. Here the resultscem
Dirichlet series with a functional equation and are of a &dawature).

Remark 5. In L Z34) we have corresponding results wit(iy)| on the
RHS replaced byf (x + iy)|. These follow from Theorein1.2.1.

Proof of the Theorem 1.2.1.Let P, Q, R, S denote the pointsri,ri,r
and-r respectively. Then we begin with

Lemma 1. Let X = Exp(y + ... + Uy) where B> 0 is arbitrary and
O<uj<Bforj=12...,n Then

1 XW— XW

Xw Xw
+L5Pf(w)de+j;RQf(w)wa} (1.2.7)

where the integrations are respectively along the straligiet PQ, along
the semi-circular portion QS P of the cirche| = r, and along the semi-
circular portion PRQ of the circléw| =r.

Proof. With an understanding of the paths of integration similathi®
ones explained in the statement of the lemma we have by Cattbley
orem that the integral olf(W)XWW overPQS Pis 2rif (0) provided we de-
form the contour td® Q'S P whereP’ Q' is parallel toPQ and is close
to PQ (and to the right of it) and the poinf® and @’ lie on the circle
lw| = r. Also with the same modification the integral ba'w)x—VIIW over
PRQPis zero. These remarks complete the proof of the lemma. o

Lemma 2. Denote by {4, I, |3 the integrals appearing in Lemrilh 1. Let
(du) denote the element of volume;dw, ... du, of the box8B defined
byO<u;<B(i=12...n). Then

L(%('z + |3)) (du)

B—n

2 n
< (ﬁ) M. (1.2.8)
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Proof. Trivial since|XV] < 1 and|X™"| < 1 on QS Pand PRQrespec-
tively. O

Lemma 3. Let w = x + iy where x and y are any real numbers, antb
0<L=logX < Bn. Then

WL _ ~wL 1
£ -° I« E(eC —e%)+ef+e€ (1.2.9)

wL
where C= Bn|x|.

Proof. LHS in the lemma is

|{exL(cosm_) +isingL)) - e % (cosyL) — i sinL))} (wl_)—1|
gb-ext sin(yL)
xL yL ’

1 c
< Z(€
_C(

<

cosfL)| + (€ + e
|cosL)| + (€ + &™)

—e9)+ef +eC.
This completes the proof of the lemma. O

In order to obtain the theorem we note that on the Ri@we have
x = 0. We now assume that> 0 and more the line of integration to
Rew = =X, (whatever be the sign) namely the intercept made by this
line in the disciw| < r. On this line we pass to the absolute value and
use Lemmdl3. We get the first term on the RHS[0f (1.2.1). For the
two circular portions connecting this path with the strailign PQ we
integrate over the bo® and get

L(%ff(w)%dw)(du}

< (E)n (e + 1)(r sin™? (%())M.

B—n

Br

This with lemmdR completes the proof of the theofem1.2.1.
The result referred to in Remdrk 1 is as follows.
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Theorem 1.2.2.Let k be any positive real number. Leizf be analytic
in |z < 2r and there|f (2| < M(M > 9). Let x=r(log M), and let x

be any real number withxy| < x. Putip = ,/4r2 — x%. Then with A> 1
we have

fo
4 1 .
1F0)F < 288 M~ + Wes‘mlog M T f|f(x1 +iy)lkdy].
-
’ (1.2.10)

Remark 1. It is easy to remember a somewhat crude result namely

1FO)X < egoA{M—A+(|og M)(% f ro|f(x1+iy)|'<dy)}. (1.2.11)
0 J-rg

Remark 2. In Theorem[(1.Z]1) the constants are reasonably small where
as in Theorent{1.2 2) they are big. We have not attempted wpgienal
constants.

For these results see the last section of this chapter.

1.3 Gabriel's Convexity Theorem

In this section | reproduce without any essential chardes proof of
the following important theorem due to R.M. Gabriell[33].

Theorem 1.3.1.Let D be a simply connected domain symmetrical about
a straight line L lying in D. Let the boundary of D be a simplewau

K = K1 + Kz where K and K lie on opposite sides of L. If(%) is
regular in D and continuous on K, then

a
2

where a> 0 and b> 0 are any two real numbers.

Puttinga=b = é we get as a special case
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Theorem 1.3.2.Let q> 0 be any real number. Then in the notation of
TheoreniZL.311, we have

fL @Ad2 < ( fK 1|f(z)|‘*|dz|) ( fK 2|f(z)|°*|dz|)

Remark. The assertion of the theorem still holdg i{2)|? is replaced
by l¢(2)| |f(2)|9, wherey(2) is any function analytic insid® such that
lo(2)| is continuous on the boundary BX. To see this replacé(2) by
(f(2)!(¢(2))" andqby qj* wherej andr are positive integers anjdand
r tend to infinity in such a way thaij ! — q~2. 18

Lemma 1. Theoreni_ZL311 is true if(£) has no zeros in D.

Proof. Without loss of generality we may talketo be a portion of the
real axis cuttingk in A, B. Let¢(2) satisfy the conditions of the Lemma.
Now if ¢(2) is the conjugate of(z), wherezis the conjugate of, then
by a known theoremp(2) is regular inD and continuous oK. Further,
forazonlL, |¢(2)? = ¢(2)4(2). Hence, by Cauchy’s theorem,

fL 6@z = | fA REret

-1 [ @304 < f 62 | #(2) | d
K1 Ky

1/p _ , 1p 1 1
p p - - -
s( fK ! |dz|) ( fK Nze! |dz|) ,(p+p, 1,)

- ( ) |¢(z)|"|dz)% ( fK 2 |¢(z)|P’|dz)l/p,

sinceKs is the conjugate oK; with respect to the real axis. Next, if the
f(2) of the TheoreniL3l1 has no zeron ¢(2) = fY@b)(7) is regular
in D and continuous oK. Hence, takingp = (a+ b)/a, p’ = (a+ b)/b,
we have

(fL|f(z)|ﬁ|dz|)a%*’ S(le'f(z)'%'d‘)%(szlf(Z)%ldzl)g

This proves Lemm@l 1 completely. O
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Lemma 2. The domain D of the z-plane can be transformed conformally
onto|w| < 1 by the transformation z A(w) which possesses a unique
inverse analytic transformation w A~1(2). Further the boundary is
transformed continuously onto the boundary.

Proof. Follows by a well-known fundamental theorem of Riemann. For
the proof of this theorem and references to the work of Riensae for
instance Titchmarsh’s book [101] (1952) or L. Ahlfor’'s bof#f (see
Theorems 10 and 11 on pages 172 and 174). o

Lemma 3. Let0 < § < 1. Let F(w) = f(AWw)). Letw= 0be a
zero of order im > 0) of F(w). Denote the other zeros (counted with
multiplicity) of F(w) in |w| < 1-6, by{p}. Let the number of zeros (other
than w=0) in [w| < 1 -6, be n. (We will lets — 0 finally). Put

F(w)

o(w) = ——, andy(w) = Wi (1_ ";V)
T yw)’ C@-gmrwn T (1- &)

wo

Then we have
(1) 6(w) has no zeros iw| < 1 -6,
(2) W) =1lonw=1-35,
(3) 16(w)| = [F(w)l onw=1-75,
and
@) W)l <linw<1-6.

Proof. The statements (1), (2), (3) are obvious and (4) follows f(@jn
by maximum modulus principle singgw) is analytic inw| < 1-6. O

Lemma 4. The inverse image dv| = 1 — § together with the inverse
image of L (the image of L-contained im| < 1- 6) under the transfor-
mation z= A(w) approaches K continuously as— 0.

Remark. For references to earlier versions of Lemriibs 3[@nd 4 see the
paper of GABRIEL cited above.
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Proof. Follows from Lemma&R.

Lemmadll té}¥ complete the proof of Theorem1.3.1.

As before letz = x + iy be a complex variable. We empla@yin
a meaning dterent from the one in TheoremIB.1. We now slightly
extend this as follows. Consider the rectangle 8 < (2" + 1)a (where
nis a non-negative integer amds a positive number), and9y < R.
Suppose that(2) is analytic inside the rectang|® < x < (2"+1)a,0 <
y < R} and that|f(2)| is continuous on its boundary. Lit denote the 20
integral fOle(z)|qdy where as before = x + iy. Let Q4 denote the
maximum of|f(2)|9 on{0 < x < a,y = 0,R}. Then we have as a first
application of the theorem of Gabriel,

1 1
lo < (lo +4aQa)2 (24 + 42Q2a)2 .
We prove by induction that i, = 2™ + 1, then

1
2

1% (lo+ 2™ VaQu, ) (1 + 27" VaQun, )

1
('abm + 22(m+1)aQabm)2m+l )

We have as a first application of Gabriel’s theorem this tesith m =
0. Assuming this to be true fanwe prove it withmreplaced bym+ 1.
We apply Gabriel's Theorem to give the bound fgg, in terms ofl,
andlap,,,. We have

1 1
lab, < (la + 2bmia@Qany,)? (labyy + 280m+1Qany,y)?

since as we can easily chebk, 1 = by, + by — 1. We add 2M™DaQyy |
to both sides and use that far> 0, B > 0,Q > 0 we have

VAB+ Q< (A+Q)(B+ Q)

which on squaring both sides reduces to a consequencé®f (VB)? >
0. Thus

Iabm + 22(m+1)aQabm <

('a + a(2bme1 + zz(ml))Qab{ml)

Nl
Nl

(labyer +@(20ms1 + 22™9) Qap,., )
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NOw 2by, 1 + 22M+1) < 22(m+2) j, e. 2(Z%! + 1) < 3. 22m1) which is

true. SiNcej — 41 + w3 = 3 — 55 the induction is complete and the

required result is proved. We state it as a m|

Convexity Theorem 1.3.3Form=0,1,2,...,nwe have
la < (lo+ 22(m+1)aQabm)%(|a + 22(m+l)aQabm)%_zm+l
X(laty, + 2™ DaQuy ) 7.

Remark. The remark below TheoremI.B.2 is applicable here also.

1.4 A Theorem of Montgomery and Vaughan

Theorem 1.4.1.(Montromery and Vaughan) SupposeR; 11, 1o, ...,
Ar are distinct real numbers and tha}, = rrmg [An — Anl. Then if

ai, a,...,aR are complex numbers, we have

Z /lm—/ln

Remark. We can add any positive constant to each ofthand so we
can assume that all thg, are positive and distinct. The proof of the
theorem is very deep and it is desirable to have a simple pwdbin
the reach of simple calculus. For a reference to the paperlofMbnt-
gomery and R.C. Vaughan see E.C. Titchmarshi[100].

<> Z ENR (1.4.1)

In almost all applications it gfices to restrict to the special case
Ay = log(h + @) where 0< @ < 1lis fixed andn = 1,2,...,R. Also
the constant 8/2 is not important in many applications. It is the object
of this section to supply a very simple proof in this specedewith a
larger constant in place ofi32. Accordingly our main result is

Theorem 1.4.2. Suppose R 2, A, = log(h + @) where0 < @ < 1is
fixedandn=1,2,...,R. Leta,...ar be complex numbers. Then, we

have,
DI

<C Z nlanl2, (1.4.2)

MmN Am =



A Theorem of Montgomery and Vaughan 23

where C is an absolute numerical constant whichyfsctive.

Remark 1. Instead of the conditiod, = log(n + @) we can also work
with the weaker conditiom(1,,1 — An) is both> 1 and< 1. Also no 22
attempt is made to obtain an economical value for the cotsstarch as
C.

Remark 2. Theoren_I.412 withr = 0 and the functional equation of
Z(s) are together enough to deduce in a simple way the resulfdhat

T>2,
T 1 4
= +1it
NI
The result[[T.413) was first proved by A.E. Ingham by a very glicated
method.
We prove the following result.

dt= (%) TlogT)*+O(T(logT)3).  (1.4.3)

Theorem 1.4.3.1f {a,} and{bn}(n = 1,2, 3, ... R) are complex numbers
where R> 2 and A, = log(n + a) where0 < « < 1is fixed, then

>3 lr‘:”“b”l D(> nian?)”* (> nibnP?)

m#n
where D is an gective positive numerical constant.

We begin with

Lemma 1. We have
PRI EN
m#£n

Proof. We remark thatﬁfol ()12 ame?™2dx) dy = 7 3, [anl? - E/i,
whereE/i is the real number for whiclE| < 7 3 |an|? is to be proved.
Note that since the integrand is nonnegativef(é(f_yylzj ane¥ "X 2d x)
dy = 27 Y |an? is an upper bound. Thus

0<nY faf - = <21 fanf
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and this proves the lemma. m|

Lemma 2. We have
b, 1/2 1/2
%3 2 (5 ) (5 )

Proof. Now 2r ;' ( (3 am€”™)(3. bre 2"™)dx)dy = 7 3. (@mbm)—E/i
gives the result since by Holder’s inequality

”Z(amt_)m) - TE < 2”(](:1 (j;ylz ame2ﬂim><|2dx) dy)l/2
([ issesel

< 2x(3 ) (Y )

on using Lemma&l1. This completes the proof of Lenfiina 2. o

We next deduce Theordm IK.3 from Lenitha 2 as follows. Weelivid
the range Xk n < Rby introducing intervald; = [2'1, 2') and the pairs
(m, n) with m # ninto those lying inl; x 1;. We now start with

fol (foy (Z amezﬂmmx) (Z Bneznunx) dx) dy

1 — E 1 1 b, e?idm=n)y
=2 anbn— 5+ — e dy
ZZ 27T| ; 27“ (m,n);kxlg 0 /lm_/ln
k>1,6>1

whereE is the quantity for which we seek an upper bound, and hence
we have the fundamental inequality

El 1 — 1 1 ambp e (Am=n)y
5l =3 Db+ =Dy S [ A

k¢ [(mn)elgxl,

1/2
[ L Sanereianal
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g (f f > bue2nPdx d&)l/z
21: Z [Z} [Z) , in an obvious notation

4

We remark that ifk — 1| > 3 then

f amb (- an>yd4

< [ Z |amt—)n|} maXimUmmn)elkxlg(/im - /1n)_2

(mn)elxl,

k=12 > lambnl < (k= 1)2Sy?T/2
(mn)elxl

(mn)elxle

whereSy = Y nja,? andT, = Y nlba/2. Hence the contribution to24

nely nel,
3, from k, £ with |k — €] > 3 is Ik% 3(8&/2T{,1/2/(k ~-0?) < (% S )2
—{|>

(2 T)Y2. Now we consider those terms B§, with |k—1| < 3. A typical
K

term is
1

amt_)nezﬂi(/lm—/ln)y

Am = An dy

o (Melixl,
Here the inner sum is
N[ 3bh ]
(mn)elixly (N/lm) - (N/ln)
whereal, = an,e” andb, = b,e®Y, andN is any positive number.
Observe that ilN = 2800 then the integral parts dfidm(m € (Ix U

l,)) differ each other by at least 3. Also in the denominator we replace
NAm — N, by [NAy] — [NAy] the consequent error being

( Z |ambn )
([NAm] — [Nan])?
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which is easily seen to bB(S,/*T;’?). Next by LemmdR we see that

af,’nt_);1 1/2+1/2
N ___Gmth  _ o(sY2Tl),
it TV~ ~ O T

Thus we see that ik — ¢| < 3, the contribution of 3, ...t0>is

(mnjelix
O(S/T}/%). Combining all this one sees easily that

D =0(  nan®)M2 x (3 niba)?).
2
The method of estimation gf, shows that

D= 1anl? + 00} nlanl?) = O} nianl?)
3
> =003 niby?).

4
Trivially 3, [anbn| < (3 anl?)Y2(3 Ibnl?)Y/2 and so

£ = O3 ma?)™ (3 mion)*?).

This completes the proof of Theordm 114.3.

and

1.5 Hadamard’s Three Circles Theorem

We begin by stating the following version of the maximum miagu
principle.

Theorem 1.5.1.Let f(2) be a non-constant analytic function defined on
a bounded domain D. Let, for evefye boundary of D, and for every
sequencégz,} with z, € D which converges té € boundary of D,

lim|f(za)l < M.

Then
[f(29| < MforallzeD.
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Remark. We do not prove this theorem (for a reference see the notes at
the end of this chapter).

Theorem 1.5.2(HADAMARD). Let f(2) be an analytic function reg-
ular forry < |7 <r3. Letnp < ry < rzand let M, My, M3 be the

maximum off(2)| on the circlesz = rq, |7 = ro and|Z = r3 respec-

tively. Then
M|209(r3/r1) < M|109(f3/f2)M|309(f2/f1)

Proof. Put1 = ' wherem andn are integers witm > 1. Let¢(2) =
(f(2zH". By maximum modulus principle applied #§z), we have

n.m n.m n.m
Mars' < max(Myry’, Mars).

Thus
M, < maxMq(r1/r2)™", Ma(rs/r2)™").

Now let A4 be any real number. We leb/n approachi through any
sequence of rational numbers. Hence we get

M3 < maxMx(r1/r2)", Ma(rs/r2)").
for all real numbersl. We now chosél by

Alog(ri/r2) +log M1 = Alog(rz/ro) + log M3

i.e. by = (log M3 — log M1)(logr1 — logrs)~t. Thus we have 26
log My < log My + (log M3 — log M;)(logr, — logr1)
logrz —logry
This completes the proof of Theordm115.2. O

1.6 Borel-Caratheodory Theorem

Theorem 1.6.1(BOREL-CARATHEODORY) Suppose (@) is ana-
lytic in |z — 25| < R and on the circle = 7z + Ré?(0 < 6 < 2x), we
have,Ref(2) < U. Theninlz— z| < r < R we have

2r(U — Ref(z))
R-r

112 - f(20)l < (1.6.1)
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and, for j> 1

f(i)(z)< 2R
i "= (R-r)i+l

| (U - Ref(z)). (1.6.2)

Proof. Let f(2) = io] an(z— )" andy(2) = f(2) — f(z). Clearlyay =
n=0
f(2). Leta, = |a,|€*, 0 < an < 27 for n> 1. On|z— 2| = Rwe have

_ 1 N n i0+ian —Nif—ian
Rey(2) = > Z lap|R"(€" +€e )
n=1
and so for any fixet = 1,2, ... we have
2 . 1 o
|ak|Rk7T - f (ReSD(ZO + Ré@)) (1 + E(ekl9+lak + e—kl@—ldk)) do
0

2 1 ioriax | —ki-ion
sj(; (U—Ref(zo))(1+ E(ek‘) + ek ))d@
— 27(U - Ref(2)).

Thus
lawl < 2R¥(U - Ref(z)). k=1,2,3,.... (1.6.3)

Now for |z— 7| < r < R, we have,
1) - 1) = 5200 - Re @) (L) = (U - Ref(a)
A = ) R TR_t A

and this proved{1.6.1). Also fgr=1,2,...

(o)

1fDQ) = 1D (2) < Z nh—1)...(n - j + lan(z— 20)"™|

n=j

< 22.0: nn-1)...(n— j +1)(U - Ref(z))R"r"

n=j

_ 2(%)j i(u - Ref(zo))(LR)n

n=0
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2R

= Ry~ Ref@)(ih.

This proves[(1.6]2) and hence Theollem1.6.1 is completelyeor O

1.7 A Lemma in Complex Function Theorey (Con-
tinued)

In this section we prove theordm 1J2.2 and state (with pradfleorem
which is sometimes useful. But before proving Theofem Iw&2nake
four remarks.

Remark 3. Let kg, ko, ..., kn be any set of positive real numbers. Let
f1(2), f2(2), ..., fm(2) be analytic inZ < 2r, and there

(@) ... (fm(@) < M (M > 9).

Then Theorem 2 holds good witH (2)|X replaced by|(fi(2))% - -
(fn(2)*|

Remark 4. A corollary to our result mentioned in Remdlik 3 was pointed
out to us by Professor J.P. Demailly. It is this: Theolem2 lds
good with|f ()| replaced by Exp() whereu is any subharmonic func-
tion. To prove this it sflices to note that the set of functions of the

m
form 3 kjlog|fj(2)| is dense inLﬁ)C in the set of subharmonic func-28
=1

tions. (This follows by using Green-Riesz representatmmfila foru
and approximating the measusg by finite sums of Dirac measures).

Remark 5. Considerk = 1 in TheorenZI.Z12. Pui(2) = f((2) the ¢
derivative off(2). Then our method of proof gives

4r
(00 < M+ Clog M+ [ ifviay),

whereC depends only o and?.
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Remark 6 (Due to J.-P. Demailly)in view of the examplef(2) =
(£=1)2, wheren is a large positive integer and = 1, the result of
Remarkb is best possible.

We now prove Theorelni1.2.2. The proof consists of four steps.
Step 1.First we consider the circlg = r. Let
0<2x<r (1.7.1)

and letPQS denote respectively the points” whered = — c0§1(27"),
c0§1(27x) andn. By the consideration of Riemann mapping theorem
and the zero can-cellation factors we have for a suitablemerphic
function¢(2) (in PQS B that (we can assume th&{z) has no zeros on
the boundary)

F(2 = ¢@f@) (1.7.2)

is analytic in the region enclosed by the straight @ and the circular
arc QS P, Furtherg(2) satisfies

l6(2) =1 (1.7.3)
on the boundary oPQS Pand also
l6(0)l > 1. (1.7.4)

Let
X=EXplUr+Ux+...+Up) (1.7.5)

whereuy, Uy, . .., U, Vary over the box8 defined by
0<uj<B(j=12...,n),
andB > 0.
We begin with
Lemma 1. The function Kz) defined above satisfies

FO)=11+12 (1.7.6)
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where

Iy = % j;QF(z)xZ%Z (1.7.7)
and

Iy = %fQSPF(z)de?Z (1.7.8)

where the lines of integration are the straight lien PQ and tircular
arc QS P.

Proof. Follows by Cauchy’s theorem. O

Lemma 2. We have

eZan dz
| f(2)=]. 1.7.
= [ 0@ (1.7.9
Proof. Follows sincgX? < 2™ and alsd¢(z)| = 1 onPQ. o
Lemma 3. We have,
2 n
|B—”|f|2du1...duh|se28“(—) M. (1.7.10)
B Br
Proof. Follows since orQS Pwe have|¢(2)| = 1 (and sdF(2)| < M)
and also
dz 2\"
—Nn z_—" =
B IL(LSPX 2niz)dul"'dun|S(Br) .
m|
Lemma 4. We have, 30
2\" e?Bnx dz
k Bnx| _< k2<
IfO)* < & (Br) M+ =~ j;Ql(f(z)) 1 (1.7.11)

Proof. Follows by LemmaEIL]2 arid 3. O
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Step 2.Next in {TZ1Il), we replack () by an integral over a chord
P1Q1 (parallel toPQ) of |w| = 2r, of slightly bigger length with a similar
error. Letx; be any real number with

X1 < X. (1.7.12)

Let P,Q;R; be the points &'
whereg = —cos™ (%), 0 and cos! (%).

: . . . (1.7.13)
(If x1 is negative we have to consider the points
0 =-%-sin*(%,0)andZ +sin*(§)).
Let X be as in[[1.715). As before let
G(w) = (w(w) f(w))* (1.7.14)

be analytic in the region enclosed by the circular Bi&; Q; and the
straight lineQ1P; (we can assume th&{z) has no zeros on the boundary
P,R1Q1P1). By the consideration of Riemann mapping theorem and the
zero cancelling factors there exists such a meromorphictifomy (w)

(in P1R,Q1P1) with the extra properties,

[(wW)| = 1 on the boundary dP;R;Q:P; andjy(2)| > 1.  (1.7.15)

Lemma 5. We have with z on PQ,

G(Z) =l3+14
where 1 q
w
l3= — f G(w)X~ W2 —— (1.7.16)
37 2 QiP1 w-2z
and 1 d
w
l4= —.f G(w)X™WW-2)_——_ 1.7.17
4= 57 Jomg, O — (1.7.17)
Proof. Follows by Cauchy’s theorem. m|
Lemma 6. We have with z on PQ
g3Bnx dw
I3 < f (f(w))k—’ (1.7.18)
: 2 P1Q1 W-=2
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Proof. Follows sincgX~"-2| < e¥8™ and|y(w)| = 1 onP1Qs. |

Lemma 7. We have with z on PQ,

n
|B‘”fI4du1...dun|se3B”X(§) M. (1.7.19)
B

Proof. Follows since orP1R; Q1 we havely(w)| = 1 (and sdG(w)| <
M) and also

dw 2\"
-n -wW(-2)
B fo —zyri(W—z)dul"'dLHS(Br) .

Lemma 8. We have with z on PQ,

2\" e3Bnx dw
fRK<eBX[ =] M f (W) ——|. 1.7.20
< () M WAL @720)
Proof. Follows from LemmaE]$]6 arid 7. m|

Step 3.We now combine Lemmad3 4 ahH 8.

Lemma 9. We have

HOLE: eZB”X(é)n M+ Jp+ I (1.7.21)
where G5B [ 9\ i
b= (§) MJ;Q|7|, (1.7.22)
and 5B i 32
Jo = WﬁlQl|f(w)|k(ﬁQ|4W_z)|) |dwj. (1.7.23)

Lemma 10. We have

dz r
o7 sz+2|og(5(). (1.7.24)
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Proof. On PQ we havez = 2x + iy with |y| < r and X < r. We split
the integral intay| < 2xand X < |y] < r. On these we use respectively
the lower bounds$z > 2x and|Z > y. The lemma follows by these
observations. m|

Lemma 11. We have for w on Q1 and z on PQ,
dz 6
j;le(w z)l < - (1.7.25)
Proof. OnPQwe have Re = 2x and onP1Q; we haveg Rew| < x and
so|Refv — 2)| > x. We have
dz |<|dz|+| dz
Z(w -2 (w-22"

Writing z = 2x + iy we have

dz 2 dy 2
£ o2 | 2
o 2 = @2t fz

« ¥ X
Similarly
1 < dy\ 4
<2|= =|=-.
W 7)<
This completes the proof of the lemma. o

Step 4.We collect together the results in Stéps 3 Bhd 4 and choose the
parameter® andn and this will give TheoreriZ.2.2. Combining Lem-
mad®[ID anf11 we state the following lemma.

Lemma 12. We have

2\" B 2\" r
k Bnx| < < .
1f () < € (Br) M+ = (Br) (1+I092X)M
eSBnX 6f K
+ <= [(f (W) dw, 1.7.26
G x oo, () (1.7.26)
where0 < 2x < r, Xq1 is any real number withx;| < X, n any natural
number and B is any positive real number andX? is the straight line

joining —rg and o where g = /4r2 — xf.
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Next we note that % log 5; < 5 and so by putting = r(log M)~L
the first two terms on the RHS df{1.7126) together do not eXcee

2 neSB”X 1+ilogM M < 2(2 ne5B”XMIogM
Br 2n ~ \Br ’

Also,

2ro\ 1 1

6 _6logM _
v =

Thus RHS of[[1.7.26) does not exceed

En SBnx ﬁ oBnx if k )
Z(Br) e MIogM+((2ﬂ)2e IogM)(2r0 PlQl|(f(W)) dwl|.

We have choser = r(logM)~1. We now choosd such thatBr = 2e
andn = [ClogM] + 1, whereC > 1 is any real number. We have

5BNx < Igg’,‘\jl < 10e(C +1) < 28(C + 1) and also

2 n
—ClogM _ p\p-C
—] <€ =M.

With these choices of, B, nwe see that RHS of (1.7P6) does not exceed

24 1
~C28(C+1) 8(C+1) k
2M~C¢? MlogM +(( )2e2 log M) (Zro fF:1Q1 |(f(w)) dW|).

PuttingC = A + 2 we obtain Theorefi_1.2.2 sin€e+ 1 < 3A. This 34
completes the proof of Theordm 1R2.2.
Lastly we note

Theorem 1.7.1.Let f(2) be analytic inZ < R. Then for any real k O,
we have,

1
IO < ﬁfm le(z)|kdx dy (1.7.27)
<

Remark. The remark below TheoremL.B.2 is applicable here also. We
have only to replacg by k.
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Proof. We begin by remarking that the theorem is truekor 1. Be-
cause letz = re'? where O< r < R. Then by Cauchy’s theorem we
have
L f(re')ide 1.7.28
f O = — o
©=5= [ fe (1.7.29
and so

1f(0) < % fo 2ﬂ|f(rei9)|d9. (1.7.29)

Multiplying this by r dr and integrating fromm = 0 tor = Rwe obtain
(@TZ1). Now letf(0) # O (otherwise there is nothing to prove) and

B 2 pz\|"
62 = {f(z) ]:[ (—r(z_p))} (1.7.30)

wherep runs over all the zeros df(2) satisfying|p| < r. The function
#(2) is analytic (selecting any branch) [g < r and so[I.Z.49) holds
with f(2) replaced bys(z). Notice that oriz = r, we have f (2| = |¢(2)|
and also that

k
|MW=waUIﬁ]znmw

P

Hence[.Z229) holds wittf (2)| replaced byf(2)[ and hence we are led
to (T_LZY) as before. m|
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Notes at the end of Chapter 1

§[LJ. The author learnt of convexity principles from A. Setbeho 35
told him about a weaker kernel function. The stronger kefunettions
like ExpW?) or Exp@*2+2) (a > 0 integer) became known to the author
through P.X. Gallagher. The kernel function Exp((s)s) was noticed
by the author who used it extensively in various situatidhshould be
mentioned that

1 2+ico 2+ico

1
— W —
o ), X" Exp@?)dw and o f

2—ico

xw Exp(vvz)dWW

are non-negative (a fact which the author learnt fidiR. Heath-Browi.
These things coming from the kernel function Exp) are sometimes
useful. The two inequalities preceediig (111.1) (takernthie remark
after the second) seem to be new. Also the technique of angrager
“Cubes” seems to be new. This section is based on the papef (8]
Balasubramanian and K. Ramachandra.

§[MLA. The results of this section are improvements and gknera
sations of some lemmas (in A. Ivid,_142]) due to D.R. Heatlomwen.
We will hereafter refer to this book as Ivits book. This gmttas well
as§ [L4 are based on the pap€rs [4] [8] of R. Balasubramanian and K
Ramachandra.

§[L3. The convexity Theorem (1.3.3) is very useful in a lateape
ter. This section is based on the paper [33] of R.M. Gabrigle &lso
the appendix to the paper 166] of K. Ramachandra. For theediy
Theorem (1.3.3) see p. 13 of the papér [9] of R. Balasubrasmaand
K. Ramachandra.

§ 4. We do not prove{1.4.1) with the consta%ﬁt although we
use it in later chapters. We prove it will some unspecifiedstamt in
place of3—§. The proof of Theorefi1.4.2 is based on the pdpér [67] of K.
Ramachandra. For Remark 2 below this theorem see K. Randehan
[69].

§ 3. For TheorerhI.3.1 we refer the reader to (K. Chandrasekh
ran, [27]). The proof of Theorefi"1.%.2 given here is due to BI- B
asubramanian. For the general principles of complex fanctiheory 36
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necessary for Chapteld 1 and 7 one may refer to K. Chandiasekh
[27] or E.C. Titchmarsh [101] or L. Ahlfors[1].



Chapter 2

Some Fundamental
Theorems on TiTchmarsh
Series and Applications

2.1 Introduction

In this chapter we prove three fundamental theorem§GICHMARSH 37
SERIES”. These concern lower bounds for

1 T
ﬁfo |F(|t)|dtandﬁf0 [F(it)|“dt,

whereH > 10 andF(s)(s = o + it) is defined by

F(s) = Z andn® (0 > A+2),
n=1

whereA > 0 is an integer constant and the complex numbgire sub-
jecttoa; = 1, |ay| < (nH)A (n > 2) and the real number, are subject
tody = 1andg < An.1—4n < C (n > 1) whereC > 1 is a constantF (it)

is defined by the condition th&(s) shall be continuable analytically in
(c = 0,0 <t < H). These conditions define ‘@I TCHMARSH SE-

RIES". Some times as in this chapter we impose a growth condition on

39
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certain horizontal lines. But in a later chapter we will mgaavithout
the growth condition at the const of imposing a more strihgemdi-
tion thanja,| < (nH)A. All these results have important applications.
Theorem 1 will be proved as a preparation to the proof of a mone-
plicated (but neat) Theorem 3. Both these deal with lowendedor the
mean square df(it)| while Theorem 2 deals with the mean|Bfit)|.
As handy results for application we state a corollary belasheof the
three main theorems. We begin by stating a main lemma.

2.2 Main Lemma

Letr be a positive intege > (r + 5)U, U > 279(16B)? andN and M

positive integers subject td > M > 1. Letby(m < M) andc,(n > N)

be complex numbers and(s) = Y bmpdy. Let B(s) = X cna,°
m<M N

< n<
be absolutely convergent in > A + 2 and continuable analytically in
o > 0. Writeg(s) = A(-9)B(9),

U U
G(s):U"fo dq...fo dur(g(s + i)

(here and elsewhere= u; + Uy + ... + Ur). Assume that there exist real
numbersT; andTo, with0 < T3 <U,H - U < T, < H, such that

. . U
9(o +iT1) +|g(o +iT2)| < Exp Exp(@)

uniformly in 0 < o < B. (As stated alread = A + 2). Let

Am\® )\
_ m r n
S = E |bmcn|(—/ln) 2 (U log _/lm) ,

m<M,n>N

and

Then

H-(r+3)U U U H—(r+3)U+4
| f G(it)dt) < U™ f du ... f dug f g(it)dt
2U 0 0 2U+A
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H
<2B?U"19 4 548Ut f g(it)|dt
0

+ (H + 64B?)S; + 16B? Exp(—%) So.

To prove this main lemma we need five lemmas. After provinge¢he
we complete the proof of the main lemma.

Lemma 2.2.1.Let z= x + iy be a complex variable wittx| < %1. Then,
we have,

(@) |Exp((Sin2)?)| < ez < 2for all y

and
(b) Iflyl > 2,

| Exp((Sin2)?)| < &2 (Exp Exply) ™! < 2(Exp Expiyl) ™.
Proof. We have 39

Re(Sing)? = _% Rey (@) _ griteeiv))2
1

— _Z RquiX—Zy + e—2ix+2y _ 2}
= % - % {(e® + &) cos()}.

: 1 _ 1 V3
Butin|x < 7, we have cos(® = cos(2x)) > cos; > cosg > —°. The

rest of the proof is trivial since (i) coshis an increasing function |
and (i) forly] > 2

Exp(—gez'yl) < (Exp Exply)™*

, 2 .04 8 _ 8x18 _ 8 i
since€® > (2.7)? and 5 <3 =48and so&? > % The lemmais

completely proved. O
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Lemma 2.2.2. For any two real numbers k angd with 0 < |o| < 2B, we
have,

o0 (k=0 —iug du 2B
Lo|Exp(s|n2( 5B ))ik—a—iu1|512+4'°g|?|'

Proof. Split the integral into three part¥, J, and J3 corresponding to
lup — k|l > 2B, |o| < |up — Kk < 2B and|u; — k| < o. The contribution to
J; from |u; — k| > 16B is (by (b) of Lemmd&Z.211)

Ze% e Uy
<= [ g (——)d
168 Jis P\ 8B/

Y f Exp(u)dw = Exp(—§).
) 2

The contribution toJ; from 2B < |u; — k| < 16Bis (by (a) of Lemma
227)

1 1 1 1
<e2 lup — kI™*dw, = 2e2 log 8 = 6e2 log 2
2B<|uy—k|<16B
Now

1 3 1 1 1
6ez log 2+ Exp(—z) < 6(1+ > + > + ﬁ)

1+1+l + 13/2<8
2 2.2 3.22 2.7 ’

Thus|Jy| < 8. Using (a) of LemmBZ 2.1 we hajd®| < 4Iog|2FB|. In

Jsthe integrand is at most o~ in absolute value and $3| < 263 < 4.
Hence the lemma is completely proved. m|

Lemma 2.2.3.1f n > m, we have, for all real k,

U U i(k+) r
|f du...f dul(/l—m) |§2r(logﬁ) )
0 0 /ln /lm

Proof. Trivial. O
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Lemma 2.2.4. For all real t and all D > B, we have,
|IG(D +it)] < Sy and|g(D +it)] < S».

Proof. We have, trivially,
1 D
o0+l Y o5

. D
and the second result follows on observing tﬁi?k 1land S‘ﬂ_rn") <
B
(42) " Next

G(D +it) = U™ fu du...j;u dun(g(D + it +i1))

0

D U U i(t+1)
1 A
-y § bmcn(/l—m)j(;du...j(; dul(/l—m) .
n n

m<M,n>N

Using Lemm&Z.213 and observiﬁﬁﬂ)D < (%)B the first result follows.
O

Lemma 2.2.5.Let0 < o < Band2U <t < H — (r + 3)U. Then, for
H > (r + 5)U and U > (20)!(16B)?, we have,

H
IG(o- +it) < BU™0+ Ut (2 +4log zf)ﬁg(itndt
0

+ 165, log(2B) + 8BS, Exp(—@) .

Remark. (20)! < 270,

Proof. We note, by Cauchy’s theorem, that

B+1+iTy B+1+iT, B+1+iT, iTo
2ﬂig(o-+it+i/l)=f +f _f _f
iT]_ B+1+iT1 iT2 iTl

41
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W—o-—it—i/l))} dw

{g(w) EXp(Sinz( 8B Y —

J1+ Jo — J3— Jssay

We write

27iG (o + it) = 27U~ fu du fu dur(g(o + it +i2))
0 0

U U
=U_rf duvf dup(J1 + o — I3 — Jg)
0 0

=Js+ Jg — J7 — Jg say.

Let us look atJs. In J; (also inJ3) |g(w)| < Exp Exp(l%B) (by the
definition of T, andT>). Also by using LemmBZ2.1 (b) (sin¢Rew —
o] < B+ 1< 2B, and|Im(w — it —i1)| > U > (20)!(16B)?), we have,

o[22l
Hence

U U
EXp(EXp @ - EXp @)

ZE Do) (1)

[J1] <

2B+1)
U

< _U—lO
=3 ,

sinceU > (20)!(16B)? and so Expgs —1 > 1 and Ex;:(— Exp%) <
Exp(~ ExpU?) < Exp(-U#) < (20)1U~%°. Thus|Js| < 1BU,
Similarly, |37 < $BU~0. Next

iT, u u U
Jg=U" g(w)dwf du(...f duzf
iy 0 0 0

Exp(sin2 (w— crs—Bit - i/i)) — (Tdijlit —

We note thatv—o —it—id = ik—o —iu; wherek = Imw—-t—-u,...—u;.
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Hence thau;-integral is in absolute value (by Lemma?]2.2)
2B
<12+ 4log—.
a

This shows that

-r T2 r-1 2B
|Jg| < U f lg(w)dwi< U (12+4Iog;)

Ty
H
SU‘1(12+4I09§) f |g(it)|dt
0

Finally we considets.

U U B+1+iT2
J6=U‘rf du...f dulf g(w)
0 0 B+1+iTy

EXp(SiFI2 (W - 0-8_Bit - i/l)) w— o-d—Wit —iad

U U B+1-0+iTo—it—id
=U_rf dur...f dulf oW+ o +it +iA)
0 0 B+1-0+iT—it—id

Using LemmdZZ]11 (b) we extend the range of integratiow td (B +
1-o0—-ic0,B+1- 0 +ic0) and this gives an error which is at most

u u
U‘rf du...f dulf
0 0 | Imw|>U,Rew=B+1-0

’g(w+ o+t +id) Exp(sm2 (S—V"B)) dWW‘ .

By LemmdZZMU this is

U U w dw
<S U—rf du...f du f |Exp(Sin2——)|.
2 0 o | Imwj>U,Rew=B+1-c 8B w

Here the innermost integral is (by Lemina=2]2.1 (b))

00

4 u ® u U
SU ! Exp(—@)dusfu Exp(—@)du_SBExp(—@).
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Thus the error does not exceeB%, Exp(-g) and so

U U B+1-0+ico
|J6|5U‘rf du...f dulf oW+ o +it +id)
0 0 B+1-0—ico

Exp(Sinz(B—WB)) dWW + 8BS, Exp(—%)

0 [T (s () 2 [

U
f dug(W + o + it + i) + 8BS, Exp(-—)
0 8B

fB P G(W+ o +it) Exp(sm2 (S—V‘é)) dWW

+1-0—ico

+ 8BS, Exp(—%).

43 Using the first part of Lemmia2.2.4 we obtain

B+1-0+ico . W dw U
|Jel < Slj; IEXp(Sln2 (@))Wl + 8BS, Exp(—@)

+1-0—ico

1 8BS, Exp(

< 81(12+4Iog —ﬁ)

2B
B+1l-o
by using Lemm&2Z212. Thus

16| < 165 log(2B) + 8BS, Exp Exp(—@) '

This completes the proof of the lemma. m|

We are now in a position to complete the proof of the main lemma
We first remark that

B B 1
4[ Iog§d0:4BI092+4\/§f (E)Zda
0 o 0o \O

101 1
4(=+ = + —|B+(8x L415)B < 15B.
< (4+2.22+3.22) +(Bx 14158 <
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By Cauchy’s theorem, we have,

H-(r+3)U i(H-(r+3)U)
f G(it)idt = f G(9)ds
2l i

U (2u)

B+i(2U) B+i(H-(r+3)V)
= f G(s)ds+ f G(s)ds-
i(2u) B+i(2U)

B+i(H-(r+3)U)
- f G(9)ds
i(H=(r+3)U)

=J1+ Jo - Jzsay.

Using the estimate given in Lemrha?ZI2.5, we see that 44

B 12+ 4log28) H
|J1|sf [Bu-1°+(u—g“)f g(it)|dt
0 0

+16(10g(2B))S; + 8BS, Exp(—i)) do-

8B
12B + 15B

H
<B?U104 5 f I(g(it))|dt + 16BS; log(2B)
0

U
8B2S, E (——).
2 EXP 8B

The same estimate holds fdg| also. FoilJ,| we use the estimate given
in LemmaZZW to get
|Jo] < HS;.

This completes the proof of the main lemma.

2.3 First Main Theorem

LetA, B,C be as before & € < 1,1 > [(200A+200) 1], Jag| < ""H .
ThenF(s) = Y77, an4,,° is analytic inc > A+ 2. LetK > 30,U =

H1-% + 50Blog logK;. Assume that

H > (12082C2A*4(4rC?)') e + (100rB)2log log K1,
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and that there exist;, To with0< T; < U, H — U < T, < H such that
[F(o+iT1)|+|F(o +iTo <K

uniformly in 0 < o < B whereB(s) is assumed to be analytically con-
tinuable inc > 0. Then

H
f IF(it)|°dt > (H — 10rC?HY"% — 100rB log logK4) Z lanl?,
0 n<H1-e
where
2
Ky = { > muﬁ] K +{ > |an|AE] :
n<H-€ n<H1-¢
Corollary. Let A and C be as in the introductiohZ.,0 < € < 3,
r > [(200A + 200k 1] , Jan| < N*H%. Then Ks) = Y an4;%is analytic
n=1
ino>A+2. LetK> 30, Uy = H"3. Assume that K= (HC)'#K,

H > (120 + 2)°C?A*4(4rc2)) & + (1001 (A + 2))% log log K1,

and the there exist{I T, with0 < Ty < U;, H-U; < T, < H, such
that uniformly ino- > 0 we have

[F(o+iT)|+ [F(o +iT)| < K,

where Ks) is assumed to be analytically continuable(in> 0,0 <t <
H). Then

H
%f|F(it)|2dtz (1-10rC?H"% — 100BHtlog log K1) Z lan|?.
0 n<H1-€
Remark 1. We need the conditiond > (r + 5)U, U > 279(16B)? in the
application of the main lemma. All such conditions are $iaiisby our
lower bound choice foH. We have not attempted to obtain economical
lower bounds.
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Remark 2. Taking F () = (¢(3 +it +iT))¥ in the first main theorem we
obtain the following as an immediate corollary. @&, k)loglogT <
H < T. Then for all integer& > 1.

= f |§( +|t) Pdt>(1-¢) > (c(m)*n 1> (Cl - 2€)(log H)¥,

n<Hi-€

where
(02 2 1)) e s (Tkem)
Ci = (N(K* + 1)) ]‘[{(1 ) Z(F(k)m! Pt
p m=0
(This is because it is well-known that

> @ = {6+ 02 ) toax))

n<X

Our third main theorem gives a sharpening of this. The thiaihnthe- 46
orem is sharper than the conjecture (stated by K. Ramacadd} in
Durham conference 1979). The conjecture (as also the wéatkarof
the conjecture proved by him in the conference) would onkg gi

T+H
o f |§(% + it) 1%dt > (log H)¥ in C(k)loglogT < H < T.
.

But the third main Theorem gives

1

T+H )
= |§( + |t) 1*dt > C/(logH)*" + (
H Jr

loglogT

(logH)¥ ) + O(log H)¥

where theD-constants depend only dn

Remark 3. The first main theorem gives a lower bound f&r[- i

(3 +it)dtuniformly in 1< k < logH, T > H > 30 andCloglog T <
H < T. From this it follows (as was shown in R. Balasubramaniai [2]
that forCloglogT < H < T we have uniformly

max | l+|t|>Ex Ioi
T<t<T+H ¢ p log logH
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if C is choosen to be a large positive constant. On Riemann hggisth
we can deduce from the first main theorem the following moreegg
result. Letd be fixed and O< 6 < 2r. Putz = €. Then (on Riemann
hypothesis), we have,

max | :—L+it Z|>Ex § Ioi
T<t<T+H ¢ 2 P 4 \ loglogH

where is LHS is interpreted as linof the same expression wi%1+ it

1
o—35+0
replaced by + it. This result withd = 7 and 3—2” gives a quantitative
improvement of some results of J.H. Mueller][62].

Proof. Write M = [HY €], N = M+ 1, A(S) = Y and;S, A(9) =
m<M

> amdms B(S) = Y and,®. Then we have, ir > A + 2,

m<M

n>N
F(s) = A(S) + B(9).
Also,

IF(it)? = IAGt)I? + 2 Re@(~it)B(it)) + |B(it)|?
> A(it)? + 2 Reg(it))

whereg(s) = A(-9)B(s). Hence

H U U H-(r+3)U+41
f |F(it)|2dtzu—ff du...f dulf |F(it)|?dt
0 0 0 22U+
U U H-(r+3)U+1
zu—ff dur...f dulf (IA(it)?
0 0 22U+

+ 2 Req(it))dt = J; + 2J, say.

An+ A
Montgomery-Vaughan theorem, '

H-(r+3)Uu _
Jp > f IA(it)|2dt
2U

Now log(4:) = —log (1 - (1 - 1)) = 4= > (2nC?)~. Hence by
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> > (H = (r +5)U - 100Cn)ja, .
n<Mm

We have

19(9)] = IA(=9)B(9)| = IA(=5)(F(s) — A(9))l

s[ >, |anME‘]K+ D |an|aﬁ]2

n<Hl-€ n<H1-€

= Kj.

By the main lemma, we have,

U U H-(r+3)U+41
|J2|5|U‘rfo du,...fo olulf2U ) o(it)dt]
+

2B? . 54B
U

H
— U
. , ,
= Um fo lg(it)ldt + (H + 64B°)Sy + 168°S, EXp(-g5)

(2.3.1)

We simplify the last expression iR ZB.1). We can assume tha

H
it\2 2
fo F@Pdt<H > Ja

n<H1-¢

(otherwise the result is trivially true). Hence

H H
f0|g(|t)|dt:f0 |A(—it)B(it)|dt

H H
_. 2 . 2
gfo |A(—it)| dt+fO |B(it)|2dt

H H
Sfo |A(=it)] dt+f0 [F(it) — A(it)|~dt
H H
<3 f IA(=it)]?dt + 2 f |F(it)%dt
0 0

<3 (H+100C?n)an + 2H " Janl?

n<Mm n<M
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Now

and

Thus

|| <

So

(r+5U +
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< (300C2 +5)H > Jaul?

n<M

IA
I
ool
3
>
I
ool
—
@)
N
3
3
NI~
>
¥
N

IA
T
N

re —
C2A+4 Z m2A+2 Z n 2
m<M n>N

2
r . T
< H3+2A+3C2A+4 since = - 1<1

ANYT
S1<(U Iog— 2SS,
Am
A IR
N > ZANT M > (ZCZM)_]-’
Am 2 Am

U Iog(/l—N) > (2C%)1Hs3.
Am

log

2B?
oot 54B(300C% + 5HU™ ) Jaql®
n<Mm
2 —LE 1 2A+3r 2\r ~2A+4
(H + 64B2)H -7 +2A+32" (2C2)'C

U re
+ 1682 Exp(—@) H % +2A+3C2A4 (Noteay = 1 = 1),

-1
100C?HY + 2|3y {Z |an|2}

n<M
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< (r + 5)HY¥ 5 + 100C2HY¢ + 100Br log log K1

4B ¢
et 108B(300C? + 5)H 2 + 128(2)(2C?)" B?H?A+4-S0AC2A+4

re r

+ 3282C2A+4r |(8 B)I’ H2A+3+7—§
r+5 100C2 4B?
-+ — t—%
rC2H:  H%  H°

< 100Br log logK; + rC?H"4 {

108B(300C? + 5)
+ Ry
+32B°C#**4r1(8B) H
< 100Brlog logK; + 10C2rH"4.

This completes the proof of the theorem. O

+128(2)(2C?) B?H1c2A+4

2.4 Second Main Theorem

We assume the same conditions as ig the first main theorerpteked
we change the definition &f to U = Hs + 50Blog logK,. Then there
holds

H
f IF(it)|dt > H — 10rH # — 100'B log log Ko,
0
whereK,; = K + 1.

Corollary. Let A and C be as in the introductiohZ, |a,| < (nH)A.
Then Ks) = Y, an4,°is analytic inc > A+ 2. Let K> 30,
n=1

H > (345600Q\?C3)84000% 1 (240000)?° log log(K + 1),

and that there exist {{ T, with0 < T; < H%, H-H$ < T, < H, such 50
that uniformly inc- > 0 we have

[F(o+iT)|+|F(oc +iT2) <K
where Hs) is assumed to be analytically continuable(in> 0,0 <t <
H). Then

L
m f |[F(it)dt > 1 - 8000AH & — 2400000 2H 1 loglog(K + 1).
0
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The corollary is obtained by putting = % r = 800A in the second
main theorem.

Remark. Conditions likeH > (r + 5)U, U > 279(16B)? are taken care
of by the inequality foH.

Proof. We have,

H U U H-(r+3)U+a
f |F(it)|dt2U"f du...f dulf |F(it)|dt
0 0 0 2U+1
U U H-(r+3)U+1
>U~" Re(f dur...f dulf F(it)dt)
0 0 2U+4

U ] H-(r+3)U+4
=U~" Re{ f du ... f du f (1+ A(—it)B(it))dt}
0 0 2U+A

(whereA(s) = 1 (i.e.a; = 1= M)andB(s) = F(s) - 1) = J. + ReJ,
say. ClearlyJ; > H — (r + 5)U. For J, we use the main lemma.

2B2 548 (H ) 5 U
132 < S+ 2 j; Ig(it)|dt + (H + 64B%)S, + 168 Exp(—@)sz.
(2.4.1)

As in the proof of the first main theorem we can assgfﬁ%(it)ldt <H
and sofOH g(it)|dt < 2H. We haveg(s)| < K + 1 = K». Now

S, < HTH2A3C2AH4
andU log(4%) = Ulog 1, > (2C)*U,
S1 < 2'Sy(Ulog 1)~ < 2°S,((2C)tu) .
This shows that
(r + 5U + |y
2B? 54B (H + 64B?)

< 5U + — 2H
<(r+5) +U10+ T + 2C-10)

U re
2 _ 1 2A+3~2A+4
16B Exp( SB)H4 c

2I‘ C2A+4H rf +2A+3




Third Main Theorem 55

2 R
< 100rB loglogKy + rH ? {“;5 , 28 103}

+
rHE  Hi
+(H + 6482)2rC2A+4H L+2A43+ 5 (r+1)§

+ 16B2C?A*4(8B) T1H 4 +2A*3-%
< 10rH# + 100B log logK»,

whenH satisfies the inequality of the theorem. o 51

2.5 Third Main Theorem

Let {a,} and{A,} be as in the introduction ana,| < (nH)" whereA > 1
is an integer constant. Théf(s) = Y, an4,° is analytic inc > A + 2.
1

Supposer(s) is analytically continnuable im- > 0. Assume that (for
someK > 30) there exisT; andTo with0 < Ty < H%, H-Hs < To <
H such thatF (o +iT1)| + |F(o+iT2)| < K uniformly in0< o < A+ 2.
Let

H > (4C)%°% ;. 5200002 log log K.

Then

H
f IF(it)2dt > Z (H — (3C)199%H s — 1300002 log logKs — 100C2n)|aq 2,
0

n<aH

wherea = (200C?)712-84-20 and

Ks = {Z muﬁ] K+ [Z |an|ﬂE]2.

n<H n<H

Corollary. Let A and C be as in the introductich?], |a,| < (nH)A. 52
Then Hs) = Y an4;%is analytic inc > A+ 2. LetK > 30, K; =
n=1

(HC)*K,
H > (4C)%%%° 4 52000002 log log Ko,
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and that there exist L To with 0 < T; < H%, H-Hs < T, < H, such
that uniformly ino- > 0 we have

[F(o +iT1)| + |[F(o +iT2)| < K,

where Ks) is assumed to be analytically continuable(in> 0,0 <t <
H). Then

% j; " IF(it)2dt > n;H(l — (3C)100% -5 _ 1300000%H 1 log log K
| -100C7H
wherea = (200C2)~12-8A-20,
To prove this theorem we need the following two lemmas.
Lemma 2.5.1. In the interval[aH, (1600C2)~1H] there exists an X such

that
DU lanP < HTE D jaol

1
X<n<X+H14 nsX

provided H> 210008 C50A,

Proof. Assume that such aK does not exist. Then for aK in [aH,
(1600C2)~1H],

_1
> Al >HE ) Jal (25.1)
X<neX+H ns%
LetL = oH, Ij = [2I71L,2IL] for j = 1,2,...8A + 17. Also letlg =

[1,L]. PutSj = Y lan(j = 0,1,2,...,8A+ 17). Forj > 1 divide the

nelj
intervallj into maximum number of disjoint sub-intervals each of léngt
H7 (discarding the bit at one end). Since the lemma is assumbd to
. . 1
false the sum over each sub-intervaki$i~2S;_;. The number of sub-

intervals is> [2/-1LH-2] — 1 > 2-2LH~4 (provided 2-1LH"% — 2 >
1

2172 H%, je. 22LH™7 > 2i.e. aHi > 4ie. H > (dab)3). It
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follows thatS; > 22LH~%S; ;. By inductionS; > (3LH"2)IS,.

SinceSp > 1 we have in particular

1 N 8A+17 1 8A+17 N
88A+l7 > (ECL’HE) > (E(Y) H4A+§.l7.

On the other hand
Sgar17 = Z lanl? < Z (NH)?,

a1H<n<asH n<aH

wherea; = 161(200C%) ! anday = 871(200C?)L. ThusSga,17 <

H*+1 Combining the upper and lower bounds we are led to

H215 < o

(2.5.2)

providedH > (4a‘1)% (the latter condition is satisfied by the inequality

for H prescribed by the Lemma). BUf{Z.b.2) contradicts the iaétyu

prescribed foH by the lemma. This contradiction proves the Lemma.

From now on we assume thtis as given by LemmaZ2.3.1.

O

Lemma2.5.2.LetA(s) = ¥ al:S E(9 = Y  and;Sand Hs) =
n<X 1

X<n<X+H4

F(s) - A(S) — E(9). Clearly ino- > A+ 2 we have Bs) =

Y andys

1
n>X+H12

Let H > 21008C50A |y = H$ + 100BloglogKs, K3 > 30and H >

(2r + 5)U. Then we have the following five inequalities.
(8) fy IAGi)2dt < 100C2H 3, [anl?,
n<X

H-(r+3)U |

0) Lo APt > 3 (H - (2r + 5)U - 100C%n)[ayl?,
n<X

(©) fy IEGt)Pdt < 100C2HE 3 [aql?

n<X

(d) [ IB(it)Pdt < 100C2H 3, Jal?, and finally

n<X

54
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(@) ;" IAG-it)B(it)ldt < 400C2H 3, [anl2,

n<X

where (d) and (e) are true provided
H
f IF(it)Pdt < H > Janl®.
0 n<X

Proof. The inequalities (a) and (b) follow from the Montgomery - Vau
ghan theorem. From the same theorem

H
H 2d 2 2
fo E@t)Pdt< > (H+100C%n)fay|

XSnSX+H711
< 100C2H Z |an/?

X§n§X+H%1
and hence (c) follows from LemniaZb.1. Since
IB(it)* < 9(F(it)* + A + [E(it))

the inequality (d) follows from (a) and (c). Lastly (e) folis from (a)
and (d). Thus the lemma is completely proved. m|

We are now in a position to prove the theorem. We write (with
A=U+Uz+...+ U as usual)

H U U H-(r+3)U+a
f |F(it)|2dtzu—rf dur...f dulf |F(it)|°dt
0 0 0 22U+

(where € +5)U < Hand 0< u; < U. Infact we assume (2-5)U < H).
Now

IF(it)? > (i) + 2 Re@(~it) B(it)) + 2 Re@\(~it)E(it)) + 2 Re@(=it)E(it)),

whereB(9) is the analytic continuation of 3 and;,®. Accordingly

1
n>X+H42

H
f IF@)Pdt> Jy + o+ I3+ s (2.5.3)
0
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where
H _ H
J = f |A(it)|2dt, J =2Re f (A(=it)B(it))dt,
0 0
H H _
J3=2 Ref (A(-it)E(it))dtandJs = 2 Ref (B(—it)E(it))dt.
0 0

By LemmdZX5P (b), we have,

312 ) (H-(2r +5)U - 100C%n)an/>.

n<X

Also by Lemmd 2512 ((a) and (c)), we have,

H
13l < 2 f IAG-IE(it)ldt < 200C2HE ' [aq 2
0

n<X

Similarly by Lemmd2Z512 ((c) and (d)),

34| < 800C2H & Z lan|2.

n<X

For J, we use the main lemma. We chodde= Hé + 1008 log logK3.
We haveg(s) = A(-9)B(s). We have

2
(sl < {Z muﬁ] K+ [Z |an|ﬂﬁ‘} = K.

n<H n<H

By LemmdZE5P ((e)) we have

H
lg(it)|dt < 400C°H Y |an/°.
| 1ot 3

n<X

Again

1 A+2
ST |am||an|(7m)
n

1
m<X,n>X+H 4

56
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DT (MHAMHYACm A2
mgx,an+H%1
< C2A+4H 4A+3.

Putx_——lwhereN [X+H4] M = [X]. Then 0< x < 2c(n’\2/I) <

3C;HH“ <53 1 under the conditions oH imposed in the theorem. Hence

U (An - Am
ves(iy)= 3 ()
U(N-M-3
AWY,

H% -3
C2H

v

\%
ool

1
-H
2
H
C2’

(under the conditions oH imposed in the theorem). Thus

ool

(8]

Sy < 2°S,H™5(3C?)'.

We choose = 100A + 100 and check thdt > 27°(16B)?, and that
H > (2r + 5)U. Thus by applying the main Lemma we obtain

1 2B2 54B H + 64B2)2' C2A+4HA4A+3
|—J2|<{— B Jooc2y + 1+ 048D

u1o ((3C2)-1H3)"
+16B2 Exp( ) C2A+414A+3 Z a2,
n<X
Hence
f F()?> ) (H - D - 100C%n)[aqP,
n<aH
where

4B2  4320@C?BH
D = (2r + 5)U + 1000C2H# + 2B, 4320C7BH
yio U
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+ (H + 6482)2I‘+102A+4(302)r H4A+3—L8

+ 30R2 Exp(— %) C2A+4|4A+3

< 1300002 log log K3 + 405AH# + 1000C2H? + 36A%H &

+ 4320@2(3A)H 8

+ 6005\2H (2100A+101)CZA+43100A+100C200A+200H 4A+3-12A-12

+ 30002C2A+4(720)(56)(24))BH &

< 1300002 log logK3 + H? {405A +1000C? + 36A% + 12960AC?
+6006\2C406A3401A + 358A10C6A}

< 13000\? log log K3 + (3C)100%,

This proves the theorem completely. 57

Notes at the end of Chapter Il

The previous history of the fundamental theorems provedis t
chapter is as follows. In 1928 E.C. Titchmarsh proved (seghiarsh’s
book [100] p. 174 and also E.C. Titchmar§h [103]) that forrgvixed
integerk > 1 and any > 0, we have

2
= (L ket 1\
6](; |§(2+|t)| e ldt > Iogé ,

where the constant implied by depends only ok. Later these ideas
were developed by the author to prafetheorems for short intervals
on the linec = 3,3 < o < 1, and ono = 1 (see K. Ramachan-
dra [69]). These were taken up again by the author who intedu
“TITCHMARSH SERIES” and proved very general theorems which
gave

1 T+H 1 )
= f '5(5 + it) 1*dt > (log H)¥, (k > 1 fixed integer)
.

whereH > loglogT and at the same time ga¥&theorems for short 58
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intervals on the said lines. These results were presentétetauthor in
Durham Conference (1979) (See K. Ramachandra, [70]). Tke fan-
damental theorems proved in this chapter are due to R. Batasmanian
and K. Ramachandra. (See R. Balasubramanian and K. Rantahan
[10], [9] and also R. Balasubramanian] [2]). The word Titesin’s
phenomenon is used to mean the swayingg(@}| ast varies andr is
fixed.



Chapter 3

Titchmarsh’s Phenomenon

3.1 Introduction

We have used the term “TITCHMARSH’'S PHENOMENON?” for the9
swayings ofl(o- + it)| aso is fixed andt varies. More generally we
consider the swayings (o + it))34(= f,(t) say) wherez = €, 6 and

o being constants (Wit% <o < 1and0< 9 < 2r; we will always use
zfor €%). First of all a remark about extendirgto be a constant with
o< % By the functional equation (see equation (4.12.3) on p&gef7
E.C. Titchmarsh([Z00]), we obtain for> 20 ando < 1,

t ) 1-0) Coss+tSing

fo(t) = 1(¢(o + i) = ((Z et Sme] (C(1 - o —it))3,

and so RH impliesf,(t) —» o ast — oo provided that 0< 6 < n,

(because lof/(1- o —it))4 = Relog¢(1-o —it))* = o(logt) if o < %;

see equation (14.2.1) on page 336 of E.C. Titchmarsh [180§p when

m < 6 < 21 we havez = —€¢ where 0< ¢ < 7. Hence (on RH) when

m <0< 2rando < % we havef,(t) —» 0 ast — co. The main question

which we ask in this chapter is this: Let us fixin % <o <1, and put
f(H) = |rlmﬂ Te?Xff’(t)‘

Then doesf(H) —» o0 asH — «? If so can we obtain an asymptotic
formula for f (H)? We obtain a completely satisfactory answer if 1.

63
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Puta(6) = [] Ap(6) where
p

—Cosd
(1 / _Sifg  Coso .. _,(Sing
/lp(e)_(l p)[ 1 —p2 —p ] Exp(SlnHSm (—p ))

Then we prove that
If(H)e™(1(0))~* - log logH| < log log logH + O(1).

(Putting® = 0 andn we obtain stronger forms of two results due to
earlier authors. For the earlier history see Theorems §.9(4 8.9(B)

on page 197 and also pages 208 and 209 of E.C. Titchmarsh)[100]
However we are completely in the dark%fs o < 1. We can only
prove that ifT > H > CloglogT whereC is a certain positive constant,

then
3 logH i _ 1.
EXp(Z A" IoglogH) if o = 21
TR fo(t) > (log H)*
<<+ a(log —0 e 1
EXp(W) if 5 <o<l]

wherea, is a certain positive constant. The result just mentionezsdo
not need RH iP = 0. But we need RH if &< 6 < 2r. Wheno = 1 our
results are completely satisfying since the results arfresdl from RH.

It may also be mentioned (see the two equations proceddibd])lthat
we do not need RH in proving (that i < 3)

%—O’—E

max +it t
lt-to|<C(e) o+l >t

whereC(e) depends only oa(0 < € < 1), and is positive. But RH gives
| (o+it)] > t2-7=¢. The results (with the conditioh > H > CloglogT
mentioned above will be proved by an application of the dargito the
third main theorem (ir§ Z23) and will form the substance §f3.2 and

§ B.3. However we include i§ 3.3 some other “Upper bound results”
regarding the maximum df;(t) over certain intervals still witt% <o <
1). These results will also be used in the proof of the result-o= 1,
which forms the subject matter §3.4.
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A new approach to the simpler question (than wheth{gt) — oo
and so on) is due to H.L. Montgomery. He developed a methodosf p
ing anQ result for f,(t) namely

B 1 / logt
f% ®H=Q Exp[20 iog Iogt]] onRH,
and 61
1 1\2 (logt) )) . 1
f(,—(t) =Q EXp[Z) (O’ - E) W}] |f E <0< 1

the latter being independent of R.H. In tGeresult in% <o<l1
it is possible (using Montgomery’s method) to replage — %)% by
c(o - %)%(1 — 0)™L. The method also succeeds in gettidgesults for

Re@’/(1 + it)). For references to these results see the notes at the end
of this chapter.

3.20n The lineo = 1

As a first theorem we prove

Theorem 3.2.1(on RH). Let z = €’ whered is a constant satisfying
0<6<2r IfH < T and HloglogT) ! exceeds a certain positive
constant, then

1 .. 3 logH
TAH |(§(§ N = EXp[Z \/ log IogH]'

Remark 1. We do not readRH if z= 1.

Remark 2. We prove the theorem with a certain positive constarﬁ

in place of%. Replacing LemmB=32.2 of the present section by a more
powerful lemma due to R. Balasubramanian We%eSee the notes at
the end of this chapter.
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Lemma 3.2.1.Given any t> 10there exists a real numbeiwith [t—7| <
1, such that

(o +it) 5
o) ((logt)*) (3.2.1)
uniformly in—-1 < o < 2. Hence
log (o + it) = O((logt)?) (3.2.2)

uniformly in-1< o < 2.
Proof. See Theorem 9.6(A), page 217 pf E.C. Titchmalrshl[100].o

Lemma 3.2.2. Let

kz ©
F(s) = (g(% + s)) = Z & >2) (3.2.3)

k2 — bn,
k3<p<k* P

n=1
Then
b
2 < D lal (3.2.5)
n<x n<x
k2 5,5
1+ —|> Expk-log Z)’ (3.2.6)
K3<p<k4 p
and )
(1+ pm) < Exp2e™©), (3.2.7)
k3<p<k4
wheres = |oCle and G is any positive constant. Also

bn 2 S br

n<x n>Xx
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> % Exp(k2 log i—:) (3.2.9)
provided
logx )2
K> Cz(log Iogx) (3.2.10)

where G is a positive constant.

Proof. The equation[(3.215) is trivial. The equatiofs (3.2.6) &h&.{)
follow from log(1+y) < yand log(1+y) >y — %yz for0O<y< 1. The
equation [3:218) is trivial whereaE {3.2.9) followsxf < Exp(k?e 1)
andC; is large. This leads to the condition(3.2.10) for the vayidif
B.29). o

Lemma 3.2.3. We have, with k= [Cs(log H)Z (log logH)~2],

[% > |an|2)2k > Exp(klog(100/99)) (3.2.11)

n<aH

wherea is an in corollary to the third main theorem (s€&.3) and G 63
is a certain positive constant.

Proof. Follows from [325),[(3.219) an@{3.2110). m|

Lemma 3.2.4. The conditiona,| < (nH)” is satisfied for some integer
constant A> 0.

Proof. Trivial since, for largeH, we have
lanl _ < lanl _ o dk(n) K _ 2
?S ?3272(4(2»SH.
n=1 n=1
Lemmad 32113 2.232.3 ahd 312.4 complete the proof ebfidm
BZ1, since by Lemma_32.1 we have

(¢(o +it))? = Exp(O((logt)?)) (o- > %) (3.2.12)

on two suitable lines (necessary for the application of thiedtmain
theorem)t = t; andt = t,. (It is here that we need the condition that
H(log logT)~ should exceed a large positive constant). O
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Theorem 3.2.2(On RH). For all H exceeding a suitable positive con-
stant, we have,

logH
z -
T>ale<rPaX (o +it))7 > Exp[ log |09H]

z being as in Theorem3.2.1.

Remark. As in Theoren_3.Z]1 we do not need RHziE 1. Also the
previous remark regarding the constﬁrﬁtands.

Proof. Assume that Theoref1 3.2.2 is false. Then

max_max I(Z(o + it))?] < H.
>1 T<t<T

This is enough to prove (by the method of proof of TheofemIB.that
ono = 1 + (logH)~* we have

3 / logH
V4
T<rglax [(£(o +it))] > Exp[ iog IogH]

This completes the proof of Theordm 312.2. m|

If we are particular about the line = % (and smallerH than in
Theoren-3.2]1) we have

Theorem 3.2.3.From the interval[T, 2T] we can exclude {fog T)~2°
intervals of length(log T)? with the property that in the remaining in-
tervals I, we have

max |(9)P < (log T)¥. (3.2.13)

SE(2 o0)x|

LetH < (log T)? and | be any interval of length H contained in |. Then
for z= €Y, we have
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provided only that Hlog loglogT)™! exceeds a suitable positive con-
stantand z= 1. If z # 1, then we have to assume RH and to replgce
by 1 + (loglogT)~2.

Remark 1. The previous remark about the constémtands. The ques-
tion of proving Theoreni_3. 2.3 (when # 1) without replacing% by
3 + (log logT)~! is an open question.

Remark 2. We can forz # 1 replacej by 1 + (log logT)~20.

Remark 3. Theorems such &s-3.P[1,312.2 &nd 3.2.3 have applications to
the variation of arg(s) over short-intervals.

3.30nthe Linec with <o <1

As a simple application of the corollary to the third maindtem (see
§ 2Z3) we first prove Theorenis-3.B[T,313.2, And"B8.3.3 to fallow 65

Theorem 3.3.1.Let f,(t) = |({(c +it))? where z= €’ and TS<H<T.
Then forj < @ < 1, there holds

Tsrtr;:%(H f (1) > Exp(Cl

(logH)*—
log logH

where G is a certain positive constant.

Remark. If z = 1 then the restriction ol can be relaxed ttd < T
and thatH(loglogT)~ shall be bounded below by a certain positive
constant. However when# 1, we need to assume RH to uphold the
corresponding result.

Theorem 3.3.2(on RH). For all H exceeding a suitable positive con-
stant, we have, fo} < a < 1,

(log H)l‘“)

H\\Z
max_max_[({( +it)) > EXp(Cl loglogH

oza T<t<T+

z and G being as before.
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Remark. If z=1 RH is not necessary.

Theorem 3.3.3.Divide [T, 2T] into abutting intervals | of fixed length

H (ighoring a bit at one end) where H exceeds #isiently large con-
stant and Hlog logT)~! is bounded above by any fixed constant. Then
there exists a positive constasitsuch that with the exception of Exp
Exp(@’H)) ! intervals |, we have,

max(¢a + )1 > Exp(clw)

loglogH
where as usual z €°.
Remark 1. Note that this theorem does not depend on RH.

Remark 2. We can replaceT], 2T] by [T, T + T%]. The number of ex-
ceptions will then b 3 (Exp Expg’H))~2.

First we give details of proof for Theorem—31B.1 and thenflyie
sketch the proof of Theorem3.B.3. The proof of TheofemBs3simi-
lar to that of Theoreriz3.2.2. We begin with

Lemma 3.3.1.Let1 > g < 1and H= T3. Then the number of zeros of
) in(ec =B, T<t<T+H)is

< HAA/E2) (]og T)100 (3.3.1)
where the constant implied by the Vinogradov symba$ absolute.

Proof. This is a consequence of a deep result of R. Balasubramdjian |
on the mean square qu(% + it)]. (See Theorem 6 on page 576 of his
paper; see also K. Ramachandra [65]). m|

Lemma 3.3.2. Leta andg be constants satisfyin§ <B<a<1 Then
there exists a t-interval | contained in¥ t < T +H of length P (where
6 > 0depends only oa andg) such that the regiofo- > 3,t € 1) is free
from zeros of (s).

Proof. Follows from lemm#&3.311. O
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Lemma 3.3.3. Let |y denote the t-interval obtained from | by removing,
on both sides, intervals of Iengtﬁ—OT5. Then in(c > a,t € lp), we
have,

logZ(s) = O(log T)

Proof. Follows by Borel-Caratheodory Theorem (see Thedreml1.6.1)
i

Lemma 3.3.4. We apply the corollary to the third main theorem (see
Z3) to the interval § in place of T< t < T + H. Then (with z= €7), we
have,

1 %
z - 2
(el + 901> lan?) (33.2)
where n is any integer not exceediatH wherea’ is thea of the corol-
lary to the third main theorem and ¥ 1000is O(log H) and the num-
bers g are defined by 67

FO = Car9e=) 2.
n=1

(3.3.3)
Proof. Itis easily seen (as before) that the conditions for theiagipbn
of the corollary to the third main theorem are satisfied. O

Lemma 3.3.5. Let
n= l—[ p (3.3.4)

where p runs over all the primes in the inter\[ei)ﬁ, ('5‘)5]. Then

Ciks
2 1
lan|” > Exp[logk]

where G is a positive constant.

Proof. Note thatk?p2* is bounded below by a constant1 and that
the number of primes if{3.3.4) is ka(logk)™. This proves Lemma
B33. O
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Lemma 3.3.6. Let k= [Cy(logH)*] where G > 0is a small constant.
Then, we have,
n<a'H, (3.3.5)

and so RHS of 3.3.2 exceeds

(C3(|09 H)l‘“)

log logH (3.36)

where G > 0is a constant.

TheoremZ3311 follows from{3:3.2) anB(313.6). We now byiefl
sketch the proof of Theorem3.B.3. Lgbe a constant satisfying <
B < a < 1. The number of zeros df(s) in (o > B, T <t < 2T) is
< T19 for some positive constaist Omit those intervals for which
(o = B,t € 1) contains a zero af(s). (The number of intervals omitted
is < T179). Denote the remaining intervals by For these, we have, by
standard methods (see Theollem.7.1) the inequality

Z max (o +it)° < T
T o>p.tel’

and so the number of intervals for which the maximum exceeds Exp
Exp(28’H) does not exceed (Exp Exp(’H))™L. Omit these also. Call
the remaining interval§”. Applying Borel-Caratheodory theorem (see
Theorem[L.6l1), we find that for suitabléntervals at both ends of
I” ando > a we have log(s) = O(Exp(8’H)) and so {(9))* =
O(Exp Exp(8'H)). We can now apply the corollary to the third main
theorem to obtain Theorem=3B.3 since plainly the numbemafted

intervals is
< T+ T(Exp Exp(# H)) ™ < T(Exp Expg H)) ™

if g’ is small enough.

In the remainder of this section name§y3.3, we concentrate on
proving the following theorem. (For the history of this them and
other interesting results see R. Balasubramanian and KaBzandra
[L2Z]). This theorem will be used if[3:4. For the sake of convenience
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we adopt the notation of the paper of R. Balasubramanian arselin
cited just now and whenever we apply this theorem we taketoasee
that there is no confusion of notation.

Theorem 3.3.4.Leta be a fixed constant satisfyidg< « < 1and E>
1 an arbitrary constant. Let G< H < T/100and K = Exp(l%'f—o%:)
where C is a large positive constant and D an arbitrary pesitcon-
stant. Then there are TK~E disjoint intervals | of length K each,

contained inNT, 2T] such that

(log K)*
(log logK)«

Furthermore

(log K)*

< maxjlogd(e +it) < qo q oy

(log K)*™

a@a%)e(l llog (o + 1)l < (log logK)e”

Remark. Here as elsewhere Id{s) is the analytic continuation alongs9
lines parallel to ther-axis (we chose those and only those lines which
do not contain a zero or a pole &fs)) of log/(s) in o > 2.

We first outline the proof of this theorem and reduce it to tfeepof
TheorenZ3:315 arld3.3.6 below. L&t 3, ands be constants satisfying
3 <fo<p1<p<a< Ll Itiswell-known that

1% (1 \o
?fT |§(§ + |t)| dt = O(logT).

From this it follows that there are> TH™! disjoint intervalslg for t
(ignoring a bit at one end) each of length+ 20(logH)? contained in
[T, 2T] for which

f f 12(9)]2dtdo < H (3.3.7)
2>0>fo Jtelg

f (81 + it)Pdt < H. (3.3.8)
telg

and
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From [333Y) and[({3:38) it follows by standard methods l@Ered in
my booklet on Riemann zeta-function published by Ramanujati-
tute, now using Jensen’s theorem see E.C. Titchmarsh [10Xjage
125; See also Chaptidr 7 of the present book) {at 1 o) is the number
of zerosp of £(s) with Rep > g and Imp lying in lg. Hence if we di-
vide lg into abutting intervals (ignoring a bit at one erggach of length
H?+20(logH)? wheed = §, the number of intervall; is ~ H*%. Out of
these we omit thoshk for which (o > 8, tin 1) contains a zero af(s).
(They are not more than a constant tinkE's?® in number). We now con-
sider a typical interval, which is such thatd > g,tin |,) is zero-free.
Let us designate thisinterval by [To—10(logH)?, To+H?+10(logH)?].
Put

H; = HY andk =

Ci1 IogH]

whereC; is a small positive constant. Then we prove the following
Theorem.

Theorem 3.3.5.We have,
To+H1
f llog £(a + it)[*dt > CKAZKH, (3.3.10)
To
and
TotHy 4K 2K A4k 4k ~2K A4k
fTO llog Z(a + it)|*dt < CKASKH, < 2%CZakH,  (3.3.11)

where A = k}%(logk)~®, and G, Cs are positived constants indepen-
dent of G.

Corollary. Divide[Tg, To+ H4] into equal (abutting) intervals | each of
length K (neglecting a bit at one end). Then the number N efwals
| for which

. 1
j; llog (e + it)*dt > 21c‘;AﬁkK (3.3.12)
satisfies N> —1 + 1—16(4(3C—"’3)2"H1K‘1 and so, in these intervals

rrtn'?lx| log Z(a + it)] > Ax.
€
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Proof of the Corollary. PutJ = [/|log¢(e + it)[*dt. Then
1 ok
> SCHAZH,
1

since the g:ontribution from the neglected bit is not morentKé(Z“k
C2kA¥H1)2 on using [3301). Let

;J:ZJ

1cka2k
1LJ<3CKAZK

andy, the sum over the remaining intervalsTheny,, J > $CKAZH;. 71
Put}, 1 = N. Then by Holder’s inequality we have

1

1 2
ZCHASH, < N2 (Z JZ]

2

2 l0g(a + itk
N [Zzlﬁ 0g(a +it)| tK]

K2 (2*CZAKHY)2.

IA

Nl

<N

2 .
HenceN > 1—16 (4%—23) H1K~1. This proves the corollary.

Theorem 3.3.6. Let J be the maximum ovdRes > a,Imsin|) of
|logZ(s)/¥. Then with the notation introduced above and [a, b], we
have,

E,J; < (logH)>? Z f f |log £(s)[*do dt
5 Ja-1<t<brl Joza—(log H)

< 2(logH)? f ﬁo_l«mmﬂ llog £(s)/*do dt

o>a—(logH)™1

< 2(logH)?CKAZ¢H;, (3.3.13)

where G > 0is independent of C
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Corollary. Of any% of the summands; Appearing in}, the minimum

J; does not exceed
2(logH)2CKAZH,

—1+ 5(z2)*HaK-1

Hence thentw?lxl log Z(« + it)] over those intervals | i< Ay.
€

(3.3.14)

Combining corollaries to Theoreris 313.5 &nd 3.3.6, we bavé +
3—12(4%—23)2"H1K‘1(: M say ) intervalsl contained inl; for which there
holds

Al < nt1€<':|1x| log(a +it)] < Ax. (3.3.15)

Now by choosingC; small we haveM > H;K~F whereH; = H? and
the number of intervalt; is ~ H1-?. Sincel; is contained irg and the
number of intervaldg is > TH~1 we have in all

HOK—EHl—HT H—l — TK‘E (3316)

disjoint intervalsl of lengthK each, where[{3.3.15) holds. This com-
pletes the proof of Theoren=3.B.4 provided we prove Theol&iB3
and33.b

We now develop some preliminaries to the proofs of Theofe®8 3
and[336. Fron(3:3.7) using the fact that the absoluteevalian ana-
lytic function at a point does not exceed its mean-value awdisc (say
of radius (logH)™) round that point as centre, we obtain

12(3)] < HZin (o > B + (logH) ™, To — 9(logH)? < t < To + Hy + 9(logH)?).

Hence in this region Relags) < 2logH. Now logZ(2 + it) = O(1)
and hence by Borel-Caratheodory theorem, we have,

logZ(s) = O(logH) in (o > %(a+,8),T0—8(IogH)2 <t < To+H1+8(logH)?).

We now put
X = (logH)®B (3.3.17)

whereB is a large positive constant. We have

s p 1 2+ico w
Zp: 0 Exp(—i) = fz . TogZ(s+ wX"rwdw+ O(1)
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wheres = @ andTp — 7(logH)? < t < T + Hy + 7(logH)?. Here first
break df the portion| Imw| > (log H)? and move the rest of the line of
integration to Rev given by Re§+ w) = %(a/ + B). Also observe that

Z p-s Exp(—g) = 0(1).

p=>X2

Collecting our results we have (singgw + 1)| < Exp(=|Imw])),

logs(9 =Y. p—SExp(—§)+0(1) (3.3.18)
p<X?2
whereo = @ andTp — 7(logH)? <t < To + Hy + 7(logH)?. Let 73
k
1
X* < H? and{z p~S Exp(—g)] - Z a(n)n™s = F(9),
p<X2 p<X

(3.3.19)
say.
Then we have

IF(91 < (1log ()l + Cs)* < 2%log (91> + (2C5)*,  (3.3.20)

and also
llog (91 < 2%|F () + (2Cs) . (3.3.21)

We now integrate these equations from: Totot = Tg + Hy. Also
we note that these inequalities are valid even W%ﬂz Res > a -
(logH)™, To - 6(logH)? < t < Tg + Hy + 6(logH)2. Now ino > 13,

we have log ()| < 277 and so

ff U T 1<t<To+H +1|Iog§(s)|2kdo_dt < Cgffz_ZkadO'dt < H1C'é.
o215, To—1<t<To+H;
0 (3.3.22)

Therefore in order to prove Theordm 313.6 iffexes to consider

2% f f IF(9)1do dt + H,CK (3.3.23)
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where the area integral extends over

11
(EzResza—(logH)‘l,To—lstsTo+H1+1)-

1
By a simple computation, we have singé& < Hf,
l T0+H1+1
G(o) < — f IF(9))2dt < G(o) (3.3.24)
Hi J1p-1
where
Gle) = > (am)’n ™. (3.3.25)
n<X

Thus in order to prove Theorefs313.5 Bnd 3.3.6, we se&BY2(B,
B321), [3324) and(3.325)) that we have to obtain uppe lower
bounds for G(a))ﬁ. (Things similar toG(o) were first studied by
H.L. Montgomery. See the notes at the end of this chapteft)ple 2,
p2 = 3,..., pk be the firsk primes. By prime number theorem

p1p2... Pk = EXp(pk + O(K)) = Expklogk + klog logk + O(K)).
(3.3.26)
Taking only the contribution t&(c7) fromn = p; ... px, we have, since
Exp-%) > 3G(=12...,K,

G (k)22 o R
(G(o))@ > (—(pl . pk)Zf’) > —(Iog o

This proves the lower bound

= Ac(o) say.  (3.3.27)

G(0) = (Ax(o))*C2. (3.3.28)

As regards the upper bound we write
—S p _
Z p Exp(—y) = Z +Z (3.3.29)
p<X? 1 2

where} ; extends ovep < klogk and}’, the rest.
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Note that
(9P < 229 Y P+ 22 3 X (3.3.30)
1 2
Put
&b n)
(Z] =Y ';]S — F4(9) say (3.3.31)
1 n=1
and
(Z) = Fy() say. (3.3.32)
n=1

By a simple computation we hav

1 (TotHi+l 1 [TotHi-1
IF1(9)?dt < G1(0) andH—l fT . IF2(9)|?dt < Gy(or)
o

Hy Jr, 1
(3.3.33)
where
(B _ (5 b)Y\’ -
n n
o= O <S50 <[ 3 eer(3)
p<klogk
(3.3.34)
and
@) o -
ck(n ck(n o
Gol) = ), HPE <k Y X0 { 3 op? Exp(—g)] .
p<klogk
(3.3.35)
If o < 1, we have easily,
1 (klogkte KT
(Gi(o)) ™ < ogk  ~ {logk)” (3.3.36)
and by Stirling’s approximation tk! we have also
k(log k)12~ ki
(Ga(o))@ & < k2( logk (Iog e (3.3.37)

75
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This proves the upper bound

To+Hi+1 &

<[ 2] -
(G(0)) @ <<(H1 j; . IF(9)| dt) < A(0) (3.3.38)

which in turn gives an upper bound de((a))(Z_lw ifBo<o<1-6
uniformly in o~ for every small constan; > O. If % >0 >1-6;the
bounds for the area integral are negligibléiifis small since it is

5 2
ax(n) - p
oS5 523 el f)
p<X?2
whereo; = 1 - 61.
This completes the proof of Theorems—313.5 &nd B.3.6. Theis th
proof of Theoreni.3.314 is complete.

3.4 Weak Titchmarsh series and Titchmarsh’s Phe-
nomenon on the linec =1

The main object of this section is to prove the asymptotienigda for
f(H) (of course witho- = 1). This is a long story and we will state it
as a theorem at the end of this section. We find it conveniespltbup
this section into part A (weak Titchmarsh series), part Blaation to
lower bound), part C (upper bound) and part D (the main thepre

PART A

Weak Titchmarsh Series.Let0<e < 1,D > 1,C > 1 andH > 10.
PutR = H¢. Leta; = 41 = 1 and{ax}(n = 1,2, 3,...) be any sequence
of real numbers withé <Ah1-An <C(n=12123,..)and{a,}(n =
1,2,3,...) any sequence of complelx numbers satisfying

> laal < D(log X)®

An<X
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for all X > 3C. Then for complexs = o + it(c- > 0) we define the an-

alytic functionF(s) = Y, an4;° as a weak Titchmarsh series associated
n=1

with the parameters occuring in the definition.

Theorem 3.4A.1(FOURTH MAIN THEOREM) For a weak Titch-
marsh series Es) with H > 36C2H¢, we have

H
lim inf | IF(o+i)dt>H - 36C2H€ — 12CD.
o+ 0

Theorem 3.4A.2(FIFTH MAIN THEOREM). For a weak Titchmarsh
series Ks) with logH > 4320C%(1 — €)~°, we have,

H
H
Lo 112 _ _ 2 2 o2
Ilmglgf+0 , |F(o +it)|°dt > g (H —IogH 100C n)lan| 2D

n<M
where M= (36C2)"tH1¢(logH)*. ”

Remarks . The two theorems just mentioned have been referred to in
the published papers as the fourth and the fifth main theoré&pe the
notes at the end of this chapter). Theofem 3.1A.1 will be lesied.

Proof of Theorem[3.ZA1We can argue witlr > 0 and then pass to
the limit aso- — +0. But formally the notation is simplified if we treat
as thoughF(s) is convergent absolutely if = 0 and there is no loss of
generality. Letr be a positive integer and @ U < r~*H. Then since
[F(9)] = 1+ Re((9)), we have (withd = up + ... + uy),

H U U H-rU+4
f |F(it)|dt2U‘rf du...f dulf IF(it)/dt
0 0 0 A

U U H-rU+4

zu—ff du...f dulf {1+ Re(F(it)))dt
0 0 1

>H-ru-2*u)

whered = ¥ |anl(logA,)""1. NowJ = Sg + ¥, Sj whereSp = 3,

n=2 j=1 An<3C

lanl(log )"t and S; = 3 lanl(logAn) 1. In Sp we use
3iC<an<3itiC
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An > 12 > 1+ C1and so (logl,) ! < (2C)*! and we obtain
So < D(2C)"*}(3C)". Also, we have,

S;j < D(log(3*C))R(log(3'C)) "1
< D2R(log(3'C))R "1, (since 31C < (3/C)?).
< D2Rj2 by fixingr = [3R].

Thus forr = [3R] we have

J < D(2C)**(3C)R + 2D2R, (since Y j2 < 2),
=1
< 3D(2C)"*}(3C)R.

Collecting we have,

r
2y < 1ZCD(3C)R(%)
12c2\} .
< 1ZCD(T) if U>4C

< 12CD by fixing U = 12C2.

The only condition which we have to satisfyrld < H which is secured
by H > 36C2H¢. This completes the proof of Theorem 1.

Proof of Theorem[3ZA2
We writed = U; + ...+ Uy, where 0< u; < U and O< U < r1H.
We putM; = [M], A(S) = Y amd;candB(s)= Y and;°sothat
m<Mq

< n<Mi+1
F(s) = A(9)+B(s). For the moment we supposkto be a free parameter

with the restriction X M < H. We use
IF(it)]? > |A(it)]? + 2 Re(A(it) B(it)).

Now by a well-known theorem of H.L. Montgomery and R.C. Vaagh
(see Theorenis—1.4.1 ahd T14.2) we have

H-rU+a
f AGDPdE> > (H - rU - 100C%n)ian.
A

n<Mm
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Next the absolute value of

u u H-ru+1 _
2U fo du ... fo dug j; (Ait)B(i)dt (3.4A.1)

does not exceed

. 1 -r-1
2r+2U—r lo -n
> Iamanl( 9

m<Mq,n>M1+1

sz”zu‘“{ Z Ianl}[ Z |an|(log AAM”l)Hl )

m<M; n>M1+1

Here them-sum is< D(log Ay, )R < D(log(BMC))R, sincedy, < MiC < 79
MC. It is enough to choos# > 1 for the bound for then-sum. The
n-sum can be broken up int < 31y, and S/IMl <Ap < 3j+1/1Ml(j =
1,2,3,...). Let us denote these sums 8y andS;. Now since

An ( /1M1+1) ( 1
log— | >|lo >log|l+
( g/lMl) J /lMl J C/lMl

) > (2Cam,) "t = (2C2M),

we obtain
So < D(log(31m,))R(2C2M)" 1 < D(log(3MC))R(2C2M) 1,
Also

Sj < D(log(3**am,))R(jlog 3"
< D(jlog 3+ log(83MC))Rj~1
< 2RD(j log 3)R(log(3MC))Rj "1
< 4RD(log(BMC))Rj 2, if r > R+ 1,

and so (sincey, |72 < 2),
j=1

[Z . ] [Z . ] < D%(log(3MC))R(log(3MC))RY

m n
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(whereY = (2C2M)™*1 + 2(4R))

< D%(log(3MC))?R((2C2M)" 1 + 2(4R)).

Hence the absolute value of the expression (3¥A.1) doesxceed

D?(log(3MC))R ((8C2M) (405 M) + 2(§)) (3.4A.2)
< D2 {SCZM (4C2M(|08(3MC))2)R+I09(&32M) N z(g)R}

if U > 4C?M andr > R+log(8C?M). We putU = 12C>M(log(3MC))?
and obtain for[[34A12) the bourd?{1 + 1} < 2D?. The conditions to
be satisfied aré/ > 1 and

12C2M(log(3MC))?(R + log(8C*M) + 1) < H.

In fact we can satisfYr < % by requiring

12C>M(log(BMC))?(R + log(8C*M) + 1) < %.
This is satisfied if
36C2M(log(8C*M))°R < H(log H) 2.

Let 8C?M < H. Then 3€%MR < H(log H)™ gives what we want. We
chooseM = (36C%)~tH¢(logH)~*. Clearly this satisfiesGM < H.
In order to satisfyM > 1 we have to secure that

(3&:2)—1 ((l - é-)(Iog H))5

-4
120 (logH)™ > 1

i.e. logH > 4320C%(1 - €)~°.
This completes the proof of Theordm 3.4A.2.
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PART B

The main result of part B is

Theorem 3.4B.1.We have (with = €°)

min max I(¢(1 +it))3

T>1 T<t<T+
> e’A(0)(log logH — log log logH) + O(1), (3.4B.1)
where H> 10000and
A0 = | 10(0) (3.4B.2)
p
and
Cost
\/P? - Sirf 6 + Cost i
p(0) = (1 - —;) Ry Exp(Sin@ Sint (SI—SQ))

(3.4B.3)

Remark. Note that

- Cosé —Cosd
\/ P? — Sir? 6 + Cost B l_Sinzg_Cose
p-pt V p? p

(3.4B.4)
The outline of the proof of this theorem is as follows. By Tren
BZA2 withe = £, ko = kzandF(s) = (£(1 + 5))* we have

L s iy s L
g e | _221

n<H4

|, (M)[?
n2

(3.4B.5)

uniformly in T > 1, andk any positive integer satisfying4 k < logH,
providedH exceeds an absolute positive constant. Denote tine RHS
of (ZB35). We prove (by considering “the maximum term”Sithe
following Theorem.

81
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Theorem 3.4B.2.We have

max (S<2_lk>) > e’ A(6)(log logH — log log logH) + O(1). (3.4B.6)
1<k<logH

Remark. This would complete the proof of Theordm 3.4B.1.

We select a single term & as follows. To start with we recall that
we have to impose k¥ k < logH, kg = kz We selech as follows. Let
n > 2 and letn = [T p™ be the prime factor decomposition f Then

p

(in the notation of Theore3.44.2) we have

1—[ ko(ko +1)...(kp+ m—-1)
p

a; =1, anda, = napm =
p

—_r , (3.4B.7)
by using the Euler product faf(s). For eachp(< k) we select an
m = m(p) for which |agn| is nearly maximum. Then we have to sat-

isfyn=[]p" < H#. In fact we choosek as large as possible with
p<k

these properties. We now proceed to the detalils.
Lemma 4B.1. Let, for each px k,

Cosf + +/p? — Sirt 6

k
=k 7?1 = a say, and m= [{£]. (3.4B.8)

Then, putting n= [T p™, we have
p<k

1 > 1
K loglan|” = K ;({ 2mlogm+ 2m+ O(logm) — 2mlog p + E(k, m)}
(3.4B.9)

where

m-1
E(k,m) = > log(k® + V2 + 2kvCost). (3.4B.10)
v=0

Proof. Follows from the formula

logm! = mlogm - m+ O(log m).
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Lemma 4B.2. We have,
1
E(k, m) = 2mlog k+kfq Iog(1+u2+2uCose)du+O(%). (3.4B.11)
0

Proof. We have

m-1
E(k,m) = Z {log(k? + V2 + 2kvCoss)
v=0

V+1

- f log(k? + u? + 2kuCosH)du}
Vm

+ f log(k? + u? + 2kuCosé)du.
0

Here the sum on the right is easily seen tcﬂ(%) The integral on the
right is
m u> u
2m|ogk+f log(1l+ = + 2— Cosf|du
0 k2 k
Here we can replace the upper limitof the integral by? with an error
o) = O(lp). The lemma now follows by a change of variable. O

Lemma 4B.3. We have, 83
1 1
=N =0— 4B.12
kZ ogm O(Iogk) 3 )
p<k
and
DIEWIEN
k = p logk
Proof. Follows by prime number theorem. O

Lemma 4B.4. We have,

%( Z{—Zmlog m+ 2m— 2mlog p + 2mlog k}
p<k

= LiogPi il of ). (3.4B.13)
= q g g logk
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Proof. On the LHS we can replaaa by ¢ with a total error

1 1
< o pZ; O(logm) = 0(@().
The restis
Z{—}Iogl—( + 1 }Iogp+llogk}
=.49 494 9 9 q
which gives the lemma. m|

Lemma 4B.5. We have,

1
%( Z qu log(1 + u? + 2uCos)du
p<k “0

- ReZ [el—j Iog(1+ éé@) - é) (3.4B.14)

Proof. Trivial. O

Lemma 4B.6. We have,

1 > 1
K log|an|© = log logk + y + log A(6) + O(m), (3.4B.15)

whereA(0) is as in Theoreri 28..1.

Proof. By Lemmas 2B [ZB1Z48.3 arld 4B.4 we see that LHS of
B2B.I5) is, (with an erro®(j5y)),

Re —Zlog= + =log{1+ =€?|+e"log|1+ =€Y]}.
;({ a7g a " g g

Now the contribution from the first two terms (in the curly tkat) to

the sum is o
1 q+
Re » —log]| | =0,
;(q J p
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since

2
p>-1

\/pZ—Sir129+Cose

2
p? — 1+ Cog 0 + Cost [ p? — Sirt 6
\/P? — Sirfg + Cosd

Ig+€’? = +Coso| +Sirte

+ Sirte

= p2.

The third term contributes

Z (Cos@ log P singtan (ﬂ))
= q q+ Coso

= Z {Iog (1 - E) + Cosflog b + Sinetan‘l(ﬂ)}
o p q q+ Coso

+ Z Iog(l— lp)_l.

p<k

This together with the well-known formul@] (1— %)_l = & logk +
p<k
O(1) proves the lemma. O

Lemma 4B.7. For the n defined in Lemnia3.B.5, we have,

logn = > mlog p = klogk + O(K). (3.4B.16)
p<k

Proof. Replacement ainby ¢ involves an erroO(k) by the prime num- 85
ber theorem. Now/ = ¥ and

q= p(p—i)[p 1- Sigzze +Cos€]

-1

p
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:p( _i) . /1_Sir129+Co_se_l
p? p2 p

=p+ O(1).

This proves the lemma. ]

Lemma 4B.8. Set k= [ZI(I)Ogg—Icl)—igH] Then for all H exceeding a large

positive constant, we have,

Proof. Follows from Lemm&ZB17.
LemmadZBJ6 andZ2B.8 complete the proof of Theofem-314B.2 and
as remarked already this proves Theofem 3MUB.1 completely. O

PART C

The main result of part C is

Theorem 3.4C.1.We have (with z €9),

. oz
i ma, ¢+ )
< e'A(0)(loglogH + log log logH) + O(2), (3.4C.1)
where H> 10000and A(f) is as in Theoreri 3.48.1.
We begin by

Lemma 4C.1. Let T = Exp((logH)?) where H exceeds an absolute
constant. Then there exists a sub-interval I[©f2T] of length H+
2(logH)™, such that the rectangler > %,t € 1) does not contain any
zero of¢(s) and moreover

max|log (o + it)| = O((log H)%(Iog log H)‘%) (3.4C.2)

the maximum being taken over the rectangle referred to.
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Proof. Follows from Theoreriz3:314 and the result (due to A.E. Ingham
[41]], see also E.C. Titchmarsh_[100], page 236, and p. 2%3e2A.
Ivi¢ [42]) that the number of zeros @f(s) in (o > 2, T <t < 2T)is
o(TH). O

Lemma 4C.2. Let J be the interval obtained by removing from | inter-
vals of length(log H)*? from both ends. Then ford J, we have,

logZ@+ity= " > (mg")? Exp(—%m) +O((log logH) ™

m>1,p
(3.4C.3)
where X=logH loglogH and s= 1 + it.

Proof. The lemma follows from the fact that the double sum on thetrigh
is _
2+ico
% 2—ic0
wherew = u + iv is a complex variable. Here we breaf the portion
M > (log H)® with an errorO((log logH) 1) and move the line of inte-
gration tou = —%1. Using Lemmd&4Cl]1 it is easily seen that the horizon-
tal portions and the main integral contribute toget®¢flog logH)™1).
m|

log Z(s+ wW)X"T'(w)dw (3.4C.4)

Lemma 4C.3. Denote the double sum iR{3.4C.3) by S. Then

S=log[ [(1- p )"+ O((loglogH)™). (3.4C.5)
p<X

Proof. We use the fact Exp(p™X™1) = 1+ O(p™X™Y) if p™ < X and
=O(Xp ™M if p™ > X. Using this it is easy to see that

s=Y Y mytaofy ¥ xt|eo[y ¥ X(mpzm)‘l]
pm<X pm<X pm>X
=2 . (mP™™ + O((loglogH) ™).
pm<X

Denoting the last double sum I8, we have, 87
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So- Y log(1-p*=0 = O((log logH)™).

p<X

> (mpg)?

pm>X,m>2

Lemma 4C.4. We have, for € J,

log(1 +it) = Z log(1- p~5)! + O((loglogH)™),  (3.4C.6)
p<X

where s= 1 +it.
Proof. Follows from LemmaBE4C [ 4Q.2 ahd Z1C.3. O

Lemma4C.5. LetO<r <1, 0< ¢ < 2r. Then, we have,

log|(1 - re'*)~% < — Cosd Iog( V1-r2Sirfg—r Cos@) +

+Sing Sin(r Sing). (3.4C.7)
Remark. Put
—Cosfd
p@)=@1-p™ ( \1-p2Sife-pt Cos@)
Exp(Sine Sin—l(S'—Fr:e)). (3.4C.8)

In the lemma replacee'? by p~S. Lemmad4Cl anf4Q.5 complete
the proof of Theoreriz340.1 sincg, logAp(d) = O(Xt) and [T (1 -
p=X p<X

p~H)~1 = e logX + O(1). (See page 81 of K. Prachar[63]).

Proof of Lemmal4C.3. Denote the LHS of (11) byg(¢). Then
o(g) = Z n1r" Cosgg + 6)
n=1

g(®) =~ > 1"Sin(g +6)
n=1
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0 —rel@+0)(1 — re7¢)
- {(1 191 re—i¢>} |

88 Henceg'(¢) = 0if Sin(g + 8) = r Sing, i.e. if
¢ = —60 + Sin"Y(r Sing). (3.4C.9)

At this point g(¢) attains the maximum as we shall show in the end.
Now

9(6) = Re —eiﬂ(bg [T Coss 72— st 59 ]
JI-2rCosp 112
=~ Cosdlog W — Sing Sin—l[ rSing ]
\1-2rCosg + 2

(3.4C.10)

From [Z4CD) we have
Sing = r SingCosd — V1 —r2Sir? 9 Sind
= —Sind(V1-r2Sir* 6§ —r Cost),
Cos¢ = V1—-r2SinP§Cosh + r Sirf ,

1-2rCosp +r2=1-2r Cost V1—r2Sir 6 — 2r> Sirt 6 + r?

= (V1 -r2Sirt 6 - r Cosh)>?,
since—r2Sirt 6 + r2Co€6 = —2r2Sirf 6 + r2. Hence
9(¢#) < h(6) (3.4C.11)

whereh(6) is the RHS of [3:4C]7), provideg(¢) attains its maximum
for the valueg gives by [3.4CI9). We now show that

(a) If Cos# > 0 theng(r) < h(6)
and

(b) If Cos6 < 0 theng(0) < h(6).
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Note that Sirg Sin"}(r Sin¢) > 0. Hence it sffices to prove (in case (a))

g(r) = Relod (1 - re') Z)s-r
= —Costlog(1+r) < —Cosflog(V1-r2Sir? 6 —r Cosd)

i.e. log(1+r) > log(V1-r2Sirf 6 — r Cost)

i.e. (1+r +rCos#)? > 1-r2Sirt g

ie. (1+r)2+2r(L+r)Cosf >1-r?

i.e. 1+r +2r Cost > 1—r (true since Co8 > 0)
In case (b) it sffices to prove

9(0) = Relod(1 - re') %40
= —Cosflog(1-r) < — Cosflog(V1—-r2Sir 6 —r Cos)

i.e. log(1-r) < log(V1 - r2Sirf ¢ — r Cost)

i.e. 1-r < Y1-r2Sirf6 —r Cosd

i.e. (1-r+rcosh)? < 1-r2Sirfg

i.e. (1-r)2+2r(1-r)Cos < 1—r?

i.e. 1-r+2r Cosd < 1 +r (which is true).

Thus Lemm&4C]5 is completely proved and hence Thebrem®.4C.
is completely proved.

PART D

Collecting together the main results of parts B and C we cales
B4 by stating the following theorem.

Theorem 3.4D.1.The function {H) defined by

f(H) = qui?TSrtr;%H I(Z(1 +it) (3.4D.1)

where z= €? (¢ being a constant satisfyin@ < 6 < 2r) satisfies the
asymptotic estimate

If(H)e™”(1())™* - loglogH| < log log logH + O(1). (3.4D.2)
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We recall that1(d) = [ Ap(6), where
p

—Cosf
o3[ o) s (3
Ap(6) (1 p){ 1 7 p] Exp|Sin6 Sin .

(3.4D.3)
Sin! x being as usual the expansion validxh< 1, vanishing at x= 0.

Remark. It is an open problem to improve the RHS bf(3.4D.2).
Notes at the end of Chapter Il

In the year 1928 E.C. Titchmarsh [103] proved (the earliscalver-
ies in this direction depended on RH, for references seeH¢hmarsh
[10d)) that

(o + it)] = QExp((logt)}=7~)), (¢, o fixed € > O, % <o<l).

Extending this method of Titchmarsh, K. Ramachandra [66yed the
lower bounds Exp((logH)~7~€) for the maximum ofZ (o + it)| taken
overT <t<T+HwithT >H > (IogT)l_tlm. (It was not dificult
to relax the lower bound foH to > loglogT with a suitable implied
constant). Around the same time (geb of [69] for an explanation of
this remark, and further results over short intervals) Nvihson [53]
independently proved that

max log|¢(o +it)| > (log T)}“(log logT) ™2, (o fixed, % <o<1)

and that
1rnta%< (1 +it)] > €' loglogT + O(1)

and also
lmta%< (L +it) ™ > %e’(log logT —loglog logT) + O(2).
<< T

A few years later H.L. Montgomery |57] developed a new metbbd 91
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proving things like (note that we write= &)
1\ 1 / logt
|(§(§ + |t)) |=Q E IOg Iogt}] (On RH)

1 1\? (logt)= 1
Exp[20 (0' - 2) (loglogi)” (o fixed, 5 <0< 1).

Exp

and

(o +it)) =Q

It should be mentioned that Montgomery’s method needs RIA &re
6 = 0. Developing the method of K. Ramachandral([69]), R. Bdlesu
manian [2] and R. Balasubramanian and K. Ramacharidra (ptdyed
Theoren-3.2]1 and in particular the result

Exp 3 logt
4 \loglogt

without any hypothesis. For the result which asserts thiacement of
(o - %)% by c(o — %)%(1— o)7L, (3 < o < 1), and some other results see
the two papers190]191] by K. Ramachandra and A. Sankargaaga.
We have not included the proof of these results in this manugr A
part from a papel [26] by R. Balasubramanian, K. RamachaauiiaA.
Sankaranarayanan all the results of this chapter are ctehpldue to
various results of R. Balasubramanian and K. Ramachaneheloged
in various stages most of the time jointly and very rarelyivittally.
Hence it is very well justified to refer to all the theorems listchap-
ter as joint work of R. Balasubramanian and K. Ramachandm tfse
following 15 papers by us: (a) Papers | to IX with the title “@ fre-
quency of Titchmarsh’s phenomenon )", (b) Papers | to Il with
the title “Progress towards a conjecture on the mean-vdlligahmarsh
series”, (c) one paper with the title “Proof of some conjeesuon the
mean-value of Titchmarsh series - 1”, (d) one paper with ithe ‘tProof
of some conjectures on the mean-value of Titchmarsh seitbsappli-
cations to Titchmarsh’s phenomenon” and (e) one paper \vihtitle
“On the zeros of a class of generalished Dirichlet seriestte paper
V of the series (a) uses some ideas of the paper (e)).

1 .
|§(§+|t)|=£2
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Regarding limitation theorems for our method R. Balasulauaian
showed in[[2]) that it is not possible to get even 0.76 in paicé1 (1))
Theoreniz3.Z]1. Also, R. Balasubramanian and K. Ramachahdraed
in ([L1]) that for% < o < 1, we cannot get better results than

max log|/(o + it)] > (logH)Y (log logH) ™
T<t<T+H

whereH(< T) and exceeds a certain constant multiple of loglogn

(H.L. Montgomery [58]) H.L. Montgomery showed that (by Bsidra-

manian Ramachandra method) it is not possible to get besaits than
even

max |log¢(o +it)| > (log T)}“(loglogT)* (0’ fixed,} <o < 1).
T<t<2T 2
This shows the supremacy of some aspects of Montgomery’bauet

although it fails for short intervals. It will be of some ingst to examine
hte limitation of our method foo- = 1. In view of Levinson’s results

1mta%< [£(1+it)] > €' loglogT + O(1)

one may conjecture that we may drop the term log lodHdg (3.2D.2).
But this may be very very flicult to achieve.






Chapter 4

Mean-Value Theorems for
the Fractional Powers of

(5 +it)

4.1 Introduction

In § &2 of this chapter we consider lower bounds for 93

1 T+H dam K
max(i; [ g ee

where% < a < 2,m> Ois aninteger constark,s any complex constant
andT > H > loglogT. Let nowa = % If Riemann hypothesis (RH) is
true then we establish (we mean than our method gives) ther loound

> (log H)KHm.

If we do not assume RH then we can deal only wkita ap (whereg > 1
andp > 0 are integers) and 8 m < k. In that case we obtain the lower
bound

> (gt log H)K*m

provideda = % +q(logH)™. We can also allovk(> 0) to be real with
lk — apl < (loglogH)t and 1< q < 10loglogH. Here uniformly we

99
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have the lower bound

|Og H )k2+m

-1 k?+m
> (g logH) z (10 log logH

So far (in this book) we have not used the functional equédtiord(s).
In the upper bounds problem for the same integral very ligtlenown.
The best known result is that (s&&.3 of this chapter)

1T dm 2k k2+m
ma( [ g @) < ogT)
providede = 1, k = 1 andH = T with any constanti, satisfying
% < Ap < 1. Of course it is enough to prove the upper boundnfict O.
The result for generai is deducible from the casa = 0 from easy
principles (unlike the lower bound). However the resulthakt = %
m = 0 is true for alln > 1 (the casen = 1 is trivial). In the case
n > 3 we can not talk of upper bounds unless= 0. (We can however
manage for almif k = %). Except the cask = 1 all other cases depend
on the functional equation. It will be a great achievemermirtave (even

assuming RH) results like

1

IR A
?fT |§(§+|t)| dt < (logT)

for someA > 0 and somé > 2. The biggest integek for which this is
known isk = 2 and in this case we have an asymptotic formula for the
mean-value. (For this we do not need RH). Trivially giverstfdr any
k > 0, its truth for all smaller positivé follow by Holder’s inequality.

Of course RH implies that the upper bound<s Exp(llc?gl'—ggl) and it
would be of great interest to know whether for any conskant 2 (of

course bigger thk the better) the inequality

1

2T 1
= fT |§(§+it)|2kdt < T€

holds for every > 0 (without assuming RH). This knowledge improves
the range foh in the asymptotic formula

h
7Z'(X+ h) —7T(X) ~ @
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The truth of

1

2T 1
= fT |§(§+it)|2kdt <k TE

for every integek > 0 and every > 0 is equivalent to Lindel6f hypoth-
esis as can be easily seen fr@r(% + it) = O(t).

4.2 Lower Bounds

We divide this section conveniently into three parts. Padeals with
statement of the result and remarks, and statement of scgtimiprary
results. Part B deals with a reduction of the problem. Pareé&sdwith
completion of the proof.

PART A

Theorem 4.2.1.Leta and k be real numbers subjectje-q(logH)™* < 95
a < 2 (where g is a positive integer to be defined presently)@agdck <

6-1 wheres is any positive constant. Let m be any non-negative integer
subject to0 < m < 2k (no restriction on m iRk is an integer). Then

1 (T+H gm o 1 —k?—m
ma [ g com(e-3)

where s= o +it, T and H are subject to T> H > Hp = Hg(s, m),

C(6, m) and Hy(6, m) being positive constants depending onlysoand
m. The integer g is defined as follows. It is any integer sulifed <

g < 10log logH, |k—§| < (loglogH)~tif 2k-m > ¢, i.e. if m< [2K] -1,

provided2k < [2K] + 6 (p being a positive integer). Bk > [2K] + 6 then
ap — k > 0is another extra condition in addition to m 2k (in place of
m < 2k — 6). Here after we writgp = g.

Corollary. We have, for agé, m) > 0 depending only oa and m,

I Ja 1
provided only that T> H > loglogT with a certain positive constant
implied by the Vinogradov symbsi.

1 T+H dam 2
B[ @, > Cma og
)
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Remark 1. Our proof of Theoreriid. 2. 1 depends only on the Euler prod-
uct and the analytic continuation &fs) in (o > o, T <t < T+H). Thus

it goes through for more general Dirichlet series where Epfeduct
and analytic continuation in the region (just mentioned available.

In particular it goes through for zeta ahefunctions of algebraic num-
ber fields.

Remark 2. If we assume Riemann hypothesi§q) # 0inoc > a, T <

t < T + H will do) then we can prove much more namely this: ket
be real subject t§ + (logH)™ < a < 2 andk be any complex number
suject tos < |k| < 6-1. Then for all integersn > 0, we have

1 [THH gm " 1 —[k3-m
@gX(ﬁ [ e |dt)>c<6, m) (a—ﬁ) ,

whereC(6,m) > 0 depends only od andm. As a corollary we can
obtain

1R dm % K2l+m
- - ’ +
(5[ e, ) > emogry<n
whereC’(5,m) > 0 depends only od andmandT > H > loglogT,
with a suitable constant implied by. (RemarlL is also applicable).

We prove Theorerh4.2.1 with = % + q(logH)™ and leave the
generakr as an exercise. Also we leave the deduction of the coroltary t
TheorenZ.Z]1 as an exercise (we have to use the fact thattédggand
in Theorem is bounded above en= 2 and use the convexity result
stated in TheorefiZ.2.3 below, with the kernel related to(@&kps)?)).

§ 2. Some Preliminaries.Before commencing the proof we
recall four theorems with suitable notation and remarkse Titst is
the convexity theorem of R.M. Gabriel. In this section we gder a
positive real number which may or may not be the integer thioed
already.

Theorem 4.2.2.Let z = x + iy be a complex variable. Letdbe a
closed rectangle with sides parallel to the axes and let LHeedlosed
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line segment parallel to the y-axis which dividegibBto two equal parts.
Let D; and D, be the two congruent rectangles into which iB divided
by L. Let K and K, be the boundaries of Dand D, (with the line
L excluded). Let E) be analytic in the interior of  and |f(2)| be
continuous on the boundary ojpDThen, we have,

[ < ( [ 1|f(z)|‘*|dz)% ( [ 2|f(z)|f*|dz)%,

where g> 0 is any real number.

Remark. The assertion of the theorem still holdg 1{2)|% is replaced 97
by l¢(2)If(2)|%, wherey(2) is any function analytic insid® and such
that|¢(2)| is continuous on the boundary B. To see this replacé(2)

by (f(2)!(¢(2)" andq by qj~* wherej andr are positive integers and
andr tend to infinity in such a way thaj 1 — g

Proof. See Theorefi1.3.2.

We now slightly extend this as follows. Consider the reckartg-
fined by 0< x < (2" + 1)a (wheren is a non-negative integer arad
any positive real number), and9 y < R Let I, denote the integral
fOR|f(z)|qdy, where as before= x+iy. LetQ, denote the maximum of
[f(2/90on (0< X < a,y = 0andy = R). Then we have (assuminiyz)
to be analytic in the interior of (& x < (2" + 1)a, 0 <y < R) and|f(2)|
continuous on its boundary) the following theorem. O

Theorem 4.2.3.Puth, =2+ 1. Thenforyr=0,1,2,...,n we have,
ly < (lo +U)Z(ly + U)22 (I +U)2Z ™

where U= 220+DaQyy, .

Remark. The remark below Theorem 4.2.2 is applicable here also.

Proof. See Theorem 1.3.3. m]

Theorem 4.2.4. Let f(2) be analytic in|Z < R, g be any positive real
constant (not necessarily the same g and R as before). Tiechave,

1
qus—f f(2)[9dxd
100 < 55 | If@Idxdy
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Remark. The remark below Theorem4.P.2 is applicable here also.

Proof. This result follows from Cauchy’s theorem with proper zean<
cellation factors.

The next theorem is a well-known theorem due to H.L. Montggme
and R.C. Vaughan, (see TheoreEm1.4.3). m|

Theorem 4.2.5.Let{a,}(n = 1,2,3,...) be any sequence of complex
numbers which may or may not depend ofx2). Then subject to the

(o)
convergence of njan?, we have,
n=1

A T TR S I n
ﬁfo > a2 = )" lanf? (14 0( ).
n=1 n=1
where the O-constant is absolute.

Remark . This theorem is not very easy to prove but very convenient
to use in several important situations. But it should be meed that
for the proof of Theoreri 4.2.1 it fices to use a rough result for the

mean-value of Y a,n"|2 whereN is a small positive constant power of
n<N
H. The result which we require in this connection is very easgrove.

PART B

For any Dirichlet seried=(s) = > a,nSand¥Y > 1 we write
n=1

F(s Y) = Y azn~s. Also we write
n<y
21 = (S (s V)P @K V)2
dgn ’
Note thatZ(s Y) # (£(s Y))¥. We will show in a few lemmas that the
proof of Theorem 1 reduces to proving that

1 (-1 k2+m
m |Z1|dt > D™ (g~ logH) (4.2.2)
-
wherey” is a certain positive constant;y = % + 10g(logH)™, a =
Dq(logH)! s= 0 + a+ it andD is a large positive constant. The rest
of the proof consists in proving{4.2.1).
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Lemma 1. Let 99

1 THA dm 2k k2+m
12}%§H)1(ﬁ fT Fr1@C) |dt)<(logH) . (422
O'Zz-l- -

Thenfory =0,1,2,...,m, we have,

14

max (1 fT T+H|O‘f'—sv(4(5»2k|olt)<(IogH)k2+m+1. (4.2.3)

0-2%+q(log H)-1 H

Remark. Note that we are entitled to assume that the LHS 0f (1.2.2)
does not excee@ logH)¥+™ since otherwise TheoreMZ.P.1 is proved.

Proof. We have, forj + gqlogH)™ < o < 2,

fl 9 o = S (9% + o)
o dgn e :

So

dm—l
lds“—l
Integrating this with respect towve obtain the result for = m—-1. Con-
tinuing this process we can establish this lemmafer 0,1,2,...,m.

m]

€< [ 1559 do + o)

Lemma 2. Divide (T + 1, T + H — 1) into abutting intervals | of length
(logH)” (where A> 0 is a large constant) ignoring a bit at one end.
Let m(1) be the maximum df(s)|% in (o > % +(g+1(logH) L, tel).
Then we have,
> m(1) < Hlog H)<*™4, (4.2.4)
|

Proof. We observe that the value [@{s)|* at any point (wheren(l) is
attained) is majorised by its mean-value over a disc of safagH)™*
with that point as centre. This follows by the applicationTdfeorem
EZ3. Now by Lemm@All the proof is complete. O
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Lemma3.In(oc > 3+(@+2)(ogH) L, T+1<t<T+H-1),we
have,

m
|d—(§(s))2k| < HYS and solz(9)* < H2.
dgn
Proof. By Lemmall the proof follows by arguments similar to the oneo
by which we obtained Lemnia 2. O

Lemma 4. Let B > 0 be any (large) constant. Then the number of
intervals | for which nfl) > (logH)B is

< H(IOg H)k2+m+4_B.
Proof. By Lemma&2 the proof follows. i

Lemma 5. Let accent denote the sum over those | for whigh) m
(logH)B. Also leto > £ + (q+ 3)(logH)™™. Then fors < k < 571, we
have,

T+H m
a [ e
>>% 2 (f. '%@ (9)* | £(9)#~*dt - (log H)A), (4.2.5)
1

wherep = g is a rational approximation to k such that either gjlog
logH)™! > 20 — 2k > 0 and0 < m < 2k (no restriction on m iRk is

an integer) or (ii)|20 — 2k| < 2(loglogH)™* and2k — m > 5 > 0O for
some constany > 0. In both the cases (i) and (ii) it is assumed that
1< qg<10loglogH. The implied constant in the inequality asserted by
the lemma is independent of ¢land k.

Remark. There is always a solution ¢f — k| < (loglogH)™%, 1< g <
10log logH. This can be easily seen by box principle.

Proof. We introduce the factdr ()24 x |z(s)[2&*). Now in case (i)

| Z;(S)|2(k—p)2k(2k)’l > ((log H)—B)(p—k)k* > 1
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In case (ii) we have only to considerk < 0and X—-m>n > 0. We
divide | into two parts (iii) that for which mak(s)| < (logH)"® and
(iv) the rest, B’ > 0 being a suitable large constant).

In (iv) we have

|é‘(s)|2(k—/)) > ((log H)—B')Z(k—p) > ((Iog H)—B’)Z(log logH)~1 > 1

In case (iii) we plainly omit it and consider 101
an 2 2(0-K)
[ 15 ie@reva,
(wherel* = In (max|Z(s)| > (logH)™®))
_ (. 2% 200-K) 4r f an 2% 2(0-k)
- 15 €@ 1@t [ @) e ot

(wherel** = | n(max|Z(s)| < (logH)™®")). For largeB’ it is easily seen,
since X — m > n > 0, that the integral over** is < (logH)”. (Note
thatino > % + (g + 3)(logH)™* the derivatives of ordex mof /(s) are
in absolute value not more than a bounded power oHpthe bound
depending only o andm). m|

Lemma 6. For any two complex humbersABy and any real number
g > 0, we have,

Alt < 28 (|A0 — Byli + |Bo|%). (4.2.6)
Proof. We haveAq = Ag — By + Bg and so

|Aol < 2max(Ao — Bol, |Bol).
This gives the lemma. O

Lemma 7. Let J denote the interval | with intervals of lengilog H)?
being removed from both ends. LeatlZe as already introduced in the
beginning of this section namely,

7= g VP @ @27)
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and let
am q
po=Ziand By = (5@ > H@)) . @28
Then for anyr > 1, we have, by Lemnfz 6.
2 f (L (9] 229t
S\ aem
> f|Zl|dt— 23 f||30 ~ Aglidt (4.2.9)
J J
where g> 0is any real number.
Proof. Follows from
1 1 1 1 1
21|Bo|d > |Ag|® — 24|Bp — Aol
O
Lemma 8. We have, forr > 1,
’ T+H
> f |Z4/dt = f 1Z1|dt + O(H(log H) ™), (4.2.10)
1 J T

provided Y is a small positive constant power of H and alsa tha
constant A> Qs large enough.

Proof. Follows by Holder’s inequality applied to the integral otbe
complementary interval and Montgomery-Vaughan theorem.

From now ong will be the denominator gb. We now apply Theo-
rem[ZZ3B with% in place ofg and state a lemma. m|

Lemma 9. Write

p _(( dm %\ 202 o
o9 = ([ggc@™) e 20) -2 @2



Lower Bounds 109

and w= u + iv for a complex variable and put () = Exp@?). Also
write 7 = (logH)? and f(s,w) = fo(s+Ww)K(w). Then, we have ford¢ J
and a> 0,

1
1 1 7
f 1T (s W)l oldw s(f |f(sw)|3:_a|dvx4+H-1°) X
Ivisr vi<r
1 32
x ( [ s i g+ H-lo)
vi<r

1 2—|’1—1
X (f £ (S W)I_ap, _oldW + H‘lo) : (4.2.12)
vi<r

providedog > % and g2" + 1) is bounded above. Here g and a are 103
asin [£Z1).
Proof. Follows by Theoreri 4.2 3. O

Lemma 10. If a > 0 and ak, is bounded above, we have,

ff|f(S»W)|§:0|dW|dt§ (ff'f(s’w)|§:-aldV\IIdt+ H_S)z y
t Jv ey

1_o-n-1
i-2

x(ff|f(s,w)|§=o|dvx4dt+ H‘S) X
tJv

1 2—n—l
x(fflf(sw)ﬁ:am_aldV\AdH H‘S) . (4.2.13)
tJv

The limits of integration are determined bytJ and|v| < T with T =
(logH)?.

Proof. Follows by Holder’s inequality.
Summing over] (counted by the accent) and applying Holder’s in-
equality we state a lemma. O

Lemma 11. We have, withr > 3 + 10g(log H) ™%,

fo|f(aw)|§=o|dvx4dts(fo...u:_awvwdu H™3| x
J Yty J
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1 _o-n-1
5 2

x[z;:ff...u:mdedu H‘3) X

2—|’1—1

X[Z‘ f f .. .u=aby_a [OWdL + H‘3) (4.2.14)

104 provided a> 0 and akh, is bounded above.

We now complete the reduction step as follows. In Lerima teeit
LHS < H~3 in which case the quantity

1 ! 1
2a fIB — Agladt

is small enough to assert that the sum ovygaccented ones) of the
guantity on the LHS of{4.219) exceeds

1 T+H
> fr |Z;]dt

whereo = o + a. On the other hand if in Lemnfall1, LHSH3,

, L 12t
(Z f f |f(sw)|3=o|dedt]
J tJv
T+H-r 1 3
< 2( f f 1f(s W) L_gldwidt + H-3) X
T+r

v
T+H-r 1 2t
X (f f|f(s,w)|l‘j:abn_a|dvv|dt+ H)
T+r \%

Now by using the fact thak (w)| < Exp(-V)? for all v, and also that
IK(w)| > 1 for|v| < 1, we obtain

’ 1 :_2L+27n71 , N %
[Z f lfo(S)lfi:cro+adt] < [Z |fo(s)|:i=godt+H-3] x
o Vted T Jtel
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, 2—n—l
1
x(Z fte I|f0(s)|;=00+ah1dt+ H‘3] : (4.2.15)
|

(From now on we stress that the constant implied by the Vindoy
symbols< and> depend only od andm). From now on we assume
that

T+H dam

1 2% ) 1 K2
max — —(£(9))Ndt] < logH)“*™. (4.2.16
om0 igan) < @ oghim (4210
From this it follows (sinceY is a small positive constant power i) as
we shall see (by Lemnid 5 and remark following it) that (se¢ €dor
explanations)

N 3 -1 k2+m
20, o9t @og )

Also we shall see that (by choosimgsuch thatrg + ahy, lies between 2
large positive constants)

1 Z’ R -
ﬁ tel |fo(s)|c?':a'o+abndt <« H™#A
I

wherey’ is a certain positive constant. dfy = % + 10g(log H)* and

a = Dq(logH)™, D being a large positive constant (our estimations
will be uniform in D) we have 2Dg(logH)™ lies between two positive
constants and sd' (Dg)~*logH and so 2! < Dq(logH)~. Hence

it would follow that

1< 1 ) ,
H Z e |f0(3)|3=00+adt < (q 1 log H)k +Mg-uD
| (S

whereu is a certain positive constant.
The rest of the work consists in proving that
T+H , 5
v |Zy|dt > D" (gt log H)K ™
-

wherey” is a certain positive constant.
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PART C

106 We recall that
(A" 2\ 0k 2
2~ (g e VP @ s 2

We now write

dm
Zp= S 5((s Y))? (4.2.17)
and go on to prove that (f(%’ <0 <2)
T+H ~k?-m
1 f 12, — Zoldt < ((Iog logH) ! + H‘ﬂ‘fl(‘f—%>) oot ,
H Jr 2
(4.2.18)

whereyu is a positive constant which we may take to be the same as
before. This will be done in three stages to be stated in LefiinaVe
introduce

dgm 1 gy 2k 1 a\ 20—2k
Zs = (@ (Few)) ) (Few)) (4.2.19)
wherer is a small positive constant power idf, and

zo= 2 ((ches Yl))q)zp, (4.2.20)

We remark first of all thaZ;, Z,, Z3 and Z4 are Dirichlet polynomials
with Y and Yf being small positive constant powers ldfand so the
contribution of the integrals dZ;|? from any interval of length (logi)?
contained in T, T + H) is O(H(logH)™1). With this remark and some
standard application of Cauchy’s theorem we can prove

Lemma 12. We have, fog < o < 2,

1 (T+H s 1\ 7Fm
o |21 — zg)dt < H7#9(02) (0' - 5) : (4.2.21)
.

T+H

—k2-m
A |Z3 — Z4|dt < (log logH) ™t (0' - %) , (4.2.22)
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and

1 [T o1 A
v f |24 — Zoldt < H7#9(@=2) (0' - E) . (4.2.23)
N

Corollary. We have, fos < o < 2,

_k2_
lkm

1 T+H . .
= f 121 — Zoldt < ((Iog logH) ™t + H~~d (“-i)) o-=
H Jr 2

(4.2.24)

Proof of Lemma 12. We first consider the first and third assertions.
The Dirichlet polynomials in the integrands have the prgp#rat suf-
ficiently many terms (i.e. H¥'9"] terms for a certain positive constant
(') in the beginning vanish. Hence itfiges (by the method by which
we proved that

1y L _ 24m -
o > . |fo(—rpsadl < (G log H)¥ *MeD
| (S

holds) to check that far- = oo the estimates

1 [THH 1\ Ke-m
ﬁf |ZJ|dt < (O-— E) ,(J = 192a394)a
-

hold. NowZ3 andZ4 have the following propertyZs; is the same as
Z4 except that “the cd#cients” difer by O(k — p). Hence the second
assertion follows if we prove that the mean-value of the hibsovalue
of “the terms” are< (o — 2)™~™ (the explanation of the terms in the
inverted commas will be given presently). We begin by chegkhe
mean-value estimates fiaj|(j = 1 to 4). For any functiorf,(s) analytic
in (o> %,T <t<T + H) we have, by Cauchy’s theorem,

dm 1 f1(s+ w)dw
|@ fi(s)l < P it lW ,
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wherer = (o - 1) andT +2r <t < T + H - 2r. To prove the mean-
value assertion abolf;| we putfi(s) = %(gk(s, Y))? and observe that
the mean-value of

K5+ W, V)8 V)

with respect td in T + (logH)? < t < T+ H — (log H)2 is O((o" — 2) ™)
(unh;ormly with respect tonv) and so the mean-value ;] is O((o -
%)"‘ ~M). Similar result abouf,| follows sinceo—k = O((log logH)™2).

Now let us look atf3(s) = %(fz(s))k where fa(s) = (43(3, 1)),
Whenm = 1, f3(s) = k(fo(9)k1 f2(s). Whenm = 2 it is k(k -
1)(f2(9)*2(f5(9)? + k(f2(9))<1 5’ (s) and so on. By induction we see
that for generaim, we have,

9= > G, KN EES) ... (5(9)

ji+j2+...+jy=m

where theg’s depend only onj4,..., j, andk. To obtainZz we have
to multiply f3(s) by (f2(s))’%. Hencez, is the same a&z with ¢’'s
replaced by, . j,(0). Thus

.....

The terms like (9 (192(9) ... (19(9)) contributeO((o— 3)~-m)
by using Cauchy’s theorem as before. Thus Lerimla 12 is coetylet
proved.

Lemma 13. For 1 + C(logH)™* < o < 2 (C being a large positive
constant), we have,

1 T+H 1 5
o f |Zodt > (o — 5)—k -m (4.2.25)
.

Proof. We recall thatZ — 2 = % f4(s) where f4(s) = (¢°(s,Y))? and
Y is a small positive constant power bf. By Montgomery-Vaughan

theorem

-k T+H -k
1 1 1
Ci (O’ - E) < ﬁ f; |f4(S)|dt <Cy (0’ - E)
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whereC, > C; > 0 are constants, provided > % + C(logH)™t. If
m = 0 we are through, (otherwise&k2> 1 and sok > %). Letg =
(2C.CiH @ - %) + 3 wherea’ > 3. Then

1 T+H 1 T+H
ﬁ f aSompt — f 4ol
T T

4 1 K 1 K
1\~ , ’
>Cy ((2c2c1 ) (a/ - E)) -G, (a/ - 5)
—K —k2
1 1
> C1(2C,Ch (a' - E) -G (a' - —)

2
—Kk2
, 1
-cafr=3)

Also 109

T+H
% fT (fa(o=p = 1Ta(lor=or)dt

1 T+H
<= f fa(B +it) — fa(e’ + it)/dt
T

H
1 @’ T+H

< —f (f |fi(u+it)|dt)du.
HJy \Jr

Thus there exists a numbegt with 8/ < ¢’ < & such that ifm = 1 and
o =¥’ the lower bounds is

—k2 —k2-1
1 1
C, (a’ — E) (@ —ﬂ’)_l > (y’ - E)

and by induction there is a number = «f, where the lower bound

. , 1\—K2-m . .

is > (afy— 3) for generalm (since the upper bound required at
each stage of induction is available by a simple applicadioGauchy’s
theorem). Now from a givem;, we can pass onto general by an
application of Theoreii4.4.3. (Note thz}| is bounded both above and
below wheno is large enough. We can select two suitable value)of

Hence Lemm@&Zl3 is completely proved. O
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Lemma 14. We have, fork + Dg(logH)™ < o < 2, (D > 0 being a
large constant),

1 T+H
q f |Z4|dt
T

A em
> Cr, (0' - 5) -Ch (0' - 5) H+d (-3)

1 —k2-m
-cy (o- - 5) (loglogH)™3,

110 where G, Cy, and G/ are positive constants independent of D. Also

1 T+H L 2
- +m
H ﬁ (|Zl|a-:%+Dq(Iog H)-l)dt > (g~ logH) .

Proof. Follows from LemmdZ3 and the corollary to Lemma 12. This
proves our main theorem (namely Theofem4.2.1) completely. O

4.3 Upper Bounds

The object of this section is to prove the following theorem.

Theorem 4.3.1. Let k be a constant of the tydjewhere [z 2)is an
integer. Let H= T3+e wheree(0 < € < %) is any constant. Then, we

have,
1 T+H 5
g f 12(9) ,dt < (log T)*, (4.3.1)
T 7=2
1 T+H .
= f M (9)],_1dt < (log T)a*™ (4.3.2)
H T 2
and

1 T+H dam ok 2
ﬁ\fT |@(§(S)) |O’:%+(|OQT)_1dt < (IOgT) m (433)

The last inequality however assumes RH. In the last two tsssrof
the theorem 1> 0) is an integer constant.
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Remark. It is not hard to prove the modified results of the type

max( :I j; T+H |§(s)|2"dt) < (logT)¥, (4.3.4)

0'>§
and similar results. These can be proved by convexity jpiesi

The letterr denotes a large positive constant which will be chosen

in the end. We need the properties &f) only in the region & >
% -6, T <t < T+ H) for some arbitarily small constast- 0. We begin

by introducing the following notation.

M(c) = % fT " (o + it)dt (4.3.5)
1 T+H d (n)
Ao) = = fT |n; et (4.3.6)
and 111
T+H
Ma(o) = % fT |§(o-+it)|—{Z ifr(ﬂt)] 1dt. (4.3.7)
n<H

Remark. Sinceg(% +it) = O(t%(log t)2) (this follows for example by the
functional equation or otherwise) it follows that the qutes M(o),
A(o) and M1(o) get multiplied by 1+ o(1) when we change the limits
of integration by an amour@®((log T)?).

We begin by proving three lemmas.

Lemma 1. We have
M(c) < 2&(M1(c) + A(e)).
Proof. The lemma follows from

j j
{9 =9 - [Z dkn(s”)] + [Z dkn(sn)} .

n<H
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Lemma 2. Letoq = %+r(log T)tand M= M(1-0y). Then, we have,
M(co) ~ M Exp(-2kr). (4.3.8)

Proof. The lemma follows by the functional equation. (Functiorgpia-
tion and this consequence will be proved in the appendixeattid of
this book). O

Lemma 3. We have at least one of the following two possibilities:
M(1 - o) < A(oo) + A(1 - o) (4.3.9)

or

M1(o0) < M1(1— o) Exp(-A1) (4.3.10)
whered = 4kr(log H)(log T)~ and in the second of these possibilities
the constant implied by is independent of r.

Proof. We apply the convexity TheoremZ.P.3 in a manner similar to
what we did in Lemmalg €10 afdl11 of part BS#A. Letw = u + iv
be a complex variable,

j
f(sw) = [g(s+ W) - [Z f]k“v‘v)] ] Exp)

n<H

and

|(a,u):iff (s, w)*dv dt
H J Jmr

wherer = (log T)? and thet-range of integration i§ +7 <t < T+H-7.
Exactly as before it follows that

_2—n—1

Ma(0) < Co(M1(1 - 00) + E)?(Ma(0ro) + E)?
(Ma(1- 00+ (2070 - 1)@ + 1)) + E)* "

whereE = (Exp((logT)3))~! andCy(> 1) is independent oh andr
provided that 1- oo + (209 — 1)(2" + 1) is bounded above. If either
M1(1 - o) < 1 orMi(op) < 1 we end up (by using Lemnia 1) with

M(1 - og) < 2%(A(L - g) + 1) or M(cg) < 2%(A(co) + 1)
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respectively and so by Lemrih 2 we end up, in any case, with
M(1 - o) < Aloo) + A(L - 00).
In the remaining case we are led to
Mi(70) < 2C1(M1(1 - 070)) 2 (Ma(00)) 22 (H™0*C2 + E)? ™

wherelLg = 2k(209 — 1)(2" + 1) andC,(> 1) is independent afi andr
provided, of course, thaiy is bounded above. Hence we are led to

Mi(070) < 4C2(My(1 — o))" (H™0*C2 4+ E)2

whereL* = (1 +2™")~1. We choose in such a way that®(logT) tis 113
a large constar€sz which is= r2. We haveM1(1 — og) = O(log T) and
(1+2M 1 =1+0(2") = 1+0(rC3*(logT)™%). Now 2" = CartlogT
andE = (Exp((logT)3))1 < H‘L°+%2. Thus since

(Lo — C2)27"L* = 4kr(log T)™* + O(r1(log T) 1),

we have, )
M1(c0) < My(1 — og)H~4log ™)™,

This proves the lemma. O

We can now complete the proof of Theorém 4.3.1 as follows. By
Lemmd2, we have

Mi(c0) ~ M Exp(-2kr).
By the second possibility of Lemnia 3, we have

Mi(o0) < (M(1 - 00) + A(1 - 070)) Exp(-1)

M1(o) < (M + A(L — a0)) EXp(=A).

Now by Lemmd1L, we have

Mi(oo) = 27%M(og) — A(oo) = 27 M Exp(-2kr) — A(o)
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for larger. Thus
27%M Exp(~2kr) — A(oo) < C4(M + A(1 — 00)) Exp(=A),
whereCy4(> 1) is a constant independentrofHence
M{2-% Exp(~2kr) — C4 Exp(-1)} < A(c0) + C4A(1 — 07) EXp(=A).

In this equation we note that faor > rg(e) the codficient of M on the
LHS is bounded below by a positive constant. Now by fixing be a
large constant we obtain

M < A(oo) + A(1 - o).

Using TheoreniZ25 we see thist < (log T)¥*. Now by convexity
Theorem4.2]3 and the fact th&t(o) is bounded for- > 2, we see

that the first assertion of Theordm 413.1 proved. The rem@itivo
assertions of Theorem4.B.1 follow from things like

M) = _I _ W

m! dw
2ni J (w-gml

(where the integration is over the cirdl® — § = %(IogT)‘l) and by
convexity Theoreri 4.23.

Notes at the end of Chapter V

SEd and8EA. Fromy(s) = Y, n 3+O(T~7), valid uniformly, for
n<10T

example, in ﬁ <o <2 T <t<2T) and from Montgomery-Vaughan
Theorem it follows that

2T
10 (1 Vo
Y

However to prove

% fT i |§(% + it) [*dt = (27%)X(log T)* + O((log T)?),



Upper Bounds 121

it seems that the functional equation is unavoidable. Tdtied result
(originally a dificult result due to A.E. Ingham) was proved in a fairly
simple way (but still using the functional equation) by K.rikachandra
(See A. lvic [42]).

In the direction of lower bounds the earliest general rgsele page
174 of TitchmarshI100]) is due to E.C. Titchmarsh who prothet for
0< 6 <1, we have

k2

oL ) 2Kt 1(i0gl
=+t dt —llog =
f0|§(2+|)| € >>k6 ogé

for all integersk > 1. As a corollary this gives 115

lim sup((l f2T |§(1 + it) |2kdt) (IogT)"‘z) >0
T—oo T T 2 ’

for all integersk > 1.
The history of Theorefi 4.2.1 is as follows. The general gnobbf
obtaining lower bounds for

T+H  4m
max(i fT |§—gﬂ(§(s))2k|dt) (k -0, % <a< z)

oza H

whereT > H > loglogT andm(> 0) is an integer constant, was solved
by K. Ramachandra with an imperfection factor (log kg C (seel76]).
This imperfection was removed by him in a later paper (5P [av all
positive integersi2 The Next step was teken by D.R. Heath-Brown (see
[37]) who proved that for all rational constantks 2 0, we have

1T (1 )\ d 0 TYE

?fo |§(§+|t)| t>y (logT)".

Ramachandra’s proof of his theorem mentioned above (valigfiort
intervalsT, T + H and integer constantk2- 0) did not use Gabriel's
two variable convexity theorem. (This depends upon Rienmaapping
theorem). The present proof of TheorEm4.2.1 (due to K. Rharaira,
seel[/8]) uses all these ideas in addition to those of Ramadci'a paper
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(I79]) and Gabriel's theorem in the form established by hird R. Bal-
asubramanian namely Theorém 4.2.3 (see their papkr [6G)velkr
we do not use the method of obtaining auxiliary zero-deresstymates
for 7(s) adopted in K. Ramachandia[76].

§ E3. The main dference betweef B4 and$§ B3 is that§ B3
depends crucially on the functional equatig(is) = x(s)/(1 — s) where
()] = {3 uniformly ina; < o < by, t > 2 wherea; andb; are any
two constants. (Owing to the presencentd — o) in [y()| = "z
upper bound problems are hopelesna if 2 i.e. ifk > 2 in the mean-
value problem). These results will be proved in the appeattke end.
Another result which we have used frequently is

% 3" 16 = Cllog Y¥(1-+ O((log ™)

n<x

valid for complex constantk andC = C(k) > 0. These will also be
proved in the appendix. Regarding the history of Theokeml4 Bie

result [£3R) was first proved by K. Ramachandra. (Sek [80d}er

D.R. Heath-Brown proved that

1 f T| L it)2dt < (logT)®

wherek = 1 (j > 2 an integer constant). (Sée[37]). Another point of
interest is the proof of (see K. Ramachandré [80])

1 T+H l 1
= f |§(m)(—+it)|dt < (logT)a*m
HJr 2

valid for H = T#*€ and any integer constanmt > 0 and arbitrary real
constante(0 < € < ‘—11). This result depends on RH. We do not have

the least idea for proving the same result with= Té*€. It should
be mentioned that the proof of Ramachandra’s result Witk Tite
above (assuming RH) is incomplete. To complete the proof ae h
to use Gabriel's convexity theorem in the form Theolem %.Z.Beo-
rem[4.ZB was suggested by the version of Gabriel's thoersed by
D.R. Heath-Brown in his paper cited above and Ramachandeads
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the upper bound theorem with = Tite (on RH) as joint work with
him.
It is of some interest to determine the constants in

.
(log T)¥ < % f |§(% + it) 1dt < (log T)¥
0

wherek = 1 (j > 2 an integer). An important result due to M. Jutila (see
[48]) says that the constants implied byand< are independent df.
Using this A. Ivic and A. Perelli proved that the mean-valnguestion 117
(for real positivek) — 1 if k < (y(T)log IogT)‘% wherey(T) is any
function which— o asT — . (Seel[45]).

The best result on lower bounds (for integkab- 0) is due to K.
Soundararajan and a particular case of it reads

1" (1 . _
fo '4(5 + |t) 1°dt > (24.59) + o(1)Z(d3(n))2n !

T n<T

(information by private communication).






Chapter 5

Zeros of £(9)

5.1 Introduction
118

In this chapter we deal with three results. §iB.2 we deal with a sim-
ple proof (due to K. Ramachandra) of the inequadity % whered is
the least upper bound of the real parts of the zerog(gif (Trivially
from the Euler product we havex< 1). This proof (which does not use
Borel-Caratheodory theorem and Hadamard'’s three cireleréim) has
some advantages. We will make some remarks about the praohwh
uses the two theorems in the brackets. It has the advantapi gener-
alises very much. 1§ we mention some localisation of theorems of
Littlewood and Selberg. These localisations are due to Kn&nandra
and A. Sankaranarayanan whose proof has the advantage deaet-
alises very much. Lastl§[5.4 deals with a proof due to J.B. Conrey, A.
Ghosh and S.M. Gonek, thafs) has infinity of simple zeros inr > 0.
Only the last section uses the functional equation and saéffieutt ma-
chinery viz. asymptotics df(s) and so on. These will be proved in the
appendix in the last chapter.

5.2 Infinitude of Zerosint > 1

First we give a simple proof of the inequality > % and then remark
about another proof. We will prove the following theorem.

125
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Theorem 5.2.1.We have

1
0> - 5.2.1
> (5.2.1)
Remark 1. The method of proof actually gives
1
=. 2.2
0> > (5.2.2)

To see this we have only to repla%ein our proof by% — ¢ where
6(0<6< ;11) is any small constant. Also we can prove the existence of
at least one zero ino( > % —6,T<t<T+T9forT > Ty(e, 6) and
constants, s with 0 < e <1,0< 6 < 1.

Remark 2. All that we use in our proof is the Euler product and analytic
continuation ino > 1—10 and the boundt(s)| < tA(t > 2) whereA is any
constant. Hencd{5.2.2) holds good for the zetalaifighcitons of any
algebraic number field. We do not need the functional equatio fact
we may dispense with the Euler product and prove some woithwh
results (see the notes at the end of this chapter).

Remark 3. Our method shows tha{(s) has> T(loglogT)~! zeros in
(o > 3 - 20(log log logT)(log T)™1, T < t < 2T). (See the notes at the
end of this chapter).

Lemma 1. Let w= u + iv be a complex variable. Then fory 0, we

have, "
1 oo yWdw 1
%fl_im m_l—y or 0 (5.2.3)

accordingasy> lory< 1

Proof. If y > 1 we apply Cauchy’s theorem and obtain that the LHS of
G2Z3)is |
1 1 —R+ioco deW
1- y ' 2mi [R—ioo w(w + 1) 5.24)
and it is easily seen that & — oo, the last integral tends to zero. If

y < 1, we apply Cauchy’s theorem and obtain that the LHE 0f (pi8.3

1 (R ywgyy
ﬁfR_im WD (5.2.5)
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which tends to zero @R — . m]

Lemma 2. Let s = o + it and let d(n) be defined for any complex
constant k by(z(s))k = § dk(n)n~° whereo > 2. If 0 < k < 1 then(i)

0 < dk(n) < 1foralln ar}lzé(ii) dk(p) = k for all primes p.

Proof. The lemma follows from

and the fact that 120

@) =]]a-p9*
p

(L-p S *=1+kpS+

O

Lemma 3. Let T > 10and{(s) # 0in (o > $,3T <t < 3T). Put
G(s) = (£(9)¢ where k= g1 and q > 1is an integer constant. For
X = 1define As) = A(s, X) and Iy, = by(X) by

1 f1+°° G(s+w)XW(2W
1

- 1)dw > o
271 Jisieo w(w + 1) B nzz; ban™> = A(9), (5.2.6)

where s= % +itand T <t < 2T. Then
(i) by = d(n) (L) for1<n<X,
(i) by = d(M( — &) for X < n < 2X, and
(iii) by = Oforn > 2X.
In particular |by| < 1for allnand by, = ZqLX for primes p< X.

Proof. Lemmal3B follows from LemmBl1 since an= 1 the series for
G(s+ w) is absolutely convergent. O
Lemma 4. We have, for T> 10,

2T

ENANETT PV et
Tf|A(4+|t)| dtzZ(qu) pz—16X3T L. (5.2.7)
J

p<X
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Proof. We multiply A(s) by its complex conjugate and integrate term by
term. The LHS of[(5.2]17) is thus seen to be

2
3 ot ?‘” 3 bbn(mn)Flog T2,
n<2X m£n n

wherely| < 1. If m> n, we have, logf = —log(1- (1-2)) > 1 - & =
0 > (2X)~1. Hence we have the lower bound

2 _1 4X
Z bpp2 - — Z Z 1
p<X men

121 and the required lower bound follows. o

Lemma 5. For X > 350, we have, with usual notation,
X
7(X) - n(E) > (6logX)~1(X — 18X2). (5.2.8)

Remark . S. Ramanujan proved this result in an easy and elementary
way. It is possible to resort to using simpler and easierlt®du place
of this lemma, but we do not do it here.

Lemma 6. Suppose that % T3 and that T exceeds a large absolute
constant. Then for every fixed integerd,

1 1 4
Trsqu)sr lA(Z + It)l > Xi(log X)~2. (5.2.9)
Proof. We have
2
p ) 1
Dilzgx) PPz X
psx(qu 1 Xepex
and so LemmAl6 follows from LemmEk 4 did 5. -

Lemma 7. We have, for & %1 +it, T <t < 2T the inequality

1 G(s+W)XW(2" - 1)
IA(S) < o~ f(w)l W D) awj (5.2.10)

where the contour of integration is the union of straightlisegments
obtained by joining the points—ico, 1- 3iT, =3iT, 3iT, 1+4iT, 1+ic0
in this order.
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Proof. The lemma follows by Cauchy’s theorem. O

We now fixt to be the point il < t < 2T at which|A(3 +it)| attains
its maximum. We estimate the integral in Lemfa 7 from abovais T
will lead to a contradiction as we will see. We begin with

Lemma8. (i) Onu= 1we havd/(s+ w)| < 5.

(i) no > 3%, u>0 M < iT we havel¢(s+w)| < 100T, for 122

T > 1000

Proof. We havelZ(s+w)| < ¢(3) <1+ [ u~3du = 5. This proves (i).
Next

© n+1
Ls+w)= > (Y- f uSWdu) + (s+w— 1)1
n=1 n

and the fact that the infinite series here is

(o)

(s+ W)anm1 (fnuv‘s”""‘ldv) du

n=1

complete the proof of (ii). O

Lemma 9. Let T exceed a large constant, XT3 and g= 100. Then
the inequality asserted by Lemida 7 is fals€Tif £ t < 2T) is fixed such
that|A(3 + it)| is maximum.

Proof. The contribution from the segments o= 1 is

dv 60X
< f 15X = == < 1
M=3T v T

The contribution from the two horizontal segmentsvoa J_r%T is

-2
< 6(100m)%" (%T) <1

The contribution from the remaining part an= 0 is

v _ v _
< (100rm)%" { f 2L f 12 . 1|dv}
M<1 V M1V
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< (100T)% {4 + 4} < 8(100T)% ",

The contradiction is now immediate.
Lemmd® completes the proof of TheorEm3.2.1. i

By using Borel-Caratheodory’s Theordm 116.1, Hadamartu'set
circle TheoreniZI.5]2 and things like the third main theordérf3 (or
easier theorems) we can prove the following theorem.

Theorem 5.2.2. Let {1,} be a sequence satisfyirig= 11 < A2 < ...
where ql < Adny1 — An < Cq (for some constant £> 1), and let{a}
be any sequence of complex numbers such that the sgriggl-S)?

n=1
has a finite abscissa of absolute convergence sayBy replacing a

_1
by g, = an/lﬁz 2 if necessary we can assume, as we do, th_at:C%.
Suppose that 8) = Y. an4,,° (which is certainly absolutely convergent
n=1

in o > 1) be continuable analytically it > 2 —6,t > tg) wheres(> 0)
and (> 10)are some constants and thefds)| < t*, for some constant
A > 10. Lete(> 0) be any constant and H T€. Then there exists an
infinite sequencéT,}(v=1,2,3,..)suchthat T - coandif T=T,,
then the rectangléo > % — 6,t € 1) contains at least one zero of(§)
provided | is any sub-internal dfT, 2T) of length H. In particular ifo
is the least upper bound of the real parts of the zeros(sf thend > %

Remark . The proof of this theorem essentially due to Littlewood.
Roughly speaking it is enough to disprove the analogue aélisf hy-
pothesis onr = % — 8, for F(s). This is done by the third main theorem
of § 2.3 (or easier theorems). For details of proof see the priobheo-
rem 14.2 on pages 336 and 337 of E.C. Titchmé&lrshl[100]. By &imgo
some very mild extra conditions we can even tdke Cz(log logt)™,
whereCs(> 0) is a certain constant. But this needs the resul&mi.
(See the notes at the end of this chapter).



On Some Theorems of Littlewood and Selberg 131

5.3 On Some Theorems of Littlewood and Selberg

Now we ask the following question: What are upper and lowemiog
for Re logF(s) andIm logF(9) if there are no zeros in certain rect-
angles? We mean the “localised analogue” of the resultsttdéwiood
and Selberg which they prove assuming RH. (See for examm@erém
14.14 (B) and equation (14.14.5) on pages 354 and 355 of Et€h-T
marsh [10D]).

We state two theorems in this direction. 124

Theorem 5.3.1.Let s= ¢ + it and
F(9=> an®=]]a-wpp™™ (53.1)
n=1 P

where p runs over all primes and(p) are arbitrary complex numbers
(independent of s) with absolute value not exceedin§upposer and

6 are positive constans satisfyi@ < a <1-¢6andthatin(c >
a—-6,T-H <t<T+H), F(s) can be continued analytically and there
IF(s)| < TA. Here T> To, H = ClogloglogT and A, { and C are
large positive constants of which C depends grafid A. Let Ks) # 0
in(c>a,T-H<t<T+H). Thenfore < o < a + Cy(loglogT)™*
and T— 2H <t < T + $H, we have, uniformly i,

(@) log|F (o +it)| lies between glog T)(log logT)~* and
—C3(log T)(log log T) 1 log{Ca((c- — @) log log T)~} and

(b) |argF (o +it)] < Cs(log T)(log logT)~%, where G, C,, Cs3, C4 and
Cs are certain positive constants.

Corollary 1. For a + C1(loglogT)* <o <1-46,t=T, we have
|log F(o + it)| < Ce(log T)?(loglogT)™2,

whered = (1 - o)(1 - )t and G is a certain constant. The inequality
holds uniformly ino-.



125

132 Zeros ofZ(s)

Corollary 2. Fora <o <1-6,t=T, we have,
IF(o + it)] < Exp(Cs(log T)?(loglogT)™?)

whereg is the same as in Corollarffid 1. ¢Omay not be the same as
before).

TheorenT 5311 is nearly true of functions, very much moreegan
than the ones given b{f{5.8.1). In this direction we statefdHewing
theorem.

Theorem 5.3.2. Let {15} be a sequence satisfyidg= 11 < 12 < ...

where ql < Ans1 — An £ Cy (for some constant £> 1) and let{a,}

be a sequence of complex numbers such that the sef8s-FY, an1,°
1

converges for some complex s and continuable analytioaﬁy > a -

5, T-H <t < T+H)andtherdF(s)| < TA, T > To, H = Cloglog logT.
Here a, §, A are positive constants witla > 6, To and C are large
positive constants. Let(B) # Oin(occ > a,T - H <t < T+ H).
Then the conclusion&) and (b) of Theoren{’5.311 hold good without
any change.

Next assume thaE (1 + it) = O((logt)?) for all t > to (to being a
constant) and thad = C(log logT)(log log logT) in place of the earlier
condition onH. Then we have the following corollaries (the inequalities
asserted here hold uniformly in).

Corollary 1. For a + Cy(loglogT)* <o <1-46,t=T, we have,

llog F(o + it)| < Ce(log T)?(log log ),
whered = (1-o)(1-a)~t and G and G are certain positive constants.
Corollary 2. Fora <o <1-46,t=T, we have,

IF (o + it)| < Exp(Cs(log T)’(log log T)*?)

where G and C; may not be the same as before.
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5.4 Infinitude of Simple Zeros int > 1

In this section we prove (following J.B. Conrey, A. Ghosh &hd.
Gonek) that for alll exceeding a large positive constdiat

Re > g’(p):;-—ﬂ(logT)2+O(TIogT), (5.4.1)

1<im p<T

where the sum on the left is over all zeresith 1 < Imp < T (of
course for all such zergs of £(s) we must have (see the last chapter),
necessarily & Rep < 1). As a corollary we have the following theo-
rem.

Theorem 5.4.1. There are infinity of simple zeros 6fs) in0< o <1, 126
t>1

Remark . In fact the three authors (mentioned above) prove by their
simple method that the sum on the LHS[Gf{5.4.1) i8)(4T (log T)? +

O(T logT). Their “simple method” uses the functional equatiord (),

the asymptotics of gamma function and etc. It is relativap\simple
compared with other methods namely that of N. Levinson, Bi&ath-
Brown and A. Selberg.

Throughout our proof of({5.411) we write = log(2T). We begin
with the remarks tha}’ ¢’(p) summed up over zergswith T — 1 <
Imp < Tis OE(T%“) for everye > 0 and that there is &’ satis-
fying T -1 < T < T for which |/(c + iT’)(¢(o +iT")™ < L2
uniformly in =1 < o < 2. Another result which we will be using is
(9 = x(9)¢(1 - s) where fort > 1, |[y(9)] < {30 uniformly for o in
any closed bounded interval. Yet another result which wé balus-
ing isx’(9(x(s))~* = —log(x) + O(t™*) uniformly for o in any closed
bounded interval. Finally we need the lemma on page 143 of Bt€h-
marsh[[10D]. So we find that all the results that we need at@srbbok
with proper references. Except this lemma on page 143 wewalle all
the results that we need in the appendix, which forms ourclaapter.
The method consists in considering the integral

1 o
o f(s F(9dS (9 = (9™, (5.4.2)
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taken over the anticlockwise boundary of the rectangleiodtbby join-
ing (by straight line segments) the poigtsi, c+iT’, 1-c+iT’, 1-c+i,
c+i in this order. We will fixc = 1+ L. Clearly the integral is the sum
> ¢’'(p) which figures on the LHS of{5.4.1) plus a quant@g(T%”).

We will show that the right vertical line and the two horizahtines
contributeOe(T%“) and that the real part of the contribution from the
left vertical line is (4) 1T (log T)?2+ O(T log T). This proves all that we
want. Now

()g() > (A(m)logn)(mnS (5.4.3)

( ) m>1n>1

7
F(s) = .

and so the right vertical line contributes

0> > (Am)(log n)(mn) ™) = O((Z' ()’ (@)™ = O(L?).

The two horizontal lines contribul@E(T%“) by the choice off’. Thus
we are left with

1 1—C+i
lo = —f F(s)ds 5.4.4
0 2ri 1-c+HiT’ ( ) ( )
1 1 T’
lo= o F(l c+|t)dt———f F(l-c+it)dt.  (5.4.5)

Here after we may suppose, as we will, tidtis replaced byT
since the error iQE(T%“). With this we have

I_ 1, 1 T ) 1 C+IT
3tey — _ —Cc-— - _
0+ O(T27) o fl F(1-c—it)dt o fc+i F(1 - s)ds
(5.4.6)
We will prove that the last expression involving the intédras the
real part (4)"1T(logT)? + O(T logT). Let us writey, ¢, ¢’ for x(9),
Z(s) andZ’(s). We have

{9 =x{(1-9,((A-9)t=x1,
I =xX{1-9-x'A-9=xx"-x{'L-9).
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(Note thatyy(1 - ) = 1). Hencel’(1 - s) = y 1(v'x~1¢ - ¢’) and so

’ 2 _ ’ 2
PURTO R

¢ \x
’ 2 ’
—v(1-9 {(’i) -0y F(s)}. (5.4.7)
X X
Hence (with an erroDE(T%“)),
“log=11=2l5+ I3, (5.4.8)
where 128
1 X/ 2 1 XI
Iy = %f)((l— s)(;) Zdx lp = ﬁf)((l—s);g ds and
1
I3 == fX(l — 9F(9ds (5.4.9)
and the integrals being taken fraa-itoc+iT.
Lemmal. Ifn < o,

1 .
1 E-HT s 1 T -1 1
L x(1=9n ds_2+O(n 2(Iogﬁ) )+O(n 2 logT).

2ni Jyir
(5.4.10)
lfn> 2 and c> 3,

CHT -1
> | x(l—s)n‘Sds=O[TC‘%n—C(Iog%””) ]+o(T°—%n-°).
e-iT
(5.4.11)

Remark 1. This is the lemma on page 143 of E.C. Titchmaish [100].
Out choice will be, as stated alreadys= 1 + L.

Remark 2. The following result which says more is due to S.M. Gonek.
(We state Lemma@l1 of his paper the reference to which will bergi



129

136 Zeros ofZ(s)

in the notes at the end of this chapter). There is a constan® (not
1+ L™Y) such that

r(1+c) t t a‘%
Exp[it lo (—) (—) dt
fr(l_c) plit log{ - 1{5-
= (2n)terd Exp(—ir + Izﬂ) +O(re-2)

for all real constants and all real > ro(a). See also Lemma 3.3 of N.
Levinson [54].

Now let us look at the first part of the lemma. Here LHS is by
Cauchy'’s theorem

1 cHT c-iT 3+T
— + + 1-9n°ds
2ri [ ciT L—iT £+iT ]X( )

1 C+IT 1 Sd o ch (1-0) g
= — — - 2= =0
o fc_iT x(1-9n>ds+ (ﬁ n 0']-

2

Hence if {a} is any sequence of complex numbers wih| <
(log(n+2))* (for some constar > 0 which is arbitrary) and = 1+L 71,
then we have (with- = (27)71T),

1 CHT
ﬁfc_” x(l—s)[Z DI Z}a””_sds

n<r—2 |n-7|<2 n>7+2

=2y an(1+o(n—% (Iog %)_1)+O(n‘% |ogT)+o(n—cT%))

n<r-2
C+HT .
+ O(f TETC(t) + l)ildsi)
c-iT
ny-1 1
+0 c-1 —c( _) -1 -c
Z anT" 2n IogT +0 Z anT" 2n
n>7+2 n>7+2

:ZZan+O

n<r

T€ Z (n‘% (Iog %)_l Nt n‘lT%)]

n<r-2
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3 [riwire(esd) e

n>7+2

=2 a+ O(Tz*),

2<t

+0

since for example

Z N2 (Iog %)_l = O[T‘% Z - i n] = O(T ),

%TS”ST—Z

Thus we have proved

Lemma 2. Letc=1+ Lt and Ry(s) = (¢'(9)%(2(9) L or (s) of £(9) 130
and let g dbe defined accordingly. Then, we have,

CHIT
= f X(1 - 9Fo(s)ds=2 Z an + O(T 2+9). (5.4.12)
2ni c—iT ng%

We now prove

Lemma 3. Under the conditions of Lemrh 2, we have,

C+IT
Rek = Re(% fc Y- s)F(s)ds) = 4T—7T(IogT)2 +O(T logT),

+i

(5.4.13)
Re(% fc+i x(1- S)g”(s)ds) = —% logu + O(u), (5.4.14)

and
Re(% Li x(1=9¢ (S)ds) = % +O(uz*), (5.4.15)

where in the last two assertiods< u < T.

Proof. Letus denote the integrand [015.4.13)®§s). In (it| < 1,0 = ¢)
we haveG(s) = O(L%) and so we can include this in the error term. Next

1 C—1 1 -1 1 T
— Gc+itds:—f Gc+itdt:—ch—itdt
szc_iT( )ds=5- [ “Gerindt=5- [ G-t
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which is the complex conjugate of

1 C+IT
— G(s)ds
2”']24 ()

Hence

1 C+HIT 1 CHIT 3
— G(g)ds=2 Re(—. f G(s)ds) + O((log T)*).
21 Jo it 21 Joyi
This proves the first part of the lemma since by prime numbsw-th
rem T
> an=——(logT)? + O(T logT).
47
n<tr
131 The other two parts follow since while moving the line of igtation
frorq o =ctoo = 1+ (log(2u))™%, u > 1 we have the contribution
O(uz*€) from the horizontal sides.
We have to treaRe k andRe b. We usey’y* = —log7 + O(t™)
fort > 1,0 = c. Since theD-term contributes a small guantity we may
replacey’y 1 by —logr and §’x~1)? by (log7)2. Now

Relz_—Ref V(- s)( Iog—)gdt
1,(0=c)

T u
= f ( log —)d Re K(u), (where Ky(u) = 1 x(1 - 9)dt)
1 2n 1,(0=0)
~log %Re Ko(u)]T + o( fl “IRe Kg(u)|du)
__T 2
= —Zn(log T)*+O(TlogT).
Similarly
1 T t )2
Re b = - fw RES s)(log—) cdt
T u
_ f (log —) d Re K (U). (where Ki(u) = — V(1 — 9zdt)
1 2n 1(0=0)
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= (Iog %)2 Re K (u)]] + O(j;T IOTgu du)

- %(Iog T)?+O(T logT).

Since—Tg = 11-21,+13 (with an errorO.(T 2*€)), we haveRe(~lo) =
(£ - &+ 2)T(logT)? + O(T log T) and so

Reb= 4l(log T)? + O(T logT).
T

This proves all that we wanted to prove. m]
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Notes at the End of Chapter c5

All references except to the book of E.C. Titchmaish [106Yyiged
by D.R. Heath-Brown) are postponed to the notes at the ertkafttap-
ter.

§ B4. The proof of% < 6 < 1 given here is a slightly simplified
version of the (Hansraj Gupta memorial) lecture given by i&igarh
during the 5% Annual Conference of the Indian Mathematical Society
held during December 1991. The details of this lecture vpilear with
the title “A new approach to the zeros &fs)” in Mathematics Student
(India) [24]. This method itself has been published by niyaal R.
Balasubramanian in a very much more general (but comptiydcem
in two papers<Y andX 1112 with the same title “on the zeros of a class
of generalised Dirichlet series”. For the simplest proaf [&)].

The dfficulty of the generalisation mentioned in Remark 2 is the
analogue of the upper bound |gfs) — Sfll|. For the results on general
number fields the only method, known is by using the funclie@oga-
tion.

For the result mentioned in Remark 3 due to K. Ramachandra see
[83].

The Lemma 5 is due to S. Ramanujanli[97] (see also paper number
24 pages 208-209 of his collected papérd [98]). Actuallg iemough
to prove something liker(X) — 7(X/2) > X(logX)~2 for X = X, (v
1,2,3,...) such thatX, — oo. This follows from [J(1 - p™H)~?*

p<x

vVl

Y n~%, on taking logarithms on both sides.
n<x

Theoreni5.2]2 is nearly proved in the papéts andl 1?2 of the se-
ries “On the zeros of a class of generalised Dirichlet sériEise papers
1111201 1\[338] w1231 /4] % |29 gand XVI20 of the same series are
more involved and deal with refined developments. All thesa dvith
the zeros in¢ > % -6, T <t < 2T) wheres(> 0) is any constant. The
papersV 1124 v 111351 | X[16] X[ andX |12 concentrate on the same
problem withs = 6(T) — 0. In fact Xl (as also the papers “On the zeros
of 7/(s) — a’*"V and “On the zeros af(s) — a”’*®! to appear) deal with

133 the zeros ind > % +6, T <t <2T)s(> 0) being a constant, and further
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refinements. Amongst the papers just mentioned in this paphghe
papers |1, 1l, V and VIl are due to K. Ramachandra. The restladeia to
R. Balasubramanian and K. Ramachandra. It must be menttbatthe

paperV 124 is very general and deals with the zeros%fan/lgs with

n=1
13 janl? > Exp(— |§$?35x) for some constant > 0 and allx > 100, in
n<x

the rectangledt > £ — 6, T <t < 2T) with 6 = ¢/(log logT)~* for some
constantc’(> 0) (and further refinements). This paper depends on the
localisation of some theorems of J.E. Littlewood and A. Sejlwho
dealt with Z(s)) to very general Dirichlet series due to K. Ramachan-
dra and A. Sankaranarayandnl[92]1[94]. These results aedsiag
B3. Another recent papétV ¢! by K. Ramachandra and A. Sankara-
narayanan adds to our knowledge of the zeros of a class ofajiseel
Dirichlet series in¢ > %+5,T <t < 2T), wheres(> 0) is any constant.

§ B4. The reference to the papers of three authors is J.B.egonr
A. Ghosh and S.M. Gonek_IB1]. The result mentioned in Renark
below Lemma 1 is proved in S.M. Gonek[34]. The latest improgat
of (&4.1) is due to A. Fuijii (see A. FujiL[32]). It runs as folvs: There
exist real constantd; > 0, Ay, Az such that the dierence

D () - AT(logT)? - AT(log T) — AsT

1<im p<T

is O(Te€VIodT) wherec > 0 is an absolute constant. He also proves
that if we assume Riemann’s hypothesis then thedince isO(T 2

(logT)2).






Chapter 6

Some Recent Progress

6.1 Introduction
134

In this chapter we shall state without proofs som@alilt results (and
related results) mentioned in the introductory remarkssivid the ref-
erences not mentioned are to be found in E.C. Titchmérst.[100

6.2 Hardy’s Theorem and Further Developments

G.H. Hardy was the first to attack the problem of zerog(@j on the
critical line. Of course the numbét of zeros of?(s)in(0 <o <1,0<
t < T) is given by the Riemann-von Mongoldt formula

T T T
N = ZIOQZ ~ o + O(logT).

Denote byNg the number of zeros af(s) in (o = %,O <t<T).
(Both N andNg are counted with multiplicity). Hardy proved thidy —
o asT — oco. He and J.E. Littlewood proved later thidy > T. A.
Selberg developed their method further and by using centailtifiers
proved thatNy > N. On the other hand C.L. Siegel developed another
method to provéNg > T. By a deep variant of this method N. Levinson
[54] proved that limit ofN~tNg > % asT — oo. The references to the

143
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works of the other authors mentioned above are to be founa¥nk
son’s paper. A. Selberg and D.R. Heath-Brown (independéertiog
other) pursued the method of Levinson and proved thakjidenotes
the number of simple zeros ¢fs) in (o = %,0 <t < T) then limit of
N‘lNg > % asT — co. Next some work in these directions was done
by R. Balasubramanian, J.B. Conrey, D.R. Heath-Brown, Aoghrand
S.M. Gonek and subsequently by J.B. Conrey who refined thbadet
of Levinson and proved that, 8 — oo, limit N‘lNg; > % (Ref. J.B.
Conrey [29]). In another direction J.B. Conrey improved pinevious
results of A. Selberg and M. Jutila and proved (with usuahtioh) that

N(o, T) < TH(-9€ 2 |og T,

In yet another direction J.B. Conrey improved on the previcer
sults of A. Selberg; R. Balasubramanian, J.B. Corlbeft, Heath-Brown
He proved that

ﬁ ' N(c, T)do- < (0.0806+ o(1))T.

2

The last three sults of J.B. Conrey mentioned above wereusteol
in (J.B. Conreyl[[3D]). In a completely flierent direction (namely pair
corelation of the zeros af(s)) H.L. Montgomery proved (on RH) that

limit of N‘lNE; > % asT — oo, (see H.L. Montgomery [59]).

6.3 Deeper Problems of Mean-Value Theorems on

-1
o=3

DefineE(T) by
1oL e T T T
gfo |§(§+'t)| dt=>-log -+ (2y — 1) + E(T)
wherey is as usual the Euler’s constant. Then A.E. Ingham was ttte firs

to show thate(T) = O(T%“). This result was improved in a compli-
cated way to E.C. Titchmarsh who proved tE4T) = O(T 1%“). After
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a lapse of nearly 45 years R. Balasubramarian [3] took upribllgm
and building upon the ideas of Titchmarsh and adding his aeas
proved thatE(T) = O(T%“). The latest improvement is due to D.R.
Heath-Brown and M.N. Huxley namelg(T) = O(Tzlz+f). The refer-
ence to their paper is (D.R. Heath-Brown and M.N. Huxley J4Q]L.
Hafner and A. Ivic have proved (ref. J.L. Hafner and A. Ni€]Bsome
nice Q). theorems folE(T). Their results read

E(T) = Q, {(T log T)(log log T)33+1994) Exp(—c /log log IogT)}
and )
E(T)=Q_{T? Exp(—D(Iog IOgT)Ag] :
(logloglogT)2
wherec > 0 andD > 0 are constants. Let

Ex(T) = fo ! |§(% + it) |*dt — T P4(log T),

whereP4(log T) is a certain polynomial in log of degree 4, Then D.R.136
Heath-Brown was the first to prove (for a certain explRi{log T)) that
Ex(T) = O(T%“). (Ref. [39]). His method also gave the result of R.
Balasubramanian mentioned earlier. The final reBp{fl) = O(T%“)
which we can expect in the present state of knowledge wasegrby

N. Zavorotnyi (Ref.[[10B]) It should be mentioned tf¥&t has been re-
placed by a constant power of [dgoy A. Ivic and Y. Motohashi (Ref. A.
Ivic [43]]). The resultEx(T) = Q(T%) (recently Motohashi has proved
that Ex(T) = Qi(T%)) of considerable depth is due to A. Ivic and Y.
Motohashi (Ref.[[44]). The deep result

T
f |§(% + it) 1*2dt < T?(log T)Y’
0

was first proved by D.R. Heath-Brown (Ref.[38]). Later on\aniec
developed another method and proved a result on the meae gélu
|§(% + it) |* over short intervals, which gave as a corollary the result of
Heath-Brown just mentioned and also

T+H 1 )
f |§(§+it)|4dt<< HY H=T5.
.
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Afterwards M. Jutila and Y. Motohashi (independently) gdiféer-
ent methods of approach to this problem of H. lwaniec. Thesetlare
at present three fierent methods of approach to this problem. (Ref.
H. lwaniec [46]; M. Jutilal[47]; M. Jutila[[49]; M. Jutila[1&]; Y. Moto-
hashi (several papers of which the following is dné [61]) ti@se meth-
ods Jutila’s method works very well for hybrid versionsLtdunctions
and so on. However we do not say more on such questions in tmne-m
graph. In 1989, N.V. Kuznetsov published (N.V. Kuznets®j]% proof
of

.
f |§(% + it) lBdt <« T(logT)6*B,
0

whereB > 4 is a certain constant. However his proof appears to con-
tain many serious errors. (Professor Y. Motohashi of Japarying to
correct the mistakes and the result that

T o1
f |§(— + |t) Bdt < Tate
0 2

valid for every fixede > 0 which Motohashi hopes to obtain should
be called Kuznetsov-Motohashi theorem if at all Motohasigiceeds in
proving it. If however Motohashi succeeds in proving

T (1
f Ie (— + it) 1Pdt < T+
0 2

the full credit of such a discovery should go to Motohashi)efde
leaving this section it is appropriate that the followingtwesults should
be mentioned (and as is common with all the results of thiptenave
do not prove them). Of course they have a place in Chapter 4vand
have mentioned it there and we do not prove them. The firseisabult

.
(log T)¥ <1 f |§(:—L+it)|2kdt < (logT)¥
TJ “\2

uniformly for allk = %(n > 1 integer) due to M. Jutila. (Ref. M. Juitila,
[48]). This has application to large vaIueslp@% + it)|. Another result
is due to A. Ivic and A. Perelli. They have proved thakiis any real
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number with 0< k < (y(T)log IogT)‘% wherey(T) — oo asT — oo,

we have,
17 (1 )\
?j; |§(§+|t)| dt — 1.

(Ref. A. Ivic and A. Perelli,[[45]).

6.4 Deeper Problems on Mean-Value Theorems in

%<0‘<1

For fixedo-(% <o < 1) define

{(20 - 120 -1)

Sin(ro) T2,
l1-0

.
E(o,T) = fo |£(o + it)Pdt - £(20)T —

This definition is due to A. lvic (Note that lifg(o, T) = E(T) as
o — 3+0). K. Matsumoto defines in a slightly fiérent way. K.
Matsumoto was the first to use the method of R. Balasubramaamée
he proved
E( T 1/(4o+1)+e (1‘ §)
o T)<T = <o<=].
2 4
(Ref. [55] K. Matsumoto. However in this paper he uses a 8ligiif- 138
ferent method namely the one which uses Atkinson’s formua)vic
([Z3] p. 90), has shown th&(c, T) < T17. K. Matsumoto has proved
(in the paper cited above, see also the A. Iud [43]) that

-

f (E(o, T))2dt = C(0)T22 4+ O(T4™), (% <o< Z)
0

(whereC(o) > 0), which impliesE(o, T) = Q(T%“T). There are many

other interesting results given in A. Ivic [43] mentiondobae and the

interested reader is referred to this LN. However we have ¢ation

a result of S.W. Graham which seems to have missed the atteoti

many mathematicians. Lef > 1 be an integerRy = 20+2 _ 2 and
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0q=1-(q+ 2)Ry". Then his result reads

.
f (g + it)“Fadt < T (log T)A@,
0

whereA(q) > 0 is a certain constant depending onlyerin particular
wheng = 2, we have,

.
f |§(g + it) 119dt < T1%(log T)*2°.
0

(Note that this implies that(2) < 7 and alsou(oq) < Ry'. These

results are close to Theorems 5.12 and 5.13 of E.C. Titchmjagx)]).
Reference to these results is (S.W. Grahani, [35]).

6.5 Onthe Lineoc =1

Let k be any complex constant; (€))% = § dk(n)n~s whenRe s> 2.
n=1
Put

Ek1,T) = fl ' (A +it)Xdt - T i ok (n)I*n2.
n=1

The functionE(1, 1, T) was studied in great detail in (R. Balasubra-
manian, A. Ivic and K. Ramachandiz [4]). One of the resultsv@d in
this paper is

E(LLT) = —xlogT + O((Iog T)3(log |ogT)%).

It follows thatE(1,1, T) = Q_(logT). Itis alsoO(log T). In another
paper (R. Balasubramanian, A. lvic and K. Ramacharidra lig}j have
proved many results. A sample result is

E(k,1.T) = O((log T)").

Finally we mention a result on the large value| lafg £(1 + it)| (K.
Ramachandra [88]). The result is this. lefd < € < 1) be any constant,
T > 10000,X = Exp(b';i%'%). Consider the set of pointfor which
T <t<T+eXand|log/(1+it)] > eloglogT. Then this set is contained

in Oc(1) intervals of length.



Chapter 7

Appendix

7.1 Introduction
140

In this chapter we prove some well-known results and usuefsrences

will not be given. We prove the functional equation/§§), the asymp-

totics of I'(s) and that of 3 |dg(n)]> (k-complex constant) and make
n<x

some remarks about some useful kernel functions.

7.2 A Fourier Expansion

Lety > 0, v a real variable in{co, o0) and f(v) = E Exp(-n(v +
N=—co

n)2y). Clearly f(v) is a periodic function whose Fourier series repre-
sents the function sinc&(V) is continuously dierentiable. Letf(v) =

E an Exp(2rinv). Then

N=—oo

1
an:f0 f(v) Exp(-2rinv)dv

= i fl EXp(m(v + m)?y — 2zinv)dv
0

mM=—oc0

149
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i f rml Exp(n\v2y — 2xinv)dv

M=—0c0

f N Exp(m\2y — 2xinv)dv

(%)

o5 H 2 2
in n
= Exp|-n|lv+ —]| y— —|dv
j:oo p[ ( Y) Y y ]
2 f‘x’ ( in)z)
= Exp|—— Exp| -ny(v+ —] |dv
p( y ) - p( "Wy

Lemma. We have,

0 i\2 o0
j:w Exp(—ny(v+ V) ]dv: [m Exp(-nv2y)dv.

Proof. Integrate Exp{nz?y) over the rectangle obtained by joinirg,
R R+ % -R+ % —R by straight line segments in this order. We have
trivially

ny 1
f Exp(n(+R + iu)?y)du — 0
0

141 asR — oo, since the absolute value of the integrane iExp((-R2y +
”—yz)zr). This proves the lemma. o

Thus we can state
Theorem 7.2.1.We have, for y- 0 and real v,

i Exp(ny(n+Vv)?) = ( f : Exp(—nvzy)dv)

00

2
Z Exp(—% + erinv).

N=—o00 N=—o00

As a corollary we state

Theorem 7.2.2.We have, for y 0,

1+2 ) Exp(-m?y) = y 2 (1 + zz; Exp(—”T)], (7.2.1)
n=

n=1
and

f N Exp(nv)dv = 1. (7.2.2)

(%)
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Proof. Puttingv = 0 andy = 1 in Theoreni_Z.Z]1 we obtain

f ) Exp(mv2)dv = 1

(o)

and so

foo Exp(mv2y)dv = y 2 foo ExplnvA)dv = y 2.

(o) [ee)

Puttingv = 0 in Theoreni_Z.Z]1 we obtaif {7.P.1). O

7.3 Functional Equation

We first introduce as usual
I'(s) = f Exp(—v)vs’ldv, (s=o+it,o > 0). (7.3.1)
0

The analytic continuation is provided by the functional &ipn
I'(s+1)=¢d(s) andso I'(h+1)=n! (7.3.2)

which is obtained on integration oE(Z.B.1) by parts. We novitav 142
(somewhat artificially) foo- > 1

_s,S = a _s sdv
I = Y, [P By
n=1
:Z f Exp(—nznv)vgd—v
n=1+0 v

0 §dV
- [ o,

whereg(v) = § Exp(-n?zv). Now by Theoreni 212, we have,

n=1

1+ 26(V) = v (1 + 2¢(\—1/))
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Hence fors= o +it, o > 1, we have

n—zr (s) f ¢>(v)v2—+ f(-z-l)vid—"

(1)
+L \' ¢(\—/)V 7

0 sdv l( 2 2)
+

1 +fw¢(v)(v§+v%s)d_v
- s1-9 U v’
This proves the following theorem.

Theorem 7.3.1.For v > 1, let¢(v) = Y, Exp(=n?av). Then foro > 1,
n=1
we have,

l 0 S —S d
n-zr( ) (9= g5 +fl #(V) (vz +vlT) 7" (7.3.3)
Plainly the last equation is true for all complex s by analyton-
tinuation. Since the RHS is symmetric in s dnd s, we have the func-

tional equation namely that LHS is unchanged under the fangation
s—>1-s.

7.4 Asymptotics ofl’(s)

For many important purposes it is necessary to know the halvaof
I'(s) as|g — 0. Itis also important to know its poles (and zeros if any).
For reals > 0 we define

I'(s) = lim I'n(S) where I'n(s) = f Exp(-v)vs1dv.
n—oo 0

Now Exp(v) = (Exp(-¥))" > (1 - ¥)" since for 0< v < nwe have
log(1-¥) < —3%. Hence

I'n(s) > fon (1— —) v ldv = I4(s) say.
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Again

n

0<Th(S) - In(s) < f (Exp(—v) - (1 - %)n) vsldy

0
e (M oo dv e [ ., dv e
< nj; VST EXp(-V) v < nfo VT EXp(-V) v = nl"(s+ 2),

ew-{1-3] ~(ewl ) -3
~(Enl) -3 S lenl) -3

Hence, as1 — oo,
n n
T(9) = lim Tn(S) = lim In(s) = |imf (1- ‘—’) v
0 n \Y
provideds > 0. We now determine the last limit. Plainly
1
In(s) = n® f (1 - V)"V tdv = nSJy(9) say.
0
Integrating by parts, we have (fer> 0 andn > 1), 144
Ve 1 Ve
(9 = =A-w"g+n f —(1-v)"dv
S o S
n
= _SJn—l(S+ 1)

-1
s+1

5

n-1 n-r
S+1 " s+

nl>

Jn_z(S+ 2) = \]n_r_l(s+ r+ 1)

NI S
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forn—r — 1> 0. Puttingr = n— 1 we obtain
n! 1

In(s) = S(s+1)...(s+n-1) s+n
Hence
ST s
EYehy nm,[n [z ;)}

[H((Exp(——))(l + ))} X I|m Exp[sz 1_ slog n)

v=1 v= 4
-’ [[{a+ )Exp(——)}
y=1
since lim Z = —logn| = vy the Euler's constant. This holds for real

n—>oovl

s> 0 and by analytic continuation for all complexHence we state

Theorem 7.4.1.We have, for all complex s,

[ee)

F(s) 1_[ ((1 + )EXD(——)} (7.4.1)

wherey is the well-known Euler’s constant.

: ing 62
Slnceﬂ =J1(1 for all @ we have the following
0 n=1 n27T2
Corollary 3. We have
1 _sin(sr)
r(1+9r(l-s

andso I'(9r(l-19 = S’

145 Corollary 4. The functionI'(s))~tis entire. It has simple zeros ats0,
-1, -2,... and no other zeros. The residueldfs) at s = n—nis
(-D)"(n)~* as is easily seen by

(o)

I(s) = j; ' Exp(v)vSidv+ f Exp(=v)vStdv

1
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andExp(-v) = E ﬂ
n—o0 N

Corollary 5. The functiorZ(s) has simple zeros ats -2, -4, -6, .. ..

If has no other zeros ior > 1 and also ino- < 0. The functiony(s) —
(s— 1) tisentire. Ats=0, -1-3,...,Z(s) can be expressed in terms
of Bernoulli numbers. Hence, fora 1,2, 3,...,(2n) = 7" times a
rational number.

Remark. It is easy to prove (though it took a long time in the history of
mathematics to prove this) thafit) # 0 andZ(1 + it) # O for all t. But
it is not known whether there exists a sequence of zeros withparts
tending to 1. This is likely to remain unsolved for a long titbecome.

Proof of Corollary Bl The proof follows by the functional equation and
the Euler product. We may use the obvious formula

r(92(s) = j; N (ev—\il)vs‘zdv

and integrate it by parts (several times) to prove the stamerof the
corollary regarding the assertion abaut 0, -1, -2,.... In passing
we remark that we can also considés,a) = Y, (n + a)~° (wherea

n=0

is a constant with O< a < 1) ats = 0, -1, -2,.... It may also be
. . . d

remarked that (using the functinal equation £¢s, a)) d—sg(s, a)]s—0 =

logI'(a) — 5 log(2n).

We now resume the asymptotics Bfs). We begin with the re-
mark that lod’(s) is analytic in the complex plane with the straight line
(—o0,0] removed. So it dices to study an asymptotic expansion for
reals > 0, provided we arrive at an expansion which is analytic in the
complex plane with the straight line-¢o, 0] removed. By Theorem 146
[ZZ1, we have, fos > 0,

logI'(s) = —logs— ys— i(log(1+ ;S)— —S).

v=1 v

') 1 —( 1 1
(9 ___s_y_;(s+v_;)

Hence
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and
dI'is <« 1
dsT(s) VZO (s+v)2 (7.4.2)
Notice that
1 *  du > 1 1 du
VZ::; (5+)2 fo (s+u? ;((H V)2 _fv (s+ u)2)

1 18 1 1
N _s+j; VZ:(:)((S+V)2 - (s+v+u)2)OIu

and that the integrand (in the last integral) is

> 1 1 1
O[; (s+ v)3] B o(; 5+7)3 Zs (s+ v)3]

= 0O(s?).
Continuing this process we are led to
> 1 cC G C3 CN
——=—=+=+=+ -+ +AN,9), 7.4.3
; (s+v)2 s & & sN (N.9) ( )

wherecy, ¢y, ..., Cy are certain constant®y > 1 arbitrary andA(N, s)
is analytic in the complex plane with the straight linrex{, 0] removed.
Also it is easy to prove that for complesin |argsg < 7 — §(6 > 0 being
a fixed constant) we have

AN, ) = O(g™N1), (7.4.4)

147 where theD-constant depends only dhands. Integrating [Z.413) twice
we obtain

ll:(—(ss)):co+cllogs+c—sz+C—Sg+---+C$N+A*(N,s), (7.4.5)

whereA*(N, s) has the same property &s(714.4) witheplaced byN—1.
Integrating [Z.415) again, we obtain

N
logI'(s) = dislogs+ dos+ dzlogs+ds + Z % +B(N,s), (7.4.6)
y=1
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whereds, dy, d3, d4 andd_,(v = 1 to N) are constants, anB(N, s)

satisfies the condition similar t6 {Z.#.4). Now we usell¢g+ 1) —
logT'(n) = lognto determinedy, d, andds as follows. We have

logn = di((n+ 1) log(n + 1) — nlogn) + dy + d3

(log(n+ 1) -logn) + O(n—lz)

1 1 ds 1
:dl((n+1)(logn+ﬁ —R)—nlogn)+d2+ﬁ +O(F)

:dllogn+d1(n+1)(%—2—i]'2)+d2+d—;+O(n_12)

This gives on dividing by log and lettingn — oo, thatd; = 1 and

> 1 1 d 1
3 _
(n+ 1)(n - 2n2)+d2+ = O(nz)'

HereLHS = 1+ dp + 1 - £ + £ = O(3) and sod; = -1, and
dz = —%. Thus

B 1 di do d_n
logTI'(s) = (s— 5) log s—s+d4+?+?+- . '+W+B(N’ s). (7.4.7)

To determinead,; we use
renr:
Fn+}=n—:—L...1F:—L= ) (2) .
2 2 2 \2 2"2n-2)(2n-4)...2

o, 1) TeIrG)
2] 22-1f(n)’
Henced, is determined by

1 1 1
nIog(n+ 5)—(n+ §)+d4+0(ﬁ)

- (Zn _ %) log(2n) — 2n + Iogl"(%) -(2n-1)




158 Appendix
1 1
log2-— (n— 5) lognh+n+ O(ﬁ)

148 i.e. by

1 1
nIogn+nIog(l+ %)—(n+ §)+d4

= (Zn— %)(Iog 2+logn) - 2n+ IogF(%)—(Zn— 1)
1 1
IogZ—(n— E)Iogn+n+o(ﬁ)

i.e. by

1 1
nIog(1+ %)—n—§+d4

=2nlog2- :_2L log2-2n+ Iogl“(%) -(@2n-1)log2+n+ O(:_r:)

i.e. by

1 1y 1 1 1 1
n(%) + O(ﬁ) - E + d4 = E IOg 2+ IOQF(E) + O(ﬁ)’
i.e. by
1 1
ds = > log 2+ > logm = log(V2r).

Thus we have,

Theorem 7.4.2.We have, ing > 1, |args < 7 — 6, whered(> 0) is a
constant, the expansion
B 1 1 d; do d_n
logI'(s) = > Iog(27r)+(s— E)Iog S— s+?+?+- . -+S—N+B(N, )
(7.4.8)

where N> 1, and d, (v = 1 to N) are constants, BN, s) is analytic in
the said region and further gs — oo we have
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B(N, s) = O(|5~N1), (7.4.9)

where the O-constant depends onlydoeind N.

Remark. The constantsl_1, d_o,...,d_yN are rational and can be ex149
pressed in terms of Bernoulli numbers. We do not work outehieta-
tions.

Corollary 1. In the same region as mentioned in the theorem, we have,

I(s) = V2rs*2eS (1 + O(é))

as|g — oo.

Corollary 2. Ifa <o <bandt> 1, we have,
I+ = V27 tertrisint (14 o )

and hence it (s) = x(s)(1 - ), then we have,

o ofof)

o = eslas) ol

Proof. From the functional equation fg(s) we obtain with slight work
the formula

and

(9 = 520 seq 351 r(9)

using this and TheoremZ%.2 the corollary follows. O
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£'(9)
£(s)

7.5 Estimate for on Certain Lines in the Cirit-

ical Strip

Lemma 4. Let fp > 100Q 5 = 2 + itg and letp run over the zeros of
£(9) satisfyinglo — sl < 3. Then in the dis¢s— 5| < 3 - 5%, we have,

&'(s) 1 0
s —; 5=, <10%gt.

Remark. We have prefered here to write a big constar10 place of
150 O(-). These constants are unimportant for our purposes.

Proof. Consider the function

S— so)_l
p=—%)

It is analytic in|s— 59| < 9 and on its boundarjF(s)| is clearly
< t3°. By maximum modulus principléF(s)| < t2%in |s— s < 3.
Plainly it is analytic in this disc and is free from zeros. lderin this

disc Re logF(s) < 10logtys. Hence by Borel-Caratheodory theorem
(see Theorei 1.8.1) we see thatdr S| < 3 - %oo’ we have

Fe-co [] [1-

[o—%0l<3

|log F(s)| < 10°logto,
and so by Cauchy’s theorem we havesa s < 3 - &

50”
F'(s)

Fo

| < 10logto.

This is precisely the statement of the lemma. o

Lemma 5. The number of zeros ¢{s) in o > — 5, |t — tol < 1355, IS
O(logtop).
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Estimate forg )
4(9)

Proof. This lemma can be proved by maximum modulus principle. But
this lemma is also a consequence of the following theorenthwis
useful in many investigations. ]

Jensen’s Theorem 7.5.1Let f(2) be analytic inj2 < R and f0) = 0.
Let n(r) denote the number of zeros dizfin |7 < r(< R). Then

fo n(rr) 2ﬂf |Og|f(z)|——|0g|f(0)|

Remark . Our proof shows that iff (z) is meromorphic inzZ < Rand
f(0) # 0 and|f(0)| # oo, and ifn(r) is the number of zeros minus the
number of poles ifg < r(< R) then the same result holds. 151

Proof. (i) If f(2) has no zeros itg < Rthen logf(2) is analytic and
SO

1 dz
log f(0) = o Lleog f(z)?.
Taking real parts both sides the theorem follows.
(i) Now if there is a zerag on |z = Rthen at a distancé from this
zero log/f(2)| = O(log %) and sinceﬁlog% — 0asé —» 0Owe are

through in this case.

(i) Now suppose thaf(2) has zeros ifg] < R, but f(0) # 0. Put

FO=1@] | FF:(Z_a)

where the product is over all zeraof f(2) in |z < R. Then since
F(2) has no zeros in & |7 < Rwe, have,

log f(0) + Z Iog og|f(z)|d72

@l ~ 2ni



162 Appendix

since onz = Rwe have

RP-az  z-az _
|R(z—a)|_|z(z—a) -

(iv) To prove the theorem it shices to prove that

R
ZIogB:f @dr.
= la Jo r
Here

R
@dr

R
LHS:f log Bdn(r) =n(r)log B]§+f
0 r r 0

and so the theorem is proved.
i

Remark 1. The last principle used is this. #f(u) is continuously dter-
entiable, then

B+0
A;B(lb(n)an (: j;—o #d nqux an]
B+0
= ¢(u) Z anla' - j; . [Z an] ¢’ (udu.

n<u n<u
152
This useful result can be easily verified.

Remark 2. By taking the disc with centrgy = 2 + itg and radius 3, we

obtain
3n(r) 1 f ds
—Zdr = — log|(9)| +0(1
\fO r 2ni |s—-s0|=3 g Z;( ) S—-% ( )

< 10®logto,

wheren(r) is the number of zeros af(s) in |s— 59| < r(< 3). Noting
that LHS is> N(a) f;’ dt we obtain Lemmal5 by choosing= 3 - 7.
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Theorem 7.5.1.Given any ¢ > 1000there is a t satisfyingt — to| < %
such that for s= o + it with -2 < o < 2, we have, uniformly

{'(s)
£(s)
Proof. The number of zeros af(s) in (o > —. |t — tol < 135 IS

O(logtp). Divide thist-interval into abutting intervals all of equal length
equal to a small constant times (led* ignoring a bit at one end. It
followis that at least one of these is free from zerog @ and so by
Lemma? the theorem follows fequi5 <o<1l+ 2i5 The rest follows

by the functional equation. O

= O((logto)?).

7.6 Asymptotics of{dy(n)[?

We begin with the remark thak(n) is defined byf} d(N)n~s = (£(9)X.
n=1

From the Euler product it is easy to verify theg(n)> < d (n) where

kK = (k + 1)2. It is also easy to verify that for eaah > 1, d;(n) is

an increasing function of > 0. Thus if we are interested in an upper
bound for|dk(n)|> we see that it is majorised ) (n) where¢ > 0 is

a certain integer. Now the resudg, (n)ds,(n) < dg¢,(n) for any two
integerst, > 0, > > 0 can be verified when is a prime power and 153
the result for generai follows since for allng, n, with (g, np) = 1 and

¢ > 0 we haved,;(n;)d,(n2) = dg(n1nz). Thus for any fixed? and all
integersy > 1 we have @,(n))” < dn(n) wherem = ¢”. Hence

(de(n)'n~? < Z(dz(n))vn‘2 < (@)".
n=1

Therefore fom > 2, we have
de(n) < ("P2°)" < ¢

by choosingv large enough.
From now on we give a brief sketch of the fact that

Idk(MIZ = COx(log x)¥-1(1 + O((log x) %)),
k

n<x
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where

k2| oo
c = (r(|k2|))11_[[(1——) Z|dk<pm)|2 }

We begin with a well-known lemma.

Lemma 1. We have, for c- 0,y > 0, and T > 10,

1 C+IT

ds y©
i ) Vs =Oor l)+O(T|Iogy|)

accordingafd<y<lory> 1

Proof. Move the line of integration to- = Ror o = —R. This leads to
the lemma. O

Lemma 2. Letl < ¢ < 2 and let X> 10) be half an odd integer. Then
for T > 10, we have,

CHT
o [ 1905 = Y+ o).

n<x

where f(s) = ioj |dk(N)[2n~S and the O-constant depends onlyon

n=1
Proof. We have to usédg(n)] < n€ for n > ng(e), and Lemmdll and
the inequalityl log %| >> =X From these the lemma follows in a fairly

In¥x -
straight forward way. m|

Lemma 3. We have, ,
f(9) = (£(9) e(s)

K2 oo
o9 =] {(1 - F) Z ldk(p’“)lzp"“s} (7.6.1)

p

where

is analytic ino- > 1 - 155

Proof. Trivial. O
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We have now to use one deep result due to I.M. Vinogradov namel
eqguation number (13) of introductory remarks. From thislioivs (K.
Ramachandra [65]) that(s) # 0 in ¢ > 1 — a(logt)~3(log logt)~3,

[t < T, wherea > 0 is a certain constant. By using the result of .M.
Vinogradov it follows thatin¢ > 1 - (IogT)‘%‘f, It < T,|s-1] >
(log T)‘%‘f) we have/(s) £ 0 andz(s) = O((log T)A) whereA = A¢is a
constant provided > Tp(e). We will assume hereafter th@it> To(e).
Moving the line of integration front = 1+ etoo = 1 - (IogT)‘%‘f,
we have by LemmE] 2

1+2¢

> id (n)|2—if f(9 Cds+ 1o+ 0% (7.6.2)
k " 210 Jo=1-(logT) 3¢ S 0 T ) VT

nsx 0<[t)<T

where
1

XS
07 2ni ﬁ%llz(logT)'g" (95ds (763)
s#1-(logT) 37

and the integration ity is anti-clockwise. Here we choo3e= x3 and
obtain

Lemma 4. We have, for any complex constant k, 155
2., I = 1o+ O(x(log ¥ ~®). (7.6.4)
n<x

Wlhere B> 0) is any arbitrary constant angylis as in(Z&3)with T =

X2,

Proof. Trivial. O

Lemma 5. We have, fois— 1| < r; where f is a small constant, with
the straight line segmeift — r, 1] removed,

f(s 1 kel
% = Ck(ﬁ) 1+ A1(s— 1)+ + A4 (s— 1) + O((s— 1)'*Y)
where

k% oo
Ce=] {(1— F—lj) > |dk(p"‘)|2p"“},
m=0

p
andAy, Ao, ..., A are constants depending on k.



156

166 Appendix

Proof. Trivial. O

Lemma 6. By deforming the contour properly the contribution o |
from O((s— 1)) is O(x(log X)¥*1-3) for a syficiently large constant r.

Proof. The lemma follows from the observation that foe |k|2 + 40,

we have,
f VKR xVdy = O((log x)”‘z"3) .
0

Lemma 7. We have, foD< j<rand T = X3,

f v ¥*ixVdy = O ((log x)kz‘j‘l)
(

2
ogT) 37

Proof. Puttingvlog x = u we see that the LHS is equal to

(log )¥~i-1 f , V¥ Expv)dv
(logx)(log T) 5~

and the required result follows since (IgiflogT) e > (log x)%‘f
and Expv) < v Ke-i-30,

With the substitutiorvliog x = u we see now (in view of Lemnid 7)
that we are led (byp) to the integral in lemma below. m|

Lemma 8. With usual notatior{see the remark belowye have, for any
complex z,

1 (% _sin(r2) 1
o [m vV ZEXp(-Vv)dv = TF(l— 2= o’

Remark. We recall that the path is the limit @& — O of the contour
obtained by joining by straight line the pointse ™ to se ' and then
continuing by the circular arée(§ = —r to x) and then by the straight
line 6€™ to cod”.

Proof. Trivial. O

From Lemmagl4 tBl8 we get
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Theorem 7.6.1.We have,
D 1dk()? = Cr(k?)) x(log ¥ (1 + O((log ) 1).

As a corollary we obtain

Theorem 7.6.2.We have,
3 etz = c¥(log ¥(1 + O((log ).
n<x

where

k% eo
CY = (k% + 1)) 1]‘[{(1——) Z|dk(p"‘)|2 - }

Proof. The proof follows by

Dl fl X

n<x a

it (Z che(n)| )

n<u

and integration by parts. o 157

7.7 Some Useful Reciprocal Relations Involving
Certain Kernels

By the term kernel function we mean a functigtw) which tapers fi.
Examples ofp(w) are 1,1 (w+ 1), Expv*+2), and Exp((sirgg)?). Here
w is a complex variablea > 0 an integer constant, a#d> 10) any real
constant. The last three kernels decay like EXmG W), Exp(|Im w*?)

and(Exp Exp“g‘w) (the last mentioned decay is valid|Re W < A).

Let o(w) be any of these kernels. While applying the maximum modulus
principle to an analytic functiori(z) we may apply maximum modulus
principle to f (W)¢(w — 2) as a function ofw, in a rectangle witlz as an
interior point. We may also apply the samefi@)p(w — 2)x"~? where

x> 0 is a free parameter. This leads to convexity. It is wellkndhat

1 2+ico WdW 1
— X'— =0,= or 1 7.7.1
2ni fz—ioo w 2 ( )
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according as & x < 1, x = 1 or x > 1. The other helpful evaluations
are

2+ico
dw 1
[ W _— = —_——
o fz_im X"T'(w+ 1) W Exp( x)’ (7.7.2)
and
2+ic0 00
L X Exp(vvz)d—w —1-72 f Exp\A)dv,  (7.7.3)
271 Jo-jco w Llogx
both valid forx > 0. Note that

f Exp(\2)dv = 72 (7.7.4)
Remarks.| learnt of [ZZ3B) from Professor D.R. Heath-Brown and of
the kernel Exp{/2+?) from Professor P.X. Gallagher. | thought of the
kernel Exp((sins‘%)z) myself. | learnt of some convexity principles from
Professor A. Selbert. | learnt the proof of the functionaliaipn of
Z(s) as presented in this chapter from Professor K. Chandrasafh
and K.G. Ramanathan. The treatment of the asymptoti¢§9fis my
own while that of 37 |dx(n)|? is well-known. To provel{Z.713) denote the

n<x

LHS by A(x) and considexA’(x). Then sinceA(x) — 0 asx — 0 we
can come back ta(x) by usingA(X) = [ (uA"(u)) .
More generally we can write for > O,

2+ioco
A(X) = % - nga(w)dWW (7.7.5)
whereg(w) is any of the kernels mentioned above in the beginning of
this section. In case(w) = 1 the functionA(X) is non-negative but
discontinuous. In the casds{7]7.2) and (1.7A%x) is monotonic and
continuous and G< A(X) < 1. In the case(w) = Exp@W*+2) we can
move the line of integration any where and so we get

A(X) = 0g(xB) and A(X) = 1+ Og(x®) (7.7.6)

for any constanB > 0. In the case(w) = Exp((sinBﬂA)Z) we can move
the line of integration (but not too far). Thus

A(X) = Oa(X") and A(X) = 1+ Oa(xA), (7.7.7)
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whereA is the constant occuring in the definition gfw).
An interesting formula is

# = j:OA(;];) X¥1dx,  (Rews> 0). (7.7.8)

These are special cases of more general reciprocal tramsf@ee
E.C. Titchmarsh[1102]). See al§® of (K. Ramachandra[81]).
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