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PREFACE

THIS pamphlet contains the notes of lectures given at a Summer
School on the Theory of Numbers at the Tata Institute of Fundamen-
tal Research in 1965. The audience consisted of teachers and students
from Indian Universities who desired to have a general knowledge of the
subject. The speakers were Raghavan Narasimhan, S. Raghavan, S. S.
Rangachari and Sunder Lal.

Chapter 1 sets out the necessary preliminaries from set theory and
algebra; it also contains some elementary number-theoretic material.
Chapter 2 deals with general properties of algebraic number fields; it
includes proofs of the unique factorization theorem for ideals, the finite-
ness of class number, and Dirichlet’s theorem on units. Chapter 3 gives
a slightly more detailed analysis of quadratic fields, in particular from
the analytic aspect; the course ends with Dirichlet’s theorem on the
infinitude of primes in an arithmetic progression.
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Chapter 1

Preliminaries

1.1 Sets and maps

A set is a collection of objects which are called the elements of the set.
We shall suppose that if any object is given, we can decide whether it
belongs to the set or not. The set of all rational integers (i.e. integers
positive, negative and zero) is denoted by Z, the set of all non-negative
integers by Z+, the set of all rational numbers by Q, the set of all real
numbers by R, and the set of all complex numbers by C.

If x is an element of a set A, we write x ∈ A. If x is not an element
of A, we write x /∈ A. If P is a property, the set of all objects with the
property P will be denoted by {x | x possesses the property P}. Thus
{x | x ∈ Z, x < 0} is the set of all negative integers. The set which does
not contain any element is called the empty set and is denoted by the
symbol ∅.

Let X and Y be two sets. If every element of X is an element of Y ,
we say that X is a subset of Y (or X is contained in Y ) and write X ⊂ Y
or Y ⊃ X. If X ⊂ Y,X 6= Y , we say that X is properly contained in Y .
It is clear that if X ⊂ Y and Y ⊂ X, then X = Y . If X and Y are two
sets, we define

(i) the union X ∪ Y of X and Y as the set

{z | z ∈ X or z ∈ Y };

(ii) the intersection X ∩ Y of X and Y as the set

{z | z ∈ X and z ∈ Y };

1



2 Chapter 1. Preliminaries

(iii) the cartesian product X × Y of X and Y as

{(x, y) | x ∈ X and y ∈ Y }.
We say X and Y are disjoint if X ∩ Y = ∅. If X ⊂ Y , we define the

complement, Y −X, as the set {z | z ∈ Y and z /∈ X}.

1.2 Maps

Let X and Y be two sets. A map f :X → Y is an assignment to each
x ∈ X, of an element f(x) ∈ Y . If A is a subset of X, the image f(A) is
the set {f(x) | x ∈ A}. The inverse image of a subset B of Y , denoted by
f−1(B), is the set {x | x ∈ X, f(x) ∈ B}. The map f is said to be onto
or surjective, if f(X) = Y ; if f(x) = f(y) implies x = y, then f is said to
be one-one or injective. If f :X → Y, g:Y → Z are two maps, we define
the composite (g ◦f):X → Z as follows: for x ∈ X, (g ◦f)(x) = g(f(x)).
The map X → Xwhich associates to each x ∈ X, the element x itself
called the identity map of X and denoted by IX (or by I, if there is
no confusion). If f :X → Y is both one-one and onto, there is a map
from Y → X, denoted by f−1, such that f ◦ f−1 = IY , f

−1 ◦ f = IX .
The map f−1 is called the inverse of f . If A is a subset of X, the map
j = jA:A → X which associates to each a ∈ A the same element a in
X is called the inclusion map of A in X. If f :X → Y is any map, the
map f ◦ jA:A→ Y is called the restriction of f to A and is denoted by
f | A.

1.3 Equivalence Relations

Definition 1.1 Let X be a set. An equivalence relation in X is subset
R of X ×X such that

(i) for every x ∈ X, (x, x) ∈ R;

(ii) if (x, y) ∈ R, then (y, x) ∈ R; and

(iii) if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R.

We say that x is equivalent to y with respect to R and write xRy if
(x, y) ∈ R. Then the conditions above simply require that

(i) every element x is equivalent to itself (reflexivity),
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(ii) if x is equivalent to y, y is equivalent to x (symmetry), and

(iii) if x is equivalent to y and y to z then x is equivalent to z.
(transitivity).

Let R be an equivalence relation in a set X. Then for any x ∈ X,
the set of all elements of X equivalent to x with respect to R is called
the equivalence class of R containing x and is denoted by x̄. Consider
the family of distinct equivalence classes of X with respect to R. It is
easy to verify that they are pairwise disjoint and that their union is X.
The set of these equivalence classes x is called the quotient of X by R
and is denoted by X/R.

Example 1.1 The subset R ⊂ X × X consisting of elements (x, x),
x ∈ X is an equivalence relation. This is called the identity relation.

Example 1.2 Let n ∈ Z, n > 0. Consider the set in Z× Z of pairs of
integers (a, b) such a−b is divisible by n. This is an equivalence relation
in Z and the quotient of Z by this relation is denoted by Z/(n) or Zn.

1.4 Abelian groups and homomorphisms

Definition 1.2 Let G be a nonempty set and ψ:G×G→ G a mapping.
Let, for x, y ∈ G, ψ((x, y)) be denoted by x·y or xy. Then the pair (G,ψ)
is said to be an abelian group if the following conditions are satisfied:

(a) x(yz) = (xy)z for every x, y, z in G(associativity),

(b) there exists an element e, called the identity element of G, which
satisfies ex = xe = x for every x in G.

(c) for every x ∈ G, there exists in G an element x−1, called the inverse
of x, such that xx−1 = x−1x = e, and

(d) for every x, y ∈ G, xy = yx (commutativity).

Remark 1.1 We often abbreviate (G,ψ) to G when it is clear from the
context to which map ψ we are referring.

Remark 1.2 The map ψ is called the composition law in G. It is also
called the multiplication in G.
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Remark 1.3 The identity element is unique. In fact, if there is an
element e′ in G such that condition (b) above is valid for every x in G
with e replaced by e′, we have, in particular, e = ee′ = e′.

Remark 1.4 The inverse of any element is unique.

Remark 1.5 In view of associativity, we define xyz = (xy)z = x(yz)
for every x, y, z in G.

More generally, the product x1x2 · · ·xn is well defined, where x1, x2,
. . . , xn ∈ G. (Proof by induction). In particular, for any x ∈ G, we set

xm = xx · · ·x (m times) for m > 0 in Z,

x0 = e,

xn = (x−1)−n for n < 0 in Z.

It is also customary to write the composition law in an abelian group
additively, i.e. to write x+ y for what has been denoted by x · y above.
In this case, one writes 0 for e,−x for x−1,mx for xm, and refers to the
composition law as addition.

Definition 1.3 An abelian group G is said to be finite if it consists of
only finitely many elements; the number of elements of a finite group is
referred to as its order. We say G is infinite if it is not finite.

Example 1.3 The set Z (Q,R,C) of integers (rational numbers, real
numbers, complex numbers respectively) with the ‘usual’ addition as com-
position law is an abelian group.

Example 1.4 The set Z/(n) in Example 1.2 on page 3 can be seen to be
an abelian group with addition (+) defined by x̄+ ȳ = x+ y for x, y ∈ Z.
The order of Z/(n) is n as follows at once from the fact that for any
a ∈ Z, there is a unique b with 0 ≤ b < n for which a− b is divisible by
n.

Example 1.5 Let Q∗(R∗,C∗) denote the set of non-zero rational (real,
complex) numbers. With the ‘usual’ multiplication for composition law,
these from abelian groups.

In what follows, we shall often drop the adjective abelian and speak
simply of groups where we mean abelian groups.
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Definition 1.4 Let G,G′ be two groups. A homomorphism f from G to
G′ is a map f :G→ G′ such that f(xy) = f(x)f(y) for every x, y ∈ G.

Let f :G→ G′ be a homomorphism. Then f(e) = e. In fact, f(e) =
f(ee) = f(e)f(e) and multiplying both sides by f(e)−1, we get f(e) = e
If f :G → G′ and g:G′ → G′′ are homomorphisms, then g ◦ f :G → G′′

is also a homomorphism. For any group G, the identity map IG:G→ G
is a homomorphism.

Definition 1.5 A homomorphism f :G → G′ is called an isomorphism
if there exists a homomorphism g:G′ → G such that f ◦ g = IG′ (the
identity map of G′) and g ◦ f = IG(the identity map of G).

It is easy to see that a homomorphism f :G→ G′ is an isomorphism
if and only if it is both injective and surjective.

Example 1.6 The natural map η:Z → Z/(n) is a surjective homomor-
phism. For n 6= 0 it is not one-one and hence not an isomorphism.

Example 1.7 The map f :Z → Z given by f(a) = 2a for a ∈ Z is an
injective homomorphism. It is not onto and hence not an isomorphism.

Example 1.8 The map g:Q∗ → Q∗ given by g(x) = 1/x for x ∈ Q∗ is
an isomorphism. Further g ◦ g = IQ∗.

Definition 1.6 Let G be a group. A non-empty subset H of G is called
a subgroup of G if for every x, y in H,xy−1 also belongs to H.

In particular e ∈ H and for any x ∈ H, x−1 ∈ H. It can be easily
checked that with the ‘composition’ induced by that of G, H is a group
with e as the identity element and x−1 as the inverse of x in H.

Let H be a subgroup of G. Then the inclusion map j:H → G is an
injective homomorphism.

For any group G, the subsets {e} and G are subgroups of G. Let
G1, G2 be two groups and f :G1 → G2, homomorphism of G1 into G2.
Then the set of x ∈ G1, for which f(x) = e is easily verified to be a
subgroup of G1. It is called the kernel of f and is denoted by ker f . The
homomorphism f is an isomorphism if f is onto and ker f = {e}.

Let G be a group andH a subgroup of G. The relation “x ∼ y (x, y ∈
G) if and only if xy−1 ∈ H” is an equivalence relation. If x̄ is the
equivalence class containing x, then, on the set of equivalence classes we
can introduce the structure of a group by setting x̄ȳ = xy. These classes
are called cosets of G modulo H. This group is denoted by G/H and is
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called the quotient of G by H. If G/H is finite, then its order is called
the index of H in G. There is natural mapping of G onto G/H taking
x ∈ G to x̄ and this mapping is a surjective homomorphism with kernel
H.

Let f :G1 → G2 be a homomorphism of a group G1 into a group G2

with ker f = H. The image f(G1) of G1 under f is a subgroup of G2 and
we define a homomorphism f̄ :G1/H → f(G1) by setting f(x̄) = f(x) for
x ∈ G1. Clearly f is an isomorphism of G1/H onto f(G1) (fundamental
theorem of homomorphisms).

Let G be a group and a ∈ G such that every element of G is of the
form an, where n ∈ Z. Then we say that G is a cyclic group generated
by a.

Example 1.9 (Z,+) is an infinite cyclic group generated by the integer
1. The only subgroups of Z are of the form mZ = {mx | x ∈ Z} for
m ≥ 0.

Proposition 1.1 Any cyclic group G is isomorphic to Z or Z/(m) for
some (m > 0).

Proof: Let G be generated by a. Consider the map f :Z → G taking
n ∈ Z to an. This is a surjective homomorphism and ker f is a subgroup
mZ of Z generated by m ≥ 0 in Z. If m = 0, G is isomorphic to Z. If
m ≥ 0, G is isomorphic to Z/(m).

Definition 1.7 Let G be a group and a ∈ G. We say that a is of order
n if the cyclic group generated by a in G is of order n.

Example 1.10 The element −1 in Q∗ is of order 2.

Remark 1.6 If G is a group of order h and an element a ∈ G is of
order n, then n divides h and therefore ah = e.

1.5 Rings, modules and vector spaces.

Definition 1.8 Let R be a nonempty set and let φ, ψ be mappings of
R × R into R. Writing φ((x, y)) = x + y, ψ((x, y)) = xy, the triple
(R, φ, ψ) is said to be a ring if the following conditions are satisfied:

(i) (R, φ) is an abelian group,



1.5. Rings, modules and vector spaces. 7

(ii) x(yz) = (xy)z for x, y, z in R (associativity).

(iii) x(y + z) = xy + xz, (y + z)x = yx+ zx in R (distributivity), and

(iv) there exists in R an element 1, called the unit element of R, such
that x1 = 1x = x for every x in R.

Remark 1.7 We call φ and ψ respectively the addition and the multipli-
cation in R; we write + for φ and · or × for ψ.

Remark 1.8 The identity element of (R, φ) is called the zero element
of R and is denoted by 0.

Remark 1.9 The unit element in R is unique.

Remark 1.10 Associativity is valid for any finite number of elements
in R (in a sense which is obvious).

Remark 1.11 We denote by R∗ the set of non-zero elements of R.

Definition 1.9 A ring R is commutative if xy = yx for every x, y in
R.

Hereafter, by a ring we shall always mean a commutative ring.

Definition 1.10 A subring S of a ring R is a subgroup of (R,+) such
that 1 ∈ S and for x, y ∈ S, xy ∈ S.

We observe that S is a ring under the operations induced from R.

If R is a ring, S a subring and E a subset of R, the ring S[E] gen-
erated by E is the set consisting of 1 and all the elements of the form
α =

∑n
i=1 siei, si ∈ S where each ei is a product of finitely many ele-

ments of E. It is trivial that S[E] is the smallest subring of R containing
S and E.

Definition 1.11 Let R be a ring and a, b ∈ R. Then we say that a
divides b (or that a is a divisor of b, a|b in symbols), if there exists c in
R such that b = ac. If a does not divide b, we write a 6 | b.

Definition 1.12 If a, b, c ∈ R, then a is congruent to b modulo c ( in
symbols a ≡ b (mod c)) if c|(a− b).
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Definition 1.13 An element a ∈ R is called a zero-divisor if there exists
x 6= 0 in R such that ax = 0. Trivially, 0 is a zero-divisor.

Definition 1.14 A commutative ring R in which 1 6= 0, is an integral
domain if R contains no zero-divisors other than 0.

Definition 1.15 An element u ∈ R is called a unit in R if there exists
v ∈ R such that uv = 1. (R is commutative).

The units u in R clearly form a multiplicative group which we denote
by U .

Definition 1.16 We call two elements a, b in R associates with respect
to U if a = ub for some u ∈ U . We say, briefly, that a and b are
associates and otherwise we say that a and b are non-associate.

Definition 1.17 A commutative ring R is called a field, if the set R∗

of elements a 6= 0 in R forms a group under multiplication (i.e. if every
a 6= 0 in R is a unit ). Clearly a field is an integral domain.

Definition 1.18 A subring R of a field K is called a subfield of K, if
R is a field (with respect to the operations which make R a ring viz. the
operations induced from K).

Example 1.11 Z,Q,R, and C are commutative rings with the usual
addition and multiplication of complex numbers, and, in fact, integral
domains. C,R,Q are fields and Q,R are subfields of C; however, Z is
not a field.

Example 1.12 The additive group Z/(m) consisting of residue classes
(of Z) modulo (an integer) m( 6= 0) is a ring, the multiplication being
defined by r̄s̄ = rs for r, s ∈ Z.

Example 1.13 A finite integral domain A is a field. In fact, let A =
{x1, x2, . . . , xh}, and let a ∈ A, a 6= 0. Then the elements ax1, . . . , axh
are distinct, since A has no non-zero zero-divisors. Hence they must be
all the xi in some order, so that axi = 1 for some i.

Definition 1.19 A positive integer p in Z is called a prime if p > 1
and its only divisors in Z are ±1, ±p.
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Proposition 1.2 For p > 0 in Z, Z/(p) is a field if and only if p is a
prime.

Proof: In fact, if p = rs, r, s 6= ±1, then r̄s̄ = 0̄. But neither r̄ nor
s̄ is equal to 0̄. Hence Z/(p) is not even an integral domain, if p is not
a prime. Conversely, if p is a prime, then for any x ∈ Z with p ∤ x,
there exists y ∈ Z such that xy ≡ 1(mod p). For, consider the set of
r ∈ Z such that rx ≡ 0(mod p). This is an additive subgroup G of Z
and hence, by the example 1.9 on page 6, of the form mZ, m ≥ 0. Since
p ∈ G, m = 1 or p. But m 6= 1, since p ∤ x. Thus m = p and as a
consequence, the elements,

0, x, 2x, . . . , (p− 1)x

. are all distinct modulo p. Since the order of Z/(p) is p (see Example 1.4
page 4) there exists y ∈ Z (1 ≤ y ≤ p − 1) such that yx = 1̄, i.e.
yx ≡ 1(mod p). [The last part of the argument is that of Example 1.13
above].

1.6 The Legendre symbol

Definition 1.20 Let p ∈ Z, p > 2 be a prime. An integer a with p 6 |a
is said to be a quadratic residue modulo p, if there exists x ∈ Z such
that x2 ≡ a(mod p), and a quadratic non-residue modulo p if no such x
exists in Z.

From the definition, it is clear that a is a quadratic residue modulo
p if and only if a+mp (for arbitrary m ∈ Z) is so. We can thus talk of a
(non-zero) residue class modulo p being quadratic residue or non-residue
modulo p.

Consider now, for p ∤ a, the quadratic congruence x2 ≡ a(mod p) for
x ∈ Z. If a is a quadratic non-residue modulo p, this congruence has no
solution x. If a is a quadratic residue modulo p, say a ≡ b2(mod p), then
x2 ≡ b2(mod p), i.e. (x−b)(x+b) ≡ 0(mod p). Since by Proposition 1.2
Z/(p) is an integral domain, it follows that x ≡ ±b(mod p) are the
only two solutions of the congruence x2 ≡ a(mod p). Further, since
p > 2, b 6≡ −b(mod p). Now consider the mapping x̄ → x̄2 of (Z/(p))∗

into itself. The image of x̄ ( 6= 0) under this mapping is always a quadratic
residue modulo p and by what we have seen, each quadratic residue
modulo p in (Z/(p))∗ is the image of exactly two elements of (Z/(p))∗
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under this mapping. Thus there are (p−1)/2 quadratic residues modulo
p. It follows that there are (p− 1)/2 quadratic non-residues modulo p.

The product of two quadratic residues modulo p is again a residue.
For, if a ≡ x2(mod p) and b ≡ y2(mod p) then ab ≡ (xy)2(mod p).

The product of a quadratic residue a modulo p and a non-residue b
modulo p is a quadratic non-residue modulo p. For, there exists x ∈ Z

for which x2 ≡ a(mod p) and if ab ≡ z2(mod p) for z ∈ Z choose by
Proposition 1.2, y ∈ Z such that xy ≡ 1(mod p). Clearly we have then
the congruence b ≡ (yz)2(mod p), and b would be a residue modulo p.

The product of two quadratic non-residues a, b modulo p is a quadratic
residue modulo p. For let ā1, . . . , āq(q = 1

2(p − 1)), be the quadratic
residues modulo p. Then since Z/(p) is an integral domain, it follows
from what we have seen above that aa1, . . . , aaq are precisely all the
residue classes modulo p which are non-residues. Since ab is distinct
from these, it must be a residue.

Definition 1.21 Let p 6= 2 be a prime and a ∈ Z. We define the
Legendre symbol (ap ) by

(
a

p

)
=





+1 if p ∤ a and a is a quadratic residue modulo p
−1 if p ∤ a and a is a non-residue modulo p,
0 if p | a.

It is clear from the earlier considerations that
(
ab

p

)
=

(
a

p

)(
b

p

)
for a, b ∈ Z (1.1)

1.7 The quotient field of an integral domain

Definition 1.22 Let R,R′ be two rings. A map f :R → R′ is called a
homomorphism if

(i) f(x+ y) = f(x) + f(y),

(ii) f(xy) = f(x)f(y) for every x, y ∈ R, and

(iii) f(1) = 1.

For any ring R, the identity map IR is a homomorphism. The composite
of two homomorphisms is again a homomorphism.
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Definition 1.23 A homomorphism f :R → R′ is said to be an isomor-
phism if there exists a homomorphism g:R′ → R such that g ◦ f = IR
and f ◦ g = IR′ . The rings R and R′ are then said to be isomorphic and
we write R ≃ R′.

An isomorphism f :R → R is called an automorphism of R. The
image f(R) of a ring R under a homomorphism f :R → R′ is a subring
of R′. A homomorphism is an isomorphism if and only if it is injective
and surjective.

Remark 1.12 The natural map q:Z → Z/(m) is a homomorphism.

Proposition 1.3 Every integral domain R can be embedded isomorphi-
cally in a field.

Proof: Let R be an integral domain and R∗ the set of non-zero el-
ements of R. On R × R∗, we define the relation: (a, b) ∼ (c, d) if
ad = bc. Since R contains no zero-divisors, it can be verified that this is
an equivalence relation. We make the quotient K = R×R∗/ ∼ a ring by
defining the ring operations as follows. If x/y denotes the equivalence
class containing (x, y) ∈ R×R∗ then define a/b+c/d = (ad+bc)/bd and
(a/b)(c/d) = ac/bd. These operations are well defined and K is a ring.
In fact, K is a field, since b/a is an inverse for a/b, a 6= 0. The map
i:R→ K given only by i(a) = a/1 for a ∈ R is a one-one homomorphism
of R into K.

We shall identify R with the subring i(R) of K.

Remark 1.13 K is called the quotient field of R. If f :R → L is a
one-one homomorphism of R into a field L, then f can be extended in a
unique way to a one-one homomorphism f̄ of K into L, by prescribing
f̄(a/b) = f(a)f(b)−1, for b 6= 0. Further, this property characterises the
quotient field upto isomorphism. Thus L contains the isomorphic image
f̄(K) of K. We see then that if L contains an isomorphic image of K
and in this sense, K is the “smallest” field containing R.

Example 1.14 Q is (isomorphic to) the quotient field of Z.

1.8 Modules

Let R be a (commutative) ring (containing 1)
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Definition 1.24 An R-module M is a triple (M,+, ψ) where

(i) (M,+) is an (abelian) group

(ii) ψ:R×M →M is a map such that if we set

ψ((λ, a)) = λa, then for λ, µ ∈ R, and x, y ∈M, we have

(1) λ(x+ y) = λx+ λy,

(2) (λ+ µ)x = λx+ µx

(3) (λµ)x = λ(µx),

(4) 1 · x = x.

The elements of R are called scalars and ψ is called scalar multiplication.

Definition 1.25 If R is a field, M is called a vector space over R (or
an R-vector space) and the elements of R called vectors.

Example 1.15 Every (abelian) group (G,+) can be regarded as a Z-
module (G,+, ψ) by defining ψ((n, x)) = nx for x ∈ G and n ∈ Z.
Conversely, every Z-module is of this type.

Example 1.16 Every (commutative) ring R with 1 is an R-module.

Example 1.17 R and C are vector spaces over Q.

Definition 1.26 Let M be an R-module (resp. vector space over R).
Then a subgroup N of M is called an R-submodule (resp. a subspace
over R) if ψ maps R×N into N .

Definition 1.27 Let M be an R-module. A subset S of M is said to
generate M over R if every x ∈ M can be written in the form x =∑n

i=1 aixi with xi ∈ S, ai ∈ R and n = n(x) ∈ Z+.

The elements of S are called generators of M over R. In particular,
if there exists a finite subset S ofM over R, thenM is finitely generated
over R. If S = ∅, by definition, the generating M module generated by
S is {0}.
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Proposition 1.4 Let α1, α2, . . . , αn be a system of generators of a Z-
module M , and let N be a sub-module of M . Then there exist β1, . . . , βm
in N(m ≤ n) that generate N over Z and have the form βi =

∑
i≤j kijαj

with kij ∈ Z, kii ≥ 0 and 1 ≤ i ≤ m.

Proof: Let us suppose that the proposition has been proved for all
Z-modules with n− 1 generators at most, where n ≥ 1. (Note that the
proposition is trivial when M = {0}.) Let M be a module generated
over Z by n elements α1, α2, . . . , αn and N a sub-module of M . Define
M ′ to be the module generated by α2, α3, . . . , αn over Z and N ′ to be
N ∩ M ′. If n = 1, M ′ = {0}. If N = N ′ the proposition is true
by the induction hypothesis. If N 6= N ′, then let A be the subgroup
of Z consisting of integers k for which there exist k2, . . . , kn in Z with
kα1 + k2α2 + · · · + knαn ∈ N . Then A is of the form k11Z, k11 ≥ 0;
let β1 = k11α1 + k12α2 + · · · + k1nαn ∈ N . If α =

∑n
i=1 hiαi, with

h1, h2, . . . , hn ∈ Z, belongs to N , then h2 ∈ A so that h1 = mk11 for
some m ∈ Z. Thus α −mβ1 ∈ N ′. By the induction hypothesis, there
exist βi =

∑
j≤i kijαj (i = 2, 3, . . . ,m, kij ∈ Z, kii ≥ 0), in N ′, which

generate N ′. It is clear that β1, β2, . . . , βm are generators of N having
the required form.

Definition 1.28 A subset S of an R-module M is linearly independent
over R, if, for any finite set of elements x1, . . . , xn in S, a relation∑n

i=1 aixi = 0, ai ∈ R implies necessarily that a1 = · · · = an = 0. We
say that S is linearly dependent, if it is not linearly independent.

Definition 1.29 A subset S of M is called a base of M over R (or an
R-base) if S is linearly independent and generates M over R.

Example 1.18 The Z-module of even integers has {2} for a base.

Example 1.19 Q is a Z-module but is not finitely generated over Z.
Trivially, Q if finitely generated over Q.

Example 1.20 R2 = R×R has {(1, 0), (0, 1)} as a base over R.

Proposition 1.5 Let V be a vector space (over a field K) which has a
set of generators consisting of m elements. If S is any linearly indepen-
dent subset of V , then S contains at most m elements.
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Proof: Let x1, . . . , xm be a set of generators for V over K. If possible,
let S contain more than m elements, say y1, . . . , ym+1. We can write
y1 =

∑m
i=1 λixi, λi ∈ K and λi 6= 0 for at least one i. We may assume,

without loss of generality, that λ1 6= 0. Then x1 = λ−1
1 y1−

∑m
i=2 λ

−1
1 λixi.

Hence y1, x2, . . . , xm generate V . Assume for some i, 1 ≤ i ≤ m, that
(y1, . . . , yi, xi+1, . . . , xm) generate V . (This is true for i = 1.) Then

yi+1 =
i∑

j=1

αjyj +
m∑

k=i+1

αkxk, α1, . . . , αm ∈ K.

Since y1, . . . , yi+1 are linearly independent, αk 6= 0 for some k ≥ i + 1.
Without loss of generality, we may suppose that αi+1 6= 0. Then

xi+1 =
i+1∑

j=1

βjyj +
m∑

k=i+2

βkxk

for β1, . . . , βi+1, βi+2, . . . , βm ∈ K. Thus y1, . . . , yi+1, xi+2, . . . , xm gen-
erate V . By iteration of this process, it follows that y1, . . . , ym generate
V . In particular ym+1 =

∑m
i=1 γiyi, γi ∈ K, contradicting the linear

independence of S.

Corollary 1.1 If x1, . . . , xm and y1, . . . , yn are bases of V , then m = n.

Remark 1.14 We shall be concerned only with vector spaces, which are
finitely generated (over a field).

Remark 1.15 Let V be a vector space, finitely generated over a field K.
From the finitely many generators, we can clearly pick out a maximal
set of linearly independent elements which suffice to generate V and
constitute a base of V over K.

Remark 1.16 Let V be a vector space generated by x1, . . . , xm over K
and let x 6= 0 in V . Then x, x1, . . . , xm again generate V over K and,
from this set, we can always pick out a maximal linearly independent
subset containing x. In other words, any x 6= 0 in V can be completed
to a base of V .

Definition 1.30 A vector space V is said to be of dimension n over a
field K (in symbols dimk V = n) if there exists a base of V over K
containing n elements.
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Observe that, by Corollary 1.1, the dimension is defined indepen-
dently of the base used.

We shall write merely dimV for dimk V when it is clear from the
context to which field K we are referring.

Corollary 1.2 Let W be a subspace of V with dimkV = n. Then W
has a base consisting of at most n elements, i.e. dimkW ≤ dimk V . If
W is a proper subspace of V , then dimW < dimV .

For, we know first, by Proposition 1.5, that any linearly independent
set in W contains at most n elements. Choose a maximal set of linearly
independent elements inW . This is a base forW and therefore dimW ≤
n = dimV . Since any n linearly independent elements of V generate V ,
it follows that dimW < dimV if W is properly contained in V .

Example 1.21 Let K be a field and k a subfield of K. Let L be a
field of which K is a subfield. We may clearly consider L as a K-
(or k-) vector space, K as a k-vector space. Suppose the vector spaces
L/K, K/k are of finite dimension, and that u1, . . . , un ∈ K form a
k-base of K, v1, . . . , vm ∈ L form a K-base of L. Then L is a finite
dimensional k-vector space, and the products uivj , 1 ≤ i ≤ n, 1 ≤ j ≤
m(in L) form a k-base of L.

Definition 1.31 Let V, V ′ be two vector space over a field K. By a
homomorphism (or K-linear map) of V into V ′ we mean a homomor-
phism f of (V,+) into (V ′,+) which satisfies in addition the condition
f(λx) = λf(x) for x ∈ V, λ ∈ K.

If the homomorphism f is one-one and onto, then f is an isomor-
phism and V, V ′ are isomorphic.

By an endomorphism of a vector space V , we mean a homomorphism
of V into itself.

Let f :V → V ′ be K-linear. Let N be the kernel of f . Then N is a
subspace of V and, similarly, the image f(V ) is a subspace of V ′. The
quotient group V/N can be made into a vector space over K. Further
V/N is isomorphic of f(V ) (Noether homomorphism theorem). If dimk V
is finite, then dimk V = dimk f(V )+dimK N . Let V, V ′ be vector spaces
over K, and let (e1, . . . , en) form a base of V over K. Then given
arbitrary elements a1, . . . , an ∈ V ′ here is a unique K-linear map f :V →
V ′ with f(ei) = ai. In fact, for x ∈ V, if x =

∑n
i=1 λiei, then we have

only to set f(x) =
∑n

i=1 λiai. The uniqueness is obvious.
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Definition 1.32 Let V be a vector space over a field K and dimk V =
n. By a K-linear form (or briefly, a linear form) on V , we mean a
homomorphism of V into K (regarded as a vector space over itself).

The set V ∗ of linear forms on V forms a vector space over K and
is called the dual of V . If α1, . . . , αn is a base of V over K, define
the linear forms α∗

1, . . . , α
∗
n by α∗

i (αj) = δij (the Kronecker delta)= 1
if i = j and 0 for i 6= j. We see at once that α∗

1, . . . , α
∗
n are linearly

independent over K. For, if
∑n

i=1 aiα
∗
i = 0 with a1, . . . , an = K, then

aj =
∑n

i=1 aiα
∗
i (αj) = 0 for j = 1, . . . , n. Any linear form α∗ can be

written in the form α∗ =
∑n

i=1 biα
∗
i where α∗(αi) = bi ∈ K. Thus

dimK V ∗ = n. The base α1∗, . . . , α∗
n ofV ∗ is called the dual base of the

base α1, . . . , αn of V .

Definition 1.33 Let V be a vector space over a field K. A bilinear
form B on V is a mapping B:V × V → K such that for any fixed
y ∈ V the mappings B′

y, B
′′
y of V into K, defined by B′

y(x) = B(x, y)
and B′′

y (x) = B(y, x) respectively, are linear forms on V .

Definition 1.34 A bilinear form B(x, y) on V is non-degenerate if, for
any fixed y 6= 0 in V , the linear form B′

y, is not zero, i.e. B(x, y) 6= 0
for at least one x, and for any fixed x 6= 0, the linear form B′′

x is not
zero.

Let V be a vector space of dimension n over a field K. Then we have

Proposition 1.6 Let B(x, y) be a non-degenerate bilinear form on V .
Then for any base α1, . . . , αn of V , there exists a base β1, . . . , βn of V
such that B(αi, βj) = δij (the Kronecker delta) for 1 ≤ i, j ≤ n.

Proof: Consider the mapping of V to V ∗ taking y ∈ V to the linear
form B′

y in V ∗. This is clearly a homomorphism of V into V ∗. Since B
is non-degenerate, this mapping is injective. Since dimV = dimV ∗ = n,
it follows by Noether’s homomorphism theorem and Corollary 1.2 above
that this mapping is onto V ∗. Let α1, . . . , αn be a base of V over K
and α∗

1, . . . , α
∗
n the corresponding dual base of V ∗. Let β1, . . . , βn be

the elements of V which are mapped into α∗
1, . . . , α

∗
n respectively by the

homomorphism above. Then B(αi, βj) = α∗
j (αi) = δij .
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1.9 Ideals and quotient rings

Let R be a (commutative) ring (with 1). Then R can be regarded as a
module over itself.

Definition 1.35 By an ideal of R, we mean an R-submodule of R.

Clearly an ideal I of R, is a subgroup of (R,+) such that for any
x ∈ I and a ∈ R, we have ax ∈ I.

Example 1.22 R and {0} are ideals of a ring R.

Example 1.23 Subgroups of (Z,+) are ideals of the ring Z with the
usual addition and multiplication. Any ideal of Z is clearly of the form
mZ, m ∈ Z.

Example 1.24 Let R,R′ be two rings and f :R → R′ be a homomor-
phism. Then ker f is an ideal of R.

An integral domain R 6= {0} is a field if and only if R and {0} are
the only ideals of R, as can be easily proved.

Definition 1.36 If a, b are two ideals of R, the product ab of a and b

is the set of all finite sums of the form
∑

i aibi with ai ∈ a and bi ∈ b.

It is easy to check that ab is again an ideal of R. Clearly ab = ba.

Definition 1.37 An ideal a of a ring R divides an ideal b of R, if a ⊃ b.

Definition 1.38 By a proper ideal of a ring R, we mean an ideal of R
different from R and {0}.

Definition 1.39 Let S be a subset of a ring R. An ideal a of R is
generated by S, if it is generated by S as an R-module. We say a is
finitely generated, if it is finitely generated as an R-module.

Definition 1.40 If an ideal a of a ring R is generated by a single ele-
ment α ∈ R, then a is called a principal ideal of R. (We denote it by
αR in this case or just by (α).)

Example 1.25 R and {0} are principal ideals of R.
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Definition 1.41 An integral domain R all of whose ideals are principal
ideals is called a principal ideal domain.

Example 1.26 Z is a principal ideal domain (see Example 1.23, p. 17).

Let a be an ideal of a ring R. The additive group of R/a (in words,
R modulo a) is a ring called the the quotient ring of R by a, with
multiplication defined by (x + a)(y + a) = xy + a for x, y ∈ R. (Since
a is an ideal of R, this multiplication is well defined.) The natural map
q:R→ R/a is a surjective homomorphism with kernel a.

Example 1.27 Z/(m) is the quotient ring of Z by the ideal (m). This
ring is called the ring of residue classes modulo m. (See Example 1.12,
page 8.) It is a field if and only if m is a prime, by Proposition 1.2.

Let f :R→ R′ be a homomorphism of a ring R onto a ring R′ and let
a = ker f . The homomorphism f induces a homomorphism f̄ :R/a → R′,
by setting f̄(x + a) = f(x) for x ∈ R. Clearly f is an isomorphism of
rings. (Fundamental theorem of homomorphisms for rings.)

Remark 1.17 Let K be a field. Consider the ring homomorphism
f :Z → K given by f(n) = n·1(= 1+· · ·+1, n times). By the fundamen-
tal theorem of homomorphisms referred to above, Z/ ker f ≃ f(Z). We
have ker f = (p) for some p ≥ 0. in Z. We call p the characteristic of
K. Observe that p is a prime, if p > 0. For, if p = rs, 1 < r, s < p then
f(r)f(s) = f(rs) = 0. But neither f(r) nor f(s) is zero, contradicting
the fact that K is an integral domain. If p = 0, then K contains f(Z)
which is isomorphic to Z and hence contains a subfield isomorphic to Q

(see remark on 11). Thus every field contains a subfield isomorphic to
either Q or Z/(p) (for a prime p). The fields Q and Z/(p)(p prime) are
called prime fields.

Definition 1.42 A proper ideal p of an integral domain R is called a
prime ideal if, for a, b ∈ R, ab ∈ p implies that either a or b is in p.

Example 1.28 In Z a prime p generates a prime ideal and conversely
every prime ideal of Z is generated by a prime p.

Remark 1.18 A proper ideal p is a prime ideal of a ring R if and only
if R/p is an integral domain.
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Remark 1.19 If a prime ideal p of a ring R divides the product of two
ideals a and b, then p divides either a or b. For, if p divides neither a

nor b there exist a ∈ a, b ∈ b while ab ∈ ab ⊂ p which is a contradiction.

Definition 1.43 A proper ideal a of R is maximal if a is not contained
in any other proper ideal of R.

Remark 1.20 An ideal a of a ring R is a maximal ideal, if and only if
R/a is a field.

Remark 1.21 A maximal ideal is clearly prime.

1.10 Linear mappings and matrices

Let V be a vector space of dimension n over a field K. Let φ be a
linear mapping (i.e. a homomorphism) of V into V . Taking a fixed
base e1, . . . , en of V over K, let φ(ej) =

∑n
i=1 aijei(j = 1, . . . , n) with

aij ∈ K. To the linear mapping φ, we associate the ordered set




a11 · · · a1n
· · ·
· · ·

a1n · · · ann




of the n2 elements a11, a12, . . . , ann, which will be referred to as the
corresponding ‘matrix’(aij). The elements apq(p = 1, 2, . . . , n) are said
to constitute the pth ‘row’ of (aij) and the elements apq(p = 1, 2, . . . , n)
constitute the qth ‘column’ of (aij). The matrix (aij) has thus n rows
and n columns and is called an n-rowed square matrix (or an n × n
matrix) with elements in K.

Conversely, given an n-rowed square matrix (aij) with elements inK,
we can find a unique linear mapping φ of V into itself for which φ(ej) =∑n

i=1 aijei. Thus, once a base of V is chosen, the linear mappings of
V into itself stand in one-one correspondence with the set Mn(K) of n-
rowed square matrices with elements in K. In Mn(K),we can introduce
the structure of a ring as follows. If A = (aij), B = (bij) are in Mn(K)
define A+B to be the n-rowed square matrix (cij) with cij) = aij + bij
and the product AB to be the element (dij) of Mn(K) with

dij =
n∑

p=1

aipbpj .
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The usual laws of addition and multiplication for a ring can be verified
to be true. However, this ring is not, in general, commutative. To the
identity mapping IV :V → V corresponds the matrix I = In = (δij) and
this serves as the unit element in the ring Mn(K). Note that if φ, ψ are
two linear mappings of V into itself, and if A,B are the corresponding
matrices, then φ + ψ corresponds to A + B and φ ◦ ψ to A · B. For
A = (aij) ∈ Mn(K), we define the trace Tr (A) of A to be the sum∑n

i=1 aii. Clearly for A = (aij), B = (bij) in Mn(K), we have Tr (AB) =∑n
i,j=1 aijbji = Tr (BA) and further Tr (I) = n. For A ∈ Mn(K), we

denote by detA, the determinant of A. For A = I, det I = 1.
We shall not define the determinant. It has the following properties

which are the only ones we shall use. (See e.g. Halmos [2],)
Let A = (aij), 1 ≤ i, j ≤ n. Then

(a) detA is a homogeneous polynomial in the elements aij of degree
n;

(b) detA is linear considered as a function of any row of (aij); it is
linear also in the columns of (aij);

(c) if A = (aij) and A
t = (bij) where bij = aji,then detAt = detA;

(d) if A = (aij) and aij = 0 for i > j, then detA = a11 . . . ann; in
particular det I = 1;

(e) for any two n × n matrices A and B, we have det(AB) = detA ·
detB.

Let f1, . . . , fn constitute another base of V over K, and let

fj =

n∑

i=1

pijei, ej =

n∑

i=1

qijfi, j = 1, . . . , n, pij , qij ∈ K.

Then to the linear mapping φ of V into V, taking ej to fj corresponds
the matrix P = (pij). Let ψ be the linear mapping of V taking fj to ej .
Denote by Q the corresponding matrix (qij). The composite mappings
φ ◦ψ and ψ ◦φ are clearly both equal to the identity mapping of V into
itself. The corresponding matrices are PQ and QP respectively. Hence
PQ = QP = In and Q is the inverse P−1 of P in Mn(K).

Suppose now, that instead of the base e1, . . . , en of V , we had referred
everything to another fixed base f1, . . . , fn with fj =

∑n
i=1 pijei(j =

1, . . . , n). Then the linear mapping ψ taking ej to
∑n

i=1 aijei(j =
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1, . . . , n) would take fj to
∑n

i=1(
∑n

k,l=1 qilalkpkj)fi and the correspond-

ing matrix would be QAP = P−1AP ∈ Mn(K). Now Tr (P−1AP ) =
Tr (APP−1) = Tr (A). Consequently, if φ is an endomorphism of V , and
A the matrix corresponding to it with respect to a base of V, then Tr (A)
is independent of the base chosen, and we set Tr (φ) = Tr (A) and speak
of the trace of the endomorphism. Similarly, since

det(P−1AP ) = detP−1 · detA · detP = detA · detP−1 · detP = detA

we may define detφ to be detA where A ∈ Mn(K) is a matrix corre-
sponding to φ with respect to a base of V . For φ = IV , detφ = 1.

Remark 1.22 A one-one linear mapping φ of V into V is necessarily
onto V . For, dimφ(V ) = dimV by the homomorphism theorem. Since
φ(V ) is a subspace of V of the same dimension as V, we have φ(V ) =
V i.e. φ is onto V .

Remark 1.23 A linear mapping φ of V into V is one-one if and only
if detφ 6= 0.

Proof: If φ is one-one, then φ is onto V by Remark 1.22 above.
Clearly there exists a linear mapping ψ of V into V such that φ◦ψ = IV .
Since det(φ ◦ ψ) = detφ · detψ = det IV = 1, it follows that detφ 6= 0.
Conversely, if detφ 6= 0, let, if possible, φ(e1) = 0 for e1 6= 0. But, by
Remark 14 on page 14, e1 can be completed to a base e1, e2, . . . , en of
V . For this base, the corresponding matrix A in Mn(K) has the form
(aij) with ai1 = 0 for i = 1, . . . , n and therefore detφ = detA = 0,(since
detA is linear in the columns of A). We are thus led to a contradiction.

1.11 Polynomial rings

Let R be a commutative ring (containing 1). Let M be the set of all
mappings f :Z+ → R such that f(n) = 0 for all but finitely many n.

We introduce on M the structure of an R-module by defining, for
f, g ∈M, a ∈ R, f + g, af by

(f + g)(n) = f(n) + g(n), (af)(n) = a · f(n), n ∈ Z+.

We make M a ring by defining f · g by (f · g)(n) = ∑n
i=0 f(i)g(n − i).

The map e for which e(0) = 1, e(n) = 0 for n > 0 is the unit of M . We
have a map i:R → M defined by i(a)(0) = a, i(a)(n) = 0 for n > 0, i
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is an isomorphism of R onto a subring of M, so that we may identity R
with i(R). Let X ∈ M denote the map for which X(1) = 1, X(n) = 0
if n 6= 1. Then (with multiplication defined as above) Xk is the map
for which Xk(k) = 1, Xk(n) = 0 if n 6= k. Hence any f ∈ M can be
written uniquely in the form

f =
∑

akX
k, ak ∈ R;

the sum is finite, i.e. ak = 0 for large k.

Definition 1.44 The ring M is denoted by R[X] and is called the poly-
nomial ring in one variable over R. The elements of R[X] are called
polynomials with coefficients in R or polynomials over R.

Definition 1.45 If f =
∑n

i=1 aiX
i ∈ R[X] and f 6= 0, we define the

degree n of f (in symbols deg f) to be the largest integer i such that
ai 6= 0. We call an the leading coefficient of f . If this an = 1, we say f
is a monic polynomial. If f is of degree 1, we call f a linear polynomial.
If f = 0, we set deg f = −∞.

Remark 1.24 If f, g ∈ R[X] we have

deg(f + g) ≤ max(deg f, deg g).

If deg f 6= deg g, then deg(f + g) = max(deg f, deg g).

Remark 1.25 If R is an integral domain and f, g ∈ K[X] with f 6=
0, g 6= 0, then fg 6= 0, i.e. R[X] is an integral domain. Further,
deg(fg) = deg f + deg g.

Remark 1.26 Let K be a field and let f, g ∈ K[X] with deg g > 0.
Then there exist h, j ∈ K[X] such that f = gh+ j where deg j < deg g.
(Division algorithm in K[X].)

Remark 1.27 Given any ideal a 6= {0} of the polynomial ring K[X]
over a field K, it is clear by Remark 1.26 that a is generated over K[X]
by a polynomial t in a of minimal positive degree. Thus K[X] is a
principal ideal domain.

Let R,R′ be two rings and φ:R → R′ be a homomorphism. Then
we can extend φ uniquely to a homomorphism φ of R[X] to R′[X] by
prescribing that φ(X) = X and, in general

φ
(∑

i

aiX
i
)
=

∑

i

φ(ai)X
i for

∑

i

aiX
i ∈ R[X].
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Let R be a ring with R ⊂ C and let R′ = C. For any α ∈ C we have a
unique R-linear ring homomorphism ψ:R[X] → C such that ψ(X) = α;
in fact we have only to set ψ(

∑
aiX

i) =
∑
aiα

i, ai ∈ R. We denote the
image of R[X] under ψ by R[α] and for f =

∑
i aiX

i ∈ R[X], we write
f(α) =

∑
i aiα

i.

Definition 1.46 A complex number α is a root of f ∈ R[X], if f ∈
kerψ, i.e. f(α) = 0.

Example 1.29 Take R = C. The complex numbers ±√
(−5) are roots

of the polynomial x2 + 5.

Remark 1.28 If R = K is a field and f ∈ K[X], then α ∈ K is a
root of f if and only if (X − α)|f . In fact, there is β ∈ K[X] of degree
0 (or −∞), i.e. β ∈ K, such that f = q · (X −α) + β, q ∈ K[X]. Then
f(α) = β = 0.

Definition 1.47 If R = K is a field, α ∈ K is called a repeated root of
f ∈ K[X] if (X − α)2|f .

Definition 1.48 If f =
∑

i≥0 aiX
i ∈ K[X], then the polynomial f ′ =∑

i≥1 iaiX
i−1 is called the derivative of f .

Remark 1.29 It is easily seen that (f + g)′ = f ′+ g′, (fg)′ = fg′+ gf ′

and if K has characteristic 0, that f ′ = 0 if and only if f ∈ K. When
K has characteristic p > 0, f ′ = 0 if and only if f ∈ K[Xp].

The quotient field of the polynomial ring K[X] over a field K is de-
noted by K(X) and called the field of rational functions in one variable
over K.

1.12 Factorial rings

Let R be an integral domain.

Definition 1.49 An element a ∈ R∗ which is not a unit in R is called
irreducible, if, whenever a = bc for b, c ∈ R, either b or c is a unit in R.

Definition 1.50 An element p ∈ R∗ is said to be prime if it is not a
unit and whenever p divides ab, with a, b ∈ R, p divides either a or b.
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Example 1.30 A prime number p in Z is prime in Z (Proposition 1.2).

Remark 1.30 A prime element is always irreducible but not conversely,
(in general). In Z, every irreducible element is (upto sign) a prime
number, by the very definition of a prime number.

Remark 1.31 In a principal ideal domain, an irreducible element gen-
erates a maximum ideal.

Definition 1.51 An integral domain R is a factorial ring (or a unique
factorization domain) if every non-unit a ∈ R∗ can be written in the
form a = q1 · · · qr where q1, . . . , qr are irreducible elements of R deter-
mined uniquely by a upto multiplication by units of R and upto order.
the decomposition a = q1 · · · qr is called the factorization of a (into irre-
ducible elements).

Remark 1.32 In a factorial ring R, every irreducible elements is prime
(and hence, by Remark 1.30 above, the notions of ‘prime’ and ‘irre-
ducible’ coincide in such a ring). For, if an irreducible element a divides
bc, then a must occur in the factorization of bc and hence in that of at
least one of b, c.

Remark 1.33 Let a = p1 · · · pr be a factorization of an element a
into irreducible elements. Clubbing together the irreducible elements
which are associated, we can write a in the form upn1

1 · · · pns
s , where

n1, . . . , ns ∈ Z, ni > 0, p1, . . . , ps are irreducible elements in R which
are non-associate, and u is a unit.

Definition 1.52 Let a1, . . . , ar be elements of the factorial ring R and
ai = ui

∏s
j=1 p

nj ,i
j with nj,i ∈ Z+ and irreducible p1, . . . , ps (some of

the nj,i may be zero). The greatest common divisor (briefly g.c.d.) of
a1, . . . , ar is defined to be

∏s
j=1 p

αj

j where αj = min(nj,i, . . . , nj,r), j =
1, . . . , s. Similarly, the least common multiple of a1, . . . , ar is defined to

be
∏s

j=1 p
βj

j where, for j = 1, . . . , s, βj = max(nj,i, . . . , nj,r). These are
uniquely determined upto units.

Proposition 1.7 (Fundamental theorem of arithmetic.) Z is a factorial
ring.

Proof: The only units in Z are +1 and −1. It suffices to prove that
every positive integer can be written uniquely as a product of positive
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irreducible elements of Z, in other words, of prime numbers (in view of
Remark 1.30 above). If two prime numbers are associated, they must
be the same.

We shall first prove that if a factorization of a > 0 in Z into primes
exists it is unique. Let, in fact, for a > 0 in Z, a = p1 · · · pr = q1 · · · qs
where p1, . . . , pr, q1, . . . , qs are primes. Now q1 divides p1 · · · pr and
hence divides one of the pi, say p1. Then q1 = p1. Now p2 · · · pr =
q2 · · · qs. By repeating the argument above, q2 is equal to one of p2, . . . , pr,
say q2 = p2. In finitely many steps, we can thus prove that r = s and
that q1, . . . , qs coincide with p1, . . . , pr order.

We now prove the existence of a factorization for any a > 0 in Z by
induction. For a = 2, this is trivial. Assume that a factorization into
primes exists for all positive integers less than a. Now if a is a prime,
we have nothing to prove. if a is not prime, then a is divisible by b ∈ Z

with 1 < b < a. In other words, a = bc with b, c ∈ Z and 1 < b, c < a.
By the induction hypothesis, b and c have a factorization into primes
and therefore a = bc admits a similar factorization too. The theorem is
thus completely proved.

Proposition 1.8 If K is a field, the polynomial ring K[X] in one vari-
able is a factorial ring.

Proof: First, let us observe that the set of units in K[X] is precisely
K∗. If this were not true, let, if possible, f = anX

n + · · · + a0 with
an 6= 0, n ≥ 1 be a unit in K[X]. Then, there exists g = bmX

m+ · · ·+b0
with bm 6= 0 such that fg = 1. Then 0 = deg 1 = deg(fg) = n+m > 1,
which is a contradiction.

We start with the existence of a factorization. Let f be a non-
constant polynomial in K[X]. If f is an irreducible element, then there
is nothing to prove. If not, f has a non-constant divisor g not associated
with f , i.e. f = gh with 0 < deg g, deg h < deg f . Employing induction
on the degree of elements in K[X], it follows that g, h have factorizations
into irreducible elements of K[X] and consequently f = gh also can be
so factorized.

The uniqueness of factorization can be established exactly as in the
proof of Proposition 1.7, provided we have the following

Lemma 1.1 In K[X], every irreducible element is prime.

Proof: Let p be an irreducible element of K[X] and let p divide the
product gh of two polynomials g, h in K[X], and suppose that p ∤ g.
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Consider the set a of polynomials of the form up+vg where u, v ∈ K[X].
Then a is a non-zero ideal of K[X] and, since K[X] is a principal ideal
domain, there is t ∈ K[X] with a = (t). Thus t divides p, but since
p is irreducible, it follows that either p = ct with c ∈ K∗, or t ∈ K∗.
If p = ct, then since t divides every element of a and, in particular, g
it follows that p | g. This contradicts our assumption. Hence t ∈ K∗

and therefore there exists u1, v1 in K[X] such that u1p+ v1g = 1. Since
gh = pw where w ∈ K[X], we have h = h(u1p + v1g) = p(u1h + v1w),
i.e. p | h.

Remark 1.34 It can be shown, by similar reasoning, that any principal
ideal domain is a factorial ring.

We now give an example of a ring R which is not a factorial ring.
Take R to be the subring of C consisting of numbers of the form a +
b
√
(−5) with a, b ∈ Z and

√
(−5) being a root of the polynomial x2 +

5. In R, there are two distinct factorizations of 6, viz. 6 = 2 · 3 =
(1 +

√
(−5))(1 − √

(−5)). (It is not hard to see that the four numbers
occurring here are irreducible.) Thus R cannot be a factorial ring and
in R, an irreducible element is not prime in general.

We shall see however that R belongs to a general class of rings ad-
mitting unique factorization of ideals into prime ideals, which will be
the object of our study in Chapter 2.

1.13 Characters of a finite abelian group

Let G be a finite abelian group, of order h. A character χ of G is a
mapping χ:G→ C such that χ 6≡ 0, and χ(ab) = χ(a)χ(b) for a, b ∈ G.

If a ∈ G is such that χ(a) 6= 0, then for any b ∈ G, χ(a) =
χ(b)χ(ab−1), so that χ(b) 6= 0. Hence χ is a homomorphism of G into
C∗. Further, since bh = e we have [χ(b)]h = 1 for any b. Since there are
only finitely many hth roots of unity in C, it follows that there are only
finitely many characters of G.

If we define the product χ1χ2 of two characters χ1, χ2 by (χ1χ2)(a) =
χ1(a)χ2(a), then the characters form a finite abelian group Ĝ.

Proposition 1.9 Let G be a finite abelian group and let a ∈ G, a 6= e.
Then there exists a character χ of G such that χ(a) 6= 1.

Proof: Let a0 = e, a1 = a, a3, . . . , ah−1 be the elements of G. Let V
be the set of formal linear combinations

∑
λiai, λi ∈ C. Clearly, V is a
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vector space of dimension h over C, and the elements of G form a base
of V .

We shall use repeatedly the following remark.

Remark 1.35 Let W 6= {0} be a finite dimensional vector space over
C, and T :W →W an endomorphism. Then there exists x 6= 0, x ∈W
such that Tx = λx, λ ∈ C.

In fact, every polynomial over C has a root in C, we can find λ ∈ C

such that det(t − λI) = 0. I:W → W being the identity map. then
T − λI cannot be one-one by Remark 1.23 on page 21. Hence there is
x 6= 0 in W with Tx− λx = 0. Such a λ is called an eigenvalue of T .

Any element ai (i = 0, 1, . . . , h − 1) gives rise to a permutation of
the elements of G viz, the permutation given by the mapping x 7→ aix
of G onto G. There is a uniquely determined linear mapping Ai (i =
0, 1, . . . , h − 1) of V which maps any element x in G to aix. Further,
if the linear mappings Ai, Aj of V correspond in this way to ai, aj in G
respectively, then clearly AiAj corresponds to aiaj . Moreover, since G is
abelian, we have AiAj = AjAi. In addition, A0 is the identity mapping
I of V and Ah

i = I for i = 0, 1, . . . , h− 1. Let us write A for the linear
mapping A1 corresponding to a1 = a.

We first prove that the linear mapping A corresponding to a ∈ G has
at least one eigenvalue λ 6= 1, i.e. there exists λ 6= 1 in C and x 6= 0 in
V with Ax = λx. Clearly A 6= I, so that the space W = {Ax − x, x ∈
V } 6= {0}. Also A maps W into itself since A(Ax− x) = Ay − y where
y = Ax. Hence by the remark above, there exist y0 6= 0 inW and λ in C

such that ay0 = λy0. Suppose, if possible that λ = 1. Let y0 = Ax0−x0.
Then Ak(Ax0 − x0) = Ax0 − x0 for any k ≥ 0 in Z. Since Ah = I, we
have (I +A+A2 + · · ·+Ah−1)(A− I) = 0 so that

(I +A+A2 + · · ·+Ah−1)(Ax0 − x0) = 0.

But, since Ak(Ax0 − x0) = Ax0 − x0 this gives us h(Ax0 − x0) = 0,
contrary to our assumption that y0 = Ax0 − x0 6= 0. Hence λ cannot be
equal to 1 and our assertion is proved.

Let now λ1 6= 1 be an eigenvalue of A1 = A and let V0 = V and
V1 = {x ∈ V0|A1x = λ1x}. Then V1 6= {0} and further, the mapping
Ai of V corresponding to any ai ∈ G maps V1 into itself; in fact, if
x ∈ V1, then A1(Aix) = Ai(A1x) = Ai(λ1x) = λ1(Aix) so that Aix ∈ V1.
Hence again by our earlier remark, there exist λ2 in C and x 6= 0 in V1
with A2x = λ2x. Let V2 = {x ∈ V1 | A2x = λ2x}. Again, each
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Ai maps V2 into itself and we may continue the process above. let
Vi+1 = {x ∈ Vi | Ai+1x = λi+1x} for i = 0, 1, 2, . . . , h − 2, where λi+1

is an eigenvalue of Ai+1|Vi. For any x 6= 0 in Vh−1 we have Aix =
λix, i = 0, 1, 2, . . . , h − 1. Clearly λ0 = 1. If we set χ(ai) = λi for
i = 0, 1, 2, . . . , h− 1, we obtain a character of G in fact, since(AiAj)x =
Ai(λjx) = λiλjx, we have χ(aiaj) = χ(ai)χ(aj). Further χ(a) = λ1 6= 1.
This proves Proposition 1.9.

Proposition 1.10 (Orthogonality relations.) We have

S =
∑

a∈G
χ1(a)χ̄2(a) =

{
h if χ1 = χ2,
0 otherwise,

Ŝ =
∑

χ∈Ĝ

χ(a)χ̄(b) =

{
k = order of Ĝ if a = b,
0 otherwise.

Here χ̄(a) denotes the complex conjugate of χ(a).

Proof: Since |χ(a)| = 1, we have χ̄(a) = χ(a)−1. If χ1 = χ2,
we clearly have

∑
a∈G χ1(a)χ̄1(a) =

∑
a∈G 1 = h. If χ1 6= χ2, let

b ∈ G be such that χ1(b) 6= χ2(b). Then we have S · (χ1χ̄2)(b) =∑
a∈G(χ1χ̄2)(ab) = S since ab runs over all the elements of G when a

does so. Since χ1χ̄2(b) 6= 1, we have S = 0.
Similarly, if a = b, clearly Ŝ = k. If a 6= b, let χ1 ∈ Ĝ be such that

χ1(ab
−1) 6= 1. (This exists by Proposition 1.9.) Then

Ŝχ1(ab
−1) =

∑

χ∈Ĝ

χχ1(ab
−1) = Ŝ,

so that Ŝ = 0.
It can be proved that G and Ĝ are isomorphic, so that k = h. This

is, however, unnecessary for our purposes and we do not go into this
question.
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Algebraic Number Fields

2.1 Algebraic numbers and algebraic integers

Definition 2.1 A complex number α is said to be algebraic if α is a
root of a polynomial anX

n + · · ·+ a0, a0, . . . , an in Q not all zero.

If α is algebraic then the mapping from Q[X] to C taking
∑n

i=0 aiX
i

to
∑
aiα

i is a homomorphism with kernel 6= 0.

Definition 2.2 A complex number α is called transcendental if it is not
algebraic.

Let a be the set of all polynomials in Q[X] having a fixed algebraic
number α as a root. Clearly a is an ideal of Q[X] and, in fact, generated
over Q[X] by a non-constant polynomial, say t in view of Remark 1.27
on page 22. Now t is necessarily irreducible. Otherwise, t = uv with
0 ≤ deg u, deg v < deg t and since 0 = t(α) = u(α)v(α) at least one
of u, v is in a, contradicting the minimality of deg t. The polynomial t
is clearly determined uniquely upto a constant factor. We may suppose
therefore that the leading coefficient of t is 1; so normalized, it is called
the minimal polynomial of x.

Definition 2.3 By the degree of an algebraic number α, we mean the
degree of the minimal polynomial of α.

Example 2.1 The “quadratic irrationality”
√
(−5) is of degree 2.

Let α be an algebraic number of degree n. Consider the subring Q[α]
of C consisting of numbers of the form

∑m
i=0 aiα

i with ai ∈ Q. We now

29
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assert that Q[α] is a field. Let, in fact, f be the minimal polynomial of
α. Consider the mapping q:Q[X] → C taking

∑m
i=0 biX

i to
∑m

i=0 biα
i.

This is a homomorphism onto Q[α] with kernel fQ[X] = (f). By the
homomorphism theorem Q[X]/(f) is isomorphic to Q[α]. Let now g ∈
Q[X]/(f) be such that g 6= 0 i.e. f ∤ g. The ideal generated by f and
g in Q[X] is a principal ideal b generated by, say h. Since h divides f ,
we have h = cf, c ∈ Q∗ unless h ∈ Q∗. The former case is impossible,
since h | g and f ∤ g. Thus b = Q[X] and consequently there exist k, l in
Q[X], such that kf + lg = 1, so that ḡl̄ = 1. This proves that Q[X]/(f),
and Q[α] is a field.

We denote the field Q[α] by Q(α).

Definition 2.4 A subfield K of C is called an algebraic number field if
its dimension as a vector space over Q is finite. The dimension of K
over Q is called the degree of K, and is denoted by [K : Q].

Example 2.2 Q and Q(
√
(−5)) are algebraic number fields of degree 1

and 2 respectively.

Remark 2.1 Any element α of an algebraic number field K is alge-
braic. (For, if [K : Q] = n then 1, α, α2, . . . , αn are necessarily linearly
dependent over Q.)

Remark 2.2 If α is an algebraic number of degree n, then Q[α] is an
algebraic number field of degree n(Q(α) = Q[α]).

Remark 2.3 Any monic irreducible polynomial f in Q[X] is the mini-
mal polynomial of any of its roots. For, if α is a root of f , then α is an
algebraic number and its minimal polynomial φ certainly divides f since
f(α) = 0. Now, φ cannot be in Q so that the irreducibility of f gives
f = c · φ for c 6= 0 in Q. Since both f and φ are monic, it follows that
φ = f .

Remark 2.4 Let α be an algebraic number of degree n(≥ 1) and f =∑n
i=0 aiX

i(an = 1) be its minimal polynomial in Q[X]. We now claim
that all the roots of f are distinct, i.e. f has no repeated roots. In fact,
suppose that f = (X − α)2g. Then, the derivative f ′ of f is 2(X−α)g+
(X − α)2g′, so that f ′(α) = 0. Since f is the minimal polynomial of α,
this implies that f |f ′. Since deg f ′ < deg f , this is impossible unless
f ′ = 0, so that f ∈ K, which is absurd.
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Remark 2.5 Let α1 and α2 be two algebraic numbers with the same
minimal polynomial in Q[X]. Then, for any g in Q[X], we see that
g(α1) = 0 if and only if g(α2) = 0. It is easy now to deduce that the
mapping φ:Q[α1] → Q[α2] defined by

φ
( m∑

i=0

aiα
i
1

)
=

m∑

i=0

aiα
i
2 (a0, a1, . . . , am ∈ Q)

is an isomorphism of Q(α1) onto Q(α2). The mapping φ is the identity
on Q and takes α1 to α2. Conversely, let α1 be any algebraic number
with minimal polynomial f and φ an isomorphism of Q(α1) into C such
that φ(a) = a, for any a ∈ Q. Then for any g ∈ Q[X], g(α1) = 0 if and
only if g(φ(α1)) = 0. The set of all polynomials in Q[X] having φ(α1)
as a root is precisely the ideal fQ[X] and therefore φ(α1) is an algebraic
number with f as its minimal polynomial.

Definition 2.5 Two algebraic numbers α1 and α2 as in Remark 2.5
above are said to be conjugates of each other (over Q).

Remark 2.6 Let K be an algebraic number field of degree n. Then
there exists θ ∈ K such that K = Q(θ). (Observe that such a number θ
is an algebraic number of degree n, by Remarks 2.1 and 2.2 above).

For proving this, we remark first that the intersection of any family
of subfields of a fixed field is again a field, and denote by Q(α1, . . . , αp)
the intersection of all subfields of C containing Q and the complex num-
bers α1, α2, . . . , αp. (This field is also referred to as the subfield of C
generated by α1, α2, . . . , αp over Q). Since [K : Q] = n, there ex-
ist ω1, ω2, . . . , ωq(q ≤ n) in K such that K = Q(ω1, . . . , ωq). By Re-
marks 2.1 and 2.4 above, ω1, . . . , ωq. are all “separably algebraic” over
Q i.e. the minimal polynomial of any ωi has no repeated roots. If
q = 1, there is nothing to prove. Let first q = 2. We shall prove that
K = Q(ω1, ω2) contains θ1 such that K = Q(θ1). For simplicity of
notation, let us denote ω1, ω2 by γ, δ respectively and let f and φ be
their respective minimal polynomials. By the ‘fundamental theorem of
algebra’, we have f = (X−γ1) · · · (X−γr) and φ = (X−δ1) · · · (X−δs)
where we may assume, without loss of generality, that γ = γ1, δ = δ1.
Further, by Remark 2.4 above, δ1, δ2, . . . , δs are pairwise distinct. Since
Q is infinite, we can find λ 6= 0 in Q such that γi+λδj 6= γi1+λδj1 unless
j = j1 and i = i1 (We have just to choose λ in Q different from 0 and
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−(γi−γi1)/(δj − δj1) for j 6= j1). Set θ1 = γ+λδ = γ1+λδ1 and denote
Q(θ1) by L; obviously, L ⊂ K. The polynomial ψ(X) = f(θ1 − λX) ∈
L[X] has δ1 as a root, since ψ(δ1) = f(θ1 − λδ1) = f(γ1) = 0. Fur-
ther, for i 6= 1, ψ(δi) 6= 0 since, otherwise, f(θ1 − λδi) = 0 would give
us θ1 − λδi = γj for some j i.e. γ1 + λδ1 = γj + λδi for i 6= 1 con-
trary to our choice of λ. Thus φ and ψ have exactly one root γ1 in
common. Let X be the greatest common divisor of φ and ψ in L[X].
Then every root of χ in C is a common root of φ and ψ. Thus χ is
necessarily of degree 1 and hence of the form µ(X−γ1). In other words,
µ, µγ1 ∈ L. i.e. γ1 = θ1 − λδ1 ∈ L(= Q(θ1)). Therefore γ1 and δ1 ∈ L,
i.e. K ⊂ L. This implies that K = Q(θ1). Let now q ≥ 3. Assume by
induction, that every algebraic number field of the formQ(α1, α2 . . . , αr)
with r ≤ q−1 contains a number α such that Q(α1, α2, . . . , αr) = Q(α).
Then K1 = Q(ω1, ω2, . . . , ωq−1) = Q(θ1) for some θ1 ∈ K1. Further
K = K1(ωq) = Q(θ1, ωq) = Q(θ) for some θ ∈ K(because of the special
case q = 2 established above).

Remark 2.7 Let K be an algebraic number field of degree n. Then
there exist precisely n distinct isomorphisms σ1, σ2, . . . σn of K into C

which are the identity on Q. By Remark 2.6 above K = Q(θ) for
a number θ ∈ K whose minimal polynomial f in Q[X] is of degree
n. Let θ1(= θ), θ2, . . . , θn be all the distinct root of f . Then, by Re-
mark 2.5, above, there exists, for each θi (i = 1, 2, . . . , n) an isomorphism
σi of Q(θ1) onto Q(θi) ⊂ C defined by σi (

∑m
j=0 ajθ

j
1) =

∑m
j=0 ajθ

j
i

for a0, a1, . . . am ∈ Q. By definition σi(a) = a for all a ∈ Q, σ1 is
the identity isomorphism of K. Since θi 6= θj for i 6= j, the isomor-
phism σ1, σ2, . . . , σn are all distinct. On the other hand, let σ be any
isomorphism of K = Q(θ1) into C which is the identity on Q. By Re-
mark 2.5 above, σ(θ1) = θi for some i(1 ≤ i ≤ n) and therefore for
a0, a1, . . . , am ∈ Q, σ(

∑m
j=0 ajθ

j
1) =

∑m
j=0 ajθ

j
i . Thus σ is necessarily

one of the n isomorphisms σ1, σ2, . . . , σn.

Let K be an algebraic number field of degree n, and σ1, σ2, σn the n
distinct isomorphism of K into C. We denote the image σi(K) of K by
K(i) and, for α ∈ K, σi(α) by α

(i). Let σ1 be the identity isomorphism
of K; we have then K(1) = K and α(1) = α for any α ∈ K. Since
each σi is an isomorphism which is the identity on Q, it follows that
K(1), . . . ,K(n) are again algebraic number fields of degree n. They are
referred to as the “conjugates” of K. If K(i) ⊂ R, we call it a real
conjugate of K and if K(i) 6⊂ R, then we call it a complex conjugate
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of K. We now claim that the complex conjugates of K occur in pairs,
i.e. the distinct isomorphisms σiwith σi(K) 6⊂ R occur in pairs σ, ρ
with ρ = σ̄, where σ̄(α) = σ(α) is the complex conjugate of σ(α). For,
by Remark 2.6 above, K = Q(θ) for some θ ∈ K. If K(i) = σi(K) is
a complex conjugate of K, then necessarily θ(i) = σi(θ) is a complex
number which is not real Now θ(i) is a root of the minimal polynomial∑n

i=0 aiX
i of θ and, since a0, a1, . . . , an ∈ Q, it follows that the complex

conjugate θ(i) of θ(i) is also a root of
∑
aiX

i. Hence by Remark 2.7

above, Q(θ(i)) too occurs among the conjugates K(i), . . . ,K(n). Let r1
be the number of real conjugates ofK and let s be the number of complex
conjugate of K. By the foregoing, s = 2r2 for r2 ∈ Z+. Further we have
r1 + 2r2 = n.

Remark 2.8 Let K be an algebraic number field and ω1, ω2, . . . , ωn be
a base of K over Q. With the notation introduced above, let Ω denote

the n-rowed complex square matrix (ω
(i)
j ) with (ω

(i)
1 , ω

(i)
2 , . . . , ω

(i)
n ) as its

i-th row. Then Ω has an inverse in Mn(C).

In fact,K = Q(θ) for some algebraic number inK of degree n, by Re-
mark 2.6, above. Further, if σ1, σ2, . . . , σn are the distinct isomorphisms
of K into C, then θ(1) = σ1(θ) = θ, θ(2) = σ2(θ), . . . , θ

(n) = σn(θ) are
all conjugates of θ (by Remark 2.5, above). Moreover, they are distinct,
(by Remark 2.4). Now α1 = 1, α2 = θ, . . . , αn = θn−1 form a base of

K over Q. Let A = (α
(i)
j ) be the matrix for the base α1, α2, . . . , αn,

built as Ω was from the base ω1, . . . , ωn. Then, detA is the well-known
Vandermonde determinant and is equal to ±∏

1≤i<j≤n(θ
(i) − θ(j)), so

that detA 6= 0. If ω1, ω2, . . . , ωn is any base of K over Q, then clearly,

for 1 ≤ i, j ≤ n, we have ω
(i)
j =

∑n
k=1 pjkα

(i)
k with pjk ∈ Q. Since both

{α1, α2, . . . , αn} and {ω1, ω2, . . . , ωn} form bases of K, it follows that
the n-rowed matrix P = (pjk) with (p1k, p2k, . . . , pnk) as its kth row has
an inverse in Mn(Q). Clearly, Ω = AP so that detΩ = detA ·detP 6= 0.
Thus Ω has in inverse in Mn(C).

In what follows, we shall prove a few of the important theorems
concerning algebraic number fields.

Definition 2.6 A complex number α is said to be an algebraic integer
if α is a root of a monic polynomial in Z[X].

Remark 2.9 An algebraic integer is an algebraic number.
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Remark 2.10 An element of Z is an algebraic integer.

Remark 2.11 If α ∈ Q is an algebraic integer, then α ∈ Z.

Remark 2.12 For any algebraic number α, there exists m 6= 0 in
Z such that mα is an algebraic integer. (For, if αn + an−1α

n−1 +
· · · + a0 = 0, with a0, a1, . . . , an−1 ∈ Q then take m ∈ Z such that
ma0,ma1, . . . ,man−1 ∈ Z.)

Definition 2.7 A polynomial f = anX
n + · · ·+ a0 ∈ Z[X] is said to be

primitive if the gcd(a0, a1, . . . , an) of a0, a1, . . . , an is 1.

In particular, a monic polynomial in Z[X] is primitive. It is clear
that any polynomial f ∈ Z[X] can be written in the form cg where c ∈ Z

and g is primitive.

Remark 2.13 Any polynomial f ∈ Q[X] can be written in the form
(a/b)g where g is primitive and a, b ∈ Z are such that (a, b) = 1. (a, b)
stands for the g.c.d. of a and b.

Lemma 2.1 (Gauss.) The product of two primitive polynomials in
Z[X] is primitive.

Proof: Let φ = anX
n+ · · ·+a0, ψ = bmX

m+ · · ·+b0 be in Z[X] with
(a0, a1, . . . , an) = 1 = (b0, b1, . . . , bm). Suppose that p is a prime dividing
all the coefficients of f = φψ. Consider the natural map η:Z → Z/(p);
this induces a homomorphism (which we denote again by) η:Z[X] →
Z/(p)[X]. We have η(f) = 0, while, since the gcd of the coefficients
of φ, ψ is 1, we have η(φ) 6= 0, η(ψ) 6= 0, so that since Z/(p) is a
field Z/(p)[X] is an integral domain, and η(f) = η(φ) · η(ψ) 6= 0, a
contradiction. Hence f is primitive.

Proposition 2.1 The following statements are equivalent.

(i) α is an algebraic integer.

(ii) The minimal polynomial of α is a (monic) polynomial in Z[X].

(iii) Z[α] is a finitely generated Z-module.

(iv) There exists a finitely generated Z-submodule M 6= {0} of C such
that αM ⊂M .
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Proof: (i)⇒ (ii). Let αn + an−1α
n−1 + · · ·+ a0 = 0 with ai ∈ Z and

φ = Xn + an−1X
n−1 + · · · + a0. Let f be the minimal polynomial of

α in Q[X]. By definition, φ = fψ, where ψ ∈ Q[X]. Further, by the
Remark 2.13 on page 34, let f = (a/b)f1, ψ = (c/d)ψ1 with primitive f1
and ψ1 and a, b, c, d ∈ Z such that (a, b) = (c, d) = 1. Now bdφ = acf1ψ1.
By Gauss’ Lemma, f1ψ1 is primitive. Let us compare the g.c.d. of the
coefficients on both sides. Since φ is monic and hence primitive, we have
ac = ±bd. Thus φ = ±f1ψ1; comparison of leading coefficients implies
that the leading coefficient of f1 is ±1; since f1(α) = 0, it follows from
the definition of the minimal polynomial that f = ±f1, so that f ∈ Z[X].

(ii)⇒ (iii): Let φ = Xn+an−1X
n−1+· · ·+a0 ∈ Z[X] be a polynomial

with φ(α) = 0. Then clearly Z[α] is generated by 1, α, . . . , αn−1 over Z.

(iii)⇒ (iv): It is obvious that αZ[α] ⊂ Z[α]. Take M = Z[α].

(iv)⇒ (i): Let M = Zv1 + · · · + Zvn ⊂ C be a finitely generated
Z-module such that αM ⊂ M . Then αvi =

∑n
j=1 aijvj (i = 1, 2, . . . , n)

with aij ∈ Z. Let A = (aij) and B = αIn−A = (bij). Then
∑n

j=1 bijvj =
0 for i = 1, 2, . . . , n. Let V be a vector space of dimension n over C and
e1, e2, . . . , en a base of V . The linear mapping φ of V into itself taking
ej to

∑n
i=1 bijei (j = 1, 2, . . . , n) takes the non-zero element

∑n
j=1 vjejto

0. By the remark 1.23 on page 21, detφ = detB = 0. Expanding
detB = det(αIn − A), we see that αn + an−1α

n−1 + · · · + a0 = 0 for
a0, a1, . . . , an−1 ∈ Z.

Proposition 2.1 is now completely proved.

Let K be an algebraic number field. Denote by O the set of algebraic
integers in K. If α, β ∈ O, then Z[α], Z[β] are finitely generated Z-
modules by Proposition 2.1. Hence the ring M = Z[α, β], is a finitely
generated Z-module. Since if γ is one of α ± β, αβ we clearly have
γM ⊂ M , it follows from Proposition 2.1 that α ± β, αβ are in O so
that O is a ring. By Remark 2.12 on page 34, K is the quotient field of
O.

If α, β are algebraic, there exists m ∈ Z such that mα, mβ are
algebraic integers, by Remark 2.12. Since m(α ± β) and m2αβ are
algebraic integers by the considerations above, it follows that α ± β
and αβ are algebraic. Further, if α 6= 0 is algebraic, so is α−1. Thus,
algebraic numbers form a subfield of C.

Let K be an algebraic number field of degree n and ω1, . . . , ωn be
a base of K over Q. For any α ∈ K,the mapping x 7→ αx is a linear
mapping of K into itself considered as a vector space over Q. We define
the trace Tr (α) = TrK(α), and norm N(α) = NK(α) of the element
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α to respectively, the trace and determinant of this linear mapping. If
αwj =

∑n
i=1 aijwi, j = 1, 2, . . . , n, and A = (aij), we have TrK(α) =

Tr (A), NK(α) = detA; hence TrK(α), NK(α) ∈ Q.

For α ∈ K, (αwj)
(k) = α(k)w

(k)
j =

∑n
i=1 aijw

(k)
i for j = 1, 2, . . . , n.

Denote the n-rowed square matrix (w
(k)
j ) by Ω, as on page 33, and the

n-rowed square matrix (α(i)δij) by A0 where δij = 1 for i = j and δij = 0
for i 6= j. Then we have A0Ω = ΩA. Since, by Remark 2.8 on page 33,
Ω has an inverse Ω−1, we have A0 = ΩAΩ−1. Hence we have

NK(α) = detA = det(ΩAΩ−1) = detA0 = α(1) · · ·α(n). (2.1)

TrK(α) = Tr (A) = Tr (ΩAΩ−1) = Tr (A0) = α(1) + · · ·+ α(n).

Further, if A corresponds to α ∈ K, B to β ∈ K, then to α + β
corresponds A + B and to αβ, AB Hence the mapping α 7→ A is a
homomorphism of K into Mn(Q). It is called a regular representation
of K (viz. that corresponding to the base w1, . . . , wn of K.) We verify
immediately that if α, β ∈ K, we have

TrK(α+ β) = TrK(α) + TrK(β) and NK(αβ) = NK(α)NK(β).

Let α be an algebraic integer in K. By Proposition 2.1, we can sup-
pose that the minimal polynomial of α is Xm + am−1X

m−1 + · · · + a0
where a0, a1, . . . , am−1 ∈ Z. Now α is of degree m and Q(α) has
1, α, . . . , αm−1 as a base over Q. (Clearlym ≤ n.) Let A ∈ Mn(Q) corre-
spond to α in the regular representation ofQ(α), with respect to the base
1, α, . . . , αm−1 of Q(α). Let β1, β2, . . . , βl be a base of K considered as a
vector space over Q(α). Then β1, β1α, . . . , β1α

m−1, β2, β2α, . . . , β2α
m−1,

. . . , βl, . . . , βlα
m−1 constitute a base of K over Q. (Incidentally l ·m = n

and so m | n.) Let A1 correspond to α in the regular representation of
K with respect to this Q-base. Then

A1 =



A 0 · · · 0
0 A · · · 0
0 0 · · · A


 ∈ Mn(Q) and Tr (A1) = l · Tr (A).

Since α is an algebraic integer, all the elements of A are in Z so that
Tr (A) and Tr (A1) = l · Tr (A) = lam−1 are integers. Thus, for an
algebraic integer α ∈ K, TrK(α) is an integer. Similarly, NK(α) =
detA1 = (detA)l ∈ Z.

The mapping α 7→ TrK(α) is clearly a Q-linear mapping of K into
Q. We define a bilinear form B(x, y) on the Q-vector space K by setting
B(x, y) = TrK(xy) for x, y ∈ K.
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Proposition 2.2 The bilinear form B(x, y) = TrK(xy) for x, y ∈ K is
non-degenerate.

Proof: Let x 6= 0 be in K. Then B′′
x(y) = TrK(xy) is not identically

zero in y, since, for y = x−1, B′
x(x

−1) = TrK(1) = n. Similarly for
y 6= 0 in K, B′

y(x) is not identically zero in x.
If we apply Proposition 1.6 to this bilinear form on V = K, we obtain

the

Corollary 2.1 To any Q-base w1, . . . , wn of K, there corresponds a
base w′

1, . . . , w
′
n such that TrK(wi, w

′
j) = δij , 1 ≤ i, j ≤ n.

If R is a subset of K and if a ∈ K then, by definition,

aR = {ar | r ∈ R}.

The following theorem gives more information concerning the struc-
ture of the ring of algebraic integers in a given algebraic number field.

Theorem 2.1 Let K be an algebraic number field of degree n and O the
ring of algebraic integers in K. Then there exists a Q-base ω1, . . . , ωn

of K such that ωi ∈ O and O = Zω1 + · · ·+ Zωn.

(Elements ω1, . . . , ωn with this property are said to form an integral
base of O.)
Proof: Let w1, . . . , wn be a Q-base of K. By Remark 2.12 on page 34
there exists m 6= 0 in Z such that mw1, . . . ,mwn are in O. We can thus
assume without loss of generality that w1, . . . , wn are already in O. Let
w′
1, . . . , w

′
n be a base of K for which

TrK(wi,W
′
j) = δij (1 ≤ i, j ≤ n). (2.2)

We know that for any z ∈ O, z =
∑n

i=1 aiw
′
i with a1, . . . , an ∈ Q.

Since zwi ∈ O for 1 ≤ i ≤ n, we have, because of (2.2), ai = TrK(zwi) ∈
Z. Thus we obtain

O ⊂ Zw′
1 + · · ·+ Zw′

n.

By Proposition 1.4 (Chapter 1) there exist ω1, . . . , ωm ∈ O, m ≤ n,
such that

O = Zω1 + · · ·+ Zωm.

We claim that, necessarily, m = n. In fact, if m < n, then, the Q-
subspace of K generated by ω1, . . . , ωm, which is clearly K itself, would
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have dimension ≤ m < n over Q, contrary to our assumption that K is
of degree n. Further, we see that ω1, . . . , ωn are Q-independent, so that,
necessarily, the sum above is direct. This proves Theorem 2.1.

Remark 2.14 Any set of elements ω1, . . . , ωn as above forms a Q-base
of K. We have only to repeat the argument in the last few lines above.

Remark 2.15 Let a be any non-zero ideal in O. Then a ∩Z 6= {0}. In
fact if α 6= 0 is an algebraic integer in a and if αr+ar−1α

r−1+· · ·+a0 = 0
where ai ∈ Z, a0 6= 0, then a0 = −α(a1 + · · · + ar−1) ∈ Z. It follows
that for any α ∈ K, there is a ∈ Z, a 6= 0 such that aα ∈ a.

If ω1, . . . , ωn are as in Theorem 2.1, then a ⊂ O = Zω1 + · · ·+ Zωn.
By Proposition 1.4 (Chapter 1), there exist α1, . . . , αm ∈ a, m ≤ n, such
that

a = Zα1 + · · ·+ Zαm.

As in Remark 2.14,we must havem = n. The αi are said to constitute
an integral base of a.

Further, we may choose the αi so that αi =
∑

j≥i pijωj , pij ∈ Z.

Remark 2.16 As in Remark 2.14, any elements α1, . . . , αn such that
a = Zα1 + · · · + Zαn form a Q-base of K. In particular, any non-zero
ideal of a contains n elements which are linearly independent over Q. It
follows that if αi =

∑
j≥i pijωj,then pii 6= 0.

Remark 2.17 If a 6= {0} is an ideal of O, then by Remark 2.15, there
exists 0 6= a ∈ Z such that aO ⊂ a ⊂ O. Now if O = Zω1 + · · · + Zωn,
then aO = Zaω1 + · · · + Zaωn so that O/aO is of order an. Therefore
O/a is also finite.

Remark 2.18 If p is a prime ideal in O then p contains exactly one
prime number p > 0 of Z.

In fact, let a = p1 · · · pk in p ∩Z with primes p1, . . . , pk ∈ Z. Since p

is prime, at least one pi ∈ p. If p, q are distinct primes in p, we can find
integers x, y with xp+ yq = 1; then 1 ∈ p and p = O, a contradiction.

Definition 2.8 For any ideal a 6= {0} of O, the number of elements in
the residue class ring O/a is called the norm of a and denoted by N(a);
if a = {0} we set N(a) = 0.
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Clearly N(O) = 1. For a proper ideal a of O, N(a) > 1.

Proposition 2.3 Let a 6= {0} be an ideal of O = Zω1 + · · · + Zωn.
Then there exist αi =

∑n
j=1 pijωj , pii > 0, pij ∈ Z such that a =

Zα1 + · · ·+ Zαn. Further N(a) = p11p22 · · · pnn.

Proof: By Remark 2.15 above, a has an integral base α1, . . . , αn of
the required form.

We claim that the p11p22 · · · pnn numbers

η = η(x1, . . . , xn) =
n∑

i=1

xiωi, 0 ≤ xi < pii, x ∈ Z

form a complete system of residue of O modulo a, In fact, if

ξ =

n∑

i=1

ciωi ∈ O, ci ∈ Z,

and we set Oi = O∩(Zωi+1+· · ·+Zωn), then there exist x1, 0 ≤ x1 < p11
and m1 ∈ Z with

ξ1 = ξ − x1ω1 −m1α1 ∈ O1;

further, x1,m1 are determined by the relation

c1 = m1p11 + x1.

We can, in the same way, find m2 ∈ Z, 0 ≤ x2 < p22 with

ξ2 = ξ1 − x2ω2 −m2α2 ∈ O2;

continuing in this way, we find that

ξ =
n∑

i=1

(miαi + xiωi), mi ∈ Z, 0 ≤ xi < pii,

so that the η generate O modulo a.
Now, if

∑n
i=1 xiωi =

∑n
i=1miαi, where mi ∈ Z, 0 ≤ x < pii, we

note that
∑n

i=1miαi =
∑n

i=1 ciωi, where c1 = mip11. Since the ωi are
linearly independent, we have x1 = m1p11 and since 0 ≤ x1 < p11, we
conclude that m1 = x1 = 0. This implies that c2 = m2p22, which in
turn implies that x2 = m2 = 0, and so on; hence xi = 0. This proves
that the η’s are distinct modulo a and with it, the proposition.
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2.2 Unique Factorization Theorem

Let K be an algebraic number field of degree n and O the ring algebraic
integers inK . Let p be a prime ideal in O. Then O/p is finite and indeed
a commutative integral domain with 1, by Remark 1.18 on page 18. By
Example 1.13, page 8, O/p is a field. Thus:

(D1) Every prime ideal of O is maximal.

We say that an element α ∈ C is integral over O if there exists a
monic polynomial f with coefficients in O such that f(α) = 0. As in
Proposition 2.1, one can prove that α ∈ C is integral over O if and
only if there is a non-zero finitely generated O-module M ⊂ C with
αM ⊂ M (alternatively, if and only if O[α] is finitely generated over
O.) By Theorem 2.1, such a module M is finitely generated over Z, and
consequently an element α ∈ C integral over O is an algebraic integer.

It follows at once that, if K is an algebraic number field and O the
ring of algebraic integers in K, then any α ∈ K which is integral over O

belongs to O. If we define, for any integral domain R the integral closure
of R in its quotient field as the set of all elements of the quotient field
of R which are roots of monic polynomials with coefficients in R, we can
therefore assert the following:

(D2) The integral closure of O in K is O itself.

To each ideal a 6= {0}, associate its norm N(a) > 0 in Z. The
mapping N : a 7→ N(a) is, in general, not one-one. However, if a ⊂ b and
a 6= b, then N(a) > N(b). [For, let f : (O/a,+) → (O/b,+) be the map
defined by f(x+ a) = x+ b. Then f is well-defined, onto (O/b,+) but
is not one-one since there exists y ∈ b, y 6⊂ a. We deduce at once the
following statements.

(N1) If a1 ⊂ a2 ⊂ · · · ⊂ an ⊂ an+1 ⊂ · · · is an increasing sequence
of ideals in O then am = am+1 for m ≥ m0 ∈ Z+.

(N2) Any non-empty set S of ideals in O contains a maximal ele-
ment, i.e. an ideal a such that a 6⊂ b for any b ∈ S, b 6= a. (For, any set
of positive integers contains a least element.)

(N3) Any ideal a in O with a 6= O is contained in a maximal ideal
of O.

(Take for S in (N2) the set of all proper ideals b with a ⊂ b ⊂ O.)

Remark 2.19 A ring R is noetherian if the statement (N1) is true of
ideals in R. One can show that R is noetherian if and only if statement
(N2) is true of ideals in R. This is further equivalent to the statement
that any ideal of R is finitely generated (as an R-module). Statement
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(N3) is true in arbitrary (even non-commutative) rings with unity, and,
in this generality, is due to Krull.

We have thus proved that
(D3) O is noetherian.
Any commutative integral domain R satisfying the conditions (D1),

(D2), (D3) is known as a Dedekind domain and these conditions are
themselves known as axioms of classical ideal-theory. The ring of al-
gebraic integers in an algebraic number field is therefore a Dedekind
domain.

Definition 2.9 By a fractional ideal in K, we mean an O submodule a

of K for which there exists m 6= 0 in Z such that ma ⊂ O.

Any ideal in O is trivially a fractional ideal. By analogy with Z we
may call an ideal in O an integral ideal in K. Any fractional ideal a can
be written as a−1b for a 6= 0 in Z and an integral ideal b. If c is an integral
ideal, then for any b 6= 0 in Z, b−1c is clearly a fractional ideal in K. If
c, d, are fractional ideals in K, then for a suitable c ∈ Z, c 6= 0, cc, cδ are
both integral ideals and the sum c + d = c−1(cc + cd) and the product
cd = c−2(cc · cd) are again fractional ideals in K.

We now prove the important

Theorem 2.2 (Dedekind.) Any proper ideal of the ring O of algebraic
integers in an algebraic number field K can be written as the product of
prime ideals in O determined uniquely upto order.

For the proof of the theorem, we need two lemmas.

Lemma 2.2 Any proper ideal a ⊂ O contains a product of prime ideals
in O.

Proof: Let S be the set of proper integral ideals not containing a
product of prime ideals. If s 6= ∅, then by statement (N2), S contains
a maximal element, say a. Clearly a cannot be prime. Thus there
exist x1, x2 ∈ O, x1x2 ∈ a but x1, x2 /∈ a. Let ai (i = 1, 2) be the
ideal generated by a and xi. Then a1 and a2 contain a properly. By
the maximality of a in s, a1 /∈ S, a2 /∈ S. Hence a1 ⊃ p1p2 · pr and
a2 ⊃ q1 · · · qs where p1, . . . pr, q1, . . . , qs are prime ideals in O. Since
a1a2 ⊂ a, we have p1 · · · prq1 · · · q3 ⊂ a giving us a contradiction. Hence
S = ∅.
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Lemma 2.3 Any prime ideal p ⊂ O is invertible, i.e. there exists a
fractional ideal p−1 such that pp−1 = O.

Proof: Let p−1 be the set of x ∈ K such that xp ⊂ O. Clearly p−1 is
an O-module containing O. Since p contains n 6= 0 in Z (see Remark 2.15
on page 38), we have np−1 ⊂ p−1p ⊂ O. Hence p−1 is a fractional ideal.
Now p ⊂ pp−1 ⊂ O. Since p is maximal, either pp−1 = O in which case
our lemma will be proved or p = pp−1.

If p = pp−1, then every x ∈ p−1 satisfies xp ⊂ p. Since p is a finitely
generated Z-module (vide Remark 2.15 on page 38), we see that x ∈ O

in view of Proposition 2.1. Hence p−1 ⊂ O i.e. p−1 = O. This, as we
now show, is impossible. Take x ∈ p such that xO 6= O. Then xO is a
proper integral ideal and by Lemma 2.2, p1 · · · pr ⊂ xO for prime ideals
p1, . . . , pr. Assume r so chosen that xO does not contain a product of
r − 1 prime ideals in O. Now p ⊃ xO ⊃ p1 · · · pr. By Remark 1.19 on
page 19 p divides one of p1, . . . , pr, say p1. But by Property (D1), p =
p1. Now p2 · · · pr, is not contained in xO, by minimality of r. Hence
there exists b ∈ p2 · · · pr, b /∈ xO, i.e. x−1b /∈ O. But since bx−1p ⊂
p2 · · · pr(x−1O)p = x−1O ·p1 · · · pr ⊂ x−1O ·xO = O, we have bx−1 ∈ p−1.
But x−1b ∈ O, i.e. p−1 6= O. Thus pp−1 = O.

We may now give the following
Proof of Theorem 2.2. As in Proposition 1.7, the proof is split

into two parts.
(i) Existence of a factorization. Let S be the set of proper ideals of O
which cannot be factorized into prime ideals. We have to show that
S = ∅. Suppose then that S 6= ∅. Then by (N2) S contains a maximal
element say a ⊂ O. Now obviously, a cannot be prime. Hence by (N3)
a ⊂ p, a 6= p where p is prime. By Lemma 2.3, there exists an ideal p−1

such that pp−1 = O. Thus ap−1 is a proper ideal in O and contains a

properly since p−1 contains O properly. But if ap−1 = p1 · · · pr for prime
ideals p1, . . . , pr then a = pp1 · · · pr contradicting the assumption that
a ∈ S. Hence ap−1 ∈ S but this contradicts the maximality of a in S.
Thus S = ∅, i.e. every proper ideal of O can be factorized into prime
ideals.
(ii) Uniqueness of factorization. If possible, let a proper ideal a in O have
two factorizations a = p1 · · · pr = q1 · · · qr where p1, . . . , pr, q1, . . . , qs, are
prime ideals. This means that q1 divides p1 · · · pr and by Remark 1.19, q1
divides one of the ideals p1, . . . , pr say p1. But since p1 is maximal, q1 =
p1. Now by Lemma 2.3, q−1

1 a = q−1
1 q1 · · · qs = q2 · · · qs and q−1

1 a =
p−1
1 p1 · · · pr = p2 · · · pr. Thus p2 · · · pr = q2 · · · qs. By repeating the
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argument above, q2 is equal to one of the prime ideals p2, . . . , pr, say p2.
In finitely many steps, we can thus prove that r = s and that p1, . . . , pr
coincide with q1, . . . , qr upto order.

Corollary 2.2 Any fractional ideal a can be written uniquely in the
form

a =
q1 · · · qs
p1 · · · pr

(1
p
stands for p−1

)

where the qi, pj are prime; and no qi is a pj.

This follows immediately if we choose c 6= 0, c ∈ Z with b = ca ⊂ O,
and write (c) = p1 · · · pr, b = q1 · · · qs′ and ‘cancel’ equal qi and pj in
pairs.

Corollary 2.3 Given any fractional ideal a 6= {0} in K, there exists a
fractional ideal a−1 such that aa−1 = O.

For proving this, it suffice to show that every integral ideal is in-
vertible. But this is an immediate consequence of Theorem 2.2 and
Lemma 2.3.

Remark 2.20 Let a = pa11 · · · parr , b = pb11 · · · pbrr be integral ideals
p1, . . . , pr being prime ideals a1, . . . , ar, b1, . . . , br ∈ Z+. (We define
p0i = O, i = 1, 2, . . . , r.) The greatest common divisor (a, b) of a and b

is defined to be pc11 · · · pcrr where ci = min(ai, bi) i = 1, 2, . . . , r. Clearly
ci is the largest integer c such that pci divides both a and b. But now if
c, d are integral ideals then c divides d if and only if d = cc1 for c1 ⊂ O.
(For, if c ⊃ d, then c1 = dc−1 ⊂ O and conversely if d = cc1 with c1 ⊂ O

then c ⊃ d.) Thus the greatest common divisor of a and b is actually
the smallest ideal dividing a and b which is nothing but a + b. For any
set of s ideals a1, . . . , as the greatest common divisor of a1, . . . , as may
be similarly defined.

2.3 The class group of K

Let K be an algebraic number field of degree n. By Corollary 2.3 to
Theorem 2.2, the non-zero fractional ideals in K form a multiplicative
group which we denote by ∆. The ring O of algebraic integers is the
identity element of ∆.
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A fractional ideal in K is said to be principal if it is of the form αO
with α ∈ K. Clearly the principal (fractional) ideals a 6= {0} form a
subgroup Π of ∆. The quotient group h = ∆/Π is called the group of
ideal classes in K or briefly the class group of K.

Definition 2.10 Two ideals a, b 6= {0} in K are in the same ideal class,
or are equivalent if and only if a = (α)b for some α ∈ K.

We shall prove in this section that h is a finite group. The order
denoted by h ( = h(K)) is called the class number of K.

If h = 1, then O is a principal ideal domain.
For proving that h is finite, we need a few lemmas.
Let a be an integral ideal in K and let

a = Zα1+ · · ·+Zαn = Zβ1+ · · ·+Zβn with α1, . . . , αn, β1, . . . , βn ∈ a.

Clearly αi =
∑n

j=1 qijβj , qij ∈ Z and βi =
∑n

j=1 rijαj , rij ∈ Z

for i = 1, 2, . . . , n. Denoting the n-rowed square matrices (qij), (rij)
by Q,R respectively, we see that if QR = (sij), then αi =

∑n
j=1 sijαj .

By Remark 2.16 after Theorem 2.1, α1, . . . , αn are linearly independent
over Q. Thus sij = δij (the Kronecker delta) for 1 ≤ i, j ≤ n i.e.
QR = In. Taking determinants, it follows that detQ · detR = 1 and
since detQ · detR ∈ Z, we have detQ = detR = ±1.

We now use the foregoing remarks to identity the norm N((α)) of
the principal ideal (α) generated by α 6= 0 in O with the absolute value
|NK(α)| of the norm NK(α).

Lemma 2.4 For α 6= 0 in O, N((α)) = |NK(α)|.

Proof: If O = Zω1 + · · · = Zωn, then by Proposition 2.3, there exist
βi =

∑n
j=1 pjiωj , i = 1, 2, . . . , n; pji ∈ Z, p11, . . . , pnn > 0 such that

(α) = Zβ1 + · · ·+Zβn and N((α)) = p11p22 · · · pnn. Let Q stand for the
n-rowed square matrix (qij) where qij = 0 for 1 ≤ i < j ≤ n and qij = pij
otherwise. Since (α) = Zαω1 + · · · + Zαωn as well, we have in view of
the remark immediately preceding this lemma, αωi =

∑n
j=1 rjiβj , i =

1, . . . , n, and if R denotes the n-rowed square matrix (rij), then detR =
±1. Let S be the matrix QR. Taking the regular representation with
respect to the base ω1, . . . , ωn, we have NK(α) = detS. But

detS = detQ · detR = ± detQ = ±p11 · · · pnn = ±N((α)).

Thus N((α)) = |NK(α)|.
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Corollary 2.4 For t ∈ Z, N(tO) = |N(t)| = |tn|.

Lemma 2.5 For any two integral ideals a, b there exists ω ∈ O, such
that gcd(ab, (ω)) is a.

Proof: Let a = pa11 · · · parr , b = pb11 · · · pbrr , ai, bi ∈ Z+ and p1, . . . , pr
are all the prime ideals dividing a and b. We can find an element πi ∈
pa1+1
1 · · · pai−1+1

i−1 paii p
ai+1+1
i+1 · · · par+1

r but πi /∈ pa1+1
1 · · · pai+1

i · · · pan+1
n

(since pi 6= O). Take ω = π1 + · · · + πn. Clearly pai+1
i divides πj(for

j 6= i) and paii is the highest power of pi dividing πi. Hence paii and no
higher power of pi divides ω. Consequently (ab, (ω)) =

∏r
i=1 p

ai
i = a.

Remark 2.21 Given any integral ideal a there exists t 6= 0 in Z such
that b = ta−1 ⊂ O, i.e. ab = tO. By Lemma 2.5, a = (tO, ωO) = tO+ωO
by the remark on page 43. In other words, any integral ideal can be
generated, over O by two algebraic integers in K.

The following lemma proves the multiplicative nature of the norm of
ideals in O

Lemma 2.6 Let a and b be integral ideals. Then N(ab) = N(a)N(b).

Proof: Let λ = N(a) and µ = N(b). Let ξ1, . . . , ξλ and η1, . . . , ηµ
be a complete set of representative of O modulo a and of O modulo b

respectively. By Lemma 2.5, there is ω ∈ O such that (ab, (ω)) = a.
We claim that the λµ elements ξi + ωηj(i = 1, 2, . . . , λ, j = 1, 2, . . . , η)
form a complete set of representatives of O modulo ab.(and this will
prove the lemma). First, they are all distinct modulo ab. For, if ξi +
ωηj ≡ ξk + ωηl(mod ab), then ξi − ξk ∈ a and therefore i = k But
then ω(ηj − ηi) ∈ ab and since (ab, (ω)) = a, it follows by Theorem 2.2
that ηj − ηl ∈ b i.e. j = l. Given any x ∈ O, there exists a unique
ξi(1 ≤ i ≤ λ) such that x−ξi ∈ a. Now a = (ab, (ω)) = ab+(ω). Hence
x−ξi = ωη+y with y ∈ ab. This gives us x−ξi ≡ ωηj(mod ab) for some
ηj(1 ≤ j ≤ µ), since ω ∈ a. Thus for any x ∈ O, x ≡ ξi + ωηj(mod ab)
for some i and j and we are through.

Lemma 2.7 For any integer x > 0, the number of ideals a ⊂ O for
which N(a) ≤ x is finite.

Proof: Let a = pλ1
1 · · · pλr

r be any integral ideal with N(a) ≤ x,
(here p1, . . . , pr are prime and λ1, . . . , λr > 0 in Z). By Lemma 2.6,
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(N(p1))
λ1 · · · (N(pr))

λr ≤ x. Since N(pi) ≥ 2, we have 2λi ≤ N(pi)
λi ≤

N(p1)
λ1 · · ·N(pr)

λr ≤ x. The number of λi’s is finite. To prove the
lemma, it therefore suffices to prove that the number of prime ideals in
O of norm ≤ x is finite. Now any prime ideal p contains exactly one
prime p ∈ Z (Remark 2.18) and hence p occurs in the factorization of
pO into prime ideals. Moreover, N(p) | (N(p)) = pn, so that, since
N(p) 6= 1,we have N(p) = pf , f ≥ 1, and p ≤ N(p) ≤ x. But there are
at most n prime ideals occurring in the factorization of pO into prime
ideals since (pO = qa11 · · · qass , qiprime) implies by Lemma 2.6 and the
corollary to Lemma 2.4, that pn = N(pO) = N(q1)

a1 · · ·N(qs)
as leading

to s ≤ n. Since p ≤ x, the lemma is completely proved.

Lemma 2.8 There exists a constant C depending only on K such that
every integral ideal a 6= {0} contains α 6= 0 with |NK(α)| ≤ CN(a).

Proof: By Theorem 2.2, O = Zω1+· · ·+Zωn. Let t denote the largest
integer ≤ (N(a))1/n. Then among the (t+ 1)n numbers

∑n
i=1 aiωi with

ai ∈ Z, 0 ≤ ai ≤ t, i = 1, 2, . . . , n, there should exist at least two distinct
numbers whose difference is in a (since N(a) = order of O/a < (t+ 1)n).
Thus there exists α = a1ω1 + · · · + anωn 6= 0 in a with ai ∈ Z, |ai| ≤
t, i = 1, 2, . . . , n. Let Ai be the n-rowed square matrix with elements
in Z, corresponding to ωi under the regular representation with respect
to the base ω1, . . . , ωn of K over Q. Hence to α corresponds the matrix
A =

∑N
i=1 aiAi all of whose elements are integers ≤ tµ (in absolute

value) where µ = µ(A1, . . . , An) depends only on ω1, . . . , ωn i.e. only on
K. It is now immediate that |NK(α)| = | detA| ≤ C · tn ≤ C ·N(a) for
a constant C depending only on K.

Remark 2.22 The constant C obtained in Lemma 2.8 is not the best
possible. By using a theorem due to Minkowski, one can obtain a better
constant.

We have now all the material necessary to prove.

Theorem 2.3 The class number of K is finite.

Proof: We shall prove that in every class of ideals, there exists an
integral ideal of norm ≤ C where C is a constant depending only on K.
By Lemma 2.7, the number of ideal classes, i.e. h, will then be finite.
Let R be an ideal class. Take an ideal a in the inverse class R−1 (and we
can assume a to be integral without loss of generality). By Lemma 2.8,
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there exists α ∈ a such that |N(α)| ≤ C ·N(a) for a constant C = C(K).
But now b = (α)a−1 ∈ R and N(a)N(b) = N(ab) = |NK(α)| ≤ CN(a),
which gives us N(b) ≤ C. Theorem 2.3 is completely proved.

2.4 The group of units

Let K be an algebraic number field of degree n and let K(1)(= K), K(2),
. . . ,K(n) be all the conjugates of K.

Let O be the ring of the algebraic integers in K.

Definition 2.11 A non-zero element α in O is called a unit of K if
α−1 ∈ O.

Clearly the units of K form a subgroup U of K∗.
We observe that if α ∈ O is a unit then NK(α) = ±1. For if α is a

unit, there is β ∈ O with αβ = 1. Thus 1 = NK(αβ) = NK(α)NK(β).
Since both NK(α) and NK(β) are in Z, we must have NK(α) = ±1.
[The converse is also true: if α ∈ O satisfies NK(α) = ±1 then α is a
unit, as follows from the fact that the norm of α is the product of the
conjugates of α.]

Example 2.3 Let K = Q(
√
5). Then 1±√

5
2 are units in K.

Lemma 2.9 The number of integers α ∈ O such that |α(i)| ≤ C for
i = 1, 2, . . . , n, is finite.

Proof: Let ω1, . . . , ωn be an integral base of O. Then, any α ∈ O can
be written

α = x1ω1 + · · ·+ αnωn, xi ∈ Z.

We then have

α(i) = x1ω
(i)
1 + · · ·+ xnω

(i)
n , i = 1, 2, . . . , n;

this can be written
A = ΩX

where A is the column



α(1)

...
α(n)


 , X the column



x1
...
xn


 and Ω the matrix

(ω
(k)
j ). Since Ω has an inverse Ω−1 in Mn(C), this gives

X = Ω−1A.
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By assumption, |α(i)| ≤ C. This clearly implies that

|xi| ≤MC

where M depends only on the matrix Ω−1, thus only on K. Since the
number of rational integers (xi) satisfying |xi| ≤MC is finite the lemma
follows.

Definition 2.12 A complex number α is called a root of unity if αm = 1
for some m ∈ Z, m 6= 0. If ρ is a root of unity in K, then ρm = 1 for
some m ∈ Z, m 6= 0, so that |ρ(i)| = 1 for i = 1, 2, . . . , n.

Every root of unity in K in is a unit but not conversely. For example,
in K = Q(

√
2), 1 +

√
2 is a unit but not a root of unity.

Taking C = 1, we deduce from Lemma 2.9 the following.

Corollary 2.5 The number of roots of unity in K is finite.

Let Z be the group of roots of unity in K, and let ζk = e2πipk/qk , k =
1, . . . , w be the elements of Z. Let q0 = q1 · · · qw and let A be the
subgroup of Z consisting of integers p for which e2πip/q0 ∈ Z. A is of
the form p0Z, p0 > 0. Clearly Z is generated by ζ = e2πipo/qo . Thus we
have

Lemma 2.10 The roots of unity in K form a finite cyclic group.

We denote the order of this group by w.

Lemma 2.11 Let m and n be positive integers, with 0 < m < n. Let
(aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n be real numbers. Then, for any integer
t > 1, there exist integers x1, . . . , xn not all zero, |xj | ≤ t, such that
|yi| ≤ ct1−n/m, where yi =

∑n
j=1 aijxj and c is constant depending only

on (aij).

Proof: Let a = maxi
∑n

j=1 |aij |. Then, for |xj | ≤ t, we have |yi| ≤ at.
Consider the cube −at ≤ yi ≤ at, i = 1, . . . ,m in Rm, and divide it
into hm smaller cubes of side 2at/h(h being an integer≥ 1.) If we assign
to the xj the values 0, 1, . . . , t, the (t+ 1)n points (y1, . . . , ym) lie in
the big cube, so that, if hm < (t+ 1)n, at least two of them lie in the
same cube of side 2at/h; let these points correspond to (x′1, . . . , x

′
n) and

(x′′1, . . . , x
′′
n); 0 ≤ x′j , x

′′
j ≤ t. If xj = x′j − x′′j , then |yi| ≤ 2at/h, and
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|xj | ≤ t, not all the xj are zero. Now, since t > 1, n/m > 1, we have

(t+ 1)n/m − tn/m > 1; hence, there is an integer h with

tn/m < h < [(t+ 1)]n/m.

Hence, there exist integers xj , not all zero, |xj | ≤ t, with |yi| < 2at1−n/m.

Let K = K(1), . . . ,K(r1) be the real conjugates of K, and let Kr1+1,
. . . ,Kr1+r2 be the distinct complex conjugates ofK, and letK(r1+r2+i) =
K̄r1+i), 1 ≤ i ≤ r2. Consider the set E of integers 1 ≤ k ≤ r1 + r2; for
any k ∈ E, we set k̄ = k if k ≤ r1, and k̄ = k + r2 if r1 < k ≤ r2, and,
for any subset A of E, we set Ā = {k̄ | k ∈ A}.

Lemma 2.12 Let A and B be two nonempty subsets of E with A∩B =
∅, A ∪ B = E. Let m be the number of elements in A ∪ Ā. Then,
there exists a constant c1 depending only on K such that for any integer
t > t0, there exists α ∈ O for which

c−m+1
1 t1−n/m ≤ |α(k)| ≤ c1t

1−n/m, k ∈ A,

(∗)
c−m
1 t ≤ |α(k)| ≤ t, k ∈ B

Proof: Let ω1, . . . , ωn be a set of n integers of K which are indepen-
dent over Q. Then, if α =

∑
xjωj , we have α(k) =

∑n
i=1 xjω

(k). Let
k1, . . . , ku be the elements of A with k̄i = ki, l1, . . . , lv those with l̄i 6= li.

Then m = u + 2v. We set aij = ω
(ki)
j , i ≤ u, au+i,j = Re ω

(li)
j , 1 ≤ i ≤

v, au+v+i,j = Im ω
(li)
j , 1 ≤ i ≤ v. By Lemma 2.11, it follows that there

are integers xj , not all zero, |xj | ≤ t, with

|α(k)| ≤ 2ct1−n/m, α =

n∑

j=1

xjωj .

Thus, there exists c′ > 0, such that, for t > 1, there is α ∈ O, α 6= 0
with

|α(k)| ≤ c′t1−n/m, k ∈ A, |α(l)| ≤ c′t for all ℓ.

Replacing t by t/c′, we see that for t > t0(= c′), there is an integer
α ∈ O, α 6= 0 with

|α(k)| ≤ c1t
1−n/m, k ∈ A, |α(l)| ≤ t for all ℓ.

Note that |α(k)| ≤ c1t
1−n/m for k ∈ Ā, since α(k̄) = α(k).
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We assert that we have the inequalities (∗) for this α. In fact, since
α 6= 0, NK(α) is a rational integer 6= 0. Using (1.1) we have

I ≤ |NK(α)| =
n∏

l=1

|α(l)| =
∏

k∈A∪Ā
|α(k)|

∏

k∈B∪B̄
|α(l)|

≤ cm1 t
m(1−n/m) · |α(l)| · tn−m−1 = cm1 t

−1|α(l)|.

for any l ∈ B (since there are m elements in A∪ Ā and n−m in B∪ B̄);
i.e.

|α(l)| ≥ c−m
1 t, l ∈ B.

Further

1 ≤ |N(α)| =
∏

k∈A∪Ā
|α(k)|

∏

l∈B∪B̄
|α(l)| ≤ cm−1

1 t(m−1)(1−n/m)ln−m|α(k)|

= cm−1
1 t−(1−n/m)|α(k)|,

for any k ∈ A. This proves Lemma 2.12.
In the following two lemmas, A, and B have the same significance

as in Lemma 2.12.

Lemma 2.13 There exists a sequence of non-zero integers αv ∈ O v =
1, 2, . . ., with

|α(k)
ν | > |α(k)

ν+1|, k ∈ A, |α(k)
v | < |α(k)

ν+1|, k ∈ B

and
|NK(αν)| ≤ cm1 .

Proof: Let tν+1 = Mtν , where M is a suitable constant, and let
αν ∈ O satisfy

c−m+1
1 t1−n/m

ν ≤ |α(k)
ν | ≤ c1t

1−n/m
ν , k ∈ A,

c−m
1 tν ≤ |α(k)

v | ≤ tν , k ∈ B.

Suppose that M > cm1 , M
n/m−1 > cm1 . Then we have c−m+1

1 t
1−n/m
v >

c1t
1−n/m
ν+1 , so that |α(k)

ν+1| < |α(k)
v |, for k ∈ A, while tv < c−m

1 tν+1, so that

|α(k)
v+1| > |α(k)

v |, k ∈ B. It is trivial that

|NK(αν)| =
∏

i∈A∪Ā
|α(j)

v |
∏

j∈B∪B̄
|α(j)

ν | ≤ cm1 · tm(1−n/m) · tn−m = cm1 .
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Lemma 2.14 There exists a unit ǫ with

|ǫ(k)| < 1, k ∈ A, |ǫ(k)| > 1, k ∈ B.

Proof: Let {αν} be a sequence of integers as in Lemma 2.13, and let
aν be the principal ideal (αν). Then by Lemma 2.4 and 2.13 , N(aν) =
|NK(αv)| ≤ cm1 . Hence, there exist v, µ, v < µ with av = aµ (since,
by Lemma 2.7 the number of integral ideals of norm ≤ const. is finite).
This means that

αu = ǫαν , ǫ a unit.

We have

|ǫ(k)| = |α(k)
µ |

|α(k)
v |

{
< 1 if k ∈ A
> 1 if k ∈ B.

A subset S of Rm is said to be bounded if for all (x1, . . . , xm) ∈ S,
we have |xi| ≤M for a constant M depending only on S.

Lemma 2.15 Let Γ be an (additive) subgroup of Rm such that any
bounded subset of Rm contains only finitely many elements of Γ. Then
there exist r ≤ m elements γ1, . . . , γr of Γ which are linearly independent
over R and which generate Γ as a group.

Proof: Let γ′1 be a non-zero element of Γ. Consider the set A1 of all
λ ∈ R for which λγ′1 ∈ Γ·A1 contains a smallest positive element µ1, 0 <
µ1 ≤ 1 since there are, by assumption, only finitely many λ, |λ| ≤ 1, with
λγ′1 ∈ Γ and γ′1 ∈ Γ. Let γ1 = µ1γ

′
1. If γ = λγ1 ∈ Γ, λ ∈ R, and if n is

an integer with 0 ≤ λ−n < 1 then γ−nγ1 = (λ−n)γ1 = (λ−n)µ1γ′1 ∈ Γ,
which is not possible unless λ = n,(by minimality of µ1) Hence if λγ1 ∈ Γ
for λ ∈ R, then λ ∈ Z. In particular, the lemma is proved if m = 1.

Suppose the lemma already proved for subgroups of Rm−1, and let
e2, . . . , em ∈ Rm be such that (γ1, e2, . . . em) form a base of Rm. Let f :
Rm → Rm−1 be the map defined by f(λ1γ1+

∑
i≥2 λiei) = (λ2, . . . , λm)

which linear over R, and let Γ1 be the image of Γ under f . We claim
that any bounded subset of Rm−1 contains only finitely many elements
of Γ1. In fact, let γ′ = (λ2, . . . , λm) ∈ Γ1, |λi| ≤ M, i ≥ 2. Then, there
exists λ1 ∈ R such that γ = λ1γ1 +

∑
i≤2 λiei ∈ Γ. Since γ1 ∈ Γ, we

may suppose that 0 ≤ λ1 < 1. But then |λi| ≤ M + 1, i > 1, so that
there are only finitely many such γ. This proves our claim.

By induction, there exist γ′2, . . . , γ
′
r ∈ Γ1, r ≤ m, which are linearly

independent over R and generate Γ1. Let γ2, . . . , γr ∈ Γ be such that
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f(γi) = γ′i, i ≥ 2. We assert that γ1, . . . , γr (a) are linearly independent
over R and (b) generate Γ.

Proof of (a):
If

∑r
i=1 λiγi = 0 then

∑r
i=1 λif(γi) =

∑r
i=2 λiγ

′
i = 0; hence λ2 =

· · · = λr = 0, hence λ1γ1 = 0, hence λ1 = 0.
Proof of (b):
If γ ∈ Γ, then f(γ) ∈ Γ1, hence

f(γ) =
r∑

i=2

niγ
′
i, ni ∈ Z,

so that f(γ − ∑r
i=2 niγi) = 0. This means that γ − ∑r

i=2 niγi =
λ1γ1, λ1 ∈ R. Since clearly this is an element of Γ we must have
λ1 = n1 ∈ Z, so that γ =

∑r
i=1 niγi.

With assertions (a) and (b), Lemma 2.15 is completely proved.

Theorem 2.4 Let r1 be the number of real conjugates of K, 2r2 the
number of complex conjugates, and let r = r1 + r2 − 1. Then there exist
ǫ1, . . . , ǫr and a root of unity ζ in K such that any unit in K can be
written in the form

ǫ = ζkǫk11 · · · ǫkrr , k, k1, . . . , k ∈ Z.

The ki, i ≥ 1 are uniquely determined, and k is uniquely determined
modulo w where w is the order of the group Z of roots of unity in K.

Proof: Let U be the group of units inK. Consider the homomorphism
f :U → Rr defined by

f(ǫ) = (log |ǫ(1)|, . . . , log |ǫ(r)|), r = r1 + r2 − 1.

We assert that (a) the kernel of f is Z and that (b) f(U) = Γ has
the property that any bounded subset of Rr contains only finitely many
elements of Γ.

Proof of (a): If f(ǫ) = 0, then |ǫ(1)| = 1, . . . , |ǫ(r)| = 1. This implies
that |ǫ(r1+r2+1)| = 1, . . . , |ǫr2+2r2−1| = 1. Since further

∏n
k=1 |ǫ(k)| = 1,

we conclude that |ǫ(r+1)| = 1. The integers α in O for which |α(i)| =
1, i = 1, 2, . . . , n, form a finite group, by Lemma 2.9. Hence αk = 1 for
any such α for some k ∈ Z. Thus ǫk + 1, i.e., ǫ is a root of unity.

Proof of (b): If −M < log |ǫ(i)| < M, i = 1, . . . , r, then e−M <
|ǫ(i)| < eM for i 6= r + 1, n. (since ǫ(̄i) = ǫ(̄i)). Since, further,

∏n
1 |ǫ(k)| =
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1, this implies that |ǫ(r+1)| < enm, |ǫ(n)| < enm, so that, by Lemma 2.9,
the number of such ǫ is finite.

By Lemma 2.15, there are units ǫ1, . . . , ǫt, t ≤ r such that f(U) is
generated by f(ǫ1), . . . , f(ǫt) which are independent over R. This means
that if ǫ ∈ U there are uniquely determined integers k1, . . . , kt so that
ǫ · ǫ−k1

1 · · · ǫ−kt
t ∈ Z. Since, by Lemma 2.10, Z is a cyclic group of order

w, the theorem will be proved if we show that t = r.
We now prove that t = r. Suppose, if possible, that t < r. Then,

the subspace V of Rr generated by f(ǫ1), . . . , f(ǫt) has dimension t ≤
r − 1. Hence there are real numbers c1, . . . , cr not all zero such that if
(x1, . . . , xr) ∈ V then c1x1 + · · ·+ crxr = 0; in particular, c1 log |ǫ(1)| +
· · · + cr log |ǫ(r)| = 0 for all ǫ ∈ U. We may suppose without loss of
generality, that at least one ci < 0. Let A be the set of k ≤ r − 1 with
ck < 0, and B the complement of A in the set E of integers ≤ r + 1.
Clearly A∩B = ∅, A∪B = E, and A and B are nonempty (B contains
r+1.) By Lemma 2.14, there is ǫ ∈ U with |ǫ(k)| < 1 for k ∈ A, |ǫ(k)| > 1
for k ∈ B. But then, for all k, ck log |ǫ(k)| ≥ 0, and is zero only if ck = 0,
so that

∑r
1 ck log |ǫ(k)| > 0. This contradiction proves that t = r, and

Theorem 2.4 is completely established.

Remark 2.23 The above proof of Theorem 2.4 follows, in essentials a
proof given by C.L. Siegel in a course of lectures in Göttingen. It does
not seem to be available in the literature.
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Chapter 3

Quadratic Fields

3.1 Generalities

Definition 3.1 By a quadratic field we mean an algebraic number field
of degree 2.

Let K be a quadratic field and let α 6= 0 be in K. Since [K : Q] =
2, 1, α, α2 are linearly dependent over Q, i.e a0 + a1α + a2α

2 = 0 for
a0, a1, a2 in Q not all zero. Thus, any α in K is a root of an irreducible
polynomial in Q[X] of degree at most 2. But K should contain at
least one element β whose irreducible polynomial in Q[X] is of degree
2, since, otherwise, K = Q. Then 1, β form a base of K over Q i.e.
K = Q(β). Let a2β

2 + a1β + a0 = 0 where, without loss of generality,
we may suppose that a0, a1, a2 ∈ Z, a2 6= 0. Multiplying by 4a2, we have
(2a2β + a1)

2 = a21 − 4a0a2. Setting γ = 2a2β + a1 we have K = Q(γ).
Denoting a21 − 4a0a2 by m ∈ Z we see that K = Q(

√
m) where by

√
m

we mean the positive square root of m if m > 0 and the square root
of m with positive imaginary part if m < 0. We could further suppose,
without loss of generality, that m is square-free (i.e m 6= 1 and m is not
divisible by the square of any prime).

Definition 3.2 A quadratic field K is called a real or an imaginary
quadratic field according as K ⊂ R or not.

A quadratic field K is real if and only if K = Q(
√
m) with square

free m > 1 in Z. Note that if K is an imaginary quadratic field, then
K ∩R = Q.

55
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Any α ∈ K is of the form p + q
√
m, p, q ∈ Q; define the conjugate

α′ of α by α′ = p− q
√
m. It is clear that α is a root of the polynomial

(X−α)(X−α′) = X2−(α+α′)X+αα′ = X2−2pX+p2−q2m ∈ Q[X].
It follows that α′ is the conjugate of α in the sense of Chapter II. Taking
the regular representation of K with respect to the base (1,

√
m) of K

over Q, the matrix A =

(
p qm
q p

)
corresponds to α and the polynomial

above is merely det(XI2 − A) = det

(
X − p −qm
−q X − p

)
. Observe that

for α ∈ K, TrK(α) = Tr (A) = 2p = α + α′ and NK(α) = detA =
p2 − q2m = αα′. If K is imaginary quadratic, then α′ is the complex
conjugate of α ∈ K, so that, for any α 6= 0 in an imaginary quadratic
field K, the norm NK(α) is always positive.

Let O be the ring of algebraic integers in K. Any α ∈ O is of the
form p + q

√
m for some p, q ∈ Q. If the minimal polynomial of α is of

degree 1, then by Proposition 2.1, it is necessarily of the form, X − a
for a ∈ Q so that p = a ∈ Z and q = 0. Thus α + α′ = 2p = 2a and
αα′ = p2−q2m = a2 are both in Z. Let now the minimal polynomial of α
which is a monic polynomial in Z[X], be of degree 2, sayX2+cX+d with
c, d ∈ Z. Since α is a root of the polynomialX2−2pX+p2−q2m ∈ Q[X],
we have necessarily X2 − 2pX + p2 − q2m ≡ X2 + cX + d i.e −c = 2p =
α + α′ = TrK(α) and d = p2 − q2m = αα′ = NK(α). Conversely, for
p, q ∈ Q, if 2p and p2 − q2m are in Z, then α = p + q

√
m ∈ O. Thus,

for α = p+ q
√
m ∈ K to belong to O, it is necessary and sufficient that

TrK(α) = 2p and NK(α) = p2 − q2m are both in Z. We use this to
construct, explicitly, an integral base of O.

For p, q ∈ Q, let α = p+ q
√
m be in O. Then a = 2p, b = p2 − q2m

belong to Z. Hence a2−4q2m
4 ∈ Z. In particular, 4q2m ∈ Z. Since m

is square-free, it follows that q = f/2 with f ∈ Z. Now a2 − f2m ≡
0(mod 4). We have to distinguish between two cases.

(1) Let m ≡ 1(mod 4). Then a2 ≡ f2(mod 4) i.e. f and a are both

even or both odd. In this case, it is clear that α = a + b1+
√
m

2

with a, b ∈ Z, i.e. O = Z + Z
1+

√
m

2 .

[
Note that, if m ≡

1(mod 4), 1+
√
m

2 ∈ O

]
.

(2) Let m ≡ 2, 3(mod 4). Then a2 ≡ f2m(mod 4) if and only if a and
f are both even showing that α = a′ + b′

√
m with a′, b′ ∈ Z, i.e
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O = Z+ Z
√
m.

Thus we have

O =

{
Z+ Z

1+
√
m

2 , for m ≡ 1(mod 4),

Z+ Z
√
m, for m ≡ 2, 3(mod 4)

(3.1)

(Since m is square-free, the case m ≡ 0(mod 4) does not arise.) Observe
that if α = a+ b

√
m ∈ O, so does α′ = a− b

√
m.

Let a be an integral ideal, and (α1, α2) an integral base of a. We
define the discriminant of a, written ∆(a), to be the square ∆(α1, α2)

of the determinant of the matrix

(
α1 α2

α′
1 α′

2

)
(the prime are conjugates

as defined above) i.e.

∆(a) = ∆(α1, α2) = (α1α
′
2 − α′

1α2)
2

If (β1, β2) is another base of a then β1 = pα1 + qα2, β2 = rα1 + sα2

where, we have p, q, r, s ∈ Z. If P =

(
p q
r s

)
, we have detP = ±1.

It follows that ∆(β1, β2) = ∆(α1, α2)(detP )
2 = ∆(α1, α2) so that the

above definition is independent of the integral base of a. If a = O, we
write d = d(K) = ∆(O), and call it the discriminant of the field K.
Using (3.1) we find that

d =

{
m for m ≡ 1(mod 4)

4m for m ≡ 2, 3(mod 4)

and therefore d is always congruent to 0 or 1 modulo 4. We have thus
proved

Proposition 3.1 For a quadratic field K with discriminant d, we have
K = Q(

√
d) and further 1, d+

√
d

2 is an integral base of the ring O of
algebraic integers in K.

Corollary 3.1 The discriminant uniquely determines a quadratic field.

Remark 3.1 Let {α1, α2} be an integral base of an integral ideal a cho-
sen as in Proposition 3.1, i.e. α1 = p11ω1+ p12ω2, α2 = p22ω2, p11, p12,
p22 ∈ Z, p11, p22 > 0 and O = Zω1 + Zω2. Then it is clear that
∆(α1, α2) = p211p

2
22∆(ω1, ω2) = p211p

2
22 · d. But p11p22 is precisely N(a).

Thus
∆(a) = (N(a))2d. (3.2)
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In future, K will always stand for a quadratic field with discriminant d,
K will be real quadratic or imaginary quadratic according as d > 0 or
d < 0.

The mapping taking α = x+y
√
d (x, y ∈ Q) to α′ = x−y√d may be

seen to be an automorphism of K. An element α ∈ K satisfies α = α′ if
and only if α ∈ Q. For any subset S of K, let us denote by S′ the image
of S under this automorphism. Since O = O′ it is clear that for any
fractional ideal a, a′ is again a fractional ideal. Clearly N(a) = N(a′).

For any integral ideal a, we claim that aa′ = nO where n = N(a) ∈ Z.
Let p be any prime ideal in O. Now, p contains a unique prime number
p > 0, p ∈ Z by Remark 2.18 Further, p occurs in the factorization
p1 · · · pr of pO into prime ideals p1, . . . , pr. By the corollary to Lemma 2.4
and by Lemma 2.6, we have p2 = NK(p) = N(pO) = N(p1) · · ·N(pr).
Since Z is a factorial ring, we have r ≤ 2 and N(pi) = p or p2. Thus
pO = pp′ or p. But if p divides pO so does p′. Thus we have either

pO = pp′, p 6= p′

or

pO = p = p′

or

pO = p2, p = p′ (3.3)

In any case, pp′ = pO or p2O i.e. pp′ = N(p)O. By Lemma 2.6, aa′ =
N(a)O for any integral ideal a.

3.2 Factorization of rational primes in K

Let K be a quadratic field of discriminant d and O the ring of algebraic
integers in K. Let p be a prime number in Z. We start from the three
possibilities given by 3.3.

Definition 3.3 If pO = pp′, p 6= p′, we say that p splits in K. If
p = p′, then either pO = p in which case we say that p stays prime in K
or pO = p2 in which case we say that p is ramified in K.

If p is an odd prime, the following proposition gives criteria for the
factorization of pO in K.

Proposition 3.2 For an odd prime p and a quadratic field of discrim-
inant d, we have
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(i) pO = p2, p prime if and only if (dp) = 0,

(ii) pO = pp′, p 6= p′, p prime if and only if (dp) = +1,

(iii) pO = p prime if and only if (dp) = −1.

where (dp) is the Legendre symbol.

Proof:

(i) Let pO = p2, p prime. Then there exists π = m+nd+
√
d

2 ∈ p, π /∈
pO, m, n ∈ Z. Now, since π2 ∈ pO we see that p divides both
(2m+nd)+d ·n2 and n(2m+nd). If now p | n, then p | (2m+nd).
Since p is odd, this would imply that p | m, but then pO divides
π, which is a contradiction. Thus p | (2m + nd) and p ∤ n. Since,
further, p | dn2, this implies that p | d, i.e. (dp) = 0.

Conversely, if (dp) = 0, consider p = pO +
√
dO. Then p2 =

(p2, p
√
d, d)O = pO since p is the gcd of d and p2. Further, p

is necessarily a prime ideal, since at most two prime ideals of O
can divide pO (see page 58.)

(ii) Let (dp) = 1. Then there exists a ∈ Z such that a2 ≡ d(mod p).
Let p be the ideal generated by p and a +

√
d. Then clearly,

pp′ = (p2, p(a+
√
d), p(a−√

d), a2 − d)O = pO [p ∈ pp′ since p =
g.c.d. (p2, 2ap)]. Hence p, p′ are prime ideals. However p+ p′ = O

and therefore p 6= p′.

Conversely, let pO = pp′, p 6= p′, p prime. Then N(p) = N(p′) =

p. There exists α ∈ p, α /∈ pO = pp′. Then α = x + y d+
√
d

2
with x, y ∈ Z, p not dividing both x and y. Since αO = pq with
q ⊂ O, it follows, on taking norms, that p = N(p) divides N(αO) =

|NK(α)| = |(x+ y d
2)

2 − y2 d4 |. Hence (2x+ dy)2 ≡ y2d(mod p). If

p | y, then p|(2x+ dy)2, i.e. p | 2x. Since p is odd, p | x, i.e.
p | (x, y). We have thus a contradiction. Hence p ∤ y and since
Z/(p) is a field, we have z2 ≡ d(mod p) for z ∈ Z, i.e. (dp) = 1.

(iii) The validity of (iii) is an immediate consequence of (i) and (ii).

Before we consider the factorization of 2O in K, we define Kro-
necker’s quadratic residue symbol (d2) with denominator 2 by

(
d

2

)
=





0 if d ≡ 0(mod 4)
1 if d ≡ 1(mod 8)
−1 if d ≡ 5(mod 8)
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(Recall that the discriminant d of K is congruent to 0 or 1 modulo
4.)

Proposition 3.3 Let O be the ring of algebraic integers in a quadratic
field of discriminant d. Then we have

(i) 2O = p2, p prime if and only if (d2) = 0,

(ii) 2O = pp′, p 6= p′, p prime if and only if (d2) = +1

(iii) 2O = p prime if and only if (d2) = −1,

where (d2) is Kronecker’s quadratic residue symbol.

Proof: (i) Let (d2) = 0. Let p = (2, 1 +
√
d
2 ) or (2,

√
d
2 ) according as 8

does not or does divide d. Clearly p2 = 2O and p is necessarily prime.

Conversely, let 2O = p2, p prime. If d ≡ 0(mod 4), (d2) = 0 and there

is nothing to prove. Let then d ≡ 1(mod 4) so that O = Z + Z(1+
√
d

2 ).

Since p2 6= p, there exists π ∈ p, π /∈ p2 = 2O. Let π = x+ y 1+
√
d

2 with
x, y ∈ Z. We can assume that x and y are either 0 or 1 for along with
π, π + 2α for any α ∈ O also satisfies π + 2α ∈ p but /∈ p2.

If y = 0, then x 6= 0 since otherwise π = 0 and π ∈ p2. Further
x 6= 1, since then π = 1 and π /∈ p. So y = 1 and x can be 0 or 1. Now

π2 =
(
x+ 1+

√
d

2

)2
= a + b

(
1+

√
d

2

)
for a, b ∈ Z. Then b = 2

(
x + 1

2

)
=

2x+ 1 is necessarily odd. But since π2 ∈ 2O, b must be even and so we
arrive at a contradiction if we assume that d ≡ 1(mod 4). Consequently
d ≡ 0(mod 4) so that (d2) = 0.

(ii) Let (d2) = 1. Then d ≡ 1(mod 4) necessarily, so that O =

Z+ 1+
√
d

2 Z. Defining p = 2O+ 1+
√
d

2 O, we see that pp′ = (4, 1+
√
d, 1−

√
d, 1−

√
d

4

)
. Since 2 = 1 +

√
d+ 1−√

d and 4, 1 +
√
d, 1−√

d and 1−d
4

are all in 2O we have pp′ = 2O. (Here p 6= p′ since otherwise, we would
have 2O = p2 and 4 | d by (ii).)

Conversely, let 2O = pp′, p 6= p′, p prime. Then N(p) = 2. Further

there exists π = x+ y d+
√
d

2 ∈ p, π /∈ pp′ = 2O, so that x, y are integers
which are not both even. Since 2 = N(p) divides N(πO) = |N(π)|
we have (2x+ yd)2 ≡ y2d(mod 8). Now 2 ∤ d, since otherwise, by
(i), we would have 2O = p2 and then p = p′. If y is even, let first
y = 2y1, 2 ∤ y1, y1 ∈ Z. Then 2|((x+ y1d)

2 + y21d), and 2 ∤ y1d together
give us 2 ∤ (x + y1d) and this in turn implies that 2 | x. But then x
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and y are both even which is impossible. If 4 | y, then 4 | (2x + yd)
implying that 4 | 2x, i.e. 2 | x. This contradicts the fact π /∈ 2O.
Therefore y has to be odd. Find y2 ∈ Z such that yy2 ≡ 1(mod 8).
(We have only to choose y2 = ±1± 5.) Then d ≡ (2x+ yd)2y22(mod 8).
Since 2 ∤ d, (2x + yd)y2 is odd so that d ≡ 1(mod 8) and consequently
(d2) = 1.

(iii) The proof is trivial, if we use (i) and (ii) above.

As an application of the criteria for splitting of rational primes
given above, we shall determine the class number h of a quadratic field
Q(

√
m),m being square-free in Z, for special values of m.

For this, we need to determine explicitly the constant C of Lemma 2.8
for the special case of a quadratic field. We claim that C can be chosen
to be 1 + |m| if m ≡ 2, 3(mod 4) and 2 + |m−1|

4 if m ≡ 1(mod 4).
For m ≡ 2, 3(mod 4), d = 4m and taking the regular representation

with respect to the integral base {1,√m} of O the matrices

(
1 0
0 1

)

and

(
0 m
1 0

)
correspond to 1,

√
m respectively and det

(
α1

(
1 0
0 1

)
+

α2

(
0 m
1 0

) )
= α2

1 −mα2
2 so that C can be chosen to be 1+ |m|. The

case m ≡ 1(mod 4) is dealt with in a similar fashion.

(1) Consider K = Q(
√
2). Here, d = 8 and O = Z + Z

√
2. Further

we may take C = 3 in this case. Following the proof of Theorem 2.3, in
order to find the number of ideal classes in K, it suffices to consider the
splitting of prime ideals of norm at most 3. Now 2O = (

√
2O)2, while 3O

is prime since (83) = −1. Thus prime ideals of norm ≤ 3 are principal.
Any integral ideal of norm ≤ 3 is therefore principal so that h = 1.

(2) Consider K = Q(
√−1). Here d = −4 and O = Z+ Z

√−1. The
constant C may now be chosen to be 2. To find h, it suffices to investigate
the prime ideals of norm at most 2. But 2O = (1−√−1)O·(1+√−1)O =
p2 where p = (1 +

√−1)O. Thus any integral ideal of norm ≤ 2 is
principal and consequently h = 1.

(3) Take K = Q(
√−5). Here d = −20 and O = Z+ Z

√−5 which is
not a factorial ring as remarked on page 26. Thus the class number h of
K clearly cannot be 1. Now the constant C = 6 and from the relations
2O = ((2, 1 +

√−5)O)2, 3O = (3, 1 +
√−5)O · (3, 1 − √−5)O, 5 =

(
√−5O)2 3(2, 1 − √−5)O) = (1 +

√−5)(3, 1 − √−5)O it is easy to see
that h = 2 in this case.

Remark 3.2 In the first two examples above one can show directly that
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the ring O of algebraic integers possesses a Euclidean algorithm namely,
for α, β, β 6= 0 in O there exists γ, δ ∈ O such that α = γβ + δ with
0 ≤ |N(δ)| < |N(β)|. This leads easily to the fact that O is a principal
ideal domain so that the class number of K is 1.

Let p be an odd prime in Z. By Proposition 3.2, pO = pp′, p 6= p′

in K = Q(
√−1), if and only if (−4

p ) = (4p)(
−1
p ) = (−1

p ) is equal to 1. In
Q(

√−1) every ideals is principal so that p = αO for α = a+ b
√−1 with

a, b ∈ Z. Since NK(α) > 0, we have a2 + b2 = Nk(α) = N(p) = p. Thus
we have

Remark 3.3 An odd prime p is a sum of two squares of integers if and
only if (−1

p ) = 1.

3.3 The group of units

Let K be a quadratic field of discriminant d. In the notation of Chapter
2 §4 we see that r1 = 2, r2 = 0 if d > 0 and r1 = 0, r2 = 1 for d < 0.

In the case of a real quadratic field K, the only roots of unity in K
are real roots of unity, namely, 1 and −1. By Theorem 2.4, every unit
ǫ in K can be written in the form ±ǫn1 , n ∈ Z for a fixed unit ǫ1 in
K. Further ǫ1 6= ±1. If ǫ1 has this property, so have ǫ−1

1 , −ǫ1,−ǫ−1
1 .

But among ǫ1, ǫ
−1
1 ,−ǫ1,−ǫ−1

1 , exactly one of them is greater than 1. We
denote it by η and call it the fundamental unit of K. It is uniquely
determined and every unit ǫ is of the form ±ηn for n ∈ Z.

Any unit ǫ ∈ K = Q(
√
d) of discriminant d > 0 gives rise to a

solution of the Diophantine equation

x2 − dy2 = ±4, x, y ∈ Z, (3.4)

since NK(ǫ) = NK
(x+ y

√
d)

2
=
x2 − dy2

4
and NK(ǫ) = ±1 in view of

ǫ being a unit in K. Conversely, if, for d > 0 in Z, there exist x, y
in Z satisfying (3.4), then (x ± y

√
d)/2 is a unit in k = Q(

√
d). In

the case when d is the discriminant of a real quadratic field, we have
by Theorem 4, a non-trivial solution of the Diophantine equation (3.4).
This equation is commonly referred to as Pell’s equation but it seems
that Pell was neither the first to notice the equation nor did he find a
non-trivial solution of it.

If d < 0,K is an imaginary quadratic field and r = 0. Thus every
unit inK is a root of unity, by Theorem 2.4. By Lemma 2.10, we see that
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the units in K form a finite cyclic group of order w. One can, however,
check directly that w = 2, 4 or 6 according as d < −4, d = −4 or d = −3
respectively. To prove this, we proceed as follows. Let α = p + q d+

√
d

2
be a unit in K. Then

NK(α) =

(
p+

qd

2

)2

+
q2

4
|d| = 1 (since NK(α) = αᾱ > 0).

Thus (p+ qd
2 )

2 ≤ 1 and q2 ≤ 4
|d| . If d < −4, then, of necessity, q = 0

and therefore. δα = p = ±1 are the only units in K. Thus w = 2 for
d < −4. If d = −4, the q = 0, 1 or −1. If q = 0, p = ±1. If q = 1, p = 2
and if q = −1, then p = −2. Hence in K = Q(

√−4), the only units are
±1, ± − 1 so that w = 4. Take now K = Q(

√−3). Then q = 0, 1 or
−1. If q = 0, p = ±1. If q = ±1 then p − 3q

2 = ±1
2 . Hence the only

units here are ±1,±1
2 +

√−3
2 , ±1

2 −
√−3
2 so that w = 6.

3.4 Laws of quadratic reciprocity

In Chapter 2, §3 we introduced the class group of an algebraic number
field and proved that it is of finite order h.

Let K be a quadratic field of discriminant d and O the ring of alge-
braic integers in K. Let Π0 denote the group of principal ideals λO with
λ ∈ K for which NK(λ) = λλ′ > 0. The quotient group of ∆ (the group
of all non-zero fractional ideals in K) modulo Π0 is denoted by h0 and
called the restricted class group of K. Now Π0 is of index at most 2 in
Π and the order h0 of h0 is equal to h or 2h according as the index of Π0

in Π is 1 or 2. If d < 0, trivially Π0 = Π since for α 6= 0 in K, we always
have NK(α) > 0. If d > 0, then Π = Π0 if and only if there exists in K
a unit of norm −1. (For

√
dO is in the same coset of ∆ modulo Π0 as

O if and only if
√
d = ǫρ with NK(ρ) > 0. But, since NK(

√
d) < 0, this

can happen, if and only if the unit ǫ has norm −1).

Definition 3.4 The fractional ideals a, b different from 0 are equivalent
in the restricted sense (in symbols, a ≈ b) if a and b belong to the same
coset of ∆ modulo Π0(i.e. a = ρOb with ρ ∈ K and NK(ρ) > 0).

It is clear that when K = Q(
√
d), d < 0 or when d > 0 and K

contains a unit of norm −1, this concept coincides with the concept of
equivalence introduced in Chapter 2, §3. In the case when d > 0,Π0

may be also defined to be the group of principal ideals λO with λ ∈ K
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and λ > 0, λ′ > 0. Such numbers of a real quadratic field are referred to
as totally positive numbers (in symbols, λ ≻ 0). Thus Π0 consists of all
principal fractional ideals in K generated by a totally positive number.

Definition 3.5 A class of ideals C in h0 = ∆/Π0 is said to be ambigu-
ous if C2 = 1 in h0.

We shall now find the number of ambiguous classes in h0.
The following theorem is of great importance by itself, although it

may look a little out of place in our scheme. It is connected with the
so-called ‘genus characters’ in Gauss’ theory of binary quadratic forms
and we are not able to go into this here. We have, however, used it to
deduce the laws of quadratic reciprocity.

Theorem 3.1 The number of ambiguous ideal classes in a quadratic
field K of discriminant d is 2t−1 where t is the number of distinct prime
numbers dividing d.

Proof: Let |d| = pα1
1 p2 · · · pt, where α1 = 1 or α1 = 2 or 3 according

as d is odd or even. Then, because of the remarks at the end of Chapter
3,§1 piO = p2i where pi is a prime ideal in O of norm pi; further, pi = p′i.
The class of each pi, i = 1, . . . , t in h0 is ambiguous.

Let a be any nonzero ideal with a = a′. We assert that
a can be written uniquely in the form

a = r · pa11 · · · patt , r ∈ Q, r > 0, ai = 0 or 1. (3.5)

Proof of (3.5): Let n > 0, n ∈ Z be such that na = b is integral. Then
b = b′. Let b = q1 · · · ql be the factorization of b into prime ideals.
Since b = b′, we have, for any i, q′i = qj for some j. If i = j, then,
unless qi is one of the ideals pk we have qi = qiO, where qi is a rational
prime. If i 6= j, then qiqj = (N(qi))O. Hence b = c′ · pα1

1 · · · pαt
t , where

c′, α1, . . . , αt ∈ Z, αi ≥ 0. Since p2i = piO, b = c ·pa11 · · · patt , c ∈ Z, ai =
0 or 1. Since a = n−1b,

a = r · pa11 · · · patt , r ∈ Q, r > 0.

If, furthermore a = r1 · pb11 · · · pbtt , bi = 0 or 1, r1 > 0, then N(a) =
r2 · pa11 · · · patt = r21 · pb11 · · · pbtt , so that ai ≡ bi(mod 2). Since each
of ai, bi is 0 or 1, we must have ai = bi. Hence rO = r1O, and since
r > 0, r1 > 0, this implies that r = r1.
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Suppose that b is a fractional ideal with b2 ≈ O. By multiplying b

by an integer, we may suppose that b is integral. Since, further bb′ ≈ O

we conclude that b = ωb′ where ω ∈ K, NK(ω) > 0 and ω ≻ 0 If d > 0.
Moreover, since NK(ω) > 0, ωω′ = NK(ω) = NK(b)/NK(b′) = 1.

Hence ω =
1 + ω

1 + ω′ , so that if a = (1 + ω)−1b, we have a = a′. By what

we have shown above, a = rOpt11 · · · ptkk where r ∈ Q, ti = 0 or 1. Further

NK(1 + ω) = ω(1 + ω′)2 > 0 if d > 0. Hence b ≈ pt11 · · · ptkk where ti = 0
or 1. Hence any ambiguous ideal class is equivalent, in the restricted
sense to one of the at most 2t ideal classes containing pt11 · · · ptkk , ti = 0
or 1.

To complete the proof of the theorem we have therefore only to prove
the following:

there is exactly one relation of the form

pa11 · · · patt ≈ O where ai = 0 or 1,
t∑

i=1

ai > 0. (3.6)

We prove first the uniqueness of a relation of this form. Let pa11 · · · patt
= ρO with NK(ρ) > 0. Clearly ρO = ρ′O, so that

ρ = ηρ′ where η is a unit. (3.7)

Further, if d > 0, we have η ≻ 0. Let ǫ be a generator of the group
of the totally positive units in K if d > 0, and of the group of all units
in K if d < 0; we have always ǫ 6= 1. Replacing ρ by ρǫn for a suitable
n ∈ Z we may suppose that, in (3.7)

ρ = ηρ′ with η = 1 or ǫ. (3.8)

We claim that η 6= 1. In fact, if η = 1, then ρ ∈ Z, hence O =
ρ−1pa11 · · · patt = p01 · · · p0t , contradicting the uniqueness asserted by (3.5).
Hence η = ǫ, and we have ρ = ǫρ′. Let µ =

√
d(1 − ǫ)( 6= 0). Then µ =

ǫµ′, so that

(
ρ

µ

)′
=
ρ

µ
, and

ρ

µ
= r ∈ Q. Hence µO = r−1pa11 · · · patt and

the uniqueness assertion in (3.5) shows that this determines a1, . . . , at.
(Note that µ =

√
d(1− ǫ) is uniquely determined by the field K.)

To prove the existence of a relation (3.6), define µ =
√
d(1 − ǫ) as

above. Then µO = (µO)′, so that µO = cpa11 · · · patt , where c ∈ Q, ai = 0
or 1. Since µ ≻ 0 if d > 0, we have only to show that

∑t
i=1 ai > 0. If

this were not the case, then µ = cζ, where ζ is a unit and ζ ≻ 0 if d > 0.
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Since µ = ǫµ′ this gives cζ = cǫζ ′ =
cǫ

ζ
so that ǫ = ζ2, contradicting the

definition of ǫ. Thus
∑t

i=1 ai > 0, and the theorem is proved.

Proposition 3.4 If the discriminant d of a quadratic field K is divisible
only by one prime number then h0 is odd and so equal to the class number
h of K. In this case, if d > 0, then K contains a unit of norm −1.

Proof: By Theorem 3.1, the restricted class containing O is the sole
ambiguous class h0 i.e. h0 does not contain elements of order 2.

We shall now prove that ho is of odd order. For x ∈ h0, let Ax denote
the subset of h0 consisting of x and x−1. Now, h0 = A1 ∪

⋃
x∈h0
x 6=1

Ax and

A1 ∩ Ax = ∅ if x 6= 1. Further, since no element of h0 is of order 2, Ax

consists of 2 elements for every x 6= 1 in h0. But A1 = {1}. Thus the
order h0 of h0 is odd.

By the remarks at the beginning of this section, we necessarily have
h0 = h. It is clear that if d > 0,K contains a unit of norm −1.

We shall make use of the above results to deduce the well-known
laws of quadratic reciprocity.

Proposition 3.5 If p is an odd prime, then

(i)

(−1

p

)
= (−1)(p−1)/2, (ii)

(
2

p

)
= (−1)(p

2−1)/8

Proof: (i) If p ≡ 1(mod 4), then (−1)(p−1)/2 = 1. We shall prove

that (−1
p ) = 1 in this case. In fact, Q(

√
p) contains a unit ǫ = (a+b

√
p

2 )

of norm −1, in view of Proposition 3.4. Hence a2 ≡ −4(mod p), i.e.

1 = (−4
p ) = (−1

p )(4p) = (−1
p )(2p)

2
= (−1

p ). Conversely, if a2 ≡ −1(mod p)

where p ∤ a we obtain, by the remark on page 16 that 1 ≡ ap−1 ≡
(a2)(p−1)/2 ≡ (−1)(p−1)/2(mod p) so that p ≡ 1(mod 4).

(ii) Let, first (2p) = 1. Since (8p) = (4p)(
2
p) = (2p) = 1. we see, by

Proposition 3.3, that p = pp′ in Q(
√
2). We have shown that h = 1

for K = Q(
√
2) (page 61). Since 1 +

√
2 is a unit of norm −1 in

Q(
√
2), h0 = h = 1. Hence p = x2 − 2y2 for some x, y ∈ Z. If 2 | y,

then x2 ≡ p(mod 8), and if 2 ∤ y. p ≡ x2 − 2(mod 8). In any case,
2 ∤ x so that p ≡ ±1(mod 8). Conversely, if p ≡ ±1(mod 8), consider
K = Q(

√
q) where q = ±p and q ≡ 1(mod 8). The discriminant of

Q(
√
q) is q. Since ( q2) = 1, we have 2O = pp′ for prime ideals p 6= p′. By

Proposition 3.4, h0 is odd. Since ph0 = αO for α ∈ O with NK(α) > 0,
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we have, on taking norms, NK(α) = 2h0 , i.e. 2h0+2 = x2 − qy2 with
x, y ∈ Z. Since h0 is odd, it follows that (2p) = 1. Thus (2p) = 1 if and

only if p ≡ ±1(mod 8) i.e. (2p) = (−1)(p
2−1)/8.

We deduce the well-known result due to Fermat, namely

Proposition 3.6 An odd prime p is a sum of two squares of integers if
and only if p ≡ 1(mod 4).

Proof: By Proposition 3.5, (−1
p ) = (−1)(p−1)/2. By the remark on

page 61 , (−1
p ) = 1 if and only if p is a sum of two squares of integers.

Hence the proposition follows.

Proposition 3.7 Let K be a quadratic field of discriminant d = q1q2
where q1, q2 are distinct primes congruent to 3 modulo 4. Then, either
q1 or q2 is the norm of an element α ∈ K, α ≻ 0 (but not both).

Proof: Observe first that for any unit ǫ ∈ K, NK(ǫ) = 1. For

if there exists α =
x+ y

√
d

2
with x, y ∈ Z and NK(α) = −1, then

−4 ≡ x2(mod q1q2), i.e. (−1
q1
) = (−4

q1
) = 1 which, by Proposition 3.5,

contradicts our assumption that q1 ≡ 3(mod , 4).
Now, if O is the ring of algebraic integers in K, then q1O = q21, q2O =

q22 for prime ideals q1q2 by Proposition 3.2. Then by Theorem 3.1, there
exist a1, a2 which are equal to 0 or 1 and such that a1 + a2 > 0 and
qa11 qa22 ≈ O. If both a1 and a2 were equal to 1, then q1q2 = αO with
α ≻ 0. On the other hand

√
dO =

√
(q1q2)O = q1q2 since d = q1q2

and q1q2O = q21q
2
2. Hence α = ǫ

√
d for a unit ǫ. But then NK(ǫ) = −1,

whereas we have just proved thatK contains no units of norm −1. Thus,
either a1 = 0 and a2 = 1, or a1 = 1 and a2 = 0. Then either q2 ≈ O or
q1 ≈ O. Since N(q1) = q1, N(q2) = q2 we see that either q1 or q2 is the
norm of α ∈ O with α ≻ 0.

We have now the necessary preliminaries for the proof of the cele-
brated Law of Quadratic Reciprocity.

Theorem 3.2 (Gauss.) For odd primes p and q.

(
p

q

)
=

(
q

p

)
(−1)(p−1)(q−1)/4.

Proof: Let r be the discriminant of a quadratic field K such that ±r
is an odd prime and let s be an odd prime different from |r|. Let ( rs ) = 1
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Then, if O is the ring of algebraic integers in K, we have sO = pp′ by
Proposition 3.2. Further, ph0 = αO where α = x+y

√
r

2 ≻ 0, and h0 is the

order of the restricted class group of K. Taking norms, sh0 = x2−ry2

4 .
But h0 is odd by Proposition 3.4. Hence 4sh0 and consequently s is a

quadratic residue modulo |r| i.e.
(

s
|r|

)
= 1. We use this fact to prove

the Law of Quadratic Reciprocity. We may suppose that p 6= q, since,
otherwise, the theorem is trivial.

(i) Let p ≡ 1(mod 4). Taking r = p, s = q, we have
(
p

q

)
= 1 ⇒

(
q

p

)
= 1.

Similarly, if q ≡ 1(mod 4), we have, by the symmetry between p and q.
(
q

p

)
= 1 ⇒

(
p

q

)
= 1.

Thus, if p ≡ q ≡ 1(mod 4), then (pq ) = ( qp).
(ii) Let p ≡ 1(mod 4), q ≡ 3(mod 4). By (i) we have first

(
p

q

)
= 1 ⇒

(
q

p

)
= 1.

Conversely, let ( qp) = 1. Then (−1
p ) = 1 by Proposition 3.5, and therefore

(−q
p ) = ( qp)(

−1
p ) = 1. Taking r = −q, s = p in the foregoing, we

have (pq ) = ( p
|r|) = 1. Thus we have shown that if p ≡ 1(mod 4) and

q ≡ 3(mod 4),then (pq ) = ( qp). Again, by the symmetry between p and

q, it follows that for p ≡ 3(mod 4) and q ≡ 1(mod 4) · (pq ) = ( qp).
(iii) Let p ≡ q ≡ 3(mod 4). Then, by Proposition 3.7, either p or q is

the norm of an algebraic integer x+y
√
(pq)

2 ≻ 0. Without loss of generality,
let 4p = x2 − pqy2. This means that p | x, i.e. x = pu, u ∈ Z. Hence
4 = pu2− qy2 and −qy2 ≡ 4(mod p). Now p ∤ y since p ∤ 4. Since Z/(p)
if a field, −q is a quadratic residue modulo p i.e (−q

p ) = 1. Similarly,

pu2 ≡ 4(mod q) gives us (pq ) = 1. Since (−1
p ) = −1 by Proposition 3.5,

we have (pq ) = −( qp) = (−1)(p−1)(q−1)/4( qp). We now use Legendre’s

symbol to define the Jacobi symbol (aq ) for odd composite denominators
q. For two integers a and n of which n is odd and positive, we define
the Jacobi symbol ( an) by ( an) = ( a

p1
)r1 · · · ( a

pk
)rk where n = pr11 · · · prkk

and p1, . . . , pk are odd primes. Clearly, if any of p1, p2, . . . , pk divides
a, ( an) = 0. Further it is easy to check that (abn ) = ( an)(

b
n) for odd positive

n and ( an) = (a
′

n ) if a ≡ a′(mod n).
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Remark 3.4 For composite n, ( an) = 1 does not, in general, ensure the
existence of x ∈ Z for which x2 ≡ a(mod n).

For negative odd n, we define ( an) to be the Jacobi symbol ( a
|n|). For

Jacobi symbols, we have the general laws of reciprocity given by

Proposition 3.8 For odd integers P,Q, we have
(−1

P

)
= (−1)(P−1)/2+( sgn P−1)/2

(
2

P

)
= (−1)(P

2−1)/8

(
P

Q

)
=

(
Q

P

)
(−1)(P−1)(Q−1)/4+( sgn P−1)( sgn Q−1)/4

where, for real x 6= 0, sgn x = x
|x| .

Proof: For odd a, b ∈ Z, we have (a − 1)(b − 1) ≡ 0(mod 4) i.e.
ab− 1 ≡ a− 1 + b− 1(mod 4) i.e.

ab− 1

2
≡ a− 1

2
+
b− 1

2
(mod 2). (3.9)

Similarly, for a, b odd (a2 − 1)(b2 − 1) ≡ 0(mod 16) and therefore

a2b2 − 1

8
≡ a2 − 1

8
+
b2 − 1

8
(mod 2) (3.10)

By iteration of (3.9) and (3.10) we see that for any r odd numbers
p1, p2, . . . , pr we have

p1p2 · · · pr − 1

2
≡

r∑

i=1

pi − 1

2
(mod 2) (3.11)

and
(p1p2 · · · pr)2 − 1

8
≡

r∑

i=1

p2i − 1

8
(mod 2) (3.12)

Let us first suppose that P,Q > 0 and let P = p1p2 · · · pr, Q =
q1q2 · · · qs, where p1, p2, . . . , pr, q1, q2, . . . , qs are odd primes. By the
definition of (ap ) and by Proposition 3.5, we have

(−1

P

)
=

(−1

p1

)
· · ·

(−1

pr

)
= (−1)

∑r
i=1(pi−1)/2 = (−1)(P−1)/2
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in view of (3.11) and
(
2

P

)
= (−1)

∑r
i=1

p2i−1

8 = (−1)(p
2−1)/8

in view of (3.12). Finally, by Theorem 3.2
(
P

Q

)
=

∏

1≤i≤r
1≤j≤s

(
pi
qj

)
=

{ ∏

1≤i≤r
1≤j≤s

(
qj
pi

)}
(−1)

∑
i(pi−1)/2

∑
j(qj−1)/2

so that, by (3.11), we have
(
P

Q

)
=

(
Q

P

)
(−1)((P−1)/2((Q−1)/2 for odd P,Q > 0. (3.13)

If P is not necessarily positive,
(−1

P

)
=

(−1

|P |

)
= (−1)(|P |−1)/2 = (−1)(P−1)/2+( sgn P−1)/2

since P = |P | · sgn P and, by (3.9),

P − 1

2
≡ |P | − 1

2
+

sgn P − 1

2
(mod 2) (3.14)

Hence, for odd P,Q, we have
(
P

Q

)
=

(
P

|Q|

)
=

(
sgn P

Q

)( |P |
Q

)
(3.15)

=

( |P |
Q

)
(−1)(( sgn P−1)/2)(( sgn Q−1)/2+(( sgn P−1)/2(( sgn Q−1)/2))

Further, by (3.11)
( |P |
Q

)
=

( |P |
|Q|

)
=

( |Q|
|P |

)
(−1)((|P |−1)/2)((|Q|−1)/2)

=

( |Q|
P

)
(−1)((|P |−1)/2·((|Q|−1)/2)

=

(
Q

P

)
(−1)( sgn Q−1)(P−1)/4+( sgn Q−1)( sgn P−1)/4+(|P |−1)(|Q|−1)/4

(by (3.15))

=

(
Q

P

)
(−1)(( sgn Q−1)/2·(|P |−1)/2+(|P |−1)/2(|Q|−1)/2 (by (3.14))
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Using (3.13) again, we have

(
P

Q

)
=

(
Q

P

)
(−1)(P−1)(Q−1)/4+( sgn P−1)( sgn Q−1)/4

We now define the Kronecker symbol ( an) for any integer a ≡ 0 or
1(mod 4) as follows. First we define

(
a

2

)
=

(
a

−2

)
=





0 if a ≡ 0(mod 4)
1 if a ≡ 1(mod 8)
−1 if a ≡ 5(mod 8)

This agrees with our definition of (d2) for the discriminant d of a
quadratic field on page 61. By Proposition 3.8, (a2 ) = ( 2a), whenever

a ≡ 1(mod 4) Further, clearly (a2 ) = (a
′

2 ) for a ≡ a′(mod 8) and (aa
′

2 ) =

(a2 )(
a′

2 ). In general, if a ≡ 0 or 1(mod 4), we introduce the Kronecker
symbol ( an) for arbitrary denominator n by setting ( a

2c ) = (a2 )
c and

( an) = ( a
n1
) · ( a

2c ) where n = n1 · 2c, c ≥ 0 and n1 is odd. By the very
definition, it is clear that ( a

xy ) = (ax)(
a
y ) for x, y ∈ Z.

For the discriminant d of a quadratic field, we see that ( d
xy ) = ( dx)(

d
y )

for x, y ∈ Z. i.e. (dz ) is multiplicative in z. We now prove another

interesting property of ( dn).

Proposition 3.9 If d is the discriminant of a quadratic field and m,n
are positive integers, then

(
d

n

)
=

(
d

m

)
for n ≡ m(mod d) (3.16)

(
d

n

)
=

(
d

m

)
sgn d for n ≡ −m(mod d) (3.17)

Proof: Let d = 2a · d′, n = 2b ·n′, m = 2c ·m′ with odd d′, n′,m′ and
a, b, c ≥ 0 in Z.

(i) Let a > 0. The case b > 0 is trivial, for then, by assumption,
c > 0, and both the symbols in this proposition are zero, by definition.
Let then b = c = 0. By Proposition 3.8

(
d

n

)
=

(
2a · d′
n

)
=

(
2

n

)a(d′
n

)
= (−1)a(n

2−1)/8

(
n

d′

)
(−1)(n−1)(d′−1)/4
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and similarly

(
d

m

)
=

(
2ad′

m

)
= (−1)a(m

2−1)/8

(
m

d′

)
(−1)(m−1)(d′−1)/4

Since 4 | d, the first factors coincide for m and n. The same is true
also of the other two factors, in the case n ≡ m(mod d). But if n ≡
−m(mod d), they differ exactly by the factor sgn d′ = sgn d.

(ii) Let a = 0. Consequently, d ≡ 1(mod 4). Then

(
d

n

)
=

(
d

2bn′

)
=

(
d

2

)b

·
(
d

n′

)
=

(
2

d

)b( d

n′

)

since (d2) = (2d) for d ≡ 1(mod 4). Further, by Proposition 3.8,

(
d

n′

)
=

(
n′

d

)
(−1)(d−1)(n′−1)/4 =

(
n′

d

)

since n′ is odd and d ≡ 1(mod 4). Thus ( dn) = (nd ). Further (−1
d ) =

sgn d. Therefore ( d
m) = ( dn) for m,n > 0 and m ≡ n(mod d) and

( dn) = (nd ) = (−m
d ) = sgn d · (md ) = ( d

m) · sgn d if n ≡ −m(mod d).

Remark 3.5 Thus, for positive integers n, ( dn) represents a so-called

“residue class character” modulo d, i.e. ( d
m) = ( dn) for m,n > 0,m ≡

n(mod d) and ( d
mn) = ( d

m)( dn) for m,n > 0. In particular, if p1, p2 are
two primes satisfying p1 ≡ p2(mod d) and p1 ∤ d, then either both p1
and p2 split or both stay prime in Q(

√
d).

In what follows, a discriminant will stand for an integer d 6= 1 which
is the discriminant of a quadratic field; in other words, it will denote
either a square-free integer d 6= 1 with d ≡ 1(mod 4) or d = 4d′ where
d′ is square-free and d′ ≡ 2 or 3(mod 4). Whenever n,m > 0, n ≡
m(mod d), we have ( dn) = ( d

m).

Remark 3.6 (1) Any discriminant d can be written in the form d =
d1d2, where d1 is 1 or a discriminant, d2 is an odd discriminant and the
only prime divisor of d1 if 2 if |d1| > 1.

(2) If a, b are integers with (a, b) = 1, and α, β are any integers,
there exists n > 0 with n ≡ α(mod a), n ≡ β(mod b); in fact, if
x, y are integers with xa ≡ β(mod b), yb ≡ α(mod a), we may take
n = xa+ yb+ k|ab|, where k is a large integer.
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Proposition 3.10 If d is a discriminant, there exists n > 0, n ∈ Z

with ( dn) = −1.

Proof: CASE 1. d is odd. If d is odd, then, for any odd n > 0 we
have, by Proposition 3.9, (case (ii) of the proof)

(
d

n

)
=

(
n

d

)
=

(
n

|d|

)
.

Let |d| = pa, where p is an odd prime. We have p ∤ a a since d is square-
free. Let u be a quadratic non-residue modulo p. By our remark above,
there is an (odd) n > 0 such that n ≡ u(mod p), n ≡ 1(mod 2a). Then

(
d

n

)
=

(
n

p

)(
n

a

)
=

(
u

p

)(
1

a

)
= −1.

CASE 2. d is even. Let d = d1d2, where d1 is an even discriminant,
and d2 is an odd discriminant. Then, for n > 0 in Z, we have ( dn) =

(d1n )(d2n ) (by definition). Again, by definition, it is easy to check that

there exists a with (d1a ) = −1. Choose n > 0 such that n ≡ a(mod d1)

and n ≡ 1(mod d2). We then have ( dn) = −1.

Proposition 3.11 Let d be a discriminant and Sm =
∑m

n=1 (
d
n). Then

|Sm| ≤ 1
2 |d|.

Proof: We first prove the following: let a1, . . . , ar, r = |d|, denote a
complete system of residues modulo r, i.e. a system of integers which are
congruent to the integers 0, 1, . . . , r− 1 modulo r (in some order). Then
S =

∑r
i=1 (

d
ai
) = 0. In fact, let n be a positive integer with (n, d) =

1, ( dn) = −1; then the numbers na1, . . . , nar also form a complete system

of residues modulo r. Now (db ) = (dc ) if b ≡ c(mod r). We have therefore

S =
r∑

i=1

(
d

nai

)
= −

r∑

i=1

(
d

ai
) = −S, so that S = 0.

Given m > 0, let k be a positive integer for which |m− kr| is minimal.
Then we have |m − kr| ≤ 1

2r; Hence |Sm − Skr| ≤ 1
2 ; but Skr is the

sum of k terms
∑r

i=1 (
d
ai
) where a1, . . . , ar runs over a complete residue

system modulo r, and is hence zero. Thus |Sm| ≤ 1
2r.
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3.5 The Dirichlet class-number formula

Let K be an algebraic number field of degree n. The group h of ideal
classes of K is a finite group of order h = h(K). We shall obtain, in this
section, a formula for h in the case when K is a quadratic field.

Let C0 = 1, C1, . . . , Ch−1 denote the different ideal classes. For each
class C, we define the zeta-function of C, denoted ζK(s, C), by

ζK(s, C) =
∑

a∈C

′
(N(a))−1;

the summation is over all non-zero integral ideals a in C and s is a real
number > 1. The zeta-function ζK(s) of the field K is defined by

ζK(s) =
∑

C∈h
ζK(s, C) =

∑

a

′
(N(a))−s

the summation now being over all nonzero integral ideals of K.
We assert now that all these series converge (absolutely) for s > 1.

It is, of course, sufficient to verify this for the series defining ζK(s). Let
x > 0 be any real number. We have

∑

N(a)≤x

1

N(a))s
≤

∏

N(p)≤x

(1− (N(p))−s)
−1

(3.18)

the product being over all prime ideal p with N(p) ≤ x. To prove this,
we remark that

(1− (N(p))−s)
−1

= 1 + (N(p))−s + (N(p))−2s + · · · (3.19)

and that any integral ideal a can be written uniquely as a product of
prime ideals; further if N(a) ≤ x, then every prime divisor p of a satisfies
N(p) ≤ x. Inequality (3.18) follows on multiplying out the finitely many
absolutely convergent series (3.19) with N(p) ≤ x; moreover, we have

∏

N(p)≤x

(1− (N(p))−s)
−1 −

∑

N(a)≤x

(N(a))−s =
∑

N(a)>x

(N(a))−s (3.20)

where the latter summation is over the integral ideals a of norm > x all
of whose prime divisors are of norm ≤ x.

Any prime ideal p contains a unique prime number p ∈ Z, by Re-
mark 2.18. We have N(p) = pf for a certain integer f ≥ 1, so that
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p ≤ x if N(p) ≤ x. Further, there are at most n distinct prime ide-
als p1, . . . , pg, g ≤ n containing a given p; in fact, they are uniquely
determined by the equation

pO = pe11 · · · pegg

and then

pn = N(pO) =

g∏

i=1

N(pi)
ei =

g∏

i=1

pfiei ≥ pg (since fi ≥ 1, ei ≥ 1),

so that g ≤ n. Hence (3.18) gives

∑

N(a)≤x

(N(a))−s ≤
∏

p≤x

(1− p−s)
−n

;

since the product
∏

(1− p−s)
−1

is absolutely convergent for s > 1, the
series

∑
(N(a))−s converges for s > 1. If we now let x → ∞ in (3.20)

we obtain the Euler product for ζK(S), viz.

ζK(s) =
∏

p

(1− (N(p))−s)
−1
.

Note that this equation also holds when s is complex and Re s > 1.

Remark 3.7 The same reasoning shows that if {am} is a sequence of
complex numbers with a1 = 1, amk = amak for all integers m, k ≥ 1,
and if

∑∞
m=1 |am| <∞,then

∞∑

m=1

am =
∏

p

(1− ap)
−1.

In particular, for Re s > 1, we have

ζ(s) =
∞∑

m=1

m−s =
∏

p

(1− p−s)
−1
.

Lemma 3.1 Let {am} be a sequence of real numbers, X a real positive
number. Let A(X) =

∑
m<X am. Suppose that

lim
X→∞

A(X)

X
= c. (3.21)
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Then the series

f(s) =
∞∑

m=1

am
ms

converges for s > 1 and we have

lim
s→1+0

(s− 1)f(s) = c.

Proof: Since A(1) = 0, we have, for M > 0 in Z.

M∑

m=1

amm
−s =

M∑

m=1

{A(m+ 1)−A(m)}m−s

= A(M + 1)M−s +
M−1∑

m=1

A(m+ 1){m−s − (m+ 1)−s}.
(3.22)

Now
∑∞

m=1m
−s = ζ(s) converges for s > 1, and as M → ∞,

A(M + 1)M−s → 0, for s > 1. We see, on applying this to the se-
quence {am = 1}, that

∞∑

m=1

m{m−s − (m+ 1)−s} = ζ(s).

Now m−s − (m + 1)−s = s
∫m+1
m x−s−1dx, and 0 ≤ x − m ≤ 1 in the

interval (m,m+ 1). Hence

∣∣∣ζ(s)−
∞∑

m=1

s

∫ m+1

m
x−sdx

∣∣∣ < s

∫ ∞

1
x−s−1dx = 1,

i.e. ∣∣∣ζ(s)− s

∫ ∞

1
x−sdx

∣∣∣ =
∣∣∣ζ(s)− s

s− 1

∣∣∣ < 1;

in particular
lim

s→1+0
(s− 1)ζ(s) = 1. (3.23)

Since, by (3.21), |A(m + 1)| ≤ K1m for some K1 > 0, and since∑∞
m=1m{m−s − (m+ 1)−s} converges (absolutely) for s > 1,(3.22) im-

plies that
∑∞

m=1 amm
−s = f(s) converges for s > 1; moreover, we have

|f(s)− cζ(s)| =
∞∑

m=1

|A(m+ 1)− cm|{m−s − (m+ 1)−s}
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Given ǫ > 0, there exists, by (3.21), an m0 = m0(ǫ) with
|A(m+ 1)− cm| < ǫm for m > m0. Then, for s > 1,

|f(s)− cζ(s)| ≤
m0∑

m=1

|A(m+ 1)− cm|+ ǫ
∑

m>m0

m{m−s − (m+ 1)−s}

≤ C(m0) + ǫζ(s).

Since (s− 1)ζ(s) → 1 as s→ 1 + 0, we obtain

lim sup
s→+0

(s− 1)|f(s)− cζ(s)| ≤ ǫ.

Since this is true for any ǫ > 0, we obtain

lim
s→1+0

(s− 1)f(s) = c lim
s→1+0

(s− 1)ζ(s) = c.

As an application of these remarks, we prove

Proposition 3.12 ζ(s) is meromorphic in Re s > 0, its only singularity
in the half-plane Re s > 0 is at s = 1 where it has a simple pole with
residue 1.

Proof: We have, for s > 1,

ζ(s) =
∞∑

m=1

m{m−s − (m+ 1)s} = s
∞∑

m=1

m

∫ m+1

m
u−s−1du

= s
∞∑

m=1

∫ m+1

m
[u]u−s−1du = s

∫ ∞

1

[u]

us+1
du

where [u] is the largest integer ≤ u. Now [u] = u− (u), where 0 ≤ (u) <
1. Hence, for s > 1,

ζ(s) = s

∫ ∞

1
u−sdu− s

∫ ∞

1

(u)

us+1
du =

s

s− 1
− s

∫ ∞

1

(u)

us+1
du.

Now, for Re ≥ δ > 0, |(u)u−s−1| < u−δ−1, so that the latter integral
converges uniformly for Re s ≥ δ > o for any δ > 0, and so defines a
holomorphic function g(s) for Re s > 0. Since, for s > 1, ζ(s) − s

s−1 =
−sg(s) the proposition follows.

Remark 3.8 If we set A′(X) =
∑

m≤X am, then (3.21) holds if and

only if X−1A′(X) → c as X → ∞. In fact, either of these conditions
implies that m−1am → 0 as m→ ∞, and they are therefore equivalent.
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Definition 3.6 By a lattice point in the plane R2 we mean a point
ζ = (ξ1, ξ2) with ξ1, ξ2 ∈ Z.

Lemma 3.2 Let Ω be a bounded open set in the plane R2. For X > 0,
let ΩX = {ζ = (ξ1, ξ2) ∈ R2 | ( ξ1X ,

ξ2
X ) ∈ Ω}. Let NΩ(X) denote the

number of lattice points in ΩX . Then

lim
X→∞

X−2NΩ(X) =

∫ ∫

Ω

dξ1 dξ2 = area of Ω

provided that this integral exists in the sense of Riemann.

Proof: Divide the plane into closed squares S of sides 1
X parallel to

the coordinate axes. For any S, let P (S) denote the point whose coor-
dinates have smallest values (“the lower left vertex”). Clearly NΩ(X) =
{number of S with P (S) ∈ Ω}.

Now, if N1, N2 denote, respectively, the number of S with S ⊂ Ω,
S ∩ Ω 6= ∅, then, by the definition of the Riemann integral, X−2N1,
X−2N2 →

∫ ∫
Ω dξ1 dξ2; since N1 ≤ NΩ(X) ≤ N2, the lemma follows.

Theorem 3.3 (Dedekind.) Let K be a quadratic field of discriminant
d and w the number of roots of unity in K. Let C be an ideal class
of K and N(X,C) the number of non-zero integral ideals a ∈ C with
N(a) < X. Then

lim
X→∞

N(X,C)

X
= κ

exists and we have

κ =





2 log η√
d

if d > 0, η > 1 being the fundamental unit;

2π/(w
√|d| if d < 0.

Proof: Let b be an integral ideal in C−1 then, for any integral ideal
a ∈ C, ab = αO where α ∈ b. Conversely, if α ∈ b, a = b−1αO is an
integral ideal in C; moreover, |NK(α)| = N(a)N(b) so that N(a) < X
if and only if |NK(α)| < XN(b) = Y (say). Consequently N(X,C) is
the number of non-zero principal ideals αO, α ∈ b, |NK(α)| < Y ; in
other words, N(X,C) = the number of α ∈ b, α 6= 0, which are pairwise
non-associates and for which |NK(α)| < Y .
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Case (i) d > 0. Let η > 1 be the fundamental unit. Clearly for any
α ∈ b, α 6= 0, there is an integer m such that if ω = ηmα, we have

0 ≤ log

∣∣∣∣
ω

|NK(ω| 12

∣∣∣∣ < log η. (3.24)

Conversely, if ω1, ω2 are associate elements of b satisfying (3.24),
then ω1 = ǫω2, where ǫ is a unit with 1 ≤ |ǫ| < η, so that ǫ = ±1. Hence

2N(X,C) =





the number of ω ∈ b with

0 < |NK(ω)| < Y, 0 ≤ log

∣∣∣∣
ω

|NK(ω)| 12

∣∣∣∣ < log η (3.25)

Case (ii) d < 0. Clearly we have now, wN(X,C) = the number of
integers ω ∈ b with 0 < |NK(ω)| < Y .

In either case, let (β1, β2) be an integral base of b and let β′1, β
′
2 be

the conjugates of β1, β2 respectively. Let Ω denote the following open
set in the plane: if d > 0,

Ω =

{
ζ = (ξ1, ξ2) ∈ R2 | 0 < |ξ1β1 + ξ2β2||ξ1β′1 + ξ2β

′
2| < 1,

0 < log
|ξ1β1 + ξ2β2|

|ξ1β1 + ξ2β2|
1
2 |ξ1β′1 + ξ2β′2|

1
2

< log η

}
,

and if d < 0,

Ω = {ζ = (ξ1, ξ2) ∈ R2 | 0 < |ξ1β1 + ξ2β2|2 < 1}.

We verify that Ω is bounded as follows. For d > 0, since

|ξ1β1 + ξ2β2||ξ1β′1 + ξ2β
′
2| < 1

and
1 ≤ |ξ1β1 + ξ2β2|/|ξ1β′1 + ξ2β

′
2| < η2,

we see that both ξ1β1+ ξ2β2, ξ1β
′
1+ ξ2β

′
2 are bounded in Ω. Thus ξ1, ξ2

are again bounded in Ω, since β1β
′
2 − β2β

′
1 6= 0 (in fact = ±N(b)

√
d by

(3.2)). If d < 0, then |ξ1β1 + ξ2β2| = |ξ1β′1 + ξ2β
′
2| < 1, and again, since

β1β
′
2 − β2β

′
1 6= 0, ξ1, ξ2 are bounded in Ω. According to what we have

proved above, we have

wN(X,C) =





number of lattice points in Ω√
Y ifd < 0

number of lattice points in Ω√
Y + the number AY

of lattice points (ξ1, ξ2) with |ξ1β1 + ξ2β2|2 ≤ Y

and |ξ1β1 + ξ2β2| = |ξ1β′1 + ξ2β
′
2| 6= 0 if d < 0.
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Since, as is easily verified. AY = O(
√
Y ) = O(

√
X), we conclude that

lim
X→∞

wN(X,C)

X
= N(b) lim

Y→∞
NΩ(

√
Y )

Y

= N(b)

∫ ∫

Ω
dξ1 dξ2 (3.26)

(The last equation holds by Lemma 3.2.) If d > 0, we set u1 = ξ1β1 +
ξ2β2, u2 = ξ2β

′
1 + ξ2β

′
2 then, since |β1β′2 − β2β

′
1| = N(b)

√
d, we have

∫ ∫

Ω

dξ1 dξ2 =
4

N(b)
√
d

∫ ∫

U∗

du1 du2,

where

U∗ =
{
(u1, u2) | 0 < u1u2 < 1; 1 <

u1
u2

< η2, u1, u2 > 0
}
.

Making the change of variables v1 = u1u2, v2 = u1/u2 we see that
∫∫

Ω dξ1dξ2 =
4 log η

N(b)
√
d

so that, with (3.26) this gives us Theorem 3.3

when d > 0. If d < 0, we set u1 = Re (ξ1β1+ξ2β2), u2 = Im (ξ1β1+ξ2β2)
and find that

∫ ∫

Ω
dξ1 dξ2 =

2

N(b)
√
d

∫ ∫

u2
1+u2

2<1
du1 du2 =

2π

n(b)
√
d

and Theorem 3.3 is completely proved.
Let K be, as above, a quadratic field of discriminant d, and, for

X > 0, N(X,K) the number of integral ideals a of norm N(a) < X.
Since the number κ in Theorem 3.3 is independent of the class C, we
conclude that

limX→∞
N(X;K)

X = h · κ, h being the class number
Further, if am denotes the number of integral ideals of norm = m,

then N(X;K) =
∑

m<X am, while ζK(S) =
∑∞

m=1
am
m2 . Hence, by

Lemma 3.1, we obtain

Proposition 3.13 (Dedekind) We have

lim
s→1+0

(s− 1)ζK(S) = h · κ,

where h is the class number of the quadratic field K, and κ is the number
defined in Theorem 3.3.
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We shall evaluate the above limit in another way. We have already
proved that

ζK(s) =
∏

p

(1− (N(p))−s)
−1
.

Let p be any (rational) prime number; then there are at most two
prime ideals p, p′ dividing p. We claim that the product

∏

p⊃p

(1− (N(p))−s)−1 = (1− p−s)
−1

(
1−

(d
p

)
p−s

)−1

In fact, by Propositions 3.2 and 3.3 (dp) = 0 for p | d and there is a unique

p ⊃ pO with p2 = pO and N(p) = p. If (dp) = −1, there is a unique

p ⊃ pO; indeed p = pO, so that N(p) = p2 and then 1 − (N(p))−s =
(1 − p−2s) = (1 − p−s)(1 + p−s). If (dp) = 1, there are two distinct
prime ideals p with p ⊃ pO and N(p) = p for each of them, so that∏

p⊃p(1−N(p)−s)−1 = (1− p−s)2. We see therefore that

ζK(s) =
∏

p

(1− p−s)
−1

(
1−

(
d

p

)
p−s

)−1

The Euler product for ζK(s) applied to the field K = Q gives us

ζ(s) =
∞∑

m=1

m−s =
∏

p

(1− p−s)
−1
.

The remark after the proof of the Euler product for ζK(s) applied to
am = ( d

m)m−s gives us

Ld(s) =
∞∑

m=1

( d
m

)
m−s =

∏

p

(
1−

(d
p

)
p−s

)−1

.

Hence we have

Proposition 3.14 For s > 1, we have

ζK(s) = ζ(s)Ld(s).

We assert that the series defining Ld(s) converges for s > 0. In fact,
after Proposition 3.11, this follows from



82 Chapter 3. Quadratic Fields

Proposition 3.15 If {am} is a sequence of complex numbers such that
Am =

∑m
k=1 ak is bounded as m→ ∞ , then the series

f(s) =
∞∑

1

am
ms

converges for σ = Re s > 0, and uniformly on any bounded subset of the
half plane σ ≥ δ, for fixed δ > 0.

Proof: We have

b∑

m=a

amm
−s = Abb

−s −Aaa
−s +

b∑

m=a+1

Am(m−s − (m+ 1)−s)

For σ ≥ δ,we have |m−s − (m+ 1)−s| = |s
∫m+1
m u−s−1du| ≤ s

σm
−δ−1.

Hence, if |Am ≤M for all m > 0 in Z, then

∣∣∣
b∑

a

amm
−s

∣∣∣ ≤M
{
b−δ + a−δ +

|s|
σ

b∑

m=a+1

m−δ−1
}
→ 0

as a, b→ ∞ uniformly in any bounded subset of σ ≥ δ. This proves the
proposition.

Using the fact that (s − 1)ζ(s) → 1 as s → 1 + 0 we obtain, by
Propositions 3.13, 3.14 and Theorem 3.3, the following.

Theorem 3.4 (Dirichlet) Let K be a quadratic field of discriminant d.
Let h be the class number of K. Then we have

h =





√
d

2 log η
Ld(1) if d > 0

w
√
d

2π
Ld(1) if d < 0.

(3.27)

Note that (3.27) implies that Ld(1) > 0. It is possible to express
the series Ld(1) as a finite (elementary) sum. Moreover, the fact that
Ld(1) > 0 is one of the key propositions in the proof of Dirichlet’s
theorem that for any integer l with (l, d) = 1, there exist infinitely many
primes p ≡ l(mod d); this theorem will be proved in the next section.

Definition 3.7 The degree of prime ideal p is the integer f for which
N(p) = pf where p is a rational prime.
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Proposition 3.16 Let K be a quadratic field of discriminant d. Then
there exist in K infinitely many prime ideals of degree 1, and infinitely
many prime ideals of degree 2.

Proof: Clearly, for any prime ideal p, we have N(p) = p with f = 1
or 2. Suppose that f > 1 for all but finitely many p. Then for s > 1,

∏

p

(1−N(p)−s)
−1 ≤

∏

q∈F
(1− q−s)−2

∏

p

(1− p−2s)
−1

where F is a finite set of (rational) primes, and p runs over all (rational)
primes. The product

∏
p(1 − N(p)−s)

−1
would thus converge for all

s > 1
2 Since for s > 1, this product = ζK(s), we could conclude that

ζK(s) is bounded as s → 1 + 0. But we know that this is not the case,
since lims→1+0(s− 1)ζK(s) 6= 0 by Proposition 3.13 .

Suppose now that the degree of p is 1 for all but finitely many p. We
would have, for s > 1,

ζK(s) =
∏

p

(1−N(p)−s)
−1

=
∏

p>p0

(1− p−s)
−2×

∏

p≤p0

∏

p⊃p

(1−N(p)−s)
−1
,

where p0 is large enough. (If p0 ≥ |d|, then p splits or stays prime in
K for p > p0, so that there would be exactly two prime divisors p of
pO except for finitely many p.) By (3.23) we have clearly lims→1+0(s−
1)

∏
p>p0

(1− p−s)
−1

= c0 6= 0. This would give lims→1+0(s−1)2ζK(s) =

c20 ·
∏

p≤p0

∏
p⊃p(1−N(p)−1)

−1 6= 0. This contradicts Proposition 3.13.

Remark 3.9 Proposition 3.14 asserts simply the existence of infinitely
many primes p of which a given discriminant d is (is not) a quadratic
residue. This would of course follow from Dirichlet’s theorem on the
existence of infinitely many primes in an arithmetic progression (to be
proved in the following section).

3.6 Primes in an arithmetic progression

Lemma 3.3 Let {am} be a sequence of non-negative numbers. Suppose
that there is a real s such that

∑∞
m=1 amm

−s is convergent. Then there
exists s0 ∈ R such that f(s) =

∑∞
m=1 amm

−s converges for s > s0,
diverges for s < s0 (unless the series converges for all values of s).
Further, the series converges for any complex s with Re s > s0 uniformly
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in any half plane Re s ≥ s0 + δ, with δ > 0. Also, for any integer k, we
have f (k)(s) = (−1)k

∑∞
m=1 am(logm)km−s for Re s > s0, where f

(k)(s)
denotes the kth derivative of f(s).

Proof: Suppose
∑
amm

−s′ < ∞ for some s′ ∈ R. We claim that∑ |amm−s| < ∞ for Re s > s′, and the convergence is uniform in this
region. In fact, since am ≥ 0

∑
|amm−s| = amm

−Re s ≤ amm
−s′

The existence of s0 and the uniform convergence of the series in the half-
plane Re s ≥ s0 + δ follows at once. As for the, derivative, if Re s > s0
and if s = σ + it, let s0 < σ1 < σ. We have

∑
amm

−σ1 <∞. Hence

∑
|am(logm)−km−s| ≤

∑
amm

−σ1
(logm)k

mσ−σ1
<∞

since for each k,
(logm)k

mσ−σ1
→ 0 as m → ∞. Since the k-th derivative of

m−s is (−1)k(logm)km−s the result follows.

Definition 3.8 The real number s0 defined by Lemma 3.3 is called the
abscissa of convergence of the series

∑
amm

−s; if the series converges
for all, we set s0 = −∞.

Lemma 3.4 Let {am} be a sequence of non-negative numbers, and let
s0 be the abscissa of convergence of the series

∑
amm

−s. Then, the
series

∑
amm

−s = f(s) defines a holomorphic function Re s > s0 which
is singular at the point s = s0.

Proof: That f(s)is holomorphic in Re s > s0 follows at once from
Lemma 3.3. Suppose f is not singular at s = s0. Then there exists a
disc D: {|s − s1| < δ} where s1 > s0, such that |s0 − s1| < δ and a
holomorphic function g in D such that g(s) = f(s) for Re s > s0, s ∈ D.
We have, by Taylor’s formula

g(s) =
∞∑

k=0

g(k)(s1
k!

(s− s1)
k =

∞∑

k=0

f (k)(s1)

k!
(s1 − s)k

(since g(s) = f(s) for s in a neighbourhood of s1 so that the series
∑∞

k=0
(−1)kf (k)(s1)

k! (s1 − s)k converges absolutely for any s in D and, in
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particular, for real s with s1 − δ < s < s1. Now,

(−1)kf (k)(s1) =
∞∑

m=1

am(logm)km−s1

so that the repeated series

∞∑

k=0

(s1 − s)k

k!

∞∑

m=1

am(logm)km−s1 <∞ for s1 − δ < s < s1.

Since all terms here are non-negative, we may rearrange the series
as we like; hence the repeated series is equal to

∞∑

m=1

amm
−s1

∞∑

k=0

(s1 − s)k

k!
(logm)k <∞, s1 − δ < s < s1.

But the inner sum is e(s1−s) logm = ms1−s. Hence

∞∑

m=1

amm
−s1 ·ms1−s =

∞∑

m=1

amm
−s <∞ for s1 − δ < s < s1.

Since s1 − δ < s0, this contradicts the definition of s0 and f must be
singular at s = s0.

In what follows, sums and products of the type
∑

p,
∏

p will always
be taken over the primes p > 1. (If any additional conditions are to
imposed, these will be indicated below the summation or product.)

Let D > 1 be a positive integer. If a ∈ Z is such that (a,D) = 1,
then ab+Dc = 1 for some b, c ∈ Z. Then the residue class ā containing a
has an inverse b̄ in Z/(D). If a′ ∈ ā, then clearly (a′, D) = 1. By a prime
residue class modulo D, we mean a residue class x̄ modulo D such that
for any x′ ∈ x̄, we have (x′, D) = 1. Clearly the prime residue classes
modulo D form a finite group G ;under the multiplication induced from
Z/(D). Let χ be a character of G. We define a function, also denoted
by χ on Z, by

χ(m) = χ(m̄) if (m,D) = 1, where m̄ is the residue class of m,

χ(m) = 0 if (m,D) > 1.

For s ∈ C, Re s > 1, we define

L(s, χ) =
∞∑

m=1

χ(m)m−s.
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Using the results of §4, we see that for Re s > 1,

L(s, χ) =
∏

p

(1− χ(p)p−s)
−1
.

Further, because of the orthogonality relations (Proposition 1.10, Chap-
ter 1), we have

D∑

m=1

χ(m) =
∑

a∈G
χ(ā) = 0 if χ 6= χ0.

where χ0 is the principal character defined by χ0(m) = 1 if (m,D) =
1, χ0(m) = 0 otherwise. Hence, as in Proposition 3.11, we can show
that ∣∣∣

m∑

k=1

χ(k)
∣∣∣ ≤ 1

2
D for any m.

Hence, by Proposition 3.15, the series defining L(s, χ) converges for
Re s > 0, uniformly in any bounded subset of Re s ≥ δ > 0. Hence we
have

Lemma 3.5 If χ 6= χ0, L(s, χ) is holomorphic for Re s > 0. Moreover,

L(s, χ0) =
∏

p∤D

(1− p−s)
−1

= ζ(s)
∏

p|D
(1− p−s).

From Lemma 3.5 and from (3.23), we deduce

Lemma 3.6 lims→1+0(s − 1)L(s, χ0) =
∏

p|D(1 − 1
p); in particular,

L(s, χ0) → ∞ as s→ 1 + 0.

Now, for Re s > 1,

logL(s, χ) =
∑

p

log
1

1− χ(p)p−s
=

∑

p

∞∑

m=1

χ(pm)

mpms

Let l ≥ 1 be any integer with (l, D) = 1. Using the orthogonality
relations, (Proposition 1.10, Chapter 1), we obtain

Lemma 3.7 For Re s > 1 we have
∑

χ

logL(s, χ) = h
∑

pm≡1 (D)

1

mpms

∑

χ

χ̄(l) logL(s, χ) = h
∑

pm≡l (D)

1

mpms
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Here the summation is over all the characters of G, and h is the order
of the character group Ĝ of G.

Corollary 3.2 The function f(s) =
∏

χ L(s, χ) has, for Re s > 1, an

expansion as a Dirichlet series
∑
cmm

−s where cm ≥ 0.

Proof: Clearly, the series expansion for f(s) =
∏

χ L(s, χ) can be ob-

tained by formal substitution of x = h
∑

pm≡1 (D)

1

mpms
in ex =

∑∞
k=0

xk

k! .

Since all terms in the series for x are non-negative the corollary is proved.
Now we have

logL(s, χ) =
∑

p

χ(p)

ps
+
∑

p

∑

m≥2

χ(pm)

mpms

If σ = Re s we have

∑

p

∑

m≥2

1

|mpms| ≤
∑

p

∑

m≥2

1

pmσ
=

∑

p

1

pσ(pσ − 1)

This latter series converges for σ = 1
2 . Hence, for σ > 1,

log ζ(s) =
∑

p

1

ps
+R(s);

∑

χ

χ̄(l) logL(s, χ) = h
∑

pm≡1 (D)

1

ps
+R1(s)

(3.28)
where |R(s)| ≤ ∑

p
1

pσ(pσ−1) , |R1(s)| ≤ h
∑

p
1

pσ(pσ−1) . In particular,

since ζ(s) → ∞ as s→ 1+0 and R(s) is bounded as s→ 1+0,
∑

p
1
ps →

∞ as s→ 1 + 0, so that
∑

p
1
p = ∞

Lemma 3.8 If f(s) =
∏

χ∈Ĝ L(s, χ) =
∑∞

1 cmm
−s, then cm ≥ 0, and∑∞

m=1 cmm
−s = ∞ for s = 1

φ(D) where φ(D) is the order of the group
G.

Proof: We have already seen that cm ≥ 0 (by the corollary to
Lemma 3.2). Now, for real s,

∑
pm≡1 (modD)

1
mpms ≥ ∑

p>D
1

φ(D)pφ(D)s

since, for p > D, we have pφ(D) ≡ 1 (modD). Since
∑

p>D
1
p = ∞

it follows that
∑

pm≡1(mod D)
1

mpms = ∞ for s = 1
φ(D) . Since ex =

1 + x + · · ·, and the series for f(s) is obtained by formal substitution
of x = h

∑
pm≡1 (D)

1
mpms in the series for ex,

∑∞
m=1 cmm

−s diverges for

s = 1
φ(D) .
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Proposition 3.17 We have L(1, χ) 6= 0 for χ 6= χ0.

Proof: Consider f(s) =
∏

χ L(s, χ) = L(s, χ0)
∏

χ 6=χ0
L(s, χ). Since

L(s, χ0) = ζ(s)
∏

p|D(1 − p−s), this is meromorphic in Re s > 0, with a
single simple pole at s = 1. If L(1, χ) = 0 for some χ 6= χ0 it follows
that f(s) is holomorphic for Re s > 0. Since, for Re s > 1, f(s) =∑
cmm

−s, cm ≥ 0, it follows from Lemma 3.4 that the abscissa of
convergence of this series is ≤ 0. This contradicts Lemma 3.8.

Theorem 3.5 (Dirichlet.) Let 1 ≥ 1, D > 1 be integers with (l, D) = 1.
Then there exist infinitely many primes p ≡ l(mod D).

Proof: For s > 1, we have, by (3.28)

∑

χ∈Ĝ

χ̄(l) logL(s, χ) = h
∑

pm≡1(D)

1

ps
+R1(s)

where |R1(s)| ≤ h
∑

p
1

ps(ps−1) which is bounded as s→ 1 + 0.

Now, the term with χ = χ0 is logL(s, χ0) which tends to ∞ as
s → 1 + 0 by Lemma 3.6. Every other term χ̄(l) logL(s, χ) remains
bounded as s→ 1 + 0 since L(1, χ) 6= 0. Hence

∑

χ

χ̄(l) logL(s, χ) → ∞ as s→ 1 + 0;

since R1(s) is bounded, we conclude that
∑

pm≡l(D)
1
ps → ∞ as s→ 1+0.

Clearly this implies Theorem 3.5.
Proposition 3.16 follows immediately from Proposition 3.9 and The-

orem 3.5, since there exist infinitely many primes p for which (dp) = 1

and infinitely many primes q for which (dq ) = −1.
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