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PREFACE
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by the Tata Institute of Fundamental Research in 1971. The audience
consisted of teachers and research students from Indian universities who
desired to have a general introduction to the subject. The lectures were
given by S.Raghavan, Balwant Singh and R.Sridharan.
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Prerequisites and Notation

We assume that the reader is familiar with elementary algebra, in par-
ticular, with the concepts of groups, rings and modules.

The following notation will be used in the sequel. We denote the
set of natural numbers (resp. non-negative integers, integers, rational
numbers) by N (resp. Z+,Z,Q). For n ∈ N, we write “n ≫ 1” for “all
sufficiently large integers n”. If X is a set, we denote by 1X the identity
map of X. Let F be a set of subsets of a set X. By a minimal (resp. max-
imal) element of F , we mean a minimal (resp. maximal) element under
set-theoretic inclusion. By a ring, we shall always mean a commutative
ring with identity. All ring homomorphisms considered are supposed to
be unitary and, in particular, all modules considered are unitary. If A is
a ring, Spec (A) denotes the set of all prime ideals of A. If φ:A→ B is a
ring homomorphism, then we regard any B-module M as an A-module
by setting ax = φ(a)x for x ∈ M and a ∈ A; in particular, B can be
regarded as an A-module and B becomes an A-algebra.

Let A be a ring and let M,N be A-modules. Then HomA(M,N)
denotes the A-module of all A-homomorphisms from M to N. If f ∈
HomA(M,N), we denote by ker f(resp. Im f, coker f) the kernel of f
(resp. f(M), N/f(M)).



Chapter 0

Preliminaries

In this chapter, we recall some concepts and state (mostly without
proofs) some results from algebra which will be used without explicit
reference in the subsequent chapters.

In this, as well as in the subsequent chapters, by a ring we always
mean a commutative ring with 1, by a homomorphism of rings, a unitary
homomorphism and by a module, a unitary module.

0.1 Functors

Let A,B be rings. A covariant functor F from A-modules to B-modules
is an assignment of

(i) a B-module F (M) to each A-module M , and

(ii) a map F = FM,N : HomA(M,N) → HomB(F (M), F (N)) to each
pair M,N of A-modules.

such that

(a) F (1M ) = 1F (M),

(b) F (gf) = F (g)F (f), for f ∈ HomA(M,N) and g ∈ HomA(N,P )
where M,N,P are A-modules.

If (ii) and (b) above are replaced respectively by

(ii)′ a map F = FM,N : HomA(M,N) → HomA(F (N), F (M)) to each
pair M,N of A-modules, and

1



2 Chapter 0. Preliminaries

(b)′ F (gf) = F (f)F (g), for f ∈ HomA(M,N) and g ∈ HomA(N,P ),
where M,N,P are A-modules,

then we say that F is a contravariant functor from A-modules to B-
modules.

A (covariant or contravariant) functor F from A-modules to B-
modules is said to be additive if FM,N is a homomorphism of groups
for every pair M,N of A-modules. A functor F from A-modules is
said to be A-linear if, for every pair M,N of A-modules, FM,N is an
A-homomorphism.

Let F and G be covariant functors from A-modules to B-modules.
A collection {ϕM :F (M) → G(M)} of B-homomorphisms, where M
runs over all A-modules is said to be functorial in M , if, for every
f ∈ HomA(M,N) the diagram

F (M)
ϕM−→ G(M)

F (f) ↓ ↓ G(f)

F (N)
ϕN−→ F (N)

is commutative. A similar definition can be given for contravariant func-
tors.

In the sequel, unless explicitly stated otherwise, by a functor we
mean a covariant functor. Also, while describing a functor, we shall
sometimes not explicitly mention the assignment (ii) of the definition.

0.2 Exact sequences

Let A be a ring andM, M ′, M ′′ be A-modules. A sequenceM ′ f→M
g→

M ′′ of A-homomorphisms is said to be exact if ker g = im f . Note that
this is equivalent to saying that “gf = 0 and ker g ⊂ im f”. Let

M0 →M1 →M2 → . . .→Mn

be an exact sequence of A-homomorphisms. Let i be an integer with
1 ≤ i ≤ n − 1. We say that the sequence is exact at Mi if Mi−1 →
Mi → Mi+1 is exact. If the sequence is exact at Mi for every i, with
1 ≤ i ≤ n− 1, then we say it is exact.

Let 0 → M ′ f→ M
g→ M ′′ → 0 be an exact sequence of A-modules.

(This precisely means that f is injective, g is surjective and imf = ker g).
We refer to its as a short exact sequence. We say that a short exact
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sequence 0 → M ′ f→ M
g→ M ′′ → 0 splits or that it is a split exact

sequence if there exists an A-homomorphism t:M ′′ → M such that
gt = 1M ′′ . Then, clearly, t is injective and M = f(M ′)⊕ t(M ′′).

Let 0 →M ′ f→M
g→M ′′ → 0 be a split exact sequence of A-modules

and let F be an additive functor from A-modules to B-modules. Then

the sequence 0 → F (M ′)
F (f)−→ F (M)

F (g)−→ F (M ′′) → 0 is again a split
exact sequence.

Let F be an additive functor from A-modules to B-modules. Then F
is said to be right exact, if for every sequence 0 →M ′ →M →M ′′ → 0
the sequence F (M ′) → F (M) → F (M ′′) → 0 is exact. We say F
is exact, if for every exact sequence 0 → M ′ → M → M ′′ → 0, the
sequence 0 → F (M ′) → F (M) → F (M ′′) → 0 is exact. If F is exact
and if M0 → M1 → · · · → Mn is an exact sequence, then it is easily
verified that F (M0) → F (M1) → · · · → F (Mn) is exact.

0.3 Tensor Products

let A be a ring and M,N be A-modules. A tensor product of M and N
over A, is a pair (T, ϕ), where T is an A-module and ϕ:M × N → T
is an A-bilinear map such that, for any A-module P and any A-bilinear
map f :M ×N → P , there exists a unique A-homomorphism f̃ :T → P
which makes the diagram

M ×N

T

ϕ

? f̃ - P

f

-

commutative. (Recall that a map ψ:M ×N → P is A-bilinear if ψ(ax+
by, z) = aψ(x, z) + bψ(y, z) and ψ(x, az + bt) = aψ(x, z) + bψ(x, t) for
x, y ∈M, z, t ∈ N and a, b ∈ A.)

If (T, ϕ), (T ′, ϕ′) are tensor products ofM and N over A, there exist
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unique A-homomorphisms ϕ̃:T ′ → T, ϕ̃:T → T ′ such that the diagram

M ×N

T
ϕ̃ -

�

ϕ

T ′

ϕ′

? ϕ̃ - T

ϕ

-

is commutative. Since the diagrams

M ×N M ×N

T
ϕ̃ϕ̃′

-
�

ϕ

T

ϕ

-

T
1T -

�

ϕ

T

ϕ

-

are both commutative, it follows from the uniqueness condition that
φ̃′ϕ̃ = 1T . Similarly, we have ϕ̃′ϕ̃ = 1T ′ . This proves that, upto
isomorphism, the tensor product of M and N over A is unique, if it
exists. We now show that the tensor product of M and N over A
exists. Let F be the free A-module with the set M × N as a basis
and let H be the submodule of F generated by elements of the form
(ax + by, z) − a(x, z) − b(y, z), (x, az + bt) − a(x, z) − b(x, t), where
x, y ∈ M, z, t ∈ N and a, b ∈ A. Let T = F/H and ϕ:M × N → T
be the composite M × N →֒ F → T , where F → T is the canonical
epimorphism. Then, it is easily seen that (T, ϕ) is a tensor product of
M and N over A.

We denote T by M ⊗AN and call M ⊗AN itself the tensor product
of M and N over A. For (x, y) ∈ M ×N , we denote its image under ϕ
in M ⊗A N by x⊗ y. Note that any element of M ⊗A N is of the form
∑

i xi ⊗ yi, with xi ∈M, y ∈ N .
Let f :M →M ′, g:N → N ′ be homomorphisms of A-modules. Then

the map M × N → M ′ ⊗A N
′ given by (x, y) 7→ f(x) ⊗ g(y) is clearly

A-bilinear and hence induces an A-homomorphism.

f ⊗ g:M ⊗A N →M ′ ⊗A N
′

such that (f ⊗ g)(x ⊗ y) = f(x) ⊗ g(y) for x ∈ M, y ∈ N . It is easily
verified that for a fixed A-module N , the assignment M 7→M ⊗AN for
every A-module M and f 7→ f ⊗ 1N for every f ∈ HomA(M,M ′) is an
A-linear functor from A-modules to A-modules. Similarly, by fixing M ,
we get an A-linear functor N 7→M ⊗A N .
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0.4 Some properties of tensor products

(i) Let M be an A-module. Then the A-bilinear map A × M → M
given by (a, x) 7→ ax induces an A-isomorphism A ⊗A M

∼→ M , which
is functorial in M .

(ii) Commutativity of tensor products. For A-modules M,N the A-
bilinear map M × N → N ⊗A M given by (x, y) 7→ y ⊗ x induces an
A-isomorphism M ⊗AN ≃ N ⊗AM , which is functorial in both M and
N .

(iii) Both the functorsM 7→M⊗AN(for fixed N) and N 7→M⊗AN
(for fixed M) are right exact.

(iv) Let a be an ideal of A and M be an A-module. Then the map
A/a×M 7→M/aM given by (ā, x) 7→ ax is a well-defined A-bilinear map
and induces an isomorphism A/a ⊗A M ≃ M/aM , which is functorial
in M .

(v) LetM =
⊕

iMi, N =
⊕

j Nj be direct sums of A-modules. Then
the A-bilinear map M × N → ⊕

i,jMi ⊗A Nj . given by ((xi), (yj)) 7→
(xi ⊗ yj) induces an isomorphism M ⊗A N ≃ ⊕

ijMi ⊗A Nj .

(vi) Let F be a free A-module with {ei}i∈I as a basis and let A →
B be a ring homomorphism. Then B ⊗A F is a free B-module with
{1⊗ ei}i∈I as a basis.

(vii) Associativity of tensor products. Let A,B be commutative rings,
M an A-module, P a B-module and N , an A–B-bimodule. (Recall that
an A–B-bimodule N is an A-module which is also a B-module such that
a(by) = b(ay), for all y ∈ N, a ∈ A and b ∈ B.) Then, M ⊗A N is an
A-B-bimodule for the B-module structure given by b(x ⊗ y) = x ⊗ by,
for x ∈ M, y ∈ N and b ∈ B. Similarly, N ⊗B P is an A–B-bimodule.
There exists an isomorphism (M ⊗A N)⊗B P ≃M ⊗A (N ⊗B P ) given
by (x ⊗ y) ⊗ z 7→ x ⊗ (y ⊗ z) for x ∈ M, y ∈ N and z ∈ P and this is
functorial in M,N and P .

In view of the associativity of tensor products, we may talk, with-
out ambiguity, of the tensor product M1 ⊗A · · · ⊗A Mr for A-modules
M1,M2, . . . ,Mr.

0.5 Exterior products

Let A be a ring, M an A-module and p ≥ 1 an integer. Let ⊗pM denote
the tensor product of M with itself, p times. An A-homomorphism f of
⊗pM into an A-module N is said to be alternating, if for x1, . . . , xp ∈M ,
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we have f(x1 ⊗ x2 ⊗ · · · ⊗ xp) = 0, whenever xi = xj for some i, j, i 6=
j, 1 ≤ i, j ≤ p.

A p-fold exterior product of M is a pair (Ep, ψ) where Ep is an A-
module and ψ:

⊗pM → Ep is an alternating A-homomorphism, such
that for any alternating A-homomorphism f of ⊗pM into an A-module
N , there exists a unique A-homomorphism f̃ :Ep → N which makes the
diagram

⊗p
M

Ep

ψ

? f̃ - N

f
-

commutative. As in the case of tensor products, it is easy to see that
the p-fold exterior product ofM is unique, if it exists. Let P be the sub-
module of ⊗pM generated by all elements of the form x1⊗x2⊗ · · ·⊗xp
where x1, x2, . . . , xp ∈ M and xi = xj for some i, j with i 6= j. Let
∧pM =

⊗pM/P and ψ:
⊗pM → ∧pM be the canonical homomor-

phism. Then it is easily seen that the pair (
∧pM,ψ) (or briefly

∧pM)
is the p-fold exterior product of M . For x1, . . . , xp ∈ M , the image of
x1 ⊗ · · · ⊗ xp in

∧pM under ψ is denoted by x1 ∧ · · · ∧ xp.
We set

∧0M = A so that
∧pM is defined for all p ∈ Z+. Note that

∧1M =M .
In the sequel, we need the following properties of exterior products.
(i) Let A→ B be a ring homomorphism and let M be an A-module.

Composing the B-isomorphism

p
⊗

(B⊗AM)(= (B⊗AM)⊗B(B⊗AM)⊗B· · ·⊗B(B⊗AM)) ≃ B⊗A(⊗pM)

with the B-homomorphism 1B ⊗ ψ:B ⊗A (⊗pM) → B ⊗A (
∧pM), we

have an alternating B-homomorphism
⊗p(B ⊗A M) → B ⊗A (

∧pM),
which induces a B-isomorphism

∧p(B ⊗AM) ≃ B ⊗A (
∧pM).

(ii) Let M,N be A-modules. Then for 0 ≤ i ≤ p, the map

(M × · · · ×M)
︸ ︷︷ ︸

i times

× (N × · · · ×N)
︸ ︷︷ ︸

p−i times

→
p
∧

(M ⊕N)

given, for x1, . . . , xi ∈M and y1, . . . , yp−i ∈ N , by

((x1, . . . , xi), (y1, . . . , yp−i)) 7→ (x1, 0)∧· · ·∧(xi, 0)∧(0, y1)∧· · ·∧(0, yp−i)
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induces an A-homomorphism (
∧iM)⊗ (

∧p−iN) → ∧p(M ⊕N) and we
have an isomorphism

p
∧

(M ⊕N) ≃
⊕

0≤i≤p

(
i∧
M ⊗

p−i
∧

N).

(iii) If F is a free A-module with a basis of n elements, then
∧n F ≃ A

and
∧i F = 0 for i > n, as may be easily deduced from (ii) above.
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Chapter 1

Some Results from

Commutative Algebra

In this chapter, by a ring we always mean a commutative ring with unit
element (denoted by 1), and by a module, we mean a unitary module.

1.1 Ring of fractions and localization

Let A be a (commutative) ring (with 1). A subset S of A is said to
be multiplicative if 1 ∈ S and for s, s′ ∈ S, we have ss′ ∈ S. Let M
be an A-module and let S be a multiplicative subset of A. On the set
M × S we define a relation as follows: (m, s) ∼ (m′, s′) if there exists
s′′ in S such that s′′(s′m − sm′) = 0. It is easy to verify that ∼ is an
equivalence relation. We denote the set of equivalence classes by S−1M .
If (m, s) ∈M×S, the equivalence class containing (m, s) will be denoted
by m/s.

In particular, if M = A, the above construction leads to the set
S−1A. We define in S−1A, addition and multiplication by

a/s+ a′/s′ = (s′a+ sa′)/ss′

a/s · a′/s′ = aa′/ss′.

It is easily verified that these are well-defined and that S−1A is a
(commutative) ring under these operations. The zero element of S−1A
is 0/1 and the unit element is 1/1. We call the ring S−1A the ring of
fractions of A with respect to S. Note that S−1A = 0 ⇐⇒ 0 ∈ S.

9
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If M is an A-module, the set S−1M is easily verified to be an S−1A-
module under the (well-defined) operations:

m/s+m′/s′ = (s′m+ sm′)/ss′

a/s ·m/s′ = am/ss′.

The S−1A module S−1M will be called the module of fractions of
M with respect to S.

Let p be a prime ideal of a ring A. Then S = A − p is clearly a
multiplicative subset of A. In this case, we denote S−1A by Ap, and
for an A-module M , the module S−1M is denoted by Mp. (If A is an
integral domain, then (0) is a prime ideal and A(0) is the quotient field
of A.)

Let M,N be A-modules and f ∈ HomA(M,N). We define S−1f :
S−1M → S−1N by (S−1f)(m/s) = f(m)/s. It is easily seen that S−1f
is well-defined and that it belongs to Hom S−1A(S

−1M, S−1N).

Proposition 1.1 The assignments M 7→ S−1M, f 7→ S−1f define an
exact functor from A-modules to S−1A-modules.

Proof: The only non-trivial thing to be verified is the following: given
an exact sequence

0 →M ′ f→M
g→M ′′ → 0

of A-modules, the sequence

0 → S−1M ′ S
−1f−→ S−1M

S−1g−→ S−1M ′′ → 0

of S−1A-modules is exact.

Exactness at S−1M ′′. Any element of S−1M ′′ is of the form m′′/s,
with m′′ ∈ M ′′, s ∈ S. Let m ∈ M be such that g(m) = m′′. Then
m′′/s = S−1g(m/s).

Exactness at S−1M . First g ◦ f = 0 implies S−1g ◦ S−1f = S−1(g ◦
f) = 0, so that ImS−1f ⊂ kerS−1g. Let nowm/s ∈ S−1M be such that
S−1g(m/s) = g(m)/s = 0. Then there exists t ∈ S such that g(tm) =
tg(m) = 0. Therefore, there exists m′ ∈M ′ such that tm = f(m′). Now
S−1f(m′/ts) = f(m′)/ts = tm/ts = m/s.

Exactness at S−1M ′. Let m′/s ∈ S−1M ′ be such that f(m′)/s =
S−1f(m′/s) = 0. Then there exists t ∈ S such that f(tm′) = tf(m′) = 0
which implies that tm′ = 0. Hence m′/s = 0.
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This completes the proof of the proposition.
We have a map iM :M → S−1M given by m 7→ m/1. The map

iA:A → S−1A is easily seen to be a ring homomorphism. Thus any
S−1A-module can be regarded as an A-module through iA. In par-
ticular, S−1M is an A-module and it is easily checked that iM is an
A-homomorphism, which is functorial in M .

The map S−1A ×M → S−1M given by (a/s, m) 7→ am/s is well-
defined and is A-bilinear. This induces an A-homomorphism

ϕ:S−1A⊗AM → S−1M given by ϕ(a/s⊗m) = am/s.

Proposition 1.2 The map ϕ is an S−1A-isomorphism and is functorial
in M .

Proof: Since ϕ

(
a′

s′

(a

s
⊗m

))

=
(a′a

s′s
⊗m

)

=
a′am

s′s
=

(a′

s′

)(am

s

)

=

(a′

s′

)

ϕ
(a

s
⊗m

)

, ϕ is an S−1A-homomorphism. The assignment m/s 7→
1/s⊗m is easily seen to be a well-defined map and is the inverse of ϕ.
The functoriality of ϕ is easily checked and the proposition is proved.

Let a be an ideal of A. Then the ideal of S−1A generated by iA(a)
is denoted by aS−1A. Note that aS−1A = S−1a if we regard S−1a as a
subset of S−1A.

If a ∩ S 6= ∅, then aS−1A = S−1A, for if s ∈ a ∩ S then 1 = s · 1/s ∈
aS−1A.

Proposition 1.3 The map ϕ: p 7→ S−1p(= pS−1A) is an inclusion-
preserving bijection of the set of prime ideals p of A with p∩S = ∅ onto
the set of all prime ideals of S−1A.

Proof: For a prime ideal p of A with p ∩ S = ∅, we first assert that
if an element a/s of S−1A is in S−1p, then a ∈ p. For a/s ∈ S−1p =⇒
a/s = p/t for p ∈ p, t ∈ S =⇒ there exists u ∈ S such that uta = usp ∈
p =⇒ a ∈ p since ut ∈ S ⊂ A−p. This implies that S−1p 6= S−1A. Now
(a/s)(a′/s′) ∈ S−1p =⇒ aa′/ss′ ∈ S−1p =⇒ aa′ ∈ p =⇒ either a or a′

is in p =⇒ either a/s or a′/s′ is in S−1p. Further clearly, p1 ⊂ p2 ⇐⇒
S−1p1 ⊂ S−1p2. Let ℘ be a prime ideal of S−1A and let p = i−1

A (℘).
Obviously, p is a prime ideal of A and, further, p ∩ S = ∅. We claim
that the map ℘ 7→ i−1

A (℘) is the inverse of ϕ. First, for a prime ideal
℘ of S−1A, we evidently have i−1

A (℘)S−1A ⊂ ℘. On the other hand,
a/s ∈ ℘ =⇒ a/1 ∈ ℘ =⇒ a ∈ i−1

A (℘) =⇒ a/s ∈ i−1
A (℘)S−1A. Thus,
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℘ = i−1
A (℘)S−1A. Let now p be a prime ideal of A with p ∩ S = ∅.

Clearly, p ⊂ i−1
A (pS−1A). On the other hand, a ∈ i−1

A (pS−1A) =⇒
a/1 ∈ pS−1A =⇒ a ∈ p. This shows that p = i−1

A (S−1p).
A ring A is called a local ring if A 6= 0 and has a unique maximal

ideal.

Corollary 1.4 Let A be a commutative ring and let p be a prime ideal
of A. Then Ap is a local ring with pAp as its unique maximal ideal.

Proof: Observe first that pAp is a prime ideal. Let now ℘ be any
prime ideal of Ap. Then i−1

A (℘) is a prime ideal of A contained in p.
Hence ℘ = i−1

A (℘)Ap ⊂ pAp and the corollary follows.
We call Ap the localization of A at p.

1.2 Noetherian modules

Proposition 1.5 Let A be a ring. For an A-module M , the following
conditions are equivalent:

(i) Every submodule of M is finitely generated:

(ii) M satisfies the ascending chain condition for submodules i.e. every
sequence M0⊂

6=
M1⊂

6=
M2⊂

6=
· · · of submodules of M is finite:

(iii) every nonempty set of submodules of M has a maximal element.

Proof: (i) =⇒ (ii). Let N =
⋃

i≥0Mi ; it is easy to see that N is
a submodule of M . Let {n1, n2, . . . , nr} be a set of generators of N .
There exists Mp such that n1, n2, . . . , nr are all contained in Mp. Thus
N ⊂Mp ⊂ N =⇒ N =Mp =⇒Mp =Mp+1 = · · ·.

(ii) =⇒ (iii). Let F be a nonempty set of submodules of M . Take
M0 ∈ F . If M0 is maximal in F , we are through. Otherwise, choose M1

in F such that M0⊂
6=
M1. If M1 is maximal, we are done. Otherwise,

there exists M2 in F such that M1⊂
6=
M2. Proceeding this way, we get

a sequence M0⊂
6=
M1⊂

6=
M2⊂

6=
· · · which by (ii), is necessarily finite. The

last element in the sequence is maximal in F .
(iii) =⇒ (i). Since condition (iii) holds also if M is replaced by any

submodule, it is enough to show that M is finitely generated. Let F
be the family of all finitely generated submodules of M ; clearly, F is
nonempty. By (iii), there exists a maximal element N in F . If N 6=M ,
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there exists m ∈ M , m 6∈ N the submodule generated by N and m
belongs to F and contains N property. This contradiction proves that
M is finitely generated.

An A-module M is said to be noetherian if it satisfies any one of the
three equivalent conditions of Proposition 1.5. A ring A is noetherian if
it is a noetherian A-module.

Proposition 1.6 Let 0 →M ′ f→M
g→M ′′ → 0 be an exact sequence of

A-modules. Then M is noetherian if and only if M ′,M ′′ are noetherian.

Proof: Let M be noetherian. Since any submodule N ′ of M ′ can be
identified with a submodule ofM , it follows that N ′ is finitely generated
and hence M ′ is noetherian. Since any submodule of M ′′ is the image
of a submodule of M , it is finitely generated. Hence M ′′ is noetherian.

Let M ′,M ′′ be noetherian. Let N be any submodule of M . Let
n1, . . . , ns ∈ N be such that g(n1), . . . , g(ns) generate the submodule
g(N) ofM ′′ and let ns+1, . . . , nr ∈ N be such that f−1(ns+1), . . . , f

−1(nr)
generate the submodule f−1(N) of M ′. It is easy to see that n1, . . . , nr
generate N . Hence M is noetherian.

Proposition 1.7 Let A be a noetherian ring and M a finitely generated
A-module. Then M is noetherian.

Proof: LetM be generated by n elements. The proposition is proved
by induction on n. If n = 1, then M is isomorphic to a quotient of
the noetherian module A and hence is noetherian, by Proposition 1.6.
Let n > 1, and let M be generated by x1, . . . , xn. Let M ′ = Ax1
and M ′′ = M/M ′. By our earlier remark M ′ is noetherian. Since
M ′′ is generated by the images of x2, . . . , xn in M ′′, it is noetherian by
the induction hypothesis. From Proposition 1.6. it follows that M is
noetherian.

Proposition 1.8 Let S be a multiplicative subset of a noetherian ring
A. Then S−1A is noetherian. In particular, the localization of a noethe-
rian ring at a prime ideal is noetherian.

Proof: Let b be an ideal of S−1A and let a1, . . . , ar in A generate the
ideal i−1

A (b) of A. Clearly, a1/1, . . . , ar/1 generate the ideal b.

Theorem 1.9 (Hilbert basis theorem) Let A be a noetherian ring. Then
the polynomial ring A[X1, . . . , Xn] in n variables over A is noetherian.
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Proof: By induction on n, it is sufficient to prove the theorem for n =
1, i.e. that the polynomial ring B = A[X] in one variable is noetherian.
Let b be an ideal of B, we will show that b is finitely generated. Let a =
{0}⋃{leading coefficients of elements of b}. It is clear that a is an ideal
of A. If a = 0, then b = 0 and there is nothing to prove. Let then a 6= 0.
Since a is finitely generated, there exist in A non-zero elements c1, . . . , cr
such that a = (c1, . . . , cr); let fi ∈ b with leading coefficient ci for 1 ≤ i ≤
r. Let N = maxi(deg fi). We claim that b = (f1, . . . , fr)+b′ where b′ =
b∩(A+AX+· · ·+AXN−1). To prove this, it is enough to show that any
f = amX

m+· · ·+a0 in b belongs to (f1, . . . , fr)+b′. Ifm ≤ N−1, this is
clear. Let then m ≥ N and let am =

∑

1≤i≤r dici, di ∈ A. Then deg(f−
∑

1≤i≤r diX
m−deg fifi) ≤ m − 1 and hence, by induction on m, f −

∑

1≤i≤r diX
m−deg fifi belongs to (f1, . . . , fr) + b′ and consequently, so

does f . Being an A-submodule of A + AX + · · · + AXn−1, b′ has, by
Proposition 1.7, a finite set of generators g1, . . . , gs over A. It is clear
that f1, . . . , fr, g1, . . . , gs generate the ideal b.

Corollary 1.10 Let A be a noetherian ring and B a finitely generated
A-algebra. Then B is noetherian.

Proof: We first remark that if A is a noetherian ring and A → B
is a surjective ring homomorphism then B is noetherian. The proof is
one the same lines as in Proposition 1.6. Since any finitely generated
A-algebra is a quotient of a polynomial ring A[X1, . . . , Xn], the corollary
follows.

1.3 Some lemmas

Let A be a ring. The intersection of all maximal ideal of A is called the
Jacobson radical of A and is denoted by r(A) or simply, by r.

Note that if a ∈ r(A), then 1− a is invertible.

Lemma 1.11 (Nakayama). Let M be a finitely generated A-module. If
rM =M , then M = 0.

Proof: Let, if possible, M 6= 0 and let x1, . . . , xn be a minimal set of
generators for M . Since M = rM , we have x1 =

∑

1≤i≤n aixi with ai ∈
r. This gives (1− a1)x1 =

∑

2≤i≤n aixi, i.e. x1 =
∑

2≤i≤n(1− a1)
−1aixi

so that x2, . . . , xn generate M , which is a contradiction.
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Lemma 1.12 Let a, b0, b1, . . . , bn be ideals of a ring A with b0 prime
and a ⊂ ⋃

0≤i≤n bi. Then there exists a proper subset J of {0, 1, 2, . . . , n}
such that a ⊂ ⋃

j∈J bj.

Proof: If the result is false, then, for every i with 0 ≤ i ≤ n, there
exists ai ∈ a − ⋃

j 6=i bj . Clearly ai ∈ bi. Let a = a0 + a1a2 · · · an. Then
a ∈ a and hence a ∈ bi for some i. If a ∈ b0 then a1a2 · · · an ∈ b0. Since
b0 is prime, this implies that ai ∈ b0 for some i ≥ 1, which is impossible.
Let than a ∈ bi for some i ≥ 1. Then a0 ∈ bi which is again impossible.

Lemma 1.13 Let M,N be non-zero finitely generated modules over a
local ring A. Then M ⊗A N 6= 0.

Proof: Let m be the maximal ideal of A. By Nakayama’s lemma,
M/mM 6= 0 and N/mN 6= 0. Since these are vector spaces over the field
A/m, we have (M/mM) ⊗A/m (N/mN) 6= 0, i.e. (M ⊗A N)/m(M ⊗A

N) 6= 0. Hence M ⊗A N 6= 0.

1.4 Primary decomposition

Let A be a (commutative) ring (with 1) and let M be an A-module. For
any a ∈ A, the map aM :M → M , defined by aM (x) = ax for x ∈ M ,
is an A-homomorphism and is called the homothesy by a. Let N be
a submodule of M . We say that N is primary in M (or a primary
submodule of M) if N 6= M and for any a ∈ A, the homothesy aM/N

is either injective or nilpotent. By a primary ideal of A, we mean a
primary submodule of A.

Proposition 1.14 Let N be a primary submodule of an A-module M
and let p = {a ∈ A | aM/N is not injective}. Then p is a prime ideal of
A.

Proof: Since N is primary in M , we have p = {a ∈ A | aM/N is
nilpotent }. From this, it trivially follows that p is a proper ideal. Let
a, b ∈ A with a 6∈ p, b 6∈ p. Then aM/N and bM/N are both injective and
hence, so is abM/N = aM/N ◦ bM/N . Thus ab 6∈ p, so that p is prime.

For a primary submodule N of M , the prime ideal p defined in
Proposition 1.14, is called the prime ideal belonging to N in M and we
say N is p-primary (in M).

Let N be a submodule of M . A decomposition of the form N =
N1 ∩ N2 ∩ · · ·Nr where Ni, 1 ≤ i ≤ r are primary submodules of M ,
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is called a primary decomposition of N (in M). This decomposition is
said to be reduced (or irredundant) if (i) N cannot be expressed as the
intersection of a proper subset of {N1, N2, . . . , Nr} and (ii) the prime
ideals p1, . . . , pr belonging respectively to N1, . . . , Nr in M are distinct.

Proposition 1.15 Let M be a noetherian A-module. Then any proper
submodule of M admits of a reduced primary decomposition.

To prove this proposition, we need a few lemmas.

Lemma 1.16 Let N1, . . . , Nr be p-primary submodule ofM . Then N =
N1 ∩ · · · ∩Nr is p-primary.

Proof: Let a ∈ p. Then there exists ni ∈ N such that (aM/Ni
)ni = 0,

for 1 ≤ i ≤ r. Let n = max1≤i≤r ni. Clearly, (aM/N )
n = 0. Let now

a 6∈ p. If x ∈ M, x 6∈ N , then there exists i such that x 6∈ Ni. Since Ni

is p-primary, we have ax 6∈ Ni and a fortiori, ax 6∈ N . This proves that
aM/N is injective. Hence N is p-primary.

A submodule N of M is said to be irreducible if (i) N 6= M and
(ii) N cannot be expressed as N = N1 ∩ N2 with submodules N1, N2

containing N properly.

Lemma 1.17 Any irreducible submodule N of noetherian module M is
primary.

Proof: Let, if possible, N be not primary. Then there exists a ∈
A such that aM/N is neither injective nor nilpotent. The sequence of
submodules ker arM/N , r = 1, 2, . . ., is clearly increasing. Since M is

noetherian, there exists r such that ker arM/N = ker ar+1
M/N = · · ·. Let

ϕ = arM/N . Then kerϕ = kerϕ2. We claim that kerϕ ∩ imϕ = 0. In

fact, x ∈ kerϕ ∩ Imϕ =⇒ ϕ(x) = 0 and x = ϕ(y) for y ∈ M/N =⇒
y ∈ kerϕ2 = kerϕ =⇒ x = ϕ(y) = 0. Further, since aM/N is neither
injective nor nilpotent, we have kerϕ 6= 0, Imϕ 6= 0. Let η:M →M/N
be the canonical homomorphism. Then N = η−1(0) = η−1(kerϕ) ∩
η−1(Imϕ). Since η−1(kerϕ) and η−1(Imϕ) both contain N properly,
this contradicts irreducibility of N and proves the lemma.

Lemma 1.18 Let M be a noetherian A-module. Then any proper sub-
module of M is finite intersection of irreducible submodules.
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Proof: Let F be the set of proper submodules of M which cannot be
expressed as a finite intersection of irreducible submodules. If possible,
let F 6= ∅. Then, M being noetherian F contains maximal element N .
Clearly N is not irreducible. Let N = N1 ∩N2 with submodules N1, N2

containing N properly. The maximality of N implies that both N1 and
N2 can be expressed as finite intersection of irreducible submodules.
Hence N itself is such a finite intersection. This contradiction shows
that F = ∅ and proves the lemma.

Proof of Proposition 1.15. From Lemmas 1.18 and 1.17, it follows
that any proper submodule N admits of a primary decomposition, N =
N1 ∩ · · · ∩Nr. In view of Lemma 1.16, we may, after grouping together
all the p-primary submodules with the same prime ideal p, assume that
the prime ideals belonging to Ni are distinct. Now by deleting some of
the N ′

i if necessary, we get a reduced primary decomposition for N . This
completes the proof of the proposition.

LetM be an A-module. A prime ideal p of A is said to be associated
to M , if there exists x 6= 0 in M such that p is the annihilator of x, i.e.
p = {a ∈ A | ax = 0}. We denote by Ass(M) the set of all prime ideals
of A associated to M . Note that p ∈ Ass(M) if and only if there exists
an A-monomorphism A/p →M .

Proposition 1.19 Let A be a noetherian ring and M a finitely gen-
erated A-module. Let 0 = N1 ∩ · · · ∩ Nr be a reduced primary decom-
position of 0 in M , with Ni being pi-primary for 1 ≤ i ≤ r. Then
Ass(M) = {p1, p2, . . . , pr}. In particular, Ass(M) is finite, moreover,
M = 0 if and only if Ass(M) = ∅.

Proof: Let p ∈ Ass(M). Then there exists x 6= 0 in M such that p is
the annihilator of x. Since x 6= 0, we may assume that x 6∈ N1∪· · ·∪Nj ,
x ∈ Nj+1 ∩ · · · ∩ Nr for some j with 1 ≤ j ≤ r. For any a ∈ pi,
the homothesy aM/Ni

is nilpotent. Since pi is finitely generated, there
exists ni ∈ N such that pni

i M ⊂ Ni. Clearly,
∏

1≤i≤j p
ni

i x ⊂ (N1 ∩ · · · ∩
Nj)

⋂
(Nj+1 ∩ · · · ∩Nr) = 0. Thus

∏

1≤i≤j p
ni

i ⊂ p which implies pk ⊂ p

for some k with 1 ≤ k ≤ j. On the other hand, px = 0 implies that the
homothesy aM/Nk

is not injective, for every a ∈ p. Therefore p ⊂ pk, i.e.
p = pk. This proves that Ass(M) ⊂ {p1, . . . , pr}.

We now show that pi ∈ Ass(M) for 1 ≤ i ≤ r. It is enough to prove
that p1 ∈ Ass(M). Since the given primary decomposition is reduced
there exists x ∈ N2 ∩ · · · ∩ Nr, x 6∈ N1. As N1 is p1-primary, it is
easy to see as above that there exists n ∈ N such that pn1x ⊂ N1 and
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pn−1
1 x 6⊂ N1. Let y ∈ pn−1

1 x, y 6∈ N1. Then clearly p1 is contained in
the annihilator of y. On the other hand, if a ∈ A is such that ay = 0,
then aM/N1

, is not injective which implies that a is in p1. Thus p1 is the
annihilator of y which shows that p1 ∈ Ass(M).

Corollary 1.20 Let A be a noetherian ring and N be a submodule of
a finitely generated A-module M with reduced primary decomposition
N = N1 ∩ · · · ∩ Nr. Then Ass(M/N) = {p1, . . . , pr} where pi are the
prime ideals belonging to Ni in M , for 1 ≤ i ≤ r. In particular, the set
{p1, . . . , pr} of prime ideals corresponding to a reduced primary decom-
position of N is independent of the decomposition.

Proof: This follows from the proposition above, by observing that
0 = (N1/N) ∩ · · · ∩ (Nr/N) is a reduced primary decomposition of 0 in
M/N and that Ni/N are pi-primary, in M/N for 1 ≤ i ≤ r.

An element a ∈ A is said to be a zero divisor of an A-module M , if
there exists x ∈M, x 6= 0. such that ax = 0.

Proposition 1.21 Let A be a noetherian ring and M , a finitely gener-
ated A-module. Then the set of zero-divisors of M is

⋃

p∈Ass(M) p.

Proof: Let a ∈ p for some p ∈ Ass(M). Let p be the annihilator of
x ∈ M, x 6= 0. Then ax = 0. Conversely, let a be a zero-divisor of M
and let x ∈ M, x 6= 0 be such that ax = 0. Let 0 = N1 ∩ · · ·Nr be a
reduced primary decomposition of 0 in M . Then x 6∈ Ni for some Ni.
Let pi be the prime ideal belonging to Ni in M . By Proposition 1.19,
pi ∈ Ass(M). Now since ax = 0 the homothesy aM/Ni

is not injective
and a ∈ pi.

Let A be a ring. We recall that Spec (A) denotes the set of all prime
ideals of A.

The nilradical n(A) of a ring A is defined to be the subset {a ∈ A |
an = 0 for some n ∈ N} of A; clearly n(A) is an ideal of A.

Proposition 1.22 Let A be a ring. Then

n(A) =
⋂

p∈Spec (A)

p

Proof: Let a ∈ n(A). Then an = 0 for some n ∈ N ⇒ an ∈ p for
every p ∈ Spec (A) ⇒ a ∈ p for every p ∈ Spec (A). Conversely, let
a ∈ p for every p ∈ Spec (A) and let S be the multiplicative subset
{1, a, a2, · · ·} of A. Since S ∩ p 6= ∅ for every p ∈ Spec (A) we have by
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Proposition 1.3 that Spec (S−1A) = ∅. Hence S−1A = 0 which implies
that 0 ∈ S i.e., a ∈ n(A).

Let a be an ideal of a ring A. The radical
√
a of a is defined by√

a = {a ∈ A | an ∈ a for some n ∈ N}. Clearly
√
a is an ideal of A

containing a and
√
a/a = n(A/a).

Corollary 1.23 to Proposition 1.22. Let a be an ideal of A. Then
√
a =

⋂

p∈ Spec (A)
p⊃a

p

Proof: Immediate.
For an A-module M , we define the annihilator ann (M), by ann

(M) = {a ∈ A | aM = 0}. Clearly ann M is an ideal of A.

Proposition 1.24 Let A be a noetherian ring, M , a finitely generated
A-module and let a = ann M . Then

√
a =

⋂

p∈Ass(M)

p

Proof: If M = 0, Ass(M) = ∅, a = A and there is nothing to prove.
LetM 6= 0 and let 0 = N1∩· · ·∩Nr be a reduced primary decomposition
of 0 in M, Ni being pi-primary for 1 ≤ i ≤ r. By Proposition 1.19,
Ass(M) = {p1, p2, . . . , pr}.

Let a ∈ √
a. Then anM = 0 for some n ∈ N ⇒ the homoth-

esy aM/Ni
is nilpotent for every i ⇒ a ∈ ⋂

p∈AssM p. Conversely,
a ∈ ⋂

p∈Ass(M) p ⇒ there exists ni ∈ N such that ani

M/Ni
= 0, 1 ≤ i ≤ r.

Let n = max1≤i≤r ni. Then a
nM ⊂ ⋂

1≤i≤rNi = 0, i.e. a ∈ √
a.

Corollary 1.25 For a noetherian ring A, we have n(A) =
⋂

p∈Ass(A) p.

Proof: Note that ann (A) = 0 and n(A) =
√
0.

Let M be an A-module. The set {p ∈ Spec (A) | Mp 6= 0} is called
the support of M and is denoted Supp (M).

Proposition 1.26 Let M be an A-module. Then the A-homomorphism
M

ϕ→ ∏

p∈ Spec (A)Mp induced by the canonical homomorphisms M →
Mp is injective. In particular, M = 0 if and only if Supp (M) = ∅.
Proof: Let x ∈M be such that ϕ(x) = 0. This means that, for every
p ∈ Spec (A), there exists sp ∈ A − p such that spx = 0. Thus ann
(Ax) 6⊂ p, for every p ∈ Spec (A), so that ann (Ax) = A and x = 0.
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Proposition 1.27 Let A be a noetherian ring and M a finitely gener-
ated A-module. For p ∈ SpecA, the following conditions are equivalent:

(i) p ∈ Supp (M);

(ii) there exists p′ ∈ Ass(M) such that p ⊃ p′;

(iii) p ⊃ ann (M).

Proof: (i) ⇒ (ii). Let Ass (M) = {p1, . . . , pr}. If (ii) does not hold,
p 6⊃ ⋂

1≤i≤r pi. This implies, by Proposition 1.24, that p 6⊃ ann (M) and
consequently Mp = 0, contradicting (i).

(ii) ⇒ (iii). Clearly p ⊃ p′ −→ p ⊃
√

ann (M) by Proposition 1.24,

(iii) ⇒ (i). LetMp = 0. Let {x1, . . . , xr} be a set of generators ofM .
There exists si ∈ A−p such that sixi = 0. Then s = s1 · · · sr ∈ ann (M).
This contradicts (iii), since s 6∈ p.

Corollary 1.28 We have Ass(M) ⊂ Supp (M). The minimal elements
of Supp (M) belongs to Ass(M) and they are precisely the minimal ele-
ments of Supp (M).

Proof: Immediate from (ii) of Proposition 1.27.

Proposition 1.29 Let 0 → M ′ → M → M ′′ → 0 be an exact sequence
of A-modules. Then Supp (M) = Supp (M ′) ∪ Supp (M ′′). If N1, N2

are finitely generated A-modules, then Supp(N1 ⊗A N2) = Supp(N1) ∩
Supp (N2).

Proof: For p ∈Spec(A), we have by Proposition 1.1, the exact se-
quence 0 →M ′p → Mp →M ′′p → 0. Now p ∈ Supp (M) ⇔ Mp 6= 0 ⇔
either M ′

p 6= 0 or M ′′
p 6= 0 ⇔ p ∈ Supp (M ′)∪Supp (M ′′). We now prove

the second assertion. For p ∈ Spec (A), we have

(N1)p ⊗Ap
(N2)p ≃ (Ap ⊗A N1)⊗Ap

(Ap ⊗A N2) ≃ Ap ⊗A (N1 ⊗A N2)

≃ (N1 ⊗A N2)p

Thus p ∈ Supp((N1⊗AN2) ⇔ (N1⊗AN2)p 6= 0 ⇔ (N1)p⊗Ap
(N2)p 6=

0 ⇔ (N1)p 6= 0, (N2)p 6= 0, by Lemma 1.13 ⇔ p ∈Supp(N1)∩Supp(N2).
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1.5 Artinian modules and modules of

finite length

An A-moduleM is artinian ifM satisfies the descending chain condition
for submodules, i.e. every sequence M0⊃

6=
M1⊃

6=
M2⊃

6=
of submodules of

M is finite. A ring A is artinian, if it is artinian as an A-module.

An A-module M is of finite length if it possesses a Jordan-Hölder
series (i.e. there exists a sequence M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0
of submodules of M such that Mi/Mi+1 is a simple A-module for i =
0, 1, 2, . . . , n− 1).

It is well-known that if a module M has two Jordan-Hölder series
M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 and M = M ′

0 ⊃ M ′
1 ⊃ · · · ⊃ M ′

m = 0
then m = n and there exists a permutation σ of {0, 1, 2, . . . , n− 1} such
that Mi/Mi+1 ≃ Mσ(i)/Mσ(i)+1. The integer n is called the length of
the module M and denoted ℓA(M).

Proposition 1.30 Let 0 → M ′ f→ M
g→ M ′′ → 0 be an exact sequence

of A-modules. Then (i) M is artinian if and only if M ′ and M ′′ are
artinian, and (ii) M is of finite length if and only if M ′ and M ′′ are of
finite length and, in this case, ℓA(M) = ℓA(M

′) + ℓA(M
′′).

Proof: (i) Let M be artinian. It is clear that M ′ is artinian. Let
M ′′

0 ⊃
6=
M ′′

1 ⊃
6=
· · · be an infinite sequence of submodules of M ′′ and let

Mi = g−1(M ′′
i ). Then Mi⊃

6=
Mi+1 and we get an infinite sequence M0⊃

6=

M1⊃
6=
· · · of submodules of M , which is a contradiction.

Conversely, letM ′ andM ′′ be both artinian. LetM0⊃
6=
M1⊃

6=
· · · be a

descending sequence of submodules ofM . LetM ′′
i = g(Mi), i = 0, 1, . . ..

Since M ′′ is artinian, there exists i0 such that M ′′
i = M ′′

i+1 for i ≥ i0,
i.e. Mi +M ′ = Mi+1 +M ′ for i ≥ i0. Since M ′ is artinian, we also
have f−1(Mi) = f−1(Mi+1) for i ≥ i1, for some i1. It is easy to see that
Mi =Mi+1 for i ≥ max(i0, i1).

(ii) is well-known.

Proposition 1.31 Let M be an A-module. The following conditions
are equivalent:

(i) M is artinian;
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(ii) every non-empty family of submodules of M contains a minimal
element.

Proof: (i)⇒ (ii) Let F be a non-empty family of submodules of M .
Let M0 ∈ F . If M0is not minimal, there exists M1 ∈ F such that
M0⊃

6=
M1. If M1 is not minimal in F there exists M2 ∈ F such that

M1⊃
6=
M2. Since M is artinian, this process must terminate, i.e. F

contains a minimal element.

(ii)⇒ (i) Let, if possible, M0⊃
6=
M1⊃

6=
· · · be an infinite sequence of

submodules of M . Let Mn be a minimal element in the family {Mi | i ∈
Z+}. Then Mn =Mn+1 = · · ·, a contradiction. Thus M is artinian.

Proposition 1.32 Let A be a noetherian ring and M a finitely gen-
erated A-module. Then M is of finite length if and only if every p ∈
Supp (M) is a maximal ideal.

Proof: Let M be of finite length. If M = 0, then Supp (M) = ∅
and the assertion is trivial. Let ℓA(M) = 1. Then M ≃ A/m for some
maximal ideal m and Supp(M) = {m}. Assume now that ℓA(M) >
1. Let M ′ 6= 0 be a proper submodule of M . Then the exact se-
quence 0 → M ′ → M → M/M ′ → 0 gives by Proposition 1.29 that
Supp (M) = Supp(M ′) ∪ Supp(M/M ′). Since by Proposition 1.30
ℓA(M

′) and ℓA(M/M ′) are both strictly less than ℓA(M), it follows by
induction on ℓA(M) that any p ∈ SuppM is maximal.

Conversely, suppose that every p ∈ Supp (M) is maximal. If M = 0,
there is nothing to prove. Let M 6= 0 be generated by x1, . . . , xn. We
use induction on n. If n = 1, then M ≃ A/a for an ideal a of A.
Let a = a1 ∩ · · · ∩ ar be a reduced primary decomposition of a with ai
being pi-primary. By hypothesis, all the pi are maximal. We have a
monomorphism A/a → ⊕

iA/ai. It is therefore enough to show that
each A/ai is of finite length. Since A is noetherian and since for any
x ∈ pi some power of x is in ai, we have pmi ⊂ ai for some m ∈ N.
We have an epimorphism A/pmi → A/ai. By Proposition 1.30, it is
enough to prove that ℓA(A/p

m
i ) is finite. We do this by induction on

m. Since pi is maximal, A/pi is of finite length. In view of the exact
sequence 0 → pm−1

i /pmi → A/pmi → A/pm−1
i → 0 it is enough to show

that pm−1
i /pmi is of finite length. Since pi is finitely generated, pm−1

i /pmi
is finitely generated over A/pi and hence is of finite length as an A/pi-
module and therefore as an A-module.
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Let n > 1. Let M ′ = Ax1. Then we have the exact sequence 0 →
M ′ → M → M/M ′ → 0 and by Proposition 1.29, Supp (M) = Supp
(M ′) ∪ Supp(M/M ′). Since M ′ and M/M ′ are both generated by less
than n elements, it follows by induction that both M ′ and M/M ′ are of
finite length and therefore by Proposition 1.30 so is M .

Proposition 1.33 Every artinian ring is of finite length.

Proof: Let A be an artinian ring, and let r = r(A) be its Jacobson
radical. We claim that rn = 0 for some n ∈ N. Consider the descending
sequence r ⊃ r2 ⊃ r3 ⊃ · · ·. Since A is artinian, there exists n ∈ N such
that a = rn = rn+1 = · · ·. If a 6= 0, then the set of ideals b such that
ab 6= 0 is nonempty and has, by Proposition 1.31, a minimal element
c. We claim that c is principal. Let x ∈ c with ax 6= 0. Then by the
minimality of c we have c = Ax. Also, we have a(ac) = a2c = ac 6= 0.
Again by the minimality of c, we have ac = c. By Nakayama’s lemma we
have c = 0 which is a contradiction. Thus rn = 0. Let F be the family
of finite intersections of maximal ideals. By Proposition 1.31, F has a
minimal element which is clearly r. Let r = m1∩· · ·∩ms with m1, . . . ,ms

maximal. We then have an A-monomorphism A/r → ⊕

iA/mi. Since
A/mi is simple for every i, it follows by Proposition 1.30, that A/r is of
finite length. Since A is artinian, we have rj is artinian for every integer
j ≥ 0 and hence rj/rj+1 is artinian as an A/r-module. Since A/r is
semi-simple, rj/rj+1 is a semi-simple artinian module and is hence of
finite length. Considering the sequence A ⊃ r ⊃ r2 ⊃ · · · ⊃ rn = 0, we
conclude that A is of finite length.

Corollary 1.34 Every artinian ring is noetherian.

Proof: In fact, any strictly ascending sequence of ideals can be refined
to a Jordan-Hölder series for the ring (as a module over itself).

Corollary 1.35 Any finitely generated module over an artinian ring is
of finite length.

Proof: Easy induction on the number of generators for the module.
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1.6 Graded and filtered modules, Artin-Rees

Theorem

Let A be a ring. A gradation on A is a decomposition A =
⊕

n≥0An of
A as a direct sum of subgroups An of A, where n runs over the set Z+ of
all non-negative integers, such that AmAn ⊂ Am+n for all m,n ∈ Z+. A
ring with a gradation is called a graded ring. Let A =

⊕

nAn be a graded
ring. The non-zero elements of An are called homogeneous elements of
A of degree n. We call An the nth homogeneous component of A.

Proposition 1.36 A0 is a subring and 1 ∈ A0. Moreover, each An is
an A0-module and A is an A0-algebra.

Proof: Let 1 = e0 + e1 + · · ·+ en where ei ∈ Ai. For any a ∈ Aj , we
have a = a · 1 = ae0 + ae1 + · · · + aen with aei ∈ Aj+i. It follows that
a = ae0 and consequently b = be0, for every b ∈ A. This proves that
1 = e0 ∈ A0. The rest of the proposition is clear since A0An ⊂ An for
every n ∈ Z.

Let A be as above and let k → A0 be a ring homomorphism. Then
it is clear from the above proposition that A is a k-algebra and we refer
to A as a graded k-algebra.

Let A =
⊕

n≥0An be a graded ring and let M be an A-module. An
A-gradation on M is a decomposition M =

⊕

n≥0Mn of M as a direct
sum of subgroupsMn ofM such that AmMn ⊂Mm+n for all m,n ∈ Z+.
Such a module is called a graded A-module. We note that each Mn is an
A0-module.

Let M =
⊕

n≥0Mn and N =
⊕

n≥0Nn be two graded A-modules.
A homomorphism f :M → N of graded A-modules of degree r is an A-
homomorphism such that f(Mn) ⊂Mn+r, for every n ∈ Z+. If r = 0, f
is simply called a homomorphism of graded modules.

Let A =
⊕

nAn and B =
⊕

nBn be two graded rings. A ring
homomorphism f :A → B is called a homomorphism of graded rings if
f(An) ⊂ Bn, for every n ∈ Z+.

Let A =
⊕

nAn be a graded ring and M =
⊕

nMn, a graded A-
module. A submodule N of M is called a graded submodule if N =
⊕

n(N ∩ Mn). An ideal which is a graded submodule of A is called
a homogeneous ideal of A. If N is a graded submodule of M , then
M/N has an A-gradation induced from that of M , namely M/N =
⊕

n(Mn + N)/N . Let f :M → M ′ be a homomorphism of graded A-
modules M,M ′. Then ker f and im f are clearly graded submodules of
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M and M ′ respectively.

Proposition 1.37 (i) Let A =
⊕

nAn be a graded ring and M =
⊕

nMn a graded A-module. If M is noetherian, then each Mn is
a finitely generated A0-module.

(ii) Assume that A is generated by A1 as an A0-algebra. Then A is
noetherian if and only if A0 is noetherian and A − i is a finitely
generated A0-module.

Proof:

(i) Let n ∈ Z+ and let N =
⊕

m≥nMm. Then N is clearly a sub-
module of M . Since M is noetherian, N is finitely generated. Let
x1, . . . , xr generate N . Write xi = yi + zi with yi ∈ Mn and zi ∈
⊕

m≥n+1Mm, 1 ≤ i ≤ r. We claim that Mn is generated over A0

by y1, . . . , yr. For, let t ∈Mn. Then t =
∑

1≤i≤r aixi with ai ∈ A.
Let us write ai = bi+ci with bi ∈ A0 and ci ∈

⊕

m≥1Am, 1 ≤ i ≤ r.
Clearly t =

∑

1≤i≤r biyi.

(ii) Let A+ =
⊕

m≥1Am. Then A+ is an ideal of A and A0 ≃ A/A+.
Therefore if A is noetherian, A0 is noetherian. Also, by taking
M = A, it follows from (i) that each An (in particular, A1) is
finitely generated over A0.

Conversely, suppose A0 is noetherian and A1 is a finitely generated
A0-module. Let x1 . . . xr generate A1 over A0. Since A1 generates A as
an A0-algebra, we have A = A0[x1, . . . , xr] and it follows, by Corollary
to Theorem 1.10, that A is noetherian.

This completes the proof of the proposition.
Let A be a ring. A filtration on A is sequence A = A0 ⊃ A1 ⊃

A1 ⊃ · · · ⊃ An ⊃ · · · of ideals of A such that AmAn ⊂ Am+n for
all m,n ∈ Z+. A ring with a filtration is called a filtered ring. Let
A be a filtered ring. A filtration on an A-module M is a sequence
M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mn ⊃ · · · of submodules Mn such that
AmMn ⊂ Mm+n for all m,n ∈ Z+. An A-module with a filtration is
called a filtered module.

Let A be a filtered ring and a an ideal of A. Let M be a filtered A-
module with filtration M =M0 ⊃M1 ⊃ · · ·. We say that this filtration
if compatible with a if aMn ⊂ Mn+1 for every n ≥ 0. We say that the
filtration is a-good if it is compatible with a and for n ≫ 1 (i.e. for n
sufficiently large), aMn =Mn+1.
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Let A be a ring and M an A-module. Let a be an ideal of A. Then
a defines a filtration A = a0 ⊃ a ⊃ a2 ⊃ · · · on A and a filtration
M = a0M ⊃ aM ⊃ a2M ⊃ · · · on M , called the a-adic filtrations.
Clearly an a-adic filtration is a-good.

Let A be a ring and a an ideal of A. Let M be an A-module with a
filtration M = M0 ⊃ M1 ⊃ · · · compatible with a. Consider the direct
sum Ā = A ⊕ a ⊕ a2 ⊕ · · ·. We make Ā into a graded ring under the
multiplication induced by that in A. Let M̄ =M0⊕M1⊕M2⊕· · ·. The
A-module structure on M induces the structure of a graded Ā-module
on M̄ .

Lemma 1.38 Let a be an ideal of A and let M be a noetherian A-
module with a filtration M = M0 ⊃ M1 ⊃ · · · compatible with a. Then
M̄ is finitely generated as an Ā-module if and only if the filtration is
a-good.

Proof: Let M̄ be finitely generated over Ā. Then there exists n ∈ Z+

such that M0 ⊕ · · · ⊕Mn generates M̄ over Ā. We claim that aMm =
Mm+1, for m ≥ n. Let x ∈ Mm+1. Then we can write x =

∑

i aixi
where xi ∈ M are homogeneous of degree di ≤ n and ai ∈ am+1−di for
every i. We can write ai =

∑

j bi,jci,j with bi,j ∈ a and ci,j ∈ am−di .
Thus x =

∑

i,j bi,j(ci,jxi) ∈ aMm. It follows that the filtration is a-good.
Conversely, let the filtration be a-good. Then there exists n ∈ Z+ such
that for m ≥ n, we have aMm = Mm+1. Since M is noetherian, the A-
moduleM0⊕M1⊕+ · · ·⊕Mn is finitely generated. Since aMm =Mm+1

for m ≥ n, M0 ⊕M1 ⊕ · · ·Mn generates M̄ as an Ā-module. It follows
that M̄ is finitely generated over Ā and the lemma is proved.

Let M be an A-module with a filtration M =M0 ⊃M1 ⊃M2 ⊃ · · ·
and let N be a submodule of M . Then Nn = N ∩Mn(n ≥ 0) defines a
filtration on N , called the induced filtration on N .

Theorem 1.39 (Artin-Rees). Let A be a noetherian ring, a an ideal of
A,M a finitely generated A-module and N submodule of M . Then, for
any a-good filtration on M , the induced filtration on N is a-good.

Proof: Let M = M0 ⊃ M1 ⊃ · · · be an a-good filtration on M . Let
Ā = A⊕ a⊕ a2 ⊕ · · · , M̄ = M0 ⊕M1 ⊕M2 ⊕ · · · and N̄ = N ⊕ (M1 ∩
N) ⊕ (M2 ∩ N) ⊕ · · ·. Since the filtration on M is a-good, it follows
from Lemma 1.38, that M̄ is a finitely generated Ā-module. Since A
is noetherian, a is finitely generated and hence, by Proposition 1.37,
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Ā is noetherian. Therefore, by Proposition 1.7, M̄ is a noetherian Ā-
module so that N̄ is finitely generated over Ā. By Lemma 1.38 again,
the induced filtration on N is a-good.

Corollary 1.40 Let A be a noetherian ring, a an ideal of A,M a finitely
generated A-module and N , a submodule of M . Then there exists n0 ∈
Z+ such that for every n ≥ n0,we have a(anM ∩N) = an+1M ∩N .

Proof: Apply the theorem to the a-adic filtration on M .

Corollary 1.41 Let A be a noetherian ring and r its Jacobson radical.
Then

⋂

n≥0 r
n = 0.

Proof: Let N =
⋂

n≥0 r
n = 0. Applying Corollary 1.41 toM = A and

a = r, we get rN = N . Hence, by Nakayama’s lemma, we get N = 0
and the corollary is proved.

Let A be a filtered ring with a filtration A = A0 ⊃ A1 ⊃ A2 ⊃ · · · and
let M be a filtered A-module with a filtration M = M0 ⊃ M1 ⊃ M2 ⊃
· · ·. Consider the direct sum G(A) =

⊕

n≥0An/An+1 of abelian groups
An/An+1. We make G(A) a graded ring by defining a multiplication as
follows. Let ā ∈ An/An+1, b̄ ∈ Am/Am+1 be homogeneous elements of
degrees n and m respectively and let a ∈ An, b ∈ Am be such that ā, b̄
are the images of a, b under the natural maps An → An/An+1, Am →
Am/Am+1 respectively. then ab ∈ An+m and we define āb̄ to be the
image of ab under the natural map An+m → An+m/An+m+1. This is
clearly well-defined and extends to a multiplication in G(A) making it
a graded ring. In a similar manner, we make G(M) =

⊕

n≥0Mn/Mn+1

a graded G(A)-module. We say that G(A) is the graded ring associated
to the filtration A = A0 ⊃ A1 ⊃ · · · and G(M) is the graded module
associated the filtration M =M0 ⊃M1 ⊃ · · ·.

Let A be a ring, a an ideal of A and M an A-module. The graded
ring and the graded module associated to the a-adic filtrations on A and
M are denoted by Ga(A) and Ga(M) respectively.

Lemma 1.42 Let A be a noetherian ring and a an ideal of A contained
in r(A). If Ga(A) is an integral domain, then so is A.

Proof: Let a, b ∈ A, a 6= 0, b 6= 0. Since, by Corollary 1.41, we have
⋂

n≥0 a
n = 0, there exists m,n ∈ Z+ such that a ∈ am, a 6∈ am+1 and

b ∈ an, b 6∈ an+1. Let ā, b̄ be the images of a, b in am/am+1, an/an+1

respectively. Then ā 6= 0, b̄ 6= 0. Since Ga(A) is an integral domain, we
have āb̄ 6= 0 and a fortiori, ab 6= 0.



28 Chapter 1. Results from Commutative Algebra



Chapter 2

Some Results from

Homological Algebra

In this chapter, A denotes a commutative ring with 1 and by a module
we mean a unitary module.

2.1 Complexes and homology

By a complex X of A-modules, we mean a sequence

· · · → Xn+1
dn+1−→ Xn

dn−→ Xn−1 → · · ·

of A-modules Xn and A-homomorphisms dn such that dn ◦ dn+1 = 0 for
every n ∈ Z. We say that X is a left (resp. right) complex if Xn = 0 for
n < 0 (resp.n > 0). The condition dn ◦ dn+1 = 0 implies that Im dn+1 ⊂
ker dn. We define the nth homology module X to be ker dn/im dn+1 and
denote it by Hn(X). We sometimes write Xn for X−n and Hn for H−n.
If X is a right complex, we usually denote it by 0 → X0 → X1 → · · ·

Let X,Y be complexes of A-modules. A morphism f :X → Y of
complexes is a family {fn:Xn → Yn}n∈Z of A-homomorphisms such
that, for every n ∈ Z, the diagram

Xn+1
fn+1- Yn+1

Xn

dn+1

? fn - Yn

d′n+1

?

29
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is commutative.

Let f :X → Y be a morphism of complexes. Since the diagram

Xn
fn

- Yn

Xn−1

dn

? fn−1- Yn−1

d′n

?

is commutative, we have fn(ker dn) ⊂ ker d′n. Similarly, we have
fn(Im dn+1) ⊂ Im d′n+1. Thus, fn induces an A-homomorphism Hn(f):
Hn(X) → Hn(Y ).

If g:Y → Z is another morphism of complexes then the morphism
gf :X → Z of complexes is defined in an obvious way, and we have
Hn(gf) = Hn(g)Hn(f), for every n ∈ Z. It is also clear that Hn(1X) =
1Hn(X). We will denote by 0 the complex X with Xn = 0 for every
n ∈ Z. A sequence

0 → X
f→ Y

g→ Z → 0

of complexes is said to be exact if, for every n ∈ Z the sequence

0 → Xn
fn→ Yn

gn→ Z → 0

is exact.

Let 0 → X
f→ Y

g→ Z → 0 be an exact sequence of complexes of
A-modules. For n ∈ Z we have the commutative diagram
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Yn+1
gn+1- Zn+1

- 0

0 - Xn
fn - Yn

d′n+1

? gn - Zn

d′′n+1

?
- 0

0 - Xn−1

dn

? fn−1- Yn−1

d′n

? gn−1- Zn−1

d′′n

?
- 0

0 - Xn−2

dn−1

? fn−2- Yn−2

d′n−1

?

Let z̄ ∈ Hn(Z), and let z ∈ ker d′′n represent z̄. Choose y ∈ Yn such that
gn(y) = z. Let y′ = d′n(y). Then gn−1(y

′) = 0. Therefore, there exists
x ∈ Xn−1 such that y′ = fn−1(x). Since (d

′
n−1fn−1)(x) = (d′n−1d

′
n)(y) =

0, it follows that (fn−2dn−1)(x) = 0 i.e. dn−1(x) ∈ ker fn−2 = 0 i.e. x ∈
ker dn−1. Let x̄ be the canonical image of x in Hn−1(X). It is easily seen
that x̄ does not depend on the choice of z and y. We define ∂n:Hn(Z) →
Hn−1(X) by ∂n(z̄) = x̄. Clearly, ∂n is an A-homomorphism.

Proposition 2.1 Let 0 → X
f→ Y

g→ Z → 0 be an exact sequence of
complexes of A-modules. Then the sequence

· · · → HnX
Hn(f)−→ HnY

Hn(g)−→ HnZ
∂n−→ Hn−1X

Hn−1(f)−→ Hn−1(Y )

is exact.

Proof: If z̄ ∈ ImHn(g), then, with the notation immediately preced-
ing the proposition, we can choose y ∈ ker d′n so that y′ = 0 and hence
∂n(z̄) = x̄ = 0. Conversely, suppose x̄ = ∂n(z̄) = 0. Then there exists
x′ ∈ Xn such that x = dn(x

′). Let y′′ = y − fn(x
′). Then y′′ ∈ ker d′n

and gn(y
′′) = z. It follows that z̄ ∈ ImHn(g). This proves exactness of

the sequence at Hn(Z).
With the same notation, we have Hn−1(f)∂n(z̄) = Hn−1(f)(x̄) is the

canonical image of y′ = f(x) in Hn−1(Y ), which is zero, since y′ ∈ Im d′n.
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Conversely, let x1 ∈ Hn−1(X) be such that Hn−1(f)(x1) = 0. This
means that fn−1(x1) ∈ Im d′n. Let y1 ∈ Yn be such that fn−1(x1) =
d′n(y1). Let z̄1 be the class of gn(y1) in Hn(Z). Then ∂n(z̄1) = x̄1. This
proves the exactness of the sequence at Hn−1(X).

Finally, Hn(g)Hn(f) = Hn(gf) = Hn(0) = 0, clearly. Let ȳ ∈ Hn(Y )
be such that Hn(g)(ȳ) = 0. Let y ∈ ker d′n be a representative of ȳ. Then
there exists z ∈ Zn+1 such that gn(y) = d′′n+1(z). Choose y

′ ∈ Yn+1 such
that z = gn+1(y

′). Then gn(y − d′n+1(y
′)) = 0. Therefore, there exists

x ∈ Xn such that y − d′n+1(y
′) = fn(x). Clearly, the class of fn(x) in

Hn(Y ) is the same as that of y. To complete the proof, it is enough
to prove that x ∈ ker dn. But d′n(fn(x)) = d′n(y − d′n+1(y)) = 0 ⇒
fn−1(dn(x)) = 0 ⇒ dn(x) = 0. This proves the exactness at Hn(Y ) and
the proposition is proved.

The homomorphisms {∂n}n∈Z defined above are called connecting
homomorphisms.

Proposition 2.2 Let

0 - X
f - Y

g - Z - 0

0 - X ′

α

? f ′ - Y ′

β

? g′ - Z ′

γ

?
- 0

be a commutative diagram of complexes with rows exact. Then the dia-
gram

· · · → Hn(X) - Hn(Y ) - Hn(Z)
∂n- Hn−1(X) - Hn−1(Y ) - · · ·

· · · →Hn(X
′)

Hn(α)

?
- Hn(Y

′)

Hn(β)

?
- Hn(Z

′)

Hn(γ)

?
∂′

n- Hn−1(X
′)

Hn−1(α)

?
- Hn−1(Y

′)

Hn−1(β)

?
- · · ·

of homology modules is commutative.

Proof: We need only prove that Hn−1(α)∂n = ∂′nHn(γ) for every
n ∈ Z. Let z̄ ∈ Hn(Z) with z as a representative. Let y ∈ Yn be such
that gn(y) = z. Then γn(z) is a representative ofHn(γ)(z̄) and βn(y) is a
lift of γn(z) in Y

′
n. Using the lift y to compute ∂n(z̄) and the lift βn(y) to
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compute ∂′n(Hn(γ)(z̄)), it is clear that (Hn−1(α)∂n)(z̄) = (∂′nHn(γ))(z̄).
Since z̄ ∈ Hn(z) is arbitrary, the proposition follows.

Let f, g:X → Y be two morphisms of complexes X,Y of A-modules.
A homotopy h between f and g is a family h = {hn}n∈Z of A-homomor-
phisms hn:Xn → Yn+1 such that hn−1dn + d′n+1hn = fn − gn for every
n ∈ Z. We then say that f and g are homotopic. Clearly homotopy is
an equivalence relation.

Proposition 2.3 Let f, g:X → Y be homotopic morphisms of com-
plexes of A-modules. Then Hn(f) = Hn(g), for every n ∈ Z.

Proof: For x̄ ∈ Hn(X), let x ∈ ker dn be a representative. We then
have fn(x) = gn(x) = hn−1dn(x) + d′n+1hn(x) = d′n+1hn(x) ∈ Im d′n+1.
Thus Hn(f)(x̄) = Hn(g)(x̄).

2.2 Projective modules

Proposition 2.4 For an A-module P , the following conditions are
equivalent:

(i) P is a direct summand of a free A-module:

(ii) given any diagram

P

M
ϕ - M ′′

f

?
- 0

of A-homomorphisms with exact row, there exists an A-homomor-
phism f̄ :P →M such that ϕf̄ = f ;

(iii) every exact sequence 0 →M ′ →M
ϕ→ P → 0 of A-modules splits.

Proof: (i) ⇒ (ii). Let Q be an A-module such that P ⊕ Q = F is
free with basis (ei)i∈I . Define g:F → M ′′ by g|P = f and g | Q = 0.
Let xi ∈M be such that ϕ(xi) = g(ei). Define ḡ:F →M by ḡ(ei) = xi.
Then, it is clear that f̄ = ḡ|P satisfies ϕf̄ = f .
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(ii) ⇒ (iii). In view of the diagram

P

M
ϕ - P

1P

?
- 0

we have an A-homomorphism f :P → M such that ϕf = 1P ,i.e. the
sequence 0 →M ′ →M → P → 0 splits.

(iii) ⇒ (i). Let F → P → 0 be an exact sequence with F an
A-free module. (For instance, take F to be the free A-module on a
set of generators of P .) If K = ker(F → P ) then the exact sequence
0 → K → F → P → 0 splits by (iii) and P is a direct summand of F .

An A-module P which satisfies any of the equivalent conditions of
Proposition 2.4 is called a projective A-module.

Corollary 2.5 A free A-module is projective. Direct sums and direct
summands of projective modules are projective.

Corollary 2.6 Let 0 → N ′ → N → N ′′ → 0 be an exact sequence of
A-modules. If P is projective, then the sequence

0 → P ⊗A N
′ → P ⊗A N → P ⊗A N

′′ → 0

is exact.

Proof: Let Q be an A-modules such that F = P ⊕ Q is free. Since
direct sum commutes with tensor products, it is clear that

0 → F ⊗A N
′ → F ⊗A N → F ⊗A N

′′ → 0

is exact i.e.

0 → (P⊗AN
′)⊕(Q⊗AN

′) → (P⊗AN)⊕(Q⊗AN) → (P⊗AN
′′)⊕(Q⊗AN

′′) → 0

is exact, and the result follows.

Corollary 2.7 If P is a projective A-module and if A → B is a ring
homomorphism, then B ⊗A P is a projective B-module.

Proof: Let P be a direct summand of a free A-module F . Then,
B ⊗A P , being a direct summand of the free B-module B ⊗A F is a
projective B-module.
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2.3 Projective resolutions

Let M be an A-module. A projective resolution of M is a pair (P , ε),
where P is a left complex with each Pi a projective A-module and where
ε:P0 →M is an A-homomorphism such that the sequence

· · · → Pn
dn→ Pn−1 → · · · → P0

ε→M → 0

is exact.

Proposition 2.8 Every A-module M admits of a projective resolution.

Proof: Let P0 →M → 0 be an exact sequence of A-modules with P0

a free A-module. We define Pi and di inductively as follows. Suppose
we already have an exact sequence

Pn
dn→ Pn−1 → · · · → P0 →M → 0

with each Pi being A-free. Let Kn = ker dn. There exists an exact

sequence of A-modules Pn+1
ϕn+1−→ Kn → 0 with Pn+1 being A-free.

Define dn+1 = jϕn+1, where j:Kn → Pn is the canonical inclusion. It is
trivially seen that

Pn+1
dn+1−→ Pn → · · · → P0 →M → 0

is exact, and this proves the proposition.

Corollary 2.9 Every A-module admits of a projective resolution (P , ε)
with Pi being A-free.

Corollary 2.10 Let A be an noetherian ring and M a finitely generated
A-module. Then M admits of a projective resolution (P , ǫ) with each Pi
a finitely generated free A-module.

Proof: Let us use the notation of Proposition 2.8. Since M is finitely
generated, we can choose P0 to be a finitely generated free A-module.
Then K0 = ker ε is finitely generated by Proposition 1.7. We therefore
choose inductively each Pn to be finitely generated, and the corollary
follows.

Let f :M → M ′ be a homomorphism of A-modules and let (P , ε),
(P ′, ε′) be projective resolutions of M,M ′ respectively. A morphism
F :P → P ′ of complexes is said to be over f if fε = ε′F0.
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Proposition 2.11 Let f :M → M ′ be a homomorphism of A-modules
and let (P , ε), (P ′, ε′) be projective resolutions of M,M ′ respectively.
Then there exists a morphism F :P → P ′ over f . Moreover, if F,G:P →
P ′ are morphisms over f then F and G are homotopic.

Proof: Existence of F . Consider the diagram

P0

P ′
0

ε′ - M ′

fε

?
- 0

where the row is exact. Since P0 is projective, there exists an A-
homomorphism F0:P0 → P ′

0 such that fε = ε′F0. We now define Fn
by induction on n, assuming Fm to be defined for m < n. We have
d′n−1 ◦ Fn−1 ◦ dn = Fn−2 ◦ dn−1 ◦ dn = 0, where we set F−1 = f, d0 = ε
and d′0 = ε′. Therefore Im (Fn−1dn) ⊂ ker d′n−1 = Im d′n. Thus we have
the diagram

Pn

P ′
n

d′n- Im d′n

Fn−1dn

?
- 0

where the row is exact. Since Pn is projective, there exists Fn:Pn → P ′
n

such that d′nFn = Fn−1dn. This proves the existence of F .
Homotopy between F and G. Since ε′F0 = fε = ε′G0, we have

ε′(F0 − G0) = 0, i.e. Im (F0 − G0) ⊂ ker ε′ = Im d′1. Thus we get a
diagram

P0

P ′
1

d′1- Im d′1

F0 −G0

?
- 0

Since P0 is projective, there exists an A-homomorphism h0:P0 → P ′
1

such that d′1h0 = F0 −G0.
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Assuming inductively that, for m < n, hm:Pm → P ′
m+1 has been

defined such that d′m+1hm + hm−1dm = Fm − Gm, we define hn:Pn →
P ′
n+1 as follows: since d′n(Fn − Gn) = (Fn−1 − Gn−1)dn = (d′nhn−1 +
hn−2dn−1)dn = d′nhn−1dn, we have d′n(Fn − Gn − hn−1dn) = 0, i.e.
Im (Fn −Gn − hn−1dn) ⊂ ker d′n = Im d′n+1. Thus we get a diagram

Pn

P ′
n+1

d′n+1 - Im d′n+1

Fn −Gn − hn−1dn

?
- 0

with exact row. Since Pn is projective, there exists a homomorphism
hn:Pn → P ′

n+1 such that d′n+1hn = Fn −Gn − hn−1dn. Thus h = {hn}
is a homotopy between F and G.

Proposition 2.12 Let 0 → M ′ i→ M
j→ M ′′ → 0 be an exact sequence

of A-modules. Let (P ′, ε′), (P ′′, ε′′) be projective resolutions of M ′,M ′′

respectively. Then there exists a projective resolution (P , ε) of M such
that we have an exact sequence

0 → P ′ f→ P
g→ P ′′ → 0

of complexes and such that the diagram

0 - P ′
0

f0 - P0
g0 - P ′′

0
- 0

0 - M ′

ε′

? i - M

ε

? j - M ′′

ε′′

?

(∗)

- 0

is commutative.

Proof: For n ∈ Z+, we define Pn = P ′
n ⊕ P ′′

n and fn : P ′
n → Pn, gn :

Pn → P ′′
n by fn(x

′) = (x′, 0), gn(x
′, x′′) = x′′, respectively. Assume, for

the moment, that there exist A-homomorphisms 1:P ′′
0 → M and for

every n > 0, kn:P
′′
n → P ′

n−1 satisfying the following conditions:

ε′′ = j1,

iε′k1 + ld′′1 = 0 (∗∗)
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d′n−1kn + kn−1d
′′
n = 0, for n > 1.

Now define, dn:Pn → Pn−1, for n > 0 and ε:P0 →M by

dn(x
′, x′′) = (d′nx

′ + knx
′′, d′′nx

′′) (∗ ∗ ∗)

ε(x′, x′′) = iε′x′ + lx′′.

It is then easily verified that (P , ε) is a projective resolution of M and
that the diagram (∗) is commutative.

We now prove the existence of l and kn. The existence of l is trivial,
since P ′′

0 is projective and j is an epimorphism. We construct kn by
induction on n. Consider the diagram

P ′′
1

P ′
0

iε′ - M

−ld′′1
? j - M ′′ - 0

Since j(−ld′′1) = −ε′′d′′1 = 0, we have Im (−1d′′1) ⊂ ker j = Im (iε′). Since
P ′′
1 is projective, the existence of k1:P

′′
1 → P ′

0 is proved. Assume, by
induction, that kn−1:P

′′
n−1 → P ′

n−2 has been constructed. Consider the
diagram

P ′′
n

P ′
n−1

d′n−1 - P ′
n−2

−kn−1d
′′
n

? d′n−2- P ′
n−3

where we set d′0 = iε′ and P ′
−1 =M . Now d′n−2(−kn−1d

′′
n) = kn−2d

′′
n−1d

′′
n

= 0, where k0 = 1. Therefore, Im (−kn−1d
′′
n) ⊂ ker d′n−2 = Im d′n−1.

Since P ′′
n is projective, the existence of kn:P

′′
n → P ′

n−1 is proved. This
completes the proof of the proposition.

Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of A-modules.
A projective resolution of this sequence is an exact sequence 0 → P ′ →
P → P ′′ → 0 where (P ′, ε′), (P , ε), (P ′′, ε′′) are projective resolutions



2.3. Projective resolutions 39

of M ′, M, M ′′ respectively, such that the diagram

0 - P ′
0

- P0
- P ′′

0
- 0

0 - M ′

ε′

?
- M

ε

?
- M ′′

ε′′

?
- 0

is commutative.

The proposition above shows that every exact sequence admits of a
projective resolution.

Proposition 2.13 Let

0 - M ′ i1 - M
p1 - M ′′ - 0

0 - N ′

f ′

? i2 - N

f

? p2 - N ′′

f ′′

?
- 0

be a commutative diagram of A-modules with exact rows. Let 0 → P ′ →
P → P ′′ → 0, 0 → Q′ → Q → Q′′ → 0 be projective resolutions of
0 → M ′ → M → M ′′ → 0, 0 → N ′ → N → N ′′ → 0. respectively and
let F ′:P ′ → Q′, F ′′:P ′′ → Q′′ be morphisms over f ′, f ′′,respectively.
Then there exists a morphism F :P → Q over f such that the diagram

0 - P ′ - P - P ′′ - 0

0 - Q′

F ′

?
- Q

F

?
- Q′′

F ′′

?
- 0

is commutative.

Proof: Since P ′′
n is projective, we can assume that, for n ∈ Z, Pn =

P ′
n ⊕ P ′′

n and that the maps P ′
n → Pn, Pn → P ′′

n are respectively the
natural inclusion and the natural epimorphism. We can make similar
assumptions for the Q’s. Then it is easy to see that dn:Pn → Pn−1 and
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ε:P0 →M are given by formulæ (∗ ∗ ∗) of the proof of Proposition 2.12
with conditions (∗∗) fulfilled; similarly for the Q’s.

It may be checked inductively that there exist A-homomorphisms
cn:P

′′
n → Q′

n satisfying, for n > 0 the conditions

i2ε
′c0 + lQF ′′

0 = flP

d′ncn − cn−1d
′′
n = F ′

n−1k
P
n − k

Q
n F

′′
n .

Now define F :P → Q by

Fn(x
′, x′′) = (F ′

n(x
′) + cn(x

′′), F ′′
n (x

′′))

It is easy to verify that this is the required F .

2.4 The functors Tor

Let M be an A-module and let P = (P , ε) be a projective resolution of
M . Then, for any A-module N , we denote by P ⊗A N the left complex

· · · → PN ⊗A N
dn ⊗ 1N−→ Pn−1 ⊗A N → · · · → P0 ⊗A N → 0.

We denote the homology modules Hn(P ⊗A N) of this complex by
Hn(M,N ;P ).

Let f :M → M ′ be a homomorphism of A-modules and let P , P ′

be projective resolutions of M,M ′ respectively. Let F :P → P ′ be a
morphism over f . Note that such an F exists, by Proposition 2.11. This
morphism F defines, for every n ∈ Z+, an A-homomorphism

Hn(f,N ;P , P ′):Hn(M,N ;P ) → Hn(M
′, N ;P ′).

In view of Proposition 2.3, the homomorphism Hn(f,N ;P , P ′) does
not depend on the choice of the morphism over f . For, by Proposition
2.11, by two morphisms P → P ′ over f are homotopic.

Let now 0 → M ′ i→ M
j→ M ′′ → 0 be an exact sequence of A-

modules and let
0 → P ′ → P → P ′′ → 0 (∗)

be a projective resolution of this exact sequence. Let, for n ≥ 1,

∂n(N, (∗)):Hn(M
′′, N ;P ′′) → Hn−1(M

′, N ;P ′)

be the connecting homomorphisms defined by (∗). We then have the
following
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Lemma 2.14 (i) Let f :M → M ′, g:M ′ → M ′′ be homomorphisms
of A-modules and let P , P ′, P ′′ be projective resolutions of M,M ′,M ′′

respectively. Then, for every n ∈ Z+ we have

Hn(gf,N ;P , P ′′) = Hn(g,N ;P ′, P ′′)Hn(f,N ;P , P ′)

Moreover,
Hn(1M , N ;P , P ) = 1Hn

(M,N ;P ).

(ii) If
0 → P ′ → P → P ′′ → 0 (∗)

is a projective resolution of an exact sequence 0 →M ′ i→M
j→M ′′ → 0

of A-modules, then the sequence

· · · → Hn(M
′′, N ;P ′′)

∂n→ Hn−1(M
′, N ;P ′)

Hn−1(i)−→ Hn−1(M,N ;P ) →

Hn−1(j)→ Hn−1(M
′′, N ;P ′′) → · · · → H0(M

′′, N ;P ′′) → 0

is exact (where we have written ∂n for ∂n(N, (∗)), Hn−1(i) for
Hn−1(i, N ;P ′, P ), etc.).

(iii) if

0 - M ′ - M - M ′′ - 0

0 - L′

f ′

?
- L

f

?
- L′′

f ′′

?
- 0

is a commutative diagram of A-modules with exact rows and if

0 - P ′ - P - P ′′ - 0 (*)

0 - Q′

F ′

?
- Q

F

?
- Q′′

F ′′

?
- 0 (**)

is a commutative diagram of complexes where 0 → P ′ → P → P ′′ → 0,
0 → Q′ → Q → Q′′ → 0 are projective resolutions of 0 → M ′ →
M → M ′′ → 0, 0 → L′ → L → L′′ → 0, respectively and where P ′ →
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Q′(resp.P → Q, P ′′ → Q′′) is a morphism over M ′ → L′(resp.M →
L, M ′′ → L′′) then the diagram

Hn(M
′′, N ;P ′′)

Hn(f
′′, N ;P ′′, Q′′)

- Hn(L
′′, N ;Q′′)

Hn−1(M
′, N ;P ′)

∂n(N, (∗))
? Hn−1(f

′, N ;P ′, Q′)
- Hn−1(L

′, N ;Q′)

∂n(N, (∗∗))
?

is commutative, for every n ≥ 1.

Proof: (i) If F :P → P ′, G:P ′ → P ′′ are morphisms over f, g re-
spectively, then GF is clearly over gf . Further, 1P is over 1M , this
proves (i). The assertions (ii) and (iii) follow from Propositions 2.1 and
2.2 respectively.

Proposition 2.15 Let M be an A-module and let P , Q be two projec-
tive resolutions of M . Then

Hn(1M , N ;P ,Q):Hn(M,N ;P ) → Hn(M,N ;Q)

is an isomorphism, for every n ∈ Z+. If f :M →M ′ is a homomorphism
of A-modules and if P ′, Q′ are projective resolutions of M ′, then the
diagram

Hn(M
′′, N ;P )

Hn(1M , N ;P ,Q)
- Hn(M,N ;Q)

Hn(M
′, N ;P ′)

Hn(f,N, P , P
′)

? Hn(1M ′ , N ;P ′, Q′)
- Hn(M

′, N ;Q′)

Hn(f,N ;Q,Q′)

?

is commutative. Further, if 0 → M ′ → M → M ′′ → 0 is an exact
sequence of A-modules and if

0 → P ′ → P → P ′′ → 0 (∗)

0 → Q′ → Q→ Q′ → 0 (∗∗)
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are two projective resolutions of this sequence, then the diagram

Hn(M
′′, N ;P ′′)

Hn(1M ′′ , N ;P ′′, Q′′)
- Hn(M

′′, N ;Q′′)

Hn−1(M
′, N ;P ′)

∂n(N, (∗))
? Hn−1(1M ′ , N ;P ′, Q′)

- Hn−1(M
′, N ;Q′)

∂n(N, (∗∗))
?

is commutative for n ≥ 1.

Proof: We have

Hn(1M , N ;Q,P )Hn(1M , N ;P ,Q) = Hn(1M , N ;P , P ) = 1Hn(M,N ;P )

by the lemma above. Similarly

Hn(1M , N ;P ,Q)Hn(1M , N ;Q,P ) = 1HnM,N ;Q).

Hence Hn(1M , N ;P ,Q) is an isomorphism. Now

Hn(f,N ;Q,Q′)Hn(1M , N ;P ,Q) = Hn(f, N ;P ,Q′)

= Hn(1M ′ , N ;P ′, Q′)Hn(f,N ;P , P ′),

by the lemma above. This proves the commutativity of the first diagram
of the proposition.

In order to prove the commutativity of the second diagram, consider
the diagram

0 - M ′ - M - M ′′ - 0

0 - M ′

1M ′

?
- M

1M

?
- M ′′

1M ′′

?
- 0

By Proposition 2.13, there exist morphisms F ′, F, F ′′ over 1M ′ , 1M , 1M ′′

respectively such that the diagram

0 - P ′ - P - P ′′ - 0

0 - Q′

F ′

?
- Q

F

?
- Q′′

F ′′

?
- 0
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is commutative. Now the assertion follows from Lemma 2.14(iii). This
completes the proof of the proposition.

Let, for n ∈ Z,TorAn (M,N) = Hn(M,N ;P ) where P is a pro-
jective resolution of M . In view of Proposition 2.15, we have, for a
fixed A-module N , a sequence {TorAn (M,N)}n∈Z+ of functors from A-
modules to A-modules, defined independently of the projective resolu-
tions P of M . Moreover, if 0 → M ′ → M → M ′′ → 0 is an exact se-
quence of A-modules, we have A-homomorphisms {∂n: TorAn (M ′′, N) →
TorAn−1(M

′, N)}n≥1 called the connecting homomorphisms.
Let now M be an A-module and P a projective resolution of M .

If f :N → N ′ is a homomorphism of A-modules, then the morphism
1P ⊗ f :P ⊗ N → P ⊗ N ′ of complexes induces, for every n ∈ Z an
A-homomorphism.

TorAn (M, f): TorAn (M,N) → TorAn (M,N ′).

If 0 → N ′ → N → N ′′ → 0 is an exact sequence A-modules, then by
Corollary 2.6 to Proposition 2.4, the sequence

0 → P ⊗A N
′ → P ⊗A N → P ⊗A N

′′ → 0

of complexes is exact. Therefore, this defines connecting homomor-
phisms

∂n: Tor
A
n (M,N ′′) → TorAn−1(M,N ′)

We then have

Theorem 2.16 (i) For a fixed A-module N , the assignments {M 7→
TorAn (M,N)}n∈Z+ and {M 7→ TorAn (N,M)}n∈Z+ are sequences of func-
tors from A-modules to A-modules.

(ii) If 0 →M ′ →M →M ′′ → 0 is an exact sequence of A-modules,
then the sequences

· · · → TorAn (M
′′, N)

∂n→ TorAn−1(M
′, N) → TorAn−1(M,N) →

→ TorAn−1(M
′′, N) → · · · → TorA0 (M

′′, N) → 0

and

· · · → TorAn (N,M
′′)

∂n→ TorAn−1(N,M
′) → TorAn−1(N,M) →

TorAn−1(N,M
′′) → · · · → TorA0 (N,M

′′) → 0
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are exact (iii) If

0 - M ′ - M - M ′′ - 0

0 - K ′
?

- K
?

- K ′′
?

- 0

is a commutative diagram of A-modules with exact rows, then for every
n ≥ 1, the induced diagrams

TorAn (M
′′, N)

∂n- TorAn−1(M
′, N)

TorAn (K
′′, N)

?
∂n- TorAn−1(K

′, N)

?

and

TorAn (N,M
′′)

∂n- TorAn−1(N,M
′)

TorAn (N,K
′′)

?
∂n- TorAn−1(N,K

′)

?

are commutative.

(iv) For every n ∈ Z+ the functor TorAn (M,N) is A-linear in both
M and N .

(v) There exists an A-isomorphism TorA0 (M,N) ≃M ⊗AN which is
functorial in M and N .

Proof: In view of Proposition 2.15, (i) and (ii) are clear.

The assertion (iii) for the functors {M 7→ TorAn (M,N)} follows
from Propositions 2.15 and 2.2. To prove (iii) for the functors {M 7→

TorAn (N,M)} note that if P is any projective resolution of M , then the
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diagram

0 - P ⊗AM
′ - P ⊗AM - P ⊗AM

′′ - 0

0 - P ⊗A K
′

?
- P ⊗A K

?
- P ⊗A K

′′
?

- 0

induced by (∗) is commutative, so that Proposition 2.2 gives the com-
mutativity of (∗∗).

We now prove (iv). Let f, g:N → N ′ be homomorphisms of A-
modules and let P be a projective resolution of M . Since, clearly, for
a, b ∈ A,we have a(1P ⊗ f) + b(1P ⊗ g) = 1P ⊗ (af + bg), it follows
that aTorAn (M, f) + bTorAn (M, g) = TorAn (M,af + bg). This proves that
TorAn (M,N) is A-linear in N . Let now Q,Q′ be projective resolutions
of N,N ′ respectively. Then, clearly, for a, b ∈ A, the morphism aF + bG
is over af + bg and the A-linearity of TorAn (M,N) in M follows.

Finally, to prove (v), let P be a projective resolution of M . Since
TorA0 (M,N) = (P0 ⊗A N)/Im (d1 ⊗ 1N ), the A-homomorphism ε ⊗
1N :P0⊗AN →M⊗AN induces anA-homomorphism ε(M,N): TorA0 (M,N) →
M ⊗A N . We shall prove that ε(M,N) is an isomorphism functo-

rial in M and N . Since P1
d1→ P0

ε→ M → 0 is exact, the sequence

P1 ⊗A N
d1⊗1N−→ P0 ⊗A N

ε⊗1N−→ M ⊗A N → 0 is exact, so that ε(M,N) is
an isomorphism. If now f :M → M ′ is a homomorphism of A-modules
and F :P → P ′ is a morphism over f , where P , P ′ are projective resolu-
tions of M,M ′ respectively, then the diagram

P1 ⊗A N
d1 ⊗ 1N- P0 ⊗A N

ε⊗ 1N- M ⊗A N - 0

P1 ⊗A N
′

F1 ⊗ 1

? d1 ⊗ 1N ′- P0 ⊗A N
′

F0 ⊗ 1

? ε⊗ 1N ′- M ⊗A N
′

f ⊗ 1

?
- 0

is commutative and therefore so is the diagram

TorA0 (M,N)
ε(M,N)- M ⊗A N

TorA0 (M
′, N)

TorA0 (f,N)

?
ε(M ′, N)- M ′ ⊗A N

f ⊗ 1N

?
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This proves that ε(M,N) is functorial in M . Next, let g:N → N ′ be a
homomorphism of A-modules and let P be a projective resolution of M .
Then the commutativity of the diagram

P1 ⊗A N
d1 ⊗ 1N- P0 ⊗A N

ε⊗ 1N- M ⊗A N - 0

P1 ⊗A N
′

1⊗ g

? d1 ⊗ 1N ′- P0 ⊗A N
′

1⊗ g

? ε⊗ 1N ′- M ⊗A N
′

1⊗ g

?
- 0

implies that ε(M,N) is functorial in N . This completes the proof of
Theorem 2.16.

Lemma 2.17 Let P be a projective A-module. Then TorAn (P,M) = 0
and TorAn (M,P ) = 0, for every A-module M and every n ≥ 1.

Proof: Since P is projective, we have a projective resolution 0 →
P

1P→ P → 0 of P . Using this resolution to compute Tor we have
TorAn (P,M) = 0 for every n ≥ 1. On the other hand, if (Q, ε) is any
projective resolution of M , then the sequence

. . .→ Qn ⊗A P → Qn−1 ⊗A P → . . .→ Q0 ⊗A P
ε⊗1→ M ⊗A P → 0

is exact by Corollary 2.6 to Proposition 2.4. It now follows that TorAn (M,P ) =
0 for n ≥ 1.

Proposition 2.18 Let M,N be A-modules. Then, for every n ∈ Z+

there exists an isomorphism TorAn (M,N) ≃ TorAn (N,M), which is func-
torial in M and N .

Proof: We prove the result by induction on n. For n = 0, we have by
Theorem 2.16(v), functorial isomorphisms TorA0 (M,N) ≃M ⊗A N and
TorA0 (N,M) ≃ N ⊗A M . Since M ⊗A N ≃ N ⊗A M functorially, the
result is proved for n = 0. Let n > 0. Let then 0 → K → F → M → 0
be an exact sequence of A-modules where F is A-free. This induces the
exact sequences

TorAn (F,N) → TorAn (M,N)
∂n→ TorAn−1(K,N) → TorAn−1(F,N)

TorAn (N,F ) → TorAn (N,M)
∂n→ TorAn−1(N,K) → TorAn−1(N,F ).
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Since n > 0, we have TorAn (F,N) = 0 = TorAn (N,F ) by Lemma 2.17.
Therefore, by induction hypothesis, we have a commutative diagram

0 - TorAn (M,N)
∂n- TorAn−1(K,N) - TorAn−1(F,N)

0 - TorAn (N,M)
∂n- TorAn−1(N,K)

ϕ

?
- TorAn−1(N,F )

ψ

?

where ϕ and ψ are isomorphisms. Therefore, ϕ induces an isomorphism
ϕ′: TorAn (M,N) ≃ TorAn (N,M). Since ϕ is functorial by induction hy-
pothesis and since ∂n is functorial, by Theorem 2.16, the isomorphism
ϕ′ is also functorial.

2.5 The functors Ext

Let M,N be A-modules and let (P , ε) be a projective resolution of M .
We denote by HomA(P ,N) the complex

0 → HomA(P0, N) → HomA(P1, N) → . . .→ HomA(Pn, N) → . . .

and by ExtnA(M,N), the homology module Hn(HomA(P ,N)). If f :
M → M ′ and g:N → N ′ are homomorphisms of A-modules, then we
define

ExtnA(f,N): ExtnA(M
′, N) → ExtnA(M,N)

and
ExtnA(M, g): ExtnA(M,N) → ExtnA(M,N ′)

in the same manner as in the case of Tor. If 0 → M ′ → M → M ′′ → 0
is an exact sequence of A-modules and N is any A-module, we define,
as in the previous section, connecting homomorphisms

∂n−1: Extn−1
A (M ′, N) → ExtnA(M

′′, N)

and similarly for exact sequences in the second variable. We then have

Theorem 2.19 (i) For a fixed A-module N , the assignment {M 7→
ExtnA(M,N)}n∈Z+ is a sequence of contravariant functors from A mod-
ules to A-modules and the assignment {M 7→ ExtnA(N,M)}n∈Z+ is a
sequence of functors from A-modules to A-modules.
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(ii) If 0 →M ′ →M →M ′′ → 0 is an exact sequence of A-modules,
then the sequences

0 → Ext0A(M
′′, N) → . . .→ Extn−1

A (M ′′, N) → Extn−1
A (M,N) →

→ Extn−1
A (M ′, N)

∂n−1

−→ ExtnA(M
′′, N) → . . .

and

0 → Ext0A(N,M
′) → . . .→ Extn−1

A (N,M ′) → Extn−1
A (N,M) →

Extn−1
A (N,M ′′)

∂n−1

→ ExtnA(N,M
′) → . . .

are exact.
(iii) If

0 - M ′ - M - M ′′ - 0

0 - K ′
?

- K
?

- K ′′
?

- 0

is a commutative diagram of A-modules with exact rows, then, for every
n ≥ 1 the induced diagrams

Extn−1
A (M ′, N)

∂n−1
- ExtnA(M

′′, N)

Extn−1
A (K ′, N)

6

∂n−1
- ExtnA(K

′′, N)

6

and

Extn−1
A (N,M ′′)

∂n−1
- ExtnA(N,M

′)

Extn−1
A (N,K ′′)

?
∂n−1

- ExtnA(N,K
′)

?

are commutative.
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(iv) For every n ∈ Z+ the functor ExtnA(M,N) is A-linear in both
M and N .

(v) There exists an A-isomorphism

Ext0A(M,N) ≃ HomA(M,N)

which is functorial in M and N .
(vi) Let P be a projective A-module. Then ExtnA(P,N) = 0, for

every A-module N and for every n ≥ 1.

Proof: On the same lines as for the functors Tor in the previous
section.



Chapter 3

Dimension Theory

3.1 The Hilbert-Samuel polynomial

Let f :Z → Q be a map. We define ∆f :Z → Q by

(∆f)(n) = f(n+ 1)− f(n); n ∈ Z.

By induction on r, we define ∆rf for every r ∈ Z by

∆0f = f ;

∆rf = ∆(∆r−1f), r ≥ 1.

Let Q[X] denote the ring of polynomials in one variable X over Q. A
map f :Z+ → Q is called a polynomial function if there exists g ∈ Q[X]
such that f(n) = g(n) for n ≫ 1. Note that if g1, g2 ∈ Q[X] are such
that g1(n) = g2(n) for n≫ 1, then g1 = g2. Therefore for a polynomial
function f , the corresponding polynomial g is uniquely determined. The
degree of g is called the degree of f and the leading coefficient of g is
called the leading coefficient of f . If f 6= 0 and if f(n) ≥ 0 for n ≫ 1,
then the leading coefficient of f is clearly positive. Let f1, f2 be two
polynomial functions. We say f1 ≤ f2 if f1(n) ≤ f2(n) for n≫ 1.

Lemma 3.1 Let r ∈ N. Then a map f :Z+ −→ Q is a polynomial
function of degree r if and only if ∆f :Z → Q is a polynomial function
of degree r − 1.

Proof: If f is a polynomial function of degree r, then clearly ∆f is a
polynomial function of degree r−1. We prove the converse by induction
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on r. If r = 1, there exists p ∈ Q, p 6= 0 such that (∆f)(n) = p for
n≫ 1. Thus

f(n+ 1)− f(n) = p = p(n+ 1)− p(n),

that is

f(n+ 1)− p(n+ 1) = f(n)− pn = q

for n≫ 1 and for some q ∈ Q. this implies that f(n) = pn+q for n≫ 1
and the assertion is proved in this case.

Now, let r > 1. Let g(X) = a0X
r−1+ . . .+ . . .+ar−1 ∈ Q[X], a0 6= 0

be such that ∆f(n) = g(n), for ≫ 1. Then

f(n+ 1)− f(n) = ∆f(n) =
a0
r
{(n+ 1)r − nr + h(n)}

where h ∈ Q[X] and deg h ≤ r − 2. Setting f∗(n) = f(n) − a0
r n

r, we
have for n≫ 1

∆f∗(n) = f∗(n+ 1)− f∗(n) = h(n)

and by induction hypothesis, f∗(n) is a polynomial function of degree
less than or equal to r − 1. Since f(n) = a0

r n
r + f∗(n) for n ≫ 1 and

a0 6= 0, the result follows.

Remark 3.2 If we assign the degree −1 to the zero polynomial, it is
clear that ∆f is a polynomial function of degree −1 ⇔ f is a polynomial
function of degree ≤ 0.

Let R =
⊕

n≥0Rn be a graded ring such that R0 is artinian and R
is generated as an R0- algebra by r elements x1, . . . , xr of R1. Then,
R being a finitely generated R0-algebra, is noetherian (by Corollary
to Theorem 1.10). Let N =

⊕

n≥0Nn be a finitely generated graded
R-module. Then, as an R0-module, each Nn is finitely generated (by
Proposition 1.37) and hence of finite length (since R0 is artinian) in
view of Corollary 1.35 to Proposition 1.33. Define χ(N, .):Z → Z by
setting χ(N, ·)(n), χ(N,n) = ℓR0

(N − n).

Proposition 3.3 (Hilbert). The map χ(N, .) is a polynomial function
of degree ≤ r − 1 where r is as above.

Proof: We prove the proposition by induction on r. If r = 0, then
R = R0. Let S be a finite set of homogeneous generators of N over
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R = R0, and let m = sups∈S(deg s). Then Nn = 0 for n > m. Hence
χ(N,n) = 0 for n ≫ 1, i.e. χ(N,n) is a polynomial function of degree
−1. Assume now that r > 0 and that the result is true for all finitely
generated graded modules over graded rings R which are generated as
R0-algebras by less than r elements of R1.

Let K and C be respectively the kernel and cokernel of the graded
endomorphism ϕ:N → N of degree 1, given by ϕ = (xr)N , the homoth-
esy by xr. We then have, for every n, an exact sequence

0 → Kn → Nn
ϕ→ Nn+1 → Cn+1 → 0.

Since N is noetherian, the R-modules K and C are noetherian so that
χ(K, .) and χ(C, .) are defined. It follows from Proposition 1.30 that
χ(K,n)− χ(N,n) + χ(N,n+ 1)− χ(C, n+ 1) = 0, i.e.

∆χ(N,n) = χ(C, n+ 1)− χ(K,n).

Since xr annihilates both K and C, these are finitely generated (graded)
modules over the graded subring R′ = R0[x1, . . . , xr−1] of R. By the
induction hypothesis, χ(C, n) and χ(K,n) are both polynomial functions
of degree less than r − 1 and so is ∆χ(N,n). Now the proposition is a
consequence of Lemma 3.1 and the remark following it.

The polynomial associated to the polynomial function χ(N,n) is
called the Hilbert polynomial of N and is also denoted by χ(N,n).

Till the end of this chapter, we assume that A is a noetherian local
ring. We denote by m the maximal ideal of A. By an A-module, we
mean a finitely generated A-module.

An ideal a of A is said to be an ideal of definition of A if mn ⊂ a ⊂ m

for some integer n ≥ 1.
Let a be an ideal of definition of A. As in Chapter 1, we denote by

Ga(A) the graded ring ⊕n≥0a
n/an+1 associated to the a-adic filtration

on A. Similarly, for an A-module M , we denote by Ga(M) the graded
Ga(A)-module

⊕

n≥0 a
nM/an+1M corresponding to the a-adic filtration

on M . By our hypothesis on a, Supp(A/a) = {m}. Thus by Proposition
1.32, A/a is of finite length and hence artinian. Since A is noetherian,
the ideal a is finitely generated, say, by r elements and the conditions
of Proposition 3.3 are satisfied for R = Ga(A), N = Ga(M). Therefore,
χ(Ga(M), n) = ℓA/a(a

nM/an+1M) is a polynomial of degree less than
or equal to r − 1.

Since Supp(M/anM) = {m}, the A-module M/anM is of finite
length by Proposition 1.32. We set Pa(M,n) = ℓA(M/anM). Since
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ℓA(a
nM/an+1M) = ℓA/a(a

nM/an+1M), the exact sequence

0 → anM/an+1M →M/an+1M →M/anM → 0

gives χ(Ga(M), n) = Pa(M,n + 1) − Pa(M,n) = ∆Pa(M,n). From
Lemma 3.1 (and the remark following it), we get

Theorem 3.4 (Samuel) Let A be a local ring, M a finitely generated
A-module and a an ideal of definition of A generated by r elements.
Then Pa(M,n) is a polynomial function of degree less than or equal to
r.

Lemma 3.5 Let M be an A-module and a, a′ ideals of definition of A.
Then Pa(M,n) and Pa′(M,n) have the same degree.

Proof: It is sufficient to prove that Pa(M,n) and Pm(M,n) have the
same degree. Since a is an ideal of definition of A, there exists m ∈ N

such that mm ⊂ a ⊂ m. Hence, for every n ∈ N,we have mmn ⊂ an ⊂ mn

so that Pm(M,nm) ≥ Pa(M,n) ≥ Pm(M,n) and the lemma follows.

Proposition 3.6 Let a be an ideal of definition of A and let 0 →M ′ →
M →M ′′ → 0 be an exact sequence of A-modules. Then we have

Pa(M
′, n) + Pa(M

′′, n) = Pa(M,n) +R(n),

where R(n) is a polynomial function of degree less than degPa(M,n)
and the leading coefficient of R(n) is non-negative.

Proof: For every n ∈ N, we have an exact sequence

0 →M ′/M ′ ∩ anM →M/anM →M ′′/anM ′′ → 0

induced by the given exact sequence. (In writing M ′ ∩ anM , we have
tacitly identified M ′ with a submodule of M). This gives

ℓA(M
′/M ′ ∩ anM) + ℓA(M

′′/anM ′′) = ℓA(M/anM).

Setting M ′
n =M ′ ∩ anM , we have

ℓA(M
′/M ′

n) = Pa(M,n)− Pa(M,n) (3.1)

which shows that ℓA(M
′/M ′

n) is a polynomial function. By the the-
orem of Artin-Rees (Theorem 1.39), there exists m ∈ N such that
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aM ′
n = M ′

n+1 for n ≥ m. It follows that for any n ∈ N, am+nM ′ ⊂
M ′
n+m = anM ′

m ⊂ anM ′, so that ℓA(M
′/am+nM ′) ≥ ℓA(M

′/M ′
n+m) ≥

ℓA(M
′/anM ′), i.e.

Pa(M
′, n+m) ≥ ℓA(M

′/M ′
n+m) ≥ Pa(M

′, n). (3.2)

These inequalities show that Pa(M
′, n) and ℓA(M

′/M ′
n) have the same

degree and the same leading coefficient. Thus R(n) = Pa(M
′, n) −

ℓA(M
′/M ′

n) is a polynomial function of degree less than the degree
of ℓA(M

′/M ′
n) which, by (3.1), is less than or equal to the degree of

Pa(M,n) since degPa(M
′, n) ≤ degPa(M,n). Since, by (3.2), R(n) ≥ 0

for n ≫ 1, its leading coefficient is non-negative. This completes the
proof of the proposition.

Corollary 3.7 Let M ′ be a submodule of M . Then degPa(M
′, n) ≤

degPa(M,n).

Proof: Let M ′′ = M/M ′. Since degPa(M
′′, n) ≤ deg aPa(M,n), the

corollary follows from Proposition 3.6.
The above results apply in particular to the caseM = A. LetG(A) =

Gm(A) and let k = A/m. If m is generated by r elements x1, . . . , xr, we
have degχ(G(A), n) ≤ r − 1. We have a graded k-algebra epimorphism
ϕ: k[X1, . . . , Xr] → G(A) defined by ϕ(Xi) = x̄i, where x̄i denotes the
class of ximodm2.

Proposition 3.8 With the above notation, we have degχ(G(A), n) =
r − 1 if and only if ϕ: k[X1, . . . , Xr] → G(A) is an isomorphism.

Proof: Let B = k[X1, . . . , Xr]. Let ϕ be an isomorphism. Then
we have an isomorphism Bn ≃ mn/mn+1 of k-vector spaces, where Bn
denotes the nth homogeneous component of B. Therefore χ(G(A), n) =

ℓk(m
n/mn+1) = ℓk(Bn) =

(
n+ r − 1
r − 1

)

, since Bn is a k-vector space of

rank

(
n+ r − 1
r − 1

)

. The map n 7→
(
n+ r − 1
r − 1

)

is clearly a polynomial

function of degree r − 1 and hence degχ(G(A), n) = r − 1.
Conversely, let ϕ be not an isomorphism and let N = kerϕ 6= 0.

Then, for every n ∈ Z, we have an exact sequence

0 → Nn → Bn → mn/mn+1 → 0

of k-vector spaces, which gives

χ(G(A), n) =

(
n+ r − 1
r − 1

)

− ℓk(Nn). (∗)
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Choose a non-zero homogeneous element f ∈ N and let deg f = d. Then,
for every n ∈ Z, we have fBn ⊂ Nn+d, which implies that ℓk(Nn+d) ≥
ℓk(fBn) = ℓk(Bn) ≥ ℓk(Nn). Thus ℓk(Nn) and ℓk(Bn) =

(
n+ r − 1
r − 1

)

have he same degree r − 1 and the same leading coefficient. Now (∗)
implies that degχ(G(A), n) < r − 1 and the proposition is proved.

Corollary 3.9 We have degPm(A, n) = r if and only if

ϕ: k[X1, . . . , Xr] → G(A)

is an isomorphism.

Proof: This is immediate from the above Proposition, since ∆Pm(A, n)
= χ(G(A), n).

3.2 Dimension theorem

By a chain in A, we mean sequence p0 ⊂ . . . ⊂ pr of prime ideals pi of
A such that pi 6= pi+1 for 0 ≤ i ≤ r − 1 and we say that this chain is of
length r. The height of a prime ideal p, denoted ht p, is defined by

ht p = sup{r | there exists in A a chain p0 ⊂ . . . ⊂ pr = p}.

If S is a multiplicative subset of A with p ∩ S = φ, then it follows from
Proposition 1.3 that ht p = htS−1p. The coheight of a prime ideal p,
denoted coht p, is defined by

coht p = sup{r| there exists in A a chain p = p0 ⊂ . . . ⊂ pr}.

Let M be a nonzero A-module. The Krull dimension of M denoted
dimAM (or, simply dimM , if no confusion is likely) is defined by

dimM = sup
p∈Supp(M)

coht p.

Thus, dimM is the supremum of lengths of chains of prime ideals
belonging to Supp(M). Since the minimal elements of Supp(M) be-
long to Ass(M) (by Corollary 1.28 to Proposition 1.27), we also have
dimM = supp∈Ass(M) coht p. If M = 0, Supp(M) = θ and we define
dimM = −1. The Krull dimension of a ring A is defined to be dimAA
and denoted dimA. Thus, dimA is the supremum of lengths of all
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chains of prime ideals in A. It is clear that if p is a prime ideal of
A, dimA/p = coht p and dimAp = ht p.

The Chevalley dimension s(M) of an A-module M 6= 0 is defined
to be the least integer r for which there exist r elements a1, . . . , ar in
m such that M/(a1, . . . , ar)M is of finite length as an A-module. Note
that since M/mM is of finite length, such an integer r exists. If M = 0,
we define s(M) = −1. We define the Chevalley dimension of a ring A
to be its Chevalley dimensions as an A-module.

Let a be an ideal of definition of A, i.e. mn ⊂ a ⊂ m for some m ∈ N.
For an A.module M , we denote as before, the length of the A-module
M/anM by Pa(M,n). By Theorem 3.4, we know that if a is generated
by r elements, then Pa(M,n) is a polynomial function of degree less than
or equal to r. By Lemma 3.5, degPa(M,n) is independent of the choice
of the ideal a of definition and is equal to Pm(M,n). We define

d(M) = degPm(M,n).

Theorem 3.10 (Dimension theorem). Let M be a finitely generated
module over a noetherian local ring A. Then dimM = d(M) = s(M).

Proof: We prove the theorem by showing that dimM ≤ d(M) ≤
s(M) ≤ dimM . First, we prove the inequality dimM ≤ d(M). If
d(M) = −1, then Pm(M,n) = 0 for n≫ 1 which implies thatM = mnM
for n ≫ 1. Since M is finitely generated, it follows from Nakayama’s
lemma that M = 0 and dimM = −1. Assume now that d(M) ≥ 0.
Since, by Proposition 1.19, Ass(M) is finite, there exists pinAss(M)
such that dimM = coht p = dimA/p. Since p ∈ Ass(M), we have a
monomorphism A/p →֒ M and by Corollary 3.7, d(A/p) ≤ d(M). It is
therefore sufficient to prove that dimA/p ≤ d(A/p). In order to prove
this, we have only to show that if p = p0 ⊂ . . . ⊂ pr is a chain in A,
then r ≤ d(A/p). Since A/p 6= 0, we have d(A/p) 6= −1 and there is
nothing to prove if r = 0. We assume therefore that r ≥ 1. Let us
make the following induction by hypothesis : if p′ = p′0 ⊂ . . . ⊂ p′r−1 is a
chain of length r − 1 in A, then r − 1 ≤ d(A/p′). Choose a ∈ p1, a /∈ p

and let p′ be a minimal prime ideal containing Aa + p and contained
in p1. We then have a chain p′ ⊂ p2 ⊂ . . . ⊂ pr of length r − 1 which
gives r − 1 ≤ d(A/p′). Further, since p′ ∈ Ass(A/Aa + p), we have
monomorphism A/p′ →֒ A/Aa+ p which implies, by Corollary 3.7 that
d(A/p′) ≤ d(A/Aa+ p). Consider now the exact sequence

0 → A/p
ϕ→ A/p → A/Aa+ p → 0
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where the map ϕ:A/p → A/p is the homothesy by a. By Proposition
3.6, we have

Pm(A/p, n) + Pm(A/Aa+ p, n) = Pm(A/p, n) +R(n),

where R(n) is a polynomial function of degree less than d(A/p). There-
fore d(A/Aa+ p) < d(A/p) and it follows that r ≤ d(A/p).

We next prove that d(M) ≤ s(M). If s(M) = −1, then M = 0
and d(M) = −1. So, let s = s(M) ≥ 0 and let a1, . . . , as ∈ m

be such that M/(a1, . . . , as)M is of finite length. Let a = annM
and let b = (a1, . . . , as) + a. We claim that Supp(A/b) = {m}. For
since M/(a1, . . . , as)M =M ⊗A A/(a1, . . . , as), we have by Proposition
1.29, Supp(M/(a1, . . . , as)M) = Supp(M) ∩ Supp(A/(a1, . . . , as)) and
Supp(M/(a1, . . . , as)M) = {m}, by Proposition 1.32. It follows from
Corollary 1.28 to Proposition 1.27 that Ass(A/b) = {m}. Thus b is
m-primary and hence mn ⊂ b for some n ∈ N. Thus b is an ideal of
definition of A. Let Ā = A/a and let b̄ = b/a. Then Ā is a local ring
and b̄ is an ideal definition of Ā and generated by the elements ā1, . . . , ās
where āi denotes the image of ai in Ā. Considering M as an Ā-module,
it follows from Theorem 3.4 that Pb̄(m,n) is of degree less than or equal
to s. Since ℓĀ(M/b̄nM) = ℓA(M/b̄nM), we have Pb̄(M,n) = Pb(M,n)
and d(M) ≤ s.

Finally, we prove that s(M) ≤ dimM , by induction on dimM which
is finite, since dimM ≤ d(M). If dimM = −1, then M = 0 and
s(M) = −1. If dimM = 0, then Supp(M) = {m}, so that M is of finite
length. It follows that s(M) = 0. Let then dimM > 0 and let p1, . . . , pg
be those elements of Ass(M) for which dimM = coht pi, 1 ≤ i ≤ g.
Since dimM > 0, we have pi 6= m, for every i and hence m 6⊂ ⋃

1≤i≤g pi.

Choose a ∈ m, a 6∈ ⋃i
1≤i≤g pi and let M ′ = M/aM . Then Supp(M ′) ⊂

Supp(M) − {p1, . . . , pg} and it follows that dimM ′ < dimM . Let t =
s(M ′) and let a1, . . . , at ∈ m be such that M ′/(a1, . . . , at)M

′ is of finite
length. ThenM/(a, a1, . . . , at)M is of finite length so that s(M) ≤ t+1.
By induction hypothesis, t ≤ dimM ′. Hence s(M) ≤ dimM and the
theorem is proved.

Corollary 3.11 Let M be a finitely generated module over a noetherian
local ring A. Then dimAM <∞.

We call the common value dimM = d(M) = s(M) the dimension of
M and denote it by dimAM or dimM .
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Corollary 3.12 Let B be any noetherian ring and a an ideal of B gener-
ated by r elements. Then, for any minimal prime ideal p of B containing
a we have ht p ≤ r.

Proof: Consider the local ring Bp. Since p is a minimal prime ideal
containing a we have Supp(Bp/aBp) = {pBp}. Therefore ℓBp

(Bp/pBp) <
∞ and it follows that s(Bp) ≤ r. Hence

ht p = dimBq = s(Bp) ≤ r.

Corollary 3.13 (Principal ideal Theorem). Let B be a noetherian ring
and Ba a principal ideal of B. Let p1, . . . , pg be the minimal prime ideals
of B containing Ba. Then ht pi ≤ 1 for 1 ≤ i ≤ g. Moreover, if a is
not a zero divisor of B, then ht pi = 1 for 1 ≤ i ≤ g.

Proof: The first assertion is a particular case of the corollary above.
Suppose a is not a zero divisor of B. Then, by Proposition 1.21, a
cannot belong to any minimal prime ideal of B. Hence, for every p ∈
Ass(B/Ba), we have ht p ≥ 1. Thus ht pi = 1, for 1 ≤ i ≤ g.
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Chapter 4

Homological

Characterisation of Regular

Local Rings

4.1 Homological dimension

In this section, as before, A denotes a commutative ring with 1 and all
modules are assumed to be unitary.

Let M be a non-zero A-module and let

. . .→ Pn
d→ Pn−1 → . . .→ P0

ε→M → 0

be a projective resolution of M . We say that this resolution is of length
n, if Pn 6= 0 and Pi = 0, for i > n. The homological dimension of a
non-zero A-moduleM , denoted hdAM , is the least integer n, if it exists,
such that there exists a projective resolution of M of length n. If no
such integer exists, we set hdAM = ∞. If M = 0, we set hdAM = −1.
It is clear that an A-module M is projective if and only if hdAM ≤ 0.

The global dimension of a ring A, denoted gl. dimA, is defined by

gl . dimA = sup
M

hdAM,

where the supremum is taken over all A-modules M .

Proposition 4.1 For an A-module M , the following conditions are
equivalent:

(i) M is projective;

61
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(ii) ExtjA(M,N) = 0 for all A-modules N and all j ≥ 1;

(iii) Ext1A(M,N) = 0 for all A-modules N .

Proof: (i)⇒ (ii). SinceM is projective,M has a projective resolution

0 →M
1M−→M → 0.

Using this resolution to compute Ext, we see that ExtjA(M,N) = 0 for
all N and j ≥ 1.

(ii) ⇒ (iii). Trivial.

(iii) ⇒ (i). Let

M

N
ϕ - N ′′

f

?
- 0

be a given diagram of A-homomorphisms, where the row is exact. If
N ′ = kerϕ, we have an exact sequence 0 → N ′ → N

ϕ→ N ′′ → 0 which,
by Theorem 2.19, induces an exact sequence

HomA(M,N)
ϕ∗

→ HomA(M,N ′′) → Ext1A(M,N ′).

Since Ext1A(M,N ′) = 0 by hypothesis, it follows that ϕ∗ is an epimor-
phism. Hence there exists an A-homomorphism g:M → N such that
ϕ ◦ g = f . This proves that M is projective.

Proposition 4.2 For an A-module M and n ∈ Z+, the following con-
ditions are equivalent.

(i) hdAM ≤ n;

(ii) ExtjA(M,N) = 0 for all A-modules N and all j ≥ n+ 1;

(iii) Extn+1
A (M,N) = 0 for all A-modules N ;

(iv) if 0 → Kn → Pn−1 → . . .→ P0 →M → 0 is exact with Pj being
A-projective for 0 ≤ j ≤ n− 1, then Kn is A-projective.

Proof: (i) ⇒ (ii). By hypothesis, there exists a projective resolution
of M of length less than or equal to n. Using this resolution to compute
Ext, (ii) trivially follows.

(ii) ⇒ (iii). Trivial.
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(iii) ⇒ (iv). If n = 0, it follows from Proposition 4.1 that M is
projective and the assertion is clear in this case. Let then n ≥ 1. The
given exact sequence induces short exact sequences

0 → Kj+1 → Pj → Kj → 0, 0 ≤ j ≤ n− 1,

where Kj+1 = Im (Pj+1 → Pj), 0 ≤ j ≤ n− 2 and K0 =M . For any A-
module N , these sequences yield the exact sequences Extn−j(Pj , N) →
Extn−j)(Kj+1, N) → Extn−j+1(Kj , N) → Extn−j+1(Pj , N), 0 ≤ j ≤
n−1. Since Pj is projective, we have Extn−jA (Pj , N) = 0, and Extn−j+1(Pj , N)
= 0, for 0 ≤ j ≤ n − 1, by Proposition 4.1. Thus Ext1(Kn, N) ≃
Ext2(Kn−1, N) ≃ . . . ≃ Extn+1

A (K0, N). Since K0 = M , we have
Extn+1

A (K0, N) = 0, and hence Ext1A(Kn, N) = 0. Since N is arbi-
trary, it follows from Proposition 4.1 that Kn is projective.

(iv) ⇒ (i). This is clear from the proof of the Proposition 2.8.

Corollary 4.3 For a non-zero A-module M , we have

hdAM = sup
n
{n | ∃ an A-module N with ExtnA(M,N) 6= 0}.

Proof: Immediate.

Corollary 4.4 IfM ′ is a direct summand ofM , then hdAM
′ ≤ hdAM .

Proof: This follows from the corollary above, since, for n ∈ Z+ and
an A-module N, ExtnA(M

′, N) is a direct summand of ExtnA(M,N) by
Theorem 2.19(iv).

Proposition 4.5 Let 0 →M ′ → P →M ′′ → 0 be an exact sequence of
A-module with P projective. Then

(i) if M ′′ is projective, so is M ′.
(ii) if hdAM

′′ ≥ 1, then hdAM
′′ = hdAM

′+1 where both sides may
be infinite.

Proof: If M ′′ is projective, the sequence 0 → M ′ → P → M ′′ → 0
splits so that M ′ is a direct summand of P and hence projective. This
proves (i). We now prove (ii). For an A-module N , and n ∈ N, we have
an exact sequence

0 → ExtnA(M
′, N) → Extn+1

A (M ′′, N) → 0,

since, P being projective, we have ExtnA(P,N) = 0 = Extn+1
A (P,N).

The assertion (ii) now follows from Corollary 4.3 to Proposition 4.2.
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Lemma 4.6 Let M be an A-module with hdAM < ∞. If a ∈ A is a
non-zero divisor of both A and M , then hdA/AaM/aM <∞.

Proof: We prove the lemma by induction on hdAM . We may clearly
assume M 6= 0. If hdAM = 0, then M is A-projective and hence, by
Corollary 2.7, M/aM =M ⊗A/Aa is A/Aa-projective.

Let hdAM > 0 and let

0 → N → P →M → 0 (∗)

be an exact sequence where P is A-projective. By Proposition 4.5, we
have hdAN = hdAM − 1. The exact sequence (∗) induces the exact
sequence

TorA1 (M,A/Aa) → N/aN → P/aP →M/aM → 0

of A/Aa-modules. Since a is not a zero divisor of A, we have an exact

sequence 0 → A
ϕ→ A → A → A/Aa → 0 where ϕ is the homothesy

aA. This induces the exact sequence 0 → TorA1 (M,A/Aa) → M
a→ M .

Since a is not a zero divisor of M , it follows that TorA1 (M,A/Aa) = 0.
Therefore the sequence,

0 → N/aN → P/ap→M/aM → 0

is exact. By induction hypothesis, hdA/AaN/aN < ∞ and since P/aP
is A/Aa-projective, we have hdA/AaM/aM <∞, by Proposition 4.5.

4.2 Injective dimension and global dimension

An A-module Q is said to be injective, if, given any diagram

0 - M ′ i - M

Q
?

¯f
-

of A-homomorphisms with exact row, there exists an A-homomorphism
f̄ :M → Q such that f̄ ◦ i = f .



4.2. Injective dimension and global dimension 65

Proposition 4.7 An A-module N is injective if and only if any A-
homomorphism from any ideal of A into N can be extended to an A-
homomorphism of A into N .

Proof: Clearly, any injective module has the property stated in the
proposition. Suppose now that N is an A-module which has the above
property. LetM be any A-module, M ′ an A-submodule and f :M ′ → N
an A-homomorphism. We shall prove that f can be extended to an A-
homomorphism of M into N .

Let F be the family of all pairs (P, g), where P is a submodule
of M containing M ′ and g:P → N an A-homomorphism extending f .
This family is non-empty since (M ′, f) ∈ F . We introduce a partial
order in F by setting (P1, g1) ≤ (P2, g2) if P1 ⊂ P2 and g2|P1 = g1.
If (Pα, gα)α∈I is a totally ordered subfamily, let P =

⋃

α∈I Pα. Define
g:P → N by setting for x ∈ Pα ⊂ P, g(x) = gα(x). It is easily
verified that (P, g) belongs to F and that it is an upper bound of this
totally ordered subfamily. By Zorn’s lemma, F , has a maximal element
(M1, f1). We claim that M1 = M . Suppose M1 6= M and let x ∈
M, x 6∈ M1. The map a 7→ ax of A into M induces an A-isomorphism,
A/b

∼→ Ax, where b is an ideal of A. Under this isomorphism, M1 ∩
Ax corresponds to an ideal a/b of A/b. The restriction of f1 to M1 ∩
Ax induces an A-homomorphism a/b → N . Composing this with the
canonical map a → a/b, we get a homomorphism a → N which vanishes
on b. By our assumption on N , this homomorphism can be extended
to a homomorphism A → N which vanishes on b so that we have a
homomorphism f2:Ax

∼→ A/b → N . Define a map g:M1 + Ax → N
by setting g|M1 = f1 and g|Ax = f2 so that (M1 + Ax, g) is in F
contradicting the maximality of (M1, f1). The proposition is proved.

We recall that a module M over an integral domain A is said to be
divisible if for any m ∈M and 0 6= a ∈ A, there exists n ∈M such that
m = an.

Proposition 4.8 If A is an integral domain, any injective A-module
is divisible. If A is a principal ideal domain, any divisible A-module is
injective.

Proof: LetM be an injective A-module and letm ∈M, a ∈ A, a 6= 0.
Define an A-homomorphism f :Aa → M by setting f(ba) = bm. Since,
M is injective, f can be extended to a homomorphism f̄ :A → M . If
n = f̄(1), we clearly have m = an.
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Suppose next that A is a principal ideal domain and that M is a
divisible A-module. Let f : a → M be an A-homomorphism, where a

is any ideal of A. If a = 0, f = 0 and can be trivially extended to a
homomorphism A→M . Suppose a = Aa 6= 0. Let f(a) = m. Since M
is divisible, there exists n ∈M such that m = an. Define f̄ :A→M by
f̄(b) = bn. Clearly f̄ extends f . Proposition 4.7 now shows that M is
injective.

Corollary 4.9 The Z-modules Q and Q/Z are Z injective.

Proof: Note that Z is a principal ideal domain and that both Q and
Q/Z are divisible.

Proposition 4.10 Any module is isomorphic to a submodule of an in-
jective module.

Proof: Let M be any A-module. We define

M∗ = Hom Z(M,Q/Z).

We make M∗ into an A-module by defining for a ∈ A, f ∈ M∗, af ∈
Hom Z(M,Q/Z) by (af)(m) = f(am). We have an A-homomorphism
iM :M → (M∗)∗ defined by iM (m)(f) = f(m),m ∈M, f ∈M∗, which is
functorial in M . We claim that iM is injective. In fact, if x ∈M,x 6= 0,
we have a Z-homomorphism h:Zx → Q/Z such that h(x) 6= 0; if x is
of infinite order (M treated as an abelian group), then choose h(x) to
be any non-zero element of Q/Z and if x is of finite order n, choose
h(x) to be the class 1/n in Q/Z. Since Q/Z is Z-injective (Corollary
to Proposition 4.8), this extends to a homomorphism h̄:M → Q/Z and
h̄(x) = h(x) 6= 0 i.e. iM (x) 6= 0. This proves that iM is injective. Let

F
j→M∗ → 0 be exact with F a free A-module. We then have an exact

sequence 0 → (M∗)∗
j∗→ F ∗ of A-modules, so that M is isomorphic to

a submodule of F ∗. The proposition is proved if we show that for any
projective A-module P , the module P ∗ is injective.

Let P be a projective A-module and suppose we are given a diagram

0 - M ′ i - M

P ∗

g
-
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of A-homomorphisms. Since Q/Z is Z-injective, i∗:M∗ → M ′∗ is sur-
jective and we have the diagram

P
iP- (P ∗)∗

M∗

i∗
- M ′∗

g∗

?
- 0

-

Since P is A-projective, there exists an A-homomorphism h:P → M∗

such that g∗◦iP = i∗◦h. We then have anA-homomorphism h∗: (M∗)∗ →
P ∗. It is easily seen that h∗ ◦ iM ◦ i = g (where iM :M → M∗∗ is the
obvious A-homomorphism defined earlier). This proves that P ∗ is injec-
tive.

Proposition 4.11 For an A-module N , the following conditions are
equivalent : (i) N is injective

(ii) Ext1A(M,N) = 0 for all A-modules M ;
(iii) ExtiA(M,N) = 0 for all integers i ≥ 1 and for all A-modules

M ;
(iv) Ext1A(M,N) = 0 for all finitely generated A-modules M ;
(v) Ext1A(Aa, N) = 0 for all ideals a of A.

Proof: (i) ⇒ (ii). Let M be any A-module and let 0 → R
i→ P

j→
M → 0 be an exact sequence with P,A-projective. This gives rise to an
exact sequence

HomA(P,N)
i∗→ HomA(R,N) → Ext1A(M,N) → Ext1A(P,N).

Since P is projective, Ext1A(P,N) = 0. The map i∗ is surjective, since
N is injective. Hence Ext1A(M,N) = 0.

(ii) ⇒ (iii). Assume by induction that ExtiA(M,N) = 0 for all i, 1 ≤
i ≤ n−1, n ≥ 2 and for all A-modulesM . We prove ExtnA(M,N) = 0 for

any A-module M . If 0 → R
i→ P

j→M → 0 is exact with P projective,
we have the exact sequence

Extn−1
A (R,N) → ExtnA(M,N) → ExtnA(P,N).

By induction assumption, Extn−1
A (R,N) = 0. Since P is projective,

ExtnA(P,N) = 0. Hence ExtnA(M,N) = 0. (iii) ⇒ (iv). Trivial. (iv)
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⇒ (v). Trivial. (v) ⇒ (i). For any ideal a of A, the exact sequence
o→ a → A→ A/a → 0 gives rise to an exact sequence

HomA(A,N) → HomA(a, N) → Ext1A(A/a, N).

By assumption Ext1A(A/a, N) = 0, so that any A-homomorphism a →
N can be extended to an A-homomorphism A → N . By Proposition
4.7, it follows that N is injective.

Let N be a non-zero A-module. The injective dimension of N , de-
noted inj dimAN , is defined by

inj dimAN = sup{n | ∃ an A−module M withExtnA(M,N) 6= 0},

if it exists and otherwise ∞. If N = 0, we set inj dimAN = −1. It
follows from Proposition 4.11 that an A-module N is injective if and
only if inj dimAN ≤ 0.

Proposition 4.12 For any A-module N ,

inj dimAN = sup{n | ∃a finitely generated A-module

Msuch that ExtnA(M,N) 6= 0}.

Proof: It suffices to prove that for any integer i ≥ 0, if ExtiA(M,N) =
0 for all finitely generated A-modules M , then ExtiA(M,N) = 0 for all
A-modulesM . We prove this statement by induction on i. If i = 0, N

∼→
HomA(A,N) = Ext0A(A,N) so that Ext0A(A,N) = 0 implies N = 0.
For i = 1, the assertion follows from Proposition 4.11. Suppose then
i ≥ 2. By Proposition 4.10, there exists an exact sequence 0 → N →
Q → Q/N → 0, with Q injective. For any A-module M there is an
induced exact sequence

Exti−1
A (M,Q) → Exti−1

A (M,Q/N) → ExtiA(M,N) → ExtiA(M,Q).

Since Q is injective, it follows, by Proposition 4.11, that Exti−1
A (M,Q) =

ExtiA(M,Q) = 0, so that we have an isomorphism Exti−1
A (M,Q/N)

∼→
ExtiA(M,N). Since ExtiA(M,N) = 0 for all finitely generatedA-modules
M . Hence by induction Exti−1

A (M,Q/N) = 0 for all A-modules M
which by the above isomorphism again implies that ExtiA(M,N) = 0
for all A-modules M . This proves the proposition.

Proposition 4.13 For any ring A,

gl dimA = sup
N

inj dimAN.
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Proof:

gl . dimA = sup
M

hdAM

= sup
M

sup{n | ∃an A-module N such that ExtnA(M,N) 6= 0}

= sup{n | ∃A-modules M and N such that ExtnA(M,N) 6= 0}
= sup

N
sup{n | ∃an A-module M such that ExtnA(M,N) 6= 0}

= sup
N

inj dimAN.

Theorem 4.14 For any ring A

gl . dimA = sup
M

{ hdAM |M finitely generated}.

Proof:

gl . dimA = sup
N

inj dimAN by Proposition 4.13

= sup
N

sup{n | ∃a finitely generated A-module M

withExtnA(M,N) 6= 0}, by Proposition 4.12

= sup
M finitely
generated

sup{n | ∃anA-module NwithExtnA(M,N) 6= 0}

= sup
M finitely
generated

hdAM by Corollary4.3Proposition4.2

4.3 Global dimension of noetherian local rings

In this section, A denotes a local ring m its maximal ideal and k = A/m
its residue field. All A-modules that we consider are assumed to be
finitely generated.

Lemma 4.15 Let M be an A-module. A set of elements x1, . . . , xn of
M is a minimal set of generators of M if and only if their canonical
images x̄1, . . . , x̄n in M/mM form a basis of the k-vector space M/mM .
In particular, the cardinality of any minimal set of generators of M is
equal to the rank of the k-vector space M/mM .

Proof: Clearly, it is enough to prove that x1, . . . , xn ∈ M gener-
ate M over A if and only if x̄1, . . . , x̄n generate M/mM over k. If
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x1, . . . , xn ∈M generate M , then obviously x̄1, . . . , x̄n generate M/mM
over k. Conversely, suppose x1, x2, . . . , xn are such that x̄1, x̄2, . . . , x̄n
generate M/mM over k. Let M ′ be the submodule of M generated by

x1, . . . , xn. IfM
′′ =M/M ′, we have an exact sequence 0 →M ′ i→M →

M ′′ → 0, which induces an exact sequence

M ′/mM ′ ī→M/mM →M ′′/mM ′′ → 0.

Since x1, . . . , xn are in M ′ and since x̄1, . . . , x̄n generate M/mM, ī
is an epimorphism; it follows that M ′′/mM ′′ = 0. Since M ′′ is finitely
generated, we have M ′′ = 0, by Nakayama’s lemma and M ′ =M .

Proposition 4.16 Let A be a local ring and M a finitely generated A-
module. Then the following conditions are equivalent:

(i) M is free;

(ii) M is projective.

Moreover, if A is noetherian, then (i) and (ii) are also equivalent
to

(iii) TorAj (M,N) = 0 for all A-modules N and all j ≥ 1;

(iv) TorA1 (M,k) = 0.

Proof: (i) ⇒ (ii). Trivial. (ii) ⇒ (i). Let {x1, . . . , xn} be a minimal
set of generators of M and let ϕ:F → M be an A-epimorphism, where
F is a free A-module with a basis of n elements. If K = kerϕ, we have
the exact sequence

0 → K → F
ϕ→M → 0. (∗)

Since M is projective, this sequence splits, so that

0 → K/mK → F/mF
ϕ̄→M/mM → 0. (∗∗)

is exact. By Lemma 4.15, ϕ̄ is an isomorphism, and K/mK = 0. Since
the sequence (∗) splits, we have that K is finitely generated. Hence, by
Nakayama’s lemma, K = 0, ϕ is an isomorphism and M is free.

(ii) ⇒ (iii). Since M is projective, M has a projective resolution

0 →M
1M→ M → 0. Using this resolution to compute Tor, (iii) follows.

(iii) ⇒ (iv). Trivial.
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(iv) ⇒ (i). The proof is on the same lines as that of ‘(ii) ⇒ (i)’. We
have only to note that the exactness of (∗∗) is, in this case, a consequence
of the hypothesis TorA1 (M,k) = 0, and K is finitely generated because
A is noetherian.

Proposition 4.17 Let A be a noetherian local ring, M a finitely gen-
erated A-module and n ∈ Z+. Then the following conditions are equiv-
alent:

(i) hdAM ≤ n :

(ii) TorAj (M,N) = 0 for all A-modules N and all j ≥ n+ 1;

(iii) TorA1 (M,k) = 0.

Proof: (i) ⇒ (ii). Using a projective resolution of length less than
or equal to n to compute Tor, we find that TorAj (M,N) = 0 for all
A-modules N and all j ≥ n+ 1.

(ii) ⇒ (iii). Trivial. (iii) ⇒ (i). We prove this by induction on n. If
n = 0, then TorA1 (M,k) = 0 and by Proposition 4.16, M is free. Hence
hdAM ≤ 0. We may therefore assume n ≥ 1. There exists an exact
sequence

0 →M ′ → P →M → 0,

where P is A-projective. This induces the exact sequence

TorAn+1(M,k) → TorAn (M
′, k) → TorAn (P, k).

By assumption, TorAn+1(M,k) = 0, and by Proposition 4.16, TorAn (P, k)
= 0 so that we have TorAn (M

′, k) = 0. Hence by induction hypothesis,
we have hdAM

′ ≤ n− 1 and, by Proposition 4.5, we get hdAM ≤ n.

Proposition 4.18 Let A be a noetherian local ring. For any n ∈ Z+,
the following statements are equivalent:

(i) gl . dimA ≤ n;

(ii) TorAj (M,N) = 0 for all A-modules M,N and j ≥ n+ 1;

(iii) TorAn+1(k, k) = 0.
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Proof: (i) ⇒ (ii). This follows from the above proposition. (ii) ⇒
(iii). Trivial. (iii) ⇒ (i). Suppose (iii) holds. Then, by the above propo-
sition, TorAn+1(k,M) = 0 for all A-modules M . Since by Proposition
2.18, we have TorAn+1(M,k) ≃ TorAn+1(k,M), it follows from the above
proposition that if M is finitely generated, then hdAM ≤ n. Since this
holds for all finitely generated A-modules M , (i) follows from Theorem
4.14.

Corollary 4.19 For a noetherian local ring A, we have gl . dimA =
hdAk.

4.4 Regular local rings

In this section, A denotes a noetherian local ring and m its maximal
ideal. Let k = A/m denote the residue field.

Let dimA = r. By Theorem 3.4, we know that m cannot be generated
by less than r elements.

A noetherian local ring A of dimension r is said to be regular if its
maximal ideal can be generated by r elements.

Theorem 4.20 Let A be a noetherian local ring with maximal ideal m
and let k = A/m. Then the following conditions are equivalent :

(i) A is regular.

(ii) the rank of the k-vector space m/m2 is equal to dimA;

(iii) the k-algebra G(A) =
⊕

j≥0m
j/mj+1 is isomorphic as a graded

k-algebra to a polynomial algebra k[X1, . . . , Xs];

(iv) G(A) is isomorphic as a graded k-algebra to the polynomial algebra
k[X1, . . . , Xr] with r = dimA.

Proof: (ii) ⇒ (i). Immediate from Lemma 4.15.

(iii) ⇒ (ii). Let ϕ: k[X1, . . . , Xs] → G(A) be an isomorphism of
graded k-algebras and let x1, . . . , xs ∈ m be such that ϕ(Xj) = xj
modulo m2, for 1 ≤ j ≤ s. By Lemma 4.15, the elements x1, . . . , xs
generate m and we have, by Corollary to Proposition 3.8, degPm(A, n) =
s. On the other hand, since m/m2 = G(A)1 ≃ k[X1, . . . , Xs]1 we have
rankkm/m

2 = s. This proves (ii).

(iv) ⇒ (iii). Trivial.
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(i) ⇒ (iv). Let {x1, . . . , xr} be a set of generators of m, with r =
dimA. Let ϕ: k[X1, . . . , Xr] → G(A) be the graded k-algebra homomor-
phism defined by ϕ(Xj) = xj modulo m2, 1 ≤ j ≤ r. Since degPm(A, n)
= r, we have, by Corollary to Proposition 3.8, that ϕ is an isomorphism.

Corollary 4.21 A regular local ring is an integral domain.

Proof: Since G(A) ≃ k[X1, . . . , Xr] is an integral domain, the Corol-
lary follows from Lemma 1.42.

Let A be a regular local ring of dimension r. Any set of generators
for m consisting of r elements is called a regular system of parameters of
A.

Proposition 4.22 Let A be a regular local ring of dimension r and
let a1, . . . , aj be any j elements of m, 0 ≤ j ≤ r. Then the following
statements are equivalent:

(i) {a1, . . . , aj} is a part of a regular system of parameters of A;

(ii) the images ā1, . . . , āj of a1, . . . , aj under the canonical map m →
m/m2 are linearly independent over k;

(iii) A/(a1, . . . , aj) is a part of a regular local ring of dimension r − j.

Proof: (i) ⇔ (ii). Trivial consequences of Lemma 4.15.

(i) ⇒ (iii). Let Ā = A/(a1, . . . , aj) and let m̄ = m/(a1, . . . , aj). Let
a1, . . . , aj , aj+1, . . . , ar be a regular system of parameters of A. Then the
canonical images of aj+1, . . . , ar in m̄ obviously generate m̄ and hence,
by Theorem 3.4, dim Ā ≤ r− j. Let s = dim Ā and let b1, . . . , bs ∈ m be
such that if b̄1, . . . , b̄s are their canonical images in m̄, then Ā/(b̄1, . . . , b̄s)
is of finite length. Since A/(a1, . . . , aj , b1, . . . , bs) ≃ Ā/(b̄1, . . . , b̄s), we
have s + j ≥ dimA = r. Thus dim Ā = r − j. Since m̄ is generated by
r − j elements, Ā is regular and (iii) is proved.

(iii) ⇒ (i). Let aj+1, . . . , ar ∈ m be such that their canonical images
in m̄ = m/(a1, . . . , aj) generate m̄. Then a1, . . . , aj , aj+1, . . . , ar generate
m and (i) is proved.

Corollary 4.23 Let {a1, . . . , aj} be a part of a regular system of param-
eters of a regular local ring A. Then p = (a1, . . . , aj) is a prime ideal of
A of height j.
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Proof: Since, by the above Proposition, A/p is a regular local ring,
it is an integral domain by Corollary to Theorem 4.20, and hence p is a
prime ideal. We show by induction on j that ht p = j. If j = 0, then
p = 0 and ht p = 0. Let j > 0. By induction hypothesis, the ideal
(a1, . . . , aj−1) is a prime ideal of height j − 1. Moreover, it is properly
contained in p, since {a1, . . . , aj} is a minimal system of generators of p.
Thus ht p ≥ j. On the other hand, by Corollary 4.4 to Theorem 3.10,
ht p ≤ j. Thus ht p = j and this completes the proof.

LetM be a non-zero A-module. A sequence a1, . . . , ar of elements of
m is called anM -sequence if ai is not a zero-divisor ofM/(a1, . . . , ai−1)M
for 1 ≤ i ≤ r. (For i = 1, the condition means that a1 is not a zero-
divisor of M .)

Proposition 4.24 Let M be a non-zero A-module and a1, . . . , ar an
M -sequence. Then r ≤ dimM .

Proof: We use induction on r. For r = 0, there is nothing to prove.
Assume r > 0 and let M ′′ = M/a1M . Since a1 is not a zero-divisor of

M , we have an exact sequence 0 →M
ϕ→M →M ′′ → 0, where ϕ is the

homothesy by a1. Applying Proposition 3.6 to this exact sequence, we
get Pm(M

′′, n) = R(n), where R(n) is a polynomial function of degree
less than degPm(M,n), i.e. dimM ′′ < dimM . Since clearly a2, . . . , ar
is an M ′′-sequence, we have by induction hypothesis, r− 1 ≤ dimM ′′ ≤
dimM − 1. This proves the proposition.

Corollary 4.25 A noetherian local ring A is regular if and only if its
maximal ideal is generated by an A-sequence.

Proof: Let A be regular and let {a1, . . . , ar} be a regular system of
parameters of A. Then from Proposition 4.22, it follows that a1, . . . , ar
is an A-sequence. Conversely, suppose a1, . . . , ar is an A-sequence gen-
erating m. Then, by Proposition 4.24, we have r ≤ dimA. Also, by
Theorem 3.4, dimA ≤ r. Thus r = dimA and the corollary is proved.

4.5 A homological characterisation of regular

local rings

The aim of this section is to prove that a local ring A is regular if and
only if gl . dimA <∞.
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In this section, A denotes, as before a noetherian local ring, m its
maximal ideal and k its residue field A/m.

Lemma 4.26 If a ∈ m−m2, then the exact sequence

0 → Aa/ma→ m/ma→ m/Aa→ 0

of A/Aa-modules splits.

Proof: Let d = rankkm/m
2. Since a 6∈ m2 there exist by Lemma

4.15, a1, . . . , ad−1 ∈ m such that {a, a1, . . . , ad−1} is a minimal set of
generators of m. Let a = (a1, . . . , ad−1). Let b ∈ A be such that ba ∈
a. Then by the minimality of {a, a1, . . . , ad−1} as a set of generators
for m, b cannot be a unit, so that b ∈ m. Thus a ∩ Aa ⊂ a ∩ ma.
Clearly a ∩ Aa ⊃ a ∩ ma, so that a ∩ Aa = a ∩ ma. We now have
a+ma/ma ≃ a/a ∩ma = a/a ∩Aa ≃ a+Aa/Aa = m/Aa, which shows
that the canonical homomorphism m/ma → m/Aa maps a + ma/ma is
isomorphically onto m/Aa. Hence the exact sequence splits.

Corollary 4.27 Let A be a noetherian local ring with gl . dimA < ∞.
If a ∈ m−m2 is not a zero divisor of A, then gl . dimA/Aa <∞.

Proof: We have an A/Aa-isomorphism (A/Aa)/(m/Aa) ≃ A/m = k,
and hence an exact sequence

0 → m/Aa→ A/Aa→ k → 0

ofA/Aa-modules. By Corollary to Proposition 4.18, we now have gl . dimA/Aa =
hdA/Aak. To prove the corollary, it suffices, in view of Proposition 4.5,
to show that hdA/Aam/Aa < ∞. By hypothesis, gl . dimA < ∞ and
hence hdAm <∞. By Lemma 4.6, we have hdA/Aam/ma <∞. By the
above lemma, m/Aa is a direct summand of m/ma. Now Corollary 4.4
to Proposition 4.2 shows that hdA/Aam/Aa <∞ and this completes the
proof.

Lemma 4.28 Let M be a non-zero A-module and let a ∈ m be not a
zero divisor of M . Then hdAM/aM = hdAM + 1, where both sides
may be infinite.

Proof: The exact sequence

0 →M
aM−→M −→M/aM → 0
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induces an exact sequence

TorAn+1(M,k) - TorAn+1(M/aM, k) - TorAn (M,k)
TorA

n
(aM ,k)- TorAn (M,k)

for every n ∈ Z+. Now TorAn (aM , k) = aTorAn (1M , k) = TorAn (1M , ak) =
0, since a being in m, ak is zero. Thus the sequence

TorAn+1(M,k) → TorAn+1(M/aM, k) → TorAn (M,k) → 0

is exact. The lemma now follows from Proposition 4.17.

Lemma 4.29 Let A be a noetherian local ring such that m 6= m2 and
such that every element of m−m2 is a zero-divisor. Then any A-module
of finite homological dimension is free.

Proof: By Proposition 1.21, we have

m−m2 ⊂
⋃

p∈Ass(A)

p

This means that m ⊂ ⋃

p∈Ass(A) p ∪ m2 and since m 6= m2, we have
by Lemma 1.12 that m ∈ Ass(A) and we have an A-monomorphism
k = A/m →֒ A. Let M be any A-module with hdAM = n < ∞. If
n = −1, then M = 0 and there is nothing to prove. Let n ≥ 0. The
exact sequence 0 → k → A→ A/k → 0 induces the exact sequence

TorAn+1(M,A/k) → TorAn (M,k) → TorAn (M,A).

By Proposition 4.17, we have TorAn+1(M,A/k) = 0 and TorAn (M,k) 6= 0.
This implies that TorAn (M,A) 6= 0 which implies n = 0. Hence M is
projective. Proposition 4.16 now proves the lemma.

Theorem 4.30 Let A be a noetherian local ring. Then A is regular
if and only if gl . dimA < ∞ and moreover, if gl . dimA < ∞, then
gl . dimA = dimA.

Proof: By Corollary to Proposition 4.24, it is enough to show that
the maximal ideal m of A is generated by an A-sequence if and only if
gl . dimA <∞ and that, in this case, gl . dimA = dimA.

Let m be generated by an A-sequence a1, . . . , ar. Then by repeated
applications of Lemma 4.28, it follows that hdAA/m = r. Therefore by
Corollary to Proposition 4.18, we have gl . dimA = r < ∞. Moreover
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by Proposition 4.24, we have r ≤ dimA. Now Theorem 3.4 implies that
dimA ≤ r, so that gl . dimA = r = dimA.

To complete the proof of the theorem, it is now enough to show that
if gl . dimA < ∞, then m is generated by an A-sequence. Let then
gl . dimA <∞. We use induction on r = rankkm/m

2 to prove that m is
generated by an A-sequence. If r = 0, then m = m2 and, by Nakayama’s
lemma, m = 0 showing that m is generated by the empty sequence. Let
now r > 0. If every element of m − m2 is a zero-divisor then, since
hdAA/m < ∞, we have, by Lemma 4.29, that A/m is free; therefore
m = 0, contradicting the assumption that r > 0. Thus there exists
a ∈ m − m2 which is not a zero divisor. Then, by Corollary to Lemma
4.26, we have gl . dimA/Aa < ∞. Let m̄ = m/Aa; since m̄/m̄2 is a
k-vector space of rankr−1, we see by induction that m/Aa is generated
by an A/Aa-sequence ā1, . . . , ār−1 where ai ∈ m and āi is the class of
ai modulo Aa, for 1 ≤ i ≤ r − 1. Then clearly, a, a1, . . . , ar−1 is an
A-sequence which generates m, and the theorem is proved.

Corollary 4.31 Let A be a regular local ring and let p be a prime ideal
of A. Then Ap is a regular local ring.

Proof: In view of the above theorem, it is enough to show that
gl . dimAp ≤ gl . dimA. Let

0 → Fn → Fn−1 → · · · → F0 → A/p → 0 (∗)

be an A-free resolution of the A-module A/p with n ≤ gl . dimA. In
view of Proposition 1.1 and 1.2, we obtain by tensoring (∗) with Ap, an
Ap-free resolution

0 → Fn ⊗A Ap → Fn−1 ⊗A Ap → · · · → F0 ⊗A Ap → Ap/pAp → 0

of Ap/pAp which shows that hdAp
Ap/pAp ≤ n. Now Corollary 4.19

shows that gl . dimAp = hdAp
Ap/pAp ≤ n ≤ gl . dimA.
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Chapter 5

Unique Factorisation in

Regular Local Rings

5.1 Locally free modules and a “cancellation

lemma”

Lemma 5.1 Let A be a noetherian ring and let S be a multiplicative
subset of A. Let M be a finitely generated A-module. Then for any
A-module N , the canonical map

ϕM : HomA(M,N) → Hom S−1A(S
−1M,S−1N) given by f 7→ S−1f

induces an S−1A-isomorphism

ϕ̄M :S−1HomA(M,N) ≃ Hom S−1A(S
−1M,S−1N),

which is functorial both in M and N .

Proof: If M = A, and if HomA(A,N) and Hom S−1A(S
−1A,S−1N)

are identified respectively with N and S−1N, ϕA is simply the canonical
map iN and hence ϕ̄A = 1S−1N . Since both Hom and S−1 are additive
functors, it follows that ϕ̄M is an isomorphism for any finitely generated
free A-moduleM . Let nowM be any finitely generated A-module. Since
A is noetherian, we have an exact sequence

F1 → F0 →M → 0

where F0 and F1 are finitely generated free A-modules. We then have
the exact sequences

0 → HomA(M,N) → HomA(F0, N) → HomA(F1, N)

79
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and
S−1F1 → S−1F0 → S−1M → 0

and hence we have the following commutative diagram with exact rows:

0 → S
−1 HomA(M,N) - S

−1 HomA(F0, N) - S
−1 HomA(F1, N)

0 → Hom S−1A(S
−1

M,S
−1

N)

ϕ̄M

?
- Hom S−1A(S

−1
F0, S

−1
N)

ϕ̄F0

?
- Hom S−1A(S

−1
F1, S

−1
N)

ϕ̄F1

?

Since ϕ̄F0
and ϕ̄F1

are isomorphisms, it follows easily that ϕ̄M is an
isomorphism.

Lemma 5.2 Let A be a noetherian ring and P a finitely generated A-
module. Then P is projective if and only if, Pp is Ap-free for every
p ∈ Spec (A).

Proof: Let P be projective. It follows immediately from Corollary
2.7 to Proposition 2.4 and Proposition 4.16 that Pp is Ap-free for every
p ∈ Spec (A). Conversely, let Pp be Ap-free for every p ∈ Spec (A). Let
F → P → 0 be any exact sequence, where F is a finitely generated free
A-module. To prove that P is projective, we need to show that

HomA(P, F )
ψ→ HomA(P, P ) → 0

is exact. Let C = cokerψ. Since P is finitely generated, HomA(P, P )
and hence C is finitely generated. To prove the exactness of the above
sequence, we need, in view of Proposition 1.26, only show that Cp = 0
for every p ∈ Spec (A). Let then p be in Spec (A). By Proposition
1.1, we have Cp = cokerψp. By Lemma 5.1, we have the commutative
diagram

HomA(P, F )p
ψp- HomA(P, P )p

HomAp
(Pp, Fp)

ϕ̄P ≃
? θ- HomAp

(Pp, Pp)

≃ ϕ̄P

?

where the vertical maps are isomorphisms. Since Pp is Ap-free by hy-
pothesis, it follows that the sequence Fp → Pp → 0 splits and hence θ is
surjective. Therefore ψp is surjective, Cp = 0 and the lemma follows.
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Lemma 5.3 Let F be a finitely generated free module over a non-zero
ring A. Then, any two bases of F have the same cardinality.

Proof: Let m be a maximal ideal of A. If {e1, . . . , en} is an A-basis
of F , then {1⊗ e1, . . . , 1⊗ en} ⊂ A/m⊗A F = F̄ is clearly an A/m-basis
of F̄ . Since A/m is a field, the lemma follows from the corresponding
result for vector spaces.

The number of elements in any basis of a finitely generated free A-
module F is called the rank of F (over A) and denoted rankAF .

Let P be a finitely generated projective A-module. Then, if p is
any prime ideal of A, we know by Proposition 4.16 that Pp is a (finitely
generated) free A-module. We define the rank of P at p to be the rank
of the free module Pp over Ap. We thus have a map rankAP : Spec (A) →
Z+ defined by p 7→ rankAp

Pp. We say that P has constant rank n if
rankAP is the constant map n. Note that any free module has constant
rank.

Proposition 5.4 If 0 → P ′ → P → P ′′ → 0 is an exact sequence of
finitely generated projective A-modules, then

rankAP = rankAP
′ + rankAP

′′.

Proof: For any p ∈ Spec (A), we have, by Proposition 1.1, the exact
sequence 0 → P ′

p → Pp → P ′′
p → 0 of finitely generated free Ap-modules.

Since Pp ≃ P ′
p ⊕ P ′′

p , it follows that rankAp
Pp = rankAp

P ′
p + rankAp

P ′′
p .

This proves the proposition.

Proposition 5.5 Let a be an ideal of A which is a projective A-module.
Then rankAa ≤ 1, i.e. rankAp

ap ≤ 1 for every p in Spec (A).

Proof: Let p ∈ Spec (A). Then ap, being a free Ap-module, is a
principal ideal of Ap, since any two distinct elements of a commutative
ring R are R-dependent. Hence rankAp

ap ≤ 1.
Let M be an A-module. A finite free resolution of M , is an exact

sequence
0 → Fn → · · · → F0 →M → 0,

where n ∈ Z+ and F0, . . . , Fn are finitely generated free A-modules.

Lemma 5.6 Let P be a projective A-module which has a finite free res-
olution. Then there exists a finitely generated free A-module F such that
P ⊕ F is a finitely generated free A-module.
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Proof: Let

0 → Fn → Fn−1 → · · · → F0 → P → 0

be finite free resolution of P . We prove the lemma by induction on n.
If n = 0, P ≃ F0 and the lemma is trivially proved. Let then n > 0 and
let K = ker(F0 → P ). Then F0 ≃ P ⊕K. Thus K is projective and has
a finite free resolution

0 → Fn → · · · → F1 → K → 0,

so that, by induction hypothesis, there exists a finitely generated free
A-module G such that K ⊕ G = F is finitely generated and free. Now
P ⊕ F ≃ P ⊕ (K ⊕ G) ≃ (P ⊕K) ⊕ G ≃ F0 ⊕ G is finitely generated
and free.

Lemma 5.7 (“Cancellation lemma”) Let P be an A-module such
that P ⊕An ≃ An+1. Then P ≃ A.

Proof: Clearly P is projective and, in view of Proposition 5.4, is of
constant rank 1, i.e. Pp is a free Ap-module of rank 1 for every p ∈
Spec (A). Therefore for every p ∈ Spec (A), we have (∧iP )p ≃ Ap ⊗A

∧iP ≃ ∧i(Ap⊗AP ) ≃ ∧iPp = 0 for i > 1. Hence, by Proposition 1.26, we
have ∧iP = 0 for i > 1. Now, we have A ≃ ∧n+1An+1 ≃ ∧n+1(P⊕An) ≃
⊕

0≤i≤n+1 ∧iP ⊗A∧n+1−i An = (∧0P ⊗A ∧n+1An)⊕ (∧1P ⊗A ∧nAn) ≃
P ⊗A A ≃ P , since ∧n+1An = 0.

Corollary 5.8 Let a be a non-zero projective ideal of a ring A such that
a has a finite free resolution. Then a ≃ A.

Proof: By Lemma 5.6, there exist finitely generated free A-modules
F and F1 such that a⊕ F ≃ F1. It follows from Proposition 5.4 that a
has constant rank. Further, since a is a non-zero ideal, it follows from
Proposition 5.5 that rank a = 1. Hence, if F ≃ An, then F1 ≃ An+1,
and the corollary now follows from Lemma 5.7.

5.2 Unique factorization in regular local rings

Let A be an integral domain. An element p ∈ A is said to be a prime if
Ap is a prime ideal. An integral domain A is called a unique factorization
domain if every element can be written in the form u

∏

1≤i≤n pi where
pi are primes, u ∈ A is a unit and n ∈ Z+.
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Lemma 5.9 Let A be a noetherian domain. Then A is a unique fac-
torization domain if and only if every prime ideal of height 1 of A is
principal.

Proof: Let A be a unique factorization domain and let p be a prime
ideal of height 1. Let a ∈ p, a 6= 0. Let p ∈ A be a prime dividing a.
Then Ap ⊂ p is a non-zero prime ideal. Since ht p = 1, it follows that
p = Ap.

Conversely, suppose that every prime ideal of height 1 is principal.
Since A is noetherian, every element can be written as u

∏

i≤i≤n pi, pi
being irreducible. (Recall that an element a ∈ A is irreducible if it is
not a unit and its only divisors are units of A and those of the form
ua, where u is a unit of A.) We need therefore only to show that any
irreducible element of A is prime. Let a ∈ A be irreducible and let p

be a minimal prime ideal containing Aa. By Corollary 3.13 to Theorem
3.10, we have ht p = 1. Therefore p = Ap, for some p ∈ A. Clearly, p is
a prime dividing a and hence p = ua for some unit of u of A. Therefore
Aa = Ap and a is a prime.

Theorem 5.10 Any regular local ring is unique factorization domain.

Proof: Let A be regular local ring of dimension r. We prove the
theorem by induction on r. If r = 0, then A is a field, and there is
nothing to prove. Let then r ≥ 1. In view of Lemma 5.9, we need only to
show that any prime ideal of height 1 is principal. Let then p be a prime
ideal of height 1. Since r ≥ 1, we have m 6= m2, by Nakayama’s Lemma.
Let a ∈ m − m2. Then, by Lemma 4.15 and Corollary to Proposition
4.22, a is a prime element. Let S = {1, a, a2, . . .} and B = S−1A. If
a ∈ p, then Aa = p, since ht p = 1. We may therefore assume a 6∈ p.
Then pB is a prime ideal of B of height 1. Let qB be a prime ideal of
B, where q is a prime ideal of A (hence a 6∈ q so that q 6= m). Then,
clearly, BqB = Aq. Since q 6= m, BqB is a local ring of dimension less
than r, and by Corollary to Theorem 4.30, BqB is regular. By induction
hypothesis, BqB is a unique factorization domain. Now, if pBqB 6= BqB,
then pBqB, being a prime ideal of BqB of height 1, is principal, by Lemma
5.9. Therefore, by Lemma 5.2, pB is B-projective. Since A is regular,
its global dimension is finite by Theorem 4.30. Thus by Corollary 2.10
to Proposition 2.8, Proposition 4.2 and Proposition 4.16, p admits of a
finite free resolution as an A-module. Proposition 1.1 now implies that
pB has a finite free resolution as a B-module. Therefore, by Corollary
5.8, pB is principal. Let p ∈ p be such that pB = Bp. Let n ∈ Z+ be
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such that an|p, an+1 6 |p, and let p = anq. Since an 6∈ p, we have q ∈ p.
Also pB = Bq. By replacing p by q, we may therefore assume that a 6 |p.
We claim that p = Ap. In fact, by the proof of Proposition 1.3, we have
pB ∩ A = p , so that we need only to show that Bp ∩ A = Ap. Clearly,
Ap ⊂ Bp∩A. Let cp/am ∈ A, with m ∈ Z+ and c ∈ A. Since a 6 |p, and
a is a prime, it follows that am/c, i.e. (c/am)p ∈ Ap, and the theorem is
proved.



EXERCISES

(In what follows, A,B denote commutative rings with 1.)

CHAPTER 0

(1) Show that for a fixedA-moduleN , the assignmentM 7→ HomA(M,N)

is a contravariant A-linear functor and the assignment M 7→ HomA(N,M)

is a covariant A-linear functor. If 0 →M ′ →M →M ′′ → 0 is an exact
sequence of A-modules, show that the sequences

0 → HomA(M
′′, N) → HomA(M,N) → HomA(M

′, N)

and

0 → HomA(N,M
′) → HomA(N,M) → HomA(N,M

′′)

are exact. (We say that HomA(M,N) is left-exact in both M and N .)
Give examples to show that HomA(M,N) is not exact in either variable.

(2) Let M be an A-module. Show that the map HomA(A,M) → M
given by f 7→ f(1) is an isomorphism of A-modules which is functorial
in M .

(3) Let N be an A-module. Show that the functor M 7→ M ⊕ N is
additive if and only if N = 0.

(4) Let M0 → M1 → M2 → · · · → Mn be an exact sequence of A-
modules. If T is an exact functor from A-modules to B-modules, show
that

T (M0) → T (M1) → T (M2) → · · · → T (Mn)

is exact.

(5) Let {M ′
i

fi−→Mi
gi−→M ′′

i }i∈I be a family of sequence of A homo-
morphisms and let M ′ =

⊕

iM
′
i , M =

⊕

iMi, M
′′ =

⊕

iM
′′
i , f = ⊕ifi
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and g = ⊕igi. Show that 0 →M ′ f→M
g→M ′′ → 0 is exact if and only

if 0 →M ′
i
fi→Mi

gi→M ′′
i → 0 is exact for every i ∈ I.

(6) Let T be an exact functor from A-modules to B-modules. LetM be
an A-module. For a submoduleN ofM , identify T (N) with a submodule
of T (M) in a natural way and show that if N1, N2 are submodules ofM ,
then T (N1 ∩N2) = T (N1) ∩ T (N2) and T (N1 +N2) = T (N1) + T (N2).

(7) LetM ′ →M →M ′′ be homomorphisms of A-modules. If for every
A-module N , the sequence 0 → HomA(N,M

′) → HomA(N,M) →
Hom (N,M ′′) → 0 is exact, show that 0 → M ′ → M → M ′′ → 0 is a
split exact sequence. Similarly if, for every A-module N , the sequence
0 → HomA(M

′′, N) → HomA(M,N) → Hom(M ′, N) → 0 is exact,
show that 0 → M ′ → M → M ′′ → 0 is split exact. What can you say
if, in the above HomA(., .) is replaced by ⊗A?

(8) Show that if M,N are A-modules, then for any ideal a of A, we
have

(M/aM)⊗A/a (N/aN) = (M ⊗A N)/a(M ⊗A N).

(9) Show that (Z/mZ) ⊗Z (Z/nZ) ≈ Z/dZ, where m,n ∈ Z and d is
the greatest common divisor of m and n.

(10) If M is finitely generated A-module and N is a noetherian A-
module, show that M ⊗A N is noetherian.

CHAPTER 1

(11) Show that the set S of all non-zerodivisors of A is multiplicative
and that the natural homomorphism A → S−1A is injective. Give an
example of a multiplicative subset T of a ring A such that the natural
homomorphism A→ T−1A is not injective.

(12) (i) Let f :A → B be a homomorphism of rings and S, T be mul-
tiplicative subsets of A,B respectively, such that f(S) ⊂ T . Show that
there exists a unique ring homomorphism f ′:S−1A → T−1B such that
the diagram
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A
f - B

S−1A

iA

?
f ′- T−1B

iB

?

is commutative.
(ii) A multiplicative subset S of A is said to be saturated if for

a, b ∈ A with ab ∈ S we have a, b ∈ S. For a multiplicative subset S
of A let S̄ = {a ∈ A | a divides s for some s ∈ S}. Prove that S̄ is the
smallest saturated multiplicative subset of A containing S. Prove that
the map 1′A:S

−1A→ S̄−1A induced by 1A:A→ A as in (i) above, is an
isomorphism.

(13) (cf. Exercise (6)). Let S be multiplicative subset of A. Let M be
an A-module and let N1, N2 be submodules of M . Show that

S−1(N1 ∩N2) = S−1N1 ∩ S−1N2 and S−1(N1 +N2) + S−1N1 + S−1N2.

(14) Show that A is a local ring if and only if the non-units of A form
an ideal.

(15) Let M be a noetherian A-module and S a multiplicative subset
of A. Show that S−1M is a noetherian S−1A-module.

(16) An A-module M is said to be faithful if annM = 0. Show that if
there exists a faithful noetherian A-module then A is noetherian.

(17) Let A be a noetherian ring and S a multiplicative subset of A.

(i) If a is a p-primary ideal of A, then pn ⊂ a for some n ∈ N.

(ii) If m is a maximal ideal of A and a is an ideal of A such that
mn ⊂ a ⊂ m for some n ∈ N , then a is m-primary.

(iii) Let a be a p-primary ideal of A. Then a ∩ S = ∅ if and only if
p ∩ S = ∅. If a ∩ S = ∅ the S−1a is S−1p-primary. Moreover, if
p ∩ S = ∅, then a 7→ S−1a is a bijective correspondence between
p-primary ideals of A and S−1p-primary ideals of S−1A.

(iv) Let a = q1∩· · ·∩qr be an irredundant primary decomposition of an
ideal a of A. Then S−1a =

⋂

j∈J S
−1qj is an irredundant primary

decomposition in S−1A, where J = {i | 1 ≤ i ≤ r, qi ∩ S = ∅}.
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(18) Let A be a noetherian ring and let 0 →M ′ →M →M ′′ → 0 be an
exact sequence of A-modules. Then Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪
Ass(M ′′). If the sequence splits, then Ass(M) = Ass(M ′) ∪ Ass(M ′′).

(19) Let a1a2 . . . , an be ideals of A such that ai + aj = A for every i, j
with i 6= j, 1 ≤ i, j ≤ n. Show that

∏

1≤i≤n ai =
⋂

1≤i≤n ai. If A is
noetherian and a is an ideal of A such that Supp (A/a) consists only of
maximal ideals, then a is a unique product of primary ideals.

(20) Let B = A[x1, . . . , xn] be a finitely generated A-algebra and let
M be a finitely generated B-module. If x1, . . . xn ∈ √

annBM then show
that M is a finitely generated A-module.

(21) For an ideal a of A, define V (a) = {p ∈ Spec (A) | p ⊃ a}, and for
a subset X of Spec (A), define I(X) =

⋂

p∈X p. Show that

(i) there is a topology on Spec (A) for which the closed sets are
V (a), a running over all the ideals of A.

(ii) for X ⊂ Spec (A), V (I(X)) = closure of X in Spec (A);

(iii) for any ideal a of A, I(V (a)) =
√
a;

(iv) the map X 7→ I(X) is an inclusion-reversing bijection of the set
of closed subsets of Spec (A) onto the set of ideals a of A with
a =

√
a.

(22) Show that Spec (A) is connected if and only if A has no idempo-
tents other than 0 and 1. Deduce that for a local ring A, Spec (A) is
connected.

(23) A subset F of a topological space is said to be irreducible if F 6=
∅, F is closed and cannot be written as F1∪F2 with closed subsets F1, F2

properly contained in F . Show that the closed subset V (a) of Spec (A)
where a is an ideal of A, is irreducible if and only if

√
a is a prime ideal.

(24) A topological space is said be noetherian if every sequence U1⊂
6=
U2

⊂
6=
· · · of open subsets of X is necessarily finite. Show that if A is noethe-

rian ring, then Spec (A) is noetherian. Is the converse true?

(25) A maximal irreducible subset of a topological space X is called an
irreducible component of X. Show that a noetherian topological space
has only finitely many irreducible components. Let X be a noetherian
topological space and let {Xi}1≤i≤r be its irreducible components. Show
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that X =
⋃

iXi and for every j, 1 ≤ j ≤ r, X 6= ⋃

i 6=j Xi. If A is a
noetherian ring, show that the irreducible components of Spec (A) are
precisely V (p1), . . . , V (pr) where p1, . . . , pr are the minimal prime ideals
of A.

(26) Let φ:A → B be a ring homomorphism. Show that the map
Spec (φ): Spec (B) → Spec (A) defined by ( Spec (φ))(p) = φ−1(p), for
p ∈ Spec (B), is continuous.

(27) Let a be an ideal of A and M an A-module. If a ⊂ annM , then
show that ℓA(M) = ℓA/a(M).

(28) (i) Let 0 → M1 → · · · → Mn → 0 be an exact sequence of A-
modules of finite length. Then show that

∑

1≤i≤n(−1)iℓA(Mi) = 0.

(ii) Let M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 be a sequence of sub-
modules of an A-module of finite length. Then show that ℓA(M) =
∑

0≤i≤n−1 ℓA(Mi/Mi+1).

(29) Every artinian integral domain is a field. Every prime ideal of an
artinian ring is maximal. If A is artinian, then n(A) = r(A).

(30) Show that there exists a ring A and a non-zero A-module M (not
necessarily finitely generated) such that r(A)M =M .

(31) Let a be an ideal of A such that for all finitely generated A-
modules M, aM =M implies M = 0. Show that a ⊂ r(A).

(32) Let M be a finitely generated A-module such that mM = M for
every maximal ideal m of A. Show that M = 0. Deduce Nakayama’s
lemma.

(33) Let M be a noetherian A-module. Show that any surjective A-
endomorphism of M is an isomorphism.

(34) Let A =
⊕

i≥0Ai be graded ring and let A+ =
⊕

i≥1Ai. Show
that if M is a graded A-module such that A+M =M then M = 0.

(35) Let A be graded ring , M a graded A-module and let N a sub-
module of M . Then prove that the following conditions are equivalent:

(i) N is a graded submodule;

(ii) x ∈ N ⇒ all the homogeneous components of x are in N ;

(iii) N is generated by homogeneous elements.
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(36) Let A =
⊕

i≥0Ai be graded ring and N =
⊕

i≥0Ni be a graded
A-module . If N is finitely generated and A = A0 then show that Ni = 0
for i≫ 1.

CHAPTER 2

(37) Let 0 → X → Y → Z → 0 be an exact sequence of complexes.
Show that if any two of the X,Y , Z are exact, then so is the third.

(38) An A-module M is said to be flat if for any exact sequence 0 →
N ′ → N → N ′′ → 0 of A-modules the sequence 0 → M ⊗A N

′ →
M ⊗AN →M ⊗AN

′′ → 0 is exact. Show that, for an A-module M, M
is free ⇒ M is projective ⇒ M is flat. Give examples to show that the
implications cannot be reversed.

(39) Let X be a complex of A-modules. If M is an A-module, let
X ⊗AM be the complex · · · → Xn ⊗AM → Xn−1 ⊗AM → · · · . Show
that if M is flat, then Hn(X ⊗AM) ≈ Hn(X)⊗AM , for every n ∈ Z.

(40) Let M be an A-module. Show that M is flat if and only if
TorA1 (M,N) = 0 for all A-modules N .

(41) For an A-moduleM , show that the following conditions are equiv-
alent:

(i) a sequence 0 → N ′ → N → N ′′ → 0 of A-modules is exact if and
only if 0 → N ′ ⊗AM → N ⊗AM → N ′′ ⊗AM → 0 is exact;

(ii) M is flat and for an A-module N,N⊗AM = 0 implies that N = 0.

An A-module M which satisfies either of the above conditions is called
faithfully flat.

(42) Show that a faithfully flat A-module is flat and faithful (i.e. annM
= 0). Give an example of a flat faithful module which is not faithfully
flat.

(43) Let φ:A→ B be a ring homomorphism. Show that B is faithfully
flat over A if and only if φ is injective and B/φ(A) is A-flat.

(44) Let φ:A → B be a ring homomorphism and let B be faithfully
flat over A. Show that if a is an ideal of A, then φ−1(φ(a)B) = a.

(45) Let P be a projective A-module. Show that there exists a free
A-module F such that P ⊕F is free. Give an example of a ring A and a
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finitely generated projective A-module P such that there does not exist
a finitely generated free A-module F with P ⊕ F free.

(46) Let P, P ′ be finitely generated projective A-modules such that
P/(r(A)P ) ≈ P ′/(r(A)P ′). Show that P ≈ P ′.

(47) Let A be a noetherian ring and M be a finitely generated A-
module such that TorA1 (M,M/r(A)) = 0 and M/r(A)M is a projective
A/r(A)-module. Show that M is projective.

(48) Every ideal of a ring A is generated by an idempotent if and only
if A is a finite direct of fields.

(49) Every A-module is projective if and only if A is a finite direct
product of fields.

(50) Let 0 → N → P → M → 0 and 0 → N ′ → P ′ → M ′ → 0
be exact sequences of A-modules with P, P ′ being projective. Define
A-homomorphisms f :P ⊕N ′ → P ′, g:N → P ⊕N ′ such that 0 → N

g→
P ⊕N ′ f→ P ′ → 0 is exact. Hence deduce that P ⊕N ′ ≈ P ′ ⊕N .

(51) An A-module M is said to be finitely presented if there exists an
exact sequence F1 → F →M → 0 with F1 and F finitely generated free
A-modules. Let M be a finitely presented A-module and let f :F → M
be any epimorphism, where F is a finitely generated free A-module.
Show that ker f is finitely generated.

(52) Let A → B be a ring homomorphism such that B is flat. Show
that for A-modules M and N , we have

TorAn (M,N)⊗A B ≈ TorBn (M ⊗A B,N ⊗A B).

(53) Let M,N be finitely generated modules over a noetherian ring A.
Show that, for every n ∈ Z+, TorAn (M,N) and ExtnA(M,N) are both
noetherian.

(54) For simple A-modules M and N which are not isomorphic show
that ExtnA(M,N) = 0 = TorAn (M,N) for every n ∈ Z+.

CHAPTERS 3, 4 & 5

(55) Let B = A[X1, . . . , Xr] be the polynomial ring in r variables over
A. Show that the subset Bn of B consisting of homogeneous polynomials
of degree n is a free A-module with the set of monomials of degree n
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as basis. Show that the number of monomials of degree n is
(n+r−1
r−1

)
.

Prove also that B =
⊕

n≥0Bn is a graded ring .

(56) Show that for r ∈ Z+, the map n 7→ (n
r

)
is a polynomial function

of degree r. Deduce that if in Exercise 55, A is artinian, then ℓA(Bn) is
a polynomial of degree r − 1.

(57) Check that the relation ∼ defined in the set of polynomial func-
tions by f ∼ g if and only if f(n) = g(n) for n ≫ 1 is an equivalence
relation. Show that for any polynomial function f of degree r, there ex-
ist a0, a1, . . . , ar ∈ Q such that f ∼ a0 + a1

(n
1

)
+ · · · ar

(n
r

)
. Show further

that a0, a1, . . . , ar are uniquely determined by f .

(58) (Cf. Exercises 21 and 23). Let X be a topological space and let
F0⊂

6=
F1⊂

6=
· · · ⊂

6=
FN be a sequence of irreducible subsets of X. Then the

integer n is called the length of this sequence. We define dimX to be
the supremum of the lengths of all such sequences. Show that if A is a
local ring, then dimA = dim Spec (A).

(59) Let A be a noetherian ring and P a finitely generated A-module.
Show that P is projective if and only if Ext1A(P,N) = 0 for every finitely
generated A-module N .

(60) Let S be multiplicative subset of a noetherian ring A and let
M,N be A-modules with M finitely generated . Show that, for ev-
ery n ∈ Z+, there exists an S−1A-isomorphism S−1 ExtnA(M,N) ≈
ExtnS−1A(S

−1M,S−1N), which is functorial both in M and N .

(61) Let A be a noetherian ring and M a finitely generated A-module.
Show that

hdAM = sup
p∈ Spec (A)

hdAp
Mp = sup hdAm

m∈ Spec (A)
m maximal

Mm.

(62) Let 0 →M ′ →M →M ′′ → 0 be an exact sequence of A-modules
such that hdAM

′′ > hdAM . Show that hdAM
′′ = 1 + hdAM

′.

(63) Let M be an A-module with hdAM = n <∞. Then there exists
a free A-module F such that ExtnA(M,F ) 6= 0. If A is noetherian, show
further that ExtmA (M,A) 6= 0.

(64) Let M be a finitely generated A-module. A set {x1, . . . , xn} of
generators ofM is said to be minimal of no set of n−1 elements generate
M . It is said to be irredundant if no proper subset of {x1, . . . , xn}
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generates M . Show that if A is local if and only if, for any A-module
M , any irredundant set of generators is also minimal. (Note that a
minimal set of generators is always irredundant).

(65) For a local ring A with maximal ideal m, show that TorA1 (k, k) =
m/m2.

(66) Show that if P is finitely generated projective A-module, then the
map rankAP : Spec (A) → Z is continuous for the discrete topology on
Z.

(67) Let A be a local ring. Show that A[X]/(X2) is a local ring and
gl. dimA[X]/(X2) = ∞.

(68) Let A be an integral domain, K its quotient field and a an ideal
of A. We define a−1 = {x ∈ K | xa ⊂ A}. Show that a−1 is an
A-submodule of K and, if a 6= 0, the following conditions are equivalent:

(i) aa−1 = A;

(ii) there exists a1 . . . , ar ∈ a and x1, . . . , xr ∈ a−1 such that

∑

1≤i≤r

aixi = 1;

(iii) a is a finitely generated projective A-module.

An ideal satisfying any of the equivalent conditions above is called an
invertible ideal.

(69) Show that in a unique factorization domain, every invertible ideal
is principal.
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