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WHITNEY’S EXTENSION THEOREM

1

1 Notations. R denotes the set of real numbers, N denotes the

set of natural numbers. For any open set Ω in Rn, E mpΩq (resp. E m
c pΩq)

denotes the space of all Cm-real-valued functions in Ω (resp. with com-

pact support inΩ). We omit m when m “ `8. WhenΩ “ Rn, we write

E m, E m
c instead of E mpRnq, E m

c pRnq. k “ pk1, . . . , knq in Nn is called an

“n-integer”. We write |k| “ k1`¨ ¨ ¨`kn (order of k), k! “ pk1!q . . . pkn!q.

We order Nn by the relation: “k ď l if and only if, for every j, k j ď l j”;

we write
`

l
k

˘
“

l!

k!pl ´ kq!
if k ď l and sometimes

`
l
k

˘
“ 0 if k ą l. For

x P Rn, |x| denotes the euclidean norm of x.

Let K be a compact set in Rn and consider all F “ p f kq|k|ďm where

f k are continuous functions on K. Any such F is called a jet of order

m. Let JmpKq denote the space of all jets of order m provided with the

natural structure of a vector space on R. We define |F|K
m “ sup

xPK
|k|ďm

| f kpxq|;

we write sometimes |F|m instead of |F|K
m.

We write Fpxq “ f 0pxq for all x in K, F in JmpKq. For |k| ď m, Dk :

JmpKq Ñ Jm´|k|pKq is a linear map defined by DkF “ p f k`lq|l|ďm´|k|,

and for any g P E m, Jmpgq denotes the jet

ˆ
Bkg

Bxk

˙

|k|ďm

in JmpKq where

each
Bkg

Bxk
is restricted to K. Now for x P Rn, a P K, F P JmpKq, we

define

T m
a Fpxq “

ÿ

|k|ďm

px ´ aqk

k!
f kpaq.

We observe that for a fixed a in K and F in JmpKq, T m
a F is a C8-function

on Rn. So we write JmpT m
a Fq “ rT m

a F and Rm
a F “ F ´ rT m

a F.

1



WHITNEY’S EXTENSION THEOREM

For x P X, y P K, one has obviously2

T m
x ˝ rT m

y “ T m
y , and then rT m

x ˝ rT m
y “ rT m

y , (1.1)

Rm
x ˝ Rm

y “ Rm
x , (1.2)

Rm
x ˝ Rm

y “ Rm
x , (1.3)

rT m
x ˝ Rm

y “ ´rT m
y ˝ Rm

x “ rT m
x ´ rT m

y “ Rm
y ´ Rm

x , (1.4)

Dk ˝ rT m
x “ rT m´|k|

x ˝ Dk. (1.5)

For any F in JmpKq,

pRm
x Fqk “ f k ´ T

m´|k|
x ˝ DkF. (1.6)

From now on we omit the „ and we “identify” T m
a F and JmpT m

a Fq.

2 Differentiable functions in the sense of Whitney.

Definition 2.1. An increasing, continuous, concave function α : r0,8rÑ
r0,8r with αp0q “ 0 is called a modulus of continuity.

Theorem 2.2. The following statements are equivalent:

(2.2.1) pRm
x Fqkpyq “ op|x ´ y|m´|k|q for x, y in K and |k| ď m, as

|x ´ y| Ñ 0.

(2.2.2) There exists a modulus of continuity α such that |pRm
x Fqkpyq| ď

|x ´ y|m´|k|αp|x ´ y|q for x, y in K and |k| ď m.

(2.2.3) There exists a modulus of continuity α1 such that |T m
x Fpzq ´

T m
y Fpzq| ď α1p|x ´ y|qp|x ´ z|m ` |y ´ z|mq for x, y in K, z in Rn.

In addition, if (2.2.2) is true, we can choose α1 “ cα, c depending

only on m and n. If (2.2.3) is true, we can choose α “ cα1, c depending

only on m and n.

2



Differentiable functions in the sense of Whitney

Proof. Evidently (2.2.2) implies (2.2.1). Suppose that (2.2.1) is true.

Then βptq defined by sup
x,yPK
x‰y

|x´y|ďt

|k|ďm

|pRm
x Fqkpyq|

|x ´ y|m´|k|
is an increasing function, con-

tinuous at zero with βp0q “ 0. Hence we can choose a modulus of

continuity α such that αptq ě βptq for all t (consider the convex enve- 3

lope of the positive t-axis and the graph of β). Therefore (2.2.1) implies

(2.2.2). Note that α is constant for t ě diam K and equal to βpdiam Kq.

Now suppose that (2.2.2) is true. Using (1.5) and (1.6) we have

T m
x Fpzq ´ T m

y Fpzq “
ÿ

|k|ďm

pz ´ xqk

k!
pRm

y Fqkpxq.

Hence

|T m
x Fpzq ´ T m

y Fpzq| ď
ÿ

|k|ďm

|z ´ x||k|

k!
|x ´ y|m´|k|αp|x ´ y|q

ď cαp|x ´ y|qp|x ´ z|m ` |y ´ z|mq,

where c depends only on m and n. Taking α1 “ cα, we see that (2.2.3)

holds.

We shall now prove that (2.2.3) implies (2.2.2). Again by (1.6) we

have for all z in Rn, x, y in K
ˇ̌
ˇ̌
ˇ̌

ÿ

|k|ďm

pRm
y Fqkpxq

pz ´ xqk

k!

ˇ̌
ˇ̌
ˇ̌ ď α1p|x ´ y|qp|x ´ z|m ` |y ´ z|mq.

Writing z ´ x “ |x ´ y|pz1 ´ xq, |x ´ y| “ λ, we have
ˇ̌
ˇ̌
ˇ̌

ÿ

|k|ďm

λ|k|

k!
pz1 ´ xqkpRm

y Fqkpxq

ˇ̌
ˇ̌
ˇ̌ ď cα1p|x ´ y|qλmp1 ` |z1 ´ x|mq

where c is a constant depending only on m and n. Fixing x and y and

treating sum on the left as polynomial in z1 ´ x, (observing that the coef-

ficients are determined linearly in terms of the values of the polynomial

3



WHITNEY’S EXTENSION THEOREM

at a suitable finite system of points) we see that there exists a constant

c1 depending only on m and n such that

ˇ̌
ˇ̌λ

|k|

k!
pRm

y Fqkpxq

ˇ̌
ˇ̌ ď c1α1p|x ´ y|qλm

which implies (2.2.2).

The last assertion is evident from the proof. �

Definition 2.3. E mpKq is the space of all those F in JmpKq for which

any one of (2.2.1), (2.2.2), (2.2.3) is true. Each such F is called a4

Whitney function of class Cm on K. (They are not usual functions of

course, but this will not lead to any confusion.)

A modulus of continuity verifying (2.2.2) is called a modulus of con-

tinuity for F.

We define

||F||K
m “ |F|K

m ` sup
x,yPK
x‰y

|k|ďm

|pRm
x Fqkpyq|

|x ´ y|m´k
,

||F||1Km “ |F|K
m ` sup

x,yPK,x‰y

|k|ďm
zPRn

|T m
x Fpzq ´ T m

y Fpzq|

|x ´ z|m ` |y ´ z|m
.

(We usually omit the index K.) There exist constants c and c1 depending

only on m and n such that

||F||m ď c||F||1m ď c1||F||m.

(Proof is similar to the preceding one.)

Remark 2.4. We also note that we can choose α and α1 in (2.2.2) and

(2.2.3) such that

||F||m “ |F|m ` αpdiam Kq, ||F||1m “ |F|m ` α1pdiam Kq.

4



The extension theorem of Whitney

The preceding norms being equivalent, we shall omit the prime and

denote by ||F||m one or the other. Under these norms, E mpKq is a Ba-

nach space, the proof of which is left to the reader.

Remark 2.5. Let α denote a modulus of continuity for F. Then there

exists a constant c depending only on m and n such that for any F in

JmpKq, x, y in K and |k| ď m, we have

|Dk ˝ T m
x Fpzq ´ Dk ˝ T m

y Fpzq| ď cαp|x ´ y|qp|x ´ z|m´|k| ` |y ´ z|m´|k|q.

The proof is similar to the proof of the fact that (2.2.2) implies

(2.2.3).

3 The extension theorem of Whitney. We shall first

prove an important

Lemma 3.1. Given any compact set K in Rn there exists a family of

functions φipi P Iq each P E pRn´Kq satisfying the following properties:

5

(3.1.1) 0 ď φi for i P I

(3.1.2) supp φipi P Iq is a locally finite family and if Npxq denotes the

number of supp φi to which x belongs, then Npxq ď 4n

(3.1.3)
ř
iPI

φipxq “ 1 for all x in Rn ´ K;

(3.1.4) for i P I, one has 2dpsupp φi,Kq ě diampsupp φiq;

(3.1.5) there exists a constant Ck depending only on k and n such that

for x P Rn ´ K,

|Dkφipxq| ď Ck

ˆ
1 `

1

dpx,Kq|k|

˙
.

5



WHITNEY’S EXTENSION THEOREM

Proof. For p ě 0, we divide Rn into closed cubes each with sides of

length
1

2p
by the planes xv “

jv

2p
where 1 ď v ď n and j1, j2, . . . , jn run

through all integers.

Let K0 be the family of all cubes S of the 0th division such that

dpS ,Kq ě
‘

n. We inductively define Kppp ą 0q to be the family of all

cubes S of the pth division which are not contained in any cube of Kp´1

and are such that dpS ,Kq ě

‘
n

2p
. Let I “

Ť
pě0

Kp. Let us consider a

C8-function ψ such that 0 ď ψ ď 1, ψpxq “ 1 if |xi| ď 1
2

for 1 ď i ď n;

ψpxq “ 0 if |xi| ě 3
4

for one i. For any S P I, let ψS be defined as

ψS pxq “ ψ

ˆ
x ´ xS

lS

˙
where xS is the center, lS is the length of a side

of S . By the construction of I, suppψS pS P Iq form a locally finite

family. Therefore, we can define ψS pxq “
ψS pxqř

TPI

ψT pxq
. Now it is easy to

verify that this family ψspS P Iq satisfies 1., 2. and 3.

As for 4., we observe that

dpsuppψS ,Kq ě
3
‘

n lS

4
ě

diampsuppψS q

2

Now to prove 5. By definition

|DkψS pxq| “

ˇ̌
ˇ̌
ˇ

1

l
|k|
S

Dkψ

ˆ
x ´ xS

lS

˙ˇ̌
ˇ̌
ˇ ď

C

l
|k|
S

where C is a constant depending only on k. But in view of 2., for x in6

Rn ´ K,

1 ď
ÿ

S PI

ψS pxq ď 4n.

Therefore we get, by Leibniz’s formula, |DkψS pxq| ď
C1

l
|k|
S

where C1

depends only on k and n. Therefore if lS “ 1, |DkψS pxq| ď C1 And if

lS ă 1, we find that for x in suppψS , dpx,Kq ě

‘
nlS

2
and so in any

6



The extension theorem of Whitney

case for x P Rn ´ K,

ˇ̌
DkψS pxq

ˇ̌
ď C1

˜
1 `

ˆ ‘
n

2dpx,Kq

˙|k|
¸
.

�

Theorem 3.2 (Whitney [23].). There exists a linear mapping W : E mpKq Ñ
E m such that for every F in E mpKq and every x P K, DkW Fpxq “ f kpxq
for |k| ď m.

Proof. For every S in I, choose a point aS in K such that dpsuppψS ,Kq “
dpsuppψS , aS q. Let rf be a function defined on Rn as follows

rf pxq “ f 0pxq for x P K;

rf pxq “
ÿ

S PI

ψS pxqT m
aS

Fpxq if x is not in K.

Obviously rf is infinitely differentiable on Rn ´ K. For |k| ď m, define
rf k as follows

rf kpxq “ f kpxq if x is in K;

rf kpxq “ Dk rf pxq if x is not in K.

Let L be a cube such that K Ă
˝
L and λ “ sup

xPL

dpx,Kq. Then we prove the

following, where α denotes a modules of continuity satisfying (2.2.3):

�

7

(3.2.1) There exists a constant C depending only on m, n and λ such

that for every k with |k| ď m, for a in K, x in L, one has

| rf kpxq ´ DkT m
a Fpxq| ď Cαp|x ´ a|q|x ´ a|m´|k|.

7



WHITNEY’S EXTENSION THEOREM

(3.2.2) For every k with |k| ą m, there exists a constant Ck depending

only on k, n and λ such that for x in L ´ K, one has:

|Dk f pxq| ď
Ckαpdpx,Kqq

dpx,Kq|k|´m
.

In fact one has, for every x in L ´ K,

rf pxq ´ T m
a Fpxq “

ÿ

S PI

ψS pxqpT m
aS Fpxq ´ T m

a Fpxqq.

Hence applying Leibniz’s formula, one has

Dk rf pxq ´ DkT m
a Fpxq “

ÿ

S PI

ÿ

lďk

ˆ
k

l

˙
DlψS pxqDk´lrT m

aS Fpxq ´ T m
a Fpxqs.

We consider those terms for which l “ 0.

For x P suppψS , obviously dpx,Kq ď |x ´ a| and by (3.1.4),

dpx,Kq ď |x ´ aS | ď 3dpx,Kq so that

αp|a ´ aS |q ď αp|x ´ a| ` |x ´ aS |q ď αp4|x ´ a|q ď 4αp|x ´ a|q

(due to the concavity of α). Now appealing to Remark 2.5 and Lemma

3.1, we obtain an estimate of the type (3.2.1). Now, if l ‰ 0, the sumř
S PI

DlψS pxqDk´lrT m
aS

Fpxq ´ T m
a Fpxqs is equal, since

ř
S PI

DlψS pxq “ 0,

to
ř
S PI

DlψS pxqDk´lrT m
aS

Fpxq´T m
b

Fpxqs for any b P K. If b is so chosen

that |x ´ b| “ dpx,Kq, we may argue as above and we obtain (3.2.1) for

each such sum.

This gives us (3.2.1) when x R K. But for x in K, (3.2.1) results

from the definition of E mpKq and α.

To prove (3.2.2), proceed in the same way choosing a point a in K

such that |x ´ a| “ dpx,Kq and observing that

DkT m
a Fpxq “ 0, and Dk´lrT m

a Fpxq ´ T m
a Fpxqs “ 0

if |k ´ l| ą m.

8



The extension theorem of Whitney

We assert now that rf is of class Cm and that for |k| ď m, Dk rf “ f k. 8

Then by defining WF “ f , the theorem will be proved. For this, we

proceed by induction and suppose that the result is true for all l with l ă
k. We can write k “ l ` p jq where |l| “ |k| ´ 1, p jq “ p0, , 1, 0, . . . , 0q
with 1 in the jth place and all others equal to zero.

We then prove that one has for every a in K,
B rf l

Bx j

pxq “ f kpxq which

will prove the result because one knows already that f is of class C8

outside K. For this, apply (3.2.1) replacing k by l. Retaining only in the

first member, terms of degree 0 and 1 in px ´ aq, it follows, for x in L,

rf lpxq ´ f lpaq ´
nÿ

i“1

pxi ´ aiq rf l`piqpaq “ op|x ´ a|q

which implies the desired result.

We shall now prove some complements to Whitney’s theorem, due

to Glaeser [4]. The W : E mpKq Ñ E m which we have constructed

induces in an obvious manner a map from E mpKq to E mpLq. We denote

by rF the image of WF in E mpLq, and we denote by α a modulus of

continuity of F.

Complement 3.3. For |k| ą m, x in L ´ K, there exists a constant C

depending only on k, n and λ such that |Dk rFpxq| ď
Cαpdpx,Kqq

dpx,Kq|k|´m
.

This is a restatement of (3.2.2)

Remark 3.4. We observe that || ||m, | |m are equivalent on E mpLq. Also,

let F be in E mpLq, and suppose that α is a modulus of continuity for

every f k, |k| “ m (i.e. | f kpxq ´ f kpyq| ď αp|x ´ y|q for x, y P L);

then a constant (depending only on m and n) multiple of α is a modulus

of continuity for F. These are easily verified by Taylor’s formula. The

same result is true for many other compact sets (for instance the convex

ones), but it is not true in general.

Complement 3.5. There exists a constant C depending only on m, n

and λ such that || rF||L
m ď C||F||K

m for all F in E mpKq.

9



WHITNEY’S EXTENSION THEOREM

Proof. In view of the preceding remarks, we need only prove this for9

| rF|L
m instead of || rF||L

m. Take any x in L, a in K. By (3.2.1), we have for

|k| ď m,

ˇ̌
ˇ̌
ˇ̌ rf kpxq ´

ÿ

|l|ďm´|k|

px ´ aql

l!
rf k`lpaq

ˇ̌
ˇ̌
ˇ̌ ď Cαp|x ´ a|q|x ´ a|m´|k|

and hence it follows (Remark 2.4) that | rf kpxq| ď Cpλ,m, nq||F||m. �

Complement 3.6. There exists a constant C depending only on m, n

and λ such that if α is a modulus of continuity verifying (2.2.3), then Cα

is a modulus of continuity for rF.

Proof. In view of Remark 3.4, it suffices to find such a modulus of con-

tinuity for each rf k, |k| “ m. Let x, y P L. If one of them belongs to K,

then by (3.2.1) we see that | rf kpxq ´ rf kpyq| ď Cαp|x ´ y|q.

Now suppose that x, y are in L ´ K.

Case (i). Suppose that dpx,Kq ě 2|x ´ y|. Using the mean-value theo-

rem we have

rf kpxq ´ rf kpyq “
nÿ

i“1

pxi ´ yiq
B rf k

Bxi

pzq

where z belongs to the segment joining x and y. Hence in virtue

of (3.2.2)

| rf kpxq ´ rf kpyq| ď
Cαpdpz,Kqq

dpz,Kq
|x ´ y|

where C depends only on m, n and λ. But by hypothesis dpz,Kq ě
|x ´ y| and so by the concavity of α,

αpdpz,Kqq

dpz,Kq
|x ´ y| ď αp|x ´ y|q.

10



Whitney’s theorem for the C8-case

Case (ii). Suppose that dpx,Kq ă 2|x ´ y|. Select a, b in K such that

|x ´ a| “ dpx,Kq, |y ´ b| “ dpy,Kq.

Then we have

|y ´ b| ď 3|x ´ y|, |a ´ b| ď 6|x ´ y|.

10

Writing

rf kpxq ´ rf kpyq “ rf kpxq ´ rf kpaq ` rf kpaq ´ rf kpbq ` rf kpbq ´ rf kpyq

and using (3.2.2), we obtain the result.

Note that the hypothesis of concavity on α is essential here. (For

instance, one can find a compact connected K and a continuous non-

constant function for K with t3{2 as modulus of continuity; but, obvi-

ously, f cannot be extended to a cube with the same modulus of conti-

nuity for the extension! cf. Glaeser [4].) �

4 Whitney’s theorem for the C8-case. We adopt the

same notations as before. Let I mpK; Lq denote the family of those jets

of E mpLq, the restrictions of which to K are zero. Let imI mpK; Lq Ñ
E mpLq be the canonical injection, ψm : E mpLq Ñ E mpKq be the natural

restriction map. Now Theorem 3.2 can be stated as

The sequence 0 Ñ I
mpK; Lq

imÝÑ E
mpLq

ψmÝÑ E
mpKq Ñ 0 is exact.

Let ηmJm`1pKq Ñ JmpKq be defined as ηmpFq “ p f kq|k|ďm. Ob-

viously ηmpE m`1pKqq Ă E mpKq. Also if ηm : Jm`1pLq Ñ JmpLq is

the analogue of the previous map for L, ηmpI m`1pK; Lqq Ă I mpK; Lq.

Moreover ηm is injective on E m`1pLq.

We consider the projective limits, limÐÝ JmpKq “ JpKq, limÐÝ E mpLq “
E pLq, limÐÝ E mpKq “ E pKq, limÐÝ I mpK; Lq “ I pK; Lq. Elements of

JpKq are called C8-jets on K, and elements of E pKq, C8 functions on

K in the sense of Whitney. Obviously, E pLq can be identified with the

usual C8-functions on the cube L. Defining i “ limÐÝ im, ψ “ limÐÝψm, we

have the following theorem:

11



WHITNEY’S EXTENSION THEOREM

Theorem 4.1. The following sequence

0 Ñ I pK; Lq
i

ÝÑ E pLq
ψ
ÝÑ E pKq Ñ 0

is exact.

To prove this, we need the following11

Lemma 4.2. There exist constants Ck ě 0, depending only on k in Nn

with the following property:

given K a compact subset of Rn and δ ą 0, there exists a C8-

function α on Rn which verifies

(i) α “ 0 on a neighbourhood of K, αpxq “ 1 when dpx,Kq ě δ and

α ě 0 everywhere,

(ii) for every x in Rn and every k

|Dkαpxq| ď
Ck

δ|k|
.

Proof. Consider a non-negative function φ in E pRnq, with φ “ 1 if

|x| ď 1
4
, ψ “ 0 if |x| ě 3

8
,

ş
φ “ 1 and define φδpxq “

1

δn
φ

´
x

δ

¯
. Take

now the characteristic function α1 of the set

"
x|dpx,Kq ě

δ

2

*
and set

α “ α1 φδ. �

Lemma 4.3. I pK; Lq is dense in I mpK; Lq.

Actually, we prove that those F in I pK; Lq which vanish in a neigh-

bourhood of K are dense in I mpK; Lq.

Take any F in I mpK; Lq and K1 “ tx|dpx,Kq ď δu. Consider the

function α (depending on K and δ) obtained in the preceding lemma.

Denote Fα by Fδ. One verifies immediately by Leibniz’s formula that

Fδ tends to F in E mpLq as δ Ñ 0. Therefore the class of functions in

E mpLq which vanish in a neighbourhood of K is dense in I mpK; Lq.

(This can also be proved using Whitney’s theorem!) The result follows

immediately by regularization.

12



Regularly situated sets

Proof of Theorem 4.1. Let F be in E pKq and for m ě 0, Fm denote F

as an element of E mpKq. Let rFm “ WFm be a Whitney extension of Fm

to L. Since rFm ´ rFm´1 is in I m´1pK; Lq, by the lemma, there exists a

Hm´1 in I pK; Lq such that

|| rFm ´ rFm´1 ´ Hm´1||m´1 ď 1{2m.

Now let us consider 12

rFpxq “ rF0pxq `
ÿ

mě1

!
rFmpxq ´ rFm´1pxq ´ Hm´1pxq

)
.

It is easy to verify that rF is a C8-function and the C8-jet induced by it,

when restricted to K, is F.

5 Regularly situated sets. Let X be a closed subset of an

open set Ω in Rn ¨ JmpΩq, JmpXq, JpΩq, JpXq are defined in the usual

way. Define E mpXq to be the family of all jets F in JmpXq such that

given any compact set K in X, the restriction F|K of F to K is in E mpKq.

Define

||F||K
m “ ||F|K||K

m.

This ||F||K
m is a seminorm on E mpXq for all K in X. Now provide E mpXq

with the topology defined by the totality of these seminorms. Obviously

E mpXq is a Fréchet space.

E pXq is defined to be the family of all jets F in JpXq such that given

any compact set K in X, F|K is in E pKq. For all m ě 0 and all K in X,

||F||K
m defines a seminorm on E pXq. E pXq provided with the topology

defined by the totality of these seminorms is a Fréchet space.

When X “ Ω, E mpΩq (resp. E pΩq) defined in the preceding way is

identified with the space of usual Cm (resp. C8) functions on Ω.

Definition 5.1. Let X, Y be closed subsets of an open set Ω such that

X Ă Y ¨ I mpX; Yq is defined to be the class of all jets F in E mpYq the

restrictions of which to X are zero.

When m “ 8, we shall denote this space by I pX; Yq.

13



WHITNEY’S EXTENSION THEOREM

In order to avoid possible confusion, we refer to an element of

I mpX; Yq (resp. I pX; Yq) as a Whitney function of order m (resp. of

infinite order) on Y m-flat on X (resp. flat on X).

Proposition 5.2. Let X, Y be closed subsets of an open set Ω such that

X Ă Y. Then I pX; Yq is dense in I mpX; Yq.

Actually those F P I pX; Yq which are flat in a neighbourhood of X

are dense in I mpX; Yq.

Proof. Evident by the statement made in Lemma 4.3. �13

Proposition 5.3. The sequences

0 // I mpX;Ωq
im

// E mpΩq
ψm

// E mpXq // 0,

0 // I pX;Ωq
i

// E pΩq
ψ

// E pXq // 0

are exact.

(im and i are the canonical injections and ψm and ψ are the canonical

restriction maps.)

Proof. Immediate by a partition of unity. �

Now, let X, Y be closed subsets of Ω, an open set in Rn. Let δ be the

‘diagonal mapping’

E pX Y Yq Ñ E pXq ‘ E pYq

defined by

δpFq “ pF|X, F|Yq,

and π the mapping E pXq ‘ E pYq Ñ E pX X Yq defined by

πpF,Gq “ pF|X X Yq ´ pG|X X Yq.

Obviously δ is injective, π is surjective π ˝ δ “ 0; moreover im δ is

dense in ker π.

14



Regularly situated sets

For, let pF,Gq be in ker π. We can suppose that G “ 0. (If not,

extend G to rG in E pXYYq by Proposition ?? and take pF,Gq´δ rG instead

of pF,Gq.) Therefore one has F|X X Y “ 0, i.e. F is in I pX X Y; Xq.

Then by Proposition 5.3, F is the limit of a sequence tFmu flat on a

neighbourhood of X X Y and one has, obviously, pFm, 0q P im δ which

proves the result.

Definition 5.4. Two closed subsets X, Y of an open set Ω are said to be

regularly situated if im δ “ ker π or equivalently if the sequence

0 Ñ E pX Y Yq
δ

ÝÑ E pXq ‘ E pYq
π
ÝÑ E pX X Yq Ñ 0

is exact.

Theorem 5.5 (Łojasiewicz [10]). Given X, Y closed in an open set Ω a 14

necessary and sufficient condition that they are regularly situated is the

following : Either X X Y “ H or

pΛq Given any pair of compact sets K Ă X, L Ă Y, there exists a

pair of constants C ą 0 and α ą 0 such that, for every x in K, one has

dpx, Lq ě C dpx, X X Yqα, (d denoting the euclidean distance in Rn).

Direct verification of the fact that the condition is symmetric with

respect to X and Y is left to the reader.

Proof. (a) pΛq ñ “ker π “ im δ” Let f “ p f kq (resp. g “ gk) be

an element of E pXq (resp. E pYq); suppose that f “ g on X X Y .

Define h “ phkq in JpX Y Yq by hk “ f k on X and hk “ gk on Y

and it is sufficient to prove that h P E pX Y Yq.

Let M be a compact subset of X YY and set X X M “ K, Y X M “
L. We should verify that for every m in N and every k in Nn, there

exists a c1 ą 0 such that for every x in M and every y in M:
ˇ̌
ˇ̌
ˇ̌hkpxq ´

ÿ

|l|ďm

hk`1pyq
px ´ yql

l!

ˇ̌
ˇ̌
ˇ̌ ď c1||x ´ y||m.

The case when x and y both belong to X, or both belong to Y , is

immediate. Therefore, suppose that, for instance x P X, y P Y . If

15



WHITNEY’S EXTENSION THEOREM

we extend g to rg P E pX Y Yq, and replace f by f ´ rg, it reduces

to the case when g “ 0 and consequently f |X X Y “ 0; in this

case our inequality can be written simply as

| f kpxq| ď c1||x ´ y||m.

By hypothesis, we can find a z P XXY such that one has ||x´y|| ě
c

2
||x ´ z||α; we can suppose that when x varies in K, and y in L, z

varies in a compact subset of X XY . Let m1 be an integer such that

αm ď m1; as ||x´z|| is bounded, one has ||x´z||m
1

ď c2||x´y||m,

with c2 ě 0. Since f P E pXq, we have

ˇ̌
ˇ̌
ˇ̌ f kpxq ´

ÿ

|l|ďm1

f k`lpzq
px ´ zql

l!

ˇ̌
ˇ̌
ˇ̌ ď c1||x ´ z||m

1

therefore, since f “ 0 on X X Y ,15

| f kpxq| ď c1||x ´ z||m
1

ď c2c1||x ´ y||m
1

,

which gives the result.

(b) “ker π “ im δ” ñ pΛq.

By hypothesis, the image of δ is closed and therefore δ is a homo-

morphism; let M be a compact subset of X Y Y . For every f in

E pX Y Yq, there exists in particular a seminorm p on E pXq and a

seminor q on E pYq such that one has, for every x in M and every

y in M

ˇ̌
ˇ̌
ˇ f 0pxq ´ f 0pyq ´

nÿ

i“1

pxi ´ yiq f piqpyq

ˇ̌
ˇ̌
ˇ ď ppp f q ` qp f qq||x ´ y||.

In particular, if f is zero on Y , setting X X M “ K, Y X M “ L,

this means that for every x in K, | f pxq| ď pp f qdpx, Lq.

16



A theorem of composition

“Lifting” the preceding inequality to E pΩq one finds the follow-

ing: there exists a compact N Ă Ω, an integer m ě 0 and a C ą 0

such that, for every F in E pΩq, flat on Y and every x P K one has

|Fpxq| ď C|F|N
m ¨ dpx, Lq.

Let φ be a C8-function with support in the unit ball, with φp0q “
1. For any x0 P K, apply the preceding inequality to the function

x Ñ φ

ˆ
x ´ x0

ǫ

˙
with ǫ “ dpx0, X X Yq. That gives

1 ď
C

ǫm
dpx, Lq|φ|N

m

which proves the result at once.

�

Remark 5.6. Naturally we ask whether an analogue of Theorem 5.5 is

valid for E mpXq, E mpYq, E mpX Y Yq, i.e. whether the sequence

0 Ñ E
mpX Y Yq Ñ E

mpXq ‘ E
mpYq Ñ E

mpX X Yq Ñ 0

is exact for finite m. The results are the following:

If m “ 0, the sequence is always exact (trivial).

If 0 ă m, X and Y are “m-regularly situated” if the condition pΛq is 16

replaced by an analogous one with α “ 1.

(Proof similar to the preceding one.) This is of course much more

restrictive than pΛq.

6 A theorem of composition*. Let O be an open set Ă
Rm, Ω an open set Ă Rn, and g : O Ñ Ω, f : ΩÑ R two mappings of

class Cs. Set A0 “ Ω and Ar “ tx P Ω|Dk f pxq “ 0 for 1 ď |k| ď ru
p1 ď r ď sq.

*The results of this section and the next will not be used in the rest of this book,

except in Chap. V, §5, (iii).

17



WHITNEY’S EXTENSION THEOREM

The theorem of composition which we have in mind is based on the

following remark.

Let y P O be such that x “ gpyq P Ar. The derivatives (of order

ď s) of f ˝ g at y do not depend on the derivatives of g of order ą s ´ r.

In fact, let y P O and x “ gpyq. The formula for the differentiation

of composite functions can be written

T s
y p f ˝ gq “ T s

x f pT s
y gpzqqmod pz ´ yqs`1;

this identity means that the two expressions above, considered as poly-

nomials in z, are congruent modulo the ideal generated by the pz ´ yql,

|l| “ s ` 1. This formula can also be written in the form T s
y p f ˝ gqpzq “

f pxq `
sÿ

|k|“1

Dk f pxq

k!

»
–

sÿ

|l|“1

Dlgpyq

l!
pz ´ yql

fi
fl

k

mod pz ´ yqs`1.

For a fixed k “ pk1, . . . , knq, the bracket occuring on the right can be

written

1

l1! . . . ln!
rDl1g1pyqsk1 rDlngnpyqsknpz1 ´ y1qk1l1 pzn ´ ynqknln ,

where g “ pg1, . . . , gnq and the sum is over systems pl1, . . . , lnq for

which li P Nn, |li| ě 1 for each i; only those pliq for which k1l1 `
¨ ¨ ¨ ` knln ď s occur here. However, if |k| ě r, these conditions imply

that |li| ď s ´ r for each i. Hence, for x P Ar, we have

T s
y p f ˝ gqpzq “ T s

x f rT s´r
y gpzqsmod pz ´ yqs`1,

and the result follows.17

Let Ω, f , Ai be as above. Let r be an integer with 1 ď r ď s, and let

K be a compact subset of Rm and G a system of n elements of E s´rpKq
which we consider as a “function” with values in Rn, and suppose that

g0pKq “ GpKq Ă Ar. The calculations made above lead us to define a

jet P JspXq, which we denote f ˝ G, by means of the formula

T s
y p f ˝ Gqpzq “ T s

x f pT s´r
y Gpzqqmod pz ´ yqs`1,

where y P K, x “ Gpyq P Ar.

18
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Theorem 6.1 (M. Kneser [9], see also G. Glaeser [4].). For 1 ď r ă s,

we have f ˝ G P E spKq.

Proof. We have to prove that for a certain modulus of continuity α, we

have

|T s
y1

p f ˝ Gqpzq ´ T s
y2

p f ˝ Gqpzq| ď αp|y1 ´ y2|qˆ

ˆ p|y1 ´ z|s ` |y2 ´ z|sq (6.2)

for y1 P K, y2 P K, z P Rm. Let B be an open ball in Rm for which

K Ă B. It is enough to prove this estimate for z P B (to see this, one has

only to repeat the argument given for the implication (2.2.3) ñ (2.2.2),

using (2.2.3) only for z P B).

(i) Let us first show that it is sufficient to establish the following for-

mula:

|T s
x1

f pT s´r
y1

Gpzqq ´ T s
x2

f pT s´r
y2

Gpzqq| ď αp|y ´ y2|qˆ

ˆ p|y1 ´ z|s ` |y2 ´ z|sq (6.3)

for y1, y2 P K, x1 “ Gpy1q, x2 “ Gpy2q, z P B and a suitable

modulus α of continuity. For this purpose, it suffices to verify

that the terms on the left in (6.2) and (6.3) differ only by terms

satisfying the required inequality. Now, this difference is a sum of

terms of the form

hpy1qpz ´ y1qk ´ hpy2qpz ´ y2qk

with a continuous h, and |k| ą s. If we write this in the form

thpy1q ´ hpy2qupz ´ y1qk ` hpy2qtpz ´ y1qk ´ pz ´ y2qku

and mojorise the two terms in the obvious way, we obtain the 18

required result (note that the restriction z P B is essential since we

have |k| ą s).
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(ii) Let us write the term on the left in (6.3) in the form

tT s
x1

f pT s´r
y1

Gpzqq ´ T s
x1

f pT s´r
y2

Gpzqqu`

` tT s
x1

f pT s´r
y2

Gpzqq ´ T s
x2

f pT s´r
y2

Gpzqqu. (6.4)

The second term is majorised, in absolute value, by

αp|x1 ´ x2|qp|x1 ´ x2|s ` |T s´r
y2

Gpzq ´ x2|sq.

Since r ă s, we have |x1 ´ x2| “ |Gpy1q ´ Gpy2q| ď C|y1 ´ y2|,
py1, y2 P Kq and

|T s´r
y2

Gpzq ´ x2| ď C|z ´ y2|px P B, y2 P Kq, (6.5)

which gives us the required estimate for the second term.

(iii) It remains to majorise the first term in (6.4). Let us put T s´r
yi

Gpzq “
uipi “ 1, 2q. We have

T s
x1

f pu1q ´ T s
x1

f pu2q “
ÿ

1ď|k|ďs

1

k!
Dk

u1
T s

x f pu1qpu2 ´ u1qk, (6.6)

and

|u2´u1| ď αp|y2´y1|qp|z´y1|s´r`|z´y2|s´rqpy1, y2 P K, z P Rmq;

(6.7)

here α is a suitable modulus of continuity.

The right hand side of (6.6) is estimated as follows.

If 1 ď |k| ď r, in Dk
u1

T s
x1

f pu1q “ T
s´|k|
x1

Dk f pu1q, the terms con-

taining pu1 ´ x1ql are zero if |l| ď r ´ |k|. Hence, if y1 P K, z P B,

we have

|Dk
u1

T s
x2

f pu1q| ď C|x1 ´ u|r´|k|`1.

Using (6.5) and (6.7) we easily obtain the required estimate from

this. Finally, if |k| ą r, we have |u2 ´ u1|k ď C|u2 ´ u1|r`1,

which, with (6.7) and the obvious inequality ps ´ rqpr ` 1q ě s,

gives us the required result.

�
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19

7 The theorem of Sard. Let Ω be an open set in Rn and f

a mapping ΩÑ Rp of class Cs, s ě 1. As in §6, let us set A0 “ Ω and

Ar “ tx P Ω|Dk f pxq “ 0 for 1 ď |k| ď ru, where 1 ď r ď s.

Lemma 7.1. For r ě
n

p
, f pArq has measure zero.

Proof. Let K be a closed cube Ă Ω. It is obviously sufficient to prove

that f pAr X Kq has measure zero.

There exists a modulus α of continuity such that for x P K X Ar and

any y P K we have | f pxq´ f pyq| ď |x´y|rαp|x´y|q. Let l be the length

of the edge of K. Let us divide K into Nn equal cubes Ki, 1 ď i ď Nn.

Let J be the set of indices i for which Ki meets Ar. If x, y P K j, j P J,

we have | f pxq ´ f pyq| ď C

ˆ
l

N

˙r

α

ˆ
l

N

˙
with C “ 2p

‘
nqr`1. The

volume V j of f pK jq is therefore at most NnC1

ˆ
l

N

˙pr

α

ˆ
l

N

˙p

C1 being

a constant depending only on n and p. The volume of f pK X Arq is

therefore at most C1Nn

ˆ
l

N

˙pr

α

ˆ
l

N

˙p

. Choosing N large enough and

using our hypothesis that n ´ pr ď 0 we obtain the required result. �

Remark 7.2. If n ă p, the same argument shows that f pΩq has measure

zero if f is of class C1.

Lemma 7.3. If s ě
n

p
, f pA1q has measure zero.

Proof. By Lemma ??, the result is true for p “ n. Keeping p fixed,

we shall use induction on n. Suppose therefore that the lemma has al-

ready been established for n ´ 1. We shall show that for 1 ď r ă s,

f pAr ´ Ar`1q has measure zero, which implies our result, since, by the

preceding lemma, f pAsq has measure zero.

Let x P Ar . . . Ar`1 and set f “ p f1, . . . , fpq. There exists i, 1 ď

i ď n, j, 1 ď j ď p, and k P Nn, |k| “ r, such that
B

Bxi

Dk f jpxq ‰ 0.
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WHITNEY’S EXTENSION THEOREM

Near x, the set of points of Ω which satisfy Dk f jpxq “ 0 is therefore 20

a submanifold of class Cs´r. Hence there is an open set U Ă Ω with

x P U, an open set O Ă Rn´1 and a proper mapping g : O Ñ U of class

Cs´r such that U X Ar Ă gpOq.

Let K be a compact set in U with x P
˝
K. Set L “ g´1pKq and

Br “ L X g´1pArq. By Theorem 6.1 and the extension theorem, there

exists h : O Ñ Rp of class Cs coinciding with f ˝g on Br and satisfying

Dkhpyq “ 0 for y P Br, 1 ď |k| ď r.

By induction, f ˝ gpBrq, hence f pAr X Kq, is of measure zero. Since

Ar ´ Ar`1 is a countable union of compact sets, f pAr ´ Ar`1q has mea-

sure zero and the lemma follows.

The above lemma is due to A. P. Morse [15] (at least if p “ 1). The

method used is due to M. Kneser [9]. �

Theorem 7.4 (Sard [17].). Let K be the set of critical points of f (i.e.

the set of points where the differential map f 1 has rank ă p). If s ě
maxp1, n ´ p ` 1q, then f pKq has measure zero.

Proof. For n ă p, this follows from Remark 7.2. Suppose therefore that

n ě p. For 0 ď r ă p, let Kr- be the set of points ofΩwhere f 1 has rank

r, and let a P Kr. We shall show that there exists a neighbourhood U

of a such that f pU X Kr´q has measure zero. Since Kr is locally closed

in Ω, hence a countable union of compact subsets of Ω, the theorem

follows from this.

We can find a neighbourhood U of a, a neighbourhood V of f paq
and changes of coordinates of class Cs in U and V such that, in the new

coordinates, f is given by the system of equations

yi “ xi, 1 ď i ď r,

yi “ fipx1, . . . , xnq, r ` 1 ď i ď p.

The fi are of class Cs and for a point px1, . . . , xnq P U to belong to Kr,

it is necessary and sufficient that
B fi

Bx j

px1, . . . , xnq “ 0 for i ě r ` 1,

j ě r ` 1.
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The theorem of Sard

Let Epx1, . . . , xrq (resp. Fpx1, . . . , xrq) be the set of points of U 21

(resp. V) whose first r coordinates are x1, . . . , xr. From the inequality

s ě n ´ p ` 1, we deduce that s ě
n ´ r

p ´ r
; fixing x1, . . . , xr and applying

(7.3) to p fr`1, . . . , fpq considered as a function of pxr`1, . . . , xnq, we

find that f pKr X Epx1, . . . , xrqq has measure zero in Fpx1, . . . , xrq. By

the Lebesgue-Fubini theorem, f pU X Krq has measure zero, and the

theorem is established. �
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CLOSED IDEALS
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1 Jets of vector-valued functions. Let L be a closed

cube in Rn, K a closed subset of L, E a finite dimensional vector space

over R. Until now we considered jets p f kq|k|ďm where f k are real-valued

functions but we can also consider vector-valued functions with values

in E. The spaces JmpK, Eq, E mpK, Eq, I mpK; L, Eq, JpK, Eq, E pK, Eq,

I pK; L, Eq are all defined in the obvious way. The results of Chapter I

hold for these spaces with the obvious modifications. Also it is claar that

there is an identification of E mpL, Eq with the product space pE mpLqqr

where r is the rank of E over R. So naturally we provide E mpL, Eq with

the product topology and also the structure of an E mpLq-module. In the

sequel, all the modules considered are E mpLq-modules.

Definition 1.1. For a P L, we denote by T m
a the natural mapping

E
mpL, Eq Ñ E

mpL, Eq{I mptau, L, Eq.

Obviously, the image of an f P E mpL, Eq under this mapping can be

identified with the Taylor expansion of order m of f at a, which explains

the notation.

For any sub-module M of E mpL, Eq, T m
a M is a sub-module of

E
mpL, Eq{I mptau, L, Eq;

and as a vector space over R, it has finite rank because the latter does.

Definition 1.2. An f in E mpL, Eq is said to be pointwise in a sub-module

M of E mpL, Eq if T m
a f P T m

a M for all a in L.

Theorem 1.3 (Whitney [24].). If M is a sub-module of E mpL, Eq, M is

the closure of M in E mpL, Eq, and pM is the module of all functions f

pointwise in M, then pM “ M.
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Jets of vector-valued functions

Lemma 1.4. Let K be a compact subset of L such that for all a P K,

the rank of T m
a M over R “ p, a constant. Let F P M. Then given any

ǫ ą 0, we can find φ P E mpLq; φ “ 1 in a neighbourhood of K and23

f P M such that |φF ´ f |m ă ǫ.

Here, ||m stands for ||L
m which is defined in the same way as in Chap-

ter I, §1 if we have chosen a norm on E. Also we observe that Chapter I,

(2.2) holds even for finite dimensional vector-valued jets and we define

α to be a modulus of continuity for F, if it is a modulus of continuity

and it verifies Chapter I, (2.2.3).

Proof of the Lemma. Let a P K. By hypothesis there exists a neigh-

bourhood Va of a and f1, f2, . . . , fp in M such that for x in Va X K, T m
x f1,

T m
x f2, . . . ,T

m
x fp is a basis of T mM over R. Hence there exist continuous

functions λ1, λ2, . . . , λp on Va X K such that

T m
x F “

pÿ

i“1

λipxqT m
x fi for all x P Va X K.

Using a partition of unity we can find f1, f2, . . . , fs P M, functions

λ1, λ2, . . . , λs on L and a constant C such that for all x P K,

T m
x F “

sÿ

i“1

λipxqT m
x fi

and

sup
1ďiďs

xPL

|λipxq| ď C.

Let α be a modulus of continuity for F, f1, f2, . . . , fs. Define for any

a P K, x P L, fapxq “
sř

i“1

λipaq fipxq. Obviously

T m
a Fpzq “ T m

a fapzq.

Therefore for a P K, x P L, z P Rn,

|T m
x Fpzq ´ T m

x fapzq| ď |T m
x Fpzq ´ T m

a Fpzq| ` |T m
a fzpzq ´ T m

x fzpzq|

25



CLOSED IDEALS

ď C1p|z ´ x|m ` |z ´ a|mqαp|x ´ a|q, (1.4.2)

where C1 is independent of a, x, z. Hence again using the same argument

as in proving in Chapter I that (2.2.3) ñ (2.2.2), we see that there exists

a constant C2 not depending on a, x, z, such that

|DkFpxq ´ Dk fapxq| ď C2|x ´ a|m´|k|αp|x ´ a|q. (1.4.2)

Let us divide Rn into cubes each of side d and for each such cube,24

consider the open cube of side 2d with the same centre and let I denote

the family of these cubes. By a construction similar to Lemma 3.1 of

Chapter I, (and even simpler), we obtain a partition of unity φipi P Iq
subordinate to I such that for |k| ď m,

ÿ

iPI

|Dkφipxq| ď
C

d|k|
, (1.4.3)

where C is a constant depending only on m and n. Let I1 be the family

of those S in I which meet K and for each such S , let aS be a point in

S X K. I1 is a finite set. Define

φ “
ÿ

S PI1

φS , f “
ÿ

S PI1

φS faS
.

Obviously φpxq “ 1 in a neighbourhood of K and

|φF ´ f |m “
ÿ

|k|ďm

sup
xPL

|DkpφF ´ f qpxq|

ď
ÿ

|k|ďm

ÿ

S PI1

sup
xPL

|DkpφS F ´ φS faS
qpxq|

and so by Leibniz’s formula and (1.4.2), (1.4.3), it follows that

|φF ´ f |m ď C3αpdq

where C3 is independent of d.

Hence if we choose d sufficiently small the lemma follows.
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Jets of vector-valued functions

Proof of Theorem 1.3. Let Bp “ tx P L| rank of T m
a M ď pu. Let

Ap “ Bp ´ Bp´1 for p ě 0. Let us make the statement Hp: Given any

F P pM and ǫ ą 0, there exists a function φ in E mpLq, f in M such that

φpxq “ 1 in a neighbourhood of Bp and |φF ´ f |m ď ǫ.

H0 is true because of Lemma 1.4 and the fact that B0 “ A0 is closed.

So, let us suppose that Hp´1 is true for some p ě 1. Therefore given

any ǫ ą 0, F P M, there exists functions φp´1 P E mpLq, and fp´1 P
M such that φp´1pxq “ 1 for all x in a neighbourhood of Bp´1 and

|φp´1F ´ fp´1|m ď
ǫ

2
.

Let K1 be a compact neighbourhood of suppp1 ´ φq´1q such that 25

K1 X Bp´1 “ H. Let K “ K1 X Bp. Therefore K Ă Ap and so applying

our lemma to K, taking p1 ´ φp´1qF instead of F, we get a function

ψ P E mpLq, with ψ “ 1 in a neighbourhood of K and an f P M such

that

|ψp1 ´ φp´1qF ´ f |m ď
ǫ

2
.

Consider φp, fp defined by 1 ´ φp “ p1 ´ ψqp1 ´ φp´1q and fp “
f ` fp´1. One has obviously φp P E mpLq, fp P M, |φpF ´ fp|m ď ǫ and

φp “ 1 in a neighbourhood of Bp. This proves the theorem.

Corollary 1.5. Let M be a sub-module of E mpL, Eq. Then for any x P L,

T m
x M “ T m

x M.

Corollary 1.6. Let Ω be an open set in Rn and M a sub-module of

E mpΩ, Eq. Then pM “ M where pM and M are defined in the same way

as in 1.3.

Proof. Let us take a C8-partition of unity φipi P Iq in Ω. Let f P pM.

Then applying the theorem to φi f , we get φi f P M. By the definition of

the topology on E mpL, Eq, one obtains
ř
iPI

φi f P M. �

Corollary 1.7. Let Ω be a C8-manifold countable at infinity. Let M

be a sub-module of E pΩ, Eq. Then pM “ M where pM is defined as the

module of all f in E pΩ, Eq such that T m
x f P T m

x M for all x P Ω and all

m ě 0.
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CLOSED IDEALS

Proof. Let K be any compact set in Ω, m any positive integer, ǫ any

positive number. Let f P pM. Then since T m
x f P T m

x M for all x in

Ω, f is in the closure of the module generated by M over E mpΩq and

so there exist φ1
1
, φ1

2
, . . . , φ1

k
in E mpΩq and g1, g2, . . . , gk in M such thatˇ̌

ˇ̌ f ´
kř

i“1

giφ
1
i

ˇ̌
ˇ̌
K

m

ď ǫ. But E pΩq is dense in E mpΩq; therefore φ1
i

can be

replaced by φi in E pΩq such that

ˇ̌
ˇ̌
ˇ f ´

kÿ

i“1

giφi

ˇ̌
ˇ̌
ˇ

K

m

ď ǫ.

Therefore f P M which proves the result. �

Remark 1.8. We know (Chapter I, §4) that given a P Ω, E pΩq{I ptau;Ωq26

is isomorphic to the ring of formal power series in np“ dimΩq variables.

Now define Ta as the natural mapping E pΩ, Eq Ñ E pΩ, Eq{I ptau;Ω, Eq
and let M be a sub-module of E pΩ, Eq. From Krull’s theorem (see

Chapter III) it follows that “Ta f P TaM” is equivalent to “for all m ě 0,

T m
a f P T m

a M”. Namely, for all a P Ω, we have T m
a M “ T m

a
pM “ T m

a M.
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III

ANALYTIC AND DIFFERENTIABLE

ALGEBRAS

27

1 Local R-algebras. In this chapter, rings and algebras are

supposed to be commutative with a unit and modules over these rings

and algebras are supposed to be unitary. Further if A is a ring, we say

that an A-module is “finite over A” if it is of finite type as an A-module.

Let A be a local ring, i.e. a ring possessing a proper ideal mpAq
containing all other proper ideals, which consists necessarily of all non-

invertible elements of A. Let us recall the following result which we

shall have frequently to use.

Proposition 1.1 (Nakayama’s lemma.). Let M be an A-module of finite

type and M1 a submodule of M satisfying

M “ M1 `mpAqM.

Then we have M1 “ M.

Proof. If we set N “ M{M1, we have N “ mpAqN, and we have to show

that N reduces to t0u. Now, let n1, . . . , np be a system of generators of

N. There exist elements

ai j P mpAq p1 ď i ď p, 1 ď j ď pq

such that

ni “

pÿ

j“1

ai jn j,

and since detpδi j ´ ai jq R mpAq (δi j being the Kronecker symbol), we

have ni “ 0 for every i.

Let now A be a local R-algebra and 1 its unit element. If A ‰ t0u
(which we suppose in all that follows), the element 1 defines an injection

ǫ : R Ñ A by ǫpαq “ α1.
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ANALYTIC AND DIFFERENTIABLE ALGEBRAS

In all that follows, the following hypotheses are made (explicitly or

implicitly) when we speak of local R-algebras.

(1.2; i) mpAq is finite over A.28

(1.2; ii) The composite R
ǫ

ÝÑ A Ñ A{mpAq is bijective.

Let us recall that if p is an ideal of A, we may put on A a structure

of topological algebra (called the p-adic topology) by requiring that the

powers pk (k an integer ą 0) constitute a fundamental system of neigh-

bourhoods of 0. For this topology to be Hausdorff, it is necessary and

sufficient that č

k

pk “ t0u.

If p “ mpAq, we call this the “Krull topology of A” (or simply “topology

of A” if no confusion is possible). The p-adic topology on A coincides

with the Krull topology if and only if there is an integer k such that

mkpAq Ă p; in this case, we shall say that p is an ideal of definition of

A. �

Proposition 1.3. For p to be an ideal of definition, it is necessary and

sufficient that A{p be finite over R.

In fact, since mpAq is finite over A, mkpAq is finite over A for every

k, so that mkpAq{mk`1pAq is finite over A{mpAq » R. Hence, for each

k, A{mkpAq is finite over R. If p is an ideal of definition, A{p is therefore

finite over R.

Conversely, suppose that A{p is finite over R. The mkpA{pq form

a decreasing sequence of finite modules over R, and the sequence is

therefore stationary. By Nakayama’s lemma, we have, for a certain k,

mkpA{pq “ t0u, whence mkpAq Ă p.
Let pA be the algebra obtained by making Hausdorff the completion

of A for the Krull topology*. It is obvious that pA can be identified with

*In what follows, we shall say “completion” for this Hausdorff completion, and

“complete” for rings which are Hausdorff and complete.
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Local R-algebras

the projective limit limÐÝ A{mkpAq, that pA is again a local R-algebra (sat-

isfying (i) and (ii)), and that the natural mappings A{mkpAq Ñ pA{mkp pAq
are isomorphisms. (We leave the details to the reader.)

Let x1, . . . , xp be elements of mpAq. We define, in an obvious way, 29

a mapping of the ring RrrX1, . . . , Xpss of formal power series into pA.

This mapping will be surjective if (and only if) x1, . . . , xp are generators

of mpAq over A. Consequently, pA is a quotient of an algebra of for-

mal power series. It follows from this that pA is noetherian. (We shall,

furthermore, recall the proof of this fact later on.)

Let now A and B be two local R-algebras, and u a homomorphism

(which, in what follows, will always be supposed unitary) A Ñ B. We

have u´1pmpBqq “ mpAq: in fact, the R-linear mapping A{u´1pmpBqq Ñ
B{mpBq is not zero, since up1q “ 1, so that the mapping is surjective;

hence u´1pmpBqq is maximal and thus equal to mpAq. A fortiori, we

have upmpAqq Ă mpBq; in other words, u is local, that is, continuous

with respect to the Krull topology. It follows that u induces a homomor-

phism pu : pA Ñ pB, which is again local, and a homomorphism

u : A{mpAq Ñ B{B upmpAqq.

This last mapping coincides with the canonical injection

ǫ : R Ñ B{B upmpAqq.

In what follows, we shall equip B with the structure of A-module defined

by u. We shall write therefore

abpa P A, b P Bq for upaqb,

mpAqB for B upmpAqq,

and so on.

Definition 1.4. (i) We say that u is finite if B is finite over A.

(ii) We say that u is quasi-finite if u is finite, that is, if B{mpAqB is

finite over R.
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ANALYTIC AND DIFFERENTIABLE ALGEBRAS

By Proposition 1.3, u is quasi-finite if and only if mpAqB is an ideal

of definition of B. It is clear that every finite homomorphism is quasi-

finite; but in general, the converse is false (counter example: A “ ring

of convergent power series in n ě 1 variables, B its completion). One

of the main objects of this course is to prove that this converse (called30

the “preparation theorem”) is true in a certain number of cases. Let us

note at once the following

Proposition 1.5 (The formal preparation theorem.). If A and B are com-

plete (and Hausdorff) and if u : A Ñ B is quasi-finite, then u is finite.

We shall utilise this proposition here, but postpone its proof to §3.

Let us go back to the general case : the map u : A Ñ B being con-

tinuous defines, by passage to completions, a mapping pu : pA Ñ pB (and,

by composition, a mapping A Ñ pB which we shall use incidentally).

Proposition 1.6. The properties “u quasi-finite”, “pu quasi-finite” and

“pu finite” are equivalent. If they are satisfied, the canonical mapping

B{mpAqB Ñ pB{mp pAqpB

is bijective.

Proof. By Proposition 1.5, “pu finite” and “pu quasi-finite” are equivalent.

Let us prove the equivalence of “u quasi-finite” and “pu quasi-finite”. For

this, it is sufficient to prove that mpAqB is an ideal of definition of B if

and only if mp pAqpB is an ideal of definition of pB.

Let p be an ideal in B. For each r, the canonical mapping

pp`mrpBqq{mrpBq Ñ pppB `mrppBqq{mrppBq

is evidently bijective. Put p “ mpAqB, and remark that mpAqpB `mrppBq
is closed (since it contains mrppBqq, hence is equal to mp pAqpB ` mrppBq.

We obtain thus an isomorphism

pmpAqB `mrpBqq{mrpBq
„
ÝÑ pmp pAqpB `mrppBqq{mrppBq. (1.7)

Suppose now that mpAqB Ą mkpBq. Using this isomorphism for

r “ k`1, we obtainmp pAqpB`mk`1ppBq Ą mkppBq. Applying Nakayama’s31
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lemma to the couple mkppBq, mp pAqpB X mkpBq, we find that mp pAqpB Ą
mkppBq. Conversely, the same argument shows that mp pAqpB Ą mkppBq
implies that mpAqB Ą mkpBq, whence the result.

Finally, suppose that mpAqB Ą mkpBq. The preceding result, to-

gether with the isomorphism (1.7) for r “ k gives an isomorphism

mpAqB{mkpBq
„
ÝÑ mp pAqpB{mkpBq.

The isomorphism stated in Proposition 1.6 follows from this, the iso-

morphism

B{mpAqB » pB{mkpBqq{pmpAqB{mkpBqq,

and the corresponding isomorphism for the completions. �

Proposition 1.6 has the following corollary which is useful for ap-

plications.

Corollary 1.7. Let u : A Ñ B be a homomorphism of local R-algebras

and let b1, . . . , bp be a finite family of elements of B. Let us denote by
pbi their images in pB and by bi their images in B{mpAqB. The following

properties are equivalent.

(i) pb1, . . . ,pbp generate pB over pA.

(ii) b1, . . . , bp generate B{mpAqB over R.

(iii) pb1, . . . ,pbp generate pB{mp pAqpB over R.

Furthermore, if u is finite, they are equivalent to

(iv) b1, . . . , bp generate B over A.

The equivalence of (ii) and (iii) follows from the isomorphism (1.6).

On the other hand, it is obvious that (iv) implies (ii). If u is finite, (ii)

implies (iv) by Nakayama’s lemma. Taking into account Proposition

1.5. the equivalence of (i) and (iii) is proved in the same way.
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ANALYTIC AND DIFFERENTIABLE ALGEBRAS

2 Analytic and differentiable algebras. In what fol-

lows, we denote respectively by On, En the rings of germs at 0 in Rn

of real analytic and C8 functions with real values, and by Fn the ring

of formal power series in n indeterminates over R. One has obvious32

mappings On Ñ En (an injection), On Ñ Fn and En Ñ Fn (Taylor ex-

pansion at 0). These rings are local R-algebras satisfying (1.2). The only

point which is not entirely obvious is the fact that En satisfies (1.2; ii),

which fact results from the following lemma in which x1, . . . , xn stand

for coordinates in Rn.

Lemma 2.1. Let f P En and k be an integer ď n. Suppose that

f p0, . . . , 0, xk`1, . . . , xnq “ 0.

There exist then hi P En, i “ 1, . . . , k with

f “
kÿ

i“1

xihi.

Proof. We may, in fact, take

hi “

1ż

0

B f

Bxi

ptx1, . . . , txk, xk`1, . . . , xnqdt.

It follows from this lemma that x1, . . . , xn form a system of generators of

mpEnq over En. One also deduces from it at once that Fn is the comple-

tion of En for the Krull topology, the corresponding fact for On instead of

En being obvious. We note also an important difference between the two

cases: while the mapping On Ñ Fn is injective, the mapping En Ñ Fn

is surjective (Chapter I, §4), so that En is, in some sense, “complete but

not Hausdorff”. �

Definition 2.2. By a differentiable algebra, we mean a local R-algebra

together with a surjective homomorphism En
π
ÝÑ A (which is assumed

unitary). Replacing En by On (resp. Fn), we define in the same way an

analytic (resp. formal) algebra.
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We will now define the morphisms of differentiable algebras. First,

if A “ En, B “ Em, a homomorphism u : A Ñ B is called a morphism if

there exists a germ φ (at 0) of C8-mapping from Rm into Rn, φp0q “ 0,

such that for any f P En, we have up f q “ f ˝φ (φ if it exists, is obviously

unique). In the general case, let En
π
ÝÑ A, Em

ψ
ÝÑ B be two differentiable

algebras and u a homomorphism A Ñ B. We say that u is a morphism 33

if there exists a morphism ru : En Ñ Em such that the following diagram

is commutative:

En

π

��

ru
// Em

ψ

��

A
u

// B

It is evident that the composite of two morphisms is a morphism.

In accordance with general definitions in a category, we say that a mor-

phism u is an isomorphism if there exists a morphism v : B Ñ A such

that v ˝ u “ identity, u ˝ v “ identity (it is in fact sufficient that u be

bijective; this results easily from the considerations that follow).

Proposition 2.3. Given a differentiable algebra Em
π
ÝÑ B and n elements

bi P mpBq, there is one and only one morphism u : En Ñ B such that

upxiq “ bi (xi standing for the coordinates in Rn).

Proof. For each i, let us choose an fi P Em satisfying πp fiq “ bi, and let

v be the morphism En Ñ Em defined by vpxiq “ fi, i.e. the morphism

induced by the mapping py1, . . . , ymq Ñ p f1, . . . , fnq from Rm Ñ Rn.

Then u “ π ˝ v has the required property. To prove the uniqueness, let

us choose f 1
i

P Em with πp f 1
i
q “ bi and let us denote by I the ideal

π´1p0q. It is sufficient to prove that for any g P En, we have

gp f1, . . . , fnq ´ gp f 1
1, . . . , f 1

nq P I.

Now, Lemma 2.1 shows that there exist functions hi P E2n satisfying

gp f1, . . . , fnq ´ gp f 1
1, . . . , f 1

nq “
nÿ

i“1

p fi ´ f 1
i qhip f1, . . . , fn, f 1

1, . . . , f 1
nq,

and the result follows.
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ANALYTIC AND DIFFERENTIABLE ALGEBRAS

It will be convenient to denote the element upgq constructed in the

above proposition by gpb1, . . . , bnq. The reader will verify easily that

a homomorphism u : A Ñ B is a morphism if and only if it has the34

following property: for any a1, . . . , ap P mpAq and f P Ep, we have

up f pa1, . . . , apqq “ f pupa1q, . . . , upapqq

(in other words: u is compatible with composition by differentiable

functions). �

Remark 2.4. As far as I am aware, one does not know at present whether

every homomorphism A Ñ B (as R-algebras) is a morphism. One does

not even know whether two differentiable algebras which are isomor-

phic as R-algebras are also isomorphic as differentiable algebras. It is

precisely this fact which has forced us to adopt the preceding definitions

rather than the “naive” definitions, with which we will not be able to

work.

We adopt analogous definitions also in the case of formal and ana-

lytic rings, leaving to the reader the task of formulating them explicitly.

This is only provisional, till the preparation theorem is proved: we shall

see in §3, as a consequence of this theorem, that any homomorphism of

analytic (resp. formal) R-algebras is a morphism.

3 The preparation theorem for formal and ana-

lytic algebras.

Theorem 3.1. Let u be a morphism of analytic (resp. formal) algebras.

Then u is quasi-finite if and only if u is finite.

Proof. We shall give the proof in the case of analytic algebras, leaving

to the reader the task of treating that of formal algebras.

Let, then On
π
ÝÑ A, Om

ψ
ÝÑ B be two analytic algebras, and u a

morphism A Ñ B, which we suppose quasi-finite. The problem reduces

to proving that u is finite.
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The preparation theorem for formal and analytic algebras

(A) Reduction to the regular case. pA “ On, B “ Omq.

In the first place, u˝π is again quasi-finite, and if it is finite, then so

is u; we may, therefore, suppose that A “ On (and π “ identity).

Let us now put p “ kerψ; the second reduction consists in re-

ducing to the case when p is finitely generated (property which is,

a posteriori, true of all ideals since Om is noetherian, but which

we cannot use here!). For this, let ru be a morphism On Ñ Om 35

such that u “ ψ ˝ ru. Since mpOnqB is an ideal of definition of

B, p ` mpOnqOm is an ideal of definition of Om, hence contains

mkpOmq for a certain k. It follows that there exists an ideal p1 Ă p
finitely generated over Om, such that

p1 `mpOnqOm `mk`1pOmq Ą mkpOmq.

By Nakayama’s lemma, we deduce from this that p1`mpOnqOm Ą
mkpOmq. Let us now put B1 “ Om{p1, ψ1 : Om Ñ B1 the natural

projection and let u1 “ ψ1 ˝ u. Then u1 is again quasi-finite, and if

it is finite, then so is u.

Let us, therefore, suppose that p is finitely generated, and let

g1, . . . , gp be a system of generators. Let us denote by yip1 ď
i ď nq resp. z jpn ` 1 ď j ď n ` pq generators of the maximal

ideal of On (resp. On`p), and let v be the morphism On`p Ñ Om

defined by the formulas

vpziq “ rupyiq, 1 ď i ď n

vpzn` jq “ g j, 1 ď j ď p.

The morphism v is still quasi-finite; if v is finite, then so is u. We

are thus reduced, after a change of notation, to the case A “ On,

B “ Om.

(B) Proof in the regular case. (cf. Houzel [8]).

Let us denote by x1, . . . , xn (resp. y1, . . . , ym) coordinates in On

(resp. Om). Let us put φi “ upxiq, and let φ be the mappings

pφ1, . . . , φnq of Rm Ñ Rn. By hypothesis, we have up f q “ f ˝
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φ for f P On. Since u is quasi-finite, there is an r such that

mpOnqOm Ą mrpOmq. If for an m-tuple k “ pk1, . . . , kmq P Nm,

we set as usual: |k| “ k1 ` ¨ ¨ ¨ ` km, yk “ y
k1

1
. . . y

km
m , we have, for

|k| “ r, the formula

yk “
nÿ

i“1

λkiφi, λki P Om. (3.2)

We shall prove that the yk with |k| ď r generate Om over On. For

this, let f P Om. If we denote by πp f q the terms of degree ă r in

f we can write f in the form

f “ πp f q `
ÿ

|k|“r

ykσkp f q, where σkp f q P Om. (3.3)

Using (3.2), we obtain from this an expression of f in the form36

f “ τp f q `
nÿ

i“1

φiρip f q, where ρip f q P Om. (3.4)

[The σ and the ρ are not, in general, unique, but this causes no

trouble.]

Applying the same formula to the ρi and iterating this procedure,

one obtains for p P N,

f “ τp f q` `
ÿ

1ďi1,...,ipďn

φi1 . . . φip
τi1...ip

p f q`

`
ÿ

1ďi1,...,ip`1ďn

φi1 . . . φip`1
ρi1...ip`1

p f q. (3.4p)

Here the τ are polynomials of degree ď r ´ 1 in y and the ρ are

functions in Om. Since the last term belongs to mp`1pOnq, we see

already that this defines a series converging formally to f . We

have thus only to prove that for a suitable choice of the τ, the

family

xi1 . . . xip
τi1...ip

p f q (3.5)

(which has values in the space of polynomials of degree ď r ´ 1

in y) is summable in a neighbourhood of the origin.
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The preparation theorem for formal and analytic algebras

For this, let R ą 0 and f “
ř

akyk. Let us put | f |R “
ř

|ak|R|k|.

The mapping f Ñ | f |R has all the usual properties of norms, except

that it may take the value `8. For f fixed, the function R Ñ | f |R
is increasing and finite for R small enough. Finally, a straight-forward

calculation shows that | f g|R ď | f |R|g|R.

In (3.3), we have |τp f q|R ď | f |R, and, if we choose the σ suitably,

we will have, for any R ą 0,

|σkp f q|R ď
1

Rr
| f |R.

Let us choose R0 such that |λki|R0
ă 8 for all pk, iq. Substituting in

(3.3) the expressions for the yk given by (3.2), we obtain, for R ă R0,

the following estimate in (3.4):

|ρip f q|R ď
C

Rr
| f |R with C independent of R.

Iterating this, we find that we can choose the τi1...ip
in such a way that, 37

for R ă R0, we have

|τi1...ip
p f q|R ď

Cp

Rrp
| f |R.

Finally, choosing R ă R0 such that | f |R ă 8, we conclude from the

above inequality that the family (3.5) is summable in |xi| ď ρ for ρ ď
Rr{nC, which proves the theorem.

In the following corollaries, we consider On´1(resp. Fn´1) as imbed-

ded in On (resp. Fn) by means of the morphism π˚ induced by the

projection π : px1, . . . , xnq Ñ px1, . . . , xn´1q. �

Corollary 3.6 (Division algorithm). Let Φ P On be such that

Φp0, , 0, xnq “ x
p
ngpxnq, gp0q ‰ 0.

For any f P On, there exist Q P On and R P On´1rxns with degree R ă
p, such that f “ ΦQ ` R. Moreover Q and R are uniquely determined

by these conditions.

Also, the statement remains valid if we replace On, On´1 by Fn,

Fn´1.
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Let A “ On´1, B “ On{pΦq and let u be the composite of π˚ and

the canonical mapping On Ñ On{pΦq. It is obvious that the images of

1, xn, . . . , x
p´1
n in B{mpAqB form a basis of the latter space over R. By

our theorem, and Nakayama’s lemma p1, xn, . . . , x
p´1
n q is a system of

generators of B over A, whence the existence of Q and R.

To prove the uniqueness, let us write Φ “ ΣΦk, Φk being a conver-

gent series in xn with coefficients which are homogeneous polynomials

of degree k in px1, . . . , xn´1q. Suppose further that there exist Q P On,

R P On´1rxns, deg R ă p, for which 0 “ ΦQ`R and Q ‰ 0, R ‰ 0. Let

us write Q “ ΣQk, R “ ΣRk in the same way as above, and let l be the

smallest integer such that Ql ‰ 0 or Rl ‰ 0. We have Φ0Ql ` Rl “ 0;

but Φ0Ql contains x
p
n as factor, so that Ql “ Rl “ 0, a contradiction.

Corollary 3.7 (Weierstrass). With the same hypotheses as in the preced-38

ing corollary, there exists Q P On with Qp0q ‰ 0 and a distinguished

polynomial P P On´1rxns (i.e. a monic polynomial, all of whose other

coefficients are zero at the origin) such that P “ ΦQ. Further, P and Q

are completely determined by these conditions. The statement remains

valid with Fn, Fn´1 instead of On, On´1.

We have only to apply (3.6) to f “ x
p
n and take P “ x

p
n ´ R (it is

easy to verify that P is distinguished and that Qp0q ‰ 0).

Theorem 3.8. Analytic (resp. formal) algebras are noetherian.

Proof. It is sufficient to prove that On (resp. Fn) is noetherian. Let

p ‰ t0u be an ideal in On and let f P p, f ‰ 0. By a linear change of

coordinates, we may suppose that f p0, . . . , 0, xnq ‰ 0, and it is enough

to prove that the image p of p in On{p f q is finite over On. A fortiori, it

is sufficient to prove that p is finite over On´1. This follows from the

induction hypothesis and the fact that On{p f q is finite over On´1. �

Theorem 3.9. The ring On (resp. Fn) is factorial.

Proof. The ring On is obviously an integral domain. In view of the theo-

rem above, it is sufficient to prove the following: if f P On is irreducible,

then f is prime. We proceed by induction on n, and suppose that On´1 is
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factorial, so that (Gauss’ theorem) On´1rxns is factorial. By a change of

coordinates and multiplication by an invertible factor, we may suppose

that f is a distinguished polynomial in xn. The theorem results from the

next lemma, which is a little stronger. �

Lemma 3.10. Let P P On´1rxns be a distinguished polynomial, irre-

ducible in On´1rxns. Then P is prime in On.

Proof. Let gh P On be such that P divides gh. Let g and h be the

remainders of g and h after division by P. P divides g h in On. Because

of our inductive hypothesis, P is prime in On´1rxns, so that it suffices to

prove that P divides g h in On´1rxns.
Now, we have on the one hand gh “ PQ, Q P On, and on the other 39

(euclidean division) gh “ PQ1 ` R1, Q1, R1 P On´1rxns, deg R1 ă deg P.

Because of the uniqueness in (3.6), we have necessarily Q “ Q1, R1 “ 0,

whence the lemma. �

Remark 3.11. Let P P On´1rxns be distinguished. One verifies eas-

ily that P admits a decomposition into irreducible factors which are all

distinguished polynomials in xn.

Theorem 3.8 will enable us to apply some of the theorems of local

algebra to analytic and formal rings. We recall some of these results.

Let A be a local ring, E and A-module. We define the structure of a

topological group on E, “the Krull topology”, by taking, for a funda-

mental system of neighbourhoods of 0, the sets mkpAqE. [If E “ A, this

coincides with the definition given in §1; further, we could also consider

the p-adic topology of E for an arbitrary ideal p of A, but we will not

need this.]

Let F be a submodule of E. It is obvious that the Krull topology of

E{F is the quotient topology of that on E. To study the topology of F,

we use the following result.

Theorem 3.12 (Artin-Rees). Suppose that A is noetherian, and that E

is finite over A. There is an integer p ą 0 such that, for n ą p, we have,

41



ANALYTIC AND DIFFERENTIABLE ALGEBRAS

(writing m for mpAq)

F XmnE “ mn´p.pF XmppEqq.

For the proof, see e.g. Bourbaki [2].

Corollary 3.13 (Krull). With the same hypothesis

(i) the Krull topology of F coincides with the topology induced on F

by the Krull topology of E;

(ii) E is hausdorff;

(iii) F is closed.

(i) follows trivially from (3.12). To prove (ii), we apply (i) with F “
closure of 0, 0 “ XmnE: we have m0 “ 0, whence (Proposition 1.1),40

0 “ 0. Finally (iii) follows from (ii) applied to E{F.

From this and Theorem 3.8, we deduce that formal and analytic

algebras are hausdorff. We will deduce from this a result stated at the

end of §2.

Proposition 3.14. Every homomorphism of analytic (resp. formal) al-

gebras is a morphism.

Proof. Let On
π
ÝÑ A, Om

ψ
ÝÑ B and let u be a (unitary R-algebra) homo-

morphism A Ñ B. Let x1, . . . , xn be coordinates in Rn and let ru be the

morphism On Ñ B defined by rupxiq “ u ˝ πpxiq (Proposition 2.3). It

is sufficient to prove that, for any f P On, we have rup f q “ u ˝ πp f q.

Now this formula is true if f is a polynomial in x1, . . . , xn. Since B is

hausdorff and the two sides of our formula depend continuously on f ,

the result is obtained by passage to the limit. �

Remark 3.15. The same argument proves the following: let En Ñ A,

Em Ñ B be two differentiable algebras. If B is hausdorff every homo-

morphism A Ñ B is a morphism. We shall see that, in general, B is not

hausdorff, so that this does not answer the question raised in 2.4.
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Let A be a local ring, p an ideal of A with p ‰ A. Then A{p is a local

ring and we have mkpA{pq “ mkpAqpA{pq. Consequently, the topology

of the local ring A{p and the A-module A{p coincide.

Let us take A “ Fn which is complete; since p is closed in Fn,

Fn{p is again a complete Fn-module, and hence a complete local ring.

Consequently, we obtain

Proposition 3.16. Every formal algebra is complete.

Take now A “ En. The mapping of “Taylor expansion” En Ñ Fn is

surjective, and its kernel is the ideal m8pEnq “ XmkpEnq of functions

flat at 0. Fn can therefore be identified with the completion pEn of En.

Let p be an ideal of En, rp “ pp`m8pEnqq{m8pEnq its image in Fn. 41

We have an isomorphism En{pp ` m8pEnqq Ñ Fn{rp; in particular, the

first space is hausdorff (and even complete) and p`m8pEnq is therefore

closed. Put B “ En{p, and m8pBq “ XmkpBq. We have obviously an

injection i : pp`m8pEnqq{pÑ m8pBq, and since p`m8pEnq is closed

in En, pp ` m8pEnqq{p is closed in B, and hence i is an isomorphism.

Denoting by pB the completion of B, and using the fact that Fn{rp is

complete, we deduce from this the

Proposition 3.17. The canonical mappings

Fn{rp » En{pp`m8pEnqq Ñ B{m8pBq Ñ pB

are isomorphisms.

In particular, the completion of a differentiable algebra is simply the

largest hausdorff quotient; and for a differentiable algebra to be com-

plete, it is necessary and sufficient that it be hausdorff, or again, that it

be isomorphic (as a local algebra) to a formal algebra.

4 Analytic algebras: completion and coherence.
A. Flat modules. We recall here a certain number of definitions

and elementary properties, and refer to Serre [21] or Bourbaki [1] for

the proofs. [These proofs are, moreover, almost all immediate so that it

would be a good exercise for the reader to reconstruct them.]
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Let us also state that the concept of flatness finds its natural inter-

pretation in homological algebra. We will not develop this point of view

here.

Definition 4.1. Let A be a ring, E an A-module. We say that E is flat if

the following equivalent conditions are satisfied.

(i) For every exact sequence M1 Ñ M Ñ M2 of A-modules, the

sequence E bA M1 Ñ E bA M Ñ E bA M2 is exact.

(ii) For any ideal I of A, the natural map IbA E Ñ E is injective.

The property (ii) can be interpreted in the following way. Let f “
p f1, . . . , fnq P An. Let us denote by Rp f , Eq (the “relations of f in E”)42

the submodule of En consisting of the pe1, . . . , enq verifying Σ fiei “ 0.

Then

Proposition 4.2. E is flat if and only if for every n and f P An, we have

Rp f , Eq “ Rp f , AqE.

Remark 4.3. Let f “ p f1, , fnq be a system of n elements of Am.

We may again define Rp f , Eq as the submodule of En consisting of the

pe1, enq for which Σ fiei “ 0. Using induction and Proposition 4.2, we

see that if E is flat, we have again Rp f , Eq “ Rp f , AqE.

Proposition 4.4. (i) Let 0 Ñ M1 Ñ M Ñ M2 Ñ 0 be an exact

sequence of A-modules. If M1 and M2 are flat, then so is M. If M

and M2 are flat, so is M1

(ii) Let A Ñ B be a homomorphism of rings such that B is flat as

an A-module. If M is a flat B-module, then M, considered as an

A-module, is again flat.

(iii) Let 0 Ñ M1 Ñ M Ñ M2 Ñ 0 be an exact sequence of A-

modules and suppose that M2 is flat. For any A-module E, the

sequence

0 Ñ M1 bA E Ñ M bA E Ñ M2 bA E Ñ 0

is again exact.
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Proposition 4.5. Let E be a flat A-module, M1 and M2 two submodules

of M. Consider M1 bA E (resp. M2 bA E) as a submodule of M bA E by

means of the natural injection M1 bA E Ñ M bA E (resp. etc...). Then,

we have

pM1 X M2q bA E “ pM1 bA Eq X pM2 bA Eq.

[One uses the exact sequence

0 Ñ M{pM1 X M2q
i

ÝÑ M{M1 ‘ M{M2 δ
ÝÑ M{pM1 ` M2q Ñ 0

where

ipxq “ pxmod M1, xmod M2q

and

δpx1, x2q “ x1mod pM1 ` M2q ´ x2mod pM1 ` M2q,

and the exact sequence obtained by tensoring with E.]

Definition 4.6. Let A be a ring, E an A-module. We say that E is faith- 43

fully flat if it has the following properties

(i) E is flat.

(ii) For any A-module M, E bA M “ t0u implies that M “ t0u.

[It is sufficient to require (ii) for modules of finite type.]

Let B be a ring containing A. For B to be a faithfully flat A-module,

it is necessary and sufficient that it verify one of the following equivalent

conditions.

(i) B{A is a flat A-module.

(ii) B is flat and, for any ideal I of A, we have pIBq X A “ I.

We shall have occasion to study the following more general situa-

tion.

Proposition 4.7. Let A Ă B Ă C be three rings having the following

properties:
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(i) C is faithfully flat over A.

(ii) For any ideal I of A, we have pICq X B “ IB.

Then B is faithfully flat over A.

Proof. In fact, let us consider the following exact sequence of A-modules

0 Ñ B{A Ñ C{A Ñ C{B Ñ 0.

We wish to show that B{A is flat, and we know that C{A is flat. It is,

therefore, enough to show that C{B is flat (Proposition 4.4). Consider

the following commutative diagram

Ib B

��

// Ib C

��

// Ib pC{Bq

��

// 0

IB // IC // IpC{Bq // 0.

The first row is exact, since the tensor product is right exact, and the

second row is exact because of the hypothesis (ii). Now, the first and

third vertical arrows are surjective and the second is bijective; hence the

third is bijective, whence the result. �

Remark 4.8. Let us consider again the situation of the preceding propo-44

sition, and let F Ă E be two A-modules. To simplify the notation, let

us put FB “ F bA B, and let us define FC, EB, . . . in the same way.

Consider the following commutative diagram:

0

��

0

��

0

��

0 // FB

��

// FC

��

// FpC{Bq

��

// 0

0 // EB // EC // EpC{Bq // 0

Since B, C, C{B are flat, the columns in this diagram are exact, and

the rows are also exact because of Proposition 4.4, (iii) and the fact that
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C{B is flat. We deduce immediately that if we consider FB, FC, EB

as submodules of EC, we have FC X EB “ FB. [This formula, with

E “ A, F “ I an ideal in A, is nothing but condition (ii) of Proposition

4.7.]

B. Completion of analytic algebras. Let A be a noetherian local ring,

E an A-module of finite type furnished with the Krull topology, and pE
the completion of E. One has the following result (Serre [21]; see also

Bourbaki [1].)

Theorem 4.9. (i) The natural map pA bA E Ñ pE is an isomorphism.

(ii) pA is faithfully flat over A.

Let us recall rapidly the proof. In the first place, if 0 Ñ E1 Ñ
E Ñ E2 Ñ 0 is an exact sequence of A-modules of finite type, the

topology of E1 is induced by that of E, and the topology of E2, which is

trivially the quotient of that of E are hausdorff (Corollary 3.13). From

properties of the completion of topological groups, we deduce that the

sequence 0 Ñ pE1 Ñ pE Ñ pE2 Ñ 0 is exact. From this we deduce, by

a well-known method, that for any exact sequence E1 Ñ E Ñ E2 of

A-modules of finite type, the sequence pE1 Ñ pE Ñ pE2 is exact.

Let us apply this to a presentation of E, i.e. to an exact sequence 45

Ap Ñ Aq Ñ E Ñ 0. We obtain (i); the fact that pA is flat over A is then

immediate.

Finally, any E of finite type is hausdorff, so that the mapping E Ñ
pE is injective; in particular, pE “ t0u implies that E “ t0u, which

completes the proof of (ii).

Let p be an ideal in A, B “ A{p. The “intrinsic” topology of B and

its topology as A-module coincide. Consequently

pB » pA{pp » pA{pq bA
pA and pp » pA bA p;

so that pp is the closure of p in pA. If we take A “ On, we have, ob-

viously, pA “ Fn. The preceding results give then a description of the

completions of analytic algebras.

Theorem 4.9, together with Proposition 4.7, has the following con-

sequence.
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Proposition 4.10. Let A Ă B be two noetherian local rings such that

the mapping pA Ñ pB is an isomorphism. Then B is faithfully flat over A.

Example 4.11. Let Rn be the field Rpx1, . . . , xnq of rational functions

and S n the subring of fractions whose denominator does not vanish at

the origin. We have an obvious injection S n Ñ On and the two com-

pletions are equal to Fn. Hence On is faithfully flat over S n. Since

S n is trivially flat over Rrx1, . . . , xns, we deduce that On is flat over

Rrx1, . . . , xns.

One could show, in the same way, that On is flat over On´1rxns
(imbedded in On in the obvious way).

C. Coherence. Let U be the set of open neighbourhoods of 0 in

Rn; for V P U , let rOnpVq “
ś
xPV

rOn,x and let us denote by OnpVq

the space of real valued analytic functions on V . We obtain a mapping

OnpVq Ñ rOnpVq by associating to f P OnpVq the collection of the46

Taylor series of f at the various points of V . Let rOn be the inductive

limit rOnpVq following the filtered set U ; the above mapping defines an

injection On Ñ rOn (which we shall refer to as the canonical injection).

Starting with Fn instead of On, we can define a ring ĂFn and a canon-

ical injection En Ñ ĂFn (obtained by associating to each f P En the germ

at 0 of the collection of the Taylor series of f at points near 0). Finally,

from the injection On Ñ Fn, we obtain in the obvious way an injection
rOn Ñ ĂFn and the following diagram is commutative

On

��

// rOn

��

Fn
// ĂFn

One of the main results of this course is to establish that the triple

pOn,En, ĂFnq satisfies the hypotheses of Proposition 4.7. We shall take

up in Chapter VI the condition (ii) which is more difficult, and we shall

establish (i) here. For this we need a definition and some results, which

we do not number formally since they will not be used outside this arti-

cle.
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Let A be a ring and E an A-module. We say that E is quasi-flat if, for

any ideal I Ă A of finite presentation (i.e. for which there is an exact

sequence Ap Ñ Aq Ñ I Ñ 0), the mapping I bA E Ñ E is injective.

This is equivalent to saying that for any f P Aq such that Rp f , Aq is of

finite type, we have Rp f , Eq “ Rp f , AqE.

If A is noetherian, “quasi-flat” is equivalent with “flat” since any

ideal is of finite presentation. On the other hand, if we have a ring

homomorphism A Ñ B and a B-module, E, “E quasi-flat over B” and

“B quasi-flat over A” imply “E quasi-flat over A”. (Proof left to the

reader.)

Examples. From the fact that Fn is flat over On, we deduce at once that
ĂFn is quasi-flat over rOn. In the same way, rOn is quasi-flat over rOn´1rxns 47

(cf. Example 4.11). This being the case, the theorem we have in view is

the following.

Theorem 4.12 (Oka). rOn is faithfully flat over On.

Proof. It is obviously sufficient to show that rOn is flat over On. The

proof is by induction on n. The result being trivial for n “ 0, suppose

the theorem proved for n ´ 1. Let I be an ideal in On. Let us prove

that the map I bOn
rOn Ñ rOn is injective. If I “ 0, this is trivial. If

I ‰ 0, we may suppose, by an application of 3.7, that after a linear

change of coordinates, I contains a distinguished polynomial in xn, say

f . Applying 3.6, we find that there is an ideal I1 Ă On´1rxns such that

I “ I1
On » I1 bOn´1rxns On.

Hence I bOn
rOn » bOn´1rxnsOn, and it is sufficient to verify that rOn

is flat over On´1rxns. Now, by induction, rOn´1 is flat over On´1. One

deduces at once that rOn´1rxns is flat over On´1rxns. Since rOn is quasi-

flat over rOn´1rxns, it is quasi-flat, hence flat over the noetherian ring

On´1rxns. The theorem follows. �

Corollary 4.13. rFn is faithfully flat over On.

In fact, ĂFn is quasi-flat over rOn, and rOn is flat over On.
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Remark 4.14. The theorem of Oka is usually stated somewhat differ-

ently.

(C) Let f “ p f1, . . . , fnq be analytic functions in a neighbourhood

of 0, and gi, 1 ď i ď q, be p-tuples of analytic functions in a neighbour-

hood of 0 such that their germs g0
i

at 0 generate Rp f 0,Onq. Then, for

any point a sufficiently near 0, the ga
i

generate Rp f a,Onq.

Using the interpretation of flatness in terms of relations, it is clear

that (C) implies (4.12). Conversely, let us prove (C) using (4.12). If

(C) were false, there would exist a sequence ak of points tending to 048

and γk P Rp f ak ,Onq such that γk is not a linear combination of the g
ak

i
.

Consider in rO p
n the germ defined by γ “ γk at ak, γ “ 0 otherwise. This

germ does not belong to Rp f 0,Onq rOn, which is absurd.

5 Dimension of analytic algebras and analytic
germs.

A. The concept of dimension. Let us recall the following definition.

Definition 5.1. Let A be a noetherian local ring. By the dimension of

A (written dim A) we mean the largest integer n for which there exists a

strictly decreasing sequence p0 “ mpAq, p1, . . . , pn of prime ideals of A.

One proves the following results (see Zariski-Samuel [26]).

Proposition 5.2. For any noetherian local ring A,

(i) dim A is finite and equal to the minimum number of generators of

an ideal of definition of A;

(ii) we have dim A “ dim pA.

It follows at once from (i) that dim On “ dim Fn “ n.

Theorem 5.3 (Cohen-Seidenberg). Given two noetherian local rings A

and B with A Ă B and B finite over A, we have dim A “ dim A.

The inequality dim B ď dim A results immediately from 5.2 (i) since

any ideal of definition of A generates an ideal of definition of B (cf. §1).
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It would also result from the following proposition, which we shall need

in any case.

Proposition 5.4. Let A and B be two rings with A Ă B, B finite over

A, and let p and q be two ideals of B, p being prime, such that p Ă q,
p ‰ q. Then pX A ‰ qX A.

Proof. Passing to the quotient by p, we are reduced to the case when

p “ t0u and A and B are integral domains. Let A (resp. B) be the 49

quotient field of A (resp. B). Since ArBs is a finite A algebra which is

an integral domain, it is a field, so that ArBs “ B. Let f P q, f ‰ 0.

We have
1

f
“

b

a
with b P B, a P A, a ‰ 0. We have a “ f b P q X A,

whence the proposition. �

B. Integral analytic algebras. Let p be an ideal in On, and A “
On{p. Let g1, . . . , gp P mpOnq, and g1, gp their canonical images in

A. Recall that there is a unique morphism u : Op Ñ A with upyiq “
gi (y1, . . . , yp are the coordinates of Rp). If u is injective, we say that

g1, . . . , gp are analytically independent modulo p (or that g1, . . . , gp are

analytically independent).

Put k “ dim A; clearly we have 0 ď k ď n.

Theorem 5.5. Under the above hypotheses, we may make a linear change

of coordinates in Rn such that, x1, . . . , xn being the new coordinates, we

have

(i) x1, . . . , xk are analytically independent modulo p,

(ii) the morphism Ok Ñ A defined by x1, . . . , xk is finite.

Consider the set pEq of couples p f , S q where f “ p f1, . . . , flq is

a family of elements of p, all ‰ 0, and S is a system px1, , xnq of

coordinates obtained by linear change from the canonical system having

the following properties for 1 ď p ď l.

(a) fp P On´p`1, i.e. fp depends only on x1, . . . , xn´p`1;

(b) fpp0, . . . , 0, xn´p`1q ‰ 0.
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We say that such a couple is maximal if there is no couple p f 1, S 1q P pEq

with f 1 “ p f1, . . . , fl, gq and S 1 being obtained from S by linear change

of the n ´ 1 first coordinates among themselves. Let us take such a

maximal couple (which evidently exists). By applying the preparation

theorem, we see that A is finite over On´l. On the other hand, the map-

ping On´l Ñ A is injective: if it were not, there would be a g P On´l Xp,
g ‰ 0, and by a linear change of the first n ´ l coordinates among them-50

selves, we could ensure that gp0, . . . , 0, xn´lq ‰ 0.

By (5.3), we have dim A “ n ´ l, and the theorem follows. From

now onwards, we suppose that p is prime, and we retain the preceding

notation. Let Ok (resp. A) be the quotient field of Ok (resp. A). A is a

finite algebraic extension of Ok.

Proposition 5.6. For any f P A (resp. mpAq), the minimal polynomial of

f over Ok has its coefficients in Ok (resp. mpOkq and is distinguished).

Proof. Ok is factorial, hence integrally closed. Since any f P A is inte-

gral over Ok, its minimal polynomial, P, has its coefficients in Ok. Let

us show that if f P mpAq, F is distinguished. If it were not, we would

have P “ P1P2 with P1 P Okrts distinguished and P2 P Ok`1 (and in

fact P2 P Okrts, but this has no importance) is invertible in Ok`1. Hence

P2px1, , xk, f q is invertible in Ok, and P1px1, . . . , xk, f q “ 0, and P is

not the minimal polynomial of f (if P2 is not constant). The proposition

follows.

In the same situation, the preparation theorem shows that the classes

xk`1, . . . , xn of xk`1, . . . , xn modulo p generate A as an Ok-algebra. A

fortiori, they generate A over Ok. It follows from the theorem of the

primitive element that, by a linear change of coordinates of xk`1, . . . , xn

among themselves, we may suppose that A “ Okrxk`1s. Let, then, P be

the minimal polynomial of xk`1, ∆ its discriminant, and let p “ deg P “
rA : Oks. �

Proposition 5.7. For any f P A, integral over A, there exists a unique

Q P Okrts, deg Q ă p, such that ∆ f “ Qpxk`1q.
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Proof. Let σ1, . . . , σp be the Ok-isomorphisms of A in an algebraic clo-

sure of Ok. For 0 ď i ď p ´ 1, we have

σ1pxi
k`1 f q ` ¨ ¨ ¨ ` σppxi

k`1 f q “ apiq P Ok

(since Ok is integrally closed). If we identify A with σ1pAq and solve

these equations for σ1p f q, we obtain a Q with the required property.

The uniqueness is obvious. �

C. Real analytic germs. To conclude this chapter, we shall recall rapidly 51

some results which we require. Let Ω be an open set in Rn. A closed set

F Ă Ω is called analytic if, in a neighbourhood of each of its points, F

is the set of common zeros of a finite family of analytic functions. Let

us take a point of Rn, say 0. If we identify two analytic sets defined in

two neighbourhoods of 0 if they coincide in a third neighbourhood of 0,

we define the notion of a (real) analytic germ at 0. To any such germ,

E, we make correspond the ideal IpEq Ă On of germs of analytic func-

tions which are zero on E. Conversely, to any ideal p Ă On, we make

correspond the germ Vppq defined by the vanishing of a finite system of

generators of the ideal. (It is obvious that Vppq does not depend on the

system chosen.) We always have VpIpEqq “ E and IpVppqq Ą p, but,

in general IpVppqq ‰ p.
A finite union (resp. intersection) of analytic germs is defined in the

obvious way, and is again an analytic germ.

We say that a germ E is reducible if we have E “ E1 Y E2 with

E ‰ E1, E ‰ E2, and it is irreducible if this is not the case. One verifies

at once that E is irreducible if and only if IpEq is prime. Any decreasing

sequence of analytic germs is stationary (since On is noetherian). We

deduce that every analytic germ can be decomposed in a unique way

into a finite set of irreducible germs, none of which is contained in the

union of the others. We call these the irreducible components.

Let E be an analytic germ. The dimension of E (written dim E) is

the dimension of On{IpEq. If E “
pŤ

i“1

Ei, we have obviously IpEq “

pŞ
i“1

IpEiq. We deduce from this and Definition 5.1 that the dimension of
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E is equal to the largest dimension of its irreducible components.

Let E be irreducible, and dim E “ k. Let p “ IpEq, and apply to p

the considerations of §5.B. Using the notation of Proposition 5.7, let us

denote by Qk`2, . . .Qn, the polynomials associated to xk`2, . . . , xn.

Proposition 5.8. Let E be an analytic set in a neighbourhood of 0 whose52

germ E at 0 is irreducible. In a neighbourhood of 0, the set of points

x “ px1, . . . , xnq satisfying x P E, ∆px1, . . . , xkq ‰ 0 coincides with the

set

Ppx1, . . . , xk, xk`1q “ 0

∆px1, . . . , xkqxk` j ´ Qk` jpx1, . . . , xk, xk`1q “ 0, 2 ď j ď n ´ k

∆px1, . . . , xkq ‰ 0.

Proof. Let q be the ideal in On generated by P and the ∆xk` j ´ Qk` j.

Clearly q Ă p, and it is sufficient to show that for any f P p, there is

an integer p such that ∆p f P q. For this, denote by rOk (resp. rOn,rp,rq)
the localisation of Ok (resp. On, p, q) with respect to ∆, i.e. the set of

fractions f {∆p with f P Ok (resp. On, p, q). We have to show that rp “ rq,
or that the natural surjection rOn{rqÑ rOn{rp is bijective.

The ring rOk can be considered, in a natural way, as a subring of the

two preceding rings, and, if we denote by x1
k` j

(resp. x2
k` j

) the image of

xk` j in rOn{rp (resp. rOn{rq), we have the following isomorphisms:

rOn{rp » rOkrx1
k`1s » rOkrx2

k`1s » rOkrts{pPq

(the first follows from 5.7). Thus we have only to show that x2
k`1

gener-

ates rOn{rq. Now, because of the equations x2
k` j

“
Qk` j

∆
, we have x2

k` j
P

rOkrx2
k`1

s. Consequently, the result will be proved if we show that mod-

ulo q, every element of rOn is equivalent to an element of rOkrxk`1, . . . , xns.
Now, if Pk` j is the minimal polynomial of xk` j over Ok, p2 ď j ď
n ´ kq, the above isomorphisms show that Pk` jpx2

k` j
q “ 0, so that

Pk` j P rq. This, together with the preparation theorem (more precisely,

formula (3.6) applied successively to P, Pk`2, . . . , Pn) implies the re-

quied result. �
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Remark 5.9. One must pay attention to the fact that, contrary to the 53

complex case, a prime ideal p Ă On is not necessarily of the form

IpEq: in other words, the “Nullstellensatz” is false in the real domain.

(Counter-example: n “ 2, p “ principal ideal generated by x2
1

` x2
2
!)
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IV

METRIC AND DIFFERENTIAL PROPERTIES

OF ANALYTIC SETS

54

1 Multipliers. LetΩ be an open set in Rn and X a closed subset

of Ω. We shall denote by M pX;Ωq the set of C8-functions f of Ω´ X

which satisfy the following condition

(1.1) For any compact set K Ă Ω and any n-tuple of positive integers

k P Nn, there exist constants C ą 0, m ą 0 such that

|Dk f pxq| ď C{pdpx, Xqqm for x P K ´ X.

We start with the following

Lemma 1.2. If g P M pX;Ωq and g ‰ 0 everywhere inΩ´X, then 1{g P
M pX;Ωq if and only if for any compact K Ă Ω, there are constants

c ą 0, α ą 0 such that

|gpxq| ě cpdpx, Xqqα for x P K ´ X. (1.3)

Proof. If g´1 P M pX;Ωq, then (1.1) applied to f “ g´1 with k “ 0

on K gives (1.3). Conversely, if (1.3) holds, then the condition (1.1) for

f “ g´1 follows from (1.1) for g and the relation

Dk f “ g´|k|´1Pkpg, . . . ,Dkgq,

where Pk is a polynomial in the derivatives Dlg with l ď k./ �

Proposition 1.4. If I pX;Ωq is the space of C8-functions in Ω which

are flat on X, then M pX;Ωq is a space of multipliers for I pX;Ωq. More

precisely, if F P I pX;Ωq, g P M pX;Ωq, then the C8-function gF on

Ω´ X has a unique extension to a C8-function on Ω which is flat on X.
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Proof. Since the space I˚ of C8-functions in Ω vanishing in a neigh-

bourhood of X are dense in I pX;Ωq, we have only to prove that multi-

plication by g is a continuous mapping of I˚ into itself, in the topology

induced from I pX;Ωq, i.e. given m ą 0, and K Ă Ω compact, there

exists m1 ą 0 and a compact K1 Ă Ω, such that for F P I˚, we have

}gF}K
m ď C}F}K1

m1 ,

where C ą 0 is independent of F. But since for F P I pX;Ωq, compact 55

K Ă Ω, and k P Nn, there is a compact set K1 Ă Ω such that

|DkFpxq| ď CNpdpx, XqqN}F}K1

N`k for x P K and any N ą 0,

this follows at once from the condition (1.1) applied to g and Leibniz’s

formula. �

Proposition 1.5. If X and Y are closed subsets of Ω which are regularly

situated, and I pX X Y; Yq is the space of Whitney C8-functions on Y

which are flat on X X Y, then M pX;Ωq is a space of multipliers for

I pX X Y; Yq (in a sense analogous to that in Proposition 1.4).

Proof. Since X and Y are regularly situated, if F P I pX X Y; Yq, then

the function F̃ defined to be F on Y , 0 on X is induced by a function

f P I pX;Ωq. Proposition 1.5 thus follows at once from Proposition

1.4. �

2 Quasi-H:olderian functions. Let Ω be a bounded open

set in Rn and f a real valued function in Ω.

Definition 2.1. We say that f is quasi-hölderian of order α 0 ă α ď 1,

if there exists C ą 0 such that for any pair of points x, y such that the

closed segment rx, ys joining x and y belongs to Ω, we have

| f pxq ´ f pyq| ď C|x ´ y|α.

(Note that the condition need not be satisfied for all x, y P Ω.)
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Proposition 2.2. LetΩ be a bounded open set in Rn and ai, i “ 1, . . . , p,

bounded functions which are quasi-hölderian of order α. Let f be a

continuous function on Ω satisfying

f p `

pÿ

i“1

ai f p´i “ 0.

Then f is bounded and quasi-hölderian of order α{p.

The proof is based on three very elementary lemmas.

Lemma 2.3. If c1, . . . , cp, z are complex numbers and56

zp `

pÿ

i“1

ciz
p´i “ 0,

then |z| ď 2 sup |ci|
1{i.

Proof. For reasons of homogeneity, we may suppose |ci| ď 1. Then

|z|p ď 1 ` |z| ` `|z|p´1;

a fortiori
8ÿ

k“1

|z|´k ě 1,

whence |z| ď 2. �

Lemma 2.4. Let z jpresp. z1
k
qp j, k “ 1, . . . , pq be the roots of the equa-

tion

zp `

pÿ

i“1

ciz
p´i “ 0

˜
resp. zp `

pÿ

i“1

c1
iz

p´i “ 0

¸

where the ci, c1
i

are complex numbers. Suppose that

|ci| ď Ki, |ci ´ c1
i| ď Kiδ, where K, δ ą 0.

Then for any j, there exists k such that |z j ´ z1
k
| ď 2K.δ1{p
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Proof. Since z
p

j
`

př
i“1

ciz
p´i

j
“ 0, we have

ź

k

|z j ´ z1
k| “

ˇ̌
ˇ̌
ˇz

p

j
`

pÿ

i“1

c1
iz

p´i

j

ˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ

pÿ

i“1

pc1
i ´ ciqz

p´l

j

ˇ̌
ˇ̌
ˇ .

By Lemma 2.3, |z j| ď 2K, so that

ź

k

|z j ´ z1
k| ď 2pK pδ;

Lemma 2.4 follows at once.

Proposition 2.2 obviously follows from the next lemma. �

Lemma 2.5. Let K ą 0, 0 ă α ď 1 and let b1, . . . , bp be complex-

valued functions defined on the closed interval t1 ď t ď t2 such that if

t1 ď t, t1 ď t2, we have

|biptq| ď Ki, |biptq ´ bipt1q| ď Ki|t ´ t1|α.

57

Let f be a continuous functions on rt1, t2s such that

f p `

pÿ

i“1

bi f p´i “ 0.

Then, we have

| f pt2q ´ f pt1q| ď 4p.K.|t2 ´ t1|α{p.

Proof. Let z1 “ f pt1q, . . . , zp be the roots of the equation

zp `

pÿ

i“1

bipt1qzp´i “ 0

and let Ω be the union of the closed discs of radius 2K|t2 ´ t1|α{p and

center z j. Then, by Lemma 2.4, f prt1, t2sq Ă Ω, and so, since f is

continuous, is contained in the connected component of Ω containing

z1. Lemma 2.5 follows at once. �
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3 Notations. In the rest of the chapter, and the following ones

we will need to appeal several times to the local description of a real

analytic set which was given in Chapter III, §5. For this reason, we shall

fix the conventions and notations to which we shall adhere.

Let X be an analytic set in an open set Ω Ă Rn, let 0 P X and

suppose that the germ X0 of X at 0 is irreducible. We suppose that

I “ IpXq is the ideal in On of germs of analytic functions vanishing

on X0. Suppose dim X0 “ k and that the coordinates x1, . . . , xn of Rn

satisfy the following conditions; as we have seen these can always be

achieved by a linear change of coordinates in Rn.

(a) x1, . . . , xk are analytically independent mod I, i.e. the natural

mapping Ok Ñ On{I is injective ; further On{I is a finite Ok

module.

(b) The image in On{I of xk`1 generates the quotient field of On{I
over the quotient field of Ok.

(c) The images x̄k` j, j “ 1, . . . , n ´ k of xk` j in On{I satisfy the

monic polynomial equations

P jpx̄k` j, x1q “ 0, px1 “ px1, . . . , xkqq

over Ok, (i.e. with coefficients in Ok). Further, we may suppose58

that these are the minimal equations for x̄k` j ; therefore the P j

are distinguished. We shall denote P1 by P. Let ∆px1, . . . , xkq be

the discriminant of the polynomial P in x̄k`1. Then, there exist

polynomials Q jpx̄k` j; x1q over Ok such that

∆px1q.x̄k` j “ Q jpx̄k`1; x1q.

In what follows, we write x “ px1, . . . , xnq “ px1, x2q where x1 “
px1, . . . , xkq and x2 “ pxk`1, . . . , xnq. We denote n ´ k by l. We choose

a neighbourhoodΩ1 Ă Ω of 0,Ω1 “ Ω1 ˆΩ2 whereΩ1 Ă Rk, Ω2 Ă Rl,

such that there are polynomials P jpxk` j; x1q, Q jpxk`1; x1q, with coeffi-

cients analytic on Ω1 such that the image of these in On{I are the poly-

nomials considered above and which have the same degree in xk` j. We
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denote again by ∆ the discriminant of P1 “ P. ∆ is analytic on Ω1 and

its germ at 0 is ‰ 0. P being distinguished the roots of the equation

Ppt, 0q “ 0 are all zero, so that given any neighbourhood V2 of 0 in Rl,

there exists a neighbourhood V 1 of 0 in Rk such that if x1 P V 1, x2 P Rl,

x2 “ pxk`1, . . . , xnq and P jpxk` j; x1q “ 0, then x2 P V2. We may choose

V2 and V 1 such that V “ V 1 ˆ V2 is relatively compact in Ω1. We also

suppose that V 1 and V2 are cubes in Rk, Rl respectively.

Let ∆ “ tx1 P V 1|∆px1q “ 0u. If V is sufficiently small, the set

X X ppV 1 ´ δq ˆ V2q coincides with the set defined by the relations

x1 P V 1 ´ δ, Ppxk`1; x1q “ 0,

∆px1qxk` j ´ Q jpxk`1; x1q “ 0, 2 ď j ď l.

Clearly, for x1 P V 1 ´ δ, all the roots of Ppxk`1; x1q “ 0 are distinct.

Let Vsp1 ď s ď pq be the set of points x1 P V 1 ´ δ for which the

polynomial Ppxk`1; x1q has at least s real roots. Then Vs is open and

its boundary in V 1 is contained in δ. Let F1px1q ă . . . ă F spx1q be

the s smallest real roots of Ppxk`1; x1q on Vs. Clearly, Fr is defined,

continuous and bounded on Vrp1 ď r ď pq. For x1 P Vr, put

Fr
1 “ Fr, Fr

jpx1q “
Q jpFrpx1q; x1q

∆px1q

The Fr
j

are again defined and continuous on Vr, and, being roots of 59

the equation P jpt; x1q “ 0, are bounded on Vr. Set Φr “ pFr
1
, . . . , Fr

l
q

on Vr and

X1
r “ tx “ px1, x2q P V|x1 P Vr, x2 “ Φrpx1qu.

Let D “ X X pδˆ V2q, Xr “ X1
r Y D. Then Xr is closed in V and we

have
Ť

1ďrďp

Xr “ X X V .

4 The inequality of Łojasiewicz. The aim of this section

is to prove the following important theorem of Łojasiewicz [10].
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Theorem 4.1. Let Ω be an open set in Rn and let f be real analytic in

Ω. Let E “ tx P Ω| f pxq “ 0u. Then for any compact set K Ă Ω, there

exist constants c, α ą 0 such that, for all x P K, we have

| f pxq| ě cpdpx, Eqqα.

(in other words, 1{ f P M pE;Ωq).

We shall suppose that the theorem is proved for all analytic functions

in all open sets in Rm for m ă n. The proof consists of two steps.

Step 1. (L). With the above hypothesis of induction, given an analytic

set S in Ω of dimension ă n at every point, if f , K, E are as in

Theorem 1, then exist constants c, α ą 0 such that, for x P S X K,

we have

| f pxq| ě cpdpx, Eqqα.

Step 2. Deduction of Theorem 1.1 for Ω Ă Rn from (L).

Proof of (L). It is clearly sufficient to prove that for a P S X E, there is

a neighbourhood W such that for x P W X S , we have

| f pxq| ě cpdpx, Eqqα

for suitable constants c, α ą 0. We may suppose that a “ 0. Clearly

if X is an analytic subset of S X W such that the germ X0 of X at 0 is

irreducible, it is sufficient to prove the above inequality for all x P X. Let

k “ dim X0; we may clearly suppose that X Ć E. We shall proceed by

induction on k, and suppose that (L) is proved for all sets S of dimension

ă k. We begin by reducing (L) to the following.

(L1). There is an analytic set Y Ă X in a neighbourhood of 0, Y ‰ X,60

and constants c ą 0, α ą 0 such that for x P X near enough to 0, we

have

| f pxq| ě cpdpx,Yqqα. (4.2)

Proof that (L1) Implies (L). By induction hypothesis, there are constants

B, β ą 0 such that for y P Y sufficiently near 0, we have

B| f pyq|β ě dpy, Eq.
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Let x P X and y P Y be such that |x ´ y| “ dpx,Yq. Such a y exists if

x is sufficiently near 0. Now, | f pxq ´ f pyq| ď B1|x ´ y| (mean value

theorem), so that

dpy, Eq ď B| f pyq|β ď B2t|x ´ y|β ` | f pxq|βu,

so that

dpx, Eq ď |x ´ y| ` B2t|x ´ y|β ` | f pxq|βu.

The result now follows from the fact that |x ´ y| “ dpx,Yq ď
1{c.| f pxq|1{α (by (4.2)).

We will now prove L1. Since the ideal I is prime, there is h P On

and f1 P Ok, f1 ‰ 0 such that h f ´ f1 P I. Obviously, in (L1), we may

replace f by f1 and E by the set E1 of zeros of f1 in some neighbourhood

of 0. We therefore suppose that f P Ok.

We take now for Y the set D Y pE X Xq. Since f ı 0 on X, Y ‰ X

it suffices to prove that on Xs, (notation as in §3), near 0, we have

| f pxq| ě cpdpx, pE X Xsq Y Dqqα.

Now f is a function of x1, . . . , xk. If E1 denotes its zeros in a small

neighbourhood of 0, then Theorem 1 applied to Rk (induction hypothe-

sis) shows that we have an inequality of the form

| f px1q| ě cpdpx1, E1qqα.

To complete the proof, we have only to obtain an inequality of the

form

dpx; pE X Xsq Y Dq ď B3pdpx1, E1qqγ if x P Xs. (4.3)

Now, if x P D, there is nothing to prove. Suppose then that x1 P Vs

x “ px1, φspx1qq and let y1 P E1 satisfy dpx1, E1q “ |x1 ´ y1|.
If the half-open segment rx1, y1r meets δ (4.3) is obvious. If not, the 61

segment rx1y1rĂ Vs and if y1 belongs to this segment and y1
ν Ñ y1 as

ν Ñ 8, then any limit point y2 of Φspy1
νq has the property that py1, y2q P

D Y pE X Xsq. Hence

|Φspx1q ´ y2| ď lim sup
νÑ8

|Φspx1q ´ Φspy1
νq|
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ď B4|x1 ´ y1|γ “ B4pdpx1, E1qqγ,

the second inequality being valid by Proposition 2.2, since the F s
j

satisfy

the monic equations P jpF s
j
pxq; x1q “ 0. This completes the proof of

(4.2), and with it the proof of (L1), and thus of (L).

To prove Theorem 1, we have now only to complete Step 2, i.e. to

prove that Theorem 1 follows from (L). It suffices to find an analytic set

S near 0 P Rn, dim0 S ă n, and constants c, α ą 0 for which we have,

near 0,

| f pxq| ě cpdpx, E Y S qqα.

This is because, we have by (L), for y P S an inequality of the form

| f pyq| ě c1pdpy, Eqqα1 pc1, α1 ą 0q

and we may repeat the argument used to prove that (L1) implies (L)

to obtain the desired inequality. Now, by the Weierstrass preparation

theorem, we may suppose that f is a distinguished polynomial in xn

and further, that f is irreducible. [In fact, if the Łojasiewicz inequality

is true for two functions it is trivially true for their product.] Thus the

discriminant ∆ f px1, . . . , xn´1q ‰ 0. Suppose that the coefficients of

f and ∆ f are defined in a neighbourhood U of 0. We may then take

S “ tx P U|∆ f px1, . . . , xn´1q “ 0u. Let λ1, . . . , λr, be the real roots

of the equation f pxn; x1, . . . , xn´1q “ 0 and µ1, . . . , µs, the other roots.

Then

| f pxq| “
rź

i“1

|xn ´ λi|
sź

j“1

|xn ´ µ j|.

The first product
rś

i“1

is trivially ě dpx, Eqr. Now,

sź

j“1

|xn ´ µ j| ě
sź

j“1

| im µ j| ě 2´s
sź

j“1

|µ j ´ µ̄ j|.
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Now the λi, µ j are all bounded and ∆ f px1, . . . , xn´1q is the product of 62

the squares of the differences of all roots of f pxn; x1, . . . , xn´1q “ 0.

Hence
sź

j“1

|µ j ´ µ̄ j| ě c2∆ f px1, . . . , xn´1q.

Thus,

| f pxq| ě c3pdpx, Eqqr∆ f px1, . . . , xn´1q.

By induction hypothesis, ∆ f px1, . . . , xn´1q ě c4pdpx; S qqβ, and it fol-

lows that

| f pxq| ě cpdpx, E Y S qqα.

This proves Theorem 4.1.

Corollary 4.4. Let Ω be an open set in Rn and let X and Y be two

analytic sets in Ω. Then X and Y are regularly situated.

Proof. Clearly, it is enough to prove that for any a P X X Y , there exists

a neighbourhood U of a such that XXU and Y XU are regularly situated

in U. Hence we may suppose that there exist analytic functions f , g in

Ω such that tx P Ω| f pxq “ 0u “ X, tx P Ω|gpxq “ 0u “ Y . Let K be

any compact set in Ω. Then, there exists a constant B ą 0 such that for

x P K,

|gpxq| ď Bdpx,Yq. (4.5)

By Theorem 4.1, applied to the function f 2 ` g2 there are constants

c, α ą 0 so that for x P K, we have

f spxq ` g2pxq ě cpdpx, X X Yqqα,

since X X Y “ tx P Ω| f 2pxq ` g2pxq “ 0u. Combining this with (4.5),

we obtain,

dpx,Yq ě c1pdpx, X X Yqqα{2 for x P X X K, q.e.d.

�
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5 Further properties of analytic sets. The above corol-

lary gives us information on the metric properties of two analytic sets.

We now go back to the notation of §3, and prove some metric proper-

ties of different “sheets” of the same irreducible analytic set, due also to

Łojasiewicz [10].

Let X be an analytic set in the open set Ω Ă Rn, irreducible at the63

origin. suppose k “ dim0 X and let V “ V 1 ˆ V2 be a neighbourhood of

0 as in §3. We have defined closed sets Xr in V , 1 ď r ď p in §3. We

have

Proposition 5.1. For any pair of integers r, s, the sets Xr, Xs are regu-

larly situated.

Proof. We may obviously suppose r ă s, so that Vr Ą Vs. It is clear

that for any compact set K1 Ă V 1, there exists a compact set K2 Ă V2

such that pK1 ˆ V2q X X “ pK1 ˆ K2q X X. Let K “ K1 ˆ K2 We

have to prove that there exist constants c, α ą 0 so that for x P K X Xs,

y P K XXr, we have |x´y| ě cpdpx,Dqqα (since Xs XXr “ D). We have

already seen (in the proof of Theorem 4.1) that for x P X, we obtain an

inequality of the form

dpx1, δq ě Bpdpx,Dqqβ

from the fact that the functions Fr
j

are quasi-hölderian. Hence we have

only to prove an inequality of the form

|x ´ y| ě cpdpx1, δqqα. (5.2)

Let x “ px1, x2q, y “ py1, y2q, where x1 P Vs, y1 P Vr . If the closed

segment rx1, y1s Ć Vs, then it meets δ and (5.2) is trivial. Suppose there-

fore that rx1, y1s Ă Vs. Let η “ px1,Φrpx1qq. Now, Frpx1q and F spx1q are

two distinct roots of the equation Ppt; x1q “ 0. Hence there is a constant

A ą 0 so that

|Frpx1q ´ F spx1q| ě A|∆px1q|.

Hence, by Theorem 1 applied to ∆, we have

|x ´ η| ě |Frpx1q ´ F spx1q| ě B1pdpx1, δqqβ1 .
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On the other hand,

|y ´ n| ď |y1 ´ x1| ` Φrpx1q ´ Φrpy1q|

ď B2|x1 ´ y1|β2 (5.3)

(since the functions Fr
j

are quasi-hölderian). If now B2|x1 ´ y1|β2 ě
1
2

B1pdpx1, δqqβ1 , (5.2) is trivial. Otherwise, we have |y ´ η| ď 1
2
|x ´ η|,

so that |x ´ y| ě 1
2
|x ´ η| ě 1

2
B1pdpx1, δqqβ1 , and is (5.2) proved. �

Proposition 5.3. For 1 ď j ď lp“ n ´ kq, 1 ď r ď p, the functions Fr
j
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belong to the space MpV 1 ´ Vr; V 1q.

Proof. By Lemma 1.2 and Theorem 4.1,
1

∆
P M pV 1 ´ Vr; V 1q. Hence,

we have only to prove the proposition for j “ 1, i.e. for the function Fr.

We prove by induction on |q|pq P Nkq an estimate of the form

|DqFrpx1q| ď
Cq

dpx1, δqmq
(5.4)

for x1 P K1 ´ δ, K1 being a compact subset of V 1. Suppose q P Nn and

suppose (5.4) proved for all q1 with |q1| ă |q|. Since PpFrpx1q; x1q “ 0,

we have a relationship

ˆ
BP

Bxk`1

pFr; x1q

˙λq

DqFr “ RqpFr,Dq1

Fr; x1q,

where λq is an integer ą 0 and Rq is a polynomial in Fr and its deriva-

tives Dq1

Fr of order ă |q| (differentiation of composite functions). After

our induction hypothesis and Theorem 4.1, we have only to prove an in-

equality of the form

ˇ̌
ˇ̌ BP

Bxk`1

pFr; x1q

ˇ̌
ˇ̌ ě c.|∆px1q|.

But this is immediate, and the proposition follows. �
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We shall end this section by giving a description of the space I pD; Xrq
of Whitney functions on Xr which are flat on D.

Let λ P Nn “ Nk ˆ Nl, and let

F “ t f λu P I pD; Xrq.

We remark that F is determined uniquely by the collection tgµuµPNl

where

gµ “ f λ with λ “ 0 ˆ µ, 0 P Nk.

In fact, if λ “ ν ˆ µ, ν P Nk then f λ is a linear combination of

derivatives Dν1

x1g
µ1

px1,Φrpx1qq with µ1 ď µ. (See also proof of (5.5b)

given below.)

Given pgµq which determines an element of I pD; Xrq, let us set65

hupx1q ´ gµpx1;Φrpx1qq P E pVrq.

This gives us a mapping

π : I pD; Xrq Ñ rE pVrqsNl

Proposition 5.5. π maps I pD; Xrq bijectively onto rI pV 1 ´ Vr; V 1qsNl

.

Proof. As remarked above, π is injective. We have only to prove the

following two facts;

πpI pD; Xrqq Ă rI pV 1 ´ Vr; V 1qsN
l

, (5.5a)

πpI pD; Xrqq Ą rI pV 1 ´ V 1
rV

1qsN
l

(5.5b)

�

Proof of (a). We remark that any derivative of hµpx1q can be expressed

as a finite linear combination of the functions f λpx1,Φrpx1qq with co-

efficients which are polynomials in the derivatives of Fr
j
. (This can be

proved, for example, by choosing a C8-function in V inducing p f λq
and applying the rule for differentiation of composite functions.) To

prove (a), we have only to prove : given a compact subset K1 of V 1,
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f λpx1,Φrpx1qq tends to zero faster than any positive power of dpx1, δq
when x1 P Vr X K1 tends to δ. But this follows from the definition of

I pV 1 ´ Vr,V
1q and the fact that Φr is quasi-hölderian.

Proof of (b). Let h “ phµqµPNl , hµ P I pV 1 ´ Vr; V 1q be given. It is

enough to prove that for any integer m ą 0, there is a Cm functions H

on V , m-flat on pV 1 ´ Vrq ˆ V2, such that for µ P Nl, |µ| ď m, we have

D
µ

x2 Hpx1;Φrpx1qq “ hµpx1qpD
µ

x2 “ D
µ1
xk`1

. . .D
µl
xn

q.

We take H “ 0 on pV 1 ´ Vrq ˆ V2 and

Hpxq “
ÿ

|µ|ďm

hµpx1q
px2 ´ Φrpx1qqµ

µ!
for x “ px1, x2q P Vr ˆ V2.

By Proposition 5.3 since hµpx1q P I pV 1 ´ Vr; V 1q, H is C8 on V .

Clearly this has the required properties.
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V

THE PREPARATION THEOREM FOR

DIFFERENTIABLE FUNCTIONS

66

1 The special preparation theorem. The aim of this

chapter is to prove the preparation theorem for differentiable functions.

We begin by stating the theorem in a special case.

(1.1) The special Preparation Theorem. Let x “ px1, . . . , xnq P
Rn, t P Rn, t P R, and let

Πpx, tq “ tp `

pÿ

i“1

aipxqtp´i

be a distinguished polynomial in t with coefficients which are analytic

functions of x in a neighbourhood of x “ 0 in Rn. Then, for any f P
En`1, there exists g P En`1 and ρi P En, 0 ď i ď p ´ 1, such that

f px, tq “ Πpx, tqgpx, tq `

p´1ÿ

i“0

ρipxqti. (W)

We first state a more general theorem which is more convenient to

handle. To state this, we introduce some notations.

Let X be an analytic set in a neighbourhood of 0 P Rn, X0 its germ

at x “ 0. For any set A Ą Rn, denote by A0 the germ of the set A at

x “ 0 and pA0 the germ of the set A ˆ R at px, tq “ p0, 0q, with a similar

convention for germs of sets in Rn. Let Y be an analytic subset of X,

and let I pY0; X0q denote the space of germs of Whitney functions on

X0 which are flat on Y0, and define I ppY0, pX0q in a similar way. Then we

have

Theorem 1.2. Let Π, X0, Y0 be as above. Then for any f P I ppY0; pX0q,

there exist germs g P I ppY0; pX0q and ρi P I pY0, X0q, 0 ď i ď p ´ 1

such that (W) holds.
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The case X “ Rn

The special preparation theorem follows on taking X “ Rn, Y “ ∅.

We begin by reducing Theorem 1.2 to a weaker statement. For this 67

purpose, n, Π being given, let us denote by ThpY0, X0q the statement

of Theorem 1.2. It is clear that if Z0 Ă Y0 Ă X0, and ThpZ0,Y0q and

ThpY0, X0q are true, then ThpZ0, X0q is true. The weaker statement re-

ferred to is

PpX0q. Given the germ X0 of an analytic set in Rn, for any analytic

germ Y0 Ă X0, Y0 ‰ X0, there exists an analytic germ Y 1
0
, Y0 Ă Y 1

0
Ă
‰

X0

such that ThpY 1
0
, X0q is true.

We prove that PpX0q for any X0 implies ThpY0, X0q. Let H be the

set of analytic germs Z0, Y0 Ă Z0 Ă X0 such that ThpZ0, X0q is true.

Clearly H is nonempty pX0 P Hq, so that since any decreasingly filtered

family of analytic germs is stationary, H contains a minimal element,

which we again denote Z0. We prove that Y0 “ Z0. If this were not so,

then, by PpZ0q, there is Z1
0
, Y0 Ă Z1

0
Ă
‰

Z0 such that ThpZ1
0
,Z0q is true.

But since ThpZ0, X0q is true, it follows that ThpZ1
0
, X0q is true, and Z0 is

not minimal.

Thus, we have only to prove PpX0q. We do this in two stages; first,

when X “ Rn, we will prove a stronger result (which proves an analogue

of PpX0q for a fixed neighbourhood of 0) and then we will reduce the

general case to this.

2 The case X “ Rn. Let V be a neighbourhood of 0, Y

an analytic subset of V , Y0 its germ at the origin; we suppose that the

coefficients of Π are analytic in a neighbourhood of V .

Let I be a bounded open interval in R such that every real root of

Πpx, tq “ 0 lies in I if x P V; for any subset A of V , we set pA “ A ˆ I.

We may suppose in Theorem 1.2 that the polynomialΠ is irreducible

in Onrts. Hence its discriminant ∆ ı 0 in V . Let δ “ tx P V|∆pxq “ 0u.

We shall prove that ThpY 1
0
,Rnq is true, where Y 1

0
“ Y0 Y δ0. More

precisely, we have

Proposition 2.1. Let Y 1 “ Y Yδ. For any f P I ppY 1; pVq, there exists g P
I ppY 1

0
, pVq and ρi P I pY 1,Vq, 0 ď i ď p ´ 1 such that f “ Πg `

ř
ρit

i

on pV.
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Proof. Let Us be the set of points of V ´ δ where Π has exactly s real68

roots. Then Us is open and its boundary is contained in δ. Let U 1
s “

Us ´ Y , Fs “ V ´ Us. Let f psq “ f in pUs “ 0 in pFs. Then f “
př

s“0

f psq

and it is enough to prove the proposition for each f psq. Hence we may

suppose that f “ 0 outside Us for some s. �

Let τ1pxq ă . . . ă τspxq be the real roots ofΠpx, tq for x P Us. Then,

τipxq are quasi-hölderian, and belong to the space M pFs; Vq [Proposi-

tion 5.3.]

Let f1px, tq be the functions defined by

f px, tq “ pt ´ τ1pxqq f1px, tq ` f px, τ1pxqq

in pUs, f1 “ 0 in pFs. We assert that f1px, tq, f px, τ1pxqq belong to the

spaces I p pFs Y pY; pVq and I pFs Y Y; Vq respectively. It is clearly suf-

ficient to prove that they belong to the spaces I p pFs; pVq and I pFs; Vq
respectively since they are clearly flat on pY X pUs. We have seen in the

proof of Proposition 5.3 that f px, τ1pxqq P I pFs; Vq. For f1, we write,

for px, t, τq P V ˆ I ˆ I,

f px, tq ´ f px, τq “ pt ´ τqhpx, t, τq,

with h P I p pFs ˆ I; pV ˆ Iq. Clearly

f1px, tq “ hpx, t, τ1pxqq,

and it follows, as before, that f1 P I p pFs; pVq. We apply the same proce-

dure with f replaced by f1 and τ1pxq by τ2pxq and obtain

f px, tq “ pt´τ1pxqqpt´τ2pxqq f2px, tq`pt´τ1pxqq f1px, τ1pxqq` f px, τ1pxqq,

where f2 P I p pFs Y pY; pVq. Furthermore we have

f1px, τ2pxqq, τ1pxq f1px, τ2pxqq P I pFs Y Y; Vq.

Repeating this process s times, we find

f px, tq “ pt ´ τ1pxqq . . . pt ´ τspxqq fspx, tq `
s´1ÿ

i“0

ρipxqti,
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where fs P I p pFs Y pY; pVq and ρi P I pFs Y Y; Vq.

Now we have 69

Πpx, tq “
sź

i“1

pt ´ τipxqqΠ1px, tq, x P Us.

The proposition would obviously be proved if we show that the func-

tion

g “

#
fs{Π

1 in pUs,

0 in pFs

belongs to I p pFs Y pY; pVq. Clearly, since Π1 does not vanish at any point

of Us, we have only to prove that 1{Π1 P M p pFs; pVq. By (IV, 4.1) it

suffices to prove that

(a) Π1 P M p pFs; pVq;

(b) for any compact K Ă pV , |Π1px, tq| ě cpdpx, δqqα for suitable c,

α ą 0 and px, tq P K ´ pδ.

Proof of (a). Let λ1, . . . λs be new variables and let us divide the polyno-

mial Πpx, tq by pt ´λ1q . . . pt ´λsq. This gives us, with λ “ pλ1, . . . , λsq,

Πpx, tq “ pt ´ λ1q . . . pt ´ λsqΨpx; t; λq `Ψ1px; t; λq

where Ψ, Ψ1 are polynomials in t, λ with coefficients which are analytic

functions on V . Clearly Ψ1px; t; τq “ 0, where τ “ pτ1pxq, . . . , τspxqq,

so that

Π1px, tq “ Ψps; t; τq.

Since τ1pxq P M pFs,Vq, (a) is proved.

Proof of (b). If σ j are the complex roots of Πpx, tq we have for px, tq P
K,

|Π1px, tq| “ Π
j
|t ´ σ j| ě Π

j
| imσ j| ě c1Π

j
|σ j ´ σ j| ě c2|∆pxq|2,

where c1, c2, ą 0. The result follows from the Łojasiewicz inequality

(Theorem IV, 4. 1.).
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Remark . We remark here that the uniqueness of the remainder is not 70

guaranteed. The remainder we obtained is of degree ď s ´ 1 on Us, and

it is not difficult to see that we could obtain any function R of degree

ď p ´ 1 as remainder so long as R P I p pFs Y pY; pVq and Rpx; τipxqq “
f px; τipxqq for i “ 1, . . . , s. This shows that we have uniqueness in

Proposition 2.1 only in the case when all the roots of Π are real.

3 The proof of Theorem 1.2 in the general case.
We begin with the following remark. Suppose X0 is as in §§1, 2, and

X0 “ X1
0

Y X2
0
. Suppose the statements PpX1

0
q and Ppx2

0
q are true. Then

PpX0q is true. In fact, we may suppose that S 0 “ X1
0

X X2
0

is properly

contained in both X1
0

and X2
0
; let now Y0 Ă X0, and Z1

0
“ X1

0
XpY0 YS 0q,

Z2
0

“ X2
0

X pY0 Y S 0q. If Z1
0

Ă W 1
0

Ă X1
0
, Z2

0
Ă W2

0
Ă X2

0
are such that

ThpW 1
0
, X1

0
q and ThpW2

0
, X2

0
q are true, then since X1

0
, X2

0
are regularly

situated, we conclude that ThpW 1
0

Y W2
0
, X0q is true.

Hence we may suppose that X0 is irreducible. We now go back to

the notations of Chapter IV, §3.

Let the neighbourhood V of 0 be chosen sufficiently small and so as

to have all the properties stated in Chapter IV, §3. Let Y be an analytic

subset of X, (we regard X as a closed subset of V in what follows).

We may suppose that Y is the inverse image under the projection

X Ñ V 1 Ă Rk of an analytic set S Ă V 1, S ‰ V 1. To see this, we

have only to use the fact that if φ P On, φ “ 0 on Y , φ R J “ JpX0q,

then there is h P On ´ I such that hφ ´ φ1 P J, where φ1 P Ok. We

assert that there exists a polynomial Ψ P mathscrOnrts such that Ψ is

a multiple of Π in Onrts and Ψ “ Ψ1 ` Ψ2, where Ψ2 P Jrts, and

Ψ1 P Okrts is a distinguished polynomial. To prove this, let Ψ1 be the

product of the conjugates of the image Π of Π in pOn{Iqrts over Okrts,
sayΨ1 “ ΛΠ. LetΛ P Onrts induceΛ, andΨ “ ΛΠ. ClearlyΨ1 “ ΛΠ
is a distinguished polynomial in Okrts, and Ψ2 “ ΛΠ´ Ψ1 P Jrts.

We remark that it is enough to prove PpX0q with Π replaced by Ψ;71

in fact if Rpx, tq “
př

i“0

ripxqti is the remainder of the division of f by Ψ,

we have only to carry out the standard polynomial division of R by Π
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to prove PpX0q for Π, since clearly the coefficients in this polynomial

division will be flat wherever the ripxq are flat.

We suppose thatΨ1 andΨ2 have coefficients analytic on V and that I

is a bounded open interval in R such that any real root of Ψpx1; tq lies in

I for x1 P V 1. For any subset A of V 1, we shall write pAk for Aˆ I Ă Rk`1,

Ã for A ˆ V2 Ă Rn, pAn for A ˆ V2 ˆ I “ Ã ˆ I Ă Rn`1.

Applying Proposition 2.1 to the irreducible factors of Ψ1, we find

that if V is sufficiently small, there is an analytic set S 1 of V 1, S Yδ Ă S 1,

such that dim S 1 ă k for which any f P I ppS 1
k
; pV 1

k
q can be written f “

Ψ1g `
p1ř

i“0

ρit
i, p1 “ deg .Ψ1, where ρi P I pS 1; V 1q and g P I ppS 1

k
; pV 1

k
q.

Let Y 1 be the set S̃ 1 X X. We shall prove the following result, which

clearly implies PpX0q for Ψ.

Proposition 3.4. If f P I ppY 1; pXq, then there exist g P I ppY 1; pXq and

ρi P I pY 1; Xq, 0 ď i ď p1 ´ 1, such that

f “ Ψg `
ÿ

ρit
i.

Proof. Since the sets Xr are regularly situated and Xr X Xs Ă Y 1, it is

enough to prove the proposition with X replaced by Xr. To do this, we

remark that if π is the isomorphism of I pD; Xrq onto rI pV 1´Vr; V 1qsNl

given by Chapter IV, Proposition 5.5, then π induces an isomorphism of

I pY 1; Xrq onto rI pC; V 1qsNl

, where C “ pV 1 ´VrqYS 1 There is further

a similar isomorphism pπ of I ppY 1; pXrq onto rI p pC; pV 1qsNl

, defined by

pπpFq “ pGλq, λ P Nl, where Gλpx, tq “ pπFtq
pλqpxq, Ft standing for

the function x Ñ Fpx, tq. We have therefore only to prove that if f P
I ppY 1; pXrq, then there are ρi P I pY 1; Xrq, t P I ppY 1; pXrq with

pπp f q “ Ψpπpgq `
ÿ

πpρiqti. (3.1)

If we write 72

pπp f q “ p f λq, and Ψλ “ Dλ
x2Ψpx1,Φrpx1q, tq,
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then Ψλ P M ppV 1 ´ pVr; pV 1q, so that the equation (3.1) is equivalent with

the infinite system

f λ “ Ψ1gλ `
ÿ

µăλ

ˆ
λ

µ

˙
Ψλ´µgµ `

p1´1ÿ

i“0

ρλi ti, (3.2)

for the functions ρλ
i

P I pC; Vq, g P I p pC, pVq. The existence of the gλ,

ρλ
i

is an immediate consequence of Proposition 5.3. In fact suppose gµ,

ρ
µ

i
are constructed for µ ă λ; we have only to solve the equation

hλ “ Ψ1gλ `

p1´1ÿ

i“1

ρλi ti

where hλ “ f λ ´
ř
µăλ

`
λ
µ

˘
Ψλ´µgµ which belongs to I p pC; pVq by IV,

Proposition 1.4. Note that since the system (3.2) is infinite, we need

Proposition 2.1; the statement PpX0q would not suffice. �

Remark . Suppose that in the special preparation theorem we add the

following condition:

At any point near 0, the Taylor expansion of Π divides that of f in

the ring of formal power series.

The above proof then shows that we may take the ρi “ 0 in the

theorem. [The only point is that in §3, we must apply our considerations

to Λ f since we replace Π by ΛΠ.] This gives us the following theorem.

Let Ω be open in Rn, Π an analytic function in Ω. A functions f P
E pΩq is of the form Πg, g P E pΩq, if and only if the Taylor expansion of

Π divides that of f at any point of ω.

(Łojasiewicz [10], Hörmander [6].)

In view of the results of Chapter II, this may be formulated as as-

serting that a principal ideal in E pΩq generated by an analytic function

is closed. We shall prove a generalization of this theorem to arbitrary

ideals generated by analytic functions in the next chapter.
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4 The general preparation theorem.

Theorem 4.1 (Malgrange [12]). Let A and B be differentiable algebras

and u; A Ñ B a morphism. If u is quasi-finite, then u is finite.

Before beginning the proof, we remark that we have already proved

that the quasi-finiteness of u if equivalent with pu being finite, as also with

pu being quasi-finite. Moreover, we may assume that A “ En, B “ Em

[Ek being the ring of germs of differentiable functions at 0 P Rk]; this is

proved in the same way as in the analytic case.

We have the following

Lemma 4.2. Let u be a surjective morphism of a differentiable algebra

A onto a differentiable algebra B. Let pu be the induced morphism of the

completions : pu : pA Ñ pB. Then ker pu “ pker u `m8pAqq{m8pAq.

Proof. Since clearly ker pu “ u´1pm8pBqq{m8pAq, we have only to

prove that u´1pm8pBqq “ ker u ` m8pAq. Now, since u is surjective,

we have upmpAqq “ mpBq. Hence, for any k, upmkpAqq “ mkpBq, so

that u´1pmkpBqq “ mkpAq ` ker u. Hence u´1pm8pBqq “
Ş

kě0

pker u `

mkpAqq. Since the completion pA of A is noetherian, it follows from

Krull’s theorem that
Ş

kě1

pker u ` mkpAqq “ ker u ` m8pAq, and the

lemma is proved. �

Let u : En Ñ Em be a quasi-finite morphism, and let φ : Rm Ñ Rn

be a differentiable mapping with φ˚ “ u. We denote the coordinates in

Rm by x “ px1, . . . , xmq, those in Rn by y “ py1, . . . , ynq and we write

also En “ E pyq, Em “ E pxq. Now u can be factored

E pyq Ñ E px, yq Ñ E pxq,

where the first mapping is the canonical injection (associating to each

f pyq P E pyq the same function considered as a function of x and y) and

the second is the mapping

f px, yq Ñ f px, φpxqq
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where φpxq “ pφ1pxq, φnpxqq “ pupy1qpxq, . . . , upynqpxqq. Let N be the

kernel of the mapping E px, yq Ñ E pxq. To prove that u is finite, it

suffices to find an ideal P Ă N such that the composite

E pyq Ñ E px, yq Ñ E px, yq{P

is finite (since u is the composite of this mapping and a surjection of74

E px, yq{P onto E pxq). We denote this composite by i.

Let pN be the kernel of the map pu : pE pyq Ñ pE pxq. As remarked

above, pu is finite; hence there exists a finite number of monomials xα “
x
α1

1
. . . x

αm
m which generate pE pxq over pE pyq. Clearly, since if certain of

these monomials generate pE pxq{ pE pxqmp pE pyqq over R, they generated
pE pxq over pE pyq, we may suppose that they are linearly independent in
pE pxq{ pE pxqmp pE pyqq. Let r be a sufficiently large integer. Then, since the

xα are generators of pE pxq over pE pyq, there exist elements ciαpyq P pE pyq
such that

xr
i “

ÿ

α

ciαpφpxqqxα.

Since this equation holds in pE pxq, we conclude that if r is sufficiently

large, then ciαp0q “ 0. By our definition of pN, we conclude that

Qipx, yq “ xr
i ´

ÿ

α

ciαpyqxα P pN.

Let us write rαs “ max
j

|α j| if α “ pα1, . . . , αmq. By introducing series

ciα ” 0 if necessary, we suppose that

Qipx, yq “ xr
i ´

ÿ

rαsăr

ciαpyqxα P pN, ciαp0q “ 0.

Because of Lemma 4.2, there exist functions Pipx, yq P N whose Taylor

expansion at 0 coincides with Qi. Let P be the ideal in E px, yq generated

by the Pip1 ď i ď mq. We shall prove that the morphism

i : E pyq Ñ E px, yq{P

is finite. This, as we have already remarked, will terminate the proof.
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We now introduce the new variables t “ ptiαq, 1 ď i ď m, rαs ă r,

and the “generic polynomials”

Πipx, tq “ xr
i ´

ÿ

rαsăr

tiαxα,

considered as elements of E px, y, tq. Let Π be the ideal generated by Πi 75

in E px, y, tq. Our next object is to prove the following

Lemma 4.3. If f P E px, y, tq, then there exist functions gi P E px, y, tq,

hα P E py, tq (1 ď i ď m, rαs ă r) such that

f px, y, tq “
mÿ

i“1

Πipx, tqgipx, y, tq `
ÿ

rαsăr

hαpy, tqxα. (4.1)

Moreover, if f is flat at the origin, the gi and h can be chosen flat at the

origin.

Proof. It is clear that every polynomial in x, t is congruent to a sum of

monomials xα, rαs ă r modulo the ideal p generated by the Πi in the

ring of polynomials in x, t. Hence the composite

Rrts Ñ Rrx, ts Ñ Rrx, ts{p

is a finite mapping, so that, fro each i, xi is integral over Rrx, ts{p, so

that there exists a monic polynomial in xi, ψipxi, tq P p. Since clearly

ψip0, 0q “ 0, there exists, by the Weierstrass preparation theorem (or

better, the henselian properties of analytic rings), distinguished polyno-

mials

Ripxi, tq “ xs
i `

s´1ÿ

j“0

φi jptqx
j

i
,

where the φi jptq are analytic functions of t, which belong to the ideal

generated by p in the ring of analytic functions of x, t. We may obviously

suppose that s is independent of i .

For any f px, y, tq P E px, y, tq, we now apply the special preparation

theorem and conclude that

f px, y, tq “ G1px, y, tqR1px1, tq `
ÿ

α1ăs

Hα1
px2, . . . , xm; y; tqx

α1

1
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where G1, Hα1
P E px, y, tq. If now f is flat at the origin, the uniqueness

of the division algorithm in the ring of formal power series assures us

that G1, Hα1
are automatically flat.

We repeat the process with G1, Hα1
and divide them by R2px2; tq and76

so on. This gives us an identity

f px, y, tq “
mÿ

i“1

Gipx, y, tqRipxi, tq `
ÿ

rβsăs

Hβpy, tqxβ,

where, if f is flat at 0, so are Gi, Hβ. Since the Ri P Π, and the xβ are

congruent, modulo p, to a linear combination of the xα, rαs ă r, this

gives us an identity

f px, y, tq “
mÿ

i“1

Πipx, tqgipx, y, tq `
ÿ

rαsăr

hαpy, tqxα,

in which the gi, hα P E px, y, tq, and are flat at 0 if f is. This proves the

lemma.

Now, we have

Qipx, yq “ Πipx, tq `
ÿ

rαsăr

ptiα ´ ci alphapyqqxα.

If γiα P E pyq has the Taylor expansion ciαpyq, then the difference

Pipx, yq ´ Πipx, tq ´
ÿ

rαsăr

ptiα ´ γiαpyqqxα

is flat at 0; from Lemma 4.3, it follows that we have a relation

Pipx, yq “ Πipx, tq `
nÿ

j“1

Π jpx, tqgi jpx, y, tq `
ÿ

rαsăr

kiαpy, tqxα, (4.2)

where the gi j are flat and kiα has, at 0, the Taylor expansion tiα ´ ciαpyq.

Consequently the matrix

ˆ
Bkiα

Bt jβ

p0, 0q

˙
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is the unit matrix (the number of kiα, and that of tiα is the same). By

the implicit function theorem, there exist differentiable functions θiαpyq
such that

kiαpy, tq “ 0 for all i,

is equivalent with

tiα “ θiαpyq.

If we set tiα “ θiαpyq in (4.2), we obtain 77

Pipx, yq “ Πipx; θpyqq `
nÿ

“1

Π jpx, θpyqqgi jpx, yq, (4.3)

where the gi j are flat. Consequently, the equations (4.3) can be inverted,

so that the functions Πipx, θpyqq generate the same ideal P as the func-

tions Pipx, yq. If now f P E px, yq, we apply (4.1), and then substitute

θiαpyq for tiα. We obtain

f px, yq “
nÿ

i“1

Πipx, θpyqqgipx, y, θpyqq `
ÿ

rαsăr

hαpy, θpyqqxα

This proves that the mapping

i : E pyq Ñ E px, yqx{P

is a finite mapping; in fact the xα with rαs ă r generate E px, yq{P over

E pyq. This proves the preparation theorem. �

Corollary 4.4. Let u : A Ñ B be a morphism of the differentiable

algebra A and B. Let b1, . . . , bp P B and let pb1, . . . ,pbp be their images

in pB. Then the following conditions are equivalent:

(i) the images of pbi generate pB{pBmp pAq over R;

(ii) the pbi generate pB over pA;

(iii) the images of bi generate B{BmpAq over R;

(iv) the bi generate B over A.

(The deduction of this corollary from Theorem 4.1 has already been

given; see Chapter III, Corollary 1.7.)
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5 Examples. We give now three examples to illustrate how the

preparation theorem, (or rather the corollary above) can be applied.

I. Symmetric Functions. Let σipxq be the ith elementary symmetric

function of x1, . . . , xn, the coordinate functions in Rn. Let φ : Rn Ñ Rn

denote the map

φpxq “ pσ1pxq, . . . , σnpxqq

and u : En Ñ En the induced morphism. It follows at once from the78

elementary theorem on the representation of symmetric polynomials as

polynomials in σ1, . . . , σn that in the ring pEn of formal power series, the

monomials

x
α1

1
. . . x

αn´1
n´1

, 0 ď αi ď n ´ i,

generate pEn over the subalgebra generated by the images of σ1, . . . , σn.

Hence, by the above corollary, these monomials generate En over the

subalgebra of the differentiable functions of σ1, . . . , σn. In particular, if

f P En is symmetric (i.e. invariant under permutations of x1, . . . , xn) we

see, by averaging over the permutation group, that there exists g P En

such that

f px1, . . . , xnq “ gpσ1, . . . , σnq.

Thus, every germ of a differentiable function which is symmetric can

be expressed as a differentiable function of the elementary symmetric

functions.

This result is due to G. Glaeser [5].

II. The Weierstrass preparation Theorem. Let Fpx1, . . . , xnq P En be

regular in xn of order p, i.e. Fp0, . . . , 0, xnq has zero of order exactly

p at xn “ 0. Let B be the differentiable algebra En{pFq, A the algebra

En´1. Let u : A Ñ B be the composite of the injection En´1 Ñ En,

and the projection En Ñ B. It is clear that the images of 1, xn, . . . , x
p´1
n

in pB{pBmp pAq generate this module over R. By the corollary above, 1,

xn, . . . , x
p´1
n generate En{pFq over En´1; this means that for any f P En,

there exist functions Q P En and ri P En´1 such that

f “ QF `

p´1ÿ

i“0

rix
i
n.
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If we apply this to f “ x
p
n , we see that since Fp0, . . . , 0, xnq has a zero

of order exactly p at xn “ 0, we must have rip0q “ 0, Qp0q ‰ 0, so that

F “ gP;

where g “
1

Q
and P “ x

p
n ´

p´1ř
i“0

rix
i
n is a distinguished polynomial.

Thus, any function, regular in xn of order p, is equivalent to a dis- 79

tinguished polynomial in xn of degree p with coefficients differentiable

functions of x1, , xn´1.

III. Generic mappings R2 Ñ R2.

Let X and Y be two copies of R2 with coordinates px1, x2q and

py1, y2q respectively. Let Ω be an open set Ă X and let F “ p f1, f2q
be a C8 mapping ΩÑ Y

(a) There exists F1 as near as we like to F in E pΩ; Yq and having

the following property: at any point px1, x2q P Ω, the rank of the

mapping F1 (i.e. the rank of its jacobian matrix) is ě 1.

In fact, consider the mapping

ˆ
B f1

Bx1

,
B f1

Bx2

,
B f2

Bx1

,
B f2

Bx2

˙
ΩÑ R4.

By Sard’s theorem I, 7.4 its image has measure 0. Let then

pλ1, λ2, λ3, λ4q

be a point not belonging to the image (which we may choose ar-

bitrarily small). We may take

f 1
1 “ f1 ´ λ1x1 ´ λ2x2, f 1

2 “ f2 ´ λ3x1 ´ λ4x2.

(b) Suppose that the rank of F is everywhere ě 1. By making Ω

small and making suitable changes of variables in X and Y , we

may suppose that f1 “ x1. We then set f2 “ f for simplicity.

Let us show that there exists f 1 arbitrarily close to f in E pΩ; Rq
having the following property.
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(G). At any point a P Ω where
B f 1

Bx2

paq “
B2 f 1

Bx2
2

paq “ 0, we have

B2 f 1

Bx1Bx2

paq ‰ 0,
B3 f 1

Bx3
2

paq ‰ 0.

The proof is as before: using Sard’s theorem, one shows that the set

of pλ1, λ2, λ3, λ4q P R4 for which

f 1 “ f ´ λ1x2 ´ λ2x1x2 ´ λ3x2
2 ´ λ4x3

2

does not satisfy ((G)) is of measure zero.

Using (a) and (b) one proves the following (details are left to the

reader).

Let M and N be two C8 manifolds of dimension 2 which are count-80

able at infinity, and let K be a compact set in M. Let E pM,Nq be the

space of C8 mappings of M into N with the topology of uniform con-

vergence on any compact set of functions and their derivatives of all

orders (in an obvious sense). Then, the set of mappings in E pM,Nq
all of whose critical points on K satisfy ((G)) (in a suitable coordinate

system) is open and dense.

We shall now look more closely at these critical points. We place

ourselves at 0 in X and Y for simplicity. There are two types which

cannot be reduced to one another.

Type 1.

F “ px1, f q,
B f

Bx2

p0q “ 0,
B2 f

Bx2
2

‰ 0. (5.1)

Let us apply Corollary 4.4 to the mapping E2 Ñ E2 defined by F. We

find, in particular, that there exist Φ, Ψ P E2 such that

x2
2 “ Φpx1, f q ` 2Ψpx1, f qx2. (5.2)

We obviously have Φp0q “ Ψp0q “ 0. Put x1
2

“ x2 ´ Ψpx1, f q,

y1
2

“ Φpy1, y2q ` Ψ2py1, y2q. We deduce from (5.1) and (5.2) that

px1, x1
2
q, py1, y

1
2
q are local coordinates at 0. In this coordinate system,

our mapping takes the canonical form of Type 1 : f1 “ x1, f2 “ x2
2
.
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Type 2.

F “px1, f q,
B f

Bx2

p0q “
B2 f

Bx2
2

p0q “ 0; (5.3)

B2 f

Bx1Bx2

p0q ‰ 0,
B3 f

Bx3
2

p0q ‰ 0.

Applying again Corollary 4.4, we can find functions Φ, Ψ, Θ P E2 such

that

x3
2 “ Φpx1, f q ` Ψpx1, f qx2 ` 3Θpx1, f qx2

2. (5.4)

Clearly, Φp0q “ Ψp0q “ Θp0q “ 0. Replacing x2 by x2 ´ Θpx1, f q, we

see that we have again local coordinates on X for which (5.3) is satisfied,

so that we may suppose that Θ “ 0.

This being so, the conditions (5.3) and (5.4) show that we may take 81

as coordinates

on X : x1
1 “ Ψpx1, f q, x1

2 “ x2

on Y : y1
1 “ Ψpy1, y2q, y1

2 “ Φpy1, y2q

as is easily verified. We obtain finally the canonical form of Type 2:

f1 “ x1, f2 “ ´x1x2 ` x3
2.

The preceding results are due to H. Whitney [25]. The idea of

proving them using the preparation theorem is due to R. Thom. A gen-

eralization is to be found in B. Morin [14].

85



VI

IDEALS DEFINED BY ANALYTIC FUNCTIONS

82

1 The main theorem. The main theorem of this chapter is

the following.

Theorem 1.1. Let On, En denote the rings of germs of analytic and

differentiable functions respectively and ĂFn the ring of germs at the

origin of collections of formal power series at each point near 0 (see

Chapter III, §4). Let a be an ideal in On. Then we have

paĂFnq X En “ a ¨ En.

This theorem is obviously equivalent with the following (partition

of unity).

Theorem 1.11. Let Ω be an open set in Rn and f1, . . . , fp analytic func-

tions in Ω. Let φ P E pΩq. Then φ can be written in the form

ψ “

pÿ

i“1

fiψi, where ψi P E pΩq,

if and only if for any a P Ω, the Taylor expansion Taφ belongs to the

ideal generated by the Ta fi in TaE pΩq “ Da (formal power series at a).

For p “ 1, see Hörmander [6], Łojasiewicz [10]; for the general cases,

Malgrange [11]: see also Palamodov [16].

For the proof of the theorem, we shall use certain reductions which

are very similar to those used in the proof of the preparation theorem.

We start by stating a more general form of Theorem 1.1.

If Y0 Ă X0 are germs of analytic sets at 0 in Rn, let ĂFnpX0q denote

the ring of germs at 0 of collections, at points of X0, of formal power

series. Clearly we have an inclusion E pX0q Ă ĂFnpX0q where E pX0q
is the ring of germs at 0 of Whitney functions on X0. Let F pY0; X0q
denote the subring of E pX0q of functions flat on Y0. Then we have
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Theorem 1.2. If a is an ideal in On, we have83

a ¨ ĂFnpX0q X F pY0; X0q “ a ¨ F pY0; X0q.

We shall call Theorem 1.2 for the germs Y0 and X0, ThpY0, X0q (we

suppose a given). As in the case of the preparation theorem, we may

reduce Theorem 1.2 to the proof of the following statement:

PpX0q. Given the analytic germ X0 at 0, for any analytic germ Y0 Ă
X0, Y0 ‰ X0 there is an analytic germ Z0 ‰ X0, Y0 Ă Z0 Ă X0 such that

ThpZ0, X0q is true.

We remark that Theorem 1.2 implies

Theorem 1.21. If X is an analytic set in an open setΩ Ă Rn, if f1, . . . , fp

are analytic in Ω and Y is an analytic subset of X, then for any φ P
F pY; Xq, there exist functions ψ1, . . . , ψp P F pY; Xq such that φ “
Σ fiψi if and only if Taφ belongs to the ideal generated by the Ta fi in Fa

for any a P X.

We shall prove PpX0q by induction on k “ dim X0; we may therefore

suppose Theorem 1.21 true for any analytic set X Ă Q whose dimension

at any point is ă k.

Now we shall show that it suffices to prove PpX0q when X0 is irre-

ducible and a is contained in the ideal p Ă On of functions vanishing

on X0. The proof that we may suppose X0 irreducible is the same as in

the case of the preparation theorem and we do not repeat the argument.

Suppose that X0 is irreducible and let a Ć p; let f P a, f R p, and let

Z0 “ Y0 Y rX X tx| f pxq “ 0us. Then ThpZ0, X0q is true as follows from

the next lemma.

Lemma 1.3. Let Ω be an open set in Rn, and f analytic in Ω. Let

S “ tx P Ω| f pxq “ 0u. Let φ be a function P F pS ;Ωq. Then there

exists ψ P F pS ;Ωq such that φ “ ψ f .

Proof. By the inequality of Lojasiewicz and Chapter IV, Lemma 1.2,

1{ f P M pS ;Ωq. Since φ P F pS ;Ωq, ψ “ p1{ f qφ P F pS ;Ωq by

Chapter IV, Proposition 1.4. This gives Lemma 1.3.

Before going to the proof of PpX0q, we need two lemmas. �
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Lemma 1.4. Let Ω be an open set in Rn containing 0, a0, b0 two ideals 84

in On. Let f “ p f1, . . . , fpq; g “ pg1, . . . , gqq be generators of a0,

b0 respectively and suppose that they are analytic in Ω. Let ax, bx be

the ideals generated by f1, . . . , fp; g1, . . . , gq at x P Ω. Then, for any

compact subset K of Ω and any integer m ě 0, there is an integer m1

such that for any x P K, we have

am
1

x X bx Ă amx ¨ bx.

Proof. Let, for x P Ω, m1pxq be the smallest integer m1 such that

am
1

x X bx Ă amx ¨ bx;

(such an m1 exists by the Artin-Rees lemma). Now there exist h1, . . . , hr;

k1, . . . , ks in a neighbourhood U of x, such that the h belong to a
m1pxq
y Xby

and generate it for any y P U, while the k belong to am
1

y ¨by and generate it

for any y P U. Since a
m1pxq
x Xbx Ă amx ¨bx, if U is small enough, there exist

analytic functions ai j in U such that hi “
sř

j“1

ai jk j, i “ 1, . . . , r. Then

clearly, since the hi generate a
m1pxq
y X by, we have a

m1pxq
y X by Ă amy ¨ by,

so that m1pyq ď m1pxq for y P U. Hence m1pxq is bounded on K, and the

lemma follows. �

Lemma 1.5. LetΩ be an open set in Rn, f an analytic function onΩ and

let X “ tx P Ω| f pxq “ 0u. Then any point a of Ω has a fundamental

system of open neighbourhoods Ωp such that Ωp ´ X has only finitely

many connected components, each of which contains a in its closure in

Ωp.

Proof. We may clearly suppose that a “ 0 and that f is a distinguished

pseudopolynomial in xn which is irreducible at 0. Let y “ px1, . . . , xn´1q.

The discriminant of f has a germ at 0 P Rn´1 which is not zero. If

Ω “ Ω1 ˆ Ω2, Ω1 Ă Rn´1, Ω2 Ă R, suppose that the lemma is already

proved for the set Y Ă Ω1, Y “ ty P Ω1|∆pyq “ 0u. Let Ω1
p be a funda-

mental system of open neighbourhoods of 0 P Rn´1 such that Ω1
p ´ Y

has kp components Up,v which contain 0 in their closures. Let Ip be
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an open interval whose length Ñ 0 as p Ñ 8 such that f py, xpq “ 0,85

y P Ω1
p imply xn P Ip, and let Ωp “ Ω1

p ˆ Ip. To show that Ωp ´ X

has only finitely many components each adherent to 0, it is enough to

prove the same of Ωp ´ X ´ pY ˆ Ipq. Now, the number of real roots of

f py, xnq “ 0 is constant “ s, say, on Up,v; let τ1pyq ă . . . ă τspyq be

these roots. Then the connected components of Ωp ´ X ´ pY ˆ Ipq are

the sets

tpy, xnq|y P Up,v, τipyq ă xn ă τi`1pyqu,

where we have set τ0 “ ´8, τs`1 “ `8. Since τipyq Ñ 0 as y Ñ 0,

p1 ď i ď sq the lemma follows.

We now go to the proof of PpX0q. We use the notations of Chapter

IV, §3, and we may suppose, as in the preparation theorem, that there

is an analytic set Y 1 Ă V 1 such that Y “ pY 1 ˆ V2q X X. Let δ be the

set tx1 P V 1|∆px1q “ 0u. Let Z1 “ Y 1 Y δ, and suppose that V 1 is so

chosen that V 1 ´ Z1 has only finitely many connected components, each

adherent to zero. Let Z “ X XpZ1 ˆV2q. Then the same is true of X ´Z,

in fact, any component U 1 of V 1 ´ Z1 is contained in a set Vr, and the

components of X ´ Z are the sets tpx1, x2q|x1 P U 1, x2 “ Φspx1qu, for

any s ď r.

We suppose thatΩ is an open set containing V and that p is generated

by functions f1, . . . , fp analytic on Ω. Let, for x P Ω, px denote the ideal

at x generated in the ring of analytic functions at x by the fi. Finally let

Fx denote the ring of formal power series at x. �

Now we make the following remark:

(1.6) If φ is a germ of C8-functions on X, at a P X´Z and the “normal

derivatives” of φ vanish upto order m (i.e. Dλ
x2φ “ 0 for λ P Nl, |λ| ď

m), then the Taylor expansion of φ at a belongs to pm`1
a ¨ Fa.

This is a trivial consequence of the fact that, in Oa the ideal gener-

ated by Ppxk`1; x1q and ∆xk` j ´ Q jpxk`1; x1q coincides with the ideal of

germs vanishing on X. Suppose now that q is any ideal in On generated

by functions g1, . . . , gq analytic in Ω, q Ă p. We identify I pZ; Xrq with

rI ppV 1 ´VrqYZ1; V 1qqsNl

(by Chapter IV, Proposition 5.5). Let λ P Nl, 86
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and gλ
j

“ pDλ
x2g jqpx1,Φrpx1qq. We prove first the following

Lemma 1.7. Suppose φ “ pφλq P rI ppV 1 ´ Vrq Y Z1; V 1qsNl

, and sup-

pose that the Taylor expansion of φλ at any point a1 of Vr belongs to the

ideal generated in Fa1 by the gλ
j
. Then there exist functions φλ

j
, µ ă λ

such that we have

φλ
1

“

qÿ

j“1

ÿ

λăλ1

ˆ
λ1

µ

˙
g
λ1´µ
j

ψλj for λ1 ď λ.

Proof. If all the gλ
j
, µ ď λ vanish on V , we have nothing to prove.

Otherwise, let x1 be a point at which the matrix pg
λ1´µ1

j
q has maximal

rank (indices being λ1 and the pairs pµ1, jq say ρ and let A1 be a ρ ˆ ρ

submatrix of pg
λ1´µ1

j
q whose determinant at x1 if non-zero. Let A denote

the corresponding ρˆ ρ submatrix of pD
λ1´µ1

x2 g jq. Then, clearly det A ‰
0 at the point px1,Φrpx1qq. Let S be the set of points of X where det A

is zero. We assert that dim S is ă k at every point. In fact, since every

component of V 1 ´ Z1 is adherent to 0, the projection of S contains no

neighbourhood of 0 in V 1. Hence the germ of S at 0 is Ă X0, ‰ X0,

so that the dimension of S is ă k at every point of X ´ Z since every

component of X ´ Z is adherent to 0, so that S can contain no such

component.

To prove Lemma 1.7, we use now the following simple generaliza-

tion of Lemma 1.3. �

Lemma 1.8. Let h1, . . . , hρ be ρ-tuples of analytic functions on the con-

nected open set Ω Ă Rn, which are linearly independent at some point

of Ω. Let M be the set of points of Ω where they are not linearly inde-

pendent. Then for any ρ-tuple φ of C8-functions flat on M, there exist

functions ψi, 1 ď i ď ρ, flat on M, such that

φ “

ρÿ

i“1

ψihi.

Moreover, the ψi are flat at any point of Ω´ M where φ is.
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Lemma 1.7 is an immediate consequence of Lemma 1.8 if the func-

tion φ is flat on S .

Since, by assumption, the system under consideration is soluble at 87

every point, and A1 is a submatrix of maximal rank outside the projection

of S X Xr on Vr, it is sufficient to solve the square system

φλ
1

“
ÿ

j,µ

ˆ
λ1

µ

˙
g
λ1´µ
j

ψ
µ

j
where pg

λ1´µ1

j
q “ A1,

with the ψ
µ

j
flat on the projection of S X Xr on V 1; the other equations in

the system are then automatically satisfied.

To prove Lemma 1.7, we proceed as follows. Let φ1 P I pZ X S ; S q
be the restriction of φ to S . By the inductive hypothesis and Theorem

1.21, there exist ψi P I pZ X S ; S q such that

φ1 “ Σψigi in E pS q.

Let ψ1
i

P I pZ; Xq be such that their restrictions to S are the ψi (this

is possible because any two analytic sets are regularly situated); and let

φ1 “ Σgiψ
1
i
. Then φ ´ φ1 P I pZ X S ; Xq and we may apply the above

result to φ ´ φ1. Since Lemma 1.7 is true for φ ´ φ1 and for φ1, it is

clearly true for φ.

We now go back to our ideal a Ă p, and suppose that it is generated

by functions analytic on Ω; then clearly Lemma 1.7 is true for the ideal

qm “ pm ¨ a for every m ě 0. Suppose m1 “ m1pmq so chosen that

pm1

x X ax Ă pm
x ¨ ax for x P V (Lemma 1.4). (1.9)

Lemma 1.7 and the assertion (1.6) show that the following holds

(1.10) If φ P I pZ; Xrq and φ is m1-flat on Xr, then there exist, for any

λ P Nl, functions ψλ
j

P I pZ; Xrq which are m-flat on Xr such that

φλ
1

“

pÿ

j“1

ÿ

µăλ1

ˆ
λ1

µ

˙
f
λ1´µ
j

ψ
µ

j
for λ1 ď λ. (1.11)
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It is now easy to complete the proof of PpX0q. Given φ, it suffices to

find ψ j P I pZ1; Xrq with φ “
ř

fiψi, since the Xr are regularly situated.

We write φ in the form φ “ φ1 `φ2 `¨ ¨ ¨ where φk P I pZ; Xrq, and

the component φλ
k

‰ 0 only if m1pkq ď |λ| ď m1pk ` 1q [where m1pkq is

defined by (1.9)]. There exist functions ψ
µ

j,1
, P I ppV1 ´ Vrq Y Z1; V 1q,

|µ| ď m1p1q such that ψ
µ

j,1
are 0-flat on Xr, and φ1 ´

př
j“1

f jψ j,1 is m1p1q-88

flat. Let φ1
2

“ φ1 ` φ2 ´
př

j“1

ψ j,1 f j. We can, as before, find functions

ψ j,2 P I pZ; Xrq which are 1-flat on Xr, such that

φ1 ` φ2 ´

pÿ

j“1

f jpψ j,1 ` ψ j,2q is m1p2q-flat.

By induction, we find ψ j,k P I pZ, Xrq, ψ j,k being pk ´ 1q-flat on Xr,

such that

φ1 ` φ2 ` `φk ´

pÿ

j“1

f jpψ j,1 ` `ψ j,kq is m1pkq-flat.

Clearly ψ j “
8ř

k“1

ψ j,k P I pZ; Xrq (since ψ j,k is pk ´ 1q-flat) and φ “

př
j“1

f jψ j.

This proves PpX0q and hence the main theorem.

Corollary 1.12. En is a faithfully flat On-module.

We have seen already that ĂFn is a faithfully flat On-module (Theo-

rem III, 4.12). Therefore. the corollary results from Theorem 1.1 and

Proposition III, 4.7.

2 A remark concerning the Łojasiewicz inequal-

ity. Let Ω P Rn and f P E pΩq. Let X “ tx P Ω| f pxq “ 0u. We
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Differentiable functions vanishing on an analytic set

assert that if f E pΩq is closed, then for any compact K Ă Ω, there exist

constants C, α ą 0 such that

| f pxq| ě Ctdpx, Xquα for x P K. (2.1)

In fact, suppose f E pΩq closed. Then, by Banach’s theorem, to every

compact set K Ă Ω and m ą 0, there exists a compact set K1 Ă Ω and

m1 ą 0 such that if g P f E pΩq, there exists a ψ P E pΩq with ψ f “ g

such that

|ψ|K
m ď C|g|K1

m1 ,C independent of g. (2.2)

If x0 P K, we may find g P E pΩq, gpx0q “ 1, g “ 0 in a neighbourhood 89

of X such that

|g|K1

m1 ď
A

tdpx0, Xqup
,

where A ą 0 and p ą 0 are independent of x0, but depend only on K,

K1. (2.2) clearly implies that

sup
K

ˇ̌
ˇ̌ g

f

ˇ̌
ˇ̌ ď

AC

tdpx0, Xqup
;

in particular

| f px0q| ě
tdpx0, Xqup

AC
.

Next we give an example to show that the situation for non-analytic

functions is rather complicated.

Let f ˘ “ y2 ˘ e´1{x2

P E pb f R2q “ E . Then f `E is not closed,

but f ´E is. In fact f ` does not satisfy (2.1) in any neighbourhood of 0.

Since f ´ “ py ` e´1{2x2

qpy ´ e´1{2x2

q “ f ´
1

f ´
2

, we have only to prove

the theorem for f ´
1

, f ´
2

separately. But, by a change of coordinates,

these functions can be made linear.

3 Differentiable functions vanishing on an analytic
set. The results of this paragraph are based on the following theorem:

Theorem 3.1 (Zariski-Nagata). If the analytic algebra A is an integral

domain, so is its completion pA.
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For the proof, see e.g. Houzel [8] or Malgrange [13].

Here are some immediate consequences (in the statements A is an

analytic algebra and pA its completion).

(3.2) If p is a prime ideal of A, pp “ pAp is prime. (Apply (3.1) to A{p).

(3.3) Let q be an ideal of A and p1, . . . , ps the minimal prime ideals in

the decomposition of q. Then pp1, . . . ,pps are the minimal prime ideals in

the decomposition of pq.
In fact, one is reduced at once to the case q “ t0u; p1, . . . , ps are90

then the minimal prime ideals of A. Let us put r “ p1 X Xps. It is

well known that r is the set of nilpotent elements of A and that for a

certain n, one has rn “ t0u.

By Proposition III, 4.5 and Theorem III, 4.9, we have pr “ pp1 X
Xpps. On the other hand, we have obviously prn “ t0u. Suppose that

I is a prime ideal of pA, and let us suppose, for example, that pp1 Ć
I, . . . ,pps´1 Ć I. Let ai P ppi, ai R I; p1 ď i ď s ´ 1q. For any x P pps,

we have

pa1 . . . as´1xqn “ 0 P I,

whence x P I. Hence ps Ă I, which proves (3.3)

(3.3) shows in particular that if A is reduced (i.e. has no nilpotent

elements), then pA is reduced.

Definition 3.4. Let X be a subset of Rn adherent to 0, and let g be a

function of class C8 in a neighbourhood of 0. We say that g has a zero of

infinite order on X at 0 if, for any p P N, there is a neighbourhood Up of

0 and a number Cp ą 0 such that, on X X Up, we have |gpxq| ď Cp|x|p.

The above property depends only on the germ X0 of X and on the

Taylor expansion of g at 0. The set of these Taylor series forms an ideal

in Fn which we call the “formal ideal defined by X (or X0)” and denote

JpXq.

Theorem 3.5. Let X be an analytic set in a neighbourhood of 0 in Rn,

and let IpXq be the ideal in On of germs of analytic functions vanishing

on X0. We have IpXqFn “ yIpXq “ JpXq.
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Differentiable functions vanishing on an analytic set

It is sufficient to prove this theorem when X0 is irreducible. In fact,

if X “ X1 Y X2, we have

IpXq “ IpX1q X IpX2q.

By Proposition III, 4.5 and Theorem III, 4.9, we deduce that

yIpXq “ zIpX1q X zIpX2q.

On the other hand, we obviously have JpXq “ JpX1q X JpX2q; hence if 91

the theorem is true of X1, X2, it is true of X.

Suppose then that X0 is irreducible. Set dim X “ k, and let us go

back to the notation of Chapter III, §3. The mapping Ok Ñ On{IpXq
defined by x1, . . . , xk is finite and injective, and hence the “intrinsic”

topology of On{IpXq coincides with its topology as Ok-module. From

the exactness properties of the completion, we deduce from this that

the mapping Fk Ñ Fn{ yIpXq defined in the same way as above is still

injective; this mapping is finite by (III, 1.6). On the other hand, yIpXq is

prime (by (3.2)). Let us apply Proposition III, 5.4 to

A “ Fk, B ´ Fn{ yIpXq, p “ t0u, q “ JpXq{ yIpXq.

We find that, to prove the theorem, it is sufficient to verify that one has

JpXq X Fk “ t0u.

(Fk is considered as imbedded in Fn). This amounts to proving the

following:

Any function f px1, . . . , xkq of class C8 having a zero of infinite order

at 0 on X has a Taylor series which is identically zero.

Let U be the (germ at 0 of the) set of points of Rk ´ δ which are

images of points of X under the projection px1, x2q Ñ x1 (i.e. U “Ť
sě1

Vs; the notation is that of Chapter IV). There is a C ą 0, and p ą 0

such that, on X we have |x2| ď C|x1|p. Hence f , considered now as

a function on Rk, has a zero of infinite order at 0 on U. Changing the

notation, we are led to prove the following proposition.
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Proposition 3.6. Let Ω be an open set in Rk, 0 P Ω, and Φ be an

analytic function in Ω with Φp0q “ 0, Φ ı 0, and let D be the set

of zeros of Φ. Let Γ be an open and closed subset of Ω ´ D which is

adherent to 0. Then we have JpΓq “ t0u.

To prove this proposition, we shall proceed as follows. We shall92

suppose that Φp0, , 0, xkq is not identically zero near 0, and shall show

that, under this condition, any f having a zero of infinite order on Γ at 0

satisfies
Bq f

Bx
q

k

p0, . . . , 0q “ 0@q P N.

This implies the required result: in fact, the set of lines through 0 on

which Φ is not identically zero near 0 is an open dense set in the set of

lines through 0. Since, by a linear change of coordinates, we can take

any one of these lines as 0xk axis, it follows, by an elementary argument,

that all the derivatives of f are zero at the origin. One has thus JpΓq “ 0.

Suppose, then, that Φp0, . . . , 0, xkq is not identically zero in a neigh-

bourhood of 0. By makingΩ smaller, we may suppose thatΦ is a distin-

guished polynomial in xk, whose germ Φ0 has no multiple factors. We

have then

Φ “ x
p

k
`

pÿ

i“1

aipx1, . . . , xk´1qx
p´i

k
,

the ai being analytic in Ω with aip0q “ 0, 1 ď i ď p, and the discrimi-

nant ∆ of Φ is not identically zero near 0.

For x “ px1, . . . , xkq, set x “ px1, xkq and prpxq “ x1. Let Ω1 be a

neighbourhood of 0 in Rk´1 such that the conditions

x1 P Ω1,Φpx1, zq “ 0, z P C,

imply that |z| ď 1
2
, and, if z is real, that px1, zq P Ω. Let δ be the set of

zeros of ∆ inΩ1 and V 1 Ă Ω1 an open neighbourhood of 0 in Rk´1 which

is relatively compact in Ω1. By the inequality (IV, 4.1) of Łojasiewicz,

there exists C ą 0 and α ą 0 such that

@x1 P V 1, |∆px1q| ě Cdpx1, δqα.
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Differentiable functions vanishing on an analytic set

If z1, . . . , zp are the roots of the equation Φpx1, zq “ 0, we always have

|zi ´ z j| ď 1, hence |zi ´ z j| ě C dpx1, δqα if i ‰ j.

We may suppose that, n addition to the conditions imposed above, 93

we haveΩ “ Ω1 ˆp´a, aq, a ą 0. For x1 P Ω, the interval tx1uˆp´a, aq
is decomposed into at most p ` 1 intervals by the zeros of Φpx1, zq, and

we always have

Φpx1,˘aq ‰ 0.

This implies that γ “ prpΓ1q ´ δ is open and closed in Ω1 ´ δ; further γ

is clearly adherent to 0. For any x1 P γ, the set pr´1px1q X Γ contains at

least one of the preceding intervals; we denote the origin of this interval

by bpx1q, its extremity by cpx1q. If ´a ‰ bpx1q, a ‰ cpx1q, bpx1q, cpx1q
are distinct (consecutive) zeros of Φ, hence, for x1 P V 1 we have

cpx1q ´ bpx1q ě Cdpx1, δqα. (3.6.i)

If we have bpx1q “ ´a, cpx1q ‰ a, we replace bpx1q by cpx1q´Cdpx1, δqα

(which Ñ 0 as x1 Ñ 0, so that, if V 1 is small enough, this is ą ´a); we

proceed in a similar way if bpx1q ‰ ´a, cpx1q “ a. If bpx1q “ ´a,

cpx1q “ a, we replace bpx1q by 0 and cpx1q by Cdpx1, δqα.

After these modifications, the inequality (3.6.i) is valid at any point

of V 1, and there exist constants C1 ą 0, α1 ą 0, such that @x1 P V 1, we

have

|bpx1q|, |cpx1q| ď C1|x1|α
1

. (3.6.ii)

Lemma 3.7. With the hypotheses of the preceding proposition, there

exists a sequence tx1u of points of Γ, xl Ñ 0, and numbers C2 ą 0,

α2 ą 0 such that

|xl| ď C2dpxl,Dqα
2

@l.

Proof. This lemma is obvious if k “ 1. Suppose the lemma verified for

k ´ 1. It is sufficient to find a sequence xl of points of Γ, tending to zero,

such that

|xl| ď C2|Φpxlq|α
2
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By induction, there is a sequence x1l of points of γ satisfying

|x1l| ď C3dpx1l, δqα
3

(3.71)

One verifies easily that the sequence

xl “

˜
x1l “

bpx1lq ` cpx1lq

2

¸

has the required properties: it is sufficient to estimate from below the94

distance of xl from the roots of Φpx1l, zq “ 0. For the real roots, this fol-

lows from (3.6.i), for the imaginary roots from the estimate from below

of the imaginary part of a root in terms of ∆px1q. The lemma follows.

We apply this lemma to ∆ and γ (instead of Φ and Γ as in the state-

ment). There is a sequence of points x1l of points of γ, x1l Ñ 0, satisfy-

ing (3.71). Divide the interval rbpx1lq, cpx1lqs into q equal intervals with

extremities

b0px1lq “ bpx1lq, b1px1lq, . . . , bqpx1lq “ cpx1lq

and consider the expression

1

pb1 ´ b0qq

"
f px1l, b0q ´

ˆ
q

1

˙
f px1l, b1q ` ¨ ¨ ¨ ` p´1qq f px1l, bqq

*
.

As l Ñ 8, this expression tends to
Bq f

Bx
q

k

p0q. On the other hand, the

inequalities (3.6.i), (3.6.ii), (3.71) and the fact that f has a zero of infinite

order at 0 on Γ show that this limit is 0. Thus we have

Bq f

Bx
q

k

p0q “ 0 @q P N,

which proves Proposition 3.6 and hence Theorem 3.5. �

Remark 3.8. Let X be a subset of Rn, adherent to 0. Besides JpXq, we

may consider also the ideal J1pXq Ă Fn of Taylor series at 0 of functions

f P En vanishing on X. We have J1pXq Ă JpXq. If X is an analytic set,

we have yIpXq Ă J1pXq. Hence, by (3.5), JpXq “ J1pXq in this case.

98



Differentiable functions vanishing on an analytic set

We shall examine now what one can say about differentiable func-

tions vanishing on an analytic set, and not just about their Taylor series.

Definition 3.9. Let Ω be an open set in Rn and X an analytic set in Ω,

a P X. We say that X is coherent at a if there exists a neighbourhood 95

Ω1 of a and a finite number of analytic functions fip1 ď i ď pq in Ω1,

vanishing on X and having the following property:

For any b P Ω1, the images of f1, . . . , fp in Ob (the ring of germs of

analytic functions at b) generate IpXbq.

Contrary to what happens in the complex case, this property is not

verified for all analytic sets. The simplest counter-example is the “um-

brella” x3px2
1

` x2
2
q “ x3

1
which has the line x1 “ x2 “ 0 as isolated

generator, and so is not coherent at 0.

Theorem 3.10. Let X0 be a real analytic germ at 0 in Rn, IpX0q its an-

alytic ideal, and let KpX0q its analytic ideal, and let KpX0q be the ideal

in En of C8 functions vanishing on X0. Then the following properties

are equivalent.

(i) KpX0q “ IpX0qEn.

(ii) X0 is coherent at 0.

Proof. (ii) ñ (i). Let X0 be coherent at 0 and let X be a representative

of X0 in a neighbourhood Ω1 of 0 with the property given in (3.8). Let

φ P E pΩ1q, φ “ 0 on X. By (3.5), for any b P Ω1, Tbφ is a linear

combination of the Tb fi. Hence, by (1.11), φ is a linear combination of

the fi in E pΩ1q.

(i) ñ (ii) (Tougeron [22]). Suppose that X0 is not coherent. Let

f1, . . . , fp be generators of IpX0q, Ω a neighbourhood of 0 in which the

fi are defined, and set

X “ tx P Ω| f1pxq “ “ fppxq “ 0u.

Since X0 is not coherent, there is a sequence txlu of distinct points

of X, xl Ñ 0, and a sequence of functions gl defined near xl, such that,

for each l, gl is not a linear combination of the fi. Let tφlu be a sequence
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of functions P E pΩq, φl “ 1 near xl, having compact support inΩ and in

the set where gl is defined such that the supports of φl, φl1 do not meet if

l ‰ l1. Let hl “ φlgl, extended to Ω by 0. By an argument which is well

known in the theory of Fréchet spaces (which we leave to the reader) we

can find a sequence tλlu of real numbers ‰ 0 such that the series Σλlhl

converges, in E pΩq, to a function g. The germ g0 P En of g at 0 is not a96

linear combination of the fi in En, whence the theorem.

We refer to Malgrange [13] for applications of Theorems 3.5 and

3.10 to complex analytic sets. In conclusion, let us note another appli-

cation of Theorem 3.5. �

Proposition 3.11. Let X0 be an analytic germ at 0 in Rn with dim X0 “
k. Suppose that X0 contains the germ V0 of a C8 manifold of dimen-

sion k. Then V0 is the germ of an analytic manifold (which is then an

irreducible component of X0).

Before giving the proof, we give two examples.

Example 3.11.1. If X0 is a C8 manifold, it is an analytic manifold.

However, one sees easily that even for n “ 2, if we replace C8 by

Crpr P Nq, the statement is no longer true.

Example 3.11.2. Let Φ P On`1, Φ ‰ 0, and let f P En, f p0q “ 0 satisfy

Φpx1, . . . , xn, f px1, . . . , xnqq “ 0.

Then f is analytic [take for X the set defined by Φpx1, . . . , xn`1q “ 0

and for V that defined by xn`1 “ f px1, . . . , xnq].

Proof of the Proposition. Denote by IpX0q the analytic ideal of X and

by JpV0q the formal ideal of V0. The structure of JpV0q is obvious

because of our hypothesis that V0 is non-singular. On the other hand,

IpX0q Ă JpV0q, hence zIpX0q Ă JpV0q. Since

dimpFn{ zIpX0qq “ dimpFn{JpV0qq “ k,

JpV0q is a minimal prime ideal in the decomposition of zIpX0q. By (3.3),
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there exists a prime ideal p Ă On with

p Ą IpX0q,pp “ JpV0q.

There remain two things to be proved.

(i) The germ W0 defined by p is an analytic manifold of dimension k.

(This is an easy consequence of the Jacobian criterion for regular

points; we leave the details to the reader.)

(ii) We have V0 “ W0. 97

By an analytic change of coordinates, we may suppose that W0 is

defined by equations xk`1 “ . . . “ xn “ 0. On the other hand, V0 is

obviously tangent to W0 of infinite order at 0, hence defined by equations

xk` j “ φk` jpx1, . . . , xkq, φk` j P Ek, φk` j flat at 0.

Suppose that W0 ‰ V0. Let X1
0

be the union of the irreducible com-

ponents of X0 different from W0, and let gpx1, . . . , xkq P Ok be a function

not identically zero, which vanishes on X1
0

X W0. Let D be the set of ze-

ros of g, and U be the set of points of Rn ´ D near 0, for which we do

not have φk`1px1, , xkq “ . . . “ φnpx1, . . . , xkq “ 0. U is clearly open

and closed in Rn ´ D near 0 and is adherent to 0. Let f be a function

P On vanishing on X1
0
. In particular, f vanishes on V0 ´ W0. Hence

f px1, . . . , xk, 0, . . . , 0q has a zero of infinite order at 0 on U. By Proposi-

tion 3.6, f has a Taylor series which is zero at 0, hence is itself 0. Hence

f vanishes on W0, contradicting the fact that W0 Ć X1
0
. The proposition

follows.
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VII

APPLICATIONS TO THE THEORY OF

DISTRIBUTIONS

98

1 Support of a distribution. Continuable distri-

butions. Let Ω be an open set in Rn. We denote by D 1pΩq [resp.

D 1
cpΩq, D 1mpΩq, D 1m

c pΩq] the space of distributions [resp. with compact

support, of order m, of order m with compact support] inΩ (L. Schwartz

[18]). It is known that D 1
cpΩq [resp. D 1m

c pΩq] is the dual of E pΩq [resp.

E mpΩq] with its topology of Fréchet space that we have considered in

Chapter I.

Let X be a closed subset of Ω. We denote by D 1pXq [resp. D 1
cpXq,

D 1mpXq, D 1m
c pXq] the subspace of the corresponding space of distribu-

tions in Ω having support in X. Let us show that D 1
cpXq [resp. D 1m

c pXq]

is the orthogonal of I pX;Ωq (resp. I mpX;Ωq). In fact, by the defini-

tion of support, D 1
cpXq is orthogonal to the set of f P E pΩq which are

zero in a neighbourhood of X; on the other hand I pX;Ωq is the closure

in E pΩq of this set (Proposition I, 5.2). For D 1m
c pXq, the same argument

applies.

It follows from this that D 1
cpXq [resp. D 1m

c pXq] can be identified

naturally with the dual of DpXq “ E pΩq{I pX;Ωq [resp. E mpXq “
E mpΩq{I mpX;Ωq].

Let now Y be another closed set in Ω with Y Ă X. Set P 1pY; Xq “
D 1pXq{D 1pYq, P 1

0
pY; Xq “ D 1

cpXq{D 1
cpYq. The space P 1pY; Xq can be

interpreted as the space of distributions onΩ´Y , with support in X ´Y ,

which can be continued to a distribution on Ω (which, then, necessar-

ily has support in X) and P 1
cpY; Xq, can be interpreted analogously. If

we consider D 1
cpXq as the dual of E pXq, then D 1

cpYq Ă D 1
cpXq is the

orthogonal complement of I pY; Xq (same reasoning as above). Hence

P 1
cpY; Xq is the dual of I pY; Xq, the latter space being equipped with

the topology induced from E pXq.
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Division of distributions

Let now X and Y be two arbitrary closed sets in Ω. Consider the 99

sequence introduced in (I, 5.4):

0 Ñ E pX Y Yq
δ

ÝÑ E pXq ‘ E pYq
π
ÝÑ E pX X Yq Ñ 0. (1.1)

The transposed sequence is

0 Ñ D
1
cpX X Yq

π˚

ÝÑ D
1
cpXq ‘ D

1
cpYq

δ˚

ÝÑ D
1
cpX Y Yq Ñ 0 (1.2)

where π˚ is (up to sign) the diagonal mapping π˚pT q “ pT,´T q and

where δ˚pT, S q “ T ` S . From the properties of (1.1) and the theory

of duality in Fréchet spaces, we deduce at once that π˚ is injective, that

ker δ˚ “ im π˚ and that im δ˚ is dense in D 1
cpXYYq. Moreover, for δ˚ to

be surjective (i.e. for (1.2) to be exact) it is necessary and sufficient that

im δ be closed, i.e. that (1.1) be exact. Finally, by a partition of unity,

we see that the exactness of (1.2) is equivalent to that of the sequence:

0 Ñ D
1pX X Yq

π1

ÝÑ D
1pXq ‘ D

1pYq
δ1

ÝÑ D
1pX Y Yq Ñ 0, (1.3)

π1 and δ1 being defined in the same way as π˚ and δ˚, and this is equiv-

alent to the surjectivity of δ1. Consequently

Proposition 1.4 (Łojasiewicz [10].). Under the above hypotheses the

following properties are equivalent.

(i) X and Y are regularly situated.

(ii) The sequence (1.3) is exact.

(iii) The mapping δ1 is surjective: in other words, every distribution

T P D 1pX Y Yq can be written T “ S 1 ` S 2 with support pS 1q Ă
X, support pS 2q Ă Y.

2 Division of distributions. The statement dual to Theo-

rem VI, 1.1 is the following.

Theorem 2.1. Let Ω be an open set in Rn, Y Ă X Ă Ω two ana-

lytic subsets of Ω, and let f1, . . . , fp be analytic functions on Ω. Let
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T1, . . . ,Tp P P 1pY; Xq. Then a necessary and sufficient condition that

there exist S P P 1pY; Xq satisfying f1S “ T1, . . . , fpS “ Tp is the

following.

(R). For any a P X ´ Y, analytic relations between the fi at a are100

relations between the Ti, i.e. if g1, . . . , gp are germs of analytic functions

at a, then g1 f1 ` ¨ ¨ ¨ ` gp fp “ 0 implies that g1T1 ` ¨ ¨ ¨ ` gpTp “ 0

near a.

Remark 2.2. Using the global theory of coherent analytic sheaves on a

real analytic manifold, this condition can be replaced by the following :

if g1, . . . , gp are analytic in Ω, then g1 f1 ` ¨ ¨ ¨ ` gp fp “ 0 implies that

g1T1 ` ¨ ¨ ¨ ` gpTp “ 0.

Example 2.3. Take Y “ H, X “ Ω. Given T P D 1pΩq there exists

S P D 1pΩq with f1S “ T . In other words, “the division of a distribution

by an analytic function is always possible”. This theorem was proved

for p “ 1 (before the general case) by Hörmander [6] when f1 is a

polynomial, and Łojasiewicz [10].

Proof of Theorem 2.1. It suffices to prove the theorem for P 1
cpY; Xq

instead of P 1pY; Xq, as one sees using a partition of unity. Consider the

mapping

F : P
1
cpY; Xq Ñ rP 1

cpY; Xqsp

defined by FpS q “ p f1S , . . . , fpS q. We shall prove that the image of F

is closed and that it is dense in the set E of pT1, . . . ,Tpq satisfying ((R));

one would then have impFq “ E. The transpose of F is the mapping

F˚ : rI pY; Xqsp Ñ I pY; Xq

defined by F˚pφ1, . . . , φpq “ f1φ1`¨ ¨ ¨` fpφp. Theorem VI, 1.2 implies

that the ideal generated in I pY; Xq by the fi is closed; hence impF˚q is

closed. By transposition it follows that impFq is closed.

We now prove that impFq is dense in E. It suffices to show that

for any φ “ pφ1, . . . , φpq P rI pY; Xqsp which is orthogonal to impFq,

we have f1φ1 ` ¨ ¨ ¨ ` fpφp “ 0. By a partition of unity, it suffices

104



Harmonic synthesis in S 1

to examine the φ with compact support in a given neighbourhood of a

(a being any point of Ω). Now, Corollary VI, 1.12 shows that we can

find analytic relations gp1q, . . . , gprq between the f in a neighbourhood

of a and functions ψ1, . . . , ψr P E pΩq with compact support in the given 101

neighbourhood of a such that φ “ Σψ jg
p jq. One deduces at once that φ

is orthogonal to E, and the theorem follows.

The preceding theorem can be interpreted in terms of the concept of

injective modules.

Let A be a (unitary, commutative) ring, and M a unitary A-module.

M is called injective if, for any ideal I Ă A, the natural mapping

M » HomApA, Mq Ñ HomApI, Mq is surjective. We take a system

p fiqiPI of generators of I and a family pTiqiPI of elements of M such

that every relation between the fi with coefficients in A is also a relation

between the Ti. Then u : fi Ñ Ti defines an element of HomApI, Mq
and conversely. To say that M is injective amounts therefore to saying

that in this situation, there is an S P M such that fiS “ Ti for each i.

This being the case, Theorem 2.1, the noetherian nature of On and Oka’s

theorem III, 4.12 [in the form (III, 4.14)] give us the

Theorem 2.4. Let X0, Y0 be germs of analytic sets at 0 P Rn with Y0 Ă
X0, and let P 1pY0; X0q be the space of germs induced at 0 by P 1pY :

Xq (Y, X being representatives of Y0, X0 near 0 with Y Ă X). Then

P 1pY0; X0q is an injective On-module. In particular, the space D 1
n of

germs at 0 of distributions is an injective On-module.

Remark 2.5. With the hypotheses of Theorem 2.1, let OpΩq be the ring

of real valued analytic functions in Ω. Then, using Remark 2.2, one

shows easily that P 1pY; Xq (and in particular D 1pΩq) is an injective

OpΩq-module.

3 Harmonic synthesis in S 1. We being by giving the

statements dual to those given in Chapter II.

Proposition 3.1. LetΩ be an open set in Rn and V a sub-E mpΩq-module

of D 1mpΩq which is weakly closed. Then, in V (with the weak topology
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induced from D 1mpΩq) distributions with point support form a total sys-

tem.

The same statement is true with D 1mpΩq and E mpΩq respectively102

replaced by D 1pΩq and E pΩq.

The proof, which is immediate by transposition and partition of

unity, is left to the reader.

In the case of E pΩq and D 1pΩq, the result is true even with the strong

topology, since these spaces are reflexive. We remark that, using a parti-

tion of unity [or directly, using II, 1.7], we see that these results are true

if Ω is any C8 manifold countable at infinity.

This being the case, let S be the space of C8 functions on Rn

which, together with derivatives of all orders, tend to zero faster than any

negative power of x2
1

` `x2
n. Let Rn Ñ S n be the natural mapping of

Rn into the n-dimensional sphere (S n being obtained from Rn by adding

a point 8 at infinity). This mapping identifies S with I pt8u; S nq, and

the usual topology of S is compatible with this isomorphism. The dual

S 1 of S can be identified then with P 1pt8u; S nq “ P 1
cpt8u; S nq. We

look upon this space as imbedded in D 1pS n ´ t8uq “ D 1pRnq.

Let V be a (weakly or strongly) closed sub-S -module of S 1 (the

two being equivalent since S is reflexive). We show that distributions

with point support form a total set in V . Let rV be the inverse image of

V in D 1pS nq. It is sufficient to show that rV is closed (which is obvious)

and that it is invariant under multiplication by any f P E pS nq. Now, if

f P I pt8u; S nq this is true by hypothesis. If f is arbitrary, we show

that any φ P E pS nq orthogonal to V is orthogonal to f rV: given such a

φ, it is orthogonal to D 1pt8uq, hence φ P I pt8u; S nq. Hence there is

a sequence tαku of functions in E pS nq, zero in a neighbourhood of 8,

such that fφ “ limαk fφ (cf. proof of Lemma I, 4.3). Hence, for T P rV ,

we have

x f T, φy “ xT, fφy “ limxT, αk fφy “ limxpαk f qT, φy “ 0

and the result follows. [The same reasoning would apply to P 1
cpY; Xq,

Y Ă X being any closed sets of a manifold.]
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Partial differential equations with constant coefficients

By the Fourier transformation, one knows that S is transformed 103

into S , S 1 into S 1, and that multiplication transforms into convolu-

tion. One deduces easily the following : If V is a closed sub-S -module

of S 1, its Fourier transform pV is a vector R-subspace of S 1 which is

closed and invariant by translation, and conversely. Further, the Fourier

transforms of distributions with point support are the “exponential poly-

nomials”, i.e. the functions x Ñ Ppxqeixλ,xy, where P is a polynomial

and λ P Rn. Thus one has the following result.

Theorem 3.2 (Whitney-Schwartz; cf. Schwartz [19]). In any vector

subspace of S 1 which is closed and translation invariant, exponential

polynomials form a total system.

One knows, on the other hand, that this statement is false in L8pRnq
with the weak topology (Schwartz for n ě 3: Malliavin for n “ 1, 2).

One conjectures that it is true in E pRnq [it is then necessary to take

“complex” exponential polynomials, i.e. λ P Cn], but, at present, this

has only been proved for n “ 1 (Schwartz [20]).

4 Partial differential equations with constant co-

efficients. Let Pn “ RrX1, . . . , Xns be the polynomial ring in n

indeterminates. We shall consider it, at least at the beginning of this

section, as imbedded in the ring of analytic functions on Rn by the map-

ping X j Ñ x j, the x j being the coordinates in Rn. Let f1, . . . , fp P Pn

and T1, . . . ,Tp P S 1pRnq. We first prove the following result.

There exists S P S 1 with f jS “ T j, 1 ď j ď p, if and only if the

following condition is verified.

(R): at any point a P Rn, the analytic relations at a between the f j

are relations between the T j in a neighbourhood of a.

For this, consider Rn imbedded in S n as in §3, and let us identify S 1

with P 1pt8u; S nq. It is enough to prove the result in the neighbourhood

of any point a of S n (partition of unity). If a ‰ 8 this follows from The-

orem 2.1. If a “ 8, we make the change of variable y j “ x j{Σx2
j
, and

remark that, if m is large enough, pΣy2
i
qm f j is a polynomial in y1, . . . , yn; 104

the result follows then again from Theorem 2.1.
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Let us remark that the condition (R) is equivalent to the following.

(R1). Relations between the fi with coefficients in Pn are relations

between the Ti (i.e. Σgi f j “ 0, g j P Pn implies that Σg jT j “ 0).

In fact, if we denote by Oapa P Rnq the ring of germs of functions

analytic at a, we know that Oa is flat over Pn [III, (4.11)]. Interpreting

flatness in terms of relations, we see at once that (R1) ñ (R). From this

and the fact that Pn is noetherian, we deduce (arguing as in the proof of

Theorem 2.4)

Theorem 4.1. P operating on S 1 by X jT “ x jT makes of S 1 an injec-

tive Pn-module.

By the Fourier transformation, we deduce

Theorem 4.1. If Pn operates on S 1 by X jT “
BT

Bx j

, S 1 is an injective

Pn-module.

Example 4.2. Let f P Pn and δ P S 1 be defined by xδ, φy “ φp0q. Then

there exists E P S 1 with f

ˆ
B

Bx j

˙
E “ δ. In other words, every linear

differential operator with constant coefficients has a temporate funda-

mental solution (i.e. one in S 1). This is mainly of historical interest

(the condition E P S 1 is artificial; see Hörmander [7] for a discussion

of this question). We have, however, given this here because it was the

origin of a large part of the results contained in this book.
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