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Editorial Note

This series of mathematical pamphlets is issued in response to a
widespread demand from university teachers and research students in
India who want to acquire a knowledge of some of those branches of
mathematics which are not a part of the curricula for ordinary university
degrees. While some of these pamphlets are based on lectures given
by members of the Tata Institute of Fundamental Research at summer
schools organized by the Institute, in cooperation with University of
Bombay and the University Grants Commission, it is not the intention
to restrict the series to such lectures. Pamphlets will be issued from
time to time which are of interest to students.

K. Chandrasekharan



Preface

This pamphlet contains the notes of lectures given at a Summer
School on Riemann Surfaces at the Tata Institute of Fundamental Re-
search in 1963. The audience consisted of teachers and students from
Indian Universities who desired to have a general knowledge of the sub-
ject, without necessarily having the intention of specializing in it.

Chapter I, which briefly sets out preliminaries from set topology and
algebra which are indispensable, and Chapter II, which deals with the
Monodromy Theorem (from a purely topologicl point of view, namely in
the context of the lifting of curves on a manifold to one which is spread
over it) are the notes of lectures given by M.S.Narasimhan. Chapter III,
which gives a survey of function theory in the complex plane, the defini-
tion of a Riemann surface and holomorphic and meromorphic functions
and differentials, represent the lectures given by R.R.Simha. Chapter
IV, which presents analytic continuation and the construction of the
Riemann surface of an irreducible algebraic equation P (z, w) = 0, rep-
resent lectures of Raghavan Narasimhan. Finally, Chapter V, where the
Riemann-Roch theorem is stated and various corollaries derived, was
presented by C.S. Seshadri.
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Chapter 1

Preliminaries

1.1 Set-theoretic Preliminaries

1.1.1 Sets and Maps

We shall adopt the point of view of naive set theory. A set is a collection
of objects which are called the elements of the set. The set of all rational
integers (i.e. integers positive, negative, and zero) is denoted by Z, the
set of all non-negative integers by Z+, the set of all rational numbers by
Q, the set of all real numbers by R, and the set of all complex numbers
by C.

If x is an element of a set A, we write x ∈ A. If x is not an element
of A, we write x /∈ A. Thus x ∈ R will mean that x is a real number.
If P is a property, the set of all objects with the property P will be
denoted {x | x satisfies P}. Thus {x | x ∈ Z, x < 0} is the set of all
integers which are negative. The set which does not contain any element
is called the empty set and is denoted by the symbol ∅.

Let X and Y be two sets. If every element of X is an element of Y ,
we say X is a subset of Y and write X ⊂ Y or Y ⊃ X. It is clear that
if X ⊂ Y and Y ⊂ X, we must have X = Y . If X and Y are two sets,
we define

(i) the union of X and Y , denoted by X ∪ Y , as the set {z | z ∈ X
or z ∈ Y };

(ii) the intersection of X and Y , denoted by X ∩ Y , as the set
{z | z ∈ X and z ∈ Y };

(iii) the cartesian product X × Y as {(x, y) | x ∈ X and y ∈ Y }.

If X ∩ Y = ∅, we say X and Y are disjoint.

1



2 Chapter 1. Preliminaries

If X ⊂ Y , we define the complement of X in Y , denoted by Y −X,
as the set {z | z ∈ Y and z /∈ X}.

Suppose that J is a set and, for every i ∈ J , is given a set Xi. We
say Xi is a family of sets indexed by the set J . Then we define

(i) the union of the family {Xi} denoted by
⋃

i∈J Xi as the set {x |
x ∈ Xi for at least one i ∈ J};

(ii) the intersection of the family {Xi} denoted by
⋂

i∈J Xi, as the
set {x | x ∈ Xi for every i ∈ J}.

It is easy to verify the following:
(a) X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z),
or more generally

X ∪ (
⋂

i∈J

Yi) =
⋂

i∈J

(X ∪ Yi).

(b) X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z),
or more generally

X ∩ (
⋃

i∈J

Yi) =
⋃

i∈J

(X ∩ Yi).

(c) If (Yi)i∈J is a family of subsets of a set X, then

X −
⋃

i∈J

Yi =
⋂

i∈J

(X − Yi), and X −
⋂

i∈J

Yi =
⋃

i∈J

(X − Yi).

Let X and Y be two sets. A map f :X → Y is an assignment to
each x ∈ X of an element f(x) ∈ Y . If A is a subset of X, the image
f(A) is the set {f(x) | x ∈ A}. The inverse image of a subset B of Y ,
denoted f−1(B), is the set {x | x ∈ X and f(x) ∈ B}. The map f is
said to be onto if f(X) = Y , one-one if no two distinct elements of X
have the same image by f , i.e. f(x) = f(y) implies x = y. If f :X →
Y, g :Y → Z are two maps, we define the composite (g ◦ f):X → Z
as follows: (g ◦ f)(x) = g(f(x)) for x ∈ X. The map X → X which
associates to each x ∈ X, the element x itself is called the identity map
of X, denoted by IX . If f :X → Y is both one-one and onto, there is a
map, denoted by f−1:Y → X such that f ◦ f−1 = IY , f−1 ◦ f = IX .
This map f−1 is called the inverse of f . If A is a subset of X, the map
j:A → X which associates to each a ∈ A the same element a in X, is
called the inclusion map of A in X. if f :X → Y is any map, the map
f ◦ j:A → Y is called the restriction of f to A and is often denoted by
f |A.
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1.1.2 Equivalence Relations

Definition 1.1 Let X be a set, An equivalence relation in X is a subset
R of X ×X such that

(i) for every x ∈ X, (x, x) ∈ R;

(ii) if (x, y) ∈ R, then (y, x) ∈ R;

(iii) if (x, y) ∈ R, (y, z) ∈ R, then (x, z) ∈ R.

We say x is equivalent to y under R, and write xRy if (x, y) ∈
R. Then the above conditions simply require that (i) every element is
equivalent to itself (reflexivity); (ii) if x is equivalent to y, then y is
equivalent to x (symmetry) ; (iii) if x is equivalent to y, y is equivalent
to z, then x is equivalent to z (transitivity).

Example 1.2 The subset R ⊂ X×X consisting of elements (x, x), x ∈
X is an equivalence relation. This is called the identity relation.

Example 1.3 R = X × X is also an equivalence relation in which all
elements are equivalent.

Example 1.4 Let q ∈ Z; consider the set in Z × Z consisting of pairs
(m,n) of integers such that m − n is divisible by q. This is again an
equivalence relation under which two integers are equivalent if and only
if they are congruent modulo q.

Example 1.5 In R2, consider the subset {(x, y) | x ≤ y}. This satisfies
(i) and (iii) but not (ii) and is therefore not an equivalence relation.

Example 1.6 If f :X → Y is a map, consider the subset Rf ⊂ X ×X
consisting of (x1, x2) such that f(x1) = f(x2). It is easy to check that
this is an equivalence relation.

Let now x ∈ X, and R be an equivalence relation in X. The set of
all elements of X equivalent to x under R is called the equivalence class
Rx. Consider the family of distinct equivalence classes of X under R.
It is easily verified that they are pairwise disjoint and their union is X.
We shall define the set of residue classes modulo R, or the quotient of X
by R, as the set whose elements are these equivalence classes. This set
is denoted by X/R. The natural map η :X → X/R which associates to
each x ∈ X, the equivalence class Rx which contains x, is onto. Finally,
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let f :X → Y be a map, and Rf the equivalence relation in X defined by
f . We shall now define a map qf :X/Rf → Y by setting qf (Rx) = f(x).
This is a map by our definition of Rf . Clearly qf is one-one. Moreover
we have qf ◦ η = f . We have therefore proved the

Theorem 1.7 Let f :X → Y be a map. Then there exists an equiva-
lence relation Rf on X, and a one-one onto map qf :X/Rf → f(X),
such that f = j ◦ qf ◦ η, where j is the inclusion f(X) → Y , and η is
the natural map X → X/Rf .

1.2 Topological Preliminaries

1.2.1 Topological spaces

A topological space is a set X together with a collection T of subsets of
X (called open sets) with the following properties:

(i) the empty set ∅ and X are in T ;
(ii) any finite intersection of sets in T is again in T ;
(iii) an arbitrary union of sets in T is again in T .
1. Let X be a set : the set T consisting only of X and ∅ defines a

topology on X.
2. Let X be a set and let T consist of all subsets of X. This topology

is called the discrete topology on X.
3. METRIC SPACES. A metric space is a set X together with a

function d (called the metric or the distance) from X ×X to the non-
negative real numbers, such that

(i) d(x, y) = 0 if and only if x = y, where x, y ∈ X;
(ii) d(x, y) = d(y, x) for x, y ∈ X; and
(iii) d(x, z) ≤ d(x, y)+d(y, z), for every x, y, z ∈ X (triangle inequal-

ity).
Let x ∈ X and ρ a positive real number. By the open ball around

x of radius ρ we mean the set : {y ∈ X | d(x, y) < ρ}. We define a
topology on the metric space by defining the open sets to be all sets
which are unions of open balls (together with the empty set).

4. Let R be the set of real numbers. R has a natural metric defined
by d(x, y) = |x− y|. This metric defines a topology on R.

5. Let C be the set of complex numbers. C has a natural metric
defined by d(z1, z2) = |z1 − z2| where |z1 − z2| denotes the modulus of
the complex number z1−z2. We shall always consider C as a topological
space with the topology defined by this metric.
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6. Let Rn be the n-dimensional euclidean space consisting of n-
tuples (x1, . . . , xn) of real numbers. Rn is a metric space with the metric
defined by d(x, y) = ‖x− y‖ = [(x1 − y1)

2 + · · ·+ (xn − yn)
2]1/2, where

x = (x1, . . . , xn), and y = (y1, . . . , yn). We will suppose always that Rn

is endowed with this topology.
7. INDUCED TOPOLOGY. Let X be a topological space and A ⊂

X. We define a topology on A by taking for the collection of open sets,
the sets of the form U ∩A, where U is an open set of X. This topology
is called the induced topology.

Let X be a topological space. The complement of an open set is
called a closed set.

From the axioms for open sets we obtain at once the following prop-
erties of closed sets:

(i) the empty set ∅ and X are closed sets;
(ii) the union of a finite number of closed sets is closed;
(iii) any intersection of closed sets is closed.

Example 1.8 In R the set {x ∈ R | a ≤ x ≤ b} a, b ∈ R, a ≤ b, is
closed

Definition 1.9 Let X be a topological space and x ∈ X. By a neigh-
bourhood of x we mean an open set containing x.

Example 1.10 Let X = R. For ǫ > 0, the set {x ∈ R | |x| < ǫ} is a
neighbourhood of the origin 0.

Definition 1.11 Let A be a subset of a topological space X. A point
x ∈ X is said to be an adherent point of A, if every neighbourhood of
x contains a point of A. The set of adherent points of A is called the
closure of A, and is denoted by Ā.

Remark 1.12 Ā is the intersection of all closed sets containing A, i.e.,
the smallest closed set containing A. The closure of a closed set is itself.

Example 1.13 Let A = {x ∈ Rn | ‖x‖ < 1}, the open unit ball in Rn.
Then Ā is the closed ball {x ∈ Rn | ‖x‖ ≤ 1}.

Definition 1.14 A subset A of a topological space X is said to be dense
in X if Ā = X.

Example 1.15 The set of rational numbers is dense in R.
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Definition 1.16 The interior of set A in X is the union of all open sets
contained in A, so that it is the largest open set contained in A.

Example 1.17 The interior of the closed unit ball in Rn is the open
unit ball. The interior of the set consisting of just one point, say 0, in
Rn is empty.

The interior of an open set U is U itself.

Definition 1.18 We say that a topological space is a Hausdorff space
if every pair of distinct points have disjoint neighbourhoods; that is, if
x, y ∈ X with x 6= y, then there exist open sets U1 and U2 of X with
x ∈ U1, y ∈ U2 and U1 ∩ U2 = ∅.

Example 1.19 A set with the discrete topology is Hausdorff.

Example 1.20 Rn with its natural topology is Hausdorff. For, let
x, y ∈ Rn, with x 6= y. Since x 6= y, the distance between them is
positive, i.e. ‖x− y‖ > 0. Then the open balls around x and y of radius
1
2‖x− y‖ do not intersect.

By the same reasoning we see that any metric space is Hausdorff.

Example 1.21 Let X be a set consisting of more than one point. The
topological space in which the only open sets are the empty set and X,
is not Hausdorff.

Example 1.22 Let X be a Hausdorff space. A subset A of X, provided
with the induced topology, is Hausdorff.

1.2.2 Compact spaces

Definition 1.23 A family {Vα}α∈I of subsets of a set X is said to be a
covering of X if

⋃

α∈I Vα = X, i.e. if each point of X belongs to at least
one Vα. If, further, X is a topological space, and each Vα is an open
subset of X, we say that {Vα} is an open covering of X.

Definition 1.24 A topological space X is said to be compact, if the
following condition is satisfied: if {Vα}α∈I is any open covering of X,
then some finite sub-collection of {Vα} is already a covering; that is if
{Vα}α∈I is any open covering of X, then there exists a finite number of
elements α1, . . . , αn of I such that

⋃

1≤j≤n Vαj
= X.
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Definition 1.25 A subset A of a topological space is said to be compact
if it is compact in the induced topology.

Remark 1.26 A closed subset of a compact space is compact.

Remark 1.27 Let a, b ∈ R with a ≤ b. Then the set A = {x ∈ R | a ≤
x ≤ b} is compact. This fact is known as the Heine-Borel Theorem.

The space R is not compact.

Remark 1.28 We say that a set A ⊂ Rn is bounded if there exists a
real number a, such that ‖x‖ < a for each x ∈ A. Then we have the
following result: a closed bounded set in Rn is compact. This result may
be deduced from Remarks 1.26 and 1.27 above. This is also sometimes
called the Heine-Borel theorem.

Remark 1.29 LetX be a topological space. A subset A ofX consisting
of a finite number of points is compact.

Proposition 1.30 A compact subset of a Hausdorff space is closed.

Proof: Let X be a Hausdorff space, and A any compact subset of
X. We have to show that X \ A is open. For this it is sufficient to
prove that every point x ∈ X \ A has a neighbourhood which does
not intersect A. Let x ∈ X \ A. If y ∈ A, we can find, since X is
Hausdorff, a neighbourhood Vy of x and a neighbourhood Uy of y in X,
such that Vy∩Uy = ∅. If U ′

y = Uy∩A, then {U ′
y}y∈A is an open covering

of A, and since A is compact, we can find y1, . . . , yn ∈ A, such that
U ′
y1 ∪ · · · ∪U ′

yn = A. Then V = Vy1 ∩ · · · ∩ Vyn is an open set containing
x, which does not intersect A.

1.2.3 Connected spaces

Definition 1.31 A topological space X is said to be connected if it
is not the union of two non-empty disjoint open sets. A subspace of a
topological space is said to be connected if it is connected in the induced
topology.

Remark 1.32 A topological space X is connected if and only if X is
not the union of two non-empty disjoint closed sets. X is connected if
and only if there is no subset of X which is both open and closed except
the whole set X and the empty set.
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Proposition 1.33 A subset of R is connected if and only if it is an
interval. A subset A of R will be called an interval if the following
condition is satisfied : if a1, a2 ∈ A with a1 < a2, then any a in R such
that a1 < a < a2 also belongs to A.

Proof: Let A be a connected subset of R. If A were not an interval,
there would exist a1, a2 ∈ A, a1 < a2, and a real number a not in A with
a1 < a < a2. Then the sets B = {b ∈ A | b < a} and C = {c ∈ A | c > a}
are non-empty disjoint open sets whose union is A. This contradicts our
assumption that A is connected.

Let now A be an interval. If possible, let A = U ∪V, U, V open, non-
empty and U ∩ V = ∅. Let a1 ∈ U, a2 ∈ V . We can assume, without
loss of generality, that a1 < a2. Consider b = sup{r ∈ U | a1 ≤ r < a2}.
Then it is easily seen that b ∈ Ū = U , and b ∈ V̄ = V , i.e. b ∈ U ∩V = ∅
a contradiction.

1.2.4 Continuous mappings

Definition 1.34 LetX and Y be two topological spaces, and f :X → Y
be a map. Let x ∈ X. We say that f is continuous at x, if the following
condition is satisfied: for every neighbourhood U of f(x), there exists a
neighbourhood V of x, such that f(V ) ⊂ U . We say that f is continuous
(or f is a continuous map), if f is continuous at every point of X.

Remark 1.35 We can easily prove that f :X → Y is continuous if and
only if the inverse image by f of every open set in Y is an open set of
X.

Remark 1.36 Let f :X → Y, g:Y → Z be continuous maps. Then the
composite (g ◦ f):X → Z is continuous.

Example 1.37 Let f :R → R be a map (i.e. f is a “real-valued function
of a real variable”). Let x0 ∈ R. Then f is continuous at x0, if and only
if for every ǫ > 0, we can find a real number δ > 0 (depending on ǫ)
such that for each x with |x− x0| < δ, we have |f(x)− f(x0)| < ε.

Let X be a discrete space, and Y a topological space. Then any map
f :X → Y is continuous.

Proposition 1.38 Let X be a compact space, Y a topological space,
and f :X → Y a continuous map. Then f(X) is compact. (That is, a
continuous image of a compact set is compact.)
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Proof: Let {Vα}α∈I be an open covering of f(X) and let Uα be open
in Y with Uα ∩ f(X) = Vα. Since f is continuous, and Uα are open in
Y, {f−1(Uα)}α∈I forms an open covering ofX. SinceX is compact, there
are α1, . . . , αn ∈ I such that

⋃

1≤i≤n f
−1(Uαi

) = X. Then
⋃

1≤i≤n Vαi
=

f(X).

Corollary 1.39 Let X be compact, Y Hausdorff and f :X → Y contin-
uous. Then f(X) is closed in Y .

Proposition 1.40 Let X be a connected topological space, Y a topolog-
ical space, and f :X → Y a continuous map. Then f(X) is connected.

Proof: If f(X) = A were not connected, there would exist open sets
U1 and U2 of Y , such that

(i) U1 ∩A 6= ∅, U2 ∩A 6= ∅, (U1 ∩A) ∩ (U2 ∩A) = ∅, and

(ii) (U1 ∩A) ∪ (U2 ∩A) = A.

Since f is continuous, f−1(U1) and f−1(U2) are open : further
f−1(U1) 6= ∅, f−1(U2) 6= ∅, f−1(U1) ∩ f−1(U2) = ∅ and f−1(U1) ∪
f−1(U2) = X. Thus X is the union of two non-empty disjoint open sets.
This contradicts the hypothesis that X is connected.

Proposition 1.41 Let X be a topological space, and Y a Hausdorff
space. Let f and g be a continuous maps of X into Y . Then the set
E = {x | x ∈ X, f(x) = g(x)} is closed in X.

Proof: It is sufficient to prove that the set F = {x | x ∈ X, f(x) 6=
g(x)} is open in X. Let x0 ∈ F . Since f(x0) 6= g(x0) and Y is Hausdorff,
there exist neighbourhoods U1 and U2 of f(x0) and g(x0) respectively
with U1 ∩ U2 = ∅. By the continuity of f and g, we can find neigh-
bourhoods V1 and V2 of x0 in X, such that f(V1) ⊂ U1, g(V2) ⊂ U2. If
V = V1 ∩ V2, V is a neighbourhood of x0, and f(x) 6= g(x) for x ∈ V so
that V ⊂ F . Hence F is open in X.

1.2.5 Homeomorphisms

Definition 1.42 LetX and Y be two topological spaces. A map f :X →
Y is said to be a homeomorphism, if f is one-one onto, and if f and f−1

are both continuous. Two topological spaces X and Y are said to be
homeomorphic, if there is a homeomorphism f of X onto Y .
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Example 1.43 Let X = R and Y = R. The map f :R → R defined
by f(x) = x3 is a homeomorphism. The map f(x) = −x is also a
homeomorphism.

Example 1.44 The space R and the open set {x ∈ R | −1 < x < 1}
are homeomorphic. (Consider the map f(x) = x/(1 + |x|)). But R

and the closed set I = {x ∈ R | −1 ≤ x ≤ 1} are not homeomorphic,
since R is not compact, and I is compact. Rn and the open unit ball
B = {x ∈ Rn | ‖x‖ < 1} are homeomorphic.

1.2.6 Product spaces

Let X and Y be two topological spaces. Consider the cartesian product
X × Y . We define a topology on X × Y , called the product topology as
follows. An open set in X × Y will be, by definition, a union of sets of
the form U × V , where U is an open set in X, and V an open set in Y .

If p1:X×Y → X and p2:X×Y → Y are the projections, defined by
p1(x, y) = x and p2(x, y) = y respectively, then p1 and p2 are continuous
maps.

In a similar way the product of a finite number of topological spaces
can be defined.

Example 1.45 The metric topology on Rn is the product topology of
R (n times).

Problem 1.1 The product of two topological spaces is compact, if each
component is compact.

1.2.7 Arc-wise connected spaces. Homotopy.

Definition 1.46 A curve in a topological space X is a continuous map
f : [0, 1] → X. f(0) and f(1) are called, respectively, the initial point,
and end-point of the curve. [Here [0, 1] denotes the closed interval {x ∈
R | 0 ≤ x ≤ 1}.]

Definition 1.47 A topological space is said to be arc-wise connected if,
given x0, x1 ∈ X, there exists a curve in X with x0 and x1 as its initial
and end-points.

Problem 1.2 Every arc-wise connected space is connected. (The con-
verse is not true. Example?)
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Definition 1.48 Let X be a topological space; let γ1 and γ2 be two
curves in X with the same initial point p1 and end-point p2. We say
that γ1 and γ2 are homotopic in X, if there exists a continuous map f
from the square S = {(t, u) | 0 ≤ t ≤ 1, 0 ≤ u ≤ 1} into X, such that

(i) f(t, 0) = γ1(t), f(t, 1) = γ2(t),

(ii) f(0, u) = p1, f(1, u) = p2, for 0 ≤ u ≤ 1.

f is called a homotopy between γ1 and γ2.

Definition 1.49 The product γ1γ2 of two curves γ1 and γ2 such that
the initial point of γ2 is the same as the end point of γ1 is the curve γ
defined by

γ(t) = γ1(2t) for 0 ≤ t ≤
1

2
, γ(t) = γ2(2t− 1) for

1

2
≤ t < 1.

1.2.8 Connected components

Proposition 1.50 Let A be a connected subset of a topological space X
(i.e. A is connected in the induced topology). Then the closure of A in
X is connected.

Proof: Let Ā be the closure of A. If Ā were not connected, there
would exist open sets U1 and U2 in X, such that U1 ∩ Ā 6= ∅, U2 ∩ Ā 6=
∅, U1∩U2∩Ā = ∅ and (U1∪U2)∩Ā = Ā. Then U1∩A and U2∩A would
be non-empty disjoint open sets in A, whose union is A, contradicting
the hypothesis on A.

Proposition 1.51 The union of a family of connected sets, whose in-
tersection is not empty, is a connected set.

Proof: Let {Aα}α∈I be a family of connected sets in a topological
space X, such that

⋂

α∈I Aα 6= ∅. Let A =
⋃

α∈I Aα. If A were not
connected, there would exist open sets U1 and U2 in X, such that U1 ∩
A 6= ∅, U2∩A 6= ∅, A ⊂ U1∪U2 and A∩U1∩U2 = ∅. Let x ∈

⋂

α∈I Aα.
Then x belongs to one of the sets U1 or U2 say x ∈ U1. There exists
an index α such that U2 ∩ Aα 6= ∅. Since x ∈ Aα, U1 ∩ Aα 6= ∅, one
would therefore have Aα ⊂ U1 ∪U2, Aα ∩U1 ∩U2 = ∅, U1 ∩Aα 6= ∅ and
U2 ∩Aα 6= ∅, contradicting the hypothesis that the Aα are connected.

Let X be a topological space and x ∈ X. Because of the proposition
just proved, the union of all connected subsets of X containing x is also



12 Chapter 1. Preliminaries

a connected subset. This is therefore the largest connected subset of X
containing x.

Definition 1.52 Let X be a topological space. By the connected com-
ponent of a point of X we mean the largest connected subset of X
containing that point. By the connected components of X we mean the
connected components of points of X.

Since the closure of a connected set is connected, it follows that the
connected component of any point is closed. As the union of connected
sets having a point in common is connected, the relation “y belongs to
the connected component of x” is an equivalence relation in X.

Problem 1.3 Let X be an open subset of Rn. Prove that the connected
components of X are open in X.

1.2.9 Quotient spaces

Let X be a topological space, and R an equivalence relation in the
underlying set X. Let Y = X/R be the quotient set, and η:X → Y the
natural map. We put on Y the following topology. A set in Y is open
if and only if its inverse image by η is open in X. This topology in Y
is called the quotient topology on X/R. Now X/R, endowed with this
topology will be referred to as the quotient space. The map η:X → X/R
is continuous by definition.

Let X and Y be two topological spaces and f :X → Y a continuous
map. Let Rf denote the equivalence relation defined by f . Then it is
easy to check that the map qf :X/R → Y is continuous and f admits
the decomposition by continuous maps:

X
η

−→ X/Rf
qf
−→ f(X)

j
−→ Y.

Remark 1.53 qf is 1–1, onto and continuous, but not necessarily a
homeomorphism onto f(X).

Example 1.54 Let X = R be the group of real numbers, and Z the
subgroup of integers. Let R be the equivalence relation in R defined
by the subgroup Z. The quotient space is homeomorphic to the circle
x2 + y2 = 1 in R2.
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1.3 Algebraic Preliminaries

An operation ◦ on a set X is a mapping ◦ : X×X → X from the product
set X ×X into X. It is usual to denote ◦(x, y) by x ◦ y (or simply xy).
A group is a couple (G, ◦) where G is a set and ◦ is an operation, such
that

1. for x, y, z ∈ G, (x ◦ y) ◦ z = x ◦ (y ◦ z) (associativity);

2. there exists a unique element 1, called the identity element of G,
such that a ◦ 1 = 1 ◦ a = a, for all a ∈ G;

3. given a ∈ G, there exists a unique element a−1, called the inverse
of a, such that a ◦ a−1 = a−1 ◦ a = 1.

If a ◦ b = b ◦ a, for a, b ∈ G, the group is said to be abelian. If the
group is abelian, the operation ◦ is often denoted by +; then the identity
element is denoted by 0, and the inverse of an element a is denoted by
−a.

Often the set G is itself refered to as a group, it being understood
that the operation is also given.

A subset G′ of G is said to be a subgroup of G if (1) for x, y ∈
G′, x ◦ y ∈ G′ and (2) (G′, ◦) is a group. Let G1, G2 be two groups,
and f : G1 → G2 a mapping of G1 into G2. Then f is said to be a
homomorphism if f(xy) = f(x)f(y), x, y ∈ G1. It follows easily that
f(1) = 1, (i.e. the image of the identity element in G1 is the identity
element in G2) and f(x−1) = (f(x))−1. The set of elements x of G1 such
that f(x) = 1 is easily verified to be a subgroup of G1, called the kernel
of f . Similarly the image of G1 by f in G2 is verified to be a subgroup
of G2. The homomorphism f is said to be an isomorphism if f is onto
and the kernel of f is {1}.

Let G be an abelian group and H a subgroup. Then the relation:
x ∼ y (x, y ∈ G) if and only if x− y ∈ H, is an equivalence relation. Let
x̄ be the equivalence class containing x. We can define the structure of
an abelian group on the set of equivalence classes, by setting

x̄+ ȳ = (x+ y).

This group is denoted by G/H. There is a natural mapping of G onto
G/H, namely the one which maps x to x̄, and this is a homomorphism
whose kernel is H.

We say that we are given the structure of a field on a set ofK, if there
are two operations + and ◦ on K satisfying the following conditions:

(1) (K,+) is an abelian group (with identity element 0);
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(2) if K∗ = K − {0}, x, y ∈ K∗, x ◦ y ∈ K∗ and (K∗, ◦) is an abelian
group (with identity element 1);

(3) x ◦ y = y ◦ x, for, x, y ∈ K;
(4) x ◦ (y + z) = x ◦ y + x ◦ z, for, x, y, z ∈ K.
It follows immediately that x ◦ 0 = 0 for all x ∈ K.
We say that L is a subfield of a field K, if L is a subset of K closed

with respect to the operations +, ◦ and such that L is itself a field with
respect to these operations.

Example 1.55 The set of integers Z with the usual operation of addi-
tion forms an abelian group.

Example 1.56 If m is a given integer, the set of multiples of m forms
a subgroup (m) of Z, and the quotient group is the group Z/(m) of
integers modulo m.

Example 1.57 The set of rational numbers (resp. real numbers, com-
plex numbers) with the usual addition and multiplication forms a field.

Example 1.58 Let Z/(m) be the group of integers modulo m. We
denote by x̄ the class containing an integer x. We can define an operation
◦ on Z/(m) by x̄ ◦ ȳ = (x ◦ y), where x ◦ y denotes the usual product
of the integers x and y. If p is a prime number, Z/(p) is a field for the
operations + and ◦.

It is easily proved that either the rational number field or a unique
field of the form Z/(p) introduced above, is a subfield of K. In the
former case K is said to be of characteristic zero; in the latter case, the
field is said to be of characteristic p (p 6= 0).

We say that there is the structure of a vector space over a field K
on a set V , if

1. V is an abelian group (operation +);
2. there exists a mapping ◦ : K × V → V, (◦(λ, v) being denoted

by λv) such that (i) λ(u + v) = λu + λv; (ii) (λ + µ)v = λv + µv; (iii)
(λµ)v = λ(µv); (iv) 1·v = v for v ∈ V ; here λ, µ ∈ K and u, v ∈ V .

We say that a subset V1 of V is a vector subspace or a linear subspace,
if (1) V1 is a subgroup; (2) λv ∈ V1 whenever λ ∈ K and v ∈ V1. Then
V1 is a vector space over K.

A linear mapping f :V1 → V2 of two vector spaces V1 and V2 over
K is a homomorphism f of the underlying groups, having the further
property that f(λv) = λf(v) for λ ∈ K, v ∈ V1. It is then easily verified
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that the kernel of f is a linear subspace of V1, and that the image of f
is a linear subspace of V2. The mapping is said to be an isomorphism,
if f is onto and the kernel of f is 0.

Let e1, . . . , en be a finite set of elements of a vector space defined
over a field K. We say that {ei} generates V , if every element v ∈ V
can be expressed in the form v =

∑n
i=1 λiei, λi ∈ K. We say that the ei

are linearly independent, if the relation
∑n

i=1 λiei = 0, λi ∈ K, implies
λi = 0 for each i. We say that {ei} is a basis, if ei generate V , and are
linearly independent. It can be proved that the number of elements in a
basis of V is independent of the basis chosen, and this integer is called
the the dimension of V ; if V is the zero vector space, the dimension of
V is defined to be 0. It can be proved that if {ei} generates V , there
exists a subset of {ei} which is, in fact, a basis of V (V being assumed to
be 6= 0.) In particular, if V is generated by a finite number of elements,
V is of finite dimension.

Let K be a field and k a subfield of K. K is in a natural way a
vector space over k because xy ∈ K for x ∈ k, y ∈ K. If the dimension
of K as a vector space over k is finite, K is said to be a finite extension
of k, and then the dimension is denoted by (K : k). An element θ of
K is said to be algebraic over k, if there exists a polynomial F (X) =
Xn + a1X

n−1 + · · · + an, ai ∈ k, n ≥ 0 such that F (θ) = 0. It can be
proved that an element θ is algebraic over k if and only if the field k(θ)
(i.e. the elements of K which can be expressed as rational functions of
θ with coefficients in k) is a finite extension of k. If θ is algebraic over k,
there exists a unique polynomial F (X) of the form Xn+a1X

n−1+ · · ·+
an, ai ∈ k, n ≥ 1 (called the minimum polynomial of θ) such that if
G(X) is any other polynomial with co-efficients in k, with G(θ) = 0, then
G(X) ≡ H(X)F (X) where H(X) is a polynomial with coefficients in k.
The polynomial F (X) is irreducible, i.e. if F (X) ≡ H1(X)·H2(X), where
H1, H2 have coefficients in k, H1 orH2 reduces to a constant polynomial.

Let K be a field of characteristic zero which is a finite extension of
a subfield k. Then it can be proved that there exists an element θ of K,
such that K = k(θ).

Let K be a field, k2 a subfield of K, and k1 a subfield of k2. Then
if K is a finite extension over k1, it can be easily proved that k2 is a
finite extension of k1, that K is a finite extension over k2, and that
(K : k1) = (K : k2)(k2 : k1).

For the proofs of these results, see for example B. L. van der Waerden
– Modern Algebra, Volume I, or N. Bourbaki – Algèbre.
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Chapter 2

The Monodromy Theorem

2.1 Manifolds

Definition 2.1 A topological space M is said to be an n-dimensional
manifold if

(i) M is Hausdorff and arc-wise connected, and

(ii) every point of M has a neighbourhood homeomorphic to an open
subset of the Euclidean n-space Rn.

According to a theorem of L.E.J. Brouwer (which is too difficult to
be proved here) an open set in Rn can be homeomorphic to an open in
subset in Rk only if k = n, so that the dimension n of a manifold is
uniquely defined.

Definition 2.2 A 2-dimensional manifold will be called a surface.

Example 2.3 Any connected open subset of Rn is an n-dimensional
manifold, in particular, arc-wise connected.

Example 2.4 Let Sn be the sphere {x | x ∈ Rn+1, ‖x‖ = 1}, with the
topology induced from Rn+1. Sn is an n-dimensional manifold for n ≥ 1.

Example 2.5 If M1 is an n-dimensional manifold and M2 an m-dimen-
sional manifold, then M1×M2, with the product topology, is an (m+n)-
dimensional manifold.

17
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2.2 Simply-connected Manifolds

Definition 2.6 Let M be an n-dimensional manifold and m ∈ M . By
a closed curve in M at the point m we mean a curve γ in M such that
γ(0) = γ(1) = m.

Remark 2.7 If m ∈ M , the curve γ defined by γ(t) = m, for all t in
the interval [0, 1] is a closed curve at m. We say that γ is the constant
curve at m.

Definition 2.8 Let M be an n-dimensional manifold. We say that M
is simply-connected if for every point m ∈ M , every closed curve at m is
homotopic to the curve which maps the whole closed interval [0, 1] into
m.

(i) It is clear from the definition that ifM1 andM2 are homeomorphic
manifolds and if M1 is simply connected, so is M2.

(ii) It is sufficient to assume in the definition that every closed curve
at some point m is homotopic to the constant curve at m.

Example 2.9 Rn is simply connected. For let m ∈ Rn, and γ be a
closed curved at m. Then γ and the constant curve at m are homotopic,
the homotopy being given by

F (t, u) = (1− u)γ(t) + um.

[If x = (x1, . . . , xn) ∈ Rn and a ∈ R, by ax we mean the point (ax1, . . . ,
axn) in Rn.]

Example 2.10 The same proof shows that an open convex set in Rn

is simply connected. In particular the open ball ‖x‖ < 1 is simply
connected.

Example 2.11 The sphere Sn is simply connected for n > 1. The circle
S1 is not simply connected. The complement of the origin in R2 is not
simply connected. We do not prove these results here. (See, however,
the example at the end of the chapter.)

Example 2.12 If M1 and M2 are simply connected manifolds, so is
M1 ×M2.
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2.3 Spreads

Definition 2.13 A spread is a triple (M̃,M, f) where M̃ and M are
n-dimensional manifolds and f : M̃ → M a map with the following prop-
erty: every point of x of M̃ has a neighbourhood which is mapped
homeomorphically by f onto a neighbourhood of f(x) in M (i.e. f is a
local homeomorphism).

We say that a point x of M̃ lies over a point m of M if f(x) = m.

Remark 2.14 f is a continuous map.

Remark 2.15 f maps open sets of M̃ into open sets of M .

Example 2.16 Take M̃ = C, the complex plane and M = C∗, the
space of non-zero complex numbers. Define f(z) = e2πiz, z ∈ C. The
triple (M̃, M, f) is a spread.

Example 2.17 The triple (M̃, M, f), where M̃ = M = C∗, f(z) =
e2πiz, z ∈ C∗, is a spread.

Proposition 2.18 Let (M̃, M, f), be a spread and X a connected
topological space. Let g1 and g2 be two continuous maps from X to M̃ ,
such that (i) g1(x0) = g2(x0) for some x0 ∈ X, and (ii) f ◦ g1 = f ◦ g2.
Then g1(x) = g2(x), for all x ∈ X.

Proof: Let E be the set E = {x | x ∈ X, g1(x) = g2(x)}. E is
non-empty by hypothesis. Since M̃ is a Hausdorff space, by an earlier
proposition, E is closed. If we prove that E is open, it will follow that
E = X, since X is connected.

To prove that E is open, let x1 ∈ E. Let Ṽ be a neighbourhood
of g1(x1) = g2(x1) which is mapped homeomorphically by f onto a
neighbourhood V of f ◦ g1(x1). By the continuity of g1 and g2 we can
find a neighbourhood U of x1 in X such that g1(U) ⊂ Ṽ and g2(U) ⊂ Ṽ .
Since f ◦ g1 = f ◦ g2 it follows that g1(x) = g2(x) for x ∈ U , i.e. U ⊂ E.
This prove that E is open.

Definition 2.19 Let (M̃,M, f) be a spread and γ a curve in M . Let
γ(0) = m and m̃ a point in M̃ lying over m. A curve γ̃ in M̃ is said to
be a lifting of γ with m̃ as the initial point if γ̃(0) = m̃ and f ◦ γ̃ = γ.
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The existence of liftings cannot always be asserted. But we have
uniqueness. Since the interval [0, 1] is connected the previous proposition
yields the

Proposition 2.20 Any two liftings of a curve in M with the same ini-
tial point in M̃ are identical.

Example 2.21 Consider the spread (M̃,M, f), M̃ = M = C∗, f(z) =
e2πiz. The closed curve at 1 in M defined by γ(t) = e2πi(1−t) does not
have a lift with initial point 1 in M̃ .

Definition 2.22 A spread (M̃,M, f) will be called a spread without
relative boundary, if for every curve γ in M and every point p lying over
the initial point of γ, there is a lifting of γ with p as the initial point.

2.4 The Monodromy Theorem

Theorem 2.23 Let (M̃,M, f) be a spread without relative boundary.
Let γ1 and γ2 be two homotopic curves in M from m1 to m2. Let p be
a point in M̃ lying over m1. If γ̃1 and γ̃2 are the liftings of γ1 and γ2
with initial point p, then γ̃1 and γ̃2 have the same end point in M̃ , and
are homotopic. More precisely, if F is a homotopy between γ1 and γ2,
then there is a homotopy F̃ between γ̃1 and γ̃2, such that f ◦ F̃ = F .

Proof: For fixed u in [0, 1] define F̃ (t, u) = γ̃u(t), where γ̃u is the
unique curve obtained by lifting the path t → F (t, u) with initial point
p. Clearly f ◦ F̃ = F , and F̃ (0, u) = p. If we prove that F̃ is a con-
tinuous function of the square 0 ≤ t ≤ 1, 0 ≤ u ≤ 1, the theorem will
be proved. For then the function g(u) = F̃ (1, u) will be a continuous
function and g(u) ∈ f−1(m2), for u in [0, 1]. By the uniqueness of the
lift for the constant curve at m2, g(u) must reduce to a constant. Since
F̃ is continuous, all the assertions of the theorem will be proved.

To prove that F̃ is continuous, let (a, b) be a point in the square.
Consider the path F̃ (t, b). By the compactness of the closed interval
[0, 1], we can find points t1, . . . , tn, 0 = t1 < t2 < · · · < tn = 1 such
that each of the closed intervals ti ≤ t ≤ ti+1 is mapped by F̃ (t, b) into
an open set Ũi in M̃ , which is mapped by homeomorphically f onto an
open set Ui in M . If a 6= 1 and a 6= 0, we may suppose that a belongs
to the open interval tv < t < tv+1 for some v. Let f−1

i : Ui → Ũi be the
inverse of the map f |Ũi: Ũi → Ui.
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Since F (t, b) = f ◦ F̃ (t, b) ∈ Ui for ti ≤ t ≤ ti+1, and F is continuous
in the square, we can find ǫ > 0, such that for every i, F (t, u) ∈ Ui

for ti ≤ t ≤ ti+1 and |u − b| < ǫ (we consider only points (t, u) with
0 ≤ t ≤ 1, 0 ≤ u ≤ 1). We shall now prove that for ti ≤ t ≤ ti+1 and
|u− b| < ǫ, F̃ (t, u) = f−1

i ◦F (t, u); since f−1
i and F are continuous, this

will prove the continuity of F̃ at the point (a, b). Using, for fixed u with
|u− b| < ǫ, the uniqueness of the lift of the map t → F (t, u), 0 ≤ t ≤ t2,
with initial point p, we see that F̃ (t, u) = f−1

i ◦ F (t, u), for 0 ≤ t ≤
t2, |u − b| < ǫ. Assuming that F̃ = f−1

j ◦ F 1, tj ≤ t ≤ tj+1, |u − b| < ǫ

for j = 1, . . . , i − 1(i ≥ 2), we shall now prove that F̃ = f−1
i ◦ F for

ti ≤ t ≤ ti+1, |u−b| < ǫ. This will complete the proof of the theorem. By
hypothesis, the function φ(u) = F̃ (ti, u) = f−1

i−1 ◦ F (ti, u) is continuous

in N = {u | 0 ≤ u ≤ 1, |u− b| < ǫ}. Now φ(u) and f−1
i ◦F (ti, u) are two

continuous maps from N into M̃ , such that f ◦ φ(u) = f(f−1
i ◦ F (ti, u))

and φ(b) = f−1
i ◦F (ti, b)(= F̃ (ti, b)). Hence φ(u) = f−1

i ◦F (ti, u), u ∈ N .
So F̃ (ti, u) ∈ Ũi. For fixed u ∈ N , the continuous maps F̃ (t, u) and
f−1
i ◦ F (t, u) from the interval ti ≤ t ≤ ti+1 into M̃ are such that
(f ◦ F̃ )(t, u) = f ◦ f−1

i ◦ F (t, u) and F̃ (ti, u) = f−1
i ◦ F (ti, u). Hence

F̃ (t, u) = f−1
i ◦ F (t, u) for ti ≤ t ≤ ti+1 and u ∈ N, q.e.d.

Remark 2.24 The above theorem is known as the monodromy theo-
rem. The next theorem also is sometimes refered to as the monodromy
theorem.

Theorem 2.25 Let (M̃,M, f) be a spread without relative boundary
and M be simply-connected. Then f is a homeomorphism of M̃ onto
M .

Proof: Let x ∈ M̃ . Let m ∈ M . Let γ be a curve in M such that
γ(0) = f(x) and γ(1) = m and γ̃ be the lift of γ through x. Then
f(γ̃(1)) = m. Hence f is onto.

We prove that f is one-to-one. Let x, y ∈ M̃ such that f(x) = f(y).
Join x and y by a path γ̃ in M̃ . Then γ = f ◦ γ̃ is a closed curve at
f(x). Since M is simply connected, γ is homotopic to the constant curve
at f(x). Hence, by the previous theorem, γ̃ is a closed path at x, i.e.
x = y.

Since f is one-one onto, and is a local homeomorphism, f is a home-
omorphism of M̃ onto M .
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2.5 Covering Spaces

Definition 2.26 A triple (M̃,M, f) where M̃ and M are n-dimensional
manifolds, and f : M̃ → M is a continuous mapping, is said to be
a covering if every point m ∈ M has a neighbourhood U such that
f−1(U) is a disjoint union of open sets in M̃ each of which is mapped
homeomorphically by f onto U . We say that M̃ is a covering manifold
of M ; U will be called a special neighbourhood of m.

Remark 2.27 A covering is a spread.

Example 2.28 M̃ = R,M = S1, f(x) = e2πix, x ∈ R.

Example 2.29 M̃ = {z | z ∈ C, 0 < |z| < r}(r > 0), M = {z ∈ C |
0 < |z| < rn}, f(z) = zn, where n is a positive integer.

Example 2.30 M̃ = C, M = C∗, f(z) = e2πiz, z ∈ C.

Example 2.31 M̃ = R2, M = S1×S1 (Torus), f(x, y) = (e2πix, e2πiy),
(x, y) ∈ R2.

Proposition 2.32 Let (M̃,M, f) be a covering. Then (M̃,M, f) is a
spread without relative boundary.

Proof: Let γ be a curve in M , and m a point lying over γ(0). We
can find points 0 = t1 < t2 < · · · < tn = 1 in [0, 1] and special neigh-
bourhoods U1, . . . , Un−1 (of points m1, . . . ,mn−1) such that the closed
interval ti ≤ t ≤ ti+1 is mapped by γ into Ui. Now m̃ ∈ f−1(U1),
and by hypothesis there is an open set Ũ1, such that m̃ ∈ Ũ1, and
f |Ũ1: Ũ1 → U1 is a homeomorphism Let f−1:U1 → Ũ1 be the inverse of
f |Ũ1. Then γ̃(t) = f−1 ◦ γ(t), 0 ≤ t ≤ t2 is continuous in 0 ≤ t ≤ t2
and f ◦ γ̃(t) = γ in this interval. Suppose now that we have found
a continuous function γ̃i−1 from the interval 0 ≤ t ≤ ti into M̃ with
γ̃i−1(0) = m̃ and f ◦ γ̃i−1 = γ in this interval. Since γ̃i−1(ti) ∈ f−1(Ui),
there is an open set Ũi in M̃ such that γ̃i−1(ti) ∈ Ũi and f |Ũi: Ũi → Ui

is a homeomorphism. Let f−1
i :Ui → Ũi be the inverse of f |Ũi. Then the

function

γ̃i(t) =

{

γ̃i−1(t), for 0 ≤ t ≤ ti,
f−1
i ◦ γ(t), for ti ≤ t ≤ ti+1,
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is a continuous function in 0 ≤ t ≤ ti+1, such that γ̃i(0) = m, and
f ◦ γ̃i(t) = γ(t) for 0 ≤ t ≤ ti+1. After a finite number of steps we arrive
at a curve γ̃ with initial point m̃ such that f ◦ γ̃ = γ.

This proposition and the monodromy theorem imply the

Theorem 2.33 If (M̃,M, f) is a covering, and M is simply connected,
then f is a homeomorphism of M̃ onto M .

Remark 2.34 Using the monodromy theorem we can easily prove the
following result: if (M̃,M, f) is a spread without relative boundary,
then (M̃,M, f) is a covering. (If U is a neighbourhood of m ∈ M
homeomorphic to an open ball in Rn then the connected components of
f−1(U) are open in M̃ and are mapped homeomorphically by f onto U .)
Thus the notions of a covering and a spread without relative boundary
are identical.

Example 2.35 Let f :C → C∗ be the map f(z) = e2πiz. Then this is
a covering, and C is simply connected. The curve γh: z = ae2πiht, 0 ≤
t ≤ 1, in C∗ has a lift γ̃ at a point b with f(b) = a given by γ̃(t) =
b + ht, 0 ≤ t ≤ 1. Hence γh is homotopic to constant in C∗ if and only
if h = 0. Moreover, for any closed curve σ in C∗, if σ̃ is a lift of σ, then
σ̃(1) = σ̃(0) + h where h is an integer (since f(σ̃(1)) = f(σ̃(0))). Hence
σ̃ is homotopic to the curve Γ̃(t) = σ̃(0) + ht (0 ≤ t ≤ 1) so that σ is
homotopic in C∗ to the curve γh(t) = σ(0)e2πiht. Thus any closed curve
in C∗ is homotopic to a unique curve γh.
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Chapter 3

Riemann Surfaces

3.1 Holomorphic Functions in the Complex

Plane

We begin by recalling some definitions and results concerning holomor-
phic functions in the complex plane.

3.1.1 Holomorphic Functions

Definition 3.1 A complex-valued function f , defined on an open set U
in C, is holomorphic in U if, for every z0 ∈ U , the limit limz→z0

f(z)−f(z0)
z−z0

exists.

Remark 3.2 A holomorphic function is continuous.

Remark 3.3 The sum and product of two holomorphic functions is
holomorphic.

Remark 3.4 The composite of two holomorphic functions is holomor-
phic. More precisely, let U , V be open sets in C, and let f :U → V
be holomorphic. Then for any holomorphic function g on V , g ◦ f is
holomorphic in U .

Remark 3.5 A holomorphic function has first partial derivatives, which

satisfy the Cauchy-Riemann equations
∂f

∂x
=

1

i

∂f

∂y
.

25
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3.1.2 Differentiable Curves

Definition 3.6 A curve z(t) = x(t) + iy(t), a ≤ t ≤ b, in the complex
plane is piecewise differentiable if the interval a ≤ t ≤ b can be divided
into finitely many closed subintervals, in each of which x(t) and y(t)
have continuous derivatives.

Example 3.7 The line segment z0z1 joining z0, z1 ∈ C i.e. z(t) =
z0 + t(z1 − z0), 0 ≤ t ≤ 1.

Example 3.8 The circle |z − z0| = r i.e. z(t) = z0 + re2πit, 0 ≤ t ≤ 1.

Example 3.9 If γ1 and γ2 are piecewise-differentiable curves with end-
point of γ1 = initial point of γ2 the curve γ1·γ2 is piecewise differentiable.
In particular, if R is the rectangle a ≤ x ≤ b, c ≤ y ≤ d, its boundary
∂R will always be regarded as the closed piecewise-differentiable curve
z1z2·z2z3·z3z4·z4z1, where z1 = a+ic, z2 = b+ic, z3 = b+id, z4 = a+id.

If γ = z(t), a ≤ t ≤ b is a piecewise-differentiable curve in C and f is
a continuous function on the set γ = {z(t), a ≤ t ≤ b}, then

∫

γ f(z) dz

is by definition
∫ b
a f(z(t))dz(t)dt dt.

Similarly, if u and v are continuous complex-valued functions on

γ,
∫

γ(u dx+v dy) is, by definition

∫ b

a

(

u(z(t))
dx(t)

dt
+ v(z(t))

dy(t)

dt

)

dt.

Example 3.10

1

2πi

∫

|z−z0|=r

dz

z − ζ
=

{

1, |ζ − z0| < r
0, |ζ − z0| > r

.

3.1.3 Cauchy’s Theorem

Let f(z) be a holomorphic function in a disc D: {|z − a|, ρ}, and γ any
closed piecewise differentiable curve in D. Then

∫

γ f(z)dz = 0. This

assertion would still be true if f(z) were not defined at finitely many
points zi in D provided limz→zi(z− zi)f(z) = 0 for all the zi and γ does
not pass through any zi.

Remark 3.11 This theorem follows easily from the corresponding the-
orem for rectangles, and involves no topological difficulties.
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3.1.4 Cauchy’s Integral Formula

Let f(z) be holomorphic in a disc {|z − z0| < R0}. Then, for |z − z0| <
R < R0,

f(z) =
1

2πi

∫

|ζ−z0|=R

f(ζ)

ζ − z
dζ.

Again, f(z) may be undefined at finitely many points zi (not lying
on |z − z0| = R), provided limz→zi(z − zi)f(z) = 0 for each i.
Consequences

1. f(z) can be made holomorphic in the disc |z−z0| < R0 by defining
it at the exceptional points if any, by means of the integral formula. This
is Riemann’s Theorem on removable singularities.

2. f(z) has derivatives of all orders (given by the integral formulae),
and is represented by its Taylor series:

f(z) =
∞
∑

n=0

f (n)(z0)

n!
(z − z0)

n in |z − z0| < R0.

As an immediate consequences, we have the principle of analytic con-
tinuation: if a holomorphic function on a connected open set U in C

vanishes on a non-empty open subset of U , it vanishes identically in U .
3. If a sequence {fn} of holomorphic functions on an open set U

converges uniformly in U , then the limit function f is holomorphic in U
and {dfn/dz} converges to df/dz (uniformly on compact subsets of U .)

3.1.5 Order of zeroes

Let f(z) be holomorphic (and non-constant) in the connected open set
U in C . Then for any z0 ∈ U , there exists an integer k ≥ 0 such that
f(z) = (z − z0)

kg(z), with g(z) holomorphic in U and g(z0) 6= 0; in
fact k is the least integer n such that dnf(z0)/dz

n 6= 0. This k is called
the order of f at z0. By (3.1.4, k is finite.) From the representation
f(z) = (z − z0)

kg(z), it follows that the zeros of f in U are isolated.
Now let the disc D = {|z − z0| ≤ R} ⊂ U , and suppose that f(z)

has no zeros on |z − z0| = R. Then f(z) has finitely many zeros in
D = {|z − z0| < R}, say ζ1, . . . , ζn, with orders k1, . . . , kn respectively.
We now have
The Argument Principle. For any holomorphic function φ(z) in U ,
we have

1

2πi

∫

|z−z0|=R
φ(z)

f ′(z)

f(z)
dz =

n
∑

i=1

kiφ(ζi).
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In particular, if φ ≡ 1, we have

1

2πi

∫

|z−z0|=R

f ′(z)

f(z)
dz =

n
∑

i=1

ki.

Now let f(z0) = 0, and let R above be such that f(z) 6= 0, f ′(z) 6=
0 in 0 < |z − z0)| ≤ R. Then for any complex number w, |w| <

inf |z−z0|=R |f(z)| we have 1
2πi

∫

|z−z0|=R
f ′(z)

f(z−w)dz = k = order of f at
z0.
Consequences

1. f :U → C is an open mapping. The maximum modulus principle,
namely that for z ∈ U , we have

|f(z)| ≤ sup
η
{lim sup
ζ→η∈∂U

|f(ζ)|}

follows easily from this.
2. For any z0 ∈ U, f is one-one in some neighbourhood of z0 if

and only if f ′(z0) 6= 0. Thus, using 1, we see that if f is one-one on
U, f(U) = V is an open set in C and f−1:V → U is holomorphic.

3.1.6 n-th roots of holomorphic functions

Let the notation be as in 3.1.5, and suppose, for z0 ∈ U , that k =
order of f at z0 > 1. Then, in a neighbourhood of z0 we can write
f(z) = [h(z)]k, with h(z) holomorphic, and having a zero of order 1 at
z0. This follows from the

Theorem 3.12 If f(z) is holomorphic and never zero in a disc D, there
exists a holomorphic function g(z) in D such that eg ≡ f . Hence, for
each integer n > 0, there exists a holomorphic function hn(z)(= eg(z)/n)
such that (hn)

n ≡ f .

In fact, z0 ∈ D being fixed,

∫ z

z0

f ′(ζ)

f(ζ)
dζ is well-defined by Cauchy’s

Theorem and, but for an additive constant, is the g(z) we want.

3.1.7 Isolated singularities

Let f(z) be holomorphic in 0 < |z − z0| < R.
(i) If limz→z0{(z − z0)f(z)} = 0 (in particular if f(z) is bounded in

(0 < |z − z0| < ρ for some ρ > 0), we know that f can be defined at z0
so that it is holomorphic in |z − z0| < R.
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(ii) If |f(z)| → ∞ as z → z0, f is said to have a pole at z0. In this
case, for a sufficiently small ρ > 0, g(z) = 1

f(z) for 0 < |z − z0| < ρ,

g(z0) = 0 defines holomorphic function g in |z − z0| < ρ. The order of g
at z0 is called the order of the pole of f at z0. If f(z) has a pole of order
k at z0 we can write f(z) = (z − z0)

−kh(z) in 0 < |z − z0| < R, h(z)
holomorphic in |z − z0| < R, h(z0) 6= 0. Thus f(z) can be expanded in
a Laurent series f(z) =

∑∞
n=−k an(z − z0)

n, a−k 6= 0. The residue of f
at z0 is a−1; clearly a−1 =

1
2πi

∫

|z−z0|=r f(z) dz for any r, 0 < r < R.
A meromorphic function f in an open set U in C is a holomorphic

function in the complement of a discrete (possible empty) set E in U ,
such that |f(z)| → ∞ as z (∈ U − E) tends to any point of E. If U
is connected, the meromorphic functions in U form a field. If f( 6≡ 0) is
a meromorphic function on the connected open set U in C, f ′ is also
meromorphic in U , and f ′/f is a meromorphic function in U whose poles
are precisely the poles and zeros of f , with a residue which equals order
f at a zero of f , and equals negative of the order of the pole at a pole
of f .

3.1.8 Green’s Theorem

Let u, v be complex-valued functions, defined and having continuous first
partial derivatives in an open set containing the rectangle R = {a ≤ x ≤
b, c ≤ y ≤ d} in C. Then

∫

∂R
(u dx+ v dy) =

∫

R

(

∂v

∂x
−

∂u

∂y

)

dx dy.

If R′ = {a′ ≤ x ≤ b′, c′ ≤ y ≤ d′} ⊂ R, and u, v are defined and have
continuous first partial derivatives in an open set containing R−R′, we
deduce that

∫

∂R
u dx+ v dy −

∫

∂R′

u dx+ v dy =

∫

R−R′

(

∂v

∂x
−

∂u

∂y

)

dx dy.

3.2 Riemann Surfaces

3.2.1

Let M be a Hausdorff space.

Definition 3.13 (i) A coordinate system (U, z) on M consists of a non-
empty open subset U of M and a homeomorphism z of U onto an open
set in the complex plane.
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(ii) Given two coordinate systems (U1, z1), (U2, z2) on M , (U1, z1) is
said to be compatible with (U2, z2)) if U1 ∩U2 = ∅ or if z2 ◦ z

−1
1 : z1(U1 ∩

U2) → z2(U1 ∩ U2) is a holomorphic mapping. (Compatibility is a sym-
metric relation.)

(iii) A complex structure (or holomorphic structure) on M is a set
Φ = {(Ui, zi)}i∈I of coordinate systems on M , such that (a)

⋃

i∈I Ui =
M , (b) any two members of Φ are compatible, (c) if a coordinate system
(U, z) on M is compatible with every member of Φ, then (U, z) ∈ Φ.

(iv) A Riemann surface (M,Φ) = M is a Hausdorff space M with a
complex structure Φ. A coordinate system on a Riemann surface always
means one belonging to the complex structure.

Remark 3.14 Condition (iii)(a) implies that a connected Riemann sur-
face is a two-dimensional manifold.

Remark 3.15 Let Φ′ be a set of coordinate systems on a Hausdorff
space M satisfying (a) and (b) of (iii) above. Then there is a unique
complex structure Φ ⊃ Φ′ on M , namely the one consisting of all coor-
dinate systems on M compatible with all members of Φ′.

Remark 3.16 According to a theorem of T. Rado, any connected Rie-
mann surface is a union of countably many compact subsets.

Definition 3.17 Let M,N be Riemann surfaces. A holomorphic map-
ping f :M → N is a continuous mapping such that, for any coordinate
systems (U, z), (V,w) on M, N respectively with f(U) ⊂ V , the mapping
w ◦ f ◦ z−1: z(U) → w(V ) is holomorphic.

It is easy to verify that a mapping f :M → N of Riemann surfaces is
holomorphic if and only if, for any p ∈ M , there exist coordinate systems
(U, z), (V,w) on M,N respectively, such that p ∈ U and f(U) ⊂ V ,
while w ◦ f ◦ z−1: z(U) → w(V ) is holomorphic.

3.2.2 Examples of Riemann Surfaces

Example 3.18 Non-empty open sets in the complex plane are Riemann
surfaces in a natural way. A holomorphic function on a Riemann surface
is by definition a holomorphic mapping of it into the complex plane.

Example 3.19 Any non-empty open subset U of a Riemann surface M
has a natural complex structure, such that the inclusion of U in M is
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holomorphic. If a mapping z:U → C is one-one and holomorphic on
U, (U, z) is a coordinate system on M , and conversely. Also a mapping
f :M → N of Riemann surfaces is holomorphic if and only if every p ∈ M
has a neighbourhood U such that f |U is holomorphic.

Example 3.20 C̄ = C∪{∞} can be made a Riemann surface as follows.
The topology on C̄, i.e. its set of open sets on C, together with sets
of the form U ∪ {∞}, where U is an open set in C, which contains
{|z| > R} for some R. (This topology is compact Hausdorff.) The
mapping w: C̄ − {0} → C defined by w(z) = 1/z if z 6= ∞, w(∞) =
0, is a homeomorphism onto C, and the coordinate systems (C, IC(=
identitymap)), (C̄ − {0}, w) define a complex structure on C̄. The
verifications are easy.

Example 3.21 Let (N,M, f) be a spread (§2.3), where M is a sur-
face. Then any complex structure on M defines one on N in a natural
way, such that f becomes holomorphic. This structure is defined by
coordinate systems (V, z ◦ f), where f |V is one-one, and (f(V ), z) is a
coordinate system with respect to the complex structure of M .

Example 3.22 Let ω1, ω2 be non-zero complex numbers with non-real
ratio, and let R be the relation on C defined by “z1 R z2 if and only if
there exist integers m and n such that z1 − z2 = mω1 + nω2.” Let T be
the quotient space C/R and π:C → T the natural map. T is compact. It
is easy to see that π is an open mapping. Let δ = inf |mω1+nw2|, m, n
integral and not both zero. It is easily verified that δ > 0. It follows
that T is a Hausdorff space, and that π is one-one on any open disc of
diameter δ. The pairs (π(U), (π|U)−1), with U any disc of diameter δ,
are coordinate systems on T and make it a Riemann surface such that
π is holomorphic. T is called a complex torus.

We could also consider the equivalence relation R on C defined by
a single complex number ω 6= 0: z1 R z2 if and only if z1 − z2 = nω for
some integer n. The function e2πiz/ω on C “passes down” to one on C/R
and maps it one-one holomorphically onto C− {0}.

3.2.3

The following properties of holomorphic mappings of Riemann surfaces
are immediate consequences of the analogous statements for holomorphic
functions in the plane.
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1. The composite of holomorphic mappings is holomorphic.

2. If f, g are two holomorphic mappings of a connected Riemann
surface M into a Riemann surface N , and if f = g on a non-empty open
set in M , then f ≡ g. This is called the Principle of Analytic Continu-
ation. Similarly, if f is not constant, then for every q ∈ N, f−1(q) is a
discrete set in M .

3. Let M be a connected Riemann surface. Then any non-constant
holomorphic mapping of M (into any Riemann surface) is an open map-
ping. The maximum principle for holomorphic functions onM follows as
before. We also deduce that, on a compact connected Riemann surface,
the only holomorphic functions are the constants.

A meromorphic function on a Riemann surface M is a holomorphic
function on the complement of a discrete set E in M (E may be empty),
such that for every q in E, |f(p)| → ∞ as p → q. The mapping f :M →
C̄ defined by putting f(q) = ∞ is then holomorphic, for it follows easily
from Riemann’s theorem on removable singularities that a continuous
mapping h:M → N of Riemann surfaces is holomorphic if it is so in the
complement of a discrete set in M .

Conversely, ifM is connected, every holomorphic mapping f :M → C̄

with f(M) 6= {∞} defines a meromorphic function on M . Again, the
meromorphic functions on a connected Riemann surface constitute a
field.

Example 3.23 Meromorphic functions on C̄ are just the rational func-
tions (i.e. quotients of polynomials).

Example 3.24 With the notation of Example 3.22 every meromorphic
function f on C with periods ω1 and ω2 defines a meromorphic function
g on T such that f = g ◦ π; and conversely.

Let f be a non-constant holomorphic function on the connected Rie-
mann surface M . Then the order of f at p ∈ M is well-defined. Namely,
if (U, z) is any coordinate system at p, the order of f ◦z−1 at z(p) ∈ z(U)
is determined by f (and does not depend on the coordinate system at
p chosen), and we define ordpf = ordz(p)f ◦ z−1. Similarly, for a mero-
morphic function f on M , the order k of any pole p is well-defined, and
we sometimes write ordpf = −k.

Let f :M → N be a non-constant holomorphic mapping of the con-
nected Riemann surface M into N . Then for any p ∈ M , we can choose
coordinate systems at p and q = f(p), say (U, z) and (V,w) respectively,
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such that (i) z(p) = w(q) = 0, (ii) f(U) ⊂ V , (iii) w ◦ f ◦ z−1 ≡ zk on
z(U), for an integer k ≥ 1 (in fact k = ordp(w ◦ f − w(f(p))).

3.2.4

Let U, V be open sets in C, F :U → V a one-one holomorphic mapping
of U onto V (or more generally let F be a one-one mapping of U onto
V , and suppose that F and F−1 are differentiable). For any piecewise
differentiable curve γ in U, F (γ) = F ◦ γ is a piecewise differentiable
curve in V . Also, for any continuous complex-valued functions f, g on
U, f∗ = f ◦F−1, g∗ = g◦F−1 are continuous on V , and

∫

F (γ) f
∗dx+g∗dy

is defined. If F = u+ iv, it is easy to see that
∫

F (γ)
(f∗dx+ g∗dy) =

∫

γ

((

f
∂u

∂x
+ g

∂v

∂x

)

dx+

(

f
∂u

∂y
+ g

∂v

∂y

)

dy

)

.

Similarly, if f is a continuous function on V vanishing outside a compact
set in V , we have

∫

V
fdx dy =

∫

U
(f ◦ F )|J |dx dy,

where J is the Jacobian of F (if F is holomorphic, its Jacobian is |F ′|2).
These transformation formulae suggest that we should consider the

so-called differential forms, or forms, which are defined below.

Definition 3.25 A differential 1-form (resp. 2-form) ω on a Riemann
surface M is the assignment to each coordinate system (U, z) on M of
an ordered pair (ωx, ωy) of complex-valued functions on z(U) (resp. a
complex-valued function ω on z(U)), such that if (U1, z1), (U2, z2)) are
any coordinate systems on M with U1 ∩ U2 6= ∅, and φ12 = z2 ◦ z

−1
1 =

u+ iv on z1(U1 ∩ U2), then.

ωx1
= (ωx2

◦ φ12)
∂u

∂x1

+ (ωy2 ◦ φ12)
∂v

∂x1

ωy1 = (ωx2
◦ φ12)

∂u

∂y1
+ (ωy2 ◦ φ12)

∂v

∂y1

(resp. ω1 = (ω2 ◦ φ12)|φ
′
12|

2 on z1(U1 ∩ U2)).

Remark 3.26 To define a 1-form ω on M , it is sufficient to assign the
(ωx, ωy) for each of a set Φ of coordinate systems on M such that the
U, (U, z) ∈ Φ, cover M , if the transformation laws above are satisfied
for members of Φ. The same fact is true in the case of 2-forms.
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Remark 3.27 A form (i.e. 1-form or 2-form) on M induces one on any
open subset of M in an obvious way.

Remark 3.28 A 1-form ω on M is of class Ck, if for every coordinate
system (U, z) on M , “components” ωx, ωy of ω are of differentiability
class Ck on z(U)(k = 0, 1, 2, . . .). Again it is sufficient to verify this on a
set of coordinate neighbourhoods covering M . A similar definition can
be given for 2-forms.

Remark 3.29 For any 1-form ω and any p ∈ M, ωx(z(p)) = 0 =
ωy(z(p)) for every coordinate system at p, if it is so for one such system.
We say in this case that ω(p) = 0. The support of ω is the closure of the
set {p ∈ M | ω(p) 6= 0}. Similar considerations are valid for a 2-form ω;
in this case the statement ω(p) > 0 also has an intrinsic meaning.

3.2.5 Examples of 1- and 2-forms

Example 3.30 Let f be a complex-valued function of class Ck on M,
k ≥ 1 (i.e. for every coordinate system (U, z), f ◦ z−1 is of class Ck

on z(U)). Then the assignment to (U, z) of
(

∂(f◦z−1)
∂x , ∂(f◦z−1)

∂y

)

can be

verified to be a 1-form of class Ck−1 on M . This 1-form is denoted by
df . If M is connected df ≡ 0 implies that f is a constant.

Example 3.31 Let ω be a 1-form of class Ck on M, k ≥ 1. Then the

assignment to (U, z) of the function
(

∂ωy

∂x − ∂ωx

∂y

)

is a 2-form of class

Ck−1 on M , denoted by dω. Clearly the support of dω ⊂ the support of
ω. Now ω is said to be closed if dω = 0, exact if ω = df for some function
f of class C1. An exact 1-form (of class C1) is always closed. Conversely,
it follows easily from Green’s theorem that any closed 1-form on a disc
in C is exact (cf.[1, p.85]).

Example 3.32 The sum ω1 + ω2 of a pair of forms can be defined in
an obvious way, since the transformation laws affect the components
linearly. If the ωi are of class Ck, so is their sum. If they are 1-forms of
class C1, d(ω1 + ω2) = dω1 + dω2. Similarly, if f1, f2 are functions of
class C1, d(f1 + f2) = df1 + df2.

Example 3.33 Let ω be a 1-form on M, f a function on M . The 1-
form fω on M is defined as follows : if ω has components (ωx, ωy) in the
coordinate system (U, z), those of fω are ((f ◦ z−1))ωx, (f ◦ z−1)ωy). If
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f and ω are of class Ck, so is fω; it is sufficient that f be defined in a
neighbourhood of the support of ω. Obviously, ω|U = (ωx ◦ z)dx+(ωy ◦
z)dy.

Example 3.34 The real and imaginary parts of a form ω are defined
in the obvious way, and we have ω = Re ω + i Im ω.

Example 3.35 If ω1 and ω2 are two 1-forms, a 2-form ω1 ∧ ω2 is de-
fined by assigning to any coordinate system (U, z) the function ω1xω2y−
ω2xω1y, ωix, ωiy being the components of ωi on (U, z).

3.2.6 Integration of 1-forms

Definition 3.36 Let γ be a curve on a Riemann surface M and suppose
that there exists a coordinate system (U, z) on M such that γ ⊂ U ·
γ is said to be the piecewise differentiable if the curve z ◦ γ = z(γ) in
z(U) is. In this case, if ω is a continuous 1-form on M ,

∫

γ
ω =

∫

z(γ)
(ωx dx+ ωy dy).

We note that in the above definition, if (U1, z1) is another coordi-
nate system on M such that γ ⊂ U1, z1(γ) is piecewise differentiable
in z1(U1) and by the transformation formulae for the components of
ω,

∫

z1(γ)
(ωx1

dx1 + ωy1dy1) =
∫

z(γ)(ωxdx + ωydy). Thus
∫

γ ω is well-
defined.

Any curve γ on M can be written as γ1, . . . , γn where each γi is
contained in a coordinate neighbourhood of M . We say that γ is piece-
wise differentiable if each γi is (this is a property of γ which does not
depend on a choice of the decomposition γ = γ1 . . . γn). If ω is a contin-
uous 1-form on M , we define

∫

γ ω = Σ
∫

γi
ω; again the value of

∫

γ ω is
independent of the decomposition of γ.

3.2.7 Integration of 2-forms

An analogous theory of integration of (continuous) 2-forms involves the
use of “differentiable singular 2-simplexes” (see [2]). Here, we shall only
indicate how the integral of a 2-form with compact support (over the
whole Riemann surface) is defined.

Definition 3.37 If ω is a continuous 2-form with compact support on
a Riemann surface M , and (U, z) a coordinate system on M such that
U contains the support of ω then

∫

M ω =
∫

z(U) ω dx dy.
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As in the case of the integral of 1-forms,
∫

M ω is then well-defined.
To define

∫

M ω for a continuous 2-form with arbitrary compact support,
we express ω as a finite sum of continuous 2-forms ωi each of which has
compact support contained in a coordinate neighbourhood of M , and
define

∫

M ω = Σ
∫

M ωi. That ω can be written as such a sum is proved
below, and the fact that the value of

∫

M ω is independent of the choice
of such a decomposition then follows easily.

Lemma 3.38 Given a compact set K on the Riemann surface M , there
exist finitely many continuous functions fi ≥ 0 on M , such that each
fi has compact support contained in a coordinate neighbourhood of M ,
while Σfi > 0 on K.

Proof: Plainly, it is sufficient, given p ∈ M and a coordinate system
(U, z) at p, to construct a continuous function f ≥ 0 with compact
support contained in U , with f(p) > 0. This is trivial, since U may be
identified with z(U) by means of z.

[For the same reason, the above lemma is still valid if we require
the fi to be of class Ck for any k ≥ 0. We need this with k = 1. In
this case we may use the following statement, which will be required
later. If a1, a2 are real numbers, 0 < a1 < a2 and Si is the square
{|x|, |y| ≤ ai} in C, there exists a function f of class C1 on C, such that
f ≡ 1 on S1 and f ≡ 0 outside S2. Such an f is, for instance, given
by f(x, y) = g(x)g(y), where g(t) = 1 for |t| ≤ a1, 0 for |t| ≥ a2 and

cos2
(

π
2
t2−a2

1

a2
2
−a2

1

)

otherwise.]

To get the desired decomposition of a continuous form ω with com-
pact support into continuous forms with “small” supports, let K, in the

lemma above, be the support of ω and let ωi = (
fi
Σfi

)ω if Σfi > 0 and

0 otherwise. Then clearly ωi is a continuous form on M with support
contained in (support fi) ∩ (support ω), and ω = Σωi. Note that if
ω = Σgiω = Σhjω, where the gi, hj are functions defined in a neigh-
bourhood of the support of ω we also have ω =

∑

i,j(gihj)ω. This remark
is used in verifying that the integral of a 2-form as we have defined it
does not depend on the decomposition chosen.

Finally, we note that the integrations we have defined have the nat-
ural properties

∫

(ω1 + ω2) =
∫

ω1 +
∫

ω2,
∫

cω = c
∫

ω for any c ∈ C

and (in the case of 1-forms),
∫

γ1γ2
ω =

∫

γ1
ω +

∫

γ2
ω.
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3.2.8 Holomorphic forms

Definition 3.39 A 1-form ω on a Riemann surfaceM is holomorphic, if
for any coordinate system (U, z) onM, ω|U = ωzdz with ωz holomorphic
in U (i.e. the components ωx, ωy of ω are holomorphic, and ωy = iωx;
we shall identify ωx with ωz ◦ z

−1 and write ωx = iωy = ωz).

Remark 3.40 If f is a holomorphic function on M , df is holomorphic:

in any coordinate system (U, z), df =

(

d(f ◦ z−1)

dz
◦ z

)

dz. It is usual

to write df = df
dz dz.

Remark 3.41 If the holomorphic 1-form ω on M equals ωz1dz1 on

(U1, z1), and ωz2dz2 on (U2, z2), we have ωz1 = ωz2

dz2
dz1

on U1∩U2, where

dz2
dz1

means, as before
d(z2 ◦ z

−1
1 )

dz1
◦z1. Conversely, if we have holomorphic

functions ωzi on (Ui, zi) such that ωzj
dzj
dzi

on Ui ∩ Uj a unique holomor-
phic 1-form ω is defined on

⋃

Ui, whose restriction to Ui is ωzi dzi, for
each i.

Remark 3.42 Let M be connected, and let ω be a holomorphic 1-form
6≡ 0. Then the set of zeros of ω in M is a discrete set. Further, the
order of ω at any point p ∈ M is well-defined; if (U, z) is any coordinate
system at p, and ω|U = ωzdz, the order of ωz at p does not depend
on the coordinate system. For instance, if f is a holomorphic function
in a neighbourhood of p ∈ M, (V, f) is a coordinate system for some
neighbourhood V of p if and only if ordpdf = 0.

Remark 3.43 On account of the Cauchy-Riemann equations, a holo-
morphic 1-form is always closed.

3.2.9

Definition 3.44 A meromorphic 1-form ω on a Riemann surface M is
a holomorphic 1-form ω on the complement of a discrete set E in M
with the following property : if (U, z) is any coordinate system at any
p ∈ E with U ∩E = {p}, and if ω = ωzdz in U −{p}, then ωz has a pole
at p.

Remark 3.45 It is sufficient to assume that for one coordinate system
at p as above, the stated condition is satisfied.
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Remark 3.46 With the notation as above, the order of ωz at p is in-
dependent of the coordinate system at p chosen. Moreover, the same is
true of the residue of ωz ◦z

−1, at z(p); for, this is equal to 1
2πi

∫

γ ω where
γ is any closed curve in U such that z ◦ γ is for instance a sufficiently
small circle |z − z(p)| = r. Of course this fact can also be checked by
computation.

Remark 3.47 If f is a meromorphic function on M , the meromorphic
1-form df , and the meromorphic 1-form fω (ω a meromorphic 1-form on
M) are defined in the obvious manner. Thus, if ω is a meromorphic 1-
form, and (U, z) a coordinate system on M , then ω|U = ωzdz, where ωz

is a meromorphic function on U . Similarly the sum of two meromorphic
1-forms is meromorphic.

Remark 3.48 If f is a non-constant meromorphic function on a con-
nected Riemann surface M, df

f is a meromorphic 1-form on M , whose
residue at any p ∈ M = ordpf .

Remark 3.49 Let ω0 6≡ 0 be a meromorphic 1-form on the connected
Riemann surface M . Then any meromorphic 1-form ω on M is of the
form fω0 with f a meromorphic function on M . If, in a coordinate
system (U, z), ω = ωzdz and ω0 = ω0zdz, then f is defined by f |U =
ωz/ω0z.

Problem 3.1 If M is a compact, connected Riemann surface, and ω is
a nowhere vanishing holomorphic 1-form on M , then any holomorphic
1-form on M is of the form cω, c ∈ C.

3.2.10 Green’s Theorem

The general form of Cauchy’s theorem and Green’s theorem is outside
the scope of this seminar. We only mention a version which can be
proved fairly simply.

Theorem 3.50 (Green’s Theorem) Let M be a simply connected Rie-
mann surface (chapter 2, section 2), and ω a closed 1-form on M . Then
for any (piecewise differentiable) closed curve γ in M ,

∫

γ ω = 0.

In particular, if ω above is holomorphic, this can be proved using the
Monodromy Theorem of Chapter II (see [11], p.55)
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3.2.11 Residue Theorem

Theorem 3.51 Let M be a compact Riemann surface, and ω a mero-
morphic 1-form on M . Then the sum of the residues of ω is zero.

Remark 3.52 The sum in question is finite; the set of poles of ω is
discrete, hence finite, by the compactness of M .

The proof uses the following:

Lemma 3.53 Let ω be a 1-form of class C1 with compact support, on
a Riemann surface M . Then

∫

M dω = 0.

Proof: If we write ω as a finite sum of C1 1-forms ωi with com-
pact supports contained in coordinate neighbourhoods of M , we have
∫

M dωi = 0 by Green’s Theorem in the plane; hence
∫

M dω = Σ
∫

M dωi =
0. q.e.d.

Proof of the Theorem : Let E = {p1, . . . , pn} be the set of poles of
ω if E = ∅ there is nothing to prove. Let (Ui, zi) be a coordinate system
at pi, i = 1, . . . , n such that Ui ∩ Uj = ∅ if i 6= j; we may suppose that
zi(pi) = 0, i = 1, . . . , n. Let 0 < ai < bi be real numbers such that
R∗

i = {|x|, |y| ≤ bi} ⊂ zi(Ui), and let S∗
i = {|x|, |y| < ai}. Let f∗

i be
a function of class C1 on C, such that f∗

i ≡ 1 on S∗
i , ≡ 0 outside R∗

i .
Finally let fi = f∗

i ◦ zi, f = Σfi, γi = z−1
i (∂S∗

i ), Si = z−1
i (S∗

i ), S =
⋃

Si.

We now note that for any continuous 2-form φ onM\E, we can define
∫

M\S φ as
∫

M (1− f)φ+
∫

M\S fφ (note that fφ has support contained

in
⋃

Ui). If φ has support ⊂ M \ S, we then have
∫

M\S φ =
∫

M φ. We

also have
∫

M\S(φ1 + φ2) =
∫

M\S φ1 +
∫

M\S φ2.

In particular we have, since dω ≡ 0 in M \ S,
∫

M\S dω = 0 =
∫

M\S d(fω) +
∫

M\S d((1 − f)ω). Now, (1 − f)ω is a C1 1-form on M ,
with support contained in M − S, hence by the lemma proved above,
∫

M d((1−f)ω) = 0 =
∫

M\S d((1−f)ω). On the other hand, using Green’s
Theorem as stated in §8 of part A, and the fact that f∗

i = 1 on ∂S∗
i and

0 on ∂R∗
i , we see that

∫

M\S d(fω) = −Σ
∫

γi
ω = −2π i Σ Res pi ω, q.e.d.

3.2.12

An immediate consequence of the theorem of 3.51 is the



40 Chapter 3. Riemann Surfaces

Theorem 3.54 A non-constant meromorphic function f on a compact
connected Riemann surface M assumes every value (in C̄) equally often,
multiplicity being taken into account.

[The multiplicity with which f takes the value a at a point p is
ordp(f − a) if a is finite, ordp(1/f) if a is infinite.]

Proof: For any complex number a, df
f−a is a meromorphic 1-form on

M , whose residue at any p ∈ M is ordp(f − a). Hence by the theorem
of 3.2.11 assumes the value a often as it assumes ∞, q.e.d.



Chapter 4

Analytic Continuation and

Algebraic Functions

4.1 Analytic Continuation

The results of this section consist merely in an application of the general
results on the lifting of curves proved for one surface spread out over
another to a special case. We begin with some definitions.

Let U be a connected open set in the complex plane and f a function
holomorphic in U . The pair (f, U) is called (after Weierstrass) a function
element. Let a ∈ C. We introduce an equivalence relation ∼ in the set
of all function elements (f, U) with a ∈ U as follows. (f, U) ∼ (f ′, U ′) if
there is an open set V ⊂ U ∩ U ′, a ∈ V , such that f(z) = f ′(z) for all
z ∈ V . (Note that we do not require that f(z) = f ′(z) for all z ∈ U∩U ′.)
The equivalence class with respect to ∼ containing the element (f, U) is
called the germ of f at a and is denoted by (a, fa). Note that the value
of this germ at a, fa(a) = f ′(a) for any (f ′, U ′) ∈ (a, fa), is defined
independently of (f ′, U ′).

Analytic Continuation along an Arc. Let (a, fa) be a germ of
holomorphic function, and γ a curve starting at a, γ(0) = a. We say
that (a, fa) can be analytically continued along γ if the following holds.

To every point t is associated a germ (γ(t), fγ(t)) (which is equal to
(a, fa) for t = 0) and such that for every t0, there is a neighbourhood
U = {z | |z − γ(t0)| < ρ} and a function F holomorphic in U with
(F,U) ∈ (γ(t0), fγ(to)), such that for all t near enough to t0, the germ
induced at γ(t) by (F,U) is precisely the given germ (γ(t), fγ(t)).

We have the following proposition, whose proof is not very easy, and

41
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will be omitted.

Proposition 4.1 A germ (a, fa) can be continued along a curve γ if and
only if there exists a finite family of discs D0, . . . , Dq−1, a ∈ D1, γ(1) ∈
Dq−1 and points z0 = a, z1, . . . , zq = γ(1), on γ, zi = γ(ti), such that

(i) ti < ti+1 and for ti ≤ t ≤ ti+1, γ(t) ∈ Di, 0 ≤ i ≤ q − 1;

(ii) there is a holomorphic function fi in Di with fi(z) = fi+1(z) in
Di ∩Di+1;

(iii) (f0, D0) ∈ (a, fa).

We now introduce a topological space O which is spread over the
complex plane C.

Let O denote the set of all germs (a, fa) where a ∈ C. We define a
topology on O as follows. A fundamental system of neighbourhoods of
(a, fa) is formed by the sets U = {(b, fb) | b ∈ U} where (f, U) ∈ (a, fa)
and, for b ∈ U, (b, fb) is the germ induced by f at b.

Lemma 4.2 With this topology, the space O is Hausdorff.

Proof: Let (a, fa), (b, gb) ∈ O, (a, fa) 6= (b, gb).
Case (i). a 6= b. Let (f, U) ∈ (a, fa), (g, V ) ∈ (b, gb), U ∩ V = ∅. Let
U = {(c, gc) | c ∈ U}, the set of germs induced by f at points c ∈ U ,
and similarly we define V = {(d, gd) | d ∈ V }. Clearly U ∩ V = ∅.
Case (ii). a = b. In this case let U be a connected open set, a ∈
U, (f, U) ∈ (a, fa), (g, U) ∈ (b, gb), and let U = {(c, fc) | c ∈ U}, V =
{(c, gc) | c ∈ U} consist of the germs induced by f, g respectively at
points of U . Then we assert that U ∩ V = ∅. In fact, if (c, fc) = (c, gc),
then f(z) = g(z) for all z in a neighbourhood of c, hence, by the principle
of analytic continuation, f = g on U , hence (a, fa) = (a, ga) = (b, gb),
which is not the case.

We have now a mapping π:O → C defined by π((a, fa)) = a.

Lemma 4.3 π is a local homeomorphism.

Proof: Let (f, U) ∈ (a, fa), and U = {(c, fc) | c ∈ U} the open set of
germs induced by f at points of U . Then π(U) = U is a neighbourhood
of a. Hence π is open. If V is a given neighbourhood of a and U ⊂
V, (f, U) ∈ (a, fa) and U is as above, then π(U) ⊂ V . Hence π is
continuous. Also π|U (U as above) is one-one onto U . This proves
Lemma 4.3.
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Lemma 4.4 Let a ∈ C, γ a curve starting at a, and (a, fa) a germ
at a. Then (a, fa) can be continued along γ if and only if there is a
curve γ̃ in O with γ̃(0) = (a, fa), π ◦ γ̃(t) = γ(t) for each t, 0 ≤ t ≤ 1.
Moreover, the continuation (γ(t), fγ(t)) along γ is determined by γ̃ by
the rule (γ(t), fγ(t)) = γ̃(t).

This is a trivial reformulation of the definition of analytic continua-
tion along an arc.

Corollary 4.5 Analytic continuation along an arc is uniquely deter-
mined by the initial germ and the arc.

Corollary 4.6 If continuation of (a, fa) along γ leads to (b, gb),then
continuation of (b, gb) along γ−1 leads to (a, fa).

We mention the following consequence of Corollary 4.6. Let D be
any domain and (a, fa) a germ, a ∈ D. Suppose that continuation of
(a, fa) along any curve γ in D is possible and that continuation along
any curve γ leads back to (a, fa), i.e. (γ(1), fγ(1)) = (a, fa). Then there
is a holomorphic function F in D which induces (a, fa). In fact, for
any z ∈ D, let γ be a curve joining a to z and let (γ(t), fγ(t)) be the
continuation of (a, fa) along γ. Set

F (z) = fγ(1)(γ(1)) (γ(1) = z).

Then, if γ′ is any other curve joining a to z and continuation along γ′γ−1

leads back to (a, fa), we have

(γ(1), fγ(1)) = (γ′(1), fγ′(1)).

Hence F (z) is independent of the curve γ used, and our result follows
at once.

Finally, we mention the

Theorem 4.7 MONODROMY THEOREM. Let D be a domain, and
(a, fa) a germ at a ∈ D which can be continued along any curve in
D. Then continuation along any closed curve γ starting at a which is
homotopic to the constant curve at a leads back to (a, fa).

Proof: Let X be the connected component of π−1(D)(π:O → C)
which contains (a, fa). We assert that π:X → D is a covering. To prove
this, it is enough to prove that any curve can be lifted to X with a
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given initial point. Let p ∈ X be given z = π(p) and Γ a curve in D
starting at z. Let γ̃′ be a curve in X joining (a, fa) to p and γ′ = π(γ̃′).
By 4.4, continuation of (a, fa) along γ′ leads to the germ p at z. Since
continuation of (a, fa) along γ′ Γ is possible, p can be continued along
Γ. Hence (Lemma 4.4 again), Γ can be lifted to a curve Γ̃ in X starting
at p.

Hence, if γ is homotopic to the constant curve at a, then the mon-
odromy theorem of §4, Chapter II shows that the lift γ̃ of γ starting at
(a, fa) is a closed curve in X. This means precisely that continuation of
(a, fa) along γ leads back to (a, fa).

4.2 Algebraic Functions

4.2.1 Regular points

An algebraic function w is “defined” by an equation

P (z, w) = 0, (4.1)

where P is an irreducible polynomial in the two (complex) variables
z, w. To make precise the meaning of this statement and to study the
behaviour of these algebraic functions, we begin with functions defined
implicitly by an equation of the type (4.1).

Theorem 4.8 Let P (z, w) be a polynomial in the two variables z, w and
let a, b be complex numbers such that

P (a, b) = 0,
∂P

∂w
(a, b) 6= 0.

Then there is a disc D: |z − a| < ρ (ρ > 0), and in this disc a unique
holomorphic function w = w(z) such that

w(a) = b, P (z, w(z)) ≡ 0 in D.

Proof: Let δ > 0 be so chosen that for 0 < |w − b| ≤ δ, we have
P (a, w) 6= 0. We can then find ρ > 0 such that for |z − a| < ρ and
|w − b| = δ, we have P (z, w) 6= 0. Now, b is a simple root of the
polynomial P (a, w). Hence, we have

1

2πi

∫

|w−b|=δ

∂P

∂w
(a, w)

dw

P (a, w)
= 1.
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Consider, for |z − a| < ρ, the integral

n(z) =
1

2πi

∫

|w−b|=δ

∂P

∂w
(z, w)

dw

P (z, w)
.

Since P (z, w) 6= 0 for |z − a| < ρ, |w − b| = δ, it follows that n(z) is
a continuous function of z. However, since it is the number of zeros
of P (z, w) which satisfy |w − b| < δ, n(z) is an integer for each z.
Hence, it is a constant. Thus, for any z, |z − a| < ρ there is a unique
w = w(z), |w − b| < δ, such that P (z, w(z)) = 0. We assert that w(z)
is a holomorphic function of z. This follows at once from the formula

w(z) =
1

2πi

∫

|w−b|=δ
w ·

∂P

∂w
(z, w) ·

dw

P (z, w)
.

The uniqueness is easy. Suppose w1(z) is holomorphic in |z − a| <
ρ, w1(a) = b, P (z, w1(z)) = 0. Let 0 < ρ1 < ρ be such that for
|z− a| < ρ1, we have |w1(z)− b| < δ (δ being as above.) We have shown
that for |z − a| < ρ, the polynomial P (z, w) in w has only one root in
the disc |w − b| < δ. Hence, for |z − a| < ρ1, we have w(z) = w1(z).
By the principle of analytic continuation, w(z) = w1(z) for all z with
|z − a| < ρ.

In what follows, we write

P (z, w) ≡ p0(z)w
k + p1(z)w

k−1 + · · ·+ pk(z), (4.2)

where p0, . . . , pk are polynomials in z, p0(z) 6≡ 0, which have no common
factor (since P is irreducible).

Corollary 4.9 Suppose that a is such that ∂P
∂w (a, w) 6= 0 for any w

for which P (a, w) = 0, and moreover that p0(a) 6= 0. Then, if ρ is
sufficiently small, there exist k holomorphic functions wi(z), 1 ≤ i ≤ k,
in |z − a| < ρ with the following properties:

(i) wi(z) 6= wj(z
′) for i 6= j, |z − a| < ρ, |z′ − a| < ρ;

(ii) P (z, wi(z)) = 0;

(iii) If P (z, w0) = 0, |z−a| < ρ, then w0 = wi(z) for some i, 1 ≤ i ≤ k.

Proof: Let b1, . . . , bk be the roots of the polynomial P (a, w). Because
of our assumptions, the bi are all distinct. Let wi(z) be a holomorphic
function in |z − a| < ρ with wi(a) = bi, P (z, wi(z)) = 0. Further,
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since the bi are distinct, we may choose ρ so small that condition (i)
above is fulfilled. Condition (iii) then follows from (i) and (ii) since the
polynomial P (z, w) in w of degree ≤ k can have at most k roots.

Corollary 4.10 Let a be a complex number, and R > 0 be such that for
|z − a| < R we have p0(z) 6= 0, the equations P (z, w) = ∂P

∂w (z, w) = 0
have no complex solution w. Let b be such that P (a, b) = 0.

Then there is a unique holomorphic function w(z) in |z − a| < R,
such that

w(a) = b, P (z, w(z)) ≡ 0.

Proof: Let r be the upper bound of the values ρ ≤ R, such that there
is a holomorphic function wρ(z) in

Dρ = {z | |z − a| < ρ},

with wρ(a) = b, P (z, wρ(z)) = 0. By the uniqueness assertion of
Theorem of 4.8, and the principle of analytic continuation, we see that
if ρ1 ≤ ρ2, we have wρ1(z) = wρ2(z) for z ∈ Dρ1 . Hence, there is w(z),
holomorphic in Dr with w(a) = b, P (z, w(z)) = 0. We assert that
r = R. Suppose that r < R. For every ξ with |ξ − a| = r, there are,
by Cor.4.9, k functions w1(ξ, z), . . . , wk(ξ, z) in a disc Kξ: |z − ξ| < δξ
with the properties stated in 4.9. Let z0 ∈ Dr ∩ Kξ. 4.9 , we have
w(z0) = wi(ξ, z0) for some i, say i = 1. Then, again by the uniqueness
assertion of Theorem 4.8 and analytic continuation, we conclude that

w(z) = w1(ξ, z) for z ∈ Dr ∩Kξ. (∗)

Let now ξ1, ξ2 be two points such that Kξ1 ∩Kξ2 6= ∅. This intersec-
tion is connected, so that by (*) and analytic continuation, we have

w1(ξ1, z) = w1(ξ2, z) for z ∈ Kξ1 ∩Kξ2 .

Hence, w(z) has an analytic continuation W (z) to the domain Dr ∪
⋃

ξ Kξ = D say. Let r′, r < r′ ≤ R be such that Dr′ ⊂ D. Clearly
W (a) = b, P (z, W (z)) = 0 in Dr′ which contradicts the definition of r.
Hence r = R and Cor.4.10 is proved.

Our next theorem is as follows.

Theorem 4.11 If P (z, w) is an irreducible polynomial in z, w, then
there are only finitely many values z for which the equations

P (z, w) =
∂P

∂w
(z, w) = 0,
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have a solution w.

Proof: Let Q(z, w) = ∂P
∂w (z, w). Since P is irreducible, P and Q have

no common factors. By the division algorithm, if

Q(z, w) = q0(z)w
k−1 + · · ·+ qk−1(z),

we can find polynomials Q = Q0, Q1, . . . , Qr, r ≤ k, and integers
ν0, . . . , νr such that the degree of Qi+1 in w is < the degree of Qi in
w and

(e0) q
ν0
0 P = A0Q+Q1,

(e1) q
ν1
1 Q = A1Q1 +Q2,

.............................

(er−1) q
νr−1

r−1 Qr−2 = Ar−1Qr−1 +Qr,

where qs(z) is the coefficient of the power of w of highest degree in
Qs(z, w). We may suppose that Qr is a polynomial in z alone. We
assert that Qr 6≡ 0; in fact if it were, any irreducible factor B(z, w), of
degree > 0 in w of Qr−1 must, because of (er−1), divide Qr−2, hence, by
(er−2), Qr−3 and so on, so that B(z, w) is a common factor of P and
Q, which is not possible. Hence Qr 6≡ 0.

Suppose a is such that P (a, w) = Q(a, w) = 0 for some w. By
(e0), we deduce that Q1(a, w) = 0. This, and (e1) give Q2(a, w) = 0.
We continue this process and conclude that Qr(a, w) = 0. But Qr is
independent of w. Hence Qr(a) = 0. Since Qr 6≡ 0, there are only
finitely many zeros of the polynomial Qr(z). This proves Theorem 4.11.

We shall call the finite number of zeros of p0(z), the points a for
which the equations P (a, w) = ∂P

∂w (a, w) = 0 have a solution, and the
point at infinity critical points of the equation P (z, w) = 0. All other
points are called regular points.

Let a1, . . . , ap be the critical points of the equation P (z, w) = 0, and
let G be the complement of these points on the Riemann sphere.

We can now easily prove the following

Theorem 4.12 Let D = {z | |z − a| < ρ} be a disc contained in G and
let w(z) be a holomorphic function in D with P (z, w(z)) = 0. Then
w(z) can be continued analytically along any curve starting at a and
contained in G.
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Proof: Let γ be a curve starting at a and lying in G. Let R > 0 be
the minimum distance of a critical point ai from γ. Let 0 = t0 < t1 <
. . . < tq = 1 be such that |γ(t) − γ(t′)| < R whenever ti ≤ t, t′ ≤ ti+1

and let zi = γ(ti). Let Di be the disc |z − zi| < R. Let w0(z) be the
holomorphic function in D0 with w0(a) = w(a), P (z, w0(z)) = 0. This
exists, by Corollary 4.10 to Theorem 4.8, and w0(z) = w(z) in D ∩D0.
Let w1(z) be the holomorphic function in Di with w1(z1) = w0(z1) and
P (z, w1(z)) = 0, and in general, wi(z) the holomorphic function in Di

with wi(zi) = wi−1(zi), P (z, wi(z)) = 0. By the uniqueness assertion of
Theorem 4.8 and analytic continuation, we see that wi(z) = wi−1(z) in
Di ∩Di−1. This proves Theorem 4.12.

4.2.2 Critical points

We shall now study the behaviour of the function-elements defined by
Theorem 4.12 in the neighbourhood of the critical points. We begin
with the points a for which

po(a) 6= 0, P (a, w)
∂P

∂w
(a, w) = 0 for some w.

Let ρ > 0 be such that, for 0 < |z − a| < ρ, we have p0(z) 6= 0, z is not
a critical point of the equation (4.1).

Let D = {z | |z− z0| < δ} be a disc which is contained in Kρ = {0 <
|z−a| < ρ}. Let γ be the positively oriented circle |z−a| = |z0−a| (i.e.
the circle z = a+ (z0 − a)e2πit, 0 ≤ t ≤ 1) and γh the circle γ described
h times (i.e. γh is given by the equation z = a + (z0 − a)e2πiht, 0 ≤
t ≤ 1). Suppose δ so chosen that there are k functions w1(z), . . . , wk(z)
in D having the properties stated in Corollary 4.9 to Theorem 4.8. By
Theorem 4.12, w1(z) can be continued along γh for each h. Because of
Corollary 4.9 to Theorem 4.8, continuation of w1(z) along γh leads to
one of the functions w1(z), . . . , wk(z) say wih(z). Let m be the smallest
integer > 0 such that for some h ≥ 0, we have ih = ih+m. We then
assert that continuation of w1 along γm leads back to w1. This is simple
:w1 is obtained by continuation of wih along γ−h; hence continuation
of w1 along γm is the continuation of wih along γm−h, hence it is also
the continuation of wih+m

along γ−h, which is again w1. Moreover, m
is the smallest integer > 0, such that im = 1. We suppose the indices i
so chosen that il = l + 1 for 0 ≤ l ≤ m − 1. Now we assert that ih = 1
if and only if h is divisible by m. In fact let h = m · q + r, 0 ≤ r < m;
if ih = im = 1, then ir = 1, which , since 0 ≤ r < m, is not possible
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unless r = 0. This integer m is independent of the point z0 in the
following sense. Let z1 ∈ Kρ and σ be any curve joining z0 to z1 in K.
Let (z1, wz1) be the germ at z1 obtained by continuation of w1 along
σ. Then continuation of wz1 along Γh (Γh being the (h-tuply described)
circle z1+(z−z1)e

2πiht) leads back to wz1 if and only ifm divides h. This
follows from what we have shown above and the monodromy theorem
since γ is homotopic, in Kρ, to the curve σ−1Γσ.

Consider now a new complex variable s and consider the punctured
disc 0 < |s| < ρ1/m. The function w1(a + sm) = η1(s) is defined in a
neighbourhood of the point s0 = (z0−a)1/m. Moreover η1(s) can be con-
tinued analytically along any curve starting at s0 and lying in 0 < |s| <
ρ1/m, and continuation along the curve γ′: s = s0e

2πit, 0 ≤ t ≤ 1 of η1(s)
is equivalent to continuation of w1(z) along γm, so that continuation of
η1(s) leads to a (single valued) holomorphic function η1(s) defined in the
entire punctured disc 0 < |s| < ρ1/m (by the monodromy theorem and
the example at the end of Chapter II). We note that if a choice of s0 is
made, continuation of η1(s) along the curve s = s0e

2πit, 0 ≤ t ≤ 1/m
corresponds to continuation of w1(z) along γ. Hence, we deduce that,
in a neighbourhood of s0 we have

wν+1(z) = η1(e
2πiν/m · s) for 0 ≤ ν ≤ m− 1.

Consequently, the values taken by η1 at the points s, se2πi/m, . . . ,
se2πi(m−1)/m) are all distinct for any s with 0 < |s| < ρ1/m. Hence, the
functions w1, . . . , wm are “described” by the equations

{

z = a+ sm,
w = η1(s).

We now assert that η1(s) has a continuation which is holomorphic in
the disc |s| < ρ1/m. To prove this, it suffices to prove that η1(s) remains
bounded in a disc 0 < |s| < ǫ, where ǫ is sufficiently small. It is clearly
enough to show that if ǫ is sufficiently small, there is M > 0 such that
for any root w of the equation P (z, w) = 0, |z−a| < ǫ, we have |w| < M .
Since p0(z) 6= 0 for |z − a| < ρ, this is an immediate consequence of the
following

Lemma 4.13 If a1, . . . , ak, ζ are complex numbers such that

ζk + a1ζ
k−1 + · · ·+ ak = 0,

then we have
|ζ| ≤ 2max

i
|ai|

1/i.
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Proof: Let c = max |ai|
1/i; then |ai| ≤ ci, and, assuming that c 6= 0,

ηk +
a1
c
ηk−1 + · · ·+

ak
ck

= 0

(where η = ζ/c). Then

|η|k ≤ 1 + |η|+ · · ·+ |η|k−1.

If |η| ≥ 2, |η|k ≤ |η|k−1
|η|−1 ≤ |η|k − 1, a contradiction.

Hence |η| ≤ 2, i.e. |ζ| ≤ 2c.
We now consider the points a with p0(a) = 0. Write y = 1

w . We
obtain

P (z, w) ≡
1

yk
{p0(z) + · · ·+ pk(z)y

k} = y−k A(z, y).

Then A(z, y) is also irreducible, so that if pk(a) 6= 0, we see that
in a disc |z − a| < ρ, the function elements y given by the equation
A(z, y) = 0, satisfy the relations

{

z = a+ sm,
y = φ1(s) = α0 + αps

p + · · · , αp 6= 0.

Now, the α0 occurring in these relations satisfy the equation A(a, y) =
0. Since p0(a) = 0, at least one of these numbers α0 is zero. Thus
the function elements w = 1/y which satisfy the equation P (z, w) = 0
are of two kinds, viz. those which, when continued indefinitely in a
neighbourhood 0 < |z − a| < ρ lead to representations

{

z = a+ sm,
w = η(s), where η(s) is meromorphic in |s| < δ with a pole at s = 0.

and those which lead to representations
{

z = a+ sm,
w = η(s), where η(s) is meromorphic in |s| < δ.

We remark that by a simple formal change, we may always ensure
that the hypothesis pk(a) 6= 0 is fulfilled. In fact if u = w + β, we have

P (z, w) = P1(z, u) = p0,1(z)u
k + · · ·+ pk,1(z),

where
p0,1(z) ≡ p0(z), pk,1(z) = p0(z)β

k + · · ·+ pk(z).
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Since P is irreducible, the p0, . . . , pk cannot have a common factor,
so that not all the pi(a) are zero. Hence we may choose β such that
pk,1(a) 6= 0. The above method then leads to similar representation for
the function elements defined by P (z, w) = 0.

The discussion for z = ∞ is similar : we merely set x = 1/z and
consider the point x = 0. We then obtain the representation

{

z = s−m,
w = η(s), where η(s) is meremorphic in |s| < δ.

4.2.3 The Riemann surface of an algebraic function

We will now construct a compact Riemann surface X associated with
the equation

P (z, w) = 0, (4.3)

such that both z and w may be interpreted as meromorphic functions
on X.

Let G be the set of regular points of the equation (4.3). We define a
topological space Y in the following way.

Y is the (open) subset of O consisting of all germs (a, wa), a ∈ G,
defined by a function element (w,U) with a ∈ U, P (z, w(z)) ≡ 0 in U .

We have a continuous map π:Y → G defined by π(a, wa) = a. Then,
π is a local homeomorphism, and so defines on Y the structure of a
Riemann surface (which we do not know to be connected; we shall later
show that Y is connected). Our aim is to complete Y by adding to it
certain points which represent the critical points of (4.3).

Let, then, a be a critical point. [If a = ∞, such inequalities as
|z − a| < δ are to be interpreted as |z| > 1

δ .] Let K = {0 < |z − a| < δ}
be a punctured disc which contains no critical points, and z0 ∈ K.
Let w1(z), . . . , wk(z) be holomorphic functions in a neighbourhood of
z0 having the properties stated in Corollary 4.9 to Theorem 4.8. We
suppose the indices so chosen that continuation of w1 along γh for some
h (γ being the curve z = a+ (z0 − a)e2πit) leads to w1, . . . , wm1

and no
others (m1 is the m of our previous notation), continuation of wm1+1

along γh to wi, m1 < i ≤ m2 and no others and so on. Then, as we
have seen, we have representations

{

z = a+ smi−mi−1 , (m0 = 0),
w = ηi(s), 1 ≤ i ≤ q, mq = k.
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(The equation z = a+ smi−mi−1 is to be interpreted as z = s−(mi−mi−1)

if a = ∞.) Note that these representations correspond one-one with
the connected components Ui of π−1(K). Further, from our remark
that the mi are independent of the point z0 ∈ K, it follows that if
K ′ = {0 < |z − a| < ǫ} ⊂ K and Ui is a connected component of
π−1(K), then the inverse image (π|Ui)

−1(K ′) ∩ Ui is also connected.

To each set of indices i,mj−1 < i ≤ mj , 1 ≤ j ≤ q, we make cor-
respond a “point” (a, pj). Let C be the set of all these points (a, pj),
when a runs over the critical points.

Let X denote the set Y ∪C. We define a topology on X by defining
a fundamental system of neighbourhoods of each point (a, pj) as follows.

Let Kǫ = {0 < |z − a| < ǫ}, ǫ > 0, be any punctured disc with
Kǫ ⊂ G. Let the point (a, pj) correspond to the indices mj−1 < i ≤ mj ,
i.e. to the connected component Uj of π−1(K) containing the germs of
the functions wi with mj−1 < i ≤ mj . Let Eǫ,j = π−1(Kǫ) ∩ Uj . The
sets Uj(ǫ) = Eǫ,j ∪ {(a, pj)} form, by definition, a fundamental system
of neighbourhoods of (a, pj).

We now assert that there is a homeomorphism F of the disc Dǫ =
{|s| < ε1/(mj−mj−1)} onto Uj(ǫ) which is an analytic isomorphism of
Dǫ−{0} onto Eε,j with the complex structure induced from Y . To prove
this, we suppose that we have, for |s| < ε1/(mi−mj−1) representation

{

z = a+ smj−mj−1 ,
w = η(s),

of the functions wi, mj−1 < i ≤ mj defined in a neighbourhood of the
point z0, 0 < |z0 − a| < ǫ and that wi goes into wi+1 by continuation
along the curve γ: z = a + (z0 − a)e2πit. We also suppose a choice of
s0 = (z0−a)1/m made. We then define the mapping F by F (0) = (a, pj)
and, for s 6= 0, F (s) = (z, wz) where z = a+smj−mj−1 and wz is the germ
at z induced by the function obtained by continuation of wmj−1+1 along
a curve Γ which is the image under the mapping s → z = a+ smj−mj−1

of a curve Γ′ in the s-plane joining s0 to s.

We remark that F (s) = (z, wz), where the germ wz is the one satis-
fying P (z, wz) = 0 for which wz(z) = ηj(s). Since the values

ηj(se
2πiv/(mj−mj−1)), 0 ≤ ν ≤ mj −mj−1 − 1

are all distinct, we deduce that F is a one-one continuous map of Dǫ

onto Uj(ǫ). It is easy to show that F has the other required properties.
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Thus every connected component of X is endowed with the structure
of a Riemann surface.

We have defined the mapping π:Y → G which is a holomorphic map
which is a local homeomorphism. We extend π to a mapping

π:X → C̄ (the Riemann sphere),

by putting
π((a, pj)) = a for (a, pj) ∈ C.

Then, this defines a holomorphic mapX → C̄. (This is the function z
considered as a meromorphic function on X). w gives rise to a meromor-
phic function Φ on X. In fact, for (z, wz) ∈ Y , we set Φ((z, wz)) = wz(z)
(which has a unique meaning). For a point (a, pj) ∈ C, let F be an ana-
lytic isomorphism of the discDǫ onto Uj(ǫ) as above. We set Φ = ηj◦F

−1

on Uj(ǫ), z = a + smj−mj−1 , w = ηj(s) being the representation of the
functions wi as above. Thus on X, we have two meromorphic functions
π,Φ which satisfy the relation

P (π(p), Φ(p)) = 0 for p ∈ X.

Theorem 4.14 X is a compact, connected topological space.

Proof: (i) X is compact. Let U(a, pj) be a neighbourhood of (a, pj)
as constructed above. It is sufficient to prove that X −

⋃

U(a, pj) is
compact. Hence, it is enough to show that if {|z−a| < ρ} are sufficiently
small neighbourhood of critical point, and K is the complement of these
sets on C̄ then π−1(K) is compact. For this, let Dν , ν = 1, . . . , r be discs
covering K such that in each Dν , there are k functions w1,ν , . . . , wk,ν ,
satisfying the conditions of Corollary 4.9 to Theorem 4.8. Let Uj,ν be
the open set {(z, wz) | z ∈ Dν , wz, being the germ at z induced by
Wj,ν}. Clearly, if Dν is sufficiently small, Uj,ν has compact closure in
X. Also π−1(K) ⊂

⋃

j,ν Uj,ν . Hence π−1(K) is compact.
(ii) X is connected. We shall prove that Y is connected. It follows

then that X is also connected. To prove this, let (ξ, wξ), (ξ′, w′
ξ′) be

two points of Y . We suppose wξ, w′
ξ′ , are represented by the functions

w(ξ, z), w(ξ′, z). We shall show that continuation of w(ξ, z) along some
curve Γ starting at ξ and lying in G leads to w(ξ′, z).

Let Γ1 be any curve joining ξ, ξ′. By Theorem 4.12, continuation of
w(ξ, z) along Γ1 is possible, and, by Corollary 4.9 to Theorem 4.8, leads
to one of the k functions w1(ξ

′, z), . . . , wk(ξ
′, z) at ξ′ having the prop-

erties stated in Corollary 4.9. Also w(ξ′, z) is one of these k functions.
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Thus it is enough to prove that any one of the functions wj(ξ
′, z) can be

obtained from w1(ξ
′, z) by analytic continuation along some closed curve

Γ2 in G starting at ξ′.
Suppose that this false. Let

w1(ξ
′, z), . . . , wl(ξ

′, z), l < k,

be the functions which are obtained by continuation of w1(ξ
′, z) along a

closed curve. Set

a1(z) = −(w1(ξ
′, z) + · · ·+ wl(ξ

′, z))

a2(z) = +(w1(ξ
′, z) · w2(ξ

′, z) + · · ·+ wl−1(ξ
′, z) · wl(ξ

′, z))

......

al(z) = (−1)lw1(ξ
′, z) · · ·wl(ξ

′, z).

Since, by assumption, continuation along any closed curve starting at ξ′

permutes the wj(ξ
′, z) the aj(z) are unaltered by this process (j ≤ l).

Hence continuation of the aj(z) to any point ofG is uniquely determined,
and the aj(z) are therefore holomorphic in G. For any critical point
a 6= ∞ there is a neighbourhood |z − a| < ρ and an integer N1 > 0, and
a constant M1 > 0 so that, for any root w of the equation P (z, w) =
0, 0 < |z − a| < ρ, we have

|(z − a)N1w| ≤ M1.

This follows at once from Lemma 4.13. Hence there is an integer N > 0
and a constant M > 0, such that

|(z − a)N aj(z)| ≤ M for 0 < |z − a| < ǫ,

and
∣

∣

∣

∣

aj(z)

zN

∣

∣

∣

∣

≤ M for |z| >
1

ǫ
.

Hence the aj(z) have meromorphic continuations to the whole Riemann
sphere, and so are rational functions.

Let

aj(z) =
sj(z)

s0(z)

where the sj(z), s0(z) are polynomials without common factors.
Thus w1(ξ

′, z), . . . , wl(ξ
′, z) satisfy the equation

H(z, wj(ξ
′, z)) = 0,
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where H(z, w) = s0(z)w
l + · · ·+ sl(z).

Now P (z, w) and H(z, w) have no common factor since P is irre-
ducible and 1 ≤ l ≤ k − 1. Hence, as in Theorem 4.11, there are only
finitely many z for which the equations

P (z, w) = H(z, w) = 0

have a solution w. This however contradicts the fact that w1(ξ
′, z) is a

root of both P (z, w) and H(z, w) for all z near ξ′. Hence we must have
l = k and this proves our theorem.

This compact, connected Riemann surface X is the surface of the
“algebraic function Φ defined by P (z, w) = 0”. Φ is a meromorphic
function on X, there is a holomorphic map π:X → C̄, such that for all
p ∈ X, we have

P (π(p), Φ(p)) = 0.

It can be proved that every meromorphic function on X is a rational
function of π and Φ and that X has the following universal property.
If M is a Riemann surface and f, g two meromorphic functions on M
with P (f, g) = 0, then there is a holomorphic map F :M → X such that
f = π ◦ F, g = Φ ◦ F .
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Chapter 5

The Riemann-Roch

Theorem and the Field of

Meromorphic Functions on

a Compact Riemann

Surface

5.1 Divisors on a Riemann Surface

Let X be a compact connected Riemann surface.

A divisor D on X is a mapping D:X → Z from X into the set of
integers Z such that D(P ) = 0 for all but a finite number of points of X.
The divisor is usually represented by the formal sum D =

∑

P nP · P ,
where nP = D(P ).

If D1 and D2 are any two divisors on X, we define the sum of D1

and D2 denoted by D1+D2, as (D1+D2)(P ) = D1(P )+D2(P ). We see
easily that the set of divisors under this operation is an abelian group.
The zero element of this group, called the zero divisor (denoted by 0), is
the divisor which associates to every P of X, the integer 0. The inverse
of the divisor D is denoted by −D and we have (−D)(P ) = −D(P ).

There is a natural relation of order in the set of divisors on X; we
define D1 ≥ D2 if D1(P ) ≥ D2(P ) for every P of X. We say that a
divisor D is positive (resp. negative) if D ≥ 0 (resp.−D ≥ 0).

The degree of a divisor D on X is defined to be the integer degD =

57



58
Chapter 5. The Riemann-Roch Theorem and the Field of

Meromorphic Functions on a Compact Riemann Surface

∑

P∈X D(P ). This is well defined because D(P ) is zero for all but a
finite number of points of X.

Let f be a meromorphic function (or a meromorphic differential) on
X, which is not identically zero. Then we define the divisor D(f) (called
the divisor of f) as follows:

(i) if f is regular and non-vanishing at P , the value of D(f) at P is
zero;

(ii) if f is regular and vanishes at P , the value of D(f) at P is the
order of the zero of f at P ;

(iii) if f is not regular at P , the value of D(f) at P is minus the
order of the pole of f at P .

Since the set of zeros and poles of f is a finite subset of X,D(f)
takes the value zero for all but a finite subset of X and therefore defines
a divisor onX. The degree ofD(f) is zero if f is a meromorphic function
6≡ 0 (by the theorem of 3.2.12). We deduce immediately the following
properties.

(i) D(λ) = 0, where λ is a non-zero, constant function.

(ii) D(fg) = D(f) +D(g), where f is a meromorphic function, and
g is either a meromorphic function or differential, it being assumed that
neither f nor g is ≡ 0.

We say that a divisor D1 is linearly equivalent to D2 (denoted by
D1 ∼ D2) if D1 − D2 is the divisor of a meromorphic function 6≡ 0.
This defines an equivalence relation in the set of divisors on X and an
equivalence class is called a divisor class. It is to be remarked that the
divisors of meromorphic functions 6≡ 0 form a subgroup of the group
of divisors on X, and the quotient group can be identified with the set
of divisor classes on X, and therefore there is a natural structure of an
abelian group on the set of divisor classes on X. If D1 ∼ D2 we have
degD1 = degD2, and therefore we can speak of the degree of a divisor
class.

If ω1 and ω2 are two meromorphic differentials 6≡ 0 we have D(ω1) ∼
D(ω2), because ω1/ω2 is a meromorphic function and D(ω1) = D(ω2)+
D(ω1/ω2). Therefore the divisors of all meromorphic differentials 6≡ 0
lie in the same divisor class, called the canonical divisor class of X. we
shall see a little later that the canonical divisor class always exists, or
equivalently that there exists a meromorphic differential on X which
does not vanish identically.

Let D be a divisor on X. Then we define the set M(D) of mero-
morphic functions (resp. the set N(D) of meromorphic differentials) as
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follows:
(i) the function (resp. differential) which is identically zero belongs

to M(D) (resp, to N(D));
(ii) if f 6≡ 0, f ∈ M(D) (resp.N(D)), if and only if D(f) ≥ D.
Now if f ∈ M(D) (resp.N(D)), λf ∈ M(D) (resp.N(D)), λ be-

ing a complex number and if f1, f2 ∈ M(D)(resp.N(D)), f1 + f2 ∈
M(D) (resp.N(D)). From this it follows that there is a natural struc-
ture of vector space over the complex numbers on M(D)(resp.N(D)).

Theorem 5.1 If D1 and D2 are two divisors on X such that D1 ∼ D2,
there is a linear isomorphism of M(D1) (resp. N(D1)) onto M(D2)
(resp. N(D2)).

Let D1 −D2 = D(f), the divisor of a meromorphic function f 6≡ 0
on X. Then we see that θ ∈ M(D2) (resp.N(D2)) if and only if f · θ ∈
M(D1) (resp.N(D1)). To every element θ of M(D2) (resp.N(D2)), we
associate the element f · θ of M(D1) (resp.N(D1)) and we check easily
that this is a linear isomorphism of M(D1) onto M(D2) (resp. N(D1),
onto N(D2)), q.e.d.

Theorem 5.2 Let K be the divisor of a meromorphic differential 6≡ 0
on X. Then if D is a divisor on X, there is a linear isomorphism of
M(D) onto N(K +D).

Let K be the divisor of a meromorphic differential ω 6≡ 0. Then we
see that f ∈ M(D) if and only if f . ω ∈ N(K +D). To every element
f ∈ M(D), we associate the element fω of N(K + D) and we check
easily that this is a linear isomorphism of M(D) onto N(K +D), q.e.d.

Theorem 5.3 For every divisor D, the dimension of the vector space
M(D) (resp.N(D)) is finite.

If the only meromorphic differential on X is the zero differential, the
dimension of N(D) = 0, and is therefore finite. Otherwise, we can apply
Theorem 5.2, and it suffices to prove that M(D) is of finite dimension
for every divisor D on X.

If E is a divisor such that D ≥ E, M(D) is a linear subspace of
M(E), and if M(E) is of finite dimension, a fortiori M(D) is. Now there
exists a negative divisor E such that D ≥ E. Therefore to prove the
theorem, we may assume without loss of generality that D is negative.

We prove the theorem by induction on deg(−D). If degD = 0, then
D = 0 and the dimension of the vector space M(0) is 1 since it reduces
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to the space of constants. Assume now that the theorem is true for all
D ≤ 0 for which − degD ≤ n and let us prove it for those D for which
− degD = (n+ 1).

Let P0 be a point such that D(P0) 6= 0. Let D′ be the divisor defined
by : D(P ) = D′(P ) if P 6= P0 and D′(P0) = D(P0)+1. Now D′ is again
negative, − degD′ = − degD− 1 and D′ ≥ D. The vector space M(D′)
is a subspace of M(D) and by the induction hypothesis, M(D′) is of
finite dimension. If M(D) = M(D′) there is nothing to prove, otherwise
there exists a function g ∈ M(D) such that the order of the pole of g at
P0 is precisely k = −D(P0). Now if g1 is any element of M(D), we can
find a complex constant λ such that g1 − λg ∈ M(D′). This is easily
proved as follows.

Let (U, z) be a co-ordinate system at P0; then we can find constants
α1, . . . , αk and β1, . . . , βk, such that the functions

g −

{

α1

z − z(P0)
+

α2

(z − z(P0)))2
+ · · ·+

αk

(z − z(P0))k

}

and

g1 −

{

β1
z − z(P0)

+
β2

(z − z(P0))2
+ · · ·+

βk
(z − z(P0))k

}

are holomorphic in a sufficiently small neighbourhood of P0. Now the
order of the pole of g1−(βk/αk)g at P0 is ≤ (k−1)(we note that αk 6= 0).
This proves the assertion.

Thus we see that M(D) is the sum of the spaces M(D′) and the
subspace of dimension 1 generated by g. This proves that the dimension
of M(D) is finite.

The set of holomorphic differentials on X forms a vector space over
the complex number, and this space is precisely N(0), and by the above
theorem, N(0) is of finite dimension.

Definition 5.4 The genus ofX is defined to be the non-negative integer
equal to the dimension of the vector space (over the complex numbers)
of holomorphic differentials on X.

Let X and Y be two isomorphic Riemann surfaces, i.e. there exists a
1-1 mapping f of X onto Y , such that f and f−1 are holomorphic; then
genus of X = genus of Y , for it is immediately seen that there exists a
linear isomorphism of the space of holomorphic differentials of X onto
that of Y .
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Theorem 5.5 The genus of the Riemann sphere (i.e. the Example
3.20) is zero.

If C̄ = C∪{∞} denotes the Riemann sphere, it can be covered by two
coordinate systems (U, z) and (V, ζ) such that U = C, V = C̄−{0}, z is
the identity mapping of C onto C and ζ(∞) = 0 and ζ = 1/z in C−{0}.
Therefore a holomorphic differential on C̄ is defined by a pair of entire
functions f(z), g(ζ) in the z and ζ planes respectively, such that

f(z) = g(1/z) · (−1/z2) (cf.2, §9,Chap.III).

If f(z) =
∑

n≥0 anz
n, and g(ζ) =

∑

n≥0 bnζ
n, we have

−
1

z2





∑

n≥0

bn
1

zn



 =





∑

n≥0

anz
n



 ,

which shows that f ≡ 0.

Therefore every holomorphic differential on X is identically zero
which proves the theorem.

Remark 5.6 It can be proved that for every integer g ≥ 0, there exists a
compact Riemann surface with genus g. We have seen that two Riemann
surfaces which are isomorphic (in the holomorphic sense) have the same
genus. It can be shown that the converse is not true for g ≥ 1. One can
show, however, that any two Riemann surfaces of the same genus g are
homeomorphic. In fact each of them is homeomorphic to the Riemann
sphere to which g handles are attached.

Problem 5.1 Show that on the Riemann sphere, every divisor of degree
0 is the divisor of a meromorphic function.

2. Show that if D is a divisor on the Riemann sphere, dimension of
M(D) = − degD + 1, if degD ≤ 0.

3. Show that the genus of a complex torus T (3.2.4 for the definition
of a complex torus) is 1. (Hint: Let π:C → T be the mapping of
the complex plane onto T as in 3.2.4. Show that the non-vanishing
differential dz “goes down” to a differential on T so that there exists
a non-vanishing holomorphic differential on T ; or use the fact that if
θ(z) is an elliptic function. θ′(z) is again an elliptic function so that the
divisor of the differential dθ on T is of degree 0.)
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5.1.1 The Riemann-Roch theorem and applications

Let X be a compact, connected, Riemann surface. If D is a divisor on
X, we denote by m(D) (resp. n(D)) the dimension of the vector space
M(D) (over the complex numbers) of meromorphic functions which are
multiples of D (resp. the vector space N(D), of meromorphic differen-
tials which are multiples of D).

We now state the important theorem of Riemann-Roch, whose proofs
are, however, too complicated to be given here.

Theorem 5.7 (Riemann-Roch)1 Let D be any divisor on X. Then the
integer

k = m(−D)− n(D)− degD,

is independent of the divisor D.

Let D be the zero divisor. Then m(−D) = 1, n(D) = g (the genus
of X) and degD (i.e. the degree of D) = 0. Therefore k = 1− g. Thus
the Riemann-Roch theorem can be stated as follows:

m(−D)− n(D) = degD − g + 1.

Theorem 5.8 On X there exist non-constant meromorphic functions
and meromorphic differentials not identically zero.

If D is a negative divisor, m(−D) = 0, and if further D is chosen
so that − degD ≥ 2, − degD + g − 1 ≥ 1. Therefore by the Riemann-
Roch theorem, n(D) > 0 which proves that there exist meromorphic
differentials not identically zero. If degD ≥ g + 1, m(−D) ≥ n(D) + 2,
which shows that there exist non-constant meromorphic functions.

Theorem 5.9 The degree of the canonical divisor class of X is 2g−2, g
being the genus of X.

Let ω be a meromorphic differential on X which is 6≡ 0, and K the
divisor of ω. Then by the Riemann-Roch theorem, we have

m(−K)− n(K) = degK − g + 1.

By Theorem 5.2, m(−K) = n(0) = g and m(0) = n(K) = 1. There-
fore, degK = 2g − 2, q.e.d.

1The usual proofs of the Riemann-Roch theorem (cf. for example [11]) use the
existence of meromorphic functions and differentials with certain properties. For a
direct proof see [9].
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Theorem 5.10 Every Riemann surface of genus 0 is isomorphic to the
Riemann-sphere.

Let X be a Riemann surface of genus 0. Let P and Q be two distinct
points of X, and D the divisor 1 · P − 1 · Q. Then by the Riemann-
Roch theorem m(−D) ≥ degD − g + 1 = 1. Therefore, there exists a
meromorphic function f which is a multiple of −D. Now f cannot be
constant (non-zero) for it has a zero at Q. Therefore, f is a non-constant
meromorphic function whose only zero is a simple zero at Q (and only
pole is a simple pole at P ). Hence f assumes every value on the Riemann
sphere only once (cf. Theorem 3.53,§13, Chap.III); therefore f defines
a holomorphic 1-1 mapping f :X → C̄ of X onto the Riemann sphere
C̄. Now for every p ∈ X, ordp(f − f(p)) = 1. Therefore there exist
coordinate systems (U, z) at p and (V,w) at q = f(p), such that

(i) z(p) = w(q) = 0,

(ii) f(U) = V , and

(iii) w ◦ f ◦ z−1 = z on z(U) (cf.[6], §4,Chap. III).

Therefore w ◦ f ◦ z−1: z(U) → w(V ) is the identity mapping; in
particular it is an isomorphism. It follows that f−1 maps V onto U ,
and in fact that it is an analytic mapping of V onto U . This shows that
f−1: C̄ → X is holomorphic. Therefore f :X → C̄ is an isomorphism,
q.e.d.

Remark 5.11 It can be proved that every Riemann surface of genus 1
is isomorphic to a complex torus.

Problem 5.2 Show that given two distinct points P and Q on X (resp.
one point P ), there exists a meromorphic differential whose only poles
are simple poles at P and Q (resp. whose only pole is a double pole at
P ).

5.1.2 Field of algebraic functions on a compact Riemann

surface

It is well-known result in the theory of elliptic functions (i.e. mero-
morphic functions on a complex torus) that every elliptic function can
be expressed as a rational function of ℘ and ℘′ with complex coeffi-
cients, ℘ being the Weierstrassian elliptic function. One has further
℘′2 = 4℘3 − g2℘− g3. We shall now generalize this result to the case of
an arbitrary compact Riemann surface.
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Let k be a subfield of a field K. Then the field generated by k and
elements z1, . . . , zn of K is denoted by k(z1, . . . , zn) and it is precisely
the set of elements of K which can be expressed as rational functions of
z1, . . . , zn with coefficients in k.

Definition 5.12 Let K be a field and let C, the field of complex num-
bers, be a subfield of k. Then K is said to be an algebraic function field
of one variable over C if (1) there exists an element z of K not belong-
ing to C and (2) there exists an element w of k which is algebraic over
C(z)(i.e. there exist λ1, . . . , λp ∈ C(z), λ1 6= 0 such that

∑p
i=1 λiw

i = 0)
such that every element of the field K is a rational function of z and w
with coefficients in C.

Remark 5.13 The condition (2) is equivalent to stating that K is a
finite extension of C(z).

The meromorphic functions on a (connected) Riemann surface form
a field. This field contains C. We have now the following theorem.

Theorem 5.14 Let K be the field of meromorphic functions on a com-
pact (connected) Riemann surface X. Then K is an algebraic function
field of one variable over C.

Let z be a non-constant meromorphic function on X and n the num-
ber of zeros (or poles) of z. Now z defines a holomorphic mapping
z:X → C̄ of X onto the Riemann sphere, such that every value of C̄
is assumed n times by z (a point p ∈ X is counted k times, k being
ordp(z − z(p))). Given P ∈ C̄, let P1, . . . , Pn be the points of X over
P (i.e. z−1(P )). Let S1 be the set of poles of f and S = z(S1). Now
consider the elementary symmetric functions

r1(P ) = f(P1) + · · ·+ f(Pn),

.............

rn(P ) = f(P1)f(P2) · · · f(Pn),

for P ∈ C̄− S. We shall now prove that the ri are meromorphic on C̄.

Let E be the (finite) set of points Q ∈ C̄ such that there is a point
P ∈ z−1(Q) for which ordP (z − z(P )) > 1 if P is not a pole of z and
ordP (1/z) > 1 if P is a pole of z, and let A = z−1(E).
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Let Q ∈ C̄ and Q1, . . . , Ql be the distinct points of X in the set
z−1(Q). Then, given any neighbourhood V of z−1(Q), there is a neigh-
bourhood U of Q so that z−1(U) ⊂ V, z−1(U) =

⋃l
i=1 Ui where Ui is a

neighbourhood of Qi.

Proof: We have only to find U with z−1(U) ⊂ V . To do this, we
remark that X−V is a compact set so that K = z(X−V ) is a compact
(hence closed) set of C̄ not containing Q and we may take U = C̄−K.

Since z is a local homeomorphism on X − A, if Q ∈ E, we may in
addition suppose that zi = z|Ui is an isomorphism onto U . If Q 6∈ E, we
have, on U, r1(Q) =

∑n
i=1 f(z

−1
i (Q)) so that r1 (and similarly r2, . . . , rn)

are meromorphic in U , hence in C̄− E. Let now Q ∈ E. To prove that
rp is meromorphic at Q, let φ be any holomorphic function in U which
vanishes at Q. It suffices to show that there is an integer N so that φNrp
is bounded in a neighbourhood of Q. Let θ = φ ◦ z. Then θ vanishes on
z−1(Q) and we may therefore choose V and an integer M so that θMf is
bounded in V (f being meromorphic on X). The existence of the integer
N clearly follows from this.

Now every meromorphic function h on C̄ can be naturally identified
with a meromorphic function on X; in fact we identify h with (h ◦ z).
We therefore identify the meromorphic function I: C̄ → C̄ which maps
every point of C̄ onto itself, with z. Now the ri are rational functions in
I and can therefore be naturally identified with rational functions in z
(with complex coefficients).

Now consider the meromorphic function

A(f) = fn − r1f
n−1 + · · ·+ (−1)nrn,

on X. Then there exists a non-empty open set U of C̄ (in fact C̄ minus
a finite number of points) such that f and A(f) are holomorphic in
V = z−1(U). Now if Q ∈ V, P = z(Q) and P1, . . . , Pn are the points of
V over P , we have Q = Pi for some i and

A(f)(Q) =
n
∏

i=1

(f(Q)− f(Pi)) = 0.

Therefore A(f) is the zero function in V , therefore in X. Thus f is
algebraic over C(z), and is the zero of a polynomial of degree n with
coefficients in C(z).

Now every element f ∈ K is the zero of an irreducible polynomial
over C(z) and its degree ≤ n, for this polynomial divides A(f). Choose
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now an element f0 of K such that the degree of the irreducible polyno-
mial over C(z), satisfied by f0, is of maximum degree, say equal to m.
Let f be any element of K. Then if k = C(z), we have

(k(f, f0): k) = (k(f, f0): k(f0)) · (k(f0): k).

(Here (k(f0): k), for example, denotes the degree of k(f0) over k.) Since
k(f, f0) is a finite extension over k (which has characteristic zero), k(f, f0)
= k(g) for some g ∈ K. Therefore (k(f, f0): k) ≤ m. But (k(f0): k) = m.
This implies that k(f, f0) = k(f0), i.e. that f ∈ k(f0). This proves the
theorem.

Remark 5.15 As a consequence of 5.14, it can be proved that any
compact Riemann surface X is isomorphic to the Riemann surface of an
algebraic function as defined in Chap.IV.
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