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PREFACE

This pamphlet contains a revised version of the lectures given at a Sum-
mer School on Homological Methods in Commutative Algebra organised
by the Tata Institute of Fundamental Research in 1971. The audience
consisted of teachers and research students from Indian universities who
desired to have a general introduction to the subject. The lectures were
given by S.Raghavan, Balwant Singh and R.Sridharan.

K.G.RAMANATHAN



A

TATA INSTITUTE OF FUNDAMENTAL RESEARCH
MATHEMATICAL PAMPHLETS.

General Editor: K.G. Ramanathan

RIEMANN SURFACES.

ALGEBRAIC TOPOLOGY.

GALOIS THEORY.

ALGEBRAIC NUMBER THEORY.

HOMOLOGICAL METHODS IN COMMUTATIVE ALGEBRA.



HOMOLOGICAL METHODS IN
COMMUTATIVE ALGEBRA






Contents

0 Preliminaries
0.1 Functors . . . . . . . . . .
0.2 Exactsequences. . . . . ... ... . ... .. ... ...
0.3 Tensor Products . . .. ... ... ... ... ... ....
0.4 Some properties of tensor products . . . . . .. .. .. ..
0.5 Exterior products . . . . . . . ... ... L.

1 Results from Commutative Algebra
1.1 Ring of fractions and localization . . . . . .. .. ... ..
1.2 Noetherian modules . . . . .. .. ... ... ... ....
1.3 Somelemmas . ... ... ... ... ... ... .. ...,
1.4 Primary decomposition . . . . . .. ... ...
1.5 Artinian modules and finite length modules . . . . . . . .
1.6 Graded and filtered modules, Artin-Rees Theorem

2 Results from Homological Algebra
2.1 Complexes and homology . . . . . . ... ... ... ...
2.2 Projective modules . . . . . ... ... ... L.
2.3 Projective resolutions . . . . . ... ...
2.4 The functors Tor . . . . . . ... ... ... ... ... ..
2.5 The functors Ext . . . . . .. ..o

3 Dimension Theory
3.1 The Hilbert-Samuel polynomial . . . . . . ... ... ...
3.2 Dimension theorem . . . . . . . . . ... oL

4 Characterisation of Regular Local Rings
4.1 Homological dimension . . . . . . . ... ... ... ....
4.2 Injective dimension and global dimension . . .. . .. ..
4.3 Global dimension of noetherian local rings . . . . . .. ..

7

29
29
33
35
40
48

51
51
56



Contents

4.4 Regular local rings . . . . .. .. ... L. 72
4.5 A homological characterisation of regular local rings . . . 74
Unique Factorisation in Regular Local Rings 79
5.1 Locally free modules and a “cancellation lemma” . . . . . 79

5.2 Unique factorization in regular local rings . . . . . .. .. 82



Prerequisites and Notation

We assume that the reader is familiar with elementary algebra, in par-
ticular, with the concepts of groups, rings and modules.

The following notation will be used in the sequel. We denote the
set of natural numbers (resp. non-negative integers, integers, rational
numbers) by N (resp. Z7,Z,Q). For n € N, we write “n > 17 for “all
sufficiently large integers n”. If X is a set, we denote by 1x the identity
map of X. Let F be a set of subsets of a set X. By a minimal (resp. max-
imal) element of F, we mean a minimal (resp. maximal) element under
set-theoretic inclusion. By a ring, we shall always mean a commutative
ring with identity. All ring homomorphisms considered are supposed to
be unitary and, in particular, all modules considered are unitary. If A is
a ring, Spec (A) denotes the set of all prime ideals of A. If : A — Bisa
ring homomorphism, then we regard any B-module M as an A-module
by setting ax = ¢(a)z for x € M and a € A; in particular, B can be
regarded as an A-module and B becomes an A-algebra.

Let A be a ring and let M, N be A-modules. Then Hom 4 (M, N)
denotes the A-module of all A-homomorphisms from M to N. If f €
Hom 4(M, N), we denote by ker f(resp. Im f, coker f) the kernel of f

(resp. f(M), N/f(M)).



Chapter 0

Preliminaries

In this chapter, we recall some concepts and state (mostly without
proofs) some results from algebra which will be used without explicit
reference in the subsequent chapters.

In this, as well as in the subsequent chapters, by a ring we always
mean a commutative ring with 1, by a homomorphism of rings, a unitary
homomorphism and by a module, a unitary module.

0.1 Functors

Let A, B be rings. A covariant functor F from A-modules to B-modules
is an assignment of

(i) a B-module F(M) to each A-module M, and

(ii) a map F' = Fjyn: Hom 4(M,N) — Hom g(F (M), F(N)) to each
pair M, N of A-modules.

such that
(a) F(1ar) = 1pauy,

(b) F(gf) = F(g)F(f), for f € Hom A(M,N) and g € Hom (N, P)
where M, N, P are A-modules.

If (ii) and (b) above are replaced respectively by

(i) a map F' = Fyn: Hom o(M, N) — Hom 4(F(N), F(M)) to each
pair M, N of A-modules, and
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(b)' F(gf) = F(f)F(g), for f € Hom 4(M, N) and g € Hom (N, P),
where M, N, P are A-modules,

then we say that [ is a contravariant functor from A-modules to B-
modules.

A (covariant or contravariant) functor F' from A-modules to B-
modules is said to be additive if Fiy;n is a homomorphism of groups
for every pair M, N of A-modules. A functor F from A-modules is
said to be A-linear if, for every pair M, N of A-modules, Fi/ y is an
A-homomorphism.

Let F and G be covariant functors from A-modules to B-modules.
A collection {pp: F(M) — G(M)} of B-homomorphisms, where M
runs over all A-modules is said to be functorial in M, if, for every
f € Hom 4(M, N) the diagram

F(M) 2% g
F(f) 1 1 G(f)
F(N) 25 RV

is commutative. A similar definition can be given for contravariant func-
tors.

In the sequel, unless explicitly stated otherwise, by a functor we
mean a covariant functor. Also, while describing a functor, we shall
sometimes not explicitly mention the assignment (ii) of the definition.

0.2 Exact sequences

Let A be aring and M, M’, M"” be A-modules. A sequence M’ RNy VRN
M" of A-homomorphisms is said to be ezact if ker g = im f. Note that
this is equivalent to saying that “gf = 0 and kerg C im f”. Let

My — My — My — ... — M,

be an exact sequence of A-homomorphisms. Let ¢ be an integer with
1 < i< n-—1. We say that the sequence is exact at M; if M; 1 —
M; — M;41 is exact. If the sequence is exact at M; for every i, with
1 <i<n-—1, then we say it is exact.

Let 0 — M’ i> M % M” =5 0 be an exact sequence of A-modules.
(This precisely means that f is injective, g is surjective and im f = ker g).
We refer to its as a short exact sequence. We say that a short exact
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/

sequence 0 — M’ = M LN VN splits or that it is a split exact
sequence if there exists an A-homomorphism ¢: M” — M such that
gt = 1pn. Then, clearly, t is injective and M = f(M') & t(M").

f

Let0— M L M % M” = 0bea split exact sequence of A-modules

and let F' be an additive functor from A-modules to B-modules. Then
N F () F(g) p o .

the sequence 0 — F(M') — F(M) — F(M") — 0 is again a split
exact sequence.

Let F' be an additive functor from A-modules to B-modules. Then F’
is said to be right exact, if for every sequence 0 — M’ — M — M" — 0
the sequence F(M') — F(M) — F(M") — 0 is exact. We say F
is ezact, if for every exact sequence 0 — M’ — M — M" — 0, the
sequence 0 — F(M') — F(M) — F(M") — 0 is exact. If F is exact
and if My - M; — --- — M, is an exact sequence, then it is easily
verified that F(My) — F(M;) — --- — F(M,) is exact.

0.3 Tensor Products

let A be a ring and M, N be A-modules. A tensor product of M and N
over A, is a pair (T, ), where T is an A-module and p: M x N — T
is an A-bilinear map such that, for any A-module P and any A-bilinear
map f: M x N — P, there exists a unique A-homomorphism f T — P
which makes the diagram

M x N

¥

=

T P

commutative. (Recall that a map 1: M x N — P is A-bilinear if (azx +
by, Z) - mﬁ(% Z) + bw(ya Z) and T/J(UC, az + bt) - a¢(w7 Z) + b¢($,t) for
x,y € M, z,t € N and a,b € A.)

If (T, ), (T",¢") are tensor products of M and N over A, there exist
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unique A-homomorphisms @: 7" — T, ¢: T — T’ such that the diagram
M x N

T ¥

is commutative. Since the diagrams

M x N M x N

q q
o o
. )
T L ST r ST

are both commutative, it follows from the uniqueness condition that
q§’¢ = 1. Similarly, we have g&’g?) = 1. This proves that, upto
isomorphism, the tensor product of M and N over A is unique, if it
exists. We now show that the tensor product of M and N over A
exists. Let F be the free A-module with the set M x N as a basis
and let H be the submodule of F' generated by elements of the form
(ax + by, z) —a(z,z) — by, 2), (x,az + bt) — a(z,z) — b(x,t), where
x,y € M, z,t € N and a,b € A. Let T = F/H and o: M x N — T
be the composite M x N — F — T, where F — T is the canonical
epimorphism. Then, it is easily seen that (7', ) is a tensor product of
M and N over A.

We denote T' by M ® 4 N and call M @4 N itself the tensor product
of M and N over A. For (z,y) € M x N, we denote its image under ¢
in M ®4 N by x ® y. Note that any element of M ® 4 N is of the form
Y% @y, with z; € M, y € N.

Let f: M — M’, g: N — N’ be homomorphisms of A-modules. Then
the map M x N — M’ ®4 N’ given by (z,y) — f(z) ® g(y) is clearly
A-bilinear and hence induces an A-homomorphism.

f@gMasN— M @4 N'

such that (f ® ¢g)(zx ®@y) = f(z) ® g(y) for x € M, y € N. It is easily
verified that for a fixed A-module N, the assignment M — M ® 4 N for
every A-module M and f — f ® 1y for every f € Homu (M, M') is an
A-linear functor from A-modules to A-modules. Similarly, by fixing M,
we get an A-linear functor N — M ®4 N.
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0.4 Some properties of tensor products

(i) Let M be an A-module. Then the A-bilinear map A x M — M
given by (a,r) + ax induces an A-isomorphism A ® 4 M = M, which
is functorial in M.

(ii) Commutativity of tensor products. For A-modules M, N the A-
bilinear map M x N — N ®4 M given by (z,y) — y ® x induces an
A-isomorphism M ®4 N ~ N ® 4 M, which is functorial in both M and
N.

(iii) Both the functors M +— M ®4 N (for fixed N) and N — M @4 N
(for fixed M) are right exact.

(iv) Let a be an ideal of A and M be an A-module. Then the map
AJax M — M/aM given by (a,z) — a is a well-defined A-bilinear map
and induces an isomorphism A/a ®4 M ~ M /aM, which is functorial
in M.

(v) Let M = @, M;, N =, N; be direct sums of A-modules. Then
the A-bilinear map M x N — €, ; M; ®a Nj. given by ((z;), (y;)) =
(z; ® y;) induces an isomorphism M ®4 N =~ @i; M; ®a Nj.

(vi) Let F be a free A-module with {e;};cr as a basis and let A —
B be a ring homomorphism. Then B ®4 F' is a free B-module with
{1 ® e;}ier as a basis.

(vii) Associativity of tensor products. Let A, B be commutative rings,
M an A-module, P a B-module and N, an A-B-bimodule. (Recall that
an A—B-bimodule N is an A-module which is also a B-module such that
a(by) = b(ay), for all y € N, a € A and b € B.) Then, M ®4 N is an
A-B-bimodule for the B-module structure given by b(z ® y) = = ® by,
forx € M, y € N and b € B. Similarly, N ®p P is an A—B-bimodule.
There exists an isomorphism (M ®4 N) ®p P ~ M ®4 (N ®p P) given
by (z®y)®z+—2® (y®z) for x € M, y € N and z € P and this is
functorial in M, N and P.

In view of the associativity of tensor products, we may talk, with-
out ambiguity, of the tensor product M ®4 -+ ® a4 M, for A-modules
My, Ms, ..., M,.

0.5 Exterior products
Let A be a ring, M an A-module and p > 1 an integer. Let ®” M denote

the tensor product of M with itself, p times. An A-homomorphism f of
®@PM into an A-module N is said to be alternating, if for 1, ..., x, € M,
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we have f(z1 ® 22 ® --- ® ) = 0, whenever x; = z; for some 1,7, i #
Jy 1<, j<p.

A p-fold exterior product of M is a pair (Ep,1)) where E, is an A-
module and ¢: Q" M — E, is an alternating A-homomorphism, such
that for any alternating A-homomorphism f of ®” M into an A-module
N, there exists a unique A-homomorphism f: E, — N which makes the
diagram

Q"M

commutative. As in the case of tensor products, it is easy to see that
the p-fold exterior product of M is unique, if it exists. Let P be the sub-
module of ®” M generated by all elements of the form 21 ® 22 ® - - ®
where x1,29,...,2, € M and z; = x; for some ¢,7 with ¢ # j. Let
NP M = @ M/P and ¢: Q" M — AP M be the canonical homomor-
phism. Then it is easily seen that the pair (A? M,) (or briefly AP M)
is the p-fold exterior product of M. For xi,...,x, € M, the image of
1 ® - ®@xp in AP M under ¢ is denoted by z1 A -+ A x,,.

We set A M = A so that AP M is defined for all p € ZT. Note that
A M = M.

In the sequel, we need the following properties of exterior products.

(i) Let A — B be a ring homomorphism and let M be an A-module.
Composing the B-isomorphism

P

QR BRAM)(= (BRAM)25(BoAM)@p - -@p(B24M)) = BR4(®7M)

with the B-homomorphism 1p ® : B®4 (RPM) — B®4 (AP M), we
have an alternating B-homomorphism @?(B ®4 M) — B ®4 (A’ M),
which induces a B-isomorphism AP(B®4 M)~ B®4 (AP M).

(ii) Let M, N be A-modules. Then for 0 < ¢ < p, the map

(M><---><M)><(N><---><N)—>;\(M@N)

i times p—1i times

given, for x1,...,2; € M and y1,...,yp—; € N, by

((.7,‘1, - ,xi), (yl, .. ,yp,i)) — (33‘1, 0)/\' . -/\(332‘, 0)/\(0, yl)/\- . '/\(O,yp,i)
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induces an A-homomorphism (A" M) ® (AP~* N) — AP(M @ N) and we
have an isomorphism

p

AMaN)~ P (AM@AN).

0<i<p

(iii) If F'is a free A-module with a basis of n elements, then \" '~ A
and \'F' = 0 for ¢ > n, as may be easily deduced from (ii) above.
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Chapter 1

Some Results from
Commutative Algebra

In this chapter, by a ring we always mean a commutative ring with unit
element (denoted by 1), and by a module, we mean a unitary module.

1.1 Ring of fractions and localization

Let A be a (commutative) ring (with 1). A subset S of A is said to
be multiplicative if 1 € S and for s, s’ € S, we have ss’ € S. Let M
be an A-module and let S be a multiplicative subset of A. On the set
M x S we define a relation as follows: (m,s) ~ (m/,s’) if there exists
§” in S such that s”(s'm — sm') = 0. It is easy to verify that ~ is an
equivalence relation. We denote the set of equivalence classes by S™1M.
If (m,s) € M xS, the equivalence class containing (m, s) will be denoted
by m/s.

In particular, if M = A, the above construction leads to the set
S~1A. We define in S~'A, addition and multiplication by

a/s+ad /s = (sa+sda’)/ss

a/s-a'/s' =ad'/ss.

It is easily verified that these are well-defined and that S™'A is a
(commutative) ring under these operations. The zero element of S~!A
is 0/1 and the unit element is 1/1. We call the ring S~ A the ring of
fractions of A with respect to S. Note that S~!A=0<=0¢ S.

9
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If M is an A-module, the set S~'M is easily verified to be an S~!A-
module under the (well-defined) operations:

m/s+m'/s = (s'm+sm')/ss

a/s-m/s =am/ss'.

The S™'A module S™'M will be called the module of fractions of
M with respect to S.

Let p be a prime ideal of a ring A. Then S = A — p is clearly a
multiplicative subset of A. In this case, we denote S™'A by Ay, and
for an A-module M, the module S~'M is denoted by M,. (If A is an
integral domain, then (0) is a prime ideal and A(p) is the quotient field
of A.)

Let M, N be A-modules and f € Hom 4(M,N). We define S~!f:
S7IM — S7IN by (S71f)(m/s) = f(m)/s. It is easily seen that S~!f
is well-defined and that it belongs to Hom g-1,4(S™'M, S~IN).

Proposition 1.1 The assignments M +— S~ M, f +— S~Lf define an
exact functor from A-modules to S~ A-modules.

ProOF: The only non-trivial thing to be verified is the following: given
an exact sequence

S VAV VN

of A-modules, the sequence

—1 -1
0= s~ 2 s 9 s o
of S~ A-modules is exact.

Exactness at S™'M". Any element of S™1M" is of the form m' /s,
with m” € M", s € S. Let m € M be such that g(m) = m”. Then
m"/s =S 1g(m/s).

Exactness at S™'M. First go f = 0 implies S~'go S~1f = S71(go
f) =0, sothat ImS~!f C ker S~'g. Let now m/s € S~'M be such that
S=tg(m/s) = g(m)/s = 0. Then there exists ¢t € S such that g(tm) =
tg(m) = 0. Therefore, there exists m’ € M’ such that tm = f(m'). Now
S f(m![ts) = f(m')/ts = tm/ts = m/s.

Exactness at S'M’'. Let m'/s € S~'M’ be such that f(m')/s =
S=1f(m’/s) = 0. Then there exists t € S such that f(tm') = tf(m') =0
which implies that ¢tm’ = 0. Hence m’/s = 0.
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This completes the proof of the proposition.

We have a map iy: M — S~'M given by m — m/1. The map
ia: A — ST'A is easily seen to be a ring homomorphism. Thus any
S~tA-module can be regarded as an A-module through is. In par-
ticular, S™'M is an A-module and it is easily checked that ij; is an
A-homomorphism, which is functorial in M.

The map S~'A x M — S™1M given by (a/s, m) — am/s is well-
defined and is A-bilinear. This induces an A-homomorphism

©:STLA® s M — S7IM given by ¢(a/s @ m) = am/s.

Proposition 1.2 The map ¢ is an S~ A-isomorphism and is functorial
in M.

, a sa da a'am a'\ sam
PRrROOF: Since cp(sl (E ® m)) = (E ®m) = = (7) (7) =

S S
a a . 1 . .
(?)go(; ® m), @ is an ST A-homomorphism. The assignment m/s —
1/s ® m is easily seen to be a well-defined map and is the inverse of .
The functoriality of ¢ is easily checked and the proposition is proved.
Let a be an ideal of A. Then the ideal of S~'A generated by i4(a)
is denoted by aS~'A. Note that aS~'A = S~'a if we regard S~'a as a
subset of ST1A.
If anS #0, then aS™ 1A =8"14 forif scanSthenl=s-1/s¢
aS—1A.

Proposition 1.3 The map ¢:p + S~ p(= pS—tA) is an inclusion-
preserving bijection of the set of prime ideals p of A with pNS = () onto
the set of all prime ideals of STLA.

PROOF: For a prime ideal p of A with p NS = (), we first assert that
if an element a/s of S~'A is in S~!p, then a € p. For a/s € S™lp =
a/s =p/tforp € p, t €S = there exists u € S such that uta = usp €
p = a € p since ut € S C A—yp. This implies that S~'p # S~1A. Now
(a/s)(a’/s") € S7lp = ad/ss' € S7p = ad’ € p = either a or @
is in p == either a/s or a’/s’ is in S~'p. Further clearly, p; C po <=
S~Ipy € S7'py. Let p be a prime ideal of S™'A4 and let p = i;‘l(p).
Obviously, p is a prime ideal of A and, further, p NS = (). We claim
that the map p ~ i,'(p) is the inverse of . First, for a prime ideal
o of ST'A, we evidently have i;l(p)S_lA C p. On the other hand,
als € p = a/l € p = a € i, (p) = a/s € i (p)S™'A. Thus,
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p = i;l(p)S_lA. Let now p be a prime ideal of A with pN S = (.
Clearly, p C ;' (pS™'A). On the other hand, a € i, (pS~'A) =
a/l1 € pS™'A = a € p. This shows that p = z;l(S_lp).

A ring A is called a local ring if A # 0 and has a unique maximal
ideal.

Corollary 1.4 Let A be a commutative ring and let p be a prime ideal
of A. Then Ay is a local ring with pAy as its unique mazimal ideal.

Proor: Observe first that pA, is a prime ideal. Let now p be any
prime ideal of A,. Then izl(p) is a prime ideal of A contained in p.
Hence p =i, ' (p)Ap C pAp and the corollary follows.

We call Ay the localization of A at p.

1.2 Noetherian modules

Proposition 1.5 Let A be a ring. For an A-module M, the following
conditions are equivalent:

(i) Every submodule of M is finitely generated:

(i1) M satisfies the ascending chain condition for submodules i.e. every
sequence My ; M, % Mo % -+ of submodules of M 1is finite:

(iii) every nonempty set of submodules of M has a maximal element.

PrOOF: (i) = (ii). Let N = U;>oM; ; it is easy to see that NNV is
a submodule of M. Let {ni,na,.. _,nr} be a set of generators of N.
There exists M), such that ni,ns,...,n, are all contained in M,,. Thus
NCM,CN=N=M,=—= M,=M,;1="---.

(ii) = (ili). Let F be a nonempty set of submodules of M. Take
My € F. If My is maximal in F, we are through. Otherwise, choose M;
in F such that M ; M. If My is maximal, we are done. Otherwise,

there exists Ma in F such that M; ;Mz. Proceeding this way, we get
a sequence My % M, ;Mg ; -+~ which by (ii), is necessarily finite. The
last element in the sequence is maximal in F.

(iii) == (i). Since condition (iii) holds also if M is replaced by any
submodule, it is enough to show that M is finitely generated. Let F

be the family of all finitely generated submodules of M; clearly, F is
nonempty. By (iii), there exists a maximal element N in F. If N # M,
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there exists m € M, m ¢ N the submodule generated by N and m
belongs to F and contains N property. This contradiction proves that
M is finitely generated.

An A-module M is said to be noetherian if it satisfies any one of the
three equivalent conditions of Proposition 1.5. A ring A is noetherian if
it is a noetherian A-module.

f

Proposition 1.6 Let 0 — M’ = M I M = 0 be an exact sequence of
A-modules. Then M is noetherian if and only if M', M" are noetherian.

PROOF: Let M be noetherian. Since any submodule N’ of M’ can be
identified with a submodule of M, it follows that N’ is finitely generated
and hence M’ is noetherian. Since any submodule of M” is the image
of a submodule of M, it is finitely generated. Hence M” is noetherian.

Let M', M" be noetherian. Let N be any submodule of M. Let
ni,...,ns € N be such that g(n1),...,g(ns) generate the submodule
g(N) of M" and let ngy1,...,n, € N besuch that f~1(ng1),..., fH(n,)
generate the submodule f~1(N) of M’. Tt is easy to see that ny,...,n,
generate N. Hence M is noetherian.

Proposition 1.7 Let A be a noetherian ring and M a finitely generated
A-module. Then M is noetherian.

PrOOF: Let M be generated by n elements. The proposition is proved
by induction on n. If n = 1, then M is isomorphic to a quotient of
the noetherian module A and hence is noetherian, by Proposition 1.6.
Let n > 1, and let M be generated by z1,...,z,. Let M' = Ax
and M"” = M/M’'. By our earlier remark M’ is noetherian. Since
M" is generated by the images of xs,...,z, in M”, it is noetherian by
the induction hypothesis. From Proposition 1.6. it follows that M is
noetherian.

Proposition 1.8 Let S be a multiplicative subset of a noetherian ring
A. Then S™'A is noetherian. In particular, the localization of a noethe-
rian ring at a prime ideal s noetherian.

PROOF: Let b be an ideal of S™'A and let aq,...,a, in A generate the
ideal i, (b) of A. Clearly, a1/1,...,a,/1 generate the ideal b.

Theorem 1.9 (Hilbert basis theorem) Let A be a noetherian ring. Then
the polynomial ring A[X1,...,X,] in n variables over A is noetherian.
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PrRoOF: By induction on n, it is sufficient to prove the theorem for n =
1, i.e. that the polynomial ring B = A[X] in one variable is noetherian.
Let b be an ideal of B, we will show that b is finitely generated. Let a =
{0} U{leading coefficients of elements of b}. It is clear that a is an ideal
of A. If a = 0, then b = 0 and there is nothing to prove. Let then a # 0.
Since a is finitely generated, there exist in A non-zero elements c1, ..., ¢,
such that a = (c1, ..., ¢); let f; € b with leading coefficient ¢; for 1 < i <
r. Let N = max;(deg f;). We claim that b = (f1,..., fr)+ b’ where b’ =
bN(A+AX +---+AXN=1). To prove this, it is enough to show that any
f=anX"™+---+apin b belongs to (f1,..., fr)+b". Ifm < N—1, thisis
clear. Let then m > N and let a,,, = Y ;<;<, dici, d;i € A. Then deg(f —
Sicicy diX™798 i £y < m — 1 and hence, by induction on m, f —
Sicicy diX™798 i f; belongs to (fi,..., fr) + b’ and consequently, so
does f. Being an A-submodule of A + AX + ---+ AX™ ! b has, by
Proposition 1.7, a finite set of generators gi,...,gs over A. It is clear
that f1,...,fr, g1,...,9s generate the ideal b.

Corollary 1.10 Let A be a noetherian ring and B a finitely generated
A-algebra. Then B is noetherian.

Proor: We first remark that if A is a noetherian ring and A — B
is a surjective ring homomorphism then B is noetherian. The proof is
one the same lines as in Proposition 1.6. Since any finitely generated
A-algebra is a quotient of a polynomial ring A[ X7, ..., X}], the corollary
follows.

1.3 Some lemmas

Let A be a ring. The intersection of all maximal ideal of A is called the
Jacobson radical of A and is denoted by r(A) or simply, by r.
Note that if a € r(A), then 1 — a is invertible.

Lemma 1.11 (Nakayama). Let M be a finitely generated A-module. If
rM = M, then M = 0.

PROOF: Let, if possible, M # 0 and let 1, ..., z, be a minimal set of
generators for M. Since M = rM, we have 1 = > <;<,, aiz; with a; €
r. This gives (1 — a1)®1 = Yocicy, G, 1€, 21 = Y ocic, (1 — a1) " taa
so that xo,...,x, generate M, which is a contradiction.
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Lemma 1.12 Let a,bg,by,...,b, be ideals of a ring A with by prime
and a C Up<i<p bi- Then there exists a proper subset J of {0,1,2,...,n}
such that a C Ujc ;s bj.

PROOF: If the result is false, then, for every i with 0 < ¢ < n, there
exists a; € a — J;; bj. Clearly a; € b;. Let a = ag +ajaz---a,. Then
a € a and hence a € b; for some i. If a € by then ajas---a, € by. Since
bo is prime, this implies that a; € by for some ¢ > 1, which is impossible.
Let than a € b; for some ¢ > 1. Then ag € b; which is again impossible.

Lemma 1.13 Let M, N be non-zero finitely generated modules over a
local ring A. Then M ®4 N # 0.

PrROOF: Let m be the maximal ideal of A. By Nakayama’s lemma,
M/mM # 0 and N/mN # 0. Since these are vector spaces over the field
A/m, we have (M/mM) @4/m (N/mN) #0,ie. (M ®aN)/m(M®a
N) # 0. Hence M @4 N # 0.

1.4 Primary decomposition

Let A be a (commutative) ring (with 1) and let M be an A-module. For
any a € A, the map ay: M — M, defined by ap(x) = ax for x € M,
is an A-homomorphism and is called the homothesy by a. Let N be
a submodule of M. We say that N is primary in M (or a primary
submodule of M) if N # M and for any a € A, the homothesy ay /N
is either injective or nilpotent. By a primary ideal of A, we mean a
primary submodule of A.

Proposition 1.14 Let N be a primary submodule of an A-module M
and let p = {a € A | apr/n is not injective}. Then p is a prime ideal of
A.

ProOOF: Since N is primary in M, we have p = {a € A | apyn is
nilpotent }. From this, it trivially follows that p is a proper ideal. Let
a,be Awitha¢p, b¢p. Then ap/ny and by are both injective and
hence, so is abyr/n = apr/n © byyyy- Thus ab & p, so that p is prime.

For a primary submodule N of M, the prime ideal p defined in
Proposition 1.14, is called the prime ideal belonging to N in M and we
say N is p-primary (in M).

Let N be a submodule of M. A decomposition of the form N =
NiNNoyN--- N, where N;, 1 < i < r are primary submodules of M,
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is called a primary decomposition of N (in M). This decomposition is
said to be reduced (or irredundant) if (i) N cannot be expressed as the
intersection of a proper subset of {Ny, No,..., N} and (ii) the prime
ideals p1,...,p, belonging respectively to Ny,..., N, in M are distinct.

Proposition 1.15 Let M be a noetherian A-module. Then any proper
submodule of M admits of a reduced primary decomposition.

To prove this proposition, we need a few lemmas.

Lemma 1.16 Let Ny,..., N, be p-primary submodule of M. Then N =
NiN---N N, is p-primary.

PROOF: Let a € p. Then there exists n; € N such that (ay;n,)™ =0,
for 1 <4 <r. Let n = maxj<i<,n;. Clearly, (apn)" = 0. Let now
aégp Ifxe M, & N, then there exists ¢ such that x ¢ N;. Since N;
is p-primary, we have ax € N; and a fortiori, ax ¢ N. This proves that
ayr/n s injective. Hence NN is p-primary.

A submodule N of M is said to be irreducible if (i) N # M and
(ii) N cannot be expressed as N = Nj N Ny with submodules Ny, Ny
containing N properly.

Lemma 1.17 Any irreducible submodule N of noetherian module M is
primary.

PRrROOF: Let, if possible, N be not primary. Then there exists a €
A such that ayy/y is neither injective nor nilpotent. The sequence of
submodules kera’y, Ny T 1,2,..., is clearly increasing. Since M is
noetherian, there exists r such that kera’, IN T ker ag;;/lN = ---. Let
P = a?W/N' Then ker o = ker ¢>. We claim that ker p Nimy = 0. In
fact, z € keroNImp = p(z) = 0 and = = ¢(y) for y € M/N =
y € ker¢? = kerp = = = ¢(y) = 0. Further, since ap/n is neither
injective nor nilpotent, we have ker ¢ # 0, Imp # 0. Let n: M — M /N
be the canonical homomorphism. Then N = n=1(0) = 5 !(kerp) N
n 1(Img). Since 7! (ker¢) and n~(Im¢) both contain N properly,
this contradicts irreducibility of N and proves the lemma.

Lemma 1.18 Let M be a noetherian A-module. Then any proper sub-
module of M s finite intersection of irreducible submodules.
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Proor: Let F be the set of proper submodules of M which cannot be
expressed as a finite intersection of irreducible submodules. If possible,
let 7 # (). Then, M being noetherian F contains maximal element N.
Clearly N is not irreducible. Let N = N1 N Ny with submodules Ny, No
containing N properly. The maximality of N implies that both N7 and
Ny can be expressed as finite intersection of irreducible submodules.
Hence N itself is such a finite intersection. This contradiction shows
that F = () and proves the lemma.
PROOF OF PROPOSITION 1.15. From Lemmas 1.18 and 1.17, it follows
that any proper submodule N admits of a primary decomposition, N =
NiN---NN,. In view of Lemma 1.16, we may, after grouping together
all the p-primary submodules with the same prime ideal p, assume that
the prime ideals belonging to N; are distinct. Now by deleting some of
the N/if necessary, we get a reduced primary decomposition for N. This
completes the proof of the proposition.

Let M be an A-module. A prime ideal p of A is said to be associated
to M, if there exists x # 0 in M such that p is the annihilator of z, i.e.
p={ae€ A]ar =0} We denote by Ass(M) the set of all prime ideals
of A associated to M. Note that p € Ass(M) if and only if there exists
an A-monomorphism A/p — M.

Proposition 1.19 Let A be a noetherian ring and M a finitely gen-
erated A-module. Let 0 = N1 N ---N N, be a reduced primary decom-
position of 0 in M, with N; being p;-primary for 1 < i < r. Then
Ass(M) = {p1,p2,...,pr}. In particular, Ass(M) is finite, moreover,
M =0 if and only if Ass(M) = 0.

PRrROOF: Let p € Ass(M). Then there exists  # 0 in M such that p is
the annihilator of z. Since x # 0, we may assume that x ¢ Ny U---UNj,
x € Njy1N---N N, for some j with 1 < j < r. For any a € p;,
the homothesy ajs/y, is nilpotent. Since p; is finitely generated, there
exists n; € N such that p* M C N;. Clearly, [Tj<;<; pi"z C (N1 N---N
Nj)N (Njr1N---NN;) = 0. Thus [];<;<; ;" C p which implies pp C p
for some k with 1 < k < j. On the other hand, pz = 0 implies that the
homothesy ay/y, is not injective, for every a € p. Therefore p C p, i.e.
p = p. This proves that Ass(M) C {p1,...,pr}.

We now show that p; € Ass(M) for 1 < i < r. It is enough to prove
that p; € Ass(M). Since the given primary decomposition is reduced
there exists x € NoN--- N N,., © & Ni. As Np is pi-primary, it is
easy to see as above that there exists n € N such that pYz C N7 and
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pr e ¢ Ny Let y € pv 'z, y ¢ Ni. Then clearly p; is contained in
the annihilator of y. On the other hand, if a € A is such that ay = 0,
then apz/n, , is not injective which implies that a is in p;. Thus p; is the
annihilator of y which shows that p; € Ass(M).

Corollary 1.20 Let A be a noetherian ring and N be a submodule of
a finitely generated A-module M with reduced primary decomposition
N =N Nn---NN,. Then Ass(M/N) = {p1,...,p.} where p; are the
prime ideals belonging to N; in M, for 1 < i <r. In particular, the set
{p1,...,pr} of prime ideals corresponding to a reduced primary decom-
position of N is independent of the decomposition.

Proor: This follows from the proposition above, by observing that
0= (Ni/N)Nn---N(N,/N) is a reduced primary decomposition of 0 in
M/N and that N;/N are p;-primary, in M/N for 1 <i <r.

An element a € A is said to be a zero divisor of an A-module M, if
there exists x € M, x # 0. such that axz = 0.

Proposition 1.21 Let A be a noetherian ring and M, a finitely gener-
ated A-module. Then the set of zero-divisors of M is Upe ass(ar) P-

PROOF: Let a € p for some p € Ass(M). Let p be the annihilator of
x € M, x # 0. Then ax = 0. Conversely, let a be a zero-divisor of M
and let x € M, z # 0 be such that ax = 0. Let 0 = Ny N--- N, be a
reduced primary decomposition of 0 in M. Then x ¢ N; for some N;.
Let p; be the prime ideal belonging to N; in M. By Proposition 1.19,
pi € Ass(M). Now since ax = 0 the homothesy ay/y, is not injective
and a € p;.

Let A be a ring. We recall that Spec (A) denotes the set of all prime
ideals of A.

The nilradical n(A) of a ring A is defined to be the subset {a € A |
a" = 0 for some n € N} of A; clearly n(A) is an ideal of A.

Proposition 1.22 Let A be a ring. Then

n(A)= (] »

pESpec (A)

ProOF: Let a € n(A). Then a" = 0 for some n € N = a™ € p for
every p € Spec(A) = a € p for every p € Spec(A). Conversely, let
a € p for every p € Spec (A) and let S be the multiplicative subset
{1,a,a?,---} of A. Since SNp # () for every p € Spec (A) we have by



1.4. Primary decomposition 19

Proposition 1.3 that Spec (S7!A4) = (). Hence S~'A = 0 which implies
that 0 € S i.e., a € n(A).

Let a be an ideal of a ring A. The radical \/a of a is defined by
vVa={ae€ A|a" € a for some n € N}. Clearly v/a is an ideal of A
containing a and /a/a =n(A/a).

Corollary 1.23 to Proposition 1.22. Let a be an ideal of A. Then

Va= (] »p
p€ Spec (A)
poa
Proor: Immediate.
For an A-module M, we define the annihilator ann (M), by ann
(M) ={a€ A|aM = 0}. Clearly ann M is an ideal of A.

Proposition 1.24 Let A be a noetherian ring, M, a finitely generated
A-module and let a = ann M. Then

Va= (] »

pe Ass(M)

Proor: If M =0, Ass(M) = (),a = A and there is nothing to prove.
Let M #£ 0 and let 0 = NyN---NN, be a reduced primary decomposition
of 0 in M, N; being p;-primary for 1 < ¢ < r. By Proposition 1.19,
Ass(M) = {p1,p2, .-, Pr}-

Let a € /a. Then a"M = 0 for some n € N = the homoth-
esy apy/n; is nilpotent for every i = a € [\ycagnm p- Conversely,
a € (Mpe ass(ar) P = there exists n; € N such that QTJ\L/Zf/Ni =0,1<i<r.
Let n = maxi<;<r 1;- Then a"M C m1<i<r N, = 0, i.e. a€ \/E

Corollary 1.25 For a noetherian ring A, we have n(A) = ye ags(a) P-

Proor: Note that ann (A) = 0 and n(A) = V0.
Let M be an A-module. The set {p € Spec (A) | M, # 0} is called
the support of M and is denoted Supp (M).

Proposition 1.26 Let M be an A-module. Then the A-homomorphism
M5 [pe spec(a) My induced by the canonical homomorphisms M —
M, is injective. In particular, M = 0 if and only if Supp (M) = 0.

PROOF: Let x € M be such that ¢(x) = 0. This means that, for every
p € Spec(A), there exists s, € A —p such that s,z = 0. Thus ann
(Ax) ¢ p, for every p € Spec(A), so that ann (Ax) = A and = = 0.
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Proposition 1.27 Let A be a noetherian ring and M a finitely gener-
ated A-module. For p € Spec A, the following conditions are equivalent:

(i) p € Supp (M);
(i1) there exists p’ € Ass(M) such that p D p’;
(17i) p O ann (M).

PrROOF: (i) = (ii). Let Ass (M) = {p1,...,p,r}. If (ii) does not hold,
p D Ni<i<, Pi- This implies, by Proposition 1.24, that p 2 ann (M) and
consequently M, =0, contradicting (i).
(i1) = (iii). Clearly p D p’ — p D /ann (M) by Proposition 1.24,
(i73) = (7). Let My = 0. Let {z1,...,x,} be a set of generators of M.
There exists s; € A—p such that s;z; = 0. Thens = s1---s, € ann (M).
This contradicts (iii), since s ¢ p.

Corollary 1.28 We have Ass(M) C Supp (M). The minimal elements
of Supp (M) belongs to Ass(M) and they are precisely the minimal ele-
ments of Supp (M).

Proor: Immediate from (ii) of Proposition 1.27.

Proposition 1.29 Let 0 - M’ — M — M"” — 0 be an exact sequence
of A-modules. Then Supp (M) = Supp (M') U Supp (M"). If N1, N,y
are finitely generated A-modules, then Supp(N1 ®4 Na2) = Supp(Ny) N
Supp (N2).

PrOOF: For p €Spec(A), we have by Proposition 1.1, the exact se-
quence 0 — M'p — Mp — M"p — 0. Now p € Supp (M) & M, #0 <
either My, # 0 or M’ # 0 < p € Supp (M')USupp (M"). We now prove
the second assertion. For p € Spec (A), we have

(N1)p @4, (N2)p ~ (Ap ®4 N1) ®4, (Ap ®A N2) ~ Ay ®a (N1 ®a Na)
(N1 ®a Na)y

12

Thus p € Supp((NV1®4N2) & (N1®4N2)y # 0 (N1)y®@a4, (N2)p #
0< (N1)p #0, (N2)p # 0, by Lemma 1.13 < p €Supp(N1)NSupp(Na).
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1.5 Artinian modules and modules of
finite length

An A-module M is artinian if M satisfies the descending chain condition
for submodules, i.e. every sequence My ; My QMQ D of submodules of

M is finite. A ring A is artinian, if it is artinian as an A-module.

An A-module M is of finite length if it possesses a Jordan-Holder
series (i.e. there exists a sequence M = My D My D --- D M, =0
of submodules of M such that M;/M;y; is a simple A-module for i =
0,1,2,...,n—1).

It is well-known that if a module M has two Jordan-Holder series
M=MyDM D--DM,=0and M =Mj;> M D>--DM, =0
then m = n and there exists a permutation o of {0,1,2,...,n— 1} such
that M;/M;i1 =~ My(;)/My(iy4+1- The integer n is called the length of
the module M and denoted £4(M).

/

Proposition 1.30 Let 0 - M’ = M 9o M =5 0 be an ezact sequence
of A-modules. Then (i) M is artinian if and only if M' and M" are
artinian, and (i) M is of finite length if and only if M’ and M" are of
finite length and, in this case, LA(M) = Lo(M') + £o(M").

PrOOF: (i) Let M be artinian. It is clear that M’ is artinian. Let
My ;)M{’ ;) .-+ be an infinite sequence of submodules of M" and let
M; = g~ 1(M/). Then M; ; M1 and we get an infinite sequence M()Q
My ; -« of submodules of M, which is a contradiction.

Conversely, let M’ and M” be both artinian. Let M) 2 M, 2 -~ bea

descending sequence of submodules of M. Let M/ = g(M;), i =0,1,....
Since M" is artinian, there exists ig such that M = M’ | for i > i,
ie. M+ M = M; 1 + M’ for i > ig. Since M’ is artinian, we also
have f~Y(M;) = f~1(M;y1) for i > iy, for some 1. It is easy to see that
M'i = Mi+1 for ¢ Z max(io,il).

(ii) is well-known.

Proposition 1.31 Let M be an A-module. The following conditions
are equivalent:

(i) M is artinian;
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(ii) every non-empty family of submodules of M contains a minimal
element.

Proor: (i)= (ii) Let F be a non-empty family of submodules of M.
Let My € F. If Myis not minimal, there exists My € F such that
MoiMl. If M; is not minimal in F there exists My € F such that

My ;Mg. Since M is artinian, this process must terminate, i.e. F

contains a minimal element.
(ii)= (i) Let, if possible, M 2 M, 2 --- be an infinite sequence of

submodules of M. Let M,, be a minimal element in the family {M; | i €
Z*}. Then M, = M, 1 = ---, a contradiction. Thus M is artinian.

Proposition 1.32 Let A be a noetherian ring and M a finitely gen-
erated A-module. Then M is of finite length if and only if every p €
Supp (M) is a mazimal ideal.

PROOF: Let M be of finite length. If M = 0, then Supp (M) = 0
and the assertion is trivial. Let £4(M) = 1. Then M ~ A/m for some
maximal ideal m and Supp(M) = {m}. Assume now that £4(M) >
1. Let M’ # 0 be a proper submodule of M. Then the exact se-
quence 0 - M’ — M — M/M’' — 0 gives by Proposition 1.29 that
Supp (M) = Supp(M’) U Supp(M/M'). Since by Proposition 1.30
La(M'") and €4 (M/M') are both strictly less than ¢4 (M), it follows by
induction on £4(M) that any p € Supp M is maximal.

Conversely, suppose that every p € Supp (M) is maximal. If M =0,
there is nothing to prove. Let M # 0 be generated by x1,...,x,. We
use induction on n. If n = 1, then M ~ A/a for an ideal a of A.
Let a = a;N---Na, be a reduced primary decomposition of a with a;
being p;-primary. By hypothesis, all the p; are maximal. We have a
monomorphism A/a — @, A/a;. It is therefore enough to show that
each A/a; is of finite length. Since A is noetherian and since for any
x € p; some power of = is in a;, we have p]* C a; for some m € N.
We have an epimorphism A/p!® — A/a;. By Proposition 1.30, it is
enough to prove that £4(A/p!") is finite. We do this by induction on
m. Since p; is maximal, A/p; is of finite length. In view of the exact
sequence 0 — plm_l/pgn — A/p" — A/p;-”_l — 0 it is enough to show
that /"~ /pI™ is of finite length. Since p; is finitely generated, p*~*/p
is finitely generated over A/p; and hence is of finite length as an A/p;-
module and therefore as an A-module.
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Let n > 1. Let M’ = Azy. Then we have the exact sequence 0 —
M — M — M/M’ — 0 and by Proposition 1.29, Supp (M) = Supp
(M'") U Supp(M/M'"). Since M’ and M /M’ are both generated by less
than n elements, it follows by induction that both M" and M /M’ are of
finite length and therefore by Proposition 1.30 so is M.

Proposition 1.33 FEvery artinian ring is of finite length.

PROOF: Let A be an artinian ring, and let r = r(A) be its Jacobson
radical. We claim that r™ = 0 for some n € N. Consider the descending
sequence r O 12 D 13 O ... Since A is artinian, there exists n € N such
that a =" ="l = ... Ifa # 0, then the set of ideals b such that
ab # 0 is nonempty and has, by Proposition 1.31, a minimal element
¢. We claim that ¢ is principal. Let x € ¢ with az # 0. Then by the
minimality of ¢ we have ¢ = Ax. Also, we have a(ac) = a’c = ac # 0.
Again by the minimality of ¢, we have ac = ¢. By Nakayama’s lemma we
have ¢ = 0 which is a contradiction. Thus r"* = 0. Let F be the family
of finite intersections of maximal ideals. By Proposition 1.31, F has a
minimal element which is clearly r. Let r = m1N---Nm, with mq, ..., mq
maximal. We then have an A-monomorphism A/r — @, A/m;. Since
A/m; is simple for every i, it follows by Proposition 1.30, that A/r is of
finite length. Since A is artinian, we have 77 is artinian for every integer
4 > 0 and hence 7/ /r/*! is artinian as an A/r-module. Since A/r is
semi-simple, 77/ /r/*! is a semi-simple artinian module and is hence of
finite length. Considering the sequence A D r D12 D --- D r" =0, we
conclude that A is of finite length.

Corollary 1.34 FEwvery artinian ring is noetherian.

PRrOOF: In fact, any strictly ascending sequence of ideals can be refined
to a Jordan-Hoélder series for the ring (as a module over itself).

Corollary 1.35 Any finitely generated module over an artinian ring is
of finite length.

PrROOF: Easy induction on the number of generators for the module.
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1.6 Graded and filtered modules, Artin-Rees
Theorem

Let A be a ring. A gradation on A is a decomposition A = @,,~ A, of
A as a direct sum of subgroups A,, of A, where n runs over the set Z+ of
all non-negative integers, such that A,, A, C A, for all m,n € Z+. A
ring with a gradation is called a graded ring. Let A = @,, A,, be a graded
ring. The non-zero elements of A,, are called homogeneous elements of
A of degree n. We call A,, the n'® homogeneous component of A.

Proposition 1.36 Ag is a subring and 1 € Ag. Moreover, each A, is
an Ag-module and A is an Agy-algebra.

Proor: Let 1=e¢p+e; + -+ e, where ¢; € A;. For any a € A;, we
have a = a -1 = aeg + aey + - -- + ae, with ae; € Aj4;. It follows that
a = aeg and consequently b = beg, for every b € A. This proves that
1 =eg € Ap. The rest of the proposition is clear since AgA, C A, for
every n € Z.

Let A be as above and let k — Ay be a ring homomorphism. Then
it is clear from the above proposition that A is a k-algebra and we refer
to A as a graded k-algebra.

Let A = @,,~¢ An be a graded ring and let M be an A-module. An
A-gradation on M is a decomposition M = D,,~0 M, of M as a direct
sum of subgroups M,, of M such that A,, M, C Mm+n for all m,n € Z*.
Such a module is called a graded A-module. We note that each M,, is an
Ap-module.

Let M = @,,~9 M, and N = @,,~9Np be two graded A-modules.
A homomorphism f: M — N of graded A-modules of degree r is an A-
homomorphism such that f(M,) C M,,, for everyn € Z*. If r =0, f
is simply called a homomorphism of graded modules.

Let A = @,, A, and B = @,, B, be two graded rings. A ring
homomorphism f: A — B is called a homomorphism of graded rings if
f(Ay) C By, for every n € ZT.

Let A = ,, A, be a graded ring and M = @, M,,, a graded A-
module. A submodule N of M is called a graded submodule if N =
@,,(N N M,). An ideal which is a graded submodule of A is called
a homogeneous ideal of A. If N is a graded submodule of M, then
M/N has an A-gradation induced from that of M, namely M/N =
@, (M, + N)/N. Let f: M — M’ be a homomorphism of graded A-
modules M, M’. Then ker f and im f are clearly graded submodules of
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M and M’ respectively.

Proposition 1.37 (i) Let A = @,, A, be a graded ring and M =
PB,, M, a graded A-module. If M is noetherian, then each My is
a finitely generated Ag-module.

(ii) Assume that A is generated by Ay as an Ag-algebra. Then A is
noetherian if and only if Ag is noetherian and A — i is a finitely
generated Ag-module.

PROOF:

(i) Let n € ZT and let N = ,,~,, M. Then N is clearly a sub-
module of M. Since M is noetherian, N is finitely generated. Let
T1,...,%, generate N. Write z; = y; + z; with y; € M,, and z; €
Drsni1 Mm, 1 <i <r. We claim that M, is generated over Ag
by yi,...,yr. For, let t € M,,. Then t =>",.,-, a;z; with a; € A.
Let us write a; = b;+c; with b; € Ag and ¢; € _@_m>1 An, 1<i<r.
Clearly t = > 1<, by

(ii) Let Ay = @,,>1 Am- Then Ay is an ideal of A and Ay ~ A/A4.
Therefore if A is noetherian, Ay is noetherian. Also, by taking
M = A, it follows from (i) that each A, (in particular, A4;) is
finitely generated over Ajg.

Conversely, suppose Ag is noetherian and A; is a finitely generated
Ap-module. Let x1 ...z, generate A; over Ag. Since A; generates A as
an Ap-algebra, we have A = Agx1,...,z,] and it follows, by Corollary
to Theorem 1.10, that A is noetherian.

This completes the proof of the proposition.

Let A be a ring. A filtration on A is sequence A = Ay D A} D
Ay D -+ D A, D -+ of ideals of A such that A, A, C Apy, for
all m,n € Z*. A ring with a filtration is called a filtered ring. Let
A be a filtered ring. A filtration on an A-module M is a sequence
M= My>D M DMy >D--- DM, D - of submodules M, such that
ApM, C Myyy for all m,n € ZT. An A-module with a filtration is
called a filtered module.

Let A be a filtered ring and a an ideal of A. Let M be a filtered A-
module with filtration M = My D M7 D ---. We say that this filtration
if compatible with a if aM, C M, for every n > 0. We say that the
filtration is a-good if it is compatible with a and for n > 1 (i.e. for n
sufficiently large), aM,, = M, ;1.
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Let A be a ring and M an A-module. Let a be an ideal of A. Then
a defines a filtration A = ¢ > a D a®> O --- on A and a filtration
M = a"M > aM D a®M D --- on M, called the a-adic filtrations.
Clearly an a-adic filtration is a-good.

Let A be a ring and a an ideal of A. Let M be an A-module with a
filtration M = My D My D --- compatible with a. Consider the direct
sum A = A®a®a’>®---. We make A into a graded ring under the
multiplication induced by that in A. Let M = My® M, & My@®---. The
A-module structure on M induces the structure of a graded A-module
on M.

Lemma 1.38 Let a be an ideal of A and let M be a noetherian A-
module with o filtration M = My D My D --- compatible with a. Then
M is finitely generated as an A-module if and only if the filtration is
a-good.

PROOF: Let M be finitely generated over A. Then there exists n € Z*
such that Mo @ --- @ M,, generates M over A. We claim that alM,, =
Mpp41, for m > n. Let x € My,41. Then we can write x = ), a;z;
where x; € M are homogeneous of degree d; < n and a; € amtl=di for
every i. We can write a; = Ej bijcij with b;; € a and ¢;; € am—di
Thusz =3, ; bij(cijxi) € aM,y,. It follows that the filtration is a-good.
Conversely, let the filtration be a-good. Then there exists n € Z* such
that for m > n, we have aM,,, = M,,+1. Since M is noetherian, the A-
module My® M G+ - - - ® M, is finitely generated. Since aM,,, = M,+1
for m >mn, Mo ® M; @ --- M, generates M as an A-module. It follows
that M is finitely generated over A and the lemma is proved.

Let M be an A-module with a filtration M = My D M7 D My D ---
and let N be a submodule of M. Then N,, = N N M, (n > 0) defines a
filtration on N, called the induced filtration on N.

Theorem 1.39 (Artin-Rees). Let A be a noetherian ring, a an ideal of
A, M a finitely generated A-module and N submodule of M. Then, for
any a-good filtration on M, the induced filtration on N is a-good.

Proor: Let M = My D M; D --- be an a-good filtration on M. Let
A=Aad®a?®-, M=My® M &M@ ---and N = N @ (M N
N)® (MaNN) @ ---. Since the filtration on M is a-good, it follows
from Lemma 1.38, that M is a finitely generated A-module. Since A
is noetherian, a is finitely generated and hence, by Proposition 1.37,
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A is noetherian. Therefore, by Proposition 1.7, M is a noetherian A-
module so that N is finitely generated over A. By Lemma 1.38 again,
the induced filtration on N is a-good.

Corollary 1.40 Let A be a noetherian ring, a an ideal of A, M a finitely
generated A-module and N, a submodule of M. Then there exists ng €
Z™* such that for every n > ng,we have a(a®M N N) = a"* M N N.

PROOF: Apply the theorem to the a-adic filtration on M.

Corollary 1.41 Let A be a noetherian ring and r its Jacobson radical.
Then N,>or™ = 0.

PrOOF: Let N =(),>or" = 0. Applying Corollary 1.41 to M = A and
a =r, we get TN = N. Hence, by Nakayama’s lemma, we get N = 0
and the corollary is proved.

Let A be a filtered ring with a filtration A = Ag D A1 D A3 D ---and
let M be a filtered A-module with a filtration M = My D M; D My D
---. Consider the direct sum G(A) = @,,> An/An+1 of abelian groups
An/Ani1. We make G(A) a graded ring by defining a multiplication as
follows. Let a € A,/Ani1, b € Ap/Ams1 be homogeneous elements of
degrees n and m respectively and let a € A,,, b € A,, be such that a,b
are the images of a,b under the natural maps A,, — A, /An+1, Am —
A /Ay respectively. then ab € A,y and we define ab to be the
image of ab under the natural map A, ym — Antm/Antm+1. This is
clearly well-defined and extends to a multiplication in G(A) making it
a graded ring. In a similar manner, we make G(M) = @,,~o M/ Mp+1
a graded G(A)-module. We say that G(A) is the graded ring associated
to the filtration A = Ay D Ay D --- and G(M) is the graded module
associated the filtration M = My D M1 D ---.

Let A be a ring, a an ideal of A and M an A-module. The graded
ring and the graded module associated to the a-adic filtrations on A and
M are denoted by G4(A) and G4(M) respectively.

Lemma 1.42 Let A be a noetherian ring and a an ideal of A contained
in r(A). If Go(A) is an integral domain, then so is A.

ProoFr: Let a,be A, a#0, b# 0. Since, by Corollary 1.41, we have
Ny>o 6% = 0, there exists m,n € Z* such that a € a™, a € a™*! and
bea®, bgatl. Let a,b be the images of a,b in a™/a™*!, a®/a"*!
respectively. Then @ # 0, b # 0. Since G4(A) is an integral domain, we
have @b # 0 and a fortiori, ab # 0.
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Chapter 2

Some Results from
Homological Algebra

In this chapter, A denotes a commutative ring with 1 and by a module
we mean a unitary module.

2.1 Complexes and homology

By a complex X of A-modules, we mean a sequence

dn_+>1 d

= X Xy % Xpq — e

of A-modules X,, and A-homomorphisms d,, such that d, od,; = 0 for
every n € Z. We say that X is a left (resp. right) complez if X, = 0 for
n < 0 (resp.n > 0). The condition d,, o d,,+1 = 0 implies that Imd,,11 C
ker d,,. We define the n'? homology module X to be kerd, /imd,; and
denote it by H,(X). We sometimes write X" for X_,, and H" for H_,,.
If X is a right complex, we usually denote it by 0 — X — X — ...

Let X.,Y be complexes of A-modules. A morphism f:X — Y of
complexes is a family {f,: X, — Y,}nez of A-homomorphisms such
that, for every n € Z, the diagram

fn+1

Xn+1 Yn+1
dn+1 {n—l—l
X, I Y,

29
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1S commutative.

Let f: X — Y be a morphism of complexes. Since the diagram

is commutative, we have f,(kerd,) C kerd]. Similarly, we have
fn(Imdyi1) C Imdy, ;. Thus, f, induces an A-homomorphism H,(f):
H,(X)— H,(Y).

If g:Y — Z is another morphism of complexes then the morphism
gf: X — Z of complexes is defined in an obvious way, and we have
H,(g9f) = Hn(g9)Hy(f), for every n € Z. It is also clear that H,(lx) =
lg,(x)- We will denote by 0 the complex X with X, = 0 for every
n € Z. A sequence

of complexes is said to be exact if, for every n € Z the sequence

0 x, iy !y g

is exact.

f

Let 0 - X &> Y £> Z — 0 be an exact sequence of complexes of
A-modules. For n € Z we have the commutative diagram
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Yot Zn+1 0
1 1
0 Xy Ly, g - 0
d, d. d!
0 - Xn'—l foo1 an—l i ;—1 0
s 4,
0 - 11'72 fnc2, n—2

Let z € H,(Z), and let z € kerd! represent z. Choose y € Y,, such that
gn(y) = z. Let v/ = d,(y). Then g,—1(y") = 0. Therefore, there exists
x € X,,—1 such that v/ = f,_1(z). Since (d],_; fn—1)(z) = (d,,_1d})(y) =
0, it follows that (fn—odn—1)(z) =0 ie. dp_1(x) € ker fr_o =0 ie. z €
ker d,,—1. Let Z be the canonical image of z in H,,_1(X). It is easily seen
that Z does not depend on the choice of z and y. We define 9,,: H,(Z) —
H,_1(X) by 0,(2) = z. Clearly, 0, is an A-homomorphism.
Proposition 2.1 Let 0 — X i> Y 9, Z — 0 be an exact sequence of
complexes of A-modules. Then the sequence

)

oo m,x M gy M g g Oy, x T ()

18 exact.

Proor: If z € Im H,(g), then, with the notation immediately preced-
ing the proposition, we can choose y € kerd,, so that ' = 0 and hence
On(2) = £ = 0. Conversely, suppose T = 0,(Z) = 0. Then there exists
2’ € X, such that z = d,,(2'). Let " =y — fn(2/). Then 3" € kerd),
and g, (y") = z. It follows that z € Im H,,(¢g). This proves exactness of
the sequence at H,(Z).

With the same notation, we have Hy,_1(f)0n(Z) = Hp—1(f)(Z) is the
canonical image of y' = f(x) in H,,—1(Y"), which is zero, since y/ € Im d),.
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Conversely, let x; € H,_1(X) be such that H,_i(f)(z1) = 0. This
means that f,—1(z1) € Imd],. Let y1 € Y, be such that f,_1(z1) =
d),(y1). Let z; be the class of g, (y1) in H,(Z). Then 0,(z1) = z;. This
proves the exactness of the sequence at H,,_;(X).

Finally, H,(9)H,(f) = Hn(9f) = H,(0) = 0, clearly. Let y € H,(Y)
be such that H,(g)(y) = 0. Let y € ker d), be a representative of . Then
there exists z € Z,,41 such that g, (y) = d}, | ;(2). Choose ' € Y;, 41 such
that z = gn11(y'). Then g, (y — d},41(y")) = 0. Therefore, there exists
xr € X, such that y — d}, (') = fa(x). Clearly, the class of f,(z) in
H,(Y) is the same as that of y. To complete the proof, it is enough
to prove that € kerd,. But d,(fn(z)) = d,(y — d,,;,(y)) = 0 =
fn—1(dp(x)) = 0= d,(z) = 0. This proves the exactness at H,(Y) and
the proposition is proved.

The homomorphisms {9, }ncz defined above are called connecting
homomorphisms.

Proposition 2.2 Let

0 . X .Y . 7 - 0
et B 0
0 x Iy 9 - 0

be a commutative diagram of complexes with rows exact. Then the dia-
gram

S HAX) s Ha(Y) > Ha(Z) D Ha i(X) e Hoa(Y) -
H, () H.(B) H,.(v) H, 1(a) H,—1(B)

/

v Ho(XY) — Hn(Y!) — Hp(Z)) —> Hp (X)) — Hpa(Y)) —— -+

of homology modules is commutative.

PrROOF: We need only prove that H,_1(«)d, = 0, Hu(y) for every
n € Z. Let z € H,(Z) with z as a representative. Let y € Y,, be such
that g, (y) = z. Then ~,(2) is a representative of H,(7)(Z) and S,(y) is a
lift of 4,,(2) in Y,,. Using the lift y to compute 9,,(Z) and the lift 8, (y) to
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compute 0, (Hy(7)(Z)), it is clear that (Hp—1()0,)(2) = (0, Hn(7))(2).
Since z € H,(z) is arbitrary, the proposition follows.

Let f,g: X — Y be two morphisms of complexes X, Y of A-modules.
A homotopy h between f and g is a family h = {hy, }nez of A-homomor-
phisms h,: X, = Y,41 such that h,_1d, + d’n+1hn = f,, — gn for every
n € Z. We then say that f and g are homotopic. Clearly homotopy is
an equivalence relation.

Proposition 2.3 Let f,g: X — Y be homotopic morphisms of com-
plexes of A-modules. Then Hy,(f) = Hy(g), for every n € Z.

Proor: For 7 € H,(X), let x € kerd, be a representative. We then
have f,(x) = gn(x) = hp_1dp(x) + d, 1 hp(x) = d, 1 hy(z) € Imd], 4.
Thus Hy(f)(7) = Hn(9)(7).

2.2 Projective modules

Proposition 2.4 For an A-module P, the following conditions are
equivalent:

(i) P is a direct summand of a free A-module:

(ii) given any diagram

¥

M M" —— 0

of A-homomorphisms with exact row, there exists an A-homomor-
phism f: P — M such that of = f;

(i11) every exact sequence 0 — M’ — M HP =0 of A-modules splits.

PrOOF: (i) = (i7). Let @ be an A-module such that P& @Q = F is
free with basis (e;)ic;. Define g: F — M"” by g|P = f and g | Q = 0.
Let x; € M be such that ¢(x;) = g(e;). Define g: F' — M by g(e;) = ;.
Then, it is clear that f = g|P satisfies ¢ f = f.
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(13) = (91). In view of the diagram

P

1p

M—7 . p - 0

we have an A-homomorphism f: P — M such that ¢f = 1p,i.e. the
sequence 0 — M’ — M — P — 0 splits.

(1it1) = (i). Let F — P — 0 be an exact sequence with F' an
A-free module. (For instance, take F' to be the free A-module on a
set of generators of P.) If K = ker(F' — P) then the exact sequence
0 — K — F — P — 0 splits by (iii) and P is a direct summand of F'.

An A-module P which satisfies any of the equivalent conditions of
Proposition 2.4 is called a projective A-module.

Corollary 2.5 A free A-module is projective. Direct sums and direct
summands of projective modules are projective.

Corollary 2.6 Let 0 — N’ — N — N” — 0 be an exact sequence of
A-modules. If P is projective, then the sequence

0>PRAN - P4 N—>Px4N" =0

18 exact.

PrROOF: Let Q be an A-modules such that FF = P @ () is free. Since
direct sum commutes with tensor products, it is clear that

0= FsN - FsN—-F®4N"—=0
is exact i.e.
0= (PRAN)S(Q®AN') = (PRAN)B(Q®AN) — (PRAN")B(Q®AN") = 0

is exact, and the result follows.

Corollary 2.7 If P is a projective A-module and if A — B is a ring
homomorphism, then B ® 4 P s a projective B-module.

PrROOF: Let P be a direct summand of a free A-module F. Then,
B ®4 P, being a direct summand of the free B-module B ® 4 F' is a
projective B-module.
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2.3 Projective resolutions

Let M be an A-module. A projective resolution of M is a pair (P,¢),
where P is a left complex with each P; a projective A-module and where
e: Py — M is an A-homomorphism such that the sequence

---%Pn%Pn_1—>~-—>Pgi>M—>0

s exact.

Proposition 2.8 Fvery A-module M admits of a projective resolution.

PROOF: Let Py —+ M — 0 be an exact sequence of A-modules with P,
a free A-module. We define P; and d; inductively as follows. Suppose
we already have an exact sequence

Pnd—>”Pn,1—>---—>Pg—>M—>0

with each P; being A-free. Let K, = kerd,. There exists an exact
sequence of A-modules P, AR, K, — 0 with P,y; being A-free.
Define dy, 11 = jon+1, where j: K, — P, is the canonical inclusion. It is
trivially seen that

P " P s P M0

is exact, and this proves the proposition.

Corollary 2.9 Every A-module admits of a projective resolution (P, ¢)
with P; being A-free.

Corollary 2.10 Let A be an noetherian ring and M a finitely generated
A-module. Then M admits of a projective resolution (P, €) with each P;
a finitely generated free A-module.

PROOF: Let us use the notation of Proposition 2.8. Since M is finitely
generated, we can choose Py to be a finitely generated free A-module.
Then Ky = kere is finitely generated by Proposition 1.7. We therefore
choose inductively each P, to be finitely generated, and the corollary
follows.

Let f: M — M’ be a homomorphism of A-modules and let (P,¢),
(P',€") be projective resolutions of M, M’ respectively. A morphism
F: P — P’ of complexes is said to be over f if fe = &'Fy.
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Proposition 2.11 Let f: M — M’ be a homomorphism of A-modules
and let (P,e), (P’ &) be projective resolutions of M, M’ respectively.
Then there exists a morphism F: P — P’ over f. Moreover, if F,G: P —
P’ are morphisms over f then F and G are homotopic.

PRrROOF: FEuxistence of F. Consider the diagram

P

fe

5J

P} - M —— 0

where the row is exact. Since Py is projective, there exists an A-
homomorphism Fy: Py — P} such that fe = ¢'Fy. We now define F),
by induction on n, assuming F;, to be defined for m < n. We have
d _oF, 10d,=F, 20d,_10d, =0, where we set [y = f, dy = ¢
and dj = ¢’. Therefore Im (F,,_1d,,) C kerd,,_; = Imd],. Thus we have
the diagram

b,

Fn—ldn

U

d
P — " Imd, — 0

where the row is exact. Since P, is projective, there exists F,: P, — P,
such that d), F,, = F,,_1d,. This proves the existence of F.

Homotopy between F and G. Since ¢'Fy = fe = £/Gy, we have
e'(Fy — Go) = 0, i.e. Im(Fy — Go) C kere’ = Imd)j. Thus we get a
diagram

P

oy — Gy

d/
P| L. Imd; — 0

Since Py is projective, there exists an A-homomorphism hg: Py — P|
such that djho = Fy — Go.
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Assuming inductively that, for m < n, hp: P, — P}, | has been
defined such that d), 1 hy, + hm—1dy = Fry — G, we define hy: P, —
P!, as follows: since d,(F), — Gy) = (Fr—1 — Gn-1)dn = (dj,hn—1 +

hn—odn—1)dy, = d,hp_1d,, we have d,(F, — Gy, — hp—1d,) = 0, ie.
Im (F,, — Gy, — hp—1d,) C kerd), = Imdj, ;. Thus we get a diagram

P,

Fn - Gn - hn—ldn

!
/ n+1 /

with exact row. Since P, is projective, there exists a homomorphism
hy: P, — P, such that d,, h, = F,, — Gy, — hy_1dy,. Thus h = {h,}
is a homotopy between F' and G.

Proposition 2.12 Let 0 — M’ - M 2 M” — 0 be an ezact sequence
of A-modules. Let (P',€'),(P",&") be projective resolutions of M', M"
respectively. Then there exists a projective resolution (P,e) of M such
that we have an exact sequence

0P dpYpr g

of complezxes and such that the diagram

fo 90

0 - P - Py - PJ ~ 0
e 5 e’ (%)
0 Y L VA . M" . 0

18 commutative.

PROOF: For n € Z*, we define P, = P, & P/ and f,, : P, — Py, gn:
P, — P by fu(2') = (2/,0), gn(2',2") = 2", respectively. Assume, for
the moment, that there exist A-homomorphisms 1: Py — M and for
every n > 0, ky: P/ — P! _, satisfying the following conditions:

e = j1,

ie'ky +1d! =0 (%)
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d,_1kn+ kp_1d) =0, forn>1.

Now define, d,: P, — P,_1, forn > 0 and e: Py — M by

dp (2’ 2") = (d) 2" + kp2”, dl2") (% % *)

e(x,2") =ie'a +1a".

It is then easily verified that (P,¢) is a projective resolution of M and
that the diagram (x) is commutative.

We now prove the existence of [ and k. The existence of [ is trivial,
since Py is projective and j is an epimorphism. We construct k,, by
induction on n. Consider the diagram

/"
Pl

—1d!

[ VR B VR

Since j(—Id}) = —&"d] = 0, we have Im (—1dY) C ker j = Im (ie’). Since
P/ is projective, the existence of ki: P/ — Pj is proved. Assume, by
induction, that k,_1: P/ _; — P/ _, has been constructed. Consider the

diagram

/!
PTL

—kp_yd!

where we set dj, = i’ and P’ | = M. Now d],_o(—kn—1d]) = kn_od!! _,d!!
= 0, where kg = 1. Therefore, Im (—k,_1d])) C kerd],_, = Imd]_,.
Since P}/ is projective, the existence of ky: P}/ — P} _, is proved. This
completes the proof of the proposition.

Let 0 — M — M — M"” — 0 be an exact sequence of A-modules.
A projective resolution of this sequence is an exact sequence 0 — P’ —
P — P’ — 0 where (P',€), (P,¢e), (P",&") are projective resolutions
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of M', M, M" respectively, such that the diagram

0 - P} - P - P - 0
5/ < 5//
0 - M M M" - 0

is commutative.
The proposition above shows that every exact sequence admits of a
projective resolution.

Proposition 2.13 Let

A1 j4i

0 . M - M . M - 0
I f I
0 SN 2 NP2 - 0

be a commutative diagram of A-modules with exact rows. Let 0 — P’ —
P— P —0,0—=Q —Q— Q" — 0 be projective resolutions of
0O—-M —-M-—M"—0,0—N — N — N"— 0. respectively and
let F': P — Q', F":P" — Q" be morphisms over f', " respectively.
Then there exists a morphism F: P — Q over f such that the diagram

0 - P - P - P’ -0
F’ F F”
0 - - Q - Q' -0

18 commutative.

PROOF: Since P! is projective, we can assume that, for n € Z, P, =
P, @ P! and that the maps P, — P,, P, — P) are respectively the
natural inclusion and the natural epimorphism. We can make similar
assumptions for the @Q’s. Then it is easy to see that d,: P, — P,_1 and
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e: Py — M are given by formulee (x * %) of the proof of Proposition 2.12
with conditions (xx) fulfilled; similarly for the @’s.

It may be checked inductively that there exist A-homomorphisms
cn: Pl — Q) satisfying, for n > 0 the conditions

ise’co + ICF) = fI12

Q
d ey —cp1d! = F' kP — knF!.
Now define F': P — @ by
Fu(a',2") = (F(2') + en(2”), F/(a"))

It is easy to verify that this is the required F'.

2.4 The functors Tor

Let M be an A-module and let P = (P, <) be a projective resolution of
M. Then, for any A-module N, we denote by P ®4 N the left complex

s Py oA NN b e N S B eAN 0.
We denote the homology modules H,(P ®4 N) of this complex by
H,(M,N;P).
Let f: M — M’ be a homomorphism of A-modules and let P, P’
be projective resolutions of M, M’ respectively. Let F:P — P’ be a
morphism over f. Note that such an F exists, by Proposition 2.11. This
morphism F defines, for every n € Z™, an A-homomorphism

H,(f,N;P, P"): H,(M,N;P) — H,(M',N; P).

In view of Proposition 2.3, the homomorphism H,(f, N; P, P') does
not depend on the choice of the morphism over f. For, by Proposition
2.11, by two morphisms P — P’ over f are homotopic.

Let now 0 — M’ % M % M"” — 0 be an exact sequence of A-

modules and let
0P PP >0 (*)

be a projective resolution of this exact sequence. Let, for n > 1,
On(N, (*)): Hy(M",N; P") — Hp—1(M', N; P')

be the connecting homomorphisms defined by (*). We then have the
following
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Lemma 2.14 (i) Let f:M — M', g:M' — M" be homomorphisms
of A-modules and let P, P', P" be projective resolutions of M, M', M"
respectively. Then, for every n € Z we have

Hn(gf; NaBa BH) = Hn(g7 N;£/7£//)Hn(f7 NaBa Bl)
Moreover,
H,(1yp,N;P,P)=1p,(M,N;P).

(i) If
0P —-P—P' -0 (*)
is a projective resolution of an ezact sequence 0 — M’ - M EN V(N
of A-modules, then the sequence

s Ho(M",N; P 2 1 (M, NP Y (ML NP

Ul g (M7 NP < - Hy(M",N;P") = 0

is exact (where we have written 0O, for 0On,(N,(x)),H,—1(i) for
H, 1(i,N; P, P), etc.).

(iii) if
0 - M’ - M - M" -0
f f f"
0 r L L -0

is a commutative diagram of A-modules with exact rows and if

0 - P - P - P’ -0 (%)
F’ F "
0 -Q - Q - Q" -0 (%)

is a commutative diagram of complexes where 0 — P’ — P — P" — 0,
0 - Q — Q — Q" — 0 are projective resolutions of 0 — M' —
M—M'"—0 0—L —L— L"— 0, respectively and where P’ —
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Q' (resp.P — Q, P" — Q") is a morphism over M' — L' (resp.M —
L, M" — L") then the diagram

Hn(fllyN;Bﬁagﬂ)

Hn(MH7 N;BH) > Hn(LH7 N;Qﬁ)

In(N, (%)) In(N, (%))

H _ /,N; Pl, /
anl(Mla N;Bl) . 1(f — Q)‘ anl(Lla N;Ql)

is commutative, for every n > 1.

Proor: (i) If F:P — P', G:P' — P” are morphisms over f,g re-
spectively, then GF' is clearly over gf. Further, 1p is over 1, this
proves (i). The assertions (ii) and (iii) follow from Propositions 2.1 and
2.2 respectively.

Proposition 2.15 Let M be an A-module and let P, () be two projec-
tive resolutions of M. Then

is an isomorphism, for everyn € Z*. If f: M — M’ is a homomorphism
of A-modules and if P', Q' are projective resolutions of M’, then the
diagram

H,(1p,N; P,
o, v py N B )

Hn(fa N)BaBI) Hn(faN,QaQ/)

H,(1y, N: P, Q'
H,(M',N;P') (L — Q>~Hn(M',N;Q’)

is commutative. Further, if 0 — M' — M — M" — 0 is an ezact
sequence of A-modules and if

0P -P—>P —0 (*)

0-Q —-Q—Q —0 (%)
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are two projective resolutions of this sequence, then the diagram

Hn(lM”v N7 BH? Qﬂ)

Hn(M//, N,Bﬂ) o Hn(M”’ N7Q//)

In(N, (%)) On (N, (xx))

Hy, (13, N: P, Q'
H, (M, N; Py —" 1o, N3 B QZHH,1<M',N;Q’>

is commutative for n > 1.

Proor: We have
Hy(1p, N;Q, PYH, (10, N; P, Q) = Hy(1ag, N; P, P) = 1, (m1,N:P)
by the lemma above. Similarly
Hyn(1n, N 2, Q) Hn(1a, N3 Q, P) = 1py, m,n,Q)-
Hence H,(1p7, N; P, Q) is an isomorphism. Now

Ho(f, N;Q,Q)VHyu(1a, N; P,Q) = Hu(f, N;P,Q')
- Hn(lM’7N;£I7Q/>Hn(f7N;£7£/)7

by the lemma above. This proves the commutativity of the first diagram
of the proposition.

In order to prove the commutativity of the second diagram, consider
the diagram

0 - M - M - M" - 0
1M/ ].M 1M//
0 - M - M - M" - 0

By Proposition 2.13, there exist morphisms F’, F, F” over 1y, 157, 1
respectively such that the diagram

0 - P - P oy - 0

F’ F F”
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is commutative. Now the assertion follows from Lemma 2.14(iii). This
completes the proof of the proposition.

Let, for n € Z,Torf}(M,N) = H,(M,N;P) where P is a pro-
jective resolution of M. In view of Proposition 2.15, we have, for a
fixed A-module N, a sequence {Tor/ (M, N)},cz+ of functors from A-
modules to A-modules, defined independently of the projective resolu-
tions P of M. Moreover, if 0 — M’ — M — M" — 0 is an exact se-
quence of A-modules, we have A-homomorphisms {8,: Tor/}(M", N) —
TorZ | (M’,N)}n>1 called the connecting homomorphisms.

Let now M be an A-module and P a projective resolution of M.
If f:N — N’ is a homomorphism of A-modules, then the morphism
lp® f:P® N — P ® N’ of complexes induces, for every n € Z an
A-homomorphism.

Tor (M, f): Tora (M, N) — Tor’X(M, N').

If0 -+ N — N — N” — 0 is an exact sequence A-modules, then by
Corollary 2.6 to Proposition 2.4, the sequence

0>P4AN P4 N—-P4N" =0

of complexes is exact. Therefore, this defines connecting homomor-
phisms

Op: Tor (M, N") — Tor2 (M, N")
We then have

Theorem 2.16 (i) For a fized A-module N, the assignments {M
Tor2 (M, N)},ez+ and {M — Tor (N, M)}, cz+ are sequences of func-
tors from A-modules to A-modules.

(i) If 0 = M" — M — M" — 0 is an ezxact sequence of A-modules,
then the sequences

coo o Tord (M, N) & Tor | (M’,N) = Tor (M, N) —

— Tor?t {(M",N) = --- — Tory"(M",N) = 0

and
co = TorA (N, M) & Tor_, (N, M) — Tor?_ (N, M) —

Tor? (N, M") — --- — Tory (N,M") =0
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are ezact (iii) If

0 - M - M - M" - 0

0 - K’ - K - K" - 0

is a commutative diagram of A-modules with exact rows, then for every
n > 1, the induced diagrams

0
Tor’{(M",N) = Tor’k (M’ N)

n—1

0
Tor2 (K", N) = Tor | (K’,N)

and

0
Tor(N, M") =% Tor? (N, M)

n

On,
Tor (N, K") = Tor? (N, K")

are commutative.

(iv) For every n € Z% the functor Tor? (M, N) is A-linear in both
M and N.

(v) There exists an A-isomorphism Tor{ (M, N) ~ M @4 N which is
functorial in M and N.

ProOOF: In view of Proposition 2.15, (i) and (ii) are clear.

The assertion (iii) for the functors {M ~ Tora(M,N)} follows
from Propositions 2.15 and 2.2. To prove (iii) for the functors {M
Tor2 (N, M)} note that if P is any projective resolution of M, then the
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diagram
0 PRsM —PosM—+P@y M" — 0
0 PosK — PosK — P®s K" 0

induced by (*) is commutative, so that Proposition 2.2 gives the com-
mutativity of ().

We now prove (iv). Let f,g: N — N’ be homomorphisms of A-
modules and let P be a projective resolution of M. Since, clearly, for
a,b € Awe have a(lp @ f) +b(lp ® g) = 1p @ (af + bg), it follows
that aTorf(M, f)+ bTor;?(M, g) = Tor;?(M, af + bg). This proves that
Tor;?(M ,N) is A-linear in N. Let now Q,Q’ be projective resolutions
of N, N' respectively. Then, clearly, for a,b € A, the morphism aF + bG
is over af + bg and the A-linearity of Tor (M, N) in M follows.

Finally, to prove (v), let P be a projective resolution of M. Since
Tory (M,N) = (Py ®4 N)/Im(d; ® 1y), the A-homomorphism ¢ ®
In: Py@aN — M® 4N induces an A-homomorphism (M, N): Tor{' (M, N) —
M ®4 N. We shall prove that (M, N) is an isomorphism functo-

rial in M and N. Since P; g Py 5 M — 0 is exact, the sequence

ProaN " pyos N2 Mes N — 0is exact, so that (M, N) is

an isomorphism. If now f: M — M’ is a homomorphism of A-modules
and F: P — P’ is a morphism over f, where P, P’ are projective resolu-
tions of M, M’ respectively, then the diagram

d o1 1
18N p o, N 22N

P, ®a N 0

M ®a4 N

el @1 fel

d1®1N’ 5®1N/

P ®a N Py®a N’ M®@yN —0
is commutative and therefore so is the diagram
e(M,N)

Tor{' (M, N) M®a N
TOI'é(f,N) f®1N

M’',N
Tor{(M', N) EOMLN) ®a N
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This proves that £(M, N) is functorial in M. Next, let g: N — N’ be a
homomorphism of A-modules and let P be a projective resolution of M.
Then the commutativity of the diagram

di®1 e®1
PoaN — PyoaN N M®sN 0
1®g 1®g 1®g
d 1 1n
P ®a N 19 N P0®AN,E® N M@s N —0

implies that (M, N) is functorial in N. This completes the proof of
Theorem 2.16.

Lemma 2.17 Let P be a projective A-module. Then Tora (P, M) = 0
and Tor{(M, P) = 0, for every A-module M and every n > 1.

ProOOF: Since P is projective, we have a projective resolution 0 —
PP o0ofP. Using this resolution to compute Tor we have
Tor;?(P, M) = 0 for every n > 1. On the other hand, if (Q,¢) is any
projective resolution of M, then the sequence B

o Qn@AP = Qn1@AP ... QoA P Mo P >0

is exact by Corollary 2.6 to Proposition 2.4. It now follows that Tor/} (M, P) =
0 for n > 1.

Proposition 2.18 Let M, N be A-modules. Then, for every n € Z+
there exists an isomorphism Torﬁ(M, N) ~ Torﬁ(N, M), which is func-
torial in M and N.

PrOOF: We prove the result by induction on n. For n = 0, we have by
Theorem 2.16(v), functorial isomorphisms Tor{ (M, N) ~ M ©, N and
TorS‘(N, M) ~ N®uy M. Since M @4 N ~ N ®4 M functorially, the
result is proved for n = 0. Let n > 0. Let then 0 - K - F - M — 0
be an exact sequence of A-modules where F' is A-free. This induces the
exact sequences

Tor(F, N) — Tord(M, N) 2 Tor? | (K, N) — Tor_,(F,N)

Tor(N, F) — Tor(N, M) 2 Tor | (N, K) — Tor_,(N, F).
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Since n > 0, we have Tor/(F,N) = 0 = Tor’ (N, F) by Lemma 2.17.
Therefore, by induction hypothesis, we have a commutative diagram

0
0 Tor’{(M, N) =+ Tor’ (K, N) — Tor’_,(F,N)

@ (0

0
0 Tord (N, M) = Tor’t | (N, K) — Tor’ (N, F)

where ¢ and ¢ are isomorphisms. Therefore, ¢ induces an isomorphism
@' Tor2 (M, N) ~ Tor’}(N, M). Since ¢ is functorial by induction hy-
pothesis and since 9, is functorial, by Theorem 2.16, the isomorphism
¢ is also functorial.

2.5 The functors Ext

Let M, N be A-modules and let (P,¢) be a projective resolution of M.
We denote by Hom 4 (P, N) the complex

0 — Hom 4(FPy, N) - Hom 4o(P,N) — ... - Hom 4(P,,N) — ...

and by Ext’j(M,N), the homology module H"(Hom 4(P, N)). If f:
M — M’ and g: N — N’ are homomorphisms of A-modules, then we
define

Ext’y (f, N): Ext’y(M', N) — Ext’} (M, N)
and
Ext’y (M, g): Ext’y (M, N) — Ext (M, N")

in the same manner as in the case of Tor. If 0 — M’ — M — M" — 0
is an exact sequence of A-modules and N is any A-module, we define,
as in the previous section, connecting homomorphisms

ot Ext’y Y (M, N) — Ext’j(M",N)
and similarly for exact sequences in the second variable. We then have

Theorem 2.19 (i) For a fired A-module N, the assignment {M
Ext’y (M, N)},cz+ is a sequence of contravariant functors from A mod-
ules to A-modules and the assignment {M — Extj(N,M)},cz+ is a
sequence of functors from A-modules to A-modules.
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(i) If 0 > M" — M — M"” — 0 is an exact sequence of A-modules,
then the sequences

0— ExtQ(M",N) — ... — Exty Y(M",N) - Exty '(M,N) —

— Ext" (M, N) 25 Ext(M”,N) — ...
and
0 — ExtQ(N,M') — ... — BExtT YN, M) — Ext”y (N, M) —

n—1

Ext” (N, M") 5 Ext{ (N, M) — ...

are exact.
(m) If

0 - M’ - M - M" -0

0 - K’ - K - K" >0

is a commutative diagram of A-modules with exact rows, then, for every
n > 1 the induced diagrams

n—1

Ext’y Y (M, N) —— Ext}(M",N)

n—1

Ext (K, N) —— Ext’4{(K",N)
and

n—1

0
Ext (N, M") —— Ext}(N, M)

n—1

o)
Exty H(N, K") —— Ext}(N, K')

are commutative.
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(iv) For every n € Z* the functor Ext’y (M, N) is A-linear in both
M and N.
(v) There exists an A-isomorphism

Ext% (M, N) ~ Hom 4(M,N)

which is functorial in M and N.
(vi) Let P be a projective A-module. Then Exty(P,N) = 0, for
every A-module N and for every n > 1.

PROOF: On the same lines as for the functors Tor in the previous
section.



Chapter 3

Dimension Theory

3.1 The Hilbert-Samuel polynomial

Let f:Z — Q be a map. We define Af:Z — Q by

(Af)(n)=f(n+1)— f(n); neZ.
By induction on r, we define A" f for every r € Z by
Af = f;
ATf=AATLf), r>1.

Let Q[X] denote the ring of polynomials in one variable X over Q. A
map f:Z" — Q is called a polynomial function if there exists g € Q[X]
such that f(n) = g(n) for n > 1. Note that if g1, g2 € Q[X] are such
that g1(n) = g2(n) for n > 1, then g; = go. Therefore for a polynomial
function f, the corresponding polynomial g is uniquely determined. The
degree of g is called the degree of f and the leading coefficient of ¢ is
called the leading coefficient of f. If f # 0 and if f(n) > 0 for n > 1,
then the leading coefficient of f is clearly positive. Let fi, fo be two
polynomial functions. We say f1 < fa if fi(n) < fa(n) for n > 1.

Lemma 3.1 Let r € N. Then a map f:ZT — Q is a polynomial
function of degree r if and only if Af:7Z — Q is a polynomial function
of degree r — 1.

PRrOOF: If f is a polynomial function of degree r, then clearly Af is a
polynomial function of degree r — 1. We prove the converse by induction

o1
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on r. If r = 1, there exists p € Q,p # 0 such that (Af)(n) = p for
n > 1. Thus

f(n+1) = f(n) =p=pn+1)—pn),

that is
f(n+1)—p(n+1)=f(n)—pn=gq

for n > 1 and for some ¢ € Q. this implies that f(n) = pn+q forn > 1
and the assertion is proved in this case.

Now, let 7 > 1. Let g(X) = aoX" ' +...+...+a,—1 € Q[X],a9 # 0
be such that Af(n) = g(n), for > 1. Then

fln+1) = f(n) =Af(n) = %{(Wr 1) =n" +h(n)}

where h € Q[X] and degh < r — 2. Setting f*(n) = f(n) — %n", we
have for n > 1

Aff(n) = fr(n+1) = f*(n) = h(n)

and by induction hypothesis, f*(n) is a polynomial function of degree
less than or equal to » — 1. Since f(n) = %n" + f*(n) for n > 1 and
ag # 0, the result follows.

Remark 3.2 If we assign the degree —1 to the zero polynomial, it is
clear that A f is a polynomial function of degree —1 < f is a polynomial
function of degree < 0.

Let R = @,,>9 Ry, be a graded ring such that Ry is artinian and R
is generated as an Ry- algebra by r elements x1,...,z, of Ry. Then,
R being a finitely generated Rp-algebra, is noetherian (by Corollary
to Theorem 1.10). Let N = @,,~( NV» be a finitely generated graded
R-module. Then, as an Rop-module, each N,, is finitely generated (by
Proposition 1.37) and hence of finite length (since Ry is artinian) in
view of Corollary 1.35 to Proposition 1.33. Define x(N,.):Z — Z by
setting x (N, )(n), x(N,n) =Llr,(N —n).

Proposition 3.3 (Hilbert). The map x(N,.) is a polynomial function
of degree < r — 1 where r is as above.

ProOOF: We prove the proposition by induction on r. If » = 0, then
R = Ry. Let S be a finite set of homogeneous generators of N over
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R = Ry, and let m = sup,cg(degs). Then N, = 0 for n > m. Hence
X(N,n) =0 for n > 1, i.e. x(N,n) is a polynomial function of degree
—1. Assume now that r > 0 and that the result is true for all finitely
generated graded modules over graded rings R which are generated as
Rop-algebras by less than r elements of R;.

Let K and C be respectively the kernel and cokernel of the graded
endomorphism ¢: N — N of degree 1, given by ¢ = (z,)n, the homoth-
esy by x,. We then have, for every n, an exact sequence

O—)Kn—>an>Nn+1—>Cn+1—>0.

Since N is noetherian, the R-modules K and C' are noetherian so that
X(K,.) and x(C,.) are defined. It follows from Proposition 1.30 that
X(K,n) —x(N,n)+x(N,n+1) = x(C,n+1) =0, ie.

Ax(N,n) = x(C,n+1) — x(K,n).

Since x, annihilates both K and C|, these are finitely generated (graded)
modules over the graded subring R' = Rglz1,...,2,_1] of R. By the
induction hypothesis, x(C,n) and x(K,n) are both polynomial functions
of degree less than r — 1 and so is Ax(N,n). Now the proposition is a
consequence of Lemma 3.1 and the remark following it.

The polynomial associated to the polynomial function x(N,n) is
called the Hilbert polynomial of N and is also denoted by x(V,n).

Till the end of this chapter, we assume that A is a noetherian local
ring. We denote by m the maximal ideal of A. By an A-module, we
mean a finitely generated A-module.

An ideal a of A is said to be an ideal of definition of Aifm” Ca Cm
for some integer n > 1.

Let a be an ideal of definition of A. As in Chapter 1, we denote by
Ga(A) the graded ring @,>0a"/a""! associated to the a-adic filtration
on A. Similarly, for an A-module M, we denote by G4(M) the graded
Ga(A)-module @,,~ a™ M /a™ 1 M corresponding to the a-adic filtration
on M. By our hypothesis on a, Supp(A/a) = {m}. Thus by Proposition
1.32, A/a is of finite length and hence artinian. Since A is noetherian,
the ideal a is finitely generated, say, by r elements and the conditions
of Proposition 3.3 are satisfied for R = G4(A), N = G4(M). Therefore,
X(Ga(M),n) = €y/q(a"M/a"1 M) is a polynomial of degree less than
or equal to r — 1.

Since Supp(M/a"M) = {m}, the A-module M/a"M is of finite
length by Proposition 1.32. We set Py(M,n) = £a(M/a"M). Since
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Ca(a™M/a" M) = €4 o (a" M /a1 M), the exact sequence
0— a"M/a" "M — M/a" M — M/a"M — 0

gives x(Gq(M),n) = Py(M,n + 1) — Py(M,n) = APy(M,n). From
Lemma 3.1 (and the remark following it), we get

Theorem 3.4 (Samuel) Let A be a local ring, M a finitely generated
A-module and a an ideal of definition of A generated by r elements.
Then Py(M,n) is a polynomial function of degree less than or equal to
r.

Lemma 3.5 Let M be an A-module and a,d’ ideals of definition of A.
Then Py(M,n) and Py(M,n) have the same degree.

ProOF: It is sufficient to prove that Py(M,n) and Py(M,n) have the
same degree. Since a is an ideal of definition of A, there exists m € N
such that m™ C a C m. Hence, for every n € N,we have m"" C a’" C m"
so that Py(M,nm) > Py(M,n) > Pn(M,n) and the lemma follows.

Proposition 3.6 Let a be an ideal of definition of A and let 0 — M' —
M — M" — 0 be an exact sequence of A-modules. Then we have

Po(M',n) 4+ Py(M",n) = Py(M,n) + R(n),

where R(n) is a polynomial function of degree less than deg Py(M,n)
and the leading coefficient of R(n) is non-negative.

ProoF: For every n € N, we have an exact sequence
0— M/Mna"M — M/a"M — M"/a"M" — 0

induced by the given exact sequence. (In writing M’ N a™M, we have
tacitly identified M’ with a submodule of M). This gives

CaM' /M0 a" M) + La(M" Ja"M") = L4(M/a"M).
Setting M) = M’ N a™M, we have
(oM /ML) = Py(M,m) — Py(M,n) (3.1)

which shows that ¢4(M'/M]) is a polynomial function. By the the-
orem of Artin-Rees (Theorem 1.39), there exists m € N such that
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aM) = M/, for n > m. It follows that for any n € N,a™t"M' C
M), = a" M), C a"M’', so that £o(M'/a™ " M) > La(M'/M], ) >

CA(M! fa M), i.c.
Po(M' 4 m) > Lu(M' /M) > Pa(M,n). (3.2)

These inequalities show that Py(M’,n) and £4(M'/M]) have the same
degree and the same leading coefficient. Thus R(n) = Py(M',n) —
la(M'/M]) is a polynomial function of degree less than the degree
of £4(M'/M]) which, by (3.1), is less than or equal to the degree of
Py(M,n) since deg Py(M',n) < deg Py(M,n). Since, by (3.2), R(n) >0
for n > 1, its leading coefficient is non-negative. This completes the
proof of the proposition.

Corollary 3.7 Let M’ be a submodule of M. Then deg Py(M',n) <
deg Py(M,n).

ProOOF: Let M” = M/M’. Since deg Py(M",n) < degaP,(M,n), the
corollary follows from Proposition 3.6.

The above results apply in particular to the case M = A. Let G(A) =
Gm(A) and let k = A/m. If m is generated by r elements z1,...,z,, we
have deg x(G(A),n) <r — 1. We have a graded k-algebra epimorphism
e k[Xq,...,X;] = G(A) defined by ¢(X;) = Z;, where z; denotes the
class of x; mod m2.

Proposition 3.8 With the above notation, we have degx(G(A),n) =
r—1 if and only if p: k[X1, ..., X;] = G(A) is an isomorphism.

ProOF: Let B = k[Xi,...,X,]. Let ¢ be an isomorphism. Then
we have an isomorphism B, ~ m"/m"*! of k-vector spaces, where B,
denotes the n'® homogeneous component of B. Therefore x(G(A),n) =

—1
Op(m" /m™ ) = (B, = (n ji 1 ), since B, is a k-vector space of
—1 —1
rank (n i_i 1 ) The map n " ji 1 is clearly a polynomial

function of degree r — 1 and hence deg x(G(A),n) =r — 1.
Conversely, let ¢ be not an isomorphism and let N = kery # 0.
Then, for every n € Z, we have an exact sequence
0— N, = B, » m"/m"™ =0
of k-vector spaces, which gives

n+r—1

(G = (") - ). (%)
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Choose a non-zero homogeneous element f € N and let deg f = d. Then,
for every n € Z, we have fB, C N,.4, which implies that ;(N,1q) >

U (fBy) = €i(Bn) > g(Nyn). Thus £ (Ny) and £(By) = (n ji; 1)

have he same degree r — 1 and the same leading coefficient. Now (x)
implies that deg x(G(A),n) < r — 1 and the proposition is proved.

Corollary 3.9 We have deg Py(A,n) = r if and only if
©: k[Xl, B ,XT»] — G(A)

s an isomorphism.

PrOOF: This is immediate from the above Proposition, since APy (A, n)
=X(G(A),n).

3.2 Dimension theorem

By a chain in A, we mean sequence pg C ... C p, of prime ideals p; of
A such that p; # p;+1 for 0 < ¢ < r — 1 and we say that this chain is of
length r. The height of a prime ideal p, denoted htp, is defined by

htp = sup{r | there exists in A a chain pg C ... C p, = p}.

If S is a multiplicative subset of A with p NS = ¢, then it follows from
Proposition 1.3 that htp = ht S~'p. The coheight of a prime ideal p,
denoted coht p, is defined by

coht p = sup{r| there exists in A a chain p =py C ... C p,}.

Let M be a nonzero A-module. The Krull dimension of M denoted
dimg M (or, simply dim M, if no confusion is likely) is defined by

dimM = sup cohtp.
pESupp(M)

Thus, dim M is the supremum of lengths of chains of prime ideals
belonging to Supp(M). Since the minimal elements of Supp(M) be-
long to Ass(M) (by Corollary 1.28 to Proposition 1.27), we also have
dim M = supyeassar) cohtp. If M = 0,Supp(M) = 0 and we define
dim M = —1. The Krull dimension of a ring A is defined to be dimy A
and denoted dim A. Thus, dim A is the supremum of lengths of all
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chains of prime ideals in A. It is clear that if p is a prime ideal of
A,dim A/p = cohtp and dim Ap = ht p.

The Chevalley dimension s(M) of an A-module M # 0 is defined
to be the least integer r for which there exist r elements aq,...,a, in
m such that M/(aq,...,a,)M is of finite length as an A-module. Note
that since M/mM is of finite length, such an integer r exists. If M = 0,
we define s(M) = —1. We define the Chevalley dimension of a ring A
to be its Chevalley dimensions as an A-module.

Let a be an ideal of definition of A, i.e. m"” C a C m for some m € N.
For an A.module M, we denote as before, the length of the A-module
M/a"M by Py(M,n). By Theorem 3.4, we know that if a is generated
by r elements, then Py(M,n) is a polynomial function of degree less than
or equal to r. By Lemma 3.5, deg Py(M,n) is independent of the choice
of the ideal a of definition and is equal to Py(M,n). We define

d(M) = deg Pn(M,n).

Theorem 3.10 (Dimension theorem). Let M be a finitely generated
module over a noetherian local ring A. Then dim M = d(M) = s(M).

ProOF: We prove the theorem by showing that dimM < d(M) <
s(M) < dim M. First, we prove the inequality dim M < d(M). If
d(M) = —1, then Pn(M,n) = 0 for n > 1 which implies that M = m" M
for n > 1. Since M is finitely generated, it follows from Nakayama’s
lemma that M = 0 and dimM = —1. Assume now that d(M) > 0.
Since, by Proposition 1.19, Ass(M) is finite, there exists pin Ass(M)
such that dim M = cohtp = dim A/p. Since p € Ass(M), we have a
monomorphism A/p < M and by Corollary 3.7, d(A/p) < d(M). It is
therefore sufficient to prove that dim A/p < d(A/p). In order to prove
this, we have only to show that if p = pg C ... C p, is a chain in A,
then r < d(A/p). Since A/p # 0, we have d(A/p) # —1 and there is
nothing to prove if r = 0. We assume therefore that » > 1. Let us
make the following induction by hypothesis : if p’ =p{, C ... Cp._; isa
chain of length r — 1 in A, then r — 1 < d(A/p’). Choose a € p1,a ¢ p
and let p’ be a minimal prime ideal containing Aa + p and contained
in p;. We then have a chain p’ C po C ... C p, of length » — 1 which
gives r — 1 < d(A/p’). Further, since p’ € Ass(A/Aa + p), we have
monomorphism A/p’ < A/Aa + p which implies, by Corollary 3.7 that
d(A/yp') < d(AJ/Aa+ p). Consider now the exact sequence

0= A/p 5 AJp = AJAa+p—0
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where the map ¢: A/p — A/p is the homothesy by a. By Proposition
3.6, we have

Pu(A/p,n) + Pu(A/Aa +p,n) = Pu(A/p,n) + R(n),

where R(n) is a polynomial function of degree less than d(A/p). There-
fore d(A/Aa + p) < d(A/p) and it follows that r < d(A/p).

We next prove that d(M) < s(M). If s(M) = —1, then M = 0
and d(M) = —1. So, let s = s(M) > 0 and let aj,...,as € m
be such that M/(a1,...,as)M is of finite length. Let a = ann M
and let b = (aj,...,as) +a. We claim that Supp(A/b) = {m}. For
since M/(a1,...,as)M = M ®4 A/(ay,...,as), we have by Proposition
1.29, Supp(M/(ai,...,as)M) = Supp(M) N Supp(A4/(a1,...,as)) and
Supp(M/(ai,...,as)M) = {m}, by Proposition 1.32. It follows from
Corollary 1.28 to Proposition 1.27 that Ass(A/b) = {m}. Thus b is
m-primary and hence m"™ C b for some n € N. Thus b is an ideal of
definition of A. Let A = A/a and let b = b/a. Then A is a local ring
and b is an ideal definition of A and generated by the elements a1, . . . , Gs
where @; denotes the image of a; in A. Considering M as an A-module,
it follows from Theorem 3.4 that P;(m,n) is of degree less than or equal
to s. Since £4(M/b"M) = £4(M/b"M), we have Py(M,n) = Py(M,n)
and d(M) < s.

Finally, we prove that s(M) < dim M, by induction on dim M which
is finite, since dimM < d(M). If dimM = —1, then M = 0 and
s(M) = —1. If dim M = 0, then Supp(M) = {m}, so that M is of finite
length. It follows that s(M) = 0. Let then dim M > 0 and let py,...,p,
be those elements of Ass(M) for which dim M = cohtp;,1 < i < g.
Since dim M > 0, we have p; # m, for every i and hence m ¢ Uy <;<, pi-
Choose a € m, a ¢ Uigigg p; and let M’ = M/aM. Then Supp(M') C
Supp(M) — {p1,...,pg} and it follows that dim M" < dim M. Let t =
s(M') and let ay,...,a; € m be such that M’'/(a1,...,a;) M’ is of finite
length. Then M/(a,aq,...,a;)M is of finite length so that s(M) < t+1.
By induction hypothesis, ¢ < dim M’. Hence s(M) < dim M and the
theorem is proved.

Corollary 3.11 Let M be a finitely generated module over a noetherian
local ring A. Then dimg M < oo.

We call the common value dim M = d(M) = s(M) the dimension of
M and denote it by dim 4 M or dim M.
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Corollary 3.12 Let B be any noetherian ring and a an ideal of B gener-
ated by r elements. Then, for any minimal prime ideal p of B containing
a we have htp <r.

Proor: Consider the local ring By. Since p is a minimal prime ideal
containing a we have Supp(By/aBy) = {pBy}. Therefore {p, (B, /pBy) <
oo and it follows that s(B,) < r. Hence

htp = dim By = s(By) < 7.

Corollary 3.13 (Principal ideal Theorem). Let B be a noetherian ring
and Ba a principal ideal of B. Let p1,...,py be the minimal prime ideals
of B containing Ba. Then htp; < 1 for 1 < i < g. Moreover, if a is
not a zero divisor of B, then htp; =1 for1 <i<g.

PRroOF: The first assertion is a particular case of the corollary above.
Suppose a is not a zero divisor of B. Then, by Proposition 1.21, a
cannot belong to any minimal prime ideal of B. Hence, for every p €
Ass(B/Ba), we have htp > 1. Thus htp; =1, for 1 <i < g.
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Chapter 4

Homological
Characterisation of Regular
Local Rings

4.1 Homological dimension

In this section, as before, A denotes a commutative ring with 1 and all
modules are assumed to be unitary.
Let M be a non-zero A-module and let

ospdp PSS M0

be a projective resolution of M. We say that this resolution is of length
n, if P, # 0 and P; = 0, for ¢ > n. The homological dimension of a
non-zero A-module M, denoted hd4 M, is the least integer n, if it exists,
such that there exists a projective resolution of M of length n. If no
such integer exists, we set hd4M = oo. If M =0, we set hd4M = —1.
It is clear that an A-module M is projective if and only if hd4M < 0.
The global dimension of a ring A, denoted gl. dim A, is defined by

gl.dim A = sup hd4 M,
M
where the supremum is taken over all A-modules M.

Proposition 4.1 For an A-module M, the following conditions are
equivalent:
(i) M 1is projective;
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(ii) Ex‘cf;l(M7 N) =0 for all A-modules N and all j > 1;
(i4i) Exty (M, N) =0 for all A-modules N.

PrROOF: (i) = (ii). Since M is projective, M has a projective resolution

O%Ml—]W)M%O.

Using this resolution to compute Ext, we see that Exti‘ (M,N) =0 for
all N and 5 > 1.

(i7) = (i4i). Trivial.

(791) = (7). Let

M

f

¥

N - N -0

be a given diagram of A-homomorphisms, where the row is exact. If
N’ = ker ¢, we have an exact sequence 0 — N’ — N 5 N” — 0 which,
by Theorem 2.19, induces an exact sequence

Hom 4(M, N) % Hom 4(M, N") — Extl (M, N").

Since Extl{(M, N’) = 0 by hypothesis, it follows that ©* is an epimor-
phism. Hence there exists an A-homomorphism ¢g: M — N such that
wog = f. This proves that M is projective.

Proposition 4.2 For an A-module M and n € Z, the following con-
ditions are equivalent.

(i) hda M < n;

(ii) Ext’y(M,N) =0 for all A-modules N and all j > n+ 1;

(iii) Bxt™ (M, N) =0 for all A-modules N;

() if 0 = Ky, = Po_1 — ... = Py = M — 0 is ezact with P; being
A-projective for 0 < j <mn —1, then K, is A-projective.

PROOF: (i) = (7i). By hypothesis, there exists a projective resolution
of M of length less than or equal to n. Using this resolution to compute
Ext, (i) trivially follows.

(i) = (ii7). Trivial.
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(191) = (iv). If n = 0, it follows from Proposition 4.1 that M is
projective and the assertion is clear in this case. Let then n > 1. The
given exact sequence induces short exact sequences

0—>Kj+1—>Pj—>Kj—)0, 0<j5<n—1,

where K1 =Im (Pjy1 — P;),0 <j <n—2and Ky = M. For any A-
module N, these sequences yield the exact sequences Ext"” ™/ (Pj,N) —
Ext"7)(Kj1, N) — Ext" 7T K;, N) — Ext" (P, N),0 < j <
n—1. Since P; is projective, we have Extz_j (Pj,N) =0, and Ext"_j+1(13j, N)
=0, for 0 < j < n — 1, by Proposition 4.1. Thus Ext!(K,,N) ~
Ext?(K,_1,N) ~ ... ~ Ext’;"' (Ko, N). Since Ko = M, we have
Ext "' (Ko, N) = 0, and hence Ext(K,, N) = 0. Since N is arbi-
trary, it follows from Proposition 4.1 that K, is projective.
(tv) = (4). This is clear from the proof of the Proposition 2.8.

Corollary 4.3 For a non-zero A-module M, we have

hdgM = sup{n | 3 an A-module N with Ext’i (M, N) # 0}.
Proor: Immediate.

Corollary 4.4 If M’ is a direct summand of M, then hd, M’ < hd M.

ProOF: This follows from the corollary above, since, for n € Z™ and
an A-module N, Ext’i(M', N) is a direct summand of Ext’y(M, N) by
Theorem 2.19(iv).

Proposition 4.5 Let 0 — M’ — P — M" — 0 be an exact sequence of
A-module with P projective. Then

(i) if M" is projective, so is M'.

(i) if hdaM" > 1, then hdgM" = hdaM’'+1 where both sides may
be infinite.

Proor: If M" is projective, the sequence 0 — M’ — P — M" — 0
splits so that M’ is a direct summand of P and hence projective. This
proves (i). We now prove (ii). For an A-module N, and n € N, we have
an exact sequence

0 — Extj(M',N) — Ext;™'(M",N) — 0,

since, P being projective, we have Ext’j(P,N) = 0 = Ext’;™' (P, N).
The assertion (ii) now follows from Corollary 4.3 to Proposition 4.2.
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Lemma 4.6 Let M be an A-module with hdaM < oco. Ifa € A is a
non-zero divisor of both A and M, then hda;s,M/aM < oco.

ProOF: We prove the lemma by induction on hd M. We may clearly
assume M # 0. If hdyM = 0, then M is A-projective and hence, by
Corollary 2.7, M/aM = M ® A/Aa is A/Aa-projective.

Let hdaM > 0 and let

0O=-N—=P—>M—=0 (%)

be an exact sequence where P is A-projective. By Proposition 4.5, we
have hdyN = hdqM — 1. The exact sequence () induces the exact
sequence

Tor{'(M, A/Aa) — N/aN — P/aP — M/aM — 0

of A/Aa-modules. Since a is not a zero divisor of A, we have an exact
sequence 0 > A 5 A —» A — A/Aa — 0 where ¢ is the homothesy

a4. This induces the exact sequence 0 — Tor{'(M, A/Aa) — M % M.
Since a is not a zero divisor of M, it follows that Torf'(M, A/Aa) = 0.
Therefore the sequence,

0 — N/aN — P/ap — M/aM — 0
is exact. By induction hypothesis, hd ;444 /aN < oo and since P/aP
is A/Aa-projective, we have hd 4 4,M/aM < oo, by Proposition 4.5.
4.2 Injective dimension and global dimension
An A-module @ is said to be injective, if, given any diagram

0 M M

Q

of A-homomorphisms with exact row, there exists an A-homomorphism
f:M — @ such that foi=f.
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Proposition 4.7 An A-module N is injective if and only if any A-
homomorphism from any ideal of A into N can be extended to an A-
homomorphism of A into N.

Proor: Clearly, any injective module has the property stated in the
proposition. Suppose now that IV is an A-module which has the above
property. Let M be any A-module, M" an A-submodule and f: M’ — N
an A-homomorphism. We shall prove that f can be extended to an A-
homomorphism of M into N.

Let F be the family of all pairs (P, g), where P is a submodule
of M containing M’ and ¢g: P — N an A-homomorphism extending f.
This family is non-empty since (M’, f) € F. We introduce a partial
order in F by setting (P1,g1) < (P2,g92) if PL C Py and ¢2| Py = g¢1.
If (Pa,ga)acr is a totally ordered subfamily, let P = (J,c; Po. Define
g: P — N by setting for x € P, C P, g(x) = ga(x). It is easily
verified that (P, g) belongs to F and that it is an upper bound of this
totally ordered subfamily. By Zorn’s lemma, F, has a maximal element
(My, f1). We claim that M; = M. Suppose M; # M and let x €
M, x ¢ My. The map a — ax of A into M induces an A-isomorphism,
A/b = Az, where b is an ideal of A. Under this isomorphism, Mj N
Az corresponds to an ideal a/b of A/b. The restriction of fi to M; N
Az induces an A-homomorphism a/b — N. Composing this with the
canonical map a — a/b, we get a homomorphism a — N which vanishes
on b. By our assumption on N, this homomorphism can be extended
to a homomorphism A — N which vanishes on b so that we have a
homomorphism fo: Az = A/b — N. Define a map ¢g: My + Az — N
by setting g|M; = fi1 and g|Az = fy so that (M; + Az,g) is in F
contradicting the maximality of (Mi, f1). The proposition is proved.

We recall that a module M over an integral domain A is said to be
divisible if for any m € M and 0 # a € A, there exists n € M such that
m = an.

Proposition 4.8 If A is an integral domain, any injective A-module
is divisible. If A is a principal ideal domain, any divisible A-module is
imjective.

PROOF: Let M be an injective A-module and let m € M, a € A, a # 0.
Define an A-homomorphism f: Aa — M by setting f(ba) = bm. Since,
M is injective, f can be extended to a homomorphism f: A — M. If
n = f(1), we clearly have m = an.
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Suppose next that A is a principal ideal domain and that M is a
divisible A-module. Let f:a — M be an A-homomorphism, where a
is any ideal of A. If a = 0, f = 0 and can be trivially extended to a
homomorphism A — M. Suppose a = Aa # 0. Let f(a) = m. Since M
is divisible, there exists n € M such that m = an. Define f: A — M by
f(b) = bn. Clearly f extends f. Proposition 4.7 now shows that M is
injective.

Corollary 4.9 The Z-modules Q and Q/Z are Z injective.

PRrROOF: Note that Z is a principal ideal domain and that both Q and
Q/Z are divisible.

Proposition 4.10 Any module is isomorphic to a submodule of an in-
jective module.

PROOF: Let M be any A-module. We define
M* = Homz(M,Q/Z).

We make M* into an A-module by defining for a € A, f € M*, af €
Hom z(M,Q/Z) by (af)(m) = f(am). We have an A-homomorphism
in: M — (M*)* defined by ips(m)(f) = f(m),m € M, f € M*, which is
functorial in M. We claim that ip; is injective. In fact, if z € M, x # 0,
we have a Z-homomorphism h: Zx — Q/Z such that h(z) # 0; if = is
of infinite order (M treated as an abelian group), then choose h(z) to
be any non-zero element of Q/Z and if x is of finite order n, choose
h(z) to be the class 1/n in Q/Z. Since Q/Z is Z-injective (Corollary
to Proposition 4.8), this extends to a homomorphism h: M — Q/Z and
h(z) = h(z) # 0 i.e. ipr(z) # 0. This proves that iy is injective. Let
F 2 M* — 0 be exact, with F' a free A-module. We then have an exact
sequence 0 — (M*)* Ly F* of A-modules, so that M is isomorphic to
a submodule of F*. The proposition is proved if we show that for any

projective A-module P, the module P* is injective.
Let P be a projective A-module and suppose we are given a diagram

0 M M

P*
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of A-homomorphisms. Since Q/Z is Z-injective, i*: M* — M"™ is sur-
jective and we have the diagram

P (pry

1%
Since P is A-projective, there exists an A-homomorphism h: P — M*
such that g*oip = i*oh. We then have an A-homomorphism A*: (M*)* —
P*. Tt is easily seen that h* oy 0oi = g (where iy M — M** is the
obvious A-homomorphism defined earlier). This proves that P* is injec-
tive.

Proposition 4.11 For an A-module N, the following conditions are
equivalent : (i) N is injective
(i) Exty (M, N) =0 for all A-modules M;
(i4i) BExty(M,N) = 0 for all integers i > 1 and for all A-modules
M;
(iv) Extyy (M, N) =0 for all finitely generated A-modules M:;
(v) Extl(Aa, N) =0 for all ideals a of A.

PrOOF: (i) = (ii). Let M be any A-module and let 0 — R 4P
M — 0 be an exact sequence with P, A-projective. This gives rise to an
exact sequence

Hom 4(P,N) 5 Hom (R, N) — Ext! (M, N) — Extl (P, N).

Since P is projective, Ext!(P, N) = 0. The map i* is surjective, since
N is injective. Hence Ext} (M, N) = 0.

(ii) = (iii). Assume by induction that Ext’ (M, N) = 0 for all i,1 <
i <n—1,n > 2 and for all A-modules M. We prove Ext" (M, N) = 0 for
any A-module M. If 0 - R % P 2y M — 0 is exact with P projective,
we have the exact sequence

Exty (R, N) — Ext}(M,N) — Ext’4(P,N).

By induction assumption, Extz_l(R, N) = 0. Since P is projective,
Ext’y(P,N) = 0. Hence Ext’(M,N) = 0. (iii) = (iv). Trivial. (iv)
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= (v). Trivial. (v) = (i). For any ideal a of A, the exact sequence
o—a—A— A/a— 0 gives rise to an exact sequence

Hom 4(A, N) — Hom 4(a, N) — Ext!(A/a, N).

By assumption Extl(A4/a, N) = 0, so that any A-homomorphism a —
N can be extended to an A-homomorphism A — N. By Proposition
4.7, it follows that IV is injective.

Let N be a non-zero A-module. The injective dimension of N, de-
noted injdim4 NV, is defined by

injdimy N = sup{n | 3 an A—module M with Ext’; (M, N) # 0},

if it exists and otherwise co. If N = 0, we set injdimq N = —1. It
follows from Proposition 4.11 that an A-module N is injective if and
only if inj dim4 N < 0.

Proposition 4.12 For any A-module N,

inj dimy N = sup{n | Ja finitely generated A-module
Msuch that Ext’i(M,N) # 0}.

Proor: It suffices to prove that for any integer i > 0, if Ext%y (M, N) =
0 for all finitely generated A-modules M, then Ext’y(M,N) = 0 for all
A-modules M. We prove this statement by induction oni. Ifi =0, N =
Hom 4(A, N) = Ext% (A, N) so that Ext% (A, N) = 0 implies N = 0.
For ¢ = 1, the assertion follows from Proposition 4.11. Suppose then
1 > 2. By Proposition 4.10, there exists an exact sequence 0 — N —
Q — Q/N — 0, with @ injective. For any A-module M there is an
induced exact sequence

Ext’; 1(M, Q) — Ext’y '(M,Q/N) — Ext'y(M, N) — Ext’ (M, Q).

Since @ is injective, it follows, by Proposition 4.11, that Extil_l(M, Q)=
Extf;l(M, @) = 0, so that we have an isomorphism Exty '(M,Q/N) =
Ext (M, N). Since Ext'y(M, N) = 0 for all finitely generated A-modules
M. Hence by induction Ext’y'(M,Q/N) = 0 for all A-modules M
which by the above isomorphism again implies that Ext’ (M, N) = 0
for all A-modules M. This proves the proposition.

Proposition 4.13 For any ring A,

gl dimg = sup inj dimy N.
N
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PROOF:
gl .dimg = sup hdaM
M
= supsup{n | 3an A-module N such that Ext’;(M,N) # 0}
M

= sup{n | 3A-modules M and N such that Ext’j(M,N) # 0}
= supsup{n | Jan A-module M such that Ext"j(M,N) # 0}
N

= sup inj dimg4 N.
N

Theorem 4.14 For any ring A

gl.dim A = sup{ hdaM | M finitely generated}.
M

Proor:
gl.dimy = sup inj dimyq N by Proposition 4.13
N

= supsup{n | Ja finitely generated A-module M
N

with Ext’y (M, N) # 0}, by Proposition 4.12

= sup sup{n | JanA-module Nwith Ext’i (M, N) # 0}
M finitely
generated

= sup hdsM by Corollary4.3Proposition4.2
M finitely
generated

4.3 Global dimension of noetherian local rings

In this section, A denotes a local ring m its maximal ideal and k = A/m
its residue field. All A-modules that we consider are assumed to be
finitely generated.

Lemma 4.15 Let M be an A-module. A set of elements x1,...,x, of
M is a minimal set of generators of M if and only if their canonical
images T1,...,Tpn in M/mM form a basis of the k-vector space M /mM.
In particular, the cardinality of any minimal set of generators of M is
equal to the rank of the k-vector space M /mM .

Proor: Clearly, it is enough to prove that xi,...,x, € M gener-
ate M over A if and only if zy,...,%, generate M/mM over k. If
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Z1,...,Tn € M generate M, then obviously 7y, ..., Z, generate M /mM
over k. Conversely, suppose x1,To,..., T, are such that z1,Zo,..., Ty,
generate M /mM over k. Let M’ be the submodule of M generated by
T1,. .. Ty If M" = M/M', we have an exact sequence 0 — M’ % M —
M" — 0, which induces an exact sequence

M JmM' % M/mM — M" jmM” — 0.

Since z1,...,x, are in M’ and since Z1, ..., T, generate M /mM, i
is an epimorphism; it follows that M”/mM"” = 0. Since M" is finitely
generated, we have M” = 0, by Nakayama’s lemma and M’ = M.

Proposition 4.16 Let A be a local ring and M a finitely generated A-
module. Then the following conditions are equivalent:

(i) M s free;

(ii) M is projective.

Moreover, if A is noetherian, then (i) and (ii) are also equivalent
to

(i) Torf(M, N) =0 for all A-modules N and all j > 1;
(iv) Torf'(M,k) = 0.

PROOF: (i) = (i7). Trivial. (i4) = (i). Let {x1,...,2,} be a minimal
set, of generators of M and let ¢: FF — M be an A-epimorphism, where
I is a free A-module with a basis of n elements. If K = ker ¢, we have
the exact sequence

0-K—F3%M-—0. (%)

Since M is projective, this sequence splits, so that
0 — K/mK — F/mF % M/mM — 0. ()

is exact. By Lemma 4.15, ¢ is an isomorphism, and K/mK = 0. Since
the sequence (x) splits, we have that K is finitely generated. Hence, by
Nakayama’s lemma, K = 0, ¢ is an isomorphism and M is free.
(13) = (d¢i1). Since M is projective, M has a projective resolution
0— M ™ M —o0. Using this resolution to compute Tor, (iii) follows.
(7i1) = (iv). Trivial.
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(tv) = (4). The proof is on the same lines as that of ‘(ii) = (i)’. We
have only to note that the exactness of (xx) is, in this case, a consequence
of the hypothesis Torf'(M,k) = 0, and K is finitely generated because
A is noetherian.

Proposition 4.17 Let A be a noetherian local ring, M a finitely gen-
erated A-module and n € Z". Then the following conditions are equiv-
alent:

(i) hdaM <mn:
(1) Tor;‘(M, N) =0 for all A-modules N and all j > n + 1;
(i7i) Tor{'(M,k) = 0.

PrOOF: (i) = (i7). Using a projective resolution of length less than
or equal to n to compute Tor, we find that TorJA(M ,N) = 0 for all
A-modules N and all j >n + 1.

(74) = (4i7). Trivial. (¢i7) = (i). We prove this by induction on n. If
n = 0, then T01"‘1A(]\/.I'7 k) = 0 and by Proposition 4.16, M is free. Hence
hdaM < 0. We may therefore assume n > 1. There exists an exact
sequence

0—M —P— M-—0,
where P is A-projective. This induces the exact sequence
Torit, (M, k) — Tori (M’ k) — Torl (P, k).
By assumption, Tori, (M, k) = 0, and by Proposition 4.16, Tor (P, k)

= 0 so that we have Tor“ (M’ k) = 0. Hence by induction hypothesis,
we have hdaM’ < n — 1 and, by Proposition 4.5, we get hda M < n.

Proposition 4.18 Let A be a noetherian local ring. For any n € Z,
the following statements are equivalent:

(1) gl.dimA <n;
(i) Torf(M, N) =0 for all A-modules M, N and j > n + 1;

(i1i) Tori,,(k,k) = 0.
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ProoOF: (i) = (ii). This follows from the above proposition. (ii) =
(iii). Trivial. (iii) = (i). Suppose (iii) holds. Then, by the above propo-
sition, Tor:l,;(k, M) = 0 for all A-modules M. Since by Proposition
2.18, we have Tor:, (M, k) ~ Tor;?ﬂ(k, M), it follows from the above
proposition that if M is finitely generated, then hd4M < n. Since this
holds for all finitely generated A-modules M, (i) follows from Theorem
4.14.

Corollary 4.19 For a noetherian local ring A, we have gl .dimy =
hd 4k.

4.4 Regular local rings

In this section, A denotes a noetherian local ring and m its maximal
ideal. Let k = A/m denote the residue field.

Let dimy = r. By Theorem 3.4, we know that m cannot be generated
by less than r elements.

A noetherian local ring A of dimension r is said to be reqular if its
maximal ideal can be generated by 7 elements.

Theorem 4.20 Let A be a noetherian local ring with mazximal ideal m
and let k = A/m. Then the following conditions are equivalent :

(i) A is regular.
(ii) the rank of the k-vector space m/m? is equal to dim A;

(iii) the k-algebra G(A) = @;som! /m/ ™ is isomorphic as a graded
k-algebra to a polynomial algebra k[ X1, ..., Xs];

(iv) G(A) is isomorphic as a graded k-algebra to the polynomial algebra
k[ X1,...,X,] with r = dim A.

ProOOF: (i) = (i). Immediate from Lemma 4.15.

(i7i) = (4i). Let ¢:k[X1,...,Xs] — G(A) be an isomorphism of
graded k-algebras and let x1,...,25, € m be such that ¢(X;) = z;
modulo m?, for 1 < j < s. By Lemma 4.15, the elements z1, ...,z
generate m and we have, by Corollary to Proposition 3.8, deg Pn(A,n) =
5. On the other hand, since m/m? = G(A4); ~ k[X1,..., Xs]1 we have
rankym/m? = s. This proves (ii).

(iv) = (iii). Trivial.
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(i) = (iv). Let {z1,...,2,} be a set of generators of m, with r =
dimy. Let ¢: k[X1,...,X,] — G(A) be the graded k-algebra homomor-
phism defined by ¢(X;) = z; modulo m?, 1 < j < r. Since deg Pn(A,n)
= r, we have, by Corollary to Proposition 3.8, that ¢ is an isomorphism.

Corollary 4.21 A regular local ring is an integral domain.

PrOOF: Since G(A) ~ k[X1,...,X,] is an integral domain, the Corol-
lary follows from Lemma 1.42.

Let A be a regular local ring of dimension r. Any set of generators
for m consisting of r elements is called a reqular system of parameters of

A.

Proposition 4.22 Let A be a regular local ring of dimension r and
let ai,...,a; be any j elements of m, 0 < j < r. Then the following
statements are equivalent:

(i) {a1,...,a;} is a part of a reqular system of parameters of A;

(ii) the images ai,...,a; of ai,...,a; under the canonical map m —
m/m? are linearly independent over k;

(iii) A/(a1,...,a;) is a part of a regular local ring of dimension r — j.

PrOOF: (i) < (ii). Trivial consequences of Lemma 4.15.

(i) = (iii). Let A = A/(a1,...,a;) and let m = m/(ay,...,a;). Let
ai,...,aj,a;41,...,a0; be aregular system of parameters of A. Then the
canonical images of a;j41,...,a, in m obviously generate m and hence,
by Theorem 3.4, dim A < r —j. Let s = dim 4 and let by,...,bs € m be
such that if by, . . ., by are their canonical images in m, then A/(b1,...,bs)
is of finite length. Since A/(a1,...,a;, bi,...,bs) ~ A/(by,...,bs), we
have s + j > dim A = r. Thus dim A = r — j. Since m is generated by
r — j elements, A is regular and (iii) is proved.

(iii) = (i). Let aj41,...,a, € m be such that their canonical images
inm=m/(ai,...,a;) generate m. Thenay,...,a;, aji1,...,a, generate
m and (i) is proved.

Corollary 4.23 Let {a1,...,a;} be a part of a reqular system of param-
eters of a regular local ring A. Then p = (a1, ...,a;) is a prime ideal of
A of height j.
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PROOF: Since, by the above Proposition, A/p is a regular local ring,
it is an integral domain by Corollary to Theorem 4.20, and hence p is a
prime ideal. We show by induction on j that htp = j. If j = 0, then
p =0and htp = 0. Let j > 0. By induction hypothesis, the ideal
(a1,...,a;—1) is a prime ideal of height j — 1. Moreover, it is properly
contained in p, since {a1,...,a;} is a minimal system of generators of p.
Thus htp > j. On the other hand, by Corollary 4.4 to Theorem 3.10,
htp < j. Thus htp = j and this completes the proof.

Let M be a non-zero A-module. A sequence aq,...,a, of elements of
m is called an M-sequence if a; is not a zero-divisor of M/ (a1, ... ,a;—1)M
for 1 <4 <r. (For i = 1, the condition means that a; is not a zero-
divisor of M.)

Proposition 4.24 Let M be a non-zero A-module and aq,...,a,. an
M -sequence. Then r < dim M.

ProOOF: We use induction on r. For r = 0, there is nothing to prove.
Assume r > 0 and let M"” = M/ay M. Since a; is not a zero-divisor of
M, we have an exact sequence 0 — M 5 M — M” — 0, where ¢ is the
homothesy by a1. Applying Proposition 3.6 to this exact sequence, we
get Pn(M",n) = R(n), where R(n) is a polynomial function of degree
less than deg Py (M, n), i.e. dim M” < dim M. Since clearly as, ..., a,
is an M"-sequence, we have by induction hypothesis, r — 1 < dim M"” <
dim M — 1. This proves the proposition.

Corollary 4.25 A noetherian local ring A is regular if and only if its
mazimal ideal is generated by an A-sequence.

PrOOF: Let A be regular and let {a,...,a,} be a regular system of
parameters of A. Then from Proposition 4.22, it follows that aq,...,a,
is an A-sequence. Conversely, suppose aq,...,a, is an A-sequence gen-

erating m. Then, by Proposition 4.24, we have r < dim A. Also, by
Theorem 3.4, dim A < r. Thus r = dim A and the corollary is proved.

4.5 A homological characterisation of regular
local rings

The aim of this section is to prove that a local ring A is regular if and
only if gl .dim A < cc.
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In this section, A denotes, as before a noetherian local ring, m its
maximal ideal and k its residue field A/m.

Lemma 4.26 If a € m —m?, then the exact sequence
0 — Aa/ma — m/ma — m/Aa — 0

of A/Aa-modules splits.

PROOF: Let d = rankym/m?. Since a ¢ m? there exist by Lemma

4.15, ai,...,aq—1 € m such that {a,a,...,aq-1} is a minimal set of
generators of m. Let a = (a1,...,aq-1). Let b € A be such that ba €
a. Then by the minimality of {a,a1,...,aq-1} as a set of generators

for m, b cannot be a unit, so that b € m. Thus a N Aa C a N ma.
Clearly a N Aa D a N ma, so that a N Aa = a N ma. We now have
a+ma/ma~a/anNma=a/anN Aa~a+ Aa/Aa = m/Aa, which shows
that the canonical homomorphism m/ma — m/Aa maps a + ma/ma is
isomorphically onto m/Aa. Hence the exact sequence splits.

Corollary 4.27 Let A be a noetherian local ring with gl .dim A < oo.
If a € m —m? is not a zero divisor of A, then gl .dim A/Aa < oco.

PrROOF: We have an A/Aa-isomorphism (A/Aa)/(m/Aa) ~ A/m = k,

and hence an exact sequence
0—m/Aa — AJ/Aa — k — 0

of A/Aa-modules. By Corollary to Proposition 4.18, we now have gl . dim A/Aa =
hdg/4qk. To prove the corollary, it suffices, in view of Proposition 4.5,

to show that hdy s,m/Aa < oo. By hypothesis, gl.dim A < oo and

hence hdam < co. By Lemma 4.6, we have hd4/4,m/ma < co. By the

above lemma, m/Aa is a direct summand of m/ma. Now Corollary 4.4

to Proposition 4.2 shows that hd 4/4,m/Aa < oo and this completes the

proof.

Lemma 4.28 Let M be a non-zero A-module and let a € m be not a
zero diwisor of M. Then hdaM/aM = hdaM + 1, where both sides
may be infinite.

ProOF: The exact sequence

0— M2 N — M/aM — 0
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induces an exact sequence

Tor? (anr,k)
—_— >

Torfl‘H(M, k) — Torf+1(M/aM, k) — Tor’ (M, k) Tor (M, k)

for every n € Zt. Now TorA(ayr, k) = a Tor (157, k) = Tor (157, ap) =
0, since a being in m, ay is zero. Thus the sequence

Tort, (M, k) — Tori,;(M/aM, k) — Tori(M,k) — 0
is exact. The lemma now follows from Proposition 4.17.

Lemma 4.29 Let A be a noetherian local ring such that m # m? and
such that every element of m —m? is a zero-divisor. Then any A-module
of finite homological dimension is free.

Proor: By Proposition 1.21, we have

m-m’c |J
pe Ass(A)

This means that m C Upe ags(a) b U m? and since m # m?, we have
by Lemma 1.12 that m € Ass(A) and we have an A-monomorphism
k= A/m — A. Let M be any A-module with hdaM = n < co. If
n = —1, then M = 0 and there is nothing to prove. Let n > 0. The
exact sequence 0 — k — A — A/k — 0 induces the exact sequence

Torit, (M, A/k) — Torit (M, k) — Tori (M, A).

By Proposition 4.17, we have Tor?., (M, A/k) = 0 and Toris (M, k) # 0.
This implies that Tor/(M, A) # 0 which implies n = 0. Hence M is
projective. Proposition 4.16 now proves the lemma.

Theorem 4.30 Let A be a noetherian local ring. Then A is regular
if and only if gl .dim A < oo and moreover, if gl .dim A < oo, then
gl .dim A = dim A.

Proor: By Corollary to Proposition 4.24, it is enough to show that
the maximal ideal m of A is generated by an A-sequence if and only if
gl .dim A < oo and that, in this case, gl .dim A = dim A.

Let m be generated by an A-sequence ay,...,a,. Then by repeated
applications of Lemma 4.28, it follows that hd4A/m = r. Therefore by
Corollary to Proposition 4.18, we have gl .dim A = r < co. Moreover
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by Proposition 4.24, we have r < dim A. Now Theorem 3.4 implies that
dim A < r, so that gl .dim A =r = dim A.

To complete the proof of the theorem, it is now enough to show that
if gl.dimA < oo, then m is generated by an A-sequence. Let then
gl .dim A < co. We use induction on r = rankym/m? to prove that m is
generated by an A-sequence. If 7 = 0, then m = m? and, by Nakayama’s
lemma, m = 0 showing that m is generated by the empty sequence. Let
now r > 0. If every element of m — m? is a zero-divisor then, since
hdqA/m < oo, we have, by Lemma 4.29, that A/m is free; therefore
m = 0, contradicting the assumption that » > 0. Thus there exists
a € m —m? which is not a zero divisor. Then, by Corollary to Lemma
4.26, we have gl.dim A/Aa < oco. Let m = m/Aa; since m/m? is a
k-vector space of rankr — 1, we see by induction that m/Aa is generated
by an A/Aa-sequence ay,...,a,—1 where a; € m and a; is the class of
a; modulo Aa, for 1 < 4 < r — 1. Then clearly, a,a1,...,a,_1 is an
A-sequence which generates m, and the theorem is proved.

Corollary 4.31 Let A be a reqular local ring and let p be a prime ideal
of A. Then Ay is a regular local ring.

PrRoOOF: In view of the above theorem, it is enough to show that
gl.dim A, < gl .dim A. Let

0—-F,—=F, 11— —=>F—>A/p—=0 (%)

be an A-free resolution of the A-module A/p with n < gl.dim A. In
view of Proposition 1.1 and 1.2, we obtain by tensoring (x) with A,, an
Ap-free resolution

O_>Fn®AAp_>Fn—1®AAp_>"'_>F0®AAp—>Ap/pAp—>O

of Ap/pA, which shows that hda,Ap/pA, < n. Now Corollary 4.19
shows that gl .dim A, = hda,Ap/pAp, <n < gl.dim A.
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Chapter 5

Unique Factorisation in
Regular Local Rings

5.1 Locally free modules and a “cancellation
lemma”

Lemma 5.1 Let A be a noetherian ring and let S be a multiplicative
subset of A. Let M be a finitely generated A-module. Then for any
A-module N, the canonical map

s Hom 4(M, N) — Hom g-14(S™'M,S™IN) given by f s S f
induces an S™'A-isomorphism
@n: S~ Hom 4(M, N) ~ Hom g-14(S~'M,S™'N),
which is functorial both in M and N.

PrOOF: If M = A, and if Hom 4(A, N) and Hom g-14(S™1A,S™IN)
are identified respectively with N and S™!N, ¢4 is simply the canonical
map iy and hence ¢4 = 1g-1y. Since both Hom and S~! are additive
functors, it follows that @, is an isomorphism for any finitely generated
free A-module M. Let now M be any finitely generated A-module. Since
A is noetherian, we have an exact sequence

Fi - Fy—>M—0

where Fjy and F}) are finitely generated free A-modules. We then have
the exact sequences

0 — Hom 4(M,N) — Hom 4(Fp, N) — Hom 4(Fi,N)

79
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and
SR 5 SRy ST M =0

and hence we have the following commutative diagram with exact rows:

0 — S~ " Hom (M, N)

S~ Hom 4(Fo, N) S~ Hom 4(Fy, N)

M PFy PF

0 — Hom g-1,4(S™"M,S™'N) — Hom g-1,(S™ "' Fy,S™'N) — Hom g-1,4(S""F1,S"'N)

Since ¢p, and @p, are isomorphisms, it follows easily that @js is an
isomorphism.

Lemma 5.2 Let A be a noetherian ring and P a finitely generated A-
module. Then P is projective if and only if, P, is Ay-free for every
p € Spec(A).

ProOF: Let P be projective. It follows immediately from Corollary
2.7 to Proposition 2.4 and Proposition 4.16 that B, is Ap-free for every
p € Spec (A). Conversely, let P, be Ap-free for every p € Spec (A). Let
' — P — 0 be any exact sequence, where F' is a finitely generated free
A-module. To prove that P is projective, we need to show that

Hom 4(P, F) % Hom 4(P,P) — 0

is exact. Let C' = cokert. Since P is finitely generated, Hom 4 (P, P)
and hence C is finitely generated. To prove the exactness of the above
sequence, we need, in view of Proposition 1.26, only show that C, = 0
for every p € Spec(A). Let then p be in Spec(A). By Proposition
1.1, we have C}, = coker,. By Lemma 5.1, we have the commutative
diagram

Hom A(P, F)y —22 Hom A(P, P),

PP =|¥pP

0
HOmAp(Pp7 Fp) — HOmAp(Pp7 Pp)

where the vertical maps are isomorphisms. Since P, is Ay-free by hy-
pothesis, it follows that the sequence F, — P, — 0 splits and hence 6 is
surjective. Therefore v, is surjective, C, = 0 and the lemma follows.



5.1. Locally free modules and a “cancellation lemma” 81

Lemma 5.3 Let F' be a finitely generated free module over a non-zero
ring A. Then, any two bases of F' have the same cardinality.

PROOF: Let m be a maximal ideal of A. If {ej,... ey} is an A-basis
of F, then {1®eq,...,1®e,} C A/m®4 F = F is clearly an A/m-basis
of F. Since A/m is a field, the lemma follows from the corresponding
result for vector spaces.

The number of elements in any basis of a finitely generated free A-
module F' is called the rank of F' (over A) and denoted rankyF.

Let P be a finitely generated projective A-module. Then, if p is
any prime ideal of A, we know by Proposition 4.16 that B, is a (finitely
generated) free A-module. We define the rank of P at p to be the rank
of the free module P, over A,. We thus have a map rank4P: Spec (A) —
Z* defined by p rank 4, B We say that P has constant rank n if
rank 4 P is the constant map n. Note that any free module has constant
rank.

Proposition 5.4 If0 - P’ — P — P” — 0 is an exact sequence of
finitely generated projective A-modules, then

rank 4 P = rank4 P’ + rank4P”.

PrROOF: For any p € Spec (A), we have, by Proposition 1.1, the exact
sequence 0 — Py — P, — P — 0 of finitely generated free Ay-modules.
Since P, ~ Py @ P/, it follows that ranka, P, = rank4, P, + ranka, P,'.
This proves the proposition.

Proposition 5.5 Let a be an ideal of A which is a projective A-module.
Then rankaa <1, d.e. ranka,ap, <1 for everyp in Spec(A).

Proor: Let p € Spec(A). Then ap, being a free Ay-module, is a
principal ideal of Ay, since any two distinct elements of a commutative
ring R are R-dependent. Hence ranka,a, < 1.
Let M be an A-module. A finite free resolution of M, is an exact
sequence
0—F,— - —F—>M-—0,

where n € ZT and Fy, ..., F, are finitely generated free A-modules.
Lemma 5.6 Let P be a projective A-module which has a finite free res-

olution. Then there exists a finitely generated free A-module F' such that
P ® F is a finitely generated free A-module.
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PROOF: Let
O0—=F,—-F, 11— —=F—>P—=0

be finite free resolution of P. We prove the lemma by induction on n.
If n =0, P ~ Fy and the lemma is trivially proved. Let then n > 0 and

let K = ker(Fy — P). Then Fy ~ P® K. Thus K is projective and has
a finite free resolution

0—=F,— - —=F —=>K-=Q0,

so that, by induction hypothesis, there exists a finitely generated free
A-module G such that K @ G = F is finitely generated and free. Now
PpF P (KpG) ~(P®K)® G~ Fy® G is finitely generated
and free.

Lemma 5.7 (“Cancellation lemma”) Let P be an A-module such
that P & A" ~ A" Then P ~ A.

Proor: Clearly P is projective and, in view of Proposition 5.4, is of
constant rank 1, i.e. B, is a free Ap-module of rank 1 for every p €
Spec (A). Therefore for every p € Spec (A), we have (A'P), ~ A, @4
AP ~ N(Ap®@4P) ~ NPy, = 0 fori > 1. Hence, by Proposition 1.26, we
have A'P = 0 fori > 1. Now, we have A ~ A"HL AL ~ AnFL(P@ AT ~
EBO<i<n+1 /\iP®A/\n+1—i A" = (/\OP ®4 /\n+1An) @ (/\IP ®a /\nAn) ~
P®4 A~ P, since A"T1A™ = 0.

Corollary 5.8 Let a be a non-zero projective ideal of a ring A such that
a has a finite free resolution. Then a ~ A.

ProoF: By Lemma 5.6, there exist finitely generated free A-modules
F and F} such that a ® F' ~ F. It follows from Proposition 5.4 that a
has constant rank. Further, since a is a non-zero ideal, it follows from
Proposition 5.5 that rank a = 1. Hence, if F' ~ A", then F; ~ A",
and the corollary now follows from Lemma 5.7.

5.2 Unique factorization in regular local rings

Let A be an integral domain. An element p € A is said to be a prime if
Ap is a prime ideal. An integral domain A is called a unique factorization
domain if every element can be written in the form u[],<;, pi where
p; are primes, u € A is a unit and n € ZT. o
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Lemma 5.9 Let A be a noetherian domain. Then A is a unique fac-
torization domain if and only if every prime ideal of height 1 of A is
principal.

PROOF: Let A be a unique factorization domain and let p be a prime
ideal of height 1. Let a € p, a # 0. Let p € A be a prime dividing a.
Then Ap C p is a non-zero prime ideal. Since htp = 1, it follows that
p = Ap.

Conversely, suppose that every prime ideal of height 1 is principal.
Since A is noetherian, every element can be written as w[[,<;<, pi, pi
being irreducible. (Recall that an element a € A is irreducible if it is
not a unit and its only divisors are units of A and those of the form
ua, where u is a unit of A.) We need therefore only to show that any
irreducible element of A is prime. Let a € A be irreducible and let p
be a minimal prime ideal containing Aa. By Corollary 3.13 to Theorem
3.10, we have htp = 1. Therefore p = Ap, for some p € A. Clearly, p is
a prime dividing a and hence p = ua for some unit of u of A. Therefore
Aa = Ap and a is a prime.

Theorem 5.10 Any regqular local ring is unique factorization domain.

ProoOF: Let A be regular local ring of dimension r. We prove the
theorem by induction on r. If » = 0, then A is a field, and there is
nothing to prove. Let then r > 1. In view of Lemma 5.9, we need only to
show that any prime ideal of height 1 is principal. Let then p be a prime
ideal of height 1. Since r > 1, we have m # m?, by Nakayama’s Lemma.
Let a € m — m?. Then, by Lemma 4.15 and Corollary to Proposition
4.22, a is a prime element. Let S = {1,a,a?,...} and B = S7'A. If
a € p, then Aa = p, since htp = 1. We may therefore assume a & p.
Then pB is a prime ideal of B of height 1. Let qB be a prime ideal of
B, where q is a prime ideal of A (hence a ¢ q so that q # m). Then,
clearly, Byp = Aq. Since q # m, Byp is a local ring of dimension less
than 7, and by Corollary to Theorem 4.30, Byp is regular. By induction
hypothesis, Byp is a unique factorization domain. Now, if pByp # Byp,
then pByp, being a prime ideal of Byp of height 1, is principal, by Lemma
5.9. Therefore, by Lemma 5.2, pB is B-projective. Since A is regular,
its global dimension is finite by Theorem 4.30. Thus by Corollary 2.10
to Proposition 2.8, Proposition 4.2 and Proposition 4.16, p admits of a
finite free resolution as an A-module. Proposition 1.1 now implies that
pB has a finite free resolution as a B-module. Therefore, by Corollary
5.8, pB is principal. Let p € p be such that pB = Bp. Let n € Z™ be
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such that a"|p, a"*! fp, and let p = a™q. Since a™ & p, we have q € p.
Also pB = Bq. By replacing p by ¢, we may therefore assume that a fp.
We claim that p = Ap. In fact, by the proof of Proposition 1.3, we have
pBN A=y, so that we need only to show that Bpn A = Ap. Clearly,
Ap C Bpn A. Let ¢p/a™ € A, with m € ZT and ¢ € A. Since a [fp, and
a is a prime, it follows that a™/c, i.e. (¢/a™)p € Ap, and the theorem is
proved.



EXERCISES

(In what follows, A, B denote commutative rings with 1.)

CHAPTER 0

(1) Show that for a fixed A-module N, the assignment M + Hom (M, N)
is a contravariant A-linear functor and the assignment M — Hom 4 (N, M)
is a covariant A-linear functor. If 0 — M’ — M — M"” — 0 is an exact
sequence of A-modules, show that the sequences

0 — Hom 4(M",N) — Hom 4(M,N) — Hom 4(M', N)
and
0 — Hom 4(N, M') — Hom 4(N, M) — Hom 4(N, M")

are exact. (We say that Hom 4(M, N) is left-exact in both M and N.)
Give examples to show that Hom 4 (M, N) is not exact in either variable.

(2) Let M be an A-module. Show that the map Hom 4(A, M) — M
given by f — f(1) is an isomorphism of A-modules which is functorial
in M.

(3) Let N be an A-module. Show that the functor M — M @& N is
additive if and only if N = 0.

(4) Let My - My — My — --- — M, be an exact sequence of A-
modules. If T is an exact functor from A-modules to B-modules, show
that

T(My) = T(My) = T(My) — - — T(M,)

is exact.

(5) Let { M/ iy M; 25 M! }icq be a family of sequence of A homo-

morphisms and let M’ = @, M/, M =@, M;, M" =&, M/, [ =®ifi
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and g = ®;g;. Show that 0 — M’ Ly M % M" = 0 is exact if and only
ifO—)MZ-’gMi I MY — 0 is exact for every i € I.

(6) Let T be an exact functor from A-modules to B-modules. Let M be
an A-module. For a submodule N of M, identify T'(/N) with a submodule
of T(M) in a natural way and show that if Ny, N are submodules of M,
then T(Nl N Ng) = T(Nl) N T(Ng) and T(Nl + Ng) = T(Nl) + T(Ng)

(7) Let M' — M — M" be homomorphisms of A-modules. If for every
A-module N, the sequence 0 — Hom 4(N,M’) — Hom 4(N,M) —
Hom (N, M") — 0 is exact, show that 0 - M’ — M — M"” — 0 is a
split exact sequence. Similarly if, for every A-module N, the sequence
0 — Hom 4(M",N) — Hom 4(M,N) — Hom (M’',N) — 0 is exact,
show that 0 — M’ — M — M" — 0 is split exact. What can you say
if, in the above Hom 4(.,.) is replaced by ®47?

(8) Show that if M, N are A-modules, then for any ideal a of A, we
have

(M/aM) ®4/q (N/aN) = (M @4 N)/a(M ®4 N).

(9) Show that (Z/mZ) ®z (Z/nZ) ~ Z/dZ, where m,n € Z and d is
the greatest common divisor of m and n.

(10) If M is finitely generated A-module and N is a noetherian A-
module, show that M ® 4 N is noetherian.

CHAPTER 1

(11) Show that the set S of all non-zerodivisors of A is multiplicative
and that the natural homomorphism A — S™1'A is injective. Give an
example of a multiplicative subset T' of a ring A such that the natural
homomorphism A — T~ A is not injective.

(12) (i) Let f: A — B be a homomorphism of rings and S,T" be mul-
tiplicative subsets of A, B respectively, such that f(S) C T. Show that
there exists a unique ring homomorphism f’: S~'A — T~!B such that
the diagram
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A / B
ia iB
f/
S'A—L ~77'B

is commutative.

(ii) A multiplicative subset S of A is said to be saturated if for
a,b € A with ab € S we have a,b € S. For a multiplicative subset S
of Alet S = {a € A adivides s for some s € S}. Prove that S is the
smallest saturated multiplicative subset of A containing S. Prove that
the map 14: S71A — S71A induced by 14: A — A as in (i) above, is an
isomorphism.

(13) (cf. Exercise (6)). Let S be multiplicative subset of A. Let M be
an A-module and let N1, No be submodules of M. Show that

STHNy N Ny) = S™INT N S™INy and STH(Ny + No) 4+ S7INy 4+ S7IN,.
(14) Show that A is a local ring if and only if the non-units of A form
an ideal.

(15) Let M be a noetherian A-module and S a multiplicative subset
of A. Show that S™1M is a noetherian S~ A-module.

(16) An A-module M is said to be faithful if ann M = 0. Show that if
there exists a faithful noetherian A-module then A is noetherian.

(17) Let A be a noetherian ring and S a multiplicative subset of A.
(i) If a is a p-primary ideal of A, then p™ C a for some n € N.

(ii) If m is a maximal ideal of A and a is an ideal of A such that
m” C a C m for some n € N, then a is m-primary.

(iii) Let a be a p-primary ideal of A. Then an S = () if and only if
pNS =10 IfansS =0 the S~'ais S~!p-primary. Moreover, if
pNS =0, then a — S~ 'a is a bijective correspondence between
p-primary ideals of A and S~!p-primary ideals of S~!A.

(iv) Let a = qg1N---Ng, be an irredundant primary decomposition of an
ideal a of A. Then S™'a = Njes S _lqj is an irredundant primary
decomposition in S7'A, where J = {i |1 <i<r, ¢; NS = 0}.
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(18) Let A be anoetherian ring and let 0 - M" — M — M"” — 0 be an
exact sequence of A-modules. Then Ass(M') C Ass(M) C Ass(M')U
Ass(M"). If the sequence splits, then Ass(M) = Ass(M') U Ass(M").

(19) Let ajaz...,a, be ideals of A such that a; + a; = A for every 4, j
with ¢ # j, 1 < 4,5 < n. Show that [[;«;<, @& = Ni<j<p, @i I A s
noetherian and a is an ideal of A such that Supp (A/a) consists only of
maximal ideals, then a is a unique product of primary ideals.

(20) Let B = Alx1,...,x,) be a finitely generated A-algebra and let
M be a finitely generated B-module. If z1, ...z, € vyanngM then show
that M is a finitely generated A-module.

(21) For an ideal a of A, define V(a) = {p € Spec(A4) | p D a}, and for
a subset X of Spec (A), define I(X) = Nycx p. Show that

(i) there is a topology on Spec(A) for which the closed sets are
V(a), a running over all the ideals of A.

(ii) for X C Spec(A), V(I(X)) = closure of X in Spec (A);
(iii) for any ideal a of A, I(V(a)) = V/a;

(iv) the map X ~— I(X) is an inclusion-reversing bijection of the set
of closed subsets of Spec(A) onto the set of ideals a of A with

a=+a.

(22) Show that Spec (A) is connected if and only if A has no idempo-
tents other than 0 and 1. Deduce that for a local ring A, Spec(A) is
connected.

(23) A subset F' of a topological space is said to be irreducible if F #
(), Fis closed and cannot be written as F; UF, with closed subsets Fy, Fh
properly contained in F'. Show that the closed subset V' (a) of Spec (A)
where a is an ideal of A, is irreducible if and only if \/a is a prime ideal.

(24) A topological space is said be noetherian if every sequence U; C Us
% -+ - of open subsets of X is necessarily finite. Show that if A is noethe-
rian ring, then Spec (A) is noetherian. Is the converse true?

(25) A maximal irreducible subset of a topological space X is called an
irreducible component of X. Show that a noetherian topological space
has only finitely many irreducible components. Let X be a noetherian
topological space and let {X;}1<i<, be its irreducible components. Show
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that X = |J; X; and for every j, 1 < j <r, X # ;1 X;. If Aisa
noetherian ring, show that the irreducible components of Spec (A) are

precisely V(p1),...,V(p,) where py,...,p, are the minimal prime ideals
of A.

(26) Let ¢: A — B be a ring homomorphism. Show that the map
Spec (¢): Spec (B) — Spec (A) defined by (Spec (¢))(p) = ¢~ (p), for

p € Spec(B), is continuous.

(27) Let a be an ideal of A and M an A-module. If a C ann M, then
show that £4(M) = £/q(M).

(28) (i) Let 0 — M; — --- — M, — 0 be an exact sequence of A-
modules of finite length. Then show that 3, (—1)"4(M;) = 0.

(ii) Let M = My D My D --- D M, = 0 be a sequence of sub-
modules of an A-module of finite length. Then show that ¢4(M) =
2o<i<n—1 fa(Mi/Miy1).

(29) Every artinian integral domain is a field. Every prime ideal of an
artinian ring is maximal. If A is artinian, then n(A) = r(A).

(30) Show that there exists a ring A and a non-zero A-module M (not
necessarily finitely generated) such that r(A)M = M.

(31) Let a be an ideal of A such that for all finitely generated A-
modules M, aM = M implies M = 0. Show that a C r(A).

(32) Let M be a finitely generated A-module such that mM = M for
every maximal ideal m of A. Show that M = 0. Deduce Nakayama’s
lemma.

(33) Let M be a noetherian A-module. Show that any surjective A-
endomorphism of M is an isomorphism.

(34) Let A = @,;>0Ai be graded ring and let Ay = @;>; 4;. Show
that if M is a graded A-module such that Ay M = M then M = 0.

(35) Let A be graded ring , M a graded A-module and let N a sub-
module of M. Then prove that the following conditions are equivalent:

(i) N is a graded submodule;
(ii) € N = all the homogeneous components of x are in N;

(iii) N is generated by homogeneous elements.
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(36) Let A = @;>0Ai be graded ring and N = P,>( N; be a graded
A-module . If N is finitely generated and A = Ag then show that V; =0
for i > 1.

CHAPTER 2

(37) Let 0 - X — Y — Z — 0 be an exact sequence of complexes.
Show that if any two of the X, Y, Z are exact, then so is the third.

(38) An A-module M is said to be flat if for any exact sequence 0 —
N — N — N” — 0 of A-modules the sequence 0 — M ®4 N’ —
M®@aN— M®sN" — 0is exact. Show that, for an A-module M, M
is free = M is projective = M is flat. Give examples to show that the
implications cannot be reversed.

(39) Let X be a complex of A-modules. If M is an A-module, let
X ®4 M be the complex -+ — X, 4 M — X,,_1 @4 M — --- . Show
that if M is flat, then H, (X ®4 M) ~ H,(X) ®4 M, for every n € Z.

(40) Let M be an A-module. Show that M is flat if and only if
Tor{'(M, N) = 0 for all A-modules N.

(41) For an A-module M, show that the following conditions are equiv-
alent:

(i) a sequence 0 = N' — N — N” — 0 of A-modules is exact if and
only if 0 = N'®@a M - N®@s4 M — N"®4 M — 0 is exact;

(ii) M is flat and for an A-module N, N®4 M = 0 implies that N = 0.

An A-module M which satisfies either of the above conditions is called
faithfully flat.

(42) Show that a faithfully flat A-module is flat and faithful (i.e. ann M
= 0). Give an example of a flat faithful module which is not faithfully
flat.

(43) Let ¢: A — B be a ring homomorphism. Show that B is faithfully
flat over A if and only if ¢ is injective and B/¢(A) is A-flat.

(44) Let ¢: A — B be a ring homomorphism and let B be faithfully
flat over A. Show that if a is an ideal of A, then ¢~!(¢(a)B) = a.

(45) Let P be a projective A-module. Show that there exists a free
A-module F' such that P@® F is free. Give an example of a ring A and a
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finitely generated projective A-module P such that there does not exist
a finitely generated free A-module F' with P & F' free.

(46) Let P, P’ be finitely generated projective A-modules such that
P/(r(A)P) = P'/(r(A)P’"). Show that P ~ P’.

(47) Let A be a noetherian ring and M be a finitely generated A-
module such that Tor{'(M, M/r(A)) =0 and M/r(A)M is a projective
A/r(A)-module. Show that M is projective.

(48) Every ideal of a ring A is generated by an idempotent if and only
if A is a finite direct of fields.

(49) Every A-module is projective if and only if A is a finite direct
product of fields.

(50) Let0 = N - P M —-0and 0 - N - P - M — 0
be exact sequences of A-modules with P, P’ being projective. Define
A-homomorphisms f: P& N’ — P', g: N — P& N’ such that 0 — N %

Pa N i> P’ — 0 is exact. Hence deduce that P& N’ ~ P’ & N.

(51) An A-module M is said to be finitely presented if there exists an
exact sequence F; — F — M — 0 with F; and F finitely generated free
A-modules. Let M be a finitely presented A-module and let f: F' — M
be any epimorphism, where F' is a finitely generated free A-module.
Show that ker f is finitely generated.

(52) Let A — B be a ring homomorphism such that B is flat. Show
that for A-modules M and N, we have

Tor}(M,N) ©4 B ~ Tor? (M ©4 B,N @4 B).

(53) Let M, N be finitely generated modules over a noetherian ring A.
Show that, for every n € Z*, Tord(M, N) and Ext’ (M, N) are both
noetherian.

(54) For simple A-modules M and N which are not isomorphic show
that Ext’y(M,N) =0 = Tor2(M, N) for every n € Z™.

CHAPTERS 3,4 & 5

(55) Let B = A[X1,...,X,] be the polynomial ring in r variables over
A. Show that the subset B,, of B consisting of homogeneous polynomials
of degree n is a free A-module with the set of monomials of degree n
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n—i—r—l).

as basis. Show that the number of monomials of degree n is ( 1

Prove also that B = ,,>( By is a graded ring .

(56) Show that for r € ZT, the map n ~ (7) is a polynomial function
of degree r. Deduce that if in Exercise 55, A is artinian, then £4(B,,) is
a polynomial of degree r — 1.

(57) Check that the relation ~ defined in the set of polynomial func-
tions by f ~ ¢ if and only if f(n) = g(n) for n > 1 is an equivalence
relation. Show that for any polynomial function f of degree r, there ex-
ist ag,ai,...,a, € Qsuch that f ~ag+a1(}]) +---ar(). Show further
that ag,aq,...,a, are uniquely determined by f.

(58) (Cf. Exercises 21 and 23). Let X be a topological space and let
Fy ; Fy ; e ; F be a sequence of irreducible subsets of X. Then the

integer n is called the length of this sequence. We define dim X to be
the supremum of the lengths of all such sequences. Show that if A is a
local ring, then dim A = dim Spec (A).

(59) Let A be a noetherian ring and P a finitely generated A-module.
Show that P is projective if and only if ExtY(P, N) = 0 for every finitely
generated A-module N.

(60) Let S be multiplicative subset of a noetherian ring A and let
M, N be A-modules with M finitely generated . Show that, for ev-
ery n € Z7T, there exists an S~!A-isomorphism S~!Ext”(M,N) ~
Ext?_, ,(S7'M,S™!N), which is functorial both in M and N.

(61) Let A be a noetherian ring and M a finitely generated A-module.
Show that

hdgyM = sup  hda, My = sup hd,  Mpy.
peE Spec (A) mée Spec (A)
m maximal

(62) Let 0 — M’ — M — M" — 0 be an exact sequence of A-modules
such that hdyM"” > hdsM. Show that hdaM"” =1+ hd4M’.

(63) Let M be an A-module with hdqM = n < oo. Then there exists
a free A-module F such that Ext’y(M, F') # 0. If A is noetherian, show
further that Ext’} (M, A) # 0.

(64) Let M be a finitely generated A-module. A set {z1,...,x,} of
generators of M is said to be minimal of no set of n—1 elements generate
M. Tt is said to be irredundant if no proper subset of {zi,...,z,}
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generates M. Show that if A is local if and only if, for any A-module
M, any irredundant set of generators is also minimal. (Note that a
minimal set of generators is always irredundant).

(65) For a local ring A with maximal ideal m, show that Tory(k, k) =
m/m?.

(66) Show that if P is finitely generated projective A-module, then the

map ranky P: Spec (A) — Z is continuous for the discrete topology on
Z.

(67) Let A be a local ring. Show that A[X]/(X?) is a local ring and
gl. dim A[X]/(X?) = .

(68) Let A be an integral domain, K its quotient field and a an ideal
of A. We define a™! = {z € K | za C A}. Show that a~! is an
A-submodule of K and, if a # 0, the following conditions are equivalent:

(i) aa~! = 4;

(ii) there exists aj...,a, € a and z1,...,7, € a~! such that
> aw =1,
1<i<r

(iii) a is a finitely generated projective A-module.

An ideal satisfying any of the equivalent conditions above is called an
invertible ideal.

(69) Show that in a unique factorization domain, every invertible ideal
is principal.
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