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PREFACE

Ta1s book is an introduction to recent work in the theory of func-
tions of several complex variables, especially on complex spaces.
Many results of a local character, relating to the ring of germs of
holomorphic functions at a given point, holomorphic mappings,
analytic continuation, analytic sets and so on are usually assumed
known, although they are not proved in the well-known books of
Behnke-Thullen and Bochner-Martin and are available only in
the original papers of H. Cartan, R. Remmert, K. Stein and others,
or in seminar notes. (See [3], [5] in the references).

I thought that it might be useful to put all this material together,
and that a new treatment might suggest fresh ideas. The treatment
given here is as self-contained as was found possible. The reader
needs only to be acquainted with the classical theory of holomorphic
functions of a complex variable, and with a few results from Algebra,
which are summarized in Chapter II, §2.

The text is based on a course of lectures given early in 1962
at the Tata Institute of Fundamental Research, Bombay. I wish to
express my gratitude to Professor K. Chandrasekharan who invited
me to give these lectures and decided to have them printed.

The major part of the text was actually written by Mr. R. R.
Simha. I thank him warmly for his useful remarks and his
wholehearted co-operation. I am also indebted to Dr. Raghavan
Narasimhan for important improvements.

’
Nawncy MicHEL HERVE
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I

BASIC PROPERTIES OF HOLOMORPHIC
FUNCTIONS OF SEVERAL VARIABLES

Ix this chapter we present some basic properties of holomorphic func-
tions of several complex variables, mostly without detailed proofs.

1. Holomorphic functions. The space we work in is an m-dimen-
sional vector-space C™ over the field C of complex numbers, m > 1.
In general we shall suppose a basis fixed for C™, and identify C™
with the space of ordered m-tuples z=(x,,...,,) of complex
numbers.

Given a point @ = (a,,..., @,,) of C™, and real numbers r,, ..., r,, > 0,
we call the set P ={(z,, ..., 2,) €C™||2;— & | <71}, j =1, ..., m}
the open polydisc with centre a and radii r;. Similarly, the closed
polydisc with centre a and radii r; is tho set

P={@,..., %,) €C™||z;—a)| <7pj=1,...,m}.
The set

I'={y, .., 2,) €O™| |7, — ;| =1}, j =1, ..., m}
is called the edge, or distinguished boundary, of P (and of P). The
set of all open polydiscs is a basis for the “usual” topology on C™.
(The topology thus defined does not depend on the choice of the
basis for C™.)

NorMmAL CONVERGENCE. A series X f, of complex-valued func-
tions defined on a set E is said to converge normally on E if

:2- lfall <+ co; here || £, | =sup | fal@) -

ABEL’s LEmMMA. Suppose the power series

= &
S= I @ g, it .2m
Eypoukin 0

in m variables € C converges' at the point (b, ..., b,) of C™, and lot
b; # 0 for j = 1 to m. Then § converges at overy point of the open
polydisc P with centre the origin of C™, and radii |);|; and S con-
verges normally on every compact subset of P.

1 Only absolute convergence will be considered in this book.
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DerFINITION 1. A complex-valued function f, defined on an open
subset U of C™, $s holomorphic in U if for every point beU, there
exist an open polydisc P c U with centre b, and a power series

z @ g (T — OV (2 — b,,)im

Jpeendm>20

converging to f(x) at every point z € P.

REMARK. Suppose f is holomorphic in U. Then by Abel’s lemma,
the power series § converges normally on compact subsets of P.
Hence a holomorphic function is continuous.

PROPOSITION 1. Let fy,..., f, be holomorphic functions on an open
subset U of C™, and suppose that for every x in U, (f1(2), ..., f,(x)) lies
in a given open set V in C?. Then for every holomorphic function g
on V, the function g(fy(2), ..., f,(x)) is & holomorphic function of z
on U.

This follows from associative properties of normally convergent
power series.

COROLLARY 1. The holomorphy of a function on an open set in
C™ does not depend on the choice of a basis for C™,

CoRrOLLARY 2. If f and g are holomorphic functions on an open
set U in C™, the functions f + g, fg are holomorphic in U. If g does
not vanish anywhere in U, the function f|g is holomorphic in U.

CoRrOLLARY 3. Let f be a holomorphic function on the open set U in
C™. Then for every pointa=(a,, ...,a,) of U, and every j (1 <j < m),
the function f(By,...,®;_1, &} @iy, ... Gy) Of one complex variable z;,
defined on the open set

{z; €C|(ay,..., a_y, ), @j 4, ..., @) € U}
in C, 18 holomorphic there.

REMARK. Suppose conversely that f is a complex-valued function
on U such that each function of one complex variable obtained
from f as above is holomorphic in the corresponding open set in C.
Then f is holomorphic in U (Theorem of Hartogs-Osgood). This is a
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deep result, which we shall not prove in this book. For a proof,
see Bochner and Martin ([1], p. 140).

ProrosiTiON 2. Let f be a holomorphic function on an open
set U in C™. For any integers k,, ... ,k, > 0, the partial derivative
Pt ethm f

e exists and is holomorphic in U. More precisely let P c U
ozkr . 3:5"
be an open polydisc with centre b, and let S be a power series in the
% —b;, j =1,..., m, converging to f in P. Then the power series
obtained by termwise differentiation of S, k, times with respect to
Prutonthm £

n P.
ozh ... dxk

CoroLLARY 1. With the notation of Prop. 2, the coefficient of
1 ofrt.tkm f(b)
k.. k,! 0xf... Oxk
the power series S is uniquely determined by the values of f in a
neighbourhood of b. We call it the Taylor expansion of f at b.

Z,, ..., k, times with respect to z,, ges to

(2, — b)) ... (3, — b, )em in S is . In particular,

CoroLLARY 2. Let f and g be holomorphic functions on a connected
open set U in C™. Suppose f =g on a non-empty open subset of U.
Then f = g everywhere in U (Principle of Analytic Continuation).

Proor. Let V={xeU|f=g in a neighbourhood of z}. V is
non-empty by assumption, and by definition it is open. Plainly
a point z€ U belongs to V if and only if f and ¢ have tho same
Taylor expansion at z. By Corollary 1, this means that

ak,+...+k,,.f(x) ak,+...+k,,. g(x)
ozfr ... ozkm T Oahr ... dzkm } ’

V=_ N {er

Kyyerskm >0

hence V is closed in U. U being connected, ¥ = U, q.e.d.

REMARK. We shall see later (Chapter III, §1) that if f =g on
a subset F of U such that U — F is open and disconnected, or
locally disconnected (i.e., there exists an open connected set Wc U
such that W n (U—F) is disconnected), then f =g on U.

2. Germs of holomorphic functions. Let X be an arbitrary subset
of C™. We consider the set E(X) = E of pairs (U, f) where U is an
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open set in C™ containing X and f a function holomorphic on U.
We define a relation R on E as follows : (U, f) R (V,g) if and only
if f =g on an open set (c U n V) containing X. Clearly R isan
equivalence relation.

DEriNITION 2. A germ of a holomorphic function on X is an
equivalence class of E(X) with respect to the relation R.

We denote by 5#(X) the set of germs of holomorphic functions
on X. With the obvious addition and multiplication, #(X) is a
commutative ring with identity. It is clear that each element of
J#(X) has a well-defined value at each point of X ; however, in
gencral, distinct elements of 5#(X) may have the same value at all
points of X.

REMARK 1. Suppose the set X is the closure of its interior ; or
suppose cach connected component of X has an interior point. Then
any element of 5#(X) is uniquely determined by its values on X. In
fact, suppose (U, f), (V, g) € E(X), and f = g on X. Then, in both
cases, it is clear from Corollary 2 to Prop. 2 that f=g on all
connected components of U n ¥V meeting X. Hence (U, f) R (V,g).

REMARK 2. Suppose X contains just one point a. In this case
we write J(X) = ™. Two functions holomorphic in an open
neighbourhood of @ coincide in a neighbourhood of @ if and only
if they have the same Taylor expansion at a. Thus J#7 is isomorphic
to the ring of convergent power series in m complex variables.

(A power-series s Zk} o By by 1 .- Zhm I8 said to be convergent
1reram

if it converges in an open polydise with centre the origin of C™.)
The value of an element of 7 at a is, of course, the constant term
of its Taylor series.

3. Cauchy’s integral formula. Let f be (a germ of) a holomorphic
function on the closed polydisc P in O™ with centre & and radii 75
Then for every point « of the open polydisec P with the same centre
and radii, we have
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1 JW1 -1 Y)
flx) = : dYp - _ IWyenbn) gy,
(27”)”‘ Wi — Gl =t 93— 8yl =7y (yl. — &) ... (ym - m)
where, for the integrations, the circles |y; —ay| =1, are assumed
positively oriented.

This follows immediately from Cauchy’s integral formula for
holomorphic functions of one complex variable.

CororLrarY 1. With the above mnotation the Taylor series

8= X & ;. —a)... (%, — a,)m of fat a converges in P.
Bypersbn 30

In fact, the integrand in the Cauchy integral formula can be
expanded in a power series in the x; — a;, converging in P, and
with coefficients which are functions of y on the edge I' of P. Since
f is continuous, hence bounded, on T', this series (for each zin P)
converges normally on I'. The series can therefore be integrated
termwise, and yields a power series in the z; — a; converging to f
in P.

REMARE. Suppose that f is a holomorphic function on an open
set U in O™. The above result implies that the Taylor series of f at any
point @ € U converges in any polydisc with centre @, contained in U.

CoROLLARY 2. With the notation of Corollary 1, we have, for any
ky, ... by >0,

'“l:,...k,,.| <

1
= o A 171,
where T is the edge of P (Inequalities of Cauchy).

In fact the integral formula yields

B dey, =
1 f(Y1 - Ym)
5 /M EF1 1 W
(2™ 1Wm—Gml ="m ly3— 8yl =1y (y1— ay) 1t Yy — B ™

leading to the given majorisations.
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REMARK. Let & be a family of holomorphic functions on an
open set U of C™, uniformly bounded on compact subsets of U.
Since the Taylor series of the partial derivatives of a holomorphic
function may be obtained by termwise differentiation, the in-
equalities of Cauchy imply that for every k, ..., k, > 0 the family

Frrtethm f
{ ozk ... oxkm
of U. In particular, the family of all first partial derivatives of
members of % is uniformly bounded on compact subsets of U,
hence the family & is equicontinuous. It follows from Ascoli’s
Theorem (see [2], p. 43), that one may extract, from any infinite
sequence of members of &, a subsequence which converges uniformly
on every compact subset of U.

feF } is also uniformly bounded on compact subsets

CoroLLARY 3. (The Maximum Principle.) Let f be a holomorphic
function on an open set U in C™. Let 9U be the boundary of U—if
U is not relatively compact in C™, 3U 18 to include the point at infinity
of C™. Suppose that, for every point y of dU, lim sup 1flx) | < M.

> y,ze
Then (i) | f|1 < M in U, (ii) if | f(zy) | = M for a point x, in U, then
f(x) = f(x,) on the ted P t of U containing x,.
This is proved as in the case of one complex variable, using the
integral formula.

4. Weierstrass’ Theorem. If a sequence {f,} of functions, holo-
morphic on an open subset U of C™, converges uniformly on every
compact subset of U, then (i) the limit function f is holomorphic in
ak‘+"'+k’"f,. }

¥ %
oz f1 ... Ox,fm

U, (i) for any k,, ..., k,, > 0, the sequence {

ghrttkm f

PPy on U, uniformly on every compact subset of U.

ges to
The first statement is proved by using Cauchy’s integral formula,
the second one then follows from Cauchy’s inequalities.

CoroLLARY 1. If a power series in z,, ..., x,, converges in an open
polydisc P with the origin of C™ as centre, then the sum is a holomorphic
Sfunction on P.
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CorOLLARY 2. Let U be an open set in C™, K a compact space,
and p a Radon measure on K. Suppose (z, y) — f(z, y) is a continuous
Sfunction on U x K, and x— f(x, y) is @ holomorphic function on U for
each fixed y in K. Then (i) the function F(x) = [ f(z, y)du(y) is

K

holomorphic in U, (ii) foranyk,, ..., k, >0,
akl"'""“""F(x) _ I a"l"’"""k"‘f(x,y)

ok oxkm ) Toxki . Oxkm u(y)-

We thus obtain, in particular, the Cauchy integral formulas for
the partial derivatives of a function holomorphic on a closed polydisc.

5. Holomorphic mappings.

DEerINITION 3. A mapping f(x) = (f1(2), ..., f,(*)) of an open
subset U of C™ into C? is holomorphic if its coordinates fy(z), ..., f,(2)
are holomorphic functions on U. If p = m, then the Jacobian J(x) of f

at x € U is the determinant of the matriz (3__%(3:_) ) .
i

We shall give a complete proof of the following theorem.

THEOREM 1. Let f be a holomorphic mapping of an open subset U
of O™ into C™, and suppose J(a) #0 at a point a € U. Then there
exist open neighbourhoods V(c U) and V' of a and f(a) respectively
such that (i) the restriction f| V of f to V is one-one in V and maps V
onto V', (ii) the inverse mapping of f | V s holomorphic in V.

Proor. We may assume that a = f(a) =p, the origin of C™.
Since Jf(o) # 0, we may also assume a basis for C™ so chosen that
the matrix of Jy(p) is the identity matrix. For z € U, let us write
‘f(xz) =2 — g(x). Then g(x) defines a holomorphic mapping of U into
C™, and all the coordinates g;(x), with all their first partial deriva-
tives, vanish at p. Using the mean-value theorem of the differential
calculus, we can therefore find an open polydisc P c U, with centre o
and radii r, such that for all z, 2’ in P,

sup |gi(x) —g;(') | <% sup |z — . (*)
1<jsm 1<jiSm
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Let P’ be the open polydisc with centre p and radii 7/2; (*) implies
in particular that g(P)c P’. We shall show that the assertions of
Theorem 1 are valid with V = P f~}(P’), and V' = P".

By definition of V, V', we have f(V)c V’'. We assert first that
f| V is one-one. Suppose in fact that z, ' e V, z # 2’, and f(z) = f(').
Then z — 2’ = g(z) — g(z’), so that

sup |g,(x) — g;(*')| = sup |z;— | (>0, since z # z').
1<j<m 1<i<m

However, V c P, so this is a contradiction. Now for any y e V, we set
29(y) =y, and define 2™(y) for » > 1 inductively by a™(y) =y +
g(z*~1)(y)) —since g(P) c P’, it is easily checked, by induction, that
2™(y) € P for all n. We have, for » > 2,
2M(y) — 2 V(y) = gz V(y)) — g(="~N(y)),
and hence (*) easily leads to the majorisation
sup |5 (@) — =" V()| <S> L
1<j<m 2"
Hence the sequences {2{™(y)} converge uniformly on V’. Plainly the
a{™(y) are holomorphic functions on ¥, hence the limit z,(y) of the
zg"’(y) is & holomorphic function on ¥V, for j =1, ..., m. Set z(y) =
(z1(¥),-..» Zn(y)). Then the mapping z(y) of ¥V into C™ is holomorphic.
Since, for every m, x™(y) — y € P’, z(y) — y lies in P'. Since
y € P’, this means that z(y) lies in P. Again, for every n, 2™ (y)—
g(@"~N(y)) =y, hence z(y) — g(=(y)) =y, i.e., f(2(y)) =y. Since f|V
is one-one, this shows that f(V) = V’, and that 2(y) is the inverse of
J1V, qed.

ReMARk. Conversely, suppose f is a one-one holomorphic
mapping of an open set U of C™ onto an open subset of C?. Then
p = m, and the Jacobian of f never vanishes in U. This will be
proved later (Chapter IV, §5).



II

THE RING OF GERMS OF HOLOMORPHIC
FUNCTIONS AT A POINT

Ix this chapter, we shall be mainly concerned with the “Preparation
Theorem of Weierstrass’’ and some of its consequences. This theorem
is an important tool in the local study of the zeros of holomorphic
functions.

1. Preparation theorems. Let J#7 denote, as before, the ring of
germs of holomorphic functions at the point a eC™. If f is a holo-
morphic function on some open neighbourhood of ain C**, we denote
by f the element of #™ induced by f. In particular, 0 and 1 are
respectively the zero element and the identity of 7.

PROPOSITION 1. J#™ is an integral domain.

PrROOF. As observed before, #™ is isomorphic to the ring of
convergent power series in m variables over C, which is a subring of
the ring #™ of formal power series in m variables over C. Since F™
is isomorphic (for m > 2) to the ring of formal power-series in ono
variable over ™1, we can deduce, by induction on m, that #™ is
an integral domain, from the following fact : the ring A[[X]] of
formal power series in one variable X over an integral domain 4
is an integral domain. To prove this last fact, let f =tZ a, X*,

>p
g= X b X% p,g>0,a, #0,b, #0, bo two non-zero elements
k>q
of A[[X]] Then fg = X ¢, X* with c,,, = ab, # 0, q.c.d.
E>ptq

REMARK. Proposition 1 may also be deduced from the principlo
of analytic continuation : if f is holomorphic on an open connected
set U in C™, and vanishes on a non-empty open subset of U, then f
vanishes identically on U.

An element f € #°™ is invertible if and only if f(a) # 0. Hence the
set of non-invertible elements of " is an ideal (which is thereforo
the unique (proper) maximal ideal of ). Wo denote it by ;.
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DEFINITION 1. Two elements f, g € ™ are equivalent: f ~g,
sf there exists an invertible element h € S such that f = hg.

Clearly ~ is an equivalence relation in 5#7; and f ~ g implies
that f and g have the same zeros in a neighbourhood of a. The trivial
equivalence-classes in 57 with respect to this relation are those of
0 and 1, consisting, respectively, of 0 alone and of all invertible
elements of ™.

If 2=(z,,...,x,,) is any point of C™ (m > 2), we shall denote by =’
the point (2,,...,%,,_1) €C™1;in particular, g and p’ are respectively
the origins of C™ and C™~1. Conversely, if z'= (z,,...,%,,—;) €™},
and z,, €C, (z', z,,) denotes the point (z,,....Z,_1, Z,) € C™. We
shall also write ™ = 5™, '™ = H'™.

DEFINITION 2. A distinguished pseudo-polynomial in =z, of
b4
degree p, is an expression of the form % 4+ X c(z') 227%, p> 1,
k=1
where the cy(x') are holomorphic functions on open neighbourhoods
of 0’ in C™~1, vanishing at p’.
A distinguished pseudo-polynomial induces a non-zero and non-
invertible element in J#™.

Tarorem 1. (The Weierstrass Preparation Theorem.) Suppose
given an element f € S#'™, £ 0. Then : (i) we can choose a basis for
C™ in such a way that f(0', z,) does mot vanish identically in
any neighbourhood of z, =0 in CY; (ii) if the basis for C™ is such
that f(0’, z,) does nmot vanish identically in any meighbourhood of
2, =0 in C, there exists a distinguished ial

¢ =2a+ Z’ c(z’) 2%7% such that f~ e; (iii) 4f, with respect to
E=1

J 7,
v £ Vet

the same basis a8 in (ii), § =28, + 3 dy(z’) 24* is any distinguished
k=1

pseudo-polynomial such that G ~f, then g = p, and for every
k1< k<p,c and d induce the same element of '™~ =¢'™"1,

Proor. (i) Choice of the basis for C™. Let U be an open convex
neighbourhood of p on which f is defined and holomorphic. Since
f #0, there is a point @ € U, a # 0, such that f(a) # 0. If we choose
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any basis for C™ whose mth element is a, f(0’, ,,) i8 defined and
holomorphic on the connected (in fact convex) open set {z,, €C!|
(0', z,,) € U} and does not vanish at the point ,, =1 of that set,
q.e.d.

(ii) We now suppose that f(o', z,,) does not vanish identically in
any neighbourhood of z, =0. Let P be an open polydisc, with
centre p and radii 7, on which f is defined and holomorphic. Then
there exists a number p, 0 <p < r, such that f(o’, z,) #0 if
0<|%,| < p. By the continuity of f in P, we may find an open
polydisc P’ in C™~1, with centre p’ and radii < r, such that f(z', z,,)
0 if 2’ € P’ and |z, | = p—for, f does not vanish on the compact
set {(0', #,,) | |z, | = p}. It is useful to notice that p and the radii
of P can be chosen, in that order, arbitrarily small. Let y be the
positively oriented circle || = p in C!; define, for 2’ € P,

w1 [3f,t) dt
“o(x)=2—""ij —_a—t—ﬁ;’,_t)
L
Since, for each fixed ' in P’, f(z’, t) is a holomorphic function of
t in |¢] < p and does not vanish on y, o,(z') is precisely the number
of zeros (counted with multiplicity) of f(z’, t) in |¢| < p. Plainly o,
is continuous on P’. Since it is integer-valued, and P’ is connected,
we must have o, = 0y(0’) = p say. Since f(p) = 0, while f(0’, z,,) # 0
in 0 < |=,| < p, p is precisely the multiplicity with which f(o’, z,,)
vanishes at z,, =0, and p > 1. Now f(z’, t) has, for every 2’ in P’,
precisely p zeros in |t]| < p, say t,(z'), ..., t,(x'). Fork> 1, and 2’
in P, let o,(2') = {t;(2")}* + ... + {t,(«")}*. The formulas

1 (', t) dt
|t e

o (') = k>1,

k4
show that all the o, are holomorphic functions on P’. We now
consider the elementary symmetric functions of the f(z'): for

1< k<p,let

GE)=(—1F > @)t @)
1<y <. < <P



12 SEVERAL COMPLEX VARIABLES

Each ¢, can be expressed as a polynomial in the o; (with rational
coefficionts) and hence is holomorphic on P’. It is evident that all

P
the ¢, vanish at o’. Hence ¢(z', 2,,) =25 + X (') 257% is a dis-
k=1

tinguished pscudo-polynomial. We shall show that f and ¢ induce
equivalent germs at every point of P, ={(z’, z,,)| 2’ € P, |2,|<p}.

For each z’ in P, f(z', t) and ¢(«’, t) are holomorphic in [¢]| < p,
and do not vanish on |t| = p, and ¢(2’, t) has, by definition, the
same zeros, with the same multiplicities, as f(z’, t) in |¢| < p. Hence
f(&', t)/p(z’, t) and (', t)/f(', t) are, for fixed 2’ in P’, holomorphic
on || < p. Hence we have, by Cauchy’s integral formula,

[ a1 [y at
¢, z,)  2m _‘. b, t)t — =,
k4
Sz 1 (4.0 di
f&, 2,)  2m jf(z’, ) t—z,
k4
for all points (', z,,) in P;. However the integrands in these formulas

are continuous functions of (z, t) on P, X y, holomorphic on P, for
1@ , 4 )
37 and T
$@) Sl

that f and ¢ induce equivalent germs at every point of P, proving (ii).

eacht e y. Hence are holomorphic in P; and this implies

(iii) Let y(z', z,) = 2% + é dy(z)x%® be any distinguished
E=1

pseudo-polynomial such that ¢ ~f. Then $ ~ ¢, where ¢isasin (ii).
Since the P, of (ii) can be chosen to have as small radii as desired,
we may assume that : (a) the d,, k=1, ..., g, are all defined and
holomorphic on P’; (b) there exists & holomorphic function 4 on P,,
vanishing nowhere in P,, such that §i(z’, z,,) =h(z’, 2,) $(', x,,). We
then have 4i(0’, z,,) =h(0’, 2,,)P(0’, 2,) in| z,,| < p, i.e., 28, =h(0’, z,,) 22
in |z,| < p. Since A(0’, x,,) vanishes nowhere in |z, | <p, we
must have ¢ =p. The equation ¢ = h¢é shows that for each z' in
P', §i(z’, t) has p roots in || < p, viz. those of ¢(z’, t). Since y(z', t)
and ¢(z’, t) are monic polynomials of degree p, their corresponding
coefficients, which are elementary symmetric functions of these p
roots, aro the same, i.c., d(z') =¢(z') on P, k=1,...,p, qe.d.
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REMARK 1. Given a finite family of functions f;» each of which
satisfies the assumptions of Theorem 1 (i.e., f, € '™ f; #0), we
can choose a basis for C™ in such a way that, for each j, f,(0’, z,,)
does not vanish identically in any neighbourhood of x, =0 in
C1, and therefore there exist distinguished pseudo-polynomials
¢, in z,, such that f; ~¢,.

REMARK 2. Given a function f holomorphic in some neighbour-
hood of p such that f(p) = 0 and f(0’, x,;) 2% 0 in any neighbourhood
of z,, = 0 in C", we can find, as in the proof of(ii), arbitrarily small
polydiscs P with centre p (on which f is holomorphic), with the
property : for every &' € P’, there exists an z = (2', z,,) € P such
that f(x) = 0.

TurorEM 2. (The Spith-Cartan Preparation Theorem.) Suppose
given an element £ € #'™, £ 0, and the basis for C™ so chosen that
f(0’, ,,) does not vanish identically in any neighbourhood of x,, =0
in CL. Then there exist a sequence {P,} of open polydiscs with centre p
and radit decreasing to zero, and real numbers a, > 0, with the
following properties : if g is any holomorphic function on P,, there
exists a holomorphic function h on P, such that: (i) g— fh i3 @
pseudo-polynomial in z,, (i.e. a polynomial in x,, with holomorphic
functions of x' as its coefficients), of degree < p,—here p is the
degree of the unique distinguished polynomial ¢ such that f ~ep ;
(ii) sup |A(z)| < a, sup |g(x)|. Moreover, h ts uniquely determined

2ePy

zePy

by g and the condition (i).

Remark. The existence, given a g holomorphic in a neighbour-
hood of p, of & holomorphic function % on a neighbourhood of p
satisfying (i), and the fact that g and (i) uniquely determine A, were
first proved by Spith (Journal fur die reine und angewandte Mathe-
matik, volume 161, (1929)). In the form stated here the theorem (in
particular the majorisation (ii) which we shall need) is due to
H. Cartan (Annales de I'Ecole Normale Supérieure, t. 61, (1944)).

Proor. Obviously, we may suppose that f = ¢ where ¢ =25,

P
Y ¢.(x')aR~* is a distinguished pseudo-polynomial. From tho
k=1
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proof of Theorem 1, we see that we can find real numbers p, > 0,
decreasing to zero, and polydiscs P’, in C™~! with centre p’ and
radii decreasing to zero, such that : (a) all the ¢, are defined and
holomorphic in P (b) ¢, z,) £0if 2’ € P’ and p,/2 < | 2| < pae
Let §, =inf |$(', ,,)| for 2’ € P, and p,/2 < |2, | < p,, and let
P, be the polydisc {(2', 2,,) |2’ € P'y, | 2, | <p,} (n =1,2,...).

Suppose now that g is a holomorphic function on P,. For any r
with p,/2<r<p,, consider the function k(z’, z,,) defined, for =’ € P’,

1 g(z',t) dt
2 j $@ 1) i—

ltj=r

|t ] = ris assumed positively oriented. Since ¢(z’, ) vanishes nowhere
in p,/2 < |t| < p, for any &' in P’,, it is clear that A(z’, z,) isa
holomorphic function on {@', z,,) |2’ € P',, |=,| <r}, and that
its value at any (2', z,) € P, is independent of the r > |x,|
used in its definition. Thus there is a well-defined holomorphic
function A on P, given at any (', «,,) by the above integral formula,
with any r > |z, | in p,/2 < r < p,. We shall prove that A has
the desired properties (i) and (ii).

and |z, | <7, by h(z’, z,) = , Where the circle

Consider, for (z', z,,) €P,, g(z’, z,,) — h(2', z,) (', z,). With
an r> |z,|, p,/2 <7T < p,, We have

9(&', z) — h(@', 2,,) (&', )
kY I gl tdt _ 1 I $(, 7)) ga’, 1) _dt

= 2 t—az, 2m é(z', 1) t—a,

tj=r
— _l_ I g(x' t) ¢(Z', t) - ¢(xlr xm) dt.

2mi p (', 1) t— 2z,
Now
¢, t) — dla',z,)) P —ah 2 [ PPTE— Pk
t—z, T t—a, “'EZ"E(”) t—a,

= pi dy(@', 1) ok,

k=0
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say, where the di(2’, ¢) aro polynomials of degree < z in ¢, the
coefficients of which are intogral linear combinations of the c,(z').
Let B, be a real number such that for all z'e P, and [t < p,,
and all k=0, ..,p—1,|d(z', 1) | < B,.
We have
g(x'x xm) - h(x’: :tm) ¢(xl’ Im)

=p§ (2; .[ Z((z gy @0 ‘”)

k=0
proving (i). Further, if we assume p, < 1, we obtain from the above:

L9, 2p) — B’ z,) P2, 3,) |
< 82 B sup |g(z)| = v, sup |g(z)|
n zePy N zePy
say, and this is valid for every (', x,,) € P,. Hence, for every z € P,,
Ih) (@) < (1+yn) sup [g(z)]-
z€Py
For z = (¢/, x,,) € P, with |z, | > p,/2, this yields
1
IMa)| < 222 sup [g(@)1.
n zelp

The maximum principle now shows that sup | A(z)| < —2
zePp

+ - Yesup @)l

Plainly «, = 1_';_& is independent of g, hence (ii) is proved.
n
It only remains to prove that, given g, condition (i) determines &
uniquely. For this purpose it is sufficient to show that the Taylor
expansion at 0 of % is uniquely determined.

Let us write the Taylor expansion g of g at p in the form
g = X g, zk, whero the g, are elements of s#™~1. Similarly let
k=0

¢, bo the germ of ¢, at p’, k=1, ..., p. We shall show that a
(formal) power series % in ,,..., Z,, i8 uniquely determined by the
condition : g — k ¢ contains no terms of degree > p —1linz,. In

fact let A satisfy this condition, and let us writo s = Z by o,

where the %, are formal power series in y, ..., Zp_1 over C Tho
coefficient of 2+ (for any k> 0)ing — hep is
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»
orr — M — Z S hyy

1=1

Hence, for all k > 0,

»
=8, — chhh_., (*)

i=1
Now, if m =1, the ¢; are all equal to zero (in C) and the 7 and
g, =g, aro complex numbers ; (*) determines the %, uniquely :
by =g,y for k > 0. Suppose therefore that m > 2. The equations
(*) hold in the ring of formal power series in 2, ..., ,_, over C.

©
Let us write b, = X 1%, where (") is a homogeneous polynomial of
8=0

EMa

@
degree 8 in ,, ..., %,_; ; similarly g, = X ¢{?, ¢, = X ¢f? — note
8=0
that since ¢,(0’) = 0, ¢; has no constant term, k =1, ..., p.
The cquations (*) are equivalent to the equations

WO =g, k=0,1,2,...

and
B =g, — e, s=1,2,...;k=0,1,2, ...
J=Zl 1=0

The first set of equations determine %" for all k£ > 0, and the
second set of equations show that the A{), 0 < i<s—1, k>0
determine all the 2, k> 0. This concludes the proof of Theorem 2.

REMARKS. (A) One can show that the formal power series

h = X b 2% defined above actually converges in a neighbourhood
k=0
of p; this would prove the result of Spiath. For the details, see

Bochner-Martin ([1], pp. 183-187).

(B) Theorem 2 is truc with any sequence of open polydises P,
having p as their centre, radii decreasing to zero, and satisfying
conditions (a) and (b) in the first paragraph of the proof. Therefore,
given a finite family of functions f; each of which satisfies the
assumptions of Theorem 2 (i.e., f; € #'™, f(0’, z,,) does not vanish
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identically in any neighbourhood of z,, = 0in C?), a sequence of open
polydiscs P, with centre p and radii »{, ..., ' decreasing to zero
can be found, with the following property : not only does it meet the
requirements of Theorem 2 for each function f; in the given family,
but so does any sequence of polydiscs P*, with centre p and radii
T L R ) ) =00 ), X decreasing.

2. Algebraic preliminaries. Before using Theorems 1and 2 to derive
some algebraic properties of the ring J#™, we state some definitions
and theorems from algebra.

In this article 4 always stands for a commutative ring, with identity
1(%0), and A[x] for the polynomial ring in one variable x over 4.
If A is an integral domain, we denote its field of quotients by K.

P
(a) RESULTANT AND DISCRIMINANT. Let P = X a, 2*7% and
k=0

Q@ = X b,a%* be elements of A[x], p,g > 1. The determinant
£=0

¢ columns p columns
a, b,
a, a, by by
a, a, . by, b,
a
P,Q) = 9
AP Q) a, P Y
b, . by |
a, b,
ap
. -
@ b I
of order p + q is called Sylvester's Resultant of P and Q. Lot
Ugs +re s Uy1s Ugoeer, Vpy bo the co-factors of the clements of tho last

row of p(P, @), and let
U=uga® '+ ...+ u_q, V=22 1+ .4y,
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Then we have the identity

PU+QV =p(P,Q)
with the consequence : p(P, @) belongs to the ideal generated in
A[x] by P and Q.

Suppose now that 4 is a field.

(1) p(P, @ =0 if and only if there exist U, V (not both 0)
€ A[z], of degrees < g, p respectively, such that PU 4 QV = 0.

(2) Ifa, #0, then p(P, @) = 0 if and only if @ =0,0r @ #0
and P and Q have a common divisor of degree> 0 in A[x]. In
particular, if a, or b, # 0 and if 4 is an algebraically closed field,
p(P,Q) = 0 if and only if P and @ have a common root in 4.

REMARK. If A is only an integral domain (and @, # 0), then
p(P,Q) =0 if and only if @ =0, or @ # 0 and P and @ have a
common divisor of degree > 0 in K[x].

(For proofs of (1) and (2) see van der Waerden [6], pp. 83-85.)

—1
Let p> 2 and P’ =’Z (p — k) @, 2?~%~1. We denote by 8(P)
k=0

the determinant obtained when, in the first row of p(P, P’), &,
is replaced by 1. 8(P) is called the discriminant of P.

(b) IpEALS IN A[z]. If A is a field, then every ideal in A[xz]is a
principal ideal. If 4 is only an integral domain, then, for any ideal
I in A[z), there exists an element P, of I with the property : for
every P e I, there is an a € 4, « # 0, such that P, divides « P.

(¢) PRIME AND PRIMARY IDEALS.

DermviTION. An ideal I in A is prime if, for any a, Be A, aBel
and a ¢ I imply Bel.

ProposITION. An ideal I (% A) in A is prime if and only if the
ring A[I of residue-classes of A modulo I is an integral domain.

DerFinitioN. If I s any ideal in A, then the radical of I is the
set rad I = {x€d|a” eI for some integer n > 0}.
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The radical of any ideal I is an ideal which contains I.
ProrositioN. If I is prime, then I = rad I.

DErFINITION. An ideal I in A is primary if, for any «,Be A,
af el and a ¢ I imply B erad I.

ProrosiTioN. If I is primary, rad I is prime.

DEFINITION. A4 finite family F of primary ideals in A is canonical
if: (i) no ber of & contains the intersection of the r
(ii) distinct members of the family have distinct radicals.

ProrosiTION. The intersection of a finite family of primary
ideals with the same radical is primary and has the same radical.
(For a proof see van der Waerden [6a], pp. 32-33.)

CoroLLARY. KEvery finite family of primary ideals has the same
intersection as a certain canonical family.

TurEOREM. If two canonical families of primary ideals have the
same intersection, then there i3 a one-one correspondence between the
two families such that corresponding elements have the same radical.
(For a proof see van der Waerden [6a], pp. 35-36.)

(d) NorTHERIAN RINGS.

THEOREM. The following statements are equivalent.

(i) Ewvery ideal I in A is generated over A by finitely many elements
of I.

(i) Every strictly increasing sequence of ideals in A s finite.
(For the proof see van der Waerden [6a], pp. 20-21.)

DermNiTION. A i3 Noetherian if (i) or (ii) of the above theorem is
valid.

TaroreM. (Hilbert’s Basis Theorem.) If A is Noetherian, A[x] is
Noetherian.

ProPOSITION. If A is Noetherian, and I (5= A) s any ideal in A4,
then A[I is Noetherian.
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TuEOREM. (Primary Decomposition Theorem.) Every ideal in a
Noetherian ring is the intersection of a canonical family of primary
ideals.

(For the proof, see van der Waerden [6 a], pp. 31-34.)

ReMARK (cf. (b)). If A is a Noetherian integral domain, then,
for every ideal I in A [«], there exist P, € I and &, € 4, &, # 0, such
that if P € I, P, divides «,P.

(e) UniQue FacTorizaTION. A is now supposed to be an integral
domain.

DEFINTTION.  An el t of A is reducible if it is a product of two
non-invertible elements of A. An el t of A is wrreducible if it is
not reducible.

DEeFINITION. A 48 & unique factorization domain (or a factorial
ring) if every nmon-invertible element a€ A, « #0, is the product of
finitely many non-invertible irreducible elements of A, determined
uniquely by a except for invertible factors.

If A is factorial, the greatest common divisor of any finitely
many elements of 4 is well defined upto an invertible factor.

DEerINITION. Suppose A i3 factorial. An element of A[x] is
primitive if the greatest common divisor of its coefficients is 1.

Gauss’ Lemma. If A is factorial, then the product of primitive
elements of A[xz] is primitive.

This lemma has the following consequences.

(i) If A is factorial, and P e A[x] is primitive, then P divides
an element Q € A[x] in A[x] if (and only if) it does so in K[z].

In particular, with the notation of (a), let a, 0. Then p(P, @)
=0 if and only if @ =0, or @ # 0 and P and @ have a common
divisor of degree > 0 in A[z]. If, further, 4 has characteristic 0,
then §(P) =0 if and only if P is divisible by the square of an
element of degree > 0 of A[x].

(ii) Gauss’ TueoreM. If A4 is factorial, then A[x] is factorial.

For proofs, see van der Waerden [6], pp. 70-72.
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3. o™ is a factorial ring.
LeMmA 1. £ is a factorial ring.

Proor. Iff 0 is an element of 5#°! whose Taylor expansion at p
is X a 2% with @, # 0, then fis invertible if and only if p = 0, and
123

reducible if and only if p > 2. The lemma follows easily from this.
Let m > 2. The polynomial ring #™~1[z,] is a subring of ™.
b
We shall say that an element P = X a,2%7* € #™ 1[z,] is distin-
k=0

guished if (i) p >1, (ii) ¢y =1, and (iii) the o, (k > 0) are non-invertible.
According to the Weierstrass Preparation Theorem, every element
fes#'™ such that f(p', ,,) does not vanish identically in any neigh-
bourhood of z,,=0is equivalent to precisely one distinguished element
of ™ [x,]. A finite product of distinguished elements of #™~ [z,,]
is again distinguished.

Lemma 2. Let Py, ..., P, be elements of #™ [z,] and suppose
that P = P, P, ... P, is distinguished. Then, for each j, the leading
coefficient o of P; is invertible, and Q; = («)~! P; is distinguished
orl. Also P=Q,Q,...Q,.

Proor. The o are invertible since the leading coefficient
a®o® ... ™ of P is 1; hence, if the @ are as defined, we also have
@:Q;z...Q,=P. Now let p; be the smallest power of z, which
appears in @; with an invertible coefficient. Then the coefficient of
227 in P is invertible. Since P is distinguished, this means that
Zp; = degree of P. Hence, for each j, p; = degree of @;. Since each
@; is monic, this means that @; = 1 or @), is distinguished, q.e.d.

Lemma 3. Let P be a distinguished element of #™~[z,]. Then
P is reducible in S#™ if and only if it is so in #™[x,,].

Proor. Suppose first that P = P,P,, where P;, P,;, are non-
invertible elements of 5#™~1[z,,]. By Lemma 2, we also have P=@Q, @;,
where Q,, @, are distinguished polynomials—since the P; are non-
invertible, neither of the @, formed from the P; as in Lomma 2 can
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be 1. Since distinguished elements of #™~1[x,] are not invertible
in 3™, this means that P is reducible in 5#™.

Conversely suppose P is reducible in #™: P =f, f, where f, and
f; are non-invertible elements of s#™. We must have then a7, =
F1(0', %) fa(0', %,,) With p = degree of P> 1. Hence neither of the
£i(0’, %,,) vanishes identically in any neighbourhood of z,,=0. By the
preparation theorem of Weierstrass, we have f; ~ Py, f, ~ P, where
P,, P, are distinguished elements of #™~[z,]. Hence P ~ P,P,.
The uniqueness assertion of the preparation theorem implies P =
P, P,,ie., P is areducible element of #™~[x,], g.e.d.

We now prove the
THEOREM 3. ™ is a factorial ring.

ProoF. By Lemma 1, #1 is a factorial ring. We proceed by
induction: for m > 2, we assume that s#™~! is factorial, and prove
that o™ is factorial.

Suppose given an clement fe '™, f 0. We can choose a basis
for C™ in such a way that f ~ P, where P is a distinguished element
of 5#™-1[z,,]. By the induction hypothesis and by Gauss’ Theorem
(§2, (e)), ™! [x,,] is factorial. Let P = P, ... P, where the P; are
pon-invertible irreducible elements of 3#™~![z,,]. By Lemma 2 (and
since the P; are non-invertible), the P; may be assumed distinguished
(hence non-invertible in 5#™) ; and by Lemma 3, they are irreducible
in 5#™. Thus f is equivalent to a product of non-invertible irreducible
elements in S#™.

Now suppose f ~f;...f,, where the f, are non-invertible irreducible
elements of s#™. Since f ~ P, we may suppose that P =f,...f, (after
multiplying say f, by an invertible element of ™). Then f,(0, z,,)...
Ji(0, z,) =25, where p (the degree of P) > 1. Hence none of the
£(0, %,,) can vanish identically in any neighbourhood of z, = 0.
By the preparation theorem of Weierstrass, each f, is equivalent
in o™ to a distinguished element P’y € #™~! [,], and P’ is
irreducible in ™ (hence by Lemma 3, in 5#™~1 [z,]) since f, is.

Now P ~P', ... P'; actually, equality holds, by the uniqueness
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assertion of the Weierstrass preparation theorem. Since s#™~1[z,,]
is factorial, we must have ¢ = n, and, for a suitable ordering,
P’; ~Pi(j=1,...,,n), ie. f;~ P;. Thus the factorization f ~ P, ... P,
is, except for invertible factors, the unique factorization of f into
irreducible non-invertible elements of 5™, q.e.d.

4. Relatively prime germs of holomorphic functions. To state the
next result, due again to Weierstrass, we introduce the following
notation. Suppose f is a function holomorphic on an open set U of
C™. If a is any point of U, we shall denote by f, the element of ¢
induced by f.

THEOREM 4. Let f and g be holomorphic functions on an open set
U in C™, and suppose, for a point a € U, f, and g, are relatively prime
in ™. Then there exists a neighbourhood V c U of a such that, for
every xze V, £, and g, are relatively prime in ™.

Proor. The cases when either f, or g, is 0,, or is invertible in
™, are easily disposed of (and the case m =1 is included in them).
Suppose then that both f, and g, are non-invertible and different
from 0,, and m > 2. By Remark 1 on the preparation theorem we
may assume that f, and g, are then respectively equivalent to
distinguished polynomials P and @ in y,, =gz, — @, over J#™~!;
and it follows from Lemma 2 of §3 that P and @ have no common
divisor of degree > 0 in 71 [y,]. Since 71 is factorial, and

P, Q are monic, it follows (§ 2, (e)) that p(P, @) #0,..

We can find an open connected set ¥’5 a’, and monic polynomials
in y,,, say ¢(2’, y,,) and §(z’, y,,), whose coefficients are holomorphic
functions for 2’ € V’, such that ¢, =P, ¢, =@Q. Then p(¢,¢) =R
is a polynomial in the coefficients of ¢ and ¢, hence is a holomorphia
function on ¥’. And since R, = p(P, @) #0,. and V' is connected,
R, #0, foreveryz' e V'.

We now assert that, for every point b of C™ such that b’ e V',
¢, and ), are relatively prime. Suppose, on the contrary, that
b,(# 0,) is a non-invertible common factor of ¢p, and , in 5#°*. Then
h(b’, b,+2) does not vanish identically in any neighbourhood of



24 SEVERAL COMPLEX VARIABLES

2=0 (since ¢(b’, b,,— a,,— 2) is monio in z). Since 4(b) =0, Remark 2
on Weierstrass’ preparation theorem implies the existence of an
open polydisc W with centre b and the following properties: (i) on
W, ¢ or ¢ is the product of A by a holomorphic function; (ii) for
every z'€ W’ there exists at least one z,, €C such that (z’, z,)e W
and h(z’, 7,,) = 0. Since the zeros of & in W are common zeros of
¢ and ¢, this means that p(¢, ) = R vanishes identically in a
neighbourhood of b'. This is a contradiction and proves our assertion.

Finally f, ~P =¢, and g, ~Q = {,, henco f, ~¢, and g, ~ ¢,
for all z in a sufficiently small neighbourhood ¥V of a. If ¥ is so chosen
that z € V implies 2’ € V', then forallz € V, f, and g, are relatively
prime, q.0.d.

REMARK. Theorem 4 says that if f and g are two holomorphic
functions in an open set U in C™, then the set {x € U | f, and g, are
relatively prime in J#*} is open. A stronger result will bo proved in
Chapter 1V, §3.

5. Meromorphic functions. Let U(#@) be an open set in C™,
m > 2. We consider sets J such that

(i) each clement of J is a triple (V, f, g), where V is a connected
open subsct of U, and f, g are holomorphic functions on V with g2 0;

(ii) for any (Vy, f1. ¢,) and (Vg fi, 9,) € T with Vin V, #3;
Sige=leg1on VinVy;

@) U v=U.

(V.L,0T

Let T(U) be the sct of all such 7. For 7, 7" € T(U), wo shall write
T ~T'if T uT'eT(U),ic.if (ii) holds for I v J' ((i) and (iii) hold
trivially). In particular 7 c 'implies  ~J'. ~ isan equivalence
relation on T(U). In fact the symmetry and reflexivity of ~ are
evident. To prove the transitivity, let 7,7, "e T(U) and I ~ T,
T ~T°. Forany (V',f',g")e T and (V", f",9")e T "WithV' n V" £ @,
we must show that f'9” = f"g’on V' n V”. But on account of (iii)
it is sufficient to check this on all the non-empty V'n V' V,
(V,[,9)€T .SinceT ~TF ', and I ~TJ ", wehavconsuchV' n V"' n V,
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f¢’' =f'9and fg" = f"g. Hence f'gg" = fg¢'g" = f"g¢'. Since g cannot
vanish identically on any connected component of V' n V" ¥V, we
have ' ¢" =f"g’on V' n V" a V; this proves the transitivity of ~.
Now, a meromorphic function on U is, by definition, an equivalence
class in the set T(U) with respect to this equivalence relation.

DerinNiTION 3. A meromorphic function F on U is determinate at
z € U if there exist 7 € T(U) defining F, and (V, f, g) € T, such that
z € V, and f, g do not both vanish at z. In this case, the value F(x) of
Fatxis oo if g(x) =0, and f(x)/g(z) if g(x) 0 (it is easily verified
that F(x) then depends only on F and z). F is indeterminate at z € U
if it s not determinate at z.

The set of points in U at which F is determinate is an opon subset
of U, and z — F(z) a continuous mapping from that subset into the
compactified complex plane.

REMARKS. (1) Any holomorphic function f on U defines, in a
natural (and one-one) way, a meromorphic function on U (also
denoted by f) whose value at any z € U is f(x) — for instance by
means of the element {(U,, f,, 1)ses} € T(U), where the U,, « € I are
the connected components of U, and f, is the restriction of f to U,.

(2) Let U, be an open subset of U. Then if F'is any meromorphic
function on U, the restriction Fy = F| U, of F to U, is the mero-
morphic function on U, defined as follows. Let J € T(U) define
Fon U. Then an element 7, € T(U,) is defined by requiring that
(Vo fo» 90) €T, if and only if there exists (V, f, g) € 7 such that
V > ¥y, and f,, g, are the restrictions of f, g to ¥,. F, is the meromor-
phic function defined by J7, on U,. F, depends only on F. The veri-
fications are easy. Fis determinate at z € U, if and only if F is, and
then Fy(x) = F(x) : in fact, if another element ;e T(U,) defines
Fy, then 7 v I’ € T(U), and defines F. For example, if U, is the
set of points of U at which F is determinato and finite, F| U, is
holomorphic in U,,.

(3) Suppose U is connected, and let & € T(U) contain a triple
(Vo fo» 9o) with f, = 0. Then for evory (V, f, g) € 7, f = 0. In fact
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suppose first that V' n Vy # @. Then on Vn ¥y, fg, =f,9 =0.
Since g, 5= 0, g, cannot vanish identically on any connected compo-
nent of ¥V n V. Hence it follows that f = 0. Now, since U is con-
nected, we can find, for any (V, f, g) € 7, finitely many (V,, f1, ), .-
(Vs fu» 92) €T such that Vo n Vy, ..., V,_1n V,, ¥V, n V are allnon-
empty. Applying the above argument successively we conclude
that f = 0.

Thus, if & meromorphic function F on a connected open set U in
C™ has the value 0 at every point of a non-empty open subset of U,
then F =0on U.

(4) The sum and product of two meromorphic functions on U are
easily obtained as follows: if 7, ={(Vy, f1, 9,)} and T ,={(V2, fa, 82}
define F, and F, respectively, define J € T(U) by requiring that
(V, f, 9) €7 if and only if there exist (Vy, f1, 9,) €7y and (Vy, fo, 95)
€ T, such that Vc ¥V, n ¥, and f, g are the restrictionsof f; g, + /391
(resp. f1f2), 91 92 to V; then F; + F, (resp. F,F,) is the meromor-
phic function on U defined by J, a function which depends only
on F, and F,. Ifall functions Fy, F,, F, + F, (resp. F,F,) are
determinate at a point z € U, then F,(z) + Fy(x) = (F;+ F,) (x)
(resp. Fy(z) Fy(a) = (Fy F3) @)).

(5) Let F be a meromorphic function on U, not vanishing
identically on any connected component of U, and let J be any
element of T(U) defining F. By Remark (3), for every (V, f, g) €7,
f#Zo0onV. Hence 7' ={(V,9,f) | (V,f,9) € T} € T(U), and it is
easily verified that the meromorphic function F’ which J~’ defines
on U, depends only on F. Clearly FF' =1; we write F' =1/F.
F and F’ are determinate at the same points of U.

THEOREM 5. Any meromorphic function F on U can be defined
by a T, € T(U) with the property : forany (V,, ¢, ) € T, ¢ and ¢
have relatively prime germs at every point of V. Further, if a T,
defining F has this property, then, for any (V,, ¢, ) € T, and any
z € Vy, ¢(x) =(x) = 0 implies that F is indeterminate at x.

Proor. We may assume that U is connected. Also if F =0,
wo may take for 7, the single triple (U, 0, 1). Hence let F5£0. Let
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T be any element of T(U) defining F. Given any x € U, there is a
(V, f, 9) € 7 such that 2 € V. Since F £ 0, we have f£0on V
(Remark (3) above), and we know that g2 0on V. Hence f,, g # 0,
in 7. Let d, be the greatest common divisor of f, and g, in #7,
and let ¢, =1, /d,, Y, =g,/d,. Then ¢p, and ¢, are relatively prime
elements of s#™. By Theorem 4, there exists a connected open
neighbourhood V, c V of x and holomorphic functions ¢,, ¢, 52 0
on ¥V, which induce the germs ¢p,, ¢, at z and have relatively prime
germs at every point of V,. We then have also fy, =g¢,: V,
being connected this is implied by f,, =g,¢,. This means that
the single triple (V,, ¢,, ¢,) defines on V, the meromorphic function
F| V, =restriction of F to V,. It follows that the set J, =
{(V,, s ) |2 € U} e T(U), and defines F. J, has the desired
property by construction.

Now let 7, € T(U), define F, and have the property mentioned in
the theorem. For a (V, ¢, ) € 7y and an z € V,, suppose ¢(z) = (z)
= 0. We must show that F is indeterminate at z, i.e., for any I~
defining F and any (V,f, g) € J such that z € V, f(x) = g(z) = 0.
Now, we have fy =¢g on V n V,; in particular, £, = ¢,g,.
Since ¢, and ¢, are relatively prime in 57, this means that ¢,
divides f, and ¢, divides g,. But ¢(z) = i(x) =0, hence f(r)=
g(z) =0, q.e.d.

6. Analytic sets and germs of analytic sets.

DEFINITION 4. An analytic set (resp. a principal analytic set) in
an open set U in C™ ie a subset S of U with the following property :
for every a € U, there exists an open (resp. open connected) neighbour-
hood V c U of a and finitely many holomorphic functions fy, ..., f,
on V (resp. a holomorphic function f0 on V) such that SaV =
{ZeV|fix)=..=f(z) =0} (resp. 8n V ={z € V| f(z) = 0}).

Obviously, an analytic set in U is closed in U.

Let § and T be analytic sets in U. Let ¥V, W (c U) be open
neighbourhoods of @ € U and fi, ..., f, (resp. gy, ..., g,) holomorphio
functions on V(resp. W) such that Sn V ={zeV | fi(x)= ... =/f,(z)
=0and Tc W={zr € W| g,(®)=..=g,(*) = 0}. Then
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SaTa(VaW)=geVaW|filx)=..=f) =g@=..=
g(x) =0} and U T)n(VaW)={xeVaW | fx)gk =0,
1<:1<r 1< j<s) Hence a finite intersection of analytic sets
in U is an analytic set in U and a finite union of (principal) analytic
sets in U is a (principal) analytic set in U. (An arbitrary inter-
section of analytic sets in U is also an analytic set in U : this will
be proved in Chapter IV, §1.)

DEFINITION 5. An analytic set S tn U is reducible in U if it is the
union of two analytic sets in U, both distinct from 8. It is irreducible
if it 18 not reducible.

In particular, an irreducible analytic set in U is contained in a
single connected component of U.

By Theorem 5, the set S, of points of U at which a meromorphic
function on U is indeterminate is an analytic set in U ; so is the
union of §, with the set of points of U where F is determinate and
assumes a given value.

Let a be a given point of C™; let S, 8’ be analytic sets in open
neighbourhoods V, V' of & respectively. We shall write (V, §) ~
(V’, 8') if there exists an open neighbourhood W c V n V' such that
Sn W =28"nW. Clearly ~ is an equivalence relation in the set of
all (V, 8) where V is an open neighbourhood of a and § an analytic
set in V. A germ of an analytic set at a is, by definition an equivalance
class of this relation.

If S is an analytic set in an open neighbourhood V of a € C™ we
shall denote the germ of analytic set which (V, S) defines at a by
S,(or S if no confusion is possible). If 7' is another analytic set in
an open neighbourhood W of a, then the germ of analytic set at o
defincd by the analytic set (SUT) n (Va W) (resp. (SnT)n
(VaW))inV a W depends only on S, and T, ; it is called the union
(resp. intersection) of S, and T,, and is denoted by S, u T, (resp.
S, nT,). Similarly if S, and T, are gerins of analytic sets at a € C™,
we shall write S, c T,, if there exist analytic sets S and 7' in some
open neighbourhood ¥ of a, which induce the germs S, and T, at a,
such that § c 7. Evidently, S, c T, and T, 5 S, imply S, =T,.
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ExamprEs. C™ and a will denote the germs at a induced by the
analytic sets C™and {a}; © will denote the empty germ, induced
by the empty analytic set.

DeriNiTION 6. A germ of analytic set S at a eC™ is reducible
if it is the union of two germs of analytic sets at a both distinct from
S ; it is drreducible if it is not reducible.

ExampLeE. The germ induced by C™ itself at any point of it is
irreducible. From this it follows that every affine sub-space L of C™
(L is obviously an analytic set in C™) induces an irreducible germ at
every point of C™.

7. Germs of principal analytic sets. Every element of #™ — {0}
defines a germ of principal analytic set at a in the following way.
Let f be a holomorphic function on an open neighbourhood ¥ of a,
f, #0, and S the set of zeros of f in V. Obviously, the germ of
analytic set S, which S induces at a depends only on f,. We call S,
the germ of principal analytic set at a defined by f, € ™ (or by the
principal ideal generated by f, in 7).

THEOREM 6. Let S be the germ of principal analytic set at a € C™
defined by £ € ™, £ % 0. Let T be the germ of principal analytic set
at a defined by g € #™, g #0, and suppose S c T. Then every irredu-
cible factor of £ divides g.

Proor. We may assume that ¢ = p and m > 2. Again if f is
invertible, there is nothing to prove. Hence let f be non-invertible.
Since f 5 0, we may after a suitable choice of a basis for C™, assume
that f ~ ¢ where ¢ € #™ 1[z,] is distinguished. The irreducible
factorsof f in #™ are (upto invertible factors in #™) precisely the
irreducible factors of ¢ in s#™ [z,]. Hence if ¢,, ..., @, are all
the distinct irreducible distinguished polynomials dividing ¢ in
#™1[z,], it is sufficient to show that ¢ =<, ... ¢, divides g. Now
¢, as the product of distinguished polynomials, is itself distinguished,
and being the product of inequivalent irreducible polynomials,
it is not divisible by the square of any non-invertible element of
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H#m=1[r.]. Since #™"1!is factorial, we must have §({) # 0,
where 8() is tho discriminant of (§3, (e)).
Now, there exists an open polydisc P ={(z',,)eC™ |z’ € P,

| ,, | < p} in C™ with centre 0, and a distinguished pseudo-polynomial
r.

d(x', 7,) = 2% + X a(x’) aL7F, such that : (i) the @, are all holo-
=1

morphic functions on P’, and ¢, = ¢, and (ii) for every z'e P,

¢ (z', t) = 0 implics | ¢| < p, i.e., (2, 8) € P. Further p, and the radii

of P’, may be chosen as small as we please. Hence wo may

assume that (iii) f, g are defined by holomorphic functions f, g on P,

(iv)z € P, f(x) = 0imply g(x)=0, (v) Y, divides f, for ‘every z € P,

(in particular yi(z) = 0 implies f(z) = 0).

If P is chosen sufficiently small, after Theorem 2, there exists a
holomorphic function % on P such that, on P, r =g — hj can be

p—1
written in tho form X 7.(z') 2%7%, where the 7, are holomorphic

k=0
functions on P’. We shall prove that » = 0 on P’, and this will prove
tho theorem.

Y(2', t) is a monic polynomial in ¢ over the ring #(P’) of holomor-
phic functions on P’. Consider the discriminant D = 8(3) of 4.
D does not vanish identically on P’, since D,. = 8(¢) # 0 ; hence
W' = {z' € P'| D(z') # 0} is non-empty. We claim that, for every
z' € I, all the coefficients 7,(z’) of the polynomial (', t) in ¢ vanish.
In fact, for any given 2’ € W', §(2’, 1), as a polynomial in ¢, has p
distinct roots, and by assumption all these roots lie in [¢]| <p.
All these roots of (2, t) are also zcros of g(2’, t), since they are zeros
of f(x', t). Thus for each 2" € W', the polynomial r(z, t) in ¢, of degree
p—1, has p distinct roots ; hence all its coefficients must vanish. This
proves our assertion. Finally, the 7, are holomorphic functions on
the connected set’ P, and vanish identically on the non-empty open
subset 17’ of P’, henco they must vanish identically on P’, q.e.d.

CorOLLARY 1. Let the meromorphic function F on the open set
U in C™(m > 2) be indeterminate at a € U. Then for every AeC
(or for A = o), there exist points of U, arbitrarily near a, at which
F is determinate and has the value A.
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Proor. We may assume that U is connected. Since F is indeter-
minate at a e U, FZ£ 0on U, and F' =1/F is well-defined. F' is
also indeterminate at @, and at a point 2 € U, F(z) is defined and
cquals oo if and only if F'(z) is defined and equals 0. Hence it is
sufficient to consider A € C.

Let J be an element of T (U), defining F, which has the property
mentioned in Theorem 5. Let (V, f, g) be any clement of J such that
a € V. Consider the holomorphic function 5 =f — Ag on V. & does
not vanish identically on ¥ : h = 0 implies F = Aon V, while F is
indeterminate at @ € V. Also, 4(a) =0, since g(a) = f(a)= 0. Hence, by
the Weierstrass preparation theorem, 4 has zeros arbitrarily close to a.
Now for any z € V, h(z) = 0, g(x) # 0 imply F(x) (is defined and) =A.
Hence to prove the theorem, it is sufficient to show that the germ
of analytic set at @ defined by h, is not contained in that defined
by g,. If this were not so, then, by Theorem 6, every irreducible
factor of h, divides g, in S, hence it also divides h, + A g, = f,’
But h, is non-invertible in #™ since h(a) =0, and f, and g, are
relatively prime in ™ by assumption. This contradiction proves
the corollary.

CoROLLARY 2. The germ of principal analytic set S at a defined
by fes™, £+£0 is reducible if and only if f has at least two
inequivalent non-invertible irreducible factors in .

ProoF. Let f ~f% ...f%n, where the f; are mutually inequivalent,
non-invertible and irreducible, and the k; are integers > 1. We
shall first suppose 7 > 2, and show that S is reducible. Let S’ and
S” be respectively the germs of analytic sets at @ defined by f; and
f,..f,. ClearlyS=S'uUS". Also,S’,S" #S:S =S8’ for instance
implies, by Theorem 6, that f, ... f, divides f,, which is impossible.

Suppose now that f~f%, ie., n=1. We must show that S
is irreducible. Suppose on the contrary that S =S'u S", §',8" # S.
Let ', 8” be analytic sets in an open neighbourhood V of & such
that §’, = S’, S", = S”. We may assume that 8’ (resp. §") is tho set
of common zeros of finitely many holomorphic functions g,, ..., g,
(resp. by, ..., k,) on V. Since S’, S” # S, there exist g, , h; such that
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f, does not divide the germs of either g; or & at a (1 < i, <,
$ < j, < ). Now S'uS” is the germ at & induced by the set of
common zeros of the gf; in V, 1<i< 7 1< j<s Hence
S’uS” =S implies, by Theorem 6, that f, divides the germs of
all the g; ; at a, in particular of g; ;. But f; does not divide
the germs of either g;, or ; at a. Since f, is irreducible, this is a
contradiction and the corollary is proved.

COROLLARY 3. Any germ of a principal analytic set is a finite
union of irreducible germs of principal analytic sets, none of which is
contained in the union of the remaining.

Proor. Let the germ of principal analytic set S at a € C™ be
defined by f € 5#™, f 0. If f is invertible, then S is already irreduci-
ble. Otherwise let f ~f% ... f¥n, where the f; are non-invertible,
irreducible, and mutually inequivalent and the %; are integers > 1.
Let S; be the germ of analytic set at a defined by f;, j=1,..., n. By

Corollary 2, each S; is irreducible, and clearly U S; = S. Finally
i

if n > 1, no S; is contained in the union of the remaining. For
otherwise, by Theorem 6, f; must divide f, "'fi—l fj+1 ...f,, and this
is impossible since the f; are irreducible and mutually inequivalent.

8. ™ is a Noetherian ring. Some consequences. We shall now
prove that o™ (= 3#7) is Noetherian. We shall in fact prove the
following stronger result.

THEOREM 7. Given an ideal I in ™, we can find : (i) finitely
many holomorphic functions fy, f1, ..., f, on an open neighbourhood U
of 0, whose germs at o belong to I; (ii) (a basis for C™ and) a sequence
{P,,n=1,2, ...} of open polydiscs with centre p and radii decreasing
to zero (P c U); and (iii) real numbers 8,> 0, n =1, 2, ..., with the
following property : for any function g holomorphic on a P, whose
germ at p lies in I, there exist holomorphic functions hy, ..., b, on P,

such that g = i h,f; on P, and
j=0

512, ( =sup [B,(@)]) < 8:llgllp, J =00 -er g
zePy
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In order to carry out the proof by induction on m, we need the

SUPPLEMENT TO THEOREM 7. Qiven finitely many ideals in H#™,
we may, in Theorem 1, choose the same sequence {P,} of polydiscs to
serve for all the given ideals.

Proor. We first consider the case m =1. Foranfe s, f #0,
we shall say that f has order p if its Taylor expansion at p is of
the form ¥ &%, a, #0. Now suppose given finitely many ideals

E>p

IW, ..., I in 1. Obviously, we may suppose that none of the
I® is {0} or ##°1. Let f, be a non-zero element of minimal order in
I®, ¢ =1, ..., s. For a sufficiently small p > 0, there exist holomor-
phic functions fy, ..., f, on U= {|#| < p}, inducing respectively
the germsf), ..., f, at the origin, and vanishing nowhere in 0 <|z| < p.
Let {p,} be any sequence of real numbers < p, decreasing to zero.
Let P, be the open disc {| 2| < p,} and §, =lsup {1/ linf 1fo(x)1}

<o<s Z|=py

Suppose now that g is a function holomorphic on a P,, with
g(= germ induced by g at the origin) € I©), g #0. Then the order
of g is at least that of f,. Since further f,(x) #0if 0 <|z| <p,
it follows that h =g/f, is holomorphic on P,. Further by the
maximum principle,
Allp, = lim sup |A)| < 8, I9lp,-
zePp,lzl—>pn

Hence Theorem 7, with the supplementary condition, is proved in
the case m = 1.

Now let m > 2, and suppose Theorem 7, with the supplementary
condition, has been proved for s#™~!. Let finitely many ideals
IO,..., I®in s#™ be given. We may again suppose that none of
the I©is {0} or #™. Let f§ be any non-zero element of I®, g=1,...,8.
By Remark (B) at the end of Theorem 2, we may choose a basis for
Cm™, open polydiscs P, and real numbers «,> 0, n =1, 2,..., which
satisfy the requirements of Theorem 2 for all the f{”. In the rest
of the proof, all our considerations apply to any of the I, hence
we omit the superscripts o.
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Let » bo the degree of the unique distinguished element of
#™=1[x,.] to which {, is equivalent. By Theorem 2, we have, for any
g €™, a unique h € #™ such that g — hf; is an element of 5™~ 1[x,,]
of degree < p. Forl < k< p,let I, be the set of the coefficients
of 227% in all the g — hf, € #™~! [x,,] of degree < p — k, as g runs
through I. Using the uniqueness assertion of Theorem 2 (and the
fact that I is an ideal in 5#™), it is easily verified that the I, are
ideals in s#™-1,

By the induction hypothesis, we can find (a basis for C™~! and)
a sequence of open polydiscs P’, in C™~! with centre p’ and radii
decreasing to zero, and a sequence of real numbers &', > 0, which
satisfy the requirements of Theorem 7 for all the ideals I, 1< k< p
(indeed, with the obvious notation, for all the ideals I, 1 < k< p,,
1<o<3). Let {flﬂx-x’rl""’ f"k} be a finite set of holomorphic

functions on a neighbourhood of P, (each f "; inducing at p a germ
f’; #0) which has the property of Theorem 7 with respect to the
ideal I',, 1 < k< p, ¢y = 0. By definition of the I’;, each f’; is, for
@i-1 <J < g, the leading coefficient of an element f; =g — h¥'f,
€ #™[x,,] of degree p — k, where g% (and f,) € I, so we have f; € I.
By discarding finitely many P’, if necessary, we may suppose that
all the £, j=1, ..., g(=g,) are the germs induced at p by pseudo-
polynomials f; in z,, whose coefficients are holomorphic functions of
2 on P',. Referring again to the remark (B) at the end of Theorem 2,
we may also suppose, by passing to a subsequence of {P’,} if
necessary, that for every n, the projection of P, on C™1 is precisely
P’,. We shall show now that, for a suitable choice of the §,, the f;,
j=0,1,...,q and the P, satisfy Theorem 7 for I.

Suppose g is a holomorphic function on P, with g € I. By
Theorem 2, there exists a holomorphic function %, on P, such that
17 llp, < llgllp, and g, =g — kof, has the form g,(+’, %,) =

P
2 g’y (') 257°F, where the g’;, are holomorphic functions on P’,.
k=1

By the definition of I’;, g’;; (= the germ induced by g¢’,; at p’)
€I’y Hence, by the induction hypothesis, there exist holomorphic
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functions &, ..., k, on P’, such that g';; = ﬁ hif’; on P’y and
i=1
N
[13;llp, < 8w 11911 1lprys § = Lseevs €1 Now gy =g, —12 h;f; has tho
=1

»
form g,(+',2,,)= X ¢'g(x") a2 ¥ where the g’y arc holomorphicon P',;
k=2

and g, € I since g, € and f; € I,j=1,..,¢,. Honce gy, € I'.

Repeating the argument used above, we obtain at the end of p steps
Ui

the relation g, = X &; f;, where the A; are holomorphic functions
j=1

on P, and [|%;[p., < 8 19w llp, for @y <J< g here, for k> 1,

P
(0, 2) = Z CHt A
1=k
and
K3

Tk+1 =G — z L, Jj
J=qp—1+1

Using the Cauchy integral formula, we obtain, from tho first of
these relations,

1 1
19" ”I”n < p—“p-k Il 9 “P,, < max { 1, P } g "p,, =8, g "p,.
n

say, whero p, is the mth radius of P,. Hence it remains only to
obtain majorisations of the type |[gllp, < va llglip, k> 1.
Suppose ||f; llp, < M, j=0,...,q. We have then
[lgy “p,, =lg—Tofo ”P,, <(1+a, M) ”U”P,.
and for k> 1,
%
I — z hJj;
i1+l

<QA+B a8 M) g llp,
Hence we are inductively led to the majorisations of tho desired
kind : (g lp, < ¥a 19 1lp, the v, depending only on n (and nbt

1941 ||P,, = P
n

J .
on gel). Sincog= X k; f;, we are through if wo chooso
j=0

8, = max {&', B, Va %4}
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CorOLLARY 1. Any ideal Iin o™ is closed, in the following
sense: if {g,} i3 a sequence of holomorphic functions on an open
neighbourhood U of p, converging uniformly on U to the limit g, and
if g, € I for every m, then g € I.

Proor. Let the notation be that of Theorem 7. Let P = P,
be any polydise of the sequence obtained in Theorem 7 such that
PcU. Since {g,} converges uniformly on U, we may assume, by
passing to a subsequence of {g,}, that ||g,., — g, p < 1/2", n=1,
2, .... Then, for each %, g, ; — g, €I, hence we have, by Theorem 7,
holomorphic functions A (j =0, ..., ¢) on P, such that g, ., — g, =

,io 19 £ and A llp < 8y, 191 — 9n llp < 5,,/2". Hence each of the
series §1 B converges normally in P, therefore its sum 4% is a holo-
n=
morphic function on P. Since g —g, = ﬁ (Gns1— G) = i B f,
we have g — g, € I, hence g € I, q.e.d. " =
COROLLARY 2. Any ideal in ™ defines a germ of analytic set at p.

Proor. Let I be any ideal in 5#™. Since Theorem 7 implies in
particular that J#™ is Noetherian, I is generated by finitely many
of its non-zero elements, say f;, ..., f,. Let S; be the germ of principal
analytic set at p defined by f € 5#™. Then we claim that the germ
S; =S8, n..nS, at p does not depend on the set of generators
chosen for I. In fact, if g, ..., g, € S#™ generate the ideal J c I, we

have relations of the type g; = Z' b, f(j =1, ...,s), showing that
S;cS;=8,n..n8S,. We h;:nla thus proved that the germ of
analytic set S; at p, defined as above by the ideal I, has the property:
Prorosirion 1(a). If1,J areideals in #™and J c I, thenS;C S,.
In particular, I determines S; uniquely.
‘PROPOSITION 1(b). If I, J areideals in ™, then S;,; =S; U S;.

Proor. By Proposition 1(a), S;,,5S; U S,. Now let the f,
generate I and the g; generate J. Then §; =N S, and S; =N S,J..
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HenceS;u S;= Q Sf‘a,' But each f; g, eI nJ, hence S;,,, ¢ Sfdlj’ The

proposition follows.

REMARK. The converse of Proposition 1 is false. For instanco,
suppose f is a non-invertible element of #™ different from 0. Then
all the powers of f generate distinct principal ideals in 5™, but all
these ideals define the same germ of analytic set at p. As will be
proved in Chapter IV (§1), S;c S, if and only if rad J c rad I.

CorOLLARY 3. Given any family & of holomorphic functions on
an open neighbourhood U of p in C™, we can find an open neighbourhood
V c U of v, and finitely many members g,, ..., g, of &, with the property :
for every g € Y, there exist holomorphic functions h,, ..., b, on V such

that,on V,g = X h; g,.
i=1

Proor. Let I be the ideal of S#™ generated by the g, g€ 4. Let
the notation be that of Theorem 7. Since the f; € I, we have finitely
many members g,, ..., g, of 4, such that relations of the type f, =

i‘. h, g, h, es#™, hold (j=0,..,q). Hence, if n is sufficiently
‘l;ge, we have holomorphic functions A; on P,(c U) such that
fi= ‘2:,1 hfi 9:(7 =0, ...,q). Clearly Corollary 3 is valid with any
such P, as V.

With the notation of Corollary 3, we have that, on V, the sct
of common zeros of all members of ¥ is equal to the set of common
zeros of finitely many members of ¢. Hence the following definition
of analytic sets is equivalent to the one given carlior (Definition 4
of § 6).

DEFINITION 7. An analytic set in an open set U in C™ is a subset
S of U with the following property: for every a € U, there exist an open
neighbourhood V c U of a and a family {f,} of holomorphic functions
on V such that V. n S ={xe V| fi(x) = 0 for every }.

DEFINITION 8. An element f € ™ vanishes on the germ of ana-
Iytic set S at pe C™ if S S;, where S, is the germ of principal ana-
lytic set at p defined by f (S, = C™if £ =0).
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It is clear that the set of all fe 5#™ vanishing on a given germ
of analytic set S at p is an ideal in 5™,

DEFINITION 9. The ideal associated to the germ of analytic set S
atpeC™ is the ideal in ™ formed by all the elements of HA™
vanishing on S ; it 18 denoted by I(S).

For example, I(C™) ={0}, I({0}) = #"™, () = H#™.

As an immediate consequence of the definition of the associated
ideal, we have

ProrosiTioN 2. Let S, T be germs of analytic sets at peC™.
Then: (a) ScT if and only if I(T) cI(S) (hence S =T if and only
if I(S) = I(T); (b) I(SuL T)=I(S)n I(T).

ProrositioN 3. Let S and T be germs of analytic sets at p € C™.
Then : (a) S 18 irreducible if and only if I(S) is prime; (b) the germ
of analytic set at p defined by I(S) (as in Corollary 2 to Theorem 7) is
precisely S, and any ideal in H#™ defining S is contained in I(S).

Proor. (a) Suppose I(S) is not prime. Then there exist
f,geo™, f,g ¢ IS), such that fg € I(S). Let S'=SnS,
S"=SnS§,. Since f,g¢ I(S), S’ and 8" are both distinct from S.
Further S'US" =S n (S, uS) =S n S, =S, since fg € I(S). Thus,
if I(S) is not prime, S is reducible.

Conversely, suppose S is reducible: S =S’ u S”, where S’ and S”

are germs of analytic sets at p both distinct from S. There exist
r
f,,....1, (resp.g,,...,8,) € #™suchthat S’ = .nl Sy, (resp. 8"= ‘61 S,).
= J=

Since S’ S S, there exists an 4, 1 <iy <7, such that f, ¢ I(S);
similarly there exists a j,, 1 <Jj, < 8, such that £ ¢ I(S). Now
S=S'us =Q Sy;s;» hence in particular f, g; eI(S). Thus I(S)
is not prime, and (a) is proved.

(b) Let g,,..., 8, € I(S) generate I(S). The germ of analytic set
at p defined by I(S) s T=§; n...nS, . Clearly ScT. But we
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also have I(S) c I(T), since g,,..., 8, vanish on T by definition of T,
and generate I(S). Hence (by Proposition 2 (a)) T c S,ie.,S=T.
Thus I(S) defines S. Finally it is clear from the definitions that
any ideal defining S is contained in I(S).

We can now deduce another corollary to Theorem 7 (we use only
the fact that s#™ is Noetherian).

CorOLLARY 4. Every germ of analytic set (at a point of C™) is a
finite union of irreducible germs; these irreducible germs are uniquely
determined by the given germ if we require that none of them be contained
in the union of the remaining.

Proor. Let S be a germ of analytic set, at pe C™ say. We first
show that S is a finite union of irrcducible gorms of analytic sets
at p. Suppose this is false. Then S is in particular reducible, say
S=S,US,, where S, S, are germs of analytic sets at p distinct
from S. At least one of S,, S, is not a finite union of irreducible
germs, say S;. Repeating the argument used with S, we obtain a
germ S, < S,, which is again not a finite union of irreducible germs.
If we go on repeating the construction, we obtain an infinite
descending sequence of germs of analytic sets at p: S 2 S, 2 S’?« -2
Sz,,_,_la .... By Proposition 2(a), we have for the sequence of
associated ideals, I(S) [ I(S,) [ I(S;) [ I(Szp4q) ... But this
contradicts the fact that 5#™ is Noetherian (§2 (d)). Hence S is a
finite union of irreducible germs S;, 1 < ¢ < p. By discarding some
of the S; if necessary, we may suppose that none of the S; is
contained in the union of the remaining.

Now suppose S is also the union of the irreducible germs

’j, j=1,...,q, where no S', is contained in the union of the
remaining. We shall show that each S’; is one of the S;. In fact,
we have

S, =8,08=8,n(U s)= 0 (8;ns).
f=1 =1

Since S’ is irreducible, we must have, for at least one ,1<t<p
. =8%n8, ie., S’;cS;. Repeating the argument with S;, we
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obtain similarly S;c S’ for some j’, 1 < j’ <g¢. Hence S’;c S, c S’
But S’ ¢ S, for j’ #j, hence we have S’; =S,. Thus every S’; is one
of the S;, and similarly every S; is one of the S’;, q.e.d.

The uniquely determined irreducible germs of which S is thus the
union are called the irreducible components of S.

ReEMARR. IfS c T and S is irreducible, then S is contained in at
least one irreducible component of T.



II1
ANALYTIC SETS: A LOCAL DESCRIPTION

1. Hartogs’ continuity theorem and Levi’s convexity theorem.
Let S be an analytic set in an open set U in C™. It is easy to see that
the interior of § in U is both open and closed in U. In particular, if
U is connected, then S is nowhere dense in U if (and onlyif) S £ U.

TaeoreEM 1. Let U be a connected open set sn C™, and S an
analytic set in U, S # U. Then U — 8 is connected.

Proor. We may assume m > 2, and 8# @. Suppose now that
U —8 is not connected. Let U—8 = U,u U, where U,, U, are
disjoint non-empty open subsets of U — S. Then T,u (71 =U—=8
= U (all the closures being taken in U); for, as remarked above,
U—S8 is dense in U. Since U is connected, ﬁo n l_fl # @. Let
a€Uyn U, Then a €S, since Ugn T, = Tyn U, =0 (U, U,
are open in U). Suppose now that we have proved the following
assertion: every a €S has a connected open neighbourhood Vc U
such that ¥ n°S is connected. Then, for a € Uy n U, this leads
to a contradiction: ¥V n Uy, ¥V n U, are non-empty disjoint open
sets,and V' n %8 =(V n Ug) U (V n U,). So the theorem is proved.

It remains to prove the assertion made above. Let a € S be given.
Let P c U be an open polydisc with centre a, such that P n § is the
set of common zeros in P of finitely many holomorphic functions
Josfun +er» fyon P. 8 being nowhere dense in U, we may assume that
none of the f; vanishes identically on P. We assert now that P n 8
is connected. In fact let x, be a fixed point of P n°S, such that say
Jo(xy) #0. If  is any other point of P n ¢S, let L be the complex line
in C™ joining , and z. Then Ly = L n P is connected and f, | L3520,
since fo(x,) # 0. Hence z, and z can be joined in L, by an arc on
which f, does not vanish except possibly at z, q.e.d.

CoroLLARY. Let U be a connected open set in C™ and f and g
holomorphic functions on U. Let f=g on a subset S of U with the
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property : there ewists a connected open subset V of U such that
V <8 is disconnected. Then f=g on U.

Proor. Let 4 be the set of zeros of f—g in U, and suppuse 4 #U.
Then by Theorem 1, V n°A is connected ; further ¥ n°4 is dense
in V. Hence V n S, which contains V' n °4, must also be connected.
This contradiction proves that 4 =U, q.e.d.

TrEOREM 2. Let U be a connected open set in C™, and S an
analytic set in U, S #U. Then: (a) suppose h is a holomorphic
function on U — 8 which is bounded in a neighbourhood of each point
of S (more precisely, we suppose that every a € 8 has a neighbourhood
V c U such that b |V S is bounded); then b has a unique holomorphic
extension to U; (b) suppose, for every a €8, that S, does not contain
any (non-empty) germ of principal analytic set at a; then every holo-
morphic function on U — 8 has a unique holomorphic extension to U.
(In case (b), we must necessarily have m > 2,if 8 # @.)

Proor. In both the cases, the uniqueness of a holomorphic
extension of A to U is trivial, because U is connected. Hence it is
sufficient to prove that every a €S has an open neighbourhood
P(c U) such that A| P 1 °S has a holomorphic extension to P.

Let a € 8 be given. We shall assume, for convenience of notation,
that a=p, the origin of C™. Let ¥ c U be an open connected neigh-
bourhood of 0, such that Vn S ={zeV|f(x)=0,j=0, 1,...,q},
the f; being finitely many holomorphic functions on V. Since S is
nowhere dense in U, we may assume that none of the f; vanishes
identically on V. Also all the f; vanish at p, since peS. Hence, as
in the Weierstrass preparation theorem, we can find : (i) a basis for
C™ and an open polydisc P = {(2/, z,,) € C™ |2’ € P', |z, | < p}
with centre p, whose closure Pc ¥V, and (ii) distinguished pseudo-
polynomials ¢, ..., ¢, in z, with coefficients which are holomorphic
functions of #’ on P’, such that, for 0 < j < ¢, ¢,(2', %) #0if 2’ e P’
and |z, | =p, and PasS ={1513| $®)=0,j=0,1,...,q}. In
particular if | z,, | = p and 2’ € P’, (2, x,,) €V n°S. Hence if y is the
positively oriented circle |¢| = p in C1, and z = (2/, z," € P, the
integral
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_ 1 | h(',?)
h*(x) = 5 J dt

g b — %,

is defined, and A*() is a holomorphic function of z on P. We shall
prove that, under the assumptions of (a) or (b), 2* =h on Pn°S,
and Theorem 2 will be proved.

(a) In this case, let 2’ be any given point of P’. There are
only finitely many points in |#| < p such that (2’,t) €S, and none
on |t|=p (since, for instance, all such points are roots of the
polynomial ¢y(z’, t)). Hence ¢ — h(z’, t) is a holomorphic function
of tin || < p, except for finitely many pointsin |¢| < p, and is
bounded in a neighbourhood of each of the exceptional points. By
the classical theorem of Riemann, ¢—- A* (z’, t) is the unique holo-
morphic extension of t—h(z',?) to {|t| <p}. Consequently, for
everyz’' € P/, h*(2’, t) = h(z’,t) whenever |¢| < pand (z’,t) ¢S, q.e.d.

(b) In this case the argument is quite different. Let ¢, =
P,P,...P, be the unique factorisation of ¢, into distinguished
irreducible polynomials in s#™~[z,]. If P’ is sufficiently small,
there exist distinguished pseudo-polynomials Py, ..., P, in z,,, whose
coefficients are holomorphic functions of z' on P’, such that P;
induces the germ P; at p, 1< i< n. Now, since S, contains no
non-empty germ of principal analytic set at p, none of the P, can
divide all the ¢;, j =1, ..., ¢ (in #™ and hence) in H#™ '[z,].
For each 4, 1 <1< m, let j;, 1 < j; < g, be such that P, does not
divide ¢, . P; being irreducible, this is equivalent to saying that
P, and ¢, are relatively prime in " m=1[z,], and, since #™ ! is a
factorial ring, this means that p(P,, ¢;) # 0, where p(P,, ¢, ) is
Sylvester’s resultant of P; and ¢p;, 1 <7< 0.

Now let R, be the Sylvester resultant of ¢, and P; (regarded as
polynomials over the ring of holomorphic functions on P’). R; is
a holomorphic function on P’, and R, 3£ 0 on P’ since the germ it
induces at p’, viz. p(P,, ¢, ), is not 0. Hence W' ={z' € P'| B (') #0,
i =1, ...,n} is a non-empty open subset of P’. Let W = {(2', )
€ P|a’' € W'}. We assert that W n S = @. Suppose on the contrary
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that 2 = (2, %,,) € W n 8. Then ¢,(x) = 0, 0 < j < ¢. In particular,
P,(z) = 0 for at least one 4, 1 <4< n, and ¢, (x) = 0. But this
means R,(z') = 0, contradicting ' € W'.

It is now obvious that A* =hon W : for each 2’ € W', t— h(z', t)
is holomorphic in |¢| < p, and the Cauchy integral formula applies.
But, by Theorem 1, Pn°S is connected, and the holomorphic
functions 4* and % on P n°S are identical on the non-empty open
subset W of Pn°S. Hence A* =hon Pn°S, q.e.d.

REMARKS. It is easily seen, using Theorem 6 of Chapter II, that
the assumption about S made in (b) above is equivalent to the
following : for every a€s, if f;, ..., f; € #7 — {0} are such that
S, = S,l N ...n Sy, then the greatest common divisor of £, ...,
is 1. As a consequence we have the

CoroLLARY. Let U be an open set in C™, and S the set of points
of U at which a meromorphic function on U is indeterminate. Then
every holomorphic function on U—S8 can be extended, in a unique way,
to a holomorphic function on U.

Theorem 2(b) is an illustration (due to Hartogs himself) of the
following principle, whose proof is the same as the last part of the
proof of Theorem 2 (with U instead of U —8).

‘“ContiNviTY THEOREM™ OF HARTOGS. Let

P ={' x,)eCm™ | 'eP,|x,| <p}
be an open polydisc in C™(m > 2) with centre p, and let U be an open
set with the following properties :

(i) 2’ e P!, |, | = p imply (&', z,,) € U ;

(ii) there is @ mon-empty open subset W' of P’ such that ' € W',
| %, | < p tmply («', ,) e U;

(iii) P n U s connected.

Then, any holomorphic function on U has a unique holomorphic
extension to Pu U.

Another classical illustration of the above theorem is the following.

“CoNvEXITY THEOREM” OF LEvVI. Let ¢ be a real-valued and
twice continuously differentiable function on an open neighbourhood
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w of the origin p in C™ (m > 2) ; using the variables ;, &; instead of
Re zj, Im z; (j =1, ..., m), set

< 0
10 => %o

=1
9@ =1 E%ﬂ"”"”‘"
Jk=1
m azqs -
h = == (0 )
(=) iME_l 725, ©

and assume that f(x)=£ 0, $(p) = 0.

(a) If f(x) =0 and h(z) > O for at least one z, then, for every open
neighbourhood U Cc w of 0, there exists an open neighbourhood V c U
of 0 such that any holomorphic function on U, = {z € U] $(z) > 0}
has a unique holomorphic extension to Uyu V.

(b) Conversely, if such a V exists for every U, then f(z) =0 and
h(x) > O for at least one x # p.

Proor. We set = (2', z,,) and ||z |2 = i |72 Let gf (0)#0;
j=1 1z,

if the variables @, Z; are replaced by z'; = f(z) + g(z), ¥’y =2 for
j=2...,m, and the z';, f(z) is replaced by 2’;, and g(x) by 0; so
we may assume f(z) = 2,, g(x) = 0, and then

¢(x) =2 Re 2, + h(z) + o (||z||?) as z—D. (1)

Near p, ¢(x) > 0 if and only if Re z; > y)(z), where y(z) and its
first derivatives vanish at p. Hence for any sufficiently small
polydisec P about p, the set {x € P | ¢(x) > 0} is connected.

2,
(a) Let3} i 4’_ (0) =a > 0, 0r A(p’, z,,) = «|%,|?; we assume
oz, 0z,
that U is a sufficiently small neighbourhood of p for (1) to imply
$(%) > ¢,(x) =2 Re =z, + h(z) — % | z|® foranyzeU. (2)

Let Uy={ze U|$,(2)>0},8={z e U] 2Roz, +h(x)— % | 2 l12< 0},
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and P be an open polydise with centre p, radii #;, such that:
(i) PcU,Pn U,, P n U, are connected ; (ii)

aTa:%;(o);r,,xl;
(iii) '€ P’, |, | =1, imply b(z) > — ||xu’ (iv)r, < %rf,,.
Then '€ P’, |z,, | =1, imply

2Roz,+h@) — Izlt> =2 +3 2P > —2r + 52 >0,

i.e., ¢S, which is condition (i) in Hartogs’ theorem. On the other
hand, ifz, =¢t> 0,2, = ... =%,_;, =0, |%,| < 7, then

2 Re z, + h(z) —"_‘uaan2

_E‘_‘l-”!a_i_[i a:? (0) — ]¢=+2tRe[l+ia—:;%—(o)5m]

>t+[iaa;(m 2]

by (ii); hence we can choose ¢, 0 <? <r,, such that z; =¢, z, = ...
=2, _,=0, |2,| < 7, imply ¢S, and therefore there exists a non-
empty open subset W' of P’ such that 2’ e W', | z,, | < 7,, imply (2, 2,,,)
€ U,, so that U, meets the requirements of Hartogs’ theorem. If f
is holomorphic on U, f | U, has on extension to P u U, and also,
since P n U, is connected, to P u U,,.

(b) It is sufficient to show, given «> 0, that 2, =0 and
h(z) > — a||z||2 for at least one = # p. Assume the contrary :z, =0
implies h(z) < — «f|z |2 and, by (1), there exists an open neighbour-
hood U c w of p such that z € U and z; = 0 imply ¢(z) < 0 ; then
zlis holomorphic on {z € U |¢(x) > 0} and has no holomorphic

1
extension to any neighbourhood of p.

2, The regular points of an analytic set.

DEFINITION 1(a). Let S be an analytic set in an open set U in
C™. aeSisa regular point of 8 (or S is regular at a) if there exist an
open neighbourhood V c U of a and a one-one biholomorphic mapping
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J of V onto an open set V' in C™, such that f(V A S) = V' o L, where
L is an affine subvariety of C™ with dimension k, 0 < k < m.

REMARK 1. With the notation as above, let a be a regular point
of S. Then the dimension k of L is uniquely determined by S.
In fact let f, be a biholomorphic mapping of the open neighbourhood
Vi(c U) of a onto an open set V’; in C™, mapping ¥, n S onto
V’y n Ly, where L, isa k, - dimensional affine subvariety of C™. Let
W =V V;. Then themapping g =f, o f~1: f(W)—f,(W) is one-
one, surjective, and biholomorphic. Hence its Jacobian does not
vanish at f(a). From g(f (W) n L) c L,, we easily deduce k < k,. A
similar argument with g~ shows that k, < k, hence k, = k. Thus,
in Definition 1(a), we may add:

DEFINITION 1(a’). The dimension of S at a is the dimension of the
affine variety L.

REMARK 2. With the notation as above, let @ be a regular point
of 8, of dimension k. If f’ is the affine mapping tangent to f at the
point a, f'~(L)is uniquely determined by § : it is an affine variety of
dimension k, containing a. We shall refer to f'~!(L) as the affine
variety tangent to S at the point a.

REMARK 3. Let 8, 8’ be analytic sets in open sets U, U’ of O™
respectively, and let a € § 0 S’. Suppose S, =S’,. Then clearly a is
a regular point of S of dimension k if and only if a is a regular point
of 8’ of dimension k.

DErINITION 1(b). A germ of an analytic set at @ € C™ is a regular
germ of dimension k if a i8 a regular point of dimension k of some
analytic set which induces the given germ at a.

By Remark 2, if S is a regular germ of dimension k at @, then a
is a regular point of dimension k of every analytic set which indu-
ces the germ S at a. Further since an affine subvariety of C™ induces
an irreducible germ at every point of C™, we sec easily that a
regular germ is always irreducible.

Exampre. If § is defined by m — % equations x; = g;(x,, ..., %),
k+ 1 < j < m, where the g; are holomorphic on the projection of
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U on the subspace of C™ generated by the first £ elements of the
basis, then any point of 8 is a regular point of § of dimension k.

In fact the formulae
=z, 1<j<k,
1', =zj—‘gj(xh weey xk): k+1< .7 <m,

define a one-one biholomorphic mapping f of U onto an open set U’,
such that f(S) is the intersection of U’ and the linear variety

Xpy1 = e =2, =0.
An immediate consequence of Definition 1,(a) and (a’), is the

ProrosiTiON 1. Let S be an analytic set in an open set U in C™,
and F a one-one biholomorphic mapping of U onto the open set F(U)
n C™. Then a € S is a regular point of S of dimension k if and only
if F(a) i3 a regular point of F(S) of dimension k (plainly F(S) is an
analytic set in F(U)).

Let S be an analytic set in the open set U in C™, and 8* the set
of regular points of S.

ProOPOSITION 2. S* i8 an open, locally connected subset of S, and
the dimension of S 13 constant on each connected component of S* (the
topologies on S and S* being the ones induced from U).

Proor. Let a € S*. With the notation of Definition 1(a), it is
clear that the open neighbourhood ¥V n 8 of @ in § consists entirely
of regular points, all of the same dimension. Since ¥V n S, being
homeomorphic to V' L, is locally connected, the proposition is
proved.

Remark. We shall see (Chapter IV, § 2) that S* is dense in S.
ProrositioN 3. Let S, S* be as above, and beS*. Then:

(a) if, for a holomorphic function h on U, h, vanishes on S,, then h
vanishes at every point of the connected component of S* which containsb;

(b) if, for an analytic set 8’ in U, S',> S,, then the connected com-
ponent of 8* which contains b is contained in S'.
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ProoF. Suppose given a holomorphic function & on U such that
h, vanishes on S, (respectively an analytic set 8’ in U such that
S’,5S,). Let X ={r € §*|h, vanishes on S, (resp. S, 5 S,)}.
Obviously X is an open subset of S*. Proposition 3 will be proved
if X is closed in S*. Hence let a € S* be in the closure of X ; wo have
to prove that @ € X, and may assume the dimension k of S at a > 0.

(a) Let the notation be as in Definition 1(a). Let P'c V' be
an open polydisc containing f(a), and let Ly = P’ n L. Then f~*(L,)
is an open neighbourhood of a in S*, hence contains a point z € X.
Now, L, can be regarded as a connected open set inC¥, and g =ho f~!
is a holomorphic function on L, such that g, = 0. Hence g = 0 on
Ly, ie., b | f~1(L,) = 0. Hence h, vanishes on S,, q.c.d.

(b) Let V be an open neighbourhood of a in U, such that
V n 8’ is the set of common zeros in ¥ of the holomorphic functions
hO,..., @ on V. 8* being a locally connected open subset of S,
we may assume that V' n S cS* and that V' nS is connected.
V A S must contain a point z € X. This means that all the h%
vanish on S;, 1<j<g¢. By (a), all the A must then vanish
identically on ¥V n 8, ie., VnScVn &, qed.

ProrosiTiON 4. Let S be an analytic set in the open set U in C™, 8
an open connected subset of S*, 8’ another analytic set in U such that
8sn 8 #s. Then s 0 °S’ 18 connected.

Proor. The proposition is a consequence of Theorem 1 of § 1,
and the proof begins in the same way, by assuming that s n°8’ is
not connected : then sn°S8’ =s,u s,, where s, s, are disjoint
non-empty open subsets of s ; 5,U3; =sn°S’ = ¢ (all the olosures
being taken in s), for, by Prop. 3 (b), the assumption sn 8’ #s
implies that 8 n %S’ is dense in 8. Since ¢ is connected, 3, n 3, # @.
Let @ €3, 03, ; the dimension of § at a is k> 0. Since & € s c8*,
there exist an open set V c U, V 5 a, and a one-one biholomorphic
mapping f of ¥ onto an open set ¥’ in O™, such that ¥ n S is con-
nected, ¥V n Scsand f(V nS) = V' n L, where L is an affine variety
of dimension k. VS nS’ is an analytic set in ¥V, which is not
V n 8,80 f(V A8 nS’)is an analytic set in V', which is contained in
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V' L, but is not V' n L; since it may be considered as an analytic
set in the open connected set V' n LinC*, (V' A L)—f(VASn S
is connected (§1, Theorem 1), and so is (¥ n8)—(VnSnS')=
VA (8SneS’); this connected subset of 8n°S’ meets s, and s,,
which is absurd.

REMARK. The assumption of regularity in Propositions 3 and 4
can be weakened to irreducibility : Proposition 3 (resp. 4) still
holds with an open connocted subset s of S such that S, is irredu-
cible for every x € s, instead of a connected component of S* (resp.
an open connected subset of $*). This will be proved in Chap. IV, §3.

3. Local description of an analytic set: choice of basis of C™.
Given a germ of an analytic set S at say the origin p of C™, we wish
to describe an analytic set S in an open neighbourhood of p which
induces the germ S at p, and is adapted to a detailed study of S.
Our treatment of this subject is different from the ones available
in the literature, which are due to H. Cartan [3] and Remmert-
Stein [4].

Any germ of an analytic set being a finite union of irreducible
germs, we may consider irreducible germs ; their associated ideals
are prime ideals in #7 = #™ (Chap. II, §8).

In what follows, I is always an ideal in S#™(m > 2); we exclude
the trivial ideals I ={0}, I = '™, I = #™ which are associated
respectively to the germs C™, {0}, ©. Given an ordered basis of C™,
we adopt the following notation : for 1 <7 < m,

C" =the subspace of C™ generated by the first  elements of the
basis,
0, = the origin of (",
" =ring of germs of holomorphic functions of the first » coordi-
nates at p, € C' (regarded as a subring of #™),
, =1 n 5#". (Thus I prime in 5#™ implies I, prime in 5#” foreach .)
ProrosiTioN 1. Let 1< k< m—1,andlet z,, ..., z, be k inde-

pendent linear forms on C™. Then, for any ideal I in H#™, I + H™,
the following statements are equivalent.
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A. The ideal generated in H#™ by X,, ..., X, and I defines the
germ {0} at 0; i.e, S nS, n...nS, ={o}.

A’. For any (or one) basis of C™ for which z,, ..., x, are the first
k coordinates, and any r, k <r < m,

A’, : the ideal in #" generated by I, and X,, ..., X, defines the germ
{o,} at 0,

A”. For any (or one) basis of C™ for which zy, ..., z, are the first
k coordinates, and any r, k <r < m,

A%, H#771 [,] 0 I, contains a distinguished polynomial.

Proor. Trivially A and A’, (for an arbitrary basis of C™) are
identical. We shall prove that A" (for a certain basis of C™) implies
A, and that A, (for a certain basis of C™ for which z,, ..., z, are the
first k coordinates, and a certain r, k <r < m) implies A", (for the
same basis of C™), and implies A’,_,(for the same basis) if » > k 4- 1.
This will prove the proposition.

(1) A’,smplies A”,. If there exists a holomorphic function fonan
open neighbourhood of p, in C" such that f € I, while f(o,_,, 2,)5%0
in any neighbourhood of z, = 0, the Weierstrass preparation theorem
shows that A", is valid. Suppose no such f exists. Then every f € I,
vanishes on the germ of analytic set L, at p, induced by the subspace
{z, = ... =,_, = 0} of C". Trivially x,, ..., X; vanish on L,. Hence
the germ at p, defined by I, and x;,...,X, contains the germ
L2 {0,}, so that A’, is not valid.

(2) A',implies A’,_;(r> k + 1). Suppose A’, holds (for a certain
basis), and let > k + 1. By (1), A", holds. Let Q, e#"~[z]n I,
be a distinguished polynomial in x,, of degree g say. Let f,, ..., f, €I,
generate I, in J#7. We can find an open polydisc m, = in C*
with centre p,, such that : (i) each f; is induced at p, by a holomorphio
function f;on =, 1 < j < 7 ; (i) Q, is induced at o, by & distinguished
pseudo-polynomial @, in z,, whose coefficients are holomorphic
functions of 2' = (zy,...,#,_,) on the projection = =m,_, of =
on O~ ; (iii) 2’ en’, Q,(2, ,) =0 imply (z', z,)em; (iV)mn {fy =
w=f, =02, =..=2=0={}; (v) by the Spith-Cartan
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preparation theorem, there exist holomorphic functions 4 on
such that the f; — h; @, = u; are pseudo-polynomials (of degree < gq)
in z,, with coefficients which are holomorphic functions of z’ on .

Let 2’ # p,_, be any given point of =’ whose first £ coordinates
vanish (recall that r—1> k). Let ¢,,..., 7, be the roots of the polynomial
Q,(«', t) int. By(iv) above, we have for each s, 1 < 8<¢,a75,(1<j,<n)
such that fh(::', t) # 0, hence u,-‘(x’, t) # 0. Hence there exists
a A= (), ..., A;) € C" such that the polynomials Q,(x', ) and

n
(2, t) = X Au(’,t) inthave no common root; in fact such X's
j=1

form a dense open subset of C*. Thus if p,=p(Q,, ,) is the Sylvester
resultant of @, and u, (regarded as polynomials over the ring of holo-
morphic functions on #'), then p, is a holomorphic function on =’
for every A eC", and p,(x') # O for suitable A.

Now, since Q, and the w; € I,, we have, for every A € (",
pr € #1nl, =1I,_,. By Theorem 7 (Chapter II), there exist
holomorphic functions g, ..., g, on an open neighbourhood U’ c =’
of p,_, in "~ such that g,, ..., g, € I,_, and generate I,_,, and
such that each p, is, on U’, a linear combination of g¢,,..., g,, with
coefficients which are holomorphic functions on U’. Then any
common zero in U’ of all the ¢;, 1 < ¢ < #/, is & common zero of all
the p,, AeC". But we have seen already that there is no 2’ e,
z' # 0,_,, whose first k coordinates vanish, such that p,(z") =0 for
every AeC". Hence the g;, 1 < i < #/, and the x;, 1 < j < k, define
the germ {p,_,} at 0,_,. Since the g; generate I,_,, A’,_, is proved.

(3) A" implies A. For a certain basis of C™ for which x,, ..., 2, are
the first k coordinates, let Q, € #7~[x,] n I, be distinguished. Let T
be an open polydise in C™ with centre p, such that Q, is the
germ induced at p, by a distinguished pseudo-polynomial @, in z,
with coefficients which are holomorphic functions on the projection
m_yofmon C"1, r =k + 1,..., m. Let the first & coordinates of
¢em be zero. Then @, (£) =0 implies £, = 0, and inductively
we deduce, from @, ,,(¢) = ... =@,,(£) =0,that § ., = ... =§, =0,
i.e., §=0. Hence Xy, ..., X;, Q;11, ..., Q,, define the germ {p} at p.



GERMS OF ANALYTIC SETS 53

A fortiori the ideal generated by I andx,, ..., X, definesthe germ
{o}at 0, q.e.d.

ProrosITION 2. Given an ideal I in #™, such that I # {0} and
rad I c H'™, there exist k independent forms ,,..., %, on C™, 0<k<m,

such that A of Proposition 1 holds, and in addition,

B. Forany basis of C™ for which z, ... , %, are the first k coordinates,
I, ={0}.

If conversely, there are k independent forms on C™, 0 <k <m,
such that A(resp. B) holds, then I 5 {0} (resp. rad I S H'™).

Proor. We shall find a basis for C™ such that A” and B hold
when z,,...,;, are chosen to be the first k coordinates for the basis,
0 < k < m; this will prove the proposition.

Since {0} # I c #'™, there exists anf e I, f+ 0; and f is non-inverti-
ble. By the Weierstrass preparation theorem, we can find a basis of
O™ such that f ~ Q,,, where Q,, is a distinguished polynomial in
the last coordinate z,, of the basis. Clearly, Q,, € . With respect to
such a basis, we consider I,,_,. Plainly, I, _,c #'™1. We assert
that rad Im_lg.#"”“‘. Suppose in fact that rad I, _, = #"™"L
Then, if g, =d°Q,, we see easily that z,m e rad I, and this
implies #,, erad I. But if rad I,,_, = #'™"! and z,, e rad I, then
rad I = #'™, contrary to the hypothesis.

Hence either I,,_, = {0}, in which case the proposition is proved
with k = m — 1 (and ,, ..., %,_, a8 the first m — 1 coordinates for
the basis), or {0} # I,,_y, rad I,,_, C #'™=1. In the latter case,
m—1>2. For, it is easily seen that the radical of any ideal in
A1 is {0}, " or 1. Repeating the earlier argument, we can
find a basis of O™~ such that I,,_, contains a distinguished poly-
nomial in the last coordinate ,_, of this basis. This basis of C"~!
and the last element of the previous basis of C™ form a new basis
of O™, with respect to which =, continues to be the last coordinate,
and Q,, remains a distinguished polynomial in z,.
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We now consider I,,_, with respect to the new basis of C™. Using
rad I,,_, < of'™=1 we conclude as before that rad I,,_, ¢ Hm-2,
Proceeding as above, we arrive at the conclusion of the proposition
at the end of m —k steps, where 0 < k <m, — for the k forms
Z;,..., % of the proposition we may choose any which, together with
the m — k forms z,,, ..., %,,, obtained above, form a coordinate
system for C™.

DEFINITION 2. An ordered basis of O™ is k-proper for the ideal I
(0 <k<m) if the first k coordinates satisfy condition A of Propo-
sition 1 and condition B of Proposition 2.

Such a basis can exist only if {0} # I, rad I cH !

REMARKS. (1) Weshallsee (Chap. IV, § 2) that, if a basis of C™
is k-proper for an ideal I, then k =the dimension of the germ
S, defined by I: hence k depends only on I. We shall see also that,
if & independent linear forms on C™ satisfy condition A only, then
k > the dimension of S; ; but, if the forms satisfy condition B only,
then nothing similar can be said, even if I is prime.

(2) Let I be a principal ideal, {0} 521 c s#'™: I is generated
by a single element f € J#'™, f s 0, which is determined up to an
invertible factor € #™. If s#™ 1[z,]n I contains a distinguished
polynomial, then f satisfies the assumptions of the Spith-Cartan
preparation theorem and, by the uniqueness assertion of this theorem,
f cannot divide in J#™ a non-zero element of s#™~!. Therefore :
(a) if a basis of C™ is k-proper for I, then k = m — 1 (for the converse
statement, see Remark 2 on Lemma 1) ;(b) a basis of C™ is (m—1)-
proper for I if and only if f(0,,_,, ,,) 3£ 0 in any neighbourhood
of z,, =0.

(3) Given two ideals I, I' in ™ such that {0} % I < I'crad I’

S.;f"", and an ordered basis of C™ which is k-proper for I,

0 <k <m, then the first k¥ coordinates satisfy condition A for
I'; if they also satisfy condition B for I’, the basis is k-proper for
I’ too; if not, according to the procedure of Proposition 2 applied
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to I, I,_,, ..., by altering the basis of the subspace C* only, we
can find a new basis of O™ which is still k-proper for I and also
is k'-proper for I', 0 < k' < k.

Consequently, given two ideals I, I’ in 5#™ with the above proper-
ties, then there exist integers k, k’, 0 < ¥’ < k < m, and a basis of
O™ which is k-proper for I and k’-proper for I'.

From now on we shall suppose that a basis of C™ has beon chosen
which is k-proper for the prime ideal I in #™. We recall that
{0} #Ic#™m> 2,and 0 < k <m.

Lemma 1. Fork+ 1< r < m, wecan find (1) P,e # " '[z]n I,
p, =d° P, > 1, (coefficient of a?r in P,) ¢ I,_,, (2) @, € A1 —1I,_,,
@, =1, such that:

(a) foranyUe # ™ [z,]nI,d" U < p,impliesUel,_,[z];

(b) for any fe 1, (resp. Ue#"  [z,]n I,), @,_ T (resp. o, U)
belongs to the ideal generated in H (resp. A" “1[z,]) by I,_, and P,
(in particular I, is generated by Py 1) ;

(¢) for any Ue #"~'[x,], Uel, if and only if p(P,, U)eI,_,
(én order to form the Sylvester resultant p(P,, U), we must assume that
U Las “ formal > degree > 0).

Proor. Let us fix an r, k <r <m, and let 4 bo the residue
class ring s#"~Y/I,_,. Since I,_, is a proper prime idcal in Hr-1,
A is a Noetherian integral domain (§ 2, (¢) and (d), Chapter II). Let
u denote the natural epimorphism #7~'— A4, and the induced
epimorphism 71 [x,] — 4 [¢,]. Let I*={U* =p U)e d[x]]
Ue#[x]nl). Clearly I* is an ideal in 4 [x]. There exist
P, e I*, and ¢*,_, € 4, ¢*,_, # 0%, such that P, divides ¢*,_, U*
for every U* e I* (§ 2, (d), Chapter IT). Let P, € 5#"~! [%,]n I, and
@,_, € #7~! be such that u(P,) = P* and p(e,_,) =¢%_1 while
d° P, = d°P*. We claim that p, =d°P,> 0. In fact p, =0
implies P, € #"~ 1 n I, = I,_,, i.e., P¥ = 0* which in turn implies
I* = {0*}. But I, n 5#""*[x,] contains a distinguished polynomial
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Q, and @*, = u(Q,) € I'* is different from zero. This contradiction
proves that p, > 0. Further ¢* _; % 0* means precisely that
@,_, ¢ I,_,. We shall show that P, and ¢,_, satisfy (a), (b) and (c),
indicating how we may choose ¢, =1.

(8) For any Ue #" ! [z,]n I, P* divides ¢* _,U* where
U* = p(U), and ¢*,_; # 0*. Hence either U* = 0%, which means
precisely that Uel,_,[x], or d°U> d’U* > d"P* =d°P,, and
(a) is proved.

(b) Again let Ue s#7![z,] nI,. With the notation as before,
there exists V* € 4 [z,] such that ¢*,_, U*=P* V* If Ve " [z,]
is such that u(V) = V*, then pu(e,_, U — P, V) =0% ie,
@ U—P Vel _,lz]

In particular, let =% + 1. Then, for every Ue #*[x,, ;1n I;,,,
P,,, divides ¢,U in 5#* [z,,,]. But we may assume that P, is a
primitive polynomial (by dividing it out by the greatest common
divisor of all its coefficients). Then P, must divide U itself.
Hence in the part of (b) which we have already proved, we may
take ¢, =1.

Now let fe I, be arbitrary. By assumption #7~1[x,]n I, con-
tains a distinguished polynomial in z,, say Q,. By the preparation
theorem of Spith-Cartan, there exists he #” such that u =
f—hQ, e s#"![z,]. Plainly uel,. Applying the part of (b) already
proved to u and Q,, we conclude that ¢p,_,f belongs to the ideal
generated in 37 by P, and I,_,, and (b) is proved.

(o) If Ues# ™ '[x]nl, then p(P,, U)e I, n st =1I,_,. Con-
versely, let p(P,,U)el,_;. Then with the notation as before,
p(P*,, U*) = 0*. Further P*, has actual degree p, =d° P,. Hence
(§2 (a), Chapter II) there exist polynomials X*, Y* e A[z,] not
both identically zero, with degrees < d°U*, p, respectively, such
that X*P* | Y*U*=0*. Since P* £0* Y* 0% Let X, Ye #" ! [z,]
be such that u(X)=X*d°X =d°X* u(Y)=Y* d°Y=d7*
Then p(XP, 4 YU) = 0%, ie., XP,+YUe€ I,_,[x,]. Since P, el,,
this implies that YU e l,. NowY ¢ I,. For d°Y = d° Y*< p,, so that
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by (a), YeI, implies Y €1, _,[x,], i.e., Y* = 0%, which is impossible.
Finally, I, being prime, YU€I,, Y ¢I, imply Uel,, qe.d.

ReMARkS 1. It is useful to note that, with the notation of

Lemma, 1, P, ¢l,r=Ek+1,..,m In fact if ,al'eI,, then by (a)
z, axf
P,

ax' el,_, [2,], ie., dP,* =0, which is impossible.

2. If k =m—1, I is necessarily a principal ideal, gencrated by P,,,.

3. Each polynomial P, may be multiplied by any invertible
factor € #7~1; in particular, since P, , divides the distinguished
polynomial ¢, in #*[x,,], P,,, may bo chosen distinguished
(Chap. II, § 3, Lemma 2).

LemMA 2. For every r, k+1<r<m, and every fe#” —1I,
there exists an £’ € #7~1 — I,_, which belongs to the idcal generated
by fand I, in .

Proor. Let Q, e# " [z,]n 1, be a distinguished polynomial
in z,. By the Spith-Cartan preparation theorem, there exists an
h e #" such that U =f —hQ, € 5#"~[z,]. f¢ I, implies that U ¢ I,.
Hence, if P, is as in Lemmal, then f'= p(P,, U) ¢ I,_;, by
Lemma 1 (c). Also, it is clear that f’ is in the ideal generated by
f and I, in 5¢".

ProposITION 3. Let I, I' be two ideals in ™ such that I is prime
and {0} =1 cl’ ;Cef”", and suppose the basis of C™ is k-proper for I
and k'-proper for I'. Then I =1' if and only if k =k'.

PrOOF. Obviously, k' <k, and k' < k implies I 5 I'. Now let
Ic I', and let f =f,,e I’ — I. By Lemma 2, thero oxists anf,_, &
s#m~1 I, ., belonging to the ideal generated in 5™ by I and f,.
Then f,_, € #™ ' nI'=1TI,_,. Hence wo may repeat the argu-
ment, until wo obtain an f,eI', — I, = I', — {0}. Thus I', {0}, i.e.,
k' <k qe.d.

4. Local description of an analytic sct: special dense subscts.
Given a prime ideal I in ™, {0}#1 E.;f 'm_ wo choose & basis of
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C™ which is k-proper for I.Fork +1<r<m,let P,e# '[z]n 1,
and ¢,_,€#" 1 —1I,_,(¢, =1) be as in Lemma 1 of §3, and let
Q,e# '[x,]n I, be a distinguished polynomial in z,. As already

noted, %—PJ ¢I,. Hence, by Lemma 1(c), the Sylvester resultant
xf

§,_,=p (P', %%) ¢I,_,. I,_, being a prime ideal, we also have
i

@,_18,_,¢I,_,. Hence, if k < m — 2, we can, by Lemma 2 of §3,
find & y,,_o € #™ 2 —1I,_,, which belongs to the ideal generated
in #™=1by @,_, 5,,_; and I,,_;. Further, if k < m — 3, we can find
inductively a y,_, €#7~! —I,_, belonging to the ideal generated
in# byy,§ @ andl, k+1l<r<m-—2.

For k< r<<m,let £V, ... f¥nel, generate I,. (I, is generated
by the single clement P,,,, which for uniformity is denoted by
f{),, and similarly I, is generated by the single element 0, denoted
by f{"). We have the following relations.

(1) P, is a linear combination, over 7, of the f?, 1 <1<,
k+1<r<m).

(2) Eache, 19, 1< %< 1, (resp. ¢,_,Q,) is a linear combina-
tion, over J#”(resp. '~ ![x,] ), of P, and the f?,, 1<i<1,_,.
kE+1<r<m).

(3) Y,-. is a lincar combination, over #7, of y, §, ¢, and the
1<i<ik+1<r<m—17v,_,=1)

Let o be an open polydisc in C™ with centre p, having the follow-
ing properties:

(0") For k+ 1 <7< m, the elements f,1< i<, P, Q, of
" are induced at p, by holomorphic functions /¥, 1 < i <3, P,,Q,
respectively on the projection , of = on C'. Similarly, for k <7 <
m—1,¢,, 5, and ¥y, are induced at p, by holomorphic functions 4,
8, and y, on m, respectively.

(1), (2'), (3"). The relations (1), (2), (3) among the £, P,, Q, etc.
over H#'(or H#"~'[x,]) are “induced >’ by corresponding relations
among the f&, P,, @, etc. over the ring 5, of holomorphic
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functions on =, (or over &, .[z,]). For instance part of (2')
would read: ¢,_,@, is a linear combination, over #, _.[z], of P,
and the f@,,1<i<4,_,.

(4') For k+1<r<m, and éem,_,, Q£ t)=0 (forateC)
implies (¢, t) € w,. (This condition can be secured since the Q, are
distinguished.)

Let us write m ==". Since y, §, # 0, U’ = {&’ € »|
yi(@') 8,(x') # 0} is a dense connected open subset of ='(cf. §1).
Let U ={(z), ... , &) €7 | (&}, ..., %) €U’}

Finally, let S be the set of common zeros in = of all the fi,
1<i<14, k+1<r<m; thus S;is the germ of analytic set at p
induced by S.

Lemma 1. (a) SnU={zeU| P (z)=..=P,(z) =0}
(b) For each x' € U’, there exist precisely p = ﬁ (d® P,) points
k41

r-
29 (') of 8 a U which project on 2'. 2P (z')— 0, 1<j<p, as
z'— 0, =0'(x' € U’). (c) On a sufficiently small neighbourhood of
any given point of U’, all the mappings &’ — z9)(x') are holomorphic.

Proor. Let s={zeU| P, (x) =...=P,(x)=0}. Condition (1’)
implies Sn U cs. Now suppose that =’ € U’ is given. Since
5,(2') #0, the polynomial P ,(z’, t) (in{) has p,,, =(d® Pyy)
distinet roots, say aff),(x) =x);, 1<j<ppyq- (2') implies that
the polynomial @,,,(z', t) also vanishes at all the zf’),. Henco,
by 4), (@', a@),(x)) € my1, 1 <j < pryq. Further, since @y, is
distinguished, we see easily that a{), (') = 0, 1 < j < 4,
as z' — 0.

If k+1=m, (a)and (b) are proved. Let k+ 1 < m, andlet { =
(2', 2§) 1 (') ) be any one of the p,, zeros of P, (2',1), z'eU'.
Then first 8, $p4, V41 does not vanish at £ for otherwise y,(z")
=0 by (3'), contradicting z' € U’. In particular §,, (§) #0,
hence the polynomial P, (¢, t) (in t) has ., , = (d° P,,,) distinct
roots af), (€), 1< j < Pyyz- From (2') and ¢, (§) # 0, We sco
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that @, (£, ?) also vanishes at all the z{),(£). It follows that
(£ 2y (£) Emyq, and af), (§) — 0 a8 £ =04y (1 <J< Pyyo)-
If we now use (2') (and ¢, (£) % 0) a second time, we see that
all the {5, 1 < § < 4,5, vanish at all the (¢, 2{),(¢)). Ifk + 2 =m,
(a) and (b) are proved. Ifk -+ 2<m, we can use y;.,(£) #0, and
repeat the above argument, until we obtain (a) and (b). (c) can be
secured, for a suitable ordering of the z¥(z’), for the following
reason: if (2, ..., %,,) €8, then for k+ 1< r<m, 2, is a simple
root of the polynomial P,(%,, ..., %,_;, t). Thus Lemma 1 is proved.

Remarks. If I ({0} #1 < H#'™) is a principal ideal in ™,
then by Remark 2 on Definition 2 (§ 3) and the Weierstrass pre-
paration theorem, we have bases of C™ which are (m—1)-proper for I,
and for any such basis a distinguished polynomial Q € #™[z,]
such that S; =S,. However, the situation is different in the
general case: if I is a prime ideal in 5#™(m > 3, {0} #I ¢ #'™), and
the basis of C™ k-proper for I, 0 <k <m — 1, we cannot always
find distinguished polynomials Q, € I, n #" " '[z,], k+1<r<m,
such that S;=S,,,, n..nSy, . The following is an example.

Let S be the germ at p € C® induced by the analytic set S =
{(#), Tg, 75) €C? | 2% + 2% — =z, =28 — 2,23 =0}, and let I =I(S).
Then first, I is prime. In fact, each z €S can be written uniquely

4 2
l-tf—tz’ l-itz' l-tl—tz)' where teC, ¢t # + 1.
Hence, with the usual notation, fe 5 belongs to I if and only
f f( —t&—‘-,, . , _tz_) = 0 in a neighbourhood of ¢ =0, and
1+ 148" 1428

it follows that I is prime. Further the basis for C? is 1-proper for I :
(0. @4, %5) €S implies z,=x;=0, and this is condition A of Defini-
tion 2 for I, while condition B is obvious. Suppose now that there
exist distinguished polynomials Q, € H#" [x,], Q3 € 5#%[x;] such
that S; =S =S, nS,,. Given z,, z; € O, there exists at the most
one x4 € C such that (x,, @,, ) € 8 ; then, for (x,, #,, z3) €8 and
2,, @, sufficiently near 0, z; is the only root of the polynomial

in the form z = (
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Qs (x4, 75, t) in ¢, i.e., i8 a root of order g3 = d® Q;: in particular

7 Q, = qy! (xa = Z

r+s>1

L
By 6, , o] x5 ) el.

This mecans that

12 _ 'Ad r 3 L
= 2, (vrs) (v39)

r+s21

in a neighbourhood of ¢ = 0, and plainly this is impossible.
We now deduce some immediate consequences of Lemma 1.
ProposiTioN 1. Let I be a prime ideal in H™, I < H'™,
Then S, 2 {o}.

Proor. We may suppose I # {0}. Then, with the notation of
Lemma 1, U’ is a dense subset of #’. Let {x',} be a sequence of
points of U’ converging to ', but distinct from p’. Then, by Lemma 1,
29(2’,) is a sequence of points of S converging to p (for any j,
1 < j < p). Thus p is not an isolated point of S.

LEMMA 2. Let the notation be that of Lemma 1. Let I be a
holomorphic function on an open neighbourhood of 0, such that,
Jor every ' € U’ sufficiently near o', h(2¥ (z’)) = 0 for at least one
i=j@),1<j<p. Thenh=h el

ProoF. Suppose h € #™ — I satisfies the hypothesis of the
lemma. By Lemma 2 of §3, there exists an h,,_, € #™"* — I, _,,
which is a linear combination of h and the £, 1< ¢ <3,,. Clearly h,, _,
also satisfies the hypothesis of the lemma. Hence, if k <m — 1,
we may proceed as above, until we finally obtain an h, e #* — I, =
#*—{0} which vanishes at all 2’ € U’ sufficiently ncar p’. Since U’ is
dense in 7', this is impossible. Hence h €/, and Lemma 2 is proved.

ProrosrTioN 2. Let I be a primie ideal in #™, {0} +~ 1 g H'™

and let the basis of C™ be k-proper for I, where 1 < k< m — 1. Sup-
pose given an open neighbourhood W of p, and let F be the set of all
holomorphic functions on W vanishing at 0. Then, there exist: (1)
an analytic set S in an open polydisc = with centre 9, inducing at D
the germ S; (w and S depending only on I and the basis) ; (2) an open
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polydisc my (Cmn W) in C™ with centre p (which can be chosen to
have arbitrarily small radii) ; and (3) for each h e F, a distinguished
pseudo-polynomial R, (x',u) of degree p in a complex variable wu,
with cocfficients which are holomorphic functions of x' on =’y
(= projection of m, on C*), such that :
(a) the germ R,(h) at'p tnduced by the holomorphic function
x — R, (', h(x)) on m, belongs to I ;
(b) Jor every 2’y € n'y, and every h e F,
{ueC|R,(xy, u) =0}
= {I(z) |z € my 0 8, and projection of x on C¥ =2’y };
(¢) for any h € &, either R,(x', u) contains the factor w, and then
h =h, €I, or R, (', u) does not contain the factor u, and then h(m, n S)
18 @ neighbourhood of 0 in C';

(d) Jfor each function hy holomorphic on m,, there exists a pseudo-
polynomial X,(z',u) of degree < p—1 in w, with coefficients holo-
morphic on 'y (and vanishing at o’ if h, vanishes at p), such that

the germ ; R,(bh, — X, (h) at p, induced by the holomorphic
%
Junction x — -a% R, (', h(x)) hy(z) — X, (2, h(x)) on my, belongs to I.

Proor. Let wand S be as in Lemma 1. Let 7 be an open polydise
with centre g, # cm, such that Fc W, and (with the notation of
Lemma 1), for every 2’ € % n U’, each 29(2') € %, 1 < j < p. For
anyz' €e® nU',heF,andanyj, 1< j< p,let

G =gu@)=(=1 > hE@)... b ).
1€ <...<y <P
One sees casily that the ¢, are bounded holomorphic functions on
7' n U'. Since o’=n"—U’ isa nowhere-dense analytic set in ', each
¢; has, by Theorem 2(§1) a unique (bounded) holomorphic extension
to #’, which we shall again denote by ¢;. Now each ¢; vanishes
at p’. This is because k(D) =0 and, forl < j < p, 2?(2') — p as

z'(e U')— p’. Henee R, (2, u) = u? + Z ¢ (') w7 is a distin-

guished pscudo-polynomial. Since, by deﬁnmon R,(x', h(x)) = 0 for
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zemn (Sn U), Lemma 2 shows that R,(h) € I, hence (a) is proved.
Using Theorem 7 of Chapter II, we can now find an open polydiso
m, C 7 with centre p and radii p;, sulch that R,(2', h(x)) = 0 for every
z € my n S and every k € &, while

sup |aP@)| =p, <p,r=k+1,..,m *)
z'en’qn U’
1<i<r

We shall show that (b), (c), (d) hold for this my, R,(2’, u) being as
above.

(b) By (a) and by our choice of my, we already have, for every
z'y e’y and every h € &,

h(x) |z €my n 8, projection of z on C* =2’y } c {u €C'| Ry(x'y, u) =0}.
0 o

The converse inclusion is also valid for every 2y € n’y n U’, by the
definition of R,. Hence suppose z'y € 7'y n °U’, and let u, be a root
of R,(z'y, w). Since U’ is dense in =, we can find a sequence {z’,}
of points of n’y n U’ converging to 2'y. Then, for each =, thero is a
root u, of the polynomial R,(x',, u), such that w, — u,. As alrcady
remarked, we have, for each #, a j,, 1 <j, < p, such that u, =
h(zUm(2',)). On account of the condition (*), we may assume, by
passing to a subsequence if necessary, that {a%w(z’,)} converges
to a point z, € my. Since m, n S is closed in my, we have 2, € 8 n m,.
And h(zg) = lim h(a¥(z’,)) = lim %, = u,. Since plainly the pro-
Nn—>0 n—>0

jection of z, on C* is &'y, (b) is proved.

(c) For any h € &, the coefficients ¢; =c;, of R, arc bounded
holomorphic functions on =,". Suppose first that ¢, = 0. By the
definition of ¢,, this means that for every 2’ € #'yn U’, b vanishes
at at least one of the 20(2'), 1< j < p. By Lemma 2, we then
have he I.

Suppose now that ¢, 3£ 0. If now (¢) wero false, we would have &
sequence {},} of complex numbers tending to 0, such that & takes
the value A, nowhere in 7y S. By (b), this means that the holo-
morphic function g,(z') = R,(2’,A,) of 2’ on =’y vanishes nowhere
in #';. However, the sequence {g,(z')} converges uniformly on =’;



64 SEVERAL COMPLEX VARIABLES

to Ry(2’, 0) = ¢, (2'), since the ¢; are bounded on #’y. This contra-
dicts ¢,5£0, ¢,(0’) =0. In fact let a’ €=y, c,(a’) # 0. Then, on
the domain D ={te C |ta' en'y} inC, the g,(ta’) are holomorphic
functions converging uniformly on D to c,(ta’) 32 0 (c,(1) # 0).
Hence, by a well-known argument, o’ is a limit of zeros ', =t,a’
of the g, respectively, and we have a contradiction to the assumption
that the g,(z’) vanish nowhere in #’,. This proves (c).

(d) Foraz'en'gnU’,
X w= 3 {mee) [T w—ben} ¢

1€ji<p 1?};5?
2]

is a pseudo-polynomial of degree < p—1 in u, with coefficients which
are holomorphic functions of 2’ on 7', n U’, bounded in a neighbour-
hood of each point of #’yn o’; by Theorem 2 (§ 1), each of them
has a unique holomorphic extension to =y, which vanishes at o’
if hy vanishes at 0.

Putting » =h (2P ('), 2’ €n’yn U’, 1< j< p, in the relation
(**), we get

X, (2, h(a? (")) =Ry (2D (2)) 1—[ [A(aD (")) — B(x9"? (z'))]

= @9 @) 2 B, e @)

thus the function -;‘—‘ Ry(2', B(x)) hy(x) — X, (2, h(x)) vanishes for

any z € my n (S n U), and therefore, by Lemma 2, induces at p a
germ belonging to I.

REMARK 1. By (b), R,(2', h(x)) =0 for any x € my n S, while, in
(d), we have only proved 5?‘_ Ry (', h(x)) ho(x) — X, (2’ h(x)) = 0 for

any z €m, n (S n U); but Theorem 3(B) will show that =, (S n U) is
dense in m, n S and, therefore,

% R, (', h(x)) hy(x) — Xy(2', h(x)) =0 for any x €my n 8.
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REMARK 2. Proposition 2(c) has the following consequence.
Given an analytic set S in an open set U, a point a €S, and a function
k holomorphic on U, either the restriction % |S is constant in some
neighbourhood of a, or the set of values of %S in any neighbour-
hood of a is a neighbourhood of 4(a) in C. This result, in which 4|S
may be replaced by a function holomorphic on S (Chap. V, § 6), gene-
ralizes the classical result : a non-constant holomorphic mapping of
a connected open set in C™ into C is an open mapping.

LemMA 3. With the notation of Lemma 1 and Proposition 2,
suppose that, for at least one point =’ €n’y 0 U’, the p values h(z%(z')),
1< j < p, are all distinct ; then :

(a) the germ R, (u)e % [u], induced by R,(x’, u) at the origin of
C*+1, 48 irreducible in % [u]; the discriminant of R,(x',u), which
is a holomorphic function of =’ on 7'y, is 20 ;

(b) for any function $(x', u), holomorphic on an open neighbour-
hood of the origin in C**1, such that $(z', h(z)) induces at 0 a germ
@(h) € I, R,(u) divides, in H*+1, the germ (u) € H*+! induced by
& at the origin of C*+1.

ProOF. (a) Assume that R, (u) is reducible in #* [u] : then (cf.
Lemma 2 of Chap. II, §3), there exist two distinguished pscudo-
polynomials R,(z’, w), Ry(z', ) in u, of degrees p,, p; > 1, with
coefficients holomorphic on an open neighbourhood V' c =’y of o’,
such that R,(z’, u) = Ry(2’, u) Ry(2’, w) for z" € V".

By the definition of R, : for every z’e V' n U’, R,(2’, I(x)) vani-
shes at exactly p, points 29)(z’), and R,(z’, h(x)) at the remaining
P, points z0(z), 1 < j < p. Then, by Lemma 2, each of these two
functions induces at p a germ belonging to I and, therefore, vanishes
at each point 20(2’), 1 < j < p, for every 2’ € V' n U’ sufficiently
near p’. Hence at least two values A(x® (x')) are equal, i.c., the
discriminant of R, vanishes for every «’ € n’y n U’ sufficiently near
0’ ; since this discriminant is a holomorphic function of 2’ on #'y,
it vanishes identically on =y, and at least two values h(x?(z)
are equal for any 2’ € 7’y n U’, which is contrary to the assumption.
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(b) Proposition 2(b), with h(x) =2y, ..., 2,, shows that
2emnS and x'—0' imply z— 0. Now suppose @(h) € I:
é (', h(z)) = 0 for any z € m, n S sufficiently near p, i.e., for any
x € m, n S such that 2’ is sufficiently near p’, or, by Proposition 2(b),
é (', ) = 0 whenever R,(z', u) =0 and 2’ is sufficiently near p’.
In other words, ¢@(u) vanishes on the germ of principal analytic
sot, at the origin of C*+1, defined by Ry (u); since R,(u) is irreducible
in s#*+1 (cf. Lemma 3 of Chap. II, §3), by Theorem 6 of Chap. II,
R, (u) divides ¢p(u) in %1,

ReMARK. It is useful to note that, under the assumptions of
Lemma 3, ai R,(h)¢ 1. In fact, R,(x) cannot divide;. R, (u) in J++1
u "

by the uniqueness assertion in the Spéth-Cartan preparation
theorem.

TaEOREM 3. (Local description theorem.) Let a prime ideal I in
#™(m > 2) be given, {0} = I < '™, and suppose the basis of C™ is
k-proper for I. Then there exist an open polydisc m, with centre p
(which can be chosen with arbitrarily small radii), and an analytic
set Sy in m, inducing the germ Sy at 0, with the following properties.

(A) The sets Sy(x’) = {x €8, | = projection of x on C* = z'},
2’ € n'y (= prajection of m, on C*) satisfy :

(a) for any x' €'y, Sy(x’) is @ finite non-empty set ; the marimum
number of points €8y(x') is a finite integer p (which depends only
on I); 8y(0) = {o};

(b) S,(z') depends continuously on x', i.e., given a sequence of
points x’, € w'y converging to =’y € m'y, Ty € Sy(x'y) if and only if, for
each n, we can choose x, € Sy(x',) so that x, — x,;

(c) for any dense subset E' of 'y, B = U 8Sy(z') is a dense

z’€E’
subset of S,.

(B) A local description of regular points of S,. For every
linear form l on C™, there exists a distinguished pseudo-polynomial
R(x', u), of degree p in u, with coefficients holomorphic on ='y, such
that I(Sy(2') ) = {ueC| R, u) = 0} for any z € 7',
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(a) Given z, €8,, the following stat ts are equivalent : (a,) for
at least one linear form 1 on C™, Ux,) is a simple root of Ry(x'y, u)
(x'y = projection of x, on C*); (a,) x, is a regular point of S, of
dimension k, and the affine variety tangent to S, at x, has C* itself as its
projection on C*,

(b) There exists a principal analytic set o'y in ="y such that, for
any &' € U'y = 'y — o'y, So(a’) has precisely p points 29(z’), 1 <
J < p, which are regular points of S, of dimension k; 8 =

U Sy(x') is a dense subset of S,.
z'el’y

(¢) For every connected open neighbourhood w', 7'y of 0’, the sets
s={res |z cw'y} and 8; = {x eS| 2’ €w’y} are connected.

(C) The classical local description. Suppose that, for at least one
point ' € Uy, the (k =+ 1)-th coordinates of the p points z9(z') are
all distinct. Then there exist a distinguished pseudo-polynomial
R(z', w), of degree p in w, and, for each r =k + 2, ..., m, a pseudo-
polynomial X (x', u), of degree < p—1 in u, such that :

(a) the cocflicients of R and the X, are holomorphic on =’y and,
but for the leading coefficient of R, vanish at p’;

(b) the germs R(xy, 1) € #*[xy,,] induced by R(a', 2, 1) 6t Dpy1,

and the germs Rz ) 2, — X, (234 1) induced at 0 by the func-

041

tions R, 2, 1) 2, — X (2, 44), b+ 2 < r < m, belong to I;

0Ty 41
(¢) R(xyyq) is irreducible in H*[x,,,] and generates, in A**1,
the ideal I, , = H#* 101 ; the discriminant 8(z') of R(', ayy,)
is£0;
(d) thedense subset U Sy(x’) of S, is the set of points x satisfy-
P
ing the conditions :
2’ en’y, 8(x') #0, R, 2, ,) =0,

(1)

R, 2y y)a, — X (2, 20) =0, r =k 4 2,...,m.

0% 11
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Proor. Let m, 8, U’ (and o’ ===’ — U’) be as in Lemma 1. Let
moCm be an open polydisc with centre p which serves in Proposition 2
for the family F of all linear forms on C™”, and let Sy =8 m,,
a'y=0 nn'y, Uy=U'na'y The distinguished pseudo-polynomials
Ry(x', w), of degree p in u, with coefficients holomorphic on =,
constructed in Proposition 2, are such that

I(Sy(2")) = {ueC| R(a’, u) = 0} for every 2’ en’g and every le F. ()

(A) By condition (), each set Sy(2) has at least one and at most
p distinct points; by Lemma 1, if 2’ € U’y, Sy(z') actually has p
distinet points z¥(z’), 1 < j < p; but Sy(0’) ={o}. Further, by
condition (*) in the proof of Proposition 2, for r =k +41,..., m,
each root of R, («', u) has a modulus < p’, for any a’ e U’y ; this
remains true for any a'en’y, ie., by condition (f). the r-th
coordinate of cach point € Sy(z') has a modulus < p’,.

Now consider a sequence of points ', € m, convergingto 'y €n'y:
if, for each », in an arbitrary subscquence, we can choose 2, €S,(z’,,)
so that z, — z,, then 2, € my, and x, € Sy(2’y) since S, is closed in m,.
If we denote by X, the set of limits of convergent subsequences z,
such that z, eSy(z', ) for each », we have proved that X, cSy(z').
Then suppose X, < Sy(x'y) : since Sy(z'y) is finite, there exist a form
le# and a value I, €1 (Sy(z"y)) — I(X,) ; by condition (t), &, is a root
of R/(z'y, u), and each root of Ry(z',, u)is the value of l at a point
€8y(2',) ; for each n, we can choose a root I(z,) of Ry(x',, u),
z, €8,(x",), 8o that I(z,) — I, and a suitable subsequence , con-
verges to a point z, € X, such that I(z,) =1,.

This contradiction proves that, given x, € Sy(x’y) and the sequence
{z',}, there exist a subsequence z’, and, for each v, z,, eSo(x',,_) such
that z, — x, ; this being true for any subsequence of the given
sequence {z’,}, there exists, for each =, z, € Sy(x’,) such that x, — x,.

So (b) of part (A) is proved, and it obviously implies (c).



GERMS OF ANALYTIC SETS 69

(B) In order to prove (a), we first suppose Ea— Ry(x'o, Uzy)) # 0

%
we can find an open polydisc w,Cm,, with centre z,, such that:
(i) # € w, implies 561; R(z', Uz)) #0; given 2’ € w’y ( = projection

of wyonC*), z€ w, and Ry(x’, I(x)) =0 determine /(z) uniquely ;
(ii) any point € w’y is the projection of at least one point € wy n S,
(this by using (b) of part (A)). By Proposition 2(d), forr =k +1, ...,
m, there exists a pseudo-polynomial X, (z’, ) in u, with coefficients
holomorphic on #',, such that a_?; R, U(z)) 2, = X, (2, (x)) for
any xz € sz7 8y(z’), hence, by (c) of part (A), for any z € 8,,.
z'eU’y

Then, by (i) and (ii), any point 2’ € o', is the projection of one
and only one point z(z’) € w, n S, ; this point depends continuously
on z’ by (b) of part (A), then l(z(z')) is a holomorphic function of
z’ on 'y, and hence the same is true for each coordinate of z(x’):
%, =g,(x'), r=Fk+1,..,m. Since wy n S, is defined by the m—k
equations z, = g, (z'), ¥, is a regular point of wy, nS,, or §;, of
dimension k, and the affine variety tangent to S, at x, has C* itself
as its projection on C* (cf. the example in §2).

Conversely, if these conditions are fulfilled, we can find an open
polydisc w, cmy, with centre z,, such that w, n §, is defined by the
m —k equations z, =g, (z'),r =k + 1, ..., m, where each g, is
holomorphic on w’y. Then, for ' € w’y n U'y, 29(2') € wy N S, for
one and only one j ; the other p — 1 points 29 (z’) are in ‘w, and
hence, by (b) of part (A), for 2’ €w’y n U’y and sufficiently near 2'y,
they lie in a given neighbourhood of §,(z'y) — {#,}. Now choose
1 e & such that U(z,) ¢ US,(x'y) — {%,}) : for 2’ € 'y n U’,, the
roots of R,(z’, w) are the I(z? (z’)) by the construction of R, ;
therefore, as &’ — 'y, one of them tends to I(z,) and the other
»—1 to values € I(S,(xy) — {#,}) ; then l(z,) is a simple root
of Ry(x'y,u).

Thus (a) is proved, and (b) too, since (a,) is fulfilled for
z, = aP(2’). Finally, since s, is dense in Sy, (¢) will bo proved
if we show that 8; =8, nS; is connected.
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Let ";1 be a connected component of 8;. Let &’ e w’; n U’,. Suppose
q of the 2¥(z')) lie in 8, 0< ¢ < p: 2NV(2y), ..., 29(z'y) say.
Then if W’ cw,"n U, is an open connected neighbourhood of z’,
such that all the p mappings 2’ — z%(2’) are holomorphic on W’,
we see easily that 2(W') c3, for 1 < j < ¢, while 2(W') n5,=0
for ¢ +1<j<p. Thus the number ¢(z') of points of a given
connected component of ¢ lying over 2’ €w’'n U’y =w’'n °o’y is
a locally constant function of z’ on w’ n U’,. Since, by Theorem 1,
'y n U’y is connected, the same number of points of a given
connected component of s, lie over any point of w’; n U’,.

Let ':9', now be any connected component of s,, and suppose

g(> 0) points of s, lie over any point of w’; n U’,. Imitating the
procedure by which the R,(z’, u) were constructed in Proposition 2,
we obtain, for each linear form ! on C™, a distinguished pseudo-

polynomial ﬁ,(x’, u) in u of degree g, with coefficients which are
holomorphic functions of z’ on w’;. By construction of E,, for each
z' ew’y n U’y, the holomorphic function = — El(z’, l(z)) vanishes
at ¢ (> 0) of the 2)(z’). Hence, by Lemma 2, if 2’ € w’y n U’y is
sufficiently close to p’, I?l(x’, u) vanishes for =1 (2 (z")),
j=1,..., p. But we can, for any 2’ € v’y n U’y, choose I such that
the I(z¥ ((«')) are all distinct, 1 < j < p. Hence ¢ = degree of I?;
cannot be less than p. Thus 5, = s, and s, is connected, g.e.d.
(C) R is the pseudo-polynomial R, corresponding to I (x) =z, ;
the X, are the pseudo-polynomials X, of Proposition 2(d) corres-
ponding to Ay(z) =z, ..., Z,,: thus (a) and (b) are included in
Proposition 2, (c) in Lemma 3, and only (d) remains to be proved.

By condition (1), R(2', 2, ,) = 0 for any z €S, ; by Remark 1 on

Proposition 2, 2 R (¥, 2,,) 2,— X, (2, 43.,1) =0,r=k+2,..., m,
k+1
for any z€8,. Thus any point ze U §, (') satisfies conditions (1).
z'en’y
§z')#0

Conversely, if x satisfies conditions (1), then, by (}), there exists
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Z € Sy(z') such that x and % have the same first k 4+ 1 coordinates ;

since each function

R(x', %4,) 2, — X, (2, 7,,,,) vanishes at z
Tk+1

and z, and

axkﬂR(:z:,:zc,‘H) #0,x=2x.

REMARK 1. By (a) of part (B), the set of points x, €S, which do
not satisfy (a,) is the set of points z € S, such that % R(x',l(x)) =0

for every le #. This will allow us to show (Chap. IV, §2) that the
set of non-regular points of an analytic set is again an analytic set.

In the same field of ideas : for each r = k41, ..., m, a point
(%', @y 1,-.» 7,) € C7 is the projection on C* of at least one point €.,
if and only if 2’ e 7'y and R, (z',1 (¢', %4y, ..., 7,)) = O for every

linear form I on C'. This too will be used in Chap. IV, §1.

REMARK 2. The last lines in the proof of Theorem 3 actually
prove that the conditions
d ,
R(T ) -’tk+1) # 0,
0ry g @
2 R, 2yq) 2, — X (2, By yy) =0, r =k +2,...,m,

z'en’y, R, z,.)=0,

0%y1
imply x €8, ; since the conditions (1) imply (2), the classical local
description can be (and is usually) stated as follows : S is the closure
in my of the set of points satisfying (2).

This classical local description requires the hypothesis of part
(C), which can be formulated in the following equivalent ways:

(i) for at least one point '€ U’;, the (k 4 1)-th coordinates of
the p points 20)(2’) are all distinct ;

(ii) there exists a dense open subset ¥’ of ', such that, for any
z' € V', two distinet points € §y(z’) have distinct (£ + 1)-th
coordinates.

In fact, if (i) holds, & (2')52£ 0 by (c) of part (C), and (ii) holds with
V'={z' € Uy|8(z') #0}. Thus we see that the validity of the
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hypothesis of part (C) does not depend on the choice of =,. Finally,
if this hypothesis is not fulfilled for the given basis of C™, since the
p points 2)(z’) themselves are all distinct for every 2’ € U’,, we
can find a new basis of C™, for which z,, ..., z; remain the first k
coordinates (so that this new basis remains k-proper for I), and the
hypothesis of part (C) is fulfilled.

RemARk 3. If p=1: by (a)of part (B), every point of S, is a
regular point of Sy of dimension %.

If k =m— 1, i.e., if I is principal (cf. the remarksin §3) : by
condition (1), S, is the set of zeros of R(z', =,) in m,, and, by
(c) of part (C), the germ induced by R(z’, x,) at p generates the
principal ideal 1.

If k=1, p>2, and =, is chosen small enough : 8(z;) =0 if
and only if z, = 0, i.e., the subset of S, defined by the conditions
(1) or (2) is 8, — {0} ; hence 8, — {0}, or 8, can be parametrized,
with ¢ = /7 as the parameter :

=1, 2 =g{t),j=2,..,m, |t] <pl?,

where p, is the first radius of 7y, the g; are holomorphic for | ¢| < p}/?
and vanish for ¢ = 0.

COROLLARY 1. Given an analytic set S in an open set U, any
compact subset of U contains only a finite number of isolated points
of S.

Proor. If the contrary is true, we can find a point €8, which
we choose as the origin p, an analytic set S’ in an open neighbourhood
of p which induces at g an irreducible germ S’, and a sequence of
isolated points of S’ converging to p ; the ideal I = I(S’) is prime,
{0} 1 c '™ ; then Theorem 3 gives a set S, which coincides with
8’ in some neighbourhood of p, and has no isolated point by (b) of
part (A).

CoROLLARY 2. If the basis of C™ is k-proper for a prime ideal
Iinog™ {0} 1 c H#'™, and an analytic set S in an open neighbour-
hood of p induces at p the germ S, then, for any a€ S sufficiently
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near 0, the basis of O™ is also k-proper for the ideal I(S,) in ™
1.6, T1— @y, ..., ¥ — &, have the properties of Definition 2).

Proor. We shall prove that, for any a in the set S, of Theorem 3,
the basis is k-proper for the ideal I, in ™ associated to the
germ at @ induced by 8,. Let a’ = projection of @ on C* : the ideal
in J#7 generated by I, and (2, —a,), ..., (¢, — @,) defines the germ
at @ induced by Sy(a’), which is {a} since S,(a’) is finite ; (I,), = {0}
since, by (b) of part (A), any neighbourhood of a in S, has a neigh-
bourhood of a’ in C¥ as its projection on C*.

REMARK. In particular, the basis of C™is k-proper for I' = I(S;).
But I’ 5 I, so that, by §3, Proposition 3, I' =1, i.e. I =1(S;). A
more direct proof of this important fact will be given in Chap. IV
(Theorem 2 (a)).



v
LOCAL PROPERTIES OF ANALYTIC SETS

1. Direct consequences of the local description.

TuroreM 1 (H. Cartan). Given an analytic set S in an open set
U, for any aye U, there exists a finite family & , of holomorphic func-
tions on an-open neighbourhood V c U of a, such that, for any ae V,
the germs induced at a by the functions € F, generate, in ™, the
ideal I, associated to the germ S,. In other words : the sheaf of an
analytic set is coherent.

(See H. Cartan, Bull. Soc. Math. France, vol. 78, 1950, pp. 29-64.)

Proof. By puttingaside a few trivial cases and using the fact that
‘a finite intersection of cohercnt sheaves is again a coherent sheaf
(seo the paper by H. Cartan mentioned above, p. 41), it is enough
to prove that, with the notation of Theorem 3 (Chap. III), there
exists a finite family & of holomorphic functions on 7y such that,
for any a em, sufficiently near p, the germs induced at a by the
functions € & generate, in ™, the ideal I, associated to the germ
induced by S, at a.

We can find 14 (p— 1) (m— k— 1) linear forms }, on C™, 1 =1, ...,
14 (p — 1)(m — k — 1), with these two properties :
(«) 2y, ..., &, and any m — k forms among the /, are independent;

(B) there exists an z’e U’, such that, for each 2, the p values
1, (x9(2")), 1 < j < p, are all distinct.

Foreachi=1,...,14+(p—1)(m—k—1)andeachr =%k +1, ..., m,
we denote by X, the pseudo-polynomial constructed in Propo-
sition 2 (d) (Chap. ITI) with A =1, and hy(xr) = «,. The functions

’ ’ a ’ > , .
R (z', z), R, (2, I,(x)) and = R,‘(x ) L(@) 2, — X, (@, 1(2)), i=1, ...

14+(p—1)(m—k—1),r=Lk+1,..., m, form a finite family F, of
holomorphic functions on 7, each of which vanishes for any ze S,
(cf. Remark 1 on Proposition 2, Chap. III), and hence induces at @ a
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germ € I, ; omitting the subscript a, we shall denoto thesc germs by

R, (z). R, (ll),a—auR,.(l‘) 7, — X, (1) respectively.

Given g €8, with @’ = projection of @ on C*, S;(a’) — {a} consists

of at mest p — 1 points ; since any one of these points, say @, is
distinct from @, but has tho same projection a’ on C¥, we have

ll(;) =1 (a) for at most m — k —1 indices 7, on account of (a);
we can find an ¢, depending only on a, such that l‘(;) # l(a) for

any P €8, (a') — {a}; the integer 4 has this value in what follows.

Tor any f € I,, by Theorem 2 of Chap. II, there exists 4 polynomial
X(@yp 15 -or ¥) € HE X 41, o0 ), Of degree < p in each z,, such

that f — X(#;, 4, ..., 7,,) i8 a linear combination, over J#77, of tho
germs R, (x,), r =k +1,...,m; since theso germs belong to I, so
does X(;, 1, +++, %,). We may sot

4
[ 2RO

(p—1) n—k)
] x(xL+ Ay wmesy Im)

2 2
=Y (éaR,l(l,) Bz o R L) T I,) ,
where

Y(yk+ oo Y ) € '}fﬁ [yk+ o Y %),
and

d a
Y (g B M) s o, Ry M k) = ¥ (K)o Xl 1)

is a linear combination, over 3%, of the germs 58. R (1) z, — X, (L)
% .

Let Y(X, 441 (L), - s X, (1), 1) = (1), where e(u)e#7 [u]; thus
(p—1) (m—k,
@(l) e, and [af; R, (1) ]" /

tion over ™ of the germs induced at a by the functions € #,.

f—¢(l) is a linear combina-

Now, the germ ¢(l,) is induced at a by the function ¢(x’, Z,(z)),
where ¢(z’, u) is a pseudo-polynomial in u with coefficients holomor-
phic on some open neighbourhood of a’; ¢(l) € I, means that
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$(2’, l(z)) = 0 for any = € §, sufficiently near a. By Theorem 3 of
Chap. III, (b) of part (A), and the choice of 1, this is equivalent
to saying that ¢(z’, u) =0 whenever R (', ) =0 and (z', u) is
sufficiently near (a’, I;(a)) ; then, by Theorem 6 of Chap. II,
every irreducible factor, in s#%}} ., of the germ R, (u) induced by
B,(«’, u) at the point (a’, 1,(s)) € C*+1, divides, in %)), the
germ ¢p(u) induced by ¢(x’, u) at the same point.

But R,(u) is equivalent, in %}, to a distinguished poly-
nomial A in u — [(a), which, by the uniqueness assertion in
Theorem 2 of Chap. II, divides R,(«) in J#%,[u]; on account of (B),
R, (u) has a discriminant # 0, and therefore the non-invertible
irreducible factors of A, in H#%H) ) or #%.[u — I ,(a)] (cf. Chap. II,
§3), are mutually non-equivalent. So R, («) divides ¢(«) in HEh
](I' 1) (m—k)

a’ 11(«)'

hence R, (L) divides ¢(L) in #7, and [ R,1) fisa

linear combination, over 7, of the germs induced at a by the
functions € #,.

(From now on, all germs are taken at a.) As 7+ may depend

[1+(y-l)(m—k—l) ](,_1)("‘_‘:)

on a, let p(z) = 7 B, (&, l(z)) : we have

=1
proved that, for any a €S, and any f € I, f p is a linear combination,
over #7, of the germs induced at'a by the functions € #,. Now, by
(B) and the remark on Lemma 3 of Chap. III, § 4, for each 4, the

germ induced at p by 5?- Ry, (', i(x)) does not belong to I ; since I
%
is prime, the germ induced at g by p does not belong to I.

The polydisc =, defined by Theorem 3 of Chap. III, is contained
in the polydisc = defined at the beginning of Chap. III, §4: so I
is generated by the germs induced at p by a finite family of functions
holomorphic on ,, which have S, as their set of common zeros ;
let #, ={p,|1 < v < n} be the union of this family and &,. Since
the sheaf of relations between the p, and p is coherent (see the
same paper by H. Cartan, p. 37), there exist a finite number, say s, of
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systems of holomorphic functions ¢{,..., ¢, ¢, 1< 0< s, on
an open neighbourhood V c m, of p, such that :

i) ¢? pr+ oo+ ¢ p,+ ¢ p=0on V for each o;

(ii) foranya € V, any system of germs f,, ..., f,, f € 57 such that
f.0,+ ... + f,p, +fp =0 is a linear combination, over 7, of the &
systems ¢,..., @), ¢, 1 < 0 < 3.

Then, by (ii), for any @ € V' nS, and any f eI, f is a linear
combination, over s#™, of the ¢, 1< o< s; by (i), the germ
induced at p by each ¢“p belongs to I ; so does the germ induced
by each ¢©, and hence, on a suitably chosen open neighbourhood
WcV of p, each ¢ is a linear combination, with coefficients
holomorphic on W, of the p,, 1 < v < n. Finally, for anya € Wn S,
and any f € I, f is a linear combination, over #7, of the germs
induced at a by the functions € &, ; this remains true for a € W n ©S,,
since at least one function € &, does not vanish at @, and the
theorem is proved.

THEOREM 2. (a) If I is any prime ideal in ™, then the ideal
associated to the germ S; is I itself, and therefore S, is irreducible.

(b) If I is any ideal in H#™, then the ideal associated to the germ
S; ssrad I.

Proor. (a) Obviously it is sufficient to consider the case {0} #
I < ™. In this case let the notation be as in Lemma 1
(Chap. III, §4), and suppose h € #™ vanishes on S, =S;. Then h in
particular satisfies the hypothesis of Lemma 2, hence hel. Thus
I(S;)cI. Since I cI(S;)is always valid for any ideal I in ™, (a) is
proved.

(b) Let I be an arbitrary ideal in s#™. We may again assume
that {0} 5 I c H#'™. We first remark that S; =S_4;. In fact

S.az €Sy, since I crad I. Now, for any f e rad I, there exists an
integer n > 1 such that F = f* € I. Honce S;cSy =S,. We have
therefore S; c S, for every f erad I. Hence S; cS,,y;. It follows
that S 4; = S,.
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Suppose first that I is primary. Then rad I is prime, and by (a)
the ideal associated to S; =S4, is rad I ; hence (b) is proved if I
is primary.

Now let I be an arbitrary ideal in #™. Then I can be written as a

finite intersection of primary ideals in J#™, say I =4”1 J; (Chap. II,
§ 2(d)). Then S; = 0 S, (Chap. II, §8, Proposition 1). Hence
=1

I(S;) = I(S;)) n ... n I(S;,) (Chap. II, §8, Proposition 2),
=radJ;n..nradJ, =rad I,

since the J; are primary, and since the radical of the intersection of
finitely many ideals (in any ring) is the intersection of their radicals,
q.e.d.

CorOLLARY 1. For any ideal I in #™, the following statements
are equivalent: (1) I =rad I; (2) I =I(S;); (3) I = I(S) for some
germ of analytic set S at p.

CoroLLARY 2. If I, Jareidealsin #™: S, c S, andrad J crad I
are equivalent statements.

This result includes Proposition 1 of Chap. III, §4.

Since J#™ is Noetherian, Theorem 2 (b) easily implies

CoroLraRY 3 (Hilbert’s Nullstellensatz). For any ideal I in 5™,
there exists an integer n (I) =n > 0 such that, if feH#™ vanishes
on S;, thenf* e I.

THEOREM 3. Q@iven an analytic set S in an open set U in C™ and
a point a € 8, we can find an open neighbourhood V c U of a with the
property : for any analytic set 8’ in U, S'; 5 S, implies S’ >V n 8.

Proor. Plainly we may assume {a}cS, =S # C™ Then, if
* a a

Ty ..., T, are the irreducible components of S, we also have
{a}S T, #CP, 1< j < n. Hence, by Theorem 3 (B) of Chap. III, we
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have, for each j (1 <j < =), an open neighbourhood V;cU of a,
and an analytic set T; in V; such that : (i) T; induces the germ T;
at a ; (ii) 7 contains a dense connected open subset #;, all of whose
points are regular points of 7. Now let 8’ be any analytic set in U,
and suppose S’, > S,. Then, for any j (1< j < p), 8,5 T,, hence
also 8’y 5 (T}), for all b €; close enough to a. Proposition 3 of § 2
(Chap. IIT) implies therefore that 8" n ¥, > #;. Since 8’ n ¥; is closed

in ¥, and ¢ is dense in T';, we have 8’ > T;. Finally, since S = l:J T,
j=1
there exists an open neighbourhood V c f'll V of a, such that
e

SaV=Vn( L"j T;). Then clearly 8'58n V, qe.d.
j=1

CoroLLARY 1. The intersection of an arbitrary family F of
analytic sets in an open set U in C™ is again an analytic set in U.

Proor. Since the family of finite intersections of members of &
has the same intersection as &, and is decreasingly filtcred, we may
assume that & is decreasingly filtered. For any a € U, the family
{I(S,)}scr of ideals in 3#7 is then increasingly filtered. Since 7 is
Noetherian, I = sléjr I(S,) is again an ideal in 7 which belongs
to the family {I(S,)}scp- Lot I =I(T,), T € F. Forevery S e &,
we have I> I(S,), hence T, cS,. Hence, by Theorem 3, we have
a neighbourhood ¥ c U of a, such that S5 T' A V for every Se&F.

Hence, if S, = [}, 8, wo have S,nVo>TaV. Since T € F, we

must actually have Sy n ¥V =T n V. T n V being an analytic set in
V, it follows from the local charactor of the definition of an analytic
set in U that S, is an analytic set in U, q.e.d.

REMARK. Note that we have actually proved the stronger result :
if & is a decreasingly filtered family of analytic sots in U, then,
given any compact subset K of U, there exists a T € & such that

(n S) nK=TnK.
Sek
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Regarding arbitrary unions of analytic sets in an open set U of
C™, one can only assert : the union of a locally finite family of
analytic sets in U is an analytic set in U.

CoroLLARY 2 (Remmert). Let S be an analytic set in an open
set U, and let the basis of C™ be such that the origin p 18 an isolated
point of the analytic set Sn {x, = ... =, =0} for an integer r,
1 < r < m—1. Then there exsits a sequence P, of open polydiscs, with
centre p and radii decreasing to 0, such that, for each n, the projection
of 8 n P, on CT is an analytic set in the projection of P,.

Proor. With the notation of Theorem 3 (Chap. III), the
projection of 8, on C* is the polydisc ', itself and, for r = k+1,...,m,
by Remark 1 on Theorem 3, the projection of S, on C" is the set of
common zeros in (m,), (= projection of m, on C") of a family of
functions holomorphic on (m,),, i.e., by Corollary 1, an analytic sct
(So)y in (mg),.-

Let k< r<m—1: given positive numbers p;, 1 =7 +1,..., m,
there exists a neighbourhood W c (m,), of p, such that (projection
of zonC") e W and z €S, imply |z;| < p;, ¢ =7 +1,..., m ; then,
for any open set w c W in C*, the projection on C* of the set

{x €S, | (projection of zon C") € w, [ %, 11 | < Ppyqs oo s [T | < P}

is an analytic set in w, namely o itself if r =k, w n (S,), if
r=k+1,...,m—1.

Now let S and the basis of C™ meet the requirements of Corollary 2;
all germs being taken at p, we have S # C™ and may assume
{0} S S; z,, ..., =, satisfy condition A of Chap. III (§3, Proposi-
tion 1) for the ideal I(S), a fortiori for each I(T;), where the Tj,
j=1,...,n, are the irreducible components of S. Since I(T;) is
prime and {0} # I(T;) c# ‘m, according to the procedure of Propo-
sition 2, Chap. III, § 3, by altering the basis of the subspace C" only, for
eachj=1,...,n, we can find a basis of C™ which is k;-proper for
I(T;), 1< k;<r. Then, given the positive numbers p,,;, ..., pm»
for each j =1, ..., n, we have: (i) an open neighbourhood V; cU
of p, and an analytic set 7' in ¥ inducing the germ T; at p;
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(ii) a neighbourhood W; of p, in C” such that, for any open set
w ¢ Wyin C7, the projection on C" of the set {x € T}| (projection of
zonC") €w, | %11l <Pryys +oor [Tyl < pp} i8 an analytic set in w ;

finally, there exists an open neighbourhood ¥V ¢ jrnjl V; of p, such that
n
S8aV=(UT)nV.
=1
Let w be an open polydisc with centre p, in C* (for the given basis,
of C™), contained injf_']l W, if p,y1s s Pm» @ are small enough
the polydisc
P ={z | (projection of  on C")€w,| Z,p1| <Pri1s -s | Tl <pm}
is contained in ¥ and has the desired property.

ReEMARK. If the basis of C™ is r-proper for I (S), then, for each
n, the projection of S n P, on C" is the projection of P, itself. If,
conversely, this holds for arbitarily great n, then the basis of C™ is
r-proper for I(S).

THEOREM 4 (Remmert-Stein). Let U be an open set in C™,
and L9 g d-dimensional affine subvariety of C™, — 1< d< m—1
(LY = @ by definition). Then any analytic set Sin U n® L® is
either discrete, or contains points arbitrarily close to the boundary 0U
of U in C™(if U is inbounded, 9U is to include the point at infinity
of C™).

Proor. The proof is by induction on m. The theorem is trivial
if m =1. Now let m > 1.

(i) It is sufficient to prove the theorem for d =m — 1. In fact,
suppose this done, and suppose, with the notation as in the theorem,
that d <m — 1 and & €8 is not isolated. If L™= is any (m — 1)-
dimensional affine subvariety of C™ such that L@ c L™= and
a ¢ L™, then § =8n°L™ D is an analytio set in U n°L@®

AcLm=1 = U A °L™=D  which contains a non-isolated point a.
Hence §' already contains points arbitrarily near 2U.

(ii) Clearly we may suppose that § is bounded. We may also
suppose that the interior S of § is empty. Forif § # @, § contains
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an entire connectod component of U n °L¥, which obviously contains
poin'ts arbitrarily near 9U.

Finally we may suppose that S has non-isolated points only.
For, by Corollary 1 to Theorem 3 of Chap. III, the set of isolated
points of § is locally finite, and hence the set of non-isolated points
of § is again an analytic set in U n°L®, which has non-isolated
points only.

Thus let S be a bounded, nowhere-dense, non-empty analytic set
in Un°L™" Y, m> 1, and suppose the set of non-isolated points
of §is § itself. Let L™V =L ={zeC™| A(x) =0}, and let
a=sup|A4(z)|. Then0<a<oco. Let{z,} be asequence of points
of § ;asch that | A(z,) | — «. Since § is bounded, we may suppose
that {z,} converges, to 2, € U say.

If x, € aU, tho theorem is proved. Hence let x, € U. Since
2o &°L, we have x5 €8. Let L' ={r e C™| A(x) = A(x,)}. Then in
U’'=L'n U, considered as an open set in C™~!, §' =8 L'is an
analytic set ; for, Ln L' =@, hence U’ =(U n°L) n L'. We shall
show below that z, is a non-isolated point of &’. This will prove
the theorem ; for by the induction hypothesis, S’ contains points
artbitrarily close to the boundary U’ of U’ in L', and aU’ c aU.

Finally, z, is a non-isolated point of §'. In fact, we assert that the
germ at z, induced by A’ = A4 — A(z,) vanishes on S,. For, if
T c8 is any analytic set in a neighbourhood of z, whose germ at
o is anirreducible component of S, , it follows from Proposition 2 (c)
Chap. III, §4, that either A, vanishes on T,, or 4(T) is a
neighbourhood of 0 in C (since z, is a non-isolated point of 8, we have
{xo} < T,,), henco A(S) is a neighbourhood of A(x,). But this is:

impossible, since | A(x,)| = sup |A4(z)|. Honce A’, vanishes on
zeS
S,, io, S, =S’. Sinco z, is a non-isolated point of S, our

assertion is proved, and with it the theorem.
Wo state scparately the following special case of Theorem 4.

CorOLLARY 1. A compact analytic set in an open set in C™ is
finite.
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Using Corollary 1, we can also prove the following result, due in
the case m =1 to Ritt.

CoroLLARY 2. Let U be a connected open set in C™, and F a
holomorphic mapping of U into a compact subset K of itself. Then F
has a unique fixed point.

Proor. Since F(U) c U, we can form the iterates F, of F;
F,=PF,F,=FoF,_,forn> 1. Clearly, all the F, are holomorphic
mappings of U into K. Since K is compact, all the coordinates of
all the F, are uniformly bounded on U. Hence we can find a strictly
increasing sequence of integers 7, > 0, such that the sequences
{Fo} and {Fop, 1y}
nate wise) on U, uniformly on compact subsets of U (§3, Chapter I).
Let F': U— U, F": U— U be the respective limit mappings.
F’ and F" are holomorphic mappings and F'(U), F"(U) c K. Now
the relations

1;',,2"_*'1 EF’W:+1—"%°F"2P k=123, ...,

of holomorphiec mappings converge (coordi-

imply F' = F"o F'. Hence
F(U)c{zeU|z=F" (x)} =8p
say. Sgp. is obviously an analytic set in U, and Sg.c F*(U)c K, hence
Sg. is compact. By Corollary 1, Sg. is a finite sct, hence so is F'(U).
But F’(U) is connected, hence must consist of just one point, say
%y, and F’ is the constant mapping # — ,. We shall show that
x, is the unique fixed point of F.
First we have
F () = F (F' (%))
= lim F (F,, (z,))

k=

= lim F,, (F (z;))
k—>®

= F'(Fz))) =20,

hence %, is a fixed point of F. On the other hand, for any z € U,
« = F(z) implies, trivially, 2 = F'(z) =x,, q.e.d.
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CoroLLARY 3. Let S be an analytic set in an open set U, and let
Ay, 4, 1< k< m— 1) be k independent linear forms on O™ such
that the o1igin 0 18 an 1solated point of the analytic set

{zeS8|4;,@)=..=4, () =0}.
Then there exist a neighbourhood V c U of p and, for eachj =1, ..., k,

a neighbourhood W of A; (in the dual space C™), such that, for any
aeSaV,A'eW,,..., 4, eW,, a is an isolated point of the analytic set

{zeS |4, (&) — 4, (@) = ... = 4, (x) — 4;/(a) =0}.

Proor. Let the vectors e, ..., ¢, €C™ form a basis of the
(m — k)-dimensional variety L ={x e C™| 4, (2) = ... = 4,(z) =0};
the hypothesis consists in the existence of a positive number « such
that ..., ..., ¥, €C and 0 <|[g, 12+ ...+ |¥,12< «? imply
Yi+1641+ oo + Ynen €U — 8. Since the set

{yk+1eb+l + .. G Ymlm l lyk+lln + e+ I Ym := 12 (resp. < az)}
is compact, there also exist a neighbourhood V c U of p and, for
each j =k +1, ..., m, a neighbourhood V;ofe, such that : a e V,
€41 €Vigrs sy’ €V and [y 1 12+ .. + | Yy |2 = a? (resp. < a?)
imply @ + 4, ,18.41" + ... + Ynen € U —S8 (resp. € U). Finally, each
4;,j=1, ..., k, has a neighbourhood W; in the dual space such
that forany 4,' e W,..., 4,' € W,, wecanfind ¢, ,' €V ,,,...,¢, €V,
forming a basis of the variety L'={x e C™| 4,'(x)=...= 4, (x)=0}.

Given ae8nV, A, eW,,.., 4,/ eW, let ¢ )€V, 1,..., &)
€ V,, form a basis of L' : if weset y =y, 6.1 + ... + Ypne,', the
sot of points y such that |y, ;|4 ... + |9, | <«? is an open set
YinC™* and {y € Y|a+y € 8}is an analytic set in ¥, which
contains the origin of C™* and does not contain any sequence
converging to a point € Y. Then, by Theorem 4, the origin of
C™* js an isolated point of this analytic set,i.e. a is an isolated
point of the set {zx €S |z —a e L'}

2. Regular points and dimension.

TuUEOREM 5. The set 8* of regular points of an analytic set S
(in an open set U in C™) is dense in S.
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ProoF. Let a be a non-regular point of 8. Then we have
{a} #S, =S # C. Let T, ..., T, be the irreducible components
of S. We then have, for 1 < j < n,{a} ;:T,;éC,';‘. By Theorem 3(B)
of Chap. III, we can find an open neighbourhood ¥V c U of a, and
analytic sets T;in V, j =1, ..., n, such that: (i) for 1< j < n, T
induces the germ T; at a ; (ii) each 7 contains a dense open subset
consisting entirely of regular points of T; of the same dimension,

n
say (1< k<m—1,1<j<n);and(iii) U T;=8nV. ifn=1,
j=1
we are already through. Hence let > 1, and T} = U T;.. By the
54

definition of the irreducible components, we have for every j, and
an arbitrary open neighbourhood WcVofa, TjnW¢ T/nW.
Since ; n W is dense in T;n W, and T/ n W is closed in W, this
implies & n W ¢ Ty n W. For every z€ (t; n W) n°T}, S, = (T}),, s0
that x is a regular point of 8 of dimension k. Thus, in every
neighbourhood of a there exist regular points of 8, and Theorem 5
is proved.

ReMARR. We have actually seen that in every neighbourhood
of a there exist regular points of each one of the dimensions &,
1<j<n

DeriNiTiON 1(a). Let S be an analytic set (in an open set U in
C™), 8* the set of regular points of S. The dimension of S at a € 8 is

dim, S = lim sup dim_ 8.

zeS*,z—>a

(After Theorem 5, dim, S is then defined for every a € 8, and we
have 0 < dim, § < m.)

REMARKS. (1) At points of S*, the new definition gives the same
dimension for § as the earlier one.

(2) If the analytic sets 8 and 7T induce the same germ at
ae8n T, then dim, § =dim, 7. Hence :

DerivttioN 1(b). If S is a non-empty germ of analytic set at
a €C™, then the dimension of S is the dimension at a of any analytic
set inducing the germ S at a.

(3) dimS = m ifand only if S =Cm.
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(4) dim S, =0 if and onlyif S, = {a}. This is a consequence
of Corollary 1 to Theorem 3 of Chap. III.

Since the dimension of an analytic set at any point of it has been
defined in terms of its dimensions at its regular points, Proposi-
tion 1 of Chap. III, § 2 implies

ProrosiTioN 1. If F is a one-one biholomorphic mapping of an
open set U onto an open set V in C™, then for any analytic set S in U,
and any a € 8, dim, § = dimp, F(S).

We now consider irreducible germs.

ProrosiTioN 2(a). If I isa prime ideal in S#™,{0} I ¢ !

and if the basis of C™ is k-proper for I, then k = dim S; (in particular,
I is uniquely determined by I).

Proor. By Theorem 3(B) of Chap. III, therc cxists an analytic
sct S, in an open neighbourhood 7, of p inducing the germ S; at p,
and a dense subset s, of S, consisting entirely of regular points of
S, of dimension k. Hence dim, S, = k for every z €S, in particular
dim, S, =k, q.e.d.

CoROLLARY. An irreducible (non-empty) germ of analytic set has
dimension m — 1 if and only if it is the germ of a principal analytic set
(cf. remarks in Chap. III, §3).

ProrosiTioN 2 (b). If an analytic set S in an open set U in C™
induces an irreducible germ at p € S, then there exists a neighbourhood
V(cU) of 0 and a basis {V,} for the system of open neighbourhoods of 0,
such that S has the same dimension at every point of V.n S and V, n 8*
s connected, n =1, 2, 3, ....

Proor. If S ={p} or C™, the proposition is trivially valid.
Otherwise, we have {0} I(S) < '™, and Theorem 3(B) of Chap. ITI
applies, as in the proof of Proposition 2 (a).

CoroLLaRY. Under the conditions of Proposition 2(b), all
sufficiently small neighbourhoods of 0 meet just one connected component

of S*.
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ProrosimioN 2(c). Let S, S’ be irreducible non-empty germs of
analytic sets at p: of S' c S, then dimS’' < dimS; if S’ < S,
dim S’ <dim S.

Proor. If S =C" or S’ = {p}, the proposition is obvious.
If {0} < S’ cS £ C™ we have {0} = I(S) c I(S') SJ?'"'. Hence
(Remark 3 on Definition 2, Chap. IIT) we have a basis for C™ which is
k-proper for I, and k'-proper for I' k' < k. If S’ < S, then
1(S) ¢ I(S’), hence k' < I (Proposition 3 of Chap. III, § 3). By
Proposition 2(a) dim S =k, dim S’ = %', hence the proposition.

Now to reducible germs.

ProposiTioN 3. Let S be an analytic set in an open set U in C™,
,and suppose S =S, is reducible. Let Ty,..., T,(n > 2) be the irreducible
components of S. Then there exist an open neighbourhood V (c U) of a,
and analytic sets T, ..., T, in V inducing respectively the germs Ty, ..., T,
at a, such that the following hold.

(@) VaS= EJ T; ; dim, T; =dim T; = k; say, for every x € Ty,
=1
j=1,...,n.

(b)  Let T;* be the set of regular points of T), and let T, = U T,..
i'#j
There exists an open neighbourhood W c V of a such that, for any

z € W, we have x € 8* if and only if x € T;* ~°T"; for (exactly) one j,
1< j < n,and then dim, S =F;. (Each T;* n °T"; meets every neigh-
bourhood of a@, by the definition of the irreducible components
of a germ.)

(¢) For 1< j< m, there exist arbitrarily small open neighbour-
hoods W; c V of a such that W; n T)* n°T"; is connccted, and dense
in W,n T,

Proor. By Proposition 2 (b), we can find ¥ and the T; such that
(a) holds, 1 < j < n. Further, by the same proposition, there exist
arbitrarily small open neighbourhoods W; c V of a such that
W; o T)* is connected.
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n

() Let W c N W; be an open neighbourhood of a, and
z € W A 8*. Then, in particular, S, is irreducible. It follows, from
VaS= l,j T}, that for some j, 1< j < n, S, = (T), (= germ of T}

j=1

at z). Hence x € T;*. Now suppose we also have z e 71", Let
z'€ T, §' # j. Since(T;), ¢ S, = (T}),, and T;* is dense in T, we
have y € T;*n W such that (T,), c (T,)),. Since T;*n W, is
connected, we have, by Proposition 3 of Chap. III, §2, T;*n W; c
TJ- n W,.. Finally, T;* n W;. is dense in T;n W, and T Wy is
closed in W, hence T; n W; c T;n W,. But this is impossible,
since T; and T,. are distinct irreducible components of S. Hence we
have proved that x €W nS* implies z e Tj* n°T"; for one j
(1 <j< n.) The converse implication is trivial (for x € W), hence
(b) is proved.

(c) To provethat W; n Tj* n°T isdense in W; n Ty, it is sufficient
to prove that it is dense in W; n T,*. Now suppose W;n T,* n°T";
is not dense in W;n Ty*. Then there exists z € W;n T;* such
that (T)), c (T}),. Hence, as in the proof of (b), we obtain, by
using Proposition 3 of Chap. III, §2, and the connectedness of
W; n T;*, the contradiction W;n T, c Tj n W;.

Finally W; n T;* n°T, is connected by Proposition 4 of Chap. III,
§2: W;n T;* = (W;n T))* is connected, T; n W; p W;n T;* as we
have just proved. Hence Proposition 3 is proved.

We now list some immediate consequences of Proposition 3. The
notation and the assumptions are as in Proposition 3.

CoNSEQUENCES OF ProrosiTiON 3(b). 1. For any 2 €W, z is a
non-regular point of § if and only if « is a non-regular point of onc
T}, or belongs to at least two of the T;.

2. For anyz € W, dim, 8 is one of the integers k, and dim, S

=sup k,: the dimension of a germ of analytic set is the highest of
1<i<n

the dimensions of its irreducible components. In particular :
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3. Any non-empty germ of principal analytic set has dimension
m—1. A germ has dimension m — 1 if and only if at least one of its
irreducible components is the germ of a principal analytic set.

CONSEQUENCES OF ProPOSITION 3(b) AND 3(c). 4. xeW nS*
implies & € W; n T;* n °T for precisely one j, 1 < j < ». Since the
Wj nT*n ‘Tj' are connected subsets of S* we obtain: the
neighbourhood W of x meets at the most » connected components
of §*. It follows that the family of all connected components of §*
is locally finite in S (hence in U). This result includes Corollary 1 to
Theorem 3 of Chap. III.

CoroLLARY 1. (a) If S’, S are analytic sets in an open set U in
™, 8 c 8, then dim, 8’ < dim, S for every a €8'. (b) IfS, S’ are
non-empty germs of analytic sets at a € C™, S’ c S implies dim S’ <
dim S. (¢) If, in (b), S is irreducible, then S’ < S impliesdimS’ < dimS.
(d) If, in (b), dim S’ = dim S, then S and S’ have at least one irre-

ducible component in common. (e) If Sy, ..., S, are non-empty germs
7

of analytic sets at aeC™, and S = U S, then dim S = max dim S,.
i=1 1<i<n

Proor. (b) implies (a). To prove (b), let T’ be any one of the
irreducible compenents of S’. Then S’ c S implies T’ c T for one of
the irreducible components T of S. By Proposition 2(c) dim T’ <
dim T'. Since dim S’ is the greatest of the dimonsions of its irreducible
components, and similarly dim S, (b) is proved.,

(c) is proved similarly. Since S’ < S, T'g S for every irreducible
component T’ of S’. Hence, by Proposition 2(c), dim T’ < dim S.
(c) follows.

(d) follows from (b); we again use the fact that the dimension
of a germ of an analytic set is the highest of the dimensions of its
irreducible components.

For the proof of (e), let S¥, ¢, + 1 < i < g;(gp = 0), be the
irreducible components of S, 1< j <n. Then it is easily scen that the

"
irreducible components of S = U S, are precisely those S such that
j=1
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S®c 86" does not hold for any i’. Hence dim S =max dim S?
e 1<i<an

= max dim §;, q.e.d.
1<ji<n

CoroLLARY 2. Let S, 8’ be analytic sets in an open set U in
c™, 8 c 8, and suppose, for some a € §', that S, is irreducible and
S. #8,. Then there exists an open neighbourhood W of a, W c U,
such that S’, # S, for everyx € W S'. (Consequently W n (S —8')
18 dense in W n 8.)

Proor. By Propositions 2(b) and 3(b), there exists an open
neighbourhood W of a, W c U, such that for xe W n 8, dim S, =
dim S,, while, forze W n §’, dim S;< dim S;. Since, by Corollary 1(c),
dim S, <dim S,, we then have dim S; < dim S, for every
z€WnS. HenceS,#S, and the corollary is proved.

COROLLARY 3(a). Let S be a non-empty germ of analytic set at
a € C™ Then dim S < m — 2 if and only if S does not contain any
non-empty germ of principal analytic set at a.

ProOF. Any non-empty germ of principal analytic set has
dimension m — 1. Hence, by Corollary 1(b), dim S < m — 2 implies
that S does not contain any non-empty germ of principal analytic set.

To show that, if dim S > m — 1, S contains a non-empty germ of
principal analytic set, we may clearly assume dim S =m — 1. Since
ono at least of the irreducible components of S then has dimension
m — 1, it is sufficient to use the corollary to Proposition 2(a).

Hence Theorem 2(b) of Chap. III, §1 may be restated as
follows.

ToeorEM. Let S be an analytic set in an open set U in C™, m > 2,
and suppose dim, S < m — 2 for every z €S. Then every holomorphic
Junction on U — 8 has a unique holomorphic extension to the whole of U.

CoroLLARY 3(b). An analytic set S in an open set U in C™ is a
principal analytic set if and only if dim, S =m — 1 for every xz €S.

Proor. We have already seen that, if S is a non-empty principal
analytic set, dim,§ =m — 1 for every z €S. For the converse, it is
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sufficient, after the corollary to Proposition 2(a), to show that for
any z €8, and any irreducible component T of S, dim T =m — 1
(for, if every irreducible component of S, is principal, S, is principal).
But this is clear from Proposition 3(b) : if ¥ = dim T, then there are,
arbitrarily near z, (regular) points of § of dimension k.

ProposrTION 4. If I is an arbitrary ideal in S#™, and the ideal
generatedin H#™ by 1, Xy,..., X (1 < k <m — 1) defines the germ {0}
at p (Condition A of Chap. III), then :

(a) dim S; < k; (b) dim S; =k if and only if the basis of C™ is
k-proper for I.

Proor. The hypothesis implies {0} c S; #C™; if S; ={o}, (a) is
trivial: rad I = 5™ by Theorem 2 (b), hence, with the notation of
Chap. IT1, §3, any germ € 5#* has a power €I, and the basis is not
k-proper for I.

Now we assume {0} [ S; # C™; this holds also for the irreducible
components T,,..., T, of S;. Foreach j =1, ...,n, I? =I(T)cl,
hence 2,, ..., a; satisfy condition A for each I? ; since I is prime
and {o} # 19 (5 #'™, the procedure of Proposition 2 (Chap. III,
§3) gives a basis of C™ which is k-proper for I¥, with k; <k,
and k; = kif and only if 7{» = {0}. By Proposition 2 (a), dim T; =k,
and, by consequence 2 of Proposition 3, dim S, =ls<1;£”lc, ; thus (a)is

proved, and (b) will be proved if we show that I, = {0} if and only
if I = {0} for at least one j.

IP > I, hence I) = {0} for one j obviously implies I, = {0}. If,
conversely, 9 {0} for each j, let f9 e I — {0} for each j and
f= f‘” f+0,fe n I¥ = I(S,;) =rad I by Theorem 2 (b), henoe,

j=1 i=
for a suitable integer « > 0, f* € I or I, which implies I, # {0}.

ReMARE. We might expect the following analogue of Propo-
gition 4 to hold : if % independent forms on C™ satisfy the
condition B of Chap. III (Proposition 2, §3) for the ideal I in 5™,
1< k< m—1, then dim S; > k. But this is not the case, as the
following example shows.
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In C°= {(z,..., ;)}, let S be the analytic set {z,—x,=z,—z, 2;=
25 — 2, 25 € =0}. Then, any point of § is a regular point of S of
dimension 2 (cf. Chap. III, §2, example). We now assert that
z,, Ty, T, satisfy the condition B of Chap. I for I = I(S,). To prove
this, we must show that 5#3 n I={0}. Let f € #°2 n I. Let the Taylor

el

expansion of fat o be ¥ P,, where P, is a homogeneous polynomial
n=1

of degree u in zy, 2y, 23, n =1, 2,... . f €I implies f(z,, 2, x5, z,, 2;%)

= X 2} P,(1, ;. x;¢™) = 0 in some neighbourhood of z, = 2; =0.
n=1

Since P,(1, x5, xze”) is an entirc function of x5, we must then have

P,(1, x5, z;6%) =0 (for all n > 1). It follows easily that P, =0,

n=1,2,... Hence f =0, and our assertion is proved.

CorOLLARY 1. Let S be an analytic set in an open set U in C™.
Then for anya € S, m—dim, S is the highest of the dimensions of affine
subvarieties L of C™ with the property : a is an isolated point of L n 8.

Proor. We may suppose ¢ = p. Further, our assertion is evident
if S =S, = {0} or C™. Hence let {o}g S #£Cm ie. {0} #I=1(S)
< '™ : by Corollary 1 to Theorem 2, I =rad I, therefore, by
Proposition 2 of Chap. III, § 3, there exists a basis of C™ which is
k-proper for I, 1 < k< m— 1. Then.k = dim § (Proposition 4(b)),
and condition A of Chap. III means precisely this : the (m — k)-
dimensional subspace L, = {z, = ... =2, = 0} of C™ is such that
D is an isolated point of L, n S.

Now we havo to show that, for any subspace L of C™ such that
0 is an isolated point of LS, dim L < m—k : we may suppose
1< dim L <m—1, and find (m—dim L) independent linear forms on
C™ having L as their set of common zeros ; these forms satisfy
condition A of Chap. III for I, hence (Proposition 4(a)) k = dim$S
< m—dim L.

ReMark. This corollary establishes the identity of our definition
of the dimension of an analytic set with that given by Remmert-
Stein [4].
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CorOLLARY 2. Let S be an analytic set in an open set U in C™,
and the basis of C™ be such that g s an isolated point of 8 0 {x; = ... =
z, = 0} for an integer r, 1 < r < m—1. Suppose there exists a sequence
P, of open polydiscs,' with centre p and radii decreasing to 0, such
that, for each n, the projection of 8 n P, on C' is an analytic set S,
in the projection P', of P, ;then, for sufficiently great n : dim, §', =
dim, S (0’ = origin in C").

Proor. Consider the increasing sequonce of ideals I(S',) in
A%, : since 7, is a Noetherian ring, for n > a suitable %,, they all
coincide with an ideal I’ such that I’ =rad I’ (cf. Corollary 1 to
Theorem 2). I' c #"%; if I' = 5#";,, we have S’ = {0} for n > n,,
S = {p}, and the corollary is proved ; if I’ = {0}, we have §', =P,
for each n, the|basis of C™ is r-proper for I(S) (cf. remark on
Corollary 2 to Theorem 3), and the corollary is proved with the
help of Proposition 4 (b).

Now let {0} I < 'r,: by Proposition 2 of §3, Chap. III, we
can find a basis of C" which is k-proper forI’, 0 < k < r ; then, by
Proposition 4 (b), it is enough to know that this basis of C* and the

last m —  elements of the given basis of C™ constitute a new basis
of ™ which is k-proper for I(S), and this is obYious.

ReMaARK. This corollary includes the remark on Corollary 2 to
Theorem 3, which was referred to in the above proof.

THEOREM 6 (H. CARTAN). The set 8 — S* of non-regular points
of an analytic set 8 (in an open set U in C™) i3 again an analytic set
in U, and dim, (S — 8*)< dim, S for every a € S — S*.

Frst prOOF. (a) We first make the following assumptions:
(i) 8 has the same dimension %, 1 < k < m—1, at overy point of S;
(ii) there exist & non-empty open sets Wy, ..., W, in the dual space
O™ such that, if 4, € Wy, ..., 4, € Wy, the k linear forms 4, ..., 4,
are independent and any a €8 is an isolated point of the analytic
set {x e8| 4,(x) — 4,(a) = ... = 4i(x) — 4;(a) =0}

For z €8*, let L, be the affine variety, of dimension %, tangent to
8 at z: given x €S* and m—Fk independent linear forms 4, 4, ..., 4,
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assuming constant values on L,, we can find 4; € Wy,..., 4, € W,
such that the m forms A4,,..., 4,, are independent ; then there
exists a point € L, where 4,, ..., 4, assume any given system of &
values, i.e., if we choose a basis of C™ for which 4,, ..., 4, are the
first k& coordinates, the projection of I, on the subspace generated
by tho first & elements of the basis is this subspace itself. We have
just proved this : if §*(4,, ..., 4,) is the set of points 2 € S* such
that thero exists a point € L, where 44, ..., 4, assume any given
system of k& values, then 8* = A‘UW 8*(4,,..., 4;). By Corollary 1to
-

Theorem 3, 8 — 8* will be an analytic set in U if we show that, for
any A, e Wy,..., 4, €W, 8 —8*(4,, ..., 4;) is an analyticset in U,
i.e.: any point @ € § has an open neighbourhood ¥ c U such that
V a[S—S*(4,,..., 4;)]is an analytic set in V. In order to show this,
we choose a as the origin and a basis of C™ for which 4, ..., 4, are
the first & coordinates.

Let Ty, ..., T, bo the irreducible components of the germ S = S,:
by (ii), 4y, ..., 4, satisfy condition A of Chap. III (§3, Proposition 1)
for the ideal I(S), a fortior: for each I(T;), j=1,...,n. By (i)and
Proposition 3, dim T; =k and therefore, by Proposition 4(b), the
basis of C™ which we have chosen is k-proper for I(T;) ; then, for
cach j = 1,..., m, there exists an open polydisc =, with centre p and
an analytic set T in m;, inducing T; at p, with the properties listed
in Theorem 3 of Chap. III: in particular, by part (B) of this
theorem, there exists a dense subset of T; consisting entirely of
regular points of T} of dimension k, hence dim, T; =k for every
z € Tj; and, by Remark 1, T;—T;*(4,, ..., 4,) is the set of points
of T} which are common zeros of a family of functions holomorphic
on m, i.e., by Corollary 1 to Theorem 3 again, an analytic set in ;e
Now, by Proposition 3(b), there exists an open neighbourhood

n n
Vc!f_\l m; of p such that V' n 8= 5l-J1 (Vo Tj) and ¥V  (S—8*) is the
union of the sets VnTjnTj, 1<j<j’'<n, and Vn (T;—T3*),
1<j< n; then Vn[S—8*4,,...,4;)] is the union of the sets

ValinT, 1<j<j'<n, and Vn [T;— T*4,, ..., 4)],
1< j< n, each of which is an analytic set in ¥. Thus we have
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proved that S—S§* is an analytio sot in U, under the assumptions
(i) and (ii).

(b) Inthe general case, since S — 8*is olosed in U, we have to
show that any point 2, €8 — S* has an open neighbourhood ¥V c U
such that V n (8§ — 8*) is an analytic sot in ¥V ; since z, € 8 — 8%,
the non-empty germ S =S, is neither {X,} nor C", and this holds
also for the irreducible components of S.

If S is irreducible : then I(S) is prime, {0} # I(S) g H,; we may
choose x, as the origin g and a basis of C™ which is k-proper for I(S),
1< k< m —1 (Chap. III, § 3, Proposition 2). By Proposition 2(a),
k=dim S =dim, §; by Proposition 2(b), the origin has an open
neighbourhood ¥, c U such that 8 has dimension k at every point
of 8 n V,; by Corollary 3 to Theorem 4, there oxist another open
neighbourhood V, c U of p and, for each j =1, ..., k, an open
neighbourhood W; of the linear form # — z; in the dual space, such
that, for anya €S n V,, 4, € W,,..., 4; € W, a is an isolated point
of the analytic set {x € S | 4,(x) — 4,(a) = ... = 4i(z) — 4,(a) =0}.
If the W; are small enough, 4; € W,, j =1,..., k, also implies the
independence of the 4, : then the assumptions (i) and (ii) of part (a)
are fulfilled for the analytic set Sn Vyn V,°in ¥, V,, honce
SaVinV)—(8nVin Vy)* =(8—8*%) 0 (V,n V) is an analytic
set in V;n V.

If S is reducible, let T,,..., T, be its irreducible components :
by Proposition 3(b), there exist an open neighbourhood W c U of
%y, and analytic sets 7';,..., T, in W, inducing respectively the
germs Ty,..., T, at z,, such that WS = L'i T; and W (S—8*%)
is the union of the sets =

WaljnTpl<j<j <nand Wa(Tj— T*),1<j<n

We have just shown the existence, for each j=1,..., n, of an open

neighbourhood ¥; c W of «, such that ¥V; n (Z; — T}*) is an analytic

set in V; then, if =,ﬁx ¥}, V 2 (8 — 8*) is an analytio set in V.

Finally, by Corollary 1 to Proposition 3, § —8* c § implies
dim, (§—8*)< dim 8 for every @ € §—S§*, and dim, (§—8*) = dim, §
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would have the following consequence : if S, is irreducible, some
neighbourhood of @ would not meet S*, which contradicts Theorem 6;
if S, is roducible, with the notation of Proposition 3(b), S — S*
would includo ono 7} in some neighbourhood of a, which is impos-
siblo since any neighbourhood of @ mects 7;* 0 °7”;. Theorem 6 is
proved.

SECOND PROOF. On account of Proposition 3, we may assume
that dim, S is the same, say k,1 < k < m — 1, for all €8, and it is
enough to show that every a €8 has an open neighbourhood ¥V c U
such that ¥ n (§—8*) is an analytic set in V. This can be done very
simply with the help of Theorem 1 : in fact, Theorem 1 means that,
for every a €S, there exist an open neighbourhood ¥ c U of @ and a
finite family of functions f;, ..., f, holomorphic on ¥, such that the
germs induced by f,, f5, ..., f, at any 2 € V generate the ideal I(S,),
which implies that V' n § is the set of points € V where f; = ... =
J» =0. Then Theorem 6 will be proved if we show that ¥ n (S — %)
is tho set of points 2 € V' A S such that the rank of the matrix

(gﬁ (;r)), 1<i< n, 1< j< m, is <m — k, and thisis a consequence
z,
)
of the following two remarks.

(A) If x € V A S* since dim, S =k, wo can find an open neigh-
bourhood W c V of # and m — k functions gy, ....g,,_;, holomorphic

on W and vanishing on W8, such that the ma,trix(:__"‘(x)),
Zj
1<i<m—k 1<j< m, has rank m—Ek. Since the germs induced

at by g,, ..., ¢, are lincar combinations, over 5%, of the germs
induced by f;, ..., f,, the matrix (gé (x)), 1I<i<n 1< m,
]
must have a rank > m — k.
(B) IfzeV S, and the rank of the matrix (af‘ (x)), 1<i<r,

Ery
1 < j < m,isr, then tho analytic set 7', in ¥V, of points € V where
f1=...=f, =0, induces at z a regular germ T, of dimension m — r

(cf. Theorem 1 of Chap. I and Definition 1 of Chap. III); since
T>VnSanddim S, =k, we must have m —r> korr < m—£F&,
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and equality implies, by Corollary 1(e) to Proposition 3, T, = S,,
hence z € 8*.

3. Irreducible analytic sets. The irreducible componcents of an
analytic set. We shall make use of some properties which were
proved before for the set of regular points of an analytic set S
(Chap. III, § 2, Propositions 3 and 4), but actually hold for the
set of points €S where S induces an irreducible germ. In fact,
Propositions 3 and 4 of Chap. III, § 2, are included in the following
theorem.

THEOREM 7. Let S be an analytic set in an open set U in C™,
and s an open connected subset of S such that for every xes, S, is
irreducible. Then, for every analytic set 8’ in U: (a) if S; > S, for
some wx, € 8, we have §'> 8; (b) 8’ p s implics that sn°S' s
connected.

Proor (a). Thesets ={zes|S,28S,}={xes|(S'nS),=S,}
is open in s by definition, and is closed in 8 by Corollary 2 to

Proposition 3 of § 2. Hence either s = @ or s = s, and (a) is proved.

(b) Suppose 88" = s, U 8y, 8, and s; being non-empty, open
and disjoint subsets of s. By (a), 8 n %S’ is dense in s. Hence there
exists an @ €8, n 8, n s : 8 being connected, 3, n 8 and §, n 8 cannot
be disjoint. Now, by Proposition 2(b) of § 2, there exists an open
neighbourhood W of @, W c U, such that WnS8 cs, and WnS*
is connected. By Proposition 4 of § 2, Chap. III, W S*n°S’is
also connected. Hence W n s n°S’, in which this set is dense, is also
connected. But since W n8n®S' =(Wns)u(Wns,), and Wns,
W s, are non-empty disjoint open subsets of W nsn%8’ (non-
empty because @ €3, n 8;), we have a contradiction, hence (b) is
proved.

ProPOSITION 1. Let S be an analytic set in an open set U in C™,
S* the set of its regular points, and 8y a connected component of S*.
Then the closure 8, (in U, or equivalently, in 8) of 8, is an irreducible
analytic set in U.
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Proor. S, is closed in U, and §; c8. To show that §, is an
analytio set in U, it is sufficient to show that every a € 8, has an
open neighbourhood W c U such that §; n W is an analytic set in W.

Thus let @ €8,. Excluding trivial cases, we may assume that
{a} #S =S, # C™. Then (Proposition 3 of §2) there exist an
open neighbourhood V c U of a, analytic sets Ty, ..., T, in ¥V and
open neighbourhoods W;c V of a (j =1, ..., n) such that : (i) the

irreducible components of S are precisely the T;, and 0 T;=8nV;
(ii) each T,*n°T,f n W; is connected, c 8%, and dexi;e1 in T;n Wj;
(iii) if W =,’."‘, W, 8% W »cjr_"w1 (T;* n°T n W,) (here we have
used the notation of Proposition 3 of §2, with T} =@ if n =1).
Hence, if the 7} are suitably indexed, there exists an integer p

(1< p<mn) such that T;*n°Tyn W; is contained in s, for
1< j< p, and disjoint with s, for p +1<j< n;thens;n W=

Wn 6 (Ty* n°Ty' n W,), hence, by taking the closures in W of
j=1

both members, S;n W =W n 6 T;, and our assertion is proved.
Jm1

To prove that 8, is irreducible, suppose §; =8;,U 8,5, where
8, and 8, are analytio sets in U, and &;, % S;. Then, 8, being
dense in §,, there exists an @ €3; %S, : at this point we have
S12=S;. 8; c8;* being connected, by Proposition 3 of §2 (Chap. III):
8¢ 0 8,. Finally g, is dense in J;, hence §;, 5 83, i.e., 833 =8y, q.e.d.

CorOoLLARY 1. Let 8 be an analytic set in an open set U in C™.
Then S is irreducible if and only if S*, the set of its regular points,
18 connected.

Proor. By Proposition 1, § is irreducible if S* is connected.
Now suppose 8* is not connected. Let {s,} be the countable (i.e.
finite or countably infinite : of. the consequences of Proposition 3,
§2) family of connected components of S*, and S, = closure of
8, in U, n =1, 2,.... Since {s,} is locally finite (in U), so is {S,}.
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By Proposition 1, each 8, is an (irreducible) analytic set in U ;
hence S,’ -—U 8,18 also an analytic set in U, being the union

of a local]y ﬁmte family of analytic sets in U. Clearly §=8, v §,’,
and S, # S by assumption. If we show that §,” %8, then § will be
reducible, and the corollary will be proved.

Suppose §," =8. Then 8; c8,’. In particular, at any point of
8;, ScS,’. Now, since the family {S,} is locally finite, S,’ is the
union of finitely many S,, » > 2. Since S, is irreducible (in fact
regular), we must have, forann > 2, S, c S,. Since 8, is & connected
subset of 8,*, this implies (Proposition 3 of § 2, Chap. III) s, c&,.
But this is impossible since s8; n s, =@. This contradiction proves
that 8,’ 8, and the proof of Corollary 1 is complete.

REmMaRk. With the notation as above, we have also proved that,
for every n, S,¢ U S,
n'#n

CoROLLARY 2. Given an analytic set S in an open set U, and
a €8 : the germ S, 1s irreducible if and only if there exist arbitrarily
small open neighbourhoods V c U of a such that the analytic set S n V
in V is irreducible.

Proor. Ifthe germ S, is reducible, the set S n V is reducible,
for any sufficiently small V, by the definition of a reducible germ.
If the germ S, is irreducible, by Proposition 2 (b) of § 2, there exist
arbitarily small open neighbourhoods ¥V c U of a such that ¥ n 8*=
(V n 8)* is connected. By Corollary 1, this implies that V' n S is
irreducible.

CoROLLARY 8. Let S be an irreducible analytic set in an open set
U in C™. Then

(a) S 48 connected.

(b) dim, 8 is the same for all x €8.

(c) (Ritt’s lemma) If 8’ is an analytic set in U, and S’, > T, for
some a €8S and some irreducible component T, of S,, then S'> 8.

In particular, if b is a holomorphic function on U, and if, for some
a €8, h, vanishes on some irreducible component of S,, then h=0 on 8.
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(¢') For any function h holomorphic on U, the restriction h|S
18 etther constant or is an open mapping of S into C, in the following
strong sense : for any a € S and any analytic set T in an open neighbour-
hood V c U of & such that T, is an irreducible component of S,, the
set b(T') is a neighbourhood of h(a) in C.

(d) If S’ is an analytic setin U, S’ ES implies dim, 8’ < dim, S
Jor every x € 8.

(e) For any analytic set Sy in U, 8 n (U—8,) ts an irreducible
analytic set in U—S8,, and is either empty or dense in S.

(f) If {S,} is any countable family of analytic sets in U, and
8 =US,, then S =8, for some n.
n

Proor. (a) By Corollary 1, 8* is connccted. Since S* is dense
in 8, 8 is also connected.

(b) Sinco S* is connected, dim, S is the same for all #eS*
(Proposition 2 of Chap. III, § 2). (b) follows.

(¢) Under the given conditions, there also exists (Proposition 3
of §2) a point b € §* such that S’,5 S,. Since 8* is connected,
Proposition 3 of Chap. ITI, §2, shows that S’> 8*, hence 8'>58.

(¢’) is a consequence of (¢) and Remark 2 on Proposition 2
(Chap. III, § 4).

(d) If 8 c8, and dim, 8’ = dim, S for some z €8’, then, by
Corollary 1(d) to Proposition 3 (§2), S, and S, have an irreducible
component in common. Hence, by (c), 8’ = §.

(e) Supposo that S (U —8;) =8 — (8 n8,)# D: by (d), with
8 =8n8;,8 — (8nS,) is dense in §. Further, §* ¢S, and 8*
connected imply (Proposition 4 of Chap. III, §2) 8*n (U —8,) =
[8n(U—8,)]* connected, i.e. Sn (U —8,) irreducible.

(f) If 8, #8 for every =, then, by (e), the §—8, are all open
dense subsets of §. Hence, by Baire’s theorem, § — U 8, is actually
n

dense in S.
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THEOREM 8. Let S be an analytic set in an open set U in C™, S*
the set of regular points of S. Let {s,} be the (countable) family of
connected components of 8*, {S,} the family of their closures in U.
Then : (a) {S,} is a locally finite family of irreducible analytic sets
in U, with union S ; and S, ¢ U 8, for every m. (b) If {T} is
any countable family of zrredumble analytw sets in U, withU T; =8

and T;¢ U T, for every i, then {T;} = {8,}. ‘
i

Proor. We have only to prove (b). We have, for every i, T'; =
U(T;n8,). T; being irreducible, we have, by Corollary 3(f) of
n
Proposition 1, T; = T;n S, for some =, say n(i). Similarly, for
every n, S, C Ty, Since, for every n and 7,5, ¢ U S, and

vin
T,¢ U T,, (b) follows. "
i

DEFINITION 1. The irreducibl P ts of an lytic set S in
an open set U in C™ are the closures in U of the connected components
of 8* ( = set of regular points of S).

As immediate consequences of this definition, we have :

(i) For any x €8, dim, S is the highest of the dimensions of the
(finitely many) irreducible components of S which contain z (cf.
Corollary 1(e) to Proposition 3 of §2).

(i) For 0 < k< m, let S® =union of the k-dimensional
irreducible components of S (S® = @ if § has no irreducible
component of dimension k). Then 8®) ijg an analytic set in U (since
the family of irreducible components of § is locally finite) which has

m
dimension k at each of its points (or is empty), and § = U 8®,
k=0

(iii) For 0 < k < m, the set {x €S |dim, § > k} is the union
of S®, §&+D 8 hence is an analytic set in U. In particular,
given two functions f, g holomorphic on U, the set {xeU|f and
g, not relatively prime in 57} is an analytic set in U : in fact, by
Theorem 6 of Chap. II and Corollary 3(a) to Proposition 3 of §2,
this set is {x €S | dim, 8 > m—1} for§={xeU|f(x)=g () =0}
This includes Theorem 4 of Chap. IL
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(iv) Given another analytic set 7' in U, if S c T and § is
irreducible, then S.is contained in at least one irreducible component
of T.

ProposITION 2. Let S be an analytic set in an open set U in
C™, {8} the family of its irreducible components. For an a €S,
suppose Sy, ..., S, are the S; containing a. Then (all the germs being
taken at a), the sets of irreducible components of the S;, 1 =1, ..., n,
are disjoint, and their union is precisely the set of all irreducible
components of S.

Proor. It is enough to show that, for 1< i< ¢ <n, an
irreducible component of S;. cannot contain an irreducible compo-
nent of S;: in fact this, by Corollary 3(c) to Proposition 1, would
imply S;. 5 8§;, contradicting Theorem 8(a).

CONSEQUENCES OF ProposiTioN 2. 1. If S, is irreducible, then
only one irreducible component of S contains a.

2. (Identititssatz.) Given two analytic sets S,8’in U,andaeS n &',
let T (resp. T’) be an irreducible component of the germ S (resp.
S’) (all the germs being taken at a), and S, (resp. S;) the uniquely
determined irreducible component of the set S (resp. 8) such that
T (resp. T’) is an irreducible component of the germ S, (resp. S;).
Then T c T’ implies 8, ¢S], hence T =T’ implies §, = ;.

3. If 8 is connected and S, irreducible forevery a €8, then S is
irreducible.

Proor. Suppose 8 is connected and reducible : S has at least
two irreducible components S, ; since S, and §; = U S, are
n>2

closed non-empty subsets of S which have S as their union, there
exists @ €8, n 8], and (consequence 1) S, is reducible.

ProposiTION 3. Let S, # U be an analytic set in an open set U
in C™, and S an analytic set in U —8,, such that dim, S is the same,
say k, for all a € 8. Then the following two stat ts are equivalent :
(i) the closure S of 8 in U is an analytic set in U ; (ii) there exists an
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analytic set 8’ in U such that 8’ 5 8 and dim, 8’ < k for any a € S'.
If they hold, dim, S= kfor everya € S.

Proor. If (i) holds, § is dense in S ; since dim, § = k for any
a €8, we also have dim, S =k for any a €8, and (ii) holds with
8’ =8. Conversely, let (i) hold : given a €8, the germs S, S’ induced
by 8, 8’ at a are such that ScS’ and dim S =dim S’, hence
they have at least one irreducible component, say T, in common
(Corollary 1(d) to Proposition 3 of §2). Let S; be the irreducible
component of the set 8’ which is such that T is an irreducible com-
ponent of S; : 8] n (U —8,) is an irreducible analytic set in U—.S,
(Corollary 3(e) to Proposition 1) containing a, and § an analytic
set in U — 8, such that the germ induced at @ by S contains an
irreducible component of the germ induced by S; n (U —S,); then
(Corollary 3(e) to Proposition 1) 85 8; n (U—S8,), hence 8> 8,
8{ n (U —8,) is dense in 8 (Corollary 3(e) to Proposition 1).

Repeating this argument for every a €S, we get a family of
irreducible components of the set S, the union of which contains
8 and is contained in 8 ; this union is an analytic set in U, hence
is closed in U and coincides with S, q.e.d.

ReMark. This proposition is a useful tool for the continuation
of analytic sets (see [4] ).
4. Relations between the dimensions of analytic sets and subsets.

THEOREM 9. Let S be an analytic set in an open set U in C™, h a
holomorphic function on U, and 8' ={x eS| h(x) =0} (8’ is an
analytic set in U). Then for every a € 8’ :

dim, §’ =dim, S or dim, § —1;

when S, is irreducible, dim, 8’ = dim, 8 if and only if h, vanishes
on S,.

Proor. The case S, ={a} is trivial, and, if S, =C™, with

h, #0, we have dim S) =m — 1 =dim S, — 1, by Proposition 3 (b)
(consequence 3) of § 2. Thus let {a} #S =S, #C™. Wo may
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assumo that S is irreducible. In fact,if Ty, ..., T, are the irreducible
compononts of S, and wo know for every j(l1 <j < =) that
dim (T; n S;) > dim T; — 1, we have

dim S, =sup dim (T;n'S,) (Corollary 1(e) to Proposition 3, §2)
i
>sup (dimT; —1) =dim S —1,
i

and obviously dim S; < dim S.

Thus let S be an irreducible germ at p € C™, {0} gS # C™ and
let hes#’™. Let S'=SnS,. If heI(S)=1,S"=S, and the
theorem is trivially valid. Hence the proof of the theorem will ba
complete if we prove that h ¢ I implies dim S’ =dim S — 1; by
Corollary 1 (c) to Proposition 3 of §2, we know that dim S’ < dim S.

I = I(S) is a prime ideal in s#™, {0} 1 c ™ Let the basis
of C™ be k-properfor I 1 < k< m—1). Let I' =I(S’). Weclaim
that (with the usual notation) I; # {0}. In fact, by Proposition 2
of Chap. III, § 4, there exists a distinguished polynomial
R,(u) € #* [u] such that

R,(h) =h? + ¢, W1 4 ... f¢c €],

and, by the same proposition, h¢ I implics c, #0. Since R,(h)eIcI’,
and hel’, we have ¢, e I;. Henco I, # {0}.

Now if k =1, Proposition 4 of §2 gives dim S =1, which implies
dim S’ =0 =dim S — 1. Hence let k> 1. By suitably altering the
basis in C¥, we nmy assume that ¢, ~Q,, where Q, € #*1[z,] is
distinguished (we recall that, since R,(u) is distinguished, ¢, € #%).
Then Q,, € I;. Hence condition A” of Proposition 1 (Chap. III, §3)
is satisfied by z,,..., ,_, for I We assert that I; ; ={0}. This
assertion will be proved if we show that any neighbourhood of p
in 8’ has a neighbourhood of p,_, as its projection on C*¥~1; in
fact, by Proposition 2(b) of Chap. III, §4, there exist arbitrarily
small open polydiscs m, ¢ U, with centre p, such that =, n S8’ has tho
set of zeros of ¢, in =’ as its projection on C*; ¢, and the distin-
guished pseudo-polynomial @, have the same set of zeros in some
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neighbourhood of p, hence the set of zeros of ¢, in =y has a
neighbourhood of p,_, as its projection on C¥~1,

Thus our assertion is proved : we have obtained a basis of C™
which is k-proper for I and (k — 1)-proper for I'. Hence, by Pro-
position 4 of § 2, dim S =%, dim S’ =k — 1, and the proof of
Theorem 9 is complete.

CoroLLARY 1. Let S be any analytic set in U, and S’ a principal
analytic set in U. Then, either dim, (S n8’) = dim, S — 1 for every
a €Sns’, or 8 contains an srreducible component of S. (It 18 not
asserted that Sn8' #D.)

Proor. GivenaeSns’, let Ty, ..., T, be the irreducible compo-
nents of S (all the germs being taken at a), and suppose dim (S n S’)
= dim S: by Corollary 1(e) to Proposition 3 of § 2, dim (T; n S’)
= dim T; for at least one j ; then (Theorem 9) S'5T;, and finally,
by Corollary 3 (c) to Proposition 1 of § 3, S’ contains the irreducible
component §; of § such that T; is an irreducible component of S;.

COROLLARY 2. Let S be an analytic set in U, h,, ..., h, holo-
morphic functions on U, and 8’ ={x € 8| hy(x) = ... = h,(x) = 0}.
Then, for every a € §’, dim, 8’ > dim, S — p.

ReEMARE. If F is a meromorphic function on an open set U in
O™, it follows that the set of points at which F is indeterminate has
dimension m — 2 at every one of its points (cf. Corollary 3(a) to
Proposition 3 of §2).

CorROLLARY 3. IfS,, S, are any analytic sets in U: dim, (S; n S;)
> dim, 8, + dim, S; — m for any a € 8, n S,.

Proor. Thisis already known (Corollary 2) if §, or S, is the inter-
section of U with an affine subvariety of C™. In order to prove it in
the general case, we first consider the analytic set §; X Sy in U x U':
8,* x8,* is a dense subset of S, X.8;, and any point (x,y) € S,* X S;*
is a regular point of §; xS; of dimension dim, S, 4 dim,S;;
consequently, for any point (a, b) €8, X S,,

dim, ;) (8, X S3) =dim, S, + dim, ;.
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Now let a €8, n S, be given, and k= dim, (S n S;): by Corollary 1
to Proposition 4 of §2, there exists an (m — k)-dimensional affine
subvaricty L of C™ such that « is an isolated point of L n (S, nS,).
Then, if D is the linear subvariety {(z, y) |y =2} of C™ x C™, (a, @)
is an isolated point of D A (L X C™) A (S; X S,); since D A (L x C™)
is & (m — k)-dimensional affine subvariety of C™ x C™, this, by the
same corollary as above, implics

m— k< 2m — dim,, (S, X 8,) = 2m — dim, §; — dim, §,, g.e.d.

5. Holomorphic mappings.

ProrosiTioN 1. Let f map an open set U cC™ into C*, and
8 = {(x, f(x)) | v € U} be the graph of f in U x C".

(a) If f is holomorphic, then S is an analytic set in U X C*, and
any point of S i3 a regular point of S of dimension m.

(b) Let U be ted : if f is hol -phic, then S is an irreducible
analytic set in U XC", and conversely, if S i3 a connected analytic set in
U xC*, then f is holomorphic. (‘S irreducible” implies “‘S connected”
by Corollary 3 (a) to Proposition 1 of §3).

Proor. (a) is an immediate consequence of the cxample in
Chap. III, §2. The first part of (b) then follows from Proposition 2
of § 3 (consequence 3). It remains only to prove the second part
of (b). As an ordered basis of C™ x C", we choose the given basis
of C™, with respect to which the coordinates are x,, ..., ,,, followed
by the given basis of C", with respect to which the coordinates are

, ,
LS

Since S is the graph of f, for any a € U, the set 8n {r; —a; = ...
=2x,,—a,, = 0} reduces to the point (g, f(a)), hence, by Proposition 4
of §2, dimy, 4, S < m, with equality if and only if the chosen basis
of C™ x C" is m-proper for I(S, ;4 ). By Corollary 2 to Theorem 3,
and the remark on this corollary, if dim, 4, S <m, there exists
an open polydise P c U x C", with centre (a, f(a)), such that the
projection of 8§ A P on C™ is an analytic set in the projection of P,
but not this projection itself, and therefore the closure in U of
the projection of § n PonC™ has an empty interior. By Baire’s
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theorem, this cannot happen for every a € U, since the projection
of SonC™is U : so we must have dim, ;) § =m for some aeU,
i.e., S has at least one m-dimensional irreducible component, S, say.

Let a € U be such that (a, f(a)) € §,. and 7', be an analytic sct,
in an open neighbourhood VcU x C* of (a. f(a)), such that
T,cS8, and T, is an m-dimensional irreducible component of S,
all germs being taken at the point (a. f(a) ) : by Proposition 4 of § 2,
the chosen basis of C™ x C" is m-proper for I (T,) ; by Corollary 2
to Theorem 3, and the remark on this corollary, there exists an open
polydisc P c V, with centre (a, f(a)), such that 7', n P and P have
the same projection on C™. Then I',n P =8 P =8, n P, which
implies : (i) T, =S,, or S, isirreducible ; and (ii) S, and the union
of the remaining irreducible components of & are disjoint, by
Corollary 3(c) to Proposition 1 of §3. Since S is connected, we
must have § =,;. Hence for any a € U, the germ induced by §
at the point (a4, f(a)) is irreducible and m-dimensional, and the
chosen basis of C™ x C" is m-proper for I (S). Then we may use
the local description theorem (Theorem 3 of Chap. III), with (z, a')
instead of x, and z instead of x’: since § is the graph of f, the
integer p in this theorem is 1, and therefore (Remark 3 on the
theorem) fis holomorphic on some open neighbourhood of a. This
being true for any a € U, the proof of Proposition 1 is complete.

ReMark. In Proposition 1(b), to conclude the holomorphy of f
from the fact that its graph S is an analytic set, the connectedness
of 8 is necessary. For example, f: C'—-C, defined by f(x) = x~! for
x # 0, f(0) = 0, is not holomorphic in C, although its graph in C3,
namely {0} U {(t, 2;) €C, | z; 2, = 1}, is an analytic sct in C*

TaEOREM 10. Let f: x—a’' = (fy(%), ..., f,(2)) be a holomorphic
mapping of an open set U in C™ into C*, and let a € U be an isolated
point of f~1 (a'), a’ = f(a). Then : (a) n > m; (b) n> m if and only
if there exists a holomorphic function g on an open neighbourhood of
a', such that g, # 0 and g(fy, ..., f,) = 0 in a neighbourhood of a.

ProOF. Let the notation be as in the proof of Proposition 1 :
8 is the graph of f, a =0, o’ =p’, S is the germ induced by § at



108 SEVERAL COMPLEX VARIABLES

(0, 0’) ; we know that dim S = m. Now our assumption is that the n
coordinates in C" satisfy condition A of Chap. III for the ideal
I(S) in #™*": then, by Proposition 4 of § 2, m =dim S < =,
which proves (a), and m < = if and only if the n coordinates in C*
do not satisfy condition B for I(S), which is equivalent to (b).

ReMARK. Theorem 10 is false without the assumption that a be
an isolated point of f~!(f(a)). For instance, consider the holomor-
phic mapping f: (x;, x3) — (2], 3, ;) of C? into C® defined by
] =, ¥g =T, Ty, T3 =%, %z €. Then, as in the remark follow-
ing Proposition 4 of §2, we see that there is no non-trivial holo-
morphic relation among z;, z;, x5 at 0 € C2. In this case,

ST (0)) ={(0, xp) | x, € C}.
CorOLLARY. Let f be a holomorphic mapping of an open set U in
C™ into C*: if every point ac U is an isolated point of f~'(f(a))
and f(U) ts an open set in C*, then n = m.

ProoF. By Theorem 10 (a), = > m. Suppose n>m: by Theo-
rem 10 (b), any a € U has a compact neighbourhood 4 ¢ U such that
J(A) has an empty interior, i.e., f(U) —f(4) is an open dense subset
of f(U); U is the union of a suitably chosen countable family of
sets A,, hence f(U) is the union of the f(4,), while, by Baire’s
theorem, f(U) — U f(4,) is dense in f(U).

THEOREM 11. Let f: x— 2z’ = (fy(), ..., f,,(x)) be a holomorphic
mapping of an open set U c C™ into C™, and let a € U be an isolated
point of f~1(a'), @’ = f(a). Then :

(a) f(U) is a neighbourhood of a' in C™;

(b) there exist open polydiscs w c U and =', with centres a and
a’ respectively (which can be chosen with arbitrarily small radis),
such that, for any x' €n’, w0 f~Y(2’') is a finite non-empty set ; the
mazxsmum number of points € w n f~1(z') is @ finite integer p (which
does not depend on the choice of m and ') ; m n f~1(a') = {a};

(¢) Jy(a) # 0 is a necessary and sufficient condition for the existence

of a neighbourhood V c U of a such that the restriction f | V is one-one
(t.e., snjective).
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Proor. Let the notation be as in the proofs of Proposition 1
and Theorem 10 : § is the graph of f, a =a’ =p, S is the germ
induced by S at (p, ) ; let (x, ') be any point of C™xC™. By our
assumption and the proof of Theorem 10, the m coordinates z,’, ...,
z,’ of x’ satisfy conditions A and B of Chap. III for the ideal I(S)
in s#?", which is prime since S is regular (Proposition 1).

Then, by the local description theorem (Theorem 3 of Chap. 11II),
there exist an open polydisc m, x #’y, with centre (p, p). and an
analytic set S, in my X 'y with the properties listcd in the theorem ;
as to the notation, z’ remains z’, but z becomes (z, 2’), and S (2')
has the same meaning as in the thcorem.

We choose the polydiscs 7 and #’, with centre p, mcmy n U, 7’ ca'y,
such that (7 X 7') S = (w X 7') n Sy, and z’' € n' implies Sy (z') c
m X w'. Since Sy (z’) =[mnf~1(')]x {z'} for any x’ € «', part
(A) of the local description theorem implies (b) and =’ c f(U),
hence (a).

(¢) The condition is sufficient by Theorem 1 of Chap.I; now
suppose f | V injective : if = c V, this implies p =1. Then, for any
2’ € n', w0 f~1(z’) consists of a single point g(z’) and, by the classical
local description, the mapping g is holomorphic on =’ ; fo g is the
identical mapping of =’ onto =’ and g(0) = 0, hence Jy(0) J,(v) = 1.

REMARK. Theorem 11 is false without the assumption that a
be an isolated point of f~1(f (a)). For instance consider the holo-
morphic mapping f: (x5, #z) = (x,’, 2;') of C? into C? defined by
@) =2y, ¥ =23 if U ={(&;, )| 2,] and |2 <1}, f(U) is
not a neighbourhood of the origin.

COROLLARY 1. Let f be a holomorphic mapping of an open set
U c O™ into C™ : if every point a € U is an isolated point of f~1 (f(a)),
then f(U) is an open set in C™.

CoROLLARY 2. If fis a one-onc holomorphic mapping of an open
set U c C™ into C™, then : f(U) =V 1is an open set in C™, the
Jacobian J; vanishes nowhere in U, and f~1 is a holomorphic mapping
of Vonto U.
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Proor. The first two statements are included in Theorem 11;
that f~1is holomorphic in some neighbourhood of any point € V was
proved once with Theorem 1 of Chap. I, and a second time (by
quite different methods) with Theorem 11.

ReMARK 1. The corollary to Theorem 10 and Corollary 2 to,
Theorem 11 yield a proof of what was asserted in the remark at the
end of Chap. L.

ReMARK 2. H. Cartan (Bull. Soc. Math., vol. 57, 1933) proved
the following remarkable fact : given a holomorphic mapping f of
an open set U in C™ into C", the set {a € U | a is not an isolated
point of f~1(f(a)) } is an analytic set in U. See also R. Remmert,
“Holomorphe und meromorphe Abbildungen komplexer Réume”,
Math. Annalen, vol. 133 (1957), pp. 328-370.

6. Holomorphic functions on an analytic set, according to
H. Cartan [3]. In [3], given an analytic set S in an open set
U, an abstract topological space § is defined, and holomorphic
functions on S are introduced. This definition is equivalent to the
following one; we use simply the words ‘“holomorphic on §” for
these functions.

DEFINITION 3. Given an analytic set S in an open set U in
C™, a compl lued function h, defined on 8*, is holomorphic on S
if h is holomorphic on S*, and is bounded in a meighbourhood of
each point of 8 (more precisely, if every a €8 has a neighbourhood
V such that h | V o S* is bounded).

REMARK. A complex-valued function A on S* is holomorphic
at a € S* if it satisfies either of the following conditions, which are
obviously equivalent.

(i) There exist an open neighbourhood V of & in C™, and a
holomorphic function g in V such that A=g| ¥V n S*.

(ii) Let f be a biholomorphic mapping of an open neighbourhood
V of a in C™ onto an open set V' in C™, such that f(Sn V) =
V' n L, L being an affine sub-variety of C™, of dimension k say.
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Then there exists an open neighbourhood W c V of a, such that
h o f~1is holomorphic on f(W n 8) (which may bs regarded as an
open set in C¥).

SoME IMMEDIATE CONSEQUENCES OF DEFINITION 3.

1. If h and A’ are holomorphic on S, & + A’ and &. b’ are again
holomorphic on 8.

2. If b is holomorphic on the analytic set § in U, then, for any
openset U’ c U, h|8 n U’ is holomorphic on the analyticset 8 n U’
in U'.

3. If his holomorphic on the analytic set 8 in U, and fis a one-
one biholomorphic mapping of U onto another open set U’, then
h o f~! is holomorphic on the analytic set f(S) in U’.

4. (a) Germs of holomorphic functions on analytic sets are
defined in the following natural way : given an analytic set S in
an open set U and a point a € 8, consider the couples (V, k), where
V c U is an open neighbourhood of @ and 4 a holomorphic function
on V n 8, and write (1, B) ~ (V’, #’) if there exists a neighbourhood
Wc VAV of asuch that h=5" on W ~S*; then a germ of a
holomorphic function on § at a is an equivalence class, for this
relation, in the set of all couples (V, A).

(b) If h, is a germ of a holomorphic function on S at a, the
words “h, vanishes on T,”” have an obvious meaning if T, is & union
of irreducible components of S,.

5. (Principle of analytic continuation.) If A is holomorphic on
an irreducible analytic set S in an open set U and, for some a €8,
the germ h, induced at a@ by A vanishes on some irreducible compo-
nent of S,, then 2 =0 on 8.

This is a consequence of the connectedness of S* (Corollary 1 to
Proposition 1 of §3) and generalizes Ritt’s lemma (Corollary 3(c)
to the same proposition).

6. (a) Let S, S’ be analytic sets in an open set U, with 8’ c 8
and dim, S’ <dim,8 for every a € §': if h is holomorphic on
8* ¢S’ and bounded in a neighbourhood of each point of S, then
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h is the restriction to 8* A °S’ of & uniquely determined holomorphic
function on 8.

(b) Given an analytic set S in an open set U, suppose S =S,
is reducible, and let 7'y, ..., T, (n > 2) be analytic sets in an open
neighbourhood ¥V c U of a, inducing at a the irreducible compo-
nents of S, with the following properties (cf. Proposition 3 of § 2) :

VaS =]|:'J1 T;; if T 25!‘;’; Ty, j=1,...,n, dim(T; n T) < dim, T

for any 2€ Tyn Ty, j=1, .., n; Vo §*= U (T,* 0" 7). Then,
for any & holomorphic on § each & [S* n T;* is the restriction to
8* n Tj*=T* T}’ of a uniquely determined holomorphic function
onT;,j=1,..,n

(¢) Given an analytic set S in an open set U and an irreducible
component S; of 8, for any A holomorphic on S, & [8* 0 §,* is
the restriction to $* n 8,* of a uniquely determined holomorphic
function on S,.

ProposITION 1. Let S be an analytic set in an open set U in C™ ;
suppose the origin p belongs to S, S induces an irreducible germ S at
0, and the basis of C™ is k-proper for I(S), 1 < k< m — 1. Then there
exist : (a) an open polydisc myc U with centre p (which can be chosen
with arbitrarily small radit) and a principal analytic set oy in m,
(= projection of my on C*), such that Sy = myn S is an irreducible
analytic set in my, and €8, ' =(x,,...,2,) €n'y—o'y imply
x €8,* and (b) for any function h holomorphic on S,, a monic
pseudo-polynomial R,(x’, w) in w, with coefficients holomorphic on
mg, such that {u eC | R,(x'y, u) = 0} = {h(z) |z €Sy, x' =} for any
X € My — 0, and Ry(x', b(x)) =0 for any x €Sy*. (c) If R, (2, u),
contains the factor u, then h =0 on S,.

Proor. By the local description theorem (Theorem 3 of
Chap. IIT), we can choose an arbitrarily small =, such that S, =
m, n S has the properties listed in (a); we need only remark that
8, is irreducible since it contains a dense connected set of regular
points, namely {x €8, | 2’ € 7y — 0,}. With the same notation, each
function
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G@)=(—1 > M) ..hEPE), j=1..,p
1<, <. <ij<Pp
is holomorphic for «’ € Uy = my — 0, bounded in a neighbourhood
of each point of oy, and therefore, by Theorem 2 of Chap. III, has
a unique holomorphic extension to =, which vanishes at the origin
o’ in C*. If we denote this extension by c; and set

P
R]l(x” u) =u’ + Z GJ(I’) up-J’
1=1
then R, obviously serves in (b).

To prove (c), suppose ¢, = 0. Given z, € U, for a suitable
choice of the indices j, the p functions h(z‘(z')), j =1, ..., D, are
holomorphic on some open connected neighbourhood ¥y c Uy
of x;, and their product is = 0 on V;; hence one of them is =0
on V{, i.e., h vanishes identically on S, in some neighbourhood of
one of the points 2 (x;). By consequence 5 of Definition 3, this
implies b = O on S;.

LemMMA 1. Let b be a continuous complex-valued function on un
open set U in C™, by, ..., b, holomorphic functions on U such that
P, h) =0 + by k=1 4...4b,=0o0n U;then h is holomorphic
on U.

Proor. Given a € U, we consider only germs of holomorphic
functions at a. By Gauss’ Theorem (Chap. II, §2), #" [u] is a fac-
torial ring: Let P(x) = w? + b,u»~1+ ...+ b,and P =P * ... P,%,
where the «; are positive integers, the P, € A7} [u] are irreducible
and mutually non-equivalent in J#*[«], have degrees > 1 and 1 as
their leading coefficient.

There exist an open connected ncighbourhood V c U of a and,
for each j = 1, ..., n, a monic pseudo-polynomial P; (x, %) in u, the
coefficients of which are holomorphic functions on V inducing at a
the respective coefficients of P, ; P(z, u) = Py(x, u)... P,(x, u)* for
z € V implies P,(x, %) ... P,(z, h) =0 on V. But the discriminant
of P,...P, is not 0, hence the discriminant of P,(z, u)...P,(r, u),
a holomorphic function on V, is not =0, i.e., the sot § of zeros of
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this discriminant is a principal analytic set in ¥ ; any continuous
root of Py(x, u) ... P,(x, u), e.g. h(x), is holomorphic on ¥V —S; since
h | V is continuous on V, A | V is holomorphic on ¥V by Theorem 2
of Chap. III.

TueoreM 12 (H. Cartan). Given an analytic set S in an open
set U and a pl lued function h defined on S*, (i), (ii), (iii)
below are equivalent :

(i) B is holomorphic on S* and bounded in a neighbourhood of each
point of 8 (i.e., by Definition 3, h is holomorphic on S) ;

(ii) A s holomorphic on S* and has the following property : given
a €8 and analytic sets T, ..., T,(n > 1) in an open neighbourhood
of a, inducing at a the irreducible components of S,, then, for each
J =1, ..., n, h(z) has a finitelimitasx —a,x €S* n T;;

(iii) A is continuous on S* and, for any a € S, there exist an open
neighbourhood V c U of a and holomorphic functions b,, ..., b, on
V such thath? 4+ b, h*~' + ... + b, =00n V n S*.

Proor. Obviously (ii) implies (i); so we have to prove that (i)
implies (iii) and (iii) implies (ii).

(1) Assuming (i), by consequence 6(b) of Definition 3, it is enough
to consider a point @ €8 such that S =S, is irreducible. Let a be
the origin p and the basis of C™ be k-proper for I(S), 1< k<< m —1:
by Proposition 1, there exist an open polydisc m, c U with centre p
and holomorphic functions ¢, ..., ¢, on =’y (= projection of m, on

C* ) such that [h(z) JP + f‘, ¢; (') [ h(z) P~ =0 for every x € m, n S*.
je1

(2) Now we assume (iii) . Then A is holomorphic on 8*, by the
lemma above. Given a €8, the set of limits of h(x) as x— a, x €S*,
is contained in {u €C'| u? 4- b,(a) w?~! 4 ... + b,(a) = 0}, hence finite.
If S, is irreducible, by Proposition 2 (b) of § 2, there exist arbitrarily
small open neighbourhoods I of a such that each W n S* is connec-
ted : then the set of limits of A(x) as * — a, x € §*, is connected,
therefore consists of only one point. If S, is reducible, let 7', ..., T,
(n > 2) have the properties listed in Proposition 3 of § 2 : by part (c)
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of this proposition, for each j = 1, ..., n, there exist arbitrarily small
open neighbourhoods W; of a such that each W; n (T}* a °T")
is connected ; then the set of limits of k(x) as x — a, x € S* n T,., is
connected, therefore consists of only one point.

COROLLARY. Let S be an analytic set in an open set U and S, an
analytic setin an openset Uy c U, S; c 8.

(a) Suppose that, for any a € 8,, each irreducible component of S,
18 contained in only one irreducible component of S (S, and S being
taken at a) ; then any holomorphic function h on S induces a holo-
morphic function b, on S, as follows : if a € 8,* n S*, h(a) = h(a);
if @ € 8y* n (S — 8*), and T, is an analytic set in an open neighbour-
hood of a inducing at a the irreducible component of S which contains
S,

hy(a) = lim &(z).

T—>a
ze§*n Ty

(b) Suppose that dim, S; n (S —8*) < dim, 8, for any ae
8; n (8 — 8*) : then the hypothesis of (a), and therefore the conclusion
of (a), remains valid.

PrOOF. (a) b satisfies (iii) of Theorem 12 with respect to S :
therefore, given a € S;, there exist an open neighbourhood ¥V c U
of a and holomorphic functions b, ..., b, on V such that
W+ by h?~ 14 ...+ b,=00nV n8*; then A+ b, A~ 14 ... +-b,=0
on ¥V n8,* and, by Theorem 12, we only have to prove the conti-
nuity of 4, on S,*. This continuity is obvious at a point @ € §,* n §*,
and also at a point @ € §;* n (§ — 8*) where § induces an irreducible
germ, since we have h,(a) = lim () in the latter case.

z

a
zeS*

So we consider an a € 8;* n (S — 8*) with S =S, reducible. By
Proposition 3 of § 2, we can find an open neighbourhood W c U,
of & and analytic sets T, ..., T, (»n > 2) in W, inducing at a
the irreducible components of S,, with the following properties :

n
M Wna8=UT; (2) WnS;,cT,; (3) |h(z) —hy(a)| < a given
j=0

j=
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€>0,foranyzxeS*nT,; (4)if T{=U T, T,*n°T; is connec-
j=2
ted and dense in T';*.

Property (4) implies that 7',* is connected, i.e., 7', is an irreducible
analytic set in W (Corollary 1 to Proposition 1 of § 3). Properties
(2) and (3) imply | hy(z)—h,(a) | < eforanyz e W n S;* n 8*. Now let
z€W A 8* A (8 — S*): by property (1), any irreducible component of
S, is either an irreducible component of (T,), or an irreducible com-
ponent of (T;),; by property (2), (S;), is contained in an irreducible
component of (T,), which in turn is contained in an irreducible
component of S;; if this one were an irreducible component of (T;),,
since 7', is an irreducible analytic set in W, we should have T, c TY,
by Corollary 3 (c) to Proposition 1 of §3. So the irreducible com-
ponent of S, which contains (S,), is an irreducible component of
(T,),, and property (3) implies | &,(x) — k(@) | < e. This proves (a).

(b) Consider a given a €S, such that S is reducible. Let the
notation bs as above, and further let (7',),, ..., (Tl)nl, ny > 1, be
analytic sets in W inducing at @ the irreducible components of S,,

with Wn 8, = ﬁ (T,);. If (a) does not hold for @, there exists an
open neighbour;:):)d W, c W of a such that (for example)
Win(Ty)ycWin(Tyn Ty) cS8—8*

(cf. consequence 1 of Proposition 3 of §2); then S; and
8§;n (8 —8*) induce the same non-empty germ at a if n, =1,
any point b € W, n (7'), such that b ¢ G (Ty); if ny > 2. Hence
(b) 18 proved. =

ProrosITION 2. Given analytic sets S, 8’ in an open set U,
in C™, with 8 c 8, and a point a € 8, let S, S’ be the germs

induced at a by S, S’; let S be irreducible and dim S’ < dimS (ve.,
by Corollary 1(c) to Proposition 3 of §2, S' ¢ S): for any h holomor-
phic on S such that h(x) — 0 as x—+ a, x €S*, either h vanishes
on S, or i(V n S* A8’y u {0} is a neighbourhood of 0in C, for any
neighbourhood V of a.
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ProoF. Let a be the origin p. We first suppose dim S =1: given
a basis of C™ which is 1-proper for I(S), if the polydisc =, of Proposi-
tion 1 is chosen small enough, o’y={0} and 7y n 8’ ={p}. The pseudo-

»
polynomial R,(z,, w) =uP + 3 ¢(x;) w"~7 of Proposition 1 is dis-
j=1

tinguished since A(z) — 0 a8 « — p, x € 8%, and, by Proposition 1,
¢, =0 implies s =0 on my n S*.

If ¢,520, let 0<|2,|<r imply c,(r,) #0: then, for any
complex number A #0 with a small enough |A]|, Ry(zy,A) =0
for some z;, 0< |z, |<r, i.c., h =N\ at some point € mynS*n°S'.
So Proposition 2 is true if dim S = 1.

We now suppose Proposition 2 is true if dimS< %, 2 < k<m—1.
Let dim S =k : choosing a basis of C™ which is k-proper for I(S),
we can again find an open polydisc myc U, with centre p and
arbitrarily small radii, such that Sy =m, nS has the properties
listed in Proposition 1 ; so there exists a holomorphic function c,
on the projection m; of my on C¥, vanishing at the origin o’ in C¥,
such that h(z) =0, x €my n8* imply ¢,(z') =0, and ¢, = 0 implies
h =0 onmy, nS*.

Let ¢,520; we may assume that 8’58 — S*. Since dim S’ < £,
by Proposition 4 of §2, the basis of C™ is not k-proper for I(S’) ;
then, if m, is chosen small enough, there exist : (1) a holomorphic
function ¢’ on m, ¢'(p') =0, ¢’520, such that zem, S’ implies
¢'(x') =0; (2) a holomorphic function ¢ on m, ¢(0’) =0, 520,
such that the germs induced by ¢, ¢’ and ¢ at p’ are relatively prime
in 2* : in fact, we may choose the basis of C* in such a way that
(i:,, ¢') (0, ..., 0, ;) 3 0 in any neighbourhood of z, =0 in C, and
take any ¢ € #*~1 — {0}. Since S, is an irreducible analytic set inm,
by Corollary 1 to Theorem 9, the analytic set T = {reS, |¢(z')
= 0} in m, has dimension k—1 at any point € Z, and there also exists
an analytic set S, CZ, in an open neighbourhood U,cm, of o,
containing p, inducing at p an irreducible germ S; and having
dimension k—1 at any point € S, (cf. Proposition 3 of § 2).
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By our choice of ¢, the set of common zeros of ¢,¢’ and ¢ in =,
has dimension k—2 at p'(cf. the remark on Corollary 2 to Theorem 9);
by Corollary 1 to Proposition 4 of § 2, there exists a 2-dimen-
sional linear subvariety L’ of C* such that p’ is an isolated point
of the intersection of L’ and the set of common zeros to ¢, ¢’ and
¢ina’. L’ isthe projectiononC*of an (m — k + 2)-dimensional linear
subvariety L of C* such that p is an isolated point of L A S; n S’ and
therefore, by the same corollary as above, dim, $; n 8’ < k— 2. If
p €8 — 8*, this inequality implies dim, 8, n (S —S*) < k — 2, hence
dim, S, n (§ —8*) < dim, 8, for any x €8, n (S —8*) if U, is chosen
sufficiently small ; then, by corollary to Theorem 12, A induces a
holomorphic function %, on §,, such that A (z) — 0 as 2 —p,
z €8,*. If h, vanishes on S,, there exists an open neighbourhood
Vic U, of p such that » =0 on V;n8;*nS* or V;nS;nS*;
in other words. x € ¥V, n S, implies z € § — S* c 8’ or A(x) =0, in
both cases (c, ¢’) (*') = ¢ (z') = 0 ; then p is an isolated point of
L~ 8,, which contradicts dim §; = k — 1. Thus h, does not vanish
on S,, and, since dim, §; n 8" < dim, 8, < &, for any neighbourhood
V of 0, hy(Va8,*n8’)u {0} or A(V n8,*n°S')u {0}, a fortiori
BV A 8*n8')u {0}, is a neighbourhood of 0 in C.

Finally the case dim S = m is treated by considering § as a subsot
of C™+1,

CorOLLARY 1. If 8 is an irreducible analytic set in an open set
U, any function h holomorphic on S is either constant or is an open
mapping of 8* into C, in the following sense : for any a €S and any
analytic set T in an open neighbourhood of a inducing at @ an irredu-
cible component T, of S,, h(S* n T)u {A} is a neighbourhood of A
in C, where A = lim h(x).

Z:E::T

Proor. For a point @ such that S, is reducible, we use conse-
quences 5 and 6 (b) of Definition 3, and Proposition 2 with 7', instcad
of 8, T, n T; instead of §".

CorOLLARY 2. (Maximum principle.) Given an analytic set S in
an open set U, and a holomorphic function h on S, if there exist a point
a €8, and an analytic set T in an open neighbourhood of & inducing at
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a an irreducible component T, of S,, such that| lim h(x) | = sup | A/,
x:.s'—::'l' g

then h = const. on S* A 8,, where S, is the irreducible component of

S such that T, is an irreducible component of (S,), (cf. Proposition 2

of §3).

Proor. By consequence 6 (c) of Definition 3, h [ S* A S,* is the
restriction to 8* 0 8;* of a holomorphic function A, on 8, ; since
S* 1 8,* A T meets any neighbourhood of 4, hm hy(x) = lun h(z),

zeS,'ﬂT rcs‘nT
hence | lim A (x)| = sup |h,] and, by Corollary 1, &, is constant.

zesl‘nT

TueoreM 13. Let S be an analytic set in an open set U in O™,
h & holomorphic function on 8, and 8’ the closure in Ulor in S) of the
set {x € 8* [h(x) =0}. Then

(a) &' is again an analytic set in U ;

(b) forany a €8, dim, 8’ > — 1 -+ the greatest of the dimensions
of the irreducible components S, of S such that a is in the closure
of {xeS* 0 S,*| h(z) =0};

(¢) if 8 is irreducible, either h =0 or dim, 8" = dim, § — 1 for
everya €',

ProoF. Let {s,} be the countable family of connected components
of 8%, and {S,} the family of irreducible components of 8 : for each
n, 8, is the closure in U of s, and s, =8*nS,*. Since these
families are locally finite in U, we have to prove that, for cach n,
the closure S in U of the set {z €, | h(x) = 0} is an analytic set in
U and, for any a € S,, dim, S, =k, or k,— 1, where k, is the
constant dimension of S,.

This being obvious if k, =0 or m,orif b |s,=0,let 1 <k, <m—1
and k] 8,54 0; s, is an irreducible k,-dimensional analytic sct
in U—(S —8*) consisting only of regular points, and therefore,
{zes, | h(x) =0} is a (k,—1)-dimensional analytic set in U— (8 — 8*).
Hence by Proposition 3 of §3, Theorem 13 will be proved if we
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show that, for any a €8, n (S — S*), there exists a (k, — 1)-dimen-
sional analytic set in an open neighbourhood m, c U of &, containing
{z€emy ns, | hz) =0}

If the germ induced at a by S, is irreducible, let T =S8,V ="U;
if not, let 7' be one of the analytic sets 7); in an open neighbourhood
VcU of a, having the properties listed in consequence 6(b) of
Definition 3, with 8, instead of §: it is enough to find a (k, — 1)-
dimensional analytic set, in an open neighbourhood myc V of a,
containing {xemy ns,n T*|h(x) =0}. If the basis of C™ is
k,-proper for I (T,), by Proposition 1 and consequences 6(b) and 6(c)
of Definition 3, there exist an open polydis¢ =, cV with centre a and
a holomorphic function ¢, on =’y ( = projection of 7, on C*»), such
that: (i) 7y =m, a T is an irreducible analytic set in =, ; (i) A(z) =0
implies ¢ (z) =0, 2" = (xy, ..., %), for any zem ns, n T*;
(iii) ¢, =0 implies 4 |myns,nT* =0, hence h|s, =0 by the
principle of analytic continuation. So ¢, 0 and, since T, is an
irreducible analytic set in m, by Corollary 1 to Theorem 9,
{zreTylc,(x') =0} is a (k, — 1)-dimensional analytic set in m,,
which contains {x €my ns, n T* |h(z) =0}, q.e.d.

LemMaA 2. Let S be an analytic set in an open set U in C™ ; suppose
the origin p €8, S ind an irreducible germ S at p, k =dim S,
1< k< m—1. Then p has an open neighbourhood V c U, such that
Vn(S—8* ={xeV n8|p;(x) =0 foreach j}, where{p;}is a finite
family of holomorphic functions on V, built as follows : for each j,
there exist a basis B; of C™ which is k-proper for I(S), an open
polydisc m; (with respect to B;) with centre 0, VcmcU, such that
8; =m; 0 8 has the properties listed in the local description theorem
with respect to B; (let the first k coordinates with respect to %; be
denoted by a single letter %/, let n/ ={z] |z em}, and let p, be the
mazimum number of points €8; for a given z;'em;'), and finally

a linear form I, on O™ ; then p, (z) = éa_ R &, § (), where By, u)
%

is & distinguished pseudo-polynomial of degree p in wu, with
coefficients holomorphic on =, such that
{u€elC |B(x,,u) =0} ={l; ()| z€8;, 2 ==z,"} for any z,’em/
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Proor. This is a conscquence of the first proof of Theorem 6,
the remark on Corollary 1 to Theorem 3, and part (B, a) of the local
description theorem.

DEFINITION 4. Given an analylic set S in an open set U and a
point a €S, a function v, holomorphic on an open neighbourhood
V c U of a, i3 a universal denominator for S at a if : (i) all germs heing
taken at a, v does mot vanish on any irreducible component of S ;
(ii) for any open neighbourhood V'cV of a and any holomorphic function
hon V' 8, there exists a holomorphic function on an open neighbour-
hood W c V' of a which has the same restriction to W o S* as vh.

THEOREM 14 (K. OKA). Let S be an analytic set in an open
set U ; suppose the origin g €S.

(&) If S induces at p an irreducible germ, there exists an integer
n> 0 such that, for any function v holomorphic on an open neighbour-
hood of p and vanishing on S — S* in some neighbourhood of 9, either
v vanishes on S in some neighbourhood of p, or v" i8 & universal
denominator for S at any point a €8 sufficiently near p.

(b) In any case, there exists a function v, holomorphic on an open
neighbourhood of p, which is a universal denominator for S at any
point a €8 sufficiently near 9.

Proor. (a)Let S be the germ induced by S at p and k¥ =dim S ;
we may assume 1 < k < m — 1. Let the basis of C* be k-proper for
I(S), and myc U be an open polydisc with centre g, such that
8, =m,nS has the properties listed in the local description
theorem ; with the notation of that theorem, given a linear form !
on C™, let R, (z’, w) be a distinguished pseudo-polynomial in u, with
coefficients holomorphic on #';, the roots of which, for x'e€ U’y =
@’y — o'y, are the p values I (z (z)),j =1, ..., p.

For any holomorphic function & on §,, and z’'eU’,, consider

xww= > [y J] w-teen} o

1<<P 1;1;}0
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which is a pseudo-polynomial of degree < p— 1 in u; since its
coefficients are holomorphic on U’; and bounded in a neighbourhood
of each point of o'y, they have a holomorphic extension to =’;, and
then X (z', I (x)) is & holomorphic function on =, such tha:t

;; Rz, l(x)) h(x) = X (2, I (2)) for any = € Sy*. (**)

‘Thus —aa— Ry (', l(x)) either induces at p a germ vanishing on S, or
u

is a universal denominator for § at p, since m, can be chosen with
arbitrarily small radii.

Given a €8,, let a’ be the projection of a on C*; we can find
open polydiscs =, my, m,, ... (with arbitrarily small radii) such that :
(i) the centre of = is a, the centres of =, m,, ... are the other points
€8y(a’) (with the notation of the local description theorem) ;
(ii) ar, my, m5, ... are contained in m,, mutually disjoint, and have the
same projection =’ on C*; (iii) the union of m,m;, m, ... contains
8y(') for any 2’ € o',

Given a holomorphic function % on 7 n S, we may set & = 0 on
7y 0 8%, 73 n 8%, ..., and consider (*) for 2’ en’ n U’y : then X (', I(z))
is. a holomorphic function on =, such that (**) holds for any

z € mn 8*. Thus, for any a €8, the same function ;— R, I (2))
w

is a universal denominator for S at @, unless it induces at a a germ
vanishing on some irreducible component of S,. Finally, since S,
is an irreducible analytic set in 7y, by Corollary 3(c) to Proposition 1

of §3, if % R (2, 1 (2)) induces, at some a €8, a germ vanishing
on some irreducible component of S;, then it vanishes identically
on S : in other words, % R (2', 1 (z)) either vanishes identically on
8, or is a universal denominator for S at any point a €.S,.

By Corollary 2 to Theorem 7, Lemma 2 and the results just
obtained, there exist an opep neighbourhood V ¢ U of g and a finite
family of holomorphic functions p; on V, j=1,...,¢, such that
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(i) V n S is an irreducible analytic set in ¥,
(i) Vn(§—8*)={xe V8| pr) =0 for each j},

(iii) for eachj, p; is a universal denominator for § at any point
acVns.

Let v satisfy the hypotheses of (a): by (ii), the ideal generated in
™ by I(S) and the p; defines the germ induced at p by S —S*; by
the Nullstellensatz (Corollary 3 to Theorem 2), this ideal contains
v* for a suitable integer n» > 0, which depends only on §; if V is
small enough, v is holomorphic on V and, for each j=1,...,q,
there exists a holomorphic function ¢, on ¥ such that

(iv) o"— '21 pdi=0o0n Vs
=

Given a € Va8, an open neighbourhood V' c V of a and a
holomorphic function # on V'8, by (iii), there exist an open
neighbourhood W n V' of a and, foreach j = 1, ..., ¢, a holomorphic
function u, on W such that u; and ph have the same restriction to

q
W ~ 8* ; then, by (iv), ¥ u,¢, and v"h have the same restriction
j=1 4 3

to W A S*, i.e., ¢" is a universal denominator for § at @, unless v
induces at @ a germ vanishing on some irreducible component of S,.
Finally, by (i) and Corollary 3(c) to Proposition 1 of §3, either
v =00n VS, orv"is a universal denominator for S at any point
aevnsl.

(b) If S is irreducible, (b) is an immediate consequence of (a).
So let Ty, ..., T, (n> 2) be the irreducible components of S; if
V c U is a sufficiently small open neighbourhood of p, there exist
analytic sets 7; in ¥ and holomorphic functions f;, »;onV,j =1, ...,
n, with the properties listed in consequences 6(b) of Definition 3,
and further : (i) f; vanishes identically on TV =1U1T,-., but f;

s i

does not vanishon T;, j =1,..., n ; (ii) v, is a universal dcnominator
for T at any point €T}, j =1, ...,n ; (iii) there exists an open
neighbourhood W;c V of p such that W;n 7' is an irreducible
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analytic set in W; (cf. Proposition 3(c) of § 2),j =1, ..., n. By (i)
and (iii), and Corollary 3(c) to Proposition 1 of §3, the germ
induced by f, at any point a € W; n T; does not vanish on any
irreducible component of the germ induced by 7' at a.

n
We claim that v = ¥ f,v is a universal denominator for S at
j=1
»
any point 4 e( n II'J) n 8. In fact, given an open neighbourhood
1=1

V'c F] IW;of a and a holomorphic function 4 on V'8, by (ii),
j=1

there exist an open neighbourhood W c V' of a and, forcach j =1,...,
n, a holomorphic function %; on IV such that : either a ¢ 7;, and
then Wn T; = @; or ae T;, and then w; and v;A have the same
restriction to W n T* n°T"; (cf. consequence 6(a) of Definition 3,
with V' n 7} instead of S and V' n T; n T"; instead of ') ; therefore

n
Z f,w, and vh have the same restriction to W nS* ; on the other
)=1

hand, for each j such that a € 7}, the germ induced at a by fv;
does not vanish on any irreducible component of the germ induced
by 7T}, hence the same is true for the germ v, induced at @ by v.
Since each irreducible component of the germ S, induced by 8 is
an irreducible component of a germ induced by some 7,5 a, v,
does not vanish on any irreducible component of S,, and the proof
is complete.

ProrosiTiON 3. Given an analytic set S in an open set U in C™
and a point a €8, the following two stat ts are equivalent :

(i) the constant 1 is a universal denominator for S at a ;
(ii) the germ S, induced by S at a is irreducible, and the integral
domain K7 [I(S,) i3 integrally closed in its field of quotients.

Proor. Let a be the origin p, S, =S.

1.. Let (i) hold : for any open neighbourhood ¥V c U of p and any
holomorphic function &, on ¥ n 8, there exists a holomorphic fune-
tion on an open neighbourhood Wc ¥V of p which has the same
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restriction to W n 8* as h,. This is impossible if A, is defined on
V aS*by hy | T% n°T’; =j for each j =1, ..., n, with the notation
of consequence 6 (b) of Definition 3 ; hence S is irreducible.

Now let f*/g* be an element of the field of quotients of the ring
#™1(S) which belongs to the integral closure of this ring: f* and
g* are the images, under the canonical mapping #™ — H#™/I(S)

of fe ™ and g e #™—I(S),andf? + 3, b, f7~! g € I(S), where each
j=1

b; € #™. Let ¥V c U be an open neighbourhood of p such that V' n §
is irreducible (cf. Corollary 2 to Proposition 1 of §3), and f, g, b;,
j=1, ..., p, holomorphic functions on V¥, inducing at p the germs
f,g,b;: since g ¢ I(S), by Corollary 1 to Theorem 9, the set S’ =
{x € V n 8| g(x) =0} is such that dim, 8’ < dim,(V n S) forany z€S’;
flg| V. aS8*°S’ is a holomorphic function on V n 8* n%§’, which
is bounded in a neighbourhood of each point €V n §: in fact

(fl9)® + ﬁ b(flgy*~F =0 on ¥V n 8* S’ (cf. Corollary 3(c) to
j=1

Proposition 1 of §3). Hence, by consequence 6(a) of Definition 3,
flg1 V n8* ~°8' is the restriction to ¥ n8* n°8’ of a holomorphic
function %, on ¥V n §; f and gh, have the same restriction to ¥ n S*,
and there exists a holomorphic function A, on an open neighbour-
hood W c V of p, which has the same restriction to W n S* as h,.
Then f —gh =0 on W n §*, therefore on W 0 S, i.e., f*=g* h*, q.e.d.

2. Let (ii) hold ; consider an open neighbourhood V c U of p
and a holomorphic function %, on ¥ nS. By Theorems 12 and 14,
there exist holomorphic functions f, g, b;, j =1, ..., p, on an open

2
neighbourhood V' ¢ ¥ of p, with g ¢ I(S), such that A+ X b, hif I =
=1
0 on V' n8* and f and gh, have the same restriction to V' n S*.
Then 7 + i b, f7=7 g€ I(S), i.e., with the same notation as above,
=1

f*/g* belongs to the integral closure of J#™/I(S); hence there exist
an open neighbourhood W c V' of p, such that W n 8 is irreducible,
and a holomorphic function & on W, such that f —gh € I(S), and
therefore f —gh =0 on W n S by Corollary 3(c) to Proposition 1
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of §3. By the same corollary, the set 8’ ={x € W n S| g(z) =0} is
such that IV n8* 1 %8’ is dense in W n8*; h and h; have the same
restriction to W n 8* 1 %8’, hence to W n S*, q.e.d.

DEFINITION 5. @iven an analytic set S in an open set U in C™
and a point a €S, the germ S, induced by S at a is normal if (i) or (ii)
of Proposition 3 holds.

REMARK. By a deep theorem of Oka, the set of points @ €8 such
that S, is not normal is again an analytic set in U (cf. [3]), with this
consequence : if S, is normal, then S, is normal, hence irreducible,
for any z €8 sufficiently near a.

7. Holomorphic functions on an analytic set, according to
R. Remmert. We consider here a class of functions on an analytic set
S more special than the ones considered in § 6. This class of
functions is the one considered by R. Remmert [4a] and is more
natural in that it consists of functions defined everywhere on 8.

DEFINITION 6. Given an analytic set S in an open set U in C™, a
complex-valued function h defined on S is C-holomorphic on 8 if h is
continuous on S and h|S* is holomorphic on S*.

Immediate consequences of this definition are properties 1 to 3
of holomorphic functions on § also for C-holomorphic functions on S.
We may define, as for holomorphic functions on S, the germ h, of
a C-holomorphic function A on 8 at a point a € §.

REmMARK. If b is C-holomorphic on 8, then A|S8* is holomorphic
on S. As a counter-example to the converse statement, consider the
analytic set S = {(z,, x,)| 2} + a2 — 2% == 0} in C2. Here §* = § — {0}
and the function (x4, ) — 2,/2; is holomorphic but not C-holomor-
phic on S. However Theorem 12 shows that the converse is true
if 8 induces an irreducible germ at every point of S.

Naturally the theorems of §6 are also true for C-holomorphic
functions: in particular the principle of analytic continuation and
the dimension theorem (Theorem 13) remain valid without change
if we replace ‘‘holomorphic on §*’ by ‘C-holomorphic on 8. Also
Proposition 2 of § 6 gives us
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(a) If 8 is an irreducible analytic set in an open set U, any
function & C-holomorphic on § is either constant or is an open
mapping of S into C, in the sense that if @ €S, and T is an analytic
set in an open neighbourhood of a such that T, is an irreducible
component of S,, then A(T) is a neighbourhood of %(a) in C.

(b) (Maximum principle). If 2 is C-holomorphic on S, and (4 | is
maximum at some point & €8, then h is constant on the connected
component of S containing a.

Theorem 12 gives us

THEOREM 15. Guwen an analytic set S in an open set U, a continu-
ous complex-valued function h defined on 8 is C-hclomorphic on S if

and only if, for any a € 8, there exist an open neighbourhood V c U
of a and holomorphic functions b, ..., b, on V such that

Wby P14 b, =00nV S

CoroLLARY (Remmert). If A is C-holomorphic on an analytic set S
in an open set U, then for any analytic set 8; 8 in an open set U,c U,
h |8, is C-holomorphic on S;.

We conclude with

ProPOSITION 1. Let S be an analytic set in an open set U in C™,
and g a homeomorphism of 8 onto an open set X in C%, k > 1, such
that g—1 is a holomorphic mapping of X into C™. Then:

(a) foranyaesS,dim, S =k, and S, is irreducible ;

(b) @& function h, defined on 8, is C-holomorphic on 8 if and only
if h o g~ is holomorphic on X.

ProoF. (a) Given a € S*, let ¥ c U be an open neighbourhood
of @ and f a one-one biholomorphic mapping of ¥ onto an open set
¥’ in C™, such that f(V a8)=V'n L, where L is an affine sub-
variety of C™: fo g~1|g(V n8) is a one-one holomorphic mapping
of g(V n 8), which is an open set in C¥, onto ¥’ n L, which is an open
set in C4maS, Then dim, S = k by the corollary to Theorem 10. This
result implies dim, S =k for any a € 8.
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On the other hand, for any analytic set 7c .S in an open subset
V of U, g(T) is an analytic set in the open subset g(¥V n 8) of X.
Now, given a €S, let ¥ cU be an open neighbourhood of & and
T,, T, two analytic sets in V such that ¥V n8=7T,0 T,: then
g(V n8) =g (T,) v g (T;)implies that either g (T';) or g (T,) coincides
with g (V n S) in some neighbourhood of the point g(a), therefore
either 7', or T'; coincides with § in some neighbourhood of a : this
proves that S, is irreducible.

(b) Let hog~! be holomorphic on X; then A is continuous
on S. Given a €8*, let the notation be as in the proof of (a):
by Corollary 2 to Theorem 11, since fo g~!| g(V n8) is a one-one
holomorphic mapping of g(¥V nS) onto V' n L, gof!| V' nL isa
holomorphic mapping of V' n Lonto g(V n8),and ho f~| V' n L =
(hog)o(gof )|V nL is holomorphic on V' L. Thus 4 is
C-holomorphic on 8.

Now let 4 be C-holomorphic on §; then 2 o g~! is continuous on
X. Given a €S*, with the same notation again, by Definition 3 (a),
there exists an open neighbourhood WcV of a such that
hof~1|f(W n 8)is holomorphicon f(W n 8); then hog™! |g(W n 8) =
{hof)o(fog~")}Ig(W n8) is holomorphic on g(W nS), which is
an open subset of X containing g(a). This proves that 5 o g1 |g(S*)
is holomorphic on g (S*), which is a dense open subset of X ; since
8 — 8* is an analytic set in V (Theorem 8), g(S —8*) =X — g(S*)
is an analytic set in X; then A og~! is holomorphic on X, by
Theorem 2 of Chap. ITI. This proves (b).

REMARK. The corollary and proposition given above show that
C-holomorphic functions are precisely the holomorphic functions in
the sense of Remmert [4a].
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