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INTERNATIONAL COLLOQUIUM ON
DIFFERENTIAL ANALYSIS

BOMBAY, 7-14 JANUARY 1964

REPORT

Ax International Colloquium on Differential Analysis was held
at the Tata- Institute of Fundamental Research, Bombay, on
7-14 January 1964. The Colloquium was a closed meeting of experts
and of others seriously interested in differential analysis. It was
attended by 23 members, and 26 other participants, from France,
India, Japan, the Netherlands, Sweden, Switzerland, the United
Kingdom, and the United States.

The Colloquium was jointly sponsored, and financially supported,
by the International Mathematical Union, the Sir Dorabji Tata
Trust, and the Tata Institute of Fundamental Research. An
Organizing Committee consisting of Professor K. Chandrasekharan
(Chairman), Professor K. G. Ramanathan, Professor M. S.
Narasimhan, Professor Raghavan Narasimban, Professor
G. de Rham, and Professor D. Montgomery was in charge of the
scientific programme. Professor de Rham and Professor Montgomery
acted as representatives of the Union on the Organizing Committee.
The purpose of the Colloquium was to discuss recent developments
in some aspects of (i) the theory of differential equations,
(ii) analysis in the large and differential geometry, and (iii) diffe-
rential topology.

The following nineteen mathematicians accepted invitations
to address the Colloquium :

Professor M. F. Atiyah, Professor R. Bott, Professor L. Géarding,
Professor L. Hormander, Professor J. J. Kohn, Professor
B. Malgrange, Professor Y. Matsushima, Professor J. W. Milnor,
Professor D. Montgomery, Professor C. B. Morrey, Jr., Professor
J. K. Moser, Professor M. S. Narasimhan, Mr. M. S. Raghunathan,
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Professor G. de Rham, Professor C. S. Seshadri, Professor S. Smale,
Professor D. C. Spencer, Professor R. Thom and Professor
A. Van de Ven.

Professor M. Morse, who was unable to accept the invitation
to attend the Colloquium, sent in a paper.

The Colloquium met in closed sessions. Eighteen lectures were
given. Each lecture lasted fifty minutes, followed by discussions.
Informal lectures and discussions continued during the week,
outside the official programme.

The social programme during the Colloquium week included a
ballet and dinner on 7 January; a show of cultural films on
8 January; a performance of Indian music on the Veena, and on
the Sitar, on 9 January; a performance of classical Indian dances
on 10 January; an excursion to Elephanta on 12 January; and a
violin recital followed by a dinner on 13 January.
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CONDITIONED DIFFERENTIABLE ISOTOPIES
By WILLIAM HUEBSCH! and MARSTON MORSE*!

1. Introduction. The theorems on differentiable isotopies found in
recent papers, such as [6], [5] and the ““ Reduction Theorems” in §3
of [1] are inadequate for the purpose of proving some of the more
recent theorems in differential topology. In particular the principal
theorem goncerning the elimination of a pair of critical points, as
stated in [2], seems to require deeper Reduction Theorems and
differentiable isotopies. Theorem 1.3 of this paper is one such
theorem. This paper will establish Theorem 1.3 with an appropriate
background.

We refer to a euclidean n-space E, with rectangular coordinates
%y, ..., %,. The point z=(x,, ..., x,) can be considered a vector
with components equal to the respective coordinates of z. Let | z||
be the magnitude of x conceived as a vector. Corresponding to a
prescribed positive constant p set

D,={zek,|lzl<p} (1.0)

Given a subset Y of E, set B, —Y =°Y. Let 0 denote the origin
in E,. Let R denote the axis of reals.

For simplicity all differentiable mappings used in this paper will
be differentiable of class C®. It is clear that this condition could
be greatly relaxed.

DEeFINITION. A differentiable mapping of E, onto E, which leaves
0 L D, point-wise invariant, will be termed a mapping with domain of
identity QU °D,.

DErFINITION. Two diffeomorphisms whose domains of definition
include 0, will be said to be 0-related if their restrictions to some neigh-
borhood of the origin are identical.

T Work of Huebsch supported in part by the National Sci Foundati
under NSF-G19884.

4 Work of Morse supported by the Air Force Office of Scientific Research
under AF-AFOSR-63-357.




2 WILLIAM HUEBSCH and MARSTON MORSE

Theorem 3.1 of [1] can be reformulated as follows. {Cf. [5] Lemma
8.1, and [6] Lemma 3.2.}

THEOREM 1.1. Let X be an open mneighborhood of 0, and let
x - f(x) be a sense-preserving diffeomorphism of X into E, which
leaves 0 invariant.

Corresponding to a prescribed positive constant p there exists a
diffeomorphism of E, onto E,, 0-related to f, with domain of identity
0u°D,.

To state an extension of Theorem 1.1 we recall a definition.

DErFINITION. An isotopy H. Let X be an open subset of E,. A
diffeomorphism h of X into E, will be said to be differentiably isotopic
to a diffeomorphism k of X into E, if there exists a differentiable
mapping:

H: X XR—E,; (x,t) >H(x, t) (L.1)
such that each partial mapping:
2 - H(z, t) = H'(z) (introducing HY) (L.2)

18 & diffeomorphism of X into E,,, and if H* =h for t< 0, and H* =k
for t> 1. We then term H a differentiable isotopy of b into k, and
H the t-section of H.

The following extension of Theorem 3.1 of [1] is a consequence of
Theorem 1.3 of this paper.

THEOREM 1.2. Let X and f be given as in Theorem 1.1. Corres-
ponding to a prescribed positive constant p there exists a diffeomor-
phism h of E, onto E,, O-related to f, with domain of identity 0u°D,,
admitting a differentiable isotopy H into the identity, such that each
section H' of H is a diffeomorphism of E, onto E, with domain of
tdentity O U °D,.

In this paper a differentiable m-manifold £, 0 <m < n, “in E,”
is a differentiable manifold which is regular and properin E,. 2, is
proper in the sense that its topology is induced by that of E,; it is
regular in E, if each point in X, has a neighborhood N, relative
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to X, such that rectangular coordinates in E, of an srbitrary point
g € N are functions of class C® of some m of these coordinates of g.

DEFINITION. An indicatriz of %,, at 0. Suppose that I, meets the
origin 0. An ordered set of m linearly independent vectors tangent to
Z,, ot 0 will be called an indicatriz of %, at 0. T'wo indicatrices of 2,
at 0 are termed equivalent if one can be deformed, as a linearly inde-
pendent ordered set of m vectors tangent to Z,, at 0, into the other. Non-
equivalent indicatrices are termed opposite.

DErFINITION. The f-image of an indicatriz. Let f be a diffeomor-
phism into E, of a neighborhood X of 0. If Z, c X, f(3,) is well-
defined. Let

(w) = (w(l), ..., w(m))
be an ordered set of m contravariant vectors which define an indicatriz
of %, at 0. The contravariant image wunder f of the wvectors
w(l), ..., w(m), is a set
(w') = (w'(1), ..., w'(m))
of wvectors tangent to the manifold f(,,) at 0 which serves us an indi-
catriz of f(Z,) at 0. We term (w') the f-image of (w).

It is clear that f maps equivalent indicatrices into equivalent
indicatrices.

DEFINITION. Relative similarity of indicatrices. Let r and s be
positive integers such that r4+s=mn. Let M,, M* and L, be
differentiable manifolds in E, with dimensions r, r and s, respectively.
Suppose that

M,nL,=0, M*nL =0,
and that M, and L, have no tangent vector in common at 0, nor M *
and L,. Let

(w) = (w(l), ..., w(r)) (1.3)
(w*) = (W*(1), ..., w*(r)) (1.4)

be indicatrices of M, and M *, respectively, at0. Let
A) = (A1), ..., A8) (1.5)

be an arbitrary indicatriz of L, at 0.
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We say that the indicatrices (w) and (w*) at 0 are similar relative to
L, if the two ensembles of vectors

(A1), ..., A(S) = w(l), ..., w(r)) (1.6)
(A1), ...y A(S) = w¥(1), ..., w*(r)) (1.7)
are equivalent as indicatrices of E, at 0.

The property of (w) and (w*) being similar relative to L,, is
independent of the choice of () as an indicatrix of L, at 0, and of
the choice of (w) and (w*) in equivalence classes of (w) and (w*)
respectively.

Theorem 1.3 is the principal theorem of this paper.
Data in Theorem 1.3. Let X be an open neighborhood of 0 in E,,,
and L, and M, differentiable manifolds in X such that
M.nL, =0, (1.8)

with 7 4-s =7 and 0 <s <n. Suppose moreover that M, and L,
have no tangent in common at 0.

THEOREM 1.3. Let f be a sense-preserving diffeomorphism of X
into E,, leaving O fixed, and such that (a,) and (a,) are satisfied.

(ay) L, 0 f(M,) =0 and there is no tangent line common to L, and
f(M,) at 0.

(ag) If (w) is an indicatriz of M, at 0, and if (w*) is the indicatrix
of f(M,) at 0 which is the f-image of (w), then (w) and (w*) are similar
relative to L,.

Corresponding to a prescribed positive constant p there then exists
a diffeomorphism h of E, onto E,, 0-related to f, with domain of
identity 0 L ‘D, with

L,ah(M,)=0 (1.9)
and such that there exists a differentiable isotopy H of h into the identity

on E, each section H' of which is a diffeomorphism of E, onto E, with
domain of identity 0u°D,

The proof of Theorem 1.3 will be completed in §5.



CONDITIONED DIFFERENTIABLE ISOTOPIES 5

Methods. In proving Theorem 1.3 we shall rely on two special
types of diffeomorphisms of E, onto E, termed £-diffeomorphisms
and perispherical diffeomorphisms. They will be sense-preserving
and leave 0 invariant.

A fundamental condition on £-diffeomorphisms will be that they
““deviate *’ from the identity in a measured way to be defined in §2.
These ¢-diffeomorphisms have been used in [1] in proving Theorem
3.1. However they do not seem adequate in proving Theorem 1.3
of the present paper.

The major difficulty in proving Theorem 1.3 arises from the
problem of choosing the diffeomorphism % so that (1.9) of Theo-
rem 1.3 issatisfied, as well as the other conditions on A and H in
Theorem 1.3. There are many choices of % such that the conditions of
Theorem 1.2 are satisfied, but condition (1.9) of Theorem 1.3 is not
satisfied. Perispherical diffeomorphisms aid in defining the diffeo-
morphism & and homotopy H so that all conditions on A in Theo-
rem 1.3 are satisfied.

We close this section by recalling some useful definitions.

A product of two isotopies. Let P and @ be differentiable iso-
topies whose sections P* and @* are diffeomorphisms of E, onto E,.
If P! =Q°, a differentiable isotopy, W =QP, termed the product
of P and Q, is defined by setting

Wt = P° (t<0)
Wt = pP# 0<t<})
Wt = Q¥-t 3<i<1)
Wt =@t t>1).

So defined W is a differentiable isotopy of P? into Q! as one readily
shows.

Deformations of indicatrices represented. For each teR let
' = (w}, ...,uf,) be a vector in E,. The mapping ¢ ->u* is regarded
as 174 (differentiable) if each mapping ¢t »>uf,i=1,...,n
of Rinto R is continuous (differentiable).
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(a) For each te R andfor0 <m < n let
() = (1), ..., w(m))
be an ordered set of linearly independent vectors in E,,. The mapping

t - (wf) is regarded as continuous (differentiable) if each mapping
t>u/(r), r =1, ...,m is continuous (differentiable).

(b) The preceding mapping ¢ (%), if continuous (differentiable),
will represent a continuous (differentiable) deformation of the indi-
catrix (w®) into the indicatrix (w?) if

(1), ..., wim)) = (1), ..., w%(m)) (t<0)
(W(1), ..., w(m)) = (wY(1), ..., w™(m)) ¢>1).

2. ¢-diffeomorphisms. Let A =(hy, ..., k,) be a differentiable map-
ping of E, into E,. Understanding that z =(z,, ..., x,), set

do(h) = sup | — B(a) . @1)

We suppose that d,(h) is finite. Assuming that the partial derivatives
of the mappings h;, 4+ =1, ..., n, are bounded, set

dy(h) =max (sup |8 — oy (x) |) (2.2)
45 \zeE, 0x;
where 4 and j have the range 1, ..., n and 8is a “Kronecker delta”.
Set
a(h) =do(h) + dy (k). (2.3)
We term d(h) the 1st-order deviation of h from the identity.

The constant £. There clearly exists a positive constant ¢ so small

that a C'-mapping % of E,, onto E,, for which d(h) <¢ has the property
that

3 _ Dhy,....,H) _ 1
.§>m) 3 (zeE)). (2.4)

So chosen, £ will be invariable in this paper.
DEerINITION. A4 ¢-mapping. A differentiable mapping h of E,

nto B, such that d(h) < £, and such that h leaves Q U °D, point-wise
invariant for some positive constant p, will be called a £-mapping.
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Levma 2.1. A é-mapping b is a diffeomorphism of E, onto E,.
‘We begin by proving (i).

(i) The mapping h is onto E,.

It is readily seen that the set A(Z,) is both open and closed
relative to E,. Since E, is connected, A(E,) = E,. Thus (i) is true.

The mapping /4 is “proper” in the sense that A~1(K) is compact
for arbitrary choice of K as a compact subset of 4(E,) = E,. However
a proper mapping of E, onto E,, which is locally a diffeomorphism,
is a diffeomorphism. See Lemma 4.1 [4].

Thus A is a diffeomorphism of E, onto E,.

DEerFINtTION. Taking account of Lemma 2.1, a é-mapping of E,
onto E, will be referred to as a &-diffeomorphism.

Lemma 2.2. A ¢-diffeomorphism k of E, onto E, with domain of
dentity O0u°D, admits a differentiable isotopy K into the identity
each section K* of which is a ¢-diffeomorphism with domain of identity
0u°D,, and such that

d(K*) < d(k). (2.5)

The mapping p. In proving this lemma we shall make use of a
differentiable mapping p of R onto [0, 1] such that

O=p@)1t<0) (1=pt>1). (2.6)

Given k as in the lemma we define a mapping K of E, x R into

E, by setting
K(z,t) = (1 — () k(z) + pt)z (xeE, tcR) (2.7)
One sees that K is a differentiable mapping of E, X R into E, such

that for each ¢, K* leaves 0 u °D, point-wise invariant. Moreover
for each ¢

dy(E*) = (1 — p(®) do(k),  dy(E*) = (1 — p(t)) dy(k)
so that (2.5) holds. Foreach ¢, d(K*) < £,since d(k) < ¢ by hypothesis.
By Lemma 2.1 then, foreach ¢, K*is a diffeomorphism of E, onto £,.

Finally one sees that K¥ as defined by (2.7), is an isotopy of k&
into the identity, thereby completing the proof of Lemma 2.2.
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Lemma 2.3, below, implies Theorem 1.1 in the special case in
which the linear terms at 0 in the diffeomorphism f define the
identity, that is, in the case in which f is a mapping

z>x+ A@x)=M(z) (reX) (2.8)
in which 4 is differentiable on X and each component 4; of 4 has
a critical point at the origin.

Lemma 2.3 contains information not conveyed by Theorem 1.1,

information useful in proving Theorem 1.3.

LemmA 2.3. Corresponding to the above diffeomorphism,z — M(z),
of X into E,, to any positive constant p and any positive constant e,
there exists a diffeomorphism k of E, onto E,, 0-related to M, with
domain of identity 0 u °D, and with d(k) < e.

Let ¢t - A(t) be a differentiable mapping of R onto [0, 1] such that
A=20)1t<1) (©=20)|¢> 4).
Let o be a positive constant at most p/2 such that D,, c X.

Denote || z|| by . In vector notation, set

kz)=z+42 (:_Z) Ax) (r<20) (2.9)
and k(z) =z for r > 2¢. Then
k) =2 + A(x) = M(z) (r<o) (2.10)

It is clear that k is a differentiable mapping of E, into E,.
Fors,j=1,...,n and for r < 20

The right member of (2.11) is at most €/2 for r < 20 if o is suffi-
ciently small. The left member of (2.11) vanishes for 7 > 2¢. Hence
d,(k) < €/2. Moreover

do(k) < max (|A@)] |zl < 20)
in accord with (2.9), so that dy(k) < ¢/2 if o is sufficiently small,
Hence d(k) < e for o sufficiently small.

.(211)

_ Ok
8;-‘ a—x‘ (=)
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By definition ¥ has a domain of identity 0 u°D,,. By Lemma
2.1, k is then a diffeomorphism of B, onto E,. Since p > 20, 0u*°D,
is also a domain of identity of k. By (2.10) k is 0-related to M.

This completes the proof of Lemma 2.3.

We return to a diffeomorphism z - f(z) of Theorem 1.1 and, for
t=1,..,n,set

9
6@ =20z @eE) (212)
T
summing as to j on the range 1, ..., n. Theorem 2.1 below is a

corollary of Lemma 2.3. In it we refer to the linear diffcomorphism

z »g(z) = (gl(x)r sesy) gn(x))' (2'13)

THEOREM 2.1. Let X be an open neighborhood of 0 in E, and
z = f(x) a sense-preserving diffeomorphism of X into E, which leaves
0 invariant. Corresponding to prescribed positive constants p and e,
there exists a diffeomorphism k, of E, onto E, with domain of identity
0 u °D,, with d(k,) < ¢, and such that the composite diffeomorphism
gk, of E, onto E, is 0-related to f.

Note. Theorem 2.1 is also true if f is sense-inverting as our
proof shows. We have written Theorem 2.1 as above to preserve
the continuity of our development.

ProoF oF THEOREM 2.1. Observe that the mapping

z->(g71f) (z) = M(zx) (zeX) (2.14)
(introducing M (z)) has the form
z->Mz) =2+ A(x) (2.15)

where A has the properties ascribed to 4 in (2.8). From Lemma
2.3 we then infer the following. There exists a diffeomorphism
k, of E, onto E, with domain of identity 0 u °D,, with d(k,) <e,
and k, 0-related to g~ f. It follows that gk, is O-related to f.

This completes the proof of Theorem 2.1.

Theorem 1.2 will follow from Theorem 1.3 as proved in §5.
However a proof of Theorem 1.2 can here be sketched as follows.
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Lemma 2.2 implies the following. For 0 < € < £ there exists a
differentiable isotopy K, of k, (of Theorem 2.1) into the identity
such that for each ¢, K! is a diffeomorphism of E, onto E, with
domain of identity Qu°D,.

The mapping g is a linear sense-preserving diffeomorphism of
E, onto E, leaving 0 invariant. One could readily show that there
exists a diffeomorphism p of E, onto E, 0-related to g, with domain
of identity 0 u°D,, admitting an isotopy I' into the identity such
that for each ¢, I' is a diffeomorphism of E, onto E, with domain
of identity 0 u°D,.

For each € < ¢ Theorem 1.2 would be satisfied by the composite
diffeomorphism &, =y k, and by an isotopy H, of which the section
H! is the composite diffeomorphism,

H'=T'K! (teR), (2.16)
taking A, and H, in place of A and H in Theorem 1.2. To verify
this one notes that 4, is a diffeomorphism of E, onto E, with domain
of identity 0 U °D, and is 0-related to f. The isotopy H, deforms A,
into the identity. Its sections H! are diffeomorphisms of , onto E,
with domains of identity 0 u °D,. Theorem 1.2 will thus be satisfied
by h, and H, in place of & and H for arbitrary choice of ¢ < ¢.

However h, and H, will not in general satisfy Theorem 1.3 because
(1.9) will not in general be satisfied by such an 4,.

The structure of the proof of Theorem 1.3 is similar to the above.
One chooses k, and K, as above, but then chooses y and T in a special
way so that Theorem 1.3, including (1.9), is satisfied by h, and H,,
as defined by (3.16), provided e is sufficiently small.

““Perispherical diffeomorphisms” will aid in defining I and y.
3. Perispherical diffeomorphisms. For each positive number ¢ let

8, denote the (n — 1)-sphere in E, with center at the origin and
radius c.

PERISPHERICAL DIFFEOMORPHISMS DEFINED. A diffeomorphism
¢ of E, onto E, leaving 0 invariant will be termed perispherical



CONDITIONED DIFFERENTIABLE 1SOTOPIES 11

if for some positive constant 4, {(S,) =8, when 7> a. Under
these circumstances °D, will be termed a domain of sphericity of L.

We shall need polar coordinates in E,.

PorAR 000RDINATES. To each point z 5 0 we assign coordinates
(r,2) = (7, 24, ..., 2,), termed polar, by setting

r=|z|, 7 (=1, ..,n). (3.1)

=%

izl
Thus  =7z. The points z are on the sphere & on which ||z || =1.
Let R, denote the axis of positive real numbers. The mapping
2> (r, 2) defined by (3.1) is & real analytic diffeomorphism of E, —0
onto R, X&.

THE DIFFEOMORPHISM g. Let g be a linear diffeomorphism of E,

onto E, leaving the origin invariant. Cf. (2.12). In polar coordinates

lgtr2) | =r(z)> 0 (r> 0) 3.2)

introducing ¢. The mapping z ->¢(z) is a real analytic mapping of

& into R,. Set

m =max (¢(2)| 2z € &). (3.3)

Under g a point in B, — 0 with polar coordinates (, z) corresponds
to a point with polar ecoordinates (r’, z') such that

U o g(rz) —_
v =rd(2), 2’y = i ;(rz) i =yi(z) (r>0) (3.4)

introducing ¢;(2), ¢ =1, ..., n. One sees that the mapping z - (z)
is an analytic diffeomorphism of & onto &.

Lemma 3.1, below, is an aid in proving the fundamental
Lemma 3.2. Both lemmas concern the above linear diffeomor-
phism g.

Lemma 3.1. Corresponding to the linear diffeomorphism g, to
the constant m, defined tn (3.3), and to a prescribed positive constant
a, there exists a diffeomorphism p of E, onto E,, 0-related to g, with
p(w) = g(ar) for each ray = emanating from 0, and such that in polar
coordinates

l2(r2) | < am + 7, Aperall _ #) (r>a). (3.5)
or m
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Let p be a monotone differentiable mapping of R into R such
that

’

(L =p@)t<af2) (1fm=p()|t> a). (3.6)
To define p we first set p(0)=0. Under p a point z#0 with polar

coordinates (r, z) shall go into a point in E,— 0 with polar coordinates
(", 2") such that

f=¢(z)Ip(¢)da, i=de) G=1,..,n).  (3.6)
0

where ¢ and y; are defined in (3.2) and (3.4) respectively. For
0< r< af2, (3.6)" takes the form

" =rd(z) 2=z (CE. (3.4))
so that p(x) = g(z) for || 2| < a/2.

For fixed 2, 9"/dr > 0 for » > 0. For r > a this partial derivative
equals ¢(z)/m, as indicated in (3.5). Under p each ray  is accordingly
mapped biuniquely onto g(x). It follows that p maps E, biuniquely
onto E,. Since 9r"/dr > 0 for » > 0, and since the mapping 2" = y(z)
of & onto & is the same as the mapping 2’ = i(z) defined by g, we
infer that p is locally a diffeomorphism for 7 > 0. Since p is 0-related
to g, p like g, is a diffeomorphism neighboring 0. Thus p is a diffeo-
morphism.

The first relation in (3.5) follows readily from (3.6)".

This completes the proof of Lemma 3.1.

Levuma 8.2, Corresponding to the linear diffeomorphism g of
Lemma 3.1, and to a prescribed positive constant c, there exists a
perispherical diffeomorphism w of E, onto E,, O-related to g, with
domain of sphericity °D,, and such that w(w)=g(x) for each
ray m issuing from 0.

Let b be a constant such that 0 <b< c. Let £—>0(f) be a
differentiable mapping of R onto [0, 1] such that

(1=00)[t<b) (0=06()[t>c) (0>0()|b<t<o)
With ¢ defined on & by (3.2), set
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x = min (8(r) ‘i‘mi) +1—0(r) 7> 0,26 %) 3.7)

and note that x> 0. We shall apply Lemma 3.1 taking a so small
that 0 <a < band

amf'(r)> —x (reR). (3.8)
Definition of w. We begin by setting w(0)=0. Under the mapping
z— w(x) the point in B, — 0 with polar coordinates (r,2) shall go
into a point in E, — 0 with polar coordinates (r*, z*) such that
¥ =yyz) (E=1,..,n) (3.9)
and

r* = 0(r) || p(rz) || + (1 — 8(r)) r (3.10)

where 1;(2) is defined in (3.4).

Properties of w. For r < b (3.10) gives the relation 7* = || p(rz) ||
so that w(x)=p(z) for ||z || < b. For r > ¢ (3.10) gives the relation
r* =r. For fixed z and b <7 <c one can apply the second
relation in (3.5), since b > a. One finds that

or*

= =ir) i'(f) +A=0)+0@) (ptr2) | —7) B<r<o). (3.11)

It follows from the first relation in (3.5) and the condition (3.8)
on a, that

') (lpr2) || —7) > amb'(r)> — x (b<r<c,zeS). (3.12)
From (3.7), (3.11) and (3.12) we conclude that 9r*/dr> 0 for

b<r<cand ze&. Since r* =r for r > ¢ and since r* = || p(rz)||
for0 <r < b it follows that or*/or> 0 for all positive 7.

One sees that on each ray = issuing from 0, w is biunique and,
in accord with (3.9), maps = onto p(w) =g(n). It follows that w is
biunique and onto E,. Since wisalso locally a diffeomorphism w is
a diffeomorphism.

Since w is 0-related to p and p is O-related to g, w is O-related to
g. The relation r* =1 for r > ¢ means that °D, is a domain of
sphericity of w.

This completes the proof of Lemma 3.2.
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DErFINITION. When w is related to g as in Lemma 3.2, w will be
called a perispherical counterpart of g with domain of sphericity °D,.

Lemma 3.2 admits the following easy extension.

LeMMA 3.2a. Let g be a linear diffeomorphism of E, onto E,
leaving 0 invariant and admitting a differentiable isotopy G into the
identity such that for each t, G is a linear diffeomorphism of E, onto
E,, leaving 0 invariant.

Corresponding to a prescribed constant ¢ > O there exists a peri-
spherical counterpart w of g and a differentiable isotopy Q of w into the
identity such that for each t, Q! is a perispherical counterpart of G° with
domain of sphericity °D,.

The proof of Lemma 3.2a is similar to that of Lemma 3.2. In
brief it runs as follows.

For each t set
| G4r2) | =74'2) (r> 0)
as in (3.2). As in (3.3) set
m =max ($(z)[2ze L, 0< t< 1). (3.13)
For each ¢ (3.4) takes the form

P Gi(rz)
r=r¢iz), ;=% =yi(z), (r>0 3.14
#6) #i= i =dE), €>0 (319
introducing y¢(2) for 7 on the range 1, ..., n.

One could extend Lemma 3.1 by a Lemma 3.1a, replacing g by its
isotopy G and deriving from @ a differentiable isotopy P of p into
the identity in which for each ¢, P'is related to G* as p is to g in
Lemma 3.1. In the definition of P! in terms of G* the auxiliary
mapping p, as defined in (3.6) is unchanged, while (3.6)" takes the

form
5

" = ¢(2) J pla) da, 2" =yiz) (r>0)
0

for each ¢.



CONDITIONED DIFFERENTIABLE ISOTOPIES 15

One uses Lemma 3.1a to prove Lemma 3.2a. The auxiliary map-
ping 6 is unchanged. The constant x, defined in (3.7), is replaced by
the constant

x =min (G(r)ﬂ"? +(1—=0n))|r>0,zeL,0<t< l)>0.

Condition (3.8) on a takes the same form. For each ¢ one replaces
(3.9) by the relation

X =yi(z) (4=1,..,n)
and (3.10) by
r*=0(r) | P(r2) | + (1 — 6(r))r (r> 0).
The proof is concluded essentially as before.
In § 4 use will be made of the following readily established lemma.
APPROXIMATION LEMMA. Let ¢t - X(t) be @ continuous mapping of
R into R such that
AR =20)1£<0) (Al) =A1)[t>1).
Corresponding to a prescribed constant e> 0, there exists & differen-
tiable mapping t > (t) of R into R such that
[1A(t) —n(t) | <e(teR) (3.15)
and
((t) =A0) [ < 0) (n(t) = A1) It > 1). (3.16)
One method of proof is to define a differentiable mapping ¢ ->»(t)
of R into R such that
[0 — n() [<ef2 (3.17)
but for which (3.16) does not necessarily hold. One can modify

this function % so that it remains of class C® and satisfies both
(3.15) and (3.16).

4. Deformation of indicatrices. In this section certain implica-
tions of hypotheses (a,) and (a;) will be presented.

We refer to the manifolds L, and M, of Theorem 1.3, and to
the image manifold f(M,). Let (A(1),..., A(8)) = () and
(w(1), ..., w(m)) = (w) be indicatrices of L, and M, respectively at 0.
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Let g be the sense-preserving linear diffeomorphism of E, onto E,
determined by f at 0 and defined in (2.13). The mappingx - g(x) =y
has the form

Y =95 % (t=1,..,n) (4.1)
summing with respect to j on the range 1, ..., n. Let
(w*(1), ..., w*(r)) = (w*) (4.2)

be the image under g of the indicatrix (w) of M, at 0, or equivalently
the contravariant image of (w) under f. Then (w*) is an indicatrix
of f(M,) at 0.

The vectors in the ensemble
(A1), ooey AS) s (1), ..., w(r)) =(X: w) (4.3)

of n vectors are linearly independent, since I, and M, have no
tangent in common at the origin. The vectors in the ensemble

(A1), .ovy A(8) : w¥(L), ..., w¥(r)) = (A: w*) (4.4)

are similarly linearly independent, since L, and f(M,) have no
tangent in common at the origin. See Theorem 1.3.

By the determinant of an indicatriz (b) of E, at 0 is meant the
determinant, the elements of whose rows are the components of
the vectors in (&), taking these vectors in the order given in (A).
Recall that the indicatrices (w) and (w*), by hypothesis, are similar
relative to I,; equivalently, the determinants of the vectors
(A : w) and (X : w*) have the same sign, or equivalently, (for proper
choice of (1)) these determinants are positive. We suppose (A) so
chosen.

Since the determinants of (A : w) and (A : w*) have the same sign
there exists a continuous deformation (Cf. §1)

> @), ..., ¥() = @) (e R) (4.5)
of (w°) = (w*) into (w!) = (w) such that the vectors of the ensemble
(AL, ..., M8) : wE(L), ..., () = (A: ) (4.6)

remain linearly independent for all ¢.
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With the aid of the Approximation Lemma of §3 we infer the
following.

LeEMMA 4.1. There exists a differentiable deformation t — (') of
the indicatriz (w*) of f(M,) at O into the indicatriz (w) of M, at 0
such that the vectors of the corresponding ensemble (4.6) remain linearly
independent for all t € R.

We shall state a lemma which is complementary to Lemma 4.1,
introducing this lemma as follows.

The image under g of the indicatrix (A) of L, at 0 will be denoted
by

(A*¥(L), ..., A¥(s)) = (A*). (4.7)
So defined (A*) is an indicatrix of f(L,) at 0. The ensemble of vectors
(L), ..., A¥(s) s w*(1), ..., wH(r)) = (A* : w¥) (4.8)

is the image under g of the indicatrix (A : w), and has a ‘positive
determinant since g is sense-preserving. Since the indicatrix (A : w*)
also has a positive determinant there exists a continuous deforma-
tion,
t>(¥(1), ..., X)) =(X) (teR) (4.9)

of (A*) into (A) such that the vectors in the ensemble

(X(L), .., X(S) :wH(L), ..., wh(r)) = (X : w*) (4.10)
remain independent for ¢ € R.

With the aid of the Approximation Lemma of §3 we can infer
the following.

LEMMA 4.2. There exists a differentiable deformation t—(X) of
the indicatriz (X*) of f(L,) at 0 into the indicatriz (A) of L, at 0 such
that the vectors of the corresponding ensemble (4.10) 1 in linearly
independent for all t.

A differentiable isotopy G of g into the identity. We shall define a
special differentiable isotopy @ of g into the identity such that each
section G of g is a linear diffeomorphism of E, onto E, leaving 0
invariant. We shall define @ as a “product ” QP of differentiable
isotopies @ and P. See §1.
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DEeriniTION. Let (b) and (h*) be indicatrices of E, at 0. The
linear diffeomorphism H carrying (h) into (h*) is by definition the
linear diffeomorphism of E, onto E, which maps 0 into 0 and maps
the n points whose coordinates are the P ts of the respectt
vectors h(l), ..., k(n) in (k), into the n points whose coordinates are the
components of the respective vectors h*(1), ..., h*(n) in (h*).

With this understood let p be the linear diffeomorphism carrying
(A:w) into (A :w*). Differentiable deformations ¢ - (w’) and ¢ - (X)
are characterized in Lemmas 4.1 and 4.2 respectively. For each
te R let @ and P* be the linear diffeomorphisms carrying (A : w)
into (A :wf) and (X :w*) respectively. Recall that g is the linear
diffeomorphism carrying (A : w) into (A* : w*). These diffeomorphisms
are sense-preserving.

The product @ =@QP. Since P° maps (A:w) into (A°:w*) =
(A* : w*), we see that P® =g. Now P! = p, since P! maps (A:w)
into (A!: w*) = (A : w*). Thus P is a differentiable isotopy of g
into p. Moreover @° maps (A :w) into (A:uP) = (A:w*) so that
Q° = p, while Q! maps (A:w) into (A:w!) = (A:w) so that Q!
reduces to the identity I. Thus @ is a differentiable isotopy of p
into I. The product @ = QP, as defined in §1, is a differentiable
isotopy, and deforms g into I.

NoraTioN. Given an indicatrix (k) of an 7-manifold meeting 0,
let the r-plane of vectors in (&), assumed to have initial points at
0, be denoted by {4 ).

We shall prove the following.

(i) If 2, is the s-plane tangent to L, at 0, and M, the r-plane tangent

to M, at 0, then
Z,nG(M,)=0 (teR). (4.11)

ProOF oF (i). Recall that £, = () and A, = {w). The defini-
tion of QP in §1 implies that
G(M,) = P M,) = <w*) =) (0<t<})
and with T =2t—1
G A,) =Q"(M,) =<KW"y (F<t<]D).
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Finally
G A,) = Cw*) =) (< 0)
G M) =w) =Cwh  (E> 1)
Since the vectors (4.6) are lincarly independent
Aalw)=0 (teR) (4.12)
so that (4.11) follows.
Corresponding to each positive constant ¢ set
LaD, =L M. D, =M. (4.13)
Given a point x € E, — 0 let m, denote the ray emanating from 0 and
meeting z. Set
IT M¢ = Cl (Union =, |z € M — 0). (4.14)
This set is a “‘cone” in that it is the union of a set of rays emanating

from 0. It is clear that IT M¢ includes M¢ and the r-plane .#, tangent
to M, at 0.

Statement (i) leads to Lemma, 4.3.

Lemma 4.3. If o is a sufficiently small positive constant
LinG(IMY) =0 (teR). (4.15)
Were L, and M, suitably chosen, regular manifolds in E,, not

“properly”’ embedded in E,, (4.15) would be false regardless of the
choice of o > 0.

ProoF or Lemma 4.3. Since L, and M, are by hypothesis
regularly and properly embedded in E,, a sufficiently small positive
constant e will have the following property. The intersections
D,n M, and D,n L, are differentiable r-and s-manifolds tangent
respectively to the r-plane .#, and s-plane %, at 0, and such that
their orthogonal projections into .#, and %, are diffeomorphisms. If
o is a sufficiently small constant such that 0 <o <e it is clear that
(4.15) is a consequence of (4.12) and of the preceding statement.

5. Proof of Theorem 1.3. The constant p > 0 is given in
Theorem 1.3.
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Choice of o. Of constants ¢ such that 0 < o < p let o be so small
that (4.15) holds.

A diffeomorphism w and isotopy Q. Let g be the linear diffeo-
morphism defined by the terms of first order at 0 in the diffeomor-
phism f given in Theorem 1.3. Let a differentiable isotopy G =QP
of g into the identity be defined as in §4. By virtue of Lemma 3.2a
there exists a perispherical counterpart w of g and a differentiable
isotopy Q of w into the identity, such that for each ¢, Qfis a peris-
pherical counterpart of G with domain of sphericity °D_,. As a
special consequence

QD,) =D, (a=o0/2,teR). (5.0)
A diffeomorphism y and isotopy T'. Let t — v(t) be a differentiable
mapping of R into [0,1] such that

O=vt)lt<a) 1=t)|t>0) (a=0/2) (5.1)
Let t >a(f) be a differentiable mapping of R onto [0,1] such that
O=at)|t<0) (1=aft)|t>1). (5.1)"
We shall define a differentiable mapping
(z,t) >L(x,t); E, X R > E, (5.2)
by setting
Tz, 1) =Q, a(t) (X —»(lIz])) + »(I=])) (5-3)

and establish the following lemma.

Lemma 5.1. 1. For each te R, I is a diffeomorphism of E, onto
E, with domain of identity Qv °D, .

II.  The mapping T is a differentiable isotopy of T'° into the identity.

III. The diffeomorphism y =T° is 0-related to g.

IV. Liny(Il M) =0. (Cf. (4.15).)

Note the following consequences of the definition (5.3) of T
T(z, t) = Q(z, «(t)) (xeD,,a=0/2;teR) (5.4)
Pz, t) =Qz, 1) == (xe®D,;te R) (5.4)"
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D, t) =Qz, 1) ==z (zeE,;t>1) (5.5)
T, §) =Q@, v(llz])) (@eB,;t<0) (5.8)"
According to (5.4)", for each ¢, I'* has the domain of identity
0u°D,.
As previously S, shall denote the (n — 1)-sphere of radius r with
center at 0.
We establish I by proving (Ia) and (Ib).
(Ta) For each t, I is a biunique mapping of E, onto E,,.
It is trivial that

M, =TYD,) uI*(°D,) (teR) (5.6)
To show that I'* is biunique and onto E,, it is sufficient to verify that
(D,) =D, T%D,) =°D, (5.7)

and that the mappings
I|D, , T|°D, (5.8)
are biunique.

The case of D,. It follows from (5.4) that
I‘|D,=Q* | D, (teR). (5.9)

Now Qfis biunique for eacht. Hence I'| D, is biunique for each t.
It follows from (5.9) and (5.0) that

IYD,) =Q*(D,) = D, (& =o0/2, t€R).
The case of °D,. It is trivial that
I¥(D,) = Union I'(S,) (t€R). (5.10)
Moreover for 7 > a i
T*|8, =QT|8S,; QY(S,) =8, (T=a(t) (1—v(r))+»(r);teR) (5.11)
as a consequence of (5.3) and the fact that Q' has the domain of
sphericity ¢D, for each ¢. By virtue of (5.11), (5.10) takes the

form
I¥¢D,) = Union 8, =°D, (5.12)
r>a

establishing the second relation in (5.7).
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When 7 > a, O maps S, biuniquely onto S, for each ¢, including
T in(5.11); hence I'* maps S, biuniquely onto 8,. Taking account
of (5.12) we see that I*|°D, is biunique for arbitrary ¢ e R.

Thus I' is biunique for each ¢.

We continue by proving (Ib).

(Ib) The jacobian of the mapping xz —>T*(z), t€ R vanishes at
no point x € B, .

The case of D,. (Ib) is true for z € D, by virtue of (5.4)" and the
fact that QF is a diffeomorphism for each ¢.

The case of °D,. (Ib) is true for z€°D,. One verifies this most
readily on referring °D,— 0 to polar coordinates (r, z) asin § 3. From
(5.11) one infers that the mapping I' | D, makes a point (r,2) €°D,—0
correspond, to a point with polar coordinates (r*, z*) such that
r =r*, and that I*|S, is a diffeomorphism of S, onto S, for r > a.
It follows that the jacobian of I' differs from zero at each point
of°D,.

This establishes (Ib) and I follows.

Proor oF II. That I' is an isotopy of I'® into the identity I'!
follows from I and relations (5.5)" and (5.5)".

Proor oF III. From (5.5)", the definition of v (see (5.1)') and
the definitions of y and w we see that

y(x) =Tz, 0) = Q(z, 0) = w(z) (z€D,)

where w is a perispherical diffeomorphism of E, onto E,. According
to Lemma 3.2 w is 0-related to g. Hence y is 0-related to g and 11T
is established.

Proor or IV. Since y(x) = I'(z, 0) by definition, (5.3) shows
that for z € E,

y(x) = Q, v(llz ) = Q@) (tz) = v(]z ).
Forz # 0, z €m,, so that
y(x) e Q)(xm) (x ek, —0). (5.13)
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Since Q is a “perispherical counterpart”” of G* (as w is of g in
Lemma 3.2)

Q(m,) =G(n,) (xeE,—0,tcR) (5.13)
so that it follows from the definition (4.14) of IT M?, from (5.13)
and (5.13)", that

y(x) e M2) (xeIM? —0). (5.14)
The constant ¢ has been chosen so that (4.15) is true. We infer

from (4.15) and (5.14) that y(x) is not in L for z conditioned
as in (5.14).

It follows that IV is true, thus completing the proof of Lemma 5. 1.

Completion of proof of Theorem 1.3. According to Theorem 2.1,
for each positive constant e there exists a diffeomorphism k, of E,
onto E, with domain of identity 0 u °D,, with d(k,) <e, and such
that the composite diffeomorphism gk, of E, onto E, is 0-related
to the diffeomorphism f given in Theorem 1.3. According to
Lemma 2.2 if € < ¢, there exists a differentiable isotopy, K|, of k,
into the identity, such that for each ¢, K! is a diffeomorphism of
E, onto E, with domain of identity 0 u °D,.

Diffeomorphism h, and isotopy H,. As chosen previously the
constant o is such that 0 <o < p, where p is given in Theorem 1.3,
and so small that (4.15) holds. Let I be the isotopy affirmed to
exist in Lemma 5.1. By Lemma 5.1 the diffeomorphism y =T
is 0-related to g, the diffeomorphism defined by the terms of first
order in the diffeomorphism f. For each € < ¢ we introduce the
composite diffeomorphism 4, =y k,. The composite diffeomorphisms

H: =T'K! (teR) (5.15)
serve to define an isotopy H, of A, into the identity. Cf (2.16) and
paragraphs at end of §2.

Theorem 1.3 is implied by Lemma 5.2.
Lemma 5.2. If €, < £ is a sufficiently small positive constant and

if 0< € < &, the diffeomorphism h,= yk, of E, onto E, and its isotopy
H, into the identity satisfy Theorem 1.3 in place of h and H.
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For each constant € such that 0 <e < ¢ the diffromorphism &,
and isotopy H, have the following properties.

(¢;) The diffeomorphism h, = yk,is O-related to f since y is
0-related to g and since gk, is 0-related to f.

(c;) Each section HY of H, has the domain of identity 0 u°D,,
since I* and K? have this domain of identity.

(05) Lnh(M,— M) = 0.
That (¢3) holds follows from the relation
h(M, — M) =M, — M; (5.16)

a consequence of (¢;) when ¢ = 0, and from the relation L, n M, =0
presupposed in (1.8). Cf. Theorem 1.3.

Properties (c,), (¢;) and (cg) hold for each e such that 0 <e <§.
We are supposing that ¢, <£. We must now further condition ¢, so
that Lemma 5.2 is satisfied.

Verification of (1.9). We shall show that if ¢, is sufficiently small
and if 0 <e <¢q then

L, h(M,) =0. (5.17)

We shall modify the definition of the closed cone IT M¢ in (4.14),
and define a closed cone
ILk(M:) =TI, (5.18)
with vertex 0 as the closure of the union of the rays =, which meet
points x €k (M?) — 0. Recall that & designates the unit sphere in
E, with center at 0. If ¢, is sufficiently small and if 0 < e < ¢, the
condition d(k,) < e will imply that II, n & is included in so small a
neighborhood, relative to &, of II M7 n & that the relation

L;ny(I1,) =0 (5.19)
will hold as a consequence of the relation
L ny(II M3y =0 (5.20)

of Lemma 4.3. We suppose €, so chosen.

As a special consequence of (5.19)
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L 0 y(k(M;)) =0 (0 <e<e)
or equivalently, since b, = yk,,
Linh (M) =0 (0<e<e). (5.21)
Hence replacing L7 by L,

L,ah(M)=0 (5.22)
since

h(M2)cD,; L,—Lic°D,.
The desired relation (6.17) is a consequence of (5.22) and (c,).

This completes the proof of Lemma 5.2 and thereby the proof of
Theorem 1.3.
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REIDEMEISTER’S TORSION INVARIANT AND
ROTATIONS OF 8"

By G. DE RHAM

Two transformations ¢, and ¢, of the sphere S" of n dimensions into
itself are called homeomorphie, diffeomorphic or isometric if there
exists a transformation f with ¢, f =f#, which is, respectively, a
homeomorphism, a diffeomorphism or an isometry. An isometry
of 8" will also be called a rotation.

I propose to indicate here the main lines of a proof of the following
theorem.

If two rotations of S* are diffeomorphic, then they are isometric,

1. By introducing suitable coordinates in R**158" which are
either real or pairwise conjugate, the equations of a rotation r which

sends the point z = (2, ..., 2,4,) into 7(z) =2" = (2, ..., z,41) can
be brought to the form
(L.1) ;=L (=1..,n4+1)

where the {; are the characteristic roots of the rotation. This system
of coordinates corresponds to a decomposition of R**! into a
direct sum of lines and 2-planes which are pairwise orthogonal
and invariant under r. It follows from this that two rotations are
isometric if they have the same characteristic roots, and only in
this case.

(1.2) If two rotations of S* are homeomorphic, they have the same
number of characteristic roots which are not roots of unity, and, for any
integer h > 0, the same number of characteristic roots which are
primitive h-th roots of unity.

To prove this theorem, we will need the following lemma.

LemMa. If a and B are complex numbers of absolute value 1,
and B -1 for every sequence of integers m, for which o™ — 1, then
B = o™ (m an integer).
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If « is not a root of unity, the group @ generated by « is dense in
the group S of all complex numbers of modulus 1, and the hypothe-
sis implies that the mapping fof @ into S! defined by setting f(o*) = B*
is uniformly continuous and so extends to an endomorphism of
81 which is necessarily of the form { —{™, whence B =o«™. Ifaisa
primitive A-th root of unity, we see that B* =1 if we take n, =h,
and the conclusion follows.

Let us denote by E(a, ) the set of points z of 8* having the follow-
ing property: r"%(z) - 2 for every sequence of integers n, for which
ot -1, It follows from the lemma and (1.1) that E(«, 7) is a
subsphere of 8" of dimension n(«,7)— 1, n(«,r) being the number
of characteristic roots of » which are equal to a power of a. This
implies that if », and 7, are homeomorphic, then n(x, ;) =n(x, ); in
other words 7, and 7, have the same number of characteristic roots
belonging to the group @ generated by «. This being the case for
every «, these rotations have also the same number of characteristic
roots which belong to G and to no proper subgroup of @, which is
equivalent to the assertion of the theorem.

Let us call the restriction of 7 to the subsphere of 8" defined by
setting equal to zero the z; which correspond, in (1.1), to the charac-
teristic roots {; which are not roots of unity, the rotation of finite
order associated to 7. It is clear that if »; and 7, are diffeomorphic
(or homeomorphic), the rotations of finite order associated to
and 7, are also diffeomorphic (or homeomorphic). Therefore, because
of (1.2), to prove our theorem, we have only to consider the case of
rotations of finite order.

For rotations of finite order which generate groups without fixed
points, the problem becomes that of the diffeomorphism classifica-
tion of lens spaces, which has been solved by means of the torsion
invariant of Reidemeister and Franz. The same method can also be
applied to arbitrary rotations of finite order, as I shall indicate. I
shall start with the definition of torsion, by introducing the notion
of an (4, @)-system.
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2. Torsion of an (4,G)-system. Lot 4 be aring, G a multiplica-
tive subgroup of the group of invertible elements of A4, and let C
be a free A-module of finite rank. From a basis e,,..., e, of C, we
may obtain other bases by means of the following operations:

(a) permute ey,..., €, ;

(b) replace one of the e; by + ye;, where y € @;

(c) replace e; by e; 4- de; where A€ 4 and ¢ #j.

The set of all bases which can be obtained from one of them by
any finite number of these operations will be called a family of
distinguished bases of C relative to G.

We shall call an (4,Q)-system two free 4-modules C’,C” of finite
rank, each provided with a family of distinguished bases relative
to @, together with an endomorphism @ of C' @ C” such that
90" cC”, 9C" cC’ and 92 =0. The quotient 4-modules B’ = F’/H’
and B” = F"|H", where H' = daC", H" =3C’, F' = C' n 971(0),
F” =(C" n 971(0), will be called the Betti modules of the system.
If they are zero, the system is said to be acyclic.

We call volume in a vector space E of dimension m any element
# 0, of the m exterior power of E (if m = 0, we shall agree that
it is a scalar 5 0). If F is a subspace of E, the natural isomorphism
of E onto F @ E/|F makes correspond to every pair of volumes, f on
F,and d on E[F, a well-determined volume ¢ = fd on E. Any two
of these three volumes determine the third, so that we shall also
write d = e[f.

Let us suppose now that 4 is a (commutative) field and that the
(A4,Q@)-system 8 is acyclic. Then F' = H' and F" = H". Let ¢’, ¢,
k', B” be volumes on C’, C", H', H" respectively. The isomorphism of
C'[H' onto H” induced by @ makes correspond to ¢’/h’ a volume
9(c’/h') on H”, whose ratio with A” is a well-determined number, 5 0,
of A. In the same way, ¢’/h” is a volume on C"/H” to which
corresponds a volume d(c"/A”) on H’, whose ratio with A’ is a
number, # 0, of A. The quotient of these numbers

ae ), A w) _ (c)

R ¢
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depends only on ¢’ and ¢”. Let us agree to take for ¢’ and ¢” the
volumes equal to the exterior products of the elements of the
distinguished bases of C’ and C”; these volumes being determined up
to a factor of the form 4- y, y € G, the quotient defined above is also
determined upto such a factor, and we shall call it the torsion of S.

We can also define the torsion if § is not acyclic (see (4] and
[5] ), but we shall not make any use of this here. On the other hand,
it is essential to consider the case where A is not a field.

If 4 is not a field, let us consider a homomorphism 4 of 4 into a
(commutative) field D. We associate to it in a natural way a homo-
morphism of any free 4-module C of finite rank into a vector space
E over D of the same rank, which we denote again by 6. To a family
of distinguished bases of C relative to @ corresponds a family of
distinguished bases of & relative to 6(@). In particular, 6 gives us
homomorphisms of the A-modules ¢’ and C” of an (4,G)-system S
into vector spaces £’ and E” and the endomorphism 2 of C' @ C” is
transformed into an analogous endomorphism of £’ @ E” in such a
way that E’' and E” form a (D, 6(G))-system, which we call the
image of § by 6, and denote by ,S. If this latter system is acyeclie,
we denote its torsion by Ay(S) and by the forsion of the system S,
we mean the set of the Ay(S), associated with homomorphisms 6 of
A into commutative fields such that ¢S is acyclic, which are determined
upto a factor of the form 0 (L y), where y € @ and + y does mnot
depend on 0.

In what follows, we consider exclusively the case where @ isa
cyclic group of finite order % and A4 is the group algebra of G over the
complex numbers D. We denote by y a generator of G. To each h-th
root { of unity corresponds a homomorphism 8 such that 6(y) = ¢.
From the properties of the algebra A4, one deduces the following
theorem.

(2.1) If the operation induced by y (resp. y?) in the Betti modules
of the system S 1is the identity, o8 is acyclic so long as 0(y) #1
(resp. B(y)# % 1).
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3. Complexes with automorphisms. We now consider a finite cell
complex K with an automorphism y which generates a cyclic group
G of order h, satisfying the following condition : if an automorphism
of G leaves a cell fixed, it leaves fixed every point of the cell.

The set of cells of K which are fixed by at least one automorphism
of G different from the identity forms a closed subcomplex K, of K
invariant under y. Let L be a closed subcomplex of K, invariant
under y and containing K, We associate to the pair (K,L) an
(4,@)-system S(K,L) in the following way.

The set of chains of odd dimension of K, that is to say the set
of linear combinations with coefficients in D of cells of odd dimension
of K, each cell being taken with a fixed orientation, forms, in a
natural way, an A-module C, for which we obtain a basis by taking a
set of cells such that every cell of odd dimension is the transform of
one and only one cell of this set by an element of @. This basis gives
rise to a family of distinguished bases relative to G which is perfectly
well determined. In the same way, the chains of even dimension
form an A-module C” with a family of distinguished bases relative
to Q. If we take for the endomorphism d the operator which gives
the boundary (mod L), C’' and C” form an (4,G)-system S(K,L).

The torsion of this system will be called the torsion of the pair
(K, L), and we will set A,(K,L) = Ay(S(K, L) ). In view of (2.1),
if y (resp. y?) leaves invariant the homology class of K (mod L),
#S(K,L) is acyclic, so long as 6(y) 5 1 (resp. 6(y)# £ 1) and
Ay(K,L) is then defined upto a factor 6(+ y%).

One has then the following proposition (Milnor [2]).

(3.1) If M is an invariant subcomplex of K containing the invariant
subcomplex L, which in turn contains K, and if (S(K,M) and
oS(M,L) are acyclic, then ¢S(K,L) is also acyclic, and

Ay(K,L) = Ay(K, M) Ay(M,L).

Let us suppose that the pair (E,Z) is obtained from the pair
(K, L) by subdividing a cell of K and, correspondingly, all its
transforms by the automorphisms of @, in such a way that these
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automorphisms can be extended to the subdivided complex. Let
us call the passage from one of these pairs to the other an elementary
operation, and let us say that two pairs are combinatorially equivalent,
if one of them becomes isomorphic to the other by a finite number

of elementary operations. One has then the following proposition.

(3.2) Two binatorially equivalent pairs have the same torsion.

With a terminology which is a bit different, this proposition has
been proved in [4]. Another proof is sketched, incompletely, in
[5] (there is a gap in the proof of Lemma 3, p. 56). See also
J.H.C. Whitehead [7] and Milnor [2].

4. Complex with automorphisms associated to a rotation of finite
order of S". Let r be a rotation of 8", defined by equations of the
form (1.1), which generates a cyclic group @ of order 4. On the lines
of the invariant coordinates, corresponding to the real coordinates
and to the characteristic roots §; = 4 1, let us mark the two points
of its intersection with S”. In every 2-plane of the invariant coor-
dinates, which correspond to two complex conjugate coordinates
z; and Z; and to the non real characteristic roots {; and Z;, let us
mark on its circle of intersection with 8" the point where arg 2z = 0
and all its transforms by @, which form the vertices of a regular
polygon of centre 0. The points thus marked out on S" are the
vertices of a convex polyhedron inscribed in $" which is invariant
under 7, and each of whose faces is a simplex. Projecting this from
0, we obtain a simplicial subdivision of S”, invariant under r. We
shall denote by P(r) this complex with the automorphism y induced
by ». The simplices of P(r) which are left invariant by at least one
automorphism of @ different from the identity form an invariant
subcomplex Pyr). We have the following proposition.

(4.1) If the rotations r and 7' are diffeomorphic, the pairs
(P(r), P/r)) and (P(r'), Pyr')) have the same torsion.
This is a special case of a more general theorem about discon-

tinuous groups of diffeomorphisms which can be proved using the
‘Whitehead theory of differentiable complexes [6] and (3.2), or with
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the help of the notion of convex coverings (see [5] for the case where
@ operates without fixed points, i.e. when Py(r) is empty). I hope
to come back to this point elsewhere.

To establish that two diffeomorphic rotations r’ and #” have
the same characteristic roots, we proceed by induction on n. The
theorem is obvious for » = 0 and immediate for n =1.

Let d be a proper divisor of A (i.e. a divisor such that 1 < d < h).
The points of S* which are left fixed by 74 form a subsphere of S"
defined by z; = 0 for every j with {# + 1, which is of dimension < =.
Let 7,4 be the restriction of 7 to this subsphere, and 7, the analogous
restriction of 7. If r and #* are diffeomorphic, so are 7,4 and 7y, and
by induction hypothesis they have the same characteristic roots.
This being true for every proper divisor of k, r and ' have the same
characteristic roots which are not primitive h-th roots of unity.

Let us denote by 7, the restriction of r to the subsphere of S"
defined by equating to zero the coordinates z associated to the
{; which are primitive A-th roots of unity. The characteristic roots
of 7y are those of » which are not primitive 4-th roots of unity. Py(r)
is an invariant subcomplex of P(ry) which is itself an invariant
subcomplex of P(r).

(4.2) If O(y) # £ 1, the systems jS(P(r), Py(r)), ¢S(P(ry), Pyr))
and ¢S(P(r), P(r,)) are acyclic.

This follows, if we take account of (2.1), from the fact that »2
belongs always to a one parameter group of rotations leaving
invariant the topological spaces P(r) and Py(r) (subsphere of S" or
union of subspheres) ; consequently, the topological transformation 2
of each pair (P(r), Py(r)), (P(r,), Py(r)) and (P(r), P(r,)) is homotopic
to the identity, and so leaves homology classes invariant, i.e. induces
the identity on the Betti modules. If r preserves orientation, we
may take r instead of 72 and it suffices to suppose that 8(y) 5 1.

The restriction 7, of #’, defined in the same way as the restriction
7o of 7, has the same characteristic roots as ry, so that P(ry) and
P(r]) are isomorphic, as are also P(r) and Py(r’), so that the pairs
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(P(ro), Py(r)) and (P(rg), Pyr')) have the same torsion. But, because
of (3.1), we have

Ao(P(r), Py(r)) = Ag(P(r), Plro)). Bo(P(ro), Pylr)),

and the same relation with 7’ instead of 7, so that, taking into account
what we have just said, and (4.1), we have

(4.3)  Ag(P(r), P(ry)) = Ay(P(r"), P(rg)) for any 0 for which
O(y) # + 1.

Let us suppose that among the characteristic roots of , there are
2m primitive &-th roots of unity, say {;, ..., {,, and their conjugates.
Let us denote, as always, by z; the complex coordinate associated
to §; in (1.1). Let 7, be the restriction of » to the subsphere of S*
defined by 2., =%42 =..=2, =0, so that for k=0 we
obtain the rotation 7, already considered and r, =r. Because of
(3.1) we have

m
(4.4) 8y(P(r), Plry) = [ | Ao(P(), Plre_y)-
k=1
The complex P(r,) on the sphere §™ of dimension 7,=n — 2(m — k)
is a subdivision of the complex @(r;) which we obtain by adjoining to

2
P(r,_,) the cell q of dimension #, defined in S™ by 0 < arg z, < -}%r,

the cell b of dimension 7, — 1 defined by arg z, = 0 and the trans-
forms of @ and b by @. Let p, be an integer (determined mod &)
such that (¥ =exp (27i/h). Under the action of y* (or 7*¥), z,
is multiplied by exp (27i/k), and so the cell b goes into the cell

Y'* b defined by arg z, = 2—", and consequently, q, b being suitabl
Yy =5 g 'y

oriented, we have, if » preserves the orientation, da = (y**—1) b,
while 9b = 0 (mod P(r,_,)). The A-modules C’ and C” of the system
8(Q(r), P(r_,)) are of rank 1, q is a distinguished basis of one
(C’if n is odd and C" if » is even) and B is a distinguished basis
of the other. If we set 6(y) =¢ and e = (—1)*, we obtain
Ay(Q(7), P(r,_y)) = ({"¥ — 1)*. This number is only determined upto
a factor of the form + {?; let us remark that, if instead of z, and {;
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we had taken their conjugates, we would have obtained the above
result with —p, instead of y;, which is the same upto the above
mentioned factor.

By virtue of (3.2.), Ay(P(r), P(r_,)) = Ap(Q(r), P(r,_,)), and
(4.4) implies that

m
Ao(P(r), Plrg) = [ [ €*— 1.
k=1
By (4.3), this number is equal, upto a factor 4 {4, to the number
formed in the same way with the numbers p, replaced by the
analogous numbers y; defined relative to the rotation r'. We deduce
from this that

[Te*—y ¢ == [ =1 "*—1
k=1 k=1

for every h-th root { of unity, and the same relations hold if # does
not preserve the orientation. Now, by a theorem of W. Franz [1],
this implies that the set of residues (mod A) p;, — p, is identical
(upto order) with py, — g, and this implies that r and 7’ have the
same characteristic roots which are primitive A-th roots of unity,
which completes the proof of our theorem.
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SOME FREE ACTIONS OF CYCLIC GROUPS
ON SPHERES

By J. MILNOR

LET p > 5 be an integer different from 6 and let n>5 be odd. This
note will show that the cyclic group II of order p can act differentiably on
the n-sphere, without fixed points, in infinitely many different ways.
These actions are “different” in the sense that the corresponding
quotient manifolds M =8"/II can be distinguished by their Reideme-
ister-Franz-de Rham torsion invariants. Hence two such ‘“‘different’’
manifolds M, M’ cannot have the same simple homotopy type,
cannot be piecewise-linearly homeomorphic, and cannot be
diffeomorphic. (It is not known whether or not M and M’ can be
homeomorphic.)

First let me review the basic properties of the torsion invariant,
following [3], [4]. Let K be a finite, connected' CW-complex and
let IT denote the fundamental group of K. Let

f:zZim -cC

be a ring homomorphism from the integral group ring to the complex
numbers. If the homology groups H,(K ; C;) are all zero (homology
with local coefficients twisted by f) then the torsion invariant
A,IN{ € Cy/ £+ fII is defined. (Here K denotes the universal covering
complex, C, the multiplicative group of non-zero complex numbers,
and o+ fII the subgroup generated by f(II) and 4+ 1.) To ‘simplify
the notation we will henceforth leave off the tilde, and write simply
A K.

Similarly, given a pair K, L with H, (K, L; C;) =0 the torsion

A(K, L) is defined. This satisfies the identity

A(K, L) = A KA, L, (1)
providing that the three terms are defined. (If two out of three are
defined, then the third is automatically defined.)

t For a complex with several components the torsion can be defined as the
product of the torsions of the ¥ t
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If W is a triangulated orientable manifold of dimension n with
boundary bW, then the following duality theorem holds. We must
assume that |f(t)| =1 for tell = m (V). Then

AW) = (AW) (A, Wy 2)

where A denotes the complex conjugate and e(n) = (—1)". We will
also need the following variant form. If M is a triangulated manifold
without boundary of dimension n — 1 then

AM = (B M), (3)

Now consider an h-cobordism (W; M, M'). That is, assume that
W is a smooth manifold with boundary M+ M’, and that both M and
M’ are deformation retracts of W. Choosing a C'l-triangulation of
(W; M, M') we will assume that the torsion

AMeCy 4+ fI
is defined.

Lemma 1. With the above assumptions, A,M’ is defined and
equal to
(A M) AW, M) (AW, M)y,

Proor. Since M is a deformation retract of W it is clear that
A(W, M) is defined. Thus AW is defined, and similarly A, M’ is
defined. Consider the duality statement

ABW) = (AW) (B, W),
Since, A(bW) = (A, M) (A, M') and since AW = (A, M) A(W, M),
this can be rewritten as
(A, ) (A, ') = (8, M) AW, M) (B, MY (AW, M)y,
Now dividing through by
AM = (A, My™
we obtain the required formula
A M’ = (A, M) AW, M) (B(W, M)y<m.

Henceforth we will assume that the dimension n of W is even.
Thus Lemma 1 can be rewritten in the form
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AIM’ =(A_/M)IA](W) M)lz- (4)

Suppose that we are given the manifold M with fundamental
group II, and wish to construct the A-cobordism (W; M, M’).

Lemma 2 (Stallings). If dim (M) > & then the h-cobordism
(W:M,M’) can be constructed so that A(W, M) is equal to the image,
in Co/ + 11, of any unit of the group ring Z[I1).

Proor. Stallings actually observes that the A-cobordism can be
constructed so that the Whitchead torsion invariant =(W, M) is
any desired element of the Whitehcad group

Wh(IT) = GL( 0, Z[IT])/(Commutators, 4+ IT).
(See Stallings [6, §2]. The manifold W is constructed by adjoining
handles of index 2 and 3 to M x[0, 1] along one boundary, in such
a way that the matrix of “incidence numbers’” between the two
types of handles is equal to a given invertible matrix over Z[II].)
In particular if % is a unit of Z[II] then W can be chosen so that
(W, M) is the element of Wh (IT) corresponding to the matrix

{ 1
[ 1 € GL (o, Z[II]).
It is then clear that AW, M) is equal to the image of u in Cof 4 fII.
(Compare Cockeroft [1], or [3, p. 589].) This completes the proof.
Thus in order to construct examples of A-cobordisms, we need
only look for units in Z[IT]. To be more specific, let us now assume

that II is cyclic of order p with generator ¢. Define f: Z[II] - C by
f(t) = exp (2m/p). The following case is particularly easy.

Lemma 3 (Higman). If p > 5 is an integer of the form 6k 4 1 then
Z[I1] contains a unit u with | f(u)| %~ 1.

Proor. This follows from Higman [2]. Alternatively, here is a
direct proof. Let
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u=t4+t"1—1
so that f(u) =2 cox(2m/p) —1 # £+ 1. To see that « is a unit it is
only necessary for the reader to verify the identity

w(ltt—3 -t 84— — 4+ ... ——F P ) =1
for p =1 (mod 6); or
wW— 12483 -0 — 8 4 4 — — L — — PP =
for p = — 1 (mod 6). This complctes the proof. (Some further dis-

cussion of this lemma is included as an appendix.)

Now combining the three lemmas we have the following.

THEOREM. Let M be a smooth manifold of odd dimension > 5 whose
Sfundamental group is cyclic of order p = 6k & 1, p > 5. Suppose that
the torsion A; M is defined. Then there exist infinitely many manifolds
M, M, M, ... which are h-cobordant to M, but such that no two have
the same simple homotopy type.

ProoF. For each integer m we can choose the h-cobordism
(W,.; M, M,) so that
[ AW, M) | =] flum)|.
Then
A M, = (B M) | f(u) ™.
Since |f(w)| #0, 1 the real numbers | A,M,, | arc all distinct. This
does not yet prove that the M, all have distinct simple homotopy
types, since the invariant | A, M,, | depends ou the choice of f. But
there are only finitely many homomorphisms from Z[IT]to C, so out
of the infinite sequence M,, M,, ...one can certainly extract an
infinite subsequence consisting of pairwise distinct manifolds. This
completes the proof.
In particular let us apply this theorem to a lens space
L =8I, n odd.
The resulting h-cobordant manifolds L,, Ly, ... will all have universal

covering spaces diffeomorphic to the sphere. (See Smale [5].) Thus
we have infinitely many distinct free actions of the cyclic group
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II on 8". But there are only finitely many orthogonal actions of
IT on 8", Thus we have:

CoROLLARY. For nodd > 6 and p=6k+1 > 5 there erist in-
finitely many smooth fixed point free actions of the cyclic group of
order p on S" which are not smoothly equivalent to orthogonal actions,
and are not smoothly equivalent to each other.

It would be interesting to know whether any corresponding phe-
nomenon occurs in dimension 3.

APPENDIX : FURTHER DISCUSSION OF LEMMA 3.

Higman’s theorem actually applies more generally to any finite
abelian group IT which does not have exponent 1, 2, 3, 4 or 6. Hence
the theorem also applies in this generality. In fact suppose that
t eIl is an element whose order p is different from 1, 2, 3, 4, 6. Then
the Euler ¢-function satisfies ¢(p) > 2. Hence there exists an
integer a, with 1<a< p/2, which is relatively prime to p. Choose b so
that ab =1 (mod p), and set

z=—1))t—1) =1+4t+024 .. 4+,
y=(% —1)[(t* —1) =1 418 4 120 4 ... 4 &-Da,

Then (¢t — 1)zy =t — 1, from which it follows easily that a2y — 1 is
a multiple of the element s =1 4 ¢+ t2 4 ... 4 ¢?~1, Thus x is a unit
modulo s. To obtain an actual unit, choose integers k, I, m so that
a*=Ip+1, ¥=mp+1. Then (a* —1Is)(y* —ms) =1; so that
u = 2% —Is is the required unit.

As before we can choose f: Z[II]>C so that f(t) =exp (2mi/p).
Then f(s) = 0, hence |f(u)| = |f(z){¥ > 1.

For any integer p > 5, p #86, it follows that the cyclic group of
order p can act freely on a sphere in infinitely many different ways.
Problem. Can a cyclic group of order 2, 3, 4 or 6 act freely on a
sphere in infinitely many different ways?
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COMPACT GROUPS OF TRANSFORMATIONS
By DEANE MONTGOMERY

1. Introduction. This paper gives an account of some of the
results recently obtained on the topology of groups of transfor-
mations, particularly in the differentiable case. No attempt has
been made to be complete, and the topics covered are mainly those
of special interest to the author. Probably the most glaring omission
is the important work of Conner and Floyd on the cobordism theory
of groups of transformations. This constitutes a new and very
interesting subject, much of which can be found in the book by
Conner and Floyd [11].

A topological transformation group ¢(@, X) consists of a topo-
logical group @, a space X, and a map

$:GxXxX>X
satisfying

(@) ¢lg1, $(g2, 2)]1 = $lg:195, 2] 5
(b) for g fixed, ¢(g, x) is a homeomorphismr of X onto X.

A topological transformation group is often called an action and
X is often called a G-space. If X is a differentiable manifold and G
is a Lie group, and if ¢ is a differentiable map, then ¢ is called a
differentiable transformation group or a differentiable action. When
¢ is fixed ¢(g, z) is often denoted by g(z). Here the main concern
will be with differentiable actions of a compact Lie group @. This
of course includes the case where @ is a finite group of diffeomor-
phisms ; this is the case most thoroughly explored so far. An action
is called effective if the identity is the only element leaving every
point fixed.

If @ acts on X and Y, then a map f: X »Y is called equivariant if

fa(x) = gf(x) for all ge@, reX.
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If @ and X are fixed, two actions ¢, and ¢, are called equivalent
(differentiably equivalent) if there is a homeorhorphism (diffeomor-
phism) H : X — X such that

$1(g, Hx) = H ¢y(g, 2).

Thus two actions are equivalent if there is an equivariant homeo-
morphism from one action to the other. Some of the problems
of topological transformation groups are concerned with finding
whether actions are equivalent to certain simple well known actions
or the extent to which they do or do not resemble them.

2. Preliminary remarks. If G (compact Lie) acts on M, a fixed
point or a stationary point p is one which is fixed under every
element of the group, that is g(p) = p, g € Q. The orbit G(p) of &
point p is the set of all g(p), g €G; the isotropy group @, is the closed
subgroup of those elements g which leave p fixed. Two orbits, say
of  and y, are called equivalent or of the same type if G, and G,
are conjugate in G. The set of orbits M /@ can be given a topology
in a natural way and there is a natural map p

p:M->MG

which ie open. The space M/G (also denoted by M*) is not necessarily
a manifold even though M is.

Assume that z € M and let G, be the isotropy group. There is a
neighborhood U of x such that if ye U then G, is conjugate to a
subgroup of G,. Hence for y € U, dim G, < dim G,, and this implies
dim G(y) > dim G(x).

Let @ (compact Lie) act differentiably on M and let p be a fixed
point. Bochner has shown that in a neighborhood of p, coordinates
may be cbosen in which the action of @ is linear. It follows that the
set of fixed points, denoted by F(G), is a manifold. This manifold
need not be connected and there are easy examples to show that
different components may have different dimensions.

C. T. Yang has proved
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THEOREM 2.1. Let G be a compact Lie group acting differentiably
on a manifold M. Then the orbit space M|Q is triangulable.

A compact Lie group @ can act on a manifold in a manner which
is not equivalent to a differentiable action and the remainder of this
section is devoted to a few remarks on this more general case. In
fact, Bing has given an example of such an action of Z, on 83. In
his action F(Z,) is S? but neither of the components of 83— F(Z,) is
simply connected. It is not known whether or not every compact @
acting effectively on a manifold without the hypothesis of differenti-
ability is a Lie group. It is known for this case that @ must be
finite dimensional. The question of whether a compact non-Lie
group ¢ can act effectively on a manifold reduces to the case where
@ is infinite, compact, and zero-dimensional. Several interesting
contributions to this case have recently been made by Yang,
Bredon, Raymond, and Williams.

Assume for the moment that @ is a compact Lie group acting on a
compact manifold (no differentiability assumed). Then Floyd and
Mostow have proved that there are only a finite number of orbit
types and Mostow has shown that an action may be imbedded
equivariantly in an orthogonal action. He also shows the existence
of a slice and this existence was also proved by Yang and the author.
Intuitively a slice is something like a cell orthogonal to G(p) at
p and invariant under G,,. Mann and Su have obtained information
on the number of orbit types.

3. Number of inequivalent actions. The following has been proved
by Palais.

THEOREM 3.1. If G and M are compact and differentiable then
the number of inequivalent differentiable actions of G on M is at most
countable.

Palais has obtained a direct proof of this and it is also a conse-
quence of another of his theorems (as yot unpublished) which may
be stated as follows.
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THEOREM 3.2. Let Diff(M) be the group of all C diffeomorphisms
of a compact C° manifold M in the C* topology. Let G be any compact
subgroup and let U be a neighborhood of the identity. Then there is a
neighborhood V of G such that if H i3 a subgroup in V, then there
is an element g € U satisfying g~*Hg c G.

Theorem 3.1 would not be true under weaker hypotheses. Palais
and Richardson have shown that if the M is not compact then there
can be non-countably many mutually non-equivalent differentiable
(even real analytic) actions of a compact Lie group Q.

4. Examples. In this section G will be a compact Lie group acting
differentiably on M which is to be R" respectively S". Long ago
the question raised for this case was whether such an action was
equivalent to a linear action. If @ is Z, or more generally a finite
p-group, Smith showed (he did not need differentiability) that the
set of fixed points has the homology properties (mod p) of an R*
respectively 8%, —1< k< n. Since differentiability is assumed, F(G)
is always a manifold so that if @ is a p-group, F(Q) is a manifold
with the mod » homology or cohomology properties of R¥ respec-
tively S%. However, as we shall see below, F(Q) may not be homeo-
morphic to R* or to S¥ as it would be if the action were equivalent
to a linear action.

Many examples have been given by Conner, Floyd, Whitehead,
Kister, Rosen, and others which have given a great deal of infor-
mation. A few of these will be mentioned below and we begin with
a simple example suggested by Rosen.

Let J be a closed arc imbedded in R3 where R3 is imbedded natu-
rally in RB*. It has been proved by Klee that J is tamely imbedded
in R%, that is, there is a homeomorphism of R* onto itself which
takes J onto a closed interval on a straight line. It is known how-
ever that J need not be tame in R? and that the fundamental group
of R? — J may be non-trivial.

By the remarks just made R*—J is homeomorphic to R*—(a point).
Now R*—J admits an involution
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T: (@ t) > (z,—1)

and F(T)= R®—J. Adding a point at infinity and extending 7' to
leave it fixed gives an involution 7' of §* —J whose set of fixed
points is 82 —J. This shows

THEOREM 4.1. There is a diffeomorphic involution of R* whose
set of fixed points is not homeomorphic to R3.

Another example of this kind can be given using a space W
constructed by Whitehead. The space W is a simply connected
3-dimensional manifold which is not homeomorphic to R3. Shapiro
(unpublished) showed that W x R! = R%. A differentiable involution
of Wx R!is given by

(z,t) - (z, —1)
and the set of fixed points is W. By using W x B2 = R’ and the
action of the circle group SO(2) on R? we obtain a differentiable
action of SO(2) on R® whose set of fixed points is not homeomorphic
to a euclidean space.

McMillan has found a non-countable set of 3-manifolds analogous
to W and these were used by Palais and Richardson to construct
the example mentioned earlier. Bing has shown that there is a
non-manifold B whose product with R! is R%. This gives an action
of Z, on R* (not, of course, a differentiable one) whose set of fixed
points is not a manifold. Rosen showed that the set of fixed points
may fail to be a manifold at every point.

Whitehead found actions of Z; on S§® whose fixed point sets are
not simply connected. Following his technique Samelson and the
author showed

THEOREM 4.2. Let G be a compact Lie group containing more
than one element. Then there is a positive integer k such that G
has an infinite number of differentiable actions on S* in its usual
structure, no two of which are equivalent.

By the theorem of Palais the number cannot be more than
countable.
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It follows from the theorem of Smith that a prime power cyclic
homeomorphism of R® must have a fixed point. However, it has
been shown by Kister, using earlier ideas of Conner and Floyd, that
there is a differentiable action of Z, on R® without a fixed point.
Also by using ideas of Conner and of Floyd, it has been shown by
Conner and the author that there exists an action of SO(3) on R!2
without a fixed point. As constructed this action was not differenti-
able, but it can be made differentiable by using more care.

It follows from this that there is an action of SO(3) on 82 with
precisely one fixed point. This action, however, cannot be differenti-
able at the fixed point. At present it is not known whether or not
there exists a differentiable action of SO(3) on 8" (for any =) with
precisely one fixed point.

Bredon has constructed a set of interesting examples which show,
in the simplest case, that there is an action of Z, on S® whose fixed
point set is the lens space L(2k + 1, 1).

Milnor has found a smooth free involution f : 87 - 87 so that the
orbit manifold is not diffeomorphic to P7?. Hirsch and Milnor have
found a smooth free involution of 87 whose base space is neither
diffeomorphic nor piecewise linearly homeomorphic to P?. They
have analogous examples for S® and S°. It is not known whether or
not these respective base spaces are homeomorphic to the corres-
ponding projective spaces. Equivalently it is not known whether
or not there is a topological free involution (even a smooth one)
which is topologically distinct from the antipodal map. Floyd and
Richardson have given an example of a finite group acting on a
closed cell without a fixed point.

5. Distribution of orbits. We continue to assume that G is a
compact Lie group acting differentiably on a manifold M. The
number of components in the isotropy group @, is denoted by
m(x). There is a highest dimension for the orbits in M and this
is denoted by r. The points of M which lie on orbits of dimension
less than r will be denoted by B which is a closed set. Let 4> 0
and » > 1 be integers and let
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M,, ={z|zeM, dim Q) =u, m(z) =v}
Mu = L”j Mu,v
Zyy =M,0M,_ 0. .UM UM, 0. .UM,
For e M and y near to x it is known that @, is conjugate to a
subgroup of G, so that Z,, is open. Each set M,, is locally a

product of an orbit and a cross-section. Any component of M,
contains orbits of only one type.

THEOREM 5.1. The set B satisfies dim B<n+—2. If M is
connecled, then M — B = M, 1is connected.

THEOREM 5.2. Let t be any integer 0 < t < r. The union of all
orbits of dimension < t1is of dimension <n —r ¢ —1.
We shall now define principal orbits and orbits of highest dimen-
sion. Let
8 = min m(z), xe M,
D=U M,,
v>s ’

Then orbits in D are called exceptional orbits of highest dimension
and orbits in M,, are called principal orbits. Let M,, = U. Then
M is divided into mutually exclusive sets as follows :

M =BuDul.
If M is connected then M, /@ is connected and if G is also con-
nected then M, , is connected. Hence for a connected @, the principal

orbits form a connected open set which is fibered by the principal
orbits. We always have dim D< n — 1.

THEOREM 5.3. If M = R" or 8" and G 1s connected, then
dim D < n— 2. The same is true more generally for an M satisfying
H*Y(M; Z,) =0.

TBEOREM 5.4. Let a compact connected group act differentiably
on R" or 8". Then (U u D)/@ is simply connected.

A principal orbit in an oriented manifold is orientable and it
is a corollary of the theorem above that under the hypothesis of
Theorem 5.3, any highest dimensional orbit is orientable.
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6. Actions of SO(3). The actions about which the most infor-
mation is available are for finite cyclic groups and for toral groups.
It is natural to study SO(3) partly for itself and partly because it
is one of the most familiar groups beyond those just mentioned.
There are serious difficulties even in this case, but a few results
have been found. Samelson and the author have shown that SO(3)
cannot act differentiably on 87 with every orbit three-dimensional.
It has been proved that if a compact Lie group G acts on 8" with
all orbits of the same dimension, then rank G =1, that is, @ is
the circle or SO(3) or SU(1). There are familiar examples to show
that the circle acts freely on §2"~! and that SU(1) acts freely on
8é¢n—1, The group SO(3) cannot act freely on any sphere, but it is
not known in general whether it can act on §4*~! (the only possibility)
with all orbits of dimension 3.

THEOREM 6.1. If SO(3) acts differentiably on S" with 3-dimen-
sional principal orbits and if dim B <n — 2 then the principal
isotropy group is the identity.

The case when SO(3) acts on S" with dim B =n — 2 has been
considered by Yang and the author. Below are three examples for
actions of this kind.

1. 8O0(3) acts trivially on S1.

2. 80(3) acts on R**! = R% x R" *(n > 4) by the definition

g(=z, .1/) = (9=, y)

where the action of SO(3) on RP is the irreducible orthogonal action.
Then SO(3) acts on S® regarded as the unit sphere in R"*!. In this
action, the two-dimensional orbits are all projective planes, F(G)
is an (n — 5)-sphere, and for every ze U, G, is a dihedral group
of order 4.

3. 80(3)acts on R**! = R3X R3X R"~5(n > 5) by the definition

9(x,y,2) = (92,99, 2)

where the action on R3 is the familiar one. Then SO(3) acts on S*
(the unit sphere) and in this action the two-dimensional orbits are
all 2-spheres, F(@)is an (n—6)-sphere and for every zeU, G, =e.
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In each of these three examples dim B=n—2and D= @. The
orbit space in cases 2 and 3 is a closed (n — 3)-cell with boundary
B[8O(3). The next theorem shows that every action of SO(3) on
8" with dim B=n—2 resembles one of these examples rather closely.

THEOREM 6.2. Let SO(3) act on M =8" with dim B=n—2. Then
D = @ and one of the following holds :

1. n=1 and SO(3) acts trivially;

2. n>4and for every xeU, G, is a dikedral group of order 4,
the two-dimensional orbits are all projective planes and

HX(F(@); Z,) = H¥(S"5; Z,);
3. n> 5and for every x € U, G, = e; the two-dimensional orbits
are all 2-spheres and H*(F(G); Z,) = H*(S"~%; Z,).

In the last two cases H*(B* ; Z) = H*(S*~4; Z) and M* has trivial
cohomology.

7. Principal orbits of dimension 7n— 2 or n— 3.
THEOREM 7.1. Let G bea compact connected group which acts
differentiably on R™ in such a way that the highest dimension of any

orbit is either (n — 1) or (n — 2). Then the action 18 equivalent to a
linear action.

Bredon has recently studied actions on S” with (n—2)-dimensional
orbits and has classified the possibilities.

THEOREM 7.2. Let G be a compact connected Lie group acting
differentiably on S, n > 4, with principc | orbits of dimension n—3 and
a stationary point. Then S*|G is a simply connected 3-manifold with
boundary B* =82 and D* = @. There exists a second stationary
point, and the set F(G) is 8°, 81, S3, or 83. In case F(G) =82, then
F(@) =B and principal orbits are m — 3 spheres.

8. Conditions implying linearity. Stewart has proved

THEOREM 8.1. Let the circle group SO(2) act differentiably on S®
with precisely two fixed points and freely otherwise. Then the action
18 equivalent to a linear action.
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By using the engulfing theorem, Connell, Yang and the author
have proved

THEOREM 8.2. Let G be a compact group which acts differentiably
on R" with a fixed point set F which is assumed to be diffeomorphic
to R¥, 0 < k< n—3, and with all other orbits of the same type and
dimension r. Then the action of @ is differentiably equivalent to a
linear action of @ on R™ if n—r > 5.

The case where @ acts freely outside of F is perhaps the main case
covered by the theorem, and to specialize further for concreteness
one may think of the case G = Z, or G =80(2).

CoroLLARY. Let G be a compact group which acts differentiably
on 8" with a fixed point set which is diffeomorphic to S¥, 0 < k < n—3,
and with all other orbits of the same type and dimension r. Then the
action of G is topologically equivalent to a linear action on S if
n—1r>b.

Hsiang has found several cases of actions of SO(n) on S™ to be
linear when # and m are suitably related.

When Z, acts on 82 it is known that F(Z,) is homeomorphic to
8, —1<i<3.

Livesay has proved

THEOREM 8.3. If Z, acts differentiably on S3, then the action 3
equivalent to a linear action.

In the cases 4 = — 1,4 = 0, it is not necessary to assume differenti-
ability. In the case ¢ = 1, the main problem is to show that S is
unknotted. In the case ¢ = 0, Hirsch and Smale gave a proof which
was completed by Livesay.

Wang (Amer. Jour. Math. 82 (1960), 698-748) has studied the
case of a differentiable action of a compact connected @ on S” with
an (n—1)-dimensional orbit, and has given a classification of such
actions.
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Milnor (Some free actions of eyeclic groups on spheres, these
Proceedings, pp. 37-42) has shown that if p > 5 is a prime and = is
an odd integer > 5, then Z, can act differentiably and freely on
8" in infinitely many different ways (in the sense that the quotient
manifolds 8%/Z, have different simple homotopy types).

REFERENCES

ArmaND BorEL: Fixed points of elementary commutative
groups, Bull. American Math. Soc. 65 (1959), 322-326.

ArMAND BOREL: Seminar on transformation groups, Annals of
Math. Studies No. 46, Princeton Univ. Press, 1960.

GLEN E. BREDON : Transformation groups on spheres with two
types of orbits, to appear.

GLEN E. BrepoN : Examples of differentiable group actions, to
appear.

GLEN E. BrEDON, F. RaymonD, and R. F. WiLL1iaMS : p-adic
groups of transformations, T'rans. American Math. Soc. (3) 99
(1961), 488-498.

E. H. ConNELL, D. MoNnTGOMERY and C. T. Yane : Compact
groups in E%, to appear in Annals of Math.

P. E. ConNER : Orbits of uniform dimension, Michigan Math. J.
6 (1959), 25-32.

P. E. CoNNER: Pontrjagin numbers of maps, Bull. American
Math. Soo. (2) 69 (1963), 276-279.

P. E. ConNER and E. E. FLoyp: On the construction of periodio
maps without fixed points, Proc. American Math. Soc. 10 (1959),
354-360.

P. E. ConnER and E. E. Froyp : Differentiable periodic maps,
Bull. American Math. Soc. 68 (1962), 76-86.



14,

15.

16.

17.

18.

19,

20.

21.

22.

DEANE MONTGOMERY

P. E. ConnEr and E. E. FLoyp : Differentiable periodic maps, to
appear in Ergebnisse der Mathematik Series, Vol. 33, Springer.

P. E. ConNER and D. MONTGOMERY : An example for SO(3),
Proc. Nat. Acad. Sci. (11) 48 (1962), 1918-1922.

E. E. FLovyp: Fixed point sets of compact abelian Lie groups of
transformations, Annals of Math. (2) 66 (1957), 30-35.

E. E. FLoyp and R.W. RICHARDSON, Jr. : An action of a finite
group on an 7n-cell without stationary points, Bull. American
Math. Soc. 65 (1959), 73-76.

Morris W. HirscH and JoEN W. MILNOR; Some curious
involutions of spheres, to appear.

Morris W. HirscH and STEPHEN SMALE : On involutions of the
3-sphere, American J. Math. 81 (1959), 893-900.

W. Y. HsiaNe : Classification of action of SO(n) on 8m, Dm+1,
Rm, Pm m <2n—1, n>11, Princeton Thesis, 1964.

J. M. Kister : Differentiable periodic actions on E8 without
fixed points, American J. Math. (2) 85 (1963), 316-319.

J. M. KisTer and L. N. ManN :  Isotropy structure of compact
Lie groups on complexes, Michigan Math. J. 9 (1962), 93-96.

G. R. Livesay : Fixed-point-free involutions on the 3-sphere,
Topology of 3-manifolds and related topics (Proc. the Univ. of
Georgia Institute, 1961), 220. Prentice-Hall, Englewood Cliffs,
N. J., 1962.

G. R. Livesay : Involutions with two fixed points on the
3-sphere, Annals of Math. (3) 78 (1963), 582-593.

G.R. Livesay : Involutions of the 3-sphere with a circle of fixed
points, to appear.

D. R. MoMmrawN, Jr,: Some contractible open 3-manifolds,
Trans. American Math. Soc. (2) 102 (1962), 373-382.

L. N. Man~ and J. C. Su: Actions of elementary P-groups
on manifolds, Trans. American Math. Soc. (1) 106 (1963),
115-126.



25.
26.

27.

28.

30.

31.

32.

33.

34.

35.

36.

37.

38.

COMPACT GROUPS OF TRANSFORMATIONS 55

JoEN W. MiLNOR :  Remarks concerning spin manifolds, to appear.

DEANE MoNTGOMERY and HANs SAMELSON : On the action of
80(3) on S, Pacific J. Math. (2) 12 (1962), 649-659.

Deane MoNTeoMERY, H. SAMELSON and C.T. Yane: Exceptional
orbits of highest dimension, Annals of Math. (2) 64 (1956),
131-141.

DeanNe MoNTGOMERY, H. SameLsoN and C.T. YaNG :  Groups on
En with (n—2)-dimensional orbits, Proc. American Math. Soc.7
(1956), 719-728.

DEeaNE MoNTGoMERY and C. T. Yana :  Groups on S* with princi-
pal orbits of dimension n — 3, Illinois J. Math. (4) 4 (1960),
507-5117.

DeANE MonTGOMERY and C. T. YANG :  Groups on 8" with prin-
cipal orbits of dimension »—3, II, Illinois J. Math. (2) 5
(1961), 206-211.

DeaxE MoNTGOMERY and C. T. YANG: A theorem on the action
of 8O(3), Pacific J. Math. (4) 12 (1962), 1385-1400.

DeANE MonNTGOMERY and Lro ZrepIN: Topological transfor-
mation groups, Interscience Publishers, Inc., 1955.

GEORGE DaNIEL MosTow : Equivariant embeddings in Euecli-
dean space, Annals of Math. (2) 65 (1957), 432-446.

GEORGE DaNIEL Mostow: On a conjecture of Montgomery,
Annals of Math. (2) 65 (1957), 513-516.

RicHARD S. Parats: A global formulation of the Lie theory of
transformation groups, Mem. American Math. Soc. 22 (1957),

iii 4+ 123 pp.
RicHARD 8. Pavais: Equivalence of nearby differentiable actions
of a compact group, Bull. American Math. Soc. 67 (1961),362-364.

RicHARD 8. Parats and R. W. RICHARDSON, Jr. :  Uncountably
many inequivalent analytic actions of a compact group on Rn,
Proc. American Math. Soc. 14 (1963), 374-377.

RicaaRD 8. Pavats and TroMas E. STEwarT : Deformations
of compact differentiable transformation groups, American J.
Math. 82 (1960), 935-937.



56

39.

41.

45.

DEANE MONTGOMERY

Frank Raymonp and R. F. Witrrams : Examples of p-adic
transformation groups, Bull. American Math. Soc. 66 (1960),
392-394.

R. W. RioHARDSON, Jr.: Actions of the rotation group on the
5-sphere, Annals of Math. (2) 74 (1961), 414-423.

Roxarp H. RoseN : Examples of non-orthogonal involutions of
euclidean spaces, Annals of Math. (3) 78 (1963), 560-566.

P. A. SmitH : New results and old problems in finite transfor-
mation groups, Bull. American Math. Soc. 66 (1960), 401-415.

T. E. STewaArr : Fixed point sets and equivalence of differen-
tiable transformation groups, C tarii Math. Helvetici, 38
(1963), 6-13.

J.H.C. WaITEHEAD : On involutions of spheres, dnnals of
Math. (2) 66 (1957), 27-29.

Cruxa-Tao YaNG: p-adic transformation groups, Michigan
Math. J. T (1960), 201-218.

CrUNG-T40 Yana: The triangulability of the orbit space of a
differentiable transformation group, Bull. American Math.
Soc. (3) 69 (1963), 405-408.

Institute for Advanced Study
Princeton, N. J., U.S.A.



DIFFERENTIAL OPERATORS ON MANIFOLDS
WITH BOUNDARY*

By J. J. KOHN

LT M be a domain in R* which is bounded and whose boundary
bM is a C® manifold (of dimension n—1). Let & be the space of C*
complex-valued functions on M. We shall consider a differential
operator 4: F™ - %?. The results presented here can easily be
generalized to the case where M is a finite differentiable manifold
and A is a differential operator on C® sections of a fibre bundle.

If ueF™, u = (uy,...,%,) We write :

(Au), = ZAﬁ(D) u,i=1,..,p, (1)

where D = (Dy, ..., D,), Dy =—(— l)’ a,nd the Ay are polyno-
mials in the D, with C® coefficients. We sha,ll suppose that 4 is
homogeneous and of first order, so that we have

4; (D) =Z oy Dy, @
where the af; are in &.

First we consider the inhomogeneous equation
Au=¢; (3)

the problem is, given ¢ € #?, to find u € F™, satisfying (3).
We introduce the inner products:

P

(, v) = i I u; v; dz and (¢, ) = z I $; !z, dz, (4)

i=1% =13
the corresponding norms are denoted by || || and dz = dx!...da";
we complete &#™ and &7 under these norms and obtain hilbert
spaces which we denote by Fmand F? respectively. We let A4 also

*During the prepa.ratlon of { t}ns lecture ths author has been partially supported
by the N Fo h a project at Brandeis Universt;
proy Y.
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denote the hilbert space closure of 4 with domain 2, c #™ and
we denote by A* the hilbert space adjoint of 4, with domain

Dy C 2
Now it is clear that a necessary condition for the existence of u
satisfying (3) is

(¢, ) =0 for all YD . with A*§ =0. (5)
If B : #7— F7is such that
BA =0, (6)
then another necessary condition is that
B¢ =0, (7)

or, equivalently, that (4, B*a) =0, for all acDy, c F. Let
D =9,4025. We define the following inner product on 2 :
D($, ) =(4*¢, A*§) + (B, BY) + (,4) ; (8)
it is clear that @ is a hilbert space under the inner product D.
Now we define the space /# by
H ={pecP|A*p=0 and B¢ =0}. (9)
Then we have
10. ProrositioN. If D is completely continuous, in the sense
that a bounded sequence in the D-norm has a convergent subsequence

in the || ||-norm, then there exists ue 9, satisfying (3) if and only
if B =0 and ¢ | . Furthermore S is finite dimensional.

The above proposition is proven by showing that the complete
continuity of D implies that the operator L has a closed range
where L is defined by:

L =AA*+ B*B. (11)
In fact we obtain the orthogonal decomposition:
F? = A4* 9D, ® B*BD, @ #, (12)

it then follows that 49, = A4* 9,
For each ze M and £ € R* we define 0 4 (z,£) : C*»—>C? by :
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(04, 8) ()i = ab@) & v; (13)
the map 04 : M X R™ X C™— C? is called the symbol of A.

In what follows we will assume that B satisfies (6), that B is of the
first order and that for each x € M and £ e R™ with ¢ # 0 the sequence

cn cA(z,f) c? oB(z,f) Ce (14)

18 exact.

15. ProrosITION. If B satisfies the above conditions then D
18 elliptic in the interior; that is, there exists a constant C > 0 such
that :

Ilé 18 < CD($, )
for all ¢ € FP whose support does not meet bM, where || ||, 18 defined
by :
618 ="> 1Deds 1P+ I 1% (16)
(2}

If the above inequality holds for all €2 n F? then we say that
D is coercive; in that case the complete continuity of D and the
existence and regularity of solutions of (3) follow by standard
methods. However, it happens often that D is not coercive but
that, nevertheless these conclusions can be established. In fact
in certain situations in which D is not coercive the following
estimate can be established:

> I I4,12dS < CD@, $) (1)

oM
for all ¢ € D n F?, were dS is the volume element on b and
C > 0 is independent of ¢. It then follows that:

Il fe<CD($ 4) (18)
for all $€P n F?. The norms || ||, are defined with the aid of a
partition of unity with support in coordinate neighborhoods which
“flatten” the boundary. If s is an integer then || || , is the L2-norm
of the tangential derivatives of order s. The inequality (18) implies
the complete continuity of D on 2n #?. Furthermore, if
$eD,nF? and if we set § = Ld + ¢ we can establish the
following @ priori estimates:
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N 1E+ oM ie<C (1B IF-o+ 1l Bl 1) (19)
where s is any integer. These estimates imply the complete conti-
nuity of D on 9 and the existence and regularity of solutions of (3)
and of L¢ = y.

Now we suppose that m =1 and that the following sequence

is exact
0 C cd(a,8) C? oB(z,8) . (20)

We will then write
(4u); (@) = (P; (&, D) u) (x),j =1,..., p (21
and we can suppose that o.B is given by oP; — oP;.

For zeR"™ we denote by 7, the complex tangent space at z; if
zebM then J,(bM) denotes the subspace of , consisting of those
vectors which are tangent to 6. We denote by £, the subspace of
7, spanned by the P; (z, D). The exactness of (20) then implies that

T, =212, (22)

We define the subspace £, of 7, to be the space spanned by %,
where %', is defined by :

R, ={reP |7r=7} (23)
and we define the subset (M), of bM by :
(bM)y ={xcbM | R, cT, (bM)}. (24)

Observe that &, c #,n Z,. Let &, be a subspace of 2, such that
P, =R,@F, and, for xe QM)ylet 3, =%,n T, (bM). We now
have dim 2, = dim &, — 1 and since 2 dim &, + dim &%, = n,
we have:

2dim 2, + dim Z, =2 — 2. (25)
Thus, for € (bM), there exists 7,€ T, (bM), =, # 0 such that:
T, 0M)=2,02,0 2,0 ()} (26)

Let f be a C® non-singular real-valued function defined in a neighbor-
hood of bM and suppose that f> 0 outside of n and f < 0in M.
Let 0%,,..., 04 be a basis of 2, and pl,..., p! be a basis of %,.
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Then we have the hermitian matrices A%(z) = (o} 5! f) (x) and
Bi(z) = (¢} pif) (@).

27. THEOREM. The estimates (17) and (19) are satisfied if and
only if for each x € (b M), the matrix A%(x) has either s-positive eigen-
values or two negative eigen-values and the matrix BY(x) has either
t-positive eigen-values or two megative eigen-values.

Now let &, =C® (bM) and Fy ={ue F | u(x) =0 if zebM}.
Then we have the exact sequence
0>Fy>F >F, »>0. (28)

Further we define the subspace € of #? by: € = {¢ € F? | there
exists A € %, such that for z € bM we have ¢,=A(z) A(f), }, (29)

where f is the function defined above. Let 2 be the quotient space
F?[€¢. Then we have the commutative diagram

0—> b —> FP—> D) —> 0

TA TA TA,, (30)
0 —> F)p—>rF —> F—> 0

which defines the map 4, : %, -2. Observe that the space 2
depends only on M (locally it can be identified with a subspace of
F7) and that A4, is a first order differential operator. In a similar
way we can define a first order operator B, on bM (corresponding
to B) such that B, 4, =0, but the symbol sequence will no longer be
exact and the operator L, : 9 -2 defined by L, = 4, 4; + B, B,
is not elliptic.

TuEOREM. If each of the matrices A%(x) and BY(x) have at
least one positive eigen-value for each xe (bM)g, then if y €D, every weak
solution of the equation L,¢ = i ts in C° and the operator (L, 4 I)~1
18 completely continuous. (31)

Thus we obtain an example of a determined self-adjoint system
of partial differential equations on a compact manifold which is not
elliptic but nevertheless has the usual regularity, existence and
complete continuity properties.
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REMARES. (A) A system of the type we discuss here can be
associated with a very general system by means of the ‘“Spencer
resolution”’, see [10] and [11].

(B) When %, =7, for all z, the problem discussed here reduces
to the classical Neumann problem.

(C) When Z,=0 for all z, then the Py define an integrable
almost-complex structure on M and the problem becomes the so
called “ 3-Neumann ** problem for forms of type (0, 1).

(D) The 3-Neumann problem motivates the developments
described here. This problem was first formulated in [2]. C. B. Morrey
discovered and established the basic estimate (17) for a special case
of the problem, see [8]. The problem was solved on strongly pseudo-
convex manifolds by the author, see [4]. M. E. Ash generalized this
solution to pseudo-groups, see [1]. L. Hormander, in [3], found
necessary and sufficient conditions on M for (17) to hold.

(E) There are three different proofs of the regularity of solutions
of the 9-Neumann problem, see [4], [5], [6] and [8].

(F) The works quoted above contain several applications of the
solution of the 2-Neumann problem. H. Rossi and the author have
used the problem to characterize boundary values of holomorphic
functions, see [7]. The boundary operators 4,, L,, etc. arise from
that work.

REFERENCES

1. M. E. Asg: The Neumann problem for multifoliate structures
1962, to appear.

2. P.R.GarABEDIAN and D. C. SPENCER :  Complex boundary value
problems, T'rans. American Math. Soc. 73 (1952), 223-242.

3. L. HORMANDER : L2 estimates and existence theorems for the
3-operator, these Proceedings, 65-80.



DIFFERENTIAL OPERATORS 63

4. J. J. Kox: Harmonic integrals on strongly pseudo-convex
manifolds, I and II, I in Annals of Math. 78 (1963), 112-148;
II will appear in Annals of Math.

by

J. J. KouN : Regularity at the boundary of the 3-Neumann
problem, Proc. Nat. Acad. Sci. U. S. A. 49 (1963), 206-213.

6. J.J. Kox and L. NIRENBERG : A simplified proof of the
differentiability at the boundary of the 3-Neumann problem,
Communications Pure and Appl. Math. to appear.

7. J.J. Koax and H. Rosst: On the extension of holomorphic
functions from the boundary of a complex manifold, to appear.

8. C.B.MorreY : The analytic embedding of abstract real-analytic
manifolds, Annals of Math. 68 (1958), 159-201.

9. C. B. MorrEY : The 3-Neumann problem on strongly pseudo-
convex manifolds, Outlines of the joint Soviet-American
Symposium, (1963).

10. D. C. SpENCER : Deformation of structures on manifolds defined
by transitive, continuous pseudo-groups, III, to appear.

11. D. C. SpeENcER: Harmonic integrals and Neumann problems
associated with linear partial differential equations, Outlines of the
joint Soviet- American Symposium on partial differential equations,
(1963), 253-260.

Brandeis University
Waltham, Mass, U. 8. A.






I? ESTIMATES AND EXISTENCE THEOREMS
FOR THE 3 OPERATOR!

By LARS HORMANDER

1. Introduction. Let Q be an open subset of a paracompact
complex analytic manifold M of complex dimension n. If p and ¢
are integers (p > 0, ¢ > 0), and u is a differential form of type
(p, ¢ — 1) in Q (with distribution coefficients), the exterior differen-
tial du can be written in a unique way as a sum

du=3u+5u

where 9u is of type (p + 1,4 — 1) and du is of type (p, q). (For
definitions see Weil [11] and also Sections 3 and 4.) The purpose
of this lecture is to discuss the existence of solutions of the system
of differential equations

du=f (L1)

where f is a given form of type (p, ¢). Since 2 33 =0, a solution of
(1.1) can only exist if
f =0. (1.2)
The problem is to decide when (1.2) is sufficient to guarantee that
(1.1) has a solution. By the Dolbeault theorem, a positive answer to
this question is equivalent to the vanishing of the eohomology groups
of Q with values in the sheaf of germs of holomorphic p-forms ;
in particular, the case p =0, ¢ =1, means that the additive Cousin
problem can be solved. (See e.g. Malgrange [8].) The existence
theorems in this paper have therefore been obtained before with
methods of sheaf theory (Cartan [3], Andreotti and Grauert [1]),
but we shall give direct proofs with Hilbert space methods. These
are developed from those of Morrey [9], Kohn [6] and Ash [2],
combined with techniques used in the study of a single differential
equation, particularly the Carleman method for proving uniqueness
This work was supported by tha Oﬂica of Nsvnl Research (Contract

t
Nonr-225 (11) at ity). ts and proofs will be
published elsewhere.
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theorems. The interest of such an approach depends of course largely
on the extent to which it is applicable to general overdetermined
systems of differential equations. As yet the author has only verified
that the methods used in this paper give a rather simple proof of
the complex Frobenius theorem of Nirenberg [10] (see also Kohn [6]).

During the colloquium the author was informed that Andreotti
and Vesentini, in a manuscript entitled “Carleman estimates for
the Laplace-Beltrami equation on complex manifolds”, have used
similar methods to prove the results of Andreotti and Grauert [1].

2. Basic facts from functional analysis. Let H;, and H, be two
Hilbert spaces, T' a closed densely defined linear operator from
H, to Hy, and F a closed subspace of H, containing the range R,
of T
Lemma 2.1. If the range of T is equal to F, it follows that
Ifle<ClT*flly, fe FaDp, (2.1)

where C is a constant. Conversely, if (2.1) is valid, the equation
Tu =g with g € F has a solution w such that |||, < C ||g ;.

Proor. Assume that Ry, =F. We must prove that the set
B={f|1feFnDg, || T*fll; <1}
is bounded. To do so it is sufficient to prove that B is weakly bounded
in F, that is, that |(f, ¢);| is bounded when feB for every fixed
geF. But by hypothesis we can choose ueDy so that Tu =g,
which gives
I el =1T*f,u) | < |wlfe B

This proves the first part of the lemma.

Now assume that (2.1) is valid, and let ge F. Since 7** =T,
the equation Tu =g is equivalent to the identity

(u, T*f); = (g, f)z» f € Dps.

If we prove the inequality

ltg, Nal <Cligll 1T*fll1, f € Dpo, g€ F, (2.2)
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the Hahn-Banach theorem will prove that the equation 7' =g has a
solution » with ||ull; < C|lg|ls. If f is orthogonal to F, we have
(9, f)e =0, and T*f =0 since R, c F. Hence it is sufficient to prove
(2.2) when f € F, and then it follows immediately from (2.1).

LemmA 2.2. The range of T is closed and has finite codimension
in F if and only if from every sequence f,€ F n Dy, with ||f,]s =1

and T*f, — 0 one can select a strongly gent subsequence

Proor. (a) Sufficiency. The hypothesis implies that the vector

space

N ={f|feFn Dy, T*f =0}

is finite dimensional, for it is locally compact. We have R,c FO N
since N is orthogonal to Ry, and we claim that (2.1) is valid if F'
is replaced by F © N. In fact, otherwise we can choose a sequence
f,€(FQN) n Dy, sothat || f,]|;=1and T*f, 0. By hypothesis there
exists a strong limit f of this sequence, and since fe (FON) n Dy,
Ifllo=1 and T*f=0, we have a contradiction. Hence it follows
from Lemma 2.1 that R, = FON.

(b) Necessity. Let N be the orthogonal complement of Ry in F.
Then we have T* f =0 for every feN, and N is finite dimensional.
If f, is a sequence with the properties described in the lemma and
we set f, =f, +f, where f,e FON and f]eN, it follows that
T*f, = T*f,->0. But since R, = F © N by assumption, Lemma 2.1
shows that (2.1) is valid with F replaced by F © N. Hence f, —0.
Since the sequence f, is bounded and lies in a finite dimensional
space, the lemma is proved.

The lemmas will be applied to Hilbert spaces H, and H, of forms
of type (p, ¢ — 1) and (p, g) respectively, with 7' defined by the
El operator. We shall choose F as the space of forms in H, satisfying
(1.2). To prove estimates such as (2.1) it is convenient to introduce
a third Hilbert space H; of forms of type (p, ¢+ 1) and the operator
8§ from H, to H, defined by the 9 operator. Then we have ST = 0,
so that R, c Ng, the null space of 8. We wish to prove that R, is
equal to N or at least that Ry has finite codimension in Ng. To do
so we note that the inequality (2.1) with F' = N is implied by
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Iflle® < CAUT*fUl1* + I8flls®), f€DgenDs,  (21)

for when fe F = Ng, the last term drops out. Similarly, the
hypotheses of Lemma 2.2 are fulfilled if from every sequence
fu € Dgu s Dg with [If,ly =1 and | 7%, I, + [8f,l; >0 we can
extract a convergent subsequence. In what follows we shall there-
fore study estimates in terms of || 7*f||,2 4 || Sf [ls2, valid for all
f € Dpa n Dy, instead of estimates of the form (2.1) where f is restric-
ted to lie in a subspace F. This implies a considerable simplification
since we shall see that the study of (2.1)' can to some extent be
made locally. Incidentally, (2.1)’ also contains information about
the operator S, but we shall not make use of that.

3. Pseudo-convex domains in C". We denote the real coordinates
in C* by 2, 1 <j < 2n, and the complex coordinates by
% =Xy 4 iy, j =1,...,n. A differential form f is said to be of
type (p, ) if it can be written in the form
F=2" > fudd A
Ii=p Wi=q¢

where I = (iy, ..., 1,) and J = (j, ..., j,) are multi-indices, that is,
sequences of indices between 1 and =, of length |I| =p and |J | =gq.
The notation X’ means that the summation shall only be extended
over strictly increasing multi-indices, and we have written

NG =dz A ... Aoy A A ...\,

The coefficients f;; may be distributions in an open set Q, and are
supposed to be defined for arbitrary I and J so that they are
antisymmetric in the indices of I as well as in those of J. With
/0%, =} (80ay,_ 1 + 1 0/dxy,) We bave

R ]
af_g Z—a-srdi,‘/\dz’/\d?. 3.1)

If &# is a space of distributions, we denote by &, the space of
forms of type (p, g) with coefficients belonging to &. In particular,
we shall use this notation with & = C¥(Q), where Q is an open set
in C", or with # =C¥{Q), the space of restrictions to € of functions
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belonging to C* in the whole space. We shall also use the space C"’((-f)
consisting of elements in C*(Q) vanishing outside a large sphere.
If ¢ is a measurable function in Q, locally bounded from above,
we denote by L2%Q, ¢) the space of functions in Q which are
square integrable with respect to the density e~¢; the norm in
L2, ,(Q, $) is defined by

G0 =13 = [ F@Petar. fe o @b G2)
o}
where dV is the Lebesgue measure and
1@ 12 =< f@), f@) Y =D 1 frole) 1% (3.3)
7
Finally, we write L3(Q, loc) for the space of functions which are in
L2 on all compact subsets of Q.

We shall now illustrate our methods by studying the case when
p=0,¢=1, and the set Q is an open set in C* with a C? boundary.
With ¢ € C¥Q) we choose the Hilbert spaces H;, j=1, 2, 3, as
Lfo',_ l)(Q, ¢) and let 7' and S be the maximal differential operators
between these spaces defined by d. Thus, for example, u € Dy if
ueL?q (Q, ¢) and du, defined in the sense of distribution theory,
belongs to L, ,(Q, ¢); then we have Tu = Bu.

It follows from a theorem of Lax and Phillips [7] that
é(lo,l)(ﬁ) n Dy, is dense in Dy, n Dg with respect to the graph norm
f=>Iflls+ ISflls+ IT*fll,., The essential step in the proof is a
regularization by convolution along the boundary of Q in a local
coordinate system where the boundary is a hyperplane. The
operators 9/dz; and 8/dz do not necessarily have constant co-
efficients in such coordinates, so the techniques of Friedrichs [4]
have to be used.

‘We shall now describe the space C"(lo‘n(ﬁ) A Dge. To do so we note
that Green’s formula can be written in the form
I 90 Getay—— j v (i;w ——wgf) et dV + I op vwe *dS,

?z, . ) dz, PA dz;

2] ] 1'] x]
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where » and we dl(ﬁ), dS is the Euclidean surface element on 0,
and p denotes the distance to 9Q, defined to be > 0 outside Q and
<0in Q. In fact, grad p is the exierior unit normal on Q. If we
introduce the notation

—¢
ow —w 6_4>=e‘ d(we )’
9z, 0z,

J

(2.4)
we obtain

jgzﬁe ‘dV=—Jv8 we ‘dV+I 5;: P ywe=9 ds. (3.5)

2% 0
Hence

. 5u)‘=J<f. 5u)e“dV=-—I(i8,fl)Ee“dV+
o ne

+j (z g—g)ie“‘ds,

. - ¢ — L) 1 . —
iffeC" () and » €01(Q). This proves that every f €C,)(Q) 0 Dy
satisfies the boundary condition

Ef,__o(m a0, (3.6)
and that
T*f=—28,.f,. (3.7)
1

Before proceeding to the proof of estimates, we note the ccm-
mutation relations

2
s 2
(”az js) =w =2 wec (3.8)
These imply the identities
18 w8 wetdV — Iav '?_1”) e~*dV
o 5 oA

2, \ 0z,
2
=Jv13 ¢ ptav 4 I v P e4ds +
) 0z; 0z, PA 0z; 0z,

+ | 2P oSwetas— ,,(a(w.gﬁ)/az,-) e"*dS  (3.8)
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when v, w €01 (@). In fact, (3.8)’ follows immediately from (3.8) and
(3.5) if w eC? (©), and this is a dense subset of C'1 (5).

With f eé"(o,l)(ﬁ) A Dy. we now form

izs+1ssig =] 3 (s L(Z)+

=} 0z,

of, |2
%

) et dv.

(3.9)

If we drop the last term, which is positive, and apply (3.8)' to the
others, we obtain in view of (3.6)

NT*f 13+ 18513 > jz A az*g; etav+

+ j Z 5 _ﬁ.e"‘dS feChy(@ a Dp. (3.10)

30 k=1
Now recall that aQ is called pseudo-convex if on 9Q

o Zp o < dp
,Zlmﬁﬁ‘>()w}lenza—%ﬁ=0' (@3.11)

Also recall that a function ¢ € C? is called plurisubharmonie if the

quadratic form
n 22 ¢
z 0z; t)z,,j;ﬁb
2E=1

is positive semi-definite. From (3.10) we then obtain

TuroreM 3.1. Let ¢ €O ((), 2 Q €03, and assume that 9 Q is
pseudo-convex and that $(z) — € |2|* is plurisubharmonic for some
€> 0. Then we have

elfIF < WT*F13 -+ I1Sf 13, f € Dpe 0 Ds. (3.12)
Hence it follows from Lemma 2.1 that the range of 7 is equal to the
null space of §.

By a straightforward regularization procedure one can remove
from Theorem 3.1 the hypotheses that 9Q €C? and that ¢ e C2.
Instead of assuming the Levi condition (3.11) one then requires that



72 LARS HORMANDER

Q is pseudo-convex in the sense that there is a plurisubharmonic
function 7 in Q such that {z|2eQ, =(z) <M} is relatively compact in
Q for every M. Choosing ¢ as the sum of |z|2and a convex, sufficiently
rapidly increasing function of =, one can achieve that any given form
S €L?%,,)(Q, loc) belongs to the space L?;,(Q, ¢). If Q is pseudo-
convex, the equation (1.1) has therefore a solution % € L% )(Q, loc)
for every fe L%,,)(Q, loc) satisfying (1.2). This implies that the
Cousin problem can be solved in Q. If the above is extended to
forms of type (0, ¢), which only requires somewhat longer computa-
tions, we also obtain the Cartan-Oka-Serre theorem that all the
cohomology groups of Q with values in the sheaf of germs of holo-
morphic functions are equal to 0 if Q is pseudo-convex. This implies
that Q is a domain of holomorphy, so the Levi problem is solved at
the same time.

We shall now show how approximation theorems of the Runge
type can be proved with our methods. Let A(Q) be the space of
analytio functions in Q with the topology of uniform convergence
on compact subsets, or, equivalently, L? convergence on compact
subsets.

THEOREM 3.2. Let the hypotheses of Theorem 3.1 be fulfilled and
let ¢ be a constant such that Q,= {z|z € Q, ¢ (2) <c} is relatively compact
in Q. Then the restrictions to Q, of the functions in A(Q) are dense in
A(Q,).

Proor. Let K be a compact subset of Q,. In view of the Hahn-
Banach theorem we only have to prove that if » is a function in
L?(Q), vanishing outside K, such that

JvadV =0 (3.13)
for every u € A(Q), then (3.13) is valid for every u € A(Q,). This will
follow if we prove that there exist functions g; with compact sup-

< 0
ports in Q, such that » = — 2 % , for this implies that

jde ng,( )dV—O ueA(Q,).
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That (3.13) holds for every we 4(Q) implies that ve? is orthogonal
to the null space of T in L3;(Q, ¢). Hence ve* belongs to the
closure of Ry.. But the range of T'* is equal to the range of its
restriction to the orthogonal complement of Nj., which is the
closure of Ry and therefore contained in Ng. Hence it follows
from (3.12) that Ry, is closed. If we choose f so that Sf = 0 and
T*f = ve?, the estimate (3.10) gives

I S p7 0 ¢ J. 4
- 2
Zfif'faz,az,,e ar< | |v(2efdV.
0ik=1 !

The equation 7*f =v ¢* means, besides boundary conditions on f,
that

$aM
1 %
so if g =fe“, we have
% =hE -[ S d. ﬂ;_ é J 3 oé
B, = v; jg‘g,g,,azjazke dV<nlv| e dV.

We shall apply this result with ¢ replaced by suitable functions
¢, depending on a parameter A. Choose y < ¢ so that ¢ <y in K, and
let x be a convex function in C*R) such that y(f) =0 when ¢ < v,
and 0 < x'(t) when ¢ > y. Then y(¢) is plurisubbarmonic, and if we
set ¢, = ¢ + Ax($) where A is a positive parameter, we have ¢ < ¢,
with equality in K. If we now replace ¢ by ¢, in the first part of the
proof, it follows that one can find ¢* so that

SH-—u] 5 e,
1

If g is a weak limit of ¢g* in L%,;(Q, —¢) when A >+ o0, it
follows that
1

and that g; is in L2 and vanishes when ¢(z) > y. This completes the
proof.

7 = e‘AdV<Ilvl” et dv.

&

W

%
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In this theorem, as in Theorem 3.1, it is of course easy to remove
the regularity assumptions on 9Q and on ¢.

4. The 9 operator on a manifold. Let M be a paracompact
complex analytic manifold of complex dimension n. The decomposi-
tion of differential forms into forms of type (p, ¢), the definition
of the 50perator, and the definition of plurisubharmonic functions,
which we have introduced in Section 3 for domains in C”", can
immediately be extended to forms and functions on the manifold
M. In fact, all these definitions are invariant for analytic changes
of coordinates.

In order to study the operator 3 with the Hilbert space techniques
of Section 3, we must introduce hermitian norms on differential
forms in M. Thus we choose a hermitian metric on M, that is, a
Riemannian metric such that in any analytic coordinate system
with coordinates z,, ..., z, we have

n
dst= > hy de i,
k=1
where (h;) is a positive definite hermitian matrix with C® coeffici-
ents. The existence of a hermitian structure is trivial locally and
is immediately proved in the large by means of a partition of unity.
We keep the hermitian structure on M fixed in all that follows. The
element of volume defined by the structure we denote by dV, and
the element of area on a smooth hypersurface we denote by dS.
(For these and the following definitions see also Weil [11].)

n
If f is a form of type (1, 0) and f = z f; dz, in a local coordinate
1
system, we set

Sy f>=sup
dz

2 -
/ Z hy, dz; dz,.

dk=1

n
D Jid,
x

This definition is of course independent of the choice of coordinates.
The Gram-Schmidt orthogonalization process shows that every point
in M has a neighborhood U where there are n forms w?,..., w"
of type (1, 0) with C® coefficients such that (o, wt)> =38,
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(J, k=1, ..., n), where 8 is the Kronecker delta. If we set

f =2 fo,it follows that (f, f5 = > If;I%. Now an arbitrary diffe-
1 1

rential form f of type (p, ¢) can be written in a unique way as a sum

=S B g
=7 =g
where f;; are antisymmetric in I and in J, the notation X’ is
explained in Section 3, and
N =N LANSPAGN AW
We can define {f, f) by

> =1f12=Z"1fs1%
for this is independent of the choice of orthonormal basis w?, ..., w"
for forms of type (1, 0).
Let Q be an open subset of M and ¢ a continuous function in Q.

We then define L%, ,(Q, ¢) as the space of all forms fin Q of type
(p, g) with measurable coefficients, such that

g =[uretar< e
b}
forms which are equal almost everywhere being identified. If p > 0,

¢ >0, the operator 3 defines in the weak sense a closed densely
defined operator

T: Lz(m—l)(n: $) > La(p,q)(nu é)

81 L3, (Q, ¢) > L2, 114y (Q, ¢).
(See also Section 3.) We have ST =0. If Q is relatively compact
in M, if 9Q e (3, and if :ﬁeC‘(f_)), which we assume from
now on, it follows from the results of Lax and Phillips [7]

and another

that C"(M)(I_]) n Dy, is dense in Dy, n Dg for the graph norm
Sl +IHT*f 1l + 1Sf .

As noted by Ash [2], the operators S and T* have very simple
expressions in terms of the ‘“moving frame” wl,...,w", s0 the
arguments of Section 3 can be reproduced with rather small modi-
fications. However, at one point in the proof of (3.10) the argument
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was much too crude. Namely, when passing from (3.9) to (3.10)
we dropped the square of the norm of 3/, for all jand k. Now it
turns out that these terms become very important when ¢ is not
plurisubharmonic or 9Q is not pseudo-convex. Another integration
by parts should then be performed in some of these terms. A careful
analysis along the lines of Hérmander [5], Chapter VIII, gives the
following results.

THEOREM 4.1. In order that, for & fived ¢, there shall exist a
constant C such that

jlflz e*dS < O(IT*F13 + 712 + 1 12), £ €Co@ 0 Dye,
i
(4.1)
1t 1s mecessary and sufficient that the Levi form has either at least n—gq
positive eigenvalues or at least g+ 1 negative eigenvalues at every point
on 9Q.

We recall that if p denotes the distance to 9Q, defined to be posi-
tive outside Q and negative in Q, then the Levi form is the restriction
of the quadratic form <8dp, tA%) to the plane (@p, t) = 0. Here
¢ denotes a form of type (1,0). It is easily seen that the condition
on the Levi form found in Theorem 4.1 is independent of the choice
of hermitian metric. When the Levi form is positive definite, the
estimate (4.1) is due to Ash [2] and Kohn [6].

Combining the estimate (4.1) with results from the theory of
elliptic systems of differential operators one can prove that the
hypotheses of Lemma 2.2 are fulfilled. (See Kohn [6]. It is very
important in the proof that C'&q)(ﬁ) 0 Dy is dense in Dy, n Dy for
the graph norm as we observed above.) Hence the range of T is
closed and has finite codimension in the null space of S when the
conditions on the Levi form in Theorem 4.1 are fulfilled.

To proceed further we must be able to vary the weight function ¢
as we did in proving Theorem 3.2, and this also leads to a simpler
proof of the fact that the hypotheses of Lemma 2.2 are implied by
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those of Theorem 4.1. In the next two theorems we shall therefore
study estimates where ¢ is replaced by a function of ¢.

TaEOREM 4.2. Let 2y €Q. In order that for some neighborhood
U cQ of 2, there shall exist constants C and , such that

7 IF 1B S CULT* f124 4 USF12), 7> 7o (4.2)
for all f e%_q)(f_l) with support contained in U, it is necessary and
sufficient that the hermitian form (2 545, t AT, where tis of type(l, 0),

has either at least n — g 4 1 positive or at least ¢ + 1 negative eigen-
ralues.

Here T* denotes the adjoint of the operator 7' = § with respeot
to tbe norms || |, so that the coefficients of the differential
operator T* involve .

For neighborhoods of boundary points and for non-linear functions
x(#) of ¢ instead of linear ones as in Theorem 4.2, our results are
not quite complete but still adequate for the applications.

DerintTION 4.3. We shall say that a real valued function ¢ € C?
satisfies the condition A, at a pont z, if grad $(z,) # 0 and

n—1
> W B 8 z max(— g, 0) > 0,
1

where A} < Ay < ... < A, are the eigenvalues of the quadratic form
<29 ,t Aty with respect to the form (t, £y, and py, ..., Pin—q are the
eigenvalues of the same form restricted to the plane (3¢,t) =0. If at
least n — p of the eigenvalues ; are positive or at least g + 1 of them
are negative, we say that ¢ satisfies the condition a,.

It is easy to see that 4, implies a,. The condition a, is independent
of the choice of hermitian structure, which is not true for A,. The
difference between the two conditions is rather small, however, for
if ¢ satisfies a, it follows that exp (y$) satisfies 4, if the constant
y is chosen sufficiently large.

THEOREM 4.4. Let 2, € Q and let ¢ satisfy condition 4, at z,.
If 2z, € 9Q we also assume that ¢ is constant on 9Q and that ¢ < $(z,)
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in Q. Then there is a neighborhood U of z, and a constant C such that
Jor all increasing functions y €C* (R) and all f € C}, ;) () n Dy

with support in U n Q we have

[ X6 1710 < T Pl + 1 +17 ) (89)

Q

Without giving the details of the proof we shall now state an exis-
tence and approximation theorem which follows from Theorem 4.4.
In doing so, we use the following notation.

DEFINITION 4.5. If Q is relatively compact in the manifold M and
¢ is continuous in Q, we denote the quotient space Ng/ R, by I_i(m) (Q).
(Recall that Ng = {f| f € L%, (Q, $), 3 f = 0}, and that Ry, is the range
of the weak maximal 3 operator from L -1(Q, ¢) to L2, ,(Q. ).
This quotient space is of course independent of ¢ and the hermi-
tian structure.) We also denote by H,,(Q) the quotient space of

{f 1 feL2,,(Q, loc), 3f = 0}
with respect to
L2, 5(Q, loc) n {3f | f € L2,,_;(Q, loc)};
here Q may be any paracompact complex analytic manifold.

As mentioned in the introduction, the Dolbeault theorem (see
Malgrange [8]) gives a natural isomorphism between the space
H, ,(Q) and the ¢* cohomology group of Q with values in the sheaf
of germs of holomorphic p-forms.

THEOREM 4.6. Let Q be a complex analytic manifold of complex
dimension n, and let ¢ be a real valued function in C3(Q) such that the
open sets

Q, ={z|2eQ, ¢(z)<c}
are relatively compact in Q for every real number c. Further assume that
¢ satisfies the condition a, in the complement of Q, for some c. Then the
restriction homomorphism H, ,(Q)—> E_I(p,q)(Qc) is injective for the
same ¢, and I?(M)(Qc) has finite dimension. Further, every solution
ue L%, _1)(Q, ) of the equation du=0 belongs to the closure in
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Lz(m_l)(%,, @) of the restrictions to Q, of forms wu, € L?, , 4(Q, loc)
such that 9u, = 0. If ¢ salisfies both conditions a, and a,,, outside

Q,, the homomorphism H.,,(Q)—> ﬁ(,,,,)(Qc) 18 an isomorphism.
This is essentially a result of Andreotti and Grauert [1].
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THE 3-NEUMANN PROBLEM ON STRONGLY
PSEUDO-CONVEX MANIFOLDS

By C. B. MORREY, Jr.

1. Introduction. In this paper we present a simplification of
the recent solution due to J. J. Kohn ( [7], [8] ) of the so-called
3-Neumann problem introduced by Garabedian and Spencer [5]
for complex exterior differential forms on a compact complex-
analytic manifold with strongly pseudo-convex boundary. The
problem in its present form was investigated by D. C. Spencer and
J. J. Kohn [9] by means of integral equations. The present author
[13] solved this problem for the special cases of 0-forms and
z-1-forms (i.e. forms of the types (0,0) and (0,1) in our current
notation) on certain ‘“tubular”’ manifolds and used those results
to prove that any compact real-analytic manifold can be analyti-
cally embedded in a Euclidean space of sufficiently high dimension.
Unfortunately there is an error in that paper which is corrected in
§2 by using the results of Kohn presented in this paper. These
results apply to forms of arbitrary type (p,q) and the solution
forms are shown to be of class C* on the closed manifold provided
the metric, boundary, and non-homogeneous term €C* there.
Recently Hormander has extended some of these results but they
are not published as yet.

In his recent papers, Kohn sketched applications of his results
(a) to the study of the d-cohomology theory, (b) to the study of
deformations of complex structures, and (c) to obtain a new proof
of the result of Nirenberg and Newlander [15] which showed that a
complex analytic structure could be introduced on an integrable
almost-complex manifold. However, part of the interest in this
problem to those working in partial differential equations lies in
the fact that the problem is not a regular boundary value problem
in the sense of Agmon-Douglis-Nirenberg ( [1] and a forthcoming
paper on systems), Browder [4], Lopatinsky [11], etc. We shall
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give an example below after we have introduced the notations
and sketched the results; we shall also show the connection with

the 3-cohomology.

We assume that M = M ubM is a compact complex-analytic
manifold having boundary bM of class C*. We assume that we
are given a hermitian metric

ds® =g, dz* d2* (ggy =Gupr o, B=1, ..., V) (L.1)
which is of class C* on M. We suppose that the function r € C*(H)

and equals the negative of the geodesic distance to bM for points
within a distance — s of M, s, <0. It is clear that there exists

a slightly larger such manifold M’ such that M c M’ and that the
metric and r can be extended to € C® (M’) so that r is the geodesic
distance from bM on M’'—M. The strong pseudo-convexity of
the boundary bM implies that there is a constant ¢,> 0 such that
at any point P, on bM (where r = 0) we have

7.5y TPT” > ¢, g5, T* T (1.2)
for all complex vectors (7', ..., 7”) such that
7y T =0. (1.3)

If f is any other real function of class C near bM such that vf # 0
and f =0 on bM, and f <0 on M near bM, then the positiveness
of the form fg, T° T for T such that f s T# =0 follows. In the
above and throughout this chapter we assume that the operators
9/9z* and 9/0z* are defined by

2 =a* + 1y, 2 =2 — iy (1.4)
We let A denote the set of all exterior differential forms of class
C= (M) (i.e. C* on M) and denote by AP the set of all those which

are of type (p, ¢), i.e. which can be expressed in any local analytic
coordinate system in the form

1 Repeated Greek indices are d from 1 to ».
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== Z Biipiyndg BN oo NdZP NN L A dFe (1.5)
i) <..<ip
B1<...<iq

We abbreviate the notation to
¢ =X ¢, d' NdZ; (1.6)

when we use this notation I and J will always stand for increasing
sequences as in (1.5). However, we shall often wish to have the
é15,..i, defined for all sequences of indices j, ... j,; in this case,
we assume that the ¢’s are defined so as to be antisymmetric in
the j-indices. We shall at times wish to do the same with the I
indices and shall sometimes write ¢,z where R = (ry, ..., 7,_,)
with 7, <... <7,_; and « runs 1 to v independently of R.

We shall wish to consider M (or M) as a real manifold with
metric given in (z,y) = (z, ..., 2%, ¥y, ...,y") coordinates by (1.1)
which becomes, on setting dz* = dz* + idy* and dz° = da® — idy?,

G1ap(da® daP + dy* dyf) + 20,5 d2*dyf,
9ot = G1ap + G2up> G1px = G1aps P22 = — J2ap- (1.7)
Then the dual *¢ would be defined by first expressing ¢ in terms
of real differentials dz* and dy* and then taking the ordinary real

dual of the real and imaginary parts. This procedure introduces
a factor 2°*7 into the customary inner product

Gh = [4red 1)
M
of two forms of the same type. Along with most workers in this
field we omit these factors. The space 27 is the completion of
the space A?? using the inner product (1.8) and & is just the Hilbert
space sum of all the 7. For two forms of the same type, it is
convenient to define the point function {(¢,¢) by

(hyp>dM =¢ A wh, <, 9> = |$I?

where dM is the element of volume on M. The formulas for (¢, ¢),
dM, and (¢, § ) are
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@ $) = j<¢, $>am (1.9)

M
where in any analytic coordinate system
dM =T(x, y) dxdy
(9> =g ¢ b1y iy (1.10)
if ¢ is given by (1.6) and ¢ is correspondingly defined. Here I' is
the v x v determinant of the g,, g%/ is the p x p determinant
of the g*% and g’’ is the ¢ X ¢ determinant of the gi's. If we

use the antisymmetry of the ¢’s and ¥’s in all their indices, we
may write

1 o . -
()= 3 gl g ghh gy e Ve ki

For forms in % we define the operator 3 as follows :
If ¢ is of type (p, g) with ¢ = v, we define 3 = 0; if ¢ < vand ¢ is
given by (1.6), we define
0p = Ndyyze d7* A d7F A 7. (1.11)
For forms in A we define p ¢ as follows:. If ¢ € A*? and ¢ =0, we
define ¢ =0; otherwise we define ¢ as that form of type (p,q — 1)
such that
®4.9) = (4, 3) (112)
for every i in %?¢~! with compact support in M. As is seen by
integrating by parts (see § 3), this leads to a formula of the form

0 Pn = (— 1)+ ¢ () 08 + TAFE bs.r), (1.13)

for suitable functions 4§, and to the general formula

$,39) =0 ¢.9) + I (o, dS (1.14)
M
where dS is the invariant surface element on M and
w=vd wp =(— l)’g"’cf,’dr,p. (1.15)

From (1.14), we may also derive the formula
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@6.9) = @00+ [ Chridas. (L16)
by
We let ¥, denote the subset of ¢ in % for which v¢ =0 on bM.

It follows immediately from (1.11) and the antisymmetry of the
exterior product that

994 =0,$c¥. (1.17)
From (1.14) and (1.18) it follows that if ¢ and ¢ € U, then
04,3 =6, 33) — [ +4,5>ds

M

=(bd¢ ¢) + J. (vDé y)dS. (1.18)
bM
By first letting y be arbitrary with compact support in M and
then letting it be arbitrary we find that
904 =00n M and vbé =00n bM if § € U,. (1.19)

The 3-Neumann problem is to show the existence and regularity
of the solutions of the complex Poisson equation

Oé=03¢+3Dp=w (1.20)
subject to the boundary conditions
v$ =vd$ =0onbM. (1.21)

This boundary value problem is seen to arise formally from the
variational problem of minimizing the integral

d($, $) — 2Re(w, §), d(, ¥) = (33, 3) + (04, DY)  (1.22)
among all ¢ € Ao(vé =00n bM). If wand ¢ € C>(J), we see that '3
satisfies

(34, 39)+ (04, DY) — (w, ¥) =0
—@é—rap+ [ (<rTh4> =<4 vgd}as )

vy
for all § € %, ; the second line follows from (1.14) and (1.16). Since
v = 0, we see from (1.23) (and known formulas) that the condition
vd$ =0 on bM is a natural one.
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2. Results. Examples. The analytic embedding theorem. In
order to get a complete picture of the results we let 7' be the closure
(with respect to the composite Hilbert space £) of the operator das
restricted to U and let 7* be its adjoint. It is easy to see (using
(1.14)) that A A D(T*) = A,. We then define

L = T*T 4 TT* (2.1)
We also define the domain D = D(T) n D(T*) and § as that
subset of D for which 7'¢ = T*¢ = 0; we define D» =D n L¥ and
H7 =9 nL*. 1In §5, we first prove the following simple prelimi-
nary results :

TaeorEM. R(T) c D(T), R(T*) c D(T*), and T* = (T*)* = 0.
L is self-adjoint and ¢ € D(L) <—=> ¢, T, and T*pall € D.
$eLOR(L) = Lp=0¢— ¢ € H.

Then in Sections 5 and 6, we prove the following principal results.

THEOREM. (i) R(L) =8 © 9 and § s closed.
(ii) Ifwel ©9, there exists a unique
$e€D(L)n (R © 9) such that L = w.

(iii) If we define Nw = 0 for w € § and Nw as the solution ¢ in
(i) if w € © 9, then N is completely continuous.

(iv) Ifq> 1, §™ is finite-dimensional.

(v) If we¥, then Now € Y.

) If ¢> 1, 5 c ug.

Parts (i) through (iv) are proved in §5 and require only the Hilbert
space technique used there and the @,, H}, regularity theorem 4.4.
This theorem is closely related to some recent results of Lions and
Magenes [10]. The smoothness results in (v) and (vi) are proved

in §6. One of the principal tools in the proofs is the important
formula (3.15) of integration by parts.

Before proceeding, we introduce some additional notations.
The manifold M, = M(s) for s < 0 consists of all points P on M
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for which 7(P)<s. An analytic coordinate patch with domain @
and range N is said to be tangential at some point P, of bM if a
part g of bG contains the origin and corresponds, under the mapping
from G to N, to N n bM, the origin corresponding to P, and at the
origin ¢,4(0) =8,, and the exterior normal to M at P, corresponds

to the positive y" axis (i.e. rv,(O, 0) =1). In case r=(7},...,7)or
(745 ..., 7,) is & set of indices, 'r,; denotes the set

(7L, .., 7L 41 ),
If « =(«,, ..., ®,) is a sequence of non-negative integers, then D*

means D:,l D::. If ¢ is a vector function, v ¢ denotes its gradient.

Next, we give an example to illustrate the fact that the 3-Neumann
problem is not regular, except in the case where ¢ = v when it
reduces to the Dirichlet problem since 3¢ = 0 and v = 0 on bM
if and only if ¢ = 0 on 6M in that case. In the case ¢ = 0, the
problem is obviously not regular since the null space is just the
space of holomorphic forms §?°. To show that the problem is
not regular for 1 < ¢ < v — 1, we take, as an example, v = 2, M the
unit ball in R, the metric Euclidean, and set

$ = $1dB + §,d82, §, = — D0, $, =710,

3 —2r2
6

= A(2), r® = z121 4 2232

where A(z) € Hy (M) and is holomorphic on M® but is not in
HZ(M). Then

rovp=21¢, + 3%, =0, 3 = wdz! A dz?
@ = fou — b= 21 Oy + 220y + 20 = (1—1%) A(s) € Hyy( M)
Ap, = —Z2AD— D, Ad, =2' AD + D,
AD = — }(21 4, + 22 A + 24) € Ly(M).
It follows easily that ¢ e D(L) but ¢ does not e Hj (M) as it
would be if the problem were regular.

We now prove a theorem indicating the connection with the
d-cohomology theory.
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THEOREM. If ¢ € AP withq > 1and if 3¢ = 0, there is & harmonic
field ¢o(€ H™) such that $ — ¢, = 0O for some ® e Y1,

Proor. First of all, suppose feC* on R!, and we define
@, = f(r)(v$), f(0) =0, f(0)=4, f(r)=0 for r< s, <0 for some
such s,. Then, from Lemma 6.2, it follows that

(¢ — 0®,) =0 on bM.

Hence we may assume that ¢ €%2%. Then, let ® =NDgé. Then
® €C=(M). Also, since ¢ € U2, we see from (1.16) that

@00, bg) = — I (TD®, v dS + (30D @, $) =0.

oM
Hence, since ¢ = 0 and »d® = 0 (so that »vd 3 ® = 0 by (1.19)),
D(p—30) =3¢ —dD) =0andp —ID e,
80 ¢ — 3D e H™.

The following analog of the Kodaira decomposition theorem is of
some interest.

THEOREM. & =9 @ D@ C where § has its usual significance,
D is the totality of forms of the form 3¢ for some $ €D, and C 48
that of forms of the form by for some  in D.

ProorF. It is clear that if 5 € § and ¢ and € D. then the forms
h, 3, and dy(ie. T and T*}; seé Theorem 5.6) are mutually
orthogonal. Since 7 just consists of the holomorphic forms of
degree p and the $?7 with ¢ > 0 are, finite-dimensional, it follows
that § is closed. If w €2 © §, let ® = Nw, ¢ =b®, and ¢ = 3.
From our principal results, it follows that ¢ and y €D n (2 © 9)
and that

3¢+ by =w and D =234 =0. (2.2)

It is clear from the first statement above that the decomposition is
unique. That C and D are closed follows from our principal results
and the particular choice of ¢ and y in (2.2).
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We can now present a simplification and correction to the proof
given in [13] of the possibility of embedding analytically a real-
analytic abstract manifold in Euclidean space. The error in that
paper was in the proof of Theorem C of that paper which was
given in §§8-11. The embedding theorem was proved by Bochner
for compact manifolds in 1937 [3] assuming the existence of an
analytic metric; this result was extended by Malgrange [12] in
1957 to the case of non-compact manifolds. The result of [13]
was generalized to manifolds with a countable topology by Grauert
[6] using methods of the theory of functions of several complex
variables and some results of Remmert which had not been published
at that time.

We now outline our method of proof. First of all, on account of
Bochner’s result, it is sufficient to show the following :

THEOREM A. With each point P, of the given real-analytic
compact manifold M, there are associated v functions w, which are
analytic over the whole of M, and have linearly independent gradients
at P,.

For the gradients will remain linearly independent in some neigh-
borhood of P, and thus M, can be covered by neighborhoods
N, =1, ..., @, where the functions w,,, y =1, ..., v are analytic
over M, and have linearly independent gradients over R, ¢ =1, ..., Q.
The mapping w,, = w,(P) maps M, analytically into Euclidean
space of " dimensions; the mapping may not be 1 — 1 in the large
but is locally 1 — 1 and non-singular and the Euclidean metric
induces an analytic metric on M.

To prove Theorem A, we first embed M, in an open complex
extension M (see [13], §2 or [17] and [18] where this embedding
is discussed for manifolds with countable topology). Let P, be
any point on M, let 7, be a complex-analytic coordinate patch
with domain @, containing the origin and range %R, containing
P,, in which P, and the origin correspond and the part of G,
in R (i.e. for which y = 0) corresponds to N, n M,, and choose a
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Hermitian metric (1.1) which is of class C°(M), which is real
on M (i.e. g, is real on M), and for which we have

guﬁ(z: y) = saar (xr !I) on Gox (2'3)
with respect to the coordinate system =,.

For points P on M near M,, we define r'(P) to be the geodesic
distance from P to M. It is easily shown (see [13], §3) that the
function K(P)=[r'(P)]?/2 is of class C* in a neighborhood of
M, including all points where 7'(P)< R,. We define M, as the
complex analytic manifold 7'(P) < R. It is easy to show that
(gup(, 0) is real)

4K o0(x, 0) T*T8 = K o p(z, 0) T*T# =g ,(x, 0) T*T*  (2.4)
for any complex-analytic patch which carries the points (z, 0) into
M,. Thusif 0 < R< R,, bMp is regular and of class C* and M, is
strongly pseudo-convex; the function r(P) used in this paper reduces
to v'(P) — R on M and the pseudo-convexity follows from (2.4). In
fact, since 7(P) =7’(P) — R and K(P) =[r'(P)]%/2 on M, we see by
following through the proof of Theorem 5.8 as far as equation (5.18),
that we obtain

dg(¢) =Ip($) + zgln 9T 9 97 1,63y Brus brsr AS(P)
bM(R)
> —Ci($ ¢)r+Cy B! |$12dS, ¢eD(Mp).

bM(R)
Thus we obtain

|$1*dS < CR[dg(¢) + ($: $)r], 0 < B < By < Ry, $ €D™(Mp),
bM(R)
(2.5)
where C is independent of R.
We now sketch the proof, given in §7 of the cited paper [13], of
the important inequality

(¢, $)r <CR?dp(¢),0 <R Ry < Ry, ¢ €eDH(Mp), g> 1. (2.6)
Incidentally, this shows that $P(My) consists only of the zero

element if ¢ > 1 and R i8 small enough. We conclude first that
there is an R;, 0 < Ry < R,, such that M(R,) can be covered by
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a finite number of neighborhoods RN; each of which c N,, the range
of a complex analytic coordinate patch 7, of the type of 7, (i.e. real
on M,) with domain G,, and is the range of a ‘“‘quasi-geodesic”
non-analytic (but C*) coordinate system 7; with domain of the
form (-;'0, X B(0, R3), where Gy, is a domain of class C® in real
v-space R” and (_?o, c@,nR. If P e, its quasi-geodesic coordinates
(£, 7) with respect to 7, are determined as follows: There is a
unique geodesic through P which is orthogonal to M, at some
point of M,. Let its equations be

e =2a%r), y¥* =y*(r), 0< r < ' (P),
in the (z, y) coordinates of ., We define
£4(P) ==%(0), {*(P) = "y*(0) ('y = dy/dr).
Since the metric is real along M, we see that
ds® =g,,4(, 0) (dz* daf + dy* dyf), along M,,,
= Grsl@, 0) (d2* AP + aL* dLP).

By using the Lagrange method of reducing a quadratic form to a
sum of squares, we introduce the n* by

L=dy&) v
where the dj € C® and the matrix is non-singular so that
ds? = g,,4(£, 0) d¢* d¢? + 8,5 dn® dyf along M. 2.7)
From the construction, it follows that
K(P) =|9(P) |*/2, r'(P) = |9(P) |. (2.8)

It is shown in [13], §3, that the coordinates are C.

With each ¢ and each R, 0 < R < R;, we define an analytic
manifold M, as follows: Let %, = 7 [Gy X B(0, B)], and let
G = 77'(Mp); clearly Gy, = G,z A R". Choose positive numbers
a, and 4, such that if we define

F,=FD, FO:|a*| <4 a=1,..,v,
then

Gz, € F® x B(0, 0,/2), am c FP.
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Extend the metric g,,, to be of class C* for all (z, y), to be periodic
of period 24, in each z* to be real if y = 0, and so that g, 4(z, y) = 8,4
for all z on and near 9F, and all y with |y|> 3a,/4. Then, if R is
small enough, the quasi-geodesic (£, n) coordinates can be extended
to all (£, 5) with || < a, to be periodic of period 4, in each £.
We then let M,, be the set of all (z,y) corresponding to the (£,4)
with |5 |< R, any two points (z,, y) and (z, y) where each
x5 — 2§ =24, 7%, n* an integer, being identified.

Now, suppose ¢ € D"(M), 0 < R< R;. Let {{,},s=1,...8, bea
partition of unity such that each {, eC*(M r,) and has support in
M, % for some ¢ ({, need not vanish on bMp,) and let ¢, ={, $.
Then, by approximating ¢ by smooth forms, as we may on account
of our principal results, we see that each ¢, e D?(M ). But now, we
may associate each ¢, with a form 4,, on M, by defining the com-
ponents of ¢, on G, to agree with those of ¢, there and to vanish
elsewhere on M, ;. Then, clearly,

dp(d) = dr(bu): (0 d)r = (B> ke dr($,) < O [dp($) + (4, $)a]

since the {, do not depend on R. Accordingly, it is sufficient to prove
(2.6) for forms € D™(M,y), since, if this is done, we would have

S
# k< D (b d)k < CSEda(#) + (4, $)al
=1

from which the result follows easily if 0 < R< R, < R,.

So we consider some M, and drop the £. From Theorems 5.6 and
5.4 it follows that we may write
¢ =0+ H, dp($) = dg($y) + dg(H), ¢y € Hyo(Mp) 0 (€7 © §7).
(2.9)
We shall hereafter denote the components ¢;, simply by ¢'.

Then
R

($0> $o)n =j <oy 4o dSdr

bM(r)

R
< C'Ir”“dr[dfj Z | gi(r, £, 0)|2 X (6), (2.10)

F z
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where Z = bB(0, 1) and 6 denotes coordinates on b.B(0, 1), (¢,7)
being the quasi-geodesic coordinates, and (r, 8) being polar coordi-
nates in the »-space. Since ¢,(R, ¢, 0) = 0, we have

R
Bi(r, £,0) = — j 8,3, & 0) ds
"R (2.11)
[$5(r, &, 0)2< (R—1) I | $,(s, €, 0) |2 ds.

r

Substituting (2.11) into (2.10) and using the condition & > r, we
obtain
($0 o)r < CR2 (¢, ¢o))n = CR*((¢,, 'f’n))n, < CR? dn,(‘f’o)
=CR* dy(¢o)
(for the definition of the strong norm ((¢, ¢)) in H}, see §5) if we

define ¢, =0 for R<r< R; and use Theorem 5.4 for M(R;).
This is (2.6) for ¢,.

To prove (2.6) for a harmonic H, we shall prove for any harmonic
H, whether in D™(M}) or not, that

(H,H)R<CR I (H, HYdS (for R small enough) (2.12)

bM(R)

from which (2.6) follows, using (2.5). We may assume H eC>(My).

To prove (2.12), we see as in §5, that the real and imaginary parts

H’ of the components satisfy a system of differential equations of

the form

o H), o+ 26" Hi, s+ c*# H s+ 2d* Hy, + 2¢f* H + fi H* =0
(2.13)

in terms of the quasi-geodesic coordinates, where
a* (£, 0) = gi*(¢, 0), b(¢, 0) =0, c*(£, 0) =8%.  (2.14)

Let us now take spherical coordinates in the 7-space as above.
Then the equations (2.13) are seen to be equivalent to
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Hi+(v—1) 17 Hi+ 172 Ay H' + 207 Hlgy + 71 O Hipy +
+ 2rB* H) + 2B Hl, , + A" H, + 2Dj* H!, +
+ Ej Hf + 2r~' Bl HY, + FJ H* =0 (2.15)

where A, denotes the Beltrami operator on the unit sphere and all
the coefficients € C® in (r, ¢, ). We define the positive form @ by

N
Q=)D [(H)*+r2 |y, H |*+2C"H Hy, + r~1 C* H}y Hiy +
i1
+ 2rB° Hi, Hi + 2B Hi, Hi, + A* Hi, Hi,), (2.16)
F(s) = j D [Hi(s, £, 0)]* df dZ(6). (2.17)
Fxz ?

Then we see easily that

Fls)=2 j > His, £6) His, £, 6) d d=(6)

Fxg 7

Frs) =2 j S 1H B, + (i) dg dE @.18)

Fxz J

Fo)=2 j S HiE,0) B¢, 0) v dgdz = o.
Fxg J J
Using (2.15) to eliminate the HY,, integrating by parts with respect
to the £* and 6”, and using the fact that
[ utpuas = — [ 1ouizaz
b b
we find that
Fr(s) =2 j {Q—I—Z[— (v—1)r~' W H 4+ 2C%, BV Hi +
FXZI J

+rCRH )y + 2B, B H + 2By HL, + [ (219)
+ A% H) Hiy]— 2 Dj* B HE, —etc.} dEdz(0).

Using the positivity of @ and the simple device |2ab | < a2+ =152,
we conclude from (2.19) that
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F'(8)>— (v—1)s 1 F'(s) — A2 F(s),

where A depends only on bounds for the coefficients and their
derivatives (i.e. on the metric). Thus if R is small enough

F(s)< 2F(R),0< s< R. (2.20)
Thus

R
(H, H)p < CI 71 F(r) dr < CR'F(R)< CR (H,HYdS
0 bM(R)
as desired.

The inequality (2.6) states that the constant C, in Theorem 5.9
can be replaced by CR? for the manifolds M ,. Thus, from Theorem
5.10 we conclude the following theorem :

TueorEM B'. If weD(LY’) on My and R < R,, then
INgLpw| < Cg R® || Ly wl, (2.21)

where || || denotes the norm in Q09,

We now show how to prove Theorem A using Theorem B’. We
first construct, for each R, functions w,,,, y =1, ..., v which
€D (LY), areof class C*(M z), which are analytic at least in the ball
B(P,, R) with

Wy p.8(0) = 8,0 (with respect to )
| Lo, | < Z, B* (on Mp) (2.22)
h =[v/2],0 < R< R,< R,, Z, independent of R.

To do this we first define w,, =2" in B(P,, R;) with respect to
79, extend w,, to be of class C* on My u B(P,, R;). We then extend
wy, into some My using Whitney’s extension theorem, assigning
the various derivatives of order < & + 1 with respect to the y* in
each complex-analytic patch, real on M, in such a way that the
Cauchy-Riemann equations and all their derivatives of order < A
hold along M. Thus the second condition in (2.22) is satisfied. The
functions w,,, are constructed to €D (L%’) by a method like that
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of Lemma 6.2 which retains the second condition in (2.22). Then
if we set wyp, = Ny Lpw,p,, we see from Theorem B’ that

[l wgg, | < CR|| Lpwap, || < ZyRM 2472,
But also wyp, = wap, — Wy, is analytic on My, s0 wyy, is analytic
on B(P,, R). From the inequalities of (2.22), it follows that

|V W3k, (0) | < Z3RE, =1+ (v/2) +[v/2] —v=} or 1.

Hence if R is small enough, the gradients of the wy,, are so small
that those of the wyp,(0) are linearly independent at 0.

3. Some important formulas. In case ¢ € U™, 3¢ was defined to
be 0 if ¢ = v and was defined in (1.11) otherwise. Starting from
that definition, we obtain

-~ (=1 oo
o= qg) Z Z Z'ﬁl,i,‘..th“ dzl A dz* Nd#h A .. A d2e
T jrdg @
(=17 é -‘[d' dz® A dzh A d3
= o N\ dzh
(¢+1)!4 gﬂ: Thed | 4 A 2 A +

q
+ Z (— 1P d AdBA .. NAP A NdBBHIA LA dzfq]
8=1

(3.1)
q+1
= (- 1)"2[2 (— 11 ¢,.M,;n,]dz’/\dz"(|M|=q+1,q<v).
LM - y=1
The form (3.1) has the advantage that the coefficients are anti-

symmetric in all the indices m,,...,m,,,.

We shall be concerned with boundary integrals over the manifolds
bM,. We note that the function r defined in §1 is a real-valued
function of class C*(¥) such that |y | (as measured on M) =1 near
bM, r=00nbM, and r < 0 on M near bM. If we let dM(P) denote
the volume element and diS(P) denote the surface element along
some bM, at P, then

dM(P) =T(z, y) dzdy, dM(P) = dS(P) dr(P)

(3.2)
dS(P) = |yr(z, y) |1 D(z, y) dS(, y),
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(x, y) corresponding to P in some coordinate patch ; here |yr(z, y)|
denotes the gradient of » with respect to the coordinates (x,y) and
dS(z, y) denotes the surface element of the surface of integration in
the (z, y)-space. Let G be the domain of an analytic coordinate
patch having range i such that N n bM is not empty and let g be
the part of bG which corresponds to % n bM. Then, if ¢ or ¢ vani-
shes on and near b@ — g, we note that

j H,pT(x, y)dzdy = j $.15.lvr(x, )7 Dz, y) dS(z,y) —
a v

— In[:[I‘ -1 Er T'$].T dzdy
-

and the integral over g can be expressed in the form
J ¢ .8 dS(P). (3.4)
NAdM
Next, suppose that ¢ A%, ye APT~1,¢> 1, ¢ is given by (1.6),

and ¢ is given by a similar formula. Then, using (3.1), (1.10), and
the antisymmetry in the indices, we obtain

Gy =5 3 S g x

q 1, K (9)(m)
56 z (=171 gy Dkmymy (3.5)
y=1
—Z Z z ("U"/‘xuﬂ gx! 9"' ad ¢lun
I,K RL apB

If we cover M with coordinate patches and use a partition of unity
{L,}, each with support in one patch, let 4, = {, ¢, integrate by parts
using (3.3), (3.4), and (3.5), and add up, we obtain

@) = | 33 5 o G dS)+ 04 0)
M O ’

where w = v is given by (1.15) and D¢ is given by (1.13) where
the A, are determined so that
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(bd’, ¥) = .‘. Zg™ 9"‘ (b'f’)m %{L dM(P)

M
- ']
=(— 1! i[.ll“ {I‘—l 5 (DgXI ght g8 ¢l.uﬁ)} aM(P) (3.7)

for all € YPa-1,

Now, let ¢ and € %??; we wish to develop an important formula
for

d(¢, ) = (g, DY) + (39, 3p). (3.8)

Clearly, we may write ¢ and  each as sums of forms each having
compact support and such that if the supports of ¢™ and Y
intersect, their union lies in one coordinate patch. So we assume
¢ and ¢ have supports in one patch. Suppose ¢ and ¢ are given by
(1.6), g< v, and p = 34, o = 3y, then p and o are given by formulas
like (3.1), so

-

v q+

- = 1 ,
@9 =5 i; ,,.,,.,m%lgl 2, I
rp.fg41=1

X g™in...gMat 1+l ¢Im’.,§"‘y '/TK,r'sz'! aM = Il + II
(3.9)

where I, is the part of the sum where § = y and I, is the remainder.
We obtain'

I,= j S g7 9 rysarrn dM. (3.10)
Using the antisymmetry of the indices we see that
Bt o, Jx.qm = (= 17" Gy oy PRy s

where m’,; denotes the m sequence with m, and m; both omitted,
etc. Thus, we obtain

== [ 200" ¢ b FaprudM. 1)
M
Using (3.7), we thus obtain (interchanging («, y) and (8, 8) in (3.11))

1 Strictly speaking, the integrand in I, is not invariant under changes of co-
ordinates ; however the final result in (3.15) is invariant.
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dig, ¥) =1I,+ J. Zg%! g7 90 9 — b1 mizy b aret +
+ rt + ZAl% b0.0v) Graron + AL, Toar)] T dudy
=I,+1, (3.12)
Now we define the forms 'y and ‘w e Y?4~? by
"x=X'xn NP =(—1v§, 'w =(— 1w =" wgpdz® A dZ¥

(3.13)
"X = 9% 7.8 ¢l,u’ ‘wgp =g¥ L Ymer -
Next, we note that
2(¢1,mﬂ 'Zx.u'rr — Pl Fxarh)
(3.14)

) - - 2 -
= o (1,00 ¥x 72y — Prourr Ym7) + P (B1,008 PR 37— br,uPrs1e8)
g1 'f’l,uzv ="Xtar — (U Top + 925 78) b1
9 o g = Brrs — (97 1oy + 95 1, %(,u"

We then integrate Iy by parts until there are no terms like
$0.av:8 80d 55 in the remaining integral over M. The result
is of the form

d(¢, ¢) = L[ z {gm 9'"' 9"! b $Klz? - CHLELE ¢ $KL:3 +
+ CRLIeg e gy + DVEE Gy gy} AM 4
+3 I Zg* ST {'xr, [e(D)ir + BEF By av] + (3.15)
b

+ ‘@gre(dd)s, + Bii* dy,av] —
— 8" Xyav brar — 9% ‘Bgrs bt
+ 278, 0% 9 b1 Ex,sr} ds

(e =(—=1p**").

In the case ¢ = v, 3 = oy = 0; a special computation leads to the
result (3.15) in this case. In the case =0, D¢ =Dy =0="y="w
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and (3.15) holds without a boundary integral. In the case ¢ =
it follows that v$ = 0 on bM <—> the components of ¢ =0 on bM.

From the result (3.6) it follows that ¢ €A n D «<=> vy =0 on b M.
But now if § and y € A n D, the boundary integral in (3.15) is seen
to reduce to that of the last term since ‘y and ‘w vanish on bM
and hence

"Xrav = Ap, 7y and '@y p8 = figy 7,8 on UM

for suitable functions A;, and pg,. From our hypothesis of the
pseudo-convexity of bM, it follows that
1,8 7 7 > C gy, 77, C > 0, whenever (3.16)
rar=0.
Consequently, if y =¢ and peU 1 D, then

I 9% 5 153y 9 9 b1 00 P ar I8
oM

>ec J 9 9T g% by oy Srpr ds =C I |$1* ds. (3.17)
14 oM

Now, for forms ¢ having support in the range % of some coordinate
patch, it is sometimes desirable to introduce a new basis

(S T
for the 1-forms, given by

=cyde?,de =d [*
- - (3.18)
f=gar, e =BT
and to introduce the corresponding differential operators
S S (3.19)
Uy = d3 U, Upn = C} U3,

where of course the matrices (c?) and (d}) are inverses of one
another as are the matrices (¢}) and (d7). The exterior multiplica-
tion allows us to express any form in terms of the {” and {”:
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1 ~ . o ,
b= “z Biveipiy g QE1 A o A d22 A BN .. A dEe

redg
1 ~ . o _ (3.20)
=m! z By dg WL B2 i g A A2 A
ANThA ... AT,
In case the bases are introduced so that
g e el = and g,q 2 #E=0s 78=1..,» (321
we see that

()= z s Y, if
J

_ _ (3.22)
$=D b UAT = g U AT
LJ g

We call a basis in which the ¢ satisfy (3.21) an orthogonal basis.
Such bases were used by Kohn [8].

In terms of such a basis, we see that

5¢ =Z Xim C' A ZM’ b‘ﬁ =zplk ;’ /\ ZR
q+1

Xim = z (= 1P gy, + Z B ¢xr (3.23)

y=1
P =(— l)p“ z 9‘1,«!4.« + Z AH!N ¢U,av

where A’s and B’s are suitable C® functions.

Such bases are more useful in boundary neighborhoods R (in
which % ~ bM is not empty). In case ois a tangential analytic coordi-
nate patch with domain G u g and range %, we may, by taking a
smaller N if necessary, choose an orthogonal basis { such that

g8 rp = d=. (3.24)
It is also possible, choosing N smaller if need be, to, introduce non-
analytic boundary coordinates (¢, r), ¢ = (¢!, ..., t*~') of class C*

which range over some Gy U oy and which are such that the metric
takes the form
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2v—1
ds? = z ay(t, 7) 2 dt* 4 dr3, 4, (0, 0) = 3. (3.25)

Aa=l
Now, since the basis is complex-orthogonal, each

u,, = (D" u — ¢ "D” u)/2 and u,; = ('D” u + 1 "D” u)/2,
where 'D” and "D are real operators which are, in fact, directional
derivatives along real unit vectors ¢, and e, in which all 2v are
mutually orthogonal and e, =y r. Thus, in terms of the (¢, 7)
coordinates

u,, = z & up, y <v (€} complex) ; 1
A

u, = z e up — (i/2) u, (€} real);
A (3.26)

u,;=2e: up, y< v;
X

Uz = Z &) up +(3/2) u,.

Finally, by using the relations implied by (3.20) between the
components with respect to the (dz*, dz*) basis and the orthogonal
(&%, £*) basis, we find easily that

v =T wp { AT o =(—1)? (—i[2) brm (3.27)

provided the ({*, I*) basis satisfies (3.24) on the boundary neigh-
borhood N.

4. Some regularity theorems. In this section we shall consider an
equation of the form

v

U2, 9+ D 0@, Y) 4,0, )
aB=1

) (4.1)
=D @@+ y) @=2, ..., 2,y =y)

a=1

in which the coefficients a* are real and of class C® for all (z,y)
with— R < y < 0 and are periodic of period 2R in each z* and we



THE 3-NEUMANN PROBLEM 103

are looking for solutions % which are periodic of period 2R in each
2* and we assume this to be true of the f*, fand g. Actually, we assume
that the a*® depend on R, as do the other functions, and satisfy

v? ez, y)|< K, R'?,p=0,1,2,..

.2
(0, 0) = 0, €*(x, y) = 8 — a*¥(x, y). s

NotarioNs. In this chapter op denotes the hypercube |2*| < R,
a=1,..,v Gy, = G(R, ¢)denotes the cell ze0p, —R<y< —¢,
and Gp = Gpy.

We shall be interested in functions f2, f, and g and solutions u of
(4.1) which vanish near y = — R and z* = + R, are of class C* for
—R<y< 0, and €L,(Gp) and we wish to prove further smoothness
properties near u = 0. In order to do this, we shall use many Hilbert
spaces of functions which are periodic of period 2R in each z*. The
spaces HJ(Gp) shall have their usual significance, except that we
shall assume that the functions are periodic and € Hy in any cell
—R <y <0 (or —¢) and |2*| < any A. The space Hj(Gy) will
denote the subspace of HI'(Gy) of functions u such that

lim I - - lim j - _
ot By wz,y) By de =0, M | uz y)oir,y)de=0

°R R
(4.3)
for every v €eC® for — R < y < 0 (and periodic).
We also define §*(o) as the set of u in Ly(og) for which
(lulla)? = (1 + Im i3 fu, |2 < @ (44

where here and below

4, = (2R)™" I u(x) e~i™ IR dz, (u(x) e Zu,,, gimm-sIR ) (4.5)

oR
We also define the space $*(Gg) as the set of u in Ly(GQg) for which
0

(Il = B | S (w3 L) Py < 0. (40)
~R m
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The space §;(Gy) is the subspace of $*(Gy) of functions u satisfy-
ing (4.3). The spaces §°(G'y,) and H5(@r,) can be defined in the
corresponding way.
Lemma 4.1, If ue $*(Qg) (9°(cg)) and s > k, where k is an
integer > 0. then vt u € $°~¥(Gp) (H°*(og)) and
Iviul*< =* R*|u|’

where the norm 18 on Gy or op, respectively.

Proor. This is evident, since

Diu(, y) = > (im)™ R~ m u,,(y) et

THEOREM 4.1. Suppose H is harmonic and periodic of period 2R
in each x* for —R <y < 0 and suppose H € H°(Gp).

(a) If the first limit in (4.3) holds, then H, as extended across
y = — R by reflection, is harmonic for —2R <y < 0; if the second
limit holds, H can be extended similarly to be harmonic for [y| < R.
If both limits hold, H = 0.

(b) If H(x, — R) =0 and H(z, y) € §*(op) with |H(.,y) [}, < L
uniformly for some 8 > 0, then H € $**'%(Gy) and H(. , y) tends to a
limit H(., 0) in $*(og) as y— 0~. Moreover

IH 42 <CLifs> 0, R.||H 442 <CLifs>1/2, (4.7)
where C is an absolute constant. The corresponding results hold
for Gy ..

Proor. Expand H into a Fourier series (4.5) with coefficients
H,(y). Then the H,, are each analytic in y for —R <y < 0 and
satisfy

H',\(y) —=* |m|* R-* H,(y) = 0. (4.8)
Thus if the first limit in (4.3) holds, we see that
Hy(y) = c,R~Yy + R)
H,(y) = c,(sinh 7w [m|)~1sinh = |m| (y + R)/R, m #0. (4.9)

The results in (a) follow easily. Now
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UHC, 9 152 =D (1 + [m ]3| Hy)l® (4.10)
Evidently (4.10) is < L?2 for all y <0 if and only if
(H,0) o)t = A+ Im e, * < L% (411

It follows easily from (4.9), (4.10), and (4.11) that H(.,y) » H(.,0)
in §*(og) and that (4.7) holds.

THEOREM 4.2. If g e HYGR), there exists a unique solution
weHy(Gp) of Au=g. If g€ §'G) (s> 0) then ue H5*(Gp),
V“ € 6”‘1’

lluligih < CiRlgll, llvulisih < CaRligll, 1v 2w it < gl
llgll = g oy >
C, and C, being absolute constants.

If s> 1, then u, is the solution in Hi\(G) of Au,=g,.
Corresponding results hold for Gy, .

Proor. Ifgisgiven by a finite Fourier series (4.5) with coefficients
g, continuous in y for —R < y < 0, then the finite series for u in
which u,(y) is given by

%(y) = B* u,(y/ R), gu(y) = gn(y/R)
0
wnn = [ Kol 8620

-1

(4.12)

where

2+1),—1<t<y,
Ko("l: ‘) =
m+Dt9<tg 0,
sinh k(¢ + 1) sinh kn, —1 <t <y [ *13)
sinh k(n + 1) sinh k¢, n <t < 0
(k=m|m|),
is seen to be a solution. We also have

(k sinh k) K (5, ) = [
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Uy () — 7 |m [ 11, (m) = g ().
To show that y2u € §*(@5) we observe that
U op =2 — wdm, mg Uy (n) ™R,

Uy = X trm, vy, (1) eimm-z/R

ty = 4" (g) IR

Accordingly we conclude that

z (N1ap )2 + 2 (e )2 + (llasyy [11)?
af
0

= [ S atimernszme+
-l -

+ 272 [m |2 |u,) (n) |2+ 74 |m |4 |u,,(n) 2] dy
[1]

[t immy iy —atimpmrag

-1 ™

0
=B [ 30+ Im et dy = (gl (419
—R ™
The equality between the first and second integrals uses the fact
that d,,(3) =0 foryp=—1and »=0.

The fact that u e H*+%@y), ete. follows from (4.14) and the
fact that
0
R-? I | uo(y) 12 dy

-R
0

0 0 0
= [ 1wt an<[{ [ Ko varal. [ 10 a.
-1 -1-1 -1
The other inequalities are proved similarly. One may pass to the

limit if the series for g is not finite.

The solution is unique since the difference between two solutions
would be a harmonic function satisfying (4.3).
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THEOREM 4.3. If fe §%GR), there is a unique solution u € Hyy(Gg)
of the equation

.‘ [, %e+ 7, (5, — f)] dxdy =0, v € H},(Gg). (4.15)
GRr

In case feC® for — R <y <0, then Au = f, there. If f € $*(Gy), then
u € H4T1(GR) and yu € Hi(Gy) and

[lw ”5(*1}) <C,R ”f”:;(x)y v |G < C, "f”bm), (4.16)

C, and C4 being absolute constants. Corresponding results hold on Gy,

Proor. The solution is clearly unique. If f is smooth for

—R< y < 0and is given by a finite series, the equation Au = f,
may be solved as in the proof of Theorem 4.2. We obtain

Up(y) = Rup(n), fu(y) =fmn), 7 =Ry
[1] [1)

i) = j Ko, 050 dt = — j Ko, 1) fot) 8t

-1 =1

(4.17)

I

since K, satisfies a Lipschitz condition in ¢ for each 7. Since
K,(—1,t) = K,,(0,t) = 0, we see that K,,(—1,t) = K,,(0, ) = 0.

In the last form in (4.17), we may pass to the limit.

In the oase of the smooth f with a finite scries, we obtain

] [
[ ez an = —Re | izt an
-1 -1
o (1}
= Be [ T Uzt + ot Imi* i1 dn < Re [ f T2
1 1
(4.18)
From (4.18), we obtain the second result in (4.16) by using the
Schwarz inequality, squaring, multiplying by (14 |m|3)*, and
summing. The first result in (4.16) may also be obtained from
(4.18) and the first result except for the term m = 0 which can be
obtained from Poincaré’s inequality.
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THEOREM 4.4. Suppose the a®® satisfy(4.2) and suppose u, f*, f,
and g eC® for — R <y < 0, are periodic of period 2R in each z*,
€ Ly(Gy), and suppose u satisfies (4.3).

Then u € HL(Gy) (i.e. u € Hy, vanishes for y =0 and — R and s
periodic of period 2R in each z*).

ProorF. We begin by writing the equation (4.1) in the form
Au=e* ugy + Zf_:-{-fv +g, (¥ =8%—a%). (4.19)
a

We first assume that f*, f, and g are given by finite Fourier series.
Then we can proceed as in the proof of Theorem 4.2 to find the
solution v of

—Av+fat+f+g=0. (4.20)
Multiplying (4.20) by % and integrating by parts, we obtain

J |yo[* dady =J 5+ fo, — g0) dudy
R R
from which we conclude that

[rvorasay<e [ [Sire+ise+ rign] sy, o)
Gp (7
Under our assumption that f*, f and g eC* for— R <y <0, we
see that the Fourier series for them and for v converge nicely so
we may pass to the limit and conclude that the limiting v satisfies
(4.20) and (4.21) and hence that v € H}(Gg).

Next we notice that we may write

U= [(Pu)g—20F v, + @5 vl (4.22)
B
For each u € L,(Gy) we define the operator 7'y by
TRu=U=ZV;§,—2ZV_°;+V (4.23)
B «

where V8, V2 and V are the respective solutions of Theorem 4.2 for
u, ¥ a4 u, and I (a%;u). From Theorem 4.2 and our assump-
B a,B

tions on the a*, we see that
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I1UIR < Cy K, Rlulj,
8o that || T'|| < 1/2 if R< R,(K,). From our assumptions and inte-
rior regularity theorems, it follows that
AU = Py, for — R <y <0. (4.24)

Moreover, by integrating by parts in the tangential directions we
see that U (as well as v) satisfies (4.3). From (4.19), (4.20), (4.22),
(4.23), and (4.24), it follows that the function w defined by

w=u—U—v=u—TH—v

is harmonic for —R <y < 0 and satisfies (4.3), so that w =0, and
u satisfies
u—T% =wo. (4.25)

Now, let us suppose that » € H}, (and so satisfies (4.3)). Using

Theorem 4.2 we see that
TR'u=U=ZWf‘,—W, W“=ZV’15—V“= W=z Va1V,
« B ]

AW* = Puy, AW = % ug. (4.26)
It follows as in the case of v that U & H}(G) and that

j [VU|* dedy < C3 K? R? I Iy up dz (4.27)
GR GR
so that || 7| < C, KR < 1/2if R< R, where we now consider T'p
as an operator in H},(Gy). Again u satisfies (4.25) considered as an
equation in H},, v being in H,. If R < smaller of R, and R,, then
(4.25) has a unique solution in L,(Gg) and in Hjy(Gg). Hence the
solutions coincide and u € H},(Gy) as required.

We now prove some useful theorems concerning the s-norms. The
following theorem and its proof are essentially due to Peetre [16],
although a similar theorem has been proved, for instance, by
Nirenberg.

TrEQREM 4.5 Suppose a € C°(Qy) and is periodic as usual and
u€§H'(Gr), 8> 0. Then auc H*(Gg) and
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llaully, < (Z |G |) Nullsy +Cls.a, R). | iz}, 8> 0.
C=73 20718 |s|. [n].[1+ (L + [n[9¢~V2] |a,].

ProoF. Let us first assume that ¢ and u are given by finite Fourier
series. It evidently suffices to prove the inequality where the s norm
is defined as in (4.4) and the dependence on y neglected, since one
can integrate with respect to y. We have

(au),, = z G Uy
n
The smorm of (au) is then the l,-norm of the multiple series
(1 + |m|?)*%(au),. By the triangle inequality, we obtain

[atimirn S o] < |5 a0+ im =ity | +

+ (2 o[+ ImI — (14 |m—n 2] w,_,

here the norm denotes the l,-norm. Now, if >0 and v>0,
v —¢| < [s| (u~'+v'1) |u—v| so that
(A4 1m|B” — (1 + |m—n |32 | < [s].|n| [(1+ |mE)ye-D2 4

+ @1+ Im—nP)e-D2
< 27U s [ (14 (14 n[HO-DRL (14 |m—n PR (4.20)
since 1 4 [m[*< 2(1 4 [ [?). (1 + |m — n[?). Clearly the first term
in (4.28)

; (4.28)

< lwlf. > la,l. (4.30)
Using (4.28) and (4.29), we see t;m,t the second term in (4.28)
< w1, z 20712 gl n| [1 4 (14 |2V, |6,]. (4.31)

The general res\Ilt follows by a passage to the limit.

Lemma 4.2. Suppose x € C°(R’) and its Fourier transform
X(A)eC™ for all real A and satisfies
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IR < CyIAEfor A < 1 and || < Co AL N> 1,1>1, k3> 0.
(4.32)
Then, for all A,
1
j‘_z'“l% A)[2de+(1+] A |21 KC4(Cy, Oy, b, 1, 8) (14 |A12), s <k.

0

(4.33)
If, also, x satisfies
IXA) > Cy Al for |A|<h, 0<h <1 (4.34)
then, for all A
1
I 21 %(e) Pd e+ (L+ A2 1 > C4(C,, by K, 8) (LHIABY, s<E.
[
(4.35)
ProoF. If |A|< 1, the result (4.33) is evident. If [A| > 1, then
1 1/1A]
Ie“'“l’;}(eh)l’de<0’f AR I a-u-1ge
[

1
+CHAITE I € ¥-2-1de
1Al

(% 03] u
<[(2k—2¢)+2l+28 [A1®

The result (4.35) is evident if | A | < h because of the addition of the
term (1 4 |A|2)*~L. If | A| > h, then
1 AN
“. e ¥-1%(ed) [2de > “. C3| A |ett~2-1 4
0 °
= OB~ | X /(2K — 29)

and the second result follows in general.

THEOREM 4.6. Suppose x eC7[B(0.1)] and suppose its Fourier
transform % satisfies (4.32). Let us define S, u by the formula
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(S.) (2) =p~ f Al (@ —&')]pl u(&') da', p = Re[m. (4.36)

B(z,p)

Then, if u € §°(Gg) (or $'(og)),
1

J 18, ull2e=*~1de < Cy(Cy, Cy, k, 1) (lu]')2. (4.37)
0
If, also, % satisfies (4.34), then
1

I 1S, wl® €21 de + (| ull=1) > Cy(Cl b, &, ). (1l .

o
ProoF. Letting p = Re/n as in (4.36) above, we obtain

(S, )= (2R)™"p™" I [ J pY (a: -; xl) u(z’) dz'] e—imm.2/R gy

B(z,p)

—(2R)" p~* j [ j X (1’) u(w — ) e-imR dv;] dz

P
°R B(0,)

— @R 5 B(j;’) x (2) e-imn [J; ) e=m o dy ] ay
=ty X ("—11;2’) =, X(em).

The theorem follows immediately from Lemma 4.2,

Remarg. If we take yx(d) =w(|A[?) where w eC®(R!) and
has support in [— 1, 1], then x satisfies all the hypotheses above
with k = 2¢ if

I P~ wr?)dr=0,0<j<g,
b

;!
ATR(0) = (— l)’j =142 (r2) dr > 0.
0

THEOREM 4.7. Suppose x satisfies the first hypothesis of the preced-
ing theorem, u € §*(Qg) and a is periodic and €C(Gyg). Suppose also
that there is a positive integer p such that s + 1 < p < k and suppose
8> 0. Then
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1
J (1108, 5 — 8,002 e *-3de < O (s, k, a, x) (| u]1)%,

1
j 108, 4, — 8, 0,12 €= *~1 de < C(s, k, 3, x) B3 ([ulf};
[

here u,, denotes du/dor .

Proor. Using the formula above for (S, u),, and for the coefficient
in the series for a product we find that

(5. 0U)p — (@8, W = > 6, (R(em) — R [e(m — n)]}thp_,.  (4.38)

n

It is easy to see that the j-th derivatives of % satisfy those same
hypotheses with k replaced by k — j (since % is analytic at the origin)
if j < k; the same I may be used. It is also clear that every derivative
of % is uniformly bounded. Thus, we may expand %(A) about
Ao =7 (m—mn)e/ R out to the termsin (A—A,)?~?, using the bounded-
ness of the derivatives to estimate the remainder; here we take
p=2+[s]. Thus

(@S, )y — (S, )] < [2/p1] D, 18] [n17. C. [thy_] +

»~1
+ > [0 D (] Inl. Iyx [em —n)]l.| ool (4.39)
i=1 n
where C is a bound for |[g?x(})|. Now, let us write
Uy = [(aS, u),, — (S au),,|, ul = |y x(em)|. |u,l, 1 <j<p—1
u:l =0 [umlv '):I = ?'! z Ianl s 'nlj uzu—l'

Letting || || denote the J; norm, we see that

_‘1 t j d A=
Il < i (Z Ia.l-lnl)llull<0ﬁllu hi=1,...,p,

P " P (4.40)
<0 S Iwllolt< > O 1wy

i=1 i=1
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Multiplying the last inequality in (4.40) by e~2'~%, integrating, and
using Lemma 4.2, we obtain
1

1
I a8, u—S,aul’F #*de< C, I P83 4 |°)2 de 4
0

[]
1

-1
DX Ie*"“" DIV R(em) [F 1w, |3 de
0 m

=1
-1

< D Cillul* =9 4 Cy(2p — 25 — )7 w|0)?
j=1

from which the result follows, since || ||’ is a non-decreasing function
of s.
To prove the second statement we notice that

(a8, u,, — 8, au,) (x, )

=p~ I x (z ; ,') [a(z, y) — (2", 9)] u, (7', y) d’

B(z,p)

=(8,6,,u) (2, y)+

+ [ (2 'P”) [a(z, y) — o(a’, 9)] u(e', y) de’.

B(z,p)

The desired inequality holds for the first term. The analysis of the
first part of the theorem now applies with the ¥ difference of (4.38)
replaced by p~*! times the 3 difference, where

xM(y) =ir*X(¥), p = me/R.

THEOREM 4.8. Suppose the a* satisfy the conditions in and near
equation (4.2) for each R< some A > 0 and suppose the functions
u, f* f, and 9 € C* for —R < y < 0 and are periodic of period 2R in
each a*. Suppose that f*, f, and g € $*(Gy), that u € $*(Gp), that
u(x, — R) =0, that u satisfies (4.1), and also that ||u(.,y) log< L
Jor —R<y <0. Then,if 0 <R< R(v,8 Ky, K,,...),

u € §'+12(Gg) and u, € §*VH(Gy),
the latter holding if s > 1/2.
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Proor. For each 7 with 0 <7 < R/2, let H, be the harmonic
function coinciding with w when y = — R and y = — 7 and let
u, =u%—H, . Then v, eC* for — R < y < —1 and satisfies (4.1) with
the right side replaced by

(®H) o+ (f*—28 H), + £, + g+ <& H) (4.41)
as is seen by employing the device in (4.22). From Theorem 4.1 and

its proof, we conclude that H, € §**'%(Gy,) with || H, |4%}% < CL,

independently of ». Moreover, if ¢ > 1/2, then H, e $'~'%(Gp,)
with || H,, |l < CL independently of 4.

Now, if we expand *¥(z, y) in a Fourier series,

A, y) = z o (y) et

we find by differentiation and using (4.2) that

D et,y) = 3 Gm RMmdeB(y) R (A=1y, ..., ),
S e |t < CRRIRL P =0,1,2,...  (442)

Consequently it follows from Theorem 4.5 that
< H, e §'+V3 (Gg,) and

4.43
lle® H, |5t4% < CLR, 0 < 7 < R[2. e

In like manner, we find that €f H, and €2} H, € §**V*and

llef H, 522 < CL, | H, l6taln < CLR™%,0 <9 < R[2. (4.44)
Next, let V28, V2, and V, be the solution of Theorem 4.2 with ¢

replaced by € H,, f*—2¢f H,, and g + <5 H ,, respectively, on

G(R, 7), let W, be the solution of Theorem 4.3 for fon G(R, 7),

and let

v, =Vh+ Ve, +V,+ W, (4.45)
Then v, € §**V%Gp,), vanishes on y = — R and — 7 and satisfies

Av, = €8 Hmuﬁ +fa+fy+gon G(R, 7). (4.46)
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Now we write (4.1) for u, in the form
Au, =€y, 45+ Av,
=(e®u,) g — 23 v,) 0+ €5 u, + Av, .
Suppose we let X3, X2, and X, be the solutions of Theorem 4.2 for
e u,, — 2§ u, and €% u,, respectively, and define
Tpu,=Xbe+ X2, +X,.
Using the estimates on the ¢** in (4.42)-(4.44), we see that

[| T, u, ”bm.n) <C,R. ""”7;(11,.,)'

0 <7< R, (4.47)
1T w, 625 < Oz B. || uli&ias,

and, moreover, we see as in the proof of Theorem 4.4 that

u,— Tpu, =v,, v, H'+2(Gyg,), (4.48)
llv, 52’3 < O3+ C; RL independently of n. From (4.47), it follows
that if B < R(», s, K, K, ...), then (4.48) has a unique solution
u, in §'(Gg,) and in §**'%(Gy ), s0 that u, € H'*V%(Qy,) with
norm uniformly bounded, independently of #. The theorem follows
by letting n — 0.

5. The domain D3 the Hilbert space results. In this section we
prove the first four principal results stated in §2.

TrEoRrEM b.1. ([8,I], Theorem 2.3). The transformation L is self-
adjoint.

Proor. Since 7 is a closed operator, it follows that 7'7"* and T* T
are self-adjoint and that (I 4 77*)~ 1 and (I + T*T)~! are bounded
and self-adjoint and are defined everywhere ([14], p. 307). Define

S=I+T*T)" 4+ (I +TT* 1 —1.
We shall show that (L + I)S = I. First we note that
I+TTH ' —I =[I—-I+TTH1 I+ TT*!
= —TT*I + TT*1.
Thus R(S) c D(T*T) (since R(T') cD(T) and T*=0) and
T*TS =T*T(I + TT*~ L.
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Similarly %(S) c D(T'T*) and
TT*S =TT*(I 4 TT*~ .
Hence (L + I) S =I. The operator 8 is self-adjoint since it is the

sum of bounded self-adjoint operators. Thus L + I and hence L
is self-adjoint.

For a given covering % of M by the ranges %, of coordinate patches
7, with domains @,, we define

@0y =+ 3, |5 (T 2T ) ity

T G I

(6 ¥)yq = Bo9) + D, I > (e }'J’,«) dady  (5.1)

8 Gy ILJa
the ¢{’) and ¢!} being the components of ¢ and ¢ with respect to 7,.
It is clear that any two norms defined by different coverings are
topologically equivalent; actually non-analytic coordinates may be
used in the first norm. So we shall omit the subscript. The space
Hj}, is the closure of % with respect to the first norm and Hj, is the
closure of those forms of Y e C2(M°).

THEOREM 5.2 (a). R(T)c D(T) and T =0 if ¢ D(T).

(b) R(T*) c D(T*) and (T*)2p =01if p D(T*).

(c) $€L OR(L)<=>deD(L)and L(¢) =0 €.

(d) HLc® and if e HLy, Td =3¢ and T*$ =54, it being under-
stood that 3¢ and D are formed using the distribution derivatives of
the components of ¢.

Proor. (a) Let y eR(T). Then J a $eD(T) such that T¢ = 1.
Hence 3{4,} c A such that ¢, ->$ and 3, - . But, for each n,

34, € D(T) and 3¢, - and 3(34,) = 0.

(b) Let ¢ e R(T*). Then J € D(T™*) such that T* ¢ =.
Thus, for each w € U,

(. Jw) = (T*$, 3w) = ($, 90w) =0 = (0, w).

Hence € D(T*) and T*) = 0.
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(¢) The first statement follows from the self-adjointness of L
and the second follows since

(L, ¢) = 0 = (T*T¢ + TT* ¢, $) = (T$, T¢) + (T*$, T*$).
(d) is evident.

THEOREM 5.3. If ¢ € Hi(M), then
d($) > ¢((¢, ), — C(, $), c > 0,
(¢, 9)) < C((¢, 9));-
Proor. From the definition of H},, it follows that it is sufficient

to prove these inequalities for forms ¢ € CP(M). By taking y = ¢
in (3.15), we find that

d(¢) =I(¢) = IZ{QHV’LW@M Furep + OV B +
)4

+ CELa b1z EKL + DHEL ¢IJ EKL} aM (5.2)

from which the first inequality follows. By using a partition of unity,
the proof of the second is reduced to proving it for ¢ having compact
support in a single sufficiently small coordinate patch with domain
@, say. For such a ¢,

(< 0[ D (I bua '+ | $rye 19 dady,
G IJ.a
(19ryee 1* + | dryya 1) dady

1,J,

4 I z | $r3a |2 dxdy — 2 J. Z (b1172 Porsya— Porsea bragye) dady

¢ 1J,a G LJw

Qe

<C(($, 9))

since the second integral vanishes.

We define o= n H},. It can be shown, using the Unique
Continuation Theorem of Aronszajn et al [2] for forms that Do i8
just the zero element. However, all we need is the following easily
proved theorem :



THE 3 NEUMANN PROBLEM 119

THEOREM 5.4. §, has finite dimensionality. If ¢ Hyy n (L © o),
then
d($) > c(($,4)), c¢> 0.

Proor. From Theorem 5.3, we conclude that
(($,4)) <C,d($) +Cu($,4), ¢eH,. (5.3)

Since (¢, $) is completely continuous with respect to ((¢, ¢)), we
see from (5.3) that there is a ¢, € H}, which minimizes d(¢) among
all ¢ in H}, for which (¢, $) = 1. Next, there is a ¢, which minimizes
d(¢) among all ¢ in H}, with (¢, ) =1 and (¢,4,) =0 and then a ¢,
which minimizes d(¢) among all ¢ in H}, with (¢,¢) =1, (¢, ;) =0,
and (¢, ¢,) = 0. This may be continued. Obviously

0 < d($) < dlga) < .o (5.4)
If all the d(¢;) =0, then ((¢;, ¢;)) is uniformly bounded and one

could extract a subsequence converging strongly in € to some limit.
But this is clearly impossible. From (5.4), we conclude that

d($) > d(dy) . (4, $)if € Hyy 0 (8 © Do),
where k is the first integer for which d(¢,)> 0 and §, is the space
spanned by ¢, ..., ¢ _;.

THEOREM 5.5. Suppose ¢ € C°(M®). Then a necessary and suffi-
cient condition for ¢ € D is that 3¢ and D € L and that

(b, ) = ($, 3p) for all Y e A. (5.5)
In this case T = 3¢ and T*$ = d.

Proor. Suppose ¢ € D. Then ¢ € D(T) and J a sequence {§,}
with ¢, in 9 such that ¢, > and 3¢, > T'¢ in L. Let { be a 0-form
€ C®(M) with support in some coordinate patch, and let ¢'= (¢,
é,=1$,. Then &, —>¢ and 3¢, >y’ ={Tp + o, A$, which
must be T¢’, in 8. If we let 7 be a mollifier, then ¢,, > ¢, and
W, >, = 595;, where ¢, ete., denote the m-mollified forms (all
defined on the coordinate patch containing the support of {). Letting
p—> 0, we see that iy = 3¢’. Since this is true for every such {, we
conclude that 7'¢ = 3¢ € 8. Also ¢ € D(7*). HenceJa x €8 such
that (¢, 5«;) = (x, w) for all w € . But if w € CY(M), we see, using
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a manifold M,, that (4, 3w) = (b¢, w) so that (D¢ — x, w) = 0 for
all such w. Thus, T*¢ = D €  and (5.5) holds.

Now, suppose the conditions are satisfied. Let 2 be the range of a
coordinate patch with domain @ which is tangential at some point
P, on bM. Let { be a 0-form € 0=(M) which vanishes outside R
and on and near the part of 99 interior to G, and let ¢’ ={¢; we
assume that G is bounded above by the surface y” = f(z, y,) of
class C® if R n bM is not empty. Then ¢’ can be approximated by
4., , where the component in % is

bus(@, y) = by, , g’ —n~Y) if ¢’ =T ¢y, de” NdZ.
Since this can be done for each patch we see that ¢ e D(T) with
T¢ = 3. From (5.5), it follows that ¢ €D (T*) with T*$ = dé.

TueoreM 5.6. If €D, there exists a unique ¢ € Hjy 0 (2 © Ho)
and a harmonic form H in D such that ¢ = ¢, + H. It follows that
d(¢) =d(o) + d(H). (5.6)
Proor. We first note that
(Bw — T4, 3w — T¢) + (b — T*$, Do — T*4)
=d(w)— 2 Re(Bw, T9) —2 Re(bw, T*9) +(T'9, T¢) +(T*4, T*4)
> o((w, w))— 2 C((w, )2 D + D?, (5.7)
D*=(T¢, T¢) +(T*$, T*$), w € H}yn (& © Ho).
Thus there is a form ¢, which minimizes the expression in (5.7)
among all w of the class indicated. Then ¢, satisfies
(30— T, 3L) +(bdo — T*$, L) =0, { € H}, (5.8)
Since 3¢, = T'¢, and Dp, = T*¢,, it follows that
($o—4,00) =0, LeCO(M).
Thus, if we define H = ¢ — $,, we see that H eC°(M®) and(JH =0

there. From Theorem 5.5, it follows that TH = JH and T*H = YH
so we conclude from (5.8) with { =g, that

(GH, o) +(DH, Do) =0
from which (5.6) follows easily.
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THEOREM 5.7. If H is harmonic and H €D, then vH € H},.

Proor. If HeD?, then vH =0. So we assume that H eD™
with ¢ > 1. Choose an analytic coordinate patch which is tangential
at some P, € bM and suppose that

H=3XH,; d' NdZ’, o = vH = Z w; dZ' \ dz¥,
wpy =(—1? Zg¥ rg Hy oy -
Since H is harmonic, d(H, {)=0 for all { e C?(M), so one sees, by using
the formula (3.15), that the components of H satisfy equations of
the form
9% Hy1p2p + (lower order terms in all the Hgp) =0. (5.9)
Since the components of w are just linear combinations of those
of H, they satisfy similar equations which may be adjoined to
(5.9). If we multiply by 4, write g =g?* +ig3®, and express
the derivatives in terms of those with respect to the z* and y*, the
totality of the equations for H and w take the form
93 Wap + 05° Wayp + 95 o 4 9 Wop + ... =0, (5.10)

where we have denoted all the various components by «/. The
condition H € D is seen to imply, as one sees from (5.5) with ¢ = H
and (1.14) by integrating over M, and letting s - 0™, that

lim | Tg® g" wpy P dS(P) = 0,4 e C=(H). (5.11)

=0~ wa,

Let us now choose non-analytic, but C®, boundary coordinates
£, ..., €2 80 x =y =0 corresponds to £ =0, bM corresponds to
£ =0, r =£%, and the metric is of the form

ds? =G, & 8, G5, =1,0,,,=0(8< 2v)
G,5(0) = A
Then the equations (5.10) take the form
a* uly + bf* vk, + ] wt =0,
a*?(0) = 8%, a®"®* =1, a** =0, B < 2v, (5.12)
and the conditions (5.11) reduce to
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tim j W(Ey, 8) (s, 8) dby, =0, v € C=(Tp),
°R

op: €] <R, a<2v,Qp: §,€05 — R <E¥ <0,

(5.13)

for those indices j for which w/ = wy,, for some (I, M).

Now, suppose {€C®, { =1 in Cpy (the cube || < R/2 for
1< «< 2v) and has support in Cyp,, let U7 = {u, extend the coeffici-
ents from Gyp, 80 they are periodic of period 2R in each £* with
a<2v. It is easy to see that for each R the coefficients may be
modified so they also € C* for — R < £% < 0, satisfy a Lipschitz
condition with constant K, (independent of R) and satisfy (4.2).
Then the U’ are periodic in the £ with a< 2v, (5.13) holds with
replaced by U’ and v/ by any C° function, periodic in these ¢*,
and the U7 satisfy

0 Uy =Gis + &
where the G/ and G/ are C* for ¢ < 0 and in L,(Gy). Thus from
Theorem 4.4, we conclude that the U’ € H\(Gp) if j is one of
the indices in (5.13) and R is small enough. Thus, we see that
o =v H € H} near P, and vanishes along a part of M near P,.
Since this is true for each Py, the result follows.

THEOREM 5.8. Suppose ¢ € D*? and ¢ > 1. Then

161248 < Cy[d(8) + (4, $)], o< < 0.

bM(s)

Proor. Using Theorem 5.6, we write ¢ = ¢, + H where ¢, € H},
H is harmonic and d(¢) = d(¢,) + d(H). By approximating to ¢, by
forms in 9, we see easily that

1412 dS(P) < 2 j 1o 12 d 5(P)

bM(s) bM(s)
<Cls] I 1o 2AM < C |8] dP), 8, <8<0,  (5.14)
M—M(s)

dZ(P) being the area element on bM at the foot of the geodesio
through P. Thus it is sufficient to prove the theorem for ¢ harmonic.
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Thus, in formula (3.15), let us set =y =H, let y'=w'=(—1)?vH
and apply the formula to M(s). Let d,(¢) and I,(¢) denote the integ-
rals over M(s) on the left and right, respectively, in (3.15). Let us
now integrate with respect to sfor 8, < 8 < 8, < 0and then integrate
by parts in the integral over M(s,) — M(s,) which arises from
the integration of the boundary integral. The result is

L] LY
e as = | rm as | roraser+ [ rwmase+
5 2 bM(sg) bM(2y)
+ Re X ¢¥ g5 w'jg [2‘(b—H)xT+'§}]z¥8Hv.w] dM(P)+
M(sy)— M(sy)
+ T 0¥ 957 1,py 4 9" HypsH g pp dM(P) (e =(—1)7+Y)

M(sg)— M(s;) (5 15)

for suitable functions 'BYZ7®. Since we H}, and H and dHeg,
we may let 8, > 0~. From (3.17), it follows that the last integral
in (5.15) is positive. Now if we choose coordinates (P, s) in
M— M(s,), where P e bM and P is constant along a gradient curve
for r, we see as in (5.14) that

|w(s, P) |2d8(P) < 2C| 3| |y w|?dM, s, <8< 0. (5.16)
bM(s) M~ M(s)
Integrating, we obtain

| w(s, P) [*dM < Cs} lvw|?2dM. (5.17)
M—M@y) M-M(s)
If we now divide (5.15) (with s, = 0) by — s,, use the Schwarz
inequality and (5.16) and (5.17), and let s, - 0~, we see that
I(H) < d(H). (5.18)

Since it is obvious from (3.15) that

I($) > c(($: $))z — 21 (¢, 4)
for any ¢ we see that

((H, H)); < C[d(H) + (H, H)]. (5.19)
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Now, we first note that
((w, w)); < C((H, H)),

so that
(w, )) < C((H, H))y (5.20)
since w € H}y. Next, let us define
T
$=H—4p, prj 5 =D (=11 apy (5.21)
y=1
Then
9 78 brane = Wy — 490 15 [155 wppr +
q—1
& z (=1 #imy Wy o, ] =0 (near bM), (5.22)
=1
since Y

(1P g 1 wpom, =g g 1,7, Hy o, =0
on account of the antisymmetry of H in the indices € and «. Thus
y¢ =0 near bM. Hence, for s sufficiently small, (3.15) with ¢ = 4,
yields
d(¢) = L(¢) + J 29T 14, 4 9 bras Fxar 48
bM(s)
> 6.0 +o [ 16048, 6>0.0,50. (523)

bM(s)
Thus

112dS(P) < CLd,($) + (4, $)] < CLd(¢) + (4, ¢),].  (5.24)

bM(e)
"The result follows from (5.18), (5.20), (5.21) and (5.24).

THEOREM 5.9. Suppose each ¢, € DM with ¢ > 1 and suppose
$u> b, 3>y, and D, >x in L. Then ¢, ¢, $ €D, § =3¢ and
x =D@. Also $7 has finite dimensionality. If ¢ is Q-orthogonal to
9™, then

(¢, 4) < Cod(9).

Proor. For each =, let ¢, = ¢,, 4+ H,. From Theorem 5.6 it
follows that

d(¢0n) < d(¢") < M, d(Hn) < d(¢») < M
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for all n. Let {p} be a subsequence of {n}. Using Theorem 5.4 and its
proof for ¢,, and for { H,, { being any function of class C?, we
see that there is a subsequence {g} of {p} such that ¢,, = some ¢,
in (M) and H, - some H in &(M,) for each s < 0 and H, - H in
2(M). But, now, let e> 0. From Theorem 5.8 it follows that there
is a sufficiently small s, < 0 such that

|H, |2 M < C[M +(H,, H)]. | 53] <(e[3)".

M~ M(sq)
From the weak convergence of H, to H, we see that this holds for
H. Finally, since H, >H in Q[M(s,)], we see that

|H—H,|*dM <(¢/3)® for ¢ > g,.
M(sp)
Thus H, > H in &(M). Since this is true for any subsequence, the
first result follows. From the interior regularity theorems it follows
that H is harmonic. It is easy to see that ¢, and hence ¢, and
HeD and that § = T¢ =3¢ and x = T*$ =D¢.

From this, it follows easily that if I is any closed linear manifold
in 8%, there is a form ¢ €eD? which minimizes d(¢) emong all
¢ €D A M for which (4, ) =1. We may let I, =82 and ¢, a
minimizing form in I,, M, be those forms 2-orthogonal to ¢, and ¢,
a minimizing form in R, ete. Clearly 0 < d(¢,) < d(¢;) < .... Now,
suppose all the d(¢,) = 0. Since each (¢,, ¢,) = 1, we may extract a
subsequence {¢,} such that ¢, - ¢, 34, ¢ and dé, >x. We con-
clude that ¢, —¢. But this is impossible since the ¢, form a normal
orthogonal set. Hence $™ has finite dimensionality and

d($) > C(¢, ¢), C >0, if $eD™n (8O §7)
from which the last result follows.

We can now prove the remainder of our first four principal results.

THEOREM 5.10. (a) $eD(L)=> ¢, T'$, and T*$e D and
Lé =04 =5 3¢ +3ds.

(b)  d(¢) < Cy(O¢, O¢) if $D(L),
($,4)<C3d(¢) if peD(L)n (O §),
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C; being the constant in Theorem 5.9.
() RIL)=LoSY.
(d) If we define the operator N on & by setting Ny =0 if y€§

and Ny equal to the unique solution ¢ n DL)n (O H) of Ly =4,
then N is bounded and completel s.

J

Proor. (a) follows from Theorems 5.2 and 5.6.

(b) To prove (b), we first assume that ¢ € D (L™) n (LP © $7)
with ¢ > 1. Then, from Theorem 5.9, we conclude that

A($) = (T¢, T¢) + (T*$, T*¢) = (L¢, $) < lI¢ll | T 1,
4, 4)<Cad$) <y ISl IO,
from which both results follow. Clearly the inequality for d(¢) holds
whether ¢ €2%7 © §or not. In the cases where ¢ =0, let ¢ = 34.
Then ¢ eD?!, 3 =0, and by = O¢. Thus (T2 = T*2 = 0)
JeD? n (27 © $*!) so that

d(¢) =, ¥) < Cad(y) =C4 (O¢, O¢)-
Next, let ¥ be the unique form in D (L) n (8! © H”!) such that
OY =H3¥ + 0% = ¢ = 9¢.

Since H3¥ and DY are orthogonal (Theorem 5.2) and since
(T*TY, T4) = (TY, T?*p) =0, we see that 3p¥ = 3¢ and DaV'=0.
Since p¥ and ¢ are both orthogonal to $?°, it follows that
¥ = ¢. Thus, we obtain

(4, 4) < d(¥) < C; (O¥, O¥) =05 (3¢, 3) =C, d(9).
(c) follows immediately from (b) and Theorem 5.2.

(d) In view of (b), it is necessary only to prove the complete
continuity of N on £ © §. To that end, let us assume that
o, €8 H™ with ||w,|| uniformly bounded, and let ¢,=Nw,. From
part (b), it follows that a subsequence, still called {n}, is such that
w, >w, 0p, > 3p, Db, > and ¢, >¢. If ¢>> 1, it follows from
Theorem 5.9 that ¢, . In case ¢ =0, let , =3¢, and ¢ = 3¢ as
in the proof of (b) for ¢ =0. Then by, =w,, i, =0, 0 = w, 3 =0
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so that we conclude from Theorem 5.9 that i, —¢—0 from which
it follows (using (b) with ¢ = 0) that ¢, — $.

6. The smoothness of the solutions. In this section we prove the
smoothness results stated in Section 2.

Lemma 6.1. Suppose $ €D, p € D(T*), x€ D(T), w e, and
(T — o, TO) + (T*$p — x, T*() =(w, {) forall L eD. (6.1)
Then ¢ €D(L)and Ld= w + T*y + Tx. Also w, T*},and TxeR © 9.
Proor. If ¢ satisfies (6.1), then it satisfies (6.1) with y=x=0

and o replaced by w + T*) + T'x. Hence it is sufficient to prove
this for the case where ¢y = x =0, since 7*J and Tx €8 © 9.

Then, let w = w, + w, where wye8 © § and w, €. Let ¢y =Nuw,
and let ¢, =¢ — ¢,. Then ¢, €D and satisfies

(Ty, TO) + (T*$y, THL) = (wy, {) for all €D.
By sétting { = w, (€ §), we conclude that w, =0. By setting { = ¢,,
we then see that ¢, € §. The result follows since ¢, and ¢, e D(L).
LEMMA 6.2. Suppose ¢ €C°(M) and define
x =f(r).v$, £(0) =0, f'(0)=4, f eC>(M) and f(r)=0 in M,. (6.2)
Then x =0 and v(ox —$) =0 on bM.

ProorF. Obviously y=0 on bM. In a boundary coordinate
patch, let

$= by Nd¥,p=vé =S pnds NP
nJ
Then

prr = (— 1) g 1,ebrons xin =£(r)pma-
Using (3.1) and (6.2) we see that on bM

@y =4, (— 17~ (3r[3E). pry, -

y=1
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Then, on bM
(Vgx)m =g rzﬂ(gx)l.zk

= 4gfry {r,u PR+ S:l (= 1) 7, Pt.an'y}

r=1

q-1
= e[ @ mr) ot 3, (01, 0 b |
=1

= PIRs .
since the second term is zero because ¢,_,,R.y is antisymmetric in
the indices € and «. This is the result.

LemmMa 6.3. Suppose that ¢ € D(L), Lp = w, and w € C(H).
Then ¢ €C=(M°) and [I"$, ['3p, ["dp, "D3¢, and [I"odé

are each the sum of a form in A and one in D.

Proor. That ¢ € C°(M°) follows from the interior regularity
theorem. Let ¢, = 9¢. Then ¢, € D and satisfies

Ty, =0, (T, TY) + (T*); — w, T*)) = —(TT*$, T*!) =0,
L e, since T*, € D(T*). It follows from Lemma 6.1 that
¥ €D(L), Oy = w, = do.

Next, choose x,= —f(r) (vdw), as in Lemma, 6.2, let 5, = dib; + xo.
Then x, € D, x5 € C*(HM), W(x, + 9w) = 0 on bM. So ), € D and
satisfies

(Tg — 9w — Bx,, TE) + (T*hy — sz, T*) =0
in which Jw 4 9y, € Ay D(T'*) and Dy, €D(T). Thus
Y2 D(L) and L ¢ = w, = ddw + [x, €C(M).
Evidently the cycle can be repeated indefinitely to obtain the
theorem, using the fact that D¢ =, — x, and Fdé =w — D39, ete.

We now wish to introduce the spaces H® of forms ¢ on M; we
shall consider only forms € C*(M®). As was seen in § 3, each
point PyebM is in a neighborhood N on M which is simultaneously
the range of a tangential analytic coordinate patch ¢ and a non-
analytic boundary coordinate system 7 : (¢, 7) in which the metric
takes the form (3.25) and (¢, r) range over G U oy for some R > 0.
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By choosing % and R smaller if need be, we may choose a ({*, {—“)
basis for the 1-forms which is orthogonal and satisfies (3.24).
A form ¢ € C°(M) also € H*(M) <—> each point P, is in a neigh-
borhood R of the type just described such that if p € C>(M) and
has support in N '(perha,ps # 0 along N n bM) then the compo-
nents of ug, with respect to o and any orthogonal basis ({*, %) which
satisfies (3.24), € $°(Gx) when considered as functions of (¢, 7).
Now suppose ¢ € C°(M®) QP and satisfies L = w, and
suppose N, o, 7, and (¢, Z“) satisfy the conditions above. Then,
since the components of ¢ with respect to o and the {-basis are
linear combinations of those with respect to o and the (dz, dz)
basis, it follows that the o-{-components satisfy (cf (5.12))
w, + 0 uly + bluk + bfFul, + ciut =w 58
a*8(0, 0) = 5% (6.3)
in the (¢, ) system (u), means du’/dt*, etc.) the coefficients being
in C‘"(@E) for R small. It is clear that there exist positive
numbers 4, K, K, ..., independent of P,, such that each P, is in
the range of coordinate systems o and = above in which an ortho-
gonal {-basis exists which satisfies (3.24) with the property that for
each R < A the coefficients in' (6.3) can be altered outside 53 R4
so as to e C® for —R < r < 0, to be periodic of period 2R in each ¢*
and to satisfy

IvP(@?® — 5F)| < K,R'=?, |y?(bi —bly)| < K,R'~»
VPGl — b5 < K,R'"7, |y”(cdf —clo)| < K,RB*"?, | (6.4)
p =0,1, ..., by = bj(0, 0), etc.

Moreover, we have seen in §5 that if ¢ € D? with ¢ > 1, then
v € Hyo(M) and if

¢= z by UAY (6.5)
LJ
then (see (3.27))
= wm TAD, wp=(— 1P (—i/2) ¢ (6.6)
IR
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LeMma 6.4. Suppose ¢eD(LP) with ¢g> 1 and L = w where
weW? and suppose $, 3p, and D € H*. Then ¢ € $*+'72 and its
derivative ¢, € §* 112, the latter in case 8> 1/2.

ProoF. ¢eC*(M®) from interior regularity. Let P,e bM and
choose N and { as above and R < R(v, 8, K, K, ...), the constant
of Theorem 4.8. Let p have support in G,z L 0,5, A =(3/4)—(1/n),
with peC=(M) and let y = pp. Using the formulas (3.23) it is
easily seen that i, 3y, and b ¢ € §°. Extend the coefficients in (6.3)
to satisfy all the conditions above. For 0 < e< 1, we define the
form 8, y = 0 outside N and we define

8= B.p) FAT on R, (6.7)
J

the functions S, y;, being defined in (4.36). For the e considered,
8, ¢ has support in the part of % corresponding to Gapy U oyg)-
From (6.6) and (4.36), we note that S, e D for these ¢. From
Theorem 5.8, it follows that

j 18, 4(t, 7) 12 dt < O[d(S,4) +(S. ¢, S, )], —B<7< 0,0 <e< 1.
°R

(6.8)
We shall prove our result using Theorems 4.6—4.8.

From (3.22), it follows that
@S, ¢, 38.9) = Z (T3S, Yrae» 38, Yrar)

<02[||S<a¢)mn=+n(as b—8. Wl (69)

the inner products and norms being those for Ly(@g). We assume
that the function y (see (4.36)) satisfies the hypotheses of Theorem 4.7
with s replaced by s 4+ 1/2. Using (3.23) and (3.26) and the fact
that the operators S, and 9/3* and 9/dr commute, we see that

a+1

(@8, — 8,01 = z (= 1ypr=t z (&, 8etbrarp — E:x,'l‘tuyk)‘F

=1

+ D, (BEE 8. ¥xr — S, BEL dzr). (6.10)
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The derivatives with respect to 7 do not occur since their coefficients
are constants. We conclude from Theorem 4.7 that
1
[138,p —8,701% 2 de < g1 (@ =6
0
From our hypothesis and Theorem 4.6, we conclude that
1
[1s. 301t -t ae < g (@ =6,
0
A similar analysis holds for D 8, ¢ and, of course for S,y. Thus,
we conclude using (6.8) that
1
[1sc i esrae @=on
)
is uniformly bounded. Consequently the result follows from
Theorems 4.6 and 4.8.

THEOREM 6.1. Suppose ¢ € D (L) with ¢ > 1 and L = w, where
weC>(I). Then ¢ €C°(I). The same result holds if ¢ = 0, provided
that ¢ €27 © HPO.

ProoF. We assume first that ¢ > 2. Then all the forms ("¢,
O34, [O"d$, [1"3d¢, and [I"D 3¢ satisfy the conclusions of
Lemma 6.3 and are of type (p,q) with ¢’ > 1. Thus since p ¢ and
3¢ € §° we conclude that ¢ € §/2. Then, since 39 ¢ and D3¢ € H°,
we conclude that 3¢ and d ¢ e 2 and hence that ¢ € $1. This pro-
cess may be continued to show that ¢ every §*. But then, from
Theorem 4.8 or Lemma 6.4, we first conclude that ¢, € every £°.
But then by repeated use of the differential equations (8.3), we
conclude that all derivatives € every £*. That $€C=(M) then
follows from the Sobolev lemma.

In case ¢ =1, we first conclude that 3 ¢ and b e$H° so that
$eH2. Then we conclude that DaD¢ (and 55b¢) €H° so

3bgeHVe. Using the inequality (D¢, ¢) < C(3D ¢, 9D 4) with ¢
replaced by S,(u 4) in patches, we conclude that D¢ eHt; that
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3¢ € HY2 follows from the fact that D 34 HO. Thus e HL. The
process can be continued indefinitely.

In case ¢ =0, we conclude that 3¢ eC=(J), since 34 eD(L).
If we choose ® e D(L) so that (@ =—5¢>, we see that ® eC=(HM)
and, as in the proof of Theorem 5.10(b), that ¢ = b ®.
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EXISTENCE OF LOCAL COORDINATES FOR
STRUCTURES DEFINED BY ELLIPTIC
PSEUDOGROUPS

By D. C. SPENCER

1. Introduction. By “differentiable” we shall always mean “diffe-
rentiable of class C®.”

Let I' be a transitive, continuous pseudogroup of order p, of
local bidifferentiable transformations of real n-space R*. We say
that a differentiable manifold is a I-manifold if it is covered by
local differentiable coordinates, called I-coordinates, which are
transformed into one another by elements of I, Let M be a I'-mani-
fold of (real) dimension n. Then the pseudogroup I' operating
locally on R” induces a pseudogroup of local bidifferentiable trans-
formations of M which, for simplicity, we also denote by I'. The
infinitesimal transformations of the pseudogroup I' operating
(locally) on M or, as we shall say, the I'-vector fields, have a structure
of Lie pseudo-algebra and are defined by a system of linear
partial differential equations of order p,on M which we denote by
FPro = ().

For each non-negative integer p, let P# be the bundle over the
T-manifold M of jets of order u of bidifferentiable maps of R* into M
with source at the origin of R". Then P*, the bundle over M of frames
of order g, is a principal bundle with fibre and group G*, where G* is
a Lie group, namely a subgroup of the prolongation GL*(n, R) of
order u of the general linear group GL(n, R) = GL(n, R).

Now let M be an arbitrary differentiable manifold of (real)
dimension n. Then the bundle @* over M of frames of order u is a
principal bundle with fibre and group GL*(n, R).

DerFiNiTION 1.1. Suppose that I' i3 a transitive, continuous
pseudogroup of order p, of local bidifferentiable transformations. An
almost I'-structure on M i3 & differentiable reduction of the structure
group GL™(n, R) of @* to the subgroup Q=@ (T") associated with T,
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We call a differentiable reduction of the structure group GL#(n, R)
of @* to G* a reduction of order g, or u-reduction, and we denote
by P* the reduced principal bundle over M with fibre and group G*.
We observe that a reduction of order u defines by projection, for
each v, 0 < v < g, a reduction of order v—namely its v-projection.
A p-reduction will be called a prolongation of a wv-reducion,
0 < v < p, if the p-reduction projects onto the v-reduction.

Suppose that a u-reduction, with reduced bundle P*, is given. The
group G* operates on the right on P*, hence it operates on the right
on the tangent bundle T'(P*) of P*, and we let 8* = T'(P*)/G* be the
vector bundle over M with fibre R* ® g*, where g* is the Lie
algebra of G* and T(P*)/G* is obtained by identifying conjugate
points of 7T'(P*) under the right action of @*. We remark that §*
can be identified with the bundle over M of jets of order u of the
I-vector fields. Let 89=T'(J{), the reduced tangent bundle of M, and
let 3# = @, =%, where Z#¢ is the sheaf of germs of differential forms
on I with values in 8. We set Z* =0 if p< 0, and denote by
41 =@; Zti, the kernel of the projection of 3* ento Z#~1, ie.

0 —-3 | — 3 —s-F" 11— 0.

Next, a reduction of order x -+ 1 defines, by projection, reductions
of orders p, p — 1, with bundles 8*, §“~1, and it is represented
locally by a connection from $* to 8#~1, that is by an R-linear map
of degree 1,

Dr=1: ¢ — 341 (1.1)
We call the (local) connection from S* to 8#~1 a (local) connection
of order y or u-connection. The negative of the (local) map obtained
by restriction of D*~1°to ¥#_, is linear over the local rings of
differentiable functions and will be denoted by &, namely
8: %, —> 3ol 1.2)
We have 82 =80 8 =0. Let A%_; =@®; A4, be the kernel of the
map (1.2), and let H:_, =@; H4 ; where

Hysy = Agh 8 (St %)
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is the cohomology of order u and degree i. The following theorem
is a consequence of Theorem 5.1 of the paper [13 (a) ] :

THEOREM 1.1. There is a positive integer py = p,(pq, 1), depend-
ing only on the order py and n, such that H:_; =0 for p> p,.

For formal reasons, we define the order p, such that it is always
positive, and we let v, be the smallest positive integer satisfying
v;> poand Hi_ ;=0 for > v;. Then py< v; < py.

A (local) (g + 1)-connection, or (local) map D+ : Z#+1 —» F#, defines
by projection a (local) u-connection, or (local) map D#~1: 3¢ - 3p#=1,
and the composition D*~1 o D* is a (local) map of degree 2, linear
over the local rings of differentiable functions, namely

D-1oDw: 1y -1, (1.3)

DEFINITION 1.2. We say that a (local) u-connection is torsionless
if the map D*~10 D*, defined by any prolongation of it to a (u + 1)-
connection, vanishes (locally) on the subsheaf X4+l of Zpr+1
(see Goldschmidt [56], Singer-Sternberg [12], Guillemin [6] ).

DErintTION 1.3, Analmost I-structure is torsionless, or integrable,
if each point has a meighborhood on which the (local) connection of
order po — 1 can be prolonged to a torsionless connection of order v,.

We remark that, if an almost I'-structure is integrable, its (local)
connection of order p,— 1 can be prolonged to a torsionless connec-
tion of arbitrarily high order (see, for example, Goldschmidt [5] ).

Finally, we say that a transitive, continuous pseudogroup I'
is elliptic if the system &*(T) of linear partial differential equa-
tions defining its I-vector fields (infinitesimal transformations)
is elliptic. The purpose here is to outline a proof of the following
theorem : if I' is elliptic, an integrable almost I-structure on a manifold
M is a D-structure, i.e. M is covered by local T'-coordinates transforming
into one another by elements of T.

This result is a generalization of the well-known complex
Frobenius theorem of Newlander-Nirenberg [10] and Nirenberg [11].



138 D. C. SPENCER

Sections 2—5 of this paper concern arbitrary elliptic systems of
linear partial differential equations and do not involve the notion of a
pseudogroup. In these sections the theory of harmonic differential
forms associated with an arbitrary elliptic system of equations is
described (see [13 (b), (c)]). In the remaining sections of the paper
the existence of coordinates compatible with an integrable almost
I-structure is reduced to & Poincaré lemma by means of a theorem
proved in[13 (b)], and the Poincaré lemma is then established, in the
elliptic case, by solving a local Neumann problem.

2. The resolution associated with a system of linear partial
differential equations. Let p =(p,,...,p,)denote an ordered set of
non-negative integers p,, ..., p,, and write |p| =p; + 25+ ... + 2,.
Moreover, if z=(x!,...,2/,...,2") is a coordinate, we define
9, = (3/02)%:(9/2z?P ... (9]0z")Pn. Finally let O’(R"), v > 0, be the
v-tuple symmetric product of (real) n-space R*, and write
Fr=Hom ( @ O'R"), R")\= @ F;_,
0<r<u 0<r<n
where
F;_, = Hom (0"(R"), R")

and FO,=F'=R" Let o*={o}|1<j<m,0< |p|<p}bethe
coordinate of F* where o =0%=(cl,...,0?,...,0™) is the coor-
dinate of R™.

Now let M be a differentiable manifold of dimension 7, and let
Q be a differentiable vector bundle over M with fibre R™. For each
non-negative integer u, we denote by S84 =84(Q) the differentiable
vector bundle over M, with fibre F*, of all jets of order u of
differentiable sections of @ over M. Let U be a neighborhood of
M, covered by a differentiable coordinate x = (z1,...,4,...,2"),
such that @ U~ U x R™. Then 84| U~ U x F* is covered by the
coordinate (z,0) = (z, o*).

A differentiable section f: M — @ induces, for each p, a differentiable
section ¢*(f): M -S4 which, expressed in terms of a local coordinate
(, ), sends z into *(f) (z) = (z, (9f) (x)) where
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f=f=0F11<j<m0< |p|< ).

DeriNiTioN 2.1, A linear partial differential equation on M
of order p, is the kernel E* = E*(Q, R) of a differentiable map
at: S5(Q) - R, where Q, R are differentiable vector bundles over M,
and o' maps each fibre of Sy =84(Q) > M linearly onto a fibre
of R—>M and induces the identity map on the base space M. A solution
of the equation E*o=E(Q, R) is a differentiable section f: M —->@Q
which induces a section ¢o(f): M — E¥,

A linear partial differential equation E*o = E*(Q, R) is defined
locally, in terms of a local coordinate (, o) for S, by a finite
number of equations

@, 0) =0, E=1,2,..., 5,
each of which is linear in o. Therefore, & solution f of E*, expressed
locally in terms of a coordinate (z, o), satisfies the equations
@ @)@) =0, k=1,2,..,k

Let E*o = E*(Q, R) be a partial differential equation (of order
i) Then E*e can be prolonged, by differentiation, to a linear partial
differential equation E#o+1 = 1(E*) of order py+ 1 where Exo*1 ig
defined locally, in terms of a coordinate, by the equations

fk(z: 0") =0,
@, o**1) = 0,
where

o (@, o#+1) = 01 fi(z, 0*+1) = {3; f(z, *+N)Ij=1,2,...,m}
and
aft | < af*
o =L i
) 0 ] o Loa 3, T

where 1, is the set of » integers all of which are zero except the
Jj-th, which is equal to 1. For each non-negative integer p, we define
E* = E#(E*) as follows :
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Bt =v(E™), B =
B | o) =a(@wTI(BR), p> py,
pr(E*), 0< p <o,
where pr*(E*) denotes the projection of E* in S§. Set
S = N pr*(E").
>u

For each non-negative integer p, we then have the projection
S#+1 58+ whose kernel we denote by S+, ie.,
0 —> St QrHl 5 S50 (2.1
where
S*c E* cS§. (2.2)

DEFINITION 2.2. We say that the equation is regular if, for each
s B* coincides with S* and is a differentiable vector bundle over M.

If the equation is regular, we denote it by S and we say that the
manifold M, over which it is defined, is an S*-manifold.

Let M be an S*-manifold, denote by T*(M) the dual of the
tangent bundle 7'(M) of M, and let A *7* (M) be the i-tuple exterior
product of 7'*(M). We let

8¢ =51 AT
4

for p> 0, and we define S4* = 0 for p < 0. Moreover, we let S4%_;
be the kernel of the projection 84— S84~1%. Let U be a sufficiently
small neighborhood of an arbitrary point of M ; then

811U = U x {Fi_; ® Hom (A‘R"), R)}
and 84! _, is covered by the coordinate (2, o) where o = {o,(| ¢ | =p},
o,={dd|i<j<m}and
of = by g dam A ... A dok,
where the summation is over ky, ..., k; satisfying 1 < k; <...< ;< m.

‘We have the map
58yl Spity (2.3)
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sending ¢ into 8¢ where 8o has the components {(80),!/p | = u}
and
(80)y = > dri Aoy, (2.4)
je=1

where p-+1,=(p,, ..., p; + 1, ..., p,). Clearly we have 82 =8c8=0.

Define 8*% in the same way as 84°, with S* replacing 84. Then
St c 84 and, in particular, S = 0 for u < 0. If u > p,, the
restriction of & to S4*1¢, the kernel of the projection S*+1% — 8ui
defines a map

&1 Qutli . guidl, (2.5)
and we denote the kernel of (2.5) by Lg*1i,

The following theorem is essentially a restatement, in terms of
vector bundles, of Theorem 1.1.

THEOREM 2.1. If M is an S*o-manifold, there is an integer
w1 = pi(po, n), depending only on the order u, of F* and the
dimension n of M, where p, > p,, such that the sequence

;9 .
0 > I/‘:-H,i ,Sz+14 > I/,:l-'{l > 0 (2.6)
s exact for pw>=> p, (and all i, 0 < ¢ < n).

Suppose that M is an S*o-manifold, and let =+ =@; Z* where
#% is the sheaf over M of germs of (differentiable) sections of
8t Moreover, let J** be the sheaf of pairs u = (o, £) where, for
some element o#*! of X¢+1 g =o* is the projection of o**! in
Z+and € = 80**! has components defined by (2.4) for 0 < |p| < p.
For each 7, 0 < ¢ < n, we have the surjective map

o DL > Juo
sending o**! into u = (o, £¢), and its kernel is the sheaf Ast+li of

germs of sections of LA+l je.

®
0 > A:-l»l.f > En+l,i #’ Ju,t' > 0.

We have the map (see [13])
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D: Jwi —y Juitl

sending u = (o, £) into Du = D(a, £) = (do — &, — df). Clearly we
have D2=Do D =0.

DeriNiTION 2.3. We call J* =@ J** the sheaf (over M) of jet
forms of order p belonging to SF*.

The regularity implies that J* is a sheaf of germs of differentiable
sections of a (differentiable) vector bundle over M and therefore, in
particular, J* is a fine sheaf.

Finally, let D*: Z¢+Li 5 i+l he the map sending o**!
into D#(o**!) =do* — So**1. For v< p, let Z#+1% be the kernel
of the projection Z#+1% —5 ¥, The restriction of D* to Z¢+!
maps Z4*! into ¥ ,, where ¥, =3*, and we denote by
B4+l =@ B4+ the maximal subsheaf of 3#*! which is mapped
by D* into E%. Then (see [13(a)], page 383)

e = AP
Su—1 7 “la-1s

where A4_, =@ A}, and we have the exact commutative diagram
0

!

+ =
0 — Zptl — Eutl

N

0 — 2+l 5 et 4 % 50

|

Ju—1 Je—1

|

0 0

1 —> 0
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Moreover, denoting by J:_, =@ J“*; the kernel of the projection
J*— J*=1, we have the exact commutative diagram

0

Jr—1 Jr-1
0 0

Now let M be an $*-manifold of dimension 7, and let ® be the
sheaf over M of germs of solutions of the regular partial differential
equation of order p,. Moreover, let

=0 — 0
be the injection sending f into
i(f) =#(f) =(f), 8¢7(f)) =@(F), d&(f).
If p> po — 1, it is easily seen that the sequence

i D D D D
0—>0 —JO el ey Ji2 ey | S5 0
(2.7
is exact at J»0,

DEFINITION 2.4. We call (2.7) the resolution (by jet forms) of
order p of the sheaf © of solutions of S*.

Exampres. (1) (de Rham’s theorem). Let M be an & -manifold,
where &1 is the equation df = 0 for the real-valued function f. Then
® =R (real numbers) and J*! = 4" for p> 0 and 0 < ¢ < n, where
A' is the sheaf of germs of (real-valued) differential forms of degree 3.
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In this case (2.7) coincides (for arbitrary p > 0) with the classical
(exact) resolution of de Rham, namely

bRt S L e

(2) Let M be a differentiable manifold with a foliate structure
whose sheets are real m-dimensional manifolds. This structure is
represented by a covering 1 = {U,}, where U, is a domain of the
local coordinates (z,, ¥,) = (2%, ...,a™, yL, ..., > ™), n > m, and the
transition functions for these coordinates have the form

@, = fup(gs Ya)

Ya = 9as(¥s),
where f,; is differentiable in 23, g5, the jacobian matrix o(z,)/0(x)
is non-singular, and g, is differentiable in y; and the jacobian
matrix 9(y,)/d(ys) is non-singular. Then M is an &1-manifold, where

&1 is represented, in terms of the coordinates (z,, ¥,), by the
equations

(2.8)

af )
a—xg;= , J=L2..,m, (2.9)

for the real-valued function f. It is now convenient to write

amtl =yl .., a" =y* ™. The equations (2.9) (which remain
unchanged) imply that an element o**! of Z++1 =@, Z**1{ has
the components o,, where o, = 0 unless p = (py, ..., p,) where

2,=0, ...,p,,=0. In this case J% is composed of the pairs u = (o, £),
where o is a (real-valued) differential form of degree 4 and £ is locally
equal to a (real-valued) differential form of degree i 4 1 which
belongs to the ideal generated by da™*1, ..., d2". The sequence
(2.7) is exact for pu > 0 (see [7], [13(a)]).

(3) (Cauchy-Riemann equations). Let M be a complex analytic
manifold of (complex) dimension m, and let z = (21, ..., 2, ..., 2™) be
a local holomorphic coordinate on M. Write 2/ = z%~1 4 (—1)¥ 2%,
j=1,2,..,m, where x =(z%, ...,2%, ...,2"), n = 2m, and define

9 2 0
ooy (= l), j=1,2 .., m.
7= (o=t (Y ) o

The equations



EXISTENCE OF LOCAL COORDINATES 145

:__zfj= , j=12..,m, (2.10)
for the complex-valued function f, have as solutions the functions
holomorphic in z = (2}, ..., 2/, ..., 2*). Introduce the self-conjugate
coordinate (z,z) = (2, ..., #,..., 2™ Z., ..., 2, ..., 2"), and write

r=p+5p=(pL ..., P, ..., ", Y ..., p),..., p*) where p’ and
P’ are non-negative integers. An element o#*1! of T¢+1 =@, Zr+14
has the components o,,3, where o,,; =0 unless p =0. In this
case J% is the sheaf of germs of pairs w =(o, £), where ¢ is a
(complex-valued) differential form of degree ¢ and ¢ is a (complex-
valued) differential form of degree ¢ + 1 which belongs to the ideal
generated over the (differentiable) functions by dz1, ..., d#/, ..., dz"
The sequence (2.7) is exact for pu > 0 (see [7], [13(a)]). Finally, let
A% denote the sheaf over M of germs of (complex-valued) differen-
tial forms of type (0, £), and let = :J% — 4% be the projection
sending % =(o, £) into the component of o of type (0,%). The
differential operator D on J° splits into the sum of two operators
D', D", where
D'(o, §) = (30 — £, — 3¢), D'(0, §) = (30, — 3)

and d = @+ 9 is the usual splitting of the exterior differential
operator d into operators 9, 3 of types (1, 0), (0, 1), respectively. The
following diagram is exact and commutative :

D D D D D
00— J%W 5 J0 . JO2__y | JOM . U 50

bolabs ok

0->0— A% 5 401 4025 . — 40" 0

The second line of this diagram is the classical Dolbeault resolution
of the sheaf @ of germs of holomorphic functions on M.

3. Elliptic systems of equations. Let M be an $*-manifold,
choose a metric, let S*(M) be the corresponding unit cotangent
sphere bundle and let @ : 8*(M) - M be the projection. Denote by
@*87%, the bundle over S*(M) which is induced from the bundle
8u%, over M by the map .
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If p> po, we have the map

8 TS s 32 (3.1)
where d§ =d 08 is the composition of formal and actual exterior
differentiation and d8 = — 8d. The symbol 8(d8) of the differential
operator d8 then defines a homomorphism of vector bundles, namely
3(dd): m* Q10— e G2, (3.2)
The map s(d8) is described in terms of a local coordinate as follows.
Let o be a vector belonging to the fibre of 7*8:*%, and let the
point of 8*(M) over which clies be (2, £), where z = (z1, ..., 2%, ...,2")

and

£= gt
k=1

Denote by 8o the vector of #*84; lying over the same point of
S§*(M), which has the components (§0), ={cj,, 1 <j< m}.
Then the map (3.2) sends o into 8(d8)o where

8(d8)o =(—1)t 2 (€ 8,0 —£8;0) da’ p da*. (3.3)
i<

The following definition of ellipticity is a natural one in the
present context.

DeriniTION 3.1. We say that S is elliptic if and only if the
map (3.2) 18 injective for p> py = py (pg, 1)

ExawmpLESs. (1) (Cauchy-Riemann equations). Let M be a complex
analytic manifold of (complex) dimension m, and let & be the system
of Cauchy-Riemann equations (2.10). We suppose that u> 0. Let
o be a vector of #*S4+"° lying over the point (2, £) of the real unit
cotangent sphere, where z = (21, ..., #, ... 2"),

£ = (6t + a2,
k=1
Then (see Example (3), § 2) we have §; o = 0, and hence
8(d8)o = (—1)t { Z €80 —£80) dd p dF— 22,,8,.0424 A dz*}
i<k 2k
Therefore, the vanimning of s(d8)o implies that
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E,,S‘ja=0, 5Hk=12,..,m.

Since E, #0 for one value of k, at least, we conclude that
80=0,j=1,2,...,m,ie. ¢=0. Thus the map (3.2) is injective
and hence the Cauchy-Riemann equations are elliptic.

(2) Let M be a subdomain of euclidean n-space with coordinates

z=(z%..,2%..,2"), and let *® be represented by the usual

laplacian

> (a) 1=0

E=1

We suppose that x> 1, and let ¢ be a vector of #*84%1° over (z, £).
Let 830 = 8,(8,0) be the element with the components (820), =
where 2, = 1, + 1,. Then

i #o =0, (3.4)

Tp 45y

Now suppose that s(d8)c -——b 0,l ie.
&%o=5680, j, k=12 ..,mn (3.5)
Operating on (3.5) with £, §;, we obtain
638 0=480c
and hence, by symmetry,
£ =£50.

Summing on k from 1 to n, we have by (3.4)

(Z&) '85":‘5?-28;30:0

and, since I {+#0, we conclude that 8%0=0, j=1,2, .., n.
Applying 3, to (3.5), we therefore have

§8;8,0=¢.80c=0. (3.6)
Choose j such that £ = 0. Then we infer from (3.5) that 8,0 =0
if £ =0, and hence §;8,0=0 if either £ or £ is equal to zero.
If £ #0, we infer from (3.6) that 880 =0. Thus 8;8,0 =0 for

all j, k, i.e. ¢ =0 and the map (3.2) is injective. We have thus
verified that the laplacian is elliptic !
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Let D* be the (formal) adjoint operator defined in terms of a
metric, and let [J=DD* -+ D*D be the corresponding laplacian.
‘We have the following theorem (see [13(b)]), which justifies Defini-
tion 3.1.

THEOREM 3.1. The system S+ is elliptic (in the sense of Definition
3.1) if and only if there is an integer py = py(F*) such that the
laplacian (] = DD* + D*D 1is an elliptic operator (in the “interior”
sense) on the sections of J* = @,J** for u> pq.

4. Neumann decompositions. We say that a manifold M is
finite if it is a subdomain of a differentiable manifold M’ where
M has compact closure in M’ and a boundary 8 M which is a regularly
imbedded differentiable submanifold of M’ of codimension 1. We
say that M is a finite S*-manifold if it is a finite subdomain of an
S*-manifold M.

Suppose that &* is elliptic, and let M be a finite S#*-manifold,
i.e. M is a finite subdomain of an S*-manifold M’. Let u be a fixed
integer and suppose that > u,, where p, = p, (). We have over
M’ the sheaf J*=@, J*!, and we denote by A=@, A’ the restriction
to M of the space of sections over M’ of J*=@; J**. Thus A is the
space of sections of J* over M which are differentiable up to and
including the boundary of M.

Choose a metric on M’, which fits the structure as closely as
possible, denote by (u, v) the scalar product, defined in terms of
the metric, of the elements u, v of A, and let D* be the formal
adjoint of the differential operator D, i.e. if u has compact support
on M, D* is the operator satisfying (Du, v)=(u, D*v) for all elements
v of A. Let N =@, N’ (Neumann space) be the (graded) subspace
of A composed of the forms » which satisfy the following pair of
boundary conditions :

(D*u, v) = (u, Dv),
(D*Du, v) = (Du, Dv),

for all v-of A. Denote by H =@, H' the (graded) subspace of N
composed of the forms which are annihilated by the laplacian

(41)
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DD* 4 D*D or, equivalently (in view of (4.1)), H is the subspace
of N composed of the elements  satisfying Du =0, D*u = 0. If
H is finite dimensional, we denote by H: A —H the orthogonal pro-
jection of A onto H. If H is infinite dimensional, let A, H be
the completions of A, H, respectively, and let H: A —H be the
orthogonal projection of A onto H.

DeriniTION 4.1. We say that the Neumann problem is solvable
for a finite Sro-manifold M if the following assertions are true.

(I) The restriction of Hto Aisa projection

H:A->H (4.2)
of A onto H.

(II) The Neumann operator N exists, i.e. there is the sur-
Jective map, of degree 0,
N:A->N (43)

which i8 characterized by the following conditions:
() HN =NH =o.
(iiy DN = ND.

(iii) (Neumann decomposition). For u e A, we have the
orthogonal decomposition

u = DD*Ny + D*DNu + Hu, (4.4)
which, in view of (ii), can be written in the form
% = D(D*N)u + (D*N)Du + Hu. (4.5)

The Neumann decomposition therefore has the form of a cochain
homotopy. In fact, let Z(A) = @; Z(A’) be the kernel of the map
D:A - A; then

Z(A)/DA) = Z(A") ® Z(AY)[D(A®) @... ® Z(A")|D(A™"Y) (4.6)
is the D-cohomology of A, where Z(A?) is the space of sections of
@ over M which are differentiable up to and including the boundary
of M. The Neumann decomposition (if it exists) provides a represent-
ation of the D-cohomology of A by the space H=@, H' of harmonic
forms, i.e. it gives a linear isomorphism (of graded vector spaces)
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H ~ Z(A)/D(A) (47

The solvability of the Neumann problem for a given finite manifold
M depends only on ¥, ie. it is independent of the choice of
metric. We denote by €(5*) the set of finite *-manifolds for
which the Neumann problem is solvable. Qur program is to solve
the following problem :

PROBLEM. Determine € = €(F*) for each elliptic S,

Exameres (1) &1 is the system of equations df =0 (see the
first set of Examples, § 3). Then €() is the set of all finite manifolds
(see Duff and Spencer [3], Conner [2], Morrey [9]).

(2) &' is the system of Cauchy-Riemann equations in m
variables, i.e. the system of equations (2.10). Then %(&?) is the
class of all strongly pseudoconvex (finite) manifolds (see Kohn [8]).

() Let z=(al,...,a%...,2aM),2 = (2, ..., 2, ..., 2"), where 2/ is
real, 2 complex, and write %= (2, ..., %, ...,7"), where # is the
complex conjugate of 2. Let &1 be the system of equations

9 .
37{’;0’ j=12 ..,m,
(4.8)
9
%:0, k=1,2,...,n,
for the complex-valued function f (compare (2.10)).

Now let M’ be a differentiable manifold with a foliate structure
whose sheets are real m-dimensional manifolds with a complex
analytic structure transverse to them. This mixed structure is
represented by a locally finite covering 8 ={V,}, where ¥, is an
open set covered by the coordinates (z,, 2,), and the transition
functions have the form

za = faﬂ(xﬂx zﬂt ;ﬁ)x
2y = gaﬁ(zﬁ)’
where f,, is differentiable in 2, 2, 7;, the jacobian matrix

0(2,)/9(xg) = 9(f,5)/3(2,) is non-singular, and . i8 a biholomorphic
transformation. Through each point of M’ there passes a real
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m-dimensional sheet, which is defined in V, by setting the 2%
equal to (complex) constants, and the local differentiable coordinate
along the sheet is z, = (21, ..., 2, ..., 2). Let T(M') be the tangent
bundle of M’, and denote by 7',(M') the sub-bundle of T'(M’)
of tangent vectors along the sheets. Then the restriction Z'(V,)
of T,(M’') to V, is covered by the coordinates (z,, 2, 0/9z,),
where 9]0, = (9/0a}, ..., 89z}, ..., 8/0x™). 'The equations (4.8) are
defined on M, i.e., M’ is an & 1-manifold where &1 is represented,
in terms of local coordinates (z,, 2,), by a system of the form
(4.8). Let M be a finite subdomain of M’, and denote by 0 the
boundary of M. The boundary 9M is tangent to a sheet, at the
point @, if T,(M")],, is contained in the tangent space of dM at
%, We denote by 9, the (closed) set of boundary points of M at
which M is tangent to the sheets. The work of Ash [1] and
Kohn [8], together with an observation of L. Nirenberg, yields the
following result :

B(SLY) is the class of finite S 1-manifolds M such that, at each
point of 9, M, the boundary is sirongly pseudoconvex in the sense of the
complex structure transverse to the sheet and strongly convex along
the sheet through the point.

In the following section we shall indicate how the method of
Kohn [8], in the form applied by Ash [1], can be used to establish
the following result :

PRrOPOSITION 4.1. Suppose that F* is elliptic. Then €(F*)
contains all sufficiently small spherical subdomains of euclid
n-space and, for these domains, H' = 0 for i > 0.

Suppose that $# is elliptic, and let M be an S *-mani-
fold of dimension n. The exactness of the sequence (2.7), for
B> py = po( ™), follows at once from Proposition 4.1. In fact,
suppose that p is a fixed integer, > p,, and let % be a germ of J*;,
where ¢ >0, which satisfies D% =0. Then % is represented by a
section u of J*¢, which is defined over a neighborhood containing
the closure of a sufficiently small coordinate ball and satisfies
Du =0. By Proposition 4.1, the Neumann problem is solvable
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on the coordinate ball and Hu =0. Hence, by formula (4.5),
4 = Dw where w = D*Nu, i.e. the Poincaré lemma for D is valid
and the sequence (2.7) is exact.

Now let L(J*) = @, L(J**) be the graded vector space of sections
of J* over M, and let Z(J*) = @; Z(J*) be the kernel of the map
D:LJ*) »L(J*). Then

Z(J*)| DL(J*) = Z(J“°) @ Z(J*')/DL(J*) ® ... ® Z(J*")| DL(J**~1)

(4.9)

is the (graded) D-cohomology of sections of J* over M. Moreover,

let

H*(M,0) =H(M,0)® H\M,0)® ...® HYM,0) (4.10)

be the (graded) cohomology of M with values in the sheaf ® of

germs of solutions of the system & of linear partial differential
equations on M.

We denote by v, = v, (&) the smallest positive integer for which

the sequence (2.6) is exact for u> v, and 0<i<n—1, and we denote
by v;=v,(F*) the larger of the two integers p,, v, (see Section 1).

The following theorem is an immediate consequence of
Proposition 4.1.

THEOREM 4.1. (Theorem of de Rham for elliptic systems.) Let
M be an S*-manifold of dimension n, and suppose that S* is elliptic.
Then, for p> vy — 1, a fortiori for p > py — 1, the sequence

i D D D
0—> 0 —> I Jl— | — I — 0
is an exact sequence of fine sheaves, and we have the isomorphism of
graded vector spaces
H* (M, ©) ~ Z(J*)|DL (J*) (4.11)
which is derived from the exact sequence of sh n a scal
manner.

In fact, suppose that p> v; — 1,4 > 0,and let u be a local section
of J#* satisfying Du = 0. If p < g, then u can be lifted up to a section
v of Ju»¥ satisfying Dv =0 (see [13(a)], § 5). By Proposition 4.1,
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v = D (D*Nv), and it follows that 4 = Dw, where wis the projection
of D*Nv into a (local) section of J« -1,

5. The (formal) adjoint operator defined in terms of a metric.
Suppose that g > v > p;. Then we have the decomposition (over R)

Toiy = (Do) (TyHH1) @ 4 (Z+H). (CBY

Moreover, the following sequence is exact (see[ 13 (a)], Proposition 5.1)

D D D
0 —>Ju0) — il > . —— S, ——> 0. (5.2)
Take p = v > p, ; then (5.1) reduces to the following decomposition :
Jui) = DT @ d(Zt). (5.3)

u=1
From (5.3) we obtain the decomposition (over the differentiable
functions)
Jui ) = §(Zut1i=1) @ §(Tut1d). (5.4)

Next, suppose that a riemannian metric has been chosen along
the fibres of the bundle S4*!, where p is a fixed integer, u > p;.
Then, at each point x of M, we have a scalar product (o, 7), of
vectors o, 7 belonging to the fibre of S4 over x, and write
lle |l =[(, 0),]"2. This scalar product induces a scalar product in
the sheaf 24, and we let

a:Xy—> 2
be the orthogonal projection, in the sense of the scalar product(...),,
of 24 onto 2. Setting b =1 —a, we have the orthogonal decom-
position
Zj = a(Zy) © b(x)
where a(Z4) =3+, Moreover, let
ot Zht > §(Zptli-1)

be the orthogonal projection, and let B be the orthogonal projection
of Z4% onto the orthogonal complement of §(Zx+™-1) in Z#i, ie.
we have the orthogonal decomposition

Tré = B(EA) @ a(EH), (5.5)
where B(ZA) = B(Z49), a(2) = «(Z4), and @ = B + a.
The decomposition (5.4) can be written
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Jut = o(ZH) @ a(ZHHY). (5.6)
Moreover, we have
Jud =Tt @ a(Tmit1) (5.7)
where J*~1% ig isomorphic to S(Z*f). In fact, we have the exact
sequence (see §2)

00—t >t Ty -1y, (5.8)

and we let
g:Jr-1 5 TeHl

be the injective map sending the element #*~% of J*~! into the
unique element o*+! of Z¢+! such that w(o**1) =wu*~! and g*+!
is orthogonal (in the sense of the scalar product (...),) to Zxtl.
Then we have the following splitting of (5.8):

T = (s0w) () @ B4l (6.9)
We obtain an induced splitting of the sequence
0 —>Ji | —>JF —> 1 —0,

namely
“=(#o08) () @I, (5.10)

where 3 : Z¢+1 > J¥. Finally, let w: J* - 3 be the projection
of J* onto Z*. Then

7o 3 os: Il o> B(EH)

is plainly bijective, and we therefore have
Jus = B(Zm) @ Jut . (6.11)
The decompositions (5.5), (5.6) and (5.11) imply (5.7).
Let ¢ =so0df of, whered: Z* - J*~1. Then
g TH > TetLE,

and we have the orthogonal decomposition

AL = g(zed) @ EtIS, (6.12)

where g(Z*%) is isomorphic to J*~1%, therefore isomorphic to B(Z*).
Moreover, we have the exact sequence
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8
0 —> Kitpf— Bl —— 3(Z*) —> 0 (5.13)

where Kitl# is the kernel of the map §: Ei+l¥ - 3(Zit),

and we have the orthogonal decomposition
RS = p(Ast,) @ g+
where p: A%é, — Kit14 is the prolongation of A, into a subsheaf
of the kernel K4*14. Thus we have the decomposition
S = g(34) © PAE) @ T+ (5.14)

where Aui | = §(Zu+14-1) = «(Z) (since p > py).

Now let % = (o, £) = 4+ (c**!) be an element of J*!, where
o =m(c**+!) is the projection of the element o*+! in ZT*f and
£ =2580"*1, In accordance with (5.7) we write u = (o, {) where
{ = 8(c*+! — g(0)), and we henceforth denote an element u of J»
by the pair (o, ) where o €Z*¥and { €a(Z#i+?) = §(Z+M).

Let u = (o, {) be a section of J*¢, and set
llull2 = lloli + 112,
lull? = j llwl® 4,

M

where dM denotes the volume element determined by the rie-
mannian metric on M. If u, v are sections of J*!, we denote by
(%, v),, (u, v) the scalar products corresponding to the above norms.

(6.15)

For u = (o, (), the operator D, expressed in terms of the
decomposition (5.7), has the form
Du=D(0,0) = (d—3) s~ —(d—B8)? o —dl) (5.16)
where 80 = (8 0 ¢)o. Let u be a section of J*%; then the (formal)
adjoint D* of D satisfies the equation (D*u,v) = (u, Dv) for every
seotion v of J*$~1 with compact support, and we verify that
D*u = D(0,) =(a.((d*—8F) o—(d*—83)%L), —a(o +d*{)) (5.17)

where 8} is the adjoint of 8, and d* the (formal) adjoint of the
exterior differential operator d. For simplicity, let Dy =d — 8.
Formulas (5.16) and (5.17) then become
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Du = D(qa,{) = (Dyo — {, — Do —di), (5.16)"
D*u= D¥a,0) = (Df o — DL, —a(o+d*),  (517)°
where
Dy I ——y TiiH1,
D¥ : Twitl - T,

and (as is easily seen)
DTy q(TH42)

D2 : o(Z4i+2) —> 34,

are linear over the differentiable functions.

The formulas (5.16)", (5.17)" are used in proving Proposition 4.1
(where it is assumed that p > p, = py(F*™)).

6. Elliptic pseudogroups. Let M be a I'-manifold, where T is a
transitive, continuous pseudogroup of order g, Then the I'-vector
fields (infinitesimal transformations of T') are defined by a system
Fro=F#(T') of linear partial differential equations which is regular
in the sense of Definition 2.2, and the considerations of the preced-
ing sections are therefore applicable.

We remark that the sheaf @ of germs of I-vector fields, i.e. the
sheaf of germs of solutions of & (T'), has a structure of Lie algebra
over R, and the cohomology H*(M,®) =@®; H'(M, ©) has an induced
structure of graded Lie algebra (over R). Moreover (see [13(a)],
Proposition 3.4) the sheaf J* = ®;J** has a natural structurc of
graded Lie algebra (over R) with bracket [«, v], », ve J*, and we
have the formula (formula (3.37) of the paper [13(a)])

D[u, v] =[Du, v] + (—1) [u, Dv], ueJ*, veld-.

Therefore (see (4.9)) we see that Z(J*) is a graded subalgebra of
L(J*)and the image DL(J*) of L(J*), under the map D :L(J*) »L(J*),
is an ideal of the algebra Z(J*). It follows that the D-cohomology
of sections of J*, namely (4.9), inherits a structure of graded Lie
algebra (over R).
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DEFINITION 6.1. An elliptic pseudogroup is a transitive, conti-
nuous pseudogroup T' for which S*(T') is elliptic (in the sense of
Definition 3.1).

Theorem 4.1 is valid for elliptic pseudogroups, with the additional
assertion that (4.11) is an anti-isomorphism of graded Lie algebras
over R (see [13(a)], Theorem 7.1, and [13(b)]).

Let @ be an arbitrary linear Lie group, @ c GL(n, R), with Lie
algebra g, g c gl (n, R), and denote by I the pseudogroup of all
local bidifferentiable transformations of R” whose jacobian matrices,
defined in terms of the coordinate (z1, ..., 2, ..., 2") of R", belong
to Q. The T'g-vector fields 8 = (%, ..., 6/, ..., 8*) are the solutions
of the system ! of equations which assert that the (» X n)-matrices
(26/22*) belong to g, and we say that @ is elliptic if and only if !
is elliptic. Professor I. M. Singer has remarked to the author that ¢
is elliptic if and only if its Lie algebra ¢ contains no real subalgebra
generated by matrices with precisely one non-vanishing (real)
coefficient.

ExampLEs. (1) A complex Lie group &, G c GL(n,C), is elliptic.

(2) A complex pseudogroup, i.e. a pseudo-subgroup of the
general complex pseudogroup of all local biholomorphic transforma-
tions, is elliptic.

7. Almost I-structure referred to an osculating I-structure. Sup-
pose that M has an almost I-structure, and let O be an arbitrary
point of M. Then there is a neighborhood U of O in M with a
P-structure osculating to the given almost I'-structure at the point O.
Let J* = @;J** be the sheaf over U of jet forms of order p
belonging to the osculating I'-structure. Then (see [13(a), (b)]) the
almost I'-structure on U is represented by a section v over U of
J#!, where u > p,, and v vanishes at the point 0. We introduce
the differential operator

D=D,: g > (1.1)

which sends the element u of J*' into the element Du of vt
where
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Du = Du —[v, u]. (7.2)
The following proposition is proved in the paper [13(a)] :

PropPoSITION 7.1. The almost T-structure on U 8 integrable if
and only if

Dt=Dv—13[v,v]=0. (1.3)

Next, suppose that the section v of J*!, u > u,, depends
differentiably on a real parameter ¢ for all sufficiently small ¢,
i.e. v =o(t) and suppose also that »(0) = 0. As in [13(a)], we let

D(t): J* > J*
be the operator defined by (7.2) with v = ¥(¢), i.e.
D(t) u = Du — [v(t), u. (1.4)

Then v(t) defines over U a one-parameter family of almost
I-structures depending differentiably on ¢ and tending, as ¢ appro-
aches zero, to the osculating I'-structure on U. By Proposition 7.1
the family of almost I'-structures is integrable if and only if

D(t)? = Du(t) — 3[(t), v(¢)] = 0. (7.6)

Let J¥, = @; Ji} be the sheaf over U of germs of jet forms of
order p depending differentiably on the real parameter ¢ for all
sufficiently small ¢, A germ of J¥, over a point of U is represented
by a family of sections %(t) of J*, defined on a neighborhood of the
point in question which is independent of ¢, and depending differenti-
ably on ¢ for all sufficiently small ¢.

DEFINITION 7.1. We say that the Poincaré lemma for the
operator D(t) or, shortly, the D(t)-Poincaré lemma, is true in degree
i+ 1, where 0 < 1< n— 1, 4f, for each section v = v(t) of J3} over
U satisfying (7.5) and vainshing at t = 0, the sequence

Dt) D)
T —> Jg5H —> it
i8 exact at Jit1.

The following theorem is proved in [13(b)] :
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THEOREM T.1. The existence of local coordinates, compatible with
a family of almost T-structures defined by a section v(t) of J%j) satis-
fying (1.5) and vanishing at t =0, is equivalent to the validity of the
D(t)-Poincaré lemma in degree 1.

The validity of the D(t)-Poincaré lemma in all degrees, in
particular in degree 1, for elliptic pseudogroups is established by
the method described in Section 5. In fact, if the pseudogroup T’
is elliptic, then the basic estimates which hold for D and D*, also
hold for D(t) and D*(t), provided that ¢ is sufficiently small. We
therefore have the following result (Theorem 5.2 of [13(b)]) :

THEOREM 7.2. The D(t)-Poincaré lemma is valid for elliptic
pseudogroups.

We remark (see [13(a), (b)]) that (7.5) is the integrability condition
for the equation

Dht) = o(t) (7.8)

where h(t) = (f(£),9(t)) and f(t) is a local bidifferentiable transforma-
tion of a neighborhood of the point 0, g(¢) is a differentiable map
of a neighborhood of 0 into the group G*+1! associated with I'. If
h(t) = (f(2), g(t)) satisfies (7.6), the map f(¢) transforms a I'-coordinate
z=(x},...,2), ..., 2*) for the osculating structure into a I'-coordinate
[, t) =(f'(=, t), ooy fi(®, B), ..., f™(x, ?)) for the structure defined by
v(t). At t=0, f(z,0) ==z and 9(0) (x) =g(z,0) is the unit element
of Q++1.

Finally, a transformation A(f) = (f(¢), g(t)) of the type described
above is a section of the sheaf 5#%}! of groups defined in the paper
[13 (a)]. Let A(t) be a section of %} over a neighborhood of the
point 0, and set

vy(t) = Ad A(t) . (v(t) — DhE)) (.7)
where the operation Ad A(t) is that described in [13(a)]. Then (see
[13(a), (b)]) the element v,(f) is a local section of J%) which also
satisfies the integrability condition (7.5).

8. Existence of local coordinates compatible with an integrable
almost T'structure. We are now able to prove the following
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generalization of the theorem of Newlander-Nirenberg [10] (see also
Nirenberg [11]) :

THEOREM 8.1. If T' is elliptic, an integrable almost T'-structure
18 a T'-structure.

In fact, suppose that M has an almost I'-structure, let O be an
arbitrary point of M, and let U be a neighborhood of Oin M with a
I'-structure osculating to the given almost I-structure at the point
0. Choosing U smaller if necessary, we cansuppose that U is covered
by a I-coordinate x = (21, ..., 27, ..., 2") for the osculating structure
which is centered at the point 0. Let v be a section of J*! over
U, p> p, = py(pe, n), which represents the given almost I'-structure
on U and vanishes at the point O, where J* =@, J** is the sheaf
over U of jet forms of order i belonging to the osculating I'-structure.
Then we have the map (7.1), where D is defined by (7.2). We
suppose that the almost D-structure is integrable, i.e. v satisfies
(7.3) and D2 =o0.

For simplicity, we suppose that I' =I'g, where @ is a linear Lie
group (see Section 6). Let ¢ be a sufficiently emall real parameter,
and let y = (y, ..., ¢/, ..., y") where y/ =27/t or, shortly, y =z/t. The
small spherical neighborhood || <t of the point O is transformed
into the unit coordinate ball |y| < 1. However, we remark that
y=(@4 ..., 9, ...,y") will not generally be a I'-coordinate for the
osculating I'-structure. The transformation y = z/t induces a
transformation of v into a section »(f) of the sheaf J¢} of jet forms
associated with the osculating structure, and v(f) satisfies (7.5)
and vanishes at ¢ = 0.

Suppose now that the pseudogroup is elliptic (i.e. @ is elliptic),
and let D(f) be the operator defined by (7.4) in terms of v(f). By
Theorem 7.2, the Poincaré lemma is valid for D(t) and hence, for all
sufficiently small £, there exists on a neighborhood of the point O a
solution A(f) of the equation (7.6). Transforming back to the
T'-coordinate 2 = t.y, we obtain a solution % of the equation 2k = v
on a neighborhood of O, where h =(f, g), and
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f@) =(f1(2), ..., F(@), ... /()
is the desired I'-coordinate for the given almost I'-structure. We have
thus proved Theorem 8.1 in the special case where I' =T, G a
linear Lie group. The proof in the general case can be carried out
along somewhat similar lines.
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SOME REMARKS ON THE NOTION OF CONVEXITY
FOR DIFFERENTIAL OPERATORS

By BERNARD MALGRANGE

I. Complexes of differential operators. Let 4 = C[X,, ..., X,] be
the ring of polynomials in » variables over C. This ring operates on
the functions (and distributions) in R" by the formula

. of :
Xjf=—l%; (’b=\/——1).
Let M, be a complex of 4-modules, with differential of degree — 1

oo —> M, iMk_l —_— ..
Throughout this paper, we make the following assumptions:

1. The M, are free and of finite type.

2. All but a finite number are zero.

We denote by M* the complex Hom (M,, 4) (we write Hom,
Ext*, ... instead of Hom ,, Ext%, ete. ...). It is known that one has
a spectral sequence connecting H*(M*) and H, (M) :

(I.1) H*(M*)« Ep? =Ext?(H,(M,), 4).

We denote by & (resp. 2, &) the sheaf of germs of > functions
(resp. distributions, analytic functions) on R"; if Q is an open set
in BR*, we write £(Q) =T'(Q; &), &,(Q) =T,(Q; &) (here, ¢ stands
for the family of compact subsets of Q), and we define 2'(Q), 2',(Q)
etc. ...in the same way.

DermvitioN (1. 2). The complex M, is said to be ‘““hypoelliptic”
(resp. “elliptic”) if, for every Q, the natural mapping
H*(Hom(M,, €(Q))) > H*Hom(M,, 2'(Q)))
[resp. H*(Hom(M,, «(Q))) - H*(Hom(M,,, €(Q)))]
18 bijective.
Let M be an A-module of finite type, and suppose that M, is a
free resolution of M
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(i.e. M, = 0 for k <0, Hy(M,) =0 for k > 0, Hy(M,) = M).
Then, M, is hypoelliptic (resp. elliptic) if and only if M is hypoel-
liptic (resp. elliptic), which is equivalent with the following property:
For every Q c R*, the natural mapping :

Hom (M, £(Q)) - Hom (M, 2'(Q))
[resp. Hom (M, &/ (Q)) > Hom (M, &(Q))]
is bijective.
[Denote by & the sheaf Q —Hom (M, £(Q)) and define similarly
2'M and «/¥; one has isomorphisms
H{Hom(M,, &(Q)) = Ext*(M, &(Q)) ~ HKQ; &)
and similar isomorphisms with & replaced by 2’ or & [10]; the
result is an immediate consequence of these isomorphisms.]

We recall the following theorem (due to Hormander-Lech [7]
in the hypoelliptic case, and—essentially—to Petrowsky in the
elliptic case).

TarEorEM (I. 3). The A-module M 1is elliptic (resp. hypoelliptic)
if and only if supp (M) (in the sense of Bourbaki [3]) has no real
points at infinity (resp. the projection C* - R* : z - Im z induces on
supp (M), considered as a subset of C*, a proper mapping).

ProrosiTiON (L. 4). The complex M, 1s elliptic (resp. hypoellip-
tic) if and only if the modules Hy(M,,) are elliptic (resp. hypoelliptic).

Proor. Let a € R". It is known that the spaces of germs at a
&,, D'y, A, are injective A-modules [10]; then, one has

H¥Hom(M,, &,)) = Hom(H,(M,), &,)
and the same result is true with & replaced by 2’ or &/. Then, if
M, is elliptic (resp. hypoelliptic), the Hi(M,) are elliptic (resp.
hypoelliptic).
Conversely, suppose the Hi(M,) to be elliptic (the hypoelliptic

case is similar); one has a homomorphism of convergent spectral
sequences
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H*Hom(M,, £(Q))) < Ep* = Ext?(H,(M,), £(Q))

H*(Hom(M,, (Q))) <= Ef? = Ext?(H,(M,), 4 (Q))

and the mapping in the second column is bijective ; then the mapping
in the first column is also bijective. g.e.d.

In paragraph 4, we use the following result, which can be proved
in a similar manner.
If M, is hypoelliptic, then, for every Q c R*, and for every k the
natural mapping
(I.5) H*(Hom(M,, &,(Q))) > H*(Hom(M,, 2',(Q)))
18 bijective.
(But, we note that it happens very often that for given M, and k
(I. 5) is bijective although M, is not hypoelliptic ; and, actually,
we shall need just this property for given M, and Q, and that, only
for some values of k.)

We consider now the complex M’, obtained from

M* =Hom (M,, 4)
by replacing the degrees by their negatives :
M= M*(=Hom(M_,, 4)),

and keeping the same differential; we write here d’, for the
component M’, - M’,_, of the differential of M’, (that is:
d'_, =Hom (d,,, 4)). We consider M’, as a complex of
A-modules, not in the usual way, but as follows :
ifu e M, =Hom (M, A) and m € M, we put (X; u) (m)=u(— X;m).

The reason is that 2 is the transpose of — ——a~!
ox; 0z;
Using (I. 1), (I. 3) and (I. 4), one proves easily the following
result.

ProrositioN (I. 5). M, is elliptic (resp. hypoelliptic) if and
only if M, is elliptic (resp. hypoelliptic).
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II. Duality. Let Q be an open set in R", and M, a complex
(satisfying the conditions 1 and 2 of paragraph I). We obtain a
topological and algebraic duality between Hom (M,, &£(Q)) and
Hom (M'y, 2',(Q)), in the following way :

1. M, being free of finite type, we have an isomorphism M, ~ 4%,
then we have an isomorphism Hom (M, £(Q)) ~ &(Q)* ; here the
second term is, with its natural topology, a space of type (F) (and
even of type (FS) [6]); we transfer this topology to the first
member ; one verifies easily that this topology is independent of
the isomorphism chosen.

2. In the same way, Hom (M',, 2,(Q)) is a space of type
(DF), and even (DFS8) [5]; using the “canonical” pairing
&(Q)x92,(Q) - C and the isomorphism

Hom (Hom (M, 4), 2,(Q)) ~ M, @ 2,(Q)
(M, is free of finite type !) one gets a pairing
Hom (M, £(Q)) x Hom(M",, 2,(Q)) - C.

One verifies immediately that this pairing is separately continuous,
and that the first term is the topological dual of the second.

3. Denote by P, the differential operator Hom (d,, £(Q)) and
define Py in the same way. Then, from the preceding duality we
see that P, , is the transpose of P,.

Now, the cohomology group H¥(Hom (M,, &(Q)) is isomorphic
to ker P, ,/im P,. The space ker P,,, is a closed subspace of
Hom (M, &(Q)), and is, with the induced topology, a space (F).
We put on H¥(Hom (M,, &(Q))) the quotient topology, which is
not necessarily a Hausdorff topology (it is if and only if im P, is
closed); we call this type of topology ““ quotient of an (F)-space ”’,
or “(¢-F)”.

Similarly, H-*(Hom (M,, 2,(Q))) has a topology of ‘quotient
of a (DF)-space”, or “(¢-DF)” (according to a theorem of Gro-
thendieck, a closed subspace of a (D F §)-space is also (D F8) [5]).
H-*Hom (M’,,2.(Q))) is Hausdorff if and only if im P’ is closed ;
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this is equivalent to saying that im P,,, is closed, or that
H*+1(Hom (M, , £(Q))) is Hausdorff.

Now, the preceding pairing induces a pairing
o, : H¥(Hom (M,, &(Q))) X H ¥ Hom (M',, 2,(Q))) > C.
TureoreM (IL. 1). 1. The pairing w, is separately continuous,

and ind a duality bet the associated Hausdorff spaces (i.e.
the largest Hausdorff quotients).

2. H¥Hom (M,, &(Q))) is Hausdorff if and only if
H~*+1(Hom (M',, 2,(Q)))

18 Hausdorff.
(2 has been proved, and 1 is trivial).

This theorem is of course not new. (As far as I know, results of this
kind were studied systematically for the first time by Serre [13].
The form given here was suggested to me by Martineau).

III. Convexity. The main purpose of this paper is an attempt to
define the “‘convexity” of an open set with respect to a given complex.
We justify this definition by giving “‘abstract” theorems connecting
this definition with the ‘“‘existence theory’ (the fact that some H*
are Hausdorff, finite-dimensional, etc....). We shall not discuss
examples here, but note that it generalises naturally both the
“p-convexity’” of Rothstein—Grauert— Andreotti [1] for complex
variables and the so-called “uniqueness for Cauchy problem” in the
theory of one linear equation (for the results of this theory, we
refer to Hormander[8]). I must say that, for the moment, I have no
examples, except the examples existing in the literature (or which
can be easily deduced from known results; in this direction, we men-
tion, without giving precise statements, the ‘ universal” convexity
of ordinary convex sets, and the fact that the problem of continuation
of holomorphic solutions of some equations, studied by Leray, is
more or less connected with this convexity).

First, we give a condition for H*(Hom (M,, 2,(Q))) to be
Hausdorff. Here, if K is compact ¢ R", we denote by &y the
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space I'z(R", &) of sections of & with support in K (of course, one
must not confuse this with &(K), the space of germs of sections of
& near K); we define 9’y similarly.

TuaeoreEM (III.1). Consider a matriz P € Hom (4%, A7), and
an open set Q c R*. Suppose the following property is satisfied :
(II1. 2). For every compact K c Q, there exists a compact K'c Q
which verifies

P2, (Q)P n &c P &% .

Then, P 9,(Q)? is closed in D, (Q).

Proor. (a) We prove first that for K compact c Q, the subspace
E of &%, defined by

E=8%n P2, QY
is closed.

We denote by € the sheaf of germs of continuous functions in
Q ; by hypothesis, we have

(IIL. 3) E =d&% n P &%, therefore E = &4 n P%%..

Let N be the kernel of the mapping P: 2, (Q)® -2, (Q)? and
put Ny=Nn%%, Ny=Nn&%. Denote by ¥, (resp. ¥,) the
subspace of

(€%INy) X &% (wesp. (E3/N,) x &%)

consisting of the pairs (f, g) verifying Pf = g. The natural
injection ¢: ¥V, — V, is a bijection (and then is bicontinuous),
according to (IIL. 3); denoting the canonical projection of ¥, into
€%, |N, (resp. €%) by pry (resp. pr,), we have

1= (pry 0 1, 0) + (0, pryo ).
The injection &g, - Fg- is compact (Ascoli’s theorem), then pr; o ¢
is compact (all the spaces introduced here being equipped with
their natural topologies). Therefore, pryo% is a strict morphism,
and has a closed image (see [12], Theorem 1).

This argument is essentially due to F. Treves (unpublished).

(b) Using this result, one proves easily, by an argument of
regularisation, the following result :
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Let K, and K, be compact subsets of Q, with K, c K, K c Kz.
Then, 2 n P 9, (Q)? is a closed subspace of 9, and is equal to
23 o PDY, (see [9)], proof of Lemma 3.1).

(¢) To prove now that P 2, (Q)? is closed, it suffices, according
to a theorem of Banach, to prove that its intersection with any
closed bounded convex set is closed; and this results immediately
from (b) and the fact that, in 9, (Q), all elements of a bounded set
have their supports in a fixed compact.

RemARK (IIL.4). I do not know if the converse of the preceding
theorem is true. Actually, one can obtain a necessary and sufficient
condition for the closure of P 9, (Q)?, very close to (III.2):

for every compact K c Q, there exists a compact K' c Q and an
integer k > 0, with the following property:

if f € P9, (Q)? n D3 has continuous derivatives up to order 8 + k
(8, any integer > 0), there exists g having conts 8 derivatives up to
order s verifying g € D and Pg = f.

ReMARk (III.5). Using well-known arguments of duality, one
can deduce from Theorem (III. 1) some properties of density for
the solutions of the transposed equation (see for instance [8],
chap. 3).

Now, we note that property (III. 2) can be decomposed in two
parts.

(i) A property of regularity.

(IIL.6). P2,(QPn &, (Q)e=P &, (Q).

(ii) A property of the supports.

(IIL1.7). For every compact K c Q, there exists a compact K' c Q
verifying

P&, (QP 6% cPE%.
Now we are interested only in this last property.

Derivrrion (II1.8). Let M, be a complex (in the sense of § 1),
and p an integer. We say that Q is p-convex with respect to M, if, for
k< —p + 1, the mapping



170 BERNARD MALGRANGE
P;: Hom (M;_,, &, (Q)) - Hom (M, &,(Q)) satisfies (IIL.7).

Remarx (IIL.9). If M, (and then M,) is hypoelliptic, P
verifies (II1.6) for all k& (see § 1); then, for k< —p 41, the
hypotheses of Theorem (III. 1) are satisfied.

We shall give now a sufficient condition, of local character on
9Q (the boundary of Q), for p-convexity. (We follow essentially here
an idea due to Ehrenpreis [4], in the case of complex variables;
it is slightly different from the method of Andreotti-Grauert [1],
which uses global properties of 9Q. A recent, and yet unpublished,
approach due to Andreotti avoids the use of global properties,
using the local cohomology of Q; but simple examples show that,
for general differential systems, local cohomology gives satisfactory
results only in the elliptic case [11]. This is the reason for our use
of the family ® of supports defined below, rather than local
cohomology).

Let Q be a fixed open set in B", and @ a variable subset of {, open
in Q; we denote by ®(0) (or simply ®) the family of subsets of
0 n Q which are closed in 0, and we put & (0) = P‘b(@) (@; &).

DerinrTioN (II1.10). Let a€9Q; we say that Q is strictly
p-convex at a with respect to M, if the following property is satisfied.

For every 0cO with ae0, 0 open in £_2, there exists O0'c 0, with
ac®, 0' open in Q, such that the natural mapping
HH(Hom (M'y., £6(0))) > H¥(Hom (M’ £4(0")))
reduces to zero for k < — p.
TaeoreM (III. 11). Suppose that Q is bounded, and strictly
p-convex with respect to M, at every point of 9Q. Then
(i) Q is p-convex with respect to M, ;
(ii) there exists Q' c c Q such that the natural mapping
HYHom (M',, &,Q"))) ~ H¥(Hom (M',, &,(Q)))
is surjective for k < — p.
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It is obviously sufficient to prove

(IIL.12). Let k< — p, and let K be a compact c Q; there exists a
compact K' with K c K’ c Q, verifying the following property :

For any ¢ Hom (M, £o(Q — K)) with Pj,,$ =0, there exists
¥ € Hom (M;_,, £(Q — K')) with P}y =¢ in Q— K.

Proor or (II1.12). Denote by &7 the sheaf @ Hom (M, £4(0)),
and consider the mapping P;,, : &, - &5t ; we denote by Zj, its
kernel ; its image is obviously contained in Z3+!. The hypothesis on
p-convexity can be expressed in the following manner: let r < —p,
a€dQ, and let O be an open set in 5, a € 0; there exists ', open
in §, a €@, such that P, &% Y(0), restricted to 0', is equal to Z5(0').
We express this fact by saying that the sequence
(IT1.13) 0>2Z51 >85> 25 >0

is “exact near 9Q”. (This is of course stronger than saying that the
restriction to 9Q is exact ; actually, this last statement is trivial,
everything being zero on 9Q!)

The idea of the proof is to derive from (III.13) a variant of the
‘“exact sequence of cohomology”. Let % = (U;);,; be a finite
collection of open sets in Q, covering 9Q (we call this a covering
of Q near 3Q); we consider the groups of cohomology of this covering
H % ; Zt,) ; if %' is a refinement of % (every set of %’ is contained
in some set of % ; note that %’ need not cover U U,), we have
the usual restriction mapping

P U, U') : H'U 5 Z) - H'U'; Zj).

For r < —p, s> 1, we prove : given r, 8, %, there exists %' with
Pra(%,%') =0; we express this fact by saying ““the direct system
HY : % -~ H % ; Z,) is zero near 9Q”.

To do this, using (III.13), given r < —p, 8 > 0 and %, we construct
a refinement %' of % and a connecting homomorphism :

8,2, %) : BW; Zy) > HH'W'5 Z57)
with the following property for s > 1:
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If %" is a refinement of %' and if
Protyi i@\ U") 8, (U, U') =0, then p (%, U') =0
(we omit the details, which are the standard ones).

Now, for r < —p, s> 1, if H5'~! is zero near 3Q, Hy has the
same property ; but, for large negative values of 7, M, is zero and
then HY' is zero ; by induction on 7, we obtain the desired result.

Now, to prove (III.12), we consider a covering % = (U;);y
of Q near 3 Q, with U; c O — K, such that in each U,, one has
¢ = P, oy, with ¢; € %51 (U,); in Uy n Uy, we put x; =¢; —¢;; the
collection (xy) is & 1-cocycle of % with values in Z§™! (note that
this construction is just that of the connecting homomorphism 8§, ;).
Using the preceding assumption, we can get a refinement %’ of %
(depending on K, but not on ¢) such that the image of this cocycle in
HY'; ZE™1) is zero; if we write, for simplicity, % instead of
%', we have then: y; =y, — x; With x; € 2§ (U;). Defining
Yedt (U U) by: ¢ =¢; — x; in U;, we get a solution of (ITIL.12).

Remarx (III.14). Suppose M, to be hypoelliptic, and let Q
verify the hypotheses of Theorem (III.11). Using (III.1) and
(III.11.i), one obtains the result that H*(Hom (M’,, 2', (Q))) s
Hausdorff for k< —p 4+ 1.

Actually, we obtain more, using (ITI.11.ii) : for k < —p, this space
s finite-dimensional (we follow here Andreotti-Vesentini [2]).
For, the injection ©: & - 2,(Q) (we put here K =) induces a
surjective (and obviously continuous) mapping

7 : H¥(Hom (M, &5)) > H(Hom (M',, D.(Q)).

The first space is (¢-F), and the second (DFS) (note we have
already proved it is Hausdorff); the “theorem of strict morphism” is
then valid here [6] ; ¢ being a compact mapping, it proves that the
identity mapping of H¥(Hom (M',, 2.(Q))) into itself is compact ;
therefore this space is finite-dimensional.

With the same hypotheses, one gets now, using Theorem (II.1)
the following result :
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H¥Hom (M,, & (Q))) is finite-dimensional for k > p.

ReMaRk (III.15) We note that the preceding method does not use
the hypoellipticity, of M, (or M’,, which is equivalent), but only
the fact that the natural mapping

H*Hom (M, £,(Q))) ~ H(Hom (M',, D/Q)))

is bijective for k< — p, and injective for k = — p 4 1. We do not
discuss this question here. We wish only to mention that this question
is more or less related (but not equivalent) to the question of the
‘““convexity modulo ¥*” for which a theory could probably be
developed on the same lines as those developed here for the theory
of convexity. But, at the moment, I have no examples, except of
course in the case of “one equation” where very satisfactory results
have been obtained by Hérmander [8] (see chapters 3 and 8).
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THE INDEX PROBLEM FOR MANIFOLDS
WITH BOUNDARY

By M. F. ATIYAH and R. BOTT

1. Introduction. The aim of these lectures is to report on the
progress of the index problem in the last year. We will describe an
extension of the index formula for closed manifolds, (see Atiyah
and Singer, [3]) to manifolds with boundary. The work of Section
4, ie. the proof of the general index theorem from Theorem 1
was done in collaboration with Singer.

The first question which one encounters when seeking such an
extension is how to measure the topological implications of elliptic
boundary conditions. The boundary conditions of course have a
definite effect on the index, as the following example shows.

Let X denote the unit disc in-the plane. let ¥'=0X be its boundary,
and let b be a vector-field defined and never zero on Y. Let D be the
Laplacian on X, and consider the operator

(D, b): C*(X) - C0=(X) @ C°(Y)

which sends f into Df@® (bf| ¥), where bf denotes the directional
derivative of f along b. Because D is elliptic and b is non-vanishing,
the kernel and cokernel of this operator are finite dimensional and
the difference of their dimensions is by definition the index of the
boundary value problem, (D, b). Our problem is now to describe this
integer in terms of the topological data which are implicitly given by
D and the boundary conditions.

In the present instance this problem is completely solved by
the following formula due to Vekua (see Hormander [4] ):

index (D, b) = 2 (1 — winding number of b).

To proceed further we need to recall the form which the formula
for the index on a closed manifold takes; and for simplicity
we will describe this formula only in the case of systems—i.e.
trivial vector bundles.
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The notation is as follows. We use X for the basic manifold and
9X = Y for its boundary. T' = T'(X) denotes the cotangent bundle of
X; we write B = B(X) for the ball-bundle consisting of vectors in
T(X) of length < 1 (in some fixed Riemannian structure) and
set § =8(X) equal to the sphere-bundle of unit vectors in 7'.

Observe here first of all that if X is a closed manifold (i.e.
90X = @), then S(X) is just the boundary of B(X):

9B(X) =8(X).
On the other hand if the manifold X has a boundary Y then:
dB(X) =S(X)u B(X)| Y
where B(X) | Y denotes the subspace of B(X) lying over ¥ under the
natural map #: B(X) >X. (We denote the projection d B(X) - X
also by =.)

With the notation and this elementary fact out of the way, it
is easy to indicate the general form of the index formula for elliptic
systems on closed manifolds.

&
Let then Df; = I A f; be a system of k linear partial differential
i=1

operators, defined on the manifold X of dimension »n. The symbol of
D is then a function o(D)on T'(X)which attaches to each cotangent
vector A of X, the matrix o(D: A) obtained from the highest terms

aﬂ
of A; by replacing el by (¢ A)*. Further, the system D is elliptic

if and only if the function ¢(D) maps S(X) into the group GL(k,C)
of nonsingular k X k matrices with complex coefficients. Hence, for
such systems, the symbol defines a map
o(D): 8(X) -GL
where we have set GL =lim GL(m, ), and it is a basic consequence
m—>c

of the invariance of the index of an elliptic system under deforma-
tions that on a closed manifold the index of D depends only on the
homotopy class of the map o(D) defined above.

The index formula we are after now takes the following form.
One constructs a definite differential form ch = = ch* (with components
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in every dimension) on GLt. Further, using a universal expression in
the curvature of X, one constructs a definite form J(X) = = J4X)
on X. The index formula for a closed manifold then expresses the
index of D as an integral} :

index (D)= I o(D)* ch A m* T (X)
S(x)
where of course o(D)*ch denotes the form on GL pulled back to
8(X) via o(D). Now, in view of our earlier remark, one may rewrite
this integral as

index (D) = o(D)* ch A 7*T(X),
dB(X)
and in this form the formula would be meaningful even for a manifold
with boundary, provided only that o(D), which is defined only on
8(X), is extended in some definite way to 8.B(X).

It is in this extension that the topological data of a set of elliptic
boundary conditions manifest themselves. In fact our first and main
aim will be the proof of the following theorem.

TaEOREM 1. A set of elliptic boundary conditions, B, on the
elliptic system D, defines a definite map o(D, B): aB(X) - GL, which
extends the map o(D): S(X) - QL to all of 9.B(X).

Note that in particular then, o(D) restricted to a fibre-sphere of S(X)
at points over Y is homotopic to 0; expressed differently, there are
topological obstructions to imposing elliptic boundary conditions on
elliptic systems.

The final index theorem is then given by the same formula as the
original one.

THEOREM 2. The index of D subject to the elliptic boundary
condition B, is given by :
. TStrictly speaking we define a di tial form ch (m) on eash GL(m,C), these
being compatible with the inclusions GL(m, C)=> GL(m+1, 0).
1 This formula differs slightly from that given in the note of Atiyah-Singer(3].

Here X does not have to be orientable. We orient B(X) by its almost complex
structure.
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index (D,B) = | o(D,B)*ch A n*T(X).
8B(X)

We will give the definition of (D, B) in rather complete detail in
Sections 2 and 3. The proof of Theorem 2 is then sketched in
Section 4.

Our original proof of Theorem 1 was not elementary. We had to
use the periodicity theorem m, (QL)~m,,, (GL). Thereafter we
noticed that our argument can in a certain sense be turned about so
that the considerations needed to extend o(D) to o(D,B) can be
used to give a new and in a sense completely elementary proof of the
periodicity theorem (see Atiyah-Bott [2]).

In this note we will apply this method, which is suggested by
the linearisation procedure in differential equations, directly to the
construction of o(D, B).

2. Elliptic boundary conditions. Let D be a k X k elliptic system
of differential operators on X and let r denote the order of D. Then,
as we have remarked, the symbol o(D) is a function on the co-
tangent vector bundle 7'(X) whose values are (k X k)-matrices, and
its restriction to the unit sphere-bundle S(X) takes non-singular
values.

We consider a system B of boundary operators given by an I X &
matrix with rows by, ..., b, of orders r,, ..., r;, and we suppose that
they are elliptic in the sense of Lopatinski (see Hormander : loc. cit.).
This means the following. Let o(b;) denote the symbol of &, and let
o(.B) be the matrix with o(b;) as i-th row. At a point of the boundary
Y of X let v be the unit inward normal and let y denote any unit
tangent vector to Y. Put

0,(D)(t) = o(D)y + tv) 5 0,(B)(t) = o(B)(y + tv)
so that o, (D) and o, (B) are polynomials in ¢. Consider the system of
ordinary linear equations
d

ay(D)(—ia_t)u=0 @.1)
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and let .#, denote its space of solutions. The ellipticity of D gives
rise to a decomposition

My =M ;— D Ay
where #; consists only of exponential polynomials involving
exp(i At) with Im(2)> 0 and .4, involves then those with Im(A) < 0.
The ellipticity condition for B (relative to D) is that the equations
(2.1) have a unique solution u € ;" satisfying the boundary condition

a,(B)(-'id%)u

v (2.2)

t=0

for any given VeCl.

‘We proceed next to put this condition into a purely algebraic form.
Let A c C(t) be the ring of all rational functions of ¢ with no poles
in the half-plane Im ¢ > 0. We may then regard o,(D) (t) as defining
a homomorphism of free A-modules of rank k, and we let M}
denote its cokernel. Thus we have the exact sequence of A-modules

0,
0—> A —5 Af —> M} —> 0. (2.3)
Then we have the following lemma.

LeMMA. There is a natural isomorphism of vector spaces
M}; ~ M. (2.4)

In view of (2.4) we see that the elliptic boundary condition gives

an isomorphism

B M —C. (2.5)
Now the set of all M} for y € S(Y) forms a vector bundle M+ over
8(Y) and (2.5) defines an isomorphism B* of M+ with the trivial
bundle S(Y) x C.

If we deal only with differential boundary conditions then the map
B, regarded as a function of y, cannot be an arbitrary continuous
function. In order to obtain all continuous functions we need to
enlarge our problem and consider integro-differential boundary
conditions in the sense of Agranovic—Dynin [1]. This causes no
essential analytical difficulties and is an important topological
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simplification. Thus from now on an elliptic problem (D, B) will
have associated with it ¢(D), M+, B+, where * can now be any
vector bundle isomorphism of M+ with the trivial bundle.

3. Extension of (D) over Y. The proof of Theorem 1. In this
section we shall show how a trivialization B+ of M* defines a
definite extension of o(D): S(X) »GL to a map 9B(X) - QL.
What we will do is to perform a sequence of homotopies of o(D)|Y
8o that finally it can be extended in a trivial fashion over B(X)| Y.

Our first step is to parametrize S(X) in the form
ysinf—vcosf (0<O<m)

and then put 2 =exp 2i6. In this way, by assigning (y, z) to each
point of S(X) | Y, we really define a continuous map

F:8X) Y —8(Y) x 88(Y) x {1},
where S is the unit circle |z] = 1. 'We shall then transfer our maps
from S(X) | ¥ to S(Y) x 8%
Let us write 0 = o(D) and put
oy sin § — v cos 0) = exp ir(m — 0) o(v) ,(2)

so that p,(2) is a & X k matrix of polynomials in z with p (1) =1,
and non singular for | 2| = 1. Then our first homotopy is as follows.
First Homotopy.

o, =exp iry (7 — ) o(v) p,(2), 0<u<L (8.1)
Then o, = o(v) p,(2), and p,(2) is a map which factors through f.

Now we shall deform p,(z). For this purpose we can work on
8(Y) x St instead of S(Y) x S!/S(Y) x {1}. The reason is that
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if g(y,2) is a map S(Y) X S* > GL then h(y,z) =g(y, 1) g(y,2) is
a map S(Y) x8Y/8(Y) x {1} - GL, and similarly for homotopies.

Now we recall briefly the homotopies used in the paper [2] for the
proof of the periodicity theorem. Write

T

pE) = a)?,

=0
[ ay)  a,(y) o a(y)
—z 1 0
L'p(2) = 0 —z 0
0 0 —2 1
J

[ a G e v G [ 1
-z 1 0 ! z 1
0 —z 0 2 z 1
0 0 —z 1 : 4 z 1
(
1 21 b2 e Py 2
1 1
= (3.2)
1 1

where p =p,(2) and the p; are polynomials in 2z defined by

2.(2) — p,(0)

Pipa(2) = -

, Po =p. This can be written briefly as
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L'p)1+N)=Q0+DN,) (2@1)
where N;, N, are nilpotent matrices. Then our second homotopy is
given by

Second Homotopy.
(14uN,)"tL(p) 14+uN,), O0<u<l (3.3)

For the next stage we define maps @, Q2:S(Y) >GL((r+1)%,C)
by

where for brevity we write

L'(p) =g =az +b.
Then @', @? are idempotents and

Q' =@%q. (3.4)
Moreover we have

rank ¢(z) @ =rank Q! for |z|>1

rank ¢(z) (1 —@Q?!) =rank (1 —@?) for |z|< 1.
Our third and fourth homotopies are then given by
Third Homotopy.

(az + ub) Q' + (uaz+b) (1 —QY), 0<u< 1. (3.6)
Fourth homotopy.

(@+ub)z@Q' + (au+b) (1—@1), 0<u<l. (3.7)
In view of (3.4) we may replace the expression in (3.6) by

Q¥(az+ub) Q' + (1 —Q?) (waz+b) (1 —Q?)
which shows that it is non-singular for |z| = 1. A similar argument

with (3.5) shows that the expression in (3.7) is non-singular for
|z] =1.

(3.5)

So far we have not used the boundary operator at all. In order to
do this we now need to identify the space M," with the image H; of
the projection operator Q). This identification arises as follows.
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Let A’ c C(z) be the ring of rational functions of z with no poles

in the dise |z| < 1. The substitution ¢ = G +:) then induces an

isomorphism « : A >A’. Since o,(t) = ( 2;z1) . o(— ). p,(2)

it follows that & induces an isomorphism of vector spaces
M} ~ Coker p, (3.8)
where p, is regarded as a homomorphism of A’-modules. Trivially
we have an isomorphism
Coker p, ~ Coker (p, ® 1). (3.9)

Also from (3.2) we get a commutative diagram in which the
vertical arrows represent isomorphisms.

1
ar 2O A s Coker (m,@1) —> 0
11+N, 14N, l (3.10)
%

A% —5 A" —»  Coker g, —>0
where as before ¢, = L’(p,). Finally from (3.5) we obtain an
isomorphism
Hj ~ Coker g, (3.11)
where as before H; is the image space of the projection operator Q).
Now using (3.8) — (3.11) and the isomorphism (2.5) given by the
boundary operator we obtain an isomorphism
C'> Hj. (3.12)
Since H; is by definition a subspace of C* where s = k(r 4 1) we
can regard (3.12) as a monomorphism
o,:C (.
Consider then the homotopy of monomorphisms
Y :ColC>CoC
given by

0 1, cosu 1;sinu m
hlu) = ( l,) (—l, sin % l,cosu)’0<"< 2 (E40)



184 M. F. ATIYAH AND R. BOTT

where 1, is the identity ! x I matrix. The image of y,(u) is inde-
pendent of u so that for each u we can define a projection operator
P,(u) on C*@® (" by taking
ker P,(u) =ker @, @ ¢,(0® C")
Im Py(u) =4, (C' @ 0).
We note that
0 0
rm=(} )
is independent of y. Then our fifth homotopy is
Fifth Homotopy.
2P,(u) + (1 — Py(u)), 0< u < w2 (3.14)
Combining our five homotopies we end up with a composite
homotopy connecting
o(»)"le@® 1,,; with z1,@1,.
We are now essentially finished. To complete the argument
observe that z = exp (2¢ 6) so that just as in our first homotopy we

can eliminate z by a homotopy exp (2% 6), 0 < uw < 1. Hence we
get a homotopy of o(v)"20@® 1;,,; to the constant map 1,,,.

Multiplication by
o(v) 0
0 1

then gives a homotopy connecting o @ 1 and o(») ® 1. But o(v) is a
functionon Y and so it has a natural extension to B(X) | ¥, constant
on the fibres. Thus we have extended the map

a:8(X)—>GL
to a map of 9B(X) - @L, so that Theorem 1 is now proved.

4. Proof of the Index Theorem. We shall very briefly indicate
how Theorem 2 is proved. The idea is to reduce it to the case of
manifolds without boundary. If X is a manifold with boundary ¥
then we can associate with X two manifolds without boundary
namely ¥ and X the “‘double” of X (obtained by glueing two
copies of X along their boundaries). In order to carry out this
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reduction we need to establish a number of properties both for the
index and for the right hand side of the index formula. Let us
denote by wg(D, B) either one of these two expressions. If X
has no boundary, B does not occur, and D may be replaced by a
singular integral operator 7'. We shall also write «y(c) instead of
ox(o(7")). Then we need the following properties of ay(D, B).

ax(D, B,) — ax(D, By) = ay(Bf (B3)7"). (4.1)
ax((Dy, By)o(Dy, By)) =ag(Dy, By)+og(Dy, By). (4.2)

If (a) D=A"1,near Y,
(b) the j-th row of B, is the (2j — 1)-th normal derivative

1<j<k),
(c) the j-th row of B, is the (2j—2)-th normal derivative
1<j<kh),
then
ax(D, By) + ax (D, B;) = oz (D), (43)

where D is the double or reflection of D.

REMARKS. Formula (4.1) for the index is due to Agranovic
and Dynin. It is proved by composing B, with 7T where
o(T) =B (BF)~!. The composition in (4.2) is defined by

{(Dy, By) 0 (Dy, By)}u =D, Dy u® B, Dy uly @ By ulyp.

Thus (4.1) and (4.2) use the fact that the index is additive under
composition of operators. In (4.3) A denotes the Laplace operator
and we assume that the Riemannian metric on X is chosen so that,
near Y, X is isomorphic with ¥ X I, I being the unit interval.
Normal derivatives then make invariant sense. To prove (4.3)

when «is the index, one uses the involution on X obtained by
reflection.

Of course one has to verify, directly from the construction of
a(D, B), i.e. Section 3, that the right hand side of Theorem 2 satisfies
(4.1) — (4.3).
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Once the above properties of ay(D, B) have been established
one proceeds as follows. First, using (4.2) with (D;, B;) = (D,, B,)
we see that it is sufficient to suppose D of even order. Next, by
composing with the operator (Laplace operator, Dirichlet boundary
conditions) which has « =0, we can suppose D of arbitrarily high
order. Then a topological argument based on Section 3 shows that
we can suppose we are in case (4.3) (a). Finally we use (4.1) and (4.3)
together with the index formula for ¥ and f, to deduce Theorem 2
for X.

REFERENCES

1. M. S. Aeranovio and A. S. DYNIN: General boundary value
problems for elliptic systems in an #-dimensional domain, Doklady
8.8.8.R 146 (1962), 511-514 (or Soviet Math. 3(1962), 1323-1327).

2. M. F. Arivar and R. Borr: On the periodicity theorem for
complex vector bundles, to appear in Acta Math.

3. M. F. Arivam and I. M. SINGER : The index of elliptic operators
on compact manifolds, Bull. American Math. Soc. (1963), 422-433.

4. L. HORMANDER : Linear Partial Differential Operators, Springer,
1963.

Oxford University, Oxford, England
Harvard University, Cambridge, Mass., U.S.A.



ON THE CALCULUS OF VARIATIONS
By S. SMALE

WE give a brief account of an approach to the calculus of variations
using differential calculus on an infinite dimensional linear space
and some theorems coming out of this approach which give the
Morse inequalities for a general non-linear Dirichlet problem.
Much of this work was done with R. Palais (see [2], [3], [4] ).

We suppose M is a compact C* manifold (perhaps with boundary)
equipped with a smooth measure and £ is a real finite dimensional
vector space bundle over M. Lot C%(£) be the Banach space of C*
sections of ¢ with C* norm and J*(£) the vector space bundle of
k-jets of sections of £ Then differentiation defines a continuous
linear map j, : C¥(£) - C°WJ*(£)). A Riemannian metric on J¥(£)
defines an inner product on C*¥() by (f, g) =‘_l[ (G f(2), G 9(x)).

Denote the Hilbert space completion of C¥(¢) with respect to this
inner product by H*(£).

An integrand in a calculus of variations problem can be represented
by a function F :J*(¢) - R which we suppose C®. Then it can be
shown that J : C¥(¢) - R defined by J(f) = [ F(j. f)is C°. If M

M

is a disk, then J takes the familiar form that one sees in the calculus
of variations literature,

J(f) = I F(z, f (), Df (%), ..., D* f(z)) d=
i
where D' denotes the it derivative.

The “first variation’ of this calculus of variations problem can
be concisely described as the first derivative of J (in the sense of
differentiation on Banach spaces, see e.g. [1]).

In usual problems one has in addition boundary conditions
imposed on the functions of the space C¥(£), for example given by
an affine subspace of C¥(¢). The case of “Dirichlet boundary
conditions” is defined as follows. If f, € C¥(£), let C%(£) consist of
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elements f of C¥(¢) with the property j_, f =Jji—1fo on @M. Thus
Ck(£) =C¥(¢) if M has no boundary.
In case M is a domain in E* with smooth boundary, k=1, and

. A%
F = T,
G f) Z ( ax‘)
fo an arbitrary element of C''(£), the usual Dirichlet principle states
that J: C}(£) > R takes on a minimum value.

The critical points of J generally satisfy the Euler equations
(possibly in integrated form), as well as any boundary conditions,
and in fact may be thought of as solutions of the calculus of
variations problem.

Suppose f is a critical point of J:Ck(¢) — R, ie. J'(f) =0.
Then J”(f), the second derivative of J at f, defines a symmetric
bilinear form on C%y(£) called the Hessian (or “second variation”)
where C%)(£) is the linear subspace of C¥(¢) defined by zero
Dirichlet boundary conditions. Using a Riemannian structure on
£, it can be shown that there exists a linear differential operator,
the Jacobi operator, L on £ with the property that

P 7) = | e, 20w

i
which can be used to study the nature of f relative to nearby

g in C%(¢). For example if L has positive spectrum, then f is a
local minimum of J on C%(¢) - R.

To obtain a reasonable existence theory for critical points of J,
it is expedient to use H¥(£) and the subspace H({) defined as the
closure of C(£) in H¥(£). One difficulty that arises is that in
general J will not extend even to a continuous map J : H¥(£¢) - R.
Let F,, : JE(§) — L(J*(£), R) be the second derivative of F along the
fiber with range the vector space bundle over M associated to J*(¢)
whose fiber over ze M is the space of the bilinear symmetric forms
on J*(§), (J¥(£), is the fiber of J¥(£) over z). Then we have the

TagoreM. If F :J¥(¢) - R is such that F,, : J¥¢) - L}(J*(£), R)
has a relatively compact image, the associated map J:C*¢) - R,
J(f) =}£F(j,‘f), extends to a 0% map, J : H¥({) - R.
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The actual existence theorem requires in addition to the condition
on F of this theorem, something like what is called strong ellipticity.

(*) Suppose that in a neighborhood of each point of M, there
exists a trivialization of J*(¢) of the form

UxE x L(V, E)x ... x IV, B)y={(z, p% ..., P")}

where p* represents the i derivative, with the property that

oyl (2 —ca < j F(z, p° ...,p") dz and
o

csll BIP< Fpple, p) (B, B), Be Li(V, B).
Here the ¢; are positive constants and F gt 18 the 2nd partial
derivative of F' with respect to p*.

THEOREM. Let F : J* (¢) — R satisfy (*)in addition to the hypothesis
of the previous theorem, and fyeC¥(£) represent a Dirichlet boundary
condition. Then the C* extension J: H(¢) — R given by the previous
theorem has a minimum and further, we may apply Morse theory
to t.

For example if J has 2 non-degenerate local minima, there is
some other critical point.

For more details see the references cited.
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LOCAL TOPOLOGICAL PROPERTIES OF
DIFFERENTIABLE MAPPINGS

By R. THOM

THERE are admittedly two basic theorems in Local Differential
Analysis : namely Taylor’s expansion formula and the implicit
function theorem. Very important (at least in the author’s opinion)
are also the now classical theorem of A. Sard on the measure of
critical values of a differentiable map, and the quite recent generaliz-
ation due to B. Malgrange of the Weierstrass Preparation theorem
to C* functions.

Roughly speaking, the most general problem in Local Differential
Analysis may be stated as follows :

Given a set of equations in R* :

9:1(®) =g(x;) = ... =g (x;) =0,
where the g, are O™-functions, what can be said of the set 4 of
zeros, and of its topological structure ?

It is well known that any closed set in R" is the set of zeros of
a differentiable function. Hence no more precise results can be
obtained without new assumptions on the equations. The simplest
example of such a situation is given by the implicit function theorem.
If at a point a € 4, the differentials dg,, dg,, ...,dg, are linearly
independent, then, locally, the set A is a differentiably imbedded
submanifold; more precisely, by a change of coordinates, the given
set of equations can be transformed into the system:

Ty =2%g... =2, = 0;
therefore the set A4 is locally, in this new chart, a linear sub-variety
of R*.

In this simple (but very essential) case, the topological structure
of the set A4 at a is completely determined by the knowledge of the
first partial derivatives of the g,(z;). There are other cases where
this situation occurs—outside the scope of the implicit function
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theorem. As an example, consider a function with a critical point

#0. Then, according to

at @, and non vanishing Hessian

x; 0%;
Marston Morse’s theorem, it is possible to find local coordinates
(of class C™~2) such that, with respect to these new coordinates f
islocally a non degenerate quadratic form; as a result, the topological
nature of the set 4 is completely determined (it is namely a quadratio
cone). In this case the knowledge of the partial derivatives up to
the second order is sufficient to determine the topological nature
of the set 4. Conversely, there are situations (like for instance the
“flat” function f= exp(— 1/x2) at = 0) where the knowledge of
all the derivatives is not sufficient to determine locally the set of
Zeros.

This suggests the use of C. Ehresmann’s terminology of “jets”.
Consider two mappings F, @:R® > R?, which have the same value
at the origin, as also all their derivatives up to order r. This defines
among local mappings an equivalence class, the jet of order r of the
map F (denoted j7(F')); the totality of all such jets is provided with
a natural structure of vector space (denoted J* (n, p)). If,r, s are
positive integers, there is a canonical mapping :

b, : It (n, p) > J(n, D),
defined by omitting in the (» 4 s)-jet all derivatives of order
larger than r. The inverse image h,~! of any jet z € J”(n, p) is

obviously a vector space R™. We shall need the following essential
definitions.

STRATIFICATION OF A REAL ALGEBRAIC VARIETY. Let 4 be a
real algebraic variety in Euclidean n-space R*. A stratification of
4 is a decomposition of 4 into a finite union of (differentiably
imbedded), singularity-free, connected, manifolds U¥, the strata of
A, such that :

1. the adherence of a stratum U is a “semi-algebraic ” set ;

2. the boundary U — U of a stratum is a finite union of lower
dimensional strata ;
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3. (regular incidence property) any differentiable mapping
g :R¥ > R" which is transversal on a stratum U, is also
transversal locally on any stratum ¥V of the “star” of U (the
star of U consists of the strata W such that W o U.)

A semi-algebraic set is here a set locally defined as a finite union of
sets K;, each K; being defined by a set of polynomial equations
P; =0 and inequalities @, > 0. That such a stratification exists has
been proved by H. Whitney [1]. A similar decomposition exists
also for semi-algebraic sets. (See in particular the triangulation
theorem of S. Lojasiewicz.)

DErINITION. A differentiable mapping g : R¥ — R" i3 said to be
transversal on a (semi)-algebraic set A c R*, if g is transversal on all
strata of a stratification of A.

As a straightforward consequence of the transversality lemma,
the set of all mappings transversal on a given stratification of a
compact semi-algebraic set A4 is an open and dense set in the
function space L(R*, R"), provided with the C™-topology, where m
is large enough.

STrATIFIED SETS. We shall use two definitions of stratified sets,
one stronger than the other. The weaker one was given in [3].

A wealkly stratified set E is a Hausdorff space having the following
properties.

1. Eisa finite union of (C*) differentiable manifolds, B =UU,. (The
U, are the strata of E.)

2. The boundary aU; = U; — U, of a stratum is a union of lower
dimensional strata.

3. To any pair (X, Y) of strata with X cdY are associated a
“tubular neighbourhood” T'yy of X in ¥ and a family of differen-
tiable retractions kyy: Tyy — X such that if X cdY, Y c0Z, and
Ty, Ty, Ty are the associated tubes, then for any system of the
given retractions kyyp, ky;, there is a retraction ky, for which
kxz =kzy 0 kyz in Txz 0 Ty
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4. Carpeting functions. For any stratum U, there is a function
C*on U, C°onU:¢: U >R, with ¢ >0, $~1(0) = aU, d$ # 0
in a neighbourhood of U in U, which has the property that for
any stratum V c dU, the restriction kyy |{z € Tpy|d(x) =€} is of
maximal rank.

A strongly stratified set E is a Hausdorff space such that for any
x € E, there i8 a local presentation of & as the transversal intersection
of a semi-algebraic set 4 c R® by a diffeomorphism g : R¥ >R".

It is easily seen that a strongly stratified set is weakly strati-
fied, a real (or complex) analytic set has a natural weak strati-
fication, but I do not know whether it is strongly stratified (more
precisely, whether an analytic set is locally the transverse
intersection of a semi-algebraic set).

DEFINITION. STRATIFIED MAPPING. Let A be a compact semi-
algebraic set in R™*"; if p denotes the canonical projection
2 : R™" >R", then the set B=p(4) is a compact semi-algebraic set
(Tarski-Seidenberg theorem). It is then possible to find stratifica-
tions of 4 and B in such a way that: (i) the image by p of any
stratum U c 4 is a stratum V of B, and the rank of p | U is equal to
the dimension of V; (ii) the inverse image p~1(V) of any stratum of
B is a finite union of strata of 4.

These local projections may be used as local models to define
stratified mappings; here are the definitions.

WEeARLY STRATIFIED MarriNGgs. Let A, B be weakly stratified
sets, and f: A — B amap. f is called weakly stratified if it maps any
stratum of A onto a stratum of B with mazimal rank, and is compatible
with the local retractions.

StroNGLY STRATIFIED MaPPINGS. Let A, B be strongly stratified
sets. A map g: A — B s called strongly stratified if, to any ac A4,
b =g(a), there are local presentations of neighbourhoods A,, B, respec-
tively as transversal intersections of semi-algebraic sets S, Sg,

hy:Ra >R™?5 8,
hp :Rh >RP> 8y
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such that h7'(S,) = 4,, h3(Sp) = B,, and if w denotes the natural
projection R**? — R?, we have «(S,) =8z and hpg =why,.

DEFINITION. A stratified mapping h: A — B is said to present
“ blowing down” or o-degeneracy, if there exist in A at least two
strata U, V with U c @V, such that corank h |U > corank | V.

See [3], for examples.

I recall here the following theorems on weakly stratified mappings
stated without proofs in [3]. We shall deduce some consequences
of these theorems relating to the local topological properties of
differentiable mappings.

TaEOREM 1. If a mapping g: A — I is stratified over the segment
I (provided with its trivial stratification 0, I), then, over any open
interval contained in I, the mapping g is a (trivial) fibration.

TaEOREM 2. If the two mappings A-——Ii; B —G>I are stratified (and
the composed map G o F) over I, provided with the trivial stratification
(0, I), and, if F has no o-degeneracy, then for any two values s, t in I,
the sectional mappings F,: A,~ B,, F,: A, - B, are of the same
topological type.

We want now to deduce from these the

THEOREM 3. Let A be a real algebraic set containing the origin
0eR"; let zeJ’(p, n) be a fixed jet, and h: J'+1(p, n) >J'(p,n)
be the restriction mapping; in the vector space h~(z), there exists a
proper algebraic variety X with the following property: given any jet a in
h~1(z) — =, any map g in this jet is suchthat g—1(A) is locally strongly
stratified, and for any other map g, of the jet o, the set gi-1(A) is locally
isomorphic to g~1(4).

Proor. Let G(x;) =0 be the equations of the set 4 (G;(0) =0).
Denote by x; = p;(w,) the polynomial representative of the jet 2 ;
then the veotor space A~1(z) has coordinates ay’, where

x; = pi(w) + Z ap U,
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o being a multi-index (34, ..., %) and %, = ()" ...()*. In the
auxiliary space Q of coordinates (u, a’), we consider the algebraic
variety (G) defined by

0=Gj(1’.'+2‘1?"‘m).

This variety (@) contains the a-axis Q(z,=0) in Q; call X the
Zariski-closure of the set of points of @ where the property of regular
incidence of @ with respect to (&) does not hold. Let (x) = (a@ = «f)
be a point of @ outside of . Any map g realizing the jet («) is given
by equations of the type
z; = py(w) + by (w,) u,

where the differentiable functions by satisfy by (0)= «’. The mapping
J(@) =5*4g) : R >Q defined by a; = b;(u;) is obviously trans-
versal to (G) around «, because the graph of j(g) is transversal to
the axis Q at o. Hence, the set g~2(4)~ j(9)~ (@) has alocal present-
ation as a transversal intersection of the real algebraic set (Q) ; hence
by definition it is locally strongly stratified. Moreover if g’ is another
mapping belonging to the same jet there exists a homotopy F,
(defined by tg 4 (1—t) g') between g and ¢', and the corresponding
mapping of F;~1(4) onto I is locally stratified; hence, by application
of Theorem 2, the two sets g=1(4), g'~1 (4) are locally isomorphic
and homeomorphic.

CorOLLARY. Letf; = ... =f, = 0 be a set of n equations such that
f1(0) = ... =£,(0) =0, and F :R? >R" the associated map. If
2 €J7(p, n) i8 the jet defined by F, and 2’ € h~1(2) lies outside a proper
algebraic variety X, then for any mapping F' : R? - R" realizing 2',
the set of zeros F'~1(0) is locally strongly stratified, and is locally
s0topic to F~1(0).

We want now to study the extent to which the local topological
properties of differentiable mappings depend only on their jets of
sufficiently high order.

DEFINTTION. SUFFICIENT JETS. A jet z € J'(n, p) is sufficient if
any two local mappings F and @ belonging to this jet are of the same
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topological type, i.e. there exist local homeomorphisms h,h' in R" and
R? such that the diagram

F
R* —— R?

R* —— R?
q

18 commutative.

The main theorem is the following.

THEOREM 4. Let zeJ' (n, p) be a given jet. Then there exists a
positive int s, depending only on r, n, p, such that if b, : J'+* >J"
18 the amomcal projection map, there exists in h;'(z) a proper alge-
braic variety 3 (the bifurcation variety) such that any jet € b, 1(z) lying
outside T is sufficient. Further, any two mappings realizing such a
jet are locally weakly stratified and isotopic.

In the special case n = p + 1, we may replace “weakly stratified”
in the above theorem by ‘“‘strongly stratified”. I am unable to prove
the stronger theorem in the general case. Further, an analogue of
Theorem 3 is also valid in this special case.

Proor oF Tuxorem 4. Let y, = P,(z)+Xu, 2 +Zu, z,,
r+1<|w'| <748, be the equations of a polynomial mapping f of
degree r + s extending the given jet. We suppose s so large that all
the critical loci 8(f), ..., §; 8;, ... (f) (for definition see [2]) of the
generio f are strongly stratified. This is, according to Theorem 3,
the case outside a subvariety X, in the space (u,). We then eliminate
formally the coordinates (z;) and obtain a semi-algebraic set K
which is contained in the resultant variety

Ay, ) =0.
The set f~!(K) contains the u-axis U (in z, y, u space) as a sub-

stratified set, and we denote by X the Zariski-closure of the locus
of singular incidence of U with respect to the intersection set



198 R. THOM

p~YA)nS8(f). We choose a point z'(u, =a,) outside the two
varieties ¥ and X,, and a differentiable mapping F realizing z'.
We stratify the set K and consider any stratum V, which is an
injective image of a stratum ¥ of the critical locus 8(f) of the poly-
nomial mapping f. Such a stratum has an isotopic image in the
critical locus S(F) of F (Theorem 3). We denote this image by V.
The restriction F|V, is, by assumption, of maximal rank, and we
may obtain local equations Gy, for the image V. This can be
done, for instance, as follows. Let

H=P,@)+ D a,@) e + D a2t 0,(0)=a,, r+1<|o|<r+s,
1)

be the equations of F ; then the local equations of any stratum

W, of 8(F) can be obtained by adding to (1) a system of equations

- 2,@)) _
b0 = 4w) + B 2, 2%) —o @

which arise from the polynomial equations associated with the
variety in the space of jets attached to the stratum W,, by sub-
stituting the functions da,/dz; for certain of the %,. Note that any
such stratum has dimension at most k — 1 since S(F) is strongly
stratified. These lead only to finitely many equations since we have
only to consider the critical varieties of eodimension <n. We
eliminate from equations (1) and (2) successively the coordinates
Ty Ty_1, +ee 5 %, Y repeated application of the Malgrange preparation
theorem. This gives rise to equations
GW’ (yj, @) =0

for the image W, of W,. There is an increasing function 7 =17(c)
such that the jet of order o of the functions GW, is determined by
the jet of order = of the mapping F. The same procedure applied
to the polynomial mapping f gives us local equations (which are
analytic)

9%, (yj’ ) =0
for the image of the stratum ¥ of 8(f). The existence of 7(c) implies
that if s is large enough (s > 7(p)) we have an inequality
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197, (¥ @) — @7, (y;, ) | < K|y, K>0. 3)
The Lojasiewicz inequality shows that there is v > 0 such that
| grad g7, (5, @) | > o [dist (g, 37,)]"
(with obvious notation). In particular, if aff,, c U, we have
lgrad g7, (4, @) | > ¢ |y|”.
This, and (3), show that if 617, cU and p> v, we have

lgrad Gy, (y, @) | > ¢’ |y I
80 that ?, is singularity free in a neighbourhood of y = 0, and may
be taken as a stratum for the image of S(F).

We wish to prove that if W = W, is a stratum of S(F), then F(W,)
is stratified in such a way that F: W, - F(W,) is an immersion.
We shall do this by induction on the dimension of W, ; in particular
we assume this proved for every stratum cd W,. Let Z be a stratum
of f(W,) (where W, is the stratum corresponding to W in S(f)), and
Y any stratum of 9Z. There are three possibilities.

1. Y belongs to an injective image of a stratum of 9W.

2. Y is an intersection (or self-intersection) of some immersed
variety f(V), where V is a stratum of S(f).

3. Y belongs to the singular incidence locus of a stratum of f(2W)
with respect to f(V), where V is a stratum of S(f).

In any case, it is possible to obtain local analytic equations
7,(y) =0 for Y, the y,; being obtained starting from the equations
(1) of f by a finite number of the following operations (in any order).

(1) Adding partial derivative equations, or jacobian equa-
tions, or, more generally, canonical polynomial equations
() in the space of jets.
(2) Applying Malgrange’s preparation theorem with respect
to a coordinate x; or y; and eliminating this coordinate.

Thus, we may associate with ¥ a tubular neighbourhood Ty,,,

defined locally by analytic inequalities of the form
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Yy <o,

where i, is obtained from fby a finite sequence of the operations (IT).
If the integer s is large enough, then Z is transversally defined,
which means that the defining analytic equations g,(y,a«) of Z
have the property that | grad g,(y, «) | does not vanish in a neigh-
bourhood of 9Z. Hence, for instance, in Zn Ty ,, we have an
inequality
lgrad g;(y, o) | > c(b(®) ', >, 72 =h.

For the differentiable mapping F, we may define an analogous
stratum Yp and a tubular neighbourhood 7'y 1 ¢p() <0, and
equations I'; = 0 for Y, by the same set of operations (I1) as that
which we used to construct ¢, T'y,; and y;. Hence, in the set

Yr(y) <O
we have an inequality

lgrad Gz (v @) | > o(H@Y)Y, H= T%,

provided that the jets of the functions

(9, @), (‘/‘p Ur), (b, H)
coincide up to a sufficiently high order, which is the case if s is large
enough.

This proves that in a neighbourhood of the set 92y, Z, which is
defined by G5, (y, «) =0 is an imbsdded manifold. Outside a neigh-
bourhood T'(3Z) =rpl»';]az Ty, we have an inequality

lgrad Gzp(y, o) | > kly
and the above proof applies. Hence Zy is an imb>dded manifold,
and can be taken as a stratum.

This shows that there is a weak stratification of R* which contains
the image F(S(F)) as a substratified set. This is isomorphic to the
corresponding stratification of the semi-algebraic set f(R"). The
inverse images of these stratifications by F, f respectively are then
also isomorphie. [The proof of this statement is based on a step-wise
identification of the inverse image of strata of F~1(S(F)) with the
corresponding set in f~(8(f)) which admits in (z, y, u) space a
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semi-algebraic stratification. This identification is done by induction
on the dimension, using inequalities of the Lojasiewicz type relative
to | = | as above.]

Thus f, F are, locally, isomorphically stratified mappings. They
do not present blowing down. The corank on a stratum is 0 if this
stratum is contained in the critical locus and n — k& otherwise. The
critical locus being a closed substratified set, there is no blowing
down. Hence by Theorem 2, f and F are of the same local
topological type. This proves the main Theorem 4.

CANONICAL STRATIFICATION OF THE SPACE OF JETS.

If we consider any mapping h,:J'** ->J", we may construct
the corresponding bifurcation variety Z, for z €J”. From the con-
struction of %,, it follows that the union U X, is itself an algebraic

variety in J™**. The totality of these varieties for all >.l, s>1
ferm the canonical stratification in J™+*.

Let f be a C*° map at 0. If for some g, j%(f) is sufficient, we
say that f has a singularity of “finite codimension’ at 0. If j%(f) is
sufficient at all points of the source space, we say that f is “almost
correct”. [It is likely that an almost correct mapping f:R™ - R"
with m < = is a “finite”’ mapping in the sense of B. Malgrange.]

Given a sufficient jet 2z € J*(n, p), consider its restriction
h,)(2) € JA(n, p). Let A be the largest integer for which A, ,(2) is not
sufficient. Then ,,(2) € Z, c JX(Z, the bifurcation variety). The
codimension of %, in J* is called the codimension of the singularity of z.

A map f:R* >R?is “correct” (*“generic at the source ) ifall its
jets are sufficient and of codimension < n. The map j*(f) corres-
ponding to a correct map is transversal on all bifurcation varieties
of J'(n, p) for r> 0. A correct map is locally structurally stable,
and the correct mappings form an open dense set in L(R",R?).

The maps A* induce mappings :

I L AT SR S £

I ) D e D 1]
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of the canonical stratifications ¢ c J*.

I do not know whether this infinite sequence of algebraic mappings
can be given a common finite stratification.
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THE PREPARATION THEOREM FOR
DIFFERENTIABLE FUNCTIONS

By BERNARD MALGRANGE

LET u be the germ of an infinitely differentiable mapping of R™ into
R*, at the origin 0, with 4(0) = 0. Let us denote by x = (zy, ..., z,)
the coordinates in R™ and by y=(yy,...,%,) those in R". Let
&, (resp. &,) be the space of germs of infinitely differentiable real
valued functions at 0 in R™(resp. R"). We also write &(z) for &,
and &(y) for &,. Let finally u* be the mapping &(y) - &(x) induced
by u (i.e. u* f = f o u).

DerintTioN 1. We say that u 18 finite if &(x), considered as an
&(y) module by means of u*, s of finite type.

In other words, u is finite if there are finitely many functions
¢4, ..., b, € &(2) such that every f e &(x) can be written in the form

f= 35; (w* g,) ¢; Where g, € £(y).

Let us suppose that u is finite and let Q be a neighbourhood of
0 € R™ and % a C® mapping Q - R" whose germ at 0 is u. It is
easy to show that there is an open set Q’, 0 € Q' c Q such that the
restriction %’ of % to Q' is “set wise finite” (i.e. the inverse image of
any point is finite). However, the converse of this is false. (Counter-
example : m =n = 1, %(z) = exp (—1/23).)

We will, in spite of this, show that the converse becomes correct,
if we count the points of the inverse image with suitable multiplicity.
In fact, it is even enough to look at the multiplicity of 0 in »~1(0).
For this, let us introduce the set (& (x)) c &(x) of functions which
vanish at the origin; 111(&(z)) is the maximal ideal of &(z), (which
is thus a local ring), and it is generated by the coordinate functions
Zy, ..., . Lot us define m(&(y)) similarly, and let &'(z) »* m(&(y))
be the ideal generated in &(x) by »* m(&(y)), i.e. by the coordinate
functions u,, ..., u, of ». In accordance with terminology which is
usual in algebraic geometry, we should supply the point 0 of %~1(0)
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with the local ring & (x)/&(x)u* m(&(y)) and consider its multiplicity
to be equal to the dimension of this ring, considered as vector space
over &(x)/m(&(x))~ R. This leads us to the following definition
(cf. [3])-

DEerFINITION 2. We say that u is quasi-finite if

& ()8 () w* m(S(y))

is a finite dimensional R-vector-space.

It is clear that every finite mapping is quasi-finite. Our result is
that the converse is true. Before stating this as a separate theorem,

we shall indicate two conditions equivalent with “u quasi-finite
which are easier to handle.

For this purpose, let us introduce the space f(x): R[[X,, ... X,]]
of formal power series in m variables over R and the mapping

&(x) —»é\(x) which associates with each germ its Taylor expansion
of infinite order. It is well known that this mapping is surjective,

and consequently & (x) can be identified with the quotient of &(x)
by the ideal m=(&(x)) of functions ““flat >’ at 0 (i.e. vanish at 0

together with all their derivatives). Defining 2(3/) in the same way,
we obtain a mapping u*: é"(y) - é;\(z).
DEFINITION 3. u is called formally finite if w* makes f(a:) an f(y)
module of finite type; it is called formally quasi-finite if
E@)I () v mE)
is a finite dimensional R-vector space.
[We leave it to the reader to interpret the notation ‘m(f(y)).]

It is elementary to verify that  is quasi-finite if and only if it is
formally quasi-finite (Nakayama’s lemma and the fact that 1 (&(z))
is finite over &(x)). On the other hand, the ‘‘formal preparation
theorem” asserts that % is formally finite if and only if it is formally
quasi-finite [3].
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This being the case, the preparation theorem may be formulated
as follows (we were inspired by the formulation given in [3] in the
analytic case).

TrEOREM 1. The following properties are equivalent.

(a) u 1s finite.

(;,) u 18 formally finite.

(b) u 18 quasi-finite.

(B) u 18 formally quasi-finite.

This theorem and Nakayama’s lemma give at once the following
corollary.

CorOLLARY. Let¢y,..., ¢, € &(x). The following properties are
equivalent.

@) ¢y .eer By E(y)-generate &(z).

@Y $uordy () generate Ex).
() 1, ..., ¢, mod &(z) w* M(€ (y)) B-generate

& ()& (x) u* m(E(y)).
(%)’ $1, . A,, mod & (x) ;*m(f (y)) R-generate

E@)E (@) w* m(£ly)-

ReMarx. Note that the hypotheses of Theorem 1 imply that
m < n. On the other hand, if we can take p=1 in the corollary, our
result reduces to the implicit function theorem. The latter
theorem, in the C® case, is therefore a particular case of Theorem 1.

We now give two examples where this theorem can be applied.

ExaMpLE 1. Symmetric Functions. Let us take n =m, and
for » the mapping w(x) = (oy(2y, ... » ;) -v s (&4, -. 5 ,)) Where
o, is the i elementary symmetric function of zy,..., #,. One verifies

easily that the images in é (x) of the monomials

2, g With 0K o, <n — i
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generate 2(:::) as a module over 2’(y), ie. over the subalgebra of
é’\(m) generated by oy,..., 0,. By the corollary above, these mono-
mials generate &(x) over the subalgebra of germs of differentiable
functions of oy, ..., o,.

In particular, if f is symmetric, we see (by an averaging argument)
that there is a differentiable germ g € &, with

S @y, oo ) =gloy, oov, 0,).
This result has been proved by a quite different method by Glaeser
11

ExamprLe 2. The Weiersirass preparation theorem. Let
F(zy, ..., %,) € &, be regular of order p in =z, (ie. F(9,..., 0, z,)
has a zero of order exactly p at 0). Let us again take m ==, and
for u the mapping

(@15 eees Tyqy B) > (29, oeny, By gy Py, .00y 2,)).

It is immediate that the ideal generated by =y, ..., #,_, Fin a?,,
coincides with the ideal generated by 2, ..., %,_;, 22. We are
therefore in a position to apply Corollary 1 (equivalence of (a)’
and (b)) if we take ¢; =22~ (1< i< p). In other words, every
f € &, can be written

n
J@ s B =D Gy, ovs Tay F) 25,
=1
where g; € &,. If we put k(z,, ..., 2,_1) =gy, ..., Z,_q1, 0) and
remark that we have g,—h, =, k;, k; € §,, we obtain the
following result on substituting F for ,.

(W) Let Feé, be regular of order p in z,. For every f € &,,
there is Qe &, and by € &,_, (1< i< p), such that

P
f@y, ooy 2,) = Flzy, ..., 7,) Q15000 2,) + Z By ooy p_y) 225

i=1
The analogous assertion for analytic functions is precisely the
Weierstrass preparation theorem in the form given by Riickert.
The form of Weierstrass himself follows easily on applying (W) to
J = 22 ; in fact one then finds
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4
x? — z Bi(@yy oy Xy_y) 227 = F(zy, ..., 3,) Qy, ..., 2,)
imi
and one verifies at once that 4,(0) =0, Q(0) # 0. In other words,
up to an invertible factor, F is a distinguished polynomial inx, (i.e. a
unitary polynomial, all of whose coefficients of lower order are
zero at the origin).

We remark that in the analytic case, @ and h; are unique. This
property is not true in general in the differentiable case, since the
equation F(z,, ...,2,) =0 can have less than p real roots for fixed

Bygseees Bgzge

CoUNTER-EXAMPLE. 7 =2, F =2} + a. Let f be a function
depending only on z, and flat at 0. We maytake @ =0, hy =f, h; =0

andalsoQ:{_w,hl—_—hz=o_

We shall conclude by giving some very brief indications of the
proof. The complete proof is given in [5]. It consists of two steps.

Step I. One proves (W) in the case when F is a polynomial (or
an analytic function) with respect to all the variables.

The proof is rather long and technical. It is done by adapting the
arguments developed by Hérmander [2] and Lojasiewicz [4] in the
study of * division of distributions .

Step II. One deduces Theorem 1 from Step 1.

We'shall content ourselves with giving here the idea of the proof
by showing how one proves (W) in the general case, given Step I.
The proof of Theorem 1 does not differ from this except in technical
detail.

Let us take F € &, which is regular of order p in #,, introduce new
variables £y, ..., #, and consider the * generic polynomial of degree p”’

?
N(z,,t) =a2 4+ > t 225
n ‘=Zl +n
If Step Lis given, we apply (W) to Il(x,, ¢) in &, ,; in particular
for any f € &,, we have
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P
f@) =T, ) @@, ) + D b @y over Zamai D22, (A)
=1
with Q € &, ,» b; €6y p_y (We write ¢ for (¢y,..., ),  for (,..., 2,)).
Let us apply this to . We obtain

P
F@) =1, ) 6@ ) + D> B @y @ppi )23 (B)
=1
From the hypothesis that F is regular in z, of order p, we deduce
immediately that R;(0)=0 for each i, G(0) # 0, and that the
oR;
(0
%, (0

determinant # 0. By the implicit function theorem,

there are 6; € &,_;, 6; (0) =0,1< j < p, such that the equations
R; =0 are equivalent with =, (2,,...,%,_,). If we make the

substitution # — §; in the formula (B), we obtain

F(m) =n(xn; 0(121, seey xn-—l)) H(xly ey xn)r (©)
where H(z) = G(z ; 0 (zy,..., %,_,) ), 80 that H € &,, H(0) # 0. This
proves the theorem in the “form of Weierstrass”. We pass at

once from that to the “form of Riickert’ by substituting 6 for ¢
in the formula (A).
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ENERGY INEQUALITIES FOR HYPERBOLIC
SYSTEMS

By LARS GARDING

InTRODUCTION. In [2] I generalized the energy inequality for
hyperbolic differential operators to a kind of differential operator
called a partial adjoint. These inequalities led to new Cauchy pro-
blems. The theory had no immediate non-classical application. I
present here without proofs a new and sharper version of this theory
including also hyperbolic systems. The non-classical energy in-
equalities for one operator are used to get energy inequalities (also
classical ones) for systems. These inequalities (Theorem 9.1. below)
are good in the sense that they require comparatively little differen-
tiability of the coefficients. Cruder versions were first obtained by
Petrovsky [6] and later by Leray [5].

The presentation is condensed but self-contained. A more complete
version will be published in a forthcoming book by Leray and
myself. The idea of using Soboleff spaces to describe the differen-
tiability of the coefficients stems from Schauder and was perfected
by Leray [5] and Dionne [1].

Good energy estimates can be used to derive existence theorems in
the nonlinear case. This was done by Dionne [1] for one operator,
and by myself [3] for a first-order system. Theorem 9.1 below leads
to new results of this kind, which will not be given here.

We shall work in an infinite band. This masks the local character

of Cauchy’s problem for hyperbolic operators, but has technical
advantages. It is possible to give a local version of the theory.

1. Distributions in a band with a boundary. Letz =(z,,..., %) be
coordinates in R'. Later, the first coordinate will serve as a time
coordinate, the others as coordinates of space. The hyperplane
z, =t will be denoted by S;. Let

X:0<z, <7, X': 0<2;, <7 ()
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be half-open bands in time with interior and closure
X:0<o,<nX:0<m < @

When Y is one of these four bands, let #(Y) be all infinitely differen-

tiable functions with compact supports in Y, equipped with the

Schwartz topology. Typical supports in the four spaces are as
follows.

= ® T

X X’ X X
Limiting ourselves to, e.g. Y = X and X we see that the injection
%(X) > #(X) ®)

is continuous.

Let €'(Y) be the space of distributions on Y, i.e. all continuous

antilinear functionals
f:9->(f9
on ¢(Y). A function f(z), locally integrable in X, will be identified
with the distribution
o) = [ 1) 7@
b 4

where dz = dz, ...dz; and the integral will be used as a notation

for (f, g). Corresponding to (3) there is a restriction mapping
€(X) >€'X); @
but, since ?(X) is not dense in ¥(X), there is no inclusion between

the two spaces of distributions. The kernel of (4) consists of all
fe¥'(X) with supports on the boundary S, of X.

Let
D* = (3] dw))™ ... (30
denote a derivative of order |«|=oa, + ... +«. We define the
derivative D% of a distribution fon ¥ by
(D*f,9) =(f.(— DYy), g €(Y).
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The reason for the D is that if «;> 0, Y =X and f is & smooth
function, then the equality

(D*f, 9) =(f, (— D)*g)
holds only modulo integrals over the boundary S, of X. We have
for instance

(Dafo) = = Da0) — [ S0 70 dy .. d
SO
Hence l—)1 is an extension of the classical derivative D, in X , but it
is not an extension to X. When these derivatives operate on smooth
functions, imbedded as distributions on X, we have
D, =D, + 8x,), D, =D,

where k >1. J. Leray has proposed to call D and D the interior and
adhesive derivatives respectively. It is clear that

D*:%'(X) >¥'(X)
is a continuous mapping which reduces to the usual distribution
derivative

D @'(X) »¢'(X)
on the interior of X. Interior derivatives .D* shall be applied only

to smooth functions. Our object of study will be mixed differential
operators

a =3 D ay, (x) D? (6)
with locally integrable coefficients ag, (), containing both adhesive
and interior derivatives. For f € %(X) we define af e €'(X) by

(af, 9) = Z(ag, (@) D? f,(—D) g), g € €(X).
The product ba of two operators (6) will be performed by moving
all adhesive derivatives to the left and all interior derivatives to
the right, using the commutation rules

[Dy, K] =[D;, K] = () | 92, [ Dy, D] =0

where h and 9h/dz, are supposed to be locally integrable. This
product of operators is associative, but if f €#(X), we have

(ba) f =b(af)
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only when the second member is defined, e.g. when a is free of
adhesive derivatives or b free of interior derivatives.

Our reason for considering distributions on the half-open band
X:0< z,<7 is that we are going to estimate fin X in terms of
af € ¢'(X) and the Cauchy data of f on the hyperplane §,. This
makes it necessary to have test functions which do not vanish on S,.

2. Soboleff spaces of functions and distributions on hyperplanes.
Consider hyperplanes of constant time contained in X
Sz =t0<t< ™.
Put
11
1K= ([ 1@ s, an) 1< < M
X

when K is an open subset of §,. In particular, |f, S|, is the usual
g-norm on S,. We shall also use the norm

Lf’S[I[q]=suP,f!K,q (2)
where K ranges over all unit cubes in &§,.
Introduce a double order of derivatives as follows
(@) = (ap o + oo + ).
Let > 0, s > 0 be integers. We say that « is of order <7, s, or
briefly that
(«) < (7, 8),
if @y < 7, |a| < 7+ s and define a gradient of order (r, s) by
D ={D*}, (x) < (r, ).
We extend the norms (1) and (2) to gradients of f, putting
1D £, 81, = > D%, 81, &)
a

and
1D £, 8, 1q = > | D*f, 8l (4)

where («) < (7, 8). It is clear that these norms increase with » and
s. We want to extend (3) to negative values of s, assuming for
simplicity that ¢ = 2. First, let us put

| D%~ £, 8,1, =sup (£, 9, S |/| D** g, 8 Iz, > 0, (8)
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where (f,9,8,) = [ f(z) (@) dz, ...dz; with z; =t and g ranges over
the space €/(S,) of all infinitely differentiable functions with compact
supports in S,. The norm (5) increases with s, it is finite if f is square
integrable over S,, but also in other cases. If, e.g., s>(I—1)/2, then
(5) is finite when f is a S-function in §,. When r =8 =0, the
two definitions (3) and (5) agree. The definition that extends (3) is

1D, 81y = 2, 1 DM+~ DI f, 8l ®
J

where 0 < j < r, $20. If s > 0, this formula follows from (3), if
¢ < 0, the right-hand side is defined by (5). Iff is a function in
€(X), (6) is a norm of the restriction of

fs Dyf,ees DLf ™M
to S,. In connection with hyperbolic operators we shall use (6) as a
measure of the energy of f at time .

DerINTTION 2.1, Let
Ly (s),0<t< T
be the closure with respect to the norm (8) of the restriction of (7) to 8
when f € €(X).
Note. This space does not depend on ¢. It is a direct sum of the

spaces
Lg-"i"-f(,g‘)
forj=0,..., 7.

3. Soboleff spaces for the coefficients. Let us put

1D f, Xy = (j D8 dt) M

]
where 7 > 0, s > 0 are integers. The following spaces are convenient
coefficient spaces for .our differential operators.

DeriNiTION 3.1, Let L34, (X) bethe set of all f € %”(X') with locally
integrable derivatives of order < (r, 8) and with finite norm (1).

Note. This is a space of functions containing the space .‘?(X ) of
functions in X whose derivatives are all bounded. The space
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decreases as r and r 4 8 increase. Since the norm (1) is an integral,
the choice of band X is immaterial. We could replace it by any
other band (1.1) and (1.2).

4. Soboleff spaces of functions and distributions in the band X.
Let us put

v

1D, Xlpa= (| 1D 5, S gt )” 1
) (oj )
| D= f, X|,q= sup |(f,g)}/| D"’ 9, X lpgs @)
PE A% 9)

where 7 > 0, 8 0 are integers, 1 < p < oo and

1. d

+

P P

1t is clear that | D™ f, X |, , increases with r and 7 + & and it is not

difficult to see that (1) and (2) are equal when r =0 and fe‘f(.f).

Since (1) is defined by an integral, the choice of band X in the norm

is immaterial, but in (2) it is all important. In fact, since g e ¥(X),

the right side of (2) is defined (possibly infinite) for fe%'(X).

Changing X to Y then changes the domain of definition of the norm

and a restriction to ¥ = X makes the norm vanish if the support
of f is contained in S,.

=1

Using these norms we can now define some useful spaces of
distributions.

DerinNITION 4.1. Put
Ly (X) == the closure of €(X) with respect to |[D™ f, X|y5  (3)
Oty (X) = the closure of €(X) with respect to | D™ f, X|,. (4)
Note. These spaces increase as r and r + s decrease. When

r > 0, (3)and (4) consist, roughly speaking, of all distribution-valued
mappings

t —>f(t, 23,.... %),..., D f(t, 2,...,2;) € L5 (Sp)



ENERGY INEQUALITIES FOR HYPERBOLIC SYSTEMS 215

which are integrable and continuous respectively. When < 0, these
mappings become distributions also in time and can have supports
in a hyperplane §,.

The notations in this section have straight-forward extensions
to vector-valued functions

f@) = fi(@), .. fx(2).
We say that fe®(Y) if all f, e ¥(Y) and put (f, g9) =Z(f, g,).
Letting
r=(ry ..., 7y) and 8 = (84, . ., 8y)

be vectors with integral components, we put
[ D f, X |y =21 D™"f, X |,,
and interpret f e Li%(X) and f €C3l5(X) as
£, € Lg*(X) and f, € C3#(X).

5. Differential operators. Hyperbolic operators. Let
¢, =max (0,¢), c_ =min (0, ¢)
denote the positive and negative parts of a real number ec.
DeFiNITION 5.1,  Let
mz0,nZ20
be integers and let
V(n, X, m) (1)
be the set of all differentiable operators of the form
a =a(D, z, D) =3 D?a, D
with locally integrable coefficients in X such that
1BI<my,lyI<n, [B+yI<m+n @)
Jor every ag, #0.
Nore. (2) is equivalent to [B|<my +n_, |y|<n, +m_.
If m +n < 0, V contains only the zero operator.

If <0, aeV contains only derivatives D, i.e. a is a classical
differential operator, and, by definition,
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@)= > (8.D*f9)
lal€m+n
where f e¥(X), ge¥€(X). When m < 0, @ contains only derivatives
Dand
@h9= D (@) f.(— Drg).
lal<m+n
If n > 0, m > 0, a contains both kinds of derivatives and
@ho) = D (4@ D*f, (—Dyy).
1BI<m.lyI<n
We shall refer to this as the mixed case. In all cases, we denote by
af the distribution on X defined by the right sides. For simplicity
we shall also write
(a/9) (2) = Z a5,(x) D*f (@) (— DY g(@)- (3

A coefficient of a € V with |B + y| =m + n will be called principal,
the others secondary. The principal part G of a is defined by

a (D, =, D)=3%D ag, (x)D?
where |B + y| =m + n. The difference a—a is called the secondary
part. We say that & is homogeneous if a = 3.
The characteristic polynomial of @ is defined by
38 =Ta ) & & 4

where |B+ y| =m +n, § =¢£,, ..., & has complex components and
the bar denotes complex conjugation. If

£real > 8(f, 2, £) =0
then @ vanishes unless we have the mixed case n >0, m> 0., But

then @ is almost a divergence in the following sense (compare
Hormander [4] p. 188) : there exist homogeneous operators

aeV@n X, m—1), j=0,..,1,
such that
a =X (D, — D,) oD, =, D) + ay(D, , D). (5)
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This requires the coefficients of @ to be once differentiable. If ¢ has
constant coefficients, a, vanishes. Notice that (3) and (5) give

@0 =3 [ 5 @D @it @lo)
X

where the right side only contains derivatives of f of order <m and
derivatives of g of order < 7, integrated over X and 8,. This formula
explains the term approximative divergence.

Let @(x) be the leading coefficient of @, i.e. the coefficient ag ()
for which B, 4y, =m+n. It is unique. Let us factorize the
characteristic polynomial (4) for £ real,

m+n

3¢z o=90) [ [ €& — 2@ b0 8) ®
1

Since @ is homogeneous, the A, are homogeneous of degree 1 in §.

DEFINITION 5.2. An operator
a €V X,m)

is said to be (uniformly strongly) hyperbolic in X if

(1) the principal coefficients are bounded and uniformly continuous
in X,

(2) 1/@(x) is bounded in X,

(3) the zeros A, of (8) are real for &, ..., & real and uniformly
separated in X : there is a constant ¢ > 0 such that

I —X1>c(lé] + .. +1&1)

when x€ X and j # k.

The set of hyperbolic operators in ¥V(n, X, m) will be denoted by
Hyp(n, X, m).

We shall also need a scale of regularity for the coefficients of a.
Let

p={rm}s o= (o)
be vectors whose coefficients are non-negative integers (differenti-
ability indices) and let
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P ={pg}
be a vector whose components are summability indices, 1 < p, < 0.

DEFINTTION 5.3. Let
Vi‘,?m] (n, X: m)

be the set of operators a € V(n, X, m) such that
¢, (@) € LY (X) ("

1,(7gy)
where the indices satisfy the following inequalities
Py > 2, Apg, < pg, + 05, +m+n—1—|B+yl
where X 18 some number >1— 1.
Nore 1. An element of p, ¢ or p corresponding to a principal
coefficient will be called a principal index and denoted by p, & and
P respectively. The other indices are called secondary.

Note 2. The lower index 1 in (7) means that the derivatives of
the coefficients, although they are at least locally square integrable
in space, are only required to be locally integrable in time.

6. A general energy inequality for hyperbolic operators.  Let ¢
denote a constant, not always the same. Let X, be the band
0< 2, < t< 7. The following result sharpens Theorem 16.2 of [2].
THEOREM 6.1. Let
aeVfin(—n, X,m), m>n 1)
be hyperbolic and let s Z 0 be an integer. Then the inequality
| D=2 f, Xloo < €| D™ f, 8yl +¢| D™ a f, X, he (2)
holds for all f € %(X) and all ¢ provided
Py > (1Bl +1—m), +n,
Py top=>B+1—m) +lyl+n+s (3)
Pyt og>|Bl+1—m+4n, —s.

Nore 1. To avoid a minus sign in (2) we have changed the
sign of n. The last two inequalities (3) account for the differenti-
ability imposed by the parameter s. They follow from the first one
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when s = 0. When n > 0, a is a classical differential operator and
we shall refer to this as the classical case.

Nore 2. If m < 0, the first term on the right side in (2) has no
sense and should be dropped.

Nore 3. We say that a couple
ve Ly (X), we LP~1(8,) 4

is a set of Cauchy data foraeV if
v —aw = 0 of order » on S, (5)

i.e. if the restrictions of the derivatives D} (aw—v) to S, vanish for
0 < j <n. This condition, which is necessary when % = w, v ==au, is
empty if » < 0. When a satisfies the requirements of the theorem
and m > n > 0, the time derivatives

w,...,DP'w and w, ..., DPF"1w, v, .., D}ty

on S, are expressible in terms of each other and the derivatives of
w on the right (the classical Cauchy data on §;) can be chosen
arbitrarily. In particular, there is a constant ¢ such that

| D=1, 8|y < ¢ | D=1, S|y + ¢ | D1y, Sy,

Applying this to (2) with w = f, v = af, we can make the corres-
ponding change on the right in (2).

Note 4. The Cauchy problem associated with (2) is the follow-
ing : given a couple v, w of Cauchy data, find u such that

a'u.=vinX', u—w =0 of order m on S,.
If a satisfies the assumptions of the theorem and if
a—aeV(—n, X, m—1) (6)

this problem can be shown to have a unique solution u € Cmz*(X)
satisfying the inequality (3). The condition (6) only concerns the
secondary part of a. It is empty unless we have the mixed case
m>0>mn.
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Note 5. The principal interest of the mixed case m > 0> is
that it requires very little of the coefficients. In fact, the maximal
values of the right sides in (4) are in this case

1,148 1—s

respectively. On the other hand, if n is large positive, they are
dominated by the term n and if m is large negative, they are domi-
nated by the term 1—m. In the last section we shall use the mixed
case of (3) to deduce similar inequalities for hyperbolic systems
(also in the olassical case) which require comparatively little
differentiability of the coefficients.

7. Systems. We shall now deal with vector-valued functions

F=fvifuy N>1
and extend the notions of section 4 as described at the end of that
section. A square matrix of differential operators

A=A(D,z D)=(a,D,z,D);v,p=1,...,.N (1)
will be called a system. We put
4f),=2Xa,f,
DErINITION 7.1. Let
M =My, ..., My, N ="y, ..., Ny

be vectors with integral components. Let V(n, X, m) be the set of
systems (1) such that

a,, €V(n, X, m). (2)

Nore. For classical systems, the space ¥V was introduced by
Leray [5].

The principal part A of A eV is defined by
A=A4(D,x, D) =@,).
The secondary part is 4 — A. The characteristic polynomial
of 4is
4¢ 2,0 = @uE 2, ).
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Nore. Given A, there are in general many m and n such that
(2) holds. In fact, given e.g. n, we only have to choose m sufficiently
large. But this will have the result that most principal parts vanish.

If all n, are <0, 4 is a classical system. If all n, vanish, and the
matrix (@,,) of leading coefficients is non-singular, 4 is a normal
system in the sense of Cauchy and Kowalevski.

Corresponding to the definition 5.3 we have
DErFINITION 7.2. Let

Py = {Pvuﬁy}’ ‘Tm = {amﬂy}

be vectors with non-negative integral comp ts and put
p={p,}, o={o,}
Let
Py = {Pousy}
be vectors whose comp ts are 8 bility indices and put
p = {pm}‘
Let

Viin (n, X, m)
be the space of systems A such that
a,, € Pt (n,, X, m,).

Nore. A differentiability index p,,g,, 6,0, With |8+ y| =m,+n
will be called a principal index and will be denoted by B,,, G,,.
The other indices are called secondary.

8. An energy inequality for almost diagonal systems with a
hyperbolic diagonal. We are going to extend Theorem 6.1 to a
special class of systems.

DrrmviTioN 8.1. A system
AeV(n, X,m)
18 said to be almost diagonal if
£ real = X(E, z, £) diagonal. (1)
Its diagonal is said to be hyperbolic if
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a,, € Hyp(n,, X, m,)
for all p.
Note. (1) does not mean that @,, (5, x, D) vanishes when
v # u. This happens only when 7, < 0 or m,< 0. In the mixed
case m, >0, n, >0, G,, is an approximative divergence as described

in Section 5.

THEOREM 8.1. Let
A e Vil (—n, X, m) (2)
be almost diagonal with a hyperbolic diagonal, let m, > n, for all pu and
let 82 0 be an integer. Then the inequality

[ D™ f, X le < €| D™ f, 8o lp + ¢ | DASf, Xyle  (3)
holds for all f € €(X) and all sufficiently small ¢ provided
Pusy = (Bl + 1—m,), + (n,),
Pty + Oy > (1Bl +1—m) + |yl 4+ 7n,+s (4)
Py + gy > |Bl +1—m, + (n,), —s.

Nore 1. If all m,>0, and maybe also in the general case, (3)
holds for 0 < ¢ < . For the principal indices, (4) reads

Py > max (1,7, 1 —m,)
Pw +0,, > max(1,m)+s (8)
P + B, > max (1,1 —m,) —s.

Nore 2. The note on Theorem 6.1 about Cauchy’s problem
applies with appropriate formal changes due to the fact that we
are now dealing with a system. In particular, that Av—w vanishes
at order n on S, has to be interpreted as saying that (4v), —w,
vanishes at order n, on S, for every ».

9. An energy inequality for hyperbolic systems.

DEFINITION 9.1. A system

AeV(n, X, m)
is said to be hyperbolic if

det 4 (¢, , 8)
is hyperbolic.
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We say that m > n if there exists a permutation u — p’ such
that m, > n,, for all .

THEOREM 9.1. Let
AV, (—n X, m),m>n, ¢}
be hyperbolic and let sZ 0 be an integer. Then the inequality
| DM f, Xy lop < e|D™ 1 f, 8y |y + o] D™ Af, X, e (2)
holds for all f € €(X) and all sufficiently small t provided (8.4) of the
preceding theorem holds and provided the principal indices satisfy

Py > max max (1, n,, 1 —n,)

A

P + 0, > maxmax (1,m,) +¢ (3)
L3
Pou + G, > max max (1,1 —mn,) —s.

Nore 1. Since m, > n, = 1 —m, < 1—mn,, (3) is stronger than
(8.5). If all m, are positive, and maybe also in the general case, (2)
holds for all t < 7.

Nore 2. The conditions (3) are particularly favorable when
all n, are equal and non-negative. In fact, then all m, are positive
so that (3) follows from (8.5) and hence also from (8.4). In other

words, for classical normal systems, our theorem is as sharp as
Theorem 8.1.

Note 3. At least in the classical case, the Note 4 of Theorem 6.1
about Cauchy’s problem applies with the appropriate formal changes.

The theorem can be reduced to the preceding one by a diagonaliza-
tion which runs roughly as follows.

For simplicity we limit ourselves to homogeneous 4. For ¢ real,
the degree of every non-vanishing term in

a(f z £) =det A(£,x, 8
then is
M =%m, — 2n, = Z(m,, —ng)>N> 1.

Since @ # 0, this is also the degree of a. We shall construct a system
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Be V(M —m, X,n) (&)
such that
C=BAeV(M —m,X,m) (6)
is hyperbolic and almost diagonal.

To do this, let b,,(z, £) be the cofactor of a,, in A(¢,z, &) for £ real.
The degree of b,, is M — m, 4 n, and changing (M — m,), deriva-
tives Din b,,(z, D) to D and putting them in front of the coefficients
we get an operator

bo(D, 2, D) eV (M —m, X,n,) (7)
and hence a system B satisfying (5). Using (1) and (5) we see that
the product

6u(D,2,D)= > b,(D, , D) a,(D,z, D) ®)

has the property (6) and that we have

greal = 8,,(§ %, §) =%b,(E 7. §) 0, 2,6 =8, 0 2,9
so that C is hyperbolic and almost diagonal. Hence, provided the
coefficients of 4 and B are sufficiently differentiable, Theorem 8.1
applies to C and gives the inequality

[ D™ f, Kyl < € [ DY f, 8 iy + ¢ | D" ¥ C f, Xl 0. (9)
On the other hand, it follows from (1) and (5) that
(bw @,,) f = b,(a,, f)-
In fact, if m, >0, a,, is free of adhesive derivatives and if 7, < 0,
b,,is free of interior derivatives. In particular,

@ =2 bal4f),,

so that Of = B(Af). Using this it is not difficult to show that

| D=0 Cf, X,)3,0 < ¢ | D™ Af, X, s
Combining this with (9) we get the desired inequality (2). A close
check of the differentiability requirements gives the theorem. From
(8) it is possible to obtain an idea of the result. In fact, the terms
with », > 0 require », derivatives of the coefficients of A4 and the
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terms with 7, < 0 require —n, derivatives of the ccefficients of B
which are polynomials in the principal coefficients of 4. Hence we
have to require at least max|n,| derivatives of the principal coeffici-
ents of A. The first inequality (3) requires one more derivative than
this estimate unless all #, are positive. The two others account for
the differentiability imposed by the parameter s and follow from
the first one when ¢ = 0.
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ON INVARIANT MANIFOLDS OF VECTOR FIELDS
AND SYMMETRIC PARTIAL DIFFERENTIAL
EQUATIONS!

By JURGEN MOSER

1. We are concerned with the question of existence and construction
of solutions of some classes of nonlinear partial differential equations.
There are a number of approaches to solving partial differential
equations and we mention here the theorem of Cauchy-Kowalewski
which is based on power series expansion and Cauchy’s majorant
method. For hyperbolic differential equations the theory of
characteristics allows the construction of the solution in some cases
and finally we mention Schauder’s methods to solve quasilinear
partial differential equations using the Schauder-Leray fixed point
theorem. Nonlinear elliptic equations have been treated by
L. Nirenberg and others.}

All these methods have in common that one provides sufficiently
good estimates for the solutions or the coefficients (in the Cauchy
majorant method). These estimates are deduced from the non-
characteristic nature of the initial surfaces, the hyperbolic or the
elliptic character of the differential equations considered.

However, in the theory of ordinary differential equations and in
several fields of applications one encounters nonlinear partial
differential equations which cannot be classified as elliptic or
hyperbolic. In elasticity theory and fluid dynamics one is led to
partial differential equations which are hyperbolic in some domain
and elliptic in another one. Recently Friedrichs [8] worked out
a theory for systems of arbitrary type in the linear case. His theory
is based on appropriate a priori estimates from which one can

t This paper rep results obtained at the C t Institute of
Mathematical Sciences, New York University, with support from the Office of

Naval Research, Contract Nonr-285(46). Reproduction in whole or in part is
permitted for any purpose of the United States Government.

} For an exposition of this subject we refer to the address [1] of L. Nirenberg
at the International Congress, 1962.
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establish the existence of weak solutions. To establish the differenti-
ability of these weak solutions is a separate task. Another approach
to linear partial differential equations—due to Hoérmander—also
is not restricted to elliptic or hyperbolic type, but assumes to a
larger extent constant coefficients.

We discuss in this talk a class of symmetric systems in the
nonlinear case and apply a method of construction of the solution
which circumvents weak—or generalized —solutions entirely. In
fact, for nonlinear problems weak solutions seem of doubtful value
for several reasons : In general one cannot form a *function of” a
distribution, an operation needed in a nonlinear theory. In the
linear theory the concept of weak solutions is usually introduced
for systematic reasons since it is easier to establish the existence
of weak than classical solutions. The differentiability of these
solutions can then be studied separately. In the nonlinear theory
this separation of the problem seems not possible any more. In the
nonlinear problems we are going to discuss, a priori estimates—the
essence of weak solutions—do not seem available. On the contrary
the estimates are supplied only—a posteriori—with the procedure.
This method (published previously) reduces the construction of the
solution to an iteration where at each step a finite system of equations
has to be solved. The approximate solutions converge rapidly to
classical solutions. Therefore one may expect that this approach
could be used for numerical purposes.

It would be desirable to apply this method also to boundary
value problems. We shall restrict ourselves to differential equations
on compact manifolds where no boundaries occur. For simplicity
we treat the case of a torus only.

We start with a discussion of a problem from the theory of
ordinary differential equations which leads to symmetric partial
differential equations of a rather special type.

2. Stable Invariant Surfaces. A closed differentiable manifold o
is called “invariant” under a vector field if the vector field is
tangential at each point of o, i.e. o consists of orbits of the vector
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field. It is called stable—or asymptotically stable—if all orbits near
o approach o as the time parameter increases to infinity.

The concept of invariant manifold occurs naturally when one
considers slightly coupled oscillations, i.e. systems of the form

z, = [, ) + pd,(x,2) (v =12,..,n). (1)
For p=0 these systems decompose into n second order equations

which—as we assume now—have an asymptotically stable periodic
solution (i.e. one dimensional invariant manifold) :

x4, =p,s); @ =4q(s) (2
where
5 =1

Then (2) represents an n dimensional torus o(0) invariant under (1)
for w = 0 which is asymptotically stable. The question arises
whether there exists an invariant manifold ¢ = o(p) for small
values of p. This is indeed so and this problem requires solving a
system of partial differential equations.

We assume, then, that the unperturbed surface o(0) is a torus of n
dimensions which is nearly invariant. Introducing 7 angular
variables (z,, ..., #,) on this torus we describe the vector field

y. =gz, y)
in terms of n 4 m variables (of a Euclidean space)
=, .00, B)s Y= Yps ) Yn)
where y is normal to o,. Since a,, given by y =0, is approximately

invariant g(z, 0) is small. We suppress the parameter u. The desired
invariant torus can be represented in the form

Y% =), (k=1,...,m)
where 4 = (4, ... , %,) satisfies

< 0
> Hw) a—;" — gz, u) =0. (3)

v=1

The system is asymptotically stable if the quadratic form
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We do not exclude here that the functions f, vanish in some
points which represent singularities of the differential equations.
In fact, such singularities correspond to equilibrium points of the
original differential equations.

Problems of this type have been studied by different authors—
Diliberto [2], [3], Kyner [4], Bogoliubov and Mitropolski [5], [6] in
their book on nonlinear oscillations. However, singularities of the
differential equations are usually not admitted and extensive use
of charaacteristics is made. Such an approach is inadequate for sym-
metric systems as we shall discuss them now.

is negative definite.

3. Symmetric Systems. We consider systems of the form

Fy(x, w,%,) =0, (k=1,2,...,m), (4)
where the F,(z, y, p) are of period 27 in z, (v =1, ...,n) and admit
sufficiently many derivatives in |y| + |p|<1; here p has nm
components p,,.

We introduce the matrices a®, b with the elements

aF, oF
(r) j— | 2 1 —
af(z, y, p) = o = an kl=1,2..,m,
(5)
bz, y, p) = aaF' . v=DL2..,n,

and call (4) symmetric if the a® are symmetric. Note that these
matrices a*) determine the type of the system, which will however
not be restricted.

In the linear case this reduces to systems of the form
ou
2.9 5, + ) u =)

as they were discussed by Friedrichs, who even treated boundary
value problems.
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The object is to construct a solution which is of period 2w in the
z-variables under appropriate assumptions. For elliptic systems
such results are known. While ellipticity of the system is a condi-
tion for the a® we shall require instead that b -+ b7t is positive
definite, and so not restrict the type.

We formulate our result. With some ! =1(d) depending only
on d, we assume that the derivatives of order <! of F are bounded
by a constant K in |y| + |p| < 1. Moreover, with a Bin 0< f< 1 let

(7, b(=, 0, 0) 9)> 2B |9 |* (6)

and
2 B ,
’a—za() <m. (6")

THEOREM. There exists an €, = ¢y(d, K)> 0 such that for
max | F(z, 0,0)|<e¢ B,
z

there exists a periodic solution wu(x) which is twice continuously
differentiable. The integer | can be chosen as any integer > (3d/2 + 6.)

The equations (3) are obviously a special case of this problem.
They are quasilinear, i.e. linear in p and, moreover, the matrices
a® are scalar multiples of the identity matrix. In that case one can
get away with milder differentiability assumptions; in fact, | =2
would suffice. However, it seems unimportant to reduce the smooth-
ness assumption since in most applications the equations are
infinitely often differentiable if not analytic in their arguments.
It is worth mentioning that even for analytic equations the solutions
need not be analytic, as one can see from simple examples of
differential equations for which F, vanishes in some points.

This theorem can also be used to establish the existence of stable
manifolds through equilibrium points.

REMARK. Assumptions (6) and (6') can be replaced by the
following weaker one: For any set of integers A, > 0 with X A, =1
replace b in (6) by

t 5T denotes the transpose of b,
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2™
ox,

5=b+i>~.
v=1

and replace (6') by

3 L B
— a™ =9 =0.
7z '<l+1fory P

u

B#EY
4. Method. The construction is established by a modification
of a method presented in, [3]. The idea is the following: To solve
equation (4) we construct approximate solutions u,(z) starting
with %, =0. We obtain u,,, by use of Newton’s method; i.e. in
F(x, u, u,) we replace the function % by w, - v and linearize with
respect to v:

Fp@, v ) 0 + B, (2, 4, U,) 0+ F (2, %y, ,) =0 (7)
and set
Upyy = Uy, + .
For these linear equations one has a priori estimates on account
of the assumptions (6) and (6’). Such estimates are also at the basis
of Friedrichs’ approach and have the following form: If [u,
denotes the square integral of % over 0 < #, < 2w one has
lolle < ¢ I F (2, 20, ) llo

where ¢ depends on g only.

One sees clearly the difficulty: the estimates for the square
integral of u,,; — u, require estimates of the first derivatives of u,.

Thus at each step one derivative is lost—not to speak of the
necessity to have pointwise estimates of w,.

For this reason the strategy is to solve the linearized equation (T)
only approximately but by functions which are sufficiently smooth.
We abbreviate the differential equation (7) as

Iv=f (8)
where L denotes the linear differential operator and

f(@) = — F(=, 4, t,).
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Moreover, we denote by ||f||; the sum of the square integrals of all
derivatives of f up to order I. Then one obtains from (6), (6’)—under
appropriate assumptions on u, —

ol < cllf ll-
But we construct, with a small parameter % in 0 <A <1, an
approximate solution w of (8) satisfying

1 ZLw — £ llo < B [I£1ly (9)
for which the 7 4- 1 derivative can be estimated by
lwllyy < A~ L{f 1l (99

with a constant ¢> 0 independent of h. This way one gains the lost
derivative, but the estimate (9’) contains the large factor A~1.

Choosing h =h,, , at the n-th step appropriately and setting
%,,1 = %,+ w one can establish convergence of the procedure.
In fact, one can establish inequalities of the type

€,

%1 — wallo <€ =05 11% 1 — Uy llyy < h':’l -> ©
n

where
€, =¢€_;>0;h,=h_; >0withl <k <2 .(10)

provided || F (z, 0, 0)]|, is sufficiently small.

For the details of the convergence proof we refer to the paper [9].
We first mention that the method succeeds because of the quadratic
convergence of Newton’s method. The recursive estimate for the
error yields the estimate . :

”‘"'n+2“”‘n+1”<c(ﬁfz}—l +'}% ‘n) (11)
and the right hand side is required to be less than ¢, . The first
term stems from the quadratic error term in Newton’s method
which is of the form w.w, which can be estimated by Sobolev’s
Lemma. The second term corresponds to the error in solving the
linearized equation approximately.

Notice that there is an optimal choice for the parameter &, ,
which minimizes the expression in (11). It is easy to establish (10)
and the convergence (for details see [9]).
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It remains to solve the linearized equation approximately, i.e.
to find w satisfying (9) and (9’). This can be done in several ways.
We mention two approaches. If one adds to (8) a dissipation term
—pAv with a small positive p the system becomes linear elliptic,
for which the theory is developed. Choosing p appropriately one
can achieve (9) and (9'). This has been worked out for the quasilinear
case by R. Sacker, a student at New York University.

Another method is to replace the linear equation (8) by a difference
equation of “mesh width” A'-! and replacing a_a- by symmstric
xf

differences. All estimates are preserved then and the finite system
has a unique solution. One can devise an interpolation method
which interpolates the discrete function by a smooth one satisfying
(9), (9'). In fact, this is relatively elementary. The advantage of
this method is that it reduces the problem even to a finite one.

Difference approximations have frequently been used for partial
differential equations. The new feature here is that these discrete
functions converge with derivatives to smooth functions.

5. ‘This procedure has its origin in a paper of Kolmogorov [7]
which concerns the constructions of invariant manifolds for conser-
vative systems, a much more difficult problem than that of
Section 2. There the use of Newton’s method was suggested to
overcome the small divisor difficulty of celestical mechanics.}

It was our aim to show the wide applicability of this method in
conjunction with an approximation scheme. One can summarize:
To achieve fast convergence one should not solve the linearized
equation too precisely. High precision and high convergence compete
and have to be balanced against each other (by choice of ,,,
in (11)). All this requires, of course, many derivatives for the
original problem.

It can be expected that the Cauchy problem for nonlinear hyper-
bolic systems can also be attacked by this method since the

t The proofs for Kolmogorov's statement were supplied just recently in a
paper of Arnold [11].
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principal difficulty is of the same nature. The basic result of
Schauder [10] permits one to treat quasilinear equations only,
in which case one can use a trick to circumvent the loss of
derivatives. Namely one solves iteratively

F,(x, u, %) v, + F,(x, 0,0) v + F(z, 4, u,) = 0.
The iteration is given by u =wu,; v =u,,, —%,. It turns out that

the procedure converges geometrically only (like €}) and if one
tries to achieve fast convergence one again finds a loss of derivatives.
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ON THE COHOMOLOGY GROUPS OF LOCALLY
SYMMETRIC, COMPACT RIEMANNIAN
MANIFOLDS

By YO0ZO MATSUSHIMA

1. Ler X be a simply connected symmetric Riemannian manifold
of non-compact type. Let @ be the identity component of the group
of all isometries of X. Then @ is a semi-simple Lie group of non-
compact type with center reduced to the identity element. Let I'
be a discrete subgroup of G with compact quotient space G/T' and
without element of finite order different from the identity element.
The group I acts on X discontinuously and freely and the quotient
space M = X|T" of X by the action of I' is a compact Riemannian
manifold, which is locally symmetric.

Let u, be a point of X and let K be the isotropy subgroup of G
at the point u,. Then K is a maximal compact subgroup of G and X
is identified with the coset space G/K and M is identified with the
double coset space I'\G/K.

Let g be the Lie algebra of G and ¥ the subalgebra corresponding
to the subgroup K. Let 1 be the orthogonal complement of ¥ in g
with respect to the Killing form ¢(X, Y) = tr(ad X ad Y) (X, Y eg)
of . The restriction of ¢ to i (resp. f) is positive (resp. negative)
definite and we have

g=m+§ mml=*% [, ml=m.
The vector space 1t is identified with the tangent vector space of X at
the point u,. We take a basis Xj,..., X, of 111 such that ¢(X;, X;)=§;
and we normalize the G-invariant Riemannian metric g so that
9u(X;» X;) =8;. Let Ry, be the components of the curvature
tensor with respect to the orthonormal basis {X,..., X/} of the
tangent space 1t at the point u,.

We suppose now that g is simple and define a quadratic form
H,(¢) on the vector space § of twice contravariant symmetric
tensors £ = (£7) at the point %, by putting
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Hy®) =b(g) D (¢4 > By,

=1 =1
where b(g) is a positive constant depending on g (cf. [8]).

Then we can prove the following theorem.

THEOREM 1. Any harmonic l-form on the space X|T' vanishes

identically if, for each simple ideal g; of @, the quadratic form Hg (£)
18 positive definite.
2, Let (¢,7)= Z‘, &9 Y be the inner product on the tensor space
8 and P the lmear endomorph:sm of 3 defined by P(£)V = Z Ry €40,
Then (P(¢), n) = (¢, P(1)) and Hy(€) = b(g) (£, §) + (P(f), é).
The quadratio form H(§) is positive definite (resp. non-negative)
if and only if b(g) is > (resp. >) the absolute value of the minimal
eigen-value of the symmetric linear endomorphism P of &.

The eigen-values of P are calculated by Calabi-Vesentini [3] and
Borel [1] in the case where X is a bounded symmetric domain in
C" and by Kaneyuki-Nagano [6, 7] for the other types of irreducible
symmetric spaces. From their results we conclude that :

(1) H,(£) is always non-negative ;
(2) H,y(£) is positive definite if and only if the rank of the
corresponding symmetric space @/K is greater than 1.
From this and Theorem 1 we get

THEOREM 2. Let X be a simply connected symmetric Riemannian
manifold all of whose irreducible factors are of rank greater than 1.
Let T' be a discontinuous group of isometries of X acting freely on X
and with compact quotient space X|T'. Then the first Betti number of
X|T is equal to 0.

Combined with a lemma of Selberg [12] we get the following
corollary.

CoRrROLLARY. Let X be as in Theorem 2 and let T be a discontinuous
group of isometries of X with compact fund, tal domain. Then
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the factor group T[T, T'] of T by its commutator subgroup [T, I'] is a
finite group.

REMARK. L. Greenberg informed me that he has constructed
an example of a discontinuous group I' of isometries of the
3-dimensional hyperbolic space such that T[T, I'] is not a finite
group.

3. Let X=X, X .. X X, be the decomposition of X into the
product of irreducible factors and let @ (resp. G;) be the identity
component of the group of all isometries of X (resp. X;). Then @
is identified canonically with the direct product Gy X ...Xx G,;
@G =G, X ... X G,. Suppose that the rank of X;is equal to 1 for
+=1,..., 8 and greater than 1 for t=s+41,...,p and that s< p.
Then we can prove the following theorem ([8], Theorem 3).

THEOREM 3. The notation and the assumptions being as above,
let T' be an vrreduciblet discrete subgroup of G =G4 X ... X@, with
pact fundamental domain. Then T[T, T is a finite group.

ReMARK. The case where all of the X; are of rank 1 is excluded
in Theorem 3. But the case where all of the X; are isomorphic to
the hyperbolic plane is treated in the paper [11]. We shall refer to
this in § 5.

4. Concerning the p-th Betti numbers (p > 1) of X/T"' we can prove
the following theorem ([9]).

TaEOREM 4. Let X be irreducible and of rank greater than 1.
Let w be a harmonic p-form on the Riemannian manifold X which is
snvariant by T'. Then w is invariant by @ if the ratio p : dim X is small.

We conclude from this theorem that the p-th Betti number
(X T') of X|I' is equal to the p-th Betti number 5*(X,) of the
compact form X, of X, if the ratio p : dim X is small.

ExamprLE. Let X be the Siegel upper half space consisting of all
complex symmetric matrices x + 4y of degree n with y positive

1For the definition of irreducible discrete sub ps, see, for ple, [10].
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definite. In this case the assertion of Theorem 4 holds for p < .7%2
in the case n > 2, and for » =1 in the case n = 2.

Refining the arguments in [9] we can prove that a holomorphic

nt
2

p-form on X invariant by I' vanishes identically if p < .
5. The results mentioned in the preceding sections are obtained
by the method based on the theory of harmonic forms, some integral
formulas and some of the detailed results on the curvature tensor
of symmetric spaces. It seems to be rather difficult to get more
precise results along these lines. One of the difficulties comes from
the fact that the tangential representation of the isotropy group
K is rather difficult to treat. In the special case where X is the
product of upper half-planes the isotropy group K is abelian and
we can obtain satisfactory results in this case.

Let H be the upper half-plane consisting of all complex numbers
z with Im(2)>0 and let X=H X ...X H (n factors). Let

G =8L(2, R) X...x SL(2, R) (n factors).

Then @ acts in a well-known way transitively on X and X =G/K,
where K =80(2) X ...x 80(2). Let ' be an irreducible discrete
subgroup of @ and suppose that I' acts freely on X and that XTI’
is compact. Then X/I' is a compact Kihler manifold, in fact a
Hodge manifold. We denote by %? the dimension of the complex
vector space of all harmonic forms of type (p, ¢) on X/I'. We can
prove the following result [11].

THEOREM 5. WP =0, ifp #q, p+q#mn,
Wr = (;) Lif2p £,
w00 = (%) Guga+ 90,

CoroLLARY. Let X, be the product of n copies of the Riemann
sphere. Then
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¥(X/T) =b'(X,) (r#n),
bY(X|T) =b%(X,) + 2" B9(X/T).

In the proof of Theorem 5 given in [11], the following results
are utilized: (1) a vanishing theorem for automorphic forms, (2) the
Chern decomposition theorem for harmonic forms [4], and (3) the
Hirzebruch proportionality relation [5].

6. In the above considerations, we used the theory of real or
complex valued harmonic forms on the space X which are in-
variant under the action of I'. Recently, in connection with the
theory of deformations of discrete subgroups by Selberg, Calabi-
Vesentini and Weil and the theory of automorphic forms by Eichler
and Shimura, it turns out that we should consider vector-valued
differential forms on the space X which are transformed under the
action of I’ according to a given representation of I'. A harmonic
theory for such forms has been treated in the paper [10] and in the
paper [11] detailed results on these harmonic forms have been
obtained in the case where X is a product of the upper half-plane.
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DEFORMATIONS OF LINEAR CONNECTIONS AND
RIEMANNIAN METRICS

By M. S. RAGHUNATHAN

1. Introduction. The aim of this talk is to outline a theory
of deformation of linear connections and Riemannian metrics.!
The results are analogous to those in the theory of deformations of
complex structures as developed by Kodaira and Spencer (See [2]).
Our techniques, however, are different and enable us to treat also
a class of non-compact manifolds. We indicate an application of the
results to the problem of deformations of discrete subgroups of
Lie groups considered by A. Weil ([4] and [5]).

2. Notation and Definitions. All manifolds, linear connections,
vectorfields, etc. which occur are assumed to be differentiable
of class C°. Also, all manifolds are assumed to be paracompact
and connected.

Let (W, B, p: W— B) be a locally trivial differentiable fibre space,
with total space W, base B, projection p and typical fibre M. Let,
for each b € B, w, be a linear connection on p~1(b). Let © (resp. II)
denote the sheaf of germs of vertical (resp. projectable) vectorfields
on W which leave the connections along the fibres invariant (a
projectable vectorfield generates a local one parameter group of
diffeomorphisms which map fibres into each other). We denote by
T the inverse image by p of the sheaf of germs of C® vectorfields
on B. Also O, (resp. II,) shall denote the sheaf of germs of vector-
fields on p~1(b) (resp. vectorfields on W defined along p~1(b)) which
are restrictions to p~1(b) of sections of ® (resp. II). Again, T,
denotes the constant sheaf on p~1(b) with stalk the tangent space
at b to B. Clearly, ©, is the sheaf of germs of Killing vectorfields
on p~1(b).

T Deta.lled proofs will be given in a paper entitled ‘ Deformations of linear

and Ri ifolds ” to appear in Journal of Mathematics
and Mechanics.
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We have then the following diagram:

R A .

0 — 0, — I, — T, — 0

In the diagram (I), ¢ (resp. ¢,) is an inclusion and p(resp. p,) is the
map induced by p : W— Band 7, is the ‘restriction’ homomorphism.

DerFiNiTION 1. A family (w,),z of Ulnear connections, w,
being defined on p=1(b), is a family of deformations of a linear con-
nection w on M if

(i) there exists by € B and a connection-preserving diffeomorphism
¢ :p7Y(by) > M, M being provided with the connection w;

(ii) 4n the associated diagram (I), the rows are exact.

DeriNiTION 2. A family of deformations p: W—>B is locally
trivial at b € B, if there is an open set U c B, b € U, and a homo-
morphism © of fibre spaces, ® : p~YU)—>M x U which induces a
connection-preserving diffeomorphism of each p~1(b’), b’ € U, (provided
with w,.) onto M (with the connection w,).

Associated to the exact sequence (I), we have an exact sequence
of direct images of sheaves :

0> R%(0®) —L Rop(IT) —p> Rop(T) —8> Rip(©)— ...
) . 3 43 )

0—>H°(P“1(b),Gb)lH"(P"(b):ﬂb)&ﬂ"(zﬂ“(b),i”b)iﬂl (»71(0),0,) ...

DEriNiTION 3. The homomorphism 8(resp. 8,) in the second

diagram above will be called the infinitesimal deformation map (resp.
punctual deformation map at b).

‘We have then
ProrosiTiON 1. If a family p: W—B is locally trivial at be B,

then 8 and 8, are zero at b. Conversely, if each connection w, is complete,
and 8 ts zero at b, then the family is locally trivial at b.
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The proposition is proved by lifting vectorfields on the base to
sections of II and, using completeness, integrating them to obtain
global 1-parameter groups.

3. Punctual maps. In this paragraph, we give a stronger result
than Proposition 1, by making further assumptions on the
connections.

DEFINITION 4. A connection w on a manifold M 1is regular if
the sheaf ®, of germs of Killing vectorfields is a local system.

Examples of regular connections: (i) analytic connections ;
(i) locally homogeneous connections.

The regularity of a connection is equivalent to the following: the
function d(z) = the dimension of the stalk at z of ®, (which is
necessarily finite, in fact, less than n2+4n + 1, n dimension of M) is
independent of z.

We can now state our main results.

THEOREM 1. Let M be a connected paracompact manifold with
a finitely presentable fund: tal group. Let p: W —> B be a family
of deformations of complete regular linear connections on M. If then
the punctual deformation maps §, are zero for every b € B, and further
dy(b) =dim H%(p~1(d), @,) 8 & function independent of b, then the
family is locally trivial.

The proof uses the following lemma on finite dimensional vector
spaces.

Let z (K;) = K, be a graded vector space, each K; being finite
i=0

dimensional. Let (d,),cz be a family of endomorphisms of degree 1
of K such that d? =0, B being a differentiable manifold. Then
(K, dy) is a complex. Ifthen,the mapsb - d, € Hom (K, K, ,,) are
O=, the functions d,(b) =dim HY(K, d,) are upper semi-continuous
functions of b. Further, if d,(b) and d; ,(b) are constants, then
80 is d;y,(b). Also if dg(b) is independent of b and f: B> K, is a
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C® function such that each f(b) is a coboundary in (K, d,), then
there is a C® function g: B - K, such that d,(g(b)) = f(b).

TREOREM 2. If p: W — B s a family of deformations of regular
connections on M, where M is a manifold with a finitely presentable
fundamental group, then d,(b) = dim H(p~Y(d), ©,) are upper semi-
continuous functions of b for + =0, 1. If d,(b) is independent of b so
W8 do(b).

The proof utilises, besides the lemma given above, the well-known
isomorphisms H'(p~1(b), ©,) ~ HT, p,), where I is the Poincaré
group of M and p, a suitable representation of I'[1].

Combining Theorems 1 and 2, we get
THEOREM 3. Let p: W - B be a family of deformations on a
manifold M with a finitely presentable fundamental group. If for some

beB, H(p~(b), ®,) =0, and if each tion 18 complete, then the
Sfamily is locally trivial at the point b.

Analogous results can be proved for the deformation of Rieman-
nian manifolds by similar m=thods.

4. Discrete subgroups of Lie groups. Let @ be a simply connected
Lie group and p,: ' > @ a differentiable 1-parameter family of
isomorphisms of a group I' in @. The following result is due to
A. Weil ([5]).

There exists 8§ > 0 such that if T ={t||¢t| <8} then the action
of T'on @ x I, defined by (g, %) y = (9. p(¥), #), y € T, is properly
discontinuous.

We deduce from the above that the right invariant Maurer-
Cartan forms w, on G/p(T) (left coset space) define on @/py(T') a
deformation family. Applying Theorem 3 to this situation, we
deduce

ProrosirioN 2. If H(py (), g) =0, g the Lie algebra of @,
then po(I') and p,(T") are inner conjugate for t sufficiently near zero.

The results in § 7-10 of [5] and the theory of harmonic forms with
coefficients in & local system (see [3] ) imply the following :
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If g is semisimple and without compact or 3-dimensional compo-
nents, then HY(po(T'), g) =0.
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HOLOMORPHIC VECTOR BUNDLES ON A COMPACT
RIEMANN SURFACE

By M.S. NARASIMHAN and C. S. SESHADRI!

Let X be a compact Riemann surface of genus g(> 2) and let
« be the fundamental group of X. We prove that the set M of
equivalence classes of holomorphic vector bundles on X arising from
n-dimensional trreducible unitary representations of = has a natural
structure of a complex analytic manifold of complex dimension
n2(g—1)+1. For n=1, this complex manifold coincides with the
Picard variety of X. The number n%(g—1) +1 has been calculated
heuristically by A. Weil as the dimension of the “field of
hyperabelian functions” [J. Math Pures. App. (1938)].

The details of the proof of the theorem are given in a paper which
is due to appear shortly in the Mathematische Annalen. We give
below the main steps.

Two holomorphic vector bundles on X arising from unitary
representations of «r are isomorphie if and only if the representations
are equivalent. This fact enables us to introduce the structure
of a real analytic manifold on M in the following way. Let
Q=U(n)X ... x U(n) (2g times) and f: Q - SU(n) the map defined by

(4, By, ..., 4,,B,) > A, By AT By Y ... A,B A7 B .
The set of homomorphisms of = into the unitary group U(n) is
identified with f~2(I), where I is the identity matrix. One can prove
that the tangent vectors to Q at pef~!(I) which are mapped
into zero by the differential of f at p can be identified with the
1-cocycles of 7 with respect to the representation ad p of = in 1t(n),
the Lie algebra of skew-Hermitian matrices (ad p is the composite
of p and the adjoint representation of U(n)in1t(n)). The dimension
of the space of 1-cocycles is then computed by using the isomorphism
between the cohomology groups of = (with respect to ad p) and the

tP d by M. S. Narasimhan at the International Colloquium on Di: ial
Analysis, Bombay, 1964.
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cohomology groups of X with coefficients in the local coefficient
system determined by the representation ad p. It follows that f is
of maximal rank at a point p € f~1(I) if and only if p is an irreducible
representation and that the set of irreducible unitary representations
has a natural structure of a real analytic manifold. As a consequence,
one sees that the equivalence classes of irreducible unitary repre-
sentations (of a given dimension) form a real analytic manifold M,
and that the tangent space at a point 7 € M can be identified with
the cohomology space H(w, ad p), where p is a unitary repre-
sentation in the class m.

To introduce the complex structure on <M, let Ad P(p)
be the holomorphic vector bundle adjoint to the holomorphic
@L(n; C)-principal bundle P(p) determined by a unitary repre-
sentation p of = and let H'(X, Ad P(p)) denote the first cohomology
space of X with coefficients in the sheaf of germs of holomorphic
sections of Ad P(p). We prove, using harmonic forms with coefficients
in a local system of vector spaces, that the natural map

J : H'(m, ad p) > HY(X, Ad P(p))

is an isomorphism of real vector spaces. Since H'(X, Ad P(p))has a
natural structure of & complex vector space, M thus acquires an
almost complex structure. Now the map J turns out, locally, to be
the infinitesimal deformation map of a differentiable family of
holomorphic bundles on X and hence, by a theorem of Kodaira-
Spencer-Nakano, this almost complex structure is in fact a complex
structure on M [Mem. Coll. Sci. Univ. Kyoto. Ser A. Math. (1961)].

Tata Institute of Fund tal Ry b
Bombay, India




HOLOMORPHIC FIELDS OF COMPLEX LINE
ELEMENTS WITH ISOLATED
SINGULARITIES

By A. VAN DE VEN

Ler V, be a compact, connected, complex manifold of complex
dimension d, d > 2. If to each singular point (zero point) of a conti-
nuous field of tangent vectors with isolated zeros on V, we attach
in a standard way an index of singularity, the index sum is always
the same, namely equal to the Euler-Poincaré characteristic of V.
An analogous result is no longer true for a continuous field of complex
line elements with isolated singularities (by this I mean a continuous
1-dimensional subbundle of the restrictionto ¥; — 4 of the complex
tangent bundle of V,;, where 4 is a discrete subset of V). This can

2 seen already in the projective plane: a field obtained by joining
all points with a fixed point has index sum 1, a field obtained from
a “general” collineation, the index sum 3. The question as to what
numbers occur as index sums was answered by E. Kundert, who
proved (as a special case of a general theorem on 1-dimensional
subbundles of complex vector bundles) that the integers occuring
as index sums of fields with isolated singularities are precisely the
Chern numbers ¢;(@® £), where © is the (contravariant) tangent
bundle of ¥, and £ runs through all continuous complex line bundles
on V,.

It is clear that one can also define holomorphic fields of complex
line elements (the two examples given above are such fields). It
seems natural (also from the point of view of holomorphic foliations)
to ask questions of the following type.

(i) What are the index sums ¢;(® ® £) which can be represented
by holomorphic fields with isolated singularities?

(i) Can the holomorphic fields with isolated singularities, as
in the topological case, be classified in some way by means of
holomorphic sections in vector bundles ® @ £, where ¢ is now a
holomorphic line bundle on V?
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The second question is answered by

TaEorEM I. Let V,(d > 2) be a complex manifold, X a discrete
subset of V3, « a holomorphic vector bundle of dimensiond on V,, Ba
holomorphic 1-dimensional subbundle of | V; — X. Then there exists
a holomorphic line bundle £ on V, and a holomorphic section S of
a®& 8#0 on Vy— X, such that on V,— X, B is the bundle
determined by S in a canonical way.

1t follows that the holomorphic fields of line elements with isolated
singularities on a compact complex manifold can be parametrised
in a natural way by (possibly empty) Zariski open subsets of the
projective spaces of the complex vector spaces H(V,, O Q £),
where £ runs through all holomorphic line bundles on V.

However, the answer is not completely satisfactory in as far as we
have no necessary and sufficient criterion for a bundle ® @ £, having
holomorphic sections, to have also holomorphic sections with isolated
singularities.

Nevertheless, our methods provide complete answers in many
familiar cases. For example, we have

TaEOREM II. The product V =TV® X ... X V® of the rational
homogeneous manifolds VW, ..., V®, all with second Betti number 1,
admits a holomorphic field of complex line el ts without singulari-
ties if and only if at least one V® is a projective line P, ; and in that
case V admits only the obvious fields i.e. the fields attaching to the
Point (xy, ..., %) the line elementtangentto (x4, ..., %;_q, Py, Typys -os g)-

In particular, the odd dimensional projective spaces and quadrics
of dimension > 3 have no holomorphic field of line elements without
singularities though they have continuous fields of such type. As
another example, the 2-dimensional quadric P, X P, has only two
such fields.

By a Hirzebruch surface we mean the bundle space of a holomor-
phic P;-bundle on P,.
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TaEOREM IIL. The only holomorphic field of complex line elements
without singularities on a Hirzebruch surface which is different from
P, X P,, is the field along the fibres.

On a Hirzebruch surface there are in general many homotopy
classes of continuous fields.

For the manifolds appearing in Theorems II and III, question (i)
can be answered completely.

RemArRk. Holomorphic fields of line elements which have as
singular set an analytic subset of ¥ of codimension > 2 can also be
treated with our methods.

Full details will appear in a forthcoming paper in the Annales

de Fourier.

University of Leiden
Leiden, Netherlands
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