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INTRODUCTION

Tars book reproduces, with some additions, the contents of a course of
lectures given at the Tata Institute of Fundamental Research, Bombay in
January/February 1964.

During the elaboration of the material here presented, I benefited
from numerous discussions with various mathematicians, notably H.
Cartan, G. Glaeser, L. Schwartz and R. Thom, and drew much profit
from these discussions. In particular, I consider it my duty to state that
one of the main results, “the preparation theorem for differentiable func-
tions”, was proposed to me as a conjecture by R. Thom, and that he had
to make a great effort to overcome my initial scepticism.

I would like also to thank specially Raghavan Narasimhan and N.
Venkateswara Rao, who wrote one part of these notes and translated the
rest, and despite their own work, have undertaken all the work connected
with the publication of this book.

B. MALGRANGE
Orsay, July 1965
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I
WHITNEY’S EXTENSION THEOREM

1 Notations. R denotes the set of real numbers, N denotes the
set of natural numbers. For any open set Q in R”, &™(Q) (resp. &(Q))
denotes the space of all C"-real-valued functions in Q (resp. with com-
pact support in ). We omit m when m = +00. When Q = R”, we write
&M, &M instead of £ (R"), &M(R"). k = (ki,...,k,) in N" is called an
“n-integer”. We write |k| = kj+- - - +k, (order of k), k! = (ki!) ... (k,!).
We order N" by the relation: “k < /if and only if, for every j, k; < [;7;
— —k!(lli o if k < [ and sometimes (;) = 0 if k > 1. For
x € R", |x| denotes the euclidean norm of x.

Let K be a compact set in R” and consider all F = ( fk)|k|<m where
f* are continuous functions on K. Any such F is called a jet of order
m. Let J™(K) denote the space of all jets of order m provided with the

natural structure of a vector space on R. We define |F|K = sup |f*(x)
xeK

we write ( ,l()

[k|<m
we write sometimes |F|,, instead of |F|K.
We write F(x) = f9(x) for all xin K, F in J™(K). For |k| < m, D¥:

J"(K) — J"IM(K) is a linear map defined by D*F = (f**)<pniis
K

0
and for any g € &™, J"(g) denotes the jet ¢s in J™(K) where
0x* ) \tj<m

ak
each 6_g is restricted to K. Now for x € R", a € K, F € J"(K), we

o
define

TR = Y, S fa).

|k|<m

We observe that for a fixed a in K and F in J”(K), TJ' F is a C*-function
on R". So we write J*(T)'F) = T)'F and R))F = F — T)'F.

1



WHITNEY’S EXTENSION THEOREM

For x € X, y € K, one has obviously

TV oTy =T, andthen Ty o 7" = T}, (1.1)
RI'oR! =R, (1.2)
R" o R" = R, (1.3)
TV oR) = =Ty oRY =T —T{' = R} — RY, (1.4)
DFoTm =T o pk, (1.5)
For any F in J"(K),
RMFYE = gk _ =M phE, (1.6)
X X

From now on we omit the ~ and we “identify” T2'F and J"(T}'F).

2 Differentiable functions in the sense of Whitney.

Definition 2.1. An increasing, continuous, concave function « : [0, 00[—
[0, oo with @(0) = 0 is called a modulus of continuity.

Theorem 2.2. The following statements are equivalent:

(2.2.1) (R"F)*(y) = o(|x — y|" ) for x, y in K and |k| < m, as
[x—y| —0.

(2.2.2) There exists a modulus of continuity a such that |(R™F)*(y)| <
Ix — y|"Wa(|x —y|) for x, y in K and |k| < m.

(2.2.3) There exists a modulus of continuity | such that |T'F(z) —
TY'F(2)] < ar(fx =y (lx = 2" + [y = 2|") for x, y in K, z in R".

In addition, if @2.2) is true, we can choose ay = ca, ¢ depending
only on m and n. If @.2.3)) is true, we can choose @ = cay, ¢ depending
only on m and n.



Differentiable functions in the sense of Whitney

Proof. Evidently (22.2) implies 2.2.1). Suppose that Z.2.1) is true.

(RYF) ). , .
Then B(¢) defined by sup ————— is an increasing function, con-
XFEY
lx—yl<t
[k|<m

tinuous at zero with 8(0) = 0. Hence we can choose a modulus of

continuity « such that a(r) > B(¢) for all ¢ (consider the convex enve- 3

lope of the positive 7-axis and the graph of ). Therefore (Z.2.1) implies

(Z.2.2). Note that « is constant for > diam K and equal to B(diam K).
Now suppose that (2.2.2) is true. Using (L3) and (L&) we have

rre) —1Ee) - Y S
|k|<m ’

(RYF)*(x).
Hence

L
TrFQ) - TrFE < Y E ey Rlax - )
|k|<m
< ca(lx = y))(Jx — 2" + [y — 2["),
where ¢ depends only on m and n. Taking a; = ca, we see that 2.2.3))
holds.

We shall now prove that 2.2.3) implies 2.2.2). Again by (L.6) we
have for all zin R, x, yin K

_ ot
> ®RrP ) S < i) (e by - ).

|k|<m

Writing z — x = |x — y|(Z — x), |x — y| = A, we have
Y (@ = D RYF) (x)] < can(lx = yDA"(1 + [ = 2")

where ¢ is a constant depending only on m and n. Fixing x and y and
treating sum on the left as polynomial in 7’ — x, (observing that the coef-
ficients are determined linearly in terms of the values of the polynomial

3



WHITNEY’S EXTENSION THEOREM

at a suitable finite system of points) we see that there exists a constant
c1 depending only on m and n such that

pIL
T RIF ()] < cren(fx = y)a"
which implies (2.2.2)).
The last assertion is evident from the proof. O

Definition 2.3. & (K) is the space of all those F in J"(K) for which
any one of 22.1), @22, is true. Each such F is called a
Whitney function of class C"™ on K. (They are not usual functions of
course, but this will not lead to any confusion.)

A modulus of continuity verifying @2.2.2) is called a modulus of con-
tinuity for F.

We define
[(RYF) ()]
|F|l5 = [FI5 + sup —————,
x,yeK [x — |
XFY
|k|<m

ITIF(z) — TI'F(2)]
IF[[ = |Flj+ sup - .

x,yeK,x#y |)C - Z|m + ‘y - Z‘m ‘
|k|<m
zeR"

(We usually omit the index K.) There exist constants ¢ and ¢; depending
only on m and n such that

[|Fllm < cl|FIl < et [F]m-
(Proof is similar to the preceding one.)

Remark 2.4. We also note that we can choose « and a7 in 2) and

@2-2.3) such that

||F||m = |F|m + a(diam K), ||F||,, = |F|n + a1 (diam K).

4



The extension theorem of Whitney

The preceding norms being equivalent, we shall omit the prime and
denote by ||F||, one or the other. Under these norms, &™(K) is a Ba-
nach space, the proof of which is left to the reader.

Remark 2.5. Let o denote a modulus of continuity for . Then there
exists a constant ¢ depending only on m and n such that for any F in
J"(K), x,yin K and |k| < m, we have

DKo TIF(2) — DX o TI'F(2)] < ca(lx—y) (x— 2" W + [y — "),

The proof is similar to the proof of the fact that (2.2.2) implies
@Z3.

3 The extension theorem of Whitney. We shall first
prove an important

Lemma 3.1. Given any compact set K in R" there exists a family of
Sfunctions ¢;(i € I) each € &(R"—K) satisfying the following properties:

3.1.1) 0< ¢;foriel

(3.1.2) supp¢;(i € I) is a locally finite family and if N(x) denotes the
number of supp ¢; to which x belongs, then N(x) < 4"

3.1.3) > ¢i(x) =1forall xinR" — K;

i€l
(3.1.4) forie I, one has2d(supp ¢;, K) > diam(supp ¢;);

(3.1.5) there exists a constant Cy depending only on k and n such that
forxe R" — K,

1
|Dkgi(x)| < Cx (1 + —d(x, K)k|> .

5



WHITNEY’S EXTENSION THEOREM

Proof. For p = 0, we divide R" into closed cubes each with sides of
length o by the planes x, = ‘2]—; where 1 < v <nand ji, jo,..., j, run
through all integers.

Let Ky be the family of all cubes S of the Oth division such that
d(S,K) = \/n. We inductively define K,(p > 0) to be the family of all
cubes S of the pth division which are not contained in any cube of K,
Vn

and are such that d(S,K) > TR Let I = |J K,. Let us consider a

p>0
C*-function ¢ such that 0 < ¢ < 1, y(x) = Lif x| < $for 1 <i<m;
¥(x) = 0if [x;] > 2 for one i. For any S € I, let s be defined as

Us(x) =y (x ;st > where xg is the center, [g is the length of a side

of S. By the construction of 1, suppys(S € I) form a locally finite
s (x)

family. Therefore, we can define 5 (x) = ————. Now it is easy to

2. T (x)

Tel
verify that this family (S € I) satisfies 1., 2. and 3.

As for 4., we observe that

3y/nls - diam(supp s )

d ,K) = >
(supp s, K) 2 >

Now to prove 5. By definition

1 4 [(x—2Xxs
i <
l'S’"Dw< Is )

where C is a constant depending only on k. But in view of 2., for x in
R" - K,

[DAys ()| =

Ikl

1<) us(x) <4m
Sel
Cl
Therefore we get, by Leibniz’s formula, |D*ys(x)| < o where C’
[

s
depends only on k and n. Therefore if Is = 1, |Dkys(x)| < C" And if

Vnls
2

Is < 1, we find that for x in suppys, d(x,K) > and so in any

6



The extension theorem of Whitney

case forx e R" — K,

N
|Dklﬁs ()C)| <C (1 + <%> > .

O

Theorem 3.2 (Whitney [23]].). There exists a linear mapping W : &™(K) —
&™ such that for every F in §™(K) and every x € K, DW F(x) = f*(x)
for |k| < m.

Proof. Forevery S in 1, choose a pointas in K such that d(supp s, K) =
d(supp ¢s,as). Let f be a function defined on R” as follows

f(x) = fO(x) for x € K;
f(x) = Z s (x)T e F(x) if x is not in K.
Sel

Obviously £ is infinitely differentiable on R” — K. For |k| < m, define
fk as follows

A (x) = fA(x)if xis in K;
f*(x) = D*f(x) if xis not in K.
Let L be a cube such that K < Land A = supd(x, K). Then we prove the

xeL
following, where a denotes a modules of continuity satisfying (2.2.3)):

O

(3.2.1) There exists a constant C depending only on m, n and A such
that for every k with |k| < m, for a in K, x in L, one has

|J?k(x) — D'T™MF(x)| < Ca(|x — al)|x — a|m7\k\.

7



WHITNEY’S EXTENSION THEOREM

(3.2.2) For every k with |k| > m, there exists a constant Cy depending
only on k, n and A such that for x in L — K, one has:

Cra(d(x,K))

k
D] <

In fact one has, for every x in L — K,

Fx) = TIF(x) = Y s (0T F(x) — Ty'F ().

Sel

Hence applying Leibniz’s formula, one has

DFf(x) — DT F (x ZZ( > x) D[ T™ F(x) — T"F(x)].

Sel I<k

We consider those terms for which / = 0
For x € suppys, obviously d(x,K) < |x — a| and by (3.1.4),
d(x,K) < |x —as| < 3d(x, K) so that

a(la —as|) < af|x —af + [x — as]) < a(4|x — a]) < 4a(|x —af)

(due to the concavity of @). Now appealing to Remark 2.5] and Lemma
311 we obtain an estimate of the type (3.2.I). Now, if [ # 0, the sum
> Dlys (x) DX![T™ F(x) — T'F(x)] is equal, since Y D'y (x) = 0,
Sel Sel

to Szejl D'y (x)D*![T™ F(x) — T;"F(x)] for any b € K. If b is so chosen
that |x — b| = d(x, K), we may argue as above and we obtain (3.2.1) for

each such sum.

This gives us (3.2.1) when x ¢ K. But for x in K, (3.2.I) results
from the definition of &”"(K) and a.

To prove (3.2.2)), proceed in the same way choosing a point a in K
such that |x — a| = d(x, K) and observing that

DFT™F(x) = 0, and DX /[T F(x) — T"F(x)] = 0

if [k — 1] > m.



The extension theorem of Whitney

We assert now that £ is of class C™ and that for k| < m, Dif=f% 8
Then by defining WF = f, the theorem will be proved. For this, we
proceed by induction and suppose that the result is true for all / with [ <
k. We can write k = [+ (j) where |I| = [k| -1, (j) = (0, ,1,0,...,0)

with 1 in the jth place and all others equal to zero.
0 7l
We then prove that one has for every a in K, ai (x) = f*(x) which
Xj
will prove the result because one knows already that f is of class C®
outside K. For this, apply (32.T) replacing k by [. Retaining only in the

first member, terms of degree 0 and 1 in (x — a), it follows, for x in L,

n
P10 = fla) = Y (i — ai) [P (a) = o(|x - al)
i=1
which implies the desired result.

We shall now prove some complements to Whitney’s theorem, due
to Glaeser [4]. The W : &™(K) — &™ which we have constructed
induces in an obvious manner a map from &”(K) to &™(L). We denote
by F the image of WF in &™(L), and we denote by @ a modulus of
continuity of F.

Complement 3.3. For |k| > m, x in L — K, there exists a constant C
Ca(d(x,K))

depending only on k, n and A such that DFE (x < —>
pending only |DF(x)] d(x, K)

This is a restatement of (3.2.2)

Remark 3.4. We observe that || ||,», | | are equivalent on & (L). Also,
let F be in &™(L), and suppose that @ is a modulus of continuity for
every f*, k| = m (ie. |f*(x) = X)) < a(jx —y|) for x, y € L);
then a constant (depending only on m and n) multiple of « is a modulus
of continuity for F. These are easily verified by Taylor’s formula. The
same result is true for many other compact sets (for instance the convex
ones), but it is not true in general.

Complement 3.5. There exists a constant C depending only on m, n
and A such that ||F||% < C||F||X for all F in &™(K).

9



WHITNEY’S EXTENSION THEOREM

Proof. In view of the preceding remarks, we need only prove this for
|F|E instead of ||F||L. Take any x in L, a in K. By (3.2.1), we have for
K| < m,

x—al
HOEEDY : )f"”(a)<Ca(\x—ay)|x_aym—lkl

|
f<m—lk
and hence it follows (Remark 24) that | f*(x)| < C(4,m,n)||F||,. O

Complement 3.6. There exists a constant C depending only on m, n
and A such that if a is a modulus of continuity verifying @2.2.3), then Ca
is a modulus of continuity for F.

Proof. In view of Remark 3.4 it suffices to find such a modulus of con-
tinuity for each fk = m. Let x, y € L. If one of them belongs to K,

then by (2.1) we see that | f*(x) — f*(y)| < Ca(|x — y|).
Now suppose that x, y are in L — K.

Case (i). Suppose that d(x, K) > 2|x — y|. Using the mean-value theo-
rem we have

P 0= Ys - Eoto
P yl&xl

where z belongs to the segment joining x and y. Hence in virtue

of 3.2.2)

Ca(d(z,K))

|x — |

where C depends only on m, n and A. But by hypothesis d(z, K) >
|x — y| and so by the concavity of a,

a(d(z,K))

g eyl < allx )

10



Whitney’s theorem for the C*-case

Case (ii). Suppose that d(x, K) < 2|x — y|. Select a, b in K such that
[x—a| =d(x,K), |y—b|[=d(yK).
Then we have

y=bl <3lx—y

. la—b] <6lx—y|

Writing
) = FO) = 7)) = @) + foa) = F ) + 7 (B) = 7 )
and using (3.2.2), we obtain the result.
Note that the hypothesis of concavity on « is essential here. (For
instance, one can find a compact connected K and a continuous non-
constant function for K with /2 as modulus of continuity; but, obvi-

ously, f cannot be extended to a cube with the same modulus of conti-
nuity for the extension! cf. Glaeser [4].) m]

4 Whitney’s theorem for the C*-case. We adopt the
same notations as before. Let .#™(K; L) denote the family of those jets
of &™(L), the restrictions of which to K are zero. Let i,,#™(K;L) —
&™(L) be the canonical injection, i, : & (L) — &™(K) be the natural
restriction map. Now Theorem [3.2] can be stated as

The sequence 0 — 9™ (K; L) Im, &M (L) Y, E™(K) — 0 is exact.

Let 7, J" "1 (K) — J"(K) be defined as n,,(F) = (f*)j<m- Ob-
viously 7,,(&"1(K)) < &™(K). Also if 5, : J" (L) — J"(L) is
the analogue of the previous map for L, n,,(#" 1 (K; L)) ¢ #™(K; L).
Moreover 1,, is injective on &1 (L).

We consider the projective limits, lim J”(K) = J(K), lim & (L) =
&(L), lim&(K) = &(K), lim S™(K;L) = Z(K;L). Elements of
J(K) are called C*™-jets on K, and elements of &'(K), C* functions on
K in the sense of Whitney. Obviously, &(L) can be identified with the
usual C*-functions on the cube L. Defining i = limiy,, ¢ = limy,,, we
have the following theorem:

11
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WHITNEY’S EXTENSION THEOREM

Theorem 4.1. The following sequence
0— J(K:L) > &@L) L E(K) — 0
is exact.

To prove this, we need the following

Lemma 4.2. There exist constants Cy = 0, depending only on k in N"
with the following property:

given K a compact subset of R" and § > 0, there exists a C*-
function a on R"™ which verifies

(i) @ = 0on a neighbourhood of K, a(x) = 1 when d(x,K) = 6 and
a = 0 everywhere,

(1) for every x in R" and every k

C
k k
|D e (x)| < S

Proof. Consider a non-negative function ¢ in &(R"), with ¢ = 1 if

. 1 X
x| < %, v = 0if |x] > %, §¢ = 1 and define ¢s(x) = ﬁqﬁ (5> Take

0
now the characteristic function @’ of the set < x|d(x, K) = 5} and set
a=da ¢s. m|
Lemma 4.3. .7 (K;L) is dense in 9™ (K;L).

Actually, we prove that those F in .# (K; L) which vanish in a neigh-
bourhood of K are dense in .#"(K; L).

Take any F in #™(K;L) and K; = {x|d(x,K) < 6}. Consider the
function a (depending on K and §) obtained in the preceding lemma.
Denote Fa by Fs. One verifies immediately by Leibniz’s formula that
Fs tends to F in & (L) as § — 0. Therefore the class of functions in
&™(L) which vanish in a neighbourhood of K is dense in .#"(K;L).
(This can also be proved using Whitney’s theorem!) The result follows
immediately by regularization.

12



Regularly situated sets

Proof of Theorem 4.l Let F be in &(K) and for m > 0, F,, denote F
as an element of & (K). Let F,y = WF,, be a Whitney extension of F,
to L. Since F,, — F,y,_1 is in #"=1(K; L), by the lemma, there exists a
Hy,—1 in (K, L) such that

||ﬁm - ﬁmfl - Hmfl”mfl < 1/2m

Now let us consider 12

It is easy to verify that F is a C*-function and the C*-jet induced by it,
when restricted to K, is F.

S Regularly situated sets. Let X be a closed subset of an
open set Q in R" - J"(Q), J"(X), J(Q), J(X) are defined in the usual
way. Define & (X) to be the family of all jets F in J”(X) such that
given any compact set K in X, the restriction F|K of F to K is in &™(K).
Define

IFIE = FIKIE.

This || F||X is a seminorm on & (X) for all K in X. Now provide & (X)
with the topology defined by the totality of these seminorms. Obviously
&™(X) is a Fréchet space.

&(X) is defined to be the family of all jets F in J(X) such that given
any compact set K in X, F|K is in &(K). For all m > 0 and all K in X,
||F||X defines a seminorm on &(X). &(X) provided with the topology
defined by the totality of these seminorms is a Fréchet space.

When X = Q, &™(Q) (resp. £(Q)) defined in the preceding way is
identified with the space of usual C™ (resp. C*) functions on Q.

Definition 5.1. Let X, Y be closed subsets of an open set Q such that
X c Y- I"™X,Y) is defined to be the class of all jets F in &™(Y) the
restrictions of which to X are zero.

When m = oo, we shall denote this space by .7 (X;Y).

13
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WHITNEY’S EXTENSION THEOREM

In order to avoid possible confusion, we refer to an element of
J™X;Y) (resp. . (X;Y)) as a Whitney function of order m (resp. of
infinite order) on Y m-flat on X (resp. flat on X).

Proposition 5.2. Let X, Y be closed subsets of an open set Q such that
X c Y. Then 7 (X;Y) is dense in I"(X;Y).

Actually those F € .#(X;Y) which are flat in a neighbourhood of X
are dense in (X, Y).

Proof. Evident by the statement made in Lemma 4.3l m]
Proposition 5.3. The sequences

Y

0—> IM(X; Q) —" > £(Q) —Ls £7(X) — 0,

0— = .7(X;Q) —>&(Q) &(X) 0
are exact.

(im and i are the canonical injections and ¥, and y are the canonical
restriction maps.)

Proof. Immediate by a partition of unity. |

Now, let X, Y be closed subsets of (2, an open set in R”. Let ¢ be the
‘diagonal mapping’

E(XUY) > EX)@EY)

defined by
6(F) = (F|X,F|Y),

and 7 the mapping & (X) ® &(Y) — &(X n Y) defined by
a(F,G)=(FIXnY)—(G|XNnY).

Obviously ¢ is injective, 7 is surjective 7 o § = 0; moreover im ¢ is
dense in ker 7.

14



Regularly situated sets

For, let (F,G) be in kern. We can suppose that G = 0. (If not,
extend G to G in &(XUY) by Proposition ?? and take (F, G)—&G instead
of (F,G).) Therefore one has F|[X nY = 0,i.e. Fisin .Z(X nY;X).
Then by Proposition F is the limit of a sequence {F,} flat on a
neighbourhood of X n Y and one has, obviously, (F,,,0) € im¢§ which
proves the result.

Definition 5.4. Two closed subsets X, Y of an open set Q are said to be
regularly situated if im 6 = Ker it or equivalently if the sequence

05>E8XUY)SEX)DEY) S EXAY)—0
is exact.

Theorem 5.5 (Lojasiewicz [10]]). Given X, Y closed in an open set Q a
necessary and sufficient condition that they are regularly situated is the
following : Either X n'Y = J or

(A) Given any pair of compact sets K < X, L C Y, there exists a
pair of constants C > 0 and a > 0 such that, for every x in K, one has
d(x,L) = Cd(x,X nY)" (d denoting the euclidean distance in R").

Direct verification of the fact that the condition is symmetric with
respect to X and Y is left to the reader.

Proof. (a) (A) = “kerm = imé” Let f = (f*) (resp. g = g*) be
an element of &(X) (resp. &(Y)); suppose that f = gon X N Y.
Define h = (W) in J(X U Y)by ¥ = ffon X and ¥ = gfon ¥
and it is sufficient to prove that h € &(X U Y).

Let M be a compact subsetof Xu Y andset XnM =K, YnM =
L. We should verify that for every m in N and every k in N”, there
exists a ¢’ > 0 such that for every x in M and every y in M:

)
X—Yy m
i) - 3 ) 2 <y
[]|<m ’

The case when x and y both belong to X, or both belong to Y, is
immediate. Therefore, suppose that, for instance x € X,y e Y. If

15
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we extend gto g € &(X U Y), and replace f by f — g, it reduces
to the case when g = 0 and consequently f|X n Y = 0; in this
case our inequality can be written simply as

@) < M=yl

By hypothesis, we can find az € XN Y such that one has ||x—y|| >
c o .
3 ||x — z||%; we can suppose that when x varies in K, and y in L, 7

varies in a compact subset of X N Y. Let m’ be an integer such that
am < m'; as ||x—z|| is bounded, one has ||x—z||"" < ¢"||x—y||",
with ¢” > 0. Since f € &(X), we have

X — ! ’
= Y AR g

i< I!
therefore, since f =0onX N Y,
Pl < erllx =2l < erllx =",
which gives the result.

“kerm = imé§” = (A).

By hypothesis, the image of ¢ is closed and therefore ¢ is a homo-
morphism; let M be a compact subset of X U Y. For every f in
& (X v Y), there exists in particular a seminorm p on &'(X) and a
seminor g on & (Y) such that one has, for every x in M and every
yin M

o) =2y - Z(xi — )| < (p(f) + a(f)l]x = yl|.

In particular, if fis zeroon Y, setting X "M =K, Y n M = L,
this means that for every x in K, |f(x)| < p(f)d(x, L).

16



A theorem of composition

“Lifting” the preceding inequality to &' (Q) one finds the follow-
ing: there exists a compact N < Q, an integer m > 0 anda C > 0
such that, for every F in &(Q), flat on Y and every x € K one has

|[F(x)] < CIFy - d(x.L).

Let ¢ be a C*™-function with support in the unit ball, with ¢(0) =
1. For any xg € K, apply the preceding inequality to the function

X — ¢ <x _Ex()) with € = d(xp, X n Y). That gives

C
L < —.d(x.L)|ol,

el‘ﬂ
which proves the result at once.
O

Remark 5.6. Naturally we ask whether an analogue of Theorem is
valid for £™(X), &™(Y), &™(X U Y), i.e. whether the sequence

0= EMXUY) > E"X)®E(Y) - E(XNY) >0

is exact for finite m. The results are the following:

If m = 0, the sequence is always exact (trivial).

If 0 < m, X and Y are “m-regularly situated” if the condition (A) is
replaced by an analogous one with @ = 1.

(Proof similar to the preceding one.) This is of course much more
restrictive than (A).

6 A theorem of composition®. Let & be an open set —
R™, Qanopensetc R", andg: 0 — Q, f : Q — R two mappings of
class C*. Set A = Qand A" = {x € Q|D*f(x) = Ofor 1 < |k| < r}
(1<r<s).

*The results of this section and the next will not be used in the rest of this book,
except in Chap. V, §5, (iii).

17
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WHITNEY’S EXTENSION THEOREM

The theorem of composition which we have in mind is based on the
following remark.

Let y € O be such that x = g(y) € A". The derivatives (of order
< §) of fogatydo not depend on the derivatives of g of order > s —r.

In fact, let y € & and x = g(y). The formula for the differentiation
of composite functions can be written

TS(fog) = Tif(Tyg(z))mod (z —y)**";

this identity means that the two expressions above, considered as poly-

nomials in z, are congruent modulo the ideal generated by the (z — y)/,

|[| = s+ 1. This formula can also be written in the form 7)(f 0 g)(z) =
k

s+1

K k X s 1
Fx) + Z DIJ;( ) Z D?’!(Y)

Ik|=1 =1

(z—y)"| mod (z—y)

For a fixed k = (ki,...,k,), the bracket occuring on the right can be
written
1

1 n 1 n
TN S 2 SN T D G

where ¢ = (g1,...,8,) and the sum is over systems (I',...,I") for
which ' € N, |l/| > 1 for each i; only those (I) for which kI +
-+ + kyI" < s occur here. However, if |k| > r, these conditions imply
that |/'| < s — r for each i. Hence, for x € A”, we have

T3 (fog)(z) = TifIT; "g(z)]mod (z — y)**!,

and the result follows.
Let Q, f, A’ be as above. Let r be an integer with 1 < r < s, and let
K be a compact subset of R” and G a system of n elements of &*~"(K)
which we consider as a “function” with values in R”, and suppose that
g0(K) = G(K) < A’". The calculations made above lead us to define a
jet € J5(X), which we denote f o G, by means of the formula

T)(f 0 G)(z) = T3 f(Ty7"G(z))mod (z —y)**,
where y € K, x = G(y) € A".

18



A theorem of composition

Theorem 6.1 (M. Kneser [9], see also G. Glaeser [4]].). For1 < r < s,
we have f o G € &*(K).

Proof. We have to prove that for a certain modulus of continuity a, we
have

T3, (f 2 G)(z) = Ty, (f 0 G)(2)] < allyr —y2|) %
(=2 + -2 62
fory; € K, y» € K, z € R”. Let B be an open ball in R” for which
K < B. Itis enough to prove this estimate for z € B (to see this, one has

only to repeat the argument given for the implication 2.2.3) = 2.2.2),
using (2.2.3) only for z € B).

(1) Let us first show that it is sufficient to establish the following for-
mula:

T3, f(T5,7G(2)) = T, f(Ty,7G(2)] < a(ly — yal)x
Xy =z’ + b2 —2)  (63)

for y;, y» € K, x; = G(y1), x2 = G(y2), z € B and a suitable
modulus @ of continuity. For this purpose, it suffices to verify
that the terms on the left in (6.2) and (6.3) differ only by terms
satisfying the required inequality. Now, this difference is a sum of
terms of the form

h(y1)(z = y1)* = h(»2)(z — y2)*

with a continuous £, and |k| > s. If we write this in the form

{h(y1) = h(y2)}z = y1)* + h(2){(z = y1)* = (2= )"}

and mojorise the two terms in the obvious way, we obtain the 18
required result (note that the restriction z € B is essential since we
have |k| > s).
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Let us write the term on the left in (6.3)) in the form
{3 F(T3,7G(2) = T3, £(T3,'G(2) +
+{T3, f(T),7G(2)) = T, f(T},7G(2))}. (64)
The second term is majorised, in absolute value, by

a(xr — x2|)(Jx1 — x2|* + [T}, "G(2) — x2l").

Since r < s, we have |x; — x2| = |G(y1) — G(y2)| < Cly1 — 2/,
(y1,y2 € K) and

T}, 7G(z) — x2| < Clz — y2|(x € B, y2 € K), (6.5)

which gives us the required estimate for the second term.

It remains to majorise the first term in (©.4). Let us put 7y, "G(z) =
u;(i = 1,2). We have
1
T flu) =T fw) = ) 5D Tif () (w —m), (6.6)
I<lkl<s

and

ur—ur| < a(ly2=y1)(Jz=y1 [ +[z=32"") (1,72 € K,z € R);
(6.7)
here a is a suitable modulus of continuity.

The right hand side of (6.6) is estimated as follows.

If1 < |k| < r in DX TS fluy) = T)fr'k'Dkf(ul), the terms con-

u X
taining (u; — x;)! are 1zerlo if |/| < r—|k|. Hence, if y; € K, z € B,
we have
DA T fun)] < Clxy — uf ~HFT,

Using (6.3) and (6.7) we easily obtain the required estimate from
this. Finally, if |k| > r, we have |uy — ui|* < Cluy — uy|™*!,
which, with (6.7) and the obvious inequality (s — r)(r + 1) > s,
gives us the required result.
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The theorem of Sard

7 The theorem of Sard. Let Qbean open set in R" and f
a mapping Q — R? of class C*, s > 1. As in §6, let us set A = Q and

A" = {xe QD"f(x) =0for1 < |k| <r}, where | <r<s.
Lemma 7.1. Forr > ﬁ, f(A") has measure zero.
14

Proof. Let K be a closed cube = Q. It is obviously sufficient to prove
that f(A” n K) has measure zero.

There exists a modulus @ of continuity such that for x € K n A" and
any y € K we have | f(x) — f ()| < [x—y|"a(]x—y]|). Let / be the length
of the edge of K. Let us divide K into N" equal cubes K;, 1 < i < N™.
Let J be the set of indices i for which K; meets A". If x,y e Kj, j€ J,

we have | £(x) — f(y)| < C <§>a <§> with C = 2(/n)™*!. The

I\ 1\’
volume V; of f(K) is therefore at most N"C" <N> a <N> C’ being

a constant depending only on n and p. The volume of f(K n A”") is

/ pr / p
therefore at most C'N" N) @ (N) . Choosing N large enough and

using our hypothesis that n — pr < 0 we obtain the required result. O

Remark 7.2. If n < p, the same argument shows that f() has measure
zero if f is of class C'.

Lemma 7.3. If s > —, f(A') has measure zero.
p

Proof. By Lemma ??, the result is true for p = n. Keeping p fixed,
we shall use induction on n. Suppose therefore that the lemma has al-
ready been established for n — 1. We shall show that for 1 < r < s,
f(A” — A™"1) has measure zero, which implies our result, since, by the
preceding lemma, f(A*) has measure zero.

Letx € A”...A"" and set f = (fi,...,f,). There exists i, | <

0
i<n j1<j<p,and k € N", |k| = r, such that aDkfj(x) # 0.
l
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Near x, the set of points of Q which satisfy D¥fj(x) = 0 is therefore 20
a submanifold of class C*~". Hence there is an open set U < Q with

x € U, anopen set ¢ — R"~! and a proper mapping g : & — U of class
C* 7 suchthat U n A" < g(0).

Let K be a compact set in U with x € K. SetL = g '(K) and
B" = L n g '(A"). By Theorem [6.1] and the extension theorem, there
exists h : & — R? of class C* coinciding with fog on B" and satisfying
D*h(y) =Oforye B, 1 < k| <r.

By induction, f o g(B"), hence f(A” n K), is of measure zero. Since
A” — A" is a countable union of compact sets, f(A” — A’*!) has mea-
sure zero and the lemma follows.

The above lemma is due to A. P. Morse [[13] (at least if p = 1). The
method used is due to M. Kneser [9]]. |

Theorem 7.4 (Sard [17].). Let K be the set of critical points of f (i.e.
the set of points where the differential map f' has rank < p). If s >
max(l,n — p + 1), then f(K) has measure zero.

Proof. Forn < p, this follows from Remark[Z.2] Suppose therefore that
n = p. For0 < r < p, let K"- be the set of points of Q where f” has rank
r, and let a € K". We shall show that there exists a neighbourhood U
of a such that f(U n K"~ ) has measure zero. Since K" is locally closed
in Q, hence a countable union of compact subsets of Q, the theorem
follows from this.

We can find a neighbourhood U of a, a neighbourhood V of f(a)
and changes of coordinates of class C* in U and V such that, in the new
coordinates, f is given by the system of equations

yvi=xi,1<i<r,
vi= fi(X1s..sx0),r + 1 <i < p.

The f; are of class C* and for a point (xj,...,x,) € U to belong to K",

o . ofi )

it is necessary and sufficient that a—fl(xl, coXy) = 0fori = r+1,
Xj

j=r+1.
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The theorem of Sard

Let E(x1,...,x,) (resp. F(x1,...,x,)) be the set of points of U 21
(resp. V) whose first r coordinates are xi, ..., x,. From the inequality

n—r _ . .

s = n—p+1, we deduce that s > ——; fixing x, ..., x, and applying
—r

@Z3) to (fr+1,--..fp) considered as a function of (x,41,...,x,), we

find that f(K" n E(xy,...,x,)) has measure zero in F(xi,...,x,). By

the Lebesgue-Fubini theorem, f(U n K”") has measure zero, and the
theorem is established. O
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IT
CLOSED IDEALS

1 Jets of vector-valued functions. Let L be a closed
cube in R”, K a closed subset of L, E a finite dimensional vector space
over R. Until now we considered jets ( f¥) Ik|<m Where f* are real-valued
functions but we can also consider vector-valued functions with values
in E. The spaces J"(K,E), 8™(K,E), #™(K;L,E), J(K,E), §(K,E),
4 (K; L, E) are all defined in the obvious way. The results of Chapter|l]
hold for these spaces with the obvious modifications. Also it is claar that
there is an identification of &”(L, E) with the product space (™ (L))"
where r is the rank of E over R. So naturally we provide &™ (L, E) with
the product topology and also the structure of an &™(L)-module. In the
sequel, all the modules considered are & (L)-modules.

Definition 1.1. For a € L, we denote by T)' the natural mapping
E"(L,E) —» &(L,E)/#™({a}, L, E).

Obviously, the image of an f € & (L, E) under this mapping can be
identified with the Taylor expansion of order m of f at a, which explains
the notation.

For any sub-module M of &™ (L, E), TI'M is a sub-module of

E"(L,E)/ I ({a}, L, E);
and as a vector space over R, it has finite rank because the latter does.

Definition 1.2. An f in &™ (L, E) is said to be pointwise in a sub-module
M of 8™(L,E) if T!"f € TI"M for all a in L.

Theorem 1.3 (Whitney [24].). If M is a sub-module of &™ (L, E), M is
the closure of M in 8™ (L, E), and M is the module of all functions f
pointwise in M, then M = M.
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Lemma 1.4. Let K be a compact subset of L such that for all a € K,
the rank of T'M over R = p, a constant. Let F € M. Then given any
€ > 0, we can find ¢ € &(L); ¢ = 1 in a neighbourhood of K and
f € M such that |¢F — f|,, < €.

Here, ||, stands for || which is defined in the same way as in Chap-
ter[l, §11if we have chosen a norm on E. Also we observe that Chapter[ll
2) holds even for finite dimensional vector-valued jets and we define
a to be a modulus of continuity for F, if it is a modulus of continuity
and it verifies Chapter[ll 2.2.3).

Proof of the Lemma. Let ¢ € K. By hypothesis there exists a neigh-
bourhood V,, of a and f, f>, ..., f, in M such that for xin V, n K, T}" f1,
T f>,..., T} fp is abasis of T M over R. Hence there exist continuous
functions Ay, A2, ...,4, on V, n K such that

T"F = Za )T f; for all x € V, n K.

Using a partition of unity we can find fi, f>,..., fs € M, functions
A1, A2, ..., A, on L and a constant C such that for all x € K,

T"F = Z/l VT f;
and
sup |4;i(x)| < C.
1<i<s
xeL

Let @ be a modulus of continuity for F, fi, f2, ..., fs. Define for any
aeK,xeL, f(x) = Z/l() fi(x). Obviously

TF(z) = T3 fa(2).
Therefore forae K, xe L, z € R",
[TYF(2) = TV fa(2)| < |TYF(2) = TG F(2)| + T3 fo(2) — TY f2(2)]
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<C(lz—x"+|z—a™a(lx—a

), (1.4.2)

where C’ is independent of a, x, z. Hence again using the same argument
as in proving in Chapter [l that @Z.2.3) = (@2.2.2), we see that there exists
a constant C” not depending on a, x, z, such that

|D*F(x) — DFf,(x)| < C"|x — a" Wa(|x — al). (1.4.2)

Let us divide R” into cubes each of side d and for each such cube,
consider the open cube of side 2d with the same centre and let / denote
the family of these cubes. By a construction similar to Lemma 3.1] of
Chapter Il (and even simpler), we obtain a partition of unity ¢;(i € I)
subordinate to / such that for |k| < m,

DDk ()] < d%, (1.4.3)

i€l

where C is a constant depending only on m and n. Let I’ be the family
of those S in / which meet K and for each such S, let ag be a point in
S N K. I is a finite set. Define

¢ = Z(ﬁs, f= Z¢Sfas-

Ser’ Ser

Obviously ¢(x) = 1 in a neighbourhood of K and

(OF — flw =Y sup [D*(F — f)(x)]

‘k' <m xeL

< Z Z Sup|Dk(¢SF—¢Sfas)(x)’

|k|<m Sel’ YeL
and so by Leibniz’s formula and (4.2), (L4.3)), it follows that
6F — flm < C"a(d)

where C” is independent of d.
Hence if we choose d sufficiently small the lemma follows.
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Proof of Theorem [L.3] Let B, = {x € L|rankof T7/'M < p}. Let
A, = B, — B,_ for p > 0. Let us make the statement H,: Given any
F € M and € > 0, there exists a function ¢ in & (L), f in M such that
¢(x) = 1in a neighbourhood of B, and [¢F — f|,, < €

Hy is true because of Lemmal[l.4land the fact that By = A is closed.
So, let us suppose that H,_; is true for some p > 1. Therefore given
any € > 0, F € M, there exists functions ¢,_; € &™(L), and f,—| €
M such that ¢,_1(x) = 1 for all x in a neighbourhood of B,_; and

“pp—lF _fp—1|m < %

Let K’ be a compact neighbourhood of supp(1 — ¢,—1) such that
K'nB,_1 = . Let K = K’ n B),. Therefore K — A, and so applying
our lemma to K, taking (1 — ¢,_)F instead of F, we get a function
Wy € &M(L), with = 1 in a neighbourhood of K and an f € M such
that .

Wl =&y ))F = fln < 5.

Consider ¢,, f, defined by 1 — ¢, = (1 —¢)(1 —¢p—1) and f, =
f+ fp—1. One has obviously ¢, € &™(L), f, € M, |p,F — fp|m < € and
¢, = 1 in a neighbourhood of B),. This proves the theorem.

Corollary 1.5. Let M be a sub-module of 8™ (L, E). Then for any x € L,
T"M = T"M.

Corollary 1.6. Let Q be an open set in R" and M a sub-module of
E™(Q,E). Then M = M where M and M are defined in the same way
as in[L3

Proof. Let us take a C*-partition of unity ¢;(i € I) in Q. Let f € M.
Then applying the theorem to ¢; f, we get ¢; f € M. By the definition of
the topology on & (L, E), one obtains > ¢;f € M. ]
il
Corollary 1.7. Let Q be a C* mamfold countable at infinity. Let M
be a sub-module of &(Q, E). Then M = M where M is defined as the
module of all f in &(Q, E) such that T!'f € TI'M for all x € Q and all
m = 0.

27
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Proof. Let K be any compact set in , m any positive integer, € any
positive number. Let f € M. Then since T'f € TY'M for all x in
Q, f is in the closure of the module generated by M over &™(Q) and
so there exist ¢}, ¢),...,¢, in &(Q) and g1, g, ...,& in M such that

. K

f—= 2 gi¢}| < e But&(Q)is dense in £ (Q); therefore ¢ can be
i=1

replaced by </Zl in &(Q) such that

K

< e

k
‘f — ) giti
i=1

m
Therefore f € M which proves the result. O

Remark 1.8. We know (Chapter[ll §4) that givena € Q, &(Q)/.# ({a}; Q)
is isomorphic to the ring of formal power series in n(= dim Q) variables.
Now define 7, as the natural mapping & (Q, E) — &(Q,E)/Z ({a}; Q, E)
and let M be a sub-module of & (€, E). From Krull’s theorem (see
Chapter[[I) it follows that “T,, f € T,M” is equivalent to “for all m > 0,
T'f e TI'M”. Namely, for all a € Q, we have T)'M = T[;”]VI =TI"M.
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I
ANALYTIC AND DIFFERENTIABLE
ALGEBRAS

1 Local R-algebras. In this chapter, rings and algebras are
supposed to be commutative with a unit and modules over these rings
and algebras are supposed to be unitary. Further if A is a ring, we say
that an A-module is “finite over A” if it is of finite type as an A-module.

Let A be a local ring, i.e. a ring possessing a proper ideal m(A)
containing all other proper ideals, which consists necessarily of all non-
invertible elements of A. Let us recall the following result which we
shall have frequently to use.

Proposition 1.1 (Nakayama’s lemma.). Let M be an A-module of finite
type and M’ a submodule of M satisfying

M =M +m(A)M.
Then we have M =M.
Proof. IfwesetN = M/M’, we have N = m(A)N, and we have to show

that N reduces to {0}. Now, let n, ... ,n, be a system of generators of
N. There exist elements

aijem(A) (1<i<pl1<j<p)
such that

P
n; = Z a,-jnj,
J=1

and since det(d;; — a;;) ¢ m(A) (6;; being the Kronecker symbol), we
have n; = 0 for every i.

Let now A be a local R-algebra and 1 its unit element. If A # {0}
(which we suppose in all that follows), the element 1 defines an injection
€:R— Abye(a) = al.

29
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In all that follows, the following hypotheses are made (explicitly or
implicitly) when we speak of local R-algebras.

(1.25i) m(A) is finite over A.
(1.2;ii) The composite R 5 A — A/m(A) is bijective.

Let us recall that if p is an ideal of A, we may put on A a structure
of topological algebra (called the p-adic topology) by requiring that the
powers pX (k an integer > 0) constitute a fundamental system of neigh-
bourhoods of 0. For this topology to be Hausdorff, it is necessary and

sufficient that
(v = {0},
k

If p = m(A), we call this the “Krull topology of A” (or simply “topology
of A” if no confusion is possible). The p-adic topology on A coincides
with the Krull topology if and only if there is an integer k such that
mk(A) < p; in this case, we shall say that p is an ideal of definition of
A. O

Proposition 1.3. For p to be an ideal of definition, it is necessary and
sufficient that A/p be finite over R.

In fact, since m(A) is finite over A, m*(A) is finite over A for every
k, so that m¥(A)/mk*1(A) is finite over A/m(A) ~ R. Hence, for each
k, A/mk (A) is finite over R. If p is an ideal of definition, A/p is therefore
finite over R.

Conversely, suppose that A/p is finite over R. The m*(A/p) form
a decreasing sequence of finite modules over R, and the sequence is
therefore stationary. By Nakayama’s lemma, we have, for a certain &,
m*(A/p) = {0}, whence m“(A) c .

Let A be the algebra obtained by making Hausdorff the completion
of A for the Krull topologyﬁ. It is obvious that A can be identified with

“In what follows, we shall say “completion” for this Hausdorff completion, and
“complete” for rings which are Hausdorft and complete.
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Local R-algebras

the projective limit lim A /m*(A), that A is again a local R-algebra (sat-
isfying (i) and (ii)), and that the natural mappings A/m*(A) — A /m*(A)
are isomorphisms. (We leave the details to the reader.)

Let x1,...,x, be elements of m(A). We define, in an obvious way,
a mapping of the ring R[[Xi,...,X,]] of formal power series into A
This mapping will be surjective if (and only if) xi, ..., x,, are generators
of m(A) over A. Consequently, Ais a quotient of an algebra of for-
mal power series. It follows from this that A is noetherian. (We shall,
furthermore, recall the proof of this fact later on.)

Let now A and B be two local R-algebras, and # a homomorphism
(which, in what follows, will always be supposed unitary) A — B. We
have u~!(m(B)) = m(A): in fact, the R-linear mapping A /u~'(m(B)) —
B/m(B) is not zero, since u(1) = 1, so that the mapping is surjective;
hence u~!(m(B)) is maximal and thus equal to m(A). A fortiori, we
have u(m(A)) < m(B); in other words, u is local, that is, continuous
with respect to the Krull topology. It follows that # induces a homomor-
phism # : A — B, which is again local, and a homomorphism

u:A/m(A) — B/Bu(m(A)).
This last mapping coincides with the canonical injection
€ : R — B/Bu(m(A)).

In what follows, we shall equip B with the structure of A-module defined
by u. We shall write therefore

ab(a € A,b € B) for u(a)b,
m(A)B for Bu(m(A)),

and so on.
Definition 1.4. (i) We say that u is finite if B is finite over A.

(ii) We say that u is quasi-finite if u is finite, that is, if B/m(A)B is
finite over R.
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By Proposition [[3] u is quasi-finite if and only if m(A)B is an ideal
of definition of B. It is clear that every finite homomorphism is quasi-
finite; but in general, the converse is false (counter example: A = ring
of convergent power series in n > 1 variables, B its completion). One
of the main objects of this course is to prove that this converse (called
the “preparation theorem”) is true in a certain number of cases. Let us
note at once the following

Proposition 1.5 (The formal preparation theorem.). If A and B are com-
plete (and Hausdorff) and ifu : A — B is quasi-finite, then u is finite.

We shall utilise this proposition here, but postpone its proof to §3l

Let us go back to the general case : the map u : A — B being con-
tinuous defines, by passage to completions, a mapping u : A—B (and,
by composition, a mapping A — B which we shall use incidentally).

Proposition 1.6. The properties “u quasi-finite”, “u quasi-finite” and
“U finite” are equivalent. If they are satisfied, the canonical mapping

B/m(A)B — B/m(A)B
is bijective.
Proof. By Proposition[I.3] “# finite” and “u quasi-finite” are equivalent.
Let us prove the equivalence of “u quasi-finite” and “% quasi-finite”. For
this, it is sufficient to prove that m(A)B is an ideal of definition of B if

and only if m(A)B is an ideal of definition of B.
Let p be an ideal in B. For each r, the canonical mapping

(p -+ (B))/n"(B) — (pB +m'(B))/m"(B)

is evidently bijective. Put p = m(A)B, and remark that m(A)B + m’(B)

~

is closed (since it contains m"(B)), hence is equal to m(
We obtain thus an isomorphism

2
)
_|_
3\
S

(m(A)B + m'(B))/m"(B) = (m(A)B + w’/(B))/w'(B).  (1.7)

Suppose now that m(A)B > m*(B). Using this isomorphism for
r = k+1, we obtain m(A) B+m**!(B) > m¥(B). Applying Nakayama’s
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A~

lemma to the couple m*(B), m(A)B ~ m*(B), we find that m(A)B >
mk(B). Conversely, the same argument shows that m(A)B > m¥(B)
implies that m(A)B > m*(B), whence the result.

Finally, suppose that m(A)B > m¥(B). The preceding result, to-
gether with the isomorphism (L7) for r = k gives an isomorphism

m(A)B/m*(B) => m(A)B/m*(B).

The isomorphism stated in Proposition follows from this, the iso-
morphism

B/m(A)B ~ (B/m*(B))/(m(A)B/m*(B)),
and the corresponding isomorphism for the completions. |

Proposition has the following corollary which is useful for ap-
plications.

Corollary 1.7. Let u : A — B be a homomorphism of local R-algebras
and let by, ...,b, be a finite family of elements of B. Let us denote by
b; their images in B and by b; their images in B/m(A)B. The following
properties are equivalent.

(1) Zl, .. ,Zp generate B over A.

(i) b1,...,b, generate B/m(A)B over R.

(iii) b,... ,31, generate B/m(A)B over R.

Furthermore, if u is finite, they are equivalent to
(iv) b1,...,b, generate B over A.

The equivalence of (ii) and (iii) follows from the isomorphism (L.6]).
On the other hand, it is obvious that (iv) implies (ii). If u is finite, (ii)
implies (iv) by Nakayama’s lemma. Taking into account Proposition
the equivalence of (i) and (iii) is proved in the same way.
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2 Analytic and differentiable algebras. 1n what fol-
lows, we denote respectively by &, &, the rings of germs at 0 in R”
of real analytic and C* functions with real values, and by .%, the ring
of formal power series in n indeterminates over R. One has obvious
mappings 0,, — &, (an injection), 0, — .%, and &;,, — %, (Taylor ex-
pansion at 0). These rings are local R-algebras satisfying (L2). The only
point which is not entirely obvious is the fact that &, satisfies (L2 ii),
which fact results from the following lemma in which xi, ..., x, stand
for coordinates in R".

Lemma 2.1. Let f € &, and k be an integer < n. Suppose that

f(O,...,O,ka,...,xn) =0.

There exist then h; € &,, i = 1,...,kwith

k
f= Z xih
i=1

Proof. We may, in fact, take

1
f
&— (EX1 5o ey EXy Xk 15 - -+ 5 Xy ).
0

It follows from this lemma that xi, .. ., x,, form a system of generators of
m(&,) over &,. One also deduces from it at once that .7, is the comple-
tion of &, for the Krull topology, the corresponding fact for &, instead of
&, being obvious. We note also an important difference between the two
cases: while the mapping 0,, — %, is injective, the mapping &, — .%,
is surjective (Chapter[ll §4)), so that &, is, in some sense, “complete but
not Hausdorff”. m

Definition 2.2. By a differentiable algebra, we mean a local R-algebra
together with a surjective homomorphism &, = A (which is assumed
unitary). Replacing &, by O, (resp. F,), we define in the same way an
analytic (resp. formal) algebra.
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We will now define the morphisms of differentiable algebras. First,
if A = &,, B= &,,ahomomorphism u : A — B is called a morphism if
there exists a germ ¢ (at 0) of C*-mapping from R™ into R", ¢(0) = 0,
such that for any f € &, we have u(f) = fo¢ (¢ if it exists, is obviously
unique). In the general case, let &, LA &, Y. B be two differentiable
algebras and u a homomorphism A — B. We say that u is a morphism 33
if there exists a morphism i : &, — &, such that the following diagram
is commutative:

gn4ﬁ>£m

l lw

It is evident that the composite of two morphisms is a morphism.
In accordance with general definitions in a category, we say that a mor-
phism « is an isomorphism if there exists a morphism v : B — A such
that v o u = identity, u o v = identity (it is in fact sufficient that u be
bijective; this results easily from the considerations that follow).

Proposition 2.3. Given a differentiable algebra &, = B and n elements
b; € m(B), there is one and only one morphism u : &, — B such that
u(x;) = b; (x; standing for the coordinates in R").

Proof. For each i, let us choose an f; € &, satisfying n(f;) = b;, and let
v be the morphism &, — &, defined by v(x;) = f;, i.e. the morphism
induced by the mapping (yi1,...,ym) — (fi,...,fy) from R" — R".
Then u = m o v has the required property. To prove the uniqueness, let
us choose f/ € &, with 7(f) = b; and let us denote by J the ideal
7~ 1(0). It is sufficient to prove that for any g € &,, we have

g(fireeinf) =gl f) €.

Now, Lemma 2.T]shows that there exist functions &; € &, satisfying

n

g(fl,---’fn) _g(f]/”fr:) = E(ﬁ _f;'/)hi(fl""’fn’fll""’fri)’

i=1

and the result follows.
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It will be convenient to denote the element u(g) constructed in the
above proposition by g(by,...,b,). The reader will verify easily that
a homomorphism u : A — B is a morphism if and only if it has the
following property: for any aj,...,a, € m(A) and f € &), we have

u(flar,....ap)) = flu(ar),...,u(ap))

(in other words: u is compatible with composition by differentiable
functions). m]

Remark 2.4. As far as | am aware, one does not know at present whether
every homomorphism A — B (as R-algebras) is a morphism. One does
not even know whether two differentiable algebras which are isomor-
phic as R-algebras are also isomorphic as differentiable algebras. It is
precisely this fact which has forced us to adopt the preceding definitions
rather than the “naive” definitions, with which we will not be able to
work.

We adopt analogous definitions also in the case of formal and ana-
Iytic rings, leaving to the reader the task of formulating them explicitly.
This is only provisional, till the preparation theorem is proved: we shall
see in §B] as a consequence of this theorem, that any homomorphism of
analytic (resp. formal) R-algebras is a morphism.

3 The preparation theorem for formal and ana-
lytic algebras.

Theorem 3.1. Let u be a morphism of analytic (resp. formal) algebras.
Then u is quasi-finite if and only if u is finite.

Proof. We shall give the proof in the case of analytic algebras, leaving
to the reader the task of treating that of formal algebras.

Let, then 0, 5 A, O, LN B be two analytic algebras, and u a
morphism A — B, which we suppose quasi-finite. The problem reduces
to proving that u is finite.
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The preparation theorem for formal and analytic algebras

Reduction to the regular case. (A = O,, B = Oy,).

In the first place, uorn is again quasi-finite, and if it is finite, then so
is u; we may, therefore, suppose that A = &, (and n = identity).

Let us now put p = kery; the second reduction consists in re-
ducing to the case when p is finitely generated (property which is,
a posteriori, true of all ideals since &, is noetherian, but which
we cannot use here!). For this, let  be a morphism &, — 0,
such that u = ¢ o u. Since m(&,)B is an ideal of definition of
B, p + m(0,)0,, is an ideal of definition of &,,, hence contains
mk(0,,) for a certain k. It follows that there exists an ideal p’ < p
finitely generated over O, such that

o +m(0,) 0, + ikt (6,) > mk(0,,).

By Nakayama’s lemma, we deduce from this that p'+m(&,)0,, o
m*(0,,). Let us now put B = 0,,/v', ' : 0,, — B’ the natural
projection and let u’ = ' o u. Then v’ is again quasi-finite, and if
it is finite, then so is u.

Let us, therefore, suppose that p is finitely generated, and let
g1,-..,8p be a system of generators. Let us denote by y;(1 <
i < n)resp. zj(n +1 < j < n+ p) generators of the maximal
ideal of &), (resp. 0, ), and let v be the morphism &), , — O,
defined by the formulas

v(zi) = u(yi),

V(Zntj) = 8)»

i

J

n

1
1 p-

NN
AN

The morphism v is still quasi-finite; if v is finite, then so is u. We
are thus reduced, after a change of notation, to the case A = 0,
B=0,.

Proof in the regular case. (cf. Houzel [8]]).

Let us denote by xi,...,x, (resp. yi,...,ym) coordinates in "
(resp. O™). Let us put ¢; = u(x;), and let ¢ be the mappings
(¢1,....¢,) of R — R". By hypothesis, we have u(f) = f o
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¢ for f € 0,. Since u is quasi-finite, there is an r such that
m(0,)0,, > m"(Oy,). If for an m-tuple k = (ki,...,k,) € N,
we set as usual: |k| = kj + -+ + Ky, Y = y]f1 ...y* we have, for
|k| = r, the formula

= Auti, L € O, (3.2)

i=1

We shall prove that the y* with |k| < r generate &,, over 0,,. For
this, let f € 0,,. If we denote by n(f) the terms of degree < r in
f we can write f in the form

f=n(f)+ > you(f). where oi(f) € O (3.3)
|k|=r

Using (B.2), we obtain from this an expression of f in the form

f=7(f)+ D, tipi(f). where p;(f) € Op. (3.4)
i=1

[The o and the p are not, in general, unique, but this causes no
trouble. ]

Applying the same formula to the p; and iterating this procedure,
one obtains for p € N,

f=tf)+ + Z Giy - bi,Tiy i, () +

1<it,enip<nt

S Gty () Gdp)

1<it,eenip+1<n

Here the 7 are polynomials of degree < r — 1 in y and the p are
functions in &,,. Since the last term belongs to m?”*1(&,), we see
already that this defines a series converging formally to f. We
have thus only to prove that for a suitable choice of the 7, the
family

xil e xipTil~~-ip (f) (35)
(which has values in the space of polynomials of degree < r — 1
in y) is summable in a neighbourhood of the origin.
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For this, let R > 0 and f = Y. apy*. Letus put [flg = 3 |ax|RK.
The mapping f — |f|r has all the usual properties of norms, except
that it may take the value +oo. For f fixed, the function R — |f]g
is increasing and finite for R small enough. Finally, a straight-forward
calculation shows that |fg|r < |f|r|g|r-

In B3), we have |t(f)|r < |f|r, and, if we choose the o~ suitably,
we will have, for any R > 0,

o)k < gl

Let us choose Ry such that |A|g, < oo for all (k,i). Substituting in
[@3) the expressions for the y* given by (3.2), we obtain, for R < Ry,
the following estimate in (3.4):

C
loi(lr < ﬁ'f’R with C independent of R.

Iterating this, we find that we can choose the Tiy..iy in such a way that,
for R < Ry, we have

cr
R'P

/-

7., ()R <

Finally, choosing R < Ry such that |f|g < o0, we conclude from the
above inequality that the family (3.3) is summable in |x;| < p for p <
R”/nC, which proves the theorem.

In the following corollaries, we consider &, (resp. .%,_1) as imbed-
ded in O, (resp. .%,) by means of the morphism 7* induced by the
projection 7w (X1,...,X;) = (X1,..., Xp—1)- O

Corollary 3.6 (Division algorithm). Let ® € 0, be such that
(0, ,0,x,) = x;/g(xs),8(0) # 0.

For any f € O, there exist Q € O, and R € O,_1|x,]| with degree R <
p, such that f = ®Q + R. Moreover Q and R are uniquely determined
by these conditions.

Also, the statement remains valid if we replace 0,, 0, | by %#,,

Fn-1.

39

37



38

ANALYTIC AND DIFFERENTIABLE ALGEBRAS

Let A = 0,_1, B = 0,/(®) and let u be the composite of 7* and
the canonical mapping &, — 0, /(®). It is obvious that the images of
1, Xps...,x2 "' in B/m(A)B form a basis of the latter space over R. By
our theorem, and Nakayama’s lemma (1, x,, ... ,xﬁfl) is a system of
generators of B over A, whence the existence of Q and R.

To prove the uniqueness, let us write ® = X®;, @y being a conver-
gent series in x, with coefficients which are homogeneous polynomials
of degree k in (xi,...,x,—1). Suppose further that there exist Q € 0,
R € 0,_1[x,],degR < p, for which0 = ®Q+Rand Q # 0,R # 0. Let
us write Q = X0, R = XR; in the same way as above, and let / be the
smallest integer such that Q; # 0 or R; # 0. We have ®oQ; + R; = 0;
but ®yQ; contains x. as factor, so that Q; = R; = 0, a contradiction.

Corollary 3.7 (Weierstrass). With the same hypotheses as in the preced-
ing corollary, there exists Q € O, with Q(0) # 0 and a distinguished
polynomial P € O,_1[x,] (i.e. a monic polynomial, all of whose other
coefficients are zero at the origin) such that P = ®Q. Further, P and Q
are completely determined by these conditions. The statement remains
valid with %#,, %, instead of O, U,_;.

We have only to apply (3.8) to f = x” and take P = x/ — R (it is
easy to verify that P is distinguished and that Q(0) # 0).

Theorem 3.8. Analytic (resp. formal) algebras are noetherian.

Proof. Tt is sufficient to prove that &, (resp. .%#,) is noetherian. Let
p # {0} be an ideal in &, and let f € p, f # 0. By a linear change of
coordinates, we may suppose that £(0,...,0,x,) # 0, and it is enough
to prove that the image p of p in &,/(f) is finite over &,. A fortiori, it
is sufficient to prove that p is finite over &,_;. This follows from the
induction hypothesis and the fact that &,,/(f) is finite over &,_;. |

Theorem 3.9. The ring O, (resp. F,) is factorial.

Proof. Thering 0, is obviously an integral domain. In view of the theo-
rem above, it is sufficient to prove the following: if f € &), is irreducible,
then f is prime. We proceed by induction on n, and suppose that &,,_; is
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factorial, so that (Gauss’ theorem) &), [x,] is factorial. By a change of
coordinates and multiplication by an invertible factor, we may suppose
that f is a distinguished polynomial in x,,. The theorem results from the
next lemma, which is a little stronger. m|

Lemma 3.10. Let P € O,_\[x,] be a distinguished polynomial, irre-
ducible in O, _|x,|. Then P is prime in O),.

Proof. Let gh € O, be such that P divides gh. Let g and h be the
remainders of g and  after division by P. P divides g & in €. Because
of our inductive hypothesis, P is prime in &,_1[x,], so that it suffices to
prove that P divides g & in 0, [2].

Now, we have on the one hand §E = PQ, Q € 0,, and on the other
(euclidean division) gh = PQ’' + R', O/, R' € 0,_1[x,], degR’ < deg P.
Because of the uniqueness in (3.6), we have necessarily Q = Q', R’ = 0,
whence the lemma. |

Remark 3.11. Let P € 0,_1[x,| be distinguished. One verifies eas-
ily that P admits a decomposition into irreducible factors which are all
distinguished polynomials in x;,.

Theorem [3.8] will enable us to apply some of the theorems of local
algebra to analytic and formal rings. We recall some of these results.
Let A be a local ring, £ and A-module. We define the structure of a
topological group on E, “the Krull topology”, by taking, for a funda-
mental system of neighbourhoods of 0, the sets m*(A)E. [If E = A, this
coincides with the definition given in §I} further, we could also consider
the p-adic topology of E for an arbitrary ideal p of A, but we will not
need this.]

Let F be a submodule of E. It is obvious that the Krull topology of
E/F is the quotient topology of that on E. To study the topology of F,
we use the following result.

Theorem 3.12 (Artin-Rees). Suppose that A is noetherian, and that E
is finite over A. There is an integer p > 0 such that, for n > p, we have,
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(writing m for m(A))
Fnm'E=m""?(F nmP(E)).
For the proof, see e.g. Bourbaki [2]].
Corollary 3.13 (Krull). With the same hypothesis

(1) the Krull topology of F coincides with the topology induced on F
by the Krull topology of E;

(i1) E is hausdorff:
(i11) F is closed.

(i) follows trivially from (3.12). To prove (ii), we apply (i) with F =

40 closure of 0, 0 = Nnm"E: we have m0 = 6, whence (Proposition [L.1)),
0=0. Finally (iii) follows from (ii) applied to E/F.

From this and Theorem 3.8 we deduce that formal and analytic

algebras are hausdorff. We will deduce from this a result stated at the

end of 21

Proposition 3.14. Every homomorphism of analytic (resp. formal) al-
gebras is a morphism.

Proof. Let 0, 5 A, O, Y, Bandlet ube a (unitary R-algebra) homo-
morphism A — B. Let xy,..., x, be coordinates in R" and let & be the
morphism &, — B defined by u(x;) = u o n(x;) (Proposition 2.3)). It
is sufficient to prove that, for any f € &,, we have u(f) = u o n(f).

Now this formula is true if f is a polynomial in xi,...,x,. Since B is
hausdorff and the two sides of our formula depend continuously on f,
the result is obtained by passage to the limit. O

Remark 3.15. The same argument proves the following: let &, — A,
&n — B be two differentiable algebras. If B is hausdorff every homo-
morphism A — B is a morphism. We shall see that, in general, B is not
hausdorff, so that this does not answer the question raised in 2.4}
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Let A be a local ring, p an ideal of A with p # A. Then A/p is a local
ring and we have m*(A/p) = m*(A)(A/p). Consequently, the topology
of the local ring A/p and the A-module A/p coincide.

Let us take A = %, which is complete; since p is closed in .%,,
F,/p is again a complete .%,-module, and hence a complete local ring.
Consequently, we obtain

Proposition 3.16. Every formal algebra is complete.

Take now A = &,. The mapping of “Taylor expansion” &, — %, is
surjective, and its kernel is the ideal m®(&,) = nm*(&,) of functions
flat at 0. .%,, can therefore be identified with the completion éAa,, of &,.

Let p be an ideal of &, p = (p+m™(&,))/m*(&,) its image in .Z,,.
We have an isomorphism &, /(p + m*(&,)) — .%,/p; in particular, the
first space is hausdorff (and even complete) and p + m®(&,) is therefore
closed. Put B = &,/p, and m®(B) = nm*(B). We have obviously an
injection i : (p+m®(&,))/» — m*(B), and since p+ m®(&),) is closed
in &,, (p + m*(&,))/v is closed in B, and hence i is an isomorphism.
Denoting by B the completion of B, and using the fact that .%,/p is
complete, we deduce from this the

Proposition 3.17. The canonical mappings
B = &/(p +m” (&) — B/m*(B) — B
are isomorphisms.

In particular, the completion of a differentiable algebra is simply the
largest hausdorff quotient; and for a differentiable algebra to be com-
plete, it is necessary and sufficient that it be hausdorff, or again, that it
be isomorphic (as a local algebra) to a formal algebra.

4 Analytic algebras: completion and coherence.

A. FLar mobuLes. We recall here a certain number of definitions
and elementary properties, and refer to Serre [21] or Bourbaki [1]] for
the proofs. [These proofs are, moreover, almost all immediate so that it
would be a good exercise for the reader to reconstruct them.]
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Let us also state that the concept of flatness finds its natural inter-
pretation in homological algebra. We will not develop this point of view
here.

Definition 4.1. Let A be a ring, E an A-module. We say that E is flat if
the following equivalent conditions are satisfied.

(i) For every exact sequence M' — M — M" of A-modules, the
sequence E@q M' — E®4 M — E @4 M”" is exact.

(i1) For any ideal I of A, the natural map 3 Q4 E — E is injective.

The property (ii) can be interpreted in the following way. Let f =
(fis-.., fu) € A". Let us denote by R(f, E) (the “relations of f in E”)
the submodule of E” consisting of the (ey,...,e,) verifying Xfie; = 0.
Then

Proposition 4.2. E is flat if and only if for every n and f € A", we have
R(f.E) = R(f, A)E.

Remark 4.3.Let f = (fi, ,f,) be a system of n elements of A”.
We may again define R(f, E) as the submodule of E" consisting of the
(e1, e,) for which X fie; = 0. Using induction and Proposition[4.2] we
see that if E is flat, we have again R(f, E) = R(f,A)E.

Proposition4.4. (i) Let 0 - M — M — M" — 0 be an exact
sequence of A-modules. If M’ and M" are flat, then so is M. If M
and M" are flat, so is M’

(1) Let A — B be a homomorphism of rings such that B is flat as
an A-module. If M is a flat B-module, then M, considered as an
A-module, is again flat.

(iii) Let 0 - M' — M — M" — 0 be an exact sequence of A-
modules and suppose that M" is flat. For any A-module E, the
sequence

0->MQE >MQUE > M' QE —0

is again exact.
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Proposition 4.5. Let E be a flat A-module, M’ and M" two submodules
of M. Consider M' @4 E (resp. M" ®4 E) as a submodule of M ®4 E by
means of the natural injection M' @4 E — M ®y E (resp. etc...). Then,
we have

(MIF\M”) Qi E = (M/®A E) A (M”®A E)

[One uses the exact sequence

0 M/ M AM") L M/Me&M/M' S M/(M +M') -0
where
i(x) = (xmod M’, xmod M")
and

5(x',x") = ¥mod (M + M") — x"mod (M" + M"),
and the exact sequence obtained by tensoring with E.]

Definition 4.6. Let A be a ring, E an A-module. We say that E is faith-
fully flat if it has the following properties

(1) E isflat.
(ii) For any A-module M, E ®4 M = {0} implies that M = {0}.

[It is sufficient to require (ii) for modules of finite type.]

Let B be a ring containing A. For B to be a faithfully flat A-module,
itis necessary and sufficient that it verify one of the following equivalent
conditions.

(i) B/A is a flat A-module.
(ii) Bis flat and, for any ideal J of A, we have (3B) N A = 3.

We shall have occasion to study the following more general situa-
tion.

Proposition 4.7. Let A = B < C be three rings having the following
properties:
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(1) C is faithfully flat over A.
(il) For any ideal 3 of A, we have (3C) n B = JIB.
Then B is faithfully flat over A.
Proof. In fact, let us consider the following exact sequence of A-modules
0— B/A—C/A—C/B—0.

We wish to show that B/A is flat, and we know that C/A is flat. It is,
therefore, enough to show that C/B is flat (Proposition d.4). Consider
the following commutative diagram

IQB—>3IQC—>I®(C/B) —=0

]

3B 3C 3(C/B) —0.

The first row is exact, since the tensor product is right exact, and the
second row is exact because of the hypothesis (ii). Now, the first and
third vertical arrows are surjective and the second is bijective; hence the
third is bijective, whence the result. O

44 Remark 4.8. Let us consider again the situation of the preceding propo-
sition, and let ¥ < E be two A-modules. To simplify the notation, let
us put FB = F ®4 B, and let us define FC, EB, ... in the same way.
Consider the following commutative diagram:

0 0 0
L]
0 FB FC F(C/B) —=0
0 ElB ElC E(Ci'/B) ——0

Since B, C, C/B are flat, the columns in this diagram are exact, and
the rows are also exact because of Proposition 4.4} (iii) and the fact that
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C/B is flat. We deduce immediately that if we consider FB, FC, EB
as submodules of EC, we have FC n EB = FB. [This formula, with
E = A, F = J anideal in A, is nothing but condition (ii) of Proposition
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B. CoMPLETION OF ANALYTIC ALGEBRAS. Let A be a noetherian local ring,
E an A-module of finite type furnished with the Krull topology, and E
the completion of E. One has the following result (Serre [21]]; see also
Bourbaki [1]].)

Theorem 4.9. (i) The natural map A Q4 E — Eisan isomorphism.
(ii) A is faithfully flat over A.

Let us recall rapidly the proof. In the first place, if 0 — E' —
E — E” — 0 is an exact sequence of A-modules of finite type, the
topology of E’ is induced by that of E, and the topology of E”, which is
trivially the quotient of that of E are hausdorff (Corollary B.13). From
properties of the completion of topological groups, we deduce that the
sequence 0 — E' — E — E” — 0 is exact. From this we deduce, by
a well-known method, that for any exact sequence E/ — E — E” of
A-modules of finite type, the sequence £/ — E — E” is exact.

Let us apply this to a presentation of £, i.e. to an exact sequence
AP — A1 — E — (0. We obtain (i); the fact that A is flat over A is then
immediate.

Finally, any E of finite type is hausdorff, so that the mapping E —
E is injective; in particular, £ = {0} implies that E = {0}, which
completes the proof of (ii).

Let p be an ideal in A, B = A/p. The “intrinsic” topology of B and
its topology as A-module coincide. Consequently

B~A/p~(A/p)®sAand D ~ A®s p;

so that p is the closure of p in A. If we take A = O,, we have, ob-
viously, A= F,. The preceding results give then a description of the
completions of analytic algebras.

Theorem [4.9] together with Proposition [4.7] has the following con-
sequence.

47

45



46

ANALYTIC AND DIFFERENTIABLE ALGEBRAS

Proposition 4.10. Let A < B be two noetherian local rings such that
the mapping A — B is an isomorphism. Then B is faithfully flat over A.

Example 4.11. Let R, be the field R(x,..., x,) of rational functions
and S, the subring of fractions whose denominator does not vanish at
the origin. We have an obvious injection S, — &, and the two com-
pletions are equal to .%,. Hence 0, is faithfully flat over S,. Since
S, is trivially flat over R[x,...,x,], we deduce that &, is flat over
R[xi,...,x,]

One could show, in the same way, that &, is flat over 0,_[x,]
(imbedded in &, in the obvious way).

C. Conerence. Let % be the set of open neighbourhoods of 0 in
R"; for V € %, let 0,(V) = [] Opx and let us denote by &, (V)

xeV
the space of real valued analytic functions on V. We obtain a mapping

On(V) — 0,(V) by associating to f € 0,(V) the collection of the
Taylor series of f at the various points of V. Let 5,, be the inductive
limit (V) following the filtered set % ; the above mapping defines an
injection 0,, — ﬁ’Nn (which we shall refer to as the canonfi\cJal injection).

Starting with .%, Air/mtead of 0, we can define aring .%, and a canon-
ical injection &, — .#, (obtained by associating to each f € &), the germ
at 0 of the collection of the Taylor series of f at points near 0). Finally,
from the injection 0, — F,, we obtain in the obvious way an injection
ﬁ’Nn — %, and the following diagram is commutative

Oy —

|

T az
Gy ——= Iy

O,

One of the main results of this course is to establish that the triple
(On, &n, %) satisfies the hypotheses of Proposition 4.7 We shall take
up in Chapter [VI] the condition (ii) which is more difficult, and we shall
establish (i) here. For this we need a definition and some results, which
we do not number formally since they will not be used outside this arti-
cle.

48



Analytic algebras: completion and coherence

Let A be aring and E an A-module. We say that E is quasi-flat if, for
any ideal 3 < A of finite presentation (i.e. for which there is an exact
sequence A? — A? — J — 0), the mapping I ®4 E — E is injective.
This is equivalent to saying that for any f € A7 such that R(f,A) is of
finite type, we have R(f,E) = R(f,A)E

If A is noetherian, “quasi-flat” is equivalent with “flat” since any
ideal is of finite presentation. On the other hand, if we have a ring
homomorphism A — B and a B-module, E, “E quasi-flat over B” and
“B quasi-flat over A” imply “E quasi-flat over A”. (Proof left to the

reader.)

Examples. From the fact that Ty is flat over 0y, we deduce at once that
Z, is quasi-flat over . In the same way, 0, is quasi-flat over &, _; [x,]
(cf. Example E.1T). This being the case, the theorem we have in view is
the following.

Theorem 4.12 (Oka). O, is faithfully flat over O,.

Proof. 1t is obviously sufficient to show that ﬁ~n is flat over 0,. The
proof is by induction on n. The result being trivial for n = 0, suppose
the theorem proved for n — 1. Let J be an ideal in &),. Let us prove
that the map 3 ®g, ﬁ — ﬁ is injective. If I = 0, this is trivial. If
3 # 0, we may suppose, by an application of 3.7] that after a linear
change of coordinates, 3 contains a distinguished polynomial in x,, say
f- Applying[3.6] we find that there is an ideal 3’ = &,_[x,] such that

o~ (\f/

I =30, "@,@ﬁ l[xn]ﬁ.

Hence 3 ®g, O, ~ ®0,_1[x,]On> and it is sufficient to verify that On
is flat over 0,_[x,]. Now, by induction, 0,1 is flat over &,_;. One
deduces at once that 5,1, 1[xn] is flat over &, [x,]. Since ﬁNn is quasi-
flat over ﬁn 1[xn], it is quasi-flat, hence flat over the noetherian ring
Oyn—1|xn]. The theorem follows. O

Corollary 4.13. F,is faithfully flat over O,.

In fact, .%, is quasi-flat over ﬁNn, and ﬁNn is flat over 0.
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Remark 4.14. The theorem of Oka is usually stated somewhat differ-
ently.

(C) Let f = (fi,...,fn) be analytic functions in a neighbourhood
of 0, and g;, 1 < i < g, be p-tuples of analytic functions in a neighbour-
hood of 0 such that their germs g? at 0 generate R(fY, 0,,). Then, for
any point a sufficiently near 0, the g¢ generate R(f“, 0),).

Using the interpretation of flatness in terms of relations, it is clear
that (C) implies @.I2). Conversely, let us prove (C) using @.I12). If
(C) were false, there would exist a sequence a; of points tending to 0
and y; € R(f*, 0,) such that y; is not a linear combination of the g/*.
Consider in 55 the germ defined by y = y; at a, y = 0 otherwise. This
germ does not belong to R(f°, &,,) Gy, which is absurd.

S Dimension of analytic algebras and analytic
germs.
A. THE cONCEPT OF DIMENSION. Let us recall the following definition.

Definition 5.1. Let A be a noetherian local ring. By the dimension of
A (written dim A) we mean the largest integer n for which there exists a
strictly decreasing sequence py = m(A), py, ..., P, of prime ideals of A.

One proves the following results (see Zariski-Samuel [26]).
Proposition 5.2. For any noetherian local ring A,

(i) dim A is finite and equal to the minimum number of generators of
an ideal of definition of A;

(ii) we have dimA = dim A.
It follows at once from (i) that dim 0, = dim .%,, = n.

Theorem 5.3 (Cohen-Seidenberg). Given two noetherian local rings A
and B with A < B and B finite over A, we have dim A = dim A.

The inequality dim B < dim A results immediately from[3.2](i) since
any ideal of definition of A generates an ideal of definition of B (cf. §I).
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It would also result from the following proposition, which we shall need
in any case.

Proposition 5.4. Let A and B be two rings with A < B, B finite over
A, and let p and g be two ideals of B, p being prime, such that p < q,
p#a ThenpnA#qnA.

Proof. Passing to the quotient by p, we are reduced to the case when
p = {0} and A and B are integral domains. Let A (resp. B) be the
quotient field of A (resp. B). Since A[B] is a finite A algebra which is
an integral domain, it is a field, so that Z[B] —B. Letfeq, f+#0.

1 b
Wehavej—r = —withbe B,ac A,a# 0. Wehavea = fbe gn A,
a

whence the proposition. m|

B. INTEGRAL ANALYTIC ALGEBRAS. Let p be an ideal in &, and A =
On/v. Letgi,...,8p € m(0,), and g, g, their canonical images in
A. Recall that there is a unique morphism u : 0, — A with u(y;) =
& O1,...,yp are the coordinates of R?). If u is injective, we say that
g1, .- .,&p are analytically independent modulo p (or that g, ...,g, are
analytically independent).

Put k = dim A; clearly we have 0 < k < n.

Theorem 5.5. Under the above hypotheses, we may make a linear change

of coordinates in R" such that, x1, ..., x, being the new coordinates, we
have
(1) xi,...,x; are analytically independent modulo p,

(ii) the morphism Oy — A defined by x1, ..., Xy is finite.

Consider the set (E) of couples (f,S) where f = (fi,...,f) is
a family of elements of p, all # 0, and S is a system (x1, ,x) of
coordinates obtained by linear change from the canonical system having
the following properties for 1 < p < /.

(@ fp€ Oy_pyi1,ie. fpdepends only on xi,..., X pi1;

®) £,(0,...,0,x, 1) # 0.
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We say that such a couple is maximal if there is no couple (f,S’) € (E)
with ' = (f1,..., fi,g) and S’ being obtained from S by linear change
of the n — 1 first coordinates among themselves. Let us take such a
maximal couple (which evidently exists). By applying the preparation
theorem, we see that A is finite over &,_;. On the other hand, the map-
ping 0,_; — A s injective: if it were not, there wouldbea g e &,_;np,
g # 0, and by a linear change of the first n — [ coordinates among them-
selves, we could ensure that g(0,...,0, x,—;) # 0.

By (53), we have dimA = n — [, and the theorem follows. From
now onwards, we suppose that p is prime, and we retain the preceding
notation. Let ﬁk (resp. A) be the quotient field of O} (resp. A). Aisa
finite algebraic extension of O

Proposition 5.6. Forany f € A (resp. m(A)), the minimal polynomial of
f over Oy has its coefficients in Oy (resp. m(0}) and is distinguished).

Proof. Oy is factorial, hence integrally closed. Since any f € A is inte-
gral over Oy, its minimal polynomial, P, has its coefficients in 0. Let
us show that if f € m(A), F is distinguished. If it were not, we would
have P = P'P” with P’ € O}[t] distinguished and P” € Oy (and in
fact P” € O}|[1], but this has no importance) is invertible in &y . Hence
P"(x1, ,xi f) isinvertible in &y, and P'(xy,...,xt, f) = 0, and P is
not the minimal polynomial of f (if P” is not constant). The proposition
follows.

In the same situation, the preparation theorem shows that the classes
Xk41s--+»%n Of Xgy1,...,X, modulo p generate A as an Oj-algebra. A
fortiori, they generate A over 0. It follows from the theorem of the
primitive element that, by a linear change of coordinates of xg1,..., X,
among themselves, we may suppose that A = & [X;41]. Let, then, P be
the minimal polynomial of X 1, A its discriminant, and let p = deg P =
[A % k] O

Proposition 5.7. For any f € A, integral over A, there exists a unique
Q € O[], deg O < p, such that Af = Q(Xp41).
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Proof. Letoy,...,o, bethe 5k—isomorphisms of A in an algebraic clo-
sure of &. For0 < i < p — 1, we have

0'1(}2+1f) +--t Up()_cjcﬂf) =ae Ok

(since Oy is integrally closed). If we identify A with oj(A) and solve
these equations for o1 (f), we obtain a Q with the required property.
The uniqueness is obvious. O

C. ReAL anaLyTIC GERMS. To conclude this chapter, we shall recall rapidly
some results which we require. Let Q2 be an open set in R"”. A closed set
F < Qs called analytic if, in a neighbourhood of each of its points, F
is the set of common zeros of a finite family of analytic functions. Let
us take a point of R”, say 0. If we identify two analytic sets defined in
two neighbourhoods of 0 if they coincide in a third neighbourhood of 0,
we define the notion of a (real) analytic germ at 0. To any such germ,
E, we make correspond the ideal 3(E) = &, of germs of analytic func-
tions which are zero on E. Conversely, to any ideal p — &, we make
correspond the germ V/(p) defined by the vanishing of a finite system of
generators of the ideal. (It is obvious that V(p) does not depend on the
system chosen.) We always have V(I(E)) = E and 3(V(p)) D p, but,
in general J(V(p)) # p.

A finite union (resp. intersection) of analytic germs is defined in the
obvious way, and is again an analytic germ.

We say that a germ E is reducible if we have E = E’ U E” with
E # E', E # E”, and it is irreducible if this is not the case. One verifies
at once that E is irreducible if and only if I(E) is prime. Any decreasing
sequence of analytic germs is stationary (since ¢, is noetherian). We
deduce that every analytic germ can be decomposed in a unique way
into a finite set of irreducible germs, none of which is contained in the
union of the others. We call these the irreducible components.

Let E be an analytic germ. The dimension of E (written dim E) is
P

the dimension of 0,/3J(E). If E = ] E;, we have obviously I(E) =
i=1

T

3J(E;). We deduce from this and Definition [5.1] that the dimension of
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E is equal to the largest dimension of its irreducible components.

Let E be irreducible, and dim E = k. Let p = J(E), and apply to p
the considerations of §31B. Using the notation of Proposition[3.7] let us
denote by Qg-2, ... Oy, the polynomials associated to X2, ..., X,.

Proposition 5.8. Let E be an analytic set in a neighbourhood of 0 whose
germ E at 0 is irreducible. In a neighbourhood of 0, the set of points

x = (X1,...,X,) satisfying x € E, A(x1,...,x¢) # O coincides with the
set

P(x1,..., %k, Xk41) = 0

A(xt, o X)Xk — Ok j(X1, - X Xk1) = 0,2 < j<n—k

A(xl,...,)Ck) # 0.

Proof. Let q be the ideal in 0, generated by P and the Ax;i; — Ok .
Clearly q < p, and it is sufficient to show that for any fenp, t~here 18
an integer p such that AP f € q. For this, denote by Oy (resp. O, p,q)
the localisation of O} (resp. 0, p, q) with respect to A, i.e. the set of
fractions f/AP with f € O (resp. Oy, p, q). We have to show that D=7,
or that the natural surjection @,/q — 0, /7 is bijective.

The ring 5;{ can be considered, in a natural way, as a subring of the
two preceding rings, and, if we denote by xj{ 4 (resp. xZ +j) the image of

Xiqj in ﬁNn /P (resp. 5’,, /§), we have the following isomorphisms:

ﬁNn/B x> 5]([)6;(4-1] ~ ék[xZH] ~ &c[t]/(P)
(the first follows from[5.7). Thus we have only to show that x; | gener-

ates 0, 1/ 4. Now, because of the equations x7/ 4= A 7 +)
Ok [x¢,]- Consequently, the result will be proved if we show that mod-
ulo g, every element of ﬁNn is equivalent to an element of 5;( [Xkt1s- ey Xn]-
Now, if Py ; is the minimal polynomial of X over 0y, (2 < j <
n — k), the above isomorphisms show that Py ;(x] ) ) = 0, so that
Pi+j € 0. This, together with the preparation theorem (more precisely,
formula (3.6) applied successively to P, Pyio,...,P,) implies the re-
quied result. m|
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Remark 5.9. One must pay attention to the fact that, contrary to the 53
complex case, a prime ideal p < &, is not necessarily of the form

J(E): in other words, the “Nullstellensatz” is false in the real domain.
(Counter-example: n = 2, p = principal ideal generated by x% + x%!)
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IV
METRIC AND DIFFERENTIAL PROPERTIES
OF ANALYTIC SETS

1 Multipliers. LetQ beanopen setin R" and X a closed subset
of Q. We shall denote by .# (X; Q) the set of C*-functions f of Q — X
which satisfy the following condition

(1.1) For any compact set K < Q and any n-tuple of positive integers
k € N", there exist constants C > 0, m > 0 such that

IDFf(x)| < C/(d(x,X))" for x € K — X.
We start with the following

Lemma 1.2. [fg € .4 (X;Q) and g # 0 everywhere in Q—X, then 1/g €
A (X; Q) if and only if for any compact K < Q, there are constants
¢ >0, a > 0 such that

lg(x)| = c(d(x, X)) forx e K — X. (1.3)
Proof. If g=' € .#(X;Q), then (ILI) applied to f = g~ ! withk = 0

on K gives (I.3). Conversely, if (I3) holds, then the condition (I.I)) for
f = g~ ! follows from (1) for g and the relation

Df = g M=1p,(g,...,D\g),
where Py is a polynomial in the derivatives D'g with [ < k./ O
Proposition 1.4. If .7 (X;Q) is the space of C*-functions in Q which
are flat on X, then 4 (X; Q) is a space of multipliers for % (X; Q). More

precisely, if F € 9 (X;Q), g € #(X;Q), then the C*-function gF on
Q — X has a unique extension to a C*-function on Q which is flat on X.
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Proof. Since the space .#, of C*-functions in Q vanishing in a neigh-
bourhood of X are dense in .# (X;Q), we have only to prove that multi-
plication by g is a continuous mapping of .#, into itself, in the topology
induced from . (X;Q), i.e. given m > 0, and K < Q compact, there
exists m" > 0 and a compact K’ — Q, such that for F € .7, we have

lgFlm < CIFIy,.

where C > 0 is independent of F. But since for F € .# (X; Q), compact
K < Q, and k € N", there is a compact set K’ < Q such that

ID*F(x)| < Cn(d(x, X))V||F||X for x € K and any N > 0,

this follows at once from the condition (1.1) applied to g and Leibniz’s
formula. O

Proposition 1.5. If X and Y are closed subsets of Q which are regularly
situated, and .9 (X N Y, Y) is the space of Whitney C*-functions on Y
which are flat on X n'Y, then 4 (X;Q) is a space of multipliers for
(X nY;Y) (in a sense analogous to that in Proposition[L4).

Proof. Since X and Y are regularly situated, if F € .# (X n Y;Y), then
the function F defined to be F on Y, 0 on X is induced by a function
f € Z(X;Q). Proposition [[3] thus follows at once from Proposition
4 O

2 Quasi-Hélderian functions. Let Q be a bounded open
set in R" and f a real valued function in Q.

Definition 2.1. We say that f is quasi-holderian of order « 0 < @ < 1,
if there exists C > 0 such that for any pair of points x, y such that the
closed segment [x,y] joining x and y belongs to Q, we have

[f(x) = fO)] < Clx =y
(Note that the condition need not be satisfied for all x, y € Q.)
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Proposition 2.2. Let Q be a bounded open setin R" and a;,i = 1,..., p,
bounded functions which are quasi-holderian of order a. Let f be a
continuous function on Q satisfying

P
fr+ ) aifr = 0.
i=1
Then f is bounded and quasi-holderian of order a/p.
The proof is based on three very elementary lemmas.

Lemma 2.3. Ifcy,...,cp,z are complex numbers and
p .
2 + Zcizp_' =0,
i=1

then |z| < 2sup |c;|'/".

Proof. For reasons of homogeneity, we may suppose |¢;| < 1. Then
2P <1+z+ +|z2P7h

a fortiori

0]
Z lz|7*F > 1,
k=1

whence |z < 2. mi

Lemma 2.4. Let zj(resp. z;)(j.k = 1,..., p) be the roots of the equa-

tion
p . p .
2+ Z iz P =0 resp. 2 + Z cﬁz”_’ =0

i=1 i=1

where the c;, c are complex numbers. Suppose that
il <K', |e; — ¢i| < K's, where K, > 0.
Then for any j, there exists k such that |z; — z;| < 2K.8'/P
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p )
Proof. Since z‘;’ + > c,z? ' = 0, we have
i=1

P
H lzj—z] = z? + chzﬁ_l
k i=1
By Lemma 2.3, |zj| < 2K, so that

H |zj — 7| < 2PKPS;
k

14
—1
St -

Lemma 2.4 follows at once.
Proposition 2.2 obviously follows from the next lemma. |

Lemma 2.5. Let K > 0,0 < a < 1 and let by,...,b, be complex-
valued functions defined on the closed interval t| < t < tp such that if
t <t t <t we have

bi(1)| < K, |bi(t) — bi(1')| < K|t — ¢]°.

Let f be a continuous functions on [t1, ;]| such that
p .
fr b =0
i=1
Then, we have
|£(22) = f(0)| < 4p.Kefra — 11|,
Proof. Letz; = f(t1),...,z, be the roots of the equation
p .
P+ D bi(h) T =0
i=1

and let Q be the union of the closed discs of radius 2K|t, — £;|%/” and
center z;. Then, by Lemma 2.4l f([r1,]) < Q, and so, since f is
continuous, is contained in the connected component of € containing
z1. Lemma 23] follows at once. O
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3 Notations. In the rest of the chapter, and the following ones
we will need to appeal several times to the local description of a real
analytic set which was given in Chapter[[Ill §5 For this reason, we shall
fix the conventions and notations to which we shall adhere.

Let X be an analytic set in an open set Q < R", let 0 € X and
suppose that the germ Xy of X at O is irreducible. We suppose that

I = J(X) is the ideal in O, of germs of analytic functions vanishing
on Xp. Suppose dim Xy = k and that the coordinates xi, ..., x, of R”

satisfy the following conditions; as we have seen these can always be
achieved by a linear change of coordinates in R".

(a) x1,...,x; are analytically independent mod J, i.e. the natural
mapping Oy — O,/3 is injective ; further O,/J is a finite Oy
module.

(b) The image in O,/J of x;4 generates the quotient field of O, /3
over the quotient field of O.

(c) The images %x+j, j = 1,...,n — k of x;4; in O,/ satisfy the
monic polynomial equations

Pi(%sjX) = 0,(x" = (x1,...,x%))

over O, (i.e. with coeflicients in Oy). Further, we may suppose
that these are the minimal equations for X ; ; therefore the P;
are distinguished. We shall denote P; by P. Let A(xy,...,x;) be
the discriminant of the polynomial P in X;4;. Then, there exist
polynomials Q (X4 j; x') over O such that

A(X) Xerj = Qj(Faq1; X').

In what follows, we write x = (x1,...,x,) = (X', x”) where X' =
(x1,...,x) and x” = (xg41,...,%,). We denote n — k by I. We choose
aneighbourhood Q; — Qof 0,Q; = Q' x Q" where ' = R¥, Q" « R/,
such that there are polynomials P;(xij; x'), Q;(xks1;x), with coeffi-
cients analytic on Q' such that the image of these in O,,/J are the poly-
nomials considered above and which have the same degree in x; ;. We

60



The inequality of Lojasiewicz

denote again by A the discriminant of P; = P. A is analytic on ' and
its germ at 0 is # 0. P being distinguished the roots of the equation
P(t,0) = 0 are all zero, so that given any neighbourhood V" of 0 in R/,
there exists a neighbourhood V’ of 0 in R¥ such that if X' € V/, x” € R,
X" = (Xk41,..., %) and Pj(xx4 j; x') = 0, then x” € V”. We may choose
V" and V' such that V = V' x V" is relatively compact in Q;. We also
suppose that V/ and V” are cubes in R¥, R’ respectively.

Let A = {¥' € V/|A(¥') = 0}. If V is sufficiently small, the set
X n (V' = 6) x V") coincides with the set defined by the relations

X eV =6, Pxy;x) =0,
A )xerj — Qj(xrs13x) =0, 2 < j< L.

Clearly, for X' € V' — 6, all the roots of P(x;1;x’) = 0 are distinct.
Let V(I < s < p) be the set of points X' € V' — § for which the
polynomial P(x;y1;x’) has at least s real roots. Then V is open and
its boundary in V’ is contained in §. Let F'(¥) < ... < F(x') be
the s smallest real roots of P(xx41;x") on V. Clearly, F" is defined,
continuous and bounded on V,(1 < r < p). For X’ € V,, put

Fj = F', Fi(xX) =

The F’: are again defined and continuous on V,, and, being roots of 59
the equation P;(t; x') = 0, are bounded on V,. Set ®" = (F},...,F])
on V, and

X, = {x = ({.¥") € VIY € V! = ()}

LetD =X n (6 x V"), X, = X U D. Then X, is closed in V and we
have |J X, =XnV.

I<r<p

4 The inequality of FL.ojasiewicz. The aim of this section
is to prove the following important theorem of Lojasiewicz [10].
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Theorem 4.1. Let Q be an open set in R" and let f be real analytic in
Q. Let E = {x € Q|f(x) = 0}. Then for any compact set K < Q, there
exist constants ¢, a > 0 such that, for all x € K, we have

If(X)] = eld(x, E))“.
(in other words, 1/f € .# (E;Q)).

We shall suppose that the theorem is proved for all analytic functions
in all open sets in R” for m < n. The proof consists of two steps.

Step 1. (L). With the above hypothesis of induction, given an analytic
set S in Q of dimension < n at every point, if f, K, E are as in
Theorem 1, then exist constants ¢, « > 0 such that, for x € S N K,
we have

[f(x)] = c(d(x. E))*.
Step 2. Deduction of Theorem 1.1 for Q < R" from ().

Proof of (). It is clearly sufficient to prove that for a € S N E, there is
a neighbourhood W such that for x e W n §, we have

[f(0)] = ed(x, E))*

for suitable constants ¢, @ > 0. We may suppose that a = 0. Clearly
if X is an analytic subset of S n W such that the germ Xy of X at O is
irreducible, it is sufficient to prove the above inequality for all x € X. Let
k = dim Xy; we may clearly suppose that X ¢ E. We shall proceed by
induction on k, and suppose that ([J) is proved for all sets S of dimension
< k. We begin by reducing ([J) to the following.

(L"). There is an analytic set Y < X in a neighbourhood of 0, Y # X,
and constants ¢ > 0, a > 0 such that for x € X near enough to 0, we
have

If ()] = c(d(x, Y))". (4.2)

Proof that (L)) Implies (0). By induction hypothesis, there are constants
B, 8 > 0 such that for y € Y sufficiently near 0, we have

Blf ()l = d(y. E).
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Let x € X and y € Y be such that |[x — y| = d(x,Y). Such a y exists if
x is sufficiently near 0. Now, |f(x) — f(y)| < Bj|x — y| (mean value
theorem), so that

d(y.E) < BIf ()’ < Bo{lx =P + | f (0},

so that
d(x,E) < |x —y| + Ba{|x — vl + | f(x) P}

The result now follows from the fact that [x — y| = d(x,Y) <
el ()| (by @)

We will now prove L] Since the ideal J is prime, there is h € O,
and fi € Oy, fi # Osuch that hf — f; € 3. Obviously, in (L), we may
replace f by fi and E by the set E of zeros of f; in some neighbourhood
of 0. We therefore suppose that f € Oy.

We take now for Y the set D U (E n X). Since f #0on X, Y # X
it suffices to prove that on Xj, (notation as in §3), near 0, we have

|f(x)| = c(d(x, (E n X,) U D))"

Now f is a function of xi, ..., x;. If E’ denotes its zeros in a small
neighbourhood of 0, then Theorem 1 applied to R¥ (induction hypothe-
sis) shows that we have an inequality of the form

[f()] = e(d(x, EN))".

To complete the proof, we have only to obtain an inequality of the
form
d(x; (EnX5) uD) < Bs(d(x,E)) if x € X,. (4.3)

Now, if x € D, there is nothing to prove. Suppose then that x’ € V
x = (x,¢*(¥')) and let y' € E' satisfy d(x', E") = |xX' —/|.

If the half-open segment [x, y'[ meets § (@.3)) is obvious. If not, the
segment [x'y'[c V, and if ¥’ belongs to this segment and y,, — )’ as
v — o0, then any limit point y” of ®*(y/,) has the property that (y',y") €
D u (E n X;). Hence

(&) — | < limsup|®*(x') — @*(y})]

v—00
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< Byl¥ — Y/’ = By(d(X.E)),

the second inequality being valid by Proposition[2.2] since the F js satisfy
the monic equations P;(F ; (x);x') = 0. This completes the proof of
(@2), and with it the proof of (L), and thus of (D).

To prove Theorem 1, we have now only to complete Step 2, i.e. to
prove that Theorem 1 follows from (L). It suffices to find an analytic set
S near 0 € R”, dimyp S < n, and constants ¢, @ > 0 for which we have,
near O,

[f ()] = cld(x, E v S))".

This is because, we have by ([, for y € § an inequality of the form

fWI = edly, E)™  (c1,a1 > 0)

and we may repeat the argument used to prove that (L) implies (0
to obtain the desired inequality. Now, by the Weierstrass preparation
theorem, we may suppose that f is a distinguished polynomial in x,
and further, that f is irreducible. [In fact, if the L.ojasiewicz inequality
is true for two functions it is trivially true for their product.] Thus the
discriminant Ag(xi,...,x,—1) # 0. Suppose that the coefficients of
f and Ay are defined in a neighbourhood U of 0. We may then take
S = {x e UlAs(x1,...,x,—1) = 0}. Let Ay,..., 4, be the real roots
of the equation f(x,;xj,...,x,—1) = 0 and uj,...,us, the other roots.

Then
r S
PN =T Tl = Al ] 12w — mjl.
i=1 j=1

.
The first product | | is trivially > d(x, E)". Now,
i=1

N N N
[Tl —wl = [limpl =27 [ ] luy — &l
j=1 j=1 J=1
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Now the A;, u; are all bounded and A¢(xi,...,x,—1) is the product of 62
the squares of the differences of all roots of f(x,;x1,...,x,—1) = O.
Hence

s
[ [lkj =5 = c2p(xrs ooy xamn).
j=1

Thus,
|f(x)] = c3(d(x, E)) Ap(x1,. ..y Xn—1).

By induction hypothesis, A¢(x1,...,x,—1) = ca(d(x;S))P, and it fol-
lows that
[f(X)] = e(d(x E v S))"

This proves Theorem E.1]

Corollary 4.4. Let Q be an open set in R" and let X and Y be two
analytic sets in Q. Then X and Y are regularly situated.

Proof. Clearly, it is enough to prove that for any a € X n Y, there exists
aneighbourhood U of a such that X n U and Y n U are regularly situated
in U. Hence we may suppose that there exist analytic functions f, g in
Q such that {x € Q|f(x) =0} = X, {x € Q|g(x) =0} =Y. Let K be
any compact set in Q. Then, there exists a constant B > 0 such that for
xeKk,

lg(x)| < Bd(x,Y). 4.5)

By Theorem 1] applied to the function f2 + g? there are constants
¢, @ > 0 so that for x € K, we have

(x) + g2(x) >c(d(x,XnY))?,

since X N Y = {x € Q|f?(x) + g*(x) = 0}. Combining this with @3),
we obtain,

d(x,Y) = c1(d(x, X n Y))"? forxe X n K, q.e.d.
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5 Further properties of analytic sets. The above corol-
lary gives us information on the metric properties of two analytic sets.
We now go back to the notation of §3, and prove some metric proper-
ties of different “sheets” of the same irreducible analytic set, due also to
Lojasiewicz [10].

Let X be an analytic set in the open set Q < R”, irreducible at the
origin. suppose k = dimg X and let V = V' x V" be a neighbourhood of
0 as in §3. We have defined closed sets X, in V, 1 < r < pin §3. We
have

Proposition 5.1. For any pair of integers r, s, the sets X,, X, are regu-
larly situated.

Proof. We may obviously suppose r < s, so that V, © V. It is clear
that for any compact set K’ < V’, there exists a compact set K < V”
such that (K’ x V') n X = (K’ x K") n X. Let K = K’ x K" We
have to prove that there exist constants ¢, @ > 0 so that for x € K n X,
y € KnX,, wehave |[x—y| = c¢(d(x,D))* (since X;n X, = D). We have
already seen (in the proof of Theorem [.)) that for x € X, we obtain an
inequality of the form

d(x',6) = B(d(x, D))’

from the fact that the functions F’ are quasi-hdlderian. Hence we have
only to prove an inequality of the form

lx —y| = c(d(¥,0))". (5.2)

Let x = (X, x"),y = (/,y"), where X' € Vi, y € V, . If the closed
segment [x',y'] & Vj, then it meets 6 and (3.2) is trivial. Suppose there-
fore that [x/,y'] < V,. Letn = (¥, ®"(x’)). Now, F"(x') and F*(x") are
two distinct roots of the equation P(z; x") = 0. Hence there is a constant
A > 0 so that
|[F'(x') = F*(x)| = A|A(X)].
Hence, by Theorem 1 applied to A, we have

v =1l = [F"(x') = F*(x')| = Bi(d(x',8) "
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On the other hand,

Bof' — y'|? (5.3)

(since the functions F; are quasi-h6lderian). If now By|xX — )P =
IB(d(x,6))", B2 is trivial. Otherwise, we have [y — | < 1[x —n),
so that [x — y| = 1[x — 5| = 1B (d(x',6))", and is (5.2) proved. mi

Proposition 5.3. For 1 < j <I(=n—k), 1 < r < p, the functions F
belong to the space M(V' — V,; V').

1
Proof. By Lemmal[l.2]and Theorem (.11 n e # (V' —V,; V). Hence,

we have only to prove the proposition for j = 1, i.e. for the function F".
We prove by induction on |g|(g € N¥) an estimate of the form

Cq

DqFr / <—
DOl < Zea sy

5.4)
for X' € K’ — 6, K’ being a compact subset of V’. Suppose ¢ € N" and
suppose (3.4) proved for all ¢’ with |¢’| < |¢|. Since P(F"(x');x") = 0,
we have a relationship

oP & /

(F"; ) DIF" = R,(F",DTF";x'),
OXk41

where A, is an integer > 0 and R, is a polynomial in F" and its deriva-

tives DY F” of order < |g| (differentiation of composite functions). After

our induction hypothesis and Theorem .1l we have only to prove an in-

equality of the form

oP
OXpq1

(F"; x| = c|A(X)].

But this is immediate, and the proposition follows. m|
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We shall end this section by giving a description of the space . (D; X,)
of Whitney functions on X, which are flat on D.
Let 1€ N* = Nf x N/, and let

F={fYe 7(D;X,).

We remark that F' is determined uniquely by the collection {g"}, cn:
where
g4 = ftwithd =0 xpu, 0e N

In fact, if 1 = v x u, v € N¥ then 4 is a linear combination of
derivatives D;’,g“/ (X, @"(x")) with ¢/ < u. (See also proof of (3.3D)
given below.)

Given (gH) which determines an element of .# (D; X,), let us set

W) — g (45 0 () € £(V)).
This gives us a mapping
n: I(D:X,) — [6(V)Y
Proposition 5.5. 7 maps .7 (D; X,) bijectively onto [ .7 (V' — V,; V/)N.

Proof. As remarked above, r is injective. We have only to prove the
following two facts;

(I (D X)) < [Z(V — Vi V)], (5.5a)
(5 (D:X,) > [A(V = ViV (5.5b)
O

Proof of (a). We remark that any derivative of #*(x’) can be expressed
as a finite linear combination of the functions f*(x/, ®"(x')) with co-
efficients which are polynomials in the derivatives of F ; (This can be
proved, for example, by choosing a C*-function in V inducing (f*)
and applying the rule for differentiation of composite functions.) To
prove (a), we have only to prove : given a compact subset K’ of V,
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FYx, @"(x')) tends to zero faster than any positive power of d(x’, )
when x’ € V, n K’ tends to §. But this follows from the definition of
(V' — V,, V') and the fact that ®" is quasi-hdlderian.

Proof of (b). Let i = (h*),eni, W € F (V' — V,; V') be given. It is
enough to prove that for any integer m > 0, there is a C"™ functions H
on V, m-flat on (V' — V,) x V", such that for u € N/, |u| < m, we have

D' H(X; 07 (X)) = () (D", = D, ... DV

Xk41 ° xn)'

We take H = O on (V' — V,) x V" and

(¢ — ()

‘ forx = (¥, x") e V, x V".
!

H(x)= ) ()

lul<m

By Proposition 53] since ##(x') € £ (V' — V,; V'), His C* on V.
Clearly this has the required properties.
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\Y
THE PREPARATION THEOREM FOR
DIFFERENTIABLE FUNCTIONS

1 The special preparation theorem. The aim of this
chapter is to prove the preparation theorem for differentiable functions.
We begin by stating the theorem in a special case.

(1.1) The special Preparation Theorem. Letx = (x,...,x,) €
R",re R", t € R, and let

p
(x.1) = & + ) ai(x)"™
i=1

be a distinguished polynomial in ¢ with coefficients which are analytic
functions of x in a neighbourhood of x = 0 in R”. Then, for any f €
&+ 1, there exists g € &,41 and p; € &, 0 < i < p — 1, such that

p—1
flnn) = M nglan) + 3 pilx)r. W)
i=0

We first state a more general theorem which is more convenient to
handle. To state this, we introduce some notations.

Let X be an analytic set in a neighbourhood of 0 € R", Xj its germ
at x = 0. For any set A © R”, denote by Ay the germ of the set A at
x = 0 and Ay the germ of the set A x R at (x,7) = (0,0), with a similar
convention for germs of sets in R”. Let ¥ be an analytic subset of X,
and let .7 (Yy; Xo) denote the space of germs of Whitney functions on
Xo which are flat on Yo, and define .# (Yo, X,) in a similar way. Then we
have

Theorem 1.2. Let I1, Xy, Yy be as above. Then for any f € J(IA/O; )?0),
there exist germs g € % (Yy; Xo) and p; € ¥ (Y0,Xp), 0 < i < p—1
such that (W) holds.
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The special preparation theorem follows on taking X = R", Y = 2.

We begin by reducing Theorem to a weaker statement. For this
purpose, n, IT being given, let us denote by Th(Yy, Xp) the statement
of Theorem It is clear that if Zy < Yy < X, and Th(Zy, Yo) and
Th(Yo, Xo) are true, then Th(Zy, Xo) is true. The weaker statement re-
ferred to is

P(Xo). Given the germ Xy of an analytic set in R", for any analytic
germ Yo < Xo, Yo # Xo, there exists an analytic germ Y(’), Yy Y()iXO

such that Th(Yy, Xo) is true.

We prove that P(Xy) for any X, implies Th(Yp, Xp). Let $ be the
set of analytic germs Zy, Yo < Zy < Xy such that Th(Zy, Xp) is true.
Clearly $ is nonempty (X € 9), so that since any decreasingly filtered
family of analytic germs is stationary, $ contains a minimal element,
which we again denote Zy. We prove that Yy = Zy. If this were not so,
then, by P(Zp), there is Z/, Yo < Z(’&Zo such that Th(Z), Zp) is true.

But since Th(Zy, Xo) is true, it follows that Th(Z;, Xo) is true, and Z is
not minimal.

Thus, we have only to prove P(Xy). We do this in two stages; first,
when X = R”, we will prove a stronger result (which proves an analogue
of P(Xp) for a fixed neighbourhood of 0) and then we will reduce the
general case to this.

2 The case X = R". Let V be a neighbourhood of 0, ¥
an analytic subset of V, Yy its germ at the origin; we suppose that the
coefficients of IT are analytic in a neighbourhood of V.

Let I be a bounded open interval in R such that every real root of
II(x,7) = Olies in I if x € V; for any subset A of V, we set A = A x I.

We may suppose in Theorem[I.2]that the polynomial IT is irreducible
in O,[t]. Hence its discriminant A # 0in V. Let § = {x € V|A(x) = 0}.
We shall prove that Th(Y),R") is true, where ¥; = Yy U 6p. More
precisely, we have

Proposition 2.1. Let Y = Y U6S. Forany f € 7 (Y'; V), there exists g
(Y, V)and pi € F(Y',V),0<i< p—1suchthat f =Tlg + > pit’
on V.

71

67



THE PREPARATION THEOREM FOR DIFFERENTIABLE FUNCTIONS

68 Proof. Let U, be the set of points of V — ¢ where II has exactly s real
roots. Then Uy is open and its boundary is contained in §. Let U, =

~ ~ P
Ug—Y,Fy =V —U, Let f&) = finUs; = 0in Fy. Then f = ) f(9)
s=0
and it is enough to prove the proposition for each f (5). Hence we may

suppose that f = 0 outside U, for some s. |

Let7i(x) < ... < 74(x) be the real roots of I1(x, ¢) for x € Us. Then,
7;(x) are quasi-holderian, and belong to the space .# (F; V) [Proposi-
tion[3.31]

Let fi(x, 1) be the functions defined by

fx0) = (= 71(x)fi(x0) + f(x,71(x))

in ﬁs, fi = 0in ﬁs. We assert that fj(x, 1), f(x,71(x)) belong to the
spaces .# (Fy U Y; V) and .# (F U Y; V) respectively. It is clearly suf-
ficient to prove that they belong to the spaces . (ﬁ 5 \7) and .7 (Fy; V)
respectively since they are clearly flat on Y n U,. We have seen in the
proof of Proposition 33 that f(x,7(x)) € #(Fy; V). For fi, we write,
for (x,t,7) eV x I x I,

fx,t) — f(x,7) = (t = 1)h(x,t,7),

with h € 7 (Fy x I,V x I). Clearly

fi(x, 1) = h(x,t,71(x)),

and it follows, as before, that f; € .% (ﬁ 55 ‘A/) We apply the same proce-
dure with f replaced by f; and 7;(x) by 72(x) and obtain

f(x1) = (t=71(x)) (1=72(x)) f2(x, ) +(1=71(x)) f1 (%, 71 (%)) + £ (3, 71 (%)),
where f, € . (ﬁ LUY; \7) Furthermore we have
file (%), 11(x) fi(x,12(x)) € F(Fs U Y3 V).

Repeating this process s times, we find

s—1

fOun) = (0 =71(x) . (1 = 7)) Sl 1) + D pi(0)F
i=0
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where f; € f(l?s uY: ‘7) andp; € S (F; L Y;V).
Now we have 69

N

(x.1) = | [(r = 7:(x) I (x.1), x € Uy,

i=1
The proposition would obviously be proved if we show that the func-
tion R
) /M in U,
& 0 in F B
belongs to .& (ﬁ s U Y f/) Clearly, since IT' does not vanish at any point

of Uy, we have only to prove that 1/IT' € .#(F; V). By (IV, 4.1) it
suffices to prove that

(a) Il € .///(ﬁs; \7)

(b) for any compact K < V, [IT'(x,7)] = ¢(d(x,8)) for suitable c,

@ >0and (x,1) € K — 6.
Proof of (a). Let 4, ... A; be new variables and let us divide the polyno-
mial IT(x, ) by (t—24y) ... (t—Ay). This gives us, with A = (4y,..., ),
M(x,t) = (t— A1) ...(t— )P (x; 1) + V' (x;12)

where ¥, ¥’ are polynomials in #, A with coefficients which are analytic
functions on V. Clearly ¥/ (x;#;7) = 0, where 7 = (71(x),...,74(x)),
so that

I (x,1) = ¥(s; ;7).

Since 71(x) € A (F5, V), (a) is proved.

Proof of (b). If o; are the complex roots of II(x, ) we have for (x,) €
K,

T (x,1)| = Ellf — o) = Ell imo;| > ClllT_|5i —0jl = | Ax)[%,

where ¢y, ¢z, > 0. The result follows from the Lojasiewicz inequality
(Theorem IV, 4. 1.).
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Remark . We remark here that the uniqueness of the remainder is not
guaranteed. The remainder we obtained is of degree < s — 1 on Uy, and
it is not difficult to see that we could obtain any function R of degree
< p — 1 as remainder so long as R € .# (F; U ¥; V) and R(x; 7;(x)) =
f(x;7i(x)) for i = 1,...,s. This shows that we have uniqueness in
Proposition 2.l only in the case when all the roots of T1 are real.

3 The proof of Theorem [1.2] in the general case.
We begin with the following remark. Suppose Xy is as in §§11 2 and
Xo = X{ U X{. Suppose the statements P(X[)) and P(x;) are true. Then
P(Xp) is true. In fact, we may suppose that So = X} n X is properly
contained in both X{ and X{; let now Yy < X, and Zj = X{n (YouS)),
Z) =X n(You So). If Zy « Wy < X;, Z) < W] < X[ are such that
Th(W(, X)) and Th(W{,X{)) are true, then since X, X{| are regularly
situated, we conclude that Th(W/, U W, X) is true.

Hence we may suppose that Xy is irreducible. We now go back to
the notations of Chapter [Vl §31

Let the neighbourhood V of 0 be chosen sufficiently small and so as
to have all the properties stated in Chapter[[V] §3l Let Y be an analytic
subset of X, (we regard X as a closed subset of V in what follows).

We may suppose that Y is the inverse image under the projection
X — V' < R¥ of an analytic set § < V', § # V’. To see this, we
have only to use the fact thatif ¢ € 0,, ¢ = 0onY, ¢ ¢ J = J(Xo),
then there is & € 0, — 3 such that hp — ¢; € J, where ¢; € 0. We
assert that there exists a polynomial ¥ € mathscrO,|t] such that ¥ is
a multiple of IT in &,[7] and ¥ = ¥ + ¥, where ¥ € J[t], and
¥’ € Oy[t] is a distinguished polynomial. To prove this, let ¥’ be the
product of the conjugates of the image IT of IT in (&, /3)[t] over O [t],
say ¥ = ATL Let A € 0,[r] induce A, and ¥ = AIL Clearly ¥/ = ATI
is a distinguished polynomial in &y[t], and ¥” = AIl — ¥ € J[1].

We remark that it is enough to prove P(Xy) with IT replaced by ¥;
in fact if R(x, 1) = i ri(x)# is the remainder of the division of f by ‘P,

i=0
we have only to carry out the standard polynomial division of R by II
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to prove P(Xy) for I, since clearly the coefficients in this polynomial
division will be flat wherever the r;(x) are flat.

We suppose that ¥’ and ¥ have coeflicients analytic on V and that I
is a bounded open interval in R such that any real root of W(x'; 7) lies in
I for X' € V'. For any subset A of V/, we shall write A for A x I = RF1,
AforAx V"' cR", A, forAx V" xI=A xR

Applying Proposition 2.1 to the irreducible factors of ¥/, we find
that if V is sufficiently small, there is an analytic set S’ of V/, S U§ < §”,
such that dim S’ < k for which any f € .# (S 5 X’},i) can be written f =

/

P . ~ A

Vg + > pit', p' = deg W', where p; € #(S";V') and g € Z(S: V).
i=0

Let Y’ be the set S’ N X. We shall prove the following result, which

clearly implies P(Xy) for .

Proposition 3.4. If f € .7 (Y';X), then there exist g € 7(Y';X) and
pi€ I(Y;X),0<i<p —1,suchthat

f=Y+ ) pit'

Proof. Since the sets X, are regularly situated and X, N X, < Y/, itis
enough to prove the proposition with X replaced by X,. To do this, we
remark that if 7 is the isomorphism of .# (D; X,) onto [.# (V' = V,; V)|V
given by Chapter[[V] Proposition[5.3] then 7 induces an isomorphism of
S (Y';X,) onto [.#(C; V')]¥, where C = (V' —V,) US’ There is further
a similar isomorphism 7 of .7 (Y; X,) onto [.#(C; V)]V, defined by
7(F) = (GY), 2 € N, where G*(x,1) = (nF;))(x), F, standing for
the function x — F(x,7). We have therefore only to prove that if f €
J()A/’;)A(r), then there are p; € .7 (Y';X,), t € /()A/’;)A(,) with

R(f) = WR(g) + ), 7o)t 3.1
If we write
7(f) = (fY), and ¥* = DL, ¥ (¥, @"(¥'),1),
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then W € .77 (V' — V,; V'), so that the equation (3.1 is equivalent with
the infinite system

' —1
A h :
fl=we+ ) () plonght 1 N pld, (3.2)

u<a i=0

for the functions p! € .7 (C;V),g € & (C, V). The existence of the g*,
p;l is an immediate consequence of Proposition[3.3l In fact suppose g,
p’i.‘ are constructed for u < A; we have only to solve the equation

p'—1
M =wg e S pid
i=1

where it = f4— 3] (ﬁ)‘{”l_”g“ which belongs to .7 (C; V) by [V}
u<a

Proposition [[L4l Note that since the system (3.2)) is infinite, we need

Proposition 2.1} the statement P(X,) would not suffice. i

Remark . Suppose that in the special preparation theorem we add the
following condition:

At any point near 0, the Taylor expansion of I divides that of f in
the ring of formal power series.

The above proof then shows that we may take the p; = 0 in the
theorem. [The only point is that in §3, we must apply our considerations
to Af since we replace I1 by AIL] This gives us the following theorem.

Let Q be open in R", 11 an analytic function in Q. A functions [ €
E(Q) is of the form I, g € &(Q), if and only if the Taylor expansion of
I1 divides that of f at any point of w.

(Lojasiewicz [10], Hormander [6]].)

In view of the results of Chapter [l this may be formulated as as-
serting that a principal ideal in & (Q) generated by an analytic function
is closed. We shall prove a generalization of this theorem to arbitrary
ideals generated by analytic functions in the next chapter.
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4 The general preparation theorem.

Theorem 4.1 (Malgrange [12]]). Let A and B be differentiable algebras
and u; A — B a morphism. If u is quasi-finite, then u is finite.

Before beginning the proof, we remark that we have already proved
that the quasi-finiteness of u if equivalent with u being finite, as also with
u being quasi-finite. Moreover, we may assume that A = &,, B = &,
[&% being the ring of germs of differentiable functions at 0 € R¥]; this is
proved in the same way as in the analytic case.

We have the following

Lemma 4.2. Let u be a surjective morphism of a differentiable algebra
A onto a differentiable algebra B. Let u be the induced morphism of the
completions : U : A — B. Then keru = (keru + m®*(A))/m*(A).

Proof. Since clearly kerii = u~!(m®(B))/m®(A), we have only to
prove that u~!(m®(B)) = keru + m*(A). Now, since u is surjective,
we have u(m(A)) = m(B). Hence, for any k, u(m*(A)) = m*(B), so

that u~!(m*(B)) = m*(A) + keru. Hence u~'(m*(B)) = () (keru +
k=0

mk(A)). Since the completion A of A is noetherian, it follows from
Krull’s theorem that () (keru + mf(A)) = keru + m®(A), and the

k=1
lemma is proved. m|

Letu : &, — &, be a quasi-finite morphism, and let ¢ : R” — R”
be a differentiable mapping with ¢* = u. We denote the coordinates in
R” by x = (x1,..., %), those in R" by y = (y1,...,y,) and we write
also &, = &(y), &m = &(x). Now u can be factored

&) = E(xy) = E(x),

where the first mapping is the canonical injection (associating to each
f(y) € &(y) the same function considered as a function of x and y) and
the second is the mapping

f(xy) = f(x6(x))
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where ¢(x) = (¢1(x), n(x)) = (u(y1)(x),...,u(y,)(x)). Let N be the
kernel of the mapping &'(x,y) — &(x). To prove that u is finite, it
suffices to find an ideal P — N such that the composite

E(y) = E(x,y) = E(x,y)/P

is finite (since u is the composite of this mapping and a surjection of
&(x,y)/P onto &(x)). We denote this composite by i.
Let N be the kernel of the map u : &(y) — &(x). As remarked

above, u is finite; hence there exists a finite number of monomials x% =

x{"...x," which generate &(x) over &(y). Clearly, since if certain of

these monomials generate & (x) /é"A (x)m(é"A (y)) over R, they generated
&(x) over &(y), we may suppose that they are linearly independent in
& (x)/ & (x) m(g (v)). Let r be a sufficiently large integer. Then, since the
x“ are generators of &'(x) over &(y), there exist elements c¢;,(y) € & ()
such that

X = Z Cia(P(x))x“.

Since this equation holds in & (x), we conclude that if r is sufficiently
large, then ¢;,(0) = 0. By our definition of N, we conclude that

Qi(x,y) = x] — Zcm(y)x" e N.

Let us write [@] = max |o}| if @ = (a1,...,ay). By introducing series
j

cie = 0 if necessary, we suppose that

Qi(x,y) = x| — Z Cia(y)x* € N, i (0) = 0.

[a]<r

Because of Lemma[d.2] there exist functions P;(x,y) € N whose Taylor
expansion at 0 coincides with Q;. Let P be the ideal in &' (x, y) generated
by the P;(1 < i < m). We shall prove that the morphism

i:8(y) = E(xy)/P

is finite. This, as we have already remarked, will terminate the proof.
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We now introduce the new variables t = (t;,), | < i <m, [e] <,
and the “generic polynomials”

(1) = ) — D 1igx”,

considered as elements of & (x, y, t). Let I be the ideal generated by I1
in &(x,y,1). Our next object is to prove the following

Lemma 4.3. If f € &(x,y,t), then there exist functions g; € &(x,y,1),
ho € E(y,1) (1 <i<m, [a] <r)such that

flx,y,1) ZH x,1)gi(x,y,1) Z ho(y, 1)x%. 4.1

i=1

Moreover, if f is flat at the origin, the g; and h can be chosen flat at the
origin.
Proof. 1t is clear that every polynomial in x, ¢ is congruent to a sum of

monomials x¥, [@] < r modulo the ideal p generated by the II; in the
ring of polynomials in x, #. Hence the composite

R[7] — R[x,t] — R[x,¢]/p

is a finite mapping, so that, fro each i, x; is integral over R[x,7]/p, so
that there exists a monic polynomial in x;, ¥;(x;,¢) € p. Since clearly
¥i(0,0) = 0, there exists, by the Weierstrass preparation theorem (or
better, the henselian properties of analytic rings), distinguished polyno-
mials

Ri(xj,t) = Xx; +Z¢’J

where the ¢;;(r) are analytic functlons of ¢, which belong to the ideal
generated by p in the ring of analytic functions of x, z. We may obviously
suppose that s is independent of i .

For any f(x,y,1) € &(x,y,t), we now apply the special preparation
theorem and conclude that

fxy,1) = Gi(x,y,0)Ri (x1,1) Z H,, xz,...,xm;y;t)x(ly]

a)<s
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where G1, Hy, € &(x,y,t). If now f is flat at the origin, the uniqueness
of the division algorithm in the ring of formal power series assures us
that G, H,, are automatically flat.

We repeat the process with G, Hy, and divide them by R»(x»;¢) and
so on. This gives us an identity

1=

flx,y,1) = Gi(x,y, xl, Z H,E v, 1) ,

1

where, if f is flat at 0, so are G;, Hg. Since the R; € II, and the XP are
congruent, modulo p, to a linear combination of the x%, [e] < r, this
gives us an identity

m
flx,y,1) ZH’ x,1)gi(x,y,1) + 2 ha(y, )X,
i=1

[a]<r

in which the g;, h, € &(x,y,1), and are flat at 0 if f is. This proves the
lemma.
Now, we have

Qi(x,y) = Mi(x,1) + Z (tie = Ci atpha(¥)) X"

[a]<r

If y;o € &(y) has the Taylor expansion c;, (y), then the difference

Pi(x,y) = Ti(x, 1) = Y (tia — Yia ()X

[a]<r

is flat at O; from Lemma 4.3, it follows that we have a relation

n

Pi(x,y) = Ti(x, £) + > TLi(x, £)gi(x, 3. 1) Z kia(y: )%, (4.2)
j=1

where the g;; are flat and k;, has, at 0, the Taylor expansion #;, — cio ().

Consequently the matrix
Ok;
( i (0, 0))
ot iB
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is the unit matrix (the number of k;,, and that of ¢;, is the same). By
the implicit function theorem, there exist differentiable functions 6;,(y)
such that
kia(y,1) = 0O for all i,
is equivalent with
tia = Qia (y)
If we set t;, = 0;(y) in (£2), we obtain

n

Pi(x,y) = TL(x;0(y)) + D T1;(x,0(y))gij (%, ¥), 4.3)
=1

where the g;; are flat. Consequently, the equations #.3) can be inverted,
so that the functions IT;(x, 6(y)) generate the same ideal P as the func-
tions P;(x,y). If now f € &(x,y), we apply (@.I), and then substitute
i (y) for t;,. We obtain

Fley) = D T0(x,009)8i(x, 3, 000)) + > ha(y,6(y))x"
i=1 [a]<r
This proves that the mapping
i:&(y) = &(x,y)x/P

is a finite mapping; in fact the x* with [@] < r generate &(x,y)/P over
& (). This proves the preparation theorem. ]

Corollary 4.4. Let u : A — B be a morphism of the differentiable
algebra A and B. Let by, ...,b, € B and let by, ...,b, be their images
in B. Then the following conditions are equivalent:

(i) the images of b; generate B/Bm(A) over R;
(ii) the 29\,- generate B over A\;
(iii) the images of b; generate B/Bm(A) over R;
(iv) the b; generate B over A.

(The deduction of this corollary from Theorem H.Ilhas already been
given; see Chapter[III] Corollary [I.7])
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5 Examples. We give now three examples to illustrate how the
preparation theorem, (or rather the corollary above) can be applied.

I. Symmetric Functions. Let o;(x) be the ith elementary symmetric
function of xp, ..., x,, the coordinate functions in R”. Let ¢ : R* — R”
denote the map

¢(x) = (a1 (x),...,0n(x))
and u : &, — &, the induced morphism. It follows at once from the
elementary theorem on the representation of symmetric polynomials as

polynomials in oy, . .., 07, that in the ring &, of formal power series, the
monomials
n_1 s
XX, 0<a; <n—i
generate E, over the subalgebra generated by the images of oy, ..., 07,.
Hence, by the above corollary, these monomials generate &, over the
subalgebra of the differentiable functions of o1, ..., 0,. In particular, if
f € &, is symmetric (i.e. invariant under permutations of xi, ..., x,) we

see, by averaging over the permutation group, that there exists g € &,
such that

f(xty. o xn) =gloy, ..., 00).
Thus, every germ of a differentiable function which is symmetric can
be expressed as a differentiable function of the elementary symmetric

functions.
This result is due to G. Glaeser [3]].

II. The Weierstrass preparation Theorem. Let F(xi,...,x,) € &, be
regular in x, of order p, i.e. F(0,...,0,x,) has zero of order exactly
p at x, = 0. Let B be the differentiable algebra &,/(F), A the algebra
&—1. Letu : A — B be the composite of the injection &,_; — &,

and the projection &, — B. Itis clear that the images of 1, x,, ..., x} !
in B/Bm(A? generate this module over R. By the corollary above, 1,
p

Xn, ..., Xy  generate &,/(F) over &,_;; this means that for any f € &,
there exist functions Q € &, and r; € &,,_ such that

p—1
f=QF + Z riX),.
i=0
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If we apply this to f = x4, we see that since F(0,...,0, x,) has a zero
of order exactly p at x,, = 0, we must have r;(0) = 0, Q(0) # 0, so that

F =gP;

—1

1

where g = a and P = Z rix' is a distinguished polynomial.
i=0

Thus, any function, regular in x, of order p, is equivalent to a dis-

tinguished polynomial in x,, of degree p with coefficients differentiable
functions of x1, , Xy—1.

ITI. GenerIc MaPPINGS R? — R2.

Let X and Y be two copies of R? with coordinates (xi,x;) and
(y1,y2) respectively. Let Q be an open set — X and let F = (fi, f2)
be a C* mapping Q — Y

(a) There exists F’ as near as we like to F in &(€;Y) and having
the following property: at any point (x, x3) € €, the rank of the
mapping F’ (i.e. the rank of its jacobian matrix) is > 1.

In fact, consider the mapping

<5f1 ofi of 3f2) 0 R

é’xl a)CQ axl axZ
By Sard’s theorem I, 7.4 its image has measure 0. Let then
(A1, 2, 43, A4)

be a point not belonging to the image (which we may choose ar-
bitrarily small). We may take

fl=/fi—ixi —xa, fr = fr — A3x; — axa.

(b) Suppose that the rank of F is everywhere > 1. By making Q
small and making suitable changes of variables in X and Y, we
may suppose that fi = x;. We then set f, = f for simplicity.
Let us show that there exists f arbitrarily close to f in &(€;R)
having the following property.

&3
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a !
(G). At any point a € Q where %(a)
2

aZf/
B 5x%

a3f/
5 a_xg

(a) = 0, we have

aZf/
ox 1 (9)@

(a) #0 (a) # 0.

The proof is as before: using Sard’s theorem, one shows that the set
of (A1, A2, A3, A4) € R* for which

f/ =f—Aixa — Axixp — /13)% — /l4xg

does not satisfy is of measure zero.

Using (a) and (b) one proves the following (details are left to the
reader).

Let M and N be two C*™ manifolds of dimension 2 which are count-
able at infinity, and let K be a compact set in M. Let &(M, N) be the
space of C* mappings of M into N with the topology of uniform con-
vergence on any compact set of functions and their derivatives of all
orders (in an obvious sense). Then, the set of mappings in &(M,N)
all of whose critical points on K satisfy (in a suitable coordinate
system) is open and dense.

We shall now look more closely at these critical points. We place
ourselves at 0 in X and Y for simplicity. There are two types which
cannot be reduced to one another.

Tyee 1. 5
0
0 =01 %0 5.1)
0x5
Let us apply Corollary [£.4] to the mapping & — & defined by F. We
find, in particular, that there exist ®, ¥ € &> such that

of

F = (xl’f)’a_x2

X3 = O(xp, f) + 2%(x1, f)x2. (5.2)

We obviously have ®(0) = ¥(0) = 0. Put x) = xo — ¥(x1, f),
¥y = ©(1,y2) + Y2(y1.y2). We deduce from (5I) and (52) that
(x1,x5), (y1,¥,) are local coordinates at 0. In this coordinate system,
our mapping takes the canonical form of Type[ll: fi = x1, f» = x%.

84



Examples

TypE 2.
_ &
(9x§

03 f

b
3
0x;

F =(x1, f), 7(0) (0) =0; (5.3)

Pf

ox 1 &xz

(0) # 0, =L(0) 0.

Applying again Corollary d.4] we can find functions @, ¥, ® € &, such
that

x5 = O(xy, f) + P(x1, £)xa + 30(x1, £)x3. (5.4)

Clearly, ®(0) = ¥(0) = ®(0) = 0. Replacing x; by x, — O(xy, f), we
see that we have again local coordinates on X for which (3.3)) is satisfied,
so that we may suppose that ® = 0.
This being so, the conditions (3.3) and (3.4) show that we may take 81
as coordinates

on X : x'l =Y(x1, f), x/2 =X

onY: yi =¥(yi,y2),55 = ©(y1,y2)
as is easily verified. We obtain finally the canonical form of Type 2}
fi=x1,/=—x1x2+ x;.

The preceding results are due to H. Whitney [25]. The idea of
proving them using the preparation theorem is due to R. Thom. A gen-
eralization is to be found in B. Morin [[14]].
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IDEALS DEFINED BY ANALYTIC FUNCTIONS

1 The main theorem. The main theorem of this chapter is
the following.

Theorem 1.1. Let 0), &, denote the rings of germs of analytic and
differentiable functions respectively and %, the ring of germs at the
origin of collections of formal power series at each point near 0 (see
Chapter [Tl §4)). Let a be an ideal in O,. Then we have

(a%)mé"n:a-gn.

This theorem is obviously equivalent with the following (partition
of unity).

Theorem 1.1. Let Q be an open set in R" and fi, ..., f, analytic func-
tions in Q. Let ¢ € &(Q). Then ¢ can be written in the form

p
Y= fitsi, where y; € £(Q),

i=1

if and only if for any a € Q, the Taylor expansion T,¢ belongs to the
ideal generated by the T, f; in T,&(Q) = 9, (formal power series at a).
For p = 1, see Hormander [6]], L.ojasiewicz [[10]]; for the general cases,
Malgrange [[11]]: see also Palamodov [16]].

For the proof of the theorem, we shall use certain reductions which
are very similar to those used in the proof of the preparation theorem.
We start by stating a more general form of Theorem [Tl N

If Yy < Xy are germs of analytic sets at 0 in R”, let .%,(X) denote
the ring of germs at 0 of collections, at points of 50, of formal power
series. Clearly we have an inclusion &(Xp) < .%,(Xo) where & (Xo)
is the ring of germs at 0 of Whitney functions on Xj. Let .% (Y; Xo)
denote the subring of &(Xy) of functions flat on Y. Then we have
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Theorem 1.2. If a is an ideal in O, we have
a- %(Xo) M 9(Y0;Xo) =aqa- g‘\(YO;X()).

We shall call Theorem for the germs Yy and Xy, Th(Yp, Xo) (we
suppose a given). As in the case of the preparation theorem, we may
reduce Theorem[[.2]to the proof of the following statement:

P(Xo). Given the analytic germ Xy at 0, for any analytic germ Yy <
Xo, Yo # Xo there is an analytic germ Zy # Xo, Yo < Zy < Xo such that
Th(Zy, Xo) is true.

We remark that Theorem 1.2 implies

Theorem 1.2'. If X is an analytic set in an open set Q < R, if fi, ..., f»
are analytic in Q and Y is an analytic subset of X, then for any ¢ €
F(Y;X), there exist functions Y1, ..., ¥, € F(Y;X) such that ¢ =
i if and only if T,¢ belongs to the ideal generated by the T, f; in %,
Joranyace X.

We shall prove P(Xy) by induction on k = dim Xj; we may therefore
suppose Theorem[L.2]]true for any analytic set X — Q whose dimension
at any point is < k.

Now we shall show that it suffices to prove P(Xy) when X is irre-
ducible and a is contained in the ideal p < &), of functions vanishing
on Xy. The proof that we may suppose Xy irreducible is the same as in
the case of the preparation theorem and we do not repeat the argument.
Suppose that X is irreducible and let a ¢ p; let f € a, f ¢ p, and let
Zo = Yo U [X n {x|f(x) = 0}]. Then Th(Zy, Xo) is true as follows from
the next lemma.

Lemma 1.3. Let Q be an open set in R", and f analytic in Q. Let
S = {x e Q|f(x) = 0}. Let ¢ be a function € F(S;Q). Then there
exists ¢ € F(S;Q) such that ¢ = Y f.

Proof. By the inequality of Lojasiewicz and Chapter [Vl Lemma
1/f € #(S;Q). Since ¢ € Z(S;Q), ¢y = (1/f)p € F(S;Q) by
Chapter [Vl Proposition[L.4l This gives Lemma[L.3]

Before going to the proof of P(Xp), we need two lemmas. m|
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Lemma 1.4. Let Q be an open set in R" containing 0, ag, by two ideals 84
in O, Let f = (fi,....fp); & = (&1,...,84) be generators of ay,

by respectively and suppose that they are analytic in Q. Let a,, b, be

the ideals generated by f,..., fp; 81.-..,8q at x € Q. Then, for any
compact subset K of Q and any integer m > 0, there is an integer m’'
such that for any x € K, we have

m’ m
ay Nbycay b,

Proof. Let, for x € Q, m'(x) be the smallest integer m’ such that
" A by c a” by

(such an m’ exists by the Artin-Rees lemma). Now there exist Ay, ..., h,;

()

ki, ..., kg in aneighbourhood U of x, such that the 4 belong to a'y"/ Nby

and generate it for any y € U, while the k belong to ag’/ -b, and generate it

(*x)

foranyy € U. Since dy "/ nb, < a-b,, if U is small enough, there exist
S

analytic functions g;j in U such that h; = ), a;jk;, i = 1,...,r. Then
G

j=1
clearly, since the ; generate ay ™) by, we have a, "' N by < aff - by,
so that m’(y) < m’(x) for y € U. Hence m'(x) is bounded on K, and the
lemma follows. a

Lemma 1.5. Let Q be an open set in R", f an analytic function on Q and
let X = {x € Q|f(x) = 0}. Then any point a of Q has a fundamental
system of open neighbourhoods ), such that Q, — X has only finitely
many connected components, each of which contains a in its closure in
Q.

Proof. We may clearly suppose that a = 0 and that f is a distinguished
pseudopolynomial in x,, which is irreducible at 0. Lety = (x1,...,x,—1).
The discriminant of f has a germ at 0 € R"~! which is not zero. If
Q=0 x Q" Q cR"! Q" c R, suppose that the lemma is already
proved for the set ¥ = Q', ¥ = {y € Q/|A(y) = 0}. Let Q), be a funda-
mental system of open neighbourhoods of 0 € R"~! such that Q;, —Y
has k, components U, which contain O in their closures. Let I, be
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85 an open interval whose length — 0 as p — o0 such that f(y,x,) = 0,
y € Q) imply x, € I, and let Q, = Q) x I,. To show that Q, — X
has only finitely many components each adherent to 0, it is enough to
prove the same of Q, — X — (Y x I,,). Now, the number of real roots of
f(y,x,) = 0is constant = s, say, on Up,; let 71(y) < ... < 74(y) be
these roots. Then the connected components of Q, — X — (Y x I,,) are
the sets

{0 X))y € Upp,1i(y) < X0 < 1ip1(0)},

where we have set 79 = —0, 751 = +00. Since 7;(y) — 0asy — 0,
(1 < i< s) the lemma follows.

We now go to the proof of P(Xp). We use the notations of Chapter
[Vl §3 and we may suppose, as in the preparation theorem, that there
is an analytic set Y/ < V' such that Y = (¥’ x V") n X. Let 6 be the
set {x' € V/|A(x') = 0}. Let Z/ = Y’ U 6, and suppose that V' is so
chosen that V' — Z’ has only finitely many connected components, each
adherent to zero. Let Z = X n (Z' x V”). Then the same is true of X — Z,
in fact, any component U’ of V' — Z' is contained in a set V,, and the
components of X — Z are the sets {(x', x")|x' € U', X" = ®°(x)}, for
any s <r.

We suppose that Q is an open set containing V and that p is generated
by functions fi, ..., f, analytic on Q. Let, for x € Q, p, denote the ideal
at x generated in the ring of analytic functions at x by the f;. Finally let
%, denote the ring of formal power series at x. |

Now we make the following remark:

(1.6) If ¢ is a germ of C*°-functions on X, at a € X —Z and the “normal
derivatives” of ¢ vanish upto order m (i.e. Di,/qﬁ =0for1eN, |1 <
m), then the Taylor expansion of ¢ at a belongs to p;; .z,

This is a trivial consequence of the fact that, in &, the ideal gener-
ated by P(xx41;x") and Axgy j — Qj(xk1; x’) coincides with the ideal of
germs vanishing on X. Suppose now that q is any ideal in &, generated
by functions g1, ..., g, analytic in Q, g < p. We identify . (Z; X,) with
[7((V'=V,)uZ'; V)]V (by Chapter[[V] Proposition5.3). Let 1 € N, 86
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and g? = (D%,g;)(x',@"(x')). We prove first the following

Lemma 1.7. Suppose ¢ = (¢') € [ (V' — V,) v Z; V)|V, and sup-
pose that the Taylor expansion of ¢* at any point a’ of V, belongs to the
ideal generated in F, by the g?. Then there exist functions ¢;¥, u<Aa
such that we have

o' = i > (1> g} Myl for ' < A

j=la<d H

Proof. 1f all the gj, u < A vanish on V, we have nothing to prove.

Otherwise, let x’ be a point at which the matrix (gjlf” ,) has maximal
rank (indices being A’ and the pairs (1, j) say p and let A’ be a p x p
submatrix of (gj ) whose determinant at X’ if non-zero. Let A denote

the corresponding p x p submatrix of (D;l:,_“ / gj)- Then, clearly det A +#
0 at the point (¥, ®"(x’)). Let S be the set of points of X where det A
is zero. We assert that dim S is < k at every point. In fact, since every
component of V/ — Z’ is adherent to 0, the projection of § contains no
neighbourhood of 0 in V’. Hence the germ of S at 0 is < Xy, # Xo,
so that the dimension of S is < k at every point of X — Z since every
component of X — Z is adherent to 0, so that S can contain no such

component.

To prove Lemma[I.7] we use now the following simple generaliza-
tion of Lemma[L.3l O
Lemma 1.8. Let hy, ..., h, be p-tuples of analytic functions on the con-

nected open set 0 < R”", which are linearly independent at some point
of Q. Let M be the set of points of Q where they are not linearly inde-
pendent. Then for any p-tuple ¢ of C*-functions flat on M, there exist
functions y;, 1 <i < p, flat on M, such that

P
¢ = ik,
i=1

Moreover, the ; are flat at any point of Q — M where ¢ is.
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The main theorem

Lemmal[l7]is an immediate consequence of Lemma[L8lif the func-
tion ¢ is flat on §'.

Since, by assumption, the system under consideration is soluble at
every point, and A’ is a submatrix of maximal rank outside the projection
of § n X, on V,, it is sufficient to solve the square system

/7 /l, /1/_ /II_ /
¢ =2 (/Jgj "W whete (g ) = A,

Jot

with the Wj‘ flat on the projection of S N X, on V’; the other equations in
the system are then automatically satisfied.

To prove Lemma[l.7] we proceed as follows. Let ¢; € .#(ZnS;S)
be the restriction of ¢ to S. By the inductive hypothesis and Theorem
[L2]] there exist ¥; € .7 (Z N S;S) such that

¢1 = Zygiin &(S).

Let ¢ € .#(Z; X) be such that their restrictions to S are the y; (this
is possible because any two analytic sets are regularly situated); and let
¢’ = Zgip). Then ¢ — ¢’ € I (Z n S;X) and we may apply the above
result to ¢ — ¢'. Since Lemma [[.7 is true for ¢ — ¢’ and for ¢/, it is
clearly true for ¢.

We now go back to our ideal a = p, and suppose that it is generated
by functions analytic on Q; then clearly Lemma[I[.7]is true for the ideal
qm = P - a for every m > 0. Suppose m’ = m’(m) so chosen that

pT/ naycpl-acforxeV (Lemmalld). (1.9

Lemma[I7]and the assertion (L.6) show that the following holds

(1.10) If¢p € F#(Z;X,) and ¢ is m'-flat on X,, then there exist, for any
A e N/, functions gb? € Y (Z; X,) which are m-flat on X, such that

p /
N 2 > (i)fj’“w; for ' < A. (1.11)
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It is now easy to complete the proof of P(Xp). Given ¢, it suffices to
findy; € J(Z'; X,) with ¢ = ) fi;, since the X, are regularly situated.
We write ¢ in the form ¢ = ¢ +¢» + - - - where ¢ € #(Z; X,), and
the component ¢ # 0 only if m’(k) < || < m/(k + 1) [where m’ (k) is
defined by (L.9)]. There exist functions zp’; pE I (Vi =V)uZivh,

P
| < m'(1) such that ¢, are O-flat on X,, and ¢1 — >} fipj1 is m'(1)-
j=1

)4

flat. Let q% = ¢1 + ¢ — D ¥j1f;. We can, as before, find functions
j=1

W2 € F(Z; X,) which are 1-flat on X, such that

P
o1+ 2 — Z Filin + ¢j2) is m'(2)-flat.
=1
By induction, we find ¢ jx € .#(Z, X,), ¢ ji being (k — 1)-flat on X,

such that

14
Sr+¢a+ to— > fun ) is m (k)-flat.

j=1

o0

Clearly y; = > ¥k € F(Z;X,) (since ¢y is (k — 1)-flat) and ¢ =
k=1

P

2 Wi

j:

This proves P(Xp) and hence the main theorem.

Corollary 1.12. &, is a faithfully flat 0,-module.

We have seen already that % is a faithfully flat &,-module (Theo-
rem III, 4.12). Therefore. the corollary results from Theorem [L.] and
Proposition 111, 4.7.

2 A remark concerning the Lojasiewicz inequal-
ity, LetQe R'and f € £(Q). Let X = {x € Q|f(x) = 0}. We
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Differentiable functions vanishing on an analytic set

assert that if f&'(Q) is closed, then for any compact K — Q, there exist
constants C, @ > 0 such that

|f(x)| = C{d(x,X)}* for x € K. 2.1

In fact, suppose & (Q) closed. Then, by Banach’s theorem, to every
compact set K < Q and m > 0, there exists a compact set K’ < Q and
m' > 0 such that if g € f&(Q), there exists a ¢ € &(Q) with Y f = g
such that

w|K < ClglK), € independent of g. (2.2)

If xo € K, we may find g € &(Q), g(xp) = 1, g = 0 in a neighbourhood

of X such that
A

= W)
where A > 0 and p > 0 are independent of x(, but depend only on K,
K'. 2.2) clearly implies that

I

f‘ xo,x>}p;

sup
in particular
{d(x0, X)}7
=z — .
|f (x0)] AC

Next we give an example to show that the situation for non-analytic
functions is rather complicated.

Let ff =2 +e 1% ¢ &(bfR?) = &. Then f*& is not closed,
but f~& is. In fact f dzoes not satisfzy (2.J) in any neighbourhood of 0.
Since f~ = (y+ e /2 ) (y — e 12 = fi f, » we have only to prove
the theorem for f,, f,” separately. But, by a change of coordinates,
these functions can be made linear.

3 Differentiable functions vanishing on an analytic
set. The results of this paragraph are based on the following theorem:

Theorem 3.1 (Zariski-Nagata). If the analytic algebra A is an integral
domain, so is its completion A.
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For the proof, see e.g. Houzel [8]] or Malgrange [[13]].

Here are some immediate consequences (in the statements A is an
analytic algebra and A its completion).

(3.2) Ifpisaprime ideal of A, = Ap is prime. (Apply (BI) to A/p).

(3.3) Let q be an ideal of A and vy, . .., ps the minimal prime ideals in

the decomposition of q. Then Py, ..., Py are the minimal prime ideals in
the decomposition of q.
In fact, one is reduced at once to the case q = {0}; py,..., b are

then the minimal prime ideals of A. Letus putt = py n  np,. Itis
well known that 1 is the set of nilpotent elements of A and that for a
certain n, one has 1" = {0}.

By Proposition III, 4.5 and Theorem III, 4.9, we have T = p; N
NPs. On the other hand, we have obviously ™ = {0}. Suppose that
J is a prime ideal of A, and let us suppose, for example, that p; ¢
3., Ps—1 ¢ 3. Leta; € proa; ¢ 3; (1 <i<s—1). Forany x € py,
we have

(ay...a;1x)"=0€3,

whence x € 3. Hence p; < 3, which proves (3.3)
(B3) shows in particular that if A is reduced (i.e. has no nilpotent
elements), then A is reduced.

Definition 3.4. Let X be a subset of R" adherent to 0, and let g be a
function of class C* in a neighbourhood of 0. We say that g has a zero of
infinite order on X at 0 if, for any p € N, there is a neighbourhood U, of
0 and a number C,, > 0 such that, on X n U, we have |g(x)| < Cp|x|P.

The above property depends only on the germ Xo of X and on the
Taylor expansion of g at 0. The set of these Taylor series forms an ideal
in .%, which we call the “formal ideal defined by X (or X,)”” and denote
J(X).

Theorem 3.5. Let X be an analytic set in a neighbourhood of 0 in R”,
and let 1(X) be the ideal in O, of germs of analytic functions vanishing

—_—

on Xo. We have I1(X).F, = 1(X) = J(X).
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It is sufficient to prove this theorem when X)) is irreducible. In fact,
if X = X" u X", we have

I1(X) =1(X") nI(X").
By Proposition 111, 4.5 and Theorem II1, 4.9, we deduce that

e~ —

[(X) = I(X') ~ I(X").

On the other hand, we obviously have J(X) = J(X') n J(X"); hence if 91

the theorem is true of X/, X”, it is true of X.

Suppose then that Xj is irreducible. Set dim X = k, and let us go
back to the notation of Chapter [l §3I The mapping 0y — &, /I(X)
defined by xi,...,x; is finite and injective, and hence the “intrinsic”
topology of 0, /I(X) coincides with its topology as O-module. From
the exactness properties of the completion, we deduce from this that
the mapping %, — %,/ I()?) defined in the same way as above is still

—_—

injective; this mapping is finite by (IIL, 1.6). On the other hand, I(X) is
prime (by (3.2)). Let us apply Proposition III, 5.4 to

— —_

A=9LB—%,/I(X),p={0},q=J(X)/I(X).
We find that, to prove the theorem, it is sufficient to verify that one has
J(X) n F = {0}.

(% is considered as imbedded in .%,). This amounts to proving the
following:

Any function f(xy,. .., xx) of class C* having a zero of infinite order
at 0 on X has a Taylor series which is identically zero.

Let U be the (germ at 0 of the) set of points of R¥ — § which are
images of points of X under the projection (¥',x") — X' (ie. U =
| Vi; the notation is that of Chapter[[V]). There isa C > 0, and p > 0

s=1
such that, on X we have |x”| < C|x'|P. Hence f, considered now as

a function on R¥, has a zero of infinite order at 0 on U. Changing the
notation, we are led to prove the following proposition.

//‘
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Proposition 3.6. Let Q be an open set in R¥, 0 € Q, and ® be an
analytic function in Q with ®(0) = 0, ® # 0, and let D be the set
of zeros of ®©. Let I be an open and closed subset of QO — D which is
adherent to 0. Then we have J(T') = {0}.

To prove this proposition, we shall proceed as follows. We shall
suppose that @(0, ,0, x) is not identically zero near 0, and shall show
that, under this condition, any f having a zero of infinite order on I" at 0
satisfies

olf

3 (0....,0) = 0¥g e N,
k

This implies the required result: in fact, the set of lines through 0 on
which @ is not identically zero near O is an open dense set in the set of
lines through 0. Since, by a linear change of coordinates, we can take
any one of these lines as Ox; axis, it follows, by an elementary argument,
that all the derivatives of f are zero at the origin. One has thus J(I') = 0.

Suppose, then, that ®(0, ..., 0, x) is not identically zero in a neigh-
bourhood of 0. By making € smaller, we may suppose that @ is a distin-
guished polynomial in x;, whose germ ®q has no multiple factors. We
have then

ai(x1,...,xk_1)xp7i

— P
O =x + T
1

P
=
the a; being analytic in Q with @;(0) = 0, I < i < p, and the discrimi-
nant A of @ is not identically zero near 0.

For x = (x1,...,xk), set x = (x/,x;) and pr(x) = x'. Let Q' be a
neighbourhood of 0 in R¥~! such that the conditions

Yed,0,z)=0,zeC,

imply that |z| < 1, and, if z is real, that (x,z) € Q. Let 6 be the set of
zeros of Ain Q' and V/ < Q' an open neighbourhood of 0 in R*~! which
is relatively compact in Q. By the inequality (IV, 4.1) of L.ojasiewicz,
there exists C > 0 and @ > 0 such that

VX' e VI |AX)| = cd(¥,6)".
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Differentiable functions vanishing on an analytic set
If z',..., 27 are the roots of the equation ®(x’,z) = 0, we always have
|z —7/| <1, hence |7 — 7/| = Cd(¥,6)%if i # ;.

We may suppose that, n addition to the conditions imposed above,
we have Q = Q' x (—a,a),a > 0. For X’ € Q, the interval {x'} x (—a, a)
is decomposed into at most p + 1 intervals by the zeros of ®(x’, z), and
we always have
o(x', +a) # 0.

This implies that y = pr(I”) — ¢ is open and closed in Q' — &; further y
is clearly adherent to 0. For any x’ € , the set pr~!(x') n T contains at
least one of the preceding intervals; we denote the origin of this interval
by b(x'), its extremity by c¢(x'). If —a # b(¥'), a # c¢(¥'), b(x'), ¢(¥)
are distinct (consecutive) zeros of @, hence, for x' € V/ we have

c(xX') = b(¥') = Cd(x.,5)". (3.6.i)

If we have b(x') = —a, ¢(x’) # a, we replace b(x) by ¢(x')—Cd(x', 6)*
(which — 0 as X — 0, so that, if V' is small enough, this is > —a); we
proceed in a similar way if b(x') # —a, ¢(X) = a. If b(X) = —a,
c(x") = a, we replace b(x’) by 0 and c(x') by Cd (X', 5)“.

After these modifications, the inequality (3.6.1) is valid at any point
of V', and there exist constants C’ > 0, @’ > 0, such that Vx’' € V', we
have

b(x)], le(x')| < C'¥|”. (3.6.i)

Lemma 3.7. With the hypotheses of the preceding proposition, there
exists a sequence {xl} of points of T, xl — 0, and numbers C" > 0,
a” > 0 such that

IX'| < C"d(x, D)*" VL.

Proof. This lemma is obvious if £k = 1. Suppose the lemma verified for
k — 1. Tt is sufficient to find a sequence x’ of points of I, tending to zero,
such that

| < ")
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By induction, there is a sequence x’ Lof points of y satisfying

v

| < C"d(x", ) (3.7

One verifies easily that the sequence

o (x/z b+ c(x”>)
2

has the required properties: it is sufficient to estimate from below the
distance of x! from the roots of ®(x’ L z) = 0. For the real roots, this fol-
lows from (3.6.1), for the imaginary roots from the estimate from below
of the imaginary part of a root in terms of A(x’). The lemma follows.

We apply this lemma to A and y (instead of @ and I as in the state-
ment). There is a sequence of points x’ Lof points of y, x’ "o, satisfy-
ing 37). Divide the interval [b(x""), c(X’")] into ¢ equal intervals with
extremities

bo(x") = b(x'"), by (X)), ... by (x") = c(x)

and consider the expression

(b1 = bo
. . of
As | — oo, this expression tends to W(O)' On the other hand, the
X
k

inequalities (3.6.1), (3.6.1i), (3.77) and the fact that f has a zero of infinite
order at 0 on I" show that this limit is 0. Thus we have

o4
—];(0) —0 VgeN,
0x;
which proves Proposition 3.6 and hence Theorem 3.3 i

Remark 3.8. Let X be a subset of R”, adherent to 0. Besides J(X), we
may consider also the ideal J'(X) < .%, of Taylor series at 0 of functions
f € &, vanishing on X. We have J'(X) < J(X). If X is an analytic set,

we have I(X) < J'(X). Hence, by 3.3), J(X) = J'(X) in this case.
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We shall examine now what one can say about differentiable func-
tions vanishing on an analytic set, and not just about their Taylor series.

Definition 3.9. Let Q be an open set in R" and X an analytic set in Q,
a € X. We say that X is coherent at a if there exists a neighbourhood
Q' of a and a finite number of analytic functions f;(1 < i < p) in &,
vanishing on X and having the following property:

For any b € Q', the images of fi,..., [, in O (the ring of germs of
analytic functions at b) generate 1(Xp).

Contrary to what happens in the complex case, this property is not
verified for all analytic sets. The simplest counter-example is the “um-
brella” x3 (x% + x%) = x? which has the line x; = x» = 0 as isolated
generator, and so is not coherent at 0.

Theorem 3.10. Let X, be a real analytic germ at 0 in R", I1(Xy) its an-
alytic ideal, and let K(Xy) its analytic ideal, and let K(Xo) be the ideal
in &, of C* functions vanishing on X,. Then the following properties
are equivalent.

(@) K(Xo) = 1(Xo)én.
(1) Xo is coherent at 0.

Proof. (ii) = (i). Let Xo be coherent at 0 and let X be a representative
of Xy in a neighbourhood Q' of 0 with the property given in (3.8)). Let
$ e EQ), ¢ = 0on X. By BI), for any b € Q, Tpo is a linear
combination of the T}, f;. Hence, by (L1}, ¢ is a linear combination of
the f; in &(Q).

(i) = (ii) (Tougeron [22]]). Suppose that X, is not coherent. Let
fi...., fp be generators of 1(Xy), Q a neighbourhood of 0 in which the
f; are defined, and set

X={xeQlfi(x) = = fp(x) =0}

Since Xj is not coherent, there is a sequence {x'} of distinct points
of X, x! — 0, and a sequence of functions g’ defined near x/, such that,
for each /, g’ is not a linear combination of the f;. Let {¢'} be a sequence
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of functions € &(Q), ¢! = 1 near x, having compact support in Q and in
the set where g’ is defined such that the supports of ¢/, qﬁl/ do not meet if
1# 1. Leth! = ¢'g!, extended to Q by 0. By an argument which is well
known in the theory of Fréchet spaces (which we leave to the reader) we
can find a sequence {1’} of real numbers # 0 such that the series XA'A/
converges, in &(Q), to a function g. The germ gp € &, of g at 0 is not a
linear combination of the f; in &, whence the theorem.

We refer to Malgrange [[13]] for applications of Theorems and
to complex analytic sets. In conclusion, let us note another appli-
cation of Theorem i

Proposition 3.11. Let Xo be an analytic germ at 0 in R" with dim Xy =
k. Suppose that Xy contains the germ Vi of a C* manifold of dimen-
sion k. Then Vy is the germ of an analytic manifold (which is then an
irreducible component of Xy).

Before giving the proof, we give two examples.

Example 3.11.1. If X, is a C* manifold, it is an analytic manifold.
However, one sees easily that even for n = 2, if we replace C* by
C’(r € N), the statement is no longer true.

Example 3.11.2. Let ® € 0,1, ® # 0, and let f € &, f(0) = 0 satisfy

(I)(xl,...,Xnyf(le""Xn)) = 0'

Then f is analytic [take for X the set defined by ®(xy,...,x,+1) = 0
and for V that defined by x,,+1 = f(x1,...,x,)].

Proof of the Proposition. Denote by I(Xy) the analytic ideal of X and
by J(Vp) the formal ideal of V. The structure of J(Vp) is obvious
because of our hypothesis that Vj is non-singular. On the other hand,

—

I(Xo) < J(Vy), hence I(Xo) < J(Vp). Since

—_

dim(Z,/1(Xo)) = dim(F,,/J (Vo)) = k.

—_

J(Vp) is a minimal prime ideal in the decomposition of 7(Xp). By (3.3,
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there exists a prime ideal p < &), with
p o 1(Xo),p = J(Vo).
There remain two things to be proved.

(1) The germ Wy defined by v is an analytic manifold of dimension k.
(This is an easy consequence of the Jacobian criterion for regular
points; we leave the details to the reader.)

(i1) We have Vy = W,

By an analytic change of coordinates, we may suppose that Wy is
defined by equations x;+; = ... = x, = 0. On the other hand, Vj is
obviously tangent to W of infinite order at 0, hence defined by equations

Xkgj = Praj(X1se ooy Xk)s Prsj € Eky dirj flat at 0.

Suppose that Wy # V. Let X(’) be the union of the irreducible com-
ponents of Xy different from Wy, and let g(xy, ..., xx) € Oy be a function
not identically zero, which vanishes on X{j n Wy. Let D be the set of ze-
ros of g, and U be the set of points of R” — D near 0, for which we do
not have ¢p1(x1, ,x¢) = ... = @p(x1,...,x¢) = 0. U is clearly open
and closed in R" — D near 0 and is adherent to 0. Let f be a function
€ O, vanishing on X(’). In particular, f vanishes on Vo — Wy. Hence
f(x1,...,x,0,...,0) has a zero of infinite order at 0 on U. By Proposi-
tion[3.6 f has a Taylor series which is zero at 0, hence is itself 0. Hence
f vanishes on Wy, contradicting the fact that Wy ¢ X(’). The proposition
follows.
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VII
APPLICATIONS TO THE THEORY OF
DISTRIBUTIONS

1 Support of a distribution. Continuable distri-

butions. Let Q be an open set in R”. We denote by 2’(Q) [resp.
21(Q), 2" (Q), 2""(Q)] the space of distributions [resp. with compact
support, of order m, of order m with compact support] in Q (L. Schwartz
[18]). It is known that Z/(Q) [resp. 2’ (Q)] is the dual of &(Q) [resp.
&™(Q)] with its topology of Fréchet space that we have considered in
Chapter [l

Let X be a closed subset of Q. We denote by 2'(X) [resp. Z.(X),
2" (X), 2" (X)] the subspace of the corresponding space of distribu-
tions in Q having support in X. Let us show that Z/(X) [resp. Z'% (X)]
is the orthogonal of .7 (X; Q) (resp. .#"(X;Q)). In fact, by the defini-
tion of support, Z/(X) is orthogonal to the set of f € &(Q) which are
zero in a neighbourhood of X; on the other hand .# (X; Q) is the closure
in &(Q) of this set (Proposition I, 5.2). For 2'"(X), the same argument
applies.

It follows from this that Z/(X) [resp. 2’ (X)] can be identified
naturally with the dual of 2(X) = &(Q)/7(X;Q) [resp. &"(X) =
EM(Q)/I™(X; Q).

Let now Y be another closed set in Q with Y < X. Set 2/(Y;X) =
7'(X)/2'(Y), Z\(Y:X) = D.(X)/Z.(Y). The space &'(Y; X) can be
interpreted as the space of distributions on Q — Y, with supportin X — Y,
which can be continued to a distribution on Q (which, then, necessar-
ily has support in X) and Z.(Y; X), can be interpreted analogously. If
we consider Z/(X) as the dual of &(X), then Z.(Y) < Z.(X) is the
orthogonal complement of .# (Y; X) (same reasoning as above). Hence
P!(Y;X) is the dual of . (Y; X), the latter space being equipped with
the topology induced from & (X).
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Division of distributions

Let now X and Y be two arbitrary closed sets in Q. Consider the 99
sequence introduced in (I, 5.4):

0>EXu)SEX)DEY) D EXAY) 0. (1.1)
The transposed sequence is
0 ZUXnY) 5 ZX) @ 2UY) 5 ZUX 0Y) » 0 (12)

where 7* is (up to sign) the diagonal mapping 7*(T) = (T, —T) and
where 6*(T,S) = T + S. From the properties of (II) and the theory
of duality in Fréchet spaces, we deduce at once that 7* is injective, that
ker 6* = im7* and that im 6* is dense in Z.(X UY). Moreover, for 6* to
be surjective (i.e. for (IL2)) to be exact) it is necessary and sufficient that
im ¢ be closed, i.e. that (LI) be exact. Finally, by a partition of unity,
we see that the exactness of (I2)) is equivalent to that of the sequence:

0->2XnY) S 27X @2'(Y) S 2(Xoy) -0, (13)

7’ and ¢’ being defined in the same way as 7* and 6*, and this is equiv-
alent to the surjectivity of §’. Consequently

Proposition 1.4 (Lojasiewicz [10].). Under the above hypotheses the
following properties are equivalent.

(i) X and Y are regularly situated.

(ii) The sequence (I3)) is exact.

(iii) The mapping & is surjective: in other words, every distribution
TeP'(XUY)canbewritten T = S| + S, with support (S1) <
X, support (S,) < Y.

2 Division of distributions. The statement dual to Theo-
rem VI, 1.1 is the following.

Theorem 2.1. Let Q be an open set in R", Y < X < Q two ana-
Iytic subsets of Q, and let fi,..., f, be analytic functions on . Let
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T\,...,T, € Z'(Y;X). Then a necessary and sufficient condition that
there exist S € P'(Y;X) satisfying fiS = Ti,...,[,S = T, is the
following.

(R). For any a € X — Y, analytic relations between the f; at a are
relations between the T;, i.e. if g1, . .., gp are germs of analytic functions
at a, then g1fi + -+ + gpfp = 0 implies that g$\T1 + --- + g,T, = 0
near a.

Remark 2.2. Using the global theory of coherent analytic sheaves on a
real analytic manifold, this condition can be replaced by the following :
if g1,...,gp are analytic in Q, then g1 f1 + -+ + g,f, = 0 implies that
g1l +---+gpTy,=0.

Example 2.3. Take Y = ¢, X = Q. Given T € 2'(Q) there exists
S € 2'(Q) with fiS = T. In other words, “the division of a distribution
by an analytic function is always possible”. This theorem was proved
for p = 1 (before the general case) by Hérmander [6] when f is a
polynomial, and f.ojasiewicz [10].

Proof of Theorem 2.1 It suffices to prove the theorem for 22/(Y; X)
instead of 2?'(Y; X), as one sees using a partition of unity. Consider the
mapping

F: Z(Y;X) > [Z.(Y; X))
defined by F(S) = (fiS,.... f»S). We shall prove that the image of F
is closed and that it is dense in the set E of (T, ..., T)) satisfying ((R));
one would then have im(F) = E. The transpose of F is the mapping

F*: [2(YV:;X)]P - Z(Y;X)

defined by F*(¢1,...,¢p) = fig1+- -+ f,¢,. Theorem VI, 1.2 implies
that the ideal generated in . (Y; X) by the f; is closed; hence im(F*) is
closed. By transposition it follows that im(F') is closed.

We now prove that im(F) is dense in E. It suffices to show that
forany ¢ = (¢1,...,¢,) € [Z(Y;X)]? which is orthogonal to im(F),
we have fi¢) + --- + f,¢, = 0. By a partition of unity, it suffices
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to examine the ¢ with compact support in a given neighbourhood of «
(a being any point of Q). Now, Corollary VI, 1.12 shows that we can
find analytic relations g(!), ..., ¢(") between the f in a neighbourhood
of a and functions ¥, ..., ¥, € &(Q) with compact support in the given
neighbourhood of a such that ¢ = Zy jg(j). One deduces at once that ¢
is orthogonal to E, and the theorem follows.

The preceding theorem can be interpreted in terms of the concept of
injective modules.

Let A be a (unitary, commutative) ring, and M a unitary A-module.
M 1is called injective if, for any ideal 3 < A, the natural mapping
M ~ Homy (A, M) — Homy(3J, M) is surjective. We take a system
(fi)ier of generators of I and a family (7;);c; of elements of M such
that every relation between the f; with coefficients in A is also a relation
between the T;. Then u : f; — T; defines an element of Homy (3, M)
and conversely. To say that M is injective amounts therefore to saying
that in this situation, there is an S € M such that f;S = T; for each i.
This being the case, Theorem[2.1] the noetherian nature of &, and Oka’s
theorem III, 4.12 [in the form (III, 4.14)] give us the

Theorem 2.4. Let Xo, Yo be germs of analytic sets at 0 € R" with Yy
Xo, and let 2'(Yy; Xo) be the space of germs induced at 0 by (Y :
X) (Y, X being representatives of Yo, Xo near O with Y < X). Then
P (Yo; Xo) is an injective O,-module. In particular, the space 9, of
germs at 0 of distributions is an injective O,-module.

Remark 2.5. With the hypotheses of Theorem[2.1] let /() be the ring
of real valued analytic functions in . Then, using Remark one
shows easily that Z’'(Y;X) (and in particular 2’(Q)) is an injective
0 (Q)-module.

3 Harmonic synthesis in .. we being by giving the
statements dual to those given in Chapter [l

Proposition 3.1. Let Q be an open set in R" and V a sub-&"(Q)-module
of 2" (Q) which is weakly closed. Then, in V (with the weak topology
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induced from 2" (Q)) distributions with point support form a total sys-
tem.

The same statement is true with 2'™(Q) and &™(Q) respectively
replaced by 9'(Q) and & (Q).

The proof, which is immediate by transposition and partition of
unity, is left to the reader.

In the case of &(Q) and 2'(Q), the result is true even with the strong
topology, since these spaces are reflexive. We remark that, using a parti-
tion of unity [or directly, using II, 1.7], we see that these results are true
if Q is any C* manifold countable at infinity.

This being the case, let . be the space of C* functions on R”
which, together with derivatives of all orders, tend to zero faster than any
negative power of x% +  +x2. Let R* — S" be the natural mapping of
R” into the n-dimensional sphere (§” being obtained from R" by adding
a point co at infinity). This mapping identifies . with .# ({c0}; S"), and
the usual topology of . is compatible with this isomorphism. The dual
" of . can be identified then with &' ({o0}; S") = P/ ({0};S"). We
look upon this space as imbedded in 2'(S" — {0}) = Z'(R").

Let V be a (weakly or strongly) closed sub-.#-module of .’ (the
two being equivalent since .7 is reflexive). We show that distributions
with point support form a total set in V. Let V be the inverse image of
Vin 2'(S"). It is sufficient to show that V is closed (which is obvious)
and that it is invariant under multiplication by any f € &(S"). Now, if
f e F({oo};S") this is true by hypothesis. If f is arbitrary, we show
that any ¢ € &(S") orthogonal to V is orthogonal to f 1% given such a
@, it is orthogonal to 2’({o0}), hence ¢ € . ({0};S™). Hence there is
a sequence {ay} of functions in &(S"), zero in a neighbourhood of oo,
such that f¢ = lim ay f¢ (cf. proof of Lemma I, 4.3). Hence, for 7' € v,
we have

UT.¢) =<T. f¢) = im(T, arf¢) = im{(aw f)T.$) = 0

and the result follows. [The same reasoning would apply to Z2/(Y; X),
Y < X being any closed sets of a manifold.]
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By the Fourier transformation, one knows that .7 is transformed
into ., ./ into .¥’, and that multiplication transforms into convolu-
tion. One deduces easily the following : If V is a closed sub-.#’-module
of ./, its Fourier transform V is a vector R-subspace of . which is
closed and invariant by translation, and conversely. Further, the Fourier
transforms of distributions with point support are the “exponential poly-
nomials”, i.e. the functions x — P(x)e"*", where P is a polynomial
and A € R". Thus one has the following result.

Theorem 3.2 (Whitney-Schwartz; cf. Schwartz [19])). In any vector
subspace of .#' which is closed and translation invariant, exponential
polynomials form a total system.

One knows, on the other hand, that this statement is false in L* (R")
with the weak topology (Schwartz for n > 3: Malliavin for n = 1,2).
One conjectures that it is true in & (R") [it is then necessary to take
“complex” exponential polynomials, i.e. 4 € C"], but, at present, this
has only been proved for n = 1 (Schwartz [20]).

4 Partial differential equations with constant co-

efficients. Let P, = R[X),...,X,] be the polynomial ring in n
indeterminates. We shall consider it, at least at the beginning of this
section, as imbedded in the ring of analytic functions on R" by the map-
ping X; — x;, the x; being the coordinates in R". Let fi,...,f, € P,
and T1,...,T, € /' (R"). We first prove the following result.

There exists S € " with fiS = Tj, 1 < j < p, if and only if the
Jollowing condition is verified.

(R): at any point a € R", the analytic relations at a between the f;
are relations between the T j in a neighbourhood of a.

For this, consider R” imbedded in S” as in §3] and let us identify .7’
with 2’ ({o0}; §"). It is enough to prove the result in the neighbourhood
of any point a of S” (partition of unity). If a # oo this follows from The-
orem 2] If a = oo, we make the change of variable y; = x; /Zx%, and
remark that, if m is large enough, (y?)™ f; is a polynomial in y1, ..., yu;
the result follows then again from Theorem 2.11
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Let us remark that the condition (R)) is equivalent to the following.

(R). Relations between the f; with coefficients in P, are relations
between the T; (i.e. Zg;f; = 0, g; € P, implies that Xg,;T; = 0).

In fact, if we denote by 0,(a € R") the ring of germs of functions
analytic at a, we know that @, is flat over P, [III, (4.11)]. Interpreting
flatness in terms of relations, we see at once that (R) = (R]). From this
and the fact that P, is noetherian, we deduce (arguing as in the proof of
Theorem [2.4))

Theorem 4.1. P operating on .’ by X;,T = x;T makes of /' an injec-
tive P,-module.

By the Fourier transformation, we deduce
oT
Theorem 4.1. If P, operates on .7 by X;T = P " is an injective
Xj

P,-module.

Example 4.2. Let f € P, and 6 € .’ be defined by {5, ¢) = ¢(0). Then

. . 0
there exists E € ./ with f (é’_ E = 6. In other words, every linear
.
J
differential operator with constant coefficients has a temporate funda-
mental solution (i.e. one in .#’). This is mainly of historical interest
(the condition E € . is artificial; see Hormander for a discussion
of this question). We have, however, given this here because it was the

origin of a large part of the results contained in this book.
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